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Abstract 

The design of bicycle frames has remained fairly static for the majority of the past century, but recent 

increases in demand for high performance bicycles has created an accelerated design cycle that 

requires innovation. In order to design new frames with confidence in their capacity to withstand the 

rigors of use, reliable data about the nature of that use is needed, but this data is not currently 

available. The purpose of this research was to develop and implement a system that is capable of 

interpolating loads applied to a bicycle frame during vigorous riding for the purpose of improving the 

quality of information available to bicycle designers. 

The system that was developed employed finite element modeling to locate strain gauges on a frame 

and a least-squares approximate solution of strain readings to interpolate the applied loads. At its best, 

the system is capable of resolving loads with better than a 2% error. This system is limited, though, as 

it can only be applied in cases where the frame has a significant strain reaction to a load case but does 

not have a significant change in geometry during loading. This system was implemented on a cross-

country mountain bicycle frame for the purposes of determining a rider weight to load relationship 

and to compare the standardized test procedures for bicycles to the loads experienced in the field.   

It was confirmed that there is a linear relationship between rider weight and load on the frame for all 

component forces except that applied to the bottom bracket, out of plane with the bicycle frame. It 

was also found that the British Standards fatigue testing practices, which are used internationally to 

assess bicycle safety, are inconsistent in their representation of realistic riding conditions when 

compared with the results from the field tests. Some loads appear conservative, some offer a very 

large factor of safety, and two are not represented at all. In particular, the moment about the bottom 

bracket due to pedaling and the load on the seat from the rider appear to consistently exceed the 

standardized test requirements while the moment caused by fork splay seems much smaller than the 

tests demand.  
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Chapter 1 

Introduction 

1.1 Background 

Cycling is one of the most popular recreational sports in the world and is growing as a means of 

commuting in city centers. The sale of bicycles, accessories and related gear is in excess of six billion 

dollars annually  in North America alone [1].  The basic bicycle design has remained static for much 

of the previous century, however recent advancements in materials science and manufacturing 

processes, including the introduction of aluminum alloys and carbon fiber, as well as the inclusion of 

suspension, have accelerated the development cycle for new bicycles. Also, the popularity of a variety 

of competitive race styles including road, mountain, cross-country, downhill, and more have created a 

demand for innovative and highly specialized designs.  

 In order to meet these demands, new models are developed regularly. For reduced lead time 

between design and sales, finite element modeling (FEM) has been broadly adopted by bicycle frame 

designers. However, in order for these models to be of value, meaningful load cases are required.  

 Currently, the standard practice employs various loads required by the European Standards 

[2] [3] [4] which provide guidelines for impact and fatigue tests needed to validate the safety of a new 

design for release on the European market. These do not, however, consider aspects that affect the 

performance of a bicycle such as stiffness.  It is also not clear to bicycle designers whether these tests 

accurately represent the loads applied to their bicycles by riders of different skill, size and weight. 

Consequently, there is a need for an accurate model of rider induced loads onto a bicycle frame so 

that those conditions can be incorporated into the design process. 

  

1.2 Project motivations 

The intention of this project is to develop a system through which all major loads being applied to a 

bicycle frame can be measured. This system is to be used on a variety of bicycle frames for the 

purpose of developing meaningful data on the loads being applied to bicycle frames under actual 

riding conditions.  

 The overall aim is to create a model of extreme and expected loads that a bicycle can expect 

to see based on the biometrics of the rider and the nature of the riding (road, mountain, stunt, etc.) 
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 The expectation is that this data can be used to inform the design process of new bicycle 

frames for the purposed of performance, durability and comfort as well as give insight into warranty 

periods and pricing. 

1.3 Problem Statement 

To develop and implement a system by which all significant loads applied to a bicycle frame during 

riding can be measured at a rate high enough to capture all significant events over a period long 

enough to capture a full trail ride which includes accelerating, braking, maintaining speed and 

coasting.  

The system will need to be light enough so as to not seriously impact the performance of the 

rider. It must also not require any meaningful change to the bicycle components in their function, 

strength or geometry and it must be possible to apply the system to a variety of bicycle frame 

geometries.  

The system is to be used to collect data from a variety of riders. These data are to be used to 

determine fatigue loading through rainflow analysis, extreme load cases, and statistical models for 

riding events including pedaling and braking.  

 

1.4 Thesis Layout 

This thesis will begin with an exploration into similar work that has been published which will serve 

as a basis for further discussion as well as helping to identify the current gap in published 

documentation which this thesis aims to fill. Following the literature review, the fundamental theory 

upon which the measurement system is being based will be discussed.  

 With the background firmly established, the development process of the system will be 

detailed including proof of concept testing, initial applications, tests and revisions, final 

implementation, and suggestions for future improvement and a discussion of other applications in 

which a similar system could be effectively implemented. This section will also include an analysis 

and discussion of the accuracy of the system. 

 Next, the field tests will be detailed. This section will include summaries of the nature of the 

rides, riders and raw results of these tests. 
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 The next sections will involve analysis of the test data. The focus will be on developing a 

model of applied loads based on rider weight and discussing the results of this model as compared to 

the standardized tests for bicycle safety. 

 The final section will include a discussion of other directions that could be taken following 

from the current research and a summary of the findings and conclusions of the project. 

1.5 Definition of Terms 

1.5.1 Bicycle Components 

 

Figure 1: Bicycle Components [5] 

1. Seat or saddle – Where the rider sits 

2. Seat post – Connects the saddle to the frame, usually has adjustable height 

3. Seat tube – Part of the frame into which the seat post is inserted 

4. Top tube – Horizontal structural member of the frame 

5. Stem – Part of the fork assembly that extends through the head tube 

6. Head tube – Frame member that supports the front fork and handlebar assembly 

7. Down tube – Lower structural member of the frame 

8. Crank arm – Component that connects the pedal to the crank assembly 

9. Seat stay – Structural member of the frame between rear dropout and seat tube 
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10. Chain – Transfers power from crank assembly to rear wheel 

11. Fork – The assembly to which the front wheel is mounted 

12. Chain stay – Structural member of the frame between rear dropout and bottom bracket 

13. Bottom Bracket – Section of the frame through which the crank assembly is mounted 

14. Chainrings – the sprockets connected to the crank assembly 

15. Front shock – The shock absorbers, typically pneumatic, in the fork 

16. Rear Dropout – The part of the frame to which the rear wheel is mounted 

17. Derailleur – Mechanical system that shifts the chain between sprockets, front and rear 

18. Brakes – Mechanical braking system, can be disk or hub brakes, includes front and rear. 

19. Rear Shock – The shock absorber for the rear wheel 

20. Handlebars – Cross bar which the rider uses to steer.  

 

1.5.2 Applied Loads 

There are a number of loads that can be applied to the bicycle frame. For convenience, a series of 

shorthand reference labels were developed by which to identify them. Figure 2: Relevant Load Labels 

shows the labels given to the various load points. Note that most of the loads follow a Cartesian 

coordinate system but the chain and the brake load are applied in their own, unique directions.  

 Also, while the chain force, bottom bracket (BB) forces and the head tube (HT) forces will 

remain in the same location for all bicycles; different configurations can have slightly different seat 

force locations and very different brake force locations. 

 

Figure 2: Relevant Load Labels [6] 
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Chapter 2 

Review of Literature 

2.1 Instrumentation 

The bicycle is by no means a new device and has been studied academically as far back as 1869 [7]. 

Studies of dynamics, kinematics, control and more have been carried out, but much of these studies 

were theoretical or worked on simplified models due to the difficulties taking in-situ measurements 

on a bicycle in use. Developments in computer and instrumentation technology in the 1990s allowed 

for new approaches to the science and a great deal of work has gone into the development of methods 

for gathering and analyzing data on bicycles. 

Most component parts of a bicycle have had custom instrumentation designed. Hull [8] [9] 

[10] and Champoux [11] have put significant effort into the development of instruments to gather data 

from loads applied to pedals. They have independently created six axis pedal dynamometers capable 

of recording the force and position applied to each pedal. These showed excellent ability to collect 

precise force and motion data from riders, but required specialized pedals to be built.  

Hull [12] and Champoux [13] also created systems for measuring wheel loads at the hubs of 

bicycle wheels. These are capable of resolving the three orthogonal forces applied to each dropout 

during riding. There is a limitation on these designs, though, in that they require the modification of 

the frame components.  

Handlebars have also been instrumented for determination of fatigue loading characteristics 

by Hull [14]. This system employed strain gauges on the handlebars and was successfully used to 

investigate off-road cycling conditions and confirm fatigue loading models for the handlebars. This 

supports the effectiveness of using strain gauges to analyze bicycle loading. 

Champoux also developed a complete system for collecting seat, pedal, handlebar and hub 

loads on an off-road bicycle [15]. While effective and had similar end-goals to the project in this 

paper, this system relied on attaching modified components to the bicycle and altering the frame. This 

approach also required a wide variety of instrumentation solutions which adds the challenge of 

monitoring and synching disparate data sources. 

Giannetti implemented a system using strain gauges to monitor the stress distribution 

throughout a racing bicycle frame [16]. This system demonstrates several features ideal for analysis 

of high-performance bicycles. First, it is lightweight; strain gauges and their associated wiring have 

negligible mass. Second, it does not alter the components or the profile of the bicycle. Finally, it is 
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relatively inexpensive as strain gauges are a relatively low-cost sensor. These attributes make the 

system attractive; however it is only capable of interpreting stress distributions in the frame.  This 

method, though, could be used as a basis for a system for measuring the forces being applied to the 

frame if a means of interpolating between the strain readings and the applied loads can be found. 

