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Abstract 

There is a need to understand how free-ranging animals respond and adapt to stress. However, 

little is currently known regarding the physiologic adaptations to stress in bears, and there are 

few tools available to wildlife managers to assess the health and stress status of free-ranging 

animals, including ursids. The hypothalamus-pituitary-adrenal (HPA) axis plays major roles in 

the physiological adaptation to stress, leading to the increased secretion of glucocorticoids (e.g. 

cortisol in most mammals) that mediate adaptive changes in physiology and behaviour. The 

vast majority of glucocorticoids are bound to its primary carrier protein, corticosteroid-binding 

globulin (CBG), in most animals, and only the unbound fraction is bioavailable. Thus, CBG 

plays a major role in modulating glucocorticoid dynamics, and this protein must be 

characterized to build a more complete understanding of the adaptive role that the HPA axis 

plays in mitigating stress in bears. The overall objective of this thesis was to characterize the 

HPA axis activity and CBG levels in bears, and develop tools targeted towards the monitoring 

of the health and stress status of American black bear (Ursus americanus), grizzly bear (U. 

arctos), and polar bear (U. maritimus).  

The binding characteristics of cortisol to CBG in bears were studied via saturation binding 

experiments, and this information was used to estimate free cortisol concentrations based on 

CBG concentrations. To quantify CBG concentrations in bears, an enzyme-linked 

immunosorbent assay (ELISA) was developed. Grizzly bear CBG cDNA was cloned and 

sequenced, and an antibody was developed against a peptide sequence of the deduced amino 

acid sequence. The antibody showed good cross-reactivity against black, grizzly, and polar 

bear CBG, and the ELISA based on this antibody found differences in the mean CBG levels 

between species. Using this data, free cortisol levels were estimated, and mean levels were 

elevated in polar bears relative to black and grizzly bears.  

Having developed these tools, the roles that corticosteroid-binding globulin (CBG) and 

bioavailable cortisol played in the physiological adaptation to major life history traits and 

environmental challenges faced by ursids were investigated. Importantly, CBG was not 

modulated by the acute stress of capture and handling, despite the large differences in the 



 iv 

magnitude of acute cortisol responses that are induced by these methods, suggesting that CBG 

levels may reflect the chronic health and stress status of bears. Altogether, there were few 

changes in CBG levels throughout much of the annual life cycle of bears, implying that CBG 

does not play a major adaptive role in the life history traits of bears and, instead, metabolic and 

environmental factors may be the key modulators of cortisol dynamics. However, CBG was 

not significantly associated with our measures of dietary patterns and nutrition, including body 

condition, seasonal dietary patterns, and fasting. The majority of the observed variation in the 

levels of this protein in bears remains unexplained. However, stress-induced free cortisol levels 

were negatively associated with urea to creatinine ratio (an indicator of dietary protein content 

and fasting status in grizzly and polar bears, respectively) and positively associated with 

lactation in hibernating black bears, suggesting that the variation in adrenal function may be 

playing an important role in the adaptation to adverse environmental conditions and/or 

metabolic stress in bears.  

In addition to serum cortisol dynamics, other proteins were also hypothesized to play adaptive 

roles in maintaining the hibernating phenotype in bears. Changes in the serum proteome during 

hibernation in black bears were assessed as a means to discover novel proteins that may be 

indicative of metabolic stress in bears. The serum proteomes of active and hibernating black 

bears were compared and analyzed for significant changes by two-dimensional electrophoresis 

and tandem mass spectrometry. Proteins involved with immune-related function were 

significantly altered during hibernation, leading to the proposal that the serum protein changes 

are essential for maintaining immune competence, wound healing, and bone structure. 

Altogether, this thesis developed a method to quantify CBG and estimated free cortisol 

concentrations in bears, and characterized their roles in the physiological adaptations 

associated with the major life history traits and environmental challenges faced by ursids. Also, 

novel serum proteins were identified as potential markers of immune function and health status 

in bears. These tools may be tremendously useful for wildlife managers and conservationists in 

determining how chronic stressors, including anthropogenic activities and climate change, may 

impact the stress and health performances of individual and populations of free-ranging bears.   
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CHAPTER 1:  
GENERAL INTRODUCTION 

1.1. Stress in Free-ranging Bears and Animals 

Organisms must adapt to environmental disturbances to maintain fitness. Animals possess the 

ability to cope with these challenges (unpredictable conditions, situations, or stimuli; hereafter 

referred to as stressors) to prevent or mitigate the loss of health. These disturbances do not 

necessarily contribute directly to increased mortality, but may cause sublethal effects that 

weaken the health of the animal and detrimentally impact the persistence of the species [1, 2]. 

Two animals studied in this thesis – grizzly (Ursus arctos) and polar bears (U. maritimus) – are 

threatened by rapid environmental changes, due in part to human influences. These species are 

closely related [3] yet inhabit tremendously different environments. Grizzly bears are 

generalist omnivores that historically were distributed throughout the Nearctic ecozone, but 

their range is now greatly reduced [4]. Some grizzly bear populations in Alberta, Canada 

inhabit areas that have experienced widespread landscape changes due to expanding resource 

extraction activities and human populations. These landscape changes have resulted in the 

fragmentation of and increased human access to core grizzly bear habitats, which are linked to 

the unsustainable mortality rates of grizzly bears in this province [5]. The survival of 

reproductive females is critical for the maintenance of stable and increasing populations [6], 

and population trends may be sensitive to small changes in the survival rates of this 

reproductive class [8]. Moreover, grizzly bears slowly reproduce due to late sexual maturity, 

have small litter sizes and long reproductive intervals [6], and the reproductive rates of some 

populations within Alberta, Canada are lower than populations elsewhere [7, 8]. These factors 

are thought to play roles in the poor performance and, combined with small population sizes 

[5], the uncertain persistence of the grizzly bear populations in this province [5, 8, 9, 10, 11]. 
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Similarly, polar bear populations inhabiting the southern areas of their range in the Hudson 

Bay region of Canada are threatened by environmental change. Polar bears are an Arctic 

maritime species and are almost entirely carnivorous [12]. They are dependent on sea ice as a 

platform upon which they hunt their primary food sources, and populations that inhabit areas 

where sea ice is seasonal (e.g. in the southerly portions of their range) are forced ashore during 

the open water season [12]. Moreover, inclement weather during the winter may also reduce or 

prevent hunting success even when sea ice is present [13]. During these periods of open water 

and unfavorable hunting, polar bears largely fast and rely on endogenous fat stores to provide 

substrates for energy metabolism [14]. Furthermore, pregnant female polar bears undergo 

gestation, parturition, and the first several months of lactation while fasting, so it is critical that 

they maximize their endogenous stores prior to reproduction [15]. Thus, polar bears are 

sensitive to changes in sea ice conditions, and declines in the extent and duration of seasonal 

ice cover during the peak hunting season (spring and early summer) that are associated with 

climatic warming may negatively impact the reproductive success and health of this species 

[16, 17, 18, 19]. Indeed, long-term declines in the body condition of polar bears in the Western 

[18] and Southern Hudson Bay regions [20] are linked to climatic warming and declining sea 

ice conditions [16]. Furthermore, most polar bear populations are forecast to decline over the 

long term due to projected declines in ice conditions [21]. Thus, there is a need to better 

understand the effects of rapidly changing environments on bear species, including on the 

health of individuals and populations. 

Health relates to the state of well being and functioning of the organism. There are several 

overlapping definitions of the health of an organism, including the states of 1) normally 

functioning systems, 2) maintenance of homeostasis within their optimal ranges in the face of 

internal and external variation [22], 3) physical and psychological well-being, and 4) 

productivity [23]. Stress can be defined as the disruption of health, which may lead to a 

pathological state if not restored. However, in terms of physiology, stress is specifically the 

disruption of homeostasis [24], while the stimulus is termed a stressor. The series of 

physiological responses evoked by stressors is termed the stress response, and this is essential 

to reestablish and/or maintain homeostasis. Failure to adapt to stress may result in the 

disruption in the functioning of the affected systems (i.e. the development of pathology) [1], 

with downstream effects on the health of the animal. Chronic or long-term stress may affect 
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measures of population health, including decreased natality, birth rate and/or increased 

mortality, which may lead to population decline [1].  

While population estimates and trends are important conservation tools to monitor populations, 

wildlife managers lack tools that can assess the biological factors that affect population health 

[2]. Glucocorticoids, including cortisol (the predominant glucocorticoid in most mammals) and 

corticosterone (in rodents and birds), are steroid hormones that play important roles in the 

physiological response and adaptation to stress, and their measurement is an established 

method to assess the stress and health status of animals [2]. Elevations in serum glucocorticoid 

levels in free-ranging animals are linked to increased mortality and decreased reproductive 

success and this has been reported in Galápogos marine iguanas (Amblyrhynchus cristatus) 

[25], snowshoe hares (Lepus americanus) [26] and elk (Cervus canadensis) [27]. Thus, the 

measurement of glucocorticoids and other markers of stress may provide a tool with which 

wildlife managers can investigate the physiological mechanisms underlying stress-related 

health effects, and will assist in developing tools to assess and predict the impact of 

environmental changes on wildlife populations [2]. 

The focus of this thesis is to examine and better understand ursid stress physiology with the 

aim to develop tools that can be used to assess the stress and health status of these animals. The 

sections below provide a background on stress physiology in general and glucocorticoid 

dynamics in particular, as well as the use of proteomics tools to discover novel serum protein 

markers of stress in wildlife. 

1.2. The Stress Response 

The stress response involves changes at the molecular, cellular, tissue, and whole organism 

levels that allow the animal to cope with the stressor(s) and maintain or reestablish homeostasis 

[28, 29]. The stress response is energetically expensive, and coping with stress occurs at the 

expense of other physiological processes, including growth, reproduction, and immunity [30, 
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31]. The prolonged induction of the stress response, particularly chronically elevated 

glucocorticoid levels may result in slower growth, poorer body condition, decreased 

reproductive success, and/or increased susceptibility to diseases. At the population level, 

chronically elevated glucocorticoids can negatively impact measures of population health, 

including natality and mortality [1]. Thus, chronic stress has detrimental consequences on 

animal health and may be one mechanism by which long-term environmental changes affect 

individual and population health.  

The central nervous system is instrumental in the initiation, maintenance, and termination of 

the stress response. Two parallel systems are activated in synchrony with the initiation of the 

stress response: the fight-or-flight response and the hypothalamic-pituitary-adrenal (HPA) axis. 

Catecholamine hormones (CA) – norepinephrine (NE) and epinephrine (EPI) – mediate the 

fight-or-flight response. These hormones are released from post-ganglionic sympathetic 

nervous system (SNS) neurons and the adrenal medulla, respectively, although the adrenal 

medulla may also release significant amounts of NE [32]. Upon perception of stress, the 

paraventricular nucleus of the hypothalamus stimulates the sympathetic nervous system to 

release CA into general circulation [24], which act on the α- and β-adrenergic receptors (AR). 

These receptors are found in almost all tissues, and the two types may mediate contradictory 

effects (e.g. α-AR mediate vasoconstriction whereas β2-AR mediate vasodilation). AR are G-

coupled proteins that respond rapidly to ligand binding to exert their physiological effects [32], 

including the enhancement of cardiovascular tone, alterations in blood circulation, and the 

stimulation of glycogenolysis and lipolysis [24, 31]. These effects prime the organism for 

immediate reaction against stressors and promote short-term survival. 

While CA undoubtedly play important roles in the short-term adaptation to stress in animals, 

the measurement of CA in free-ranging animals is generally not feasible due to their rapid 

appearance and disappearance from circulation [24]. Instead, most studies on stress in wildlife 

examine the physiological effects of glucocorticoids, which are secreted in response to 

activation of the HPA axis following SNS stimulation. 
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1.3. Glucocorticoid Physiology 

1.3.1. Regulation of Glucocorticoid Secretion 

The regulation of HPA axis activity is illustrated in Figure 1.1. Upon stimulation of the HPA 

axis by stressors, corticotropin-releasing hormone (CRH) is released from parvocellular 

neuroendocrine neurons in the paraventricular nucleus in synchrony with the activation of the 

SNS response. CRH diffuses through the hypophyseal portal system to act on CRH receptors 

on corticotropes in the anterior pituitary. The activation of CRH receptors leads to the release 

of adrenocorticotropin hormone (ACTH), a product formed by post-translational modification 

from its precursor protein proopiomelanocortin (POMC) into general circulation. ACTH may 

also be released in response to CA and arginine vasopressin (AVP) stimulation; however, CRH 

is the major hormone that stimulates the release of ACTH in response to acute stress. ACTH 

binds to melanocortin 2 receptors (MC2R) on the steroidogenic cells in the zona fasciculata of 

the adrenal cortex. MC2R stimulation triggers the upregulation of enzymes that catalyze the 

rate-limiting steps in the corticosteroid biosynthesis pathway, including steroidogenic acute 

regulatory protein (StAR) and cytochrome P450 cholesterol side chain cleavage (P450scc) 

enzyme. The stimulation of steroid biosynthesis results in the elevation of serum corticosteroid 

concentrations (i.e. “stress-induced” levels) within minutes of stressor perception [31, 33, 34, 

35]. 

1.3.2. Regulation of Glucocorticoid Action 

1.3.2.1. Mineralocorticoid and Glucocorticoid Receptors 

The effects of glucocorticoids on cells are mediated via mineralocorticoid (MR) and 

glucocorticoid receptors (GR), generally through their regulatory effects on gene transcription. 

Both receptors are transcription factors, and upon binding of glucocorticoids translocate to the 

nucleus and interact with response elements in the promoters of glucocorticoid-responsive 

genes to influence their transcriptional activity [36]. GR are present in virtually all tissues and 

are responsible for most of the effects of glucocorticoids on cells, while MR are restricted to   
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Figure 1.1: A Schematic Overview of the Hypothalamic-Pituitary-Adrenal (HPA) Axis 
and Glucocorticoid Dynamics in Higher Vertebrates. 
The HPA response to stress is driven by the secretion of corticotropin-releasing hormone 
(CRH) and arginine vasopressin (AVP) from the parvocellular neuroendocrine cells of the 
hypothalamus into the hypophyseal portal system. CRH binds to CRH receptors (CRHR) on 
corticotrope cells of the anterior pituitary, which stimulates the release of adrenocorticotropic 
hormone (ACTH) into general circulation. ACTH binds to melanocortin-2 receptors (MC2R) 
on the cell surfaces of the zona fasciculata in the adrenal cortex, which together with the action 
of AVP stimulates steroid biosynthesis and glucocorticoid secretion. In general circulation, 
glucocorticoids are tightly bound to corticosteroid binding globulin (CBG). Bound 
glucocorticoids are generally biologically unavailable and only a small fraction of 
glucocorticoids are unbound (free) in serum under baseline conditions. There may exist a cell-
surface receptor for CBG-glucocorticoid complexes that stimulates the internalization of this 
complex or the activation of a second messenger system. Otherwise, the major route of 
glucocorticoid action is the diffusion of free steroid into effector cells to complex with 
intracellular glucocorticoid receptors (GR). GR-glucocorticoid complexes homodimerize, 
translocate into the nucleus, and bind to glucocorticoid response elements (GRE) to modulate 
transcription of responsive genes. The HPA axis is negatively regulated by glucocorticoids, 
where free glucocorticoids act on GR in the hypothalamus and pituitary to downregulate CRH 
and ACTH secretion, respectively. 
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tissues involved in Na+/K+ balance and in some brain regions [36]. MR appear to act as a high-

affinity glucocorticoid receptor in some tissues [38], while other MR-containing tissues are 

insensitive to glucocorticoids and respond only to aldosterone, the mineralocorticoid hormone 

in mammals. In the hypothalamus and pituitary gland, MR play an important role in the diurnal 

variation and negative feedback of glucocorticoid secretion [36]. 11β-hydroxysteroid 

dehydrogenase 2 (11β-HSD2) is expressed in the aldosterone sensitive tissues and catalyzes the 

conversion of cortisol to the inactive metabolite cortisone to protect against the activation of 

MR by glucocorticoids [39].  

Corticosteroids are always present in circulation and show a diurnal pattern in their baseline 

levels; peak levels occur around the time of arousal from sleep and the lowest levels during 

sleep. At the lowest point of baseline levels, glucocorticoids mediate their cellular effects 

through the occupation of its high-affinity MR in tissues that lack 11B-HSD2. At peak baseline 

and stress-induced elevated concentrations, the steroid exerts its effect by binding to the lower-

affinity, high-capacity GR that is expressed in almost all tissues [33, 40]. However, only free 

glucocorticoids are thought to cross plasma membranes to act on its intracellular receptors, and 

corticosteroid binding globulin (CBG) is the major circulating protein that regulates the 

bioavailability of this steroid hormone for target tissue usage. 

1.3.2.2. Corticosteroid Binding Globulin 

CBG is a ~50 kDa serum glycoprotein that belongs to the serpin proteinase inhibitor 

superfamily [41] and binds glucocorticoids and progesterone with high affinity in circulation 

[42]. In birds, which lack a sex hormone binding globulin, CBG also exhibits high affinity for 

testosterone [43]. Albumin is another major contributor to glucocorticoid binding, albeit with 

much lower affinity, and the two proteins in concert bind up to 95% of the total glucocorticoid 

in blood. 

CBG buffers tissues against the deleterious consequences of excessively elevated 

glucocorticoid levels because only free, unbound glucocorticoids are thought to diffuse across 

plasma membranes to act on its intracellular receptors [43, 44]. The serum levels of CBG may 

be modulated by stress. For instance, some acute stressors result in a decrease in serum CBG 

concentrations, leading to elevated free cortisol levels that are sustained for several hours to 
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days post-stress [43, 45, 46]. Also, CBG may be rapidly released from the liver in response to 

acute stress to mediate a short-term (~ 20 min) delayed rise in free glucocorticoid levels in the 

face of rapid elevations in total glucocorticoid levels [47]. CBG bound glucocorticoids can be 

rapidly released under specific conditions. For example, the affinity of CBG for its ligands is 

sensitive to changes in the conformation of this protein, and elastases secreted by activated 

neutrophils are able to cleave the reactive loop of CBG, leading to conformational changes that 

result in a decreased affinity for glucocorticoids and its release [48, 49]. Furthermore, CBG is a 

temperature sensitive protein, and localized elevations in body temperature (e.g. at sites of 

inflammation) may also reduce binding affinity for cortisol [50]. These examples of the 

specific release of glucocorticoids are thought to increase local concentrations of this hormone 

to modulate immune function at sites of inflammation [48].  

High-affinity membrane receptors for glucocorticoid-CBG complexes may also exist [51, 52, 

53, 54], although these receptors have yet to be identified. It is proposed that CBG is 

internalized after binding to these receptors, after which the complexes are cleaved to release 

bound glucocorticoids to increase intracellular glucocorticoid levels in tissues that express this 

receptor [43]. Glucocorticoid-bound CBG may also activate a cyclic AMP mediated second 

messenger response when bound to cell membranes [54, 55]. Despite these findings and 

continued research into this area, no clear biological evidence is forthcoming yet on the 

interactions between glucocorticoid-bound CBG and membranes [43]. Thus, the contributions 

of glucocorticoid-bound CBG on cellular actions are unknown, and the diffusion of the free 

fraction of hormone into cells is generally held to be the primary mode of action for 

glucocorticoids. 

1.3.2.3. Chronic Glucocorticoid Elevation 

Some stressors or series of stressors may disturb homeostasis for a prolonged period of time. 

The persistence of the stressor may result in a sustained stress response, including chronically 

elevated serum glucocorticoid levels. The chronic elevation of glucocorticoids is generally held 

to be detrimental to animals [28]. Chronic stress is associated with alterations in the regulation 

of the HPA axis [40], including the attenuation of the negative feedback inhibition of 

glucocorticoids by suppression of GR expression in the brain [56]. This disrupted negative 

feedback may result in a greater total adrenal release of glucocorticoids, leading to sustained 
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elevated baseline levels of the steroid. Chronic glucocorticoid elevation is also associated with 

thymus involution and adrenal hypertrophy in most species, and the latter may be associated 

with increased glucocorticoid secretion in response to ACTH at both baseline and stress-

induced conditions [24]. Serum CBG concentrations may also decline, exacerbating the effects 

of elevated cortisol levels because a decrease in buffering capacity may lead to the increased 

bioavailability of this steroid hormone to tissues [28]. 

Chronically elevated glucocorticoid levels are linked with a range of pathologies, including 

stunted growth and development [57, 58], elevated arterial blood pressure [59], 

hyperinsulinemia and insulin resistance [60], hyperglycemia [61], skeletal muscle [62] and 

bone atrophy [63], inhibition of immune system function [64], and reproductive failure [26]. 

Moreover, chronic stress may increase susceptibility to other diseases due to the detrimental 

effects of chronically elevated glucocorticoid levels on immunity and metabolism [65]. In free-

ranging animals, the detrimental effects of chronic stress may include impaired reproduction 

[26], reduced growth rate and/or food conversion efficiency (i.e. increased food consumption 

per unit growth compared to unstressed animals) [66], and suppressed immunity [64].  

Clearly, chronic stress and sustained elevation of glucocorticoid levels may be a major 

challenge faced by wildlife. However, while these physiological responses to chronic stressors 

may be pathological, the consequences of the changes that are mediated by chronically 

elevated glucocorticoids, including altered behaviour, metabolism, and physiology are not 

necessarily maladaptive (i.e. it does not always reduce fitness) unless the severity and/or type 

of stressor is beyond the capability of the animal to cope. These effects may ultimately enhance 

fitness by redirecting resources and maximizing effort towards survival at the expense of 

physiological processes that are unnecessary for short-term survival, but these effects are 

highly dependent on the unique combination of life history traits and evolutionary history of 

each species [67]. Thus, study of the interactions of the stress response with the life history and 

evolution of animals is required to better understand the roles of stress response in maintaining 

health and fitness.  
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1.4. The Biological Effects of Glucocorticoids in Wildlife 

Glucocorticoids have widespread effects on physiology and behaviour. It should be noted that 

this steroid hormone has quite different effects at baseline and stress-induced levels. 

Permissive actions are mediated by baseline levels of glucocorticoids and prepare an animal 

for potential stressors [31]. These permissive actions may include synergistic and antagonistic 

interactions with glucoregulatory hormones to regulate energy availability for normal 

functions, including the regulation of feeding and adipose tissue metabolism [68, 69]. 

Glucocorticoids may also permissively enhance immunity by upregulating hormone, growth 

factor, and cytokine receptors [31], which may enhance the immune response to an immune 

stimulus. 

Stimulatory, suppressive, and preparatory effects generally manifest at stress-induced levels of 

glucocorticoids [31], and serve to repartition energy resources to aid in fueling the increase in 

metabolic demand that is associated with the stress. The stimulatory and suppressive actions of 

glucocorticoids mediate some of the prototypical effects of the stress response, which include 

the stimulation of gluconeogenesis and inhibition of peripheral glucose uptake [30], 

stimulation of lipolysis in adipose cells, and proteolysis of muscle to provide amino acid 

substrates for gluconeogenesis [68]. Stress-induced levels of glucocorticoids are a powerful 

inhibitor of immune function [31], the growth hormone (GH)/insulin-like growth factor 1 

(IGF1) axis (a key mediator of growth and metabolism in animals) [70], and the hypothalamus-

pituitary-gonadal axis that regulates sexual function [31]. Together, these many actions of 

glucocorticoids, whether at baseline or stress-induced levels, mediate the biological changes 

that enable an organism to cope with stress. 

1.4.1. HPA Axis and Wildlife Reproduction  

Reproduction is a metabolically expensive process in most animals, and glucocorticoids 

generally suppress reproductive activity at multiple levels. Many components of the stress 

response, including sympathetic nervous system activity, CRH, pre-proopiomelanocortin 
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cleavage products, and stress-induced levels of glucocorticoids inhibit reproductive function 

and behaviour by suppressing the synthesis and/or release of reproduction hormones [31]. In 

birds, stress-induced levels of glucocorticoids during reproductive seasons are associated with 

altered behaviour that disrupts reproduction, including reduced or abandoned territoriality [71], 

courtship [72], and parental care [73]. Pied flycatchers experimentally implanted with 

corticosterone-containing capsules abandoned their nests, and this response may allow these 

animals to escape severe stressors and resume reproduction when conditions allow for more 

successful reproduction [71]. 

Despite these detrimental effects of stress on reproduction, baseline and stress-induced 

glucocorticoid levels tend to peak during breeding for many animals [74]. One hypothesis 

posits that seasonal changes in glucocorticoid levels, including increases during reproduction, 

reflect temporal changes in the probability and/or severity of stressors. Also, since 

reproduction is energetically demanding, enhanced glucocorticoid secretion may play a role in 

mobilizing energy to meet this demand, but species must balance the energy mobilizing effects 

of glucocorticoids with its suppressive effects on reproduction. However, elevated levels of 

glucocorticoids do not inhibit the gonadal axis during reproduction in some species, including 

in small semelparous marsupials (e.g. red-tailed phoscogale [Phascogale calura] [75]) and 

partially semelparous species (e.g. Arctic ground squirrels [Urocitellus parryii] [76]). There is 

no evidence that these animals interrupt reproduction with behaviours that mediate immediate 

survival (i.e. the emergency life history stage, which may include altered behaviour such as 

increased foraging and decreased parental care [77]). Semelparous males have only one or very 

few opportunities to mate, and compete vigorously and die shortly after the breeding season 

[28]. This is thought to be due to pathologies generally associated with chronic stress, 

including immunosuppression and organ failure. Moreover, the altered HPA axis function of 

these species during reproduction is indicative of chronic stress, including elevated free 

glucocorticoid levels, decreased CBG concentrations, adrenal hypertrophy, and attenuated 

negative HPA feedback. Thus, these species may have evolved mechanisms to avoid the 

suppression of reproduction by enhanced glucocorticoid stimulation and, instead, expend 

maximum effort on reproduction at the price of long-term survival. In contrast, males of 

iteroparous species that have multiple opportunities to breed may trade off short-term 

reproductive success for the long-term maintenance of homeostasis if conditions are 
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unsuitable, and exhibit glucocorticoid-mediated suppression of reproduction during breeding in 

response to acute stress [28]. Moreover, these animals generally do not exhibit symptoms of 

chronic stress and maintain normal CBG levels to prevent excessive glucocorticoid 

stimulation. 

There may also be differences in HPA axis functioning between sexes and this may be 

mediated by the actions of sex steroids. Androgens suppress and estrogens stimulate HPA 

function [78], resulting in sex-specific differences in both baseline levels of glucocorticoids 

and the magnitude of increase due to induction by acute stressors. CBG expression is also 

under the regulation of the gonadal axis, and androgens and estrogens down and upregulate 

CBG biosynthesis, respectively [79]. The actions of these sex steroids may result in elevated 

free glucocorticoid and lowered CBG levels in males during courtship, which may be 

associated with intense intrasex competition between males for mates. In contrast, CBG and 

glucocorticoid levels are generally elevated during gestation for females due to elevated 

estrogen levels (e.g. [80, 81, 82, 83, 84, 85]). However, while baseline levels are elevated, 

levels of stress-induced glucocorticoids may be suppressed in pregnant and lactating animals 

[24], which together with the elevated CBG levels may protect the developing fetus from the 

detrimental effects of elevated glucocorticoids.  

Furthermore, while estrogen levels decrease post-parturition, elevated baseline glucocorticoid 

levels are associated with lactation in female mammals (e.g. [86, 87]) and with nesting in birds 

(e.g. [73, 88, 89]), which are both energetically expensive processes leading to negative energy 

balance in the parents. While lactation is associated with the suppression of stress responses, 

nesting birds maintain robust glucocorticoid responses to acute stressors. This is associated 

with adaptive responses to poor environmental conditions, including the nest abandonment that 

accompanies the activation of the Emergency Life History Stage [77]. CBG may play a key 

role in modulating glucocorticoid action in nesting birds. Love et al [89] found that while total 

baseline glucocorticoid levels were not different between nesting stages in female European 

starlings, free glucocorticoid levels were highest in the final, chick rearing stage because CBG 

levels decreased during nesting while baseline glucocorticoid levels did not change. The 

increased free glucocorticoids were deemed to be necessary to meet the energetic demands of 
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provisioning for chicks without the stimulation of adrenal activity that is associated with nest 

abandonment. 

Glucocorticoids also play a role in the fetal and neonate development of the HPA axis. Prenatal 

exposure to elevations in maternal glucocorticoids (e.g. due to experimentally induced stress or 

administration of exogenous glucocorticoids) or postnatal stress at critical points during 

development may have far-reaching effects on subsequent HPA axis functioning of the 

progeny in later life [90, 91]. Generally, such effects include increased baseline and stress-

induced glucocorticoid levels, and attenuated HPA axis negative feedback. Many species also 

exhibit a stress hyporesponsiveness period during the neonatal period that may function to 

protect certain glucocorticoid-sensitive tissues during a critical period during their 

development, and during which only severe stressors elicit an HPA response [92]. 

Altogether, the HPA axis interacts with reproduction and life history traits to maximize 

reproductive success. In particular, the suppression of the stress response and/or some of its 

effects at key points during reproduction avoids the deleterious effects of glucocorticoids on 

reproductive physiology and behaviour, and the baseline secretion of this hormone or its 

bioavailability (by decreases in CBG expression) may be enhanced at other times to meet the 

elevated metabolic demands of reproduction. 

1.4.2. HPA Axis and Wildlife Metabolism  

Seasonal fasting is a challenge faced by many species with temporally limited foraging 

opportunities, including during breeding and molting in king penguins (Aptenodytes 

patagonicus) [93, 94] and migration in some sea bird species [95]. The HPA axis plays a key 

role in modulating the supply and type of energy substrates utilized during extended fasting 

[93, 96]. At the initiation of fasting (phase I fasting), the primary metabolic fuel is stored 

glucose (e.g. glycogen in muscle and liver). These stores are likely to be depleted rapidly, upon 

which animals switch to phase II fasting. This phase is characterized by the utilization of lipids 

from adipose stores as the major metabolic fuel, and also by the downregulation of peripheral 

proteolysis (i.e. protein sparing). The characteristic decrease in glucocorticoid levels during 
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phase II fasting likely plays a major role in this protein sparing. This is because the transition 

to phase III fasting, which is marked by the utilization of amino acids from protein stores to 

meet energy demands, is associated with significant increases in the circulating levels of this 

steroid hormone. These findings are supported by observations in other animals of the 

association between the state of endogenous adipose stores (e.g. body condition) and 

glucocorticoid levels. Animals in good condition generally exhibit low baseline and normal 

stress-induced increases in glucocorticoid levels, while those in poor condition exhibit elevated 

baseline and stress-induced levels of this hormone (e.g. in mammals: [87, 96, 97, 98, 99]) and 

birds: [73, 100, 101]). Thus, glucocorticoids may play a major role in the selection of 

metabolic fuels during fasting to maintain fitness by sparing protein stores until all other 

sources of metabolic fuels are exhausted. Little is currently known regarding the role of CBG 

in modulating glucocorticoid bioavailability during prolonged fasting in wildlife. 

