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Abstract

In the development of digital communication and information theory, every channel
decoding rule has resulted in a revolution at the time when it was invented. In the area of
information theory, early channel coding theorems were established mainly by maximum
likelihood decoding, while the arrival of typical sequence decoding signaled the era of
multi-user information theory, in which achievability proof became simple and intuitive.
Practical channel code design, on the other hand, was based on minimum distance decoding
at the early stage. The invention of belief propagation decoding with soft input and soft
output, leading to the birth of turbo codes and low-density-parity check (LDPC) codes
which are indispensable coding techniques in current communication systems, changed the
whole research area so dramatically that people started to use the term “modern coding
theory” to refer to the research based on this decoding rule. In this thesis, we propose
a new decoding rule, dubbed jar decoding, which would be expected to bring some new
thoughts to both the code performance analysis and the code design.

Given any channel with input alphabet X and output alphabet Y , jar decoding rule can
be simply expressed as follows: upon receiving the channel output yn ∈ Yn, the decoder
first forms a set (called a jar) of sequences xn ∈ X n considered to be close to yn and pick
any codeword (if any) inside this jar as the decoding output. The way how the decoder
forms the jar is defined independently with the actual channel code and even the channel
statistics in certain cases. Under this jar decoding, various coding theorems are proved in
this thesis. First of all, focusing on the word error probability, jar decoding is shown to
be near optimal by the achievabilities proved via jar decoding and the converses proved
via a proof technique, dubbed the outer mirror image of jar, which is also quite related
to jar decoding. Then a Taylor-type expansion of optimal channel coding rate with finite
block length is discovered by combining those achievability and converse theorems, and it
is demonstrated that jar decoding is optimal up to the second order in this Taylor-type
expansion. Flexibility of jar decoding is then illustrated by proving LDPC coding theorems
via jar decoding, where the bit error probability is concerned. And finally, we consider a
coding scenario, called interactive encoding and decoding, and show that jar decoding can
be also used to prove coding theorems and guide the code design in the scenario of two-way
communication.

iii



Acknowledgements

Before a long list of people I owe my thanks to for making this thesis possible, my
deepest gratitude and admiration is reserved for my supervisor, Professor En-Hui Yang,
who has taught me to appreciate the beauty of information theory and data compression
and constantly inspired me to think and work on exciting research topics in those areas.
Moreover, his training of logic thinking, preciseness and rigour benefits me even beyond
my academic career.

I am extremely grateful of the examining committee members, formed by distinguished
scholars. I would like to thank Professor Liang-liang Xie, Professor Patrick Mitran, and
Professor Alejandro Lopez-Ortiz for their valuable comments in my comprehensive exam
and their commitment to my PH.D defense. And I would like to thank Professor Ning Cai
from Xidian University for serving as my external examining committee member.

I am also greatly indebted to co-authors with whom I am honored to share papers
during my PH.D. study. The list includes but is not limited to Professor Zhen Zhang from
University of Southern California for teaching me to glimpse great knowledge of coding
theory, Dr. Dake He from Research In Motion Limited for his help on academic writing
and inspiring me to solve practical problem related to my research, and Professor Sheng-
hao Yang in Tsinghua University for his friendship and willingness to share his research
knowledge.

I would like to thank all the people with whom I am lucky to work in Multimedia
Communication Lab during the past six years, including Dr. Xiang Yu, Professor Hai-
quan Wang, Dr. Wei Sun, Dr. Lin Zheng, Professor Yuan Luo, Dr. Mehdi Torbatian,
Yuhan Zhou, Chang Sun, James Ho, Fei Teng, Jie Zhang, Krishna Rapaka, Krzysztof
Michal Hebel, Mahshad Eslamifar, Nan Hu, Yueming Gao and Duo Xu, for their invalu-
able friendship.

Finally, my sincere gratitude goes to my family, to my father and mother, who always
provide me great support and are the very motivation for any achievement I pursue, and
to my wife Yan whose encouragement and consolation are the source of my strength.

iv



To Yan

v



Table of Contents

List of Tables x

List of Figures xi

List of Acronyms xiii

1 Introduction 1

1.1 Channel Decoding Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Jar Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Concept and Illustration of Jar Decoding . . . . . . . . . . . . . . . 4

1.2.2 Connections with Old Decoding Rules . . . . . . . . . . . . . . . . 8

1.3 Organization and Main Contribution . . . . . . . . . . . . . . . . . . . . . 10

1.4 Definitions, Notations and Conventions . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Definitions Related to Conditional Entropy . . . . . . . . . . . . . . 15

1.4.2 Definitions Related to Relative Entropy . . . . . . . . . . . . . . . . 17

2 Non-asymptotic Achievable Channel Coding Theorems 21

2.1 Non-asymptotic Linear Coding Theorem: BSC . . . . . . . . . . . . . . . . 21

2.2 Non-asymptotic Linear Coding Theorem: BIMC . . . . . . . . . . . . . . . 27

2.3 Non-asymptotic Coding Theorem: DIMC . . . . . . . . . . . . . . . . . . . 32

2.4 Comparison with Existing Non-Asymptotic Achievability . . . . . . . . . . 39

vi



2.4.1 Achievability on Random Linear Code Ensembles . . . . . . . . . . 41

2.4.2 Achievability on Shannon Random Code Ensemble With a Fixed
Codeword Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Non-asymptotic Converse Channel Coding Theorems 60

3.1 Non-Asymptotic Converse Theorems: BIMSC . . . . . . . . . . . . . . . . 60

3.2 Non-Asymptotic Converse: DIMC . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Comparison with Existing Non-Asymptotic Converse Bounds . . . . . . . . 74

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Taylor Expansion of Optimal Channel Coding Rate 77

4.1 Taylor-type Expansion: BIMSC . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.1 Taylor-type Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.2 Comparison with Asymptotic Analysis . . . . . . . . . . . . . . . . 89

4.2 Taylor-type Expansion: DIMC . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Taylor-Type Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.2 Comparison with Asymptotic Analysis and Implication . . . . . . . 98

4.3 Approximation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.1 Approximation Formulas . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.2 BIMSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.3 DIMC: Z Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 Application of Taylor Expansion on Adaptive Modulation and Coding . . . 115

4.4.1 Motivation and Problem Formulation . . . . . . . . . . . . . . . . . 115

4.4.2 Taylor Expansion of Optimal Spectral Efficiency of Modulation and
Coding over AWGN Channel . . . . . . . . . . . . . . . . . . . . . 117

4.4.3 Constellation and Rate Selection based on Taylor Expansion . . . . 118

4.4.4 Application to the LTE System . . . . . . . . . . . . . . . . . . . . 119

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

vii



5 LDPC Coding Theorems 128

5.1 Terminology, LDPC Ensemble and Key Lemma . . . . . . . . . . . . . . . 128

5.2 LDPC Coding Theorem for BSC . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 LDPC Coding Theorem for BIMC . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Analysis On Degree Distribution . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Interactive Encoding and Decoding Theorems based on LDPC Codes
with Syndrome Accumulation 143

6.1 Motivation, Problem Formulation and Literature Review . . . . . . . . . . 143

6.2 Interactive Encoding and Decoding Scheme based on LDPC Codes with
Syndrome Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2.1 LDPC Ensemble with Check-Concentrated Degree Distribution . . 147

6.2.2 Syndrome Accumulation . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.3 Interactive Encoding and Decoding Schemes . . . . . . . . . . . . . 152

6.3 Performance of SA-LDPC-IED: General Case . . . . . . . . . . . . . . . . 155

6.3.1 Specification of γn(·, ·), ηn, and {Γb}, and Probability Bounds . . . 155

6.3.2 Performance for Individual Sequences . . . . . . . . . . . . . . . . . 160

6.3.3 Performance for Stationary, Ergodic Sources . . . . . . . . . . . . . 167

6.4 Performance of SA-LDPC-IED: Binary Case and Bit Error Probability . . 169

6.5 Implementation and Simulation Results . . . . . . . . . . . . . . . . . . . . 180

6.5.1 Modified BP Decoding Algorithm and Practical Implementation of
SA-LDPC-IED Schemes . . . . . . . . . . . . . . . . . . . . . . . . 180

6.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7 Conclusion and Future Work 191

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

viii



APPENDICES 195

A Non-Asymptotic Equipartition Property 196

A.1 NEP With Respect to Entropy . . . . . . . . . . . . . . . . . . . . . . . . 197

A.2 NEP With Respect to Conditional Entropy . . . . . . . . . . . . . . . . . . 210

A.3 NEP With Respect to Mutual Information and Relative Entropy . . . . . . 219

A.3.1 NEP With Respect to I(X;Y ) . . . . . . . . . . . . . . . . . . . . . 220

A.3.2 NEP With Respect to Relative Entropy . . . . . . . . . . . . . . . 225

A.4 NEP Application to Fixed Rate Source Coding . . . . . . . . . . . . . . . . 235

B Lemmas Related to LDPC Ensembles 244

B.1 LDPC ensemble with Syndrome Accumulation and Check Node Concen-
trated Degree Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 244

B.1.1 Proof of Lemma 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

B.1.2 Properties of P
(
R, l̄, ξ

)
. . . . . . . . . . . . . . . . . . . . . . . . 259

B.2 LDCP Ensemble with General Degree Distribution . . . . . . . . . . . . . 278

B.2.1 Properties of P
(
l̄, ξ, R(z)

)
. . . . . . . . . . . . . . . . . . . . . . 278

References 286

ix



List of Tables

2.1 Achievabilities on Random Linear Codes and BIMC . . . . . . . . . . . . . 52

4.1 CQI Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Specification of System Parameters . . . . . . . . . . . . . . . . . . . . . . 121

6.1 Performance of SA-LDPC-IED: Asymmetrical Channel . . . . . . . . . . . 187

6.2 SA-LDPC-IED vs. LDPC-SWC . . . . . . . . . . . . . . . . . . . . . . . . 187

x



List of Figures

1.1 Jar Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Tradeoff between the word error probability and block length when the code
rate is above the capacity with p = 0.12. . . . . . . . . . . . . . . . . . . . 26

2.2 Comparison of Achievability for BSC with cross-over probability p = 0.11 . 43

2.3 Comparison of Achievability for BEC with erasure probability p = 0.5 . . . 46

2.4 Comparison of Achievability for BIAGC with snr 0dB and word error prob-
ability Pe = 10−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Venn Diagram of Symmetric Channels . . . . . . . . . . . . . . . . . . . . 49

2.6 Z Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7 Comparison of Achievability for Z Channel with p = 0.5 and Pe = 10−3 . . 56

2.8 Comparison of Achievability for Z Channel with p = 0.9 and Pe = 10−3 . . 57

4.1 Illustration for the Z channel with n = 1000 and ε = 10−6: (a) comparison of
t∗ with the capacity achieving distribution; and (b) comparison of I(t;P )−
δt,n(ε) among different distributions t. . . . . . . . . . . . . . . . . . . . . . 101

4.2 ζX|Y of BIAGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Comparison of different bounds for BSC with p = 0.11. . . . . . . . . . . . 107

4.4 Comparison of different bounds for BSC with p = 0.001. . . . . . . . . . . 108

4.5 Comparison of different bounds for BEC with p = 0.05. . . . . . . . . . . . 109

4.6 Comparison of different bounds for BEC with p = 0.9. . . . . . . . . . . . . 110

4.7 Comparison of different bounds for BIAGC with SNR = −3.52 dB. . . . . 111

xi



4.8 Comparison of different bounds for BIAGC with SNR = 9.63 dB. . . . . . 112

4.9 Comparison of different bounds for Z Channel with p = 0.001. . . . . . . . 113

4.10 Comparison of different bounds for Z Channel with p = 0.9. . . . . . . . . 114

4.11 Adaptive Modulation and Coding System . . . . . . . . . . . . . . . . . . . 116

4.12 Adaptive Modulation and Coding in the LTE system . . . . . . . . . . . . 120

4.13 {thXi,t,n(γ)}3
i=1 vs. the Throughput of LTE System . . . . . . . . . . . . . 123

4.14 {thXi,t,n(γ −∆γi)}3
i=1 vs. the Throughput of LTE System . . . . . . . . . 123

4.15 SNR Region 4-5dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.16 Throughput Improvement over CQI 7 . . . . . . . . . . . . . . . . . . . . . 124

4.17 SNR Region 11-13dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.18 Throughput Improvement over CQI 10 . . . . . . . . . . . . . . . . . . . . 125

6.1 Interactive encoding and decoding for one way learning with side information
at the decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2 Binary Tree Structure of Syndrome Accumulation . . . . . . . . . . . . . . 151

6.3 Graphical Illustration of P
(
b∆
n
, l̄, ξ

)
. . . . . . . . . . . . . . . . . . . . . . 160

6.4 Performance of SA-LDPC-IED: Symmetrical Channel . . . . . . . . . . . . 188

6.5 Redundancy bound with different k . . . . . . . . . . . . . . . . . . . . . . 188

6.6 λ(x) vs. λ̃(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A.1 rX|Y (δ) for BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A.2 rX|Y (δ) for BIGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

A.3 Tradeoff between the error probability and block length when the rate is
below the entropy rate with p = 0.12 . . . . . . . . . . . . . . . . . . . . . 243

xii



List of Acronyms

AMC adaptive modulation and coding

BEC binary erasure channel

BIAGC binary input additive Gaussian channel

BIMC binary input memoryless channel with uniform capacity achieving dis-
tribution

BIMSC binary input memoryless symmetric channel

BP belief propagation

BSC binary symmetric channel

DIMC discrete input memoryless channel

IED interactive encoding and decoding

LDPC low density parity check

MAP maximum a posteriori

MD minimum distance

MIBOS memoryless input binary output symmetric

ML maximum likelihood

NEP non-asymptotic equipartition property

SWC Slepian-Wolf coding

xiii



Chapter 1

Introduction

1.1 Channel Decoding Rules

In the literature of channel coding so far, channel decoding is predominantly associated with
maximum a posteriori (MAP) decoding, maximum likelihood (ML) decoding, minimum
distance (MD) decoding, typical sequence decoding, and, more recently, message-passing
decoding [1–5]. In MAP decoding and ML decoding, upon receiving a channel output
sequence yn = y1y2 · · · yn, the MAP (ML, respectively) decoder examines each and every
codeword, and then selects the one maximizing the a posteriori probability (likelihood,
respectively) as the estimate of the transmitted codeword. Similarly, in MD decoding, the
MD decoder examines each and every codeword, and then chooses the one closest to the
received sequence yn as the estimate of the transmitted codeword. In typical sequence
decoding, the decoder examines each and every codeword, and chooses one jointly typical
with yn as the estimate of the transmitted codeword. All these decoding rules are more
or less codebook centric. On the other hand, message passing decoding (including belief
propagation (BP) decoding for low density parity check (LDPC) codes) is received sequence
centric to some extent; upon receiving yn, it updates and passes messages from one iteration
to another until it finds a codeword or fails to converge.

All decoding rules mentioned above have their own advantages and limitations. MAP
decoding is optimal in the sense of minimizing the word error probability; it is appli-
cable to any code and channel in theory, and it is also widely adopted in the theoretic
performance analysis of a coded communication system. However, MAP decoding has pro-
hibitive computation complexity when the number of codewords is large, thus making it
impractical. In addition, performance analysis under MAP decoding sometimes becomes

1



extremely difficult. For example, to the best of our knowledge, the performance analysis
of random linear codes based on Gallager’s parity check ensembles under MAP decoding
for asymmetric memoryless channels is still unknown because codewords are generally not
pairwisely independent. Since ML decoding and MD decoding are equivalent to MAP de-
coding under some conditions, they have the same advantages and limitations as does MAP
decoding. Typical sequence decoding is a convenient information theoretic tool for proving
asymptotic coding theorems in information theory. However, it is generally applicable only
to Shannon random codes and also has prohibitive computation complexity. In addition,
these decoding rules are generally concerned with the word error probability. In contrast,
message passing decoding has low decoding complexity and is generally concerned with
the bit error probability. However, message passing decoding is suboptimal in the sense of
either minimizing the bit error probability or word error probability and is applicable only
to certain types of codes such as LDPC codes and turbo codes; it is also difficult, if not
impossible, to have a rigorous analysis of message passing decoding [5].

It would be desirable to develop a new decoding rule which can have all advantages
of the above decoding rules. To this end, in this thesis, we propose a new decoding
rule dubbed jar decoding. Given a channel, code, and channel output sequence yn, jar
decoding first forms a set of suitable size, called a jar, consisting of sequences from the
channel input alphabet considered to be closely related to yn, and then takes any codeword
from the jar as the estimate of the transmitted codeword. If only the first order coding
performance is concerned, given any transmission rate, discrete channel input alphabet,
and discrete channel output alphabet, the jar corresponding to yn can be even formed a
priori without knowing either the code or the channel. In this sense, unlike MAP, ML,
MD, and typical sequence decoding, but similar to message passing decoding, jar decoding
is channel output sequence centric. In addition, jar decoding is flexible in the sense that it
can handle both the word error probability and bit error probability and deal with coding
problem in interactive information theory where the jar can change dynamically; it is also
powerful in the sense that new coding theorems, which could not be or at least have not
been proved with MAP, ML, or typical sequence decoding, can be established.

As evidenced by the evolution of digital communication and information theory over the
past 60 years, different decoding rules bring in different perspectives not only on decoding
itself, but also on how to design codes particularly suitable for the respective decoding
rule. In the first 40 years or so after the birth of information theory, code design was
predominantly on how to construct codes which can maximize the distance of the codes
under some conditions due to the union bound analysis under ML decoding. With message
passing decoding, however, code design was changed dramatically in recent 20 years or
so. For example, with BP decoding for LDPC codes, code design was largely on how
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to construct variable and check node degree distributions so that LDPC codes generated
from these degree distributions are efficient under BP decoding. With jar decoding, it is
expected that similar change would happen in code design, and we believe that there is
ample room to design effective codes and jar decoding algorithms.

1.2 Jar Decoding

Consider a memoryless channel {p(y|x) : x ∈ X , y ∈ Y}, where X is the channel input
alphabet, and Y is the channel output alphabet. In this thesis, we mainly consider the
case where X is finite, but Y is arbitrary and could be discrete or continuous. Such a
channel will be referred to as a discrete input memoryless channel (DIMC) . As such, for
any x ∈ X , p(y|x) is a probability mass function (pmf) over Y if Y is discrete, and a
probability density function (pdf) over Y if Y is the real line.

Given a DIMC {p(y|x) : x ∈ X , y ∈ Y}, its capacity is given by

CDIMC
∆
= max

X
I(X;Y ) (1.1)

where Y is the channel output in response to an input X, I(X;Y ) is the mutual information
between X and Y , and the maximization is taken over all possible input random variables
X. Of particular interest is the case where the maximum in (1.1) is achieved at the
uniformly distributed random variable X. Such a DIMC is said to have the uniform
capacity achieving distribution; in this case,

CDIMC = ln |X | −H(X|Y ) (1.2)

where Y is the channel output in response to the uniform input random variable X, and
H(X|Y ) is the conditional entropy of X given Y .

Two well known examples of a binary input memoryless channel with uniform capacity
achieving distribution (BIMC) are the binary symmetric channel (BSC) and the binary
input additive Gaussian channel (BIAGC) . For the BSC, its channel input and output
relationship is described by

Y = X ⊕ Z (1.3)

where ⊕ denotes the modulo-2 addition, and Z is a binary random variable independent
of the channel input X with Pr{Z = 1} = p, 0 < p < 0.5. The capacity of the BSC is
equal to

CBSC = ln 2−H(p) (1.4)
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where H(p) = −p ln p− (1− p) ln(1− p) is the binary entropy function. For the BIAGC,
its channel input and output relationship is described by

Y = X +W (1.5)

where X ∈ {1,−1}, and W is a Gaussian random variable with zero mean and variance
σ2 and independent of X. Its capacity is equal to

CBIAGC = ln 2− 1

2
−
∫

1

2
√

2πσ2

(
e−

(y−1)2

2σ2 + e−
(y+1)2

2σ2

)
ln

[
e−

(y−1)2

2σ2 + e−
(y+1)2

2σ2

]
dy . (1.6)

1.2.1 Concept and Illustration of Jar Decoding

Encodingmessage cn Channel yn

J(yn)

ĉn

Figure 1.1: Jar Decoding

Definition 1.1 (Jar Decoding). As illustrated in Figure 1.1, given any channel with input
alphabet X and output alphabet Y , which may not be necessarily memoryless, any code
of block length n for the channel, and any channel output sequence yn ∈ Yn, jar decoding
first forms a set of suitable size (called a jar and denoted by J(yn)) consisting of sequences
xn ∈ X n believed to be closely related to yn through the channel, and then picks any
codeword (if any) from the jar J(yn) as the estimate of the transmitted codeword.

Discussion: For many channels including all binary input memoryless channels with
uniform capacity achieving distribution, the jar J(yn) can be formed a priori without
knowing the actual code to be used over the channels. When Y is also finite, the jar J(yn)
can be even formed a priori without knowing either the actual code to be used over the
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channel or the channel itself. In this sense, jar decoding is channel output yn centric,
in contrast with MAP, ML, MD, and typical sequence decoding, which are all codebook
centric. Of course, in the final decoding stage, the knowledge of the channel and code is
needed implicitly to pick a codeword from the jar J(yn) as the estimate of the transmitted
codeword. This property is similar to the double universality of Yang-Kieffer lossy codes [6]
as commented by Berger and Gibson in [7]. Below we will further illustrate this through
examples.

Example 1 (Hamming Jar): Consider the BSC with cross-over probability 0 < p < 0.5.
No matter what the code of block length n used over the BSC is, the jar J(yn) for each
yn ∈ {0, 1}n can be formed as

J(yn) =

{
xn ∈ X n :

1

n
wt(yn − xn) ≤ p+ δ

}
(1.7)

where wt(zn) denotes the Hamming weight of zn, i.e., the number of nonzero entries in zn,
and δ is a real number. For the obvious reasons, the jar defined in (1.7) will be referred to
as a Hamming jar. The size of J(yn) is∑

0≤w≤n(p+δ)

(
n
w

)
and upper bounded by enH(p+δ) whenever p+ δ < 0.5.

Let us now look at why jar decoding works effectively in this case. Let cn be the
codeword transmitted over the BSC, and Y n the corresponding channel output. From the
law of large numbers or the Chernoff bound, it is not hard to see that as long as δ is not too
small, cn is in the jar J(Y n) with high probability. Therefore, jar decoding would succeed
if there is no other sequence in the jar J(Y n) which is also a codeword, which is generally
true if the code used over the BSC is well designed. For example, for random linear codes,
the probability that xn ∈ J(Y n), xn 6= cn, is a codeword is upper bounded by e−n[ln 2−R],
where R is the code rate in nats. This implies the probability that the jar J(Y n) contains
another codeword is upper bounded by e−n[ln 2−R−H(p+δ)]. Therefore, jar decoding succeeds
with high probability whenever R < ln 2−H(p+ δ). Note that ln 2−H(p+ δ) is close to
the BSC capacity CBSC = ln 2−H(p). The argument presented here will be made rigorous
in Section 2.1 to establish non-asymptotic linear coding theorems for the BSC.

Example 2 (BIAGC Jar): Consider now the BIAGC with X = {1,−1}. For any
xn = x1x2 · · ·xn ∈ X n and any real-valued sequence yn = y1y2 · · · yn, let

|yn − xn|2 =
m∑
i=1

|yi − xi|2 .
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The jar J(yn) can be formed as

J(yn) =

xn ∈ X n : − 1

n
ln

e−
|yn−xn|2

2σ2∏n
i=1

[
e−

(yi−1)2

2σ2 + e−
(yi+1)2

2σ2

] ≤ H(X|Y ) + δ

 (1.8)

where Y is the BIAGC output in response to the uniform input random variable X, and
δ is a real number. It is not hard to verify that

|J(yn)| ≤ en(H(X|Y )+δ)

for any yn.

Example 3 (BIMC Jar): Consider now an arbitrary BIMC with binary alphabet X =
{0, 1}. As indicated in (1.2), its capacity is equal to

CBIMC = ln 2−H(X|Y )

where Y is the BIMC output in response to the uniform input random variable X. For
any xn ∈ X n and yn ∈ Yn, let

p(yn|xn) =
n∏
i=1

p(yi|xi) .

Then given yn,
p(yn|xn)∏n

i=1[p(yi|0) + p(yi|1)]

is a pmf over X n. In this case, the jar J(yn) for yn can be formed as

J(yn) =

{
xn ∈ X n : − 1

n
ln

p(yn|xn)∏n
i=1[p(yi|0) + p(yi|1)]

≤ H(X|Y ) + δ

}
(1.9)

where δ is a real number. Once again, one can verify that

|J(yn)| ≤ en(H(X|Y )+δ) (1.10)

for any yn.

The reason why jar decoding works effectively in this case is similar to the BSC case.
Let us look at linear block codes of block length n again. For any linear block code of
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block length n with any rate R > 0, suppose we randomly pick its coset code for use over
the BIMC. Then the transmitted codeword cn takes any sequence in X n equally likely. Let
Y n be the BIMC output in response to cn. From the asymptotic equipartition property
(AEP) [4] or the non-asymptotic equipartition property established in Appendix A, it
follows that with high probability, cn is in the jar J(Y n) as long as δ is not too small.
Therefore, jar decoding would succeed if there is no other sequence in the jar J(Y n) which
is also a codeword, which is generally true if the linear block code is well designed.

Example 4 (Empirical Conditional Entropy Jar): Suppose now that the channel output
alphabet Y is finite, and the channel is memoryless, but otherwise unknown. For any
xn ∈ X n and yn ∈ Yn, let h(xn|yn) be the normalized empirical conditional entropy of xn

given yn, i.e.,

h(xn|yn)
∆
=
∑
y∈Y

∑
x∈X

n(x, y)

n

[
− ln

n(x, y)

n(y)

]
where n(x, y) (n(y), respectively) is the number of times (x, y) (y, respectively) appears
in (xn, yn) = {(xi, yi)}ni=1 (yn, respectively). In this case, the jar J(yn) for each yn can be
formed as

J(yn) = {xn ∈ X n : h(xn|yn) ≤ T} (1.11)

where T > 0 generally depends on the targeted transmission rate. Using the standard type
technique [4], one can verify that

|J(yn)| ≤
[(
n+ |X | − 1

|X | − 1

)]|Y|
enT .

Example 5 (Jar from Classical Prefix Codes): Suppose now that the channel output
alphabet Y is finite, and the channel is unknown and not necessarily memoryless, but
ergodic. Let Sn denote a (classical) prefix code with side information available to both the
encoder and decoder, where Sn is a mapping from X n × Yn to {0, 1}∗ satisfying that for
any yn ∈ Yn, the set {Sn(xn, yn) : xn ∈ X n} is a prefix set. (See, for example, [8–13], and
the references therein for the existence of such universal prefix codes.) Let hn(·|·) denote
its normalized length function such that nhn(xn|yn) is the number of nats resulting from
applying Sn to encode xn from X given the side information sequence yn from Y available
to both the encoder and decoder. In this case, the jar J(yn) for each yn can be formed as

J(yn) = {xn ∈ X n : hn(xn|yn) ≤ T} (1.12)

where T > 0 generally depends on the targeted transmission rate. In view of the Kraft
inequality, one can verify that

|J(yn)| ≤ enT . (1.13)
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1.2.2 Connections with Old Decoding Rules

From the previous subsection, it is apparent that jar decoding is quite different from MAP,
ML, MD, typical sequence, and BP decoding. In this section, we further demonstrate,
by examples, that to a large extent, jar decoding indeed has advantages of all these old
decoding rules.

Connection with MD decoding: Let us first look at the BSC. As discussed in Example 1,
the jar J(yn) for each yn ∈ {0, 1}n in this case is the Hamming jar given in (1.7). Let C be
the actual code of block length n used over the BSC, and cn ∈ C the codeword transmitted
over the BSC. Given a received sequence yn, in minimum Hamming distance decoding, the
decoder selects

ĉn
∆
= arg min

bn∈C
wt(yn − bn) (1.14)

as the estimate of the transmitted codeword cn. In view of (1.7), if the jar J(yn) contains a
codeword, it must contain ĉn too. Therefore, if the jar J(yn) contains only one codeword,
which is true with high probability when the code C is well designed, then jar decoding
and minimum Hamming distance decoding agree! Furthermore, one of many ways to pick
a codeword from the jar J(yn) is to select

c̃n
∆
= arg min

bn∈C∩J(yn)

wt(yn − bn) (1.15)

as the estimate of the transmitted codeword cn. Of course, behind this similarity and
agreement is a striking difference. In minimum Hamming distance decoding, one always
has to solve (1.14) and ends up with a codeword (right or wrong). On the other hand, in
jar decoding, if the jar J(yn) does not contain a codeword, jar decoding may not produce
a codeword, even though such probability is very small; if the jar J(yn) does contain
a codeword, one does not have to solve (1.15) and picking up any codeword from the
jar is just fine. This flexibility leaves ample room to reduce decoding complexity. The
correctness of jar decoding is guaranteed by the fact that with high probability, the jar
J(yn) contains one and only one codeword—the transmitted codeword cn—in the case of
word error probability or codewords very close (in Hamming distance) to cn in the case of
bit error probability, as shown in the proofs of our coding theorems in subsequent chapters.

The above analysis and comparison can be applied equally well to jar decoding and
minimum Euclidean distance decoding in the case of BIAGC. As discussed in Example
2, the jar J(yn) for each real-valued sequence yn in this case is the BIAGC jar given in
(1.8). Let C ⊂ X n be the actual code of block length n used over the BIAGC, and cn ∈ C
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the codeword transmitted over the BIAGC. Given a received real-valued sequence yn, in
minimum Euclidean distance decoding, the decoder selects

ĉn
∆
= arg min

bn∈C
|yn − bn| (1.16)

as the estimate of the transmitted codeword cn. In view of (1.8), if the jar J(yn) contains a
codeword, it must contain ĉn too. Therefore, if the jar J(yn) contains only one codeword,
which is true with high probability when the code C is well designed, then jar decoding
and minimum Euclidean distance decoding agree! Furthermore, one of many ways to pick
a codeword from the jar J(yn) is to select

c̃n
∆
= arg min

bn∈C∩J(yn)

|yn − bn| (1.17)

as the estimate of the transmitted codeword cn. The rest of comparison goes along the
same way as in the case of BSC. As a final note, in both cases of BSC and BIAGC, since
codewords are equally likely, minimum distance (Hamming or Euclidean as the case may
be) is equivalent to MAP and ML decoding.

Connection with ML decoding: Consider an arbitrary BIMC {p(y|x) : x ∈ X , y ∈ Y}
with X = {0, 1}. In this case, as discussed in Example 3, the jar J(yn) for each sequence
yn ∈ Yn is the BIMC jar given in (1.9). Let C ⊂ X n be the actual code of block length
n used over the BIMC, and cn ∈ C the codeword transmitted over the BIMC. Given a
received sequence yn ∈ Yn, in ML decoding, the decoder selects

ĉn
∆
= arg max

bn∈C
p(yn|bn) (1.18)

as the estimate of the transmitted codeword cn. In view of (1.9), it is not hard to see that
if the jar J(yn) contains a codeword, it must contain ĉn too. Therefore, if the jar J(yn)
contains only one codeword, which is true with high probability when the code C is well
designed, then jar decoding and ML decoding agree! Furthermore, one of many ways to
pick a codeword from the jar J(yn) is to select

c̃n
∆
= arg max

bn∈C∩J(yn)

p(yn|bn) (1.19)

as the estimate of the transmitted codeword cn. The rest of comparison goes along the
same way as in the case of BSC. Note that in the case of BIMC, since codewords are equally
likely, MAP and ML decoding are identical.
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Connection with typical sequence decoding: As mentioned early, typical sequence decod-
ing is an information theoretic tool for proving asymptotic coding theorems in information
theory; it is applicable only to Shannon random codes. By forming the jar J(yn) as

J(yn) = {xn ∈ X n : xn is jointly typical with yn} (1.20)

it is easy to see that typical sequence decoding is actually a special case of jar decoding.
Of course, the jointly typical jar defined above is of limited practical use for several reasons
including (1) it is asymptotic and (2) it rejects non-typical received sequences yn from the
outset. However, this connection does indicate the potential of applying jar decoding to
multi-user communication problems as well.

Connection with Feinstein’s threshold decoding: In [14], Feinstein proposed a decoding
rule, called threshold decoding, in which the decoder selects a codeword whose likelihood
passes certain threshold, declares an error if no such codeword exists and chooses the
codeword with the lowest index if more than one codeword passes the likelihood threshold.
As can be seen, threshold decoding is also a special case of jar decoding, where the jar
consists of all sequences xn passing the likelihood threshold given the channel output yn.
Moreover, threshold decoding specifies the tie-breaking rule when more than one codeword
is inside the jar, in which case the one with the lowest index is selected.

Connection with BP decoding: For LDPC codes, BP decoding is one of many ways to
pick up a codeword from the jar J(yn). This will be further confirmed by our simulation
results in Section 5.5.

1.3 Organization and Main Contribution

The rest of this thesis is organized as follows.

In Chapter 2, non-asymptotic channel coding achievabilities proved via jar decoding
are presented. In particular, it is shown that with jar decoding,

1) random linear codes of block length n can reach within

σH(X|Y )

√
2α lnn

n
+

(α + 0.5) lnn

n
+O

(
ln lnn

n

)
of the capacity of any binary input memoryless channel with uniform capacity-
achieving input X and arbitrary (either discrete or continuous) channel output al-
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phabet (BIMC) while maintaining the word error probability

n−α

2
√
πα lnn

+O

(
n−α

ln3/2 n√
n

)
,

and within
c√
n

+
lnn

2n
− 1

n
ln

(1− CBE)MH(X|Y )

σ3
H(X|Y )

of the capacity while maintaining the word error probability

Q

(
c

σH(X|Y )

)
+
MH(X|Y )

σ3
H(X|Y )

1√
n
,

where σ2
H(X|Y ) and MH(X|Y ) are the conditional information variance and absolute

third moment respectively of X given the channel output Y , Q(z) = 1√
2π

∫∞
z
e−t

2/2dt,
and CBE < 1 is the universal constant in the Berry-Esseen central limit theorem;

2) the non-asymptotic achievable bound on random linear codes for BIMC (including
BSC and BEC as special examples) is essentially identical with Dependence Testing
Bound on Shannon random codes in [15], one of the tightest achievable bounds in
literature;

3) and Shannon random codes of block length n and fixed codeword type t can achieve a
similar tradeoff between the diminishing capacity gap and the word error probability
for any DIMC.

Furthermore, compared to existing achievabilities applicable to random linear code en-
sembles or Shannon random code ensemble with a fixed codeword type from the previous
literature, our achievabilities are shown to be new, very tight and easy to compute, which
suggests that jar decoding, as a suboptimal decoding rule, does not lose much optimality
to ML decoding, especially in the case of practical interest when the block length is not
large and the channel coding rate is close to the capacity.

To confirm the near optimality of jar decoding, a proof technique of non-asymptotic
channel coding converses, dubbed the outer mirror image of jar, is developed in Chapter
3. Using this proof technique, which is also quite related to the concept of jar as its name
suggests, non-asymptotic channel coding converse theorems are derived, which show that

1) for BIMSC, a special class of BIMC, any channel code suffers at least

σH(X|Y )

√
2α lnn

n
−O

(
lnn

n

)
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rate penalty from channel capacity by maintaining word error probability

n−α

2
√
πα ln 2

(
1− 1

2α lnn

)
and

σH(X|Y )√
n

Q−1(ε)− lnn

n
−O(n−1)

rate penalty from channel capacity by maintaining word error probability ε;

2) and similar upper bounds on trade-off between channel coding rate and the word
error probability hold for DIMC in general.

Those converses are shown to be very tight compared to existing results from the previous
literature, especially the non-asymptotic converses proved in [15]. Furthermore, combining
those converses with the achievabilities in Chapter 2 implies that jar decoding achieves the
first and second order of optimal channel coding rate with respect to block length n when
the error probability ε is a constant or sub-exponentially decreasing function of n.

In the non-asymptotic regime when both n and ε are finite, however, treating ε as a
constant or function of n is not convenient. Chapter 4 is then devoted to analyzing the
second order channel coding performance and confirming the second order optimality of jar
decoding in the non-asymptotic regime. Towards this, a quantity δt,n(ε) is then defined to
measure the relative magnitude of the error probability ε and block length n with respect to
a given channel and an input distribution t. By combining the achievabilities of jar decoding
in Chapter 2 and the converses in Chapter 3, it is demonstrated that when ε < 1/2, the
best channel coding rate Rn(ε) given n and ε has a “Taylor-type expansion” with respect
to δt,n(ε), where the first two terms of the expansion are maxt[I(t;P ) − δt,n(ε)], which is
equal to I(t∗, P )− δt∗,n(ε) for some optimal distribution t∗, and the third order term of the

expansion is O(δ2
t∗,n(ε)) whenever δt∗,n(ε) = Ω(

√
lnn/n), thus implying the optimality of jar

decoding up to the second order coding performance. Moreover, based on the Taylor-type
expansion and the converses in Chapter 3, two approximation formulas for Rn(ε) (dubbed
“SO” and “NEP”) are provided; they are further evaluated and compared against some
of the best bounds known so far, as well as the normal approximation of Rn(ε) revisited
in the recent literature. It turns out that while the normal approximation is all over the
map, i.e. sometime below achievable bounds and sometime above converse bounds, the
SO approximation is much more reliable as it is always below converses; in the meantime,
the NEP approximation is the best among the three and always provides an accurate
estimation for Rn(ε). An important implication arising from the Taylor-type expansion
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of Rn(ε) is that in the practical non-asymptotic regime, the optimal marginal codeword
symbol distribution is not necessarily a capacity achieving distribution. In addition, to
demonstrate the impact of this Taylor-type expansion on practical communication system
design, a practical issue in adaptive modulation and coding, i.e. how to select constellation
and coding rate according to channel condition, is considered. A selecting rule is then
derived based on the Taylor-type expansion, and when applied to adaptive modulation
and coding in the LTE system, reveals new combinations of constellation and coding rate
which can improve the system throughput.

Besides its near optimality demonstrated above, jar decoding also has the flexibility to
handle bit error probability and code ensembles much more complex than random linear
code ensemble or Shannon random code ensemble with a fixed codeword type. In Chapter
5, we show that under jar decoding, the analysis of LDPC codes is much easier compared
to that under MAP or ML and BP decoding, and new LDPC coding theorems, which have
not been proved under ML or BP decoding to our best knowledge, can be established.
Specifically, it is proved that LDPC codes with any variable node degree distribution L(zk)
and check node degree distribution R(zk) can approach the capacity, with diminishing bit
error probability, of any BIMC as k increases. As the assumption of uniform capacity-
achieving distribution on channels is not essential to the proof of this coding theorem,
it further demonstrates that LDPC codes can approach mutual information between a
uniform random variable and its channel response whenever the degrees of the ensemble
are large for general binary input memoryless channels. This achievability is very general as
no symmetric property is required for channels. Moreover, simulation shows an interesting
connection between jar decoding and BP decoding, i.e., BP decoding can be regarded as
one of many ways to pick up a codeword from the jar for LDPC codes when it succeeds in
outputting a codeword.

The demonstration of flexibility of jar decoding is further extended to interactive infor-
mation and coding theory in Chapter 6. Specifically, a coding scenario, called interactive
encoding and decoding for one way learning, is considered, in which the encoder transmits
the source X to the decoder with some side information Y (correlated to X) available to the
decoder but unknown to the encoder through a two-way noiseless channel. As can be seen,
interactive encoding and decoding distinguishes itself from Slepian-Wolf coding by allowing
two-way information flow. Under jar decoding with a dynamic jar, interactive encoding
and decoding based on binary LDPC codes with syndrome accumulation (SA-LDPC-IED)
is proposed and investigated. Assume that the source alphabet is GF(2), and the side in-
formation alphabet is finite. It is first demonstrated how to convert any classical universal
lossless code Cn (with block length n and side information available to both the encoder and
decoder) into a universal SA-LDPC-IED scheme. It is then shown that with the word error
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probability approaching 0 sub-exponentially with n, the compression rate (including both
the forward and backward rates) of the resulting SA-LDPC-IED scheme is upper bounded
by a functional of that of Cn, which in turn approaches the compression rate of Cn for each
and every individual sequence pair (xn, yn) and the conditional entropy rate H(X|Y ) for
any stationary, ergodic source and side information (X, Y ) as the average variable node
degree l̄ of the underlying LDPC code increases without bound. When applied to the class
of binary source and side information (X, Y ) correlated through a BSC with the cross-
over probability unknown to either the encoder or decoder, the resulting SA-LDPC-IED
scheme can be further simplified, yielding even improved rate performance versus the bit
error probability when l̄ is not large. Then the interesting connection between jar decoding
and BP decoding discovered in Chapter 5 inspires us to implement SA-LDPC-IED schemes
by modified BP decoding. And simulation results on binary source-side information pairs
confirm the theoretic analysis, and further show that the SA-LDPC-IED scheme consis-
tently outperforms the Slepian-Wolf coding scheme based on the same underlying LDPC
code.

Finally, the conclusion of this thesis is drawn and future work is discussed in Chapter
7.

1.4 Definitions, Notations and Conventions

In this thesis, information quantities such as entropy, conditional entropy, mutual infor-
mation, and divergence (or relative entropy) are measured in nats∗, and ln stands for the
logarithm with base e. For any set S, we use Sn to denote the set of all sequences of
length n drawn from S. Let |S| denotes the cardinality of a finite set S. Let E[·], VAR[·],
M3[·], and M̂3[·] be expectation, variance, third absolute central moment, and third central
moment operators on random variables respectively. For any two sequences {ai}ni=1 and
{bi}ni=1, we write an ∼ bn if

lim
n→∞

an
bn

= 1 .

Furthermore, for any positive integer x, define

π(x)
∆
=

{
0 if x is even
1 otherwise.

(1.21)

∗Some exceptions, explicitly mentioned in their context, are seen in figures of simulation results with
unit in bits.
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As has been defined and used above, H(·), when taking a real number number as the only
argument, is the binary entropy function. And define H−1(·) : [0, ln 2] → [0, 0.5] as the
inverse function of H(·) such that x = H−1(h) if and only if h = H(x) for x ∈ [0, 0.5]
and h ∈ [0, ln 2]. Moreover, for any set X ,

∫
X f(x)dx is understood to be summation and

integral over x ∈ X for discrete and continuous X respectively, and the subscript X is
dropped when it is clear from context.

The proof of coding theorems via jar decoding in this thesis, especially non-asymptotic
coding theorems, relies heavily on non-asymptotic equipartition property (NEP) in Ap-
pendix A. In particular, Theorems A.4 (Right NEP with respect to Conditional Entropy)
and A.8 (Left NEP with respect to Relative Entropy) are extensively used, and therefore
presented together with their related definitions in the next two subsections respectively
for easy reference.

1.4.1 Definitions Related to Conditional Entropy

Let {p(x)p(y|x) : x ∈ X , y ∈ Y} be a joint probability distribution where p(x) is a p.m.f
for discrete X and p(y|x) is a p.m.f and p.d.f for discrete and continuous Y respectively,
and (X, Y ) be a random variable pair following this distribution. Define

λ∗(X|Y )
∆
= sup

{
λ ≥ 0 :

∫
p(y)

[∑
x∈X

p−λ+1(x|y)

]
dy <∞

}
. (1.22)

Suppose that
λ∗(X|Y ) > 0 . (1.23)

Define for any δ ≥ 0

rX|Y (δ)
∆
= sup

λ≥0

[
λ(H(X|Y ) + δ)− ln

∑
x∈X

∫
p(y)p−λ+1(x|y)dy

]
. (1.24)

For any λ ∈ [0, λ∗(X|Y )), let Xλ and Yλ be random variables under joint distribution
p(x, y)fλ(x, y) where

fλ(x, y)
∆
=

p−λ(x|y)∑
u∈X

∫
p(v)p−λ+1(u|v)dv

. (1.25)

Further define
δ(λ)

∆
=E[− ln p(Xλ|Yλ)]−H(X|Y ) (1.26)
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∆∗(X|Y )
∆
= lim

λ↑λ∗(X|Y )
δ(λ) (1.27)

σ2
H(X|Y, λ)

∆
=VAR[− ln p(Xλ|Yλ)] = E[|− ln p(Xλ|Yλ)− E[− ln p(Xλ|Yλ)]|2] (1.28)

MH(X|Y, λ)
∆
=M3[− ln p(Xλ|Yλ)] = E[|− ln p(Xλ|Yλ)− E[− ln p(Xλ|Yλ)]|3] (1.29)

and

M̂H(X|Y, λ)
∆
=M̂3[− ln p(Xλ|Yλ)] = E [− ln p(Xλ|Yλ)− E[− ln p(Xλ|Yλ)]]3 (1.30)

and write M̂H(X|Y, 0) as M̂H(X|Y ), MH(X|Y, 0) asMH(X|Y ), and σ2
H(X|Y, 0) as σ2

H(X|Y ).
Clearly, σ2

H(X|Y ), MH(X|Y ), and M̂H(X|Y ) are the variance, third absolute central mo-
ment, and third central moment of − ln p(X|Y ). In particular, σ2

H(X|Y ) is referred to as
the conditional information variance of X given Y in Appendix A. Assume that

σ2
H(X|Y ) > 0 and MH(X|Y ) = M3[− ln p(X|Y )] <∞. (1.31)

Then it follows from Appendix A that rX|Y (δ) is strictly increasing, convex, and contin-
uously differentiable up to at least the third order inclusive over δ ∈ [0,∆∗(X|Y )), and
furthermore has the following parametric expression

rX|Y (δ(λ)) = λ(H(X|Y ) + δ(λ))− ln
∑
x∈X

∫
p(y)p−λ+1(x|y)dy (1.32)

with δ(λ) defined in (1.26) and λ = r′X|Y (δ). In addition, let

ξ̄H(X|Y, λ, n)
∆
=

2CBEMH(X|Y, λ)√
nσ3

H(X|Y, λ)

+ e
nλ2σ2

H (X|Y,λ)

2

[
Q
(√

nλσH(X|Y, λ)
)
−Q

(
ρ∗ +

√
nλσH(X|Y, λ)

)]
(1.33)

ξ
H

(X|Y, λ, n)
∆
=e

nλ2σ2
H (X|Y,λ)

2 Q
(
ρ∗ +

√
nλσH(X|Y, λ)

)
(1.34)

with Q(ρ∗) = CBEMH(X|Y,λ)√
nσ3

H(X|Y,λ)
and Q(ρ∗) = 1

2
− 2CBEMH(X|Y,λ)√

nσ3
H(X|Y,λ)

.

The significance of the above quantities can be seen from Theorem A.4 in A, summarized
as below:

Result 1.1. (a) There exists a δ∗ > 0 such that for any δ ∈ (0, δ∗],

rX|Y (δ) =
1

2σ2
H(X|Y )

δ2 +O(δ3). (1.35)
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(b) For any δ ∈ (0,∆∗(X|Y )) and any positive integer n

ξ̄H(X|Y, λ, n)e−nrX|Y (δ) ≥ Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
≥ ξ

H
(X|Y, λ, n)e−nrX|Y (δ), (1.36)

where λ = r′X|Y (δ) > 0. Moreover, when δ = o(1) and δ = Ω(1/
√
n),

ξ̄H(X|Y, λ, n) = e
nλ2σ2

H (X|Y,λ)

2 Q
(√

nλσH(X|Y, λ)
)

(1 + o(1)) (1.37)

ξ
H

(X|Y, λ, n) = e
nλ2σ2

H (X|Y,λ)

2 Q
(√

nλσH(X|Y, λ)
)

(1− o(1)) (1.38)

and

e
nλ2σ2

H (X|Y,λ)

2 Q
(√

nλσH(X|Y, λ)
)

= Θ

(
1√
nλ

)
(1.39)

with λ = r′X(δ) = Θ(δ).

(c) For any δ ≤ c
√

lnn
n

, where c < σH(X|Y ) is a constant,

Q

(
δ
√
n

σH(X|Y )

)
− CBEMH(X|Y )√

nσ3
H(X|Y )

≤ Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
≤ Q

(
δ
√
n

σH(X|Y )

)
+
CBEMH(X|Y )√
nσ3

H(X|Y )
. (1.40)

where 0 < CBE < 0.4784 is the universal constant in the Berry-Esseen central limit
theorem [16].

1.4.2 Definitions Related to Relative Entropy

Let P(X ) represent the set of all probability distributions on X . For any t ∈ P(X ),
t(x) denotes the probability of x under t. The set of types Pn(X ) is the subset of P(X )
such that t ∈ Pn(X ) if and only if t(x)n is an integer for any x ∈ X . And for any
t ∈ Pn(X ), let T nt ⊂ X n be the set of sequences with empirical distribution t. Moreover,
let {p(y|x) : x ∈ X , y ∈ Y} be a conditional probability distribution (p.m.f and p.d.f for
discrete and continuous Y respectively).

For any t ∈ P , define

H(t)
∆
=
∑
x∈X

−t(x) ln t(x) (1.41)
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D(t, x)
∆
=

∫
p(y|x) ln

p(y|x)

qt(y)
dy (1.42)

I(t;P )
∆
=
∑
x∈X

t(x)

∫
p(y|x) ln

p(y|x)

qt(y)
dy (1.43)

where
qt(y)

∆
=
∑
x∈X

t(x)p(y|x) (1.44)

qt(y
n)

∆
=

n∏
i=1

qt(yi), (1.45)

and

λ∗−(t;P )
∆
= sup

{
λ ≥ 0 :

∑
a∈X

t(a)

∫
p(y|a)

[
p(y|a)

qt(y)

]−λ
dy <∞

}
. (1.46)

It is easy to see that λ∗−(t;P ) is the same for all t ∈ P with the same support set {a ∈ X :
t(a) > 0}. Suppose that

λ∗−(t;P ) > 0. (1.47)

Define for any t ∈ P and any δ ≥ 0

r−(t, δ)
∆
= sup

λ≥0

[
λ(δ − I(t;P ))−

∑
x∈X

t(x) ln

∫
p(y|x)

[
p(y|x)

qt(y)

]−λ
dy

]
(1.48)

and for any t ∈ P and any λ ∈ [0, λ∗−(t;P )), random variables Xt and Yt,λ with joint
distribution t(x)p(y|x)f−λ(y|x) where

f−λ(y|x)
∆
=

[
p(y|x)
qt(y)

]−λ
∫
p(v|x)

[
p(v|x)
qt(v)

]−λ
dv
. (1.49)

Then define

D(t, x, λ)
∆
=E

[
ln
p(Yt,λ|Xt)

qt(Yt,λ)

∣∣∣∣Xt = x

]
(1.50)

δ−(t, λ)
∆
=E

[
− ln

p(Yt,λ|Xt)

qt(Yt,λ)

]
+ I(t;P ) (1.51)

∆∗−(t)
∆
= lim

λ↑λ∗−(t;P )
δ−(t, λ) (1.52)
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σ2
D,−(t;P, λ)

∆
=E

{
VAR

[
ln
p(Yt,λ|Xt)

qt(Yt,λ)

∣∣∣∣Xt

]}
=
∑
x∈X

t(x)VAR
[

ln
p(Yt,λ|Xt)

qt(Yt,λ)

∣∣∣∣Xt = x

]
(1.53)

MD,−(t;P, λ)
∆
=E

{
M3

[
ln
p(Yt,λ|Xt)

qt(Yt,λ)

∣∣∣∣Xt

]}
=
∑
x∈X

t(x)M3

[
ln
p(Yt,λ|Xt)

qt(Yt,λ)

∣∣∣∣Xt = x

]
(1.54)

and

M̂D,−(t;P, λ)
∆
=E

{
M̂3

[
ln
p(Yt,λ|Xt)

qt(Yt,λ)

∣∣∣∣Xt

]}
=
∑
x∈X

t(x)M̂3

[
ln
p(Yt,λ|Xt)

qt(Yt,λ)

∣∣∣∣Xt = x

]
.(1.55)

Note that σ2
D,−(t;P, λ), MD,−(t;P, λ), and M̂D,−(t;P, λ) are respectively the conditional

variance, conditional third absolute central moment, and conditional third central moment

of ln
p(Yt,λ|Xt)
qt(Yt,λ)

given Xt. Write σ2
D,−(t;P, 0) simply as σ2

D(t;P ), MD,−(t;P, 0) as MD(t;P ),

and M̂D,−(t;P, 0) as M̂D(t;P ). Assume that

σ2
D(t;P ) > 0 and MD(t;P ) <∞. (1.56)

Furthermore r−(t, δ) has the following parametric expression

r−(t, δ−(t, λ)) = λ(δ−(t, λ)− I(t;P ))−
∑
x∈X

t(x) ln

∫
p(y|x)

[
p(y|x)

qt(y)

]−λ
dy (1.57)

with λ = ∂r−(t,δ)
∂δ

satisfying δ−(t, λ) = δ. In addition, let

ξ̄D,−(t;P, λ, n)
∆
=

2CBEMD,−(t;P, λ)√
nσ3

D,−(t;P, λ)

+ e
nλ2σ2

D,−(t;P,λ)

2

[
Q(
√
nλσD,−(t;P, λ))−Q(ρ∗ +

√
nλσD,−(t;P, λ))

]
(1.58)

ξ
D,−(t;P, λ, n)

∆
=e

nλ2σ2
D,−(t;P,λ)

2 Q(ρ∗ +
√
nλσD,−(t;P, λ)) (1.59)

with Q(ρ∗) =
CBEMD,−(t;P,λ)√

nσ3
D,−(t;P,λ)

and Q(ρ∗) = 1
2
− 2CBEMD,−(t;P,λ)√

nσ3
D,−(t;P,λ)

.

Similar to the previous subsection, the purpose of introducing above definitions is to
present the following result extensively used in this thesis, proved as Theorem A.8 in
Appendix A, and valid for any t ∈ Pn satisfying (1.47) and (1.56).
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Result 1.2. (a) There exists a δ∗ > 0 such that for any δ ∈ (0, δ∗]

r−(t, δ) =
1

2σ2
D(t;P )

δ2 +O(δ3). (1.60)

(b) For any δ ∈ (0,∆∗−(t)), and any xn ∈ T nt ,

ξ
D,−(t;P, λ, n)e−nr−(t,δ) ≥ Pr

{
1

n
ln
p(Y n|Xn)

qt(Y n)
≤ I(t;P )− δ

∣∣∣∣Xn = xn
}

≥ ξ
D,−(t;P, λ, n)e−nr−(t,δ) (1.61)

where λ = ∂r−(t,δ)
∂δ

> 0, and Y n = Y1Y2 · · ·Yn is an independently distributed se-
quence with Yi following the distribution p(yi|xi). Moreover, when δ = o(1) and
δ = Ω(1/

√
n),

ξ̄D,−(t;P, λ, n) = e
nλ2σ2

D,−(t;P,λ)

2 Q
(√

nλσD,−(t;P, λ)
)

(1 + o(1)) (1.62)

ξ
D,−(t;P, λ, n) = e

nλ2σ2
D,−(t;P,λ)

2 Q
(√

nλσD,−(t;P, λ)
)

(1− o(1)) (1.63)

and

e
nλ2σ2

D,−(t;P,λ)

2 Q
(√

nλσD,−(t;P, λ)
)

= Θ

(
1√
nλ

)
(1.64)

with λ = r′X(δ) = Θ(δ).

(c) For any δ ≤ c
√

lnn
n

, where c < σD(t;P ) is a constant, and xn ∈ X n
t ,

Q

(
δ
√
n

σD(t;P )

)
− CBEMD(t;P )√

nσ3
D(t;P )

≤ Pr

{
1

n
ln
p(Y n|Xn)

qt(Y n)
≤ I(t;P )− δ

∣∣∣∣Xn = xn
}

≤ Q

(
δ
√
n

σD(t;P )

)
+
CBEMD(t;P )√
nσ3

D(t;P )
. (1.65)

where 0 < CBE < 0.56 is the universal constant in the Berry-Esseen central limit
theorem [17].
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Chapter 2

Non-asymptotic Achievable Channel
Coding Theorems

2.1 Non-asymptotic Linear Coding Theorem: BSC

In this section, we demonstrate how to use jar decoding to establish non-asymptotic coding
results for random linear codes of block length n based on either Elias’ generator ensemble
or Gallager’s parity check ensemble for the BSC.

Let Cn,k be a linear code with block length n and with generator matrix Gk×n or par-
ity check matrix H(n−k)×n. Assuming codewords are ordered in some manner, we shall
refer to the q-th codeword in Cn,k as xn(q). We say H(n−k)×n (Gk×n, respectively) is ran-
domly picked from Gallager’s parity check ensemble Hn,k (Elias’ generator ensemble Gn,k,
respectively) if entries of H(n−k)×n (Gk×n, respectively) are independently and uniformly
generated from X = {0, 1}. Denote the ensemble of linear codes with their generator ma-

trices from Gn,k by C(1)
n,k, and the ensemble of linear codes with their parity check matrices

from Hn,k by C(2)
n,k. To facilitate our subsequent discussion, we also specify the encoding

procedure (i.e. the mapping from messages to codewords) of C(1)
n,k and C(2)

n,k:

C(1)
n,k: Given Gk×n, xn(q) = b(q)Gk×n where b(q) is the binary representation of q using k

bits for 0 ≤ q ≤ 2k − 1;

C(2)
n,k: Given H(n−k)×n, xn(q) is the q-th vector in the null space of H(n−k)×n by lexicograph-

ical order for 0 ≤ q ≤ 2n−rank(H(n−k)×n) − 1.
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By convention, we assume that all messages are equally likely. With slight abuse of nota-
tion, we shall use q to represent both the uniformly distributed random message and its
specific realization; its exact meaning, however, will be clear from the context. Note that all

codes in C(1)
n,k and C(2)

n,k have the channel coding rate greater than or equal to R(Cn,k)
∆
= k
n

ln 2
(in nats).

Select δ in the Hamming jar (1.7) such that p + δ < 0.5. Then we have the following
non-asymptotic coding result with jar decoding.

Theorem 2.1. Let Pe(C(i)
n,k), i = 1, 2, denote the average word error probability (under jar

decoding) of C(i)
n,k with respect to the random message q, the BSC, and the random linear

code C(i)
n,k itself. Then for any block length n, i = 1, 2 and any δ > 0 with p+ δ < 0.5,

Pe(C(i)
n,k) ≤ Pr

{
1

n
wt(W n) > p+ δ

}
+ e−n(ln 2−R(Cn,k))

∑
0≤w≤n(p+δ)

(
n
w

)
(2.1)

where W n is an i.i.d binary sequence with Pr{W1 = 1} = p. Moreover, for any block length
nand i = 1, 2, the following hold:

1) For any δ > 0 with p+ δ < 0.5

Pe(C(i)
n,k) ≤

(
1 +

1√
n

)
e−nD(p+δ||p) (2.2)

whenever

R(Cn,k) ≤ CBSC − (H(p+ δ)−H(p) +D(p+ δ||p))− lnn

2n
(2.3)

where

D(p+ δ||p) = (p+ δ) ln
p+ δ

p
+ (1− p− δ) ln

1− p− δ
1− p

is the divergence between (p+ δ, 1− p− δ) and (p, 1− p).

2) For any α ≥ 0.5

Pe(C(i)
n,k) ≤ n−α +O

(
n−α

ln3/2 n√
n

)
(2.4)

whenever

R(Cn,k) ≤ CBSC −
[
ln

1− p
p

]√
2p(1− p)α lnn

n
−O

(
lnn

n

)
. (2.5)
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3) For any real number c

Pe(C(i)
n,k) ≤ Q

(
c√

p(1− p) ln 1−p
p

)
+

(1− p)2 + p2√
p(1− p)

1√
n

(2.6)

whenever

R(Cn,k) ≤ CBSC −
c√
n
− lnn

2n
+

1

n
ln

(1− CBE)((1− p)2 + p2)√
p(1− p)

. (2.7)

Proof. For any linear block code Cn,k, we use xn ∈ Cn,k to represent that xn is a codeword
of Cn,k. It is not hard to see that for any xn 6= 0,

Pr
{
xn ∈ C(1)

n,k

}
= Pr {∃q 6= 0, b(q)Gk×n = xn}

≤
2k−1∑
q=1

Pr{b(q)Gk×n = xn}

< 2k2−n = 2−(n−k) = e−(n−k) ln 2 = e−n(ln 2−R(Cn,k)) (2.8)

and

Pr
{
xn ∈ C(2)

n,k

}
= Pr

{
H(n−k)×nx

n = 0k
}

= 2−(n−k) = e−(n−k) ln 2 = e−n(ln 2−R(Cn,k)) . (2.9)

Now let
Y n = Xn(q) +W n

where W n is the noise vector in the BSC, and the addition above is the binary addition.
Note that Y n is simply the output of the BSC in response to the transmitted codeword
Xn(q). From the description of jar decoding, we have

Pe(C(i)
n,k) ≤ Pr{Xn(q) 6∈ J(Y n)}

+ Pr
{
∃xn 6= Xn(q), xn ∈ J(Y n), xn ∈ C(i)

n,k, X
n(q) ∈ J(Y n)

}
(2.10)
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We next upper bound each term on the right side of (2.10). First we can verify that

Pr
{
∃xn 6= Xn(q), xn ∈ J(Y n), xn ∈ C(i)

n,k, X
n(q) ∈ J(Y n)

}
1)

≤ Pr
{
∃xn 6= Xn(q), xn ∈ J(Xn(q) +W n), xn −Xn(q) ∈ C(i)

n,k

}
2)
= Pr

{
∃xn 6= Xn(q), xn −Xn(q) ∈ J(W n), xn −Xn(q) ∈ C(i)

n,k

}
= Pr

{
∃zn 6= 0, zn ∈ J(W n), zn ∈ C(i)

n,k

}
3)
=

∑
wn∈Yn

Pr {W n = wn}Pr
{
∃zn 6= 0, zn ∈ J(wn), zn ∈ C(i)

n,k

}
4)

≤
∑

wn∈Yn
Pr {W n = wn} e−n(ln 2−R(Cn,k))|J(wn)|

≤ e−n(ln 2−R(Cn,k))
∑

0≤w≤n(p+δ)

(
n
w

)
(2.11)

where the inequality 1) is due to the linearity of C(i)
n,k, the equality 2) follows from the

Hamming jar definition in (1.7), the equality 3) is attributable to the fact that W n and

C(i)
n,k are independent, the inequality 4) follows from (2.8) and (2.9), and finally, the last

inequality is due to the jar size discussed in Example 1. On the other hand, it follows from
(1.7) again that

Pr{Xn(q) 6∈ J(Y n)} = Pr

{
1

n
wt(W n) > p+ δ

}
(2.12)

which, coupled with (2.10) and (2.11), implies

Pe(C(i)
n,k) ≤ Pr

{
1

n
wt(W n) > p+ δ

}
+ e−n(ln 2−R(Cn,k))

∑
0≤w≤n(p+δ)

(
n
w

)
, (2.13)

and consequently, (2.1) is proved.

Now applying the upper bound∑
0≤w≤n(p+δ)

(
n
w

)
≤ enH(p+δ) (2.14)

to (2.13) yields

Pe(C(i)
n,k) ≤ Pr

{
1

n
wt(W n) > p+ δ

}
+ e−n(CBSC−(H(p+δ)−H(p))−R(Cn,k)) (2.15)
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where CBSC = ln 2 − H(p). The inequalities (2.2) to (2.7) can now be established by
applying different bounds to (2.12) for different scales of δ. Applying Chernoff-Hoeffding’s
inequality to (2.12) yields

Pr

{
1

n
wt(W n) > p+ δ

}
≤ e−nD(p+δ||p)

which, combined with (2.15), implies (2.2) and (2.3).

Note that (2.2) and (2.3) are valid for any δ > 0 with p + δ < 0.5. By letting δ =√
2p(1−p)α lnn

n
in (2.2) and (2.3), it is not hard to see that (2.4) and (2.5) then follow from

the facts that

D(p+ δ||p) =
1

2p(1− p)
δ2 +O

(
δ3
)

and

H (p+ δ)−H(p) ≤
(

ln
1− p
p

)
δ.

Finally, letting δ = c√
n log2

1−p
p

, and applying the central limit theorem of Berry and

Esseen to (2.12) yields

Pr

{
1

n
wt(W n) > p+

c
√
n ln 1−p

p

}

= Pr

{
1√
n

n∑
i=1

(wt(Wi)− p) >
c

ln 1−p
p

}

≤ Q

(
c√

p(1− p) ln 1−p
p

)
+
CBE((1− p)2 + p2)√

p(1− p)
1√
n
.

Then (2.6) follows from the fact that

e
−n
(
CBSC−

(
H

(
p+ c
√
n log2

1−p
p

)
−H(p)

)
−R(Cn,k)

)
≤ e

−n
(
CBSC− c√

n
−R(Cn,k)

)

=
(1− CBE)(1− p)2 + p2√

p(1− p)
1√
n

whenever (2.7) holds. This completes the proof of Theorem 2.1.
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Remark 2.1. The inequalities (2.4) to (2.7) show that linear block codes of block length n
can reach within [

ln
1− p
p

]√
2p(1− p)α lnn

n
+O

(
lnn

n

)
of the capacity of the BSC while maintaining the word error probability

n−α +O

(
n−α

ln3/2 n√
n

)
,

and within
c√
n

+
lnn

2n
− 1

n
ln

(1− CBE)((1− p)2 + p2)√
p(1− p)

of the capacity while maintaining the word error probability

Q

(
c√

p(1− p) ln 1−p
p

)
+

(1− p)2 + p2√
p(1− p)

1√
n
.

If the word error probability is kept slightly above 0.5, the code rate can be even slightly
above the capacity! Figure 2.1 shows the tradeoff between the word error probability and
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Figure 2.1: Tradeoff between the word error probability and block length when the code
rate is above the capacity with p = 0.12.
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block length when the code rate is 0.21% above the capacity with p = 0.12, where in Fig-
ure 2.1, both the capacity and code rate are expressed in terms of bits. As can be seen from
Figure 2.1, at the block length 1000, the word error probability is around 0.65, and the code
rate is 0.21% above the capacity!

Remark 2.2. The bounds (2.2) and (2.3) are further improved in Theorem 2.2.

2.2 Non-asymptotic Linear Coding Theorem: BIMC

In this section, we extend Theorem 2.1 to the case of BIMC. Consider an arbitrary BIMC
{p(y|x) : x ∈ X , y ∈ Y} with X = {0, 1}. As discussed in Section 1.2, its capacity is equal
to

CBIMC = ln 2−H(X|Y )

where X is the uniform input random variable, and Y is the corresponding output of the
BIMC. Let p(y) be the pmf or pdf (as the case may be) of Y , and p(x|y) the conditional
pmf of X given by Y . It is easy to see that

p(y) =
1

2
[p(y|0) + p(y|1)]

and

p(x|y) =
p(y|x)

p(y|0) + p(y|1)
.

Recall definitions in Section 1.4.1, and further define

ζH(X|Y, λ, n)
∆
=

2MH(X|Y, λ)√
nσ3

H(X|Y, λ)

+ e
nλ2σ2

H (X|Y,λ)

2

[
Q(
√
nλσH(X|Y, λ))−Q(ρ∗ +

√
nλσH(X|Y, λ))

]
where Q(ρ∗) = CBEMH(X|Y,λ)√

nσ3
H(X|Y,λ)

.

Puncture 0 from the message space and ignore the insignificant effect on the rate. With
the BIMC jar specified in (1.9), we have the following non-asymptotic coding theorem with
jar decoding.

Theorem 2.2. Given a BIMC with CBIMC ∈ (0, 1), let Pe(C(i)
n,k), i = 1, 2, denote the average

word error probability (under jar decoding) of C(i)
n,k with respect to the random message q,
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the BIMC, and the random linear code C(i)
n,k itself. Then for any block length n, i = 1, 2

and any δ ∈ (0,∆∗(X|Y )),

Pe(C(i)
n,k) ≤ C(i) Pr

{
− 1

n

n∑
i=1

ln p(Xi|Zi) > H(X|Y ) + δ

}
+ e−n(CBIMC−δ−R(Cn,k)) (2.16)

where Xn is an independently, identically and uniformly distributed binary sequence, Zn is
the output of BIMC in response to Xn, and

C(i) =

{
1 if i = 1

1
1−2−n

otherwise.
(2.17)

Moreover, for any block length n and i = 1, 2, the following hold:

1) For any δ ∈ (0,∆∗(X|Y ))

Pe(C(i)
n,k) ≤ C(i)ζH(X|Y, λ, n)e−nrX|Y (δ) (2.18)

whenever

R(Cn,k) ≤ CBIMC − δ − rX|Y (δ) +
ln 2(1−CBE)MH(X|Y,λ)√

nσ3
H(X|Y,λ)

n
(2.19)

where λ = r′X|Y (δ).

