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Abstract 

 Compensatory balance reactions impose tight temporal constraints to motor responses 

employed to re–capture stability. Vision is particularly important for compensatory reach–to–

grasp reactions as locations of hand hold targets have varying inherent features and locations in 

3D space, requiring precise motor commands in order to successfully contact the target. 

Internalizing a representation of the surrounding environment by creating a visuospatial map is 

possible means of circumventing temporal lags associated with using online visual feedback 

when performing compensatory reactions. Hand hold targets are often located in the peripheral 

visual field. This suggests an importance of mapping from the peripheral visual field and further 

suggests mapping of peripherally located targets may require the allocation of attentional 

resources in order to correctly encode their location. The purpose of this thesis was to examine 

the contribution of peripheral vision and associated attentional requirements of visuospatial 

mapping for rapid upper limb movements. Study 1 was designed to examine the influence of 

mapping with peripheral vision for compensatory reach–to–grasp reactions, specifically the 

influence of timing and location of visual information. Study 2 was designed to examine the 

potential effect a secondary visual attention task would have on mapping peripheral located 

targets prior to movement initiation. Overall the results from these studies show support for the 

ability to map peripherally located targets with peripheral visual feedback, and suggest that this 

mapping may be an automatic process. Findings from this thesis provide a basic insight into the 

incorporation of peripheral visual information into intrinsic visuospatial maps that provides a 

framework for future experiments into the understanding of how visuospatial maps are 

incorporated into compensatory balance reactions.  
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Chapter 1: Introduction 

1.1 Background 

The ability to produce immediate responses to a sudden, unexpected loss of balance is an 

important component of successful postural control. Out of necessity, balance recovery reactions 

are extremely rapid and have been demonstrated to be initiated within 80 – 100 milliseconds 

(msec) after perturbation onset, a time frame which is approximately twice as fast as the 

initiation of rapid voluntary movements (Horak & Nashner, 1986; Horak et al., 1997; Maki & 

McIlroy, 1997; McIlroy & Maki, 1995). Factors that are both extrinsic and intrinsic to the 

individual must be incorporated into these rapid responses. Extrinsic properties include 

obstacles, support surface properties, characteristics of the perturbation and the spatial properties 

of features within the environment, while intrinsic properties include the initial state or 

configuration of the body when the perturbation was experienced (Maisson, 1992; Maki & 

McIlroy, 2005). Neurological impairments that result in motor and / or cognitive dysfunction are 

also intrinsic factors that can affect balance control responses (Horak et al., 1997; Jacobs & 

Horak, 2007).    

There is an extensive body of research examining the importance of visual information 

regarding the environmental surround in guiding volitional movements such as locomotion and 

reach–to–grasp. However, the temporal constraints associated with compensatory balance 

reactions may limit the ability to incorporate visual information into the initial phase of the 

recovery response (Ghafouri et al., 2004; King et al., 2011; Zettel et al., 2005). A possible 

control mechanism that has been suggested for overcoming such constraints is to create an 

intrinsic visuospatial map of the surrounding environment prior to the onset of perturbation 

(Ghafouri et al., 2004; Zettel et al., 2005, 2007). While the literature does support such a notion 
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there are still many questions regarding central nervous system (CNS) mechanisms underlying 

the mapping process. Presumably visuospatial mapping is an automatic process that incorporates 

incoming visual information regarding environmental features from both the central and 

peripheral visual fields. Existing research focused on visual contributions to balance control 

often considers only the central visual field or does not distinguish between mapping and online 

visual feedback. Therefore, the objective of this thesis is to examine the ability of individuals to 

create and act upon a representation of the visual environment created from peripheral visual 

information for the purposes of guiding the control of rapid upper limb movements such as those 

required for balance recovery.   
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Chapter 2: Literature Review 

2.1 Postural Control 

Postural stability affords us the independence to interact with our environment and 

participate in activities of daily living. Therefore, it is imperative that we are able coordinate 

postural control under a variety of circumstances. The musculoskeletal system acts to 

counterbalance forces imposed on the body by both internal constraints, such as limb 

configuration, and external constraints such as gravitational force (Frank & Earl, 1990; Horak, 

1987; Massion, 1992; Mergner & Rosemeier, 1998).  The ability to achieve postural equilibrium 

requires sensorimotor integration within the neuromuscular system to maintain the centre of 

mass (COM) within the base of support (BOS) of the body (Bouisset & Do, 2008; Horak, 2006; 

Maki & McIlroy, 1997, 2005; Maki et al., 2003; Patla, 2003).  

Postural control can be viewed as a dichotomy of both static and dynamic parameters that 

are used to maintain equilibrium (Bouisset & Do, 2008; Maki & McIlroy, 2005). Static balance 

control refers to the maintenance of a stationary postural configuration, such as quiet stance or 

sitting, while dynamic balance control requires that stability be maintained during an ongoing 

movement (Bouisett & Do, 2008). Two categories of responses that occur in order to maintain 

postural equilibrium for both static and dynamic balance control are known as anticipatory 

postural adjustments (APAs) and automatic postural reactions (APRs) (Frank & Earl, 1990; 

Massion, 1992). Anticipatory postural adjustments are utilized under volitional movement 

conditions or conditions where a perturbation is expected and the individual has time to prepare a 

response (Maki & McIlroy, 2005; McIlroy & Maki, 1993). For a given body position, the 

muscles that are responsible for maintaining postural control will activate prior to the onset of 

activity in the muscles required to complete a volitional movement (Massion, 1992; Maki & 
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McIlroy, 2005). These feed forward responses are believed to occur as a means of minimizing 

disturbances to postural equilibrium that result from the movement of interest (Maisson, 1992; 

McIlroy & Maki, 1993).Conversely, APRs are used when the postural disturbance is unexpected 

and cannot be planned for.  When faced with unexpected perturbation forces, automatic postural 

reactions are the mechanism by which balance is maintained (Patla, 2003).  

Automatic postural reactions are not generalizable startle responses, but rather are highly 

specific to the characteristics of the stimulus and task conditions. These responses have been 

demonstrated to be  modifiable based on the following parameters: 1) perturbation characteristics 

(velocity, direction, and predictability), 2) pre – perturbation neuromotor state (previous 

experience, expectation, and arousal), 3) concurrent motor and / or cognitive activity and 4) 

environmental context(s) such as obstacles and support surface characteristics (Jacobs & Horak, 

2007; Maki & McIlroy, 2007; Patla, 2003; Zettel et al., 2005).  

2.2 Types of Balance Control Reactions 

The objective of the automatic postural reactions is to rapidly activate appropriate muscle 

sequences in order to generate stabilizing forces against a support surface so as to counteract the 

destabilizing force(s) of the perturbation (Horak et al., 1997; Jacobs & Horak, 2007). Automatic 

postural reactions can be further subdivided into two distinct categories of general strategies that 

individuals employ in order to maintain postural equilibrium: fixed support and change in 

support reactions. 

2.2.1 Fixed Support Reactions 

Fixed support reactions identify a class of compensatory balance reactions in which the BOS 

remains unaltered in response to a perturbation (Maki & McIlroy, 1997, 2006). This response is 

sufficient for perturbations that are delivered at a slow velocity and small magnitudes of force 
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(Horak, 1987). To counteract a destabilizing force, the CNS activates muscles to produce 

counterbalancing torque at the articulation(s) responsible for arresting the motion of the body 

and maintaining the COM within the current BOS (Horak et al., 1997; Mergner & Rosemeier, 

1998).  In a standing posture, muscle torque will be generated at the ankles, hips and lumbar 

spine (Maki et al., 2003). Two common strategies employed in fixed support reactions include 

the ankle strategy and the hip strategy, such that individuals will initiate flexion and / or 

extension movements at the respective articulations so as to stabilize the COM (Horak, 1987). 

However, increasing perturbation forces results in a corresponding increase in the velocity of the 

COM. When this occurs, fixed support reactions will no longer be able to arrest the whole body 

motion induced by the perturbation and individuals must adopt a different strategy, the change in 

support reaction, to regain stability (Maki et al., 1997, 2003).  

2.2.2 Change in Support Reactions 

Change in support reactions involve movement of the lower limbs (stepping) and / or upper 

limbs (reach–to–grasp) in order to increase the BOS to recapture the COM and arrest whole body 

motion (Horak, 1987; Maki & McIlroy, 1997, 2005). While change in support reactions have 

been observed when individuals experience small perturbation forces (such that a fixed support 

strategy would successfully recapture stability), they are the only sufficient strategy that will be 

able to recapture stability in response to large perturbation forces (Maki & McIlroy, 2005; Maki 

et al., 2003). The central control of these rapid reactions initiated in order to arrest the movement 

is remarkably sophisticated. It requires the response to be initiated in the appropriate direction 

with respect to the direction of the perturbation, compensation for concurrently occurring body 

motion (e.g. locomotion) as well as environmental constraints that may restrict preferred  limb 

trajectories for stepping and / or reaching (Maki et al., 2003; Zettel et al., 2005). These responses 
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must also include parameters associated with the support surface as well as the initial 

configuration of the limbs at the time of perturbation onset (Horak, 1987). As previously 

mentioned, perturbation induced stepping responses are highly modifiable with respect to 

perturbation and environmental characteristics. Recently, the upper limb has also received 

attention with respect to balance control. McIlroy & Maki (1995) demonstrated that upper limb 

responses are also adapted to meet perturbation and environmental characteristics. Upper limb 

responses provide unique insight into the CNS regulation of compensatory balance. The arms do 

not provide direct body support in most postures and therefore do not experience the initial 

loading of sensory receptors that would provide the CNS with the initial somatosensory 

characteristics of the perturbation (McIlroy & Maki, 1995). However, upper limb responses are 

initiated at similar speeds to those of lower limb responses when individuals receive 

perturbations in a standing posture (Gage et al., 2007; Maki & McIlroy, 1997; McIlroy & Maki, 

1995).  

Due to the complexity and intricacy of the movements associated with change in support 

reactions with respect to the environment, there is debate regarding the involvement of higher 

cortical areas in the execution of such reactions. Rapidly evoked balance reactions have 

traditionally been considered to be controlled by the brainstem and spinal cord under the pretense 

that cortical involvement would lead to temporal delays in response initiation which in turn 

would be detrimental to effective re–stabilization (Jacobs & Horak, 2007; Maki & McIlroy, 

2007). However, recent literature suggests that there is the potential for modification of rapid 

balance reactions from descending cortical commands despite the rapid latency of response 

initiation. In most cases while concurrently performing a postural maintenance task and a 

cognitive task, it is the cognitive task that incurs deficits in performance, presumably to prioritize 
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postural stability (Brown et al., 2002; Maki & McIlroy, 2007; Zettel et al., 2008). Decrements in 

cognitive task performance are used to infer that executive function is required for the 

maintenance of postural stability. It is also possible that the initial phases of balance recovery 

reactions are mediated at the level of the brainstem and spinal cord, and that descending cortical 

commands come into play in the later phases of the response which constitute the actual re – 

stabilization of the body (Jacobs & Horak, 2007; Zettel et al., 2005). 

2.3 Sensory Components of Change in Support Reactions 

Visual, vestibular and proprioceptive sensory feedback is crucial for the initiation of 

compensatory movements. Sensory feedback from these systems provides the CNS with 

information regarding postural configuration (seated vs. standing), dynamic activity associated 

with the posture / movement (quiet stance vs. locomotion) as well as the characteristics of the 

perturbation, all of which are vital factors that must be incorporated into a compensatory balance 

reaction (Frank & Earl, 1990; Inglis et al., 1994; Lephart et al., 1998; Wade & Jones, 1997).  

Musculoskeletal and joint receptors relay afferent information regarding articular position, 

velocity and acceleration (Inglis et al., 1994; Lephart et al., 1998; Mergner & Rosemeier, 1998). 

This information is critical as somatosensory feedback regarding perturbation characteristics is 

vital for scaling the amplitude of the response as well as controlling any ongoing limb motion 

and the initiation and coordination of restorative limb movement. The vestibular system is 

particularly important for maintaining postural equilibrium with respect to gravitational forces in 

order to orient the head and trunk to the vertical axis of the support surface to enable spatial 

orientation based on a gaze centered reference frame (Horak, 2010). This becomes particularly 

important in our ability to distinguish between head & neck on trunk movements versus head & 

neck motion that is also accompanied by whole body movement (Horak, 2010). The importance 
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of head and trunk stabilization arises from our anatomical configuration: the head contains the 

visual system and its receptors in its entirety while the COM is located within the trunk of the 

individual (Horak, 2010; Mergner & Rosemeier, 1998). 

2.3.1 Vision 

Vision is an integral sensory component for maintaining balance. Visual feedback provides 

the CNS with continually updated information regarding body position, egocentric spatial 

awareness and the allocentric spatial location of objects within the environment (Black & Wood, 

2005; Lord, 2006). Visual information regarding allocentric spatial features of the surrounding 

environment is integral to enabling appropriate movements and navigation within that 

environment (Baldauf & Deubel, 2010; Patla, 2003; Zettel et al., 2005). This is especially true 

when rapid limb responses induced by a perturbation are required to occur within that immediate 

environment. Not only is the acquisition of visuospatial information important, but the location 

within the visual field (the central visual field (CVF) or the peripheral visual field (PVF)), the 

incoming visuospatial information emanates from may also be of importance as central and 

peripheral vision have different roles for the purposes of processing visual information (Berencsi 

et al., 2005; Wade & Jones, 1997). 

2.4 Contributions of Central and Peripheral Vision 

In this thesis, central vision will be defined visual information that is perceived by the macula 

and peripheral vision will be the remainder of the retina beyond that of the macula. The macula 

is the central area of the retina that contains a high density of cone photoreceptors (Leff, 2004). 

