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Abstract

In this thesis, we provide several applications of Gram-Charlier expansions in deriva-

tive pricing. We first give an exposition on how to calculate swaption prices under the

the CIR2 model. Then we extend this method to CIR2++ model. We also develop a

procedure to calculate European call options under Heston’s model of stochastic volatility

by Gram-Charlier Expansions.
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Chapter 1

Introduction

The Gram-Charlier expansion, discovered by Jogen Pedersen Gram and Carl Charlier, is

an infinite series that approximates a probability distribution in terms of its cumulants

(or moments). The idea behind the Gram-Charlier expansions is quite natural. Suppose

that the first four moments of a random variable are known. We are able to calculate

the mean, variance, skewness and kurtosis of it. Heuristically speaking, the shape of the

density function of a random variable can roughly be described using these moments. As

a result, the distribution function of a random variable is almost fixed if moments of it

are known.

On the other hand, the arbitrage-free price of any European-type derivative of an asset

is just an expectation with respect to a equivalent martingale measure. If the moments

of the underlying asset with respect to the numeraire measure are known, by the above

discussion, we are able to calculate its density ( or distribution ) function. Hence, the

price can be obtained with ease. This is the main idea of this thesis.

This thesis is divided into five chapters. Chapter 1 gives the background knowledge of

Gram-Charlier expansions and an important class of ordinary differential equations. The

Gram-Charlier expansion will be used throughout this thesis. The solution of the class of

ordinary differential equations mentioned above will be heavily used in Chapter 3.

In chapter 2, we review some fundamental concepts on mathematical finance. We
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define and discuss the properties of T -forward measures, swap, swaptions and Black’s

implied volatilities of swaptions.

In the first three sections of chapter 3, we give a detailed survey on [12], which pre-

sented a way to calculate the swaption prices under CIR2 model by using Gram-Charlier

expansions. Most of the original works, which will be given after section 3.3, are inspired

by this paper. In the last section of chapter 3, we present a method to calculate the

the swaption prices under CIR2++ model by using Gram-Charlier expansions. This is

achieved by a modification of the formula for the bond moment, which is a crucial concept

in [12].

We discussed how to apply the Gram-Charlier approach in general diffusion processes

in Chapter 4. To make the description simple, we consider the Black-Scholes model and

a simplified version of Brennan-Schwarz model on interest rates. Black-Scholes model is

chosen as a representation of the class of diffusion processes of which the moments can be

easily obtained. In section 4.1, we show how to use Gram-Charlier approach in pricing

European call options for this class of models. A simplified version of Brennan-Schwarz

model is chosen since the process does not have an easy closed form solution. In section

4.2, we prove that the moments are just solutions of a system of ordinary differential

equations. The solutions can be obtained by symbolic calculation software. In general,

this can be obtained numerical methods of ordinary differential equations.

In Chapter 5, we study the Gram-Charlier approach in Heston’s Model. Since the

characteristic functions of the discounted log-price is known, the moments of the log-price

are readily obtained by taking derivatives. Then we develop a formula to calculate the

truncated moment-generating function in section 5.2. This is the key step of obtaining

the approximation formula of the price of European call options. We also suggest a way

to simulated the Heston’s model, so that negative volatility can always be avoided. Some

numerical results and discussions are given at the end of this chapter.

Chapter 6 contains a conclusion of this thesis. We give a summary of the results

and methods that we discussed in this thesis. We also discuss some limitations of our
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approach.
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Chapter 2

Preliminaries

2.1 Hermite polynomials

Let ϕ(x) be the density function of the standard normal distribution N(0, 1). Throughout

this paper, Hermite polynomials are defined as

Hn(x) = (−1)nϕ(x)−1Dnϕ(x) with H0(x) ≡ 1

where

n ∈ N, D =
dn

dxn
and ϕ(x) =

1√
2π
e−

x2

2 .

The proof of the following lemma is elementary, but not entirely obvious.

Lemma 2.1.1. We have the following formula:∫ ∞

x

ϕ(y)Hn(y) dy = xϕ(x)Hn−1(x) + ϕ(x)Hn−2(x).

Proof. Note that Dnϕ(x) = (−1)nHn(x)ϕ(x). By using integration by parts, we have

D((Dn−1ϕ(x))x) = [Dn(ϕ(x))]x+Dn−1ϕ(x) = (−1)nxHn(x)ϕ(x) +Dn−1ϕ(x).

Therefore,

−(Dn−1ϕ(x))x =

∫ ∞

x

(−1)nyHn(y)ϕ(y)dy −Dn−2ϕ(x).
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Hence, ∫ ∞

x

(−1)nyHn(y)ϕ(y)dy = −(Dn−1ϕ(x))x+Dn−2ϕ(x)

i.e.

∫ ∞

x

(−1)nyHn(y)ϕ(y)dy = (−1) · (−1)n−1xϕ(x)Hn−1(x) + (−1)n−2ϕ(x)Hn−1(x).

We now give the Gram-Charlier expansion of a density function and show how to

use it to calculate the distribution function and the truncated expectation. The primary

reference is [8].

Proposition 2.1.2. Let Y be a random variable with a continuous density function

f : R→ R and finite cumulants (ck)k∈N. Then the following hold:

(a) f is given by the following expansion:

f(x) =
∞∑
n=0

qn√
c2
Hn

(
x− c1√

c2

)
ϕ

(
x− c1√

c2

)
where q0 = 1, q1 = q2 = 0,

qn =

[n
3
]∑

m=1

∑
k1,...km≥3,

k1+...+km=n,

ck1 ...ckm
m!k1!...km!

√
c2

n , n ≥ 3.

(b) for any a ∈ R,

P (Y > a) = N

(
c1 − a√

c2

)
+

∞∑
k=3

(−1)k−1qkHk−1

(
c1 − a√

c2

)
ϕ

(
c1 − a√

c2

)
(c) for any a ∈ R,

E[Y I(Y > a)]

=
√
c2 ϕ

(
c1 − a√

c2

)
+ c1N

(
c1 − a√

c2

)
+

∞∑
n=3

(−1)n−1qnϕ

(
c1 − a√

c2

) [
aHn−1

(
c1 − a√

c2

)
−
√
C2Hn−2

(
c1 − a√

c2

)]
.
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Proof. (a)

GY (t) := E(eitY )

=

∫ ∞

−∞
eitxf(x)dx

=

∫ ∞

−∞
eit(c1+

√
c2x)f(c1 +

√
c2x)d(c1 +

√
c2x)

= eitc1
∫ ∞

−∞
ei

√
c2x
√
c2f(c1 +

√
c2x)dx.

Since

GY (t) = elnGY (t) = e
∑∞

k=0

[
dk

dtk
(lnGY (t)))

]
t=0

tk

k! = e
∑∞

k=1
cktk

k!

we have

GY (t)

= e
∑∞

k=1
ck(it)k

k!

= eic1te−
c2t

2

2
+
∑∞

k=3
ck(it)k

k!

