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Abstract 

These studies present a series of novel roles for glucocorticoid signaling in the developing 

zebrafish embryo. The best-characterized roles of cortisol, the primary circulating corticosteroid 

in teleost fish, are known to occur by the activation of the glucocorticoid receptor (GR) in the 

post-hatch animal to mobilize energy reserves for response and recovery from stressful situations. 

For the first time, evidence is presented that GR and cortisol are key developmental regulators in 

the pre-hatch zebrafish embryo and that glucocorticoid signaling modulates multiple critical 

developmental pathways and affects embryogenesis in diverse ways. 

Prior to these experiments, very little was known regarding the developmental role of 

glucocorticoids in lower vertebrates. In mammalian models, there has been extensive study of the 

action of these steroids in late-stage organ maturation, and they have a variety of clinical and 

biomedical applications. However, in fish, there was a relative dearth of information regarding 

the basic dynamics and potential functional roles of cortisol and GR in embryogenesis. Zebrafish 

are a popular model for developmental study, with optically transparent embryos that allow for 

reliable observation. Additionally, the zebrafish genome is fully sequenced and extensively 

annotated, and a variety of molecular biology techniques are well-established in the existing 

literature. The zebrafish is also now recognized as an advantageous model for endocrine and 

stress axis studies, as it expresses a single GR gene, unique among teleosts but comparable to 

mammals. Preliminary studies published in the literature described cortisol and GR as deposited 

in the zebrafish embryo prior to fertilization, and showed their expression declining prior to 

hatch, then rising significantly as larvae approach the stage of first feeding. This dynamic 

expression of both ligand and receptor during embryogenesis, combined with knowledge from 

mammalian models, led to the hypothesis that glucocorticoid signaling may be functionally 

relevant in zebrafish development. 

A variety of techniques were used to examine the roles of cortisol and GR in the zebrafish 

embryo. Morpholino oligonucleotides were injected into one-cell embryos to block GR protein 

translation, allowing for the identification of GR-responsive developmental events and putative 

GR target genes. High-density microarray analysis of GR morphants presented numerous novel 

genes and pathways that are modulated by glucocorticoid signaling in the embryo. The ability to 

microinject molecules into a newly-fertilized zygote also allowed for other manipulations, 

including the addition of exogenous cortisol or the use of a cortisol-specific antibody to sequester 
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maternally deposited cortisol. These studies provided the first evidence regarding the functional 

importance of the maternal cortisol deposition in the zebrafish oocyte prior to fertilization. 

The detailed temporal and spatial expression of GR mRNA and protein in the developing 

embryo has been characterized for the first time. GR expression is widespread, especially in 

developing mesoderm, and de novo GR transcription in the zebrafish embryo begins within 12 

hours post fertilization. Lack of GR protein expression in the developing zebrafish embryo causes 

reduced growth, delayed somitogenesis, altered myogenesis, and severely reduces post-hatch 

survival. Additionally, GR modulates the expression of bone morphogenetic proteins, a family of 

morphogens that are involved in major developmental events including dorsoventral patterning, 

somitogenesis, myogenesis, and organogenesis. Reduction in GR protein content in the 

developing embryo is also linked to other major developmental processes including neurogenesis, 

eye formation, cellular adhesion, and development and function of the hypothalamic-pituitary-

interrenal (HPI) axis. 

Cortisol in the early embryo, which is contributed entirely by maternal deposition prior to 

fertilization, is an important regulator of cardiogenesis and development of the HPI axis. 

Modulation of cortisol content in the early embryo causes an impairment of the post-hatch 

response to a physical stressor, as larvae exposed to increased cortisol during embryogenesis 

displayed an inability to increase heart rate in response to an acute physical stress, and did not 

display the classical increase in cortisol that follows a stressor challenge. Embryos that 

experience lowered glucocorticoid signaling in development tend to have a heightened post-hatch 

response to stress, further supporting the conclusion that HPI axis development is regulated by 

glucocorticoid signaling. These studies have identified key cardiogenic and HPI axis genes that 

are GR-responsive, providing mechanistic explanations for these phenotypic changes. Together 

these findings indicate that maternal deposition of cortisol in the embryo can pattern the post-

hatch larva and has definitive impacts on performance as the offspring begin locomotion and 

approach feeding stages. 

In total, these studies demonstrate that glucocorticoid signaling is critically important to 

zebrafish embryogenesis, defining novel roles that are completely independent of the classical 

vertebrate stress response. These functions have significant effects on diverse developmental 

pathways and processes, and with the potential applicability of the zebrafish model to studies in 

higher vertebrates, may have important biomedical applications.  
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Chapter 1 
General Introduction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: portions of this chapter are reproduced with permission from {Nesan, D., and Vijayan, 

M.M. 2012. Role of glucocorticoid in developmental programming: Evidence from zebrafish. 

Gen. Comp. Endocrinol. In press. doi: 10.1016/j.bbr.2011.03.031.} © {2012} Elsevier.  
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1.1 Introduction 

Activation of the vertebrate corticosteroid stress axis involves a highly conserved set of 

coordinated signaling events between various organs leading to hormonal release in response to 

stressor insult (see Table 1 for reviews). In teleosts the main circulating stress steroid is cortisol 

and this hormone binds to glucocorticoid receptor (GR) which acts as a transcription factor upon 

ligand binding to affect gene expression in target tissues (Bury and Sturm, 2007; Prunet et al., 

2008). It has recently been shown in zebrafish (Danio rerio), GR mRNA abundance is 

differentially regulated during embryogenesis (Alsop and Vijayan, 2008; 2009). Cortisol is also 

present in the newly fertilized embryo (Alsop and Vijayan, 2008), and the combined presence of 

both receptor and ligand leads to interesting questions of potential glucocorticoid signaling 

actions in development. 

 It should be noted that cortisol can also bind and activate teleost mineralocorticoid 

receptors (MR) in vitro (Prunet et al., 2006; Pippal et al., 2011). However, the extent to which it 

acts in tissues in vivo is unclear, as research has shown the co-expression of MR with the cortisol-

converting enzyme 11-hydroxysteroid dehydrogenase 2 (11hsd2) indicating that cortisol-MR 

binding may be similar to that in mammals where active cortisol is often spatially separate from 

MR expressing tissues (Edwards et al., 1988; Pascual-Le Tallec and Lombes, 2005; Sturm et al., 

2005). Teleosts do not synthesize aldosterone, and the primary ligand for MR remains unknown 

(Sturm et al., 2005; Pippal et al., 2011). As with GR, MR expression is also dynamic in the early 

embryo (Alsop and Vijayan, 2008), but without a clear understanding of basic function and 

activation, it is difficult to assess its importance. For these reasons, this introductory chapter and 

this dissertation in total will focus on the role of cortisol and its activation of the glucocorticoid 

receptor.  

 While the role of GR activation on downstream molecular responses has been explored to 

a large extent by expression analysis of targeted glucocorticoid-responsive genes and/or by 

microarrays examination of transcriptomic changes in teleosts (Mommsen et al., 1999; Vijayan et 

al., 2005; Aluru and Vijayan, 2007; Aluru and Vijayan, 2009), the role of cortisol and the GR 

signaling in developmental programming is far from clear. This introductory chapter will describe 

general zebrafish embryogenesis and some key developmental processes and regulatory 

pathways, as well as the development of the zebrafish stress axis organs and what is known about 

the role of glucocorticoid signaling in the development of a variety of animals.  
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Table 1 – Animal stress axis signaling reviews from the primary literature 

Major Subject/Animal(s) Reference 

Fish (Wendelaar Bonga, 1997) 

Fish (Mommsen et al., 1999) 

Fish (Schreck et al., 2001) 

Fish (Barton, 2002) 

Fish (Prunet et al., 2006) 

Fish (Bury and Sturm, 2007) 

Fish (Prunet et al., 2008) 

Fish (Aluru and Vijayan, 2009) 

Fish (Pankhurst, 2011) 

Amphibians (Rollins-Smith, 2001) 

Amphibians (Denver et al., 2002) 

Amphibians/reptiles (Moore and Jessop, 2003) 

Reptiles (Greenberg, 1990) 

Reptiles (Lance, 1990) 

Birds (Siegel, 1980) 

Birds (Harvey and Hall) 

Birds (Hess, 2006)   

Birds (Martin and Rubenstein, 2008) 

Mammals (Boonstra, 2005) 

Mammals (Reeder and Kramer, 2005) 

Humans (Zhou and Cidlowski, 2005) 

Humans (Nicolaides et al., 2010) 
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Table 1 (Continued) – Animal stress axis signaling reviews from the primary literature 

Major Subject/Animal(s) Reference 

Vertebrates (Dallman et al., 1992) 

Vertebrates (Johnson et al., 1992) 

Vertebrates (Ottaviani and Franceschi, 1996) 

Vertebrates (Chrousos, 2000) 

Vertebrates (Sapolsky et al., 2000) 

Vertebrates (Tsigos and Chrousos, 2002) 

Vertebrates (Charmandari et al., 2004b) 

Vertebrates (Chrousos, 2006) 

Vertebrates (Smith and Vale, 2006) 

Vertebrates (Wada, 2008) 

Vertebrates (Denver, 2009) 

Vertebrates  (Tort and Teles) 

Molecular mechanisms (Burnstein and Cidlowski, 1989) 

Molecular mechanisms (Adcock, 2001) 

Molecular mechanisms (Schaaf and Cidlowski, 2002) 

Molecular mechanisms (Yudt and Cidlowski, 2002) 

Molecular mechanisms (Schoneveld et al., 2004) 

Molecular mechanisms (Heitzer et al., 2007) 

Molecular Mechanisms (Mormede et al., 2011) 
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1.2 The corticosteroid stress axis in teleosts 

The vertebrate stress response is highly conserved and well characterized in a variety of different 

animals (see Table 1). In general, perception of a stressor leads to the release of corticotropin-

releasing hormone (CRH) (or corticotropin-releasing factor (CRF) in fish) from the hypothalamus 

(Feist and Schreck, 2001; Tsigos and Chrousos, 2002). This neuropeptide acts on the anterior 

pituitary and stimulates the release of adrenocorticotropic hormone (ACTH), which acts on the 

adrenal gland (or interrenal tissue in fish) to release corticosteroids, including cortisol or 

corticosterone (Schmidt and Litwack, 1982; Wendelaar Bonga, 1997; Levine, 2001; Charmandari 

et al., 2004b), into circulation. Together, this interconnected network of organs is known as the 

hypothalamus-pituitary-interrenal (HPI; see Figure 1 for a schematic) axis in fish and their 

functioning is critical for evoking a cortisol stress response (Chrousos and Gold, 1992; Rehan, 

1996). A key metabolic role for corticosteroids is to mobilize energy substrate stores and produce 

glucose to cope with immediate energy demands during stressor exposure, and also to replenish 

glycogen stores during recovery (Ballard and Ballard, 1974; Chrousos and Gold, 1992; Johnson et 

al., 1992; Wendelaar Bonga, 1997; Charmandari et al., 2004b; Schreck, 2010). However, 

glucocorticoids also act on other systems, including nervous, muscle, reproductive, and immune 

systems, to affect behavior, growth, metabolism, reproduction, and/or health of the animal (see 

Table 2 for reviews). This action is mediated predominantly by binding to intracellular 

corticosteroid receptors (Funder, 1997), including GR and MR (Mommsen et al., 1999). 

Corticosteroid binding activates GR, and results in dimerization and translocation into the 

nucleus, where the activated-complex modulates target gene expression by binding to 

glucocorticoid response elements (GREs) upstream of target genes (Funder, 1993; Mommsen et 

al., 1999; Charmandari et al., 2004a) (see Figure 2 for a schematic). Mammals express a single 

GR gene, which is under variable regulation by multiple phosphorylation sites (Webster et al., 

1997). Humans express two splice variants, GRα and GRß (Bamberger et al., 1995), that exhibit 

different transcriptional activities, and GRß is activated even in the absence of ligand binding 

(Kino et al., 2009). Unlike other vertebrates, most teleost fish exhibit multiple GR genes as a 

result of genome-wide duplication events and this has been reviewed recently (Meyer and van de 

Peer, 2005). 
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Figure 1 – Schematic diagram of the hypothalamic-pituitary-interrenal (HPI) axis 

The HPI axis is the coordinated stress axis in teleosts and consists of the hypothalamus which 

recognizes a stressor and produces corticotropin-releasing factor (CRF) that acts on the anterior 

pituitary to cause the release of adrenocorticotrophic hormone (ACTH), that is released into 

general circulation and causes the release of cortisol from the interrenal tissue. Cortisol then acts 

on a variety of tissues to mobilize energy stores and affect metabolic and other pathways to 

prepare for a recovery from stressor challenge. 
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Figure 2 – Schematic diagram of classical glucocorticoid receptor activation 

After the release of cortisol into circulation from the interrenal tissue, it crosses membranes 

readily due to its hydrophobic steroid structure. It then binds to the cytosolic glucocorticoid 

receptor (GR) which is thought to be bound by molecular chaperones in teleosts. Cortisol binding 

causes the shedding of these chaperones and the dimerization of the activated receptor which then 

translocates to the nucleus to act as a transcription factor and modulate target gene expression. 
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Table 2 – Reviews pertaining to stress axis interactions with major physiological systems  

Target System Reference 

Behaviour (O'Connor et al., 2000) 

Behaviour (Summers, 2002) 

Behaviour (Summers et al., 2005) 

Behaviour (Wolkowitz et al., 2009) 

Behaviour (Ellis et al., 2012) 

Feeding (Bernier and Peter, 2001) 

Immune system	
   (Dohms and Metz, 1991) 

Immune system (Weyts et al., 1999) 

Immune system (Rollins-Smith, 2001) 

Immune system (Padgett and Glaser, 2003) 

Immune system (Bauer, 2005) 

Immune system (Tort, 2011) 

Metabolism (van der Boon et al., 1991) 

Metabolism (Kyrou and Tsigos, 2009) 

Metabolism/Cardiovascular (Maxwell et al., 1994) 

Metabolism/Cardiovascular (Walker, 2007) 

Metabolism/Growth (Thakore and Dinan, 1994) 

Metabolism/Growth (van Weerd and Komen, 1998) 

Osmoregulation (McCormick, 2001) 

Reproduction (Tilbrook et al., 2000) 

Reproduction (Wingfield and Sapolsky, 2003) 

Reproduction (Tetsuka, 2007) 

Reproduction (Borell et al., 2007) 

Reproduction (Milla et al., 2009) 

Reproduction (Leatherland et al., 2010) 

Reproduction (Schreck, 2010) 

Reproduction (Vrekoussis et al., 2010) 
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1.3 Zebrafish as a model for corticosteroid research 

Considering the depth of knowledge and study that has been focused on the role of circulating 

glucocorticoids in animals, it is surprising that detailed investigation of glucocorticoid action 

during early development has only recently been explored. Some of this is likely due to the 

relative opacity of embryogenesis in mammalian models as the early developmental events occur 

in utero limiting the accessibility of the embryo for visual observation. As an alternative to the 

primary mammalian model, the mouse, the zebrafish is a prominent model organism for 

developmental study (Lele and Krone, 1996; Grunwald and Eisen, 2002; Berman et al., 2005). 

Zebrafish embryos are optically clear and develop externally over a short period of time; they 

hatch within 2 days of fertilization and are mobile and feeding within 5 days of fertilization 

(Kimmel, 1989; Kimmel et al., 1995). The adult fish are hardy, breed readily and in large 

numbers, and there exist numerous continuing strains that allow for controlled experiments on 

genetically identical animals (Segner, 2009). In addition, the zebrafish genome is sequenced and 

well characterized and annotated, allowing the usage of advanced genetic techniques to 

investigate the effects of specific genes or proteins in developmental processes (Aleström et al., 

2006). Specifically, forward and reverse genetic techniques, such as gene or protein silencing, can 

be used readily to identify molecular mechanisms and isolate developmental roles for genes of 

interest (Nasevicius and Ekker, 2000; Löhr and Hammerschmidt, 2011).  

 Unlike most teleost species, which express multiple glucocorticoid receptor genes in their 

genome, the zebrafish has only a single GR gene, as seen in mammals (Alsop and Vijayan, 2008; 

Schaaf et al., 2008). The single zebrafish GR gene is expressed as two splice-variant isoforms 

(GRα and GRß) that are very similar in structure to those found in humans, although the role of 

the newly identified GRß variant remains unclear (Schaaf et al., 2008). The implications of this 

genomic profile are still being investigated, but it provides a promising framework to examine 

corticosteroid effects during development in humans. In addition, de novo cortisol synthesis in 

zebrafish embryos begins only around hatching (Alsop and Vijayan, 2008; 2009), meaning that 

glucocorticoid signaling during early development is due only to maternally deposited cortisol. 

This allows for easier identification of glucocorticoid-responsive developmental processes than in 

mammalian systems, where fetal glucocorticoid concentrations are more dynamic, and protection 

from maternal glucocorticoids is dependent on enzymatic degradation at the placenta (Yang, 

1997). Together, these attributes underscore the utility of zebrafish as a valuable model for 

developmental and endocrine disorders, with potentially significant application to human health 

and disease (Dooley and Zon, 2000; Schaaf et al., 2009; Schoonheim et al., 2010). 
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1.4 Early zebrafish development 

Vertebrate development is complex, but is reasonably well conserved, with numerous patterning 

processes and morphogenic movements occurring in diverse animals, including gastrulation, 

somitogenesis, and general body axis patterning (de Robertis et al., 2000; Altmann and Brivanlou, 

2001; Yin et al., 2009; Mallo et al., 2010; Maroto et al., 2012). The zebrafish has emerged as a 

prominent model organism for developmental studies (see Table 3 for reviews) due to a number 

of useful attributes. Zebrafish are hardy fish that spawn large clutches of eggs readily in 

laboratory settings, and these eggs are optically clear allowing for ready observation of 

developmental processes (Lele and Krone, 1996; Lawrence, 2007). In this section the broad 

morphogenetic stages of pre-hatch zebrafish development will be outlined. All staging times are 

from standard incubation experiments and observations of zebrafish carried out at 28.5 C, which 

is considered the optimal temperature for zebrafish embryo incubation and development (Kimmel 

et al., 1995; Westerfield, 2007). 

 Many different factors are present in the zebrafish oocyte prior to fertilization, including 

cortisol and GR transcripts as mentioned previously, and the consensus is that they are highly 

active in early development (Pelegri, 2003; Abrams and Mullins, 2009; Fuentes and Fernández, 

2010). After fertilization, the newly-created zygote remains a single cell for approximately 40 

minutes, then the first cell division begins (Kimmel et al., 1995). The initial cell represents the 

animal pole of the cell and sits atop the yolk cell, and the yolk region most distant from the 

fertilized cell is the vegetal pole (Marlow and Mullins, 2008). The cleavage stage begins after the 

completion of first division, and cells divide synchronously every 15 minutes (Kimmel et al., 

1995). The whole mass of cells is termed the blastodisc at this stage (Kimmel and Law, 1985a). 

Zebrafish cell division is meroblastic, with dividing daughter cells (termed blastomeres) sitting 

atop the large yolk cell (Solnica-Krezel and Driever, 1994). Meroblastic division means that some 

cells remain incompletely divided, and are linked to each other by cytoplasmic connections 

(Kimmel and Law, 1985a). During these cleavage events, cytoplasmic streaming of yolk content 

into the newly formed blastomeres brings deposited factors into the developing embryo (Howley 

and Ho, 2000). This process is particularly advantageous for experiments that attempt to 

manipulate the early embryo environment, as changes in the yolk content can have functional 

action on the early embryo. The cleavage stage ends after the sixth division creating a 64-cell 

embryo, and for the first time there is more than a single layer of cells lying atop the yolk 

(Kimmel et al., 1995). 
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 As the cells begin to layer they are renamed the blastula, marking the onset of the blastula 

period at the 128-cell stage (~2 hours post fertilization [hpf]). During the blastula period, cell 

division becomes less coordinated with waves of division moving across the cell mass forming a 

domed mass on top of the yolk (Kimmel et al., 1995). Midway through the blastula period, two 

distinct and important developmental events occur: the formation of the yolk syncytial layer 

(YSL) and the mid-blastula transition (MBT) (Kane and Kimmel, 1993; Carvalho and 

Heisenberg, 2010). The YSL is thought to be unique to teleosts and is a layer formed from the 

marginal cells of the blastula, those cells still connected from early cleavage events, which 

degrade and release their cytoplasm into the yolk (Kimmel and Law, 1985b; Chen and Kimelman, 

2000). These cells continue nuclear division and remain positioned just under the developing 

blastula and appear to act as an organizing center for mesoderm and endoderm differentiation as 

well as later events in embryogenesis (Carvalho and Heisenberg, 2010). The MBT marks the 

onset of de novo transcription in the embryo and the degradation of most of the maternally 

deposited mRNA (Kane and Kimmel, 1993; Pelegri, 2003; Giraldez et al., 2006). The MBT is 

characterized by a lengthening of the cell cycle and a slowing of division rate, and seems to be 

triggered by a threshold ratio between the amount of nuclear and cytoplasmic material (Kane and 

Kimmel, 1993). In addition, the MBT is an early cell-fate differentiation point (Kimmel et al., 

1990). As these processes occur, the cells, now termed the blastoderm, continue to divide and 

amass atop the yolk, until they begin to spread thinly across the surface of the yolk hemisphere 

late in the blastula period (Ho, 1992). This process is termed epiboly; Figure 3 shows the 

difference between embryos before (A) and during (B) epiboly, the movement of the blastoderm 

cells down towards the vegetal pole can be seen (arrows indicate boundary). Epiboly is classified 

by the percent of yolk covered by the spreading blastula cells, and marks the transition from 

blastula to gastrula period at approximately 5 hpf (Kimmel et al., 1995). At 50% epiboly, 

gastrulation begins and cells at the edges of the spreading blastoderm begin the process of 

involution, in which they fold inward and form a second layer underneath the spreading cells (Ho, 

1992). As involution occurs, the blastoderm also continues to spread across the surface of the 

yolk towards the vegetal pole, eventually achieving near complete coverage of the yolk at the end 

of epiboly (Kimmel et al., 1995). Gastrulation events coincide with cell fate determination and 

studies have established fate maps of the embryo at 50% epiboly (Kimmel et al., 1990; Ho, 1992). 

Gastrulation also marks the primary period of dorsoventral patterning, beginning with the creation 

of the thickened shield region that will act as an organizing centre and becomes the dorsal region 

of the developing embryo (Ho, 1992; Schier, 2001; Montero, 2005). A number of well-

characterized developmental morphogens are involved in dorsoventral patterning, including 



 

  14 

members of the fibroblast growth factor family (Furthauer, 2004), the hedgehog family (Johnson 

et al., 1994; Ekker et al., 1995), nodal-related genes (Rebagliati et al., 1998) and the bone 

morphogenetic proteins (BMPs; Hammerschmidt and Mullins, 2002). As involution continues 

and after the movements of epiboly are complete, the embryo thickens to form a ring-like region 

surrounding the yolk (see Figure 3C) that will soon become recognizable as the developing 

animal with a classical vertebrate body plan (Kimmel et al., 1995). Gastrulation ends at 

approximately 10 hpf with the embryo displaying a distinct axis and recognizable body shape, 

including a thickened head region at the shield and a smaller thickening at the tail (Ho, 1992; 

Kimmel et al., 1995). 

 After gastrulation, the next major stage of zebrafish development is the segmentation 

period. During this period the somitogenesis occurs and the tail becomes recognizable as the 

embryo develops and uncurls from around the yolk (Figure 3D; Schroter et al., 2008). Somites 

develop in bilateral pairs on either side of the developing notochord, which is the vertebral region 

progenitor tissue and also produces signals that will induce neural tissue formation (Glickman et 

al., 2003). Somite pairs form every 30 minutes until 30 pairs are complete after ~24 hpf (Stickney 

et al., 2000). Somites differentiate into the skeleton and skeletal muscle, as well as cartilage and 

epithelial tissue and develop a classical chevron shape as myosin chains form and elongate 

(Kimmel and Warga, 1987; Kimmel et al., 1995; Stickney et al., 2000; Patterson et al., 2010). 

Organogenesis also begins during the segmentation period, with the specification and 

organization of multiple organ primordia, including the kidneys, eyes, and brain (Kimmel et al., 

1995; Mueller and Wullimann, 2003). The neural plate thickens in response to signals from the 

developing notochord and eventually forms the neural tube, the source of the central nervous 

system tissue (Glickman et al., 2003; Mueller and Wullimann, 2003; Maier et al., 2011). As the 

segmentation period ends at approximately 24 hpf, the embryo begins random movements in the 

tail region as the developing muscle fibres contract and expand (Stickney et al., 2000).  

 The pharyngula period follows segmentation and many of the processes that began before 

24 hpf continue as the embryo enters the second day of development. The neural tube hollows 

and enlarges in the dorsal region to become the brain, forming five distinct lobe regions that will 

become the telencephalon, the diencephalon, the midbrain, the cerebellum, and the epiphysis 

(Kimmel and Law, 1985a; Mueller and Wullimann, 2003; 2005). Organogenesis also continues as 

the lateral line forms (Kimmel et al., 1995; Wada et al., 2010), the heart chambers enlarge and the 

preliminary cardiac tube loops (Chen and Fishman, 1996; Glickman and Yelon, 2002; Brand, 

2003), and the gastrointestinal tract differentiates and extends along with associated organs such 
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as the liver and pancreas (Field et al., 2003; Wallace et al., 2005). Most importantly, the embryo 

develops towards hatching with increased muscle contraction rate and strength, and the 

development of the hatching gland (Kimmel et al., 1995). The pharyngula period ends at 

approximately 48 hpf, which marks the beginning of the hatching period and the transition to 

larval stages as the animal begins to move, grow, and approaches feeding stages (Kimmel et al., 

1995; Lawrence, 2007). 
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Table 3 – Reviews regarding the use of the zebrafish model in developmental study 

Major Topic Reference 

Angiogenesis (Childs et al., 2002) 

Aquaculture (Aleström et al., 2006) 

Behaviour (Gerlai, 2003) 

Biomedicine (Barut and Zon, 2000) 

Biomedicine (Zon and Peterson, 2005) 

Biomedicine (Endocrinology) (Löhr and Hammerschmidt, 2011) 

Biomedicine (Endocrinology) (Schoonheim et al., 2010) 

Biomedicine (Muscle) (Lin, 2012) 

Biomedicine (Skin) (Li et al., 2011) 

Cardiovascular (Chico et al., 2008) 

Cardiovascular (Stainier and Fishman, 1994) 

Circadian Rhythm (Vatine et al., 2011) 

Development (Driever et al., 1994) 

Development (Eisen, 1996) 

Development (Grunwald and Eisen, 2002) 

Endocrinology (Bourque and Houvras, 2011) 

Endocrinology (McGonnell and Fowkes, 2006) 

Endocrinology (Schaaf et al., 2009) 

Endocrinology (Steenbergen et al., 2011) 

Immune System (Traver et al., 2003) 

Myelopoiesis (Berman et al., 2005) 

Myogenesis (Chong et al., 2009) 

Neurogenesis (Abraham et al., 2009) 

Neuroscience (Friedrich et al., 2010) 

Physiology (Briggs, 2002) 

Toxicology (Ali et al., 2011) 

Toxicology (Lele and Krone, 1996) 

Toxicology (Segner, 2009) 
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Figure 3 – Representative images of key milestones in zebrafish development 

Certain major developmental stages in zebrafish embryogenesis are readily assessed by simple 

microscopy. In this figure, we show images of the pre-epiboly zebrafish embryo (A), the 50% 

epiboly (B; arrow indicates blastoderm border), the post-gastrulation embryo (C), and the 24 hpf 

embryo with fully developed somite pairs (D; arrow indicates developed somites). 
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1.5 Roles of bone morphogenetic proteins in development 

One of the major findings of this dissertation is that signaling by the bone morphogenetic proteins 

(BMPs) may be modulated by glucocorticoids. The BMPs are a family of conserved proteins that 

are active developmental morphogens in a variety of animals (Nikaido et al., 1997; Miyazono et 

al., 2005; Yanagita, 2005; Wagner et al., 2010). BMP ligands are members of the transforming 

growth factor-ß (TGFß) family of developmental signaling molecules (Miyazono et al., 2005). 

BMP ligands bind to integral membrane BMP receptors, which then cause the activation of 

members of the Smad family of signaling proteins that act as transcription factors to affect gene 

expression (Bubnoff and Cho, 2001; Miyazono et al., 2005; Wagner et al., 2010). BMP signaling 

regulation is complex, with specific Smad molecules producing either inhibitory or excitatory 

signals (Dick et al., 1999; Zhang et al., 2007) as well as numerous other antagonizing pathways 

and molecules that act to oppose BMP signaling (Miyazono et al., 2005; Yanagita, 2005; Walsh 

et al., 2010; Sylva et al., 2011). To date, 14 BMP ligands, 5 BMP receptors, and 10 Smad 

molecules have been identified in zebrafish (ZFIN Staff, 2006) and together they play roles in a 

diverse array of embryogenic events. In addition to early axial patterning (Kishimoto et al., 1997; 

Hammerschmidt and Mullins, 2002), BMP signaling is implicated in a variety of processes 

throughout development, including myogenesis (Patterson et al., 2010), angiogenesis (David et 

al., 2009), organogenesis (Shin et al., 2007; Chung et al., 2008; McCulley et al., 2008), and 

craniofacial development (Nie et al., 2006). 

1.6 Development of the zebrafish corticosteroid stress axis 

In this section we present an overview of the known molecular mechanisms regulating stress axis 

development in zebrafish. Specifically we will highlight the formation of the hypothalamus, 

pituitary, and interrenal tissue in zebrafish, noting the time at which precursors are determined, 

the morphogenic movements that occur, and major molecular signaling molecules that are 

involved (see Figure 4 for summary). Very little is known about cortisol regulation of key genes 

involved in the development of the HPI axis. This would be an area of intense interest given the 

findings that cortisol content can vary in teleost oocytes due to maternal stressor exposure 

(Stratholt et al., 1997; McCormick, 1998; Eriksen et al., 2007; Giesing et al., 2011). 

1.6.1 Structure and development of the hypothalamus 

The hypothalamus is a major regulating center for control of bodily functions, and activation of 

this region of the brain is the first step in the whole organism cortisol-mediated response to stress 

(Wendelaar Bonga, 1997; Charmandari et al., 2004b; de Kloet et al., 2005; Chrousos, 2006). It is 
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located at the posterior basal region of the forebrain, positioned between the thalamus and the 

pituitary (Mueller and Wullimann, 2003; 2005). There are two major cell groups in the zebrafish 

hypothalamus, dopaminergic neurons and OXT-like neurons, which are analogous to mammalian 

parvocellular and magnocellular neurons, respectively (Blechman et al., 2007). OXT-like 

neurons, named for the oxtl (oxytocin-like) transcripts that mark their specification, produce 

neurohormones, including oxytocin and vasopressin (Machluf et al., 2011). Dopaminergic 

neurons produce trophic hormones that act on the pituitary, including corticotropin-releasing 

hormone (CRH) and gonadotropin-releasing hormone (Machluf et al., 2011).  

 The regulation of hypothalamic development is unclear in teleosts, but the diencephalon 

develops from the anterior neuroectoderm, migrating from the neural plate inward during early 

somitogenesis stages (~12 hpf; (Russek-Blum et al., 2009)). Hypothalamic neurons develop later 

in development, with dopaminergic neurons specified during gastrulation and directly observed 

by 18 hpf, and OXT-like neurons detectable at 36 hpf (Russek-Blum et al., 2008; Machluf et al., 

2011). Some of the most well studied developmental signaling pathways have been implicated in 

hypothalamic neurogenesis. For instance, release of nodal, bmp7, and wnt from the prechordal 

plate induces the hypothalamus to develop (Dale et al., 1997; Mathieu et al., 2002; Machluf et al., 

2011), and lef1, a member of the Wnt pathway, restricts and determines dopaminergic neuron 

specification (Kapsimali, 2004; Lee et al., 2006). The forebrain marker fezf2, which is regulated 

by the Wnt pathway, is required for dopaminergic neuron development and regulates other 

neurogenic morphogens, including neurogenin 1 (ngn1), and the two zebrafish paralogs of 

orthopedia homolog (otp), a well-characterized mammalian hypothalamic developmental 

regulator (Wang and Lufkin, 2000; Del Giacco et al., 2006; Jeong et al., 2006; Del Giacco et al., 

2008). 

1.6.2 Structure and development of the pituitary 

The morphology of the pituitary is well known and has been characterized in zebrafish (Herzog 

et al., 2004b; Chapman et al., 2005). In general, the pituitary has two subregions, termed the 

neurohypophysis and the adenohypophysis. The neurohypophysis, also known as the posterior 

pituitary, is a neural component that contains projections of the dopaminergic cells that originate 

in the hypothalamus (Chapman et al., 2005). The adenohypophysis, or anterior pituitary, is an 

endocrine gland containing cells producing a variety of hormones, including thyroid stimulating 

hormone, follicular stimulating hormone, luteinizing hormone, and ACTH, that act on target 

tissues (Chrousos, 2000). Adenohypophyseal release of hormones occurs in response to 

hypothalamic stimulation via trophic hormones from OXT-like neurons. The pituitary is located 
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in a pocket of the skull, just below the hypothalamus (Chapman et al., 2005). There are some 

structural differences between the teleost and mammalian HP axis. In teleosts, the 

neurohypophysis is positioned dorsal to the adenohypophysis, instead of the posterior-anterior 

positioning seen in mammals (Mueller and Wullimann, 2005). Another major difference is that 

teleosts lack the hypothalamo-hypophyseal portal system that is found in higher vertebrates 

(Pogoda and Hammerschmidt, 2007). The portal system is a network of blood vessels that 

transport the trophic hormones released by the hypothalamus directly to the adenohypophysis, 

bypassing general circulation. Instead of this system, the teleost adenohypophysis is directly 

innervated by input from the hypothalamus, similar to the neurohypophysis (Pogoda and 

Hammerschmidt, 2007).  

 The development of the adenohypophysis has been extensively studied in zebrafish 

(Herzog et al., 2003; 2004b; Pogoda and Hammerschmidt, 2007). The first determination of 

adenohypophyseal cells begins at approximately 10 hpf in the anterior region of the pre-placodal 

ectoderm (Dutta et al., 2005). By 18-20 hpf, the first adenohypophysis-specific markers are 

expressed in the newly thickened placodal ectoderm; specifically lim3, a Lim-domain homeobox 

gene, and pit1, a Pou-domain homeobox gene (Glasgow et al., 1997; Nica et al., 2004). By 24 

hpf, the pituitary is structurally distinct from the brain and surrounding region (Chapman et al., 

2005; Pogoda and Hammerschmidt, 2007). Over the next few hours the cells migrate internally as 

a solid mass of cells towards the final position below the hypothalamus (Chapman et al., 2005; 

Pogoda and Hammerschmidt, 2007; 2009). This is different from the mammalian and avian 

model, in which the cells form a hollow outpocket (Rathke’s pouch) that eventually fuses to form 

the solid pituitary (Sheng, 1997). Within the developing zebrafish pituitary, the corticotrope cells 

differentiate early in the lateral regions, and begin to express the ACTH precursor 

proopiomelanocortin (POMC) as early as 18-20 hpf, with strong expression observable by 24-26 

hpf (Herzog et al., 2003; Liu et al., 2003a). Specific genes have been identified as necessary for 

pituitary formation; a key factor being pitx3 (Dutta et al., 2005). There are numerous pitx genes 

found in mice, with overlapping functions, but only pitx3 is expressed in zebrafish, and it appears 

to assume all the developmental functions necessary for pituitary formation (Dutta et al., 2005). 

Signaling from the hedgehog system is also required for adenohypophysis specification, with 

requirements for both sonic hedgehog (shh) and tiggy winkle hedgehog (twhh) (Herzog et al., 

2003; Sbrogna et al., 2003). Other genes necessary for pituitary cell survival are fibroblast growth 

factor 3 (fgf3), which seems to prevent regional apoptosis (Herzog et al., 2004a), ascl1a, which is 

necessary for all adenohypophyseal hormone production (Pogoda et al., 2006), and eya1, which 

signals with shh to induce corticotrope cell specification (Nica et al., 2006). 
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1.6.3 Structure and development of the interrenal tissue 

Another major difference between mammalian and teleost stress axis organs is that piscine 

models lack a distinct adrenal gland. Instead, steroidogenic and chromaffin cells are dispersed in 

the interrenal tissue, located in the head kidney region in the dorsal region of the body cavity, 

posterior to the post-cardinal vein (Wendelaar Bonga, 1997). Interrenal development begins at 22 

hpf, as cells are specified within the pronephric primordia, which are two regions on either side of 

the developing neural crest (Hsu et al., 2003). From 24-36 hpf, the presumptive interrenal cells 

migrate to the midline and merge together (Hsu et al., 2003). At 28 hpf, steroidogenesis 

commences, marked by increased expression of key steroidogenic marker genes, including 

cytochrome P450 side chain cleavage enzyme (p450scc), steroidogenic acute regulatory protein 

(star), and 3-beta-hydroxysteroid dehydrogenase (3ß-HSD) in discrete regions of the migrating 

cells (Liu, 2007; To et al., 2007; Alsop and Vijayan, 2008; 2009). Chromaffin cells develop 

relatively late in the process, and are not detectable until 48 hpf, and by 72 hpf they have 

interspersed with the steroidogenic cells and interrenal development is complete (Liu, 2007; To et 

al., 2007). As with the pituitary, there are similarities in the genetic contributors to interrenal 

development in mammals and teleosts. In mammals, the primary driver of adrenal development is 

the sf1 gene, a Ftz-F1 gene identified as an orphaned nuclear receptor (Chai and Chan, 2000; 

Savage et al., 2003; Ishimoto and Jaffe, 2011). In zebrafish, two orthologs have been identified, 

ff1b and ff1d (Chai and Chan, 2000). ff1b is the earliest visible marker of interrenal cells, and its 

knockdown results in a complete lack of interrenal tissue formation (Chai et al., 2003). While ff1b 

is required for specific interrenal development, other signaling molecules are required both prior 

to and after the initial specification. For example, the formation of the pronephric primordia 

requires wt1, and without it no further development of pronephros or the interrenals occurs (Hsu 

et al., 2003). Later on, dax1 and prox1 are required for the development of steroidogenic cells 

(Liu et al., 2003b; Zhao et al., 2006). The mechanisms that regulate these genes, and whether any 

hormonal input is involved, remain unclear and require further examination.  
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Figure 4 – Summary of zebrafish hypothalamus-pituitary-interrenal development. 

The hypothalamus (HT), pituitary (adenohypophysis [AH], and neurohypophysis [NH]), and 

interrenal (IR) develop simultaneously during development, and in advance of the activation of 

the coordinated response to stress. HT develops from 12-36 hpf, and corticotropin-releasing 

factor (CRF) transcripts are maternally deposited in the oocyte. AH formation occurs from 10-26 

hpf, with corticotropes distinguishable in the lateral AH regions at 24-26 hpf. IR tissue develops 

initially from 22-36 hpf, with steroidogenic ontogeny occurring at 28 hpf. Chromaffin cells 

develop late, differentiating at 48 hpf and interspersing with the established steroidogenic cells by 

72 hpf. The earliest coordinated response to a perceived stressor leading to the release of cortisol 

occurs at around 72 hpf in zebrafish. 
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1.7 Ontogeny of stress response in zebrafish 

Although the signaling and steroidogenic components of the zebrafish HPI axis are present 

around the time of hatching (see Figure 4 for summary), the earliest induction of a stress response 

occurs at 72 hpf (Alderman and Bernier, 2009; Alsop and Vijayan, 2009). This delay in the ability 

to perceive a stressor and evoke a cortisol surge, despite the presence of the molecular signaling 

components of the HPI axis, is common in teleost species, having been observed in rainbow trout 

(Onchorynchus mykiss; (Barry et al., 1995)), yellow perch (Perca flavscens; (Jentoft et al., 

2002)), tilapia (Oreochromis mossambicus; (Pepels and Balm, 2004)), common carp (Cyprinus 

carpio; (Stouthart et al., 1998)) and chinook salmon (Oncorhynchus tshawytscha; (Feist and 

Schreck, 2001)). All of these fish display a classical response to stress some time after hatching. 

There is a similar stress hyporesponsive period in both mice and rats, which are unable to respond 

to a stressor for an extended period after birth (Levine, 2001; Schmidt et al., 2003). It is unclear 

whether this delay in stressor responsiveness is functionally relevant. However, it can be 

hypothesized that if glucocorticoids are developmental regulators, the delay in HPI/HPA 

activation may be protective, as stress-activated cortisol or corticosterone surges may disrupt 

glucocorticoid-sensitive developmental pathways. Interestingly, the general pattern and timing of 

stress axis organogenesis and activation is relatively well conserved, when controlled for 

gestational time, in vertebrates (see Table 4). This pattern, along with the similarity in stress axis 

activation and the molecular markers involved in HPA axis organogenesis, indicates that the 

ontogeny of the stress response and the developmental role of corticosteroid identified in 

zebrafish may be conserved in higher vertebrates. 

 Cortisol and GR are maternally deposited into the zebrafish oocyte and decrease in 

concentration during pre-hatch embryogenesis, then begin to rise after hatching  (Alsop and 

Vijayan, 2008; Alderman and Bernier, 2009; Alsop and Vijayan, 2009; Pikulkaew et al., 

2009).This variation in cortisol concentration prior to hatching is conserved in teleosts (de Jesus 

et al., 1991; Hwang and Wu, 1993; Barry et al., 1995; Sampath-Kumar et al., 1995; Stouthart et 

al., 1998; Nechaev et al., 2006). Interestingly CRF is also present in the oocyte, along with its 

receptors and binding proteins, although whether this deposition is functionally relevant remains 

unknown (Alderman and Bernier, 2009). Although the ACTH precursor POMC is not expressed 

until approximately 18-24 hpf (Liu et al., 2003a), a potential role for the CRF system in the early 

development of a functional corticotropic system remains to be examined, as well as whether 

CRF has other independent developmental roles. Steroidogenic enzymes are not measurable until 

after 28 hpf, indicating that early glucocorticoid effects are only due to maternally deposited 
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cortisol, not zygotically synthesized steroids (Liu et al., 2003a; To et al., 2007; Alsop and 

Vijayan, 2008; 2009). 
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Table 4 – The time of first onset of stress axis signal synthesis and stress responsiveness in 

various model animals in relation to total gestation/hatching time (shown as percentage).  