The fovea, which provides the greatest visual acuity, is located at the centre of the macula 

(Tovee, 1996). Macular vision accounts for approximately the central 10 degrees of our visual 
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field and foveal vision the central 2 degrees (Piponnier et al., 2009; Sung & Chuang, 2010; 

Tovee, 1996).  

Central vision allows for colour vision, object recognition and identification, fine detail 

discrimination, feature extraction, contrast sensitivity and the ability to distinguish the edges of 

objects within the environment (Frey et al., 2010; Sung & Chuang, 2010; Tovee, 1996; Wade & 

Jones, 1997). High visual acuity is achieved by having a low convergence ratio: the ratio of 

photoreceptor cells synapsing onto the retinal ganglion cells (Tovee, 1996). Central vision has a 

convergence ratio of one cone photoreceptor to one retinal ganglion cell (Sung & Chuang, 2010; 

Tovee, 1996). Damage to the macula through injury or disease (such as macular degeneration) 

may lead to a forced reliance on visuospatial information gathered from the peripheral visual 

field to allow for environmental interaction.  

As visual eccentricity increases to the peripheral surface of the retina, the density of 

photoreceptor type changes from cones to rods (Sung & Chuang, 2010; Tovee, 1996). Unlike 

cones, rods provide low acuity, monochrome vision as the convergence ratio increases with 

increasing visual eccentricity (Sung & Chuang, 2010; Tovee, 1996). However, peripheral vision 

is important for interpreting observer motion including upper and lower limb movement, postural 

orientation of the individual and object perception (especially depth perception) in the 

environment (Alfano & Michel, 1990; Turano et al., 2005; Wade & Jones, 1997).  

2.5 Vision and Voluntary Reaching 

Reaching to grasp an object is a motor action used on a daily basis to interact with objects 

in the environment. In order for successful interaction, the CNS must be able to accurately 

perceive features inherent to the object, such as shape, size, orientation, and the spatial location 

of the object with respect to the individual (Gonzalez – Alvarez et al., 2007; Singhal et al., 2007; 



10 
 

Sivak & MacKenzie, 1990). Other contextual features of the object may also be of importance, 

such as its mass and / or potential fragility (for example an antique vase as opposed to a plastic 

cup) so that the appropriate amount of force can be used to manipulate it. An important 

contextual feature of compensatory reach–to–grasp movements may also include the context of 

the potential stability the object may provide should it be grabbed (i.e. if the object is fixed and 

sturdy such as a hand railing vs. an object that is unstable and freely moved) (Baldauf & Deubel, 

2010; Schlicht & Schrater, 2007).  

Visual feedback increases accuracy when executing prehensile and pointing movements. The 

availability of visual information with respect to both the hand and the target produce the most 

accurate movements as compared to vision of one alone or when vision is absent (King et al., 

2011; Sivak & MacKenzie, 1990). Also, visual feedback of the hand and target during the later 

stage of movement and target acquirement will result in more accurate pointing and grasping 

movements as both the hand and the object are brought into foveal capture (Baldauf & Deubel, 

2010; Land, 2009; Paillard, 1995; Sivak & MacKenzie, 1990). During natural reaching 

movements, the CNS utilizes incoming information from both visual fields to guide motor 

action(s) to produce accurate movements (Sivak & MacKenzie, 1990). The central visual field 

provides information regarding intrinsic object features which are important for the motor 

control of the limb for both the transport and grasping components of prehensile movements 

(Sivak & MacKenzie, 1990). The peripheral visual field provides information regarding 

environmental features as well as information regarding limb motion to guide the upper limb 

through the transport phase in order to bring the hand towards the target (Paillard, 1995; Sivak & 

MacKenzie, 1990).  
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Land (2009) posits that visually guided behaviour is controlled by four main cortical 

areas that are essentially sub–systems for successful neuromotor integration. He states that the 

internal representation of the task is controlled by the dorsolateral prefrontal cortex (DLPFC). 

This may be considered to be analogous to executive function requirements that are used to 

allocate attention to the current task. Attention requirements appear to arise based on the 

environment in which the individual is required to interact. In order to carry out the goal directed 

behaviour of a successful reach–to–grasp movement, the individual must maintain in memory 

the features of the target object as well as areas in the visual field that have already been scanned 

during the visual search for that object (Sengpiel & Hubener, 1999). This must then be 

incorporated into the planning and execution of the movement to enable the appropriate motor 

synergies and produce a coordinated action (Baldauf & Deubel, 2010; Land, 2009). The DLPFC 

then relays information to the appropriate subsystems: the “gaze system” composed of the frontal 

eye fields and lateral intraparietal area for the control and execution of saccades; the “visual 

system” composed of the occipital and temporal lobes for the processing of visual stimuli; and 

the “motor system” composed of the premotor and primary motor cortices as well as the area of 

the parietal cortex responsible for coordinating incoming sensory information regarding the 

execution of the movement (Land, 2009, pg. 52).  

These neuroanatomical areas are similar to that of another visual processing theory 

present in the literature which suggests that prehension movements are controlled through two 

independent, yet highly interconnected cortical streams: the dorsal and ventral streams (Goodale 

& Milner, 1992). Visual inputs are initially processed in the primary visual cortex and then 

projected to other cortical areas through the two cortical streams for further processing 

(Gonzalez-Alvarez et al., 2007). The dorsal visual stream projects from the primary visual cortex 
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to the posterior parietal cortex and is considered the “where” stream; it is responsible for 

determining spatial location of objects and therefore is speculated to regulate visually guided 

movements (Gonzalez-Alvarez et al., 2007; Singhal et al., 2007). Conversely, the ventral visual 

stream projects from the primary visual cortex to the inferotemporal cortex and is considered the 

“what” stream; it is responsible for correctly identifying the object (Gonzalez-Alvarez et al., 

2007). The ventral visual stream is speculated to be important for storing a representation of the 

object for future recall, a process that may be a component of visuospatial map construction 

(Gonzalez-Alvarez et al., 2007). 

2.6 Central Nervous System Framework for Visuospatial Mapping 

Incoming visual information is initially encoded in a retinotopic reference frame (Hall & 

Colby, 2011; Thompson & Henriques, 2011). Mapping the visual scene in a retinotopic reference 

frame provides visual stability across saccades and eye blinks. This visual stability is achieved 

by corollary discharge regarding an upcoming saccade based on the intent to move the eyes to a 

new visual target area (Duhamel et al., 1992; Hall & Colby, 2011; Wurtz, 2008). This retinotopic 

updating transfers the encoding of visual information from neurons in the current receptive field 

to the neurons that will make up the future receptive field once the saccade has been executed 

(Duhamel et al., 1992; Hall & Colby, 2011; Wurtz, 2008). Cortical areas that have been 

implicated in retinotopic mapping include the visual cortices, the lateral intraparietal area, the 

frontal eye field and the superior colliculus (Colby & Hall, 2011; Thompson & Henriques, 

2011). 

The visual mapping of the environment in retinotopic coordinates then undergoes a 

visuomotor reference frame transformation in order to guide motor action (Binsted et al., 2006). 

These reference frames include head–centered, limb–centered, or body–centered coordinates 
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(Binsted et al., 2006; Thompson & Henriques, 2011). Kravitz and et al., (2011) propose that the 

occipito–parietal network transforms visual information from a retinotopic reference frame into 

the aforementioned egocentric reference frames and that these egocentric maps are used to 

convey the visuospatial information into the dorsal visual stream. The authors further suggest 

that the dorsal visual stream may be broken down into three sub streams which provide a 

framework for processing spatial working memory (supported by the parietal–prefrontal 

pathway), visually guided actions (supported by the parietal–premotor pathway) and spatial 

navigation (supported by the parietal–medial temporal pathway) (Kravitz et al., 2011). 

The aforementioned cortical areas that are active in visuospatial processing are also the 

cortical areas that are highly active in the visual control of volitional reaching movements. It is 

likely that the visuospatial information of behaviourally relevant items within the immediate 

environment is updated on a moment to moment basis to enable the individual to have the most 

updated representation of object(s) with respect to egocentric space (Westwood et al., 2003). It 

has also been suggested that the egocentric reference frame regarding the spatial location of 

action relevant objects is not transformed from a visuospatial representation to a motor command 

until the decision has been made to initiate a movement towards an object so that the most recent 

visuospatial map can be utilized in the visuomotor transformation (Westwood et al., 2003).  

2.7 Visual Information and Balance Control 

Vision has been demonstrated to be an integral means for enabling human interaction with the 

environment. Specifically, visuospatial information regarding environmental features is 

imperative for guiding limb trajectory (reach–to–grasp and / or stepping) in temporally urgent 

situations (Lakhani et al., 2011). However, due to the temporal constraints associated with 

compensatory balance reactions, it may not be possible to use online visual feedback from the 
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CVF, as the delays associated with generating a saccade to a target area to bring it into central 

vision, feature extract any relevant information and then act upon said information would cause 

too much of a delay in initiating a response that would successfully restore balance (King et al., 

2010). As a result, research has examined gaze behaviour and vision in both upper limb and 

lower limb balance control studies. 

2.7.1 Vision and Compensatory Stepping 

Various studies have examined vision and compensatory stepping and have found that 

fixations and / or gaze shifts to potential step landing sites are not required to successfully 

execute a step in response to a perturbation (Zettel et al 2005, 2007, 2008). This is true even 

when the imposed demands on the participants are high. For example, Zettel et al. (2005) 

examined gaze behaviour and compensatory stepping in a complex environment while subjects 

performed a concurrent attention demanding task. Participants performed perturbation induced 

stepping to a targeted area and / or avoided an obstacle, all while performing a visuomotor 

tracking task. These results are similar to studies examining gaze behaviour and obstacle 

avoidance during locomotion. Patla & Vickers (1997) found that subjects would fixate on an 

obstacle during the approach phase and step landing phase once the obstacle had been cleared, 

but would not fixate on the obstacle during the actual step clearance phase. Similarly, Marigold 

et al., (2007) found that subjects could successfully avoid obstacles that appeared suddenly in the 

walking path of participants without redirecting gaze at the object to bring it into central vision. 

Both of these studies demonstrate the importance of precursory visuospatial information and 

continuous visual feedback from the lower peripheral visual field for obstacle avoidance in 

locomotion studies, and it may be reasonable to assume that these two mechanisms are equally 

important in compensatory stepping and reaching.  



15 
 

2.7.2 Vision and Compensatory Reaching 

Arguably, reach–to–grasp responses initiated as a result of unexpected perturbation forces 

impose greater control challenges with respect to recapturing stability than compensatory 

stepping. The characteristics of the support surface for the lower limbs has a high probability of 

remaining planar and predictable, with exceptions such as ramps and stairs, for execution of 

compensatory stepping reactions (Maki & McIlroy, 1997). Conversely, in reach–to–grasp 

reactions, potential hand holds are not always readily available, and when they are available, 

their spatial characteristics remain fixed in allocentric space within the environment while their 

egocentric location changes on an instantaneous basis as the individual incurs a fall (Cheng et al., 

2009).  

 King et al. (2010) specifically examined peripherally guided compensatory reach–to–

grasp reactions and found that subjects were able to successfully regain stability even when the 

handhold was small and its final location prior to perturbation was unpredictable. This was true 

even when the final handle location was at a 40 degree visual eccentricity; albeit kinematic 

differences occurred with the handle at this location as compared to the 20 and 30 degree handle 

locations. The same research group also examined gaze behaviour of participants as they 

navigated through a “natural” environmental setting. The authors concluded that, for the 

participants who made successful compensatory reach–to–grasp responses, initial arm trajectory 

towards the railing was guided by stored visuospatial information gathered separately from the 

central or peripheral visual fields and / or was directed by online peripheral visual feedback as 

none of the participants brought the handrail into the CVF prior to the initiation of the 

compensatory arm movement (King et al., 2011). Ghafouri et al., (2004) found that initial wrist 

trajectory was specific to the direction of perturbation and that this was true when vision was 
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occluded prior to perturbation onset, forcing participants to rely on a stored visuospatial map as 

no online visual feedback was available. The ability of participants to successfully grasp a 

stabilizing handle in these experiments demonstrates that visuospatial information gathered prior 

to perturbation and / or gathered from the visual periphery can be incorporated into 

compensatory reach–to–grasp reactions.  

2.8 Rationale 

The ability to maintain postural control is not only important for producing a desired, goal 

directed movement but is also important for responding to postural perturbations (Horak et al., 

1997). The high incidence of falls in individuals with neuromuscular dysfunction is considered to 

occur as a result of incorrect postural responses generated by the central nervous system in 

response to a perturbation (Horak et al., 1997). Understanding the visual and cognitive 

requirements in controlling such rapid reactions in young, healthy individuals may provide 

greater insight into the nervous regulation of compensatory balance. Such knowledge may be 

valuable for the design of fall prevention programs as well as rehabilitation programs for those 

who have sustained neurologic injury. The studies included in this thesis are intended to examine 

the contribution of peripheral visual information and associated attentional requirements in the 

formation of an intrinsic visuospatial map for the purposes of immediate action.  

2.9 Research Questions and Objectives 

This thesis is comprised of two studies designed to address the following research objectives: 

 Study 1: Mapping with peripheral vision for compensatory reaching 

 Examine the influence of when visual information regarding target location is 

acquired with respect to perturbation onset 
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 Examine the influence of where in the visual field (central versus peripheral) such 

visuospatial information is acquired from 

 Study 2: Dual task interference and mapping peripherally located targets 

 Examine the potential effects of a secondary visual attention task on the ability to 

encode peripherally located targets prior to movement initiation 
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Chapter 3: Study 1 

Can we use peripheral visual information to create a visuospatial map for use in rapid 

reach–to–grasp reactions? 

