
Realtime Motion Planning for

Manipulator Robots under Dynamic

Environments: An Optimal Control

Approach.

by

Olabanjo Ogunlowore

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Mechanical Engineering

Waterloo, Ontario, Canada, 2013
c©Olabanjo Ogunlowore 2013

Department or School Web Site URL Here (include http://)

Declaration of Authorship

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This report presents optimal control methods integrated with hierarchical control frame-

work to realize real-time collision-free optimal trajectories for motion control in kine-

matic chain manipulator (KCM) robot systems under dynamic environments. Recently,

they have been increasingly used in applications where manipulators are required to in-

teract with random objects and humans. As a result, more complex trajectory planning

schemes are required. The main objective of this research is to develop new motion con-

trol strategies that can enable such robots to operate efficiently and optimally in such

unknown and dynamic environments. Two direct optimal control methods: The direct

collocation method and discrete mechanics for optimal control methods are investigated

for solving the related constrained optimal control problem and the results are compared.

Using the receding horizon control structure, open-loop sub-optimal trajectories are gen-

erated as real-time input to the controller as opposed to the predefined trajectory over

the entire time duration. This, in essence, captures the dynamic nature of the obstacles.

The closed-loop position controller is then engaged to span the robot end-effector along

this desired optimal path by computing appropriate torque commands for the joint ac-

tuators. Employing a two-degree of freedom technique, collision-free trajectories and

robot environment information are transmitted in real-time by the aid of a bidirectional

connectionless datagram transfer. A hierarchical network control platform is designed

to condition triggering of precedent activities between a dedicated machine computing

the optimal trajectory and the real-time computer running a low-level controller. Ex-

perimental results on a 2-link planar robot are presented to validate the main ideas.

Real-time implementation of collision-free workspace trajectory control is achieved for

cases where obstacles are arbitrarily changing in the robot workspace.

iii

Acknowledgements

Special thanks to those who were instrumental to the success of my work; my supervisor,

Prof Soo Jeon for guidance and mentoring, Prof Victor M. Becerra for his audience

and help with using his software. Positive influence Omar, Leaundra, Franny and my

research group members: Kamal, Vahid, and Hyunki.

iv

Dedication: To Christ Jesus, Mum and Dad.

v

Contents

Title i

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures ix

List of Tables xi

List of Abbreviations xii

1 INTRODUCTION 1

1.1 The Kinematic Chain Manipulator(KCM) and Modern Applications . . . 1

1.2 The Proposed Structure for Achieving Real-time Collision-free Control: . 4

1.3 Avoiding Dynamic Obstacles . 5

1.4 Outline . 6

2 LITERATURE REVIEW 7

2.1 Path Planning Algorithms for Articulated Manipulators 8

2.2 Trajectory Generation for Nonlinear Mechanical Systems (Optimization
techniques) . 11

2.3 Optimal Control Approaches for Trajectory Planning 14

2.3.1 Indirect Approach to Solving Optimal Control Problems 16

2.3.2 Direct Approach to Solving Optimal Control Problems 17

2.4 Candidate Direct Methods and Techniques for Online Trajectory Planning 18

2.4.1 Shooting Methods . 18

2.4.2 Direct Collocation Method (DCM) 19

2.4.3 Discrete Mechanics and Optimal Control (DMOC) 20

2.4.4 Sequential Quadratic Programming (SQP) 21

2.4.5 Receding Horizon Control (RHC) 21

2.4.6 Hierarchical Network Control . 22

3 METHODOLOGIES 24

3.1 Problem Formulation: The N-Link KCM Problem 25

vi

Contents

3.1.1 The System Dynamics as a Constraint: Equations of Motion . . . 25

3.1.2 Dynamic Equation: State Space form 27

3.2 Path/Geometric Constraints . 28

3.2.1 Dynamic Obstacles . 28

3.2.2 Representing the Link Geometry: Minimum Enclosing Ellipsoids . 29

3.3 Collision-free Optimal Trajectory Generation under Dynamic Environments 30

3.3.1 The Cost Functional . 30

3.3.2 Limits on Control and State Variables 32

3.3.3 Initial and Final Boundary Conditions 32

3.3.4 Finite Horizon Optimal Control Problem 32

3.4 Solving the Problem . 33

3.4.1 Receding Horizon Control (RHC) 33

3.4.2 Discrete Time Optimal Control Problem 35

3.5 Optimality Conditions of the Discretized Problem 36

3.6 Discretizing the Problem . 37

3.6.1 Direct Collocation Method (DCM) 38

3.6.1.1 Collocation Implementation Steps 40

3.6.1.2 Local and Global discretization 42

3.6.1.3 Necessary first Order Optimality Conditions 45

3.6.2 Discrete Mechanics for Optimal Control (DMOC) 45

3.6.2.1 Implementation Steps . 46

4 METHOD SETUP FOR EXAMPLE KCM PROBLEM’S 50

4.1 2-link Revolute Planar Robot Problem . 50

4.1.1 Dynamics and Kinematic Equations of the Robot 51

4.1.2 Robot Geometric Constraints: Minimum Enclosing Ellipsoids . . . 54

4.1.3 Inactive Link Constraint Strategy (Passive Ellipsoids) 55

4.1.4 Cost functional with Time Varying State Constraint 55

4.2 Extending the Results to N-link KCM’s. 55

4.2.1 A Redundant link KCM . 55

4.2.2 Robot Dynamics . 56

4.2.3 Cost Functional with Time varying Trajectory 57

4.2.4 Obstacle Avoidance /Path Constraint 58

4.3 DCM Implementation for the 2-link and 3-link Robot Problem 59

4.4 DMOC Implementation for the 2-link Robot Problem 60

5 SIMULATIONS AND EXPERIMENTAL RESULTS 64

5.1 Simulation Results . 64

5.1.1 Problem Scenario-1 . 65

5.1.2 Problem Scenario-2 . 68

5.1.3 Problem Scenario-3 . 69

5.1.4 Problem Scenario-4 . 70

5.1.5 Problem Scenario-5 . 71

5.1.6 Problem Scenario-6 . 72

5.2 Comparison Between the Solutions from the DMOC and DCM Algorithm 74

5.3 Experimental Setup . 77

5.3.1 Hardware and Software . 77

vii

Contents

5.3.2 Bidirectional Communication . 79

5.3.3 Hierarchical Control Triggering . 80

5.3.4 Torque Computing Controller (Workspace Position Control) 81

5.3.5 Experiment 1: Reference Set-point Problem 84

5.3.6 Experiment 2: Dynamic Obstacle Avoidance Problem 86

6 CONCLUSIONS 90

6.1 Observations, Limitations and Future Work 90

6.1.1 Conditioning the Solution . 90

6.1.2 Quality of the Optimal Solutions (Accuracy) 91

6.1.3 Handling Scenarios with Infeasible Solutions 91

6.1.4 Method Suitability for Online Optimization 92

6.1.5 Choice of Discretization Interval Points (Nodes) 92

6.1.6 State and Control Boundaries . 93

6.1.7 Inactive Path constraint: Passive Links Strategy 93

6.1.8 Incorporating Workspace Vision Sensors 94

6.2 Conclusions . 94

Bibliography 96

Appendix 103

.1 DCM Code . 103

.2 DMOC Code . 110

viii

List of Figures

1.1 General chain linkage of KCM’s . 2

2.1 Path planning framework . 8

2.2 Trajectory planning framework . 11

3.1 Illustration of minimum area ellipsoids enclosing the KCM links 29

3.2 Graphical illustration of the RCH framework 34

3.3 DCM and DMOC method process flow . 38

3.4 Collocation points with respect to states and control discretization 41

3.5 Static meshing showing regular node intervals (local discretization) 43

3.6 Moving mesh showing irregular node intervals (global discretization) . . . 44

4.1 Isometric view of 2-link KCM robot . 50

4.2 Isometric view of 3-link KCM robot . 56

5.1 Time varying trajectory for commanding robot motion 66

5.2 Optimization output plots (Problem scenario-1) 67

5.3 Robot motion time shots (Scenario-1) . 67

5.4 Optimization output plots (Problem scenario-2) 68

5.5 Optimization output plots (Problem scenario-3) 69

5.6 Optimization output plots (Problem scenario-4) 70

5.7 Robot motion time shots (Scenario-4) . 71

5.8 Optimization output plots (Problem scenario-5) 72

5.9 Optimization output plots (Problem scenario-6) 73

5.10 Robot motion time shots (Scenario-6) . 74

5.11 Summary table showing solution comparison between the DMOC vs DCM
method. 75

5.12 Summary table showing solution comparison between the DCM and DMOC
method. 75

5.13 Experimental robot arm (Planar configuration). 78

5.14 Control architecture for real-time robot control. 80

5.15 Hierarchical control system . 82

5.16 Key Control Subsystems interaction . 83

5.17 Torque computing controller performance. 85

5.18 Experimental trajectory of robot workspace. 86

5.19 RHC Phase 1 optimal states and workspace trajectory. 87

5.20 RHC Phase 2 optimal states and workspace trajectory. 87

5.21 RHC Phase 3 optimal states and workspace trajectory. 88

5.22 RHC Phase 4 optimal states and workspace trajectory. 88

ix

List of Figures

5.23 RHC command for workspace motion with dynamic Obstacle 89

x

List of Tables

4.1 Link parameters of experimental robot setup from [1] 54

4.2 Minimum enclosing ellipsoids for 2-link robot setup 55

4.3 Minimum enclosing ellipsoids for 3-link robot setup 58

4.4 Link parameters of 3-link KCM robot . 58

5.1 Problem scenario-1: Optimization solution summary report. 66

5.2 Problem scenario-2: Optimization solution summary report. 68

5.3 Problem scenario-3: Optimization solution summary report. 69

5.4 Problem scenario-4: Optimization solution summary report. 70

5.5 Problem scenario-5: Optimization solution summary report. 71

5.6 Problem scenario-6: Optimization solution summary report. 73

5.7 Optimization summary of solutions in RHC-phases of sub-optimal trajec-
tories. 89

xi

List of Abbreviations

SQP Sequential Quadratic Programming

ADOL-C Automatic Differentiation by OverLoading in C++

PMP Pontryagin Maximum Principle

LP linear Programming

NLP Nonlinear Programming

OCP Optimal Control Problem

KOCM Kinematic Open Chain Manipulator

DCM Direct Collocation Method

LOCP Lagrangian Optimal Control Problem

KKT Karush-Kuhn-Tucker

RHC Receding Horizon Control

DHOCP Discrete Optimal Control Problem

DMOC Discrete Mechanics and Optimal Control

UDP User Datagram Protocol

TCP Transmission Control Protocol

IPOPT Interior Point Optimizer

AMPL A Mathematical Programming Language

PSOPT Pseudospectral Optimization

QOC Quadratic Optimal Control

LAN Local Area Network

xii

Chapter 1

INTRODUCTION

1.1 The Kinematic Chain Manipulator(KCM) and Mod-

ern Applications

KCM’s are robots with serially connected interacting link mechanisms where actuation

is engaged accordingly at points called joints and the resulting motion is obtained by

composition of the independent motions of each link with respect to the previous one.

They make up over 50% of the robots in existence and are very common in automated

industrial applications [2].

The motivation for considering this problem setup, motion planning and dynamic ob-

stacle avoidance in real-time, is based on the prevailing existence of this class of robots

in many modern engineering applications especially in many semi/fully automated pro-

cesses.

Possible applications of efficient and effective motion planning of robots would be in-

stances where output may be enhanced by robotic activities in dynamic environments

such as human-robot, multi-robot, and objects-robots collaborative tasks. Humans

working jointly with robots in a safe work envelope in terms of collision-free motion

is an enticing venture and the flexibility of such applications has great economic impli-

cations particularly in highly structured industrial environments.

Example applications are in automobile assembling plants with human-robot interac-

tion and multifingered self-guided surgery robots in medical application platforms where

1

Chapter 1 Introduction

properties such as precision, accuracy, repeatability, and speed are required.

Figure 1.1: Serially connected chain of rigid bodies. Left: A fully open KCM struc-
ture. Right: A KCM with internal loops [3]

Usually the complexity in controlling this type of this robot configuration is based on

its kinematic configuration i.e. the number of interacting links, which in turn dictates

the systems dynamics i.e. the motion properties of the robot system and the mechanism

enabling factors at the joints. Further constraints that may add to the complexity in

achieving efficient motion control are obstacle avoidance (maneuverability capabilities)

which is important for KCM’s in collision-free application such as in[4]. This is the

primary focus of this work.

The typical task of this class of robots is to move the end-effector of the manipulator

from some initial point to a desired point in the most efficient way within its workspace.

Efficiency here could include some or all of the following criteria:

• Motion applications for Zero-error tracking of a predefined path commanding a

manipulators end-effector position.

• Motion control in shortest time interval and/or distance of a desired path or from

one point to another.

• Maneuverability property around obstacles and fulfilling collision-free kinematic

properties.

2

Chapter 1 Introduction

• Motion planning with least residual vibration.

• Minimum actuation (Torque command) during motion. etc.

Complex motion planning has to be considered to achieve these objectives.

While classical control approaches are well established as a comfortable means of achiev-

ing control of mechanical systems, they are no longer the best application for systems

with highly complex inherent dynamics. In modern industrial applications of engineer-

ing control, complex systems with high level subsystems interactions and nonlinearities

are difficult to deal with using conventional PD/PID controllers and more complex al-

gorithms such as filters and estimators are augmented to capture the more complex

systems dynamics and improve the system performance for .

It is difficult to design controllers for such system using the conventional classical con-

troller models from traditional mechanical control schemes alone. This is because of

the high nonlinearities in the systems dynamics which will usually result in loop cou-

pling effects. For more complex scenarios especially in cases where obstacles have to be

avoided, the above highlighted classical control scheme usually becomes insufficient and

many-a-times needs to be greatly modified.

The need arises for more sophisticated controller and the intellectual zeal of continu-

ously optimizing processes fuels this initiative. To produce realistic results, it may fur-

ther evolve into incorporating controllers with manifold attributes. There is no generic

approach to achieve this.

Optimization based approaches for control of constrained mechanical systems have been

quite successful in the past, and as the complexity and the functionality of mechanical

system becomes more stringent, these approach seems to be more adopted for higher

performance in such applications as these.

This study dwells on optimized motion planning schemes for generating collision-free

trajectories in real-time control applications for KCM’s. It essentially dovetails into a

twofold control problem. Optimal collision-free trajectory generation on one hand, and

real-time control of the robot on the other. This is popularly referred to as on-line

motion planning.

On the trajectory generation part, the idea is to adopt a class of direct optimal control

methods: The Direct Collocation method (DCM) and Discrete Mechanics for Optimal

3

Chapter 1 Introduction

Control (DMOC) methods as the basis of transcribing a continuous optimal control

problem into a corresponding discrete optimization problem and solved for local root

solutions using a NLP optimization algorithm. Reducing the computation time of solu-

tion (optimal controls and trajectory) is paramount in this work because the solutions

must be adoptable for practical real-time control applications.

1.2 The Proposed Structure for Achieving Real-time Collision-

free Control:

• Establish bidirectional communication between two dedicated computer proces-

sors. Using a two-degree of freedom control structure, input commands for a

real-time servo controller in form of optimal collision-free trajectories computed

by an optimal control solver are implemented for motion spanning of a test-bed

experimental robot in a feed-forward manner. The servo-controller hence spans

the robot along the desired collision-free path.

• A hierarchical network control ensures proper activity ordering of the synchronized

sub-systems. The overall setup allows for the possible exploitation of better pro-

cessor speeds of the independent sub-systems hence enhancing their performance

for the intended real-time motion coordination.

• The hierarchical network control structure based on some case structures and

rules, sequences the activities of this interacting sub-systems processes to ensure

the integrity of the solutions as feasible, optimal, and real-time during the robot

runtime.

The goal defined as an optimal control problem is to find a set of control actions that

fulfills the minimization of a chosen performance index subject to the dynamics of the

system and other constraints (path, geometric, boundary conditions) which gives the

most efficient trajectory along a specified time varying path or point-to-point motion.

To validate the process experimentally, a low-level real-time computer is designed as a

torque computing controller for the robot joints actuation using the configuration state

variables of the optimal trajectory generated as input commands. For this study, the

4

Chapter 1 Introduction

links flexibility effects are cleverly ignored in the problem model. This is because it

complicates the dynamics of the systems substantially and is not a related addition in

the model problems studied. The model employed here is still sufficient to study and

investigate the methods adopted in this work.

1.3 Avoiding Dynamic Obstacles

Maneuverability around obstacles with time varying properties is the main focus of this

study. The solution for this problem would be much easier if the information of all possi-

ble future environment variables with respect to obstacle location in the robot workspace

are known prior. This assumption is far from realistic in real world applications as the

location of potentially changing obstacle(s) cannot be forecast with reasonable precision.

This brings up the issue of offline versus online motion planning for trajectory generation

with respect to time varying obstacle coordinate locations.

With real-time motion control, one may confidently adopt a better planning method

which fulfills scenarios with arbitrary moving obstacles as well as the non-violated kine-

matic and dynamic constraint on the system, unlike offline motion planning which is

static and cannot capture arbitrary and dynamic scenarios.

With the new age of faster computer processors, modern optimization algorithms with

consistent convergence properties and well-established control structures, such real-time

control applications may be realized if speedy computation of feasible solutions can

be accomplished. To accommodate this time-varying obstacle instance, a time based

approach is adopted. The receding horizon control framework is used to compute sub-

optimal collision-free trajectories in time fractions, so as to capture the dynamic property

of the obstacles and progressively iterate the process to achieve desired motion perpet-

ually.

The primary constraint is the dynamics of the system specifying its motion properties

and kinematic constraints, which specifies the geometric design of the system. A dif-

ficulty in coming up with the solutions of these sort of problems quickly is the nature

of the constrain sets with respect to its degree of nonlinearity in the systems dynamics

and the size of the constraint. Other constraints in this case are the obstacle path con-

straints which have to be avoided and the bounds on the state and control based on the

5

Chapter 1 Introduction

parameters of the robot geometry and actuator structure.

The reasons for this difficulty are well explained in chapter 3 where the problem is fully

modeled and is formulated mathematically. The optimal control techniques adopted are

motivated most especially because of the nonlinearities in the systems dynamics and how

they may be advantageous and exploited in computing trajectories fast and accurately

enough for real-time application.

1.4 Outline

Here in chapter 1, a general introduction and the motivation to the problem is expressed

with a brief summary of the proposed solution approach.

Literature reviews on past and existing state-of-the-art methods in motion planning al-

gorithms, optimal control methods and optimization schemes related to motion planning

for mechanical systems similar to the KCM application are shown in chapter 2.

Chapter 3 highlights the detailed explanation of the methods employed for achieving the

motion planning task for the N-link KCM robot. The receding horizon optimal control

problem is stated.

Chapter 4 illustrates the methods and solution structure of a 2-link KCM. A redundant

linked property KCM is used to generalize the problem formulation for N-linked manip-

ulators. Simulation and experimental results follow in chapters 5 with comparison of

the optimal control methods used.

Observations, final conclusions and future postulated directions for further work make

up the closing of this thesis in Chapter 6.

6

Chapter 2

LITERATURE REVIEW

“As long as the paradigm of qualifying controls as better or worse is a foundation of

Engineering thinking, optimization will serve as the vehicle for conveying ideas into

solutions”

Henryk Grecki

This chapter examines past methods which have been applied in the realization of motion

planning in mechanical systems similar to the Kinematic Chain Manipulator robot. It

especially focuses on path planning and trajectory generation algorithms, and methods

in the optimal control domain and control structures for accomplishing real-time motion

control.

All through this report, A path in terms of motion coordination may be defined as the

state coordinates of a system in terms of its position only while a trajectory is the path

followed by the system in addition, the time profile along that path.

Large number of control problems for mechanical systems are based on controlling the

position or location of a mass using a force or torque as the input variables. Instead

of the pure regulation problem of driving the output location to a specific value, the

position of the mass is often required to follow a prescribed path [5] in light of reduc-

ing some related cost function and fulfilling some underlying physical constraints of a

system. This is the general underlying concept of optimal control methods for motion

spanning in mechanical systems.

7

Chapter 2. Literature Review

Within the scope of optimal control for motion control in articulates manipulators,

trajectory planning as a motion optimization scheme involves designing optimal motion

commands to minimize some performance index subject to the dynamics and geometric

constraints of the system. To make it realistic, some prescribed constraint limits may

be imposed on the state and control variables of the system.

The documented study of articulated manipulator control goes back in the mid-seventies

[6, 7]. Although the system attributes are getting more complex by the day, the goal

has mostly been the same; deriving optimal and efficient control laws to achieve timely

and precise coordination schemes dictating the robots motion.

Various endeavors have been employed to achieve this and are discussed as follows:

2.1 Path Planning Algorithms for Articulated Manipula-

tors

Path planning algorithms have been existent for many decades and have been successfully

applied in motion coordination schemes in mechanical systems. They are limited to

motion coordination in terms of position only and a framework is shown below. They

are usually classified as knowledge-based driven planning algorithms.

MOTION
CONTROLLER

PATH
PLANNER

ROBOT END
POINT

Obstacle
information,

initial robot Pose

MOTION

Figure 2.1: Framework of robot motion planning using Path planning knowledge
based algorithms

Three of these methods which have been particularly adopted in recent times for use as

motion planning schemes in mechanical systems similar to KCM application in dynamics

environments are: The Probabilistic Road Map(PRM), the Rapidly Exploring

Random Tree (RERT) and the Elastic Strip Methods (ESM).

8

Chapter 2. Literature Review

The Probabilistic Road Map is a type of randomized sampling technique which

generates non-violating maps based on predefined forbidden regions. The entire work

envelope of a robot configuration (joint or workspace) is spanned to derive collision-free

local roadmaps from an initial position to a desired point.

It goes through a learning phase where a roadmap is made from nodes denoting interact-

ing points of an object versus its surrounding environment represented as edges. From

an initial configuration of the robot manipulator, a test for collision is done and a near

configuration is picked randomly afterwards. The collision-free test is done repeatedly

at successive iterations using a newly generated roadmap design as the nodes and edges

are connected to span the robot to a final point resulting in collision-free paths. Appli-

cations to the robot manipulator can be found in [8, 9].

This planning scheme is quite efficient as a local planning scheme, however when real-

time motion is considered, it is unsuitable because it suffers a great increase in compu-

tation time due to the algorithm searching the entire problem domain.

The Rapidly Exploring Random Tree method is based on a randomized tree-search

step which constructs branches towards unexplored regions in a space. At each iteration

of this process the tree is extended by randomly selecting states and adding branches

accordingly. Three possible scenarios are arrived at:

Reached, meaning the branch has successfully reached a destination state.

Advanced, meaning the state in question is not the destination/final state and further

branching is employed.

Trapped where a state is infeasible based on some predefined rules.

Although the randomness in the choice of tree branching helps reduce this computation

time, this method when real-time motion control is considered is still not desirable

enough as it still takes a long time to explore all the branches.

Hybrids of this method can be seen in [10] where a two-step setup is designed with the

popular Support Vector Machine(SVM) structure for directing the tree-branches in the

best direction reducing computation time. Similarly in [11] key configurations are used

to guide tree branching process by connecting the start configuration to the final desired

pose of the KCM.

In [12, 13], a bidirectional RERT is used rather than a randomized selection which proves

to help make the solution converge faster with simultaneous trees been built in opposite

9

Chapter 2. Literature Review

directions and rules used to discharge vulnerable trees.

Also, a well applicable variant of this method applied in real-time control applications of

robot manipulators is stated in[14] where arbitrary moving obstacles can be considered

during runtime. The drawback in the successful application of this work is that the

generated paths cannot be proven to be optimal.