 Gestation time (%)  

Species (Gestation or 

Hatching time) 

CRF/CRH  

  

ACTH  GC  

  

Stress  References 

Danio rerio  

(~ 48 h) 

0-13 50 75-100 150 (Liu, 2007; Alsop and 

Vijayan, 2008; 

Alderman and Bernier, 

2009; Alsop and 

Vijayan, 2009) 

Gallus gallu 

 (22 days) 

63 45 45 113 (Jenkins and Porter, 

2004; Saito et al., 2005) 

Musculus musculus 

 (20 days) 

65 93 75 160 (Keegan et al., 1994; 

Sheng, 1997; Heikkila et 

al., 2002; Schmidt et al., 

2003) 

Rattus norvegicus  

(21 days) 

80 76 86 166 (Chatelain et al., 1979; 

Baram and Lerner, 1991; 

Mitani et al., 1999; 

Levine, 2001)  

CRF: corticotropin-releasing factor; CRH: corticotropin-releasing hormone; ACTH: 

adrenocorticotropic hormone; GC: glucocorticoid. 
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1.8 Developmental role for glucocorticoid signaling 

The presence of HPI signaling molecules and receptors in zebrafish oocytes, and their persistence 

throughout embryogenesis, indicates that they may be developmentally active. In this section we 

will detail established roles for glucocorticoid in organogenesis based on mammalian studies, as 

well as indications from other egg-laying species and what little is known in zebrafish. The 

conservation of the stress axis signaling between teleosts and mammals and the presence of a 

similar GR gene expression and splicing profile to humans suggests that evidence from zebrafish 

study may be applicable to human health and disease. 

1.8.1 Developmental roles of glucocorticoids in mammals 

In mammals, numerous known developmental effects of glucocorticoids center on organogenesis. 

Glucocorticoid signaling has been implicated in the maturation and functional activation of 

multiple organ structures, including the heart, lungs, gut, pancreas, and kidneys, with research 

conducted in a variety of animals (Rall et al., 1977; Majumdar and Nielsen, 1985; Liggins, 1994; 

Pierce et al., 1995; Langdown et al., 2003; Gesina et al., 2004; Lumbers et al., 2005). Synthetic 

glucocorticoids are often given to prematurely-born infants to help speed organ development 

(Chrousos and Gold, 1992; Rehan, 1996). In various mammals, glucocorticoids have been shown 

to increase respiratory surfactant production and accelerate overall lung development (Ballard and 

Ballard, 1974; Mescher et al., 1975; Pierce et al., 1995; Bolt et al., 2001). In mice, knockout of 

the GR gene fatally impairs lung development, causing complete prenatal mortality (Cole et al., 

2001). There have been a number of other identified roles for corticosteroids in developmental 

organogenesis in varied mammalian models. Glucocorticoids have been found to accelerate renal 

tissue development (Celsi et al., 1993; Wang et al., 1994; Djouadi et al., 1996), modulate 

pancreatic development (Rall et al., 1977; Sangild et al., 1994; Gesina et al., 2004), regulate cell 

communication in the small intestine (Schaeffer et al., 2000), and to increase osteoblast activity 

(Shalhoub et al., 1992; Boden et al., 1996). Glucocorticoids also have detrimental effects on the 

brain, delaying development of neurons and glial cells, slowing myelination, and impairing 

vascularization (Huang et al., 1999; 2001). However, little is known about the mechanism of 

action of corticosteroid in these processes. Organogenesis is a complex process, and the 

transcription factors and/or morphogens that respond to glucocorticoid treatment in the 

maturation or activation of these developmental processes are still unclear. Attempts to determine 

the mechanistic action of GR-mediated cortisol signaling in mammalian embryos has been 

difficult due to lack of understanding behind the specific molecular signaling pathways of 

organogenesis as well as the difficulty in studying changes in utero.  
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 Glucocorticoid programming is a known consequence of elevated pre-natal 

glucocorticoids in mammals, referring to effects that last into adulthood, and has been identified 

as the cause of various human disease states (Seckl, 2001; Matthews, 2002; Seckl and Meaney, 

2004). For instance, pre-natal elevation of glucocorticoid levels affects the cardiovascular system, 

resulting in chronic hypertension and cardiovascular risk, modulating cardiac genes such as 

PPARγ and calreticulin (Seckl, 2001; Langdown et al., 2003). Elevated glucocorticoids during 

development also result in lasting disruption of brain function, via altered hippocampal neuronal 

content and reduced corticosteroid receptor expression (Welberg and Seckl, 2001; Welberg et al., 

2001). Other major programming effects involve the priming of the stress response (Matthews, 

2002), and disruption of glucose metabolism, the effects of which persist for multiple generations 

in treated rats (Drake et al., 2005). As with the direct effects of prenatal glucocorticoids on 

embryogenesis, the opacity of mammalian fetal development models obscures the mechanisms at 

work to create these lasting effects. 

1.8.2 Developmental role of glucocorticoids in non-mammalian models 

In teleost species, maternal stress and/or increased steroid deposition in the oocyte is associated 

with a reduction in larval performance and survival (McCormick, 1998; Mccormick, 1999; Li et 

al., 2010; Sloman, 2010; Åberg Andersson et al., 2011). The deposition of cortisol, GR, and 

possibly CRF and its receptors, could be a mechanism for transmitting this message from stressed 

mothers to progeny. This kind of maternal-embryonic communication is a common concept in 

avian models, where steroid deposition into egg affects priming of the stress response, decreasing 

the sensitivity of the HPA axis (Hayward and Wingfield, 2004), and in reptiles, where it can 

affect growth and philopatry (Shine and Downes, 1999; De Fraipont et al., 2000). In zebrafish, 

exposure of embryos to exogenous glucocorticoids has revealed novel glucocorticoid-responsive 

genes that have known developmental roles. Glucocorticoids modulate specific members of the 

matrix metalloproteinase (MMPs) family that act in degradation of the extracellular matrix, such 

as mmp2, mmp9, and mmp13, the latter of which is required for somitogenesis and craniofacial 

development (Hillegass et al., 2007; 2008). Matrix metalloproteinases are involved in a variety of 

cell remodeling actions that occur in development (Zhang et al., 2003; Yoong et al., 2007; 

Rozario and DeSimone, 2009), and GR-mediated alteration of their expression could cause 

widespread disruption of embryogenesis and birth defects. In combination, these actions of 

glucocorticoids in development provide interesting avenues for further exploration. However, 

comparatively little is known regarding glucocorticoid effects on development of birds and lower 

vertebrates, especially teleosts, when compared to mammals. 



 

  30 

1.9 Major techniques utilized in zebrafish developmental studies 

This section will summarize two prominent techniques that are used in studies of zebrafish 

embryogenesis but may not be particularly common to many researchers: the use of morpholino 

oligonucleotides for the blocking of protein translation; and the use of microinjection for the 

delivery of morpholino oligonucleotides and other molecules into the developing zebrafish 

embryo. Other common techniques in this thesis that are better established, such as quantitative 

polymerase chain reaction (qPCR) and in situ hybridization (ISH) for transcript analysis or 

western blotting and immunohistochemistry for protein expression quantification, are described in 

the methods of each individual chapter, but an exploration of the theory behind them was deemed 

redundant due to their familiarity to most developmental, physiological, and molecular biology 

researchers. 

1.9.1 Morpholino oligonucleotides 

Morpholino oligonucleotides (MOs) are short sequences of modified nucleic acid that are 

commercially available from GeneTools, LLC in California. MOs are modified by the 

replacement of the deoxyribose or ribose sugars normally found in DNA or RNA with a nuclease 

resistant morpholine ring (see Figure 5 for structure; (Summerton and Weller, 1997)). MOs are 

designed against regions that will disrupt either transcription or translation and render cell unable 

to express the target protein for periods of time (Summerton and Weller, 1997). In this thesis 

(Chapters 2 and 4), an MO was targeted against the start site of translation from the zebrafish gr 

mRNA product. The binding of the MO at this region prevents ribosomal assembly and 

establishes what is termed a “knockdown” of GR protein (Nasevicius and Ekker, 2000). Another 

option is to block an intron/exon boundary to disrupt the splicing of the mRNA after transcription 

and prevent a functional protein from being produced (Summerton and Weller, 1997). This is a 

useful technique if one does not have a functional antibody for the protein of interest, as PCR 

amplification of the disrupted transcript can describe the efficacy of the MO (Eisen and Smith, 

2008). Controls for MO studies can be specific or non-specific. Specific MO controls are usually 

in the form of a mispair (MP) MO, in which 5 random basepairs are changed (out of the 20-25 bp 

MO sequence), which is enough to affect the binding of the MO to the target sequence 

(Summerton and Weller, 1997; Eisen and Smith, 2008). Non-specific controls either use a 

standard oligo for a given species, meant to control for any effects of the morpholine ring; or by 

the use of a p53 coinjected-MO to suppress p53 activity, as MOs are known to cause non-specific 

effects via p53 mediated mechanism (Heasman, 2002; Eisen and Smith, 2008). In the studies 

presented in subsequent chapter, the primary control used is a 5 bp mispair oligonucleotide 
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specifically designed to control for effects of the MO designed against the start site of GR 

translation, although we also use a p53 MO co-injection in chapter 2 as a further control for non-

specific effects. 

1.9.2 Microinjection into single-cell zebrafish embryos 

The optically clear nature of zebrafish embryos makes them ideal for developmental study, and 

the previously mentioned delay in first cleavage (~40 minutes), meroblastic cleavage pattern, and 

cytoplasmic streaming (Kimmel et al., 1995) mean that injection into the yolk of zebrafish 

embryos is an excellent and minimally traumatic way to alter the content of the fertilized zygote 

and the initial daughter cells. No puncturing of cells is required, and contents are rapidly taken up 

into the first daughter cells and then subsequently divided during cleavage and blastula stages 

(Kimmel and Law, 1985a; Nasevicius and Ekker, 2000). It should be noted that the length of time 

of clearance of molecules in the developing embryo is highly variable, with some MO sequences 

remaining effective up to 48-72 hpf (Nascevicius and Ekker, 2000), but dynamics in the embryo 

must be characterized, preferably by quantification of target molecules. 
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Figure 5 – Structures of DNA and morpholino oligonucleotides 

This schematic shows the difference in chemical structure between a DNA nucleotide and 

morpholino nucleotide. Morpholinos have the deoxyribose sugar replaced with a morpholine ring 

to confer resistance from nuclease degradation. The phosphodiester bond in DNA is therefore 

replaced with a phosphorodiamidate linkage. 
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1.10 Objectives 

Generally, this chapter has attempted to highlight the relative lack of knowledge about the role of 

glucocorticoids in early vertebrate development relative to the well known, conserved, and 

characterized pathways of morphogenesis. The major objectives of this thesis stem from the 

primary hypothesis that the presence of cortisol and GR in the oocyte is functionally relevant, and 

that glucocorticoid signaling is important in zebrafish embryogenesis. This chapter also 

highlighted the utility of zebrafish as an excellent model for testing the above hypothesis.  

The specific objectives of this thesis are as follows:  

1) Characterize the broad actions of GR on early zebrafish development. 

This objective is addressed throughout the dissertation, but is the primary finding of 

Chapter 2, examined by the use of morpholino oligonucleotides to inhibit GR signaling. 

2) Identify novel developmental pathways and genes that are GR-modulated.  

This objective is studied throughout this thesis, with findings in Chapters 2, 3, and 4. 

Major pathways are identified in Chapter 4 by high-density microarray analysis of 

changes in global gene expression in response to morpholino knockdown of GR. 

3) Determine the effect of abnormal maternal cortisol deposition on early zebrafish 

development. 

This objective is examined in Chapter 3, by use of exogenous cortisol administration that 

mimics elevated maternal deposition. 

4) Determine the role of maternal cortisol on zebrafish stress axis development and 

functioning. 

This objective is examined in Chapter 5, by use of exogenous cortisol administration to 

mimic elevated maternal deposition and a cortisol-specific antibody that sequesters the 

yolk-deposited cortisol, mimicking decreased maternal deposition. 
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Chapter 2 
Glucocorticoid receptor signaling is essential for mesoderm 

formation and muscle development in zebrafish 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: this chapter is reproduced with permission from {Nesan, D., Kamkar, M., Burrows, J., 

Scott, I.C., Marsden M., and Vijayan, M.M. 2012. Glucocorticoid receptor signaling is essential 

for mesoderm formation and muscle development in zebrafish. Endocrinology. 153(3), 1288-

300.} © {2012} The Endocrine Society.  

Specific coauthor contributions:  

J Burrows and Dr. IC Scott contributed in situ hybridization data and images to Figures 1 and 2 

Dr. M Kamkar designed the GR-GFP construct and contributed to GR rescue mRNA construct 

creation 

Some imaging for Figures 1 and 2 was carried out in Dr. M Marsden’s lab. 
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2.1 Overview 

Glucocorticoid receptor (GR) signaling is thought to play a key role in embryogenesis, but its 

specific developmental effects remain unclear. In zebrafish (Danio rerio), de novo cortisol 

synthesis takes place only after hatching, indicating that pre-hatch cortisol signaling events are of 

maternal origin. Using early zebrafish developmental stages, we tested the hypothesis that GR 

signaling is critical for embryo growth and hatching. In zebrafish, maternal GR mRNA is 

degraded quickly, followed by zygotic synthesis of the receptor. GR protein is widely expressed 

throughout early development and we were able to knock down this protein using morpholino 

oligonucleotides. This led to a >70% reduction in mRNA abundance of mmp13, a glucocorticoid-

responsive gene, supporting suppressed GR signaling. The GR morphants displayed delayed 

somitogenesis, defects in somite and tail morphogenesis, reduced embryo size, and rarely 

survived after hatch. This correlated with altered expression of myogenic markers, including 

myogenin, myostatin, and specific myosin heavy chain and troponin genes. A key finding was a 

70-90% reduction in the mRNA abundance of bone morphogenetic proteins (BMPs), including 

bmp2a, bmp2b, and bmp4 in GR morphants. Bioinformatics analysis confirmed multiple putative 

glucocorticoid response elements upstream of these BMP genes. GR morphants displayed 

reduced expression of BMP modulated genes, including eve1 and pax3. Zebrafish GR mRNA 

injection rescued the GR morphant phenotype and reversed the disrupted expression of BMPs and 

myogenic genes. Our results for the first time indicate that GR signaling is essential for zebrafish 

muscle development, and we hypothesize a role for BMP morphogens in this process. 

2.2 Introduction 

Glucocorticoid signaling in adults has been extensively studied, and the functioning of the 

hypothalamic-pituitary-adrenal axis is essential for stress adaptation (Sapolsky et al., 2000). 

However, comparatively little is known about the developmental roles of glucocorticoid hormone 

and its signaling molecule, the glucocorticoid receptor (GR), a cytosolic ligand-bound 

transcription factor. Cortisol signaling is essential for late-term organ development (Liggins, 

1994), and GR knockout mice did not survive after birth due to impaired lung development (Cole 

et al., 2001). Also, exposure of the developing fetus to elevated glucocorticoid levels leads to 

lowered fetal birth weight and disrupted glucocorticoid responsiveness later in life (Ward, 2004). 

While these studies clearly implicate a critical role for corticosteroid signaling in fetal 

development, the role of glucocorticoid receptor activation on developmental programming 

events are far from clear.  
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Zebrafish (Danio rerio) is an excellent model to identify the early developmental effects 

associated with GR signaling. This is because de novo synthesis of cortisol, the primary GR 

ligand, happens only after hatch in this species, leading to maternal cortisol as the sole contributor 

for early developmental programming (Alsop and Vijayan, 2008). This was further reinforced by 

the gradual decrease in maternal cortisol and GR transcripts prior to hatching in zebrafish (Alsop 

and Vijayan, 2008).  Also, unlike other teleosts that have multiple copies of GR, zebrafish only 

has a single GR gene in the genome (Alsop and Vijayan, 2008; Schaaf et al., 2008), making the 

species amenable for genetic manipulations. Additionally, a GRß splice variant, similar to 

humans, was recently discovered in zebrafish, leading to the proposal that this species is an 

excellent model for biomedical research, especially pertaining to developmental abnormalities 

associated with glucocorticoid excess or resistance to this hormone action (Schaaf et al., 2008; 

Schoonheim et al., 2010). Also, a recent study demonstrated that knocking down maternal GR 

leads to developmental defects in mesoderm formation in zebrafish (Pikulkaew et al., 2011).  

Zebrafish embryogenesis has been extensively characterized and several transcription 

factors, including MyoD (Ochi and Westerfield, 2007; Chong et al., 2009), and insulin-like 

growth factors (IGFs) (Duan et al., 2010) have been associated with early muscle development. 

Also the temporal expression of morphogens, including the bone morphogenetic proteins (BMPs) 

and their signaling is essential for mesoderm differentiation and dorsoventral patterning in the 

developing zebrafish embryo (Nikaido et al., 1997; Pyati et al., 2005). BMP signaling is highly 

conserved and upregulates the Smad family of proteins (Bubnoff and Cho, 2001; Miyazono et al., 

2005) and specific BMPs, including bmp2a, bmp2b, and bmp4 also affect myogenesis, 

angiogenesis, and organogenesis during zebrafish development (Stickney et al., 2000; Brand, 

2003; Chung et al., 2008; Patterson et al., 2010). Consequently, transient expression of BMPs are 

essential for mesoderm differentiation, dorsoventral patterning, and embryo survival (Stickney et 

al., 2000; Pyati et al., 2005; Patterson et al., 2010). Several endogenous regulators of BMPs have 

been identified, including their receptor antagonists that play key roles in affecting embryogenesis 

(Bubnoff and Cho, 2001; Little and Mullins, 2006).  

Here we tested the hypothesis that glucocorticoid receptor signaling is essential for fetal 

programming of mesoderm formation and muscle development in zebrafish. This was tested by 

assessing the phenotypic traits in response to reduced GR signaling, by knocking down this 

receptor protein expression and investigating changes in developmental and myogenic gene 

expression prior to hatching in zebrafish. Given the established role of BMPs in mesoderm 

formation and differentiation (Patterson et al., 2010), we also examined the expression of bmp2a, 
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bmp2b, and bmp4, and markers of their downstream signaling events to ascertain if these 

morphogens are regulated by GR signaling in zebrafish. Our results underscore a critical role for 

GR signaling in the fetal programming of mesoderm formation and myogenesis in zebrafish. Our 

results lead us to propose that BMPs may be involved in the developmental changes associated 

with GR knockdown in zebrafish.  

2.3 Materials & Methods 

2.3.1 Zebrafish care 

Adult zebrafish were maintained in 10L tanks at 28.5oC in a recirculating system (Aquatic 

Habitats) with a 14h light: 10h dark photoperiod and were fed 2-3 times daily with dry pellets 

(Zeigler). Egg traps were placed just before the start of the dark period and embryos were 

collected within 30 min of light and reared in embryo medium (Westerfield, 2007) with added 

methylene blue (3 ppm) in 10 cm petri dishes at 28.5oC with medium replaced at 12 and 36 hours 

post-fertilization (hpf). The zebrafish protocol was approved by the animal care committee at the 

University of Waterloo, and is in accordance with the Canadian Council for Animal Care 

guidelines.  

2.3.2 Embryo GR expression 

Wild-type zebrafish embryos were collected to determine GR gene and protein expression by 

whole-mount in-situ hybridization (ISH) and immunohistochemistry (IHC), respectively. 

Embryos were fixed in 4% paraformaldehyde (PFA) in phosphate buffered saline (PBS) 

overnight at 4oC, dehydrated in 100% methanol (MeOH), and frozen at -20oC. Prior to analysis, 

embryos were thawed and rehydrated with a series of 5 min washes: 75% MeOH/25% PBS, 50% 

MeOH/50% PBS, 25% MeOH/75% PBS, and 100% PBS. ISH was performed according to 

standard protocols (Thisse and Thisse, 2008). Riboprobes were created with the DIG RNA 

labeling kit (Roche) as follows:  

GRLEFT 5’-GGAAGAACTGCCCTGCCTGTCG-3’  

GRRIGHT 5’ CACCCACCAAGTCGTGCATGG-3’  

The embryos were bright-field imaged using a Leica MZ16 microscope with a Leica DFC 

320 camera. ISH was used to identify GR mRNA abundance in wild-type embryos at the 

following time-points: 16-cell, 4, 6, 8, 10, 12, 24, and 48 hpf. Sense strand hybridizations at each 

time-point ensured probe specificity.  
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 The primary antibody used for both IHC and later western blotting was a custom-made 

affinity-purified polyclonal rabbit antibody generated against a peptide fragment 

(KIKDNGDLILSSPKC) of zebrafish GR protein (Genscript Corp.). The specificity of the 

antibody was confirmed by western blotting of serially diluted zebrafish and rainbow trout 

tissues. 

For whole mount IHC, rehydrated embryos were rinsed for 15 min (repeated 3x) in PBS 

with 1% Triton-X100 (PBST), then rinsed in blocking solution of PBST with 10% fetal bovine 

serum for 1 h (3x).  Primary antibody (polyclonal rabbit anti-zebrafish GR, 1:500 dilution) 

incubation was for16 h at 4oC. Embryos were then rinsed in blocking solution for 1 h  (3x). 

Secondary antibody incubation (Alexa-fluor 594 coupled goat anti-rabbit, Invitrogen; 1:2000 

dilution) was for 3 h in the dark. Embryos were rinsed for 15 min (3x) with blocking solution and 

15 min (3x) in PBST in the dark. All rinses and incubations were carried out with gentle rocking. 

Images were taken with a Zeiss Lumar V.12 stereomicroscope. IHC was used to identify 

distribution of GR protein in wild-type zebrafish embryos at 24, 36 and 48 hpf. 

2.3.3 GR promoter activation 

To confirm the temporal and regional onset of de novo GR mRNA synthesis, a GR promoter-GFP 

reporter construct was created. A ~3.5 kb segment upstream of the zebrafish GR start codon was 

identified as the putative promoter region and coupled to the enhanced green fluorescent protein 

(EGFP) coding sequence. The primers used to amplify the putative promoter region are shown in 

Table 1 (see GR Promoter), while the sequence and annotations of the amplified region are 

provided in the Appendix A. PCR was carried out with DNA extracted from adult zebrafish tail 

and each 25 µL reaction mixture contained 2.5 µL 5x Reaction Buffer, 0.5 µL of 10mM dNTPs, 

1.5 µL of 25mM MgCl2, 0.13 µL Taq Polymerase (all from MBI Fermentas), 17.87 µL of RNase 

free water (Qiagen), 1.25 µL of 10 µM primer pair, and 1.25 µL of DNA template. The PCR 

conditions were as follows: 2 min at 95oC; 35 cycles of 30s at 94oC, 4 min at 58oC, and 5 min at 

72oC; and a final 10 min at 72oC. The resulting PCR product was run on an agarose gel and 

purified with the Qiaquick Gel Extraction kit (Qiagen). The PCR product was ligated into pCRII-

Topo vector with the Topo-TA cloning kit (Invitrogen). Both the GR (in pCRII-Topo) and a 

pEGFP-1 vector (Clonetech) were digested with XhoI and BamHI restriction enzymes, then 

ligated overnight at 16oC using ligase enzyme (MBI Fermentas). The construct was sequenced 

(York University DNA Sequencing Facility) to ensure that the correct cassette was inserted. The 

construct was microinjected into the cell of 1-cell embryos using a nitrogen-powered 

microinjector (Narishige). The injection concentration was 100 µg/µL in sterile water, and 
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approximately 500 pL was injected into the cell. Control embryos were injected with a promoter-

less pEGFP-1 vector. The embryos were imaged at 12, 15, and 18 hpf with an AZ100 

microscope, Intensilight fluorescent module and DS-Ri1 camera (all from Nikon). 

2.3.4 GR knockdown 

Morpholino oligonucleotides (MO; Gene-Tools) were targeted to the start site of translation for 

the zebrafish GR gene, while a 5 bp mispair (MP) served as the control. The sequences of the MO 

and MP are:  

MO – 5’-CTCCAGTCCTCCTTGATCCATTTTG-3’;  

MP – 5’TGcTATgTTTAcTCTCgATACgTG-3’,  

small letters indicate mismatched basepairs.  

The MO was fluorescein-tagged to track dispersion in the embryo. The oligonucleotides 

were dissolved in sterile water to 1.0 mM with added phenol red. Titration studies (0.1, 0.25, 0.5 

and 1.0 M) were carried out to establish the MO concentration that did not result in early embryo 

mortality.  The MO and MP were injected into the yolk of 1-2 cell embryos and the concentration 

used in this study (0.5 M; 4.4 ng/nL) allowed the embryos to survive beyond 12 hpf. As a further 

control, a p53 morpholino was co-injected with the GR morpholino. The resulting double 

morphants displayed the same characteristics as those injected with the GR-MO alone, indicating 

that the observed GR knockdown effects were specifically caused by reduced GR protein 

translation, independent of any non-specific MO effects due to the loss of p53. The effectiveness 

of GR knockdown was established by whole-mount ISH, IHC, western blotting, and quantitative 

real-time PCR (qPCR). 

2.3.5 Western blotting 

Pools of 24 hpf MP and MO embryos were dissected to isolate the tails to prevent yolk protein 

contamination and sonicated for 10s on ice with a Model 60 Sonic Dismembrator (Fisher 

Scientific). Sample protein concentration was determined by the bicinchoninic acid method with 

bovine serum albumin (Sigma) standards. The resulting homogenate was diluted with Laemmli’s 

buffer and 30 µg of protein was loaded onto an 8% SDS-PAGE gel and electrophoresed and 

immunodetected exactly as described before (Boone and Vijayan, 2002). The proteins were 

transferred onto a nitrocellulose membrane and were probed with the rabbit anti-zebrafish GR 

primary antibody (1:750 dilution) and goat anti-rabbit HRP-conjugated secondary antibody 

(1:3000 dilution, Bio-Rad) for 1 h each at room temperature with gentle rocking.  Protein bands 
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were detected with ECL Plus western blotting detection reagent (GE Healthcare) and the intensity 

of the bands scanned with the Typhoon Variable Mode Imager (GE Healthcare) and quantified 

using AlphaEase software (Alpha Innotech). 

2.3.6 Gene expression 

RNA extraction was carried out on pools of embryos with the RNeasy Mini Kit (Qiagen) with 

DNase treatment (Qiagen) to remove genomic DNA contamination. RNA quantification was 

performed with a Nanodrop spectrophotometer at 260 nm (Thermo Scientific) and 1 µg of total 

RNA was reverse transcribed with the First Strand cDNA Synthesis Kit (MBI Fermentas) using 

M-MuLV reverse transcriptase to produce a 20 µL mixture according to the manufacturer’s 

protocol.  

RT-PCR was performed on 24 and 36 hpf MP and MO embryos to assess the transcript 

expression of the following genes: igf1, igf2, bmp2a, bmp2b, and bmp4, with β-actin as a control 

for equal loading. 1.25 µL of the cDNA mixture was used for RT-PCR analysis. The PCR 

conditions were: 94oC for 3 min, 40 cycles of 30s at 94oC, 30s at Tm (Table 1), and 30s at 72 oC; 

followed by 10 min at 72 oC. PCR mixtures were run on agarose gels with added SYBR Safe gel 

stain (Invitrogen) and imaged with an AlphaImager (Alpha Innotech).  

Primers used for real-time quantitative PCR (qPCR) analysis are listed in Table 1, in 

bold. The 25 µL qPCR mixture contained: 0.75 µL of template, 12.5 µL iQ SYBR green 

supermix (Bio-Rad), 0.75 µL of 10 µM primers, 11µL RNase free water (Qiagen). The sample 

mixtures were run in triplicate on an iCycler iQ thermocycler (Bio-Rad) using the following 

conditions: 94oC for 2 min, 40 cycles of 30s at 95oC, and 30s at Tm (see Table 1, bold), followed 

by 10 min at 72oC. To assess the effectiveness of the GR knockdown, the mRNA abundance of 

GR and matrix metalloproteinase-13 (mmp13), a known GR-responsive gene (Hillegass et al., 

2007), was quantified from pools of 24 hpf MP and MO embryos. Standard curves were created 

for GR and mmp13 by insertion of the amplicon into a PGEM-Teasy vector (Promega) using 

established protocols (Aluru et al., 2010). qPCR was also used to measure observed changes in 

the mRNA abundance of BMP genes (bmp2a, bmp2b, bmp4) and markers of BMP signaling 

(eve1, pax3, pax7). To determine changes in expression related to altered mesodermal formation, 

we quantified the mRNA abundance of the following myogenic markers: myod, myogenin 

(myog), myostatin (mstnb), slow muscle myosin heavy chain 1 (smyhc1), fast muscle specific 

myosin heavy chain (myhz2), slow muscle troponin C (stnnc), and fast muscle troponin I (tnni2a). 

qPCR primers for all myogenic marker genes other than myod were previously characterized 
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(Palstra et al., 2010).  The mRNA abundance of these genes was quantified from pools of 24 and 

36 hpf MP and MO embryos using the delta-delta Ct method of quantification (Livak and 

Schmittgen, 2001) using β-actin as the housekeeping gene (values were similar across samples). 
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2.3.7 Embryo survival and morphology 

Embryos were counted, imaged and sampled at 12, 24, 36 and 48 hpf and dead or unfertilized 

embryos were removed. Bright-field embryo images were captured and processed after 

dechorionation with a Nikon AZ-100 microscope and DS-Ri1 camera. By annotation with NIS-

elements software (Nikon), the number of formed somites was counted at 12 and 15 hpf, and the 

embryo length (as measured around the dorsal edge from head to tail) and the head-trunk angle 

(as measured between the eye-ear axis and the notochord) were measured at 24 hpf. 

2.3.8 Zebrafish GR mRNA synthesis and rescue 

To synthesize the GR coding sequence mRNA, a ~2.2 kb region was amplified using the 

following primers:  

F 5’-ATG GAT CAA GGA GGA CTG GA-3’   

R 5’- TCA TTT CTG GTG AAA GAG CAG C-3’ 

PCR and cloning of the amplicon was performed as noted above for the GR-GFP 

construct. The resulting vector was transformed into competent DH5α E. coli cells by heat shock 

(15s, 42oC), which were grown on lysogeny broth (LB) media plates with 10 mM ampicillin for 

14h at 37oC. Transformed colonies were grown in LB media for 14h at 37oC. Plasmids were 

eluted in sterile water with the GenElute Plasmid Miniprep Kit (Sigma), following manufacturer 

protocols. Plasmids were quantified on a Nanodrop spectrophotometer (Thermo Scientific). To 

ensure proper insertion, the plasmid was sequenced (York University DNA Sequencing Facility). 

Before in vitro transcription, the plasmid was linearized with EcoRV restriction enzyme (1 hour, 

37 oC). The mMessage mMachine T7 kit (Ambion) was used to create capped mRNA according 

to the manufacturer’s protocol and diluted to 1 µg/µL in sterile water.  

 GR mRNA was diluted to 50 pg/nL and 200 pg/nL for initial titration and assessment of 

rescue. As 200 pg/nL was found to rescue a higher percentage of embryos, with no adverse 

effects on embryos when injected alone, this concentration was used for further rescue injections. 

One-cell embryos were injected with 1 nL of GR MO, GR MP, GR mRNA alone, or GR mRNA 

and MO co-injections. Embryos were grown as noted previously, and survival, somite 

development, and growth were measured exactly as before. Gene expression of rescue embryos 

was analyzed at 36 hpf by qPCR exactly as described for MO knockdown embryos, quantifying 

the mRNA abundance of bmp2a, bmp2b, bmp4, myog, and smyhc1.  
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The following abbreviations are used in the text: MP - embryos injected with mispair 

only; MO - GR morphants, only injected with morpholino; RNA - embryos injected with GR 

mRNA only; and MO+RNA - the morpholino and mRNA coinjection rescue embryos. MP and 

MO groups presented as part of the GR mRNA rescue data are independent from those presented 

as part of the examination of GR receptor knockdown effects, as they represent separate injection 

trials. 

2.3.9 Promoter analysis 

A bioinformatics approach was used to analyze the regions upstream of the transcriptional start 

sites of myod, igf1, igf2, bmp2a, bmp2b, and bmp4. For each gene, a 7.5 kb regions was identified 

using NCBI’s Entrez Gene and Sequence Viewer (myod: NC_007136.5; igf1: NC_007115.5; igf2: 

NC_007118.5; bmp2a: NW_003040445.1; bmp2b: NW_001878149.2; bmp4: NW_001877808.2). 

These sequences were analyzed using the Matinspector software suite (Genomatix), and the 

Transcription Element Search System (TESS) to identify putative glucocorticoid response 

elements (GREs). Only regions that were identified by both software packages were accepted as 

likely sites. 

2.3.10 Statistical analysis 

All data are presented as mean ± standard error of the mean (SEM). Data comparison for two 

samples (MO and MP) utilized Student’s t-test, while multiple treatments were compared using 

either one-way analysis of variance (ANOVA) or two-way ANOVA (Sigmastat, Systat Software). 

A probability value of p<0.05 was considered significant. 

2.4 Results 

2.4.1 Temporal GR expression in zebrafish embryos 

GR mRNA was observed in embryos at the 16-cell stage (Fig. 1A I) and at 4 hpf (Fig 1A II), but 

at 6 and 8 hpf, no GR mRNA were detectable in the developing embryo (Figs. 1A III and IV). GR 

mRNA transcripts were detected again at 10 hpf in the anterior end (Fig. 1A V), and were widely 

expressed by 12 hpf (Fig. 1A VI). GR mRNA was seen throughout the developing embryo with 

strong detection in the somites at 24 hpf (Fig 1A VII). By 48 hpf, the GR mRNA expression is 

reduced in the tail and is predominantly localized in the developing head and trunk (Fig 1A VIII, 

see arrow). Sense strand hybridizations at 24 and 48 hpf (Figs. 1A IX and X) confirm the 

specificity of the GR riboprobes. Similar to GR transcripts, GR protein expression was also 
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widely expressed throughout the embryo at 24 and 36 hpf (Fig. 1B I and II), but reduced at 48 hpf 

and was detectable only in discrete regions in the head, trunk, and tail (Fig. 1B, III, see arrows). 

We used a GR-GFP reporter construct (see Appendix A for sequence and diagrams, Fig. 

A1) to confirm the zygotic expression of GR. Using this construct the earliest de novo GR 

promoter activation was observed at 15 hpf in the ventral midtrunk region. By 18 hpf, GFP was 

also visible at somite boundaries. Negative control embryos showed no GFP fluorescence. 

Representative images are included in supplemental data (See Appendix A, Fig. A2). 
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Figure 1 – Glucocorticoid receptor (GR) gene and protein expression in wild-type embryos.  

GR mRNA and protein exhibit dynamic spatial expression during early embryogenesis. (A) 

Spatial GR mRNA abundance in wild-type (WT) embryos at 16-cell (I), 4 hpf (II), 6 hpf (III), 8 

hpf (IV), 10 hpf (V), 12 hpf (VI), 24 hpf (VII), and 48 hpf (VIII) stages (n=10-15 embryos at each 

stage). Sense strand hybridizations at 24 hpf (IX) and 48 hpf (X) display probe specificity. (B) 

Spatial GR protein expression in WT embryos (n=10-12 embryos) at 24 hpf (I), 36 hpf (II), and 

48 hpf (III). Fluorescent images (left) show GR protein distribution detected by specific antibody 

(polyclonal rabbit anti-zebrafish GR) binding, bright-field images (middle) display whole embryo 

shape, and negative control images (right) show specificity of fluorescence in embryo tissue.  
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2.4.2 GR knockdown 

The post-injection dispersion of morpholinos (MO) was observed by microscopic observation of 

fluorescein tagged-GR MO embryos. Fluorescein was ubiquitously spread throughout the cells 

from the two-cell stage, and continued to be observable until 40 hpf (data not shown). The 

knockdown of GR protein was confirmed by whole-mount immunohistochemistry (IHC; Fig. 2A) 

and western blotting (Fig. 2B). There was a >50% reduction in GR protein content in the MO 

embryo at 24 hpf by western blotting (Fig. 2B) and this was also confirmed by a decrease in GR 

protein expression observed by IHC at 24 and 36 hpf (Figs. 2A I and II). Essentially no GR 

protein expression was seen in the tail after morpholino injection (Fig. 2A, see dashed inset). GR 

mRNA abundance was not affected by MO injection as seen by in situ hybridization (ISH; Fig. 

2C) and qPCR (Fig. 2D). MMP-13 expression was suppressed by >70% in the MO embryos 

compared to the MP embryos at 24 hpf (Fig. 2E) confirming a functional knockdown of GR 

signaling. 
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Figure 2 – Glucocorticoid receptor protein knockdown by morpholino injection.  

Injection of morpholino oligonucleotides (MO) causes a significant decrease in GR protein 

expression in developing embryos, but does not affect GR mRNA content. 

(A) Whole-mount immunohistochemistry shows widespread loss of GR protein in morpholino-

injected (MO, right) embryos compared to mispair-injected embryos (MP, left) at both 24 hpf (I) 

and 36 hpf (II). Reduced GR protein expression in the developing somites at 24 hpf is shown in 

the expanded dashed inset. (B) A representative western image of GR protein expression in the 

tail of MP and MO embryo is shown and the band intensity (% MP) is displayed as a histogram 

(n=4 pools of 30 embryo tails). (C) GR mRNA expression was unchanged in 24 hpf wild-type 

(WT, left) and MO embryos (right) (n=10 embryos each). (D) GR mRNA abundance (n=5 pools 

of 16 embryos) of 24 hpf MO and MP embryos expressed as percentage of MP. (E) Matrix 

metalloproteinase-13 (MMP-13; a known GR-responsive gene) mRNA abundance in 24 hpf 

embryos expressed as percentage of MP (n=4 pools of 16 embryos). All values shown are mean ± 

standard error of mean (SEM); * significantly different (Student’s t-test, p<0.05). 
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2.4.3 GR signaling is important for embryo growth and survival 

There was embryo mortality associated with microinjection compared to uninjected wild-type 

(WT) embryos (Fig. 3A, 3B). However, there were no differences in embryo survival or 

morphology between the WT and mispair (MP) embryos at any time point (Figs. 3A and 3B). 

Hence, all data comparisons included only MP control and MO embryos. There was no 

significant difference in embryo survival between the MO and MP group at 12 hpf (Fig. 3A I).  

GR knockdown reduced embryo survival compared to the MP control by ~30% at 24 hpf (Fig. 3A 

II) and by >90% at 48 hpf (Fig. 3A III). Growth and early developmental rate was also affected 

by GR knockdown. A significant decrease in embryo length (Fig. 4C) and head-trunk angle (Fig. 

4D) was seen in the MO compared to MP embryos. There was a significant decrease in the rate of 

somite formation in the MO embryos at 12 and 15 hpf compared to the MP group (Figs. 3C I and 

3D I). In addition to slower rates of somite formation, morphant embryos often exhibited more 

prominent tail formation defects (Fig. 4A and 4B). At 24 hpf (Fig. 4A), GR knockdown embryos 

often exhibited kinked tails compared to the normal smooth and straight extension displayed by 

MP embryos. At 36 hpf (Fig. 4B), in addition to tail malformations (see arrows), MO embryos 

were seen to exhibit misshapen and unusually sized somites (see dashed inset). Low-

magnification images of embryos are included to show the common nature of these defects in 

only the GR morphants (Fig. 4B). 

 The injection of 200 pg of GR mRNA along with the MO was able to rescue most of the 

morphant phenotypes. There was no significant difference in survival between the controls and 

rescued embryos at either 24 or 48 hpf (Fig. 3B II and III). The rate of somite formation was also 

rescued by mRNA injection. At both 12 and 15 hpf (Fig. 3C II and 3D II), the number of somites 

was significantly higher in the rescue embryos relative to the MO embryos. Later in development, 

the rescue embryos displayed far fewer morphological defects (Fig. 4A and 4B). The rescued 

embryos were similar to MP embryos with fewer tail disruptions, including kinked tails and 

somite patterning and shape at 24 and 36 hpf (Fig. 4A and 4B). The relative rarity of defects in all 

groups other than the GR knockdown embryos can be seen from the low magnification images of 

multiple embryos (Fig. 4A, II, see arrows). The coinjection of GR mRNA also rescued the 

significant reduction in embryo length (Fig. 4C) and head-trunk angle (Fig. 4D) that was evident 

in the 24 hpf MO embryos. 
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Figure 3 – Effect of glucocorticoid receptor knockdown on embryo survival and 

development. 

GR morphants display increased mortality and slowed somitogenesis, but these effects are 

reversed with GR mRNA rescue. (A) Embryo survival at 12 hpf, (I), 24 hpf (II), and 48 hpf (III), 

comparing mispair-injected (MP, n=9 pools of 86-351 embryos) and morpholino-injected 

embryos (MO, n=14 pools of 84-218 embryos). Data is presented as percentage of wild-type 

(WT) survival (n=19 pools of 33-356 embryos). (B) Embryo survival was similarly measured 

after mRNA rescue, comparing MP (n=6 pools of 56-113 embryos), MO (n=8 pools of 42-136 

embryos), RNA-injected (RNA, n=6 pools of 89-149 embryos), and RNA and MO co-injected 

embryos (RNA+MO, n=10 pools of 56-149 embryos). Data is presented as a percentage of WT 

survival (n=5 pools of 33-224 embryos). (C) Number of formed somites in 12 hpf MP and MO 

embryos (I, n=11-15 embryos) and 12 hpf MO, MP, RNA, and RNA+MO embryos (II, n=8-22 

embryos). (D) Number of formed somites in 15 hpf MP and MO embryos (I, n=11-15 embryos) 

and 15 hpf MO, MP, RNA, and RNA+MO embryos (II, n=8-22 embryos). Representative images 

are shown (arrows indicate region of formed somites). Values shown are mean ± SEM; * 

significantly different (Student’s t-test, p<0.05); bars with different letters are statistically 

different (ANOVA, p<0.05). 
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Figure 4 – Effects of glucocorticoid receptor knockdown on morphogenesis. 