3.1 Introduction 

Unexpected perturbation forces that threaten postural stability initiate elegant 

compensatory reactions that aim to arrest whole body motion and recapture stability.  These 

reactions are distinguished by their rapid initiation and execution as well as their appropriate 

accommodation to the constraints of the surrounding environment (Maki & McIlroy, 2006). In 

response to perturbations, compensatory stepping and / or reaching reactions are often used to 

alter the base of support (BOS) so as to recapture the center of mass (COM) within its limits of 

stability (Bouisset & Do, 2008; Maki & McIlroy, 1997, 2006) and are therefore referred to as 

change in support reactions (Maki & McIlroy, 1997, 2006).  Unlike fixed support reactions 

where the limbs do not move to establish a new base of support, these change in support 

reactions must address the control challenges linked to the direction and amplitude of 

perturbation as well as the spatial characteristics of the environment since the new support 

surface may be complex (e.g. stairs, handrails) (Gage et al., 2007; Maki et al., 2003; Scovil et al., 

2008; Zettel et al., 2005). Change in support reactions of the upper limb are most often 

challenged by complex three dimensional spatial surrounds demanding precise  motor commands  

to achieve contact with the support surface (Cheng et al., 2009; Gage et al., 2007; Maki & 

McIlroy, 1997).   For example, potential support targets for the upper limb, such as handrails, 

have different egocentric spatial locations, orientations and size characteristics in various 

environments. Remarkably, the CNS is able to generate appropriate responses with respect to 

perturbation characteristics and environmental constraints after the onset of the perturbation and 
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prior to the initiation of a response, a time frame which has been revealed to be as short as 80 – 

100 msec (Horak & Nashner, 1986; Horak et al., 1997; McIlroy & Maki, 1995). In addition, 

these rapid onset responses are also target specific (McIlroy & Maki, 1995) reinforcing the 

notion that the spatial representation of possible targets was incorporated into the initial reach 

trajectory (Ghafouri et al., 2004). How then, does the CNS achieve such rapid and adaptable 

control to acquire and use visuospatial information to guide reach kinematics under such 

temporal constraints?   

 There are two main strategies that may be utilized. One strategy is the use of online visual 

feedback during the reach–to–grasp response that would begin after the onset of perturbation. 

However, there are potential limitations to this strategy. Delays associated with acquiring and 

processing visuospaital information post perturbation may result in delays in response initiation 

and / or execution which have potential detrimental effects to the individual (Maki & McIlroy, 

2005). A second approach is to acquire and transiently store a visual representation of the 

immediate environment and to execute a rapid balance response based on this stored visuospatial 

representation or “visuospatial map” (Ghafouri et al., 2004; Scovil et al., 2008).   The limitation 

of this approach is that this visuospatial map would require continuous updating as balance 

disturbances that occur in daily life are temporally unpredictable. In spite of this challenge, 

recent studies have supported this strategy as a most likely approach to achieve the rapid 

initiation and execution speeds of these reactions in order to successfully recapture stability 

(Ghafouri et al., 2004; Scovil et al., 2008; Zettel et al., 2005, 2007). The  strategy of acquiring 

visual information before the onset of any perturbation (continuously mapping) has two main 

advantages for decreasing central processing requirements post perturbation: 1) the elimination 

of potential delays associated with the need to outline and execute visual saccades and / or head 
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& neck rotational movements towards the target and 2) decrease the need to incorporate online 

visual information into the creation and execution of the initial phases of the unique motor 

program (King et al., 2010, 2011; Zettel et al., 2005). Zettel et al., (2007) used a translating 

platform equipped with moving obstacles to induce compensatory stepping reactions in both 

younger and older adults. Their results demonstrated that both age groups were able to select the 

appropriate stepping limb for obstacle avoidance and both groups were able to do so without 

visually fixating on the obstacles, step landing site or the swing foot itself (Zettel et al., 2007).  

Reinforcing early work by McIlroy and Maki (1995), Ghafouri et al., (2004) specifically 

examined visuospatial mapping in compensatory reach–to–grasp reactions by comparing task 

conditions of occluding vision prior to perturbation onset with no visual occlusion. They found 

that initial wrist trajectories were not generic in response to the perturbation, but rather were 

dictated by the location of the target and the direction of the perturbation rather than the visual 

task condition (Ghafouri et al., 2004). These studies demonstrate that in the event of an 

unexpected postural disturbance, the CNS may utilize a pre–formed visuospatial map of the 

external surround along with sensory inputs regarding body motion in an attempt to recapture 

stability.  

 An additionally important question regarding the acquisition of visual information for the 

control of rapid reactions is where the visuospatial information is being acquired from: the 

central or peripheral field of view.  If visual information is gathered after the onset of 

perturbation then saccade latencies associated with bringing potential targets into central vision 

may also increase time requirements necessary to acquire and utilize online visuospatial 

information. In contrast, if visual information is captured prior to perturbation (e.g. to 

continuously update a visuospatial map) then the reliance of central vision while moving though 
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natural environments would require constant redirection of gaze to potential targets or obstacles 

(King et al., 2011). While central vision is associated with high visual acuity to allow for detailed 

feature extraction, often times potential handhold targets such as railings are located in our 

peripheral field of view. Recent studies have revealed that even in complex tasks, such as 

approaching and navigating stairs, individuals  do not direct central vision to handrails or even 

the stairs themselves (Miyasike – daSilva et al., 2011) Collectively this leads us to speculate that 

visuospatial mapping from the peripheral visual field  may have a very prominent / beneficial 

role in pre–perturbation planning. 

Studies examining volitional pointing, reaching, and grasping have found that when such 

movements are performed into the PVF there is reduced end point accuracy. However, reduced 

accuracy of perturbation evoked reach–to–grasp reactions pose more severe consequences, as 

failure to successfully anchor the upper limb to the handhold may result in a fall. King et al., 

(2010) examined potential speed-accuracy trade-offs with peripherally guided, perturbation 

evoked reach–to–grasp reactions. They found that participants were highly successful at 

recapturing stability regardless of the visual eccentricity of the handhold and that spatial 

information provided from peripheral vision (to a maximum visual angle of 40 degrees) was 

sufficient enough for participants to execute accurate reaches to a designated area of the target 

(King et al., 2010). While this study supports the role of peripheral vision in the control of 

compensatory reach to grasp reactions, it is difficult to distinguish the contribution of precursory 

visual information and online visuospatial control of reach trajectory. 

The objective of this study was to examine two factors that are likely essential in the 

control of compensatory reach–to–grasp reactions: when visual information regarding target 

location is acquired (in this case, relative to the timing of perturbation) and where in the visual 
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field, (central or peripheral) the visual information is acquired from. The main hypothesis 

regarding when visual information is acquired was that the initial phase of the reach would be 

guided by the visuospatial information acquired prior to perturbation.  This would be supported 

by two related observations: 1) no difference in initial reach trajectory or onset timing between 

the visual task conditions of when vision was available during the entire trial as compared to 

when vision was available prior to the onset perturbation only and 2) in the absence of visual 

information prior to the onset of perturbation  there would be no difference in initial reach 

trajectory with respect to the differing handle locations (which would be characterized as a 

trajectory that was generic rather than target specific) but showing no difference in response 

latency. With regards to where in the visual field the visuospatial information regarding target 

location is available, we predicted that there would be no difference in initial reach trajectory 

between the visual task conditions of when vision was available during the entire trial and when 

vision was available prior to the onset perturbation only within a given target location. In other 

words, there would be no difference in initial reach trajectory for reaches performed under 

normal viewing conditions or reaches performed based on a stored visuospatial representation 

regardless of whether the target was mapped in the central or peripheral visual field. 

3.2 Methods 

3.2.1 Participants 

Twelve healthy young adults (8 females, 4 males) participated in the study (aged 20 – 29, 

mean age = 23, SD = ± 2.52 years). All participants were self reported as being right handed, 

reported no neurological or musculoskeletal conditions that would affect their ability to recover 

balance and had normal or corrected to normal visual acuity. This study received clearance from 
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the Office of Research Ethics at the University of Waterloo and all participants provided written 

consent prior to study participation.  

3.2.2 Protocol 

Participants were seated in a custom built chair that delivered a whole body perturbation 

when it tilted backwards in the sagittal plane to a maximum angle of 20 degrees. The chair was 

held in the upright position with an electromagnet, and an elastic preload enhanced the initial 

acceleration of the chair when the electromagnet was released. A load cell was connected to the 

electromagnet so that perturbation onset could be determined in post processing. A handle with 

embedded force sensing resistors (FSR) was placed in one of three locations in the mediolateral 

plane with respect to a head centric reference frame of the participant: 1) directly anterior in the 

central field of view, 2) in a 20 degree visual periphery to the right and 3) in a 40 degree visual 

periphery to the right. Participants were asked to flex their right shoulder to 90 degrees and point 

to the position of the handle (0, 20 or 40 degrees with respect to a head centric reference frame). 

The handle was then translated forward so that it aligned with the participant’s wrist while the 

chair was in the upright position. This was to ensure that handle locations were within reach of 

the participant (Figure 3.1). Peripheral target locations were in the right peripheral field of view 

as all participants were right handed and reaches were made with the right arm. The FSR was 

used to determine the time of hand contact with the handle.  
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Figure 3.1: (A) Schematic of the overhead view of the participant and the alignment of the 

three handle locations; (B) Schematic for the calculation of the initial reach trajectory angle of 

the wrist. 

A 

B 
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Liquid crystal diode (LCD) goggles were worn throughout the experiment to control for 

the visual task conditions: 1) full vision (FV) - vision of the handle is available prior to, during 

and after perturbation, 2) map only (MAP) - vision is available prior to but not after perturbation 

onset and 3) online only (ON) - vision only becomes available after perturbation onset (Figure 

3.2). A hard stop prevented the chair from tilting past approximately 20 degrees in the event that 

participants were unsuccessful at recapturing stability with the reach–to–grasp movement. 

Participants wore ear plugs and noise cancelling headphones to prevent responses being initiated 

from the sound of the magnet releasing.  

 

 

 

 

 

 

While seated in the chair, participants received 90 perturbation trials fully randomized 

based on the three handle locations and three visual task conditions. Each trial was 12 seconds in 

duration and timing of perturbation onset was randomized between 2 and 8 seconds after the 

onset of the trial.  Participants started each trial with their right arm resting comfortably on their 

right leg with the hand in an area marked out by tape on the anterior thigh that served as the start 

position for the hand. Participants were instructed to remain as relaxed as possible in between 

trials and to react as fast as possible in response to the perturbation by reaching with their right 

Trial Start Random Delay 

2 – 8 sec 

Perturbation 
Onset 

Target 
Acquirement 

Vision Available 

Vision Available 

Vision Not Available Vision Available 

Vision Not Available 

FV 

MAP 

ON 

Figure 3.2: Schematic of the three visual task conditions full vision (FV), mapping 

only (MAP) and online only (ON) within the experimental paradigm. 
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arm to grasp the handle and regain stability. They were also instructed to keep their gaze fixed 

directly in front of them to allow for the 20 & 40 degree handle locations to be presented in their 

visual periphery; i.e. if the handle appeared to their right they were asked to refrain from fixating 

on the target. A fixation point was provided for them to look at, and this fixation point was 

placed in their central vision. 

3.2.3 Instrumentation and Data Acquisition 

Surface electromyography (EMG) was collected unilaterally from the following muscles 

of the right arm: anterior deltoid, middle deltoid, biceps brachii, common wrist flexors and the 

common wrist extensors. Common wrist flexors and extensor electrode placement was 

approximately 3 cm distal to the elbow. Skin sites were first abraded with NuPrep skin 

preparation gel and then cleaned with rubbing alcohol. Self–adhesive electrodes (Medi Trace, 

Kendall 130) were placed over the muscle belly and oriented to the alignment of the muscle 

fibers. A ground electrode was placed on the medial portion of the clavicle. EMG was collected 

using a NorAxon system (Scottsdale, AZ, USA) and was filtered online from 10 to 300 Hz and 

amplified at a set gain of 1000. The collection of EMG data was used to determine the latency of 

the response to the perturbation as well as to examine the temporal order of muscle activation. 

Electrooculography (EOG) was collected to confirm gaze behaviour instructions 

(GRASS Technologies, West Warwick, RI, USA). Skin sites were abraded and cleaned in the 

same manner as EMG. The electrodes were filled with a conductive gel and were placed on the 

outer corner of each eye and above and below the left eye to monitor horizontal and vertical eye 

movement respectively. A ground electrode was placed in between the eye brows.  
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Kinematic data were collected via Optotrak (Northern Digital Inc., Waterloo ON, 

Canada). A rigid body plate containing 4 infrared emitting diodes (IREDs) was placed on the 

posterior portion of the forearm approximately 3 to 4 cm proximal to the radial styloid process. 

IRED markers were placed at the acromioclavicular joint and on the headrest portion of the 

chair. A second rigid body plate containing 3 IREDs was attached to the superior portion of the 

support rail for the handle. Imaginary points were created at the elbow (lateral epicondyle) wrist 

(posterior forearm, midway between radial and ulnar styloid process), and top and bottom of the 

vertical handle using a digital probe. Initial reach trajectory was defined as the movement of the 

wrist with respect to the chair, within the first 100 msec from anterior deltoid onset. The 

coordinate system for trajectory is as follows: a positive value in the X direction represents 

anterior motion, positive values in the Y direction represents superior motion and positive values 

in the Z direction represents motion to the right. Initial reach trajectory of the wrist with respect 

to the chair in the ML plane within the first 100 msec of movement was calculated and used as 

the variable to quantify initial reach angle.  Two time points (anterior deltoid onset and 100 msec 

post anterior deltoid onset) were used to calculate the initial angle of the reach trajectory. This 

value was then subtracted from 90 degrees so that the zero degree axis was the sagittal axis 

through the wrist. All analog data were collected digitized at a rate of 1200 Hz (Northern Digital 

Inc., Waterloo ON, Canada). All kinematic data were collected with the 6 channel strobers (NDI 

First Principles), sampled at 120 Hz. All data were collected via the Optotrak collection system 

(Northern Digital Inc., Waterloo ON, Canada) and were stored for offline analysis.  