Oliver et al in [15, 16] proposed a motion planning algorithm specified for robot obstacle

avoidance/maneuverability procedures known as the Elastic strip method. Obstacles

in a robot environment are represented as a one-dimensional curve in the robot joint

or workspace and connecting collision-free smooth paths are generated. The elastic

property of the path allows for it to deform by reacting accordingly to the obstacle

coordinates changes and hence preserving a collision-free path. This method showed

success for manipulators with many degrees of freedom. This planning scheme still fall

short as qualifying candidate methods for generating collision-free paths with globally

optimal properties.

The three methods highlighted above can be generally classified as motion planning

algorithms and their variants as reactive motion execution algorithms which use some

rules or potential field-based measures to modify the base algorithm to reactively avoid

forbidden regions. They all have been used in various cases to derive feasible trajectories

for manipulators, but all suffer the issue of no explicit strictness of these paths being

optimal ones. They are all local path planning algorithms and when real-time objectives

are in question, they fall short due to their lengthy solution time computation.

10

Chapter 2. Literature Review

2.2 Trajectory Generation for Nonlinear Mechanical Sys-

tems (Optimization techniques)

ROBOT END
POINT

TRAJECTORY
PLANNER

MOTION
CONTROL

MOTION

ROBOT
ENVIRONMENT

MODEL

ROBOT POSE/OBSTACLE
INFORMATION

MOTION PROFILE INFORMATION

Figure 2.2: Framework of robot motion planning using trajectory planning schemes

Computationally efficient trajectory optimization is an enabling technology for many

new facets of engineering [17]. This made research in this field lucrative and has received

its due attention in the past decade.

A well applied method of optimization in trajectory generation problems is the Interior

point method which was popularly accepted after a lot of re-modification and applied

to cases in linear programming (LP) problems. It was originally introduced in the Kar-

markar’s algorithm [18] and with more development on his works in later years it proved

to solve convex problems in considerably small polynomial time with respect to other

methods available at that time.

This claim is justified in further works by this founding author in his 1991 reports [19]

which showcased the exploitation of sparsity property of Jacobian matrices for comput-

ing solutions of LP problems faster. The success of this method was most recognized

with convex type LP problems and successful application to NLP problems was still

far-fetched.

In terms of real-time control, this algorithm is quite popular for optimal control prob-

lems in aircraft control applications. The successes with respect to this algorithm for

various optimal control problems are tangible; however, another one of its drawback is

in the aspect of linearizing the systems dynamics. This complexity of the linearization

process increases the amount of information loss of the system which is detrimental to

11

Chapter 2. Literature Review

the quality of derived root solutions of the resulting LP.

The major difficulty in the application of this method for the articulated manipulator

robot as shown in [1, 20] lies primarily in the complexity of the nonlinear equation de-

scribing the system dynamics. In addition, imposition of various forms of state and

control variable constraints such as torque limits (controls) and path constraints speci-

fying forbidden regions explodes the size of the problem greatly and makes its solution

more difficult to compute.

This makes this approach unattractive for such a problem and in summary, the results

achieved from primal dual Interior-point algorithm are more suitable for convex rather

than NLP problems.

Recent modification to this base algorithm and works in relation to nonlinear program-

ming in recent times can be appreciated in the works of Anthony V, P. McCormick Et al

in [21] where the algorithm was extended for use in Nonlinear Programming problems.

It is the basis of the widely successful Interior Point Optimization (IPOPT) solver which

is a Sequential Quadratic Programming (SQP) algorithm and extensively used in this

work as the optimization algorithm for finding local minimums of the resulting NLP’s.

Researchers such as Wassem A et al, Arthur R and Jonathan P [22] and Cedrics MA et

al in [23, 24] have used the Mixed Integer Non-Linear Programming (MINLP)

strategy for optimal path planning and trajectory generation for various applications

related to KCM’s in recent times. The popularity of the MINLP algorithm in the

application of optimal path planning is the suited formulation of the method for problems

with imposition of considerable multiple constraints for obstacle avoidance. A major

idea of the MINLP approach in modeling an optimization problem lies in the handling

of non-convexity.

Where a linear method may not guarantee any form of optimal solutions, the MINLP

guarantees some globally optimal one when handling constraints for disjointed sets [24].

They can be easily handled and represented using MINLP as binary or mixed integers.

The method is also particularly well suited for this kind of control problem because

the MINLP structure can encode discrete decisions for the control and state variables

and non-convexity in form of integer constraint. The algorithm has been proven to also

perform better with extensions of some artificial intelligence algorithms but with the

trade-off of a very sophisticated problem design. Coming up with effective heuristics for

12

Chapter 2. Literature Review

non-convex MINLP is a difficult task and finding feasible solutions can be quite tricky.

Hao .D, Gunther and Olaf Stursberg in their articles [25, 26] also used the MILP for

coordinated motion planning in articulated robots for obstacle avoidance. It showed

a large size of binary constraints been generated and endeavors were taken to reduce

this by some geometric representation method with respect to the shape of the obstacle.

The results were still inconclusive for a case where the shape was not important and

the computation time suited only an offline solution where environment information was

known only prior to generating the optimal paths.

Hierarchical Trajectory generation has also been studied as a class of motion plan-

ning methods for mechanical systems with nonlinear systems dynamics [27]. The major

drawback with this method is the unrealistic assumptions with respect to various con-

straint handling forms. The level of complexity of the nonlinear system greatly affects

the outcome and only with small and abstracted system is this method guaranteed to

be feasibly applicable.

These optimization based methods used for trajectory generation have been very suc-

cessful in offline computation of solutions. The results are quite attractive when offline

solutions may be sufficient but not so for real-time control and especially with time vary-

ing variables because of the assumptions in projecting the trajectory planning problem

onto a related control system of smaller dimension.

The results can be implemented in only zero intelligence scenarios such as static en-

vironments and not in an arbitrary changing environment. The method only proved

profitable for cases where the full information about the system must be known prior to

the start of the planning process, which is usually not the case [28].

On a more realistic note, in [29] real-time trajectory generation and tracking of nonlinear

control system with a two degree of freedom technique was studied. A nonlinear tracking

problem which takes care of the trajectory generation on one hand, and on the other, a

local gain scheduling scheme for position control. This problem setup had no constraints

(systems dynamics) so called non minimum-phase problem differing from that employed

in this thesis which is a phased problem and with the systems dynamics considered as

constraint.

Another method is the External Active set Strategy [30]. This employed the use of

outer approximations of constraint sets by ignoring constraints which were redundant or

13

Chapter 2. Literature Review

were isolated based on the systems kinematic geometry. This resulted in a considerable

reduction in total active constraints generated and hence less computational time. It

is most suitable for a class of problems with a large number of inactive inequality con-

straints sets.

It was introduced in [1] to reduce the constraint set by neglecting those constraints which

may never be reached due to interaction of the kinematic structure of the robot with

respect to the set of obstacles at a specific time instance.

Results were consistent and accurate but the issue was still the lengthy computation

time. It proved successful in this regard, but not so well-off for real-time control scheme

as solutions were derived in none less than ten seconds.

The technique is however comfortably applicable for offline trajectory generation prob-

lems.

Learning based control using Neural-Networks have also been used to achieve

real-time dynamic control of manipulators using the complexity of the robot internal

kinematic structure as trajectory performance learning. Bulky computation time is

the major drawback in this adaptive controller scheme as performance is state variable

dependent and the computation time grows at an overwhelming ratio to the system state

variables [31].

This above outlined issues however created a window for the conceptual methods to

be created and modified into forms applicable for typical control problems to be solved

using numerical methods hence it increased the interest of engineers in adopting this well

founded optimization methods and in recent times, have fostered the implementation of

solutions even in real-time control applications to a comfortable level.

2.3 Optimal Control Approaches for Trajectory Planning

In recent times (about a decade), various hybrid optimal control techniques have been

introduced to tackle the problem of articulated manipulator robot control from various

angles. Hybrid here could be referred to as techniques with multiple or integrated

concepts in numerical computation and optimization.

Some results from techniques in the optimization dimension applied over the years to

mechanical systems which have close adaptation to KCM’s are briefly explored below:

14

Chapter 2. Literature Review

One of the earliest endeavors of optimal control schemes in association with robotics

and in particular articulated manipulators was around the nineteen-seventies where an

optimal control algorithm was developed to solve Quadratic Optimal Control (QOC)

problems. The dynamics of the system was a lone constraint with no other constraints

on the state and control variables. Computation of explicit solutions for the system was

accomplished [32].

The simplicity of the problem rendered the solution quite impractical for real life appli-

cations as that ventured in this report where robots relate with dynamics environments

and therefore have a lot more constraints to fulfill. This however gave way to the pos-

sibility of obtaining solutions of optimal control problems using numerical methods in

KCM’s.

A similar study in [33] showed the performance of an algorithm based solution for QOC

problems in a 2-link flexible manipulator for a geometrically constrained case. The solu-

tion showed better results in comparison to PD/PID control schemes showing classical

control methods were inferior, moreover the implementation was also practically viable.

Another approach for trajectory planning of mechanical systems is the H∞ method [34].

Using 3rd order spline curves, the initial and desired final configuration of the system

are constructed to derive collision-free feasible trajectories. The H∞ optimal control

design was used to compute state feedback control laws deriving optimal trajectories

from the set of earlier generated feasible trajectories.

This class of methods for more interested readers may be found in [35–37]. Unmanned

Aerial Vehicles (UAV) control and trajectory planning for static and dynamic environ-

ments is a well-established area of control where these above highlighted optimization

methods and conceptual schemes are used for computing and applying solutions in real-

time. The formulation of the systems dynamics of UAV’s and articulated manipulators

are similar and the methods developed in this field look promising for robot manipulator

control.

On a general note, when solutions are sufficiently not time dependent, purely optimiza-

tion methods are very attractive as they may give very accurate results. An important

part of this work as is many similar works, is to examine solutions from various standard

optimization algorithms and restructure the problem and proposed solution algorithm

15

Chapter 2. Literature Review

for possible reduction in computational time.

In achieving this, the endeavor here will be the representation of the problem by exploit-

ing its known properties; both mechanical and geometric ones.

Hartl et al[38] states the common perception of engineers to optimization: “Optimal

control problems with state variable inequality constraints are not easy to solve, and

although the theory is not ambiguous, since there exist various forms of the necessary

and sufficient optimality conditions because the literature on this subject is not com-

prehensive, at times, incorrect or incomplete, it has been hard to understand, especially

for people working in applied areas”.

The techniques for solving optimal control problems can be classified into two methods:

1. Indirect (analytical) methods: When solutions to optimal control problems are

found directly by deriving the fulfilling conditions from the calculus of varia-

tion (Pontragin’s Maximum Principle), such a procedure is termed an analytical

method.

2. The other form of finding solutions to OCP are direct methods. The optimality

conditions are equivalent to the case of the indirect methods however for this class

of methods, the idea is to convert the original infinite dimensional continuous op-

timal control problem into a finite one with state bounds by time discretization

of the state and/or control variables making up the partial or ordinary differen-

tial equation and integral terms of the systems making up the systems dynamics

constraint and objective function respectively.

2.3.1 Indirect Approach to Solving Optimal Control Problems

Optimal control problems were initially solved by using the indirect method. This is

done by forming a set of necessary conditions and then solving these equations usu-

ally partial or ordinary differential equations. There are numerous processes to achieve

this. Pontryagin’s Maximum Principle based on the calculus of variation is one. These

optimality conditions are usually formulated as initial or boundary value problems rep-

resented by differential algebraic equations.

These solutions are usually approximates at the best and take a considerable amount

16

Chapter 2. Literature Review

of time to compute depending especially on the complexity of systems dynamics. The

following works [39–41] gives a class of OCP’s and solutions using the indirect approach.

In [42, 43], the authors derived solutions for Lagrange systems using parameter projec-

tion algorithms and Hamilton-Jacobi (H-J) equations with inequality constraints, for

solving a class of nonlinear problems having parametric uncertainties and external dis-

turbances. The work proposes a design method for an adaptive, reliable and robust

control by explicitly solving these H-J equations. The results showed the possibility of

using the concepts of theoretical nonlinear programming as optimal control method for

holonomic systems but the drawback was the high complexity in the problem formula-

tion. Two coupled nonlinear Ricatti equations had to be solved to form a closed form

solution which is very inefficient for practical applications.

This is how far closed-form and indirect methods will be discussed as the prospect seems

to lie in direct approaches if real-time control is the aim.

2.3.2 Direct Approach to Solving Optimal Control Problems

Generally, procedures which convert OCP’s into Nonlinear Programming (NLP) prob-

lems are regarded as direct methods through time discretization of chosen optimization

variables and so, a discrete time optimal control problem is typically a NLP problem. In

more recent times, the approach used to solve and implement optimal control problems

has drifted towards direct approaches. Numerous reasons account for this.

One is the advancement in the computational power due to advanced technologies in mi-

croprocessor and the development of a great number of efficient numerical computation

schemes and hybrid optimization algorithms (integrated optimization techniques enhanc-

ing solution features) which suits many classes of optimal control problems. Another

reason for its general acknowledgment is that the mathematics of converting optimal

control problems into simple optimization ones is also very well understood and has

become standardized over the years.

This procedure is also not always a first choice technique for solving optimal control

problems for some drawbacks. A popular one mentioned among control engineers and

unequivocally transmitted in [44] is the high level of mathematical sophistication usu-

ally explored to formulate complex engineering problems into an optimization one, the

doubtful viability of optimization under certain conditions, measurement problems, and

17

Chapter 2. Literature Review

sensitivity of optimal solutions to minute variances such as disturbance and modeling

errors.

With respect to the implementation of the solution, a major concern and dependence

on the integrity of the solution especially in terms of computation time (especially for

real-time/online optimization), is the hardware configuration which greatly affects the

viability of the solution.

2.4 Candidate Direct Methods and Techniques for Online

Trajectory Planning

Continuous time OCP’s are more difficult to solve compared to discrete time OCP’s

primarily because the solution of the problem requires bound on elements of infinite

dimension rather than finite dimensional vector spaces.

This difference introduces a new set of approaches to solve the problem by converting

the continuous optimal control problem into a discrete one which is a NLP. A nonlinear

programming algorithm such as a SQP can be used to find root solutions. This process

is known as time discretization and is the underlying principle of direct methods.

A class of direct methods are the Shooting methods (Single and Multiple), Direct Col-

location Method (DCM) and the Discrete Mechanics for Optimal Control (DMOC).

2.4.1 Shooting Methods

Shooting methods approximate a finite solution by time discretizing the control vari-

ables in the OCP of the mechanical system in question. In the case of the single shooting

method, an initial guess is formulated from the vector set of the control variables, and

the optimal states forming a solution trajectory is arrived at using the control parame-

ters only as basis for formulating all optimization variables to be minimized.

The multiple shooting is similar, but with the added reordering of the solution at sub-

intervals of time (discrete points) along the minimization path. At each discrete point,

additional optimization variables are included to meet some sub-boundary conditions in

the form of constraints (inequality and equality) with respect to the state to ensure a

continuous flow along the optimization path.

18

Chapter 2. Literature Review

2.4.2 Direct Collocation Method (DCM)

In the DCM method, the nature of the high nonlinearities in the dynamic equations

governing the systems motion is exploited. The nature of the resulting sparsity property

of the higher order derivatives (Jacobian) in such systems with highly nonlinear dynam-

ics is noted and this motivates the discretion to adopt the Direct Collocation Method

formulated by Hargraves and Paris [45] as a discretization setup.

Linearization is not desirable when the dynamics of a system is governed with high

nonlinearities. Discretization seems to be a better approach as it preserves the dynamic

properties of the system unlike linear approximations.

In the Direct Collocation approach; the optimal control problem is formulated by a

time discretization of the system parameters in terms of both the controls and state

variables. The problem is solved by approximating the ODE’s describing the OCP using

piecewise defined higher order polynomials and solving the problem at discrete colloca-

tion points called nodes along the path to be minimized.

Suitable numerical quadrature rules approximate the integral function hence replacing

it by close approximates as the dynamics are collocated at specific set points in the

time interval of a finite sub-space. This is pretty much an established and a foolproof

theory for discretization and it is the rationale for the popular mesh based theory in

finite element analysis [46].

This also results in an NLP like the shooting methods, but in this case simultaneously

exploring both the state and control variables as optimization parameters gives addi-

tional inequality constraints at the nodes due to the discretization process.

The major attraction of the Direct Collocation method is that it handles problems with

state and control bounds and the high ordered capturing of very nonlinear systems

dynamics (ODE’s) using high order Legendre polynomials has been proven to be very

effective [47–49]. The solution can also be potentially derived at a much faster rate as the

ODE simulation and the optimization parameters are solved simultaneously compared

to the Shooting methods.

The approach is that the systems dynamics is parameterized and the optimal control

problem is solved as a nonlinear programming problem. Normally, this transcription

process is used to convert a continuous optimal control problem through discretization

into a nonlinear programming one. This results in a much larger problem size as the

19

Chapter 2. Literature Review

equality constraints are now functions of both the state and control variables and could

be an inefficient representation of the optimal control problem [34].

The benefit however is that the high nonlinearity of the systems dynamics creates a

high degree of sparsity in the constraint Jacobian and the solutions of the resulting

NLP, therefore solutions may be reached at much faster computation time [50].

The accuracy of the solution is then dependent on how well the higher-order polynomial

functions can capture and approximate the entire function between successive collocation

points of the finite discretized problem setup [51]. A good estimation of the costate

variables using some well-established quadrature rules also makes it a good choice as it

ensures its immunity to ill conditioning in this regard.

2.4.3 Discrete Mechanics and Optimal Control (DMOC)

The Discrete mechanics for Optimal Control approach fully presented in the work

of J.E Marsden and M.West [52, 53] is quite similar to the collocation method in terms

of the discretization and the resulting NLP which is derived but with a smaller problem

size. Unlike the collocation method where the cost function and the equation of motion

representing the dynamics of the system are discretized, the variation of the action sums

of the Lagrange mechanics using the system geometric arguments and the cost function

are discretized directly using carefully picked variational time integrators right in the

systems configuration space [54].

It uses variational integrators to form time-stepping schemes which in turn preserve

the geometric properties of the system during discretization. The governing principle

describing the system is discretized directly. Similar endeavors to that of this work and

general applications for mechanical systems are found in [55–57].

This method (DMOC) is also attractive because of the structure of its formulation. It

redefines both the states and control variables of the system as the system parameters

and optimization variables in a simple straight forward manner with the aid of time-

integrators with configuration space variables only.

20

Chapter 2. Literature Review

2.4.4 Sequential Quadratic Programming (SQP)

All the above direct methods essentially transcribe an original continuous infinite time

Optimal Control problem into a finite dimensional NLP. At this point a local root find-

ing algorithm can be used to find the local minimum to this NLP problem. One of such

is the SQP algorithms.

Largely, NLP problems can be solved by finding the solution to a sequence of quadratic

relationships of a system differential equation using a method like the SQP.

The process is achieved by formulating an NLP at given approximate solutions by a

quadratic programming sub-problem; a Lagrangian of the Non-linear program subject to

the systems constraints (linearized). Good convergence properties have been established

by this method in the past. The SQP uses a merit function to formulate in progres-

sive steps towards finding a global minimum [58–60]. This is iteratively done to create

a sequence of approximate solutions that leads to the final local minimum. The SQP

methods have been implemented in many packages, including IPOPT R©, NPSOL R© and

MATLAB R©. IPOPT R© is the solver used in this work because of the good inter-phasing

compatibly with the sub-systems (hardware, programming language and operating sys-

tem) used for the problem setup. It is also a generally applauded as a very efficient SQP

algorithm especially for problems similar to that in this report.

2.4.5 Receding Horizon Control (RHC)

In robotic manipulator control, using conceptual applications schemes such as the RHC

for implementing control processes is not common knowledge and is investigated in this

work as a technique to capture the dynamic changes in the robots environment.

The idea of batch solutions became popular as a means to achieve fractional or part solu-

tion updates for systems and the evolution of this scheme brought about some successful

works. Good formulation of this conceptual method which help implement optimization

processes for many classes of control systems are well documented in [61, 62]. The idea

is to compute solutions of a problem model within a suitable time frame capturing all

relevant system variables (prediction horizon) and implement its solutions on a fraction

of the prediction horizon as input commands for the model plant. The problem is solved

iteratively until the prediction horizon is exhausted as it moves in a receding manner

towards the terminal state of the problem and the control commands computed for the

21

Chapter 2. Literature Review

entire problem in sub-intervals of time.

The solution to the RHC problem provides a structure for suitably dictating the appro-

priate set of control inputs to be applied over a forecast or prediction horizon based on

a current sampling interval and environment variables to sustain a safe control period

over a fraction of a prediction horizon. This also means the performance of the RHC

for a real-time application is wholly dependent on the pace the Nonlinear programming

algorithm comes up with solutions to the problem in question.

2.4.6 Hierarchical Network Control

A common control structure to achieve real-time control in robot systems of this nature

is to have both a optimal trajectory algorithm and a low-level controller design on a

single platform. This structure has been used in various endeavors of real-time and

online solution update. The issue is with the processing power of the microprocessor

doing these two tasks simultaneously. It is usually not sufficient.

Hierarchical Network Control is a control structure dictating the precedence of actions

to be taken where independent platforms performing specific actions need to interact

or combined to achieve an overall single task. This application is popular in systems

control where sub-system actions need to be optimized or enhanced to achieve better

overall performance [63].

The method adopted in this work is synchronizing sub-systems through an adaptable

network control system for instantaneous data transfer and communication between the

independent platforms: The real-time processor running the robot controller gets input

commands from the computer generating optimal trajectories and using hierarchical

control, triggering action between the two sub-systems in terms of ordering precedence

activities is controlled to achieve an overall real-time collision-free motion coordination

for the robot in question.

The objective considered is to generate an optimal trajectory followed by a command

solution update for the real-time controller. The interaction between the two subsys-

tems needs a time critical switching medium for real-time synchronous activities to be

possible. The implementation of the hierarchical Network platform and data transfer

speed will hugely influence the performance of the overall system. This is achieved

using a connectionless data transfer technology; the User Datagram Protocol (UDP)

which continuously establishes reliable bidirectional subsystem interaction and transfers

22

Chapter 2. Literature Review

information across the subsystems network in form of data packets. Timed hierarchical

control triggering actions and rules specify the direction and data type (control command

or robot environment variables) as the case may be.

23

Chapter 3

METHODOLOGIES

In this chapter, the methods for solving the collision-free trajectory generation problem

for an N-link KCM in dynamic environments are explained. The optimal trajectory

generation problem is solved using two direct optimal control methods. These two

direct methods are the Direct Collocation and the Discrete Mechanics approached for

solving OCP’s method. Optimal control direct methods are characterized by a time

discretization process which transcribes a continuous infinite dimensional optimal control

problem into a discrete optimal control problem with finite dimension. The reformulated

discrete time OCP equivalent to a Nonlinear Programming problem can in turn be solved

for local optima’s using root finding algorithms. A SQP based algorithm; The Interior

Point Optimization (IPOPT) [58], an open source C++ based library is employed here.

The theory of these direct methods and the steps for implementing them (DCM and

DMOC) are discussed.

The receding horizon control framework is explored to condition the optimal control

problem for sub-optimal computation in the light of capturing the time-varying proper-

ties of obstacle/path constraints. This ensures a platform for implementing a safe control

horizon for a set of collision-free sub-optimal state/control at each phase of problem so-

lution setup.

A cost functional representing the system parameters which is to be minimized, and a

set of ODE’s representing the dynamics, path constraints and the systems optimization

variables are discretized to form a discrete time optimal control problem. The resulting

solution to the resulting gives the desired collision-free optimal trajectory.

24

Chapter 3. Methodologies

3.1 Problem Formulation: The N-Link KCM Problem

Considering the motion of an N-link KCM along a continuous desired end-effector tra-

jectory where qi specifies the systems coordinates (joint parameters) in vector form.

τi denoting forces in form of torque acting on the system at the links specified using the

joint parameters lth, specifies the links with respect to the base/fixed frame.

The trajectory planning task as an OCP falls under a minimum energy and an error

tracking problem.