2) For any α ≥ 0.5

Pe(C(i)
n,k) ≤

C(i)n−α

2
√
πα lnn

+O

(
n−α

ln3/2 n√
n

)
(2.20)

whenever

R(Cn,k) ≤ CBIMC − σH(X|Y )

√
2α lnn

n
−
(
α +

1

2

)
lnn

n
−O

(
ln lnn

n

)
. (2.21)

3) For any real number c

Pe(C(i)
n,k) ≤ C(i)

(
Q

(
c

σH(X|Y )

)
+
MH(X|Y )

σ3
H(X|Y )

1√
n

)
(2.22)

whenever

R(Cn,k) ≤ CBIMC −
c√
n
− lnn

2n
+

1

n
ln
C(i)(1− CBE)MH(X|Y )

σ3
H(X|Y )

. (2.23)
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Proof. Recall the encoding procedure of C(i)
n,k, i = 1, 2. Let Xn(q) be the transmitted

codeword, where q is distributed uniformly over the punctured message space with message
0 deleted. Let Y n be the output of the BIMC in response to Xn(q). In parallel with (2.8)
and (2.9), it is not hard to verify that for any zn 6= xn ∈ X n,

Pr
{
zn ∈ C(1)

n,k

∣∣∣Xn(q) = xn
}
< 2k2−n = e−(n−k) ln 2 (2.24)

and
Pr
{
zn ∈ C(2)

n,k

∣∣∣Xn(q) = xn
}

= 2−(n−k) = e−(n−k) ln 2 . (2.25)

Similarly, in parallel with (2.10), we have

Pe(C(i)
n,k) ≤ Pr{Xn(q) 6∈ J(Y n)}

+ Pr
{
∃zn 6= Xn(q), zn ∈ J(Y n), zn ∈ C(i)

n,k, X
n(q) ∈ J(Y n)

}
≤ Pr{Xn(q) 6∈ J(Y n)}+ Pr

{
∃zn 6= Xn(q), zn ∈ J(Y n), zn ∈ C(i)

n,k

}
(2.26)

where J(Y n) is the BIMC jar for Y n. For any xn ∈ X n and yn ∈ Yn, one can verify that

Pr
{
∃zn 6= Xn(q), zn ∈ J(Y n), zn ∈ C(i)

n,k

∣∣∣Xn(q) = xn, Y n = yn
}

= Pr
{
∃zn 6= xn, zn ∈ J(yn), zn ∈ C(i)

n,k

∣∣∣Xn(q) = xn, Y n = yn
}

1)

≤
∑

zn∈J(yn),zn 6=xn
Pr
{
zn ∈ C(i)

n,k

∣∣∣Xn(q) = xn
}

2)

≤ |J(yn)|e−(n−k) ln 2

≤ en(H(X|Y )+δ)e−(n−k) ln 2 = e−n(CBIMC−δ−R(Cn,k)) (2.27)

where the inequality 1) follows from the fact that given Xn(q), Y n and C(i)
n,k are conditionally

independent, the inequality 2) is due to (2.24) and (2.25), and finally the last inequality
above is attributable to the upper bound on the size of the jar J(yn) in (1.10). Since (2.27)
is valid for any xn ∈ X n and yn ∈ Yn, it follows that

Pr
{
∃zn 6= Xn(q), zn ∈ J(Y n), zn ∈ C(i)

n,k

}
≤ e−n(CBIMC−δ−R(Cn,k)) . (2.28)

To continue, let Xn = X1X2 · · ·Xn be a random variable taking values uniformly over
X n. Let Zn = Z1Z2 · · ·Zn be the output of the BIMC in response to Xn. For the random
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code C(1)
n,k, it is easy to see that Xn(q) and Xn have the same distribution. So do (Xn(q), Y n)

and (Xn, Zn). Therefore, for C(1)
n,k, we have

Pr{Xn(q) 6∈ J(Y n)} = Pr{Xn 6∈ J(Zn)} . (2.29)

For C(2)
n,k, one can verify that for any xn, x′n ∈ X n/{0n},

Pr {Xn(q) = xn} =
∑

H(n−k)×n:H(n−k)×nxn=0n−k

2−(n−k)n

2(n−rank(H(n−k)×n)) − 1

=
∑

H(n−k)×n:H(n−k)×nKn×nx′n=0n−k

2−(n−k)n

2(n−rank(H(n−k)×n)) − 1

=
∑

H(n−k)×n:H(n−k)×nKn×nx′n=0n−k

2−(n−k)n

2(n−rank(H(n−k)×nKn×n)) − 1

=
∑

H′
(n−k)×n:H′

(n−k)×nx
′n=0n−k

2−(n−k)n

2(n−rank(H′
(n−k)×n)) − 1

= Pr {Xn(q) = x′n}

where Kn×n is an invertible matrix such that xn = Kn×nx
′n. This implies that for C(2)

n,k,
Xn(q) takes all sequences xn ∈ X n/{0n} equally likely. Since the zero sequence is not
allowed by way of puncturing, it follows that the distribution of Xn(q) is the same as the

conditional distribution of Xn given Xn 6= 0n. Therefore, for C(2)
n,k, we have

Pr{Xn(q) 6∈ J(Y n)} = Pr{Xn 6∈ J(Zn)|Xn 6= 0n}

≤ 1

1− 2−n
Pr{Xn 6∈ J(Zn)} . (2.30)

Putting (2.26) and (2.28)-(2.30) together yields

Pe(C(i)
n,k) ≤ C(i) Pr{Xn 6∈ J(Zn)}+ e−n(CBIMC−δ−R(Cn,k)) (2.31)

where C(i) is defined in (2.17), and (2.16) is proved by observing from (1.9) that

Pr{Xn 6∈ J(Zn)} = Pr

{
− 1

n

n∑
i=1

ln p(Xi|Zi) > H(X|Y ) + δ

}
(2.32)
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where H(X1|Z1) = H(X|Y ).

The inequalities (2.18) to (2.23) can now be established by applying different upper
bounds to (2.32). At this point, we apply the non-asymptotic equipartition property with
respect to H(X|Y ) and invoke Result 1.1 in Section 1.4.1, part (b) of which says

Pr

{
− 1

n

n∑
i=1

ln p(Xi|Zi) > H(X|Y ) + δ

}
≤ ξ̄H(X|Y, λ, n)e−nrX|Y (δ) . (2.33)

The inequalities (2.18) and (2.19) then follow from (2.31)-(2.33).

To show (2.20), let δ = σH(X|Y )
√

2α lnn
n

. Invoke Result 1.1 again, part (a) of which
says

rX|Y (δ) =
1

2σ2
H(X|Y )

δ2 +O(δ3) =
α lnn

n
+O

√ ln3 n

n3


and

λ =
δ

σ2
H(X|Y )

+O(δ2) =
1

σH(X|Y )

√
2α lnn

n
+O

(
lnn

n

)
.

On the other hand, it is easy to see from the definition of ξ̄H(X|Y, λ, n) that

(2− CBE)MH(X|Y, λ)√
nσ3

H(X|Y, λ)
≤ ζH(X|Y, λ, n)−e

nλ2σ2
H (X|Y,λ)

2 Q(
√
nλσH(X|Y, λ)) ≤ 2MH(X|Y, λ)√

nσ3
H(X|Y, λ)

(2.34)
while

− 1

2πnλ2σ2
H(X|Y, λ)

≤ e
nλ2σ2

H (X|Y,λ)

2 Q(
√
nλσH(X|Y, λ))− 1√

2πnλσH(X|Y, λ)
≤ 0. (2.35)

This implies that

ζH(X|Y, λ, n) = Θ

(
1√
lnn

)
(2.36)

and

ζH(X|Y, λ, n)e−nrX|Y (δ) =
n−α

2
√
πα lnn

+O

(
n−α

ln3/2 n√
n

)
. (2.37)

Therefore, in this case, we have

Pr

{
− 1

n

n∑
i=1

ln p(Xi|Zi) > H(X|Y ) + δ

}
≤ n−α

2
√
πα lnn

+O

(
n−α

ln3/2 n√
n

)
.(2.38)
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The inequalities (2.20) and (2.21) then follow from (2.31), (2.32), (2.36) and (2.38).

Finally, let δ = c√
n
. Applying part (c) of Result 1.1, yields

Pr

{
− 1

n

n∑
i=1

ln p(Xi|Zi) > H(X|Y ) +
c√
n

}
≤ Q

(
c

σH(X|Y )

)
+
CBEMH(X|Y )

σ3
H(X|Y )

1√
n
.

Then (2.22) follows from the fact that

e
−n
(
CBMS− c√

n
−R(Cn,k)

)
≤ C(i)(1− CBE)MH(X|Y )

σ3
H(X|Y )

1√
n

whenever (2.23) holds. This completes the proof of Theorem 2.2.

Remark 2.3. The purpose of puncturing q = 0 from the message space is to make the
proof a little bit simpler. From the proof, it can be seen that if we add q = 0 back, it only
increases the error probability upper bound by 2−nR(Cn,k), and all the remaining statements
in Theorem 2.2 still hold.

Remark 2.4. As can be seen, the fact that the uniform distribution is the capacity achiev-
ing distribution for BIMC is not essential in the proof of Theorem 2.2. Therefore, for
general binary input memoryless channels, Theorem 2.2 still holds by replacing CBIMC

with the mutual information between a uniform random variable and its channel response.
Moreover, Theorem 2.2 can be easily extended to the general case when X is a finite field.

Remark 2.5. The inequalities (2.20) to (2.23) show that linear block codes of block length

n can reach within σH(X|Y )
√

2α lnn
n

+
(
α + 1

2

)
lnn
n

+ O
(

ln lnn
n

)
of the capacity of any

BIMC while maintaining the word error probability n−α

2
√
πα lnn

+ O
(
n−α ln3/2 n√

n

)
, and within

c√
n

+ lnn
2n
− 1

n
ln (1−CBE)MH(X|Y )

σ3
H(X|Y )

of the capacity while maintaining the word error probability

Q
(

c
σH(X|Y )

)
+ MH(X|Y )

σ3
H(X|Y )

1√
n

. If the word error probability is kept slightly above 0.5, the code

rate can be even slightly above the capacity of the BIMC!

2.3 Non-asymptotic Coding Theorem: DIMC

Consider now an arbitrary DIMC P = {p(y|x) : x ∈ X , y ∈ Y}. Let X be the capacity
achieving input random variable, i.e., X achieves the maximum in (1.1). Let Y be the
output of the DIMC P in response to X. Then the capacity of the DIMC P is

CDIMC = I(X;Y ) .

32



Without loss of generality, assume that the distribution pX of X assigns a positive proba-
bility to each and every x ∈ X .

Since X is not necessarily uniformly distributed, we now move away from linear codes
in this section, and use random codes drawn from a particular type t instead. Recall
definitions I(t;P ), σ2

D,−(t;P, λ), MD,−(t;P, λ), σ2
D(t;P ) and MD(t;P ) in Section 1.4.2.

Due to the significance of pX , write σ2
D(pX ;P ) and MD(pX ;P ) as σ2

D(X;Y ) and MD(X;Y )
respectively. In particular, it can be easily verified that

I(t;P ) = CDIMC +O(n−1) (2.39)

whenever

||t− pX ||1 ≤
|X |
n

(2.40)

where || · ||1 is the l1-norm. Obviously, types t satisfying (2.40) exist.

Now let Ct,n,k denote the ensemble of channel codes from a type t with code length
n and rate R(Ct,n,k) = k

n
ln 2, where a channel code from Ct,n,k is generated in such way

that each codeword is uniformly picked from T nt . At the decoder, the jar J(yn) for each
sequence yn ∈ Yn is formed as

J(yn) =

{
xn ∈ T nt :

1

n

n∑
i=1

ln
p(yi|xi)
qt(yi)

≥ I(t;P )− δ

}
(2.41)

where δ is a real number. The jar defined in (2.41) will be referred to as the DIMC jar
based on type t. Moreover, for any xn ∈ T nt ,

P−t,δ
∆
= Pr

{
1

n

n∑
i=1

ln
p(Yi|Xi)

qt(Yi)
< I(t;P )− δ

∣∣∣∣∣Xn = xn

}
(2.42)

where Y n is the output of DIMC P in response to xn. It is easy to verify that P−t,δ is well
defined as the probability at the right hand side of (2.42) is the same for any xn ∈ T nt , and
the upper bounds on

Pr

{
1

n

n∑
i=1

ln
p(Yi|Xi)

qt(Yi)
≤ I(t;P )− δ

∣∣∣∣∣Xn = xn

}

in Section 1.4.2 holds for P−t,δ.
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Recall definitions in Section 1.4.2, and define

ζD,−(t;P, λ, n)
∆
=

2MD,−(t;P, λ)√
nσ3

D,−(t;P, λ)

+ e
nλ2σ2

D,−(t;P,λ)

2

[
Q(
√
nλσD,−(t;P, λ))−Q(ρ∗ +

√
nλσD,−(t;P, λ))

]
With the DIMC jar based on type t specified in (2.41), we have the following non-

asymptotic coding theorem with jar decoding.

Theorem 2.3. Given a DIMC P with CDIMC ∈ (0, |X |), let Pe(Ct,n,k) denote the average
word error probability (under jar decoding) of Ct,n,k with respect to the DIMC and the
random code Ct,n,k itself. Then for any block length n,

Pe(Ct,n,k) ≤ P−t,δ + e
−n
[
I(t;P )−δ+ ln e−nH(t)|T nt |

n
−R(Ct,n,k)

]
. (2.43)

Moreover, for any block length n, the following hold:

1) For any δ ∈ (0,∆∗−(t))

Pe(Ct,n,k) ≤ ζD,−(t;P, λ, n)e−nr−(t,δ) (2.44)

whenever

R(Ct,n,k) ≤ I(t;P )− δ − r−(t, δ)−
|X | ln(n+ 1)− ln

2(1−CBE)MD,−(t;P,λ)√
nσ3

D,−(t;P,λ)

n
(2.45)

where λ = ∂r−(t,δ)
∂δ

satisfying δ−(t, λ) = δ.

2) For any α ≥ 0.5 and any t satisfying (2.40)

Pe(Ct,n,k) ≤
n−α

2
√
πα lnn

+O

(
n−α

ln3/2 n√
n

)
(2.46)

whenever

R(Ct,n,k) ≤ CDIMC − σD(X;Y )

√
2α lnn

n
−
(

1
2

+ α + |X |
)

ln(n+ 1)

n
−O

(
ln lnn

n

)
.

(2.47)
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3) For any t satisfying (2.40)

Pe(Ct,n,k) ≤ Q

(
c

σD(X;Y )

)
+
MD(t;P )

σ3
D(t;P )

1√
n

= Q

(
c

σD(X;Y )

)
+
MD(X;Y )

σ3
D(X;Y )

1√
n

+O
(
n−1.5

)
(2.48)

whenever

R(Ct,n,k) ≤ I(t;P )− σD(t;P )

σD(X;Y )

c√
n
−

(
1
2

+ |X |
)

ln(n+ 1) + ln (1−CBE)MD(t;P )

σ3
D(t;P )

n

= CDIMC −
c√
n
−

(
1
2

+ |X |
)

ln(n+ 1) + ln (1−CBE)MD(X;Y )

σ3
D(X;Y )

n
−O

(
n−1
)

(2.49)

for any real number c.

Proof. The proof is along the same way as in the proof of Theorems 2.1 and 2.2. Let Xn(q)
be the transmitted codeword, and Y n the output of the DIMC P in response to Xn(q). In
parallel with (2.26), we have

Pe(Ct,n,k) ≤ Pr{Xn(q) 6∈ J(Y n)}+ Pr {∃zn 6= Xn(q), zn ∈ J(Y n), zn ∈ Ct,n,k} (2.50)

where J(Y n) is the DIMC jar based on type t as defined in (2.41). Note that Xn(q) is
distributed uniformly over T nt . For any xn ∈ T nt and yn ∈ Yn, one can verify that

Pr {∃zn 6= Xn(q), zn ∈ J(Y n), zn ∈ Ct,n,k|Xn(q) = xn, Y n = yn}
(a)

≤ |J(yn)||T nt |−12k

≤ |J(yn)|ek ln 2−nH(t)−ln e−nH(t)|T nt |

(b)

≤ en[H(t)−I(t;P )+δ]e
n

[
k
n

ln 2−H(t)− ln e−nH(t)|T nt |
n

]

≤ e
−n
[
I(t;P )−δ+ ln e−nH(t)|T nt |

n
−R(Ct,n,k)

]
(2.51)

where (a) is due to the fact that all codewords in Ct,n,k are independent, and each is
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distributed uniformly over T nt , and (b) is verified by

|J(yn)|e−n(H(t)−I(t;P )+δ) ≤
∑

zn∈J(yn)

e
−nH(t)+

∑n
i=1 ln

p(yi|zi)
qt(yi)

=
∑

zn∈J(yn)

e−nH(t)
∏n

i=1 p(yi|zi)∏n
i=1 qt(yi)

=

∑
zn∈J(yn) e

−nH(t)
∏n

i=1 p(yi|zi)∏n
i=1

∑
x∈X t(x)p(yi|x)

=

∑
zn∈J(yn) e

−nH(t)
∏n

i=1 p(yi|zi)∑
xn∈Xn

∏n
i=1 t(xi)p(yi|xi)

≤
∑

zn∈T nt
e−nH(t)

∏n
i=1 p(yi|zi)∑

xn∈Xn
∏n

i=1 t(xi)p(yi|xi)

=

∑
zn∈T nt

∏n
i=1 t(zi)p(yi|zi)∑

xn∈Xn
∏n

i=1 t(xi)p(yi|xi)
≤ 1

since for any zn ∈ T nt ,
n∏
i=1

t(zi) = e−nH(t)

and T nt is only a subset of X n. Since (2.51) is valid for any xn ∈ T nt and yn ∈ Yn, it follows
that

Pr {∃zn 6= Xn(q), zn ∈ J(Y n), zn ∈ Ct,n,k} ≤ e
−n
[
I(t;P )−δ+ ln e−nH(t)|T nt |

n
−R(Ct,n,k)

]
. (2.52)

On the other hand, in view of (2.41) and (2.42),

Pr {Xn(q) /∈ J(Y n)} = P−t,δ. (2.53)

Putting (2.53), (2.52), and (2.50) together yields

Pe(Ct,n,k) ≤ P−t,δ + e
−n
[
I(t;P )−δ+ ln e−nH(t)|T nt |

n
−R(Ct,n,k)

]
(2.54)

and (2.43) is proved.

Applying the inequality
e−nH(t)|T nt | ≥ (n+ 1)−|X |, (2.55)
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the inequalities (2.44)-(2.49) can now be established by applying different upper bounds
to P−t,δ. At this point, we apply the non-asymptotic equipartition property with respect to
relative entropy and invoke Result 1.2 in Section 1.4.2, part (b) of which says

P−t,δ ≤ ξ̄D,−(t;P, λ, n)e−nr−(t,δ) . (2.56)

The inequalities (2.44) and (2.45) then follow from (2.54) and (2.56).

To show (2.46), let δ = σD(X;Y )
√

2α lnn
n

. Invoke Result 1.2 in Section 1.4.2 again, part

(a) of which says

r−(t, δ) =
1

2σ2
D(t;P )

δ2 +O(δ3)

and

λ =
δ

σ2
D(t;P )

+O(δ2),

which, together with (2.40), implies

r−(t, δ) =
σ2
D(X : Y )

σ2
D(t;P )

α lnn

n
+O

√ ln3 n

n3


=

α lnn

n
+O

√ ln3 n

n3


and

λ =
δ

σ2
D(X;Y )

+O(δ2).

Moreover, under the condition (2.40)

I(t;P ) = CDIMC −O(n−1) .

The inequality (2.46) under the condition (2.47) can then be established by following the
respective argument in the proof of Theorem 2.2.

Finally, let δ = σD(t;P )
σD(X;Y )

c√
n
. Applying part (c) of Result 1.2, we have

P−t,δ ≤ Q

(
c

σD(X;Y )

)
+
CBEMD(t;P )

σ3
D(t;P )

1√
n
.
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The inequality (2.48) then follows from the fact that

MD(t;P )

σ3
D(t;P )

=
MD(X;Y )

σ3
D(X;Y )

+ n−1

for t satisfying (2.40), and

e−n[I(t;P )−δ− |X| ln(n+1)
n

−R(Ct,n,k)] ≤ (1− CBE)MD(t;P )

σ3
D(t;P )

1√
n

whenever (2.49) holds. This completes the proof of Theorem 2.3.

Remark 2.6. It is not hard to show that in the case of BIMC

σD(X;Y ) ≤ σH(X|Y ) (2.57)

and the inequality (2.57) is strict in general unless the BIMC, such as the BSC and BIAGC,
happens to have some symmetric properties, in which case (2.57) is the equality. Therefore,
by comparing Theorem 2.3 with Theorem 2.2, we see that for a BIMC, Shannon random
codes based on types are generally slightly better than random linear codes in terms of
the tradeoff between the capacity gap and word error probability. In addition, since our
bounds in Theorem 2.3 are valid for any n, t, and pX achieving the capacity CDIMC, in
the case of DIMC where there are multiple input distributions pX achieving the capacity
CDIMC, one can further optimize the bounds in Theorem 2.3 over all these capacity achieving
input distributions. In particular, in (2.48) and (2.49), one should choose the minimum
σD(X;Y ) over all capacity achieving inputs X when c > 0 and the maximum σD(X;Y )
over all capacity achieving inputs X when c < 0.

Remark 2.7. Related to (2.48) and (2.49) is the second order coding rate analysis in
[15, 18, 19] with a fixed word error probability 0 < ε < 1. All identify correctly the coeffi-
cient before the second order 1√

n
. The difference lies in that the works in [15, 18, 19] are

asymptotic. On the other hand, (2.48) and (2.49) are are non-asymptotic. In addition,
bounds in Theorem 2.3 also give a complete picture about the tradeoff between the capacity
gap and word error probability when the word error probability goes to 0 with block length
n at a sub-polynomial n−α, 0 < α < 1, polynomial n−α, α ≥ 1, or sub-exponential e−n

α
,

0 < α < 1, speed. In particular, comments similar to Remarks 2.1 and 2.5 apply here too.
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2.4 Comparison with Existing Non-Asymptotic Achiev-

ability

There are tremendous achievable bounds [20,21] (and references therein) on channel coding
rate in the prosperous literature of information theory, where various code ensembles and
bounding techniques are used. Comparing our achievabilities with all of those achievabil-
ities is analogous to brute-force implementation of ML decoding. At the same time, not
all achievabilities are comparable with ours since the underlying code ensembles could be
totally different. For example, some achievabilities are based on Shannon random code
ensemble, where each symbol of any codeword is independently and identically gener-
ated. However, the ensembles used in our achievable bounds via jar decoding have some
structures and/or constraints imposed, and consequently, achievabilities based on Shannon
random code ensemble may not be applicable. Therefore, our comparison strategy adopts
the idea of jar decoding, where we first form the jar of comparable achievabilities consisting
of those applicable to code ensembles used by us, and then focus on those achievabilities
inside the jar. Nevertheless, Gallager’s Error Exponent Bound in [22] and non-asymptotic
achievabilities in [15] are cited here as benchmarks for the comparison.

Result 2.1. Given any channel {pY n|Xn(yn|xn) : xn ∈ X n, yn ∈ Yn} and Shannon random
code ensemble Cn with M number of codewords and input distribution pXn(xn) for xn ∈ X n,

Pe(Cn) ≤ (M − 1)ρ
∫ (∫

pXn(xn)[pY n|Xn(yn|xn)]
1

1+ρdxn
)1+ρ

dyn (2.58)

for 0 ≤ ρ ≤ 1. When the channel is memoryless (i.e. pY n|Xn(yn|xn) =
∏n

i=1 p(yi|xi)) and
each symbol of any codeword is independently and identically generated (i.e. pXn(xn) =∏n

i=1Q(xi)),
Pe(Cn) ≤ e−n(E(ρ,Q)−ρR(Cn)) (2.59)

for 0 ≤ ρ ≤ 1, where R(Cn) = 1
n

lnM and

E(ρ,Q) = − ln

∫ (∫
Q(x)[p(y|x)]

1
1+ρdx

)1+ρ

dy.

Result 2.2 (Random Coding Union [15, Theorem 16]). Given any channel {pY n|Xn(yn|xn) :
xn ∈ X n, y ∈ Yn} and Shannon random code ensemble Cn with M number of codewords
and input distribution pXn(xn) for xn ∈ X n,

Pe(Cn) ≤ E
[
min

{
1, (M − 1) Pr

{
ln
pY n|Xn(Y n|X̄n)

pY n(Y n)
≥ ln

pY n|Xn(Y n|Xn)

pY n(Y n)

∣∣∣∣Xn, Y n

}}]
(2.60)
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where (Xn, Y n, X̄n) follows the distribution pXn(xn)pY n|Xn(yn|xn)pXn(x̄n) for (xn, yn, x̄n) ∈
X n × Yn ×X n.

Result 2.3 (Dependence Testing [15, Theorem 17,18]). Given any channel {pY n|Xn(yn|xn) :
xn ∈ X n, y ∈ Yn} and Shannon random code ensemble Cn with M number of codewords
and input distribution pXn(xn) for xn ∈ X n,

Pe(Cn) ≤ Pr

{
ln
p(Y n|Xn)

p(Y n)
≤ ln

M − 1

2

}
+
M − 1

2
Pr

{
ln
p(Ȳ n|Xn)

p(Ȳ n)
> ln

M − 1

2

}
(2.61)

where (Xn, Y n, Ȳ n) follows the distribution pXn(xn)pY n|Xn(yn|xn)pY n(ȳn) for (xn, yn, ȳn) ∈
X n × Yn × Yn and

pY n(yn) =

∫
pXn(xn)pY n|Xn(yn|xn)dxn.

Towards presenting another achievability in [15], called κβ Bound, following definitions
are needed. Let q1(wn) and q2(wn) for wn ∈ Wn be some distributions on a sample
space Wn, and pZ|Wn(z|wn) for z ∈ {0, 1} and wn ∈ Wn be a conditional distribution on
{0, 1} ×Wn. Then define for α ∈ [0, 1]

βα(q1, q2)
∆
= min

pZ|Wn :
∫
q1(wn)pZ|Wn (1|wn)dwn≥α

∫
q2(wn)p1|Wn(1|wn)dwn. (2.62)

In hypothesis testing, the minimizer p∗Z|Wn of the optimization above can be interpreted

as the optimal randomized test function between q1 (null) and q2 (alternative). Now let
qY n(yn) and pY n|Xn(yn|xn) for xn ∈ X n and yn ∈ Yn be some distribution and conditional
distribution on X n and X n × Yn respectively. Further define α ∈ [0, 1]

βα(xn, qY n)
∆
=βα(pY n|Xn=xn , qY n) (2.63)

where pY n|Xn=xn(yn) = pY n|Xn(yn|xn) for all yn ∈ Yn given xn. In addition, for F ⊆ X n

and τ ∈ [0, 1], define

κτ (F , qY n) = inf
pZ|Y n : inf

xn∈F

∫
pY n|Xn (yn|xn)p(1|yn)dyn≥τ

∫
qY n(yn)pZ|Y n(1|yn)dyn. (2.64)

Again the minimizer p∗Z|Y n (if exists) above can be interpreted as the optimal composite

test function between {pY n|Xn=xn}xn∈F (null) and qY n (alternative). Then the following
result is proved in [15].
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Result 2.4 (κβ [15, Theorem 25]). Given any channel {pY n|Xn(yn|xn) : xn ∈ X n, y ∈ Yn}
and F ⊆ X n, a channel code Cn with its codewords from F and M number of codewords
can be deterministically constructed, satisfying

M ≥ sup
0<τ<Pe(Cn)

sup
qY n

κτ (F , qY n)

sup
xn∈F

β1−Pe(Cn)+τ (xn, qY n)
. (2.65)

Moreover, considering that β and κ defined above are in general extremely difficulty to
evaluate, upper and lower bounds on β and κ are provided in [15, Equations (103), (104),
(106), (121) and (122)], and included here for easy reference.

βα(q1, q2) ≤ 1

sup
γ:Pr

{
q1(Wn)
q2(Wn)

≥γ
}
≥α
γ

(2.66)

where W n follows the distribution q1,

βα(xn, qY n) ≥ sup
γ>0

1

γ

(
α− Pr

{
pY n|Xn(Y n|xn)

qY n(Y n)
≥ γ

})
(2.67)

where Y n follows the distribution pY n|Xn=xn given xn, and

τ

∫
xn∈F

pXn(xn)dxn ≤ κτ (F , qY n) ≤ τ (2.68)

where pXn satisfies

qY n(yn) =

∫
pXn(xn)pY n|Xn(yn|xn)dxn.

2.4.1 Achievability on Random Linear Code Ensembles

In Sections 2.1 and 2.2, Gallager’s parity check ensemble and Elias’ generator ensemble are
used. Unlike Shannon random code ensemble, codewords generated in Gallager’s parity
check ensemble are not pairwisely independent. Consequently, achievabilities, including
Results 2.2 and 2.3, whose proof relies on pairwise independence of codewords, are ruled
out in this subsection. Result 2.4 is not applicable either, as the deterministic construction
used in its proof can not guarantee the linearity of the constructed code. Here we focus
on those achievabilities applicable to random linear code ensemble. Furthermore, as some
achievabilities are only applicable to special channels, we divide the discussion into four
parts: 1) achievabilities on BSC; 2) achievabilities on binary erasure channel (BEC) ;
3) achievabilities on BIAGC ;and 4) achievabilities on Memoryless Input Binary Output
Symmetric (MIBOS) channels.
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BSC

To make comparison transparent, we rewrite Theorem 2.1. Let M = 2k be the number of
codewords, and p be the crossover probability. By (2.1) in Theorem 2.1, it is not hard to
verify that

Pe(C(i)
n,k) ≤

∑
n(p+δ)<w≤n

(
n
w

)
pw(1− p)n−w︸ ︷︷ ︸

Pr{ 1
n
wt(Wn)>p+δ}

+
∑

0≤w≤n(p+δ)

(
n
w

)
2−nM (2.69)

for i = 1, 2, with δ defined in (1.7). Further optimizing δ implies that

Pe(C(i)
n,k) ≤

n∑
w=0

(
n
w

)
min

{
pw(1− p)n−w, 2−nM

}
(2.70)

and (2.70) is essentially the same (except for a minor difference∗) as the Dependence Testing
Bound recently established in [15, Theorem 34] (specifying Result 2.3 on BSC) for Shannon
random code ensemble over the BSC.

As a candidate to be compared with Theorem 2.1 or (2.70), an achievable bound under
ML decoding was proved in [23] by Poltyrev.

Result 2.5. For BSC with cross-over probability p and a linear code Cn,k with hamming
weight profile {N(l)}nl=1, where N(l) is the number of codewords with hamming weight l in
Cn,k,

Pe(Cn,k) ≤
bn2 c∑
w=1

pw(1− p)n−w min


(
n
w

)
,

2w∑
l=1

N(l)

min{w,l}∑
η=d l2e

(
l
η

)(
n− l
w − η

)
+

n∑
w=bn2 c+1

(
n
w

)
pw(1− p)n−w. (2.71)

The result below immediately follows Result 2.5.

∗Replacing M in (2.70) by (M − 1)/2 yields exactly the Dependence Testing Bound [15, Theorem 34].
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Result 2.6. For BSC with cross-over probability p, i = 1, 2,

Pe(C(i)
n,k) ≤

bn2 c∑
w=1

pw(1− p)n−w

×min


(
n
w

)
, e−(1−R(Cn,k))n ln 2

2w∑
l=1

(
n
l

)min{w,l}∑
η=d l2e

(
l
η

)(
n− l
w − η

)
+

n∑
w=bn2 c+1

(
n
w

)
pw(1− p)n−w. (2.72)

It has been shown in [15] that Poltyrev’s Bound in (2.72) is equivalent to Random-
Coding Union Bound [15, Theorem 33] (by specifying Result 2.2 on BSC) proved on Shan-
non random code ensembles.

Another candidate for comparison is Error Exponent Bound. Although this bound was
originally proved by Gallager on Shannon random code ensemble, it was shown to hold for
Gallager’s parity check and Elias’ generator ensembles on MIBOS channels (discussed in
the subsection of MIBOS channels in details), including BSC as a special case.
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Figure 2.2: Comparison of Achievability for BSC with cross-over probability p = 0.11

Figure 2.2 shows the numerical comparison (with block length range [200, 3000] and
fixed word error probability 10−3 and 10−6) among Theorem 2.1, Poltyrev’s Bound (Ran-
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dom Coding Union Bound) and Error Exponent Bound on a BSC with cross-over proba-
bility p = 0.11, where Dependence Testing Bound [15, Theorem 34] is also included for a
benchmark. As can be seen, the numerical result confirms that Theorem 2.1 is essentially
the same as Dependence Testing Bound and further shows that Poltyrev’s Bound (Ran-
dom Coding Union Bound) is better than Dependence Testing Bound and Theorem 2.1
by a small margin, while Dependence Testing Bound and Theorem 2.1 outperforms Er-
ror Exponent Bound when word error probability is relatively large with respect to block
length, which is consistent with the observation in [15]. As Poltyrev’s Bound is proved
under ML decoding, this comparison demonstrates that the achievability via jar decoding
is very sharp and jar decoding does not lose much optimality compared to ML decoding
in the non-asymptotic regime.

BEC

Now let us focus on BEC, a special case of BIMC. It turns out that Theorem 2.2 on BEC
can be further improved as follows. Let M = 2k be the number of codewords and p be the
erasure probability. It is then easy to verify that

H(X|Y ) = p ln 2

and in this case, the BIMC jar reduces to

J(yn) =

{
{xn : xi = yi if yi 6= e} if | {i : yi = e} | ≤ n

(
p+ δ

ln 2

)
empty otherwise

.

Following the argument in the proof of Theorem 2.2, it is not hard to show that

Pe(C(i)
n,k) ≤

∑
n(p+ δ

ln 2
)<t≤n

(
n
t

)
pt(1− p)n−t

︸ ︷︷ ︸
Pr{Xn(q)/∈J(Y n)}

+ Pr
{
∃zn 6= Xn(q), zn ∈ J(Y n), zn ∈ C(i)

n,k

}
≤

∑
n(p+ δ

ln 2
)<t≤n

(
n
t

)
pt(1− p)n−t

+
∑

1≤t≤n(p+ δ
ln 2

)

(
n
t

)
pt(1− p)n−t2t2−nM (2.73)
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and optimizing δ yields

Pe(C(i)
n,k) ≤

n∑
t=1

(
n
t

)
pt(1− p)n−t min

{
1, 2−(n−t)M

}
=

n∑
t=1

(
n
t

)
pt(1− p)n−t2−[n−t−log2 M ]+ (2.74)

which is again essentially the same (except for a minor difference†) as the Dependence
Testing Bound [15, Theorem 37] for Shannon random code ensemble and Elias’ generator
ensemble. Note that Ci in Theorem 2.2 is dropped here because of the symmetry of BEC
where the technique used in the proof of Theorem 2.1 on BSC can be applied. Another
improvement of (2.74) over Theorem 2.2 is due to a better bound on |J(yn)| given the
channel output yn. In particular, the size of jar |J(yn)| only depends on the number of
erasures in yn. In general, however, such the refinement is very difficult, as |J(yn)| may be
different for each possible channel output yn, and one of the best ways to bound |J(yn)| in
order to yield a computable achievability result is to use (1.10), as we did in the proof of
Theorem 2.2.

Because BEC is a special channel, exact calculation of word error probability under
ML decoding is possible for some linear code ensembles. In particular, Ashikmin proved
the following result, included in [15]. Note that the ensemble used by Ashikmin, in which
the generator matrix of the code is uniformly picked from the set of full rank matrices, is
neither Gallager’s parity check ensemble nor Elias’ generator ensemble. However, as the
matrices in Gallager’s parity check ensemble and Elias’ generator ensemble are of full rank
with high probability, Ashikmin’s result is still a legitimate candidate to be compared with
jar decoding achievability.

Result 2.7. For BEC with erasure probability p and random linear code ensemble C(full)
n,k

in which the generator matrix is equiprobably selected among all full rank k × n matrices,
the word error probability under ML decoding is given by

Pe(C(full)
n,k )

=
n∑
i=0

(
n
i

)
pn−i(1− p)i

min{k,i}∑
r=max{0,k−n+i}

[
i
r

] [
n− i
k − r

] [
n
k

]−1

2r(n−i−k+r)(1− 2r−k)

(2.75)

†Replacing M by (M − 1)/2, and then starting the summation from t = 0 instead of t = 1 in (2.74)
yield exactly the Dependence Testing Bound [15, Theorem 37].
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where [
a
r

]
=

{ ∏r−1
j=0

2a−2j

2r−2j
r > 0

1 r = 0
.
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Figure 2.3: Comparison of Achievability for BEC with erasure probability p = 0.5

As BEC is also MIBOS, Error Exponent Bound holds for Gallager’s parity check and
Elias’ generator ensembles. Figure 2.3 shows the numerical comparison between (2.74),
Ashikmin’s Bound in Result 2.7 and Error Exponent Bound, where Dependence Testing
Bound [15, Theorem 37] serves as a benchmark. Once again, our achievability via jar
decoding outperforms Error Exponent Bound, and is worse than Ashikmin’s Bound (the
best achievability under ML decoding known so far) by a small margin.

BIAGC

Applying Theorem 2.2 to BIAGC, C(i) in (2.16) can be dropped for the same reason as
that for BSC and BEC. Unfortunately, direct evaluation of (2.16) becomes infeasible, as
the probability

Pr

{
− 1

n

n∑
i=1

ln p(Xi|Zi) > H(X|Y ) + δ

}
is an n-fold integral. Nevertheless, we can resort to (2.18) and (2.19) in part 1) of Theorem
2.2, which can be efficiently evaluated for any BIMC. Note that to yield the tightest bound,
δ in (2.18) and (2.19) can be further optimized.
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There is a rich literature about error probability bounds for linear codes on BIAGC,
considering the practical impact of this research topic. One of the tightest bounds in this
research area is the Tangential Sphere Bound (TSB), proved by Poltyrev in [23].

Result 2.8. For BIAGC with noise variance σ2 and a linear code Cn,k with hamming
weight profile {N(l)}nl=1,

Pe(Cn,k) ≤ min
r>0


+∞∫
−∞

e−
x2

2σ2

√
2πσ

(
1− γ

(
n− 1

2
,
(
√
n− x)2r2

2σ2

))
dx

+

⌊
r2

1+r2
n
⌋∑

l=1

N(l)

+∞∫
−∞

∣∣∣∣∣∣∣∣
(
√
n−x)r∫

(
√
n−x)

√
l

n−l

e−
x2+y2

2σ2

2πσ2
γ

(
n− 2

2
,
|(
√
n− x)2r2 − y2|

2σ2

)
dy

∣∣∣∣∣∣∣∣ dx

(2.76)

where γ(a, x) is the (normalized) incomplete gamma function defined as

γ(a, x) =
1

Γ(a)

x∫
0

ta−1e−tdt

and

Γ(a) =

+∞∫
0

ta−1e−tdt

is the gamma function.

For Elias’ generator ensemble C(1)
n,k and Gallager’s parity check ensemble C(2)

n,k, (2.76)

holds by replacing N(l) with 2−n(1− k
n)
(
n
l

)
. It turns out that the proof technique of

TSB is quite related to the idea of jar decoding. In fact, from jar decoding perspective,
TSB is yielded by treating a n-dimensional circular cone with half-angle θ (r = tan θ is
subject to optimization as shown in (2.76)) as the jar and applying the union bound to the
probability (conditioned on the radial component of the noise) that there exists a codeword
in the jar closer to the channel output than the transmitted one in Euclidean distance. As
the jar is a circular cone, the probability that the transmitted codeword is outside the
jar can be exactly calculated with the help of integration and incomplete gamma function,
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shown as the first term in (2.76). TSB was then improved by Yousefi and Khandani in [24],
and Mehrabian and Yousefi in [25]. It is unclear, however, whether those two improved
bounds can be efficiently evaluated for Elias’ generator ensemble and Gallager’s parity
check ensemble.
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Figure 2.4: Comparison of Achievability for BIAGC with snr 0dB and word error proba-
bility Pe = 10−2

As mentioned earlier, given any linear code, TSB is one of the tightest bounds on
BIACG in terms of the hamming weight profile. However, for Elias’ generator ensemble
and Gallager’s parity check ensemble, TSB fails to reproduce the Gallager’s error exponent
( [20] and references therein). On the other hand, Error Exponent Bound holds for Elias’
generator ensemble and Gallager’s parity check ensemble on BIAGC, due to that BIAGC is
MIBOS. Therefore, we would like to numerically compare Theorem 2.2 ((2.18) and (2.19))
with TSB and Error Exponent Bound, shown in Figure 2.4, where the signal-to-noise ratio
(snr) is 0dB and the word error probability is kept to be 10−2. As can be seen, TSB
is worse than Error Exponent Bound, while our jar decoding achievability is better than
Error Exponent Bound in certain block length region.
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General MIBOS Channel

A channel {p(y|x) : x ∈ X , y ∈ Y} is MIBOS if p(y|x) satisfies

p(y|0) = p(−y|1).

It is not hard to verify that any MIBOS channel is also a BIMC. In fact, it can be easily
verified that

MIBOS Channels ( BIMSC ( BIMC .

To be more specific, the following venn diagram is provided, where weakly symmetric and
strongly symmetric channels follow the definitions in [4]. As can be seen, BIMSC includes

5

2

3 4

1

1 BIMC
2 BIMSC
3 MIBOS Channels
4 binary weakly symmetric channels
5 binary strongly symmetric channels

Figure 2.5: Venn Diagram of Symmetric Channels

both MIBOS channels and binary weakly symmetric channels, either of which can not
include the other. Consequently, Theorem 2.2 can be applied. Moreover, for any MIBOS
channel, by the same technique in the proof of Theorem 2.1, C(i) in Theorem 2.2 can be
eliminated. On the other hand, although Poltyrev’s Bound and Ashikhmin’s Bound are
very tight on BSC and BEC respectively, the extension of their proving technique on linear
codes to general MIBOS channels is difficulty. Turning our attention to achievability of
linear codes for general MIBOS channels, we see that Gallager [1] proved the following
achievability result.

Result 2.9. For any MIBOS channel, a linear code Cn,k with hamming weight profile
{N(l)}nl=1 and a function f(y) satisfying f(y) = f(−y) for any y and f(y) > 0 if p(y|0) > 0,

Pe(Cn,k) ≤ g(s)ne−nsd + e−nrd
n∑
l=1

N(l)[h(r)]l[g(r)]n−l (2.77)
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for any d ≥ 0, s ≥ 0 and r ≤ 0, where

g(s) =

∫
[p(y|0)]1−s[f(y)]sdy (2.78)

h(r) =

∫
[p(y|0)p(−y|0)]

1−r
2 [f(y)]rdy. (2.79)

Applying Result 2.9 to C(2)
n,k, Gallager [1] further obtained Result 2.10.

Result 2.10. For any MIBOS channel,

Pe(C(2)
n,k) ≤ (1 + nCn)e

−n
(
E(ρ,( 1

2
, 1
2))−ρR(C(2)

n,k)
)

(2.80)

for 0 ≤ ρ ≤ 1, where
(

1
2
, 1

2

)
is the uniform distribution on binary alphabet and

Cn = max
1≤l≤n

e−nH( ln)
(
n
l

)
. (2.81)

It can be easily verified that E(ρ,Q)− ρR achieves its maximum with respect to Q at
the uniform distribution

(
1
2
, 1

2

)
when the channel is MIBOS. Result 2.10 was then improved

by Shulman and Feder [26], who proved the result below.

Result 2.11. For any MIBOS channel, a linear code Cn,k with hamming weight profile
{N(l)}nl=1and 0 ≤ ρ ≤ 1,

Pe(Cn,k) ≤

max
1≤l≤n

N(l)2n

(2k − 1)

(
n
l

)

ρ

e−n(E(ρ,( 1
2
, 1
2))−ρR(Cn,k)). (2.82)

By observing xρ for 0 ≤ ρ ≤ 1 is a concave function of x and therefore E[Xρ] ≤ (E[X])ρ,
the following result can be easily yielded from Result 2.11.

Result 2.12. For any MIBOS channel, i = 1, 2, and 0 ≤ ρ ≤ 1,

Pe(C(i)
n,k) ≤ e

−n
(
E(ρ,( 1

2
, 1
2))−ρR(C(i)

n,k)
)
. (2.83)

50



Remark 2.8. Strictly speaking, for 1 ≤ l ≤ n,

E

 N(l)2n

(2k − 1)

(
n
l

)
 = 1

for C(1)
n,k and

E

 N(l)2n

(2k − 1)

(
n
l

)
 =

1

1− 2−k

for C(2)
n,k. However, the difference between 1 and 1

1−2−k
is numerically negligible in common

settings of k, and therefore ignored here.

Consequently, Gallager’s Error Exponent Bound holds for Gallager’s parity check and
Elias’ generator ensembles on MIBOS channels. It is worth mentioning that the symmetric
property of MIBOS channel, i.e.

p(y|0) = p(−y|1)

is essential to the bounding techniques used in Result 2.9-2.12. To the our best knowledge,
this is the best achievability in the literature for random linear code ensemble and general
MIBOS channels. Meanwhile, on BSC, BEC and BIAGC, we have already shown that the
achievability via jar decoding can be tighter than Error Exponent Bound.

Applicability (to ensembles and channels) and computational complexity of jar decoding
achievability and existing achievability bounds on random linear coding ensembles in the
literature are summerized in Table 2.1. Among all the listed results, Theorem 2.2 is the
only achievability that can be applied to general BIMC and efficiently evaluated. Focusing
on Gallager’s ensemble, existing achievabilities only deal with MIBOS channels, which is
a strict subset of BIMC. For some special MIBOS channels, e.g. BSC and BEC, there
are bounds proved under ML decoding, which are better than the achievability under jar
decoding in (2.70) and (2.74) by a small margin in the non-asymptotic regime. For general
MIBOS channels, however, to the our best knowledge, Error Exponent Bound is best
achievability result in the literature. And numerical calculation shows that the achievability
in Theorem 2.2 can be tighter than Error Exponent Bound in the non-asymptotic regime.
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Achievability
Applicability Computational

Linear Ensembles BIMC Complexity

Jar Decoding
(2.70) √

Elias
√

Gallager
BSC O(n)

(2.74) BEC O(n)
Theorem 2.2 General O(1)

Poltyrev Result 2.5
√

Elias
√

Gallager BSC O(n)

Ashikmin Result 2.7

√
Elias

√
Gallager

BEC O(n2)
(full rank)

TSB Result 2.8
√

Elias
√

Gallager BIAGC O(1)
Error Exponent Result 2.11

√
Elias

√
Gallager MIBOS O(1)

RCU
[15, Theorem 33] √

Elias × Gallager
BSC O(n)

Result 2.2 General Unknown

DT
[15, Theorem 34] √

Elias × Gallager
BSC O(n)

[15, Theorem 37] BEC O(n)
Result 2.3 General Unknown

Table 2.1: Achievabilities on Random Linear Codes and BIMC

2.4.2 Achievability on Shannon Random Code Ensemble With a
Fixed Codeword Type

Technically speaking, when channel input is discrete, achievability on Shannon random
code ensemble can be also applied to that with a fixed codeword type t, by restricting the
input distribution in T tn . In this case, however, neither input nor output distribution has
the product form. Consequently, the evaluation of those achievable bounds becomes much
more challenging. Taking Dependence Testing Bound in Result 2.3 as an example. When
Shannon random code ensemble (without type constraint) is considered, the channel is
memoryless (i.e. pY n|Xn(yn|xn) =

∏n
i=1 p(yi|xi) for some p(y|x)) and pXn(xn) =

∏n
i=1 p(xi)

for some p(x), pY n(yn) =
∏n

i=1 p(yi) where p(y) =
∑

x∈X p(x)p(y|x). As a consequence,
probabilities in (2.61) are probabilities of event of summation of an i.i.d sequences, which
can be exactly evaluated with linear computation complexity with respect to n in certain
special cases and estimated by certain bounds (e.g. NEP or Chernoff Bound) in gen-
eral. Now applying Dependence Testing Bound to random coding ensemble with a fixed
codeword type, let

p(xn) =

{ 1
|T tn |

t(xn) = t

0 otherwise
.
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It is then clear that the evaluation of probabilities in (2.61) becomes prohibitive as the
computation complexity scales exponentially with respect to n. It is even hard to find a
bound for those probabilities which can be easily computed, as they are no longer proba-
bilities of event of summation of an i.i.d sequence. Similar discussion applies to Random
Coding Union Bound in Result 2.2. In contrast, our achievability in Theorem 2.3 can be
always easily computed. Therefore, in this subsection, we focus on those achievabilities on
random code ensemble with a fixed codeword type, which allow easy evaluation.

First of all, let us compare Theorem 2.3 and Result 2.4. Strictly speaking, Result 2.4
is not applicable to random code ensemble with a fixed codeword type, as its proof uses
deterministic construction of the channel code. Nevertheless, Result 2.4 can be used to show
the existence of a code in this ensemble achieving the rate and the word error probability
bound. Specifically, give a type t, let F = T nt and qY n(yn) = qt(y

n) =
∏n

i=1 qt(yi). It
is then easy to verify that βα(xn, qt) is a constant (denoted by βα(qt) ) for any xn ∈ F .
Consequently, the bound (2.65) reduces to

M ≥ sup
0<τ<Pe(Ct,n,k)

κτ (T nt , qt)
β1−Pe(Ct,n,k)+τ (qt)

. (2.84)

As κτ (T nt , qt) and β1−ε+τ (x
n, qt) can not be efficiently evaluated in general, bounds on κ

and β in (2.68) and (2.66) respectively are applied, yielding

κτ (T nt , qt) ≥ τe−nH(t)|T nt | (2.85)

and ∀xn ∈ T nt ,

1

β1−Pe(Ct,n,k)+τ (xn, qt)
≥ sup

{
γ : Pr

{
p(Y n|xn)

qt(Y n)
≥ γ

}
≥ 1− Pe(Ct,n,k) + τ

}
= sup

{
eγ : Pr

{
ln
p(Y n|xn)

qt(Y n)
< γ

}
≤ Pe(Ct,n,k)− τ

}
= sup

δ:P−t,δ≤Pe(Ct,n,k)−τ
eI(t;P )−δ (2.86)

where Y n is the channel response to xn. Now plug (2.85) and (2.86) into (2.84), take
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logarithm and divide n on both sides, and we yield

R(Ct,n,k) ≥ sup
0<τ<Pe(Ct,n,k)

sup
δ:P−t,δ≤Pe(Ct,n,k)−τ

I(t;P )− δ +
ln τ + ln e−nH(t)|T nt |

n

= sup
δ:P−t,δ<Pe(Ct,n,k)

sup
0<τ≤Pe(Ct,n,k)−P−t,δ

I(t;P )− δ +
ln τ + ln e−nH(t)|T nt |

n

= sup
δ:P−t,δ<Pe(Ct,n,k)

I(t;P )− δ +
ln
(
Pe(Ct,n,k)− P−t,δ

)
+ ln e−nH(t)|T nt |

n
(2.87)

which is equivalent to (2.43) in Theorem 2.3. Consequently, both Result 2.4 and Theorem
2.3 imply the existence of a channel code with a fixed codeword t achieving the trade-off
between the rate and the word error probability in (2.43). And both of the results go
beyond this existence in their own ways. Result 2.4 holds for maximal error probability,
and the achievability (2.65) is tighter than (2.43) in general, although the evaluation of β
and κ is quite challenging. Theorem 2.3, on the other hand, shows that the average coding
performance (the rate and the word error probability) of random coding ensemble with a
fixed codeword type can achieve (2.43), which implies the existence result, but not vice
versa.

Next, we move on to the error exponent result, proved by Fano in [27].

Result 2.13. For any discrete (input and output) memoryless channel P = {p(y|x) : x ∈
X , y ∈ Y} and any t ∈ Pn,

Pe(Ct,n,k) ≤
{ [

1 + enH(t)|T nt |−1
]
e−na(t,s(t,R(Ct,n,k))) R(t, 0.5) < R(Ct,n,k) < I(t;P )

enH(t)|T nt |−1e−n(a(t,0.5)+R(t,0.5)−R(Ct,n,k)) 0 ≤ R(Ct,n,k) ≤ R(t, 0.5)
(2.88)

where

a(t, s) =
∑

x∈X ,y∈Y

t(x)Qs(y|x) ln
Qs(y|x)

p(y|x)
for 0 ≤ s ≤ 0.5 (2.89)

R(t, s) =
∑

x∈X ,y∈Y

t(x)Qs(y|x) ln
Qs(y|x)

Qs(y)
for 0 ≤ s ≤ 0.5 (2.90)

s(t, R) is the solution of s to R(t, s) = R given t, and Qs(y) and Qs(y|x) are unconditional
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and conditional probability distributions satisfying

Qs(y|x) =
[p(y|x)]1−s[Qs(y)]s∑
y∈Y [p(y|x)]1−s[Qs(y)]s

(2.91)

Qs(y) =
∑
x∈X

t(x)Qs(y|x). (2.92)

In the orignal version of Result 2.13, the term enH(t)|T nt |−1 is further upper bounded
by (2πn)|X |/2e|X |/2. By defining

Et(R) =

{
a(t, s(t,R(Ct,n,k))) R(t, 0.5) < R(Ct,n,k) < I(t;P )

a(t, 0.5) +R(t, 0.5)−R(Ct,n,k) 0 ≤ R(Ct,n,k) ≤ R(t, 0.5)
, (2.93)

it can be verified that

Et(R) = max
0≤ρ≤1

max
Q(y|x):

∑
y Q(y|x) = 1

Q(y|x) = 0 if p(y|x) = 0

−
∑
x

t(x) ln

{∑
y

[p(y|x)]
1

1+ρ [Q(y)]
ρ

1+ρ

}1+ρ

− ρR

(2.94)
where Q(y) =

∑
x t(x)Q(y|x). Fano [27] then showed that

max
t
Et(R) = max

0≤ρ≤1
max
Q

E(ρ,Q)− ρR (2.95)

for 0 ≤ R < maxt I(t;P ) and

Et(R) ≥ max
0≤ρ≤1

E(ρ, t)− ρR (2.96)

for general type t.

Towards numerical comparison between Result 2.13 and Theorem 2.3, we consider a
special DIMC with discrete output, Z channel, shown in Figure 2.6. As can be seen, Z
channel and BEC share some common properties. Consequently, the achievability via jar
decoding in Theorem 2.3 can be further improved by providing a better bound on the
size of jar |J(yn)| given a channel output yn. Given a type t, the improved jar decoding
achievability is shown below

Pe(Ct,n,k) ≤
m∑
i=0

(
m
i

)
(1− p)m−ipi min

1, (M − 1)

(
n−m+ i

i

)
(

n
m

)
 (2.97)
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0 0

X Y

1 1

1− p

p

1

Figure 2.6: Z Channel

where M = 2nR(Ct,n,k) and m = t(0)n. Then (2.97) (Jar Decoding) is numerically compared
with Result 2.13 (Fano) on Z channel with different channel parameters p and input types
t, where Result 2.1 (Gallager) on Shannon random code ensemble with input distributions
corresponding to t serves as a benchmark.
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(b) t = (0.1, 0.9)

Figure 2.7: Comparison of Achievability for Z Channel with p = 0.5 and Pe = 10−3

As shown in Figures 2.7 and 2.8, jar decoding achievability constantly outperforms
Fano’s error exponent result. In addition, Figure 2.7 shows that due to the non-exponential
term

[
1 + enH(t)|T nt |−1

]
or enH(t)|T nt |−1, Fano’s result could be worse than Gallager’s, de-

spite the relation of Fano’s and Gallager’s error exponent functions in (2.96). Meanwhile,
in Figure 2.8, pX represents the capacity achieving type, while t∗ is some type calculated
in a way specified in Chapter 4. A close look at Figure 2.8 then reveals that curves in (b)
are above their counterparts in (a), which suggests that capacity achieving input type or
distribution is not necessarily optimal in the non-asymptotic regime. Detailed discussion
on this issue is delayed to Chapter 4.
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Figure 2.8: Comparison of Achievability for Z Channel with p = 0.9 and Pe = 10−3

To summarize, we compare the achievability via jar decoding for general DIMC with κβ
bound and Fano’s Error Exponent Bound. As discussed above, κβ bound, as an existence
result, implies Theorem 2.3. However, since κβ bound uses some deterministic construction
of the channel codes in its proof, Theorem 2.3 is new on Shannon random code ensemble
with a fixed codeword type. On the other hand, numerical calculation on Z channel shows
that the achievability via jar decoding (an improved version of Theorem 2.3) is tighter
than Fano’s Error Exponent Bound in the non-asymptotic regime. Moreover, Fano’s Error
Exponent Bound is only applicable to the channel with discrete input and output, while
Theorem 2.3 can be applied to channels with arbitrary (discrete or continuous) output as
long as the input is discrete.

2.5 Summary

In this chapter, we establish several achievable channel coding theorems via jar decoding.
In comparison with old decoding rules, jar decoding really makes the proof of achievable
channel coding theorems simpler and easier. Given a channel and a code Cn of block length
n for the channel, let Xn be the transmitted random codeword, and Y n the corresponding
channel output. Let J(Y n) be the jar formed for Y n. The word error probability Pe(Cn) is
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conveniently upper bounded by

Pe(Cn) ≤ Pr{Xn 6∈ J(Y n)}
+ Pr {∃xn 6= Xn, xn ∈ J(Y n), xn ∈ Cn, Xn ∈ J(Y n)} . (2.98)

For most codes, the first probability on the right side of (2.98) is actually independent of
the codes themselves and can be nicely upper bounded for any n by using non-asymptotic
equipartition properties with respect to different information quantities from [28]. For
random linear codes based on either Elias’ generator ensembles or Gallager’s parity check
ensembles and for Shannon random codes, the second probability on the right side of
(2.98) is negligible in comparison with the first one when the code rate is very close to
the channel capacity. With this, we have established non-asymptotic coding theorems for
any block length n for random linear codes based on either Elias’ generator ensembles or
Gallager’s parity check ensembles and for Shannon random codes, which reveal a complete
picture about the tradeoff between the capacity gap and word error probability when the
word error probability is a constant, or goes to 0 with block length n at a sub-polynomial
n−α, 0 < α < 1, polynomial n−α, α ≥ 1, or sub-exponential e−n

α
, 0 < α < 1, speed.

For example, this complete tradeoff picture tells us that random linear codes of block

length n can reach within σH(X|Y )
√

2α lnn
n

+
(
α + 1

2

)
lnn
n

+O
(

ln lnn
n

)
of the capacity of any

BIMC while maintaining the word error probability n−α

2
√
πα lnn

+ O
(
n−α ln3/2 n√

n

)
, and within

c√
n

+ lnn
2n
− 1

n
ln (1−CBE)MH(X|Y )

σ3
H(X|Y )

of the capacity while maintaining the word error probability

Q
(

c
σH(X|Y )

)
+ MH(X|Y )

σ3
H(X|Y )

1√
n
, where σ2

H(X|Y ) is the conditional information variance of X

given the channel output Y , MH(X|Y ) is another parameter related to the channel, Q(z) =
1√
2π

∫∞
z
e−t

2/2dt, and CBE < 1 is the universal constant in the Berry-Esseen central limit
theorem. If the word error probability is kept slightly above 0.5, the code rate can be even
slightly above the capacity! In the case of BSC with cross over probability p = 0.12, at the
block length 1000, the word error probability is around 0.65, and the code rate is 0.21%
above the capacity!

Those achievabilities in this chapter are shown to be surprisingly sharp in certain sce-
narios, considering the fact that jar decoding is not the optimal decoding rule. For example,
we compare our achievable bounds based on random linear code ensembles with Dependent
Testing bounds (one of the best achievable bounds in channel coding literature) based on
Shannon random code ensemble in [15] for BSC and BEC channels, and the difference is
quit insignificant. In addition, compared with asymptotic achievable and converse results
in [15, 18, 19] when the error probability is fixed to be a constant, our achievable results
based on random linear code ensemble for BIMC and Shannon random code ensemble with
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a fixed codeword type for DIMC coincide with the optimal channel coding rate up to the
second order ( 1√

n
) with respect to n asymptotically. Therefore, it would be interesting to

show how far the achievabilities proved via jar decoding is from the optimal channel coding
rate in general settings. In the next chapter, we will attempt this problem by providing
non-asymptotic converse coding theorems using the concept of jar.
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Chapter 3

Non-asymptotic Converse Channel
Coding Theorems

In this chapter, towards investigating the sharpness of achievabilities via jar decoding, we
prove non-asymptotic converse theorems using the concept of jar. Specifically, we present a
new converse proof technique dubbed the outer mirror image of jar and use the technique
to establish new non-asymptotic converse coding theorems for any binary input memoryless
symmetric channel (BIMSC) and any DIMC respectively.

3.1 Non-Asymptotic Converse Theorems: BIMSC

Consider a BIMC {p(y|x) : x ∈ X , y ∈ Y}, where X = {0, 1} is the channel input
alphabet, and Y is the channel output alphabet, which is arbitrary and could be discrete
or continuous. Throughout this section, let X denote the uniform random variable on X
and Y the corresponding channel output of the BIMC in response to X. Then the capacity
(in nats) of the BIMC is calculated by

CBIMC = ln 2−H(X|Y ) (3.1)

where H(X|Y ) is the conditional entropy of X given Y . Further assume that the random
variable − ln p(0|Y ) given X = 0 and the random variable − ln p(1|Y ) given X = 1 have the
same distribution, where p(0|Y ) (p(1|Y ), respectively) denotes the conditional probability
of X = 0 (X = 1, respectively) given Y . Such a BIMC is called a BIMSC. (It can be
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verified that BSC, BEC, BIAGC, and general MBIOS channels all belong to the class of
BIMSC.) Under this assumption, we have

Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

∣∣∣∣Xn = xn
}

= Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
(3.2)

for any xn ∈ X n, where Y n is the output of the BIMSC in response to Xn, the n indepen-
dent copies of X.

To present the converse theorems in this section, recall definitions in Section 1.4.1. In
addition, following definitions are needed. Define for any xn ∈ X n,

B(xn, δ)
∆
=

{
yn :∞ > − 1

n
ln p(xn|yn) > H(X|Y ) + δ

}
(3.3)

and
Bn,δ

∆
= ∪xn∈Xn B(xn, δ). (3.4)

Since for any yn ∈ Yn, the following set{
xn ∈ X n : − 1

n
ln p(xn|yn) ≤ H(X|Y ) + δ

}
(3.5)

is referred to as a BIMC jar for yn in Chapters 1 and 2, we shall call B(xn, δ) the outer
mirror image of jar corresponding to xn. Moreover, define for any set B ⊆ Yn,

P (B)
∆
= Pr {Y n ∈ B} (3.6)

Pxn(B)
∆
= Pr {Y n ∈ B|Xn = xn} . (3.7)

It is easy to see that

Pxn(B(xn, δ)) = Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

∣∣∣∣Xn = xn
}

= Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
(3.8)

where the last equality is due to (3.2).

We are now ready to state our non-asymptotic converse coding theorem for BIMSCs.
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Theorem 3.1. Given a BIMSC, for any channel code Cn of block length n with average
word error probability Pe(Cn) = εn and any βn > 0,

R(Cn) ≤ CBIMSC − δ −
ln εn + ln βn − lnP (Bn,δ)

n
(3.9)

where δ is the largest number such that

(1 + βn) εn ≤ Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
. (3.10)

Moreover, the following hold:

1)

R(Cn) ≤ CBIMSC − δ −
ln εn − lnP (Bn,δ) + 1

2
ln −2 ln εn

σ2
H(X|Y )n

n
(3.11)

where δ is the solution to(
1 +

1

σH(X|Y )

√
−2 ln εn

n

)
εn = ξ

H
(X|Y, λ, n)e−nrX|Y (δ) (3.12)

with δ(λ) = δ.

2) When εn = e−n
α

2
√
πnα

(
1− 1

2nα

)
for α ∈ (0, 1),

R(Cn) ≤ CBIMSC −
√

2σH(X|Y )n−
1−α

2 +O(n−(1−α)). (3.13)

3) When εn = n−α

2
√
πα lnn

(
1− 1

2α lnn

)
for α > 0,

R(Cn) ≤ CBIMSC − σH(X|Y )

√
2α lnn

n
+O

(
lnn

n

)
. (3.14)

4) When εn = ε satisfying ε+ 1√
n

(
2
√
−2 ln ε

σH(X|Y )
ε+ CBEMH(X|Y )

σ3
H(X|Y )

)
< 1,

R(Cn) ≤ CBIMSC −
ln ε+ 1

2
ln −2 ln ε

σ2
H(X|Y )n

n

− σH(X|Y )√
n

Q−1

(
ε+

1√
n

( √
−2 ln ε

σH(X|Y )
ε+

CBEMH(X|Y )

σ3
H(X|Y )

))
(3.15)

= CBIMSC −
σH(X|Y )√

n
Q−1 (ε) +

lnn

2n
+O(n−1). (3.16)
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Proof. Assume that the message M is uniformly distributed in M = {1, 2, . . . , enR(Cn)},
xn(m) is the codeword corresponding to the message m, and εm,n is the conditional error
probability given message m. Then

εn = E[εM,n] = e−nR(Cn)

enR(Cn)∑
m=1

εm,n. (3.17)

Denote the decision region for message m as Dm. Then

Pxn(m)(B(xn(m), δ) ∩Dm) = Pxn(m)(B(xn(m), δ))− Pxn(m)(B(xn(m), δ) ∩Dc
m)

≥ Pxn(m)(B(xn(m), δ))− Pxn(m)(D
c
m)

= Pxn(m)(B(xn(m), δ))− εm,n

= Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
− εm,n

(3.18)

where the last equality is due to (3.8). At this point, we select δ such that

Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
≥ εn(1 + βn). (3.19)

By the fact that Dm are disjoint for different m and

∪m∈M (B(xn(m), δ) ∩Dm) ⊆ Bn,δ, (3.20)
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we have

P (Bn,δ) =

∫
Bn,δ

p(yn)dyn

≥
eR(Cn)∑
m=1

∫
B(xn(m),δ)∩Dm

p(yn)dyn

=
eR(Cn)∑
m=1

∫
B(xn(m),δ)∩Dm

p(yn|xn(m))p(xn(m))

p(xn(m)|yn)
dyn

1)

≥
eR(Cn)∑
m=1

∫
B(xn(m),δ)∩Dm

p(yn|xn(m))en(−CBIMSC+δ)dyn

=
eR(Cn)∑
m=1

en(−CBIMSC+δ)

∫
B(xn(m),δ)∩Dm

p(yn|xn(m))dyn

= en(−CBIMSC+δ)

eR(Cn)∑
m=1

Pxn(m)(B(xn(m), δ) ∩Dm)

2)

≥ en(−CBIMSC+δ)

eR(Cn)∑
m=1

[
Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
− εm,n

]
3)
= en(−CBIMSC+δ+R(Cn))

[
Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
− εn

]
4)

≥ en(−CBIMSC+δ+R(Cn))βnεn (3.21)

where the inequality 1) is due to the definition of B(xn, δ) given in (3.3), the inequality 2)
follows from (3.18), the equality 3) comes from (3.17), and the inequality 4) is yielded by
substituting (3.19). From (3.21), it follows that

R(Cn) ≤ CBIMSC − δ −
ln βn + ln εn − lnP (Bn,δ)

n
, (3.22)

and therefore (3.9) and (3.10) are proved. Now let βn = 1
σH(X|Y )

√
−2 ln εn

n
.
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1) By Result 1.1 in Section 1.4.1, part (b) of which says

Pr

{
− 1

n
ln p(Y n|Xn) > H(X|Y ) + δ

}
≥ ξ

H
(X|Y, λ, n)e−nrX|Y (δ), (3.23)

selecting δ to be the solution to (3.12) will make (3.19) satisfied, and therefore (3.11)
is proved.

2) Towards proving (3.13), we want to show that by making δ =
√

2σH(X|Y )n−
1−α

2 −
ηn−(1−α) for some constant η,

Pr

{
− 1

n
p(Xn|Y n) > H(X|Y ) + δ

}
≥

(
1 +

1

σH(X|Y )

√
−2 ln εn

n

)
εn (3.24)

with εn = e−n
α

2
√
πnα

(
1− 1

2nα

)
. Then the proof follows essentially the same approach as

that of (3.14), shown below in details.

3) Apply the trivial bound P (Bn,δ) ≤ 1. Then to show (3.14), we only have to show

that δ = σH(X|Y )
√

2α lnn
n
− η lnn

n
for some constant η can make

Pr

{
− 1

n
p(Xn|Y n) > H(X|Y ) + δ

}
≥ ξ

H
(X|Y, λ, n)e−nrX|Y (δ)

≥

(
1 + η0

√
lnn

n

)
n−α

2
√
πα lnn

(
1− 1

2α lnn

)

≥

(
1 +

1

σH(X|Y )

√
−2 ln εn

n

)
εn (3.25)

satisfied, where λ = r′X|Y (δ) and

1

σH(X|Y, λ)

√
−2 ln εn

n
= Θ

(√
lnn

n

)
≤ η0

√
lnn

n
(3.26)

for some constant η0. Towards this, by part (a) of Result 1.1

rX|Y (δ) =
1

2σ2
H(X|Y )

δ2 +O(δ3) (3.27)
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and the fact that

ξ
H

(X|Y, λ, n) = Θ

(
1√
nλ

)
(3.28)

when δ = o(1) and δ = Ω(1/
√
n),

e−nrX|Y (δ) = e
−nrX|Y

(
σH(X|Y )

√
2α lnn
n
− η lnn

n

)

= e
−n
[

1

2σ2
H

(X|Y )

(
σH(X|Y )

√
2α lnn
n
− η lnn

n

)2
+O

(√
ln3 n
n3

)]

= e
−α lnn+ η

σH (X|Y )

√
2α ln3 n

n
−O
(√

ln3 n
n

)

≥ e
−α lnn+

( √
2αη

σH (X|Y )
−η1

)√
ln3 n
n (3.29)

for some constant η1, and

ξ
H

(X|Y, λ, n)

= e
nλ2σ2

H (X|Y,λ)

2 Q
(
ρ∗ +

√
nλσH(X|Y, λ)

)
≥ e

nλ2σ2
H (X|Y,λ)

2
e−

(ρ∗+
√
nλσH (X|Y,λ))2

2

√
2π(ρ∗ +

√
nλσH(X|Y, λ))

[
1− 1

(ρ∗ +
√
nλσH(X|Y, λ))2

]

=
e−

ρ2∗+2ρ∗
√
nλσH (X|Y,λ)

2

√
2π(ρ∗ +

√
nλσH(X|Y, λ))

[
1− 1

(ρ∗ +
√
nλσH(X|Y, λ))2

]
≥ 1

2
√
πα lnn

(
1− 1

2α lnn

)(
1−Θ

(√
lnn

n

))

≥ 1

2
√
πα lnn

(
1− 1

2α lnn

)(
1− η2

√
lnn

n

)
(3.30)

for another constant η2, where ρ∗ = Q−1
(

1
2
− 2CBEMH(X|Y,λ)√

nσ3
H(X|Y,λ)

)
= Θ

(
1√
n

)
, and we

utilize the fact that

λ = r′X|Y (δ)

=
δ

σ2
H(X|Y )

+O(δ2) (3.31)

σH(X|Y, λ) = σH(X|Y )±O(λ). (3.32)
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Then (3.25) is satisfied by choosing a constant η such that

e

( √
2αη

σH (X|Y )
−η1

)√
ln3 n
n

(
1− η2

√
lnn

n

)

≥

1 +

( √
2αη

σH(X|Y )
− η1

)√
ln3 n

n

(1− η2

√
lnn

n

)

≥ 1 + η0

√
lnn

n
(3.33)

for some constants η0, η1 and η2.

