
Fast Order Basis and Kernel Basis

Computation and Related Problems

by

Wei Zhou

A thesis
presented to the University of Waterloo

in ful�llment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2012

c© Wei Zhou 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis, we present e�cient deterministic algorithms for polynomial matrix
computation problems, including the computation of order basis, minimal kernel
basis, matrix inverse, column basis, unimodular completion, determinant, Hermite
normal form, rank and rank pro�le for matrices of univariate polynomials over a
�eld. The algorithm for kernel basis computation also immediately provides an
e�cient deterministic algorithm for solving linear systems. The algorithm for col-
umn basis also gives e�cient deterministic algorithms for computing matrix GCDs,
column reduced forms, and Popov normal forms for matrices of any dimension and
any rank.

We reduce all these problems to polynomial matrix multiplications. The compu-
tational costs of our algorithms are then similar to the costs of multiplying matrices,
whose dimensions match the input matrix dimensions in the original problems, and
whose degrees equal the average column degrees of the original input matrices in
most cases. The use of the average column degrees instead of the commonly used
matrix degrees, or equivalently the maximum column degrees, makes our compu-
tational costs more precise and tighter. In addition, the shifted minimal bases
computed by our algorithms are more general than the standard minimal bases.

iii

Acknowledgments

Thanks to my supervisor, George Labahn, for supporting me and providing
me with the opportunity and the freedom to explore in this fascinating world of
polynomial matrix computation. Also thanks to my other committee members,
Mark Giesbrecht, Cameron Stewart, Arne Storjohann, and Gilles Villard for reading
this thesis. Thanks especially to Arne, whose accomplishments and magical abilities
to come up with new ideas have always amazed me and in�uenced my work. Thanks
to Gilles for �ying all the way to Canada from France to attend my defense and
for all the encouraging words. Thanks to Mark for the helpful comments on this
thesis.

Thanks to all my friends in Waterloo, especially my longtime roommate and
good friend Zhirong Li, my resourceful academic brother Reinhold Burger, and my
good friends Wei Li and Jun Chen, for all the fun conversations and memorable
activities.

I am grateful for having a wonderful family that made everything in my life
possible.

iv

Dedication

To my parents and my sister, for always believing in me
To my daughter, for bringing new energy and joy
To my wife, for patience and support

v

Contents

List of Algorithms viii

1 Introduction 1
1.1 Shifted Degrees . 4
1.2 Order Basis Computation . 6
1.3 Kernel Basis Computation . 8
1.4 Overview . 9

2 Preliminaries 11
2.1 Notation . 11
2.2 Model of Computation . 12
2.3 Computational Cost in Terms of Average Degrees 13
2.4 Shifted Degrees . 15
2.5 Unimodular Matrices and Unimodular Transformations 16
2.6 Column Basis . 16
2.7 Minimality and Column Reducedness 17
2.8 Order Basis . 22
2.9 Kernel Basis . 24

3 Order Basis with Balanced Shifts 26
3.1 Balancing Input with Storjohann's Transformation 27
3.2 Unbalanced Output . 30
3.3 Extending Storjohann's Transformation 32

3.3.1 A Particular Case . 33
3.3.2 More General Results . 41

3.4 Computation of Order Bases . 44
3.4.1 Dividing into Subproblems 44
3.4.2 The Iterative View . 48

3.5 Computational Complexity . 49
3.6 More Re�ned Cost and the Case mσ ∈ o(n) 52

3.6.1 Balanced Case . 52

4 Order Basis with Unbalanced Shifts 57
4.1 First unbalanced case . 58
4.2 Second unbalanced case . 58

vi

4.2.1 Transform to Balanced Shifts 60
4.2.2 Correspondence Between the Original Problem and the Trans-

formed Problem . 65
4.2.3 Achieving E�cient Computation 71

5 Kernel Basis 77
5.1 Minimal Kernel Basis Computation 78

5.1.1 Bounds based on the shift 79
5.1.2 Reducing the column dimension via order basis computation 80
5.1.3 Reducing the degrees . 86
5.1.4 Reducing the row dimension 87
5.1.5 Recursive computation . 90
5.1.6 Proof of Theorem 5.6 . 90

5.2 Computational Complexity . 94

6 Matrix inverse 97

7 Column Basis 102
7.1 Computing a Right Factor . 106
7.2 Computing a Column Basis . 112
7.3 A Simple Improvement . 116
7.4 Column Reduced Form and Popov Form 117

8 Unimodular Completion 120
8.1 Reversing polynomial coe�cients 121
8.2 Unimodular completion . 125
8.3 E�cient Computation . 128

9 Diagonal Entries of Hermite Normal Form and Determinant 133
9.1 Computing the Determinant . 135
9.2 Computational Cost . 137

10 Hermite Normal Form 139

11 Rank Pro�le and Rank Sensitive Computation of Kernel Basis 147
11.1 Rank Pro�le from Kernel Basis Computation 148
11.2 Successive Rank Pro�le Computation 149
11.3 Applications of Rank Pro�le Computation 151

11.3.1 Remove the assumption n ≥ m 151
11.3.2 Rank-sensitive computation of minimal kernel bases 151

12 Conclusion 153

Bibliography 160

vii

List of Algorithms

3.1 fastOrderBasis (F, σ, ~s) . 56
4.1 unbalancedFastOrderBasis (F, σ, ~s) 75
5.1 minimalKernelBasis (F, ~s) . 91
6.1 inverse(F, ~s) . 98
7.1 minimaKernelBasisReversed(M, ~s, ξ) 109
7.2 colBasis(F) . 115
8.1 unimodularCompletion(F) . 132
9.1 hermiteDiagonal(F) . 135
9.2 hermiteDiagonalWithScale(F) . 137
11.1 minimalKernelBasisWithRankProfile(F, ~s) 149
11.2 rankProfile(F) . 150

viii

Chapter 1

Introduction

In this thesis, we present e�cient deterministic algorithms for a number of problems

involving matrices of univariate power series or polynomials over a �eld. The �rst

problem we consider is the computation of order bases, which can be viewed as

the most fundamental among all the problems considered in this thesis, since order

basis computation is used by the algorithms for all other problems. The second

problem, minimal kernel basis computation, provides another essential tool used

by the algorithms for the remaining problems, including the computation of matrix

inverse, determinant, column basis, unimodular completion, Hermite normal form,

rank and rank pro�le. The algorithm for kernel basis computation also immediately

allows us to e�ciently solve linear systems. The algorithm for column basis also

allows us to e�ciently compute matrix GCDs, column reduced forms and Popov

normal forms for matrices of any dimension and any rank.

Let us �rst look at order bases and kernel bases in more detail.

Let F ∈ K [[x]]m×n be a matrix of power series over a �eld K. Given a non-

negative integer σ, we say a vector p ∈ K [x]n×1 of polynomials has order (F, σ),

if

F · p ≡ 0 mod xσ,

1

that is, the �rst σ terms of F · p are zero. Historically the problem of �nding

such vectors dates back to their use in Hermite's proof of the transcendence of e

in 1873. In 1893 Padé, a student of Hermite, formalized the concepts introduced

by Hermite and de�ned what is now known as Hermite-Padé approximants (where

m = 1), Padé approximants (where m = 1, n = 2) and simultaneous Padé ap-

proximants (where F has a special structure). Such rational approximations also

speci�ed degree constraints on the polynomials p and had their order conditions

related to these degree constraints. Additional cases of such order problems include

vector and matrix versions of rational approximation, partial realizations of matrix

sequences and vector rational reconstruction just to name a few (cf. the references

in Beckermann and Labahn [1997]). As an example, the factorization of di�er-

ential operators algorithm of Van Hoeij [1997] makes use of vector Hermite-Padé

approximation to reconstruct di�erential factorizations over rational functions from

factorizations of di�erential operators over power series domains.

The set of all such order (F, σ) approximations forms a module over K [x]. An

order basis � or minimal approximant basis or σ-basis � is a basis of this module

having a type of minimal degree property (called a reduced order basis in [Becker-

mann and Labahn, 1997]). More details on this minimality property is given in the

next chapter. In the case of rational approximation, order bases can be viewed as a

natural generalization of the Padé table of a power series [Baker and Graves-Morris,

1996] since they are able to describe all solutions to such problems given particular

degree bounds. They can even be used to show the well known block structure of

the Padé and related Rational Interpolation tables [Beckermann and Labahn, 1997].

Order bases are used in such diverse applications as the inversion of structured ma-

trices [Labahn, 1992], normal forms of matrix polynomials [Beckermann et al., 1999,

2006b], and other important problems in matrix polynomial arithmetic including

matrix inversion, column reduction, determinant and nullspace basis computation

2

[Giorgi et al., 2003, Storjohann and Villard, 2005, Jeannerod and Villard, 2006,

2005].

Kernel bases are closely related to order bases.

For a matrix of polynomials F ∈ K [x]m×n with rank r. The set

{p ∈ K [x]n | Fp = 0} ,

is the (right) kernel of F, which is also a K[x]-module. It can be generated by a

basis � a kernel basis of F, that can be represented as a matrix in K [x]n×(n−r), with

the columns being the basis elements.

Kernel bases of polynomial matrices appear in a large number of applications,

being �rst used as an algebraic formalism in the area of control theory [Kucera,

1979]. For example, in linear system theory if a system is represented by a transfer

function given in terms of a left coprime matrix fraction decomposition T = D−1
` N`,

with D` and N` polynomial matrices, then one often wants to �nd a right coprime

matrix fraction representation T = NrD
−1
r with Dr and Nr polynomial matrices

of appropriate dimensions [Kailath, 1980]. This is equivalent to the kernel basis

computation

[D` −N`]

 Nr

Dr

 = 0. (1.1)

Solving and determining fundamental properties of the basic matrix equation AZ =

B where A and B have polynomial elements can be determined by �nding a com-

plete description (that is, a basis) of the kernel of [A,−B]. Other examples of the

use of kernels and their bases include fault diagnostics [Frisk, 2001] and column

reduction of matrix polynomials [Beelen et al., 1988, Neven and Praagman, 1993].

In most applications one is interested in �nding a minimal kernel basis of F in

K [x]n [Forney, 1975]. A kernel basis N of F is said to be minimal if it has the

minimal possible column degrees among all right kernel bases. More details on this

3

minimality is given in Section 2.7. A minimal kernel basis is also often referred to

as a minimal polynomial basis. Examples where minimality are needed include the

right coprime matrix factorization problem and the problem of column reducing a

polynomial matrix. As an example, �nding a basis for the kernel corresponding

to the right matrix fraction problem (1.1) �nds a matrix fraction while a minimal

kernel basis �nds such a fraction in reduced form having a minimal column degree

denominator (needed for example in minimal partial realization problems).

1.1 Shifted Degrees

The standard way to measure the size of a matrix is to use its dimension and its

degree. A major complication in many polynomial matrix computation problems

is that the degrees of the intermediate results or the output can be much larger

than the input. This seems to prevent these problems to be computed e�ciently,

since the size of the intermediate results and the size of the output provides lower

bounds on the computational cost of any algorithm. But it is possible that the

matrix degree just may not be the best choice to be used in these computations. In

this thesis, instead of the standard matrix degrees, we use the more general shifted

column degrees to guide the computations, and use the sum of the shifted column

degrees to measure the size of polynomial matrices. We will see that the shifted

column degree is in fact a more natural choice, as it guides the computation so

that the sizes of the output and the intermediate results are indeed bounded by the

size as the input for all these problems. Closely examination of the shifted degrees

reveals new structures of the problems in this thesis, leading to better understanding

of the problems, and allowing the development of simple and e�cient algorithms.

For a column vector p = [p1, . . . , pn]T of univariate polynomials over a �eld K,

its column degree, denoted by cdeg p, is just the maximum of the degrees of the

4

entries of p, that is,

cdeg p = max
1≤i≤n

deg pi.

The shifted column degree generalizes this standard column degree by taking the

maximum after shifting the degrees by a given integer vector that is known as

a shift. More speci�cally, the shifted column degree of p with respect to a shift

~s = [s1, . . . , sn] ∈ Zn, or the ~s-column degree of p is

cdeg
~s

p = max
1≤i≤n

[deg pi + si] = deg(x~s · p),

where

x~s = diag ([xs1 , xs2 , . . . , xsn]) =



xs1

xs2

. . .

xs1


.

For a matrix P, we use cdeg P and cdeg~s P to denote respectively the list of its

column degrees and the list of its shifted ~s-column degrees. When ~s = [0, . . . , 0],

the shifted column degree specializes to the standard column degree. The shifted

row degree of a row vector q is de�ned in the same way.

rdeg
~s

q = max
1≤i≤n

[deg qi + si] = deg(q · x~s).

The shifted degrees have been used previously in polynomial matrix compu-

tations and to generalize matrix normal forms [Beckermann et al., 2006b]. The

shifted column degree is equivalent to the notion of defect commonly used in the

literature. Our de�nition of ~s-column degree is a special case of the H-degree from

[Beckermann and Labahn, 1997], where in this case H = x~s.

5

1.2 Order Basis Computation

The �rst problem considered in this thesis is the e�cient computation of order

basis. Algorithms for fast computation of order basis include that of Beckermann

and Labahn [1994] which converts the matrix problem into a vector problem of

higher order (which they called the Power Hermite-Padé problem). Their divide

and conquer algorithm has complexity of O∼(n2mσ + nm2σ) �eld operations. As

usual, the soft-O notation O∼ is simply Big-O with polylogarithmic multiplicative

factors (log(nmσ))O(1) omitted. By working more directly on the input m×n input

matrix, Giorgi et al. [2003] give a divide and conquer method with cost O∼ (nωσ)

arithmetic operations when m ≤ n. Their method is very e�cient if the row

dimension m is close to the size of the column dimension n but can be improved if

m is much smaller than n.

In a novel construction, Storjohann [2006] e�ectively reverses the approach of

Beckermann and Labahn. Namely, rather than convert a high dimension matrix

order problem into a lower dimension vector problem of higher order, Storjohann

converts a low dimension problem to a high dimension problem with lower order.

For example, computing an order basis for a 1 × n vector input f and a large

enough order σ can be converted to a problem of order basis computation with an

O (n) × O (n) input matrix and an order about 2σ/n. Using this conversion, the

method of Giorgi et al. can then be used e�ectively for problems with small row

dimensions to achieve a cost of O∼ (nωa), where a = mσ/n.

However, while order bases of the original problem can have degree up to σ, the

nature of Storjohann's conversion limits the degree of an order basis of the converted

problem to O (a) in order to be computationally e�cient. In other words, this

approach does not, in general, compute a complete order basis. Rather, in order to

achieve e�ciency, it only computes a partial order basis containing basis elements

with degrees within O (a), referred to by Storjohann as a minbasis. Fast methods

6

for computing a minbasis are particularly useful for certain problems, for example,

in the case of inversion of structured block matrices where one needs only precisely

the minbasis [Labahn, 1992]. However, in other applications, such as those arising

in polynomial matrix arithmetic, one needs a complete basis which speci�es all

solutions of a given order, not just those within a particular degree bound (cf.

Beckermann and Labahn [1997]).

In Chapter 3 we present algorithms which compute an entire order basis with

a cost of O∼(nωa) �eld operations. The algorithms di�er depending on the nature

of the degree shift required for the reduced order basis. In the �rst case we use a

transformation that can be considered an extension of Storjohann's transformation.

This new transformation provides a way to extend the results from one transformed

problem to another transformed problem of a higher degree. This enables us to use

an idea from the null space basis algorithm found in [Storjohann and Villard, 2005]

in order to achieve e�cient computation. At each iteration, basis elements within a

speci�ed degree bound are computed via a Storjohann transformed problem. Then

the partial result is used to simplify the next Storjohann transformed problem of a

higher degree, allowing basis elements within a higher degree bound to be computed

e�ciently. This is repeated until all basis elements are computed.

In order to compute an order basis e�ciently, the �rst algorithm requires that

the degree shifts are balanced. A balanced shift means max~s−min~s ∈ O (mσ/n).

In the case where the shift is not balanced, the row degrees of the basis can also

become unbalanced in addition to the unbalanced column degrees. We give a second

algorithm that balances the high degree rows and uses O∼(nωa) �eld operations

when the shift ~s is unbalanced but satis�es the condition
∑n

i=1(max(~s)−~si) ≤ mσ.

This condition essentially allows us to locate the high degree unbalanced rows that

need to be balanced. The algorithm converts a problem of unbalanced shift to

one with balanced shift, based on a second idea from [Storjohann, 2006]. Then

7

the �rst algorithm is used to e�ciently compute the elements of an order basis

whose shifted degrees exceed a speci�ed parameter. The problem is then reduced

to one where we remove the computed elements. This results in a new problem

with smaller dimension and higher degree. The same process is repeated again on

this new problem in order to compute the elements with the next highest shifted

degrees.

At the end of Chapter 3, we discuss how a more re�ned cost of O∼(nω−1mσ)

instead of O∼ (nωa) �eld operations can be achieved when the shifts are balanced.

Note that the cost O∼ (nωa) is less re�ned as it assumes that a = mσ/n tends

to in�nity in the big O notation. However, mσ/n can be arbitrary in the cost

O∼(nω−1mσ).

Some results on order basis computation have appeared in [Zhou and Labahn,

2009, 2012].

1.3 Kernel Basis Computation

We are interested in fast computation of minimal kernel bases and shifted minimal

kernel bases in exact environments. Historically computation of a minimal kernel

basis has made use of either matrix pencil or resultant methods (often called a

linearized approaches) or use of elimination methods for matrix polynomials. Ma-

trix pencil methods convert a kernel basis computation problem to one of larger

matrix size but having polynomial degree one. In this case a minimal kernel basis

is determined from the computation of the Kronecker canonical form, with e�-

cient algorithms given by Beelen and Dooren [1988], Misra et al. [1994], Oara and

Dooren [1997]. The cost of these algorithms is O(m2nd3), where d is the degree of

the input matrix. Resultant methods convert the kernel basis computation of the

matrix polynomial F into a block Toeplitz kernel problem with much higher dimen-

8

sion with the resulting complexity again being high. In [Storjohann and Villard,

2005] the authors give a randomized Las Vegas algorithm for computing a set of

n− r linearly independent elements in the kernel of F with a cost of O∼ (nmrω−2d)

where O∼ is the same as Big-O but without log factors and where ω is the power of

fast matrix multiplication. These linearly independent elements do not in general

form a basis for the kernel, as they may not generate all the elements in the kernel.

A set of any such n − r linearly independent elements only form a basis for the

F (x)-vector space {p ∈ K (x)n | Fp = 0} when the ring K [x] is extended to the

�eld K (x).

In Chapter 5 we present a deterministic algorithm for computing a minimal

kernel basis with a cost of O∼ (nω−1md) �eld operations in K. The same algorithm

can also compute a ~s-minimal kernel basis of F with a cost of O∼(nωs) if the entries

of ~s bound the corresponding column degrees of F, where s is the average of the m

largest entries of ~s.

A key component of the algorithm is the computation of order basis. We use

order basis computation to compute a partial kernel basis, which also reduces the

column dimension of the problem. The problem can then be separated to two

subproblems of smaller row dimensions, which can then be handled in the same

way as the original problem.

Some results on kernel basis computation have appeared in [Zhou et al., 2012].

1.4 Overview

The remainder of this thesis is structured as follows. Basic de�nitions and proper-

ties are given in the next chapter. The details of our order basis computation can

be found in Chapter 3. Kernel basis computation is described in Chapter 5. Chap-

ter 6 discusses the algorithm for computing matrix inverse. Chapter 7 discusses the

9

computation of column bases. Unimodular completion is then discussed in Chap-

ter 8. Then we look at determinant computation in Chapter 9, Hermite normal

form computation in Chapter 10, and rank pro�le and rank-sensitive computations

in Chapter 11.

10

Chapter 2

Preliminaries

In this chapter, we provide some of the background needed in order to understand

the basic concepts needed for order basis computation and nullspace basis compu-

tation.

2.1 Notation

Since we are interested in computing bases with minimal degrees, it is useful to have

convenient notations for comparing two lists of degrees. In addition, our matrices

often represent sets of column vectors, so the arrangement of these columns are not

important. To compare two lists of column degrees from two matrices, we �rst sort

each list in increasing order, and then do the comparison.

Comparing Unordered Lists For two lists ~a ∈ Zn and~b ∈ Zn, let ā = [ā1, . . . , ān]

and b̄ =
[
b̄1, . . . , b̄n

]
be the lists consists of the entries of ~a and ~b but sorted

11

in increasing order.



~a ≥ ~b if āi ≥ b̄i for all i ∈ [1, . . . n]

~a ≤ ~b if āi ≤ b̄i for all i ∈ [1, . . . n]

~a >~b if ~a ≥ ~b and āj > b̄j for at least one j ∈ [1, . . . n]

~a <~b if ~a ≤ ~b and āj < b̄j for at least one j ∈ [1, . . . n] .

Summation Notation For a list ~a = [a1, . . . , an] ∈ Zn, we write
∑
~a without

index to denote the summation of all entries in ~a.

Uniformly Shift a List For a list ~a = [a1, . . . , an] ∈ Zn and c ∈ Z, we write ~a+ c

to denote ~a+ [c, . . . , c] = [a1 + c, . . . , an + c], and similarly for −.

Compare a List with a Integer For a list ~a = [a1, . . . , an] ∈ Zn and c ∈ Z, we

write ~a < c to denote ~a < [c, . . . , c], and similarly for >,≤,≥,=.

Example 2.1. Let A = [1, x2], and B = [x, 1], we can write cdeg A > cdeg B,

since the sorted lists of column degrees of A and B are [0, 2] and [0, 1] respectively.

2.2 Model of Computation

The computational cost in this thesis is analyzed by bounding the number of arith-

metic operations (additions, subtractions, multiplications, and divisions) in the

coe�cient �eld K on an algebraic random access machine. We reduce all the prob-

lems to polynomial matrix multiplications. We use MM(n, d) to denote the cost

of multiplying two polynomial matrices with dimension n and degree d, and M(n)

to denote the cost of multiplying two polynomials with degree d. We assume that

M(st) ∈ O (M(s) M(t)) and M(n) ∈ O(nω−1), where the multiplication exponent ω

12

is assumed to satisfy 2 < ω ≤ 3. We take MM(n, d) ∈ O (nω M(d)) ⊂ O∼ (nωd).

We refer to the book by Gathen and Gerhard [2003] for more details and reference

about the cost of polynomial multiplication and matrix multiplication.

2.3 Computational Cost in Terms of Average De-

grees

In this thesis, we often state the computational costs in terms of the average column

degrees, in contrast to the matrix degrees that are also the maximum column de-

grees typically used in the literature. For example, the cost of a problem involving

an input matrix with dimension n×n and column degrees ~s = [s1, . . . , sn] is usually

O∼ (nωs), where s =
∑
~s/n is the average column degree of the input matrix. This

is similar to the cost of multiplying two matrices with dimension n and degree s.

It is tempting to also write the cost as O∼ (nω−1ξ) with ξ =
∑
~s being the

sum of the column degrees. However, note that if ξ is asymptotically much smaller

than n, such as ξ ∈ O (log (n)), this cost becomes O∼ (nω−1), which is incorrect

since this is smaller than the size of the input matrix. This issue is caused by the

subtleties involving the use of degree as the size while the degree of a polynomial

is not quite the same as its size. There are two di�erences to be noted. First, a

degree 0 polynomial does not have size 0. It still has one coe�cient, which is one

�eld element to store. Another exception is the zero polynomial, whose degree is

sometimes de�ned as −∞ or −1 depending on the context. But a negative size

does not make much sense.

There are two ways to address this issue. First, instead of using the degree in

13

the cost, we can use the actual number of coe�cients, which is


0 if p = 0

1 + deg p if deg p ≥ 0,

where p is a polynomial, a polynomial vector, or a polynomial matrix. For example,

a column vector with column degree 2 then has 3 column coe�cients. Then ξ in the

cost represents the sum of the number of column coe�cients for all the columns.

Perhaps the easiest way is to just use the average column degrees s =
∑
~s/n

in the cost, and state the cost as O∼(nωs). Then the above issue no longer exists

because the cost O∼(nωs) is similar to the cost of multiplying two matrices of

dimension n and degree s, with s assumed to tend to in�nity in the asymptotic

Big-O notation, hence degree zero or zero polynomials are no longer an issue. For

simplicity, this is the approach we take in this thesis. We describe the cost in terms

of the average column degrees instead of the sum of the column degrees. But keep

in mind that the �rst approach can be used to give a more re�ned cost.

For order basis computation problems considered in this thesis, a problem with

a dimension m× n input matrix and order σ is computed with a cost of O∼ (nωa),

where a = mσ/n can be viewed as the average size of the rows if we treat the

original input matrix as a square matrix by appending n − m zero rows. If the

cost is stated as O∼ (nω−1mσ) in the case of mσ ∈ o (n), we have a similar issue

as before, as we may obtain a cost of O∼ (nω−1). This cost may seem strange, as

it is less than the cost of multiplying two matrices of dimension n and degree 0.

However, it does not contradict with the input size, which is O(nmσ) = o(n2). In

fact, when we consider the case of order basis computation with balanced shift, we

indeed provide a way to handle the case of mσ ∈ o (n) with a cost of O∼ (nω−1mσ)

in Section 3.6 of Chapter 3.

14

2.4 Shifted Degrees

In this section, we look at some properties of shifted degrees, which may help

in understanding their usefulness in e�cient computations of polynomial matrix

problems.

Lemma 2.2. A matrix A ∈ K [x]m×n has ~u-column degrees bounded by ~v if and

only if its −~v-row degrees are bounded by −~u.

Proof. The lemma follows from the fact x~uAx−~v has degree no more than 0 (Note

that the negative degrees are de�ned here by settingdeg x−d = −d for d ∈ Z>0.

If one wishes to avoid negative degrees, one can simply shift the degrees up by

multiplying the matrix by xa for some large a). Note the symmetry between the

shifted row degrees and the shifted column degrees.

Example 2.3. Let A =

[
1, x2

]
, ~u = [1] and ~v = [2, 4]. Then cdeg~u A = [1, 3] ≤ ~v,

and rdeg−~v A = [−2] ≤ −~u. If ~u = [1] and ~v = [1, 1], then cdeg~u A = [1, 3] � ~v,

and rdeg−~v A = [1] � −~u.

Lemma 2.4. If the ~u-column degrees of A ∈ K [x]m×n are bounded by the corre-

sponding entries of an integer list ~v ∈ Zn, (or equivalently, the −~v-row degrees of

A are bounded by −~u) and the ~v-column degrees of B ∈ K [x]n×k are bounded by

~w ∈ Zk, then the ~u-column degrees of AB are bounded by ~w.

Proof. Note that x~uAx−~v and x~vB−~w have degrees bounded by 0. Therefore

x~uAx−~vx~vB−~w = x~uAB−~w

also has degree bounded by 0, or equivalently, cdeg~u AB ≤ ~w.

Corollary 2.5. Let ~v be a shift whose entries bound the corresponding column

degrees of A. Then for any polynomial matrix B ∈ K [x]n×k, the column degrees of

AB are bounded by the corresponding ~v-column degrees of B.

15

Proof. Just set the shift ~u to 0 in Lemma 2.4

2.5 Unimodular Matrices and Unimodular Trans-

formations

A square matrix in K [x]n×n is said to be unimodular if its determinant is in K\ {0}.

Equivalently, a matrix in K [x]n×n is unimodular if and only if it has an inverse in

K [x]n×n. Therefore, a unimodular transformation can be undone by the multiplica-

tion with the inverse transformation matrix inK [x]n×n. This allows us to talk about

unimodular equivalence of the polynomial matrices. Two matrices A,B ∈ K [x]m×n

are said to be right unimodularly equivalent if A = BU for some unimodular ma-

trix U. This also means that the columns of A and B generates the same set of

vectors. That is, if a vector q = Ap for some p ∈ K [x]n×1, then q = BUp.

2.6 Column Basis

The column module of a nonzero matrix A ∈ K [x]m×n is theK [x]-module generated

by the columns of A, that is, this module contains all the column vectors that are

K [x]-linear combinations of the columns of A. A column basis of A is just a basis

for this module. Any column basis of A can be represented as a matrix T, whose

columns are the basis elements. The matrix T has full-rank since basis elements

must be linearly independent. In addition, any two bases for the same module are

unimodularly equivalent.

Example 2.6. If A =

1 1 + x

x x+ x2

, then T =

1

x

 is a column basis of A, as

A = T [1, 1 + x].

16

Lemma 2.7. If the matrices T1 and T2 are both column bases of A, then T1 and

T2 are right unimodularly equivalent.

Proof. Any column of T1 or T2 is generated by T1 and also by T2. In other words,

T1 = T2U and T2 = T1V for polynomial matrices U and V. Hence T1 = T1VU

and T2 = T2UV, implying UV = VU = I, which requires both U and V to be

unimodular.

A column basis is not unique and indeed any column basis right multiplied by a

unimodular polynomial matrix gives another column basis. As a result, a column

basis can have arbitrarily high degree

2.7 Minimality and Column Reducedness

For many polynomial matrix computation problems, we would like the output ma-

trix to be not only easy to describe, but also convenient to use. This usually means

the column degrees or the more general shifted column degrees are small compar-

ing to other matrices that are right unimodularly equivalent. For example a matrix

A = [x, x2, x2] with column degrees [1, 2, 2] can be unimodularly transformed to

a matrix B = [x, x, x2] with column degrees [1, 1, 2], which is more desirable with

lower degrees.

To unimodularly transform a matrix to one with lower column degrees, we can

look at its leading column coe�cient matrix, which is de�ned as follows.

De�nition 2.8. Given a matrix A = [a1, . . . , an] ∈ K [x]m×n, the leading column

17

coe�cient matrix A of A is

A = lcoeff (A)

= [lcoeff (a1) , . . . , lcoeff (ak)]

= [coeff (a1, cdeg (a1)) , . . . , coeff (ak, cdeg (ak))] .

Then, the matrix A can be unimodularly reduced to another matrix with lower

column degrees if lcoeff (A) is not full-rank.

Lemma 2.9. Given a matrix A ∈ K [x]m×n with no zero columns. If lcoeff (A) is

not full-rank, then there is a unimodular matrix U such that cdeg (AU) < cdeg A.

Proof. We may assume the columns of A are arranged in increasing column degrees.

Let the column degrees of A be [d1, . . . , dn]. Let A = lcoeff (A). Suppose the

ith column Ai of A is a linear combination of the �rst i − 1 columns. That is,

Ai = A′a, where A′ is the submatrix of A consists of the �rst i − 1 columns of A,

and a = [a1, . . . , ai−1]T ∈ K(i−1)×1. Let

U =



1 −a1x
di−d1

1 −a2x
di−d2

. . .
...

1 −ai−1x
di−di−1

1

. . .

1



.

Then B = AU has column degrees
[
d1, . . . , di−1, d̄i, di+1, . . . , dn

]
, with d̄i < di.

The leading column coe�cient matrix can also help to determine the degree of

the matrix.

18

Lemma 2.10. The degree of the determinant of a matrix A ∈ K [x]n×n is bounded

by
∑

cdeg A. If lcoeff (A) is nonsingular, then deg det A =
∑

cdeg A. More

generally, for any shift ~s ∈ Zn, deg det A ≤
∑

cdeg~s A −
∑
~s. If lcoeff

(
x~sA

)
is

nonsingular, then deg det A =
∑

cdeg~s A−
∑
~s.

Proof. The determinant is the sum of products, with each product involving exactly

one entry from each column. So the largest possible degree of each product is∑
cdeg A. For the second statement, note that the coe�cient of det A corresponds

to the largest possible degree
∑

cdeg A is det lcoeff (A). The more general results

with shift can be shown by considering the the determinant of x~sA.

It is still not always possible to order two lists of integer degrees, as in the

case of matrices [x, x2, x2] and [x, x, x3] with column degrees [1, 2, 2] and [1, 1, 3].

Although the lists of column degrees of the set of unimodular equivalent matrices

are not well-ordered, there always exists some matrices with the minimal column

degrees, as shown below below by Lemma 2.11 and Corollary 2.12.

Lemma 2.11. Given any two right unimodularly equivalent matrices A and B,

the matrix [A,B] can be unimodularly reduced to [0,C] with a matrix C that is

unimodularly equivalent to both A and B, and satis�es cdeg C ≤ cdeg A and

cdeg C ≤ cdeg B. More generally, with a shift ~s, the matrix [A,B] can be uni-

modularly reduced to [0,D] with a matrix D that is unimodularly equivalent to both

A and B, and satis�es cdeg~s D ≤ cdeg~s A and cdeg~s D ≤ cdeg~s B.

Proof. If r is the rank of A and B, we can compute a matrix C the column degrees

of C are bounded by the column degrees of the r linear independent columns of

[A,B] with the smallest column degrees, as higher degree columns can be reduced

using Lemma 2.9. For the more general result with shift, we can again multiply x~s

to the matrices.

19

Corollary 2.12. Given a matrix F ∈ K [x]m×n and a shift ~s ∈ Zn. There exists a

matrix G that is right unimodularly equivalent to F and cdeg G ≤ cdeg(FU) for

any unimodular U. More generally, with a shift ~s, there exists a matrix H that is

right unimodularly equivalent to F and cdeg~s G ≤ cdeg~s(FU) for any unimodular

U

Proof. Just repeatedly apply Lemma 2.11 to matrices that are right unimodularly

equivalent to F.