GR morphants display disrupted tail structures and reduced growth; these characteristics are 

corrected by GR mRNA coinjection. 

Representative images of tail morphological abnormalities in 24 hpf (A) and 36 hpf (B) 

morpholino-injected embryos (MO) compared to mispair-injected embryos (MP), mRNA-injected 

embryos (RNA), and mRNA and MO co-injected embryos (RNA+MO); arrows indicate 

malformed tails.  Malformed somites are shown in the magnified dashed inset (B, center). Low-

magnification images (B, bottom half) are shown to indicate the common nature of defects in the 

GR morphants. (C) Length of 24 hpf MP and MO embryos, as measured along the outer edge of 

the embryo (representative image, white line; n=6-12 embryos). (D) Head-trunk angle of 24 hpf 

MO, MP, RNA, and RNA+MO, embryos, as measured between the eye-ear axis and the 

notochord (representative image, white line; n=6-12 embryos). Values shown are mean ± SEM; 

bars with different letters are statistically different (ANOVA, p<0.05). 
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2.4.4 GR signaling is essential for mesoderm patterning 

Due to defects in the mesodermally-derived tissues, we examined the expression of a suite of 

genes that are well established mesoderm and growth markers. RT-PCR showed no discernible 

differences in igf1 or igf2 mRNA abundances in the MO group compared to MP control groups at 

either 24 or 36 hpf (Fig. 5A). However, bmp2a, bmp2b, and bmp4 expression was strongly 

reduced in the MO at both 24 and 36 hpf (Fig. 5A), and this was further confirmed using qPCR. 

bmp2a (Fig. 5B I), bmp2b (Fig. 5B II), and bmp4 (Fig. 5B III) mRNA abundances were all 

significantly reduced by ~70-90% in GR morphants compared to the MP control at both 24 hpf 

and 36 hpf. A time-dependent change in gene expression between 24 and 36 hpf was seen only 

for bmp2b, but not for bmp2a and bmp4 (Figs. 5B I-III). For bmp2b, mRNA abundance of MP, 

but not MO embryos were significantly reduced at 36 hpf compared to 24 hpf (Fig. 5B II). In 

addition, we show that the expression of eve1 is downregulated in GR morphants at both 24 and 

36 hpf (Fig. 6A). 

To determine if reduced GR signaling is involved in the disrupted mesoderm phenotype, 

we examined key marker genes involved in myogenesis in the morphant embryos at 24 and 36 

hpf. pax3 mRNA abundance (Fig. 6B) was reduced by 90% in GR morphants at 24 hpf only, with 

no significant change observed at 36 hpf. pax7 mRNA abundance was unchanged in GR 

morphants (Fig. 6C).  Myod mRNA abundance was unchanged at both 24 and 36 hpf (Fig. 7A). 

However, the mRNA abundance of myogenin (myog; Fig. 7B) and myostatin (mstnb; Fig. 7C) 

were both significantly different in GR morphants at 36 hpf. Myogenin expression was increased 

by a factor of 2, while myostatin was decreased by a factor of 3. Expression of slow muscle 

myosin heavy chain 1 (smyhc1; Fig. 8A) was increased by ~60% at 24 hpf and by ~30% at 36 hpf 

in GR morphants, but there was no change in mRNA abundance of fast muscle myosin (myhz2; 

Fig. 8B) at either time points. Also, both slow muscle troponin C (stnnc; Fig. 8C) and fast muscle 

troponin I 2a (tnni2a; Fig. 8D) were significantly increased by ~150% at 24 hpf, but remained 

unchanged in GR morphants at 36 hpf.  

GR mRNA rescue completely abrogated the suppression of BMP gene expressions (Fig. 

5C) and two selected myogenic genes (Fig. 9) seen in the MO group. For all three BMP genes, 

the rescued embryos had significantly higher mRNA abundance relative to MO embryos, and 

were not statistically different from the MP (exception was bmp2a) or mRNA control groups (5C 

I-III). The rescued embryos also showed significantly lower mRNA abundance of myog (Fig. 9A) 

and smyhc1 (Fig. 9B) compared to MO embryos, but were not statistically different from the MP 

or mRNA control groups. In addition, bioinformatics analysis of the region upstream of bmp2a, 
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bmp2b and bmp4 coding sequences indicate that there are multiple putative GREs within a 7.5 kb 

region upstream of each gene (Fig. 5D I-III). Bioinformatics analysis also indicated two putative 

GRE sites upstream of each of igf1, igf2, and myod (base pair regions are shown in Appendix A, 

Fig. A3), but there was no change in gene expression following GR knockdown (Fig. 5A; Fig 

7A). 

  



 

  63 

 

 

 

 

 

 

 

 

Figure 5 – Effects of glucocorticoid receptor knockdown on expression of developmental 

genes.  

GR knockdown reduced expression of BMPs but not other developmental genes. BMP expression 

in the morphants is rescued by GR mRNA injection. (A) RT-PCR images of igf1, igf2, β-actin, 

bmp2a, bmp2b, and bmp4 mRNA expression in 24 and 36 hpf mispair (MP) and morpholino 

(MO) injected embryos (n=4 pools of 25 embryos). (B) mRNA abundance of bmp2a (I), bmp2b 

(II), and bmp4 (III) measured by qPCR in 24 hpf and 36 hpf MP and MO embryos (GR gene 

knockdown; n=4 pools of 25 embryos) or (C) MP, MO, RNA injected (RNA), and RNA and MO 

co-injected (RNA+MO) embryos (GR mRNA rescue; n=4 pools of 25 embryos). Values shown 

are mean ± SEM; bars with different letters are statistically different (ANOVA, p<0.05). (D) 

Schematics of putative glucocorticoid response elements (GREs; number starting base pair) 

upstream of BMP2A (I), BMP2B (II) and BMP4 (III). 
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Figure 6 – Effects of glucocorticoid receptor knockdown on expression of BMP signaling 

markers 

GR morphants exhibited reduced expression of specific BMP responsive genes, indicating a 

functional reduction of BMP signaling. mRNA abundance of eve1 (A), pax3 (B), and pax7 (C) in 

24 hpf and 36 hpf mispair (MP) and morpholino (MO) embryos as quantified by qPCR. Values 

shown are mean ± SEM; bars with different letters are statistically different (n=4 pools of 25 

embryos, ANOVA, p<0.05). 
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Figure 7 – Effects of glucocorticoid receptor knockdown on expression of myogenic 

transcription factors 

GR receptor protein knockdown resulted in altered expression of key transcription factors 

involved in myogenesis at 36 hpf. mRNA abundance of myod (A), myogenin (myog; B), and 

myostatin (mstnb; C) in 24 hpf and 36 hpf mispair (MP) and morpholino (MO) embryos as 

measured by qPCR. Values shown are mean ± SEM; bars with different letters are statistically 

different (n=4 pools of 25 embryos, ANOVA, p<0.05). 
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Figure 8 – Effects of glucocorticoid receptor knockdown on mRNA abundance of muscle 

specific proteins 

GR morphants exhibited increased mRNA abundance of several muscle-specific proteins. mRNA 

abundance of slow muscle myosin heavy chain 1 (smyhc1; A), fast muscle myosin heavy chain 

(myhz2; B), slow muscle troponin C (stnnc; C), and fast muscle troponin I 2a (tnni2a; D) in 24 

hpf and 36 hpf mispair (MP) and morpholino (MO) embryos as measured by qPCR. Values 

shown are mean ± SEM; bars with different letters are statistically different (n=4 pools of 25 

embryos, ANOVA, p<0.05). 
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Figure 9 – GR receptor knockdown and mRNA rescue of disrupted expression of myogenic 

genes. 

Injection of GR mRNA restores the mRNA abundance of key myogenic genes. mRNA 

abundance of myogenin (myog; A) and slow muscle myosin heavy chain (smyhc1; B) in mispair 

(MP), morpholino (MO), RNA-injected (RNA), and RNA and MO co-injected (RNA+MO) 36 

hpf embryos. Values shown are mean ± SEM; bars with different letters are statistically different 

(n=4 pools of 25 embryos, ANOVA, p<0.05). 
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2.5 Discussion 

A novel finding from this study is that GR signaling is playing a key role in mesoderm formation 

and muscle development in zebrafish. We showed recently that GR gene expression decreases 

during early embryogenesis in zebrafish (Alsop and Vijayan, 2008; 2009) leading to the proposal 

that this receptor signaling may be playing a key role in early development. Our results from this 

study clearly reveal a ubiquitous distribution of maternally derived GR mRNA during the early 

cleavage stages and is in agreement with a recent study in zebrafish (Pikulkaew et al., 2011). 

Following the degradation of maternally deposited transcripts, zygotic expression of GR was seen 

throughout the embryo and GR promoter activation was specifically observed at the somite 

boundaries, suggesting a role for GR signaling in somite formation. This is further supported by 

the strong GR gene and protein expression in the somites and developing mesoderm suggesting a 

morphogenic role for this receptor activation during early development. As cortisol is the primary 

ligand for GR activation in fish, and this steroid biosynthesis commences only after hatch (Alsop 

and Vijayan, 2008), we hypothesize that maternal cortisol orchestrates proper mesodermal 

development and myogenesis in zebrafish.    

A role for GR in the developmental regulation of myogenesis was reinforced by our GR 

knockdown studies that displayed disruptions in somitogenesis and tail deformations. The 

suppression of GR signaling in the morphant zebrafish was confirmed by the reduced protein 

expression of this steroid receptor as well as downregulation of mmp13, a well established GR-

responsive target gene (Hillegass et al., 2007). Our finding is in agreement with a recent study 

that also showed GR morphants exhibiting abnormal muscle phenotypes in zebrafish (Pikulkaew 

et al., 2011), suggesting a key role for GR in mesoderm development. The transiently higher 

expression of GR protein in the tail muscle prior to hatch suggests a key role for GR signaling in 

early muscle development in zebrafish. Indeed, the 12-36 hpf window prior to hatching, where 

GR transcripts and protein accumulate throughout the tail, is a critical period in muscle 

development with muscle cell pioneers being determined from 12 to 24 hpf, and further 

specification and specialization occurring after 24 hpf (Stickney et al., 2000; Ochi and 

Westerfield, 2007).  

Further support for GR signaling as a key player in the developmental regulation of 

myogenesis is supported by the changes seen in the expression of important myogenic regulatory 

factors and muscle-specific genes in GR morphants (Xu et al., 2000; Du et al., 2003; Ochi and 

Westerfield, 2007). The temporal expression pattern of genes, including myogenin, myostatin, 

slow myosin heavy chain, fast muscle myosin and slow and fast muscle troponins, suggest time-
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specific modulation of molecular events involved in myotomal development by GR signaling. We 

observed that GR mRNA rescue reversed the changes in expression of myogenin and slow 

muscle myosin, indicating that these effects are GR-specific, while the mechanisms and 

downstream regulatory pathways involved remains to be elucidated. Several transcription factors 

and signaling molecules have been implicated in the developmental regulation of myogenesis 

(Ochi and Westerfield, 2007), and our results for the first time implicate GR in this process. To 

this end, IGFs and MyoD are developmentally regulated in zebrafish embryos and critical for cell 

cycle control and embryo growth (Ochi and Westerfield, 2007; Duan et al., 2010). The absence of 

any changes in myod, igf1, and igf2 expression in GR morphants, despite the presence of two 

putative GREs upstream of their promoter regions, points to additional control factors involved in 

the regulation of embryo growth in response to GR signaling.  

A key family of morphogens implicated in a variety of developmental processes, 

including dorsoventral patterning, somitogenesis, mesodermal differentiation, and myogenesis are 

the BMPs (Reshef et al., 1998; Bubnoff and Cho, 2001; Miyazono et al., 2005; Pyati et al., 2005; 

Patterson et al., 2010). The suppression of bmp2a, bmp2b, and bmp4 prior to hatching in the GR 

morphant in the present study for the first time underscores a role for GR signaling in the 

developmental regulation of morphogens in zebrafish. The rescue of morphant phenotype, 

including the restoration of BMP mRNA abundance, by GR mRNA provides further confirmation 

that GR signaling modulates developmental expression of BMPs in zebrafish. Furthermore, 

bioinformatics analysis suggests the presence of putative GRE sites upstream of the BMP genes 

pointing to a possible direct transcriptional regulation of these morphogens by ligand-activated 

GR. To our knowledge this is the first study to establish a link between GR signaling and 

developmental regulation of BMPs in vertebrates, while the mechanism involved remains to be 

established.  

 A direct functional role for BMPs in the observed tail deformation and myogenesis in 

response to GR knockdown was not ascertained in the present study. However, GR morphant 

phenotype showed morphogenic defects similar to those seen in studies that modulated BMP 

signaling, including altered somitogenesis (Patterson et al., 2010) and disrupted tail formation 

(Kishimoto et al., 1997; Pyati et al., 2005; Stickney et al., 2007; Tucker et al., 2008). The 

mechanisms involved in the developmental regulation of myogenesis by BMPs are not very clear.  

For instance, overexpression of BMP increased expression of muscle precursor markers, 

including pax3 and pax7, and led to a temporal delay in muscle differentiation in zebrafish 

(Patterson et al., 2010).  However, inhibition of BMP signaling did not seem to reverse the effects 
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seen with overexpression suggesting complex interaction with other myogenic factors in 

regulating myogenesis (Patterson et al., 2010). The suppression of eve1, a BMP-responsive gene 

involved in mesoderm formation in zebrafish (Seebald and Szeto, 2011), in the GR morphants 

argues for a role for BMP signaling in orchestrating the mesoderm differentiation associated with 

GR activation. This was also supported by the reduced expression of pax3, but not pax7, observed 

in 24 hpf GR morphants. While the functional significance of these observed gene expressions 

patterns are not known, we hypothesize that BMPs may be a factor involved in GR-mediated 

effects on early muscle development and growth. This is increasingly likely given the role played 

by these morphogens in mesoderm differentiation, including angiogenesis (Tucker et al., 2008; 

David et al., 2009), myogenesis (Patterson et al., 2010), and organogenesis (Chin et al., 1997; 

Brand, 2003; Shin et al., 2007; Chung et al., 2008). Consequently, the downregulation of BMPs 

in the GR morphants may be a key factor leading to embryo mortality seen in GR morphants by 

48 hpf.  This may include severe disruption of heart function, especially because BMPs have been 

identified as factors in cardiac cell specification and heart looping (Brand, 2003). This would also 

account for the increased mortality seen at hatch because prior to that simple diffusion will meet 

the oxygen demand of the embryos, whereas a functioning heart is critical at hatch (Pelster and 

Burggren, 1996). We hypothesize that GR is an important developmental regulator, acting 

upstream of other key developmental factors, including BMPs in zebrafish.  

Overall, we have identified GR signaling as a key modulator of mesoderm differentiation 

and muscle development in zebrafish. The suppression of BMPs and downstream targets involved 

in myogenesis in the GR morphants leads us to hypothesize that this morphogen is a key player in 

orchestrating the GR-mediated developmental effects in zebrafish. However, the GR effect on 

myogenesis may not be limited to just BMP signaling, as several molecular mechanisms are 

involved in mesoderm formation and muscle development (Ochi and Westerfield, 2007; Chong et 

al., 2009; Patterson et al., 2010). As cortisol is the primary ligand for GR activation in teleosts 

(Mommsen et al., 1999), and de novo synthesis of this steroid commences only after hatch (Alsop 

and Vijayan, 2008), we hypothesize that maternal cortisol via GR signaling orchestrates the 

developmental programming of mesoderm differentiation and muscle development. We posit that 

GR is a key transcription factor acting upstream of multiple important pathways essential for 

embryogenesis, including BMPs and muscle regulatory transcription factors and muscle-specific 

proteins. Consequently, any abnormalities in GR signaling, including abnormal cortisol 

deposition or exposure during this critical developmental window prior to de novo cortisol 

biosynthesis may lead to long-term growth defects, including reduced survival.  
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Chapter 3 
Embryo exposure to elevated cortisol level leads to cardiac 

performance dysfunction in zebrafish 
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Embryo exposure to elevated cortisol level leads to cardiac performance dysfunction in zebrafish. 
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3.1 Overview 

In zebrafish (Danio rerio), de novo cortisol synthesis commences only after hatching, providing 

an interesting model to study the effects of maternal stress and abnormal cortisol deposition on 

embryo development and performance. We hypothesized that elevated cortisol levels during pre-

hatch embryogenesis compromise cardiac performance in developing zebrafish. Cortisol was 

microinjected into one-cell embryos to elevate basal cortisol levels during embryogenesis. 

Elevated embryo cortisol content increased heart deformities, including pericardial edema and 

malformed chambers, and lowered resting heartbeat post-hatch. This phenotype coincided with 

suppression of key cardiac genes, including nkx2.5, cardiac myosin light chain 1, cardiac troponin 

type T2A, and calcium transporting ATPase, underpinning a mechanistic link to heart 

malformation. The attenuation of the heartbeat response to a secondary stressor post-hatch also 

confirms a functional reduction in cardiac performance.  Altogether, high cortisol content during 

embryogenesis, mimicking increased deposition due to maternal stress, decreases cardiac 

performance and may reduce zebrafish offspring survival.  

3.2 Introduction 

Cortisol is the primary circulating corticosteroid in teleosts and it is produced by the 

steroidogenic cells distributed predominantly around the post-cardinal veins (interrenal tissue) in 

the head kidney region (Wendelaar Bonga, 1997). A key stimulus for this steroid release is the 

activation of the hypothalamus-pituitary axis, culminating in the release of adrenocorticotrophic 

hormone (ACTH) from the pituitary. ACTH binding to its target receptor, the melanocortin 2 

receptor (MC2R), activates corticosteroid biosynthesis, leading to elevated circulating levels of 

this steroid in response to stress (Aluru and Vijayan, 2008; Hontela and Vijayan, 2009). Cortisol 

has wide-ranging effects on animal physiology and a major role that is evolutionarily conserved is 

the metabolic adjustments to restore homeostasis in the face of stressor insult (Wendelaar Bonga, 

1997; Mommsen et al., 1999). Glucocorticoid effects are mediated via glucocorticoid receptor 

(GR) and/or mineralocorticoid receptor (MR) activation (Sapolsky et al., 2000), and teleosts 

express multiple paralogs of these receptors (Bury et al., 2003; Prunet et al., 2006). While the role 

of MR in cortisol signaling is not very clear in fish, GR signaling is involved in all aspects of 

animal physiology, including ion regulation, metabolism, immune function and reproduction 

(Mommsen et al., 1999; Aluru and Vijayan, 2009). The majority of these studies have been 

carried out in juvenile fish and cell system models, resulting in a paucity of information on the 

developmental regulation of cortisol in fish. Recent studies using GR gene knockdown with 

morpholino oligonucleotides points to a key role for signaling by this receptor in zebrafish (Danio 
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rerio) early developmental events, including mesoderm formation (Pikulkaew et al., 2011; Nesan 

et al., 2012 [Chapter 2]). 

In zebrafish, cortisol content during early embryogenesis is of maternal origin as de novo 

synthesis of this steroid commences only after hatch (Alsop and Vijayan, 2008). Also, the ability 

to increase cortisol levels in response to stress is not active until 3-4 days post fertilization (dpf), 

as the embryo approaches first feeding (Alsop and Vijayan, 2008; Alderman and Bernier, 2009). 

Consequently, there is a temporal decrease in maternally deposited cortisol content in the 

embryos up until hatch in zebrafish (Alsop and Vijayan, 2008). This is also true for other fish 

species studied, including rainbow trout (Oncorhynchus mykiss; [Barry et al., 1995; Auperin and 

Geslin, 2008]) and common carp (Cyprinus carpio; [Stouthart et al., 1998]), leading to the 

hypothesis that a corticosteroid hyporesponsive period is essential for early development in fish. 

Indeed, studies have shown that elevated prenatal glucocorticoid exposure disrupts growth and 

development in animal models (Breuner et al., 2008; Seckl and Meaney, 2004; Kapoor, 2006),  

including fish (Eriksen et al., 2006), but a clear mechanistic link is missing.  

During zebrafish development, the 24 to 48 hours post fertilization (hpf) window is a key 

period for organogenesis, including heart formation and angiogenesis (Thisse and Zon, 2002; 

Kimmel et al., 1995). It is also during this time that embryo cortisol content is at its lowest (Alsop 

& Vijayan, 2008). During this period of cardiac myogenesis there is a marked regulation of 

structural and functional cardiac muscle proteins, including myosin chains, troponins, and ion 

transporters (Yelon, 2001; Chen et al., 2008; Hsiao et al., 2003; Ebert et al., 2005). Also, the key 

cardiac transcription factor, nkx2.5, is expressed during this period and it is essential for heart 

development (Chen and Fishman, 1996) and cardiovascular performance at hatch (Yelon, 2001). 

Our recent investigation on the role of GR signaling in early embryogenesis indicated a link 

between GR activation and modulation of bone morphogenetic proteins  (BMPs) expression in 

zebrafish (Nesan et al., 2012 [Chapter 2]). BMPs are key morphogens regulating the expression 

of genes involved in organogenesis, including heart development (Chin et al., 1997; Chen et al., 

1997), providing a potential link between GR-mediated cortisol signaling and cardiac 

morphogenesis. There have been studies linking cortisol to abnormal heart development and 

cardiac gene expression in fetal sheep (Lumbers et al., 2005; Reini et al., 2008) and to cardiac 

hypertrophy in adult salmon (Johansen et al., 2011). However, few studies have examined the 

role of cortisol in the developmental regulation of cardiac function in fish.  

Against this background, we tested the hypothesis that elevated cortisol levels in the 

embryos, mimicking increased transfer of this steroid from mothers in stressed environments, 
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may disrupt cardiac development and performance after hatching in zebrafish. The optically 

transparent zebrafish embryo provides the opportunity to observe cardiac development directly, 

and zebrafish express only a single GR gene with two splice variants, an unusual characteristic 

for teleosts, but interestingly similar to humans (Alsop and Vijayan, 2008; Schaaf et al., 2008). 

Additionally, zebrafish embryos can survive without a functional heart until 4-5 dpf (Pelster and 

Burggren, 1996), allowing for investigation on heart development and malformations without 

compromising embryo viability. Taken together, zebrafish is a well-established model for 

developmental, endocrine, and cardiac research  (Chico et al., 2008; Lohr and Hammerschmidt, 

2011), providing a uniquely suited test organism for biomedical research on maternal stress 

effects on development.  

We microinjected cortisol into one-cell zebrafish embryos resulting in elevated levels of 

this steroid compared to the wild-type embryo during pre-hatch embryogenesis. We monitored 

embryo cortisol content, glucocorticoid receptor gene and protein expressions, and confirmed 

enhanced GR signaling from cortisol treatment by measuring transcript abundance of a known 

glucocorticoid-responsive gene (matrix metalloproteinase-13 [mmp13]; Hillegass et al., 2007). 

Cardiac morphogenesis was examined by microscopic observation, as well as by analyzing the 

transcript abundance of genes encoding key proteins in cardiac development, including nkx2.5, 

cardiac myosin light chain 1 (cmlc1), cardiac troponin type T2A (tnnt2a), and calcium 

transporting ATPase (atp2a2a). Cardiac performance was assessed by measuring heartbeat at rest 

and after an acute stressor challenge at 72 hpf.   

3.3 Materials and Methods 

3.3.1 Zebrafish care 

Care and breeding of adult zebrafish and rearing of embryos were performed exactly as described 

previously (Nesan et al., 2012 [Chapter 2]). Wild-type adult zebrafish were purchased from a 

commercial source (Big Al’s Aquarium Services, Kitchener, ON). The zebrafish care protocol 

was approved by the animal care committee at the University of Waterloo, and is in accordance 

with the Canadian Council for Animal Care guidelines. 

3.3.2 Cortisol injection 

Cortisol (Hydrocortisone; Sigma, St. Louis, MO) stocks were prepared by first diluting in ethanol, 

then evaporating off the ethanol and reconstituting in sterile water. The final concentrations of the 

steroid used for embryo injection were 0, 8, 16, and 32 pg/nL. The vehicle for control injections 
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was prepared exactly the same but without cortisol. Initial trials were performed with each 

concentration and pools of 25 embryos were frozen at 12, 24, 36, and 48 hpf for measurement of 

cortisol content. Our preliminary experiment showed that only 32 pg/nL concentration cortisol 

was able to consistently maintain elevated cortisol content above basal levels compared to control 

embryos during the early developmental period prior to hatch. Consequently, all experiments 

were carried out only with this concentration of cortisol. Briefly, one-cell stage embryos were 

microinjected with 1 nL (~0.5% of total embryo volume) of either vehicle (sterile water) or 

vehicle containing cortisol (32 pg/nL) using a nitrogen-powered microinjector (Narishige, East 

Meadow, NY). Embryos were observed at 24, 36, and 48 hpf using an AZ100 microscope and 

images captured with a DS-Ri1 camera (Nikon, Melville, NY). Embryos (20-25 per sample with a 

sample size of 3-6 per treatment) were frozen at various time-points for measuring cortisol 

content and also for molecular and protein analyses. 

3.3.3 Embryo morphology 

After cortisol injection, embryos were reared until 48 hpf, at which point they were examined and 

classified into one of four groupings according to the severity of their morphological 

deformations: “unaffected” - indistinguishable from wild-type; “mild” – visible pericardial edema 

only; “moderate” - embryos displayed more prominent pericardial edema and visibly malformed 

heart structures (such as distension or ballooning of the heart chambers); “severe” - embryos 

showed a ruptured pericardia with no visible/functioning heart structures and mildly deformed 

curvature. Cortisol-injected embryos did not show a significant increase in mortality during 

embryogenesis. 

3.3.4 Cardiac performance 

Control and cortisol-injected larvae were subjected to a standardized physical stressor at 72 hpf, 

which is the earliest point at which an activated stress response has been shown in zebrafish 

(Alsop and Vijayan, 2008; Alderman and Bernier, 2009). Only embryos exhibiting the “mild” or 

“unaffected” cardiac phenotypes were selected for the performance test as the extreme 

phenotypes displayed irregular heartbeats that were difficult to visualize and quantify. Also, we 

were interested in assessing whether cortisol effects were evident even in embryos with no visible 

malformation of cardiac phenotypes. The stressor exposure consisted of placing 100 larvae in a 

beaker with 80 mL of embryo medium (Westerfield, 2003) and swirling them with a pipette once 

every second for 60 s. The embryos were maintained at 28.5ºC in an incubator (Fisher Scientific, 

Ottawa, ON) over the course of the stressor exposure and post-stressor recovery period. After 
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swirling, individual embryos were transferred to 35mm petri dishes (Fisher Scientific, Ottawa, 

ON) in embryo medium for heartbeat assessment and maintained in the incubator for the post-

stressor period. The heart rates (beats per minute; bpm) of the embryos were counted by viewing 

under the Nikon AZ100 microscope prior to stressor exposure and at 5, 30, and 60 min post-

stressor. The petri dish with a single embryo was removed from the incubator only for the 

duration of the heartbeat assessment (60s). 

3.3.5 Cortisol ELISA 

Embryo cortisol concentrations were measured with a commercially available ELISA (Neogen 

Corp., Lexington, KY) according to the manufacturer’s protocol exactly as described previously 

(Gonçalves et al., 2012). 

3.3.6 Gene expression 

RNA was extracted and quantified from pools of 48 hpf control and cortisol-injected embryos as 

described previously (Nesan et al., 2012 [Chapter 2]). 1 µg of RNA was reverse-transcribed with 

the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Carlsbad, CA) to 

produce a 20 µL mixture according to the manufacturer’s protocols. 

Real-time quantitative PCR (qPCR) was used to assess gene expression in 36 and 48 hpf 

control and cortisol-injected embryos. The following genes were measured: gr, mmp13, nkx2.5, 

cmlc1, tnnt2a, and atp2a2a, and β-actin. Primer pair sequences, melting temperatures, and 

amplicon sizes are included in Table 1. Primer pairs for gr, mmp13, andβ-actin have been 

described and characterized previously (Nesan et al., 2012 [Chapter 2]). Primer pairs for the 

remaining genes were designed from GenBank sequences: CU019640 (nkx2.5); AL845516 

(cmlc1); AL662880 (tnnt2a); CR407563 (atp2a2a). qPCR analysis was run in triplicate on an 

iCycler iQ thermocycler  using iQ SYBR Green supermix (BioRad, Hercules, CA) and gene 

expression was calculated exactly as described previously (Nesan et al., 2012 [Chapter 2]), using 

β-actin as the housekeeping gene (levels of this transcript were consistent across samples).  
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3.3.7 Protein expression 

Pools of 36 and 48 hpf control and cortisol-injected embryos were processed for measurement of 

protein expression by immunoblotting. Total protein concentration was determined by the 

bicinchoninic acid method with bovine serum albumin (Sigma, St. Louis, MO) as the standard 

and 25 µg was loaded onto 8% SDS-PAGE gels for electrophoresis as described previously 

(Nesan et al., 2012). The GR protein was immunodetected with a polyclonal rabbit anti-zebrafish 

GR antibody exactly as previously described (Nesan et al., 2012 [Chapter 2]). 

3.3.8 Statistical analysis 

All data are presented as mean ± standard error of the mean (SEM). Data comparisons for 

multiple time-points and treatments utilized two-way analysis of variance (ANOVA), while 

Student’s t-test was used for two sample comparisons. Significant interactions with two-way 

ANOVA were further analyzed using one-way ANOVA for temporal differences (within 

treatment groups) and Student’s t-test for treatment differences at each time point. A Bonferroni 

post-hoc test was used to determine significance for multiple comparisons. All data were 

normally distributed without need for transformation. All statistical analyses were carried out 

with the Sigmastat software package (Systat Software, Chicago, IL). A probability value of 

p<0.05 was considered significant. 

3.4 Results 

3.4.1 Cortisol levels 

Cortisol content in newly fertilized embryos was approximately 3.6 pg and this level was 

significantly reduced at 12 (2.7 pg), 24 (2.0 pg) and 36 hpf (2.2 pg) (Fig. 1). After hatch, embryo 

cortisol content increased at 48 hpf (3.8 pg) to levels similar to that seen in the newly fertilized 

embryo but was significantly higher at 72 hpf (Fig. 1). Embryos injected with 32 pg cortisol per 

embryo displayed elevated steroid content above control embryos at all time points, and did not 

display the temporal decrease at 12 (3.5 pg), 24 (3.7 pg) and 36 hpf (3.8 pg) that was observed in 

the control group. The post-hatch cortisol content in the cortisol-injected embryo was 

significantly higher at 48 and 72 hpf (6.3 pg) compared to the pre-hatch values as well as with the 

control group (Fig. 1). 
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Figure 1 – Whole body cortisol content. 

One-cell stage embryos were microinjected with either water (control) or cortisol (32 pg/embryo) 

and sampled at 12, 24, 36, 48 and 72 hpf. 0 hpf measurement was prior to microinjection. All 

values shown are mean ± standard error of mean [SEM; n=4 pools of 25 embryos]; different 

letters indicate significant time effects within each treatment group, while the lower and 

uppercase denotes significant treatment effects (two-way ANOVA, p<0.05).  
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3.4.2 GR expression and signaling 

There was no significant change in GR mRNA abundance (Fig. 2A) or protein expression (Fig. 

2B) at 36 or 48 hpf in the cortisol-injected group compared to the control group (Fig. 2A). There 

was a temporal reduction in GR protein expression (~70%) in both groups at 48 hpf relative to 36 

hpf (Fig. 2B). To assess GR signaling we quantified mmp13, and the mRNA abundance of this 

gene was significantly higher in cortisol-injected embryos at both 36 hpf (26 fold increase) and 48 

hpf (21 fold increase) compared to controls (Fig. 2C).  
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Figure 2 – Glucocorticoid receptor (GR) and glucocorticoid responsive gene expressions 

One-cell stage embryos were microinjected with either water (control) or cortisol (32 pg/embryo) 

and sampled at 36 and 48 hpf to measure GR mRNA abundance (A), GR protein expression (B) 

and mmp13, a glucocorticoid responsive gene, mRNA abundance (C). Data is expressed as 

percentage 36 hpf control. All values shown are mean ± standard error of mean [SEM; n=4-6 

pools of 20 embryos for transcripts (A and B) and n=4 pools of 25 embryos for protein (C)]; 

different letters indicate significant difference (two-way ANOVA, p<0.05). 
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3.4.3 Cardiac morphogenesis 

97% of control embryos were indistinguishable from wild-type embryos throughout development. 

Injection of 32 pg cortisol/embryo resulted in a range of cardiac phenotypes (Fig. 3). Nearly 51% 

of embryos treated with cortisol were similar to the control phenotype and were classified as 

“unaffected” (Fig. 3, first row), while 31% showed a “mild” phenotype (Fig. 3, second row) 

characterized by pericardial edema, 14% showed a “moderate” phenotype (Fig. 3, third row) 

consisting of pericardial edema and visibly deformed heart structure (distended or ballooned heart 

chambers) and 5% were “severe” phenotype (Fig. 3, fourth row) categorized by ruptured 

pericardia and no visible heartbeat. 
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Figure 3 – Heart deformity phenotypes 

One-cell stage embryos were microinjected with either water (control) or cortisol (32 pg/embryo) 

and imaged at 48 hpf for morphological deformities. Unaffected embryos (first row) were 

indistinguishable from wild-type embryos. Mild embryos (second row) displayed pericardial 

edema only (see arrow); moderate embryos (third row) displayed pericardial edema and 

malformed heart structures (see arrows); severe embryos (fourth row) exhibited a ruptured 

pericardium (see arrows) and no heartbeat was ever visible. Percent phenotype from multiple 

trials are shown as mean ± standard error of mean (SEM) (control: n=16 trials of 37-120 

embryos; cortisol: n=14 trials of 53-184 embryos); N.D. - not detectable; * indicates significant 

difference (Student’s t-test, p<0.05). 
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3.4.4 Marker genes for cardiac development 

The observed cardiac deformations were also reflected in disrupted expression of key cardiac 

genes (Fig. 4). The mRNA abundance of the cardiac transcription factor nkx2.5 was significantly 

lower in the cortisol group at 36 hpf (61%) and 48 hpf (72%) compared to the control group (Fig. 

4A).  Transcription of specific cardiac muscle genes was also suppressed in cortisol-injected 

embryos relative to control embryos. The mRNA abundances of cardiac myosin light chain 1 

(cmlc1; Fig. 4B) and cardiac troponin type T2a (tnnt2a; Fig. 4C) was significantly reduced at 48 

hpf (73% and 66%, respectively), but not at 36 hpf compared to the control group. Also, the 

mRNA abundance of a cardiac muscle calcium transporter ATPase (atp2a2a; Fig. 4D) was 

significantly lower in the cortisol-injected embryos at both 36 (61%) and 48 hpf (49%) compared 

to the control embryos. 
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Figure 4 – mRNA abundance of cardiac genes 

One-cell stage embryos were microinjected with either water (control) or cortisol (32 pg/embryo) 

and sampled at 36 and 48 hpf to quantify the mRNA abundance of nkx2.5 (A), cmlc1 (B), tnnt2a 

(C), and atp2a2a (D) by qPCR. Data is expressed as percentage 36 hpf control. All values shown 

are mean ± standard error of mean [SEM; n=4-6 pools of 25 embryos]; different letters indicate 

significant difference (two-way ANOVA, p<0.05). 
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3.4.5 Cardiac performance 

At 72 hpf, control embryos had a heart rate of 160 beats per minute (bpm) (Fig. 5), while embryos 

injected with 32 pg of cortisol displayed a significantly reduced resting heart rate (149 bpm) (Fig. 

5). Subjecting these embryos to an acute physical stressor significantly elevated the control 

embryo heart rate to 197 bpm by 5 min, after which the rate dropped to 173 bpm at 30 min and 

was back to the resting levels at 60 min post-stressor exposure (Fig. 5). The cortisol-injected 

embryos also displayed a transient increase in heart rate in response to stressor exposure, but the 

magnitude of response was significantly lower than the control group at 5 min (171 bpm), 30 min 

(157 bpm), and 60 min (151 bpm) post-stressor exposure (Fig. 5). 
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Figure 5 – Cardiac performance 

One-cell stage embryos were microinjected with either water (control) or cortisol (32 pg/embryo) 

and the heartbeat rate of the larva was measured at 72 hpf either at rest (0 time) or 5, 30, and 60 

minutes after an acute stressor exposure.  Embryos injected with 32 pg of cortisol at fertilization 

displayed a disrupted heart rate response to a stressor at 72 hpf. All values shown are mean ± 

standard error of mean [SEM; n=13-17 embryos, post-stress heart rates were repeated measures]; 

different letters indicate significant time effects within each treatment group, while the lower and 

uppercase denotes significant treatment effects (two-way ANOVA, p<0.05).  
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3.5 Discussion 

The novel finding from this study is that high glucocorticoid exposure during early 

embryogenesis reduces cardiac performance in zebrafish. Studies have shown that maternal stress 

and the associated excess prenatal corticosteroid exposure leads to developmental abnormalities 

in the progeny of vertebrates (Seckl and Meaney, 2004; Eriksen et al., 2006; Kapoor, 2006; 

Breuner et al., 2008), but there is no clear understanding of the specific pathways that are 

impacted. Here we demonstrate for the first time that embryonic exposure to elevated cortisol 

levels involves suppression of genes critical for cardiac morphogenesis in zebrafish, establishing 

a mechanistic link between maternal stress and compromised fish performance.  

 Maternal transfer of cortisol to oocytes is well established in the piscine model and recent 

studies highlight a key role for this steroid deposition in the maternal programming of zebrafish 

development (Pikulkaew et al., 2011; Nesan et al., 2012 [Chapter 2]). This is because knocking 

down of glucocorticoid receptor, a key molecule activating cortisol signaling, led to 

developmental abnormalities and mortality in zebrafish embryos (Pikulkaew et al., 2011; Nesan 

et al., 2012 [Chapter 2]). However, little is known about post-hatch performance phenotype of 

embryos exposed to high levels of cortisol during the critical developmental window prior to 

hatching. Recent studies suggest that maternal stress affects egg characteristics and larval 

development (McCormick and Nechaev, 2002; Eriksen et al., 2006; Giesing et al., 2011), but this 

is not consistent among all species (Stratholt et al., 1997) and a clear understanding of how 

elevated cortisol levels bring about these developmental abnormalities is lacking. In zebrafish and 

other teleosts, the deposited maternal cortisol levels decrease over time up until hatching after 

which the de novo synthesis of the steroid commences (Alsop and Vijayan, 2008, 2009). This was 

also confirmed in the present study as cortisol exposure levels dropped during embryogenesis 

prior to hatching and increased strongly afterwards. Maintaining low cortisol levels during this 

critical early developmental window is thought to be essential for proper maternal programming 

of developmental events (Barry et al., 1995; Stouthart et al., 1998; Alsop and Vijayan, 2008; 

Auperin and Geslin, 2008; Alderman and Bernier, 2009). 

We tested this by elevating embryo cortisol levels above basal levels throughout 

embryogenesis by microinjection of 32 pg of cortisol into the zygote. The temporal changes seen 

in GR expression during development support our earlier study (Nesan et al., 2012 [Chapter 2]) 

while prehatch embryo exposure to elevated cortisol levels did not modulate GR expression. 

However, the upregulation of mmp13 in the cortisol group confirms enhanced GR activation, as 

this transcript is glucocorticoid responsive in zebrafish embryos (Hillegass et al., 2007). The 
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increased early embryonic cortisol stimulation led to clear cardiac phenotypes, including higher 

incidences of edema, malformed heart chambers, and pericardial rupture. To our knowledge, this 

is the first study to demonstrate cardiovascular defects in response to embryo exposure to 

elevated corticosteroid in any animal model. Mammalian studies have suggested cardiovascular 

dysfunction, including chronic hypertension, due to elevated prenatal glucocorticoids (Seckl and 

Meaney, 2004). In zebrafish, maternal stressors have been linked with reduced oocyte formation 

and larval viability (Orn et al., 1998; Carfagnini et al., 2009), but this was not linked to any 

changes in embryo cortisol content. Our results suggest that increased cortisol deposition and the 

associated impact on cardiac morphogenesis may be playing a role in this reduced larval viability. 

During cardiac development in zebrafish, cardiomyocyte progenitors arise from the 

lateral plate mesoderm, migrate towards the midline and fuse to form the heart tube, which 

becomes subdivided into the atrium and the ventricle (Glickman and Yelon, 2002). This process 

begins post-epiboly and is complete within 24 hpf, as the heart begins to beat sporadically. 

Involved in this differentiation and fusion process are a number of cardiac transcription factors 

whose effects are complex and interrelated, including nkx2.5, bmp2b, and other co-factors (Yelon, 

2001). As cardiac tissue develops, cardiac structural genes are upregulated, including myosin 

chains, troponins, and ion transporters. By 36 hpf, the heart tube begins to bend, positioning the 

atrium adjacent to the ventricle, and further development of the heart tissue (thickening of the 

walls, valve development) occurs over the next 12-36 hpf (Glickman and Yelon, 2002). Oxygen 

delivery via the circulatory system is not critical for embryo survival until 4-5 dpf, as tissue 

diffusion is sufficient until then (Pelster and Burggren, 1996), but it has been hypothesized that a 

functional heartbeat and pulsatile blood flow may aid in cardiac tissue maturation and/or 

angiogenesis (Burggren, 2004). Our results underscore a role for elevated cortisol levels during 

early embryogenesis in disrupting this developmental regulation of cardiac morphogenesis in 

zebrafish. The mechanism behind these observed deformations requires further study; however, 

we have identified some key genes involved in cardiovascular development that are 

downregulated in cortisol-injected embryos. The cardiac transcription factor nkx2.5, which is 

involved in heart field definition and myofibril development (Chen and Fishman, 1996; Sultana et 

al., 2008), is suppressed at both 36 and 48 hpf. Knockdown of nkx2.5 has been shown to cause a 

variety of cardiac defects in heart chamber formation as well as pericardial edema (Targoff et al., 

2008), similar to the phenotype observed in our cortisol-injected embryos. Also, downregulation 

of cmlc1 and tnnt2a expressions were reported in mutants that display reduced cardiomyocyte 

differentiation and reduction in nkx2.5 expression (Reiter et al., 1999; Yelon, 2001), suggesting a 

role for these transcripts in the disrupted cardiac morphogenesis in response to elevated 
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embryonic cortisol exposure. The calcium transporter atp2a2a, also known as SERCA2, is a key 

cardiac gene that is essential for contraction (Ebert et al., 2005). Transcript abundance of atp2a2a 

was suppressed in cortisol-injected embryos, and its depletion reduces the heart rate in zebrafish 

embryos by slowing the restoration of calcium ions in the sarcoplasmic reticulum between 

contractions (Ebert et al., 2005).  