4) According to (3.19), we should select δ such that

Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
≥

(
1 +

1

σH(X|Y )

√
−2 ln ε

n

)
ε. (3.34)

Then by part (c) of Result 1.1,

δ =
σH(X|Y )√

n
Q−1

(
ε+

1√
n

( √
−2 ln ε

σH(X|Y )
ε+

MH(X|Y )

σ3
H(X|Y )

))
(3.35)

will guarantee (3.34). Consequently, (3.15) is proved by substituting (3.35) and εn = ε
into (3.22) and applying the trivial bound P (Bn,δ) ≤ 1, and (3.16) follows the fact
that

Q−1

(
ε+

1√
n

( √
−2 ln ε

σH(X|Y )
ε+

CBEMH(X|Y )

σ3
H(X|Y )

))
= Q−1(ε)−O

(
1√
n

)
. (3.36)

Remark 3.1. It is clear that the above converse proof technique depends heavily on the
concept of the outer mirror image of jar corresponding to codewords. To facilitate its future
reference, it is beneficial to loosely call such a converse proof technique the outer mirror
image of jar.

Remark 3.2. In general, the evaluation of P (Bn,δ) may not be feasible, in which case the
trivial bound P (Bn,δ) ≤ 1 can be applied without affecting the second order performance
in the non-exponential error probability regime, as shown above. However, there are cases
where P (Bn,δ) can be tightly bounded (e.g. BEC, shown in section 4.3).
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Remark 3.3. For the bound (3.15), when ε is small with respect to 1√
n

, CBEMH(X|Y )√
nσ3

H(X|Y )
(the

estimation error that comes from Berry-Esseen central limit theorem) will be dominant; in
this case, (3.15) is loose.

Remark 3.4. The choice βn = 1
σH(X|Y )

√
−2 ln εn

n
in the proof of Theorem 3.1 is not arbi-

trary. Actually, it is optimal when δ is small in the sense of minimizing the upper bound
(3.9) in which δ depends on βn through (3.10). To derive the expression for βn, the fol-
lowing approximations can be adopted when δ is small:

dδ

dβn
≈ −2βnσ

2
H(X|Y )

nδ
(3.37)

δ2 ≈ −2σ2
H(X|Y ) ln εn

n
(3.38)

where (3.37) and (3.38) can be developed from parts (a) and (b) of Result 1.1.

3.2 Non-Asymptotic Converse: DIMC

We now extend Theorems 3.1 to the case of DIMC P = {p(y|x), x ∈ X , y ∈ Y}, where X
is discrete, but Y is arbitrary (discrete or continuous).

Recall definitions in Section 1.4.2. In addition, for any t ∈ Pn and any xn ∈ T nt , define

Bt(x
n, δ)

∆
=

{
yn : −∞ <

1

n
ln
p(yn|xn)

qt(yn)
≤ I(t;P )− δ

}
(3.39)

and consequently

Pxn(Bt(x
n, δ)) = Pr

{
1

n
ln
p(Y n|Xn)

qt(Y n)
≤ I(t;P )− δ

∣∣∣∣Xn = xn
}

= Pt,δ (3.40)

where Pt,δ only depends on type t and δ. Since for any yn ∈ Yn, the following set{
xn ∈ T nt :

1

n
ln
p(yn|xn)

qt(yn)
≥ I(t;P )− δ

}
(3.41)

is referred to as a DIMC jar for yn based on type t in Chapter 2, we shall call Bt(x
n, δ)

the outer mirror image of jar corresponding to xn. Further define

Bt,n,δ
∆
= ∪xn∈Xnt Bt(x

n, δ) (3.42)
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P (Bt,n,δ)
∆
=

∫
yn∈Bt,n,δ

qt(y
n)dyn. (3.43)

For any channel code Cn of block length n with average word error probability Pe(Cn) =
εn, assume that the message M is uniformly distributed in {1, 2, . . . , enR(Cn)}. Let xn(m) be
the codeword corresponding to the message m, and εm,n the conditional error probability
given message m. Then

εn = E[εM,n]. (3.44)

Let βn =
√
−2 ln εn

n
and

M ∆
= {m : εm,n ≤ εn(1 + βn)} . (3.45)

Consider a type t ∈ Pn such that

|{m ∈M : t(xn(m)) = t}| ≥ |M|
(n+ 1)|X |

. (3.46)

Since |Pn| ≤ (n + 1)|X |, it follows from the pigeonhole principle that such a type t ∈ Pn
exists. In other words, if we classify codewords in {xn(m) : m ∈ M} according to their
types, then there is at least one type t ∈ Pn such that the number of codewords in
{xn(m) : m ∈M} with that type is not less than the average.

We are now ready to state our converse theorem for DIMC.

Theorem 3.2. Given a DIMC, for any channel code Cn of block length n with average
word error probability Pe(Cn) = εn,

R(Cn) ≤ I(t;P )− δ − ln εn − lnP (Bt,n,δ)

n
+ |X | ln(n+ 1)

n

−
ln −2 ln εn

n
− ln

(
1 +

√
−2 ln εn

n

)
n

(3.47)

for any t ∈ Pn satisfying (3.46), where δ is the largest number satisfying(
1 + 2

√
−2 ln εn

n

)
εn ≤ Pt,δ. (3.48)

Moreover, if a type t ∈ Pn satisfying (3.46) also satisfies (1.47) and (1.56), then the
following hold:
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1)

R(Cn) ≤ I(t;P )− δ − ln εn − lnP (Bt,n,δ)

n
+ |X | ln(n+ 1)

n

−
ln −2 ln εn

n
− ln

(
1 +

√
−2 ln εn

n

)
n

(3.49)

where δ is the solution to(
1 + 2

√
−2 ln εn

n

)
εn = ξ

D,−(t;P, λ, n)e−nr−(t,δ) (3.50)

with δ−(t, λ) = δ.

2) When εn = e−n
α

2
√
πnα

(
1− 1

2nα

)
for α ∈ (0, 1),

R(Cn) ≤ I(t;P )−
√

2σD(t;P )n−
1−α

2 +O(n−(1−α)). (3.51)

3) When εn = n−α

2
√
πα lnn

(
1− 1

2α lnn

)
for α > 0,

R(Cn) ≤ I(t;P )− σD(t;P )

√
2α lnn

n
+O

(
lnn

n

)
. (3.52)

4) When εn = ε satisfying ε+ 1√
n

(
2ε
√
−2 ln ε+ CBEMD(t;P )

σ3
D(t;P )

)
< 1,

R(Cn) ≤ I(t;P )− σD(t;P )√
n

Q−1

(
ε+

1√
n

(
2ε
√
−2 ln ε+

CBEMD(t;P )

σ3
D(t;P )

))
+ (|X |+ 1)

lnn

n
− ln ε

n
(3.53)

= I(t;P )− σD(t;P )√
n

Q−1 (ε) + (|X |+ 1)
lnn

n
+O(n−1). (3.54)

Proof. We again apply the outer mirror image of jar converse-proof technique. By Markov
inequality,

Pr{M ∈M} ≥ βn
1 + βn

and |M| ≥ enR(Cn)+ln βn
1+βn . (3.55)

70



For any t ∈ Pn satisfying (3.46), let

Mt
∆
= {m : εm,n ≤ εn(1 + βn), t(xn(m)) = t} . (3.56)

Then

|Mt| ≥
|M|

(n+ 1)|X |
≥ enR(Cn)+ln βn

1+βn
−|X | ln(n+1). (3.57)

Denote the decision region for message m ∈Mt as Dm. Now for any m ∈Mt,

Pxn(m)(Bt(x
n(m), δ) ∩Dm) = Pxn(m)(Bt(x

n(m), δ))− Pxn(m)(Bt(x
n(m), δ) ∩Dc

m)

≥ Pxn(m)(Bt(x
n(m), δ))− εm,n

≥ Pxn(m)(Bt(x
n(m), δ))− εn(1 + βn). (3.58)

At this point, we select δ such that for any xn ∈ X n
t ,

Pxn(Bt(x
n, δ)) = Pt,δ ≥ εn(1 + 2βn). (3.59)

Substituting (3.59) into (3.58), we have

Pxn(m)(Bt(x
n(m), δ) ∩Dm) ≥ βnεn. (3.60)

By the fact that Dm are disjoint for different m and

∪m∈Mt (Dm ∩Bt(x
n(m), δ)) ⊆ Bt,n,δ, (3.61)

we have

P (Bt,n,δ) =

∫
Bt,n,δ

qt(y
n)dyn

≥
∑
m∈Mt

∫
B(xn(m),δ)∩Dm

qt(y
n)dyn

≥
∑
m∈Mt

∫
B(xn(m),δ)∩Dm

p(yn|xn(m))e−n(I(t;P )−δ)dyn

=
∑
m∈Mt

e−n(I(t;P )−δ)
∫

B(xn(m),δ)∩Dm

p(yn|xn(m))dyn

=
∑
m∈Mt

e−n(I(t;P )−δ)Pxn(m)(B(xn(m), δ) ∩Dm)

≥
∑
m∈Mt

e−n(I(t;P )−δ)βnεn = |Mt|e−n(I(t;P )−δ)βnεn (3.62)
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which implies that
|Mt| ≤ en(I(t;P )−δ)−lnβn−ln εn+lnP (Bt,n,δ). (3.63)

Then combining (3.57) and (3.63) yields

R(Cn) ≤ I(t;P )− δ − ln εn − lnP (Bt,n,δ)

n
−

ln βn
1+βn

n
− ln βn

n
+ |X | ln(n+ 1)

n
. (3.64)

Since βn =
√
−2 ln εn

n
by definition, (3.47) and (3.48) directly come from (3.64) and (3.59).

1) According to part (b) of Result 1.2, i.e.

Pr

{
1

n
ln
p(Y n|Xn)

qt(Y n)
≤ I(t;P )− δ

∣∣∣∣Xn = xn
}
≥ ξ

D,−(t;P, λ, n)e−nr−(t,δ) (3.65)

it can be seen that selecting δ to be the solution to (3.50) will suffice (3.59). Conse-
quently, (3.49) is proved.

2) The proof is essentially the same as that for part 2) of Theorem 3.1, where we can
show that

Pt,δ ≥

(
1 + 2

√
−2 ln εn

n

)
εn (3.66)

when εn = e−n
α

2
√
πnα

(
1− 1

2nα

)
and δ =

√
2σD(t;P )n−

1−α
2 − ηn−(1−α) for some constant

η.

3) Apply the trivial bound P (Bt,n,δ) ≤ 1. Then similar to the proof for part 3) of

Theorem 3.1, one can verify that by making δ = σD,−(t;P )
√

2α lnn
n
− η lnn

n
for some

properly chosen constant η,

Pt,δ ≥ ξ
D,−

(
t;P,

∂r−(t, δ)

∂δ
, n

)
e−nr−(t,δ)

≥

(
1 + 2

√
−2 ln εn

n

)
ε (3.67)

for εn = n−α

2
√
πα lnn

(
1− 1

2α lnn

)
.
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4) According to (3.59), we should select δ such that

Pt,δ ≥

(
1 + 2

√
−2 ln ε

n

)
ε. (3.68)

Now by the part (c) of Result 1.2,

δ =
σD(t;P )√

n
Q−1

(
ε+

1√
n

(
2ε
√
−2 ln ε+

CBEMD(t;P )

σ3
D(t;P )

))
(3.69)

will guarantee (3.68). Consequently, (3.53) is proved by substituting (3.69) and εn = ε
into (3.64) and applying the trivial bound P (Bt,n,δ) ≤ 1, and (3.54) is yielded by the
property of Q−1 function shown in the proof of Theorem 3.1.

Remark 3.5. Remarks similar to Remarks 3.2 and 3.3 can be drawn here too for Theorem
3.2.

Remark 3.6. When channel codes are forced to consist of codewords with the same type
t, converse bounds (3.47) and (3.48) can be improved. In particular, following the same

approach used in the proof of Theorem 3.1, the term |X | ln(n+1)
n

+
ln −2 ln εn

n
−ln

(
1+
√
−2 ln εn

n

)
n

in

(3.47) reduces to lnβn
n

, while the requirement of δ in (3.48) is relaxed to

(1 + βn) εn ≤ Pt,δ, (3.70)

where βn can be further optimized.

For maximal error probability, we have the following corollary, the proof of which follows
the same approach as that in the proof of Theorem 3.2.

Corollary 3.1. Given a DIMC, for any channel code Cn of block length n with maximum
error probability Pm(Cn) = εn,

R(Cn) ≤ I(t;P )− δ − ln εn − lnP (Bt,n,δ)

n
+ |X | ln(n+ 1)

n
−

ln
√
−2 ln εn

n

n
(3.71)

for any t ∈ Pn such that there are at least (n+ 1)−|X | portion of codewords in Cn with type
t, where δ is the largest number satisfying(

1 +

√
−2 ln εn

n

)
εn ≤ Pt,δ. (3.72)

Moreover, if t ∈ Pn satisfies (1.47) and (1.56), then the following hold:
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1)

R(Cn) ≤ I(t;P )− δ − ln εn − lnP (Bt,n,δ)

n
+ |X | ln(n+ 1)

n
−

ln
√
−2 ln εn

n

n
(3.73)

where δ is the solution to(
1 +

√
−2 ln εn

n

)
εn = ξ

D,−(t;P, λ, n)e−nr−(t,δ) (3.74)

with δ−(t, λ) = δ.

2) When εn = ε satisfying ε+ 1√
n

(
ε
√
−2 ln ε+ CBEMD(t;P )

σ3
D(t;P )

)
< 1,

R(Cn) ≤ I(t;P )− σD(t;P )√
n

Q−1

(
ε+

1√
n

(
ε
√
−2 ln ε+

CBEMD(t;P )

σ3
D(t;P )

))
+ (|X |+ 0.5)

lnn

n
− ln ε

n
(3.75)

= I(t;P )− σD(t;P )√
n

Q−1 (ε) + (|X |+ 0.5)
ln(n+ 1)

n
+O(n−1). (3.76)

3.3 Comparison with Existing Non-Asymptotic Con-

verse Bounds

In this subsection, we would like to compare our converse with non-asymptotic converse
bounds in the literature. Specifically, we focus on the best non-asymptotic converse bound
so far, “meta-converse” proved in [15, Theorem 27]. Recall the definitions of βα(q1, q2) and
βα(xn, qY n) in Section 2.4, and meta-converse is stated below as Result 3.1.

Result 3.1. Given any channel {pY n|Xn(yn|xn) : xn ∈ X n, yn ∈ Yn} and any channel
code of block length n and codewords from a set F ⊆ X n, let M and ε be the number of
codewords and error probability of this channel code. Then

M ≤ sup
pXn

inf
qY n

1

β1−ε(pXnpY n|Xn , pXnqY n)
(3.77)

where the supremum and the infimum are taken over all distributions pXn on F and all
distributions qY n on Yn respectively.
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Result 3.1 is very general (applicable to any arbitrary input arbitrary output channel
and channel codes with any input contraint), tight (involving three fold optimization in
the n-dimensional space) and neat (in terms of quantities related to hypothesis testing).
However, the evaluation of Result 3.1 is not feasible without any simplification. Towards
this, the following result was proved [15, Theorem 28].

Result 3.2. Adopt the assumption in Result 3.1. Furthermore, fix a qY n and suppose that
for any xn ∈ F , β1−ε(x

n, qY n) is a constant, denoted by β1−ε(qY n). Then

M ≤ 1

β1−ε(qY n)
. (3.78)

Compared to Result 3.1, the difficulty of evaluation is mitigated in Result 3.2 when
F and qY n satisfy certain conditions. Nevertheless, the evaluation of β1−ε(qY n) is still
challenging as the calculation of optimal randomized testing pZ|Y n in the definition of
βα(xn, qY n) is difficult in general. Fortunately, it was shown in [15, Equation (106)] that

β1−ε(x
n, qY n) ≥ sup

γ>0

1

γ

(
1− ε− Pr

{
pY n|Xn(Y n|xn)

qY n(Y n)
≥ γ

})
= sup

Γ
e−nΓ

(
Pr

{
1

n
ln
pY n|Xn(Y n|xn)

qY n(Y n)
< Γ

}
− ε
)

(3.79)

where Y n is the channel response to xn. Then for any channel code Cn with Pe(Cn) ≤ ε
and codewords from F satisfying that β1−ε(pY n|Xn=xn , qY n) remains a constant for xn ∈ F ,
combining (3.78) and (3.79) yields

R(Cn) =
1

n
lnM ≤ Γ−

ln
(

Pr
{

1
n

ln
pY n|Xn (Y n|xn)

qY n (Y n)
< Γ

}
− ε
)

n
(3.80)

for any xn ∈ F and any Γ satisfying

Pr

{
1

n
ln
pY n|Xn(Y n|xn)

qY n(Y n)
< Γ

}
> ε. (3.81)

Now for BIMSC, to make (3.80) and (3.81) applicable to any channel code, we can
select qY n(yn) =

∏n
i=1

[
1
2
p(yi|0) + 1

2
p(yi|1)

]
for any yn ∈ Yn. It is then not hard to verify

that β1−ε(x
n, qY n) remains a constant for xn ∈ X n, i.e. F = X n. Under this circumstance,

(3.80) and (3.81) are almost the same as (3.9) and (3.10) in Theorem 3.1 except that the

term
lnP (Bn,δ)

n
is missing in (3.80). As P (Bn,δ) ≤ 1, it is shown that (3.80) and (3.81) under
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this selection of qY n(yn) are looser than Theorem 3.1 in general. In particular, shown in
Section 4.3.2, P (Bn,δ) can be bounded far away from 1 for BEC.

Similarly for DIMC, to make (3.80) and (3.81) applicable to any channel code with its
codewords sharing the same type t, we can select qY n(yn) =

∏n
i=1 qt(yi) for any yn ∈ Yn.

Then β1−ε(x
n, qY n) remains a constant for xn ∈ T nt . Compared to Theorem 3.2 (improved

according to Remark 3.6), it can be shown that Theorem 3.2 is tighter than (3.80) and

(3.81) by the term
P (Bt,n,δ)

n
. For Z channel, P (Bt,n,δ) is shown to be bounded far away from

1 in Section 4.3.3.

3.4 Summary

In this chapter, towards showing the sharpness of achievabilities established via jar decod-
ing, we have developed a new converse proof technique dubbed the outer mirror image of
jar and used it to establish new non-asymptotic converses for any discrete input memory-
less channel with discrete or continuous output. Putting the achievabilities in Chapter 2
and the converses in this chapter together, it is evident that they agree on certain terms.
For instance, part 2) of Theorem 2.2 for BIMC states that under the error probability
ε = n−α

2
√
πα lnn

(1 + o(1)) requirement, the first two terms of achievable rate with respect to

n are CBIMC and −σH(X|Y )
√

2α lnn
n

. On the other hand, from part 3) of Theorem 3.1,

it can be seen that the optimal channel coding rate under any decoding rule for BIMSC

(BIMC with certain symmetric properties) is bounded by CBIMC − σH(X|Y )
√

2α lnn
n

plus

some higher order terms with respect to n whenever the probability is n−α

2
√
πα lnn

(
1− 1

2α lnn

)
.

The above discussion implies that jar decoding can achieve the optimal first and second
order performance when the error probability is not too small. To make this discussion
systematic and general, we consider second order analysis in non-asymptotic regime in
the next chapter, where a taylor expansion of the optimal achievable channel coding rate
is proposed. And combining achievabilities and converses via jar decoding, we determine
the optimal first and second order channel coding performance in terms of this taylor
expansion, and further show that jar decoding is indeed optimal up to the second order
performance. In addition, some applications of this taylor expansion are also included in
the next chapter.
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Chapter 4

Taylor Expansion of Optimal
Channel Coding Rate

Given a channel, let Rn(ε) denote the optimal achievable channel coding rate with the
block length n subject to the error probability ε. Traditional asymptotic second order
analysis of Rn(ε) [15, 18, 19, 29–31] is to investigate the first and second order of Rn(εn)
with respect to n, where the error probability εn is considered to be either a constant or
a function of n. In the non-asymptotic regime, however, treating the error probability as
a constant or a function with respect to block length n is not convenient. For example,
suppose that n = 1000 and the error probability ε is equal to 10−6. How would one
interpret the relationship between ε and n in this case? Does it make sense to interpret
ε as a constant with respect to n? Or is it better to interpret ε as a polynomial function
of n, namely, ε = n−2? In general, when both the error probability ε and block length n
are finite, what really matters is their relative magnitude to each other, which should be
characterized quantitatively.

In this chapter, we introduce a quantity δt,n(ε) to measure the relative magnitude of
the error probability ε and block length n with respect to a given channel and an input
distribution t. By combining the achievability and converses via jar decoding and the
outer mirror image of jar respectively, we show that when ε < 1/2, the best channel
coding rate Rn(ε) given n and ε has a “Taylor-type expansion” with respect to δt,n(ε) in a
neighbourhood of δt,n(ε) = 0, where the first two terms of the expansion are maxt[I(t;P )−
δt,n(ε)], which is equal to I(t∗, P )− δt∗,n(ε) for some optimal distribution t∗, and the third

order term of the expansion is O(δ2
t∗,n(ε)) whenever δt∗,n(ε) = Ω(

√
lnn/n). Since the

leading two terms in the achievability of jar decoding coincide with the first two terms of
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this Taylor-type expansion of Rn(ε), jar decoding is indeed optimal up to the second order
coding performance in the non-asymptotical regime.

Furthermore, based on the Taylor-type expansion of Rn(ε) and our new non-asymptotic
converses, we also derive two approximation formulas (dubbed “SO” and “NEP”) for Rn(ε)
in the non-asymptotic regime. The SO approximation formula consists only of the first two
terms in the Taylor-type expansion of Rn(ε). On the other hand, in addition to the first
two terms in the Taylor-type expansion of Rn(ε), the NEP approximation formula includes
some higher order terms from our non-asymptotic converses as well. These formulas are
further evaluated and compared against some of the best bounds known so far, as well as the
normal approximation of Rn(ε) in [15]. It turns out that while the normal approximation
is all over the map, i.e. sometime below achievability and sometime above converse, the
SO approximation is much more reliable as it is always below converses; in the meantime,
the NEP approximation is the best among the three and always provides an accurate
estimation for Rn(ε). An important implication arising from the Taylor-type expansion
of Rn(ε) is that in the practical non-asymptotic regime, the optimal marginal codeword
symbol distribution is not necessarily a capacity achieving distribution.

4.1 Taylor-type Expansion: BIMSC

4.1.1 Taylor-type Expansion

In this subsection, we combine the non-asymptotic achievability given in (2.16) to (2.19)
with the non-asymptotic converses given in (3.9) to (3.12) to derive a Taylor-type expansion
of Rn(ε) in the non-asymptotic regime where both n and ε are finite. As mentioned early,
when both n and ε are finite, what really matters is the relative magnitude of ε and n. As
such, we begin with introducing a quantity δn(ε) to measure the relative magnitude of ε
and n with respect to the given BIMSC.

A close look at the non-asymptotic achievability given in (2.16) to (2.19) and the non-
asymptotic converses given in (3.9) to (3.12) reveals that

Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
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is crucial in both cases. According to part (b) of Result 1.1 in Section 1.4.1,

Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
≈ e

nλ2σ2
H (X|Y,λ)

2 Q
(√

nλσH(X|Y, λ)
)
e−nrX|Y (δ)

∆
= gX|Y,n(δ) (4.1)

where λ = r′X|Y (δ). Consequently, we would like to define δn(ε) as the solution to

gX|Y,n(δ) = ε (4.2)

given n and ε ≤ 1/2, where the uniqueness of the solution in certain range is shown in
Lemma 4.1.

Lemma 4.1. There exists δ+ > 0 such that for any n > 0, gX|Y,n(δ) is a strictly decreasing
function of δ over δ ∈ [0, δ+].

Proof. Since λ = r′X|Y (δ), it follows that gX|Y,n(δ) = gX|Y,n(δ(λ)) is a function of λ through

δ = δ(λ). (For details about the properties of δ(λ) and rX|Y (δ), please see Appendix A.)
Moreover, by the fact that δ(0) = 0 and δ(λ) is a strictly increasing function of λ, the
proof of this lemma is yielded by analyzing the derivative of gX|Y,n(δ(λ)) with respect to λ
around λ = 0. Towards this,

dgX|Y,n(δ(λ))

dλ

=
d

dλ

(
e
nλ2σ2

H (X|Y,λ)

2 Q
(√

nλσH(X|Y, λ)
))

e−nrX|Y (δ(λ))

− e
nλ2σ2

H (X|Y,λ)

2 Q
(√

nλσH(X|Y, λ)
)
e−nrX|Y (δ(λ)) d

dλ

(
nrX|Y (δ(λ))

)
= e−nrX|Y (δ(λ))

{[
xe

x2

2 Q(x)− 1√
2π

]
dx

dλ
− e

x2

2 Q(x)n
drX|Y (δ)

dδ

∣∣∣∣
δ=δ(λ)

dδ(λ)

dλ

}
(4.3)

where x =
√
nλσH(X|Y, λ). On one hand,

dx

dλ
=
√
n

(
σH(X|Y, λ) + λ

dσH(X|Y, λ)

dλ

)
=
√
n

(
σH(X|Y, λ) +

λ

2σH(X|Y, λ)

dσ2
H(X|Y, λ)

dλ

)
. (4.4)
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On the other hand,

drX|Y (δ)

dδ

∣∣∣∣
δ=δ(λ)

= λ (4.5)

dδ(λ)

dλ
= σ2

H(X|Y, λ) (4.6)

which further implies

e
x2

2 Q(x)n
drX|Y (δ)

dδ

∣∣∣∣
δ=δ(λ)

dδ(λ)

dλ
= e

x2

2 Q(x)nλσ2
H(X|Y, λ)

=
√
nσH(X|Y, λ)xe

x2

2 Q(x). (4.7)

Substituting (4.4) and (4.7) into (4.3), we have

dgX|Y,n(δ(λ))

dλ

= e−nrX|Y (δ(λ))

{[
xe

x2

2 Q(x)− 1√
2π

](√
nλ

dσ2
H(X|Y,λ)

dλ

2σH(X|Y, λ)

)
−
√
nσH(X|Y, λ)√

2π

}

= e−nrX|Y (δ(λ))

√
nσH(X|Y, λ)√

2π

{[√
2πxe

x2

2 Q(x)− 1
]( λ

dσ2
H(X|Y,λ)

dλ

2σ2
H(X|Y, λ)

)
− 1

}
. (4.8)

Note that

√
2πxe

x2

2 Q(x) <
√

2πxe
x2

2
1√
2πx

e−
x2

2

= 1. (4.9)

If
dσ2
H(X|Y,λ)

dλ
≥ 0, then

[√
2πxe

x2

2 Q(x)− 1
]( λ

dσ2
H(X|Y,λ)

dλ

2σ2
H(X|Y, λ)

)
≤ 0, (4.10)
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which further implies that
dgX|Y,n(δ(λ))

dλ
< 0. In the meantime, if

dσ2
H(X|Y,λ)

dλ
< 0,

[√
2πxe

x2

2 Q(x)− 1
]( λ

dσ2
H(X|Y,λ)

dλ

2σ2
H(X|Y, λ)

)
− 1

<

[√
2πxe

x2

2
x√

2π(1 + x2)
e−

x2

2 − 1

](
λ
dσ2
H(X|Y,λ)

dλ

2σ2
H(X|Y, λ)

)
− 1

= − 1

1 + x2

(
λ
dσ2
H(X|Y,λ)

dλ

2σ2
H(X|Y, λ)

)
− 1

= −
λ
dσ2
H(X|Y,λ)

dλ

2σ2
H(X|Y, λ) (1 + nλ2σ2

H(X|Y, λ))
− 1. (4.11)

To continue, let us evaluate
dσ2
H(X|Y,λ)

dλ
. From the definition of σ2

H(X|Y, λ), it is not hard to
verify that

dσ2
H(X|Y, λ)

dλ
=
∑
x∈X

∫
p(x, y)

∂fλ(x, y)

∂λ
ln2 p(x|y)dy − 2σ2

H(X|Y, λ) (H(X) + δ(λ)) (4.12)

where
∂fλ(x, y)

∂λ
= [− ln p(x|y)− (H(X|Y ) + δ(λ))]fλ(x, y). (4.13)

Plugging (4.13) into (4.12) yields

dσ2
H(X|Y, λ)

dλ
= E

(
− ln3 p(Xλ|Yλ)

)
− 3σ2

H(X|Y, λ)(H(X|Y ) + δ)− (H(X|Y ) + δ)3

= M̂H(X|Y, λ). (4.14)

Combining (4.8), (4.10), (4.11), and (4.14) together, we have

dgX|Y,n(δ(λ))

dλ

≤ e−nrX|Y (δ(λ))

√
nσH(X|Y, λ)√

2π

(∣∣∣∣∣− λM̂H(X|Y, λ)

2σ2
H(X|Y, λ) (1 + nλ2σ2

H(X|Y, λ))

∣∣∣∣∣− 1

)
(4.15)

≤ e−nrX|Y (δ(λ))

√
nσH(X|Y, λ)√

2π

(∣∣∣∣∣−λM̂H(X|Y, λ)

2σ2
H(X|Y, λ)

∣∣∣∣∣− 1

)
. (4.16)
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In view of the continuity of σ2
H(X|Y, λ) and M̂H(X|Y, λ) as functions of λ, it is easy to see

that there is a λ+ > 0 such that for any λ ∈ [0, λ+],∣∣∣∣∣−λM̂H(X|Y, λ)

2σ2
H(X|Y, λ)

∣∣∣∣∣− 1 < 0

and hence
dgX|Y,n(δ(λ))

dλ
< 0

for any n ≥ 0. This completes the proof of Lemma 4.1 with δ+ = δ(λ+).

Remark 4.1. From (4.15), it is clear that when n is large,∣∣∣∣∣− λM̂H(X|Y, λ)

2σ2
H(X|Y, λ) (1 + nλ2σ2

H(X|Y, λ))

∣∣∣∣∣− 1 < 0

and hence
dgX|Y,n(δ(λ))

dλ
< 0

even for λ ≥ λ+. Nonetheless, as can be seen later, we are concerned only with the case
where δn(ε) is around 0. Consequently, the exact value of δ+ is not important to us.

Remark 4.2. In view of Lemma 4.1 and the definition of δn(ε) in (4.1) and (4.2), it
follows that δn(1

2
) = 0 for any n and any BIMSC. However, when ε < 1/2, δn(ε) depends

not only on n and ε, but also on the BIMSC itself through the function rX|Y (δ). Given
n and ε < 1/2, the value of δn(ε) fluctuates a lot from one BIMSC to another through
the behaviour of rX|Y (δ) around δ = 0, which depends on both the second and third order
derivatives of rX|Y (δ).

With respect to δn(ε), Rn(ε) has a nice Taylor-type expansion, as shown in Theorem
4.1.

Theorem 4.1. Given a BIMSC, for any n and ε satisfying gX|Y,n(δ+/2) ≤ ε < 1,

|Rn(ε)− (CBIMSC − δn(ε))| ≤ o (δn(ε)) (4.17)

where

o (δn(ε)) = rX|Y (δn(ε)) +
1
2

lnn+ d1

n
(4.18)
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if ε ≤ 1
3
, and ∣∣∣∣Rn(ε)−

(
CBIMSC −

σH(X|Y )√
n

Q−1(ε)

)∣∣∣∣ ≤ 1
2

lnn+ d2

n
(4.19)

otherwise, where d1 and d2 are channel parameters independent of both n and ε.

Proof. When ε > 1
3
, (4.19) can be easily proved by combining (2.22), (2.23) and (3.15).

Therefore, it suffices for us to show (4.17) and (4.18) for ε ≤ 1
3
. By (2.18), (2.19) and

definition of ξ̄H(X|Y, λ, n), for any BIMSC there exists a channel code Cn such that

Pe(Cn) ≤
(
ξ̄H(X|Y, λ, n) +

2(1− CBE)MH(X|Y, λ)√
nσ3

H(X|Y, λ)

)
e−nrX|Y (δ)

≤ gX|Y,n(δ) +
2MH(X|Y, λ)√
nσ3

H(X|Y, λ)
e−nrX|Y (δ) (4.20)

and

R(Cn) ≥ CBIMSC − δ +
ln
[

2(1−CBE)MH(X|Y,λ)√
nσ3

H(X|Y,λ)
e−nrX|Y (δ)

]
n

(4.21)

which implies that for any δ such that

gX|Y,n(δ) +
2MH(X|Y, λ)√
nσ3

H(X|Y, λ)
e−nrX|Y (δ) ≤ ε (4.22)

the following inequality holds

Rn(ε) ≥ CBIMSC − δ +
ln
[

2(1−CBE)MH(X|Y,λ)√
nσ3

H(X|Y,λ)
e−nrX|Y (δ)

]
n

(4.23)

where λ = r′X|Y (δ). Now let δ̄ = δn(ε) + η
n

for some constant η > 0, which will be specified

later, and λ̄ = r′X|Y (δ̄). By convexity of rX|Y (δ),

rX|Y (δ̄) ≥ rX|Y (δn(ε)) + λn(ε)
η

n
(4.24)
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where λn(ε) = r′X|Y (δn(ε)). Then

gX|Y,n(δ̄) +
2MH(X|Y, λ̄)√
nσ3

H(X|Y, λ̄)
e−nrX|Y (δ̄)

1)

≤
(
e
nλ̄2σ2

H (X|Y,λ̄)

2 Q
(√

nλ̄σH(X|Y, λ̄)
)

+
2MH(X|Y, λ̄)√
nσ3

H(X|Y, λ̄)

)
e−n(rX|Y (δn(ε))+λn(ε) η

n)

=

1 +

2MH(X|Y,λ̄)√
nσ3

H(X|Y,λ̄)

e
nλ̄2σ2

H
(X|Y,λ̄)

2 Q
(√

nλ̄σH(X|Y, λ̄)
)
 e

nλ̄2σ2
H (X|Y,λ̄)

2 Q
(√

nλ̄σH(X|Y, λ̄))
)

× e−nrX|Y (δn(ε))−ηλn(ε)

2)

≤

1 +
2MH(X|Y, λ̄)

√
2πλ̄

(
1 + 1

nλ̄2σ2
H(X|Y,λ̄)

)
σ2
H(X|Y, λ̄)


× e

nλ2
n(ε)σ2

H (X|Y,λn(ε))

2 Q
(√

nλn(ε)σH(X|Y, λn(ε))
)
e−nrX|Y (δn(ε))−ηλn(ε)

= gX|Y,n (δn(ε)) e−ηλn(ε)

1 +
2
√

2πMH(X|Y, λ̄)
(

1 + 1
nλ̄2σ2

H(X|Y,λ̄)

)
σ2
H(X|Y, λ̄)

λ̄


3)
= εe−ηλn(ε)

1 +
2
√

2πMH(X|Y, λ̄)
(

1 + 1
nλ̄2σ2

H(X|Y,λ̄)

)
σ2
H(X|Y, λ̄)

(
λn(ε) +

1

σ2
H(X|Y, λ̃)

η

n

)
4)

≤ ε
1 +

2
√

2πMH(X|Y,λ̄)

(
1+ 1

nλ̄2σ2
H

(X|Y,λ̄)

)
σ2
H(X|Y,λ̄)

(
λn(ε) + 1

σ2
H(X|Y,λ̃)

η
n

)
1 + ηλn(ε) + 1

2
η2λ2

n(ε)
. (4.25)

In the derivation of (4.25), the inequality 1) is due to (4.24); the inequality 2) follows

from the fact that e
x2

2 Q(x) is a strictly decreasing function of x, λσH(X|Y, λ) is strictly
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increasing with respect to λ as shown below

dλσH(X|Y, λ)

dλ
= σH(X|Y, λ) + λ

dσH(X|Y, λ)

dλ

= σH(X|Y, λ)

(
1 + λ

dσ2
H(X|Y,λ)

dλ

2σ2
H(X|Y, λ)

)

= σH(X|Y, λ)

(
1 + λ

M̂H(X|Y, λ)

2σ2
H(X|Y, λ)

)
> 0 (4.26)

for λ ∈ [0, λ+], and

e
x2

2 Q(x) ≥ x√
2π(1 + x2)

; (4.27)

the equality 3) is attributable to

λ̄ = λn(ε) +
dλ

dδ

∣∣∣∣
λ=λ̃

η

n
= λn(ε) +

1

σ2
H(X|Y, λ̃)

η

n
(4.28)

for some λ̃ ∈ [λn(ε), λ̄]; and finally, the inequality 4) follows from the inequality

ex > 1 + x+
x2

2

for any x > 0. In order to satisfy (4.22), let us now choose η such that

ηλn(ε) ≥
2
√

2πMH(X|Y, λ̄)
(

1 + 1
nλ̄2σ2

H(X|Y,λ̄)

)
σ2
H(X|Y, λ̄)

λn(ε) (4.29)

and

1

2
η2λ2

n(ε) ≥
2
√

2πMH(X|Y, λ̄)
(

1 + 1
nλ̄2σ2

H(X|Y,λ̄)

)
σ2
H(X|Y, λ̄)

1

σ2
H(X|Y, λ̃)

η

n
, (4.30)

i.e.

η =
2
√

2πMH(X|Y, λ̄)
(

1 + 1
nλ̄2σ2

H(X|Y,λ̄)

)
σ2
H(X|Y, λ̄)

max

{
1,

2

nλ2
n(ε)σ2

H(X|Y, λ̃)

}
. (4.31)
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To see η is bounded, note that MH(X|Y,λ)

σ2
H(X|Y,λ)

is always bounded for λ ∈ [0, λ+]. On the other

hand, for ε ≤ 1
3
,
√
nλn(ε)σH(X|Y, λn(ε)) > c for some constant c, as

√
nλn(ε)σH(X|Y, λn(ε))→ 0 ⇒ ε = gX|Y,n(δn(ε))→ 1

2
,

and the same argument can be applied to
√
nλn(ε)σ2

H(X|Y, λ̃). Therefore,

η ≤ 2
√

2π max
λ∈[0,λ+]

[
MH(X|Y, λ)

σ2
H(X|Y, λ)

] (
1 + c−2

)
max

{
1, 2c−2

}
. (4.32)

Then combining (4.22), (4.23), (4.24), (4.25), (4.29) and (4.30) yields

Rn(ε) ≥ CBIMSC − δ̄ +
ln
[

2(1−CBE)MH(X|Y,λ̄)√
nσ3

H(X|Y,λ̄)
e−nrX|Y (δ̄)

]
n

= CBIMSC − δ̄ − rX|Y (δ̄) +
ln
[

2(1−CBE)MH(X|Y,λ̄)

σ3
H(X|Y,λ̄)

]
− 1

2
lnn

n

1)

≥ CBIMSC − δn(ε)− rX|Y (δn(ε))− λ̄ η
n

+
ln
[

2(1−CBE)MH(X|Y,λ̄)

σ3
H(X|Y,λ̄)

]
− η − 1

2
lnn

n
≥ CBIMSC − δn(ε)− rX|Y (δn(ε))

+
−λ+η + ln

[
2(1− CBE) minλ

(
2MH(X|Y,λ)

σ3
H(X|Y,λ)

)]
− η − 1

2
lnn

n

= CBIMSC − δn(ε)− rX|Y (δn(ε))−
1
2

lnn+ d̄1

n
, (4.33)

where d̄1 is independent of both n and ε. In the derivation of (4.33), the inequality 1)
follows from the convexity of rX|Y (δ) and the fact that

rX|Y (δ̄) ≤ rX|Y (δn(ε)) + λ̄
η

n
.

We now proceed to establish an upper bound on Rn(ε). Towards this end, recall (3.9)
and (3.10) where we choose βn = λ = r′X|Y (δ). Then for any δ such that

(1 + λ) ε ≤ ξ
H

(X|Y, λ, n)e−nrX|Y (δ) (4.34)

we have

Rn(ε) ≤ CBIMSC − δ −
ln ε− lnP (Bn,δ) + lnλ

n

≤ CBIMSC − δ +
− ln ε− lnλ

n
(4.35)
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where the trivial bound P (Bn,δ) ≤ 1 is applied. Now let δ = δn(ε)− η′

n
for some constant

η′ > 0, which will be specified later, and λ = r′X|Y (δ). Then

ξ
H

(X|Y, λ, n)e−nrX|Y (δ)

1)

≥ e
nλ2σ2

H (X|Y,λ)

2 Q
(
ρ∗ +

√
nλσH(X|Y, λ)

)
e−nrX|Y (δn(ε))+λη′

= e
nλ2σ2

H (X|Y,λ)

2 Q
(√

nλσH(X|Y, λ)
) Q (ρ∗ +

√
nλσH(X|Y, λ))

Q (
√
nλσH(X|Y, λ))

e−nrX|Y (δn(ε))+λη′

2)

≥ gX|Y,n(δn(ε))
Q (ρ∗ +

√
nλσH(X|Y, λ))

Q (
√
nλσH(X|Y, λ))

eλη
′

3)

≥ (1 + λ)ε
Q (ρ∗ +

√
nλσH(X|Y, λ))

Q (
√
nλσH(X|Y, λ))

eλ(η′−1). (4.36)

In the derivation of (4.36), the inequality 1) is due to the convexity of rX|Y (δ) and the fact
that

rX|Y (δ) ≤ rX|Y (δn(ε))− λη
′

n
;

the inequality 2) follows again from the fact that e
x2

2 Q(x) is a strictly decreasing function
of x and λσH(X|Y, λ) is increasing with respect to λ; and finally the inequality 3) is
attributable to the inequality ex ≥ 1 + x for any x ≥ 0.

In order for (4.34) to be satisfied, we now choose η′ such that

η′ = 1 +
1

λ
ln

Q (
√
nλσH(X|Y, λ))

Q (ρ∗ +
√
nλσH(X|Y, λ))

= 1 +
1

λ
ln

1 + ρ∗

1√
2π
e−

(ρ̃+
√
nλσH (X|Y,λ))2

2

Q (ρ∗ +
√
nλσH(X|Y, λ))

 (4.37)

where 0 ≤ ρ̃ ≤ ρ∗. One can verify that

η′ ≤ 1 +
ρ∗
λ

1√
2π
e−

(ρ̃+
√
nλσH (X|Y,λ))2

2

Q (ρ∗ +
√
nλσH(X|Y, λ))

≤ 1 +
ρ∗
λ

1 + (ρ∗ +
√
nλσH(X|Y, λ))2

ρ∗ +
√
nλσH(X|Y, λ)

e
√
nλσH(X|Y,λ)(ρ∗−ρ̃)+

ρ2∗−ρ̃
2

2 (4.38)

where the last inequality is due to (4.27). From the definition of ρ∗, it is not hard to see
that ρ∗ = η′′√

n
for some constant η′′ depending only on channel parameters. Meanwhile, we
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have
√
nλσH(X|Y, λ) > c as discussed above. Then

η′ ≤ 1 +
η′′√
nλ

(
c−1 +

η′′√
n

+
√
nλσH(X|Y, λ)

)
eη
′′λ+ maxλ∈[0,λ+] σH(X|Y,λ)+

(η′′)2
2n

≤ 1 +
(
c−2 + c−1η′′ + 1

)
η′′
[

max
λ∈[0,λ+]

σH(X|Y, λ)

]
eη
′′λ+ maxλ∈[0,λ+] σH(X|Y,λ)+(η′′)2

(4.39)

which is independent of both n and ε. Now combining (4.36) and (4.37), we have

ξ
H

(X|Y, λ, n)e−nrX|Y (δ) ≥ (1 + λ)ε (4.40)

and consequently,

Rn(ε) ≤ CBIMSC − δ +
− ln ε− lnλ

n
1)

≤ CBIMSC − δn(ε) + rX|Y (δn(ε))

+
ln
[√

2π
√
nλn(ε)σH(X|Y, λn(ε))

(
1 + 1

nλ2
n(ε)σ2

H(X|Y,λn(ε))

)]
n

+
− lnλ+ η′

n

= CBIMSC − δn(ε) + rX|Y (δn(ε)) +
ln
(

1 + 1
nλ2

n(ε)σ2
H(X|Y,λn(ε))

)
n

+
ln
√
n+ ln

√
2πσH(X|Y, λn(ε)) + ln λn(ε)

λ
+ η′

n
2)

≤ CBIMSC − δn(ε) + rX|Y (δn(ε)) +
1
2

lnn+ d1

n
(4.41)

where d1 is another constant depending only on the channel. In the derivation of (4.41),
the inequality 1) is due to (4.27) and the definition of δn(ε) in (4.2); and the inequality 2)
follows from the fact that

λn(ε)

λ
= 1 +

1

σ2
H(X|Y, λ̂)

η′

nλ

for some λ̂ ∈ [λ, λn(ε)] and √
nλσH(X|Y, λ) > c.

Then the theorem is proved by combining (4.33) and (4.41) and making d1 = max{d̄1, d1}.
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Remark 4.3. The condition ε ≤ 1
3

for (4.17) and (4.18) can be relaxed as we only require
that

√
nδn(ε) or equivalently

√
nλ be lower bounded by a constant, which is true when

ε ≤ d for any constant d < 1
2
. In addition, when ε ≤ gX|Y,n(δ+/2), ε is an exponential

function of n, in which case the maximum achievable rate is below the channel capacity
by a positive constant even when n goes to ∞. As such, from a practical point of view,
the case ε ≤ gX|Y,n(δ+/2) is not interesting, especially when one can approach the channel
capacity very closely as shown in the achievability given in (2.16) and (2.17).

Remark 4.4. In the definition of Rn(ε), the average error probability is used. If the
maximal error probability is used instead, Theorem 4.1 remains valid (by replacing lnn

2n
with

lnn
n

in (4.18) and (4.19)), in which case the standard technique of removing bad codewords
from the code in the achievability given in (2.16) to (2.19) can be used to establish similar
achievability with maximal error probability.

Remark 4.5. In view of Theorem 4.1, it is now clear that jar decoding is indeed opti-
mal up to the second order coding performance in the non-asymptotical regime. Since the
achievability given in (2.16) to (2.19) was established for linear block codes, it follows from
Theorem 4.1 that linear block coding is also optimal up to the second order coding per-
formance in the non-asymptotical regime for any BIMSC. In addition, in the Taylor-type
expansion of Rn(ε), the third order term is O(δ2

n(ε)) or O (lnn/n) whichever is larger since
it follows from part (a) of Result 1.1 that rX|Y (δn(ε)) = O(δ2

n(ε)).

4.1.2 Comparison with Asymptotic Analysis

It is instructive to compare Theorem 4.1 with the second order asymptotic performance
analysis as n goes to ∞.

Asymptotic analysis with constant 0 < ε < 1 and n→∞: Fix 0 < ε < 1. It was shown
in [15,18,19] that for a BIMSC with a discrete output alphabet

Rn(ε) = CBIMSC −
σH(X|Y )√

n
Q−1(ε) +O

(
lnn

n

)
(4.42)

for sufficiently large n. The expression CBIMSC − σH(X|Y )√
n

Q−1(ε) was referred to as the

normal approximation for Rn(ε). Clearly, when ε > 1/3, (4.42) is essentially the same as
(4.19). Let us now look at the case ε ≤ 1/3. In this case, by using the Taylor expansion of

89



rX|Y (δ) around δ = 0

rX|Y (δ) =
1

2σ2
H(X|Y )

δ2 +
−dσ2

H(X|Y,λ)

dλ

∣∣∣
λ=0

6σ6
H(X|Y )

δ3 +O(δ4)

=
1

2σ2
H(X|Y )

δ2 +
−M̂H(X|Y )

6σ6
H(X|Y )

δ3 +O(δ4) (4.43)

it can be verified that

δn(ε) =
σH(X|Y )√

n
Q−1(ε) +O

(
1

n

)
. (4.44)

Thus the Taylor-type expansion of Rn(ε) in Theorem 4.1 implies the second order asymp-
totic analysis with constant 0 < ε < 1 and n→∞ shown in (4.42).

Asymptotic analysis with n → ∞ and non-exponentially decaying ε: Suppose now ε is
a function of n and goes to 0 as n→∞, but at a non-exponential speed. In this case, as

n→∞, δn(ε) goes to 0 at the speed of Θ
(√

− ln ε
n

)
, and

√
nλn(ε) goes to ∞. By ignoring

the third and higher order terms in the Taylor expansion of rX|Y (δ), one has the following
approximations:

gX|Y,n(δn(ε)) ≈ 1√
2π
√
nλn(ε)σH(X|Y, λn(ε))

e
−n δ2n(ε)

2σ2
H

(X|Y ) (4.45)

and

Q(x) ≈ 1√
2πx

e−
x2

2 for large x.

By these approximations, it is not hard to verify that in this case

lim
n→∞

δn(ε)
σH(X|Y )√

n
Q−1(ε)

= 1.

Therefore, from Theorem 4.1, it follows that when ε goes to 0 at a non-exponential speed
as n→∞, σH(X|Y )√

n
Q−1(ε) is still the second order term of Rn(ε) in the asymptotic analysis

with n → ∞. Indeed, this can also be verified by looking at the specific case given by
(2.20), (2.21), and (3.14) when ε goes to 0 at a polynomial speed as n → ∞. This result
is consistent with that of moderate deviation analysis in [29–31].

Divergence of δn(ε) from σH(X|Y )√
n

Q−1(ε): The agreement between δn(ε) and σH(X|Y )√
n

Q−1(ε)
terminates when the third order term

−M̂H(X|Y )

6σ6
H(X|Y )

δ3
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in the Taylor expansion of rX|Y (δ) shown in (4.43) can not be ignored. This happens when
δ is not small, which is typical in practice for finite block length n, or

ζX|Y
∆
=
−M̂H(X|Y )

6σ6
H(X|Y )

(4.46)

is large. In this case, σH(X|Y )√
n

Q−1(ε) will be smaller than δn(ε) by a relatively large margin

if ζX|Y < 0, and larger than δn(ε) by a relatively large margin if ζX|Y > 0. As such, the
normal approximation would fail to provide a reasonable estimate for Rn(ε). This will be
further confirmed by numerical results shown in Section 4.3 for well known channels such
as the BEC, BSC, and BIAGC for finite n.

4.2 Taylor-type Expansion: DIMC

4.2.1 Taylor-Type Expansion

Fix a DIMC P = {p(y|x), x ∈ X , y ∈ Y} with its capacity CDIMC > 0. In this subsection,
we extend Theorem 4.1 to establish a Taylor-type expansion of Rn(ε) in the case of DIMC.

By combining (2.43) to (2.45) with (3.47) to (3.50), it is expected that Rn(ε) would be
expanded as

Rn(ε) = I(t;P )− δ + o(δ) (4.47)

for some t ∈ P , where δ is defined according to (2.44), (3.48), or (3.50). In the rest of this
subsection, we shall demonstrate with mathematic rigor that this is indeed the case. To
simplify our argument, we impose the following conditions∗ on the channel:

(C1) For any t ∈ P , MD(t;P ) <∞.

(C2) σ2
D(t;P ) = 0 implies I(t;P ) = 0.

(C3) For any t ∈ P , λ∗−(t;P ) = +∞.

(C4) There exists λ∗ > 0 such that δ−(t, λ), σ2
D,−(t;P, λ), MD,−(t;P, λ), M̂D,−(t;P, λ),

and r−(t, δ−(t, λ)) are continuous functions of t and λ over (t, λ) ∈ P × [0, λ∗].

∗Some of these conditions, for example, Condition C3, can be relaxed. Here we choose not to do so in
order not to make our subsequent argument unnecessary complicated.
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(C5) There exists s∗ > 0 such that r−1
− (t, s) is a continuous function of t and s over

(t, s) ∈ P × [0, s∗], where r−1
− (t, ·) is an inverse function of r−(t, ·).

Since r−(t, δ) is a continuous and strictly increasing function of δ before it reaches +∞—
which may or may not happen—it can be easily verified that for any s ≥ 0

r−1
− (t, s) = max{δ : r−(t, δ) ≤ s}

= inf{δ : r−(t, δ) > s}. (4.48)

In view of the definitions and properties of δ−(t, λ), σ2
D,−(t;P, λ), MD,−(t;P, λ), M̂D,−(t;P, λ),

and r−(t, δ) in Appendix A, Conditions (C1) to (C5) are generally met by most channels,
particularly by channels with discrete output alphabets, and discrete input additive white
Gaussian channels.

To characterize δ in (4.47) analytically, we need a counterpart of Lemma 4.1. To this
end, define for any 0 < c < CDIMC

P(c)
∆
={t ∈ P : I(t;P ) ≥ c} (4.49)

Pn(c)
∆
={t ∈ Pn : I(t;P ) ≥ c} (4.50)

and for any type t ∈ P satisfying σ2
D(t;P ) > 0

gt;P,n(δ)
∆
=e

nλ2σ2
D,−(t;P,λ)

2 Q(
√
nλσD,−(t;P, λ))e−nr−(t,δ) (4.51)

where λ = ∂r−(t,δ)
∂δ

. Note that P(c) is a closed set, and it follows from Condition (C2) that
σ2
D(t;P ) > 0 for any t ∈ P(c). Interpret gt;P,n(δ) as a function of λ through δ = δ−(t, λ).

Then we have the following lemma.

Lemma 4.2. There exists λ+ > 0 such that for any n > 0 and t ∈ P(c), gt;P,n(δ−(t, λ)) is
a strictly decreasing function of λ over λ ∈ [0, λ+].

Proof. The proof is in parallel with that of Lemma 4.1. As such, we point out only places
where differences occur. In the place of (4.14), we now have

dσ2
D,−(t;P, λ)

dλ
= −M̂D,−(t;P, λ) . (4.52)
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In parallel with (4.15) and (4.16), we now have for any t ∈ P(c)

dgt;P,n(δ−(t, λ))

dλ

≤ e−nr−(t,δ−(t,λ))

√
nσD,−(t;P, λ)√

2π

∣∣∣∣∣∣− λ
dσ2
D,−(t;P,λ)

dλ

2σ2
D,−(t;P, λ)

(
1 + nλ2σ2

D,−(t;P, λ)
)
∣∣∣∣∣∣− 1


= e−nr−(t,δ−(t,λ))

√
nσD,−(t;P, λ)√

2π

(∣∣∣∣∣ λM̂D,−(t;P, λ)

2σ2
D,−(t;P, λ)

(
1 + nλ2σ2

D,−(t;P, λ)
)∣∣∣∣∣− 1

)
(4.53)

≤ e−nr−(t,δ−(t,λ))

√
nσD,−(t;P, λ)√

2π

(∣∣∣∣∣λM̂D,−(t;P, λ)

2σ2
D,−(t;P, λ)

∣∣∣∣∣− 1

)
. (4.54)

Since P(c) is closed, it then follows from Condition (C4) that there is a λ+ > 0 such that
for any λ ∈ [0, λ+] and any t ∈ P(c)∣∣∣∣∣λM̂D,−(t;P, λ)

2σ2
D,−(t;P, λ)

∣∣∣∣∣− 1 < 0

and hence
dgt;P,n(δ−(t, λ))

dλ
< 0

for any n > 0. This completes the proof of Lemma 4.2.

Remark 4.6. In view of (4.53), it is clear that when n is large, gt;P,n(δ−(t, λ)) is a strictly
decreasing function of λ over an interval even larger than [0, λ+] for each and every t ∈
P(c).

Now let
ε+n

∆
= max{gt;P,n(δ−(t, λ+/2)) : t ∈ P(c)}

which, in view of Condition (C4) and the fact that P(c) is closed, is well defined and also
an exponential function of n. For any ε+n ≤ ε ≤ 1/2 and t ∈ P(c), let δt,n(ε) be the unique
solution to

gt;P,n(δ) = ε . (4.55)

Further define

s(c)
∆
= max

{
s : 0 < s ≤ s∗, r−1

− (t, s) ≤ CDIMC − c
2

∀t ∈ P
}

(4.56)

93



and let εn(c) be the unique solution ε to

− ln ε
(

1 + 2
√
−2 ln ε
n

)
n

= s(c). (4.57)

It is easy to see that in view of Condition (C5), s(c) > 0 is well defined and once again
εn(c) is also an exponential function of n. Let εun < 1 be the unique solution ε to

ε

(
1 + 2

√
−2 ln ε

n

)
= 1. (4.58)

Note that

max{I(t;P ) : t ∈ Pn} = CDIMC −O
(

1

n2

)
.

Let N(c) be the smallest integer N > 0 such that

max{I(t;P ) : t ∈ Pn} ≥ CDIMC −
CDIMC − c

2
(4.59)

for all n ≥ N . Then we have the following Taylor-type expansion of Rn(ε).

Theorem 4.2. For any n ≥ N(c) and any max{ε+n , εn(c)} ≤ ε < εun, let

t∗
∆
= arg max

t∈Pn(c)

[I(t;P )− δt,n(ε)] (4.60)

t#
∆
= arg max

t∈Pn(c)

[
I(t;P )− σD(t;P )√

n
Q−1(ε)

]
. (4.61)

Then
|Rn(ε)− (I(t∗;P )− δt∗,n(ε))| ≤ o (δt∗,n(ε)) (4.62)

where

o (δt∗,n(ε)) = r−(t∗, δt∗,n(ε)) +
(|X |+ 1.5) ln(n+ 1) + d1

n
(4.63)

if ε ≤ 1
3
, and∣∣∣∣Rn(ε)−

(
I(t#;P )− σD(t#;P )√

n
Q−1(ε)

)∣∣∣∣ ≤ (|X |+ 1) ln(n+ 1) + d2

n
(4.64)

otherwise, where d1 and d2 are constants depending on the channel, but independent of n
and ε.
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Proof. For any t ∈ Pn and 0 < ε < 1, let

δPt,n(ε) = sup

{
δ > 0 : Pt,δ ≥

(
1 + 2

√
−2 ln ε

n

)
ε

}
.

By Theorem 3.2 and the trivial bound P (Bt,n,δ) ≤ 1, it is not hard to verify that

Rn(ε) ≤ max
t∈Pn

[I(t;P )− δPt,n]−
ln ε+ ln −2 ln ε

n

n
+

ln
(

1 +
√
−2 ln ε
n

)
+ |X | ln(n+ 1)

n
. (4.65)

Let us now examine
max
t∈Pn

[I(t;P )− δPt,n].

In view of the Chernoff bound (see Result 1.2 in Section 1.4.2),

Pt,δ ≤ e−nr−(t,δ)

for any t ∈ Pn and δ > 0, which, together with (4.48), implies

δPt,n ≤ r−1
−

t, − ln
(

1 + 2
√
−2 ln ε
n

)
ε

n

 (4.66)

≤ r−1
− (t, s(c)) (4.67)

≤ CDIMC − c
2

(4.68)

whenever max{ε+n , εn(c)} ≤ ε < εun. In the above derivation, (4.66) is due to (4.48); and
(4.67) and (4.68) follow from (4.56), (4.57), and (4.58). Therefore,

max
t∈Pn

[I(t;P )− δPt,n] ≥ max
t∈Pn

I(t;P )− CDIMC − c
2

≥ c (4.69)

where the last inequality is due to (4.59). In view of (4.69), it is not hard to see that for
any t ∈ Pn achieving maxt∈Pn [I(t;P )− δPt,n],

I(t;P ) ≥ c+ δPt,n ≥ c

and hence
max
t∈Pn

[I(t;P )− δPt,n] = max
t∈Pn(c)

[I(t;P )− δPt,n]
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which, together with (4.65), implies

Rn(ε) ≤ max
t∈Pn(c)

[I(t;P )− δPt,n]−
ln ε+ ln −2 ln ε

n

n
+

ln
(

1 +
√
−2 ln ε
n

)
+ |X | ln(n+ 1)

n
. (4.70)

When ε > 1
3
, it follows from part (c) of Result 1.2 that for any t ∈ Pn(c),

δPt,n ≥
σD(t;P )√

n
Q−1

(
ε+

1√
n

(
2ε
√
−2 ln ε+

CBEMD(t;P )

σ3
D(t;P )

))
≥ σD(t;P )√

n
Q−1(ε)−

√
2πe

[Q−1(ε)]2

2
σD(t;P )

n

(
2ε
√
−2 ln ε+

CBEMD(t;P )

σ3
D(t;P )

)
.

(4.71)

Since P(c) is closed, it follows Condition (C4) that σD(t;P ) and MD(t;P )

σ3
D(t;P )

are bounded over

P(c). Plugging (4.71) into (4.70) yields

Rn(ε) ≤ max
t∈Pn(c)

[
I(t;P )− σD(t;P )√

n
Q−1(ε)

]
+

(|X |+ 1) ln(n+ 1) + d

n

for some constant d, which, together with the achievability in (2.49) and (2.48), implies
(4.64).

Now let us focus on the case when ε ≤ 1
3
. For any t ∈ P(c), let δt,n(ε) be the unique

solution to (
1 + 2

√
−2 ln ε

n

)
ε = ξD,−(t;P, λ, n)e−nr−(t,δ) (4.72)

where λ = ∂r−(t,δ)
∂δ

. By following the argument in the proof of Theorem 4.1, it is not hard
to verify that for any t ∈ Pn(c)

δPt,n(ε) ≥ δt,n(ε) ≥ δt,n(ε)− d

n
(4.73)

for some constant d independent of n, ε, and t. Plugging (4.73) into (4.70) then yields

Rn(ε) ≤ I(t∗;P )− δt∗,n(ε)−
ln ε+ ln −2 ln ε

n

n
+

√
−2 ln ε
n

+ |X | ln(n+ 1) + d

n
. (4.74)
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In the meantime,

ε = gt∗;P,n(δt∗,n)

≥ 1
√

2π
(√

nλt∗,nσD,−(t∗;P, λt∗,n) + 1√
nλt∗,nσD,−(t∗;P,λt∗,n)

)e−nr−(t∗,δt∗,n(ε)) (4.75)

where λt∗,n = ∂r−(t∗,δ)
∂δ

∣∣∣
δ=δt∗,n(ε)

. Consequently,

− ln ε

n
≤ r−(t∗, δt∗,n(ε)) +

ln
[√

2π
(√

nλt∗,nσD,−(t∗;P, λt∗,n) + 1√
nλt∗,nσD,−(t∗;P,λt∗,n)

)]
n

≤ r−(t∗, δt∗,n(ε)) +
lnn

2n
+
η1

n
(4.76)

where η1 is a constant independent of n, ε, and t∗. Now substituting (4.76) and ε ≤ 1
3

into
(4.74) yields

Rn(ε) ≤ I(t∗;P )− δt∗,n(ε) + r−(t∗, δt∗,n(ε))

+
− ln 2 ln 3

n
+ η1 +

√
r−(t∗, δt∗,n(ε)) + 1

2e
+ η1

n
+ 1

2
lnn+ |X | ln(n+ 1) + d

n

≤ I(t∗;P )− δt∗,n(ε) + r−(t∗, δt∗,n(ε)) +
d1 +

(
|X |+ 3

2

)
ln(n+ 1)

n
(4.77)

for some constant d1 independent of n, ε, and t∗, where the last inequality is due to
the fact that in view of Condition (4), r−(t∗, δt∗,n(ε)) is bounded over t ∈ P(c) and ε ≥
max{ε+n , εn(c)}.

To complete the proof, let us go back to the achievability given in (2.44) and (2.45).
Now choose t to be t∗, and follow the argument in the proof of Theorem 4.1. Then it is
not hard to show that

Rn(ε) ≥ I(t∗;P )− δt∗,n(ε)− r−(t∗, δn(ε))− (|X |+ 1) ln(n+ 1) + d̄1

n
(4.78)

where d̄1 is a constant independent of n, ε, and t∗. Combining (4.78) with (4.77) completes
the proof of Theorem 4.2.

Remarks similar to those immediately after Theorem 4.1 also apply here. In particular,
Theorem 4.2 and the achievability of jar decoding given in (2.43) to (2.49) once again
imply that jar decoding is indeed optimal up to the second order coding performance in
the non-asymptotical regime for any DIMC. In addition, the following remarks are helpful
to the computation of the Taylor-type expansion of Rn(ε) as expressed in (4.60) to (4.64).
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Remark 4.7. When I(t;P ), δ−(t, λ), σ2
D,−(t;P, λ), MD,−(t;P, λ), and r−(t, δ−(t, λ)) are

all continuously differentiable with respect to t over t ∈ P(c) and λ ∈ [0, λ∗], which is
true for most channels including particularly channels with discrete output alphabets, and
discrete input additive white Gaussian channels, Pn(c) in the definitions of t∗ and t# can
be replaced by P(c). Thus, in this case,

t∗
∆
= arg max

t∈P(c)

[I(t;P )− δt,n(ε)] (4.79)

t#
∆
= arg max

t∈P(c)

[
I(t;P )− σD(t;P )√

n
Q−1(ε)

]
. (4.80)

Hereafter, we shall assume that the channel satisfies this continuously differentiable condi-
tion, and use (4.79) and (4.60), or (4.80) and (4.61) interchangeably.

Remark 4.8. It is worth pointing out the impact of c on the maximization problems given
in (4.79), (4.60), (4.80), and (4.61). In view of the definitions of s(c) and εn(c) in (4.56)
and (4.57), it is not hard to see that when ε is relatively large with respect to n (in the
sense that − ln ε

n
is small), one can select c to be close to CDIMC. In this case, it suffices to

search a small range P(c) for optimal t∗. On the other hand, when ε is relatively small with
respect to n, e.g., a exponential function of n, c should be selected to be far below CDIMC

and hence one has to search a large range P(c) for optimal t∗.

Remark 4.9. When the Taylor-type expansion of Rn(ε) in Theorem 4.2 is applied to the
case of BIMSC, it yields essentially the same result as in Theorem 4.1, with explanation as
follows. For any BIMSC, t(0) fully characterizes the type t. Then by symmetry, ∂δt,n(ε)

∂t(0)
= 0

at t(0) = 0.5 for any n and ε. Note that δt,n(ε) = δn(ε) when t(0) = 0.5, the capacity
achieving input distribution. Therefore,

max
t∈P(c)

[I(t;P )− δt,n(ε)] = max
t∈P(CBIMSC−O(δn(ε)))

[I(t;P )− δt,n(ε)]

= CBIMSC − δn(ε) +O
(
δ2
n(ε)

)
. (4.81)

Consequently, by observing that the high order term o(δn(ε)) in Theorem 4.1 is also in the
order of δ2

n(ε), the Taylor-type expansion of Rn(ε) for BIMSC in Theorem 4.2 is shown to
be the same as that in Theorem 4.1.

4.2.2 Comparison with Asymptotic Analysis and Implication

It is instructive to compare Theorem 4.2 with the second order asymptotic performance
analysis as n goes to ∞.
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Asymptotic analysis with constant 0 < ε < 1 and n→∞: Fix 0 < ε < 1. It was shown
in [15,18,19] that for a DIMC with a discrete output alphabet and CDIMC > 0,

Rn(ε) = CDIMC −
σD(P )√

n
Q−1(ε) +O

(
lnn

n

)
(4.82)

for sufficiently large n, where

σD(P ) =

{
min{σD(t;P ) : t ∈ P&I(t;P ) = CDIMC} if ε < 1

2

max{σD(t;P ) : t ∈ P&I(t;P ) = CDIMC} if ε > 1
2
.

Once again, the expression CDIMC− σD(P )√
n
Q−1(ε) was referred to as the normal approxima-

tion for Rn(ε) in [15]. It is not hard to verify that for sufficiently large n,

CDIMC −
σD(P )√

n
Q−1(ε) ≤ max

t∈P(c)

[
I(t;P )− σD(t;P )√

n
Q−1(ε)

]
= max

t:∃pX ,|t−pX |=O
(

1

n1/2

)
[
I(t;P )− σD(t;P )√

n
Q−1(ε)

]
= CDIMC −

σD(P )√
n

Q−1(ε) +O

(
1

n

)
(4.83)

where the first equality is due to the fact that for any pX satisfying I(pX ;P ) = CDIMC and
t satisfying |t− pX | = ω(1/n1/2),

I(t;P )− σD(t;P )√
n

Q−1(ε) ≤ CDIMC −
σD(pX ;P )√

n
Q−1(ε)

as

Q−1(ε)√
n
|σD(t;P )− σD(pX ;P )| = O

(
|t− pX |√

n

)
= o(|t− pX |2) = o(CDIMC − I(t;P )).

Therefore, when ε > 1/3, (4.82) and (4.64) are essentially the same for sufficiently large n.

Let us now look at the case ε ≤ 1/3. Again, 0 < ε ≤ 1/3 is fixed. In parallel with
(4.43) and (4.44), we have for each t ∈ P(c)

r−(t, δ) =
1

2σ2
D(t; p)

δ2 +
−M̂D(t;P )

6σ6
D(t;P )

δ3 +O(δ4) (4.84)

and

δt,n(ε) =
σD(t;P )√

n
Q−1(ε) +O

(
1

n

)
. (4.85)
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Combining (4.85) with (4.83) yields

CDIMC −
σD(P )√

n
Q−1(ε) +O(1/n) ≤ max

t∈P(c)
[I(t;P )− δt;n(ε)]

≤ CDIMC −
σD(P )√

n
Q−1(ε) +O

(
1

n

)
. (4.86)

Thus the Taylor-type expansion of Rn(ε) in Theorem 4.2 implies the second order asymp-
totic analysis with constant 0 < ε < 1 and n→∞ shown in (4.82).

Asymptotic analysis with n → ∞ and non-exponentially decaying ε: Suppose now ε is
a function of n and goes to 0 as n→∞, but at a non-exponential speed. Using arguments
similar to those made above and in Subsection 4.1.2, one can show that the Taylor-type
expansion of Rn(ε) in Theorem 4.2 implies that in this case, CDIMC and −σD(P )√

n
Q−1(ε)

are still respectively the first order and second order terms of of Rn(ε) in the asymptotic
analysis with n→∞. Once again, this result is consistent with that of moderate deviation
analysis in [29–31].