HPA axis function may also be modulated by the quality of nutrition, as measured by the 

macronutrient profile of an animal’s diet, independent of energy intake. Dietary protein 

deficiency in the face of adequate energy intake is associated with elevated HPA axis activity 

in mammals (e.g. [102, 103, 104, 105]) and birds (e.g. [106, 107]). Glucocorticoids mediate the 

mobilization of amino acids from protein stores (e.g. skeletal muscle) to fulfill obligate 

requirements elsewhere in the body. Elevated HPA axis activity in response to low fat diets is 

observed in species with limited lipid reserves, including in black- [108] and red-legged 

kittiwake (Rissa brevirostris) chicks [109]. In the case of the kittiwake chicks, elevated 

glucocorticoid levels are associated with aggressive behavior, including increased begging 

behaviour towards parents and aggression towards littermates [108]. In contrast to the response 

of kittiwake chicks to food shortages, in bird species where the parents either cannot or are not 

willing to respond to chick begging for food, chicks respond by suppressing baseline and 

stress-induced glucocorticoid levels to avoid the detrimental catabolic effects of elevated levels 

of this hormone [110]. Thus, while energy balance and nutrition are key modulators of the 

HPA axis, the demands of some life history stages and environmental conditions may result in 

the suppression of the typical glucocorticoid response to achieve situational goals. 

The HPA axis also exhibits altered activity during metabolic depression. There exists a range 

of the extent and duration of this depression, from the mild diurnal depression in daily torpor in 
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many animals to the months-long frozen hibernation state in the wood frog (Rana sylvatica) 

[111]. In daily torpor, body temperature is reduced proportionally to ambient temperature to 

reduce energy expenditure during periods of low activity and possibly low predation risk [112]. 

Hibernation, in contrast, is a specialized fasting state that is associated with wide spread 

physiological and cellular changes leading to a profoundly depressed metabolic state to 

decrease energetic demands during periods of extreme environmental conditions or prolonged 

food shortages [111, 113, 114]. In the Rufous hummingbird (Selasphorus rufus), which 

undergoes daily torpor, glucocorticoid concentrations are associated with food consumption, 

and the experimental dilution of nectar resulted in increased torpor length and elevated 

glucocorticoid levels [115]. However, the relationship between glucocorticoids and daily 

torpor in birds is not completely understood. Many small hibernators do not hibernate 

continuously, but periodically and briefly (≤ 24 h) return to a euthermic state between bouts of 

deep metabolic depression [114]. The adrenal glands atrophy and glucocorticoid secretion is 

suppressed during episodes of hibernation in red-cheeked ground squirrels (Spermophilus 

erythrogenys), but bursts of adrenal activity are associated with the periodic arousals that may 

play a role in stimulating gluconeogenesis to replenish carbohydrate stores that are depleted 

during hibernation [116], and in maintaining immune competence [117]. In other animals that 

do not show periodic arousal, including the little brown bat (Myotis lucifugus) [118] and 

American black bear [119, 120], hibernation is associated with elevated glucocorticoid levels 

and this is thought to mediate the mobilization of adipose stores [119, 120].   

Prior to hibernation, many animals enter a hyperphagic state to accumulate adipose stores upon 

which to survive the hibernation period [24]. Elevated glucocorticoid levels play a role in 

mediating hyperphagic behaviour and increased adiposity (in conjunction with the action of 

elevated insulin levels [68]) in several species, including the little brown bat [121], yellow-

bellied marmot (Marmota flaviventris) [122], and European (Spermophilus citellus) [123] and 

golden-mantled ground squirrels (Callospermophilus lateralis) [124]. Hibernators that do not 

survive on their endogenous stores, but instead rely on cached food, do not exhibit pre-

hibernation elevations in glucocorticoid levels [82, 125]. Thus, seasonal changes in 

glucocorticoid secretion appear to play a vital role in the preparation for and maintenance of 

winter hibernation and torpor, but the mechanisms involved are not well understood. 
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1.5. The Annual Life Cycle of Bears 

Despite the diversity in environments that the American black bear (U. americanus), grizzly 

bear, and polar bear inhabit, there are remarkable similarities in the annual life cycle of these 

species. Mating occurs in the spring for all three species; polar bears mate during March to 

May, followed by grizzlies from April to July and black bears from May to August. However, 

conspecific interactions and mating may occur outside of these seasons for grizzly bears [126, 

127, 128]. There also exists a period of embryonic diapause for these species, in which the 

implantation of fertilized blastocyst(s) is delayed for six to eight months [129]. It is thought 

that this delayed implantation allows the pregnant female some flexibility in choosing whether 

to commit resources towards the development of the fetus depending on her foraging success 

and state of accumulated energy stores [130]. This is important because much of the gestation 

period, parturition, and the first few months of lactation occur during denning, a period of 

fasting [131, 132, 133, 134]. For black and grizzly bears, females fast for the entirety of the 

hibernating season, which persists from mid/late autumn to early spring [135]. Additionally, 

female polar bears may fast for up to 8 months in the southern reaches of the range for this 

species because the sea ice breaks up a few months prior to den entry [136]. Consequently, 

seasonality and nutritional status play important roles in the reproductive success and 

population dynamics of these species. Females must accumulate enough energy stores to 

survive the denning season, especially when the interval between reproductive cycles may be 

quite long in unfavourable environments, and may contribute to poor population performance. 

For grizzly bears in some populations in Alberta, Canada, this interval may be 4 – 4.5 years 

long [5, 8], while this interval may be as low as 2.4 years in other populations of grizzlies [4, 

129] and 2 years for black bears [129]. 

Another remarkable commonality between these bear species is their metabolic responses to 

predictable, seasonal food deprivation. Black and grizzly bears enter dens in the winter and 

assume a hypometabolic, hibernating state [137]. Similarly, fasting polar bears during the 

open-water season also exhibit a hypometabolic state but, unlike the terrestrial species, may 

remain active outside of dens (“walking hibernation” [138]) except for pregnant females [136, 
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137]. Bear hibernation is best studied in the American black bear, and is characterized by a 

profound metabolic depression to approximately 25% of the basal active rate, yet core body 

temperatures are only mildly depressed [139]. In contrast, small hibernators exhibit cooling to 

a few degrees above ambient temperatures [113], but despite these differences in body 

temperature, the mass-adjusted metabolic rates of black bears and small hibernators are 

comparable [139]. Hibernating bears may lose up to 40% of their initial body mass, with 

higher losses observed in reproductive females [140, 141, 142, 143, 144]. Bears rely almost 

exclusively on fat metabolism to supply energy to survive through the denning season, and 

during this period exhibit elevated levels of blood serum lipids [137] and upregulation of genes 

related to lipid catabolism and carbohydrate synthesis [145, 146]. Accordingly, pre-hibernation 

hyperphagia is observed in ursids, wherein large quantities of body fat are accumulated over a 

span of 2 – 4 months and subsequently utilized during hibernation [4, 138]. Furthermore, fat 

may continue to be lost after arousal from hibernation during the spring hypophagic period in 

some reproductive classes, including adult males (i.e. males competing for mating 

opportunities) and lactating females [147]. The forage and prey availability during this time 

may be inadequate to support routine metabolic rates, and may be fueled in part by endogenous 

stores. 

Unlike other hibernators that undergo periodic arousal during the winter season, including 

hibernating sciurids [113, 148, 149], bears stay in a hypometabolic state for the entire duration 

[137]. They neither eat nor drink and seldom excrete nitrogenous wastes during the denning 

season [137, 150]. It is thought that while amino acids are catabolized during hibernation, 

nitrogen is not excreted but recycled in the gut by urease-expressing bacteria [151, 152, 153]. 

The lean body mass of hibernating bears, including skeletal muscle and bone are largely spared 

and do not exhibit atrophy due to prolonged unloading and disuse during the denning season 

[154, 155, 156, 157, 158, 159, 160, 161]. In contrast, the atrophy response of lean tissues to 

prolonged disuse in most other animals result in osteoporosis and muscle wasting [113, 162]. 

Recent studies suggest that the up and downregulation of genes encoding proteins involved in 

the anabolic and catabolic processes, respectively, in liver, heart, skeletal muscle and bone may 

be contributing to the sparing of lean body mass during hibernation in bears [145, 146, 163]. 

However, lean tissue sparing is not absolute but dependent on the adiposity of the animal, with 

leaner animals catabolizing proportionally more lean tissues to fuel metabolism during denning 
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[164, 165, 166]. Thus, hibernating bears exhibit remarkably efficient metabolism that largely 

preserves the functional bone and skeletal muscle of the animal and relies on fat to supply 

energy for metabolism. 

Little is currently known about cortisol dynamics and how it may be modulated with respect to 

the annual life cycle of bears. Total cortisol levels during hibernation are generally elevated 

relative to the summer season nadir in black bears [119, 120, 154, 167]. Conceptually, elevated 

glucocorticoid levels may be contributing to lean body tissue catabolism during denning, so 

some yet to be characterized aspects of glucocorticoid dynamics, including changes in CBG 

concentration, may be modulating cortisol bioavailability during this period to prevent these 

potentially detrimental effects on these tissues. Furthermore, the role of glucocorticoids in fat 

deposition during the hyperphagic period in bears is also unclear. Additionally, since there are 

broad changes in gene expression profiles in hibernating black bears [145, 146, 163], there 

may also be corresponding changes in the proteins that are secreted into blood serum, but this 

has not been characterized in black bears.  

In summary, the function of the HPA axis does not remain constant over the life history stages 

of an animal, but is modulated in the face of changing seasonal and environmental factors, 

including nutrient availability. These facts constitute a challenge for the measurement of 

glucocorticoid concentrations as a tool to assess and monitor the health and stress status of 

free-ranging animals given that the baseline and stress-induced levels of this steroid change 

seasonally. Thus, the factors underlying these seasonal changes and its implications on animal 

physiology must be characterized in order to assess the feasibility of using HPA axis activation 

as a tool for wildlife management. 

1.6. Serum Markers of Stress  

The sampling of blood is commonly employed to assess the health and stress status of animals. 

Blood sampling is minimally invasive compared to taking tissue biopsies, and the protein and 
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metabolite components of blood are often reflective of the health status of the animal (e.g. 

[168, 169]). Many pathological states may result in altered protein or metabolite patterns in 

blood or may result in the presence of molecules that normally are not present in this medium. 

Moreover, given that glucocorticoids play an important role in mediating the adaptation to 

stress and the maintenance of health in free-ranging animals, the measurement of serum levels 

of this steroid may be used by wildlife managers to aid in the monitoring and conservation of 

threatened species.  

However, there are a number of challenges involved in the collection of blood from wild 

animals, including bears [24]. The response to acute stressors, including capture and handling, 

results in the elevation of blood glucocorticoid levels above baseline levels rapidly in many 

species [170], necessitating the collection of blood within a relatively short time frame after 

capture (<10 min). While possible for small animals, this is not a feasible strategy for large, 

potentially dangerous animals such as bears, which require immobilization prior to sampling 

and handling. Moreover, immobilization by anesthesia may itself induce a stress response and 

lead to elevated glucocorticoid levels independently of capture stress [171]. The use of 

physical traps may also preclude rapid sampling if these are placed in remote areas or are not 

constantly monitored, and different trapping methods may induce different stress profiles 

[172]. In free-ranging grizzly bears, the use of leg-hold snares have been associated with 

muscle injury, dehydration, and elevated glucocorticoid levels relative to other capture 

methods [172]. Helicopter darting is an alternative capture method in which anesthetic is 

remotely injected via darting from a helicopter, and is considered less stressful in terms of the 

glucocorticoid response and its effects on the white blood cell profile [172]. However, this 

capture method results in the animal attempting to flee from the helicopter prior to the 

induction of the effects of the anesthetic, leading to a stress response [172]. Thus, with 

currently employed capture and sampling methods, blood sampling in bears will inevitably 

result in the induction of a stress response and elevated glucocorticoid levels. The magnitude 

of this glucocorticoid response may provide information regarding the stress and health status 

of free-ranging animals, but these analyses are complicated by the lack of a true control group 

to which to compare and which can be used as a benchmark. 
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Some techniques have been employed to circumvent these issues with capture stress and/or to 

test the functioning of the HPA axis [24, 28]. Terminal sampling is a technique where the 

sampled animal is shot and sampled before it can mount a stress response (e.g. [76]), but this is 

unsuitable for a threatened species such as bears. A challenge protocol involves taking a 

baseline blood sample prior to subjecting the animal to a standardized stressor (e.g. placing in a 

holding trap [82] or the administration of anesthetic [173]), followed by serial sampling. This 

technique provides information on the changes in glucocorticoid levels over a period of time, 

which may reveal abnormalities in HPA axis function. In bears, this may be complicated by the 

variable timing of the initiation of a capture, administration of anesthetic, and sampling. 

The dexamethasone/ACTH challenge test is another technique that is employed in the field to 

test HPA axis function [28]. After capture and anesthetization, dexamethasone, an artificial 

glucocorticoid analog, is administered. This drug acts on the GR receptors in the hypothalamus 

and pituitary to powerfully suppress the release of ACTH and, subsequently, glucocorticoid 

secretion from the adrenals. A blood sample taken after dexamethasone administration may 

reveal the extent of this induced negative feedback and the possible effects of chronic stress if 

this negative feedback is attenuated compared to healthy animals. A standardized dose of 

ACTH can then be administered to determine the ability of the adrenal glands to respond to 

this peptide hormone, and the presence of an abnormal response may indicate, for example, 

alterations due to chronic stress. 

There are concerns regarding invasive techniques utilized for monitoring wildlife programs, 

including the long-term health effects of capture and sampling [174]. A variety of non-

invasive, remote methods have been proposed, in development, or are in use to assess the stress 

status of wild animals, including the measurement of glucocorticoids and/or its metabolites in 

feces, urine, and hair (e.g. [175, 176, 177]). The measurement of glucocorticoids in these 

samples may provide an integrated measure of the secretion of this hormone over a period of 

time, from hours to days for urine and feces (e.g. [178, 179]) to several weeks to months for 

hair [180], rather than a point measurement as with blood glucocorticoids, and collection can 

be completely non-invasive. There are a number of technical and analytical challenges to 

overcome in using these methods, including the presence of multiple glucocorticoid 

metabolites that exist in proportions that may differ between sexes or may be immunologically 
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similar to metabolites of other steroid hormones [181]. Fecal glucocorticoids may also be 

metabolized by gut bacteria, or otherwise degraded or concentrated by exposure to the 

elements [178]. However, the ability to non-invasively examine the stress status of an animal is 

an attractive proposition, and the measurement of glucocorticoids and metabolites in these 

media may complement blood serum assessment leading to a greater understanding and better 

monitoring of the health of free-ranging species. While the measurement of glucocorticoids in 

blood serum is a well-established technique, the role of serum proteins as markers of stress 

and/or health status in wildlife has not received much attention. The characterization of serum 

proteome in wildlife may provide the basis for discovery of novel protein markers that may 

predict chronic stress and/or altered health status.  

1.7. The Utility of Proteomics in Wildlife Biology 

Proteomics is the quantitative study of the proteins expressed by a genome (i.e. the proteome) 

in a particular cell or tissue at a particular time [182]. The proteome of each tissue in an 

organism is likely to be unique because the complex pattern and timing of gene expression, 

protein translation, post-translational protein modification, and metabolism in that tissue gives 

rise to its form and function. Moreover, each proteome is complex because each step of the 

production of a protein from the genome introduces variation (e.g. alternative splicing of 

mRNA, variable post-translational modifications), resulting in isoforms of a protein that may 

appear biochemically different but share a common function, or vice versa. Despite these 

complexities, the study and comparison of the proteome of a tissue under different states (e.g. 

comparing an experimentally treated or diseased tissue to a control) may give insights into the 

proteins and the related metabolic pathways that are affected. Thus, proteomics is a powerful 

tool for research that can elucidate widespread changes that may occur in a tissue under 

different conditions and treatments, which may form the bases for hypotheses that are tested by 

subsequent experiments and for discovery of novel proteins. 
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Presently, the most commonly used methods to analyze proteomes utilize some form of 

biochemical protein separation followed by mass spectrometry-based identification of the 

protein. Two dimensional gel electrophoresis (2DE) is one commonly employed technique that 

separates proteins based on their isoelectric point (pI) in the first dimension using isoelectric 

focusing (IEF), and by molecular mass in the second dimension using sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) [183, 184]. The pattern of protein spots is 

visualized by staining after separation or by tagging the proteins with a dye prior to separation 

[185]. The latter method allows for the separation of multiple samples that are tagged with 

different dyes on the same gel, which forms the basis for difference gel electrophoresis (DIGE) 

[186]. Samples are labeled at the ε-amino group of lysine residues with different cyanine dyes 

(Cy Dyes) that fluoresce at different wavelengths. Moreover, an internal standard sample that 

is composed of a pool of an aliquot of each sample can also be labeled with a unique Cy Dye 

and separated on each gel to facilitate the matching of spot patterns between gels. The samples 

and standards are loaded onto and separated on the same gel. The protein spot patterns on the 

gel are then visualized at the fluorescence wavelength of each dye, and the intensity of a spot is 

proportional to the protein in that spot. This DIGE method streamlines the workflow by 

reducing the number of gels that are run and the amount of post-processing to match protein 

spots across gels. The internal standard also facilitates spot matching between gels because its 

composition and pattern of protein should be identical, notwithstanding the differences 

introduced by variation in the gel. 2DE and DIGE allows the analysis of all proteins within a 

range of pI and molecular mass, but generally, only a proportion of proteins exhibit 

significantly changed expression by an experimental treatment. The goal of the proteomic 

analysis is to analyze the 2D pattern of proteins for the significant changes due to experimental 

treatment, to identify these differentially expressed proteins, and to categorize these identified 

proteins into functional pathways. An overview of the 2DE workflow is shown in Figure 1.2. 

Proteins are commonly identified by mass spectrometry. Briefly, the protein of interest is 

excised from the gel, and is fragmented into peptides by trypsin digestion. This digestion  
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Figure 1.2: A Schematic Overview of the Two-dimensional Gel Electrophoresis (2DE) 
Proteomics Workflow. 
Serum samples are processed and proteins labeled with Cy Dyes. A set of differentially labeled 
control, treatment, and pooled internal standard samples are separated in a single run by 
isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide gel 
electrophoresis in the second dimension. The gels are scanned at the respective 
absorption/emission wavelength of each Cy Dye, and the resulting images are analyzed in 
DeCyder. During spot analysis, the internal standard facilitates the matching of spots between 
gels because gel-to-gel variability may lead to protein spots migrating at different rates. 
Additionally, the internal standard provides a means of normalizing spot volumes between 
gels. The spot volumes of each matching spot are compared between control and treatment 
samples, and protein spots that are differentially expressed are subsequently identified by 
tandem mass spectrometry (MS/MS).  
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results in the specific hydrolysis of a polypeptide chain at the carboxyl side of lysine or 

arginine, except where a proline residue is attached to this cleavage site. After the digest is 

cleaned and suspended in an appropriate solution, the mass spectra of the peptides are 

analyzed. The mass spectra of a digest (i.e. the peptide mass fingerprint) are sometimes 

sufficient to identify its parent protein. Otherwise, tandem mass spectrometry is employed, 

where each peptide in the digest is subjected to fragmentation within the mass spectrometer, 

and the mass spectra of the collision fragments is analyzed to determine its amino acid 

sequence or matched against a database of possible fragmentation spectra to deduce the 

identity of the parent protein. 

This proteomic workflow has been successfully employed to characterize changes in the 

proteomes of tissues under experimental treatments in model animals, including biomarker 

discovery for detecting cancer (e.g. [187, 188, 189]), chronic alcoholism [190], schizophrenia 

[191], and neurological diseases [192]. However, the application of these techniques in non-

model organisms is more complicated because of the paucity of gene and protein sequence 

information, limiting the successful identification of proteins [193]. However, modern mass 

spectra database search software may still be capable of assigning significant matches based on 

conserved sequences, and provide reasonable identities for unknown proteins. Proteomics 

analyses have been used to characterize the changes in some tissues associated with 

hibernation in non-model animals, including the liver [194, 195, 196, 197], muscle [198], and 

kidney [199] proteomes of sciurids, and the skeletal muscle proteome of greater tube-nosed 

bats (Murina leucogaster) [200]. These studies found widespread remodeling of tissue 

proteomes in the hibernating state that are consistent with previous studies on the gene 

expression, protein, and metabolic changes in these animals, including the switch to lipid-

fueled and protein-sparing metabolism. The recent work of Fedorov et al [145, 146, 163] 

characterized the transcriptomic profile in liver, skeletal and cardiac muscle, and bone of 

hibernating bears. These studies found that, in general, genes involved in lipid catabolism and 

protein biosynthesis were upregulated, while genes related to most catabolic pathways were 

downregulated in hibernating relative to active black bears. However, there is a lack of 

information on the changes in serum protein expression during hibernation relative to the 

active state in bears. Some studies have profiled such changes in a limited number of proteins, 

including some peptide hormones and proteins in bear serum [167, 201, 202]. The 
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characterization of the changes in the entire serum proteome associated with hibernation may 

elucidate some of the mechanisms that promote and maintain this depressed metabolic state, 

which may have important implications not only for the monitoring of health and stress in 

bears but also for human health and medicine. 

1.8. Thesis Objectives 

CBG plays an important role in the dynamics of glucocorticoid action by regulating the 

bioavailability of this steroid hormone to tissues. The quantification of this protein and the 

subsequent estimation of free, bioavailable cortisol concentrations may provide information 

regarding the health and stress status of free-ranging animals. The primary objectives of this 

thesis were to characterize the dynamics of glucocorticoids, including total and free cortisol 

and CBG concentrations, in the serum of three ursid species, the grizzly (U. arctos), polar (U. 

maritimus), and American black bear (U. americanus). The black bears used in these studies 

were captive animals, while samples from the other two species were taken from free-ranging 

animals. Furthermore, the changes in the serum proteome due to hibernation of captive 

American black bears were assessed to elucidate the potential mechanisms behind the unique 

metabolic aspects of ursid hibernation and their contribution to health during periods of fasting 

and hypometabolism. This will also allow for the discovery of novel proteins as markers of 

health status in bears. Specific objectives included: 

1. Characterize the binding properties of cortisol to CBG, and the development of methods to 

estimate free cortisol in ursids (Chapter 2); 

2. The cloning and sequencing of grizzly bear CBG, and the development of a homologous 

CBG ELISA for grizzly bears (Chapter 3); 

3. Characterize the effect of life-history traits and season on cortisol dynamics in free-ranging 

grizzly and polar bears (Chapter 4); 
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4. Determine the effect of hibernation on cortisol dynamics in captive American black bears 

(Chapter 5); 

5. Characterize the serum proteome changes that are associated with hibernation in captive 

black bears (Chapter 6). 
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CHAPTER 2:  
CHARACTERIZATION OF CORTISOL DYNAMICS IN 
URSID SERUM 

2.1. Introduction 

Corticosteroid-binding globulin (CBG) is a ~50 kDa serum glycoprotein in the serpin 

proteinase inhibitor superfamily [1] that binds glucocorticoids (e.g. cortisol) and progesterone 

with high affinity in circulation [2]. CBG plays a major role in the dynamics of glucocorticoid 

action because the CBG-bound fraction of this hormone cannot cross plasma membranes to 

activate the intracellular glucocorticoid (GR) and mineralocorticoid receptors (MR) that 

mediate the cellular effects of this steroid hormone [3]. Thus, the free, unbound fraction of 

serum glucocorticoids is the biologically relevant fraction of this steroid hormone. The 

measurement of serum free glucocorticoid levels may allow for a better understanding of the 

link between glucocorticoid effects on the health status of animals [4].  

Free cortisol concentrations can be estimated by the free hormone equation of Barsano and 

Baumann [5] if CBG and total cortisol concentrations and the affinity of CBG for cortisol are 

known. This affinity is measured as the dissociation binding constant (Kd), which is usually 

translated as the concentration of cortisol at which half of the CBG binding sites in a sample 

are occupied. Alternatively, the equilibrium association constant (Ka, the reciprocal of Kd) is 

also commonly reported. The lower the Kd or higher the Ka, the higher the affinity of cortisol 

for CBG. There is a wide range of reported Kd values for animals [4], and the affinity of 

cortisol for CBG may be dependent on the amino acid sequence and post-translational 

modifications of CBG. 

While total cortisol concentrations have been measured in black [6, 7, 8, 9], grizzly [10], and 

polar bears [11, 12], CBG and serum free cortisol levels have not. There is a need to assess and 

monitor the stress status of free-ranging animals to gain insights into the effects of rapid 
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ecological changes on the health of free-ranging animals. For example, grizzly bear 

populations in Alberta, Canada, are threatened by habitat fragmentation and increased human 

access of habitats, leading to increased mortality risk [13]. In combination with the low 

reproductive potential and population size of this species in this province [14, 15], these 

ecosystem changes may lead to population declines. Similarly, climatic warming is leading to 

decreases in the extent and duration of seasonal ice cover in the Hudson Bay region of Canada 

[16]. Polar bears are dependent on sea ice to hunt their primary prey, and declining ice 

conditions are linked to negative impacts on the body condition of animals in the southern 

portions of their range [17, 18]. A reduction in body condition index has been hypothesized to 

decrease reproductive performance, leading to population declines in this species [17, 18]. 

Environmental stressors may lead to sustained elevation in serum glucocorticoid levels and 

chronic effects on the health of these bears. For instance, chronically elevated free cortisol 

concentrations, due in part to elevated total cortisol and/or decreased CBG levels, may have 

detrimental impacts on growth, immunity, and reproduction [19, 20, 21]. Consequently, 

chronic stress may lead to negative impacts on population health and persistence, including 

increased mortality and decreased reproductive performance [22]. The development of tools 

for health and stress status monitoring, including the measurement of CBG and free cortisol 

levels, may provide wildlife managers with information to assess and predict population health 

[23]. For instance, elevations in glucocorticoid levels due to environmental stress may be 

linked to increased mortality or decreased reproductive success in animals [19, 24]. However, 

little is known regarding stress and cortisol dynamics in bears. Thus, the primary objective of 

this chapter was to characterize the binding affinity of CBG to cortisol by equilibrium 

saturation binding experiments, and CBG levels in black, grizzly, and polar bears. Using these 

data, free cortisol levels were estimated and compared to evaluate any potential differences in 

cortisol dynamics between these species. 
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2.2. Methods and Materials 

2.2.1. Animals 

2.2.1.1. Grizzly Bear Serum 

Sera were collected from 28 female grizzly bears for the Foothills Research Institute Grizzly 

Bear Project (research goals are summarized by [25]) within a 150,000-km2 area of western 

Alberta, Canada (49°00’ – 55°50’N, 113°50’ – 120°00’W). These animals were captured using 

Aldrich leg-hold snares (Aldrich Snare Co., Clallam Bay, Washington) and anesthetized by 

remote drug delivery using a combination of xylazine and zolazepam–tiletamine (XZT) 

administered intramuscularly as xylazine (Cervizine 300; Wildlife Pharmaceuticals, Inc., Fort 

Collins, Colorado) at 2 mg/kg and Telazol (Fort Dodge Laboratories, Inc., Fort Dodge, Iowa) 

at 3 mg/kg estimated body weight prior to handling [26]. Blood was collected by venipuncture 

from the jugular vein into sterile tubes, and samples were centrifuged within 8 h of collection 

to extract serum. Extracted serum samples were stored frozen at –20°C until analysis. At the 

conclusion of handling, atipamezole (Antisedan; Novartis Animal Health Canada Inc., 

Mississauga, Ontario, Canada) was administered at 0.15 – 0.20 mg/kg, half-volume 

intramuscularly and half-volume intravenously, to reverse the effects of xylazine. The capture 

and sampling protocol was reviewed and approved by the University of Saskatchewan’s 

Committee on Animal Care and Supply, and was in accordance with guidelines provided by 

the American Society of Mammalogists’ Animal Care and Use Committee [27] and the 

Canadian Council on Animal Care [28]. 

2.2.1.2. Polar Bear Serum 

Sera were collected from 39 female polar bears that were captured and sampled in conjunction 

with a long-term research project in the Canadian Arctic conducted by the Ontario Ministry of 

Natural Resources [29]. These samples were taken from animals spotted by a helicopter and 

immobilized by remote injection with projectile syringes using a combination of xylazine and 

zolazepam-tiletamine (XZT) administered intramuscularly as xylazine (Cervizine 300H, 

Wildlife Pharmaceuticals, Inc., Fort Collins, Colorado, USA) at 2 mg/kg and Telazol (Fort 
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Dodge Laboratories, Inc., Fort Dodge, Iowa) at 3 mg/kg estimated body weight. Blood was 

collected by venipuncture from the jugular vein into sterile tubes, and the sample was 

centrifuged within 8 h of collection to extract serum. Sera were frozen within 8 h of collection 

and maintained frozen (–20°C) in long-term storage at the University of Saskatchewan. The 

capture and sampling protocol was reviewed and approved by the University of 

Saskatchewan’s Committee on Animal Care and Supply, and was in accordance with 

guidelines provided by the American Society of Mammalogists’ Animal Care and Use 

Committee [27] and the Canadian Council on Animal Care [28]. 

2.2.1.3. Black Bear Serum 

Sera were collected from six captive female black bears held at the Virginia Polytechnic 

Institute Center for Bear Research. Animals were anesthetized with a 2:1 mixture of ketamine 

(100 mg/mL):xylazine (100 mg/mL) at a dosage of 1 cc of the mixture per 45.5 kg of body 

mass. Blood samples were drawn from the femoral vein while the animal was anesthetized, and 

the samples were transported to the laboratory in an ice-packed cooler. Immediately on return 

to the laboratory, the blood was spun to isolate the serum and was frozen at –20°C. The 

Virginia Polytechnic Institute and State University Animal Care Committee approved all bear 

handling protocols (#98-069-F&WS). 

2.2.2. Cortisol Saturation Binding Assay 

The binding characteristics of CBG for cortisol in black, grizzly, and polar bear sera and fish 

plasma were determined by saturation binding experiments as described previously [30]. Sera 

for bears were pooled from 4 females of each respective species into one sample for each 

species. Plasma from rainbow trout (Oncorhynchus mykiss) was used as a negative control 

because teleosts lack CBG [31]. Serum was stripped of steroids by incubation with washed 

activated charcoal (Sigma) for 4 h at 37°C. 100 µL of stripped serum was diluted 1:100 in 

phosgel (100 mM phosphate, 0.1% gelatin, pH 7.4), and incubated with 1.56 – 100 nM of 

serially diluted 1,2,6,7-3H(N) hydrocortisone (3H-F, Perkin-Elmer, Waltham, Massachusetts, 

USA) for 4 h at 37°C in glass tubes in duplicate. A parallel set of tubes with excess unlabeled 
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cortisol (2000 nM) along with the 3H-F and diluted bear serum was incubated to determine 

non-specific binding (NSB). Additionally, another set of tubes with no added serum was 

incubated to determine total counts (TC). After the incubation, all tubes were cooled in an 

ethanol-ice-water bath, and unbound 3H-F was separated by the addition of 700 µL of dextran 

T-70 (Sigma)-coated activated charcoal in phosgel. Tubes were incubated for 20 min, 

centrifuged at 2000 x G for 12 min at 4°C. 350 µL of the supernatant was transferred and 

mixed with 2 mL scintillation fluid. Samples were counted in a Beckmann LS-9600 liquid 

scintillation counter. Specific binding (SB) was calculated as the difference between the TB 

and NSB counts. Kd and Bmax were first estimated by Scatchard analysis [32] and Rosenthal 

correction [33]. These estimates were then refined by non-linear least squares (NLS) regression 

analysis in R 2.14.0 [34], and was fit to the equation: 

𝐵! =   
𝐵!"# ∗ 𝐿
𝐾! + 𝐿

 

Where Bs is specific binding (cpm), Bmax is the maximum binding capacity of cortisol to serum 

(cpm), and L is the free 3H-F (nM). The Kd and Bmax from the Scatchard analyses were used as 

seed values for NLS regression. Bmax values were converted to nmol cortisol bound/L serum 

using the standard curves derived from the total counts (TC; linear regression of cpm versus 
3H-F).  