= eic1te
− c2t

2

2
+
∑∞

k=3
ck(−1)k

k!
√
c2

k (−i
√
c2t)k

= eic1t
∫ ∞

−∞
ei

√
c2tx

[
e
∑∞

k=3
ck(−1)k

k!
√

c2
k Dk

]
(ϕ(x)) dx.
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Then [
e
∑∞

k=3
ck(−1)k

k!
√

c2
k Dk

]
(ϕ(x))

=

{
1 +

∞∑
m=1

1

m!

[
∞∑
k=3

ck(−1)k

k!
√
c2

k
Dk

]m}
(ϕ(x))

=

{
1 +

∞∑
m=1

1

m!

[ ∑
k1,...km≥3

ck1 ...ckm(−1)k1+...+km

k1!...km!
√
c2

k1+...+km
Dk1+...+km

]}
(ϕ(x))

=

{
1 +

[
∞∑

m=1

∑
k1,...km≥3

ck1 ...ckm(−1)k1+...+km

m!k1!...km!
√
c2

k1+...+km
Dk1+...+km

]}
(ϕ(x))

=

1 + ∞∑
n=3

[n
3
]∑

m=1

∑
k1,...km≥3,

k1+...+km=n,

ck1 ...ckm
m!k1!...km!

√
c2

nHn(x)

ϕ(x)
Therefore,

GY (t)

= eic1t
∫ ∞

−∞
ei

√
c2txϕ(x)dx

+ eic1t
∫ ∞

−∞
ei

√
c2tx

 ∞∑
n=3

[n
3
]∑

m=1

∑
k1,...km≥3,

k1+...+km=n,

ck1 ...ckm
m!k1!...km!

√
c2

nHn(x)ϕ(x)

 dx
The rest follows from the inverse Fourier transform and is straightforward.
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(b).

E[I(Y ≤ a)]

=

∫ a

−∞

∞∑
n=0

qn√
c2
Hn

(
x− c1√

c2

)
ϕ

(
x− c1√

c2

)
dx

=
∞∑
n=0

∫ a

−∞

qn√
c2
Hn

(
x− c1√

c2

)
ϕ

(
x− c1√

c2

)
dx

=
∞∑
n=0

∫ a−c1√
c2

−∞
qnHn(y)ϕ(y) dy

=

∫ a−c1√
c2

−∞
ϕ(y) dy +

∞∑
n=3

qn

∫ a−c1√
c2

−∞
Hn(y)ϕ(y) dy

= N

(
a− c1√

c2

)
+

∞∑
n=3

qn

∫ a−c1√
c2

−∞
(−1)nDnϕ(y) dy

= N

(
a− c1√

c2

)
+

∞∑
n=3

qn(−1)nDn−1ϕ

(
a− c1√

c2

)
= N

(
a− c1√

c2

)
+

∞∑
n=3

qn(−1)n · (−1)n−1Hn−1

(
a− c1√

c2

)
ϕ

(
a− c1√

c2

)
= N

(
a− c1√

c2

)
−

∞∑
n=3

qnHn−1

(
a− c1√

c2

)
ϕ

(
a− c1√

c2

)

Therefore,

E[I(Y > a)]

= 1−

[
N

(
a− c1√

c2

)
−

∞∑
n=3

qnHn−1

(
a− c1√

c2

)
ϕ

(
a− c1√

c2

)]

= N

(
c1 − a√

c2

)
+

∞∑
n=3

qnHn−1

(
a− c1√

c2

)
ϕ

(
a− c1√

c2

)
= N

(
c1 − a√

c2

)
+

∞∑
n=3

(−1)n−1qnHn−1

(
c1 − a√

c2

)
ϕ

(
c1 − a√

c2

)
.
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(c).

E[Y I(Y ≤ a)]

=

∫ ∞

a

∞∑
n=0

qn√
c2
xHn

(
x− c1√

c2

)
ϕ

(
x− c1√

c2

)
dx

=
∞∑
n=0

∫ ∞

a

qn√
c2
xHn

(
x− c1√

c2

)
ϕ

(
x− c1√

c2

)
dx

=
∞∑
n=0

qn

[∫ ∞

a

(
x− c1√

c2

)
Hn

(
x− c1√

c2

)
ϕ

(
x− c1√

c2

)
dx

+
c1√
c2

∫ ∞

a

Hn

(
x− c1√

c2

)
ϕ

(
x− c1√

c2

)
dx

]

=
∞∑
n=0

qn
√
c2

[∫ ∞

a−c1√
c2

yHn(y)ϕ(y) dy +
c1√
c2

∫ ∞

a−c1√
c2

Hn(y)ϕ(y) dy

]

=
√
c2

[∫ ∞

a−c1√
c2

yϕ(y) dy +
c1√
c2

∫ ∞

a−c1√
c2

ϕ(y) dy

]

+
∞∑
n=3

qn
√
c2

[∫ ∞

a−c1√
c2

yHn(y)ϕ(y) dy +
c1√
c2

∫ ∞

a−c1√
c2

Hn(y)ϕ(y) dy

]

=
√
c2

∫ ∞

a−c1√
c2

yϕ(y) dy + c1N

(
c1 − a√

c2

)

+
∞∑
n=3

qn
√
c2

[
a− c1√

c2
Hn−1

(
a− c1√

c2

)
ϕ

(
a− c1√

c2

)
+Hn−2

(
a− c1√

c2

)
ϕ

(
a− c1√

c2

)]
+

∞∑
n=3

qn
√
c2

[
c1√
c2
Hn−1

(
a− c1√

c2

)
ϕ

(
a− c1√

c2

)]
=
√
c2 ϕ

(
a− c1√

c2

)
+ c1N

(
c1 − a√

c2

)
+

∞∑
n=3

qn
√
c2

[
a
√
c2
Hn−1

(
a− c1√

c2

)
ϕ

(
a− c1√

c2

)
+Hn−2

(
a− c1√

c2

)
ϕ

(
a− c1√

c2

)]

The second last equality follows from Lemma 2.1.1

Remark 2.1.3. In principle, we are able to develop a general formula for E[Y nI(Y > a))]

for any natural number n.
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2.2 An important system of Riccati equations

In this section, we study a system of Riccati equations which is useful in section 3.1.

Consider the following Ricatti equation:

dy

dx
= 1 + ky − σ2y

2
, y(T ) = y0. (2.1)

Consider an auxiliary equation

λ2 − 2k

σ2
λ− 2

σ2
= 0

The roots of this quadratic equation are given by

λ+ =
k + γ

σ2
, λ− =

k − γ
σ2

where γ =
√
k2 + 2σ2.

dy

dx
= 1 + ky − σ2y

2
⇒
∫

dy

1 + ky − σ2y2

2

=

∫
dt

⇒
∫

dy

y2 − 2k
σ2y − 2

σ2

= −σ
2t

2
+ C

⇒ 1

λ+ − λ−

∫
1

y − λ+
− 1

y − λ−
dy = −σ

2t

2
+ C

⇒ σ2

2γ
ln
y − λ+
y − λ−

= −σ
2t

2
+ C

⇒ y − λ+
y − λ−

= De−γt.