The goal is to move the system along a curve qi(t) ∈ Q within an initial and final time

interval [ti, tf] from an initial state (qti , q̇ti) to a final state (qtf , q̇tf) in a closed region

of the systems configuration space defined in: Q ∈ RN where the Nth link of the ma-

nipulator is fully defined under the influencing forces τi(t) minimizing the energy sum

of the entire systems qi = q1, ..., qN and the ’dot’ notation to represent derivatives with

respect to time.

3.1.1 The System Dynamics as a Constraint: Equations of Motion

The motion is constrained inherently by the dynamics of the manipulator, the kine-

matic constraint from the link geometric configuration and the time varying obstacle(s)

coordinate locations in the workspace.

The general equation of motion of a Kinematic Chain Manipulator specifies the dynam-

ics of the system and is the inherent constraint of the system which gives the response

of the system to external forces. The dynamic equation i.e. the equation of motion of

a manipulator may be derived by specifying the dynamics of the time evolution of the

system subject to holonomic constraints.

There are quite a number of procedures to represent the dynamics of an N-link artic-

ulated manipulator, but for our problem (minimum energy and trajectory tracking for

trajectory optimization implications), the Lagrange equation is suitable to formulate the

total energy relationship of the system.

The end result is a formulation specifying the dynamic properties of the system in terms

of the joint space variables; position, velocity, acceleration and its resulting forcing re-

lationships.

An elegant way to construct and represent this especially for multi-link robots is using

25

Chapter 3. Methodologies

the principle of conservation of energy. This is referred to as the Lagrange approach.

Choice trajectories may then be generated at the task space level using the joint pa-

rameters and with forward kinematics computation it may be extended to workspace

motion planning as desired.

The Lagrange equation of an N-link Manipulator is derived as follows:

Kinetic Energy of an N-link Robot: Taking the moment of inertia Ii about the

center of mass of each link, with total mass mi relative to a generalized coordinate frame

x, y, z ∈ R3 attached to the center of mass, specifying the translational and rotational

velocities derived with respect to the joint variable. From the appropriate Jacobian, the

linear velocity of the links (Jvi) and the angular velocity of the links (Jωi) at the base

where qi = {q1, ..., qN}T is the vector at each joint angle, can be formulated as follows:

vi = Jvi(q)q̇
[
vi ∈ R3

]
ωi = Jωi(q)q̇

[
ωi ∈ R3

] (3.1)

The generalized inertial tensor matrix in a 3-dimensional Cartesian coordinate system

can be specified as:

I =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 (3.2)

In state space form, total kinetic energy (TT) can be represented as:

T T =
1

2

N∑
i=1

(
mi||vi||2 + ωi

T Iiωi
)

(3.3)

Potential Energy of an N-link Robot:The potential energy is essentially the gravity

effect on the system. Taking each link inertia as in the case of the kinetic energy about

the center of mass, the total potential energy VT can be directly described as:

V T =
N∑
i=1

miglci (3.4)

26

Chapter 3. Methodologies

The Lagrange simply specifies the conservation law of motion which is the difference

between the total kinetic energy and total potential energy acting on the system.

L(qi, q̇i) = T T (qi, q̇i)− V T (qi) (3.5)

The Euler-Lagrange (E-L) equation can then be easily derived from the Langrage equa-

tion which fully specifies the full motion properties of the system.

Substituting the equation of motion into the Lagrange equation and taking respec-

tive partial derivatives, the equation of motion of the system referred to as the Euler-

Lagrange equations of motion is derived.

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

[
d

dt

∂

∂q̇i
− ∂

∂q i

]
(T T (qi, q̇i)− V T (qi)) = τi (3.6)

The Euler-Lagrange equation of the system of motion is given as:

d

dt

∂L

∂q̇i
− ∂L

∂q i
= τi i = 1, ... , N (3.7)

3.1.2 Dynamic Equation: State Space form

State space equation denoting the systems dynamics can be written from the E-L equa-

tion as follows:

τi(t) = M(q(t))q̈ (t) + C (q (t) q̇ (t)) q̇ (t) + g (q (t)) (3.8)

The following parameters give more details about the variables involved in the dynamic

model;

M(q) ∈ NxN Symmetric and Positive definite mass Inertia matrix.

C(q, q̇) ∈ NxN Coriolis/Centrifugal forces matrix (Skew and Symmetric).

g(q) ∈ N Gravitational forces.

τd(t) ∈ N Model disturbance

A nonlinear state space representation of the systems dynamics can be written as:

ẋ (t) = fi (xi(t), τi(t)) (3.9)

27

Chapter 3. Methodologies

with

x (t) =

 q (t)

q̇ (t)


The robot position, velocity and acceleration are denoted respectively as q (t), q̇ (t) and

q̈ (t) and driven by control forces at the joints τ (t) ∈ N associated by the above dynamic

equation.

q̈ (t) = M−1 (q(t)) [τ (t)− C (q (t) , q̇ (t)) q̇ (t)− g (q(t))] (3.10)

ẋ (t) =

 q̇ (t)

q̈ (t)

 =

 0Nx1

Mq(t)−1 (τ − τd)

−
 −q̇ (t)

Mq(t)−1C (q, q̇)

 (3.11)

y =
[
I 0

] q (t)

q̇ (t)

 (3.12)

3.2 Path/Geometric Constraints

To realize the overall objective of collision avoidance in real-time, the dynamic equations

of the robot manipulator model which specifies its motion interacts with the geometric

properties of an obstacle in its workspace. This geometric structure of the interacting

links is an implied additional constraint with the prior differential constraint of the

dynamics.

3.2.1 Dynamic Obstacles

Representing obstacle points in the Cartesian coordinate of the robot with time varying

properties as:

obsi =
[
obsxi (t), obsyi (t), obs

z
i (t)
]
∈ R3 for t ∈ [ti, tf]

where obs
(x,y,z)
i (t) represents the obstacle Cartesian coordinate location with time vary-

ing properties, hence, the number of obstacle Nobs and its location obs
(x,y,z)
i (t) changes

with respect to time Nobs(t) = [L, 2, ..., Nobs(t)].

Also, a set defining the full geometry of all robot interacting links as El(t) which is also

time varying as:

28

Chapter 3. Methodologies

EL
∆
=
{
pL|p ∈ R3, EL(pL, q(t))

}
≤ 0

representing the space enclosed region were the Lth link of the robot is contained.

To capture this time varying characteristics of the obstacle coordinate, the most recent

obstacle coordinate needs to be communicated at runtime for the problem setup to com-

pute collision-free trajectories. As a result, the receding horizon control setup is used to

implement this fractional solution instance.

This is achieved through the bi-directional communication of the robot most recent en-

vironment variables (obstacle location and robot pose) for computations of sub-optimal

trajectory and solution to the optimal control solver to ensure the integrity of the tra-

jectory as collision-free at each solution time-step.

3.2.2 Representing the Link Geometry: Minimum Enclosing Ellipsoids

The robot needs some information about its environment to properly manipulate itself

for obstacle avoidance. Position coordinates of any object in the Cartesian plane is

sufficient as long as the work envelope of the interacting links can defined and the robot

knows where it is at any time instance.

LINK 1

LINK 2

Link Enclosing
Ellipsoids

Figure 3.1: Illustration of the Minimum area ellipsoids enclosing the robot links

Depending on the shape of the manipulator links, standard equations with a minimum

enclosing volume property to represent it geometric structure may be defined. Both

29

Chapter 3. Methodologies

links of the robot investigated in this work are not of any standard shapes. A mini-

mum enclosing ellipsoid is used to encapsulate the links and hence define its kinematic

relationship. This formulation was adopted from the implementation in [64–66]. More

formal derivations are found in [67, 68]. The respective links entire volumes are confined

in these ellipsoids and represented by the standard equation of an ellipsoid.

The center axis of the minimum enclosing ellipsoid formulation at each individual suc-

cessive link defined as pL=1(x,y,z), pL=2(x,y,z), . . . , pL=Lth(x,y,z) for links L = 1, 2, ..., N .

For example, in a planar configuration, with ci denoting the distance from the center of

the l’th joint to the center of the ellipse, the location coordinate of the center of ellipsoid

may be represented as follows:

 pL (x)

pL (y)

 =

N∑
L=1

 cos (qL−1)

sin (qL−1)

+ ci

 cos
N∑
l=1

qL

sin
N∑
l=1

qL

 (3.13)

With each link, φl =
N∑
l=1

qlth , obstacle coordinate information derived from the work

space environment is defined as [obs(x), obs(y), obs(z)], the smallest ellipsoid enclosing

each link EL=1, EL=2, ..., EL=N is given as:

EL =

[
(obs(x)−pL(x))cosφL−(obs(y)−pL(y))sinφL

]2
aL2 +

[
(obs(y)−pL(y))cosφL−(obs(x)−pL(x))sinφL

]2
bL

2 − 1 = 0

(3.14)

3.3 Collision-free Optimal Trajectory Generation under Dy-

namic Environments

3.3.1 The Cost Functional

The path along the functional to be minimized is the vector values quadratic cost J =

C(q(t), τ(t)). The optimal solution of this problem is the solution of a cost functional

of infinite time dimension given by:

30

Chapter 3. Methodologies

J(q(t), τ(t)) =

∞∫
ti

C(q(t), τ(t))dt (3.15)

For a possible scaling of a time-step dependent control scheme, the finite OCP can be

represented as:

J(q(t), τ(t)) = C (q (tf) , τ (tf)) +

tf∫
ti

C (q (t) , τ(t)) dt t ∈ [ti, tf] (3.16)

If q(t) ∈ RN and τ(t) ∈ RN are the state and control vectors along t ∈ [ti, tf] associated

with minimizing the cost. Assuming the element τ ∈ Cn.τ∞ [ti, tf] is space of all Lebesgue-

measurable functions with absolute values of its entity bounded on [ti, tf] implying there

exist control trajectories translating to the unique state trajectory in the space where

the system is controllable.

The optimal control and state vector τ∗ = τ0
∗, τ1

∗, τ2
∗, τ3

∗,, τN−1
∗ and q∗ = q0

∗, q1
∗,

q2
∗, q3

∗, ..., qN
∗ generated from the minimization of the chosen performance index above

with respect to the constraint on the system equation is the so called optimal solution.

The vector valued function for minimum energy prescribe for the manipulator links is

defined as ‖τL (t)‖2. The problem may be further constrained by specifying a desired

time-trajectory for the robot to follow in addition to the task to move from an initial to

final poses hence a trajectory tracking error in the robot taskspace given as: Tr = [x−xr

, y − yr] which is the difference between the manipulators present robot state [x, y]

and a predefined desired state [xr, yr]. Weighting factor for the control variable Wu

and tracking error We are incorporated to scale the performance of the solution as a

coordinate tracking or minimum energy problem.

The cost functional to be minimized is given as:

J(q(t), τ(t)) =
1

2

tf∫
ti

{
Wu

(
‖τ1(t)‖2 + ...+ ‖τi(t)‖2

)
+We‖T r(t)‖2

}
dt t ∈ [ti, tf]

(3.17)

31

Chapter 3. Methodologies

Defining the norm (Euclidean) as ‖τ‖ =
(
τTτ

)1/2
which assigns a scalar ‖τ‖ to every

τ ∈ RN such that ‖τ‖ ≤ 0 for all τ ∈ RN and ‖τ‖ = 0 if and only if τ = 0

3.3.2 Limits on Control and State Variables

Imposed constraint sets on the state and controls variables are in order to implement the

solution on an experimental setup. Limits on the amount of force a motor may disperse

to the links and stable motion a state may specify creates a min-max boundary limit on

them. This may be specified as follows:

qlower ≤ q (t) ≤ qupper

τlower ≤ τ (t) ≤ τupper

 t ∈ [ti, tf] (3.18)

3.3.3 Initial and Final Boundary Conditions

The Initial and final configuration boundary conditions of the optimization state and

event variables may also be specified as follows:

q0 = (alower, ..., aupper) , q
T = (alower, ..., aupper)

q̇0 = (blower, ..., bupper) , q̇
T = (blower, ..., aupper)

 t ∈ [ti, tf] (3.19)

3.3.4 Finite Horizon Optimal Control Problem

Problem 1: The overall problem can be summarized as follows:

J(q(t), τ(t)) =
1

2

tf∫
ti

{
Wu

(
‖τ1(t)‖2 + ...+ ‖τi(t)‖2

)
+We‖Tr(t)‖2

}
dt t ∈ [ti, tf]

(3.20)

subject to :

32

Chapter 3. Methodologies

ẋ (t) =

 q̇ (t)

q̈ (t)

 =

 0nx1

Mq(t)−1 (τ − τd)

−
 −q̇ (t)

Mq(t)−1C (q, q̇)

 (3.21a)

obs
(xl,yl)
lower ≤ [q (t) , τ (t) , t] ≤ obs(xl,yl)

upper t ∈ [ti, tf] (3.21b)

qlower ≤ q (t) ≤ qupper

τlower ≤ τ (t) ≤ τupper

 t ∈ [ti, tf] (3.21c)

q0 = (alower, ..., aupper) , q
T = (alower, ..., aupper)

...

q̇0 = (blower, ..., bupper) , q̇
T = (blower, ..., aupper)

 t ∈ [ti, tf] (3.21d)

A pair of (τ(t), q(t)) is feasible if all the constraint sets above are fulfilled in addition, a

feasible pair (τ∗, q∗) is also optimal if

J (τ, q) ≥ J (τ∗, q∗) (3.22)

For all sets of feasible pairs (τ(t), q(t)). Along the optimization path, the functions

τ∗(t) and q∗(t) are known as the respective optimal control and optimal state trajectory

functions.

3.4 Solving the Problem

3.4.1 Receding Horizon Control (RHC)

A one shot solution to the problem above would be sufficient if all the values of the

optimization variables were known for the entire time span [ti, tf] at the initial stage of

computing the solution. This is not the case as the obstacle location are time varying

hence the problem setup will need to be conditioned to capture and accommodate these

dynamic time varying constraint set.

Based on the highlighted properties of the obstacle constraint set, the OCP is restruc-

tured using the receding horizon control scheme in order to capturing the dynamic

time-varying nature of the obstacle(s). This allows for an iterative computation of sub-

optimal solutions in successive time intervals of the choice of a safe control horizon.

33

Chapter 3. Methodologies

The prediction horizon ph is the time frame which captures the initial to terminal state

of the system in which time span, successfully collision-free optimal trajectory may be

planned.

A control horizon ch may be designed as a safe enough time range in which the robots

single time-step sub-optimal solutions (set of optimal states/control) suffices as collision-

free and thus re-initializing the new initial state for next time-step problem to be solved

at the terminal state of the control horizon. At the implementation stage, the con-

trol horizon is computed based on some collision-free check rules on the robot realtime

controller.

Sampling time

Prediction Horizon
h

P

hi Pt it 1i
t
 2i

t
 f

t

Control Horizon : Sub-optimal Trajectory

1f
t



hc
hi ct 

Figure 3.2: Receding Horizon control Framework

Hence with ti as the initial time step of the OCP, the solution set (set of sub-optimal

control/state trajectory) is applied across the time step ti+ch; a fraction of the prediction

horizon. The choice of this control horizon is informed based on the robot coordinate

location with respect to the dynamic obstacle coordinate ensuring a safe enough motion

span at evolving time steps of the robot.

STEPS

1. Compute the entire set of optimal control inputs within a fixed prediction horizon

τ∗i = [τ∗1 , ..., τ
∗
ti+Ph

] based on the most recent obstacle location and robot state.

2. Implement a fraction of the sub-optimal controls based on the robot present state

and the obstacle most recent coordinate location at solution time to collision-free

motion spanning τ∗i = [τ∗1 , ..., τ
∗
ti+Ch

] (control horizon).

34

Chapter 3. Methodologies

3. Reinitialize the RHC problem with the time step ti+ch as the new initial time

ti and iterate through step 1. The problem terminates at the point where the

final desired robot state is reached which is the point where the control horizon is

exhausted i.e. ch = tf or where the control and prediction horizon have the same

terminal state.

Problem 2 The overall Receding Horizon OCP is stated as:

J(q(t), τ(t)) =
1

2

Ph∫
ti

{
Wu

(
‖τ1(t)‖2 + ...+ ‖τi(t)‖2

)
+We‖T r(t)‖2

}
dt t ∈ [ti, Ph]

(3.23)

subject to:

ẋ (t) =

 q̇ (t)

q̈ (t)

 =

 0nx1

Mq(t)−1 (τ − τd)

−
 −q̇ (t)

Mq(t)−1C (q, q̇)

 (3.24a)

obs
(xl,yl)
lower ≤ [q (t) , τ (t) , t] ≤ obs(xl,yl)

upper t ∈ [ti, Ph] (3.24b)

qlower ≤ q (t) ≤ qupper

τlower ≤ τ (t) ≤ τupper

 t ∈ [ti, Ph] (3.24c)

q0 = (alower, ..., aupper) , q
T = (alower, ..., aupper)

...

q̇0 = (blower, ..., bupper) , q̇
T = (blower, ..., aupper)

 t ∈ [ti, Ph] (3.24d)

3.4.2 Discrete Time Optimal Control Problem

A discrete-time OCP can be derived from a time discretization of the continuous time

OCP in problem 1 above and stated as follows:

J (qi, τi) = φ (qN , τN−1) +
N−1∑
i=0

Ci (qi, τi) (3.25)

subject to:

35

Chapter 3. Methodologies

Ds
∆
=


fo(q0, τ0)− q1 = 0

f1(q1, τ1)− q2 = 0
...

fN (qN , τN−1)− qN = 0

 (3.26)

Ds = Systems discretized dynamics at each time steps ki from k1, k2, ..., kN−1. And

with boundary conditions on the state and control variables to put realism into context

qmin ≥ qi→N ≤ qmax, τmin ≥ τi→N−1 ≤ τmax.

This is in summary a nonlinear programming problem.

Defining a mapping function written in terms of the control parameters ϕi(τ) based on

the systems dynamics 3.9 which relates the state and control trajectory as, qi = (ϕi(τ))

which translates any given control trajectory to its corresponding unique state trajectory.

The corresponding Lagrangian representing the discretized system above is given as:

J(ϕi(τ), τi, λ̃) = CN (ϕN (τ)) +

N∑
i=0

λ̃Ti

[
f(ϕi(τ), τ i)−

N∑
k=0

Ds

]
(3.27)

τ = [τ0, τ1, . . . , τN−1]T

ϕ (τ) = [ϕ(τ)1, ϕ(τ)2, . . . , ϕ(τ)N]T

λ̃ = λ̃1, λ̃2, ..., λ̃N

3.5 Optimality Conditions of the Discretized Problem

Where H is the Hamiltonian function defined at all the discrete points along the path

as: Hi(qi, τi, Pi+1) = Ci (qi, τi) +Pi+1fi (qi, τi) ; discretized states qi = q̄i and discretized

controls τi = τ̄i recalling the relationship between the state and controls defined above

as qi = (ϕi(τ)).

1st order condition: ∇J (τ∗) = 0 for τ∗ = (τ∗0 , τ
∗
1 , τ
∗
2 , ..., τ

∗
N−1) to be the local mini-

mum control trajectory and with corresponding state trajectory uniquely specified by the

system equation consequently as q∗ = (q∗0, q
∗
1, q
∗
2, ..., q

∗
N) , then ∇τiHi(qi

∗, τi
∗, Pi+1

∗) =

0, i = 0, ..., N − 1 where the costate vectors P1, ..., Pn are derived from the adjoint equa-

tion Pi
∗ = ∇qiHi(qi

∗, τi
∗, Pi+1

∗) = 0; ı = 0, 1, ..., N − 1 with terminal conditions on the

state constraints as PN
∗ = ∇CN (qN

∗).

36

Chapter 3. Methodologies

3.6 Discretizing the Problem

As earlier expressed, a time discretization setup needs be engaged to transcribe the OCP

into a NLP which in turn can be solved for local minimums.

The suitability of the collocation and Discrete mechanics for optimal control methods

are based on some mechanical properties of the KCM system. The problem can be views

as a constrained optimal control system with highly nonlinear system dynamics. The

Collocation method utilizes the combined action of high order Legendre polynomials

and quadrature rules to approximate the systems governing ODE’s and compute inte-

gral terms respectively. This ensures high degrees of accuracy in the solutions of the

resulting NLP.

Furthermore, the discretization process in the Collocation methods especially the global

methods handle nonlinearities quite well and captures the dynamics fully by concentrat-

ing more collocation points in areas of high activity resulting in even better solutions

with lower approximation errors hence higher accuracy.

The DMOC method is also a good candidate for this class of problems as it’s geometry

preserving discretization process keeps the geometric structure of the mechanical system

in terms of energy conservation and physical symmetry ensuring momentum conservation

(symplectic property) and good energy behavior for equal time steps. This makes the

problem immune to some ill-conditioning in term of stable physical geometry hence

the solutions have been proven to result in very accurate solutions. It also gives a

discretization scheme of the system in the configuration space which makes the resulting

NLP quite exact as well and its the algorithm is quite straight forward.

Both methods; the DCM and DMOC discretize simultaneously the state and control

variables which in turn increases the size of the inequality constraints resulting in a

larger dimension NLP. This is taken care of due to the high sparsity nature in the

Jacobian matrices. Solutions to the resulting NLP can still be found at considerable

short time span feasible for real-time applications.

37

Chapter 3. Methodologies

Configuration space and system parameter

discretization gives: Discrete objective

function + Lagrange D’Alembert Equation

Action Sum of discrete Variations

Discrete objective function + Discrete
Euler Lagrange equation + Equality

constraints

Nonlinear Programming problem (NLP)

Local Roots

solution

Continuous Optimal control problem:

Continuous Cost +System dynamics

DMOC Direct Collocation

Parameter discretization: State &

Control variables

Fixed Variation of the Mechanics

gives: Discrete objective function

+ Euler Lagrange Equation

SQP algorithm

Figure 3.3: Overall transcription process of an OCP to NLP by DMOC and DCM

3.6.1 Direct Collocation Method (DCM)

The collocation method is a transcription process which discretizes a continuous-time

optimal control problem into a finite dimensional Nonlinear programming one. The

idea stems from the minimization of approximate errors in the functional over the entire

domain, however in this case, the approximation is done at interval points called colloca-

tion nodes/points/grid/intervals over the domain of the problem along the optimization

path [45]. There are a good number of established collocation methods used for direct

transcription and what makes it desirable for this class of optimal control problem is

the availability of adjoint costate estimates that relate the Lagrange multiplier of the

discretized problem to the adjoint vector whose variables are evaluated to find global

solutions at collocation points [46] as shown in the setup below.

The time discretization method parameterizes both the state and control variables as

optimization variables. This results into a larger NLP because of the use of both the

38

Chapter 3. Methodologies

state and control variables. This however is acceptable because even thou the constraints

sets are more, the derivatives of this constraints i.e. the Jacobian of the system have

many zero values at the nodes. This sparsity property of the Jacobian accounts for

why the eventual NLP can still be achieved in reasonable time in fact, this method has

shown to assist converge to optimal of OCP at a spectral rate and possible real-time

optimization.

Whichever it is the Collocation method one adopts, the process and end-result to a

problem of this nature:

* Discretize the Optimal control problem into a NLP by time discretization into a

grid of n intervals.

* Approximate the states x and control inputs u as piecewise polynomials at each

successive node.

* Collocate the midpoint of successive intervals within the number of discretized

time grid points corresponding to the value of the state and control at each end

grid point. An intuitive method will be to integrate the differential equation over

a one time-step and then approximate the integral on the right by a finite sum.

* Solve the resulting finite dimension approximation of the original control problem.

Considering a nonlinear dynamic system whose dynamics is represented similar to the

nonlinear state space (SS) problem 1 as follows:

Nonlinear State Space dynamic equation: ẋ(t) = f(x(t), u(t)).

M inequality constraint set: M(x(t), u(t), t) ≥ 0 Ui ⊂ RN , i = 0, 1, ..., N − 1.

State and control bounds: rmin ≤ r(x(t), u(t), t) ≤ rmax.