2.2 Load Testing 

Many attempts have been made to determine the loads experienced by bicycles during riding. These 

are frequently divided into surface induced loads and rider induced loads.  The current project does 

not make a specific distinction between them as all loads impacting the bicycle frame are of interest, 

but it is useful to investigate the results of other studies. 

 Soden and Adeyefa were able to determine normal and shear loads on bicycle pedals, saddle 

and handlebars while accelerating both seated and standing. Through their tests, they determined that 

during normal riding, 50% of rider weight is supported by the saddle and the other 50% moved 

between pedal and handlebar throughout the pedal stroke. While accelerating or climbing, the rider 

applied more than twice their body weight to the forward pedal and accompanied a pull on the 

handlebars that exceeded body weight. The maximum load measured in these cases was at the pedal 

and reached nearly three times body weight of the rider. [17] This study gives good baseline values to 

expect from rider induced loads but was carried out on smooth surfaces and makes no comment on 

terrain effects. 

 Lorenzo and Hull were able to expand on these observations with measurements of reaction 

forces in the wheel hubs. Their results indicate similar results to those above but found that terrain 

effects can increase the load on the pedals and both wheels to five times rider weight.  Through 

experimental tests, they accumulated information on the mean loads and distribution of loads 

expected from the handlebars, front and rear hubs, and vertical and tangential forces on the pedals. 

They also presented a correlation coefficient between each force to assist with fatigue analysis. [18] 

These are useful results for reference. However, they omit the effect of the rear brake and saddle.  

 Stone and Hull investigated the relationship between rider weight and induced loads on 

bicycles. They determined that in all tested ride circumstances, which included a variety of inclines 

and pedaling rates with riders of different weight and skill level, the normal pedal load followed a 

linear relationship with rider weight. [19]  This was considered an important finding as the normal 

force applied at the pedal is the dominant contributor to fatigue failure [20].  It is also a useful 

reference for evaluating the system being developed.  
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 Hölzel, Hoechtl and Senner did preliminary investigations into the impact of possible 

predictable misuse scenarios on bicycles including impacting obstacles poorly, landing from large 

drops, and riding on destructively rough terrain. Their results imply that these loads can easily exceed 

double the normal peaks from normal use. [21] This is an important consideration when designing a 

load measurement system expecting to be used in the field. The range of measurements and durability 

of the system must be able to meet these potential extreme demands. 

 All of the research done to date provides good information on individual component forces, 

but leaves an important gap in knowledge. A method of measuring all forces applied to a frame 

synchronously has not yet been demonstrated. With such a method, complete load cases could be 

discerned which can be meaningfully applied to design practices to ensure the strength and stiffness 

desired in a bicycle frame. In addition, such a system could give insight into the variable loads 

experienced by the frame and applied to create fatigue testing protocols that better represent real-

world riding.  
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Chapter 3 

Theory 

There are three basic assumptions being employed in the system being developed. Each will 

be introduced and discussed in this section and experimentally verified in later sections.  

The first assumption is that an applied mechanical load (Papplied) to a bicycle frame can be 

calculated by measuring the strain (ε) at a discrete location on that frame.  

  (eq. 1) 

The second assumption is that under normal operating conditions, the strain experienced by 

the components of the frame are well below the yield limit of the material and have a linear 

relationship between applied load and strain. 

   (eq. 2) 

 The final assumption is that the strain at any discrete location caused by multiple loads 

simultaneously will be the linear sum of the independent force-strain relationships. 

   (eq. 3) 

 If all of these assumptions are correct then it will be possible to determine what loads are 

acting on a bicycle frame by interpreting the resulting strain at several discrete locations. To 

accomplish this, at least as many strain gauges as there are component input forces need to be applied 

to the frame. Next, the load-to-strain, or stiffness, coefficient (k) for each strain gauge under each 

component load must be experimentally determined.  

 With each stiffness coefficient (kmn) evaluated, a set of linearly independent equations can be 

formed relating the component forces (Pn) to the strains at each gauge (εm). 

 

 (eq.4) 

 Or, written in matrix form 

   (eq. 5) 

 If there are an equal number of strain gauges and component forces, then [k] will be a 

square matrix and therefore easily invertible. Thus, given a set of strain readings it is possible 

to determine the loads being applied. 
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   (eq. 6) 

 However, a system of this kind can be difficult to apply as there is no obvious way to 

construct a layout of strain gauges that would ensure a linearly independent [k], and system 

noise from vibrations traveling through the bicycle could introduce large errors.  A possible 

way to mitigate this is to apply more strain gauges than needed. This would generate an over-

determined system of equations that could be used to create a least-squares, best-fit solution.  

Starting with eq.5 where [ε] and [P] are vector matrices and [k] is a rectangular 

matrix of stiffness coefficients containing more columns than rows, if both sides of equation 

are multiplied by a transpose of [k], 

  (eq. 7) 

An invertible square matrix can be formed by the multiplication of [k]
T
[k]. By 

multiplying both sides of eq. 7 by the inverse of [k]
T
[k], we can solve for [P] 

  (eq. 8) 

This equation is a well-known least squares approximation used for over-determined 

systems [22]. The matrix formed by ([k]
T
[k])

-1
[k]

T
 will be referred to as [j] for simplicity. 

  This [j] matrix provides the tool for translating between strain measurements in 

discrete locations and compound loads applied to an object displaying linear-elastic behavior. 

The next stage in development is to attempt to apply this theory in a simple physical model to 

verify the effectiveness and accuracy. If the system is shown to be valid in a simple 

application, it can then be expanded to a full bicycle frame. 

3.1 Proof of Concept 

The initial investigation into the efficacy of the [j] matrix methodology was carried out on the 

simplest system that could be constructed with the resources at hand. A thin-walled aluminum pipe 

was considered to be a reasonable analogue for an aluminum bicycle frame.  Six linear strain gauges 

were attached to a pipe as shown in Figure 3. 
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Figure 3: Aluminum Cantilever Beam Schematic 

 

The pipe was then mounted to a rigid steel frame with one end constrained in all directions 

and the other left free thus creating a cantilever beam system. The steel frame was also fitted with 

pulleys and steel ropes to allow the free end of the pipe to be pulled in the three primary Cartesian 

directions (Figure 4, Figure 5). Not shown in the figures is the cable running through the pipe which 

loads the pipe in compression.  

 For convenience, the strain gauges were given labels by their location. Those close to the 

fixture were labeled “proximal” those near the free end of the pipe were called “distal”. The ones 

facing upwards were labeled “top”. Those located 120° clockwise from the top when observed from 

the free end were labeled “right” and those 120° counterclockwise were labeled “left”. 

 

  

Figure 4: Aluminum Cantilever Beam 
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Figure 5: Aluminum Cantilever Beam with Vertical and Side Loads Applied 

  

3.1.1 Testing Linearity 

In order to test the efficacy of the [j] matrix system, it is first necessary to establish that the object 

being tested has a linear load-strain response. To verify this, the pipe was loaded in each of the three 

Cartesian directions separately over unit load increments of 5N. The results of the vertical load test 

are shown in Figure 6. 
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Figure 6: Linearity Test of Aluminum Cantilever Beam in the Vertical Direction 

 

A summary of all of the tests are shown in Table 1 in terms of the R
2 
linear regression.  When 

loaded in bending, the response is highly linear. However, under compression and when the strain 

gauge is located along the neutral axis of the bend, the reaction in the strain gauges was very small in 

an absolute sense and also low with respect to the signal-to-noise ratio of the system and therefore 

resulted in poor linearity.  

Table 1: Summary of R
2
 Linearity Tests on Cantilever Beam 

 x1 x2 y1 y2 z1 z2 

ProximalRight 0.993 1.00 0.999 1.00 0.409 0.434 

ProximalLeft 0.996 0.991 0.998 0.996 0.225 0.252 

ProximalTop 0.302 0.863 0.999 1.00 0.444 0.454 

DistalRight 0.983 0.963 0.979 0.976 0.326 0.447 

DistalLeft 0.985 0.975 0.965 0.97 0.345 0.309 

DistalTop 0.167 0.671 0.992 0.987 0.271 0.398 

 

This is an important result as it indicates that strain gauges must be located in such a way as 

to have a strong response from a load case, or k value, in order to be valuable for the [j] matrix 
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method. A corollary of this is that any load case that does not have a location on the base frame with a 

large k value cannot be effectively interpreted by this method. 

3.1.2 Verifying the [j] Matrix 

Using the slopes of each of the reactions to the applied loads, [k] was measured and then [j] 

calculated for the cantilever beam system. Known loads were then applied to the beam and compared 

to the values calculated by measuring the strains and using eq. 8.  Twelve such tests were carried out, 

four in each loading direction. Table 2 shows the results of one of these tests, which was typical.  

Table 2: Sample Load Comparison Test for Cantilever Beam 

 

 

 

 

 These were typical error magnitudes for all test cases. It was found that the x and y 

components of load could be resolved to within 2% of the total applied load on the beam while the z 

component, that is the component in compression along the length of the pipe, had upwards of 30% 

error with respect to the magnitude of the applied load.  

 A similar test was carried out wherein a load was applied in an arbitrary direction and the 

resultant strains measured. Then, using the loads resolved from eq. 8, the fixture was loaded in each 

of the component directions in an attempt to replicate the strain reaction caused by the arbitrary load. 