The reduced transcript abundances of these critical genes provide a potential mechanism 

for the heart defects and the reduced heartbeat observed in larvae exposed to higher cortisol 

during prehatch embryogenesis. Post-hatch cortisol-injected embryos also exhibited a clear 

performance dysfunction, displaying an impaired ability to increase heart rate in response to an 

acute stressor relative to control embryos. Increased heart rate is a well-characterized response to 

an acute stressor and an essential part of the fight-or-flight response that is mediated by 

catecholamine signaling (Chrousos and Gold, 1992; Wendelaar Bonga, 1997). A reduction or loss 

of this ability will compromise the cardiovascular and metabolic adjustments to cope with stress, 

limiting post-hatch larval viability as a functional heart beat becomes critical for survival (Pelster 

& Burggren, 1996). Importantly, the performance dysfunction was seen in cortisol-treated 

embryos without an obvious heart defect phenotype, indicating a functional role for the observed 

reduction in transcript abundance of key genes involved in cardiac development.  

We hypothesize that elevated embryonic cortisol exposure prior to hatch disrupts the 

developmental programming of cardiac morphogenesis by directly acting on nkx2.5. The resulting 

decrease in cardiomyogenesis, as evidenced by reduced expression of cardiomyocyte markers, 

may compromise the contractile properties of the heart, with a key factor being decreased 

expression of atp2a2a that disrupts calcium signaling in the heart rhythm. This is supported by 

the lower basal heart rate at rest, as well as lower heart rate during stressor exposure and recovery 

in post-hatch embryos that were exposed to higher cortisol levels. Indeed, zebrafish mutants 

displaying abnormal cardiac phenotypes also exhibit reduced heart rate (Baker et al., 1997; 

Garrity et al., 2002), associating the slowed heartbeat to heart malformations in the present study. 

The lowered basal and stress-induced heart rate in our cortisol-injected embryos may be simply 

due to limited contractile ability as a result of cardiac malformations. However, we cannot rule 

out the possibility that elevated embryonic cortisol exposure may also affect the heart response to 

catecholamine stimulation by modulating of β-adrenergic receptors. For instance, knockdown of 

the β1-adrenergic receptor in zebrafish results in embryos with lowered resting heart rates and a 

reduced response to stressor stimulation (Steele et al., 2011). The observation that exogenous 

cortisol treatment of embryos via water exposure led to a higher heart beat in the tropical 
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damselfish (Pomacentrus amboinensis) (McCormick and Nechaev, 2002) suggest that the 

developmental regulation by this steroid may be species-specific and/or dependent on the timing 

of exposure. The treatment method in our study, microinjection of cortisol at one-cell stage, 

mimicked a maternal deposition scenario and underscores a key role for this steroid in 

programming cardiac development.  

In conclusion, maternal stress and the associated elevated cortisol deposition will have a 

marked effect on embryo heart morphogenesis and performance. Specifically, pre-hatch embryo 

exposure to elevated glucocorticoid exposure led to defective cardiac phenotype, and reduced 

cardiac performance in response to an acute stressor. This is the first study to link embryonic 

exposure to elevated cortisol levels to disruption of genes critical for cardiac development leading 

to performance defects in any animal model. Taken together, we propose that elevated early 

embryo cortisol content during the critical window prior to hatch affects developmental 

programming leading to longer term cardiac dysfunction in zebrafish. This is a novel finding, 

providing a potential link between maternal stress, and the associated elevated cortisol deposition 

in eggs, on reduced larval viability in fish. The ecological significance of this finding is the 

potential for a reduction in fitness and viability of progeny from chronically stressed mothers, 

leading to population decline in stressful environments. 
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Chapter 4  

Knockdown of glucocorticoid receptor protein expression 
significantly alters global gene expression in developing 

zebrafish 
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4.1 Overview 

Cortisol is the primary circulating glucocorticoid in teleosts and this steroid’s action occurs via 

activation of the glucocorticoid receptor (GR). In response to stressor exposure, cortisol is 

released through the coordinated action of the hypothalamic-pituitary-interrenal axis and a major 

role is in the mobilization of energy stores to reestablish homeostasis. GR transcripts and cortisol 

are deposited by maternal transfer into the oocyte prior to fertilization. In this study, we utilized 

the Agilent zebrafish microarray platform to investigate changes in global gene expression in 

response to morpholino oligonucleotide knockdown of GR at 24 and 36 hours post fertilization 

(hpf). A total of 1594 and 1002 significantly changed genes were observed at 24 and 36 hpf, 

respectively. Ingenuity Pathway Analysis software allowed for the functional organization of 

these genes into important processes and networks. Differences in select gene mRNA abundances 

observed with microarray were also confirmed by quantitative real-time PCR. Functional analysis 

of genes that either displayed high-fold changes or were significantly different from mispair 

controls at both timepoints revealed numerous developmental processes under GR regulation, 

including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this 

study underscores a critical role for glucocorticoid signaling in programming molecular events 

essential for zebrafish development.  

4.2 Introduction 

The glucocorticoid receptor (GR) is a key mediator of the vertebrate stress response (Wendelaar 

Bonga, 1997; Charmandari et al., 2004). It is a cytosolic receptor that, after activation by binding 

of its primary ligand, cortisol, acts as a transcription factor to modulate gene expression, leading 

to energy store mobilization to cope with stress (Mommsen et al., 1999; Chrousos, 2006). In 

teleosts, these actions are coordinated by the initial stressor recognition in the hypothalamus, 

followed by the release of corticotropin-releasing factor (CRF) that acts on the adenohypophysis, 

leading to release of adrenocorticotrophic hormone (ACTH) that triggers cortisol release from the 

interrenal tissue (Wendelaar Bonga, 1997). The effects of GR activation on other systems, 

including the immune and reproductive systems have been well characterized in a number of 

different model animals (Nesan and Vijayan, 2012c [Chapter 1]). In teleosts, stressor recognition 

and a subsequent cortisol response are only present in post-hatch larvae (Nesan and Vijayan, 

2012c [Chapter 1]). This inhibition of the stress response during embryogenesis, as assessed by 

the presence of a stressor-induced increase in circulating cortisol, occurs despite the completed 

functional development of the stress axis organs, the hypothalamus, the pituitary, and the 

interrenal tissue (Nesan and Vijayan, 2012c [Chapter 1]).  
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Recently, studies have revealed novel roles for glucocorticoid signaling in early zebrafish 

development. GR has been linked with a variety of key developmental factors, including matrix 

metalloproteinases (MMPs) (Hillegass et al., 2007; 2008; Nesan et al., 2012 [Chapter 2]), bone 

morphogenetic proteins (BMPs) (Nesan et al., 2012 [Chapter 2]), and myogenic and cardiogenic 

transcription factors (Nesan et al., 2012 [Chapter 2]; Nesan and Vijayan, 2012a [Chapter 3]). 

These specific molecular linkages occur alongside significant morphological deformations that 

result from knockdown of glucocorticoid receptor protein translation (Pikulkaew et al., 2011; 

Nesan et al., 2012 [Chapter 2]). Perhaps most interestingly, knockdown of maternal GR alters the 

degradation of maternal mRNA and results in an abnormal transcriptome available for translation 

after the mid-blastula transition (Pikulkaew et al., 2011). Together, these findings point to a major 

role for GR in development as a coordinator of a number of important embryogenic pathways. 

 The linkage of GR signaling to BMP expression indicates a key mechanism by which 

zygotic corticosteroids may influence embryogenesis. BMPs are a family of developmental 

morphogens that signal by binding to a number of BMP receptors, causing the activation of the 

SMAD family of intracellular transcription factors that then translocate into the nucleus to 

modulate target gene expression (Kondo, 2007; Xiao et al., 2007). BMP signaling has been linked 

to numerous major developmental events, including dorsoventral patterning, mesodermal 

patterning, somitogenesis, myogenesis, organogenesis, and craniofacial development (Myers et 

al., 2002; Willot et al., 2002; Nie et al., 2006; Kondo, 2007; Shin et al., 2007; Xiao et al., 2007; 

Chung et al., 2008; McCulley et al., 2008; Weber et al., 2008; Patterson et al., 2010; Maurya et 

al., 2011; Nesan et al., 2012 [Chapter 2]). Three specific BMP genes, bmp2a, bmp2b, and bmp4, 

are modulated by GR in zebrafish (Nesan et al., 2012 [Chapter 2]).  

 The period of zebrafish development from 24 to 48 hpf is extremely important for early 

morphogenesis. This window of time immediately follows the final stages of somitogenesis 

(Kimmel et al., 1995) and includes the upregulation of muscle progenitors as myogenic 

differentiation increases significantly (Xu et al., 2000). This is also a critical period of 

organogenesis, with the brain, pituitary, heart and vasculature, liver, gills, and interrenal tissue 

undergoing significant development (Kimmel et al., 1995; Brand, 2003; Liu, 2007; Pogoda and 

Hammerschmidt, 2009). By the end of this 24 h window, the embryo has a functional heartbeat 

and circulatory system and is ready to hatch (Kimmel et al., 1995), underlining the major 

developmental events that occur during this time. Previously, we have shown that without GR 

protein, zebrafish embryos cannot survive beyond the 48 hpf timepoint, indicating that this 
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receptor signaling may play a role in orchestrating these key developmental events (Nesan et al., 

2012 [Chapter 2]).  

 Given the recent findings that position GR as a key mediator of developmental 

organization (Nesan and Vijayan, 2012 [Chapter 1]), we tested the hypothesis that key molecular 

events involved in developmental programming are regulated by GR activation in zebrafish. We 

specifically sought to identify novel genes and pathways regulated by GR signaling during 

zebrafish development. To this end we knocked down GR protein translation using morpholino 

oligonucleotides exactly as described previously (Nesan et al., 2012 [Chapter 2]). A high-density 

zebrafish microarray was utilized to assess the role of GR signaling on global gene expression 

pattern within a critical window during early development. 

 

4.3 Materials and Methods 

4.3.1 Zebrafish care and breeding 

Care and breeding of adult zebrafish was carried out exactly as described previously (Nesan et al., 

2012 [Chapter 2]). Adult zebrafish were purchased from a commercial wholesaler (DAP 

International, Mississauga, ON) and maintained on a 14:10 light dark cycle in an AHAB 

recirculating system (Aquatic Habitats, Apopka, FL). Zebrafish care protocols were approved by 

the University of Waterloo Animal Care Committee in accordance with the Canadian Council for 

Animal Care guidelines. 

4.3.2 Morpholino microinjection 

A morpholino oligonucleotide (MO) was designed against the start site of translation for the 

zebrafish glucocorticoid receptor gene, and a 5 base pair mispair oligonucleotide (MP) was 

designed as a control; both oligonucleotides (Gene Tools, Philomath, OR) have been described 

and characterized previously (Nesan et al., 2012 [Chapter 2]). Oligonucleotide sequences are as 

follows (small letters indicate altered bases in mispair control): MO: 5’-

CTCCAGTCCTCCTTGATCCATTTTG-3’; MP: 5’-TGcTATgTTTAcTCTCgATACgTG-3’. 

Morpholino microinjection was performed exactly as described previously (Nesan et al., 2012 

[Chapter 2]). Briefly, 1 nL of MO or MP was injected into the yolk of one-cell zebrafish embryos, 

which were reared in embryo medium (Westerfield, 2007). Each independent sample consisted of 

a pool of 25 embryos that were flash-frozen at either 24 or 36 hpf. Three replicate pools of each 
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treatment per timepoint were frozen for microarray analysis, and 5-7 pools of each treatment per 

timepoint were frozen for qPCR confirmation. 

4.3.3 RNA extraction 

RNA was extracted from pools of embryos with the RNeasy Mini Kit (Qiagen, Mississauga, ON) 

with DNAse (Qiagen) treatment to remove genomic DNA contamination. Preliminary RNA 

quantification was performed via a Nanodrop spectrophotometer (260 nm; Thermo Scientific, 

Waltham, MA). 

4.3.4 Microarray scanning and analysis of resulting data 

Microarray analysis was carried out at the Laboratory for Advanced Gene Analysis at the 

Vancouver Prostate Centre (Vancouver, BC). Quantification and quality analysis of RNA was 

confirmed by use of the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). Microarray 

analysis was done on pooled samples from 24 and 36 hpf embryos injected with MP or MO (n=3 

pools per timepoint). 200 µg of RNA per sample was used for microarray analysis. Global gene 

expression in MP and MO samples was analyzed by hybridization to the Zebrafish V2 Gene 

Expression Microarray (Product ID 019161; Agilent, Santa Clara, CA), after one-colour labeling 

with the Low Input Quick Amp Labeling Kit (Agilent). Microarrays were scanned with the 

Agilent DNA Microarray Scanner and quantified with Agilent Feature Extraction 10.5.1.1. Data 

was normalized using the Agilent GeneSpring 7.3.1 software package by flooring values below 

0.05 to 0.05 and normalizing data per chip to a set of positive control genes with raw data above 

50 for all samples. The data will be uploaded to the Gene Expression Omnibus (GEO) database 

run by the National Center for Biotechnology Information (NCBI) for further possible analysis by 

interested parties. The dataset was restricted to only identified/annotated genes, omitting 

unidentified or hypothetical gene loci, thereby reducing the number of measured genes per 

sample to 12261. For genes with multiple oligo spots on the array, fold-changes were calculated 

and then averaged to yield a single fold-change value for each gene.. The resulting dataset was 

then subjected to statistical and pathway analyses. 

Statistical assessments were carried out using the R Statistical Computing environment (R 

Foundation, Vienna, Austria). For microarray results, the mean normalized expression was 

calculated for each gene at each treatment (MP or MO) and timepoint (24 or 36 hpf). These 

means were then compared within a timepoint using a student’s t-test, followed by false-

discovery rate (FDR) correction using the Benjamini-Hochberg method (Benjamini and 

Hochberg, 1995). All p-values listed for microarray analysis are FDR-corrected. Data was not 
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compared between timepoints. The complete lists of statistically significant genes at each 

timepoint are displayed in the supplemental information, along with each calculated fold-change 

and p-value (Appendix C, Tables C1, C2). Where required, data from qPCR analysis was log-

transformed to ensure normality prior to evaluation via student’s t-test, no false-discovery rate 

correction was used for qPCR data. For all comparisons, a value of p≤0.05 was considered 

significant. Functional analysis was performed with the Ingenuity Pathway Analysis software 

package (Ingenuity Systems, Redwood, CA) as well as use of Gene Ontology functional 

annotations. 

 

4.3.5 Quantitative PCR 

Quantitative PCR (qPCR) was used to confirm and explore microarray fold change 

measurements. Embryos were injected with MO and MP as outlined above, frozen at 36 hpf, and 

RNA was extracted by use of the Ribozol-chloroform extraction method (Amresco, Solon, OH), 

following the manufacturer’s protocol. After quantification of RNA via Nanodrop 

spectrophotometer, 1 µg of RNA was reverse transcribed with the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Carlsbad, CA), with the Multiscribe recombinant 

Moloney murine leukemia virus reverse transcriptase, producing a 20 µL mixture according to the 

manufacturer’s protocols. qPCR was performed exactly as described previously (Nesan et al., 

2012 [Chapter 2]), using 2.5 µL of cDNA in a 25 µL reaction mixture with iQ SYBR green 

supermix (Bio-Rad, Hercules, CA) using an iCycler iQ thermocycler (Bio-Rad). The selected 

genes were generally unrelated, although some are part of related pathways or functions. The 

selected genes were as follows: the BMP ligand bmp7a, the clotting factor f5, the orphaned Ftz-

F1 receptor homolog ff1d, the structural muscle protein myom1a, the hormone receptor mc1r, and 

two genes involved with the stress axis and classical glucocorticoid signaling, the ACTH 

precursor proopiomelanocortin a (pomca) and the transport protein responsible for the rate-

limiting step in steroidogenesis, the steroidogenic acute regulatory protein (star). These genes 

were selected because their fold-changes were statistically significant and relatively high, as well 

as being of interest in our exploration of the GR knockdown phenotype. Only one gene was not 

statistically significant at 36 hpf, bmp7a, but it was chosen as it had the largest fold-change of any 

of the BMP ligands or receptors, and the BMP signaling pathway was considered a key target for 

qPCR confirmation. Primer sequences, Tm values, and amplicon sizes are provided in Table 1. 

Transcript abundance was normalized to β-actin as a housekeeping gene as its values did not 
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change across samples. Normalization was performed using the ΔCT method (Livak and 

Schmittgen, 2001) as performed previously (Nesan et al., 2012 [Chapter 2]). 
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4.4 Results 

4.4.1 Major trends and characteristics of microarray results 

Statistical analysis revealed that 1594 genes were significantly changed between mispair and 

morpholino-injected embryos at 24 hpf, and 1002 genes were significantly changed at 36 hpf. At 24 

hpf, 715 of these genes were downregulated, and 877 were upregulated, while at 36 hpf, 273 genes 

were downregulated and 729 were upregulated (See Figure 1 and Appendix C, Tables C1, C2). The 

distribution of genes per range of fold-change at 24 hpf is displayed in Figure 2A. For 36 hpf, the 

distribution of genes per range of fold-change is displayed in Figure 2B. The 15 genes with the 

highest and lowest fold-changes for each timepoint are displayed in Tables 2 and 3 along with their p-

values, indicating the genes that were most affected by GR knockdown. Among the significantly 

changed genes at each timepoint, 343 were significantly changed at both 24 hpf and 36 hpf, indicating 

that these specific GR-modulated genes may be of particular importance in zebrafish development. Of 

these 343 genes, 275 were upregulated at both time points, 48 were downregulated at both timepoints, 

and 20 showed opposing changes between the timepoints. These genes are specifically highlighted in 

Appendix C (Tables C1, C2; green: both upregulated; red: both downregulated: blue: differential). 

Table 4 lists some genes that were deemed particularly interesting based on pathway analysis and 

gene ontology characterization of their functional grouping. These genes are organized by their 

general function, and listed with their fold-changes at each timepoint.  
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Table 2: Select genes (top ranked based on fold-change) that were significantly upregulated in 

response to GR knockdown at 24 and 36 hpf, with their respective fold-change values and p-values 

from statistical comparisons. 

 
 
 
  

24 hpf 36 hpf 
Gene Fold 

Change 
P-value Gene Fold 

Change 
P-value 

esrrd 49.33 0.037 crygm2b 45.89 0.049 
chad 20.35 0.016 mip2 29.42 0.044 
mip1 19.25 0.033 crygm2a 29.38  0.035  

cryba2a 14.72 0.013 atp2a1l 25.43  0.045 
lim2.4 13.74 0.041 crygm3 19.99 0.05 
cx44.1 9.96 0.015 sparcl 15.23 0.047 
xirp2l 8.03 0.038 grifin 13.89  0.032  
cryba4 7.07 0.05 crybb1 13.09  0.045 

msn 7.04 0.016 slc25a4 13.08  0.041  
pvalb5 6.74 0.038 cryba4 11.94  0.049  
calca 6.71  0.040  xirp2l 11.93  0.031 
tnnt3b 6.42  0.039 cryba2a 11.49  0.034  
pvalb4 6.35  0.011  fabp11b 10.87 0.05 
cpt1b 6.29 0.009 pfkma 10.84 0.042 
tyrp1b 6.18 0.018 crygmx 10.21 0.02 
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Table 3: Select genes (top ranked based on fold-change) that were significantly downregulated in 

response to GR knockdown at 24 and 36 hpf, with their respective fold-change values and p-values 

from statistical comparisons. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

24 hpf 36 hpf 
Gene Fold 

Change 
P-value Gene Fold 

Change 
P-value 

cha 0.047 0.026  lect2l 0.22 0.046 
lect2l 0.057 0.044  ptgds 0.24  0.022 
tbx16 0.066 0.024  trac 0.25 0.006 
gfi1.1 0.067 0.029 gadd45bl 0.26 0.020 
egln3 0.081 0.018 gnrh2 0.30 0.041 
psme1 0.084 0.040  oc90 0.30 0.049 
tbx24 0.096 0.027  flncb 0.34 0.049 
pim1 0.097 0.025  gpx4a 0.34 0.045 
tbx6 0.098  0.037 plekhf1 0.35 0.047 

pcdh8 0.104 0.045 cryaba 0.35  0.038 
ptgs2b 0.104 0.015 ddb2 0.36  0.042 

cyp24a1l 0.114  0.045  hdr 0.36  0.046 
ctsc 0.116 0.009 rspo1 0.37 0.044 

ripply2 0.121 0.042 optc 0.37 0.024 
cyp11a1 0.125 0.048 fech 0.39 0.040 
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Table 4: Functional grouping (based on Ingenuity Pathway Analysis and Gene Ontology databases) 

of select genes that were significantly affected by GR knockdown at both 24 and 36 hpf, with their 

fold-change values at each timepoint. 

Functional 
Grouping 

Subgroupings: Selected Genes (24 hpf fold change, 36 hpf fold change) 

Cardiac and 
skeletal 
muscle 

Cardiac ATPases: atp2a1 (1.76, 2.59), atp2a2a (0.21, 0.69)  
Muscle metabolism: ckmb (3.03. 2.92), pfkma (5.91, 10.91)  
Structural proteins: mylk3 (2.7, 3.35), mylz2 (3.93, 2.19), mylz3 (3.78, 4.37) 
myom1a (3.2, 2.9), tmod4 (2.46, 2.10), tnnc (2.12, 1.92), tnnt1 (1.84, 0.41), 
tnnt3a (4.75, 3.97), tnnt3b (6.38, 7.12), ttna (3.61, 2.23), ttnb (1.8, 2.4) 

Cell adhesion, 
extracellular 
matrix 

Cadherins: cadm2a (2.69, 2.73), cadm4 (1.46, 1.68) 
Claudins: cldne (0.54, 0.50), cldnf (0.69, 1.61) 
Collagens: col1a1 (2.2, 2.68), col1a2 (1.96, 2.12), col1a3 (3.19, 3.05), col6a1 
(2.14, 3.05), col6a2 (2.72, 2.99) 
Connexins: cx23 (4.15, 4.41), cx44.1 (9.96, 2.79) 
Protocadherins: pcdh17 (2.18, 1.97), pcdh1a4 (2.4, 1.37), pcdh1g18 (2.1, 1.69), 
pcdh1gb2 (2.03, 1.84), pcdh2ac (1.93, 2.35) 
Others: chad (20.3, 9.65), itgb1b.2 (3.15, 3.0) 

Developmental 
morphogens 

BMP signaling: smad3b (2.6, 2.96), smad7 (0.54, 1.71) 
Hairy-related proteins: her3 (0.56, 0.69), her5 (0.34. 2.77) 
Others: agr2 (2.51, 2.13), gdf11 (1.34, 2.58),  

Endocrine 
systems 

Hormones: avpl (1.85, 2.75), calca (6.71, 2.49), pyya (6.15, 9.89) 
Others: igfbp3 (1.63, 1.86), npy1r (2.54, 2.91), nr5a1b (3.18, 3.61) 

Neurogenesis Atonal homologs: atoh2a (2.71, 3.74), atoh2b (4.94, 3.00) 
LIM-domain proteins: ldb3a (2.2, 3.22), ldb3b (2.86, 3.18), lhx1b (1.61, 2.64), 
lhx6 (3.30, 6.82) 
Others: neurod4 (2.28, 3.27), sox4a (1.67, 2.732.), sox9b (0.39, 1.95) 

Organogenesis mmp23a (2.42. 2.57), pdlim7 (2.69, 2.70), otpb (2.73, 2.65) 
Vasculature Clotting factors: f5 (3.55, 2.72), f7i (2.46, 2.17) 

Others: ank1 (2.95, 2.87), vegfab (1.76, 1.85) 
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Figure 1 – Numbers of statistically significant genes upregulated and downregulated at 24 and 

36 hpf in response to GR knockdown 

Of 12261 potential unique genes, the mRNA expression of 1594 were found to be statistically 

significantly changed at 24 hpf, with 715 downregulated (grey) and 877 upregulated (black). 1002 

genes were changed with statistical significance at 36 hpf, of which 273 were downregulated and 729 

were upregulated. (n=3 pools of 25 embryos used for microarray analysis, P≤0.05, students t-test with 

Benjamini-Hochberg false-discovery rate correction). 
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Figure 2 – Distribution of fold-change for statistically significant genes at 24 and 36 hpf in 

response to GR knockdown 

This figure presents the frequency of genes that were up- or down-regulated at specific fold-change 

ranges at 24 hpf (A) or 36 hpf (B). In general, there was a relatively normal distribution at 24 hpf, 

with relatively few genes showing extreme fold changes and a balance between up and 

downregulation. At 36 hpf, a far greater percentage of genes were upregulated than downregulated, 

and  none showed reduction as severe as at 24 hpf. 
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4.4.2 Results of pathway analysis 

Functional analysis using Ingenuity Pathway Analysis revealed networks of genes with known major 

developmental effects that were affected by GR knockdown. We have selected the top 8 networks, 

based on the “high score” output obtained with the IPA program reflecting a large number of affected 

genes in a network, and they were categorized as developmentally relevant (Figure 3). The genes and 

the relative numbers that were upregulated or downregulated in each network at 24 hpf (Figure 3A) 

and 36 hpf (Figure 3B) are provided. The genes that are grouped into these networks, their 

corresponding fold changes, and their IPA scores are listed in Tables 5 (24 hpf) and 6 (36 hpf).  

The IPA software also generated pathway networks that show interaction among significantly 

different genes and are classified according to their function. These networks were used, along with 

information about the cellular location and the fold change of the genes, to create interactome 

networks that describe cellular and whole-animal processes that appear to be strongly GR-responsive 

(Figure 4). At both the 24 and 36 hpf timepoints, the development of the nervous system was 

identified as the process most strongly disrupted by GR knockdown (Figures 4A and 4B). In addition, 

we identified other functionally relevant processes that were identified as GR-responsive by the IPA 

software and that are indicative of the previously characterized GR knockdown phenotype (Nesan et 

al., 2012 [Chapter 2]). These include transcripts involved in DNA replication and metabolic 

regulation at 24 hpf (Figure 4C), and cardiovascular development (Figure 4D) and developmental 

disorders (Figure 4E) at 36 hpf. 
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Table 5: Gene-regulatory networks that are GR responsive as identified by Ingenuity Pathway 

Analysis software at 24 hpf and the calculated IPA score (higher scores denote more strongly affected 

pathways) 

 
  

Network Genes IPA 

Score 

Nervous system 
development 

ascl1, calhm2, cbp(family), cdc40, cs, etv4, fev, gad1, hdac, hes6, 
hes7, hes1, hlx, jag2, klf2, krt8, mapk3, mfng, mpzl2, mpzl3, mtf2, 
ndrg4, notch2, notch, rab38, smad2, smpx, spry2, tbr1, tbx3, 
tph2,ubtf, unc5b, zeb1 

45 

Cell death adh5, aig1, aox1, aplp1, btbd2, dhrs3, DNA-directed DNA 
polymerase, idh2, igsf21, mthfsd, nae1, piwil1, plk2, pola1, pold2, 
ppa1, prim1, rab5, ras homolog, rchy1, rho gdi, rprm, sat1, sec61a1, 
sec61b, spon1, ssr1, tip60, tmbim1, tp63, tp73, tp53bp2, tsc22d1, 
unc119, xpo7 

41 

Endocrine 
disorders 

adcyap1, adora2a, arid3b, camkv, creb, dcaf13, gmps, grhl1, hnf1a, 
hnf4a, ins, insulin, isoc2, ldl, me3, mecr, mrps18c, nr4a2, opa3, penk 
pex12, plekha8, proinsulin, ptpn4, rab3d, rb1, rbks, rsk, runx1, shox, 
slc25a18, spata6, ssr2, syt11, tmtc4 

40 

Cellular 
assembly & 
organization 

acat1, arnt2, atpase, bves, calb2, celf2, clstn1, cltc, ctss, entpd2, irx2, 
irx4, ldl-cholesterol, metap2, mmp, mogat2, myh6, myh7, napg, nsf, 
plp1, pp1 protein complex group, rab24, s100a4, snap25, snare, snx5, 
stx1b, stxbp1, syntaxin, syt4, tcfl71, txnrd3, vamp3, zbtb33 

39 

Embryonic 
development 

14-3-3, afmid, arl4a, arntl2, arrb1, box, cbp/p300, cryba2, cryba4, 
cyp11a1, epas1, gar1, growth hormone, gstt1, hcg, histone h3, histone 
h4, hmga2, hoxa10, igfbp2, igbp3, importin alpha, kpna2, lef1, maf, 
mop10, nudt21, pbx1, pno1, sesn1, setd8, shd, tcf7l2, tfap2a, tfap2b 

37 

Cardiovascular 
development 

akap12, asf1a, bcam, c-src, dusp5, egln3, eif3e, figf, gata1, gata4, 
gata6, gata, gem, hbe1, hedgehog, heyl hmbs, hoxb7, htatip2, jmjd6, 
klf13, lama6, lamb2, lmo1, lmo2, mucin, os9, parp, pim2, ptpru, 
secretase gamma, sp8, tal1, tal2, vegf 

35 

Skeletal and 
muscular 
disorders 

acot7, actn3, alpha actinin, alpha catenin, aph1a, aqp11, arrdc2, c8g, 
cadherin, cdd2ap, cdh2, cdh4, cdhe/cdhn, chmp4a, col6a1, col6a2, 
dmrt2, dynamin, egfr, endophilin, fah, g-actin, invs, lim2, matn2, 
mdh1, parvb, pdcd6ip, pdlim7, pxk, sh3gl2, sparcl1, thbs4, tnnt3 

35 

Organ 
morphology 

alas2, apoa1, ck1, cpn1, creatine kinase, cry2, elastase, fbln1, fgb, 
fgf13, fgg, fibrin, fibrinogen, gpIIb-IIIa, integrin alpha V beta, mapk, 
myf5, myf6, myog, nr6a1, pde5a, per1, rgs20, scn4a, setd3, sgcd, sgce, 
sgcg, six4, slc39a7, sox2-oct4-nanog, stat3-stat3, sucla2, tni,  
troponin 1 

23 
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Table 6: Gene-regulatory networks that are GR responsive, identified by Ingenuity Pathway Analysis 

software at 36 hpf and the calculated IPA score (higher scores denote more strongly affected 

pathways) 

 

  

Network Genes IPA 
Score 

Nervous system 
development 

ap-3, bcl11a, calb2, cirh1a, crabp1, etv1, exoc6, fgf13, foxf1, 
gfap, ina, irx1, irx2, irx4, isl1, kcnd3, kcnip3, mab21l1, mlph, 
msi2, mtdh, myo5a, nefl, neurod4, nfkβ (complex), nop14, olig2, 
pdcd11, pdlim7, pou4f1, prph, rab3c, st9sia2, trim3 

55 

Cellular movement bmpr2, cofilin, dck, ddx56, dhx16, dhx37, DNA-directed RNA 
polymerase, eaf1, ebna1bp2, fbl, gtf2f1, hnrnpm, holo RNA 
polymerase II, med19, mybbp1a, nat10, ncl, nop56, npm1, oc90, 
p70 56k, pdcd4, pes1, polr1a, polr2b, polr2e, ras, rnr, rrp12, 
smad1/5/8, srsf1, ssb, trpc1, tsr1, wdr12 

42 

Embryonic 
development 

adrb, barx1, bmp, crmp, dpysl2, dpysl4, dpysl5, fbp2, gck, glud1, 
gng3, gng12, gpc3, hedgehog, ihh, insm1, jnk, l1cam, meis2, nbl1, 
neurod1, nkx2-2, pax6, pfkb2, plp1, ppp2c, proinsulin, ptprn2, 
ptprn, pyy, sec62, sh3gl2, sox2-oct4-nanog, stam2, yes1 

40 

Cell-to-cell 
signaling 

ache, achr, akt, ampa receptor, cacn, cacna1s cacna2d1, cacng2, 
caveolin, chrna4, cnih2, gnb5, gria2, K channel, l-type calcium 
channel, magi1, musk, n—type calcium channel, napg, neurod2, 
nptn, nrxn1, nrxn2, nrxn3, nsf, nxph1, rgs7bp, snap25, snare, 
sncb, stx1b, stxbp1, syntaxin, vamp1, vamp2 

36 

Connective tissue 
development 

20s proteasome, 26s proteasome, abcc9, amt, arl15, c1qtnf4, 
cdh10, chemokine, clstn1, dcp1a, dennd4a, dnase1l3, estrogen 
receptor, gapdh, growth hormone, hsp70, hsp90, kal1, mdm2, 
mmp24, mmp, nfkbia, nos, nr3c1, onecut1, pax3, pgam1, ret, 
serinc1, tbx15, tfrc, ubiquitin, wdr3, ywhag, znf326 

33 

Cardiovascular 
development 

acsl4, avp, cdc2, cdkn18, creb, crhbp, cry2, csdc2, cyclin a, cyclin 
d, cyclin 3, ddx55, e2f, eif6, evx1, exosc8, fancd2, fancl, fdps, gcg, 
got, hexokinase, map2k1/2, mkrn1, mthfd1, pomc, ppargc1b, rb, 
rna polymerase II, rngtt, rsk, sod2, stat3-stat3, syt4, xrn2 

27 

Skeletal/muscular 
disorders 

14-3-3, acta1, actn3, aldh3b1, alpha actinin, alpha catenin, 
calmodulin, camk2a, camk2d, col1a1, col6a1, col6a2, collagen 
type I, ctnna2,edf1m elavl4, f actin, grin1, hsp27, itpr, kif23, ktn1, 
lrrtm1, neurod6, pdgf (complex), pp2a, raf, rap1, rgn, smad7, 
smad, smad2/3-smad4, spectrin, syt9, tpm3 

25 

Organ morphology Adam17 agr, ampk, bhlhe41, crlf1, dll1, edn1, elmo1, endothelin 
receptor, gtf3a, hdl, mlc, mphosph10, mstn, myl4, mylpf, myosin, 
nadph oxidase, notch, pk, plc beta, pp1 protein complex group, 
pro-inflammatory cytokine, ptf1a, rdx, rem1, rock, scn4a, 
secretase gamma, slc9a3r1, sp4, tsh, ttn, vam1, vegf 

22 
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Figure 3 – Functional annotation (using Ingenuity Pathway Analysis software) of genes that 

were upregulated and downregulated by GR knockdown 

Ingenuity pathway analysis software identified prominent developmental pathways that were 

significantly affected by GR knockdown based on the significantly changed genes at 24 hpf (A) and 

36 hpf (B). Each pathway is named and the total number of genes as well as the number of 

upregulated and downregulated genes is listed (See Tables 5 and 6 for complete list of genes). 
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Figure 4 – Interactome networks of select pathways identified as GR responsive by Ingenuity 

Pathway Analysis software  

The IPA software organized and classified genes to identify important networks that were modulated 

by GR knockdown. These interactome networks detail the regulatory connections between genes as 

detailed by the connective arrows. The most strongly affected process was nervous system 

development at both 24 hpf (A) and 36 hpf (B). Other interesting pathways are DNA replication and 

energy production at 24 hpf (C), cardiovascular development at 36 hpf (D) and developmental 

disorders at 36 hpf (E). These final 3 pathways each involve a gene that were quantified by qPCR 

(Figure 4): f5 (C, E), and pomca (D). Single-way arrows indicate one gene regulating another, two-

sided arrows indicate co-regulation, looped arrows indicate self-regulation. The shape of each 

member of the network indicates its cellular location (according to IPA software classifications): 

Extracellular (diamond); plasma membrane (hexagon); cytosol (square); nucleus (circle); unknown 

(triangle). The color of each member of the network indicates its mean fold change range: >2 (dark 

green); 1-2 (light green); unchanged (grey); 0.5-1 (light red), <0.5 (dark red). 
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4.4.3 Confirmation by quantitative PCR 

To confirm the reliability of the microarray results, abundance of selected transcripts were quantified 

using qPCR. Genes were selected that had relatively high fold-changes, which were also deemed of 

potential interest in understanding the developmental changes observed in GR morphants. These 

included selected genes from networks identified by IPA software as strongly affected (f5 - Figures 

4C, 4E; pomca - Figure 4D), as well genes identified as functionally important in development or 

which may be involved in the GR knockdown phenotype (bmp7a, ff1d, mc1r, myom1a, star). The 

qPCR analysis of gene expression was in agreement with the microarray findings, with all measured 

genes showing the same direction of change and similar magnitudes (Table 7, Figure 4) at 36 hpf. In 

addition, the fold-changes for all 7 genes were statistically significant with qPCR (Figure 4). This 

included bmp7a, which although having a strong reduction in fold-change (0.341), was not 

statistically significant in the microarray data. Table 7 shows the exact measured fold-changes and p-

values for each gene examined, and Figure 4 is a graphical representation of the normalized 

expression, in arbitrary units. 
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Table 7: List of genes confirmed using microarray and qPCR with fold-changes and p-values 

 

 
  

Gene 36 hpf fold-change 
(microarray) 

P-value 
(microarray) 

36 hpf fold-change 
(qPCR) 

P-value 
(qPCR) 

bmp7a 0.341 0.57 0.13 0.02 
f5 1.87 0.038 1.17 0.05 
ff1d 3.61 0.046 8.49 0.007 
mc1r 3.72 0.04 3.61 0.020 
myom1a 2.90 0.044 2.34 0.013 
pomca 3.64 0.042 5.99 0.022 
star 5.87 0.031 7.05 0.032 



 

  133 

 

 

 

 

 

 

 

 

 

Figure 5 – Confirmation of microarray findings by qPCR analysis  

qPCR analysis was performed on 7 genes to confirm the transcript abundance seen with the 

microarray analysis. The selected genes were bmp7a (A), f5 (B), ff1d (C), myom1a (D), pomca (E), 

star (F), mc1r (G). Data is presented as mean ± standard error of the mean (normalized to β-actin, 

SEM; n=5-7 pools of 25 embryos each); * denotes statistical significance (t-test, p<0.05). (See Table 

7 for fold-changes and p-values). 
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4.5 Discussion 

 Through the use of high-density microarray analysis, this study provides some very 

interesting connections between glucocorticoid receptor signaling and major developmental 

processes. The findings, further supported by confirmation of selected genes by qPCR, help to 

explain the developmentally disrupted GR-knockdown phenotype previously established in the 

literature (Pikulkaew et al., 2011; Nesan et al., 2012 [Chapter 2]). In addition, the sheer volume of 

changes found and the major developmental actions of the pathways and specific genes involved are a 

significant contribution to the recent supposition that GR may be a major developmental regulator 

(Nesan and Vijayan, 2012c [Chapter 1]). Together with a previous study that used a high-density 

microarray to examine GR-knockdown effects prior to MBT (Pikulkaew et al., 2011), it is becoming 

increasingly clear that GR actions during embryogenesis are complex but essential for development. 

 In presenting this data, we have attempted to characterize some large-picture changes that 

occur in response to GR knockdown at 24 and 36 hpf, and then to examine some specific genes and 

processes that we find intriguing and worthy of deeper study. It should be noted, as with most high-

throughput data studies, that we present only a subset of the findings. In this study, we found that 

there were far more significantly changed genes at 24 hpf than at 36 hpf, but that within these 

populations, there was a marked difference in the direction of change. At 24 hpf, the ratio of 

downregulated to upregulated genes was 45% to 55%, but at 36 hpf, there were far more upregulated 

genes (73%) than downregulated (27%). This was an unexpected result as it implies that GR could 

potentially be acting as a suppressor of numerous genes during development or suppressing the 

actions of some key developmental transcription factors that would otherwise be enhancing gene 

expression. Previous research has shown downregulation of key metabolic and/or stress-related genes 

in trout hepatocytes after GR activation (Aluru and Vijayan, 2007), but it is unknown as to whether 

this effect is conserved in teleosts in general or in the zebrafish specifically. The mechanism of GR-

mediated suppression of transcription has been studied in mammalian models and appears to act via 

monomeric interaction of the ligand-receptor complex with other transcription factors (Lu and 

Cidlowski, 2006; Bury and Sturm, 2007);  however, the extent to which this occurs in teleosts 

remains unclear.  

To attempt to verify the reliability of the fold-changes observed in the microarray analysis we 

selected 7 genes: bmp7a, f5, ff1d, mc1r, for qPCR confirmation (Figure 4). All 7 genes showed the 

same direction of fold-change and were often quite close in magnitude (Table 7), and all genes were 
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statistically significant, even in the one case where the microarray result was not (bmp7a, despite a 

large fold-change). This finding indicates that the microarray was an accurate measure of changes in 

global gene expression and our analysis is likely to be overly conservative in the number of genes we 

assess as we have mainly limited our observations and discussion to genes that were at or close to 

statistical significance. It should be noted that these transcripts results allowed us to identify candidate 

genes for hypothesis testing and for functional characterization using protein expression. Our results 

cannot confirm whether protein expression would follow the same trend as transcript abundance as 

we had no access to tools to measure expression of these proteins in zebrafish. Study of changes in 

protein content of the GR-responsive transcripts described here should be an area of immediate 

investigation. 