Hill plots were also constructed [35] to explore possible interactions between cortisol binding 

sites. The proportion of binding sites occupied (θ) was calculated from the estimated Kd and L: 

𝜃 =
𝐿

𝐾! + 𝐿
  

log(θ / (1 – θ)) was plotted against log(L), and the line of best fit through the points was 

calculated by linear least squares regression analysis. 
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2.2.3. Maximum Corticosteroid Binding Capacity Assay 

The maximum corticosteroid binding capacity (MCBC) assay [36] was used to estimate the 

CBG binding capacity in six black, 28 grizzly, and 36 polar bear serum samples. The 

estimation of CBG levels by the MCBC assay is equivalent to such estimations by Bmax in the 

saturation binding assays, but the former is a point assay that requires fewer materials. For the 

determination of total binding (TB), 10 µL of 1:100 diluted serum in phosgel was incubated 

with 0.105 ng of 3H-F and 10 ng of unlabeled cortisol in 500 µL of phosgel for 4 h at 37°C in 

duplicate glass tubes. A parallel set of duplicate tubes with excess unlabeled cortisol (2000 

nM) along with the same mass of 3H-F and volume of diluted serum as the TB tubes was 

incubated to determine non-specific binding (NSB). After the incubation, all tubes were cooled 

in an ethanol-ice-water bath, and unbound 3H-F was separated by the addition of 200 µL of 

dextran T-70-coated activated charcoal in phosgel. Tubes were incubated for 12 min and then 

centrifuged at 2000 x G for 12 min at 4°C. 500 µL of the supernatant was transferred and 

mixed with 2 mL scintillation fluid. Samples were counted in a Beckmann LS-9600 liquid 

scintillation counter. Specific binding (SB) was calculated as the difference between the TB 

and NSB counts, and the MCBC was calculated as the proportion of SB / TC multiplied by the 

amount of cortisol present (the sum of endogenous and added cortisol) per unit volume serum. 

2.2.4. Serum Total Cortisol Assay 

Serum total cortisol was measured by radioimmunoassay (RIA) using a commercial 125I kit 

(MP Biomedicals, Orangeburg, NY) as described by Hamilton [37]. Grizzly and polar bear 

serum cortisol levels used in this study were previously reported by Hamilton [37]. 

2.2.5. Free Cortisol Calculations 

Free cortisol concentrations were calculated by the equation of Barsano and Baumann [5]: 



 35 

𝑓𝐶𝑂𝑅𝑇 =   
– 𝐶𝐵𝐺  – 𝑡𝐶𝑂𝑅𝑇 +    1𝐾!

± 𝐶𝐵𝐺  – 𝑡𝐶𝑂𝑅𝑇 +    1𝐾!

!
− 4 −𝑡𝐶𝑂𝑅𝑇

𝐾!
2  

Where fCORT is free cortisol concentration (mol/L), CBG is CBG concentration (mol/L), 

tCORT is total cortisol concentration (mol/L), and Ka = 1/Kd = equilibrium association 

constant (L/mol). 

2.2.6. Statistics 

For the visualization of saturation binding assay data, curves of best fit were fit to total binding 

(TB), non-specific binding (NSB), and specific binding (SB) data using four parameter logistic 

nonlinear regression models: 

Binding =   
A− D

1+    𝐿𝐶
! + 𝐷 

Where Binding is TB, NSB, or SB; L is the concentration of free added 3H-F; A is the 

minimum asymptote; B is the slope factor; C is the inflection point; and D is the maximum 

asymptote. The values for Binding and L were taken from the saturation binding assays, while 

A, B, C, and D were estimated by regression analysis. 

Significant differences (p < 0.05) in MCBC, and total and free cortisol between the three bear 

species were determined by 1-way ANOVA, and data were log-transformed as necessary to 

meet the parametric assumption of normality. Post hoc significance testing was performed with 

Tukey’s Honest Significant Differences test.  
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2.3. Results 

2.3.1. Saturation Binding Experiments 

Saturation binding assays were conducted on pooled grizzly, polar, and black bear sera to 

determine the Kd and Bmax for ursid CBG. Plots of total counts of beta decays versus the 

concentration of added 3H-F revealed a linear relationship between these variables (Figure 

2.1). Specific binding was calculated as the difference between total binding and non-specific 

binding of 1:50 diluted serum with 0 – 100 nM 3H-F, and free 3H-F (L) was calculated as the 

product of 3H-F concentration and the proportion of total binding to total counts (Figure 2.2). 

Specific binding was higher than non-specific binding in all the bear sera, but not rainbow trout 

plasma. Scatchard plots (specific binding divided by L versus specific binding) were 

constructed for each experiment (Figure 2.3), and Kd (negative inverse of the absolute value of 

the slope of the linear regression line) and Bmax (x-intercept of the regression line) were 

estimated. These Kd and Bmax values were used as starting estimates for the subsequent non-

linear regression analyses of specific binding versus L to determine refined Kd and Bmax (Table 

2.1). The Kd and Bmax for fish plasma could not be estimated because there was no detectable 

specific binding. 

Hill plots were constructed from the saturation binding data. The fraction of binding sites 

occupied (θ) was calculated from L and the NLS-estimated Kd for each experiment and the 

linear least squares regression line of log(θ / (1 – θ)) versus log(L) was calculated. The slopes 

of the regression lines were 1 for all experiments (an example is shown in Figure 2.4). The 

Scatchard plots were also linear by inspection, which suggests a single binding site for cortisol 

in bear serum. 
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2.3.2. Maximum Corticosteroid Binding Capacity and Free Cortisol 
Estimates 

Maximum corticosteroid binding capacity (MCBC) was determined in an expanded sample set 

of black, grizzly, and polar bear sera (Figure 2.5A). The mean MCBC in polar bears was 

significantly elevated relative to black and grizzly bears (F2,67 = 9.45, p < 0.001). Serum total 

cortisol concentrations were quantified in each of the serum samples from black, grizzly, and 

polar bears (Figure 2.5B), and were elevated in grizzly and polar bears relative to black bears 

(F2,67 = 18.0, p < 0.001). To estimate free cortisol calculations in the samples used for the 

MCBC assay, the equation of Barsano and Baumann [5] was employed, using MCBC as the 

CBG concentration. Free cortisol concentrations (Figure 2.5C) were elevated in grizzly and 

polar bears relative to black bears (F2,67 = 6.47, p < 0.01). 

2.4. Discussion 

The primary aim of this study was to characterize the binding affinity (Kd) of cortisol to CBG 

in black, grizzly, and polar bear serum with saturation binding experiments, and to estimate 

CBG concentrations by the maximum corticosteroid binding capacity (MCBC) assay. The 

derived equilibrium dissociation constants (Kd) were used in conjunction with total cortisol and 

MCBC measurements to estimate free cortisol concentrations. Altogether, there were 

differences in MCBC and free cortisol levels between the bear species suggesting differences 

in cortisol dynamics. 

The Scatchard and non-linear regression analyses of the saturation binding data were consistent 

with a high-affinity binding site for cortisol in the sera of black, grizzly, and polar bears. 

Generally, Scatchard plots are linear for single ligand binding sites, while the presence of 

multiple binding sites lead to non-linear plots. While, in most species, serum albumin is also a 

significant contributor to steroid binding in circulation, the affinity of cortisol to this protein is 

several orders of magnitude less compared to CBG. For example, in dogs (Canis lupis   
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Figure 2.1: β Decay Counts versus Tritium Labeled Hydrocortisone Concentration. 
Representative total counts (counts per minute) versus 0 – 100 nM 3H-hydrocortisone for a 
saturation binding assay. The line of best fit was calculated by linear regression analysis and 
was used to convert counts per minute to nM cortisol.  
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Figure 2.2: Saturation Binding Curves of Cortisol to Bear Sera. 
Total, non-specific, and specific binding curves for A) grizzly, B) polar, and C) black bear 
sera. Circles represent total binding, squares represent non-specific binding, and diamonds 
represent specific binding in counts per minute (cpm). Curves are fit through the data points by 
4-parameter non-linear regression analysis.  
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Figure 2.3: Representative Scatchard Plot. 
Representative Scatchard plot of cortisol binding to pooled grizzly bear serum. Data from the 
saturation binding experiments were transformed, and specific binding (cpm) divided by free 
ligand (3H-labeled hydrocortisone, nM) was plotted against specific binding. The line of best 
fit was calculated by linear regression analysis. 
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Figure 2.4: Representative Hill Plot. 
Representative Hill plot of cortisol binding to pooled grizzly bear serum.  
Data from the saturation binding experiment were transformed, and θ represents the fraction of 
cortisol binding sites that are occupied at a given concentration of 3H-F. The slope of the line 
of best fit, as determined by linear least squares regression analysis, is one. 
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Table 2.1: Binding Characteristics of Cortisol to CBG. 
Estimates for Bmax (nM) and Kd (nM) were determined by single-site non-linear regression 
analyses of saturation binding assay data. 
  



 47 

Species Bmax (nM) Kd (nM) 

Grizzly Bear 316 7.72 
Polar Bear 595 13.2 
Black Bear 225 4.23 
Rainbow Trout ND ND 
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Figure 2.5: Serum Cortisol Dynamics in Black, Grizzly, and Polar Bears. 
Mean + SEM of A) maximum corticosteroid binding capacity (MCBC), B) total cortisol, and 
C) estimated free cortisol in black, grizzly, and polar bears. Sample sizes are shown as inset in 
panel A, and significantly different means (one-way ANOVA, p < 0.05) are indicated by 
different letters. MCBC was significantly higher in polar bears relative to black and grizzly 
bears, and total and free cortisol levels were higher in grizzly and polar relative to black bears. 
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familiaris) the Kd of cortisol to CBG is 7.9 nM, while the affinity of cortisol for albumin is 

510.3 µM [38]. The concentration of 3H-F used in these experiments was a maximum of 100 

nM, so albumin was likely not a significant contributor to cortisol binding under these 

conditions. In addition, the Hill plots suggested a single cortisol binding site in bear sera 

because the lines of best fit based on the saturation binding of cortisol to ursid serum protein 

had slopes of 1, supporting the presence of a single high-affinity binding site in black, grizzly, 

and polar bears. This serum protein with high affinity binding site for glucocorticoids is likely 

CBG and this is well-established in animals [4], but never before been reported for ursids.  

The Kd values for cortisol in bears were comparable to values reported for other mammalian 

species (see references [4, 39]). For instance, the reported Kd of dogs, range from 3.8 [40] to 

7.9 nM [38]. Various phocid seals, which are also carnivorans like bears, possess CBG with Kd 

values from 11.0 to 27.0 nM [41]. New World monkeys, including squirrel (Saimiri sciureus) 

and Titi monkeys (Callicebus moloch) express CBG with exceptionally low affinity for 

corticosteroids (Kd = 500 and 250 nM, respectively [42]), and may contribute to the 

exceedingly high free cortisol concentrations in these species [42]. Similarly, the mean Bmax 

and MCBC for bears were also within the range of reported values for mammals [4]. Dogs, for 

example, have reported cortisol binding capacity values ranging from 41 [40] to 82 nM [38], 

and humans have values ranging from 400 to 600 nM [38, 42]. Altogether, the binding 

characteristics of cortisol to high-affinity sites in bear sera protein were similar to observations 

in other mammals. The utility of characterizing this binding affinity is the capability to 

estimate free cortisol concentrations if CBG and total cortisol concentrations are also known, 

which may help to elucidate the dynamics of cortisol in sera and its potential action on tissues.  

We found differences in MCBC and total cortisol levels between black, grizzly, and polar 

bears, and this may play a role in differing free cortisol concentrations among these species. 

However, cross-species comparisons of total and free cortisol levels are subject to caveats 

(discussed below) that may make clear interpretations of the data difficult. Thus, these 

comparisons of cortisol levels between species were provided as a proof-of-concept for the 

estimation of free cortisol in ursids. 
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The total cortisol levels reported in this investigation were likely above baseline, unstressed 

levels due to the acute stress of capture and time delay in sampling [43]. These factors may be 

reasons for the elevated serum total cortisol levels in grizzly and polar bears compared to black 

bears. In the captive black bears used in this study, blood sampling were likely more rapid 

relative to the free-ranging animals, resulting in levels more representative of the basal levels. 

However, the administration of anesthetic may itself induce a stress response that could result 

in the elevation of cortisol levels above baseline [44]. Thus, the cortisol values reported in this 

study likely reflect stress-induced levels despite the lower cortisol levels in black bears 

compared to the other two species. There were also likely differences in cortisol levels that are 

not due to species differences. For instance, total serum cortisol levels in animals captured by 

leg-hold snaring are higher than in animals captured by helicopter darting [10, 37]. Since the 

grizzly bears studied in this investigation were all captured by the former method and the polar 

bears by the latter method, the capture-induced cortisol levels in grizzly bears were likely 

inflated due to the capture method. In contrast, while CBG expression may be modulated by 

acute stress [45], changes in the serum levels of this protein generally manifest several hours 

after the initial stress response. For example, MCBC levels significantly decrease 24 h after the 

initiation of fasting in white-crowned sparrows (Zonotrichia leucophrys gambelii) [46], after 1 

h post-capture in Richardson’s ground squirrels (Urocitellus richardsonii) [47], and 24 h post-

capture in Japanese quail (Coturnix japonica) [48]. Consequently, the Bmax and MCBC values 

that are presented in this investigation may reflect pre-sampling levels of CBG, but further 

research is required to confirm this hypothesis. 

Altogether, the saturation binding experiments revealed that cortisol binding to CBG in ursids 

is similar to that observed in other mammals, including a single high-affinity binding site per 

CBG molecule. The results of this investigation provided a proof-of-concept for the estimation 

of free cortisol concentrations in ursids, and the technique can be applied in subsequent studies 

to further characterize glucocorticoid physiology and its modulation by life history factors and 

environmental stressors in these species. However, a major weakness of MCBC and saturation 

binding assays are their reliance on radioisotope labeled-glucocorticoids. Additionally, MCBC 

and Bmax are indirect measures of CBG in that these assays measure the amount of cortisol 

bound by this protein rather than the amount of CBG itself. The development of an assay that 

quantifies CBG directly and rapidly without the use of these hazardous and expensive 
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materials may be advantageous for the routine monitoring of CBG and free cortisol levels in 

bears. 
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CHAPTER 3:  
THE DEVELOPMENT OF AN ENZYME-LINKED 
IMMUNOSORBENT ASSAY FOR MEASURING URSID-
SPECIFIC CORTICOSTEROID-BINDING GLOBULIN  

3.1. Introduction 

Free glucocorticoids are, in general, the biologically available fraction of this steroid hormone 

in animals [1], and their levels in circulation are regulated in part by corticosteroid binding 

globulin (CBG), a ~50 kDa glycoprotein that belongs to the serpin proteinase inhibitor 

superfamily [2]. CBG binds glucocorticoids with high affinity, and the majority of serum 

glucocorticoids are bound to this protein [3, 4]. Albumin is another contributor to 

glucocorticoid binding, albeit with low affinity, and in conjunction with CBG bind up to 95% 

of the total glucocorticoids in blood [4]. This bound glucocorticoid fraction may act as a 

reserve pool that can be locally and rapidly released. For example, elastases secreted by 

activated immune cells, including granulocytes, can cleave CBG, leading to conformational 

changes in the protein that result in a decreased affinity for glucocorticoids [5, 6]. This 

elastase-mediated release of glucocorticoids is thought to increase the concentrations of free 

steroid in a localized area to modulate immune function. Additionally, there may exist a cell 

surface CBG receptor that may bind and mediate the uptake of CBG-bound glucocorticoids 

[7]. Aside from these contributions, CBG-bound glucocorticoids are in general considered 

biologically unavailable because these bound steroids cannot freely cross plasma membranes. 

Thus, free, unbound glucocorticoids are the primary mediators of the action of this hormone, 

and changes in serum CBG concentration may have major effects on glucocorticoid 

bioavailability. 

While serum total cortisol levels have been previously measured in bears [8, 9, 10], neither 

serum CBG nor free cortisol levels have been measured in black, grizzly, and polar bears. 
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Since CBG plays an important role in modulating the bioavailable free fraction of cortisol, the 

measurement of this protein may help to elucidate the roles that cortisol play in the adaptation 

to stress in ursids. The objective of this study was to develop and validate a homologous 

enzyme-linked immunosorbent assay (ELISA) for grizzly bear CBG to accurately quantify this 

protein in bear serum, and to examine the feasibility of using this ELISA to measure CBG in 

other ursids.  

3.2. Methods and Materials 

3.2.1. Animals 

3.2.1.1. Tissues 

For molecular work, RNA was extracted from a testicle collected from a grizzly bear killed by 

Alberta Government Fish and Wildlife Officers in defense of human life or property in 

September 2005.  

3.2.1.2. Grizzly Bear Serum 

For the validation of the anti-grizzly bear CBG (gbCBG) antibody and CBG ELISA, serum 

was collected from a representative mature male five year-old grizzly bear (bear ID G078). 

This animal was captured using an Aldrich leg-hold snare (Aldrich Snare Co., Clallam Bay, 

Washington) on May 16, 2004 for the Foothills Research Institute Grizzly Bear Project 

(research goals are summarized by [11]) within a 150,000-km2 area of western Alberta, Canada 

(49°00’ – 55°50’N, 113°50’ – 120°00’W). He was immobilized using a combination of 

xylazine and zolazepam–tiletamine (XZT) administered intramuscularly as xylazine (Cervizine 

300; Wildlife Pharmaceuticals, Inc., Fort Collins, Colorado) at 2 mg/kg and Telazol (Fort 

Dodge Laboratories, Inc., Fort Dodge, Iowa) at 3 mg/kg estimated body weight [12]. Blood 

was collected by venipuncture from the jugular vein into sterile tubes, and the sample was 

centrifuged within 8 h of collection to extract serum. This sample was stored at –20°C until 
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analysis. At the conclusion of handling, atipamezole (Antisedan; Novartis Animal Health 

Canada Inc., Mississauga, Ontario, Canada) was administered at 0.15 – 0.20 mg/kg, half-

volume intramuscularly and half-volume intravenously, to reverse the effects of xylazine. The 

capture and sampling protocol was reviewed and approved by the University of 

Saskatchewan’s Committee on Animal Care and Use, and was in accordance with guidelines 

provided by the American Society of Mammalogists’ Animal Care and Use Committee [13] 

and the Canadian Council on Animal Care [14]. 

For the determination of the mean CBG, total cortisol, and glucose levels in this species, sera 

were used from an additional 47 grizzly bears. These animals were spotted from a helicopter, 

and were immobilized by the remote injection of anesthetic with a syringe dart (“heli-darting”). 

The anesthetics used were a combination of xylazine and zolazepam–tiletamine (XZT) 

administered intramuscularly as xylazine (Cervizine 300; Wildlife Pharmaceuticals, Inc., Fort 

Collins, Colorado) at 2 mg/kg and Telazol (Fort Dodge Laboratories, Inc., Fort Dodge, Iowa) 

at 3 mg/kg estimated body weight [12]. Blood sampling occurred as detailed above. Thirty-one 

of these animals were female, and 16 were male. No two samples were taken from the same 

animal (i.e. no repeated measures), and if an animal was sampled more than once, serum 

collected from the most recent capture of the animal was used in this study. Additionally, to 

validate the results of the CBG ELISA, CBG concentrations were measured in the 28 grizzly 

bears for which maximum corticosteroid binding capacities (MCBC) were determined in 

Chapter 2. 

3.2.1.3. Polar Bear Serum 

For the validation of the use of polar bear sera with the gbCBG antibody and ELISA, we 

obtained an archived frozen serum sample from a mature 13-year old female polar bear (bear 

ID X19562). This animal was captured on October 4, 2004 in conjunction with a long-term 

research project in the Hudson Bay and central Canadian Arctic regions conducted by the 

Ontario Ministry of Natural Resources. The sample was collected and processed similarly to 

grizzly bears captured by heli-darting (above), with serum frozen within 8 h of collection and 

maintained frozen (–20°C) in long-term storage at the University of Saskatchewan. The 

research protocols for this project were approved by the animal care committees at the 
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University of Saskatchewan and Ontario Ministry of Natural Resources, and were in 

accordance with guidelines provided by the American Society of Mammalogists’ Animal Care 

and Use Committee [13] and the Canadian Council on Animal Care [14]. For the determination 

of the mean CBG, total cortisol, and glucose levels in polar bears, serum samples from an 

additional 348 polar bears were collected as detailed above. Altogether, 169 samples were 

collected from females and 179 from males. As with the grizzly bears, only samples from the 

most recent capture were used.  

3.2.1.4. Black Bear Serum 

For the validation of the use of black bear sera with the CBG ELISA, a serum sample from a 

captive, mature 5-year old female black bear was obtained. She was held at the Virginia 

Polytechnic Institute Center for Bear Research and was sampled on November 30, 2007. Prior 

to sampling, this animal was anesthetized with a 2:1 mixture of ketamine (100 

mg/mL):xylazine (100 mg/mL) at a dosage of 1 cc of the mixture per 45.5 kg of body mass. 

Blood samples were drawn from the femoral vein while the animal was anesthetized, and the 

samples were transported to the laboratory in an ice-packed cooler. Immediately on return to 

the laboratory, the blood was spun to isolate the serum and was frozen at –20°C. The Virginia 

Polytechnic Institute and State University Animal Care Committee approved all bear handling 

protocols (#98-069- F&WS). For the determination of the species mean CBG, total cortisol, 

and glucose concentrations, serum samples from an additional eight mature female black bears 

were collected as detailed above. All animals were sampled prior to hibernation in early 

October through late November.  

3.2.2. Cloning and Sequencing Grizzly Bear CBG cDNA 

3.2.2.1. RNA Extraction and cDNA Synthesis 

Approximately 50 mg of tissue sample (kept frozen at –80°C) was used for total RNA 

extraction using RNeasy Mini Kit (Qiagen; Mississauga, ON, Canada). The sample was first 

treated with DNase (Qiagen) to remove genomic DNA. RNA was quantified at 260/280 nm 

using a Nanodrop spectrophotometer (Wilmington, DE, USA), and 5 µL was loaded on an 
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RNA denaturing gel to visually assess RNA integrity. First strand cDNA was synthesized 

using a commercial kit (MBI Fermentas; Burlington, ON, Canada), where 1 µg of total RNA 

was reverse transcribed using M-MuLV reverse transcriptase in a total volume of 20 µL 

according to manufacturer’s instruction. 

3.2.2.2. PCR Amplification and Sequencing of CBG 

Primers were designed to amplify two overlapping sections of grizzly bear CBG (Table 3.1) 

that were found to be conserved in dog (Canis familiaris lupus: GenBank accession 

XM_547960) and human (Homo sapiens; GenBank accession NM_001756) CBG (hCBG) 

sequences using Primer3 v0.4.0 software. CBG RT-PCR amplification consisted of an initial 

denaturing period of 95 °C for 3 min, followed by 40 cycles of: 1) denaturing at 95 °C for 30 s; 

2) annealing at 60 °C for 30 s; and 3) extension at 72 °C for 30 s. This was followed by a 10 

min extension period at 72°C. The PCR reaction products were fractionated in 1.5% agarose 

gels along with DNA molecular weight standards (Fermentas Life Sciences, Glen Burnie, 

Maryland), stained with ethidium bromide, and images were captured under UV light. 

Amplified products were excised from the gel, purified, and sequenced at the York University 

Core Molecular Biology and DNA Sequencing facility (Toronto, ON). The complete coding 

domain nucleotide and amino acid sequences for grizzly bear CBG were submitted to 

GenBank (accession number EU571738).  

3.2.3. Multiple Sequence Alignment and Phylogenetic Tree 

CBG protein sequences for grizzly bear, dog (XP_547960), chimpanzee (Pan troglodytes, 

XP_510143), human (AAB59523), pig (Sus scrofa, NP_998977), rat (Rattus norvegicus, 

NP_001009663), sheep (Ovis aries, P49920), and gray short-tailed opossum (Monodelphis 

domestica, XP_001370999) were aligned by ClustalX 2.0.12. The positions of the steroid 

binding residues and conserved cysteine residues of rat CBG [15] were used to determine 

conserved binding and cysteine residues in bears. N-linked glycosylation sites in the gbCBG 

amino acid sequence were predicted using NetNGlyc 1.0 [16]. A phylogenetic tree of CBG 

nucleic acid sequences was constructed with PHYLIP 3.69. The CBG nucleotide sequences   
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Table 3.1: Primers Used for RT-PCR. 
Primers were designed against conserved nucleotide sequences found in dog (Canis lupis 
familiaris) and human (Homo sapiens) CBG. 
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Set 1 
Forward Primer 

Reverse Primer 

5’ TCCCAGGTCACATAGCCAAT 3’ 

5’ CAAGTCTACAATTTTCCCTTGTGTC 3’ 

Set 2 
Forward Primer 

Reverse Primer 

5’ CCATGGCCTTAGCTATGCTG 3’ 

5’ TTAGGTCGGATTCACAACCTTT 3’ 
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used for tree construction were (GenBank accession numbers in parentheses): dog 

(XM_547960), grizzly bear (EU571738), horse (XM_001495734), rhesus macaques isoform 1 

(XM_001098039) and isoform 2 (XM_001098128), chimpanzee (XM_510143), orangutan 

(NM_001132481), squirrel monkey (S68757), human (J02943), mouse (NM_007618), rat 

(NM_001009663), golden hamster (M74776), pig (NM_213812), sheep (X73615), opossum 

(XM_001370962), and platypus (XM_001515356). An unidentified cattle sequence whose 

nucleotide sequence was similar to CBG was also included (XR_028138). Human 

(NM_000295), cattle (NM_173882), and zebrafish (NM_001077758) alpha-1-antitrypsin 

(A1AT) were used as the outgroup sequences, with the latter used to root the tree. The tree was 

constructed using the maximum likelihood method and bootstrap algorithm with 1000 

bootstrap trials. 

3.2.4. CBG Peptide Antibody Synthesis 

From the deduced amino acid sequence for grizzly bear CBG, an affinity purified polyclonal 

antibody was generated in rabbits for the peptide sequence c-

VQAKDPDTDVSPRTPHRDLAPNNVC-n (21st Century Biochemicals, Marlboro, MA, 

USA). 

3.2.5. Antibody Validation 

The specificity of the anti-bear CBG antibody for grizzly, polar, and black bear sera was 

confirmed by: i) comparing western immunoblots of grizzly bear sera that were incubated with 

pre-immune challenged rabbit sera and diluted anti-bear CBG antibodies as the primary 

antibody; ii) comparing the western immunoblots of recombinant human CBG and grizzly bear 

sera that were incubated with anti-bear CBG antibody and anti-human CBG antibody; iii) 

analyzing the densitometry of serially-diluted bear sera (2.5 – 20 µg protein/lane) with the anti-

bear CBG antibody; and iv) analyzing the western immunoblot of recombinant bear CBG 

incubated with anti-bear CBG antibody as the primary antibody. Bear sera were depleted of 

albumin and IgG with Aurum Serum Protein Mini-kits (BioRad, Hercules, CA, USA). Total 
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serum protein concentrations were determined by the bicinchoninic acid (BCA) method using 

bovine serum albumin as the standard. Serum proteins were separated by SDS-PAGE. Briefly, 

depleted serum samples in SDS sample buffer (0.06 M Tris-HCl [pH 6.8], 25% (v/v) glycerol, 

0.02% (w/v) SDS, 0.001% (w/v) bromophenol blue [Fisher Scientific, Fair Lawn, NJ]) were 

loaded (2.5 µg protein/sample/lane) onto 10% reducing polyacrylamide gels according to 

established protocols [17]. A low-range molecular weight marker (BioRad) was also loaded to 

confirm the molecular mass of the protein detected. Serum proteins were separated (200 V for 

50 min; Mini Protean III [BioRad]) using a discontinuous buffer. The separated proteins were 

transferred to a 0.22 µm pore size nitrocellulose membrane (BioRad) using a Transblot SD 

Semi-Dry Electrophoretic Transfer Cell (BioRad) and transfer buffer (25 mM Tris [pH 8.3], 

192 mM glycine, 20% v/v methanol). Equal protein loading and transfer efficiency were 

confirmed by Ponceau S (BioRad) staining of the membrane and Coomassie brilliant blue 

(BioRad) staining of the polyacrylamide gel.  

The membranes were rinsed and blocked with 5% skim milk in TTBS (20 mM Tris pH 7.5 

[Fisher], 300 mM NaCl [Sigma], 0.1% (v/v) Tween 20 [Biorad]). Blots were probed with 

either pre-immune rabbit antiserum (diluted to 1:3000) or affinity-purified polyclonal rabbit 

anti-grizzly bear (gb)CBG for 1 h at room temperature. The blots were washed with TTBS (3 x 

15 min) and incubated with anti-rabbit IgG conjugated horseradish peroxidase (HRP) (Biorad) 

at 1:3000 dilution (secondary antibody) for 1 h at room temperature. The blots were further 

washed (3 x 5 min in TTBS and 1 x 5 min with TBS) and the proteins detected using ECL Plus 

western blotting detection reagent (GE Healthcare). The protein bands were scanned using the 

Typhoon Variable Mode Imager (GE Healthcare). The specificity of the gbCBG antibody was 

confirmed by western blotting with serially diluted antibody (1:500, 1:1000, 1:2000, 1:4000, 

1:8000) and grizzly, polar, and black bear serum samples (2.5 µg, 5 µg, 10 µg, and 20 µg total 

serum protein). The cross-reactivity of the gbCBG antibody to human CBG was assessed by 

incubation with different concentrations of purified hCBG (Affiland, Belgium). Also, a 

commercially available rabbit polyclonal antibody for hCBG (Fitzgerald Industries, Acton, 

MA, USA) was tested for cross-reactivity with grizzly bear serum CBG. 
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3.2.6. CBG ELISA development 

3.2.6.1. Grizzly Bear CBG ELISA Materials 

Costar 96-well EIA/RIA high protein-binding plates were purchased from Corning (Corning, 

NY). The following reagents were purchased from Sigma-Aldrich: ampicillin, isopropyl-β-D-

thiogalactopyranosid (IPTG), protease inhibitor cocktail, dimethyl pimelimidate, sodium 

carbonate, sodium bicarbonate, and 3,3’,5,5’-tetramethylbenzidine (TMB). Bovine serum 

albumin (BSA, fraction V), dimethylsulfoxide (DMSO), EZ-Link Sulfo-NHS-SS-Biotinylation 

kit, streptavidin coupled to horseradish peroxidase (streptavidin-HRP), and acetic and sulfuric 

acid were purchased from Thermo Fisher Scientific (Waltham, MA). Tris base, NaCl, Tween-

20, and potassium citrate were purchased from Bioshop. 2YT broth was purchased from 

Invitrogen (Carlsbad, CA). Sepharose beads coupled to protein A were purchased from Bio-

Rad (Hercules, CA). 10,000 MWCO centrifugal filter units were purchased from Millipore 

(Billerica, MA) 

3.2.6.2. Bear CBG Recombinant Protein 

We produced recombinant gbCBG protein according to established protocols [18]. Briefly, the 

cDNA sequence encoding gbCBG (GenBank Accession EU571738) protein was cloned into a 

pHAT20 vector, and the construct was introduced into a BL21 DE3 Escherichia coli strain and 

plated onto media containing 100 µg/mL ampicillin. A single colony from the selection plates 

was inoculated into 2YT broth for 16 – 18 h at 37°C. 3 mL of this overnight culture was used 

to inoculate 100 ml of 2YT broth containing 100 µg/ml of ampicillin. The inoculum was 

incubated for approximately 4 – 6 h at 37°C until reaching OD600 = 0.6. At this point, gbCBG 

protein expression was induced with 1 mM of IPTG. 18 h post-induction, cells were pelleted 

by centrifugation (8000 x G for 10 min at 4°C), flash-frozen on dry ice, and stored at –80°C. 