The goal in this was to determine if the process would be able to break down an unknown load case 

into its components effectively such that it could be replicated on a fixture. This test yielded similar 

results to the earlier, individual component load tests.  

3.2 Implementation on Vertex 

With the efficacy of the basics of the system verified using the cantilever beam, it was time to attempt 

to apply the system to a bicycle frame. Rocky Mountain Bicycles (RMB) provided a hardtail (no rear 

suspension) Vertex model aluminum frame (Figure 7). It was an older model cross-country frame that 

had the paint stripped off for previous experiments.  

 

Actual Calculated 

Fx 6 5.93 

Fy 0 0.04 

Fz 0 -1.4 
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Figure 7: Vertex Hardtail Frame [23] 

  

3.2.1 Locating Strain Gauges 

The first step in applying the [j] matrix system to a bicycle frame was determining a method by which 

to locate the strain gauges. On the cantilever beam, the single loading point and simple geometry 

meant that hand calculations could predict where the strain reactions would be highest. The bicycle 

frame, however, has a complex geometry including hydroformed tubes, asymmetry and welded joints. 

Also, there would be several loading points. This complexity made it impractical to attempt to 

determine key areas of strain analytically so finite element modeling (FEM) was employed. 

Rocky Mountain Bicycles had finite element models for their frames and cooperated in 

running analyses on them for the purposes of this project.  Four case-loads (Figure 8- Figure 10) were 

applied using the analysis and constraints typically used by RMB and are based on the mountain 

bicycle safety requirements that manufacturers selling in Europe need to abide [2].   
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Figure 8: 1200N Fork Splay Load Case [2] 

 

 

Figure 9: 1200N Pedal Load Cases [2] 
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Figure 10: 1200N Seat Load Case [2] 

For the purposes of the Finite Element Analysis (FEA), the rear axle was modeled as being fixed in 

all directions except for rotation about the axle and the front axle was free only in rotation about the 

axle and horizontal translation along the axis formed by the line between the two axles. This matches 

well with the boundary conditions outlined in the test cases above. An example of the FEA results are 

shown in Figure 11, the others can be found in Appendix A 

 

Figure 11: FEA Results of 1200N Fork Splay Simulation 
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The FEA produced models that could be used to locate strain gauges in areas of high stress 

concentration.  

 Using the results of the FEA, 5 strain gauge rosettes (Figure 12) were installed, which 

included 3 strain gauges each at angles of 0° and ±45°. The advantage to using rosettes is that they 

can resolve strain in multiple directions in the same location. This confers the ability to discern 

different loads at the same point, and to determine the precise direction of the primary strain if 

needed. The locations of the strain gauges are given in Table 3. 

 

Figure 12: Strain Gauge Rosette 

 

Table 3: Vertex Frame Strain Gauge Layout 

Location Strain Gauge Number Abbreviated Name 

Top face of the top tube, gauge 2 in-line 

with the tube, 5 cm from the head tube 

weld. 

1 TT_e1 

2 TT_e2 

3 TT_e3 

Bottom face of the right chain stay, gauge 

2 in-line with the tube, 10 cm from the 

bottom bracket 

1 R_Ch_e1 

2 R_Ch_e2 

3 R_Ch_e3 

On the right face of the down tube, gauge 

2 in-line with the tube, 10 cm from head 

tube weld 

1 DT_Side_e1 

2 DT_Side_e2 

3 DT_Side_e3 

Bottom face of the down tube, gauge 2 

in-line with tube, 5 cm from the bottom 

bracket 

1 DT_Bottom_e1 

2 DT_Bottom_e2 

3 DT_Bottom_e3 
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Left Chain Stay, upper surface, gauge 2 

in-line with tube, 5 cm from seat tube 

weld. 

1 L_Ch_e1 

2 L_Ch_e2 

3.2.2 Initial Fixture Construction 

A test fixture needed to be created that could be used to apply controlled component loads to the 

bicycle frame. Using this fixture, the stiffness coefficients for each strain gauge under each 

component load could be developed.  

The design concept for this fixture was to replicate the boundary conditions used for the 

Finite Element analysis as closely as possible. The fixture would also have to be able to apply the 

desired loads to the frame precisely.  

The fixture consisted of two main components, the mounting frame and the loading cage. The 

mounting block would be used to physically mount the bicycle frame to the fixture while the loading 

cage would provide a means for applying the specific component loads to the bicycle. 

The mounting block used a 5’(1.524m) span of a 6”x8” (152mm x 203mm) I-beam reinforced 

with ½” (13mm) steel plate. This provided a very rigid base onto which angle-iron supports could be 

affixed.  The rear support was rigidly fixed to the I-beam and included a threaded rod onto which the 

rear dropouts could be mounted. This provided the constraints seen in the FEA at the rear axle (Figure 

13). In order to match the FEA boundary conditions at the front axle, the mount was put on rollers 

and rails were attached to the I-beam along which the mount could roll smoothly (Figure 15).  

The loads were applied through steel rope attached to a lever mechanism (Figure 14). This 

mechanism was designed such that it was safe and easy to add weight to the frame. The lever 

mechanism provided a 2:1 mechanical advantage which effectively reduced the amount of weight 

needed to produce the desired tension in the cables. The level and turnbuckle shown are used for 

maintaining exact conditions needed to provide the calculated load transfer.  

Each component load required its own configuration of levers, pulleys and cables. Figure 15 

Figure 19 show these configurations for the Vertex Frame. 
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Figure 13: Vertex Frame on Mounting Block Fixture 

 

Figure 14: Loading Cage Lever Mechanism 
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Figure 15: Front Axle Mount and HT MZ Loading Configuration 

 

 

Figure 16: BB MX Loading Configuration 
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Figure 17: BB FZ Loading Configuration 

 

 

Figure 18: BB FY Loading Configuration 
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Figure 19: BB MY Loading Configuration 

3.2.3 Stiffness Matrix Development 

With the fixture complete, the Vertex frame could be loaded and data collected on the strain 

reactions.  

The first tests carried out were to confirm that the load-strain reaction for all strain gauges 

would have a linear relationship. This was accomplished by applying incremental loads of 5 lbs from 

0 to 300 lbs for each loading direction except for BB FZ, which was limited to 200 lbs for safety 

reasons, and the brake and chain force, which were omitted during initial testing.  

 

Figure 20 shows a typical result of these tests. The overall results are as hoped, with each 

reaction being roughly linear. The variance, though, is a concern. The notable steps in the reaction 

seem to be due to friction within the pulley system of the fixture. This introduces a degree of error 

into the [k] matrix that could reduce the efficacy of the process.  
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Figure 20: Load in Pounds vs. Microstrain for HT MZ Load 

 

Figure 21 illustrates another concern; the reaction to the BB FY load was so small as to be 

barely measurable. There was a similar result for the seat load. This is unsurprising as the bicycle 

frame operates as a nearly perfect truss under these loading conditions, distributing the strain induced 

by the load very evenly throughout the members of the frame. While this implies that the frame is 

very sturdy in this loading direction, it introduces the same issue that was encountered with the 

cantilever beam under compression. It is likely that it will not be possible to get a clean interpolation 

of the BB FY force through strain readings.  N.B. The erroneous DT_side_e1 readings were due to a 

broken wire that was repaired for later tests. 

 

Figure 21: Load in Pounds vs. Microstrain for BB FY Load 



 

 24 

The load-to-strain relationships were calculated from the slopes of each line and converted 

into N/με for component forces and Nm/με for moment loads. The results are tabulated below in 

Table 4. With the stiffness coefficients known, [j] could be calculated (Table 5: [j] for Vertex Frame) 

Table 4: [k] for Vertex Frame 

 

TT e1 TT e2 TT e3 R Ch e1 R Ch e2 R Ch e3 DT Side e1 DT Side e3 DT Side e1 DT Bottom e1 DT Bottom e2 DT Bottom e3 L CH e1 L CH e2 

BB MY 0.848 -0.162 0.157 0.771 1.343 0.786 -1.948 -0.918 -0.079 -1.355 0.348 0.433 -0.285 0.134 

BB FZ 0.225 0.006 -0.096 -0.351 -0.647 0.163 0.736 -0.562 -0.171 0.483 0.275 0.129 0.007 -0.001 

BB MX 0.848 0.004 -0.191 0.893 1.554 1.397 -1.486 -0.992 -1.505 -0.849 0.434 -0.033 -0.250 0.001 

BB FY 0.225 -0.136 0.204 0.037 0.054 -0.013 0.004 0.001 -0.015 0.004 0.007 0.108 -0.052 0.140 

HT MX 0.642 0.716 -0.328 0.810 1.367 -0.777 -2.012 4.821 3.570 -1.447 -3.318 -1.838 1.233 -0.733 

HT MZ 0.357 1.136 -1.284 -0.053 -0.051 -0.004 -0.120 0.382 0.448 -0.061 -0.080 -0.865 -0.063 -1.079 

Units are N/με Cartesian loads and Nm/με 

 

Table 5: [j] for Vertex Frame 

 

TT e1 TT e2 TT e3 R Ch e1 R Ch e2 R Ch e3 DT Side e1 DT Side e3 DT Side e1 DT Bottom e1 DT Bottom e2 DT Bottom e3 L CH e1 L CH e2 

BB MY 0.044 0.016 -0.038 -0.055 -0.110 -0.018 -0.222 -0.362 0.475 -0.258 0.119 0.232 0.142 -0.011 

BB FZ 0.376 -0.341 -0.130 -0.372 -0.791 1.477 0.065 -0.481 0.510 0.023 -0.773 -0.078 0.419 0.098 

BB MX 0.045 -0.076 -0.027 0.055 0.078 0.432 0.047 0.139 -0.396 0.122 -0.245 -0.221 0.013 0.027 

BB FY 2.063 -0.674 1.204 -0.427 -0.482 -0.162 -0.131 1.646 -0.367 0.801 -0.332 -0.556 -6.130 -0.184 

HT MX 0.031 -0.078 0.002 -0.034 -0.084 0.259 -0.021 0.031 0.079 -0.007 -0.212 -0.054 0.092 0.032 

HT MZ 0.322 0.291 -0.142 0.025 0.095 -0.411 0.020 0.108 -0.016 0.051 0.302 -0.086 -0.503 -0.246 

Units are N/με Cartesian loads and Nm/με 

3.3 Data Collection and Processing 

The strain data was collected on a National Instruments cRio 9014. The cRio is equipped to sample 

twenty-four channels simultaneously, of which fourteen were used for the initial tests with the Vertex 

frame. The channels were sampled at a rate of one kilohertz as raw voltage in binary format.  