By using the terminal condition, we have

D = eγT
y0 − λ+
y0 − λ−

.

Therefore,
y − λ+
y − λ−

=
y0 − λ+
y0 − λ−

eγ(T−t).

Let y∗0 = y0−λ+

y0−λ−
. Then the solution of the differential equation (2.1) is given by

y = λ+ + (λ+ − λ−)
y∗0e

γ(T−t)

1− y∗0eγ(T−t)
.
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or

y =
1

σ2

[
K + γ +

2γy∗0e
γ(T−t)

1− y∗0eγ(T−t)

]
.

Next, suppose that we are given the following system of Riccati equations

dx

dt
= δ0 −K1θ1y −K2θ2z, (2.2)

dy

dt
= 1 +K1y −

1

2
σ2
1y

2, (2.3)

dz

dt
= 1 +K2z −

1

2
σ2
2z

2, (2.4)

x(T ) = x0, y(T ) = y0, z(T ) = z0. (2.5)

By the above, we have

y =
1

σ2
1

[
K1 + γ1 +

2γ1y
∗
0e

γ1(T−t)

1− y∗0eγ1(T−t)

]
.

z =
1

σ2
2

[
K2 + γ2 +

2γ2z
∗
0e

γ2(T−t)

1− z∗0eγ2(T−t)

]
.

where γj =
√
K2 + σ2, j = 1, 2.

Now,

x = δ0t−
K1θ1
σ2
1

[(K1 + γ1)t+ 2 ln |1− y∗0eγ1(T−t)|]

− K2θ2
σ2
2

[(K2 + γ2)t+ 2 ln |1− z∗0eγ2(T−t)|] + C

Therefore,

C = x0(T )− δ0T +
K1θ1
σ2
1

[(K1 + γ1)T + 2 ln |1− y∗0|]

+
K2θ2
σ2
2

[(K2 + γ2)T + 2 ln |1− z∗0 |]

11



Hence, we have

x = x0 − δ0(T − t)−
K1θ1
σ2
1

[
(K1 + γ1)(T − t) + 2 ln

∣∣∣∣1− y∗0eγ1(T−t)

1− y∗0

∣∣∣∣]
− K2θ2

σ2
2

[
(K2 + γ2)(T − t) + 2 ln

∣∣∣∣1− z∗0eγ1(T−t)

1− z∗0

∣∣∣∣] .
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Chapter 3

Introduction to Swaptions

3.1 Change of Numeraire - Forward Measures

The primary reference of this section is [2, Chapter 10, 26].

Assumptions:

• The market model consists of asset prices S0, ..., Sn, where S0 is assumed to be

strictly positive.

• Under the real-world measure, the S-dynamics are of the following form

dSi = Si(t)αi(t)dt+ Si(t)σi(t)dW̄ (t)

where αi, σi are adapted processes and W̄ is a standard Brownian motion.

Lemma 3.1.1. Let β be a strictly positive Ito’s process and let Z = S
β
. Then a portfolio

h is S-self-financing if and only if it is Z-self-financing,

i.e. dV S(t, h) = h(t) · dS(t) if and only if dV Z(t, h) = h(t) · dS(t)

where V S(t, h) = h(t) · S(t) and V Z(t, h) = h(t) · Z(t).

13



Proof.

dV Z(t, h) = d

[
V S(t, h)

β(t)

]
=
dV S(t, h)

β(t)
+ V S(t, h)d

(
1

β(t)

)
+ dV S(t, h) · d

(
1

β(t)

)
=
h(t)dS(t)

β(t)
+ h(t)S(t)d

(
1

β(t)

)
+ h(t)dS(t, h) · d

(
1

β(t)

)
= h(t)

[
dS(t)

β(t)
+ S(t)d

(
1

β(t)

)
+ dS(t, h) · d

(
1

β(t)

)]
= h(t)d

[
S(t, h)

β(t)

]
= h(t)dZ(t).

As a result, the model is S-arbitrage-free if and only if it is Z-arbitrage-free.

Now, let us recall the Fundamental Theorems of Asset Pricing:

Theorem 3.1.2. Under the assumption, the following hold:

(a) The market model is free of arbitrage if and only if there exists a probability measure

Q0 ∼ P such that (
S0(t)

S0(t)
,
S1(t)

S0(t)
, ... ,

S0(t)

Sn(t)

)
are Q0-martingales.

(b) If the market is arbitrage-free, then any sufficiently integrable T -claim must be priced

according to the formula

Π(t;X) = S0(t)EQ0

[
X

S0(t)

∣∣∣∣∣Ft

]

where EQ0 denotes expectation under Q0.

Let S0 and S1 be strictly positive assets in an arbitrage-free market. Then there exist

probability measures Q0 and Q1, such that for any choice of sufficiently integrable T -claim,

Π(0;X) = S0(0)EQ0

[
X

S0(T )

]
= S1(0)EQ1

[
X

S1(T )

]
.
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Denote by L1
0(T ) the Radon-Nikodym derivative

L1
0(T ) =

dQ1

dQ0
on FT .

Then, we have

Π(0;X) = S1(0)EQ0

[
X

S1(T )
· L1

0(T )

]
.

It follows that

S0(0)EQ0

[
X

S0(T )

]
= S1(0)EQ0

[
X

S1(T )
· L1

0(T )

]
.

Therefore,
S0(0)

S0(T )
=
S1(0)

S1(T )
· L1

0(T ).

As a result, we have

L1
0(T ) =

S0(0)

S1(0)

S1(T )

S0(T )
.

Proposition 3.1.3. Assume that Q0 is a martingale measure for the numeraire S0 (on

FT ) and assume that S1 is a positive asset price process, such that S1

S0
is a Q0-martingale.

Define Q1 on Ft by the likelihood process

L1
0(t) =

S0(0)

S1(0)

S1(t)

S0(t)
, 0 ≤ t ≤ T.

Then Q1 is a martingale measure for S1.

Proof. If Π is an arbitrage-free price process, then Π
S0

is also an arbitrage-free price

process. Hence,

EQ1

[
Π(t)

S1(t)

∣∣∣∣∣Fs

]
=

EQ0

[
Π(t)
S1(t)
· L1

0(t)
∣∣∣Fs

]
L1
0(s)

=
EQ0

[
Π(t)
S1(t)
· S0(0)
S1(0)

S1(t)
S0(t)

∣∣∣Fs

]
L1
0(s)

=

S0(0)
S1(0)

· EQ0

[
Π(t)
S0(t)

∣∣∣Fs

]
L1

0(s)

=

S0(0)
S1(0)

· Π(s)
S0(s)

L1
0(s)

=
Π(s)

S1(s)
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We are now ready to define the notion of forward measures.