Initial conditions: bmin ≤ r(u(t0), t0, x(tf), tf) ≤ bmax.

With corresponding lower and upper boundaries as min/max values at the collocation

points.

39

Chapter 3. Methodologies

The objective is to find a vector u(t) that minimizes a cost functional representing a

systems objects to be optimized in the form:

J(x(t)u(t)) = C(x(tf), u(tf), tf) +

tf∫
ti

C(x(t), u(t), t)dt (3.28)

and the discrete equivalent given as:

J(xd(t)ud(t)) =
N∑
i=0

C(xi, ui, ti) (3.29)

Generally, the initial and final time is specified or may be non-static based on the

optimization solution for the state variables.

The direct collocation method prescribes approximate numerical solutions to the prob-

lem above by discretizing the time set of spaced time grid (N−1) samples known as nodes

with respect to the state and control trajectory within this collocation points (nodes)

are approximated by suitable piecewise functions of high order polynomials which gives

the corresponding high approximate finite dimensional NLP to be solved.(Note: for the

problem investigated, discretizing the control variable set is needed based on the problem

formulation).

3.6.1.1 Collocation Implementation Steps

Following the algorithm setup in scheme in [69], the approximation scheme for computing

the collocation points and ensuring the optimal solution derived at each node is satisfied

and the constraint set imposed on the objective function based on the dynamics of the

system is not violated. For the problem given above, say the discretized time interval

be carefully chosen and specified as

0 ≤ t1 < t2 ... < tN = tf (3.30)

40

Chapter 3. Methodologies

...
1

1

x



 
 
 

2

2

x



 
 
 

3

3

x



 
 
 

4

4

x



 
 
 

5

5

x



 
 
 

it ft

1

1

N

N

x







 
 
 

N

N

x



 
 
 

Figure 3.4: Discrete state and control structure at each node

For control and state variables at the grid point ti = 1, 2, ..., N and final time tf .

The parameter employs a solution vector of the form:

S = [u(t1), ..., u(tN); x(t1), ... , x(tN); t] RNxM (3.31)

The controls vector are chosen as piecewise linear interpolation functions between u(ti)

and u(ti+1). The states is chosen likewise for x(ti) and x(ti+1) with sample time s =

[ti, ti+1] = [−1, 1] as the solution time at each node, the dynamic constraint is rewritten

as:

ẋi(s) = f(x(s), u(s), s)

At s = ti+1 − ti

Hence have mesh/grid point for collocation interpolation is given as:

ti [i = 1, ..., N]

ti [i = 1, ..., N − 1]

 for States

for Controls

These points are popularly referred to as the Gauss-Lobatto points.

A piecewise polynomial (which is continuous differentiable) is used to estimate the ob-

jective function between each intermediate point i.e. p(ti) and p(ti+1).

The proper approximation to the costate leads to a set of KKT conditions identical to

the discretized form of the 1st order optimality conditions stated in 3.5 earlier.

41

Chapter 3. Methodologies

This local interval center approximation is done using the formulas stated as follows,

with N being the number of collocation points with state and control;

x(i,c) =
1

2
(xi − xi+1) +

T

N
(xi + xi+1) (3.32)

u(i,c) =
1

2
(ui − ui+1) (3.33)

The choice of this piecewise polynomial may vary and they are classed into two: lo-

cal/direct and global discretization.

The quadrature rule used to approximate the integral part of the cost function in com-

puting the optimality conditions for the controls at the nodes are the same for either

classes be it local or global discretization and is known as the GaussLobatto quadrature

rule. It consists of a weighted sum of the function values at the discretization nodes.

The approximate function is computed with the property x̂i(s) = f(x(s), u(s), s) at s =

ti and ti+1 as follows:

States approximates x̂i(t) =
N∑
k=0

ci
t−tji
si
, ti ≤ t ≤ ti+1; i = 1, 2, ..., N

Controls approximates ûi(t) = u(ti) + t−ti
s (u(ti+1)− u(ti)) ; i = 1, 2, ..., N − 1

3.6.1.2 Local and Global discretization

The local discretization is a static meshing operation which consists of using the

Trapezoidal method, Central difference method or Hermit Simpsons method as the ap-

proximation function for the associated optimal control problem cost function within

successive nodes. Usually, the resulting Jacobian and Hessian are sparser especially as

the number of collocation point’s increase.

The approximation functions for the discretization are computed as follows:

For the trapezoidal method ci = x(τi+1)− x(τi)− s
2(fi + fi+1)

42

Chapter 3. Methodologies

Central difference method

D0,0 = −1/s0, D0,1 = 1/s0

Di−1,i = 1/(si + si−1), Di−1,i−2 = −1/(si + si−1)

DN,N−1 = −1/si−1, DN,N = 1/si−1

(3.34)

Hermit-Simpsons method

ci = x(τi+1)− x(τi)−
s

6

(
fi + 4f̄i + fi+1

)
f̄ = f

[
x̄i+1, ūi+1, τi +

s

2

]
x̄i+1 =

1

2
x(τi) + x(τi+1) +

s

8
(fi − fi+1)

(3.35)

And the costate estimate for local discretization is given as λ(ti+1/2) = λ̂i
2si
, i = 0, ...N−1

The 3 local discretization methods described above creates a regular discretization for

a system of ODE’s as shown below. This may be sufficient and even advantageous

depending on the structure of the problem in question with respect to the momentum

flow along the path of discretization and linearity of the systems dynamic equations. The

approximation errors in the solutions of the NLP generated through local discretization

methods are large when implemented for systems with highly nonlinear dynamics.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 3.5: Illustration of the static nodes feature for N=20

The global discretization methods is a dynamic interpolation method for mesh re-

fining which is popularly referred to as the moving mesh and are generally known as

pseudo-spectral methods. They comprise of using the Legendre polynomials, Chebyshev

43

Chapter 3. Methodologies

polynomials or Gauss polynomial functions as approximate functions for the cost func-

tion being minimized similarly as in the case for the local discretization scheme.

It is primarily designed for systems with highly nonlinear dynamics equations.

This method uses a sample time s = [−1, 1] and collocation are done at orthogonal collo-

cation points. It has an exponential rate of convergence and the preceding interpolation

points are quite accurate based on the algorithms essentially because the grid points

are more concentrated at points in between the node with greater activity resulting into

a function with better approximates hence higher accuracy. Another advantage of the

global discretization scheme is that it increases the sparsity ratio of the Jacobian matri-

ces in the NLP due to the irregular time discretization intervals. This in turn allows for

faster root solutions to be computed using sparse nonlinear programming algorithms/-

solvers. A typical structure of an irregular mesh setup is shown below. It typically gives

less approximation errors for systems that are highly nonlinear compared to the local

methods.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 3.6: Illustration of the moving mesh/dynamic nodes feature for N=20

Using Legendre polynomials and numerical quadrature at the Gauss Lobatto points,

with j specifying the order of the polynomial used for approximating the state (usually

cubic) is given as follows:

cij=0 = x(ti),

cij=1 = fi,

cij=2 = −3x(ti)− 2sfi + 3x(ti+1)− si(fi+1), (quadratic)

cij=3 = 2x(ti) + sifi − 2x(ti+1) + si(fi+1), (cubic)
...

ci
j=jth

= (jth order polynomials)

(3.36)

44

Chapter 3. Methodologies

The carefully chosen approximates above already fulfill the solution with respect to the

constraints sets at the nodes ti and the only other constraints left are the

• Collocation constraints at the center

f(x̂(tc,i), τ̂(tc,i), tc,i)− ˆ̇x(tc,i) ≤ 0, i = 1, ..., N (3.37)

• Inequality constraints at the grid points

M(x̂i(t), τ̂i(t), ti) ≤ 0, i = 1, ...N (3.38)

• Initial and end point constraints in the range of the integral solutions.

The costate estimate for the sampling time [-1,1] of the piecewise polynomials are given

by

λ(ui) ≈ λN (ui) =

N∑
i=0

λ(τi)xi(τ), s ∈ [−1, 1] (3.39)

More emphasis on choice of choosing suitable polynomial functions for different classes

of problems for discretization can be found in [45, 69, 70].

3.6.1.3 Necessary first Order Optimality Conditions

The necessary first Order optimality conditions for the solution of the discretized OCP

takes the form:

∂C
∂ui

= 0, i = 1, ..., N (3.40a)

∂C
∂xi

= 0, i = 1, ..., N (3.40b)

∂C
∂λi

= 0, i = 1, ..., N − 1 (3.40c)

M(xi, ui, ti) = 0 (3.40d)

3.6.2 Discrete Mechanics for Optimal Control (DMOC)

In the collocation method, a combination of the cost function and the equation of motion

(Euler-Lagrange equation), is time discretized along selected points on the optimization

45

Chapter 3. Methodologies

path to be minimized. These resulted to a corresponding NLP which is further solved

using SQP for the optimal trajectory. The idea is backed by minimizing the resulting

approximation error at the end of each node.

The discretization brought about using discrete geometric mechanics is somewhat similar

to the direct collocation method. In this case, rather than approximating the equations

of motion coupled with the objective function as in the DCM, a discretization of the

variational formulation of the Lagrange equations directly using the systems geometric

arguments is carried out. The strength of this method comes about by using variational

time integrators which are symplectic in nature in order to preserve the geometry of

the problem and hence energy conservation and stability form of the mechanical system

[55, 56].

A straight forward way of discretizing the problem by adopting the formulation in the

continuous realm gives a discrete notion equations and OCP and in turn a finite dimen-

sional NLP problem is still the end result of the scheme just as is with the DCM.

This is done by applying the discrete variations of the mechanical systems parameters

to first describe the system in question. The resulting formulation is known as the

Lagrange-d’Alembert principle. Then direct discretization is done using these Varia-

tional integrators which have the property of nearly preserving the structure of the

discrete energy and momentum relating to a symplectic form of the Lagrangian flow.

The control effort of the system along the discrete path is cleverly choosing as fiber

preserving discrete mappings steps to keep the consistent symplectic structure of the

dynamics in the case of a forced Lagrangian system [53].

The problem is transformed into an equality constrained NLP through the finite param-

eterization of the state and control variables and solved using an NLP algorithm.

3.6.2.1 Implementation Steps

The continuous case OCP and with dynamic and inequality constraint as stated in

Problem 1 is invoked here as our base problem.

The variation of the action i.e. the Lagrangian L along a path q(t) ∈ Q for a finite time

is given as:
tf∫
ti

L(q(t), q̇(t))dt (3.41)

46

Chapter 3. Methodologies

to move the system from an initial (q
ti , q̇

ti) state to final state (q
tf
, q̇

tf
) The above is

a self- conserving momentum system. For a forced system, the corresponding equation

can be stated as:

δ

tf∫
ti

L(q(t), q̇(t))dt+

tf∫
ti

fL(q(t), q̇(t), τ(t)) · δq(t)dt = 0 (3.42)

Popularly referred to as the Lagrange-d’Alembert principle which states that for a time

steps ki, ki+1, ki+2, ..., n for all variations of δq(t) with δq(ti) = 0 and δq(tf) = 0

Following the DMOC formulation in [57]and[53], the successive time shift is used to

discretize the functions by changing the equation into a first order equation. This is

done accordingly. The time step is given as: h = ki+1 − ki

Continuous Setting Discrete Setting

q̇(t) = dq
dt

v̇ = q̈(t) = d2q
∂t2

q = qk

q̇(t) = qk+1 − qk
ẋ = xk+1

τ(t) = τ k+1
2

Time integrator is given as:

vk+1 = vk − h(A, qk)

qk+1 = qk + h(vk+1)

This integrator scheme is known as the symplectic Euler method.

Discretizing the Lagrange equation of the system, the resulting formulation results into

δ

N−1∑
k=0

Ld(qk, qk+1) ≈
k+1∫
k

L(q, q̇)dt (3.43)

The intermediate control force at the discretized points (grid) τi = τ1, τ2, τ3..., τn−1 mov-

ing the system from the corresponding initial state to the end point qi = q1, q2, q3, ..., qN

is specified as fL(u1, ..., uN) Taking two set of discrete Lagrange control forces and its

coupled sum for balancing of force dissipation, It gives:

fLd
(qk, qk+1).(δqk, δqk+1) = f−d (qk, qk+1)δqk + f+

d (qk, qk+1)δqk+1 (3.44)

47

Chapter 3. Methodologies

Discrete Lagrange Equation:

N−1∑
k=0

Ld(qk, qk+1) +

N−1∑
k=0

[f−d (qk, qk+1)δqk + f+
d (qk, qk+1)δqk+1] = 0 (3.45)

Taking fixed end variations of the above equation i.e. partial derivatives of each term

with respect to the discretized steps for a specified number of nodes along the problem

time duration and the sum of all the actions results in the discrete Euler-Lagrange

equations equivalent to the equation of motion of the system given as:

N−1∑
k=0

[D1Ld(qk, qk+1) +D2Ld(qk−1, qk)]·δqk+
N−1∑
k=0

[f−d (qk, qk+1)δqk + f+
d (qk, qk+1)δqk+1] = 0

(3.46)

with D1 and D2 denoting the partial derivatives with respect to qk and qk+1 respectively.

The resulting equation gives the corresponding motion equation of the system which is

the Discrete Euler Lagrange Equation (DELE)

Discrete Lagrange-d’Alembert equation

D1Ld (qk, qk+1) +D2Ld (qk−1, qk) + f−d (qk, qk+1, τk) + f+
d (qk, qk+1, τk−1) = 0

k = 0, ..., N − 1.
(3.47)

Discrete cost function

(k+1)h∫
kh

C (q (t) , q̇ (t) , u (t)) dt ≈
N−1∑
k=0

Cd (qk, qk+1, uk) (3.48)

Discrete Geometric constraints (path Constraint)

hE1, hE2 (qk, qk+1, uk) ≥ 0 k = 1, ...N − 1 (3.49)

48

Chapter 3. Methodologies

Overall Discrete Optimal Control problem setup takes the form below.

Jd (qd, ud) =
N∑
k=0

Cd (qk, qk+1, uk)

subject to

q0, q̇0 = 0

qT , q̇T = T

 Initial conditions

D1Ld (q0, q̇0) +D2Ld (q0, q1) + f−0 = 0

−D2Ld (qN , q̇N) +D1Ld (qN−1, qN) + f+
N−1 = 0

 Boundary conditions

D1Ld (qk, qk+1) +D2Ld (qk−1, qk) + f−k + f+
k−1 = 0 k = 1, ..., N − 1DELE

hE1, hE2 (qk, qk+1, uk) ≥ 0 k = 1, ..., N − 1 Path constraint

(3.50a)

49

Chapter 4

METHOD SETUP FOR

EXAMPLE KCM PROBLEM’S

4.1 2-link Revolute Planar Robot Problem

L1R1

q1

q2

L2

R2

1st LINK ENCLOSING ELLIPSOID

2nd LINK ENCLOSING ELLIPSOID

Figure 4.1: Schematic drawing of the experimental robot showing enclosing ellipsoids

50

Chapter 4. 2-link and Redundant linked KCM’s

4.1.1 Dynamics and Kinematic Equations of the Robot

The model employed is a 2-link planar manipulator with revolute joints and fully rigid

links constrained at the joints. The kinematic analysis of a constrained KCM begins with

the kinematics equations of its connecting serial chains. Links flexibility effects, gravity

effects, viscous and coulomb friction and external noise on the torque control (assuming

the system is immune to this form of error or system disturbance) are neglected. This

simplified the general problem setup; however, the resulting model is still sufficient for

the proposed study.

Following the derivation of the dynamic model in [71], the robots dynamic equations are

derived as follows:

Position coordinates of link-1 and the corresponding Jacobian:


x1

y1

z1

 =


r1 cos q1 0

r1 sin q1

0

0

0

 J01 =


−r1 sin(q1) 0

r1 cos(q1)

0

0

0


vc1 = J01q̇

ẋ1

ẏ1

ż1

 = J01q̇1 =


−r1 sin(q1)q̇1 0

r1 cos(q1)q̇1

0

0

0


and

||v1||2 = vc1
T vc1 = ẋ2

1 + ẏ2
1 + ż2

1

T 1 = 1
2m1||v1||2 + 1

2w1
T I1w1

T 1 = 1
2m1

[
(−r1 sin(q1)q̇1)2 + (r1 cos(q1)q̇1)2]+ 1

2Iz1q̇
2
1 (4.1)

V 1 = m1gr1 sin q1 (4.2)

Position coordinates of link-2 and corresponding Jacobian:

51

Chapter 4. 2-link and Redundant linked KCM’s


x2

y2

z2

 =


l1 cos q1 + r2 cos(q1 + q2) 0

l1 sin q1 + r2 sin(q1 + q2)

0

0

0



J12 =


−l1 sin q1 − r2 sin(q1 + q2) −r2 sin(q1 + q2)

l1 cos q1 + r2 cos(q1 + q2)

0

r2 cos(q1 + q2)

0




ẋ2

ẏ2

ż2

 = J12(q̇1, q̇2) =


−l1q̇1 sin q1 − r2q̇1 sin(q1 + q2) −r2q̇2 sin(q1 + q2)

l1q̇1 cos q1 + r2q̇1 cos(q1 + q2)

0

r2q̇2 cos(q1 + q2)

0


vc2 = J12q̇

and

||v2||2 = vc2
T vc2 = ẋ2

2 + ẏ2
2 + ż2

2

T 2 = 1
2m2

 ((−l1 sin q1 − r2 sin (q1 + q2)) q̇1 − (r2 sin(q1 + q2)) q̇2)2+

((l1 cos q1 + r2 cos (q1 + q2)) q̇1 + (r2 cos(q1 + q2)) q̇2)2

+

1
2Iz2(q̇1 + q̇2)2

(4.3a)

V 2 = m2g (l1 sin q1 + r2 sin(q1 + q2)) (4.3b)

L = [T 1 + V 2]− [T 1 + V 2]

With some calculations based on trigonometric identities, the final Lagrange equation

can be reduced to give the following equation:

L = 1
2m1r1

2q1
2 + 1

2m2l1
2q1

2 + 1
2m2r2

2(q̇1 + q̇2)2 +m2l1r2(q̇2
1 + q̇2q̇1) cos q2

−m1gr1 sin q1 +m2g(l1 sin q1 + r2 sin (q1 + q2)
(4.4)

52

Chapter 4. 2-link and Redundant linked KCM’s

The equation of motion from the Lagrangian formulation above is derived as follows:

∂L
∂q̇1

= (m1 +m2) r1
2q̇2

1 +m2r2
2 (q̈1 + q̈2) +m2l1r2 (2q̈1 + q̇2) cos q2

d
dt
∂L
∂q̇1

= (m1 +m2) r1
2q̈1 +m2r2

2(q̈1 + q̈2) +m2l1r2 (2q̈1 + q̇2) cos q2

−m2l1r2

(
2q̇1q̇2 + q̇2

2

)
sin q2

(4.5a)

∂L
∂q̇2

= −m2l1r2

(
q̇2

1 + q̇1q̇2

)
sin q2 −m2gr2 cos (q1 + q2)

d
dt
∂L
∂q̇2

= m2r2
2 (q̈1 + q̈2) +m2l1r2q̈1 cos q2 −m2l1r2q̇1q̇2 sin q2

(4.5b)

τ1 =
((
m1r1

2 +m2l1
2
)

+m2r2
2 + 2m2l1r2 cos q2 + I1 + I2

)
q̈1+(

m2r2
2 +m2l1r2 cos q2 + I2

)
q̈2 −m2l1r2

(
q̇2

2 + 2q̇1q̇2

)
sin q2+

m2gr2 cos (q1 + q2) + (m1r1 +m2l1) g cos q1

(4.6a)

τ2 =
(
m2r2

2 +m2l1r2 cos q2

)
q̈1 +

(
m2r2

2 + I2

)
q̈2+

m2l1r2q̇
2
1 sin q2 +m2gr2 cos (q1 + q2)

(4.6b)

 τ1

τ2

 =

 m1r1
2 +m2(l1

2 + r2
2 + 2l1r2 cos q2) + I1 + I2 m2r2(r2 + l1 cos q2) + I2

m2r2
2 +m2l1r2 cos q2 + I2 m2r2

2 + I2


 q̈1

q̈2

 +

 −q̇2m2l1r2 sin q2 −m2l1r2(q̇2 + q̇1) sin q2

m2l1r2q̇1 sin q2 0

 q̇1

q̇2


(4.7)

A general state-space equation relating the dynamics of the robot can be written as:

τ (t) = M(q (t))q̈ (t) + C (q (t) , q̇ (t)) q̇ (t) (4.8)

53

Chapter 4. 2-link and Redundant linked KCM’s

With the parameters components consistent with the planar N-link robot equations in

3.8, moment about the center of mass gives the resulting generalized inertia matrix is:

M =

 m1r1
2 +m2(l1

2 + r2
2 + 2l1r2 cos q2) + I1 + I2 m2(r2

2 + l1r2 cos q2) + I2

m2r2(r2 + l1 cos q2) + I2 m2r2
2 + I2


(4.9)

C =

 −q̇2m2l1r2 sin q2 −m2l1r2(q̇2 + q̇1) sin q2

m2l1r2q̇1 sin q2 0

 (4.10)

qi =joint angle, m=link mass, li=length of link.

ri =Distance from previous joint to center of mass of link.

Ii =Mass Moment of inertia of links.

Parameter Value Unit

Length of Link 1 0.32 m

Length of Link 2 0.21 m

Mass of link 1 9.244 kg

Mass of link 2 3.529 kg

Mass moment of inertia link 1 at center of mass 0.2097 kg.m2

Mass moment of inertia link 2 at center of mass 0.0206 kg.m2

Link center of mass coordinate length link 1 0.16 m

Link center of mass coordinate length link 2 0.046 m

Table 4.1: Link parameters of experimental robot setup from [1]

4.1.2 Robot Geometric Constraints: Minimum Enclosing Ellipsoids

Using the minimum enclosing ellipsoid formulation, the tip position of the individual

links 1 and 2 are defined as p1x,y and p2x,y respectively as follows with obstacle informa-

tion derived from the robot workspace in the Cartesian plane is defined as E1 and E2

54

Chapter 4. 2-link and Redundant linked KCM’s

Ellipsoid 1 Ellipsoid 2

a2
1 = 0.065957m2 a2

2 = 0.030155m2

b21 = 8.8631e−3m2 b22 = 8.8631e−3m2

le1 = 0.16m le2 = 0.083545m

Table 4.2: Minimum enclosing ellipsoids for 2-link robot setup

for the link 1 and 2 corresponding ellipses [odx , ody].

E1 =
[(od(x)−p1(x))cosφ1−(od(y)−p1(y))sinφ1]2

a12
+

[(od(y)−p1(y))cosφ1−(od(x)−p1(x))sinφ1]2

b1
2 ≤ 1

(4.11a)

E2 =
[(od(x)−p2(x))cosφ1−(od(y)−p2(y))sinφ2]2

a22
+

[(od(y)−p2(y))cosφ2−(od(x)−p2(x))sinφ2]2

b2
2 ≤ 1

(4.11b)

4.1.3 Inactive Link Constraint Strategy (Passive Ellipsoids)

To further reduce the computation time of the problem, the algorithm is setup in a way to

intelligently ignore the geometric constraints imposed on links when obstacle coordinate

positions are outside its work envelope. For instance, if an obstacle is located outside

the workspace of the first link l = 1, only successive links constraints i.e. E2, ..., EN are

active. The first link geometric constraint E1 is therefore ignored.

4.1.4 Cost functional with Time Varying State Constraint

J(τ(t), q(t)) =
1

2

tf∫
ti

{
Wu

(
‖τ1(t)‖2 + ‖τ2(t)‖2

)
+We‖Tr(t)‖2

}
dt t ∈ [ti, tf] (4.12)

4.2 Extending the Results to N-link KCM’s.

4.2.1 A Redundant link KCM

To further generalize and validate the feasibility of the method setup for general N-link

KCM’s, the same problem set-up was extended for a manipulator with redundant link

properties: A 3-link robot.