 RMB provided the research team with software to convert the binary data from the cRio to 

floating point values. MatLab code was then developed to process the raw voltage into applied loads 

and to provide visualizations. The process implemented is as follows: 
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1. In order to convert each voltage reading(V) in the raw data to strain (ε), a quarter bridge 

(Figure 22) conversion equation is employed (eq. 9) where Gf is the gain factor for the strain 

gauge (2), RL is the resistance of the leads (≈0Ω) and R3 is value of the resistors in the bridge 

(120Ω). This formula is applied individually to each voltage reading. 

 

Figure 22: Quarter Bridge Strain Gauge Circuit [24] 

  eq. 9 [24] 

1. Convert each Voltage reading to Strain 

8. Plot Load vs. Time 

4. Convert each strain reading to loads 

 

9. Export Load Data 

3. Export Strain Data 

7. Run each force vector through a 10Hz lowpass filter to remove 

very high frequency chatter and signal noise. 

5. Tabulate peak loads for each 

component force channel along with 

concurrent load states of the other 

components.  

6. Export Load State Table 

12. Execute rainflow counting algorithm on each 

load channel. 

10. Create histogram data of peaks and 

valleys for each load channel.  

11. Export mean, standard deviation for 

amplitude and duration and number of 

cycles on each channel. 

13. Export rainflow counting 

histogram data for each channel. 

2. Plot Strain vs. Time 
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2. The strain data is plotted with respect to time as a line graph. A sample plot is shown in Figure 

23. 

 

 

Figure 23: Twenty Second Hill Climb Strain Data on Vertex Frame 

 

3. The strain data is exported in a comma separated value format (csv). Each column represents 

a strain gauge and each row represents a single sample. Again, the data acquisition unit is 

running at one kilosamples per second 

 

4. Each row in the strain data is converted into a vector of forces using eq. 8. The forces are in the 

units of Newtons for linear component forces and Newton-meters for bending moments. 

   eq. 8 

5. For the purposes of investigating peak loads on the frame, the maximum load in both the 

positive and negative direction is found for each force and all of the loads on the bike at that 

moment are recorded and tabulated. Examples from sample rides are shown in Table 6: Sample 

Maximum Negative Load States and Table 7: Sample Maximum Positive Load States 

Table 6: Sample Maximum Negative Load States 

 

 HT MZ  BB MX  HT MX  BB MY  BB FZ  BB FY 

HT MZ -100.1 -23 -17.54 28.68 -17.22 -49.91 
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BB MX 117.1 -257.86 285.7 -96.16 -210.65 237.69 

HT MX 92.63 -172.53 -147.28 -149.42 -130.05 -734.35 

BB MY 115.22 -166.07 -140.07 -154.52 -105.01 -729.81 

BB FZ 30.74 80.24 -47.79 75.36 -692.22 2286.72 

BB FY 39.13 112.37 -43.58 49.47 -531.2 -2425.4 

Units are in Newtons for Cartesian loads and Newton-Meters for Moment loads 

 

Table 7: Sample Maximum Positive Load States 

 

 HT MZ  BB MX  HT MX  BB MY  BB FZ  BB FY 

HT MZ 250.04 -63.78 -12.2 35.09 -51.55 70.77 

BB MX 6.09 132.7 -38.76 -8.11 -404.06 2173.3 

HT MX 115.28 -257.38 286.08 -95.6 -209.88 235.45 

BB MY 31.72 78.73 -47.78 75.48 -690.81 2188.85 

BB FZ 52.16 103.07 -73.29 27.49 948.27 -1870.35 

BB FY 29.28 82.13 -44.73 68.75 -631.19 2586.15 

Units are in Newtons for Cartesian loads and Newton-Meters for Moment loads 

 

6. The maximum load state tables are exported as csv files 

7. Each force channel is run through a 10 Hz low-pass filter. This effectively removes high 

frequency chatter from the terrain and smoothes out signal noise while keeping the larger 

terrain effects and rider effects represented. The value of 10 Hz was determined through 

inspection of the Fourier plot of several sections of various rides (Figure 24). The significant 

peaks fell on the range of 1 to 7 Hz so 10 Hz was selected as a safe cutoff. 

 

Figure 24: Example Frequency Domain Plot of Strain Due to Pedaling 
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8. The filtered load data is plotted. A sample plot is shown below in Figure 25. 

 

Figure 25: 20 Second Hill Climb Force Interpolation on Vertex Frame 

 

9. The load data is exported as a csv file. 

10. Histogram data is collected for each load channel. This is done by calculating and recording the 

median load and counting the number of times the load crosses the mean, the time between 

each crossing, the and the peak value reached.  

11. A summary table is exported from the histogram data including the peak and mean values, and 

standard deviation.  An example table is shown in Table 8. 

 

Table 8: Summary of Statistical Data of a Sample Ride 

    HT MZ  BB MX   HT MX  BB MY  BB FZ  BB FY 

Median magnitude                       44.9 Nm -1.31 Nm -15.21 Nm -17.04 Nm -50 N -7.67 N 

Number of peaks                          622 685 797  660  761 935 

Number of valleys                        622 686 798  661 762 936 

Mean Positive Amplitude  31.89 Nm 49.57 Nm 48.92 Nm 23.43 Nm 127.79 N 337.37 N 

Mean Negative Amplitude   -30.84 Nm -82.12 Nm -35.54 Nm -41.88 Nm -112.81 N -357.2 N 

Standard Deviation of Positive Magnitude  25.2 Nm 73.28 Nm 69.6 Nm 26.33 Nm 208.05 N 792.36 N 
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Standard Deviation of Negative Magnitude  27.59 Nm 65.17 Nm 35.76 Nm 39.59 Nm 119.48 N 506.99 N 

Mean Positive Duration                   319.25 ms 286.78 ms 249.05 ms 300.84 ms 259.07 ms 212.17 ms 

Mean Negative Duration                   313.06 ms 289.47 ms 248.84 ms  300.42 ms 260.6 ms 212.15 ms  

Standard Deviation of Positive Duration  374.48 ms 383.16 ms 263.46 ms 418.37 ms 343.5 ms 188.56 ms 

Standard Deviation of Negative Duration  449.81 ms 242.04 ms 221.55 ms 256 ms 271.1 ms 178.06 ms 

Peak Positive Load                       219.45 Nm 1570.6 Nm 449.2 Nm 484.73 Nm 2839.56 N 19402.14 N 

Peak Negative Load                       -141.59 Nm -408.56 Nm -316.18 Nm -187.25 Nm -1299.83 N -3873.16 N 

 

12. Each load channel was processed using the rainflow counting algorithm created for MatLab 

[25] following the ASTM standard practices for cycle counting in fatigue analysis. The cycles 

were counted based on amplitude and offset from the mean, yielding a two dimensional table 

of cycle counts. Table 9 shows a section of the histogram data for a sample ride. The full table 

has thirty bins in each direction and is too large to display here.   

 

13. The rainflow histogram data are exported for each load as csv files.  

Table 9: Sample Rainflow Counting Histogram Data for HT MX during 3 Minute Ride 

  

Cycle Load (Nm) 

  

6 19 32 45 57 70 83 96 

O
ff

se
t 

fr
o

m
 0

 (
N

m
) 

-99 3 0 1 0 0 0 0 0 

-87 4 1 1 0 0 1 2 0 

-75 6 2 0 1 1 1 1 0 

-63 10 3 1 4 3 1 0.5 0 

-51 29 10 8 12 2 1 0 1 

-39 73 41 40.5 16 2 5 0 0 

-28 149 95 32.5 5.5 2 1 0 1 

-16 360 74 9 5 4 7 1 2 

-4 214 5 13 3 7 1 1 3 

8 20 11 9 5 7 4 1 1 

20 5 1 6 9 4 0 4.5 3 

32 7 3 3 2 9 8 1 3 

44 8 6 2 3 3 6 7 4 

56 6 1 1 0 1 1 5 6 

68 4 1 2 0 0 0 0 0 
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3.3.1 Initial Field Trials and Results 

With the [j] constructed it was then possible to test the system in ride scenarios. The initial test rides 

were designed to be as short and repeatable as possible. The first tests were carried out at very low 

speeds on a flat concrete floor. This Made it possible to count the number of rotations of the pedals, 

control gearing and braking, and ignore most effect of surface induced vibration.  If the system can be 

shown to be effective in this environment then it would be ready for field trials on natural terrain. 