The existence of matrices with minimal column degrees allows us to de�ne

column reduced.

De�nition 2.13. A matrix A ∈ K [x]m×n is said to be column reduced if cdeg A ≤

cdeg AU for any unimodular matrix U. More generally, for a shift ~s ∈ Zn, a

matrix A ∈ K [x]m×n is said to be ~s-column reduced if cdeg~s A ≤ cdeg~s AU for any

unimodular matrix U.

The leading column coe�cient matrix provides a useful test for being column

reduced.

Lemma 2.14. A matrix A ∈ K [x]m×n with no zero columns is column reduced if

and only if lcoeff (A) has full column rank.

Proof. We just need to show that the full-rank lcoeff (A) implies a column reduced

A, since the other direction is covered in Lemma 2.9. Suppose lcoeff (A) is full-

rank but not column reduced. Let B be a unimodularly equivalent column reduced

matrix, which exists from Corollary 2.12, then cdeg A > cdeg B. Let U be the uni-

modular matrix satisfying AU = B. Let Ā be a square matrix with n rows chosen

from A such that cdeg Ā = cdeg A. Then B̄ = ĀU is a matrix consisting of rows

from B with the same indices. It follows that deg det Ā = deg det B̄. But cdeg B̄ ≤

cdeg B < cdeg A = cdeg Ā, while from Lemma 2.10 deg det B̄ ≤
∑

cdeg B̄ and

deg det Ā =
∑

cdeg Ā, which gives deg det B̄ < deg det Ā, a contradiction.

20

We can show that the nonzero columns of a column reduced matrix are linearly

independent, which means they form a column basis.

Lemma 2.15. The nonzero columns of a column reduced matrix are linearly inde-

pendent.

Proof. If the nonzero columns of a matrix A are not linearly independent, then

the matrix A′ consists of the nonzero columns of A satis�es A′p = 0 for some

polynomial vector p. Let ~a = cdeg A′. Then A′p =
(
A′x−~a

)
·
(
x~ap

)
= 0, which

requires lcoeff
(
A′x−~a

)
lcoeff

(
x~ap

)
= 0, implying lcoeff

(
A′x−~a

)
= lcoeff (A′) is

not full rank, hence A is not column reduced by Lemma 2.14.

Corollary 2.16. Any matrix F ∈ K [x]m×n can be unimodularly transformed to

[0,T] ∈ K [x]m×n with a full rank matrix T ∈ K [x]m×r, that is, FU = [0,T] for

some unimodular matrix U. Any such matrix T is a column basis of F.

Proof. We can just repeatedly apply the unimodular transformation from Lemma 2.9.

By Lemma 2.14, this eventually gives a column reduced form [0,T′], which has lin-

early independent nonzero columns T′ by Lemma 2.15. Then T′ is a column basis

of F since its columns are linearly independent and the m×n matrix [0,T′] is uni-

modularly equivalent with F, implying T′ and F each has columns that generate

the same F [x]-module.

In Lemma 2.4, when the matrix A is ~u-column reduced, the bound becomes an

equality, which then gives the following lemma. This can be viewed as a stronger

version of the predictable-degree property [Kailath, 1980].

Lemma 2.17. Let A ∈ K [x]m×n be a ~u-column reduced matrix with no zero columns

and with cdeg~u A = ~v. Then a matrix B ∈ K [x]n×k has ~v-column degrees cdeg~v B =

~w if and only if cdeg~u (AB) = ~w.

21

Proof. ~u-column reduced means the leading column coe�cient matrix A of x~uAx−~v

has linearly independent columns. Now the leading coe�cient matrix B of x~vB−~w

has no zero column if and only if the leading column coe�cient matrix AB of

x~uAx−~vx~vB−~w = x~uAB−~w has no zero column, in other words, x~vB−~w has column

degrees [0, . . . , 0] if and only if x~uAB−~w has column degrees [0, . . . , 0].

We also have the following similar result on column reducedness.

Lemma 2.18. If A is a full-rank ~u-column reduced matrix with cdeg~u A = ~v, then

B is ~v-column reduced if and only if AB is column reduced.

Proof. This again follows by looking at the full rank leading column coe�cient

matrices.

2.8 Order Basis

We now look at order basis in more detail.

Let K be a �eld, F ∈ K [[x]]m×n a matrix of power series and ~σ = [σ1, . . . , σm] a

vector of non-negative integers.

De�nition 2.19. We say a column vector of polynomials p ∈ K [x]n×1 has order

(F, ~σ) (or order ~σ with respect to F) if F · p ≡ 0 mod x~σ, that is,

F · p = x~σr =


xσ1

. . .

xσm

 r

for some r ∈ K [[x]]m×1. If ~σ = [σ, . . . , σ] has entries uniformly equal to σ, then we

say that p has order (F, σ) . The set of all order (F, ~σ) vectors is a free K [x]-module

denoted by 〈(F, ~σ)〉.

22

An order basis for F and ~σ is simply a basis for the K [x]-module 〈(F, ~σ)〉. In

this thesis we compute those order bases having minimal or shifted minimal degrees

(also referred to as a reduced order basis in [Beckermann and Labahn, 1997]).

An order basis [Beckermann and Labahn, 1994, 1997] P of F with order ~σ and

shift ~s, or simply an (F, ~σ, ~s)-basis, is a basis for the module 〈(F, ~σ)〉 having minimal

~s-column degrees. If ~σ = [σ, . . . , σ] is uniform then we simply write (F, σ, ~s)-basis.

The precise de�nition of an (F, ~σ, ~s)-basis is as follows.

De�nition 2.20. A polynomial matrix P is an order basis of F of order ~σ and

shift ~s, denoted by (F, ~σ, ~s)-basis, if the following properties hold:

1. P is a nonsingular matrix of dimension n and is ~s-column reduced.

2. P has order (F, ~σ) (or equivalently, each column of P is in 〈(F, ~σ)〉).

3. Any q ∈ 〈(F, ~σ)〉 can be expressed as a linear combination of the columns of

P, given by P−1q.

It follows from De�nition 2.20 and Lemma 2.7 that any pair of (F, ~σ, ~s)-bases

P and Q are column bases of each other and are unimodularly equivalent.

From [Beckermann and Labahn, 1997] we have the following lemma.

Lemma 2.21. The following are equivalent for a polynomial matrix P:

1. P is a (F, ~σ, ~s)-basis.

2. P is comprised of a set of n minimal ~s-column degree polynomial vectors that

are linearly independent and each having order (F, ~σ).

3. P does not contain a zero column, has order (F, ~σ), is ~s-column reduced, and

any q ∈ 〈(F, ~σ)〉 can be expressed as a linear combination of the columns of

P.

23

In some cases an entire order basis is unnecessary and instead one looks for a

minimal basis that generates only the elements of 〈(F, ~σ)〉 with ~s-column degrees

bounded by a given δ. Such a minimal basis is a partial (F, ~σ, ~s)-basis comprised

of elements of a (F, ~σ, ~s)-basis with ~s-column degrees bounded by δ. This is called

a minbasis in Storjohann [2006].

De�nition 2.22. Let 〈(F, ~σ, ~s)〉δ ⊂ 〈(F, ~σ)〉 denote the set of order (F, ~σ) polyno-

mial vectors with ~s-column degree bounded by δ. A (F, ~σ, ~s)δ-basis is a polynomial

matrix P not containing a zero column and satisfying:

1. P has order (F, ~σ) .

(a) Any element of 〈(F, ~σ, ~s)〉δ can be expressed as a linear combination of

the columns of P.

(b) P is ~s-column reduced.

A (F, ~σ, ~s)δ-basis is, in general, not square unless δ is large enough to contain all n

basis elements in which case it is a complete (F, ~σ, ~s)-basis.

2.9 Kernel Basis

Recall that the kernel of F ∈ K [x]m×n is the F [x]-module

{p ∈ K [x]n | Fp = 0} .

A kernel basis of F is just a basis of this module. Kernel bases are closely related

to order bases, as can be seen from the following de�nitions.

De�nition 2.23. Given F ∈ K [x]m×n, a polynomial matrix N ∈ K [x]n×∗ is a

(right) kernel basis of F if the following properties hold:

24

1. N is full-rank.

2. N satis�es F ·N = 0.

3. Any q ∈ K [x]n satisfying Fq = 0 can be expressed as a linear combination

of the columns of N, that is, there exists some polynomial vector p such that

q = Np.

Again, it follows from De�nition 2.23 and Lemma 2.7 that any pair of kernel

bases N and M of F are column bases of each other and are unimodularly equiva-

lent.

An ~s-minimal kernel basis of F is just a kernel basis that is ~s-column reduced.

De�nition 2.24. Given F ∈ K [x]m×n, a polynomial matrix N ∈ K [x]n×∗ is a

~s-minimal (right) kernel basis of F if N is a kernel basis of F and N is ~s-column

reduced. We also call a ~s-minimal (right) kernel basis of F a (F, ~s)-kernel basis in

this thesis.

25

Chapter 3

Order Basis with Balanced Shifts

In this chapter and the next chapter we give algorithms for computing a shifted

order basis of an m × n matrix of power series over a �eld K with m ≤ n. For

a given order σ and balanced shift ~s the algorithm in this chapter determines an

order basis with a cost of O∼(nωa) �eld operations in K, where ω is the exponent

of matrix multiplication and a = mσ/n. Here, an input shift is balanced when

max(~s) − min(~s) ∈ O(a). This extends earlier work of Storjohann which only

determines a subset of an order basis that is within a speci�ed degree bound δ

using O∼(nωδ) �eld operations for δ ≥ dae. In the end of this chapter, we show

how a more re�ned cost of O∼(nω−1mσ) instead of O∼ (nωa) �eld operations can

be achieved when the shifts are balanced.

In this chapter, we assume, without any loss of generality, that n/m and σ are

powers of two. This can be achieved by padding zero rows to the input matrix and

multiplying it by some power of x.

We �rst give a brief description of Storjohann's transformation for computing a

partial order basis.

26

3.1 Balancing Input with Storjohann's Transforma-

tion

For computing a (F, σ, ~s)-basis with input matrix F ∈ K [[x]]m×n, shift ~s and order

σ one can view F as a polynomial matrix with degree σ − 1, as higher order terms

are not needed in the computation. As such the total input size of an order basis

problem is mnσ coe�cients. One can apply the method of Giorgi et al. [2003]

directly, which gives a cost of

log σ∑
i=0

2i MM(n, 2−iσ) =

log σ∑
i=0

2−iσMM(n, 2i)

⊂O

(
log σ∑
i=0

σnω M
(
2i
)

2−i

)

⊂O

(
nω

log σ∑
i=0

M (σ)

)
(3.1)

=O(nω M(σ) log σ).

Equation (3.1) follows from the fact 2i ≤ σ implies M (2i) 2−i ≤ M (σ) /σ. This

cost is close to the cost of multiplying two matrices with dimension n and degree

σ. Note that this cost is independent of the degree shift. This is very e�cient if

m ∈ Θ (n). However, for small m, say m = 1 as in Hermite Padé approximation,

the total input size is only nσ coe�cients. Matrix multiplication cannot be used

e�ectively on a such vector input.

Storjohann [2006] provides a novel way to transform an order basis problem

with small row dimension to a problem with higher row dimension and possibly

lower degree to take advantage of Giorgi et al. [2003]'s algorithm. We provide a

quick overview of a slightly modi�ed version of Storjohann's method. Our small

modi�cation allows a nonuniform degree shift for the input and provides a slightly

27

simpler degree shift, degree, and order for the transformed problem. The proof of

its correctness is provided in section �3.3. In order to compute a (F, σ, ~s)-basis,

assuming without loss of generality that min (~s) = 0, we �rst write

F = F0 + F1x
δ + F2x

2δ + · · ·+ Flx
lδ,

with deg Fi < δ for a positive integer δ, and where we assume (again without loss

of generality) that σ = (l + 1) δ. Set

F̄ =



F0 + F1x
δ 0m 0m · · · 0m

F1 + F2x
δ Im 0m

F2 + F3x
δ 0m Im

...
. . .

Fl−1 + Flx
δ Im


ml×(n+m(l−1))

.

On the left side of F̄, each block Fi + Fi+1x
δ has dimension m × n. On the right

side, there are l× (l− 1) blocks of 0m's or Im's each having dimension m×m. The

overall dimension of F̄ is ml × (n + m(l − 1)). Set ~s′ = [~s, 0, . . . , 0] (~s followed by

m (l − 1) 0's). A (F̄, 2δ, ~s′)-basis can then be computed by the method of Giorgi et

al. with a cost of O∼ (nωδ) for δ ≥ dae, where a = mσ/n. This transformation of

Storjohann can be viewed as a partial linearization of the original problem, where

F̄ is analogous to the coe�cient matrix of F. Note that F̄ has l block rows each

containing m rows. We continue to use each block row to represent m rows for the

remainder of this chapter.

Clearly an (F̄, 2δ, ~s′)-basis P̄ of the transformed problem is not a (F, σ, ~s)-basis

of the original problem, as P̄ has a higher dimension and lower degree. However,

the �rst n rows of the (F̄, 2δ, ~s′)δ−1-basis contained in P̄ is a (F, σ, ~s)δ−1-basis.

Note that there is no need to set the degree parameter δ to less than dae, as this

28

produces fewer basis elements without a better cost. The lowest cost is achieved

when F̄ is close to square so matrix multiplication can be used most e�ectively.

This requires the number of block rows l of F̄ to be close to n/m, which requires

δ = Θ (a). Recall that mnσ is the total size of the original m × n input matrix

F, hence a = mnσ/n2 = mσ/n is the average size of each entry of F if the m

rows of F are spread out over n rows. Choosing δ = Θ (a), the cost of computing

a (F̄, 2δ, ~s′)-basis is then O∼ (nωa). In the �rst part of this chapter, we use the

average size a = mσ/n in the asymptotic cost notation. Therefore, a is assumed to

be tending to in�nity, which means mσ > n. Together with the assumption that

σ and n/m are both powers of two, mσ/n is then always a positive integer in this

paper.

Example 3.1. Let K = Z2, σ = 8, δ = 2 and

F = [x+x2+x3+x4+x5+x6, 1+x+x5+x6+x7, 1+x2+x4+x5+x6+x7, 1+x+x3+x7]

a vector of size 1× 4. Then

F̄ =


x+ x2 + x3 1 + x 1 + x2 1 + x+ x2 0 0

1 + x+ x2 + x3 x3 1 + x2 + x3 x 1 0

1 + x+ x2 x+ x2 + x3 1 + x+ x2 + x3 x3 0 1


3×6

29

and a
(
F̄, 4,~0

)
-basis is given by

P̄ =



1 x 1 x2 + x3 0 x+ x2 + x3

0 1 0 x2 x2 + x3 0

1 1 + x x+ x2 x2 x2 x2

1 0 0 0 0 0

0 1 1 0 x2 x+ x2 + x3

0 1 1 + x2 0 x2 x+ x2


.

The �rst two columns of P̄ have degree less than 2, hence its top left 4×2 submatrix

is a
(
F, 8,~0

)
1
-basis. This is a low degree part of the (F, 8,~0)-basis

P =



1 x 1 x2

0 1 x2 + x3 0

1 1 + x x x3 + x4

1 0 0 0


.

Note that if δ is set to σ/2 = 4, then the transformed problem is the same as the

original problem.

3.2 Unbalanced Output

Storjohann's transformation can be used to e�ciently compute a (F, σ, ~s)δ−1-basis

if the degree parameter δ is close to the average degree d = mσ/n. However, if δ is

large, say δ = Θ (σ), or if we want to compute a complete (F, σ, ~s)-basis, then the

current analysis for the computation still gives the cost estimate of O∼ (nωσ).

The underlying di�culty with computing a complete order basis is that the

basis can have degree up to σ. As the output of this problem has dimension n× n

30

and degree up to Θ (σ), this may seem to suggest O∼ (nωσ) is about the best that

can be done. However, the total size of the output, that is, the total number of

coe�cients of all n2 polynomial entries can still be bounded by O (mnσ), the same

as the size of the input. This gives some hope for a more e�cient method.

Lemma 3.2. Let ~t be the ~s-column degrees of a (F, σ, ~s)-basis. Then
∑
~t ≤ mσ+∑

~s. In addition, the total size of any (F, σ, ~s)-basis in ~s-Popov form is bounded by

nmσ.

Proof. The sum of the ~s-column degrees is
∑
~s at order 0, since the identity matrix

is a (F, 0, ~s)-basis. This sum increases by at most r for each order increase, as can

be seen from the iterative computation of order bases in [Beckermann and Labahn,

1994, Giorgi et al., 2003]. The second statement follows from the fact that the row

degrees and the ~s-column degrees of any ~s-Popov form are represented by the pivot

entries..

Let us now look at the average column degree of the output. In the �rst part of

our discussion on order basis computation, we assume, without loss of generality,

that min (~s) = 0 so deg q ≤ deg~s q for any q ∈ K [x]n. The situation is simpler if

the shift ~s is uniform since then
∑
~t ≤ mσ by lemma 3.2 and the average column

degree is therefore bounded by a = mσ/n. In the �rst part of this thesis, we

consider a slightly more general case, when the shift ~s is balanced, which is de�ned

as follows.

De�nition 3.3. A shift ~s is balanced if max~s−min~s ∈ O(a) or if max~s−min~s ∈

O(mσ/n).

Note that we only need to use the second de�nition using max~s − min~s ∈

O(mσ/n) when we discuss the more re�ned cost in section �3.6.

By assuming min~s = 0, ~s is balanced if max~s ∈ O(a). In this case, lemma 3.2

implies
∑(

~t
)
≤ mσ +

∑
(~s) ∈ O (mσ + na) = O (mσ). Hence the average column

31

degree of the output basis remains O (a).

The fact that a (F, σ, ~s)-basis can have degree up to σ while its average col-

umn degree is O (a) implies that an order basis can have quite unbalanced column

degrees, especially if m is small. A similar problem with unbalanced output is en-

countered in null space basis computation. Storjohann and Villard [2005] deal with

this in the following way.

Let d be the average column degree of the output. Set the degree parameter

δ to twice that of d. This allows one to compute at least half the columns of a

basis (since the number of columns with degree at least δ must be at most a half

of the total number of columns). One can then simplify the problem, so that the

computed basis elements are completely removed from the problem. This reduces

the dimension of the problem by at least a factor of 2. One then doubles the degree

bound δ in order to have at least 3/4 of the basis elements computed. Repeating

this, at iteration i, at most 1/2i of the basis elements are remaining. Therefore, no

more than log n iterations are needed to compute all basis elements.

3.3 Extending Storjohann's Transformation

In this section, we introduce a transformation that can be viewed as an extension

of Storjohann's transformation which allows for computation of a full, rather than

partial, order basis. More generally (as discussed in the next section) this transfor-

mation provides a link between two Storjohann transformed problems constructed

using di�erent degree parameters. For easier understanding, we �rst focus on a

particular case of this transformation in Subsection 3.3.1 and then generalize this

in Subsection 3.3.2.

32

3.3.1 A Particular Case

Consider the problem of computing a (F, σ, ~s)-basis. We assume σ = 4δ for a

positive integer δ and write the input matrix polynomial as F = F0+F1x
δ+F2x

2δ+

F3x
3δ with deg Fi < δ. In the following, we show that computing a (F, σ, ~s)-basis

can be done by computing a (F′, ~ω, ~s′)-basis where

F′ =

 F 0

F′21 F′22

 =


F0 + F1x

δ + F2x
2δ + F3x

3δ 0 0

F1 + F2x
δ Im 0

F2 + F3x
δ 0 Im

 (3.2)

with order ~ω = [4δ, . . . , 4δ, 2δ, . . . , 2δ] (with m 4δ's and 2m 2δ's) and degree shift

~s′ = [~s, e, . . . , e] (with 2m e's), where e is an integer less than or equal to 1. We

set e to 0 in this paper for simplicity1.

We �rst look at the correspondence between the elements of 〈(F, σ, ~s)〉τ and

the elements of 〈(F′, ~ω, ~s′)〉τ in Lemma 3.4 to Lemma 3.8. The correspondence

between (F, σ, ~s)-bases and (F′, ~ω, ~s′)-bases is then considered in Corollary 3.10 to

Theorem 3.13.

Let

B =


In

x−δF0

x−2δ
(
F0 + F1x

δ
)
 .

Lemma 3.4. If q ∈ 〈(F, σ)〉, then Bq ∈ 〈(F′ ~, ω)〉.
1Storjohann used e = 1 in [Storjohann, 2006]. All results in this section still hold for any other

e ≤ 1.

33

Proof. The lemma follows from

F′Bq =


F0 + F1x

δ + F2x
2δ + F3x

3δ

F0x
−δ + F1 + F2x

δ

F0x
−2δ + F1x

−δ + F2 + F3x
δ

q ≡ 0 mod x~ω.

Note that the bottom rows of B may not be polynomials. However, Bq is a polyno-

mial vector since q ∈ 〈(F, σ)〉 implies q ∈ 〈(F0, δ)〉 and q ∈
〈(

F0 + F1x
δ, 2δ

)〉
.

The following lemma shows that the condition e ≤ 1 forces deg~s′ Bq to be deter-

mined by q.

Lemma 3.5. If q ∈ 〈(F, σ, ~s)〉τ for any degree bound τ ∈ Z, then deg~s′ Bq = deg~s q.

Proof. By assumption si ≥ 0, so deg q ≤ deg~s q. Now consider the degree of the

bottom 2m entries, q2,q3, of
q

q2

q3

 = Bq =


q

x−δF0 · q

x−2δ
(
F0 + F1x

δ
)
· q

 .

Our goal is to show deg~e
[
qT2 ,q

T
3

]T ≤ deg~s q. Note that

deg q2 = deg
(
F0q/x

δ
)
≤ deg q + δ − 1− δ ≤ deg~s q− 1,

and similarly deg q3 ≤ deg~s q− 1. Therefore

deg~e

q2

q3

 = deg

q2

q3

+ e ≤ deg~s q− 1 + e ≤ deg~s q.

34

Corollary 3.6. If q ∈ 〈(F, σ, ~s)〉τ for any degree bound τ ∈ Z , then Bq ∈

〈(F′, ~ω, ~s′)〉τ .

Corollary 3.7. Let S̄τ be a (F′, ~ω, ~s′)τ -basis and Sτ be the top n rows of S̄τ for

any bound τ ∈ Z. Then any q ∈ 〈(F, σ, ~s)〉τ is a linear combination of the columns

of Sτ .

Proof. By Corollary 3.6, Bq ∈ 〈(F′, ~ω, ~s′)〉τ , and so is a linear combination of

columns of S̄τ . That is, there exists a polynomial vector u such that Bq = S̄τu.

This remains true if we restrict the equation to the top n rows, that is, q =

[In,0] Bq = [In,0] S̄τu = Sτu.

Lemma 3.8. Let q̄ ∈ 〈(F′, ~ω, ~s′)〉τ for any degree bound τ ∈ Z, and q1 the �rst n

entries of q̄. Then q1 ∈ 〈(F, σ, ~s)〉τ .

Proof. The top rows of

F′q =

 F 0

F′21 F′22


 q1

q2

 =

 Fq1

F′21q1 + F′22q2

 ≡ 0 mod x~ω

give Fq1 ≡ 0 mod xσ.

The next lemma shows a (F′, ~ω, ~s′)-basis can be constructed from a (F, σ, ~s)-

basis. This (F′, ~ω, ~s′)-basis has a structure that restricts the elements of 〈(F′, ~ω, ~s′)〉

to a simple form shown in Corollary 3.10. This in turn helps to establish a close

correspondence between a (F′, ~ω, ~s′)-basis and a (F, σ, ~s)-basis in Lemma 3.11,

Lemma 3.12, and Theorem 3.13.

Lemma 3.9. If P is a (F, σ, ~s)-basis, then

T̄ =

BP
0n×2m

x2δI2m

 =


P 0n×m 0n×m

x−δF0 ·P x2δIm 0m

x−2δ
(
F0 + F1x

δ
)
·P 0m x2δIm


35

is a (F′, ~ω, ~s′)-basis.

Proof. By Lemma 3.4, T̄ has order (F′, ~ω) and is ~s′-column reduced since P dom-

inates the ~s′-degrees of T̄ on the left side by Lemma 3.5. It remains to show that

any q̄ ∈ 〈(F′, ~ω, ~s′)〉 is a linear combination of the columns of T̄.

Let q be the top n entries of q̄. Then by Lemma 3.8, q ∈ 〈(F, σ, ~s)〉, hence is a

linear combination of the columns of P, that is q = Pu with u = P−1q ∈ K [x]n×1.

Subtracting the contribution of P from q̄, we get

q′ = q̄−BPu = q̄−Bq =

 0

v

 ,
which is still in 〈(F′, ~ω, ~s′)〉, that is,

F′q′ =

 0

I2mv

 ≡ 0 mod x~ω.

This forces v to be a linear combination of the columns of x2δI2m, the bottom right

submatrix of T̄. Now q̄ = T̄
[
uT ,vT

]T
as required.

Corollary 3.10. Let τ ∈ Z be any degree bound and Pτ ∈ K [x]n×t be a (F, σ, ~s)τ -

basis. If q̄ ∈ 〈(F′, ~ω, ~s′)〉τ and q is the top n entries of q̄, then q̄ must have the

form

q̄ = BPτu + x2δ

0

v

 = Bq + x2δ

0

v


for some polynomial vector u ∈ K [x]t×1 and v ∈ K [x]2m×1. In particular, if

deg~s′ q̄ < 2δ, then q̄ = BPτu = Bq.

Proof. This follows directly from Lemma 3.9 with ~s′-degrees restricted to τ .

36

Lemma 3.11. If S̄(1) is a (F̌, ~ω, ~s′)2δ−1-basis, then the matrix S(1) consisting of its

�rst n rows is a (F, σ, ~s)2δ−1-basis.

Proof. By Lemma 3.8, S(1) has order (F, σ). By Corollary 3.7, any q ∈ 〈(F, σ, ~s)〉2δ−1

is a linear combination of S(1). It remains to show that S(1) is ~s-column reduced.

By Corollary 3.10, S̄(1) = BS(1), and by Lemma 3.8, the columns of S(1) are in

〈(F, σ, ~s)〉2δ−1. Thus, by Lemma 3.5, S(1) determines the ~s′-column degrees of S(1).

Therefore, S̄(1) being ~s′-column reduced implies that S(1) is ~s-column reduced.

Lemma 3.12. Let S̄(12) = [S̄(1), S̄(2)] be a (F′, ~ω, ~s′)2δ-basis, with deg~s′ S̄
(1) ≤ 2δ−1

and deg~s′ S̄
(2) = 2δ, and S(12),S(1),S(2) the �rst n rows of S̄(12), S̄(1), S̄(2), respec-

tively. Let I be the column rank pro�le (the lexicographically smallest sequence of

column indices that indicates a full column rank submatrix) of S(12). Then the

submatrix S
(12)
I comprised of the columns of S(12) indexed by I is a (F, σ, ~s)2δ-basis.

Proof. Consider doing ~s-column reduction on S(12). From Lemma 3.11, we know

that S(1) is a (F, σ, ~s)2δ−1-basis. Therefore, only S(2) may be ~s-reduced. If a column

c of S(2) can be further ~s-reduced, then it becomes an element of 〈(F, σ, ~s)〉2δ−1,

which is generated by S(1). Thus c must be reduced to zero by S(1). The only

nonzero columns of S(12) remaining after ~s-column reduction are therefore the

columns that cannot be ~s-reduced. Hence S(12) ~s-reduces to S
(12)
I . In addition,

S
(12)
I has order (F, σ) as S(12) has order (F, σ) by Lemma 3.8. From Corollary 3.7

any q ∈ 〈(F, σ, ~s)〉2δ is a linear combination of S(12) and hence is also a linear

combination of S
(12)
I .

To extract S
(12)
I from S(12), note that doing ~s-column reduction on S(12) is equiv-

alent to the more familiar problem of doing column reduction on x~sS(12). As S(12)

~s-column reduces to S
(12)
I , this corresponds to determining the column rank pro�le

of the leading column coe�cient matrix of x~sS(12). Recall that the leading column

37

coe�cient matrix of a matrix A = [a1, . . . , ak] used for column reduction is

lcoeff (A) = [lcoeff (a1) , . . . , lcoeff (ak)]

= [coeff (a1, deg (a1)) , . . . , coeff (ak, deg (ak))] .

The column rank pro�le of lcoeff(x~sS(12)) can be determined by (the transposed

version of) LSP factorization [Ibarra et al., 1982], which factorizes lcoeff(x~sS(12)) =

PSU as the product of a permutation matrix P , a matrix S with its nonzero

columns forming a lower triangular submatrix, and an upper triangular matrix U

with 1's on the diagonal. The indices, I, of the nonzero columns of S then give

S
(12)
I in S(12).

Theorem 3.13. Let S̄ = [S̄(12), S̄(3)] be a (F′, ~ω, ~s′)-basis, with deg~s′ S̄
(12) ≤ 2δ and

deg~s′ S̄
(3) ≥ 2δ + 1, and S,S(12),S(3) the �rst n rows of S̄, S̄(12), S̄(3), respectively.

If I is the column rank pro�le of S(12), then the submatrix [S
(12)
I ,S(3)] of S is a

(F, σ, ~s)-basis.

Proof. By Lemma 3.8, S has order (F, σ), and so [S
(12)
I ,S(3)] also has order (F, σ).

By Corollary 3.7, any q ∈ 〈(F, σ, ~s)〉 is a linear combination of the columns of S,

and so q is also a linear combination of the columns of [S
(12)
I ,S(3)]. It only remains

to show that [S
(12)
I ,S(3)] is ~s-column reduced.

Let P be a (F, σ, ~s)-basis and T̄ be the (F′, ~ω, ~s′)-basis constructed from P

as in Lemma 3.9. Let T̄(3) be the columns of T̄ with ~s′-degrees greater than 2δ,

and P(3) be the columns of P with ~s-degrees greater than 2δ. Assume without

loss of generality that S, P, and T̄ have their columns sorted according to their

~s-degrees and ~s′-degrees, respectively. Then deg~s S(3) ≤ deg~s′ S̄
(3) = deg~s′ T̄

(3) =

deg~s P(3). Combining this with the ~s-minimality of S
(12)
I from Lemma 3.12, it follows

that deg~s[S
(12)
I ,S(3)] ≤ deg~s P. This combined with the fact that [S

(12)
I ,S(3)] still

generates 〈(F, σ, ~s)〉 implies that deg~s[S
(12)
I ,S(3)] = deg~s P. Therefore, [S

(12)
I ,S(3)]

38

is a (F, σ, ~s)-basis.

Corollary 3.14. Let S̄ be a (F′, ~ω, ~s′)-basis with its columns sorted in an increasing

order of their ~s′ degrees, and S the �rst n rows of S̄. If J is the column rank pro�le

of lcoeff(x~sS), then the submatrix SJ of S indexed by J is a (F, σ, ~s)-basis.

Proof. This follows directly from Theorem 3.13.

This rank pro�le J can be determined by LSP factorization on lcoeff(x~s ·S(12)).

Example 3.15. For the problem in Example 3.1, F̌ is given by


x+ x2 + x3 + x4 + x5 + x6 1 + x+ x5 + x6 + x7 1 + x2 + x6 + x7 1 + x+ x3 + x7 0 0

1 + x+ x2 + x3 x3 1 + x2 + x3 x 1 0

1 + x+ x2 x+ x2 + x3 1 + x+ x2 + x3 x3 0 1



and a
(
F′, [8, 4, 4] ,~0

)
-basis is given as



1 x 1 x2 x2 + x4 1 + x2 + x3 + x4

0 1 x2 + x3 0 x3 0

1 1 + x x x3 + x4 0 x+ x2 + x3

1 0 0 0 0 0

0 1 1 + x2 x2 x2 + x3 1 + x2 + x3 + x4

0 1 1 x2 + x4 x2 + x3 1 + x3


.

Column reduction on the top 4 rows gives the top left 4× 4 submatrix, which is a

(F, 8,~0)-basis.

The following two lemmas verify Storjohann's result in the case of degree pa-

rameter δ = σ/4. More speci�cally, we show that the matrix of the top n rows of

39

a (F̄, 2δ, ~s′)δ−1-basis is a (F, σ, ~s)δ−1-basis, with the transformed input matrix

F̄ =


F0 + F1x

δ 0 0

F1 + F2x
δ Im 0

F2 + F3x
δ 0 Im

 ≡ F′ mod x2δ. (3.3)

Lemma 3.16. If q̄ ∈ 〈(F̄, 2δ, ~s′)〉δ−1 and q denotes the �rst n entries of q̄, then q̄

must have the form

q̄ = Bq =


q

x−δF0 · q

x−2δ
(
F0 + F1x

δ
)
· q


and q ∈ 〈(F, σ, ~s)〉δ−1.