Frozen cells were thawed on ice and resuspended at a ratio of 100 mg of pellet to 1 ml of ice-

cold lysis buffer (50 mM NaH2PO4, 300 mM NaCl with protease inhibitor cocktail, pH 8). The 

cells were first treated with 1 mg/mL of lysozyme and then sonicated with six x 10 s bursts 

with a 10 s cooling period between each burst. The lysate was centrifuged at 10,000 rpm for 30 

min at 4°C to remove bacterial cellular debris. The recombinant CBG was purified using a 
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custom affinity binding column. Rabbit polyclonal anti-gbCBG was coupled with dimethyl 

pimelimidate to protein A–sepharose beads as described before [19]. Bacterial lysate was 

loaded onto the affinity column and incubated for 4 h at room temperature on a shaker. The 

column was washed with lysis buffer, and bound protein was eluted with 200 mM glycine (pH 

4.0). The purified CBG was confirmed by immunodetection with a rabbit polyclonal anti-

gbCBG antibody [20] before desalting and concentration in a 10,000 molecular weight cutoff 

centrifugal filter unit. This purified recombinant protein was used as standards for the CBG 

ELISA.  

3.2.6.3. CBG ELISA Protocol 

A direct ELISA was developed to measure CBG concentration in grizzly bear sera. Serum was 

diluted 1:1000 in 10 mM Tris (pH 7.5), and 2.0 µL of this diluted serum in 200 µL of 

carbonate coating buffer (15 mM Na2CO3, 35 mM NaHCO3, pH 9.6) directly in duplicate wells 

of an EIA plate. The recombinant gbCBG was diluted with 10 mM Tris (pH 7.5) to 0 – 4 nmol 

gbCBG/L, and diluted 10 fold with carbonate coating buffer directly in wells of the ELISA 

plate in triplicate. Proteins were allowed to coat the wells for 2 h (all incubations were 

performed in a shaker-incubator set to 30°C). Plates were then washed in an automatic plate 

washer (Immunowash 1575, Bio-Rad) with a custom washing protocol [4 repetitions of 

aspiration, washing with 400 µL TTBS (20 mM Tris, 150 mM NaCl, 0.05% Tween-20, pH 

7.4), and agitation for 5 s; and one final aspiration]. Plates were blocked with 5% BSA in 

TTBS for 1 h and washed again. The primary detection antibody (polyclonal rabbit anti-

gbCBG) was diluted 1:1500 in 1% BSA in TTBS, and 200 µL was added to each well, except 

for non-specific binding wells where 200 µL 1% BSA in TTBS was added instead, and 

incubated for 2 h. After washing, bound biotinylated anti-CBG antibody was detected and 

amplified with 200 µL per well of streptavidin-HRP diluted 1:3000 in 1% BSA in TTBS, 

incubated for 1 h. After a final wash, the detection solution was freshly prepared [500 µL 41 

mM TMB in DMSO into 19.5 mL 200 mM potassium citrate, 3.075 mM H2O2 (pH 4.0)], and 

200 µL was added to each well and incubated for 1 h. The reaction was stopped with 100 µL 

stopping solution (8.5 M acetic acid, 0.5 M sulfuric acid). Plates were read at 450 nm 

excitation wavelength on a VersaMax microplate reader using SoftMax Pro 3.1 software 

(Molecular Devices, Sunnyvale, CA).  
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3.2.6.4. CBG ELISA Validation 

The CBG ELISA was validated by: i) testing its cross-reactivity with BSA and rabbit and bear 

sera, ii) by measuring CBG concentration in serial dilutions of serum, and iii) and the recovery 

of recombinant gbCBG at various dilutions. BSA was diluted to 80 µg/mL (the approximate 

mean concentration of 1:1000 diluted bear sera) and rabbit serum was diluted 1:1000 in 10 mM 

Tris (pH 7.5). These samples were then loaded (0.25 to 5 µL) into triplicate wells into 

carbonate coating buffer. For the serial dilution test, grizzly, polar, and black bear sera were 

diluted 1:1000 in 10 mM Tris (pH 7.5), and 0.25 – 10 µL of this diluted serum was diluted 10 

fold in duplicate wells into carbonate coating buffer. For the recovery test, 0 – 373 pM 

recombinant gbCBG in 10 mM Tris (pH 7.5) was added to rabbit sera (1:1000 total dilution) 

prior to loading in triplicate wells. The sensitivity of the assay was measured as the mean CBG 

concentration + 2 standard deviations of the duplicate 0 ng/mL standard in four separate 

assays. The inter-assay variability of the ELISA was determined by measuring the percent 

coefficient of variation (%CV) between standard curves in triplicate from 4 different assays. 

The intra-assay variability of the ELISA was measured by determining the %CV of the 

representative grizzly bear serum sample measured 32 times in a single assay. 

3.2.7. Serum Total Cortisol Assay and Free Cortisol Estimates 

Serum total cortisol was measured by radioimmunoassay (RIA) using a commercial 125I kit 

(MP Biomedicals, Orangeburg, NY) as described by Hamilton [21]. Samples collected prior to 

2008 were published as part of a MSc thesis [21]. 

Free cortisol concentrations were calculated by the equation of Barsano and Baumann [22]: 

 

!"#$% = !
– !"#!– !"#$% + ! 1!! ± !"#!– !"#$% + ! 1!!

!
− 4 −!"#$%

!!
2  
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Where fCORT is free cortisol concentration (mol/L), CBG is CBG concentration (mol/L), 

tCORT is total cortisol concentration (mol/L), and Ka = 1/Kd = equilibrium association 

constant (L/mol). Values for Kd were determined in Chapter 2. 

3.2.8. Serum Glucose Assay 

Glucose concentrations in bear sera were determined by the glucose oxidase-peroxidase 

method as described previously [23], using glucose (Sigma) as the standard. Absorbance was 

measured at 500 nm on a VersaMax microplate reader.  

3.2.9. Cross-species Comparison of Serum CBG Concentrations 

Serum CBG and total and free corticosteroid concentrations from placental mammalian species 

were obtained from the literature and converted to nmol/L (nM). These data were compiled 

from studies that reported CBG and total and free corticosteroids from control animals that 

were not subjected to experimental treatments (i.e. control groups). For publications that 

presented data only in figures, data were extracted from these figures using the “digitize” 

(version 0.0.1-07) package in R. 

3.2.10. Data Analyses 

Four-parameter non-linear regression analysis was employed to fit standard curves for the 

CBG ELISA. Data were fit to the equation: 

OD =   
A− D

1+    𝐿𝐶
! + 𝐷 

Where OD is the optical density of the standard read at 450 nm; L is the concentration of 

recombinant grizzly bear CBG; A is the minimum asymptote; B is the slope factor; C is the 
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inflection point; and D is the maximum asymptote. A, B, C, and D were determined by 

regression. 

Data are presented as mean ± standard error of the means (SEM). One-way ANOVAs were 

employed to test for significant differences between the means of CBG, total and free cortisol, 

and glucose concentrations in black, grizzly, and polar bears. Post hoc significance testing was 

performed using Tukey’s Honest Significant Difference test. p-values < 0.05 were considered 

statistically significant. 

3.3. Results 

3.3.1. Corticosteroid Binding Globulin Sequencing and Phylogeny 

CBG primers strongly amplified a product from cDNA samples isolated from the grizzly bear 

testicle (Figure 3.1B, lane 2), even though the RNA gel did not indicate good quality rRNA 

(Figure 3.1A, lane 4). Products were not amplified from other tissue samples that did not have 

good quality rRNA (e.g. Figure 3.1A, lane 3 and Figure 3.1B, lane 1). Therefore, the testicle 

sample was used to amplify and sequence CBG. PCR reactions were fractionated in 1.5% 

agarose gels along with DNA molecular weight standards and stained with ethidium bromide. 

Bands were excised, purified, and sequenced at the York University Core Molecular Biology 

and DNA Sequencing facility (Toronto, ON). The complete coding domain sequence for 

Grizzly bear CBG was submitted to GenBank (accession number EU571738).  

The grizzly bear CBG cDNA nucleotide sequence was 1218 base pairs (bp) in length, and 

coded for 405 amino acids (Figure 3.2) with a predicted molecular mass of 45,619 Daltons. 

The multiple sequence alignment (Figure 3.3) revealed that the nucleotide and amino acid 

sequences of gbCBG were 90% and 83% identical, respectively, to dog CBG; 79% and 68% 

identical to human CBG; and 68% and 58% identical to rat CBG. The phylogenetic tree of 

selected mammalian CBG showed that grizzly bear and dog CBG were clustered in the same 
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clade (Figure 3.4). Four N-linked glycosylation sites were present in gbCBG and the steroid 

binding residues were well conserved across a wide variety of mammalian species (Figure 

3.3). There were two cysteine residues in gbCBG outside of the export signal sequence, and the 

residue at position 250 (Figure 3.3) corresponded to the conserved cysteine residue found in 

all species. An inserted glutamic acid (glu-118) in gbCBG was found that is not present in any 

of the other compared species (Figure 3.3). 

3.3.2. Anti-bear CBG Antibody Validation 

The specificity of the antibody, generated in rabbits from a gbCBG peptide sequence, to 

grizzly bear CBG was confirmed by western blotting. The affinity-purified antibody, but not 

the pre-immune challenged rabbit serum cross-reacted with grizzly bear serum (Figure 3.5A). 

Bands appeared at approximately 55 kDa in sera and 42 kDa for recombinant gbCBG (Figure 

3.5D). The higher molecular weight for the former bands was likely due to glycosylation of the 

protein, and the apparent molecular weight of the recombinant gbCBG was near its predicted, 

unmodified weight of 45.6 kDa. A commercially available anti-human CBG did not 

immunodetect grizzly bear CBG (Figure 3.5B). The gbCBG antibody was specific for bear 

sera and did not cross-react with purified human CBG (Figure 3.5C). This anti-bear CBG 

antibody cross-reacted with grizzly (Figure 3.6A), polar (Figure 3.6B), and black bear 

(Figure 3.6C) sera. The anti-bear CBG antiserum detected doublets of around 55 kDa in sera 

of all three bear species; the heavier band was usually more prominent and the lighter one was 

not always seen. 

3.3.3. Corticosteroid Binding Globulin ELISA Validation 

A typical ELISA standard curve covering its linear range from 19 – 373 pmol gbCBG/L and 

typical dilution curves for grizzly, polar and black bear sera are shown in Figure 3.7. Rabbit 

sera and BSA effectively did not exhibit cross-reactivity in the ELISA. The average recovery 

of recombinant gbCBG, diluted from 18.6 – 373 pM in untreated, 1:1000 diluted rabbit serum 

with the ELISA was 94% (Table 3.2). Bear serum was dilutionally linear from 0.25 to 5.0 µL   



 68 

Figure 3.1: Validation of cDNA Synthesis and gbCBG Transcript Amplification. 
A) RNA denaturing gel with total RNA samples. Lanes 1 and 2: polar bear muscles, lane 3: 
grizzly bear liver, and lane 4: grizzly bear testicle. Bands are 28S and 18S rRNA. B) RT-PCR 
amplification of a 650 bp section of corticosteroid binding globulin (CBG) with cDNA. Lane 
1: grizzly bear liver, lanes 2 and 3: grizzly bear testicle, and lanes 4 and 5: polar bear muscles. 
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Figure 3.2: Grizzly Bear CBG Complete Nucleotide Coding Domain (Top) and Predicted 
Amino Acid Sequence (Bottom). 
Putative N-linked glycosylation sites are highlighted in black, and the conserved cysteine 
residue is highlighted in grey. 
  



 71 

  

1    ATG CTG CTT GCC CTG TGC ACC TGT TTC CTC TGG CTG TCC ACC ACT GAC CTC 51 
1     M   L   L   A   L   C   T   C   F   L   W   L   S   T   T   D   L  17 
52   TGG ACC GTC CAG GCT AAG GAC CCA GAT ACT GAC GTG AGC CCA AGG ACC CCT 102 
18    W   T   V   Q   A   K   D   P   D   T   D   V   S   P   R   T   P  34 
103  CAC CGG GAC TTG GCT CCA AAC AAT GTG GAC TTT GCC TTT ATC CTA TAT AGG 153 
35    H   R   D   L   A   P   N   N   V   D   F   A   F   I   L   Y   R  51 
154  CAT CTA GTG GCT TCA CTC CCT GGA AAG AAT GTC TTC ATC TCC CCT GTG AGC 204 
52    H   L   V   A   S   L   P   G   K   N   V   F   I   S   P   V   S  68 
205  ATC TCC ATG GCC TTA GCT ATG CTG TCT CTG GGT GCC CGT GGT TAC ACA CGG 255 
69    I   S   M   A   L   A   M   L   S   L   G   A   R   G   Y   T   R  85 
256  GTC CAG CTT CTC CAA GGT CTG GGC TTC AAC CTC ACC AAG TTG TCT GAA GCC 306 
86    V   Q   L   L   Q   G   L   G   F  _N_  L   T   K   L   S   E   A  102 
307  GAG ATC CAC CAG GGC TTT CGG CAC CTC CGC CAC CTC TTC GAG AAG GAG TCA 357 
103   E   I   H   Q   G   F   R   H   L   R   H   L   F   E   K   E   S  119 
358  GAC ACC ATG TTG GAA ATG GCT ATG GGT AAT GCC TTG TTC CTT GAC CGC AAC 408 
120   D   T   M   L   E   M   A   M   G   N   A   L   F   L   D   R   N  136 
409  CTG GAA CTT CTG GAG TCA TTC TTG GCA GAC ACC AAG CAC TAC TAT GAG GCG 459 
137   L   E   L   L   E   S   F   L   A   D   T   K   H   Y   Y   E   A  153 
460  GAG GCC TTG GCT GCA GAT TTC AAG GAT GGG GCT GGA GCC AGC AGA CAA ATC 510 
154   E   A   L   A   A   D   F   K   D   G   A   G   A   S   R   Q   I  170 
511  AAT GAG TAT ATC AAA AAT AAG ACA CAA GGG AAA ATT GTG GAC TTG GTA TCA 561 
171   N   E   Y   I   K  _N_  K   T   Q   G   K   I   V   D   L   V   S  187 
562  AAG CTG GAT AGT TCA GCC ATG CTC ATC CTG GTC AAC TAC ATC TTC TTC AAA 612 
188   K   L   D   S   S   A   M   L   I   L   V   N   Y   I   F   F   K  204 
613  GGC ACA TGG GAA CAC CCC TTT GAC CCT GAG AGC ACC AGA CAG GAG AAC TTC 663 
205   G   T   W   E   H   P   F   D   P   E   S   T   R   Q   E   N   F  221 
664  TAC GTG AAC AAG ACC ACT GTG GTG AGA GTG CCC ATG ATG TTC CAG TCT GGC 714 
222   Y   V  _N_  K   T   T   V   V   R   V   P   M   M   F   Q   S   G  238 
715  ACC ATC AAG TAC CTT CAC GAC CGG GTG CTC CCC TGC CAG CTG GTC CAG CTG 765 
239   T   I   K   Y   L   H   D   R   V   L   P  _C_  Q   L   V   Q   L  255 
766  GAG TAC TTG GGC AAC GGG ACC GTC TTC TTC GTC CTC CCA GAG GAG GGG AAG 816 
256   E   Y   L   G  _N_  G   T   V   F   F   V   L   P   E   E   G   K  272 
817  ATG GAC ACG GTC ATC GCC GCG CTA AGC AGG GAC ACC ATT CAG AGG TGG TCT 867 
273   M   D   T   V   I   A   A   L   S   R   D   T   I   Q  R   W    S  289 
868  GAG TCC CTG ACC ACA GGC CAG GTA AAC CTG TAC GTC CCA AGG GTG GTC ATC 918 
290   E   S   L   T   T   G   Q   V   N   L   Y   V   P   R   V   V   I  306 
919  TCC GGA GCC TAC GAC CTC AGG GCC ATC CTG GGG GAC ATG GGC ATT GCA GAC 969 
307   S   G   A   Y   D   L   R   A   I   L   G   D   M   G   I   A   D  323 
970  TTG TTC GAC AAG GAG GCA GAT TTC TCC GGC ATC ACC CGA GAG GCG CCA CTG 1020 
324   L   F   D   K   E   A   D   F   S   G   I   T   R   E   A   P   L  340 
1021 AAG TTG TCA AAG GTG GTC CAT AAG GCT GTG CTG CAG CTC GAT GAG AAG GGC 1071 
341   K   L   S   K   V   V   H   K   A   V   L   Q   L   D   E   K   G  357 
1072 TTG GAA GCA GCC ACC TGC CCC AGA GTC ATG CTA GAG GGG GCG TCT GAG CCT 1122 
358   L   E   A   A   T   C   P   R   V   M   L   E   G   A   S   E   P  374 
1123 CTC ACC TTC CGC TTC GAC CGG CCC TTC GTT CTC ATG ATC TTC GAC CAC TTT 1173 
375   L   T   F   R   F   D   R   P   F   V   L   M   I   F   D   H   F  391 
1174 TCG TGG AGT AGC CTT TTC TTG GGA AAG GTT GTG AAT CCG AAC TAA         1218 
392   S   W   S   S   L   F   L   G   K   V   V   N   P   N   X          405 

!
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Figure 3.3: Multiple Sequence Alignment of CBG Amino Acid Sequences. 
Sequences were used from grizzly bear, dog (Canis familiaris), chimpanzee (Pan troglodytes), 
human (Homo sapiens), pig (Sus scrofa), rat (Rattus norvegicus), sheep (Ovis aries) and 
opossum (Monodelphis domestica) CBG. Residues shaded with dark grey match the consensus 
sequence residue of the compared sequences. Lighter grey shading indicates lesser 
conservation. Residues highlighted in black are consensus N-linked glycosylation sites. 
Residues indicated with a black dot (�) are conserved steroid binding residues. Conserved 
cysteine residues are indicated with a star (*). The inserted glutamic acid in grizzly bear CBG 
at position 118 is indicated with a solid square (n). 
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Human
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1
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loading of 1:1000 diluted serum (Table 3.3). The amount of CBG quantified at the 10 µL 

loading was lower than at lower loadings, suggesting that 10 µL of 1:1000 diluted serum 

exceeds the detection capacity of the ELISA. Inter-assay variability for CBG using the ELISA 

was 16%, while the intra-assay variability was 9.7%. The sensitivity of the assay was 9.3 pM. 

3.3.4. Between-species Variations in CBG, Cortisol, and Glucose 

Serum CBG concentrations in the sera of black, grizzly, and polar bears were quantified by the 

homologous grizzly bear CBG ELISA. Mean CBG concentrations were significantly higher in 

grizzly bears relative to black and polar bears (Figure 3.8A; F2, 341 = 56.8, p < 0.001). Mean 

serum total cortisol levels were significantly elevated in polar bears relative to black and 

grizzly bears (Figure 3.8B; F2, 401 = 19.5, p < 0.001), while mean cortisol levels were 

marginally different between the latter two species. 

Mean serum and/or plasma CBG and total and free cortisol concentrations for selected 

placental mammals and grizzly bears are presented in Table 3.4. In mammals (grizzly bear 

ranges in parentheses), CBG concentrations ranged from 34 to 6078 nM (9.0 to 490 nM), total 

corticosteroid from 4 to 6240 nM (9.7 to 1781 nM), and free corticosteroid from 1 to 3120 nM 

(0.39 to 1616 nM). The serum CBG and total and free corticosteroid concentrations of ursids 

were similar to most mammals except the new world primates, which had lower CBG 

concentrations.  

Free cortisol concentrations were estimated using these CBG and total cortisol values. There 

were significant differences in mean CBG and total and free cortisol concentrations between 

species. Free cortisol levels were significantly (Figure 3.8C; F2,380 = 47.5, p < 0.001) elevated 

in polar bears over both grizzly and black bears. Mean serum glucose concentrations were 

significantly (Figure 3.8D; F2,216 = 7.51, p < 0.001) elevated in black bears relative to grizzly 

and polar bears. 

CBG concentrations were measured in the animals for which maximum corticosteroid binding 

capacity (MCBC) levels were determined in Chapter 2. There appeared to be a discrepancy 

between the patterns of mean MCBC and mean CBG concentrations between bear species. 
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Mean MCBC levels were significantly elevated in polar bears relative to black and grizzly 

bears, but mean CBG concentrations were elevated in grizzly bears relative to black and polar 

bears. Overall, mean MCBC levels were 5.0, 2.6, and 8.8-fold higher than mean CBG levels in 

black, grizzly, and polar bears, respectively. As a theoretical exercise, the relative difference 

between the mean MCBC and CBG values for grizzly bears was used to normalize black and 

polar bear CBG concentrations. By this method, serum CBG levels in polar bear sera were 

adjusted upwards by 3.4-fold and by 2.0-fold in black bear sera. These bias-corrected CBG 

concentrations (bCBG) are shown in Figure 3.8E. bCBG concentrations were significantly 

different between the three species (F2,380 = 16.0, p < 0.001), and were elevated in polar bears 

relative to grizzly and black bears. The free cortisol concentrations were recalculated using 

bCBG (Figure 3.8F), and the mean bias-corrected free cortisol levels were elevated in polar 

bears relative to grizzly and black bears (F2,380 = 9.96, p < 0.001). These bias-corrected data 

were not used elsewhere in this thesis. 

3.4. Discussion 

In this chapter, the cloning of grizzly bear CBG and the development of a homologous grizzly 

bear CBG ELISA that also cross-reacts with black and polar bear sera was described. This 

CBG ELISA represents the first development of a homologous assay for this protein in a free-

ranging mammalian species. This ELISA will allow for the rapid and reliable quantification of 

this protein that plays important roles in modulating glucocorticoid action in animals, and 

which may provide wildlife managers and conservationists with an additional tool to monitor 

and manage free-ranging species. 

3.4.1. Grizzly Bear CBG Cloning and Sequencing 

We cloned and sequenced a grizzly bear CBG cDNA, and the deduced nucleotide and amino 

acid sequences suggested that this protein was well conserved in mammals. The species whose   
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Figure 3.4: Phylogeny of Mammalian CBG. 
This rooted phylogenetic tree of CBG nucleotide sequences constructed by the maximum 
likelihood method. A1AT sequences (denoted with ‘A1AT’) from zebrafish, cattle, and 
humans were used as outgroup sequences, and zebrafish A1AT was used to root the tree. 
Nodes indicated with an asterisk (*) are supported by > 90% bootstrap values for 1000 
bootstrap simulations. 
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Figure 3.5: Anti-bear CBG Antibody Validation: Species Cross Reactivity 
A) Western Blot of grizzly bear serum incubated with pre-immune rabbit serum and affinity-
purified anti-bear CBG antibody. 2.5 µg grizzly bear serum protein was loaded in each lane. B) 
Western blot immunodetected using an anti-human CBG antiserum (1:3000 dilution) as the 
primary antibody. Lane 1: grizzly bear reference serum (2.5 µg total serum protein), Lanes 2-4: 
serially diluted human CBG (20 ng, 200 ng and 2000 ng hCBG, respectively). The hCBG 
antibody does not detect gbCBG in grizzly bear serum. C) Western blot using nthe affinity-
purified anti-bear CBG antibody (1:3000 dilution) as the primary antibody. Lane 1: grizzly 
bear reference serum (2.5 µg total serum protein), Lanes 2-4: serially diluted human CBG (20 
ng, 200 ng and 2000 ng hCBG, respectively). Only the grizzly bear reference serum CBG is 
detected using this antibody. D) 270 ng/lane recombinant gbCBG immunodetected using the 
affinity-purified anti-bear CBG antibody (1:3000 dilution) as the primary antibody. 
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Figure 3.6: Anti-bear CBG Antibody Validation: Serial Dilution 
Serially diluted serum from A) grizzly, B) polar, and C) black bears were immunodetected 
using 1:3000 diluted anti-bear CBG antibody. Total serum protein (µg) loaded per lane is 
indicated inset. 
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Figure 3.7: CBG ELISA Standard Curve and Bear Sera Dilution Series.  
The standard curve used recombinant grizzly bear CBG from 18.6 – 373 pM (closed black 
circles, ●). Grizzly bear serum (red squares, n), polar bear serum (blue squares, n), black 
bear serum (green squares, n), fish plasma (open diamonds, ◇), and bovine serum album 
(open triangles, △) were diluted, and 0.25 – 5 µL of this diluted serum was loaded into 
duplicate wells. X-axes are plotted on log-scale. 
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Table 3.2: Percent Recovery of Recombinant Grizzly Bear Corticosteroid Binding 
Globulin Added to Rabbit Serum. 
Corticosteroid binding globulin concentrations are expressed as mean ± standard error of the 
means (n = 6). The expected CBG concentration is the added recombinant grizzly bear CBG 
plus the observed CBG concentration of the rabbit serum with no recombinant CBG added. 
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Added CBG 
(nM) 

Measured CBG 
(nM) 

Background 
Subtracted CBG 

(nM) 

Recovered CBG 
(%) 

0.373 0.400 ± 0.0386 0.391 105% 

0.279 0.288 ± 0.0305 0.279 100% 

0.186 0.229 ± 0.0140 0.220 118% 

0.0932 0.0821 ± 0.00482 0.0732 78.6% 

0.0373 0.0439 ± 0.00324 0.0350 93.9% 

0.0186 0.0221 ± 0.00434 0.0131 70.6% 

0.000 0.00894 ± 0.00179 0.000 NA 

  Average Recovery 94.3% 
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Table 3.3: Specificity (Dilutional Linearity) of the Corticosteroid Binding Globulin 
ELISA. 
0.25 – 10.0 µL of 1:1000 diluted grizzly bear serum was coated to duplicate wells. 
Corticosteroid binding globulin concentrations are dilution corrected and expressed as mean ± 
standard error of the means (n = 2).  



 87 

Volume of Sample Loaded 
(µL) 

Dilution Corrected CBG 
Concentration 

(nM) 

10 254 ± 10.3 

7.5 366 ± 2.84 

5.0 438 ± 6.92 

2.0 478 ± 8.43 

1.0 508 ± 7.99 

0.5 463 ± 23.1 

0.25 426 ± 49.7 
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Figure 3.8: Serum Cortisol Dynamics in Black, Grizzly, and Polar Bears. 
Mean + SEM concentrations between black, grizzly, and polar bears of A) CBG, B) total 
cortisol, C) free cortisol, and D) glucose. The bias-corrected E) CBG and F) free cortisol 
means + SEM are also shown. Statistically significant differences between means are indicated 
by different letters.  
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Table 3.4: Serum or Plasma Glucocorticoid Dynamics in Selected Placental Mammals. 
CBG, total (tCORT) and free glucocorticoid (fCORT) levels were extracted from publications. 
Data were converted to nM if they were reported in other units. % fCORT is calculated as the 
percentage of free to total glucocorticoid concentrations. 
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CBG  
(nM) 

tCORT 
(nM) 

fCORT 
(nM) 

fCORT 
(%) Animal Sex Reference 

45.6 58.2 30.4 52% Black Bear F This study 
139 130 53.6 41% Grizzly Bear Both This study 
61.9 222 172 77% Polar Bear Both This study 
60 187 144 77% Arctic Ground Squirrel M [56] 

230 4 1 25% Arctic Ground Squirrel F [56] 
242 363 157 43% Arctic Ground Squirrel M [57] 
570 595 36 6% Baboon M [58] 
524 490 34 7% Baboon F [58] 
193 687 485 71% Brown Lemmings M [39] 
5195 2900 144 5% Brown Lemmings F [39] 
185 54 10 19% Brown Lemur M [58] 
398 51 7 14% Brown Lemur F [58] 
34 284 111 39% Capuchin M [58] 

134 395 182 46% Capuchin F [58] 
110 21 2 10% Cattle F [4] 
831 660 46 7% Cynomolgus Macaque F [58] 
409 647 78 12% Cynomolgus Macaque M [58] 

1180 560 2 0.4% Cynomolgus Monkey Both [4] 
82 23 2.3 6% Dog M [4] 

220 130 15 6% Horse Both [4] 
633 352 13 12% Human Both [59] 
1330 1251 125 4% Japanese Macaque F [58] 
853 847 68 10% Japanese Macaque M [58] 
5406 1624 45 8% Meadow Vole M [60] 
6078 3016 29 3% Meadow Vole F [60] 
770 130 8 1% Mouse M [61] 
1553 1821 107 6% Prairie Vole M [62] 
799 205 26 13% Rat M [62] 
1913 2025 312 6% Red squirrel M [57] 
569 715 79 15% Rhesus Macaque F [58] 
370 519 67 11% Rhesus Macaque M [58] 
289 348 90 13% Richardson's Ground Squirrel M [63] 
472 254 33 26% Ring-tail Lemur F [58] 
346 182 24 13% Ring-tail Lemur M [58] 
78 50 7 13% Sheep F [4] 
66 6240 3120 14% Silver Marmoset M [58] 

101 4483 2152 50% Silver Marmoset F [58] 
0 1600 777 48% Squirrel Monkey M [4] 
38 698 294 42% Titi Monkey M [58] 

132 1277 396 31% Titi Monkey F [58] 
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CBG primary sequence was most closely related to gbCBG was the dog, where the nucleotide 

and amino acid sequences were 90% and 83% identical, respectively. Many residues in the 

ligand-binding domain of grizzly bear CBG and other mammalian species were identical to 

previously reported steroid-binding residues in rat CBG [15], including arg-36, ala-39, val-43, 

gln-254, thr-262, arg-282, ile-285, gln-286, phe-388, and trp-393. However, ile-285 of gbCBG 

was not conserved in opossum, and ser-289 and his-390 of gbCBG were not conserved in rat 

[15, 24]. The binding residues glu-256, gln-286, and glu-290 were less conserved across the 

mammalian species compared. The conserved cysteine residue that was observed in all CBGs 

was also present in gbCBG and may be playing a key role in steroid binding to this protein 

[24].  