The plots in Figure 26 to Figure 29 show the results of four of the short tests that were carried 

out indoors. Note that the loads were calculated in pounds for these tests as it was easier to compare 

the results to the loads applied to the test fixture.  

  

 

Figure 26: Changing Gears While Standing on Flat Ground 
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Figure 27: Engaging Rear Brake after Short Descent on Ramp 

 

 

Figure 28: Pedaling Along a Corridor 

 

3 Pedaling Cycles Coasting on 

Right Foot 

Coasting on 

Left Foot 

2 Pedaling 

Cycles 

Coasting on 

Right Foot 



 

 32 

 

Figure 29: Engaging Front Brake after Short Decent on Ramp 

 

The tests were positive overall and yielded what seemed to be reasonable results except for 

the BB FY force. It was much larger and more variable than it should be. Previous research [19] 

indicated that this force should vary between half and twice rider weight under normal conditions. 

Because of this force being clearly erroneous it is omitted from further figures in this section so as to 

make the other loads more readable.  

The next exercise was to test the system under field conditions. A series of tests were done at 

McClennan Stunt Park in Kitchener, Ontario (Figure 30). This provided an environment for short, 

repeatable tests in a setting somewhat analogous to actual trail riding while still being short enough to 

monitor the details of the ride such as braking and pedal counts. 
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Figure 30: McLennan Park 

 

The first set of tests run was simple climbs up the steep incline. Figure 31 shows a typical 

result. Note that the moment about the bottom bracket dominates the loads being applied. This was 

found to be a typical result. A second rider was employed on the same test to compare the effects on 

the measured loads (Figure 32). It was found that the peak loads increased in the same ratio as the 

rider weight. 

 One surprising result was the BB MY, which was expected to be quite small and to be 

roughly sinusoidal centered on zero. This was an indication that at least one significant load was 

acting on the system that had not been incorporated into the development of [k]. 
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Figure 31: Steep Incline Climb McLennan Park 70 kg Rider 

 

 

 

Figure 32: Steep Incline Climb at McLennan Park 100 kg Rider 

  

The second set of tests involved the same riders coasting down a slope with three small jumps 

made from hard-packed dirt (Figure 33). While there were similar concerns as to the validity of the 

data as with the climbing, the fact that the overall magnitude of the loads was significantly less for 

what might be considered more aggressive and high-impact riding was surprising.  Closer inspection 
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of the strain data, though, verified that this was, in fact, the case. It seems that the geometry of the 

frame deals very well with jumping and landing as long as they are clean and well balanced 

maneuvers.  The primary load would be on the handlebars and bottom bracket, which, as discussed 

before, spreads strain through the frame very evenly 

 

 

Figure 33: Loads from 3 Small Jumps While Coasting Down a Hill 

 

An even clearer picture of the relative loads to pedaling and landing jumps can be seen in Figure 34 

where a rider jumped off of a 2m drop-off and landed on a slope.  

 

Figure 34: Loads from 2m Drop-off 
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3.3.2 Error Estimation  

The field tests indicated that the system, as it existed, was not providing accurate results. There were 

two primary concerns. First was that it was unclear what precision could be expected from the use of 

[j] matrix method. The second was whether any key forces were missing from the construction of [k].  

 In order to investigate the expected precision of [j] matrix, a Monte Carlo simulation was 

created. The purpose of this simulation was to compare the loads predicted by the [j] matrix that were 

experimentally determined to those that would be predicted by other possible [j] matrices that could 

have been generated based on the variance in the measurements found during the creation of the [k] 

matrix.  

 The process for this was to take a sample ride and process each sample both using the actual 

[j] matrix and then processing the same sample using a [j] matrix constructed by altering each value 

in the original [k] by a small amount based on a normal distribution with a variance defined by 

measurements in the original construction of [k].  

 The results of this analysis were somewhat disappointing. The predicted errors were all found 

to follow an exponential distribution closely with mean values listed below (Table 10). The loads at 

the head tube were very precise, by this analysis, but the moments at the bottom bracket varied 

unacceptably and the BB FY load was completely unusable as the error is on the same order as the 

weight of the rider.  

Table 10: Expected Error for Initial Vertex [j] 

 Mean Error Mean % Error 

HT MZ 11 Nm 0.8 

HT MX 22 Nm 1.5 

BB MX 1010 Nm 73 

BB MY 673 Nm 45 

BB FZ 198 N 13 

BB FY 573 N 276 

 

 Inspection of [k] gave some insight into why some component forces were more reliably 

precise than others. HT MZ and HT MX each had a single strain gauge that provided a strong reaction 

to those loads but did not react very strongly to the others while BB MX and MY had gauges that 

reacted similarly to each other. This small difference between the strain reactions made the matrix 

very sensitive to error.  
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 BB FY did not have any gauges that reacted strongly to that component load. This, as noted 

before, is expected given the geometry of the frame. However it does produce a challenge when 

attempting to interpret that load.   

 Determining if there were important forces being omitted is difficult to determine from the 

data gathered thus far. The only apparent means of testing this issue is to repeat the entire process, 

this time including all possible component forces.  

3.4 Areas of Improvement 

The previous work on the RMB Vertex frame produced encouraging results, but with some clear 

areas in need of investigation and development. Through inspection of the data, it became clear that 

the strain gauges could be better located. It also became apparent that some significant component 

loads may not have been represented in the initial construction of the matrix. Careful comparisons 

between ride conditions and the test fixture also indicated that the boundary conditions used in the 

FEA, upon which the fixture was based, do not reflect those of actual riding well for all loading 

scenarios. Finally, precision in the construction of the [k] matrix was found to be critical as the 

expected error in the system was very strongly affected by the accuracy of [k]. 

3.4.1 Improved Strain Gauge Locating Protocol 

Thorough inspection was carried out on the [k] matrix of both the Vertex frame and the 

cantilever aluminum tube in order to determine any patterns by which the locating of gauges could be 

improved. The original criterion was that the gauge be located on an area that showed high strain in 

FEA. Investigation, though, showed that the process would need to be more nuanced. The following 

constraints all needed to be met to make a location suitable: 

1. Location must have a high strain-to-load ratio (>1µε/5N) for at least one load case 

2. Location must have a unique strain-to-load ratio for at least one load case 

3. Location must be on a smooth, exterior, non-welded location 

4. Location must be at least 5cm from any moving mechanical part 

5. Location must be unlikely to be hit by debris or the rider during riding 

The first requirement, of having a high strain-to-load ratio, is based on the results of the 

cantilever pipe and Vertex frame tests. The reaction of one micro-strain per five Newtons of load 

produced a strong enough signal to interpret the loads. A consequence of this criterion is that if there 
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is no location on a frame with a high load-to-strain ratio for a given component force, that load cannot 

be meaningfully resolved.  

The second requirement was developed through some trial and error. It was found that there 

was a location on the down tube near the head tube that had a strong reaction to all loads that were 

applied. This location turned out to be of no value because even though the reaction was clear and 

measurable, it could not be used to differentiate between loads. 

The third requirement is due to the limitations of strain gauge application. They require 

smooth surfaces with little curvature in order to adhere well and give meaningful measurements. 

The fourth requirement was determined after some strain gauges were placed close to 

sprockets and pedals. These gauges seemed to pick up extra noise in the signal and were therefore 

less precise in their measurements. 

The final requirement is simply a consideration for durability. Strain gauges are not 

particularly tough or resilient to damage from impact or abrasion. Even though the gauges are to be 

protected with a resin coating and a rubber barrier, it seemed prudent to keep them out of the areas of 

the frame most likely to be hit or rubbed against while riding. 

3.4.2 Considerations for Omitted Loads 

It was noted that the BB MY loads in the Vertex trials was unexpectedly large. This is most likely a 

consequence of not including some important component loads in the analysis. The tension in the 

chain is likely to have been a major contributor to the unusual results in BB MY.  

 This then, indicates that the method is not useful for investigating only a couple loads of 

interest. If the [k] matrix does not include all significant loads, the [j] matrix will give erroneous 

results as it fits the measured strains to the loads available as best it can.  

3.4.3 Boundary Conditions for FEA and Test Fixture 

The boundary conditions and mounting techniques used in the standardized test for mountain bicycle 

strength [2] were a good starting point for testing; however those tests combine or omit a variety of 

loads. For example, standard test for pedaling combines the chain, BB MX, BB MY, BB FZ and BB 

FY forces. In order to separate these loads and measure them in a way that they could be 

meaningfully resolved separately, a more complex mounting system would be needed. The following 

is a list of requirements for accommodating all of the meaningful loads on the frame.  
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1. The head tube needs to rotate freely in all directions relative to a fixed rear axle. It is also 

possible to fix HT MX direction and have the rear axle free; the effect is mathematically 

the same. 

2. It must be possible to load the head tube in the MX and MZ directions to simulate fork 

splay and a relative twist between the front and rear axle. 

3. The rear axle needs to be able to rotate freely in the MY and MZ direction to simulate a 

free spinning axle and the wheel rotating about its contact point with the ground surface. 

4. The bottom bracket must be able to be loaded in the FY, FZ, MX and MY directions 

independently. 