Definition 3.1.4. Let (rt) be the short rate process. The money account process is

denoted by B(t) := e
∫ t
0 rsds. The risk-neutral measure Q is defined as the martingale

measure for the numeraire process B(t).

Definition 3.1.5. Suppose that we are given a bond market model with a fixed martingale

measure Q. Let P (t, T ) := EQ[e−
∫ T
t rsds] be the price process of a zero coupon bond issued

at time t and maturing at time T . For a fixed T , the T -forward measure QT is defined

as the martingale measure for the numeraire process P (t, T ).

Proposition 3.1.6. For any T -claim X, we have

Π(t;X) = EQ[e−
∫ T
t rsdsX|Ft]

where EQ denotes expectation under Q.

Proof. By the First Fundamental Theorem and the definition of Q, we have

Π(t;X)

B(t)
= EQ

[
X

B(T )

∣∣∣∣∣Ft

]
.

Proposition 3.1.7. For any T -claim X, we have

Π(t;X) = P (t, T )ET [X|Ft]

where ET denotes expectation under QT .

Proof. By the First Fundamental Theorem of Asset Pricing and the definition of QT , we

have

Π(t;X) = P (t, T )ET

[
X

P (T, T )

∣∣∣∣∣Ft

]
.

16



Lemma 3.1.8. Let Q be the risk-neutral measure. The short r is deterministic if and

only if Q = QT for any T > 0.

Proof. If Q = QT , then the Radon-Nikodym derivative

dQT

dQ
=
B(0)P (T, T )

B(T )P (0, T )
= 1.

It is easy to see that B(T ) = P (0, T )−1 is deterministic. Conversely, if r is deterministic,

then

P (t, T ) = EQ
[
e−

∫ T
t r(s)ds

]
= e−

∫ T
t r(s)ds =

B(t)

B(T )
.

Hence, it follows that dQT

dQ
≡ 1.

Let f(t, T ) := − ∂
∂T

lnP (t, T ) be the forward rate for the time interval [t, T ]. The

following result tells us that the forward measure is the measure that makes the present

forward rate an unbiased estimator of the future short rate.

Lemma 3.1.9. Assume that, for any T > 0, r(T )
B(T )

is integrable. Then for all fixed T ,

f(t, T ) is a QT -martingale, and we have

f(t, T ) = ET [r(T )|Ft].

Proof. Let X = r(T ). Note that

Π(t,X) = EQ
[
r(T )e−

∫ T
t r(s)ds

∣∣∣Ft

]
= P (t, T )ET [r(T )|Ft] .

It follows that

ET [r(T )|Ft] =
1

p(t, T )
EQ
[
r(T )e−

∫ T
t r(s)ds

∣∣∣Ft

]
= − 1

P (t, T )
EQ

[
∂

∂T
e−

∫ T
t r(s)ds

∣∣∣Ft

]
= − 1

P (t, T )

∂

∂T
EQ
[
e−

∫ T
t r(s)ds

∣∣∣Ft

]
= − 1

P (t, T )

∂

∂T
P (t, T )

= − ∂

∂T
lnP (t, T )

= f(t, T ).
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3.2 Interest rate swaps and swaptions

The interest rate swap is one of the simplest interest rate derivatives. This is basically a

scheme where we exchange a payment stream at a fixed interest rate, known as swap rate,

for a payment stream at a floating rate (LIBOR rate L(Ti−1, Ti)). Typically, an interest

rate swap is a forward swap settled in arrears, which will be defined clearly as follows:

Let N be the nominal principal and R be the swap rate. By assumption, we have

a number of equally spaced dates T0, T1, ..., Tn and payments occur at T1, ..., Tn. Let

δ = Ti − Ti−1, i = 1, 2, ..., n. At time Ti, the swap receiver (or, fixed rate receiver) will

receive

Nδ ·R (on the fixed rate leg)

and will pay

Nδ · L(Ti−1, Ti) (on the floating rate leg).

Hence, the net cash inflow is

Nδ · [R− L(Ti−1, Ti)].

Therefore, at time T , the no-arbitrage price of the T0 × (TN − T0) receiver’s swap is

the present value of the cash flow, which is given by

SV (t;T0, Tn) =N
n∑

i=1

[δR− δL(Ti−1, Ti)]× P (t, Ti)

=N [δR
n∑

i=1

P (t, Ti)−
n∑

i=1

δ ×
P (t, Ti−1) − P (t, Ti)

δP (t, Ti)
× P (t, Ti)]

=N [δR
n∑

i=1

P (t, Ti)−
n∑

i=1

[P (t, Ti−1) − P (t, Ti)]

=N [−P (t, T0) + δR
n∑

i=1

P (t, Ti) + P (t, Tn)].

We write SV (T0, Tn) = SV (T0;T0, Tn).
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By definition, the swap rate R is chosen, so that the value of the swap equals zero at

the time when the contract is made.

Proposition 3.2.1. The forward (par) swap rate R(t;T0, Tn) is given by

R(t;T0, Tn) =
P (t, T0)− P (t, Tn)
δ
∑n

i=1 P (t, Ti)
.

Definition 3.2.2. A T0×(TN−T0) receiver swaption with swaption strike K is a contract

which at the expiry date T0, gives the holder the right but not the obligation to enter into

a swap with the fixed swap rates K and payment dates T1, ..., TN . We will call T0 the

swaption expiry and TN − T0 the tenor of the swaption.

At time T0, the payoff of the swaption is given by ISV (T0,Tn)>0SV (T0, Tn). As a result,

the no-arbitrage price of the swaption SOV (t) at time t is given by

SOV (t;T0, Tn) = P (t, T0)ET0 [ISV (T0,Tn)>0SV (T0, Tn)|Ft]

where the expectation is taken under the T0-forward measure.

For more details, the reader is referred to [2, Chapter 27].

3.3 Implied Black’s Volatilities for Swaptions

This section is based on part of the material in [2, Chapter 27].

Definition 3.3.1. let S(t;T0, Tn) be the following process:

S(t;T0, Tn) =
n∑

i=1

δP (t, Ti).

It is referred to as the accrual factor.

The forward swap rate can be expressed by:

R(t;T0, Tn) =
P (t, T0)− P (t, Tn)

S(t;T0, Tn)
.
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Suppose that the swap rate is K and the nominal principal N is 1. The price of the

T0 × (TN − T0) receiver’s swap can be expressed by

SV (t;T0, Tn) = S(t;T0, Tn)[K −R(t;T0, Tn)].

Therefore, the swaption can be regarded as a put option onR(t;T0, Tn) with strike price

K when expressed in the numeraire S(t;T0, Tn). The market convention is to compute

swaption prices by using the Black-76 formula and to quote prices in terms of the implied

Black volatilities.

Definition 3.3.2. The Black-76 formula for a T0 × (TN − T0) receiver swaption with

swaption strike K is defined as

SOV (t;T0, Tn) = S(t;T0, Tn)[KN(−d2)−R(t;T0, Tn)N(−d1)],

where

d1 =
1

σ(T0, Tn)
√
T0 − t

[
ln(

R(t, T0, Tn)

K
) +

1

2
σ(T0, Tn)

2(T0 − t)
]
,

d2 = d1 − σ(T0, Tn)
√
T0 − t.