Divergence from the normal approximation: In the non-asymptotic regime where n is
finite and ε is generally relatively small with respect to n, the first two terms

max
t∈P(c)

[I(t;P )− δt,n(ε)]

in the Taylor-type expansion of Rn(ε) in Theorem 4.2 differ from the normal approximation
in a strong way. In particular, the optimal distribution t∗ defined in (4.79) is not necessarily
a capacity achieving distribution. In this case, the normal approximation would fail to
provide a reasonable estimate for Rn(ε).

Example: Consider the Z channel shown in Figure 2.6. In this example, we show that
the optimal distribution t∗ defined in (4.79) is not a capacity achieving distribution. In the
numerical calculation shown in Figure 4.1, the transition probability p (i.e. Pr{Y = 1|X =
0}) ranges from 0.05 to 0.95 with block length n = 1000 and error probability ε = 10−6. As
can be seen from Figure 4.1(a), t∗(0) is always different from the capacity achieving t(0).
Moreover, Figure 4.1(b) shows the percentage of I(t;P ) − δt,n(ε) over I(t∗;P ) − δt∗,n(ε)
when t is capacity achieving, t∗, and uniform respectively. It is clear that CDIMC− δpX ,n(ε)
is apart from I(t∗;P )− δt∗,n(ε) further and further when p gets larger and larger, where pX
is the capacity achieving distribution, indicating that under the practical block length and
error probability requirement, Shannon random coding based on the capacity achieving
distribution is not optimal. It is also interesting to note that for uniform t, I(t;P )− δt,n(ε)
is quite close to I(t∗;P )−δt∗,n(ε) within the whole range, implying that linear block coding
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for different t

Figure 4.1: Illustration for the Z channel with n = 1000 and ε = 10−6: (a) comparison of
t∗ with the capacity achieving distribution; and (b) comparison of I(t;P )− δt,n(ε) among
different distributions t.

is quit suitable for the Z channel even under the practical block length and error probability
requirement.

Implication on code design: An important implication arising from the Taylor-type
expansion of Rn(ε) in Theorem 4.2 in the non-asymptotic regime is that for values of n
and ε with practical interest, the optimal marginal codeword symbol distribution is not
necessarily a capacity achieving distribution. This is illustrated above for the Z channel.
Indeed, other than for symmetric channels like BIMSC, it would expect that the optimal
distribution t∗ defined in (4.79) is in general not a capacity achieving distribution for values
of n and ε for which δt∗,n(ε) is not relatively small. As such, to design efficient channel
codes under the practical block length and error probability requirement, one approach
is to solve the maximization problem in (4.79), get t∗, and then design codes so that the
marginal codeword symbol distribution is approximately t∗.

4.3 Approximation and Evaluation

Based on our converse theorems and Taylor-type expansion of Rn(ε), in this section, we
first derive two approximation formulas for Rn(ε). We then compare them numerically
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with the normal approximation and some tight (achievable and converse) non-asymptotic
bounds, for the BSC, BEC, BIAGC, and Z Channel. In all Figures 4.3 to 4.10, rates are
expressed in bits.

4.3.1 Approximation Formulas

In view of the Taylor-type expansion of Rn(ε) in Theorem 4.2, one reasonable approxima-
tion formula is to use the first two terms in Taylor-type expansion of Rn(ε) as an estimate
for Rn(ε). We refer to this formula as the second order (SO) formula:

RSO
n (ε) = max

t∈P(c)
[I(t;P )− δt,n(ε)]

= I(t∗;P )− δt∗;P (ε) (4.1)

where c is selected according to Remark 4.8.

To derive the other approximation formula for Rn(ε), let us put Theorem 3.2 and
Theorem 4.2 together. It would make sense for an optimal code of block length n to
draw all its codewords from the same type t with |t − t∗| = O(1/n). In this case, it

is not hard to see that the term |X | ln(n+1)
n

in the bounds of Theorems 3.2 and 4.2 (i.e.
(3.47), (3.49), (4.63), and (4.64)) can be dropped. By ignoring the higher order term
ln −2 ln εn

n
−ln

(
1+
√
−2 ln εn

n

)
n

in (3.47) and (3.49), we get the following approximation formula
(dubbed “NEP”) :

RNEP
n (ε) = I(t∗;P )− δt∗;P (ε)− ln ε

n
+

1

n
lnP (Bt∗,n,δt∗;P (ε)) (4.2)

Rewrite the normal approximation as

RNormal
n (ε) = CDIMC −

σD(P )√
n

Q−1(ε). (4.3)

4.3.2 BIMSC

In the case of BIMSC, it follows from Theorem 4.1 and Remark 4.9 that RSO
n (ε), RNEP

n (ε),
and RNormal

n (ε) become respectively

RSO
n (ε) = CBIMSC − δn(ε)
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RNEP
n (ε) = CBIMSC − δn(ε)− ln ε

n
+

1

n
lnP (Bn,δn(ε)) (4.4)

and

RNormal
n (ε) = CBIMSC −

σH(X|Y )√
n

Q−1(ε). (4.5)

From Theorem 4.1 and its comparison with asymptotic analysis, we can expect that when
δn(ε) is extremely small, RSO

n (ε) and RNormal
n (ε) are close, and both can provide a good

approximation for Rn(ε). However, as δn(ε) increases, the relative position of RSO
n (ε) and

RNormal
n (ε) depends on

ζX|Y = − M̂H(X|Y )

6σ6
H(X|Y )

.

Specifically, given a channel with large magnitude of ζX|Y , RNormal
n (ε) is not reliable, as it

can be much below achievable bounds or above converse bounds. On the other hand, as
shown later on, RSO

n (ε) is much more reliable. Moreover, RNEP
n (ε), which has some terms

beyond second order on top of RSO
n (ε), always provides a good approximation for Rn(ε)

even if δn(ε) is relatively large.

BSC

For this channel, the trivial bound P (Bn,δn(ε)) ≤ 1 is applied in the evaluation of RNEP
n (ε).

Before jumping into the comparison of those approximations, let us first get some insight
by investigating ζX|Y . It can be easily verified that for BSC with cross-over probability p,

ζX|Y = − 1

6 ln5 1−p
p

1− 2p

p3(1− p)3
. (4.6)

As can be seen, ζX|Y is always negative for any p ∈ (0, 1) and ζX|Y → −∞ as p → 0.
Therefore, in the case of a very small p, RNormal

n (ε) will be larger than RSO
n (ε) by a relatively

large margin, and even larger than the converse bound.

Now in order to compare those approximations, we invoke Theorem 33 (dubbed “RCU”)
and Theorem 35 (dubbed “Converse”) in [15], which serve as an achievable bound and a
converse bound, respectively. In addition, another converse bound is provided by the exact
calculation of (3.9) and (3.10) in Theorem 3.1 (dubbed “Exact”) with optimized value of
βn. Moreover, by Theorem 52 in [15], lnn

2n
is the third order in the asymptotic analysis

of Rn(ε) as n → ∞ for BSC, and therefore, another approximation is yielded by adding
lnn
2n

to the normal approximation (dubbed “Normal ln”). Then these four approximation
formulas (NEP, Normal ln, Normal, SO), two converse bounds (Converse, Exact), and one
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achievable bound (RCU) are compared against each other with block length n ranging
from 200 to 2000; their respective performance is shown in Figures 4.3 and 4.4.

In Figure 4.3, the target channel is the BSC with cross-over probability 0.11, where
ζX|Y is relatively small. In Figure 4.3(a), bounds are compared with fixed average error
probability Pe = 10−3, while δn(ε) changes with respect to block length n, shown in Fig-
ure 4.3(b). In the meantime, Figure 4.3(c) shows comparison of these bounds when δn(ε)
is fixed to be 0.06, while Pe = gX|Y,n(0.06) is shown in Figure 4.3(d). As can be seen, when
δn(ε) gets smaller, the SO and Normal curves tend to coincide with each other. More-
over, since the SO and Normal approximation formulas are quite close in this case, both
the NEP and Normal ln provide quite accurate approximations for Rn(ε) with the NEP
slightly better.

Figure 4.4 shows the same curves as those in Figure 4.3, but for the BSC with cross-over
probability 0.001. In this case, the magnitude of ζX|Y is large, and therefore, the SO and
Normal curves are well apart. In fact, the Normal curve is even above those two converse
bounds, and so does the Normal ln curve, thus confirming our analysis based on ζX|Y made
at the beginning of this discussion for BSC. On the other hand, the SO curve stays at the
same relative position to achievable and converse bounds, and the NEP still provides an
accurate approximation for Rn(ε).

BEC

This special channel serves as another interesting example to illustrate the difference be-
tween the SO and Normal approximations. On one hand, it can be easily verified that

P (Bn,δ) = Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
≈ gX|Y,n(δ) (4.7)

and therefore, − ln ε
n

and 1
n

lnP (Bn,δn(ε)) are cancelled out in RNEP
n (ε), which is then identical

to RSO
n (ε). On the other hand,

ζX|Y = − (1− 2p)

6p2(1− p)2 ln3 2


< 0 if p < 0.5
= 0 if p = 0.5
> 0 if p > 0.5

. (4.8)

Therefore, the Normal curve can be all over the map, i.e. it can be above some converse
when p < 0.5, and below an achievable bound when p > 0.5. When p = 0.5, the Normal
curve happens to be close to the SO curve, hereby explaining why it provides an accurate
approximation for Rn(ε) in this particular case, as shown in [15].
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To provide benchmarks for the comparison of approximation formulas, Theorem 37 and
38 in [15] are used here, dubbed “DT” and “Converse” respectively. The exact calculation
of (3.9) and (3.10) in Theorem 3.1 (dubbed “Exact”) with optimized value of βn again
serves as an additional converse bound. Then those bounds are drawn in Figures 4.5 and
4.6 in the same way as those in figure 4.3, where erasure probabilities are selected to be
0.05 and 0.9, respectively. Once again, numeric results confirm our analysis and discussion
above.

BIAGC

Here we assume that codewords are modulated to {+1,−1} before going through an AWGN
channel, and apply the trivial bound P (Bn,δn(ε)) ≤ 1 in the NEP formula. Similarly to
BSC and BEC, we would like to get some insight by investigating ζX|Y . Since in this case,
ζX|Y does not seem to have a simple close form expression which can be easily computed,
numerical calculation of ζX|Y is shown in Figure 4.2, where SNR ranges from 8dB to 10.5dB.
As can be seen, BIAGC is similar to BSC, i.e. ζX|Y is always negative and its magnitude
increases with SNR. Therefore, RNormal

n (ε) is close to RSO
n (ε) when SNR is low, but can be

above some converse bounds when SNR is high. This is confirmed in Figures 4.7 and 4.8,
where exact evaluation of (3.11) and (3.12) in Theorem 3.1 (dubbed “Exact”) serves as a
converse bound.

7.5 8.0 8.5 9.0 9.5 10.0 10.5
SNR

100000

80000

60000

40000

20000

0

ζ X
|Y

ζX|Y vs. SNR

Figure 4.2: ζX|Y of BIAGC
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4.3.3 DIMC: Z Channel

To show an example of DIMC which is not a BIMSC, we consider again the Z channel
shown in Figure 2.6. The capacity of Z channel is well known and given by

CZ = ln
(

1 + (1− p)p
p

1−p

)
(4.9)

with the capacity-achieving distribution

pX(x) =


1

1−p+p−
p

1−p
for x = 0

p
− p

1−p−p
1−p+p−

p
1−p

for x = 1

(4.10)

and the corresponding output distribution

pY (y) =


1−p

1−p+p−
p

1−p
for y = 0

p
− p

1−p

1−p+p−
p

1−p
for y = 1 .

(4.11)

To calculate RNEP
n (ε), P (Bt,n,δ) needs to be further investigated, where an interesting

observation is that given xn with type t, 1
n

ln p(yn|xn)
qt(yn)

> −∞ if and only if yi = 1 when xi = 1,

and the value of 1
n

ln p(yn|xn)
qt(yn)

only depends on the number of yi being 1 for i ∈ {j : xj = 0}.
One can then verify that

Bt,n,δ =

{
yn :

1

n
|{i : yi = 0}| ≤ qt(0)− δ

ln 1−t(0)+pt(0)
pt(0)

}
. (4.12)

When qt(0) 6= 0.5,

P (Bt,n,δ) =


Pr

{
− 1
n

ln qt(Y
n
t ) ≤ H(Yt)− δ

ln
1−t(0)+pt(0)

pt(0)

ln 1−qt(0)
qt(0)

}
if qt(0) < 0.5

Pr

{
− 1
n

ln qt(Y
n
t ) ≥ H(Yt)− δ

ln
1−t(0)+pt(0)

pt(0)

ln 1−qt(0)
qt(0)

}
if qt(0) > 0.5

(4.13)

where Yt is a random variable with distribution qt. Consequently, we can apply the left
NEP [28], chernoff bound, right NEP [28] with respect to entropy to upper bound P (Bt,n,δ)
when qt(0) <,=, > 0.5, respectively.
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To provide benchmarks for the comparison of approximation formulas, exact evaluation
of modified (3.47) (with |X | ln(n+1)

n
dropped and t = t∗) and (3.48) according to Remark

3.6 is provided, which, dubbed “Exact”, serves as a converse bound, and the improved jar
decoding achievability in (2.97) provides an achievable bound, dubbed “Jar”. Figures 4.9
and 4.10 again show that the Normal curve is all over the map while the NEP curve
always lies in between the Jar achievable curve and the Exact converse curve. It is also
worth pointing out that if the capacity achieving distribution t = pX instead of t∗ was
chosen in the calculation of the Exact and Jar bounds, then both of them would be lower,
confirming our early discussion that in the practical, non-asymptotic regime, the optimal
marginal codeword symbol distribution is not necessarily a capacity achieving distribution.

(a) Bounds with Pe = 10−3 (b) δn(ε) with Pe = 10−3

(c) Bounds with Pe = gX|Y,n(δ) and δ = 0.06 (d) log10 Pe with Pe = gX|Y,n(δ) and δ = 0.06

Figure 4.3: Comparison of different bounds for BSC with p = 0.11.
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(a) Bounds with Pe = 10−6 (b) δn(ε) with Pe = 10−6

(c) Bounds with Pe = gX|Y,n(δ) and δ = 0.04 (d) log10 Pe with Pe = gX|Y,n(δ) and δ = 0.04

Figure 4.4: Comparison of different bounds for BSC with p = 0.001.
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(a) Bounds with Pe = 10−6 (b) δn(ε) with Pe = 10−6

(c) Bounds with Pe = gX|Y,n(δ) and δ = 0.0199(d) log10 Pe with Pe = gX|Y,n(δ) and δ =
0.0199

Figure 4.5: Comparison of different bounds for BEC with p = 0.05.
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(a) Bounds with Pe = 10−6 (b) δn(ε) with Pe = 10−6

(c) Bounds with Pe = gX|Y,n(δ) and δ = 0.022 (d) log10 Pe with Pe = gX|Y,n(δ) and δ = 0.022

Figure 4.6: Comparison of different bounds for BEC with p = 0.9.
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(a) Bounds with Pe = 10−3 (b) δn(ε) with Pe = 10−3

(c) Bounds with Pe = gX|Y,n(δ) and δ = 0.0265(d) log10 Pe with Pe = gX|Y,n(δ) and δ = 0.0265

Figure 4.7: Comparison of different bounds for BIAGC with SNR = −3.52 dB.
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(a) Bounds with Pe = 10−9 (b) δn(ε) with Pe = 10−9

(c) Bounds with Pe = gX|Y,n(δ) and δ = 0.0175(d) log10 Pe with Pe = gX|Y,n(δ) and δ = 0.0175

Figure 4.8: Comparison of different bounds for BIAGC with SNR = 9.63 dB.
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Jar

(a) Bounds with Pe = 10−9 (b) δt∗,n(ε) with Pe = 10−9

Jar

(c) Bounds with Pe = gt∗;P,n(δ) and δ = 0.05 (d) log10 Pe with Pe = gt∗;P,n(δ) and δ = 0.05

Figure 4.9: Comparison of different bounds for Z Channel with p = 0.001.
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Jar

(a) Bounds with Pe = 10−6 (b) δt∗,n(ε) with Pe = 10−6

Jar

(c) Bounds with Pe = gt∗;P,n(δ) and δ = 0.02 (d) log10 Pe with Pe = gt∗;P,n(δ) and δ = 0.02

Figure 4.10: Comparison of different bounds for Z Channel with p = 0.9.
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4.4 Application of Taylor Expansion on Adaptive Mod-

ulation and Coding

As shown in Section 4.3, Taylor expansion of Rn(ε) provides a very good approximation
of Rn(ε). This section is then devoted to illustrating one application of the Taylor ex-
pansion to practical systems due to this property. Towards this, we consider a coding
technique called adaptive modulation and coding (AMC) . Particularly, we propose to use
the Taylor expansion to guide the selection of constellations and coding rates in AMC, and
the simulation on a practical communication system adopting the AMC technique, Long
Term Evoluation (LTE), confirms that the guidance provided by the Taylor expansion can
improve the system performance.

4.4.1 Motivation and Problem Formulation

AMC [32] is widely adopted in wireless communication systems, where the physical channel
condition can fluctuate from time to time. In such systems, multiple constellations are
available, channel codes can operate at different coding rates, and the transmitter has the
flexibility to select a constellation and a channel coding rate to match the channel condition
or simply single-to-noise ratio (snr) when the channel model is AWGN. Consequently, an
important issue to be addressed in those systems is how to determine which constellation
and channel coding rate should be used given the channel snr.

Specifically, consider the AMC system depicted in Figure 4.11. We assume that ik and
cm are binary vectors, xn has unit power, i.e.

1

n

n∑
i=1

|xi|2 = 1, (4.14)

the system has a constant power E, the channel gain h fluctuates, but does not change
during the period of transmitting xn (block fading), and zn is an independent and iden-
tically distributed (i.i.d) Gaussian noise (real or complex) vector with variance σ2/2 per
dimension. The channel snr is then calculated as

γ =
h2E

σ2
(4.15)

when both xn and zn are complex, and as

γ =
2h2E

σ2
(4.16)
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Figure 4.11: Adaptive Modulation and Coding System

when both xn and zn are real. Furthermore, the channel estimate is assumed to be perfect,
i.e. γ̂ = γ. To avoid possible confusion, let r = k

m
ln 2 denote the channel coding rate (also

called Effective Coding Rate (ECR)) and R = k
n

ln 2 denote the spectral efficiency (also
called Modulation Order Product Coding Rate (MPR)). It is easy to see that

R = r log2M (4.17)

where M is the size of the constellation. And the job of AMC control is to select the
constellation and r based on γ to maximize R under certain requirement of error probability
ε = Pr{̂ik 6= ik}, or simply the throughput

th = (1− ε)R. (4.18)

In this section, we mainly focus on how to design the selecting rules used by AMC control
on constellations and ECRs based on the channel snr to maximize the throughput of AMC
system, given available constellations and channel codes.

For any practical system, such selecting rules can be determined through simulation [33].
However, due to the continuous snr and enormous combinations of constellations and ECRs
available in practical systems, this design approach is very tedious. Moreover, the selecting
rule designed in this way is sensitive to the actual implementation of the system and
simulation setup. Therefore, some theoretical guidance is needed. Some light on this issue
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may be shed by analysis based on channel capacity. However, as channel capacity analysis
always assumes that the block length of modulation and coding scheme approaches infinite
and the block error probability approaches 0, it fails to consider various factors of practical
systems, such as the finite block length and the trade-off between the spectral efficiency
and the block error probability to achieve the optimal throughput. This motivates us to
use the taylor expansion of the optimal channel coding rate to design constellations and
rate selection in AMC systems.

4.4.2 Taylor Expansion of Optimal Spectral Efficiency of Modu-
lation and Coding over AWGN Channel

Consider any discrete input continuous output channel P = {p(y|x), x ∈ X , y ∈ Y} with
channel input alphabet X and channel output alphabet Y . (In the setting of AMC, X
would be the selected constellation.) A channel code with alphabet X is said to have
a type t if all of its codewords share the same type t. Now let Rt,n(ε) denote the best
coding rate that can be achieved by any channel code of finite block length n, block error
probability ε and type t. Then it has been shown that†

Rt,n(ε) ≈ I(t;P )− δt;P,n(ε), (4.19)

The interpretations of I(t;P ) and δt;P,n(ε) are provided as follows:

• I(t;P ) is the mutual information between a random variable on X with the distribu-
tion t and its corresponding channel output, and is the best coding rate that can be
possibly approached by any channel code of type t when n→ +∞ and ε→ 0; and

• δt;P,n(ε) is the rate penalty resulting from using finite block length n while maintaining
the block error probability ε.

Now we would like to apply (4.19) to the modulation and coding scheme in Figure 4.11.
As mentioned before, in this case, X is the constellation in use. Let t be the type shared
by all the possible constellation mapping output xn. According to (4.14), t and X satisfy∑

x∈X

t(x)|x|2 = 1. (4.20)

†δt;P,n(ε) was previously defined as δt,n(ε). Here we insert the subscript P in δt,n(ε) to emphasize the
dependency of δt;P,n(ε) on P .
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Then the channel can be modelled as

Y = h
√
EX + Z (4.21)

where X is a random variable on X with the distribution t and Z is the Gaussian noise
with variance σ2/2 per dimension. It is not hard to verify that the transition probability
p(y|x) is determined by snr γ. As such, let PX ,γ denote the channel with input alphabet
X , output alphabet C (which is the complex plane when X is two dimensional as in the
case of QPSK, 16QAM and 64QAM), and the transition probability determined by (4.21)
with snr γ. By applying (4.19), the best spectral efficiency that can be achieved by any
modulation and coding scheme of block length n, block error probability ε, type t and
constellation X (satisfying (4.20)) over AWGN channel with snr γ, denoted by RX ,t,n(γ, ε),
is approximated by

RX ,t,n(γ, ε) ≈ I (t;PX ,γ)− δt;PX ,γ ,n(ε) (4.22)

and the best achievable throughput thX ,t,n(γ) is then approximated by

thX ,t,n(γ) ≈ max
ε

(1− ε)RX ,t,n(ε, γ). (4.23)

Also denote the optimal ε and the correspondingRX ,t,n(ε, γ) achieving the maximal through-
put in (4.23) by εthX ,t,n(γ) and Rth

X ,t,n(γ) respectively.

4.4.3 Constellation and Rate Selection based on Taylor Expan-
sion

Based on taylor expansion, particularly (4.23) in the previous subsection, we now discuss
how to design selecting rules on constellations and ECRs in an AMC system.

Suppose that X1,X2, . . . ,Xm are the available constellations, and for each Xi, the type
of output sequences of constellation mapping is fixed to be ti. (In a practical AMC system,
ti is often the uniform distribution over Xi.) Whenever there is no ambiguity, the subscript
i in ti will be dropped in our subsequent discussion. Based on (4.23), a selecting rule can
be designed in theory as follows:

S1 For any snr γ, calculate thXi,t,n(γ) for 1 ≤ i ≤ m and determine

i∗ = arg max
1≤i≤m

thXi,t,n(γ). (4.24)
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S2 Select Xi∗ as the desired constellation, and calculate the desired ECR according to

r =
Rth
Xi∗ ,t,n(γ)

log2 |Xi∗ |
. (4.25)

When applied to a practical AMC system, however, the above selecting rule has to
be modified slightly. Since thXi,t,n(γ) is the maximal achievable throughput with the con-
stellation Xi, where optimal encoding and optimal demodulation/decoding are assumed, a
practical system normally needs to sacrifice a certain amount of snr in order to achieve the
throughput thXi,t,n(γ) with the constellation Xi. In other words, at the snr γ, the through-
put that a practical system can achieve with the constellation Xi is likely thXi,t,n(γ−∆γi),
where ∆γi is the corresponding snr penalty. In general, larger the constellation Xi is,
more difficult it is to achieve thXi,t,n(γ), and hence larger the snr penalty ∆γi. The exact
value of ∆γi of course depends on the implementation of channel encoding, demodulation,
and decoding in the practical AMC system, and can be easily determined by simulation.
Replacing thXi,t,n(γ) by thXi,t,n(γ − ∆γi) in (4.24) and (4.25), we then get the following
modified selecting rule:

S1 Determine, for each constellation Xi, the the snr penalty ∆γi.

S2 Calculate thXi,t,n(γ −∆γi) for 1 ≤ i ≤ m and determine

i∗ = arg max
1≤i≤m

thXi,t,n(γ −∆γi). (4.26)

S3 Select Xi∗ as the desired constellation, and calculate the desired ECR according to

r =
Rth
Xi∗ ,t,n(γ −∆γi)

log2 |Xi∗ |
. (4.27)

4.4.4 Application to the LTE System

Towards confirming that the selecting rule designed in Section 4.4.3 works in practice,
let us consider the LTE system. More specifically, we consider Physical Downlink Shared
CHannel (PDSCH) with Single-Input and Single-Output (SISO) mode [34], in which the
AMC system [35] [36] can be represented by the diagram in Figure 4.12. As can be seen in
Figure 4.12, the channel coding output is scrambled by a pseudo-random sequence before
constellation mapping, and therefore the scrambled channel codeword will have the uniform
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Figure 4.12: Adaptive Modulation and Coding in the LTE system

type, as well as the output sequence of constellation mapping, which implies that uniform
t should be used in the taylor expansion. Another major change compared to Figure
4.11 is that AMC control is broken into two parts, i.e. Constellation and ECR Selection
and Channel Quality Evaluation, at the transmitter and receiver side respectively. In this
diagram, the receiver generates Channel Quality Index (CQI) based on the channel snr and
sends it to the transmitter, while the transmitter selects constellations and ECRs according
to CQI and Table 4.1, where the available constellations are QPSK, 16QAM and 64QAM,
denoted by X1, X2 and X3 respectively, and the channel code is a turbo code whose rate
can be adjusted by rate matching. Particularly, the receiver is required to generate the
highest CQI index that results in the block error probability ≤ 10−1. This change is due to
the fact that there may be different implementation of receivers (User Equipment), and the
transmitter (Base Station) should be able to work with any implementation of receivers.
As the different implementation of receivers will influence the selection of constellations
and ECRs in the AMC system, more control on the selection is assigned to the receiver
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CQI Index Modulation ECR MPR
1 QPSK 78/1024 0.1523
2 QPSK 120/1024 0.2344
3 QPSK 193/1024 0.3770
4 QPSK 308/1024 0.6016
5 QPSK 449/1024 0.8770
6 QPSK 602/1024 1.1758
7 16QAM 378/1024 1.4766
8 16QAM 490/1024 1.9141
9 16QAM 616/1024 2.4063
10 64QAM 466/1024 2.7305
11 64QAM 567/1024 3.3223
12 64QAM 666/1024 3.9023
13 64QAM 772/1024 4.5234
14 64QAM 873/1024 5.1152
15 64QAM 948/1024 5.5547

Table 4.1: CQI Table

Parameter Assumption
Channel Type PDSCH

Transmission Mode 1
Channel Model AWGN

Bandwidth 1.4MHz
Number of User Equipments (UE) 1
Number of receive antennas at UE 1

Cyclic Prefix (CP) Normal
Channel Estimation Perfect

Table 4.2: Specification of System Parameters

side. The selecting rule proposed in the previous section also works in this modified AMC
system, where different receiver implementation will result in different set of snr shifting
{∆γi}3

i=1. In this section, we focus on the implementation of LTE system in [37].

Specifications of system parameters are listed in Table 4.2 for easy references, which
apply to all simulations throughout this subsection. Moreover, by inspection on frequency-
time resources of the LTE system (for single antenna port), it is not hard to verify that
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under the specification in Table 4.2 the block length (of modulation symbols) for data
transmission in each subframe is 960.‡

Now to apply the modified selecting rule in Section 4.4.3 to LTE system, we would
like to determine {∆γi}3

i=1 under this implementation of the system. Therefore, shown in
Figure 4.13, {thXi,t,n(γ)}3

i=1 is compared with the throughput of the LTE system using the
modulation constellations and ECRs in Table 4.1. The simulation on the LTE system takes
5000 subframes, where snr ranges from -10dB to 22.5dB. From Figure 4.13, ∆γ1, ∆γ2 and
∆γ3 are estimated to be 1.3dB, 1.9dB and 2.4dB respectively. Strictly speaking, {∆γi}3

i=1

also depends on snr γ. However, this dependency is not significant, and therefore ignored
here for simplicity of the selecting rule.

Then {thXi,t,n(γ − ∆γi)}3
i=1 and the throughput of LTE system using the modulation

constellations and ECRs in Table 4.1 are plotted in Figure 4.14, and careful inspection of
this figure suggests that the throughput of LTE system can be improved by using some
new combination of constellations and ECRs, which are not included in Table 4.1.

In particular, let us focus on the snr region [4, 5]dB, where Figure 4.15 is yielded by
zooming in Figure 4.14. At snr 4.6dB, simulation shows that CQI 06 is the highest CQI
index such that the resulting block error probability ≤ 10−1, as the block error probability
of CQI 07 is 0.1224. Therefore, according to the CQI reporting policy, CQI 06 should be
selected even though the throughput of CQI 07 is higher. On the other hand, thX1,t,n(γ −
∆γ1) and thX2,t,n(γ − ∆γ2) reveal that the throughput can be improved by using QPSK
and a proper ECR. Now applying the modified selecting rule in Section 4.4.3 for γ = 4.6dB
yields QPSK and ECR 720

1024
, where rounding ensures ECR×1024 to be an integer. And

simulation of LTE system with QPSK and ECR 720
1024

shown in Figure 4.16 confirms that this
new combination of constellation and ECR provides 20% and 8% gain on the throughput
of LTE system at snr 4.6dB over CQI 06 and 07 respectively. It is also worth mentioning
here that the block error probability of this new combination at snr 4.6dB is 0.0018, which
satisfies the requirement of 0.1 in the LTE system.

Similarly, snr region [11, 13]dB is considered in Figure 4.17, which shows that at snr
12dB CQI 10 should be selected according to the CQI reporting policy. On the other
hand, applying the modified selecting rule at snr 12dB yields 16QAM and ECR 789

1024
, and

simulation of LTE system with this combination in Figure 4.18 shows that the throughput
is improved by 13% at snr 12dB.

‡Resource elements (RE) used by reference signals are excluded when calculating the block length.
However, for simplicity of the discussion, we do not take into account the synchronization which only
happens every 5 subframes.
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Figure 4.13: {thXi,t,n(γ)}3
i=1 vs. the Throughput of LTE System
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Figure 4.14: {thXi,t,n(γ −∆γi)}3
i=1 vs. the Throughput of LTE System
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Figure 4.15: SNR Region 4-5dB
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4.5 Summary

Combining non-asymptotic converses in Chapter 3 with the non-asymptotic achievability
proved in Chapter 2 via jar decoding and with the NEP technique developed in Appendix
A, we have characterized the best coding rate Rn(ε) achievable with finite block length
n and error probability ε through introducing a quantity δt,n(ε) to measure the relative
magnitude of the error probability ε and block length n with respect to a given channel P
and an input distribution t. We have showed that in the non-asymptotic regime where both
n and ε are finite, Rn(ε) has a Taylor-type expansion with respect to δt,n(ε), where the first
two terms of the expansion are maxt[I(t;P )− δt,n(ε)], which is equal to I(t∗, P )− δt∗,n(ε)
for some optimal distribution t∗, and the third order term of the expansion is O(δ2

t∗,n(ε)) or
O (lnn/n) whichever is larger. As a consequence of those results in this chapter, we show
that jar decoding achieves the first and second order term in the taylor expansion of the
best coding rate.

Moreover, based on the new non-asymptotic converses and the Taylor-type expansion
of Rn(ε), we have also derived two approximation formulas (dubbed “SO” and “NEP”)
for Rn(ε). These formulas have been further evaluated and compared against some of
the best bounds known so far, as well as the normal approximation revisited recently in
the literature. It turns out that while the normal approximation is all over the map, i.e.
sometime below achievability and sometime above converse, the SO approximation is much
more reliable and stays at the same relative position to achievable and converse bounds;
in the meantime, the NEP approximation is the best among the three and always provides
an accurate estimation for Rn(ε).

It is expected that in the non-asymptotic regime where both n and ε are finite, the
taylor expansion of Rn(ε) and the NEP approximation formula would play a role similar
to that of channel capacity [38] in the asymptotic regime as n → ∞. As an example
of applications of the taylor expansion, we consider adaptive modulation and coding on
AWGN channel, and propose a new selection rule of constellation and coding rate based
on the taylor expansion. This new selection rule, when applied to LTE system, suggests
some new combination of constellation and coding rate, which can further improve the
throughput of the system.

Another possible application of the taylor expansion is to consider the optimal distri-
bution t∗. For values of n and ε with practical interest for which δt∗,n(ε) is not relatively
small, the optimal distribution t∗ achieving maxt[I(t;P ) − δt,n(ε)] is in general not a ca-
pacity achieving distribution except for symmetric channels such as BIMSC. As a result,
an important implication arising from the Taylor-type expansion of Rn(ε) is that in the
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practical non-asymptotic regime, the optimal marginal codeword symbol distribution is not
necessarily a capacity achieving distribution. Therefore, it will be interesting to examine
all practical channel codes proposed so far against the Taylor-type expansion of Rn(ε) and
the NEP approximation formula and to see how far their performance is away from that
predicted by the Taylor-type expansion of Rn(ε) and the NEP approximation formula. If
the performance gap is significant, one way to design a better channel code with practi-
cal block length and error probability requirement is to solve the maximization problem
maxt[I(t;P )−δt,n(ε)], get t∗, and then design a code so that its marginal codeword symbol
distribution is approximately t∗.

To sum up Chapters 2, 3 and 4, we have demonstrated that the NEP, jar decoding,
and the outer mirror image of jar together form a set of essential techniques needed for
non-asymptotic information theory. And we believe that they can also be extended and
applied to help develop non-asymptotic multi-user information theory as well.
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Chapter 5

LDPC Coding Theorems

In this chapter, the performance of LDPC codes under jar decoding for BSC and BIMC
is analyzed, and certain interesting results are reported (including capacity-approaching
LDPC codes and optimality of check node concentration degree distribution). Moreover,
simulation results on LDPC codes under BP decoding is also included at the end of this
chapter, showing the connection between BP decoding and jar decoding, i.e. BP decoding
can be regarded as one of many ways to pick up a codeword from a jar.

5.1 Terminology, LDPC Ensemble and Key Lemma

To facilitate the following discussion, let us first introduce some terminology of LDPC
codes. The tanner graph [39] of a linear code is a bipartite graph consisting of two sets of
nodes {vi}ni=1 and {cj}mj=1, namely, variable and check nodes, where for any i and j such
that 1 ≤ i ≤ n and 1 ≤ j ≤ m, vi and cj, representing the i-th column and j-th row of
Hm×n respectively, are connected if and only if the element hji of Hm×n located at i-th
column and j-th row is equal to 1. Recall that the degree of a node in a graph is the number
of edges connected to it. Now let {li : 1 ≤ i ≤ L} ({rj : 1 ≤ j ≤ R}, respectively) be the
set of degrees of all variable nodes (check nodes, respectively) in the tanner graph of Hm×n.
Furthermore, let Λi (Pj, respectively) denote the number of variable nodes (check nodes,
respectively) with degree li (rj, respectively) in the tanner graph of Hm×n. Then we call
({Λi}, {li}) (({Pj}, {rj}), respectively) the variable (check, respectively) degree distribution
from a node perspective of Hm×n (and its tanner graph) [5]. Define polynomials Λ(z) and
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P (z) as

Λ(z) =
L∑
i=1

Λiz
li

and

P (z) =
R∑
j=1

Pjz
rj .

The tanner graph is said to be sparse and accordingly its corresponding code is said to be
a low-density parity-check code if Λ′(1) is in the order of O(n), where Λ′(1) =

∑L
i=1 Λili is

the total number of edges in the tanner graph. Normalizing {Λi} and {Pj} by the total
numbers of variable nodes and check nodes respectively, we get normalized variable and
check degree distributions L(z) and R(z):

L(z) =
L∑
i=1

Liz
li =

Λ(z)

Λ(1)

and

R(z) =
R∑
j=1

Rjz
rj =

P (z)

P (1)

where Li and Rj represent the percentages of variable and check nodes with degrees li and
rj respectively.

Given m, n, and (normalized) variable and check degree distributions L(z) and R(z)
satisfying nL′(1) = mR′(1), let

l̄
∆
=L′(1), r̄

∆
=R′(1),

l̄

r̄
=
m

n
, (5.1)

and Hm,n,L(z),R(z) denote the collection of all m× n parity check matrices with normalized
variable and check degree distributions L(z) and R(z). Without loss of generality, we only
consider those matrices such that the degrees of rows and columns do not decrease with
their indices. (In other words, i > j implies the degree of the i-th row (or column) is
not less than that of the j-th row (or column).) Then an LDPC code of designed rate
(1 −m/n) ln 2 (in nats) is said to be randomly generated from the ensemble Cm,n,L(z),R(z)

with degree distributions L(z) and R(z) if its parity check matrix Hm×n is uniformly
picked from Hm,n,L(z),R(z). Denote the designed rate (1 − m/n) ln 2 as R(Cm,n,L(z),R(z)).
The encoding procedure of Cm,n,L(z),R(z) is assumed to be systematic so that the original
information bits are visible in each codeword.
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To establish our LDPC coding theorems, the following probability

Pr {Hm×nx
n = 0m}

is investigated first, which depends on the support set of xn, i.e., the positions of non-zero
elements in xn. Let κ(xn) represent the support set of xn, and we write κ(xn) simply as
κ whenever xn is generic or can be determined from context. Let Hκ

m×|κ| be the matrix
consisting of those columns of Hm×n with indices in κ. The degree polynomial of κ,
denoted by Lκ(z), is defined by

Lκ(z)
∆
=

L∑
i=1

Lκ
i z

li

where Lκ
i n is the number of columns with degree li within Hκ

m×|κ|. And define

l̄κ
∆
=

L∑
i=1

Lκ
i li.

Then the following lemma is provided first and proved in Appendix B.2.

Lemma 5.1. Let L(z) and R(z) be normalized variable and check node degree distributions

from a node perspective with minimum variable node degree l1 ≥ 1. Let g(τ, k)
∆
=(1 + τ)k +

(1 − τ)k for any τ and k. Suppose Hm×n (m ≤ n) is uniformly picked from ensemble
Hm,n,L(z),R(z). Then for any xn 6= 0 with its support set κ,

Pr {Hm×nx
n = 0m} ≤ exp

{
nP
(
l̄, R(z), l̄κ

)
+

ln(nl̂κ)

2

R∑
i=1

ri +
1

2
lnnl̄κ

(
1− l̄κ

l̄

)
+O(1)

}
where

l̂κ =
min

{
l̄κ, l̄ − l̄κ

}
2

+
1

n

and for any l̄, ξ ∈ (0, l̄] and R(z), P
(
l̄, R(z), ξ

)
is defined as

P
(
l̄, R(z), ξ

) ∆
= − l̄H

(
ξ/l̄
)
− ξ ln τ +

l̄

r̄

R∑
i=1

Ri ln
g(τ, ri)

2
(5.2)

in which τ is the solution to

l̄

r̄

R∑
i=1

Riri
g(τ, ri − 1)

g(τ, ri)
= l̄ − ξ (5.3)
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for ξ ∈
[
0, l̄ − l̄

r̄

∑R
j=1Rjπ(rj)

]
, and

P
(
l̄, R(z), ξ

) ∆
=−∞ (5.4)

for ξ ∈
(
l̄ − l̄

r̄

∑R
j=1 Rjπ(rj), l̄

]
with the convention that e−∞ = 0, and where for any integer

r

π(r) =

{
0 if r is even
1 otherwise.

Remark 5.1. When ξ = l̄ − l̄
r̄

∑R
j=1Rjπ(rj), the solution τ to (5.3) is τ = +∞. In this

case, the expression in (5.2) should be understood as its limit as τ → +∞, i.e.,

P
(
l̄, R(z), ξ

)
∆
= −l̄H

(
ξ/l̄
)

+ lim
τ→+∞

[
−ξ ln τ+

l̄

r̄

R∑
i=1

Ri ln
g(τ, ri)

2

]

= −l̄H
(
ξ/l̄
)

+
l̄

r̄

R∑
i=1

Rjπ(ri) ln ri (5.5)

when ξ = l̄ − l̄
r̄

∑R
j=1Rjπ(rj).

A number of Lemmas about the properties of P (l̄, R(z), ξ) are provided in Appendix
B.2.1. In particular, applying Lemmas B.8 and B.9 yields

Pr {Hm×nz
n = 0m}

≤ exp

{
n

(
P
(
l̄, R(z), l1ε

)
+

(
1

2n
ln
nl̄

2

) R∑
i=1

ri +
1

2n
ln
nl̄

4
+O

(
1

n

))}
= e−nΓ

(ε)
m,n,L(z),R(z)

−2 lnn+O(1) (5.6)

whenever

ε ≤ 1

n
wt(zn) ≤ 1− ε

where

Γ
(ε)
m,n,L(z),R(z)

∆
=− P

(
l̄, R(z), l1ε

)
−
(

1

2n
ln
nl̄

2

) R∑
i=1

ri −
1

2n
ln
nl̄

4
− 2 lnn

n
. (5.7)
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5.2 LDPC Coding Theorem for BSC

We first establish our LDPC coding result for BSC. By assuming the encoding procedure
to be systematic, the original information bits are visible in the transmitted codeword Xn,
and we can measure the bit error probability by

Pb
(
Cm,n,L(z),R(z)

)
= E

[
1

n
wt(X̂n −Xn)

]
(5.8)

where the expectation is with respect to to the transmitted random codeword, the BSC,

and the random LDPC code Cm,n,L(z),R(z) itself. Selecting δ =
√

lnn
n

in the Hamming jar

(1.7), i.e

J(yn) =

{
xn :

1

n
wt(yn − xn) ≤ p+

√
lnn

n

}
,

we then have the following theorem.

Theorem 5.1. For any variable and check node degree distributions L(z) and R(z), and
for any block length n,

Pb
(
Cm,n,L(z),R(z)

)
≤ ε+O

(
n−2
)

(5.9)

whenever

ε+ 2

(
p+

√
lnn

n

)
< 1 (5.10)

and

R(Cm,n,L(z),R(z)) ≤ CBSC −
(m
n

ln 2− Γ
(ε)
m,n,R(z),L(z)

)
−
(

ln
1− p
p

)√
lnn

n
. (5.11)

Proof. Let B(xn, ε) be a subset of X n, defined as

B(xn, ε)
∆
=

{
zn :

1

n
wt(zn − xn) > ε

}
for any xn ∈ X n and 0 ≤ ε < 1. Let Xn be the transmitted codeword, and Y n the output
of the BSC in response to Xn, i.e.,

Y n = Xn +W n
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where W n is the noise vector. Then

Pb(Cm,n,L(z),R(z))

= E
[

1

n
wt(X̂n −Xn)

]
≤ ε+ Pr

{
X̂n ∈ B(Xn, ε)

}
≤ ε+ Pr {Xn /∈ J(Y n)}

+ Pr{∃xn ∈ J(Y n) ∩B(Xn, ε), Xn ∈ J(Y n),Hm×nx
n = 0m}. (5.12)

To continue, on one hand, we have

Pr {Xn /∈ J(Y n)} ≤ Pr

{
1

n
wt(W n) > p+

√
lnn

n

}
1)

≤ n−2 (5.13)

where 1) is due to Hoeffding’s inequality. On the other hand, we have

Pr{∃xn ∈ J(Y n) ∩B(Xn, ε), Xn ∈ J(Y n),Hm×nx
n = 0m}

= Pr {∃xn ∈ J(Xn +W n) ∩B(Xn, ε), Xn ∈ J(Xn +W n),Hm×n(xn −Xn) = 0m}
= Pr {∃xn, xn −Xn ∈ J(W n) ∩B(0n, ε), 0n ∈ J(W n),Hm×n(xn −Xn) = 0m}
= Pr{∃zn ∈ J(W n) ∩B(0n, ε), 0n ∈ J(W n),Hm×nz

n = 0m}
=

∑
wn∈J(0n)

Pr {W n = wn}Pr{∃zn ∈ J(wn) ∩B(0n, ε),Hm×nz
n = 0m}

2)

≤
∑

wn∈J(0n)

Pr {W n = wn} |J(wn)|e−nΓ
(ε)
m,n,L(z),R(z)

−2 lnn+O(1)

≤ e
nH
(
p+
√

lnn
n

)
e−nΓ

(ε)
m,n,L(z),R(z)

−2 lnn+O(1)

≤ e
n
[
H(p)+(ln 1−p

p )
√

lnn
n

]
e−nΓ

(ε)
m,n,L(z),R(z)

−2 lnn+O(1)

= O
(
n−2
)

(5.14)

where the inequality 2) is due to (5.6), zn ∈ B(0n, ε), and the fact that

wn ∈ J(0n) & zn ∈ J(wn)⇒ 1

n
wt(zn) ≤ 1

n
wt(wn) +

1

n
wt(zn − wn)

< 2

(
p+

√
lnn

n

)
< 1− ε
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whenever (5.10) holds. Then (5.9) is proved by combining (5.12), (5.13) and (5.14). This
completes the proof of Theorem 5.1.

A tighter bound can be obtained in the form of (2.70), i.e.

Pb(Cm,n,L(z),R(z)) ≤
∑

n(p+δ)+1≤t≤n

(
n
t

)
pt(1− p)n−t

+
∑

wn∈J(0n)

pwt(w)(1− p)n−wt(w)
∑

zn∈J(wn)

wt(zn)

n
P (zn) (5.15)

where

P (zn)
∆
= exp

{
nP
(
l̄, R(z), l̄κ(zn)

)
+

ln(nl̂κ(zn))

2

R∑
i=1

ri +
1

2
lnnl̄κ(zn)

(
1− l̄κ(zn)

l̄

)
+O(1)

}
.

(5.16)
The evaluation of this bound is subject to further research.

5.3 LDPC Coding Theorem for BIMC

Now let us extend Theorem 5.1 to an arbitrary BIMC {p(y|x) : x ∈ X , y ∈ Y} with
X = {0, 1}. Towards this, we modify Cm,n,L(z),R(z) in the following way: Hm×n and Sm are
uniformly picked from Hm,n,L(z),R(z) and Xm respectively, and the codebook consists of

{xn ∈ X n : Hm×nx
n = Sm}.

In other words, we randomly choose a coset code of Hm×n for use over the BIMC. Let Xn

be the transmitted random codeword, and Y n the output of the BIMC in response to Xn.
Then it is easily verified that Xn takes values over X n uniformly, and Hm×n is independent
of Xn and Y n. Thus for any xn 6= zn ∈ X n,

Pr{zn ∈ Cm,n,L(z),R(z)|Xn = xn} = Pr{Hm×n(xn − zn) = 0n} (5.17)

and
Pr{Xn = xn} = 2−n . (5.18)

To present our LDPC coding theorem for BIMC, recall the definition σH(X|Y ) for the
uniformly distributed random input X and the corresponding channel output Y , specify
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J(Y n) as the BIMC jar with δ = σH(X|Y )
√

4 lnn
n

, i.e.

J(Y n) =

{
zn : − 1

n

n∑
i=1

ln p(zi|Yi) ≤ H(X|Y ) + σH(X|Y )

√
4 lnn

n

}
and further define γn(X|Y ) as

sup
λ≥0

{
−λ

(
H(X|Y ) + σH(X|Y )

√
4 lnn

n

)
− 1

2
lnE

[
pλ(X|Y )

]
− 1

2
lnE

[
pλ(−X|Y )

]}
where −x is the complement of x, i.e., the module-2 addition of x and 1. Then we have
the following theorem.

Theorem 5.2. For any variable and check node degree distributions L(z) and R(z), any
block length n, and any ε ∈ (0, 0.5),

Pb(Cm,n,L(z),R(z)) ≤ ε+O(n−2) (5.19)

whenever

H(ε) ≤ γn(X|Y )− 2 lnn

n
(5.20)

and

R(Cm,n,L(z),R(z)) ≤ CBIMC −
(m
n

ln 2− Γ
(ε)
m,n,L(z),R(z)

)
− σH(X|Y )

√
4 lnn

n
. (5.21)

Proof. Let B(xn, ε) follow the same definition as that in the proof of Theorem 5.1, and
−xn be the binary vector resulted from applying bit-wise not operation on xn. Then from
the proof of Theorem 5.1,

Pb(Cm,n,L(z),R(z))

≤ ε+ Pr {Xn /∈ J(Y n)}+ Pr{∃zn ∈ J(Y n) ∩B(Xn, ε), zn ∈ Cm,n,L(z),R(z)}
= ε+ Pr {Xn /∈ J(Y n)}+ Pr{∃zn ∈ J(Y n) ∩B(Xn, ε),Hm×n(zn −Xn) = 0m}

(5.22)

Combining (5.18), the argument in the proof of Theorem 2.2, and Result 1.1, we have

Pr {Xn /∈ J(Y n)} = Pr

{
− 1

n

n∑
i=1

ln p(Xi|Yi) > H(X|Y ) + σH(X|Y )

√
4 lnn

n

}
= O

(
n−2
)
. (5.23)
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On the other hand,

Pr{∃zn ∈ J(Y n) ∩B(Xn, ε),Hm×n(zn −Xn) = 0m}
≤ Pr{∃zn ∈ J(Y n) ∩B(Xn, ε) ∩B(−Xn, ε),Hm×n(zn −Xn) = 0m}

+ Pr{∃zn ∈ J(Y n) ∩ (X n/B(−Xn, ε)) ,Hm×n(zn −Xn) = 0m} . (5.24)

Now

zn ∈ J(yn) ∩B(xn, ε) ∩B(−xn, ε)⇒ ε ≤ 1

n
wt(zn − xn) ≤ 1− ε

which implies that

Pr{Hm×n(zn − xn) = 0n} ≤ e−nΓ
(ε)
m,n,L(z),R(z)

−2 lnn+O(1) (5.25)

according to (5.6). Therefore,

Pr{∃zn ∈ J(Y n) ∩B(Xn, ε) ∩B(−Xn, ε),Hm×n(zn −Xn) = 0m}

=
∑
xn∈Xn

∫
p(xn, yn)

Pr{∃zn ∈ J(yn) ∩B(xn, ε) ∩B(−xn, ε),Hm×n(zn − xn) = 0m|Xn = xn, Y n = yn}dy
2)

≤
∑
xn∈Xn

∫
p(xn, yn)|J(yn)|e−nΓ

(ε)
m,n,L(z),R(z)

−2 lnn+O(1)dy

3)

≤
∑
xn∈Xn

∫
p(xn, yn)e

n
(
H(X|Y )+σH(X|Y )

√
4 lnn
n

)
e−nΓ

(ε)
m,n,L(z),R(z)

−2 lnn+O(1)dy

≤
∑
xn∈Xn

∫
p(xn, yn)O

(
n−2
)
dy = O

(
n−2
)

(5.26)

whenever (5.21) holds, where the inequality 2) follows from the union bound, (5.25) and
the fact that Hm×n is independent of Xn and Y n, and the inequality 3) is due to (1.10).
At the same time,

Pr{∃zn ∈ J(Y n) ∩ (X n/B(−Xn, ε)) ,Hm×n(zn −Xn) = 0m}
≤ Pr{∃zn ∈ J(Y n) ∩ (X n/B(−Xn, ε))}
≤

∑
zn∈Xn/B(−0n,ε)

Pr{zn +Xn ∈ J(Y n)}

4)

≤
∑

zn∈Xn/B(−0n,ε)

e−nγn(X|Y )

≤ enH(ε)−nγn(X|Y )

≤ n−2 (5.27)
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whenever (5.20) holds, where 4) can be derived as below:

Pr {zn +Xn ∈ J(Y n)}

= Pr

{
− 1

n

n∑
i=1

ln p(zi +Xi|Yi) ≤ H(X|Y ) + σH(X|Y )

√
4 lnn

n

}
5)

≤ inf
λ≥0

{
e
nλ
(
H(X|Y )+σH(X|Y )

√
4 lnn
n

)
E
[
eλ
∑n
i=1 ln p(zi+Xi|Yi)

]}
= inf

λ≥0

{
e
nλ
(
H(X|Y )+σH(X|Y )

√
4 lnn
n

) [
E
[
pλ(X|Y )

]]n−wt(zn) [E [pλ(−X|Y )
]]wt(zn)

}
6)

≤ inf
λ≥0

{
e
nλ
(
H(X|Y )+σH(X|Y )

√
4 lnn
n

) [
E
[
pλ(X|Y )

]]0.5n [E [pλ(−X|Y )
]]0.5n}

= e−nγn(X|Y )

where 5) is the standard Chernoff’s Bound, and 6) holds since 1
n
wt(zn) ≥ 1− ε > 0.5 and

we can verify
E
[
pλ(X|Y )

]
≥ E

[
pλ(−X|Y )

]
in the following way,

E
[
pλ(X|Y )

]
− E

[
pλ(−X|Y )

]
= EY

[
EX
[
pλ(X|Y )− pλ(−X|Y )

]]
= EY

[
p(0|Y )

(
pλ(0|Y )− pλ(1|Y )

)
+ p(1|Y )

(
pλ(1|Y )− pλ(0|Y )

)]
= EY

[
(p(0|Y )− p(1|Y ))

(
pλ(0|Y )− pλ(1|Y )

)]
≥ 0

as λ ≥ 0. Then this theorem is proved by plugging (5.23)-(5.27) into (5.22).

Remark 5.2. To show the existence of ε satisfying (5.20), we need verify that γn(X|Y ) > 0
which is indeed true, by observing that

gn(λ) = −λ

(
H(X|Y ) + σH(X|Y )

√
4 lnn

n

)
− 1

2
lnE

[
pλ(X|Y )

]
− 1

2
lnE

[
pλ(−X|Y )

]
is a concave function of λ, gn(0) = 0, and

dgn(λ)

dλ

∣∣∣∣
λ=0

=
1

2
E
[
ln

p(X|Y )

p(−X|Y )

]
− σH(X|Y )

√
4 lnn

n

=
1

2
E
[
ln

p(Y |X)

p(Y | −X)

]
− σH(X|Y )

√
4 lnn

n
> 0
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whenever CBIMC > 0 and n is large.

Remark 5.3. Similar to Remark 2.4, it can be shown that Theorem 5.2 holds for general
binary input memoryless channel by replacing CBIMC with the mutual information between
a uniform random variable and its channel response. Moreover, similar achievability to
Theorem 5.2 can be derived along the same proof approach when X is a finite field in
general.

Similarly, for the BEC with erasure probability p, a tighter upper bound can be obtained
as follows:

Pb(Cm,n,L(z),R(z)) ≤
∑

n(p+ δ
ln 2)+1≤t≤n

(
n
t

)
pt(1− p)n−t

+
∑

wn∈{0,ε}n:ε(wn)≤n(p+ δ
ln 2

)

pε(w
n)(1− p)n−ε(wn)

∑
zn∈V (wn)

wt(zn)

n
P (zn)

(5.28)

where

ε(wn)
∆
= |{i : wi = ε}|

V (wn)
∆
= {vn ∈ X n : vi = 0 if wi = 0} .

and P (z) is defined in (5.16).

5.4 Analysis On Degree Distribution

From Theorems 5.1 and 5.2, it can be clearly seen that there is a constant gap between
the rate of LDPC and channel capacity, i.e.

m

n
ln 2− Γ

(ε)
m,n,R(z),L(z)

or
l̄

r̄
ln 2 + P (l̄, R(z), l1ε) +O

(
lnnl̄

n

)
. (5.29)

Several interesting results arise from the study of this gap with respect to the degree
distributions L(z) and R(z). First of all, let us consider the optimal R(z) which can
minimize (5.29) given L(z).
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Theorem 5.3. Given the variable node degree distribution L(z) and the rate of code R =
1− m

n
, the optimal R(z) is the check node concentrated distribution, i.e.

R(z) = (1 + br̄c − r̄) zbr̄c + (r̄ − br̄c)zdr̄e (5.30)

where

r̄ =
n

m
l̄ =

l̄

1−R
.

Proof. Since minimizing (5.29) is equivalent to minimizing P (l̄, R(z), l1ε) with respect to
R(z), the theorem is the direct result of Lemma B.11 in Appendix B.2.1.

The next result shows that LDPC codes can achieve asymptotically the channel capacity
of any BIMC with diminishing bit error probability when large degrees are used.

Theorem 5.4. Given any variable and check node degree distributions L(z) and R(z),

Pb(Cm,n,L(zk),R(zk)) ≤
1

2
√
k

+O(n−2) (5.31)

whenever

H

(
1

2
√
k

)
≤ γn(X|Y )− 2 lnn

n
(5.32)

and

R(Cm,n,L(zk),R(zk)) ≤ CBIMC −O

(
e−

l1r1
l̄

√
k+ 1

2
ln k +

lnnk

n
+

√
lnn

n

)
. (5.33)

Proof. Let ε = 1
2
√
k
. By Lemma B.10 in Appendix B.2.1,

l̄

r̄
ln 2 + P

(
l̄, R(zk),

l1
√
k

2

)

≤ l̄

r̄
ln 2 +

{
− l̄
r̄

ln 2 + l1
√
k exp

[
−l1
√
k

(r1 − k−1)

l̄

]
+
l̄

r̄
exp

(
− l1r1

√
k

l̄

)}
= O

(
e−

l1r1
l̄

√
k+ 1

2
ln k
)

which, together with (5.29) and Theorem 5.2, implies (5.33). This completes the proof of
Theorem 5.4.

Remark 5.4. In Theorem 5.4, k is not related to n, and can remain a constant as n
approaches infinity. Therefore, the parity check matrix of the code can be always sparse,
although large k is needed to allow the rate of the code to approach channel capacity.
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5.5 Simulation Results

In this section, we demonstrate, by simulation, that for LDPC codes, BP decoding can
be regarded as one of many ways to pick up a codeword from a jar when it succeeds in
outputting a codeword.

In our simulation, we first selected a LDPC code with block length n = 8000, coding
rate 1− m

n
= 0.5 (in bits), variable node degree distribution

L(z) = 0.457875z2 + 0.32375z3 + 0.0215z4

+ 0.05925z6 + 0.038875z7 + 0.024875z8

+ 0.00875z9 + 0.01775z19 + 0.047375z20

and check node concentration degree distribution R(z), and then randomly chose its coset
code

{xn : Hm×nx
n = Sm}

for use over our testing channel. Let Xn denote the transmitted codeword and Y n denote
the channel output. As mentioned earlier, Xn takes values uniformly over X n. Thus, in
our simulation, Xn was first generated uniformly from X n, and then fixed and passed into
the channel multiple times (each time noise is generated independently).

At the decoder, the standard BP decoding algorithm was used, which is described in
Algorithm 1, where {ci}mi=1 and {vj}nj=1 represent check and variable nodes in the tanner
graph of Hm×n respectively, N (a) is the set of nodes connected to node a in the graph.
Simply speaking, messages (mci→v and mvj→c) are passed and modified in certain manner
(according to steps 5 to 14) between check and variable nodes in the tanner graph, and
eventually the decoding output is the hard decision (steps 15 to 17) on each variable node

with channel statistics ln Pr{Xi=0|Yi}
Pr{Xi=1|Yi} and messages passed to it. The algorithm kept running

until it either found a codeword x̂n i.e. Hm×nx̂
n = Sm or the upper bound on the number

iteration (N) was reached (in our simulation N = 100).

The first testing channel we selected is the BSC with crossover probability 0.09 and
capacity 0.564 (in bits). BP decoding was run for 1000 blocks. In our simulation, we
observed that BP decoding always failed whenever

1

n
wt(Y n −Xn) > 0.098 = p+ 0.008

and sometimes succeeded and sometimes failed when

1

n
wt(Y n −Xn) < 0.098 = p+ 0.008 .
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Algorithm 1 Standard BP Decoding Algorithm

1: Let x̂n be a sequence such that x̂i =

{
0 if ln Pr{Xi=0|Yi}

Pr{Xi=1|Yi} ≥ 0

1 otherwise
.

2: Initialize iter = 1 and

• mci→v to be 0 for v ∈ N (ci) and 1 ≤ i ≤ m;

• and mvj→c to be 0 for c ∈ N (vj) and 1 ≤ j ≤ n.

3: while Hm×nx̂
n 6= sm and iter < N do

4: iter = iter + 1.
5: for j = 1 to n do
6: for all c ∈ N (vj) do

7: mvj→c = ln Pr{Xi=0|Yi}
Pr{Xi=1|Yi} +

∑
c′∈N(vj)/{c}mc′→vj .

8: end for
9: end for

10: for i = 1 to m do
11: for all v ∈ N (ci) do

12: mci→v = 2 tanh−1
[
(1− 2si)

∏
v′∈N(ci)/{v} tanh

(
mv′→ci

2

)]
.

13: end for
14: end for
15: for j = 1 to n do

16: x̂j =

{
0 if ln Pr{Xi=0|Yi}

Pr{Xi=1|Yi} +
∑

c∈N(v) mc→vj ≥ 0

1 otherwise

17: end for
18: end while
19: Output x̂n as the estimation of Xn.
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The second testing channel we selected is the BIAGC with variance of noise σ = 0.875
and channel capacity 0.575 (in bits). The codeword was modulated to {−1,+1}. In our
simulation, we observed that BP decoding always failed whenever

− 1

n
ln
p(Xn|Y n)

p(Y n)
> 0.322 = H(X|Y ) + 0.028

and sometimes succeeded and sometimes failed when

− 1

n
ln
p(Xn|Y n)

p(Y n)
< 0.322 .

Both simulations confirm that BP decoding can be regarded as one of many ways to pick
up a codeword from a jar when it succeeds in outputting a codeword. Of course, if one
wants to include BP decoding as a part of jar decoding for LDPC codes, it is clear that
one has to deal with the situation in which BP decoding fails to output any codeword.
This problem, together with the design of effective jar decoding algorithms and codes, is
left open for future research.

5.6 Summary

In this chapter, coding theorems on LDPC ensemble are considered. As can be seen, the
proof of LDPC coding theorem via jar decoding is much simpler, in which the (bit) error
probability is again broken into two part, i.e. the probability that the true codeword is
outside the jar and that there exists other codewords inside the jar. However, in con-
trast to the pure random linear code (Gallager’s and Elias’) ensembles, for which the first
probability is the major contributor to the error probability, for LDPC codes the second
probability is actually dominant. In this case, jar decoding has allowed us to analyze the
tradeoff between the capacity gap and bit error probability of LDPC codes for any n. And
we have shown that LDPC codes can achieve, with diminishing bit error probability, the
capacity of any BIMC as their average node degrees increase. In addition, an interesting
connection between BP decoding and jar decoding is demonstrated through simulation, and
it is shown that BP decoding can be viewed as one of many ways to pick up a codeword
in the jar.
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Chapter 6

Interactive Encoding and Decoding
Theorems based on LDPC Codes
with Syndrome Accumulation

In Chapters 2, 3, 4 and 5, jar decoding is shown to be a fundamental tool to prove non-
asymptotic channel coding theorems, where the transmission is one way, the number of
symbols per transmission (block length) is fixed, and the jar size is pre-determined by the
decoder. In this chapter, it is demonstrated that jar decoding is a powerful tool to prove
coding theorems in the scenario of two-way communication, where both the number of
transmitted symbols and the jar size are dynamic and determined on the fly. Towards this,
a coding scenario, called interactive encoding and decoding, is considered.

6.1 Motivation, Problem Formulation and Literature

Review

The concept of interactive encoding and decoding (IED) was formalized in [40,41]. When
applied to (near) lossless one way learning (i.e. lossless source coding) with decoder only
side information, IED can be easily explained via Figure 6.1, where X denotes a finite
alphabet source to be learned at the decoder, Y denotes another finite alphabet source that
is correlated with X and only available to the decoder as side information, and R denotes
the average number of nats per symbol exchanged between the encoder and the decoder
measuring the rate performance of the IED scheme used. As evident from Figure 6.1,
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IED distinguishes itself from non-interactive Slepian-Wolf coding (SWC) in the fact that
two-way communication is allowed in IED.

X Encoder Decoder X̂

Y

source
input rate R output

correlated

Figure 6.1: Interactive encoding and decoding for one way learning with side information
at the decoder

By allowing interactions between the encoder and the decoder, IED has several advan-
tages over SWC [40,41]. For example, in comparison with SWC, it was shown [40,41] that
IED not only delivers better first-order performance (i.e. asymptotic compression rate)
for general stationary, non-ergodic source-side information pairs, but also achieves better
second-order performance (i.e. trade-off between the speeds of convergence of compression
rate to optimum and convergence of error probability to zero) for memoryless pairs with
known statistics. Furthermore, although given the compression rate SWC schemes [42–44]
can be constructed which work for vast classes of source-side information pairs with condi-
tional entropy rate less than this rate, truly universal SWC does not exist as the conditional
entropy rate is part of the statistics of source and side information. On the other hand, it
was shown [41] that coupled with any classical universal lossless code Cn (with block length
n and with the side information available to both the encoder and decoder) such as the
one in [8], one can build an IED scheme which is asymptotically optimal with respect to
the class of all stationary, ergodic sources-side information pairs. Indeed, the correspond-
ing IED scheme achieves essentially the same rate performance as that of Cn for each and
every individual sequence pair (xn, yn), even though the side information is not available
to the encoder in the case of IED, while the word decoding error probability can be made
arbitrarily small.

The above advantages make IED much more appealing than SWC to applications where
the one-way learning model depicted in Figure 6.1 fits. However, the IED schemes con-
structed in [40, 41] do not have an intrinsic structure that is amenable to implement in
practice. A big challenge is then how to design universal IED schemes with both low en-
coding and decoding complexity. To address this challenge partially, linear IED schemes,
which use linear codes for encoding, were later considered in [45]. The encoder of a linear
IED scheme can be conveniently described by a parity-check matrix. Based on different
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random matrix ensembles, two universal linear IED schemes were proposed therein. The
first universal linear IED scheme proposed in [45] (also called LIED) makes use of Gallager-
type of matrix ensembles, where each matrix element is generated independently, selects
randomly a matrix from such an ensemble, and then divides the selected matrix into several
sub-matrices, each of which is used to generate new syndromes in each round of interac-
tion. In the second universal linear IED scheme proposed in [45] (also called SA-IED),
Gallager-type ensembles are extended into vector-type ensembles, where each column of
matrices is generated independently, and a matrix is generated in such way that each of
its sub-matrices is randomly picked from such a vector-type ensemble; in each round of
interaction, new syndromes are then generated by applying syndrome accumulation (de-
scribed in [45]) once to each and every of those sub-matrices. Define the density of a linear
IED scheme as the percentage of non-zero entries in its parity-check matrix. It was then
shown [45] that there is no performance loss by restricting IED to linear IED and even to
linear IED with density Ω( lnn

n
), where n is the block length. Thus the encoding complexity

of universal IED can be kept as low as O(n lnn).

Although linear IED considered in [45] tackles its encoding complexity very well, its
decoding complexity is largely untouched due to the adoption of maximum likelihood
(ML) decoding, which results in exponential decoding complexity with respect to block
length n. An attempt to apply belief propagation (BP) decoding algorithm on linear
codes generated by Gallager-type or vector-type ensemble in [45] fails miserably, due to the
property of those ensembles. Details of discussion of Gallager-type or vector-type ensemble
and the reason why BP decoding fails for those ensembles can be found in Remark 6.1 in
section 6.2.3, while the brief version is provided here. Specifically, in either of Gallager-
type or vector-type ensemble, several sub-matrices are generated independently and then
concatenated as one matrix used by decoder. Moreover, within each sub-matrix columns
are generated independently. The independence mentioned above mitigates the difficulty of
theoretical analysis of the performances of IED schemes to some extent, but makes degree
distribution of the matrix used for decoding totally uncontrolled. On the other hand, it
is well known that the convergence of BP decoding depends largely on those (especially
variable node) degree distribution [5, 46]. Therefore, one of the main purposes of this
chapter is to address the issue of decoding complexity by building IED schemes from linear
codes with low decoding complexity. This leads us to consider LDPC codes, due to their
linear complexity decoding based on BP decoding and successful application to fix-rate
Slepian-Wolf coding [47–50].

An LDPC code is a linear code with a sparse parity check matrix, each of whose rows
and columns has only a finite number of non-zero elements with respect to its block length.
Important parameters of an LDPC code include the ratio between the numbers of rows
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and columns (called Slepian-Wolf rate (syndrome encoding)), and the portions of rows and
columns with certain number of non-zero elements (called the check and variable degree
distributions of the LDPC code). Given a block length n and a Slepian-Wolf rate, one
way to generate an LDPC code with the given Slepian-Wolf rate, is to randomly select a
matrix as its parity check matrix from an ensemble in which all matrices share the same
Slepian-Wolf rate, and check and variable degree distributions.

Since rows and columns of parity check matrix of an LDPC code are not generated
independently, the approach of dividing the whole matrix into several sub-matrices adopted
in [45] can not deliver good results from both theoretical and practical perspectives. To
overcome this problem, we shall modify syndrome accumulation (SA) used in [45] to adapt
the encoding rates of the LDPC code for IED. The resulting scheme is called an interactive
encoding and decoding scheme based on a binary LDPC code with syndrome accumulation
(SA-LDPC-IED); its performance is then analyzed theoretically and evaluated practically
based on jar decoding and BP decoding, respectively. It is shown that coupled with any
classical lossless code Cn (with side information available to both the encoder and decoder),
one can always construct an SA-LDPC-IED scheme such that

• the word decoding error probability approaches 0 sub-exponentially with n; and

• the total rate (including both the forward and backward rates) of the resulting SA-
LDPC-IED scheme is upper bounded by a functional of that of Cn, which in turn
approaches the compression rate of Cn for each and every individual sequence pair
(xn, yn) and the conditional entropy rate H(X|Y ) for any stationary, ergodic source
and side information (X, Y ) as the average variable node degree l̄ of the underlying
LDPC code increases without bound.