Also, four N-linked glycosylation consensus sites were present in gbCBG, which is two fewer 

than in human [25] and rat [26], and one less than sheep [27]. However, the fifth consensus 

glycosylation site in hCBG has been reported to be non-essential for protein secretion [28] and 

was not conserved in gbCBG and dog CBG. The N-glycosylation site at asn-260, which is 

essential for the formation of a high-affinity steroid binding site in humans [28], aligned with 

identical residues in CBG of other species, including grizzly bear. Likewise, the glycosylation 

site at asn-95 was also conserved among mammals, the only exception being the sheep, and the 

removal of this residue along with asn-260 by site-directed mutagenesis significantly reduce 

recombinant human CBG expression in CHO cells [28]. Together the sequence characteristics 

of gbCBG confirmed that this protein is well conserved, and support a critical role in 

corticosteroid transport and tissue availability in mammals. 

3.4.2. Grizzly Bear CBG Antibody and ELISA Validation 

Using the deduced amino acid sequence of gbCBG, we developed a peptide-based polyclonal 

antibody to detect serum CBG content in bears. The differences between the predicted 

molecular mass of gbCBG, the recombinant gbCBG, and the observed molecular mass of 

immunodetected bear CBG in sera on reducing SDS-PAGE gels (45,619 Da,  ~42,000 Da, 

~55,000 Da, respectively) were likely due to post-translational modifications at the N-

glycosylation consensus sites for the latter. The addition of carbohydrate chains at these sites is 
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the source of variation between predicted and observed molecular mass in other species [28]. 

The doublets seen in bear CBG were similar to observations in rat [29], rabbit [30], human 

[31], and sheep [27], and are likely the result of glycosylation variants or isoforms, as shown 

previously in rat CBG [29]. While the lack of consistency in seeing a CBG doublets in bear 

sera is unclear in the present study, it is known that glycosylation patterns of CBG can be 

altered by hormones, including dexamethasone, insulin, thyroxine, and estradiol [27, 32]. It 

remains to be seen if such hormonal modulation is involved in the differential expression of 

CBG doublets in bear sera. 

This CBG ELISA represents the first report of an assay for this protein specific for grizzly 

bears that also cross-reacts with black and polar bear CBG. Generally, CBG concentrations in 

free-ranging animals are indirectly measured by saturation binding experiments or maximum 

corticosteroid binding capacity assays because antibodies that cross-react with CBG in these 

species are in general not available. This ELISA represents a method to quantify this protein 

directly in bear sera and without the use of radioisotope-labeled tracer. The performance 

characteristics of the grizzly bear CBG ELISA compared favorably with other CBG ELISAs 

[32, 33, 34, 35, 36]. This ELISA was capable of detecting CBG at picomolar concentrations 

and exhibited good recovery of recombinant CBG.  

3.4.3. CBG and Cortisol in Black, Grizzly, and Polar Bears 

CBG, total cortisol, and glucose concentrations were measured in bear sera, and clear 

differences in these serum components were observed between black, grizzly, and polar bears. 

CBG and cortisol concentrations in these bear species may be modulated by biological and 

environmental factors, as seen in other species [37, 38, 39], and will be analyzed in greater 

detail in subsequent chapters. 

3.4.3.1. CBG 

The mean serum CBG concentrations in bears were in general in the lower portion of the range 

of values in the literature for other mammals (Table 3.4; see also other compilations in 

references [40, 41]). CBG levels in dogs (Canis lupis familiaris) and cats (Felis domesticus) 
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were similar to levels in bears (~80–180 nM). Information on CBG concentrations in other 

carnivorans are scant, although at least one study [42] reported serum binding capacities for 

corticosteroids in foxes (Vulpe fulva) and ferrets (Mustela nigripes) that were comparable to 

levels in dogs and cats. 

As a measure of validation for the CBG ELISA, mean CBG concentrations were compared to 

the mean MCBC levels (reported in Chapter 2) of black, grizzly, and polar bears. However, the 

results of this comparison suggested that the MCBC assay may be overestimating CBG 

concentrations in bear sera or vice versa. There were large discrepancies between the mean 

MCBC and CBG concentrations for all three species, with MCBC levels higher than CBG 

levels. The MCBC assay measured the amount of cortisol bound to the protein in serum, and 

CBG concentrations were estimated based on the assumption that one mole of cortisol is bound 

per mole CBG. In contrast, the ELISA directly measures CBG protein concentrations. The 

underlying causes of the differences between the results of these assays are unclear at this time, 

but we suggest that the elevated MCBC levels may reflect non-specific binding that was not 

accounted for in the assays. Altogether, the validation of the antibody and ELISA presented in 

this study suggests that the ELISA is suitable for comparing CBG levels between individual 

samples within the species with which the assay was validated.  

3.4.3.2. Cortisol 

It is generally accepted that to obtain baseline measurements of cortisol, sampling must occur 

within 3 min of the initiation of capture [43]. Blood sampling within 3 min of capture was not 

feasible for free-ranging bears, so the total cortisol levels reported in this investigation were 

likely elevated above baseline, unstressed levels because blood sampling generally occurred > 

30 min after the initiation of capture. Additionally, the action of anesthetics may themselves 

induce a glucocorticoid response [44]. Our results support these inferences because the mean 

proportion of free to total cortisol in black, grizzly, and polar bears were 52, 41, and 78%, 

respectively. These proportions were elevated over the 10% unbound to total proportion that 

are reported in unstressed animals (Table 3.4; also see [4, 40]). 

Despite the lack of physical exertion associated with capture in free-ranging ursids, the captive 

black bears used in this study had similar total and free cortisol levels as free-ranging grizzly 
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bears captured by helicopter darting, although the post hoc p-value was marginal (p < 0.10). 

These levels of cortisol in black bears were similar to those in other reports with captive black 

bears [45]. In contrast, Palumbo and coworkers [9] reported that total corticosteroids (the sum 

of cortisol, corticosterone, and 11-deoxycortisol) in captive black bears in the fall season to be 

over 7.8 µg/dL (approximately 200 nM when converted using the molar mass of cortisol, 

364.42 g/mol). Other studies with free-ranging black bears reported higher cortisol 

concentrations, likely due to the increased acute stress of capture by leg-hold snaring or culvert 

trapping [8, 46]. 

Moreover, both grizzly and polar bears used in the comparisons in Figure 3.8 were captured by 

helicopter darting, which has been shown to induce a lower cortisol response than leg-hold 

snaring in grizzly bears [10]. Indeed, total cortisol levels for black and grizzly bears captured 

by leg-hold snaring and culvert trapping were higher than the mean levels reported here [8, 10, 

46]. In comparison, the total cortisol levels after helicopter darting was higher in polar bears 

relative to the terrestrial bears, and these values in the former were comparable to those in 

reported for animals captured from Svalbard, Norway (ranges from 109 to 557 nM [47, 48, 

49]).  

The factors underlying variations in species-specific total cortisol concentrations are largely 

unknown. There are several hypotheses to explain this variation in house sparrows, which 

exhibit seasonally elevated total cortisol and CBG levels during the breeding season [40]. 

Breuner and coworkers posit that the increased pool may allow for cellular access to cortisol 

without a concomitant elevation in adrenal activity or after the adrenal glands are inactive. 

CBG is related to the serpin protease inhibitor superfamily of proteins [2], and specific 

cleavage of CBG by proteases causes a decrease in the binding affinity of CBG for cortisol, 

leading to the localized elevation of cortisol concentrations [5]. Furthermore, decreases in 

serum CBG have been observed after exposure to acute stressors [50], which may lead to 

sustained increases in free cortisol levels without concomitant increased adrenal activity. CBG-

bound cortisol has also been proposed to have biological activity via binding to specific cell 

membrane receptors and activating adenylyl cyclase activity [51]. This may allow for the 

specific delivery of cortisol to tissues, as opposed to the non-specific deliver of free cortisol to 
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all tissues. However, the contribution of these alternative pathways for cortisol delivery in 

bears is currently unknown. 

3.4.3.3. Glucose 

Glucose levels were significantly elevated in black bears relative to the other two species, 

which did not corroborate with the patterns of unadjusted and the bias-corrected mean CBG 

and free cortisol values between the bear species. However, the anaesthetic combination used 

to sedate black bears (ketamine-xylazine, “KX”) was different from that used in grizzly and 

polar bears (xylazine-zolazepam-tiletamine, “XZT”). To my knowledge, the physiological and 

metabolic effects of these anaesthetic combinations have never been directly compared in the 

literature, but these anaesthetics may be acting on adrenergic receptors to induce 

hyperglycemia [52]. In particular, ketamine may induce hyper- and hypoglycemia at low and 

high doses, respectively, in rabbits [53]. Xylaxine causes hyperglycemia by inhibiting insulin 

secretion without affecting glucagon [54]. XZT is known to induce a greater glucose response 

in polar bears relative to ZT alone (8.6 versus 6.2 mM) [12], and KX induced hyperglycemia to 

a maximum of 16.2 mM from baseline values of 5.8 mM in fed rats [55].  

Furthermore, there were differences in the sampling methodology between the captive black 

bears and the free-ranging grizzly and polar bears. For the latter samples, the separation of 

liquid serum from the solid cell and clotting factor fractions did not occur until up to 8 h after 

collection. In contrast, serum was collected and frozen more rapidly for black bears because of 

the proximity of the lab equipment to the sampling locations. This difference in processing 

time may have contributed to the elevated glucose concentrations in black bear sera because 

glucose is metabolized by the cellular fraction of blood until separation. Thus, it may not be 

valid to directly compare serum glucose values of black to grizzly and polar bears because of 

the different methodologies employed, but this remains to be tested. 

3.4.4. Conclusions 

In conclusion, we have developed for the first time an ELISA that quantitatively measures 

serum CBG in the sera of grizzly and polar bears, and using this data, we reported differences 
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in serum CBG and total and free cortisol concentrations between black, grizzly, and polar 

bears. This CBG ELISA will be employed for subsequent studies to determine the effect of 

life-history variables, including age, sex, and reproductive and nutritional statuses, on cortisol 

dynamics in ursids. 
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CHAPTER 4:  
MODULATION OF CORTISOL DYNAMICS BY CAPTURE 
METHODS, LIFE HISTORY TRAITS, AND SEASONAL 
DIETARY PATTERNS IN GRIZZLY AND POLAR BEARS 

4.1. Introduction 

Glucocorticoids play important adaptive roles in energy metabolism and reestablishment of 

homeostasis in animals [1]. The dynamics of cellular glucocorticoid hormone action are 

dependent, in part, on the bioavailability of this hormone to tissues. Corticosteroid binding 

globulin (CBG) binds to glucocorticoids reversibly and with high affinity, and bound steroid is 

unable to traverse plasma membranes to act on its intracellular receptors to mediate changes in 

gene transcription that underlie the major physiological actions of this steroid hormone. [2]. 

Thus, CBG is a major regulator of glucocorticoid dynamics in animals [3]. Moreover, its 

characterization is important to fully understand the dynamics of glucocorticoids because CBG 

expression may vary independently of total glucocorticoid secretion such that the variation in 

the free fraction does not necessarily covary with total glucocorticoid levels [2]. Thus, free 

glucocorticoid levels are more indicative of the biological effects of the hormone. 

Anthropogenic-related environmental changes and activity are thought to be major factors 

contributing to decreased survival in some grizzly [4, 5] and polar bear populations [6, 7, 8, 9]. 

Widespread landscape changes in Alberta, Canada have resulted in the fragmentation of and 

increased human access to core grizzly bear habitats, which are linked to the unsustainable 

mortality rates of grizzly bears in this province [10]. Grizzly bears slowly reproduce due to late 

sexual maturity, small litter sizes, and long reproductive intervals [11], and the reproductive 

rates of some populations within Alberta, Canada are lower than populations elsewhere [12, 

13]. These factors are thought to play roles in the poor performance and, combined with the 

small population sizes [10], the uncertain persistence of the grizzly bear populations in this 
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province [4, 10, 13, 14, 15]. Similarly, polar bears are sensitive to changes in sea ice 

conditions, and declines in the extent and duration of seasonal ice cover during the peak 

hunting season (spring and early summer) that are associated with climatic warming may 

negatively impact the reproductive success and health of this species [6, 7, 16, 17]. Indeed, 

long-term declines in the body condition of polar bears in the Western [16] and Southern 

Hudson Bay regions [18] are linked to climatic warming and declining sea ice conditions [6].  

These environmental changes may constitute chronic stressors acting on these animals, but this 

has not been tested in bears. In other mammals, chronic stressors have been associated with 

changes in glucocorticoid dynamics, including elevated baseline glucocorticoid levels [19] and 

decreased CBG concentrations [20], leading to elevated free levels of glucocorticoids and 

downstream detrimental effects on reproduction [21], growth [22], and immunity [23]. The 

development of chronic stress in a population may lead to negative impacts on population 

health and persistence, including increased mortality and decreased reproductive performance 

[24]. Thus, the monitoring of glucocorticoid and CBG levels in free ranging animals may be an 

important tool that wildlife managers may utilize to assess the health of animals [25].  

However, circulating glucocorticoid and CBG levels may be modulated by various endogenous 

and exogenous factors, and the characterization of these factors are an important step in the 

development of any physiologic marker to be used for wildlife monitoring in bears. During 

periods of high metabolic demand and/or low nutrient availability, including reproduction and 

seasonal fasting, the secretion, response to stress, bioavailability, and/or tissue sensitivity of 

glucocorticoids may be altered to help the animal adapt to changing environmental conditions 

[20, 26, 27]. Additionally, glucocorticoid dynamics may also be modulated by age and sex 

(e.g. [28, 29]), reproductive status (e.g. [30]), nutritional status (e.g. fat [31] and/or protein 

content of diet [32]), fasting status (e.g. [33]), and body condition (e.g. [34]). Another 

important consideration is that the act of capture and sampling itself initiates a stress response 

that may obscure the baseline, pre-capture levels of glucocorticoids [35], and the magnitude of 

this response is associated with the severity of the stress [36]. Thus, the factors that modulate 

glucocorticoid dynamics must be identified and characterized to establish normal ranges to 

which future data may be compared.  
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The objectives of this study were to characterize the variation in serum cortisol dynamics, 

including CBG, cortisol, and glucose concentrations, in free-ranging grizzly and polar bears in 

response to capture stress in the former species, and reproductive status and variations in 

nutritional and dietary patterns in both. We wanted to test the hypotheses: 1) serum CBG levels 

do not respond to capture stress within the handling time frame, and 2) variations in cortisol 

dynamics may be playing adaptive roles in the life history and dietary patterns of these 

animals. 

4.2. Methods and Materials 

4.2.1. Animals 

For the serum CBG and total and free cortisol determinations in grizzly and polar bears, 

samples from 174 grizzly bears and 355 polar bears were used. Grizzly bears were captured by 

one of three methods: 29 by culvert trapping (CT), 47 by remote injection of anesthetic from a 

helicopter (HD), and 98 by leg-hold snaring (LGS) [37]. All animals were anesthetized by 

remote drug delivery prior to handling using a combination of xylazine and zolazepam–

tiletamine (XZT) administered intramuscularly as xylazine (Cervizine 300; Wildlife 

Pharmaceuticals, Inc., Fort Collins, Colorado) at 2 mg/kg and Telazol (Fort Dodge 

Laboratories, Inc., Fort Dodge, Iowa) at 3 mg/kg estimated body weight. Blood was collected 

by venipuncture from the jugular vein into sterile tubes, and the sample was centrifuged within 

8 h of collection to extract serum (and this was stored frozen at –20°C) for analysis. At the 

conclusion of handling, atipamezole (Antisedan; Novartis Animal Health Canada Inc., 

Mississauga, Ontario, Canada) was administered at 0.15 – 0.20 mg/kg, half-volume 

intramuscularly and half-volume intravenously, to reverse the effects of xylazine. The capture 

and sampling protocol was reviewed and approved by the University of Saskatchewan’s 

Committee on Animal Care and Supply, and was in accordance with guidelines provided by 

the American Society of Mammalogists’ Animal Care and Use Committee [38] and the 

Canadian Council on Animal Care [39]. 
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Sera were collected from polar bears that were captured and sampled in conjunction with a 

long-term research project in the Canadian Arctic conducted by the Ontario Ministry of 

Natural Resources. The samples were collected and processed similarly to grizzly bears 

captured by heli-darting (above), with sera frozen within 8 h of collection and maintained 

frozen (–20°C) in long-term storage at the University of Saskatchewan. The research protocols 

for both projects were approved annually by animal care committees at the University of 

Saskatchewan and Ontario Ministry of Natural Resources and was in accordance with 

guidelines provided by the American Society of Mammalogists’ Animal Care and Use 

Committee [38] and the Canadian Council on Animal Care [39] for the safe handling of 

wildlife. 

We assessed the impact of some biological variations on cortisol dynamics in these two bear 

species, including capture method, reproductive status and season, age, and nutritional status. 

The effect of capture method (culvert trapping [CT], helicopter darting [HD], and leg-hold 

snaring [LGS]) on cortisol dynamics will be tested. Polar bears, on the other hand, were 

captured only by helicopter darting and, thus, the effects of capture method on serum cortisol 

dynamics were not analyzed for this species.  

Reproductive and age classes in grizzly and polar bears were analyzed as factors: solitary adult 

females (SF), adult females with dependent cubs or yearlings (AF), adult males (AM), juvenile 

females (JF), and juvenile males (JM). Furthermore, adults and juveniles were aggregated and 

analyzed separately.  

Grizzly bears were grouped into nutritional seasons, which were defined by seasonal food 

habits as per Munro [40]. Animals captured prior to the 166th Julian day (June 15th) were in the 

hypophagic season (Season 1), prior to 220th Julian day (August 16th) were in the early 

hyperphagic season (Season 2), and after that in the late hyperphagic season (Season 3). No 

sampling occurred during the winter denning period. 

The interactions between some of these factors were also considered. The interaction between 

reproductive class and nutritional season was included in these analyses because the pattern of 

weight changes during different nutritional seasons varies between reproductive classes in 

grizzly bears [41]. Also, we were interested in investigating the interaction between capture 
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method and reproductive class. We also investigated the possible effect of urea to creatinine 

(UC) ratios and body condition indices on cortisol dynamics. UC ratios were used as a 

surrogate for dietary protein intake in grizzly bears (UC < 10 indicates low dietary protein), 

and as an indicator of fasting status in polar bears (UC < 10 indicates fasting). The body 

condition index is an indicator of the true body condition of bears, and is based on residuals 

from the regression of total body mass against straight-line body length [42]. 

4.2.2. Serum Assays 

Serum CBG concentrations were determined using the homologous grizzly bear CBG ELISA 

as detailed in Chapter 3. Total cortisol concentrations were determined by a commercial 125I 

radioimmunoassay kit (MP Biomedicals, Orangeburg, NY), as described in previous chapters. 

Total cortisol values for grizzly and polar bears sampled prior to 2008 were taken from 

Hamilton [43]. Serum glucose concentration was determined by the glucose oxidase-

peroxidase method as described previously [44], using glucose (Sigma) as the standard. 

Absorbance was measured at 500 nm on a VersaMax microplate reader. Urea and creatinine 

concentrations were determined in bear sera using an Abbott Spectrum H Series II 

biochemistry analyzer (Abbott Laboratories Diagnostic Division, Abbott Park, IL, USA). 

4.2.3. Calculations and Statistics 

4.2.3.1. Free Cortisol Calculations 

Calculations and statistical significance testing was conducted in R 2.14.0. Free cortisol was 

calculated using the equation of Barsano and Baumann [45]: 

  

  

!"#$% = !
– !"#!– !"#$% + 1

!! ± !"#!– !"#$% + 1
!!

!
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Where fCORT is free cortisol concentration (mol/L), CBG is CBG concentration (mol/L), 

tCORT is total cortisol concentration (mol/L), and Ka = 1/Kd = equilibrium association constant 

(L/mol).  

4.2.3.2. Body Condition Index Calculations 

The body condition index (BCI) of bears is a morphometric-based measure of the true body 

condition (fat plus lean body mass) of these animals [42]. In other species, poor body condition 

is associated with altered HPA function (e.g. [21, 31, 46]). BCI can be used to compare the 

body condition of grizzly and polar bears within species, and is thought to be independent from 

some of the other factors used in these analyses [42]. The formula used to calculate BCI in 

grizzly bears is: 

 

Where TBM is the total body mass as determined by suspending the bear from a spring-loaded 

or electronic load scale, and SLBL is the straight line body length from the tip of the nose to the 

last vertebra of the tail. The BCI formula for polar bears is: 

 

4.2.3.3. Statistics 

Values are shown as mean + standard error of the means (SEM). To determine the 

relationships between cortisol dynamics and the biological variables that were outlined above, 

we analyzed the variation of the dependent variables (CBG, total and free cortisol, and glucose 

concentrations) using univariate ANCOVAs with capture method, reproductive class, and 

nutritional season as categorical variables, and urea to creatinine ratio and body condition 

index as continuous predictor variables for grizzly bears. In polar bears, only reproductive 

class was used as a factor (Table 4.1). Due to the limiting sample size, the three-way 

interactions between the categorical factors in the grizzly bear analyses were not included, but 

the interactions between nutritional season and reproductive class, and between capture method 

and reproductive class were considered. Variables were natural log transformed as required to 

!"# = ! ln !"# − 3.07!× ln !"#" + 10.76
0.17+ 0.009!× ln !"#"  

!"# = ! ln !"# − 3.21!× ln !"#" + 11.64
0.29− 0.017!× ln !"#"  
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meet the parametric assumption of normality. Post-hoc significance testing was performed 

using Tukey’s Honest Significant Differences test. 

4.3. Results 

4.3.1. Cortisol Dynamics in Grizzly Bears 

Sera were collected from 174 grizzly bears throughout their range in Alberta, Canada. The 

means of CBG, total and free cortisol, and glucose concentrations in grizzly bears within each 

categorical variable analyzed in the ANOVA models are presented in Figure 4.1, and the 

associated statistics are presented in Table 4.2. The associations between the dependent 

variables and continuous predictor variables (body condition index [BCI] and urea to creatinine 

[UC] ratio) are presented as scatterplots in Figure 4.2 and 4.3, respectively. 

There were differences in mean total and free cortisol levels between capture methods (Figure 

4.1). Total cortisol levels were elevated in animals captured by leg-hold snaring (LGS) relative 

to animals captured by both culvert trapping (CT) and helicopter darting (HD). Similarly, free 

cortisol levels were elevated in bears captured by LGS relative to HD, but grizzlies captured by 

CT had levels that were not statistically different from animals captured by either HD or LGS. 

There were no significant differences in CBG and glucose concentrations between the capture 

methods (Figure 4.1). 

There were no effects of reproductive class on total and free cortisol and glucose 

concentrations (Figure 4.1). However, mean CBG concentrations were different between these 

classes, with levels in juvenile females (JF) being significantly lower than in solitary adult 

females (SF) and adult males (AM). Juvenile males (JM) and adult females with dependent 

cubs (AF) had intermediate mean CBG concentrations, but levels in JM were not significantly 

different (p < 0.10) compared to the AM group. Overall, CBG concentrations were lower in 

juveniles than adults (F1,156 = 5.63, p < 0.05). 
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No effect of nutritional season was found on CBG, cortisol, or glucose concentrations (Figure 

4.1). The BCI of grizzly bears was not significantly associated with any of the dependent 

variables. Total and free cortisol levels were positively associated with urea to creatinine (UC) 

ratios (Figure 4.3; p < 0.001, adjusted R2 = 0.165 and 0.132 for total and free cortisol, 

respectively).  

4.3.2. Cortisol Dynamics in Polar Bears 

Sera were collected from 355 polar bears from the Lancaster Sound, and Western and Southern 

Hudson Bay populations. Similar to grizzly bears, the CBG, total and free cortisol, and glucose 

concentration in these sera were determined, and the effects of reproductive class, UC ratio, 

and body condition index on the variation in these serum constituents were examined. The 

associated statistics are shown in Table 4.2. 

CBG, free cortisol, and glucose concentrations were different between polar bear reproductive 

classes (Figure 4.4). JF animals had significantly lower CBG levels relative to AF and AM 

classes, and levels in JM were also lower than AM. Free cortisol levels were significantly 

elevated in JF relative to AF and AM. Glucose concentrations were significantly lower in AM 

relative to JM. CBG levels in juveniles were significantly lower than in adults (F1,329 = 16.1, p 

< 0.001). 

BCI were not significantly associated with CBG, cortisol, or glucose concentrations in polar 

bears (Figure 4.5). Total (p < 0.05, adjusted R2 = 0.043) and free cortisol concentrations (p < 

0.05, adjusted R2 = 0.039) were significantly negatively associated with UC ratios (Figure 

4.6). There was no association between UC ratio and CBG and glucose concentrations. 
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Table 4.1: Factors Included in the ANOVA Models for Grizzly and Polar Bears. 
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Factor 
Grizzly Bears Polar Bears 

Levels n Levels n 

Capture Method Culvert trapping (CT) 
Heli-darting (HD) 
Leg-hold snaring (LGS) 

29 
47 
98 

  

Reproductive 
Class 

Adult Female (SF) 
Female with Dependents (AF) 
Adult Male (AM) 
Juvenile Female (JF) 
Juvenile Male (JM) 

36 
26 
51 
17 
44 

Adult Female 
Female with Dependents 
Adult Male 
Juvenile Female 
Juvenile Male 

35 
82 
103 
55 
80 

Nutritional 
Season 

1: Hypophagic  
2: Early hyperphagic 
3: Late hyperphagic 

119 
26 
29 
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Table 4.2: Summary of Statistical Analyses on Serum Cortisol Dynamics in Grizzly 
Bears. 
This table summarizes the effects of factors (Table 4.1) and covariates on the variation in A) 
CBG, B) total and C) free cortisol, and D) glucose levels. Capture method, nutritional season, 
and reproductive class were treated as factors. Body condition index and urea to creatinine 
(UC) ratio were treated as covariates in the ANCOVA models to analyze their effects on the 
dependent variables. Factors that had significant effects on the dependent variables were 
included in the respective ANCOVA models. Asterisks (‘*’) indicate statistical significance (p 
< 0.05), while periods (‘.’) indicate marginal significance (p < 0.10). 
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 Factor df 
Effect 

df 
Error SS F p  

A
) C

B
G

 

Capture Method 2 129 0.095 1.841 0.163  
Reproductive Class 4 129 0.318 0.084 0.018 * 
Nutritional Season 2 129 0.049 0.949 0.390  
Capture Method x Reproductive Class 8 129 0.399 1.933 0.060 . 
Reproductive Class x Nutritional Season 8 129 0.325 1.576 0.138  
BCI 1 85 0.007 0.247 0.620  
UC Ratio 1 85 0.005 0.168 0.683  

B
) T

ot
al

 C
or

tis
ol

 

Capture Method 2 140 4.031 14.17 0.000 * 
Reproductive Class 4 140 0.850 1.494 0.207  
Nutritional Season 2 140 0.222 0.780 0.460  
Capture Method x Reproductive Class 8 140 0.572 0.590 0.785  
Reproductive Class x Nutritional Season 8 140 0.853 0.749 0.648  
BCI 1 89 0.095 0.665 0.417  
UC Ratio 1 89 1.092 7.613 0.007 * 

C
) F

re
e 

C
or

tis
ol

 

Capture Method 2 129 13.46 13.87 0.000 * 
Reproductive Class 4 129 3.218 1.659 0.164  
Nutritional Season 2 129 0.807 0.832 0.437  
Capture Method x Reproductive Class 8 129 4.639 1.196 0.307  
Reproductive Class x Nutritional Season 8 129 4.649 1.198 0.305  
BCI 1 81 0.563 1.108 0.296  
UC Ratio 1 81 3.742 7.362 0.008 * 

D
) l

og
(G

lu
co

se
) 

Capture Method 2 109 5.710 0.425 0.655  
Reproductive Class 4 109 36.08 1.343 0.259  
Nutritional Season 2 109 2.800 0.208 0.812  
Capture Method x Reproductive Class 8 109 31.09 0.579 0.794  
Reproductive Class x Nutritional Season 8 109 56.25 1.047 0.406  
BCI 1 77 1.920 0.367 0.547  
UC Ratio 1 77 14.34 2.736 0.102  
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Figure 4.1: The Effect of Capture Method, Reproductive Class, and Nutritional Season 
on Serum Cortisol Dynamics in Grizzly Bears. 
Means + SEM of dependent variables (CBG, total and free cortisol, and glucose) plotted 
against the factor levels of the ANOVA models used to determine the biological variation of 
these stress axis parameters in grizzly bears captured by all capture methods. Significantly 
different means, where applicable, are indicated by different letters and sample sizes are 
provided as inset. 
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Figure 4.2: The Effect of Body Condition Index on Serum Cortisol Dynamics in Grizzly 
Bears. 
Scatterplots of A) CBG, B) total and C) free cortisol, and D) glucose concentrations against the 
body condition index of grizzly bears. The trend lines were calculated by linear least squares 
regression. BCI was not significantly correlated with any of these dependent variables. 
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Figure 4.3: The Effect of Urea to Creatinine Ratio on Serum Cortisol Dynamics in 
Grizzly Bears. 
Scatterplots of A) CBG, B) total and C) free cortisol, and D) glucose concentrations against the 
urea to creatinine (UC) ratio in grizzly bears. The trend lines were calculated by linear least 
squares regression. Total cortisol was significantly negatively associated with UC ratio 
(ANOVA, p < 0.05, adjusted R2 = 0.129), and free cortisol was marginally associated with UC 
ratio (p < 0.10). 
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Table 4.3: Summary of Statistical Analyses on Serum Cortisol Dynamics in Polar Bears. 
This table summarizes the effects of factors (Table 4.1) and covariates on the variation in A) 
CBG, B) total and C) free cortisol, and D) glucose variation in polar bears. Reproductive class 
was treated as a factor. Body condition index and urea to creatinine (UC) ratio were treated as 
covariates in the ANCOVA models to analyze their effects on the dependent variables. 
Reproductive class was included in the ANCOVA models for CBG and free cortisol analysis. 
Asterisks (‘*’) indicate statistical significance. 
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 Factor df Effect df Error SS F p  

A) log(CBG) Reproductive Class 4 326 1.121 4.711 0.001 * 
Body Condition Index 1 90 0.063 0.635 0.428  
UC Ratio 1 90 0.094 0.948 0.333  

B) log(Total 
Cortisol) 

Reproductive Class 4 343 1.089 1.912 0.108  
Body Condition Index 1 97 0.044 0.270 0.605  
UC Ratio 1 97 1.041 6.412 0.013 * 

C) log(Free 
Cortisol) 

Reproductive Class 4 326 3.432 2.951 0.020 * 
Body Condition Index 1 90 0.042 0.124 0.726  
UC Ratio 1 90 1.782 5.220 0.025 * 

D) Glucose Reproductive Class 4 163 46.53 3.269 0.013 * 
Body Condition Index 1 24 1.395 0.931 0.344  
UC Ratio 1 24 0.475 0.317 0.579  
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Figure 4.4: The Effect of Reproductive Class on Serum Cortisol Dynamics in Polar Bears. 
Means + SEM of dependent variables (CBG, total and free cortisol, and glucose) plotted 
against the factor levels of the ANOVA models used to determine the biological variation of 
these stress axis parameters in polar bears. Statistically significant differences in means are 
indicated by different letters and sample sizes are provided as inset in each figure. 
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Figure 4.5: The Effect of Body Condition Index on Serum Cortisol Dynamics in Polar 
Bears. 
Scatterplots of A) CBG, B) total and C) free cortisol, and D) glucose concentrations against the 
body condition index of polar bears. The trend lines were calculated by linear least squares 
regression. None of dependent variables were significantly associated with the body condition 
index, but free cortisol levels were marginally associated with BCI (p < 0.10). 
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Figure 4.6: The Effect of Urea to Creatinine Ratio on Serum Cortisol Dynamics in Polar 
Bears. 
Scatterplots of A) CBG, B) total and C) free cortisol, and D) glucose concentrations against the 
urea to creatinine (UC) ratio of polar bears. The trend lines were calculated by linear least 
squares regression. Total (ANOVA, p < 0.05, adjusted R2 = 0.049) and free (p < 0.05, adjusted 
R2 = 0.031) cortisol was significantly negatively associated with UC ratio. 
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4.4. Discussion 

The results of this investigation represent the first characterization of cortisol dynamics, 

including serum CBG and free cortisol concentrations in free-ranging grizzly and polar bears. 