The constant σ(T0, Tn) is known as the Black’s volatility. Given a market price for the

swaption, the Black volatility implied by the Black formula is referred to as the implied

Black volatility.
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Chapter 4

Pricing swaptions using

Gram-Charlier expansions

4.1 Introduction to CIR2 model

The term structure as well as the prices of any interest rate derivatives are completely

determined by the short rate dynamics under the risk-neutral measure Q which is assumed

to be known. The procedure of specifying the Q-dynamics is called martingale modeling.

Definition 4.1.1. If the term structure {P (t, T ) : 0 ≤ t ≤ T, T > 0} has the form

P (t, T ) = F (t, r(t), T ),

where F has the form

F (t, r(t), T ) = eA(t,T )+B(t,T )·X(t),

and A and B are deterministic functions, then the model is said to possess an affine term

structure.

The typical assumption is that r under the Q-measure has dynamics given by

r(t) = δ0 + δX ·X(t)
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where δ0 is a constant, δX is a vector and X(t) satisfies the following system of SDE:

dX(t) = K(θ −X(t))dt+ ΣD(X(t))dW (t),

αi, βi ∈ R, θ ∈ Rn, K ∈Mn×n(R),

Σ ∈Mn×n(R) such that ΣΣT is positive definite,

and

D(x) = diag[
√
α1 + β1 · x, ...,

√
αn + βn · x], x ∈ Rn.

Proposition 4.1.2. The model of the form assumed above has an affine term structure.

There are many choices of short rate models. One of the most popular choices is

Cox-Ingersoll-Ross(1985) (CIR) model, namely

dr = a(b− r) + σ
√
rdW.

See [9] for more details. This model ensures mean reversion of the interest rate towards the

long run value b, with a speed of adjustment governed by the strictly positive parameter

a. One can show that r is always non-negative in this model. Also, r is strictly positive

whenever 2ab ≤ σ2.

In order to capture a more complicated shape of yield curves, it is suggested to use

two-factor CIR (CIR2) model (See [6, Chapter 4]). The short rate of this model is given

by

r(t) = X1(t) +X2(t) + δ0. (4.1)

where the Q-dynamics of X(t) = (X1(t), X2(t)) are given by the following SDEs:

dX1(t) = K1(θ1 −X1(t))dt+ σ1
√
X1(t)dW1(t);

dX2(t) = K2(θ1 −X2(t))dt+ σ2
√
X2(t)dW2(t)

and the initial conditions

X(0) = (X1(0), X2(0)) are given,

where W1 and W2 are two independent standard Q-Brownian motions.
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Lemma 4.1.3. Suppose that the discounted price of a derivative is a Q-martingale and

admits the affine structure, namely,

V (t, T ) = eA(t,T )+B(t,T )·X(t)

where A and B are deterministic. Then A and B satisfy the following system of ODEs:

∂A

∂t
= δ0 −B1K1θ1 −B2K2θ2, (4.2)

∂B1

∂t
= 1 +B1K1 −

1

2
B2

1σ
2
1, (4.3)

∂B2

∂t
= 1 +B2K2 −

1

2
B2

2σ
2
2, (4.4)

Proof. Assume an affine structure for V , namely

V (t, T ) = F (t,X1(t), X2(t)) = eA(t,T )+B1(t,T )X1(t,T )+B2(t,T )X2(t,T ).

Then

Ft = (At +B1,tX1 +B2,tX2)F, (4.5)

FX1 = B1F, (4.6)

FX2 = B2F, (4.7)

FX1X1 = B2
1F, (4.8)

FX1X2 = B1B2F, (4.9)

FX2X2 = B2
2F, (4.10)
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Let D(t) = e−
∫ T
t r(s)ds be the discount factor. Then we have

d(DF )

= −rDFdt+DdF

= −rDFdt+D[Ftdt+

FX1dX1 + FX2dX2 +
1

2
FX1X1dX1dX1 + FX1X2dX1dX2 +

1

2
FX2X2dX2dX2]

= D[−rFdt+ Ftdt+ FX1(K1(θ1 −X1)dt+ σ1
√
X1dW1)+

FX2(K2(θ2 −X2)dt+ σ1
√
X2dW2) +

1

2
FX1X1σ

2
1X1dt+

1

2
FX2X2σ

2
2X2dt]

= D{[−rF + Ft + FX1K1(θ1 −X1) + FX2K2(θ2 −X2)+

1

2
FX1X1σ

2
1X1 +

1

2
FX2X2σ

2
2X2]dt+ σ1

√
X1FX1dW1 + σ2

√
X2FX2dW2}

Since DF is a Q-martingale, the drift-term is equal to 0. Thus, we have

−rF + Ft + FX1K1(θ1 −X1) + FX2K2(θ2 −X2) +
1

2
FX1X1σ

2
1X1 +

1

2
FX2X2σ

2
2X2 = 0

Therefore,

−(X1 +X2 + δ0) + (At +B1,tX1 +B2,tX2) +B1K1(θ1 −X1)

+B2K2(θ2 −X2) +
1

2
B2

1σ
2
1X1 +

1

2
B2

2σ
2
2X2 = 0

It follows that

(−δ0 + At +B1K1θ1 +B2K2θ2) + (−1 +B1,t −B1K1 +
1

2
B2

1σ
2
1)X1

+(−1 +B2,t −B2K2 +
1

2
B2

2σ
2
2)X2 = 0. (4.11)

Since Equation (4.11) holds for any real numbers X1 and X2, we obtain the following

system:

∂A

∂t
= δ0 −B1K1θ1 −B2K2θ2, (4.12)

∂B1

∂t
= 1 +B1K1 −

1

2
B2

1σ
2
1, (4.13)

∂B2

∂t
= 1 +B2K2 −

1

2
B2

2σ
2
2, (4.14)
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Theorem 4.1.4. Assume that the short rate process r follows the CIR2 model given in

(4.1). The price at time t of a zero-coupon bond maturing at time T with unit face value

is given by

PCIR(t, T ) = eA(t,T )+B(t,T )·X(t)

where

γj =
√
K2

j + 2σ2
j , j = 1, 2

A(t, T ) = −δ0(T − t)−
2∑

j=1

Kjθj [
2

σ2
j

ln
(Kj + γj)(e

γj(T−t) − 1)

2γj
+

2

Kj − γj
(T − t)],

Bj(t, T ) =
−2(eγj(T−t) − 1)

(Kj + γj)(eγj(T−t) − 1) + 2γj
, j = 1, 2.

Proof. Consider an affine term structure, namely

PCIR(t, T ) = F (t,X1(t), X2(t)) = eA(t,T )+B1(t,T )X1(t,T )+B2(t,T )X2(t,T ).