When applied to the class of binary source and side information (X, Y ) correlated through
a BSC with cross-over probability unknown to either the encoder or decoder, the resulting
SA-LDPC-IED scheme can be further simplified, yielding even improved rate performance
versus the bit error probability when l̄ is not large. It is worth mentioning here that due
to dramatic difference between LDPC ensemble and Gallager-type or vector-type ensemble
in [45], theoretical results above are by no means implied by those in [45], and as can be
seen later on, the proof technique used here is quite different, which is also believed to be
valuable for theoretical analysis of rateless or universal codes (in channel or Slepian-Wolf
coding) with LDPC property.

Comparison between our work and research done in area of SWC need to be addressed
here. First of all, the connection and difference between IED and variable-rate SWC with
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feedback ( [51], and references in [41,45]) have been extensively discussed in [41,45], where
the main difference has two folds. One is that the assumption on source statistics is general
and completely unknown to either the encoder or the decoder in IED while either IID is
assumed, or the statistics is known at the decoder in those work. The other is that in IED
the total exchange rate (forward and backward rate) is concerned while by feedback usually
only forward rate (from encoder to decoder) is considered. Also, it should be pointed out
that in the literature (see for example [52–54], and references therein), there have been
several attempts towards building rateless (or rate-adaptive) SWC schemes using LDPC
codes. Specifically, the technique of SA was used to construct the so-called LDPCA codes
in [54]. Our SA-LDPC-IED schemes differ from the rateless SWC schemes in the following
aspects:

• We are concerned with the total rate defined as the number of bits exchanged between
the encoder and the decoder per symbol, while only the forward rate (from the
encoder to the decoder) is considered in rateless SWC schemes.

• We assume that the joint statistics of source and side information are unknown to
both the encoder and decoder, while the joint statistics are available for decoding in
rateless SWC schemes.

• We provide theoretical analysis for our SA-LDPC-IED schemes, while the perfor-
mance of those rateless SWC schemes has been evaluated mainly through simulation.

6.2 Interactive Encoding and Decoding Scheme based

on LDPC Codes with Syndrome Accumulation

6.2.1 LDPC Ensemble with Check-Concentrated Degree Distri-
bution

Recall the definitions of LDPC ensembles in Section 5.1. Given m, n, and (normalized)
variable and check degree distributions L(z) and R(z) satisfying nL′(1) = mR′(1), let
Hm,n,L(z),R(z) denote the collection of all m × n parity check matrices with normalized
variable and check degree distributions L(z) and R(z). Without loss of generality, we only
consider those matrices such that the degrees of rows and columns do not decrease with
their indices. (In other words, i > j implies the degree of the i-th row (or column) is not
less than that of the j-th row (or column).) Here we focus on a special case, i.e. m = n,
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and simply denote Hm,n,L(z),R(z) by Hn,L(z),R(z). Moreover, as shown in Chapter 5, check-
concentrated degree distributions achieve the best performance under jar decoding, where
given a variable node degree distribution, the check node degree distribution is made as
concentrated as possible. Therefore, we further narrow down our discussion on this type of
degree distributions. In this case of Hn,L(z),R(z), given L(z), R(z) is determined as follows:

R(z) = R1z
r1 +R2z

r2

where

r1 = bl̄c
r2 = dl̄e
R1 = 1 + bl̄c − l̄
R2 = l̄ − bl̄c

and

l̄ = L′(1) =
L∑
i=1

Lili .

Hn,L(z),R(z) with R(z) determined by L(z) as above is simply referred as to Hn,L(z).

6.2.2 Syndrome Accumulation

The concept of syndrome accumulation has been introduced in [45]. To clarify our following
discussion, we revise this concept here.

Suppose a syndrome vector sn = Hn×nx
n is given, where sn consists of n syndromes

s1s2 . . . sn, and Hn×n is an n × n matrix. To facilitate the discussion below, we assume
that n is a power of 2, i.e. 2T for some positive integer T . Let N = {1, 2, . . . , n} and
P = {Λ1,Λ2, . . . ,Λ|P|} where P forms a partition on N with each Λi as a subset of N
and |P| as the number of elements in P . Λi is also called a cell in P , and we use |Λi| to
represent the cardinality of Λi, i.e. the number of indices in Λi. Now given sn and P , we
can form a new syndrome vector s̃|P|, which is called an accumulated syndrome vector, in
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the following way:

s̃|P| =


s̃1

s̃2
...
s̃|P|


s̃i =

∑
j∈Λi

sj for 1 ≤ i ≤ |P|

The derivation below shows that s̃|P| is indeed a syndrome vector:

s̃|P| =


s̃1

s̃2
...
s̃|P|



=


∑

j∈Λ1
sj∑

j∈Λ2
sj

...∑
j∈Λ|P|

sj



=


∑

j∈Λ1

∑n
k=1 hjkxk∑

j∈Λ2

∑n
k=1 hjkxk
...∑

j∈Λ|P|

∑n
k=1 hjkxk



=


∑n

k=1

∑
j∈Λ1

hjkxk∑n
k=1

∑
j∈Λ2

hjkxk
...∑n

k=1

∑
j∈Λ|P|

hjkxk



=

(∑
j∈Λi

hjk

)
1≤i≤|P|,1≤k≤n|


x1

x2
...
xn


∆
= HPx

n

where hjk is the element in the j-th row and k-th column of Hn×n, and xk is the k-th
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element in xn. Also, HP defined above is the parity check matrix corresponding to the
partition P .

To proceed, we introduce a sequence of partitions P1P2 · · · Pn. (Later on, it can be
seen that this sequence effectively represents the procedure of encoding of SA-LDPC-IED
schemes.) The sequence P1P2 · · · Pn is generated in a recursive manner, depicted below:

• P1 = {N}.

• Suppose Pi = {Λi,1,Λi,2, . . . ,Λi,i} has been generated. Let ji = 2(i − 2blog2 ic) + 1.
Split Λi,ji equally into two parts, Λi,ji+ and Λi,ji−, where Λi,ji+ (Λi,ji−) consists of the
first (second) half of elements in Λi,ji , ordered by their values.

• Pi+1 = {Λi+1,1,Λi+1,2, . . . ,Λi+1,i+1} is generated as below:

– Λi+1,k = Λi,k for 1 ≤ k < ji.

– Λi+1,ji = Λi,ji+.

– Λi+1,ji+1 = Λi,ji−.

– Λi+1,k = Λi,k−1 for ji + 1 < k ≤ i+ 1.

Note that since we assume n = 2T for some integer T , |Λi,k| is also a power of 2 for
1 ≤ i ≤ n, 1 ≤ k ≤ i. Moreover, for 1 < i < n, |Λi,k1| = 2|Λi,k2| = 2T−blog2 ic always holds
for ji ≤ k1 ≤ i and 1 ≤ k2 ≤ ji − 1. Therefore, the splitting of Λi,ji can always be applied.
In fact,

Λi,k =
{

(k − 1)2T−dlog2 ie + 1, . . . , k2T−dlog2 ie
}

for 1 ≤ k < ji, and

Λi,k =
{

(ji − 1)2T−dlog2 ie + (k − ji)2T−blog2 ic + 1,

. . . , (ji − 1)2T−dlog2 ie + (k − ji + 1)2T−blog2 ic
}

for ji ≤ k ≤ i.

Now given sn = Hn×nx
n and P1P2 · · · Pn, we can generate a sequence of accumulated

syndrome vectors s̃1
1s̃

2
2 . . . s̃

n
n, where the upper scripts represent the dimension and lower

scripts indicate which partitions the syndromes are associated with. The upper scripts,
which always equal to the lower scripts, are dropped for simplicity. Now for any s̃i, we use
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s̃i,j to represent its j-th element. In fact, this procedure can be done recursively as above,
where

s̃1 = s̃1,1 =
∑
j∈N

sj

and s̃i+1 is generated by replacing s̃i,ji with s̃i+1,ji and s̃i+1,ji+1. Moreover, since {Λi+1,ji ,Λi+1,ji+1}
is a partition on Λi,ji , we have

s̃i,ji = s̃i+1,ji + s̃i+1,ji+1

and therefore, if s̃i is known, only one of s̃i+1,ji and s̃i+1,ji+1 is needed to calculate s̃i+1. We
call s̃i+1,ji as the augmenting syndrome from s̃i to s̃i+1, denoted by ai+1. We also adopt the
convention that a1 = s̃1,1 for convenience. In addition, according to the discussion above,
s̃i = HPix

n, where HPi can be determined by Hn×n and Pi. For clarification, we refer to

HPi as H
(i)
i×n, where the lower script indicates its dimension.

Λ1,1

Λ2,1

· · ·

· · ·

{1}

{2}

· · ·...

· · ·

Λ2,2

· · ·· · ·...

· · ·

· · ·...

Λn−1,n−1

{n− 1}

{n}

Figure 6.2: Binary Tree Structure of Syndrome Accumulation

By Remark 7 in [45], a binary tree can be associated with P1P2 · · · Pn or s̃1s̃2 · · · s̃n,
shown in figure 6.2, where each node represents a subset of N . Let v and Λ(v) be a node
and its associated set. {Λ(vl),Λ(vr)} forms a partition of Λ(v) when vl and vr are the left
and right child nodes of v. Moreover, let v(Λ) be the node associated with the set Λ, and
dv be the depth of a node v. Then |Λ| = 2T−dv(Λ) .
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6.2.3 Interactive Encoding and Decoding Schemes

In light of LDPC codes, we consider only binary sources. That is, the source alphabet X is
binary. However, the side information alphabet Y could be arbitrary. For any xn ∈ X n, let
x̄n be the complement sequence of xn, i.e., the sequence having hamming distance n from
xn. Let Hn×n be the parity check matrix of a LDPC code randomly generated from the
ensemble Hn,L(z) for some L(z). Let H′ηnn×n and H′′

(nH(ε)
ln 2

+∆)×n
be matrices from Gallager

parity check ensemble (the set of matrices with each element generated independently and

uniformly from X ), where 0 < ηn < 1, 0 < ε < 0.5, and nH(ε)
ln 2

is assumed to be an
integer. Furthermore, let P1P2 · · · Pn be the partition sequence described in the previous
subsection. Based on the concepts introduced above, we are now ready to describe our
SA-LDPC-IED scheme In, which is presented in detail in Algorithm 2 below, where xn is
the source sequence to be encoded, yn ∈ Yn is the side information sequence available only
to the decoder, and ∆ is an integer to be specified later such that n

∆
is also an integer.

Moreover, given side information yn, the jar Jb(y
n) at b-th round interaction is defined as

Jb(y
n) =

{
{zn ∈ X n : γn(zn, yn) ≤ Γb} 1 ≤ b ≤ n

∆

X n b > n
∆

(6.1)

where the specification of Γb, ηn and the function γn : X n × Yn → (0,+∞) depends on
L(z), and will be discussed in the next section. Note that when b > n

∆
, Jb(y

n) consists of
all possible source sequence of length n, which guarantees the existence of x̂n at steps 18
and 19 in the algorithm.

As in [40, 41, 45], given any (xn, yn) ∈ X n × Yn, the performance of In is measured by
the number of nats per symbol from the encoder to the decoder rf (x

n, yn|In), the number
of bits per symbol from the decoder to the encoder rb(x

n, yn|In), and the conditional error
probability P (In|xn, yn) of In given xn and yn. Let j(xn, yn) be the number of interactions
at the time the decoder sends bit 1 to the encoder. It follows from the description of
Algorithm 2 that∗

rf (x
n, yn|In) =

{
j(xn,yn)∆

n
ln 2 +H(ε) + ∆

n
ln 2 if j(xn, yn) ≤ n/∆

(1 + ηn) ln 2 +H(ε) + ∆
n

ln 2 otherwise
(6.2)

and

rb(x
n, yn|In) =

j(xn, yn)

n
ln 2. (6.3)

∗By the convention of this thesis, information rates are in nats.
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Algorithm 2 SA-LDPC-IED scheme In
1: Based on P1P2 · · · Pn and sn = Hn×nx

n, the encoder generates accumulated syndromes
s̃1s̃2 · · · s̃n and augmenting syndromes a1a2 · · · an.

2: Based on P1P2 · · · Pn and Hn×n, the decoder calculates matrices H
(∆)
∆×nH

(2∆)
2∆×n · · ·H

(n)
n×n.

3: b← 0.
4: while The encoder does not receive bit 1 from the decoder do
5: b← b+ 1.
6: if b ≤ n

∆
then

7: The encoder sends augmenting syndromes a(b−1)∆+1 · · · ab∆ to the decoder by ∆
bits.

8: else
9: The encoder sends syndromes s′ηnn = H′ηnn×nx

n to the decoder by ηnn bits.
10: end if
11: Upon receiving syndromes sent from the encoder, the decoder searches through

Jb(y
n) for a sequence x̂n satisfying H

(b∆)
b∆×nx̂

n = s̃b∆ if b ≤ n
∆

and[
H

(n)
n×n

H′ηnn×n

]
x̂n =

[
s̃n
s′ηnn

]
otherwise.

12: if Such an x̂n is found then
13: The decoder sends bit 1 to the encoder.
14: else
15: The decoder sends bit 0 to the encoder.
16: end if
17: end while
18: Upon receiving bit 1 from the decoder, the encoder sends s′′

n
H(ε)
ln 2

+∆
= H′′

(nH(ε)
ln 2

+∆)×n
xn

to the decoder.
19: Upon receiving s′′

n
H(ε)
ln 2

+∆
, the decoder searches through the set

D =

{
zn :

1

n
wt(zn − x̂n) ≤ ε or

1

n
wt(zn − x̂n) ≥ 1− ε

}
.

for a sequence x̃n satisfying H′′
(nH(ε)

ln 2
+∆)×n

x̃n = s′′
n
H(ε)
ln 2

+∆
. If such an x̃n is found, the

decoder outputs x̃n as the estimate of xn. Otherwise, decoding failure is declared.
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Moreover, let (X, Y ) = {(Xi, Yi)}∞i=1 be a stationary source pair. We further define

rf (In)
∆
=E [rf (X

n, Y n|In)]

rb(In)
∆
=E [rb(X

n, Y n|In)]

and
Pe(In)

∆
= Pr{X̃n 6= Xn}.

Remark 6.1. As can be seen, SA-LDPC-IED distinguishes itself from LIED and SA-IED
proposed in [45] by the ensembles of parity check matrices. Specifically, SA-LDPC-IED,

LIED, and SA-IED schemes all assume that s̃b∆ = H
(b∆)
b∆×nx

n is available to the decoder at

b-th interaction, but the ways of generating H
(b∆)
b∆×n are totally different. In an SA-LDPC-

IED scheme, given the variable and check node degree distribution of Hn×n, the variable

node degree distribution of H
(b∆)
b∆×n will be roughly the same as that of Hn×n, considering

the fact that the matrix Hn×n is sparse. On the other hand, for an LIED scheme (using
Gallager-type ensembles),

H
(b∆)
b∆×n =


H∆×n(1)
H∆×n(2)

...
H∆×n(b)


where each H∆×n(i) is generated in the way that elements equal to 1 with probability p∗n
and to 0 with probability 1− p∗n. As can be seen, variable node degrees of each H∆×n(i) are

purely random, as well as that of H
(b∆)
b∆×n. Now for an SA-IED scheme (using vector-type

ensembles),

H
(b∆)
b∆×n =


H

(b)
b×n(1)

H
(b)
b×n(2)

...

H
(b)
b×n(∆)


where each H

(b)
b×n(i) is resulted by applying the syndrome accumulation described above to

H( n∆ +1)×n(i), each column of which is generated independently and equals to a vector of

degree one with probability p∗n or to a zero vector with probability 1−
(
n
∆

+ 1
)
p∗n. (Note that

there are n
∆

+1 different vectors of degree one and dimension n
∆

+1.) In this case, although

the variable node degrees of H
(b)
b×n(i) are either 0 and 1, the variable node degrees of H

(b∆)
b∆×n

are still purely random, as each H
(b)
b×n(i) is generated independently. The independence
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in Gallager-type and vector-type ensembles mitigates the difficulty of the proof of coding
theorems to some extent. However, as the variable node degrees of decoding matrices are
purely random, BP decoding does not behave well for those schemes, which is the motivation
to propose and investigate SA-LDPC-IED schemes.

6.3 Performance of SA-LDPC-IED: General Case

This section is devoted to the theoretical performance analysis of our proposed SA-LDPC-
IED scheme In for both individual sequences xn and yn and stationary, ergodic sources.
Throughout this section, we assume that ∆ ∼

√
n.

6.3.1 Specification of γn(·, ·), ηn, and {Γb}, and Probability Bounds

In order for our proposed SA-LDPC-IED scheme In to be truly universal, i.e., to achieve
good performance for each and every individual source and side information pair (xn, yn),
we associate γn(·, ·) with a classical universal lossless code Cn (with block length n and the
side information available to both the encoder and decoder), where Cn is a mapping from
X n × Yn to {0, 1}∗ satisfying that for any yn ∈ Yn, the set {Cn(xn, yn) : xn ∈ X n} is a
prefix set. Specifically, we define

γn(xn, yn) = hn(xn|yn)

where nhn(xn|yn) is the number of nats resulting from applying Cn to encode xn from X
given the side information sequence yn from Y available to both the encoder and decoder.
Consequently, each Jb(y

n) defined in (6.1) for 1 ≤ b ≤ n
∆

is a jar from classical prefix code
shown in Example 5 in Section 1.2.

Following the approach adopted in [41,45], it is essential to calculate the following prob-

abilities Pr
{
H′ηnn×nx

n = 0ηnn
}

, Pr

{
H′′

(nH(ε)
ln 2

+∆)×n
xn = 0n

H(ε)
ln 2

+∆

}
and Pr

{
H

(b∆)
b∆×nx

n = 0b∆
}

for 1 ≤ b ≤ n
∆

, given xn 6= 0n. In addition, in our case, the specification of ηn, and {Γb} is

also related to the probability Pr
{

H
(b∆)
b∆×nx

n = 0b∆
}

. Since H′ηnn×n and H′′
(nH(ε)

ln 2
+∆)×n

are

obtained from Gallager parity check ensemble, it can be easily shown that

Pr
{
H′ηnn×nx

n = 0ηnn
}

= 2−ηnn = e−ηnn ln 2

Pr

{
H′′

(nH(ε)
ln 2

+∆)×n
xn = 0n

H(ε)
ln 2

+∆

}
= 2−n

H(ε)
ln 2
−∆ = e−nH(ε)−∆ ln 2

155



for any xn 6= 0n. However, calculating Pr
{

H
(b∆)
b∆×nx

n = 0b∆
}

is much harder.

It can be seen that
Pr
{

H
(b∆)
b∆×nx

n = 0b∆
}

depends on the support set of xn, i.e., the positions of non-zero elements in xn. Let κ(xn)
represent the support set of xn, and we write κ(xn) simply as κ whenever xn is generic or
can be determined from context. Let Hκ

n×|κ| be the matrix consisting of those columns of

Hn×n with indices in κ. The degree polynomial of κ, denoted by Lκ(z), is defined by

Lκ(z)
∆
=

L∑
i=1

Lκ
i z

li

where Lκ
i n is the number of columns with degree li within Hκ

n×|κ|. And define

l̄κ
∆
=

L∑
i=1

Lκ
i li.

Now let

t
(1)
b∆ = min

{
2b∆− 2dlog2 b∆e, R12dlog2 b∆e

}
,

t
(2)
b∆ = max

{
R12dlog2 b∆e−1 −

(
b∆− 2dlog2 b∆e−1

)
, 0
}
,

t
(3)
b∆ = max

{
R22dlog2 b∆e − 2

(
2dlog2 b∆e − b∆

)
, 0
}
,

t
(4)
b∆ = min

{
2dlog2 b∆e − b∆, R22dlog2 b∆e−1

}
.

To understand the meaning of
{
t
(i)
b∆

}4

i=1
, let us focus on Pb∆ = {Λb∆,i}b∆i=1. By the binary

tree representation in the previous section,

t
(1)
b∆ = # of Λb∆,i s.t. Λb∆,i ⊆ {1 · · ·R1n} and dv(Λb∆,i) = 2dlog2 b∆e

t
(2)
b∆ = # of Λb∆,i s.t. Λb∆,i ⊆ {1 · · ·R1n} and dv(Λb∆,i) = 2dlog2 b∆e−1

t
(3)
b∆ = # of Λb∆,i s.t. Λb∆,i ⊆ {R1n+ 1 · · ·n} and dv(Λb∆,i) = 2dlog2 b∆e

t
(4)
b∆ = # of Λb∆,i s.t. Λb∆,i ⊆ {R1n+ 1 · · ·n} and dv(Λb∆,i) = 2dlog2 b∆e−1
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Since the block length n is assumed to be a power of 2, it follows that

t
(1)
b∆

n
= min

{
2b∆

n
− 2dlog2

b∆
n e, R12dlog2

b∆
n e
}

t
(2)
b∆

n
= max

{
R12dlog2

b∆
n e−1 −

(
b∆

n
− 2dlog2

b∆
n e−1

)
, 0

}
t
(3)
b∆

n
= max

{
R22dlog2

b∆
n e − 2

(
2dlog2

b∆
n e − b∆

n

)
, 0

}
t
(4)
b∆

n
= min

{
2dlog2

b∆
n e − b∆

n
,R22dlog2

b∆
n e−1

}
and hence

t
(i)
b∆

n
, i = 1, 2, 3, 4, all depend only on b∆/n.

We have the following result, which is proved in Appendix B.1.

Lemma 6.1. Let L(z) be a normalized variable node degree distribution from a node per-

spective with minimum degree l1 ≥ 2. Let cb∆ = 2−dlog2
b∆
n e and g(τ, k)

∆
=(1 + τ)k + (1− τ)k

for any τ and k. Suppose Hn×n is uniformly picked from ensemble Hn,L(z). Then for any
xn 6= 0 with its support set κ,

Pr
{

H
(b∆)
b∆×nx

n = 0b∆
}
≤ exp

{
nP

(
b∆

n
, l̄, l̄κ

)
+

3ndl̄e
b∆

ln(nl̂κ) +
1

2
lnnl̄κ(1− l̄κ

l̄
) +O(1)

}
where

l̂κ = max

{
1

n
,min{l̄κ, l̄ − l̄κ}

}
and for any b∆

n
, l̄ and ξ ∈ (0, l̄], P

(
b∆
n
, l̄, ξ

)
is defined as

P

(
b∆

n
, l̄, ξ

)
∆
= − l̄H

(
ξ/l̄
)
− ξ ln τ

+
t
(1)
b∆

n
ln
g(τ, r1cb∆)

2

+
t
(2)
b∆

n
ln
g(τ, 2r1cb∆)

2

+
t
(3)
b∆

n
ln
g(τ, r2cb∆)

2

+
t
(4)
b∆

n
ln
g(τ, 2r2cb∆)

2
(6.4)
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in which τ is the solution to

r1cb∆
t
(1)
b∆

n

g(τ, r1cb∆ − 1)

g(τ, r1cb∆)

+2r1cb∆
t
(2)
b∆

n

g(τ, 2r1cb∆ − 1)

g(τ, 2r1cb∆)

+r2cb∆
t
(3)
b∆

n

g(τ, r2cb∆ − 1)

g(τ, r2cb∆)

+2r2cb∆
t
(4)
b∆

n

g(τ, 2r2cb∆ − 1)

g(τ, 2r1cb∆)

= l̄ − ξ. (6.5)

for ξ ∈
[
0, l̄ − t

(1)
b∆

n
π (cb∆r1)− t

(3)
b∆

n
π (cb∆r2)

]
, and

P

(
b∆

n
, l̄, ξ

)
∆
=−∞ (6.6)

for ξ ∈
(
l̄ − t

(1)
b∆

n
π (cb∆r1)− t

(3)
b∆

n
π (cb∆r2) , l̄

]
with the convention that e−∞ = 0.

Remark 6.2. When ξ = l̄− t
(1)
b∆

n
π (cb∆r1)− t

(3)
b∆

n
π (cb∆r2), the solution τ to (6.5) is τ = +∞.

In this case, the expression in (6.4) should be understood as its limit as τ → +∞, i.e.,

P

(
b∆

n
, l̄, ξ

)
∆
= −l̄H

(
ξ/l̄
)

+ lim
τ→+∞

[
−ξ ln τ+

t
(1)
b∆

n
ln
g(τ, r1cb∆)

2
+
t
(2)
b∆

n
ln
g(τ, 2r1cb∆)

2

+
t
(3)
b∆

n
ln
g(τ, r2cb∆)

2
+
t
(4)
b∆

n
ln
g(τ, 2r2cb∆)

2

]

= −l̄H
(
ξ/l̄
)

+
t
(1)
b∆

n
π(cb∆r1) ln[cb∆r1] +

t
(3)
b∆

n
π(cb∆r2) ln[cb∆r2] (6.7)

when ξ = l̄ − t
(1)
b∆

n
π (cb∆r1)− t

(3)
b∆

n
π (cb∆r2).
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Remark 6.3. Replace b∆
n

by any real number R ∈ (0, 1] in
t
(i)
b∆

n
, i = 1, 2, 3, and 4, cb∆,

and P
(
b∆
n
, l̄, ξ

)
. It is not hard to verify that

t
(i)
b∆

n
, i = 1, 2, 3, and 4, cb∆, and P

(
R, l̄, ξ

)
as

a respective function of R ∈ (0, 1] are all well defined. One can further verify that as a
function of R ∈ (0, 1], the following identities hold:

4∑
i=1

t
(i)
b∆

n
= R (6.8)

and

r1cb∆
t
(1)
b∆

n
+ 2r1cb∆

t
(2)
b∆

n
+ r2cb∆

t
(3)
b∆

n
+ 2r2cb∆

t
(4)
b∆

n
= l̄ . (6.9)

As illustrated in Figure 6.3, the function P
(
R, l̄, ξ

)
has several interesting properties

including

PR1 given (R, l̄), P
(
R, l̄, ξ

)
is a strictly decreasing function of ξ over ξ ∈ (0, l̄/2];

PR2 given 0 < ξ ≤ l̄/2, P
(
R, l̄, ξ

)
as a function of R is continuous and strictly decreasing

over R ∈ (0, 1], and furthermore

P
(
0, l̄, ξ

) ∆
= lim

R→0
P
(
R, l̄, ξ

)
= 0

PR3 and P
(
R, l̄, ξ

)
is close to −R ln 2 when ξ ≤ l̄/2 is not too far away from l̄/2.

These and other properties of P
(
R, l̄, ξ

)
are needed in the performance analysis of our

proposed SA-LDPC-IED Scheme In. Their exact statements and respective proofs will be
relegated to Appendix B.1.2.

Based on the function P
(
b∆
n
, l̄, ξ

)
, we are now ready to specify ηn and {Γb} for any

1 ≤ b ≤ n
∆

in our proposed SA-LDPC-IED Scheme In, which are defined respectively as

ηn = 1 +
1

ln 2

[
P
(
1, l̄, l1ε

)
+

3dl̄e
n

ln
nl̄

2
+

1

2n
ln
nl̄

4

]
+

∆

n

and

Γb = −P
(
b∆

n
, l̄, l1ε

)
− 3dl̄e

∆
ln
nl̄

2
− 1

2n
ln
nl̄

4
− ∆

n
ln 2

where ε > 0 is the same as in the description of the SA-LDPC-IED Scheme In.
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Figure 6.3: Graphical Illustration of P
(
b∆
n
, l̄, ξ

)
6.3.2 Performance for Individual Sequences

We now analyze the performance of the SA-LDPC-IED scheme In in terms of the perfor-
mance of the classical universal code Cn for any individual sequences xn and yn. We have
the following theorem.

Theorem 6.1. Let L(z) represent a normalized variable node degree distribution from a
node perspective with minimum degree l1 ≥ 2. Then for any (xn, yn) ∈ X n × Yn,

rf (x
n, yn|In) ≤ R

(∆)
L(z) (ε, hn(xn|yn)) ln 2 +H(ε) +

2∆

n
ln 2 (6.10)

rb(x
n, yn|In) = O

(
1√
n

)
(6.11)

and
Pe(In|xn, yn) ≤ 2−∆+log2( n∆ +1)+O(1) (6.12)

where Pe(In|xn, yn) denotes the conditional error probability of In given xn and yn, and

R
(∆)
L(z) (ε, hn(xn|yn)) is the positive solution R to

− P
(
R, l̄, l1ε

)
= hn(xn|yn) +

3dl̄e
∆

ln
nl̄

2
+

1

2n
ln
nl̄

4
+

∆

n
ln 2 (6.13)
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if hn(xn|yn) ≤ Γ n
∆

, and

R
(∆)
L(z) (ε, hn(xn|yn)) = 2 +

1

ln 2

[
P
(
1, l̄, l1ε

)
+

3dl̄e
n

ln
nl̄

2
+

1

2n
ln
nl̄

4

]
(6.14)

otherwise.

Proof. Given xn and yn, let j = j(xn, yn) be the number of interactions at the time the
decoder sends bit 1 to the encoder. From (6.2) and (6.3), it follows that

rf (x
n, yn|In) =

{
j∆
n

ln 2 +H(ε) + ∆
n

ln 2 if j ≤ ∆/n
(1 + ηn) ln 2 +H(ε) + ∆

n
ln 2 otherwise

(6.15)

and

rb(x
n, yn|In) =

j

n
ln 2. (6.16)

Since ∆ ∼
√
n and j ≤ n

∆
+ 1 according to Algorithm 2, (6.11) follows immediately.

In view of the description of Algorithm 2, it is not hard to see that at the (j − 1)th
interaction, one always has

Γj−1 < hn(xn|yn) . (6.17)

We now distinguish between two cases: (1) hn(xn|yn) ≤ Γ n
∆

, and (2) hn(xn|yn) > Γ n
∆

. In
case (1), it follows from (6.17) that

j ≤ n

∆
(6.18)

and

−P
(

(j − 1)∆

n
, l̄, l1ε

)
− 3dl̄e

∆
ln
nl̄

2
− 1

2n
ln
nl̄

4
− ∆

n
ln 2 < hn(xn|yn)

or equivalently

−P
(

(j − 1)∆

n
, l̄, l1ε

)
< hn(xn|yn) +

3dl̄e
∆

ln
nl̄

2
+

1

2n
ln
nl̄

4
+

∆

n
ln 2

= −P
(
R

(∆)
L(z) (ε, hn(xn|yn)) , l̄, l1ε

)
.

By Lemma B.5, P
(
R, l̄, l1ε

)
is strictly decreasing with respect to R. Therefore,

(j − 1)∆

n
ln 2 < R

(∆)
L(z) (ε, hn(xn|yn)) . (6.19)
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Combining (6.15), (6.18), and (6.19) together yields

rf (x
n, yn|In) ≤ R

(∆)
L(z) (ε, hn(xn|yn)) ln 2 +H(ε) +

2∆

n
ln 2 .

This completes the proof of (6.10) in case (1).

In case (2), j could be strictly greater than n
∆

. Regardless of the value of j, in case (2),
one always has

rf (x
n, yn|In) ≤ (1 + ηn) ln 2 +H(ε) +

∆

n
ln 2

= R
(∆)
L(z) (ε, hn(xn|yn)) ln 2 +H(ε) +

2∆

n
ln 2 .

This completes the proof of (6.10) in case (2).

Towards bounding the error probability, for any xn ∈ X n and 0 < ε < 0.5, define

B(ε, xn) =

{
zn ∈ X n :

1

n
wt(zn − xn) < ε or

1

n
wt(zn − xn) > 1− ε

}
.

To proceed,

Pe {In|xn, yn} = Pr {x̃n 6= xn}
= Pr {x̂n ∈ B(ε, xn)}Pr {x̃n 6= xn |x̂n ∈ B(ε, xn)}

+ Pr {x̂n /∈ B(ε, xn)}Pr {x̃n 6= xn |x̂n /∈ B(ε, xn)}
≤ Pr {x̃n 6= xn |x̂n ∈ B(ε, xn)}+ Pr {x̂n /∈ B(ε, xn)} .

We first consider Pr {x̂n /∈ B(ε, xn)}. By the union bound,

Pr {x̂n /∈ B(ε, xn)}

≤ Pr
{
∃zn /∈ B(ε, xn) : H

(b∆)
b∆×nz

n = H
(b∆)
b∆×nx

n, zn ∈ Jb(yn) for some b, 1 ≤ b ≤ n

∆

}
+ Pr

{
∃zn /∈ B(ε, xn) : Hn×nz

n = Hn×nx
n,H′ηnn×nz

n = H′ηnn×nx
n
}

≤
n
∆∑
b=1

Pr
{
∃zn /∈ B(ε, xn) : H

(b∆)
b∆×nz

n = H
(b∆)
b∆×nx

n, zn ∈ Jb(yn)
}

+ Pr
{
∃zn /∈ B(ε, xn) : Hn×nz

n = Hn×nx
n,H′ηnn×nz

n = H′ηnn×nx
n
}
.
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Now by Lemma 6.1, for 1 ≤ b ≤ n
∆

,

Pr
{

H
(b∆)
b∆×nz

n = H
(b∆)
b∆×nx

n
}

= Pr
{

H
(b∆)
b∆×n(zn − xn) = 0b∆

}
≤ exp

{
nP

(
b∆

n
, l̄, ξ

)
+

3ndl̄e
b∆

ln(nξ̂) +
1

2
lnnξ

(
1− ξ

l̄

)
+O(1)

}
≤ exp

{
n

[
P

(
b∆

n
, l̄, ξ

)
+

3dl̄e
∆

ln
nl̄

2
+

1

2n
ln
nl̄

4

]
+O(1)

}
while

Pr {Hn×nz
n = Hn×nx

n}
= Pr {Hn×n(zn − xn) = 0n}

≤ exp

{
nP
(
1, l̄, ξ

)
+ 3dl̄e ln(nξ̂) +

1

2
lnnξ

(
1− ξ

l̄

)
+O(1)

}
≤ exp

{
n

[
P
(
1, l̄, ξ

)
+

3dl̄e
n

ln
nl̄

2
+

1

2n
ln
nl̄

4

]
+O(1)

}
,

where ξ = l̄κ(zn−xn) and ξ̂ = max
{

1
n
,min

{
ξ, l̄ − ξ

}}
. Simple calculation reveals that

l1ε ≤ ξ ≤ l̄ − l1ε for zn /∈ B(ε, xn), which, together with Lemmas B.2 and B.3, further
implies that

Pr
{

H
(b∆)
b∆×nz

n = H
(b∆)
b∆×nx

n
}

≤ exp

{
n

[
P

(
b∆

n
, l̄, l1ε

)
+

3dl̄e
∆

ln
nl̄

2
+

1

2n
ln
nl̄

4

]
+O(1)

}
= e−nΓb−∆ ln 2+O(1)

and

Pr {Hn×nz
n = Hn×nx

n}

≤ exp

{
n

[
P
(
1, l̄, l1ε

)
+

3dl̄e
n

ln
nl̄

2
+

1

2n
ln
nl̄

4

]
+O(1)

}
= e−n(1−ηn) ln 2−∆ ln 2+O(1).

Now by the union bound again, for 1 ≤ b ≤ n
∆

,

Pr
{
∃zn /∈ B(ε, xn) : H

(b∆)
b∆×nz

n = H
(b∆)
b∆×nx

n, zn ∈ Jb(yn)
}

≤ |Jb(yn)/B(ε, xn)| e−nΓb−∆ ln 2+O(1)

≤ |Jb(yn)|e−nΓb−∆ ln 2+O(1).
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By the upper bound on the size of jar from classical prefix codes in (1.13), we have

Pr
{
∃zn /∈ B(ε, xn) : H

(b∆)
b∆×nz

n = H
(b∆)
b∆×nx

n, zn ∈ Jb(yn)
}
≤ 2−∆+O(1).

At the same time,

Pr
{
∃zn /∈ B(ε, xn) : Hn×nz

n = Hn×nx
n,H′ηnn×nz

n = H′ηnn×nx
n
}

≤
∑

zn /∈B(ε,xn)

Pr {Hn×n(zn − xn) = 0n}Pr
{
H′ηnn×n(zn − xn) = 0ηnn

}
≤

∑
zn /∈B(ε,xn)

e−n(1−ηn) ln 2−∆ ln 2+O(1)e−ηnn ln 2

≤ 2−∆+O(1).

To sum up, we have shown that

Pr {x̂n /∈ B(ε, xn)} ≤ 2−∆+log2( n∆ +1)+O(1).

Before moving to the next target Pr {x̃n 6= xn |x̂n ∈ B(ε, xn)}, it is not hard to verify the
following bound on |B(ε, xn)|:

|B(ε, xn)| = 2

bnεc∑
d=0

(
n

d

)
≤ 2enH(

bnεc
n

) ≤ enH(ε)+ln 2 .

Now suppose x̂n ∈ B(ε, xn), then xn ∈ B(ε, x̂n), which, according to Algorithm 2, implies
that

Pr {x̃n 6= xn |x̂n ∈ B(ε, xn)}

= Pr

{
∃zn ∈ B(ε, x̂n)/{xn} : H′′

(nH(ε)
ln 2

+∆)×n
zn = H′′

(nH(ε)
ln 2

+∆)×n
xn
}

≤ |B(ε, x̂n)|e−nH(ε)+∆ ln 2

≤ 2−∆+O(1).

In summary,

Pe {In|xn, yn} ≤ Pr {x̃n 6= xn |x̂n ∈ B(ε, xn)}+ Pr {x̂n /∈ B(ε, xn)}
≤ 2−∆+O(1) + 2−∆+log2( n∆ +1)+O(1)

≤ 2−∆+log2( n∆ +1)+O(1).

The theorem is proved.
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Remark 6.4. As can be seen, the achievable bounds of coding performance for SA-LDPC-
IED schemes in Theorem 6.1 depend only on l1 and l̄, rather than the entire L(z). This
property of the results is due to both the bounding technique and the fact that jar decoding
is assumed. However, when BP decoding is used as a practical implementation of the
decoding algorithm in section 6.5, coding performance will be determined by the entire
degree distribution L(z). Optimization of degree distribution for BP decoding is left for
future research.

Remark 6.5. Readers may be interested in comparing the result above and those of Theo-
rems 1, 3 and 5 in [45] for linear IED schemes with Gallager-type and vector-type ensem-
bles, where the word error probability was considered. However, no fair comparison can be
made here. As can be seen, the average degree of ensembles used in Theorem 1, 3 and 5
of [45] is at least on the order of lnn, while the average degree of ensembles used here is
finite with respect to block length n.

In order to analyze the asymptotical performance of the SA-LDPC-IED scheme In first
as n→∞ and then as the average degree l̄ of L(z) goes to∞, we define for any h ∈ [0, ln 2]

RL(z) (ε, h)
∆
= lim

n→∞
R

(∆)
L(z) (ε, h)

and
rL(z) (ε, h)

∆
=RL(z) (ε, h) ln 2 +H(ε)− h.

Clearly, rL(z) (ε, h) represents the redundancy of In, i.e., the gap between the asymptotical
total rate of In and the desired rate h. We have the following two results.

Proposition 6.1. Let L(z) be a normalized degree distribution with l1 ≥ 2 and ε be a real
number where l̄

l1bl̄c
≤ ε < 0.5. Then for any h ≥ 0,

rL(z) (ε, h) ≤ H(ε) +
(
1 + I

(
h ≥ −P (1, l̄, l1ε)

))
×
{

2l1ε exp

[
−2l1ε

l̄

(
bl̄c − 1

)]
+ exp

(
−2l1ε

l̄
bl̄c
)}

where I(·) is the indicator function such that

I
(
h ≥ −P (1, l̄, l1ε)

)
=

{
1 if h ≥ −P (1, l̄, l1ε)
0 otherwise
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Proof. In view of Lemma B.5, it follows from the definition of RL(z) (ε, h) that RL(z) (ε, h)
is the solution to

−P
(
R, l̄, l1ε

)
= h

if h < −P
(
1, l̄, l1ε

)
, and

RL(z) (ε, h) = 2 +
1

ln 2
P
(
1, l̄, l1ε

)
otherwise. On the other hand, in view of the fact that l1ε ≥ l̄

bl̄c and of Lemma B.4, for

R ∈ (0, 1],

P
(
R, l̄, l1ε

)
≤ −R ln 2 + 2l1ε exp

[
−2l1ε

l̄
(cRr1 − 1)

]
+R exp

(
−2l1ε

l̄
r1cR

)
≤ −R ln 2 + 2l1ε exp

[
−2l1ε

l̄

(
bl̄c − 1

)]
+ exp

(
−2l1ε

l̄
bl̄c
)

where cR
∆
=2−dlog2Re ≥ 1. Now if h ≥ −P

(
1, l̄, l1ε

)
, then

rL(z)(ε, h) = RL(z) (ε, h) ln 2 +H(ε)− h
≤ 2 ln 2 + 2P

(
1, l̄, l1ε

)
+H(ε)

≤ 4l1ε exp

[
−2l1ε

l̄

(
bl̄c − 1

)]
+ 2 exp

(
−2l1ε

l̄
bl̄c
)

+H(ε). (6.20)

If h < −P
(
1, l̄, l1ε

)
, then

h = −P
(
RL(z) (ε, h) , l̄, l1ε

)
≥ RL(z) (ε, h) ln 2− 2l1ε exp

[
−2l1ε

l̄

(
bl̄c − 1

)]
− exp

(
−2l1ε

l̄
bl̄c
)

which implies that

RL(z) (ε, h) ≤ h

ln 2
+

2l1ε

ln 2
exp

[
−2l1ε

l̄

(
bl̄c − 1

)]
+

1

ln 2
exp

(
−2l1ε

l̄
bl̄c
)
.

Therefore,

rL(z)(ε, h) = RL(z) (ε, h) ln 2 +H(ε)− h

≤ 2l1ε exp

[
−2l1ε

l̄

(
bl̄c − 1

)]
+ exp

(
−2l1ε

l̄
bl̄c
)

+H(ε). (6.21)

Combining (6.20) with (6.21) completes the proof of Proposition 6.1.
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Proposition 6.2. Let L(z) be a normalized degree distribution with l1 ≥ 2. Then

rL(zk)

(
ln k

2k
, h

)
= O

(
ln2 k

k

)
for any k ≥ e

2
l1 and h ≥ 0.

Proof. Note that k ≥ e
2
l1 , which implies that

kl1
ln k

k
= l1 ln k ≥ 2 ≥ kl̄

bkl̄c
,

and therefore, we can apply Proposition 6.1 on rL(zk)

(
ln k
k
, h
)
, resulting in

rL(zk)

(
ln k

k
, h

)
≤ 4l1 ln k exp

[
−

2l1
(
bkl̄c − 1

)
kl̄

ln k

]
+ 2 exp

(
−2l1bkl̄c

kl̄
ln k

)
+H

(
ln k

k

)
It is easily verified that

H

(
ln k

k

)
= O

(
ln2 k

k

)
.

On the other hand,

2l1bkl̄c
kl̄

≥
2l1
(
bkl̄c − 1

)
kl̄

≥
4
(
bkl̄c − 1

)
kl̄

≥ 1.

Therefore,

rL(zk)

(
ln k

k
, h

)
= O

(
ln k

k

)
+O

(
1

k

)
+O

(
ln2 k

k

)
= O

(
ln2 k

k

)
.

6.3.3 Performance for Stationary, Ergodic Sources

In this subsection, we analyze the performance of the SA-LDPC-IED scheme In for any
stationary, ergodic source-side information pair (X, Y ) = {(Xi, Yi)}∞i=1 with alphabet X ×
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Y . To this end, we select {Cn}∞n=1 to be a sequence of universal (classical) prefix codes
with side information available to both the encoder and decoder such that

lim
n→∞

hn(Xn|Y n) = H(X|Y ) with probability one (6.22)

for any stationary, ergodic source-side information pair (X, Y ). (Note that from the litera-
ture of classical universal lossless source coding (see, for example, [8–12], and the references
therein), such a sequence exists.) To bring out the dependence of In on L(z) and ε, we
shall write In as In(L(z), ε). Then we have the following result.

Theorem 6.2. Let L(z) be a normalized variable node degree distribution. Then for any
stationary, ergodic source side information pair (X, Y ),

lim
k→∞

lim
n→∞

rf

(
Xn, Y n

∣∣∣∣In(L(zk),
ln k

2k

))
= H(X|Y ) with probability one (6.23)

rb

(
Xn, Y n

∣∣∣∣In(L(zk),
ln k

2k

))
= O

(
1√
n

)
(6.24)

and

Pe

(
In
(
L(zk),

ln k

2k

))
≤ 2−∆+log2( n∆ +1)+O(1) (6.25)

whenever k ≥ 9.

Proof. In view of Theorem 6.1, (6.24) and (6.25) follow immediately. Thus it suffices to
prove (6.23). From Theorem 6.1 again, we have

rf

(
Xn, Y n|In

(
L(zk),

ln k

2k

))
≤ R

(∆)

L(zk)

(
ln k

2k
, hn(xn|yn)

)
ln 2 +H

(
ln k

2k

)
+

2∆

n
ln 2 .

(6.26)

Let δ > 0 be a small number to be specified later. In view of the definition ofR
(∆)
L(z) (ε, hn(xn|yn))

and Lemma B.5, it is not hard to verify that R
(∆)
L(z) (ε, hn(xn|yn)) is non-decreasing as

hn(xn|yn) increases. This, coupled with (6.26) and (6.22), implies that with probability
one

rf

(
Xn, Y n|In

(
L(zk),

ln k

2k

))
≤ R

(∆)

L(zk)

(
ln k

2k
,H(X|Y ) + δ

)
ln 2 +H

(
ln k

2k

)
+

2∆

n
ln 2

(6.27)
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for sufficiently large n. Applying Propositions 6.1 and 6.2 to (6.27), we have

lim sup
n→∞

rf

(
Xn, Y n|In

(
L(zk),

ln k

2k

))
≤ H(X|Y ) + δ + rL(zk)

(
ln k

2k
,H(X|Y ) + δ

)
= H(X|Y ) + δ +O

(
ln2 k

k

)
(6.28)

with probability one. Letting δ → 0 and then k →∞ in (6.28) yields

lim sup
k→∞

lim sup
n→∞

rf

(
Xn, Y n

∣∣∣∣In(L(zk),
ln k

2k

))
≤ H(X|Y )

with probability one. This, coupled with the converse [41, Theorem 3], implies (6.23). This
competes the proof of Theorem 6.2.

Remark 6.6. It is easy to verify that for any stationary ergodic source-side information
pair (X, Y ), H(X|Y ) is the optimal compression rate for IED schemes, which has been
proved in [41]. This is expected as even if the side information is fully available to the
encoder, the best compression rate is still H(X|Y ).

Remark 6.7. As can be seen from Theorem 6.2, to approach the optimum H(X|Y ), L(zk)
for large k has to be used for the degree distribution of LDPC ensembles. In fact, by utiliz-
ing some converse theorems on the average degree of capacity-achieving LDPC ensembles
in channel coding, e.g. Theorem 3.94 in Section 3.16 of [5], it can be shown that the av-
erage degree of LDPC ensembles has to approach infinity in order to allow SA-LDPC-IED
schemes to achieve the optimal compression rate H(X|Y ). However, it is worthing pointing
out that the result of Theorem 6.2 is doubly asymptotic, in the sense the compression rate
take its limit with respect to block length n first, and then with respect to k which controls
the average degree of LDPC ensembles. Therefore, k (and consequently, the average degree
of LDPC ensembles) is always assumed to be finite with respect to n, implying the low
density of ensembles. Readers are directed to [45] for the case when the average degree of
ensembles grows with respect to n.

6.4 Performance of SA-LDPC-IED: Binary Case and

Bit Error Probability

Theorems 6.1 and 6.2 show the performance of our proposed SA-LDPC-IED scheme In in
terms of the forward and backward rates versus the word error probability for both individ-
ual sequences xn and yn and stationary, ergodic sources. In this section, we consider instead
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the forward and backward rates versus the bit error probability by focusing on indepen-
dent and identically distributed (i.i.d) source-side information pairs (X, Y ) = {(Xi, Yi)}∞i=1,
where the source X and side-information Y are correlated through a BSC with cross-over
probability p0 ∈ (0, 0.5), which is unknown to either the decoder or encoder. Limiting
ourselves to this smaller class of source-side information pairs allows us to illustrate the
SA-LDPC-IED scheme In by using a specific and simple function γ(·, ·), which in turn
leads to further simplification of the SA-LDPC-IED scheme In itself and paves the way for
BP decoding to be used as a decoding method in IED in the next section.

Note that in this binary case

H(X|Y ) = H(p0) .

Now specify γ(·, ·) as

γ(xn, yn) =

{
lnn+ln 2

n
+H

(
1
n
wt(xn − yn)

)
if 1

n
wt(xn − yn) ≤ 0.5

1
n

ln 2 + ln 2 otherwise.
(6.29)

It is easy to see that γ(xn, yn) is actually the normalized code length function of the
classical prefix code Cn with side information available to both the encoder and decoder
as described in Algorithm 3. With the assumption on the correlation between the source
X and side information Y and with this specific function γ(·, ·), we can further get rid of
the last round of transmission from the encoder to the decoder in In, yielding a simplified
version Ĩn as described in Algorithm 4, where the specification of ηn and {Γb} is the same
as that in Algorithm 2.

Algorithm 3 A classical prefix code Cn with side information available to both the encoder
and decoder

1: The encoder calculates w = wt(xn − yn).
2: if w ≤ 0.5n then
3: The encoder sends bit 0 followed by a codeword of fixed-length log2 n specifying w

and then by a codeword of length n
H(wn )

ln 2
specifying the index of xn − yn in the set

{zn : wt(zn) = w} sorted by the lexicographical order.
4: else
5: The encoder sends bit 1 followed by xn itself.
6: end if

Now let us analyze the performance of the SA-LDPC-IED scheme Ĩn in terms of the
forward and backward rates versus the bit error probability Pb, where

Pb
∆
=

1

n
E
[
wt(X̂n −Xn)

]
.
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Algorithm 4 SA-LDPC-IED scheme Ĩn for i.i.d source-side information pairs

1: Based on P1P2 · · · Pn and sn = Hn×nx
n, the encoder generates accumulated syndromes

s̃1s̃2 · · · s̃n and augmenting syndromes a1a2 · · · an.
2: Based on P1P2 · · · Pn and Hn×n, the decoder calculates matrices H

(∆)
∆×nH

(2∆)
2∆×n · · ·H

(n)
n×n.

3: b← 0.
4: while The encoder does not receive bit 1 from the decoder do
5: b← b+ 1.
6: if b ≤ n

∆
then

7: The encoder sends augmenting syndromes a(b−1)∆+1 · · · ab∆ to the decoder by ∆
bits.

8: else
9: The encoder sends syndromes s′ηnn = H′ηnn×nx

n to the decoder by ηnn bits.
10: end if
11: Upon receiving syndromes sent from the encoder, the decoder searches through

Jb(y
n) for a sequence x̂n satisfying H

(b∆)
b∆×nx̂

n = s̃b∆ if b ≤ n
∆

and[
H

(n)
n×n

H′ηnn×n

]
x̂n =

[
s̃n
s′ηnn

]
otherwise.

12: if Such an x̂n is found then
13: The decoder sends bit 1 to the encoder, and outputs x̂n as the estimate of xn.
14: else
15: The decoder sends bit 0 to the encoder and leaves the estimate of xn undecided.
16: end if
17: end while
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Then we have the following theorem.

Theorem 6.3. Let L(z) be a normalized variable node degree distribution from a node
perspective with minimum degree l1 ≥ 2 and average degree l̄ being an odd integer. Select
ε > 0 such that ε ≤ 0.5 − H−1(0.75 ln 2). Then for any i.i.d source-side information pair
(X, Y ) correlated through a BSC with cross-over probability p0 ∈ (0, 0.5) and for sufficiently
large n,

rf (Ĩn) ≤ R
(∆)
L(z)

(
ε,H(p0) +

lnn+ ln 2

n
+ ln

(
1− p0

p0

)√
lnn

n

)
ln 2

+

[
n−2R

(∆)
L(z)(ε, ln 2) +

∆

n

]
ln 2

(6.30)

rb(Ĩn) = O

(
1√
n

)
(6.31)

and
Pb(Ĩn) ≤ ε+ e−2n(0.5−p0)2

+ 2−∆+log2( n∆ +1)+O(1) . (6.32)

Proof. In view of Theorem 6.1, it suffices to prove (6.30) and (6.32). Note that from the
proof of Theorem 6.1 and the description of Algorithm 4, it can be seen that for any
sequence of source-side information pairs (Xn, Y n),

rf

(
Xn, Y n|Ĩn

)
≤ ∆

n
ln 2

+ ln 2

{
R

(∆)
L(z)

(
ε,H

(
1
n
wt(Xn − Y n) + lnn+ln 2

n

))
if wt(Xn − Y n) ≤ 0.5n

R
(∆)
L(z) (ε, ln 2) otherwise.

For convenience, let Ep0(X, Y ) denote the event 1
n
wt (Xn − Y n) ≤ p0+

√
lnn
n

and Ec
p0

(X, Y )

be the complement event of Ep0(X, Y ). Therefore,

rf (Ĩn) ≤ ∆

n
ln 2 + Pr {Ep0(X, Y )}

× E
[
R

(∆)
L(z)

(
ε,H

(
1

n
wt(Xn − Y n)

)
+

lnn+ ln 2

n

)∣∣∣∣Ep0(X, Y )

]
ln 2

+ Pr
{
Ec
p0

(X, Y )
}
R

(∆)
L(z)(ε, ln 2) ln 2
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where we assume that

p0 < 0.5−
√

lnn

n

which always holds for sufficiently large n as p0 < 0.5. On one hand, given

1

n
wt (Xn − Y n) ≤ p0 +

√
lnn

n
< 0.5

we have

H

(
1

n
wt(Xn − Y n)

)
≤ H

(
p0 +

√
lnn

n

)

≤ H(p0) + ln

(
1− p0

p0

)√
lnn

n

which further implies that

E
[
R

(∆)
L(z)

(
ε,H

(
1

n
wt(Xn − Y n)

)
+

lnn+ ln 2

n

)∣∣∣∣Ep0(X, Y )

]
≤ R

(∆)
L(z)

(
ε,H (p0) +

lnn+ ln 2

n
+ ln

(
1− p0

p0

)√
lnn

n

)
.

On the other hand, by Hoeffding’s inequality,

Pr{Ep0(X, Y )} = Pr

{
1

n
wt (Xn − Y n) > p0 +

√
lnn

n

}
≤ n−2

from which (6.30) is proved.
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Towards showing (6.32), we have

Pb(Ĩn) = E
[

1

n
wt(X̂n −Xn)

]
= E

[
E
[

1

n
wt(X̂n −Xn)

∣∣∣∣Xn, Y n

]]
=

∑
(xn,yn): 1

n
wt(xn−yn)≤0.5

Pr {Xn = xn, Y n = yn}E
[

1

n
wt(X̂n − xn)

∣∣∣∣xn, yn]

+
∑

(xn,yn): 1
n
wt(xn−yn)>0.5

Pr {Xn = xn, Y n = yn}E
[

1

n
wt(X̂n − xn)

∣∣∣∣xn, yn]

≤
∑

(xn,yn): 1
n
wt(xn−yn)≤0.5

Pr {Xn = xn, Y n = yn}E
[

1

n
wt(X̂n − xn)

∣∣∣∣xn, yn]

+ Pr

{
1

n
wt(Xn − Y n) > 0.5

}
. (6.33)

By Hoeffding’s inequality,

Pr

{
1

n
wt(Xn − Y n) > 0.5

}
≤ e−2n(0.5−p0)2

. (6.34)

On the other hand,

E
[

1

n
wt(X̂n − xn)

∣∣∣∣xn, yn]
= Pr

{
1

n
wt(X̂n − xn) ≤ ε

∣∣∣∣xn, yn}E
[

1

n
wt(X̂n − xn)

∣∣∣∣ 1

n
wt(X̂n − xn) ≤ ε, xn, yn

]
+ Pr

{
1

n
wt(X̂n − xn) > ε

∣∣∣∣xn, yn}E
[

1

n
wt(X̂n − xn)

∣∣∣∣ 1

n
wt(X̂n − xn) > ε, xn, yn

]
≤ ε+ Pr

{
1

n
wt(X̂n − xn) > ε

∣∣∣∣xn, yn} . (6.35)

Now we would like to bound

Pr

{
1

n
wt(X̂n − xn) > ε

∣∣∣∣xn, yn}
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when 1
n
wt(xn − yn) ≤ 0.5. By the argument in the proof of Theorem 6.1,

Pr

{
1

n
wt(X̂n − xn) > ε

∣∣∣∣xn, yn}
≤ Pr

{
∃x̂n∃b, 1

n
wt(x̂n − xn) > ε,H

(b∆)
b∆×n(x̂n − xn) = 0b∆, x̂n ∈ Jb(yn)

}
+ Pr

{
∃x̂n, 1

n
wt(x̂n − xn) > ε,Hn×n(x̂n − xn) = 0n,H′ηnn×n(x̂n − xn) = 0ηnn

}

≤
b 0.75n

∆
c∑

b=1

Pr

{
∃x̂n, 1

n
wt(x̂n − xn) > ε,H

(b∆)
b∆×n(x̂n − xn) = 0b∆, x̂n ∈ Jb(yn)

}

+

n
∆∑

b=b 0.75n
∆
c+1

Pr

{
∃x̂n, 1

n
wt(x̂n − xn) > ε,H

(b∆)
b∆×n(x̂n − xn) = 0b∆, x̂n ∈ Jb(yn)

}

+ Pr

{
∃x̂n, 1

n
wt(x̂n − xn) > ε,Hn×n(x̂n − xn) = 0n,H′ηnn×n(x̂n − xn) = 0ηnn

}
.

(6.36)

For 1 ≤ b ≤ b0.75n
∆
c, b∆

n
≤ 0.75 and therefore,

γ(x̂n, yn) ≤ Γb ≤
b∆

n
ln 2 ≤ 0.75 ln 2

which, together with (6.29), further implies that

1

n
wt(x̂n − yn) < H−1(0.75 ln 2)

and
1

n
wt(x̂n − xn) ≤ 1

n
wt(xn − yn) +

1

n
wt(x̂n − yn)

< 0.5 +H−1(0.75 ln 2)

≤ 1− ε
since ε ≤ 0.5−H−1(0.75 ln 2). Consequently, we have for any 1 ≤ b ≤ b0.75n

∆
c

Pr

{
∃x̂n, 1

n
wt(x̂n − xn) > ε,H

(b∆)
b∆×n(x̂n − xn) = 0b∆, x̂n ∈ Jb(yn)

}
= Pr

{
∃x̂n, ε < 1

n
wt(x̂n − xn) < 1− ε,H(b∆)

b∆×n(x̂n − xn) = 0b∆, x̂n ∈ Jb(yn)

}
≤ 2−∆+O(1) (6.37)
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where the inequality above has been proved in the proof of Theorem 6.1. For b ≥ b0.75n
∆
c+1,

by Lemmas B.2 and B.6, P
(
b∆
n
, l̄, ξ

)
is a strictly decreasing function of ξ in the range(

0, l̄ − t
(1)
b∆

n

]
. In view of this, it can be shown by the same technique as in proof of Theorem

6.1 that for any b ≥ b0.75n
∆
c+ 1

Pr

{
∃x̂n, 1

n
wt(x̂n − xn) > ε,H

(b∆)
b∆×n(x̂n − xn) = 0b∆, x̂n ∈ Jb(yn)

}
≤ 2−∆+O(1) (6.38)

and

Pr

{
∃x̂n, 1

n
wt(x̂n − xn) > ε,Hn×n(x̂n − xn) = 0n,H′ηnn×n(x̂n − xn) = 0ηnn

}
≤ 2−∆+O(1).

(6.39)
Plugging (6.37), (6.38), and (6.39) into (6.36) yields

Pr

{
1

n
wt(X̂n − xn) > ε

∣∣∣∣xn, yn} ≤ 2−∆+log2( n∆ +1)+O(1) (6.40)

for any (xn, yn) with 1
n
wt(xn − yn) ≤ 0.5. This, combined with (6.35), (6.34), and (6.33),

implies

Pb(Ĩn) ≤ ε+ 2−∆+log2( n∆ +1)+O(1) + e−2n(0.5−p0)2

which completes the proof of (6.32) and hence of Theorem 6.3.

Remark 6.8. From the proof of Theorem 6.3, it can be seen that the error event is broken
down to two cases, i.e.

• ∃X̂n : wt(X̂n−Xn) ≤ εn such that parity check and threshold on cost function γ are
satisfied;

• ∃X̂n : wt(X̂n−Xn) > εn such that parity check and threshold on cost function γ are
satisfied.

Then the probability of the second type of error is tightly bounded by

e−2n(0.5−p0)2

+ 2−∆+log2( n∆ +1)+O(1).

However, the probability of the first type of error is trivially bounded by 1. Therefore, further
refinement of Theorem 6.3 is possible. Specifically, to improve the result of Theorem 6.3,
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minimum hamming distance analysis of the code with parity check matrix H
(b∆)
b∆×n can be

applied at the b-th round of interaction for 1 ≤ b ≤ n
∆

. Let d
(b)
min denote the minimum

hamming distance at the b-th interaction. As long as we choose εn ≤ d
(b)
min, the first type of

error will not happen at the b-th interaction. Consequently, a relatively large value of ε can
be used to calculate the achievable compression rate in (6.30) while the error probability

can be still tightly bounded, especially for some large d
(b)
min when b is large. However, d

(b)
min

does not have a simple analytic form in general, and applying minimum distance analysis
would result in a much more complicated expression which would not allow the following
discussion of redundancy, i.e. the gap between the achievable rate and H(X|Y ). Moreover,
as shown below, this refined analysis will not affect the coding performance too much for
ensembles of large average degrees.

Remark 6.9. It would be interesting to compare the performance of SA-LDPC-IED schemes
given in Theorem 6.3 and those of LIED schemes with Gallager-type ensembles and SA-
IED schemes with vector-type ensembles in Theorems 4 and 6 in [45] respectively, where
the symbol error probability is considered. To make a fair comparison, however, some de-
tails on these three kinds of IED schemes need to be addressed. In particular, as shown
in Remark 6.1, given a source xn and a side-information yn, decoders in all three kinds
of schemes either directly receive or calculate s̃b∆ = H

(b∆)
b∆×nx

n, and try to estimate xn

based on s̃b∆ and yn. The main difference is how H
(b∆)
b∆×n is generated. Further inspec-

tion on ensembles reveal that: 1) for an SA-IED scheme using a vector-type ensemble,

the number of ones in H
(b∆)
b∆×n does not change with respect to b, whose expectation equals

to ∆n
(
n
∆

+ 1
)
p∗n = (n+ ∆)np∗n, where p∗n is a parameter in the vector-type ensemble to

control its density; 2) for an SA-LDPC-IED scheme, H
(b∆)
b∆×n for any 1 ≤ b ≤ n

∆
will

have roughly the same number of ones as Hn×n, i.e. nl̄; 3) for an LIED scheme using a

Gallager-type ensemble, H
(b∆)
b∆×n will have nb∆p∗n expected number of ones, which changes

with respect to b and is bounded by n2p∗n for 1 ≤ b ≤ n
∆

, where p∗n is a parameter in the
Gallager-type ensemble to control its density. For the sake of a fair comparison, we can set
l̄ = np∗n when comparing SA-LDPC-IED schemes with LIED schemes, and l̄ = (n + ∆)p∗n
when comparing SA-LDPC-IED schemes with SA-IED schemes. (The comparison between
LIED schemes and SA-IED schemes is included in [45].) Let r be the redundancy, i.e. the
gap between the achievable rate of (LIED, SA-IED and SA-LDPC-IED) schemes and the
conditional entropy rate. By the lower bounds on p∗n in Theorem 4 and 6 in [45], it is not
hard to see for LIED and SA-IED schemes,

r = O

(
1

εl̄

)
+ on(1)
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where ε is the symbol error probability, and on(1) → 0 as n → +∞. In the meantime, by
Proposition 6.1, it can be shown that for SA-LDPC-IED schemes

r = O(l1εe
−2l1ε) + on(1).

From the calculation, it can be seen that given any ε, r → 0 as n → +∞, l̄ → +∞
and l1 → +∞ for LIED, SA-IED and SA-LDPC-IED schemes respectively. Moreover, r
of SA-LDPC-IED schemes approaches 0 faster than those of LIED and SA-IED schemes
assuming that l1 and l̄ approach infinity in the same speed.

By defining

r̃L(z)(ε, p0)
∆
=RL(z) (ε,H(p0)) ln 2−H(p0)

we have the following proposition, the proof of which is omitted due to its similarity to
that of Proposition 6.2.

Proposition 6.3. Let L(z) be a normalized degree distribution with l1 ≥ 2 and k ≥ 2. For
p0 ∈ (0, 0.5),

r̃L(zk)

(
1

2
√
k
, p0

)
= O

(
e−
√
k+ 1

2
ln k
)
.

We conclude this section by providing the following theorem, which analyzes the per-
formance of the modified SA-LDPC-IED scheme Ĩn when L(zk) is used. Once again, to
bring out the dependence of Ĩn on (L(z), ε), we write Ĩn as Ĩn(L(z), ε).

Theorem 6.4. Let L(z) be a normalized variable node degree distribution with minimum
degree l1 ≥ 2. For any i.i.d source-side information pair (X, Y ) correlated through a binary
symmetric channel with cross-over probability p0 ∈ (0, 0.5),

lim
k→∞

lim
n→∞

rf

(
Ĩn
(
L(zk),

1

2
√
k

))
= H(p0) (6.41)

rb

(
Ĩn
(
L(zk),

1

2
√
k

))
= O

(
1√
n

)
(6.42)

and

Pb

(
Ĩn
(
L(zk),

1

2
√
k

))
≤ 1

2
√
k

+ e
−2n

(
0.5− 1

4
√
k
− 1

2
√
n
−p0

)2

+ 2−∆+log2( n∆ +1)+O(1) (6.43)

whenever k >
(

1
2(1−2p0−n−0.5)

)2

.
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Proof. Note that (6.30) applies to any value of l̄, since its proof does not rely on the
condition that l̄ be an odd integer. Then by using Proposition 6.3 and following the same
approach as that in the proof of Theorem 6.2, (6.41) is proved, while (6.42) is obvious.

What remains is to prove (6.43). To this end, let ε = 1
2
√
k
. Then p0 <

1−ε−n−0.5

2
as

k >
(

1
2(1−2p0−n−0.5)

)2

. By the same argument as in the proof of Theorem 6.3 ,

Pb(Ĩn) = E
[

1

n
wt(X̂n −Xn)

]
≤

∑
(xn,yn): 1

n
wt(xn−yn)≤ 1−ε−n−0.5

2

Pr {Xn = xn, Y n = yn}E
[

1

n
wt(X̂n − xn)

∣∣∣∣xn, yn]

+ Pr

{
1

n
wt(Xn − Y n) >

1− ε− n−0.5

2

}
and

E
[

1

n
wt(X̂n − xn)

∣∣∣∣xn, yn] ≤ ε+ Pr

{
1

n
wt(X̂n − xn) > ε

∣∣∣∣xn, yn}
given 1

n
wt(xn−yn) ≤ 1−ε−n−0.5

2
. At the same time, by the decoding procedure of Algorithm

4,

γ(X̂n, yn) ≤ Γj∗

= Γj∗−1 + (Γj∗ − Γj∗−1)

≤ γ(Xn, yn) +
∆

n
ln 2

where j∗ is the round of interaction at which the decoder terminates, and the result of
Lemma B.5 is utilized to bound Γj∗ − Γj∗−1 by ∆

n
ln 2, and therefore

1

n
wt(X̂n − yn) ≤ 1

n
wt(xn − yn) +

∆

n
=

1

n
wt(xn − yn) + n−0.5

which further implies that

1

n
wt(X̂n − xn) ≤ 1

n
wt(X̂n − yn) +

1

n
wt(xn − yn) ≤ 1− ε.

Consequently, for any (xn, yn) with 1
n
wt(xn − yn) ≤ 1−ε

2
,

Pr

{
1

n
wt(X̂n − xn) > ε

∣∣∣∣xn, yn} = Pr

{
ε <

1

n
wt(X̂n − xn) ≤ 1− ε

∣∣∣∣xn, yn}
≤ 2−∆+log2( n∆ +1)+O(1)
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where the last inequality has been proved in the proof Theorem 6.1. The inequality (6.43)
now follows from the fact that

Pr

{
1

n
wt(Xn − Y n) >

1− ε− n−0.5

2

}
≤ e

−2n
(

1−ε−n−0.5

2
−p0

)2

= e
−2n

(
0.5− 1

4
√
k
− 1

2
√
n
−p0

)2

.

This completes the proof of Theorem 6.4.

6.5 Implementation and Simulation Results

To verify our theoretical analysis in the last two sections, we have implemented our pro-
posed SA-LDPC-IED schemes with some modification, namely by adopting the BP decod-
ing in the place of the minimum coding length. In this section, we report their performance
for binary source-side information pairs (X, Y ), where X and Y are correlated through a
binary channel with probability transition matrix (from Y to X) given by(

1− p1 p2

p1 1− p2

)
and where p1, p2 ∈ (0, 0.5] are assumed unknown to either the encoder or decoder. Our
strategy towards design of practical SA-LDPC-IED schemes is to start with the special
case p1 = p2, i.e. source and side information are correlated through a binary symmetric
channel. In this case, the assumption on source-side information pair is the same as that
in section 6.4, and therefore, we can modify Algorithm 4 into a practical version, coupled
with BP decoding. Later on, this practical algorithm will be generalized to deal with the
case p1 6= p2. Consequently, we adopt the same notations of γn, {Γb} and ηn as in section
6.4. However, replacing jar decoding in Algorithm 4 with standard BP decoding does not
work well, since the standard BP decoding algorithm applies only to fix-rate LDPC codes
with known statistics of source-side information pairs. Therefore we first have to modify
the BP decoding algorithm so that it fits into our variable-rate and unknown statistics
situation as well while maintaining its low complexity.