55

Chapter 4. 2-link and Redundant linked KCM’s

L1

L2
L3

R3

R1 R2

0

3rd LINK ENCLOSING ELLIPSOID

2nd LINK ENCLOSING ELLIPSOID

1st LINK ENCLOSING ELLIPSOID

Figure 4.2: Schematic drawing of a redundant link robot showing enclosing ellipsoids

4.2.2 Robot Dynamics

In the same way as above, neglecting all gravity effects and assumed the links are once

again none flexible, then total potential energy vT = 0. Using position coordinates of

link-1, 2 and 3; the respective computation of the Jacobian goes as follows:

T 1 = 1
2m1||v1||2 + 1

2ω1
T I1ω1

T 2 = 1
2m2||v2||2 + 1

2ω2
T I2ω2

T 3 = 1
2m3||v3||2 + 1

2ω3
T I3ω3

T T =
1

2
m1||v1||2 +

1

2
ω1

T I1ω1 +
1

2
m2||v2||2 +

1

2
ω2

T I2ω2 +
1

2
m3||v3||2 +

1

2
ω3

T I3ω3 (4.13)

Taking the partial derivatives of the Lagrange equation following the Euler-Lagrange

formulation for a general N-link manipulator, the dynamic equations are formulated

with the conventional symbol consistent as stated in equation 3.8

56

Chapter 4. 2-link and Redundant linked KCM’s

The dynamic equation is derived as:


τ1

τ2

τ3

 =


m11 m12 m13

m21 m22 m23

m31 m32 m33



q̈1

q̈2

q̈2

+


c12 0 0

0 c22 0

0 0 c33



q̇1

q̇2

q̇2

 (4.14)

c11 = −
((

2q̇1q̇2 + q̇2
2

)
(sin q2 (m2l1r2 +m3l1l2) +m3l1r3 sin (q2 + q3))

)
−
((

2q̇1q̇3 + 2q̇2q̇3 + q̇2
3

)
(m3 (l1r3 sin (q2 + q3) + l2r3 sin q3))

)
c22 = m2r2l1q̇

2
1 sin q2 +m3l1l2q̇

2
1 sin q2 +m3r3l1q̇

2
1 sin (q2 + q3)

−m3r3l2 sin q3

(
2q̇1q̇3 + 2q̇2q̇3 + q̇2

3

)
c33 = m3l1r3q̇

2
1 sin (q2 + q3) +m3l2r3q̇

2
1 sin q3

+m3l2r3 sin q3

(
2q̇1q̇2 + q̇2

2

)
m11 = m1r1

2 +m2(l1
2 + r2

2) +m3(l1
2 + l1

2 + r3
2) + I1 + I2 + I3

+2(m2l1r2 +m3l1l2) cos q2 + 2m3l2r3 cos q3 + 2m3l1r3 cos(q3 + q2)

m12 = m2r2
2 +m3(l2

2 + r2
3) + (m2l1r2 +m3l1l2) cos q2

+m3(l1r3 cos(q3 + q2) + 2l2r3 cos q3) + I2 + I3

m13 = m3(r3
2 + l2r3 cos q3) +m3l1r3 cos(q3 + q2) + I3

m21 = m2r2
2 +m3(l2

2 + r2
3) + (m2l1r2 +m3l1l2) cos q2

+ +m3(l1r3 cos(q3 + q2)2l2r3 cos q3) + I2 + I3

m22 = m2r
2
2 +m3(l22 + l23) + 2m3l2r3 cos q3 + I2 + I3

m23 = m3(r2
3 + l2r3 cos q3) + I3

m31 = m3(r3
2 + l1r3 cos(q3 + q2) + l2r3 cos q3) + I3

m32 = m3(r2
3 + l2r3 cos q3) + I3

m33 = m3r3
2 + I3

4.2.3 Cost Functional with Time varying Trajectory

J(τ(t), q(t)) =
1

2

tf∫
ti

{
Wu

(
‖τ1(t)‖2 + ‖τ2(t)‖2 + ‖τ3(t)‖2

)
+We‖Tr(t)‖2

}
dt t ∈ [ti, tf]

(4.15)

57

Chapter 4. 2-link and Redundant linked KCM’s

4.2.4 Obstacle Avoidance /Path Constraint

Inactive ellipsoid constraints are derived in the same way as in the 2-link case. Here the

robot has three minimum enclosing ellipsoids (E1, E2, E3) for interacting links given as

follows:

E1 =
[(od(x)−p1(x))cosφ1−(od(y)−p1(y))sinφ1]2

a12
+

[(od(y)−p1(y))cosφ1−(od(x)−p1(x))sinφ1]2

b1
2 ≤ 1

(4.16a)

E2 =
[(od(x)−p2(x))cosφ2−(od(y)−p2(y))sinφ2]2

a22
+

[(od(y)−p2(y))cosφ2−(od(x)−p2(x))sinφ2]2

b2
2 ≤ 1

(4.16b)

E3 =
[(od(x)−p3(x))cosφ3−(od(y)−p3(y))sinφ3]2

a32
+

[(od(y)−p3(y))cosφ3−(od(x)−p3(x))sinφ3]2

b3
2 ≤ 1

(4.16c)

Ellipsoid 1 Ellipsoid 2 Ellipsoid 3

a2
1 = 0.0256m2 a2

2 = 0.0256m2 a2
3 = 0.0256m2

b21 = 0.0001m2 b22 = 0.0001m2 b230.0001m2

le1 = 0.25m le2 = 0.25m le3 = 0.25m

Table 4.3: Minimum enclosing ellipsoids for 3-link robot setup

Parameter Value Unit

Length of Link 1 0.5 m

Length of Link 2 0.5 m

Length of Link 3 0.5 m

Mass of link 1 2.06 kg

Mass of link 2 2.06 kg

Mass of link 3 2.06 kg

Mass moment of inertia link 1 at center of mass 0.42917 kg.m2

Mass moment of inertia link 2 at center of mass 0.42917 kg.m2

Mass moment of inertia link 3 at center of mass 0.42917 kg.m2

Link center of mass coordinate length link 1 0.25 m

Link center of mass coordinate length link 2 0.25 m

Link center of mass coordinate length link 3 0.25 m

Table 4.4: Link parameters of 3-link KCM robot

58

Chapter 4. 2-link and Redundant linked KCM’s

4.3 DCM Implementation for the 2-link and 3-link Robot

Problem

The optimal control problem was setup and implemented using PSOPT (A C++ based

library) as the discretization platform for the Direct Collocation method(DCM). The

discretization scheme specified using this algorithm is global with the moving mesh to

foster the capturing of the nonlinearities of the dynamics through higher concentration

of nodes around the areas with higher activity to give better solution and lower error

in the polynomial approximation. The resulting NLP is submitted along with the best

choice of Initial guesses to a SQP algorithm (IPOPT) for computing local root solutions

of the NLP. The derivatives (gradients and hessian) were computed using ADOL-C, an

automatic differentiation algorithm which is motivated by the intent of helping the NLP

algorithm converge mush faster. For precision scaling, the error tolerance was imposed

as low as 1e−6 with scaling effects for all optimization variables to assure quality of

so-called feasible solutions.

The discretization of the KCM obstacle avoidance problem is formulated using the trape-

zoidal and Legendre methods with automatic mesh refinement options for the time

discretization intervals (nodes/collocation points). These options were chosen after a

number preliminary setups were carried out for each problem scenario. The optimal

solution guesses implemented were also derived in the same way.

These various problem scenarios were designed as boundary value problem with limits

on the state and control variables. The settling velocity was specified to be zero at the

initial and final solution time for one-shot problems. The problem was reformulated in

various ways to accommodate the implementation at the experimentation phase.

The step-by-step formulation of the problem is explicitly stated in Appendix A and sim-

ulation results for various scenarios are given in this chapter stating the solution time

and the problem information that evolved from the transcription process.

59

Chapter 4. 2-link and Redundant linked KCM’s

4.4 DMOC Implementation for the 2-link Robot Problem

The Discrete Mechanics for Optimal Control(DMOC) method was formulated in AMPL

and implemented using IPOPT as the NLP solver for computing resulting local mini-

mums of the NLP.

The Lagrange equation derived from equation 4.4 may be rewritten as follows:

L(q, q̇) = 1
2 q̇

2
1

[
m1r1

2 +m2l1
2 + 1

12m1l1
2 + 1

12m2l2
2

]
+ 1

2 q̇
2
2

[
m2r2

2 + 1
12m2l2

2

]
+q̇1q̇2m2l1r2

2 cos q2

(4.17)

Discretizing the Lagrange equation of the system, the resulting formulation results to:

δ

N−1∑
k=0

Ld(qk, qk+1) ≈
k+1(h)∫
k(h)

L(q, q̇)dt (4.18)

L(qk, qk+1, h) = 1
2

[
q1k+1−q1k

h

]2[
m1r1

2 +m2l1
2 + 1

12m1l1
2 + 1

12m2l2
2

]
+1

2

[
q2k+1−q2k

h

]2[
m2r2

2 + 1
12m2l2

2

]
+

[
q1k+1−q1k

h

][
q2k+1−q2k

h

]
cos

[
q2k+1+q2k

2

]
m2l1r2

2

+ 1
12m2l2

2

[
q1k+1−q1k

h

][
q2k+1−q2k

h

]
(4.19)

A = 1
2

[
m1r1

2 +m2l1
2 + 1

12m1l1
2 + 1

12m2l2
2

]

B = 1
2

[
m2r2

2 + 1
12m2l2

2

]
C = m2l1r2

2

D = 1
12m2l2

2

L(qk, qk+1, h) = A

[
q1k+1−q1k

h

]2

+B

[
q2k+1−q2k

h

]2

+C

[
q1k+1−q1k

h

][
q2k+1−q2k

h

]
cos

[
q2k+1+q2k

2

]
+D

[
q1k+1−q1k

h

][
q2k+1−q2k

h

] (4.20)

60

Chapter 4. 2-link and Redundant linked KCM’s

The intermediate control forces (Torque at each joint) at the discretized points (grid)

moving the system from the corresponding initial state to the end point qi = q1, q2, q3, ..., qN

is specified as follows for :

FL(τ1, τ2) =

 τ1 − τ2

τ2


Taking two set of discrete Lagrange control forces and its coupled sum for balancing of

force dissipation;

f+
d (qk, qk+1, uk, h) =

h(k+1)∫
hk

fL (q, q̇, τ) · ∂q

∂qk+1
dt (4.21a)

f−d (qk, qk+1, uk, h) =

h(k+1)∫
hk

fL (q, q̇, τ) · ∂q
∂qk

dt (4.21b)

A Midpoint Rule is used to compute the state variables given as:-
qk+1+qk

2 ,
qk+1−qk

h to ap-

proximate the integrals and the time stepping integrator for a balance between accuracy

and computation speed. The time step used for this problem is given as h = 2x10−3.

Taking partial derivatives at each discrete time step, an equivalent to the equation of

motion of the system derived as follows:

δ
δqk

(Partial derivatives wrt ”k”)

qk+1−qk
h = − 1

h ,

[
qk+1−qk

h

]2

= − 2
h

[
qk+1−qk

h

]
qk+qk+1

2 = 1
2 ,

[
qk+qk+1

2

]2

=

[
qk+qk+1

2

]

δ
δqk+1

(Partial derivatives wrt ”k + 1”)

qk+1−qk
h = 1

h ,

[
qk+1−qk

h

]2

= 2
h

[
qk+1−qk

h

]
≈ 2

h

[
qk−qk−1

2

]
qk+qk+1

2 = 1
2 ,

[
qk+qk+1

2

]2

=

[
qk+qk+1

2

]
≈
[
qk−1+qk

2

]

(4.22)

61

Chapter 4. 2-link and Redundant linked KCM’s

D1Ld(qk, qk+1) = − 2
h

[q1k+1−q1k
h

]
A− 2

h

[q2k+1−q2k
h

]
B +D

[
− 1
h
q2k+1−q2k

h − 1
h
q1k+1−q1k

h

]
+C

[−[1
h
q2k+1−q2k

h cos
q2k+1+q2k

2

]
−
[

1
h
q1k+1−q1k

h cos
q2k+1+q2k

2

]
−
[

1
2
q1k+1−q1k

h
q2k+1−q2k

h sin
q2k+1+q2k

2

]]
(4.23a)

D2Ld(qk−1, qk) = 2
h

[q1k−q1k−1

h

]
A+ 2

h

[q2k−q2k−1

h

]
B +D

[
1
h
q2k+1−q2k

h + 1
h
q1k+1−q1k

h

]
+C

[[1
h
q2k+1−q2k

h cos
q2k+1+q2k

2

]
+
[

1
h
q1k+1−q1k

h cos
q2k+1+q2k

2

]
−
[

1
2
q1k+1−q1k

h
q2k+1−q2k

h sin
q2k+1+q2k

2

]]
(4.23b)

f−d (qk, qk+1, τk) = h
2f

[
qk+1+qk

2 ,
qk+1−qk

h , τk + 1/2

]
f+
d (qk, qk+1, τk) = h

2f

[
qk+1+qk

2 ,
qk+1+qk

h , τk + 1/2

]
f−d = f+

d = h
4

[
f
k

+ f
k+1

]
τk + 1/2

= τ

[
tk+tk+1

2

]
(4.24a)

Discrete Euler-Lagrange Equation (Equation of motion)

D1Ld (qk, qk+1) +D2Ld (qk−1, qk) + f−d (qk, qk+1, τk) + f+
d (qk, qk+1, τk−1) = 0

k = 0, ..., N − 1.
(4.25)

Discrete cost function

The discrete equivalent of the performance index in equation is:

Jd(qd, τd) =
1

2

N−1∑
k=0

Wu‖τ1‖2 +Wu‖τ2‖2+We

∥∥∥∥[qrk+1 − qrk
h

]
−
[
qrk+1 + qrk

2

]∥∥∥∥2

(4.26)

Discrete Geometric constraints (Path Constraint)

The minimum enclosing geometric constraint joint parameters are also discretized as

follows:  p1(x)

p1(y)

 = le1

 cos(q2k)

sin(q2k)


62

Chapter 4. 2-link and Redundant linked KCM’s

 p2(x)

p2(y)

 = l1

 cos(q1k)

sin(q2k)

+ le2

 cos(q1k + q2k)

sin(q1k + q2k)


Overall discrete optimal control problem setup takes the form :

min
τ
Jd(qd, τd)

subject to

q0, q̇0 = 0

qT , q̇T = T

 Initial Conditions

D1Ld(q0, q̇0) +D2Ld(q0, q1) + f−0 = 0

D1Ld(qN , q̇N)−D2Ld(qN−1, qN−1) + f+
N−1 = 0

Boundary Conditions

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) + f−k + f+
k−1 = 0 k = 1, ...N − 1 DELE

hE1, hE2(qk, qk+1, uk) ≥ 0 k = 1, ..., N − 1 Path Constraint

63

Chapter 5

SIMULATIONS AND

EXPERIMENTAL RESULTS

5.1 Simulation Results

The simulations were carried out with indiscriminately chosen problem type scenarios

with respect to the robot initial and final desired configuration and obstacle locations.

The motion problem investigated are point-to-point and predefined trajectory tracking

control designed with different mixes of possible events for cases with obstacles located

within and outside the robot work envelope.

Limits are imposed on the state and control variables to put practicality into considera-

tion and various logical boundary conditions (such as zero velocity at the initial and/or

final time) were incorporated to test the performance of the methods. The problem

was also designed in general as fixed terminal state or free terminal state and as fixed

terminal-time OCP’s.

Various options for the discretization algorithm were explored for fine tuning of the

results and the forgoing code is stated in the appendix (DCM and DMOC). The initial

guess was intuitively specified for the NLP solver to work with and this choice has no

full proof direction other than the user’s prior knowledge of the likely solution. Data

was collected and the quantities of paramount interest to the optimization process are

as follows:

64

Chapter 5 Simulation and Experimental Results DMOC and DCM

• The speed at which the problem was solved.

• The path following accuracy of the trajectory where a reference trajectory was

specified.

• Accuracy i.e Cost function evaluation

• Number of iterations used to solve a problem.

• Number of inequality, equality constraints generated during discretization.

• Relative local errors.

The problem setup was implemented using C++ on an INTEL R© based PC with a Dual-

Core processor. UBUNTU 11.04 R©; A Linus Based Kernel was the operating system

with 2GB RAM and 2.67GHz processor speed platform. Discretization was done for the

collocation method and DMOC using PSOPT and a self-designed algorithm respectively.

IPOPT R© was used as the sequential quadratic programming algorithm to solve resulting

NLP’s for both methods.

5.1.1 Problem Scenario-1

A 2-link KCM robot problem with specified reference trajectory is setup as an OCP

with free terminal state and fixed terminal-time tf with state constraints in form of a

time varying trajectory profile to command the motion along a predefined path.

A time varying function defining the desired trajectory for the problem set is defined

as a straight line trajectory with a smooth velocity profile as depicted below. This

trajectory is used to assess the performance of the algorithm when the system is further

constrained with a time-varying state constraint as such as the smooth sinusoidal velocity

profile shown below.

65

Chapter 5 Simulation and Experimental Results DMOC and DCM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−200

−100

0

100

200

p
o

si
ti

o
n

 (
m

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

100

200

300

ve
lo

ci
ty

(m
m

/s
ec

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1000

−500

0

500

1000

time(secs)

ac
ce

le
ra

ti
o

n
(m

m
/s

ec
2)

Figure 5.1: A 1-DOF smooth velocity profile used to command the robot states for
time 0-2 seconds.

At the initial run time, an obstacle is located in the robot workspace coordinate at

x=0.43, y=0.0 and the initial robot joint pose (θ1,θ2) is given as as: (0,π/3). Time

discretization interval (nodes) = 12 for the discretization process.

CPU time (seconds) 2.2e-01

Optimal (unscaled) cost function value 4.435694e-02

Phase Initial time(seconds) 0

Phase final time(seconds) 2

Number of Iterations 21

Phase maximum relative local error 1.374592e-02

Number of objective function evaluations 51

Number of objective gradient/constraint Jacobian evaluations 22

Number of equality/inequality constraint evaluations 40

Number of Lagrangian Hessian evaluations 0

Table 5.1: Problem scenario-1: Optimization solution summary report.

66

Chapter 5 Simulation and Experimental Results DMOC and DCM

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

Time(sec)

O
pt

im
iz

at
io

n
S

ta
te

 V
ar

ia
bl

es

(a)

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

Time(sec)

O
pt

im
iz

at
io

n
C

o−
S

ta
te

 V
ar

ia
bl

es

(b)

q
1
(rad)

q
1
 dot(rad/sec)

q
2
(rad)

q
2
 dot(rad/sec)

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

Time(sec)

T
or

qu
e(

N
)

(c)

τ
1

τ
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Workspace "x" Coordinate

W
or

ks
pa

ce
 "

y"
 C

oo
rd

in
at

e

(d)

Trajectory
Obstacle

Figure 5.2: Optimization output plots (Problem scenario-1): (a) The optimal state
variables, (b) The Co-state variables, (c) The optimal controls (torque) with respect to

time and (d) The optimal trajectory in the robot workspace coordinate.

Figure 5.3: Robot motion profile showing the link configuration at equal time shots
from the generated optimal trajectory (Problem scenario-1).

67

Chapter 5 Simulation and Experimental Results DMOC and DCM

5.1.2 Problem Scenario-2

The problem setup in 5.1.1 but implemented with different choice discretization points

of N = 20 and different initial guess.

0 0.5 1 1.5 2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time(sec)

O
pt

im
iz

at
io

n
S

ta
te

 V
ar

ia
bl

es
(a)

q
1
(rad)

q
1
 dot(rad/sec)

q
2
(rad)

q
2
 dot(rad/sec)

0 0.5 1 1.5 2
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Time(sec)

O
pt

im
iz

at
io

n
C

o−
S

ta
te

 V
ar

ia
bl

es

(b)

0 0.5 1 1.5 2
−0.1

−0.05

0

0.05

0.1

Time(sec)

T
or

qu
e(

N
)

(c)

τ
1

τ
2

0 0.2 0.4 0.6 0.8

−0.1

−0.05

0

0.05

0.1

0.15

Workspace "x" Coordinate

W
or

ks
pa

ce
 "

y"
 C

oo
rd

in
at

e

(d)

Trajectory
Obstacle

Figure 5.4: Optimization output plots (Problem scenario-2): (a) The optimal state
variables, (b) The Co-state variables, (c) The optimal controls (torque) with respect to

time and (d) The optimal trajectory in the robot workspace coordinate.

CPU time (seconds) 1e-01

Optimal (unscaled) cost function value 5.7322e-03

Phase Initial time(seconds) 0

Phase final time(seconds) 2

Number of Iterations 42

Phase maximum relative local error 2.8135e-04

Number of objective function evaluations 46

Number of objective gradient/constraint Jacobian evaluations 43

Number of equality /inequality constraint evaluations 46

Number of Lagrangian Hessian evaluations 0

Table 5.2: Problem scenario-2: Optimization solution summary report.

68

Chapter 5 Simulation and Experimental Results DMOC and DCM

5.1.3 Problem Scenario-3

The problem setup in 5.1.1 but different implemented with different discretization points

of N = 12 and different initial guess as well as different obstacle coordinate as x=-0.30,

y=-0.20.

CPU time (seconds) 2.9e-01

Optimal (unscaled) cost function value 8.085193e-01

Phase Initial time(seconds) 0

Phase final time(seconds) 2

Number of Iterations 42

Phase maximum relative local error 2.278680e-2

Number of objective function evaluations 51

Number of objective gradient/ constraint Jacobian evaluations 46

Number of equality/inequality constraint evaluations 40

Number of Lagrangian Hessian evaluations 0

Table 5.3: Problem scenario-3: Optimization solution summary report.

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

Time(sec)

O
pt

im
iz

at
io

n
S

ta
te

 V
ar

ia
bl

es

(a)

q
1
(rad)

q
1
 dot(rad/sec)

q
2
(rad)

q
2
 dot(rad/sec)

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

Time(sec)

O
pt

im
iz

at
io

n
C

o−
S

ta
te

 V
ar

ia
bl

es

(b)

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

Time(sec)

T
or

qu
e(

N
)

(c)

τ
1

τ
2

−0.4 −0.2 0 0.2 0.4 0.6

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Workspace "x" Coordinate

W
or

ks
pa

ce
 "

y"
 C

oo
rd

in
at

e

(d)

Trajectory
Obstacle

Figure 5.5: Optimization output plots (Problem scenario-3): (a) The optimal state
variables, (b) The Co-state variables, (c) The optimal controls (torque) with respect to

time and (d) The optimal trajectory in the robot workspace coordinate.

69

Chapter 5 Simulation and Experimental Results DMOC and DCM

5.1.4 Problem Scenario-4

Point-to-point motion control specified as a fixed terminal-state qt and fixed terminal-

time (tf) OCP. Obstacle location at runtime is specified as x=0.30, y=0.25 coordinate

solved with 24 discretization points. Initial and desired final position of the manipulator

joints θ1 and θ2 is chosen as: (0,π/6) and (−π/4,π/4) respectively.

CPU time (seconds) 3.8e-01

Optimal (unscaled) cost function value 2.676998e+00

Phase Initial time(seconds) 0

Phase final time(seconds) 5

Number of Iterations 64

Phase maximum relative local error 3.006598e-03

Number of objective function evaluations 65

Number of objective gradient/constraint Jacobian evaluations 65

Number of equality/inequality constraint evaluations 128

Number of Lagrangian Hessian evaluations 0

Table 5.4: Problem scenario-4: Optimization solution summary report.

