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Abstract 

Qualitative studies investigating the sexual activity of people with low back pain found a substantial 

reduction in the frequency of coitus and have shown that pain during coitus due to mechanical factors 

(i.e., movements and postures) are the primary reason for this decreased frequency. However, a 

biomechanical analysis of coitus has never been done. The main objective of this study was to describe 

male and female lumbar spine and hip motion and muscle activation patterns during coitus and compare 

these motions and muscle activity across five common coital positions. Specifically, lumbar spine and hip 

motion in the sagittal plane and electromyography signal amplitudes of selected trunk, hip, and thigh 

muscles were described and compared. A secondary objective was to determine if simulated coitus could 

be used in place of real coitus for future coitus biomechanics research. 

Ten healthy males (29.3 ± 6.9 years, 176.5 ± 8.6 centimeters, 84.9 ± 14.5 kilograms) and ten healthy 

females (29.8 ± 8.0 years, 164.9 ± 3.0 centimeters, 64.2 ± 7.2 kilograms) were included for analysis in 

this study. These couples had approximately 4.7 ± 3.9 years of sexual experience with each other. This 

study was a repeated-measures design, where the independent variables, coital position and condition, 

were varied five (i.e., QUADRUPED1, QUADRUPED2, MISSIONARY1, MISSIONARY2, and 

SIDELYING) and two (i.e., real and simulated) times, respectively. Recruited participants engaged in 

coitus in five pre-selected positions (presented in random order) for 20 seconds per position first in a 

simulated condition, and again in a real condition. Three-dimensional (3D) lumbar spine and hip 

kinematic data were continuously collected for the duration of each trial by optoelectronic and 

electromagnetic motion capture systems. Electromyography (EMG) signals were also continuously 

collected for the duration of each trial. The kinematic data and EMG signals were collected 

simultaneously for both participants. Five sexual positions were chosen for this study based on the 

findings of previous literature and a biomechanical rationale. QUADRUPED – rear-entry, female 

quadruped, male kneeling behind – had two variations; in QUADRUPED1 the female was supporting her 

upper body with her elbows and in QUADRUPED2 the female was supporting her upper body with her 

hands. MISSIONARY – front-entry, female supine, male prone on top – also had two variations; in 

MISSIONARY1 the female was not flexing her hips or knees and the male was supporting his upper body 

with his hands, but in MISSIONARY2, the female was flexing her hips and knees and the male was 

supporting his upper body with his elbows. SIDELYING – rear-entry, female side-lying on her left side, 

male side-lying behind – did not have any variations. To determine if each coital position had distinct 

spine and hip kinematic and muscle activation profiles, separate univariate general linear models (GLM) 

(factor: coital position = five levels, α=0.05) followed by Tukey‟s honestly significant difference (HSD) 

post hoc analysis were used. To determine if simulated coitus was representative of real coitus across all 

spine and hip kinematic and muscle activation outcome variables, paired-sample t-tests (α=0.05) were 

performed on all outcome variables for the real condition and their respective simulated values. 

In general, the coital positions studied showed that, for both males and females, coitus is 

mainly a flexion-extension movement of the lumbar spine and hips. Males used a greater range 

of their spine and hip motion in comparison to females. As expected, differences were found 

between coital positions for males and females and simulated coitus was not representative of 

real coitus, in particular the spine and hip kinematic profiles. The results found in this 

biomechanical analysis of common coital positions may be useful in a clinical context. It is 
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recommended that during the acute stage of a low back injury resulting in flexion-, extension-, or 

motion-intolerance that coitus be avoided. If the LBP is a more chronic issue, particular common 

coital positions should be avoided. For the flexion-intolerant male patient, avoid SIDELYING 

and MISSIONARY2 as they were shown to require the most flexion. Both variations of 

QUADRUPED are the more spine-sparing of coital positions followed by, MISSIONARY1. 

Coaching the male patient on proper hip-hinging technique while thrusting – an easy technique 

to incorporate in both variations of QUADRUPED – will likely decrease spine movement and 

increase the spine-sparing quality of QUADRUPED. For the flexion-intolerant female patient, 

avoid both variations of MISSIONARY, especially with hip and knee flexion, as they were 

shown to elicit the most spine flexion. QUADRUPED2 and SIDELYING are the more spine-

sparing coital positions, followed by QUADRUPED1. Subtle posture changes for a coital 

position should not be considered lightly; seemingly subtle differences in posture can change the 

spine kinematic profile significantly, resulting in a coital position that was considered spine-

sparing becoming a position that should be avoided. 

Thus, spine-sparing coitus appears to be possible for the flexion-, extension-, and motion-

intolerant patient. Health care practitioners may recommend appropriate coital positions and 

coach coital movement patterns, such as speed control and hip-hinging. With respect to future 

research in the area of sex biomechanics, using simulated coitus in replace of real coitus is not 

justifiable according to the data of this study. However, including a simulated condition did 

prove beneficial for increasing the comfort level of the couples and allowing time to practice the 

experimental protocol. Future directions may address female-centric positions (e.g., „reverse 

missionary‟ with male supine and female seated on top), and back-pained patients with and 

without an intervention (e.g., movement pattern coaching or aides, such as a lumbar support). 



 

 v 

Acknowledgements 

First and foremost, I would like to thank my academic supervisor, mentor, and friend, Dr. Stuart McGill. 

Your unwavering belief in my unique idea and my potential made me believe that I was capable of such a 

complex undertaking too. No matter what obstacle presented itself throughout the completion of this 

project, I knew that I could overcome it because I had your strong support. You are an incredible mentor 

– I have learned many invaluable lessons from you – and I look forward to four more inspiring years with 

you (peppered with caesars here and there)! 

Dr. Edward Cambridge – one million „thank you‟s would not suffice for the one million ways that you 

have helped me. You were always there to bounce ideas off of, troubleshoot the invincible Mr. 

MATLAB, do a quick sanity check, save my neck, bang your head on the lab wall with me, and assist me 

in the lab for a study that required above-and-beyond assistance. I wouldn‟t have wanted to share this 

experience with any other colleague as much as you and look forward to more science adventures over 

the next few years! I would also like to thank your beautiful wife, Dr. Melanie Abbott-Cambridge, for her 

supportive role in this project. Mel: Ed is lucky to have you! 

To Drs. Richard Wells and Stephen Prentice, I am very grateful that you shared an open mind and your 

ideas and experiences with me. Thank you for agreeing to guide this project and for your patience 

throughout its completion. 

Ms. Dianne Ikeda, MATLAB Queen, and Mr. Jordan Cannon, King of Peaks and Valleys – both of you 

were quality-of-life savers! My data processing would have taken one hundred times as long without the 

two of you. You were willing to help at all hours and sacrificed personal time to help me. I don‟t know 

what I would have done without both of your support! 

Dr. Susan Sykes, Dr. Susanne Santi, Dr. Barbara Schumaker, and the rest of the Human Research 

Ethics Committee from the Office of Research Ethics at the University of Waterloo – thank you for 

advocating for innovative research at the University of Waterloo. Because of your willingness to work 

with me and your ability to see the importance of this work, I still believe that the University of Waterloo 

is a place where the spirit of, „why not?‟ is strong. 

Many of my friends and colleagues became strong supporters of my work and demonstrated this 

support in ways that were above-and-beyond. To my unofficial recruiters, Ms. Robyn Ibey, Mr. Armon 

Vaziri, Mr. Dave Smith, and Drs. Diana Di Carvalho and Ryan Larson, thank you so much for your 

efforts. When I began to doubt that I would find enough participants, you all made me believe not only 

that it was possible, but easy! Dr. Janice Moreside – I look up to you, so your belief in me and my project 

meant the world to me. Dr. Elizabeth McGill, your strong words of encouragement meant a lot to me. I 

thoroughly enjoyed our conversations and hope that there are more in the future. Dr. Paul McDonald – I 

will never forget our chance encounter in the foyer of BMH. Your thoughtful remarks came at a time 

when they were needed the most. Because of you, I will continue to strive as far away from mediocrity as 

possible and make sure that the special talent that you see in me does not go to waste. Your advice will 

resonate for years to come. 

To the participants of this study: your willingness to share an intimate part of your relationship for 

science will never be forgotten. I am grateful for the amount of trust you had in me and the belief that you 



 

 vi 

had in the purpose of my work. Because of you, partners may find intimacy again and new conversations 

will be starting between low back pained patients and their health care practitioners. 

I would also like to thank Ms. Barbara Pressman for sharing her knowledge and expertise with me for 

the development of the pre-study questionnaire, Dr. David Frost and Mr. Chad Gooyers for their 

assistance with Visual 3D, Dr. Stacey Acker for lending me laboratory equipment, Erin Shaw for assisting 

with tracking cluster labeling, and Mr. Jordan Andersen and Mr. Christian Balkovec for assisting me in 

the lab when I was in a bind. 

Without the friendships that I have with a few special people, I am certain that I would not have made it 

to the finish line. Whether it was a late-night salsa dancing intervention, a spontaneous trip to Halifax, 

plates of pad thai, all-you-can-eat sushi, gym adventures, a crazy haircut, bottles of wine, phone 

con(cry)versations, Skype calls, costumes during „hangouts‟, quadruple-shot espressos, rides in cars, 

bowling nights, arcade basketball, or Wii marathons, every moment made a difference. Ms. Stephanie 

Borgs, Ms. Keri Tull, Ms. Tamar Eylon, Mr. Michael Domingo, Mr. Jim Findlater, Ms. Lina Shamoun, 

and Mr. Osiris Gracias – you were all shoulders I could cry on and rocks for me to lean on. You 

supported me through a difficult year and your friendship is why my life is so blessed. I love you. 

Last, but by no means least, my unconditionally loving and supporting, tearaway-shorts sewing, meal-

making, grocery-buying, chauffeuring family, Mr. and Mrs. John David and Stojanka Sidorkewicz and 

Mr. Nicholas Sidorkewicz. Without my family, I am nothing. I love you all more than words could ever 

express and strive every day to make you proud. 



 

 vii 

Dedication 

This work is dedicated to the many couples who are struggling to maintain their intimacy because of 

chronic LBP – may this help to raise your voices with your health care providers and each other – and to 

the health care practitioners who treat them – may this first step be a helpful tool. 

 



 

 viii 

Table of Contents 

Author‟s Declaration ..................................................................................................................................... ii 

Abstract……………………………………………………………………………………………………iii 

Acknowledgements…………………………………………………………………………………………v 

Dedication ................................................................................................................................................... vii 

Table of Contents ....................................................................................................................................... viii 

List of Figures………………………………………………………………………………………………x 

List of Tables ............................................................................................................................................. xiv 

List of Equations ........................................................................................................................................ xvi 

Chapter 1 Introduction .................................................................................................................................. 1 

1.1 Rationale ............................................................................................................................................. 1 

1.2 Purpose ................................................................................................................................................ 2 

1.3 Hypotheses .......................................................................................................................................... 2 

Chapter 2 Literature Review ......................................................................................................................... 3 

2.1 Qualitative research on sexual activity and low back pain and/or injury............................................ 3 

2.1.1 Frequency reduction ..................................................................................................................... 3 

2.1.2 Postures and movements attributed .............................................................................................. 3 

2.1.3 Self-reported most and least comfortable coital positions ........................................................... 4 

2.1.4 Limitations of the qualitative research on sexual activity and low back pain and/or injury ........ 5 

2.2 Biomechanical rationale for subjective findings ................................................................................. 5 

2.2.1 Magnetic resonance imaging (MRI) of coitus ............................................................................. 5 

2.2.2 Biomechanical response and failure mechanics of lumbar spine motion segments ..................... 7 

2.3 Summary ............................................................................................................................................. 7 

Chapter 3 Methodology ................................................................................................................................ 9 

3.1 Participants .......................................................................................................................................... 9 

3.1.1 Inclusion criteria .......................................................................................................................... 9 

3.1.2 Exclusion Criteria ........................................................................................................................ 9 

3.1.3 Pre-study Interview ...................................................................................................................... 9 

3.2 Experimental design .......................................................................................................................... 12 

3.3 Laboratory preparation ...................................................................................................................... 12 

3.3.1 Calibration of the optoelectronic motion capture system........................................................... 12 



 

 ix 

3.4 Instrumentation and experimental protocol ...................................................................................... 12 

3.4.1 Anthropometric measurements .................................................................................................. 14 

3.4.2 Electromyography (EMG) signal ............................................................................................... 14 

3.4.3 Kinematics ................................................................................................................................. 17 

3.4.4 Coital positions .......................................................................................................................... 20 

3.4.5 Active ROM (aROM) ................................................................................................................ 24 

3.5 Data Processing ................................................................................................................................. 24 

3.5.1 Electromyography ...................................................................................................................... 24 

3.5.2 Kinematics ................................................................................................................................. 24 

3.5.3 Higher processing ...................................................................................................................... 25 

3.6 Data analysis ..................................................................................................................................... 28 

3.6.1 Descriptive statistics .................................................................................................................. 28 

3.6.2 Inferential statistics .................................................................................................................... 28 

Chapter 4 Results ........................................................................................................................................ 30 

4.1 Coital position comparison ............................................................................................................... 30 

4.1.1 Kinematics ................................................................................................................................. 30 

4.1.2 Electromyography ...................................................................................................................... 45 

4.2 Simulated versus real ........................................................................................................................ 54 

4.2.1 Male ........................................................................................................................................... 57 

4.2.2 Female ........................................................................................................................................ 68 

Chapter 5 Discussion .................................................................................................................................. 79 

5.1 Coital position comparison ............................................................................................................... 79 

5.2 Simulated versus real coitus .............................................................................................................. 82 

5.3 Limitations ........................................................................................................................................ 83 

Chapter 6 Conclusions ................................................................................................................................ 85 

Bibliography ............................................................................................................................................... 87 

Appendix A Pre-screening Interview Questionnaire .................................................................................. 92 

Appendix B ................................................................................................................................................. 93 

 



 

 x 

List of Figures 

Fig. 1. Excerpt from the ODI Version 1.0 highlighting an item regarding sex life in its measure of 

disability. ....................................................................................................................................................... 1 

Fig. 2. Midsagittal MRI image of the anatomy of sexual intercourse. .......................................................... 6 

Fig. 3. Midsagittal MRI image of the anatomy of sexual intercourse at the beginning (a) and end (b) of the 

penetration cycle. .......................................................................................................................................... 6 

Fig. 4. Summary of recruitment and screening process and included and excluded participants in this 

study. The final sample size included for data analysis was ten. ................................................................ 11 

Fig. 5. Summary of the experimental protocol. .......................................................................................... 13 

Fig. 6. Illustration of electrode placement locations for male and female participants. ............................. 16 

Fig. 7. Illustration of reflective marker and electromagnetic sensor placement locations for male and 

female participants. ..................................................................................................................................... 19 

Fig. 8. Physical characteristics of the receiver (drawn to scale). ................................................................ 20 

Fig. 9. QUADRUPED – rear-entry, female quadruped, male kneeling behind. ......................................... 22 

Fig. 10. MISSIONARY – front-entry, female supine, male prone on top. ................................................. 23 

Fig. 11. SIDELYING – rear-entry, female side-lying, male side-lying behind. ......................................... 23 

Fig. 12. Illustration of penetration cycle identification and average maximum, minimum, and amplitude 

difference calculation. ................................................................................................................................. 27 

Fig. 13. Summary of measurement chain and data processing methods. ................................................... 29 

Fig. 14. Presentation of lumbar spine angular displacement (% aROM) in a typical trial of mMISS2 from 

Subject 5a. ................................................................................................................................................... 31 

Fig. 15. Average maximum, minimum, and amplitude difference findings for male lumbar spine 

kinematics across all coital positions. ......................................................................................................... 33 

Fig. 16. APDF results for male spine kinematics across all coital positions. ............................................. 34 

Fig. 17. Demonstration of subject variability for APDF results for male spine kinematics across all coital 

positions. ..................................................................................................................................................... 35 

Fig. 18. Average maximum, minimum, and amplitude difference findings for male hip kinematics across 

all coital positions. ...................................................................................................................................... 36 

Fig. 19. APDF results for male hip kinematics across all coital positions. ................................................. 37 

Fig. 20. Demonstration of subject variability for APDF results for male hip kinematics across all coital 

positions. ..................................................................................................................................................... 38 



 

 xi 

Fig. 21. Average maximum, minimum, and amplitude difference findings for female lumbar spine 

kinematics across all coital positions. ......................................................................................................... 40 

Fig. 22. APDF results for female spine kinematics across all coital positions. .......................................... 41 

Fig. 23. Demonstration of subject variability for APDF results for female spine kinematics across all 

coital positions. ........................................................................................................................................... 42 

Fig. 24. Average maximum, minimum, and amplitude difference findings for female hip kinematics 

across all coital positions. ........................................................................................................................... 43 

Fig. 25. APDF results for female hip kinematics across all coital positions............................................... 44 

Fig. 26. Demonstration of subject variability for APDF results for female hip kinematics across all coital 

positions. ..................................................................................................................................................... 45 

Fig. 27. Maximum % MVC achieved of all muscles across all coital positions for male subjects. ........... 50 

Fig. 28. Maximum % MVC achieved of all muscles across all coital positions for female subjects. ........ 54 

Fig. 29. Real and simulated mQUAD2 comparison results for male spine kinematic outcome variables. 57 

Fig. 30. Real and simulated mSIDE comparison results for male spine kinematic outcome variables. ..... 58 

Fig. 31. Real and simulated mMISS1 comparison results for male hip kinematic outcome variables. ...... 59 

Fig. 32. Real and simulated mSIDE comparison results for male hip kinematic outcome variables. ........ 60 

Fig. 33. Real and simulated mQUAD1 comparison results for male EO electromyography outcome 

variables. ..................................................................................................................................................... 61 

Fig. 34. Real and simulated mQUAD1 comparison results for male IO electromyography outcome 

variables. ..................................................................................................................................................... 61 

Fig. 35. Real and simulated mQUAD2 comparison results for male EO electromyography outcome 

variables. ..................................................................................................................................................... 62 

Fig. 36. Real and simulated mMISS1 comparison results for male UES electromyography outcome 

variables. ..................................................................................................................................................... 63 

Fig. 37. Real and simulated mMISS1 comparison results for male LES electromyography outcome 

variables. ..................................................................................................................................................... 63 

Fig. 38. Real and simulated mMISS1 comparison results for male RA electromyography outcome 

variables. ..................................................................................................................................................... 64 

Fig. 39. Real and simulated mMISS1 comparison results for male IO electromyography outcome 

variables. ..................................................................................................................................................... 64 

Fig. 40. Real and simulated mMISS2 comparison results for male UES electromyography outcome 

variables. ..................................................................................................................................................... 65 



 

 xii 

Fig. 41. Real and simulated mMISS2 comparison results for male LES electromyography outcome 

variables. ..................................................................................................................................................... 66 

Fig. 42. Real and simulated mMISS2 comparison results for male EO electromyography outcome 

variables. ..................................................................................................................................................... 66 

Fig. 43. Real and simulated mMISS2 comparison results for male IO electromyography outcome 

variables. ..................................................................................................................................................... 67 

Fig. 44. Real and simulated mMISS2 comparison results for male GMax electromyography outcome 

variables. ..................................................................................................................................................... 67 

Fig. 45. Real and simulated mSIDE comparison results for male RA electromyography outcome 

variables. ..................................................................................................................................................... 68 

Fig. 46. Real and simulated fMISS1 comparison results for female spine kinematic outcome variables. . 69 

Fig. 47. Real and simulated fMISS2 comparison results for female spine kinematic outcome variables. . 70 

Fig. 48. Real and simulated fSIDE comparison results for female spine kinematic outcome variables. .... 71 

Fig. 49. Real and simulated fMISS1 comparison results for female hip kinematic outcome variables. ..... 72 

Fig. 50. Real and simulated fSIDE comparison results for female hip kinematic outcome variables. ....... 73 

Fig. 51. Real and simulated fQUAD1 comparison results for female UES electromyography outcome 

variables. ..................................................................................................................................................... 74 

Fig. 52. Real and simulated fQUAD1 comparison results for female EO electromyography outcome 

variables. ..................................................................................................................................................... 74 

Fig. 53. Real and simulated fQUAD1 comparison results for female GMax electromyography outcome 

variables. ..................................................................................................................................................... 75 

Fig. 54. Real and simulated fQUAD2 comparison results for female LD electromyography outcome 

variables. ..................................................................................................................................................... 76 

Fig. 55. Real and simulated fQUAD2 comparison results for female RA electromyography outcome 

variables. ..................................................................................................................................................... 76 

Fig. 56. Real and simulated fMISS1 comparison results for female RA electromyography outcome 

variables. ..................................................................................................................................................... 77 

Fig. 57. Real and simulated fSIDE comparison results for female LD electromyography outcome 

variables. ..................................................................................................................................................... 78 

Fig. 58. Real and simulated fSIDE comparison results for female RA electromyography outcome 

variables. ..................................................................................................................................................... 78 



 

 xiii 

Fig. 59. Initial recommendations for male coital positions to avoid for specific LBP-provoking 

movements .................................................................................................................................................. 85 

Fig. 60. Initial recommendations for female coital positions to avoid for specific LBP-provoking 

movements. ................................................................................................................................................. 86 

 



 

 xiv 

List of Tables 

Table 1. Summary of anthropometric measurements taken from each male and female participant. ........ 14 

Table 2. Summary of electrode placement locations and orientations for male and female participants. .. 15 

Table 3. Summary of marker placement locations for male and female participants. ................................ 18 

Table 4. A description of each sex‟s posture during each coital position. .................................................. 30 

Table 5. Summary table of all male and female spine and hip kinematic outcome variables found to be 

significantly different between real and simulated conditions. ................................................................... 55 

Table 6. Summary table of all male and female muscle activation outcome variables found to be 

significantly different between real and simulated conditions. ................................................................... 56 

Table 7. Male lumbar spine kinematic results for real and simulated versions of mQUAD1. ................... 93 

Table 8. Male lumbar spine kinematic results for real and simulated versions of mQUAD2. ................... 93 

Table 9. Male lumbar spine kinematic results for real and simulated versions of mMISS1....................... 94 

Table 10. Male lumbar spine kinematic results for real and simulated versions of mMISS2. .................... 94 

Table 11. Male lumbar spine kinematic results for real and simulated versions of mSIDE. ...................... 95 

Table 12. Male hip kinematic results for real and simulated versions of mQUAD1. ................................. 95 

Table 13. Male hip kinematic results for real and simulated versions of mQUAD2. ................................. 96 

Table 14. Male hip kinematic results for real and simulated versions of mMISS1. ................................... 96 

Table 15. Male hip kinematic results for real and simulated versions of mMISS2. ................................... 97 

Table 16. Male hip kinematic results for real and simulated versions of mSIDE. ...................................... 97 

Table 17. Male electromyography signal results for real and simulated versions of mQUAD1. ............... 98 

Table 18. Male electromyography signal results for real and simulated versions of mQUAD2. ............. 100 

Table 19. Male electromyography signal results for real and simulated versions of mMISS1. ............... 101 

Table 20. Male electromyography signal results for real and simulated versions of mMISS2. ............... 103 

Table 21. Male electromyography signal results for real and simulated versions of mSIDE. .................. 104 

Table 22. Female lumbar spine kinematic results for real and simulated versions of fQUAD1. .............. 106 

Table 23. Female lumbar spine kinematic results for real and simulated versions of fQUAD2. .............. 106 

Table 24. Female lumbar spine kinematic results for real and simulated versions of fMISS1. ................ 107 

Table 25. Female lumbar spine kinematic results for real and simulated versions of fMISS2. ................ 107 

Table 26. Female lumbar spine kinematic results for real and simulated versions of fSIDE. .................. 108 

Table 27. Female hip kinematic results for real and simulated versions of fQUAD1. ............................. 108 

Table 28. Female hip kinematic results for real and simulated versions of fQUAD2. ............................. 109 



 

 xv 

Table 29. Female hip kinematic results for real and simulated versions of fMISS1. ............................... 109 

Table 30. Female hip kinematic results for real and simulated versions of fMISS2. ............................... 110 

Table 31. Female hip kinematic results for real and simulated versions of fSIDE. .................................. 110 

Table 32. Female electromyography signal results for real and simulated versions of fQUAD1. ........... 111 

Table 33. Female electromyography signal results for real and simulated versions of fQUAD2. ........... 112 

Table 34. Female electromyography signal results for real and simulated versions of fMISS1. .............. 114 

Table 35. Female electromyography signal results for real and simulated versions of fMISS2. .............. 115 

Table 36. Female electromyography signal results for real and simulated versions of fSIDE. ................ 117 



 

 xvi 

List of Equations 

Eq. 1. Direction Cosine Matrix from Euler angles (Stationary Frame to Rotated Frame) – Pitch-Yaw-Roll 

sequence (i, j, k), (X, Y, Z) ......................................................................................................................... 26 



1 

 

Chapter 1 

Introduction 

1.1 Rationale 

In their lifetime, up to eighty percent of people will have experienced at least one episode of low back 

pain (LBP) (Statistics Canada [updated 2006]). Several qualitative studies investigating the sexual activity 

of people with low back pain and/or injury have consistently found a substantial reduction in the 

frequency of coitus after the onset of LBP and have shown that pain during coitus due to mechanical 

factors, such as movements and postures, are reported as the primary reason for the decreased frequency 

of coitus than psychological factors (e.g., fear-avoidance) (see below for a summary of the findings of 

Akbas and colleagues (2010), Berg and colleagues (2009), Maigne and Chatellier (2001), Osborne and 

Maruta (1980), and Sjögren and Fugl-Meyer (1981)). 

This reduction in the frequency of sexual activity in people with low back pain and/or injury has 

important implications for their quality of life (QoL) and health and disability. Sexual activity is a known 

indicator of QoL (Stock et al. 1996) and is incorporated into one of the most commonly recommended 

condition-specific outcome measures for spinal disorders: the Oswestry Disability Index (ODI). The 

American Academy of Orthopaedic Surgeons (AAOS) and other spine societies have adapted ODI 

Version 1.0 (Fairbank et al. 1980) into their spine outcome instruments (Fairbank & Pynsent 2000), 

which includes an item regarding sex life in its measure of disability (Fig. 1). 

 

Fig. 1. Excerpt from the ODI Version 1.0 highlighting an item regarding sex life in its measure of 

disability. 
(Fairbank et al. 1980). 

Furthermore, the World Health Organization‟s (WHO) International Classification of Functioning, 

Disability, and Health (ICF, World Health Organization [updated 2001]) regards sexual relationships – 

creating and maintaining a relationship of a sexual nature, with a spouse or other partner – as an integral 

factor in the international standard to describe and measure health and disability (World Health 

Organization [updated 2001]). 

Despite consistent reports of a reduction in the frequency of sexual activity primarily due to mechanical 

factors after the onset of low back pain and/or injury, a biomechanical analysis of basic coital positions 

has not been conducted (White & Panjabi 1990). Understanding lumbar spine and hip movement 

characteristics and muscle activation patterns during common sexual positions may result in a 
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biomechanical rationale to explain these reports and generate recommendations for modifying sexual 

positions with the intention of decreasing the likelihood of exacerbating low back pain and/or injury 

during coitus and consequently improving the frequency of sexual activity, the maintenance of sexual 

relationships, and, ultimately, the quality of life and health of those suffering from low back pain and 

injury. 

1.2 Purpose 

Since a biomechanical analysis of common sexual positions has never been performed, the nature of this 

study was primarily descriptive. The main objective of this study was to describe the three-dimensional 

(3D) movement and posture characteristics and muscle activation patterns of the lumbar spine and hips 

during coitus, and compare these characteristics and patterns between five common coital positions. 

Specifically, 3D angular displacement of the lumbar spine and hips and electromyography (EMG) signal 

amplitudes of selected trunk, hip, and thigh muscles was described and compared. A secondary 

objective was to determine if simulated coitus could be used in place of real coitus for future sex 

biomechanics research. 

1.3 Hypotheses 

Regardless of the descriptive nature of this study, hypotheses can be formed regarding expected 

observations. Specifically, it was expected that movement of the spine and hips would primarily occur in 

the sagittal plane of motion (i.e., flexion-extension). For both males and females, it was hypothesized that 

each coital position would have distinct spine and hip kinematic profiles, with the exception of the two 

variations of female QUADRUPED, male kneeling behind, for the males. For males, distinct muscle 

activation profiles were expected across all coital positions, but not for females. Since males and females 

assumed entirely different postures within each coital position, they were considered separate groups in 

the subsequent data analysis to test these hypotheses. 

It was hypothesized that simulated coitus would not be representative of real coitus across all spine and 

hip kinematic variables and muscle activation outcome variables of the trunk musculature. 
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Chapter 2 

Literature Review 

A review of the findings of limited qualitative studies investigating the sexual activity of people with low 

back pain and/or injury are discussed below followed by a biomechanical rationale that supports the need 

for this proposed investigation and provides guidance for the study design and methodology. 

2.1 Qualitative research on sexual activity and low back pain and/or injury 

2.1.1 Frequency reduction 

Several studies evaluating self-reports of the sexual activity of people before and after the onset of low 

back pain and/or injury have shown a reduction in frequency of coitus after the onset for the majority of 

these people. Akbas and colleagues (2010) evaluated sexual problems and sexual behaviour patterns 

before and after surgery in a group of patients with lumbar disc herniation and found that frequency of 

sexual intercourse before the operation was reduced in 78 percent of the patients (84 percent of the men 

and 73 percent of the women) at the time of diagnosis compared with the period when patients had been 

pain free. When comparing frequency of sexual intercourse postoperatively to preoperatively, men and 

women reported a 27 and 10 percent decrease in „two to five times per week‟, a 24 and 5 percent increase 

in „once per week‟, and a 7 percent decrease and 5 percent increase in „more rarely than once a week‟, 

respectively (Akbas et al. 2010). 

Osborne and Maruta‟s (1980) study of the sexual activity of married patients referred to a pain 

management center revealed similar results; approximately 66 percent of the patients reported a reduction 

in the frequency of sexual activity after the onset of LBP (Osborne & Maruta 1980). Furthermore, a 

questionnaire-based study assessed the sexual activity of patients with LBP compared to a control group 

and found that 55 percent of women and 34 percent of men were having intercourse less frequently – 74 

and 50 percent of the women and men had intercourse an average of less than five times per month, 

respectively (Maigne & Chatellier 2001). Sjögren and Fugl-Meyer (1981) conducted structured interviews 

to investigate sexuality in males and females with chronic LBP and found that in approximately 50 

percent of studied cases, frequency of coitus decreased from one to two times per week (the median 

frequency of coitus before disablement) and some subjects had to cease intercourse completely (Sjögren 

& Fugl-Meyer 1981). 