3.2.4 Data Analysis 

Data were analyzed with a custom built LabView program (National Instruments, Austin 

TX, USA). EMG was bandpassed from 20 to 500 Hz with a 2
nd

 order dual pass Butterworth 
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filter, notch filtered at 60 Hz, corrected for bias and full wave rectified. Muscle onset was 

determined to be the point where the EMG signal remained 3 standard deviations above baseline 

for 25 msec. The chair load was filtered through a dual pass 4
th

 order Butterworth filter with a 

low frequency cut off of 75 Hz. Perturbation onset was defined as the point where the chair load 

fell beneath 3 standard deviations of a resting baseline. FSR was filtered through a dual pass 4
th

 

order Butterworth filter with a low frequency cut off of 50 Hz. Hand contact time was used to 

define the end of the response, and was determined to be the point where the signal was at 0.3 

volts. EOG signals were band pass filtered from 0.1 to 35 Hz with a 2
nd

 order dual pass 

Butterworth filter.  

Trials that showed saccadic eye movements prior to or during perturbation were 

documented to determine the ability to execute the compensatory reaches in the absence of gaze 

shifts.  These trials, based on the low frequency (2.5% of all trials), were discarded from later 

analysis. In addition, trials characterized by preparatory EMG activity in anticipation of a 

perturbation were also discarded (5.2% of all trials).  

3.2.5 Statistical Analysis 

Task comparisons were conducted using a two-way repeated measures ANOVA (factor 

1:  handle position (3 levels) and factor 2: visual condition (3 levels)).   A one–way ANOVA was 

used to compare the initial reach angle of the ON visual condition within the three handle 

locations. Post hoc analysis was performed using Tukey’s test with a significance value of p = 

0.05. Values were averaged within task conditions within participants and statistical analysis was 

run on the resultant means.  
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3.3 Results 

3.3.1 Initial reach trajectory 

Despite the rapid responses of the upper limb, reach response characteristics were not 

generic when visuospatial information was available prior to perturbation onset. Initial reach 

trajectory approached a main effect for vision (F(2,22) = 3.21 , p = 0.06) and had a main effect of 

handle location (F(2,22) = 32.61 , p < 0.001). There was a statistically significant interaction effect 

for vision and handle location (F(4,44) = 12.40 , p < 0.001) . Post hoc testing revealed that there 

was a significant difference in initial reach angle for the FV condition between the 0 & 20 degree 

(p = 0.003) and 0 & 40 degree (p < 0.001) but not the 20 & 40 degree (p = 0.7858) handle 

locations. Post hoc testing revealed that there was a significant difference in initial reach angle 

for the MAP condition between all target locations [0 & 20 degree (p < 0.001), 0 & 40 degree (p 

< 0.001), and 20 & 40 degree (p = 0.021)] (Figure 3.3). Post hoc testing comparing initial reach 

angle between FV and MAP revealed  no differences in initial reach angle for the handle 

locations of 0 degrees (p = 0.91) and 20 degrees (p = 0.76) such that average initial wrist 

trajectories for the 0 degree target location were 31.76° ± 14.1° and 27.6° ± 12.33° for FV and 

MAP respectively while average initial wrist trajectories for the 20 degree target location were 

47.09° ± 16.55° and 52.24° ± 13.00° for FV and MAP respectively. However, there was a 

difference in initial reach angle for the 40 degree handle location between the visual conditions 

of FV and MAP ( p =0.019) such that mean initial wrist trajectory was 52.09° ± 15.34° and 

63.28° ± 14.38° for FV and MAP respectively (Figure 3.4).  

A 
B 
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Figure 3.3: Interaction effect for visual task condition and handle location within a specific 

visual task condition: (A) Average initial reach angle (and standard deviation) for the full 

vision (FV) condition; (B) Average initial reach angle (and standard deviation) for the mapping 

only (MAP) condition; * denotes statistically significant differences (p<0.05). 

A 

B 



31 
 

 

 

 

 

A one way ANOVA examining initial reach angle in the ON visual task condition 

revealed a trend towards s significant difference in initial reach angle between the handle 

locations (F(1,22) = 3.02 , p = 0.07) such that the mean initial reach angles in the ON condition 

were 38.66° ± 11.77° , 38.88° ± 14.31° and 46.73° ± 17.01° for the 0, 20 and 40 degree  handle 

locations respectively (Figure 3.5). 

 

 

 

Figure 3.4: Interaction effect examining differences in the average (± SD) initial reach angle 

for each of the handle locations comparing between the visual task conditions of full vision 

(FV) and mapping only (MAP);* denotes statistically significant differences (p<0.05). 
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3.3.2 Reaction times 

 All EMG onsets had a main effect of visual condition, such that onsets were faster in the 

MAP condition when compared to both the FV and ON conditions, while there were no 

differences between the FV and ON conditions. Anterior deltoid onset latency was significantly 

different comparing across visual conditions  (F(2,22) = 12.88 , p < 0.001) and  handle locations 

(F(2,22) = 15.19 , p < 0.001) but did not show an interaction effect (F(4,44) = 0.65 , p = 0.63). Post 

hoc testing revealed that a significant difference between FV and MAP as well as MAP and ON 

(p < 0.001 and p = 0.001 respectively). There was a trend towards a significant difference in 

EMG onset between FV and ON (p = 0.055). The mean anterior deltoid onsets for the visual 

conditions of FV, MAP and ON were 111, 99 and 106 msec respectively. Middle deltoid onset 

Figure 3.5: Average initial reach angle (and standard deviation), with respect to the AP 

location of the wrist for the online (ON) condition. There was a trend towards a statistically 

significant difference in initial reach trajectory between the 0°, 20° and 40° handle locations 

(p=0.07). 
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latency showed a main effect of vision (F(2,22) = 15.52 , p < 0.001) but was not different  

between handle locations (F(2,22) = 0.84 , p = 0.44) and there was no interaction effect (F(4,44) = 

0.81 , p = 0.52). Post hoc testing revealed a significant difference between FV and MAP as well 

as MAP and ON (p < 0.001 and p = 0.0013) respectively.  The mean middle deltoid onsets for 

the visual conditions of FV, MAP and ON were 106, 93 and 102 msec respectively. Biceps onset 

latency also was significantly different between  visual conditions ((F(2,22) = 15.93 , p < 0.001) 

and  handle location (F(2,22) = 13.77 , p < 0.001) but did not show an interaction effect (F(4,44) = 

0.49 , p = 0.75). Post hoc testing revealed statistically significant differences between FV and 

MAP as well as MAP and ON (p < 0.001 and p = 0.0014) respectively. The mean bicep onsets 

for the visual conditions of FV, MAP and ON were 110, 96 and 106 msec respectively. Post hoc 

testing revealed  significant differences between the 0 and 20 degree handle locations as well as 

the difference between the 0 and 40 degree handle locations  (p = 0.003 and p < 0.001) 

respectively. The mean bicep onset latency for the handle locations of 0, 20 and 40 degrees were 

98, 106 and 108 msec respectively.  

 Wrist flexors onset latency was different across vision conditions  (F(2,22) = 10.21 , p < 

0.001) but did not show a main effect of handle location (F(2,22) = 28.34 , p < 0.001) nor an 

interaction effect (F(4,44) = 0.80 , p = 0.53).  Post hoc testing revealed a significant difference 

between FV and MAP as well as MAP and ON (p < 0.001 and p = 0.016) respectively. The mean 

wrist flexor onsets for the visual conditions of FV, MAP and ON were 214, 197 and 208 msec 

respectively. Wrist extensors onset latency showed a main effect of vision (F(2,22) = 17.86 , p < 

0.001) but did not show a main effect of handle (F(2,22) = 0.92 , p = 0.41) nor an interaction 

effect (F(4,44) = 1.39 , p = 0.25). Post hoc testing revealed that there was a significant difference 

in EMG onset between FV and ON (p = 0.0431), between FV and MAP (p < 0.001) and between 
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MAP and ON (p = 0.0074). The mean wrist extensor onsets for the visual conditions of FV, 

MAP and ON were 111, 91 and 102 msec respectively. 

3.3.3 Response times 

Response time showed a main effect of vision (F(2,22) = 10.04 , p < 0.001) and a main 

effect of handle (F(2,22) = 9.17 , p = 0.001) but no interaction effect (F(4,44) = 1.77 , p = 0.15). 

Post hoc testing revealed that participants had faster mean (± SD) response times in the MAP 

condition (355 ± 45 msec) when compared to both the FV condition (370 ± 42 msec, p = 0.046) 

and also when compared to the ON condition (381 ± 47 msec, p = 0.005). Participants had a 

longer mean response time for the handle located in the 40 degree peripheral visual field (387 ± 

43 msec) when compared to both the 20 degree handle location (364 ± 41 msec, p = 0.0184) and 

the 0 degree handle location (355 ± 50 msec, p = 0.0012).  

3.3.4 Movement velocity 

 Mean peak wrist velocity was 2.77 ± 0.27 m/s and did not show a main effect of vision 

(F(2,22) = 3.13 , p = 0.064) nor a main effect of handle location (F(2,22) = 1.38 , p = 0.27). Peak 

wrist velocity as a percentage of movement time did not show a main effect of vision (F(2,22) = 

0.55 , p = 0.58) , nor a main effect of handle location (F(2,22) = 1.29 , p = 0.30). The mean timing 

of peak wrist velocity as a percentage of movement time was 69.8 ± 5.1%.   

3.5 Discussion  

The present results support the hypothesis that the initial phase of a compensatory reach–

to–grasp reaction can be guided by visuospatial information acquired prior to onset of 

perturbation.  This was revealed by target specific differences in initial reach trajectory when 
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visual information was only available up to the time of perturbation onset. Additional support for 

this hypothesis came from the observation that when visual information was only available after 

the onset of perturbation, participants did generate a generic initial reach angle (i.e. the initial 

reach was not target specific). Our results partially support our hypothesis regarding where in the 

visual field the visuospatial information originates from.  Specifically there were no differences 

in initial wrist trajectory in the 0 and 20 degree handle locations. However, this did not hold true 

for the 40 degree handle location. Differences did appear between the visual task conditions of 

full vision and map only for this more peripheral handle location.  Overall, in the map only 

condition participants adopted a wider initial reach angle with respect to the AP direction of the 

wrist.  This leads to the view that while peripheral visual information can be used individuals 

may adopt different strategies for environmental interaction based on said maps as the 

eccentricity of the visual information increases in order to ensure a successful reach–to–grasp 

movement.    

3.4.1 Influence of WHEN visual information is acquired 

Numerous studies have examined the role of vision in volitional reach–to–grasp / reach–

to–point paradigms. The literature supports the finding that individuals are able to perform these 

movements successfully when online visual feedback is available and when reaching to a 

remembered target location, suggesting that it is likely that both stored and online visual 

feedback are important in this process (Ricker et al., 1999).  However, when these movements 

are performed under conditions with no visual feedback, participants adopt compensatory 

strategies to ensure successful target acquisition, including reducing the speed of their movement 

and increasing grip aperture during the terminal contact phase of the reach (Ricker et al., 1999).   
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So how do we adapt when we are required to move quickly? In compensatory reach–to–

grasp investigations, participants appear to have no difficulty in successfully executing a 

response that is able to arrest the induced whole body motion when complete removal of the 

visual scene occurs with perturbation onset or when the target is located in the peripheral visual 

field (Ghafouri et al., 2004; King et al., 2010, 2011). Out of necessity, compensatory balance 

responses have EMG reaction times that are approximately twice as fast as those of rapidly 

initiated volitional movement (Gage et al., 2007). Likewise, overall response times are much 

quicker in compensatory reactions, yet interestingly, the same temporal characteristics of 

reaching kinematics, such as the percentage of movement time at which peak velocity occurs and 

at which maximum grip aperture occurs, are preserved in these temporally urgent reactions 

(Gage et al., 2007; Lakhani et al., 2011). It is noteworthy to point out that in spite of the control 

challenges placed on the CNS, muscle reaction times did not vary based on task conditions and 

were consistent with the expected ~ 100 msec latency and response times ranged from 355 – 387 

msec depending target location (targets further in the eccentricity of the visual field had a longer 

response times). Similar to the strategies adopted in volitional reaching studies where no visual 

feedback is available during the movement, participants adopted a similar strategy in this 

experiment. For the 40 degree target in the mapping condition, participants had a tendency to 

initially overshoot the target and reach back to grab it with a swiping motion. Again, this may be 

a strategy adopted to aid in ensuring successful re–stabilization. Strategically it is beneficial to 

initially overshoot the target location and initiate rapid shoulder, elbow or wrist movements to re 

– orient the hand in order to grasp the handle while falling away from it than it is to initially 

undershoot the target and need to continue forwards with the entire upper limb and torso.  
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Interestingly, participants were able to successfully grasp the handle when no visuospatial 

information regarding target location was available prior to perturbation and only after the onset 

of perturbation. While participants had a tendency towards a generic initial reach response, they 

were able to make corrections to reach trajectory with online visuospatial information in order to 

successfully grasp the handle to regain stability. This is especially interesting as response times 

for the online only condition were an average of ~380 msec and were not statistically different 

from the full vision condition which had an average response time of ~ 370 msec. The minimal 

latency for incorporating visual information into a motor program is approximately 200 msec 