5. It must be possible to simulate a pure chain load. 

6. It must be possible to simulate a pure rear brake load. 

3.4.4 Precision in [k] development 

It was found that a major contributor to the expected error in the system was the precision with which 

the loads were applied to the frame in the initial testing. The fixture introduced some friction through 

the pulley system being used meaning that the actual load being delivered to the bicycle frame.  

 A new fixture should have the capacity to measure loads being applied at the connection 

point to the frame. 
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Chapter 4 

Final Implementation 

4.1 Redesign of the Fixture 

With the considerations noted in section 3.4.3 the loading fixture was redesigned. In addition to the 

listed requirements, there was the additional need to be able to accommodate other bicycle frames 

that may be involved in future research.  

 The new fixture was designed to use much of the material from the original, along with 

extruded aluminum framing that was available. Cost was a major concern in the development of this 

fixture so much of the work was done with inexpensive or retrofitted components. The focus on the 

rebuild was precision for static loading for which aesthetic considerations and ease of use were 

largely sacrificed. 

 The mounting of the head tube was altered considerably. The original design (Figure 15) had 

the front forks attached to a sliding block. This was entirely replaced by a three axis gimbal 

mechanism that allows rotational movement about the centre of the heat tube but no translational 

movement at all (Figure 35,Figure 36). This was equipped with an extended lever arm in the form of 

a 1½” UNF threaded rod on which the HT MX and MZ torsional loads could be applied.  

 

Figure 35: Head Tube Mounting Gimbal, Empty 
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Figure 36: Head Tube Mounting Gimbal, Loaded with Element Frame 

 

The rear mounting block was altered to allow for translation in-line with the frame. This 

provided both the freedom needed to simulate the freedom of the bicycle frames to deflect in this 

direction as well as a means to adjust for bicycle frames of different sizes. It was also equipped with a 

system of sturdy bearings which allowed rotation about the y-axis while remaining rigid in response 

to other loads (Figure 37).  

 

Figure 37: Rear Dropout Mounting Fixture 
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In order to replicate rear brake forces, custom hardware needed to be made for each type of 

brake. The hub-mounted disk brakes were replicated using an aluminum lever arm which attached to 

the axle and the brake mounting points on the frame (Figure 38). Rim brakes required a small, 

relatively rigid plate to attach to the frame at the point where the calipers would mount (Figure 39) 

 

Figure 38: Rear Disk Brake Loading Arm 

 

Figure 39: Rim Brake Load Mounting Plate 
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The bottom bracket forces were applied using cables attached to a solid steel bar with the same 

diameter as the crank arm axle, inserted through the bottom bracket bearings (Figure 40).  

 

Figure 40: Bottom Bracket Loading Arm 

 

The chain force was replicated by attaching a lever arm to the steel bar being used to apply loads to 

the bottom bracket and connecting that arm to the rear axle (Figure 41) 

 

Figure 41: Chain Load Lever Arm 

 

The whole fixture was assembled around extruded aluminum framing which allowed for exact 

positioning of the loading levers (Figure 14) and pulleys and accommodated any size of frame that 

might be loaded on the fixture (Figure 42). 
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Figure 42: Complete Static Loading Fixture 

  

In order to increase precision of the applied loads, a game scale was attached between the 

loading cable and the load points on the frame. This provided a precision of better than 10 Newtons 

which was an order of magnitude improvement over the previous fixture.  

4.2 Strain Gauge Application 

As explained in section 3.4.1, the locating process for strain gauges on bicycle frames needed to be 

changed. The first step in this was to change the boundary and loading conditions of the FEM to 

match the alterations to the test fixture. The easiest way to do this was to create simplified rigid 

analogues of the mounting and loading units themselves. Once properly constrained, the FEA was 

carried out using a unit load for each component force (Appendix A) 

 The FEA strain mapping was used to locate all of the locations of strain concentrations on the 

physical frames themselves using coloured stickers to discern between loads (Figure 43). This 

mapping of on the frame helps locate potential locations for strain gauges which can then be filtered 

using the criteria listed in Section 3.4.1.  
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Figure 43: Strain Concentration Locations for Various Loads 

 

With the specific locations determined for each frame, the surface paint was removed 

carefully by sanding, leaving the carbon fiber frame exposed. The strain gauges were applied directly 

to the carbon fiber frame (Figure 44) and leads were attached as shown in Figure 45. The purpose of 

the double leads on alternate contacts is to balance the resistance through the quarter bridge circuit 

(Figure 22). 

 

Figure 44: Strain Gauge on Carbon Fiber Frame 
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Figure 45: Strain Gauge Leads 

 

4.3 [k] Development 

The process for determining the stiffness coefficients for the newly gauged frame is no different than 

was outlined previously except for the addition of some new component loads and the added 

precision given by the scale.  

 An added complication, though, is that the frame in which RMB is most interested, includes 

rear suspension. The system, as it exists, does not have a means for measuring the travel in the 

suspension nor adapting to the changes in geometry caused by it. It is possible, however, to estimate 

the error caused by the suspension by establishing a [k] at the 20% compression level, which is the 

recommended neutral position when loaded with a rider, and another [k] at the fully compressed 

level. The results of the force transformations can then be compared  

 The two completed Matrices are shown below in Table 11 and Table 12.  

Table 11: Element K Matrix, Shock at 20% Sag 

HT MZ 0.190 -1.320 0.593 -0.694 -1.515 2.591 -0.038 0.954 1.085 1.222 -6.852 -2.668 -1.185 5.591 

Seat -1.096 4.715 -5.540 0.089 4.283 -4.609 -1.029 -4.432 -3.993 -4.600 2.009 -0.380 -4.779 -2.427 

Brake 11.461 141.800 13.302 3.268 -5.893 -5.482 -2.227 9.946 7.897 8.319 -1.675 -0.987 10.653 -2.560 

BB MX  -0.178 -0.440 0.054 -0.107 -0.199 0.202 -0.375 -0.210 0.056 0.403 -0.047 -0.018 0.527 0.051 

HT MX -3.656 5.966 -3.904 -0.624 2.343 -11.278 -3.980 -6.344 -3.907 -1.820 -0.494 0.634 -3.245 3.469 

Crank 2.550 3.075 -51.007 -14.360 11.618 21.685 19.419 -26.937 -15.268 -17.298 -3.743 -0.897 4.160 -8.270 

BB MY -0.164 0.462 2.338 0.628 -0.243 -0.680 -1.003 0.816 0.600 0.979 -0.057 -0.049 0.231 0.063 

BB FZ 0.379 -2.455 19.963 6.503 -1.238 -3.916 -1.979 8.682 5.366 5.664 0.016 -0.115 1.233 0.755 

BB FY -0.568 2.507 -1.837 0.139 1.847 -1.289 0.346 -1.623 -1.491 -1.743 0.103 -0.158 -1.938 0.207 
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Table 12: Element K Matrix, Fully Compressed Shock 

HT MZ 0.419 -1.563 0.405 -0.629 3.213 2.499 -0.038 0.938 1.009 1.130 -7.030 -3.103 

Seat -1.072 3.753 -5.262 0.133 -5.250 -4.140 -0.975 -4.225 -3.682 -4.031 1.862 -0.400 

Brake 12.169 151.528 11.366 2.509 -1.823 -4.898 -2.169 9.682 7.947 8.352 -0.952 -0.715 

BB MX -0.199 -0.262 -0.134 -0.083 0.096 0.046 -0.328 -0.379 -0.128 0.158 -0.029 -0.062 

HT MX -5.255 8.720 -5.740 -0.821 -15.023 -16.346 -5.856 -9.058 -5.746 -2.730 -0.627 0.723 

Crank 3.413 3.255 -50.593 -15.079 11.786 22.871 20.337 -26.343 -15.089 -17.658 -3.636 -1.058 

BB MY -0.129 0.300 2.451 0.714 0.599 -0.671 -0.988 0.880 0.635 0.992 -0.053 -0.057 

BB FZ 0.379 -2.455 19.963 6.503 -5.570 -3.916 -1.979 8.682 5.366 5.664 0.016 -0.115 

BB FY -0.573 2.829 -1.886 0.258 -3.009 -1.264 0.485 -1.811 -1.520 -1.594 0.059 -0.168 

 

4.4 Error Estimation 

In order to estimate the expected error in the system based on the precision of the [k], the same 

procedure as was outlined in 3.3.2 was carried out. The results of the Monte Carlo Simulation are 

shown in Table 13. The improvement over the initial implementation on the Vertex frame is 

significant. Unfortunately, the precision of [k] is not the only potential source of error.  

Table 13: Expected Error based on [k] Precision 

Load Direction Mean % Error Mean Error 

HT MZ 2 8 Nm 

Seat 4 50 N 

Brake 12 125 N 

BB MX 3 13 Nm 

HT MX 4 14 Nm 

Crank 19 581 N 

BB MY 20 29 Nm 

BB FZ 10 116 N 

BB FY 17 898 N 

 

The element frame, as mentioned previously, has a rear suspension. In order to quantify the error 

caused by the variations in [k] through these changes, two Monte Carlo simulations were carried out. 