2.1.2 Postures and movements attributed 

These qualitative studies on sexual activity of people before and after the onset of low back pain and/or 

injury call attention to a common problem among this population, but the factors attributed to the reduced 

frequency of coitus are also important to understand. Qualitative studies have consistently shown that 

pain or discomfort during coitus due to mechanical factors, such as movements and postures, are reported 

to be the primary reason for the decreased frequency of coitus rather than psychological factors (e.g., fear-

avoidance). Sex life was reported as causing additional pain in 84 percent of patients with chronic LBP 

(of assumed discogenic origin considered for surgical treatment) – 34 percent experienced „some‟ pain, 
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20 percent found sex „very painful‟, and 30 percent reported that their sex life was „severely restricted‟ 

due to pain or that pain „prevent[ed] any sex life at all‟ (Berg et al. 2009). At a two-year post-operative 

follow-up, sex life had improved and this improvement was correlated strongest with a decrease in back 

pain (measured by visual analog scale [VAS]) and an improvement regarding global assessment of back 

pain (Berg et al. 2009). 

Other studies have specifically indicated pain during coital postures and movements as the primary 

reason for reduction in coitus. For example, 58 percent of women and 22 percent of men with LBP 

reported marked discomfort during intercourse in a questionnaire-based study (Maigne & Chatellier 

2001). Of these men and women, two of the most commonly reported problems experienced when having 

sex were attributed to postures and movements assumed during coitus: difficulty finding a position and 

difficulty with pelvic movements (Maigne & Chatellier 2001). Structured interviews of males and females 

with chronic LBP revealed similar attributes; after the onset of disabling LBP, the type of positions used 

were changed because of the back pain (Sjögren & Fugl-Meyer 1981). Thus, it can be assumed that 

certain postures were too painful to maintain, especially since patients also disclosed that one of the 

important factors that restricted sexual enjoyment was the back pain itself (Sjögren & Fugl-Meyer 1981). 

The subjective findings of these studies provide valuable insight into this common problem among back 

pain and injury sufferers – mechanical factors, such as movements and postures during coitus, exacerbate 

LBP, which results in a reduced frequency of sexual activity. 

2.1.3 Self-reported most and least comfortable coital positions 

In current literature, self-reports on the most and least painful coital positions show similar trends among 

males and females. In Maigne and Chatellier‟s (2001) questionnaire-based study that assessed the sexual 

activity of patients with LBP compared to a control group, males and females were asked to report on the 

most and least painful coital positions. Both males and females reported the prone position as the most 

painful coital position (59% male, 48% female) (Maigne & Chatellier 2001); only six percent of females 

and no males reported prone as the least painful coital position (Maigne & Chatellier 2001). Agreement 

was also found between genders for the least painful coital positions; more males and females reported 

supine as the least painful (78% and 58%, respectively) than most painful (3% and 23%, respectively) 

coital position followed by side-lying (22% of males and 26% of female report least painful versus 16% 

of males and 19% of females report most painful) (Maigne & Chatellier 2001). An equal number of 

females (10%) reported the „squatting over the partner‟ coital position to be the most and least painful 

(Maigne & Chatellier 2001). No female respondents reported „no painful position‟, but 22 percent of the 

males did (Maigne & Chatellier 2001). 

Sjögren and Fugl-Meyer‟s (1981) structured interviews of males and female with chronic LBP revealed 

similar trends between genders: males employed the prone position 26 percent less after the onset of 

chronic LBP followed by side-lying (9% less), „other‟ (6% less), and did not report a change in 

employment of the supine position, which implies that prone was the most painful and supine was the 

least painful coital position. Females reported employing the side-lying position 12 percent less after the 

onset of chronic LBP followed by supine and prone positions (8% less), and „other‟ (4% less). 

A biomechanical analysis of movements and postures during basic coital positions would likely help to 

rationalize these reports. Although a biomechanical analysis of sexual positions has not been conducted 
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(White & Panjabi 1990), Osborne and Maruta (1980) and White and Panjabi (1990) have employed a 

basic biomechanical rationale to provide recommendations to those suffering from low back pain and/or 

injury of coital positions that would put as little strain on the back as possible. Both authors deduced that 

a side-lying sexual position (assumed by both partners) would be the ideal basic position when 

experiencing LBP (Osborne & Maruta 1980; White & Panjabi 1990). 

2.1.4 Limitations of the qualitative research on sexual activity and low back pain and/or 

injury 

The findings of the above qualitative studies are limited in their interpretation due to the lack of 

recognition that LBP is not a homogeneous disorder. For example, an extension-intolerant LBP patient 

(e.g., facet joint injury) may find a prone coital position very painful whereas a flexion-intolerant patient 

(e.g., disc herniation injury) may find the same prone coital position the most comfortable and a motion-

intolerant patient may find all coital positions painful. Mechanical factors contributing to LBP during 

coital movements and postures will vary depending on the individual‟s low back disorder. The 

assumption of generic LBP is limited in directing discussion of the mechanical factors contributing to 

LBP during coital movements and postures. 

2.2 Biomechanical rationale for subjective findings 

2.2.1 Magnetic resonance imaging (MRI) of coitus 

The anatomy of sexual intercourse has been studied using magnetic resonance imaging (MRI) in the 

reverse missionary position (i.e., front-entry, male lying supine and female on top) (Faix et al. 2001; 

Schultz et al. 1999), missionary position (i.e., front-entry, female lying supine and male on top) and rear-

entry position (i.e., rear-entry, female lying prone with buttocks slightly turned upward and male on top) 

(Faix et al. 2002). Although the focus of these studies was not on the vertebral bodies or intervertebral 

discs of the lumbar spine, midsagittal MRI images presented in consecutive order (New Scientist [updated 

2009]) show the inherent repetitive flexion-extension movement of coitus (Fig. 2 is meant to orient the 

reader and Fig. 3 is intended to show the flexion-extension motion during one penetration cycle of coitus). 
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Fig. 2. Midsagittal MRI image of the anatomy of sexual intercourse. 
(Schutlz et al. 1999). The following abbreviation key is meant to orient the reader: P = penis, Ur = urethra, Pe = 

perineum, U = uterus, S = symphysis, B = bladder, I = intestine, L5 = lumbar, Sc = scrotum 

    

Fig. 3. Midsagittal MRI image of the anatomy of sexual intercourse at the beginning (a) and end (b) of the 

penetration cycle. 
(New Scientist [updated 2009]). Note the white line, which roughly estimates lumbar spine curvature at the 

beginning (more extended) and end (more flexed) of the penetration cycle. 

For this reason, the following discussion will focus on flexion-extension movement and flexed and 

extended postures. 

a b 
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2.2.2 Biomechanical response and failure mechanics of lumbar spine motion segments 

2.2.2.1 Movements and postures 

The biomechanical response and failure mechanics of lumbar spine motion segments during flexion and 

extension support the findings from the qualitative research on sexual activity of people with low back 

pain and/or injury that decreased frequency of coitus is primarily attributed to an increase in pain during 

coital postures and movements. 

Highly repetitive lumbar spine flexion and extension – motions inherent to coitus – has been shown to 

consistently produce herniation in non-degenerated, controlled porcine spine motion segments, with 

relatively low magnitude compressive joint forces (i.e., 867 and 1472 N) (Callaghan & McGill 2001). 

Although these failure mechanics were reported in porcine spine motion segments, Fennell and colleagues 

(1996) found that the nucleus tends to migrate within the disc in the same manner that it migrates in 

cadaveric specimens in their investigation of the migration of the nucleus pulposus within the 

intervertebral disc during flexion and extension of the lumbar spine in vivo; during flexion, the nucleus 

tends to migrate posteriorly and during extension it tends to migrate anteriorly and the extent of this 

migration is correlated with the flexion-extension angle (Fennell at al. 1996). The effects of these 

migration patterns during flexion and extension on nerve root compression in human cadaveric specimens 

induced with disc herniations were reported by Schnebel and colleagues (1989). Flexion of the lumbar 

spine increased and extension decreased the compressive force on the fifth lumbar nerve root (Schnebel et 

al. 1989). 

Furthermore, an investigation of the effect of posture (i.e., flexed versus neutral) on the compressive 

strength and site of failure in the spine revealed that both ultimate compressive strength and yield point 

were reduced when loading to failure was performed in a flexed versus neutral posture (Gunning et al. 

2001; Yingling & McGill 1999); full flexion reduces the ability of the spine to bear compressive load and 

the way in which the tissues of the spine fail (Gunning et al. 2001). 

2.3 Summary 

Considering that a reduction in frequency of coitus has been shown to be common among people with 

LBP and primarily attributable to mechanical factors, a biomechanical analysis of coitus is pertinent. A 

quantitative study describing and comparing the 3D movement and posture characteristics and muscle 

activation patterns of the lumbar spine and hips in coital positions will contribute to the understanding of 

the fundamental lumbar spine and hip biomechanics of coitus. 

This biomechanical analysis may also be useful in a clinical setting. Many health care practitioners 

(HCPs), such as physiotherapists, feel uncomfortable discussing their client‟s sexual needs (Pynor et al. 

2005) or do not address them at all. Any recommendations that HCPs do currently provide are based on 

conjectures, clinical experience (Rubin 1970), or popular media resources (see Hebert 1987 and White 

1990 for examples). Their recommendations cannot be qualified with empirical data because, to date, a 

quantitative analysis of coitus has not been conducted (White & Panjabi 1990). Providing HCPs with 

insight into the lumbar spine and hip biomechanics of coitus will qualify their recommendations to 

patients with LBP on modifying their sexual activity with empirical data. With a better understanding of 
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the biomechanics of coitus, coital movements and postures can be appropriately modified for a person 

with LBP, which would reduce their likelihood of exacerbating their injury, improve their likelihood of 

maintaining frequency of sexual activity and sexual relationships, and consequently improve their quality 

of life and health. 
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Chapter 3 

Methodology 

The data collections were conducted in the Spine Biomechanics Laboratory (BMH 1407/1408) at the 

University of Waterloo. The duration of each data collection ranged from approximately two and one half 

to four hours. After set up was complete, participants engaged in simulated and real coitus in five pre-

selected coital positions (presented in a random order) while lumbar spine and hip kinematics and muscle 

activity were simultaneously recorded. All subject recruitment and data collection procedures were 

performed in accordance with University of Waterloo’s Office of Research Ethics guidelines. 

3.1 Participants 

Ten healthy males (29.3 ± 6.9 years, 176.5 ± 8.6 centimeters, 84.9 ± 14.5 kilograms) and ten healthy 

females (29.8 ± 8.0 years, 164.9 ± 3.0 centimeters, 64.2 ± 7.2 kilograms) were included for analysis in 

this study. These couples had approximately 4.7 ± 3.9 years of sexual experience with each other. 

3.1.1 Inclusion criteria 

Couples were considered for inclusion in this study if they were heterosexually-oriented, aged 23 to 50, 

and in a committed relationship with a minimum of one year of sexual experience with each other. The 

selected age range was based on the most „at-risk‟ age group for lumbar spine intervertebral disc 

herniations – one of the most common low back injuries and causes of LBP. Furthermore, according to 

the directive of the Office of Research Ethics, undergraduate-aged adults were not included in this study. 

The inclusion of couples in a committed relationship with a minimum one-year history of sexual 

experience with each other was to ensure that each participant felt as comfortable, and able to move as 

naturally, as possible during the data collection. 

3.1.2 Exclusion Criteria 

Couples were not considered for participation in this study if any of the following criterion were satisfied: 

(1) heart condition that was treated in the past or currently being treated; (2) a history of spinal, 

abdominal, or hip surgery; (3) a pre-existing disabling back or hip condition; (4) current and relevant 

musculoskeletal concerns; (5) sexual dysfunctions that would prevent engaging in coitus for the duration 

of the data collection (e.g., erectile dysfunction and premature ejaculation would meet this exclusion 

criterion, whereas orgasmic dysfunction may still be included in this study); (6) allergies to ethanol, skin 

adhesives, conductance gels, or silver-based products; (7) current University of Waterloo graduate student 

in the Department of Kinesiology; or (8) undergraduate student at the University of Waterloo in any 

department. 

3.1.3 Pre-study Interview 

If couples met the inclusion criteria for this study, they were invited to the laboratory for a pre-study 

interview to confirm eligibility. If they were unable to visit the laboratory prior to the data collection, the 

pre-study interview was conducted via telephone or videoconference. The purpose of this interview was 
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to help the researcher assess each potential participant‟s eligibility for inclusion in this study, comfort 

level with study participation, and thoughts and feelings regarding the possible scenario where they or 

their partner no longer wished to participate and withdrew consent during the data collection – how they 

would convey this desire and how they think they or their partner and the researcher would respond. This 

and other scenarios were addressed with direct questions within the pre-screening interview questionnaire 

as well as other questions that probed for possible power imbalances in the potential participant‟s 

relationship with their partner. The pre-study interview questionnaire was developed in collaboration with 

a local expert in power imbalances in relationships and adapted from some of their previous work – this 

consultant is a former lecturer at Wilfred Laurier University, a clinician in private practice for clients with 

sexuality issues and other psychological problems, and an educator and advocate for recognition of wife 

abuse, power imbalances in relationships and feminist approaches to counseling. 

The impression of a power imbalance in a relationship was not formed based off of a single response to 

a question during the interview, rather if a pattern of responses emerged. For example, if potential 

participants responded to Question 3 of the pre-screening interview (see Appendix A) (i.e., “When you 

and your partner disagree, how do you resolve the conflict?”) by saying that they or their partner yell or 

shout, call names, say unkind things, etc. when they resolve a conflict, the researcher would recognize 

this as a less desirable response and would evaluate this response in conjunction with the other pre-

screening interview question responses to detect a possible power imbalance in the relationship. If all 

other responses did not support the notion that the relationship had a power imbalance, the potential 

participant and their partner would still be considered for participation in the study. If, however, other 

question responses, such as Question 6 (i.e., “If, in the middle of the study, you decided that you no 

longer wanted to participate and wanted to withdraw your consent, would you let your partner know? 

How would you convey this? You know your partner very well. What do you think their response would 

be? What do you think the researcher‟s response would be?”) or Question 7 (i.e., “If the roles were 

reverses and it was your partner that no longer wanted to participate and wanted to withdraw consent, 

how would you respond?”) were also problematic responses, then the potential participant and their 

partner would be excluded from the study. Potentially problematic responses to Question 6 would 

include, the potential participant stating that they would not feel comfortable letting their partner know 

that they wanted to withdraw consent and/or feeling that their partner‟s and/or the researcher‟s response 

would be unsupportive or not accepting of their wish to withdraw consent. Similarly, a less desirable 

response to Question 7 would include, the potential participant stating that they would be unsupportive or 

not accepting of their partner‟s desire to withdraw consent. In other words, in most cases, the researcher‟s 

determination of whether a couple should be included in the study relied more on a consistent pattern of 

problematic responses to the prescreening interview questions rather than one single less-desirable 

response.  

Based on each potential participant‟s responses during the pre-screening interview, the researcher 

determined whether the couple was eligible to participate in the study. Potential participants that 

completed the pre-study visit and pre-screening interview were excluded from this study if (1) they 

disclosed that they were uncomfortable participating, would have difficulty conveying a desire to 

withdraw consent to their partner and/or the researcher, and/or difficulty accepting their partner‟s desire 

to withdraw consent from the study; and/or (2) their interview responses suggested a power imbalance in 
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their relationship with their partner. No couples were excluded from this study based on their responses 

during the pre-study interview. 

The pre-study interview also gave the couples a chance to see the laboratory set up ahead of time, 

review the consent form verbally with the researcher, and ask any pertinent questions.  

Fig. 4 outlines the recruitment and screening process as well as accounts for included and excluded 

participants in this study. 

 

Fig. 4. Summary of recruitment and screening process and included and excluded participants in this 

study. The final sample size included for data analysis was ten. 

Participant recruitment 

Inclusion criteria 

- Heterosexual 

- 23 to 50 years 

- Committed 

relationship with ≥ 

1 year of sexual 

experience together 

Exclusion criteria 

- Heart condition that was treated in the past or currently being treated 

- History of spinal, abdominal, or hip surgery 

- Pre-existing disabling back or hip condition 

- Current and relevant musculoskeletal concerns 

- Sexual dysfunctions that would prevent engaging in coitus for the duration of 

the data collection 

- Allergies to rubbing alcohol, skin adhesives, conductance gels, or silver-based 

products 

- Current University of Waterloo graduate student in the Department of 

Kinesiology 

- Undergraduate student at the University of Waterloo in any department 

Participants included in 

data collection  

(n = 11) 

Excluded form data collection (n = 2) 

- S03ab completed pre-study interview, but withdrew consent before the data 

collection 

- S011ab had an unrelated adverse event during set up for the data collection 

Participants included in 

data analysis  

(n = 10) 

Excluded from data analysis (n = 1) 

- S04ab data unrecoverable due to equipment malfunction 

Participants included 

after pre-study 

interview (n = 13) 
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3.2 Experimental design 

This study was a repeated measured design, where the independent variables, coital position and 

condition, were varied five (i.e., QUADRUPED1, QUADRUPED2, MISSIONARY1, MISSIONARY2, 

and SIDELYING) and two (i.e., real and simulated) times, respectively. Recruited participants engaged in 

coitus on a coil-spring mattress, box spring, and metal frame in five pre-selected positions (presented in 

random order) for 20 seconds per positions. All coital position trials were performed on the same day. 

Three-dimensional (3D) lumbar spine and hip kinematic data and electromyography (EMG) signals were 

continuously collected for the duration of each trial. The kinematic data and EMG signals were collected 

simultaneously for both participants. 

The dependent variables in this study were the 3D lumbar spine (i.e., flexion/extension, lateral flexion, 

and axial rotation) and hip (i.e., flexion/extension, internal/external rotation, and abduction/adduction) 

angular displacements and EMG signal amplitudes of selected trunk, hip, and thigh muscles. 

3.3 Laboratory preparation 

Prior to the couple‟s arrival on each collection day, some necessary procedures were performed to prepare 

the laboratory for the data collection. For example, drift in the electronic equipment is an inherent error. 

To minimize the occurrence of drift over the duration of the data collection, the electronic equipment was 

turned on to warm up a minimum of one hour prior to the start of the data collection. 

3.3.1 Calibration of the optoelectronic motion capture system 

Prior to each data collection, eight motion tracking cameras (Vicon MX20+, Vicon Motion Systems, 

Oxford, UK) were aimed, focused, and calibrated. A five-marker calibration wand (240 millimeters; 

Vicon Motion Systems, Oxford, UK) that is instrumented with five individual reflective markers (Vicon 

MX, 12.5 millimeters in diameter, Vicon Motion Systems, Oxford, UK) was placed in the approximate 

center of the motion capture collection volume. Each of the eight cameras were aimed at, and focused on, 

the calibration wand to ensure that all reflective markers in the collection volume were visible to the 

cameras. At this time, any unwanted reflective materials seen by the cameras were covered in the 

collection volume or „masked‟ in the motion capture software. 

A dynamic calibration was then performed by waving the calibration wand through the collection 

volume, which enabled each camera to record the wand position and the motion capture system to define 

the collection volume and the relative orientation of the cameras. The dynamic calibration was deemed 

acceptable when the root mean square (RMS) error between the recorded and real locations of the 

reflective markers was less than 0.20 millimeters for each camera. 

Finally, the origin of the collection volume was set by placing the calibration wand on the ground 

within the defined collection volume and positioning the wand according to the 3D right-handed 

(Cartesian) coordinate system. 

3.4 Instrumentation and experimental protocol 

A summary of the experimental protocol is found below in Fig. 5 and described in detail throughout this 

section. 



 

 13 

 

 

Fig. 5. Summary of the experimental protocol. 

If the couple was unable to sign the information consent letter (ICL) during the pre-study interview or 

requested additional time to review the ICL, it was reviewed again upon their arrival to the laboratory and 

informed consent was obtained from each participant. 

Female (n = 10) Male (n = 10) 

Information consent letter review and signature 

Anthropometric measurements 

Surface electrode placement 

Maximum voluntary contraction trials 

Electromagnetic sensor placement 

Individual reflective marker and cluster marker placement 

Calibration trials 

QUADRUPED1 QUADRUPED2 MISSIONARY1 MISSIONARY2 SIDELYING 

Range of motion trials 

Removal of instrumentation 

QUADRUPED1 QUADRUPED2 MISSIONARY1 MISSIONARY2 SIDELYING 

SIMULATED 

REAL 
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3.4.1 Anthropometric measurements 

Each participant‟s self-reported age was recorded and anthropometric measurements (Table 1) were 

performed using calipers and a standard weight scale (with height rod). These were used for determining 

segmental properties. Whenever possible, the same research assistant collected these measurements for 

consistency. 

Table 1. Summary of anthropometric measurements taken from each male and female participant. 

Anthropometric 

Measure 

Anatomical Landmarks Instrumentation 

Height Ground to top of head when standing upright Standing weight scale with height rod 

Weight  Standing weight scale with height rod 

Chest depth Anterior/posterior length of T4 dermatome (at the 

nipple line) 

Calipers 

Pelvis width Right to left greater trochanter Calipers 

Pelvis depth Right ASIS to right PSIS Calipers 

3.4.2 Electromyography (EMG) signal 

3.4.2.1 Electrode placement preparation 

EMG signals of each participant were measured unilaterally (right side) from the following six trunk 

muscles and one hip and thigh muscle: rectus abdominus (RA), external oblique (EO), internal oblique 

(IO), thoracic erector spinae (UES, longissimus thoracis and iliocostalis lumborum pars thoracis), lumbar 

erector spinae (LES, longissimus thoracis and iliocostalis lumborum pars lumborum), latissimus dorsi 

(LD), gluteus maximus (GMax), and biceps femoris (BF), respectively. To measure the EMG signal of 

these selected muscles with the least electrode-skin interface impedance (Winter 2009), the skin over the 

muscles where surface electrodes were placed was shaved with a new disposable razor, rubbed with an 

abrasive skin gel (Nuprep®, Weaver and Company, Cambridge, ON, CAN), and cleaned using rubbing 

alcohol. Pre-gelled, disposable, monopolar Ag-AgCl disc-shaped surface electrodes (30 millimeter 

diameter, Ambu® Blue Sensor N, Ballerup, Denmark) were then placed on the skin over each muscle of 

interest. Two electrodes (30 millimeter interelectrode distance) were placed at each muscle site, so that 

the difference in potential between the electrodes could be recorded (i.e., a bipolar configuration) (Winter 

2009). Non-woven, adhesive fabric (Hypafix™, Smith & Nephew, Mississauga, ON, CAN) and adhesive 

tape (3M, St. Paul, MN, USA) were used for the fixation of the electrodes and the cables to the skin, 

respectively. This fixation ensured that the electrodes were properly secured to the skin, movement was 

not hindered, and cables were not pulling the electrodes. 

Electrode placements and orientations on the skin over the selected muscles of the trunk, hip, and thigh 

were consistent with recommendations from the Surface Electromyography for the Non-Invasive 

Assessment of Muscles (SENIAM) project and well-established surface EMG electrode placements for 

the abdominal wall (McGill et al. 1996) – these electrode arrangements have been shown to best represent 

the differential muscle activity patterns and minimize signal cross-talk between electrode pairs during 

bending and twisting tasks (Lafortune et al. 1988 cited in McGill 1992). Specific surface EMG electrode 
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placement locations and orientations for this research project are outlined in Table 2 and illustrated in Fig. 

6. Reference electrodes were placed on the right acromion of each participant. 

Table 2. Summary of electrode placement locations and orientations for male and female participants. 

Signal 

Channel 

Name 

Muscle (8) Surface Electrode Placement Description 

RA rectus abdominus 3 cm lateral to the umbilicus in the vertical direction (McGill 

et al. 1996) 

EO external oblique Approximately 15 cm lateral to the umbilicus and at the 

transverse level of the umbilicus (McGill et al. 1996) 

IO internal oblique Approximately 50 percent on the line between the ASIS and 

the midline, just superior to the inguinal ligament (Axler & 

McGill 1997) 

LES lumbar erector spinae (longissimus 

thoracis and iliocostalis lumborum pars 

lumborum) 

3 cm lateral to the third lumbar vertebra spinous process in 

the vertical direction (McGill et al. 1996) 

UES thoracic erector spinae (longissimus 

thoracis and iliocostalis lumborum pars 

thoracis) 

5 cm lateral to the ninth thoracic vertebra spinous process in 

the vertical direction (McGill 1992) 

LD latissimus dorsi Lateral to the ninth thoracic vertebra spinous process over the 

muscle belly (McGill 1992) 

GMax gluteus maximus Approximately 50 percent on the line between the sacral 

vertebrae and the greater trochanter in the direction of the line 

from the PSIS to the middle of the posterior aspect of the 

thigh (SENIAM [updated 1999]) 

BF biceps femoris Approximately 50 percent on the line between the ischial 

tuberosity and the lateral epicondyle of the tibia in the 

direction of the line between the ischial tuberosity and the 

lateral epicondyle of the tibia (SENIAM [updated 1999]) 

Note: All electrode placement descriptions are referring to the right side only. 
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Fig. 6. Illustration of electrode placement locations for male and female participants. 
(Primal Pictures Interactive Anatomy 2009). Each open circle represents two surface electrodes and each double-

headed arrow represents the orientation of the electrode pair. 

3.4.2.2 Maximum voluntary contraction (MVC) trials 

Five maximum voluntary contraction (MVC) tasks were performed against manual isometric resistance 

(consistent with SENIAM [updated 1999] recommendations). The MVC trials were performed with the 

intention of producing the largest amplitudes of myoelectric activity from the selected trunk, hip, and 

thigh muscles of each participant to provide a basis for normalization of these EMG signals. MVC trials 

were repeated three times with a minimum rest period of two minutes between the contractions (De Luca 

1997). Two quiet-lying trials (one with the participant supine and one prone) were then performed – the 

raw EMG signal amplitude data from these trials was used to remove the zero-bias from each EMG signal 

channel.  

UES 

LD 

LES 

GMax 

BF 

RA 

EO 

IO 
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The spine extensors (i.e., UES and LES on the right side) were normalized to the maximal EMG 

activity recorded while the subjects were lying prone on a table with their torso (ASIS and above) 

cantilevered over the edge of the table (i.e., Biering-Sorenson position). The feet were secured with 

manual resistance by the researcher. While in this position, subjects started with a slightly-flexed lumbar 

region and then slowly extended the lumbar spine against a resistance applied on the upper back by the 

research assistant (McGill et al. 1996). 

Maximal abdominal muscle (i.e., RA, EO, and IO on the right side) activation was obtained with the 

subject in a seated bent-knee „sit-up‟ posture with the trunk reclined to approximately 30 degrees with the 

horizontal and the feet restrained by manual resistance from the researcher. The subject‟s hands were 

placed on opposite shoulders while the research assistant provided matched resistance to the shoulders 

from behind. The instructions for the exertions were to perform a sequence of maximal isometric efforts 

in trunk flexion, right and left lateral bend, and right and left axial rotation. 

GMax (on the right side) was normalized to the maximal EMG activity recorded while the subject was 

laying prone on a table and lifting their entire right leg against matched resistance provided by the 

research assistant (SENIAM [updated 1999]). 

Maximum activation of BF (on the right side) was obtained by asking the subject to lie prone with their 

thigh resting on the table and their knee flexed (to less than 90 degrees) with the thigh in slight lateral 

rotation and the lower leg in slight lateral rotation with respect to the thigh. The research assistant then 

applied a matched resistance against the right leg, proximal to the ankle in the direction of knee extension 

as the subject attempted to flex their right knee and extend their right hip (SENIAM [updated 1999]). 

Maximal LD (on the right side) activation was obtained by having the subject in a standing posture 

with their right shoulder abducted, flexed, and horizontally abducted to approximately 45 degrees and 

their elbow flexed to 90 degrees. As the subject attempted to adduct their shoulder, the research assistant 

provided matched resistance in the opposite direction. 

3.4.3 Kinematics 

To quantitatively measure the 3D lumbar spine and hip kinematics, the thorax, pelvis, and right lower leg 

were considered necessary to monitor. Thorax and pelvis motion were tracked with their respective 

tracking clusters; however thigh motion was tracked with its adjacent segments (i.e., pelvis and lower 

leg), since this has been shown to minimize motion artifact (Frost et al. 2012). Since the researcher was 

monitoring the data collection from the perspective of the virtual collection space on the computer 

monitors, the head, right upper arm, forearm, hand, thigh, and foot were also monitored to ensure that 

couples were in the correct positions throughout the data collection. 

An optoelectronic system was used to monitor all segments with the exception of the female‟s thorax – 

an electromagnetic system was used for this. To improve the accuracy of kinematic data measurements 

and avoid aliasing where erroneous frequencies that were not present in the original signal would be 

produced (Winter & Patla 1997), captured kinematic data was oversampled at rates of 30 and 60 hertz (for 

the electromagnetic and optoelectronic motion capture systems, respectively), which is well over at least 

twice as high as the highest frequency present in human movement signal (Winter & Patla 1997); thus, in 

accordance with the Sampling Theorem. The optoelectronic and electromagnetic motion capture systems 

were synchronized using an external trigger box. 
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3.4.3.1 Optoelectronic motion capture system 

3D kinematic data of all segments of the male and female participants (with the exception of the female‟s 

thorax) was monitored using eight motion tracking infrared cameras (Vicon MX20+, Vicon Motion 

Systems, Oxford, UK). This Vicon motion capture system has a reported resolution of two megapixels 

(1600 x 1280 pixels) (Vicon Motion Systems). 

The cameras monitored the location of 20 individual (i.e., calibration markers) spherical reflective 

markers (Vicon MX, 12.5 millimeters in diameter, Vicon Motion Systems, Oxford, UK) and nine rigid 

marker clusters (i.e., tracking clusters) each instrumented with three to five non-colinear individual 

spherical reflective markers. Following anthropometric measurements, the markers and clusters were 

secured to each male and female participant‟s skin with adhesive tape over anatomical landmarks outlines 

in Table 3 and illustrated in Fig. 7. 