Proof. Let q,q2,q3 consist of the top n entries, middle m entries, and bottom m

entries, respectively, of q̄ so that

F̄q̄ ≡


F0q + xδF1q

q2 + F1q + xδF2q

q3 + F2q + xδF3q

 ≡ 0 mod x2δ. (3.4)

From the �rst and second block rows, we get F0q + xδF1q ≡ 0 mod x2δ and

q2 + F1q ≡ 0 mod xδ, which implies

F0q ≡ xδq2 mod x2δ. (3.5)

Similarly, from the second and third rows, we get q2 + F1q + xδF2q ≡ 0 mod x2δ

and q3 + F2q ≡ 0 mod xδ, which implies q2 + F1q ≡ xδq3 mod x2δ.

Since deg q ≤ deg~s q = δ − 1, we have deg F0q ≤ 2δ − 2, hence from (3.5)

40

deg q2 ≤ δ − 2 and q2x
δ = F0q. Similarly, deg q3 ≤ δ − 2 and q3x

2δ = q2x
δ +

F1qx
δ = F0q+F1qx

δ. Substituting this to Fq = (F0q+F1qx
δ)+(F2qx

2δ+F3qx
3δ),

we get Fq = q3x
2δ + (F2qx

2δ + F3qx
3δ) ≡ 0 mod x4δ using the bottom block row

of (3.4).

Lemma 3.17. If S̄δ−1 is a (F̄, 2δ, ~s′)δ−1-basis, then the matrix of its �rst n rows,

Sδ−1, is a (F, σ, ~s)δ−1-basis.

Proof. By Lemma 3.16, Sδ−1 has order (F, σ). Following Lemmas 3.4 and 3.5 and

Corollaries 3.6 and 3.7 (replacing ~ω by 2δ), we conclude that any q ∈ 〈(F, σ, ~s)〉δ−1

is a linear combination of the columns of Sδ−1. In addition, since S̄δ−1 = BSδ−1 by

Lemma 3.16, and the columns of Sδ−1 are in 〈(F, σ, ~s)〉δ−1, it follows from Lemma 3.5

that Sδ−1 determines the ~s′-column degrees of S̄δ−1. Hence S̄δ−1
~s′-column reduced

implies that Sδ−1 is ~s-column reduced.

3.3.2 More General Results

Let us now consider an immediate extension of the results in the previous sub-

section. Suppose that instead of a (F, σ, ~s)-basis we now want to compute a

(F̄(i), 2δ(i), ~s(i))-basis with a Storjohann transformed input matrix

F̄(i) =



F0 + F1x
δ(i) 0m · · · · · · 0m

F1 + F2x
δ(i) Im

F2 + F3x
δ(i) Im

...
. . .

Fl(i)−1 + Fl(i)x
δ(i) Im


ml(i)×(n+m(l(i)−1))

made with degree parameter δ(i) = 2id for some integer i between 2 and log (σ/d)−1,

and a shift ~s(i) = [~s, 0, . . . , 0] (with m(l(i) − 1) 0's), where l(i) = σ/δ(i) − 1 is the

41

number of block rows2. To apply a transformation analogous to (3.2), we write

each Fj = Fj0 + Fj1δ
(i−1) and set

F′(i) =



F00 + F01x
δ(i−1)

+ F10x
2δ(i−1)

+ F11x
3δ(i−1)

0

F01 + F10x
δ(i−1)

F10 + F11x
δ(i−1)

+ F20x
2δ(i−1)

+ F21x
3δ(i−1)

F11 + F20x
δ(i−1)

... I

F(l(i)−1)0 + F(l(i)−1)1x
δ(i−1)

+ Fl(i)0x
2δ(i−1)

+ Fl(i)1x
3δ(i−1)

F(l(i)−1)1 + Fl(i)0x
δ(i−1)

Fl(i)0 + Fl(i)1x
δ(i−1)



, (3.6)

and ~ω(i) =
[[

[2δ(i)]m, [δ(i)]m
]l(i)

, [δ(i)]m
]
, where [◦]k represents ◦ repeated k times.

The order entries 2δ(i), δ(i) in ~ω(i) correspond to the degree 2δ(i)− 1, degree δ(i)− 1

rows in F′(i) respectively. Let

E(i) =



In 0n×m 0n×m

0m Im

0m Im

.

0m Im


with l(i)−1 blocks of [0m, Im] and hence an overall dimension of (n+m(l(i)−1))×(n+

m(l(i−1)−1)). Thus E(i)M picks out from M the �rst n rows and the even block rows

from the remaining rows except the last block row for a matrix M with n+m(l(i−1)−
2Recall that d = mσ/n is the average degree of the input matrix F if we treat F as a square

n × n matrix. Also, i starts at 2 because i = 1 is our base case in the computation of an order
basis, which may become more clear in the next section. The base case can be computed e�ciently
using the method of Giorgi et al. [2003] directly and does not require the transformation discussed
in this section.

42

1) rows. In particular, if i = log (n/m) − 1, then (F′(i), ~ω(i), ~s(i−1)) = (F′, ~ω, ~s′),

which for d = mσ/n gives the problem considered earlier in Subsection 3.3.1, and

E(i) = [In,0n×m,0n×m] is used to select the top n rows of a (F′, ~ω, ~s′)-basis for a

(F, σ, ~s)-basis to be extracted.

We can now state the analog of Corollary 3.14:

Theorem 3.18. Let S′(i) be a (F′(i), ~ω(i), ~s(i−1))-basis with its columns sorted in an

increasing order of their ~s(i−1) degrees. Let Ŝ(i) = E(i)S′(i). Let J be the column

rank pro�le of lcoeff(x~s
(i)

Ŝ(i)). Then Ŝ
(i)
J is a (F̄(i), 2δ(i), ~s(i))-basis.

Proof. One can follow the same arguments used before from Lemma 3.4 to Corol-

lary 3.14. Alternatively, this can be derived from Corollary 3.14 by noticing the

redundant block rows that can be disregarded after applying transformation (3.2)

directly to the input matrix F̄(i).

Lemma 3.17 can also be extended in the same way to capture Storjohann's

transformation with more general degree parameters:

Lemma 3.19. If P̄
(i−1)
1 is a (F̄(i−1), 2δ(i−1), ~s(i−1))δ(i−1)−1-basis, then E(i)P̄

(i−1)
1 is a

(F̄(i), 2δ(i), ~s(i))δ(i−1)−1-basis and the matrix consists of the top n rows of P̄
(i−1)
1 is a

(F, σ, ~s)δ(i−1)−1-basis.

Proof. Again, this can be justi�ed as done in Lemma 3.17. Alternatively, one can

apply Storjohann's transformation with degree parameter δ(i−1) to F̄(i) as in (3.3).

The lemma then follows from Lemma 3.17 after noticing the redundant block rows

that can be disregarded.

Notice that if i = log (n/m)− 1, then Theorem 3.18 and Lemma 3.19 specialize

to Corollary 3.14 and Lemma 3.17.

43

3.4 Computation of Order Bases

In this section, we establish a link between two di�erent Storjohann transformed

problems by dividing the transformed problem from the previous section into two

subproblems and then simplifying the second subproblem. This leads to a recursive

method for computing order bases. We also present an equivalent, iterative method

for computing order bases. The iterative approach is usually more e�cient in

practice, as it uses just O(1) iterations in the generic case.

3.4.1 Dividing into Subproblems

In Section 3.3 we have shown that the problem of computing a (F, σ, ~s)-basis can

be converted to the problem of computing a (F′, ~ω, ~s′)-basis and, more generally,

that the computation of a (F̄(i), 2δ(i), ~s(i))-basis, a Storjohann transformed prob-

lem with degree parameter δ(i), can be converted to the problem of computing a

(F′(i), ~ω(i), ~s(i−1))-basis. We now consider dividing the new converted problem into

two subproblems.

The �rst subproblem is to compute a (F′(i), 2δ(i−1), ~s(i−1))-basis or equivalently

a (F̄(i−1), 2δ(i−1), ~s(i−1))-basis P̄(i−1), a Storjohann transformed problem with degree

parameter δ(i−1). The second subproblem is computing a (F′(i)P̄(i−1), ~ω(i),~t(i−1))-

basis Q̄(i) using the residual F′(i)P̄(i−1) from the �rst subproblem along with a degree

shift ~t(i−1) = deg~s(i−1) P̄(i−1). From Theorem 5.1 in [Beckermann and Labahn,

1997] we then know that the product P̄(i−1)Q̄(i) is a (F′(i), ~ω(i), ~s(i−1))-basis and

deg~s(i−1) P̄(i−1)Q̄(i) = deg~t(i−1) Q̄(i). For completeness, we state a version of this

theorem specialized for our needs below and provide a simpler proof.

Theorem 3.20. For an input matrix F ∈ K [x]m×n, an order vector ~σ, and a shift

vector ~s, if P is a (F, ~σ, ~s)-basis with ~s-column degrees ~t, and Q is a (FP, ~τ ,~t) -basis

with ~t-column degrees ~u, where ~τ ≥ ~σ component-wise, then PQ is a (F, ~τ , ~s)-basis

44

with ~s-column degrees ~u.

Proof. It is clear that PQ has order (F, ~τ). We now show that PQ is ~s-column

reduced and has ~s-column degrees ~u, or equivalently, x~sPQ is column reduced and

has column degrees ~u. Notice that x~sP has column degrees ~t and a full rank leading

column coe�cient matrix P . Hence x~sPx−~t has column degrees [0, . . . 0]. Similarly,

x~tQx−~u has column degrees [0, . . . , 0] and a full rank leading column coe�cient

matrix Q. Therefore, x~sPx−~tx~tQx−~u = x~sPQx−~u has column degrees [0, . . . , 0] and

a full rank leading column coe�cient matrix PQ, implying that x~sPQ is column

reduced and that x~sPQ has column degrees ~u, or equivalently, the ~s-column degrees

of PQ is ~u.

It remains to show that any t ∈ 〈(F, ~τ)〉 is generated by the columns of PQ.

Since t ∈ 〈(F, ~σ)〉, it is generated by the (F, ~σ)-basis P, that is, t = Pa for

a = P−1t ∈ K [x]n. Also, t ∈ 〈(F, ~τ)〉 implies that a ∈ 〈(FP, ~τ)〉 since FPa =

Ft ≡ 0 mod x~τ . It follows that a = Qb for b = Q−1a ∈ K [x]n. Therefore,

a = P−1t = Qb, which gives t = PQb.

Example 3.21. Let us continue with Example 3.1 and Example 3.15 in order to

compute a
(
F, 8,~0

)
-basis (or equivalently a (F̄(2), 8,~0)-basis). This can be de-

termined by computing a (F′(2), [8, 4, 4],~0)-basis as shown in Example 3.15 where

we have F′(2) = F′. Computing a (F′(2), [8, 4, 4],~0)-basis can be divided into two

subproblems. The �rst subproblem is computing a (F̄(1), 4,~0)-basis P̄(1), the Stor-

johann partial linearized problem in Example 3.1. The residual F′(2)P̄(1) =


0 x8 x6 + x9 x4 + x6 + x9 x6 + x8 + x9 + x10 x5 + x8

0 0 x5 x4 + x6 x4 + x6 x5 + x6

0 x4 x5 x5 x4 + x5 + x6 x4


is then used as the input matrix for the second subproblem. The shift for the

second subproblem ~t(1) = [0, 1, 2, 3, 3, 3] is the list of column degrees of P̄(1) and

45

so the second subproblem is to compute a (F′(2)P̄(1), [8, 4, 4] , [0, 1, 2, 3, 3, 3])-basis,

which is

Q̄(2) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 x2 x 1

0 0 0 0 x 0

0 0 1 0 0 0

0 0 0 0 1 x


. (3.7)

Then P̄(1)Q̄(2) gives the (F′(2), [8, 4, 4],~0)-basis shown in Example 3.15.

We now show that the dimension of the second subproblem can be signi�cantly

reduced. First, the row dimension can be reduced by over a half. Let P̂(i−1) =

E(i)P̄(i−1).

Lemma 3.22. A (F̄(i)P̂(i−1), 2δ(i),~t(i−1))-basis is a (F′(i)P̄(i−1), ~ω(i),~t(i−1))-basis.

Proof. This follows because F̄(i)P̂(i−1) is a submatrix of F′(i)P̄(i−1) after removing

rows which already have the correct order 2δ(i−1).

The column dimension of the second subproblem can be reduced by disregard-

ing the (F̄(i), 2δ(i), ~s(i))δ(i−1)−1-basis which has already been computed. More specif-

ically, after sorting the columns of P̄(i−1) in an increasing order of their ~s(i−1)-

degrees, let [P̄
(i−1)
1 , P̄

(i−1)
2] = P̄(i−1) be such that deg~s(i−1) P̄

(i−1)
1 ≤ δ(i−1) − 1 and

deg~s(i−1) P̄
(i−1)
2 ≥ δ(i−1). Then P̂

(i−1)
1 = E(i)P̄

(i−1)
1 is a (F̄(i), 2δ(i), ~s(i))δ(i−1)−1-basis

by Lemma 3.19. In the second subproblem, the remaining basis elements of a

(F̄(i), 2δ(i), ~s(i))-basis can then be computed without P̄
(i−1)
1 .

Let P̂
(i−1)
2 = E(i)P̄

(i−1)
2 ,~b(i−1) = deg~s(i−1) P̄

(i−1)
2 , Q̄

(i)
2 be a (F̄(i)P̂

(i−1)
2 , 2δ(i),~b(i−1))-

basis (or equivalently a (F′(i)P̄
(i−1)
2 , ~ω(i),~b(i−1))-basis), and k(i−1) be the column di-

mension of P̄
(i−1)
1 . We then have the following result.

46

Lemma 3.23. The matrix

Q̄(i) =

 Ik(i−1)

Q̄
(i)
2


is a (F̄(i)P̂(i−1), 2δ(i),~t(i−1))-basis (equivalently a (F′(i)P̄(i−1), ~ω(i),~t(i−1))-basis).

Proof. First note that Q̄(i) has order (F̄(i)P̂(i−1), 2δ(i)) as

F̄(i)P̂(i−1)Q̄(i) = [F̄(i)P̂
(i−1)
1 , F̄(i)P̂

(i−1)
2 Q̄

(i)
2] ≡ 0 mod x2δ(i) .

In addition, Q̄(i) has minimal ~t(i−1) degrees as Q̄
(i)
2 is~b-minimal. Hence, by Lemma 2.21,

Q̄(i) is a (F̄(i) · P̂(i−1), 2δ(i),~t(i−1))-basis.

Lemma 3.23 immediately leads to the following.

Lemma 3.24. Let Ŝ = [P̂
(i−1)
1 , P̂

(i−1)
2 Q̄

(i)
2], and let I be the column rank pro�le of

lcoeff(x~s
(i)

Ŝ). Then ŜI is a (F̄(i), 2δ(i), ~s(i))-basis.

Proof. From Lemma 3.23, Q̄(i) is a (F′(i)P̄(i−1), ~ω(i),~t(i−1))-basis and hence P̄(i−1)Q̄(i)

is a (F′(i), ~ω(i), ~s(i−1))-basis. Since [P̂
(i−1)
1 , P̂

(i−1)
2 Q̄

(i)
2] = E(i)P̄(i−1)Q̄(i), the result fol-

lows from Theorem 3.18.

Example 3.25. Continuing with Example 3.1, Example 3.15, and Example 3.21,

notice that in the computation of the second subproblem, instead of using F′(2),

P̄(1), Q̄(2), and P̄(1)Q̄(2), the previous lemmas show that we can just use their

submatrices, F̄(2) the top left 1 × 4 submatrix of F′(2), P̂
(1)
2 the top right 4 × 4

submatrix of P̄(1), Q̄
(2)
2 the bottom right 4× 4 submatrix of Q̄(2), and P̂

(1)
2 Q̄

(2)
2 the

top right 4× 4 submatrix of P̄(1)Q̄(2)of lower dimensions.

Lemma 3.24 gives us a way of computing a (F, σ, ~s)-basis. We can set i to

log (n/m)−1 so that (F̄(i), 2δ(i), ~s(i))=(F, σ, ~s), and compute a (F̄(i), 2δ(i), ~s(i))-basis.

47

By Lemma 3.24, this can be divided into two subproblems. The �rst produces

[P̂
(i−1)
1 , P̂

(i−1)
2] = P̂(i−1) = E(i)P̄(i−1) from computing a (F̄(i−1), 2δ(i−1), ~s(i−1))-basis

P̄(i−1). The second subproblem then computes a (F̄(i)P̂
(i−1)
2 , 2δ(i),~b(i−1))-basis Q̄

(i)
2 .

Note the �rst subproblem of computing a (F̄(i−1), 2δ(i−1), ~s(i−1))-basis can again be

divided into two subproblems just as before. This can be repeated recursively until

we reach the base case with degree parameter δ(1) = 2d. The total number of

recursion levels is therefore log (n/m)− 1.

Notice that the transformed matrix F′(i) is not used explicitly in the computa-

tion, even though it is crucial for deriving our results.

3.4.2 The Iterative View

In this subsection we present our algorithm, which uses an iterative version of

the computation discussed above. The iterative version is usually more e�cient

in practice, considering that the generic case has balanced output that can be

computed with just one iteration, whereas the recursive method has to go through

log(n/m)− 1 levels of recursion.

Algorithm 3.1 uses a subroutine orderBasis, the algorithm from Giorgi et al.

[2003], for computing order bases with balanced input. Speci�cally, [Q,~a] =

orderBasis(G, σ,~b) computes a (G, σ,~b)-basis and also returns its ~b-column degrees

~a. The other subroutine StorjohannTransform is the transformation described in

Subsection 3.1.

Algorithm 3.1 proceeds as follows. In the �rst iteration, which is the base case

of the recursive approach, we set the degree parameter δ(1) to be twice the average

degree d and apply Storjohann's transformation to produce a new input matrix F̄(1),

which has l(1) block rows. Then a (F̄(1), 2δ(1), ~s(1))-basis P̄(1) is computed. Note

this is in fact the �rst subproblem of computing a (F̄(2), 2δ(2), ~s(2))-basis, which

is another Storjohann transformed problem and also the problem of the second

48

iteration. At the second iteration, we work on a new Storjohann transformed prob-

lem with the degree doubled and the number of block rows l(2) = (l(1) − 1)/2

reduced by over a half. The column dimension is reduced by using the result

from the previous iteration. More speci�cally, we know that the basis P̄(1) al-

ready provides a (F̄(2), 2δ(2), ~s(2))δ(1)−1-basis P̂
(1)
1 , which can be disregarded in the

remaining computation. The remaining work in the second iteration is to compute

a (F̄(2)P̂
(1)
2 , 2δ(2),~b(1))-basis Q̄(2), where ~b(1) = deg~s(1) P̄

(1)
2 , and then to combine it

with the result from the previous iteration to form a matrix [P̂
(1)
1 , P̂

(1)
2 Q̄(2)] in order

to extract a (F̄(2), 2δ(2), ~s(2))-basis P̄(2).

With a (F̄(2), 2δ(2), ~s(2))-basis computed, we can repeat the same process to

use it for computing a (F̄(3), 2δ(3), ~s(3))-basis. Continue this, using the computed

(F̄(i−1), 2δ(i−1), ~s(i−1))-basis to compute a (F̄(i), 2δ(i), ~s(i))-basis, until all n elements

of a (F, σ, ~s)-basis have been determined.

3.5 Computational Complexity

In this section, we analyze the computational complexity of Algorithm 3.1.

Lemma 3.26. Algorithm 3.1 computes a (F, σ, ~s)-basis in no more than log (n/m)−

1 iterations.

Proof. Each iteration i computes a (F̄(i), 2δ(i), ~s(i))-basis. At iteration i∗ = log(n/m)−

1, the degree parameter is σ/2 and (F̄(i∗), 2δ(i∗), ~s(i∗)) = (F, σ, ~s).

Lemma 3.27. If the shift ~s = [0, . . . , 0], then a (F, σ, ~s)δ(i)−1-basis (or equivalently

a (F̄(i), 2δ(i), ~s(i))δ(i)−1-basis) computed at iteration i has at least n− n/2i elements,

and hence at most n/2i elements remain to be computed. If the shift ~s is balanced,

that is, max~s ∈ O(a) assuming min~s = 0, then the number n(i) of remaining basis

elements at iteration i is O(n/2i).

49

Proof. The uniform case follows from the idea of Storjohann and Villard [2005] on

null space basis computation discussed in Subsection 3.2. For the balanced case, the

average column degree is bounded by ca = cmσ/n for some constant c. The �rst

iteration λ such that δ(λ) reaches ca is therefore a constant. That is, δ(λ) = 2λa ≥

ca > δ(λ−1) and hence λ = dlog ce. By the same argument as in the uniform case,

the number of remaining basis elements n(i) ≤ n/2i−λ = 2λ(n/2i) ∈ O(n/2i) at

iteration i ≥ λ. For iterations i < λ, certainly n(i) ≤ n < 2λ(n/2i) ∈ O(n/2i).

Theorem 3.28. If the shift ~s is balanced with min (~s) = 0, then Algorithm 3.1

computes a (F, σ, ~s)-basis with a cost of O (nω M(a) log σ)) ⊂ O∼ (nωa) �eld opera-

tions.

Proof. The computational cost depends on the degree, the row dimension, and the

column dimension of the problem at each iteration. The degree parameter δ(i) is

2ia at iteration i. The number of block rows l(i) is σ/δ(i) − 1, which is less than

σ/(2ia) = n/(2im) at iteration i. The row dimension is therefore less than n/2i at

iteration i.

The column dimension of interest at iteration i is the column dimension of P̂
(i−1)
2

(equivalently the column dimension of P̄
(i−1)
2), which is the sum of two components,

n(i−1) + (l(i−1) − 1)m. The �rst component n(i−1) ∈ O(n/2i) by Lemma 3.27. The

second component (l(i−1) − 1)m < n/2i−1 − m < n/2i−1 comes from the size of

the identity matrix added in Storjohann's transformation. Therefore, the overall

column dimension of the problem at iteration i is O(n/2i).

At each iteration, the four most expensive operations are the multiplications at

line 15 and line 19, the order basis computation at line 17, and extracting the basis

at line 20.

The matrices F̄(i) and P̂
(i−1)
2 have degree O(2ia) and dimensions O(n/2i)×O (n)

and O (n) × O(n/2i). The multiplication cost is therefore 2i MM(n/2i, 2ia) �eld

50

operations, which is bounded by

2i MM(n/2i, 2ia) ∈ O
(
2i
(
n/2i

)ω
M(2ia)

)
⊂ O

(
nω
(
2i
)1−ω

M
(
2i
)

M(a)
)

(3.8)

⊂ O
(
nω
(
2i
)1−ω (

2i
)ω−1

M(a)
)

(3.9)

⊂ O (nω M(a)) .

Equation (3.8) follows from M(st) ∈ O (M(s) M(t)). Equation (3.9) follows from

M(t) ∈ O(tω−1).

The matrices P̂
(i−1)
2 and Q̄(i) of the second multiplication have the same de-

gree O(2ia) and dimensions O (n) × O(n/2i) and O(n/2i) × O(n/2i) and can also

be multiplied with a cost of O (nω M(a)) �eld operations. The total cost of the

multiplications over O(log (n/m)) iterations is therefore O (nω M(a) log(n/m)).

The input matrix G(i) = F̄(i)P̂
(i−1)
2 of the order basis computation problem

at iteration i has dimension O(n/2i) × O(n/2i) and the order of the problem

is 2δ(i) ∈ O(2ia). Thus, the cost of the order basis computation at iteration

i is O
(
(n/2i)

ω
M (2ia) log (2ia)

)
. The total cost over O(log (n/m)) iterations is

bounded by

O

(
∞∑
i=1

((
n/2i

)ω
M
(
2ia
)

log
(
2ia
)))

⊂O

(
∞∑
i=1

((
n/2i

)ω
M
(
2i
)

log
(
2i
)

M (a) log (a)
))

⊂O

(
∞∑
i=1

(
nω
(
2i
)−ω (

2i
)ω−1

M (a) log (a)
))

⊂O

(
nω M (a) log (a)

∞∑
i=1

(
2−i
))

⊂O (nω M (a) log (a)) .

51

Finally, extracting an order basis by LSP factorization costs O (nω), which is

dominated by the other costs. Combining the above gives

O (nω M (a) log(n/m) + nω M (a) log a) = O (nω M (a) log σ))

as the total cost of the algorithm.

3.6 More Re�ned Cost and the Case mσ ∈ o(n)

Theorem 3.28 states the cost of computing a (F, σ, ~s)-basis as O∼ (nωa), where

a = mσ/n. In this cost, a is assumed to tend to in�nity, which meansmσ > n. This

allows us to transform the original problem with dimension m× n and degree σ to

one with dimension Θ(n)×Θ(n) and degree Θ(a) = Θ(mσ/n), allowing order basis

computation to be e�cient with a �nal cost of O∼(nωa). However, if we attempt

to state the cost as O∼ (nω−1mσ), the case of mσ ∈ o (n) becomes problematic and

requires special attention. In this case, the average degree a = mσ/n ∈ o(1) but

1 is the lowest possible degree and mσ is the maximum possible row dimension

of our transformed problems. In other words, we cannot obtain a nearly square

transformed problem for our algorithms to behave e�ciently, which means our

algorithms still require O∼(nω) �eld operations. We now look how this cost can be

improved to O∼(nω−1mσ) in the case of mσ ∈ o (n).

3.6.1 Balanced Case

First note that in this case, using De�nition 3.3, a balanced shift ~s is also uniform,

since max (~s)−min (~s) ∈ O (mσ/n) ⊆ o(1), which makes max (~s)−min (~s) = 0. So

let us just consider the uniform shift case.

We �rst compute all degree 0 basis elements, which then helps to eliminate the

columns of the input that are never going to be needed as pivots. The remaining

52

columns can then be used as the input to compute the remaining basis elements

e�ciently. The degree 0 elements of a (F, σ)-basis correspond to a nullspace basis

of a linearized matrix

F̄ =



F0

F1

F2

...

Fσ−1


∈ K(mσ)×n

of F = F0 + F1x+ F2x
2 + · · ·+ Fσ−1x

σ−1.

Lemma 3.29. The elements of a nullspace basis of F̄ over K are also the degree 0

elements of a (F, σ)-basis.

Proof. The columns of F̄ and the columns of F are equivalent representations of

the same elements of the same K-module, which is also a vector space over K.

To compute these basis elements, we can use the Gauss Jordan transform al-

gorithm from Storjohann [2000] on F̄ with a cost of O (nmσr̄ω−2), where r̄ ≤ mσ

is the rank of F̄ . The algorithm �nds a permutation matrix P and a unimodular

matrix U in Kn×n such that F̄PU is in the reduced column echelon form of F̄ . Note

that P permutes the columns of F̄ so that the �rst r̄ columns of F̄ are linearly inde-

pendent. Let [U1, U0] := U with U0 correspond to the zero columns of F̄PU . Then

the matrix consists of the bottom n− r̄ rows of U0 is the identity matrix, and only

the �rst r̄ rows of U1 are nonzero. Because of this simpler structure after permu-

tation, let us compute a (FP, σ)-basis P instead, which also gives us a (F, σ)-basis

PP. Notice that U0 consists of all the degree 0 elements of a (FP, σ)-basis. We can

then use FPU1 as the input matrix to compute the remaining basis elements. But

to further simplify our future computation, let us replace U1 with V = [I, 0]T of

the same dimension, where the identity matrix I replaces the �rst nonzero r̄ rows

53

in U1. In essence, PV picks r̄ columns from F for computing the remaining basis

elements. Since U0 has at least n−mσ columns, there are at most mσ columns in

U1, and hence at most mσ columns in V and in FPV .

Lemma 3.30. If we compute a (FPV, σ)-basis Q, then [VQ, U0] is a (FP, σ)-basis.

Proof. Note that the matrix [V, U0], which has the structure

I ∗
0 I


with ∗ representing the �rst r rows of U0, is a (FP, 0)-basis since it is unimodular

and column reduced. From 3.20, we can use the residual FP [V, U0] = [FPV, 0] to

compute a ([FPV, 0] , σ)-basis Q̄, then [V, U0]Q̄ is a (FP, σ)-basis. Also note that

if Q is a (FPV, σ)-basis, then

Q̄ =

Q

I


is a ([FPV, 0] , σ)-basis, and [V, U0]Q̄ = [VQ, U0] is a (FP, σ)-basis.

Our new problem of computing a (FPV, σ)-basis now satis�es the condition of

having column dimension bounded by mσ. We can therefore compute a (FPV, σ)-

basis using Algorithm 3.1 with a cost of O∼ ((mσ)ω) ⊂ O∼ (nω−1mσ).

The last thing to check is making sure that the multiplications for computing the

residual FPV , and for combining the results VQ, and for obtaining the �nal result

P [VQ, U0] can all be done e�ciently, which is not di�cult since P is a permutation

matrix, and V consists of an identity matrix and zeros. Therefore, the (F, σ)-basis

P [VQ, U0] can be computed with a cost of O∼ (nω−1mσ). This allows us to re�ne

the cost O∼ (nωd) to O∼ (nω−1mσ).

54

Theorem 3.31. A (F, σ, ~s)-basis can be computed with a cost of

O (nω M(mσ/n) log σ)) ⊂ O∼
(
nω−1mσ

)
�eld operations.

55

Algorithm 3.1 fastOrderBasis (F, σ, ~s)

Input: F ∈ K [x]m×n, σ ∈ Z≥0, ~s ∈ Zn satisfying n ≥ m, n/m and σ are powers
of 2, mσ ∈ Ω(n) and min (~s) = 0
Output: a (F, σ, ~s)-basis P ∈ K [x]n×n and deg~s P

1: if 2m ≥ n then return orderBasis (F, σ, ~s) ;
2: i := 1; d := mσ/n; δ(1) := 2d;
3: F̄(1) := StorjohannTransform(F, δ(1));
4: l(1) := rowDimension(F̄(1))/m;

5: ~b(0) := [~s, 0, . . . , 0] ; // m(l1 − 1) 0's

6: [P̄(1),~a(1)] := orderBasis(F̄(1), 2δ(1),~b(0));
7: Sort the columns of P̄(i) and ~a(i) by the shifted column degrees ~a(i) = deg~b P̄(i)

in increasing order;
8: ~t(i) := ~a(i);
9: k(i) := number of entries of ~a(i) less than δ(i);

10: [P̄
(i)
1 , P̄

(i)
2] := P̄(i) with P̄

(i)
1 ∈ K [x]n×k

(i)

;

11: while columnDimension(P̄
(i)
1) < n do

12: i := i+ 1; δ(i) := 2δ(i−1); l(i) := (l(i−1) − 1)/2;
13: F̄(i) := StorjohannTransform(F, δ(i));

14: P̂
(i−1)
2 := E(i)P̄

(i−1)
2 ;

15: G(i) := F̄(i)P̂
(i−1)
2 ;

16: ~b(i−1) := ~t(i−1)[k(i−1) + 1 . . . n+m(l(i−1) − 1)];
// w := v[k..l]means that w receives a slice of v
// whose indices range from kto l

17: [Q(i),~a(i)] := orderBasis(G(i), 2δ(i),~b(i−1));
18: Sort the columns of Q(i) and ~a(i) by ~a(i) = deg~b(i−1) Q(i) in increasing order;

19: P̌(i) := P̂
(i−1)
2 Q(i);

20: J := the column rank pro�le of lcoeff(x[~s,0,...,0][E(i)P̄
(i−1)
1 , P̌(i)]);

21: P̄(i) := [E(i)P̄
(i−1)
1 , P̌(i)]J ,

22: ~t(i) := deg[~s,0,...,0] P̄
(i);

23: k(i) := number of entries of ~t(i) less than δ(i);

24: [P̄
(i)
1 , P̄

(i)
2] := P̄(i) with P̄

(i)
1 ∈ K [x]n×k

(i)

;
25: end while
26: return the top n rows of P̄

(i)
1 , ~t(i) [1..n];

56

Chapter 4

Order Basis with Unbalanced Shifts

Theorem 3.31 shows that Algorithm 3.1 can e�ciently compute a (F, σ, ~s)-basis

when the shift ~s is balanced. When ~s is unbalanced (something important for

example in normal form computation [Beckermann et al., 1999, 2006b]), then Al-

gorithm 3.1 still returns a correct answer but may be less e�cient. The possible

ine�ciency results because there may not be enough partial results from the inter-

mediate subproblems to su�ciently reduce the column dimension of the subsequent

subproblem. This is clear from the fact that the column degrees of the output can

be much larger and no longer sum up to O (mσ) as in the balanced shift case.

The shifted ~s-column degrees, however, still behave well. In particular, the to-

tal ~s-degree increase is still bounded by mσ as stated in Lemma 3.2, while the

shifted degree of any column can also increase by up to σ. Recall that Lemma 3.2

states that for any shift ~s, there exists a (F, σ, ~s)-basis still having a total size

bounded by nmσ which gives hope for e�cient computation. In the following, we

look at two special cases of unbalanced shifts. In the �rst case where the input

shift ~s satis�es
∑n

i=1(~si − min(~s)) ∈ O(mσ), the sum of the column degrees of a

(F, σ, ~s)-basis is still in O(mσ), which allows us to use Algorithm 3.1 to compute a

(F, σ, ~s)-basis e�ciently as in the balanced case. The second case where ~s satis�es

57

∑n
i=1(max(~s) − ~si) ∈ O(mσ) is more complicated and is the main focus of this

section.

4.1 First unbalanced case

We �rst consider the case where the input shift ~s satis�es

n∑
i=1

(~si −min(~s)) ∈ O(mσ).