6.5.1 Modified BP Decoding Algorithm and Practical Implemen-
tation of SA-LDPC-IED Schemes

The BP decoding algorithm can be considered as a sum-product algorithm [55] on a Tanner
graph, which represents the parity check matrix of the LDPC code, with variable nodes
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corresponding to bits of the source, and check nodes corresponding to syndromes. Generally
speaking, it tries to marginalize the distribution of each bit of the source based on local
calculations. Specifically, it iteratively calculates messages from variable nodes to their
connected check nodes, and vice versa, i.e.

mvi→cj = log
Pr{Xi = 0|Yi}
Pr{Xi = 1|Yi}

+
∑

ck 6=cj :ck is connected to vi

mck→vi (6.44)

mcj→vi = 2 tanh−1(1− 2sj)
∏

vk 6=vi:vk is connected to cj

tanh
(mvk→cj

2

)
(6.45)

where mvi→cj and mcj→vi are messages passed from the variable node vi to the check node
cj and vice versa, respectively, and sj is the syndrome corresponding to cj. After certain
iterations, assuming the calculation converges to a stationary point, the marginal distri-
bution of each variable node is calculated based on the messages sent from its connected
check nodes, and the decision on each bit is made according to the distribution in the
following way

x̂i =

 0 if Pr{Xi=0|Yi}
Pr{Xi=1|Yi} +

∑
ck:ck is connected to vi

mck→vi ≥ 0

1 otherwise.
(6.46)

To initialize the iterative procedure, for each variable node Xi, the marginal distribution
is assumed to be (Pr{Xi = 0|Yi},Pr{Xi = 1|Yi}). Therefore, the standard BP decoding
algorithm needs the statistics of source and side information as inputs.

However, in our case, the statistics of source-side information are unavailable, i.e., p1

and p2 are unknown. To deal with this problem, let us first consider the case p1 = p2 = p0,
i.e. X and Y are correlated through a BSC. Now let

pb = H−1

(
max

{
0,Γb −

lnn+ ln 2

n

})
(6.47)

where pb can be interpreted as the maximum cross-over probability of the BSC correlating
X and Y , such that the error probability of the SA-LDPC-IED scheme Ĩn can be main-
tained asymptotically zero at the b-th interaction. Therefore, we will use pb as the input
to the BP decoding at the b-th interaction. Moreover, at each interaction, decoding failure
is detected and the decoder will send bit 0 to the encoder for more syndromes if one of the
following two situations occurs:
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• the number of bits with significant log-likelihood (larger than certain value) is less
than a threshold within first several iterations of BP decoding;

• or the number of syndrome constraints satisfied by the codeword calculated using
(6.46) at the end of each iteration does not increase for several iterations.

On the other hand, successful decoding is identified when the modified BP decoding algo-
rithm converges to a codeword satisfying all syndrome constraints without encountering
those two situations listed above. Unlike ordinary BP decoding algorithm, no maximum
number of iterations is specified here. However, due to detection of decoding success and
failure, it is easy to see that modified BP decoding algorithm will terminate within finite
iterations. Coupled with modified BP decoding algorithm, this implementation of SA-
LDPC-IED scheme is summarized in Algorithm 5. Compared to Algorithm 2 and 4, it can
be seen that the search through the jar Jb(y

n) in step 11 is implemented by modified BP
decoding algorithm. In addition, to further reduce the compression rate and the number
of round of interactions, we enlarge the jar Jb(y

n) such that the output of modified BP
decoding algorithm is inside the jar whenever successful decoding is identified. Simulation
shows that under this decoding rule, the bit error probability is still very small. Moreover,
since this decoding rule is more aggressive than jar decoding used in section 6.4, for some
(X, Y ) the rate achieved by the SA-LDPC-IED scheme implemented in this way can be
smaller than that given in Theorem 6.3.

To further consider a general memoryless source-side information pair, i.e. p1 6= p2, at
the b-th interaction, we can quantize the interval (0, 0.5) into several quantized values. For
each quantized value q1, calculate its corresponding q2 according to

Pr{Y = 0}H(q1) + Pr{Y = 1}H(q2) = H (pb) (6.48)

and finally apply the modified BP decoding algorithm for each such quantized pair (q1, q2).
Successful decoding is claimed whenever there is one such quantized (q1, q2) that makes
the BP decoding algorithm converge to a source sequence satisfying syndrome constraints.
When there is a tie, i.e. more than one pair (q1, q2) that make the BP decoding algorithm
succeed with different outputs, we will choose the one with the smaller value of q1. Here
we assume that the distribution of side information Y is known to the decoder. Otherwise,
the empirical distribution can be calculated, since the decoder has the full access to side
information. The implementation is summarized in Algorithm 6.

Remark 6.10. Simulation shows that the complexity of the decoding algorithm above for
general memoryless source-side information pairs is not high as it seems. First of all,
successful decoding is not very sensitive to the values of quantized q1 and q2, and therefore
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Algorithm 5 SA-LDPC-IED scheme with Modified BP Decoding for i.i.d source-side
information pairs correlated through binary symmetric channel

1: Based on P1P2 · · · Pn and sn = Hn×nx
n, the encoder generates accumulated syndromes

s̃1s̃2 · · · s̃n and augmenting syndromes a1a2 · · · an.
2: Based on P1P2 · · · Pn and Hn×n, the decoder calculates matrices H

(∆)
∆×nH

(2∆)
2∆×n · · ·H

(n)
n×n.

3: b← 0.
4: while The encoder does not receive bit 1 from the decoder do
5: b← b+ 1.
6: if b ≤ n

∆
then

7: The encoder sends augmenting syndromes a(b−1)∆+1 · · · ab∆ to the decoder by ∆
bits.

8: else
9: The encoder sends syndromes s′ηnn = H′ηnn×nx

n to the decoder by ηnn bits.
10: end if
11: Upon receiving syndromes sent from the encoder, the decoder searches x̂n by running

modified BP decoding algorithm described above with estimated crossover probabil-
ity pb in equation (6.47).

12: if successful decoding is identified then
13: The decoder sends bit 1 to the encoder, and outputs x̂n as the estimate of xn.
14: else
15: The decoder sends bit 0 to the encoder and leaves the estimate of xn undecided.
16: end if
17: end while
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Algorithm 6 SA-LDPC-IED scheme with Modified BP Decoding for i.i.d source-side
information pairs correlated through binary memoryless channel

1: Based on P1P2 · · · Pn and sn = Hn×nx
n, the encoder generates accumulated syndromes

s̃1s̃2 · · · s̃n and augmenting syndromes a1a2 · · · an.
2: Based on P1P2 · · · Pn and Hn×n, the decoder calculates matrices H

(∆)
∆×nH

(2∆)
2∆×n · · ·H

(n)
n×n.

3: b← 0.
4: while The encoder does not receive bit 1 from the decoder do
5: b← b+ 1.
6: if b ≤ n

∆
then

7: The encoder sends augmenting syndromes a(b−1)∆+1 · · · ab∆ to the decoder by ∆
bits.

8: else
9: The encoder sends syndromes s′ηnn = H′ηnn×nx

n to the decoder by ηnn bits.
10: end if
11: Upon receiving syndromes sent from the encoder,
12: for each quantized value of q1 do
13: the decoder searches x̂n by running modified BP decoding algorithm described

above with estimated crossover probability q1 and q2 in equation (6.48).
14: if successful decoding is identified then
15: break.
16: end if
17: end for
18: if successful decoding is ever identified then
19: The decoder sends bit 1 to the encoder, and outputs x̂n as the estimate of xn.
20: else
21: The decoder sends bit 0 to the encoder and leaves the estimate of xn undecided.
22: end if
23: end while
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we can use coarse quantization without much loss of coding performance. Moreover, as the
decoding failure can be detected at early stages as discussed above, the number of iterations
is very low (usually within 5 iterations) when q1 and q2 are far from the actual statistics.

Remark 6.11. There is a rich literature [43, 56–58] on the design of BP decoding algo-
rithms for SWC schemes with unknown statistics. However, it is not possible to directly
apply those techniques to our IED schemes. As pointed out earlier, one of the funda-
mental differences between SWC and IED is that SWC is fixed rate while IED is variable
rate. Moreover, the decoding algorithm proposed here distinguishes itself with those tech-
niques (especially in [58]) by combining the process of estimating statistics of source-side
information and actual decoding together. Last but not least, we tackle the problem where
source and side information are correlated through a general memoryless channel without
assumption of symmetry, while BSC is commonly assumed for the statistics of source and
side information in the literatures.

6.5.2 Simulation Results

We first consider the case where the source and side information are correlated through a
binary symmetric channel with unknown cross-over probability, and the side information
is uniformly distributed. (In Figures 6.4 to 6.6, rates and conditional entropies are in unit
of bits.)

Figure 6.4 shows the performance of our implemented scheme (referred to as the sim-
ulation rate) along with the conditional entropy rate and the performance upper bound
established in Theorem 6.3, where the blue solid line represents the simulation rate with bit
error probabilities below or around 2×10−5, and the green dashed line represents the upper
bound established in Theorem 6.3 with ε = 0.1. The block length is 8000, ∆ = b

√
nc = 89,

and the variable degree distribution (from an edge perspective) used is shown below:

λ(x) = 0.178704x+ 0.176202x2 + 0.102845x5

+ 0.114789x6 + 0.0122023x12 + 0.0479225x13

+ 0.115911x14 + 0.251424x39

which is designed for rate 0.5 (in bits), and obtained from [59]. It can be seen that our
implemented SA-LDPC-IED scheme can indeed adapt to the entropy rate H(X|Y ) well
in a large rate region. The choice of ∆ = b

√
nc is due to that ∆ = O (

√
n) is shown

to be optimal from Theorems 6.1 and 6.3. Certainly, it is possible to further optimize
∆, e.g. to be c

√
n for some tuned constant c; however, simulation shows that benefit of
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further optimization on ∆ is marginal as the feedback rate is already small and increment
of forward rate for each interaction is refined enough to probe the actual compression rate
needed for successful decoding.

To interpret the upper bound RL(z)(ε,H(p0)) also shown in Figure 6.4 better, an expla-
nation on ε is needed here. The reason that ε >> bit error probability in the simulation
is due to Remark 6.8. To rephrase here, let d

(b)
min denote the minimum hamming distance

of the code generated by H
(b∆)
b∆×n. From the proof of Theorem 6.3, it follows that with

high probability, 1
n
wt(X̂n − Xn) ≤ ε. On the other hand, 1

n
wt(X̂n − Xn) ≤ ε implies

that X̂n = Xn if d
(b)
min > εn when the coding procedure terminates at the b-th interaction.

Moreover, since the implemented decoding algorithm only checks syndrome constraints
to determine the decoding success, instead of using thresholds given in Theorem 6.3, the
bound on rate can be improved if the choice of ε for the b-th interaction depends on d

(b)
min,

especially for the high rate case as d
(b)
min increases with b. However, since d

(b)
min can not

be expressed in a simple way and does not affect redundancy analysis when degree dis-
tributions with large degrees are used, the corresponding result is not included here. In
the meantime, by using the same degree distribution L(z) in Figure 6.4, Figure 6.5 shows

how fast RL(zk)

(
1

2
√
k
, H(p0)

)
converges to H(p0), where the gap is always less than 0.02

when k = 5, which confirms Proposition 6.1 and 6.2. Note that the reason that the bound
RL(z)(ε,H(p0)) improves dramatically for k = 2 compared to k = 1 in Figure 6.4 lies in
that the choice of ε. In particular, ε = 1

2
√

2
for k = 2 in Figure 6.5, while ε = 0.1 in Figure

6.4.

As can be seen from Proposition 6.1, given a degree distribution L(z), using L(zk) for
large k is just one of many ways to approach optimum. The essential message conveyed
here is that by increasing degrees in degree distribution of SA-LDPC-IED scheme, better
performance can be yielded. To confirm this through simulation, another SA-LDPC-IED
scheme is constructed by using variable degree distribution (from an edge perspective)

λ̃(x) = 0.238563x+ 0.210469x2 + 0.0349301x3 + 0.120072x4

+ 0.0159369x6 + 0.00480289x13 + 0.376122x14

with average variable node degree l̄ = 4. Then its performance is compared with that of
SA-LDPC-IED scheme constructed above using λ(x) with l̄ = 5, where statistics of source-
side information pair and other simulation parameters (e.g. n and ∆) are kept the same
as that used for simulation in Figure 6.4. As shown in Figure 6.6, SA-LDPC-IED scheme
with l̄ = 5 indeed outperforms that with l̄ = 4.

We next consider source and side-information pairs correlated through binary asym-
metric channels. Table 6.1 lists our simulation results, where the side information Y is still
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Pr{X = 1|Y = 0} Pr{X = 0|Y = 1} Rate
0.05 0.1959 0.541
0.1 0.1206 0.544
0.15 0.0766 0.543
0.2 0.0481 0.540

Table 6.1: Performance of SA-LDPC-IED: Asymmetrical Channel

assumed to be uniformly distributed, and the transition probabilities are selected such that
H(X|Y ) = 0.5 ln 2 for all cases. In our simulation, we did not see any error in 1000 blocks,
each block being 8000 bits. As can be seen, our implemented SA-LDPC-IED scheme also
works very well in this situation too.

To make a comparison with SWC, a SWC scheme using the same LDPC code (LDPC-
SWC) was also implemented for the source and side information correlated through a
binary symmetrical channel. The respective results are shown in Table 6.2, where bit error

H(X|Y )
ln 2

RSA-LDPC-IED RSW
0.426 0.473 0.5

Table 6.2: SA-LDPC-IED vs. LDPC-SWC

probabilities are maintained below 10−5 for both SA-LDPC-IED and LDPC-SWC schemes.
Note that RSW is deliberately chosen to be 0.5 (in bits), since the degree distribution of
the LDPC code used here is designed for rate 0.5 (in bits). Moreover, in the simulation
of the LDPC-SWC scheme, we assumed that the cross-over probability p0 is known to
the decoder, while in our implemented SA-LDPC-IED scheme, p0 is unknown. Clearly,
simulation results show that SA-LDPC-IED outperforms LDPC-SWC.
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Figure 6.6: λ(x) vs. λ̃(x)

6.6 Summary

In this chapter, under jar decoding with a dynamic jar, interactive encoding and decoding
based on LDPC codes with syndrome accumulation (SA-LDPC-IED) has been proposed
and investigated. Given any classical universal lossless code Cn (with block length n and
side information available to both the encoder and decoder) and an LDPC code, we have
demonstrated, with the help of syndrome accumulation, how to convert Cn into a universal
SA-LDPC-IED scheme. With its word error probability approaching 0 sub-exponentially
with n, the resulting SA-LDPC-IED scheme has been shown to achieve roughly the same
rate performance as does Cn for each and every individual sequence pair (xn, yn) and the
conditional entropy rate H(X|Y ) for any stationary, ergodic source and side information
(X, Y ) as the average variable node degree l̄ of the underlying LDPC code increases without
bound. When applied to the class of binary source and side information (X, Y ) correlated
through a BSC with cross-over probability unknown to either the encoder or decoder,
the SA-LDPC-IED scheme has been further simplified, resulting in even improved rate
performance versus the bit error probability when l̄ is not large. Coupled with linear
time BP decoding, the SA-LDPC-IED scheme has been implemented for binary source-
side information pairs, which confirms the theoretic analysis, and further shows that the
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SA-LDPC-IED scheme consistently outperforms the Slepian-Wolf coding scheme based on
the same underlying LDPC code. This work demonstrates that jar decoding is also a
powerful analytical tool to prove coding theorems in interactive information theory, and
its natural connection to BP decoding allows easy transform from theoretical results to
practical coding schemes.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, a new decoding rule called jar decoding is proposed. Unlike MAP, ML, and
MD decoding, which are all codebook centric, jar decoding is channel output sequence
centric. Given a channel, code, and channel output sequence yn, jar decoding first forms
a jar of suitable size consisting of sequences from the channel input alphabet considered
to be closely related to yn, and then takes any codeword from the jar as the estimate of
the transmitted codeword. For most channels, the jar can be formed a priori without the
knowledge of the code; when both the input and output alphabets of the channel are finite,
the jar can be even formed a priori without knowing either the code or the channel itself.
To illustrate jar decoding, we have defined the Hamming jar for the binary symmetric
channel (BSC), the BIAGC jar for the binary input additive Gaussian channel, the BIMC
jar for any binary input memoryless channels with uniform capacity achieving distribution
(BIMC), the DIMC jar for any discrete input arbitrary output channel (DIMC), the em-
pirical conditional entropy jar for discrete memoryless channels with finite channel output
alphabet and unknown statistics, and the jar derived from classical prefix codes for discrete
ergodic (not necessarily memoryless) channels. We have also discussed the connections of
jar decoding with old decoding rules including MAP, ML, MD, typical sequence,threshold
and BP decoding.

Based on jar decoding and jars mentioned above, various coding theorems are yielded.
In particular, non-asymptotic channel coding theorems are proved via jar decoding, based
on random linear code ensembles for BIMC and Shannon random code ensemble with
a fixed codeword type for DIMC. Compared to existing results in the literature, those
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achievabilities are shown to be new, tight and easy to compute. Moreover, by treating
word error probability ε as a constant or a sub-exponentially decreasing function of block
length n, the achievabilities under jar decoding yield an achievable asymptotic trade-off
between ε and channel coding rate R up to the second order with respect to n, which is
then shown to be tight by non-asymptotic converse channel coding theorems via a proof
technique called the outer mirror image of jar. Then towards investigating the second order
optimality of jar decoding in the non-asymptotic regime, Taylor-type expansion of optimal
channel coding rate with finite block length is discovered by combining the achievabilities
via jar decoding and converse theorems via the outer mirror image of jar, and jar decoding
is shown to be able to achieve optimal first and second orders in this Taylor-type expansion.
In addition, two approximations of optimal channel coding rate are derived from Taylor-
type expansion and are shown to be reliable and accurate by numerical evaluation. And
the impact of Taylor-type expansion on practical communication system design is further
demonstrated by its application to adaptive modulation and coding in LTE system. Beside
the near optimality, the flexibility of jar decoding is demonstrated by establishing LDPC
coding theorem regarding to bit error probability for general binary input memoryless
channels. And interactive encoding and decoding theorems based on LDPC codes with
syndrome accumulation under jar decoding with a dynamic jar serves as an example to
illustrate the applicability of jar decoding to interactive information and coding theory.

As evidenced by the evolution of digital communication and information theory over the
past 60 years, different decoding rules bring in different perspectives not only on decoding
itself, but also on how to design codes particularly suitable for the respective decoding
rule. With the simplicity brought by jar decoding into channel coding and interactive
encoding and decoding analysis, we would expect that similar change would happen. In
the jar decoding analysis of random codes, it is not necessary for codewords to be pairwise
independent, which implies that one can impose more structures on codes themselves to
lower the decoding complexity in jar decoding. With jar decoding, we believe that there
is ample room to design effective codes and jar decoding algorithms.

7.2 Future Work

Coding theorems via jar decoding derived in this thesis illustrate various directions to
improve the code design in practical communication systems.

1) Jar decoding, the outer image of jar, and non-asymptotic equipartition proper-
ties form a set of essential tools to prove non-asymptotic coding theorems in non-
asymptotic information theory where point-to-point communication is considered.
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Due to their similarity with typical sequence decoding and asymptotic equipartition
properties, it is highly believed that those proof techniques developed in this pa-
per can be extended to prove tight non-asymptotic coding theorems in multi-user
information theory.

2) Nowadays channel codes (e.g. LDPC and turbo code) in practical systems operate at
the rate near the capacity. From non-asymptotic achievability via jar decoding, it can
be seen that at this rate region, the dominating error event is that the true codeword
is not inside the jar, which suggests that error detection can be achieved by examining
whether the decoder output is inside the jar centered by the channel output. As the
probability of another codeword existing in the jar is only the minor contributor to
the decoding error probability, this error detection enjoys low undetected probability
and no extra rate penalty compared to other methods like using cyclic redundancy
check codes. The implementation of this error detection method on practical systems
such as LTE system is one of future work, which could deliver fruitful results.

3) From the discussion of Taylor-type expansion in Chapter 4, we know that channel
code design for DIMC may not follow the capacity-achieving distribution when the
block length is finite. Instead, the channel code should be designed according to t∗

in Taylor-type expansion. As linear codes are widely used in practice due to its low
encoding and decoding complexity, directly applying t∗ in this way to linear code
design may be difficult, considering the limitation that codewords must form a linear
space. However, applying this idea to modulation and coding on AWGN channel, one
can change the mapping from the channel codeword to the constellation to shape the
empirical distribution of the sequence of modulation symbols according to t∗. In this
direction, a mapping with memory should be designed to replace the memoryless
mapping (e.g. Gray mapping) widely used in practice. Certainly, when this new
mapping is used, decoding algorithm needs to be modified accordingly.

4) As one extension of LDPC coding theorem in Chapter 5, we have some preliminary
results on systematic LDPC code under jar decoding. Specifically, we show that
a linear code of parity check matrix

[
H I

]
with H randomly picked from an

LDPC ensemble can approach the capacity of any BIMC with diminishing bit error
probability when the degrees of the ensemble are large. Directly applying traditional
BP decoding to systematic LDPC codes, however, does not work very well, which is
explained as follows. Let us fix the channel coding rate near the capacity. On one
hand, when the degrees of the ensemble are small, BP decoding can always find a
codeword, but the bit error probability decreases too slowly with respect to the block
length. On the other hand, when the degrees of the ensemble are large, BP decoding
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has the difficulty to find any codeword at all. Then future work in this direction is
to design new decoding algorithms for systematic LDPC codes.

5) Practical interactive encoding and decoding scheme design under jar decoding is also
quite exciting. As discussed in Chapter 6, the key advantage of interactive encoding
and decoding over Slepian-Wolf coding is the universality, which is the essential prop-
erty required in practical distributed compression systems. Interactive encoding and
decoding based on LDPC codes with syndrome accumulation proposed in Chapter
6, coupled with modified BP decoding, can deal with the source and side informa-
tion correlated through a memoryless channel. In practice, however, the statistics
of source and side information is much more complicated, and memoryless channel
model will result in great compression inefficiency. Therefore, another future work
is to design a truly universal and low-complexity interactive encoding and decoding
scheme, and we have already obtained some preliminary results in [60].
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Appendix A

Non-Asymptotic Equipartition
Property

Consider an independent and identically distributed (IID) source X = {Xi}∞i=1 with source
alphabet X and finite entropy H(X), where H(X) is the Shannon entropy of Xi if X is
discrete, and the differential entropy of Xi if X is the real line and each Xi is a continuous
random variable. Let p(x) be the probability mass function (pmf) or probability density
function (pdf) (as the case may be) of Xi. The asymptotic equipartition property (AEP)
for X is the assertion that

− 1

n
ln p(X1X2 · · ·Xn)→ H(X) (A.1)

either in probability or with probability one as n goes to∞. It implies that for sufficiently
large n, with high probability, the outcomes of X1X2 · · ·Xn are approximately equiprobable
with their respective probability ranging from e−n(H(X)+ε) to e−n(H(X)−ε), where ε > 0 is a
small fixed number.

The AEP is fundamental to information theory. It is not only instrumental to lossless
source coding theorems, but also behind almost all asymptotic coding (including source,
channel, and multi-user coding) theorems through the concepts of typical sets and typical
sequences [4].

However, in the non-asymptotic regime where one wants to establish non-asymptotic
coding results for finite block length n, the AEP in its current form can not be applied
in general. In Appendix A, we aim to establish the non-asymptotic counterpart of the
AEP, which is broadly referred to as the non-asymptotic equipartition property (NEP), so
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that the NEP can be applied to finite block length n. Specifically, with respect to H(X),
we first characterize, for any finite block length n, how close − 1

n
ln p(X1X2 · · ·Xn) is to

H(X) by determining the information spectrum of X1X2 · · ·Xn, i.e., the distribution of
− 1
n

ln p(X1X2 · · ·Xn); such a property is referred to as the NEP with respect to H(X).
For any IID source pair (X, Y ) = {(Xi, Yi)}∞i=1 with finite conditional entropy H(X|Y )
and mutual information I(X;Y ), where H(X|Y ) is the Shannon conditional entropy of
Xi given Yi if X is discrete, and the conditional differential entropy of Xi given Yi if X
is continuous, we then examine, for any finite block length n, how close − 1

n
ln p(Xn|Y n)

(− 1
n

ln p(Y n|Xn)
p(Y n)

, respectively) is to H(X|Y ) (I(X;Y ), respectively) by determining the

distribution of − 1
n

ln p(Xn|Y n) (− 1
n

ln p(Y n|Xn)
p(Y n)

, respectively), where p(xn|yn) (p(yn|xn),

respectively) is the conditional pmf or pdf (as the case may be) of xn = x1x2 · · ·xn (yn =
y1y2 · · · yn, respectively) given yn (xn, respectively); these properties are referred to as the
NEP with respect to H(X|Y ) and I(X;Y ), respectively.

In the same way as the AEP plays an important role in establishing the asymptotic
coding (including source, channel, and multi-user coding) results in information theory,
our established NEP is also instrumental to the development of non-asymptotic source and
channel coding results.

A.1 NEP With Respect to Entropy

Define

λ∗(X)
∆
= sup

{
λ ≥ 0 :

∫
p−λ+1(x)dx <∞

}
. (A.2)

Suppose that
λ∗(X) > 0 . (A.3)

Let

σ2
H(X)

∆
=

∫
p(x)[− ln p(x)]2dx−H2(X) (A.4)

which will be referred to as the information variance of X. It is not hard to see that under
the assumption (A.3), ∫

p−λ+1(x)[∫
p−λ+1(y)dy

] |− ln p(x)|k dx <∞ (A.5)

and ∫
p−λ+1(x)dx <∞
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for any λ ∈ (0, λ∗(X)) and any positive integer k. Further assume that

σ2
H(X) > 0 and

∫
p(x)| ln p(x)|3dx <∞ . (A.6)

Then we have the following result, which will be referred to as the weak right NEP with
respect to H(X).

Theorem A.1 (Weak Right NEP). For any δ ≥ 0, let

rX(δ)
∆
= sup

λ≥0

[
λ(H(X) + δ)− ln

∫
p−λ+1(x)dx

]
.

Then the following hold:

(a) For any positive integer n,

Pr

{
− 1

n
ln p(Xn) > H(X) + δ

}
≤ e−nrX(δ) (A.7)

where Xn = X1X2 · · ·Xn.

(b) Under the assumptions (A.3) and (A.6), there exists a δ∗ > 0 such that for any
δ ∈ (0, δ∗] and any positive integer n,

rX(δ) =
1

2σ2
H(X)

δ2 +O(δ3) (A.8)

and hence

Pr

{
− 1

n
ln p(Xn) > H(X) + δ

}
≤ e

−n( δ2

2σ2
H

(X)
+O(δ3))

. (A.9)

Proof of Theorem A.1. The inequality (A.7) follows from the Chernoff bound. To see this
is indeed the case, note that

Pr

{
− 1

n
ln p(X1X2 · · ·Xn) > H(X) + δ

}
= Pr {− ln p(X1X2 · · ·Xn) > n(H(X) + δ)}

≤ inf
λ≥0

E[e−λ ln p(X1X2···Xn)]

enλ(H(X)+δ)

= inf
λ≥0

e−n[λ(H(X)+δ)−lnE[p−λ(X1)]]

= inf
λ≥0

e−n[λ(H(X)+δ)−ln
∫
p−λ+1(x)dx]

= e−nrX(δ) . (A.10)
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To show (A.8) and (A.9), we first analyze the property of rX(δ) as a function of δ
over the region δ ≥ 0. It is easy to see that rX(δ) is convex and non-decreasing. For any
λ ∈ [0, λ∗(X)), define

δ(λ)
∆
=

∫
p−λ+1(x)[∫
p−λ+1(y)dy

] [− ln p(x)] dx−H(X) (A.11)

which, in view of (A.5), is well defined. Using a similar argument as in [61, Properties
1 to 3], it is not hard to show that under the assumption (A.3), δ(λ) as a function of λ
is continuously differentiable up to any order over λ ∈ (0, λ∗(X)). Taking the first order
derivative of δ(λ) yields

δ′(λ) =

∫
p−λ+1(x)[∫
p−λ+1(y)dy

] [− ln p(x)]2 dx−

[∫
p−λ+1(x)[∫
p−λ+1(y)dy

] [− ln p(x)] dx

]2

> 0 (A.12)

where the last inequality is due to (A.6). It is also easy to see that δ(0) = 0 and δ′(0) =
σ2
H(X). Therefore, δ(λ) is strictly increasing over λ ∈ [0, λ∗(X)). On the other hand,

it is not hard to verify that under the assumption (A.3), the function λ(H(X) + δ) −
ln
∫
p−λ+1(x)dx as a function of λ is continuously differentiable over λ ∈ [0, λ∗(X)) with

its derivative equal to
δ − δ(λ) . (A.13)

To continue, we distinguish between two cases: (1) λ∗(X) = ∞, and (2) λ∗(X) < ∞. In
case (1), since δ(λ) is strictly increasing over λ ∈ [0,∞), it follows that for any δ = δ(λ)
for some λ ∈ [0, λ∗(X)), the supremum in the definition of rX(δ) is actually achieved at
that particular λ, i.e.,

rX(δ(λ)) = λ(H(X) + δ(λ))− ln

∫
p−λ+1(x)dx . (A.14)

In case (2), we have that for any δ = δ(λ) for some λ ∈ [0, λ∗(X)) ,

β(H(X) + δ(λ))− ln

∫
p−β+1(x)dx < λ(H(X) + δ(λ))− ln

∫
p−λ+1(x)dx (A.15)

for any β ∈ [0, λ∗(X)) with β 6= λ. In view of the definition of λ∗(X), (A.15) remains valid
for any β > λ∗(X) since then the left side of (A.15) is −∞. What remains to check is
when β = λ∗(X). If ∫

p−λ
∗(X)+1(x)dx =∞
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it is easy to see that (A.15) holds as well when β = λ∗(X). Suppose now∫
p−λ

∗(X)+1(x)dx <∞ .

In this case, it follows from the dominated convergence theorem that

lim
β↑λ∗(X)

∫
p−β+1(x)dx =

∫
p−λ

∗(X)+1(x)dx

and hence by letting β go to λ∗(X) from the left, we see that (A.15) holds as well when
β = λ∗(X). Putting all cases together, we always have that for any δ = δ(λ) for some
λ ∈ [0, λ∗(X)),

rX(δ(λ)) = λ(H(X) + δ(λ))− ln

∫
p−λ+1(x)dx . (A.16)

Let
∆∗(X)

∆
= lim

λ↑λ∗(X)
δ(λ) .

Since both δ(λ) and ln
∫
p−λ+1(x)dx are continuously differentiable with respect to λ ∈

(0, λ∗(X)) up to any order, it follows from (A.16) that rX(δ) is also continuously differen-
tiable with respect to δ ∈ (0,∆∗(X)) up to any order. (At δ = 0, rX(δ) is continuously
differentiable up to at least the third order inclusive.) Taking the first and second order
derivatives of rX(δ) with respect to δ, we have

r′X(δ) =
drX(δ)

dδ

=
drX(δ(λ))

dλ

dλ

dδ

=
drX(δ(λ))

dλ

1

δ′(λ)

=
1

δ′(λ)

[
H(X) + δ(λ) + λδ′(λ)−

∫
p−λ+1(x)[∫
p−λ+1(y)dy

] [− ln p(x)] dx

]
= λ (A.17)

and

r′′X(δ) =
dλ

dδ

=
1

δ′(λ)
(A.18)
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where δ = δ(λ). Therefore, rX(δ) is convex, strictly increasing, and continuously differen-
tiable up to at least the third order (inclusive) over δ ∈ [0,∆∗(X)). Note that from (A.17)
and (A.18), we have r′X(0) = 0 and r′′X(0) = 1/σ2

H(X). Expanding rX(δ) at δ = 0 by the
Taylor expansion, we then have that there exists a δ∗ > 0 such that

rX(δ) =
1

2σ2
H(X)

δ2 +O(δ3) (A.19)

for δ ∈ (0, δ∗]. The inequality (A.9) now follows immediately from (A.7) and (A.19). This
completes the proof of Theorem A.1.

Having analyzed the function rX(δ), we are now ready for a stronger version of the
right NEP. For any λ ∈ [0, λ∗(X)), define

fλ(x)
∆
=

p−λ(x)∫
p−λ+1(y)dy

(A.20)

σ2
H(X,λ)

∆
=

∫
fλ(x)p(x) |− ln p(x)− (H(X) + δ(λ))|2 dx (A.21)

MH(X,λ)
∆
=

∫
fλ(x)p(x) |− ln p(x)− (H(X) + δ(λ))|3 dx (A.22)

and

fλ(x
n)

∆
=

n∏
i=1

fλ(xi) (A.23)

where δ(λ) is defined in (A.11). Write MH(X, 0) as MH(X). It is easy to see that
σ2
H(X, 0) = σ2

H(X), σ2
H(X,λ) = δ′(λ), and

MH(X) =

∫
p(x) |− ln p(x)−H(X))|3 dx . (A.24)

Then we have the following stronger result.

Theorem A.2 (Strong Right NEP). Under the assumptions (A.3) and (A.6), the following
hold:

(a) For any δ ∈ (0,∆∗(X)) and any positive integer n

ξ̄H(X,λ, n)e−nrX(δ) ≥ Pr

{
− 1

n
ln p(Xn) > H(X) + δ

}
≥ ξ

H
(X,λ, n)e−nrX(δ)

(A.25)
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where λ = r′X(δ) > 0,

ξ̄H(X,λ, n) =
2CMH(X,λ)√
nσ3

H(X,λ)

+ e
nλ2σ2

H (X,λ)

2

[
Q(
√
nλσH(X,λ))−Q(ρ∗ +

√
nλσH(X,λ))

]
(A.26)

ξ
H

(X,λ, n) = e
nλ2σ2

H (X,λ)

2 Q(ρ∗ +
√
nλσH(X,λ)) (A.27)

with Q(ρ∗) = CMH(X,λ)√
nσ3

H(X,λ)
and Q(ρ∗) = 1

2
− 2CMH(X,λ)√

nσ3
H(X,λ)

, Q(t) = 1√
2π

∫∞
t
e−u

2/2du and

C < 1 is the universal constant in the central limit theorem of Berry and Esseen.

(b) For any δ ≤ c
√

lnn
n

, where c < σH(X) is a constant,

Q

(
δ
√
n

σH(X)

)
− CMH(X)√

nσ3
H(X)

≤ Pr

{
− 1

n
ln p(Xn) > H(X) + δ

}
≤ Q

(
δ
√
n

σH(X)

)
+
CMH(X)√
nσ3

H(X)
. (A.28)

Proof of Theorem A.2. From (A.16), it follows that with λ = r′X(δ)

rX(δ) = λ(H(X) + δ)− ln

∫
p−λ+1(x)dx . (A.29)
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Then it is not hard to verify that

Pr

{
− 1

n
ln p(Xn) > H(X) + δ

}
=

∫
− 1
n

ln p(xn)>H(X)+δ

p(xn)dxn

=

∫
− 1
n

ln p(xn)>H(X)+δ

f−1
λ (xn)fλ(x

n)p(xn)dxn

=

∫
− 1
n

ln p(xn)>H(X)+δ

e−n[−
1
n
λ ln p(xn)−ln

∫
p−λ+1(y)dy]fλ(x

n)p(xn)dxn

=

∫
− 1
n

ln p(xn)>H(X)+δ

e−n[−
1
n
λ ln p(xn)−λ(H(X)+δ)+rX(δ)]fλ(x

n)p(xn)dxn

= e−nrX(δ)

∫
− 1
n

ln p(xn)>H(X)+δ

e−nλ[−
1
n

ln p(xn)−(H(X)+δ)]fλ(x
n)p(xn)dxn

= e−nrX(δ)

∫
− 1
n

ln p(xn)>H(X)+δ

e
−
√
nλσH(X,λ)

− ln p(xn)−n(H(X)+δ)√
nσH (X,λ) fλ(x

n)p(xn)dxn

= e−nrX(δ)

∫
ρ>0

∫
− ln p(xn)−n(H(X)+δ)√

nσH (X,λ)
=ρ

e−
√
nλσH(X,λ)ρfλ(x

n)p(xn)dxndρ

= e−nrX(δ)

+∞∫
0

e−
√
nλσH(X,λ)ρd(1− F̄n(ρ))

= e−nrX(δ)

F̄n(0)−
+∞∫
0

√
nλσH(X,λ)e−

√
nλσH(X,λ)ρF̄n(ρ)dρ

 (A.30)

where the last equality is due to integration by parts,

F̄n(ρ)
∆
= Pr

{
− ln p(Zn)− n(H(X) + δ)√

nσH(X,λ)
> ρ

}
= Pr

{
n∑
i=1

− ln p(Zi)− (H(X) + δ)√
nσH(X,λ)

> ρ

}
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and {Zi}ni=1 are IID random variables with pmf or pdf (as the case may be) fλ(x)p(x). Let

ξn
∆
= F̄n(0)−

+∞∫
0

√
nλσH(X,λ)e−

√
nλσH(X,λ)ρF̄n(ρ)dρ (A.31)

=

+∞∫
0

√
nλσH(X,λ)e−

√
nλσH(X,λ)ρ[F̄n(0)− F̄n(ρ)]dρ (A.32)

At this point, we invoke the following central limit theorem of Berry and Esseen [62,
Theorem 1.2].

Lemma A.1. Let V1, V2, · · · be independent real random variables with zero means and
finite third moments, and set

σ2
n =

n∑
i=1

EV 2
i .

Then there exists a universal constant C < 1 such that for any n ≥ 1,

sup
−∞<t<+∞

∣∣∣∣∣Pr

{
n∑
i=1

Vi > σnt

}
−Q(t)

∣∣∣∣∣ ≤ Cσ−3
n

n∑
i=1

E|Vi|3.

Towards evaluating ξn, we can bound F̄n(ρ) in terms of Q(ρ), by applying Lemma A.1
to {− ln p(Zi)− (H(X) + δ)}ni=1. Then for ρ > 0, we have

F̄n(0) ≤ Q(0) +
CMH(X,λ)√
nσ3

H(X,λ)

=
1

2
+
CMH(X,λ)√
nσ3

H(X,λ)
(A.33)

F̄n(ρ) ≥
[
Q(ρ)− CMH(X,λ)√

nσ3
H(X,λ)

]+

(A.34)

and

F̄n(0)− F̄n(ρ) ≥
[
Q(0)− CMH(X,λ)√

nσ3
H(X,λ)

−
(
Q(ρ) +

CMH(X,λ)√
nσ3

H(X,λ)

)]+

=

[
1

2
−Q(ρ)− 2CMH(X,λ)√

nσ3
H(X,λ)

]+

(A.35)
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where [x]+ = max{x, 0}. Now plugging (A.33) and (A.34) into (A.31) yields

ξn ≤
1

2
+
CMH(X,λ)√
nσ3

H(X,λ)
−

+∞∫
0

√
nλσH(X,λ)e−

√
nλσH(X,λ)ρ

[
Q(ρ)− CMH(X,λ)√

nσ3
H(X,λ)

]+

dρ

=
1

2
+
CMH(X,λ)√
nσ3

H(X,λ)
−

ρ∗∫
0

√
nλσH(X,λ)e−

√
nλσH(X,λ)ρ

[
Q(ρ)− CMH(X,λ)√

nσ3
H(X,λ)

]
dρ

=
1

2
+
CMH(X,λ)√
nσ3

H(X,λ)
−

ρ∗∫
0

[
Q(ρ)− CMH(X,λ)√

nσ3
H(X,λ)

]
d
(
−e−

√
nλσH(X,λ)ρ

)

=
2CMH(X,λ)√
nσ3

H(X,λ)
+

ρ∗∫
0

1√
2π
e−

ρ2

2 e−
√
nλσH(X,λ)ρdρ

=
2CMH(X,λ)√
nσ3

H(X,λ)
+

ρ∗∫
0

1√
2π
e−

(ρ+
√
nλσH (X,λ))2

2
+
nλ2σ2

H (X,λ)

2 dρ

=
2CMH(X,λ)√
nσ3

H(X,λ)
+ e

nλ2σ2
H (X,λ)

2

[
Q(
√
nλσH(X,λ))−Q(ρ∗ +

√
nλσH(X,λ))

]
= ξ̄H(X,λ, n) (A.36)
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where Q(ρ∗) = CMH(X,λ)√
nσ3

H(X,λ)
, and meanwhile plugging (A.35) into (A.32) yields

ξn ≥
+∞∫
0

√
nλσH(X,λ)e−

√
nλσH(X,λ)ρ

[
1

2
−Q(ρ)− 2CMH(X,λ)√

nσ3
H(X,λ)

]+

dρ

=

+∞∫
ρ∗

√
nλσH(X,λ)e−

√
nλσH(X,λ)ρ

[
1

2
−Q(ρ)− 2CMH(X,λ)√

nσ3
H(X,λ)

]
dρ

=

+∞∫
ρ∗

[
1

2
−Q(ρ)− 2CMH(X,λ)√

nσ3
H(X,λ)

]
d
(
−e−

√
nλσH(X,λ)ρ

)

=

+∞∫
ρ∗

1√
2π
e−

ρ2

2 e−
√
nλσH(X,λ)ρdρ

= e
nλ2σ2

H (X,λ)

2 Q(ρ∗ +
√
nλσH(X,λ))

= ξ
H

(X,λ, n) (A.37)

where Q(ρ∗) = 1
2
− 2CMH(X,λ)√

nσ3
H(X,λ)

. Combining (A.30) with (A.36) and (A.37) completes the

proof of part (a) of Theorem A.2.

Applying Lemma A.1 to the IID sequence {− ln p(Xi)−H(X)}ni=1, we get (A.28). This
completes the proof of Theorem A.2.

Remark A.1. Note that λ = r′X(δ) = Θ(δ). When λ = Ω(1) with respect to n, it can be
easily verified that ξ̄H(X,λ, n) and ξ

H
(X,λ, n) are both on the order of 1√

n
, by applying

well-known inequality

1

t+ t−1

1√
2π
e−

t2

2 ≤ Q(t) ≤ 1

t

1√
2π
e−

t2

2 .

Meanwhile, on one hand, it is easy to see that

ξ̄H(X,λ, n) ≤ e
nλ2σ2

H (X,λ)

2 Q(
√
nλσH(X,λ)) +

2CMH(X,λ)√
nσ3

H(X,λ)
.
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On the other hand,

ξ
H

(X,λ, n) = e
nλ2σ2

H (X,λ)

2 Q(
√
nλσH(X,λ))− e

nλ2σ2
H (X,λ)

2

ρ∗+
√
nλσH(X,λ)∫

√
nλσH(X,λ)

1√
2π
e−

ρ2

2 dρ

= e
nλ2σ2

H (X,λ)

2 Q(
√
nλσH(X,λ))− e

nλ2σ2
H (X,λ)

2

ρ∗∫
0

1√
2π
e−

(ρ+
√
nλσH (X,λ))2

2 dρ

= e
nλ2σ2

H (X,λ)

2 Q(
√
nλσH(X,λ))−

ρ∗∫
0

1√
2π
e−

ρ2+2ρ
√
nλσH (X,λ)

2 dρ

≥ e
nλ2σ2

H (X,λ)

2 Q(
√
nλσH(X,λ))−

ρ∗∫
0

1√
2π
e−

ρ2

2 dρ

= e
nλ2σ2

H (X,λ)

2 Q(
√
nλσH(X,λ))− 2CMH(X,λ)√

nσ3
H(X,λ)

.

To further shed light on ξ̄H(X,λ, n) and ξ
H

(X,λ, n), we observe that

1√
2π
√
nλσH(X,λ) + 1√

2π
√
nλσH(X,λ)

≤ e
nλ2σ2

H (X,λ)

2 Q(
√
nλσH(X,λ)) ≤ 1√

2π
√
nλσH(X,λ)

.

And therefore, whenever λ = o(1) and λ = ω(n−1),

e
nλ2σ2

H (X,λ)

2 Q(
√
nλσH(X,λ)) = Θ

(
1√
nλ

)
= ω

(
1√
n

)
which further implies

ξ̄H(X,λ, n) = e
nλ2σ2

H (X,λ)

2 Q(
√
nλσH(X,λ)) (1 + o(1))

ξ
H

(X,λ, n) = e
nλ2σ2

H (X,λ)

2 Q(
√
nλσH(X,λ)) (1− o(1)) .

Remark A.2. Another interesting observation from the proof of Theorem A.2, especially
(A.30), is the recursive relation between

Pr

{
− 1

n
ln p(Xn) > H(X) + δ

}
= Pr

{
− ln p(Xn)− nH(X)√

nσH(X)
>

δ√
nσH(X)

}
∆
= F̄X,n

(
δ√

nσH(X)

)
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and

F̄Z,n(ρ)
∆
=F̄n(ρ) = Pr

{
− ln p(Zn)− n(H(X) + δ)√

nσH(X,λ)
> ρ

}
.

As shown in the proof, a proper bound on F̄Z,n(ρ) (using Berry-Esseen Central Limit The-

orem) results in a bound (A.25) on F̄X,n

(
δ√

nσH(X)

)
. To continue, we can apply this bound

(A.25) on F̄Z,n(ρ) to get another bound on F̄X,n

(
δ√

nσH(X)

)
. Numerically, we can keep

tightening the bound on F̄X,n

(
δ√

nσH(X)

)
in this recursive manner until no significant im-

provement can be made.

The probability that − 1
n

ln p(Xn) is away from H(X) to the left can be bounded simi-
larly. Define

λ∗−(X)
∆
= sup

{
λ ≥ 0 :

∫
pλ+1(x)dx <∞

}
. (A.38)

Suppose that
λ∗−(X) > 0 . (A.39)

Define for any δ ≥ 0

rX,−(δ)
∆
= sup

λ≥0

[
λ(δ −H(X))− ln

∫
pλ+1(x)dx

]
and for any λ ∈ [0, λ∗−(X))

δ−(λ)
∆
=

∫
pλ+1(x)[∫
pλ+1(y)dy

] [ln p(x)] dx+H(X) .

Then under the assumption (A.6), δ−(λ) is strictly increasing over λ ∈ [0, λ∗−(X)) with
δ−(0) = 0. Let

∆∗−(X) = lim
λ↑λ∗−(X)

δ−(λ) .

Following the proof of Theorem A.1, we have that rX,−(δ) is strictly increasing, convex,
and continuously differentiable up to at least the third order inclusive over δ ∈ [0,∆∗−(X)),
and furthermore

rX,−(δ) = λ(δ −H(X))− ln

∫
pλ+1(x)dx

with λ = r′X,−(δ) satisfying
δ−(λ) = δ .
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Define

σ2
H,−(X,λ)

∆
=

∫
pλ+1(x)[∫
pλ+1(y)dy

] |− ln p(x)− (H(X)− δ−(λ))|2 dx

and

MH,−(X,λ)
∆
=

∫
pλ+1(x)[∫
pλ+1(y)dy

] |− ln p(x)− (H(X)− δ−(λ))|3 dx .

In parallel with Theorems A.1 and A.2, we have the following result, which is referred to
as the left NEP with respect to H(X) and can be proved similarly.

Theorem A.3 (Left NEP). For any positive integer n,

Pr

{
− 1

n
ln p(Xn) ≤ H(X)− δ

}
≤ e−nrX,−(δ) . (A.40)

Furthermore, under the assumptions (A.39) and (A.6), the following also hold:

(a) There exists a δ∗ > 0 such that for any δ ∈ (0, δ∗] and any positive integer n,

rX,−(δ) =
1

2σ2
H(X)

δ2 +O(δ3) (A.41)

and hence

Pr

{
− 1

n
ln p(Xn) ≤ H(X)− δ

}
≤ e

−n( δ2

2σ2
H

(X)
+O(δ3))

. (A.42)

(b) For any δ ∈ (0,∆∗−(X)) and any positive integer n

ξ̄H,−(X,λ, n)e−nrX,−(δ) ≥ Pr

{
− 1

n
ln p(Xn) ≤ H(X)− δ

}
≥ ξ

H,−(X,λ, n)e−nrX,−(δ)

(A.43)
where λ = r′X,−(δ) > 0, and

ξ̄H,−(X,λ, n) =
2CMH,−(X,λ)√
nσ3

H,−(X,λ)

+ e
nλ2σ2

H,−(X,λ)

2

[
Q(
√
nλσH,−(X,λ))−Q(ρ∗ +

√
nλσH,−(X,λ))

]
(A.44)

ξ
H,−(X,λ, n) = e

nλ2σ2
H,−(X,λ)

2 Q(ρ∗ +
√
nλσH,−(X,λ)) (A.45)

with Q(ρ∗) =
CMH,−(X,λ)√
nσ3

H,−(X,λ)
and Q(ρ∗) = 1

2
− 2CMH,−(X,λ)√

nσ3
H,−(X,λ)

.
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(c) For any δ ≤ c
√

lnn
n

, where c < σH(X) is a constant,

Q

(
δ
√
n

σH(X)

)
− CMH(X)√

nσ3
H(X)

≤ Pr

{
− 1

n
ln p(Xn) ≤ H(X)− δ

}
≤ Q

(
δ
√
n

σH(X)

)
+
CMH(X)√
nσ3

H(X)
. (A.46)

Remarks similar to those (Remark A.1 and A.2) following Theorem A.2 can be drawn
here concerning Theorem A.3.

A.2 NEP With Respect to Conditional Entropy

Consider now an IID source pair (X, Y ) = {(Xi, Yi)}∞i=1 with finite conditional entropy
H(X|Y ), where H(X|Y ) is the Shannon conditional entropy of Xi given Yi if X is discrete,
and the conditional differential entropy of Xi given Yi if X is continuous. Let p(x|y) be
the conditional pmf or conditional pdf (as the case may be) of Xi given Yi, and p(y) the
pmf or pdf (as the case may be) of Yi. By replacing − 1

n
ln p(Xn) with − 1

n
ln p(Xn|Y n), all

results and arguments in Section A.1 can be carried over to this conditional case, yielding
the NEP with respect to H(X|Y ).

Specifically, define

λ∗(X|Y )
∆
= sup

{
λ ≥ 0 :

∫
p(y)

[∫
p−λ+1(x|y)dx

]
dy <∞

}
. (A.47)

Suppose that
λ∗(X|Y ) > 0 . (A.48)

Let

σ2
H(X|Y )

∆
=

∫ ∫
p(y)p(x|y)[− ln p(x|y)]2dxdy −H2(X|Y ) (A.49)

which will be referred to as the conditional information variance of X given Y . It is not
hard to see that under the assumption (A.48),∫ ∫

p(y)p−λ+1(x|y)[∫ ∫
p(v)p−λ+1(u|v)dudv

] |− ln p(x|y)|k dxdy <∞ (A.50)

and ∫ ∫
p(y)p−λ+1(x|y)dxdy <∞
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for any λ ∈ (0, λ∗(X|Y )) and any positive integer k. Further assume that

σ2
H(X|Y ) > 0 and

∫ ∫
p(y)p(x|y)| ln p(x|y)|3dxdy <∞ . (A.51)

Define for any δ ≥ 0

rX|Y (δ)
∆
= sup

λ≥0

[
λ(H(X|Y ) + δ)− ln

∫ ∫
p(y)p−λ+1(x|y)dxdy

]
(A.52)

and for any λ ∈ [0, λ∗(X|Y ))

δ(λ)
∆
=

∫ ∫
p(y)p−λ+1(x|y)[∫ ∫
p(v)p−λ+1(u|v)dudv

] [− ln p(x|y)] dxdy −H(X|Y ) . (A.53)

(Throughout this section, δ(λ) should be understood with its above definition.) Then
under the assumptions (A.48) and (A.51), δ(λ) is strictly increasing over λ ∈ [0, λ∗(X|Y ))
with δ(0) = 0. Let

∆∗(X|Y )
∆
= lim

λ↑λ∗(X|Y )
δ(λ) .

By an argument similar to that in the proof of Theorem A.1, it can be shown that rX|Y (δ)
is strictly increasing, convex and continuously differentiable up to at least the third order
inclusive over δ ∈ [0,∆∗(X|Y )), and furthermore rX|Y (δ) has the following parametric
expression

rX|Y (δ(λ)) = λ(H(X|Y ) + δ(λ))− ln

∫ ∫
p(y)p−λ+1(x|y)dxdy (A.54)

with δ(λ) defined in (A.53) and λ = r′X|Y (δ). For any λ ∈ [0, λ∗(X|Y )), define

fλ(x, y)
∆
=

p−λ(x|y)∫ ∫
p(v)p−λ+1(u|v)dudv

(A.55)

σ2
H(X|Y, λ)

∆
=

∫ ∫
fλ(x, y)p(y)p(x|y) |− ln p(x|y)− (H(X|Y ) + δ(λ))|2 dxdy (A.56)

MH(X|Y, λ)
∆
=

∫ ∫
fλ(x, y)p(y)p(x|y) |− ln p(x|y)− (H(X|Y ) + δ(λ))|3 dxdy (A.57)

where δ(λ) is defined in (A.53). Write MH(X|Y, 0) as MH(X|Y ). It is easy to see that
σ2
H(X|Y, 0) = σ2

H(X|Y ), σ2
H(X|Y, λ) = δ′(λ), and

MH(X|Y ) =

∫ ∫
p(y)p(x|y) |− ln p(x|y)−H(X|Y ))|3 dxdy . (A.58)

In parallel with Theorems A.1 and A.2, we have the following result, which is referred to
as the right NEP with respect to H(X|Y ) and can be proved similarly.
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Theorem A.4 (Right NEP With Respect to H(X|Y )). For any positive integer n,

Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
≤ e−nrX|Y (δ) (A.59)

where Xn = X1X2 · · ·Xn and Y n = Y1Y2 · · ·Yn. Moreover, under the assumptions (A.48)
and (A.51), the following also hold:

(a) There exists a δ∗ > 0 such that for any δ ∈ (0, δ∗] and any positive integer n,

rX|Y (δ) =
1

2σ2
H(X|Y )

δ2 +O(δ3) (A.60)

and hence

Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
≤ e

−n( δ2

2σ2
H

(X|Y )
+O(δ3))

. (A.61)

(b) For any δ ∈ (0,∆∗(X|Y )) and any positive integer n

ξ
H

(X|Y, λ, n)e−nrX|Y (δ) ≤ Pr

{
− 1

n
ln p(Y n|Xn) > H(X|Y ) + δ

}
≤ ξ̄H(X|Y, λ, n)e−nrX|Y (δ) (A.62)

where λ = r′X|Y (δ) > 0, and

ξ̄H(X|Y, λ, n) =
2CMH(X|Y, λ)√
nσ3

H(X|Y, λ)

+ e
nλ2σ2

H (X|Y,λ)

2

[
Q(
√
nλσH(X|Y, λ))−Q(ρ∗ +

√
nλσH(X|Y, λ))

]
(A.63)

ξ
H

(X|Y, λ, n) = e
nλ2σ2

H (X|Y,λ)

2 Q(ρ∗ +
√
nλσH(X|Y, λ)) (A.64)

with Q(ρ∗) = CMH(X|Y,λ)√
nσ3

H(X|Y,λ)
and Q(ρ∗) = 1

2
− 2CMH(X|Y,λ)√

nσ3
H(X|Y,λ)

.

(c) For any δ ≤ c
√

lnn
n

, where c < σH(X|Y ) is a constant,

Q

(
δ
√
n

σH(X|Y )

)
− CMH(X|Y )√

nσ3
H(X|Y )

≤ Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
≤ Q

(
δ
√
n

σH(X|Y )

)
+
CMH(X|Y )√
nσ3

H(X|Y )
. (A.65)
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The probability that − 1
n

ln p(Xn|Y n) is away from H(X|Y ) to the left can be bounded
similarly. For completeness, we state the result without proof again. Define

λ∗−(X|Y )
∆
= sup

{
λ ≥ 0 :

∫ ∫
p(y)pλ+1(x|y)dxdy <∞

}
. (A.66)

Suppose that
λ∗−(X|Y ) > 0 . (A.67)

Define for any δ ≥ 0

rX|Y,−(δ)
∆
= sup

λ≥0

[
λ(δ −H(X|Y ))− ln

∫ ∫
p(y)pλ+1(x|y)dxdy

]
and for any λ ∈ [0, λ∗−(X|Y ))

δ−(λ)
∆
=

∫ ∫
p(y)pλ+1(x|y)[∫ ∫
p(v)pλ+1(u|v)dudv

] [ln p(x|y)] dxdy +H(X|Y ) .

(Throughout this section, δ−(λ) should be understood with its above definition.) Then
under the assumption (A.51), δ−(λ) is strictly increasing over λ ∈ [0, λ∗−(X|Y )) with
δ−(0) = 0. Let

∆∗−(X|Y ) = lim
λ↑λ∗−(X|Y )

δ−(λ) .

By using an argument similar to that in the proof of Theorem A.1, it can be shown that
rX|Y,−(δ) is strictly increasing, convex, and continuously differentiable up to at least the
third order inclusive over δ ∈ [0,∆∗−(X|Y )), and furthermore rX|Y,−(δ) has the following
parametric expression

rX|Y,−(δ−(λ)) = λ(δ−(λ)−H(X|Y ))− ln

∫ ∫
p(y)pλ+1(x|y)dxdy

with λ = r′X|Y,−(δ) satisfying

δ−(λ) = δ .

Define

σ2
H,−(X|Y, λ)

∆
=

∫ ∫
p(y)pλ+1(x|y)[∫ ∫
p(v)pλ+1(u|v)dudv

] |− ln p(x|y)− (H(X|Y )− δ−(λ))|2 dxdy

and

MH,−(X|Y, λ)
∆
=

∫ ∫
p(y)pλ+1(x|y)[∫ ∫
p(v)pλ+1(u|v)dudv

] |− ln p(x|y)− (H(X|Y )− δ−(λ))|3 dxdy .
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In parallel with Theorem A.3, we have the following result, which is referred to as the
left NEP with respect to H(X|Y ) and can be proved similarly.

Theorem A.5 (Left NEP With Respect to H(X|Y )). For any positive integer n,

Pr

{
− 1

n
ln p(Xn|Y n) ≤ H(X|Y )− δ

}
≤ e−nrX|Y,−(δ) . (A.68)

Furthermore, under the assumptions (A.67) and (A.51), the following also hold:

(a) There exists a δ∗ > 0 such that for any δ ∈ (0, δ∗] and any positive integer n,

rX|Y,−(δ) =
1

2σ2
H(X|Y )

δ2 +O(δ3) (A.69)

and hence

Pr

{
− 1

n
ln p(Xn|Y n) ≤ H(X|Y )− δ

}
≤ e

−n( δ2

2σ2
H

(X|Y )
+O(δ3))

. (A.70)

(b) For any δ ∈ (0,∆∗−(X|Y )) and any positive integer n

ξ
H,−(X|Y, λ, n)e−nrX|Y,−(δ) ≤ Pr

{
− 1

n
ln p(Y n|Xn) ≤ H(X|Y )− δ

}
≤ ξ̄H,−(X|Y, λ, n)e−nrX|Y,−(δ) (A.71)

where λ = r′X|Y,−(δ) > 0, and

ξ̄H,−(X|Y, λ, n) =
2CMH,−(X|Y, λ)√
nσ3

H,−(X|Y, λ)

+ e
nλ2σ2

H,−(X|Y,λ)

2

[
Q(
√
nλσH,−(X|Y, λ))−Q(ρ∗ +

√
nλσH,−(X|Y, λ))

]
(A.72)

ξ
H,−(X|Y, λ, n) = e

nλ2σ2
H,−(X|Y,λ)

2 Q(ρ∗ +
√
nλσH,−(X|Y, λ)) (A.73)

with Q(ρ∗) =
CMH,−(X|Y,λ)√
nσ3

H,−(X|Y,λ)
and Q(ρ∗) = 1

2
− 2CMH,−(X|Y,λ)√

nσ3
H,−(X|Y,λ)

.

(c) For any δ ≤ c
√

lnn
n

, where c < σH(X|Y ) is a constant,

Q

(
δ
√
n

σH(X|Y )

)
− CMH(X|Y )√

nσ3
H(X|Y )

≤ Pr

{
− 1

n
ln p(Xn|Y n) ≤ H(X|Y )− δ

}
≤ Q

(
δ
√
n

σH(X|Y )

)
+
CMH(X|Y )√
nσ3

H(X|Y )
. (A.74)
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Remarks similar to those (Remark A.1 and A.2) following Theorem A.2 can be drawn
here concerning Theorem A.4 and A.5.

We conclude this section by illustrating rX|Y (δ) and σ2
H(X|Y ) when X and Y are the

uniform input and the corresponding output of the binary symmetric channel (BSC) and
the binary input Gaussian channel.

Example 1 (BSC): Combining (A.53) and (A.54), it is not hard to verify that

rX|Y (δ(λ)) =

∫ ∫
p(x, y)fλ(x, y) ln fλ(x, y)dxdy

=

∫ ∫
p(x, y)fλ(x, y) ln

p(x|y)fλ(x, y)

p(x|y)
dxdy

∆
= D(p(x|y)fλ(x, y)||p(x|y)) (A.75)

For BSC, simple calculation reveals that

p(x|y) =

{
1− p if x = y
p otherwise

(A.76)

and

p(x|y)fλ(x, y) =

{
(1−p)−λ+1

p−λ+1+(1−p)−λ+1 if x = y
p−λ+1

p−λ+1+(1−p)−λ+1 otherwise
(A.77)

By defining

D(q||p) ∆
=(1− q) ln

1− q
1− p

+ q ln
q

p

and (A.75), we have

rX|Y (δ(λ)) = D

(
p−λ+1

p−λ+1 + (1− p)−λ+1

∥∥∥∥ p)
= D

(
p+

p(1− p)(p−λ − (1− p)−λ)
p−λ+1 + (1− p)−λ+1

∥∥∥∥ p) . (A.78)

On the other hand, by substituting (A.76) and (A.77) into (A.53),

δ(λ) =
p(1− p)(p−λ − (1− p)−λ)
p−λ+1 + (1− p)−λ+1

ln
1− p
p

(A.79)

and eventually, we have

rX|Y (δ) = D

(
p+

δ

ln 1−p
p

∥∥∥∥∥ p
)

(A.80)
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and plugging (A.76) into (A.56) with λ = 0 yields

σ2
H(X|Y ) = (1− p) ln2(1− p) + p ln2 p− [−p ln p− (1− p) ln(1− p)]2

= p(1− p) ln2 1− p
p

(A.81)

Moreover, as X and Y are both finite alphabets, it is easy to show that λ∗(X|Y ) = ∞,
where λ∗(X|Y ) is defined in (A.47). Then

∆∗(X|Y ) = lim
λ↑+∞

δ(λ) = (1− p) ln
1− p
p

(A.82)

and
rmax

∆
= lim

δ↑∆∗(X|Y )
rX|Y (δ) = − ln p (A.83)

Based on Theorem A.4, ∆∗(X|Y ) and rmax can be interpreted in the following way. As

max
xn,yn
− 1

n
ln p(xn|yn) = − ln p,

then

lim
δ→∆∗(X|Y )

Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
= Pr

{
− 1

n
ln p(Xn|Y n) = − ln p

}
= pn = en ln p = e−nrmax .

In addition, for δ ≥ ∆∗(X|Y ),

Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
= 0.

By adopting the convention that 0 ln 0 = 0 and e−∞ = 0,

rX|Y (δ) =

 D

(
p+ δ

ln 1−p
p

∥∥∥∥ p) if δ ∈ [0,∆∗(X|Y ))

+∞ if δ ≥ ∆∗(X|Y )
. (A.84)

A sample plot of rX|Y (δ) is provided in Figure A.1 when p = 0.10.

Example 2 (Binary Input Gaussian Channel): Without loss of generality, we assume
that the input of channel is modulated to {+1,−1}, and therefore

p(y|x) =
1√
2πσ

e−
|y−x|2

2σ2 (A.85)
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Figure A.1: rX|Y (δ) for BSC

for x = {+1,−1}, where σ2 is the variance of the noise. Calculation of rX|Y (δ) and
σ2
H(X|Y ) is much more involved than that for BSC. Tedious evaluation is omitted here

with results presented as follows. Let U be a standard Gaussian random variable, i.e.

p(u) =
1√
2π
e−
|u|2

2

and define
g(x)

∆
=1 + e−2x.

Then

δ(λ) =
E
[
gλ
(
σU+1
σ2

)
ln g

(
σU+1
σ2

)]
E
[
gλ
(
σU+1
σ2

)] − E
[
ln g

(
σU + 1

σ2

)]
(A.86)

rX|Y (δ(λ)) = λ
E
[
gλ
(
σU+1
σ2

)
ln g

(
σU+1
σ2

)]
E
[
gλ
(
σU+1
σ2

)] − ln

{
E
[
gλ
(
σU + 1

σ2

)]}
(A.87)

and

σ2
H(X|Y ) = E

[
ln2 g

(
σU + 1

σ2

)]
−
{
E
[
− ln g

(
σU + 1

σ2

)]}2

(A.88)
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To get better understanding of those quantities, let us first determine λ∗(X|Y ) and ∆∗(X|Y ).
In fact, we can show that λ∗(X|Y ) =∞ by verifying that∫

p(y)

[∑
x∈X

p−λ+1(x|y)

]
dy <∞

for any finite λ ≥ 0. Towards this, observe that∫
p(y)

[∑
x∈X

p−λ+1(x|y)

]
dy

is an increasing function with respect to λ since p(x|y) ≤ 1 for any x and y. Therefore,∫
p(y)

[∑
x∈X

p−λ+1(x|y)

]
dy = E

[
gλ
(
σU + 1

σ2

)]
≤ E

[
gdλe

(
σU + 1

σ2

)]
<∞

as

E[esU ] = e
s2

2 <∞
for any finite s. Now let us show the claim ∆∗(X|Y ) =∞. According to (A.86),

δ(λ) =
E
[
gλ
(
σU+1
σ2

)
ln g

(
σU+1
σ2

)]
E
[
gλ
(
σU+1
σ2

)] − E
[
ln g

(
σU + 1

σ2

)]
=

d

dλ
lnE

[
gλ
(
σU + 1

σ2

)]
−H(X|Y )

As H(X|Y ) is a constant and always less than ln 2, the claim ∆∗(X|Y ) =∞ is equivalent
to show

d

dλ
lnE

[
gλ
(
σU + 1

σ2

)]
is unbounded when λ → ∞. By the fact that δ(λ) is an increasing function of λ, which
also implies that so is

d

dλ
lnE

[
gλ
(
σU + 1

σ2

)]
,

we only have to verify that

lnE
[
gk+1

(
σU+1
σ2

)]
− lnE

[
gk
(
σU+1
σ2

)]
k + 1− k

= ln
E
[
gk+1

(
σU+1
σ2

)]
E
[
gk
(
σU+1
σ2

)]
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or simply
E
[
gk+1

(
σU+1
σ2

)]
E
[
gk
(
σU+1
σ2

)]
is unbounded when k →∞, which is indeed the case as

E
[
gk+1

(
σU+1
σ2

)]
E
[
gk
(
σU+1
σ2

)] =

∑k+1
i=0

(
k + 1
i

)
e

2i2−2i

σ2

∑k
i=0

(
k
i

)
e

2i2−2i

σ2

=

Θ

(
e

2(k+1)2−2(k+1)

σ2

)
Θ
(
e

2k2−2k

σ2

)
= Θ

(
e

4k
σ2

)
→∞

as k →∞. And consequently, it is not hard to see that

rX|Y (δ)→∞

as δ →∞. The interpretation based on Theorem A.4 is as follows:

− 1

n
ln p(xn|yn)−H(X|Y )

can approach ∞ for proper choice of xn and yn, but

lim
δ→∞

Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
= e−∞ = 0.

Figure A.2 shows a sample plot of rX|Y (δ) for BIGC with σ = 1.0.

A.3 NEP With Respect to Mutual Information and

Relative Entropy

Consider now an IID source pair (X, Y ) = {(Xi, Yi)}∞i=1 with finite mutual information
I(X;Y ) > 0. Let p(y|x) be the conditional pmf or pdf (as the case may be) of Yi given Xi.
In this section, we extend the NEP to I(X;Y ) and relative entropy.
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Figure A.2: rX|Y (δ) for BIGC

A.3.1 NEP With Respect to I(X;Y )

We begin with the left NEP with respect to I(X;Y ). Define

λ∗−(X;Y )
∆
= sup

{
λ ≥ 0 :

∫ ∫
p(x, y)

[
p(y|x)

p(y)

]−λ
dxdy <∞

}
. (A.89)

Suppose that
λ∗−(X;Y ) > 0 . (A.90)

Let

σ2
I (X;Y )

∆
=

∫ ∫
p(x, y)

[
ln
p(y|x)

p(y)

]2

dxdy − I2(X;Y ) (A.91)

which will be referred to as the mutual information variance of X and Y . It is not hard to
see that under the assumption (A.90),

∫ ∫ p(x, y)
[
p(y|x)
p(y)

]−λ[∫ ∫
p(u, v)

[
p(v|u)
p(v)

]−λ
dudv

] ∣∣∣∣− ln
p(y|x)

p(y)

∣∣∣∣k dxdy <∞ (A.92)
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and ∫ ∫
p(x, y)

[
p(y|x)

p(y)

]−λ
dxdy <∞

for any λ ∈ (0, λ∗−(X;Y )) and any positive integer k. Further assume that

σ2
I (X;Y ) > 0 and

∫ ∫
p(x, y)

∣∣∣∣ln p(y|x)

p(y)

∣∣∣∣3 dxdx <∞. (A.93)

Define for any δ ≥ 0

rX;Y,−(δ)
∆
= sup

λ≥0

[
λ(δ − I(X;Y ))− ln

∫ ∫
p(x, y)

[
p(y|x)

p(y)

]−λ
dxdy

]
(A.94)

and for any λ ∈ [0, λ∗−(X;Y ))

f−λ(x, y)
∆
=

[
p(y|x)
p(y)

]−λ
∫ ∫

p(u, v)
[
p(v|u)
p(v)

]−λ
dudv

(A.95)

δ−(λ)
∆
=

∫ ∫
p(x, y)f−λ(x, y)

[
− ln

p(y|x)

p(y)

]
dxdy + I(X;Y ) . (A.96)

(Throughout this section, δ−(λ) should be understood with its above definition.) Then
under the assumptions (A.90) and (A.93), δ−(λ) is strictly increasing over λ ∈ [0, λ∗−(X;Y ))
with δ−(0) = 0. Let

∆∗−(X;Y )
∆
= lim

λ↑λ∗−(X;Y )
δ−(λ) .