Table 3. Summary of marker placement locations for male and female participants. 

Marker Name Anatomical Landmark Marker Placement Description 

rEAR
*
/lEAR

*
 Right and left earlobe  

rAC
*
/lAC

*
 Right and left acromial process Cranio-lateral aspect 

rIC
*
/lIC

*
 Right and left iliac crest Most lateral and caudal on the ilium 

rGT
*
/lGT

*
 Right and left greater trochanter  

rMFE
*
/rLFE

*
 Right medial and lateral femoral epicondyle Most caudal point 

rMM
*
/rLM

*
 Right medial and lateral malleolus  

rMT1
*
/rMT5

*
 Right first and fifth metatarsal  

rME
*
/rLE

*
 Right medial and lateral epicondyle  

rMWr
*
/rLWr

*
 Right head of ulna / right styloid process of radius  

rMC1
*
/rMC5

*
 Right first and fifth metacarpal  

HEAD
+
 Skull Lateral aspect (right side) above the right 

ear 

rARM
+
 Right upper arm Latero-proximal 

rFA
+
 Right forearm Medial 

rHAN
+
 Over the metacarpal bones of the right hand  

T12
+
 Spinous process of the twelfth thoracic vertebra N/A for female participants 

S1
+
 Sacrum For female participants, lateral aspect of 

the pelvis (right side) 

rTHIGH
+
 Shaft of the right femur Latero-distal (Leardini et al. 1999) 

rSHANK
+
 Right lower leg Latero-distal 

rFOOT
+
 Over the metatarsal bones of the right foot Latero-distal 

*
 represents individual calibration markers and 

+ 
represents tracking clusters. 
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Fig. 7. Illustration of reflective marker and electromagnetic sensor placement locations for male and 

female participants. 
(Primal Pictures Interactive Anatomy 2009). Open circles – calibration markers, filled black/white circles – tracking 

clusters used for males and females during the collection, filled blue circles – tracking clusters used for males only, 

filled red rectangles – sensors used for females only. 

Once both male and female participants were instrumented with the calibration markers and tracking 

clusters (indicated in Table 3), a static calibration was performed. Following the static calibration of the 

subject, the calibration markers were removed. The researcher ensured that all markers were visible to at 

least three cameras at all times throughout the data collection. 

3.4.3.2 Electromagnetic motion capture system 

An alternative to using the aforementioned optoelectronic motion capture system to monitor female 

participants‟ 3D lumbar spine kinematic data was necessary because in most of the sexual positions 

chosen for this study; rigid marker clusters on the twelfth thoracic spinous process and the sacrum of the 
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female participant would have been occluded from the cameras. Instead, the female participants‟ 3D 

lumbar spine data was monitored using an electromagnetic motion capture system (3SPACE Isotrak®, 

Polhemus, Vermont, USA). 

The electromagnetic motion capture system is a camera-less 3D human motion measurement system 

that uses a transmitter (i.e., „source‟), which generates a varying electromagnetic field, and a receiver (i.e., 

„sensor‟), which senses the electromagnetic field; the position and orientation of the receiver relative to 

the transmitter is recorded (McGill et al. 1997). This system‟s known methodological considerations 

include restricting metallic objects in the electromagnetic field due to a possible effect on the accuracy of 

the system (McGill et al. 1997). Despite the use of a coil-spring mattress in this study, pilot testing did not 

reveal an issue with the accuracy of the 3SPACE device. This is assumed to be due to the present metal 

being outside of the sensitive zone between the transmitter and the sensor. 

To measure the female lumbar spine kinematics, the „source‟ was secured to the lateral aspect (right 

side) of the pelvis with a sacrum belt, one sensor was placed on the twelfth thoracic spinous process and 

secured underneath fabric hook-and-loop-fastener elastic straps and the other sensor was embedded in the 

sacrum belt over the sacrum. The second sensor was placed there as a „dummy‟ sensor, so that the 

electromagnetic motion capture system would operate optimally. 

When the female was in the supine position during MISSIONARY1 and MISSIONARY 2 (see below 

for description of coital positions) the sensors were pressed between the mattress and the female subject. 

Pilot testing and feedback from female study participants confirmed that lying supine on the sensors did 

not add discomfort to how they were already feeling from the fabric hook-and-fastener elastic straps and 

tracking clusters firmly secured to their skin nor was there additional noise introduced in the outputs from 

the electromagnetic motion capture system. Given the small dimensions of the sensors (Fig. 8), care that 

was taken to properly secure the sensors to the female participant‟s skin, and the soft mattress used to 

conduct this study, potential participant discomfort, compression of sensors, and impact on measures was 

prevented as much as possible and resulted in outputs of comparable quality to the other coital positions 

studied. 

 

Fig. 8. Physical characteristics of the receiver (drawn to scale).  

3.4.4 Coital positions 

Participants were instructed to move as naturally as possible as they engaged in coitus in five pre-selected 

positions and simulated and real conditions (see below). The order that participants performed the 

positions in was randomized. Participants were asked to engage in each sexual position for 20 seconds in 

a simulated condition (i.e., clothed and mimicking coital movements in each position) followed by the 
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same sexual positions for 20 seconds in a real condition. The cues given for each position (outlined 

below) were identical for simulated and real conditions. One penetration cycle was defined by a kinematic 

threshold indicator – maximum hip flexion achieved by the male participant. 

Trial duration of 20 seconds was deemed appropriate based on the literature on ejaculation latency time 

(ELT) in men with normal sexual function. The average ELT of these men during sexual intercourse 

ranged from 5.6 (SD ± 0.9) minutes (Rowland et al. 2000) to 8.1 (SD ± 7.1) minutes (Waldinger et al. 

2005) and 9.15 (SD ± 7.17) minutes (Patrick et al. 2005). The reported median and range of ELT during 

intercourse in men with normal sexual function ranged from 6.5 minutes (18 to 30 years of age 

[Waldinger et al. 2005]) to 7.3 minutes (Patrick et al. 2005) and 8.25 and 1.32 to 18.31 minutes (Vanden 

Broucke et al. 2007), respectively. Even with sufficiently lower trial times than the shortest reported ELT 

during intercourse, participants were encouraged to take as many breaks as needed to prevent ejaculation 

from occurring during the data collection. 

Five sexual positions (shown in Fig. 9, Fig. 10, and Fig. 11) were chosen for this study based on the 

findings of previous literature and a biomechanical rationale. Since the main objective of this study was to 

describe coital movement, cues for coital posture and movement were intentionally minimal, yet 

sufficient to ensure that the same coital positions were being performed across couples. In addition to 

verbal cueing provided to participants before the data collection began (outlined below for each coital 

position), illustrations of each position (Fig. 9a, Fig. 9b, Fig. 10a, Fig. 10b, and Fig. 11a) were affixed to 

the laboratory wall in their randomized order to remind participants of the order in which to perform the 

coital positions and variations throughout the data collection. Participants were reminded to use the 

illustrations only as a guide to order, but to rely on the verbal cues from the researcher (outlined below) to 

conduct each coital position. 

QUADRUPED was included in this biomechanical analysis because the female participant‟s position is 

comparable to that of a „cat/camel‟ motion starting position – a position reported to strain the lumbar 

spine the least while conducting lumbar spine active range of motion (aROM) (McGill 2007) – and the 

male participant‟s position allows for a great range of hip motion, which may reduce the range of motion 

(ROM) of the lumbar spine. Based on feedback from pilot participants, two variations of QUADRUPED 

were included in this study: QUADRUPED1 where the female is supporting her upper body with her 

elbows and QUADRUPED2 where the female is supporting her upper body with her hands. For both 

simulated and real conditions, female participants were cued to have their knees, shanks, and elbows or 

hands (depending on the variation of QUADRUPED being performed) remain in contact with the 

mattress and males were cued to have their knees and shanks in contact with the mattress. 
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Fig. 9. QUADRUPED – rear-entry, female quadruped, male kneeling behind. 
The first variation of QUADRUPED, where the female is supporting her upper body with her elbows is illustrated 

(Men‟s Health
b
 ) here (a) and shown as the researcher would see it during data collection in the optoelectronic 

motion capture system software (c). The second variation of QUADRUPED, where the female is supporting her 

upper body with her hands is also illustrated (Men‟s Health
a
) here (b) and shown in the optoelectronic motion 

capture system software (d). For both variations of QUADRUPED, the male‟s posture does not change. He remains 

kneeling behind the female. Note that the illustrations in (a) and (b) do not necessarily represent male or female 

spine and hip posture found in this study – the illustrations are an artistic interpretation of the variations of 

QUADRUPED that provide the reader with a visual representation of the verbal description given in this document. 

MISSIONARY (i.e., front-entry, female supine, male prone on top) has been reported as the most 

painful coital positions for males and least painful coital position for females, whereas SIDELYING (i.e., 

rear-entry, female side-lying, male side-lying behind) has been reported as the second least painful coital 

position for both males and females (Maigne & Chatellier 2001; Sjögren & Fugl-Meyer 1981). Based on 

a basic biomechanical rationale, SIDELYING has been recommended as a coital position that may place 

the lumbar spine under the least amount of strain (Osborne & Maruta 1980; White & Panjabi 1990). 

Based on feedback from pilot participants, two variations of MISSIONARY were included in this study: 

MISSIONARY1 where the male is supporting his upper body with his hands and the female is not flexing 

her hips or knees and MISSIONARY2 where the male is supporting his upper body with his elbows and 

the female is flexing her hips and knees. For both simulated and real conditions of MISSIONARY, 

female participants were cued to lay supine with their hips and knees either flexed or extended (depending 

on the variation of MISSIONARY being performed) with feet remaining in contact with the mattress and 

males were cued to have their knees and shanks in contact with the mattress as well as their elbows or 

hands (depending on the variation of MISSIONARY being performed). For both simulated and real 

conditions of SIDELYING, both male and female participants were cued to lie on their left sides. 

c d 

a b 
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Fig. 10. MISSIONARY – front-entry, female supine, male prone on top. 
The first variation of MISSIONARY, where the male is supporting his upper body with his hands and the female 

does not have her hips or knees flexed is illustrated (Chelsey) here (a) and shown in the optoelectronic motion 

capture system software (c). The second variation of MISSIONARY, where the male is supporting his upper body 

with his elbows and the female has her hips and knees flexed is also illustrated (Men‟s Health
c
) here (b) and shown 

in the optoelectronic motion capture system software (d). Note that the illustrations in (a) and (b) do not necessarily 

represent male or female spine and hip posture found in this study – the illustrations are an artistic interpretation of 

the variations of MISSIONARY that provide the reader with a visual representation of the verbal description given 

in this document. 

  

Fig. 11. SIDELYING – rear-entry, female side-lying, male side-lying behind. 
SIDELYING is illustrated (Men‟s Health

d
) here (a) and shown in the optoelectronic motion capture system software 

(b). Note that the illustrations in (a) and (b) do not necessarily represent male or female spine and hip posture found 

in this study – the illustrations are an artistic interpretation of the variations of SIDELYING that provide the reader 

with a visual representation of the verbal description given in this document. 

c d 

a b 

b 

a 
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3.4.5 Active ROM (aROM) 

Active range of motion (aROM) of the lumbar spine (i.e., flexion/extension, lateral flexion, and axial 

rotation) and hips (i.e., flexion/extension, abduction/adduction, and internal/external rotation) was 

measured using the optoelectronic (i.e., male lumbar spine and hip aROM and female hip aROM) and 

electromagnetic (i.e., female lumbar spine aROM) motion capture systems. Hip aROM was only 

measured on the right hip for both males and females. 

To measure all ranges of lumbar spine motion, the subject was asked to stand in a neutral posture at rest 

and bend forward, extend back, side-bend (to the left and right), and twist (to the left and right) at the 

waist as far as they could. 

To measure all ranges of hip motion, the subject was asked to stand in a neutral posture at rest and flex, 

extend, abduct, and rotate their hip as much as possible. 

3.5 Data Processing 

3.5.1 Electromyography 

To improve the accuracy of EMG amplitude measurements, the raw EMG signal was oversampled at a 

rate of 2160 hertz, which is over the recommended sampling rate (2000 Hz) of four times the highest 

frequency of surface EMG signal (500 Hz) (Durkin & Callaghan 2005; Winter & Patla 1997). 

Raw EMG was filtered using a second-order, band-pass filter with cut-off frequencies of 30 to 500 Hz 

to preserve as much of the biological signal and filter out as much electrocardiographic signal (Drake & 

Callaghan 2006) and noise as possible. 

The filtered EMG data was then amplified with two eight-channel differential amplifiers (common-

mode rejection ratio of 115 d dβ at 60 Hz; input impedance 10 GΩ; Model AMT-8, Bortec Biomedical, 

Calgary, AB, CAN) and set to the same amplification setting (gain = 1000). The differential amplifier 

specifications exceeded recommendations (i.e., common-mode rejection ratio greater than 80 dβ; input 

impedance greater than 100MΩ) when measuring surface EMG (De Luca 1997). The EMG signals were 

then analog-to-digital (A/D) converted (Vicon MX 64-channel A/D interface unit) using a 16-bit 

converter (Vicon MX 20 MX control box) with a ± 2.5 V range. Soft gains were individually set for each 

channel to fill this input range without clipping the signal. The digitized signal was collected on a 

personal computer (Vicon Antec® Intel® Core™ 2 Duo PC) using Vicon Nexus 1.7 software. 

3.5.2 Kinematics 

All raw kinematic data captured with the optoelectronic system was collected with Vicon 1.7 software 

(Vicon Motion Systems, Oxford, UK). This data was stored on a password-protected central processing 

unit and imported to Visual 3D (Version 4; C-Motion Inc., Rockville, MD, USA) for filtering and joint 

angle calculations (see below for higher processing of kinematic data). Regardless of the kinematic data 

collection instrumentation (i.e., optoelectronic or electromagnetic motion capture systems), the same 

processing methods described below were used. 
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Interference from movement artifacts or high frequency noise in the transducer systems may have been 

present in the raw kinematic data that was collected. All undesired harmonics that were not part of the 

human movement being sampled were severely attenuated by employing a digital filter. Since the signal 

power of human movement is typically contained below six hertz (Winter & Patla 1997), all raw 

kinematic data was filtered using a second-order, low-pass Butterworth filter with an upper cutoff 

frequency of six hertz. 

3.5.3 Higher processing 

3.5.3.1 Electromyography 

Higher processing of the EMG signal data was performed using a custom computer program in MATLAB 

software (Version r2009B; The MathWorks Inc., Natick, Massachusetts, USA). The direct current (DC) 

bias was removed from all trials by subtracting the zero bias calculated from the EMG signal amplitudes 

in the quiet-lying trials (supine and prone). 

The filtered EMG signals were then full-wave rectified (FWR) to generate the absolute value of the 

EMG (Winter 2009) and low-pass filtered using a second-order, low-pass Butterworth filter (single-

passed to introduce a phase lag, which represents electromechanical delay between the onset of the motor 

unit action potential and the resultant muscle tension) with a cut-off frequency of 2.5 Hz to produce a 

linear envelope. The linear envelope closely resembled the muscle twitch tension curves of the trunk 

musculature (Winter 2009) by selecting a 2.5 Hz cut-off frequency that matched the 2.5 Hz twitch 

response of the trunk musculature (Brereton & McGill 1998). 

The EMG signals were then normalized to the maximum EMG signal amplitudes achieved at each 

muscle site during the MVCs and expressed as a percentage of these maximums. Finally, the normalized 

EMG signals were down-sampled to 30 Hz to enable the synchronization of the kinematic and EMG data. 

The down-sampled data was only used for analysis when the time history of kinematic and EMG data 

needed to remain synchronized. 

The normalized EMG signals for each muscle site were used to calculate the peak EMG values and the 

amplitude probability distribution function (APDF) per position for each. APDF was calculated to gain 

insight into the distribution of the different levels of muscle contraction achieved while engaging in coitus 

in each of the five positions, since muscle activity was variable over time. Specifically, the amplitude 

probability at a certain level of contraction is the probability of the myoelectric activity being lower than 

or equal to that contraction level during coitus and the APDF determines the range of contraction levels 

achieved (i.e., the maximum, minimum, and median contraction levels) (Hagberg 1979). 

3.5.3.2 Kinematics 

Once the kinematic data had been filtered in Visual 3D, this software was be used to determine 3D 

angular displacement of the lumbar spine and hips. First, models of each segment (i.e., torso, pelvis, and 

right thigh) were created using the anthropometric measurements taken of each subject and the position of 

the motion capture system instrumentation (i.e., calibration markers and tracking clusters) during the 

calibration and data collection trials. Visual 3D estimates joint centers, constructs local coordinate 

systems, determines angular displacements of the joint centers, and calculates Euler angles for rotations of 
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the right thigh relative to the pelvis, the pelvis relative to the lumbar spine, and the lumbar spine relative 

to the GCS and intersegmental angles. Visual 3D calculates the rotations of the thigh relative to the 

pelvis, the pelvis relative to the lumbar spine, and the lumbar spine relative to the GCS by applying an 

appropriate direction cosine matrix of Euler angles to the rotation matrices, specifically the X-Y-Z 

rotation sequence is used. The following direction cosine matrix of Euler angles was used to derive 

relationships that allow for solving Euler angles phi (φ), psi (ψ), and theta (θ) for the rotations of the thigh 

relative to the pelvis, the pelvis relative to the lumbar spine, and the lumbar spine relative to the GCS: 

 

Eq. 1. Direction Cosine Matrix from Euler angles (Stationary Frame to Rotated Frame) – Pitch-Yaw-Roll 

sequence (i, j, k), (X, Y, Z) 

Once the Euler angles were calculated, the data was imported into a custom computer program 

designed using MATLAB software. Due to a small amount of slippage of the sacrum belt on both male 

and female participants, a bias was introduced. It was assumed that the slippage occurred during the first 

simulated trial performed, so the bias calculated in the first 10 frames of active range of motion trial 

conducted at the end of the data collection (when the participant was just quiet-standing) was subtracted 

from all trials to account for this error. The intersegmental angles were used to calculate the average 

minimum (Fig. 12) and maximum (Fig. 12) 3D lumbar spine and hip range of motion (expressed as a 

percentage of each participant‟s full ROM) values, as well as the average amplitude difference between 

the maximum and minimum value in a penetration cycle (Fig. 12) and the amplitude probability 

distribution function (APDF) per position for each participant. 
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Fig. 12. Illustration of penetration cycle identification and average maximum, minimum, and amplitude 

difference calculation. 
Using sample male hip kinematic data (solid blue line) from the sagittal plane of motion, the identification of 

penetration cycles (red, dotted lines within the first five seconds), maximums (red, upside-down triangles within the 

second five seconds), and minimums (red triangles within the third five seconds), and amplitude differences within 

penetration cycles (red, dashed-lined, double-headed arrows within the last 5 seconds) are indicated. Average 

maximum, minimum, and amplitude difference values for any trial were calculated by taking an average of all of the 

maximums, minimums, and amplitude differences identified across all penetration cycles. Averages were used 

because all aforementioned outcome variables fluctuated throughout a trial (as shown in the sample data presented 

here). 

Although APDF is traditionally used for EMG signal amplitude data, it was also calculated using 

kinematic data to gain insight into the distribution of the varying levels of active range of motion 

achieved while engaging in coitus in each of the five positions, since the kinematic data was cyclic in 

nature, but variable over time. Specifically, the amplitude probability at a certain level of 

flexion/extension (expressed as a percentage of the participant‟s full ROM) is the probability of the range 

of flexion/extension motion being lower than or equal to that level of flexion/extension during coitus and 

the APDF determined the range of lumbar spine and hip active range of motion achieved (i.e., the 

maximum, minimum, and median active range of motion levels). 

The entire measurement chain and data processing methods described above are summarized in Fig. 13. 
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3.6 Data analysis 

IBM® SPSS ® Statistical software (Version 19, IBM Corporation, Somers, New York, USA) was used 

for statistical analysis of the data collected. In this study, the independent variables were coital position 

and condition (i.e., simulated and real) and the dependent variables were the 3D lumbar spine (i.e., 

flexion/extension, lateral flexion, and axial rotation) and hip (i.e., flexion/extension, internal/external 

rotation, and abduction/adduction) angular displacements and EMG signal amplitudes of selected trunk, 

hip, and thigh muscles. 

3.6.1 Descriptive statistics 

The median, mean, and standard deviation were calculated for all kinematic and EMG outcome variables 

described above. The median was included to indicate the direction the data was deviating from a normal 

distribution (i.e., direction of skewness). 

3.6.2 Inferential statistics 

Regardless of the descriptive nature of this study, hypotheses were formed regarding expected 

observations. Since males and females assumed entirely different postures within each coital position, 

they were considered separate groups in the following data analysis to test each hypothesis. 

To determine if each coital position had distinct spine and hip kinematic profiles, with the exception of 

the two variations of MISSIONARY for the males, as well as distinct muscle activation profiles for 

males, separate univariate general linear models (GLM) (factor: coital position = five levels, α=0.05) 

followed by Tukey‟s honestly significant difference (HSD) post hoc analysis was used on each outcome 

variable described above to examine any main effects of coital position on spine and hip kinematics and 

muscle activation patterns. 

To determine if simulated coitus was representative of real coitus across all spine and hip kinematic 

variables and muscle activation outcome variables of the trunk musculature, paired-sample t-tests 

(α=0.05) were performed on all outcome variables described above and their respective simulated values. 
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Fig. 13. Summary of measurement chain and data processing methods.  
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Chapter 4 

Results 

4.1 Coital position comparison 

As a reference for this section and those to follow, Table 4 outlines each coital position with each 

sex‟s corresponding posture and abbreviation. 

Table 4. A description of each sex‟s posture during each coital position. 

Coital Position Male Female 

Posture Abbreviation Posture Abbreviation 

QUADRUPED1 Kneeling behind mQUAD1 Quadruped, with elbow 

support 

fQUAD1 

QUADRUPED2 Kneeling behind mQUAD2 Quadruped, with hand 

support 

fQUAD2 

MISSIONARY1 Prone on top, with hand 

support 

mMISS1 Supine, with no hip or 

knee flexion 

fMISS1 

MISSIONARY2 Prone on top, with elbow 

support 

mMISS2 Supine, with hip and knee 

flexion 

fMISS2 

SIDELYING Side-lying behind mSIDE Side-lying fSIDE 

The main objective of this study was to describe and compare male and female spine and hip 

kinematics and muscle activation patterns during common coital positions. 

4.1.1 Kinematics 

Upon visual inspection of the male and female kinematic data for all coital positions, it was 

found that the majority of the kinematic signal was in the sagittal plane (i.e., flexion/extension). 

To illustrate this, a typical trial (i.e., Subject 5a – mMISS2) is presented in Fig. 14. For this 

reason, only findings pertaining to the sagittal plane of motion are discussed below. The sign 

convention for flexion and extension is negative and positive, respectively. 
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Fig. 14. Presentation of lumbar spine angular displacement (% aROM) in a typical trial of mMISS2 from 

Subject 5a. 
Note that the majority of the kinematic signal was in the sagittal plane of motion (i.e., flex) and that excursion of this 

signal was approximately 60 percent of lumbar spine active range of motion as opposed to approximately five 

percent for „bend‟ and „twist‟. The movement pattern fluctuated over different ranges of spine motion across 24 

penetration cycles. 

4.1.1.1 Male 

With respect to average speed of penetration cycles, both variations of QUADRUPED, 

QUADRUPED1 (1.80 ± .72 cycles/s) and QUADRUPED2 (1.81 ± .72 cycles/s) had the fastest 

speeds, followed by SIDELYING (1.50 ± .60 cycles/s), and both variations of MISSIONARY, 

MISSIONARY1 (1.37 ± .68 cycles/s) and MISSIONARY2 (1.33 ± .49 cycles/s). Significant 

differences were found (F=9.271, p<.001) between QUADRUPED1 and MISSIONARY1 

(p=.003), MISSIONARY2 (p=.001), and SIDELYING (p=.043). QUADRUPED2 was also 

found to be significantly different from MISSIONARY1 (p=.002), MISSIONARY2 (p<.001), 

and SIDELYING (p=.034). 
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4.1.1.1.1 Lumbar Spine 

A summary of male spine kinematic results discussed below can be found in Table 7, Table 8, 

Table 9, Table 10, and Table 11 within Appendix B. 

Male lumbar spine movement varied depending on the coital position (Fig. 15); however, 

across all positions, the majority of the range of motion used was in flexion. The average 

maximum percentage of flexion aROM reached in a penetration cycle was highest for mSIDE (-

60.97 ± 15.60 % aROM) and mMISS2 (-44.88 ± 19.78 % aROM). The other three positions, 

mMISS1 (-23.87 ± 23.72 % aROM), mQUAD2 (-22.46 ± 15.99 % aROM), and mQUAD1 (-

8.61 ± 31.33 % aROM), reached a significantly lesser percentage of flexion aROM across all 

penetration cycles. Significant differences were found (F=9.413, p<.001) between mSIDE and 

mQUAD1 (p<.001), mQUAD2 (p=.001), and mMISS1 (p=.002). mMISS2 was also significantly 

different from mQUAD1 (p=.002). The average maximum percentage of [extension] lumbar 

spine aROM reached in a penetration cycle was greatest during mQUAD1 (15.04 ± 34.96 % 

aROM) and mMISS1 (13.98 ± 42.83 % aROM) – only these two positions achieved extension – 

and least during mSIDE (-35.24 ± 21.35 % aROM). Both mQUAD1 (p=.007) and mMISS1 

(p=.008) were significantly greater than mSIDE (F=4.848, p=.005). 

The average amplitude difference between maximum and minimum percentages of lumbar 

spine aROM within a penetration cycle, across all cycles, (Fig. 15) was highest for both 

variations of PRONE, mMISS2 (44.10 ± 17.55 % aROM) and mMISS1 (37.86 ± 35.43 % 

aROM), followed by mSIDE (25.76 ± 14.66), and both variations of mQUAD, mQUAD1 (23.68 

± 19.54) and mQUAD2 (13.26 ± 11.52 % aROM). Only mQUAD2 was significantly different 

(F=3.111, p=.032) from mMISS2 (p=.011). 
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Fig. 15. Average maximum, minimum, and amplitude difference findings for male lumbar spine 

kinematics across all coital positions. 
Values are expressed as a percentage of lumbar spine aROM achieved during each coital position. The highest and 

lowest points in the figure for each position are the average maximum and minimum percentage of lumbar spine 

aROM values achieved across all penetration cycles. The connecting solid blue line represents the average 

amplitude difference for each position across all penetration cycles. The positive vertical error bars represent one 

standard deviation of the mean average maximum values and the negative vertical error bars represent one standard 

deviation of the mean average minimum values. Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001. 

The same trend as average minimum values above was seen for the percentages of lumbar 

spine aROM values at amplitude probabilities of 0.1, 0.5, and 0.9 (Fig. 16). mSIDE values were 

lowest (-65.40 ± 15.37, -54.55 ± 16.55, and -39.43 ± 19.30 % aROM, respectively) followed by 

both variations of PRONE, mMISS2 (-49.97 ± 19.91, -31.79 ± 21.07, and -7.02 ± 25.04 % 

aROM, respectively) and mMISS1 (-28.58 ± 22.33, -15.29 ± 25.18, and 5.07 ± 38.75 % aROM, 

respectively), and both variations of mQUAD, mQUAD2 (-24.95 ± 15.60, -12.54 ± 21.02, and -

.78 ± 27.15 % aROM, respectively) and mQUAD1 (-22.01 ± 21.61, -9.90 ± 26.16, and 5.55 ± 

35.84 % aROM). Significant differences were found at amplitude probabilities of 0.1 (F=17.006, 

p<.001), 0.5 (F=12.893, p<.001), and 0.9 (F=5.438, p=.002). At all three amplitude probabilities, 

mSIDE was significantly different from mQUAD1 (p<.001, p<.001, and p=.003, respectively), 
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mQUAD2 (p<.001, p<.001, and p=.013, respectively), and mMISS1 (p<.001, p<.001, and 

p=.004, respectively). At an amplitude probability of 0.1, mMISS2 was significantly different 

from mQUAD1 (p=.001), mQUAD2 (p=.004), and mMISS1 (p=.021). At an amplitude 

probability of 0.5, mMISS2 was significantly different from mQUAD1 (p=.040) and mSIDE 

(p=.030). 

 

Fig. 16. APDF results for male spine kinematics across all coital positions. 
Note that the APDF values are expressed as a percentage of total lumbar spine aROM. The angular displacement 

values (% aROM) at each amplitude probability indicates the probability that spine motion was equal to or lower 

than that % aROM value during that coital position. For example, 50 percent of the time during mMISS2, spine 

motion was equal to or less than approximately 32 percent of lumbar spine flexion aROM. The three dashed red 

lines indicate the amplitude probability levels at which statistical tests were performed. 
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Fig. 17. Demonstration of subject variability for APDF results for male spine kinematics across all coital 

positions. 
The vertical error bars represent one standard deviation of the average angular displacement at each amplitude 

probability for each coital position. A general linear model was only performed on amplitude probabilities of 0.1, 

0.5, and 0.9, so statistical significance is only indicated for these three amplitude probabilities in the figure above.  

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001. 

4.1.1.1.2 Hip 

A summary of male hip kinematic results discussed below can be found in Table 12, Table 13, 

Table 14, Table 15, and Table 16 within Appendix B. 

The average maximum percentage of hip aROM achieved (Fig. 18) was highest for mMISS1 

(56.38 ± 36.13 % aROM), followed by both variations of mQUAD, mQUAD2 (14.81 ± 26.24 % 

aROM) and mQUAD1 (13.89 ± 23.16 % aROM), mMISS2 (8.71 ± 27.21 % aROM), and 

mSIDE (5.53 ± 26.33 % aROM).  All values were within hip extension ROM. Significant 

differences were found (F=8.365, p<.001) between mMISS1 and the following: mQUAD1 

(p=.001), mQUAD2 (p=.001), mMISS2 (p<.001), and mSIDE (p<.001). 