As before, we may use the equivalent condition

~s ≥ 0 and
∑

~s ∈ O(mσ), (4.1)

which can always be obtained from the previous condition by using ~s−min~s as the

new shift. Note that translating every entry of the shift by the same constant does

not change the problem. In this case, Algorithm 3.1 works e�ciently as before.

Lemma 4.1. If the shift ~s satis�es condition (4.1), then a (F, σ, ~s)-basis can be

computed with O (nω M(a) log σ)) ⊂ O∼ (nωa) �eld operations.

From Lemma 3.2, we know that the sum of the ~s-column degrees of any (F, σ, ~s)-

basis is ~t =
∑
~s+mσ ∈ O(mσ), and since the entries of ~s are non-negative, the sum

of the column degrees is less than
∑
~t. So the sum of the column degrees of any

(F, σ, ~s)-basis is also in O(mσ). Now the same analysis from Section 3.5 applies.

4.2 Second unbalanced case

We now look at another important case of unbalanced shift � when the input shift

~s satis�es the condition:
n∑
i=1

(max(~s)− ~si) ≤ mσ.

58

For simplicity, we use the equivalent condition

~s ≤ 0 and −
∑

~s ≤ mσ, (4.2)

which can always be obtained from the previous condition by using ~s − max~s as

the new shift.

In the balanced shift case, a central problem is to �nd a way to handle unbal-

anced column degrees of the output order basis. In this section, the unbalanced

shift makes row degrees of the output also unbalanced, which is a major problem

that needs to be resolved. Here we note a second transformation by Storjohann

[2006] which converts the input in such a way that each high degree row of the

output becomes multiple rows of lower degrees. We refer to this as Storjohann's

second transformation to distinguish it from that described in Subsection 3.1. The

transformed problem can then be computed e�ciently using Algorithm 3.1. After

the computation, rows can then be combined appropriately to form a basis of the

original problem. The method is computationally e�cient.

Unfortunately, the bases computed this way are not minimal and hence do not

in general produce our reduced order bases. In the following, we describe a trans-

formation that incorporates Storjohann's second transformation and guarantees the

minimality of some columns of the output, hence providing a partial order basis.

We can then work on the remaining columns iteratively as done in the balanced

shift case to compute a full order basis.

Condition (4.2) essentially allows us to locate the potential high degree rows

that need to be balanced. In more general cases, we may not know in advance

which are the high degree rows that need to be balanced, so our approach given in

this section does not work directly. This suggests that one possible future direction

to pursue is to �nd an e�ective way to estimate the row degree of the result pivot

59

entries. Such an estimate may allow us to apply the method given in this section

e�ciently for general unbalanced shifts.

4.2.1 Transform to Balanced Shifts

We now describe the transformation for balancing the high degree rows of the

resulting basis. Consider the problem of computing a (F, σ, ~s)-basis, where the

input shift ~s satis�es the conditions (4.2). Let α, β ∈ Z>0 be two parameters. For

each shift entry si in ~s with −si > α + β, let

ri = rem (−si − α− 1, β) + 1

be the remainder when −si−α is divided by β, and where ri = β in the case where

the remainder is 0, and set

qi =


1 if − si ≤ α + β

1 + (−si − α− ri) /β otherwise

Then, for each qi > 1, we expand the corresponding ith column fi of F and shift si

to

F̃(i) =
[

fi, x
rifi, x

ri+βfi, . . . , x
ri+(qi−2)βfi

]
, s̃i = [−α− β, . . . ,−α− β]

with qi entries in each case. When qi = 1, the corresponding shift entry and input

column remain the same, that is, s̃i = si, and F̃(i) = fi. Then for the transformed

problem, the new shift becomes s̄ = [s̃1, . . . , s̃n] ∈ Zn̄≤0, and the new input matrix

becomes F̄ = [F̃(1), . . . , F̃(n)] ∈ K [x]m×n̄, with the new column dimension n̄ satis�es

n̄ =
∑n

i=1 qi. Note that every entry of the new shift s̄ is an integer from −α− β to

60

0. Let

E =


1 xr1 xr1+β · · · xr1+(q1−2)β

. . .

1 xrn xrn+β · · · xrn+(qn−2)β


n×n̄

.

Then F̄ = FE. Storjohann's second transformation is determined by setting α =

−1, a value not allowed in our transformation (we show later in Theorem 4.11 that

this value is not useful in our case). One can verify that the new dimension

n̄ =
n∑
i=1

qi ≤ n+
n∑
i=1

−si/β ≤ mσ/β + n.

Thus by setting β ∈ Θ (a), where a = mσ/n, we can make n̄ ∈ Θ (n). Furthermore,

by also setting α ∈ Θ (a), we have a balanced shift problem since

max s̄−min s̄ ≤ −min s̄ ≤ α + β ∈ Θ(a).

Hence Algorithm 3.1 can compute a
(
F̄, σ, s̄

)
-basis with cost O∼ (nωa) in this case.

With a
(
F̄, σ, s̄

)
-basis P̄ ∈ K [x]n̄×n̄ computed, let us now consider EP̄ ∈

K [x]n×n̄. While it is easy to see that EP̄ has order (F, σ) since FEP̄ = F̄P̄ ≡ 0

mod xσ, in general it is not a minimal basis (in fact, EP̄ is not even square).

However, our transformation does guarantee that the highest degree columns of

EP̄ having ~s-degrees exceed −α are minimal. That is, the columns of EP̄ whose

~s-degrees exceed −α are exactly the columns of a (F, σ, ~s)-basis whose ~s-degrees

exceed −α. We have therefore correctly computed a partial (F, σ, ~s)-basis.

Example 4.2. Let us use the same input as in Example 3.1, but with shift ~s =

[0,−3,−5,−6], and parameters α = β = 1. Then we get the transformed input

61

F̄ =

[x+ x2 + x3 + x4 + x5 + x6, 1 + x+ x5 + x6 + x7, x+ x2 + x6 + x7 + x8,

1 + x2 + x4 + x5 + x6 + x7, x+ x3 + x5 + x6 + x7 + x8, x2 + x4 + x6 + x7 + x8 + x9,

x3 + x5 + x7 + x8 + x9 + x10, 1 + x+ x3 + x7, x+ x2 + x4 + x8,

x2 + x3 + x5 + x9, x3 + x4 + x6 + x10, x4 + x5 + x7 + x11]

having 12 components, and s̄ = [0,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2].

In this case r1 = r2 = r3 = r4 = 1, q1 = 1, q2 = 2, q3 = 4, q4 = 5 and the

transformation matrix is

E =



1 0 0 0 0 0 0 0 0 0 0 0

0 1 x 0 0 0 0 0 0 0 0 0

0 0 0 1 x x2 x3 0 0 0 0 0

0 0 0 0 0 0 0 1 x x2 x3 x4


.

62

Using the earlier algorithm for balanced shift, we compute a (F̄, 8, s̄)-basis

P̄ =



0 0 0 0 0 0 0 0 0 0 0 1

x 1 0 0 1 0 x 0 0 0 x 0

0 0 1 0 0 x 1 + x x x x 1 0

x 1 0 1 1 + x 1 x 0 0 0 0 1

x 0 1 1 1 + x 1 + x 1 x x 0 0 0

x 0 0 1 1 + x 1 + x 1 x 0 1 0 0

x 0 0 1 1 0 0 1 0 0 0 0

0 0 0 1 x 1 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 x 1 1 1 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0


with s̄-degrees [−1,−2,−2,−2,−1,−1,−1,−1,−1,−1,−1, 0]. Only the last col-

umn has s̄-degree exceeding −α = −1 and so is the only column guaranteed to give

a correct (F, 8, ~s)-basis element. Comparing EP̄ =



0 0 0 0 0 0 0 0 0 0 0 1

x 1 x 0 1 x2 x2 x2 x2 x2 0 0

x+ x2 + x3 + x4 1 x 1 + x+ x2 + x3 1 1 + x+ x3 x2 x2 x2 x2 0 1

0 x x2 1 + x3 + x4 x 1 + x4 x3 x3 x3 x3 0 1


to a (F, 8, ~s)-basis

P =



0 0 0 1

1 0 0 0

1 x2 + x3 + x4 1 + x+ x2 + x3 1

x x2 1 + x3 + x4 1



63

with ~s-degrees [−3,−1,−2, 0], we see that the last column of EP̄ is a element of

a (F, 8, ~s)-basis.

If we set α = 2, β = 1, then the new transformed problem gives

P̄ =



0 0 0 0 0 0 0 0 1

1 0 0 x 1 + x x x x 0

1 x2 1 x 1 x x 0 1

0 x2 1 x 1 x 0 1 0

0 x2 1 + x 1 0 1 0 0 0

0 x2 1 0 x 0 0 0 1

1 0 0 0 0 0 0 0 0

0 0 x 1 + x 1 1 1 1 0

0 0 x 1 0 0 0 0 0


with s̄-degrees [−3,−1,−2,−2,−2,−2,−2,−2, 0]. In this case the second column

also has s̄-degree exceeding −α = −2, and so it is guaranteed to produce another

element of a (F, 8, ~s)-basis. Computing

EP̄ =



0 0 0 0 0 0 0 0 1

1 0 0 x 1 + x x x x 0

1 x2 + x3 + x4 1 + x+ x2 + x3 x 1 + x x x x 1

x x2 1 + x3 + x4 x2 x+ x2 x2 x2 x2 1


,

we notice the second column is indeed an element of a (F, 8, ~s)-basis.

64

4.2.2 Correspondence Between the Original Problem and

the Transformed Problem

We now work towards establishing the correspondence between the high degree

columns of a
(
F̄, σ, s̄

)
-basis whose s̄-degrees exceed −α and those of a (F, σ, ~s)-

basis whose ~s-degrees exceed −α. A useful link is provided by the following matrix.

Set

Ai =



xri

−1 xβ

−1
. . .

. . . xβ

−1


qi×(qi−1)

and A =


A1

. . .

An


n̄×(n̄−n)

.

If qi = 1, Ai has dimension 1× 0, which just adds a zero row and no column in A.

We now show that for any w̄ ∈
〈(

F̄, σ, s̄
)〉
, w̄ can be transformed by A to one

of the two forms that correspond to the original problem and transformed problem.

This is made more precise in the following lemma. We then use unimodular equiv-

alence of these two forms to show the equivalence between the high degree part of

the result from the transformed problem and that of the original problem.

Lemma 4.3. Let

w̄ =


w̄1

...

w̄n

 ∈ 〈(F̄, σ, s̄)〉 with w̄i =


w̄i,0
...

w̄i,qi−1


qi×1

.

Then there exists a vector u ∈ K [x](n̄−n)×1 such that w̄+Au has one of the following

two forms.

65

(a) The �rst form is

w[1] =


w

[1]
1

...

w
[1]
n

 with w
[1]
i =



wi

0

...

0


qi×1

,

where wi = w̄i,0 + w̄i,1x
ri + w̄i,2x

ri+β + · · ·+ w̄i,qi−1x
ri+(qi−2)β.

(b) The second form is

w[2] =


w

[2]
1

...

w
[2]
n

 with w
[2]
i =


wi,0
...

wi,qi−1

 ,

where degwi,j < ri ≤ β when j = 0 and degwi,j < β when j ∈

{1, . . . , qi − 2}. There is no degree restriction on wi,qi−1.

Proof. The �rst form is obtained by setting

u[1] =


u

[1]
1

...

u
[1]
n

 with u
[1]
i =



w̄i,1 + w̄i,2x
β + w̄i,3x

2β + · · ·+ w̄i,qi−1x
(qi−2)β

w̄i,2 + w̄i,3x
β + · · ·+ w̄i,qi−1x

(qi−3)β

...

w̄i,qi−1


.

Then w̄ + Au[1] gives the �rst form. Note that u
[1]
i is empty if qi = 1 and w̄i =

w
[1]
i = [w̄i,0] is not changed by the transformation.

The second form can be obtained based on the �rst form. Let

ti,j =


ri if j = 0

β if j ∈ {1, . . . , qi − 2}

66

and write wi from the �rst form as

wi = wi,0 + wi,1x
ri + wi,2x

ri+β + · · ·+ wi,qi−1x
ri+(qi−2)β (4.3)

with degwi,j < ti,j for j < qi − 1. Note that in general wi,j 6= w̄i,j, as deg w̄i,j may

not be less than ti,j. Now set

v =


v1

...

vn

 with vi =



wi,1 + wi,2x
β + wi,3x

2β + · · ·+ wi,qi−1x
(qi−2)β

wi,2 + wi,3x
β + · · ·+ wi,qi−1x

(qi−3)β

...

wi,qi−1


and u[2] = u[1] − v, which comes from the unimodular transformation

[w̄,A]

 1

u[1] I


 1

−v I

 = [w̄,A]

 1

u[1] − v I

 .
Then w[2] = w̄+Au[2] is in the second form. Again note that vi and u

[2]
i are empty

if qi = 1 and w
[2]
i = w̄i = [w̄i,0].

Lemma 4.4. Let w̄ ∈
〈(

F̄, σ, s̄
)〉

and w[2] be in the second form. If deg~s Ew̄ > −α

or degs̄ w[2] > −α, then deg~s Ew̄ = degs̄ w[2].

Proof. Consider the ith entry wi of Ew̄ and the entries w
[2]
i = [wi,0, . . . , wi,qi−1]T in

w[2]. If qi = 1, then wi = wi,0 and the corresponding shifts satis�es si = s̄`(i), where

`(i) =
∑i

k=1 qk. Hence degwi + si = degwi,0 + s̄`(i). Thus we only need to consider

the case where qi > 1. Write wi as in Equation (4.3). Note that degwi,qi−1 =

degwi− ri− β (qi − 2) and hence degwi,qi−1−α− β = degwi− ri−α− β (qi − 1),

67

that is, degwi,qi−1 + s̄`(i) = degwi + si. It follows that

deg~s Ew̄ = max
i

(degwi + si) = max
i

(degwi,qi−1 + s̄`(i))

≤ max
i,j

(
degwi,j + s̄`(i−1)+j+1

)
= degs̄ w[2].

The only possible indices j where the inequality can be strict occur when j < qi−1.

But degwi,j < β for all j < qi − 1, which implies degwi,j + s̄`(i−1)+j+1 = degwi,j −

α−β < −α, and so it follows that the entries at these indices j do not contribute to

degs̄ w[2] when degs̄ w[2] > −α or deg~s Ew̄ = maxi(degwi,qi−1+s̄`(i)) > −α. In other

words, if one of them exceeds −α, then degs̄ w[2] and deg~s Ew̄ are determined only

by entries at indices j = qi − 1, but the equality always holds for these entries.

Remark 4.5. Notice that the �rst form w[1] of w̄ has nonzero entries only at indices

I = [1, q1 + 1, . . . ,
∑n−1

k=1 qk + 1]. Let B be a n̄ × n matrix with 1's at position

(
∑n−1

k=1 qk + 1, i) and 0's everywhere else. Then the �rst form satis�es w[1] = BEw̄.

Hence Lemma 4.4 provides the degree correspondence between the degrees of the

�rst form BEw̄, which is just Ew̄ with zero rows added, and the second form w̄[2]

of w̄.

Corollary 4.6. Let w̄ ∈
〈(

F̄, σ, s̄
)〉

and w[2] be its second form. Then deg~s Ew̄ >

−α if and only if degs̄ w[2] > −α.

Proof. The proof follows directly from Lemma 4.4.

Lemma 4.7. Let w̄ ∈
〈(

F̄, σ, s̄
)〉
. Then deg~s Ew̄ ≤ degs̄ w̄.

Proof. As in Lemma 4.4, consider the ith entry wi of Ew̄ and the corresponding

entries w̄i = [w̄i,0, . . . , w̄i,qi−1]T in w̄. If qi = 1, then degwi + si = degwi,0 + s̄`(i) as

before. Thus we just need to consider the case qi > 1, where the shifts for w̄i are

68

−α− β. Since wi = w̄i,0 + w̄i,1x
ri + w̄i,2x

ri+β + · · ·+ w̄i,qi−1x
ri+(qi−2)β, we get

degwi

= max {deg w̄i,0, deg w̄i,1 + ri, deg w̄i,2 + ri + β, . . . , deg w̄i,qi−2 + ri + (qi − 2)β} .

Then

degwi + si = degwi − ri − α− β(qi − 1)

= max {deg w̄i,0 − ri − α− β(qi − 1), deg w̄i,1 − α− β(qi − 1), . . . ,

. . . , deg w̄i,qi−2 − α− β}

≤ max {deg w̄i,0 − α− β, deg w̄i,1 − α− β, . . . , deg w̄i,qi−2 − α− β} ,

and so deg~s Ew̄ ≤ degs̄ w̄.

Corollary 4.8. Let P̄ = [P̄1, P̄2] be a
(
F̄, σ, s̄

)
-basis, where degs̄ P̄1 ≤ −α and

degs̄ P̄2 > −α. Let P̄
[2]
2 be the second form of P̄2. Then degs̄ P̄2 = degs̄ P̄

[2]
2 =

deg~s EP̄2. Hence [P̄1, P̄
[2]
2] is also a (F̄, σ, s̄)-basis.

Proof. Since any column p̄ of P̄2 satis�es degs̄ p̄ > −α, from Lemma 4.4 and

Lemma 4.7, we get

degs̄ p̄[2] = deg~s Ep̄ ≤ degs̄ p̄.

The inequality is in fact an equality, since otherwise, p̄ in P̄ can be replaced by p̄[2]

to get a basis of lower degree, contradicting the minimality of P̄. Note that P̄ with

its column p̄ replaced by p̄[2] remains to be a
(
F̄, σ, s̄

)
-basis, since p̄[2] = p̄ + Au

involves column operations with only columns in P̄1 as A has s̄-degrees bounded

by −α and hence is generated by P̄1.

Lemma 4.9. If P is a (F, σ, ~s)-basis, then [BP,A] is a basis for
〈(

F̄, σ, s̄
)〉
.

69

Proof. Any w̄ ∈
〈(

F̄, σ, s̄
)〉

can be transformed by A to the �rst form

w[1] = w̄ + Au[1] = BEw̄,

where Ew̄ ∈ 〈(F, σ, ~s)〉 is generated by P. That is,

w̄ = w[1] −Au[1] = BEw̄ −Au[1] = BPv −Au[1] = [BP,A] [v,−u[1]]T .

One can also see that the columns of A and the columns of BP are linearly inde-

pendent, as each zero row of BP has a −1 from a column of A.

Lemma 4.10. If P̄ is a
(
F̄, σ, s̄

)
-basis, then EP̄ generates 〈(F, σ, ~s)〉. That is, for

any w ∈ 〈(F, σ, ~s)〉, there is an u ∈ K [x]n̄×1 such that w = EP̄u.

Proof. For any (F, σ, ~s)-basis P, the columns of BP are in 〈(F̄, σ, s̄)〉 generated by

P̄, that is, BP = P̄U for some U ∈ K[x]n̄×n. Hence EBP = P is generated by

EP̄. That is, P = EP̄U. Then any w ∈ 〈(F, σ, ~s)〉, which satis�es w = Pv for

some v ∈ K[x]n×1, satis�es w = EP̄Uv.

We are now ready to prove the main result on the correspondence between a

high degree part of a basis of the transformed problem and that of the original

problem.

Theorem 4.11. Let P̄ = [P̄1, P̄2] be a
(
F̄, σ, s̄

)
-basis, where degs̄ P̄1 ≤ −α and

degs̄ P̄2 > −α. Then EP̄2 is the matrix of the columns of a (F, σ, ~s)-basis whose

~s-degrees exceed −α.

Proof. We want to show that [P1,EP̄2] is a (F, σ, ~s)-basis for any (F, σ, ~s)−α-basis

P1. First, EP̄ has order (F, σ) since F̄P̄ = FEP̄ and P̄ has order
(
F̄, σ

)
. Also,

since EP̄ generates 〈(F, σ, ~s)〉 by Lemma 4.10, and from Corollary 4.6 EP̄1 has ~s-

degree bounded by −α hence is generated by P1, it follows that
[
P1,EP̄2

]
generates

〈(F, σ, ~s)〉.

70

It only remains to show that the ~s-degrees of EP̄2 are minimal. Suppose not,

then [P1,EP̄2] can be reduced to [P1, P̃2] where P̃2 has a column having lower

~s-degree than that of the corresponding column in EP̄2. That is, assuming the

columns of P̃2 and EP̄2 are in non-decreasing ~s-degrees order, then we can �nd the

�rst index i where the ~s-degree of ith column of P̃2 is lower than the ~s-degree of the

ith column of EP̄2. It follows that [BP1,BEP̄2] can be reduced to [BP1,BP̃2] and

[BP1,BEP̄2,A] can be reduced to [BP1,BP̃2,A]. Since [BP1,BP̃2,A] generates

〈(F̄, σ, s̄)〉 by Lemma 4.9, it can be reduced to P̄ = [P̄1, P̄2]. But it can also be

reduced to [P̄1, P̃
[2]
2 ,A] with P̃

[2]
2 the second form of BP̃2, and to [P̄1, P̃

[2]
2] as the

columns of A are generated by the
(
F̄, σ, s̄

)
−α-basis P̄1.

In order to reach a contradiction we just need to show that P̃
[2]
2 has a column

with s̄-degree less than that of the corresponding column in P̄2. Let w̃ be the �rst

column of P̃2 with ~s-degree less than that of the corresponding column w in EP̄2

and let w̄ be the corresponding column in P̄2. By Corollary 4.8 deg~s w = degs̄ w̄.

Let w̃[2] be the second form of Bw̃, which is a column in P̃
[2]
2 corresponding to the

column w̄ in P̄2. We know that either degs̄ w̃[2] ≤ −α or degs̄ w̃[2] = deg~s w̃ by

Lemma 4.4, as Ew̃[2] = E(Bw̃ + Au) = w̃. In either case, degs̄ w̃[2] < degs̄ w̄, as

degs̄ w̄ is greater than both −α and deg~s w̃. Hence we have [P̄1, P̃
[2]
2] is another(

F̄, σ, s̄
)
-basis with lower s̄-degrees than P̄, contradicting with the minimality of

P̄.

4.2.3 Achieving E�cient Computation

Theorem 4.11 essentially tells us that a high degree part of a (F, σ, ~s)-basis can

be determined by computing a
(
F̄, σ, s̄

)
-basis, something we know can be done

e�ciently. Notice the parallel between the situation here and in the earlier balanced

shift case, where the transformed problem also allows us to compute a partial

(F, σ, ~s)-basis, albeit a low degree part, in each iteration.

71

After a
(
F̄, σ, s̄

)
-basis, or equivalently a high degree part of a (F, σ, ~s)-basis, is

computed, for the remaining problem of computing the remaining basis elements,

we can in fact reduce the dimension of the input F by removing some of its columns

corresponding to the high shift entries.

Theorem 4.12. Suppose without loss of generality that the entries of ~s are in non-

decreasing order. Let I be the index set containing the indices of entries si in ~s such

that si ≤ −α. Let FI be the columns of F indexed by I. Then a (FI , σ, ~s)−α-basis

P1 gives a (F, σ, ~s)−α-basis
[
PT

1 ,0
]T
.

Proof. For any p ∈ K [x]n×1 and deg~s p ≤ −α, note that if the ith entry of the shift

satis�es si ≤ −α, then the corresponding entry pi of p is zero. Otherwise, if pi 6= 0

then the ~s-degree of p is at least si > −α, contradicting the assumption that the

~s-degree of p is lower than or equal to −α.

Thus, these zero entries do not need to be considered in the remaining problem

of computing a (F, σ, ~s)−α-basis. As such the corresponding columns from the input

matrix F can be removed.

Example 4.13. Let us return to Example 4.2. When the parameters α = β = 1,

after computing an element of a (F, 8, ~s)-basis with ~s-degree 0 that exceeds −α =

−1, the �rst row of any (F, σ, ~s)−1-basis must be zero by Theorem 4.12 (since the

�rst entry of ~s = [0,−3,−5,−6] is 0 > −α). This is illustrated by the (F, 8, ~s)-basis

P given in Example 4.2. This implies that the �rst column of F is not needed in

the subsequent computation of the remaining basis elements.

Corollary 4.14. If the shift ~s satis�es condition (4.2) and c is a constant greater

than or equal to 1, then a (F, σ, ~s)−ca-basis has at most n/c basis elements.

Proof. Since a = mσ/n ≥ −
∑n

i=1 si/n under condition (4.2), there cannot be more

than n/c entries of ~s less than or equal to −ca. By Theorem 4.12, the only possible

72

nonzero rows of a (F, σ, ~s)−cd-basis are the ones corresponding to (with the same

indices as) the shift entries that are less than or equal to −ca. Hence there cannot

be more than n/c nonzero rows and at most n/c columns, as the columns are

linearly independent.

We now have a situation similar to that found in the balanced shift case. Namely,

for each iteration we transform the problem using appropriate parameters α and β

to e�ciently compute the basis elements with degrees greater than −α. Then we

can remove columns from the input matrix F corresponding to the shift entries that

are greater than −α. We can then repeat the same process again, with a larger α

and β, in order to compute more basis elements.

Theorem 4.15. If the shift ~s satis�es condition (4.2), then a (F, σ, ~s)-basis can be

computed with cost O (nω M(a) log σ) ⊂ O∼(nωa).

Proof. We give the following constructive proof. Initially, we set transformation

parameters α1 = β1 = 2a with a = mσ/n ≥ −
∑n

i=1 si/n. Algorithm 3.1 works

e�ciently on the transformed problem as the shift s̄(1) is balanced and the dimension

of F̄1 remains O (n). By Theorem 4.11 this gives the basis elements of (F, σ, ~s)-

basis with ~s-degree exceeding −α1 = −2a. By Corollary 4.14, the number of basis

elements remaining to be computed is at most n/2, hence the number of elements

correctly computed is at least n/2. By Theorem 4.12, this also allows us to remove

at least half of the columns from the input F and correspondingly at least half of

the rows from the output for the remaining problem. Thus the new input matrix

F2 has a new column dimension n2 ≤ n/2 and the corresponding shift ~s(2) has n2

entries. The average degree of the new problem is a2 = mσ/n2.

For the second iteration, we set α2 and β2 to 2a2. Since

α2 = 2mσ/n2 ≥ −2
n∑
i=1

si/n2 ≥ −2

n2∑
i=1

s
(2)
i /n2,

73

this allows us to reduce the dimension n3 of F3 to at most n2/2 after �nishing

computing a
(
F̄2, σ, s̄

(2)
)
−α1

-basis. Again, this can be done using Algorithm 3.1

with a cost of O (nω2 M(a2) log σ) as the shift ā2 is balanced and the dimension of

F̄2 is O (n2). Repeating this process, at iteration i, we set αi = βi = 2ai = 2mσ/ni.

The transformed problem has a balanced shift āi and column dimension O (ni). So

a
(
F̄i, σ, s̄

(i)
)
−αi−1

-basis can be computed with a cost of

O (nωi M (ai) log σ) ⊂ O
((

2−in
)ω

M
(
2ia
)

log σ
)

⊂ O
((

2−in
)ω

M
(
2i
)

M (a) log σ
)

⊂ O
((

2−in
)ω (

2i
)ω−1

M (a) log σ
)

⊂ O
(
2−inω M(a) log σ

)
.

Since

αi = 2mσ/ni ≥ −2
n∑
i=1

si/ni ≥ −2

ni∑
i=1

s
(i)
i /ni,

the column dimension ni+1 of the next problem can again be reduced by a half.

After iteration i, at most n/2i (F, σ, ~s)-basis elements remain to be computed.

We can stop this process when the column dimension ni of the input matrix Fi

reaches the row dimension m, as an order basis can be e�ciently computed in such

case. Therefore, a complete (F, σ, ~s)-basis can be computed in at most log(n/m)

iterations, so the overall cost is

O

log(n/m)∑
i=1

(
2−inω M(a) log σ

) = O

nω M(a) log σ

log(n/m)∑
i=1

2−i


⊂ O (nω M(a) log σ)

�eld operations.

Finally, we remark that when the condition (4.2) is relaxed to
∑n

i=1−si ∈

74

Algorithm 4.1 unbalancedFastOrderBasis (F, σ, ~s)

Input: F ∈ K [x]m×n, σ ∈ Z≥0, ~s satis�es condition (4.2).
Output: P ∈ K [x]n×n, an (F, σ, ~s)-basis.
Uses:
(a) TransformUnbalanced : converts an unbalanced shift problem to a balanced
one using the transformation described in Chapter 4. Returns transformed input
matrix, transformed shift, and transformation matrix.
(b) fastOrderBasis : computes order basis with balanced shift.

1: i := 1; P = [];
2: F(i) := F, ~s(i) := ~s;
3: while columnDimension(P) 6= n do
4: di =

⌈
mσ/ columnDimension(F(i))

⌉
;

5: αi := βi := 2di;
6:

[
F̄(i), s̄(i),E

]
:= TransformUnbalanced

(
F(i), ~s(i), αi, βi

)
;

7: P̄(i) := fastOrderBasis
(
F̄(i), σ, s̄(i)

)
;

8: Set P(i) to be the columns of EP̄(i) with s̄i-column degrees in (−αi,−αi−1];

9: P :=
[
P(i),P

]
;

10: Set I as the set of indices i satisfying si ≤ −αi;
11: F(i+1) := F

(i)
I , ~s(i+1) := ~s

(i)
I ;

12: i := i+ 1;
13: end while
14: return P ;

75

O (mσ), so that
∑n

i=1−si ≤ cmσ for a constant c, we can still compute a (F, σ, ~s)-

basis with the same complexity, by setting αi = βi = 2cmσ/ni at each iteration i

and following the same procedure as above. The cost at each iteration i remains

O∼ (nωa), and the entire computation still uses at most log(n/m) iterations.

76

Chapter 5

Kernel Basis

In this chapter we discuss the computation of minimal kernel bases.

Minimal kernel bases can be directly computed via order basis computation.

Indeed if the order σ of a (F, σ, ~s)-basis P is high enough, then P contains a ~s-

minimal kernel basis N. However, this approach may require the order σ to be

quite high. For example, if F has degree d and ~s is uniform, then its minimal

kernel bases can have degree up to md. In that case the order σ would need to be

set to d + md in the order basis computation in order to fully compute a minimal

kernel basis. The fastest method of computing such a (F, d+md)-basis would cost

O∼ (nω−1m2d) using the algorithm from chapter 3. We can see from this cost that

there is room for improvement when m is large. For example, in the worst case

when m ∈ Θ (n), this cost would be O∼ (nω+1d). This points to a root cause for the

ine�ciency in this approach. Namely, when m is large, the computed kernel basis,

which can have a column dimension of n−m, is a much smaller subset of the order

basis computed. Hence considerable e�ort is put in the computation of order basis

elements that are not part of a kernel basis. A key to reducing the cost is therefore

to reduce such computation of unneeded order basis elements, which is achieved

in our algorithm by only using order basis computation to compute partial kernel

77

bases of low degrees.

5.1 Minimal Kernel Basis Computation

In this section, we describe a new, e�cient algorithm for computing a shifted min-

imal kernel basis. The algorithm uses two computation processes recursively. The

�rst process, described in Subsection 5.1.2, uses an order basis computation to com-

pute a subset of kernel basis elements of lower degree, and results in a new problem

of lower column dimension. The second process, described in Subsection 5.1.4, re-

duces the row dimension of the problem by computing a kernel basis of a submatrix

formed by a subset of the rows of the input matrix.

We assume that the row dimension m is bounded by the column dimension n in

this chapter. But this assumption is later removed in Subsection 11.3.1 with results

from Chapter 11.

We require that the shift ~s bounds the column degrees of F, that is, ~s ≥ cdeg F.

For example, we can set each entry of ~s to be the corresponding column degree of

F, or we can simply set each entry of ~s to be the maximum column degree of F.

This is a very useful condition as it helps us to keep track of and bound the shifted

degrees throughout the kernel basis computation, as we will see in Subsection 5.1.1.

For simplicity, we will also assume without loss of generality that the columns of

F and the corresponding entries of ~s = [s1, . . . , sn] are arranged so that the entries

of ~s are in increasing order.

Let ρ =
∑n

n−m+1 si be the sum of m largest entries of ~s, and s = ρ/m be

their average. The algorithm we present in this section computes a ~s-minimal

kernel space basis N with a cost of O∼(nωs) �eld operations. For uniform shift

~s = [s, . . . , s], we improve this later to O∼ (nω−1ms).

78

5.1.1 Bounds based on the shift

A key requirement for e�cient computation is making sure that the intermediate

computations do not blow up in size. We will see that this requirement is satis�ed

by the existence of a bound, ξ =
∑
~s =

∑n
i=1 si, on the sum of all entries of the

input shift of all subproblems throughout the computation.

The following lemma shows that any (F, σ, ~s)-basis contains a partial ~s-minimal

kernel basis of F, and as a result, any (F, σ, ~s)-basis with high enough σ contains a

~s-minimal kernel basis of F.

Lemma 5.1. Let P = [P1,P2] be any (F, σ, ~s)-basis and N = [N1,N2] be any

~s-minimal kernel basis of F, where P1 and N1 contain all columns from P and N,

respectively, whose ~s-column degrees are less than σ. Then [P1,N2] is a ~s-minimal

kernel basis of F, and [N1,P2] is a (F, σ, ~s)-basis.