4.5.1 Confirmation that the BMP signaling pathway is GR responsive 

We have previously indicated that the BMP signaling pathway is suppressed in response to GR 

knockdown (Nesan et al., 2012 [Chapter 2]), and this may serve to explain some of these inhibitory 

effects of GR knockdown on global gene expression in zebrafish embryos. BMPs are important 

developmental morphogens that regulate developmental gene expression via the action of the smad 

family of intracellular transcription factors (Miyazono et al., 2005). In addition to the previously 

identified GR-responsive BMP ligands bmp2a, bmp2b, bmp4, in this study we find other members of 

the BMP signaling pathway that were significantly affected by GR knockdown. The microarray 

findings identified several novel BMP ligands and receptors that were affected by GR knockdown, 

including the ligands bmp3, bmp6, bmp7a, and the receptors bmpr1ab, and bmpr1b. All of these 

genes were significantly downregulated at 24 hpf (fold-changes and p-values listed in Appendix C), 

and we further confirmed these findings by quantifying bmp7a expression via qPCR (Figure 4A, 

Table 7). The expression of bmp7a showed a large fold-change reduction by microarray analysis, but 

was not statistically significant; however, qPCR both confirmed the large reduction and was 

statistically significant as well. It should be noted that in addition to the significantly downregulated 

genes listed above, all but one of the measured fold-changes for BMP ligands and receptors (17 total 

genes at two timepoints) showed downregulation, and several were near statistical significance 

(p≤0.1), such as bmp3, bmp7b, bmp8, and bmper. The combination of these measures and the finding 

that the bmp7a is significantly reduced when examined via qPCR implies that the reduction in BMP 

ligand and receptor expression may be more extensive than previously expected. The expression of 

the intracellular smad genes that transduce signals from BMP receptor binding (Miyazono et al., 
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2005) also show a similar trend of suppression. Specific smad genes were significantly 

downregulated at 24 hpf, such as smad2 and smad7, as well as smad1, which was also significantly 

reduced at 36 hpf. It should be noted that some smad genes were increased by GR knockdown to 

varying degrees: smad 3a, smad3b, and smad7. However, these genes have been shown to be linked 

together to repress BMP signal transduction, as smad3 regulates smad7, which has an inhibitory 

effect on the binding of other smad proteins to DNA (Pogoda and Meyer, 2002; Zhang et al., 2007). 

Therefore, despite upregulation of some smad genes, our findings remain consistent with a cohesive 

suppression of the BMP signaling pathway in response to GR knockdown. Together, these results 

indicate a strong disruption of BMP-mediated functions and BMP-responsive genes. BMP signaling 

regulates a variety of important developmental processes, including dorsoventral patterning and initial 

mesodermal differentiation (Nikaido et al., 1997; Pyati et al., 2005), as well as later morphogenic 

developments such as angiogenesis, myogenesis, and organogenesis (Brand, 2003; Chung et al., 

2008; Patterson et al., 2010). These results are striking and intriguing, and the implications for GR 

control of the BMP pathway naturally lead to questions about the influence of maternally deposited 

cortisol and glucocorticoid receptor transcripts and proteins at initial fertilization, as BMP signaling is 

involved in early patterning and developmental cell fate determinations (Nikaido et al., 1997; Tiso et 

al., 2002). 

4.5.2 Novel pathways identified for the GR knockdown phenotype 

In addition to confirmation of the reduction in BMP signaling, other previously established aspects of 

the GR knockdown phenotype were supported by microarray analysis. At both 24 hpf and 36 hpf, the 

Ingenuity Pathway Analysis (IPA) software identified pathways leading to skeletal/muscular 

disorders as being severely affected by GR knockdown (Tables 5 and 6). This supports previously 

published characterizations that displayed disrupted mesoderm formation, somitogenesis, and tail 

extension in GR morphant embryos (Pikulkaew et al., 2011; Nesan et al., 2012 [Chapter 2]). There 

were several major muscle proteins among the genes that were significantly changed at both 

timepoints (Table 4), including myosins (mylz2, mylz3), troponins (tnnt1, tnnt3a, tnnt3b), titins (ttna, 

ttnb), and tropomodulin (tmod4). All of these genes were significantly upregulated at both timepoints, 

further supporting and reinforcing the role of GR as a regulator of myogenesis. Muscle metabolic 

genes were also affected, such as phosphofructokinase (pfkma) and creatine kinase (ckma), which 

were upregulated at both timepoints. Together these results indicate that both muscle differentiation 

and muscle activity are increased in response to GR knockdown, although the coordination of this 
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activity remains unclear. Previously we identified myostatin b (mstnb) as downregulated in response 

to GR knockdown (Nesan et al., 2012 [Chapter 2]), but in this study the microarray results for mstnb 

were not conclusive. There were six different oligos for mstnb, and while all showed downregulation 

at 24 hpf, none were statistically significant and only two showed p-values less than 0.1. At 36 hpf, 

two of the spots showed statistically significant increases (fold changes: 2.6 and 3.36) but the 

remaining 4 spots showed only small increases or decreases without any statistical significance, 

making it difficult to assess the reliability of the oligos that displayed increases. The mechanism of 

GR-mediated myogenesis remains a key area for further study as it is a novel finding only found to 

date in teleosts and may point to possible conserved mechanisms or areas of interest in the early 

development of higher vertebrates. Alongside the changes to skeletal muscle genes, we also saw 

consistent disrupted expression of cardiac muscle structural genes at both timepoints (Table 4), 

including structural fibre proteins (mylk3, tnnc), atpases (atp2a1, atp2a2a), and the cardiac 

transcription factor pdlim7 (Camarata et al., 2010). Previously, we have shown that exogenous 

cortisol administration disrupted zebrafish cardiac development, and identified some key genes that 

were downregulated in response to increased embryonic cortisol (Nesan and Vijayan, 2012b [Chapter 

3]). Our findings in this study point to a complex regulation of cardiac development by glucocorticoid 

signaling. Most of the genes listed above were upregulated, which is expected if cortisol signaling is 

an inhibitor of cardiac development as our previous study suggested (Nesan and Vijayan, 2012b 

[Chapter 3]). However, certain genes were downregulated here in response to GR knockdown, 

including atp2a2a, the calcium ATPase that was shown to also be suppressed by increased cortisol 

administration, as well as nkx2.5, the cardiac transcription factor also previously shown to be reduced 

in response to increased cortisol, which was also significantly reduced at 24 hpf (Appendix C Table 

C1, fold change 0.53). The observed changes in these genes were unexpected, and raise some 

questions as to the mechanisms of cortisol action on cardiogenesis. It is possible that activation of the 

mineralocorticoid receptor (MR) may be involved in the disrupted cardiogenic effects of increased 

embryonic cortisol. The function of the zebrafish MR is unknown, but cortisol will bind and activate 

the receptor in vitro, although the extent of in vivo action is unclear (Pippal et al., 2011). MR is 

known to be expressed in mammalian heart tissue and is involved in cardiac muscle hypertrophy 

(Okoshi et al., 2004), but whether it has any effects on cardiac muscle tissue in zebrafish or other 

teleosts remains unknown. It should be noted that the GR knockdown phenotype did not display 

cardiac edema, but there was no observable blood flow in the morphant embryos at any point in 

development (Nesan and Vijayan, unpublished). It is unclear whether this lack of blood flow was due 
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to disrupted cardiogenesis or abnormal vascularization, but the microarray results imply that disrupted 

angiogenesis may also occur in GR morphants. The vascular transcription factor vegfab was 

moderately upregulated at both 24 hpf and 36 hpf (Table 4). Knockdown of vegfab inhibits 

angiogenesis and hematopoiesis (Bahary et al., 2007); however, no studies have tested the effects of 

overexpression of vegfab on the developing zebrafish embryo. Our findings also show a sustained 

upregulation of two clotting factors, f5 and f7i, presenting a possible mechanism for the lack of blood 

flow in morphant embryos. If clotting factors are overexpressed, it may impede blood flow or prevent 

extension of developing vasculature. We further confirmed the upregulation of f5 by qPCR (Figure 

4B). A linkage between VEGF and clotting factors has been established in mammalian models (Nagy 

et al., 2007) and while VEGF is known to induce hematopoiesis in zebrafish (Liang et al., 2001; 

Bahary et al., 2007), it is unclear whether it regulates clotting factors for this action. Angiogenesis in 

the zebrafish embryo is a complex process and there exist numerous subpathways and genes of 

interest that GR may affect, but the sustained upregulation of vegfab implies that glucocorticoid 

signaling likely plays a role in modulating this critical developmental process, and possibly explains 

the lack of circulation in GR morphants. 

4.5.3 Neurogenesis and eye formation affected by GR knockdown 

An unanticipated pathway identified by IPA software was nervous system development, which was 

ranked as the most strongly affected by GR knockdown (Tables 5 and 6, Figures 5A and 5B). The 

IPA analysis also determined that the overall quantity of neurons would be increased at 36 hpf. This 

outcome is reflected in the consistent upregulation of key genes involved in neurogenesis at both 

observed timepoints (Table 4). These include zebrafish homologs of the classical proneural gene 

atonal from Drosophila (atoh2a, atoh2b). These two genes are also known as neurod6a and 

neurod6b, and a third neurogenic differentiation gene (neurod4) was also shown to be upregulated at 

both timepoints. These genes are expressed in the zebrafish olfactory bulb (Liao et al., 1999; Kuo et 

al., 2005), and play a role in vertebrate retinal patterning (Bassett and Wallace, 2012), indicating that 

glucocorticoid signaling may play a role in mediating the formation of sensory apparatus and 

receptors. Retinal malformation may also occur as a result of the disrupted expression of sox9b, 

which was one of the rare genes that displayed differential changes among the timepoints, as it was 

downregulated at 24 hpf (Table 4, fold change 0.39) and upregulated at 36 hpf (Table 4, fold change 

1.95). Numerous sox9 targets have been identified, including cartilage and the pectoral fin, but 

analysis of sox9 mutants showed a linkage to retinal neurogenesis in zebrafish (Yokoi et al., 2009). 
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The effects of GR knockdown on genes associated with retinal development is of particular interest as 

some of the most strongly upregulated genes at each timepoint were lens crystalline proteins (Tables 

5; cryba2a, cryba4, crygm2a, crygm2b). Initial characterizations of the GR morphants did not 

indicate any noticeable effects on eye formation (Pikulkaew et al., 2011; Nesan et al., 2012 [Chapter 

2]). However, as the morphant embryos were only studied until 48 hpf and were developing at a 

slower pace (Nesan et al., 2012 [Chapter 2], there may have been changes to lens or retinal formation 

that were not readily apparent. In zebrafish lens development, crystallins are the most abundant 

proteins, and are subdivided into three groupings, alpha-, beta-, and gamma-crystallins (Posner et al., 

2008). The beta-crystallins, such as cryba2a and cryba4, are expressed mainly during embryogenesis 

and gamma-crystallins, such as crygm2a and crygm2b, are expressed more prominently after 

embryogenesis in the lens of the juvenile zebrafish (Greiling et al., 2009). Alpha-crystallins tend to 

dominate in the mature and aging zebrafish lens (Greiling et al., 2009). The only alpha-crystallin to be 

significantly affected by GR knockdown, cryaba, was downregulated at 36 hpf (fold change 0.35). 

This result implies that lens formation and/or maturation may be a glucocorticoid sensitive process, as 

cortisol-GR signaling may control the switch from beta/gamma crystalline abundance in development 

to alpha-crystallin predominance during aging. The reduction of cryaba with GR knockdown 

indicates that it may be under direct glucocorticoid control in zebrafish, a linkage that has already 

been identified in mammalian cell culture models (Scheier et al., 1996). In mammals, the alpha-

crystallins are expressed in various extracellular regions where they act as small heat shock proteins 

(HSP) to protect cells from damage due to heat and metal stress. Alpha-crystallins do not seem to 

accumulate outside of the lens in zebrafish (Posner et al., 1999), and although some isoforms appear 

to be responsive to heat-shock, their localization remains unclear (Elicker and Hutson, 2007). The 

function of glucocorticoid influence on lens proteins requires further study, to our knowledge there 

have been no studies linking beta- or gamma-crystallins to the stress response, so GR influence on 

them may be only for the purposes of lens development. At this stage, the linkage of GR to alpha-

crystallins may be either part of the aging process for the lens or for an independent HSP-related 

action, and presents an intriguing area for future study.  

 Another key class of neurogenic genes that are affected by GR knockdown are the LIM-

domain proteins, three of which (ldb3a, ldb3b, lhx1b), were all significantly up-regulated at both 

observed timepoints (Table 4) and are all involved in brain development. The two LIM domain 

binding proteins (ldb3a and ldb3b), are anterior CNS markers during development (Toyama et al., 

1998) and lhx1b (also known as lim6) is a telencephalon marker (Toyama and Dawid, 1997). 
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Together, the overexpression of these genes is consistent with the predicted results of the IPA 

software of increased neuronal development. A second telencephalonic marker, lhx6, was also found 

to be significantly upregulated at 24 hpf (fold change 3.3; Appendix C Table C1), and was very close 

to a statistically significant increase at 36 hpf (fold change 6.8, p-value 0.053). The only other LIM-

domain related gene that was statistically significant at either timepoint, lhx8, showed only a modest 

decrease at 24 hpf (fold change 0.76; Appendix C Table C1). In addition to these telencephalon 

markers, the hypothalamic marker otpb was significantly upregulated at both timepoints. The 

hypothalamus develops from the diencephalon and otpb is necessary for the development of 

hypothalamic dopaminergic neurons (Blechman et al., 2007; Ryu et al., 2007). Also, otpb seems to be 

specific to only these cells as morpholino knockdown did not disrupt forebrain patterning (Eaton and 

Glasgow, 2006). The potential involvement of glucocorticoid signaling in patterning the zebrafish 

hypothalamus is a very interesting finding, as the hypothalamus is the initial organizer for the stress 

response in vertebrates, recognizing a stressor and beginning the hormone cascade that results in 

cortisol release from the teleost interrenal cells via the hypothalamic-pituitary-interrenal (HPI) axis 

(Wendelaar Bonga, 1997; Charmandari et al., 2004). The dopaminergic neurons that are regulated by 

otpb produce the trophic hormones such as corticotropin-releasing hormone (CRH; or corticotropin-

releasing factor, CRF, in fish) that will act on the anterior pituitary as part of the stress response and 

other coordinated endocrine actions (Nesan and Vijayan, 2012c [Chapter 1]). Developmental 

regulation of the hypothalamus has been previously demonstrated in the ovine model where 

exogenous developmental glucocorticoids disrupt the stress response in the mature animal by 

disrupting circulating levels of corticotrophin-releasing hormone (Welberg et al., 2001). The concept 

of glucocorticoid priming of the stress response is well-described in birds and reptiles, where 

maternal deposition into the egg is hypothesized as a stress signal that prepares the fetus for adverse 

conditions (De Fraipont et al., 2000; Hayward and Wingfield, 2004), but whether this occurs in 

teleosts remains unclear. We also observe the increased expression of other prominent genes 

associated with the stress response, such as the ACTH precursor pomca (Liu et al., 2003; Miller, 

2007), and star, the cholesterol transport protein involved in the first step of steroidogenesis (Miller, 

2007), both of which were also confirmed by qPCR (Figures 4E, 4F, Table 7). Expression of pomca 

was significantly increased at 36 hpf (Table 7) and was close to statistical significance at 24 hpf (fold-

change 4.37, p-value 0.068). The expression of star displays the same pattern in response to GR 

knockdown, with a significant increase at 36 hpf (Appendix C Table C2, fold-change 5.87), and a 

measured increase at 24 hpf that was not statistically significant (fold-change 2.14, p-value 0.117), 
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but this may be obscured by the conservative nature of microarray analysis. This linkage between 

embryonic GR,  hypothalamic development, and stress axis signaling provides a putative method by 

which maternal cortisol, which is the sole source of glucocorticoids in the pre-hatch teleost embryo 

(Alsop and Vijayan, 2008; Nesan and Vijayan, 2012b [Chapter 3]), may regulate HPI axis 

development and its activity in adult zebrafish. A final indicator that general neurogenesis outside of 

the brain is also increased by GR knockdown is that expression of sox4a, a known mediator of spinal 

neurogenesis (Gribble et al., 2009), was significantly upregulated at both 24 and 36 hpf. This lends 

further evidence to the posited action of GR signaling as acting in an inhibitory manner upstream of 

neurogenesis. It remains unclear as to whether GR action would be directly inhibiting neurogenesis, 

or whether it may work via intermediate action on other organizing factors. Despite the lack of clarity 

in the mechanism of action, it appears that key developmental regulators of the telencephalon, the 

hypothalamus, and possibly other CNS regions, are modulated by GR signaling. 

4.5.4 Effects of GR knockdown on endocrine signaling 

In addition to the possible disruption of hypothalamic trophic hormone production and homeostasis 

from increased proliferation to dopaminergic neurons, other hormones and receptors are increased in 

response to GR knockdown, including arginine vasopressin (avpl), which has both osmoregulatory 

(Nielsen et al., 1995) and complex social actions (Eaton et al., 2008) in mammals, but in fish appears 

to predominantly act to regulate social behavior in dominant/subordinate relationships (Larson et al., 

2006). Interestingly, the previously-mentioned dopaminergic neuron differentiator otpb, is also 

required for development of vasopressin-releasing cells (Eaton et al., 2008). This is an interesting 

linkage between GR knockdown and increased aggression via modified vasopressin expression in the 

brain. Numerous species of teleosts are known to adopt dominant/subordinate relationships within 

populations (Gilmour et al., 2005), and in trout this has been linked to differential activation in the 

stress response as measured by cortisol release (Pottinger and Carrick, 2001; Overli et al., 2004). Our 

findings in this study lead us to hypothesize that otpb, which is involved in development and 

differentiation of corticotropin-releasing factor producing dopaminergic neurons and vasopressin-

expressing cells (Eaton et al., 2008; Nesan et al., 2012 [Chapter 2]), may be active in the development 

of this social behavior and regulate the dominant or subordinate status of individual fish. As with 

previous pathways, with early embryonic GR activation only occurring via maternally deposited 

cortisol stores, this provides a potential role for the maternal stress state and subsequent possible 

alterations in cortisol deposition into the oocyte to determine the social status of offspring.  
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 Other hormones, receptors, and endocrine signaling components are also significantly 

upregulated after GR knockdown, but their effects in the developing embryo are more difficult to 

assess. Calcitonin (calca), the hormone produced by the ultimobranchial bodies associated with the 

zebrafish thyroid that regulates calcium homeostasis (Porazzi et al., 2009; Lafont et al., 2011), was 

found to be upregulated at both observed timepoints (Table 4). At this stage it is unclear whether the 

increased expression of calca implies a functionally increased level of calcium sequestration or an 

increase in the size or productive capacity of the ultimobranchial bodies, or both, but the apparent 

cross-regulation of other endocrine signaling axes via GR knockdown is a prominent area of future 

investigation. In addition, we also find genes that are classically involved in feeding and appetite to 

be upregulated at both timepoints, such as peptide YY (pyya), and the NPY receptor npy1r 

(Sundström et al., 2008; Matsuda et al., 2012), both of which were observed to increase at 24 and 36 

hpf. The impact of these genes in the pre-hatch, pre-feeding embryo is unclear, but if they are 

modulated by GR signaling, the post-hatch impact of the previously described GR priming effects on 

the HPI axis may control feeding patterns. The changes we observed in the hypothalamic 

dopaminergic neuron marker otpb, if it disrupts the stress response, could then affect appetite by 

changing circulating levels of peptide YY or the expression of the NPY receptor. Finally, we also 

observed a significant increase in an insulin-like growth factor binding protein (igfbp3), which may in 

part explain the reduction in growth observed in the GR morphants (Nesan et al., 2012 [Chapter 2]). 

Insulin-like growth factors (IGFs) are produced by the liver and mediate the actions of growth 

hormone as well as having roles in early developmental patterning of the zebrafish embryo as well as 

notochord formation (Duan et al., 2003; Eivers et al., 2004; Zou et al., 2009). IGF binding proteins 

(IGFBPs) chaperone IGFs and can increase their circulating halflife, but also have complex actions as 

to whether they increase or decrease signaling depending on the IGF member, the tissue type, and 

other factors (Duan and Xu, 2005). IGFBP3 is the most common binding protein and the majority of 

IGFs are complexed with at least one IGFBP3 peptide, indicating that an increase in igfbp3 

expression may have a reductive effect on free IGFs available to bind to receptors and act on tissues. 

This is a potential explanation for the reduced body size that occurred in embryos after GR 

knockdown (Nesan and Vijayan, 2012b [Chapter 3]), which was reversed by GR mRNA rescue 

indicating a GR specific effect in developing zebrafish. Additionally, it should be noted that IGFBP3 

has effects independent of IGF ligands, including some aspects of skeletal development (Li et al., 

2005). Part of IGFBP3 action also results from its antagonizing effects against the BMP signaling 

pathway (Zhong et al., 2011), and BMP1 inactivates IGFBP3 by proteolytic action (Kim et al., 2011). 
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While bmp1 expression was not significantly changed in our microarray analysis, it is of interest that 

upregulated igfbp3 will further suppress BMP signaling action by its inhibitory effects. Generally, 

between overexpression of the key hypothalamic marker otpb and these more disparate changes to 

various hormone and receptors, it appears that endocrine system disruption may be a prominent effect 

of GR knockdown. This supposition is also supported by the IPA software analysis, which lists 

disorders of the endocrine system as a major affected pathway based on the genes that were 

significantly altered at 24 hpf (Table 5). 

4.5.5 GR knockdown disrupts expression of cell-adhesion molecules 

The final major class of genes that were significantly affected by GR knockdown are those involved 

in cell-to-cell adhesion and the extracellular matrix. Cell-to-cell signaling, cellular assembly, and 

connective tissue development were among the major pathways identified as significantly affected by 

GR protein knockdown by IPA analysis (Tables 5 and 6). Multiple classes of cell adhesion genes 

showed sustained increases in expression at both timepoints, including cadherins, protocadherins, and 

numerous collagen fibres (Table 4). Cadherins have a variety of roles in development, mainly 

involving the movement of cells and tissue sheets during morphogenesis (Halbleib and Nelson, 

2006), and the specific cadherins upregulated at both timepoints (cadm2a and cadm4) are among 

those involved in nervous system development (Pietri et al., 2008; Hunter et al., 2011). 

Protocadherins are a major subclass of cadherins, and have a variety of effects in development, with 

recent research showing prominent protocadherin expression in the nervous system, specifically at 

synaptic boundaries (Suzuki, 2000; Frank and Kemler, 2002). Multiple variants of protocadherin-1 

(pcdh1a4, pcdh1g18, pcdh1gb2), a protocadherin-2 gene (pcdh2ac), and protocadherin-17 (pcdh17) 

were all significantly upregulated at both 24 and 36 hpf (Table 4). The roles of the protocadherin-1 

and -2 genes are generally unknown in zebrafish, although there is evidence linking protocadherins in 

general to zebrafish neurogenesis, as lack of alpha-protocadherins triggers neuronal death (Emond 

and Jontes, 2008). Studies in mice have implicated protocadherin-1 in multiple developmental 

processes, including many that overlap with established GR effects from previous studies or what we 

have inferred from the microarray findings. These pathways include neurogenesis, cardiovascular 

development, angiogenesis, and organogenesis (Redies et al., 2008), and protocadherin-2 also affects 

neurogenesis in human fetal models (Pinky, 2004). Protocadherin-17 is the best studied of the 

affected genes in zebrafish, and interestingly, it is expressed prominently in the eye, and its 

knockdown results in reduced cell proliferation in the retina (Biswas and Jontes, 2009; Chen et al., 
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2012). There is also further evidence for disrupted eye formation in GR morphant embryos, as the 

two connexin genes that are significantly upregulated at both timepoints, cx23 and cx44.1, are both 

expressed in the embryonic eye (Cason et al., 2001; Cheng et al., 2003; Iovine et al., 2008). Together, 

the specific cadherins, protocadherins, and connexins that are upregulated in response to GR 

knockdown only lend further supporting evidence to our posited role of glucocorticoid signaling in 

neurogenesis and eye formation. Another prominent group of proteins upregulated by GR knockdown 

are the extracellular matrix fibril collagens. Three type I collagens (col1a1, col1a2, col1a3) and two 

type VI collagens (col6a1, col6a2) displayed sustained significant upregulation in GR morphants at 

both observed timepoints. The type I collagens tend to be expressed in the developing somites, and 

then are expressed in high abundance in the dermis tissue (Li et al., 2011) (Thiesse and Thiesse, 

2004). It is unclear what the functional significance of the overexpression of these genes may be, but 

GR morphants did display slowed somitogenesis, and errors in ECM structure and density could 

contribute to this disruption, as type I collagens form the connective tissue that surrounds developing 

myotomal regions (Rescan et al., 2005). The upregulation of the type VI collagens appear to be more 

functionally relevant to the GR morphant phenotype. Knockdown of col6a1 in zebrafish embryos 

results in muscle disorders and motor abnormalities (Telfer et al., 2010). In GR morphants, we 

observed a marked reduction in movement as they approached the normal period of hatching 

compared to control embryos (Nesan & Vijayan, unpublished), and there is theoretical potential for 

this to be caused by col6a1 upregulation. However, this is only supposition at this point and requires 

further study. Additionally, studies in mice have found congenital heart defects resulting from 

overexpression of col6a2, although this requires the co-overexpression of other molecules (Grossman 

et al., 2011). No evidence for this kind of effect has been observed in zebrafish, so it remains unclear 

as to whether type VI collagen overexpression may contribute to the previously described cardiogenic 

disruptions in GR morphant embryos. 

4.5.6 Conclusions 

Clearly, from the breadth of this discussion, the microarray analysis of global gene expression in 

response to GR knockdown has provided a wealth of information and yielded numerous areas that 

require further investigation. In general, this study provides a number of novel genes, pathways, and 

processes involved in development that are affected by GR protein expression. We have found 

multiple major groupings of genes that support and help to explain the previously established GR 

knockdown phenotype and other effects of modulated GR signaling in the newly fertilized zebrafish 
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embryo, such as myogenic, cardiovascular, and angiogenic disruption as well as the widespread 

suppression of BMP signaling molecules and receptors. In addition, we have identified some 

unexpected developmental pathways that appear to be significantly affected by loss of GR signaling, 

such as neuronal differentiation, hypothalamic development, and eye formation. Altogether, this study 

provides strong evidence further supporting the growing consensus that developmental 

glucocorticoids are important developmental regulators, and that the glucocorticoid receptor is a 

critical morphogen that modulates a variety of important developmental processes. 
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Chapter 5 

Maternal cortisol is critical for stress axis development in zebrafish 
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5.1 Overview 

Cortisol is the primary circulating glucocorticoid in teleosts. It is released from the interrenal tissue 

and functions in post-hatch animal to respond to stressor exposure, including energy substrate 

mobilization. This steroid is secreted by the coordinated activation of the hypothalamic-pituitary-

interrenal (HPI) axis, involving the release of corticotropin-releasing-factor from the hypothalamus 

and adrenocorticotrophic hormone from the anterior pituitary. This stress response is generally highly 

conserved in vertebrates. There is a growing body of evidence that cortisol signaling, mediated by 

binding and activation of the glucocorticoid receptor (GR), is critical to the development of the pre-

hatch zebrafish embryo. Cortisol synthesis does not begin until hatching in zebrafish, so maternal 

deposition is the only source of the ligand for early GR activation. In this study, we modulated the 

amount of embryo cortisol available at fertilization. We increased embryonic cortisol content by 

injection of exogenous cortisol. Also, we reduced maternal cortisol content by use of a cortisol 

antibody to sequester the steroid in the yolk. Characterization of the phenotype revealed distinct 

treatment effects, including mild cardiac edema with cortisol excess and deformed mesoderm and tail 

structures with cortisol reduction. Also, compared to wild type embryos, excess cortisol led to longer 

embryos at both 48 and 72 hours post fertilization (hpf), while lower cortisol content resulted in 

shorter embryo at 48 hpf only. Cortisol antibody embryos also showed impaired straightening of the 

tail at 72 hpf, remaining curled around the yolk. There was a clear difference in the post-hatch cortisol 

stress response between the two treatments. Elevated embryo cortisol content completely abolished 

the stressor-mediated cortisol increase seen in the wildtype zebrafish. The sequestering of maternal 

cortisol had the opposite effect, displaying a heightened cortisol response to stress. These changes 

were correlated with altered expression of key HPI axis genes, including crh, 11β hydroxlase, pomca, 

star, which were all downregulated in embryos injected with exogenous cortisol, and upregulated in 

those that experienced reduced cortisol during embryogenesis. Altogether, maternal cortisol is 

essential for mesoderm formation and muscle development and dysregulation of embryo cortisol 

content will lead to abnormal stress axis functioning in zebrafish. 

5.2 Introduction 

The HPI axis is a coordinated set of organs that sense and respond to stressor insult in teleost fish 

(Wendelaar Bonga, 1997). The hypothalamus is the site of initial stressor recognition, resulting in the 

release of corticotrophin-releasing factor (CRF) from dopaminergic neurons (Mommsen et al., 1999; 

Machluf et al., 2011). CRF acts on the anterior pituitary gland by binding to receptors on cells that 
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release adrenocorticotrophic hormone (ACTH) into circulation. ACTH binds to the melanocortin 2 

receptor (MC2R) expressed on the steroidogenic cells of the interrenal tissue to induce the release of 

cortisol (Mommsen et al., 1999; Nesan and Vijayan, 2012b [Chapter 1]). The interrenal tissue is 

analogous to the adrenal gland in higher vertebrates (Liu, 2007) and cortisol is the primary circulating 

glucocorticoid in fish. Cortisol has a variety of effects in teleosts, but its most well-studied function is 

to enhance metabolism and mobilize energy stores needed to restore homeostasis (Mommsen et al., 

1999). 

Recently, studies have described a number of unexpected roles for glucocorticoid signaling in 

developing zebrafish embryos that are unrelated to the established functions of the HPI axis and the 

conserved vertebrate stress response (reviewed in Nesan and Vijayan, 2012b [Chapter 1]). 

Knockdown of GR protein translation in the newly-fertilized zebrafish embryo disrupted multiple 

developmental processes such as somitogenesis, myogenesis, and reduced overall growth and survival 

(Pikulkaew et al., 2011; Nesan et al., 2012 [Chapter 2]). Also, exogenous cortisol administration led 

to disrupted heart formation and the downregulation of key genes involved in cardiac development 

(Nesan and Vijayan, 2012a [Chapter 3]). Other studies have also linked larval craniofacial 

development and osmoregulation to glucocorticoid signaling in the zebrafish embryo (Hillegass et al., 

2008; Kumai et al., 2012). Altogether, these findings position GR as a major developmental 

morphogen and key mediator of embryogenesis.  

Glucocorticoid receptor transcripts are found in the newly-fertilized embryo, although there is a 

complete turnover of maternally deposited transcripts just after the mid-blastula transition, and newly 

produced GR mRNA and protein is widespread in the embryo by 12-24 hpf (Nesan et al., 2012 

[Chapter 2]). Cortisol is also maternally deposited into the zebrafish oocyte prior to spawning and 

fertilization, but it persists in diminishing quantities until de novo cortisol synthesis and accumulation 

begins at approximately 48 hpf and rises dramatically after hatching (Alsop and Vijayan, 2008; Nesan 

and Vijayan, 2012a [Chapter 3]). This lack of early cortisol synthesis indicates that the identified GR 

effects, to the extent that they are mediated by classical GR signaling after binding and activation by 

cortisol, are dependent entirely on the maternal deposition of cortisol prior to fertilization.  

The factor limiting cortisol synthesis in the developing zebrafish embryo is unclear. The coordinated 

response to stress is not inducible in zebrafish until 72 hpf, but the three organs of the HPI axis all 

begin to differentiate and organize relatively early in embryogenesis (Nesan and Vijayan, 2012b 

[Chapter 1]). The CRF-producing neurons are fully developed by 36 hpf, and CRF is detectable from 
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fertilization onwards (Alderman and Bernier, 2009; Machluf et al., 2011; Nesan and Vijayan, 2012b 

[Chapter 1]), as are the ACTH corticotropes of the anterior pituitary, which are differentiated by ~26 

hpf (Liu et al., 2003; Nesan and Vijayan, 2012b [Chapter 1]). While the interrenal tissue is not 

developmentally mature until post-hatching, it is the chromaffin cells and not the steroidogenic cells 

that are late to form and migrate to their final position (Nesan and Vijayan, 2012b). Key steroidogenic 

enzymes, including 11ß-hydroxylase and StAR, are expressed in the embryo by ~28 hpf (Alsop and 

Vijayan, 2008; Liu, 2007; Nesan and Vijayan, 2012b [Chapter 1]), indicating that the embryo has a 

functional steroid biosynthesis pathway prior to hatching. With the synthesis and signaling 

components of the stress axis functionally developed prior to the actual ontogeny of the stress 

response, there remains a question as to whether HPI axis development or its post-hatch function can 

be affected by embryonic signals.  

The concept of negative feedback in the regulation of stress axis function is well known in a variety 

of models, as circulating cortisol has been shown to regulate activity of the HPI axis organs in 

different models, including teleosts (Mommsen et al., 1999; Sathiyaa and Vijayan, 2003; Veillette et 

al., 2007) and mammals (Bradford et al., 1992; Dallman et al., 1992; Gómez et al., 1998). Numerous 

studies also link neonatal stress or diminished maternal care with long-term patterning of the stress 

response (Francis et al., 1996; Caldji et al., 2000; Fish et al., 2004). Additionally, there is established 

evidence from mammalian models that levels of circulating glucocorticoids during development can 

affect the functioning of the stress axis in the mature animal, including rats, guinea pigs, and sheep 

(Kapoor, 2006; Kapoor et al., 2008).  Finally, in the fields of bird and reptile physiology, there is 

research indicating that the deposition of glucocorticoids into the yolk of eggs by the mother may 

serve as a regulatory signal during development to prepare offspring for potentially stressful 

conditions (Hayward and Wingfield, 2004; Cadby et al., 2010).  

Against this background of extensive information about stress axis development and regulation from 

a variety of models and the growing body of knowledge regarding the role of glucocorticoid signaling 

in zebrafish development, we hypothesized that maternally deposited cortisol can regulate HPI axis 

development in zebrafish embryos. To test this, we used microinjection techniques to alter the levels 

of cortisol available to the developing zebrafish embryo after fertilization. We used a commercially 

available cortisol antibody to sequester cortisol in the yolk of embryos, thereby reducing maternal 

cortisol content for the developing embryos. Also, we microinjected cortisol (as we have done 

previously, Nesan and Vijayan, 2012a [Chapter 3]) into the yolk of embryos to artificially elevate 
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cortisol content in the developing embryos. By examining the expression of key genes involved in 

HPI axis organogenesis and function throughout development as well as assessing the larval stress 

response, this paper for the first time identifies linkages between maternally deposited cortisol and 

long-term stress axis programming in zebrafish. 

5.3 Materials and Methods 

5.3.1 Zebrafish care and breeding 

Care and breeding of adult zebrafish was carried out exactly as described previously (Nesan et al., 

2012 [Chapter 2]). Adult zebrafish were purchased from a commercial wholesaler (DAP 

International, Mississauga, ON) and maintained on a 14:10 light-dark cycle in an AHAB recirculating 

system (Aquatic Habitats, Apopka, FL). Zebrafish care protocols were approved by the University of 

Waterloo Animal Care Committee in accordance with the Canadian Council for Animal Care 

guidelines. 

5.3.2 Treatment injections 

Adult zebrafish were placed in breeding traps (Aquatic Habitats) within system tanks before the onset 

of the dark period. Single-cell zebrafish embryos were collected from breeding tanks within 30 

minutes of light exposure, and cleaned in system water prior to injection. All injections were 

performed exactly as described previously using a nitrogen-powered microinjector (Narishige, Japan) 

(Nesan et al., 2012 [Chapter 2]) . The injection treatments were as follows: undiluted cortisol 

antibody (MP Biomedicals, Solon, OH), previously characterized and used for radioimmunoassay 

studies (Ings et al., 2012); undiluted commercially available yeast-specific antibody (polyclonal rabbit 

anti-yeast GCN4, 200 µg/mL; Santa Cruz Biotechnology, Santa Cruz, CA); 32 pg cortisol per egg 

(prepared and injected exactly as characterized previously, Nesan and Vijayan, 2012a [Chapter 3]); 

sterile vehicle control (prepared and injected exactly as characterized previously, (Nesan and Vijayan, 

2012a [Chapter 3]). GCN4 is a yeast-specific transcriptional activator with no known homolog in 

zebrafish (Arndt and Fink, 1986). Prior to this study, the anti-GCN4 yeast antibody was titred and 

characterized to assess whether it affects zebrafish embryogenesis, and no changes in embryogenesis 

were observed at any point, all embryos at any injection concentration were indistinguishable from 

wild-type embryos. This antibody was therefore accepted as a useful control against non-specific 

antibody effects. The vehicle control was prepared exactly as the cortisol solution (dissolving in 

ethanol, then evaporation and reconstituting in sterile water). In our previous study, we classified a 
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series of increasingly severe phenotypes for zebrafish embryos injected with 32 pg of cortisol (Nesan 

and Vijayan, 2012a [Chapter 3]). In this study, only embryos displaying a phenotype without major 

deformations (“unaffected” or “mild” in the previous study) were used for all quantitative analyses in 

an attempt to conservatively assess changes arising from modulated cortisol instead of secondary 

effects of gross malformations in embryogenesis. The injection volume for all treatments was ~1 nL, 

injected directly into the yolk of the fertilized embryo. After injection, embryos were reared in 

embryo medium (Westerfield, 2007) and incubated at 28.5 C, with fresh medium at 12 and 36 hpf, 

exactly as described previously (Nesan et al., 2012 [Chapter 2]). After incubation, pools of embryos 

were collected at 4, 12, 24, 48, and 72 hpf, flash frozen on dry ice, and subsequently stored at -80C 

for later analysis of cortisol concentrations and expression of key genes involved in HPI axis 

function. 

5.3.3 Characterization of embryo phenotypes 

Embryos from each treatment group were observed throughout development for changes in 

morphology. Previously, we categorized and characterized a phenotype associated with the injection 

of exogenous cortisol in one-cell zebrafish embryos and displayed embryos with increasingly severe 

morphogenic deformations. At 48 hpf and 72 hpf, embryos were observed and bright-field imaged 

with an AZ-100 dissecting microscope and DS-R1 camera (Nikon, Melville, NY). These images were 

then used to measure morphometrics in the developing embryos by use of the NIS-Elements software 

package (Nikon).  Embryo growth and extension differences between treatment groups were assessed 

by two morphometrics: whole embryo length, and head-trunk angle, which were measured exactly as 

described previously (Nesan et al., 2012 [Chapter 2]). 

5.3.4 Stressor exposure 

At 72 hpf, larvae from each treatment group were exposed to a physical stressor to assess the 

functioning of the HPI axis in response to changes in cortisol concentrations in the early embryo. The 

stress protocol was performed exactly as described previously (Nesan and Vijayan, 2012a [Chapter 

3]). Briefly, 100 larvae were placed in an 100 mL beaker containing 80 mL of embryo medium, then 

swirled with a plastic pipette once per second for 60 s. Embryos were then allowed to recover over a 

60 minute period. Pools of 15 larvae were collected prior to stressor exposure, and at 5, 30, and 60 

minutes post-stressor. Larvae were then flash-frozen on dry ice and stored at -80C for analysis of 

cortisol content. 
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5.3.5 Cortisol extraction and quantification 

Cortisol was measured from treated embryos during embryogenesis (24, 48, 72 hpf), as well as from 

72 hpf treated embryos that were exposed to a physical stressor (pre-stressor and 5, 30, 60 minute 

post-stressor). Pools of 25 embryos (24 and 48 hpf) or 15 embryos (72 hpf) were homogenized briefly 

(15s) with a PowerGen 125 homogenizer (Fisher Scientific, Ottawa, Canada) in 200 uL of 50mM 

TRIS buffer with added protease inhibitor (Roche, Laval, Canada). Cortisol was then extracted from 

these embryos using separation with diethyl ether via a modification of the method described 

previously (Alsop and Vijayan, 2008). Briefly, 1 mL of ether was added to the homogenate, which 

was then frozen on dry ice to isolate the aqueous phase and allow for decanting. This process was 

repeated for a total of three extractions and the ether was evaporated off overnight at room 

temperature. Cortisol quantification was performed via a commercially available colormetric cortisol 

ELISA (Neogen Corp, Lexington, KY) which has been used and characterized previously (Gonçalves 

et al., 2012; Nesan and Vijayan, 2012a [Chapter 3]), according to the manufacturer’s protocols. 

Steroid samples were reconstituted in extraction buffer from the ELISA kit. 