Then we obtain the following system of ODEs by Lemma 4.1.3:

∂A

∂t
= δ0 −B1K1θ1 −B2K2θ2, (4.15)

∂B1

∂t
= 1 +B1K1 −

1

2
B2

1σ
2
1, (4.16)

∂B2

∂t
= 1 +B2K2 −

1

2
B2

2σ
2
2, (4.17)

A(T, T ) = B1(T, T ) = B2(T, T ) = 0 (4.18)

Note that this is a system of Riccati equation described in Section 1.2. Therefore, the

solution can be found easily by applying the solution given in Section 1.2.

The mth bond moment under the T0-forward measure with respect to the time points

{Ti1 , Ti2 , ..., Tim} is defined by

µT0(t, T0, {Ti1 , Ti2 , ..., Tim}) := ET0

[
m∏
k=1

P (T0, Tik)
∣∣∣Ft

]
.

This is the key to the pricing formula given in next section.
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The formula given below can be found in [8] and [12]. We provide a detailed proof of

it.

Theorem 4.1.5. The bond moments under the T0-forward measure are given by the fol-

lowing formulae:

µT0(t, T0, {Ti1 , Ti2 , ..., Tim}) =
eM(t)+N(t)·X(t)

P (t, T0)
.

where

M(t) = F0−δ0τ−
n∑

j=1

Kjθj

[
2

σ2
j

ln
(Kj + γj − σ2

jFj)(e
γjτ − 1) + 2γj

2γj
+

(Kj + γj)Fj + 2

Kj − γj − σ2
jFj

τ

]
,

Nj(t) =
−[(Kj − γj)Fj + 2](eγjτ − 1) + 2γjFj

(Kj + γj − σ2
jFj)(eγjτ − 1) + 2γj

,

γj =
√
K2

j + 2σ2
j , τ = T0 − t, F0 =

∑m
i=1A(T0, Ti) + A(T0, T ), Fj =

∑m
i=1Bj(T0, Ti) +

Bj(T0, T ) and the formulas of A and Bj’s are given in Theorem 4.1.4, j = 1, 2.

Proof. Since

P (T0, Tik) = eA(T0,Tik
)+B(T0,Tik

)·X(T0),

we have
m∏
k=1

P (T0, Tik) = eF0(t,T0,{Ti1
,Ti2

,...,Tim})+F (t,T0,{Ti1
,Ti2

,...,Tim})·X(T0)

with

F0 := F0(t, T0, {Ti1 , Ti2 , ..., Tim}) =
m∑
k=1

A(T0, Tik)

and

F := F (t, T0, {Ti1 , Ti2 , ..., Tim}) =
m∑
k=1

B(T0, Tik).

By the definition of the forward measure, we have

ET0 [eF0+F ·X(T0)|Ft] =
1

P (t, T0)
E[e−

∫ T0
t rsdseF0+F ·X(T0)|Ft].

Let F = F (t,X) be the solution of
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∂F
∂t
(t,X) +

∑n
i=1 µi(t,X) ∂F

∂xi
(t,X) + 1

2

∑n
i,j=1Cij(t,X) ∂2F

∂xi∂xj
(t,X)− rF (t,X) = 0,

F (T0, X(T0)) = Φ(X(T0)).

Assume that F has the form F (t,X) = eM(t)+N(t)·X(t). Then it is easy to see that

M(T0) =
m∑
i=1

A(T0, Tim), N(T0) =
m∑
i=1

B(T0, Tim).

Furthermore, the above PDE implies that

−(X1 +X2 + δ0) + (Mt +N1,tX1 +N2,tX2)

+N1K1(θ1 −X1) +N2K2(θ2 −X2) +
1

2
N2

1σ
2
1X1 +

1

2
N2

2σ
2
2X2 = 0.

It follows that

(−δ0 +Mt +N1K1θ1 +N2K2θ2)+

(−1 +N1,t −N1K1 +
1

2
N2

1σ
2
1)X1 + (−1 +N2,t −N2K2 +

1

2
N2

2σ
2
2)X2 = 0.

Since the above equation holds for any real number X1 and X2, we obtain the following

system:

∂M

∂t
= δ0 −N1K1θ1 −N2K2θ2, (4.19)

∂N1

∂t
= 1 +N1K1 −

1

2
N2

1σ
2
1, (4.20)

∂N2

∂t
= 1 +N2K2 −

1

2
N2

2σ
2
2, (4.21)

M(T0) = F0 , N1(T0) = F1 and N2(T0) = F2. (4.22)

Note that this is a system of Riccati equation described in Section 1.2. Therefore, the

solution can be found easily by applying the solution given in Section 1.2.

4.2 Pricing Swaptions under CIR2 model

The primary reference of this section is [12].
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Consider a swaption with the expiry T0 and the fixed rate K during a period [T0, TN ].

Note that the price of the underlying swap is given by

SV (t) =
N∑
i=0

aiP (t, Ti)

where

a0 = −1 ; ai =
P (t, T0)− P (t, TN)∑N

i=1 P (t, TN)
(i = 1, ..., N − 1) and aN = 1 +

P (t, T0)− P (t, TN)∑N
i=1 P (t, TN)

.

The mth swap moment under the T0-forward measure conditioned on Ft is given by

Mm(t) = ET0

[(
N∑
i=0

aiP (t, Ti)

)m ∣∣∣Ft

]

Note that [
N∑
i=0

aiP (t, Ti)

]m
=

∑
0≤i1,...,im≤N

ai1 ...aim

[
m∏
k=1

P (T0, Tik)

]
.

So,

Mm(t) =
∑

0≤i1,...,im≤N

ai1 ...aimET0

[
m∏
k=1

P (T0, Tik)
∣∣∣Ft

]
.

Remark 4.2.1. Observe that

Mm(t) =
∑

0≤k0,...kM≤N,
k0+...+kN=m,

ak00 ...a
kN
N ET0

[
N∏
j=0

P (T0, Tj)
kj

∣∣∣Ft

]
.

By simple combinatorics, we have

Mm(t) =
∑

0≤k0≤...≤kN≤N,
k0+...+kN=m,

m!

k0!k1!...kN !
ak00 ...a

kN
N ET0

[
N∏
j=0

P (T0, Tj)
kj

∣∣∣Ft

]
.

Therefore, the algorithm for generating the following collection of sets

{{k0, k1, ..., kN} : 0 ≤ k0, k1, ..., kN ≤ N, k0 + k1 + ...+ kN =M}

is crucial in the implementation of our formulas.
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Since the bond moments ET0 [
∏m

k=1 P (T0, Tik)|Ft] have closed form formulas (see The-

orem 4.1.5), we are able to obtain a closed form formula for the swaptions. To sum up,

we have the following theorems.

Theorem 4.2.2. Suppose that the risk-netural dynamics of short rates follow a CIR2

model,

i.e. r(t) = X1(t) +X2(t) + δ0.

where the Q-dynamics of X(t) = (X1(t), X2(t)) are given by the following SDEs:

dXi(t) = Ki(θi −Xi(t))dt+ σi
√
Xi(t)dWi(t) , i = 1, 2.