Proof. From Lemma 2.5, any column p of P1 satis�es deg Fp ≤ deg~s p < σ. Com-

bining this with the fact that Fp ≡ 0 mod xσ we get Fp = 0. Thus P1 is generated

by N1, that is, P1 = N1U for some polynomial matrix U. On the other hand, N1

has order (F, σ) and therefore satis�es N1 = P1V for some polynomial matrix

V. We now have P1 = P1VU and N1 = N1UV, implying both U and V are

unimodular. The result then follows from the unimodular equivalence of P1 and

N1 and the fact that they are ~s-column reduced.

We can now provide a simple bound on the ~s-minimal kernel basis of F.

Theorem 5.2. Suppose F ∈ K [x]m×n and ~s ∈ Zn≥0 is a shift with entries bounding

the corresponding column degrees of F. Then the sum of the ~s-column degrees of

any ~s-minimal kernel basis of F is bounded by ξ =
∑
~s.

Proof. Let P be a (F, σ, ~s)-basis with high enough order σ so that P =
[
N, N̄

]
contains a complete kernel basis, N, of F. By Lemma 5.1 we just need σ to be

79

greater than the ~s-column degree of a ~s-minimal kernel basis of F. Let r be the

column dimension of N̄. Note that this is the same as the rank of F. By Lemma 3.2

the sum of the ~s-column degrees of P is at most ξ + rσ. By Lemma 2.5 the sum of

the ~s-column degrees of N̄ is greater than or equal to the sum of the column degrees

of F · N̄, which is at least rσ, since every column of FN̄ is nonzero and has order

σ. So the sum of the ~s-column degrees of N is bounded by ξ + rσ − rσ = ξ.

Theorem 5.2 specializes to the following well-known results in the case of uniform

shift:

Corollary 5.3. Given F ∈ K [x]m×n with degree d . The sum of the column degree

of its minimal kernel basis is bounded by md.

Proof. From Theorem 5.2 and the de�nition of shifted column degrees we have

nd ≥
∑

cdeg
[d,...d]

N ≥ (n−m)d+
∑

cdeg N,

which gives ∑
cdeg N ≤ nd− (n−m)d = md.

5.1.2 Reducing the column dimension via order basis com-

putation

In this subsection we look at how an order basis computation can be used to reduce

the column dimension of our problem. While order basis computations were also

used in [Storjohann and Villard, 2005] to reduce the column dimensions of their

problems, here order basis computations are used in a more comprehensive way.

In particular, Theorem 5.8 given later in this section, allows us to maintain the

minimality of the bases with the use of the shifted degrees and the residuals.

80

We begin by computing a (F, 3s, ~s)-basis P, which can be done with a cost of

O∼ (nωs) using the algorithm from Giorgi et al. [2003]. Note that if ~s is balanced,

then we can compute this with a cost of O∼ (nω−1ms) using the algorithm from

Chapter 3. We will show that at most 3m
2

columns of P are not elements of a

kernel basis of F.

Remark 5.4. Note that it is not essential to choose 3s for the order. The order can

be set to `s for any constant ` > 1. A smaller ` means less work to compute a

(F, `s, ~s)-basis, but also results in fewer kernel basis elements computed and leaves

more work for computing the remaining basis elements. On the other hand, a larger

` means more work is needed for order basis computation, but leaves less remaining

work. It may be possible to better balance these computations with a better choice

of `. However, as we will see later, the resulting complexity given in this paper

would remain the same for any ` > 1 as long as we use the big O notation and do

not care about the constant factors in the cost.

Theorem 5.5. Let P = [P1,P2] be a (F, σ, ~s)-basis with σ > s and P1 containing

all columns n of P satisfying Fn = 0. Then for ` = σ/s the column dimension κ

of P2 is bounded by `m
(`−1)

.

Proof. Any column p of P2 has order σ but also satis�es Fp 6= 0. Thus the degree

of Fp must be at least σ and, by Lemma 2.5, p must have ~s-column degree at

least σ. It follows that the sum of the ~s-column degrees of the columns of P2 must

satisfy
∑

deg~s P2 ≥ κσ. From Lemma 3.2 we know that the sum of the ~s-column

degrees of the columns of P satis�es
∑

deg~s P ≤
∑
~s+mσ, and hence the sum of

~s-column degrees of the columns of P1 must satisfy

∑
deg~s P1 =

∑
deg~s P−

∑
deg~s P2 ≤

∑
~s+mσ − κσ.

On the other hand, the lowest possible value of
∑

deg~s P1 is
∑n−κ

i=1 si, the sum of

81

the n− κ smallest entries of ~s (which occurs when P1 = [I, 0]T). It follows that

∑
~s+mσ − κσ ≥

n−κ∑
i=1

si,

or, after rearrangement,

mσ ≥ κσ −

(∑
~s−

n−κ∑
i=1

si

)
.

Combining this with the fact that for κ ≥ m the average of the κ largest entries of

~s is no more than the average of the m largest entries of ~s, that is,

(∑
~s−

n−κ∑
i=1

si

)
/κ ≤ s, or

∑
~s−

n−κ∑
i=1

si ≤ κs,

we get mσ ≥ κσ − κs, which gives κ ≤ mσ/(σ − s) for σ > s. Substituting in

σ = `s, we get κ ≤ `m
(`−1)

as required.

Let [P1,P2] = P with P1 consisting of the kernel basis elements computed.

Then the residual FP = [0,FP2] can be used to compute the remaining kernel basis

elements. Before showing this can be correctly done, let us �rst make sure that the

matrix multiplication FP2 can be done e�ciently, which may not be obvious since

F, P2, and their product FP2 can all have degrees up to Θ(ξ). But we do have

the sum of the column degrees of F, that of FP2, and the sum of the ~s-column

degrees of P2 all bounded by O(ξ), which means their total size are not too big

but their column degrees can be quite unbalanced. We will encounter this type of

multiplication again multiple times, for computing residuals and combining results.

In fact, almost all of the matrices in our kernel basis computation can have such

unbalanced degrees. To e�ciently multiply these matrices, we provide the following

theorem, whose proof we defer until the end of this section. In the following, let

t = ξ/m and s be the average of the largest m entries of ~s as before.

82

Theorem 5.6. Let A ∈ K [x]m×n with m ≤ n, ~s ∈ Zn a shift with entries bounding

the column degrees of A and ξ, a bound on the sum of the entries of ~s. Let B ∈

K [x]n×k with k ∈ O (m) and the sum θ of its ~s-column degrees satisfying θ ∈ O (ξ).

Then we can multiply A and B with a cost of O∼(nmω−1t).

With Theorem 5.6, we can now do the multiplication FP2 e�ciently.

Corollary 5.7. The multiplication of F and P2 can be done with a cost of O∼(nmω−1t).

Proof. Since P = [P1,P2] is a (F, 3s, ~s)-basis, we have from Lemma 3.2 that the

sum of the ~s-column degrees of P2 satis�es
∑

deg~s P2 ≤ 3sm + ξ ≤ 4ξ. Hence

Theorem 5.6 applies.

It remains to show that the residual FP2 can be used to compute the remaining

kernel basis elements.

Theorem 5.8. Let P = [P1,P2] be a (F, σ, ~s)-basis such that P1 consists of all the

kernel basis elements of F in P. Let ~b = [~b1,~b2] be the ~s-column degrees of P, where

~b1,~b2 are the ~s-column degrees of P1, P2 respectively. Let Q be a ~b2-minimal kernel

basis of FP2 with ~b2-column degrees ~b′2. Then [P1,P2Q] is a ~s-minimal kernel basis

of F with ~s-column degrees [~b1,~b
′
2].

Proof. Let Q′ = diag([I,Q]), where the dimension of the identity matrix I matches

that of P1. Then Q′ is a~b-minimal kernel basis of FP since FPQ′ = [FP1,FP2Q] =

0. It follows that PQ′ = [P1,P2Q] is a kernel basis of F. We now show that PQ′ is

~s-column reduced and has ~s-column degrees [~b1,~b
′
2], or equivalently, x~sPQ′ is column

reduced and has column degrees [~b1,~b
′
2]. Notice that x~sP has column degrees [~b1,~b2]

and a full rank leading column coe�cient matrix P . Hence x~sPx−[~b1,~b2] has column

degrees [0, . . . 0]. (If one is concerned about the entries not being polynomials,

one can simply multiply the matrix by xξ to shift the degrees up.) Similarly,

x
~b2Qx−

~b′2 has column degrees [0, . . . , 0], and so x[~b1,~b2]Q′x−[~b1,~b′2] also has column

83

degrees [0, . . . , 0] and a full rank leading column coe�cient matrix Q′. Putting

these together, we see that x~sPx−[~b1,~b2]x[~b1,~b2]Q′x−[~b1,~b′2] = x~sPQ′x−[~b1,~b′2] has column

degrees [0, . . . , 0] and a full rank leading column coe�cient matrix PQ′. It follows

that x~sPQ′ has column degrees [~b1,~b
′
2], or equivalently, the ~s-column degrees of

PQ′ is [~b1,~b
′
2].

It remains to show that any n satisfying Fn = 0 must be a linear combination

of the columns of PQ′. Since n ∈ 〈(F, σ)〉, it is generated by the (F, σ)-basis P,

that is, n = Pa with a = P−1n ∈ K [x]n. Also, Fn = 0 implies FPa = 0, hence

a = Q′b for some vector b as Q′ is a kernel basis of FP. We now have n = PQ′b

as required.

Example 5.9. Let us look at an example of computing kernel basis using Theo-

rem 5.8. Let F be given by

 x+ x2 + x3 1 + x 0 1 + x

1 + x2 + x3 x+ x2 + x3 x+ x2 x3

 ∈ Z2 [x]2×4 .

Let σ = 3, ~s = [3, 3, 3, 3]. We �rst compute a (F, σ, ~s)-basis

P =



0 0 x2 x

1 0 0 x2

1 x2 x+ x2 1 + x

1 0 0 0


,

with the ~s-column degrees ~b = [3, 5, 5, 5] and the residual

FP =

 0 0 x3 + x4 + x5 x4

0 x3 + x4 x5 x3 + x5

 .
Thus P1 = [0, 1, 1, 1]T , with ~s-column degree 3, is the only kernel basis element

84

computed. Let P2 contain the remaining columns of P and ~b2 = [5, 5, 5] be its

~s-column degrees. Next we compute a ~b2-minimal kernel basis of FP2

Q = [1 + x+ x4, x+ x2, 1 + x3]T

which has ~b2-column degree 9. Then

[P1,P2Q] =



0 x+ x3

1 x2 + x5

1 1 + x+ x6

1 0


is a complete ~s-minimal kernel basis of F with ~s-column degrees [3, 9].

Theorem 5.8 shows that the remaining ~s-minimal kernel basis elements P2Q can

be correctly computed from the residual FP2. Before discussing the computation

of a ~b2-minimal kernel basis Q of FP2, let us �rst note that the multiplication P2Q

can be done e�ciently, which again follows from Theorem 5.6.

Lemma 5.10. The matrices P2 and Q can be multiplied with a cost of O∼ (nmω−1t).

Proof. Note that the dimension of P2 is n × O(m) from Theorem 5.5 and the

dimension of Q is O (m)×O (m). The column degrees of P2 are bounded by the ~s-

column degrees~b2 of P2 since ~s is non-negative. Also recall that
∑~b2 ≤ 4ξ from the

proof of Corollary 5.7. By Lemma 2.5 the column degrees of FP2 are bounded by

the ~s-column degrees ~b2 of P2. By Theorem 5.2, the sum of the ~b2-column degrees

of Q is also bounded by
∑~b2 ≤ 4ξ. Now if we separate P2 to n/m blocks rows

each with no more than m rows, Theorem 5.6 can be used to multiply each block

row with Q. Each multiplication involves matrices of dimension O (m)×O (m). In

addition, both the sum of the column degrees of P2 and the sum of the ~b2-column

85

degrees of Q are bounded by 4ξ. So each multiplication costs O∼(mωt), where

t = ξ/m. Hence doing this for all n/m block rows costs O∼ (nmω−1t).

5.1.3 Reducing the degrees

Our next task is computing a ~b2-minimal kernel basis of the residual FP2. It is

useful to note that the lower degree terms of FP2 are zero since it has order σ.

Hence we can use G = FP2/x
σ instead to compute the remaining basis elements.

In the following, we show that just like the original input matrix F, this new input

matrix G has column degrees bounded by the corresponding entries of ~s.

Lemma 5.11. If an (F, σ, ~s)-basis has columns arranged in increasing ~s-column de-

grees with ~s-column degrees ~b, then the entries of ~b−[σ, . . . , σ] = [b1 − σ, . . . , bn − σ]

are bounded component-wise by ~s.

Proof. A (F, 0, ~s)-basis of order 0 has ~s-column degrees given by ~s. For each order

increase, any column of the basis has its ~s-column degree increases by at most one,

which occurs when its order is increased by multiplying the column by x. Hence at

order σ, the ~s-column degree increase for each column is at most σ.

Corollary 5.12. The column degrees of FP/xσ are bounded component-wise by ~s.

Proof. From Lemma 2.5, the column degrees of FP are bounded component-wise

by ~b, the ~s-column degrees of P. Hence the column degrees of FP/xσ are bounded

component-wise by ~b− [σ, . . . , σ]. The result then follows from Lemma 5.11.

From Corollary 5.12, the column degrees of FP2/x
σ are bounded by the entries

of the corresponding subset ~t of ~b − [σ, . . . , σ], which is in turn bounded by the

entries of the corresponding subset of ~s.

86

Example 5.13. From Example 5.9, note that instead of using the residual

FP2 =

 0 x3 + x4 + x5 x4

x3 + x4 x5 x3 + x5


to compute a [5, 5, 5]-minimal kernel basis of F, we can instead use

G = FP2/x
3 =

 0 1 + x+ x2 x

1 + x x2 1 + x2


to compute a [2, 2, 2]-minimal kernel basis of G. The column degrees of G are

bounded by the new shift [2, 2, 2], which is in turn bounded by the corresponding

entries [3, 3, 3] of ~s.

At this point, using Theorem 5.8 and Corollary 5.12, the problem is reduced to

computing a ~t-minimal kernel basis of G = FP2/x
3s, which still has row dimension

m. But its column dimension is now bounded by 3m/2. Also notice that as in

the original problem, the column degrees of the new input matrix G are bounded

by the corresponding entries of the new shift ~t. In addition, as the new shift ~t is

bounded component-wise by a subset of the old shift ~s, the new problem is no more

di�cult than the original problem.

5.1.4 Reducing the row dimension

We now turn to the new problem of computing a ~t-minimal kernel basis of G. Let

G =

 G1

G2


with G1 having bm/2c rows and G2 having dm/2e rows. If we compute a ~t-minimal

kernel basis N1 of G1, where N1 has ~t-column degrees ~u, then compute a ~u-minimal

87

kernel basis N2 of G2N1, then the next theorem shows that N1N2 is a ~t-minimal

kernel basis of G.

Theorem 5.14. Let G =
[
GT

1 ,G
T
2

]T ∈ K [x]m×n and ~t ∈ Zn a shift vector. If N1

is a ~t-minimal kernel basis of G1 with ~t-column degrees ~u, and N2 is a ~u-minimal

kernel basis of G2N1 with ~u-column degrees ~v, then N1N2 is a ~t-minimal kernel

basis of G with ~t-column degrees ~v.

Proof. The proof is very similar to the proof of Theorem 5.8. It is clear that

GN1N2 = 0 hence N1N2 is a kernel basis of G. We now show that N1N2 is

~t-column reduced and has ~t-column degrees ~v, or equivalently, x~tN1N2 is column

reduced. Notice that x~tN1 has column degrees ~u and a full rank leading column

coe�cient matrix N1. Hence x~tN1x
−~u has column degrees [0, . . . , 0]. Again, if

one is concerned about the entries not being polynomials, one can simply multiply

the matrix by xξ to shift the degrees up. Similarly, x~uN2x
~v has column degrees

[0, . . . , 0] and a full rank leading column coe�cient matrix N2. Putting them to-

gether, x~tN1x
−~ux~uN2x

−~v = x~tN1N2x
−~v has column degrees [0, . . . , 0] and a full

rank leading column coe�cient matrix N1N2. It follows that x
~tN1N2 has column

degrees ~v, or equivalently, the ~t-column degrees of N1N2 is ~v.

It remains to show that any n satisfying Gn = 0 must be a linear combination of

the columns of N1N2. First notice that n = N1a for some polynomial vector a since

N1 is a kernel basis of G1. Also, Gn = 0 implies that G2N1a = 0, hence a = N2b

for some vector b as N2 is a kernel basis of G2N1. We now have n = N1N2b as

required.

Example 5.15. Let us compute a ~t-minimal kernel basis of

G =

 0 1 + x+ x2 x

1 + x x2 1 + x2



88

from Example 5.13, where ~t = [2, 2, 2]. Then

G1 =

[
0 1 + x+ x2 x

]
and G2 =

[
1 + x x2 1 + x2

]
.

We �rst compute a ~t-minimal kernel basis N1 of G1:

N1 =


1 0

0 x

0 1 + x+ x2


with its ~t-column degrees ~u = [2, 4]. Next, we compute a ~u-minimal kernel basis

N2 of G2N1 =

[
1 + x 1 + x+ x4

]
:

N2 = [1 + x+ x4, 1 + x]T .

Then

N1N2 = [1 + x+ x4, x+ x2, 1 + x3]T

is a ~t-minimal kernel basis of G.

While Theorem 5.8 allows us to compute kernel bases by columns, which then

reduces the column dimensions, Theorem 5.14 shows that that the kernel bases

can also be computed by rows, which then reduces the row dimensions. Again, we

need to check that these computations can be done e�ciently. In the following,

Lemma 5.16 and Lemma 5.17 show that the multiplication G2N1 and the multipli-

cation N1N2 can be done e�ciently, which are again consequences of Theorem 5.6.

Note that t = ξ/m is a bound on the average of the entries of ~t.

Lemma 5.16. The multiplication of G2 and N1 can be done with a cost of O∼(mωt).

Proof. Theorem 5.6 applies directly here.

89

Lemma 5.17. The multiplication of N1 and N2 can be done with a cost of O∼(mωt).

Proof. Theorem 5.6 applies because the sum of the column degrees of N1 is bounded

by the sum of the ~t-column degrees of N1, which is
∑
~u ≤ ξ, and by Theorem 5.2

the sum of ~u-column degrees of N2 is also bounded by ξ.

5.1.5 Recursive computation

The computation of N1 and N2 is identical to the original problem, only the di-

mension has decreased. For computing N1, the dimension of the input matrix G1

is bounded by bm/2c× (3m/2). For computing N2 , the dimension of input matrix

G2N1 is bounded by dm/2e × (3m/2). The column degrees of G1 are bounded by

the entries of ~t, with
∑
~t ≤ ξ. Similarly, the column degrees of G2N1 are bounded

by the entries of ~u, with
∑
~u ≤ ξ. Hence, the same computation process can be

repeated on these two smaller problems. This gives a recursive algorithm, shown

in Algorithm 11.1.

Before analyzing the computational complexity of Algorithm 11.1 in the fol-

lowing section, we provide a proof of Theorem 5.6, which is needed to e�ciently

multiply matrices with unbalanced degrees in the algorithm.

5.1.6 Proof of Theorem 5.6

In this subsection we give a proof of Theorem 5.6.

Proof. Recall that ~s is a shift with entries ordered in terms of increasing values

and ξ is a bound on the sum of the entries of ~s. We wish to determine the cost of

multiplying the two polynomials matrices A ∈ K [x]m×n and B ∈ K [x]n×k where A

has column degrees bounded by ~s and where B's column dimension k ∈ O (m) and

the sum θ of its ~s-column degrees satis�es θ ∈ O (ξ). The goal is to show that these

polynomial matrices can be multiplied with a cost of O∼(nmω−1t), where t = ξ/m.

90

Algorithm 5.1 minimalKernelBasis (F, ~s)

Input: F ∈ K [x]m×n, ~s = [s1, . . . , sn] ∈ Zn with entries arranged in non-decreasing
order and bounding the corresponding column degrees of F.

Output: A ~s-minimal kernel basis of F.
1: ξ :=

∑n
i=1 si; ρ :=

∑n
i=n−m+1 si; s := ρ/m;

2:

[
P,~b

]
:= orderBasis (F, 3s, ~s), a (F, 3s, ~s)-basis with the columns of P and

the entries of is ~s-column degrees ~b arranged so that the entries of ~b are in
non-decreasing order;

3: [P1,P2] := P where P1 consists of all columns p of P satisfying Fp = 0;
4: if m = 1 then
5: return P1

6: else
7: ~t := deg~s P2 − [3s, 3s, . . . , 3s] ;
8: G := FP2/x

3s;

9:
[
GT

1 ,G
T
2

]T
:= G, with G1 having bm/2c rows and G2 having dm/2e rows;

10: N1 := minimalKernelBasis
(
G1,~t

)
;

11: N2 := minimalKernelBasis (G2N1, cdeg~t N1) ;
12: Q := N1N2;
13: return [P1,P2Q]
14: end if

For simplicity we assume m is a power of 2, something which can be achieved

by appending zero rows to F. We divide the matrix B into logm column blocks

according to the ~s-column degrees of its columns. Let t = ξ/m = ns/m and

B =

[
B(logm) B(logm−1) · · · B(2) B(1)

]
,

with B(logm), B(logm−1), B(logm−2), ... , B(2), B(1) having ~s-column degrees in the

range [0, 2t], (2t, 4t], (4t, 8t], ...,(tm/4, tm/2], (tm/2, θ], respectively. We will mul-

tiply A with each B(i) separately.

We also divide the matrix A into logm column blocks and each matrix B(i) into

91

logm row blocks according to the size of the corresponding entries in ~s. Set

~s =

[
~slogm ~slogm−1 · · · ~s1

]
A =

[
Alogm Alogm−1 · · · A1

]
B =

[
B(logm) B(logm−1) · · · B(1)

]

=


B

(logm)
logm B

(logm−1)
logm · · · B

(1)
logm

...
...

B
(logm)
1 B

(logm−1)
1 · · · B

(1)
1


with ~slogm, ~slogm−1, . . . , ~s1 having entries in the range [0, 2t], (2t, 4t], (4t, 8t], ...,

(tm/2, tm] respectively. Also the column dimension of Aj and the row dimension

of B
(i)
j match that of ~sj for j from 1 to logm.

Notice that B
(i)
(j) for i > j must be zero. Otherwise, as ~sj > tm/2j ≥ tm/2i−1,

the ~s-column degree of B(i) would exceed tm/2i−1, a contradiction since by de�ni-

tion the ~s-column degree of B(i) is bounded by tm/2i−1 when i > 1. So B in fact

has a block triangular shape

B =



B
(logm)
logm B

(logm−1)
logm · · · B

(1)
logm

B
(logm−1)
logm−1

...

. . .

B
(1)
1


(while remembering that the blocks have varying sizes).

First consider the multiplication

AB(1) =

[
Alogm · · · A1

]
B

(1)
logm

...

B
(1)
1

 .

92

Note that there are O (1) columns in B(1) since θ ∈ O (ξ). We do this in logm steps.

At step j for j from 1 to logm we multiply Aj and B
(1)
j . The column dimension

of Aj, which is the same as the row dimension of B
(1)
j , is less than 2j. The degree

of B
(1)
j is O (ξ). To use fast multiplication, we expand B

(1)
j to a matrix B̄

(1)
j with

degree less than δ ∈ Θ(tm/2j) and column dimension q ∈ O(2j) as follows. Write

B
(1)
j = B

(1)
j,0 + B

(1)
j,1x

δ + · · ·+ B
(1)
j,q−1x

δ(q−1) =

q−1∑
k=0

B
(1)
j,kx

δk

with each B
(1)
j,k having degree less than δ. Set

B̄
(1)
j =

[
B

(1)
j,0 ,B

(1)
j,1 , . . . ,B

(1)
j,q−1

]
.

We can then multiply Aj, which has dimension m×O(2j) for j < logm, and B̄
(1)
j ,

which has dimension O(2j)×O(2j) for j < logm, with a cost of

O∼
(
(m/2j)

(
2j
)ω
tm/2j

)
= O∼

((
2j
)ω−2

m2t
)

⊂ O∼ (mωt) .

For j = logm, Aj has dimension m×O (n), B̄
(1)
j has dimension O (n)×O(m), and

their degrees areO (t). Hence they can be multiplied with a cost ofO∼ ((n/m)mωt) =

O∼ (nmω−1t). Adding up the columns of AjB̄
(1)
j gives AjB

(1)
j and costs O(m2t).

Therefore, multiplying A and B(1) over log(m) steps costs

O∼ (mωt) +O∼
(
nmω−1t

)
+O(m2t) = O∼

(
nmω−1t

)
.

Next we multiply A with B(2). We proceed in the same way as before, but

notice that A1B
(2)
1 is no longer needed since B

(2)
1 = 0. Multiplying A and B(2) also

costs O∼ (nmω−1t) .

93

Continuing to doing this, gives a costs of O∼ (nmω−1t) to multiply A with the

columns B(i) for i from 1 to logm. As before, we recall that B
(i)
(j) = 0 for j > i.

The overall cost for i from 1 to logm is therefore O∼ (nmω−1t) to multiply A and

B.

5.2 Computational Complexity

For the cost analysis we �rst consider the case where the column dimension n is

not much bigger than the row dimension m.

Theorem 5.18. If n ∈ O (m), then the cost of Algorithm 11.1 is O∼ (mωs) �eld

operations.

Proof. We may assume m is a power of 2, which can be achieved by appending

zero rows to F. The order basis computation at line 2 costs O∼ (nωs) = O∼ (mωs).

The multiplications at line 8 and line 13 cost O∼ (nmω−1t) = O∼ (mωs). The re-

maining operations including multiplications at line 11 and line 12 cost O∼ (mωt) =

O∼ (mωs). Let g(m) be the computational cost of the original problem. Then we

have the recurrence relation

g(m) ∈ O∼(mωs) + g(m/2) + g(m/2),

with the base case g(1) ∈ O∼ (s), the cost of just an order basis computation at

m = 1. This gives g(m) ∈ O∼(mωs) �eld operations as the cost of the algorithm.

We now consider the general case where the column dimension n can be much

bigger than the row dimension m.

Theorem 5.19. Algorithm 11.1 costs O∼ (nωs) �eld operations in general.

Proof. The order basis computation at line 2 costs O∼ (nωs) in general, which

dominates the cost of other operations. The problem is then reduced to one where

94

we have column dimension O (m), which is handled by Theorem 5.18 with a cost

of O∼ (mωt) ⊂ O∼ (nωs), where t = ξ/m ≤ ns/m.

When we have the important special case where the shift ~s = [s, . . . , s] is uni-

form then Algorithm 11.1 has a lower cost. Indeed we notice that the order basis

computation at line 2 costs O∼ (nω−1ms) using the algorithm from Chapter 3. In

addition, the multiplication of F and P2 at line 8 and the multiplication of P2 and Q

at line 13 both cost O∼ (nmω−1s) as shown below in Lemma 5.20 and Lemma 5.21.

Lemma 5.20. If the degree of F is bounded by s, then the multiplication of F and

P2 at line 8 costs O∼ (nmω−1s).

Proof. Since P2 is a part of a (F, 3s, ~s)-basis, its degree is bounded by 3s. It has

dimension n × O (m) from Theorem 5.5. Multiplying F and P2 therefore costs

(n/m)O∼ (mωs) = O∼ (nmω−1s).

Lemma 5.21. If F has degree s, then the multiplication of P2 and Q at line 13

costs O∼ (nmω−1s).

Proof. First note that the dimension of Q is O (m)×O (m) since it is a ~t-minimal

kernel basis of G = FP2/x
3s, which has dimension m × O (m). In addition, by

Theorem 5.2, the sum of the ~t-column degrees of Q is bounded by
∑
~t, which is

bounded by O (ms) since ~t has O (m) entries all bounded by s.

Now Theorem 5.6 and its proof still work. The current situation is even simpler

as we do not need to subdivide the columns of P2, which has degree bounded

by 3s and dimension n × O (m). We just need to separate the columns of Q to

O (logm) groups with degree ranges [0, 2s] , (2s, 4s], (4s, 8s], . . . , and multiply P2

with each group in the same way as in Theorem 5.6, with each of these O (logm)

multiplications costs (n/m)O∼ (mωs) = O∼ (nmω−1s).

Theorem 5.22. If ~s = [s, . . . , s] is uniform, then Algorithm 11.1 costs O∼ (nω−1ms).

95

Proof. After the initial order basis computation, which costs O∼ (nω−1ms) , and the

multiplication of F and P2, which costs O
∼ (nmω−1s) from Lemma 5.20, the column

dimension is reduced to O (m), allowing Theorem 5.18 to apply for computing a

~t-minimal kernel basis of FP2/x
3s. Hence the remaining work costs O∼ (mωs). The

overall cost is therefore dominated by the cost O∼ (nω−1ms) of the initial order

basis computation.

Corollary 5.23. If the input matrix F has degree d, then a minimal kernel basis

of F can be computed with a cost of O∼ (nω−1md).

Proof. We can just set the shift ~s to [d, . . . , d] and apply Theorem 5.22.

96

Chapter 6

Matrix inverse

In this chapter, we consider the problem of computing the inverse of a n × n

polynomial matrix with degree d. Jeannerod and Villard [2005] gave a deterministic

algorithm for this problem that costs O∼ (n3d) �eld operations. But their algorithm

only works well on input matrices that are generic with dimension a power of 2.

Storjohann [2010] gave another algorithm that works for general input matrices and

with a similar cost, but the algorithm is randomized Las Vegas. In the following,

we show that Jeannerod and Villard's algorithm can be improved to handle any

matrix with a cost of O∼ (n3d) using new results from this thesis. The algorithm

given here is still deterministic. If ξ is the minimum of the sum of the column

degrees and the sum of the row degrees of the input matrix and s = ξ/n is the

average, then the inverse can be computed with O∼ (n3s). Note that Gupta et al.

[2012] has also provided a method that can be used by some existing algorithms

for polynomial matrix computation problems including matrix inverse, to obtain a

cost stated in terms of the average column degrees. In the following, we assume

without loss of generality that the sum of the column degrees is the minimum sum.

Algorithm 6.1 is a recursive version of the algorithm from Jeannerod and Villard

[2005], except that we replace the kernel basis computation at line 4 and the matrix

97

Algorithm 6.1 inverse(F, ~s)

Input: F ∈ K [x]n×n; ~s is initially set to the column degrees of F. It keeps track
of the degrees.

Output: A =
[
A1, . . . ,Adlogne

]
,B with A1, . . . ,Adlogne,B ∈ K [x]n×n such that

A1 . . .AdlogneB
−1 = F−1 if F is nonsingular, or fail if F is singular.

1:
[
FT

1 ,F
T
2

]
:= FT with F1 consists of the top dn/2e rows of F;

2: if F = 0 then fail endif ;
3: if n = 1 then return {1,F}; endif ;
4: N1 := minimalKernelBasis (F1, ~s);N2 := minimalKernelBasis (F2, ~s);
5: if columnDimension(N1) 6= bn/2c or columnDimension(N2) 6= dn/2e then

fail; endif ;
6: R1 := F1N2;R2 := F2N1;
7:
{
A(1),H1

}
:= inverse(R1, cdeg~s N2);

{
A(2),H2

}
:= inverse(R2, cdeg~s N1);

8: A :=
[
[N2,N1] , diag(A(1)

1 ,A(2)
1), . . . , diag(A(1)

dlogne−1,A
(2)
dlogne−1)

]
9: return {A, diag ([H1,H2])};

multiplications at line 6 with the new algorithms from this thesis. The algorithm

also returns a list of matrices A1, . . . ,Adlogne,B satisfying A1 . . .AdlogneB
−1 = F−1,

instead of just two matrices A,B satisfying AB−1 = F−1. We can then compute

the product A = A1 . . .Adlogne with a cost of O∼ (n3s). It is interesting to note

that the output A1, . . . ,Adlogne,B takes only O(n2s log n) space, but the product

A = A1 . . .Adlogne takes O(n3s) space.

Let us �rst look at the cost of the kernel basis computation and matrix multi-

plications, since they dominate the cost of Algorithm 6.1.

Lemma 6.1. The kernel basis computation at line 4 costs O∼(nωs).

Proof. Just use the earlier kernel basis algorithm with the shift set to the column

degrees of the input matrix.

Lemma 6.2. The multiplications R1 := F1N2 and R2 := F2N1at line 6 cost

O∼(nωs).

Proof. From Theorem 5.2 we know that the sum of the ~s-column degrees of N1 and

that of N2 are both bounded by ξ. Now Theorem 5.6 can be applied.

98

Theorem 6.3. Algorithm 6.1 costs O∼ (nωs) �eld operations to compute an inverse

of a nonsingular matrix F ∈ K [x]n×n.

Proof. If the sum of the row degrees is smaller, we can just transpose the matrix.

Let the cost be g(n). Then we have the following recurrence relation:

g(n) ∈ O∼(nωs) + g(dn/2e) + g(bn/2c)

∈ O∼(nωs) + 2g(dn/2e)

∈ O∼(nωs).