The results suggested that cortisol dynamics is modulated by capture method, reproductive 

class, and energy substrate status of the animal suggesting a key role for this hormone in the 

metabolic adjustments associated with seasonal changes and life history traits in bears.  

4.4.1. Effect of Capture Method in Grizzly Bears 

The effect of capture stress on CBG concentration and free cortisol levels were measured for 

the first time in grizzly bears. Serum CBG levels were not modulated by capture stress 

suggesting that free cortisol concentrations are largely determined by the adrenal response to 

capture. Our results confirmed the activation of the HPA axis by capture stress in grizzly bears 

[36, 47], and leg-hold snaring elicited greater increases in serum cortisol levels compared to 

culvert trapping and heli-darting. This may be related to the potential for longer holding times 

and greater physical injury associated with leg-hold snaring [36] compared to the other capture 

methods employed in this study. In particular, grizzly bears captured by leg-hold snaring may 

be held for up to 24 h because some traps were set in remote locations and were checked only 

once a day, and markers of muscle injury and dehydration suggest prolonged physiological 

disturbance [36]. In contrast, helicopter darting was associated with acute, strenuous physical 

activity, but blood sampling generally occurred sooner than with leg-hold snaring. However, 

the intense physical activity preceding immobilization is associated with delayed drug 

induction times and/or decreased susceptibility to immobilizing drugs [36]. While culvert 

trapping also employed physical immobilization like leg-snaring, the intensity of the stress and 

physiological disturbance associated with this capture method is thought to be comparatively 

less in bears [48] and other animals [49]. This notion was supported by the lower total cortisol 

levels with culvert traps compared to leg-hold snares (Figure 4.1). Altogether, helicopter 

darting and sampling evoked the least free cortisol stress response in grizzly bears, which adds 
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further evidence to the adverse short-term physiological effects of leg-hold snaring in 

comparison to other capture methods employed in the immobilization of bears, which includes 

the increased probability of muscle injury and dehydration [36, 37]. Moreover, there are also 

long-term effects of capture on grizzly bears, including 3 – 6 weeks of lower movement rates 

post-capture and lower age-specific body condition in bears captured more than once [37], but 

it is unclear if the greater capture stress and cortisol response induced by leg-hold snaring plays 

a role in modulating these long-term effects. 

The lack of change in serum CBG concentrations with capture stress was in agreement with 

other studies showing a delayed response in the changes in expression of this protein. For 

instance, significant changes in serum CBG levels manifested only several hours after capture 

stress in Richardson’s ground squirrels [50] and Japanese quail [51], restraint and tail shock 

stress in rats [52, 53] and short-term starvation in birds [54]. While grizzly bears captured by 

leg-hold snaring were immobilized up to 24 hours prior to sampling [36], CBG concentrations 

were not significantly different between capture methods, suggesting that this was not the case 

in the present study and that these animals were likely sampled prior to the induction of 

significant changes in CBG expression. It is also possible that CBG biosynthesis and secretion 

may be less sensitive to acute stressors in grizzly bears than in other animals, but this remains 

to be tested. Our results demonstrate that serum CBG concentration was unaffected by the 

different stress profiles and duration of the capture methods employed. Consequently, the 

differences in free cortisol levels between capture methods reflect different profiles of adrenal 

cortisol secretion, which is associated with the severity of stress induced by the capture method 

and the patterns of physiological disturbance that are associated with each method. 

The cortisol response seen with capture was not associated with a similar glucose response in 

grizzly bears, suggesting that this metabolite is tightly regulated in bear blood. One possible 

explanation for this discrepancy was that the shorter duration of the sampling protocols may 

mask the cortisol-induced glucose response as it may take longer for the effects of the steroid 

to manifest [55]. Secondly, the rapid release of catecholamines and the activation of β-

adrenoceptors associated with the acute stress of capture masked any further changes in serum 

glucose levels due to steroid stimulation. The high serum glucose levels observed in our 

captured animals (~8 mM) compared to “unstressed” levels reported in animals (<5 mM in 
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dogs [56]) support the latter notion and may have obscured any increases in glucose levels to 

capture. Additionally, serum may have been in contact with the cellular fraction of blood for a 

prolonged period of time in grizzly and polar bears compared to black bears due to the remote 

location of sampling sites relative to the processing facilities. Blood cells actively metabolize 

glucose, which may obscure the pre-sampling levels of this metabolite in grizzly and polar 

bears leading to lower levels relative to the black bears, but this remains to be tested. 

Altogether, capture stress was stressful to the animal, and our results supported heli-darting as 

the capture method that induced the lowest increase in cortisol concentrations in grizzly bears 

[36, 47]. However, the results suggest that the animals are exposed to elevated biologically 

active cortisol levels in response to capture stress given the absence of any changes in CBG 

levels after capture. The long-term effects of this hypercortisolemia post-recovery from 

sampling episodes in grizzly bears remain to be determined. 

4.4.2. Cortisol Dynamics between Reproductive Classes 

The modulation of cortisol dynamics due to reproductive class followed similar trends in both 

grizzly and polar bears. CBG levels were modulated by age class in both species, with mean 

levels in juveniles lower than in adults. Sex steroids modulate CBG expression [2], and the 

lower levels in juveniles may reflect their prepubescent state of development and low 

circulating levels of sex steroids. Similarly, juveniles tend to have lower CBG levels than 

adults in Arctic ground squirrels [57] and rats [58]. However, in these species free 

glucocorticoid levels are regulated at levels that are not different between age classes, 

suggesting that glucocorticoid dynamics is altered by other factors in addition to CBG 

modulation. Studies have reported that the levels of cortisol and its metabolites in grizzly and 

polar bear hair [59, 60] and feces [61] are similar between age groups. Since the rate of 

incorporation of cortisol into hair and its excretion via feces is dependent on the free fraction of 

this hormone in circulation [62, 63], our results suggest that free serum cortisol levels must 

also be similar between age classes, and that the secretion of cortisol is regulated to maintain 

bioavailable levels. Thus, we hypothesize that the differences in CBG levels between juvenile 
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and adult bears are unlikely to have metabolic consequences for the younger age classes as the 

free cortisol levels are maintained.  

We found that stress-induced total cortisol levels were also similar between age classes. Given 

our hypothesis (above) that baseline total cortisol levels may be lower in juvenile bears, these 

results suggest that the magnitude of the cortisol response to capture stress (the change from 

baseline to stress-induced levels) is greater in juvenile relative to adult bears. If this notion 

holds true, then the finding may have implications for future studies involving the capture and 

handling of juvenile bears. For instance, it has been shown that captures have negative, long-

term effects on age-specific body condition index in black and grizzly bears [37]. However, the 

long-term physiological and health effects associated with repeated captures in juvenile bears 

are currently unknown. 

There were no differences in cortisol dynamics between reproductive classes in adult grizzly or 

polar bears, suggesting that expression of CBG and the cortisol response to capture stress is not 

sexually dimorphic. We hypothesized differences in cortisol dynamics between reproductive 

classes of bears because: 1) in other species, sexually dimorphic CBG expression and HPA 

axis activity was associated with the actions of sex steroids, including androgens 

(downregulation) and estrogens (upregulation) [2, 64], and 2) lactation is metabolically 

expensive in bears [65, 66], and lactation while fasting has been associated with elevated 

cortisol levels in other species, including some phocid seals [46, 67] to facilitate energy 

substrate mobilization.  

Reproductive status in grizzly and polar bears did not modulate cortisol dynamics, which is 

consistent with similar findings in long-lived species that have multiple opportunities to 

reproduce [20, 68]. The serum cortisol buffering capacity and glucocorticoid response to 

stressors in these species are generally maintained to prevent the detrimental effects of elevated 

free cortisol levels in the former case and to promote long-term survival over short-term 

reproductive success in the latter. This contrasts to species where, for example, intense 

intraspecific competition between males for mates is associated with decreased CBG 

expression and elevated free cortisol levels [20]. The changes in glucocorticoid dynamics in 

these species play a role in mobilizing energy stores to meet the energetic demands of 
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reproduction, and in some species, may contribute to the loss of long-term health for short-term 

reproductive success. Seasonal variations in sex hormones in animals may modulate cortisol 

dynamics and, thereby, impact reproductive status [64]. We did not measure sex steroids in this 

study, but previous reports found that the level of testosterone in males tend to be elevated 

around the respective reproductive seasons of bears [69, 70]. In female bears, estrogen levels 

are elevated around the estrous period in black bears [71], but peak 3 – 4 months after the 

breeding season for polar bear females [69]. However, we cannot definitely rule out the 

seasonal modulation of cortisol dynamics in grizzly and polar bears because the small sample 

sizes prevented the analysis of temporal variations in CBG, cortisol, and glucose levels. 

Further research may elucidate the roles that seasonal variations in sex hormone levels may 

play in modulating cortisol dynamics in bears.  

Our results suggested that the provisioning of parental care, including lactation, did not 

modulate cortisol dynamics in female grizzly and polar bears. While lactation is associated 

with increased metabolic demand in bears [65, 66], this is not always associated with altered 

glucocorticoid dynamics in other species. In lactating rats, the energetic demands of lactation 

were not associated with changes in glucocorticoid dynamics if caloric intake was increased to 

compensate [72]. However, lactation supported by endogenous energy stores may be 

associated with increased glucocorticoid secretion. In other species that fast while lactating, 

including subantarctic fur seals, total glucocorticoid levels increase as adipose stores are 

depleted, which may act to mobilize protein stores for lactogenesis [46]. Thus, our results 

suggested that lactating female bears are in a metabolic state that is similar to other adult 

reproductive classes, resulting in similar CBG, cortisol, and glucose levels across these classes. 

However, we cannot rule out the possibility that other factors may interact with lactation state 

to modulate cortisol dynamics.  

We lacked sufficient data to analyze temporal and seasonal changes in glucocorticoid 

dynamics. For example, the quantity and energy content of milk decreases as cubs age [65, 73], 

which likely affects the metabolic load on the lactating female. Also, the decline in body 

condition as endogenous energy stores are depleted during denning in grizzly bears and fasting 

in polar bears may also be exacerbated by the additional demands of lactation. However, our 
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analyses lead us to propose a metabolic hypothesis, including depleted adipose stores, as a key 

factor modulating cortisol dynamics in the bears, but this remains to be determined.  

4.4.3. Effect of Nutrition and Body Condition 

Serum cortisol dynamics were not modulated by nutritional season in grizzly bears. The 

nutritional seasons were defined by the predominant food types in their diets, which is 

dominated by high carbohydrate berries in the late hyperphagic season in the foothills of 

Alberta, Canada [40]. We hypothesized elevated cortisol levels in grizzly bears during the 

hyperphagic season because studies have shown that other species, including little brown 

Myotis (Myotis lucifugus) [74], yellow-bellied marmots (Marmota flaviventris) [75], and black 

bears (Ursus americanus) [76], have elevated serum glucocorticoid levels during the pre-

hibernation, hyperphagic period. It is thought that hypercortisolemia during hyperphagic 

periods may interact with elevated insulin levels to promote lipid deposition in adipose stores 

[64, 77]. Also, low protein, calorie sufficient/excess diets, similar to the diets that are adopted 

by grizzly and other bear species during the late hyperphagic season [40, 41], are found to be 

associated with elevated baseline glucocorticoid and decreased CBG levels in other species, 

including humans [78], rodents [32], and birds [79]. Moreover, protein malnutrition in 

domesticated cockrels is associated with greater adrenal weight, steroidogenic capacity, and 

cellular sensitivity to ACTH, supporting elevated glucocorticoid levels [80]. Clearly, 

glucocorticoid dynamics are modulated by nutritional quality and predictable, seasonal 

variations in food availability in other species, but that does appear to be the case in grizzly 

bears. 

Cortisol dynamics in grizzly bears were not modulated by seasonal shifts in the major 

components of their diets. It should be noted that the dietary composition of grizzly bears are 

variable and highly dependent on the types and availability of forage located in each 

individual’s home range [81]. For example, there are clear differences in the diet of grizzly 

bears that have home ranges in the foothills versus the mountains of Alberta, Canada, with 

animals in the former having greater access to ungulates and, therefore, dietary protein [40]. 

There may be population or subpopulation level differences in the diets of the animals that we 
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did not include in our analysis, but we suggest that other factors, including the protein 

composition of their diet may be a key nutritional modulator of cortisol dynamics in this 

species.  

Urea is a product of amino acid catabolism in animals [82], while creatinine is the product of 

creatine degradation [83]. Low UC ratios observed in active black bears is associated with low 

protein diets, which in other animals leads to a protein sparing state that includes decreased 

urea biosynthesis [84]. However, elevated creatinine levels are not affected by diet in bears, 

and are associated instead with hibernation in terrestrial bears and fasting in polar bears [85, 

86]. Moreover, it should be noted that blood urea concentrations may be affected by other 

factors other than dietary protein in other animals, including the energy content of the diet and 

hydration status [87], but these potential confounders on blood urea levels have not been fully 

characterized in bears, to our knowledge. However, the significant negative association of total 

and free cortisol levels with UC ratios in grizzly and polar bears leads us to propose that 

factors causing low UC ratios may lead to changes in adrenal physiology in grizzly bears, 

including increased steroidogenic capacity and ACTH sensitivity [80]. This is supported by the 

greater capture-induced cortisol levels in low UC ratio animals in the present study and may be 

a consequence of increased steroidogenic capacity and sensitivity to central HPA axis 

stimulation. These changes in adrenal physiology in grizzly bears may play a role in the 

adoption of foraging strategies that aim to meet protein requirements in the face of diets 

deficient in this macronutrient, resulting in hyperphagia and the deposition of substantial 

adipose stores [41, 88, 89], but further research is required to confirm the associations between 

dietary protein, UC ratios, and cortisol dynamics in grizzly bears. 

While both grizzly and polar bears with low UC ratios exhibit elevated capture-induced 

cortisol levels, it is likely that the mechanisms underlying these changes in these species are 

different. The biochemical and metabolic state of fasting polar bears are comparable in some 

ways to hibernating terrestrial bears, including low UC ratios that arise from decreased urea 

synthesis and renal clearance of creatinine [90]. Hibernation in black bears is associated with 

elevated total cortisol levels relative to summer active bears [86, 91], which is similar to our 

findings of elevated cortisol levels in polar bears with low relative to higher UC ratios. This 

finding suggested that the function of the HPA axis may adapt to fasting in polar bears much in 
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the same way as to hibernation in terrestrial bears. However, it remains unclear how fasting 

polar bears and, by extension, hibernating terrestrial bears reduce the catabolic effects of 

cortisol on lean tissues. Hibernation is characterized by remarkable protein sparing [86], but 

some protein is lost in fasting polar bears in proportion with the relative fatness of the animal 

prior to the initiation of the fast [92]. In other animals that fast for prolonged periods and rely 

on the oxidation of fat to supply energy for metabolism, circulating glucocorticoid levels are 

depressed to prevent the catabolic effects of this hormone on protein stores [93]. Only when 

adipose stores are depleted beyond a species-specific critical point do glucocorticoid levels 

increase to mobilize amino acids from protein stores to supply energy. However, the cortisol 

response to capture stress in fasting polar bears appeared to be hyperactive, leading to greater 

cortisol levels in fasting relative to feeding animals. Furthermore, there were no changes in 

CBG levels between fasting and feeding polar bears, suggesting that changes in cortisol 

buffering capacity does not play a role in modulating the catabolic effects of this steroid 

hormone on lean tissues. It appears that the reduction of bioavailable cortisol was not 

associated with protein sparing in fasting polar bears, and other factors not considered in our 

analyses may be playing roles in modulating the catabolic effects of cortisol on tissues during 

fasting in polar bears. 

The body condition of grizzly and polar bears was not associated with CBG or cortisol levels, 

which may contradict our above hypothesis that the state of endogenous energy stores 

modulates cortisol dynamics in bears. However, these results may be intertwined with the 

effects of fasting and protein sparing on cortisol dynamics as discussed above. For example, 

the lack of an association between cortisol levels and BCI in polar bears could indicate that 

none of the animals sampled had depleted their adipose reserves to the point that protein 

catabolism was necessary to support their metabolic demands [93], but this critical adipose 

depletion level is currently unknown in bears. In contrast, we expected that there would be no 

association between BCI and cortisol dynamics in the grizzly bears sampled in this study 

because they were sampled during the active season, where they are likely to be feeding and 

adding to their endogenous energy reserves throughout this period [41]. Under these 

conditions, cortisol dynamics may be driven instead by the quality of nutrition, including the 

dietary protein composition. 
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4.4.4. Conclusions 

The characterization of the factors that modulate glucocorticoid dynamics in free-ranging 

grizzly and polar bears is a key initial step in the development of CBG and cortisol levels as 

markers of health status in these species. We found that CBG levels were not modulated by 

different capture methods, despite the large differences in the magnitude of acute cortisol 

responses that were induced by these methods, suggesting that CBG levels may reflect the 

chronic health and stress status of bears. There were no differences in CBG and cortisol levels 

between reproductive classes in adult grizzly and polar bears, which is consistent with the 

hypothesis that long-lived species will maintain CBG levels and HPA axis reactivity to 

stressors throughout reproduction. Instead, environmental factors may be the key modulators 

of cortisol dynamics. However, CBG levels were not associated with markers of nutritional 

status, but serum total and free cortisol concentrations were negatively associated with UC 

ratio in both grizzly and polar bears. We propose that this HPA hyperactivity may be indicative 

of enhanced muscle protein breakdown with low-protein diets in grizzly bears, and in polar 

bears may reflect the physiologic and biochemical adaptations that are similar to those found in 

hibernating black bears.  
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CHAPTER 5:  
CORTISOL DYNAMICS IN THE  
HIBERNATING AMERICAN BLACK BEAR 

5.1. Introduction 

Hibernation is an adaptation to conserve energy in the face of extreme environmental 

conditions and low food availability in several animal phyla [1]. This process is characterized 

by changes in the homeostatic set points of the organism, leading to the depression of the 

metabolic rate and a corresponding decrease in energy demand. Some of the striking 

adaptations of ursid hibernation include the near complete conservation of nitrogen [2] and the 

marked reduction of muscle atrophy during this period of disuse [3]. Since glucocorticoids play 

an important role in modulating the catabolism of proteins [4], we hypothesize that changes in 

cortisol dynamics, including reduced free cortisol concentrations, may be a key player in the 

modulation of protein catabolism during hibernation in bears. Corticosteroid binding globulin 

(CBG) reversibly binds a large proportion of circulating glucocorticoids with high affinity in 

most species [5]. CBG-bound glucocorticoids are generally not available to tissues because 

only the unbound glucocorticoid fraction may cross plasma membranes to act on the 

intracellular receptors that transduce the actions of this hormone on tissues [6]. Thus, CBG 

buffers lean tissues against the catabolic effects of glucocorticoids. While studies have 

characterized serum total cortisol levels in hibernating bears [7, 8, 9, 10], none of these reports 

have examined the bioavailable pool of corticosteroid during hibernation. Generally, total 

cortisol levels remain elevated during hibernation in black bears relative to the seasonal nadir 

in the summer [8, 9, 10], but changes in the bioavailable fraction of this hormone are not 

known. 

Ursids exhibit delayed implantation, where the fertilized egg is in embryonic diapause at the 

blastocyst stage for several months. Implantation occurs approximately 1 – 2 months prior to 
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den entry in late November to early December [11], and parturition occurs in late January to 

early February [12]. The first 2 – 3 months of lactation occurs while denning [13], which 

places an astonishingly high metabolic demand on the mother relative to non-reproductive 

females [14, 15, 16]. Cortisol levels are elevated in other species that fast while lactating, 

including the subantarctic fur seal [17] and the northern elephant seal [18]. While cortisol 

levels have been measured in hibernating female black bears [7, 8, 9], the effect of 

reproductive status on cortisol dynamics has not been investigated. 

Thus, the objective of this study was to characterize the bioavailability of cortisol in the sera of 

American black bears (Ursus americanus) during three time periods: prior to, during, and after 

hibernation. We hypothesize that CBG levels and/or its binding affinity for cortisol may 

change in synchrony with total cortisol levels to maintain low free levels of this hormone to 

limit its catabolic effects on tissues during hibernation. Furthermore, the potential differences 

in cortisol dynamics between reproductive and non-reproductive animals were examined to test 

the hypothesis that cortisol levels were elevated to supply substrates for the increased energy 

demands in the former. The levels of serum CBG were quantified directly by the grizzly bear 

CBG ELISA. Total and free cortisol levels were determined, and serum glucose and protein 

levels were quantified as metabolic end points.  

5.2. Methods and Materials 

5.2.1. Animals 

Serum samples were taken from nine captive American black bears at three time points: pre-

hibernation (PRE), during hibernation (HIB), and post hibernation (POST; Table 5.1). 

Animals typically entered hibernation in early January and left their dens by early April. 

Animals were anesthetized with a 2:1 mixture of ketamine (100 mg/mL):xylazine (100 

mg/mL) at a dosage of 1 cc of the mixture per 45.5 kg of body mass. Blood samples were 

drawn from the femoral vein while the animal was anesthetized, and the samples were 



 135 

transported to the laboratory in an ice- packed cooler. Immediately on return to the laboratory, 

the blood was spun to isolate the serum and was frozen at –20°C. The Virginia Polytechnic 

Institute and State University Animal Care Committee approved all bear handling protocols 

(#98-069-F&WS). 

5.2.2. Saturation Binding Assays 

The dissociation constant (Kd) for gbCBG was determined by saturation binding experiments 

with serum as described previously [19]. Serum was stripped of steroids by incubation with 

washed activated charcoal for 4 h at 37°C. 100 µL of stripped serum diluted 1:100 in phosgel 

(100 mM phosphate, 0.1% gelatin, pH 7.4) was incubated with 1.56 – 100 nM 1,2,6,7-3H(N) 

hydrocortisone (3H-F, Perkin-Elmer, Waltham, Massachusetts, USA) for 4 h at 37°C in glass 

tubes in duplicate. A parallel set of tubes with 2000 nM unlabeled cortisol along with the 

tritiated hydrocortisone and diluted bear serum were incubated to determine non-specific 

binding (NSB). Additionally, another set of tubes with no serum was incubated to determine 

total counts (TC). After the incubation, all tubes were cooled in an ethanol-ice-water bath, and 

unbound hydrocortisone was separated by the addition of 700 µL dextran T-70 (Sigma) coated 

activated charcoal (Sigma) in phosgel. Tubes were incubated for 20 min, centrifuged at 2800 

rpm for 12 min at 4°C. 350 µL of the supernatant was transferred and mixed with 2 mL 

scintillation fluid. Samples were counted in a Beckmann LS-9600 liquid scintillation counter. 

Specific binding (SB) was calculated as the difference between the TB and NSB counts. Kd 

and Bmax were first estimated by Scatchard analysis [20] and Rosenthal correction [21]. These 

estimates were then refined by non-linear least squares (NLS) regression in R 2.14.0 to the 

equation: 

 

Where Bs is specific binding (cpm), Bmax is the maximum binding capacity of cortisol to serum 

(cpm), and L is the free tritiated hydrocortisone (nM). The Kd and Bmax from the Scatchard 

analyses were used as seed values for NLS analysis. To compare Kd and Bmax changes between 
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hibernation states, saturation assays were performed on sera from 6 animals, 3 of which were 

reproductive and 3 were non-reproductive, between the PRE and HIB time points. 

5.2.3. CBG ELISA  

To quantify CBG concentrations in black bear sera, serum samples were diluted 1:1000 in 10 

mM Tris (pH 7.5), and 2.0 µL of this diluted serum in 200 µL of carbonate coating buffer (15 

mM Na2CO3, 35 mM NaHCO3, pH 9.6) directly in duplicate wells of an EIA plate. The 

recombinant gbCBG was diluted with 10 mM Tris (pH 7.5) to 0 – 4 nmol gbCBG/L, and 

diluted 10 fold with carbonate coating buffer directly in wells of the ELISA plate in triplicate. 

Proteins were allowed to coat the wells for 2 h (all incubations were performed in a shaker-

incubator set to 30°C). Plates were then washed in an automatic plate washer (Immunowash 

1575, Bio-Rad) with a custom washing protocol [4 repetitions of aspiration, washing with 400 

µL TTBS (20 mM Tris, 150 mM NaCl, 0.05% Tween-20, pH 7.4), and agitation for 5 seconds; 

and one final aspiration]. Plates were blocked with 5% BSA in TTBS for 1 h and washed 

again. The primary detection antibody (polyclonal rabbit anti-gbCBG) was diluted 1:1500 in 

1% BSA in TTBS, and 200 µL was added to each well, except for non-specific binding wells 

where 200 µL 1% BSA in TTBS was added instead, and incubated for 2 h. After washing, 

bound biotinylated anti-CBG antibody was detected and amplified with 200 µL per well of 

streptavidin-HRP diluted 1:3000 in 1% BSA in TTBS, incubated for 1 h. After a final wash, 

the detection solution was freshly prepared [500 µL 41 mM TMB in DMSO into 19.5 mL 200 

mM potassium citrate, 3.075 mM H2O2 (pH 4.0)], and 200 µL was added to each well and 

incubated for 1 h. The reaction was stopped with 100 µL stopping solution (8.5 M acetic acid, 

0.5 M sulfuric acid). Plates were read at 450 nm excitation wavelength on a VersaMax 

microplate reader using SoftMax Pro 3.1 software (Molecular Devices, Sunnyvale, CA).  

5.2.4. Total Cortisol, Glucose, and Protein Assays 

Total cortisol concentrations were determined by a commercial 125I radioimmunoassay kit (MP 

Biomedicals, Orangeburg, NY). Serum glucose concentration was determined by the glucose 
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oxidase-peroxidase method as described previously [22], using glucose (Sigma) as the 

standard. Absorbance was measured at 500 nm on a VersaMax microplate reader. The protein 

concentration of black bear sera was determined before and after depletion of albumin and 

immunoglobulin G by the bicinchoninic acid method [23] using bovine serum albumin as the 

standard. Bear sera was depleted of albumin and IgG with Aurum Serum Protein Mini-kits 

(BioRad, Hercules, CA, USA). 

Free cortisol was calculated using the equation of Barsano and Baumann [24] : 

 

Where fCORT is free cortisol concentration (mol/L), CBG is CBG concentration (mol/L), 

tCORT is total cortisol concentration (mol/L), and Ka = 1/Kd = equilibrium association constant 

(L/mol).  

5.2.5. Statistics 

To compare significant differences in the means of Kd, Bmax, and CBG, cortisol, and glucose 

concentrations, repeated measures ANOVAs were constructed using hibernation status (levels: 

PRE, HIB, and POST, if applicable) as a within-subjects main categorical effect and 

reproductive status as a between-subjects main categorical effect in R 2.14.0. Interactions 

between the two effects were tested for. Variables were log-transformed as required to meet 

the parametric assumption of normality. Post-hoc significance testing was performed using 

Tukey’s Honest Significant Differences (HSD) test, and p < 0.05 was considered to be 

significant. 
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5.3. Results 

Nine female American black bears were sampled prior to (“Pre-hibernation” or “PRE”), during 

(“HIB”), and after arousal from hibernation (“Post-hibernation” or “POST”). Sample data are 

shown in Table 5.1. Six animals were pregnant entering hibernation: five gave birth to litters 

of two cubs, and one gave birth to three cubs. One set of twin cubs died shortly after birth. For 

this analysis, this animal (bear #107, Table 5.1) was considered to be reproductive at PRE and 

non-reproductive (i.e. non-lactating) for HIB and POST periods.  

Saturation binding assays were performed on serum samples from 6 animals in the PRE and 

HIB periods to characterize the binding affinity of CBG to cortisol in these two time periods. 

Kd was calculated by fitting a curve through the specific binding versus unbound labeled 

cortisol plots by non-linear regression. Mean Kd (Figure 5.1) was not significantly different in 

reproductive animals relative to non-reproductive animals (Table 5.2), nor between PRE and 

HIB periods. 

CBG and glucose concentrations were quantified in nine black bears in the PRE, HIB, and 

POST periods, and in non-reproductive and reproductive animals (Table 5.1 and Figures 5.2B 

and D, respectively). There were no statistically significant differences in mean CBG and 

glucose levels between these hibernation periods, nor were there differences between non-

reproductive and reproductive animals. Total cortisol concentrations were similarly quantified 

in black bears (Table 5.1C and Figure 5.2C). Levels of this hormone were significantly 

elevated during the HIB period relative to the PRE and POST periods. There were no 

significant differences between reproductive classes. There was a weakly significant 

interaction effect (p < 0.10). Post-hoc significance testing suggested that there was a significant 

increase (Tukey’s HSD p < 0.05) in total cortisol levels from PRE to HIB in reproductive 

animals. Free cortisol concentrations followed these trends exactly (Table 5.1C and Figure 

5.2C). 

Total protein concentrations (Table 5.1E and Figure 5.2E) were lower during the POST 

period relative to PRE and HIB. There were no differences between reproductive classes. In 
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contrast, the protein concentration of sera depleted of albumin and immunoglobulin G (Table 

5.1F and Figure 5.2F) showed no statistically significant differences between hibernation 

periods or reproductive classes. 

5.4. Discussion 

The results of this investigation represent the first characterization of cortisol dynamics in the 

hibernating American black bear. While seasonal changes in total cortisol concentrations have 

been previously reported in this species [7, 8, 9, 10], seasonal changes in CBG and free cortisol 

concentrations have not been studied. Hibernation in black bears is associated with the 

remarkable lack of lean tissue atrophy relative to other animals that experience prolonged 

unloading, including bone [7, 25] and skeletal muscle [26], which we hypothesized was partly 

due to changes in cortisol dynamics to limit the catabolic effects of this hormone on lean 

tissues. Our results show that there were no changes in CBG and free cortisol levels in non-

reproductive black bears between hibernation states, suggesting that the remarkable reduction 

in disuse atrophy during this period in this species may not involve the downregulation of 

bioavailable cortisol. However, we report the novel finding that cortisol concentrations were 

elevated in reproductive female black bears, and this may represent an adaptation to mobilize 

energy substrate resources to cope with the increased metabolic demands of lactation during 

denning.  