(Paillard, 1996); any changes to the reach trajectory required to successfully grasp the target 

would have had to occur very rapidly due to the rapid nature of the response. Conversely, it may 

be possible that we have the ability to increase the speed at which we process online visual 

information and the speed at which it can be incorporated into the ongoing motor program in 

circumstances when there is a threat to whole body stability. Lakhani et al. (2011) demonstrated 

that individuals respond to whole body instability at latencies characteristic of those initiated in 

response to perturbation forces regardless of whether or not the movement resulted in the ability 

to re–stabilize the COM. This may speak to potential differences in how the CNS interprets and 

integrates incoming sensory information in order to produce rapid latency responses. Therefore, 

while pre–perturbation visuospatial information may be of importance for the initial phase of a 

compensatory reach to grasp reaction, we cannot rule out the contribution of online visual 

control to the later portions of the reaction and / or re–stabilization phase despite the temporal 

urgency of these reactions. We also cannot rule out the possibility of some pre–planning of initial 

reach trajectory in the online only visual task condition as there were a limited number of target 

options available to the participant. 
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3.4.2 Influence of WHERE visual information is acquired 

Reach to grasp movements are more accurate when the hand and the target are located 

within the central visual field (Clavagnier et al., 2007; Prado et al., 2005). However, in natural 

reaching movement sequences, the hand starts in the peripheral visual field and moves into the 

central visual field as it gets closer to the target (Bedard & Proteau, 2004). Manual reaching and 

aiming movements can be made solely in the peripheral field of view, however these movements 

do tend to be less accurate due to the low spatial resolution associated with the peripheral retina 

(Clavagnier et al., 2007; Prado et al., 2005).  The current work revealed that as objects are 

presented at increasing visual eccentricity, there is an impact to the strategy that becomes 

associated with the compensatory reach–to–grasp movement. King et al., (2010) examined 

compensatory reach–to–grasp responses in a paradigm where final target location prior to 

perturbation was unpredictable due to the use of a motorized handhold. Final target locations 

were 20, 30 or 40 degrees of visual eccentricity, and the authors concluded that while 

participants were successful at re–stabilization, there was greater deviation from a straight line 

reach trajectory for the furthest target location (King et al., 2010). These results are similar to 

ours in that when subjects were required to rely on a visuospatial map of the 40 degree target, 

they initially reached wide of the target. We actively visually scan our environment for relevant 

features needed to guide a movement within that environment (Franchak & Adolph, 2010). 

Under volitional movement conditions there is a high demand of accuracy in the visuospatial 

representation of the target or target area so as to allow for correct interaction with such an object 

(Franchak & Adolph, 2010). Arguably, this demand is greater in the case of an unexpected 

perturbation, where failure to engage in the correct limb response / surface contact has the 

potential to result in a fall or an injury. One might argue that a prior planning of reach 
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trajectories is done as a way of preparing for the possibility of instability, as compensatory 

responses to whole body instability cannot be planned for due to the unpredictable nature of 

when one will experience a perturbation and its associated parameters. While in this experiment, 

the target handle was located in the visual periphery, we cannot rule out the possibility that in 

real life situations, visual scanning of the surrounding environment allows us to foveate 

temporarily on various aspects of the environment, which may potentially enable us to extract 

relevant features of objects, such as size, orientation, colour, and potential stabilizing properties 

(King et al., 2011). As a result of this knowledge gained prior to a perturbation, those properties 

may be incorporated along with the online visuospatial location of a hand hold target located in 

the visual periphery. Alternatively, minute features of potential reach–to–grasp targets gained 

from central vision may not be of the same “importance” level as the actual location of the target, 

which appears to be able to be acquired from the peripheral field of view.  

Visual impairments that limit the field of view available to the individual as well as the 

quality of the visual information are risk factors associated with falls, particularly in older adults 

(Lord, 2006). Individuals with cataracts have limited peripheral visual information available to 

them and thus may not be able to create or use precursory maps created from the visual 

periphery. This has the potential to increase fall risk by introducing reaction delays associated 

with head and neck rotation and / or saccade initiation towards a target in order to capture the 

target area within the central visual field (King et al., 2011). Conversely, individuals with 

macular degeneration may be forced to rely solely on peripheral visual information which may 

increase visuospatial processing time requirements due to low spatial acuity (Tovee, 1996).  
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3.4.3 Mechanisms of spatial mapping for use in reaching 

If pre–perturbation visuospatial information can be incorporated into compensatory 

reactions, then how do we create these intrinsic maps of our external environment? One 

suggested mechanism is the use of a retinotopic map.  This theory suggests that we maintain a 

copy of current retinal information in a retinotopic coordinate framework, and this map is 

updated on a saccade to saccade basis (Prado et al., 2005; Wandell et al., 2007; Wurtz, 2008). 

However, our participants were instructed to refrain from making saccades and to continually 

fixate on a central fixation point. Intracellular recordings of non-human primates revealed that 

not only were neurons in the current visual receptive field active, but neurons in remote areas 

that would become the future receptive field after a saccade was made were also active, prior to 

saccade initiation (Colby et al., 1995; Duhamel et al., 1992). Therefore, it may be possible that 

while even though subjects were fixating their gaze straight ahead they were suppressing 

saccades to the actual target location.  The neurons in this new receptive field of where they 

wished to shift their gaze towards may have been facilitating their ability to map peripherally 

located targets (Duhamel et al, 1992; Wurtz, 2008).  

Another hypothesis is that the retinotopic coordinates of exteroceptive information are 

transformed into a spatiotopic map, such that visual perception is no longer in the coordinate 

system of the eyes, but rather in the coordinates of actual egocentric visual space (Wurtz, 2008). 

Individuals may create such reference frames in a parallel manner or may switch between the 

two coding systems and use of the two types of reference frames as necessary depending on the 

task. The coding of target location in a retinotopic representation may also follow the ventral 

visual stream hypothesis, enabling individuals to discern the “what” characteristics of the 

environmental surround, whereas the spatiotopic representation may follow the dorsal visual 
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stream, as similar cortical areas (posterior parietal cortex, lateral intraparietal sulcus and parieto–

occipital junction) are involved in identifying “where” an object is in space (Prado et al., 2005). 

This may have an implication on the need for scanning and updating of visuospatial 

representations. Retinotopic maps are constructed based on the continuous movement of the 

eyes, and therefore may be required to be updated on a moment to moment basis (Wurtz, 2008). 

However, spatiotopic representations based on egocentric and allocentric reference frames may 

be more stable depending on the static vs. dynamic nature of the individuals’ current 

environment, and thus may not be required to be updated as frequently.  

3.4.4 Speed of compensatory reactions 

There were no significant delays in EMG latency regardless of the visual task condition 

or the handle location reinforcing the notion that individuals prioritize the attempt of maintaining 

postural stability irrespective of the demands imposed by the experimental condition. In other 

words, we do not slow our response to perturbation forces so as to first survey the scene and 

incorporate relevant exteroceptive information into our response. Instead, as our results 

demonstrate from the online only visual task conditions, we initiate an appropriate response and 

then make corrections as necessary once the response is underway. One suggestion for the rapid 

initiation speed is that, in addition to the need to arrest body motion, early activation of the 

muscles may allow for more adjustments to be made to the chosen response, such as multiple 

steps or the addition of an upper limb response after first initiating a lower limb response (Maki 

et al., 2003).  
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3.4.5 Limitations 

Post processing analysis found that the mean timing of the closing of the shutters in the 

MAP condition was approximately 100 msec prior to perturbation onset, while the opening of 

the shutters in the ON condition was 100 msec prior to perturbation onset. A benefit to this 

timing difference is that it allows for the decay of retinal afterimage on the inside of the LCD 

goggles prior to perturbation onset in the MAP condition and also allows for light 

accommodation prior to perturbation onset in the ON condition. One might speculate that the 

early closing of the shutters in the MAP condition acted as the cue to respond, as seen by the 

statistically faster EMG onsets in the MAP condition (mean differences between EMG onsets 

when comparing the MAP condition to both the FV & ON conditions were ~10 msec for all of 

muscle groups). If the shutters were serving as the cue to respond, we would expect to see 

statistically faster muscle activation in the ON condition as well when compared to the FV 

condition, and this was not observed. It may be possible that the shutters were acting as a cue to 

respond, and that the statistically faster response in the MAP condition but not in the ON 

condition may potentially be linked to a sense of fretfulness of having vision removed just prior 

to perturbation as opposed to having vision restored momentarily before perturbation.  

Another potential limitation is that while the visual task condition and the handle location 

were randomized between every trial, subjects were reaching towards a stationary object with 

limited spatial locations in a predictable manner (i.e. the chair always perturbed in the same 

direction and at the same rate). Instructions provided to the participant may have inadvertently 

prompted them to remember the location of the target and calculate reach vectors towards the 

target prior to perturbation onset in the full vision and mapping conditions when vision was 

available prior to the release of the chair. The static nature of the participant prior to perturbation 
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onset, the limited number of handle locations (all within the same horizontal meridian and all 

within the right half of peri–personal space) and the absence of environmental distracters may 

have also contributed to the ease with which participants were able to store a visual 

representation and thus their ability to more successfully rely on the stored internal 

representation when initiating compensatory reach–to–grasp reactions. 

3.5 Conclusions 

The results of this study provide support for the ability to create precursory visuospatial 

maps with peripheral visual information and use this information to guide compensatory reach–

to–grasp reactions. Participants adopt more conservative reach strategies at increasing visual 

eccentricities when reliant on stored representations, but are able to successfully recapture 

stability and initiate the response at latencies of ~ 100 msec regardless of visual task condition or 

handle location. Future research may aim to examine the “accuracy” of visuospatial maps when 

tight spatial constraints are imposed on the participant. If more precise terminal reach accuracy is 

required, mapping may become even more important out of necessity. This may be reflected by 

less variation in the initial reach angle(s), or conversely, no changes to the initial phases of the 

reach but differences arising upon target contact. Another potential area of focus are the temporal 

features associated with the creation and storage of an intrinsic visuospatial map, including the 

minimal visual sampling time of the environmental surround that would be required in order to 

create a map adequate enough to act upon, as well as the temporal features associated with how 

often these maps require updating.  
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Chapter 4: Study 2 

The influence of dual task interference on mapping peripherally located targets during 

reach–to–point movements 

 

4.1 Introduction 

 Balance reactions are temporally urgent reactions that occur at rapid latencies. These 

reactions aim to recapture the center of mass (COM) within the base of support (BOS) of the 

body in order to arrest whole body motion induced by a perturbation (Bouisset & Do, 2008; 

Maki & McIlroy, 2006; Maki et al., 2003). These reactions have been demonstrated to occur at 

latencies of 80 to 100 msec; approximately twice as fast as rapidly initiated volitional 

movements (Ghafouri et al., 2004; McIlroy & Maki, 1995). Traditionally these temporally urgent 

reactions have been considered to be automated processes initiated by sub–cortical structures 

(McIlroy & Maki, 1995; Zettel et al., 2008). However studies examining postural stability in 

conjunction with the performance of a concurrent cognitive task have demonstrated the influence 

of higher cortical structures in the maintenance of balance (Jacobs & Horak, 2007; Maki & 

McIlroy, 2007). In particular, visual attention may be especially important for the incorporation 

of exteroceptive information in order to guide limb trajectory (stepping and / or reaching) within 

environmental constraints (Maki et al., 2003; Zettel et al., 2008).  

While visual, vestibular and somatosensory afference contribute to balance control, 

vision arguably has an integral role in postural maintenance. Vision provides us with a reference 

frame with respect to the external environment and provides us with information regarding 

specific environmental features such as obstacles, support surface properties and changes in 

surface elevation (ramps, stairs, etc.) (Scovil et al., 2008). Vision also provides feedback with 

respect to the body itself: limb position and orientation as well as distance vectors with respect to 
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where our limb is currently positioned with reference to obstacles and support surfaces (Maki & 

McIlroy, 2005; Paillard, 1996). Therefore, it is imperative that visual information regarding the 

environmental surround be incorporated into temporally urgent balance reactions so as to 

properly guide limb movement for effective re–stabilization. 

The extent to which online visual feedback can be incorporated into balance reactions 

may be limited. Delays associated with head movements or visual saccades in order to foveate on 

support surface locations would serve to increase response times with respect to the onset of a 

perturbation (King et al., 2011).  Therefore, it may be necessary to acquire visuospatial 

information regarding the environmental surround on an ongoing basis and store transient 

representations of the environment to act upon in the event of a perturbation (Ghafouri et al., 

2004; Scovil et al., 2008).  

Compensatory reach to grasp reactions can be coordinated by relying on visuospatial 

information acquired prior to the onset of perturbation. Initial wrist trajectories have been shown 

to be specific to the location of handhold targets as opposed to being directly affected by the 

visual task conditions of having normal vision throughout a reach as compared to having visual 

feedback removed at the onset of perturbation (Ghafouri et al., 2004; Williams et al., 

unpublished data). Similar results have also been demonstrated with compensatory stepping. 

Zettel et al. (2005) examined performance of perturbation evoked stepping in conjunction with 

the performance of a concurrent visuomotor tracking task performed with the upper limb under 

various environmental constraints. The study was designed so that an obstacle and a targeted 

landing site were only visible in the lower visual field (Zettel et al., 2005). Interestingly, 

participants rarely required downward gaze shifts during the trial in order to successfully meet 

the task demands of the environmental constraints (Zettel et al., 2005). These studies support the 
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ability to acquire visuospatial information prior to perturbation onset, as well as the ability to 

transiently store that information in memory and use that representation to carry out perturbation 

induced stepping and reaching responses.  