Let cn(t) be the nth cumulant of the swap price SV (t). It can be calculated by the swap

moments {M1(t), ...,Mn(t)} and Cn(t) = cn(t)P (t, T0)
n for n ≥ 1. Let q0 = 1, q1 = q2 = 0

and

qn =

[n
3
]∑

m=1

∑
k1,...km≥3,

k1+...+km=n,

Ck1 ...Ckm

m!k1!...km!
√
C2

n , n ≥ 3.

The risk neutral price of the T0 × (TN − T0)-receiver swaption SOV (t;T0, Tn) is given by

SOV (t;T0, Tn) = C1N

(
C1√
C2

)
+
√
C2ϕ

(
C1√
C2

)[
1 +

∞∑
k=3

(−1)kqkHk−1

(
C1√
C2

)]
.

4.3 Numerical results

In this section, we provide numerical results of the method of pricing swaptions discussed

in the last section. We consider the following parameters in the CIR2 model:
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Figure 4.1: Comparison of swaption prices (Tenor = 1)

Paramters V alues

S0 1

δ0 0.02

κ1 0.2

κ2 0.2

θ1 0.03

θ2 0.01

σ1 0.04

σ2 0.02

X1(0) 0.04

X2(0) 0.02

We take N = 5, 00, 000 scenarios and 12 time steps per year for the Monte Carlo

simulation of swaption prices. We approximate the price of the call option using only first

N terms in the Gram-Charlier expansions and denote them by GC(N).

The numerical results are summarized in Figure 3.1 - 3.12.
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Figure 4.2: Comparison of swaption prices (Tenor = 3)
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Figure 4.3: Comparison of swaption prices (Tenor = 5)
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Figure 4.4: Comparison of swaption prices (Tenor = 10)
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Figure 4.5: Pricing Errors of swaption prices (Tenor = 1)
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Figure 4.6: Pricing Errors of swaption prices (Tenor = 3)
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Figure 4.7: Pricing Errors of swaption prices (Tenor = 5)
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Figure 4.8: Pricing Errors of swaption prices (Tenor = 10)
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Figure 4.9: Percentage Errors of swaption prices (Tenor = 1)
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Figure 4.10: Percentage Errors of swaption prices (Tenor = 3)
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Figure 4.11: Percentage Errors of swaption prices (Tenor = 5)
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Figure 4.12: Percentage Errors of swaption prices (Tenor = 10)

In Figure 3.1 - 3.12, we see that the GC3 is generally more accurate than GC6. GC6

is slightly more accurate in the short tenor swaptions, but significantly less accurate for

long tenor swaptions.

In order to confirm that the result given above is not an artifact, we test another set

of parameters:
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Figure 4.13: Comparison of swaption prices (Tenor = 1)

Paramters V alues

S0 1

δ0 −0.02

κ1 0.05

κ2 0.5

θ1 0.085

θ2 0.01

σ1 0.08

σ2 0.05

X1(0) 0.01

X2(0) 0.01
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Figure 4.14: Comparison of swaption prices (Tenor = 3)
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Figure 4.15: Comparison of swaption prices (Tenor = 5)
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Figure 4.16: Comparison of swaption prices (Tenor = 10)
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Figure 4.17: Pricing Errors of swaption prices (Tenor = 1)
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Figure 4.18: Pricing Errors of swaption prices (Tenor = 3)
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Figure 4.19: Pricing Errors of swaption prices (Tenor = 5)
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Figure 4.20: Pricing Errors of swaption prices (Tenor = 10)
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Figure 4.21: Percentage Errors of swaption prices (Tenor = 1)
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Figure 4.22: Percentage Errors of swaption prices (Tenor = 3)
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Figure 4.23: Percentage Errors of swaption prices (Tenor = 5)
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Figure 4.24: Percentage Errors of swaption prices (Tenor = 10)

In Figure 3.13 - 3.24, we again find that the GC3 is generally more accurate than GC6.

Adding finitely finite many terms in the Gram-Charlier does not necessarily increase the

accuracy of the approximation. This is due to the fact that Gram-Charlier expansions is

just an orthogonal series in L2(µ) where is µ is the Gaussian measure on R. Also, it is

impossible to estimate the error.

4.4 Pricing Swaptions under CIR2++ model

In this section, we will discuss how to use Gram-Charlier expansions to calculate swaption

prices under the CIR2++ model.

Consider a two-factor CIR model:

dX1(t) = K1(θ1 −X1(t))dt+ σ1
√
X1(t)dW1(t);

dX2(t) = K2(θ1 −X2(t))dt+ σ2
√
X2(t)dW2(t) (4.23)

with the initial conditions X(0) = (X1(0), X2(0)) and two independent Q-Brownian mo-

tions W1, W2 .
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In the CIR2++ model (see [5]), the short rate is given by

r(t) = X1(t) +X2(t) + ψ(t).

where ψ(t) is chosen so as to fit the initial zero-coupon curve.

Let fj be the the instantaneous forward rate given by the jth SDE in (4.23), j = 1, 2,

and fM be the market instantaneous forward rate. Then

ψ(t) = fM(0, t)− f1(0, t)− f2(0, t).

We define the following:

Φ(u, v) =
PM(0, v)

PM(0, u)

PCIR(0, u)

PCIR(0, v)

where PM is the market discount factor.

The price at time t of a zero-coupon bond maturing at time T and with unit face value

is given by

P̄ (t, T ) = Φ(t, T )PCIR(t, T )

where

PCIR(t, T ) = eA(t,T )+B(t,T )·X(t)

γj =
√
K2

j + 2σ2
j , j = 1, 2

A(t, T ) = −
2∑

j=1

Kjθj [
2

σ2
j

ln
(Kj + γj)(e

γj(T−t) − 1)

2γj
+

2

Kj − γj
(T − t)];

Bj(t, T ) =
−2(eγj(T−t) − 1)

(Kj + γj)(eγj(T−t) − 1) + 2γj
, j = 1, 2

So, we may write

P̄ (t, T ) =
PM(0, T )

PM(0, t)

[
PCIR(0, t)

PCIR(0, T )
PCIR(t, T )

]
.
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It is obvious to see that

P̄ (0, T ) =
PM(0, T )

PM(0, t)

[
PCIR(0, t)

PCIR(0, T )
PCIR(t, T )

]
= PM(0, T ).

Therefore, the discount factors derived from the model match the initial term structure.

Consider a swaption with the expiry T0 and the fixed rate K during a period [T0, TN ].

Note that the price of the underlying swap is given by

SV (t) =
N∑
i=0

aiP̄ (t, Ti)

where

a0 = −1 ; ai =
P̄ (t, T0)− P̄ (t, TN)∑N

i=1 P̄ (t, TN)
(i = 1, ..., N − 1) and aN = 1 +

P̄ (t, T0)− P̄ (t, TN)∑N
i=1 P̄ (t, TN)

.