Note that always rounding up n/2 to dn/2e is no worse than assuming n is a power

of 2. In other words, the entries in the sequence [dn/2e , dn/4e , . . . , 1] is no larger

than the corresponding entries in the sequence [n′/2, n′/4, . . . , 1], where n′ is the

smallest power of 2 that is no less than n, that is, n′ = 2dlog2 ne.

Lemma 6.4. The multiplications A = A1 . . .Adlogne can be done with a cost of

O∼(n3s) .

Proof. Note that Ai for i ≤ log n has 2i blocks on the diagonal. Each block of

Ai is used to compute two corresponding blocks of Ai+1. Let us �rst look at

A1 = [N2,N1] and

A2 =

N′2 N′1

M′
2 M′

1

 ,
where N′1, N′2 are the kernel bases of the submatrices F′1, F′2 contained in

R1 =

F′1

F′2

 = F1N2.

When multiplying A1 and A2, the submatrix N2 of A1 is multiplied with the block

[N′2,N
′
1] in A2. Let ~s

′ be the list of the ~s-column degrees of N2, where ~s is list of the

99

column degrees of the input matrix F. Then
∑
~s′ ≤

∑
~s = ξ by Theorem 5.2. From

Lemma 2.5, we know the column degrees of R1 = F1N2 are bounded component-

wise by the ~s-column degrees ~s′ of N2, hence the sum of the column degrees of R1

is also bounded by ξ. It follows that the sum of ~s′-column degrees of N′1 and that of

N′2 are each bounded by ξ. We can therefore use Theorem 5.6 to multiply N2 and

[N′2,N
′
1] with a cost of O∼ (nωs). From Lemma 2.5, the ~s-column degrees of the

product N2 [N′2,N
′
1] are bounded by the ~s′-column degrees of [N′2,N

′
1], hence the

sum of the ~s-column degrees of each column block in N2 [N′2,N
′
1] = [N2N

′
2,N2N

′
1]

is still bounded by ξ. The multiplication involving N1 and the second block of A2

is done in the same way as the multiplication N2 [N′2,N
′
1], hence the multiplication

A1A2 cost O
∼ (nωs), with the sum of ~s-column degrees of each of the four column

blocks in A1A2 = [N2N
′
2,N2N

′
1,N1M

′
2,N1M

′
1] bounded by ξ.

Next, we multiply A1A2 with A3. The matrix A3 now has four blocks on the

diagonal. Consider N2N
′
2 , the �rst column block of A1A2, multiplied with the

�rst block [N”2,N”1] on the diagonal of A3. Let ~s” be the ~s′-column degrees of

N′2, which bound the ~s-column degrees of N2N
′
2. Then

∑
~s” ≤

∑
~s′ ≤

∑
~s = ξ.

Following the same reasoning as before, the sum of the ~s”-column degrees of N”2 is

still bounded by ξ. We can therefore again use Theorem 5.6 to multiply N2N
′
2 and

N”2. The multiplication of the remaining blocks are done in the same way. The

product A1A2A3 now has 8 column blocks, with the sum of the ~s-column degrees

of each column block bounded by ξ.

Repeating this process, we multiply A1 · · ·Ai with Ai+1 at step i for i from 1 to

blog nc. Each of the 2i column blocks of A1 · · ·Ai has dimension n×O(n/2i). Each

of theO(2i) column blocks on the diagonal of Ai+1 has dimensionO(n/2i)×O(n/2i).

(Big O notation is used here because n/2i may not be an integer.) Let ~uj be the shift

used to compute the jth block in Ai+1. Then as before, the ~s-column degrees of the

jth column block in A1 · · ·Ai are bounded by ~uj, with
∑
~uj ≤ ξ. The sum of the ~u-

100

column degrees of the jth block in Ai+1 is bounded by 2ξ. (Each of the left half and

the right half has the sum bounded by ξ.) Therefore, multiplying A1 · · ·Ai with

Ai+1 cost O∼
(

2i2i (n/2i)
ω−1

2iu
)

= O∼
(

(2i)
3−ω

nωs
)
, where u = ξ/2i = ns/2i.

Take ω = 3, we get O∼ (n3s) as desired.

Again, it is interesting to note that Algorithm 6.1 costs only O∼ (nωs) and

represents the inverse with O (n2s log n) space. It is possible that this representation

is useful in some applications. For example, if we wish to multiply another low

degree matrix or a row vector H by F−1, representing F−1 = AB−1 requires us to

multiply H with a high degree matrix A. This can be more expensive than the

multiplication using the representation F−1 = A1A2 · · ·AdlogneB
−1, then HF−1 =

HA1A2 · · ·AdlogneB
−1, which is less expensive. It may be interesting to look for

other applications where this smaller representation is useful.

101

Chapter 7

Column Basis

Column bases are fundamental constructions in polynomial matrix algebra. As an

example, when the row dimension is one (i.e. m = 1), then �nding a column basis

coincides with �nding a greatest common divisor (GCD) of all the polynomials

in the matrix. Similarly, the nonzero columns of column reduced forms, Popov

normal forms, and Hermite normal forms are all column bases satisfying additional

degree constraints. A column reduced form gives a special column basis whose

column degrees are the smallest possible, while Popov and Hermite forms are special

column reduced or shifted column reduced forms satisfying additional conditions

that make them unique. E�cient column basis computation immediately leads to

fast computation for such core procedures as determining matrix GCDs Beckermann

and Labahn [2000], column reduced forms Beelen et al. [1988] and Popov forms

Villard [1996] of F with any dimension and rank. Column basis computation also

provides a deterministic alternative to randomized lattice compression Li [2006],

Storjohann and Villard [2005].

While column bases are produced by column reduced, Popov and Hermite forms

and considerable work has been done on computing such forms, for example Beck-

ermann et al. [2006a], Beelen and Dooren [1988], Giorgi et al. [2003], Gupta et al.

102

[2012], Sarkar [2011], Sarkar and Storjohann [2011]. However most of these exist-

ing algorithms require that the input matrices be square nonsingular and so start

with existing column bases. It is however pointed out in Sarkar [2011], Sarkar and

Storjohann [2011] that randomization can be used to relax the square nonsingular

requirement.

In this chapter, we consider the problem of computing a column basis of an

input matrix F ∈ K [x]m×n with n ≥ m and column degrees ~s. we give a fast,

deterministic algorithm for the computation of a column basis for F having com-

plexity O∼ (nmω−1s) �eld operations in K with s being the average average column

degree of F. To compute a column basis, we know from Corollary 2.16 that any

matrix polynomial F ∈ K [x]m×n can be unimodularly transformed to a column

basis by repeatedly working with the leading column coe�cient matrices. How-

ever this method of computing a column basis can be expensive. Indeed one needs

to work with up to
∑
~s such coe�cient matrices, which could involve up to

∑
~s

polynomial matrix multiplications. Before discussing the e�cient computation of

column basis, it is useful to look at following relationship between column basis,

kernel basis, and unimodular matrix.

Lemma 7.1. Given F ∈ K [x]m×n. If U is a unimodular matrix such that FU =

[0,T] gives a full column rank T, then U can be separated into two submatrices

U = [UL,UR], where UL is a kernel basis of F and FUR = T is a column basis of

F. In addition, the kernel basis UL can be replaced by any other kernel basis N of F

and still gives a unimodular matrix [N,UR], which can also be used to unimodularly

transform F to [0,T].

Proof. Note that T is a column basis of F by Corollary 2.16. It remains to show

that UL is a kernel basis of F. Since FUL = 0, UL is generated by any kernel

basis N, that is, UL = NC for some polynomial matrix C. Let r be the rank of

F, which is also the column dimension of T and UR. Then both N and UL have

103

column dimension n − r. Hence C is a square (n − r) × (n − r) matrix. Now the

unimodular matrix U can be factored as

U = [NC,UR] = [N,UR]

C

I

 ,

implying that both factors [N,UR] and

C

I

 are unimodular. Therefore, C

is unimodular and UL = NC is also a kernel basis. Notice that the unimodular

matrix [N,UR] also transforms F to [0,T].

Lemma 7.1 gives the following result for a unimodular matrix and its inverse.

Corollary 7.2. Let U = [UL,UR] be any unimodular matrix with columns sep-

arated arbitrarily to UL and UR. Let its inverse V =

VU

VD

, where the row

dimension of VU matches the column dimension of UL. So we have

VU =

VU

VD

[UL,UR

]
=

VUUL VUUR

VDUL VDUR

 =

I 0

0 I

 .
Then VUUL = I is a column basis of VU and a row basis of UL, while VDUR = I

is a column basis of VD and a row basis of of UR. In addition, VD and UL are

kernel bases of each other, while VU and UR are kernel bases of each other.

Proof. This follows directly from Lemma 7.1, by taking F from Lemma 7.1 to be

VU , VD, UT
L, and UT

R here.

To compute a column basis of F, we use the following procedure. We �rst

compute a right kernel basis N of F. Then we compute a left kernel basis G of

N. This matrix G is a right factor of F, that is, F = TG for some T ∈ K [x]m×r.

Then we can compute the left factor T, which is in fact a column basis of F.

104

Lemma 7.3. Given F ∈ K [x]m×n. Let N ∈ K [x]n×(n−r) be any right kernel basis

of F, and G ∈ K [x]r×n be any left kernel basis of N, where r is the rank of F.

Then F = TG for some T ∈ K [x]m×r and T is a column basis of F.

Proof. Let the matrix U =

[
UL,UR

]
from Corollary 7.2 be a unimodular matrix

that transforms F to a column basis B ∈ K [x]m×r of F, where UL is any right

kernel basis of F. From FU = [0,B], we get F = [0,B] U−1 = B [0, I] V = BVD.

Since VD is a left kernel basis of UL by Corollary 7.2, any other left kernel basis G

of UL is unimodularly equivalent to VD, that is, VD = WG for some unimodular

matrix W. Now F = BWG, where BW = T a column basis of F since it is

unimodularly equivalent to the column basis B.

Lemma 7.3 outlines a procedure for computing a column basis of F with three

main steps. The �rst step is to compute a (F, ~s)-kernel basis N, which can be

e�ciently done using Algorithm 5.1. However, we still need to work on the second

step of computing a
(
NT ,−~s

)
-kernel basis GT and the third step of computing

the column basis T from F and G. Note that while Lemma 7.3 does not require

the bases computed to be minimal, working with minimal bases keeps the degrees

well-managed and helps to make the computation e�cient.

Example 7.4. Let

F =

 x2 x2 x+ x2 1 + x2

1 + x+ x2 x2 1 + x2 1 + x2

 .

Then the matrix

N =



x 1

1 x

x 1

0 x


105

is a right kernel basis of F and the matrix

G =

 1 0 1 0

x x2 0 1 + x2


is a left nulllspace basis of N. Finally the matrix

T =

 x+ x2 1

1 + x2 1


satis�es F = TG, and is a column basis of F.

7.1 Computing a Right Factor

Let us now look at the computation of a
(
NT ,−~s

)
-kernel basis GT . For this

problem, Algorithm 11.1 does not work well directly, since the input matrix NT

has nonuniform row degrees and negative shift. Comparing to the earlier problem

of computing a (F, ~s)-kernel basis N, it is interesting to note that the old output

N now becomes the new input matrix NT , while the new output matrix G has size

bounded by F. In other words, the new input has degrees that matches the old

output, while the new output has degrees bounded by the old input. It is therefore

reasonable to expect that the new problem can be computed e�ciently. However,

we need to �nd some way to work with the more complicated input degree structure.

On the other hand, the simpler output degree structure makes it easier to apply

order basis computation to compute a
(
NT ,−~s

)
-kernel basis.

To see how order basis computations can be applied here, let us �rst extend

Lemma 5.1, which provides a relationship between order bases and kernel bases, to

accommodate our situation here.

106

Lemma 7.5. Given a matrix A ∈ K [x]m×n and a degree shift ~u with rdeg~u A ≤ ~v,

or equivalently, cdeg−~v A ≤ −~u. Let P = [P1,P2] be any (A, ~v + 1,−~u)-basis and

Q = [Q1,Q2] be any (A,−~u)-kernel basis, where P1 and Q1 contain all columns

from P and Q, respectively, whose −~u-column degrees are no more than 0. Then

[P1,Q2] is an (A,−~u)-kernel basis, and [Q1,P2] is an (A, ~v + 1,−~u)-basis.

Proof. We know cdeg−~v AP1 ≤ cdeg−~u P1 ≤ 0, or equivalently, rdeg AP1 ≤ ~v, but

it has order greater than ~v, hence AP1 = 0. The result then follows the same

reasoning as in the proof of Lemma 5.1.

Now with the help of Lemma 7.5, let us get back to our problem of computing a

(F, ~s)-kernel basis. In fact, we just need to use a special case of Lemma 7.5, where

all the elements of the kernel basis have shifted degrees bounded by 0, making the

partial kernel basis a complete kernel basis.

Lemma 7.6. Let N be a (F, ~s)-kernel basis with cdeg~s N = ~b. Let P = [P1,P2]

be a
(
NT ,~b+ 1,−~s

)
-basis, where P1 consists of all columns p with cdeg−~s p ≤ 0.

Then P1 is a (NT ,−~s)-kernel basis.

Proof. Let the rank of F be r, which is also the column dimension of any (NT ,−~s)-

kernel basis GT . Since both F and G are in the left kernel of N, we know F is

generated by G, and the −~s-row degrees of G are bounded by the corresponding

r largest −~s-row degrees of F, which are in turn bounded by 0 since cdeg F ≤ ~s.

Therefore, any (NT ,−~s)-kernel basis GT satis�es cdeg−~s GT ≤ 0. The result now

follows from Lemma 7.5.

We can use Theorem 5.14 to compute a
(
NT ,−~s

)
-kernel basis by rows. If

we separate N to N = [N1,N2] with ~s-column degrees ~b1, ~b2 respectively, and

�rst compute a
(
NT

1 ,−~s
)
-kernel basis Q1 with −~s-column degrees −~s2, and then

compute a
(
NT

2 Q1,−~s2

)
-kernel basis Q2, then Q1Q2 is a

(
NT ,−~s

)
-kernel basis. To

107

compute kernel bases Q1 and Q2, we can use order basis computation. However, we

need to make sure that the order bases we compute do contain these kernel bases.

Lemma 7.7. Let N be partitioned as N = [N1,N2], with ~s-column degrees ~b1,

~b2 respectively. Then a
(
NT

1 ,
~b1 + 1,−~s

)
-basis contains a

(
NT

1 ,−~s
)
-kernel basis

whose −~s-column degrees are bounded by 0. Let Q1 be this kernel basis, and

−~s2 = cdeg−~s Q1. Then a
(
NT

2 Q1,~b2 + 1,−~s2

)
-basis contains a

(
NT

2 Q1,−~s2

)
-

kernel basis Q2 whose −~s-column degrees are bounded by 0. The product Q1Q2 is

then a
(
NT ,−~s

)
-kernel basis.

Proof. To see that a
(
NT

1 ,
~b1 + 1,−~s

)
-basis contains a

(
NT

1 ,−~s
)
-kernel basis whose

−~s-column degrees are bounded by 0, we just need to show that cdeg−~s Q̄1 ≤ 0 for

any
(
NT

1 ,−~s
)
-kernel basis Q̄1 and then apply Lemma 7.5. Note that there exists

a polynomial matrix Q̄2 such that Q̄1Q̄2 = Ḡ for any
(
NT ,−~s

)
-kernel basis Ḡ,

as Ḡ satis�es NT
1 Ḡ = 0 and is therefore generated by the

(
NT

1 ,−~s
)
-kernel basis

Q̄1. If cdeg−~s Q̄1 � 0, then Lemma 2.17 forces cdeg−~s
(
Q̄1Q̄2

)
= cdeg−~s Ḡ � 0, a

contradiction since we know from the proof of Lemma 7.6 that cdeg−~s GT ≤ 0.

As before, to see that a
(
NT

2 Q1,~b2 + 1,−~s2

)
-basis contains a

(
NT

2 Q1,−~s2

)
-

kernel basis whose −~s-column degrees are no more than 0, we can just show

cdeg−~s2 Q̂2 ≤ 0 for any
(
NT

2 Q1,−~s2

)
-kernel basis Q̂2 and then apply Lemma 7.5.

Since cdeg~s N2 = ~b2, we have rdeg−~b2 N2 ≤ −~s or equivalently, cdeg−~b2 NT
2 ≤ −~s.

Then combining this with cdeg−~s Q1 = −~s2 we get cdeg−~b2 NT
2 Q1 ≤ −~s2 using

Lemma 2.17. Let Ĝ = Q1Q̂2, which is now a
(
NT ,−~s

)
-kernel basis by Theo-

rem 5.14. Note that cdeg−~s2 Q̂2 = cdeg−~s Q1Q̂2 = cdeg−~s Ĝ ≤ 0.

Now that we can correctly compute a
(
NT ,−~s

)
-kernel basis by rows with the

help of order basis computation using Lemma 7.7, we need to look at how to do it

e�ciently. One major di�culty is that the order ~b + 1, or equivalently, the ~s-row

degrees of NT
1 are nonuniform and can have degree as large as

∑
~s. To overcome

108

Algorithm 7.1 minimaKernelBasisReversed(M, ~s, ξ)

Input: M ∈ K [x]k×n and ~s ∈ Zn≥0 such that
∑

rdeg~s M ≤ ξ,
∑
~s ≤ ξ, and any

(M,−~s)-kernel basis having row degrees bounded by ~s (equivalently, having
−~s-column degrees bounded by 0).

Output: G ∈ K [x]n×∗, a (M,−~s)-kernel basis.

1:
[
MT

1 ,M
T
2 , · · · ,MT

log k−1,M
T
log k

]
:= MT , with Mlog k,Mlog k−1, · · · ,M2,M1 hav-

ing ~s-row degrees in the range
[
0, 2ξ

k

]
, (2ξ

k
, 4ξ
k

], ..., (ξ
4
, ξ

2
], (ξ

2
, ξ].

2: for i from 1 to log k do
3: ~σi :=

[
ξ

2i−1 + 1, . . . , ξ
2i−1 + 1

]
, number of entries matching the row dimension

of Mi;
4: end for
5: ~σ := [~σ1, ~σ2, . . . , ~σlog k];

6: N̂ := x~σ−
~b−1M;

7: G0 := In; G̃0 := In;
8: for i from 1 to log k do
9: ~si := − cdeg−~s Gi−1; (note ~s1 = ~s)

10: Pi := unbalancedFastOrderBasis
(
N̂iG̃i−1, ~σi,−~si

)
;

11: [Gi,Qi] := Pi, where Ni is a
(
M̂i,−~si

)
-kernel basis;

12: G̃i := G̃i−1 ·Gi;
13: end for
14: return G̃i

this, we separate the rows of NT into blocks according to their ~s-row degrees, and

then work with these blocks one by one successively using Theorem 5.14.

Let k be the column dimension of N and ξ be an upper bound of
∑
~s. Since∑

cdeg~s N =
∑~b ≤

∑
~s ≤ ξ, at most k/c columns of N have ~s-column degrees

greater than or equal to cξ/k for any c ≥ 1. We assume without loss of generality

that the rows of NT are arranged in decreasing ~s-row degrees. We divide NT into

log k row blocks according to the ~s-row degrees of its rows, or equivalently, divide

N to blocks of columns according to the ~s-column degrees. Let

N = [N1,N2, · · · ,Nlog k−1,Nlog k]

109

with Nlog k,Nlog k−1, . . . ,N2,N1 having ~s-column degrees in the range [0, 2ξ/k],

(2ξ/k, 4ξ/k], (4ξ/k, 8ξ/k], ..., (ξ/4, ξ/2], (ξ/2, ξ]. Let

~σi =
[
ξ/2i−1 + 1, . . . , ξ/2i−1 + 1

]
with the same dimension as the row dimension of Ni. Let

~σ = [~σlog k, ~σlog k−1, . . . , ~σ1]

be the order in the order basis computation.

To further simply our task, we also make the order of our problem in each block

uniform. Rather than of using NT as the input matrix, we use

N̂ =


N̂1

...

N̂log k

 = x~σ−
~b−1


NT

1

...

NT
log k

 = x~σ−
~b−1NT

instead, so that a
(
N̂, ~σ,−~s

)
-basis is a

(
NT ,~b+ 1,−~s

)
-basis.

We are now ready to compute a
(
NT ,−~s

)
-kernel basis, which is done by a series

of order basis computations that computes a series of kernel bases as follows.

Let ~s1 = ~s. First we compute an
(
N̂1, ~σ1,−~s1

)
-basis P1 = [G1,Q1], where G1

is a
(
N̂1,−~s1

)
-kernel basis.

Let G̃1 = G1. Let ~s2 = − cdeg−~s G1. We then compute an
(
N̂2G̃1, ~σ2,−~s2

)
-

basis P2 = [G2,Q2] with ~s3 = − cdeg−~s2 G2. Let G̃2 = G̃1G2.

Continuing this process, at step i we compute an
(
N̂iG̃i−1, ~σi,−~si

)
-basis Pi =

[Gi,Qi]. Let G̃i =
∏i

j=1 Gi = G̃i−1Gi. Note that G̃log k is a
(
NT ,−~s

)
-kernel basis.

This process of computing a
(
NT ,−~s

)
-kernel basis gives Algorithm 7.1.

Now let us check the cost of this algorithm. The cost is dominated by the order

110

basis computation and the multiplications N̂iG̃i−1 and G̃i−1Gi. Let s = ξ/n.

Lemma 7.8. An
(
N̂iG̃i−1, ~σi,−~si

)
-basis can be computed with a cost of O∼ (nωs).

Proof. Note that Ni has less than 2i columns. Otherwise,

∑
cdeg
~s

Ni > 2iξ/2i = ξ,

contradicting with ∑
cdeg
~s

N =
∑

~b ≤
∑

~s ≤ ξ.

It follows that N̂i, and therefore N̂iG̃i−1, also have less than 2i rows. We also have

~σi = [ξ/2i−1 + 1, . . . , ξ/2i−1 + 1] with entries in Θ (ξ/2i). Therefore, Algorithm 4.1

can be used with a cost of O∼ (nωs) by Theorem 4.15.

Lemma 7.9. The multiplications N̂iG̃i−1 can be done with a cost of O∼ (nωs).

Proof. The dimension of N̂i is bounded by 2i−1×n and
∑

rdeg~s N̂i ≤ 2i−1 ·ξ/2i−1 =

ξ. We also have cdeg−~s G̃i−1 ≤ 0, or equivalently, rdeg G̃i−1 ≤ ~s. We can now use

Theorem 5.6 to multiply G̃T
i−1 and N̂T

i with a cost of O∼ (nωs).

Lemma 7.10. The multiplication G̃i−1Gi can be done with a cost of O∼ (nωs).

Proof. We know cdeg−~s G̃i−1 = −~si, and cdeg−~si Gi = −~si+1 ≤ 0. In other words,

rdeg Gi ≤ ~si, and rdeg~si G̃i−1 ≤ ~s, hence we can again use Theorem 5.6 to multiply

GT
i and G̃T

i−1 with a cost of O∼ (nωs).

Lemma 7.11. Given an input matrix M ∈ K [x]k×n, a shift ~s ∈ Zn, and an upper

bound ξ ∈ Z such that

•
∑

rdeg~s M ≤ ξ,

•
∑
~s ≤ ξ,

111

• and any (M,−~s)-kernel basis having row degrees bounded by ~s, or equivalently,

having −~s-column degrees bounded by 0.

Then Algorithm 7.1 costs O∼ (nωs) �eld operations to compute a (M,−~s)-kernel

basis.

Note that ξ can be simply set to
∑
~s.

Theorem 7.12. A right factor G satisfying F = TG for a column basis T can be

computed with a cost of O∼ (nωs).

7.2 Computing a Column Basis

With a right factor G of F computed, we are now ready to compute a column basis

T using the equation F = TG. To do so e�ciently, the degree of T cannot be too

big, which is indeed the case as shown by the following lemmas.

Lemma 7.13. The column degrees of T are bounded by the corresponding entries

of ~t = − rdeg−~s G.

Proof. Since G is −~s-row reduced, and rdeg−~s F ≤ 0, by Lemma 2.17 rdeg−~t T ≤ 0,

or equivalently, T has column degrees bounded by ~t.

Lemma 7.14. Let ~t = − rdeg−~s G, a vector with r entries and bounds cdeg T from

Lemma 7.13. Let ~s′ be the list of the r largest entries of ~s. Then ~t ≤ ~s′.

Proof. Let G′ be the −~s-row Popov form of G, and the square matrix G” consists

of only the columns of G′ that contains pivot entries, and has the rows permuted so

the pivots are in the diagonal. Let ~s” be the list of the entries in ~s that correspond

to the columns of G” in G′. Note that rdeg−~s” G” = −~t” is just a permutation of

−~t with the same entries. By the de�nition of shifted row degree, −~t” is the sum of

−~s” and the list of the diagonal pivot degrees, which are nonnegative. Therefore,

112

−~t” ≥ −~s”. The result then follows as ~t is a permutation of ~t” and ~s′ has the

largest entries of ~s.

With the bound on the column degrees of T determined, we are now ready to

compute T. This is done again using an order basis computation.

Lemma 7.15. Let ~t′ =
[
0, . . . , 0,~t

]
∈ Zm+r. Any

([
FT ,GT

]
,−~t′

)
-kernel basis has

the form

V
T̄

, where V ∈ Km×m is a unimodular matrix and
(
T̄V −1

)T
is a column

basis of F.

Proof. Note �rst that the matrix

−I
TT

 is a kernel basis of
[
FT ,GT

]
and is therefore

unimodularly equivalent to any other kernel basis. Hence any other kernel basis

has the form

−I
TT

U =

V
T̄

, with U and V = −U unimodular. Thus T =

(
T̄V −1

)T
. Also note that the −~t′-minimality forces the unimodular matrix V in

any
([

FT ,GT
]
,−~t′

)
-kernel basis to be degree 0, the same degree as I.

To compute a
([

FT ,GT
]
,−~t′

)
-kernel basis, we can again use order basis com-

putation.

Lemma 7.16. Any
([

FT ,GT
]
, ~s+ 1,−~t′

)
-basis contain a

([
FT ,GT

]
,−~t′

)
-kernel

basis whose −~t′-row degrees are bounded by 0.

Proof. As before, Lemma 7.5 can be used here. We just need to show that a([
FT ,GT

]
,−~t′

)
-kernel basis has −~t′-row degrees no more than 0, which is true

since rdeg−~t′

 I

TT

 ≤ 0.

Example 7.17. Let

F =

 x2 x2 x+ x2 1 + x2

1 + x+ x2 x2 1 + x2 1 + x2


113

with

G =

 1 0 1 0

x x2 0 1 + x2


being a minimal left kernel basis of a right kernel basis of F. In order to compute

the column basis T satisfying F = TG, �rst we can determine cdeg T ≤ ~t = [2, 0]

from Lemma 7.13. Then we can compute a
[
0, 0,−~t

]
-minimal left kernel basis ofF

G

. The matrix

[
V, T̄

]
=

 1 0 x+ x2 1

1 1 1 + x 0


is such a left kernel basis. A column basis can then be computed as by

T = V −1T̄ =

 x+ x2 1

1 + x2 1

 .
In order to compute a

([
FT ,GT

]
,−~t∗

)
kernel basis e�ciently, we notice that

we have the same type of problem as in Section 7.1 and hence we can again use

Algorithm 7.1.

Lemma 7.18. A
([

FT ,GT
]
,−~t∗

)
-kernel basis can be computed using Algorithm 7.1

with a cost of O∼ (nωs), where s = ξ/n is the average column degree of F as before.

Proof. Just use the algorithm with input
([

FT ,GT
]
,~t∗, ξ

)
. We can verify the

conditions on the input are satis�ed.

• To see that
∑

rdeg~t∗
[
FT ,GT

]
≤ ξ, note that from ~t = − rdeg−~s G and

Lemma 2.2 cdeg~t G ≤ ~s, or equivalently, rdeg~t G
T ≤ ~s. Since we also have

rdeg FT ≤ ~s, it follows that rdeg~t∗
[
FT ,GT

]
≤ ~s.

• The second condition
∑
~t∗ ≤ ξ follows from Lemma 7.13.

114

Algorithm 7.2 colBasis(F)

Input: F ∈ K [x]m×n.
Output: a column basis of F.
1: ~s := cdeg F;
2: N := minimalKernelBasis (F, ~s);

3: G :=
(
minimaKernelBasisReversed(NT , ~s)

)T
;

4: ~t′ :=
[
0, . . . , 0,− rdeg−~s G

]
, with rowDimension(G) number of 0's ;

5:
[
V T , T̄T

]T
:= minimaKernelBasisReversed(

[
FT ,GT

]
,~t′) with a square V ;

6: T =
(
T̄V −1

)T
;

7: return T;

• The third condition holds since

−I
TT

 is a kernel basis with row degrees

bounded by ~t∗.

With a
([

FT ,GT
]
,−~t∗

)
-kernel basis

V
T̄

 computed, a column basis is then

given by T =
(
T̄V −1

)T
.

The complete algorithm for computing a column basis is then given in Algorithm

7.2.

Theorem 7.19. A column basis T of F can be computed with a cost of O∼ (nωs),

where s = ξ/n is the average column degree of F as before.

Proof. The cost is dominated by the cost of the three kernel basis computations in

the algorithm. The �rst one is handled by the algorithm from Zhou et al. [2012] and

Theorem 5.19, while the remaining two are handled by Algorithm 7.1, Lemma 7.11

and Lemma 7.18.

115

7.3 A Simple Improvement

When the input matrix F has column dimension much larger n than the row di-

mension m, we can separate F =
[
F1,F2, . . . ,Fn/m

]
to n/m blocks, each with

dimension m×m, assuming without loss of generality n is a multiple of m, and the

columns are arranged in increasing degrees. We then do a series of column basis

computations. First we compute a column basis T1 of [F1,F2]. Then compute a

column basis T2 of [T1,F3]. Repeating this process, at step i, we compute a column

basis Ti of [Ti−1,Fi+1], until i = n/m− 1, when a column basis of F is computed.

Lemma 7.20. At step i, computing a column basis Ti of [Ti−1,Fi+1] can be done

with a cost of O∼ (mω(si + si+1)/2) �eld operations, where si = (
∑

cdeg Fi) /m.

Proof. From Lemma 7.13, the column basis Ti−1 of [F1, . . . ,Fi] has column degrees

bounded by the largest column degrees of Fi, hence
∑

cdeg Ti−1 ≤
∑

cdeg Fi. The

lemma then follows by combining this with the result from Theorem 7.19 that a

column basis Ti of [Ti−1,Fi+1] can be computed with a cost of O∼ (mωs̄), where

s̄ =
(∑

cdeg Ti−1 +
∑

cdeg Fi+1

)
/2m ≤ (si + si+1) /2.

Theorem 7.21. A column basis of F can be computed with a cost of O∼ (mωs),

where s = (
∑

cdeg F) /n.

Proof. Summing up the cost of all the column basis computations,

n/m−1∑
i=1

O∼ (mω (si + si+1) /2)

⊂ O∼

mω

n/m∑
i=1

si

 /(n/m)


= O∼ (mωs) .

116

Remark 7.22. In this section, the computational e�ciency is improved by reducing

the original problem to about n/m subproblems whose column dimensions are close

to the row dimension m. This is done by successive column basis computations.

Note that we can also reduce the column dimension by using successive order basis

computations, and only do a column basis computation at the very last step. The

computational complexity of using order basis computation to reduce the column

dimension would remain the same, but in practice it maybe more e�cient since

order basis computations are simpler.

7.4 Column Reduced Form and Popov Form

Let us now look how column basis computation leads to e�cient deterministic

algorithms for computing column reduced form and Popov form for matrices of

any dimension. Since Sarkar and Storjohann [2011] already provided algorithms

to transform column reduced forms to Popov forms, we just need to consider the

problem of computing column reduced form. In addition, since Gupta et al. [2012]

provided a deterministic algorithm for the column reduction of a square nonsingular

input matrix, we just need to reduce the problem with general input matrix to the

square nonsingular case. For this problem, we only give the cost in terms of the

less re�ned matrix degree d instead of the sum of the column degrees and aim for

a cost of O∼ (nmω−1d). So there is more room for improvement here.

Theorem 7.23. The column reduced form and Popov form of any matrix F ∈

K [x]m×n can be computed deterministically with a cost of O∼ (nmω−1d) .

Proof. We may now assume that the input matrix F has full column rank, which

can be done by a direct application of the column basis computation. It only

117

remains to consider the case that the row dimension m of F is higher than its

column dimension n. Using the transposed version of Lemma 7.3, we can factor

F as F = GT, where G is column reduced and T is a square nonsingular row

basis of F. Let ~t = − cdeg[−d,...,−d] G, or equivalently, ~t = d − cdeg G, then from

Lemma 7.13 we have cdeg−~t T ≤ 0, and from Lemma 7.14 we know that ~t ≤ d.

Now using Lemma 2.18, a −~t-column reduced form T′ of T makes GT′ a column

reduced form of F. To compute a −~t-column reduced form T′ of T, we can just

compute a column reduced form of xd−~tT, which is a square nonsingular matrix of

degree d.