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8

10

12

Time(sec)

O
pt

im
iz

at
io

n
S

ta
te

 V
ar

ia
bl

es

(a)

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

Time(sec)

O
pt

im
iz

at
io

n
C

o−
st

at
e

V
ar

ia
bl

es

(b)

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

8

Time(sec)

T
or

qu
e(

N
)

(c)

0.2 0.3 0.4 0.5 0.6 0.7
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Workspace "x" Coordinate

W
or

ks
pa

ce
 "

y"
 C

oo
rd

in
at

e

(d)

q
1
(rad)

q
1
 dot(rad/sec)

q
2
(rad)

q
2
 dot(rad/sec)

τ
1

τ
2

Trajectory
Obstacle

Figure 5.6: Optimization output plots (Problem scenario-4): (a) The optimal state
variables, (b) The Co-state variables, (c) The optimal controls (torque) with respect to

time and (d) The optimal trajectory in the robot workspace coordinate.

70

Chapter 5 Simulation and Experimental Results DMOC and DCM

Figure 5.7: Robot motion profile showing the link configuration at equal time shots
from the generated optimal trajectory (Problem scenario-4).

5.1.5 Problem Scenario-5

Point-to-Point motion control modeled as a fixed terminal-state and fixed end-time OCP.

Obstacle location at initial runtime is x=0.30, y=0.20 coordinate solved with 20 dis-

cretization points. Initial and final position for the joints θ1 and θ2 is given as: (0,π/3)

and (-π/4,π/4).

CPU time (seconds) 4.6e-02

Optimal (unscaled) cost function value 2.1436e-03

Phase Initial time(seconds) 0

Phase final time(seconds) 2

Number of Iterations 9

Phase maximum relative local error 1.135067e-02

Number of objective function evaluations 25

Number of objective gradient/constraint Jacobian evaluations 14

Number of equality/inequality constraint evaluations 14

Number of Lagrangian Hessian evaluations 0

Table 5.5: Problem scenario-5: Optimization solution summary report.

71

Chapter 5 Simulation and Experimental Results DMOC and DCM

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

Time(sec)

O
pt

im
iz

at
io

n
S

ta
te

 V
ar

ia
bl

es

(a)

0 0.5 1 1.5 2
−7

−6

−5

−4

−3

−2

−1

0

1

Time(sec)

O
pt

im
iz

at
io

n
C

o−
S

ta
te

 V
ar

ia
bl

es

(b)

q
1
(rad)

q
1
 dot(rad/sec)

q
2
(rad)

q
2
 dot(rad/sec)

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

Time(sec)

T
or

qu
e(

N
)

(c)

τ
1

τ
2

0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.1

0.12

0.14

0.16

0.18

0.2

0.22

Workspace "x" Coordinate

W
or

ks
pa

ce
 "

y"
 C

oo
rd

in
at

e

(d)

Trajectory
Obstacle

Figure 5.8: Optimization output plots (Problem scenario-5): (a) The optimal state
variables, (b) The Co-state variables, (c) The optimal controls (torque) with respect to

time and (d) The optimal trajectory in the robot workspace coordinate.

5.1.6 Problem Scenario-6

3 link KCM problem with specified reference Trajectory similar to the problem setup in

scenario 1 and modeled as a fixed terminal time (Tf) and free terminal state OCP. Ob-

stacle located at x=0.96, y=0.25 workspace coordinate and solved with 12 discretization

points.

72

Chapter 5 Simulation and Experimental Results DMOC and DCM

CPU time (seconds) 8.7e-01

Optimal (unscaled) cost function value 7.569988e01

Phase Initial time(seconds) 0

Phase final time(seconds) 1.8

Number of Iterations 71

Phase maximum relative local error 1.585971e-02

Number of objective function evaluations 102

Number of objective gradient/constraint Jacobian evaluations 72

Number of equality/inequality constraint evaluations 102

Number of Lagrangian Hessian evaluations 0

Table 5.6: Problem scenario-6: Optimization solution summary report.

0 0.5 1 1.5 2
−2

−1

0

1

2

3

4

5

6

Time(sec)

O
pt

im
iz

at
io

n
S

ta
te

 V
ar

ia
bl

es

(a)

0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time(sec)

O
pt

im
iz

at
io

n
C

o−
S

ta
te

 V
ar

ia
bl

es

(b)

q
1
(rad)

q
1
 dot(rad/sec)

q
2
(rad)

q
2
 dot(rad/sec)

q
3
(rad)

q
3
 dot(rad/sec)

0 0.5 1 1.5 2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time(sec)

T
or

qu
e(

N
)

(c)

τ
1

τ
2

τ
3

0 0.5 1 1.5
−1

−0.5

0

0.5

1

Workspace "x" Coordinate

W
or

ks
pa

ce
 "

y"
 C

oo
rd

in
at

e

(d)

Trajectory
Obstacle

Figure 5.9: Optimization output plots (Problem scenario-6): (a) The optimal state
variables, (b) The Co-state variables, (c) The optimal controls (torque) with respect to

time and (d) The optimal trajectory in the robot workspace coordinate.

73

Chapter 5 Simulation and Experimental Results DMOC and DCM

Figure 5.10: Robot motion profile showing the link configuration at equal time shots
from the generated optimal trajectory (Problem scenario-6).

5.2 Comparison Between the Solutions from the DMOC

and DCM Algorithm

This section compares both methods in terms accuracy and speed. Based on the solu-

tion time, the objective function value, the size/dimension of the NLP resulting from

the discretization scheme with respect to the added equality constraint and Jacobian

constraint evaluation. The following deductions are made for variants of the problem

setup in simulation Scenario 1.

74

Chapter 5 Simulation and Experimental Results DMOC and DCM

Discretization
Intervals (Nodes)

DMOC Direct Collocation Method

Obj_function value xE
-5

 Solution time(sec) Obj_function value xE
-3

Solution time(sec)

12 8.88 0.18 3.49 0.22

14 8.78 0.21 3.34 0.33

16 8.52 0.34 3.26 0.46

18 8.32 0.37 3.19 0.78

20 8.30 0.35 3.07 0.89

24 8.30 0.47 3.03 1.03

30 8.30 1.20 3.03 1.10

Figure 5.11: Optimization summary report of DMOC VS Collocation Method for
2-link Robot Problem with robot dynamics as only constraint.

Discretization
Intervals
(Nodes)

DMOC Method Direct Collocation Method

Obj_function
value

Solution
time(sec)

Number of
Iterations

Constraint
Jacobian

Obj_function
value

Solution
time(sec)

Number of
Iterations

Constraint
Jacobian

12 1.783-03 0.18 12 13 4.435e-02 0.22 21 22

20 3.105e-03 0.21 22 23 5.733e-02 0.33 36 37

24 1.406e-03 0.34 34 35 6.033e-2 0.46 39 40

30 3.005e-03 0.37 34 35 7.451e-02 0.778 42 43

35 2.969e-03 0.35 34 35 1.238e-2 0.89 47 48

40 3.381e-03 0.47 53 54 2.504e-02 1.03 52 53

45 3.346e-03 1.20 310
(Ill

conditioned
solution)

313 2.504e-02 1.1 53 54

Figure 5.12: Optimization summary report of DMOC VS Collocation Method for 2-
link Robot problem with obstacle avoidance and time varying trajectory as constraints.

From the tables above, the following deductions about the methods could be inferred:

1. The DMOC method shows lesser iterations in computing solutions compared to

the DMOC of the resulting NLP’s after discretization. For the same number of

discretization steps, the resulting inequality constraint generated from the dis-

cretization process was less in the DMOC setup compared to the DCM showing

a smaller size NLP accordingly. This accounts for the difference in iteration steps

used for computing solutions in each case. The computation for deriving the so-

lutions was also consistent with the iteration as it took longer to solve for NLP’s

discretized using the DCM compared to the DMOC setup.

75

Chapter 5 Simulation and Experimental Results DMOC and DCM

2. The accuracy of the solution for both methods greatly depends on the choice of

discretization steps. The DMOC method showed less sensitivity to variations in

the number of discretization steps compared to the collocation method.

The DMOC solutions experienced ill-conditioning only at points where the num-

ber of discrete time steps was less than or exceeded certain convergence bounds.

The collocation method was noticed to have ill-conditioned solutions and a high

variance in the solution when the number of nodes was not suitable for particular

quadrature rules in computing the integral terms of the cost. Ill condition was

also observed when the higher polynomials approximating the ODE representing

the systems dynamics were not conditioned suitably for the number of collocation

points for the DCM. This seemed to be prevalent in cases where discretization was

done locally.

The moving mesh method (global discretization) and more suitable quadrature

rules for better approximation helped resolved these optimization issues.

The accuracy of the DCM solutions may also be bettered by employing the ap-

propriate time stepping integrator where a midpoint rule is not most efficient.

The collocation method is superior in this sense because of its global discretizaton

process which captures the nonlinearities in the dynamics more accurately.

3. The DMOC shows less sensitivity to the resulting solution when the nodes are

changed unlike the DCM. This makes the setup easier to use in terms of choice

and nodal parameters especially where there is little information about the sys-

tem in question. In both methods, ill-conditioned solutions were observed when

discretization interval did not fit the problem structure in keeping the variation

integrator symplectic during the transcription process.

4. In both methods, the optimization parameters are both the control and state

variables which is prominently reflected in the good handling of limits on the

states and controls.

5. The DMOC setup uses the forward/backward forcing ratios to represent the force

dissipation which also in essence helps the momentum/energy conservation and

reduces ill conditioning which may arise based on this control related constraints.

76

Chapter 5 Simulation and Experimental Results DMOC and DCM

6. The problem setup for the DMOC is very straight forward and much easier to

formulate compared to the collocation method because the discretization was done

directly in the configuration space.

5.3 Experimental Setup

5.3.1 Hardware and Software

A 2-link robot arm (planar configuration) is the experimental test bed used to verify

the simulation results. Parameters are as stated in table 4.1. Obstacle information

in the workspace and information from the encoders at the robots joints specifying the

robots present state/pose are sent to the optimal control desktop computing the optimal

trajectory using UDP data packets established by a stable bidirectional communication

between the real-time computer running the servo-controller and a computer processor

running the optimal control solvers. In the same way, the optimal trajectories are fed

back as input commands for the servo-controller from the optimal control solver machine

The task may be summarized as follows:

• The original problem is setup in the optimal control solver PC which computes

the set of optimal state trajectory q(t)∗. This is implemented as a continuously

running loop which is triggered on and off by a control flag in the form of UDP

data packets carrying information about the robot workspace specifying the initial

and final optimization state variables and the prediction and control horizon for

the problem.

• The robot real-time controller sends the trigger and the necessary information

needed by the solver computer such as: the most recent obstacle locations at the

solver run-time, present link configurations and the desired terminal states of the

robot.

• On triggering, the algorithm checks to confirm the variance in the robot present

state and its desired state, and based on this case structure, computes collision-free

optimal trajectories to move the robot to its desired final state. It computes this

fractional optimal trajectory and sends inputs (optimal trajectory) to the robot

real-time controller.

77

Chapter 5 Simulation and Experimental Results DMOC and DCM

• Based on the current information of the robot environment variables (new ob-

stacle position) at the time the solution arrives, the controller computes torque

commands moving the robot along the safe point commanded considering the ob-

stacle coordinate locations at the arrival time of the solution.

• The entire process is done in successive time steps until the robot reaches its final

desired location.

The hardware components comprise of the following:

• 2-LINK planar manipulator Robot powered by servo drive motors at the end of

each link dictating revolute joint motion as show in the figure below.

• LINUX KERNEL UBUNTU 11.04 R© DESKTOP COMPUTER. 2GB RAM pro-

cessor, 1GB Network card with Dual-Core processor. This runs the optimization

softwares: IPOPT R©/PSOPT R©/ADOLC R©/AMPL R©.

• COMPACTRIO 9022 R© REALTIME COMPUTER: The real-time computer run-

ning the servo controller is designed by National Instrument R© with LABVIEW2011 c©

as the development environment for the controller design. The machine is equipped

with a 2GB processor with FPGA modules to interface the robot components.The

Ethernet port has a LAN data transfer speed of 1GB.

• Display mode to monitor Robot configuration during motion control.

Figure 5.13: 2-Link KCM robot(Planar configuration).

78

Chapter 5 Simulation and Experimental Results DMOC and DCM

5.3.2 Bidirectional Communication

There are quite a number of ways to communicate between computers. For this applica-

tion, the most paramount properties for the choice of the communication link were the

following:

• Fastest rate of data transfer for the initiative of implementing online real-time

solutions updates.

• The communication link should displace the smallest amount of processor speed

in the individual computers.

• Reliability of the communication to ensure the data sent across the network is

correct with correctly ordered messages The data sent to the recipient arrives in

the same order in which they were sent.

• The network structure is stable and bidirectional linkup/binding is fast enough for

real-time control.

• Memory congestion control: No buffer/memory is permanently used up during the

data transfer process.

The conventional communication setup in commercially made computers is the Inter-

net/Intranet Protocols (IP) and the communication modem platform is usually via:

1. Serial Communication Link Ports (COM PORTS)

2. Wireless network ports

3. USB ports.

4. Ethernet networks

The UDP internet protocol transfer technology has two major problems. The possible

poor ordering of data at arrival and the unreliability of the data sent across a network.

The ordering problem is solved by sending the UDP datagram in one shot as a data-

gram at each solution iteration point. For example, with a discretization steps as 40,

corresponding sample control actions for the 2-link KCM results in 80 point sets solution

commands. All the data points are sent as one datagram and a clever measure is used to

79

Chapter 5 Simulation and Experimental Results DMOC and DCM

divide the data set on arrival at the real-time controller. This ensures and solves the over

flogged issue of possible UDP unreliability. With an exceptionally high discretization

set at 100 points, the max size of datagram is still a lot less than the maximum byte

which could be sent as prescribed by standard network data transfer.

The problem of unreliability in data ordering is checked by a simple flag trigger. The

real-time machine waits on a flag which triggers the controller to start-up at successive

stages after motion commands have been generate by the optimal control solver PC.

This flag checking is also repeatedly done before any data from the solver computer can

be trusted for use. This also ensures no clog in memory because of the data transfers.

In the same way, the triggering action is used to automatically initialize the trajectory

generation process in the solver computer to safely accommodate changing robot envi-

ronment variables. Several test-runs were carried out to verify the data sent across the

network were well ordered correctly and efficiently with respect to buffer memory usage.

REALTIME COMPUTER
NI CRIO 9022

OPTIMAL CONTROL SOLVER
COMPUTER

(UBUNTU LINUX KERNEL)

UDP PACKET
DATA TRANSFER

METHOD 2:Collocation Method
PSOPT:-Discretization Algorithm

{IPOPT+ ADOL-C+COLPACK+M27}:-NLP solver

Optimal Trajectory
 command

Joint angle

Joint Torque

SERVO CONTROLLER

ET
H

ER
N

ET
 P

O
R

T

FPGA

 
*

1,2


PD-Torque Computing
Controller

 1,2


 EXPERIMENTAL ROBOT

(OBSTACLE COORDINATE)
Robot Environment

 Variables
FPGA

METHOD 1:Discrete Mechanics Method
Discretization Algorithm (SELF DESIGNED)

{IPOPT ADOL-C+M57}:- NLP solver

ET
H

ER
N

ET
 P

O
R

T

Figure 5.14: Control architecture for real-time trajectory generation.

5.3.3 Hierarchical Control Triggering

The individual activities carried out by the subsystems (Real-time controller and the

Optimal Control solver) have to be properly ordered for successful motion coordination

especially in scenarios where the robot interacts with dynamics environments. The

80

Chapter 5 Simulation and Experimental Results DMOC and DCM

command for the robot has to preserve its collision-free attribute on arrival at the real-

time controller from the optimal control solver as well and when implemented on the

robot hardware.

The major information the solver needs for computing solutions are:

• The most recent state of the robot configuration in terms of joint poses i.e. (posi-

tion, velocity).

• The coordinate position in the workspace of thee most recent obstacle locations

through out the robot runtime.

Case structures ordering the activities of the networked systems ensures the motion

spanning the robot is safe and proper triggering action is carried during runtime for

various scenarios. The overall objective of the hierarchical control framework, is to ensure

the 2-degree of freedom control structure is automatically switched between the stand-

alone subsystems. Also it ensures safe motion coordination (collision free) is realized

all through the solution phases from the initial to final desired position with respect to

the problem setup using the appropriate case structures. The figure below illustrates

the structure of hierarchical control employed to implement the optimal solutions as

feed-forward for the experimental setup.

5.3.4 Torque Computing Controller (Workspace Position Control)

The general conceptual implementation is as follows: The solutions to the OCP are

updated for use in the robot servo controller as the desired task-space trajectory. This

corresponding control input sequence from the optimal trajectory solver is applied in

feed forward. At a time instance “k”, the robot uses knowledge of optimal trajectory

of the most recent solution to a RHC problem and the environment variables to move

the system along this optimal path as long as no parameter is violated such as collision

with a dynamic obstacle as is the case of this study from its current state x(k).

Based on the robots Lagrangian earlier formulated to represent the robots equation

of motion and augmented with the suitable linear PD-control law, the corresponding

torque actions for precisely moving the actuator of the links through the set of optimal

81

Chapter 5 Simulation and Experimental Results DMOC and DCM

ROBOT AND WORKSPACE

ROBOT
REAL WORLD

REALTIME
MACHINE

Trajectory Real-time
Conditioning

PD-CONTROLLER

FPGA

ROBOT
ACTUATORS

OPTIMAL
CONTROL LAYER

DISCRETIZATION
ALGORITHM
DMOC/ DCM

NLP ROOT SOLVER
IPOPT

ENCODER
WORKSPACE

SENSOR

Open-loop optimal
Trajectory

FEASIBLE SOL? Yes!

FEASIBLE SOL? No!

Robot current Pose
Current Obstacle Coordinates

Measurements
Current State

Estimation

Robot Desired State

Robot Current State

Current
Obstacle(s)
information

Motion Command
(Torque) based on

Control horizon

Compute Prediction &
Control Horizon

Obstacle

Coordinate
changed?

No

Yes

Figure 5.15: Hierarchical control system for the Experimental setup

states prescribing the desired optimal trajectory is formulated. This may be speci-

fied in the taskspace (joint coordinate) or workspace (Cartesian coordinate). For this

work, the controller design is employed in the workspace. The major advantage of the

workspace over the taskspace controller is the less computationally expensive formula-

tion of the equations and the immunity the forward kinematics equation has over the

inverse kinematics with respect to singularity points. The key subsystems framework of

the two-degree of freedom control architecture showing the optimal control trajectory

generation and low-level position controller is shown below.

82

Chapter 5 Simulation and Experimental Results DMOC and DCM

LINUX
OPTIMAL

 CONTROL PC

ROBOT LINK
MECHANISM

MOTOR DRIVE
YASKAWA

LABVIEW
 REALTIME PC

CRIO-9022

COUNTER
NI-PCI-9205

DAC
NI-PCI-9401

REAL-TME CONTROLLER SYSTEM

ENCODER
INFORMATION

ACTUATOR TORQUE
COMMANDS

UDP
COMMUNICATION

Figure 5.16: Key control subsystems interaction

With the dynamic parameters consistent to that earlier defined and as a vector of joint

torque which is a function of time as a result of our time dependent end-effector tra-

jectory, a control law in closed loop may be formulated accordingly. Following the for-

mulation in [72], from the dynamic equation of the manipulator in 3.8, the P-D Torque

computing controller is formulated as follows:

τi(t) = M (q (t)) q̈ (t) + C (q (t) q̇ (t)) q̇ (t) + g (q (t)) (5.1)

Using the forward kinematic equations of the robot in question, optimal end-effector

trajectory as xd, yd in the robot workspace coordinates are computed. Ignoring the

gravity effect in the dynamics since our planar configuration KCM is immune to its

effects; the dynamics equation by imploring the Jacobian function mapping the joint

variables q(t) to the Cartesian space [x, y] may be rewritten as:

J (q) = ∂f
∂q and ẋ = J (q) q̈

q̇ = J−1ẋ and q̈ = J−1ẍ+ d
dt

(
J−1

)
ẋ

83

Chapter 5 Simulation and Experimental Results DMOC and DCM

Multiplying through and substituting these mapping equations, the dynamic equation

may be rewritten as:

τi (t) = JT
{
J−TM (q (t)) J−1ẍ (t) +

[
J−TC (q (t) q̇ (t)) J−1 +Mq (t)

d

dt
J−1

]
ẋ (t)

}
(5.2)

A PD controller can then be incorporated at this stage to enable tracking of the de-

sired Cartesian coordinate position by computing linear gains about the intermediate

operating points for position control.

Pgain = Kp(q − qd)

Dgain = Kd(q̇ − q̇d)

This can be defined as an error represented as the difference of the present position and

the desired position e = (q−qd) multiplied by a scalar gain for the position and velocity.

The time varying torque commands for position/trajectory control with the augmented

PD control law in the workspace coordinates can be specified as:

τi (t) = JT
[
J−TM (q (t)) J−1(ẍ (t)−Dgain − Pgain)

]
+JT

[(
J−TC (q (t) q̇ (t)) J−1 +Mq (t) d

dtJ
−1
)
ẋ (t)

] (5.3)

5.3.5 Experiment 1: Reference Set-point Problem

The reference set-point following problem of scenario-2 earlier formulated in the sim-

ulation section is implemented on the experimental 2-link robot setup employing the

optimal desired trajectory as input commands for a Torque-computing controller. The

appropriate torque commands for the actuators at the robot joints to steer the robot

along this desired path are computed with the feedback PD-controller which is set to

run in real-time at 2ms. Using a time based interpolation dictated by the discretization

process; the terminal time for the optimization problem is conditioned to run at the

same rate as the real-time PD-controller in light of preserving the time properties of

the optimal trajectory. The process is automated and the robot environmental variables

(robot pose, obstacle coordinates and desired final pose) are communicated to the solver

using the UDP connectionless data transfer. This data acts as a trigger for the solver

84

Chapter 5 Simulation and Experimental Results DMOC and DCM

to compute the solutions and in the same way solutions (in form of desired optimal

trajectories) are communicated back to the real-time machine as motion coordination

commands.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

−5

0

5

10

lin
k 1 T

o
rq

u
e

τ 1(N
m

)

Time(sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4

−3

−2

−1

0

1

2

3

4

L
in

k 2 T
o

rq
u

e
τ 2(N

m
)

Time(sec)

Figure 5.17: Closed-loop PD-controller performance for joints motors actuation.

85

Chapter 5 Simulation and Experimental Results DMOC and DCM

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

y−
ax

is
(M

)

x−axis(M)

Robot Workspace

Workspace Trajectory

Obstacle Location

ROBOT START
POSITION

ROBOT
DESIRED FINAL

POSITION

Figure 5.18: Robot optimal workspace trajectory.

5.3.6 Experiment 2: Dynamic Obstacle Avoidance Problem

A point-to-point motion with initial and final joint configurations of the robot links θ1

and θ2 as [0,pi/3] and [pi/4,pi/4] respectively is formulated. The optimal control problem

is specified with a prediction horizon of 600 milliseconds and a control horizon of 300

milliseconds implemented using the RHC framework. The communication structure

is consistent with that of experiment 1. Dynamically changing obstacle locations are

simulated within the robot workspace at different time intervals along the robot initial

trajectory and the manipulator is forced to maneuver around them reaching a desired

final pose. The servo-controller real-time loop computing the torque commands for the

link runs at 2ms. The first obstacle with workspace coordinate location (0.43,0.15),

is sensed at the inception of the robot motion with the obstacle changing during run

time. Depending on the property of the obstacle, the control horizon may be corrected

to accommodate for the implementation of the sub-optimal trajectories to ensure robot

continuous collision-free motion.

86

Chapter 5 Simulation and Experimental Results DMOC and DCM

0 100 200 300 400 500 600
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time(ms)

O
pt

im
iz

at
io

n
S

ta
te

 V
ar

ia
bl

es
(a)

q

1
(rad)

q
1
 dot(rad/sec)

q
2
(rad)

q
2
 dot(rad/sec)

0 0.2 0.4 0.6 0.8 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x−axis(M)

y−
ax

is
(M

)

(b)

Workspace Trajectory
Obstacle

Figure 5.19: (a)Optimal states and (b)Optimal trajectory in the 1st RHC iteration.