5.3.6 Gene expression 

Expression of genes involved in HPI axis function was measured by real-time quantitative PCR 

(qPCR) in embryos from each treatment group at 48 hpf, in order to assess changes to the stress 

response capacity that resulted from modulated embryonic cortisol content. RNA was extracted via 

the Ribozol-chloroform extraction process (Amresco, Solon, OH) according to the manufacturer’s 

protocols. Extracted RNA was quantified with a Nanodrop Spectrophotometer (Thermo Scientific, 

Ottawa, Canada). First-strand synthesis of cDNA was carried out via the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, Carlsbad, CA) with 1 ug of total RNA per sample. 

qPCR analysis was performed exactly as described previously (Nesan et al., 2012 [Chapter 2]), with 

samples run in triplicate in an iCycler iQ thermocycler using iQ SYBR green supermix as a 

fluorophore (both from Biorad, Hercules, CA). The genes measured were: crh, gr, mc2r, mr, pomca, 

star, and 11β hydroxylase. Primer pairs, annealing temperatures, amplicon size, and references for 

previous characterizations of primers (if applicable) are presented in Table 1. Gene expression was 

quantified as described previously (Nesan et al., 2012 [Chapter 2]) using the ΔΔCt method (Livak and 

Schmittgen, 2001) with β-actin as a housekeeping gene (values were similar across all samples). 
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Table 1 – Primer pair sequences, characteristics, and applicable references used for qPCR 

 

Gene Forward primer  
(5’-3’) 

Reverse Primer 
(5’-3’) 

Tm 
(C) 

Amplicon 
size (bp) 

Reference (if 
applicable) 

crh caccgccgtatgaatgtaga gaagtactcctcccccaagc 60 118 n/a 
gr acagcttcttccagcctcag ccggtgttctcctgtttgat 60 116 (Alsop and 

Vijayan, 2008) 
11β 

hydrox. 
tgtgctgaaggtgattctcg gctcatgcacattctgagga 60 115 (Alsop and 

Vijayan, 2008) 
mc2r ctccgttctcccttcatctg attgccggatcaataacagc 60 127 (Alsop and 

Vijayan, 2008) 
mr cccattgaggaccaaatcac agtagagcatttgggcgttg 60 106 (Alsop and 

Vijayan, 2008) 
pomca gaagaggaatccgccgaaa ccagtgggtttaaaggcatctc 60 107 (Kulkeaw et al., 

2011) 
star tcaaattgtgtgctggcatt ccaagtgctagctccaggtc 60 122 (Alsop and 

Vijayan, 2008) 
β-actin gtccctgtatgcctctggt 

 
aagtccagacggaggatg 60 120 (Nesan and 

Vijayan, 2012a) 
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5.3.7 Statistical analysis 

Statistical measures were performed using the Sigmaplot software package.  Comparisons were made 

between cortisol injected and control injected embryos and between cortisol-antibody injected and 

yeast-antibody injected (control) embryos. Data are presented as mean + standard error of the mean 

(SEM). Statistical comparison of cortisol concentrations during embryogenesis (24, 48, 72 hpf) and 

after exposure to a physical stressor (0, 5, 30, 60 minutes post stressor) were assessed by two-way 

ANOVA (p<0.05) with a Bonferonni post-hoc test. All other comparisons (early cortisol for antibody 

confirmation; embryo growth metrics; qPCR analysis) were made using a student’s t-test (p<0.05). 

Where necessary, data were log-transformed to meet the assumptions of normality and equal 

variance, while non-transformed data are shown in the figures. 

5.4 Results 

5.4.1 Confirmation of antibody efficacy 

To ensure that the injected cortisol antibody was able to sequester cortisol effectively, embryo cortisol 

concentration was measured at 4 and 12 hpf via ELISA, with injected cortisol antibody acting to 

outcompete the antibody utilized in the ELISA. These results are presented in Figure 1. At both 4 hpf 

(Figure 1A) and 12 hpf (Figure1B) there was a significant reduction (86% and 64%, respectively) in 

measured cortisol in embryos injected with the cortisol antibody relative to the yeast-specific 

antibody. 
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Figure 1 - Confirmation of antibody efficacy 

Cortisol content in embryos injected with cortisol antibody (Cort AB) and the yeast-specific antibody 

(yeast AB) was measured at 4 hpf (A) and 12 hpf (B). At both timepoints, cortisol antibody injected 

embryos displayed a significant reduction in cortisol content as measured by ELISA, indicating active 

binding by the injected antibody to sequester cortisol. All data presented is mean ± SEM; * indicates 

significant differences (n=6 pools of 25 embryos, students t-test, p<0.05). 

  



 

  158 

 
 
  

B 

* 

12	
  hpf	
   

A 4	
  hpf	
   

* 

C
or

tis
ol

 (p
g/

eg
g)

 

Cort AB Yeast AB 

C
or

tis
ol

 (p
g/

eg
g)

 

Cort AB Yeast AB 



 

  159 

5.4.2 Observation and characterization of embryo phenotypes 

Embryos were observed throughout embryogenesis for gross changes in morphology, and then 

imaged for further analysis via quantification of growth metrics. Representative embryo images are 

presented in Figure 2 at 48 hpf (A) and 72 hpf (B). The controls used in the two experiments, the 

vehicle-only (for cortisol-injection) and the yeast-specific antibody (for cortisol antibody-injection), 

showed no morphological differences at any point during embryogenesis. Morphological changes 

were seen with cortisol antibody injection, including moderate tail-kinking and deformed curvature 

(see arrows). The images presented of the cortisol-injected embryos (Figure 2) are those that showed 

the previously (Nesan and Vijayan, 2012a) characterized “mild” or “unaffected” phenotypes that 

exhibited only mild cardiac edema and no other major deformations. 

 Embryo growth was measured by assessing the length from head to tail at 48 hpf (Figure 3A, 

B) and 72 hpf (Figure 3C,D). At 48 hpf, there was a significant increase in embryo length in cortisol-

injected embryos relative to controls (24% increase, Figure 3A), and this change was even more 

pronounced at 72 hpf (76% increase, Figure 3C). In cortisol-antibody injected embryos, there was a 

small decrease in embryo length at 48 hpf (19% reduction, Figure 3B), but no significant change at 72 

hpf was observed. In addition to length, the angle between the eye-ear axis and the notochord was 

measured to assess embryo extension at 72 hpf (Figure 4). There was no change observed in cortisol-

injected embryos relative to controls (Figure 4A), but cortisol antibody injected embryos had a 

significantly increased angle relative to yeast antibody treated embryos (Figure 4B), indicating a 

pronounced curvature (see Figure 2B). 

 

  



 

  160 

 

 

 

 

 

 

 

 

Figure 2 – Representative images of treated embryos 

Embryos injected with 32 pg of cortisol (CORT), vehicle control (CON), cortisol antibody (C-AB), or 

yeast-specific antibody (Y-AB), were imaged at 48 hpf (A) and 72 hpf (B). Representative images are 

presented. Cortisol-injected embryos displayed mild cardiac edema (see arrows), and cortisol 

antibody embryos displayed kinked tails and other disruptions in mesoderm formation (see arrows).  
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Figure 3 – Quantification of embryo length 

Embryo growth was measured by the length from the tip of the head to the tail at 48 hpf (A,B) and 72 

hpf (C,D) for embryos treated with 32 pg of cortisol or vehicle (A, C) to upregulate cortisol signaling 

in development, and embryos treated with cortisol antibody or yeast-specific antibody (B,D) to reduce 

available embryo cortisol content. Cortisol upregulation resulted in increased embryo length at both 

timepoints, while decreased cortisol signaling reduced embryo length only at 48 hpf. All data 

presented is mean ± SEM; * indicates significant differences (n=6-7 embryos, students t-test, p<0.05). 
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Figure 4 – Quantification of embryo extension 

Embryo extension was measured by determining the angle between the ear-eye axis and the 

notochord in developing embryos at 72 hpf after treatment with either 32 pg of cortisol or vehicle 

only control (A), or with cortisol or yeast-specific antibody injection (B). Cortisol injection did not 

result in any change relative to control, but cortisol antibody injected embryos were less extended 

(indicated by a higher angle which represents a curled embryo). All data presented is mean ± SEM; * 

indicates significant differences (n=6-7 embryos, students t-test, p<0.05). 
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5.4.3 Embryo cortisol concentration throughout development 

Exogenous administration of 32 pg of cortisol into the newly-fertilized egg significantly elevated 

embryo cortisol concentration at all measured developmental timepoints (Figure 5A). At 24 hpf, 

control-injected embryos had 1.35 pg/egg, compared to 4.83 pg/egg in cortisol-injected embryos. At 

48 hpf, control-injected embryos remained relatively constant, containing 1.76 pg/egg, and cortisol-

injected embryos did not show a significant increase either at 48 hpf (6.85 pg/egg). Only at 72 hpf 

was cortisol significantly elevated within each treatment group, with control-embryos containing 5.8 

pg/egg and cortisol-injected embryos containing 8.71 pg/egg.  

 Antibody treatment, which was previously shown to sequester cortisol (Figure 1), also 

reduced the available cortisol in the embryo at later developmental stages (Figure 5B). At 24 hpf, 

both the cortisol antibody injected embryos and the yeast antibody injected embryos had quite low 

cortisol concentrations (0.88 pg/egg and 1.26 pg/egg, respectively), but there was no statistical 

difference between the values. The result was the same at 48 hpf (1.22 and 1.50 pg/egg, respectively). 

Again it was only at 72 hpf that there was an observed difference both between the treatment groups 

and against the earlier timepoints. The cortisol antibody injected embryos had a significantly 

increased level of cortisol compared to earlier timepoints (3.46 pg/egg), as did the yeast antibody 

injected embryos (5.79 pg/egg; different letters in Fig. 5B indicate significance within a treatment). 

Additionally, at 72 hpf, the cortisol antibody injected embryos were significantly lower in cortisol 

concentration than the yeast antibody injected embryos (Figure 5B). 
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Figure 5 – Embryo cortisol content of treated embryos during development 

ELISA was used to measure cortisol in the developing embryos was measured at 24, 48, and 72 hpf 

after treatment with either 32 pg of cortisol or vehicle only control (A), or with cortisol or yeast-

specific antibody injection (B). Cortisol injection resulted in elevated cortisol content at all times 

relative to control injection, and both treatments were only significantly elevated at 72 hpf relative to 

their respective 24 hpf concentrations. All data presented is mean ± SEM; * indicates significant 

differences (n=4 pools of 15-25 embryos, two-way ANOVA, p<0.05). 
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5.4.4 Quantifying the response to a physical stressor 

The effects of the injected treatments on the stress response were measured by quantifying embryo 

cortisol concentration during recovery from an acute physical stressor. Cortisol-injected embryos 

displayed an abrogated stress response relative to control embryos (Figure 6A). Control embryos had 

an initial cortisol of 6.28 pg/egg, and showed a significant increase at 5 minutes post stressor (11.74 

pg/egg), which remained elevated and relatively constant at 30 minutes (11.27 pg/egg) and 60 

minutes (11.33 pg/egg) post-stressor. Cortisol-injected embryos had a higher pre-stress cortisol level 

(8.36 pg/egg) and did not show a stress-induced increase in cortisol at either 5 (9.11 pg/egg) or 30 

(9.70 pg/egg) minutes post-stressor, and in fact showed a decrease in cortisol after 60 minutes (6.08 

pg/egg).  

 A reduction in available embryo cortisol, on the other hand, appears to heighten and shorten 

the stress response (Figure 6B). Yeast antibody injected embryos had an initial cortisol concentration 

of 5.04 pg/egg, which was not significantly changed at 5 minutes post stressor (6.29 pg/egg), but was 

elevated at 30 minutes (11.33 pg/egg) post stressor and that level was maintained until 60 minutes 

(10.03 pg/egg) post-stressor. Cortisol antibody injected embryos had a lower pre-stress cortisol level 

(3.77 pg/egg) than the yeast antibody injected embryos, as was shown throughout development 

(Figure 5B). After stressor, cortisol levels increased significantly by 5 minutes (16.09 pg/egg) and 

remained elevated at 30 minutes (18.14 pg/egg) post-stressor. At both of these timepoints, cortisol 

antibody injected embryos had significantly higher cortisol content than yeast antibody injected 

embryos. By 60 minutes post-stressor, the cortisol concentration in the cortisol antibody injected 

embryos had returned to pre-stress levels (2.66 pg/egg). 
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Figure 6 – Cortisol response to a physical stressor in treated larvae 

ELISA was used to measure changes in cortisol content during recovery from an acute physical 

stressor in embryos injected with either 32 pg of cortisol or vehicle only control (A), or with cortisol 

or yeast-specific antibody injection (B). Cortisol injection completely abolished the stress response 

relative to control embryos, with no observable rise in cortisol concentration at any time point, while 

control embryos. Cortisol antibody injection accentuated but shortened the stress response in 

comparison to yeast-specific embryos, with higher cortisol at 5 and 30 minutes post stressor, but a 

reduced cortisol concentration after 60 minutes. All data presented is mean ± SEM; * indicates 

significant differences (n=4-6 pools of 15-25 embryos, two-way ANOVA, p<0.05). 
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5.4.5 Expression of HPI axis genes 

In order to find mechanistic linkages for the disrupted stress response in treated embryos, expression 

of key genes involved in the function of the HPI axis was measured by qPCR in 48 hpf embryos. 

These results are displayed in Figure 7, organized by gene: graphs displaying cortisol-injection effects 

(relative to control embryos) are in the left column; graphs displaying changes from cortisol antibody 

injection (relative to yeast antibody injected embryos) are on the right.  

Expression of a number of HPI genes was significantly changed in cortisol-injected embryos 

relative to controls. Transcript abundances of crh (Figure 7A), 11β-hydroxylase (Figure 7E). pomca 

(Figure 7K), and star (Figure 7M) were all significantly reduced in response to exogenous cortisol 

administration at 48 hpf. A single gene, mc2r, was significantly increased in cortisol-injected 

embryos relative to controls (Figure 7G). There was no observed change in expression of gr (Figure 

7C) or mr (Figure 7I).  

The reduction of cortisol content in the embryo had opposite effects for most of the observed 

genes. In cortisol antibody injected embryos, the expression of crh (Figure 7B), 11β-hydroxylase 

(Figure 7F). pomca (Figure 7L), and star (Figure 7N) were all significantly increased relative to yeast 

antibody injected embryos. There was also a significant decrease in the expression of mr in response 

to cortisol antibody injection (Figure 7J), but no changes were observed in gr (Figure 7D) or mc2r 

(Figure 7H). 
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Figure 7 – Altered expression of HPI axis genes 

Quantitative PCR was used to measure the mRNA abundance of key genes involved in HPI axis 

function in 48 hpf embryos. Measured genes were: crh (A, B), gr (C, D), 11B-hydroxylase (E, F), 

mc2r (G, H), mr (I, J), pomca (K, L), and star (M, N). For all genes, data from embryos injected with 

either 32 pg of cortisol or vehicle only control are in the left column, and data for embryos with 

cortisol or yeast-specific antibody injection are in the right column. Expression of crh, 11B-

hydroxylase, pomca, and star were all downregulated as a result of cortisol injection (relative to 

control embryos), and upregulated after cortisol antibody injection (relative to yeast antibody injected 

embryos). Expression of gr was unchanged by either treatment. Expression of mr was downregulated 

only after cortisol antibody injection, and expression of mc2r was upregulated only after cortisol 

injection. All data presented is mean ± SEM; * indicates significant differences (n=6 pools of 25 

embryos, students t-test, p<0.05). 
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5.5 Discussion 

In this study, we describe for the first time some clear linkages between the amount of cortisol 

available to newly-fertilized zebrafish embryos and the post-larval functioning of the stress axis, and 

we identify key HPI genes that are under the control of cortisol signaling during early development.  

Together these results demonstrate that maternally deposited cortisol is functionally relevant in the 

developing zebrafish embryo and can have significant impacts on the ability to respond to a stressor 

challenge later in life. These findings point to a putative linkage between the maternal stress state and 

the offspring phenotype, which has interesting ecological and evolutionary implications for the use of 

maternally deposited cortisol as a stress-induced signal that may pattern the developing embryo as a 

preparatory measure. 

5.5.1 Characterization and validation of treatments 

To investigate the role of maternally deposited cortisol in the fertilized zebrafish embryo, we 

performed two experiments in parallel. We injected exogenous cortisol into single-cell embryos to 

mimic increased deposition, and we used a commercially available cortisol antibody to sequester 

deposited cortisol in the yolk to simulate a reduced deposition load. We have previously characterized 

and validated the addition of 32 pg of cortisol as sufficient to elevate cortisol content until hatching 

(Nesan and Vijayan, 2012a [Chapter 3]), and while it is unlikely that this level of deposition can 

occur in natural conditions, the continued use of this model allows us to further characterize cortisol-

responsive processes in development. In this previous study, we showed that 32 pg of cortisol results 

in upregulation of GR-responsive genes, indicating a functional increase in glucocorticoid signaling. 

 With the use of the cortisol and yeast-specific antibodies, we took steps to validate their use in this 

study. First, we saw clear reductions in the frequency and severity of the presented morphological 

phenotype only with cortisol but not yeast antibody (Figure 2). Furthermore, we found that the 

cortisol antibody significantly reduced the amount of measurable cortisol in early development 

(Figure 1), indicating that binding and sequestration are occurring and that it is likely that the amount 

of cortisol available to the embryo initially after fertilization is drastically different. This is of key 

importance, as previous research has shown that reduced glucocorticoid signaling (altered by 

knockdown of GR) results in an altered transcriptome after the mid-blastula transition, implicating 

cortisol signaling in the degradation of maternal mRNA (Pikulkaew et al., 2011). We also observe 

that the cortisol antibody shows interesting phenotypic consistencies with previously established GR 

morphant embryos (Pikulkaew et al., 2011; Nesan et al., 2012 [Chapter 2]), including kinked tails 
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(Figure 2), reduced growth (Figure 3), and slowed straightening of the tail (Figure 4) during 

embryogenesis. This indicates that the GR knockdown phenotype is at least partially due to a 

reduction of glucocorticoid signaling in the embryo as opposed to solely ligand-independent effects. 

As seen previously (Nesan and Vijayan, 2012a [Chapter 3]), we do not see any changes to embryo 

extension as a result of increased cortisol signaling in development, but there is a significant increase 

in growth at both 48 and 72 hpf (Figure 3). This is interesting as we see a decrease in embryo length 

both in the current study with the administration of cortisol antibody and in morphant embryos after 

knockdown of GR translation (Nesan et al., 2012 [Chapter 2]). The clear implication is that growth in 

the developing embryo is glucocorticoid responsive as both increases and decreases in cortisol 

signaling result in disrupted growth. Previous research in teleosts has shown differing relationships 

between cortisol and the somatostatic axis (van der Boon et al., 1991). In some cases there is a 

positive correlation between cortisol and growth hormone expression (Young et al., 1989; Yada et al., 

2005), whereas in other situations cortisol inhibits growth (Peterson and Small, 2005; Pierce et al., 

2011). To our knowledge, little is known about cortisol action on the growth of the early zebrafish 

embryo, and this research presents a novel relationship between embryo growth and circulating 

glucocorticoids. 

5.5.2 Developmental cortisol dynamics in our treated embryos 

As a preliminary step to assessing the effects of modulated cortisol deposition in the developing 

embryo, we quantified the basal embryo cortisol levels during development. We have assessed this 

before for the administration of 32 pg of cortisol (Nesan and Vijayan, 2012a [Chapter 3]) and our 

results are in general agreement. Our findings in this study also support our previous measurements of 

~4 pg/egg of initial cortisol deposition (Alsop and Vijayan, 2008; Nesan and Vijayan, 2012a), 

indicating that the level of cortisol deposition by unstressed zebrafish mothers appears to be relatively 

constant. It is unclear to what extent this deposition can vary, although evidence from other teleosts 

suggests that stressed mothers can deposit an increased amount of steroid (Giesing et al., 2011). 

During normal zebrafish embryogenesis, cortisol content in the embryo decreases during the pre-

hatch period from the initial deposition, with de novo synthesis and accumulation becoming 

significant only after hatching and close to feeding (Alsop and Vijayan, 2008; Nesan and Vijayan, 

2012a [Chapter 3]). This pattern was not changed in embryos injected with either the cortisol or 

yeast-specific antibody, however the cortisol antibody reduced the measured cortisol at 72 hpf. It 

should be noted that this is expected to be a decrease in the available cortisol that can be measured, 
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due to sequestration by the antibody, as opposed to a reduction in production or an increase in cortisol 

turnover. However, as there are multiple feedback levels acting on the HPA in response to cortisol 

levels (Bradford et al., 1992; Wendelaar Bonga, 1997; Mommsen et al., 1999), there may be a natural 

reduction in cortisol production or accumulation in response to reduced cortisol deposition at 

fertilization. It is unclear as to what extent decreased overall embryo cortisol concentration would be 

functionally relevant at 72 hpf, but a chronic reduction in circulating cortisol can disrupt a variety of 

functions involving metabolism and other necessary processes (Fries et al., 2005). In humans, 

hypocortisolism can occur in patients with Addison’s disease or other adrenal conditions, and has 

implications for fatigue, reduced cardiovascular health, and conditions such as fibromyalgia (Heim et 

al., 2000; Fries et al., 2005; Van Houdenhove et al., 2009). 

5.5.3 Reduced embryonic cortisol availability enhances the larval stress response 

It is particularly interesting that the sequestration of cortisol and the resulting reduced signaling seems 

to heighten and sensitize the cortisol response in zebrafish larvae. We observe a stronger, faster, 

cortisol response in embryos injected with cortisol antibody (Figure 6B).  This result coincides with 

an increased expression of multiple genes involved in HPI axis function at 48 hpf, such as CRH 

(Figure 7A) and the ACTH precursor POMCA (Figure 7L), which are both necessary for triggering a 

cortisol response (Wendelaar Bonga, 1997). Two genes involved in steroidogenesis, StAR (Figure 

7N), which is involved in initial movement of the steroid precursor cholesterol (Bauer et al., 2000), 

and 11β hydroxylase (Figure 7F), which is an enzyme involved in the cortisol synthesis pathway 

(Kawamoto et al., 1992; Alsop and Vijayan, 2008) are also increased in embryos treated with the 

cortisol antibody. The increased expression of these four genes indicates that these embryos that 

experienced lowered glucocorticoid signaling in the early embryo have an enhanced HPI signaling 

and steroid production capacity. It was also observed that mineralocorticoid receptor (MR) expression 

was decreased in the cortisol antibody treated embryos. MR can bind cortisol in vitro, but its exposure 

to the ligand in live tissues is unclear (Sturm et al., 2005; Pippal et al., 2011), and the overall role of 

MR in the zebrafish and other teleosts remains to be explored. However, it is interesting that 

decreased glucocorticoid signaling yields a reduction in MR expression, as it points to potential 

crosstalk between corticosteroid receptors. This study also reinforces our previous findings from 

knockdown of GR protein translation, which caused upregulated expression of pomca and the 

hypothalamic marker otpb (involved in dopaminergic neuron formation, (Blechman et al., 2007)) at 

both 24 and 36 hpf (Chapter 4). We observe the same change in pomca at 48 hpf and see an increase 
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in crh which would be expected in embryos with increased hypothalamic development. These 

correlations lend further support to our conclusions that the cortisol antibody administration causes a 

functional decrease in glucocorticoid signaling, and that this disrupts HPI axis development and 

function. This indicates that maternal cortisol deposition may be an important signal for patterning the 

HPI axis development of the embryo. 

5.5.4 Exogenous cortisol addition reduces HPI axis stress response capacity 

It is particularly interesting that the four genes that were upregulated in cortisol-antibody treated 

embryos show opposing changes with exogenous cortisol administration. All of the previously 

mentioned genes, crh, pomca, star, and 11β hydroxylase were significantly downregulated at 48 hpf 

in larvae with elevated pre-hatch cortisol (Figures 7A, 7K, 7G and 7M, respectively). In addition, 

these larvae displayed an abrogated cortisol response after the acute physical stressor (Figure 6A), 

with no rise in cortisol being evident at any point. This lack of cortisol response is likely to have a 

large impact on the post-hatch zebrafish, which must begin feeding and competing in environments 

that are likely to be stressful. The four genes previously mentioned are likely responsible for the 

inhibited stress response, as cortisol-antibody injected embryos with low expression of crh and pomca 

will show reduced activation of the interrenal steroidogenic cells, and the downregulation of star and 

11β hydroxylase will reduce the cortisol production capacity of the cells. Altogether, this will result in 

reduced cortisol production in response to stress in embryos that experience increased developmental 

glucocorticoid signaling. It should be noted that any effects on the feedback regulation of the HPI axis 

in our treated zebrafish do not seem to include modulation of GR expression. In other teleosts, GR 

receptors at different levels of the HPI axis act to feed back and control the axis (Mommsen et al., 

1999; Barton, 2002; Alderman et al., 2012), but that was not seen in the current study. Instead, we 

observed an alteration in expression of crh, pomca (produced by the hypothalamus and pituitary, 

respectively) in both sets of treatment and of mc2r (expressed in the interrenals) after upregulation of 

cortisol signaling, indicating that all three HPI organs may be affected by embryonic cortisol 

concentration. Together these results provide clues to a mechanistic linkage between embryonic 

cortisol deposition and HPI axis activity. We posit that glucocorticoid signaling in early development 

is necessary for proper formation of the hypothalamus, which can then cause long-term programming 

of the stress axis into maturity. 
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5.5.5 Potential disruptions to embryo fitness as a result of altered maternal cortisol 
deposition  

The implications for the disrupted HPI axis function on the larval and maturing zebrafish are 

widespread due to the numerous roles of cortisol in teleosts (Mommsen et al., 1999; Barton, 2002). In 

addition to the previously mentioned roles in energy metabolism and the implications for growth, 

cortisol is also a major osmoregulatory hormone in fish (McCormick, 2001). The changes in cortisol 

responsiveness seen in our study, with cortisol antibody treatment resulting in upregulated cortisol 

production, and increased cortisol at fertilization having the opposite effect, implies that the ability to 

respond to a physical stressor may be compromised in these fish as they mature. This may present 

problems for larvae that are exposed to physically-challenging environments or in the context of 

predator exposure. In addition, a prominent emerging field in teleost study is the understanding of fish 

behavioral dynamics. Initial studies in trout and subsequent supporting evidence from other teleost 

species has linked the magnitude of the cortisol response to stress with aggression, behavior, and the 

establishment of dominant/subordinate relationships (Pottinger and Carrick, 2001; Gilmour et al., 

2005; Barreto et al., 2009; Chang et al., 2012). Social stratification has been observed in zebrafish 

(Dahlbom et al., 2011), but correlations with stress responsiveness have not been established. 

However, if the linkage between stress-induced cortisol levels and aggression is conserved in 

zebrafish, there is interesting potential for maternal stress levels and steroid deposition to pattern the 

behavior of offspring. This concept of maternal stress hormone deposition as a phenotypic 

programming molecule for offspring has been established in birds and reptiles, where changes in yolk 

corticosterone concentration affect the post-hatch animal (De Fraipont et al., 2000; Hayward and 

Wingfield, 2004; Meylan and Clobert, 2005; Müller et al., 2007; Groothuis and Schwabl, 2008; Love 

and Williams, 2008). Clearly this is an area of zebrafish development where further exploration is 

required.  

5.5.6 Conclusions 

For the first time, our findings provide a linkage between early embryo cortisol content and the post-

hatch function of the stress-axis, with measurements altered expression of key HPI genes to provide 

assessment of HPI organ activity. We also quantify and assess the disrupted cortisol response to stress 

in embryos that have experienced differential early cortisol signaling, showing that increased cortisol 

in the embryo suppresses the cortisol response to stress, and that lack of available cortisol at 

fertilization results in a heightened larval stress response. To our knowledge this is the first instance 
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in teleosts that maternally deposited cortisol levels have been linked to altered stress axis functioning, 

but this supports findings from mammalian models. In avian and reptilian models, egg corticosteroid 

concentration is known to alter the developing phenotype. The actions of the HPI axis in teleosts are 

complex and fundamental to the survival of the adult animal, underscoring the importance of these 

novel findings. Together, this study adds further evidence to the growing consensus that 

glucocorticoid signaling in zebrafish development is critically important to a variety of developmental 

processes and can have lasting effects in the adult animal. 
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Chapter 6 
General Conclusions 
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6.1 Summary of findings 

Altogether, the findings from these experiments for the first time underscore a key role for maternal 

cortisol signaling by glucocorticoid receptor (GR) activation in zebrafish development. The results 

support the primary hypothesis that maternal cortisol and GR signaling have functional relevance in 

the early zebrafish embryo. 

 The first study demonstrated that GR knockdown resulted in a series of deformations and 

developmental delays in the early embryo, affecting somitogenesis, myogenesis and expression of 

muscle specific genes, and overall embryo growth and extension, and post-hatch survival (Chapter 2). 

Perhaps most importantly, GR signaling was shown to disrupt the expression of bone morphogenetic 

proteins (BMPs), implying a much more prominent role for GR signaling in the developing embryo. 

These characterized phenotypic changes were rescued with exogenous administration of GR mRNA 

further supporting our conclusion that the observed changes were GR-specific. This was the first 

study to demonstrate the importance of GR knockdown to embryo growth and survival and 

demonstrate the GR responsive nature of specific BMP genes. 

 This study was followed by exogenous cortisol administration to the newly fertilized embryo, 

causing disrupted cardiogenesis and yielding a series of phenotypes ranging from mild cardiac edema 

to complete lack of pericardium and no functional heartbeat (Chapter 3). These changes were linked 

to altered expression of key cardiogenic genes including the heart field transcription factor nkx2.5. In 

addition to morphogenic malformations of the heart, post-hatch larvae showed a reduced resting heart 

rate and an inhibited ability to raise heart rate in response to an acute physical stressor. This study 

provided a definitive linkage between the concentration of cortisol in the developing zebrafish 

embryo and organogenesis, specifically the development of the heart, and indicated that larval 

performance will be disrupted by increased zygotic cortisol. 

 The microarray analysis yielded a wealth of knowledge regarding the effects of GR 

knockdown at 24 and 36 hpf, measuring over 1000 significantly changed genes at each time point 

(Chapter 4). These results supported the role of GR in BMP signaling, myogenesis, and cardiogenesis 

that were presented in the first two chapters, as microarray fold-changes were in agreement with 

genes measured previously by other methods and helped to explain the previously characterized 

phenotypes. In addition to this support, the microarray measurements indicated a number of novel 

pathways and genes that were unexpectedly changed in response to lowered glucocorticoid signaling, 

including neurogenesis, cell adhesion, eye formation, and hypothalamic-pituitary-interrenal (HPI) 
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axis formation and function. Together this study displayed the critical role of GR as a developmental 

regulator that modulates a variety of key pathways in embryogenesis. 

 The potential role of maternal cortisol signaling in zebrafish HPI axis formation was 

explored, both in response to increased cortisol in the zygote at fertilization (achieved via exogenous 

administration as in Chapter 2) and also by reducing cortisol content by sequestering this steroid 

using antibodies (Chapter 5). In this chapter, glucocorticoid signaling was found to pattern the HPI 

axis, with significant changes seen in the post-hatch larval ability to increase cortisol levels in 

response to a physical stressor. Embryos exposed to exogenous cortisol displayed an abrogated stress 

response, while those that experienced a reduction in available cortisol showed a heightened cortisol 

peak after a stress challenge. These changes in HPI function were correlated with changes in 

expression of signaling molecules like crh, 11B-hydroxylase, pomca, and star. This is the first study 

to link levels of cortisol in the newly fertilized embryo, which only occur through maternal 

deposition, to the development and function of the stress axis in post-hatch zebrafish larvae. This is a 

critical connection between the maternal environment prior to spawning and the resulting offspring 

phenotype. 

 Together, these findings add a great deal to the relative paucity of prior knowledge about 

glucocorticoid signaling in the early zebrafish embryo. The results from this thesis for the first time 

position GR as a major developmental regulator, acting upstream of key development factors such as 

BMPs and matrix metalloproteinases, and acting, directly or through intermediates, on a host of 

developmental events, including maternal mRNA degradation, somitogenesis and myogenesis, 

cellular migration, cardiogenesis, stress axis development, neurogenesis, eye formation, and 

craniofacial development (see Figure 1 for a summary). These early GR actions may have lasting 

effects on developmental programming as the larvae mature, influencing the ability to respond to 

stressor challenges by compromising osmoregulation or cardiac performance in a manner similar to 

the established mammalian glucocorticoid programming effects that result in hypertension or other 

cardiovascular defects.  
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Figure 1 – Summary of known glucocorticoid-responsive genes and pathways in zebrafish 

development 

The glucocorticoid receptor (GR) is a developmental regulator that affects a variety of genes and 

pathways, this schematic summarizes the known processes and associated genes during early 

development in zebrafish (transcription factors are in bold). GR signaling affects myogenesis and 

modulates myogenic transcription factors and downstream muscle proteins. Specific matrix 

metalloproteinases (MMPs) have been shown to be GR-responsive which can affect numerous 

developmental processes associated with extracellular matrix remodeling, and this study has 

highlighted a variety of other ECM and cell adhesion proteins affected by GR knockdown. 

Expression of specific bone morphogenetic proteins (BMPs), receptors, and signaling molecules are 

also modulated by GR signaling and are involved with a variety of major developmental processes. A 

number of cardiogenic genes and major cardiac muscle proteins are disrupted by increased cortisol 

signaling, resulting in malformed heart structures and reduced cardiac performance. Osmoregulation 

has also been shown to be GR-mediated via the ammonia transporter rhcg1. Neurogenesis has been 

shown to be a glucocorticoid  responsive process, with a variety of neural transcription factors 

disrupted and specific hypothalamic markers affected, along with other signaling molecules in the 

HPI axis response to stress. Finally, GR signaling has been implicated in maternal mRNA 

degradation at the mid-blastula transition, retina and lens formation, and with overall embryo growth, 

extension, and survival, but no specific molecular mechanisms have been linked to these effects.  
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6.2 Perspectives and avenues for further research 

The findings presented in this thesis provide interesting starting points for research questions in a 

variety of areas of zebrafish development and physiology. The microarray study alone is likely to 

contain more novel findings than are presented in Chapter 4. However, there are also questions that 

stem from the data that have been presented in full. The novel linkages of GR knockdown to 

increased neurogenesis and di- and tel-encephalon development are an interesting finding. 

Ascertaining the extent to which these changes occur in the living animal is a critical question 

remaining in this area, and can apply to a variety of the pathways we have begun to explore in these 

studies. 

 Other questions that present themselves involve behavior and the role of maternally deposited 

cortisol in patterning the phenotype and behavior of the larva and mature animal. It is known that fish 

populations tend to subdivide into dominant and subordinate individuals that vary in their 

aggressiveness, feeding patterns, and response to stimuli (Gilmour et al., 2005). A key difference 

between these subpopulations is that dominant fish have an attenuated cortisol response to stressors 

(Pottinger and Carrick, 2001; Overli et al., 2004). Given the evidence that prenatal glucocorticoids 

can modulate the stress response later in life in mammalian (Matthews, 2002; Seckl and Meaney, 

2004), avian (Hayward and Wingfield, 2004) and zebrafish (Chapter 5) models, it begs the question 

whether maternal glucocorticoid deposition into oocytes and the associated changes in brain 

developmental programming may be playing a role in these social divisions. The zebrafish model 

provides significant advantages as a model for genetic and behavioural studies and can be used to 

effectively investigate these questions. The optically clear zebrafish embryos allow for easy 

visualization of developmental defects, and the speed with which they develop means that behavioral 

changes at various developmental stages to adulthood can be observed within a few months in this 

species.  

 The newfound developmental roles for glucocorticoid action from the zebrafish model, 

including regulation of morphogens (BMPs, MMPs), cardiogenic, myogenic, and neurogenic 

transcription factors underscore the role of this steroid in regulating embryogenesis. Understanding 

the molecular mechanisms of action is critical to unraveling the pathways modulated by cortisol 

during development. To answer questions of programming, mechanisms of action, and epigenetic 

effects, the molecular tools available to zebrafish researchers are highly valuable. Forward and 

reverse genetic techniques are well established, including mutation screens, RNA silencing and 
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protein knockdown, microarray analysis, and transgenics, along with other molecular and imaging 

tools (Driever et al., 1994; Jowett, 1999; Rasooly et al., 2003; Teh et al., 2005; McLean and Fetcho, 

2008). Next generation sequencing techniques that are now more effective and less cost-prohibitive 

could also be used to investigate GR effects on the transcriptome at fertilization or around the mid-

blastula transition to elucidate GR actions on maternal mRNAs or possible GR-mediated epigenetic 

effects. These techniques, in combination with the wealth of knowledge of developmental processes 

that has developed over the last two decades of investigation, makes zebrafish the best possible 

animal in which to identify the precise mechanisms of cortisol signaling and its effect on 

development. Promoter characterization and identification of functional glucocorticoid response 

elements present on target genes of interest may shed light on the mechanisms of action of GR in 

regulating morphogenesis. Other techniques such as chromatin immunoprecipitation (ChIP) alone or 

in combination with microarray (ChIP on chip) will be invaluable in revealing novel GR signaling 

pathways and also assist with establishing the interactome involved in the developmental regulation 

by glucocorticoids. 

 A promising area of study is the environmental regulation of long-term phenotypic changes 

and a key player in this regard is the epigenetic modulation of gene expression during development 

(Youngson and Whitelaw, 2008; Zhang and Meaney, 2010). GR is a known target for epigenetic 

regulation (Lillycrop et al., 2007; Oberlander et al., 2008; McGowan et al., 2009), and corticosteroid 

signaling appears to modulate gene expressions via epigenome modifications (Moritz et al., 2005; 

Weaver, 2009; Krukowski et al., 2011). These relationships, along with the established effects of GR 

in the degradation of zebrafish maternal mRNAs (Pikulkaew et al., 2011) suggests that developmental 

glucocorticoid effects on organogenesis and growth may involve epigenome modifications, but this 

remains to be tested. The known effects of glucocorticoids on zebrafish organogenesis and the 

research showing that altered developmental glucocorticoid exposure can modulate the stress 

response in larval and adult animals (Matthews, 2002; Hayward and Wingfield, 2004; Seckl and 

Meaney, 2004; Nesan and Vijayan, 2012[Chapter 2]) also leads us to hypothesize that regulation of 

embryo cortisol levels may be necessary for proper development of the stress axis. The similarity 

between zebrafish and human GR variants suggest that findings on the functional role of this receptor 

in zebrafish may provide important clues to the developmental risks and phenotypes associated with 

fetal stress and/or abnormal prenatal glucocorticoid exposure in humans.  
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6.3 Conclusions 

Stress axis organ ontogeny patterns and the endocrine stress response itself are well conserved 

throughout vertebrates. Our newfound evidence from zebrafish has identified the primary circulating 

glucocorticoid, cortisol, and its receptor as a developmental regulator that is critical for 

embryogenesis, acting upstream of several different developmental processes and pathways. These 

findings dovetail with established effects of glucocorticoids on mammalian organogenesis and other 

models. The similarities in vertebrate corticosteroid physiology indicate that the glucocorticoid 

actions during development may be conserved, providing a mechanistic link between maternal or 

prenatal stress and developmental abnormalities leading to reduced fitness and survival. The 

techniques and methodologies that have been developed for use in zebrafish provide an excellent 

model for understanding the role of fetal glucocorticoid signaling on developmental-endocrine 

interactions in humans, with important biomedical applications. For the first time, this dissertation 

presents maternally deposited cortisol and glucocorticoid receptor content as a major developmental 

morphogen, acting independently of their classically-studied actions in the physiological response to 

stress. Altogether, this research has spawned a host of novel findings which position glucocorticoid 

signaling as a key regulator of zebrafish embryogenesis. 
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Appendix A 
Chapter 2 Supplemental Information and Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: this Appendix contains supplemental information that was published online, reproduced with 

permission from {Nesan, D., Kamkar, M., Burrows, J., Scott, I.C., Marsden M., and Vijayan, M.M. 

2012. Glucocorticoid receptor signaling is essential for mesoderm formation and muscle development 

in zebrafish. Endocrinology. 153(3), 1288-300.} © {2012} The Endocrine Society.  
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Figure A1 – Glucocorticoid receptor-green fluorescent protein (GR-GFP) reporter construct.  

Schematic display of the construct is presented detailing binding sites and regions of interest within 

the GR promoter including primer and other putative binding sites (GR2-FR, GR-RV), glucocorticoid 

response element (GRE), activator protein 1 binding site (AP-1), splicing factor 1 binding site (SP-1), 

estrogen response element (ERE), and transcription start site (TSS).  
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Figure A2 – Putative GR promoter sequence 
Sequence of putative GR promoter region, complete with specific locations of each putative binding 

site: glucocorticoid response element (GRE), activator protein 1 binding site (AP-1), splicing factor 1 

binding site (SP-1), estrogen response element (ERE), and transcription start site (TSS). 

 
 
  



 

  196 

 

 
  



 

  197 

   



 

  198 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A3 – Fluorescence images of GR promoter activation in developing embryos. 

A GR-GFP construct consisting of zebrafish GR promoter region coupled to the GFP coding 

sequence was injected into embryos (n=9 groups of 40-60 embryos). No fluorescence was detected at 

12 hpf (I), but fluorescence was observed at 15 hpf (II) and 18 hpf (III), while a negative control 

construct lacking the GR promoter region did not fluoresce (IV). Arrows indicate regions of 

fluorescence. 
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Bright-Field GFP Expression 
I) 12 hpf 

II) 15 hpf 

III) 18 hpf 

IV) 18 hpf Neg. Ctrl. 
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Figure A4 – Putative non-functional glucocorticoid response elements in MyoD and IGF 

promoter regions. 

Schematics of putative glucocorticoid response elements (GREs; numbered by starting base pair) 

upstream of MyoD, IGF1, and IGF2. 
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Appendix B 
Expanded Methods and Protocols 
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This appendix contains more detailed protocols for specific methods that are commonly used in this 

dissertation. As these chapters were written for submission to primary journals, attempts were made 

to limit the length of each chapter and to refer to published methods where applicable. However, to 

provide benefit to anyone attempting to repeat or carry on from these studies, this appendix provides 

more information on specific methods 

 

Zebrafish care and breeding 

Adult zebrafish were maintained in an AHAB recirculating system (Aquatic Habitats, Apopka, FL), 

on a 14h:10h light-dark cycle at ~28 C. For initial studies (Chapter 2), the system was filled with well 

water from the University of Waterloo main campus supply, however for all remaining studies, the 

water was made from the addition of 60 mg/L Instant Ocean marine salts (Spectrum Brands), to 

deionized distilled water. Fish were maintained in 10L tanks at an approximate stocking density of 35 

fish per tank. Water in the system was changed at a rate of ~15% per week (40-50L replaced). 

Ammonia, nitrite, and nitrate concentrations were measured weekly in the system, and pH and 

temperature were routinely monitored. Fish were fed at least 2 times per day during studies. 

During breeding attempts, fish were fed 3 times per day. Breeding was performed by 

placement of breeding traps (Aquatic Habitats) into the system to minimize handling or transfer 

stress. Subsets of the fish population were bred randomly 1-2 times per week during each study. 

Traps were put into the tanks within 60 minutes of the end of the daily light cycle, left overnight, and 

then removed 30-45 minutes after the start of the subsequent day’s light cycle. Eggs were rinsed in 

system water and cleaned, then transferred to a beaker of embryo medium (Westerfield, 2007) for 

microinjection and/or incubation. Traps would be returned to the tanks to collect eggs from any 

subsequent rounds of breeding. 