Example 7.24. To column reduce

F =



x2 1 + x+ x2

x2 x2

x+ x2 1 + x2

1 + x2 1 + x2


,

we factor F as

F = GT =



1 x

0 x2

1 0

0 1 + x2



 x+ x2 1 + x2

1 1



as before with a column reduced G. The column degrees of G cdeg G = [0, 2]. So

118

we compute [0, 2]-column reduced form T′ of T

T′ =

 1 + x x+ x2

0 1

 .
Now

GT′ =



1 + x x2

0 x2

1 + x x+ x2

0 1 + x2


is a column reduced form of F.

119

Chapter 8

Unimodular Completion

Given a matrix F ∈ K [x]m×n with n > m and column degrees ~s, we consider

the problem of e�ciently computing a matrix G ∈ K [x](n−m)×n such that

F

G


is unimodular. Unimodular completion is a useful basic operation in matrix com-

putations [Newman, 1972]. Our goal is to do this with a cost of O∼ (nωs) �eld

operations, where s is the average of the m largest column degrees of F.

Before discussing the computation of a unimodular completion, we need to check

the existence of unimodular completion for a given matrix. In fact, a unimodular

completion does not exist for some input matrices, as in the case of F = [0, x]. So

we need to know what type of input matrices admit a unimodular completion.

Lemma 8.1. A unimodular completion of F exists if and only if F has unimodular

column bases.

Proof. If F has a non-unimodular column basis A, then diag ([A, I]) is always a

factor of

F

B

 for any polynomial matrix B, implying that the matrix

F

B

 is non-

unimodular. On the other hand, if F has a unimodular column basis, then there

exists a unimodular matrix U such that FU = [Im, 0], or F = [Im, 0] U−1 after

rearranging, that is, F must be consists of the top m rows of U−1. The matrix U−1

120

is therefore a unimodular completion of the matrix F.

Since a unimodular completion is only possible for input matrices with unimod-

ular column bases, we assume for simplicity this is the case with our input matrix

F. This also requires F to be full rank. For other matrices without unimodular

column bases, our method still works directly to compute a matrix completion for

a right factor of F that has its column basis factor removed. In other words, let F

be factored as F = TR as in Lemma 7.3, where T is a column basis of F and R

is the remaining right factor, the our method always works to compute a unimod-

ular completion of R. In the special case where T is unimodular, the unimodular

completion computed is also a unimodular completion of F.

The proof of Lemma 8.1 shows that a unimodular completion of F can be

obtained from the unimodular matrix U that transforms F to its column bases.

However, we may not be able to compute this U e�ciently since its degree might

be too large. More speci�cally, U contains a kernel basis of F that may have degree

ξ, while each of the remaining columns of U may also have degree ξ.

Before discussing the actual matrix completion, let us look at the operations

that reverses the coe�cients of a polynomial, the coe�cients of the polynomial

entries of a vector, and the coe�cients of the polynomial entries of a polynomial

matrix. These operations are needed in the computation of our matrix completion.

8.1 Reversing polynomial coe�cients

First let us look at the operation that reverses the coe�cients of a polynomial.

De�nition 8.2. For a polynomial p = p0 + p1x + · · · + pux
u ∈ K [x] with degree

bounded by u, we de�ne the operation

rev(p, u) =
(
p(x−1)

)
xu = pu + pu−1x+ · · ·+ p1x

u−1 + p0x
u.

121

We now extend this de�nition to column vectors and row vectors with shifted

degrees.

De�nition 8.3. Let ~u = [u1, . . . un] ∈ Zn be a degree shift, and a column vector

a ∈ K [x]n×1 with ~u-column degree bounded by v. We de�ne

colRev(a, ~u, v) = x−~u
(
a(x−1)

)
xv =


rev(p, v − u1)

...

rev(p, v − un)

 .

Similarly for a row vector b ∈ K [x]1×n with ~u-row degree bounded by v, where

~u = [u1, . . . un] ∈ Zn is a degree shift, we de�ne

rowRev(b, ~u, v) = colRev(bT , ~u, v)T = xv
(
b(x−1)

)
x−~u.

Example 8.4. If f = [10 + x, 5 + x+ 2x2], ~u = [−1,−2], and v = 0, then

rowRev(f , ~u, v) = x0
[
10 + x−1, 5 + x−1 + 2x−2

] x
x2

 =
[
10x+ 1, 5x2 + x+ 2

]
.

We can extend the reverse operation further to polynomial matrices.

De�nition 8.5. Let ~u = [u1, . . . un] ∈ Zn be a degree shift. Let A ∈ K [x]n×k with

~u-column degrees bounded component-wise by ~v = [v1, . . . , vk], we de�ne

colRev(A, ~u,~v) = x−~u (A(1/x))x~v

Similarly, for ~u = [u1, . . . , un] and B ∈ K [x]k×n with ~u-row degrees bounded

component-wise by ~v = [v1, . . . , vk],

rowRev(B, ~u,~v) = colRev(BT , ~u,~v)T = x~v (B(1/x))x−~u

122

Note that we also have rowRev(B, ~u,~v) = colRev(B,−~v,−~u).

It is useful to note that any degree bound remains the same after the reverse

operations.

Lemma 8.6. If A ∈ K [x]n×k has ~u-column degrees bounded by the correspond-

ing entries of ~v, then colRev(A, ~u,~v) also has ~u-column degrees bounded by the

corresponding entries of ~v.

As one would expect, applying two reverse operations gives back the original

input.

Lemma 8.7. The following equalities holds:

colRev (colRev(A, ~u,~v), ~u,~v) = A

rowRev (rowRev(B, ~u,~v), ~u,~v) = B

Let us look at a degree bound on the product of a row vector and a column

vector, based on their shifted degrees, when opposite shifts are used.

Lemma 8.8. If a ∈ K [x]1×n and aT has (−~u)-column degree bounded by α (or

equivalently, a has (−~u)-row degree bounded by α) and b ∈ K [x]n×1 has ~u-column

degree bounded by β, then ab has degree bounded by α + β.

Proof. Since ax−~u has degree bounded by α and x~ub has degree bounded by β,

ax−~ux~ub = ab has degree bounded by α + β.

The following lemma shows that the reverse operation and the multiplication

are commutative when we use the opposite shifts.

Lemma 8.9. If a ∈ K [x]1×n has (−~u)-row degree bounded by α and b ∈ K [x]n×1

has ~u-column degree bounded by β, then

rowRev(a,−~u, α) · colRev(b, ~u, β) = rev(ab, α + β).

123

Proof.

rowRev(a,−~u, α) · colRev(b, ~u, β)

= xα (a(1/x))x~ux−~u (b(1/x))xβ

= (a(1/x))x~ux−~u (b(1/x))xα+β

= (a(1/x)) (b(1/x))xα+β

= ((ab) (1/x))xα+β

= rev(ab, α + β)

We also have the following similar result on the reverse operation and matrix

multiplication

Lemma 8.10. If A ∈ K [x]m×n has ~u-column degrees bounded by ~v, and B ∈

K [x]n×k has ~v-column degrees bounded by ~w, then

colRev(A, ~u,~v) colRev(B, ~v, ~w) = colRev(AB, ~u, ~w)

has ~u-column degrees bounded by ~w.

Proof.

colRev(A, ~u,~v) colRev(B, ~v, ~w)

= x−~u (A(1/x))x~vx−~v (B(1/x))x~w

= x−~u (AB) (1/x)x~w.

Lemma 8.11. If A ∈ K [x]m×n has ~u-row degrees bounded by ~v, and B ∈ K [x]n×k

124

has −~u-column degrees bounded by ~w, then

rowRev(A, ~u,~v) colRev(B,−~u, ~w) = colRev(AB,−~v, ~w).

.

Proof.

rowRev(A, ~u,~v) colRev(B,−~u, cdeg
−~u

B)

= x~v (A(1/x))x−~ux~u (B(1/x))xcdeg−~u B

= x~v (A(1/x)) (B(1/x))xcdeg−~u B

= x~v (AB(1/x))xcdeg−~u B.

8.2 Unimodular completion

In this section, we look at how a unimodular completion can be done using a

combination of kernel basis computations, order basis computations, and reverse

operations. First, we have the following natural relationship between a kernel basis

and the reverse operation.

Lemma 8.12. Let ~u ∈ Zn, A ∈ K [x]m×n with (−~u)-row degrees bounded component-

wise by ~a, and Ar = rowRev (A,−~u,~a). Then a matrix N ∈ K [x]n×k with ~u-column

degrees ~b is a (A, ~u)-kernel basis if and only if Nr = colRev
(
N, ~u,~b

)
is a (Ar, ~u)-

kernel basis.

Proof. If N is a kernel basis of A, then we know from Lemma 8.9 that

rowRev (A,−~u,~a) · colRev
(
N, ~u,~b

)
= 0,

125

so colRev
(
N, ~u,~b

)
is a kernel basis of rowRev (A,−~u,~a). Suppose colRev

(
N, ~u,~b

)
is not ~u-minimal and we have another kernel basis M of rowRev (A,−~u,~a) with

~u-column degrees ~c that has some entry lower than the corresponding entry in ~b.

Then colRev (M, ~u,~c) is also a kernel of A with lower ~u-column degrees than ~b,

contradicting the ~u-minimality of N.

The following lemma shows the unimodular equivalence between any matrix A

that has a unimodular column basis, and a left kernel basis of any right kernel basis

of A.

Lemma 8.13. Given a matrix A ∈ K [x]m×n with unimodular column basis. Let

N ∈ K [x]n×(n−m) be a right kernel basis of A. Let B be a left kernel basis of N.

Then A = UB for a unimodular matrix U.

Proof. This follows from Lemma 7.3, which tells us that U is just a column basis

of A.

Now let us look at how an order basis can lead to a unimodular matrix.

Lemma 8.14. Let ~u = [u1, . . . un] ∈ Zn be a degree shift. Any (A, σ, ~u)-basis P with

cdeg~u P = ~v = [v1, . . . , vk] has det (P) = cx
∑
~v−

∑
~u and det (colRev(P, ~u,~v)) = c

for some constant c ∈ K. In other words, colRev(P, ~u,~v) is unimodular.

Proof. To see that det (P) = cx
∑
~v−

∑
~u, note that an identity matrix is an (A, 0, ~u)-

basis, which has ~u-column degrees ~u and determinant 1. Then the ~u-column de-

grees only increases by multiplying some column of P by x. The second property

det (colRev(P, ~u,~v)) = c follows from the de�nition

colRev(P, ~u,~v) = x−~u (P(1/x))x~v.

126

Lemma 8.14 suggests that a unimodular completion of F can be computed by

embedding F in a reversed order basis, or equivalently, embedding a reversed F in

an order basis. The next question is therefore how to embed a matrix in an order

basis. Recall that Lemma 7.6 shows how kernel bases can be embedded in order

bases. Therefore, if we can make the reversed F a kernel basis of some matrix M,

then there is an order basis of M that contains the reversed F. A natural choice

for M is a kernel basis of the reversed F. We actually have two choices here. We

can either reverse the coe�cients of F, as we do in Lemma 8.15 below, or we can

reverse the coe�cients of a kernel basis of F.

Lemma 8.15. Let Fr = rowRev (F,−~s, 0) and M be a (Fr, ~s)-kernel basis with

cdeg~s M = ~b. Let P = [P1,P2] be a
(
MT ,~b+ 1,−~s

)
-basis, where P1 consists of all

columns p with cdeg−~s p ≤ 0. If Pr
2 = colRev

(
P2,−~s, cdeg−~s P2

)
, then

[
FT ,Pr

2

]
is a unimodular matrix.

Proof. Let Pr
1 = colRev

(
P1,−~s, cdeg−~s P1

)
. We know from Lemma 8.14 that

[Pr
1,P

r
2] is unimodular. Let Mr = colRev

(
M, ~s,~b

)
. Then from Lemma 8.12 we

know Mr is a (F, ~s)-kernel basis and Pr
1 is a

(
(Mr)T ,−~s

)
-kernel basis, hence by

Lemma 8.13 F = U (Pr
1)T for some unimodular matrix U. Now

[
FT ,Pr

2

]T
=

diag ([U, I]) [Pr
1,P

r
2]T .

Lemma 8.15 provides a way to correctly compute a unimodular completion of

F. To improve the computational e�ciency, we can in fact separate the rows of

MT and just work with one subset of rows at a time.

Lemma 8.16. Let the matrix Fr = rowRev (F,−~s, 0). Let the matrix M be a

(Fr, ~s)-kernel basis with cdeg~s M = ~b and be partitioned as M = [M1,M2]. Let

P1 be a
(
MT

1 , cdeg~s M1 + 1,−~s
)
-basis and be partitioned as P1 = [N1,Q1], where

N1 consists of all columns p of P1 with cdeg−~s p ≤ 0. Let ~t = cdeg−~s N1 and

P2 be a
(
MT

2 N1, cdeg~s M2 + 1,~t
)
-basis and be partitioned as P2 = [N2,Q2], where

127

N2 consists of all columns p of P2 with cdeg−~t p ≤ 0. Let R = [N1Q2,Q1] and

Rr = colRev
(
R,−~s, cdeg−~s R

)
. Then

[
FT ,Rr

]
is a unimodular matrix.

Proof. We know from Lemma 8.14 that Pr
1 = colRev

(
P1,−~s, cdeg−~s P1

)
and

Pr
2 = colRev

(
P1,~t, cdeg~t P2

)
are both unimodular. Hence Pr

1 · diag ([Pr
2, I]) =

[Nr
1N

r
2,N

r
1Q

r
2,Q1] = [Nr

1N
r
2,R

r] is unimodular, where N1N2 is a kernel basis of

M. The result follows by the same reasoning as in Lemma 8.15.

8.3 E�cient Computation

Lemma 8.16 provides a way to correctly compute a unimodular completion of F.

Our next task is to make sure it can be computed e�ciently and analyze its com-

putational cost. We already know that a (Fr, ~s)-kernel basis can be computed with

a cost of O∼ (nωs). Therefore, it only remains to check the cost of the order basis

computations. Note that the non-uniform order makes our problem here a little

more di�cult. But on the other hand, the output basis has its −~s-column degrees

bounded by 1, which is a consequence of the fact M is a ~s-minimal kernel basis, as

shown in Lemma 8.20 below. But we �rst need a few general lemmas on the degree

bounds of order bases and kernel bases.

First, the following lemma is a simple extension of Lemma 3.2 for dealing with

nonuniform orders.

Lemma 8.17. Given an input matrix A ∈ Km×n[x], a shift ~u ∈ Zn, and an order

list ~σ ∈ Zm. Let ~v be the ~u-column degrees of a (A, ~σ, ~u)-basis. Then
∑
~t ≤

∑
~s+∑

~σ.

Proof. The sum of the ~s-column degrees is
∑
~s at order [0, . . . , 0], since the identity

matrix is a (A, [0, . . . , 0] , ~s)-basis. This sum increases by 1 for each order increase

of each row. The total number of order increases required for all rows is at most

128

∑
~σ. Note that from Theorem 3.20, we can work with just one row at a time to

increase its order in the order basis computation.

The following lemma extends Theorem 5.2 to give a bound based on the shifted

column degrees or shifted row degrees, instead of just the column degrees of the

input matrix.

Lemma 8.18. If A ∈ Km×n[x] has rdeg~u A ≤ ~v or equivalently cdeg−~v A ≤ −~u,

then any (A,−~u)-kernel basis has −~u-column degrees bounded by
∑
~v −

∑
~u.

Proof. Let P =
[
B, B̄

]
be a (A, ~v + [σ, . . . , σ] ,−~u)-basis containing a kernel basis,

B, of A. Then
∑

cdeg−~u P is at least mσ +
∑
~v −

∑
~u. We also know that∑

cdeg−~u B̄ ≥
∑

cdeg−~v AB̄, but cdeg AB̄ ≥ ~v+[σ, . . . , σ] or
∑

cdeg−~v AB̄ ≥ mσ,

therefore
∑

cdeg−~u B̄ ≥ mσ. It follows that
∑

cdeg−~u B ≤ mσ+
∑
~v−
∑
~u−mσ =∑

~v −
∑
~u.

When the matrix A is also a
(
BT , ~u

)
-kernel basis, as in our case, the bound in

fact becomes tight.

Lemma 8.19. Let A ∈ Km×n[x] and B ∈ Kn×(n−m) [x]. If B is a (A,−~u)-kernel

basis with cdeg−~u B = ~w and AT is a
(
BT , ~u

)
-kernel basis with rdeg~u A = ~v, then∑

~w =
∑
~v −

∑
~u.

Proof. This follows from Lemma 8.18, which gives
∑

~w ≤
∑
~v −

∑
~u and also∑

~v ≤
∑

~w +
∑
~u in the reverse direction.

From Lemma 7.6, we know that any
(
MT ,~b+ 1,−~s

)
-basis contains a

(
MT ,−~s

)
-

kernel basis whose −~s-column degrees bounded by 0. The following lemma shows

that the remaining part of the
(
MT ,~b+ 1,−~s

)
-basis has degrees bounded by 1.

Lemma 8.20. Let Fr = rowRev (F,−~s, 0) and M be a (Fr, ~s)-kernel basis with

cdeg~s M = ~b as before. Let P be a
(
MT ,~b+ 1,−~s

)
-basis. Then cdeg−~b−1 MTP2 =

[0, . . . , 0] and cdeg−~s P2 = [1, . . . , 1].

129

Proof. We already know that P contains a
(
MT ,−~s

)
-kernel basis. Let this kernel

basis be P1 in P = [P1,P2]. We know that
∑

cdeg−~s P = −
∑
~s+
∑~b+n−m and

for the kernel basis P1 in P, we know
∑

cdeg−~s P1 =
∑~b−

∑
~s from Lemma 8.19.

Therefore,
∑

cdeg−~s P2 = n−m. It follows that
∑

cdeg−~b MTP2 ≤
∑

cdeg−~s P2 =

n−m, or
∑

cdeg−~b−1 MTP2 = 0. But since P2 is nonzero and has order
(
F,~b+ 1

)
,

we have cdeg−~b−1 MTP2 ≥ [0, . . . , 0], implying
∑

cdeg−~b−1 MTP2 ≥ 0. It follows

that
∑

cdeg−~b−1 MTP2 = 0, hence cdeg−~b−1 MTP2 = [0, . . . , 0] or cdeg−~b MTP2 =

[1, . . . , 1]. Combining this with
∑

cdeg−~b MTP2 ≤
∑

cdeg−~s P2 = n −m we then

get cdeg−~s P2 = [1, . . . , 1].

We are now ready to look at the algorithm for computing a
(
MT ,~b+ 1,−~s

)
-

basis, given in Algorithm 8.1. We follow the same process as in Section 7.1. We

assume without loss of generality that the rows of MT are arranged in decreasing

~s-row degrees. We divide MT into log k row blocks according to the ~s-row degrees

of its rows. Let

MT =
[
MT

1 ,M
T
2 , · · · ,MT

log k−1,M
T
log k

]
with Mlog k,Mlog k−1, · · · ,M2,M1 having ~s-row degrees in the range

[0, 2ξ/k] , (2ξ/k, 4ξ/k], (4ξ/k, 8ξ/k], ..., (ξ/4, ξ/2], (ξ/2, ξ].

Let ~σi = [ξ/2i−1 + 1, . . . , ξ/2i−1 + 1] with the same dimension as the row dimension

of Mi. Let ~σ = [~σlog k, ~σlog k−1, . . . , ~σ1] be the order in the order basis computation.

For simplicity, instead of using MT as the input matrix, we use

M̂ =


M̂1

...

M̂log k

 = x~σ−
~b−1


M1

...

Mlog k

 = x~σ−
~b−1M

130

instead, so that a
(
M̂, ~σ,−~s

)
-basis is a

(
M,~b+ 1,−~s

)
-basis.

We now do a series of order basis computations in order to compute a unimod-

ular completion of F based on Lemma 8.16.

Let ~s1 = ~s. First we compute an
(
M̂1, ~σ1,−~s1

)
-basis P1 = [N1,Q1], where N1

is a
(
M̂1,−~s1

)
-kernel basis. This computation can be done using Algorithm 4.1

with a cost of O∼ (nωs), where s = ξ/n.

Let Ñ1 = N1. Let ~s2 = − cdeg−~s N1 and ~t2 = − cdeg−~s Q1. We then

compute an
(
M̂2Ñ1, ~σ2,−~s2

)
-basis P2 = [N2,Q2] with ~s3 = − cdeg−~s2 N2 and

~t3 = − cdeg−~s2 Q2. Let Ñ2 = Ñ1N2

Continue this process, at step i, we compute an
(
M̂iÑi−1, ~σi,−~si

)
-basis Pi =

[Ni,Qi]. Let Ñi =
∏i

j=1 Ni = Ñi−1Ni. Note that Ñlog k is a (M,−~s)-kernel basis.

Let

R =
[
Q1, Ñ1Q2, . . . , Ñlog k−2Qlog k−1, Ñlog k−1Qlog k

]
, and Rr = colRev

(
R,−~s, cdeg−~s R

)
, then from Lemma 8.16 we can conclude that[

FT ,Rr
]
is a unimodular matrix.

We still need to check the cost of the multiplications M̂iÑi−1, Ñi−1Ni, and

Ñi−1Qi.

Lemma 8.21. The multiplications M̂iÑi−1 can be done with a cost of O∼ (nωs).

Proof. The dimension of M̂i is bounded by 2i−1×n and
∑

rdeg~s M̂i ≤ 2i−1·ξ/2i−1 =

ξ. We also have cdeg−~s Ñi−1 ≤ 0, or equivalently, rdeg Ñi−1 ≤ ~s. We can now use

Theorem 5.6 to multiply ÑT
i−1 and M̂T

i with a cost of O∼ (nωs).

Lemma 8.22. The multiplication Ñi−1Ni can be done with a cost of O∼ (nωs).

Proof. We know cdeg−~s Ñi−1 = −~si, and cdeg−~si Ni = −~si+1 ≤ 0. In other words,

rdeg Ni ≤ ~si, and rdeg~si Ñi−1 ≤ ~s, hence we can again use Theorem 5.6 to multiply

NT
i and ÑT

i−1 with a cost of O∼ (nωs).

131

Algorithm 8.1 unimodularCompletion(F)

Input: F ∈ K [x]m×n with full row rank; ~s is initially set to the column degrees of
F. It keeps track of the degrees.

Output: G ∈ K [x](n−m)×n such that

[
F
G

]
is unimodular.

1: ~s := cdeg F;
2: Fr := rowRev (F,−~s, 0);

3: M := minimalKernelBasis (Fr, ~s); ~b := cdeg~s M; k := n−m;
4:
[
MT

1 ,M
T
2 , · · · ,MT

log k−1,M
T
log k

]
:= M, with Mlog k,Mlog k−1, · · · ,M2,M1 hav-

ing ~s-row degrees in the range [0, 2ξ/k] , (2ξ/k, 4ξ/k], ..., (ξ/4, ξ/2], (ξ/2, ξ].
5: for i from 1 to log k do
6: ~σi := [ξ/2i−1 + 1, . . . , ξ/2i−1 + 1], with the number of entries matches the row

dimension of Mi;
7: end for
8: ~σ := [~σlog k, ~σlog k−1, . . . , ~σ1];

9: M̂ := x~σ−
~b−1M;

10: N0 := In; Ñ0 := In;
11: for i from 1 to log k do
12: ~si := − cdeg−~s Ni−1; (note ~s1 = ~s)

13: Pi := unbalancedFastOrderBasis
(
M̂iÑi−1, ~σi,−~si

)
;

14: [Ni,Qi] := Pi, where Ni is a
(
M̂i,−~si

)
-nullspace basis;

15: Ñi := Ñi−1 ·Ni;

16: R :=
[
R, Ñi−1Qi

]
;

17: end for
18: Rr := colRev

(
R,−~s, cdeg−~s R

)
;

19: return (Rr)T

Lemma 8.23. The multiplication Ñi−1Qi can be done with a cost of O∼ (nωs).

Proof. We know cdeg−~si Qi ≤ max cdeg~s P = 1, or equivalently, rdeg Qi ≤ ~si + 1.

But we also know that this Qi from the order basis computation has a factor xI.

Therefore, rdeg (Qi/x) ≤ ~si. In addition, rdeg~si Ñi−1 ≤ ~s as before. So we can

again use Theorem 5.6 to multiply QT
i and ÑT

i−1 with a cost of O∼ (nωs).

Theorem 8.24. A unimodular completion of F can be computed with a cost of

O∼ (nωs) �eld operations.

132

Chapter 9

Diagonal Entries of Hermite Normal

Form and Determinant

In this chapter, we consider the problem of computing the diagonal entries of the

Hermite normal form and the determinant of a nonsingular input matrix F ∈

K [x]n×n with column degrees ~s. Storjohann [2002, 2003] gave an e�cient Las Vegas

for computing the determinant. Here we give a e�cient deterministic algorithm that

costs O∼ (nωs) �eld operations, where s =
∑
~s/n The computation is done by using

the column basis and kernel basis computation to compute the diagonal entries of

the Hermite form of F, and then multiply these diagonal entries.

Consider unimodularly transforming F to

FU = G =

G1 0

∗ G2

 , (9.1)

After this unimodular transformation, which eliminated the top right block of

G , the matrix is now closer to the Hermite normal form of F. This procedure can

then be applied recursively to G1 and G2, until the matrices reaching dimension 1,

which then gives the diagonal entries of the Hermite normal form of F.

133

Although this procedure correctly computes the diagonal entries of the Hermite

normal form of F, a major problem is that the degree of the unimodular U can

be too large for U to be e�ciently computed. However, with the tools we have

developed in the earlier chapters, we can e�ciently compute G1 and G2 without

computing U.

If we separate F to F =

FU

FD

, each has full-rank as F is assumed to be

nonsingular, and also separate U to U =

[
UL UR

]
, where the column dimension

of UL matches the row dimension of FU , then

FU =

FU

FD

[UL UR

]
= G =

G1 0

∗ G2

 .
Notice that the matrix G1 is nonsingular and is therefore just a column basis of FU ,

and can be e�ciently computed using Algorithm 7.2. To compute G2 = FDUR,

notice that the matrix UR is a right kernel basis of F, which makes the top right

block of G zero. As we have seen from Lemma 7.1, the kernel basis UR can be

replaced by any other kernel basis of F to give another unimodular matrix that

also works.

Lemma 9.1. Given a polynomial matrix F =

FU

FD

. If G1 is a column basis of

FU and N is a kernel basis of FU , then there is a unimodular matrix U = [∗,N]

such that

FU =

G1

∗ G2

 ,
where G2 = FDN. If F is square nonsingular, then G1 and G2 are also square

nonsingular.

Note that we do not compute the blocks represented by the symbol ∗, which

134

Algorithm 9.1 hermiteDiagonal(F)

Input: F ∈ K [x]n×n is nonsingular.
Output: d ∈ K [x]n a list of diagonal entries of the Hermite normal form of F.

1:

[
FU

FD

]
:= F, with FU consists of the top dn/2e rows of F;

2: if n = 1 then return F; endif ;
3: G1 := colBasis(FU);
4: N := minimalKernelBasis (FU , cdeg F);
5: G2 := FDN;
6: d1 := hermiteDiagonal(G1);d2 := hermiteDiagonal(G2);
7: return [d1,d2];

may have very large degrees and cannot be computed e�ciently.

Lemma 9.1 allows us to compute G1 and G2 independently without computing

the unimodular matrix. G1 can be computed using the method from Chapter 7,

while the kernel basis computation from Chapter 5 can be used to compute a kernel

basis N of FU , which can then be used to compute G2 = FDN.

After G1 and G2 are computed, we can repeat the same process on each of these

two matrices, which now have lower dimensions, until the dimension becomes one.

This procedure of computing the diagonal entries gives Algorithm 9.1

9.1 Computing the Determinant

The product of the diagonal entries computed from Algorithm 9.1 is an associate of

the determinant, that is, the product equals a det F for some c ∈ K, since the uni-

modular matrices that eliminate the top right blocks may not have its determinant

equal to 1. Therefore, to get the determinant of F, we need to scale the product of

the diagonal entries by c−1, where c is the determinant of the unimodular matrix

that transforms F to the diagonal entries from the algorithm.

Lemma 9.2. Let U = [UL,UR] be a unimodular that eliminates the top right block

135

of F as before, that is,

FU =

FU

FD

[UL UR

]
=

G1 0

∗ G2

 = G.

Let V =

VU

VD

 = U−1. Let UR = UR mod x, VU = VU mod x, and U∗L ∈ Kn×∗

is a matrix that gives a unimodular completion U∗ = [U∗L, UR] of UR with detU∗ =

a ∈ K. Then det F = det G det (VUU
∗
L) /a.

Proof. Since det F = det G det V, we just need to show that det V = det (VUU
∗
L) /a.

In fact, we just need to check the degree 0 coe�cient matrix V = V mod x to show

that detV = det (VUU
∗
L) /a, since V is unimodular, which makes detV = det V.

Consider now

detV detU∗ = det (V U∗)

= det


VU
VD

[U∗L UR

]
= det


VUU∗L 0

∗ I




= det (VUU
∗
L) ,

hence detV = det (VUU
∗
L) /a.

Lemma 9.2 requires us to compute a unimodular completion of a matrix UR,

which is a very simple special case of the unimodular completion from Chapter 8

and can be obtained easily from the unimodular matrix that transforms VU to its

reduced column echelon form. Such unimodular matrix can be computed using

the Gauss Jordan transform algorithm from Storjohann [2000] on F̄ with a cost of

136

Algorithm 9.2 hermiteDiagonalWithScale(F)

Input: F ∈ K [x]n×n is nonsingular.
Output: d ∈ K [x]n a list of diagonal entries of the Hermite normal form of F,

and c a scaling factor to be multiplied to obtain the determinant.

1:

[
FU

FD

]
:= F, with FU consists of the top dn/2e rows of F;

2: if n = 1 then return F, 1; endif ;
3: G1,UR,VL := colBasis(FU); (Here we make colBasis() also return the kernel

bases it computed.)
4: G2 := FDUR;
5: UR := UR mod x; VU := VU mod x;
6: compute U∗L ∈ Kn×∗ , a matrix that gives a unimodular completion U∗ =

[U∗L, UR];
7: d1, c1 := hermiteDiagonal(G1);d2, c2 = hermiteDiagonal(G2);
8: return [d1,d2] , c1c2 det (VUU

∗
L) / det(U)∗;

O (nmω−1).

We can now compute the actual determinant of F by simply computing the

scaling factor at each step. The updated algorithm that also computes the scaling

factor is given in Algorithm 9.2.

9.2 Computational Cost

Let us look at the computational cost of Algorithm 9.1 and Algorithm 9.2.

Theorem 9.3. Algorithm 9.1 and Algorithm 9.2 cost O∼ (nωs) �eld operations to

compute the diagonal entries for the Hermite normal form of a nonsingular matrix

F ∈ K [x]n×n, where s is the average column degree of F.

Proof. The three main operations are computing a column basis of FU , computing

a kernel basis N of FU , and the matrix multiplication FDN.

For the column basis computation, by Theorem 7.19 we know that a column

basis G1 of FU can be computed with a cost of O∼ (nωs) . By Lemma 7.14 the

column degrees of the computed column basis G1 are also bounded by the original

column degrees ~s.

137

For the kernel basis computation, it also costs O∼ (nωs) to compute a ~s-minimal

kernel basis N of FU from Theorem 5.18. The sum of the ~s-column degrees of the

output kernel basis N is bounded by
∑
~s by Theorem 5.2.

Finally for the matrix multiplication FDN, since the sum of the column de-

grees of FD and the sum of the ~s-column degrees of N are both bounded by
∑
~s,

Theorem 5.6 applies and the multiplication can be done with a cost of O∼ (nωs).

Now if we let the cost of Algorithm 9.1 be g(n) for a input matrix of dimension

n, then we have the recurrence relation

g(n) ∈ O∼(nω−1) + g(dn/2e) + g(bn/2c),

which is the same as in Theorem 6.3 for computing the matrix inverse. Therefore,

we also get g(n) = O∼(nωs) as in the inverse computation.

The only extra cost of Algorithm 9.2 is the cost unimodular completion of UR,

which is just O (nω). So it has the same cost as Algorithm 9.1.

Corollary 9.4. The determinant of a nonsingular matrix F ∈ K [x]n×n can be

computed with a cost of O∼(nωs) �eld operations, where s is the minimum of the

average column degree and the average row degree of the input matrix.

Proof. We can just use Algorithm 9.2 to compute the diagonal entries of the Hermite

normal form of either F or FT with the scaling factor, and then multiply the

diagonal entries with the scaling factor.

138

Chapter 10

Hermite Normal Form

In Chapter 9, we have shown how the diagonal entries of the Hermite normal form

of a nonsingular input matrix F ∈ K [x]n×n can be computed e�ciently. In this

Chapter, we consider the problem of computing the complete Hermite normal form

H of F. Gupta and Storjohann [2011], Gupta [2011] gave a randomized Las Vegas

algorithm that costs O∼ (nωd) to compute the Hermite normal form. We make use

of some of their ideas and follow a similar path. But we do not use Smith normal

form and our algorithm is deterministic.

For simplicity, we assume F is already column reduced and has column degrees

~d = [d1, . . . , dn] and let d = max ~d. Let ~s = [s1, . . . , sn] be the degrees of the

diagonal entries of the Hermite form H. Then if ~u = [max~s, . . . ,max~s] with n

entries, we can obtain the Hermite normal form from a [−~u,−~s]-minimal kernel

basis of [F, I].