By an argument similar to that in the proof of Theorem A.1, it can be shown that rX;Y,−(δ)
is strictly increasing, convex and continuously differentiable up to at least the third order
inclusive over δ ∈ [0,∆∗−(X;Y )), and furthermore rX;Y,−(δ) has the following parametric
expression

rX;Y,−(δ−(λ)) = λ(δ−(λ)− I(X;Y ))− ln

∫ ∫
p(x, y)

[
p(y|x)

p(y)

]−λ
dxdy (A.97)

with λ = r′X;Y,−(δ) satisfying
δ−(λ) = δ .
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Further define for any λ ∈ [0, λ∗−(X;Y ))

σ2
I,−(X;Y, λ)

∆
=

∫ ∫
f−λ(x, y)p(x, y)

∣∣∣∣ln p(y|x)

p(y)
− (I(X;Y )− δ−(λ))

∣∣∣∣2 dxdy (A.98)

MI,−(X;Y, λ)
∆
=

∫ ∫
f−λ(x, y)p(x, y)

∣∣∣∣ln p(y|x)

p(y)
− (I(X;Y )− δ−(λ))

∣∣∣∣3 dxdy . (A.99)

Write MI,−(X;Y, 0) simply as MI(X;Y ). It is easy to see that σ2
I,−(X;Y, 0) = σ2

I (X;Y ),
σ2
I,−(X;Y, λ) = δ′−(λ), and

MI(X;Y ) =

∫ ∫
p(x, y)

∣∣∣∣ln p(y|x)

p(y)
− I(X;Y ))

∣∣∣∣3 dxdy . (A.100)

In parallel with Theorems A.3 and A.5, we have the following result, which is referred
to as the left NEP with respect to I(X;Y ) and can be proved similarly.

Theorem A.6 (Left NEP With Respect to I(X;Y )). For any positive integer n,

Pr

{
1

n
ln
p(Y n|Xn)

p(Y n)
≤ I(X;Y )− δ

}
≤ e−nrX;Y,−(δ) . (A.101)

Furthermore, under the assumptions (A.90) and (A.93), the following also hold:

(a) There exists a δ∗ > 0 such that for any δ ∈ (0, δ∗] and any positive integer n,

rX;Y,−(δ) =
1

2σ2
I (X;Y )

δ2 +O(δ3) (A.102)

and hence

Pr

{
1

n
ln
p(Y n|Xn)

p(Y n)
≤ I(X;Y )− δ

}
≤ e

−n( δ2

2σ2
I

(X;Y )
+O(δ3))

. (A.103)

(b) For any δ ∈ (0,∆∗−(X;Y )) and any positive integer n

ξ
I,−(X;Y, λ, n)e−nrX;Y,−(δ) ≤ Pr

{
1

n
ln
p(Y n|Xn)

p(Y n)
≤ I(X;Y )− δ

}
≤ ξ̄I,−(X;Y, λ, n)e−nrX;Y,−(δ) (A.104)
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where λ = r′X;Y,−(δ) > 0, and

ξ̄I,−(X;Y, λ, n) =
2CMI,−(X;Y, λ)√
nσ3

I,−(X;Y, λ)

+ e
nλ2σ2

I,−(X;Y,λ)

2

[
Q(
√
nλσI,−(X;Y, λ))−Q(ρ∗ +

√
nλσI,−(X;Y, λ))

]
(A.105)

ξ
I,−(X;Y, λ, n) = e

nλ2σ2
I,−(X;Y,λ)

2 Q(ρ∗ +
√
nλσI,−(X;Y, λ)) (A.106)

with Q(ρ∗) =
CMI,−(X;Y,λ)√
nσ3

I,−(X;Y,λ)
and Q(ρ∗) = 1

2
− 2CMI,−(X;Y,λ)√

nσ3
I,−(X;Y,λ)

.

(c) For any δ ≤ c
√

lnn
n

, where c < σI(X;Y ) is a constant,

Q

(
δ
√
n

σI(X;Y )

)
− CMI(X;Y )√

nσ3
I (X;Y )

≤ Pr

{
1

n
ln
p(Y n|Xn)

p(Y n)
≤ I(X;Y )− δ

}
≤ Q

(
δ
√
n

σI(X;Y )

)
+
CMI(X;Y )√
nσ3

I (X;Y )
. (A.107)

The probability that 1
n

ln p(Y n|Xn)
p(Y n)

is away from I(X;Y ) to the right can be bounded in
a similar manner. For completeness, we state these bounds again without proof. Define

λ∗(X;Y )
∆
= sup

{
λ ≥ 0 :

∫ ∫
p(x, y)

[
p(y|x)

p(y)

]λ
dxdy <∞

}
. (A.108)

Suppose that
λ∗(X;Y ) > 0 . (A.109)

Define for any δ ≥ 0

rX;Y (δ)
∆
= sup

λ≥0

[
λ(I(X;Y ) + δ)− ln

∫ ∫
p(x, y)

[
p(y|x)

p(y)

]λ
dxdy

]
(A.110)

and for any λ ∈ [0, λ∗(X;Y ))

fλ(x, y)
∆
=

[
p(y|x)
p(y)

]λ
∫ ∫

p(u, v)
[
p(v|u)
p(v)

]λ
dudv

(A.111)
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δ(λ)
∆
=

∫ ∫
p(x, y)fλ(x, y)

[
ln
p(y|x)

p(y)

]
dxdy − I(X;Y ) . (A.112)

(Throughout this section, δ(λ) should be understood with its above definition.) Then under
the assumptions (A.109) and (A.93), δ(λ) is strictly increasing over λ ∈ [0, λ∗(X;Y )) with
δ(0) = 0. Let

∆∗(X;Y )
∆
= lim

λ↑λ∗(X;Y )
δ(λ) .

By an argument similar to that in the proof of Theorem A.1, it can be shown that rX;Y (δ)
is strictly increasing, convex and continuously differentiable up to at least the third order
over δ ∈ [0,∆∗(X;Y )), and furthermore rX;Y (δ) has the following parametric expression

rX;Y (δ(λ)) = λ(I(X;Y ) + δ(λ))− ln

∫ ∫
p(x, y)

[
p(y|x)

p(y)

]λ
dxdy (A.113)

with λ = r′X;Y (δ) satisfying
δ(λ) = δ .

Further define for any λ ∈ [0, λ∗(X;Y ))

σ2
I (X;Y, λ)

∆
=

∫ ∫
fλ(x, y)p(x, y)

∣∣∣∣ln p(y|x)

p(y)
− (I(X;Y ) + δ(λ))

∣∣∣∣2 dxdy (A.114)

MI(X;Y, λ)
∆
=

∫ ∫
fλ(x, y)p(x, y)

∣∣∣∣ln p(y|x)

p(y)
− (I(X;Y ) + δ(λ))

∣∣∣∣3 dxdy . (A.115)

It is easy to see that σ2
I (X;Y, 0) = σ2

I (X;Y ) and σ2
I (X;Y, λ) = δ′(λ).

In parallel with Theorems A.1, A.2, and A.4, we have the following result, which is
referred to as the right NEP with respect to I(X;Y ) and can be proved similarly.

Theorem A.7 (Right NEP With Respect to I(X;Y )). For any positive integer n,

Pr

{
1

n
ln
p(Y n|Xn)

p(Y n)
> I(X;Y ) + δ

}
≤ e−nrX;Y (δ) . (A.116)

Furthermore, under the assumptions (A.109) and (A.93), the following also hold:

(a) There exists a δ∗ > 0 such that for any δ ∈ (0, δ∗] and any positive integer n,

rX;Y (δ) =
1

2σ2
I (X;Y )

δ2 +O(δ3) (A.117)
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and hence

Pr

{
1

n
ln
p(Y n|Xn)

p(Y n)
> I(X;Y ) + δ

}
≤ e

−n( δ2

2σ2
I

(X;Y )
+O(δ3))

. (A.118)

(b) For any δ ∈ (0,∆∗(X;Y )) and any positive integer n

ξ
I
(X;Y, λ, n)e−nrX;Y (δ) ≤ Pr

{
1

n
ln
p(Y n|Xn)

p(Y n)
> I(X;Y ) + δ

}
≤ ξ̄I(X;Y, λ, n)e−nrX;Y (δ) (A.119)

where λ = r′X;Y (δ) > 0, and

ξ̄I(X;Y, λ, n) =
2CMI(X;Y, λ)√
nσ3

I (X;Y, λ)

+ e
nλ2σ2

I (X;Y,λ)

2

[
Q(
√
nλσI(X;Y, λ))−Q(ρ∗ +

√
nλσI(X;Y, λ))

]
(A.120)

ξ
I
(X;Y, λ, n) = e

nλ2σ2
I (X;Y,λ)

2 Q(ρ∗ +
√
nλσI(X;Y, λ)) (A.121)

with Q(ρ∗) = CMI(X;Y,λ)√
nσ3

I (X;Y,λ)
and Q(ρ∗) = 1

2
− 2CMI(X;Y,λ)√

nσ3
I (X;Y,λ)

.

(c) For any δ ≤ c
√

lnn
n

, where c < σI(X;Y ) is a constant,

Q

(
δ
√
n

σI(X;Y )

)
− CMI(X;Y )√

nσ3
I (X;Y )

≤ Pr

{
1

n
ln
p(Y n|Xn)

p(Y n)
> I(X;Y ) + δ

}
≤ Q

(
δ
√
n

σI(X;Y )

)
+
CMI(X;Y )√
nσ3

I (X;Y )
. (A.122)

Remarks similar to those (Remark A.1 and A.2) following Theorem A.2 can be drawn
here concerning Theorems A.6 and A.7.

A.3.2 NEP With Respect to Relative Entropy

The IID source pair (X, Y ) = {(Xi, Yi)}∞i=1 considered so far is arbitrary. Let us now focus
on the case in which the source X is discrete, but Y could be either discrete or continuous.
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Let P denote the set of all probability distributions over the source alphabet X . For any
t ∈ P , let

qt(y)
∆
=
∑
x∈X

t(x)p(y|x) (A.123)

qt(y
n)

∆
=

n∏
i=1

qt(yi) (A.124)

D(t, x)
∆
=

∫
p(y|x) ln

p(y|x)

qt(y)
dy (A.125)

and

I(t;P )
∆
=
∑
x∈X

t(x)

∫
p(y|x) ln

p(y|x)

qt(y)
dy (A.126)

where yn = y1y2 · · · yn, and P = {p(y|x)} represents a channel with p(y|x) as its transitional
pmf or pdf (as the case may be). Clearly, D(t, x) is the divergence or relative entropy
between p(y|x) and qt(y); and I(t;P ) is the mutual information between the input and
output of the channel P when the input is distributed according to t. To be specific, we
denote the pmf of each Xi by pX . Without loss of generality, we assume that pX(x) > 0
for any x ∈ X . Since∫ ∫

p(x, y)

[
p(y|x)

p(y)

]−λ
dxdy =

∑
a∈X

pX(a)

∫
p(y|a)

[∑
b∈X pX(b)p(y|b)

p(y|a)

]λ
dy

it is not hard to see that for any λ > 0,∫ ∫
p(x, y)

[
p(y|x)

p(y)

]−λ
dxdy <∞

if and only if ∫
p(y|a)

[∑
b∈X p(y|b)
p(y|a)

]λ
dy <∞

for any a ∈ X . Therefore, λ∗−(X;Y ) defined in (A.89) is also equal to

sup

{
λ ≥ 0 :

∫
p(y|a)

[
p(y|a)

qt(y)

]−λ
dy <∞, a ∈ X

}

for any t ∈ P with t(a) > 0 for any a ∈ X (such t ∈ P will be said to have full support).
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Define for any t ∈ P with full support and any δ ≥ 0

r−(t, δ)
∆
= sup

λ≥0

[
λ(δ − I(t;P ))−

∑
x∈X

t(x) ln

∫
p(y|x)

[
p(y|x)

qt(y)

]−λ
dy

]
(A.127)

and for any λ ∈ [0, λ∗−(X;Y )) and any t ∈ P with full support

f−λ(y|x)
∆
=

[
p(y|x)
qt(y)

]−λ
∫
p(v|x)

[
p(v|x)
qt(v)

]−λ
dv

(A.128)

D(t, x, λ)
∆
=

∫
p(y|x)f−λ(y|x)

[
ln
p(y|x)

qt(y)

]
dy (A.129)

δ−(t, λ)
∆
=
∑
x∈X

t(x)

∫
p(y|x)f−λ(y|x)

[
− ln

p(y|x)

qt(y)

]
dy + I(t;P ) . (A.130)

It is not hard to verify that
δ−(t, 0) = 0

and

∂δ−(t, λ)

∂λ
=

∑
x∈X

t(x)

[∫
p(y|x)f−λ(y|x)

[
− ln

p(y|x)

qt(y)

]2

dy

−
(∫

p(y|x)f−λ(y|x)

[
− ln

p(y|x)

qt(y)

]
dy

)2
]

=
∑
x∈X

t(x)

[∫
p(y|x)f−λ(y|x)

[
ln
p(y|x)

qt(y)

]2

dy −D2(t, x, λ)

]
> 0

where the last inequality is due to (A.93). Therefore, δ−(t, λ) as a function of λ is strictly
increasing over λ ∈ [0, λ∗−(X;Y )). Let

∆∗−(t)
∆
= lim

λ↑λ∗−(X;Y )
δ−(t, λ) .

By an argument similar to that in the proof of Theorem A.1, it can be shown that r−(t, δ)
is strictly increasing, convex and continuously differentiable up to at least the third or-
der inclusive over δ ∈ [0,∆∗−(t)), and furthermore r−(t, δ) has the following parametric
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expression

r−(t, δ−(t, λ)) = λ(δ−(t, λ)− I(t;P ))−
∑
x∈X

t(x) ln

∫
p(y|x)

[
p(y|x)

qt(y)

]−λ
dy (A.131)

with

λ =
∂r−(t, δ)

∂δ

satisfying
δ−(t, λ) = δ .

Further define for any λ ∈ [0, λ∗−(X;Y ))

σ2
D,−(t;P, λ)

∆
=
∑
x∈X

t(x)

[∫
p(y|x)f−λ(y|x)

∣∣∣∣ln p(y|x)

qt(y)
−D(t, x, λ)

∣∣∣∣2 dy
]

(A.132)

and

MD,−(t;P, λ)
∆
=
∑
x∈X

t(x)

[∫
p(y|x)f−λ(y|x)

∣∣∣∣ln p(y|x)

qt(y)
−D(t, x, λ)

∣∣∣∣3 dy
]
. (A.133)

Write σ2
D,−(t;P, 0) simply as σ2

D(t;P ), MD,−(t;P, 0) as MD(t;P ), σ2
D(pX ;P ) as σ2

D(X;Y ),
and MD(pX ;P ) as MD(X;Y ). It is not hard to see that

σ2
D(t;P ) =

∑
x∈X

t(x)

[∫
p(y|x)

∣∣∣∣ln p(y|x)

qt(y)

∣∣∣∣2 dy − (∫ p(y|x) ln
p(y|x)

qt(y)
dy

)2
]

σ2
D(X;Y ) =

∑
x∈X

p(x)

[∫
p(y|x)

∣∣∣∣ln p(y|x)

p(y)

∣∣∣∣2 dy − (∫ p(y|x) ln
p(y|x)

p(y)
dy

)2
]

MD(t;P )
∆
=
∑
x∈X

t(x)

[∫
p(y|x)

∣∣∣∣ln p(y|x)

qt(y)
−
(∫

p(v|x) ln
p(v|x)

qt(v)
dv

)∣∣∣∣3 dy
]

MD(X;Y )
∆
=
∑
x∈X

p(x)

[∫
p(y|x)

∣∣∣∣ln p(y|x)

p(y)
−
(∫

p(v|x) ln
p(v|x)

p(v)
dv

)∣∣∣∣3 dy
]

and

σ2
D,−(t;P, λ) =

∂δ−(t, λ)

∂λ
.
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For obvious reasons, we will refer to σ2
D(t;P ) (σ2

D(X;Y ), respectively) as the conditional
divergence (or relative entropy) variance of P given t (Y given X, respectively).

In parallel with Theorems A.3, A.5, and A.6, we have the following result, which is
referred to as the left NEP with respect to relative entropy.

Theorem A.8 (Left NEP With Respect to Relative Entropy). For any sequence xn =
x1 · · ·xn from X , let t ∈ P be the type of xn, i.e., nt(a), a ∈ X , is the number of times the
symbol a appears in xn. Assume that t has full support. Then

Pr

{
1

n
ln
p(Y n|Xn)

qt(Y n)
≤ I(t;P )− δ

∣∣∣∣Xn = xn
}
≤ e−nr−(t,δ) . (A.134)

Furthermore, under the assumptions (A.90) and (A.93), the following also hold:

(a) There exists a δ∗ > 0 such that for any δ ∈ (0, δ∗]

r−(t, δ) =
1

2σ2
D(t;P )

δ2 +O(δ3) (A.135)

and hence

Pr

{
1

n
ln
p(Y n|Xn)

qt(Y n)
≤ I(t;P )− δ

∣∣∣∣Xn = xn
}
≤ e

−n( δ2

2σ2
D

(t;P )
+O(δ3))

. (A.136)

(b) For any δ ∈ (0,∆∗−(X;Y ))

ξ
D,−(t;P, λ, n)e−nr−(t,δ) ≤ Pr

{
1

n
ln
p(Y n|Xn)

qt(Y n)
≤ I(t;P )− δ

∣∣∣∣Xn = xn
}

≤ ξ̄D,−(t;P, λ, n)e−nr−(t,δ) (A.137)

where λ = ∂r−(t,δ)
∂δ

> 0, and

ξ̄D,−(t;P, λ, n) =
2CMD,−(t;P, λ)√
nσ3

D,−(t;P, λ)

+ e
nλ2σ2

D,−(t;P,λ)

2

[
Q(
√
nλσD,−(t;P, λ))−Q(ρ∗ +

√
nλσD,−(t;P, λ))

]
(A.138)

ξ
D,−(t;P, λ, n) = e

nλ2σ2
D,−(t;P,λ)

2 Q(ρ∗ +
√
nλσD,−(t;P, λ)) (A.139)

with Q(ρ∗) =
CMD,−(t;P,λ)√
nσ3

D,−(t;P,λ)
and Q(ρ∗) = 1

2
− 2CMD,−(t;P,λ)√

nσ3
D,−(t;P,λ)

.
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(c) For any δ ≤ c
√

lnn
n

, where c < σD(t;P ) is a constant,

Q

(
δ
√
n

σD(t;P )

)
− CMD(t;P )√

nσ3
D(t;P )

≤ Pr

{
1

n
ln
p(Y n|Xn)

qt(Y n)
≤ I(t;P )− δ

∣∣∣∣Xn = xn
}

≤ Q

(
δ
√
n

σD(t;P )

)
+
CMD(t;P )√
nσ3

D(t;P )
. (A.140)

Proof of Theorem A.8. The inequality (A.134) comes from the Chernoff bound. To see
this is indeed the case, note that

Pr

{
1

n
ln
p(Y n|Xn)

qt(Y n)
≤ I(t;P )− δ

∣∣∣∣Xn = xn
}

≤ inf
λ≥0

E
[(

p(Y n|Xn)
qt(Y n)

)−λ∣∣∣∣Xn = xn
]

enλ(δ−I(t;P ))

= inf
λ≥0

∏
a∈X

[∫
p(y|a)

(
p(y|a)
qt(y)

)−λ
dy

]nt(a)

enλ(δ−I(t;P ))

= inf
λ≥0

exp

{
−n

[
λ(δ − I(t;P ))−

∑
a∈X

t(a) ln

∫
p(y|a)

(
p(y|a)

qt(y)

)−λ
dy

]}
= e−nr−(t,δ) (A.141)

which completes the proof of (A.134).

The equation (A.135) follows from the Taylor expansion of r−(t, δ) at δ = 0 and the
fact that

∂2r−(t, δ)

∂δ2
=

1

σ2
D(t;P )

.

What remains is to prove (A.137) and (A.140). To this end, let

f−λ(y
n|xn) =

n∏
i=1

f−λ(yi|xi).

With λ = ∂r−(t,δ)
∂δ

, it follows from (A.131) that

r−(t, δ) = λ(δ − I(t;P ))−
∑
x∈X

t(x) ln

∫
p(y|x)

[
p(y|x)

qt(y)

]−λ
dy .
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Then we have

Pr

{
1

n
ln
p(Y n|Xn)

qt(Y n)
≤ I(t;P )− δ

∣∣∣∣Xn = xn
}

=

∫
1
n

ln
p(yn|xn)
qt(y

n)
≤I(t;P )−δ

p(yn|xn)dyn

=

∫
1
n

ln
p(yn|xn)
qt(y

n)
≤I(t;P )−δ

f−1
−λ(yn|xn)f−λ(y

n|xn)p(yn|xn)dyn

=

∫
1
n

ln
p(yn|xn)
qt(y

n)
≤I(t;P )−δ

e
λ ln

p(yn|xn)
qt(y

n)
+n
∑
a∈X t(a) ln

∫
p(v|a)

(
p(v|a)
qt(v)

)−λ
dv
f−λ(y

n|xn)p(yn|xn)dyn

=

∫
1
n

ln
p(yn|xn)
qt(y

n)
≤I(t;P )−δ

e
λ ln

p(yn|xn)
qt(y

n)
+nλ(δ−I(t;P ))−nr−(t,δ)

f−λ(y
n|xn)p(yn|xn)dyn

= e−nr−(t,δ)

∫
ln
p(yn|xn)
qt(y

n)
−n(I(t;P )−δ)≤0

e
λ
[
ln
p(yn|xn)
qt(y

n)
−n(I(t;P )−δ)

]
f−λ(y

n|xn)p(yn|xn)dyn

= e−nr−(t,δ)

∫
ρ≤0

∫
ln
p(yn|xn)
qt(y

n)
−n(I(t;P )−δ)

√
nσD,−(t;P,λ)

=ρ

eλ
√
nσD,−(t;P,λ)ρf−λ(y

n|xn)p(yn|xn)dyn

= e−nr−(t,δ)

0∫
−∞

eλ
√
nσD,−(t;P,λ)ρdFxn(ρ)

= e−nr−(t,δ)

Fxn(0)−
0∫

−∞

λ
√
nσD,−(t;P, λ)eλ

√
nσD,−(t;P,λ)ρFxn(ρ)dρ

 . (A.142)

where

Fxn(ρ) = Pr

{
ln p(Zn|xn)

qt(Zn)
− n(I(t;P )− δ)

√
nσD,−(t;P, λ)

≤ ρ

}
and Zi takes values over the alphabet of Y according to the pmf or pdf (as the case may
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be) f−λ(z|xi)p(z|xi). It is easy to verify that

E
[
ln
p(Zi|xi)
qt(Zi)

]
= D(t, xi, λ)

and
n∑
i=1

E
[
ln
p(Zi|xi)
qt(Zi)

]
=

n∑
i=1

D(t, xi, λ)

= n
∑
x∈X

t(x)D(t, x, λ)

= n(I(t;P )− δ)

which further implies that

Fxn(ρ) = Pr


∑n

i=1

[
ln p(Zi|xi)

qt(Zi)
−D(t, xi, λ)

]
√
nσD,−(t;P, λ)

≤ ρ

 .

Applying Lemma A.1 to the independent sequence{
ln
p(Zi|xi)
qt(Zi)

−D(t, xi, λ)

}n
i=1

,

the argument similar to that in the proof of Theorem A.2 can then be used to establish
(A.137).

Finally, consider another sequence of independent random variables W1,W2, · · · ,Wn,
where Wi takes values over the alphabet of Y according to the pmf or pdf (as the case may
be) p(w|xi). Applying Lemma A.1 directly to{

ln
p(Wi|xi)
qt(Wi)

−D(t, xi)

}n
i=1

we then get (A.140). This completes the proof of Theorem A.8.

The conditional probability that given Xn = xn, 1
n

ln p(Y n|Xn)
qt(Y n)

is away from I(t;P ) to
the right can be bounded similarly. For completeness, we state these bounds below without
proof. Define for any t ∈ P with full support and any δ ≥ 0

r(t, δ)
∆
= sup

λ≥0

[
λ(I(t;P ) + δ)−

∑
x∈X

t(x) ln

∫
p(y|x)

[
p(y|x)

qt(y)

]λ
dy

]
(A.143)
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and for any λ ∈ [0, λ∗(X;Y )) and any t ∈ P with full support

fλ(y|x)
∆
=

[
p(y|x)
qt(y)

]λ
∫
p(v|x)

[
p(v|x)
qt(v)

]λ
dv

(A.144)

D+(t, x, λ)
∆
=

∫
p(y|x)fλ(y|x)

[
ln
p(y|x)

qt(y)

]
dy (A.145)

δ(t, λ)
∆
=
∑
x∈X

t(x)

∫
p(y|x)fλ(y|x)

[
ln
p(y|x)

qt(y)

]
dy − I(t;P ) . (A.146)

Then under the condition (A.93), δ(t, λ) as a function of λ is strictly increasing over
λ ∈ [0, λ∗(X;Y )) with δ(t, 0) = 0. Let

∆∗(t)
∆
= lim

λ↑λ∗(X;Y )
δ(t, λ) .

By an argument similar to that in the proof of Theorem A.1, it can be shown that r(t, δ)
is strictly increasing, convex and continuously differentiable up to at least the third order
over δ ∈ [0,∆∗(t)), and furthermore r(t, δ) has the following parametric expression

r(t, δ(t, λ)) = λ(I(t;P ) + δ(t, λ))−
∑
x∈X

t(x) ln

∫
p(y|x)

[
p(y|x)

qt(y)

]λ
dy (A.147)

with

λ =
∂r(t, δ)

∂δ
satisfying

δ(t, λ) = δ .

Further define for any λ ∈ [0, λ∗(X;Y ))

σ2
D(t;P, λ)

∆
=
∑
x∈X

t(x)

[∫
p(y|x)fλ(y|x)

∣∣∣∣ln p(y|x)

qt(y)
−D+(t, x, λ)

∣∣∣∣2 dy
]

(A.148)

and

MD(t;P, λ)
∆
=
∑
x∈X

t(x)

[∫
p(y|x)fλ(y|x)

∣∣∣∣ln p(y|x)

qt(y)
−D+(t, x, λ)

∣∣∣∣3 dy
]
. (A.149)

Then the following result can be proved similarly, which is referred to as the right NEP
with respect to relative entropy.
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Theorem A.9 (Right NEP With Respect to Relative Entropy). For any sequence xn =
x1 · · ·xn from X , let t ∈ P be the type of xn, i.e., nt(a), a ∈ X , is the number of times the
symbol a appears in xn. Assume that t has full support. Then

Pr

{
1

n
ln
p(Y n|Xn)

qt(Y n)
> I(t;P ) + δ

∣∣∣∣Xn = xn
}
≤ e−nr(t,δ) . (A.150)

Furthermore, under the assumptions (A.109) and (A.93), the following also hold:

(a) There exists a δ∗ > 0 such that for any δ ∈ (0, δ∗]

r(t, δ) =
1

2σ2
D(t;P )

δ2 +O(δ3) (A.151)

and hence

Pr

{
1

n
ln
p(Y n|Xn)

qt(Y n)
> I(t;P ) + δ

∣∣∣∣Xn = xn
}
≤ e

−n( δ2

2σ2
D

(t;P )
+O(δ3))

. (A.152)

(b) For any δ ∈ (0,∆∗(X;Y ))

ξ
D

(t;P, λ, n)e−nr(t,δ) ≤ Pr

{
1

n
ln
p(Y n|Xn)

qt(Y n)
> I(t;P ) + δ

∣∣∣∣Xn = xn
}

≤ ξ̄D(t;P, λ, n)e−nr(t,δ) (A.153)

where λ = ∂r(t,δ)
∂δ

> 0, and

ξ̄D(t;P, λ, n) =
2CMD(t;P, λ)√
nσ3

D(t;P, λ)

+ e
nλ2σ2

D(t;P,λ)

2

[
Q(
√
nλσD(t;P, λ))−Q(ρ∗ +

√
nλσD(t;P, λ))

]
(A.154)

ξ
D

(t;P, λ, n) = e
nλ2σ2

D(t;P,λ)

2 Q(ρ∗ +
√
nλσD(t;P, λ)) (A.155)

with Q(ρ∗) = CMD(t;P,λ)√
nσ3

D(t;P,λ)
and Q(ρ∗) = 1

2
− 2CMD(t;P,λ)√

nσ3
D(t;P,λ)

.

(c) For any δ ≤ c
√

lnn
n

, where c < σD(t;P ) is a constant,

Q

(
δ
√
n

σD(t;P )

)
− CMD(t;P )√

nσ3
D(t;P )

≤ Pr

{
1

n
ln
p(Y n|Xn)

qt(Y n)
> I(t;P ) + δ

∣∣∣∣Xn = xn
}

≤ Q

(
δ
√
n

σD(t;P )

)
+
CMD(t;P )√
nσ3

D(t;P )
. (A.156)

Remarks similar to those (Remark A.1 and A.2) following Theorem A.2 can be drawn
here concerning Theorems A.8 and A.9.
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A.4 NEP Application to Fixed Rate Source Coding

Assume that the source alphabet X is finite. In this section, we make use of the NEP
with respect to H(X) to establish a non-asymptotic fixed rate source coding theorem,
which reveals, for any finite block length n, a complete picture about the tradeoff between
the minimum rate of fixed rate coding of X1 · · ·Xn and error probability when the error
probability is a constant, or goes to 0 with block length n at a sub-polynomial n−α, 0 <
α < 1, polynomial n−α, α ≥ 1, or sub-exponential e−n

α
, 0 < α < 1, speed. We begin with

the definition of fixed rate source code.

Definition A.1. Given a source from alphabet X , a fixed rate source code with coding
length n is defined as a mapping i : Sn → {1, 2, . . . , |Sn|}, where Sn is a subset of X n.
The performance of the code is measured by the rate Rn = 1

n
ln |Sn| (in nats) and error

probability Pr {Xn /∈ Sn}.

As can be seen from the definition, the design of a fixed rate source code is equivalent
to picking a subset of X n. Given the source statistics p(x), one can easily show that the
optimal way to pick Sn is to order xn in the non-increasing order of p(xn), and include
those xn with rank less than or equal to |Sn|. Then we have the following non-asymptotic
fixed rate source coding theorem.

Theorem A.10. Let Rn(εn) denote the minimum rate (in nats) of fixed rate coding of
X1X2 · · ·Xn subject to the error probability not larger than εn. Under the assumptions
(A.3) and (A.6), for any n and εn > 0,

δ̄ ≥ Rn(εn)−H(X) ≥ δ − rX(δ) +
−d+ ln

[
1
2
−Q

(
d√

nσH(X,λ)

)
− 2CMH(X,λ)√

nσ3
H(X,λ)

]
n

(A.157)

for any constant d satisfying 1
2
− Q

(
d√

nσH(X,λ)

)
− 2CMH(X,λ)√

nσ3
H(X,λ)

> 0, where δ̄ is the solution

to the equation
εn = ξ̄H(X, r′X(δ), n)e−nrX(δ) (A.158)

δ is the solution to the equation(
1 + e−n

)
εn = ξ

H
(X, r′X(δ), n)e−nrX(δ) (A.159)

and λ = r′X(δ). In particular, the following hold, depending on whether εn is a constant,
or how fast εn goes to 0.
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(a) When εn decreases exponentially with respect to n,

r
(inv)
X

(
− ln εn

n
− lnn

2n

)
+O(n−1) ≥ Rn(εn)−H(X)

≥ r
(inv)
X

(
− ln εn

n
− lnn

2n

)
+

ln εn
n
−O(n−1)

(A.160)

where r
(inv)
X (·) is the inverse function of rX(·).

(b) When εn = n−
α
2 e−n

α
for α ∈ (0, 1),

√
2σH(X)n−

1−α
2 +O

(
n−

1+α
2

)
≥ Rn(εn)−H(X)

≥
√

2σH(X)n−
1−α

2 −O
(
n−

1+α
2

)
(A.161)

for α ∈
(
0, 1

3

)
, and

√
2σH(X)n−

1−α
2 +O

(
n−(1−α)

)
≥ Rn(εn)−H(X)

≥
√

2σH(X)n−
1−α

2 −O
(
n−(1−α)

)
(A.162)

for α ∈
[

1
3
, 1
)
.

(c) When εn = n−α√
lnn

for α > 0,

σH(X)

√
2α lnn

n
+O

(√
1

n lnn

)
≥ Rn(εn)−H(X)

≥ σH(X)

√
2α lnn

n
−O

(√
1

n lnn

)
.(A.163)

(d) When εn = ε remains a constant,

σH√
n
Q−1

(
ε− CMH(X)√

nσ3
H(X)

)
=

σH√
n
Q−1 (ε) +O

(
1

n

)
≥ Rn(εn)−H(X)

≥ σH√
n
Q−1 (ε)−O

(
lnn

n

)
. (A.164)

where Q−1 (·) is the inverse function of Q (·).
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Proof of Theorem A.10. Define

Sn(δ)
∆
=

{
xn : − 1

n
ln p(xn) ≤ H(X) + δ

}
and

εn(δ) = Pr {Xn /∈ Sn(δ)} .

Clearly εn(δ) is a non-increasing function of δ. Now let δ̄ and δ satisfy that

εn(δ̄) ≤ εn < εn(δ). (A.165)

According to the discussion on optimal fixed-rate source codes,

1

n
lnSn(δ) < Rn(εn) ≤ 1

n
lnSn(δ̄). (A.166)

Observe that

|Sn(δ̄)|e−n(H(X)+δ̄) ≤
∑

xn∈Sn(δ̄)

p(xn)

≤
∑
xn∈Xn

p(xn)

≤ 1

which implies that

Rn(εn) ≤ 1

n
ln |Sn(δ̄)| ≤ H(X) + δ̄. (A.167)

Towards the lower bound on Rn(εn), further define

Sn(δ, d)
∆
=

{
xn : H(X) + δ − d

n
≤ − 1

n
ln p(xn) ≤ H(X) + δ

}
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for some constant d > 0. Then we have

|Sn(δ, d)|e−n(H(X)+δ− d
n) ≥

∑
xn∈Sn(δ,d)

p(xn)

=
∑

xn∈Sn(δ,d)

f−1
λ (x)fλ(x

n)p(xn)

=
∑

xn∈Sn(δ,d)

e−n[−
1
n
λ ln p(xn)−ln

∑
u∈X p

−λ+1(u)]fλ(x
n)p(xn)

≥ e−nrX(δ)
∑

xn∈Sn(δ,d)

fλ(x
n)p(xn)

= e−nrX(δ) Pr {Zn ∈ Sn(δ, d)}

= e−nrX(δ) Pr

{
−d
n
≤ 1

n

n∑
i=1

− ln p(Zi)− (H(X) + δ) ≤ 0

}

≥ e−nrX(δ)

[
1

2
−Q

(
d√

nσH(X,λ)

)
− 2CMH(X,λ)√

nσ3
H(X,λ)

]
where λ = r′X(δ), {Zi}ni=1 are IID random variables with common pmf fλ(z)p(z), and the
last inequality is due to the direct application of Lemma A.1 (Berry-Esseen Central Limit
Theorem) to {− ln p(Zi)− (H(X) + δ)}ni=1. And therefore

Rn(εn) >
1

n
ln |Sn(δ)|

≥ 1

n
ln |Sn(δ, d)|

≥ H(X) + δ − d

n
− rX(δ)

+
1

n
ln

[
1

2
−Q

(
d√

nσH(X,λ)

)
− 2CMH(X,λ)√

nσ3
H(X,λ)

]
. (A.168)

Note that 1
2
− Q

(
d√

nσH(X,λ)

)
− 2CMH(X,λ)√

nσ3
H(X,λ)

= Θ
(

1√
n

)
for constant d > 0. Then (A.157)

is proved by showing δ̄ and δ calculated according to (A.158) and (A.159) indeed satisfy
(A.165), where we invoke Theorem A.2, i.e.

εn(δ̄) = Pr
{
Xn /∈ Sn(δ̄)

}
≤ ξ̄H(X, r′X(δ̄), n)e−nrX(δ̄)

= εn
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while

εn(δ) = Pr {Xn /∈ Sn(δ)}
≥ ξ

H
(X, r′X(δ), n)e−nrX(δ)

> εn.

Let us now look at special cases.

(a) When εn decreases exponentially with respect to n, i.e. 1
n

ln εn → c as n → +∞ for
some constant c < 0, we have

ln εn
n

=
ln ξ̄H(X, r′X(δ̄), n)

n
− rX(δ̄). (A.169)

Note that

ξ̄H(X,λ, n) ≥ 2CMH(X,λ)√
nσ3

H(X,λ)
= Ω

(
1√
n

)
.

Taking n → +∞ in (A.169), it can be seen that rX(δ̄) → −c. And therefore,

ξ̄H(X, r′X(δ̄), n) = Θ
(

1√
n

)
, which further implies that

δ̄ = r
(inv)
X

(
− ln εn

n
+

ln ξ̄H(X, r′X(δ̄), n)

n

)
= r

(inv)
X

(
− ln εn

n
− lnn

2n
+O(n−1)

)
= r

(inv)
X

(
− ln εn

n
− lnn

2n

)
+O(n−1). (A.170)

On the other hand,

ln εn
n

+
ln(1 + e−n)

n
=

ln ξ
H

(X, r′X(δ), n)

n
− rX(δ). (A.171)

and by the same argument, rX(δ)→ −c as n→ +∞. Consequently, ξ
H

(X, r′X(δ), n) =

Θ
(

1√
n

)
, which further implies

ln εn
n

= −rX(δ)− lnn

2n
+O(n−1) (A.172)
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and

δ = r
(inv)
X

(
− ln εn

n
− lnn

2n

)
−O(n−1). (A.173)

Combining (A.157) with (A.170), (A.172) and (A.173) yields,

r
(inv)
X

(
− ln εn

n
− lnn

2n

)
+O(n−1) ≥ Rn(εn)−H(X)

≥ δ − rX(δ)− lnn

2n
−O(n−1)

= r
(inv)
X

(
− ln εn

n
− lnn

2n

)
+

ln εn
n
−O(n−1)

(A.174)

This completes the proof of (A.160).

(b) First of all, let us consider the case when α ∈
(
0, 1

3

)
. Towards proving (A.161), let

us show that δ̄ =
√

2σH(X)n−
1−α

2 + ηn−
1+α

2 for some properly chosen constant η will
guarantee

εn(δ̄) ≤ n−
α
2 e−n

α

. (A.175)

By Theorem A.2 and Remark A.1,

εn
(
δ̄
)
≤ ξ̄H

(
X, r′X

(
δ̄
)
, n
)
e−nrX(δ̄)

while

ξ̄H
(
X, r′X

(
δ̄
)
, n
)

= ξ̄H

(
X, r′X

(√
2σH(X)n−

1−α
2 + ηn−

1+α
2

)
, n
)

= Θ

 1
√
nr′X

(√
2σH(X)n−

1−α
2 + ηn−

1+α
2

)


= Θ
(
n−

α
2

)
≤ η1n

−α
2
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for some constant η1 > 0, and

e−nrX(δ̄)

= exp
{
−nrX

(√
2σH(X)n−

1−α
2 + ηn−

1+α
2

)}
= exp

{
−n
[

1

2σ2
H(X)

(√
2σH(X)n−

1−α
2 + ηn−

1+α
2

)2

+O
(
n−

3(1−α)
2

)]}
= exp

{
−nα −

√
2η

σH(X)
−O

(
n−α + n−

1−3α
2

)}

= exp

{
−nα −

√
2η

σH(X)
− o(1)

}

since α ∈
(
0, 1

3

)
. Now it is trivial to see that we can select a constant η such that

η1e
−
√

2η
σH (X)

−o(1) ≤ 1

which will make (A.175) satisfied, and consequently

δ̄ =
√

2σH(X)n−
1−α

2 + ηn−
1+α

2

=
√

2σH(X)n−
1−α

2 +O
(
n−

1+α
2

)
≥ Rn(εn)−H(X).

In the similar manner, we can show that by making δ =
√

2σH(X)n−
1−α

2 − η′n− 1+α
2

for another constant η′ > 0,
εn(δ) > εn.

Consequently,

Rn(εn)−H(X) ≥ δ − rX(δ)− lnn

2n
−O(n−1)

=
√

2σH(X)n−
1−α

2 − η′n−
1+α

2 −O
(
n−(1−α)

)
=
√

2σH(X)n−
1−α

2 −O
(
n−

1+α
2

)
for α ∈

(
0, 1

3

)
. The proof of (A.162) for the case α ∈

[
1
3
, 1
)

is essentially the same,
and therefore omitted.
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(c) Following the same spirit of the proof for part (b), one can verify that constants η
and η′ can be chosen respectively such that[

εn
(
δ̄
) ∣∣∣

δ̄=σH
√

2α lnn
n

+η
√

1
n lnn

]
≤ n−α√

lnn

and [
εn (δ)

∣∣∣
δ=σH
√

2α lnn
n
−η′
√

1
n lnn

]
>

n−α√
lnn

which, together with (A.157), proves (A.163).

(d) It can be readily seen that by Theorem A.2 (b), δ̄ = σH(X)√
n
Q−1

(
ε− CMH(X)√

nσ3
H(X)

)
is the

right choice to guarantee
εn(δ̄) ≤ ε

while δ = σH(X√
n
Q−1

(
ε+ 2CMH(X)√

nσ3
H(X)

)
will make

εn(δ) > ε

satisfied. (A.164) then follows immediately from (A.157) and the choices of δ̄ and δ.

This completes the proof of Theorem A.10.

Remark A.3. To show Theorem A.10 provides a non-trivial bound, we claim that

δ > rX(δ)

for 0 < δ < ln |X | −H(X). Indeed, recall the definition of δ(λ) and

0 ≤ rX(δ(1)) = H(X) + δ(1)− ln |X |

which implies that δ(1) ≥ ln |X | − H(X) or r′X(δ) < 1 for 0 < δ < ln |X | − H(X). The
claim then follows immediately from the fact that rX(0) = 0.

Remark A.4. In Part (d) of Theorem A.10, we can see that if εn = ε > 0.5 is selected,
then Rn(εn) could be strictly less than H(X) for finite block length n! This means that if
the error probability is allowed to be slightly larger than 0.5, the rate of source code can be
even less than the entropy rate. For an IID binary source with p = Pr{X1 = 1} = 0.12,
Figure A.3 shows the tradeoff between the error probability and block length when the code
rate is 0.21% below the entropy rate, where in Figure A.3, both the entropy rate and code
rate are expressed in terms of bits. As can be seen from Figure A.3, at the block length
1000, the error probability is around 0.65, and the code rate is 0.21% below the entropy
rate. Similar phenomenon can be seen for channel coding shown in [63].
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Remark A.5. Related to Part (d) of Theorem A.10 is the second order source coding
analysis in [19] with a fixed error probability 0 < ε < 1. Both results are concerned with
the scenario where the rate is around the entropy rate in the order of 1√

n
and the error

probability is a constant. However, the work in [19] is asymptotic. On the other hand,
Theorem A.10 ((A.157) and Part (d)) is non-asymptotic and valid for any block length n.
It reveals a complete picture about the tradeoff between the rate and error probability when
the error probability is constant, or approaches 0 with block length n at an exponential (Part
(a)), a sub-exponential (Part (b)), a polynomial (Part (c) with α ≥ 1), or a sub-polynomial
(Part (c) with 0 < α < 1) speed.
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Figure A.3: Tradeoff between the error probability and block length when the rate is below
the entropy rate with p = 0.12

243



Appendix B

Lemmas Related to LDPC Ensembles

B.1 LDPC ensemble with Syndrome Accumulation

and Check Node Concentrated Degree Distribu-

tions

B.1.1 Proof of Lemma 6.1

We consider only the case in which l̄ is not an integer. The case where l̄ is an integer is a
bit easier and can be dealt with in a similar manner.

Although there is thorough analysis of the probability Pr {Hm×nx
n = 0m} for Hm×n

from Hm,n,L(z),R(z) in [64–67], the result therein in general is not applicable to H
(b∆)
b∆×n, the

matrix obtained from syndrome accumulation on Hn×n. Towards analyzing Pr
{

H
(b∆)
b∆×nx

n = 0b∆
}

,

we focus on {Pb∆}
n
∆
b=1 defined in section 6.2.2. Given Pb∆ = {Λb∆,i}b∆i=1, one can classify

Λb∆,i into three categories:

• Λb∆,i ⊆ {1, 2, . . . , R1n},

• Λb∆,i ⊆ {R1n+ 1, R1n+ 2, . . . , n}, or

• Λb∆,i * {1, 2, . . . , R1n}, and Λb∆,i * {R1n+ 1, R1n+ 2, . . . , n}.

To avoid complicating the analysis unnecessarily, we assume that there does not exist Λb∆,i

falling into the third category. Further effort reveals that this assumption holds if and only
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if 2T−blog2 ∆c|R1n, or in other words,

R1 =
C

2blog2 ∆c

for some positive integer C, where the parameter ∆ is a function of block length n. In
fact, we only consider the case where ∆ ∼

√
n, which implies 2blog2 ∆c ∼

√
n, and therefore

the assumption above always holds for sufficiently large n if l̄ is a fractional number with
a power of 2 as its denominator. Consequently, each Λb∆,i can be further categorized into
one of four cases:

• Λb∆,i ⊆ {1, 2, . . . , R1n}, and |Λb∆,i| = 2T−dlog2 b∆e;

• Λb∆,i ⊆ {1, 2, . . . , R1n}, and |Λb∆,i| = 2T−dlog2 b∆e+1;

• Λb∆,i ⊆ {R1n+ 1, R1n+ 2, . . . , n}, and |Λb∆,i| = 2T−dlog2 b∆e; or

• Λb∆,i ⊆ {R1n+ 1, R1n+ 2, . . . , n}, and |Λb∆,i| = 2T−dlog2 b∆e+1.

Now we use
{
t
(i)
b∆

}4

i=1
to represent the number of Λb∆,i’s falling into each category, which

are given by the following formulas:

t
(1)
b∆ = min

{
2b∆− 2dlog2 b∆e, R12dlog2 b∆e

}
,

t
(2)
b∆ = max

{
R12dlog2 b∆e−1 −

(
b∆− 2dlog2 b∆e−1

)
, 0
}
,

t
(3)
b∆ = max

{
R22dlog2 b∆e − 2

(
2dlog2 b∆e − b∆

)
, 0
}
,

t
(4)
b∆ = min

{
2dlog2 b∆e − b∆, R22dlog2 b∆e−1

}
.

Note that we assume that block length n = 2T for some integer T . It then follows that

t
(1)
b∆

n
= min

{
2b∆

n
− 2dlog2

b∆
n e, R12dlog2

b∆
n e
}

t
(2)
b∆

n
= max

{
R12dlog2

b∆
n e−1 −

(
b∆

n
− 2dlog2

b∆
n e−1

)
, 0

}
t
(3)
b∆

n
= max

{
R22dlog2

b∆
n e − 2

(
2dlog2

b∆
n e − b∆

n

)
, 0

}
t
(4)
b∆

n
= min

{
2dlog2

b∆
n e − b∆

n
,R22dlog2

b∆
n e−1

}
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Recall that
cb∆ = 2T−dlog2 b∆e = 2−dlog2

b∆
n e .

Therefore cb∆ also depends only on b∆
n

.

Now define Hn,L(z),κ,b∆ as a subset of Hn,L(z) such that

Hn×n ∈ Hn,L(z),κ,b∆

if and only if
Hn×n ∈ Hn,L(z) and H

(b∆)
b∆×nx

n = 0b∆

where κ is the support set of xn. It is easy to see that given xn (and therefore κ), these
subsets Hn,L(z),κ,b∆ are nested with each other

Hn,L(z),κ,s∆ ⊆ Hn,L(z),κ,b∆

if s ≥ b. Furthermore, let ℵn,L(z),κ,b∆ = |Hn,L(z),κ,b∆|. Then we have

Pr
{

H
(b∆)
b∆×nx

n = 0b∆
}

=
ℵn,L(z),κ,b∆

|Hn,L(z)|
(B.1)

where Hn×n is uniformly picked from Hn,L(z). Therefore the main issue is to derive asymp-
totic formulas for |Hn,L(z)| and ℵn,L(z),κ,b∆. At this point, we invoke the following result
from Mineev and Pavlov [68] (see also [69] for a stronger version).

Theorem B.1 (Mineev-Pavlov). Suppose H~r,~l is the ensemble of m× n 0-1 matrices with
i-th row sum ri and j-th column sum lj satisfying max{ri, lj : 1 ≤ i ≤ m and 1 ≤ j ≤
n} ≤ log1/4−εm, where ε is an arbitrarily small positive constant. Then

|H~r,~l| =
(
∑m

i=1 ri)!

(
∏m

i=1 ri!) (
∏n

i=1 li!)

×

[
exp

{
− 2

(2
∑m

i=1 ri)
2

(
m∑
i=1

ri(ri − 1)
n∑
j=1

lj(lj − 1)

)}
+ o(m−0.5+δ)

]
(B.2)

where 0 < δ < 0.5 is an arbitrarily small constant.

First of all, applying Theorem B.1 to |Hn,L(z)|, we have

|Hn,L(z)| =
(l̄n)!

(r1!)R1n(r2!)R2n
∏L

i=1(li!)Lin
(CL(z) + o(n−0.5+δ))
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where

CL(z) = exp

{
−(R1r1(r1 − 1) +R2r2(r2 − 1))

∑L
i=1 Lili(li − 1)

2l̄2

}
Towards calculating ℵn,L(z),κ,b∆, note that each Hn×n consists of two sub-matrices Hκ

n×|κ|
and Hκc

n×(n−|κ|), where κc is the complement of κ. Suppose {rκi }ni=1 is the row-sum profile

of Hκ
n×|κ|. Then the row-sum profile {rκci }ni=1 of Hκc

n×(n−|κ|) is given by

rκ
c

i = r1 − rκi for 1 ≤ i ≤ R1n

rκ
c

i = r2 − rκi for R1n+ 1 ≤ i ≤ n

For each Hn×n ∈ Hn,L(z), its Hκ
n×|κ| and Hκc

n×(n−|κ|) should have Lκ(z) and Lκc(z) as their
column-sum profiles. Therefore

0 ≤ rκi ≤ r1 for 1 ≤ i ≤ R1n (B.3)

0 ≤ rκi ≤ r2 for R1n+ 1 ≤ i ≤ n (B.4)
n∑
i=1

rκi = l̄κn (B.5)
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Note that

H
(b∆)
b∆×nx

n =


∑

i∈Λ1
hi,1

∑
i∈Λ1

hi,2 . . .
∑

i∈Λ1
hi,n

...
...

. . .
...∑

i∈Λb∆
hi,1

∑
i∈Λb∆

hi,2 . . .
∑

i∈Λb∆
hi,n

xn

=


∑

i∈Λ1
hi,j1

∑
i∈Λ1

hi,j2 . . .
∑

i∈Λ1
hi,j|κ|

...
...

. . .
...∑

i∈Λb∆
hi,j1

∑
i∈Λb∆

hi,j2 . . .
∑

i∈Λb∆
hi,j|κ|


︸ ︷︷ ︸

κ


1
1
...
1



=


∑

j∈κ
∑

i∈Λ1
hij

...∑
j∈κ
∑

i∈Λb∆
hij


=


∑

i∈Λ1

∑
j∈κ hij

...∑
i∈Λb∆

∑
j∈κ hij


=


∑

i∈Λ1
rκi

...∑
i∈Λb∆

rκi


Then Hn×n ∈ Hn,L(z),κ,b∆ if and only if

2

∣∣∣∣∣
cb∆∑
u=1

rκcb∆j+u for 0 ≤ j ≤ t
(1)
b∆ − 1 (B.6)

2

∣∣∣∣∣
2cb∆∑
u=1

rκ
t
(1)
b∆cb∆+2cb∆j+u

for 0 ≤ j ≤ t
(2)
b∆ − 1 (B.7)

2

∣∣∣∣∣
cb∆∑
u=1

rκ
t
(1)
b∆cb∆+2t

(2)
b∆cb∆+cb∆j+u

for 0 ≤ j ≤ t
(3)
b∆ − 1 (B.8)

2

∣∣∣∣∣
2cb∆∑
u=1

rκ
t
(1)
b∆cb∆+2t

(2)
b∆cb∆+t

(3)
b∆cb∆+2cb∆j+u

for 0 ≤ j ≤ t
(4)
b∆ − 1 (B.9)

Let Rb∆,l̄κ denote the set of all row-sum profiles {rκi }ni=1 which satisfy the constraints
(B.3) to (B.9). Furthermore, let ℵκ{rκi }ni=1

and ℵκc{rκci }ni=1

denote the number of Hκ
n×|κ|’s and
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Hκc
n×(n−|κ|)’s with the given row profile {rκi }

n and
{
rκ

c

i

}n
, respectively. Then it is easy to

see that
ℵn,L(z),κ,b∆ =

∑
{ri}ni=1∈Rb∆,l̄κ

ℵκ{rκi }ni=1

ℵκc{rκci }ni=1

(B.10)

Applying Theorem B.1 to ℵκ{rκi }ni=1

and ℵκc{rκci }ni=1

, we have

ℵκ{rκi }ni=1

=
(
∑n

i=1 r
κ
i )!

(
∏n

i=1 r
κ
i !)
∏L

i=1 (li!)
Lκ
i n

(Crκ + o(n−0.5+δ))

=

(
l̄κn
)
!

(
∏n

i=1 r
κ
i !)
∏L

i=1 (li!)
Lκ
i n

(Crκ + o(n−0.5+δ)) (B.11)

where

exp

{
−r2(lL − 1)

2

}
≤ exp

{
−r2

∑L
i=1 L

κ
i li(li − 1)

2l̄κ

}
≤ Crκ ≤ 1 .

Similarly,

ℵκc{rκci }ni=1

=

(
(l̄ − l̄κ)n

)
!(∏R1n

i=1 (r1 − rκi )!
∏n

i=R1n+1(r2 − rκi )!
)∏L

i=1 (li!)
(Li−Lκ

i )n
(Crκc + o(n−0.5+δ))

(B.12)
where

exp

{
−r2(lL − 1)

2

}
≤ exp

{
−r2

∑L
i=1(Li − Lκ

i )li(li − 1)

2(l̄ − l̄κ)

}
≤ Crκc ≤ 1 .

Combining (B.1) with (B.10) to (B.12) yields

Pr
{

H
(b∆)
b∆×nx

n = 0b∆
}

=
ℵn,L(z),κ,b∆

|Hn,L(z)|

≤ 2

CL(z)

∑
{rκi }ni=1∈Rb∆,κ

CrκCrκc (nl̄
κ)!(n(l̄−l̄κ))!∏L

i=1(li!)
Lin

∏R1n
i=1 rκi !(r1−rκi )!

∏n
i=R1n+1 r

κ
i !(r2−rκi )!

(nl̄)!

(r1!)R1n(r2!)R2n
∏L
i=1(li!)Lin

≤ 2

CL(z)

(
nl̄
nl̄κ

)−1 ∑
{rκi }ni=1∈Rb∆,κ

R1n∏
i=1

(
r1

rκi

) n∏
i=R1n+1

(
r2

rκi

)
(B.13)
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where (
Crκ + o(n−0.5+δ)

) (
Crκc + o(n−0.5+δ)

)
CL(z) + o(n−0.5+δ)

≤ 2CrκCrκc

CL(z)

for sufficiently large n as δ > 0 can be arbitrarily small. To further evaluate Pr{H(b∆)
b∆×nx

n =

0b∆}, we define the type
(
m(1),m(2),m(3),m(4)

)
of {rκi }ni=1 as follows:

m(1)
s

∆
=

t
(1)
b∆−1∑
j=0

δ

(
cb∆∑
u=1

rκcb∆j+u − s

)
for 0 ≤ s ≤ cb∆r1

m(2)
s

∆
=

t
(2)
b∆−1∑
j=0

δ

(
2cb∆∑
u=1

rκ
cb∆t

(1)
b∆+2cb∆j+u

− s

)
for 0 ≤ s ≤ 2cb∆r1

m(3)
s

∆
=

t
(3)
b∆−1∑
j=0

δ

(
cb∆∑
u=1

rκ
t
(1)
b∆+2t

(2)
b∆cb∆+cb∆j+u

− s

)
for 0 ≤ s ≤ cb∆r2

m(4)
s

∆
=

t
(4)
b∆−1∑
j=0

δ

(
2cb∆∑
u=1

rκ
t
(1)
b∆cb∆+2t

(2)
b∆cb∆+t

(3)
b∆cb∆+2cb∆j+u

− s

)
for 0 ≤ s ≤ 2cb∆r2

where

δ(x)
∆
=

{
1 if x = 0
0 otherwise.

Now we can see that {rκi }
n
i=1 belongs to Rb∆,κ if and only if its type

(
m(1),m(2),m(3),m(4)

)
satisfies

b cb∆r12 c∑
j=0

m
(1)
2j = t

(1)
b∆ (B.14)

cb∆r1∑
j=0

m
(2)
2j = t

(2)
b∆ (B.15)

b cb∆r22 c∑
j=0

m
(3)
2j = t

(3)
b∆ (B.16)

cb∆r2∑
j=0

m
(4)
2j = t

(4)
b∆ (B.17)
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and

b cb∆r12 c∑
j=0

2j ·m(1)
2j +

cb∆r1∑
j=0

2j ·m(2)
2j +

b cb∆r22 c∑
j=0

2j ·m(3)
2j +

cb∆r2∑
j=0

2j ·m(4)
2j = l̄κn (B.18)

Denote the set of types
{
m(1),m(2),m(3),m(4)

}
satisfying the above constraints (B.14) to

(B.18) by Mb∆,κ. If Mb∆,κ 6= ∅, then the constraints (B.14) to (B.18) implies

0 ≤
b cb∆r12 c∑
j=0

(cb∆r1 − π(cb∆r1)− 2j)m
(1)
2j +

cb∆r1∑
j=0

(2cb∆r1 − 2j)m
(2)
2j

+

b cb∆r22 c∑
j=0

(cb∆r2 − π(cb∆r2)− 2j)m
(3)
2j +

cb∆r2∑
j=0

(2cb∆r2 − 2j)m
(4)
2j

= t
(1)
b∆(cb∆r1 − π(cb∆r1)) + 2t

(2)
b∆cb∆r1 + t

(3)
b∆(cb∆r2 − π(cb∆r2)) + 2t

(4)
b∆cb∆r2 − l̄κn

= nl̄ − t(1)
b∆π(cb∆r1)− t(3)

b∆π(cb∆r2)− l̄κn (B.19)

and therefore

l̄κ ≤ l̄ − t
(1)
b∆

n
π(cb∆r1)− t

(3)
b∆

n
π(cb∆r2).

On the other hand, Mt,θ = ∅ implies Pr
{

H
(b∆)
b∆×nx

n = 0b∆
}

= 0, and hence the lemma is

proved when

l̄κ > l̄ − t
(1)
b∆

n
π(cb∆r1)− t

(3)
b∆

n
π(cb∆r2).

Now suppose

l̄κ < l̄ − t
(1)
b∆

n
π(cb∆r1)− t

(3)
b∆

n
π(cb∆r2).

For convenience, define

k(1) =
cb∆r1 − π(cb∆r1)

2
k(2) = cb∆r1

k(3) =
cb∆r2 − π(cb∆r2)

2
k(4) = cb∆r2
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To proceed, we can group {rκi }
n
i=1 with the same type together, and therefore have

∑
{rκi }ni=1

∈Rb∆,κ

R1n∏
i=1

(
r1

rκi

) n∏
i=R1n+1

(
r2

rκi

)
=

∑
{m(1),m(2),m(3),m(4)}∈Mb∆,κ

4∏
i=1

(
t
(i)
b∆

m
(i)
0 ,m

(i)
2 , . . . ,m

(i)

2k(i)

)

k(1)∏
j=0

 ∑
{rκu}

cb∆
u=1:

∑cb∆
u=1 ru=2j

cb∆∏
u=1

(
r1

rκu

)m
(1)
2j

k(2)∏
j=0

 ∑
{rκu}

2cb∆
u=1 :

∑2cb∆
u=1 rκu=2j

2cb∆∏
u=1

(
r1

rκu

)
m

(2)
2j

k(3)∏
j=0

 ∑
{rκu}

cb∆
u=1:

∑cb∆
u=1 r

κ
u=2j

cb∆∏
u=1

(
r2

rκu

)m
(3)
2j

k(4)∏
j=0

 ∑
{rκu}

2cb∆
u=1 :

∑cb∆
u=1 r

κ
u=2j

2cb∆∏
u=1

(
r2

rκu

)
m

(4)
2j

.

Now define for any j ≥ 0

ξ
(1)
j

∆
=

∑
{rκu}

cb∆
u=1:

∑cb∆
u=1 r

κ
u=j

cb∆∏
u=1

(
r1

rκu

)

ξ
(2)
j

∆
=

∑
{rκu}

2cb∆
u=1 :

∑2cb∆
u=1 rκu=j

2cb∆∏
u=1

(
r1

rκu

)

ξ
(3)
j

∆
=

∑
{rκu}

cb∆
u=1:

∑cb∆
u=1 r

κ
u=j

cb∆∏
u=1

(
r2

rκu

)

ξ
(4)
j

∆
=

∑
{rκu}

2cb∆
u=1 :

∑2cb∆
u=1 rκu=j

2cb∆∏
u=1

(
r2

rκu

)
.
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Furthermore, we define

M{m(i)}4

i=1

∆
=

4∏
i=1

( t
(i)
b∆

m
(i)
0 ,m

(i)
2 , . . . ,m

(i)

2k(i)

)
k(i)∏
j=0

(
ξ

(i)
2j

)m(i)
2j

 .
Therefore ∑

{rκi }ni=1
∈Rb∆,κ

R1n∏
i=1

(
r1

rκi

) n∏
i=R1n+1

(
r2

rκi

)
=

∑
{m(i)}4

i=1
∈Mb∆,κ

M{m(i)}4

i=1

.

In view of (B.14) to (B.18), we can get a trivial bound on |Mb∆,κ| as follows:

|Mb∆,κ| ≤
(
nl̄κ

2
+ 1

)k(1) (
nl̄κ

2
+ 1

)k(2) (
nl̄κ

2
+ 1

)k(3) (
nl̄κ

2
+ 1

)k(4)

≤
(
nl̄κ
)k(1)+k(2)+k(3)+k(4)

≤
(
nl̄κ
)3dl̄ecb∆ .

In a similar manner, in view of (B.14) to (B.17) and (B.19, we have

|Mb∆,κ| ≤
(
n(l̄ − l̄κ)

)3dl̄ecb∆ .

Define

l̂κ = max

{
1

n
,min{l̄κ, l̄ − l̄κ}

}
.

Then we have ∑
{m(i)}4

i=1
∈Mb∆,κ

M{m(i)}4

i=1

≤ (nl̂κ)3dl̄ecb∆ max
{m(i)}4

i=1
∈Mb∆,κ

M{m(i)}4

i=1

≤ exp

{
3ndl̄e
b∆

ln(nl̂κ)

}
max

{m(i)}4

i=1
∈Mb∆,κ

M{m(i)}4

i=1

where the last inequality is due to the fact that cb∆ ≤ n
b∆

. This, coupled with (B.13),
implies

Pr
{

H
(b∆)
b∆×nx

n = 0b∆
}

≤ exp

{
3ndl̄e
b∆

ln(nl̂κ) +O(1)

}(
nl̄
nl̄κ

)−1

max
{m(i)}4

i=1
∈Mb∆,κ

M{m(i)}4

i=1

. (B.20)
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To continue, we now upper bound

max
{m(i)}4

i=1
∈Mb∆,κ

M{m(i)}4

i=1

under the conditions (B.14) to (B.18). By the type bound [42, Lemma 2.3],

max lnM{m(i)}4

i=1

= max ln
4∏
i=1

 t
(i)
b∆!∏k(i)

j=0 m
(i)
2j !

k(i)∏
j=0

(
ξ

(i)
2j

)m(i)
2j


≤ max


4∑
i=1

t
(i)
b∆ ln t

(i)
b∆ −

4∑
i=1

k(i)∑
j=0

(
m

(i)
2j lnm

(i)
2j

)
+

4∑
i=1

k(i)∑
j=0

m
(i)
2j ln ξ

(i)
2j


≤ maxG

({
m(i)

}4

i=1

)
(B.21)

where

G
({
m(i)

}4

i=1

)
∆
=

4∑
i=1

t
(i)
b∆ ln t

(i)
b∆ −

4∑
i=1

k(i)∑
j=0

(
m

(i)
2j lnm

(i)
2j

)
+

4∑
i=1

k(i)∑
j=0

m
(i)
2j ln ξ

(i)
2j (B.22)

in which m
(i)
2j can take any non-negative real number with constraints (B.14) to (B.18).

Since the function
f(x) = −x lnx+ cx

is concave in the region x > 0, it follows that G
({
m(i)

}4

i=1

)
is a concave function, and

hence the maximum can be calculated by using K.K.T condition, which is shown as follows.

Define the function F
({
m(i)

}4

i=1
, {αi}4

i=1, β
)

as

F
({
m(i)

}4

i=1
, {αi}4

i=1, β
)

= G
({
m(i)

}4

i=1

)
+

4∑
i=1

αi

k(i)∑
j=0

m
(i)
2j + β

4∑
i=1

k(i)∑
j=0

2jm
(i)
2j

Now by taking the derivative of F
({
m(i)

}4

i=1
, {αi}4

i=1, β
)

with respect to m(i), we have

∂F

∂m
(i)
2j

= − lnm
(i)
2j − 1 + ln ξ

(i)
2j + αi + 2jβ.
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According to K.K.T condition, let this derivative be zero, and we have

m
(i)
2j = eαi−1+2jβξ

(i)
2j .

Since
k(i)∑
j=0

m
(i)
2j = t

(i)
b∆

it follows that

eαi−1

k(i)∑
j=0

ξ
(i)
2j

(
eβ
)2j

= t
(i)
b∆.

For convenience, define

g(i)(τ)
∆
=

k(i)∑
j=0

ξ
(i)
2j τ

2j.

Then

eαi−1 =
t
(i)
b∆

g(i)(eβ)

which implies

m
(i)
2j =

t
(i)
b∆

g(i)(eβ)
e2jβξ

(i)
2j . (B.23)

Now by taking into account the condition

4∑
i=1

k(i)∑
j=0

2jm
(i)
2j = l̄κn

we have
4∑
i=1

t
(i)
b∆

g(i)(eβ)

k(i)∑
j=0

2je2jβξ
(i)
2j = l̄κn.

It is easy to see that
k(i)∑
j=0

2jτ 2jξ
(i)
2j = τg′(i)(τ) (B.24)

where

g′(i)(τ) =
dg(i)(τ)

dτ
.
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Therefore eβ is the solution to

4∑
i=1

t
(i)
b∆

eβg′(i)(eβ)

g(i)(eβ)
= l̄κn. (B.25)

Putting (B.22) to (B.25) together yields

maxG
({
m(i)

}4

i=1

)
=

4∑
i=1

t(i)b∆ ln t
(i)
b∆ −

k(i)∑
j=0

t
(i)
b∆

g(i)(eβ)
e2jβξ

(i)
2j ln

t
(i)
b∆

g(i)(eβ)
e2jβ


=

4∑
i=1

[
t
(i)
b∆ ln g(i)(eβ)− βt(i)b∆

eβg′(i)(eβ)

g(i)(eβ)

]

=
4∑
i=1

t
(i)
b∆ ln g(i)(eβ)− l̄κnβ.

Substituting eβ by τ , we have

maxG
({
m(i)

}4

i=1

)
=

4∑
i=1

t
(i)
b∆ ln g(i)(τ)− l̄κn ln τ (B.26)

where τ is the solution to
4∑
i=1

t
(i)
b∆

τg′(i)(τ)

g(i)(τ)
= l̄κn. (B.27)

Notice that

(1 + τ)cb∆r1 = ((1 + τ)r1)cb∆

=

cb∆∏
u=1

 r1∑
rκu=0

(
r1

rκu

)
τ r

κ
u


=

cb∆r1∑
j=0

ξ
(1)
j τ j.

Meanwhile

(1− τ)cb∆r1 =

cb∆r1∑
j=0

ξ
(1)
j (−1)jτ j.
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Therefore

g(1)(τ) =
k(1)∑
j=0

ξ
(1)
2j (τ)2j

=
(1 + τ)cb∆r1 + (1− τ)cb∆r1

2

=
g(τ, cb∆r1)

2

where g(τ, k) is defined in the lemma. Similarly, we can show that

g(2)(τ) =
g(τ, 2cb∆r1)

2

g(3)(τ) =
g(τ, cb∆r2)

2

g(4)(τ) =
g(τ, 2cb∆r2)

2
.