 

Microinjection protocol 

 In all experiments in this thesis, we utilize a nitrogen gas powered microinjector (Narishige, Japan) 

that is able to control the length of time of the injection event and the injection pressure. These 

measurements, in combination with the use of a microcapillary tube of known internal 

volume/diameter and an initial quantification of the volume dispensed in a known number of 

injections, allows us to closely control the amount of treatment injected into the zebrafish embryo. 

This allows for repeatability and reliability in the presented experiments, which take advantage of the 
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unique characteristics of the zebrafish embryo that are particularly beneficial when using this 

technique. 

 Microinjection needles were made with a PC-10 Dual Stage Micropipette Puller (Narishige), 

which heated and separated a single microcapillary tube (10uM internal diameter, Sutter Instruments, 

Novota, CA) into two pieces each with a sealed fine-pointed end. Fine forceps or a sterile razor blade 

were used to open the sealed end of the needle prior to use. Needle calibration was performed by 

measuring the injection volume produced by 50-100 injections, by collection in a 1uL capillary tube 

(Fisher Scientific, Ottawa, ON) and then calculating the volume of a single injection. Injection 

volume was easily adjusted by varying either the injection pressure or the injection duration on the 

microinjector to maintain a precise volume. Prior to injection, the cleaned embryos were placed in an 

injection mold to streamline the procedure. The injection mold was made of 4% agarose in embryo 

medium, and had grooves to align embryos for speedy injection. On average, hundreds of embryos 

could be injected within the 30-45 minutes between fertilization and first cleavage. Eggs beyond the 

two-cell stage were not injected in any study. All injections were carried out at the same time of day. 

After injection, eggs were transferred to 10 cm petri dishes in embryo medium,  and incubated at 28.5 

C on a 14h:10h light-dark cycle. 

 

RNA extraction and quantification 

Quantification of gene expression is a frequently-used endpoint in this dissertation. In most studies 

(Chapters 2, 3, 4) RNA was extracted by use of the RNeasy RNA extraction mini-kit with the Qiazol 

lysis reagent (both from Qiagen, Mississauga, ON), using their protocol for fatty tissues to account 

for the embryo yolk. In chapter 5, this process was replaced by the use of the Ribozol reagent 

(Amresco, Soton, OH) and extraction without the use of a kit. Both are very similar processes, based 

on variations of the phenol-chloroform extraction process, with centrifugation to separate the layers 

and manual removal of the RNA fraction. Care was taken not to remove any of the thin middle DNA 

layer, but DNAse treatment was always performed after extraction during or just prior to cDNA 

synthesis, to prevent genomic contamination. RNA was always quantified by calculation of optical 

density with a Nanodrop spectrophotometer, measuring 1.5 uL of extracted RNA. RNA was eluted or 

resolubilized in 20-25 uL of sterile, nuclease-free water in order to maintain high concentrations 

wherever possible. The absorbance ratios at 260nm/280nm and 230nm/260nm were always observed 

to ensure a high RNA purity, with 260nm/280nm ratios required to be over 1.8.  
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Appendix C 
Complete List of Significantly Changed Genes from Chapter 4 

Microarray Analysis 
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Data presented in this appendix include the results of statistical testing of microarray analysis fold-

changes, as described in Chapter 4, after false discovery correction. Table C1 is all significantly 

changed genes at 24 hpf, Table C2 is all significantly changed genes at 36 hpf. Calculated fold-

changes and p-values are included in the table. Colored text represents a gene that was significantly 

changed at both 24 and 36 hpf, with the color change indicating that the gene was upregulated at both 

time points (green text), downregulated (red text), or differentially altered (blue text).  
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Table C1 – Significantly changed genes at 24 hpf in response to GR knockdown 

Gene Fold Change P-value 
a2bp1 2.235 0.018918 
aanat1 0.467 0.017915 
aatf 0.602 0.038489 
abca1a 0.684 0.041834 
abcc9 2.666 0.025931 
abcg4b 0.425 0.015937 
abhd2b 2.571 0.025968 
acad8 1.322 0.021660 
acadl 2.257 0.031177 
acat1 1.716 0.029248 
acat2 1.260 0.019803 
accn1 2.148 0.050513 
aco2 1.553 0.029248 
acot7 1.499 0.011111 
acsf2 1.450 0.039732 
acta1 1.629 0.030990 
actn3a 2.854 0.037196 
adcyap1b 2.318 0.014138 
add1 1.382 0.041987 
adh5 1.240 0.045863 
adh8b 1.318 0.049430 
adipor1b 0.788 0.046797 
adora2aa 0.498 0.034921 
adora2ab 0.259 0.030320 
adsl 1.303 0.018469 
adss 1.795 0.049716 
afmid 2.022 0.043103 
agr2 2.506 0.047798 
agt 0.318 0.050117 
ahcy 1.813 0.014456 
ahr2 1.499 0.034176 
aig1 2.233 0.036903 
akap12 0.526 0.031960 
alas2 2.161 0.017711 
alcam 0.604 0.014755 
aldh16a1 1.798 0.027035 
aldh18a1 2.273 0.019816 
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Gene Fold Change P-value 
aldh7a1 1.724 0.024016 
alkbh5 0.401 0.046771 
alp 1.987 0.017711 
alpi 0.541 0.014138 
alx4 1.474 0.036390 
amdhd1 3.884 0.016384 
amph 2.147 0.027478 
angptl2 0.652 0.023632 
ank1 2.951 0.017283 
ankrd37 0.425 0.035557 
anxa11a 0.689 0.037831 
anxa13 0.669 0.027768 
anxa4 0.207 0.044936 
anxa5b 1.925 0.021651 
aox1 1.695 0.027537 
apc 1.342 0.037465 
aph1b 1.707 0.026439 
apln 1.637 0.036614 
aplnrb 0.466 0.014138 
aplp 1.990 0.015977 
apoa1 0.348 0.029973 
apoea 3.537 0.037436 
apoeb 0.587 0.030558 
apol1 1.717 0.023632 
appb 1.602 0.009609 
aqp11 1.681 0.015406 
aqp3 5.461 0.025641 
arhgef3l 3.657 0.023541 
arid3b 0.420 0.046797 
arih1l 0.570 0.023632 
arl11 1.450 0.026102 
arl13b 1.960 0.038572 
arl4a 0.623 0.016384 
arl4cb 0.784 0.043047 
arl4l 0.623 0.023380 
arnt2 0.511 0.050264 
arntl2 0.360 0.021660 
arpc1b 2.663 0.048096 
arrb1 1.863 0.040530 
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Gene Fold Change P-value 
arrdc2 0.432 0.036472 
asb12a 1.428 0.046610 
asb5 5.168 0.045683 
asb8 1.436 0.041446 
ascl1a 2.009 0.017296 
ascl1b 3.182 0.013268 
asf1b 1.532 0.043752 
aspdh 1.868 0.046610 
asph 0.589 0.019803 
aspn 2.052 0.043731 
atad4a 1.850 0.034606 
atl1 1.446 0.038905 
atl3 0.548 0.047394 
atoh2a 2.706 0.049189 
atoh2b 4.936 0.014755 
atp1a1 0.646 0.023541 
atp1a1a.2 2.785 0.017081 
atp1a1a.4 0.521 0.027478 
atp1a1b 2.021 0.027478 
atp1a3a 1.877 0.045960 
atp1b1b 2.712 0.009574 
atp1b3b 1.623 0.047798 
atp2a1 1.764 0.014755 
atp2a2a 0.211 0.043599 
atp2b1a 0.521 0.039732 
atp2b1b 0.414 0.033794 
atp5f1 1.383 0.014755 
atp5i 1.460 0.037831 
atp5j 2.520 0.031549 
atp5o 1.235 0.025693 
atp6v1b2 1.708 0.038572 
atp6v1e1 1.269 0.023541 
atp6v1h 1.349 0.039732 
avpl 1.847 0.029321 
b3gnt5 2.468 0.027300 
b3gnt7 0.226 0.043599 
barhl1.1 2.874 0.012309 
bbox1 0.199 0.017296 
bcam 0.342 0.049141 
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Gene Fold Change P-value 
bcl11a 2.704 0.019803 
bcl2l 0.395 0.009320 
bcl9l 0.516 0.049863 
bhmt 0.374 0.031834 
bik 0.509 0.034173 
bin1 2.174 0.015977 
bin2a 1.903 0.044019 
birc2 0.810 0.030990 
birc5a 1.542 0.035436 
blvrb 2.335 0.049570 
bmp4 0.563 0.015821 
bmp6 0.440 0.015406 
bmp7a 0.288 0.025641 
bmpr1ab 0.374 0.041871 
bmpr1b 0.454 0.035855 
bnip3l 0.510 0.043733 
boka 0.740 0.038489 
bpnt1 3.784 0.027300 
brn1.2 1.440 0.030901 
brunol5 2.122 0.017915 
bsg 0.612 0.033951 
btbd2 1.853 0.019803 
btbd6 1.671 0.027664 
bxdc1 0.541 0.039949 
bzw1b 0.704 0.030914 
c1qtnf5 2.257 0.021660 
c6orf115 1.921 0.043103 
c8g 1.990 0.046371 
ca15a 2.449 0.040993 
ca2 1.579 0.039949 
ca8 0.538 0.033951 
cacna1s 2.654 0.020489 
cacnb2b 0.563 0.049769 
cacnb4b 2.303 0.050237 
cacng2 2.512 0.021660 
cacng2b 2.979 0.014755 
cadm2a 2.690 0.026439 
cadm4 1.458 0.039918 
calb2l 2.325 0.014755 
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Gene Fold Change P-value 
calca 6.711 0.040419 
calhm2 2.660 0.020880 
calm3a 2.465 0.014755 
camk2a 3.702 0.025610 
camk2d2 2.462 0.027478 
camkv 2.156 0.049812 
capg 2.033 0.009609 
capn9 0.728 0.030758 
caprin1b 0.728 0.013925 
casp2 1.301 0.043265 
cast 0.562 0.041159 
casz1 2.020 0.038054 
cat 2.082 0.027478 
cav3 2.348 0.026439 
cbln1 2.223 0.021014 
cbln4 2.235 0.021651 
cbx3b 1.753 0.011111 
ccl1 0.491 0.029248 
ccng2 0.468 0.014755 
ccnt2 0.525 0.043407 
cd2apl 0.718 0.047859 
cdc40 0.720 0.039082 
cdca8 1.404 0.031578 
cdh1 0.606 0.036472 
cdh2 0.502 0.038572 
cdh4 4.957 0.014755 
cdk2 1.843 0.014138 
cdk5 1.457 0.014755 
cdk5r2 3.196 0.015720 
ch25h 0.093 0.038489 
cha 0.047 0.026439 
chad 20.346 0.016033 
chaf1b 1.995 0.021660 
chat 1.391 0.049430 
chchd3 1.796 0.048096 
chchd7 1.833 0.012827 
chka 0.500 0.050239 
chmp4b 1.225 0.049863 
chrm2a 2.543 0.009609 
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Gene Fold Change P-value 
chrne 2.980 0.014755 
chst1 1.968 0.034652 
ciita 0.254 0.048096 
cited3 0.550 0.023878 
cki 0.646 0.035882 
ckmb 3.034 0.050281 
ckmt1 0.363 0.046610 
cldnc 0.275 0.015406 
cldne 0.541 0.042824 
cldnf 0.686 0.050249 
clgn 1.468 0.034606 
clstn1 1.943 0.017711 
cltcb 1.496 0.025693 
clu 1.432 0.038211 
cmya5l 4.043 0.013226 
cnot10 1.379 0.032414 
cnot6 0.706 0.040970 
cog8 2.061 0.030901 
col15a1 0.299 0.009320 
col18a1 0.610 0.040023 
col1a1 2.196 0.026588 
col1a2 1.960 0.017843 
col1a3 3.180 0.018797 
col28a1a 1.750 0.026439 
col4a4 1.584 0.027300 
col6a1 2.146 0.048096 
col6a2 2.720 0.033311 
col7a1l 0.564 0.036157 
col9a2 1.323 0.049812 
colm 1.551 0.049770 
copg2 0.738 0.049222 
coro1a 2.615 0.050403 
coro1b 1.450 0.047161 
cox17 1.972 0.042150 
cox7a2 1.297 0.029961 
cplx2 2.732 0.021634 
cpn1 0.679 0.030501 
cpox 0.627 0.045331 
cpsf5 0.923 0.043047 
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Gene Fold Change P-value 
cpt1b 6.290 0.009320 
cpt2 1.846 0.025610 
crabp2b 0.412 0.014755 
crfb8 0.569 0.027300 
crispld1 4.249 0.009414 
crsp6 0.679 0.030501 
crtap 0.694 0.011111 
cry1b 0.546 0.029248 
cry3 0.562 0.040958 
cry4 0.589 0.023541 
cryba1b 13.454 0.014138 
cryba2a 9.402 0.013226 
cryba4 7.075 0.049812 
crygn1 0.362 0.038572 
cs 1.563 0.046610 
csdc2 1.894 0.026300 
csf1b 4.339 0.045683 
csnk1e 1.982 0.021660 
cspg5 1.593 0.015805 
ctgf 0.651 0.035952 
ctnnb1 0.799 0.030901 
ctsc 0.117 0.009320 
ctsh 0.419 0.017915 
ctssb.1 0.321 0.017711 
ctsz 1.598 0.033873 
cugbp2 1.901 0.013925 
cul4a 0.734 0.032879 
cul5 1.457 0.032723 
cwf19l2 0.742 0.050403 
cx23 4.160 0.017711 
cx33.8 2.005 0.014755 
cx36.7 0.429 0.014755 
cx39.9 3.262 0.021660 
cx44.1 9.961 0.014878 
cxcr4a 0.567 0.032723 
cxcr4b 0.570 0.030901 
cyb5r2 0.616 0.015821 
cyb5r3 1.403 0.026439 
cygb1 2.064 0.033244 
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Gene Fold Change P-value 
cyp11a1 0.125 0.048167 
cyp17a1 1.873 0.019739 
cyp24a1l 0.122 0.009609 
cyp2j27 1.599 0.046610 
cyp51 0.561 0.046771 
cyth1 0.660 0.021014 
d2hgdh 0.740 0.046977 
dab1 1.533 0.027300 
dao.2 1.702 0.028164 
daxx 0.848 0.026632 
dbx1a 1.525 0.038572 
dci 1.627 0.030030 
dct 4.506 0.025951 
dctn2 1.366 0.031683 
ddx54 0.513 0.029105 
defbl1 6.171 0.014755 
depdc6 1.636 0.031563 
desm 1.461 0.050232 
dgat1 2.284 0.046610 
dhfr 1.646 0.046681 
dhrs3a 0.527 0.034176 
dhrs3a 0.525 0.032414 
dia1 1.351 0.023541 
diras1 2.465 0.038266 
dlc 0.628 0.035665 
dldh 1.228 0.045286 
dlg1 0.679 0.043954 
dlg2 1.527 0.031056 
dlx5a 0.856 0.037831 
dmrt2a 0.317 0.018469 
dmrt3a 2.450 0.045226 
dnaja1l 2.079 0.044064 
dnase1l3l 0.407 0.045760 
dnm1l 2.131 0.038572 
dpyd 2.546 0.009320 
dpysl3 1.799 0.016847 
dpysl5a 1.734 0.029852 
dpysl5b 1.924 0.023676 
drd2a 1.473 0.042304 



 

  215 

Gene Fold Change P-value 
dtna 1.930 0.025727 
duox1 1.728 0.025538 
dusp5 0.425 0.027478 
dync1li1 1.970 0.015720 
ebi3 3.220 0.049716 
echs1 2.037 0.014755 
ecm2 2.270 0.046807 
ef1 0.637 0.022269 
efcab4a 0.465 0.034176 
efemp2 0.360 0.030758 
efna3b 1.582 0.040526 
efna5a 0.670 0.014755 
efnb2b 0.580 0.048596 
egfl7 0.594 0.043445 
egfr 0.519 0.021660 
egln3 0.081 0.017863 
egr2b 0.176 0.009320 
ehd2 1.625 0.046797 
ehhadh 2.140 0.019960 
ehmt1a 1.426 0.027300 
eif3ea 0.626 0.046610 
eif3m 0.667 0.045863 
eif3s2 0.845 0.037831 
eif6 0.667 0.049448 
ek1 1.873 0.030501 
elavl4 2.188 0.044973 
elmod2 1.842 0.039082 
elovl7a 0.578 0.025136 
emx3 0.759 0.039171 
eng1a 3.308 0.023632 
eng1b 2.010 0.038572 
enkur 0.745 0.021660 
eno1 0.674 0.027478 
eno2 2.166 0.022408 
enpp6 1.545 0.029105 
entpd2a.1 2.408 0.047394 
eomesa 2.157 0.013451 
eomesb 1.389 0.046771 
epas1 2.561 0.037465 
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Gene Fold Change P-value 
erf 0.610 0.027599 
esr2b 0.426 0.046797 
esrp1 0.545 0.037430 
esrrd 49.326 0.036903 
etfa 1.377 0.038905 
evlb 2.107 0.014755 
eya4 1.880 0.011735 
f 2.506 0.014138 
f3a 0.500 0.014755 
f5 3.559 0.019925 
f7i 2.462 0.014755 
faah2a 2.305 0.013602 
fabp2 0.615 0.026036 
fabp3 1.581 0.015982 
fabp7b 3.272 0.010347 
fah 2.558 0.044480 
fam134a 0.765 0.020559 
fam46b 0.126 0.030990 
fam91a1 1.517 0.033944 
farp2 0.653 0.020422 
fbln1 0.378 0.034945 
fbln4 0.306 0.017763 
fbp2 3.103 0.019602 
fbxl2 0.627 0.043047 
fbxo25 1.415 0.048478 
fbxo3 1.506 0.023541 
fev 2.317 0.033216 
fez1 2.607 0.014755 
fga 4.825 0.003518 
fgb 3.628 0.022269 
fgd 1.323 0.034173 
fgf13 2.325 0.031553 
fgf13l 1.788 0.027970 
fgf17 0.183 0.011111 
fgf2 0.463 0.045032 
fgf24 0.461 0.019803 
fgf8a 0.414 0.020153 
fgfr1a 0.609 0.011111 
fgfr1b 0.348 0.028980 
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Gene Fold Change P-value 
fgfrl1a 0.458 0.037436 
fgg 3.612 0.046610 
fhl3 0.598 0.025136 
fhla 0.447 0.038198 
fibin 0.581 0.041590 
figf 1.668 0.046610 
figla 0.247 0.019960 
fign 0.669 0.050403 
fkbp11 0.413 0.037465 
fkbp3 1.401 0.037900 
fkbp4 1.673 0.027792 
flt4 0.669 0.029248 
fn1b 0.178 0.046524 
foxa1 0.706 0.021660 
foxa3 0.568 0.038352 
foxb1.1 0.598 0.024681 
foxc1b 0.452 0.018986 
foxd5 0.235 0.027300 
foxg1 1.326 0.014755 
foxk1 0.611 0.022269 
foxl2 0.401 0.027478 
foxn4 2.572 0.014755 
foxp1a 0.312 0.020665 
fstb 2.270 0.021660 
ftr67 0.484 0.041590 
ftr78 0.399 0.039909 
ftr79 0.293 0.050239 
furina 0.401 0.042024 
fut9 0.453 0.022799 
fyna 1.500 0.047537 
fzd3l 0.640 0.027300 
g12 0.335 0.036903 
gad1 5.437 0.009609 
gad2 2.071 0.020829 
gadd45b 0.221 0.017542 
gata1 0.504 0.045372 
gata2b 2.502 0.039949 
gata4 0.366 0.029105 
gata6 0.356 0.014755 
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Gene Fold Change P-value 
gats 0.479 0.033164 
gba2 0.739 0.044557 
gbp 0.355 0.037006 
gbx2 0.621 0.044932 
gc3 2.691 0.013226 
gch2 3.940 0.014755 
gchfr 1.631 0.038905 
gdf11 1.343 0.049292 
gem 0.648 0.031722 
gfi1.1 0.067 0.028718 
gfpt1 0.438 0.045683 
ghrb 1.399 0.038054 
glb1l 1.781 0.015977 
glcea 2.421 0.029248 
gle1l 2.419 0.030501 
glod4 1.609 0.028846 
glra4a 2.072 0.049716 
glula 0.550 0.031960 
gmpr 1.606 0.015223 
gmps 1.906 0.046610 
gnai2l 0.759 0.033951 
gnai3 0.739 0.043047 
gnao1b 1.697 0.043663 
gnat2 1.845 0.030990 
gnav1 0.519 0.023068 
gngt1 3.268 0.038605 
gnsb 0.480 0.032870 
golga5 0.556 0.015173 
gopc 0.705 0.046610 
gorasp2 0.859 0.050239 
got1 1.574 0.027300 
gpd1 0.522 0.030320 
gpd1b 1.750 0.049086 
gpib 5.472 0.033311 
gpm6aa 2.579 0.009320 
gpm6ab 1.804 0.050513 
gpr133 0.494 0.023803 
gpr143 1.570 0.036903 
gpr177 0.556 0.045918 
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Gene Fold Change P-value 
gpr27 1.540 0.023781 
gprc5c 0.563 0.046695 
gpsm2 1.724 0.011111 
gpx1a 1.429 0.038572 
gpx4a 0.555 0.047798 
grb10 0.531 0.040023 
grem2 1.931 0.029574 
grhl1 0.405 0.050594 
gria2a 2.111 0.029105 
gria2b 3.904 0.029248 
gria4b 1.446 0.027478 
grin1a 3.514 0.046797 
grna 1.991 0.026187 
grnas 1.243 0.030501 
grtp1a 2.079 0.044936 
gspt1 1.911 0.025136 
gstt1a 2.164 0.009320 
gtpbp4 0.596 0.038572 
gygl 2.254 0.027478 
h1fx 0.390 0.032713 
hadhb 1.691 0.050911 
hand2 0.557 0.040166 
hao1 3.186 0.043690 
hapln1a 2.040 0.036921 
hapln1b 0.314 0.027478 
hbae1 2.178 0.026632 
hbae3 2.306 0.009609 
hbbe3 1.703 0.025136 
hcrt 4.575 0.030758 
heatr1 0.624 0.027478 
her1 0.140 0.009609 
her12 1.129 0.043599 
her13 2.105 0.014138 
her2 1.800 0.015178 
her3 0.560 0.049156 
her5 0.340 0.017711 
her6 0.483 0.018469 
hey1 0.528 0.023781 
heyl 2.180 0.049430 
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Gene Fold Change P-value 
hhatla 3.099 0.014138 
hhatlb 2.175 0.011111 
hhex 0.370 0.043954 
hhip 0.777 0.033951 
hibadhb 1.546 0.026439 
hif1al2 4.268 0.025641 
hint2 1.349 0.049812 
hirip5 0.725 0.044932 
hkdc1 0.373 0.048596 
hlx1 2.241 0.023322 
hmbsb 1.488 0.039909 
hmox1 0.445 0.030758 
hmx4 1.618 0.039560 
hn1 2.189 0.030501 
hnf1a 0.485 0.026439 
hnf4a 0.317 0.036614 
homer1 3.619 0.011492 
hoxa10b 0.542 0.013186 
hoxa11a 0.444 0.035079 
hoxa13b 0.368 0.011111 
hoxa2b 0.771 0.042304 
hoxa9a 0.680 0.014755 
hoxa9b 0.492 0.012913 
hoxb10a 0.549 0.030758 
hoxb1a 0.282 0.011111 
hoxb7a 0.398 0.018918 
hoxb9a 0.602 0.048385 
hoxc10a 0.595 0.013226 
hoxc3a 0.428 0.032870 
hoxc6a 0.533 0.017081 
hoxc6b 0.740 0.014755 
hoxc8a 0.589 0.033216 
hoxd10a 0.659 0.038947 
hoxd12a 0.339 0.013186 
hprt1l 1.744 0.015465 
hsd17b10 1.716 0.025693 
hsd17b2 0.305 0.014755 
hsf2 0.802 0.026439 
hsp90ab1 0.834 0.046274 
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Gene Fold Change P-value 
hspa12b 1.823 0.011111 
hspb6 2.053 0.041501 
hspb9 1.848 0.041590 
htatip2 2.234 0.009609 
hyou1 0.681 0.050638 
icn 1.607 0.032981 
idh2 1.336 0.019960 
idh3g 0.571 0.030491 
ift46 2.272 0.011111 
igf2bp2a 1.367 0.047394 
igfbp1a 0.358 0.025136 
igfbp2a 1.884 0.031598 
igfbp3 1.638 0.049189 
igfbp5b 3.473 0.014755 
ighm 4.828 0.027478 
igsf21a 2.008 0.019960 
il15l 0.590 0.049905 
il17c 0.490 0.030901 
il17d 1.406 0.038352 
il17rd 0.317 0.014138 
il1rapl1a 2.067 0.017081 
ilk 0.836 0.038905 
inadl 0.610 0.030501 
ing5a 0.680 0.049696 
inhbaa 0.443 0.030758 
ins 2.256 0.044936 
insb 0.329 0.047394 
insig1 0.286 0.029469 
invs 0.446 0.025641 
ip6k2 1.797 0.021357 
irak3 0.520 0.044480 
irx2a 2.248 0.041829 
irx4a 2.758 0.014138 
irx6a 2.413 0.030262 
irx7 0.218 0.019651 
isl2a 0.526 0.014755 
islr2 2.904 0.023068 
isoc1 0.675 0.031834 
isoc2 2.398 0.049770 
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Gene Fold Change P-value 
itgb1b.2 3.151 0.017843 
itgb4 1.818 0.033601 
itih2 0.457 0.014755 
itm2bb 0.515 0.045918 
itpk1 0.406 0.027478 
ivd 1.796 0.023803 
ivns1abpa 0.604 0.013602 
jag2 0.591 0.039431 
jagn1b 0.742 0.045331 
jmjd6 0.231 0.025753 
jph2 2.163 0.036614 
junbl 0.389 0.014755 
kbtbd8 1.525 0.049448 
kcnd3 1.512 0.046681 
kcnip3 0.433 0.017081 
kcnip3l 3.320 0.029852 
kcnip3l 1.961 0.043663 
kctd6 1.340 0.043047 
kctd7 1.778 0.000083 
kdm6b 1.733 0.031183 
kdr 0.410 0.032723 
keap1a 1.680 0.017081 
kif3c 2.537 0.043599 
kif5a 2.130 0.042038 
klf13l 1.624 0.041046 
klf2b 1.522 0.032881 
klf4 0.422 0.037913 
klf7 1.367 0.035293 
klhdc6 5.852 0.016413 
klhl31 2.011 0.026439 
kpna2 1.526 0.030758 
krcp 1.269 0.035344 
krt1-19d 2.178 0.011449 
krt8 0.679 0.027478 
lama5 0.474 0.038947 
lamb1 0.330 0.016556 
lamb2 2.251 0.046797 
lamb4 2.357 0.015977 
ldb3a 2.200 0.030758 
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Gene Fold Change P-value 
ldb3b 2.864 0.014755 
ldhb 1.348 0.023632 
ldhd 1.879 0.019960 
ldlrap1a 1.663 0.041348 
ldlrap1b 0.415 0.026439 
lect2l 0.057 0.044019 
lef1 0.374 0.031183 
lgals1l2 1.802 0.027478 
lhx1b 1.614 0.042024 
lhx6 3.309 0.049350 
lim2.4 13.737 0.041070 
lingo1b 3.036 0.026632 
lipf 1.354 0.025752 
lman1 0.683 0.015582 
lmf2 1.640 0.025727 
lmo1 1.432 0.011111 
lmo2 0.369 0.024306 
lmx1b.2 0.611 0.014755 
lnx2a 2.144 0.021660 
loxl5b 0.311 0.026187 
lratb 0.580 0.020047 
lrrc4a 2.559 0.046977 
lrrc50 0.629 0.046610 
lrrc8a 0.739 0.043642 
lrrn1 2.587 0.027300 
lrrtm1 2.080 0.009728 
lrrtm2 2.205 0.038054 
lsrl 0.753 0.027664 
lyricl 0.633 0.049349 
mab21l1 2.989 0.014755 
maf 1.926 0.019970 
mafba 0.491 0.030491 
mafg2 1.714 0.039225 
man2a1 0.458 0.021357 
map1b 2.224 0.029248 
map1lc3b 0.615 0.030901 
map3k5 0.686 0.029105 
mapk14a 0.567 0.050856 
mapk3 0.531 0.024864 
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Gene Fold Change P-value 
mapk4 1.519 0.043599 
mark1 2.440 0.031699 
marveld2b 0.443 0.027478 
matn3a 2.064 0.020422 
matn4 2.767 0.015977 
mc5ra 4.606 0.009320 
mcl1b 0.231 0.021660 
mdh1a 1.607 0.046681 
mdh1b 2.942 0.009320 
mdka 1.394 0.027478 
mdm2 0.319 0.031183 
me1 1.478 0.037831 
me2 1.845 0.014138 
me3 2.194 0.036903 
mecr 1.363 0.027035 
meox1 0.276 0.027478 
mespb 0.173 0.045657 
metap2l 1.718 0.037373 
mfap1 0.845 0.049189 
mfng 2.444 0.014755 
mfsd2b 1.615 0.025968 
mgll 0.631 0.037903 
mhc1uba 0.296 0.049189 
mif 1.728 0.030262 
mip1 19.248 0.032881 
mitfa 2.741 0.025727 
mkln1 1.642 0.023999 
mknk2b 0.178 0.014755 
mkrn1 1.325 0.049430 
mllt3 0.288 0.036614 
mlphb 3.028 0.019970 
mmp23a 2.423 0.050560 
mobkl1a 1.287 0.033216 
mogat2 0.515 0.043773 
moxd1 1.323 0.041501 
mpeg1 3.179 0.030841 
mpp1 0.549 0.026632 
mpp5a 0.639 0.014755 
mpzl2 0.702 0.021357 
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Gene Fold Change P-value 
mpzl3 0.511 0.023632 
mrps18c 1.276 0.046681 
mrps31 2.308 0.048167 
msi2a 0.667 0.049375 
msn 7.040 0.015805 
msxb 0.492 0.015977 
mtch2 1.239 0.042849 
mterfd1 0.513 0.043773 
mtf2 0.502 0.042038 
mthfsd 1.501 0.015406 
mtmr8 0.678 0.026102 
murc 3.260 0.011492 
mut 1.208 0.046610 
mxa 0.308 0.014138 
mxd3 1.554 0.036921 
mxra8a 1.807 0.041590 
mybl2 1.318 0.019803 
mybpc3 3.584 0.015406 
myf5 0.150 0.035004 
myf6 2.390 0.019970 
myh11 0.273 0.014755 
myh6 1.913 0.038181 
mylk3 2.706 0.035079 
mylz2 3.930 0.014138 
mylz3 3.789 0.014755 
myo15l1 0.279 0.014755 
myoc 0.477 0.026439 
myog 0.534 0.038605 
myom1a 3.206 0.048905 
myoz2 2.344 0.025610 
mypt2 0.751 0.046775 
nadk 0.686 0.044936 
nae1 1.501 0.028212 
nalcn 2.041 0.037961 
napgl 0.520 0.030501 
narf 0.623 0.038572 
nbas 1.389 0.038572 
nccrp1 1.752 0.049430 
ncoa3 0.606 0.049812 
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Gene Fold Change P-value 
ND5 1.825 0.023541 
ndel1a 1.788 0.038905 
ndrg1 0.282 0.013065 
ndrg4 2.068 0.046722 
ndufa10 1.433 0.035785 
ndufab1 1.397 0.025968 
ndufb5 1.311 0.038489 
nefl 3.201 0.020422 
nefm 2.974 0.020422 
negr1 1.457 0.031329 
net1 0.642 0.017863 
neurod4 2.279 0.017081 
nf2a 0.676 0.015937 
nfe2l3 1.600 0.030030 
ngf 0.559 0.027478 
nipsnap1 0.302 0.043954 
nitr3a 3.417 0.028846 
nkx1.2la 0.513 0.032190 
nkx1.2lb 4.125 0.039082 
nkx2.5 0.542 0.021660 
nlcam 0.537 0.016033 
nme2l 0.247 0.031183 
nmnat2 1.780 0.030501 
nog1 0.477 0.036614 
nola1 0.699 0.039954 
nom1 0.667 0.035595 
nop10 0.600 0.025727 
nos2b 2.314 0.019697 
notch1a 0.544 0.023781 
notch2 0.696 0.025641 
nots 0.736 0.017843 
nox1 0.099 0.044737 
npb 2.131 0.011735 
nphs2 0.808 0.043047 
npl 0.557 0.043861 
npsnl 2.241 0.037831 
npy1r 2.541 0.045991 
nr1h5 1.563 0.044737 
nr2f1a 1.937 0.039175 
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Gene Fold Change P-value 
nr2f1b 2.322 0.027904 
nr4a2a 1.394 0.043165 
nr5a1b 3.181 0.046139 
nr6a1a 0.233 0.034021 
nrarpb 2.415 0.043047 
nrg1 0.439 0.043731 
nrp1a 0.538 0.015982 
nrp2b 0.522 0.049189 
nrxn1b 2.882 0.037196 
nrxn3b 2.412 0.040154 
nsf 2.940 0.014755 
ntd5 0.518 0.031863 
nubpl 0.875 0.048527 
nudt15 0.440 0.025693 
nudt4 1.299 0.015406 
numbl 0.400 0.018972 
nup133 1.270 0.044936 
nvl 0.705 0.048679 
nxph1 1.909 0.040146 
oat 4.751 0.010347 
oclna 0.683 0.041496 
oep 0.335 0.014138 
ogt.2 1.369 0.023376 
olfm1b 3.003 0.013925 
olfml3 1.653 0.036903 
onecut1 2.481 0.019803 
opa3 1.464 0.049939 
or125-2 1.257 0.031856 
os9 1.399 0.041590 
osbpl9 0.743 0.023781 
otpb 2.726 0.050911 
otx1 0.684 0.030841 
otx1l 0.526 0.035344 
oxsr1b 0.527 0.014755 
p2rx3b 1.813 0.029264 
p2rx5 2.328 0.043676 
p4ha1 0.241 0.029720 
p4ha2 0.235 0.027478 
pabpc1b 1.570 0.028846 
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Gene Fold Change P-value 
paics 0.454 0.023541 
pak1 0.647 0.017711 
paqr3b 1.511 0.034176 
paqr8 0.657 0.028320 
pard3 0.729 0.039889 
park7 2.212 0.042160 
parp12b 1.300 0.014755 
parvb 1.600 0.050667 
pax2a 0.641 0.029574 
pax9 1.697 0.033873 
pbk 1.374 0.046555 
pbp 1.666 0.012299 
pbx1a 1.614 0.027599 
pcbd1 1.371 0.037196 
pcdh17 2.182 0.023541 
pcdh1a4 2.405 0.031140 
pcdh1g18 2.061 0.030518 
pcdh1gb2 2.031 0.035947 
pcdh2ac 1.930 0.013451 
pcdh8 0.104 0.044533 
pcm1 1.669 0.049769 
pcmt 2.271 0.018972 
pcsk1nl 3.268 0.014138 
pcyt1bb 0.530 0.015977 
pdcd6ip 1.324 0.009609 
pde5a 1.736 0.014983 
pdgfra 0.715 0.021756 
pdlim7 2.694 0.014138 
pdzk1ip1l 2.521 0.030030 
pea3 0.451 0.034276 
peli2 0.532 0.019486 
penkl 2.930 0.016384 
per1b 0.389 0.030501 
pex12 1.480 0.031863 
pfkfb1 0.604 0.021014 
pfkfb2 2.009 0.027300 
pfkfb3 0.137 0.012839 
pfkfb4 0.566 0.013451 
pfkfb4l 0.639 0.017711 
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Gene Fold Change P-value 
pfkma 5.920 0.047859 
pfn2 1.274 0.030171 
pgam1a 0.403 0.025582 
pgam1b 1.501 0.029264 
pgd 1.559 0.043954 
pglyrp2 0.657 0.009703 
phactr2 1.337 0.038351 
phax 1.574 0.014755 
phlda3 0.318 0.048478 
pigp 3.020 0.017843 
pik3c3 1.628 0.049189 
pik3r3 1.726 0.046344 
pim1 0.097 0.025136 
piwil1 0.528 0.027922 
pla2g12b 0.692 0.025538 
pla2g15 0.753 0.032723 
plcd1b 0.773 0.016384 
plcxd3 2.014 0.025136 
plekha8 1.592 0.044341 
plk2 0.548 0.014755 
plod1a 0.507 0.009609 
plp1a 2.821 0.030901 
plxna4 1.592 0.049430 
plxnd1 0.652 0.043599 
pno1 0.688 0.028857 
pnpo 3.410 0.042820 
pnx 0.266 0.048096 
pola1 1.470 0.027300 
pold2 1.496 0.027300 
polr1e 0.707 0.039175 
polr2c 1.669 0.013925 
pomgnt1 1.251 0.043773 
popdc1 2.494 0.029248 
popdc3 4.245 0.046695 
pou12 1.427 0.019370 
pou3f3b 1.725 0.028718 
pp 0.488 0.050577 
ppa1 1.712 0.039162 
ppcdc 1.735 0.046274 



 