The average minimum percentage of hip aROM achieved (Fig. 18) was highest, again, for 

mMISS1 (-10.53 ± 20.16 % aROM), followed by both variations of mQUAD, mQUAD1 (-11.58 
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± 21.10 % aROM) and mQUAD2 (-11.71 ± 20.78 % aROM), mSIDE (-31.38 ± 10.15 % 

aROM), and mMISS2 (-36.14 ± 15.89 % aROM). Similar to the findings above for average 

maximum, mMISS1 had the highest (i.e., least flexion) value and mSIDE and mMISS2 had the 

lowest (i.e., most flexion) values. All values were within hip flexion ROM. mSIDE was 

significantly different (F=9.672, p<.001) from both variations of mQUAD, mQUAD1 (p=.009) 

and mQUAD2 (p=.010) as well as mMISS1 (p=.007). mMISS2 was also significantly different 

from both variations of mQUAD, mQUAD1 (p=.001), mQUAD2 (p=.001), and mMISS1 

(p=.001). 

The average amplitude difference between maximum and minimum percentages of hip aROM 

within a penetration cycle, across all cycles, (Fig. 18) was highest for both variations of PRONE, 

mMISS1 (67.03 ± 21.16 % aROM) and mMISS2 (44.81 ± 21.92 % aROM), followed by mSIDE 

(36.90 ± 31.44 % aROM), and both variations of mQUAD, mQUAD2 (26.51 ± 12.20 % aROM) 

and mQUAD1 (25.55 ± 9.27 % aROM). mMISS1 was found to be significantly different 

(F=8.539, p<.001) from mQUAD1 (p<.001), mQUAD2 (p<.001), and mSIDE (p=.004). 

 

Fig. 18. Average maximum, minimum, and amplitude difference findings for male hip kinematics across 

all coital positions. 

The positive vertical error bars represent one standard deviation of the mean average maximum values and the 

negative vertical error bars represent one standard deviation of the mean average minimum values. Statistical 

significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001. 
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The same trend as average minimum values above was seen for the percentages of hip aROM 

values at amplitude probabilities of 0.1, 0.5, and 0.9 (Fig. 19). mMISS1 values were highest (-

4.44 ± 21.57 % aROM, 23.28 ± 33.54 % aROM, and 58.65 ± 37.12 % aROM, respectively), 

followed by both variations of mQUAD, mQUAD1 (-7.79 ± 19.84 % aROM, 3.09 ± 21.38 % 

aROM, and 19.49 ± 25.22 % aROM, respectively) and mQUAD2 (-8.07 ± 19.64 % aROM, 4.05 

± 21.99 % aROM, and 19.78 ± 27.30 % aROM, respectively), mSIDE (-26.23 ± 9.93 % aROM, -

10.97 ± 11.11 % aROM, and 9.42 ± 25.66 % aROM, respectively), and mMISS2 (-30.49 ± 15.85 

% aROM, -12.94 ± 13.88 % aROM, and 12.25 ± 25.67 % aROM, respectively). Significant 

differences were found at amplitude probabilities of 0.1 (F=9.668, p<.001), 0.5 (F=8.991, 

p<.001), and 0.9 (F=7.464, p<.001). At all three amplitude probabilities, mMISS1 was 

significantly different from mMISS2 (p<.001, p<.001, and p<.001, respectively) and mSIDE 

(p=.003, p<.001, and p<.001, respectively). mMISS1 was also significantly different from 

mQUAD1 and mQUAD2 at amplitude probabilities of 0.5 (p=.034 and p=.048, respectively) and 

0.9 (p=.002 and p=.003, respectively). At an amplitude probability of 0.1, mMISS2 and mSIDE 

were significantly different from mQUAD1 (p=.001 and p=.012, respectively) and mQUAD2 

(p=.002 and p=.014, respectively). 

 

Fig. 19. APDF results for male hip kinematics across all coital positions. 
The three dashed red lines indicate the amplitude probability levels at which statistical tests were performed. 
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Fig. 20. Demonstration of subject variability for APDF results for male hip kinematics across all coital 

positions. 
The vertical error bars represent one standard deviation of the average angular displacement at each amplitude 

probability for each coital position. A general linear model was only performed on amplitude probabilities of 0.1, 

0.5, and 0.9, so statistical significance is only indicated for these three amplitude probabilities in the figure above.  

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001. 

4.1.1.2 Female 

4.1.1.2.1 Lumbar spine 

A summary of female lumbar spine kinematic results discussed below can be found in Table 22, 

Table 23, Table 24, Table 25, and Table 26, which can be found in Appendix B. 

Female lumbar spine movement also varied depending on the coital position (Fig. 21); 

however, in contrast to male lumbar spine findings above, the majority of the range of motion 

used was in extension with the exception of both fMISS variations, fMISS2 (-44.42 ± 14.47 % 

aROM to -62.34 ± 16.91 % aROM) and fMISS1 (-22.01 ± 17.78 % aROM to -43.78 ± 14.57 % 

aROM). The average maximum and minimum percentage of lumbar spine aROM for the other 

three positions, fSIDE (12.09 ± 36.67 % aROM to 33.40 ± 36.56 % aROM), fQUAD1 (.10 ± 
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44.93 % aROM to 36.61 ± 40.19 % aROM), and fQUAD2 (41.17 ± 43.49 % aROM to 66.72 ± 

36.80 % aROM) had ranges of lumbar spine motion that remained within extension. Both 

variations of fQUAD, fQUAD1 and fQUAD2, and fSIDE had comparable minimum values – 

fMISS1 and fMISS2 were both significantly different from fSIDE (p=.009 and p<.001, 

respectively), fQUAD1 (p=.006 and p<.001, respectively), and fQUAD2 (p<.001 and p<.001, 

respectively) (F=17.744, p<.001). For the average maximum values, fMISS1 and fMISS2 were, 

again, both significantly different from fSIDE (p =.005 and p <.001, respectively), fQUAD1 

(p=.046 and p =.001, respectively), and fQUAD2 (p <.001 and p <.001, respectively) (F=16.439, 

p<.001). Both variations of fQUAD had significantly different maximum values, with fQUAD2 

being significantly higher in extension than fQUAD1 (p=.043). 

The average amplitude difference between maximum and minimum percentages of lumbar 

spine aROM within a penetration cycle, across all cycles, (Fig. 21) was highest for both 

variations of fQUAD, fQUAD1 (36.49 ± 48.66 % aROM) and fQUAD2 (25.51 ± 27.31 % 

aROM), followed by fSIDE (21.39 ± 9.72 % aROM), and both variations of fMISS, fMISS1 

(21.70 ± 13.61 % aROM) and fMISS2 (17.86 ± 10.27 % aROM). This is a similar trend to the 

average minimum values above – both variations of fMISS had the lowest values, followed by 

fSIDE and both variations of fQUAD. There were no significant differences between positions 

(F=.946, p=.453). 
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Fig. 21. Average maximum, minimum, and amplitude difference findings for female lumbar spine 

kinematics across all coital positions. 

The positive vertical error bars represent one standard deviation of the mean average maximum values and the 

negative vertical error bars represent one standard deviation of the mean average minimum values. Statistical 

significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001. 

The same trend as average maximum values above was seen for the percentages of lumbar 

spine aROM values at amplitude probabilities of 0.1, 0.5, and 0.9 (Fig. 22). fMISS2 values were 

lowest (-58.29 ± 17.41 % aROM, -50.70 ± 16.13 % aROM, and -38.80 ± 13.70 % aROM, 

respectively), followed by fMISS1 (-40.16 ± 15.36 % aROM, -28.16 ± 13.04 % aROM, and -

15.59 ± 15.92 % aROM, respectively), fQUAD1 (-4.03 ± 40.84 % aROM, 14.35 ± 40.76 % 

aROM, and 35.29 ± 43.99 % aROM, respectively), fSIDE (12.30 ± 34.38 % aROM, 26.65 ± 

35.97 % aROM, and 38.51 ± 37.36 % aROM, respectively), and fQUAD2 (29.96 ± 46.25 % 

aROM, 52.40 ± 44.45 % aROM, and 67.49 ± 45.65 % aROM, respectively). Significant 

differences were found at amplitude probabilities of 0.1 (F=15.564, p<.001), 0.5 (F=19.805, 

p<.001), and 0.9 (F=18.853, p<.001). At all three amplitude probabilities, fMISS2 was 

significantly different from fQUAD1 (p=.001, p<.001, and p<.001, respectively), fQUAD2 

(p<.001, p<.001, and p<.001, respectively), and fSIDE (p<.001, p<.001, and p<.001, 

respectively) and fMISS1 was significantly different from fQUAD2 (p<.001, p<.001, and 
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p<.001, respectively) and fSIDE (p=.005, p=.004, and p=.010, respectively). fMISS1 was also 

significantly different from fQUAD1 at amplitude probabilities of 0.5 (p=.039) and 0.9 (p=.017). 

fQUAD1 was significantly different from fQUAD2 at an amplitude probability of 0.5 (p=.031). 

 

Fig. 22. APDF results for female spine kinematics across all coital positions. 
The three dashed red lines indicate the amplitude probability levels at which statistical tests were performed. 
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Fig. 23. Demonstration of subject variability for APDF results for female spine kinematics across all 

coital positions. 
The vertical error bars represent one standard deviation of the average angular displacement at each amplitude 

probability for each coital position. A general linear model was only performed on amplitude probabilities of 0.1, 

0.5, and 0.9, so statistical significance is only indicated for these three amplitude probabilities in the figure above.  

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001. 

4.1.1.2.2 Hip 

A summary of female hip kinematic results discussed below can be found in Table 27, Table 28, 

Table 29, Table 30, and Table 31, which can be found in Appendix B. 

The average maximum percentage of hip aROM achieved (Fig. 24) was highest for fMISS1 (-

4.27 ± 25.84 % aROM), followed by fMISS2 (-32.52 ± 25.89 % aROM), fSIDE (-62.88 ± 16.88 

% aROM), and both variations of fQUAD, fQUAD2 (-63.67 ± 16.78 % aROM) and fQUAD1 (-

73.35 ± 13.12 % aROM). All values remained within flexion ROM, but fMISS1 was close to 

neutral (i.e., 0 % aROM). fMISS1 was found to be significantly different (F=20.654, p<.001) 

from fQUAD1 (p <.001), fQUAD2 (p<.001), fMISS2 (p=.036) and fSIDE (p<.001). fMISS2 was 

also found to be significantly different from the other four positions, including fMISS1, 

fQUAD1 (p <.001), fQUAD2 (p=.002), and fSIDE (p=.002) 
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The same trend as average maximum values above was seen for the average minimum 

percentage of hip aROM achieved (Fig. 24). fMISS1 (-18.32 ± 19.97) had the highest value, 

followed by fMISS2 (-44.40 ± -45.28), fSIDE (-69.43 ± 17.61), and both variations of fQUAD, 

fQUAD2 (-70.52 ± 16.88) and fQUAD1 (-81.20 ± 12.81). Similar to the findings above for the 

average maximum, all values remained within flexion ROM, both variations of fMISS had the 

highest values (i.e., least flexion) and both variations of fQUAD had the lowest values (i.e., most 

flexion). Once again, significant differences were found (F=24.702, p<.001) between fMISS1 

and fQUAD1 (p<.001), fQUAD2 (p<.001), fMISS2 (p=.015) and fSIDE (p<.001). fMISS2 was 

also found to be significantly different from all other positions, including fMISS1, fQUAD1 

(p<.001), fQUAD2 (p=.002), and fSIDE (p=.002). 

The average amplitude difference between maximum and minimum percentages of hip aROM 

within a penetration cycle, across all cycles, (Fig. 24) was highest for both variations of fMISS, 

fMISS1 (14.07 ± 11.37 % aROM) and fMISS2 (11.91 ± 11.66 % aROM), followed by both 

variations of fQUAD, fQUAD1 (7.83 ± 3.30 % aROM) and fQUAD2 (6.83 ± 2.30 % aROM) 

and fSIDE (6.57 ± 2.70 % aROM). There were no significant differences found between 

positions (F=1.641, p=.194). 

 

Fig. 24. Average maximum, minimum, and amplitude difference findings for female hip kinematics 

across all coital positions. 

The positive vertical error bars represent one standard deviation of the mean average maximum values and the 

negative vertical error bars represent one standard deviation of the mean average minimum values. Statistical 

significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001. 
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The same trend as average maximum and minimum values above was seen for the percentages 

of hip aROM values at amplitude probabilities of 0.1, 0.5, and 0.9 (Fig. 25). fMISS1 values were 

highest (-8.31 ± 19.18 % aROM, -1.44 ± 21.61 % aROM, and 8.46 ± 27.27 % aROM, 

respectively), followed by fMISS2 (-41.17 ± 17.10 % aROM, -35.13 ± 19.06 % aROM, and -

26.98 ± 26.65 % aROM, respectively), fSIDE(-66.09 ± 17.66 % aROM, -61.31 ± 17.38 % 

aROM, and -56.20 ± 17.25 % aROM, respectively), and both variations of fQUAD, fQUAD2 (-

66.29 ± 15.61 % aROM, -61.36 ± 16.04 % aROM, and -56.44 ± 16.24 % aROM, respectively) 

and fQUAD1 (-78.84 ± 12.25 % aROM, -72.76 ± 12.12 % aROM, and -67.45 ± 12.75% aROM, 

respectively).  Significant differences were found at amplitude probabilities of 0.1 (F=35.001, 

p<.001), 0.5 (F=31.537, p<.001), and 0.9 (F=25.457, p<.001). At all three amplitude 

probabilities, fMISS1 was significantly different from all other positions, including fQUAD1 

(p<.001, p<.001, and p<.001, respectively), fQUAD2 (p<.001, p<.001, and p<.001, respectively), 

fMISS2 (p<.001, p=.001, and p=.004, respectively), and fSIDE (p<.001, p<.001, and p<.001, 

respectively). fMISS2 was also significantly different from all other positions at all three 

amplitude probabilities, including fQUAD1 (p<.001, p<.001, and p<.001, respectively), 

fQUAD2 (p=.002, p=.003, and p=.006, respectively), fMISS1, and fSIDE (p=.003, p=.003, and 

p=.007, respectively). 

 

Fig. 25. APDF results for female hip kinematics across all coital positions. 
The three dashed red lines indicate the amplitude probability levels at which statistical tests were performed. 
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Fig. 26. Demonstration of subject variability for APDF results for female hip kinematics across all coital 

positions. 
The vertical error bars represent one standard deviation of the average angular displacement at each amplitude 

probability for each coital position. A general linear model was only performed on amplitude probabilities of 0.1, 

0.5, and 0.9, so statistical significance is only indicated for these three amplitude probabilities in the figure above. 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001. 

4.1.2 Electromyography 

4.1.2.1 Male 

A summary of male EMG results discussed below can be found in Table 17, Table 18, Table 19, 

Table 20, and Table 21 in Appendix B. 

4.1.2.1.1 Upper erector spinae 

The maximum % MVC achieved during each coital position (Fig. 27) was highest for mSIDE 

(11.54 ± 8.28 % MVC), followed by both variations of mQUAD, mQUAD1 (10.71 ± 6.36 % 

MVC) and mQUAD2 (9.69 ± 6.98 % MVC), and both variations of PRONE, mMISS2 (5.72 ± 



 

 46 

2.91 % MVC) and mMISS1 (5.21 ± 2.48 % MVC). All maximum values were under 15% MVC. 

No significant differences were found between positions (F=2.682, p=.047). 

The same trend as average maximum values above was seen for the % MVC values at 

amplitude probabilities of 0.1, 0.5, and 0.9. mSIDE values were highest (1.82 ± 3.23 % MVC, 

3.51 ± 4.37 % MVC, and 6.45 ± 6.19% MVC, respectively), followed by both variations of 

mQUAD, mQUAD1 (1.03 ± 1.26 % MVC, 2.17 ± 1.68 % MVC, and 5.00 ± 2.80 % MVC, 

respectively) and mQUAD2 (.78 ± 0.91 % MVC, 1.88 ± 1.67 % MVC, and 4.76 ± 3.11 % MVC, 

respectively), and both variations of PRONE, mMISS1 (.91 ± 0.58 % MVC, 1.67 ± .82 % MVC, 

and 2.97 ± 1.39 % MVC, respectively) and mMISS2 (1.02 ± .61 % MVC, 1.89 ± 0.95 % MVC, 

and 2.83 ± 1.89 % MVC, respectively). No significant differences were found at amplitude 

probabilities of 0.1 (F=.647, p=.634), 0.5 (F=1.222, p=.321), and 0.9 (F=1.996, p=.117). 

4.1.2.1.2 Lower erector spinae 

Similar to maximum values for UES, the maximum % MVC of LES achieved during each coital 

position (Fig. 27) was highest for both variations of mQUAD, mQUAD1 (20.15 ± 9.15 % MVC) 

and mQUAD2 (17.61 ± 6.88 % MVC), followed by mSIDE (12.15 ± 6.77 % MVC), and both 

variations of PRONE, mMISS2 (7.47 ± 5.71 % MVC) and mMISS1 (4.84 ± 3.29). Significant 

differences were found (F=12.704, p<.001) between mQUAD1 and mMISS1 (p<.001), mMISS2 

(p<.001), and mSIDE (p=.027). mQUAD2 was also significantly different from mMISS1 

(p<.001) and mMISS2 (p=.003). 

The same trend as average maximum values above was seen for the % MVC values at 

amplitude probabilities of 0.1, 0.5, and 0.9. Both variations of mQUAD, mQUAD1 (2.34 ± 2.27 

% MVC, 5.75 ± 3.38 % MVC, and 11.64 ± 5.19 % MVC, respectively) and mQUAD2 (2.35 ± 

2.02 % MVC, 5.06 ± 2.74 % MVC, and 10.84 ± 3.88 % MVC, respectively), had the highest 

values, followed by mSIDE (1.04 ± .84 % MVC, 2.11 ± 1.78 % MVC, and 5.15 ± 4.19 % MVC, 

respectively), and both variations of PRONE, mMISS2 (.55 ± .38 % MVC, 1.09 ± .84 % MVC, 

and 2.41 ± 2.04% MVC, respectively) and mMISS1 (.59 ± 0.54 % MVC, 1.15 ± 0.97 % MVC, 

and 2.15 ± 1.89 % MVC, respectively). Significant differences were found at amplitude 

probabilities of 0.1 (F=9.728, p<.001), 0.5 (F=21.743, p<.001), and 0.9 (F=21.047, p<.001). At 

all three amplitude probabilities, mQUAD1 was found to be significantly different from 

mMISS1 (p=.002, p<.001, and p<.001, respectively), mMISS2 (p=.002, p<.001, and p<.001, 

respectively), and mSIDE (p=.037, p<.001, and p<.001) and mQUAD2 was also found to be 

significantly different from mMISS1 (p=.004, p<.001, and p<.001, respectively), mMISS2 

(p=.003, p<.001, and p<.001, respectively), and mSIDE (p=.046, p=.001, and p=.002, 

respectively). 

4.1.2.1.3 Latissimus dorsi 

The maximum % MVC of LD achieved during each coital position (Fig. 27) was highest for 

mSIDE (33.52 ± 31.34% MVC), followed by mQUAD1 (32.88 ± 44.84 % MVC), mMISS2 

(27.24 ± 36.07 % MVC), mQUAD2 (21.03 ± 21.07 % MVC), and mMISS1 (13.44 ± 12.08 % 

MVC). No significant differences were found between positions (F=1.928, p=.128). 
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The same trend as average maximum values above was seen for the % MVC values at 

amplitude probabilities of 0.1, 0.5, and 0.9. mSIDE had the highest values (9.51 ± 20.12 % 

MVC, 15.07 ± 23.49 % MVC, and 22.70 ± 27.15 % MVC, respectively), followed by mQUAD1 

(1.75 ± 1.79 % MVC, 7.70 ± 10.27 % MVC, and 17.71 ± 23.21 % MVC, respectively), mMISS2 

(6.80 ± 8.72 % MVC, 10.85 ± 14.09 % MVC, and 16.06 ± 20.27 % MVC, respectively), 

mQUAD2 (1.47 ± 1.63 % MVC, 5.32 ± 5.89 % MVC, and 11.54 ± 13.07 % MVC, respectively), 

and mMISS1 (2.93 ± 2.71 % MVC, 5.63 ± 5.25 % MVC, and 8.86 ± 8.65 % MVC, respectively). 

No significant differences were found at amplitude probabilities of 0.1 (F=1.505, p=.222), 0.5 

(F=1.380, p=.261), and 0.9 (F=1.659, p=.181). 

4.1.2.1.4 Rectus abdominus 

The maximum % MVC of RA achieved during each coital position (Fig. 27) showed a reverse 

trend in comparison to UES and LES and was highest for both variations of PRONE, mMISS1 

(37.22 ± 21.17 % MVC) and mMISS2 (33.93 ± 23.67 % MVC), followed by mSIDE (17.38 ± 

11.91 % MVC), and both variations of mQUAD, mQUAD1 (8.48 ± 8.28 % MVC) and 

mQUAD2 (7.63 ± 5.17 % MVC). Significant differences were found (F=10.364, p<.001) 

between mMISS1 and mQUAD1 (p<.001), mQUAD2 (p<.001), and mSIDE (p=.021) as well as 

between mMISS2 and mQUAD1 (p=.001) and mQUAD2 (p=.001). 

The same trend as average maximum values above was seen for the % MVC values at 

amplitude probabilities of 0.1, 0.5, and 0.9. Both variations of PRONE, mMISS1 (6.28 ± 4.32 % 

MVC, 11.76 ± 8.83 % MVC, and 23.79 ± 17.05 % MVC, respectively) and mMISS2 (1.38 ± 

1.25 % MVC, 5.73 ± 6.07 % MVC, and 17.40 ± 15.17 % MVC), had the highest values, 

followed by mSIDE (1.45 ± 1.79 % MVC, 3.12 ± 3.05 % MVC, and 8.29 ± 5.79 % MVC, 

respectively), and both variations of mQUAD, mQUAD1 (1.43 ± 0.99 % MVC, 2.32 ± 2.38 % 

MVC, and 4.82 ± 5.36 % MVC, respectively) and mQUAD2 (1.12 ± 1.00 % MVC, 1.94 ± 1.60 

% MVC, and 3.81 ± 3.13 % MVC, respectively). Significant differences were found at amplitude 

probabilities of 0.1 (F=8.081, p<.001), 0.5 (F=8.652, p<.001), and 0.9 (F=8.460, p<.001). At all 

three amplitude probabilities, mMISS1 was significantly different from mQUAD1 (p=.001, 

p<.001, and p<.001), mQUAD2 (p<.001, p<.001, and p<.001), and mSIDE (p<.001, p<.001, and 

p=.005). At amplitude probabilities of 0.1 and 0.5 mMISS1 was also significantly different from 

mMISS2 (p<.001 and p=.020, respectively). mMISS2 was also significantly different from 

mQUAD1 (p=.025) and mQUAD2 (p=.013) at an amplitude probability of 0.9. 

4.1.2.1.5 External oblique 

The same trend as RA results above was seen for the maximum % MVC of EO achieved during 

each coital position (Fig. 27). Both variations of PRONE, mMISS1 (41.65 ± 29.95 % MVC) and 

mMISS2 (29.02 ± 22.51 % MVC) had the highest values, followed by mSIDE (16.35 ± 15.91 % 

MVC), and both variations of mQUAD, mQUAD1 (14.45 ± 14.12 % MVC) and mQUAD2 

(14.89 ± 16.05 % MVC). mMISS1 was found to be significantly different from mQUAD1 

(p<.001), mQUAD2 (p<.001), and mSIDE (p<.001) (F=8.923, p<.001). 
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The same trend as average maximum values above and RA results was seen for the % MVC 

values at amplitude probabilities of 0.1, 0.5, and 0.9. Both variations of PRONE, mMISS1 (8.25 

± 10.43 % MVC, 14.62 ± 13.07 % MVC, and 26.99 ± 21.55 % MVC, respectively) and mMISS2 

(2.43 ± 2.48 % MVC, 6.98 ± 7.07 % MVC, and 16.07 ± 14.79 % MVC, respectively), had the 

highest values, followed by mSIDE (1.20 ± 0.93 % MVC, 3.25 ± 3.18 % MVC, and 9.07 ± 10.04 

% MVC, respectively), and both variations of mQUAD, mQUAD1 (3.99 ± 5.47 % MVC, 6.03 ± 

7.58 % MVC, and 9.03 ± 10.19 % MVC, respectively) and mQUAD2 (3.84 ± 5.41 % MVC, 6.03 

± 8.63 % MVC, and 8.69 ± 11.28 % MVC, respectively). Significant differences were found at 

amplitude probabilities of 0.1 (F=3.573, p=.016), 0.5 (F=6.238, p=.001), and 0.9 (F=8.232, 

p<.001). At amplitude probabilities of 0.5 and 0.9, mMISS1 was significantly different from 

mQUAD1 (p=.005 and p<.001, respectively), mQUAD2 (p=.005 and p<.001, respectively), 

mMISS2 (p=.014 and p=.037, respectively), and mSIDE (p<.001 and p<.001, respectively). At 

an amplitude probability of 0.1, mMISS1 was also significantly difference from mSIDE 

(p=.013). 

4.1.2.1.6 Internal oblique 

The maximum % MVC of IO achieved during each coital position (Fig. 27) was highest for both 

variations of mQUAD, mQUAD2 (42.22 ± 27.40 % MVC) and mQUAD1 (42.01 ± 27.04 % 

MVC), followed by both variations of PRONE, mMISS1 (33.20 ± 24.19 % MVC) and mMISS2 

(32.98 ± 22.11 % MVC), and mSIDE (31.56 ± 24.33 % MVC). No significant differences were 

found between positions (F=.899, p=.475). 

A similar trend to average maximum values above was seen for the % MVC values at 

amplitude probabilities of 0.1, 0.5, and 0.9. Both variations of mQUAD, mQUAD1 (9.29 ± 6.87 

% MVC, 17.20 ± 14.45 % MVC, and 27.48 ± 20.38 % MVC, respectively) and mQUAD2 (8.54 

± 5.53 % MVC, 15.39 ± 9.70 % MVC, and 25.28 ± 16.80 % MVC, respectively), had the highest 

values, followed by both variations of PRONE, mMISS1 (5.99 ± 5.31 % MVC, 10.53 ± 7.52 % 

MVC, and 18.60 ± 13.13 % MVC, respectively) and mMISS2 (2.86 ± 3.41 % MVC, 7.74 ± 6.53 

% MVC, and 16.51 ± 10.70 % MVC), and mSIDE (2.98 ± 2.05 % MVC, 7.45 ± 3.60% MVC, 

and 14.79 ± 6.99 % MVC, respectively). Significant differences were found at amplitude 

probabilities of 0.1 (F=5.647, p=.001) and 0.5 (F=3.845, p=.011), but not 0.9 (F=2.946, p=.034). 

At amplitude probabilities of 0.1 and 0.5, mQUAD1 was found to be significantly different from 

mMISS2 (p =.009 and p=.043, respectively) and mSIDE (p =.010 and p=.034, respectively). At 

an amplitude probability of 0.1, mQUAD2 was also found to be significantly different from 

mMISS2 (p =.025) and mSIDE (p =.029). 

4.1.2.1.7 Gluteus maximus 

The same trend as UES results above was seen for the maximum % MVC of GMax achieved 

during each coital position (Fig. 27). This value was highest for mSIDE (90.56 ± 126.44 % 

MVC), followed by both variations of mQUAD, mQUAD1 (69.86 ± 105.47 % MVC) and 

mQUAD2 (66.36 ± 83.52 % MVC), and both variations of PRONE, mMISS2 (65.03 ± 66.65 % 

MVC) and mMISS1 (46.86 ± 64.94 % MVC). No significant differences were found between 

positions (F=2.140, p=.099). 
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A similar trend to average maximum values above was seen for the % MVC values at 

amplitude probabilities of 0.1, 0.5, and 0.9 mQUAD1 (10.77 ± 24.31 % MVC, 21.38 ± 41.84 % 

MVC, and 41.79 ± 74.41% MVC, respectively) had the highest values, followed by mSIDE 

(2.46 ± 1.90 % MVC, 12.42 ± 15.83 % MVC, and 40.06 ± 62.53 % MVC, respectively), 

mQUAD2 (10.79 ± 22.21 % MVC, 20.31 ± 33.84 % MVC, and 37.98 ± 53.34 % MVC, 

respectively), and both variations of PRONE, mMISS2 (2.84 ± 2.52 % MVC, 3.95 ± 4.45 % 

MVC, and 28.37 ± 35.60 % MVC, respectively) and mMISS1 (2.16 ± 4.19 % MVC, 3.84 ± 5.87 

% MVC, and 22.75 ± 38.63 % MVC, respectively). No significant differences were found at 

amplitude probabilities of 0.1 (F=1.312, p=.295), 0.5 (F=2.079, p=.108), and 0.9 (F=1.856, 

p=.143). 

4.1.2.1.8 Biceps femoris 

The maximum % MVC of BF achieved during each coital position (Fig. 27) was highest for 

mSIDE (37.68 ± 39.20 % MVC), followed by both variations of PRONE, mMISS2 (38.94 ± 

60.63 % MVC) and mMISS1 (29.27 ± 38.80 % MVC), and both variations of mQUAD, 

mQUAD1 (9.54 ± 6.49 % MVC) and mQUAD2 (6.98 ± 4.29 % MVC). No significant 

differences were found between positions (F=3.374, p=.020). 

The same trend as average maximum values above was seen for the % MVC values at 

amplitude probabilities of 0.1, 0.5, and 0.9. mSIDE (2.31 ± 2.14 % MVC, 8.11 ± 10.83 % MVC, 

and 21.48 ± 27.36 % MVC, respectively) had the highest values, followed by both variations of 

PRONE, mMISS2 (.76 ± .89 % MVC, 2.87 ± 3.55 % MVC, and 14.86 ± 18.79 % MVC, 

respectively) and mMISS1 (.70 ± .75 % MVC, 1.78 ± 1.61 % MVC, and 8.66 ± 8.62 % MVC, 

respectively), and both variations of mQUAD, mQUAD1 (1.24 ± .63 % MVC, 2.32 ± 1.08 % 

MVC, and 4.25 ± 2.46 % MVC, respectively) and mQUAD2 (1.17 ± 0.50 % MVC, 2.25 ± 0.92 

% MVC, and 4.11 ± 2.37 % MVC, respectively). No significant differences were found at 

amplitude probabilities of 0.1 (F=2.960, p=.039) and 0.5 (F=2.946, p=.034); however, at an 

amplitude probability of 0.9 (F=3.829, p=.011), mSIDE was found to be significantly different 

from mQUAD1 (p=.024) and mQUAD2 (p=.022). 