A second important element is whether the visuospatial information is being acquired 

from the central or peripheral visual field. The temporal urgency associated with balance 

restoration imposes tight constraints on the time available post perturbation to process incoming 

visual information.  Delays associated with saccade latencies and head & neck rotational 

movements coupled with the delays associated with online acquisition of visual information led 

us to speculate that visuospatial mapping from the peripheral visual field may have a very 

prominent / beneficial role in pre–perturbation mapping. The importance of peripheral vision is 

linked to the unpredictability of natural moments of instability, specifically with respect to 

timing, direction and amplitude of perturbations. Naturally occurring perturbations may require a 

reaction to a range of possible options / spatial locations. King et al., (2010) specifically 

examined the contribution of peripheral vision in perturbation evoked reach–to–grasp reactions. 

The authors found that participants were able to recapture stability when the visual eccentricity 

of a handhold was as great as 40 degrees. Further exploration of the incorporation of peripheral 

vision into balance reactions found that initial reach angles did not differ between conditions of 

normal, unrestricted vision and reaches made when vision was only available prior to 

perturbation onset, when the handhold was located within a 20 degree visual eccentricity of 

central vision (Williams et al., unpublished data). For a target located at 40 degrees of visual 

eccentricity, participants were able to successfully regain stability when vision was removed at 

perturbation onset; however, they adopted a more conservative reach strategy such that they 
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would overshoot the target and reach back to grab it with a swiping motion (Williams et al., 

unpublished data).   

  Given the importance of the peripheral visual field and the reliance on mapping, there is 

a need to better understand the factors that may influence the capacity or effectiveness of such 

visuospstial mapping.  Of specific interest is the potential role of concurrent attention demanding 

tasks on the ability to effectively map from the peripheral field of view.  This has important 

implications to the control of visuospatial mapping in natural settings where individuals may be 

currently involved / partaking in an attention demanding task when they experience a loss of 

stability. Previous research has demonstrated that attention demanding tasks located within the 

central visual field limit the ability of individuals to attend to objects located further in the 

peripheral visual field. This is referred to as a narrowing of the functional field of view (FFOV). 

The functional field of view is defined as the maximum distance a stimulus can be displaced 

from the area of visual fixation and still be reliably detected without any head, neck or saccadic 

eye movement (Ball et al., 1988; Scalf et al., 2007). It has been established in the literature that 

the FFOV decreases when the eyes remain fixated on point of interest, and that it decreases 

further still once a secondary task requiring the utilization of cognitive resources is additionally 

implemented (Ball et al., 1988, 1993). While young, healthy individuals have little difficulty 

extracting relevant environmental features from the peripheral field of view in the presence of 

visual distracters this process becomes increasingly difficult for older individuals (Ball et al., 

1988, 1993; Scalf et al., 2007). Therefore, it may make the localization of stabilizing objects, 

such as railings, more difficult to detect when they are located in the visual periphery.  

The objective of this study was to examine the potential influence of attention on 

mapping peripherally located targets. While future studies will focus on perturbation and balance 
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reactions, the current study is focused on a voluntary visuomotor reaching paradigm. A volitional 

paradigm was used to test this hypothesis to prevent additional confounding factors associated 

with balance perturbation paradigms, such as increased arousal levels and increased severity of 

consequence if the resultant motor output is unsuccessful at regaining stability. We implemented 

a reach–to–point paradigm to examine the potential effects of a secondary visual attention task 

on the ability to encode target location prior to movement initiation. Presumably, the addition of 

a secondary visual attention task would impede our ability to encode a spatially accurate map of 

peripherally located targets, resulting in a less detailed or inaccurate visuospatial map. The 

decreased accuracy of this map would in turn lead to errors in motor performance such that the 

amplitude of spatial error in the reach–to–point paradigm would increase.  

It was hypothesized that absolute horizontal pointing error, measured as the horizontal 

distance from the center of the target, would increase as a function of: A) visual task condition, 

such that errors would be greater when the reach–to–point was performed with no visual 

feedback as compared to continuous visual feedback, B) central task condition, such that errors 

would be greater when participants were required to peripherally map the target location while 

performing a secondary visual attention task as compared to a simple fixation task, and C) visual 

eccentricity of target location, such that pointing error will increase with increasing visual 

eccentricity of the target.  

4.2 Methods 

4.2.1 Participants 

Eleven healthy young adults (4 females, 7 males) participated in the study (aged, mean 

age = 26.3, SD = 5.2 years). Participants were right handed and reported no neurological or 

musculoskeletal conditions that would affect their ability to recover balance and had normal or 
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corrected to normal visual acuity. This study received clearance from the Office of Research 

Ethics at the University of Waterloo and all participants provided written consent prior to study 

participation.  

4.2.2 Protocol 

Participants performed 120 reach–to–point movements broken down into 4 blocks of 30 

trials. The three task manipulations were: 1) visual task condition [full vision (FV) or mapping 

(MAP)], 2) central task condition [no concurrent task (SINGLE) or concurrent colour 

discrimination task (DUAL)] and 3) visual eccentricity of target location. The four trial blocks 

consisted of 1) full vision with single task performance, 2) mapping with single task 

performance, 3) full vision with dual task performance and 4) mapping with dual task 

performance. Within each block, the location of the reach–to–point target was randomized 

between one of three locations: 15, 30 or 40 degrees to the right.  

Participants were seated in a sound proof booth in front of a touch screen monitor. The 

monitor was positioned 42 cm anterior to the participant’s sternum. A wireless keyboard was 

placed on the desk with the middle of the space bar positioned 10 cm to the right of the 

participant’s midline, as well as 10 cm inwards from the edge of the table. Participants were 

instructed to use their right index finger to depress the space bar, and release it to execute the 

reach–to–point movement when cued to do so. A 1 x 1 cm piece of felt material was attached to 

the center of the space bar so that participants brought their hand back to the same start position 

on the space bar for each trial (Figure 4.1). Participants were instructed to sit comfortably with 

their chin in a chin rest to prevent head movement. The chin rest was positioned directly in front 

of the midline of the participant, and affixed to the table that housed the monitor and the 

keyboard. The height was adjusted so that participants were able to sit in an erect position 



50 
 

without the potential for neck discomfort. Liquid crystal diode (LCD) goggles were worn 

throughout the experiment to control when visual information was available based on the visual 

task conditions of: 1) full vision (FV) - vision was available prior to and during the reach 

execution, and 2) map only (MAP) - vision was available prior to but not after reach initiation. 

Noise cancelling headphones equipped with speakers were also worn to deliver a tone to 

participants. This tone was the cue to reach to point to the target.  

As noted there were two central cognitive task conditions: 1) a fixation point (SINGLE) 

and 2) a dual task paradigm (DUAL). In the SINGLE condition, the letter “X” was presented on 

the screen and participants were instructed to keep their gaze fixated on the “X” and not to 

redirect their gaze to the target when it appeared in the periphery. In the DUAL condition a 

colour discrimination task was used to increase the attentional demands required by the 

participant within the central visual field. In this paradigm, two square boxes 1.22 x 1.63 cm 

were placed side by side in the same location as the “X” in the SINGLE condition. The hue of 

the colour of both boxes ranged from black to light blue and changed every 750 msec until the 

participant was presented with the tone. In the DUAL trials, participants were instructed to rest 

their left index finger on the “S” key and were asked to depress the “S” key whenever they 

perceived the hues of the two colour boxes to be the same. Otherwise, they were not to respond. 

The central cognitive task was removed from the screen at the same time as the sound of the 

tone, cuing the reach–to–point movement. 
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Reach to point targets were randomized between three screen locations: 15, 30 and 40 

degrees into the right peripheral visual field. Targets were oval in nature and had a vertical 

diameter of 1.22 cm and a horizontal diameter of 1.63 cm and were all presented along the 

horizontal meridian of the screen. Targets were dark grey in colour (R, G & B LabView colour 

values were all set to 78) and were presented on a black screen. The contrast difference was great 

enough to make the targets easily visible to promote mapping but not so great as to create a 

lasting retinal afterimage upon the closure of the LCD goggles (Figure 4.2). 

 

Figure 4.1: An aerial view of the participant set up at the touch screen computer. The right 

index finger was placed on the space bar and in the colour discrimination task condition the 

left index finger was placed on the “S” key on the keyboard. The central task was located at 

the left hand side of the touch screen monitor and targets were located to the right. 
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At the beginning of the trial, the shutters of the LCD goggles were closed. Following a 

random time delay of 2 to 5 seconds, the shutters opened and either the SINGLE or DUAL task 

was displayed. The reach–to–point target was displayed in one of the three positions between 

B 

A 

Figure 4.2: The view of the touch screen monitor for the participant for the SINGLE task (A) and 

the DUAL task (B). The co–ordinates designating the size of the screen were not visible to the 

participant. The positive directions for the X and Y directions were to the right and downwards 

respectively. 
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random delays of 500 to 2000 msec following the opening of the shutters. This delay was to 

allow participants to become engaged in the cognitive task prior to the presentation of a target 

location. Participants viewed the target in the peripheral field of view for 7.5 seconds. After the 

7.5 seconds in the FV condition, the central cognitive task was removed from the screen and 

participants received the tone to initiate their response. In the MAP condition, the shutters closed 

after the 7.5 seconds removing all visual feedback from the environment. There was a 100 msec 

delay before the tone to allow for the decay of any retinal afterimage of the target location as 

well as the centrally located cognitive task (Figure 4.3). 

 

 

 

 

 

 

Figure 4.3: Schematic of the visual task conditions of full vision (FV) and mapping 

only (MAP), as well as the timing of the events within the experimental paradigm. 
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4.2.3 Instrumentation and Data Acquisition 

A Dell ST2220T 21.5” Multi–Touch Monitor, with an average touch response time of 15 

msec and a touch accuracy of ± 2.5 mm was used to present the experimental paradigm to the 

participant. Data were collected and analyzed with custom built LabView programs (National 

Instruments, Austin TX, USA). The collection program controlled the timing of the events within 

the protocol while allowing the experimenter to choose the visual and cognitive task conditions 

as well as collecting electrooculography (EOG). EOG was collected to verify gaze behaviour 

instructions (GRASS Technologies, West Warwick, RI, USA). Skin sites for the EOG were first 

abraded with NuPrep skin preparation gel and then cleaned with rubbing alcohol. The electrodes 

were filled with a conductive gel and were placed on the outer corner of each eye and above and 

below the left eye to monitor horizontal and vertical eye movement respectively. A ground 

electrode was placed in between the eye brows. EOG signals were band pass filtered from 0.1 – 

35 Hz with a 2
nd

 order dual pass Butterworth filter and were visually inspected for saccadic 

behaviour during the trials.   

The acquisition program recorded the timing of the tone, the release of the space bar and 

when the participant made contact with the screen. The position of where the participant made 

contact with the screen was also recorded, and displacement with respect to target center in both 

the horizontal and vertical plane was calculated. The numeric values for the hues of the colour 

boxes were recorded to determine if they matched or were different, and the participant’s 

reaction times to the dual task paradigm were also recorded. Separate analysis programs were 

made to examine participant performance (as determined by correct or incorrect responses to the 

colour discrimination task) during the dual task paradigm.  
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4.2.4 Statistical Analysis 

Task comparisons were conducted using a repeated measures ANOVA [(factor 1:  visual 

task condition (two levels); factor 2: central task condition (two levels) and factor 3: target 

location (three levels)]. Post hoc analysis was performed using Tukey’s test with a significance 

value of p = 0.05. Values were averaged within task conditions within participants and statistical 

analysis was run on the resultant means.  

4.3 Results 

4.3.1 Main Effects of Vision, Task and Target on Absolute Horizontal Pointing Error 

 There was a main effect of visual task condition for absolute horizontal pointing error 

(F(1,10) = 52.23, p < 0.001). Post hoc comparisons revealed that there was an increase in pointing 

error when participants made reach to point movements with no visual feedback. Mean 

horizontal pointing error was 1.41 ± 1.53 cm and 3.53 ± 2.40 cm for the FV and MAP visual task 

conditions respectively (Figure 4.4). 

There was no main effect of task difficulty on absolute horizontal pointing error (F(1,10) = 

0.25, p = 0.63). Mean horizontal pointing error for the single task was 2.52 ± 2.14 cm and was 

2.45 ± 2.41 cm for the dual task (Figure 4.5).  
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 Figure 4.5: Average absolute horizontal pointing error and standard deviation comparing 

between the SINGLE and DUAL task conditions.  There was no statistically significant 

difference. 

Figure 4.4: Average absolute horizontal pointing error and standard deviation comparing 

between the full vision (FV) and map only (MAP) visual task conditions; * denotes  

statistically significant difference (p<0.05). 



57 
 

There was a main effect of visual eccentricity of target location for absolute horizontal 

pointing error (F(2,20) = 9.97, p = 0.001). Post hoc comparisons revealed that there was a 

significant difference in horizontal pointing error between the 15 & 30 degree target locations (p 

= 0.0007), and between the 30 & 40 degree target locations (p = 0.032) but no difference 

between the 15 & 40 degree target locations (p = 0.24). Mean absolute horizontal pointing error 

was 3.08 ± 2.63 cm, 1.81 ± 1.80 cm and 2.60 ± 2.17 cm for the 15, 30 & 40 degree target 

locations respectively (Figure 4.6).  