0 100 200 300 400 500 600
−1

−0.5

0

0.5

1

1.5

Time(ms)

O
pt

im
iz

at
io

n
S

ta
te

 V
ar

ia
bl

es

(a)

q
1
(rad)

q
1
 dot(rad/sec)

q
2
(rad)

q
2
 dot(rad/sec)

0.42 0.43 0.44 0.45 0.46 0.47
−0.24

−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

x−axis(M)

y−
ax

is
(M

)

(b)

Workspace Trajectory
Obstacle coordinate

Figure 5.20: (a)Optimal states and (b)Optimal trajectory in the 2nd RHC iteration.

87

Chapter 5 Simulation and Experimental Results DMOC and DCM

0 100 200 300 400 500 600
−6

−4

−2

0

2

4

6

Time(ms)

O
pt

im
iz

at
io

n
S

ta
te

 V
ar

ia
bl

es
(a)

q

1
(rad)

q
1
 dot(rad/sec)

q
2
(rad)

q
2
 dot(rad/sec)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x−axis(M)

y−
ax

is
(M

)

(b)

Workspace Trajectory
Obstacle

Figure 5.21: (a)Optimal states and (b)Optimal trajectory in the 3rd RHC iteration.

0 100 200 300 400 500 600
−8

−6

−4

−2

0

2

4

Time(ms)

O
pt

im
iz

at
io

n
S

ta
te

 V
ar

ia
bl

es

(a)

q
1
(rad)

q
1
 dot(rad/sec)

q
2
(rad)

q
2
 dot(rad/sec)

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1
0.1

0.15

0.2

0.25

0.3

0.35

x−axis(M)

y−
ax

is
(M

)

(b)

Workspace Trajectory
Obstacle Coordinate

Figure 5.22: (a)Optimal states and (b)Optimal trajectory in the 4th RHC iteration.

88

Chapter 5 Simulation and Experimental Results DMOC and DCM

Optimization Information Phase 1 Phase 2 Phase 3 Phase 4

CPU time (seconds) 8.4e-02 1.9e-01 2.2e-01 4.3e-01

Optimal (unscaled) cost function value 1.21929e-02 1.38008e-01 1.97489e-01 1.0900e-01

Phase Initial time(seconds) 0 0 0 0

Phase final time(seconds) 0.6 0.6 0.6 0.6

Number of Iterations 50 46 22 14

Phase maximum relative local error 2.35123e-03 3.13981e-3 3.44141e-03 4.00651e-3

Number of objective function evaluations 32 32 32 32

Number of objective gradient/constraint
Jacobian evaluations

31 31 31 31

Number of equality/inequality constraint
evaluations

62 62 62 62

Number of Lagrangian Hessian evaluations 0 0 0 0

Interpolation points(Nodes) 16 16 16 16

Table 5.7: Optimization summary of solutions in RHC-phases of sub-optimal trajec-
tories.

−0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x−axis(M)

y−
ax

is
(M

)

Robot workspace showing entire collision−free motion profile from receeding Horizon−OCP sub−optimal solutions

Workspace Trajectory

Obstacle location
at time t=300ms

Obstacle location
at time t=600ms

Obstacle location
at time t=1200ms

START POINT

FINAL DESIRED POINT

Obstacle location
at time t=1600ms

Figure 5.23: Generated optimal collision-free trajectory with time-varying obstacles.

89

Chapter 6

CONCLUSIONS

This chapter gives a general closure of the problem studied, the outcome from the

concepts employed as stated in the preceding chapters, observations and conclusions

from the results arrived at as well as insights for further work.

6.1 Observations, Limitations and Future Work

6.1.1 Conditioning the Solution

The initial guess is a crucial optimization information needed by the SQP algorithm

to derive the root solutions of the continuous OCP in a NLP form. The accuracy of

the solution depends largely on its choice. This is done by propagating the differential

equation associated with the problem or is derived from intuition based on the prior

information/knowledge of the probable solution of the problem in question.

Highly varying solutions were observed with very slight changes in the initial guess. This

shows that the resulting NLP’s after discretization of the OCP are very sensitive to this

optimization parameter. Both the DMOC and DCM methods show high sensitivity to

the initial guess and varied solution are observed with different values specified. A high

variance from the best choice resulted in ill-conditioned solution as well.

Incorrect or infeasible solutions are also noticed when this is not within proper bounds

(collocation points a too few or too many) for the problem. A realistic and intuitive

remedy is manual fine tuning. This is however a limitation for the type of problem

90

Chapter 6. Observations, Future works and Conclusions

investigated in this work (online/real-time trajectory generation). For an intended au-

tomated process such as this, the root finding algorithm computing solutions to OCP

has to be given the appropriate initial guess at each iteration to compute the solutions.

The problem setup in PSOPT cannot be redesigned to accommodate this crucial devel-

opment because it gives no room for auto-generating the initial guesses beyond the first

successive RHC problem phases and these constraints the quality of the solution when

the scenario may not be recognized intuitively.

6.1.2 Quality of the Optimal Solutions (Accuracy)

The DCM discretization technique and its solutions at best, give approximate solutions

for the optimal control and state trajectories. From the various scenarios, solutions are

generally correct except for problems where the solution has a far varying nature within

the phases, resulting to incorrect or infeasible solutions.

The DMOC suffers less in this regard but the wrong values of the configuration space

discretization parameter may render the solution impractical.

For both methods, many variables and system parameters affect the quality. The users

understanding of the problem is most important and choosing the most appropriate

bounds and conditioning values will surely give reasonable results.

6.1.3 Handling Scenarios with Infeasible Solutions

Many conditions characterize the solution as feasible or during the optimization pro-

cess. One important optimization based check for feasibility, is the error tolerance in

the discretization size and interval. The discretization error ratio must fall between a

certain range predefined by the user based on the mix of quadrature rules and approx-

imation polynomial used prior to computation of the solution for the DCM. The NLP

local solution tolerance in terms of the constraint bounds and scaling factors is also

another condition in the SQP algorithm which cannot be violated else the solution is

infeasible. This is also a predefined bound for the solver. This optimization conditions

give information about the optimization process and foster the users understanding of

the points where ill-conditioning occur; however, it is only desirable for problems with

single phase solutions.

91

Chapter 6. Observations, Future works and Conclusions

Also, scenarios with physically impossible instances resulted in infeasible solutions are

expected. Such instances with respect to the problems investigated in this report are

found when the initial condition imposed on the problem already violates the manipu-

lator geometric constraints (obstacles within the space of the link enclosing ellipsoids)

or cases in which the obstacle coordinates are located beyond the robot work envelope.

The approach utilized to handle such instances was to define rules or case structures to

check such occurrences and trigger the appropriate hierarchical action to resolve such

illogical scenarios or ill-conditioned solutions. This ensured the collision-free properties

of trajectories and also the integrity of the state and control parameters specified for the

experimental test-bed robot motion commands as optimal.

6.1.4 Method Suitability for Online Optimization

Although the problem scale was amplified due to discretization of both the state and

control variables as optimization parameters, the high sparsity in the Jacobian matrices

of the NLP gave the SQP algorithm the advantage of achieving speedy computation in

arriving at the local minimal solutions application for real-time motion profiling.

This discretization technique in the Collocation methods at best, give approximate solu-

tions for the optimal control and state trajectories. From the various scenarios, solutions

are generally correct except for problems where the solution has a far varying nature

within the phases, resulting to incorrect or infeasible solutions.

The data packets sent by the UDP-IP also aided the interaction between the Solver-

PC and the Real-time machine and proper activity ordering ensured the bi-directional

communication was instantaneous.

6.1.5 Choice of Discretization Interval Points (Nodes)

The solution accuracy and computation speed depends on the choice of the discretiza-

tion points (nodes) with respect to both OCP methods implemented as shown in the

simulation results of chapter 5. For instance, where full knowledge of the problem is not

known prior to solving it, and assigning the best choice of discretization points cannot

be derived intuitively, generated solutions may give non-feasible or ill conditioned solu-

tions. Manually generating the nodes is undesirable and is a non-trivial limitation, as

92

Chapter 6. Observations, Future works and Conclusions

the hierarchical control system runs in an automated field.

The results show that the DMOC algorithm results in a more immune NLP with respect

to choice of discretization points used unlike the collocation method. Ill conditioned so-

lutions are observed when the number of nodes is far from a convergence range suitable

for the problem setup as well as the collocation method further exhibiting a much larger

variance in resulting solutions for just a slight variation in the number of collocation

points.

6.1.6 State and Control Boundaries

Both methods (DCM and DMOC) handled state and control constraints perfectly. The

values for this optimization parameter were incorporated based on the hardware setup

for all the problem formulations as depicted in the simulation results shown in chapter

5.

Both methods only impose the constraint sets at the nodes, and not within the in-

terpolation points. This maybe an issue for cases where constraints need to be active

all through the phase of the problem implementation and so, could be a hindrance for

smooth collision-free trajectory generation problems. The approach to circumvent this

problem will be to use as many as is suitable discretization points at the expense of

computation size and solution time.

6.1.7 Inactive Path constraint: Passive Links Strategy

To further speed-up the computation process and still preserve the accuracy of the

solutions, the geometric state of the KCM links with respect to the orientation of obstacle

coordinates dictates the path constraint on the individual manipulator links as inactive

or not. This was done by checking the state of the links minimum enclosing ellipsoids

with respect to the obstacle coordinate and in essence ignoring the algebraic constraints

generated by obstacles when they did not physically constrain the motion of the link in

question. In a case where an obstacle did not interfere with all the links, there was a

faster computation of optimal solutions due to considerably less constraint sets on the

problem.

93

Chapter 6. Observations, Future works and Conclusions

6.1.8 Incorporating Workspace Vision Sensors

For the experimental setup in this work, the obstacle locations were simulated at ar-

bitrary time instances into the OCP directly from the real-time computer. A position

sensor was not incorporated into the robot arm hardware. More practical investigations

may suffice by mounting an active sensory device (e.g Camera) in the robot workspace

for monitoring these arbitrary changing obstacles and enhance more robust real-time

operations.

6.2 Conclusions

An high level summary of this work maybe described as follows:

• Design and implementation of two direct optimal control approaches for generating

collision-free trajectories in KCM robot systems where arbitrarily moving obsta-

cles may exist in the robot work envelope for point-to-point motion and where

predefined time-varying paths were prior specified.

• Implementing the real-time OCP using a conceptual control framework: The Re-

ceding Horizon Control scheme as platform to realize online and real-time motion

control capturing the dynamic properties of the time-varying obstacles.

• Design of a two-degree-of-freedom control platform. A Hierarchical Control Sys-

tem equipped through bi-directional UDP communication was implemented to

interface two independent computer processes for enhanced real-time interaction

and triggering control for activity ordering of the overall motion control system.

The real-time performance of the servo-controller was assured and the speed of

the optimal control algorithm generating the collision-free trajectories enhanced

as well.

• Successful validation of the process above on an experimental two-link KCM using

a linear feedback PD-controller to compute torque commands for steering the robot

along the specified input set-points of collision-free optimal trajectories.

This work shows the success and prospects of using direct optimal control methods

(DMOC and DCM) for trajectory generation problems in real-time applications for high

94

Chapter 6. Observations, Future works and Conclusions

level motion planning in Kinematic Chain Manipulator robots which may be extended

to related constrained mechanical systems.

95

Bibliography

[1] Hoam chung and Soo Jeon. Collision-free trajectory generation of robotic manipu-

lators using receding horizon strategy. American Control Conference (ACC), IEEE,

pages 1692–1697, 2011.

[2] World Robotics 2012 Industrial Robots. Industrial robot statistics. Interna-

tional federation of robotics, 2, 2012. URL www.ifr.org/uploads/media/WR_

Industrial_Robots_2012_Executive_Summary.pdf.

[3] Steven M.LaValle. Planning algorithms. Cambridge University Press, 2006.

[4] J. E. Bobrow, S. Dubowaky, and J. S. Gibson. On the optimal control of robotic

manipulators with actuator constraints. American Control Conference, pages 782–

787, 1983.

[5] Florin Moldoveanu, Vasile Comnac, Dan Floroian, and Cristian Boldisor. Trajectory

tracking control of a two-link robot manipulator using variable structure system

theory. Journal of Control Engineering and Applied Informatics, 7(3):56–62, 2005.

[6] M.E. Kahn, A.K. Bejczy, and B. Roth. The near-minimum time control of open-

loop articulated kinematic chains. Stanford Artificial Intelligence Memo, 1:164–172,

1971.

[7] R. Paul. Modeling and trajectory calculations and servoing of a computer controlled

arm. Stanford Artificial Intelligence Memo, 117(1), 1972.

[8] J-C. Latombe L.E Kavraki, P.Svestka and M.H. Overmars. Probabilistic roadmaps

for path planning in high-dimensional configurations spaces. IEEE Transactions on

Robotics and Automation, 12:566–580, 1996.

96

www.ifr.org/uploads/media/WR_Industrial_Robots_2012_Executive_Summary.pdf
www.ifr.org/uploads/media/WR_Industrial_Robots_2012_Executive_Summary.pdf

Bibliography

[9] J.H Yakey S.M Lavalle and L.E Kavraki. A probabilistic roadmap approach for sys-

tems with closed kinematic chains. IEEE Transactions on Robotics and Automation,

12:1671–1676, 1999.

[10] E.Kim K.Oh, J.P.Hwang and H.Lee. Path plannig of a robot manipulator using

retieval rrt strategy. World Academy of Science, Egineering and Technology, 12,

2007.

[11] Balint Kiss Emese Szadeczky-Kardoss. Extension of the rapidly-exploring random

trees algorithm with key configurations for nonholonomic motion planning. pages

293–309, 2007.

[12] J.J Kuffer S.M Lavalle. Rapidly-exploring random trees:a new tool for path plan-

ning. Technical report. Computer Science Dept,Iowas State University, (11):88, Oct

1998.

[13] J.J Kuffer S.M Lavalle. Rapidly-exploring random trees:progress and prospect.

Internationsl workshop on Algorithmic and computational Robotics(WAFR), pages

293–309, 1999.

[14] Masato Suzuki Sejiji Aoyagi Chikatoyo Nagata, Eri Sakamoto. Path generation

and collision avoidance of robot manipulators for unknown moving obstacles using

real-time rapidly-exploring random trees (rrt). Service Robotics and Mechatronics,

2007.

[15] Oussama Khatib Oliver Brock. Real-time obstacle avoidance and motion coordina-

tion in a multi-robot workcell. IEEE Symposium on Assembly and Task Planning,

July 1999.

[16] Oussama Khatib Oliver Brock. Real-time replanning in high-dimensional config-

uration spaces using sets of homotopic paths. IEEE International Conference on

Robotics and Automation, April 2000.

[17] Nicholas Petit, Mark B. Milam, and Richard M. Murray. Inversion based con-

strained trajectory optimization. 5th IFAC symposium on nonlinear control sys-

tems, 2001.

97

Bibliography

[18] Narendra Karmarkar. A new polynomial-time algorithm for linear programming.

Proceedings of the 16th annual ACM symposium on Theory of computing, pages

302–311, 1984.

[19] Narendra Karmarkar. New parallel architecture for sparse matrix computation

based on finite projective geometry. Proceedings of the 1991 ACM/IEEE Confer-

ence, pages 358–369, 1991.

[20] Andreas Wachter and Lorenz T Biegler. On the implementation of an interior point

filter line search algorithm for large scale nonlinear programming. Mathematical

Programming, pages 25–57, 2006.

[21] Anthony V. Fiacco and Garth P. McCormick. Nonlinear programming: Sequential

unconstrained minimization techniques. Unabridged, corrected republication, 1990.

[22] Wassem Ahmed Kamal, Da wei gu, and Ian Postlethwaite. Realtime trajectory

planning for uavs using milp. 44th IEEE Conference on Control and Automation,

pages 3381–3386, 2005.

[23] Cedric S. Ma and Robert H. Miller. Optimal path planning for real-time applica-

tions northrop grumman integrated systems. American Control Conference, IEEE

Control Conference, page 6, 2006.

[24] Arthur Ricards and Jonathan P. How. Aircraft trajectory planning with collision

avoidance using mixed integer linear programming. American Control Conference,

pages 1936–1941, 2002.

[25] Hao Ding, Gunther Reiig, and Olaf Stursberg. Increasing efficiency of optimization-

based path planning for robotic manipulators. Decision and Control and European

Control Conference CDC-ECC, pages 1399–1404, 2011.

[26] Hao Ding, Mingxiang Zhou, and Olaf Stursberg. Optimal motion planning for

robotic manipulators with dynamic obstacles using mixed-integer linear program-

ming. Control and Automation, pages 934–939, 2009.

[27] Paulo Tabuada and George J . Pappas. Hierarchical trajectory generation for a

class of nonlinear systems. Automatica, pages 701–708, 2005.

98

Bibliography

[28] J. E. Bobrow, F. C. Park, and A. Sideris. Recent advances on the algorithmic

optimization of robot motion. Fast Motions in Biomechanics and Robotics, pages

21–41, 2006.

[29] Michael J. Van Nieuwstadt and Richard Murray. Real-time trajectory generation

for differentia flat systems. California institute of Technology, 1997.

[30] Elijah Polak, Hoam Chung, and S. Shankar Sastry. An external active-set strategy

for solving optimal control problems. Automatic Control, IEEE Transactions, 54

(5):1129–1133, 2009.

[31] A. H. Levis, S. I. Marcuc, W. R. Perkins, P. Kokotovic, M. Athans, R. W. Brockett,

and A. S. Willsky. Challenges to control: A collective view. Automatic Control,

IEEE Transactions, 32(4):275–285, September 1987.

[32] R. Johansson. Quadratic optimization of motion coordination and control. Auto-

matic Control, IEEE Transactions on Robotics and control, pages 1197–1208, 1990.

[33] A. S. Morris and A. Madani. Quadratic optimal control of a two-flexible-link robot

manipulator. Robotica, 16(1):97–108, 1996.

[34] Tamer Basar Francesco Bullo Gregory J. Toussaint. Motion planning for nonlin-

ear underactuated vehicles using h-infinity techniques. IEEE American Control

Conference, pages 4097–4103, 2001.

[35] Sigurd Skogestad and Ian Postlethwaite. Multivariable feedback control. Analysis

and Design (2nd Edition), 2005.

[36] Dan Simon. Optimal state estimation: Kalman, h-infinity, and nonlinear ap-

proaches. Wiley-Interscience, 2006.

[37] Basar Tamer and Bernhard Pierre. H-infinity optimal control and related minimax

design problems. 2008.

[38] R. F. Hartl, S.P. Sethi, and R.G. Vickson. A survey of the maximum principles

for optimal control problems with state constraints. SIAM Review, 37(2):181–218,

1995.

[39] R. Bulirsch, E. Nerz, H. J. Pesch, and O. Von Stryk. Combining direct and indirect

methods in optimal control: Range maximization of a hang glider. Mathematics

Institute, 1991.

99

Bibliography

[40] H. J. Pesch. A practical guide to the solution of real-life optimal control problems.

Control and Cybernetics, 23(1/2):7–60, 1994.

[41] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko. The

mathematical theory of optimal processes. Control and Cybernetics John Wiley &

Sons, New York, 1962.

[42] B. S. Chen, T.-S. Lee, and J.-H. Feng. A nonlinear h-infinity control design in

robotics systems under parametric perturbation and external disturbance. Inter-

national Journal of Control, pages 439–461, 1994.

[43] J. Park and W. K. Chung. Analytic nonlinear h-infinity inverse-optimal control

for euler-lagrange system. IEEE Transactions on Robotics and Automation, 16(6):

847–854, 2000.

[44] H. Gorecki, A. Korytowski, M. Symkat, and A. Turnau. Optimal control- a survey.

2004.

[45] C.Hargraves and S.Paris. Direct trajectory optimization using nonlinear program-

ming and collocation. AIAA Journal of Guidance, Control and Dynamics, 10(4),

2012.

[46] Hermann Brunner. Collocation methods for volterra integral and related functional

equations. Cambridge Monographs on Applied and Computational Mathematics,

2004.

[47] W. Murray, P. E. Gill, and M. A. Saunders. Snopt: An sqp algorithm for large-scale

constrained optimization. SIAM Journal on Optimization, 12(4):979–1006, 2002.

[48] E. Polak. Optimization: Algorithms and consistent approximations. Applied Math-

ematical Sciences, 7, 1997.

[49] On the convergence of a sequential quadratic programming method with an aug-

mented lagrangian line search function. Optimization, 14(2):197–216, 1983.

[50] Michael. A. Patterson and Anil V. Rao. Exploiting sparsity in direct collocation

pseudospectral methods for solving optimal control problems. University of Florida.

Gainesville, FL 32611, 49(2), 2012.

100

Bibliography

[51] Jesse A. Pietz. Pseudospectral collocation methods for the direct transcription of

optimal control problems. Masc Thesis, Rice University, 2004.

[52] Sina Ober-Blobaum, Oliver Junge, and Jerrold E. Marsden. Discrete mechanics

and optimal control: An analysis. California Institute of Technology, 2008.

[53] J. E. Marsden and M. West. Discrete mechanics and variational integrators. Actra

Numerica, 10(357):514, 2001.

[54] Ari Stern and Mathieu Desbrun. Discrete geometric mechanics for variational time

integrators. Caltech, 2010.

[55] Jaiwey Zhang, Weizhong Zhang, and Jiayuan Shan. A new dmoc-based approach

to solve goddard rocket problem. IEEE conference, pages 2165–2169, 2012.

[56] Weizhong Zhang and Tamer Inanc. A tutorial for applying dmoc to solve optimiza-

tion control problems. IEEE Conference on Robotics and Control Systems, pages

1857–1862, 2010.

[57] Weizhong Zhang, Tamer Inanc, and Jerrold E. Marsden. Dmoc approach to real-

time trajectory generation for mechanical systems. IEEE Conference on Control,

Automation, Robotics and Vision, pages 2192–2195, 2008.

[58] Francois Margot Yoshiaki Kawajir and Andreas Wachter. Introduction to ipopt: A

tutorial for downloading, installing, and using ipopt. 2010.

[59] W. Murray P. E. Gill and M. A. Saunders. Snopt: An sqp algorithm for largescale

constrained optimization. Report NA 97-2, Department of Mathematics, University

of California, San Diego USA, 1997.

[60] S. P. Han. Superlinearly convergent variable-metric algorithms for general nonlinear

programming problems. Mathematical Programming, page 11:263282, 1976.

[61] J.M.Maiejowski. Predictive control with constraints. Prentice Hall, 1 edition,

September 2000.

[62] Christopher V. Roa, Stephen J. Wright, and James B. Rawlings. On the application

of interior point methods to model predictive control. Journal of optimization theory

and application, 99(3):723–757, 1998.

101

Bibliography

[63] L.C. Rabelo. Intelligent control of a robotic arm using hierarchical neural network

systems. IEEE Seattle International Joint Conference on Automation, 2:747–751,

1991.

[64] Elon Rimon and Stephen P. Boyd. Obstacle collision detection using best ellipsoid

fit. Journal of intelligent and robotic systems, 18(2):105–126, 1997.

[65] N. Moshtagh. Minimum volume enclosing. Convex Optimization, 2005. URL www.

mathworks.com/matlabcentral/fileexchange/9542.

[66] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). New results and new

trends in computer science, pages 359–370, 1991.

[67] B. P. Burrell and M. J. Todd. The ellipsoid method generates dual variables.

Mathematics of Operations Research, 10(4):688–700, 1985.

[68] P. Sun and R. M. Freund. Computation of minimum volume covering ellipsoids.

Operations Research, pages 690–706, 2004.

[69] Victor M. Becerra. Psopt optimal control solver user manual. University of Reading,

Release version 3, 2011.

[70] Von stryk O. and R. Bulirsch. Direct and indirect methods for trajectory optimiza-

tion. Annals of Operations Research, 37(1):357–373, 1992.

[71] Mark .W Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot modeling

and control. Hoboken New Jersey: John Wiley & Sons, 2006.