 

 50 

 

Fig. 27. Maximum % MVC achieved of all muscles across all coital positions for male subjects.  
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average peak EMG activity achieved for each muscle and coital positions. 

4.1.2.2 Female 

A summary of female EMG results discussed below can be found in Table 32, Table 33, Table 34, 

Table 35, and Table 36 in Appendix B. 

4.1.2.2.1 Upper erector spinae 

The maximum % MVC achieved during each coital position (Fig. 28) was highest for fSIDE 

(30.27 ± 19.59 % MVC), followed by both variations of fQUAD, fQUAD1 (15.68 ± 9.51 % 

MVC) and fQUAD2 (14.86 ± 17.55 % MVC), and both variations of fMISS, fMISS1 (12.63 ± 

12.94 % MVC) and fMISS2 (11.29 ± 13.41 % MVC). No significant differences were found 

between positions (F=1.917, p=.139). 

A similar trend to average maximum values above was seen for the % MVC values at 

amplitude probabilities of 0.1, 0.5, and 0.9. fSIDE (3.83 ± 3.53 % MVC, 7.70 ± 5.37 % MVC, 

and 16.31 ± 10.12 % MVC, respectively) had the highest values, followed by both variations of 

fQUAD, fQUAD2 (1.15 ± .76 % MVC, 2.31 ± 0.92 % MVC, and 6.28 ± 4.32 % MVC, 



 

 51 

respectively) and fQUAD1 (1.48 ± .89 % MVC, 3.08 ± 2.21 % MVC, and 6.11 ± 4.48 % MVC, 

respectively), and both variations of fMISS, fMISS1 (2.74 ± 4.89 % MVC, 3.96 ± 7.56 % MVC, 

and 6.06 ± 9.79 % MVC, respectively) and fMISS2 (1.45 ± 1.05 % MVC, 3.35 ± 3.03 % MVC, 

and 5.30 ± 7.52 % MVC, respectively). Significant differences were found at amplitude 

probabilities of 0.5 (F=3.842, p=.017) and 0.9 (F=3.788, p=.016), but not 0.1 (F=2.183, p=.108). 

At an amplitude probability of 0.9, fSIDE was significantly different from fQUAD1 (p=.029), 

fQUAD2 (p=.039), and fMISS2 (p=.026). At an amplitude probability of 0.5, fSIDE was also 

significantly different from fQUAD2 (p=.018). 

4.1.2.2.2 Lower erector spinae 

A similar trend to UES results above was seen for the maximum % MVC of LES achieved 

during each coital position (Fig. 28). This value was highest for fSIDE (19.10 ± 12.28 % MVC), 

followed by both variations of fQUAD, fQUAD2 (11.58 ± 7.92 % MVC) and fQUAD1 (9.90 ± 

5.18 % MVC), and both variations of fMISS, fMISS2 (9.55 ± 5.72 % MVC) and fMISS1 (2.89 ± 

2.89 % MVC). fMISS1 was found to be significantly different from fSIDE (p=.001) (F=5.985, 

p=.001). 

A similar trend to average maximum values above was seen for the % MVC values at 

amplitude probabilities of 0.1, 0.5, and 0.9. fSIDE (1.99 ± 3.04 % MVC, 4.74 ± 5.52 % MVC, 

and 10.31 ± 8.89 % MVC, respectively) had the highest values, followed by fQUAD2 (1.17 ± 

1.06 % MVC, 2.13 ± 1.68 % MVC, and 6.43 ± 5.51 % MVC, respectively), fMISS2 (2.37 ± 3.81 

% MVC, 2.96 ± 3.91 % MVC, and 5.99 ± 5.33 % MVC, respectively), fQUAD1 (1.01 ± 1.00 % 

MVC, 1.66 ± 1.23 % MVC, and 4.53 ± 2.10 % MVC), and fMISS1 (.55 ± .61 % MVC, 0.90 ± 

0.91 % MVC, and 1.62 ± 1.50 % MVC, respectively). Significant differences between positions 

were not found at amplitude probabilities of 0.1 (F=.796, p=.540) and 0.5 (F=1.942, p=.135); 

however, fMISS1 was significantly different from fSIDE (p=.030) at an amplitude probability of 

0.9 (F=3.770, p=.016). 

4.1.2.2.3 Latissimus dorsi 

The maximum % MVC achieved during each coital position (Fig. 28) was highest for fSIDE 

(30.39 ± 25.84 % MVC), followed by fQUAD1 (29.79 ± 42.69 % MVC), fMISS1 (23.66 ± 

34.76% MVC), fQUAD2 (18.56 ± 14.31 % MVC), and fMISS2 (8.85 ± 4.72 % MVC). No 

significant differences were found between positions (F=1.085, p=.382). 

The same trend as average maximum values above was seen for the % MVC values at 

amplitude probabilities of 0.1, 0.5, and 0.9. fSIDE (4.29 ± 2.35 % MVC, 8.93 ± 6.61 % MVC, 

and 16.46 ± 14.16 % MVC, respectively) had the highest values, followed by fQUAD1 (6.02 ± 

5.70 % MVC, 10.00 ± 9.70 % MVC, and 16.12 ± 16.83 % MVC, respectively), fMISS1 (4.14 ± 

6.66 % MVC, 7.80 ± 11.67 % MVC, and 12.78 ± 17.68 % MVC, respectively), fQUAD2 (3.57 ± 

2.54 % MVC, 6.57 ± 4.41 % MVC, and 11.98 ± 10.07 % MVC, respectively), and fMISS2 (2.78 

± 3.05 % MVC, 3.91 ± 3.40 % MVC, and 5.69 ± 3.80 % MVC, respectively). No significant 

differences were found at amplitude probabilities of 0.1 (F=1.053, p=.397), 0.5 (F=1.280, 

p=.301), and 0.9 (F=1.407, p=.257). 
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4.1.2.2.4 Rectus abdominus 

The maximum % MVC achieved during each coital position (Fig. 28) was highest for fMISS2 

(12.22 ± 13.37 % MVC), followed by both variations of fQUAD, fQUAD2 (7.48 ± 6.91 % 

MVC) and fQUAD1 (6.86 ± 4.76 % MVC), fSIDE (6.80 ± 5.67 % MVC), and fMISS1 (4.18 ± 

2.85 % MVC). All values were found to be fewer than 15% MVC. No significant differences 

were found between positions (F=1.237, p=.317). 

A similar trend to average maximum values above was seen for the % MVC values at 

amplitude probabilities of 0.1, 0.5, and 0.9. fMISS2 (1.30 ± 1.38 % MVC, 2.57 ± 2.28 % MVC, 

and 7.49 ± 7.83 % MVC, respectively) had the highest % MVC values, followed by fSIDE (1.08 

± .76 % MVC, 1.90 ± 1.31 % MVC, and 3.85 ± 3.28 % MVC, respectively), both variations of 

fQUAD, fQUAD2 (.91 ± .83 % MVC, 1.49 ± 1.30 % MVC, and 3.04 ± 2.43 % MVC, 

respectively) and fQUAD1 (.99 ± .78 % MVC, 1.61 ± 1.18 % MVC, and 3.01 ± 2.32 % MVC, 

respectively), and fMISS1  (.83 ± 0.18 % MVC, 1.23 ± 0.59 % MVC, and 2.04 ± 1.01 % MVC, 

respectively) No significant differences were found at amplitude probabilities of 0.1 (F=.553, 

p=.698), 0.5 (F=1.634, p=.192), and 0.9 (F=2.815, p=.043). 

4.1.2.2.5 External oblique 

The maximum % MVC achieved during each coital position (Fig. 28) was highest for fSIDE 

(21.09 ± 15.88 % MVC), followed by both variations of fMISS, fMISS2 (11.07 ± 11.22 % 

MVC) and fMISS1 (10.61 ± 8.59 % MVC), and both variations of fQUAD, fQUAD1 (10.26 ± 

9.77 % MVC) and fQUAD2 (7.81 ± 6.83 % MVC). All values, with the exception of fSIDE, 

were found to be fewer than 15 % MVC. fQUAD2 was found to be significantly different from 

fSIDE (p=.038) (F=2.271, p=.086). 

A similar trend to average maximum values above was seen for the % MVC values at 

amplitude probabilities of 0.1, 0.5, and 0.9. fSIDE (2.36 ± 1.76 % MVC, 5.42 ± 3.76 % MVC, 

and 10.24 ± 6.79 % MVC, respectively) had the highest % MVC values, followed by fMISS2 

(2.47 ± 1.83 % MVC, 3.63 ± 3.78 % MVC, and 7.36 ± 7.94 % MVC, respectively), fQUAD1 

(2.47 ± 2.35 % MVC, 3.57 ± 3.88 % MVC, and 6.08 ± 6.12 % MVC), fMISS1 (2.73 ± 3.11 % 

MVC, 3.76 ± 3.90 % MVC, and 5.59 ± 4.87 % MVC), and fQUAD2 (1.67 ± 1.01 % MVC, 2.36 

± 1.54 % MVC, and 4.24 ± 3.18 % MVC, respectively). No significant differences were found at 

amplitude probabilities of 0.1 (F=.355, p=.838), 0.5 (F=1.232, p=.319), and 0.9 (F=1.758, 

p=.164). 

4.1.2.2.6 Internal oblique 

The maximum % MVC achieved during each coital position (Fig. 28) was highest for both 

variations of fMISS, fMISS2 (30.44 ± 26.18 % MVC) and fMISS1 (28.42 ± 33.35 % MVC), 

followed by fSIDE (20.09 ± 14.26% MVC), and both variations of fQUAD, fQUAD2 (14.58 ± 

12.06 % MVC) and fQUAD1 (14.21 ± 14.69% MVC). No significant differences were found 

between positions (F=1.710, p=.176). 
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The same trend as average maximum values above was seen for the % MVC values at 

amplitude probabilities of 0.1, 0.5, and 0.9. Both variations of fMISS, fMISS2 (4.83 ± 4.08 % 

MVC, 7.64 ± 5.64 % MVC, and 16.93 ± 15.06 % MVC, respectively) and fMISS1 (4.11 ± 3.80 

% MVC, 7.45 ± 7.95 % MVC, and 14.26 ± 15.55 % MVC, respectively), followed by fSIDE 

(2.57 ± 2.45 % MVC, 5.62 ± 5.16 % MVC, and 10.40 ± 8.47 % MVC), and both variations of 

fQUAD, fQUAD2 (3.08 ± 2.92 % MVC, 5.21 ± 4.70 % MVC, and 8.40 ± 7.38 % MVC, 

respectively) and fQUAD1 (2.43 ± 2.01 % MVC, 3.81 ± 3.02 % MVC, and 6.87 ± 6.52 % MVC, 

respectively). Significant differences were found at amplitude probabilities of 0.5 (F=2.061, 

p=.113) and 0.9 (F=2.108, p=.106) between fQUAD1 and fMISS2 (p=.038 and p=.036, 

respectively), but not 0.1 (F=1.758, p=.165). 

4.1.2.2.7 Gluteus maximus 

The maximum % MVC achieved during each coital position (Fig. 28) was highest for fMISS2 

(34.49 ± 41.92 % MVC), followed by fQUAD1 (22.50 ± 29.79 % MVC), fMISS1 (20.11 ± 22.00 

% MVC), fSIDE (12.46 ± 16.07 % MVC), and fQUAD2 (10.07 ± 9.88 % MVC). No significant 

differences were found between positions (F=2.180, p=.097). 

At amplitude probabilities of 0.1, 0.5, and 0.9, both variations of fMISS, fMISS2 (4.33 ± 7.64 

% MVC, 8.62 ± 14.98 % MVC, and 19.92 ± 27.51 % MVC, respectively) and fMISS1 (6.25 ± 

4.43 % MVC, 7.66 ± 9.29 % MVC, and 11.73 ± 14.25 % MVC, respectively), had the highest % 

MVC values, followed by fQUAD1 (1.74 ± 1.40 % MVC, 4.06 ± 4.59 % MVC, and 8.33 ± 

10.40 % MVC, respectively), fSIDE (1.29 ± 1.27 % MVC, 2.33 ± 2.33 % MVC, and 5.51 ± 5.30 

% MVC, respectively), and fQUAD2 (1.48 ± 1.02 % MVC, 2.73 ± 2.03 % MVC, and 5.38 ± 

4.97 % MVC, respectively). No significant differences were found at amplitude probabilities of 

0.1 (F=2.726, p=.052), 0.5 (F=1.794, p=.158), and 0.9 (F=2.416, p=.072). 

4.1.2.2.8 Biceps femoris 

The maximum % MVC achieved during each coital position (Fig. 28) was highest for both 

variations of fMISS, fMISS1 (11.55 ± 15.44 % MVC) and fMISS2 (7.04 ± 5.82 % MVC), 

followed by both variations of fQUAD, fQUAD1 (4.81 ± 5.64 % MVC) and fQUAD2 (3.12 ± 

2.66 % MVC), and fSIDE (2.48 ± 2.15 % MVC). All values were found to be fewer than 15 % 

MVC. No significant differences were found between positions (F=1.778, p=.161). 

The same trend as average maximum values above was seen for the % MVC values at 

amplitude probabilities of 0.1, 0.5, and 0.9. Both variations of fMISS, fMISS1 (1.90 ± 2.35 % 

MVC, 3.24 ± 4.11 % MVC, and 9.08 ± 8.52 % MVC, respectively) and fMISS2 (2.31 ± 4.35 % 

MVC, 2.73 ± 4.40 % MVC, and 4.47 ± 4.90 % MVC, respectively), followed by both variations 

of fQUAD, fQUAD1 (.34 ± .37 % MVC, 0.94 ± .84 % MVC, and 2.45 ± 2.68 % MVC, 

respectively) and fQUAD2 (.54 ± .75 % MVC, 0.99 ± 1.20 % MVC, and 1.83 ± 1.80 % MVC, 

respectively), and fSIDE (.48 ± .62 % MVC, .71 ± 0.92 % MVC, and 1.21 ± 1.33 % MVC). 

Significant differences were found at amplitude probabilities of 0.1 (F=2.634, p=.066) and 0.9 

(F=2.844, p=.043), but not 0.5 (F=1.470, p=.239). At an amplitude probability of 0.1, fMISS2 

was found to be significantly different form fQUAD1 (p=.002), fQUAD2 (p=.006), and fSIDE 
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(p=.006). At an amplitude probability of 0.9, fMISS1 was also found to be significantly 

difference from fQUAD1 (p=.042), fQUAD2 (p=.022), and fSIDE (p=.013). 

 

Fig. 28. Maximum % MVC achieved of all muscles across all coital positions for female subjects. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average peak EMG activity achieved for each muscle and coital positions. 

4.2 Simulated versus real 

A secondary objective of this study was to determine if simulated versions of each coital position were 

comparable to their „real‟ counterparts. To determine this, a series of paired-sample t-tests were 

performed on each outcome variable of interest discussed above. 

Table 5 and Table 6 summarize the outcome variables found to be statistically significant for male and 

female spine and hip kinematics and muscle activation patterns between real and simulated conditions. 

The significant results summarized in these tables are described below. 
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Table 5. Summary table of all male and female spine and hip kinematic outcome variables found to be 

significantly different between real and simulated conditions. 

Sex Position Avg 

max 

Avg 

min 

APDF 

@ 0.1 

APDF 

@ 0.5 

APDF 

@ 0.9 

Avg amplitude 

diff 

Lumbar Spine 

Male mQUAD1       

mQUAD2   x
*
 x

*
 x

*
  

mMISS1       

mMISS2       

mSIDE   x
*
 x

*
   

Female fQUAD1       

fQUAD2       

fMISS1 x
**

 x
**

 x
**

 x
***

 x
**

  

fMISS2  x
*
 x

*
 x

**
 x

*
  

fSIDE  x
*
 x

*
 x

*
   

Hip 

Male mQUAD1       

mQUAD2       

mMISS1 x
*
   x

*
 x

*
  

mMISS2       

mSIDE  x
***

 x
***

 x
**

   

Female fQUAD1       

fQUAD2       

fMISS1 x
*
  x

*
 x

*
 x

**
  

fMISS2       

fSIDE x
**

 x
*
 x

*
 x

**
 x

***
  

The „x‟s indicate outcome variables where statistical significance was found between the simulated and real 

conditions. Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001. Note no significant 

differences were found for QUADRUPED1 for both males and females, fQUAD2, and the average amplitude 

difference outcome variable. 
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Table 6. Summary table of all male and female muscle activation outcome variables found to be 

significantly different between real and simulated conditions. 

Sex Position UES LES LD RA EO IO GMax BF 

Peak EMG 

Male mQUAD1         

mQUAD2         

mMISS1         

mMISS2     x
*
 x

*
   

mSIDE    x
*
     

Female fQUAD1 x
*
        

 fQUAD2         

 fMISS1         

 fMISS2         

 fSIDE         

APDF @ 0.1 

Male mQUAD1         

mQUAD2         

mMISS1 x
**

 x
**

  x
*
     

mMISS2 x
*
 x

*
    x

*
   

mSIDE         

Female fQUAD1 x
*
    

x*
  x

**
  

 fQUAD2   x
*
      

 fMISS1    x
**

     

 fMISS2         

 fSIDE   x
**

 x
*
     

APDF @ 0.5 

Male mQUAD1     x
*
    

mQUAD2     x
*
    

mMISS1 x
**

 x
*
     x

*
  

mMISS2 x
*
 x

*
   x

*
 x

*
 x

*
  

mSIDE         

Female fQUAD1 x
*
        

 fQUAD2         

 fMISS1    x
*
     

 fMISS2         

 fSIDE   x
*
      

APDF @ 0.9 

Male mQUAD1     x
*
 x

*
   

mQUAD2         

mMISS1 x
*
      x

*
  

mMISS2 x
*
 x

*
   x

*
 x

*
   

mSIDE         

Female fQUAD1 x
*
        

 fQUAD2   x
*
 x

*
     

 fMISS1    x
*
     

 fMISS2         

 fSIDE         

The „x‟s indicate outcome variables where statistical significance was found between the simulated and real 

conditions. Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001. Note no significant 

differences were found for fMISS2, LD and BF for males and LES, IO, BF for females. 
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4.2.1 Male 

The number of penetration cycles per second in the real versions of QUADRUPED1 (1.80 ± .72 

cycles/s; t=2.741, p=.023), MISSIONARY2 (1.34 ± .49 cycles/s; t=2.603, p=.029), and 

SIDELYING (1.50 ± .60 cycles/s; t=2.733, p=.023) were significantly faster than their simulated 

versions (1.44 ± .64 cycles/s, 1.02 ± .27 cycles/s, and 1.10 ± .47 cycles/s, respectively). 

4.2.1.1 Lumbar spine 

For mQUAD2 (Fig. 29), percentages of lumbar spine aROM achieved at amplitude probabilities 

of 0.1 (t=-2.570, p=.030), 0.5 (t=-2.510, p=.033), and 0.9 (t=-2.346, p=.044) were significantly 

different from the simulated version. Simulated mQUAD2 (-10.22 ± 25.53 % aROM, 2.27 ± 

26.00 % aROM, 17.70 ± 31.91 % aROM) achieved less flexion than real mQUAD2 (-24.95 ± 

15.60 % aROM, -12.54 ± 21.02 % aROM, and -.78 ± 27.15 % aROM). 

 

Fig. 29. Real and simulated mQUAD2 comparison results for male spine kinematic outcome variables. 
Simulated and real mQUAD2 varied across all amplitude probability levels. Statistical significance is represented by 

the following: 
*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent one standard deviation of the average 

angular displacement values for each outcome variable. 
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For mSIDE (Fig. 30), percentages of lumbar spine aROM achieved at amplitude probabilities 

of 0.1 (-65.40 ± 15.37 % aROM; t=-2.357, p=.043) and 0.5 (-54.55 ± 16.55 % aROM; t=-2.352, 

p=.043) were significantly greater in flexion than the simulated version (-58.30 ± 19.80 % 

aROM and -46.29 ± 20.43 % aROM, respectively). 

 

Fig. 30. Real and simulated mSIDE comparison results for male spine kinematic outcome variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average angular displacement values for each outcome variable. 

4.2.1.2 Hip 

For real mMISS1 (Fig. 31), the average maximum (56.38 ± 36.13 % aROM; t=3.196, p=.013) 

percentage of hip aROM achieved was significantly greater in extension than the simulated 

version (25.98 ± 35.81 % aROM) as well as percentages of hip aROM achieved at amplitude 

probabilities of 0.5 (23.28 ± 33.54 % aROM for real and -3.74 ± 23.57 % aROM for simulated; 

t=2.506, p=.037) and 0.9 (58.65 ± 37.12 % aROM for real and 28.99 ± 37.30 % aROM for 

simulated; t=2.800, p=.023). The average amplitude difference across all penetration cycles was 

trending towards significance (t=2.233, p=.056) with the value from real mMISS1 (67.03 ± 

21.16 % aROM) being greater than simulated mMISS1 (50.12 ± 22.31 % aROM). 
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Fig. 31. Real and simulated mMISS1 comparison results for male hip kinematic outcome variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average angular displacement values for each outcome variable. 

For mSIDE (Fig. 32), the average minimum (-31.38 ± 10.15 % aROM; t=7.057, p<.001) 

percentage of hip aROM achieved was significantly less flexion than the simulated version (-

44.57 ± 12.83 % aROM) as well as percentages of hip aROM achieved at amplitude probabilities 

of 0.1 (-26.23 ±  9.93 % aROM for real and -38.81 ±  12.38 % aROM for simulated; t=6.303, p 

<.001) and 0.5 (-10.97 ±  11.11 % aROM for real and -23.38 ±  12.30 % aROM for simulated; 

t=3.387, p=.008). 



 

 60 

 

Fig. 32. Real and simulated mSIDE comparison results for male hip kinematic outcome variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average angular displacement values for each outcome variable. 

4.2.1.3 Electromyography 

For mQUAD1 (Fig. 33 and Fig. 34), the % MVC of EO values achieved during real mQUAD1 at 

amplitude probabilities of 0.5 (6.03 ± 7.58 % MVC; t=2.711, p=.027) and 0.9 (9.03 ±  10.19 % 

MVC; t=2.397, p=.043) were significantly greater than simulated mQUAD1 (4.44 ± 6.40 % 

MVC and 7.39 ± 11.16 % MVC, respectively) as well as % MVC of IO values at an amplitude 

probability of 0.9 (27.48 ±  20.38 % MVC for real and 13.21 ±  7.03 % MVC for simulated; 

t=2.317, p=.049). 
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Fig. 33. Real and simulated mQUAD1 comparison results for male EO electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 

 

Fig. 34. Real and simulated mQUAD1 comparison results for male IO electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 
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For mQUAD2 (Fig. 35), the % MVC of EO values achieved during the real (6.03 ± 8.63 % 

MVC) and simulated (4.89 ± 8.02 % MVC) versions of mQUAD2 at an amplitude probability of 

0.5 (t=2.576, p=.030) were significantly different, with the simulated version being less. 

 

Fig. 35. Real and simulated mQUAD2 comparison results for male EO electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 

For mMISS1 (Fig. 36, Fig. 37, Fig. 38, and Fig. 39), the % MVC of UES values achieved during 

the real (.91 ± 0.58 % MVC, 1.67 ± .82 % MVC, and 2.97 ± 1.39 % MVC, respectively) and 

simulated (.53 ± .36 % MVC, 0.98 ± .71 % MVC, and 1.59 ± 1.18 % MVC, respectively) 

versions of mMISS1 at amplitude probabilities of 0.1 (t=4.721, p=.003), 0.5 (t=4.606, p=.002), 

and 0.9 (t=2.832, p=.025) were significantly different as well as % MVC of LES values at 

amplitude probabilities of 0.1 (.59 ±  0.54 % MVC for real and .36 ±  .32 % MVC for simulated; 

t=3.593, p=.009) and 0.5 (1.15 ±  0.97 % MVC for real and .65 ±  .47 % MVC for simulated; 

t=2.427, p=.046), % MVC of RA values at an amplitude probability of 0.1 (6.28 ±  4.32 % MVC 

for real and 2.92 ±  2.49 % MVC for simulated; t=2.657, p=.033), and % MVC of IO values at 

amplitude probabilities of 0.5 (10.53 ±  7.52 % MVC for real and 4.37 ±  2.74 % MVC for 

simulated; t=2.893, p=.023) and 0.9 (18.60 ±  13.13 % MVC for real and 8.17 ±  3.90 % MVC 

for simulated; t=2.939, p=.022). Essentially, the back muscles and most of the abdominal 

muscles had smaller values during the simulated version of mMISS1. 
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Fig. 36. Real and simulated mMISS1 comparison results for male UES electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 

 

Fig. 37. Real and simulated mMISS1 comparison results for male LES electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 
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Fig. 38. Real and simulated mMISS1 comparison results for male RA electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 

 

Fig. 39. Real and simulated mMISS1 comparison results for male IO electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 
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For mMISS2 (Fig. 40, Fig. 41, Fig. 42, Fig. 43, and Fig. 44), the average maximum % MVC of 

EO and IO achieved during the real (29.02 ± 22.51 % MVC and 32.98 ± 22.11 % MVC, 

respectively) and simulated (17.50 ± 16.27 % MVC and 16.83 ± 10.08 % MVC, respectively) 

version of mMISS2 were significantly different (t=3.020, p=.017 and t=2.534, p=.035, 

respectively). Furthermore, the % MVC of UES values achieved during the real (1.02 ± .61 % 

MVC, 1.89 ± 0.95 % MVC, and 2.83 ± 1.89 % MVC, respectively) and simulated (.60 ± 0.52 % 

MVC, 1.02 ± .65 % MVC, and 1.76 ± .85 % MVC, respectively) versions of mMISS2 at 

amplitude probabilities of 0.1 (t=2.382, p=.049), 0.5 (t=2.925, p=.022), and 0.9 (t=2.594, p=.036) 

were significantly different as well as % MVC of LES values at amplitude probabilities of 0.1 

(.55 ±  .38 % MVC for real and .32 ±  0.19 % MVC for simulated; t=3.307, p=.016), 0.5 (1.09 ±  

.84 % MVC for real and 0.52 ±  .35 % MVC for simulated; t=3.270, p=.011), and 0.9 (2.41 ±  

2.04 % MVC and 1.13 ±  .71 % MVC for simulated; t=2.321, p=.049), % MVC of EO values at 

amplitude probabilities of 0.5 (6.98 ± 7.07 % MVC for real and 3.25 ± 2.55 % MVC for 

simulated; t=2.346, p=.047) and 0.9 (16.07 ±  14.79 % MVC for real and 8.66 ±  8.29 % MVC 

for simulated; t=2.451, p=.040), % MVC of IO values at amplitude probabilities of 0.1 (2.86 ±  

3.41 % MVC for real and 1.44 ±  1.50 % MVC for simulated; t=2.598, p=.036), 0.5 (7.74 ±  6.53 

% MVC for real and 2.97 ±  2.24 % MVC for simulated; t=3.379, p=.010) and 0.9 (16.51 ±  

10.70 % MVC for real and 7.45 ±  4.72 % MVC for simulated; t=3.097, p=.015), and % MVC of 

GMax values at an amplitude probability of 0.5 (3.95 ±  4.45 % MVC for real and 1.22 ±  2.66 % 

MVC for simulated; t=3.129, p=.017). Similar to mMISS1, the back muscles and most of the 

core muscles, as well as GMax had smaller values for the simulated version of mMISS2. 

 

Fig. 40. Real and simulated mMISS2 comparison results for male UES electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 
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Fig. 41. Real and simulated mMISS2 comparison results for male LES electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 

 

Fig. 42. Real and simulated mMISS2 comparison results for male EO electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 
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Fig. 43. Real and simulated mMISS2 comparison results for male IO electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 

 

Fig. 44. Real and simulated mMISS2 comparison results for male GMax electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 
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For mSIDE (Fig. 45), the average maximum % MVC of RA achieved during the real (17.38 ± 

11.91 % MVC) and simulated (11.55 ± 8.28 % MVC) version of mSIDE was significantly 

different (t=2.312, p=.046). 

 

Fig. 45. Real and simulated mSIDE comparison results for male RA electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 

4.2.2 Female 

4.2.2.1 Lumbar spine 

For fMISS1 (Fig. 46), the average maximum (t=-4.873, p=.005) and minimum (t=-7.584, p=.001) 

percentages of lumbar spine aROM achieved were significantly different from the simulated 

version, with the average maximum in extension aROM for simulated fMISS1 (10.76 ± 21.21 % 

aROM) and flexion aROM for real fMISS1 (-22.01 ± 17.78 % aROM). The average minimum 

for simulated fMISS1 (-14.31 ± 9.03 % aROM) was significantly less than real (-43.78 ± 14.57 

% aROM). Furthermore, percentages of lumbar spine aROM achieved at amplitude probabilities 

of 0.1 (t=-6.501, p=.001), 0.5 (t=-8.053, p<.001), and 0.9 (t=-4.703, p=.005) were fluctuating 

through more extension aROM for simulated fMISS1 (-10.72 ± 8.44 % aROM, 1.33 ± 10.76 % 

aROM, and 16.02 ± 19.28 % aROM, respectively) than real (-40.16 ± 15.36 % aROM, -28.16 ± 

13.04 % aROM, and -15.59 ± 15.92 % aROM, respectively). 
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Fig. 46. Real and simulated fMISS1 comparison results for female spine kinematic outcome variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average angular displacement values for each outcome variable. 

For fMISS2 (Fig. 47), the average minimum (t=-2.950, p=.018) percentage of lumbar spine 

aROM achieved was significantly greater in flexion aROM in the real (-62.34 ± 16.91 % aROM) 

than the simulated version (-54.60 ± 21.19 % aROM) as well as percentages of lumbar spine 

aROM achieved at amplitude probabilities of 0.1 (-58.29 ± 17.41 % aROM for real and -50.59 ± 

2.76 % aROM for simulated; t=-3.019, p=.017), 0.5 (-50.70 ± 16.13 % aROM for real and -40.46 

± 18.67 % aROM for simulated; t=-3.422, p=.009), and 0.9 (-38.80 ± 13.70 % aROM for real 

and -27.85 ± 16.60 % aROM for simulated; t=-2.370, p=.045). The average maximum 

percentage of lumbar spine aROM was also trending towards significance (t=-2.196, p=.059), 

with less flexion % aROM achieved in simulated fMISS2 (-33.46 ± 16.33 % aROM) than real (-

44.42 ± 14.47 % aROM). 