There were no differences in the binding affinity of CBG for cortisol (Kd) between active 

(PRE) and hibernating (HIB) black bears as determined by the saturation binding experiments, 

which shows that changes in the Kd do not play a role in modulating cortisol dynamics during 

hibernation. The Kd of CBG is not known to change appreciably within an individual due to 

endogenous or exogenous factors [6], and Kd is considered to be a constant within species for 

the most part.  
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 Table 5.1: Black Bear Animal and Sampling Data. 
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Bear 
# 

Sampling Days for 
PRE, HIB, and 
POST samples, 

respectively (Julian 
Day) 

Pregnant 
at Time of 

Den 
Entry 

Parturition 
Day (Julian 

Day) 

Initial 
Weight 

(lbs) 

Weight Change 
during 

Hibernation (% of 
Initial) 

102 324, 59, 119 Y 14 235 -20.9% 

103 334, 49, 99 N NA 234 -20.5% 

104 283, 69, 109 Y 28 241 -24.9% 

105 324, 69, 119 Y 11 321 -20.2% 

107 294, 49, 109 Y 2 111 -34.3% 

108 285, 49, 119 N NA 156 -40.4% 

109 276, 59, 119 Y 36 214 -27.1% 

110 285, 59, 109 Y 35 241 -26.0% 

111 284, 59, 131 N NA 244 -23.8% 
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Figure 5.1: Binding Affinity of CBG for Cortisol in Active and Hibernating American 
Black Bears. 
Mean + SEM dissociation binding constant (Kd) of American black bear CBG for cortisol of 
black bear serum between pre-hibernation (PRE) and hibernation (HIB) states and non-
reproductive (dark grey bars) and reproductive animals (light grey bars). Sample sizes are 
shown as inset. There were no significant differences between groups. 
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Table 5.2: Summary of Statistical Analyses of Cortisol Dynamics in Hibernating Black 
Bears. 
Effects of hibernation status (HIB), reproductive status (REPRO), their interactions (HIB X 
REPRO), and residuals on A) Kd, B) CBG, C) total cortisol, D) free cortisol, E) glucose, F) 
total serum protein, and G) depleted serum protein concentrations. Marginal statistical 
significance (p < 0.10) is indicated by ‘.’, p < 0.05 by ‘*’. 
  



 145 

 Factor Sum of Squares df F p  

A) Kd Hibernation Status 0.104 1 0.176 0.686  
 Reproductive Status 2.645 1 4.466 0.068 . 
 HIB X REPRO 0.659 1 1.112 0.323  
 Error 4.738 8    
B) CBG Hibernation Status 27.418 2 1.618 0.222  
 Reproductive Status 31.744 1 3.747 0.066 . 
 HIB X REPRO 5.082 2 0.300 0.744  
 Error 177.905 21    
C) Total Cortisol Hibernation Status 4.476 2 3.813 0.039 * 

Reproductive Status 0.218 1 0.371 0.549  
HIB X REPRO 4.028 2 3.431 0.051 . 

Error 12.326 21    
D) Free Cortisol Hibernation Status 12.795 2 3.544 0.047 * 

Reproductive Status 0.201 1 0.111 0.742  
HIB X REPRO 12.088 2 3.348 0.055 . 

Error 37.912 21    
E) Glucose Hibernation Status 0.464 2 2.292 0.126  
 Reproductive Status 0.202 1 1.998 0.172  
 HIB X REPRO 0.078 2 0.387 0.684  
 Error 2.125 21    
F) Total Serum 
Protein 

Hibernation Status 1672.730 2 9.663 0.001 * 
Reproductive Status 19.970 1 0.231 0.636  

HIB X REPRO 127.490 2 0.737 0.491  
Error 1817.560 21    

G) Depleted 
Serum Protein 

Hibernation Status 25.425 2 1.476 0.254  
Reproductive Status 6.207 1 0.721 0.407  

HIB X REPRO 6.284 2 0.365 0.699  
Error 163.641 19    
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Figure 5.2: Changes in Serum Cortisol Dynamics, and Glucose and Serum Protein 
Concentrations Between Hibernation States in Black Bears. 
Mean + SEM A) CBG, B) total cortisol, C) free cortisol, D) glucose, and E) total serum protein 
concentrations between PRE, HIB, and POST hibernation states, and non-reproductive (dark 
grey bars) and reproductive animals (light grey bars). Sample sizes are shown as inset. 
Statistically significant differences in means between hibernation states are indicated by 
different letters (2-way RMANOVA p < 0.05). There were statistically significant elevations in 
total and free cortisol levels between PRE and HIB in reproductive animals (Tukey HSD p < 
0.05). 
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Although serum CBG levels did not vary significantly during hibernation, total and free 

cortisol levels were elevated in the reproductive relative to non-reproductive animals, 

suggesting that the HPA axis is hyperactive in the former group. The elevated cortisol levels in 

hibernating reproductive female black bears reflected the energetic demands and consequences 

of lactation, which includes greater mass loss and energy consumption relative to non-

reproductive animals [16, 27]. Our results parallel similar observations of elevated cortisol 

levels in other species that similarly lactate while fasting, including phocids, otariids, and 

cetaceans [17, 18]. These elevated cortisol levels may be playing a role in the mobilization of 

substrates for lactogenesis, including amino acids and lipids [17, 18]. Furthermore, bear #107, 

who lost her cubs shortly after parturition and thus was unlikely to be lactating, had low total 

and free cortisol concentrations during the HIB period comparable to non-lactating females, 

which lends support to the hypothesis that increased energy demand modulates serum cortisol 

levels in hibernating black bears. 

The return of cortisol levels in reproductive black bears in the POST period to PRE levels may 

suggest that the resumption of feeding after leaving the den lessens the metabolic burden of 

lactation on the endogenous energy stores of the lactating animal. These findings in black bears 

may also provide some context to our observations in Chapter 4, where we found that female 

grizzly and polar bears with dependent cubs had mean total and free cortisol levels that were 

no different from solitary females that are not lactating. We hypothesized in Chapter 4 that the 

metabolic status of lactating grizzly and polar bears may be a key modulator of cortisol 

dynamics, but we lacked supporting data for these species. Our results in this investigation 

provides evidence towards this hypothesis that the energy demand of lactation modulates HPA 

activity in bears during periods of fasting, including denning.  

Serum glucose concentrations were not associated with the changes in cortisol dynamics 

between hibernation periods. These observations of a lack of association between cortisol and 

glucose levels are similar to those made in grizzly and polar bears (Chapter 4), and may be due 

to the effects of the immobilizing drugs (e.g. xylazine) that induce hyperglycemia [28] and 

masks any possible glucose dysregulation prior to sampling. However, the measurements 

revealed that despite the varying body conditions and metabolic demands, including lactation, 

of these animals, the glucose response to sampling is tightly regulated. 
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Serum total protein concentrations were similar between PRE and HIB periods, but decreased 

in the POST period. Other studies found small increases in total protein concentrations during 

hibernation [14, 29, 30], which are likely due to the incorporation of amino acids into serum 

proteins rather than degradation via the urea cycle [13]. This protein sparing mechanism may 

be active only during hibernation because we found that total protein levels are decreased 

during the POST period. This decrease in total protein levels in the POST period may suggest 

that serum protein dynamics were altered, and may be related to the altered turnover of 

albumin and/or IgG concentrations. In support of this argument, we found that protein 

concentration of albumin- and immunoglobulin G-depleted samples do not change between 

seasons. Decreases in serum albumin concentrations are an indicator of poor body condition in 

bears [29], and it is likely that the body condition of the animals in this investigation were 

lower at arousal [14] but body length measurements were not taken, so body condition could 

not be estimated.  

How do hibernating or fasting ursids avoid lean body mass catabolism by cortisol if the 

bioavailability of cortisol is not reduced by upregulating CBG levels? The dynamics of cortisol 

action is dependent on the rates of biosynthesis and secretion, cellular uptake, and catabolism 

[31], and this investigation only characterized the bioavailability of cortisol. The catabolic 

actions of glucocorticoids on tissues may also be suppressed via changes in the sensitivity of 

the tissue to glucocorticoids, which may include changes to glucocorticoid receptor (GR) and 

11β-hydroxysteroid dehydrogenase (11β-HSD) expression or activity [32], but tissue 

sensitivity to glucocorticoids has not been investigated in any ursid species. GR is responsible 

for mediating the actions of cortisol on cells by modulating gene expression, and decreased 

expression of this protein may reduce the sensitivity to glucocorticoids in tissues. GR activity 

may also be downregulated by altered phosphorylation status, altered interactions with its 

chaperones (e.g. heat shock protein 90 and immunophilins), by the upregulation of GR 

inhibitors, including AP-1 and calreticulin. 11β-HSD modulates tissue glucocorticoid 

sensitivity by the conversion of active glucocorticoids to inactive forms (e.g. cortisol to 

cortisone) or vice versa. 11β-HSD isoform 1 catalyzes the reverse reaction (cortisone to 

cortisol) and has been implicated to increase the intracellular concentration of active cortisol, 

while 11β-HSD isoform 2 produces cortisone from cortisol and plays a role in limiting the 
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activation of the high glucocorticoid affinity mineralocorticoid receptor by cortisol. The 

downregulation of the former and upregulation of the latter protein may reduce tissue 

sensitivity to glucocorticoids. It is currently unclear if and how GR and 11β-HSD expression 

and activity are modulated by hibernation, but studies in other hibernators show the wide 

spread, reversible inhibition of a wide range of transcription factors [33]. These proteins may 

be interesting targets for future studies to further investigate the mechanisms behind the 

changes in cortisol dynamics in the hibernating black bear. 

Other hormones may also be interacting with glucocorticoids to reduce tissue catabolism 

during hibernation, including the growth hormone (GH)/insulin-like growth factor 1 (IGF1) 

axis, which plays a role in modulating protein catabolism during fasting [34]. Recent studies in 

hibernating black bears found evidence that the GH/IGF1 axis in hibernating animals is 

suppressed in the late hyperphagic season and early denning (December – January) and returns 

to summer active levels in late denning (February – March) [35, 36]. These findings suggest 

that protein catabolism is not suppressed by the GH/IGF1 axis consistently throughout 

hibernation, and the extent of protein sparing during late hyperphagia and early hibernation 

may be distinct from mechanisms involved during late hibernation. For instance blood urea 

nitrogen was not different during the former two periods, but decreases during late hibernation 

[9], suggesting different modes of action. Moreover, studies in fasting northern elephant seals 

suggest that elevated growth hormone concentrations may promote protein sparing in spite of 

elevated total cortisol concentrations, and the two hormones may act synergistically to increase 

lipolytic activity [37]. Thus, it appears that cortisol may be playing a role in the regulation of 

energy substrate mobilization along with other metabolic hormones, including GH and IGF1, 

in the hibernating black bear.  

In conclusion, the novel finding was that serum free cortisol levels, the bioavailable fraction, 

was upregulated during hibernation only in lactating American black bears. This increased 

HPA activity was likely due to the enhanced metabolic demand associated with lactation 

during a period of total fasting in bears. Our results suggested that changes in serum CBG 

levels and binding affinity for cortisol were not playing a role in modulating cortisol dynamics 

in hibernating black bears. Overall, the reduction of bioavailable cortisol is not likely a 

contributor to the limited disuse atrophy of lean tissues in denning bears. We hypothesize that 
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cortisol is primarily mediating the mobilization of energy substrates in response to increased 

energy demand, including lactation, while other metabolic hormones, including GH and IGF1, 

may have an important role to play in sparing lean tissues during hibernation. 
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CHAPTER 6:  
HIBERNATION-ASSOCIATED SERUM PROTEOME 
CHANGES IN THE AMERICAN BLACK BEAR  

6.1. Introduction 

Hibernation is an adaptation to cope with extreme environmental conditions and low food 

availability [1]. This process is characterized by changes in the homeostatic set points of the 

organism, including body temperature, leading to the depression of the metabolic rate and a 

corresponding decrease in energy demand. While the molecular bases of hibernation in small 

mammals and ectotherms are beginning to be understood (see review [1]), fewer studies have 

been carried out on such molecular adaptations to hibernation in ursids [2]. 

Ursids, including the American black bear (Ursus americanus), are among the largest animals 

that hibernate, and exhibit some of the typical physiological and biochemical changes common 

amongst hibernating animals, including lowered body temperature and metabolic rate [3, 4], 

slowed heart rate [3], altered serum composition [5], and the catabolism of lipids as a primary 

energy source [6]. In contrast to small, “deep” hibernating mammals, including sciurids, the 

core body temperature of hibernating ursids is only decreased by a few degrees Celsius and 

there is a lack of frequent arousals [1]. Also, the metabolic rate, as a percentage of the active 

basal metabolic rate, is depressed to ~25% in hibernating black bear compared to ~2-5% in 

deep hibernators [4]. There are striking and unique changes in ursid metabolism during 

hibernation, including the near complete conservation of nitrogen [6] and the maintenance of 

wound healing [7]. As well, hibernating bears prevent disuse osteoporosis by maintaining 

balanced bone resorption and formation [8, 9, 10]. In contrast, some small hibernators exhibit 

decreased protein translation [11], suppression of wound healing [12, 13], and an imbalance in 

bone remodeling, leading to loss of bone mass [14, 15]. Research into the regulatory 
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mechanisms allowing for such unique hibernation phenotype in bears may yield insights into 

treatments for human diseases. 

A recent study demonstrated that broad changes in gene expression patterns, rather than 

specific hibernation-related genes, reflect changes in metabolism during hibernation in black 

bears [16], similar to that seen in small mammals [11, 17]. The gene expression changes may 

give rise to the remodeling of tissue proteome that may be essential for hibernation in bears. 

Indeed protein turnover is elevated in black bear serum during hibernation [16, 18], and 

changes in specific serum proteins, including acute phase proteins [19, 20], aminotransferases 

[21] and corticosteroid binding globulin (CBG), have been reported in hibernating bears. 

However, systemic changes in the serum proteomes of large hibernators, including bears, have 

not been characterized to our knowledge. The objective of this study was to examine the 

changes in the serum proteome of the active and hibernating black bear to identify 

differentially expressed proteins in order to provide novel insights into the biochemical 

adaptation to hibernation in bears. The serum proteome changes were assessed using a two-

dimensional difference gel electrophoresis (DIGE) approach [22] from the same animals prior 

to and during hibernation. Some of the differentially regulated proteins identified by DIGE 

were also confirmed using SDS PAGE followed by immunodetection.  

6.2. Methods and Materials 

6.2.1. Animals 

6.2.1.1. Proteomics Studies 

For the comparison of serum proteomes between active and hibernating black bears, paired 

serum samples from 8 animals (animals 1–8 in Table 6.1) were taken from two time points: 

prior to (PRE) and during hibernation (HIB). For the follow up western immunoblotting 

studies, paired serum samples were used from an additional four animals (Table 6.1). Animals 

were anesthetized with a 2:1 mixture of ketamine (100 mg/ml):xylazine (100 mg/ml) at a   
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Table 6.1: Black Bear Animal and Sampling Data. 
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Bear 
# 

Sampling Days for 
PRE and HIB 

samples, 
respectively  
(Julian Day) 

Pregnant 
at Time of 

Den 
Entry 

Parturition 
Day (Julian 

Day) 

Initial 
Weight 

(lbs) 

Weight Change 
during 

Hibernation (% of 
Initial) 

1 324, 59 Y 14 186 -20.9% 

2 334, 49 N NA 186 -20.5% 

3 283, 69 Y 28 181 -24.9% 

4 324, 69 Y 11 256 -20.2% 

5 294, 49 Y 2 111 -34.3% 

6 285, 49 N NA 93 -40.4% 

7 276, 59 Y 36 156 -27.1% 

8 284, 59 N NA 186 -23.8% 
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dosage of 1 cc of the mixture per 45.5 kg of body mass. Blood samples were drawn from the 

femoral vein while the animal was anesthetized, and the samples were transported to the 

laboratory in an ice- packed cooler. Immediately on return to the laboratory, the blood was 

spun to isolate the serum and was frozen at –20°C. The Virginia Polytechnic Institute and State 

University Animal Care Committee approved all bear handling protocols (#98-069- F&WS). 

6.2.2. Difference Gel Electrophoresis (DIGE) 

Black bear sera were processed prior to proteome analysis exactly as described previously for 

grizzly bear sera [23]. Briefly, serum samples were depleted of albumin and IgG with Aurum 

Serum Protein Mini-kits (BioRad, Hercules, CA, USA), and total serum protein concentration 

was determined by the bicinchoninic method [24] using bovine serum albumin (Thermofisher 

Scientific, Waltham, MA, USA) as the standard. After processing, proteins were separated by a 

modified DIGE method [22]. Proteins were precipitated using a 2-D Clean-Up kit (GE 

Healthcare, Piscataway, NJ, USA) and resuspended to a final concentration of 5 µg protein / 

µL in lysis buffer [7 M urea, 2 M thiourea, 5 mM magnesium acetate, 30 mM TRIS, 4% (v/v) 

CHAPS; all reagents purchased from Thermofisher Scientific]. Samples were labeled with Cy 

Dye DIGE Fluor minimal dyes (GE Healthcare) according to manufacturer’s instructions and 

to minimize dye bias. A pooled internal standard consisting of 25 µL of each sample was 

labeled with Cy2 dye. 50 µL of labeled pre-hibernation serum samples were combined with 50 

µL of hibernation samples and 50 µL of the internal standard. Each of these combined samples 

were diluted in rehydration buffer [7 M urea, 2 M thiourea, 4% (v/v) CHAPS, 40 mM DTT, 

0.5% (v/v) pH 4-7 IPG buffer] and rehydration-loaded onto 24 cm, pH 4-7 Immobiline 

DryStrip IPG strips (GE Healthcare) in a reswelling tray for 12 h. Isoelectric focusing was 

done on a IPGphor II (GE Healthcare) under the following conditions: step 100 V, 1 h; step 

500 V, 2 h; gradient to 1000 V, 2 h; gradient to 3000 V, 3 h; step 3000 V, 2 h; gradient to 8000 

V, 3 h; step 8000 V, 9 h; step to 500 V, 13 h; total 109600 Vh. For the second dimension 

separation, IPG strips were equilibrated [6 M urea, 30% (v/v) glycerol, 50 mM TRIS, 

bromophenol blue (Thermofisher Scientific)] with first 1% (w/v) DTT for 30 min, then 2.5% 

(w/v) IAA for an additional 30 min. Equilibrated strips were placed on top of 12% SDS-PAGE 
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gels and sealed with 1% agarose. 2nd dimension electrophoresis was done using an Ettan 

DALTsix electrophoresis unit (GE Healthcare) at 1.5 W per gel for 30 min, then 17.5 W per 

gel until the dye front reached the bottom of the gels. Gels were scanned on a Typhoon 

Variable Mode Imager (GE Healthcare) at excitation/emission wavelengths of 457/520 nm 

(Cy2), 532/580 nm (Cy3), and 633/670 nm (Cy5). Protein spot expression was analyzed with 

DyCyder 7 software (GE Healthcare). After spot expression analysis, a preparatory gel was run 

to isolate proteins for identification by mass spectrometry. 1st dimension separation was the 

same as described above, except proteins were not labeled with Cy Dyes, and 500 µg 

unlabeled, pooled serum protein was loaded onto a single IPG gel strip. 2nd dimension 

separation was the same as described above. After 2D separation, the gel was stained with 

colloidal Coomassie G-250 [0.12% (w/v) Coomassie G-250, 10% (w/v) ammonium sulfate, 

10% (v/v) phosphoric acid, 20% (v/v) methanol] and destained with 10% (v/v) phosphoric acid 

and 20% (v/v) methanol, then dH2O. Protein spots of interest were excised manually and stored 

in microcentrifuge tubes at 4°C with deionized water until mass spectrometric analysis. 

6.2.3. Tandem Mass Spectrometry (MS/MS) 

Protein spots were identified by tandem mass spectrometry. A gel piece containing 1 pmol 

bovine serum albumin (BSA) stained with colloidal Coomassie stain was digested in parallel 

with protein spots as a control. Excised gel plugs were diced into approximately 1 mm3 

portions, and the Coomassie stain was removed by washing three times with ddH2O, three 

times with 50 mM NH4CO3 in 50% acetonitrile (ACN), and a final wash with 100% ACN for 5 

min each (Thermofisher Scientific). After washing, samples were reduced with 10 mM DTT in 

100 mM NH4CO3 for 30 min at 50°C. After another 5 min 100% ACN wash, samples were 

alkylated with 55 mM IAA in 100 mM NH4CO3 for 30 min at room temperature in the dark. 

Samples were washed again with 100 mM NH4CO3 for 15 min, then 100% ACN for 5 min. 

Samples were dried down on a SpeedVac (Thermofisher) at 4°C for 20 min. 10 ng trypsin in 

100 mM NH4CO3 was added to the samples and incubated for 16 h in a 37°C water bath. 

Samples were diluted with ddH2O and bath sonicated for 10 min. After centrifugation at 1000 

rpm for 30 s, the supernatant was transferred to a collection tube with 5 µL of 5% formic acid 
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(FA) in 50% ACN. Digested peptides remaining in the digested gel plugs were extracted with 

5% formic acid (FA) in 50% ACN. The volume of the collected supernatant was reduced to 10 

to 15 µL in a SpeedVac. Samples were cleaned using C18 ZipTips (Millipore, Billerica, MA, 

USA). Samples were acidified with 1% FA, and peptides were bound to equilibrated ZipTips 

(wetting with 50% ACN 3 times, then 0.1% FA 3 times) by 20 cycles of drawing and expelling 

of the sample. ZipTips were washed twice with 0.1% FA, and peptides were eluted by 10 

cycles of drawing and expelling of 5 µL 50% ACN. MS/MS was performed on an Qtrap 2000 

LC/MS/MS (Applied Biosystems, Foster City, CA). 60 fmol of a BSA digest was used as a 

LC/MS/MS control. Peptides were identified using MASCOT MS/MS Ion Search (Matrix 

Science, Boston, Massachusetts, USA) against the NCBI non-redundant protein database. Mass 

spectra with fewer than 30 peaks were discarded, except for very dilute samples where we 

discarded spectra with fewer than 10 peaks. The following parameters were used for MASCOT 

searches: trypsin digestion, carbamindomethyl fixed modifications, methionine oxidation 

variable modifications, monoisotropic mass values, ± 1.2 Da peptide and ± 0.8 Da fragment 

mass tolerances, and up to one missed cleavage. GOMiner was used to determine significantly 

enriched Gene Ontology (GO) pathways [25]. UniProt gene identifiers for homologous human 

genes were obtained for each unique, differentially expressed black bear protein (n = 15) that 

was identified by MS/MS. A list of the N-terminal serum proteome of human blood (n = 213) 

was used as the background total gene list [26] because similar data does not exist for the 

American black bear, to our knowledge. The enrichment of each GO category was calculated 

as the proportion of changed to total proteins in the category relative to the expected 

proportion. GO categories with high enrichment (> 1.5) and one-tailed Fisher’s exact test p-

values < 0.05 were considered categories of interest for the generation of hypotheses. 

6.2.4. Western Blotting 

Commercial antibodies against several proteins were obtained, including sheep anti-human α2-

macroglobulin (Affinity BioReagents, Golden, Colorado, USA), goat anti-dog transferrin (Tf, 

Bethyl Laboratories, Montgomery, Texas, USA), sheep anti-human apolipoprotein A1 

(ApoA1, Abcam, Cambridge, Massachusetts, USA), rabbit anti-human haptoglobin (Hp, 
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Sigma, St. Louis, Missouri, USA), anti-rabbit α1-antitrypsin (A1AT, Sigma), and anti-rabbit 

kininogen 1 (KNG, Sigma). Secondary antibodies were also obtained, including donkey anti-

sheep IgG and rabbit anti-goat IgG (Bethyl), and goat anti-rabbit IgG (BioRad), all conjugated 

to horseradish peroxidase (HRP). Serum proteins were detected by western immunoblotting 

exactly as described previously [23]. Total protein concentrations were determined by the BCA 

method [24], and samples were adjusted to 125 µg protein/mL with Laemmli’s buffer [27]. 2.5 

µg of total protein was loaded into wells on polyacrylamide gels along with a broad range 

molecular weight protein standard (BioRad), and proteins were separated at 200 V for 45 min 

using a discontinuous buffer. Proteins were transferred to a 0.22 µm pore size membrane 

(BioRad) using a TransBlot SD semi-dry electrophoretic transfer cell (BioRad). Transfer 

efficiency was checked by Ponceau S staining of the membrane. Membranes were then washed 

with Tris buffered saline with Tween-20 [TTBS; 20 mM Tris, 300 mM NaCl, 0.1% Tween-20 

(BioShop, Burlington, ON, Canada), pH 7.4] and blocked with 5% skim milk powder in TTBS 

(SM) for 1 h at room temperature. Blots were rinsed with TTBS, and 10 mL primary detection 

antibody diluted 1:1500 in SM was added. After 1 h incubation, blots were washed 3x with 

TTBS, and appropriate secondary antibody diluted 1:3000 in SM was added. After another 1 h 

incubation, membranes were washed 3x with TTBS and 1x with TTBS without Tween-20. 

ECL Plus (GE Healthcare) detection solution was freshly prepared, and 1 mL was applied to 

the membrane. After 5 min, membranes were scanned on a Pharos scanner using the 

QuanityOne software (BioRad). Protein band densitometry was performed using ImageJ 1.45s 

[28] and expression shown as arbitrary units. 

6.2.5. Statistics 

Differential protein expression was compared using repeated measures one-way analysis of 

variance (1-way RMANOVA) in the Biological Variation Analysis module in DeCyder 7 (GE 

Healthcare). p-values were corrected for multiple comparisons by the method of Benjamini and 

Hechberg [29] in R 2.14.0 [30] to yield false discovery rates (FDR) for the DIGE experiments. 

Significant differences in protein expression using immunodetection were compared using 1-

way RMANOVA in R 2.14.0. 
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6.3. Results 

The average Julian day of sampling were 301 and 58, respectively for PRE and HIB samples. 

All animals were adult females (mean age: 8.3 years), and five were pregnant at the time of 

den entry. All five gave birth during hibernation, and the average Julian day of parturition was 

18. One cohort of cubs was lost shortly after birth (bear #5). A mean of 57.4 lbs or 27% of 

initial body weight was lost during hibernation, and no correlation was observed in this weight 

loss between pregnant and non-pregnant animals. 

6.3.1. DIGE Analysis 

The DIGE analysis identified a maximum of 2230 total protein spots per sample, of which 70 

spots were differentially expressed in the hibernating bears. In total 36 and 34 protein spots 

were significantly down and up regulated, respectively, in the HIB compared to the PRE 

samples (Figure 6.1 and Table 6.2). Many of these differentially expressed spots formed 

electrophoretic trains, suggesting multiple isoforms. The differentially expressed protein spots 

were ranked based on their p-values and the top 29 spots were chosen for identification by 

mass spectrometry. We obtained 23 protein IDs (Table 6.2 and highlighted spots in Figure 

6.1); all but two of the identified proteins were matched to giant panda (Ailuropoda 

melanoleuca) predicted proteins in the NCBI non-redundant protein database, and the 

remaining two were matched to dog (Canis familiaris) proteins. The identified proteins that 

were significantly upregulated during hibernation (abbreviated gene names and accession 

numbers in parentheses) included ɑ2-macroglobulin (A2M; EFB20759), ɑ1B-glycoprotein 

(A1BG; EFB23492), complement components C1s (C1S; EFB13954) and C4 (C4; 

EFB21208), immunoglobulin µ heavy (IGHM; AAX73309) and J chains (IGJ; EFB23253), ɑ1-

antitrypsin (A1AT; XP_002920519), clusterin (CLU; EFB22766), and haptoglobin (HP; 

EFB23129). Significantly downregulated proteins included C4b binding protein ɑ chain 

(C4BPA; EFB13508), transferrin (TF; EFB18586), kininogen 1 (KNG; XP_002914859), ɑ2-
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HS-glycoprotein (AHSG; XP_002914863), and apolipoproteins A-I (APOA1; XP_002919539) 

and A-IV (APOA4; XP_546510). 

These identified proteins were grouped into Gene Ontology categories of biological function in 

GoMiner, and selected significantly enriched categories are presented in Table 6.3. Many of 

the proteins are multifunctional and involved in several pathways, including immune system 

processes (GO:002376: CLU, AHSG, KNG, C4, C1S, C4BPA, A2M, APOA1, IGHM, 

APOA4, and IGJ). These proteins can also be subcategorized as proteins involved in adaptive 

(GO:0002250) and innate immunity (GO:0045087), complement activation (GO:0006956), 

and the acute phase response (GO:0006953). Three other significantly enriched GO categories 

included digestion (GO:0007686: APOA1 and APOA4), platelet degranulation (GO:0002576: 

A2M, APOA1, CLU, KNG, A1AT, and TF) and the response to wounding (GO:0009611: 

CLU, AHSG, A1AT, APOA1, C4, KNG, A2M, APOA4, HP, and TF). 