It is not hard to verify that

t
(1)
b∆

τg′(τ, cb∆r1)

g(τ, cb∆r1)
+ t

(2)
b∆

τg′(τ, 2cb∆r1)

g(τ, 2cb∆r1)
+ t

(3)
b∆

τg′(τ, cb∆r2)

g(τ, cb∆r2)
+ t

(4)
b∆

τg′(τ, 2cb∆r2)

g(τ, 2cb∆r2)

= nl̄ − t(1)
b∆cb∆r1

g(τ, cb∆r1 − 1)

g(τ, cb∆r1)
− 2t

(2)
b∆cb∆r1

g(τ, 2cb∆r1 − 1)

g(τ, 2cb∆r1)

−t(3)
b∆cb∆r2

g(τ, cb∆r2 − 1)

g(τ, cb∆r2)
− 2t

(4)
b∆cb∆r2

g(τ, 2cb∆r2 − 1)

g(τ, 2cb∆r2)

which, together with (B.26) and (B.27), implies

maxG
({
m(i)

}4

i=1

)
= −nl̄κ ln τ

+ t
(1)
b∆ ln

g(τ, r1cb∆)

2

+ t
(2)
b∆ ln

g(τ, 2r1cb∆)

2

+ t
(3)
b∆ ln

g(τ, r2cb∆)

2

+ t
(4)
b∆ ln

g(τ, 2r2cb∆)

2
(B.28)
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where τ is the solution to

r1cb∆
t
(1)
b∆

n

g(τ, r1cb∆ − 1)

g(τ, r1cb∆)

+2r1cb∆
t
(2)
b∆

n

g(τ, 2r1cb∆ − 1)

g(τ, 2r1cb∆)

+r2cb∆
t
(3)
b∆

n

g(τ, r2cb∆ − 1)

g(τ, r2cb∆)

+2r2cb∆
t
(4)
b∆

n

g(τ, 2r2cb∆ − 1)

g(τ, 2r1cb∆)

= l̄ − l̄κ . (B.29)

Putting (B.20), (B.21), (B.28), and (B.29) together, we then have

Pr
{

H
(b∆)
b∆×nx

n = 0b∆
}

≤ exp

{
3ndl̄e
b∆

ln(nl̂κ) +O(1)

}(
nl̄
nl̄κ

)−1

max
{m(i)}4

i=1
∈Mb∆,κ

M{m(i)}4

i=1

≤ exp

{
maxG

({
m(i)

}4

i=1

)
+

3ndl̄e
b∆

ln(nl̂κ) +O(1)

}(
nl̄
nl̄κ

)−1

≤ exp

−nl̄H
(
l̄κ

l̄

)
+

lnnl̄κ
(

1− l̄κ

l̄

)
2

+ maxG
({
m(i)

}4

i=1

)
+

3ndl̄e
b∆

ln(nl̂κ) +O(1)


= exp

{
nP

(
b∆

n
, l̄, l̄κ

)
+

3ndl̄e
b∆

ln(nl̂κ) +
1

2
lnnl̄κ

(
1− l̄κ

l̄

)
+O(1)

}
where the last inequality above is due to the fact that

ln

(
nl̄
nl̄κ

)−1

≤ −nl̄H(l̄κ/l̄) +
1

2
lnnl̄κ

(
1− l̄κ

l̄

)
+O(1)

which can be derived from Sterling formula. This competes the proof of Lemma 6.1 when

l̄κ < l̄ − t
(1)
b∆

n
π(cb∆r1)− t

(3)
b∆

n
π(cb∆r2).

Finally, let us look at the case when l̄κ = l̄− t
(1)
b∆

n
π(cb∆r1)− t

(3)
b∆

n
π(cb∆r2). In this case, it

follows from (B.19) that Mt,θ contains only one type, i.e., the type given by

m
(i)
j =

{
t
(i)
b∆ if j = 2k(i)

0 otherwise
(B.30)
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for i = 1, 2, 3, and 4. Combining this with (B.21), one can verify that in this case

max lnM{m(i)}4

i=1

= t
(1)
b∆π(cb∆r1) ln[cb∆r1] + t

(3)
b∆π(cb∆r3) ln[cb∆r3] . (B.31)

Plugging (B.31) into (B.20) then leads to the desired result. This completes the proof of
Lemma 6.1.

B.1.2 Properties of P
(
R, l̄, ξ

)
This Appendix is devoted to several lemmas related to the function P

(
R, l̄, ξ

)
, which are

needed in our performance analysis. To keep our notation consistent as in Lemma 6.1,
only R = b∆

n
appears explicitly in the statements of these lemmas. However, in view of

Remark 6.3, (6.8), and (6.9), by replacing b∆
n

by any real number R ∈ (0, 1], all lemmas
in this appendix (Lemmas B.1 to B.5) remain valid. Their respective proofs are the same
whether or not R ∈ (0, 1] is in the form of R = b∆

n
.

In view of (6.5), we define

l̃

(
b∆

n
, l̄, τ

)
∆
= l̄ − t

(1)
b∆cb∆r1

n

g(τ, cb∆r1 − 1)

g(τ, cb∆r1)
− 2t

(2)
b∆cb∆r1

n

g(τ, 2cb∆r1 − 1)

g(τ, 2cb∆r1)

−t
(3)
b∆cb∆r2

n

g(τ, cb∆r2 − 1)

g(τ, cb∆r2)
− 2t

(4)
b∆cb∆r2

n

g(τ, 2cb∆r2 − 1)

g(τ, 2cb∆r2)

Lemma B.1. Given b∆
n

and l̄, the following properties hold:

P1 As a function of τ , l̃
(
b∆
n
, l̄, τ

)
is strictly increasing over the interval [0,+∞).

P2 For any l̄κ ∈ [0, l̄ − t
(1)
b∆

n
π (cb∆r1) − t

(3)
b∆

n
π (cb∆r2)), there is a unique solution of τ to

l̃
(
b∆
n
, l̄, τ

)
= l̄κ.

Proof of Lemma B.1: In view of the definition of l̃
(
b∆
n
, l̄, τ

)
, for Property P1, it is

sufficient to prove that g(τ,k−1)
g(τ,k)

as function of τ is strictly decreasing over τ ∈ [0,∞) for

any positive value k > 1 . To this end, take the first derivative of g(τ,k−1)
g(τ,k)

with respect to
τ , yielding

−(1 + τ)2k−2 + (k − 1)(1 + τ)k−2(1− τ)k − (k − 1)(1− τ)k−2(1 + τ)k + (1− τ)2k−2

g2(τ, k)
(B.32)
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Denote the enumerator of (B.32) by f(τ). It is easy to see that f(0) = 0. Since the
denominator of (B.32) is always positive, it suffices to show that f(τ) < 0 for any τ > 0.

To continue, one can verify that

f(τ) = −(1 + τ)2k−2 + (1− τ)2k−2 + (k − 1)(1− τ 2)k−2[(1− τ)2 − (1 + τ)2]

= −(1 + τ)2k−2 + (1− τ)2k−2 − 4τ(k − 1)(1− τ 2)k−2

= −2
k−2∑
i=0

(
2k − 2

2i+ 1

)
τ 2i+1 − 4τ(k − 1)(1− τ 2)k−2

= −2τ

[
k−2∑
i=0

(
2k − 2

2i+ 1

)
τ 2i + 2(k − 1)

k−2∑
i=0

(
k − 2

i

)
(−1)iτ 2i

]

= −2τ

[ ∑
0≤i≤k−2: even

((
2k − 2

2i+ 1

)
+ 2(k − 1)

(
k − 2

i

))
τ 2i

+
∑

0≤i≤k−2: odd

((
2k − 2

2i+ 1

)
− 2(k − 1)

(
k − 2

i

))
τ 2i


≤ −2τ

∑
0≤i≤k−2: even

((
2k − 2

2i+ 1

)
+ 2(k − 1)

(
k − 2

i

))
τ 2i

< 0 (B.33)

for any τ > 0. In (B.33), the first inequality is due to the fact that for any odd i < k − 2(
2k − 2

2i+ 1

)
=

(
2k − 3

2i+ 1

)
+

(
2k − 3

2i

)
≥

(
k − 2

i

)(
k − 1

i+ 1

)
+

(
k − 2

i

)(
k − 1

i

)
≥ 2(k − 1)

(
k − 2

i

)
and for i = k − 2 when k is odd,(

2k − 2

2i+ 1

)
− 2(k − 1)

(
k − 2

i

)
= 0.

From (B.33), Property P1 follows.
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Since cb∆r2 ≥ cb∆r1 > 1, it is easy to see that

l̃

(
b∆

n
, l̄, 0

)
= l̄ − t

(1)
b∆cb∆r1

n
− 2t

(2)
b∆cb∆r1

n
− t

(3)
b∆cb∆r2

n
− 2t

(4)
b∆cb∆r2

n

= l̄ −R1r1 − r2R2

= 0. (B.34)

On the other hand, one can verify that for any k ≥ 1,

lim
τ→+∞

g(τ, k − 1)

g(τ, k)
=
π(k)

k

which implies that

lim
τ→+∞

l̃

(
b∆

n
, l̄, τ

)
= l̄ − t

(1)
b∆

n
π (cb∆r1)− t

(3)
b∆

n
π (cb∆r2) . (B.35)

Property P2 now follows from (B.34), (B.35), and Property P1. This completes the proof
of Lemma B.1.

Lemma B.2. For fixed b∆
n

and l̄, P
(
b∆
n
, l̄, ξ

)
as a function of ξ is strictly decreasing over

ξ ∈ (0, l̄/2).

Proof of Lemma B.2: To show that P
(
b∆
n
, l̄, ξ

)
is strictly decreasing over ξ ∈ (0, l̄/2),

take its first derivative, yielding

∂P

∂ξ
= − ln

1− ξ/l̄
ξ/l̄

− ln τ − ξ

τ

∂τ

∂ξ

+ r1cb∆
t
(1)
b∆

n

(1 + τ)r1cb∆−1 − (1− τ)r1cb∆−1

g(τ, r1cb∆)

∂τ

∂ξ

+ 2r1cb∆
t
(2)
b∆

n

(1 + τ)2r1cb∆−1 − (1− τ)2r1cb∆−1

g(τ, 2r1cb∆)

∂τ

∂ξ

+ r2cb∆
t
(3)
b∆

n

(1 + τ)r2cb∆−1 − (1− τ)r2cb∆−1

g(τ, r2cb∆)

∂τ

∂ξ

+ 2r2cb∆
t
(4)
b∆

n

(1 + τ)2r2cb∆−1 − (1− τ)2r2cb∆−1

g(τ, 2r2cb∆)

∂τ

∂ξ
. (B.36)

261



Note that

g(τ, k) = (1 + τ)k + (1− τ)k

= (1 + τ)k−1(1 + τ) + (1− τ)k−1(1− τ)

= τ
[
(1 + τ)k−1 − (1− τ)k−1

]
+ g(τ, k − 1)

and hence

(1 + τ)k−1 − (1− τ)k−1 =
g(τ, k)− g(τ, k − 1)

τ

Plugging the above equality into (B.36) yields

∂P

∂ξ
= − ln

1− ξ/l̄
ξ/l̄

− ln τ − ξ

τ

∂τ

∂ξ

+
r1cb∆
τ

t
(1)
b∆

n

[
1− g(τ, r1cb∆ − 1)

g(τ, r1cb∆)

]
∂τ

∂ξ

+
2r1cb∆
τ

t
(2)
b∆

n

[
1− g(τ, 2r1cb∆ − 1)

g(τ, 2r1cb∆)

]
∂τ

∂ξ

+
r2cb∆
τ

t
(3)
b∆

n

[
1− g(τ, r2cb∆ − 1)

g(τ, r2cb∆)

]
∂τ

∂ξ

+
2r2cb∆
τ

t
(4)
b∆

n

[
1− g(τ, 2r2cb∆ − 1)

g(τ, 2r2cb∆)

]
∂τ

∂ξ

= − ln
1− ξ/l̄
ξ/l̄

− ln τ (B.37)

where the second step comes from the fact that τ is the solution to (6.5) and from the
identity (6.9). Note that τ = 1 is the solution to (6.5) when ξ = l̄

2
, and therefore by

Lemma B.1, 0 < τ < 1 whenever ξ ∈ (0, l̄/2). Furthermore, it can be verified that for any
τ ∈ (0, 1)

g(τ, k − 1)

g(τ, k)
=

(1 + τ)k−1 + (1− τ)k−1

(1 + τ)k + (1− τ)k
>

1

1 + τ

which, coupled with (6.5), implies

l̄

1 + τ
< l̄ − ξ

or

τ >
ξ/l̄

1− ξ/l̄
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for ξ ∈ (0, l̄/2). Plugging the above inequality into (B.37), we have

∂P

∂ξ
< 0

for ξ ∈ (0, l̄/2). This completes the proof of Lemma B.2.

Lemma B.3. For fixed b∆
n

and l̄, P
(
b∆
n
, l̄, ξ

)
≥ P

(
b∆
n
, l̄, l̄ − ξ

)
for 0 < ξ ≤ l̄/2.

Proof of Lemma B.3: First, we consider the case where

t(1)

n
π(cb∆r1) +

t(3)

n
π(cb∆r2) < ξ ≤ l̄

2

Define

P

(
b∆

n
, l̄, ξ, τ

)
= −l̄H(ξ/l̄)− ξ ln τ

+
t
(1)
b∆

n
ln
g(τ, r1cb∆)

2
+
t
(2)
b∆

n
ln
g(τ, 2r1cb∆)

2

+
t
(3)
b∆

n
ln
g(τ, r2cb∆)

2
+
t
(4)
b∆

n
ln
g(τ, 2r2cb∆)

2

and τξ as the solution to

ξ = l̃

(
b∆

n
, l̄, τ

)
Then it is easy to observe that

P

(
b∆

n
, l̄, ξ

)
= P

(
b∆

n
, l̄, ξ, τξ

)
Note that when ξ ≤ l̄/2, τξ ≤ 1. For τ ≤ 1,

g(τ−1, k) =
(1 + τ)k + (τ − 1)k

τ k
≤ g(τ, k)

τ k
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and

P

(
b∆

n
, l̄, l̄ − ξ, τ−1

)
= −l̄H((l̄ − ξ)/l̄)− (l̄ − ξ) ln τ−1

+
t
(1)
b∆

n
ln
g(τ−1, r1cb∆)

2
+
t
(2)
b∆

n
ln
g(τ−1, 2r1cb∆)

2

+
t
(3)
b∆

n
ln
g(τ−1, r2cb∆)

2
+
t
(4)
b∆

n
ln
g(τ−1, 2r2cb∆)

2
≤ −l̄H(ξ/l̄) + (l̄ − ξ) ln τ

+
t
(1)
b∆

n
ln
g(τ, r1cb∆)

2τ r1cb∆
+
t
(2)
b∆

n
ln
g(τ, 2r1cb∆)

2τ 2r1cb∆

+
t
(3)
b∆

n
ln
g(τ, r2cb∆)

2τ r2cb∆
+
t
(4)
b∆

n
ln
g(τ, 2r2cb∆)

2τ 2r2cb∆

= −l̄H(ξ/l̄)− ξ ln τ

+
t
(1)
b∆

n
ln
g(τ, r1cb∆)

2
+
t
(2)
b∆

n
ln
g(τ, 2r1cb∆)

2

+
t
(3)
b∆

n
ln
g(τ, r2cb∆)

2
+
t
(4)
b∆

n
ln
g(τ, 2r2cb∆)

2

= P

(
b∆

n
, l̄, ξ, τ

)
where the third step is due to (6.9). Therefore,

P

(
b∆

n
, l̄, ξ, τξ

)
≥ P

(
b∆

n
, l̄, l̄ − ξ, τ−1

ξ

)
Now it can be verified that

∂P
(
b∆
n
, l̄, ξ, τ

)
∂τ

=
−ξ + l̃

(
b∆
n
, l̄, τ

)
τ

and since l̃
(
b∆
n
, l̄, τ

)
is an increasing function of τ , it is easy to see that

∂P( b∆n ,l̄,ξ,τ)
∂τ

< 0

for τ < τξ and
∂P( b∆n ,l̄,ξ,τ)

∂τ
> 0 for τ > τξ. Therefore, τξ is the value that minimizes the

function P
(
b∆
n
, l̄, ξ, τ

)
given ξ. In the other words,

P

(
b∆

n
, l̄, ξ, τξ

)
≤ P

(
b∆

n
, l̄, ξ, τ

)
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for any τ > 0. In total, we have

P

(
b∆

n
, l̄, ξ

)
= P

(
b∆

n
, l̄, ξ, τξ

)
≥ P

(
b∆

n
, l̄, l̄ − ξ, τ−1

ξ

)
≥ P

(
b∆

n
, l̄, l̄ − ξ, τl̄−ξ

)
= P

(
b∆

n
, l̄, l̄ − ξ

)
Now if

ξ <
t(1)

n
π(cb∆r1) +

t(3)

n
π(cb∆r2),

then P
(
b∆
n
, l̄, l̄ − ξ

)
= −∞, and P

(
b∆
n
, l̄, ξ

)
≥ P

(
b∆
n
, l̄, l̄ − ξ

)
is obvious. For

ξ =
t(1)

n
π(cb∆r1) +

t(3)

n
π(cb∆r2),

it can be shown that
∂P
(
b∆
n
, l̄, l̄ − ξ, τ

)
∂τ

< 0

for τ > 0. Then

P

(
b∆

n
, l̄, ξ

)
= P

(
b∆

n
, l̄, ξ, τξ

)
≥ P

(
b∆

n
, l̄, l̄ − ξ, τ−1

ξ

)
≥ lim

τ→∞
P

(
b∆

n
, l̄, l̄ − ξ, τ

)
= P

(
b∆

n
, l̄, l̄ − ξ

)
where the last equality is due to (6.7). This completes the proof of Lemma B.3.

Lemma B.4. For l̄
bl̄c ≤ ξ ≤ l̄

2
,

P

(
b∆

n
, l̄, ξ

)
≤ −b∆

n
ln 2 + 2ξ exp

[
−2ξ

l̄
(cb∆r1 − 1)

]
+
b∆

n
exp

(
−2ξ

l̄
r1cb∆

)
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Proof of Lemma B.4: Let τξ be the solution to the equation

l̃

(
b∆

n
, l̄, τ

)
= ξ.

From the proof of Lemma B.3, we know that

ξ/l̄

1− ξ/l̄
≤ τξ ≤ 1 or

ξ

l̄
≤ τξ

1 + τξ
≤ 1

2

whenever ξ ≤ l̄
2
. Furthermore, it can be verified that

f(x) =
1 + (1− x)k−1

1 + (1− x)k

is strictly decreasing for 2
k
≤ x ≤ 1, where k is an integer no less than 2. To see this is the

case, we have

f ′(x) =
−
[
1 + (1− x)k

]
(k − 1)(1− x)k−2 +

[
1 + (1− x)k−1

]
k(1− x)k−1

[1 + (1− x)k]2

=
(1− x)k−2

[1 + (1− x)k]2
[
1− kx+ (1− x)k

]
< 0

for 2
k
≤ x ≤ 1. Now assume that

r1

l̄
ξ =
bl̄c
l̄
ξ ≥ 1.

Then
τξ

1 + τξ
r1cb∆ ≥

ξ

l̄
r1cb∆ ≥ 1.
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Therefore,

g (τξ, cb∆r1 − 1)

g (τξ, cb∆r1)
=

1

1 + τξ

1 +
(

1− 2τξ
1+τξ

)cb∆r1−1

1 +
(

1− 2τξ
1+τξ

)cb∆r1
≤ 1

1 + τξ

1 +
(
1− 2ξ

l̄

)cb∆r1−1

1 +
(
1− 2ξ

l̄

)cb∆r1
=

1

1 + τξ

[
1 +

(
1− 2ξ

l̄

)cb∆r1−1 −
(
1− 2ξ

l̄

)cb∆r1
1 +

(
1− 2ξ

l̄

)cb∆r1
]

=
1

1 + τξ

[
1 +

2ξ
l̄

(
1− 2ξ

l̄

)cb∆r1−1

1 +
(
1− 2ξ

l̄

)cb∆r1
]

≤ 1

1 + τξ

[
1 +

2ξ

l̄

(
1− 2ξ

l̄

)cb∆r1−1
]
.

Similarly,

g (τξ, 2cb∆r1 − 1)

g (τξ, 2cb∆r1)
≤ 1

1 + τξ

[
1 +

2ξ

l̄

(
1− 2ξ

l̄

)2cb∆r1−1
]

≤ 1

1 + τξ

[
1 +

2ξ

l̄

(
1− 2ξ

l̄

)cb∆r1−1
]

g (τξ, cb∆r2 − 1)

g (τξ, cb∆r2)
≤ 1

1 + τξ

[
1 +

2ξ

l̄

(
1− 2ξ

l̄

)cb∆r2−1
]

≤ 1

1 + τξ

[
1 +

2ξ

l̄

(
1− 2ξ

l̄

)cb∆r1−1
]

g (τξ, 2cb∆r2 − 1)

g (τξ, 2cb∆r2)
≤ 1

1 + τξ

[
1 +

2ξ

l̄

(
1− 2ξ

l̄

)2cb∆r2−1
]

≤ 1

1 + τξ

[
1 +

2ξ

l̄

(
1− 2ξ

l̄

)cb∆r1−1
]
.
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Thus,

ξ = l̃

(
b∆

n
, l̄, τξ

)
= l̄ − t

(1)
b∆cb∆r1

n

g(τ, cb∆r1 − 1)

g(τ, cb∆r1)
− 2t

(2)
b∆cb∆r1

n

g(τ, 2cb∆r1 − 1)

g(τ, 2cb∆r1)

− t
(3)
b∆cb∆r2

n

g(τ, cb∆r2 − 1)

g(τ, cb∆r2)
− 2t

(4)
b∆cb∆r2

n

g(τ, 2cb∆r2 − 1)

g(τ, 2cb∆r2)

≥ l̄ − l̄

1 + τξ

[
1 +

2ξ

l̄

(
1− 2ξ

l̄

)cb∆r1−1
]

where in the last step, the identity (6.9) was applied. This implies that

1 + τξ ≤
l̄

l̄ − ξ

[
1 +

2ξ

l̄

(
1− 2ξ

l̄

)cb∆r1−1
]
.

On the other hand,

g (τξ, r1cb∆) = (1 + τξ)
r1cb∆ + (1− τξ)r1cb∆

= (1 + τξ)
r1cb∆

[
1 +

(
1− 2τξ

1 + τξ

)r1cb∆]
≤ (1 + τξ)

r1cb∆

[
1 +

(
1− 2ξ

l̄

)r1cb∆]
.

Again,

g (τξ, 2r1cb∆) ≤ (1 + τξ)
2r1cb∆

[
1 +

(
1− 2ξ

l̄

)2r1cb∆
]

≤ (1 + τξ)
2r1cb∆

[
1 +

(
1− 2ξ

l̄

)r1cb∆]
g (τξ, r2cb∆) ≤ (1 + τξ)

r2cb∆

[
1 +

(
1− 2ξ

l̄

)r2cb∆]
≤ (1 + τξ)

r2cb∆

[
1 +

(
1− 2ξ

l̄

)r1cb∆]
g (τξ, 2r2cb∆) ≤ (1 + τξ)

2r2cb∆

[
1 +

(
1− 2ξ

l̄

)2r2cb∆
]

≤ (1 + τξ)
2r2cb∆

[
1 +

(
1− 2ξ

l̄

)r1cb∆]
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By combining the above inequalities with the identities (6.8) and (6.9), we have

P

(
b∆

n
, l̄, ξ

)
= −l̄H

(
ξ/l̄
)
− ξ ln τξ

+
t
(1)
b∆

n
ln
g (τξ, r1cb∆)

2
+
t
(2)
b∆

n
ln
g (τξ, 2r1cb∆)

2

+
t
(3)
b∆

n
ln
g (τξ, r2cb∆)

2
+
t
(4)
b∆

n
ln
g (τξ, 2r2cb∆)

2
≤ −l̄H

(
ξ/l̄
)
− ξ ln τξ + l̄ ln (1 + τξ)

− b∆

n
ln 2 +

b∆

n
ln

[
1 +

(
1− 2ξ

l̄

)r1cb∆]
≤ −l̄H

(
ξ/l̄
)
− ξ ln

ξ

l̄ − ξ
+ l̄ ln (1 + τξ)

− b∆

n
ln 2 +

b∆

n
ln

[
1 +

(
1− 2ξ

l̄

)r1cb∆]
≤ −l̄H

(
ξ/l̄
)
− ξ ln

ξ

l̄ − ξ
+ l̄ ln

l̄

l̄ − ξ
+ l̄ ln

[
1 +

2ξ

l̄

(
1− 2ξ

l̄

)cb∆r1−1
]

− b∆

n
ln 2 +

b∆

n
ln

[
1 +

(
1− 2ξ

l̄

)r1cb∆]
≤ −b∆

n
ln 2 + 2ξ

(
1− 2ξ

l̄

)cb∆r1−1

+
b∆

n

(
1− 2ξ

l̄

)r1cb∆
≤ −b∆

n
ln 2 + 2ξ exp

[
−2ξ

l̄
(cb∆r1 − 1)

]
+
b∆

n
exp

(
−2ξ

l̄
r1cb∆

)
.

This completes the proof of Lemma B.4.

Lemma B.5. Given 0 < ξ ≤ l̄
2
, the following properties hold:

1) for 1 ≤ b ≤ n
∆
− 1,

−∆

n
ln 2 ≤ P

(
(b+ 1)∆

n
, l̄, ξ

)
− P

(
b∆

n
, l̄, ξ

)
≤ −∆

n
Q
ξ,

(b+1)∆
n

where

Q
ξ,

(b+1)∆
n

= ln 2− ln

(
1 +

2
(
1− 2ξ

l̄

)r1c(b+1)∆

1 +
(
1− 2ξ

l̄

)2r1c(b+1)∆

)
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2) for 0 < R1 ≤ R2 ≤ 1,

−(R2 −R1) ln 2 ≤ P
(
R2, l̄, ξ

)
− P

(
R1, l̄, ξ

)
≤ −(R2 −R1)Qξ,R2

where

Qξ,R2 = ln 2− ln

(
1 +

2
(
1− 2ξ

l̄

)r1cR2

1 +
(
1− 2ξ

l̄

)2r1cR2

)
with cR2 = 2−dlog2R2e, which shows that P (R, l̄, ξ) strictly decreasing with respect to
R ∈ (0, 1], and Lipschitz-Continuous with constant ln 2; and

3) limR→0 P (R, l̄, ξ) = 0.

Proof of Lemma B.5: Let P
(
b∆
n
, l̄, ξ, τ

)
be the function defined in the proof of Lemma

B.3. Furthermore, let τb and τb+1 be the solution to (6.5) for b and b+1, respectively. From
the proof of Lemma B.3, it follows that given ( b∆

n
, l̄, ξ), the function P

(
b∆
n
, l̄, ξ, τ

)
achieves

its minimum at τ = τb, and hence

P

(
(b+ 1)∆

n
, l̄, ξ

)
= P

(
(b+ 1)∆

n
, l̄, ξ, τb+1

)
≤ P

(
(b+ 1)∆

n
, l̄, ξ, τb

)
Therefore,

P

(
(b+ 1)∆

n
, l̄, ξ

)
− P

(
b∆

n
, l̄, ξ

)
≤ P

(
(b+ 1)∆

n
, l̄, ξ, τb

)
− P

(
b∆

n
, l̄, ξ, τb

)
.

Now we have

cb∆ = 2−dlog2
b∆
n
e ≥ 2−dlog2

(b+1)∆
n
e = c(b+1)∆ = 2−dlog2

b∆
n

+log2
b+1
b
e ≥ 2−dlog2

b∆
n

+1e =
cb∆
2
.

To continue, we distinguish between two cases: (1) cb∆ = c(b+1)∆, and (2) cb∆ = 2c(b+1)∆.

In case (1), i.e., when dlog2
b∆
n
e = dlog2

(b+1)∆
n
e, we have

P

(
(b+ 1)∆

n
, l̄, ξ, τb

)
− P

(
b∆

n
, l̄, ξ, τb

)
=

t
(1)
(b+1)∆ − t

(1)
(b+1)∆

n
ln
g
(
τb, r1c(b+1)∆

)
2

+
t
(2)
(b+1)∆ − t

(2)
b∆

n
ln
g
(
τb, 2r1c(b+1)∆

)
2

+
t
(3)
(b+1)∆ − t

(3)
b∆

n
ln
g
(
τb, r2c(b+1)∆

)
2

+
t
(4)
(b+1)∆ − t

(4)
b∆

n
ln
g
(
τb, 2r2c(b+1)∆

)
2

.
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Meanwhile,

t
(1)
(b+1)∆

n
= min

{
2(b+ 1)∆

n
− 2dlog2

(b+1)∆
n
e, R12dlog2

(b+1)∆
n
e
}

= min

{
2(b+ 1)∆

n
− 2dlog2

b∆
n
e, R12dlog2

b∆
n
e
}

≥ min

{
2b∆

n
− 2dlog2

b∆
n
e, R12dlog2

b∆
n
e
}

=
t
(1)
b∆

n
.

Furthermore, it can be verified that

t
(1)
(b+1)∆ + 2t

(2)
(b+1)∆

n
= R12dlog2

(b+1)∆
n
e = R12dlog2

b∆
n
e =

t
(1)
b∆ + 2t

(2)
b∆

n
.

Therefore,

2
(
t
(2)
b∆ − t

(2)
(b+1)∆

)
n

=
t
(1)
(b+1)∆ − t

(1)
b∆

n
≥ 0.

Similarly, we have

2
(
t
(4)
b∆ − t

(4)
(b+1)∆

)
n

=

(
t
(3)
(b+1)∆ − t

(3)
b∆

)
n

≥ 0.

Consequently,

P

(
(b+ 1)∆

n
, l̄, ξ, τb

)
− P

(
b∆

n
, l̄, ξ, τb

)

=

(
t
(2)
b∆ − t

(2)
(b+1)∆

)
n

(
− ln 2 + ln

g2
(
τb, r1c(b+1)∆

)
g
(
τb, 2r1c(b+1)∆

))

+

(
t
(4)
b∆ − t

(4)
(b+1)∆

)
n

(
− ln 2 + ln

g2
(
τb, r2c(b+1)∆

)
g
(
τb, 2r2c(b+1)∆

)) .
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At the same time,

g2
(
τb, r1c(b+1)∆

)
g
(
τb, 2r1c(b+1)∆

) =
[(1 + τb)

r1c(b+1)∆ + (1− τb)r1c(b+1)∆ ]2

(1 + τb)
2r1c(b+1)∆ + (1− τb)2r1c(b+1)∆

= 1 +
2(1 + τb)

r1c(b+1)∆(1− τb)r1c(b+1)∆

(1 + τb)
2r1c(b+1)∆ + (1− τb)2r1c(b+1)∆

= 1 +
2
(

1− 2τb
1+τb

)r1c(b+1)∆

1 +
(

1− 2τb
1+τb

)2r1c(b+1)∆
.

From the proof of Lemma B.4,

0 ≤ 1− 2τb
1 + τb

≤ 1− 2ξ

l̄
< 1.

On the other hand, it is easily verified that

f(x) =
2x

1 + x2

is an increasing function for x ∈ [0, 1). Therefore,

g2
(
τb, r1c(b+1)∆

)
g
(
τb, 2r1c(b+1)∆

) ≤ 1 +
2
(
1− 2ξ

l̄

)r1c(b+1)∆

1 +
(
1− 2ξ

l̄

)2r1c(b+1)∆
.

Similarly,

g2
(
τb, r2c(b+1)∆

)
g
(
τb, 2r2c(b+1)∆

) ≤ 1 +
2
(
1− 2ξ

l̄

)r2c(b+1)∆

1 +
(
1− 2ξ

l̄

)2r2c(b+1)∆

≤ 1 +
2
(
1− 2ξ

l̄

)r1c(b+1)∆

1 +
(
1− 2ξ

l̄

)2r1c(b+1)∆
.
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And finally,

P

(
(b+ 1)∆

n
, l̄, ξ, τb

)
− P

(
b∆

n
, l̄, ξ, τb

)

≤ −

(
t
(2)
b∆ − t

(2)
(b+1)∆

)
+
(
t
(4)
b∆ − t

(4)
(b+1)∆

)
n

Q
ξ,

(b+1)∆
n

= −

(
t
(1)
(b+1)∆ − t

(1)
b∆

)
−
(
t
(2)
b∆ − t

(2)
(b+1)∆

)
+
(
t
(3)
(b+1)∆ − t

(3)
b∆

)
−
(
t
(4)
b∆ − t

(4)
(b+1)∆

)
n

Q
ξ,

(b+1)∆
n

= −

(
t
(1)
(b+1)∆ + t

(2)
(b+1)∆ + t

(3)
(b+1)∆ + t

(4)
(b+1)∆

)
−
(
t
(1)
b∆ + t

(2)
b∆ + t

(3)
b∆ + t

(4)
b∆

)
n

Q
ξ,

(b+1)∆
n

= −∆

n
Q
ξ,

(b+1)∆
n

.

Using a similar argument, we can show that

P

(
(b+ 1)∆

n
, l̄, ξ

)
− P

(
b∆

n
, l̄, ξ

)
≥ P

(
(b+ 1)∆

n
, l̄, ξ, τb+1

)
− P

(
b∆

n
, l̄, ξ, τb+1

)

=

(
t
(2)
b∆ − t

(2)
(b+1)∆

)
n

(
− ln 2 + ln

g2
(
τb+1, r1c(b+1)∆

)
g
(
τb+1, 2r1c(b+1)∆

))

+

(
t
(4)
b∆ − t

(4)
(b+1)∆

)
n

(
− ln 2 + ln

g2
(
τb+1, r2c(b+1)∆

)
g
(
τb+1, 2r2c(b+1)∆

))

≥ −

(
t
(2)
b∆ − t

(2)
(b+1)∆

)
+
(
t
(4)
b∆ − t

(4)
(b+1)∆

)
n

ln 2

= −∆

n
ln 2.

This completes the proof of Property S1 in case (1).
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In case (2), i.e. when dlog2
b∆
n
e = dlog2

(b+1)∆
n
e − 1, we have

P

(
(b+ 1)∆

n
, l̄, ξ, τb

)
− P

(
b∆

n
, l̄, ξ, τb

)
=

t
(1)
(b+1)∆

n
ln
g
(
τb, r1c(b+1)∆

)
2

+
t
(2)
(b+1)∆ − t

(1)
b∆

n
ln
g
(
τb, 2r1c(b+1)∆

)
2

− t
(2)
b∆

n
ln
g
(
τb, 4r1c(b+1)∆

)
2

+
t
(3)
(b+1)∆

n
ln
g
(
τb, r2c(b+1)∆

)
2

+
t
(4)
(b+1)∆ − t

(3)
b∆

n
ln
g
(
τb, 2r2c(b+1)∆

)
2

− t
(4)
b∆

n
ln
g
(
τb, 4r2c(b+1)∆

)
2

.

On the other hand,

t
(1)
(b+1)∆ + 2t

(2)
(b+1)∆

n
= R12dlog2

(b+1)∆
n
e = R12dlog2

b∆
n
e+1 =

2t
(1)
b∆ + 4t

(2)
b∆

n

which implies that

t
(2)
(b+1)∆ − t

(1)
b∆

n
=

2t
(2)
b∆ − t

(1)
(b+1)∆/2

n
.

Similarly,

t
(4)
(b+1)∆ − t

(3)
b∆

n
=

2t
(4)
b∆ − t

(3)
(b+1)∆/2

n
and therefore,

P

(
(b+ 1)∆

n
, l̄, ξ, τb

)
− P

(
b∆

n
, l̄, ξ, τb

)
=

t
(1)
(b+1)∆/2

n

[
− ln 2 + ln

g2
(
τb, r1c(b+1)∆

)
g
(
τb, 2r1c(b+1)∆

)]+
t
(2)
b∆

n

[
− ln 2 + ln

g2
(
τb, 2r1c(b+1)∆

)
g
(
τb, 4r1c(b+1)∆

) ]

+
t
(3)
(b+1)∆/2

n

[
− ln 2 + ln

g2
(
τb, r2c(b+1)∆

)
g
(
τb, 2r2c(b+1)∆

)]+
t
(4)
b∆

n

[
− ln 2 + ln

g2
(
τb, 2r2c(b+1)∆

)
g
(
τb, 4r2c(b+1)∆

) ]

≤ −
t
(1)
(b+1)∆/2 + t

(2)
b∆ + t

(3)
(b+1)∆/2 + t

(4)
b∆

n
Q
ξ,

(b+1)∆
n

= −∆

n
Q
ξ,

(b+1)∆
n
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where the last step is due to the fact that

t
(1)
(b+1)∆/2 + t

(2)
b∆ + t

(3)
(b+1)∆/2 + t

(4)
b∆

n

=
t
(1)
(b+1)∆ −

(
t
(1)
b∆ − t

(2)
(b+1)∆

)
− t(2)

b∆ + t
(3)
(b+1)∆ −

(
t
(3)
b∆ − t

(4)
(b+1)∆

)
− t(4)

b∆

n

=

(
t
(1)
(b+1)∆ + t

(2)
(b+1)∆ + t

(3)
(b+1)∆ + t

(4)
(b+1)∆

)
−
(
t
(1)
b∆ + t

(2)
b∆ + t

(3)
b∆ + t

(4)
b∆

)
n

=
∆

n
.

In a similar manner, we have

P

(
(b+ 1)∆

n
, l̄, ξ

)
− P

(
b∆

n
, l̄, ξ

)
≥ P

(
(b+ 1)∆

n
, l̄, ξ, τb+1

)
− P

(
b∆

n
, l̄, ξ, τb+1

)
=

t
(1)
(b+1)∆/2

n

[
− ln 2 + ln

g2
(
τb+1, r1c(b+1)∆

)
g
(
τb+1, 2r1c(b+1)∆

)]+
t
(2)
b∆

n

[
− ln 2 + ln

g2
(
τb+1, 2r1c(b+1)∆

)
g
(
τb+1, 4r1c(b+1)∆

) ]

+
t
(3)
(b+1)∆/2

n

[
− ln 2 + ln

g2
(
τb+1, r2c(b+1)∆

)
g
(
τb+1, 2r2c(b+1)∆

)]+
t
(4)
b∆

n

[
− ln 2 + ln

g2
(
τb+1, 2r2c(b+1)∆

)
g
(
τb+1, 4r2c(b+1)∆

) ]

≥ −
t
(1)
(b+1)∆/2 + t

(2)
b∆ + t

(3)
(b+1)∆/2 + t

(4)
b∆

n
ln 2

= −∆

n
ln 2 .

The completes the proof of Property S1 in case (2).

Property S2 can be proved in a similar manner.

Now let us move to the proof of Property S3. By Lemma B.3, for ξ ∈ (0, l̄/2],

P (R, l̄, ξ) ≥ P (R, l̄, l̄/2) = −R ln 2

which implies that
lim
R→0

P (R, l̄, ξ) ≥ 0 .
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At the same time, let τR be the solution to the equation (6.5) with b∆
n

= R, we have

P (R, l̄, ξ) = P (R, l̄, ξ, τR)

≤ P

(
R, l̄, ξ,

ξ

l̄ − ξ

)
≤ −l̄H(ξ/l̄)− ξ ln

(
ξ

l̄ − ξ

)
+ l̄ ln

(
1 +

ξ

l̄ − ξ

)
= 0

where the third step follows the fact that ξ
l̄−ξ ≤ 1 and

(
1− ξ

l̄−ξ

)k
≤
(

1 + ξ
l̄−ξ

)k
for any

positive integer k. And therefore,

lim
R→0

P (R, l̄, ξ) ≤ 0

which further yields
lim
R→0

P (R, l̄, ξ) = 0 .

This completes the proof of Lemma B.5.

Lemma B.6. Suppose that l̄ is an odd integer. Then for any given b∆
n
≥ 0.75, P

(
b∆
n
, l̄, ξ

)
is a strictly decreasing function of ξ in the range

(
l̄
2
, l̄ − t

(1)
b∆

n

]
.

Proof of Lemma B.6: Since l̄ is an odd integer, we have R1 = 1, R2 = 0, and hence
t
(3)
b∆ = t

(4)
b∆ = 0. Furthermore, whenever b∆

n
≥ 0.75 > 0.5, one has cb∆ = 1, which, coupled

with R1 = 1, implies

t
(1)
b∆

n
= min

{
2b∆

n
− 1, 1

}
=

2b∆

n
− 1

and

t
(2)
b∆

n
=
b∆

n
− t

(1)
b∆

n
= 1− b∆

n
.

In view of (B.37), it suffices to show that

τ >
ξ/l̄

1− ξ/l̄
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or equivalently,
1

1 + τ
< 1− ξ/l̄

for ξ ∈
(
l̄
2
, l̄ − t

(1)
b∆

n

]
, where τ is the solution to the equation (6.5). By Lemma B.1 and the

fact that τ = 1 when ξ = l̄
2
, we have τ > 1 for ξ ∈

(
l̄
2
, l̄ − t

(1)
b∆

n

]
. Moreover, according to

the discussion above, equation (6.5) can be further simplified as(
2b∆

n
− 1

)
g(τ, l̄ − 1)

g(τ, l̄)
+

(
2− 2b∆

n

)
g(τ, 2l̄ − 1)

g(τ, 2l̄)
= 1− ξ/l̄

or

1

1 + τ

(2b∆

n
− 1

)
1 +

(
τ−1
τ+1

)l̄−1

1−
(
τ−1
τ+1

)l̄ +

(
2− 2b∆

n

)
1−

(
τ−1
τ+1

)2l̄−1

1 +
(
τ−1
τ+1

)2l̄

 = 1− ξ/l̄ .

Let z = τ−1
τ+1

, and the lemma is proved by showing that(
2b∆

n
− 1

)
1 + z l̄−1

1− z l̄
+

(
2− 2b∆

n

)
1− z2l̄−1

1 + z2l̄
> 1

for z ∈ (0, 1). Towards this, note that

1 + z l̄−1

1− z l̄
> 1 >

1− z2l̄−1

1 + z2l̄

and (
2b∆

n
− 1

)
1 + z l̄−1

1− z l̄
+

(
2− 2b∆

n

)
1− z2l̄−1

1 + z2l̄

=
1

2

(
1 + z l̄−1

1− z l̄
+

1− z2l̄−1

1 + z2l̄

)
+

(
2b∆

n
− 3

2

)(
1 + z l̄−1

1− z l̄
− 1− z2l̄−1

1 + z2l̄

)

≥ 1

2

(
1 + z l̄−1

1− z l̄
+

1− z2l̄−1

1 + z2l̄

)
when b∆

n
≥ 0.75. Furthermore,

1 + z l̄−1

1− z l̄
+

1− z2l̄−1

1 + z2l̄
≥ 2

√
1 + z l̄−1

1− z l̄
1− z2l̄−1

1 + z2l̄

= 2

√
1 + z l̄−1

1 + z2l̄

√
1− z2l̄−1

1− z l̄
> 2
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since 0 < z < 1. This completes the proof of Lemma B.6.

B.2 LDCP Ensemble with General Degree Distribu-

tion

The proof of Lemma 5.1 follows the same approach as that of 6.1, and therefore omitted
here. Below we focus on the properties of P

(
l̄, ξ, R(z)

)
.

B.2.1 Properties of P
(
l̄, ξ, R(z)

)
In view of (6.5), we define

l̃
(
l̄, R(z), τ

) ∆
= l̄ − l̄

r̄

R∑
i=1

Riri
g(τ, ri − 1)

g(τ, ri)

Lemma B.7. Given l̄ and R(z), the following properties hold:

P1 As a function of τ , l̃
(
l̄, R(z), τ

)
is strictly increasing over the interval [0,+∞).

P2 For any l̄κ ∈ [0, l̄− l̄
r̄

∑R
j=1Rjπ(rj)), there is a unique solution of τ to l̃

(
b∆
n
, l̄, τ

)
= l̄κ.

Lemma B.8. For fixed l̄ and R(z), P
(
l̄, R(z), ξ

)
as a function of ξ is strictly decreasing

over ξ ∈ (0, l̄/2).

Lemma B.9. For fixed l̄ and R(z), P
(
l̄, R(z), ξ

)
≥ P

(
l̄, R(z), l̄ − ξ

)
for 0 < ξ ≤ l̄/2.

Lemma B.10. For l̄
bl̄c ≤ ξ ≤ l̄

2
,

P
(
l̄, R(z), ξ

)
≤ − l̄

r̄
ln 2 + 2ξ exp

[
−2ξ

l̄
(r1 − 1)

]
+
l̄

r̄
exp

(
−2ξ

l̄
r1

)
The proof of Lemma B.7 to B.10 follows the same approach used in Section B.1.2, and

therefore is omitted here.
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Lemma B.11. For any R(z) and ξ ∈
(

0, l̄
2

)
,

P
(
l̄, R(z), ξ

)
≥ P

(
l̄, R̃(z), ξ

)
(B.38)

where
R̃(z) = (1 + br̄c − r̄) zbr̄c + (r̄ − br̄c) zdr̄e

and r̄ = R′(1) = R̃′(1).

Proof of Lemma B.11: Towards proving (B.38), observe that

P
(
l̄, R(z), ξ

)
= −l̄H(ξ/l̄) + min

τ>0

[
−ξ ln τ +

l̄

r̄

R∑
i=1

Ri ln
g(τ, ri)

2

]
.

Now first of all, let us show the following claim (?):

(?) ln g(τ, k) is a convex function of k for τ ∈ (0, 1).

To prove this claim,

∂2 ln g(τ, k)

∂k2
=

∂

∂k

[
∂ ln g(τ, k)

∂k

]
=

∂

∂k

[
(1 + τ)k ln(1 + τ) + (1− τ)k ln(1− τ)

(1 + τ)k + (1− τ)k

]
=

∂

∂k

[
ln(1 + τ) +

(1− τ)k

(1 + τ)k + (1− τ)k
ln

1− τ
1 + τ

]
=

∂

∂k

[(
1− 1

1 +
(

1−τ
1+τ

)k
)]

ln
1− τ
1 + τ

=

(
1−τ
1+τ

)k[
1 +

(
1−τ
1+τ

)k]2 ln2 1− τ
1 + τ

> 0

whenever τ ∈ (0, 1). Following the same argument in the proof of Lemma 3 in [70], it can

be shown that τξ ∈ (0, 1) if ξ ∈
(

0, l̄
2

)
where τξ is the solution to (6.5). Now if r̄ is an
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integer, then

P (l̄, R(z), ξ) = −l̄H(ξ/l̄)− ξ ln τξ +
l̄

r̄

R∑
i=1

Ri ln
g(τξ, ri)

2

≥ −l̄H(ξ/l̄)− ξ ln τξ +
l̄

r̄
ln
g(τξ,

∑R
i=1 Riri)

2

= −l̄H(ξ/l̄)− ξ ln τξ +
l̄

r̄
ln
g(τξ, r̄)

2

≥ −l̄H(ξ/l̄) + min
τ>0

[
−ξ ln τ +

l̄

r̄
ln
g(τ, r̄)

2

]
= P (l̄, R̃(z), ξ)

and the lemma is proved. Now suppose r̄ is not an integer. Let

r̃1 = br̄c
r̃2 = dr̄e
R̃1 = 1 + br̄c − r̄
R̃2 = r̄ − br̄c

and therefore
R̃(z) = R̃1z

r̃1 + R̃2z
r̃2 .

To proceed, another claim (??) is proved:

(??) For any R(z) with r̄ = R′(1), ∃{ai}Ri=1, {bi}Ri=1 ≥ 0 such that

ai + bi = Ri for 1 ≤ i ≤ R (B.39)
R∑
i=1

ai = R̃1 (B.40)

R∑
i=1

bi = R̃2 (B.41)

R∑
i=1

airi = R̃1r̃1 (B.42)

R∑
i=1

biri = R̃2r̃2 (B.43)
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It is easily shown that

(B.39) and (B.41) ⇒ (B.40)

(B.39) and (B.42) ⇒ (B.43)

since

R̃1 + R̃2 = 1 =
R∑
i=1

Ri

R̃1r̃1 + R̃2r̃2 = r̄ =
R∑
i=1

Riri.

Therefore, to verify this claim, we only need to prove that ∃{ai}Ri=1, {bi}Ri=1 ≥ 0 satisfying
(B.39), (B.41) and (B.42). Now let

s =
[
a1 b1 a2 b2 · · · aR bR

]T
b =

[
R1 · · · RR R̃2 R̃1r̃1

]T

A =



1 1
1 1

. . .

1 1
1 1 · · · 1

r1 r2 · · · rR


(R+2)×2R

The claim is equivalent to
∃s ≥ 0, As = b

which, by Farka’s Lemma, is further equivalent to show that

ATx ≤ 0⇒ bTx ≤ 0.

In the other word, suppose

xi + rixR+2 ≤ 0
xi + xR+1 ≤ 0

for 1 ≤ i ≤ R, (B.44)

we want to show that
R∑
i=1

Rixi + R̃2xR+1 + R̃1r̃1xR+2 ≤ 0.

The following proof is divided into two cases: (i)
∑R

i=1Rixi ≤ 0, and (ii)
∑R

i=1Rixi > 0.
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•
∑R

i=1 Rixi ≤ 0.
In this case, by (B.44), we have

R∑
i=1

Rixi + r̄xR+2 ≤ 0

R∑
i=1

Rixi + xR+1 ≤ 0

which further implies that(
R̃2 +

r̃1

r̄
R̃1

) R∑
i=1

Rixi + R̃2xR+1 + R̃1r̃1xR+2 ≤ 0.

Note that

R̃2 +
r̃1

r̄
R̃1 ≤ R̃2 + R̃1 = 1

and therefore, (
R̃2 +

r̃1

r̄
R̃1

) R∑
i=1

Rixi ≥
R∑
i=1

Rixi

since
∑R

i=1Rixi ≤ 0, which yields the proof.

•
∑R

i=1 Rixi > 0.
Under this circumstance, at least one of xi for 1 ≤ i ≤ R is positive, and therefore
by (B.44), xR+1, xR+2 < 0. Let j∗ be the index such that

j∗ =

{
0 if −xR+1 ≤ −r1xR+2

arg max1≤j≤R{j : −xR+1 > −rjxR+2} otherwise

Then (B.44) becomes

xi ≤
{
−rixR+2 if 1 ≤ i ≤ j∗

−xR+1 if j∗ + 1 ≤ i ≤ R

and

R∑
i=1

Rixi + R̃2xR+1 + R̃1r̃1xR+2 ≤

(
R̃2 −

R∑
i=j∗+1

Ri

)
xR+1 +

(
R̃1r̃1 −

j∗∑
i=1

Riri

)
xR+2.
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On one hand, (
R̃2 −

R∑
i=j∗+1

Ri

)
xR+1 +

(
R̃1r̃1 −

j∗∑
i=1

Riri

)
xR+2

= −R̃1xR+1 + R̃1r̃1xR+2 +

j∗∑
i=1

Ri (xR+1 − rixR+2)

≤ R̃1(−xR+1 + r̃1xR+2)

On the other hand,(
R̃2 −

R∑
i=j∗+1

Ri

)
xR+1 +

(
R̃1r̃1 −

j∗∑
i=1

Riri

)
xR+2

= R̃2xR+1 − R̃2r̃2xR+2 +
R∑

i=j∗+1

Ri(−xR+1 + rixR+2)

≤ R̃2(xR+1 − r̃2xR+2)

Therefore, the proof is done if −xR+1 ≤ −r̃1xR+2 or −xR+1 ≥ −r̃2xR+2. Now suppose
−r̃1xR+2 < −xR+1 < −r̃2xR+2. Note that rj ≤ r̃1 if j ≤ j∗, and rj ≥ r̃2 otherwise,
since r̃1 and r̃2 only differ by 1. Now if

R̃2 −
R∑

i=j∗+1

Ri ≥ 0, and R̃1r̃1 −
j∗∑
i=1

Riri ≥ 0,

immediately we have(
R̃2 −

R∑
i=j∗+1

Ri

)
xR+1 +

(
R̃1r̃1 −

j∗∑
i=1

Riri

)
xR+2 ≤ 0

since xR+1, xR+2 ≤ 0. Now assume at least one of them is negative. If

R̃2 −
R∑

i=j∗+1

Ri < 0,
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by the fact that xR+1 > r̃2xR+2,(
R̃2 −

R∑
i=j∗+1

Ri

)
xR+1 +

(
R̃1r̃1 −

j∗∑
i=1

Riri

)
xR+2

≤

(
R̃2 −

R∑
i=j∗+1

Ri

)
r̃2xR+2 +

(
R̃1r̃1 −

j∗∑
i=1

Riri

)
xR+2

=

(
R∑

i=j∗+1

Ri(ri − r̃2)

)
xR+2 ≤ 0.

Meanwhile, if

R̃1r̃1 −
j∗∑
i=1

Riri < 0,

by the fact that xR+2 >
xR+1

r̃1
,(

R̃2 −
R∑

i=j∗+1

Ri

)
xR+1 +

(
R̃1r̃1 −

j∗∑
i=1

Riri

)
xR+2

≤

(
R̃2 −

R∑
i=j∗+1

Ri

)
xR+1 +

(
R̃1r̃1 −

j∗∑
i=1

Riri

)
xR+1

r̃1

=

(
j∗∑
i=1

Ri

(
1− ri

r̃1

))
xR+1 ≤ 0.

The proof of claim (??) is complete. Now given R(z), let {ai}Ri=1, {bi}Ri=1 ≥ 0 satisfy (B.39)
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to (B.43). Then

P (l̄, R(z), ξ) = −l̄H(ξ/l̄)− ξ ln τξ +
l̄

r̄

R∑
i=1

Ri ln
g(τξ, ri)

2

= −l̄H(ξ/l̄)− ξ ln τξ +
l̄

r̄

R∑
i=1

(ai + bi) ln
g(τξ, ri)

2

= −l̄H(ξ/l̄)− ξ ln τξ

+
l̄

r̄

[(
R∑
i=1

ai

)
R∑
i=1

ai∑R
i=1 ai

ln
g(τξ, ri)

2
+

(
R∑
i=1

bi

)
R∑
i=1

ai∑R
i=1 bi

ln
g(τξ, ri)

2

]
≥ −l̄H(ξ/l̄)− ξ ln τξ

+
l̄

r̄

( R∑
i=1

ai

)
ln
g
(
τξ,

∑R
i=1 airi∑R
i=1 ai

)
2

(
R∑
i=1

bi

)
ln
g
(
τξ,

∑R
i=1 biri∑R
i=1 bi

)
2


= −l̄H(ξ/l̄)− ξ ln τξ +

l̄

r̄

[
R̃1 ln

g(τξ, r̃1)

2
+ R̃2 ln

g(τξ, r̃2)

2

]
≥ −l̄H(ξ/l̄) + min

τ>0

{
−ξ ln τ +

l̄

r̄

[
R̃1 ln

g(τξ, r̃1)

2
+ R̃2 ln

g(τξ, r̃2)

2

]}
= P (l̄, R̃(z), ξ).

The lemma is proved.

285



References

[1] R. G. Gallager. Low-Density Parity-Check Codes. MIT Press, Cambridge, MA, 1963.

[2] J. M. Wozencraft and I. M. Jacobs. Principles of Communication Engineering. Wave-
land Press, Prospect Heights, IL, 1990.

[3] M. K. Simon, S. M. Hinedi, and W. C. Lindsey. Digital Communication Techniques:
Signal Design and Detection. Prentice-Hall, Englewood Cliffs, NJ, 1995.

[4] T.-M. Cover and J.-A. Thomas. Elements of Information Theory (second edition).
Wiley, Hoboken, NJ, 2006.

[5] T. Richardson and R. Urbanke. Modern Coding Theory. Cambridge University Press,
2008.

[6] E.-H. Yang and J. C. Kieffer. Simple universal lossy data compression schemes derived
from the lempel-ziv algorithm. IEEE Trans. Inf. Theory, IT-42:239–245, Jan. 1996.

[7] T. Berger and J. D. Gibson. Lossy source coding. IEEE Trans. Inf. Theory, IT-
44:2693–2723, Oct. 1998.

[8] E.-H. Yang, A. Kaltchenko, and J. C. Kieffer. Universal lossless data compression
with side information by using a conditional mpm grammar transform. IEEE Trans.
Inform. Theory, 47:2130–2150, 2001.

[9] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory, IT-23(No. 3):337–343, May 1977.

[10] J. Ziv and A. Lempel. Compression of lndiwdual sequences via variable-rate coding.
IEEE Trans. Inf. Theory, IT-24(5):530–536, Sep. 1978.

286



[11] J.-C. Kieffer and E.-H. Yang. Grammar based codes: A new class of universal lossless
source codes. IEEE Trans. Inf. Theory, IT-46(3):737–754, May 2000.

[12] E.-H. Yang and J.-C. Kieffer. Effcient universal lossless compression algorithms based
on a greedy sequential grammar transform-part one: Without context models. IEEE
Trans. Inf. Theory, IT-46(3):755–777, May 2000.

[13] J.-C. Kieffer and E.-H. Yang. Grammar-based lossless universal refinement source
coding. IEEE Trans. Inf. Theory, IT-50(7):1415–1424, July 2004.

[14] A. Feinstein. A new basic theorem of information theory. Information Theory, IRE
Professional Group on, 4(4):2 –22, September 1954.

[15] Y. Polyanskiy, H. V. Poor, and S. Verdu. Channel coding rate in the finite blocklength
regime. Information Theory, IEEE Transactions on, 56(5):2307–2359, may 2010.

[16] V. Korolev and I. Shevtsova. An improvement of the berryesseen inequality with
applications to poisson and mixed poisson random sums. Scandinavian Actuarial
Journal, pages 1–25, 2010.

[17] I. Shevtsova. An improvement of convergence rate estimates in the lyapunov theorem.
Doklady Mathematics, 82:862–864, 2010. 10.1134/S1064562410060062.

[18] V. Strassen. Asymptoticsche abschätzugen in shannon’s informationstheorie. In Proc.
3rd Conf. Inf. Theory, pages 689–723, Prague, Czech Republic, 1962.

[19] M. Hayashi. Information spectrum approach to second-order coding rate in channel
coding. Information Theory, IEEE Transactions on, 55(11):4947–4966, nov. 2009.

[20] Igal Sason and Shlomo Shamai. Performance analysis of linear codes under maximum-
likelihood decoding: A tutorial. Foundations and Trends in Communications and
Information Theory, 3(1/2), 2006.

[21] Y. Polyanskiy. Channel coding: non-asymptotic fundamental limits. PhD thesis,
Princeton, 2010.

[22] Robert G. Gallager. Information Theory and Reliable Communication. John Wiley
& Sons, Inc., 1968.

[23] G. Poltyrev. Bounds on the decoding error probability of binary linear codes via their
spectra. Information Theory, IEEE Transactions on, 40(4):1284 –1292, jul 1994.

287



[24] S. Yousefi and A.K. Khandani. A new upper bound on the ml decoding error prob-
ability of linear binary block codes in awgn interference. Information Theory, IEEE
Transactions on, 50(12):3026 – 3036, dec. 2004.

[25] A. Mehrabian and S. Yousefi. Improved tangential sphere bound on the ml decoding
error probability of linear binary block codes in awgn and block fading channels.
Communications, IEE Proceedings-, 153(6):885 –893, dec. 2006.

[26] N. Shulman and M. Feder. Random coding techniques for nonrandom codes. Infor-
mation Theory, IEEE Transactions on, 45(6):2101 –2104, sep 1999.

[27] R. Fano. Transmission of Information: A Statistical Theory of Communications. The
MIT Press, Cambridge, MA, 1961.

[28] E.-H. Yang and J. Meng. Non-asymptotic equipartition properties for independent
and identically distributed sources.

[29] Y. Altug and A.B. Wagner. Moderate deviation analysis of channel coding: Discrete
memoryless case. In Proceedings of ISIT’2010, pages 265 –269, 2010.

[30] Y. Altug and A.B. Wagner. Moderate deviations in channel coding.

[31] Y. Polyanskiy and S. Verdu. Channel dispersion and moderate deviations limits for
memoryless channels. In Proceedings of Allerton’2010, pages 1334–1339, 2010.

[32] A. J. Goldsmith and S-G. Chua. Adaptive coded modulation for fading channels.
IEEE Trans. Commun., 46(5):595–602, May 1998.

[33] M. G. Kim, S. H. Ha, and Y. S. Kim. A selection method of modulation and coding
scheme in cdma2000 1xev-dv. In Proceedings of 59th IEEE Vehicular Technology
Conference, volume 2, pages 999–1003, May 2004.

[34] Evolved universal terrestrial radio access (e-utra); lte physical layer; general descrip-
tion. 3GGP Technical Specification 36.201. www.3gpp.org.

[35] Evolved universal terrestrial radio access (e-utra); physical channels and modulation.
3GGP Technical Specification 36.211. www.3gpp.org.

[36] Evolved universal terrestrial radio access (e-utra); multiplexing and channel coding.
3GGP Technical Specification 36.212. www.3gpp.org.

288



[37] C. Mehlführer, M. Wrulich, J. C. Ikuno, D. Bosanska, and M. Rupp. Simulating the
long term evolution physical layer. In Proc. of the 17th European Signal Processing
Conference (EUSIPCO 2009), Glasgow, Scotland, August 2009.

[38] C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27:379–423, 623–656, July, October 1948.

[39] R. M. Tanner. A recursive approach to low complexity codes. IEEE Trans. Inform.
Theory, 27:533–547, 1981.

[40] E.-H. Yang and D.-K. He. On interactive encoding and decoding for lossless source
coding with decoder only side information. In Proc. of ISIT’08, pages 419–423, July
2008.

[41] E.-H. Yang and D.-K. He. Interactive encoding and decoding for one way learning:
Near lossless recovery with side information at the decoder. IEEE Trans. Inf. Theory,
56(4):1808–1824, 2010.

[42] I. Csiszar and J. Korner. Information Theory: Coding Theorems for Discrete Memo-
ryless Systems. Academic Press, INC, 1981.

[43] S. Cheng, S. Wang, and L. Cui. Adaptive slepian-wolf decoding using particle filtering
based belief propagation. In Proceedings of Allerton’2009, pages 607–612, 2009.

[44] J. Gracia-Frias and Y. Zhao. Near-shannon/slepian-wolf performance for unknown
correlated sources over awgn channels. IEEE Trans. on Comm., 53(4):555–559, April
2005.

[45] J. Meng, E.-H. Yang, and D.-K. He. Linear interactive encoding and decoding for
lossless source coding with decoder only side information. IEEE Trans. Inf. Theory,
57(8):5281–5297, Aug. 2011.

[46] C. Daskalakis, A. G. Dimakis, R. M. Karp, and M. J. Wainwright. Probabilistic
analysis of linear programming decoding. IEEE Trans. Inf. Theory, 54(8):pp. 3565–
3578, August 2008.

[47] M. Sartipi and F. Fekri. Distributed source coding in wireless sensor networks using
ldpc coding: The entire slepian-wolf rate region. In Proc. Wireless Communications
and Networking Conference, 2005.

289



[48] D. Schonberg, K. Ramchandran, and S. S. Pradhan. Distributed code constructions
for the entire slepian-wolf rate region for arbitarily correlated sources. In Proc. IEEE
Data Compression Conference, 2004.

[49] D. Schonberg, K. Ramchandran, and S. S. Pradhan. Ldpc codes can approach the
slepian-wolf bound for general binary sources. In Proc. of fortieth Annual Allerton
Conference, Urbana-Champaign, IL, Oct. 2002.

[50] A. D. Liveris, Z. Xiong, and C. N. Georghiades. Compression of binary sources with
side information at the decoder using ldpc codes. IEEE Comm. Letters, 6:440–442,
Oct. 2002.

[51] S. Sarvotham, D. Baron, and R. G. Baraniuk. Variable-rate universal slepian-wolf
coding with feedback. In Proceedings of the Thirty-Ninth Asilomar Conference on
Signals, Systems and Computers, pages 8–12, 2005.

[52] J. Jiang, D. He, and A. Jagmohan. Rateless slepian-wolf coding based on rate adaptive
low-density-parity-check codes. In Proc. of ISIT’07, pages 1316 –1320, 2007.

[53] Andrew W. Eckford and Wei Yu. Rateless slepian-wolf codes. In Proc. of Asilomar
Conf. on Signals, Syst., Comput’05, 2005.

[54] D. Varodayan, A. Aaron, and Bernd Girod. Rate-adaptive distributed source cod-
ing using low-denstiy-parity-check codes. In Thirty-Ninth Asilomar Conference on
Signals, Systems and Computers, pages 1203–1207, Oct. 2005.

[55] F. R. Kschischang, B. J. Frey, and H. A. Leoliger. Factor graphs and the sum-product
algorithm. IEEE Trans. Inf. Theory, IT-47:498–519, Feb. 2001.

[56] J. Garcia-Frias and Y. Zhao. Compression of correlated binary sources using turbo
codes. IEEE Comm. Lett., 5(10):417–419, Oct. 2001.

[57] A. Zia, J. Reilly, and S. Shirani. Distributed parameter estimation with side informa-
tion: A factor graph approach. In Proceeding of ISIT’2007, pages 2556–2560, 2007.

[58] Y. Fang. Crossover probability estimation using mean-intrinsic-llr of ldpc syndrome.
IEEE Comm. Lett., 13(9):679–681, 2009.

[59] A. Amraouli. Lthc: Ldpcopt. Online available at the website:
http://lthcwww.epfl.ch/research/ldpcopt.

290



[60] Jin Meng, En-Hui Yang, and Zhen Zhang. Tree interactive encoding and decod-
ing: Conditionally φ-mixing sources. In Information Theory Proceedings (ISIT), 2011
IEEE International Symposium on, pages 1871 –1875, 31 2011-aug. 5 2011.

[61] E.-H. Yang and Z. Zhang. On the redundancy of lossy source coding with abstract
alphabets. IEEE Trans. Inform. Theory, 44:1092–1110, 1999.

[62] P. Hall. Rates of Convergence in the Central Limit Theorem. Pitman Books Limited,
Boston, 1982.

[63] E.-H. Yang and J. Meng. Basic concepts and non-asymptotic capacity achieving
coding theorems for channels with discrete inputs. submitted to IEEE Trans. on
Inform. Theory, 2011.

[64] S. Litsyn and V. Shevelev. On ensembles of low-density parity-check codes: Asymp-
totic distance distributions. IEEE Trans. Inf. Theory, 48(4):887–908, April 2002.

[65] S. Litsyn and V. Shevelev. Distance distributions in ensembles of irregular low-density
parity-check codes. IEEE Trans. Inf. Theory, 49(12):3140–3159, Dec. 2003.

[66] C. Di, T. J. Richardson, and R. L. Urbanke. Weight distribution of low-density parity-
check codes. IEEE Trans. Inf. Theory, 52(11):4839–4855, Nov. 2006.

[67] G. Miller and D. Burshtein. Asymptotical enumeration method for analyzing ldpc
codes. IEEE Trans. Inf. Theory, 50(6):1115–1131, June 2004.

[68] M. P. Mineev and A. I. Pavlov. On the number of (0,1)-matrices with prescribed sums
of rows and columns. Doc. Akad. Nauk SSSR, 230:1276–1282, 1976.

[69] B. McKay. Asymptotics for 0-1 matrices with prescribed line sums. Enumeration and
Design, pages 225–238, 1984.

[70] J. Meng and E.-H. Yang. Interactive encoding and decoding based on binary ldpc
codes with syndrome accumulation. submitted to IEEE Trans. on Inform. Theory,
2011.

291


	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Channel Decoding Rules
	Jar Decoding
	Concept and Illustration of Jar Decoding
	Connections with Old Decoding Rules

	Organization and Main Contribution
	Definitions, Notations and Conventions
	Definitions Related to Conditional Entropy
	Definitions Related to Relative Entropy


	Non-asymptotic Achievable Channel Coding Theorems
	Non-asymptotic Linear Coding Theorem: BSC
	Non-asymptotic Linear Coding Theorem: BIMC
	Non-asymptotic Coding Theorem: DIMC
	Comparison with Existing Non-Asymptotic Achievability
	Achievability on Random Linear Code Ensembles
	Achievability on Shannon Random Code Ensemble With a Fixed Codeword Type

	Summary

	Non-asymptotic Converse Channel Coding Theorems
	Non-Asymptotic Converse Theorems: BIMSC
	Non-Asymptotic Converse: DIMC
	Comparison with Existing Non-Asymptotic Converse Bounds
	Summary

	Taylor Expansion of Optimal Channel Coding Rate
	Taylor-type Expansion: BIMSC
	Taylor-type Expansion
	Comparison with Asymptotic Analysis

	Taylor-type Expansion: DIMC
	Taylor-Type Expansion
	Comparison with Asymptotic Analysis and Implication

	Approximation and Evaluation
	Approximation Formulas
	BIMSC
	DIMC: Z Channel

	Application of Taylor Expansion on Adaptive Modulation and Coding
	Motivation and Problem Formulation
	Taylor Expansion of Optimal Spectral Efficiency of Modulation and Coding over AWGN Channel
	Constellation and Rate Selection based on Taylor Expansion
	Application to the LTE System

	Summary

	LDPC Coding Theorems
	Terminology, LDPC Ensemble and Key Lemma
	LDPC Coding Theorem for BSC
	LDPC Coding Theorem for BIMC
	Analysis On Degree Distribution
	Simulation Results
	Summary

	Interactive Encoding and Decoding Theorems based on LDPC Codes with Syndrome Accumulation
	Motivation, Problem Formulation and Literature Review
	Interactive Encoding and Decoding Scheme based on LDPC Codes with Syndrome Accumulation
	LDPC Ensemble with Check-Concentrated Degree Distribution
	Syndrome Accumulation
	Interactive Encoding and Decoding Schemes

	Performance of SA-LDPC-IED: General Case
	Specification of n(,), n, and { b }, and Probability Bounds
	Performance for Individual Sequences
	Performance for Stationary, Ergodic Sources

	Performance of SA-LDPC-IED: Binary Case and Bit Error Probability 
	Implementation and Simulation Results
	Modified BP Decoding Algorithm and Practical Implementation of SA-LDPC-IED Schemes
	Simulation Results

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	APPENDICES
	Non-Asymptotic Equipartition Property
	NEP With Respect to Entropy
	NEP With Respect to Conditional Entropy
	NEP With Respect to Mutual Information and Relative Entropy
	NEP With Respect to I(X; Y)
	NEP With Respect to Relative Entropy

	NEP Application to Fixed Rate Source Coding

	Lemmas Related to LDPC Ensembles
	LDPC ensemble with Syndrome Accumulation and Check Node Concentrated Degree Distributions
	Proof of Lemma 6.1
	Properties of P ( R, , ) 

	LDCP Ensemble with General Degree Distribution
	Properties of P ( , , R(z) ) 


	References