 

 70 

 

Fig. 47. Real and simulated fMISS2 comparison results for female spine kinematic outcome variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average angular displacement values for each outcome variable.  

For fSIDE (Fig. 48), the average minimum (t=3.057, p=.018) percentage of lumbar spine 

aROM achieved was significantly different from the simulated version, with the average 

minimum values for simulated fSIDE in the flexion aROM (-8.77 ± 29.63 % aROM) and 

extension aROM for real fSIDE (12.09 ± 36.67 % aROM). Furthermore, percentages of lumbar 

spine aROM achieved at amplitude probabilities of 0.1 (t=3.244, p=.010) and 0.5 (t=2.886, 

p=.018) were significantly different (12.30 ± 34.38 % aROM and 26.65 ± 35.97 % aROM, 

respectively for real and -6.77 ± 25.39 % aROM and 7.27 ± 25.60 % aROM, respectively for 

simulated). 
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Fig. 48. Real and simulated fSIDE comparison results for female spine kinematic outcome variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average angular displacement values for each outcome variable. 

4.2.2.2 Hip 

For fMISS1 (Fig. 49), the average maximum (t=-4.434, p=.021) percentage of hip aROM 

achieved was significantly different from the simulated version, with the average maximum 

value for simulated fMISS1 in extension aROM (7.77 ± 24.29 % aROM) and flexion aROM for 

real fMISS1 (-4.27 ± 25.85 % aROM). Furthermore, percentages of hip aROM achieved at 

amplitude probabilities of 0.1 (t=-2.660, p=.045), 0.5 (t=-2.932, p=.033), and 0.9 (t=-4.189, 

p=.009) were significantly different – at all three amplitude probabilities, simulated fMISS1 was 

within hip extension aROM (4.72 ± 21.26 % aROM, 10.74 ± 23.58 % aROM, and 19.06 ± 25.84 

% aROM, respectively) and real fMISS1 was not (-8.31 ± 19.18 % aROM, -1.44 ± 21.61 % 

aROM, and 8.46 ± 27.27 % aROM, respectively). 
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Fig. 49. Real and simulated fMISS1 comparison results for female hip kinematic outcome variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average angular displacement values for each outcome variable.  

For fSIDE (Fig. 50), the average maximum (t=-5.580, p=.001) and minimum (t=-2.386, 

p=.044) percentages of hip aROM achieved were significantly greater in flexion for the real (-

62.88 ± 16.88 % aROM and -69.43 ± 17.61 % aROM, respectively) than the simulated version (-

47.60 ± 15.68 % aROM and -58.02 ± 15.55 % aROM, respectively) as well as percentages of  

hip aROM achieved at amplitude probabilities of 0.1 (-66.09 ± 17.66 % aROM for real and -

57.04 ± 17.33 % aROM for simulated; t=-2.785, p=.021), 0.5 (-61.31 ± 17.38 % aROM for real 

and -50.85 ±  17.29 % aROM for simulated; t=-3.929, p=.003), and 0.9 (-56.20 ± 17.25 % aROM 

for real and -44.11 ± 17.37 % aROM for simulated; t=-5.433, p<.001). 
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Fig. 50. Real and simulated fSIDE comparison results for female hip kinematic outcome variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average angular displacement values for each outcome variable. 

4.2.2.3 Electromyography 

For fQUAD1 (Fig. 51, Fig. 52, and Fig. 53), the average maximum % MVC of UES achieved 

during the real version of fQUAD1 (15.68 ± 9.51 % MVC) was significantly greater than the 

simulated version (7.25 ± 4.46 % MVC) (t=2.616, p=.031). Furthermore, the % MVC of UES, 

EO, and GMax values achieved during the real (1.48 ± .89 % MVC, 2.47 ±2.35 % MVC, and 1.74 

± 1.40 % MVC, respectively) and simulated (.57 ± .22 % MVC, 1.49 ± 1.43 % MVC, and 0.55 ± 

.46 % MVC, respectively) versions of fQUAD1 at an amplitude probability of 0.1 were 

significantly different (t=2.937, p=.022, t=2.535, p=.039, and t=3.561, p=.009, respectively). The 

% MVC of UES values for real (3.08 ± 2.21 % MVC and 6.11 ± 4.48 % MVC, respectively) and 

simulated (1.23 ± .35 % MVC and 2.40 ± 0.98 % MVC, respectively) conditions of fQUAD1 

were also significantly different for amplitude probabilities of 0.5 (t=2.366, p=.050) and 0.9 

(t=2.702, p=.027). 



 

 74 

 

Fig. 51. Real and simulated fQUAD1 comparison results for female UES electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 

 

Fig. 52. Real and simulated fQUAD1 comparison results for female EO electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 



 

 75 

 

Fig. 53. Real and simulated fQUAD1 comparison results for female GMax electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 

For fQUAD2 (Fig. 54 and Fig. 55),  the % MVC of LD values achieved during the real (3.57 ± 

2.54 % MVC and 11.98 ± 10.07 % MVC, respectively) and simulated (2.48 ± 1.46 % MVC and 

8.86 ± 7.28 % MVC, respectively) versions of fQUAD2 at amplitude probabilities of 0.1 

(t=2.443, p=.037) and 0.9 (t=2.264, p=.050) were significantly different, as well as % MVC of 

RA values at an amplitude probability of 0.9 (3.04 ±  2.43 % MVC for real and 2.29 ±  2.06 % 

MVC for simulated; t=2.409, p=.039). 
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Fig. 54. Real and simulated fQUAD2 comparison results for female LD electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 

 

Fig. 55. Real and simulated fQUAD2 comparison results for female RA electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 
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For fMISS1 (Fig. 56), the % MVC of RA values achieved during the real (.83 ± 0.18 % MVC, 

1.23 ± 0.59 % MVC, and 2.04 ± 1.01 % MVC, respectively) and simulated (.42 ± 0.14 % MVC, 

.69 ± .35 % MVC, and 1.19 ± 0.59 % MVC, respectively) versions of fMISS1 at amplitude 

probabilities of 0.1 (t=8.142, p=.004), 0.5 (t=3.557, p=.024), and 0.9 (t=3.043, p=.038) were 

significantly different. 

 

Fig. 56. Real and simulated fMISS1 comparison results for female RA electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 

For fSIDE (Fig. 57 and Fig. 58), the % MVC of LD values achieved during the real (4.29 ± 2.35 

% MVC and 8.93 ± 6.61 % MVC, respectively) and simulated (2.07 ± 1.87 % MVC and 4.07 ± 

2.90 % MVC, respectively) versions of fQUAD2 at amplitude probabilities of 0.1 (t=4.044, 

p=.004) and 0.5 (t=3.349, p=.010) were significantly different, as well as % MVC of RA values 

at an amplitude probability of 0.1 (1.08 ±  .76 % MVC for real and 0.52 ±  .29 % MVC for 

simulated; t=2.524, p=.036). 
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Fig. 57. Real and simulated fSIDE comparison results for female LD electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 

 

Fig. 58. Real and simulated fSIDE comparison results for female RA electromyography outcome 

variables. 
Statistical significance is represented by the following: 

*
p<.05, 

**
p<.01, 

***
p<.001. The vertical error bars represent 

one standard deviation of the average muscle activity for each outcome variable. 
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Chapter 5 

Discussion 

While this study was first and foremost a descriptive study, hypotheses were also proposed and tested. 

They are specifically addressed subsequently. Not surprisingly, spine and hip motion and muscle 

activation are variable between people. This has implications not only for formal description, but also for 

making recommendations to individuals rather than simply constructing a generic guide. This will 

provide future studies with some basis for study design that could range from population cohorts, to 

pained groups, to case studies. The discussion is organized to provide commentary and compare the data 

of this study with existing literature; general observations and hypotheses are addressed first. The 

limitations for interpretation of this data are also discussed followed by some parting conclusions and 

suggestions for clinicians dealing with pained patients experiencing these issues. 

5.1 Coital position comparison 

The main objective of this study was to describe male and female spine and hip kinematics and 

muscle activation patterns during common coital positions. The successful collection of 

kinematic and electromyography signals during this study demonstrates that a biomechanical 

analysis of coitus is feasible. 

In general, the coital positions studied showed that, for both males and females, coitus is 

mainly a flexion-extension movement of the lumbar spine and hips. This initial observation 

supports impressions made from Schultz et al.‟s (1999) MRI images of the anatomy of sexual 

intercourse (New Scientist [updated 2009]); although the lumbar spine was not specifically 

examined, the inherent repetitive flexion-extension movement was clearly seen in the mid-

sagittal plane images. Therefore, the flexion-intolerant patient (e.g., intervertebral disc 

herniation), extension-intolerant patient (e.g., facet joint injury), and motion-intolerant patient 

are considered to be the most at risk for exacerbating their pain and symptoms during coitus. 

Another common trend across all coital positions was that males used a greater range of their 

spine and hip motion in comparison to females – albeit all coital positions studied were male-

centric (i.e., males were in a dominant position and were at an advantage to control the coital 

movement). Furthermore, not one participant, regardless of gender, achieved 100 percent of their 

spine of hip aROM. Examining the movements and postures of common coital positions will 

aide in the assessment of how at risk these patients may be (i.e., how more or less „spine-sparing‟ 

a coital position is) and, if deemed necessary, the development of initial recommendations for 

these back-pain sufferers. “Spine-sparing”, for the purposes of this discussion, is intended to 

include avoiding the pain-provoking biomechanical variable – be that a motion or a posture that 

provokes pain. 

Speed of this flexion-extension motion is one movement characteristic of coitus that will 

indicate a more or less spine-sparing coital movement. All five positions had speeds of over 1 

Hz, which is highly repetitive. Based on this movement characteristic of coitus, all five positions 

are not considered benign for the discogenic patient, since flexion-extension motion of the 
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lumbar spine is occurring at highly repetitive rates across all five coital positions. To further 

qualify this observation, other kinematic variables must be compared to understand the range of 

spine aROM (i.e., amount of flexion and extension aROM) that this highly repetitive flexion-

extension spine motion is occurring in. Regardless, one initial recommendation can be made: 

slowing the speed of coitus may reduce the risk of exacerbating low back pain and symptoms by 

decreasing the repetition of lumbar spine flexion-extension motion. 

Flexion has been shown to cause posterior migration of the nucleus pulposus within the 

intervertebral disc (Fennel et al. 1996), increase compressive force on the fifth lumbar nerve root 

(Schnebel et al. 1989), and lower the compressive strength of the spine (Gunning et al. 2001), 

therefore coital positions that reach high percentages of flexion aROM and low percentages of 

extension aROM are not considered „spine-sparing‟, but rather pain-provoking. Since it was 

found that male and female lumbar spine movement during coitus was highly repetitive, and 

primarily consisting of flexion-extension movement, the less range that this spine movement is 

occurring in, the more spine-sparing a position is considered. 

Based on this rationale, for males, both mSIDE and mMISS2 would be considered the least 

spine-sparing of the common coital positions studied and not recommended for the flexion-

intolerant patient. Both mSIDE and mMISS2 reached the highest percentage of flexion aROM 

and used the widest range of flexion aROM over time. In an average penetration cycle, the 

maximum percentage of lumbar spine aROM achieved was lowest for mSIDE (i.e., remained in 

flexion) in comparison to the other positions. Furthermore, repetitive flexion-extension 

movements of the lumbar spine were occurring through the greatest range of flexion in mMISS2 

during an average penetration cycle. Both variations of mQUAD, mQUAD1 and mQUAD2, 

would be considered the most spine-sparing of the coital positions studied, followed by 

mMISS1. Spine aROM during mQUAD2 remained in flexion; however, repetitive flexion-

extension spine movement occurred through the least range of flexion. Clearly, contrary 

recommendations would be made for the extension-intolerant patient. 

Using the same criteria for considering a coital position to be more or less spine-sparing for 

females, both variations of fMISS would not be recommended for the flexion-intolerant patient, 

as they are considered to be the least spine-sparing for these individuals. Both variations of 

fMISS were the only coital positions to use flexion aROM for flexion-extension motion. In an 

average penetration cycle, the maximum % aROM was highest for fQUAD2 and fSIDE (i.e., 

most extension) and lowest for both variations of fMISS (i.e., remained in flexion) and the 

minimum % aROM was lowest for both variations of fMISS (i.e., greatest flexion reached). 

Since, all coital positions had comparable ranges of motion that flexion-extension occurred in, 

fQUAD2 and fSIDE would be the most recommended coital positions for females with flexion-

intolerance, followed by fQUAD1, and any variation of fMISS would be the least recommended. 

Again, for the extension-intolerant female patient, the reverse order would be recommended. 

These initial recommendations contradict the most frequently advised coital position for both 

male and female patients with low back disorders (Osborne & Maruta 1980). Osborne and 

Maruta (1980) and White and Panjabi (1990) have both recommended the side-lying position 

(i.e., SIDELYING in this study) as the preferred position for coitus; based on a biomechanical 
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rationale, they presumed that this position would put the least amount of strain on the back. The 

guiding principle of White and Panjabi‟s (1990) biomechanical rationale – hyper-lordosis should 

be avoided because it may irritate the disc and nerve root – appears to be inconsistent with 

current knowledge of injury mechanisms that produce intervertebral disc herniations as well as 

other low back disorders. For example, they recommend that patients avoid coital positions 

where they are lying prone with hips and knees extended because it produces hyper-lordosis. In 

fact, extension has been shown to redirect displaced portions of the nucleus pulposus back to the 

central part of the intervertebral disc in prolapsed discs (Scannell & McGill 2009). Side-lying 

was considered to be “the best basic position for either partner with LBP” because flexing the 

hips and knees would relax the psoas and the sciatic nerve, straighten the spine, and reduce a disc 

bulge (White & Panjabi 1990). Current research on lumbar flexion has shown the contrary: 

straightening (i.e., flexing) the spine while flexing the knees and hips increases a disc bulge and 

tenses the sciatic nerve. In fact, the most common provocative test for sciatic nerve tension, the 

straight-leg raise (SLR) neural tension test, involves laying the patient supine and flexing the hip 

until sciatic nerve tension is subjectively reported (McGill 2007). Presumably, some spine 

flexion and subsequent increased pressure in the intervertebral disc contribute to the sciatic nerve 

tension in the SLR test. White and Panjabi (1990) do not mention QUADRUPED, which is the 

most recommended coital position for males and females with flexion-intolerance (in particular, 

mQUAD1 and fQUAD2, respectively), but they do recommend a general avoidance of 

MISSIONARY, which is somewhat supported by this study. For females, both variations of 

fMISS were found to be the least spine-sparing. It appears that the contradictory 

recommendations provided by this study and White and Panjabi (1990) are a result of 

fundamentally different biomechanical rationales that recommendations are based upon. 

It is interesting to note that an apparently minor posture change – for example, changing upper 

body support from elbows to hands in the prone position for males and quadruped position for 

females and flexing to extending the hips and knees for females in the supine position – altered 

their respective lumbar spine kinematic profiles significantly. For both variations of fMISS, the 

change in the female spine kinematic profile is obvious: as the hips and knees are flexed 

(fMISS2), flexion in the lumbar spine increases. mMISS1 was among the more spine-sparing 

coital positions and mMISS2 was among the least. In the fQUAD2 posture, a greater percentage 

of extension aROM was achieved in an average penetration cycle than fQUAD1. Even a 

seemingly subtle change in the female‟s posture (i.e., fQUAD1 to fQUAD2) showed a change in 

the lumbar spine kinematic profile for mQUAD1 and mQUAD2. This indicates an effect of 

female posture on the male spine kinematic profile because mQUAD1 and mQUAD2 are 

presumably the same posture for the male. This interaction may be the result of a change in the 

penetration angle of the penis; in the missionary position, the penis reaches the anterior fornix 

with preferential contact of the anterior vaginal wall, but with rear-entry, the penis reaches the 

posterior fornix with preferential contact of the posterior vaginal wall (Faix et al. 2001). Perhaps, 

in addition to the method of entry changing the penetration angle, the female spine posture also 

affects the penetration angle and preferential contact of the penis, since the female spine 

achieved more extension in fQUAD2 than fQUAD1. 
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For males, it was expected that in coital positions that were more spine-sparing, a larger range 

of hip movement would be observed. This hypothesis is difficult to compare across positions 

because no previous work has been done to establish what average hip range would be for each 

coital position (that is, in part, the objective of this study). However, comparing hip movement 

between both variations of PRONE is an appropriate method to test this hypothesis, since 

mMISS1 was found to be among the more spine-sparing coital positions for males and mMISS2 

was among the least. In an average penetration cycle, mMISS1 had a significantly higher 

maximum and minimum than mMISS2 and used a wider range of hip % aROM than mMISS2 – 

mMISS1 used far more hip extension. The hip kinematic profiles were certainly different 

between the two variations of PRONE, thus the hypothesis was supported. To ensure optimal 

spine-sparing technique for recommended coital positions, a hip-hinging technique (McGill 

2007) can be taught to patients, so that male coital movement (i.e., thrusting) is hip-dominant 

and as spine-sparing as possible. Hip-hinging would be an easy technique to adopt in both 

variations of mQUAD as the movement pattern is essentially a kneeling squat. A similar 

relationship may exist between spine and knee movement during coitus; data will be analyzed 

further to investigate this relationship. 

These movement and posture findings support the findings of qualitative studies on sexual 

activity and LBP and/or injury. These studies had shown that pain or discomfort during coitus 

was reported to be primarily due to mechanical factors, specifically, difficulty finding a position 

and difficulty with pelvic movements. Based on the above discussion, it is clear that these 

qualitative findings are supported by a biomechanical explanation. 

Muscle activation patterns across all muscles were expected to differ significantly for males 

with the exception of the two variations of mQUAD and this was found to be true for LES, RA, 

and EO. Muscle activity was highly variable for both males and females, but muscle activity was 

higher overall for males – considering that males were shown to use a greater range of their spine 

and hip movement in comparison to females, this finding is not surprising. For males, coital 

movement appears to be gluteal-dominant in comparison to all muscles collected, biceps femoris 

in particular. Gluteus maximus activation levels were comparable to high-performance ballistic 

exercises studied in the same laboratory (i.e., same standardized protocol for electrode placement 

and eliciting maximum voluntary contractions from selected muscles of study participants), such 

as the kettle bell swing with (82.8 ± 44.2 % MVC) and without kime (i.e., a Japanese martial arts 

term for the instantaneous tensing of the abdominal muscles) (76.1 ± 36.6 % MVC), and the 

swing to snatch (58.1 ± 48.9 % MVC) (McGill & Marshall 2012). This warrants further 

investigation, especially in future studies where coital movement is being coached to encourage 

more hip hinging and less spine movement. 

5.2 Simulated versus real coitus 

A secondary objective was to determine if simulated coitus could be used in place of real coitus 

for future sex biomechanics research. Speed of penetration cycles for QUADRUPED1 (i.e., 

mQUAD1 for males and fQUAD1 for females), MISSIONARY2 (i.e., mMISS2 for males and 

fMISS2 for females), and SIDELYING (i.e., mSIDE for males and fSIDE for females) 

significantly differed from their simulated counterparts. Spine kinematics for mQUAD2, mSIDE, 
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fMISS1, fMISS2, and fSIDE were not well-represented by their simulated versions. Hip 

kinematics for mMISS1, mSIDE, fMISS1, and fSIDE significantly differed from their simulated 

versions. Muscle activity for mQUAD1 (i.e., obliques), mQUAD2 (i.e., obliques), mMISS1 (i.e., 

back, abdominals, obliques), mMISS2 (i.e., back, obliques, gluteals), mSIDE (i.e., abdominals), 

fQUAD1 (i.e., back, obliques, gluteals), fQUAD2 (i.e., abdominals), fMISS1 (i.e., abdominals), 

and fSIDE (latissimus dorsi and abdominals) significantly differed from their simulated versions. 

However, the majority of the differences in muscle activity between real and simulated coital 

positions found were not considered to be biologically significant differences. All coital 

positions were found to be significantly different from the simulated version on more than one 

outcome variable and most coital positions had differences in more than one area (i.e., spine and 

hip kinematics, muscle activity, and speed of penetration cycles). Thus, it is not recommended 

that simulated coitus is performed in place of real coitus for future research in sex biomechanics. 

However, the decision by the researcher ultimately will depend on the coital positions being 

studied and the outcome variable of interest. 

Another comparison of interest is how representative actual coitus in the laboratory was to 

coitus that couples engaged in, in a private setting. Upon completion of the study, couples were 

asked to rate how representative they felt their experience in the laboratory setting was in 

comparison to their experiences in the privacy of their own home on a ten-point scale (1 being 

not representative at all and 10 being completely representative). This question was asked 

verbally. Couples deliberated and, with the exception of one couple, rated their experience in the 

laboratory at 7 or above. 

5.3 Limitations 

As with any study, limitations and assumptions are inherent and impinge the interpretation and 

relevance of the results. The most salient limitations are as follows: 

- In the future, the administrator of the pre-study interview questionnaire should not be the 

principal investigator. They remained as unbiased as possible, but the administrator 

should not be the researcher who requires a particular sample size in a short amount of 

time. However, couples who participated subjectively reported experiencing a high level 

of comfort and professionalism with the research team. 

- As previously mentioned, minimal slippage of the sacrum tracking cluster occurred in 

some of the male and female participants and an assumption was made that this occurred 

during the first simulated trial. Visual inspection of the kinematic signals confirmed this 

with most subjects. In the future, once participants are fully fitted with their 

instrumentation, they should be asked to simulate each position for a few seconds. The 

research team with re-check security of the instrumentation and then a calibration will be 

performed to re-establish the baseline. 

- Muscle activity was only measured unilaterally for all subjects, given the availability of 

EMG channels. The assumption for healthy participants performing symmetrical 

movements was that left-sided muscle activity of the same sites would mirror those 

measured from the right side. Symmetrical muscle activation of healthy subjects has been 

demonstrated in previous work from our lab (McGill 1998). Mirrored muscle activity was 



 

 84 

assumed for males and females in both QUADRUPED and MISSIONARY variations, 

but not SIDELYING – the trunk and hip muscle activity of the contralateral side of male 

and female participants during SIDELYING is not yet known. 

- In in vivo experiments in biomechanics, encumbrance of the subjects is always a concern. 

This concern was anticipated, which was why couples were informally asked their 

comfort-level ten-point-scale question upon completion of the data collection. Out of the 

ten couples included in this study, nine rated their experience in the laboratory as 

representative of their experience at home as greater than or equal to seven on a ten-point 

scale (one being not representative at all and ten being completely representative). This 

also supports the fact that the presence of the researcher and research assistant during the 

data collection did not substantially affect their movement. 

- Only male-centric coital positions were studied due to a limitation of instrumentation 

available. Future research should certainly investigate female-centric positions. 

- Each coital position and variation was randomized before participants entered the 

laboratory on the day of data collection. However, all three couples who were assigned 

SIDELYING first, requested to next randomly-assigned position first. The couples 

reported least familiarity with SIDELYING and difficulty initiating penile penetration in 

that position. 

- The data from some couples for MISSIONARY also had to be excluded. Despite proper 

cueing and visual aids throughout the data collection, some females did not perform 

MISSIONARY1, but instead performed MISSIONARY2 and another variation with their 

hips and knees flexed, but feet not in contact with the bed. For future studies, it is 

recommended that couples be asked to demonstrate the simulated positions in front of the 

researcher before beginning the data collection. 

- During the data collection itself, the researcher was unable to visually confirm that actual 

coitus was taking place. Additional clusters were placed on addition upper and lower 

limb segments as well as the head to remain as oriented as possible throughout the 

collection in the virtual collection space. The research team has no reason to believe that 

real coitus did not take place with any of the participants. 

- The magnitudes of lumbar spine compression and shear were not considered in the initial 

recommendations made. Since these loads may differ between positions, 

recommendations may differ from those made based on kinematics alone. Furthermore, 

other motions that may exacerbate LBP were not considered (i.e., intolerance to torsion 

and / or lateral flexion). 

- Finally, the coital positions were performed by participants that did not have a pre-

existing disabling back or hip condition, but the recommendations being made are for a 

clinical setting where recommendations will typically be given to patients with a low 

back injury who may have different movement patterns during coitus. As stated 

throughout the document, this study was meant to provide initial recommendations based 

on a biomechanical analysis in an area that had not previously been explored. This is a 

starting point for recommendations to evolve from, but evidence-based guidance, even if 

it is based on a healthy population, is an improvement from resources health care 

practitioners are currently relying on for this issue. 
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Chapter 6 

Conclusions 

In summary, this first study on human coitus examining spine and hip kinematics and muscle 

activation patterns has shown that it is feasible to collect kinematic and electromyography 

signals during coitus and that flexion-extension motion of the spine and hips, in both males and 

females, is probably of most concern for those who experience pain. The above biomechanical 

analysis of common coital positions may be useful in a clinical context. When a patient presents 

to a health care practitioner with flexion-intolerance from various causes, they are typically 

advised to avoid common activities of daily living (ADLs), including sitting, bending, and 

lifting. Based on the highly repetitive flexion-extension motion of the male and female lumbar 

spine during coitus, it is recommended that during the acute stage of a low back injury resulting 

in flexion-, extension-, or motion-intolerance, that coitus be added to this common list of ADLs 

to be avoided. If the LBP is a more chronic issue, particular common coital positions should be 

avoided. 

For the flexion-intolerant male patient, avoid mSIDE and mMISS2 as they have been shown to 

require the most flexion. Both variations of mQUAD are the more spine-sparing of coital 

positions followed by, mMISS1. Coaching the male patient on proper hip-hinging technique 

while thrusting – an easy technique to incorporate in both variations of mQUAD – will likely 

decrease spine movement and increase the spine-sparing quality of mQUAD. 

 

 

Fig. 59. Initial recommendations for male coital positions to avoid for specific LBP-provoking 

movements 
Note: Motions, postures, and loads may exacerbate LBP. Only specific motions were analyzed in this study; 

therefore, recommendations can only be made for these specific motion intolerances (i.e., flexion-, extension-, and 

motion-intolerance [in the sagittal plane]). 

  

Motion-intolerant Flexion-intolerant Extension-intolerant 

mSIDE mMISS2 mQUAD2 mQUAD1 mMISS1 
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For the flexion-intolerant female patient, avoid both variations of fMISS, especially with hip 

and knee flexion (fMISS2), as they have been shown to be the least spine-sparing. fQUAD2 and 

fSIDE are the more spine-sparing coital positions, followed by fQUAD1. 

 

 

Fig. 60. Initial recommendations for female coital positions to avoid for specific LBP-provoking 

movements. 
Note: Motions, postures, and loads may exacerbate LBP. Only specific motions were analyzed in this study; 

therefore, recommendations can only be made for these specific motion intolerances (i.e., flexion-, extension-, and 

motion-intolerance [in the sagittal plane]). 

Seemingly minor posture changes for a coital position should not be considered lightly; these 

can change the spine kinematic profile significantly, resulting in a coital position that was 

considered spine-sparing becoming a position that should be avoided. Thus, spine-sparing coitus 

appears to be possible for the flexion-, extension-, and motion-intolerant patient. Health care 

practitioners may recommend appropriate coital positions and coach coital movement patterns, 

such as speed control and hip-hinging. 

With respect to future research in the area of sex biomechanics, using simulated coitus in 

replace of real coitus is not justifiable according to the data of this study. However, including a 

simulated condition did prove beneficial for increasing the comfort level of the couples and 

allowing time to practice the experimental protocol. Future directions may address female-

centric positions (e.g., „reverse missionary‟ with male supine and female seated on top), and 

back-pained patients with and without an intervention (e.g., movement pattern coaching or aides, 

such as a lumbar support). 

  

Motion-intolerant Flexion-intolerant Extension-intolerant 

fSIDE fMISS2 fQUAD2 fQUAD1 fMISS1 
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Appendix A 

Pre-screening Interview Questionnaire 

Investigator – Thank you for coming to speak with me today. We ask that every potential participant 

comes in for this preliminary visit, so that you have an opportunity to see the lab and ask me any 

questions that you may have and I may get to know a little bit more about you and your partner. It‟s very 

important for you to know that anything we talk about today will not be shared with anyone, including 

your partner. 

1.  

a. How long have you and your partner been together? 

b. How long have you and your partner been in a sexual relationship together? 

2. When you and your partner are faced with a decision, how do you work through it? 

3. When you and your partner disagree, how do you resolve the conflict? 

4.  

a. Do you feel that your sexual life with your partner is satisfactory? 

b. Do you feel that you can comfortably talk to your partner about your sexual life? 

5.  

a. Have you and your partner discussed participating in this study? 

b. Do you wish to participate? 

c. If so, why? 

d. Do you feel comfortable participating in this study? 

6.  

a. If, in the middle of the study, you decided that you no longer wanted to participate and wanted to 

withdraw your consent, would you let your partner know? 

b. How would you convey this? 

c. You know your partner very well. What do you think their response would be? 

d. What do you think the researcher‟s response would be? 

7. If the roles were reversed and it was your partner that no longer wanted to participate and wanted to withdraw 

consent, how would you respond? 

8. What would help you to feel comfortable in the laboratory environment – what would make the setting less 

“lab-like”? 

9. I‟ve asked you a lot of questions – many, very personal – and I appreciate your willingness to share with me. 

Now, do you have any questions for me? 

10. Given all of the things that we have discussed during this interview, are you sure you would like to participate 

in the study? If you decide that you would not like to participate in the study, I will not tell your partner that 

you are uncomfortable participating. Rather, I will just contact both of you within three business days and let 

you know that I will not need your participation in the study at this time. 

Thank you again for meeting with me today. We will be contacting you within three business days to let 

you know if we will be asking you to participate in this study with your partner. 