The first was used to determine the maximum expected error. To do this, data from field trials was 

processed using both the 20% sag [k] and the fully compressed shock [k] and their results were 

compared.  This, though, is unlikely to be representative of the actual error as very little of the time 

spent riding involves the rear shock being fully compressed. Without clear data available on the 

compression level of the rear shock, estimates based on experience were used. The majority of riding 

seems to keep the rear shock within 10% of the neutral, 20% sag position. 
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It was also assumed for these purposes that the change in [k] between the two positions 

would be a linear progression. This seems reasonable as, when comparing the two matrices, there are 

neither sign changes nor changes in the order of magnitude of the individual strain relations. Thus 

transitional [k] matrices could be created between 20% sag and full compression based on a linear 

interpolation between the two. The amount of compression based on the observed shock compression 

patterns could be modeled using a normal distribution.  

This simulation was run in MatLab and again compared to the data processed using only the 

20% sag [k]. For each sample, a random compression was generated based on a normal distribution 

and from that a new [k] was interpolated. The results are shown in Table 14. 

Table 14: Expected Error due to Rear Suspension 

Load 

Direction 

Max 

Expected % 

Error 

Expected % 

Error Based 

on Normal 

Distribution 

Expected % 

Error When 

Combined 

with Table 

13 

HT MZ 41 17 19 

Seat 92 19 23 

Brake 122 35 47 

BB MX 161 44 47 

HT MX 40 14 18 

Crank 71 28 47 

BB MY 131 43 63 

BB FZ 255 51 61 

BB FY 78 15 32 

 

 The worst case scenario is, unfortunately, quite bad. However, the predicted mean error based 

on the normal distribution is, while larger than desirable, still useable. The system as a whole is less 

precise than is desirable. When the shock error and basic precision error are combined, the results 

leave the expected error for most component forces near 50%.  

 This indicates that without an effective method of measuring the shock displacement, this 

method is useful only for order of magnitude results and determining loading patterns.  
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Chapter 5  

Field Tests 

The tests that were performed on the Element Frame before it was returned to RMB for their own 

interests, focused on the effect of rider weight on the forces experienced during off-road trail riding. 

Three volunteers from King Street Cycles in Waterloo offered to help in this endeavor.  

 They were each of significantly different weight, but all were experienced mountain bikers 

with good knowledge of the trails.  Their similar abilities and experience on the trail meant that 

effects other than biometrics were largely controlled for. Their size and weight were recorded and are 

presented in Table 15. 

Table 15: Test Rider Vitals 

Rider Weight Height 

Rider A 70 kg 176 cm 

Rider B 84 kg 183 cm 

Rider C 104 kg 190 cm 

 

 The trails used were on the Waterloo Hydrocut trail system [26]. The course run was a 1.42 

km and included the trails called Kaitlyn’s Switchbacks and Rockin’ Ronnie.  This short loop was 

chosen for several reasons: it was very familiar to the riders, this improved their ability to take the 

course at speed safely; it was short enough that it could be done several times by each rider over the 

course of a day without significant concerns about the effects of exhaustion; and it had a good variety 

of terrain which was thought to be representative of most features that would commonly be 

encountered including a variety of rocky, natural and constructed surfaces, steep climbs and descents, 

sharp turns, substantial obstructions and small drops (Figure 46Figure 52).  
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Figure 46: Caitlyn's Switchbacks Trail Section 

 

 

Figure 47: Caitlyn's Switchbacks Trail Section 
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Figure 48: Caitlyn's Switchbacks Trail Section 

 

 

Figure 49: Rockin’ Ronnie Trail Section 

 

Figure 50: Rockin' Ronnie Trail Rock Feature 

 



 

 52 

 

Figure 51: Rockin' Ronnie Trail Rock Feature 

 

 

Figure 52: Rockin' Ronnie Trail Lock Feature 
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Chapter 6  

Results of Field Tests 

6.1 Peak Load Cases 

An area of interest for bicycle frame development is the peak loads that the frame is likely to 

encounter during normal riding. While bicycles must be designed to survive moderate impacts from 

accidents and crashes [2], the peak forces experienced during normal riding are needed to determine 

how well a frame will distribute those loads and how it will deflect under non-catastrophic conditions. 

To this end, tables were constructed from each ride that indicate the peak load for each 

component force, as well as the loads on each other force at that point. An example of this table is 

shown in Table 16 andError! Reference source not found. 

 Table 16: Max Forces for Rider 1 on Kaitlin's Switchbacks and Rockin Ronnie 

 
 HT MZ  Seat   Brake  BB MX  HT MX  Crank  BB MY  BB FZ  BB FY 

HT MZ 273 -86.75 84.57 -63 -37.55 191.38 47.36 -65.42 -108.23 

Seat  183.91 209.91 250.53 -126.8 112.55 671.38 -92.06 -85.26 -237.69 

Brake -3.77 -306.65 1570.6 74.78 -28.96 -774.05 -0.72 -21.84 781.79 

BB MX 46.03 3.93 73.39 145.82 -58.7 2563.48 -17.31 -420.41 -2152.23 

HT MX 33.23 4.59 -425.91 -247.75 382.55 4097.28 -35.23 -283.98 -84.04 

Crank 98.3 -209.66 -720.79 -245.7 -15.81 6196.93 107.02 -118.74 15.61 

BB MY -202.04 -312.84 519.06 -206.94 -1.02 1799.39 152.51 -16.16 58.7 

BB FZ 15.43 -777.87 124.9 -13.08 -85.28 514.09 42.42 468.65 -178 

BB FY 33.96 -1418.73 47.78 32.17 -19.3 751.3 28.89 -275.72 1911.55 

 

Table 17: Min Forces for Rider 1 on Kaitlin's Switchbacks and Rockin Ronnie 

 

 HT MZ  Seat   Brake  BB MX  HT MX  Crank  BB MY  BB FZ  BB FY 

HT MZ -227.14 -611.77 815.35 -225.01 66.84 1631.39 139.93 -58.84 49.61 

Seat  100.94 -2291.01 209.36 -169.86 -143.28 836.48 -154.02 -109.17 -1185.31 

Brake 99.48 -198.54 -720.91 -246.17 -15.13 6195.01 107.3 -117.98 11.63 

BB MX 73.49 -857.77 -30.36 -334.81 377.88 1596.19 -111.11 -267.17 211.29 

HT MX 102.81 -43.2 -355.71 -228.11 -239.61 4173.38 -110.19 -163.04 -515.14 

Crank -3.82 -308.06 1566.36 78.85 -31.79 -780.22 1.02 -20.44 680.29 

BB MY 151.13 -634.5 483.9 -248.85 -201.15 1641.3 -212.92 -153.02 -1271.12 

BB FZ 121.82 -37.93 -15.93 -54.77 211.74 352.3 14.04 -778.62 -921.33 

BB FY 41.34 -674.59 906.41 97.13 -56.86 -228.02 18.13 55.01 -2742.39 
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The value of this tool is primarily for validating designs under specific conditions. A designer can 

run a chosen rider through a desired course and use those results to investigate how a new frame 

would manage specific load conditions on that course. 

6.2 Rider Weight Model 

With the results from the three riders it was possible to verify the findings of Stone and Hull in that 

the relationship between rider weight and applied load was linear [19]. To do this, the maximum, 

minimum, and median values for each load on each test were found. In addition, the mean value for 

the local maxima and minima were found for each, giving a reasonable expected value for cyclic 

loading.  

Given that there were only seven tests with three riders, the results are remarkably consistent. 

Almost all forces show a clear linear relationship with weight with an extrapolated intercept near the 

origin. See Appendix B for the calculations and individual results. 

There were two clear exceptions to the linear trend. The first is the BB FY force, which is 

very much expected to follow a linear relationship. However, due to the known inaccuracies in that 

loading direction, it is not possible to draw meaningful conclusions from the data. The second is the 

BB FZ direction. This direction showed no clear relationship between rider weight and load, which 

was surprising but there is a mechanism by which it might be explained. 

The BB FZ direction can only be loaded if the frame is tipped relative to the rider such that 

the forces that are being applied to the pedal are out of the plane of the frame. This effect is more 

related to riding style and possible terrain effects rather than weight.  

6.2.1 Model Compared to Standard Testing 

The linear model for mean and extreme loads calculated from the field tests can be compared to the 

standard fatigue test loads (  
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Table 18) for bicycle frames to help determine at what weight those tests are most valid [2]. 
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Table 18: CEN Fatigue Test Loads 

 

+ - 

 HT MZ 550 -270 

 Seat 0 1200 

 Brake - - 

 BB MX 200 200 

  HT MX - - 

 Crank 1980 0 

 BB MY 20 -20 

 BB FZ 160 -160 

 BB FY 0 1200 

 

The BB MY load is fairly clearly under-represented in the standardized tests. Figure 53 shows the 

comparison between the modeled load response and the standardized test loads. Any rider much more 

than 70 kg will be exceeding the tested level frequently for the majority of their pedal cycles, and 

there appears to be no weight at which the peak loads experienced in this direction will not vastly 

exceed the required testing. 

 

Figure 53: BB MY Modeled Weight Response and Standardized Test Levels 

 

The BB FZ direction (Figure 54), despite not having a clear rider weight relationship, does 

seem fairly well represented by the standard tests. The mean loads for all the tested riders stay 

roughly within the range of the fatigue testing. However, the peak loads, again, exceed these limits 

considerably and should, perhaps be considered explicitly in design.  
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Figure 54: BB FZ Modeled Weight Response and Standardized Test Levels 

 

 In the case of the load transferred through the chain, the standardized tests also seem 

reasonable (Figure 55). While the maximum loads seen in this direction exceed the fatigue test load, 

the expected loads stay well below that level until the rider crosses 100 kg, which is at the high end of 

an expected rider. 