 

 

 

 

Figure 4.6: Average  absolute horizontal pointing error (and standard deviation) with 

respect to target location comparing between the different target locations 15°, 30° and 

40°; * denotes statistically significant differences. 
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4.3.2 Main Effects of Vision, Task and Target on Absolute Vertical Pointing Error 

 Interestingly, there was a similar pattern of main effects of visual, target and task 

condition on absolute vertical pointing error as there were on horizontal pointing error.  There 

was a main effect of visual task condition for absolute vertical pointing error (F(1,10) = 9.01, p = 

0.015) . Post hoc comparisons revealed that there was an increase in pointing error when 

participants made reach to point movements with no visual feedback. Mean vertical pointing 

error was 0.65 ± 0.76 cm and 2.02 ± 1.70 cm for the FV and MAP visual task conditions 

respectively. 

 There was no main effect of task difficulty on absolute vertical pointing error (F(1,10) = 

0.41, p = 0.54). Mean vertical pointing error was 1.31 ± 1.41 cm for the single task and 1.40 ± 

1.57 cm for the colour discrimination task.  

 There was a main effect of visual eccentricity of target location for absolute vertical 

pointing error (F(2,20) = 4.52, p = 0.026). Post hoc comparisons revealed that there was no 

significant difference in vertical pointing error between the 15 & 30 degree target locations (p = 

0.70) or between the 30 & 40 degree target locations (p = 0.12). There was a significant 

difference between the 15 & 40 degree target locations (p = 0.024). Mean vertical pointing error 

was 1.24 ± 1.29 cm, 1.31 ± 1.49 cm and 1.50 ± 1.65 cm for the 15, 30 & 40 degree target 

locations respectively.  

4.3.3 Variability Between Individuals 

There was the potential for participants to achieve their mean absolute error (absolute 

error meaning error with respect to the target center) through various movement strategies. It was 

possible that participants executed the movement with little consistency between trials resulting 

in a large trial to trial variability around their central tendency. Conversely, it was possible that 
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participants executed the movement with great consistency resulting in small trial to trial 

variability around their central tendency (see Figure 4.7 for an example). As a means of further 

exploring the main effects of pointing error the average trial to trial variability around the central 

tendency of pointing was examined within each individual (Figure 4.8 & 4.9). Averages were 

calculated based on the resultant z vector distance (thus composing both x and y distances) from 

each pointing trial with respect to the participant’s mean pointing error.  

 

 

 

 

 

 

Figure 4.7: Differences in pointing errors comparing between two individuals. A – 

Participant 7 had large mean pointing error with respect to target center (0,0) and large trial 

to trial variability within each reach to point movement. B – Participant 9 also had large 

mean pointing error with respect to the target center (0,0) but small trial to trial variability 

within each reach to point movement. 
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Figure 4.8: Average trial to trial variability (and standard deviation) with respect to the 

central tendency of the mean pointing error for each individual for (A) full vision (FV) 

SINGLE task and (B) FV DUAL task condition.  The error represents total overall 

distance from their central tendency. 

A 

B 
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Figure 4.9: Average trial to trial variability (and standard deviation) with respect to the 

central tendency of the mean pointing error for each individual for (A) map only (MAP) 

SINGLE task and (B) MAP DUAL task condition. 

 

A 

B 
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4.3.4 Reaction and Movement Time  

 There were no main effects of vision (F(1,10) = 2.74, p = 0.13), target (F(2,20) = 1.06, p = 

0.37) or task (F(1,10) = 2.73, p = 0.13) on reaction time. There were also no main effects of vision 

(F(1,10) = 0.19, p = 0.67), target (F(2,20) = 0.89, p = 0.43) or task (F(1,10) = 1.00, p = 0.34) on 

movement time. Mean reaction time was 553 ± 199 msec and mean movement time was 1202 ± 

472 msec (Table 4.1).  

 

 

 

 

4.3.5 Dual Task Performance 

 There were four possible outcomes for the performance of the colour discrimination task: 

participants could correctly identify a non–match (respond that the colours do not match when 

the shades of blue are in fact different), incorrectly identify a non–match (respond that the 

colours do match when the shades of blue are different), correctly identify a match (respond that 

the colours match when the shades of blue are the same) or incorrectly identify a match (respond 

that the colours match when the shades of blue are in fact different). Table 4.2 summarizes the 

Table 4.1: Summary of average reaction time (msec) and movement time (msec) events across 

the three task conditions: A) visual task (full vision vs. mapping), B) target eccentricity (15°, 

30° & 40°) and cognitive task (SINGLE vs. DUAL). No statistically significant differences 

were found between any of the task conditions. 



63 
 

overall performance of the dual task as a percentage of the number of colour box stimuli that 

participants were to respond to. On average, participants were able to correctly identify a non – 

match 77% of the time while incorrectly identifying a non–match 23% of the time. On average, 

participants were able to correctly identify a match 25% of the time while incorrectly identifying 

a match 75% of the time. The overall percentage of all trials in which the colour box pairings did 

not match in the shade of blue was 78% while the remaining 22% of the time the colour box 

pairings were identical shades of blue.  

Overall error rate was calculated for each individual by visual task condition and target 

location for further analysis. There were no main effects of vision (F(1,10) = 0.07, p = 0.79) or 

target location (F(2,20) = 0.56, p = 0.58) on the overall error rate percentage. Overall error rate 

percentage for the FV visual task were 36 ± 6%, 35 ± 6% and 34 ± 5% for the 15°, 30° and 40° 

target locations respectively. Overall error rate percentage for the MAP visual task were 33 ± 

8%, 36 ± 7%, and 34 ± 8% for the 15, 30 & 40 degree target locations respectively (Figure 

4.1.1). 

 



64 
 

 

 

 

 

4.4 Discussion 

The present results support the hypothesis that there would be increased absolute 

horizontal pointing error when reach–to–point movements were made in the absence of visual 

feedback. The main effect of vision was revealed within each of the target locations as well. Our 

results did not support the hypothesis that there would be an increase in absolute horizontal 

pointing error with increasing visual eccentricity. The greatest absolute horizontal error occurred 

for the 15 degree target, followed by the 40 degree target and lastly the 30 degree target. Our 

results did not support the hypothesis that there would be an increase in pointing error when 

Figure 4.1.1: Average participant error rates (and standard deviation) during the colour 

discrimination task. No statistically significant differences were found in dual task performance 

between visual task condition or target location. 
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participants were asked to spatially map peripherally located targets while performing the colour 

discrimination task as opposed to maintaining a central fixation.  

4.4.1 Influence of Vision and Target Eccentricity 

It is not surprising that mean pointing error was greater when participants made reach–

to–point movements in the absence of online visual feedback. It is well established that the 

terminal accuracy of reaching to grasp or point is greater when participants have online visual 

feedback throughout movement execution (Binsted et al., 2006; Gonzalez – Alvarez et al., 2007; 

Westwood et al., 2003). It was interesting to note that no differences were present in the absolute 

horizontal pointing error between the 15 & 40 degree target locations. When mean pointing error 

was plotted relative to target center, thus accounting for directional error, we found that 

individuals tended to overshoot the 15 degree target whereas they tended to undershoot the 40 

degree target in the horizontal direction. Another unexpected finding was that the absolute 

vertical pointing error was also influenced by visual feedback, such that pointing error increased 

as a function of target eccentricity with significant differences arising between the 15 and 40 

degree target locations. We did not expect to see any difference in vertical pointing error as the 

targets were presented along the same horizontal meridian of the touch screen monitor. Again, 

when relative means were examined, it was found that participants tended to undershoot all 

target locations within the vertical plane of the screen in a progressive manner (i.e. they tended to 

point beneath the target for all three target locations, such that the relative distance beneath the 

target was greatest for the 40 degree target, then the 30 degree target and finally the 15 degree 

target).  

Westwood et al., (2003) suggest that memory guided reaches tend to undershoot target 

location for two possible reasons. Firstly, target undershoot may result from visuospatial memory 
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decay of the immediate environment as a function of the delay between when vision is occluded 

and when the participant initiates the movement. The other possibility is that target undershoot 

may be a conservative strategy so as to avoid bumping into or knocking over the intended object 

(Gonzalez – Alvarez et al., 2007; Westwood et al., 2003). Similar reasoning theorizes increased 

maximum grip aperture that is observed in open-loop reach–to–grasp paradigms (Connolly & 

Goodale, 1999). However, in our experimental paradigm, participants performed reach–to–point 

movements to a target on a touch screen monitor, thus there was no consequence with respect to 

overshooting or undershooting the target in either the horizontal or vertical direction. In contrast, 

there is the potential for severe consequences should a target handhold not be grasped in a 

manner that would enable re–stabilization in the case of compensatory balance reactions. In fact, 

it has been observed in compensatory reach–to–grasp studies that participants will adopt a 

strategy that enables them to hook their hand around a target handle in a swiping motion as 

opposed to performing a traditional grasping motion (Gage et al., 2007).  

Another possibility we suggest is that endpoint reaching errors may result from an 

inaccurate internal representation of the environmental surround due to encoding errors. A 

common, real–world example utilized in the literature to emphasize the importance of 

remembered visual space is a reach for a cup of coffee. Individuals are able to gaze from their 

computer screen to their coffee mug and back to their computer screen before they initiate the 

reach for their coffee mug. Thompson & Henriques, 2011, have referred to this as “predictive 

remapping of remembered visual space” (pg. 820) and argue that the reach to the coffee mug is 

done based on a remembered representation of visual space as the mug’s location is now 

peripherally located with respect to foveal vision. A predominant theory in the literature is that 

the eyes lead the hand when executing reaching tasks, such that individuals will first gaze to the 
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intended target and foveate on it prior to initiating a reach towards it. However, in many 

circumstances, the reaching motion is initiated prior to a saccade towards the target, such that the 

hand starts to move towards a target while the target is still in the peripheral field of view 

(Brouwer & Knill, 2009). During the movement of the upper limb, a saccade is carried out in 

order to bring the target object into foveal capture. Due to the rapidity of saccades, the eyes bring 

the target into foveal capture before the hand reaches the target (Brouwer & Knill, 2009) This 

suggests then that the details gained through central vision are important for the online control of 

the reaching movement, but may not be as important in the planning of the reach–to–grasp / 

point motor program (Brouwer & Knill, 2009). We are able to recognize and locate a target 

object with peripheral vision and undergo a visuomotor transformation in order to initiate a reach 

towards it. Under normal circumstances, individuals may initiate saccades to the target to allow 

for greater endpoint accuracy control of grasping and / or pointing movements. In this 

experiment, the endpoint target for the reach to point task was small, thus demanding of spatial 

accuracy. However, in compensatory reach to grasp tasks target handles are usually quite large, 

allowing for greater variation in terminal accuracy of the hand while still providing effective re–

stabilization. This is also true of most everyday scenarios, such that handrails tend to be large so 

as to permit grasping, and in some cases are quite continuous in nature (e.g. railing for stairs or 

overhead railings on subways) allowing individual’s greater probability of making contact in 

order to support themselves. 

But what about when individuals are required to encode targets that are located in the 

peripheral visual field without having previously foveated on the target or target area? Duhamel 

et al., (1992) demonstrated that activity occurs in neurons that constitute what will be the new 

receptive field for foveal vision prior to the actual initiation of a saccade to the new target area. 
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Individuals may in fact plan a saccade to a new target area while suppressing its execution during 

experimental paradigms in which participants are asked to refrain from foveating on targets so as 

to keep the target in the peripheral visual field. This may increase activity in neurons that would 

be expected to become active once the saccade has been initiated, and may also aid in the ability 

to map peripherally located targets (Colby et al., 1995). It may also be a mechanism for encoding 

errors for peripherally located targets. It is common for individuals to make multiple saccades to 

a peripherally located target (Harris, 1994). Thus, if individuals tend to undershoot their initial 

saccade to a target and are required to make a second saccade, it is possible that as participants 

planned a saccade to the 40 degree target that initial saccade motor program would have 

undershot the target location. Thus, the new receptive field in saccade planning would fall short 

of target location, and that may be why participants had a tendency to undershoot the initial 

target location at 40 degrees.  

 It is also possible that the error was not due to the encoding process, but rather the 

transformation of information between multiple reference frames. There is a prominent view in 

the literature that the encoding, storage and updating of target locations that are relevant for eye 

and / or arm movement is done in a gaze–centered reference frame as a function of eye 

movement (Thompson & Henriques, 2011). Predictive efference copies of oculomotor and upper 

limb movements are compared with the reafference of the ongoing movement to allow for 

modification of limb trajectory (Thompson & Henriques, 2011). This enables a continuous 

conversion of target location from a retinotopic reference frame to head–centered and limb–

centered reference frames (Thompson & Henriques, 2011). Spatial transformations of 

visuospatial information between these multiple reference frames may result in incomplete 

transformation if the movements are performed rapidly (Binsted et al., 2006). Thus, limb 
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movements would be largely dictated by the saccadic updating that occurs, and would be subject 

to any errors in saccades (Binsted et al., 2006). 

4.4.2 Influence of Attention 

Contrary to our predictions, there was no effect of the central cognitive task condition on 

mean absolute pointing error.  The lack of effect between the two different task demands during 

the encoding process may be accounted for with several explanations. The first is that a lack of 

effect of central task condition on end point reaching error may suggest that the mapping of 

peripherally located targets is a highly automatic process. The process of mapping said targets 

may be highly influenced by bottom–up processing of objects in the environment based on their 

salience and / or whether or not they may have any behavioural relevance (Buneo & Andersen, 

2006). A second possibility is that the fixation task itself required top–down attentional resources 

so as to keep the eyes focused on the fixation point thereby suppressing saccades to the target. 