Student Investigator: Initial here______________________________ when age of potential participant 

has been verified through government-issued photographic identification to be 18 years of age or older.
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Appendix B 

Table 7. Male lumbar spine kinematic results for real and simulated versions of mQUAD1. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. N Median Mean Std. dev. t p 

Avg max deg 7 -.25 -1.08 9.31 9 2.28 .94 5.99   

 % aROM 7 5.15 15.04 34.96 9 13.46 15.27 20.76 .215 .838 

Avg min deg 7 -4.74 -10.23 14.58 9 -3.19 -4.67 7.54   

 % aROM 7 -10.20 -8.61 31.33 9 -4.98 -2.65 14.75 .859 .430 

APDF @ 0.1 % aROM 10 -23.23 -22.01 21.61 10 -15.55 -12.06 13.69 -2.018 .074 

APDF @ 0.5 % aROM 10 -15.83 -9.90 26.16 10 -7.34 -1.29 17.90 -1.454 .180 

APDF @ 0.9 % aROM 10 -9.65 5.55 35.84 10 12.45 10.90 20.92 -.682 .513 

Avg amplitude diff deg 7 6.79 9.15 7.25 9 6.39 5.62 2.12   

 % aROM 7 16.23 23.68 19.54 9 12.92 17.91 10.15 1.544 .183 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001. 

Table 8. Male lumbar spine kinematic results for real and simulated versions of mQUAD2. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. N Median Mean Std. dev. t p 

Avg max deg 7 -6.55 -7.67 9.07 8 1.77 .32 9.63   

 % aROM 7 -12.33 -9.16 14.22 8 13.90 20.96 33.91 -2.167 .082 

Avg min deg 7 -12.26 -15.80 12.20 8 -2.62 -7.90 15.21   

 % aROM 7 -21.05 -22.46 15.99 8 -3.00 -1.95 30.95 -2.001 .102 

APDF @ 0.1 % aROM 10 -27.67 -24.95 15.60 10 -13.37 -10.22 25.53 -2.570 .030* 

APDF @ 0.5 % aROM 10 -20.00 -12.54 21.02 10 -3.24 2.27 26.00 -2.510 .033* 

APDF @ 0.9 % aROM 10 -10.37 -.78 27.15 10 13.63 17.70 31.91 -2.346 .044* 

Avg amplitude diff deg 7 4.74 8.10 8.15 8 4.85 8.19 8.42   

 % aROM 7 7.40 13.26 11.52 8 16.97 22.87 16.98 -1.528 .187 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 
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Table 9. Male lumbar spine kinematic results for real and simulated versions of mMISS1. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 7 6.83 -1.52 17.11 7 7.31 11.34 17.48   

 % aROM 7 19.10 13.98 42.83 7 37.96 39.80 36.99 -1.588 .173 

Avg min deg 7 -19.30 -16.23 15.11 7 -5.06 -6.22 19.35   

 % aROM 7 -31.87 -23.87 23.72 7 -7.65 -5.57 30.69 -2.253 .074 

APDF @ 0.1 % aROM 9 -35.98 -28.58 22.33 10 -19.22 -17.37 27.43 -1.160 .280 

APDF @ 0.5 % aROM 9 -10.40 -15.29 25.18 10 -12.12 2.22 34.42 -1.114 .298 

APDF @ 0.9 % aROM 9 12.26 5.07 38.75 10 12.59 23.52 40.96 -.869 .410 

Avg amplitude diff deg 7 9.88 14.68 11.87 7 18.44 17.50 9.58   

 % aROM 7 13.72 37.86 35.43 7 35.56 45.22 28.57 -.871 .424 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

Table 10. Male lumbar spine kinematic results for real and simulated versions of mMISS2. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 10 -1.21 -4.67 11.24 9 1.87 .40 10.75   

 % aROM 10 -.55 -.73 25.74 9 9.76 9.81 25.48 -.523 .615 

Avg min deg 10 -30.72 -28.14 13.82 9 -18.69 -22.90 12.78   

 % aROM 10 -53.35 -44.88 19.78 9 -37.80 -35.72 14.68 -1.555 .158 

APDF @ 0.1 % aROM 10 -57.84 -49.97 19.91 10 -42.98 -42.68 16.30 -1.606 .143 

APDF @ 0.5 % aROM 10 -29.27 -31.79 21.07 10 -22.99 -23.92 20.75 -1.114 .298 

APDF @ 0.9 % aROM 10 -6.03 -7.02 25.04 10 .24 -2.19 28.94 .463 .654 

Avg amplitude diff deg 10 22.55 23.43 8.94 9 26.67 23.33 6.36   

 % aROM 10 46.86 44.10 17.55 9 38.52 45.54 19.96 .100 .923 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 
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Table 11. Male lumbar spine kinematic results for real and simulated versions of mSIDE. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 9 -23.09 -23.10 14.86 9 -12.58 -15.76 13.53   

 % aROM 9 -33.36 -35.24 21.35 9 -20.73 -23.16 23.77 -1.302 .234 

Avg min deg 9 -37.56 -38.47 14.69 9 -30.94 -33.20 14.87   

 % aROM 9 -62.91 -60.97 15.60 9 -56.53 -52.04 20.93 -1.993 .086 

APDF @ 0.1 % aROM 10 -68.67 -65.40 15.37 10 -62.41 -58.30 19.80 -2.357 .043* 

APDF @ 0.5 % aROM 10 -56.59 -54.55 16.55 10 -51.14 -46.29 20.43 -2.352 .043* 

APDF @ 0.9 % aROM 10 -36.85 -39.43 19.30 10 -34.35 -31.26 22.80 -1.725 .119 

Avg amplitude diff deg 9 16.37 15.38 7.73 9 20.03 17.58 8.41   

 % aROM 9 24.04 25.76 14.66 9 26.32 29.14 13.50 -.150 .885 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

Table 12. Male hip kinematic results for real and simulated versions of mQUAD1. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 10 2.57 .36 7.86 10 -.74 -.80 8.28   

 % aROM 10 9.95 13.89 23.16 10 1.20 8.63 21.95 .747 .474 

Avg min deg 10 -12.07 -14.75 13.16 10 -14.51 -15.79 11.27   

 % aROM 10 -13.59 -11.58 21.10 10 -14.61 -16.76 10.91 .952 .366 

APDF @ 0.1 % aROM 10 -10.04 -7.79 19.84 10 -12.28 -12.28 10.67 .907 .388 

APDF @ 0.5 % aROM 10 -.64 3.09 21.38 10 -2.38 -3.14 8.44 1.195 .263 

APDF @ 0.9 % aROM 10 12.73 19.49 25.22 10 5.63 12.76 19.73 .891 .396 

Avg amplitude diff deg 10 14.24 15.16 8.74 10 11.29 15.01 14.22   

 % aROM 10 24.63 25.55 9.27 10 15.69 25.41 24.64 .022 .983 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 
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Table 13. Male hip kinematic results for real and simulated versions of mQUAD2. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 10 1.50 .05 9.16 10 1.75 -.25 9.38   

 % aROM 10 6.85 14.81 26.24 10 11.58 13.71 24.65 .361 .726 

Avg min deg 10 -15.16 -14.96 14.17 10 -11.61 -13.93 12.38   

 % aROM 10 -15.33 -11.71 20.78 10 -11.32 -14.35 13.23 .554 .593 

APDF @ 0.1 % aROM 10 -11.86 -8.07 19.64 10 -7.47 -10.66 12.17 .579 .577 

APDF @ 0.5 % aROM 10 -2.67 4.05 21.99 10 -.75 2.10 16.47 .575 .579 

APDF @ 0.9 % aROM 10 9.39 19.78 27.30 10 15.27 19.46 26.49 .110 .915 

Avg amplitude diff deg 10 15.40 15.02 8.65 10 11.27 13.69 10.05   

 % aROM 10 21.62 26.51 12.20 10 24.94 28.07 17.96 -.359 .728 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

Table 14. Male hip kinematic results for real and simulated versions of mMISS1. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 9 15.77 11.19 10.24 10 1.16 2.56 11.18   

 % aROM 9 54.81 56.38 36.13 10 11.95 25.98 35.81 3.196 .013* 

Avg min deg 9 -4.81 -12.97 10.53 10 -24.20 -23.84 15.73   

 % aROM 9 -4.89 -10.53 20.16 10 -24.41 -24.16 22.38 1.835 .104 

APDF @ 0.1 % aROM 9 .86 -4.44 21.57 10 -20.42 -19.48 21.50 1.919 .091 

APDF @ 0.5 % aROM 9 25.23 23.28 33.54 10 -8.49 -3.74 23.57 2.506 .037* 

APDF @ 0.9 % aROM 9 58.24 58.65 37.12 10 11.79 28.99 37.30 2.800 .023* 

Avg amplitude diff deg 9 21.28 24.18 10.49 10 26.40 26.38 8.36   

 % aROM 9 70.05 67.03 21.16 10 47.11 50.12 22.31 2.233 .056 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 
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Table 15. Male hip kinematic results for real and simulated versions of mMISS2. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 10 -2.54 -1.56 10.80 10 -6.63 -3.80 9.84   

 % aROM 10 -2.66 8.71 27.21 10 -7.21 5.34 23.88 .444 .667 

Avg min deg 10 -28.53 -33.19 14.82 10 -35.39 -34.05 10.88   

 % aROM 10 -33.45 -36.14 15.89 10 -38.67 -36.99 13.41 .139 .892 

APDF @ 0.1 % aROM 10 -27.64 -30.49 15.85 10 -32.95 -31.10 13.12 .103 .920 

APDF @ 0.5 % aROM 10 -9.97 -12.94 13.88 10 -17.16 -15.83 11.31 .550 .596 

APDF @ 0.9 % aROM 10 2.65 12.25 25.67 10 -2.99 9.57 24.48 .315 .760 

Avg amplitude diff deg 10 33.76 31.60 10.12 10 30.03 30.30 8.38   

 % aROM 10 39.73 44.81 21.92 10 35.16 42.49 20.05 .539 .603 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

Table 16. Male hip kinematic results for real and simulated versions of mSIDE. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 10 -1.25 -4.85 12.29 10 -14.40 -12.65 12.88   

 % aROM 10 1.02 5.53 26.33 10 -14.61 -10.88 20.26 1.819 .102 

Avg min deg 10 -32.09 -29.61 10.93 10 -43.44 -41.70 13.17   

 % aROM 10 -33.85 -31.38 10.15 10 -43.51 -44.57 12.83 7.057 <.001*** 

APDF @ 0.1 % aROM 10 -28.35 -26.23 9.93 10 -37.28 -38.81 12.38 6.303 <.001*** 

APDF @ 0.5 % aROM 10 -12.09 -10.97 11.11 10 -22.65 -23.38 12.30 3.387 .008** 

APDF @ 0.9 % aROM 10 3.55 9.42 25.66 10 -9.35 -6.65 18.87 1.838 .099 

Avg amplitude diff deg 10 23.63 24.76 9.88 10 29.65 29.12 13.40   

 % aROM 10 31.44 36.90 24.97 10 33.25 33.77 15.53 .381 .712 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 
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Table 17. Male electromyography signal results for real and simulated versions of mQUAD1. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

UES   

Max % MVC 10 9.84 10.71 6.36 10 7.99 8.45 5.13 .862 .411 

APDF @ 0.1 % MVC 7 .60 1.03 1.26 5 .50 .46 .30 1.303 .263 

APDF @ 0.5 % MVC 10 1.78 2.17 1.68 10 1.20 1.33 .93 1.440 .184 

APDF @ 0.9 % MVC 10 5.03 5.00 2.80 10 4.08 3.94 2.88 .827 .429 

LES   

Max % MVC 10 19.11 20.15 9.15 10 17.23 19.49 10.95 .141 .891 

APDF @ 0.1 % MVC 10 2.10 2.36 2.27 9 1.53 2.10 2.26 -.577 .579 

APDF @ 0.5 % MVC 10 6.38 5.75 3.38 10 4.83 5.31 3.95 .321 .756 

APDF @ 0.9 % MVC 10 11.92 11.64 5.19 10 9.29 10.57 7.26 .449 .664 

LD   

Max % MVC 10 13.39 32.88 44.84 10 8.61 17.10 16.22 1.480 .173 

APDF @ 0.1 % MVC 10 1.12 1.75 1.79 8 .68 1.59 2.13 .594 .571 

APDF @ 0.5 % MVC 10 3.01 7.70 10.27 9 1.90 3.65 4.73 1.702 .127 

APDF @ 0.9 % MVC 10 7.57 17.71 23.21 9 4.88 8.47 8.66 1.757 .117 

RA   

Max % MVC 10 5.67 8.48 8.28 10 3.93 7.77 7.93 .239 .816 

APDF @ 0.1 % MVC 8 1.46 1.43 .99 7 .30 .88 1.01 2.290 .062 

APDF @ 0.5 % MVC 10 2.16 2.32 2.38 10 .84 1.47 1.53 1.749 .114 

APDF @ 0.9 % MVC 10 3.01 4.82 5.36 10 2.31 3.49 3.59 .988 .349 

EO   

Max % MVC 10 9.06 14.45 14.12 9 4.57 12.28 17.03 1.432 .190 

APDF @ 0.1 % MVC 10 1.67 3.99 5.47 9 1.02 2.43 3.31 2.045 .075 

APDF @ 0.5 % MVC 10 2.75 6.03 7.58 9 1.57 4.44 6.40 2.711 .027* 

APDF @ 0.9 % MVC 10 4.85 9.03 10.19 9 2.28 7.39 11.16 2.397 .043* 

IO   

Max % MVC 10 36.43 42.01 27.04 9 20.51 23.79 16.95 1.853 .101 

APDF @ 0.1 % MVC 10 8.32 9.29 6.87 9 4.15 5.53 3.68 1.730 .122 
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APDF @ 0.5 % MVC 10 11.07 17.20 14.45 9 8.31 8.48 4.85 2.025 .077 

APDF @ 0.9 % MVC 10 21.56 27.48 20.38 9 12.00 13.21 7.03 2.317 .049* 

GMax   

Max % MVC 9 31.30 69.86 105.47 8 36.47 40.52 33.77 1.185 .275 

APDF @ 0.1 % MVC 9 2.81 10.77 24.31 8 2.77 3.81 3.25 .956 .371 

APDF @ 0.5 % MVC 9 7.19 21.38 41.84 8 7.01 9.88 8.20 1.011 .346 

APDF @ 0.9 % MVC 9 16.15 41.79 74.41 8 17.77 22.84 20.61 1.059 .325 

BF   

Max % MVC 10 7.18 9.54 6.49 9 4.88 7.06 7.54 1.508 .170 

APDF @ 0.1 % MVC 10 1.19 1.24 .63 8 .53 1.22 1.41 .016 .987 

APDF @ 0.5 % MVC 10 2.18 2.32 1.08 9 1.29 2.13 2.61 .161 .876 

APDF @ 0.9 % MVC 10 3.64 4.25 2.46 9 3.06 4.12 5.20 .051 .960 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 
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Table 18. Male electromyography signal results for real and simulated versions of mQUAD2. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

UES   

Max % MVC 10 8.97 9.69 6.98 10 8.30 10.11 6.62 -.193 .852 

APDF @ 0.1 % MVC 8 .43 .78 .91 6 .47 .83 .98 -.325 .758 

APDF @ 0.5 % MVC 10 1.36 1.88 1.67 10 1.40 2.09 1.95 -.400 .699 

APDF @ 0.9 % MVC 10 4.48 4.76 3.11 10 3.16 4.81 3.73 -.053 .959 

LES   

Max % MVC 10 19.39 17.61 6.88 9 19.25 18.31 8.39 -.082 .937 

APDF @ 0.1 % MVC 9 1.84 2.35 2.02 8 1.61 1.71 1.44 1.180 .277 

APDF @ 0.5 % MVC 10 4.71 5.06 2.74 9 5.85 5.49 2.44 -.454 .662 

APDF @ 0.9 % MVC 10 11.40 10.84 3.88 9 11.87 10.90 5.14 .075 .942 

LD   

Max % MVC 10 11.90 21.03 21.07 10 12.85 16.27 10.88 .865 .410 

APDF @ 0.1 % MVC 10 .67 1.47 1.63 9 .56 .91 .82 1.318 .224 

APDF @ 0.5 % MVC 10 2.61 5.32 5.89 9 2.20 3.68 3.66 .656 .530 

APDF @ 0.9 % MVC 10 6.33 11.54 13.07 10 5.51 8.24 7.28 .869 .408 

RA   

Max % MVC 10 6.67 7.63 5.17 10 5.85 6.46 5.18 .629 .545 

APDF @ 0.1 % MVC 10 1.29 1.11 1.00 9 .42 .84 .94 1.735 .121 

APDF @ 0.5 % MVC 10 2.11 1.94 1.60 10 1.46 1.46 1.18 1.044 .324 

APDF @ 0.9 % MVC 10 3.20 3.81 3.13 10 2.42 2.79 2.21 .999 .344 

EO   

Max % MVC 10 8.14 14.89 16.05 10 4.88 11.96 18.55 1.798 .106 

APDF @ 0.1 % MVC 10 1.67 3.84 5.41 10 .93 2.59 3.90 2.173 .058 

APDF @ 0.5 % MVC 10 2.53 6.03 8.63 10 1.50 4.89 8.02 2.576 .030* 

APDF @ 0.9 % MVC 10 3.79 8.69 11.28 10 2.51 7.37 11.71 1.971 .080 

IO   

Max % MVC 10 33.19 42.22 27.40 10 23.35 23.63 11.89 1.976 .080 

APDF @ 0.1 % MVC 10 7.64 8.54 5.53 10 3.55 5.38 3.40 1.695 .124 
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APDF @ 0.5 % MVC 10 12.39 15.39 9.70 10 8.07 9.15 4.64 2.003 .076 

APDF @ 0.9 % MVC 10 19.03 25.28 16.80 10 15.62 14.38 7.15 1.992 .077 

GMax   

Max % MVC 9 29.75 66.36 83.52 9 37.86 41.85 37.71 1.448 .186 

APDF @ 0.1 % MVC 9 3.29 10.79 22.21 9 3.48 5.97 7.63 .955 .367 

APDF @ 0.5 % MVC 9 7.74 20.31 33.84 9 7.22 11.76 12.70 1.176 .273 

APDF @ 0.9 % MVC 9 15.41 37.98 53.34 9 19.05 24.40 23.45 1.290 .233 

BF   

Max % MVC 10 6.01 6.98 4.29 9 6.00 8.61 8.05 -.574 .582 

APDF @ 0.1 % MVC 10 1.20 1.17 .50 9 .54 .71 .53 1.912 .092 

APDF @ 0.5 % MVC 10 2.28 2.25 .92 9 1.06 1.55 1.33 1.808 .108 

APDF @ 0.9 % MVC 10 3.52 4.11 2.37 9 2.90 3.28 2.84 1.769 .115 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

Table 19. Male electromyography signal results for real and simulated versions of mMISS1. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

UES   

Max % MVC 9 6.01 5.21 2.48 8 2.77 3.76 2.06 1.203 .268 

APDF @ 0.1 % MVC 8 .87 .91 .58 7 .54 .53 .36 4.721 .003** 

APDF @ 0.5 % MVC 8 1.61 1.67 .82 8 .78 .98 .71 4.606 .002** 

APDF @ 0.9 % MVC 8 3.32 2.97 1.39 9 1.24 1.59 1.18 2.832 .025* 

LES   

Max % MVC 9 4.01 4.84 3.29 8 3.42 4.29 2.97 .538 .607 

APDF @ 0.1 % MVC 9 .44 .59 .54 8 .28 .36 .32 3.593 .009** 

APDF @ 0.5 % MVC 9 .72 1.15 .97 8 .47 .65 .47 2.427 .046* 

APDF @ 0.9 % MVC 9 1.19 2.15 1.89 8 1.45 1.38 .73 1.455 .189 

LD   

Max % MVC 9 8.50 13.44 12.08 8 7.77 12.35 10.58 .508 .627 

APDF @ 0.1 % MVC 9 1.79 2.93 2.71 8 1.19 1.59 1.30 2.271 .057 

APDF @ 0.5 % MVC 9 3.18 5.63 5.25 8 3.24 3.75 3.12 1.846 .107 

APDF @ 0.9 % MVC 9 4.94 8.86 8.65 8 4.93 6.60 5.57 1.341 .222 
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RA   

Max % MVC 9 33.80 37.22 21.17 8 22.84 29.92 23.22 .905 .395 

APDF @ 0.1 % MVC 8 6.18 6.28 4.32 8 2.60 2.92 2.49 2.657 .033* 

APDF @ 0.5 % MVC 9 9.47 11.76 8.83 8 6.87 7.18 4.15 2.080 .076 

APDF @ 0.9 % MVC 9 18.21 23.79 17.05 8 14.48 16.27 9.24 1.417 .199 

EO   

Max % MVC 9 47.47 41.65 29.95 8 16.81 22.28 21.63 2.221 .062 

APDF @ 0.1 % MVC 9 2.03 8.25 10.43 8 1.43 2.52 2.46 1.766 .121 

APDF @ 0.5 % MVC 9 13.89 14.62 13.07 8 3.47 6.10 5.18 2.174 .066 

APDF @ 0.9 % MVC 9 30.00 26.99 21.55 8 6.67 12.55 12.42 2.272 .057 

IO   

Max % MVC 9 33.52 33.20 24.19 8 16.35 17.86 9.79 2.012 .084 

APDF @ 0.1 % MVC 9 4.23 5.99 5.31 8 1.46 2.30 1.93 2.235 .061 

APDF @ 0.5 % MVC 9 8.72 10.53 7.52 8 3.11 4.37 2.74 2.893 .023* 

APDF @ 0.9 % MVC 9 14.37 18.60 13.13 8 6.98 8.17 3.90 2.939 .022* 

GMax   

Max % MVC 8 22.99 46.86 64.94 7 5.21 9.12 11.22 1.577 .166 

APDF @ 0.1 % MVC 5 .43 2.16 4.19 4 .09 1.28 2.89 1.111 .348 

APDF @ 0.5 % MVC 8 1.04 3.84 5.87 7 .28 1.14 2.62 1.774 .126 

APDF @ 0.9 % MVC 8 10.05 22.75 38.63 7 1.34 3.05 3.85 1.417 .206 

BF   

Max % MVC 9 15.21 29.27 38.80 7 5.59 23.90 43.56 1.863 .112 

APDF @ 0.1 % MVC 7 .49 .70 .75 5 .13 .86 1.41 -.947 .397 

APDF @ 0.5 % MVC 9 1.17 1.78 1.61 5 1.81 2.67 2.71 -1.073 .344 

APDF @ 0.9 % MVC 9 8.46 8.66 8.62 7 1.75 12.22 26.52 -.682 .521 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 
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Table 20. Male electromyography signal results for real and simulated versions of mMISS2. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

UES   

Max % MVC 10 5.65 5.72 2.91 9 3.81 4.49 2.08 1.029 .334 

APDF @ 0.1 % MVC 8 1.24 1.02 .61 8 .36 .60 .52 2.382 .049* 

APDF @ 0.5 % MVC 8 2.07 1.89 .95 8 .69 1.02 .65 2.925 .022* 

APDF @ 0.9 % MVC 10 2.49 2.83 1.89 8 1.38 1.76 .85 2.594 .036* 

LES   

Max % MVC 10 6.18 7.47 5.71 9 3.94 4.84 3.45 .765 .466 

APDF @ 0.1 % MVC 9 .65 .55 .38 7 .31 .32 .19 3.307 .016* 

APDF @ 0.5 % MVC 10 1.05 1.09 .84 9 .50 .52 .35 3.270 .011* 

APDF @ 0.9 % MVC 10 2.25 2.41 2.04 9 1.19 1.13 .71 2.321 .049* 

LD   

Max % MVC 10 8.74 27.24 36.07 9 4.93 16.37 21.51 2.155 .063 

APDF @ 0.1 % MVC 10 2.57 6.80 8.72 8 1.75 4.80 8.06 1.122 .299 

APDF @ 0.5 % MVC 10 3.98 10.85 14.09 9 2.32 6.88 9.99 1.543 .161 

APDF @ 0.9 % MVC 10 6.60 16.06 20.27 9 3.58 11.28 15.42 2.056 .074 

RA   

Max % MVC 10 33.24 33.93 23.67 9 9.14 22.49 30.08 1.142 .286 

APDF @ 0.1 % MVC 9 1.11 1.38 1.25 8 .68 1.24 1.40 1.824 .111 

APDF @ 0.5 % MVC 10 3.90 5.73 6.07 9 1.00 2.82 3.94 2.100 .069 

APDF @ 0.9 % MVC 10 16.87 17.40 15.17 9 3.66 7.63 8.91 2.169 .062 

EO   

Max % MVC 10 20.95 29.02 22.51 9 8.89 17.50 16.27 3.020 .017* 

APDF @ 0.1 % MVC 9 1.49 2.43 2.48 7 .67 1.20 .97 1.787 .124 

APDF @ 0.5 % MVC 10 5.18 6.98 7.07 9 4.16 3.25 2.55 2.346 .047* 

APDF @ 0.9 % MVC 10 9.82 16.07 14.79 9 6.88 8.66 8.29 2.451 .040* 

IO   

Max % MVC 10 27.82 32.98 22.11 9 11.87 16.83 10.08 2.534 .035* 

APDF @ 0.1 % MVC 10 1.54 2.86 3.41 8 1.09 1.44 1.50 2.598 .036* 
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APDF @ 0.5 % MVC 10 5.11 7.74 6.53 9 2.71 2.97 2.24 3.379 .010* 

APDF @ 0.9 % MVC 10 15.78 16.51 10.70 9 5.62 7.45 4.72 3.097 .015* 

GMax   

Max % MVC 9 44.61 65.03 66.65 8 14.68 20.05 20.10 2.218 .062 

APDF @ 0.1 % MVC 4 2.65 2.84 2.52 4 .11 1.26 2.86 .790 .487 

APDF @ 0.5 % MVC 9 2.16 3.95 4.45 8 .43 1.22 2.66 3.129 .017* 

APDF @ 0.9 % MVC 9 18.65 28.37 35.60 8 4.55 5.21 4.92 2.055 .079 

BF   

Max % MVC 10 19.47 38.94 60.63 8 13.77 13.20 7.35 1.225 .260 

APDF @ 0.1 % MVC 5 .29 .76 .89 6 .17 .69 1.00 -.967 .405 

APDF @ 0.5 % MVC 10 1.21 2.87 3.55 7 .58 1.52 1.67 1.646 .151 

APDF @ 0.9 % MVC 10 10.88 14.86 18.79 8 3.26 4.78 4.35 1.393 .206 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

Table 21. Male electromyography signal results for real and simulated versions of mSIDE. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

UES   

Max % MVC 10 9.91 11.54 8.28 10 13.59 14.28 9.82 -.767 .463 

APDF @ 0.1 % MVC 9 .87 1.82 3.23 9 1.31 1.59 1.26 .256 .805 

APDF @ 0.5 % MVC 10 2.39 3.51 4.37 10 3.49 3.78 2.77 -.179 .862 

APDF @ 0.9 % MVC 10 4.97 6.45 6.19 10 7.53 7.05 4.88 -.300 .771 

LES   

Max % MVC 10 10.91 12.15 6.77 10 11.48 12.92 7.67 -.222 .829 

APDF @ 0.1 % MVC 9 .81 1.05 .84 8 .54 1.07 1.31 .182 .861 

APDF @ 0.5 % MVC 10 1.78 2.11 1.78 10 1.27 1.85 2.22 .393 .704 

APDF @ 0.9 % MVC 10 4.12 5.15 4.19 10 4.23 4.70 4.18 .254 .805 

LD   

Max % MVC 10 28.75 33.52 31.34 10 15.88 18.13 12.32 1.918 .087 

APDF @ 0.1 % MVC 10 1.04 9.51 20.12 10 2.31 2.33 1.85 1.148 .281 

APDF @ 0.5 % MVC 10 8.77 15.07 23.49 10 5.14 5.09 3.43 1.404 .194 

APDF @ 0.9 % MVC 10 17.18 22.70 27.15 10 9.66 9.25 5.93 1.758 .113 
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RA   

Max % MVC 10 19.27 17.38 11.91 10 9.02 11.55 8.28 2.312 .046* 

APDF @ 0.1 % MVC 10 .73 1.45 1.79 9 .74 1.00 .92 1.098 .304 

APDF @ 0.5 % MVC 10 1.85 3.12 3.05 10 1.84 2.16 1.60 1.231 .250 

APDF @ 0.9 % MVC 10 7.33 8.29 5.79 10 4.26 5.30 3.58 1.886 .092 

EO   

Max % MVC 10 7.48 16.35 15.91 10 8.00 13.38 17.13 .577 .578 

APDF @ 0.1 % MVC 9 .74 1.20 .93 8 1.12 1.17 1.03 .328 .752 

APDF @ 0.5 % MVC 10 1.86 3.25 3.18 10 1.65 2.54 3.07 .715 .493 

APDF @ 0.9 % MVC 10 4.10 9.07 10.04 10 2.85 6.02 8.25 .961 .362 

IO   

Max % MVC 10 29.23 31.56 24.33 10 10.08 23.54 30.36 .725 .487 

APDF @ 0.1 % MVC 10 2.25 2.98 2.05 9 1.05 2.55 3.32 .427 .681 

APDF @ 0.5 % MVC 10 7.40 7.45 3.60 10 1.76 5.14 8.10 .777 .457 

APDF @ 0.9 % MVC 10 17.56 14.79 6.99 10 3.93 11.25 17.07 .564 .587 

GMax   

Max % MVC 9 23.61 90.56 126.44 9 12.71 19.85 19.65 1.679 .132 

APDF @ 0.1 % MVC 9 1.79 2.46 1.90 8 .75 1.44 2.23 1.672 .139 

APDF @ 0.5 % MVC 9 5.01 12.42 15.83 9 1.68 2.35 2.33 2.191 .060 

APDF @ 0.9 % MVC 9 13.81 40.06 62.53 9 5.69 7.13 7.23 1.599 .149 

BF   

Max % MVC 10 27.57 37.68 39.20 9 10.91 19.20 25.50 1.501 .171 

APDF @ 0.1 % MVC 7 1.82 2.31 2.14 4 .49 .45 .38 2.434 .093 

APDF @ 0.5 % MVC 10 4.01 8.11 10.83 9 1.58 2.43 4.04 1.444 .187 

APDF @ 0.9 % MVC 10 11.60 21.48 27.36 9 4.28 8.46 13.67 1.378 .206 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 
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Table 22. Female lumbar spine kinematic results for real and simulated versions of fQUAD1. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 8 5.86 5.54 8.43 8 6.00 6.39 6.50   

 % aROM 8 35.52 36.61 40.19 8 46.46 47.75 38.41 -1.642 .152 

Avg min deg 8 -1.21 -2.25 10.90 8 -2.03 .56 8.77   

 % aROM 8 -.55 .10 44.93 8 -6.81 15.20 44.60 -1.498 .185 

APDF @ 0.1 % aROM 10 -1.66 -4.03 40.84 8 -9.41 9.03 43.89 -1.419 .190 

APDF @ 0.5 % aROM 10 9.58 14.35 40.76 10 11.81 23.73 42.81 -1.351 .210 

APDF @ 0.9 % aROM 10 29.33 35.29 43.99 10 26.76 28.06 35.95 -.607 .563 

Avg amplitude diff deg 8 5.00 7.79 8.42 8 5.54 5.76 3.69   

 % aROM 8 18.15 36.49 48.66 8 22.51 32.28 25.73 .304 .771 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

Table 23. Female lumbar spine kinematic results for real and simulated versions of fQUAD2. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 8 14.60 12.92 8.30 5 9.59 7.94 8.77   

 % aROM 8 84.56 66.72 36.80 5 87.69 63.13 46.91 .062 .954 

Avg min deg 8 12.04 7.48 10.07 5 3.81 1.90 11.41   

 % aROM 8 59.40 41.17 43.49 5 28.79 25.54 46.71 .941 .400 

APDF @ 0.1 % aROM 10 46.25 29.96 46.25 9 21.18 29.89 44.87 .010 .992 

APDF @ 0.5 % aROM 10 72.87 52.40 44.45 10 55.47 49.43 44.45 .669 .520 

APDF @ 0.9 % aROM 10 89.33 67.49 45.65 10 87.60 62.40 48.45 .560 .591 

Avg amplitude diff deg 8 5.78 5.44 4.25 5 4.27 6.05 3.23   

 % aROM 8 16.06 25.51 27.31 5 25.24 37.68 28.47 -2.687 .055 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

 

 



 

 107 

Table 24. Female lumbar spine kinematic results for real and simulated versions of fMISS1. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 6 -7.99 -7.52 5.61 6 .44 1.27 3.51   

 % aROM 6 -22.19 -22.01 17.78 6 6.46 10.76 21.21 -4.873 .005** 

Avg min deg 6 -13.83 -14.00 5.23 6 -5.53 -4.57 2.52   

 % aROM 6 -40.62 -43.78 14.57 6 -14.52 -14.31 9.03 -7.584 .001** 

APDF @ 0.1 % aROM 6 -36.77 -40.16 15.36 6 -10.19 -10.72 8.44 -6.501 .001** 

APDF @ 0.5 % aROM 6 -25.45 -28.16 13.04 6 -1.04 1.33 10.76 -8.053 <.001*** 

APDF @ 0.9 % aROM 6 -15.03 -15.59 15.92 6 13.71 16.02 19.28 -4.703 .005** 

Avg amplitude diff deg 6 7.22 6.46 3.21 6 5.00 5.86 3.21   

 % aROM 6 18.44 21.70 13.61 6 21.01 25.18 18.79 -.482 .650 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

Table 25. Female lumbar spine kinematic results for real and simulated versions of fMISS2. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 9 -15.30 -17.07 7.57 10 -13.93 -11.90 6.11   

 % aROM 9 -40.86 -44.42 14.47 10 -33.27 -33.46 16.33 -2.196 .059 

Avg min deg 9 7.65 -23.33 -22.99 10 -20.41 -18.90 6.53   

 % aROM 9 -60.40 -62.34 16.91 10 -5.346 -54.60 21.19 -2.950 .018* 

APDF @ 0.1 % aROM 9 -55.89 -58.29 17.41 10 -49.37 -50.59 20.76 -3.019 .017* 

APDF @ 0.5 % aROM 9 -51.18 -50.70 16.13 10 -41.46 -40.46 18.67 -3.422 .009** 

APDF @ 0.9 % aROM 9 -38.22 -38.80 13.70 10 -27.38 -27.85 16.60 -2.370 .045* 

Avg amplitude diff deg 9 7.09 6.24 2.77 10 7.06 6.99 3.34   

 % aROM 9 18.08 17.86 10.27 10 19.40 21.10 13.48 .157 .879 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 
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Table 26. Female lumbar spine kinematic results for real and simulated versions of fSIDE. 