  230 

Gene Fold Change P-value 
ppib 1.142 0.031183 
ppm1k 1.304 0.045331 
ppp1cc 1.485 0.050856 
ppp2r4 1.283 0.050239 
prcp 2.240 0.029973 
prdm1a 0.450 0.019388 
prdm1b 0.208 0.047394 
prdx6 2.909 0.032881 
prickle1a 0.152 0.037831 
prickle1b 0.518 0.014755 
prim1 1.648 0.036903 
prkar2ab 1.967 0.042786 
prkch 0.399 0.044064 
prl 3.767 0.042677 
prlrb 0.358 0.014755 
prnprs3 1.848 0.014755 
prox1 1.491 0.038947 
prph 2.007 0.013226 
prss35 3.970 0.049086 
prtga 0.660 0.046610 
psap 0.701 0.030501 
pskh1 1.574 0.018972 
psmb9b 0.197 0.016384 
psme1 0.084 0.040023 
ptgisl 0.553 0.022563 
ptgs1 0.370 0.033996 
ptgs2b 0.104 0.014755 
pth2 5.652 0.013925 
ptpn4 0.661 0.033996 
ptprk 0.469 0.021660 
ptpru 0.630 0.042431 
ptrf 2.043 0.027478 
purb 2.028 0.041446 
pvalb1 5.177 0.027478 
pvalb2 4.830 0.038905 
pvalb4 4.403 0.023781 
pvalb5 6.742 0.038489 
pvrl2l 0.478 0.049716 
pxk 0.645 0.013925 
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Gene Fold Change P-value 
pyya 6.151 0.042958 
qdpra 2.161 0.041774 
rab14 1.750 0.015821 
rab24 0.877 0.047798 
rab38 2.826 0.009320 
rab39b 2.022 0.014138 
rab3c 1.574 0.038489 
rab3d 1.380 0.014755 
rab6b 1.949 0.021014 
rac2 1.522 0.025693 
racgap1 0.764 0.043047 
rad23b 0.430 0.038905 
rarga 0.469 0.014755 
rb1 1.335 0.042842 
rbb4 1.407 0.044973 
rbks 1.842 0.015406 
rbp1a 1.519 0.025727 
rbp4 4.338 0.036614 
rbpms2 0.505 0.021660 
rchy1 0.759 0.037066 
rcl1 0.583 0.022563 
rcv1 0.358 0.027792 
rd3 1.396 0.042024 
rdh5 3.266 0.043165 
rel 0.404 0.034176 
rfx2 0.476 0.025641 
rfx4 0.379 0.038905 
rgl1 0.511 0.027734 
rgs17 2.506 0.014138 
rgs20 1.845 0.039137 
rgs4 0.250 0.011111 
rgs7bpb 1.623 0.047321 
rhag 3.123 0.003761 
rhbg 0.350 0.015406 
rhogc 1.204 0.039280 
rhoub 0.496 0.043645 
ripply1 0.151 0.042038 
ripply2 0.122 0.041590 
rnaseka 0.802 0.046371 
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Gene Fold Change P-value 
rnd1l 0.495 0.014138 
rnd3a 0.622 0.025693 
rnf11 0.636 0.032623 
rnf14 1.279 0.025727 
rnf17 0.740 0.029248 
rnf24 0.439 0.015406 
rnls 1.514 0.030841 
rorab 2.240 0.047981 
rpl10a 0.770 0.047798 
rpl28l 0.804 0.050203 
rpl4 0.787 0.025641 
rpl8 0.759 0.039732 
rprm 0.258 0.033996 
rps24 1.512 0.035028 
rqcd1 2.080 0.025727 
rrbp1 0.771 0.030901 
rrm1 1.415 0.048096 
rtf1 1.499 0.049769 
rtn1a 1.861 0.014755 
rtn1b 2.252 0.040600 
rtn2b 3.292 0.034652 
rtn4a 1.590 0.043861 
rtn4rl1 1.468 0.032779 
rundc3b 0.282 0.027599 
runx1 0.343 0.023312 
runx3 0.343 0.047798 
rxraa 0.614 0.042615 
ryr1a 1.370 0.036222 
s100a10a 0.442 0.035004 
s100a10b 1.636 0.041921 
s100u 0.683 0.017915 
s1pr1 1.978 0.017296 
sall1a 1.960 0.027404 
sall4 0.393 0.035806 
sap30l 1.155 0.045598 
sat1 1.792 0.036157 
scn4ab 3.359 0.029248 
scn4ba 2.827 0.015406 
scpp8 0.620 0.043676 
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Gene Fold Change P-value 
sdad1 0.637 0.040043 
sdcbp 0.624 0.031863 
sdha 1.527 0.021660 
sdr16c5 2.091 0.014755 
sec14l1 0.686 0.049189 
sec61al2 0.547 0.023541 
sec61b 0.541 0.045321 
sema3fb 0.525 0.014755 
sepn1 0.717 0.046977 
sept4b 0.392 0.019917 
sept9a 0.659 0.050577 
serac1 1.803 0.035028 
serf2 1.242 0.034208 
serhl 2.840 0.023878 
serinc1 0.716 0.036157 
sesn1 0.532 0.021651 
setd3 1.474 0.024006 
setd8a 0.865 0.023541 
setmar 2.357 0.030758 
sfrs7 1.817 0.046977 
sgcd 2.631 0.023541 
sgce 1.771 0.046771 
sgcg 2.572 0.043191 
sgk1 0.502 0.038572 
sh3bp5 0.657 0.024941 
sh3gl2 1.481 0.044064 
shd 0.572 0.025727 
shmt1 0.518 0.038489 
shox 2.075 0.043773 
shox2 2.892 0.027300 
silva 2.744 0.012650 
silvb 4.092 0.014138 
six4.2 0.681 0.043191 
six6b 2.540 0.038544 
skap1 0.554 0.041590 
slc10a1 2.837 0.049863 
slc10a4 2.396 0.046797 
slc12a2 1.516 0.030320 
slc16a12b 1.433 0.039606 
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Gene Fold Change P-value 
slc17a6l 3.073 0.021014 
slc1a2 2.014 0.023165 
slc1a3 1.323 0.038198 
slc20a1a 1.625 0.050207 
slc25a22 1.945 0.028402 
slc25a25 2.030 0.030901 
slc25a28 1.426 0.038947 
slc25a3 0.670 0.048096 
slc25a36b 0.440 0.027379 
slc25a4 5.194 0.033573 
slc25a46 1.646 0.030501 
slc25a5 0.751 0.017542 
slc26a5 0.614 0.038947 
slc2a15a 4.284 0.009320 
slc2a15b 2.744 0.012309 
slc31a1 0.379 0.014755 
slc34a2aas 1.528 0.040096 
slc34a2b 0.527 0.031863 
slc37a4 0.568 0.036390 
slc38a3 0.527 0.017542 
slc38a4 2.039 0.045321 
slc38a7 0.557 0.031799 
slc39a6 0.791 0.043047 
slc39a7 1.355 0.039338 
slc40a1 3.283 0.050513 
slc46a1 0.712 0.025727 
slc4a1 2.800 0.017711 
slc4a1b 1.658 0.029264 
slc4a4b 1.574 0.047798 
slc5a11 1.708 0.027478 
slc5a9 2.076 0.017863 
slc6a5 3.471 0.015982 
slc7a7 1.666 0.046681 
slc8a3 1.566 0.046797 
slc9a3r2 0.767 0.036390 
smad2 0.606 0.040600 
smad3b 2.601 0.014755 
smad7 0.550 0.014755 
smo 0.701 0.016384 
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Gene Fold Change P-value 
smpx 1.528 0.049769 
smyd1a 2.814 0.014755 
smyd2b 1.936 0.030501 
smyd3 0.714 0.036614 
snai1a 0.340 0.042677 
snai1b 0.172 0.049423 
snap25a 2.380 0.030990 
snap25b 3.535 0.019960 
sncb 1.909 0.027478 
sncga 2.162 0.033601 
sncgb 2.203 0.009320 
snd1 0.431 0.011111 
snx5 1.292 0.035693 
sod2 2.760 0.012299 
sox11a 1.454 0.037831 
sox21b 1.645 0.046435 
sox4a 1.674 0.050390 
sox7 0.408 0.027537 
sox9b 0.388 0.030320 
sp5 0.631 0.017711 
sp5l 0.312 0.020422 
sp7 0.327 0.043668 
sp8 0.584 0.021660 
sp8l 0.801 0.038947 
sp9 0.575 0.013268 
spam1 3.967 0.046610 
sparcl 2.482 0.044064 
spata6 1.384 0.038528 
spcs3 0.745 0.045331 
spi1 0.546 0.036908 
spon1a 2.368 0.046681 
sprn 4.612 0.015223 
spry2 0.674 0.028846 
spry4 0.514 0.009320 
spsb4a 0.607 0.036529 
sptb 2.449 0.036614 
src 0.533 0.014755 
srl 1.800 0.015545 
srp68 0.747 0.042820 
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Gene Fold Change P-value 
ssbp3 0.555 0.046899 
ssr1 0.413 0.046610 
ssr2 0.582 0.028980 
st13 1.343 0.039247 
st6galnac5 1.918 0.037831 
st8sia1 1.539 0.044936 
st8sia7.1 0.355 0.030990 
stac3 2.688 0.014755 
stap2b 0.261 0.043663 
stard10 0.554 0.043599 
stat1a 0.495 0.021660 
stm 0.456 0.021651 
stmn1b 2.799 0.049189 
stmn2a 2.003 0.031863 
stmn2b 1.839 0.014138 
stnnc 2.090 0.028846 
stom 0.700 0.043047 
strada 1.514 0.021660 
stx11b.1 0.516 0.046888 
stxbp1 2.178 0.014755 
sub1 1.405 0.044019 
sucla2 1.697 0.019970 
suclg1 1.367 0.023781 
sulf1 0.654 0.033164 
sulf2 1.738 0.030758 
sult1st4 3.736 0.031203 
sult1st6 2.605 0.027875 
sult2st1 0.677 0.037831 
suv39h1a 1.425 0.036921 
syn2a 2.136 0.017711 
syn2b 2.589 0.025641 
syngr3 1.906 0.017296 
syntaxin1b 1.953 0.031863 
syt1 1.572 0.011111 
syt11a 1.777 0.028320 
syt12 2.177 0.047798 
syt4 1.951 0.014138 
tac1 2.125 0.015977 
taf1b 0.660 0.027300 
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tagln2 0.533 0.023068 
tal1 0.402 0.035028 
tal2 2.335 0.023541 
tbc1d7 0.664 0.035028 
tbr1 2.291 0.023084 
tbx15 1.764 0.009320 
tbx16 0.066 0.024006 
tbx24 0.096 0.027478 
tbx2a 0.605 0.023781 
tbx3b 0.463 0.003518 
tbx6 0.098 0.036614 
tcf7l1a 0.558 0.013925 
tcf7l2 1.510 0.046797 
tead1 0.242 0.029973 
tekt2 1.758 0.048096 
tfa 0.596 0.043047 
tfap2a 0.718 0.026588 
tfap2b 1.766 0.041590 
tfap2c 0.655 0.045331 
tfap2e 3.459 0.009320 
tfcp2l1 1.620 0.042849 
tfdp1 0.748 0.023541 
tfdp2 1.717 0.019033 
tfip11 0.794 0.015982 
tgm2 3.054 0.015406 
thbs1 2.271 0.027537 
thbs3b 0.534 0.049793 
thbs4b 0.683 0.040267 
them2 1.790 0.004320 
thoc5 0.591 0.025641 
tie1 0.669 0.033316 
tigarb 0.622 0.049169 
tjp2b 0.768 0.029973 
tm9sf3 0.794 0.039175 
tmbim1 0.392 0.042155 
tmem110l 0.736 0.014755 
tmem115 0.714 0.039082 
tmem150 0.551 0.030990 
tmem178 2.229 0.020047 
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tmem57a 1.367 0.045260 
tmem59l 1.923 0.031863 
tmod4 2.466 0.026187 
tmprss13a 1.855 0.019960 
tmprss4a 0.629 0.038605 
tmsb 2.396 0.013925 
tmtc3 0.652 0.043047 
tmtc4 1.775 0.030501 
tnc 1.976 0.043047 
tnfsf10l2 1.926 0.036207 
tnks 0.607 0.014755 
tnnc 2.129 0.021081 
tnnt1 1.842 0.050177 
tnnt3a 4.749 0.028320 
tnnt3b 6.382 0.047350 
tnr 1.607 0.028846 
tnrc5 1.643 0.025529 
tnw 3.710 0.011785 
tomm20 0.641 0.025968 
tor2a 0.782 0.026632 
tp53bp2 0.693 0.040023 
tp63 0.495 0.031183 
tp73 0.693 0.030501 
tph2 1.606 0.049430 
tpm3 1.698 0.046681 
tpm4 0.725 0.027728 
traf3 0.217 0.049716 
traf4b 1.493 0.038489 
tram1 0.616 0.036614 
trim71 0.397 0.028846 
trpc4apa 0.807 0.028320 
trpc5 1.468 0.035947 
trpn1 2.188 0.038947 
trpv6 2.149 0.023659 
tsc22d2 0.467 0.011735 
tspan15 0.491 0.043477 
tspan7b 1.904 0.031553 
ttc25 0.683 0.034909 
ttna 3.607 0.015720 
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ttnb 1.804 0.046835 
ttpa 0.760 0.035344 
tuba1 3.065 0.025968 
tuba2 2.350 0.017081 
twf2 3.363 0.012753 
twistnb 0.457 0.024016 
txnip 0.424 0.011111 
txnrd1 2.027 0.027038 
tyms 1.521 0.029105 
tyrp1b 6.180 0.018469 
tyw3 0.734 0.046797 
uap1 0.669 0.043540 
ube2r2 1.502 0.027173 
ube2w 0.672 0.024306 
ubn2 0.740 0.022269 
ubtf 1.520 0.030758 
ubtfl 1.917 0.046610 
uchl3 1.719 0.027478 
ulk1 2.334 0.014138 
unc119.1 0.745 0.014755 
unc119.2 1.575 0.049863 
unc5b 0.539 0.046771 
uncx4.1 0.373 0.038572 
unk 0.431 0.020223 
upk3l 1.951 0.015406 
uso1 0.623 0.040419 
usp16 0.833 0.037436 
usp25 0.786 0.049863 
uvrag 0.616 0.027191 
vamp3 0.796 0.050048 
vat1 2.140 0.027537 
vcanb 1.976 0.024681 
vcl 1.803 0.013268 
vdac3 1.664 0.050594 
vegfab 1.761 0.038834 
vgll2b 0.547 0.015173 
vhl 0.434 0.027300 
vmhc 0.729 0.013065 
vsx1 1.901 0.014755 
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Gene Fold Change P-value 
vtnb 5.096 0.033601 
wdsof1 0.630 0.014755 
wif1 0.680 0.042150 
wnt16 0.650 0.044936 
wnt2b 0.276 0.011324 
wnt4a 0.597 0.015406 
wnt5b 0.495 0.016384 
xdh 2.761 0.029248 
xirp2 2.470 0.014339 
xirp2l 8.025 0.038211 
xpo7 0.819 0.030758 
ypel1 0.250 0.040170 
ypel3 0.469 0.049442 
ywhae2 0.600 0.040043 
ywhag1 1.874 0.020422 
ywhah 1.154 0.047659 
ywhaqa 0.631 0.037831 
zbtb33 1.750 0.044936 
zc3h15 1.624 0.046797 
zcchc9 0.711 0.038874 
zfand1 1.425 0.041446 
zfand5a 0.540 0.023781 
zfhx1 0.528 0.049812 
zfyve21 0.696 0.014755 
znf503 0.555 0.046775 
znf536 2.069 0.009320 
znf598 1.313 0.045244 
znf703 0.621 0.039732 
znfl1 0.376 0.043663 
znrd1 0.728 0.041442 
znrf1 2.194 0.024016 
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Table C2 – Significantly changed genes at 36 hpf in response to GR knockdown 

Gene Fold Change P-value 
a2bp1 1.904 0.020380 
aanat2 0.601 0.040592 
aatf 0.590 0.038630 
abat 0.786 0.040365 
abcc9 3.522 0.049154 
abcd3b 0.645 0.044795 
abhd2a 0.762 0.043023 
acadl 2.723 0.041818 
acat1 1.983 0.041292 
accn2a 2.385 0.041795 
accn2c 1.809 0.044245 
ache 2.211 0.049497 
acsl4a 0.607 0.035106 
acsl4l 0.461 0.040956 
acss1 0.549 0.032396 
acta1b 3.130 0.032631 
actn3a 2.852 0.034461 
ada 2.820 0.041377 
adam10b 1.279 0.044997 
adam17a 0.880 0.045768 
adcyap1b 2.551 0.028907 
adi1 0.688 0.047397 
adipor1b 0.785 0.046466 
adssl1 2.639 0.043463 
agpat4 0.737 0.050355 
agr2 2.127 0.045159 
agxtl 1.837 0.044997 
ahr2 1.654 0.041795 
ahrrb 2.616 0.044795 
aig1 2.750 0.043387 
alas1 0.569 0.031970 
aldh2b 1.926 0.045514 
aldh3d1 0.615 0.046829 
allc 4.029 0.044121 
amph 2.053 0.044004 
amt 0.696 0.048422 
ank1 2.872 0.035106 
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Gene Fold Change P-value 
aox1 2.182 0.039477 
apba1 1.410 0.044795 
aplp 2.797 0.032396 
apoea 3.179 0.032396 
appb 1.756 0.032974 
arhgef7b 1.253 0.048823 
arl15b 1.336 0.028477 
arl6ip4 0.561 0.050828 
arl6ip5 0.439 0.048823 
arpc1b 2.436 0.039705 
asb16 2.225 0.041050 
asb8 1.653 0.045514 
ascl1a 2.276 0.044245 
ascl1b 2.843 0.046598 
aspdh 2.778 0.040365 
atad4b 0.483 0.046320 
atl1 1.790 0.048598 
atoh2a 3.744 0.034461 
atoh2b 3.008 0.048598 
atp2a1 2.591 0.041818 
atp2a1l 25.433 0.044997 
atp2a2a 0.693 0.035106 
atp2b3a 2.537 0.034461 
atp6v1b2 2.247 0.032396 
avpl 2.752 0.050266 
b3gat2 1.751 0.046083 
bach2 1.806 0.035106 
barhl1.1 2.819 0.035106 
barx1 3.155 0.044795 
bcl11a 5.987 0.044121 
bdnf 2.006 0.041795 
bhlhb3l 0.576 0.045159 
bmpr2b 1.756 0.032396 
bod1 1.165 0.050828 
brpf1 1.355 0.044936 
brunol5 2.403 0.050266 
c1d 0.690 0.035106 
c1qtnf4 2.422 0.032396 
c6 0.526 0.046751 
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Gene Fold Change P-value 
ca14 8.968 0.049517 
ca2 2.205 0.046751 
cabp1 2.744 0.034163 
cacna1s 2.172 0.045133 
cacna2d1a 1.770 0.045514 
cacnb2b 0.425 0.039705 
cacnb4b 2.798 0.047676 
cacng2 2.316 0.032396 
cacng2b 2.116 0.040296 
cad 0.663 0.044245 
cadm2a 2.735 0.045761 
cadm3 2.241 0.046822 
cadm4 1.685 0.032919 
calb2 2.560 0.041795 
calb2l 3.645 0.024975 
calca 2.496 0.050346 
calhm2 2.596 0.044245 
calm1b 1.537 0.047563 
calrl 0.726 0.043387 
camk2a 2.368 0.046235 
camk2d2 3.115 0.031433 
camkv 2.579 0.044245 
camsap1 1.951 0.039705 
cant1b 0.546 0.035106 
caprin1a 1.237 0.043800 
caspb 6.239 0.039669 
cblb 1.837 0.035106 
cbln1 3.338 0.033095 
cbln2b 1.798 0.049186 
cbln4 2.006 0.024975 
cbx1b 2.351 0.034163 
cbx4 1.189 0.048823 
ccbl1 1.765 0.034163 
ccdc85al 2.494 0.031970 
ccl-c11b 2.133 0.044997 
ccng1 0.566 0.049154 
cd9 1.250 0.040832 
cdc14aa 0.732 0.032396 
cdc37 0.810 0.047397 
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Gene Fold Change P-value 
cdh10 1.806 0.047397 
cdk5r2 3.220 0.039477 
cdkn1b 1.213 0.045159 
chad 9.655 0.050206 
chchd3 1.762 0.049236 
chordc1 0.716 0.032974 
chrna4 1.839 0.047920 
chst1 2.146 0.049154 
cirh1a 0.549 0.044004 
ciz1 1.170 0.049154 
ckma 3.325 0.040832 
ckmb 2.923 0.041795 
clasp2 1.576 0.035106 
clcn7 0.794 0.047397 
cldn19 2.540 0.037957 
cldnb 0.493 0.041795 
cldne 0.499 0.044245 
cldnf 1.614 0.047563 
clstn1 1.614 0.047563 
cmlc1 0.523 0.040832 
cnih2 4.204 0.021690 
cntn1b 4.417 0.035106 
col1a1 2.684 0.043905 
col1a2 2.127 0.044083 
col1a2 1.501 0.048422 
col1a3 3.105 0.048598 
col1a3 3.105 0.048598 
col6a1 3.053 0.034461 
col6a1 3.053 0.034461 
col6a2 2.988 0.044795 
col6a2 2.988 0.044795 
colm 3.557 0.034461 
colm 3.557 0.034461 
coro1b 1.875 0.038630 
coro1b 1.875 0.038630 
cplx2 2.472 0.040832 
cpt1b 3.835 0.044245 
cpt1b 4.143 0.045159 
cpvl 0.783 0.049691 
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Gene Fold Change P-value 
crabp1a 2.007 0.048823 
crabp1b 2.232 0.034461 
crfb1 1.749 0.045159 
crhbp 1.434 0.039477 
crip2 0.418 0.044900 
crispld1 3.028 0.047563 
crlf1a 0.665 0.037484 
cry3 0.611 0.046320 
cryaba 0.353 0.037660 
cryba1b 7.381 0.024975 
cryba2a 8.994 0.040296 
cryba4 9.623 0.020380 
crybb1 13.092 0.042308 
crybb3 0.818 0.050266 
crygm2a 29.380 0.035106 
crygm2b 45.889 0.048823 
crygm3 19.986 0.049517 
crygmx 10.219 0.020380 
crygn2 8.704 0.039477 
csdc2 2.792 0.039705 
csf1b 3.004 0.046822 
csmd2 2.013 0.024975 
csnk1e 1.834 0.048294 
cspg5 1.702 0.044245 
ctnna2 3.090 0.047887 
ctsba 0.577 0.045003 
ctssa 4.286 0.032396 
cugbp1 0.685 0.048422 
cugbp2 2.212 0.045003 
cul3 1.186 0.048598 
cx23 3.177 0.043800 
cx43.4 0.519 0.047920 
cx44.1 2.787 0.050126 
cygb1 0.415 0.041818 
cygb2 2.360 0.039705 
cyp19a1b 1.504 0.048598 
cyp1b1 3.484 0.041795 
cyp2j27 2.084 0.040956 
cyp2x12 1.813 0.048823 
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Gene Fold Change P-value 
cyp4v2 2.609 0.039750 
dab1 2.363 0.047563 
dbx1a 1.988 0.045768 
dck 1.738 0.045133 
dclk1 1.974 0.040956 
dclk2 1.677 0.040331 
dcp1a 1.358 0.050525 
dct 3.512 0.039705 
ddb2 0.360 0.041795 
ddc 2.840 0.040296 
ddx18 0.570 0.046320 
ddx51 0.410 0.044083 
ddx55 0.700 0.050870 
ddx56 0.593 0.048528 
def 0.658 0.048823 
defbl1 6.124 0.039477 
dennd4a 0.869 0.047397 
dgat1 2.544 0.040365 
dhdhl 0.637 0.049497 
dhrs11a 0.735 0.039681 
dhx16 0.756 0.044245 
dhx37 0.590 0.048422 
dio2 2.788 0.044795 
diras1 3.251 0.037660 
dixdc1 1.713 0.046320 
dkc1 0.561 0.044795 
dla 2.062 0.037952 
dlb 2.108 0.044245 
dlc 1.451 0.050355 
dld 1.857 0.020380 
dlx4a 2.657 0.044795 
dlx6a 1.649 0.048422 
dnase1l3l 12.346 0.050266 
dnmt4 0.623 0.044245 
dnttip2 0.622 0.041779 
dpp6b 2.220 0.022280 
dpyd 1.516 0.049038 
dpysl2 1.680 0.040296 
dpysl4 1.810 0.049517 
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dpysl5b 1.778 0.047887 
drd2a 1.610 0.022397 
drd4a 1.590 0.021690 
dtnb 1.791 0.039669 
dusp5 0.459 0.045133 
dynlt3 1.378 0.046215 
eaf1 1.306 0.034163 
eapp 0.762 0.041795 
ebna1bp2l 0.536 0.040296 
edf1 0.673 0.046751 
edn1 0.798 0.049038 
ednrb1 2.170 0.045159 
efcab7 1.294 0.045514 
eif2b3 0.571 0.044083 
eif6 0.686 0.043800 
ek1 1.885 0.044795 
elavl4 2.587 0.050355 
elmo1 1.501 0.040832 
elovl4 1.452 0.048598 
elovl6 2.029 0.041795 
emilin1a 1.451 0.032396 
eno2 1.603 0.042308 
eno3 2.000 0.031433 
enpp6 2.229 0.041292 
eomesa 1.661 0.049154 
epyc 5.508 0.024975 
ercc2 0.755 0.044795 
etv1 1.786 0.047233 
evi1 1.679 0.044900 
evla 1.518 0.040956 
evlb 2.565 0.039705 
evx1 1.976 0.037957 
exoc6 2.022 0.049154 
exosc8 0.613 0.032974 
eya4 1.582 0.034163 
f5 2.728 0.049691 
f7i 2.167 0.042787 
fabp11b 10.868 0.049517 
fabp7a 4.000 0.046235 
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fah 2.312 0.043967 
fam70a 6.040 0.035106 
fancd2 0.840 0.040832 
fancl 0.755 0.032396 
fbl 0.655 0.037957 
fbln1 0.486 0.049517 
fbp1a 1.462 0.046829 
fbp2 4.126 0.020380 
fdps 0.790 0.043463 
fech 0.392 0.039692 
fez1 3.566 0.036240 
fgf13l 2.427 0.020380 
fgf6a 2.432 0.049154 
fgl2 1.184 0.049517 
fhl 1.674 0.044795 
fkbp1b 1.883 0.032396 
flncb 0.337 0.048823 
foxf1 2.268 0.045768 
foxn4 4.716 0.044245 
foxq1 0.659 0.048422 
frem3 0.748 0.049038 
fstb 0.657 0.050266 
ftr29 0.706 0.044795 
ftr79 0.658 0.050355 
fxyd6 5.856 0.032396 
fyna 2.188 0.039705 
gabra1 3.145 0.039477 
gabrb2 2.521 0.039705 
gad1 3.826 0.046320 
gad2 4.133 0.039477 
gadd45a 0.550 0.037957 
gadd45bl 0.256 0.020380 
gapdh 1.737 0.035106 
gart 0.553 0.035106 
gbgt1l3 2.374 0.050243 
gcga 2.149 0.039669 
gck 1.624 0.040956 
gcm2 0.651 0.044795 
gdf11 2.584 0.050870 
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gefiltin 2.587 0.035106 
gfap 1.390 0.041795 
ggt1 3.559 0.032396 
glra1 9.846 0.039705 
glra3 2.274 0.050243 
glud1b 2.060 0.048963 
glula 0.421 0.040956 
gmfb 0.620 0.045842 
gnai3 0.671 0.040592 
gnao1a 1.852 0.037957 
gnb5 2.204 0.046829 
gng12 0.802 0.044245 
gng2 1.619 0.040296 
gng3 2.254 0.040592 
gng7 1.555 0.049855 
gnrh2 0.299 0.040832 
gpc3 1.603 0.040467 
gpib 2.732 0.043463 
gpm6aa 3.168 0.040296 
gpm6ab 2.210 0.035106 
gpr177 0.642 0.043463 
gpr27 2.518 0.040832 
gpx4a 0.339 0.045003 
grhl1 0.509 0.035106 
gria2a 3.666 0.048422 
gria2b 3.247 0.035106 
grifin 13.894 0.032396 
grin1b 8.644 0.044795 
gtf2f1 0.850 0.024975 
gtf3aa 0.542 0.034461 
guca1e 0.617 0.045768 
gys1 2.626 0.046744 
hccsa 0.618 0.029813 
hdac9b 0.531 0.044795 
hdr 0.363 0.046320 
heca 1.965 0.040592 
helt 2.507 0.041377 
her13 2.887 0.031433 
her3 0.686 0.050159 
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her4.2 2.180 0.044121 
her5 2.766 0.045514 
her8.2 4.583 0.032974 
hes5 1.487 0.039477 
hhatla 3.008 0.032396 
hlx1 3.008 0.032396 
hlxb9la 1.570 0.048988 
hmx3 1.732 0.049691 
hnrnpa0 0.712 0.020380 
hnrnpa3 1.430 0.049038 
hnrnpm 1.338 0.042308 
homer1 2.222 0.050870 
hpca 1.741 0.047299 
hs6st2 0.621 0.046822 
hsd17b3 0.770 0.044083 
hspb3 5.547 0.034163 
ier5 1.147 0.041818 
ifng1-2 0.519 0.025317 
igfbp3 1.862 0.046761 
igsf21a 2.015 0.040296 
ihha 0.628 0.041795 
il15 1.636 0.046829 
ing5b 0.610 0.039813 
insl5b 1.988 0.044245 
insm1a 2.846 0.034163 
irge4 0.706 0.034163 
irgf3 0.547 0.047858 
irx1a 1.536 0.039669 
irx2a 2.773 0.035995 
irx4a 3.478 0.050870 
isl1 1.783 0.038292 
islr2 3.392 0.039477 
isoc2 2.165 0.041795 
itgb1b.2 2.999 0.042261 
itgb3b 2.395 0.039477 
itm1 1.234 0.045443 
itm2ca 1.983 0.046320 
jph2 3.784 0.047233 
kal1a 1.831 0.046235 
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kat2b 3.014 0.024975 
kcnd3 1.896 0.020380 
kcnip3 2.521 0.022236 
kcnip3l 2.310 0.020380 
kdm6b 1.796 0.044245 
kidins220b 1.610 0.039553 
kif23 2.063 0.048823 
kif3c 4.195 0.037957 
kif5a 2.361 0.032974 
klf13l 1.969 0.044245 
klf2b 1.187 0.024975 
klhdc6 5.948 0.039705 
klhl6 2.053 0.042542 
kmo 2.080 0.042308 
kpna4 0.890 0.048823 
kri1l 0.618 0.040832 
krt15 3.340 0.045514 
ktn1 1.183 0.035106 
lbx1b 2.645 0.035106 
ldb3a 3.224 0.032396 
ldb3b 3.184 0.046822 
lect2l 0.218 0.046215 
lhx1b 2.642 0.046744 
lhx6 6.826 0.050346 
lhx9 2.559 0.036776 
lim2.3 10.201 0.044245 
lim2.4 9.430 0.050206 
lin37 0.761 0.041795 
lin7a 3.198 0.041779 
lingo1b 2.714 0.035106 
lmbr1l 0.639 0.034145 
lmbrd2b 1.993 0.035106 
lmo1 2.009 0.035106 
lmo3 2.495 0.040832 
lnx2a 2.830 0.039705 
lonp2 0.603 0.050266 
lox 1.861 0.047397 
lrit1 2.437 0.040721 
lrrc4a 2.466 0.044245 



 

  252 

Gene Fold Change P-value 
lrrc4c 2.373 0.044121 
lrrc50 0.670 0.041292 
lrrn1 1.938 0.049154 
lrrtm1 2.447 0.043463 
lrrtm2 2.518 0.024063 
lyricl 0.532 0.035106 
lyz 3.283 0.041795 
mab21l1 1.587 0.046456 
magi1 1.333 0.048598 
mak16 0.461 0.039705 
map1b 1.427 0.044795 
mapk10 2.487 0.020380 
mapk14a 0.729 0.046320 
mapk3 0.746 0.035106 
mapk4 2.039 0.048422 
matn3a 3.241 0.020380 
mc1r 3.728 0.039705 
mcoln1 2.164 0.044083 
mdm2 0.355 0.044795 
me1 2.462 0.020380 
med19b 0.786 0.048598 
megf11 3.573 0.024975 
meis2.1 2.005 0.024975 
meis2.2 1.566 0.044795 
mif4gda 0.735 0.045003 
mip1 7.800 0.020380 
mip2 29.418 0.043905 
mkrn1 2.374 0.044795 
mlphb 2.695 0.040956 
mmp23a 2.572 0.047459 
mmp23al 3.089 0.039477 
mmp24 3.464 0.032396 
mogat2 0.637 0.044083 
mphosph10 0.564 0.041818 
mpp1 0.720 0.049193 
mpp2b 2.003 0.024975 
mpx 3.588 0.038630 
msi2b 1.324 0.034461 
msn 4.675 0.035106 
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Gene Fold Change P-value 
mstn 3.365 0.022236 
mtap 0.664 0.043905 
mthfd1 0.494 0.048294 
mthfsd 0.629 0.041795 
mtmr7b 1.643 0.048636 
mus81 0.742 0.050266 
musk 0.626 0.044900 
mxa 0.623 0.047227 
mxra8b 4.855 0.044245 
mybbp1a 0.495 0.032396 
mycbp2 1.431 0.046235 
mylk3 3.352 0.040832 
mylz2 3.412 0.034461 
mylz3 4.369 0.034461 
myo3a 1.938 0.040832 
myo5a 1.806 0.032974 
myom1a 2.902 0.044121 
nadl1.2 2.006 0.048422 
nalcn 2.000 0.044245 
nap1l4b 1.604 0.049517 
napg 2.658 0.034461 
nat10 0.504 0.044900 
nat5 0.871 0.044795 
nbr1 1.536 0.020380 
ncald 1.407 0.046250 
ncl 0.510 0.034461 
ndel1b 0.463 0.034461 
ndor1 1.858 0.047563 
ndpkz2 4.298 0.028962 
ndrg4 5.340 0.035106 
nefl 4.733 0.034461 
nenf 0.688 0.035106 
neurod 1.699 0.034145 
neurod2 4.673 0.044083 
neurod4 3.266 0.037952 
nfatc1 1.642 0.044245 
nfkbiab 0.689 0.044795 
ngdn 0.486 0.034461 
nhlh2 2.637 0.043800 
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nkx1.2lb 3.887 0.031083 
nkx2.2a 1.440 0.034461 
nkx6.3 2.915 0.032396 
nlgn4b 1.786 0.040956 
nmbr 0.560 0.041795 
nmnat2 2.455 0.034461 
noc3l 0.642 0.028962 
nod2 1.582 0.041818 
nola1 0.604 0.047397 
nom1 0.715 0.054707 
nop10 0.643 0.046829 
nop14 0.686 0.050355 
nop56 0.570 0.032919 
npm1 0.448 0.040832 
nppa 6.808 0.020380 
npsnl 3.493 0.032396 
nptn 2.120 0.043800 
npy 0.509 0.041818 
npy1r 2.905 0.050035 
nr2f1a 1.974 0.050702 
nr3c1 3.851 0.035106 
nr5a1b 3.606 0.044795 
nrarpb 1.607 0.032396 
nrxn1b 4.848 0.048528 
nrxn2a 2.551 0.041818 
nrxn2b 2.668 0.032921 
nrxn3b 2.699 0.032974 
nsf 2.502 0.044795 
nsun2 0.601 0.049154 
nupr1 1.874 0.045003 
nxph1 2.857 0.040832 
oc90 0.308 0.039477 
oca2 2.326 0.034461 
ociad2 1.289 0.049154 
olfm1a 1.991 0.047098 
olfm1b 2.505 0.035106 
olfm3 2.766 0.020380 
olfml3 2.708 0.032974 
olig2 1.509 0.047563 
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omp 2.322 0.035106 
onecut1 2.290 0.037952 
oprl 2.899 0.048766 
optc 0.372 0.047397 
or120-1 2.151 0.039705 
or130-1 2.779 0.043463 
otpb 2.646 0.046320 
p2rx3a 0.524 0.048422 
pax3a 1.523 0.044795 
pax6a 1.323 0.044368 
pbx3b 2.923 0.034461 
pcdh17 1.968 0.044795 
pcdh1a4 2.846 0.028477 
pcdh1g18 1.689 0.053460 
pcdh1g3 1.629 0.038670 
pcdh1gb2 1.838 0.044795 
pcdh2ac 2.351 0.020380 
pcolce2b 0.485 0.046822 
pcp4a 2.838 0.037957 
pcp4b 3.882 0.040956 
pcp4l1 1.819 0.050738 
pcsk1nl 2.046 0.048823 
pdcd11 0.571 0.041795 
pdcd4b 1.862 0.043463 
pde6c 0.485 0.020380 
pde6g 5.530 0.032631 
pdgfrl 3.642 0.049363 
pdlim5 2.288 0.050355 
pdlim7 2.700 0.032396 
penk 2.742 0.034504 
pes 0.535 0.044083 
pfkfb2 2.292 0.035106 
pfkma 10.841 0.041795 
pgam1b 2.018 0.040832 
phkg2 1.348 0.035106 
pion 0.579 0.050870 
pisd 1.197 0.049154 
pla1a 1.185 0.044245 
plekhf1 0.348 0.046751 
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plekho1 1.512 0.041795 
plp1a 2.545 0.044083 
plxna4 2.200 0.049497 
pofut2 0.834 0.041818 
polr1a 0.613 0.041292 
polr2b 0.687 0.044795 
polr2e 0.754 0.041818 
pomca 3.643 0.042542 
pou3f3b 1.737 0.033081 
pou47 1.483 0.044245 
pou4f1 1.814 0.044245 
ppan 0.527 0.032396 
ppargc1b 0.691 0.048422 
ppig 0.599 0.041795 
ppox 0.580 0.043967 
ppp2r4 1.447 0.041104 
pppde2a 2.003 0.030693 
prg4 0.498 0.044855 
prkcsh 1.301 0.050870 
prph 2.647 0.040956 
prss35 2.393 0.041377 
ptf1a 4.169 0.035106 
ptgds 0.242 0.022236 
pth1a 2.774 0.031970 
ptprn 2.533 0.036240 
ptprn2 1.591 0.035106 
pufa 0.419 0.039692 
pus7 0.580 0.041795 
pvalb1 4.616 0.040832 
pvalb2 3.490 0.045514 
pvalb4 6.632 0.044083 
pvalb5 6.739 0.049517 
pvalb6 2.336 0.039692 
pwp2h 0.618 0.046215 
pycrl 0.878 0.039477 
pyya 9.890 0.034461 
qtrtd1 0.550 0.039669 
rab11fip4b 0.557 0.048294 
rab36 0.796 0.044795 
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rab39b 2.756 0.044083 
rab3a 1.473 0.034461 
rab3b 3.199 0.049038 
rab3c 1.433 0.042542 
rab40c 2.056 0.044121 
rab6b 1.724 0.034461 
ralgps1 2.320 0.032396 
raly 1.893 0.040832 
rbm41 1.236 0.044663 
rcl1 0.500 0.054437 
rdh1l 0.520 0.032396 
rdh8 0.557 0.040832 
rel 0.444 0.043967 
rem1 1.810 0.034461 
renbp 0.436 0.034461 
ret1 1.360 0.049497 
rgn 0.612 0.050355 
rgs12 1.857 0.044245 
rgs17 1.651 0.046315 
rgs7bpa 2.990 0.045768 
rgs7bpb 2.162 0.039705 
rhag 2.108 0.043967 
rhoq 1.484 0.046320 
rnasekb 1.596 0.050828 
rnf103 1.235 0.046751 
rngtt 0.825 0.048823 
rnpc3 0.722 0.049038 
rnu3ip2 0.535 0.025317 
rogdi 1.740 0.032396 
rorb 2.963 0.040296 
rpia 0.486 0.022236 
rpl7l1 0.592 0.050349 
rprml 1.934 0.042308 
rrbp1 0.543 0.034163 
rrp12 0.570 0.037957 
rspo1 0.366 0.044245 
rtn1a 1.920 0.044795 
rtn1b 2.475 0.037957 
rtn2b 3.559 0.044245 
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rybpa 1.802 0.047563 
s1pr1 2.207 0.046320 
sarm1 2.432 0.034461 
scn1ba 1.952 0.046215 
scn2b 3.248 0.030590 
scn4aa 0.540 0.047887 
scn4ab 2.924 0.045768 
scn4ba 4.888 0.035106 
scn8ab 1.756 0.039477 
scpep1 0.614 0.042308 
scrn3 2.303 0.048422 
sdad1 0.521 0.041818 
sec62 0.656 0.039477 
sept5a 1.664 0.048294 
serinc1 1.246 0.050266 
setdb2 0.724 0.037964 
setx 0.699 0.049154 
sfrs1 1.254 0.050266 
sgcg 2.164 0.050017 
sgk1 0.617 0.044795 
sgpl1 0.757 0.050266 
sh3gl2 1.792 0.034461 
silva 2.849 0.038297 
silvb 4.408 0.040365 
sim2 2.300 0.020380 
slc17a6 2.135 0.043463 
slc17a6l 2.621 0.040365 
slc1a2 2.927 0.049517 
slc24a5 2.516 0.047397 
slc25a32b 0.740 0.045514 
slc25a4 13.082 0.041377 
slc26a1 0.496 0.032631 
slc2a15a 2.539 0.037138 
slc30a7 0.822 0.039669 
slc32a1 2.406 0.037957 
slc38a7 0.607 0.045003 
slc6a11 0.536 0.050058 
slc7a4 1.283 0.040365 
slc9a3r2 0.631 0.035106 
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slitrk4 4.148 0.046320 
smad3a 1.388 0.050355 
smad3b 2.967 0.040832 
smad7 1.711 0.045768 
smarce1 1.151 0.049691 
snai3 0.570 0.040296 
snap25a 1.818 0.040956 
snap25b 2.143 0.032396 
sncb 2.117 0.044997 
snrnp48 0.779 0.049154 
snw1 0.786 0.042542 
snx10a 0.502 0.040832 
snx25 2.033 0.035155 
sod2 3.062 0.046829 
sox11b 2.429 0.044795 
sox4a 2.736 0.040592 
sox9b 1.946 0.035106 
sp4 1.295 0.044245 
spam1 2.357 0.048422 
sparcl 15.226 0.046822 
spon1a 1.848 0.045159 
spon1b 1.568 0.031433 
sprn 7.113 0.035106 
srfl 0.536 0.035106 
ssb 0.535 0.044795 
sst1 2.649 0.045768 
st6gal1 2.458 0.034461 
st8sia2 1.812 0.044121 
stac3 2.962 0.049691 
stam2 0.701 0.048963 
stap2a 2.465 0.044997 
star 5.874 0.031433 
stat3 0.629 0.020380 
stmn1b 2.451 0.045768 
stmn2a 2.891 0.044795 
stmn2b 1.725 0.049038 
stxbp1 1.744 0.034504 
sult1st4 2.133 0.050266 
sult6b1 0.620 0.045768 
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syk 1.347 0.044795 
syn2a 2.727 0.035106 
syn2b 2.148 0.035775 
synbl 2.220 0.045514 
syne1a 1.488 0.040956 
syngr1 2.079 0.040832 
synpr 4.087 0.020380 
syntaxin1b 1.785 0.047563 
sypb 1.878 0.042308 
syt1 2.232 0.043967 
syt11a 1.766 0.040956 
syt12 1.598 0.032919 
syt4 1.674 0.042308 
syt9b 1.718 0.044795 
syvn1 1.318 0.044795 
tal2 2.406 0.042308 
tas1r2.1 0.624 0.035106 
tbc1d22a 1.427 0.039705 
tbx15 2.088 0.040956 
tcf7l2 2.169 0.048422 
tdh 1.372 0.044245 
tef 0.406 0.041795 
tfap2e 2.578 0.047558 
tfr1a 0.620 0.049996 
tgfbi 1.756 0.037952 
th 1.819 0.034461 
thop1 5.653 0.044083 
tln2 1.344 0.041795 
tlr5b 0.610 0.045081 
tmem16c 0.654 0.048316 
tmem195 1.775 0.039705 
tmem22 1.763 0.045003 
tmem59l 2.895 0.034461 
tmod4 2.099 0.046822 
tmsb 1.965 0.048422 
tnnt1 0.410 0.050386 
tnnt3a 3.970 0.033095 
tnnt3b 7.127 0.020380 
tnr 1.895 0.043463 
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tnw 3.810 0.031083 
tpi1a 2.633 0.048963 
tpm3 0.809 0.036889 
tpma 2.693 0.045159 
tpp1 0.586 0.049497 
tprg1l 1.505 0.047563 
trac 0.245 0.005627 
trh 0.505 0.040592 
trim36 1.873 0.040956 
trim3b 1.380 0.038218 
trim9 1.868 0.044795 
trmt5 0.659 0.040592 
trnau1ap 0.709 0.046215 
trnau1apl 0.744 0.044245 
trpc1 1.517 0.048598 
trpn1 2.292 0.048823 
tspan13 1.820 0.044795 
tsr1 0.683 0.045443 
ttna 2.231 0.034163 
ttnb 2.403 0.050176 
tuba2 3.147 0.036240 
tuba7l 1.908 0.044997 
tyrp1b 3.786 0.041795 
ube2q1 1.153 0.049691 
uhrf1bp1l 1.343 0.041377 
urod 0.455 0.048316 
utp6 0.590 0.046315 
vamp1 3.215 0.031433 
vamp2 2.364 0.020380 
vax1 1.215 0.045555 
vegfab 1.843 0.050188 
vldlr 1.900 0.049691 
vps4a 1.268 0.034461 
vtnb 1.621 0.034461 
wdr12 0.634 0.044795 
wdr3 0.577 0.031433 
wdr46 0.616 0.049517 
wdr55 0.594 0.028477 
wdsof1 0.675 0.032974 
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Gene Fold Change P-value 
wnt4b 2.506 0.039692 
wrb 1.410 0.045761 
xdh 3.207 0.040832 
xirp2l 5.246 0.048823 
xk 1.832 0.048785 
xkr6 2.153 0.040721 
xrn2 0.664 0.043877 
yes1 0.684 0.048422 
yipf1 0.583 0.040721 
ywhag2 1.697 0.041292 
zbtb2b 0.795 0.046751 
zcchc17 0.695 0.043967 
zcchc24 0.804 0.046822 
zfpm2a 1.423 0.047563 
zfpm2b 2.173 0.048422 
zmiz1 1.741 0.049517 
znf259 0.630 0.044795 
znf277 0.733 0.039705 
znf326 2.215 0.041795 
znf593 0.573 0.020380 
znrd1 0.623 0.039477 
znrf1 2.431 0.039669 
zranb2 1.334 0.040956 
zswim6 2.214 0.044121 
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