6.3.2. Immunodetection 

The validity of the proteomics results was confirmed by immunodetection of select serum 

proteins in the bears prior to and during hibernation. We performed western immunoblotting 

on an expanded set of black bear serum samples collected during the PRE and HIB periods 

using antibodies against 6 of the proteins identified in our MS/MS analysis (Figure 6.2). We 

found that pregnancy status had no effect on the expression of any of the tested proteins, so this 

factor was omitted from the models. KNG (F = 10.7, p < 0.05) and TF (F = 10.4, p < 0.05) 

were significantly reduced in HIB compared to PRE bears and this is in agreement with our 

DIGE results (Table 6.2 and Figure 6.2E/F). Also, A2M expression was higher (F = 3.22, p = 

0.07) in the HIB bears compared to PRE animals (Figure 6.2B). There were no significant 

differences in A1AT, APOA1, and HP expression in HIB compared to PRE bears (Figure 

6.2A, C, and D). 
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Figure 6.1: Representative Images of a Cy2-stained Black Bear Serum Proteins 
Separated by Difference Gel Electrophoresis. 
Proteins were separated utilizing a pH 4 – 7 (left to right) immobilized pH gradient isoelectric 
focusing gel strip for the 1st, horizontal separation and a 12% SDS-PAGE gel in the 2nd, 
vertical separation. Significantly (p < 0.05) up (yellow) and down regulated (green) proteins 
are indicated by colour. Protein spots that were subsequently identified by tandem mass 
spectrometry are indicated by numbers, which correspond to spot IDs in table 2. 
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Table 6.2: Protein Spots Identified by Tandem Mass Spectrometric Analysis and 
MASCOT Database Searching. 
Spot IDs correspond to labeled spots in Figure 1. p-values from the 1-way RMANOVA and 
False Discovery Rate (FDR) for each protein are shown. Fold changes are relative change in 
protein spot volume from pre-hibernation to hibernation. 
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Spot 
ID Protein ID Accession Fold 

Change p FDR 

1A ɑ2-macroglobulin EFB20759 2.1 0.003 0.128 

1B ɑ2-macroglobulin EFB20759 1.7 0.004 0.130 

1C ɑ2-macroglobulin EFB20759 1.8 0.013 0.205 

2 ɑ1B-glycoprotein EFB23492 1.5 0.021 0.263 

3 Complement C1s subcomponent EFB13954 1.6 0.001 0.128 

4 Immunoglobulin µ Heavy Chain AAX73309 1.6 0.002 0.128 

5 C4b binding protein α chain precursor EFB13508 -1.5 0.007 0.165 

6A Transferrin precursor EFB18586 -1.8 0.011 0.192 

6B Transferrin precursor EFB18586 -1.9 0.006 0.164 

6C Transferrin precursor EFB18586 -2.1 0.004 0.130 

7A Kininogen 1 XP_002914859 -1.7 0.011 0.192 

7B Kininogen 1 XP_002914859 -2.5 0.005 0.147 

7C Kininogen 1 XP_002914859 -1.8 0.022 0.268 

8 α2-HS-glycoprotein XP_002914863 -1.9 0.024 0.195 

9 Complement component C4 EFB21208 1.5 0.003 0.128 

10A Apolipoprotein A-IV XP_546510 -5.7 0.003 0.128 

10B Apolipoprotein A-IV XP_546510 -8.1 0.004 0.128 

11 α1-antitrypsin XP_002920519 1.6 0.024 0.268 

12A Clusterin EFB22766 1.5 0.032 0.303 

12B Clusterin EFB22766 2.0 0.004 0.139 

13 Haptoglobin EFB23129 2.0 0.007 0.168 

14 Apolipoprotein A-I XP_002919539 -1.7 0.042 0.323 

15 Immunoglobulin J chain EFB23253 1.5 0.044 0.328 
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Figure 6.2: Protein Expression with Immunoblots. 
Data are presented as histograms of the mean + standard error of the mean (n = 8) protein 
expression (arbitrary units as a proportion of pooled reference black bear serum) between pre-
hibernating (“Pre”) and hibernating (“Hib”) black bears using antibodies against A) ɑ1-
antitrypsin, B) ɑ2-macroglobulin, C) apolipoprotein A1, D) haptoglobin, E) kininogen 1, and F) 
transferrin. Changes in protein expression between hibernation states of individual bears are 
overlaid on top of the histogram. A representative western blot is shown inset, and the left and 
right wells are loaded with pre-hibernation and hibernation serum samples, respectively. 
Statistically significant differences (p < 0.05, paired 1-way ANOVA) between hibernation 
states are indicated with asterisks. A2M was marginally significant (p = 0.07, indicated inset). 
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Table 6.3: Significantly Enriched Selected Gene Ontology Categories of Serum Proteins 
in Hibernating Black Bears. 
  



 169 

Category Name 
GO 

Category 
ID 

p-
value FDR Enrichment Changed 

Proteins 

Total 
Proteins 

in 
Category 

Immune System 
Process 

002376 0.0036 0.0000 1.98 11 79 

Adaptive Immune 
Response 0002250 0.0111 0.0562 3.23 5 22 

Innate Immune 
Response 0045087 0.0212 0.1018 2.43 6 35 

Acute Phase Response 0006953 0.0001 0.0000 6.09 6 14 

Complement Activation 0006956 0.0275 0.2000 2.63 5 27 

Response to Wounding 0009611 0.0083 0.0556 1.95 10 73 

Digestion 0007586 0.0257 0.1791 7.10 2 4 

Platelet Degranulation 0002576 0.0035 0.0000 3.41 6 25 
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6.4. Discussion  

Our results demonstrated for the first time the changes in the serum proteome that occur during 

hibernation in the American black bear. Only a small proportion (< 5%) of serum protein spots 

were differentially regulated according to our selection criteria during hibernation compared to 

active black bears, and comparable numbers of proteins were up or downregulated. In 

comparison, studies on gene expression changes in the liver of black bears found that 

approximately 7% of all genes were differentially expressed (using our selection criteria), and 

67% of these differentially expressed genes were upregulated during hibernation [16]. Our 

results lead us to suggest that specific changes in protein expression are associated with 

hibernation in black bears, including proteins involved in immunity, coagulation, and bone 

metabolism. 

Immunity-related processes were significantly enriched with differentially expressed proteins 

in hibernating black bears. Prolonged fasting and hypothermia in animals generally has 

suppressive effects on immunity, including the atrophy of lymphoid tissues, suppressed 

reactions to antigens, and leukopenia [31, 32, 33]. In other hibernators, including sciurids, both 

the adaptive and innate immune systems exhibit reduced functionality during bouts of torpor 

[34]. The differences in core body temperature between hibernating sciurids (near freezing) 

and black bears (30-36°C) may be a reason for this difference as the suppression of immune 

function is associated with the degree of hypothermia [31]. During the hibernation season, 

squirrels frequently arouse from torpor to warm up to normothermic body temperature for 5 – 

24 h before re-entering torpor [1, 35]. However, despite the large energetic costs associated 

with arousals in sciurids, the frequent episodes of near normothermia are associated with bursts 

of immune function essential to clear the pathogen loads that may have accumulated during the 

torpor bout [34, 36].  

Bears have a prolonged continuous hibernation physiology, unlike the 10-14 day bouts of 

hypometabolism in sciurids that are interrupted by brief (5 – 24 h ) interbout arousal periods. 

Thus, ursids may have adopted different strategies to cope with this different physiological 

state of metabolic depression. The differential regulation of immunity-related proteins during 



 171 

hibernation may be one such adaptation that allows bears to remain in their hypometabolic and 

mildly hypothermic state, while aiding in the maintenance of immune competence and 

resistance against infection and disease. However, the increased expression of immunity-

related proteins may come at the cost of reduced efficiency of energy conservation [33]. 

Moreover, a recent report demonstrated that the healing of cutaneous wounds is maintained 

during hibernation [7], suggesting that the mechanisms underlying wound healing and immune 

function are active during hibernation in bears. This is a unique adaptation because 

hypothermia and metabolic depression suppresses wound healing in other animals [12, 13]. 

Since the initial response to wounding includes the participation of the innate immune system 

in restoring hemostasis and preventing the development of infections [37], our results suggest 

that the differential expression of immune-related proteins may be playing a key role in this 

unique healing ability of black bears during hibernation. Moreover, it is unlikely that the 

differential expression of these immune proteins were induced by an immune response since 

A2M and HP have been shown to be upregulated during hibernation independent of 

inflammatory acute phase reaction in brown bears [19]. It has been shown that handling stress 

may induce an acute phase reaction in other animals [38], but it is currently unclear if handling 

stress similarly modulates the expression of acute phase proteins in captive black bears. In 

general, however, the immune system of ursids is presently poorly characterized, and it 

remains to be determined how the changes in protein expression that were observed in this 

investigation translate to the functioning of the immune system during hibernation. 

Other proteins that were modulated by hibernation, including A2M and KNG, appear to play 

roles in the regulation of blood coagulation. The blood of hibernating animals have been 

observed to be in a hypocoagulable state, including in squirrels and hedgehogs [39, 40], and 

platelet aggregation has been shown to be reduced in brown bears several days after arousal 

from hibernation [41]. This decrease in coagulation activity may contribute to the prevention of 

blood clotting in the face of low cardiac output during hibernation [2]. Elevations in serum 

A2M levels during hibernation in squirrels are linked to increased clotting times [42]. The 

downregulation of KNG expression during hibernation may also contribute to this state of 

hypocoagulation as this protein is a coagulation cascade cofactor that increases the rate of 

some enzymatic reactions, including prekallikein to kallikein and factor XI and XII to XIa and 

XIIa, respectively [43, 44]. Moreover, decreased body temperatures during hibernation and in 
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hypothermic states may be playing a role by reducing coagulation enzyme activity and platelet 

adhesion, which may also contribute to increased clotting times [39, 45]. Based on our serum 

proteome data, we propose that coagulation activity and blood clotting may be reduced in 

hibernating bears.  

Hibernating black bears preserve bone mass despite several months of inactivity and anuria 

[15], and the mechanisms underlying this phenomenon has been the subject of intense research 

due to its possible implications for human medicine. Bone remodeling during hibernation in 

bears decreases to approximately 25% of summer active levels [8] and bone formation and 

resorption are balanced as suggested by changes in some markers of bone metabolism, 

including carboxy-terminal telopeptide of type I collagen [46, 47], osteocalcin [46], and 

parathyroid hormone [48]. Other hibernators exhibit increased osteoclastic and decreased 

osteoblastic activity [14, 49], resulting in overall decrease in bone mass during torpor. We did 

not detect these markers of bone metabolism in this study, but we suggest that these low 

molecular weight peptides are poorly resolved in 2D gels and changes in the levels of these 

markers were not detected in our analysis. 

However, we found that serum AHSG levels were downregulated during hibernation in bears. 

AHSG is secreted by the liver into circulation, where it is a major carrier protein of calcium 

phosphate and carbonate, and is a major non-collagen protein constituent of bone [50]. This 

protein has been implicated as an inhibitor of osteogenesis [51] and may regulate bone 

remodeling by binding to and blocking the action of cytokines that modulate bone marrow cell 

proliferation and mineralization by the transforming growth factor (TGF)-β family of cytokines 

[52]. The targeted deletion of one copy of the AHSG gene in mice resulted in a two-fold 

decrease in serum AHSG levels and abnormal bone development, including decreased mineral 

formation rate and increased mineral content [52], which may suggest a role for this protein in 

modulating the rate of bone formation. Thus, we propose that the downregulation of AHSG in 

hibernating black bears may lead to a reduction of TGF-β antagonist activity and the 

modulation bone formation rates. Furthermore, the immune system plays an important role in 

bone remodeling [53], and the changes in serum immune-related proteins in black bear serum 

during hibernation lead us to hypothesize a role for these proteome changes in bone 
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remodeling. However, further research is warranted to elucidate the specific proteins and 

processes involved and their modes of action. 

We found that A1BG is upregulated during hibernation in bears. A1BG is a homologue of the 

woodchuck hibernation induction trigger (HIT), which has been proposed as a putative cross-

species hibernation inducer by acting on opioid receptors [54]. There have been reports of 

successful induction of hibernation in active animals by injection with purified serum 

containing HIT [55], but other attempts to reproduce this effect in other species have not been 

successful [56]. HIT possesses properties similar to that of the delta opoid receptor agonist [D-

Ala2, D-Leu5]-enkephalin (DADLE) [57] and this opioid activity can protect organs against 

ischemia-reperfusion injury [58, 59]. However, the mechanisms underlying the actions of this 

protein remain unclear, but the upregulation of A1BG during hibernation in black bears 

suggests that this opioid activity may be an adaptation to protect tissues and organs during 

hibernation, including hypothermia and reduced blood flow. 

There were other protein changes during hibernation, including possible markers of nutritional 

status, but their functions are poorly characterized or have never been studied in bears. For 

instance, APOA1 [60], APOA4 [60, 61], and TF [62] are implicated as markers of fasting in 

other species, and their downregulation in the serum of hibernating, anoretic black bears 

supports these proteins as markers of fasting status in animals. Additionally, these proteins are 

involved in various facets of peripheral nutrient transport [63], and increases in serum APOA4 

levels has also been implicated as a putative satiety signal [64]. Together, the downregulation 

of these proteins may reflect a lower metabolic capacity and nutrient transport during 

hibernation in black bear.  

Some potential confounders may affect the analysis of our data. Recently, Seger and coworkers 

found that levels of some markers of bone metabolism were different between lactating and 

non-lactating hibernating black bears [47], and suggested that the metabolic demands of 

lactogenesis were associated with increased bone resorption. We tested whether reproductive 

status of our experimental animals had an effect on protein expression in our immunoblot 

experiments, but no effect of reproduction was observed (data not shown) and this was 

subsequently dropped from the analysis. We lacked sufficient statistical power in the present 
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study to analyze the effect of lactation on the hibernating serum proteome of black bears, but 

this would be an interesting avenue of research to pursue in the future. Furthermore, the 

mechanisms underlying the changes in the hibernating serum proteome of bears are largely 

unclear. Some changes in protein levels may be due to decreased elimination or increased 

expression of proteins from serum. For example, anuria may contribute to the increase in the 

levels of some serum proteins because many serum proteins may be excreted in normal urine 

[65]. Moreover, the differential expression of some serum protein genes in the liver of 

hibernating black bears have been reported, including ɑ2-HS-glycoprotein, clusterin, and ɑ2-

macroglobulin [16, 66]. We suggest that future studies should be designed to elucidate the 

mechanisms underlying these serum proteome changes in hibernating black bears. 

In conclusion, for the first time we demonstrated that hibernation in black bears is associated 

with differential expression of serum proteins involved in immunity, coagulation, and bone 

metabolism. These results suggest novel mechanisms for some of the unique and remarkable 

metabolic and physiologic attributes of hibernating black bears, including the maintenance of 

wound healing [7], which contrasts with the compromisation of immune function in other 

species during fasting and hibernation [34]. The differential expression of immunity-related 

proteins during hibernation conceivably confers a survival advantage by enhancing processes 

that prevent the development of infections and diseases that may tax the limited resources of 

the fasting and prolonged denning in black bear. Furthermore, we identified differentially 

expressed proteins that were associated with fasting, coagulation, and bone remodeling, but 

further research is warranted to test the hypotheses that were generated by our proteomics 

experiments and to further understand the mechanisms that underlie the changes in the serum 

proteome of hibernating black bears. 
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CHAPTER 7:  
GENERAL CONCLUSIONS 

The experiments described in this thesis aimed to investigate the roles that corticosteroid-

binding globulin (CBG), bioavailable cortisol, and serum proteome changes play in the 

physiologic adaptation to stress associated with the major life history traits of and 

environmental challenges faced by ursids, including American black (Ursus americanus), 

grizzly (U. arctos), and polar bear (U. maritimus). This work has importance for the 

management of free-ranging animals because this represents the groundwork for the potential 

monitoring of the health and stress status of individuals and populations of bears. A series of 

studies were performed to this end, and the following conclusions were derived: 

A CBG-like molecule was found in the sera of bears, and its binding affinities for cortisol were 

characterized (Chapter 2). 

The amino acid sequence of grizzly bear CBG (gbCBG) shared 83 and 68% identity with dog 

(Canis lupus familiaris) and human (Homo sapiens) CBG, respectively. With this gbCBG 

sequence, a gbCBG-specific antibody and ELISA was developed. This ELISA cross-reacted 

with and quantified CBG concentrations in black, grizzly, and polar bears, and we showed that 

there are differences in mean CBG levels between these species (Chapter 3). 

Mean serum free cortisol but not CBG concentrations were significantly affected by the stress 

profiles of different methods of capture, and mean CBG levels were lower in juvenile grizzly 

and polar bears relative to adults. Neither CBG nor cortisol levels varied with adult 

reproductive class in these species. However, adrenal function, as measured as total and free 

cortisol concentrations after exposure to the stress of capture and handling, was negatively 

associated with serum urea to creatinine (UC) ratios, which are surrogate measures for dietary 

protein in grizzly bears and fasting status in polar bears (Chapter 4). 

There was an overall increase in bioavailable cortisol during hibernation in female black bears, 

which argues against the hypothesis that increased CBG expression buffers tissues against the 
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deleterious catabolic effects of this hormone during this period. Instead, we suggest that 

elevated free cortisol levels may be playing a role in supplying substrates to meet the metabolic 

demands of lactation in hibernating bears (Chapter 5). 

The upregulation of innate immunity may be a key adaptation of hibernating black bears. 

Immunity-related proteins were significantly altered in response to hibernation and may 

contribute to maintaining immune competence during this period of hypothermic body 

temperature and hypometabolism (Chapter 6). 

One of the major challenges in studying stress in free-ranging species is that the act of capture 

and handling constitutes an acute stressor that may obscure the pre-capture levels of pertinent 

indicators of the physiologic status of the animal, including glucocorticoids. However, stress-

induced cortisol levels may still provide useful information regarding the health status of an 

animal. We found that stress-induced total and free cortisol levels are negatively associated 

with UC ratio in grizzly and polar bears, and positively associated with lactation in hibernating 

black bears, suggesting that the variation in adrenal function may be playing an important role 

in the adaptation to adverse environmental conditions and/or metabolic stress in bears. The 

measurement of stress-induced cortisol levels only tell a part of the story; however, the 

quantification of baseline levels of this hormone is required to make definitive conclusions 

regarding the health and stress status of animals [1]. Thus, the development of a bear CBG 

ELISA and the finding that CBG levels are not modulated by capture stress is an important 

advance towards a tool that may be employed to monitor the health status of wildlife. The 

biological factors that potentially modulate CBG expression in bears were then investigated to 

characterize the variation in the levels of this protein. 

Altogether, we infer that there are few changes in CBG levels throughout much of the annual 

life cycle of bears, assuming that the variation of this protein by life history factors is similar 

between the bear species investigated in this thesis. This implies that CBG does not play a 

major adaptive role in the life history traits of bears, which is consistent with the hypothesis 

that long-lived species do not trade off long-term survival for short-term gains [2]. For 

example, in species that are short-lived or have limited opportunities to reproduce, CBG 

concentrations generally decrease during the reproductive season, leading to elevated free 
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cortisol levels that are linked to pathologies associated with chronic stress, including 

suppressed immunity and organ failure [2]. In long-lived species, including bears, 

environmental and nutritional factors may be the major driver of variation in CBG levels (e.g. 

in long-lived seabirds [3]). However, CBG was not significantly associated with our measures 

of dietary patterns and nutrition, including body condition, seasonal dietary patterns, and 

fasting, and the vast majority of the observed variation in the levels of this protein and free 

cortisol in bears remain unexplained. This thesis did not investigate the effect of other 

environmental variables on CBG levels, and we suggest that future studies should further 

examine the variation of CBG expression by factors that may impact the chronic health and 

stress status in free-ranging bears, including the temporal and spatial variability in food 

availability and habitat quality. 

The physiologic state of fasting in polar bears has been suggested to be comparable to the state 

of hibernation in terrestrial bears, including hypometabolism and protein sparing [4]. We found 

some parallels between hibernating black bears and fasting polar bears, including elevated 

adrenal function and a lack of change in CBG concentrations relative to active and feeding 

animals, respectively. These parallels may raise the question as to whether the serum 

proteomic adaptations in hibernating black bears also occur in fasting polar bears. We suggest 

that since fasting polar bears are not necessarily protected from the elements by denning, some 

of the adaptations may be relatively more important, including the maintenance of immune 

competence and wound healing, but this remains to be determined. It may also be important to 

understand how chronic stressors, including anthropogenic activities and climate change, may 

impact the performance of individual and populations of free-ranging bears during these 

periods of low food availability. Overall, monitoring of chronic health and stress status of bears 

by noninvasive and serum markers, including levels of CBG, free cortisol and novel proteins, 

identified in the serum proteome of hibernating bears, may provide a tool-kit for use by 

managers and conservationists for effective management of bear population. 
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Appendix 1:  CBG, Cortisol, and Glucose Concentrations 
in Grizzly and Polar Bears 

Figure S1: Cortisol Dynamics between Grizzly Bear Reproductive Classes Captured 
During the Reproductive Season. 
Cortisol dynamics between reproductive classes in grizzly bears sampled during the 
reproductive season (prior to June 15th). Reproductive classes are: solitary adult females (age 
≥ 5 years; SF), adult females with dependent cubs (AF), adult males (AM), juvenile females 
(age < 5 years; JF), and juvenile males (JM). Statistically different means (1-way ANOVA p < 
0.05) are indicated with different letters. 
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Figure S2: Cortisol Dynamics in Grizzly Bears Captured in Different Years. 
Mean + SEM concentrations of A) corticosteroid binding globulin (CBG), B) total cortisol, C) 
free cortisol, and D) glucose in grizzly bears captured in different years (1999 – 2009). None of 
the dependent variables were significantly different between years, taking into account the 
effect of age class on CBG and capture method on total and free cortisol levels. Sample sizes 
are inset. 
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Figure S3: Cortisol Dynamics in Grizzly Bears Captured in Different Months. 
Mean + SEM concentrations of A) corticosteroid binding globulin (CBG), B) total cortisol, C) 
free cortisol, and D) glucose in grizzly bears captured in different months (April – October). 
None of the dependent variables were significantly different between months, taking into 
account the effect of age class on CBG and capture method on total and free cortisol levels. 
Sample sizes are inset. 
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Figure S4: Cortisol Dynamics in Grizzly Bears Captured in Different Populations. 
Mean + SEM concentrations of A) corticosteroid binding globulin (CBG), B) total cortisol, C) 
free cortisol, and D) glucose in grizzly bears captured in different populations. Populations are 
defined as: Alberta North (AN), Castle (Cas), Clearwater (CW), Grande Cache (GC), 
Livingstone (LS), Swan Hills (SH), and Yellowhead (YH). None of the dependent variables 
were significantly different between years, taking into account the effect of age class on CBG 
and capture method on total and free cortisol levels. Sample sizes are inset. 
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Figure S5: Cortisol Dynamics in Polar Bears Captured in Different Years. 
Mean + SEM concentrations of A) corticosteroid binding globulin (CBG), B) total cortisol, C) 
free cortisol, and D) glucose in polar bears captured in different years (1995 – 2009). There 
were significant differences in all of the dependent variables between years, taking into 
account the effect of age class on CBG and free cortisol, and are indicated by different letters 
(ANOVA p < 0.05). Sample sizes are inset. 
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Figure S6: Cortisol Dynamics in Polar Bears Captured in Different Populations. 
Mean + SEM concentrations of A) corticosteroid binding globulin (CBG), B) total cortisol, C) 
free cortisol, and D) glucose in polar bears captured in different populations. Populations are 
defined as: Lancaster Sound (LS), Southern Hudson Bay (SHB), and Western Hudson Bay 
(WHB). There were significant differences in CBG and total and free cortisol levels between 
populations, taking into account the effect of age class on CBG and free cortisol, and are 
indicated by different letters (ANOVA p < 0.05). Sample sizes are inset. All LS and WHB 
animals were sampled in the years 1995 – 1996 and SHB between 2003 – 2009. 
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Figure S7: Cortisol Dynamics in Polar Bears Captured in Different Months. 
Mean + SEM concentrations of A) corticosteroid binding globulin (CBG), B) total cortisol, C) 
free cortisol, and D) glucose in polar bears captured in different months (March – May, July – 
November). There were significant differences in CBG and total and free cortisol levels 
between months of capture, taking into account the effect of age class on CBG and capture 
method on total and free cortisol levels, and are indicated by different letters (ANOVA p < 
0.05). Sample sizes are inset. Animals captured between March – August were from the 
Lancaster Sound and Western Hudson Bay subpopulations, and those captured after August 
were from the Western and Southern Hudson Bay subpopulations. 
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Figure S8: Cortisol Dynamics in Polar Bears Captured in Different Seasons. 
Mean + SEM concentrations of A) corticosteroid binding globulin (CBG), B) total cortisol, C) 
free cortisol, and D) glucose in polar bears captured in different seasons. Seasons are defined 
by Julian day of capture: Feeding (prior to the 150th Julian Day), early fasting (between 150 – 
225), and late fasting (after 225). There were significant differences in CBG and total and free 
cortisol levels between populations, taking into account the effect of age class on CBG and free 
cortisol, and are indicated by different letters (ANOVA p < 0.05). Sample sizes are inset. 
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Appendix 2:  Supplementary Data for Black Bear 
Hibernation Proteomics Experiments 

Table S1: Gene Ontology Categories that were Significantly Enriched. 
This table contains the Gene Ontology categories that were significantly (p < 0.05) enriched 
(Enrichment > 1.5) in the proteins that were identified as differentially expressed during 
hibernation in the American black bear. 
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6953 14 6 6.09 0.000 0.010 acute-phase response 
6952 68 11 2.30 0.001 0.155 defense response 
6959 30 7 3.31 0.002 0.178 humoral immune response 
50790 30 7 3.31 0.002 0.178 regulation of catalytic activity 
51336 23 6 3.70 0.002 0.170 regulation of hydrolase activity 
6955 63 10 2.25 0.002 0.142 immune response 
10033 43 8 2.64 0.003 0.184 response to organic substance 
2526 25 6 3.41 0.004 0.156 acute inflammatory response 
2576 25 6 3.41 0.004 0.156 platelet degranulation 
2376 79 11 1.98 0.004 0.141 immune system process 
2252 34 7 2.92 0.004 0.129 immune effector process 
65009 35 7 2.84 0.004 0.133 regulation of molecular function 
35270 2 2 14.20 0.005 0.359 endocrine system development 
10288 2 2 14.20 0.005 0.359 response to lead ion 
19538 96 12 1.78 0.005 0.335 protein metabolic process 
2682 46 8 2.47 0.005 0.341 regulation of immune system process 
6887 29 6 2.94 0.008 0.361 exocytosis 
9611 73 10 1.95 0.008 0.343 response to wounding 
31100 7 3 6.09 0.008 0.328 organ regeneration 
43691 7 3 6.09 0.008 0.328 reverse cholesterol transport 
6954 39 7 2.55 0.009 0.301 inflammatory response 
50776 39 7 2.55 0.009 0.301 regulation of immune response 
2253 30 6 2.84 0.010 0.299 activation of immune response 
16192 51 8 2.23 0.010 0.291 vesicle-mediated transport 
52547 14 4 4.06 0.011 0.291 regulation of peptidase activity 
48583 63 9 2.03 0.011 0.282 regulation of response to stimulus 
19724 22 5 3.23 0.011 0.239 B cell mediated immunity 
2250 22 5 3.23 0.011 0.239 adaptive immune response 
2460 22 5 3.23 0.011 0.239 adaptive immune response based on somatic 

recombination of immune receptors built from 
immunoglobulin superfamily domains 

2455 22 5 3.23 0.011 0.239 humoral immune response mediated by 
circulating immunoglobulin 

16064 22 5 3.23 0.011 0.239 immunoglobulin mediated immune response 
2449 22 5 3.23 0.011 0.239 lymphocyte mediated immunity 
51338 8 3 5.33 0.013 0.260 regulation of transferase activity 
30168 32 6 2.66 0.013 0.297 platelet activation 
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50778 32 6 2.66 0.013 0.297 positive regulation of immune response 
50892 3 2 9.47 0.013 0.310 intestinal absorption 
30299 3 2 9.47 0.013 0.310 intestinal cholesterol absorption 
44241 3 2 9.47 0.013 0.310 lipid digestion 
48232 3 2 9.47 0.013 0.310 male gamete generation 
44058 3 2 9.47 0.013 0.310 regulation of digestive system process 
30300 3 2 9.47 0.013 0.310 regulation of intestinal cholesterol absorption 
7283 3 2 9.47 0.013 0.310 spermatogenesis 
9719 23 5 3.09 0.014 0.280 response to endogenous stimulus 
9725 23 5 3.09 0.014 0.280 response to hormone stimulus 
1775 43 7 2.31 0.015 0.280 cell activation 
51246 33 6 2.58 0.016 0.276 regulation of protein metabolic process 
2443 24 5 2.96 0.017 0.274 leukocyte mediated immunity 
43086 16 4 3.55 0.018 0.269 negative regulation of catalytic activity 
43085 16 4 3.55 0.018 0.269 positive regulation of catalytic activity 
7399 34 6 2.51 0.018 0.266 nervous system development 
52548 9 3 4.73 0.019 0.269 regulation of endopeptidase activity 
44057 9 3 4.73 0.019 0.269 regulation of system process 
45087 35 6 2.43 0.021 0.265 innate immune response 
72376 35 6 2.43 0.021 0.265 protein activation cascade 
6950 111 12 1.54 0.022 0.262 response to stress 
44092 17 4 3.34 0.022 0.262 negative regulation of molecular function 
48545 17 4 3.34 0.022 0.262 response to steroid hormone stimulus 
32940 36 6 2.37 0.024 0.261 secretion by cell 
30301 10 3 4.26 0.025 0.256 cholesterol transport 
1935 10 3 4.26 0.025 0.256 endothelial cell proliferation 
14070 10 3 4.26 0.025 0.256 response to organic cyclic substance 
15918 10 3 4.26 0.025 0.256 sterol transport 
7586 4 2 7.10 0.026 0.303 digestion 
22600 4 2 7.10 0.026 0.303 digestive system process 
14012 4 2 7.10 0.026 0.303 peripheral nervous system axon regeneration 
43410 4 2 7.10 0.026 0.303 positive regulation of MAPKKK cascade 
6956 27 5 2.63 0.028 0.306 complement activation 
42592 37 6 2.30 0.028 0.299 homeostatic process 
46903 37 6 2.30 0.028 0.299 secretion 
48518 99 11 1.58 0.029 0.295 positive regulation of biological process 
42221 73 9 1.75 0.032 0.294 response to chemical stimulus 
51649 49 7 2.03 0.032 0.290 establishment of localization in cell 
44093 19 4 2.99 0.033 0.289 positive regulation of molecular function 
31099 19 4 2.99 0.033 0.289 regeneration 
51345 11 3 3.87 0.033 0.293 positive regulation of hydrolase activity 
10740 11 3 3.87 0.033 0.293 positive regulation of intracellular protein 

kinase cascade 
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48878 29 5 2.45 0.037 0.292 chemical homeostasis 
32268 29 5 2.45 0.037 0.292 regulation of cellular protein metabolic process 
35466 29 5 2.45 0.037 0.292 regulation of signaling pathway 
6958 20 4 2.84 0.039 0.288 complement activation, classical pathway 
10035 20 4 2.84 0.039 0.288 response to inorganic substance 
51641 51 7 1.95 0.040 0.286 cellular localization 
2684 40 6 2.13 0.041 0.281 positive regulation of immune system process 
48584 40 6 2.13 0.041 0.281 positive regulation of response to stimulus 
31103 5 2 5.68 0.041 0.293 axon regeneration 
6576 5 2 5.68 0.041 0.293 cellular biogenic amine metabolic process 
6879 5 2 5.68 0.041 0.293 cellular iron ion homeostasis 
42439 5 2 5.68 0.041 0.293 ethanolamine-containing compound metabolic 

process 
46651 5 2 5.68 0.041 0.293 lymphocyte proliferation 
31102 5 2 5.68 0.041 0.293 neuron projection regeneration 
46470 5 2 5.68 0.041 0.293 phosphatidylcholine metabolic process 
1938 5 2 5.68 0.041 0.293 positive regulation of endothelial cell 

proliferation 
51347 5 2 5.68 0.041 0.293 positive regulation of transferase activity 
32844 5 2 5.68 0.041 0.293 regulation of homeostatic process 
50670 5 2 5.68 0.041 0.293 regulation of lymphocyte proliferation 
32269 12 3 3.55 0.043 0.294 negative regulation of cellular protein 

metabolic process 
51346 12 3 3.55 0.043 0.294 negative regulation of hydrolase activity 
1666 12 3 3.55 0.043 0.294 response to hypoxia 
70482 12 3 3.55 0.043 0.294 response to oxygen levels 
35556 30 5 2.37 0.043 0.294 intracellular signal transduction 
31667 21 4 2.70 0.047 0.299 response to nutrient levels 
 