  Real Simulated   

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 9 4.48 6.48 7.29 8 1.48 2.54 5.18   

 % aROM 9 21.64 33.40 36.56 8 11.26 20.13 29.99 1.076 .318 

Avg min deg 9 1.94 1.51 8.03 8 -5.58 -4.29 6.64   

 % aROM 9 11.14 12.09 36.67 8 -14.25 -8.77 29.63 3.057 .018* 

APDF @ 0.1 % aROM 10 7.89 12.30 34.38 10 -6.94 -6.77 25.39 3.244 .010* 

APDF @ 0.5 % aROM 10 18.84 26.65 35.97 10 2.77 7.27 25.60 2.886 .018* 

APDF @ 0.9 % aROM 10 28.30 38.51 37.36 10 18.37 24.25 28.37 1.746 .115 

Avg amplitude diff deg 9 5.86 4.99 2.23 8 5.09 6.87 4.05   

 % aROM 9 17.39 21.39 9.72 8 29.49 29.05 16.65 -1.593 .155 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

Table 27. Female hip kinematic results for real and simulated versions of fQUAD1. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 9 -68.89 -68.12 16.46 10 -63.88 -65.63 16.44   

 % aROM 9 -72.32 -73.35 13.12 10 -75.89 -75.03 17.98 -.153 .882 

Avg min deg 9 -74.54 -75.37 17.16 10 -70.33 -72.31 14.16   

 % aROM 9 -82.35 -81.20 12.81 10 -84.94 -82.73 15.67 -.068 .947 

APDF @ 0.1 % aROM 10 -80.36 -78.84 12.25 10 -82.37 -79.70 15.09 .357 .729 

APDF @ 0.5 % aROM 10 -73.56 -72.76 12.12 10 -76.12 -74.24 16.51 .490 .636 

APDF @ 0.9 % aROM 10 -67.26 -67.45 12.75 10 -69.26 -68.25 18.15 .235 .819 

Avg amplitude diff deg 9 7.18 7.24 3.02 10 4.74 6.66 4.42   

 % aROM 9 7.53 7.83 3.30 10 5.13 7.67 4.93 -.246 .812 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 
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Table 28. Female hip kinematic results for real and simulated versions of fQUAD2. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 9 -52.69 -57.32 17.75 10 -53.22 -52.43 12.79   

 % aROM 9 -60.06 -63.67 16.78 10 -61.79 -62.39 14.74 -.207 .841 

Avg min deg 9 -60.83 -63.50 18.51 10 -58.25 -60.99 11.64   

 % aROM 9 -68.39 -70.52 16.88 10 -72.21 -72.38 12.15 .658 .529 

APDF @ 0.1 % aROM 10 -63.07 -66.29 15.61 10 -67.14 -68.58 12.07 .678 .515 

APDF @ 0.5 % aROM 10 -57.48 -61.36 16.04 10 -61.46 -62.12 13.37 .207 .841 

APDF @ 0.9 % aROM 10 -52.22 -56.44 16.24 10 -55.02 -55.64 14.50 -.205 .842 

Avg amplitude diff deg 9 5.29 6.16 2.48 10 6.80 8.56 4.75   

 % aROM 9 6.61 6.83 2.30 10 7.92 10.00 5.35 -2.259 .054 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

Table 29. Female hip kinematic results for real and simulated versions of fMISS1. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 4 -2.09 -6.40 15.63 4 3.12 -.45 11.87   

 % aROM 4 .61 -4.27 25.84 4 13.51 7.77 24.29 -4.434 .021* 

Avg min deg 4 -8.18 -14.39 13.77 4 -5.09 -5.00 12.01   

 % aROM 4 -8.43 -18.32 19.97 4 -5.27 -2.69 21.68 -1.772 .174 

APDF @ 0.1 % aROM 6 -4.58 -8.31 19.18 6 4.31 4.72 21.26 -2.660 .045* 

APDF @ 0.5 % aROM 6 .12 -1.44 21.61 6 9.28 10.74 23.58 -2.932 .033* 

APDF @ 0.9 % aROM 6 6.13 8.46 27.27 6 20.78 19.06 25.84 -4.189 .009** 

Avg amplitude diff deg 4 7.88 8.00 4.50 5 3.69 4.56 3.25   

 % aROM 4 11.98 14.07 11.37 5 6.37 10.45 9.08 .424 .700 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 
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Table 30. Female hip kinematic results for real and simulated versions of fMISS2. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 8 -36.42 -31.19 17.20 9 -23.90 -24.85 10.34   

 % aROM 8 -38.56 -32.52 25.89 9 -28.25 -29.67 12.68 -.149 .886 

Avg min deg 8 -42.72 -39.16 14.53 9 -32.74 -33.79 8.66   

 % aROM 8 -45.28 -44.40 17.94 9 -41.18 -40.20 10.71 -.607 .566 

APDF @ 0.1 % aROM 9 -44.42 -41.17 17.10 10 -36.04 -36.75 10.40 -.835 .428 

APDF @ 0.5 % aROM 9 -42.10 -35.13 19.06 10 -29.06 -29.65 10.88 -.977 .357 

APDF @ 0.9 % aROM 9 -33.00 -26.98 26.65 10 -23.86 -23.82 11.99 -.357 .730 

Avg amplitude diff deg 8 6.17 7.99 5.80 9 8.82 8.92 5.18   

 % aROM 8 7.83 11.91 11.66 9 9.13 10.52 6.05 1.060 .330 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

Table 31. Female hip kinematic results for real and simulated versions of fSIDE. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

Avg max deg 10 -57.28 -57.41 13.55 9 -44.08 -41.94 11.73   

 % aROM 10 -63.52 -62.88 16.88 9 -48.31 -47.60 15.68 -5.580 .001** 

Avg min deg 10 -63.73 -63.49 14.48 9 -57.45 -51.43 12.35   

 % aROM 10 -69.41 -69.43 17.61 9 -60.73 -58.02 15.55 -2.386 .044* 

APDF @ 0.1 % aROM 10 -64.64 -66.09 17.66 10 -58.23 -57.04 17.33 -2.785 .021* 

APDF @ 0.5 % aROM 10 -61.79 -61.31 17.38 10 -51.51 -50.85 17.29 -3.929 .003** 

APDF @ 0.9 % aROM 10 -57.10 -56.20 17.25 10 -43.52 -44.11 17.37 -5.433 <.001*** 

Avg amplitude diff deg 10 5.77 6.09 2.64 9 7.76 9.53 6.62   

 % aROM 10 5.94 6.57 2.70 9 7.38 10.46 6.90 -1.519 .167 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

 

 



 

 111 

Table 32. Female electromyography signal results for real and simulated versions of fQUAD1. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

UES   

Max % MVC 9 16.46 15.68 9.51 9 7.13 7.25 4.46 2.616 .031* 

APDF @ 0.1 % MVC 8 1.41 1.48 .89 8 .63 .57 .22 2.937 .022* 

APDF @ 0.5 % MVC 8 2.37 3.08 2.21 8 1.33 1.23 .35 2.366 .050* 

APDF @ 0.9 % MVC 9 5.90 6.11 4.48 9 2.29 2.40 .98 2.702 .027* 

LES   

Max % MVC 9 7.51 9.90 5.18 7 5.91 6.52 3.10 1.948 .099 

APDF @ 0.1 % MVC 8 .74 1.01 1.00 7 .52 .71 .50 -.112 .915 

APDF @ 0.5 % MVC 9 1.34 1.66 1.23 7 .87 1.30 .79 .884 .411 

APDF @ 0.9 % MVC 9 3.94 4.53 2.10 7 1.95 2.65 1.70 2.407 .053 

LD   

Max % MVC 10 18.74 29.79 42.69 9 16.47 31.02 35.54 .004 .997 

APDF @ 0.1 % MVC 10 4.04 6.02 5.70 9 2.87 3.80 3.59 1.932 .089 

APDF @ 0.5 % MVC 10 8.09 10.00 9.70 9 5.97 7.69 6.71 1.452 .185 

APDF @ 0.9 % MVC 10 13.14 16.12 16.83 9 9.45 14.45 12.93 .718 .493 

RA   

Max % MVC 10 5.24 6.86 4.76 9 5.84 7.20 4.56 .021 .984 

APDF @ 0.1 % MVC 10 .74 .99 .78 9 .67 1.10 1.06 -.201 .846 

APDF @ 0.5 % MVC 10 1.29 1.61 1.18 9 1.14 1.99 1.86 -.531 .610 

APDF @ 0.9 % MVC 10 2.34 3.01 2.32 9 2.96 3.75 2.94 -.541 .621 

EO   

Max % MVC 10 7.47 10.26 9.77 9 8.02 10.75 11.01 .089 .931 

APDF @ 0.1 % MVC 9 1.49 2.47 2.35 8 1.29 1.49 1.43 2.535 .039* 

APDF @ 0.5 % MVC 10 2.31 3.57 3.88 9 2.28 2.71 2.07 1.262 .242 

APDF @ 0.9 % MVC 10 4.34 6.08 6.12 9 3.23 5.50 4.78 .487 .639 

IO   

Max % MVC 10 9.75 14.21 14.69 8 11.32 12.25 8.40 .707 .502 

APDF @ 0.1 % MVC 10 1.62 2.43 2.01 8 1.80 1.60 .75 1.524 .171 
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APDF @ 0.5 % MVC 10 3.44 3.81 3.02 8 3.17 3.44 1.82 .599 .568 

APDF @ 0.9 % MVC 10 5.39 6.87 6.52 8 6.28 6.82 4.26 .312 .764 

GMax   

Max % MVC 10 8.27 22.50 29.79 9 4.57 6.03 5.25 1.790 .111 

APDF @ 0.1 % MVC 10 1.35 1.74 1.40 8 .37 .55 .46 3.561 .009** 

APDF @ 0.5 % MVC 10 2.58 4.06 4.59 9 .74 .86 .66 2.282 .052 

APDF @ 0.9 % MVC 10 4.13 8.33 10.40 9 1.26 1.93 1.94 2.198 .059 

BF   

Max % MVC 10 3.24 4.81 5.64 9 1.99 2.94 3.61 -.582 .577 

APDF @ 0.1 % MVC 8 .25 .34 .37 5 .08 .29 .37 .232 .828 

APDF @ 0.5 % MVC 10 .90 .94 .84 8 .37 .55 .51 .429 .681 

APDF @ 0.9 % MVC 10 1.84 2.45 2.68 9 .76 1.08 .92 1.107 .301 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

Table 33. Female electromyography signal results for real and simulated versions of fQUAD2. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

UES   

Max % MVC 9 7.30 14.86 17.55 9 9.52 14.48 13.44 .087 .933 

APDF @ 0.1 % MVC 8 1.05 1.15 .76 8 .82 1.16 1.29 1.547 .166 

APDF @ 0.5 % MVC 8 2.39 2.31 .92 8 1.39 2.42 2.05 .686 .515 

APDF @ 0.9 % MVC 8 4.85 6.28 4.32 8 4.52 6.27 6.04 .200 .847 

LES   

Max % MVC 10 8.70 11.58 7.92 9 9.26 12.64 9.55 -.205 .842 

APDF @ 0.1 % MVC 9 .60 1.17 1.06 8 .62 1.26 1.56 -.885 .405 

APDF @ 0.5 % MVC 10 1.56 2.13 1.68 8 2.09 3.30 4.00 -.879 .409 

APDF @ 0.9 % MVC 10 5.22 6.43 5.51 8 6.56 8.17 6.68 -.503 .630 

LD   

Max % MVC 10 18.44 18.56 14.31 10 12.66 15.77 15.55 1.186 .266 

APDF @ 0.1 % MVC 10 3.28 3.57 2.54 10 2.21 2.48 1.46 2.443 .037* 

APDF @ 0.5 % MVC 10 6.11 6.57 4.41 10 4.76 5.06 3.14 2.109 .064 

APDF @ 0.9 % MVC 10 10.77 11.98 10.07 10 8.21 8.86 7.28 2.264 .050* 



 

 113 

RA   

Max % MVC 10 4.54 7.48 6.91 10 3.38 4.95 3.67 1.186 .266 

APDF @ 0.1 % MVC 10 .61 .91 .83 9 .72 .78 .55 1.230 .254 

APDF @ 0.5 % MVC 10 1.04 1.49 1.30 10 .97 1.29 1.13 1.532 .160 

APDF @ 0.9 % MVC 10 2.18 3.04 2.43 10 1.54 2.29 2.06 2.409 .039* 

EO   

Max % MVC 10 5.61 7.81 6.83 10 5.38 5.23 3.49 1.708 .122 

APDF @ 0.1 % MVC 9 1.80 1.67 1.01 9 1.33 1.53 1.43 .301 .771 

APDF @ 0.5 % MVC 10 2.48 2.36 1.54 10 1.97 2.21 2.02 .295 .775 

APDF @ 0.9 % MVC 10 3.74 4.24 3.18 10 2.87 3.23 2.63 1.340 .213 

IO   

Max % MVC 9 9.32 14.58 12.06 9 12.61 12.06 6.62 .735 .483 

APDF @ 0.1 % MVC 9 2.68 3.08 2.92 9 1.97 2.36 1.34 .977 .357 

APDF @ 0.5 % MVC 9 3.69 5.21 4.70 9 3.93 3.92 1.81 1.074 .314 

APDF @ 0.9 % MVC 9 5.23 8.40 7.38 9 5.67 6.48 3.28 .996 .349 

GMax   

Max % MVC 10 7.86 10.07 9.88 10 3.49 9.60 12.42 .141 .891 

APDF @ 0.1 % MVC 10 1.42 1.48 1.02 10 .70 .81 .54 2.191 .056 

APDF @ 0.5 % MVC 10 2.25 2.73 2.03 10 1.01 1.96 1.79 1.413 .191 

APDF @ 0.9 % MVC 10 4.39 5.38 4.97 10 1.89 4.49 5.37 .650 .532 

BF   

Max % MVC 10 2.77 3.12 2.66 10 2.05 3.16 2.68 -.045 9.65 

APDF @ 0.1 % MVC 8 .15 .54 .75 6 .15 .32 .37 1.036 .348 

APDF @ 0.5 % MVC 10 .49 .99 1.20 9 .33 .67 .60 .889 .400 

APDF @ 0.9 % MVC 10 1.20 1.83 1.80 10 1.04 1.27 1.12 1.141 .283 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 
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Table 34. Female electromyography signal results for real and simulated versions of fMISS1. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

UES   

Max % MVC 5 6.82 12.63 12.94 4 11.19 16.94 13.26 -1.722 .184 

APDF @ 0.1 % MVC 4 .41 2.74 4.89 2 .90 1.99 2.74 .654 .631 

APDF @ 0.5 % MVC 5 .49 3.96 7.56 4 2.05 3.31 4.06 .502 .650 

APDF @ 0.9 % MVC 5 1.38 6.06 9.79 4 4.02 6.53 5.93 -.201 .853 

LES   

Max % MVC 6 1.80 2.89 2.89 5 4.45 6.09 3.58 -1.149 .315 

APDF @ 0.1 % MVC 5 .40 .55 .61 4 .92 .94 .89 -.768 .498 

APDF @ 0.5 % MVC 5 .65 .90 .91 5 .44 1.30 1.47 -.768 .498 

APDF @ 0.9 % MVC 5 1.15 1.62 1.50 5 1.47 2.41 2.47 -.566 .611 

LD   

Max % MVC 6 7.31 23.66 34.76 5 7.67 14.56 16.26 .890 .424 

APDF @ 0.1 % MVC 6 1.38 4.14 6.66 3 2.54 5.08 4.81 .639 .588 

APDF @ 0.5 % MVC 6 2.84 7.80 11.67 5 3.56 5.60 8.08 .946 .398 

APDF @ 0.9 % MVC 6 4.84 12.78 17.68 5 5.33 8.92 12.00 .962 .390 

RA   

Max % MVC 6 3.51 4.18 2.85 5 2.85 4.27 4.56 -.035 .974 

APDF @ 0.1 % MVC 5 .80 .83 .18 4 .39 .42 .14 8.142 .004** 

APDF @ 0.5 % MVC 6 1.47 1.23 .59 5 .83 .69 .35 3.557 .024* 

APDF @ 0.9 % MVC 6 2.30 2.04 1.01 5 1.38 1.19 .59 3.043 .038* 

EO   

Max % MVC 6 11.02 10.61 8.59 5 5.25 7.51 5.59 1.994 .117 

APDF @ 0.1 % MVC 5 1.71 2.73 3.11 4 .75 .80 .49 1.760 .177 

APDF @ 0.5 % MVC 6 2.89 3.76 3.90 5 1.53 1.39 .87 1.905 .129 

APDF @ 0.9 % MVC 6 5.14 5.59 4.87 5 3.05 3.21 2.12 1.761 .153 

IO   

Max % MVC 6 15.05 28.42 33.35 5 11.40 20.14 16.59 1.030 .361 

APDF @ 0.1 % MVC 6 3.16 4.11 3.80 5 .85 .91 .57 1.820 .143 
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APDF @ 0.5 % MVC 6 4.87 7.45 7.95 5 2.90 2.93 2.02 1.775 .150 

APDF @ 0.9 % MVC 6 7.56 14.26 15.55 5 4.88 8.36 7.14 1.342 .251 

GMax   

Max % MVC 5 13.80 20.11 22.00 4 4.03 37.83 58.67 .223 .838 

APDF @ 0.1 % MVC 3 5.67 6.25 4.43 2 .13 2.44 4.70 2.144 .278 

APDF @ 0.5 % MVC 5 2.64 7.66 9.29 4 .35 4.33 7.62 .935 .419 

APDF @ 0.9 % MVC 5 3.97 11.73 14.25 4 .76 18.91 29.61 .179 .869 

BF   

Max % MVC 5 2.29 11.55 15.44 4 4.08 6.93 9.16 1.422 .250 

APDF @ 0.1 % MVC 2 .55 1.90 2.35 1 .19 .19 .17   

APDF @ 0.5 % MVC 3 1.34 3.24 4.11 2 .61 1.06 1.38 1.443 .386 

APDF @ 0.9 % MVC 5 8.23 9.08 8.52 4 .55 3.18 5.23 1.765 .176 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 

Table 35. Female electromyography signal results for real and simulated versions of fMISS2. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

UES   

Max % MVC 7 6.48 11.29 13.41 6 6.70 10.65 9.57 .865 .427 

APDF @ 0.1 % MVC 5 1.78 1.45 1.05 4 .49 .71 .83 1.856 .161 

APDF @ 0.5 % MVC 5 2.43 3.35 3.03 4 1.42 1.38 .88 1.580 .212 

APDF @ 0.9 % MVC 7 2.78 5.30 7.52 6 3.59 4.53 3.63 .764 .479 

LES   

Max % MVC 7 7.59 9.55 5.72 6 6.37 7.22 4.17 .233 .825 

APDF @ 0.1 % MVC 7 .69 2.37 3.81 6 1.15 1.90 2.26 -1.521 .189 

APDF @ 0.5 % MVC 7 1.37 2.96 3.91 6 1.52 3.01 3.39 -1.442 .209 

APDF @ 0.9 % MVC 7 3.64 5.99 5.33 6 2.68 4.48 4.01 -.221 .834 

LD   

Max % MVC 8 9.63 8.85 4.72 7 7.50 7.52 5.71 .296 .777 

APDF @ 0.1 % MVC 8 1.82 2.78 3.05 6 .23 .81 1.17 1.648 .160 

APDF @ 0.5 % MVC 8 2.77 3.91 3.40 7 .59 1.77 2.22 1.060 .330 

APDF @ 0.9 % MVC 8 4.83 5.69 3.80 7 3.83 3.57 2.78 .895 .405 
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RA   

Max % MVC 8 5.83 12.22 13.37 7 5.11 13.12 21.04 1.208 .273 

APDF @ 0.1 % MVC 8 .84 1.30 1.38 7 .42 .40 .29 1.920 .103 

APDF @ 0.5 % MVC 8 2,25 2.57 2.28 7 .89 .87 .57 1.910 .105 

APDF @ 0.9 % MVC 8 3.95 7.49 7.83 7 2.12 5.37 8.74 1.605 .160 

EO   

Max % MVC 8 5.82 11.07 11.22 7 4.34 7.22 9.13 1.926 .102 

APDF @ 0.1 % MVC 7 1.80 2.47 1.83 6 .72 1.18 1.12 1.906 .115 

APDF @ 0.5 % MVC 8 1.96 3.63 3.78 7 1.21 1.90 1.75 1.696 .141 

APDF @ 0.9 % MVC 8 3.70 7.36 7.94 7 1.45 3.79 5.45 2.073 .084 

IO   

Max % MVC 8 21.83 30.44 26.18 6 9.14 14.62 12.92 1.803 .131 

APDF @ 0.1 % MVC 8 3.06 4.83 4.08 6 1.07 1.94 2.16 1.576 .176 

APDF @ 0.5 % MVC 8 7.45 7.64 5.64 6 2.19 3.36 3.06 1.580 .175 

APDF @ 0.9 % MVC 8 13.21 16.93 15.06 6 5.29 7.99 8.19 1.901 .116 

GMax   

Max % MVC 8 11.93 34.49 41.92 7 8.23 22.62 26.99 1.997 .093 

APDF @ 0.1 % MVC 7 1.24 4.33 7.64 5 .47 1.95 3.75 1.097 .334 

APDF @ 0.5 % MVC 8 3.62 8.62 14.98 7 1.52 3.73 6.70 1.318 .235 

APDF @ 0.9 % MVC 8 5.44 19.92 27.51 7 3.95 12.04 16.29 1.651 .150 

BF   

Max % MVC 8 5.10 7.04 5.82 7 3.80 5.03 4.24 .642 .544 

APDF @ 0.1 % MVC 7 .45 2.31 4.35 5 .46 .70 .73 .490 .650 

APDF @ 0.5 % MVC 8 1.17 2.73 4.40 7 .98 1.66 1.23 -1.209 .272 

APDF @ 0.9 % MVC 8 2.41 4.47 4.90 7 1.80 2.93 2.54 .306 .770 

Statistical significance is represented by the following: 
*
p<.05, 

**
p<.01, 

***
p<.001 
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Table 36. Female electromyography signal results for real and simulated versions of fSIDE. 

  Real Simulated 

Outcome Variable n Median Mean Std. dev. n Median Mean Std. dev. t p 

UES   

Max % MVC 8 32.59 30.27 19.59 8 13.91 20.83 16.59 1.600 .154 

APDF @ 0.1 % MVC 7 3.73 3.83 3.53 7 1.17 2.89 3.55 1.862 .112 

APDF @ 0.5 % MVC 8 7.59 7.70 5.37 7 3.50 5.41 5.56 1.738 .133 

APDF @ 0.9 % MVC 8 18.26 16.31 10.12 7 7.84 10.97 7.98 1.624 .156 

LES   

Max % MVC 8 20.03 19.10 12.28 8 15.98 14.36 10.67 1.879 .102 

APDF @ 0.1 % MVC 8 .67 1.99 3.04 7 .36 .91 1.07 1.451 .197 

APDF @ 0.5 % MVC 8 3.78 4.74 5.52 8 1.93 2.64 3.05 2.005 .085 

APDF @ 0.9 % MVC 8 8.12 10.31 8.89 8 7.37 7.74 7.35 1.800 .115 

LD   

Max % MVC 9 17.36 30.39 25.84 9 12.04 17.09 11.74 1.902 .094 

APDF @ 0.1 % MVC 9 4.31 4.29 2.35 9 1.32 2.07 1.87 4.044 .004** 

APDF @ 0.5 % MVC 9 6.83 8.93 6.61 9 3.30 4.07 2.90 3.349 .010* 

APDF @ 0.9 % MVC 9 9.82 16.46 14.16 9 6.14 8.46 5.60 2.166 .062 

RA   

Max % MVC 9 5.67 6.80 5.67 9 4.29 4.45 2.18 .986 .353 

APDF @ 0.1 % MVC 9 .94 1.08 .76 9 .56 .52 .29 2.524 .036* 

APDF @ 0.5 % MVC 9 1.76 1.90 1.31 9 1.04 1.02 .54 1.939 .088 

APDF @ 0.9 % MVC 9 3.20 3.85 3.28 9 1.91 2.05 1.29 1.410 .196 

EO   

Max % MVC 9 20.88 21.09 15.88 9 8.60 12.43 12.66 1.635 .141 

APDF @ 0.1 % MVC 9 2.35 2.36 1.76 8 .59 1.16 1.33 1.982 .088 

APDF @ 0.5 % MVC 9 5.90 5.42 3.76 9 1.27 2.21 2.77 2.155 .063 

APDF @ 0.9 % MVC 9 12.81 10.24 6.79 9 2.93 5.17 5.95 1.785 .112 

IO   

Max % MVC 9 18.82 20.09 14.26 9 6.75 12.76 12.40 1.306 .228 

APDF @ 0.1 % MVC 9 2.12 2.57 2.45 8 .75 2.04 2.74 .340 .744 
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APDF @ 0.5 % MVC 9 5.16 5.62 5.16 9 1.81 3.51 4.61 1.102 .302 

APDF @ 0.9 % MVC 9 10.75 10.40 8.47 9 3.25 6.24 7.24 1.386 .203 

GMax   

Max % MVC 9 8.53 12.46 16.07 9 5.80 8.02 6.21 .935 .377 

APDF @ 0.1 % MVC 8 1.30 1.29 1.27 8 .49 .87 .79 1.824 .111 

APDF @ 0.5 % MVC 9 2.37 2.33 2.33 9 1.04 1.88 1.66 .788 .454 

APDF @ 0.9 % MVC 9 5.30 5.51 5.30 9 2.86 4.11 3.49 1.004 .345 

BF   

Max % MVC 9 2.16 2.48 2.15 9 2.51 2.28 1.21 .004 .997 

APDF @ 0.1 % MVC 7 .28 .48 .62 6 .09 .13 .14 1.734 .143 

APDF @ 0.5 % MVC 9 .52 .71 .92 8 .22 .26 .23 1.748 .124 

APDF @ 0.9 % MVC 9 .84 1.21 1.33 9 .61 .70 .53 1.191 .268 

 