Lemma 10.1. If

V

G

 is a [−~u,−~s]-minimal kernel basis of [F,−I], where each

block is n × n square, then G is unimodularly equivalent with the Hermite normal

form H of F and has row degrees ~s, the same as the row degrees of H.

Proof. Notice that the unimodular matrix U satisfying FU = H has ~d-column de-

139

grees bounded by max~s from the predictable-degree property Lemma 2.17, which

means U has degree bounded by max~s, or equivalently, cdeg−~u U ≤ 0, hence

cdeg[−~u,−~s]

U

H

 = cdeg−~s H = 0, making

U

H

 [−~u,−~s]-column reduced and

a [−~u,−~s]-minimal kernel basis of [F,−I]. If we compute a [−~u,−~s]-minimal

kernel basis

V

G

 of [F,−I], we know that

V

G

 is unimodularly equivalent to

U

H

, implying that V is also unimodular. The minimality also ensures that

cdeg[−~u,−~s]

V

G

 = cdeg[−~u,−~s]

U

H

 = 0, implying cdeg−~s G ≤ 0 = cdeg−~s H.

But the minimality of H ensures that cdeg−~s G = cdeg−~s H = 0, or equivalently,

rdeg G = rdeg H = ~s.

Knowing that G has the same row degrees as H and is unimodularly equivalent

with H, the Hermite form H can then be obtained from G using Lemma 8 from

[Gupta and Storjohann, 2011], restated as follows:

Lemma 10.2. If the Hermite normal form H of F is a column basis of a matrix

A ∈ K [x]n×k, and has the same row degrees as A, then the matrix U ∈ Kn×n putting

lcoeff
(
x−~sA

)
U in reduced column echelon form also gives the Hermite normal form

H as the principal n× n submatrix of AU .

Proof. This follows from the fact that H and A all have uniform −~s column degrees

0, which allows their relationship to be completely determined by lcoeff
(
x−~sA

)
and

the diagonal matrix lcoeff
(
x−~sH

)
alone.

Although the Hermite normal form H of F can be computed from a [−~u,−~s]-

minimal kernel basis of [F, I], a major problem here is that max~s can be very large.

So the existing algorithms would be ine�cient if applied directly.

140

However, since we know the row degrees of H, we can expand each of the

high degree rows of H to multiple rows with lower degrees, as done in [Gupta and

Storjohann, 2011, Gupta, 2011] and also in the computation of order basis with

unbalanced shift from Chapter 4, which then allows to compute an alternative

matrix H′ with lower degrees but a higher row dimension that is still in O(n), such

that H′ can be easily transformed to H. Our task here is in fact easier than in

Chapter 4 as we already know the exact row degrees of H.

For each entry si of the shift ~s, let qi and ri be the quotient and remainder of si

divided by d. Then, we expand the ith column ei of the identity matrix I in [F, I]

and shift si to

Ẽ(i) =
[
ei, x

si−qidei, . . . , x
si−dei

]
and s̃i = [ri, d, . . . , d,] ,

where s̃i has with qi + 1 entries in each case. For the transformed problem, the

shift ~s becomes s̄ = [s̃1, . . . , s̃n] ∈ Zn̄≤0, and the identity matrix becomes

E = [Ẽ, . . . , Ẽ(n)]

=


1 xs1−q1d · · · xs1−2d xs1−d

. . .

1 xsn−qnd · · · xsn−2d xsn−d


n×n̄

,

with the new column dimension n̄ satisfying

n̄ = n+
n∑
i=1

qi ≤ n+
n∑
i=1

si/d ≤ n+ nd/d = 2n.

We can now recover H from a [−~u,−s̄]-minimal kernel basis of [F,−E].

Lemma 10.3. Let B =

V′

G′

 be a ([F,−E] , [−~u,−s̄])-kernel basis, where G′ has

141

dimension n̄ × n̄. Let B̄0 be the matrix consisting of the columns of G′ whose

−s̄-column degrees are bounded by 0. Then H is a column basis of EB̄0 and the

nonzero columns of EB̄0 have −~s-column degrees 0, allowing us to recover H from

EB̄0 using Lemma 10.2.

Proof. Note that we can construct a ([F,−E] , [−~u,−s̄])-kernel basis

A =

 U 0

HE NE

 ,
where U is the unimodular matrix satisfying FU = H, HE is the matrix H ex-

panded according to E, so that HE has row degrees s̄ and HEE = H, and NE is

a (E,−s̄)-kernel basis. Let B =

V′

G′

 be another ([F,−E] , [−~u,−s̄])-kernel basis.

Then the matrix A0 and B0 consists of the columns from A and B, respectively,

whose [−~u,−s̄]-column degrees are bounded by 0, are unimodularly equivalent,

that is, A0U0 = B0 for some unimodular matrix U0. As a result, the matrices

Ā0 and B̄0 consists of the bottom n̄ rows of A0 and B0 respectively, also satis-

�es Ā0U0 = B̄0. Therefore, we also get EĀ0U0 = EB̄0, with cdeg−~s EĀ0 ≤ 0 and

cdeg−~s EB̄0 ≤ 0, since cdeg−s̄ Ā0 ≤ 0 and cdeg−s̄ B̄0 ≤ 0. Let Ā0 = [HE,N
′], where

N′ consists of the columns of NE with −s̄-column degrees bounded by 0. Then

EĀ0U0 = E [HE,N
′] U0 = [H, 0] U0 = EB̄0. Now since H is −~s-column reduced

and has −~s-column degrees 0, the nonzero columns of EB̄0 must have −~s-column

degrees no less than 0, hence their −~s-column degrees are equal to 0.

The problem of computing a ([F, I] , [−~u,−~s])-kernel basis is now reduced to

computing a ([F,E] , [−~u,−s̄])-kernel basis. However, the degree of E and the shift

~u are still too big to make the computation e�cient. To lower these, we can reduce

E against F in a way similar to [Gupta and Storjohann, 2011, Gupta, 2011], where

the authors used the Smith normal form to reduce the degrees.

142

Lemma 10.4. Let R = E−FQ for some polynomial matrix Q such that R has de-

gree less than d and ū = [2d, . . . , 2d] ∈ Zn. Let D =

V̄

G′

 be a ([F,−R] , [−ū,−s̄])-

kernel basis, where the block G′ has dimension n × n, and D̄0 be the matrix con-

sisting of the columns of G′ whose −s̄-column degrees are bounded by 0. Then H

is a column basis of ED̄0 and the nonzero columns of ED̄0 have −~s-column degrees

0, allowing us to recover H from ED̄0 using Lemma 10.2.

Proof. First note that from the kernel basis A =

 U 0

HE NE

 of [F,−E] constructed

in Lemma 10.3, we can construct a kernel basis

C =

I −Q

0 I

A =

U−QHE −QNE

HE NE



of [F,−R] = [F,−E]

I Q

0 I

. Now if D is a ([F,−R] , [−ū,−s̄])-kernel basis, it

satis�es CV = D for a unimodular V. Also, the matrix C0 and D0 consist of the

columns from C and D, respectively, whose [−ū,−s̄]-column degrees are bounded

by 0, satisfy C0 = D0V0 for some polynomial matrix V0. Then the matrices C̄, D̄,

C̄0, D̄0 consist of the bottom n̄ rows of C, D, C0, D0 respectively, satisfy C̄V = D̄

and C̄0 = D̄0V0. It then follows that EC̄V = E [HE,NE] V = [H, 0] V = ED̄

and EC̄0 = E [HE,N
′] = [H, 0] = ED̄0V0, where N′ consists of the columns of

NE with −s̄-column degrees bounded by 0. From [H, 0] V = ED̄ we know that

the nonzero columns of ED̄ has −~s-column degrees no less than cdeg−~s H = 0. On

the other hand, we know that cdeg−~s ED̄0 ≤ 0 since cdeg−s̄ D̄0 ≤ 0, therefore the

nonzero columns of ED̄0 has −~s-column degrees equal 0. Also from [H, 0] V = ED̄

and [H, 0] = ED̄0V0 we know that H is a column basis of ED̄0.

A ([F,−R] , [−ū,−s̄])-kernel basis from Lemma 10.4 can now be e�ciently com-

143

puted, and can then be used to recover the Hermite normal form. A big question

remaining, however, is how to e�ciently compute the remainder R from E and F.

For this, we can use the series expansion of the inverse of

Fr = colRev(F, 0, ~d) = F(1/x)


xd1

. . .

xdn

 ,

as noted in the proof of Lemma 3.4 from [Giorgi et al., 2003]. The series expansion

can be done using the series solution algorithm from Storjohann [2003]. Note that

since F is assumed to be column reduced, deg det F =
∑ ~d exactly, and therefore

x is not a factor of deg det Fr, which means the series expansion of (Fr)−1 always

exists. It also means that using xd-adic lifting always works, and the series solution

algorithm from Storjohann [2003] becomes deterministic.

Let us now look at how the series expansion of (Fr)−1 gives a remainder of xkI

divide by F.

Lemma 10.5. Let the series expansion of (Fr)−1 be F̄ = F0 + F1x + F2x
2 +

Then for any integer k ≥ d, we have

I = Fr
(
F̄ mod xk−

~d
)

+ xk−dC, (10.1)

where F̄ mod xk−
~d denotes the ith row of F̄ mod xk−di for each row i. Then

Cr = colRev
(
xk−dC, 0, k

)
has degree less than d and satis�es xkI = F · (∗) + Cr.

Proof. Since the �rst term of Equation (10.1) has degree less than k, the the degree

of xk−dC must be also less than k, or equivalently, the degree of C must be less

144

than d. If we now reverse the coe�cients, we get

colRev (I, 0, k)

= colRev(Fr, 0, ~d) · colRev
((

F̄ mod xk−
~d
)
, ~d, k

)
+ colRev

(
xk−dC, 0, k

)
,

that is,

xkI = F · (∗) + Cr,

which gives us Cr as a remainder of xkI divided by F, where Cr has degree less

than d.

Lemma 10.5 shows how the series expansion F̄ can be used to compute a re-

mainder of xkI divided by F for any k ≥ d. Similarly, the ith column F̄i = F̄ei

of F̄ allows us to compute a remainder r of xkei divided by F, with deg r < d.

Note that the degrees of columns correspond to ei are bounded by si, so we need

to compute the series expansion F̄i to at least order si. Now let us look how these

series expansions can be computed e�ciently.

Lemma 10.6. Computing the series expansions F̄i to order si for all i's where

si ≥ d can be done with a cost of O∼ (nωd) �eld operations.

Proof. As before, we assume without loss of generality that the columns of F

and the corresponding entries of ~s = [s1, . . . , sn] are arranged so that the en-

tries of ~s are in increasing order. We separate ~s to dlog ne + 1 disjoint lists

~sj̄(0) , ~sj̄(1) , ~sj̄(2) , . . . , ~sj̄(dlogne) with entries in the ranges [0, d), [d, 2d), [2d, 4d), [4d, 8d),

...,[2dlogne−2d, 2dlogne−1d), [2dlogne−1d, nd] respectively, where each j̄(i) consists a list

of indices of the entries of ~s that belong to ~sj̄(i) . Note that j̄(i) has at most

n/2i−1 entries, otherwise, the sum of the entries of ~sj̄(i) would exceed
∑
~s = nd.

Then we compute series expansions F̄j̄(1) , F̄j̄(2) , . . . , F̄j̄(dlogne) separately, to order

2d, 4d, . . . , 2dlogne−1d/2, nd respectively, where again F̄j̄(i) consists of the columns of

145

F̄ that are indexed by the entries in j̄(i). We can use the series solution algorithm

from Storjohann [2003] to do these computations. For F̄j̄(i) , there are at most n/2i−1

columns, so computing the series expansion to order 2id cost O∼ (nωd). Then doing

this for i from 1 to dlog ne costs O∼ (nωd) �eld operations.

With the series expansions computed, we can now compute a remainder R of

E divide by F.

Lemma 10.7. A remainder R of E divide by F, where deg R < d, can be computed

with a cost of O∼ (nωd) �eld operations.

Proof. The remainder r of xkei divide by F can be obtained by

(
ei − Fr

(
F̄i mod xk−

~d
))

/xk−d.

Note that only the terms from F̄i with degrees in the range [k − 2d, k) are needed

for this computation, which means we are just multiplying Fr with a polynomial

vector with degree bounded by 2d. To make the multiplication more e�cient, we

can compute all the remainder vectors at once. Since there at most n columns with

degrees no less than d, the cost is just the multiplication of matrices of dimension

n and degrees bounded by 2d, which costs O∼ (nωd) �eld operations.

With the remainder R computed, we can now compute a ([F,−R] , [−ū,−s̄])-

kernel basis that can be used to recover the Hermite normal form using Lemma 10.4.

Theorem 10.8. A Hermite normal form of F can be computed deterministically

with a cost of O∼ (nωd) �eld operations.

146

Chapter 11

Rank Pro�le and Rank Sensitive

Computation of Kernel Basis

In this chapter, we consider the problems of computing the row rank pro�le of an

input matrix F ∈ K [x]m×n, which also immediately gives us the rank. If n ≥ m,

the rank can already be computed by either kernel basis computation or column

basis computation from the earlier chapters. The column basis computation (Al-

gorithm 7.2) can compute the rank with a cost of O∼(nmω−1s) �eld operations,

where s is the average column degree of F. However, we would like to re�ne this

cost to O∼ (nmrω−2s), where r is the rank of F. We also would like to compute a

row rank pro�le with the same cost.

We use the following approach to achieve the desired cost. We �rst modify

our kernel basis algorithm, Algorithm 11.1, slightly to allow the rank pro�le to

be computed along with a kernel basis. Then we do a series of computations

with increasing number of rows from F. For each set of rows we do successive

column basis computation (or order basis computation) as in Section 7.3 to reduce

the column dimension of the problem, so the modi�ed Algorithm 11.1 can work

e�ciently to compute the rank pro�le of this set of rows.

147

11.1 Rank Pro�le from Kernel Basis Computation

Recall that the row rank pro�le of F is the lexicographically smallest list of row

indices [i1, i2, . . . ir] such that these rows of F are linearly independent, where r

is the rank of F. Let us see how the row rank pro�le can be computed by our

kernel basis algorithm. The following lemma provides a key to the rank pro�le

computation using Algorithm 5.1.

Lemma 11.1. At any base case of running Algorithm 5.1 on the input matrix F,

we work with an input matrix g consisting of a single row. Let f be the original row

in F corresponding to g and F′ be the submatrix of F consists of the rows above f .

Then g = 0 if and only if f is linearly dependent with the rows of F′.

Proof. When the algorithm has reached the base case involving the single row

matrix g, it has �nished processing F′ and has produced a number of order bases

and kernel bases from the earlier subproblems, where the kernel bases computed

only involved all the rows of F′. The matrix g is the residual from multiplying

f with these order bases and kernel bases. Note that such multiplications do not

change the linear dependency of g with the rows of F′. But if f is linearly dependent

with the rows of F′, the residual g becomes 0 after multiplying with kernel bases

of the rows of F′.

Lemma 11.1 now allows us to provide a small modi�cation to Algorithm 5.1 to

produce the rank pro�le of F. The modi�ed algorithm is given in Algorithm 11.1.

Note that the rank pro�le in our algorithm is represented using a list of n indicators

that indicate the �rst r linearly independent rows of F. At this point, the rank

pro�le of F still costs the same to compute as a kernel basis of F. In the following,

we see how column basis computation can be used to improve this.

148

Algorithm 11.1 minimalKernelBasisWithRankProfile(F, ~s)

Input: F ∈ K [x]m×n, ~s = [s1, . . . , sn] ∈ Zn with entries arranged in non-decreasing
order and bounding the corresponding column degrees of F.

Output: A ~s-minimal kernel basis N of F and the row rank pro�le of F given by
a list binary indicators ē = [e1, . . . , em], with 1's indicating the columns in the
rank pro�le.

1: ξ :=
∑n

i=1 si; ρ :=
∑n

i=n−m+1 si; s := ρ/m;

2:

[
P,~b

]
:= orderBasis (F, 3s, ~s), a (F, 3s, ~s)-basis with the columns of P and

the entries of is ~s-column degrees ~b arranged so that the entries of ~b are in
non-decreasing order;

3: [P1,P2] := P where P1 consists of all columns p of P satisfying Fp = 0;
4: if m = 1 then
5: if F = 0 then
6: return P1, [0]
7: else
8: return P1, [1]
9: end if
10: else
11: ~t := deg~s P2 − [3s, 3s, . . . , 3s] ;
12: G := FP2/x

3s;

13:
[
GT

1 ,G
T
2

]T
:= G, with G1 having bm/2c rows and G2 having dm/2e rows;

14: N1, ē1 := minimalKernelBasis
(
G1,~t

)
;

15: N2, ē2 := minimalKernelBasis (G2N1, cdeg~t N1) ;
16: Q := N1N2;
17: return [P1,P2Q] , [ē1, ē2]
18: end if

11.2 Successive Rank Pro�le Computation

To compute the rank and rank pro�le of F in a rank-sensitive way, we do a series

of computations with sets of increasing number of rows from F.

We start with the �rst nonzero row of F, which is the �rst row in the rank-pro�le.

Suppose we have found the indices j̄ = [j1, . . . , jk] in the rank pro�le. To �nd the

next linearly independent rows, we work with the matrix G = F[j̄,jk+1...,jk+k], the

matrix consists of the k linearly independent rows indexed by j̄ and the next k rows.

We compute a column basis T of this matrix, which has the same rank pro�le as

G. Now we can use Algorithm 11.1 to compute the rank pro�le of T, which gives

149

Algorithm 11.2 rankProfile(F)

Input: F ∈ K [x]m×n.
Output: A row rank pro�le j̄ = [j1, . . . , jr] ∈ Zr of F.
1: k := 1; (k keeps track of the current row)
2: while k ≤ m and Fk 6= 0 do k := k + 1 end while; (�nd the �rst nonzero

row Fk)
3: j̄ = [k] ; r := 1; (r is the current rank)
4: while k < m do
5: k′ := min (m, k + r − 1); (last row in the block)
6: G := F[j̄,k...,k′]; (the r linearly independent rows and the next block of rows)
7: T := colBasis(G);
8: N, ē := minimalKernelBasisWithRankProfile(G);
9: for i from r + 1 to 2r (convert indicator to indices and append to j̄) do
10: if ei = 1 then j̄ := [j̄, ei − r + k − 1] end if ;
11: end for
12: k := k + r;
13: end while
14: return j̄;

more indices for the rank pro�le of F. We repeat this procedure until all rows of F

are processed. This gives us Algorithm 11.2 for computing the rank pro�le of F.

The main remaining task is to analyze the computational cost of Algorithm 11.2.

Theorem 11.2. The cost of Algorithm 11.2 is O∼ (nmrω−2s) �eld operations for

computing a rank pro�le of F ∈ K [x]m×n.

Proof. Let ri be the number of rows in the new block considered at step i. Then the

cost at step i is O∼
(
rω−1
i ns

)
�eld operations for the column basis and the kernel

basis with rank pro�le computation. The total cost is then

∑
O∼
(
rω−1
i ns

)
= O∼

(
ns
∑

rω−1
i

)
.

We also know that
∑
ri = m, and the maximum of ri is the rank r of F. Note that

∑
rω−1
i ≤ m

r
rω−1 = mrω−2.

150

Hence ∑
O∼
(
rω−1
i ns

)
= O∼

(
ns
∑

rω−1
i

)
= O∼

(
nmrω−2s

)
.

11.3 Applications of Rank Pro�le Computation

11.3.1 Remove the assumption n ≥ m

In order basis, kernel basis, and column basis computations from previous chapters,

we have assumed that the column dimension n is no less than the row dimension

m. We can now use the rank pro�le computation to ensure that this is always the

case. For order basis and kernel basis computation, we can just determine the

rank pro�le j̄ of the input matrix F, and then work with just Fj̄, which consists

of only r linearly independent rows, as we know the rank r is always bounded by

the column dimension n. For column basis computation, the assumption is only

required by the kernel basis computation used. Therefore removing this assumption

from the kernel basis computation also removes this assumption from the column

basis computation.

11.3.2 Rank-sensitive computation of minimal kernel bases

With the ability to compute a rank pro�le e�ciently, we can now slightly improve

Corollary 5.23 on the cost of kernel basis computation with a matrix of degree d, by

using only the linearly independent rows from F, hence reducing the row dimension

of the input matrix from m to r, after a cost of O∼ (nmrω−2d) to compute the rank

pro�le.

Theorem 11.3. Given a matrix F ∈ K [x]m×nwith degree d, a minimal kernel basis

of F can be computed with a cost of O∼(nmrω−2d+ nω−1rd).

151

It looks di�cult to further improve this cost by removing the exponent ω from

the column dimension n if a minimal kernel basis is required. Since the minimality

requires us to work with some matrix involving all n columns at the same time.

152

Chapter 12

Conclusion

In this thesis, we have presented e�cient deterministic algorithms for a number of

polynomial matrix computation problems, including the computation of order ba-

sis, minimal nullspace basis, matrix inverse, column basis, unimodular completion,

determinant, Hermite normal form, rank, and rank pro�le. The algorithm for ker-

nel basis computation also immediately gives us a new way to solve linear systems.

An existing e�cient deterministic method for solving linear systems was given by

Gupta et al. [2012]. The algorithm for column basis also immediately allows us to

compute matrix GCD, column reduced forms and Popov normal forms for matrices

of any dimension.

We �rst gave algorithms for computing a shifted order basis of anm×nmatrix of

power series over a �eld K with m ≤ n. For a given order σ and balanced shift ~s the

�rst algorithm determines an order basis with a cost of O∼(nωa) �eld operations in

K, where a = mσ/n.We then provided a method to re�ne the cost to O∼(nω−1mσ).

While the �rst algorithm addresses the case when the column degrees of a complete

order basis are unbalanced given a balanced input shift, it is not e�cient in the

case when an unbalanced shift results in the row degrees also becoming unbalanced.

We have presented a second algorithm which balances the high degree rows and

153

computes an order basis also using O∼(nωa) �eld operations in the case that the

shift is unbalanced but satis�es the condition
∑n

i=1(max(~s) − ~si) ≤ mσ. This

condition essentially allows us to locate those high degree rows that need to be

balanced.

We then presented an algorithm for the computation of a minimal nullspace basis

of an m × n input matrix of univariate polynomials over a �eld K with m ≤ n.

This algorithm computes a minimal nullspace basis of a degree d input matrix with

a cost of O∼ (nω−1md) �eld operations in K. The same algorithm also works in

the more general situation on computing a shifted minimal nullspace basis, with a

given degree shift ~s ∈ Zn whose entries bound the corresponding column degrees of

the input matrix. In this case a ~s-minimal right nullspace basis can be computed

with a cost of O∼(nωs) �eld operations, where s is the average of the largest m

entries of ~s.

Order basis computation and nullspace basis computation were then applied to

the remaining problems. An algorithm for computing the inverse of an matrix in

K [x]n×n was then given with a cost of O∼ (n3s) �eld operations, where s is the

average of the column or row degrees of the input matrix. The inverse represented

alternatively by a product of dlog ne matrices costs only O∼ (nωs) to compute. We

then discussed the computation of a column basis of an input matrix in K [x]m×n

with a cost of O∼ (mωns), where s is again the average column degree of the input

matrix. Next, an algorithm was presented for computing an unimodular completion

of an input matrix in K [x]m×n, m < n with a cost of O∼ (nωs), where s is the

average of the m largest column degrees of the input matrix. Then an algorithm for

computing the determinant of an input matrix in K [x]n×n with a cost of O∼ (nωs)

was given, where s is the average column or row degree of the input matrix. Then

we looked at an algorithm for computing the Hermite normal form of a degree d

input matrix in K [x]n×n with a cost of O∼ (nωd). Finally, we provided algorithms

154

for rank-sensitive computations of the rank and rank pro�le of an input matrix

in K [x]m×n with a cost of O∼ (mrω−2ns), where s is the average column degree

of the input matrix, and then applied the rank pro�le algorithm to rank-sensitive

computation of minimal kernel basis to obtain a cost of O∼(nmrω−2d+ nω−1rd).

We reduce all these problems to polynomial matrix multiplications. The compu-

tational costs of our algorithms are then similar to the costs of multiplying matrices,

whose dimensions match the input matrix dimensions in the original problems, and

whose degrees equal the average column degrees of the original input matrices in

most cases. The use of the average column degrees instead of the commonly used

matrix degrees, or equivalently the maximum column degrees, makes our compu-

tational costs more precise and tighter. In addition, the shifted minimal bases

computed by our algorithms are more general than the standard minimal base.

155

Bibliography

G. Baker and P. Graves-Morris. Padé Approximants, 2nd edition. Cambridge, 1996.

2

B. Beckermann and G. Labahn. A uniform approach for the fast computation of

matrix-type Padé approximants. SIAM Journal on Matrix Analysis and Appli-

cations, 15(3):804�823, 1994. 6, 23, 31

B. Beckermann and G. Labahn. Recursiveness in matrix rational interpolation

problems. Journal of Computational and Applied Math, 5-34, 1997. 2, 5, 7, 23,

44

B. Beckermann and G. Labahn. Fraction-free computation of matrix rational inter-

polants and matrix GCDs. SIAM Journal on Matrix Analysis and Applications,

22(1):114�144, 2000. 102

B. Beckermann, G. Labahn, and G. Villard. Shifted normal forms of polynomial

matrices. In Proceedings of the International Symposium on Symbolic and Alge-

braic Computation, ISSAC'99, pages 189�196, 1999. 2, 57

B. Beckermann, H. Cheng, and G. Labahn. Fraction-free row reduction of matrices

of ore polynomials. Journal of Symbolic Computation, 41(1):513�543, 2006a. 102

B. Beckermann, G. Labahn, and G. Villard. Normal forms for general polynomial

matrices. Journal of Symbolic Computation, 41(6):708�737, 2006b. 2, 5, 57

156

Th. G. J. Beelen and P.M. Van Dooren. An improved algorithm for the computa-

tion of Kronecker's canonical form of a singular pencil. Linear Algebra and its

Applications, 105:9�65, 1988. 8, 102

Th. G. J. Beelen, G. J. van den Hurk, and C. Praagman. A new method for

computing a column reduced polynomial matrix. Syst. Control Lett., 10(4):217�

224, 1988. 3, 102

G.D. Forney. Minimal bases of rational vector spaces, with applications to multi-

variable linear systems. SIAM Journal of Control, 13:493�520, 1975. 3

E Frisk. Residual Generation for Fault Diagnostics. PhD thesis, Linköping, Uni-

versity, Sweden, 2001. 3

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Univer-

sity Press, 2nd edition edition, 2003. 13

P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial matrix

computations. In Proceedings of the International Symposium on Symbolic and

Algebraic Computation, Philadelphia, Pennsylvania, USA, pages 135�142. ACM

Press, 2003. 3, 6, 27, 31, 42, 48, 81, 102, 144

S. Gupta and A. Storjohann. Computing hermite forms of polynomial matrices. In

Proceedings of the International Symposium on Symbolic and Algebraic Compu-

tation, pages 155�162, 2011. 139, 140, 141, 142

S. Gupta, S. Sarkar, A. Storjohann, and J. Valeriote. Triangular x-basis decompo-

sitions and derandomization of linear algebra algorithms over k[x]. Journal of

Symbolic Computation: Special issue in honour of the research and in�uence of

Joachim von zur Gathen at 60, 47(4):422�453, 2012. 97, 102, 117, 153

157

Somit Gupta. Hermite forms of polynomial matrices. Master's thesis, University

of Waterloo, 2011. 139, 141, 142

O.H. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix

decomposition algorithm and applications. J. Algorithms, 3(1):45�56, 1982. 38

C. P. Jeannerod and G. Villard. Essentially optimal computation of the inverse of

generic polynomial matrices. Journal of Symbolic Complexity, 21(1):72�86, 2005.

3, 97

C. P. Jeannerod and G. Villard. Asymptotically fast polynomial matrix algorithms

for multivariable systems. Int. J. Control, 79(11):1359� 1367, 2006. 3

T. Kailath. Linear Systems. Prentice-Hall, 1980. 3, 21

V Kucera. Discrete Linear Control : The Polynomial Equation Approach. John

Wiley and Sons, 1979. 3

George Labahn. Inversion components for block Hankel-like matrices. Linear Al-

gebra and Its Applications, 177:7�48, 1992. 2, 7

Chao Li. Lattice compression of polynomial matrices. Master's thesis, School of

Computer Science, University of Waterloo, 2006. 102

P. Misra, P. Van Dooren, and A. Varga. Computation of structural invariants of

generalized state-space systems. Automatica, 30:1921�1936, 1994. 8

W.H.L. Neven and C. Praagman. Column reduction of polynomial matrices. Linear

Algebra and its Applications, 188:569�589, 1993. 3

Morris Newman. Integral matrices. Academic Press, 2nd edition edition, 1972. 120

158

C. Oara and P. Van Dooren. An improved algorithm for the computation of struc-

tural invariants of a system pencil and related geometric aspects. Systems and

Control Letters, 30:38�48, 1997. 8

S. Sarkar. Computing popov forms of polynomial matrices. Master's thesis, Uni-

versity of Waterloo, 2011. 103

S. Sarkar and A. Storjohann. Normalization of row reduced matrices. In Proceedings

of the International Symposium on Symbolic and Algebraic Computation, pages

297�304, 2011. 103, 117

A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Department

of Computer Science, Swiss Federal Institute of Technology�ETH, 2000. 53, 136

A. Storjohann. High-order lifting. In Proceedings of the International Symposium

on Symbolic and Algebraic Computation, ISSAC'02, pages 246�254, New York,

NY, USA, 2002. ACM Press. ISBN 1-58113-484-3. 133

A. Storjohann. High-order lifting and integrality certi�cation. Journal of Symbolic

Computation,, 36:613�648, 2003. 133, 144, 146

A. Storjohann. Notes on computing minimal approximant bases. In Chal-

lenges in Symbolic Computation Software. Internationales Begegnungs- und

Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2006. 6,

7, 24, 27, 33, 59

A. Storjohann. On the complexity of inverting integer and polynomial matrices.

Accepted for publication in Computational Complexity, 2010. 97

A. Storjohann and G. Villard. Computing the rank and a small nullspace basis of a

polynomial matrix. In Proceedings of the International Symposium on Symbolic

159

and Algebraic Computation, ISSAC'05, pages 309�316, 2005. 3, 7, 9, 32, 50, 80,

102

Mark Van Hoeij. Factorization of di�erential operators with rational functions

coe�cients. Journal of Symbolic Computation, 24:537�561, November 1997. 2

G. Villard. Computing popov and hermite forms of polynomial matrices. In Inter-

national Symposium on Symbolic and Algebraic Computation, 1996. 102

W. Zhou and G. Labahn. E�cient computation of order bases. In Proceedings of

the International Symposium on Symbolic and Algebraic Computation, ISSAC'09,

pages 375�382. ACM, 2009. 8

W. Zhou and G. Labahn. E�cient algorithms for order basis computation. Journal

of Symbolic Computation, 47:793�819, 2012. 8

W. Zhou, G. Labahn, and A. Storjohann. Computing minimal nullspace bases. In

Proceedings of the International Symposium on Symbolic and Algebraic Compu-

tation, ISSAC'12, pages 375�382. ACM, 2012. 9, 115

160

	List of Algorithms
	Introduction
	Shifted Degrees
	Order Basis Computation
	Kernel Basis Computation
	Overview

	Preliminaries
	Notation
	Model of Computation
	Computational Cost in Terms of Average Degrees
	Shifted Degrees
	Unimodular Matrices and Unimodular Transformations
	Column Basis
	Minimality and Column Reducedness
	Order Basis
	Kernel Basis

	Order Basis with Balanced Shifts
	Balancing Input with Storjohann's Transformation
	Unbalanced Output
	Extending Storjohann's Transformation
	A Particular Case
	More General Results

	Computation of Order Bases
	Dividing into Subproblems
	The Iterative View

	Computational Complexity
	More Refined Cost and the Case mo(n)
	Balanced Case

	Order Basis with Unbalanced Shifts
	First unbalanced case
	Second unbalanced case
	Transform to Balanced Shifts
	Correspondence Between the Original Problem and the Transformed Problem
	Achieving Efficient Computation

	Kernel Basis
	Minimal Kernel Basis Computation
	Bounds based on the shift
	Reducing the column dimension via order basis computation
	Reducing the degrees
	Reducing the row dimension
	Recursive computation
	Proof of Theorem 5.6

	Computational Complexity

	Matrix inverse
	Column Basis
	Computing a Right Factor
	Computing a Column Basis
	A Simple Improvement
	Column Reduced Form and Popov Form

	Unimodular Completion
	Reversing polynomial coefficients
	Unimodular completion
	Efficient Computation

	Diagonal Entries of Hermite Normal Form and Determinant
	Computing the Determinant
	Computational Cost

	 Hermite Normal Form
	Rank Profile and Rank Sensitive Computation of Kernel Basis
	Rank Profile from Kernel Basis Computation
	Successive Rank Profile Computation
	Applications of Rank Profile Computation
	Remove the assumption nm
	Rank-sensitive computation of minimal kernel bases

	Conclusion
	Bibliography