[72] S. S. Sastry S. Shankar Sastry Richard M. Murray, Zexiang Li. A mathematical

introduction to robotic manipulation. CRC Press, 1994.

102

www.mathworks.com/matlabcentral/fileexchange/9542
www.mathworks.com/matlabcentral/fileexchange/9542

Appendix. DCM & DMOC Code

Appendix

This appendix includes the full code that may be used to reproduce the results for

the 2-link and 3-link Robot manipulator solved in chapter 4 and implemented in the

experimental setup in chapter 5 for the DCM and DMOC methods.

.1 DCM Code

PSOPT: A Tool for Implementing Optimal Control problems by Direct Collocation

methods.

PSOPT [69] is a C++ based library which implements the Direct Collocation methods

explained in chapter 3. The resulting nonlinear programming problem is solved using

an Interior Point Optimization (IPOPT) software library IPOPT; which is a sequential

programming algorithm. IPOPT uses dependency solvers to compute the gradients,

hessians and jacobian matrices and primarily the option used here is the Automatic

Differentiator for C++; (ADOL-C). Synchronized use of the libraries: PSOPT/IPOPT

is setup to solve optimal control problems in the following way consistent with the setup

in the PSOPT user manual [69].

C++ code of the Optimal control Implementation for motion planning problem using

PSOPT/IPOPT is as follows:

//c++ implemetation for 2-link Problem setup in PSOPT

#include "psopt.h"

#include "PracticalSocket.h"

#include <iostream>

#include <cstdlib>

#include <stdlib.h>

#include <string.h>

#include <pthread.h>

#include <time.h>

const double xd=0.43, yd=0.0;//obstacle coordinate position

const double l1=0.32,l2=0.21,r1=0.16,r2=0.083545;//links and ellipse center

double q1i=0.0, q2i=pi/3, dq1i = 0.0, dq2i = 0.0; //initial-position&velocity

103

Appendix. DCM & DMOC Code

double dq1f =0.0, dq2f=0.0;//final position&velocity

const double alpha=0.835783364,beta=0.05194688,delta=0.028067364;//lumped

const double as1=0.065957,bs1=0.0088631,as2=0.030155,bs2=0.0041179; //ellipse

const double i_time=0, f_time=2,col_nodes =12,obstacle_c =2, i_path=0.0,

f_path=200.0;

const double wu=1, we=100;

// Define the end point (Mayer) cost function

adouble endpoint_cost(adouble* initial_states, adouble* final_states,adouble*

parameters,adouble& t0, adouble& tf,adouble* xad, int iphase)

{

return 0.0;

}

// Define the integrand (Lagrange) cost function

adouble integrand_cost(adouble* states, adouble* controls, adouble*

parameters, adouble& time, adouble* xad,int iphase)

{

adouble retval;

adouble u1 = controls[CINDEX(1)];//controls

adouble u2 = controls[CINDEX(2)];

adouble q1 = states [CINDEX(1)];//states

adouble q1dot = states [CINDEX(2)];

adouble q2 = states [CINDEX(3)];

adouble q2dot = states [CINDEX(4)];

adouble xr =l1+l2/2, yr = -l2*1.732213/2*cos(pi*(time/2 - 1));

adouble xtip = l1*cos(q1) + l2*cos(q1+q2);

adouble ytip = l1*sin(q1) + l2*sin(q1+q2);

adouble x=xtip,y=ytip;

retval =0.5*(

(we*(x-xr)*(x-xr))+we*(y-yr)*(y-yr))+0.5*wu*((u1*u1)+(u2*u2));

return retval;

}

// Define the dynamic equations of the robot

void dae(adouble* derivatives, adouble* path, adouble* states, adouble*

controls, adouble* parameters, adouble& time,adouble* xad, int iphase)

{

adouble q1 = states [CINDEX (1)];

adouble q1dot = states [CINDEX (2)];

104

Appendix. DCM & DMOC Code

adouble q2 = states [CINDEX (3)];

adouble q2dot = states [CINDEX (4)];

adouble u1 = controls[CINDEX(1)];

adouble u2 = controls[CINDEX(2)];

adouble M[2][2],C[2][2],Mi[2][2];

M[0][0] = alpha+2.0*beta*cos(q2);

M[0][1] = delta+beta*cos(q2);

M[1][0] = M[0][1];

M[1][1] = delta;

adouble D = M[0][0]*M[1][1] - M[0][1]*M[1][0];

D=1.0/D;

Mi[0][0] = D*M[1][1];

Mi[0][1] = -D*M[0][1];

Mi[1][0] = -D*M[1][0];

Mi[1][1] = D*M[0][0];

C[0][0] = -q2dot*beta*sin(q2);

C[0][1] = -(q1dot+q2dot)*beta*sin(q2);

C[1][0] = q1dot*beta*sin(q2);

C[1][1] = 0.0;

adouble qdd[2];

qdd[0] = Mi[0][0]*(u1-C[0][0]*q1dot-C[0][1]*q2dot) + Mi[0][1]*(

u2-C[1][0]*q1dot-C[1][1]*q2dot);

qdd[1] = Mi[1][0]*(u1-C[0][0]*q1dot-C[0][1]*q2dot) + Mi[1][1]*(

u2-C[1][0]*q1dot-C[1][1]*q2dot);

adouble q1dd = qdd[0], q2dd = qdd[1];

derivatives [CINDEX(1)] = q1dot;

derivatives [CINDEX(2)] = q1dd;

derivatives [CINDEX(3)] = q2dot;

derivatives [CINDEX(4)] = q2dd;

adouble c1[1],c2[1];

c1[0] = r1*cos(q1);

c1[1] = r1*sin(q1);

c2[0] = l1*cos(q1)+r2*cos(q1+q2);

c2[1] = l1*sin(q1)+r2*sin(q1+q2);

adouble p1 = q1;

adouble p2 = q1+q2;

path[0]=((pow((xd-c1[0])*cos(q1)-(yd-c1[1])*sin(q1),2)/as1)+...

(pow((yd-c1[1])*cos(q1)-(xd-c1[0])*sin(q1),2)/bs1))-1;

105

Appendix. DCM & DMOC Code

path[1]=((pow((xd-c2[0])*cos(p2)-(yd-c2[1])*sin(p2),2)/as2)+...

(pow((yd-c2[1])*cos(p2)-(xd-c2[0])*sin(p2),2)/bs2))-1;

}

// Define the events function

void events(adouble* e, adouble* initial_states, adouble*

final_states,adouble* parameters,adouble& t0, adouble& tf, adouble*

xad,int iphase)

{

adouble q1i = initial_states[CINDEX (1)];

adouble dq1i = initial_states[CINDEX (2)];

adouble q2i = initial_states[CINDEX (3)];

adouble dq2i = initial_states[CINDEX (4)];

adouble q1f = final_states[CINDEX (1)];

adouble dq1f = final_states[CINDEX (2)];

adouble q2f = final_states[CINDEX (3)];

adouble dq2f = final_states[CINDEX (4)];

e[CINDEX(1)] = q1i;

e[CINDEX(2)] = dq1i;

e[CINDEX(3)] = q2i;

e[CINDEX(4)] = dq2i;

e[CINDEX(5)] = dq1f;

e[CINDEX(6)] = dq2f;

}

// Define the phase linkages function

void linkages(adouble* linkages, adouble* xad)

{

}

// main subroutine

int main(void)

{

// Declare key structures

Alg algorithm;

106

Appendix. DCM & DMOC Code

Sol solution;

Prob problem;

// Register problem name

problem.name = "Two link planar robot arm";

problem.outfilename = "twolink.txt";

// Define problem level constants & do level 1 setup

problem.nphases = 1;

problem.nlinkages = 0;

psopt_level1_setup(problem);

// Define phase related information & do level 2 setup

problem.phases(1).nstates = 4;

problem.phases(1).ncontrols = 2;

problem.phases(1).nevents = 6;

problem.phases(1).npath = obstacle_c;

problem.phases(1).nodes = col_nodes;

psopt_level2_setup(problem, algorithm);

// Enter problem bounds information(boundaries on states and controls)

problem.phases(1).bounds.lower.states(1) = -100.0;

problem.phases(1).bounds.lower.states(2) = -100.0;

problem.phases(1).bounds.lower.states(3) = -100.0;

problem.phases(1).bounds.lower.states(4) = -100.0;

problem.phases(1).bounds.upper.states(1) = 100.0;

problem.phases(1).bounds.upper.states(2) = 100.0;

problem.phases(1).bounds.upper.states(3) = 100.0;

problem.phases(1).bounds.upper.states(4) = 100.0;

problem.phases(1).bounds.lower.controls(1) = -30.0;

problem.phases(1).bounds.lower.controls(2) = -6.0;

problem.phases(1).bounds.upper.controls(1) = 30.0;

problem.phases(1).bounds.upper.controls(2) = 6.0;

problem.phases(1).bounds.lower.events(1) = q1i;

problem.phases(1).bounds.lower.events(2) = dq1i;

// Enter problem bounds information(events, terminal time and obstacles path)

107

Appendix. DCM & DMOC Code

problem.phases(1).bounds.lower.events(3) = q2i;

problem.phases(1).bounds.lower.events(4) = dq2i;

problem.phases(1).bounds.lower.events(5) = dq1f;

problem.phases(1).bounds.lower.events(6) = dq2f;

problem.phases(1).bounds.upper.events =

problem.phases(1).bounds.lower.events;

problem.phases(1).bounds.lower.StartTime = i_time;

problem.phases(1).bounds.upper.StartTime = i_time;

problem.phases(1).bounds.lower.EndTime = f_time;

problem.phases(1).bounds.upper.EndTime = f_time;

problem.phases(1).bounds.lower.path(1) = i_path;

problem.phases(1).bounds.lower.path(2) = i_path;

problem.phases(1).bounds.upper.path(1) = f_path;

problem.phases(1).bounds.upper.path(2) = f_path;

// Register problem functions //

problem.integrand_cost = &integrand_cost;

problem.endpoint_cost = &endpoint_cost;

problem.dae = &dae;

problem.events = &events;

problem.linkages = &linkages;

// Define & register initial guess

int nnodes = problem.phases(1).nodes(1);

DMatrix state_guess = zeros(4,nnodes);

DMatrix control_guess = zeros(2,nnodes);

DMatrix time_guess = linspace(0,f_time,nnodes);

state_guess(1,colon()) = linspace(q1i,-pi/6,nnodes);

state_guess(2,colon()) = linspace(dq1i,0.0,nnodes);

state_guess(3,colon()) = linspace(q2i,pi/3,nnodes);

state_guess(4,colon()) = linspace(dq2i,0.0,nnodes);

problem.phases(1).guess.states = state_guess;

problem.phases(1).guess.controls = control_guess;

problem.phases(1).guess.time = time_guess;

108

Appendix. DCM & DMOC Code

// Enter algorithm options (choose the quadrature rules/ and polynomials for

ODE approximation. change to psuedospectral ones depending on problem)

algorithm.nlp_iter_max = 1000;

algorithm.nlp_tolerance = 1.e-3;

algorithm.nlp_method = "IPOPT";

algorithm.collocation_method = "trapezoidal";

algorithm.ode_tolerance = 1.e-3;

algorithm.derivatives = "automatic";

algorithm.diff_matrix = "central-differences";

algorithm.defect_scaling = "jacobian-based";

algorithm.mr_max_increment_factor = 0.01;

algorithm.mr_max_iterations = 1;

algorithm.hessian = "exact";

algorithm.scaling = "automatic";

algorithm.mesh_refinement = "automatic";

// Call PSOPT to solve the problem and extract solutions

psopt(solution, problem, algorithm);

DMatrix x = solution.get_states_in_phase(1);

DMatrix u = solution.get_controls_in_phase(1);

DMatrix t = solution.get_time_in_phase(1);

DMatrix l = solution.get_dual_costates_in_phase(1);

// plotting

DMatrix x1 = l1*cos(x(1,colon()));//link 1 tip

DMatrix y1 = l1*sin(x(1,colon()));

DMatrix x2 =

l1*cos(x(1,colon()))+l2*cos(x(1,colon())+x(3,colon()));//end-effector

DMatrix y2 = l1*sin(x(1,colon()))+l2*sin(x(1,colon())+x(3,colon()));

DMatrix xe1 = l1/2.0*cos(x(1,colon())); //ellipse 1 center

DMatrix ye1 = l1/2.0*sin(x(1,colon()));

DMatrix xe2 =

l1*cos(x(1,colon()))+r2*cos(x(1,colon())+x(3,colon()));//ellp center

DMatrix ye2 = l1*sin(x(1,colon()))+r2*sin(x(1,colon())+x(3,colon()));

DMatrix ang1 = x(1,colon());

109

Appendix. DCM & DMOC Code

DMatrix ang2 = x(3,colon());

DMatrix alpha = colon(0.0, pi/20, 2*pi);

DMatrix xObs1 = sqrt(1.0e-5)*cos(alpha) +xd;//obstacle coordinate

"circle"

DMatrix yObs1 = sqrt(1.0e-5)*sin(alpha) +yd;

x.Save("x.dat");u.Save("u.dat");t.Save("t.dat");

plot(xObs1,yObs1,x2,y2,problem.name+": x-y Obstacle coordinate

trajectory","x", "y", " obstacle trajectory");

plot(t,u,problem.name+": joints Torque","time (s)","control","u1 u2");

plot(t,x,problem.name+": links states","time (s)", "states", "q1(rad)

q1dot(rad/sec) q2(rad) q2dot(rad/sec)");

plot(t,l,problem.name + ": costates(lambda)", "time (s)", "lambda", "q1

dq1 q2 dq2");

}

.2 DMOC Code

The Discrete Mechanics for OCP’s setup and code for implememting the same problem

above with IPOPT and an AMPL interface is specified here. The resulting NLP from

the discretization process is also solved for roots using IPOPT.

Number of variables (this is a scalable formulation)

International Business Machines

This file is part of the Ipopt open source package, published under the

Eclipse Public License IBM 2009-04-02

Author: BJ

IPOPT/ AMPL formulation of the coding problem 2 link using DMOC

Jacobian / gradients/hessian computed using the ADOL-C software.

param A :=0.344933604;

param B :=0.018800336;

param C :=0.007882111306;

param D :=0.12969075;

param pi :=3.14159;

param q1r :=1.5;

110

Appendix. DCM & DMOC Code

param q2r :=1.5;

param as1 :=0.065957;

param bs1 :=0.0088631;

param as2 :=0.030155;

param bs2 :=0.0041179;

param N ;

param xd :=0.43;

param yd :=0.05;

param r1 :=0.16;

param r2 :=0.083545;

param l1 :=0.32;

param l2 :=0.21;

var tf >= 0;

var h = tf/N;

#var h = 0.002;

Definition of the variables with bounds and starting point

var q1 {k in 0..N} :=0; #<=-10, >=10,

var q2 {k in 0..N} :=pi/3; #<=-10, >=10,

var u1 {k in 0..N} ;#: 30 <= u1[k] <= 30;

var u2 {k in 0..N}; #<=-6, >=6;

let N:=24;#(discretization time steps maybe changed.)

#performance index

minimize obj: sum {k in 1..N-1} 0.5*h*((q1[k]-q1r)/h)^2 + sum {k in 1..N-1}

0.5*h*((q2[k]-q2r)/h)^2 + sum {k in 1..N-1} 0.5*h*u1[k]^2+ sum {k in

1..N-1} 0.5*h*u2[k]^2;

#sum{k in 1..N} 0.5*((q1[k]-q1r)/h)^2 + 0.5*((q2[k]-q2r)/h)^2

+0.5*(u1[k]^2+u2[k]^2);

#DELE constraint

111

Appendix. DCM & DMOC Code

subject to DELE: sum {k in 1..N-1} A*2*((q1[k+1]-q1[k])/h)^2- sum {k in

1..N-1} B*2/h*((q2[k+1]-q2[k])/h)-sum {k in 0..N-1} D*1/h*(

((q2[k+1]-q2[k])/h) + 1/h*((q1[k+1]-q1[k])/h)) -sum {k in 1..N-1}

C*(1/h*((q2[k+1]-q2[k])/h)*cos((q2[k+1]+q2[k])/2) +

1/h*((q1[k+1]-q1[k])/h)*cos((q2[k+1]+q2[k])/2) +

0.5*((q1[k+1]-q1[k])/h)*((q2[k+1]-q2[k])/h)*sin((q2[k+1]+q2[k])/2)) + sum

{k in 1..N-1} A*2/h*((q1[k]-q1[k-1])/h)+sum {k in 1..N-1}

B*2/h*((q2[k]-q2[k-1])/h) + sum {k in 1..N-1} D*1/h*(

((q2[k+1]-q2[k])/h)+((q1[k+1]-q1[k])/h))+ sum {k in 1..N-1}

C*(1/h*((q2[k+1]-q2[k])/h)*cos((q2[k+1]+q2[k])/2)+1/h*...

((q1[k+1]-q1[k])/h)*cos((q2[k+1]+q2[k])/2)-0.5/h*((q1[k+1]-q1[k])/h)*...

((q2[k+1]-q2[k])/h)*sin((q2[k+1]+q2[k])/2)) = 0;

subject to ellipse1 {k in 1..N-1}:(((xd-r1*cos(q1[k]))...

*cos(q1[k])-(yd-r1*sin(q1[k]))*sin(q1[k]))^2)/as1+(((yd-(l1*cos(q1[k])+...

r2*cos(q1[k]+q2[k])))*cos(q1[k])-(xd-(l1*sin(q1[k])+...

r2*sin(q1[k]+q2[k])))*sin(q1[k]))^2)/bs1 >= 1;

subject to ellipse2 {k in 1..N-1}:(((xd-r1*cos(q1[k]))...

*cos(q1[k]+q2[k])-(yd-r1*sin(q1[k]))*sin(q1[k]+q2[k]))^2)/...

as2+(((yd-(l1*cos(q1[k])+r2*cos(q1[k]+q2[k])))*cos(q1[k]+q2[k])...

-(xd-(l1*sin(q1[k])+r2*sin(q1[k]+q2[k])))*sin(q1[k]+q2[k]))^2)/bs2 >= 1;

Boundary conditions for q1

subject to q1_0:

q1[1] = 0;

subject to q1_f:

q1[N] = pi/6;

Boundary conditions for q2

subject to q2_0:

q2[1] = pi/3;

subject to vtf:

q2[N] = pi/6;

#Initial Estimates:

let tf := 2.0;

112

Appendix. DCM & DMOC Code

solve;

display _total_solve_time, tf;

printf {k in 0..N}:

"%10.5f %10.5f %10.5f %10.5f %10.5f \n",tf*k/N, q1[k], q2[k], u1[k], u2[k] >

dmoc.sol;

#c1[0] = r1*cos(q1[k]);

#c1[1] = r1*sin(q1[k]);

#c2[0] = (l1*cos(q1[k])+r2*cos(q1[k]+q2[k]));

#c2[1] = (l1*sin(q1[k])+r2*sin(q1[k]+q2[k]));

#adouble p1 = q1[k];

#adouble p2 = q1[k]+q2[k];

#path1=(((xd-c1[0])*cos(q1)-(yd-c1[1])*sin(q1))^2)/as1+(((yd-c2[0])...

*cos(p1)-(xd-c2[1])*sin(q1))^2)/bs1 >= 1;

#path2=(((xd-c1[0])*cos(p2)-(yd-c1[1])*sin(p2))^2)/as2+(((yd-c2[0])...

*cos(p2)-(xd-c2[1])*sin(p2))^2)/bs2 >= 1;

113

	Title
	Declaration of Authorship
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	1 INTRODUCTION
	1.1 The Kinematic Chain Manipulator(KCM) and Modern Applications
	1.2 The Proposed Structure for Achieving Real-time Collision-free Control:
	1.3 Avoiding Dynamic Obstacles
	1.4 Outline

	2 LITERATURE REVIEW
	2.1 Path Planning Algorithms for Articulated Manipulators
	2.2 Trajectory Generation for Nonlinear Mechanical Systems (Optimization techniques)
	2.3 Optimal Control Approaches for Trajectory Planning
	2.3.1 Indirect Approach to Solving Optimal Control Problems
	2.3.2 Direct Approach to Solving Optimal Control Problems

	2.4 Candidate Direct Methods and Techniques for Online Trajectory Planning
	2.4.1 Shooting Methods
	2.4.2 Direct Collocation Method (DCM)
	2.4.3 Discrete Mechanics and Optimal Control (DMOC)
	2.4.4 Sequential Quadratic Programming (SQP)
	2.4.5 Receding Horizon Control (RHC)
	2.4.6 Hierarchical Network Control

	3 METHODOLOGIES
	3.1 Problem Formulation: The N-Link KCM Problem
	3.1.1 The System Dynamics as a Constraint: Equations of Motion
	3.1.2 Dynamic Equation: State Space form

	3.2 Path/Geometric Constraints
	3.2.1 Dynamic Obstacles
	3.2.2 Representing the Link Geometry: Minimum Enclosing Ellipsoids

	3.3 Collision-free Optimal Trajectory Generation under Dynamic Environments
	3.3.1 The Cost Functional
	3.3.2 Limits on Control and State Variables
	3.3.3 Initial and Final Boundary Conditions
	3.3.4 Finite Horizon Optimal Control Problem

	3.4 Solving the Problem
	3.4.1 Receding Horizon Control (RHC)
	3.4.2 Discrete Time Optimal Control Problem

	3.5 Optimality Conditions of the Discretized Problem
	3.6 Discretizing the Problem
	3.6.1 Direct Collocation Method (DCM)
	3.6.1.1 Collocation Implementation Steps
	3.6.1.2 Local and Global discretization
	3.6.1.3 Necessary first Order Optimality Conditions

	3.6.2 Discrete Mechanics for Optimal Control (DMOC)
	3.6.2.1 Implementation Steps

	4 METHOD SETUP FOR EXAMPLE KCM PROBLEM'S
	4.1 2-link Revolute Planar Robot Problem
	4.1.1 Dynamics and Kinematic Equations of the Robot
	4.1.2 Robot Geometric Constraints: Minimum Enclosing Ellipsoids
	4.1.3 Inactive Link Constraint Strategy (Passive Ellipsoids)
	4.1.4 Cost functional with Time Varying State Constraint

	4.2 Extending the Results to N-link KCM's.
	4.2.1 A Redundant link KCM
	4.2.2 Robot Dynamics
	4.2.3 Cost Functional with Time varying Trajectory
	4.2.4 Obstacle Avoidance /Path Constraint

	4.3 DCM Implementation for the 2-link and 3-link Robot Problem
	4.4 DMOC Implementation for the 2-link Robot Problem

	5 SIMULATIONS AND EXPERIMENTAL RESULTS
	5.1 Simulation Results
	5.1.1 Problem Scenario-1
	5.1.2 Problem Scenario-2
	5.1.3 Problem Scenario-3
	5.1.4 Problem Scenario-4
	5.1.5 Problem Scenario-5
	5.1.6 Problem Scenario-6

	5.2 Comparison Between the Solutions from the DMOC and DCM Algorithm
	5.3 Experimental Setup
	5.3.1 Hardware and Software
	5.3.2 Bidirectional Communication
	5.3.3 Hierarchical Control Triggering
	5.3.4 Torque Computing Controller (Workspace Position Control)
	5.3.5 Experiment 1: Reference Set-point Problem
	5.3.6 Experiment 2: Dynamic Obstacle Avoidance Problem

	6 CONCLUSIONS
	6.1 Observations, Limitations and Future Work
	6.1.1 Conditioning the Solution
	6.1.2 Quality of the Optimal Solutions (Accuracy)
	6.1.3 Handling Scenarios with Infeasible Solutions
	6.1.4 Method Suitability for Online Optimization
	6.1.5 Choice of Discretization Interval Points (Nodes)
	6.1.6 State and Control Boundaries
	6.1.7 Inactive Path constraint: Passive Links Strategy
	6.1.8 Incorporating Workspace Vision Sensors

	6.2 Conclusions

	Bibliography
	Appendix
	.1 DCM Code
	.2 DMOC Code