Conversely, the colour discrimination task itself may not have been as demanding of top–down 

attentional resources as anticipated, and thus did not demonstrate any difference when compared 

to the fixation task. Finally, it is also possible that both the fixation task and the colour 

discrimination task required similar attentional demands thus revealing no difference in pointing 

error as a result of the encoding process. This may also suggest that participants did not 

disengage attentional resources from the central colour discrimination task in order to use the 

same executive resources for mapping the peripheral location of the target.  

 It has been demonstrated the FFOV can vary based on the demands of the task(s) that 

individuals are asked to perform. The FFOV can be quite broad when performing a single, 

simple task such as a target detection task, but can decrease with the addition of a secondary 

cognitive task or other environmental distracters (Coeckelbergh et al., 2004; Scalf et al., 2007). It 
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has also been demonstrated that young, healthy individuals do not incur the same performance 

deficits in FFOV dual task paradigms as do older adults (Ball & Owsley, 1993; Coeckelbergh et 

al., 2004; Scalf et al., 2007). Coeckelbergh et al. (2004) demonstrated that younger individuals 

do not make as many saccades as older individuals when scanning for a target amidst distracters. 

They suggest that the younger individuals do not experience the same decrement in FFOV as 

older individuals and further suggest that younger individuals may have been able to implement 

a greater amount of parallel visual processing over a wider FFOV while older individuals had to 

visually scan for the target in a serial processing manner (Coeckelbergh et al., 2004). As 

previously stated, the central cognitive tasks in this experiment may have had similar attentional 

requirements or may not have been as taxing to attentional resources as we had anticipated. In 

addition, the reach–to–point target was the only target presented to the participant. No distracter 

target locations were made available which may have in turn increased attention demands on the 

participants. Furthermore, the presentation time of the reach–to–point target in this experiment 

was quite long at 7500 msec. A long target presentation time was chose to ensure that A) 

participants did have ample time to map a peripherally located target (i.e. we did not want reach–

to–point errors to be due to insufficient mapping time) and B) individuals were mapping while 

engaged in a central cognitive task.  These factors together may have resulted in minimal 

decreases to FFOV thus enabling participants to perceive and map the peripherally located 

targets albeit miss–localizing their location.  

Perhaps the colour discrimination task did not interfere with the participant’s ability to 

perceive and encode the peripherally located targets due to the initiation of the movement 

immediately after the onset of the cue to move. Perhaps the attention task affects the 

transformation of the visuospatial information into a memory store, such that delayed reach–to–
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point movements may have shown an effect based on the central task condition. It has been 

suggested that the stored representation of the visuospatial surround decays within approximately 

2 – 3 seconds after the removal of visual feedback (Binsted et al., 2006; Westwood et al., 2003). 

Binsted et al. (2006) found increases in error with Fitts’ Tapping Task 500 msec after the 

occlusion of the targeted area, but that this error remained at a plateau for 2 – 3 seconds after the 

initial increase in variability. After the 2 – 3 second plateau, endpoint variability continued to 

increase as a function of time, suggesting that for the time frame of 2 – 3 seconds this internal 

representation can remain fairly stable, followed by a rapid decay as a result of lack of visual 

feedback (Binsted et al., 2006). In our experiment, participants initiated the reaching movement 

coinciding with visual occlusion, and in balance reactions, responses are immediate as delays in 

response initiation have the potential to lead to a fall and subsequent injury. In other words, it 

may be that the colour discrimination task did not affect the ability to perceive and encode the 

peripherally located target, but it may affect the ability to code and store that location into 

memory for later use or may interfere with the planning and execution of the required movement.  

The colour discrimination task was chosen specifically because it is a visual attention 

task, not a working memory task (such as an N – back) dual task paradigm. It is possible that a 

memory related task would result in differences in dual task performance when mapping a 

peripherally located target and / or result in greater differences in pointing error than an attention 

task. Capacity limits on short term memory may place limitations on the ability to encode 

potential target locations from the peripheral visual field into short term visual memory stores 

(Brouwer & Knill, 2009). The hippocampus has been demonstrated to have a major role in both 

memory and cognitive mapping functions (Smith & Mizumori, 2006). It has also been suggested 

that the hippocampus is involved in the mental reconstruction of the environment, and that 
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hippocampal neurons may also alter their firing patterns based on task demands and problem 

solving strategies employed by individuals (Smith & Mizumori, 2006).  

4.4.3 Reaction and Movement Time 

No difference in reaction time suggests that participants adhered to instructions and 

began their reach in response to the auditory cue. No difference in movement time suggests that 

participants did not slow their reaching movement when reliant on stored visuospatial 

information or when performing a concurrent secondary task. On one hand, it may be expected 

that movement time would be longer in the full vision condition, as participants may slow their 

movement in order to use the available online visual feedback gathered from the peripheral 

visual field in order to make corrections to limb trajectory to ensure correct pointing to the target. 

On the other hand, it may be expected that when reaching–to–point based on a stored 

visuospatial representation, participants may slow their reaching movement in order to 

reconstruct a mental image in order to make their reaching more accurate. Conversely, the 

memory based reaches may have been expected to be faster so that participants could utilize the 

visuospatial representation as quickly as possible in order to prevent map decay or potential 

pointing errors based on encoding error. There was also no decrement in reaction time or 

movement time as a result of the colour discrimination task. This suggests that the performance 

of the secondary visual attention task may not have affected the ability of the participant to plan 

the motor program required for the reach to point task.  

4.4.4 Individual Differences & Strategies 

What was striking were the large differences in trial to trial variability that were apparent 

between individuals as well as within individuals, comparing between visual condition, central 

task condition and target location. Some have high average error with respect to the center of the 
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target and high trial to trial variability with respect to their own central tendency (for example, 

participants 3, 7 & 10) while others have high average error with respect to the center of the 

target and low trial to trial variability with respect to their central own tendency (for example, 

participants 9 & 11).  Importantly there was no apparent relationship of speed of movement 

execution and reach–to–point performance between these individuals. It is typically assumed that 

a participant set of young, healthy individuals will be homogeneous in nature – in both physical 

and cognitive capacities – and that these individuals will perform the task in a similar nature. 

However, the results from this study suggest that individual strategies for task performance may 

differ among this group.  

4.4.5 Limitations 

The results from the current study may be difficult to extrapolate to a compensatory 

balance paradigm. However, the complexities associated with balance paradigms also have the 

potential to conflict with what we would have expected to find with regards to attention 

allocation for the purposes of visuospatial mapping. As a result, it was deemed necessary in this 

initial stage to explore these relationships in a non–balance task. The differences between this 

work and the potential application to balance are likely largely associated with the differences in 

the consequence of errors. The consequences of end point error in this experiment are 

substantially different from endpoint error in a balance experiment. In compensatory balance 

studies, failure to make contact with the target area to re–stabilize likely leads to heightened 

arousal and motivation so as not to “fall” in subsequent trials (Lakhani et al., 2011; Sibley et al., 

2009). The potential threat does influence speed of movement and may affect attention 

allocation, movement strategies and end point errors in a different manner than volitional 

movement with respect to movement execution based on an internal visuospatial map. 
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It is also possible that difference in attention allocation between the two central cognitive 

tasks did exist, but that the measurement used (error rate) does not provide any information 

based on differences in cortical activity between the simple fixation task and the colour 

discrimination task. A potential adjunct would be to include collection of 

electroencephalography (EEG) while performing the cognitive task only (no mapping of reach to 

point targets) to examine any differences in cortical activity. Another potential avenue to explore 

would be to have participants engage in the same cognitive tasks but reach–to–grasp an object as 

opposed to reaching to point to the touch screen. This may increase arousal levels somewhat, as 

there would be increased consequence to the movement (bumping into the object or knocking it 

over) and would also provide sensory feedback about success of the movement.  

4.5 Conclusions 

The results of this study provide support for the ability to create visuospatial maps with 

peripheral visual information prior to the onset of a stimulus and their use in volitional reach–to–

point movements. The ability to encode a peripherally located target into an internal visuospatial 

representation for the purpose of immediate action appears to require minimal visual attentional 

resources. Participants also appear to be quite variable in their movement, both between and 

within individuals, based on the task demands of the trial. Future research may aim to examine 

potential differences the allocation of attention between the two cognitive tasks used in this study 

in a compensatory balance reaction paradigm when the consequences of the movement may be 

more behaviourally relevant to the participant. Another potential area of focus is to implement a 

task that has a greater requirement on visuospatial working memory as opposed to visual 

attention and examine those effects on mapping peripherally located targets in both volitional 

and compensatory reach–to–point / reach–to–grasp paradigms.  
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Chapter 5: General Discussion 

5.1 General Discussion 

 The purpose of this thesis was to examine the influence of peripheral vision on the 

control of reach–to–point and reach–to–grasp movements. The work also explored the potential 

attentional requirements in forming intrinsic visuospatial maps of the environmental surround 

prior to the onset of upper limb movements. Specifically, mapping the environment with 

peripheral visual information may be an important on–going process that is necessary for 

effective re–stabilization in compensatory reach–to–grasp reactions. The importance likely 

relates to the naturally unexpected nature of perturbations to stability and the tight temporal 

timelines associated with the initiation and execution of the responses. This limits the likely 

ability to direct and use foveal vision to guide rapid reach–to–grasp reactions. In conjunction 

with the use of incoming peripheral visual information is whether or not individuals are able to 

map salient environmental features regarding spatial locations of objects without having 

previously foveated on these objects. Results from the first study revealed that healthy young 

adults are able to form and use an intrinsic visuospatial map of the environmental surround that 

has been created from the peripheral visual field. The second experiment found that the ability of 

individuals to visuospatially map behaviourally relevant features of their environment appears to 

be automatic in nature.  

In order to successfully recapture stability, compensatory reach–to–grasp reactions must 

be directed towards a target handhold in order to be effective. Due to the temporal constraints 

associated with compensatory balance reactions, it may be imperative that these reaches are 

target specific from reach initiation, as making corrections to reach trajectories in–flight may 
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serve to delay contact with a potential stabilizing object. Importantly, this work revealed that 

individuals are able to use sensory information gathered from the peripheral visual field for the 

purposes of mapping and thus planning the initial trajectory of the wrist in a compensatory 

reach–to–grasp reactions, re–affirming that visuospatial information gathered prior to a 

perturbation can be incorporated into the early stages of a compensatory balance reaction. 

However, as visual eccentricity increases, strategies may be adopted to increase the likelihood of 

successful handle contact such as a broad swiping motion towards the handle as well as hooking 

the handle with a wide open hand as opposed to a stereotypical grasping motion (Gage et al., 

2007). However, it should be noted that this was not just about guiding the initiation of the 

reach–to–grasp response but also about controlling reaching with online visual feedback 

gathered after perturbation onset. A further novel finding in this thesis was that individuals are 

also able to successfully re–stabilize themselves with a compensatory reach–to–grasp reaction 

when no vision had been available prior to perturbation onset, thus entirely dependent on online 

visual feedback. Participants adopted the strategy of reaching towards the middle target and were 

able to use online visual feedback to make successful corrections to trajectory even though the 

speed of the movement was extremely rapid.   

This work also highlights the challenges associated with assessing the attention 

components of visuospatially mapping the environment for the purposes of immediate action. 

The task(s) chosen to engage executive function and the behavioural way in which participants 

are required to respond to it may impact peripheral mapping ability in different ways. A 

secondary auditory attention task could presumably influence the ability to map peripherally 

located reach–to–grasp targets in a different manner than a visuospatial working memory task 

assuming that the process of mapping was dependent on some attention resources. There may 
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also be an influence of how the participant is asked to respond: verbally vs. a mouse click; 

continuously throughout a trial vs. at the end of a trial. Therefore, the results from the second 

study provide a very basic insight into the methodological considerations for future dual task 

paradigms relating to reactive balance control.  

5.2 Future Directions 

 The studies contained within this thesis provide the basic framework for the knowledge 

that individuals are able to visuospatially map peripherally located targets for the purposes of 

immediate action. Future studies may explore other variables associated with mapping ability. 

 One possible study could examine the timing parameters that enable individuals to map 

their environment. The two studies in this work allowed participants a minimum of 2 seconds to 

map the target location within their environment. The minimum time frame that people require to 

map peripherally located targets us currently unknown. Further still, is how often are these maps 

updated? We presume that they are updated on a second to second basis, when in fact they may 

be updated much more frequently, as visual feedback is continuous in nature, or conversely, may 

only need to be updated when something within the immediate environment has changed, such 

as movement of objects and / or the observer within that environment.  

 Gaining insight into the mapping ability of other populations, specifically older 

individuals and those with neurological impairment(s) is another avenue for future directions for 

this work. If visuospatial mapping with peripheral visual information is an important component 

for the neural control of balance, then examining mapping abilities of individuals who may have 

an impaired ability to utilize peripheral visual information may provide us with insights into the 

adaptive strategies these individuals use. For example, it may be of interest to compare upper 
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limb trajectories between a group of individuals with cataracts (little peripheral visual 

information available) and a group of individuals with macular degeneration (only peripheral 

visual information available). Gaining greater insight into the use of peripheral visual 

information for the purposes of mapping for upper limb compensatory responses within a 

population that is more likely to fall (elderly, stroke patients etc.) may provide better insight into 

designing and implementing rehabilitative and fall prevention programs for these individuals. 

5.3 Conclusions 

 This thesis investigated the role of peripheral vision and associated attentional 

requirements for the purposes of immediate action. Both compensatory and volitional reaching 

movements were assessed in healthy, young adults under different visual feedback conditions 

and executive function requirements. It was observed that these individuals are able to visually 

map a peripherally located target without having previously foveated on the target and that the 

ability to map this target location appears to be an automatic process. The findings from this 

thesis may lead to future contributions to fall prevention and stroke rehabilitation programs 

through implementing cognitive visuospatial training.   
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