 

Figure 55: Chain Load Modeled Weight Response and Standardized Test Levels 

 

The BB MX load case seems to err on the side of caution in the standardized tests (Figure 56). The 

mean loads stay well within the limits of the fatigue test and even the extreme loads do not exceed 

this limit by much for an average sized rider.  
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Figure 56: BB MX Modeled Weight Response and Standardized Test Levels 

 

The standard tests for the HT MZ leave a larger margin of safety (Figure 57). Based on the tests 

conducted, there is no reasonable expectation that a bicycle would ever experience the levels of force 

required for the fatigue test outside of crash conditions.  This confirmed suspicions of some design 

engineers as, when these standards were adopted, older designs that had never had a head tube failure 

would consistently fail this test.  

 

 

Figure 57: HT MZ Modeled Weight Response and Standardized Test Levels 

 

The final load tested for by the British Standards, is the vertical load on the seat. This, again, seems to 

be a safely conservative level, but not excessively so. Heavier riders, though, may exceed the limits 

regularly. This has been corroborated by Rider C as he indicated that he regularly bends or breaks 

seat-posts. 
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Figure 58: Seat FY Modeled Weight Response and Standardized Test Levels 

There are two loads that were tested for that are not represented in the standard fatigue testing at all. 

The brake load and the HT MX load. Both of these were found to be significant loads that could 

potentially lead to failures if not considered in design.   

 

Figure 59: Brake Load Modeled Weight Response and Standardized Test Levels 

 

Figure 60: HT MX Modeled Weight Response and Standardized Test Levels 
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Chapter 7  

Conclusions 

7.1 Summary 

The [j] matrix method of determining load states from strain measurements on a rigid bicycle frame 

has been shown to be effective. Precision in the development of the [k] matrix has been found to be 

essential if the system is to be accurate. The system developed was able to resolve most loads to 

within 20% of the measured load 90% of the time.  

 There are significant limitations on the system, however. Loads on extremely rigid frames or 

load cases to which a frame does not meaningfully deflect cannot be effectively measured by the 

system as it relies on differential strain readings, which are too small to measure in these cases. Also, 

significant changes in geometry, such as those caused by the compression of rear shocks in a bicycle 

frame, are not easily accommodated.  

 Tests of riders of varied sizes on a cross-country course confirm the linear relationship 

between rider weight and applied moment about the bottom bracket as found by Stone and Hull [19] 

and expand that relationship to include loading directions on mountain bicycles. An exception to this 

was found in the load applied at the bottom bracket, orthogonal to the plane of the bicycle. This load 

showed no relationship with rider height or weight.  

 Results of the cross country test rides indicate that the standardized tests required for 

European sales of bicycles are inconsistent with the loads experienced in riding. The moments about 

the bottom bracket may be somewhat conservative as is the test for the seat load. Conversely, the 

moment about the head tube caused by fork splay has a factor of safety that may be excessive, and 

does not appear to represent actual ride conditions.  

 The moment about the head tube relative to the rear axle and fatigue loading due to braking 

were also found to be significant cyclic loads in riding, but are not represented in the standardized test 

procedures. 

7.2 Directions for Further Research 

The most obvious next step for refining the [k] matrix, strain-gauge method for use on mountain 

bicycles, is to create a robust means for determining the compression of the rear shock. This would 

push the results into a range of accuracy that could produce very valuable usage values for design 

purposes.  
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 To further improve the accuracy, building an even more robust test fixture with at least 1N 

resolution would improve the precision of the [k] matrix and its results significantly. Improvements 

beyond this are likely not possible as the precision of the entire system would be passing the precision 

of the data acquisition system.  

 Another important direction that this research could be taken, is laboratory life-cycle testing. 

A fixture could be developed that could apply the load profiles acquired from riding to a frame in 

real-time. This would facilitate fatigue testing with near-perfect fidelity to actual riding. Benefits to 

this include comparing frame performance based on different riders, different styles (cross-country, 

downhill, etc.), and also, different levels of damage. For example, a new frame could be tested in 

comparison to one that had experienced a serious, but non catastrophic crash, or one with a chip in it. 

The results of these tests could be very useful for warrantee prediction as well as frame design 

purposes. 
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Appendix A 

FEA Analysis Images 

 

Figure 61: Vertex FEA HT MZ 

 

Figure 62: Vertex FEA BB FY 
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Figure 63: Vertex FEA BB FZ 

 

 

 

Figure 64: Element FEA BB MX 
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Figure 65: Element FEA BB MY 

 

 

Figure 66: Element FEA HT MZ 
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Figure 67: Element FEA HT MX 

 

 

Figure 68: Element FEA Seat FZ 
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Figure 69: Element FEA BB FZ 

 

 

Figure 70: Element FEA BB FY 
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Figure 71: Element FEA Brake Tab 

 

 

 

Figure 72: Element FEA Chain Load 
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Appendix B 

Rider Weight Model Data 

HTMZ Weight Max Min Median Mean + Mean - 

 

70 250 -100 47 24 -21 

 

70 232 -174 40 24 -21 

 

84 219 -142 45 32 -31 

 

84 223 -108 50 24 -22 

 

105 320 -121 65 41 -33 

 

105 273 -227 61 40 -34 

 

105 267 -193 56 39 -37 

       

 

Slope 1.59 -1.46 0.52 1.00 0.12 

 

Intercept 114 -22 6 -5 13 

 

SEAT Weight Max Min Median Mean + Mean - 

 

70 163 -1662 -183 123 -306 

 

70 41 -1442 -259 133 -272 

 

84 164 -1445 -380 187 -285 

 

84 88 -1581 -228 119 -304 

 

105 163 -1939 -471 256 -465 

 

105 210 -2291 -612 328 -460 

 

105 154 -2268 -511 297 -511 

       

 

Slope 2.18 -19.90 -9.37 -4.24 -15.41 

 

Intercept -54 -34 456 206 621 

 

Brake Weight Max Min Median Mean + Mean - 

 

70 931 -401 79 92 -87 

 

70 1113 -481 90 109 -86 

 

84 1505 -444 125 127 -113 

 

84 1110 -973 57 105 -99 

 

105 1451 -698 -32 124 -164 

 

105 1571 -721 55 154 -157 

 

105 1492 -660 31 142 -138 

       

 

Slope 13.54 -6.28 -2.17 -1.01 -4.16 

 

Intercept 106 -67 251 270 308 
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BBMX Weight Max Min Median Mean + Mean - 

 

70 133 -258 2 35 -67 

 

70 99 -271 -7 34 -68 

       

       

 

105 421 -557 -42 40 -75 

 

105 146 -335 -52 44 -83 

 

105 199 -327 -17 48 -90 

       

 

Slope 4.09 -4.16 -1.02 -0.75 -1.46 

 

Intercept -172 28 69 85 33 

 

HT MX Weight Max Min Median Mean + Mean - 

 

70 286 -147 -8 47 -25 

 

70 251 -160 -4 63 -26 

 

84 449 -316 -15 49 -36 

 

84 261 -162 -10 44 -26 

 

105 697 -236 -7 100 -35 

 

105 383 -240 -16 73 -43 

 

105 392 -197 -8 93 -35 

       

 

Slope 6.53 -1.69 -0.09 1.04 -0.44 

 

Intercept -193 -58 -2 -36 -3 

 

CRANK Weight Max Min Median Mean + Mean - 

 

70 3607 -621 176 1104 -294 

 

70 4146 -709 339 984 -302 

 

84 4263 -7602 179 1265 -402 

 

84 3981 -1777 404 1070 -258 

 

105 5045 -7558 644 1286 -360 

 

105 6197 -780 693 1168 -394 

 

105 5131 -1051 511 1400 -445 

       

 

Slope 48.96 -52.02 11.24 18.12 8.20 

 

Intercept 269 1757 -579 -9 -660 

 

BBMY Weight Max Min Median Mean + Mean - 
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70 75 -155 -14 17 -30 

 

70 57 -173 -14 19 -33 

 

84 485 -187 -17 23 -42 

 

84 544 -158 -7 20 -36 

 

105 115 -235 1 35 -68 

 

105 153 -213 -6 39 -75 

 

105 115 -181 -10 35 -56 

       

 

Slope -1.03 -1.40 0.27 0.84 -0.78 

 

Intercept 312 -62 -34 -57 12 

 

BBFZ Weight Max Min Median Mean + Mean - 

 

70 948 -692 -39 92 -91 

 

70 783 -553 -34 116 -87 

 

84 2840 -1300 -50 128 -113 

 

84 5230 -790 -42 96 -97 

 

105 2914 -755 -36 109 -79 

 

105 469 -779 -59 83 -82 

 

105 876 -920 -47 126 -117 

       

 

Slope -3.39 -3.43 -0.29 -0.27 -0.30 

 

Intercept 2311 -522 -18 87 -113 

 

BBFY Weight Max Min Median Mean + Mean - 

 

70 2586 -2425 0 192 -190 

 

70 1812 -2425 -2 181 -180 

 

84 19402 -3873 -8 337 -357 

 

84 9802 -2359 0 197 -181 

 

105 18969 -7477 -11 260 -252 

 

105 1912 -2742 -5 302 -316 

 

105 3228 -3786 -4 374 -392 

       

 

Slope 104.09 -67.18 -0.16 3.31 -3.92 

 

Intercept -1016 2392 10 -35 78 
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