In particular, at time t = 0, the swap price is given by

SV (0) =
N∑
i=0

aiP̄ (0, Ti) =
N∑
i=0

aiP
M(0, Ti)

where

a0 = −1 ;

ai =
PM(0, T0)− PM(0, TN)∑N

i=1 P
M(0, TN)

(i = 1, ..., N − 1) and aN = 1 +
PM(0, T0)− PM(0, TN)∑N

i=1 P
M(0, TN)

.

The mth swap moment under the T0-forward measure conditioned on Ft is given by

M∗
m(t) = ET0 [{

N∑
i=0

aiP̄ (t, Ti)}m|Ft]

Note that [
N∑
i=0

aiP̄ (t, Ti)

]m
=

∑
0≤i1,...,im≤N

ai1 ...aim

[
m∏
k=1

P̄ (T0, Tik)

]
.

So,

M∗
m(t) =

∑
0≤i1,...,im≤N

ai1 ...aimET0

[
m∏
k=1

P̄ (T0, Tik)
∣∣∣Ft

]
.

We have to calculate the bond moment under the T0-forward measure, which is defined

by

µT0(t, T0, {Ti1 , Ti2 , ..., Tim}) := ET0

[
m∏
k=1

P̄ (T0, Tik)
∣∣∣Ft

]
.
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Observe that

P̄ (T0, Tik) =
PM(0, Tik)

PM(0, T0)

[
PCIR(0, T0)

PCIR(0, Tik)
PCIR(T0, Tik)

]
.

We have

M∗
m(t) =

∑
0≤i1,...,im≤N

ai1 ...aimET0

[
m∏
k=1

PM(0, Tik)

PM(0, T0)

[
PCIR(0, T0)

PCIR(0, Tik)
PCIR(T0, Tik)

] ∣∣∣∣∣Ft

]

=

(
PCIR(0, T0)

PM(0, T0)

)m ∑
0≤i1,...,im≤N

ai1 ...aim

m∏
k=1

PM(0, Tik)

PCIR(0, Tik)
ET0

[
m∏
k=1

PCIR(T0, Tik)
∣∣∣Ft

]

=

(
PCIR(0, T0)

PM(0, T0)

)m ∑
0≤i1,...,im≤N

a∗i1 ...a
∗
imE

T0

[
m∏
k=1

PCIR(T0, Tik)
∣∣∣Ft

]
,

where a∗ik = aik
PM (0,Tik

)

PCIR(0,Tik
)
.

Therefore, we have a closed form formula for the swaption prices under the CIR2++

model.

Theorem 4.4.1. Suppose that the risk-netural dynamics of short rates follow the CIR2++

model.

r(t) = X1(t) +X2(t) + ψ(t).

where the Q-dynamics of X(t) = (X1(t), X2(t)) are given by the system of SDEs given in

(4.23) and ψ(t) is chosen so as to fit the initial zero-coupon curve.

Let c∗n(t) be the swap cumulants which can be calculated by the swap moments {M∗
1 (t),

...,M∗
n(t)} and C∗

n(t) = c∗n(t)P (t, T0)
n for n ≥ 1. Put q0 = 1, q1 = q2 = 0 and

qn =

[n
3
]∑

m=1

∑
k1,...km≥3,

k1+...+km=n,

C∗
k1
...C∗

km

m!k1!...km!
√
C∗

2

n , n ≥ 3.

The risk neutral price of the T0 × (TN − T0)-receiver swaption SOV (t;T0, Tn) is given by

SOV (t;T0, Tn) = C∗
1N

(
C∗

1√
C∗

2

)
+
√
C∗

2ϕ

(
C∗

1√
C∗

2

)[
1 +

∞∑
k=3

(−1)kqkHk−1

(
C∗

1√
C∗

2

)]
.
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Chapter 5

Applications of Gram-Charlier

expansions in General Models

In Theorem 2.1.2, we introduced a procedure to calculate the survival function (hence,

the distribution function) and the truncated first moment of a random variable when its

cumulants (or moments) are known. Theoretically speaking, we are able to calculate the

prices of European-type derivatives of any diffusion process if we are able to calculate its

moments. In this chapter, we shall discuss the general procedure with worked examples

in details.

5.1 A Toy Example: Black-Scholes Model

In this section, we will show how to use Gram-Charlier expansions to calculate the price of

an European call option under an ordinary Black-Scholes (1973) model [3]. Since we have

a closed form formula for the option prices, this method has limited real-time application.

However, the closed from formula gives a benchmark for our approximation method.

Assume that the price process (Q-dynamics) of an asset follows a geometric Brownian

motion in the Black-Scholes Model,

i.e. dSt = St(rdt+ σdWt).
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The solution of the SDE is given by:

ST = S0 exp

(
(r − σ2

2
)T + σWT )

)
.

Now, St follows a log-normal distribution. We may obtain the moments, and hence

cumulants, of St easily. In fact, we have

Mn(t) := EQ[Sn
T |S0] = Sn

0 exp

((
r − σ2

2

)
nT +

n2σ2T

2

)
for n ≥ 1.

Moreover, we may decompose the call option price as follows:

e−rtEQ[(ST −K)+] = e−rtEQ[ST I(ST > K)]− e−rtEQ[KI(ST > K))]

= e−rtEQ[ST I(ST > K)]− e−rtK[Q(ST > K))].

By using theorem 2.1.2, we are ready to give a series expansion of the option price:

Proposition 5.1.1. Suppose that the risk-netural dynamics of the stock price follow the

Black-Scholes Model:

dSt = St(rdt+ σdWt)

with initial condition S0 = s0. Suppose that we have a European call option with strike

K. Let cn be the nth-cumulant of St. Let q0 = 1, q1 = q2 = 0 and

qn =

[n
3
]∑

m=1

∑
k1,...km≥3,

k1+...+km=n,

ck1 ...ckm
m!k1!...km!

√
c2

n , n ≥ 3.

Then the price of the call option price is equal to the following infinite sum:

e−rt√c2ϕ
(
c1 −K√

c2

)
+ e−rtc1N

(
c1 −K√

c2

)
+ e−rt

∞∑
n=3

(−1)n−1qnϕ

(
c1 −K√

c2

) [
KHn−1

(
c1 −K√

c2

)
−
√
C2Hn−2

(
c1 −K√

c2

)]

− e−rtK

[
N

(
c1 − a√

c2

)
+

∞∑
k=3

(−1)k−1qkHk−1

(
c1 − a√

c2

)
ϕ

(
c1 − a√

c2

)]
.
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Figure 5.1: Black-Scholes Call Option Prices (T = 1)

In the rest of this section, we will present the result of a test on our Gram-Charlier

approach. Below is a list of parameters we use for the model.

Paramters V alues

S0 100

K {80, 80.1, ..., 119.9, 120.0}

σ 0.03

T 1 or 2

r 0.05

We use 7 terms in the Gram-Charlier expansion. The results are given in Figure 4.1 to

Figure 4.6.
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Figure 5.2: Black-Scholes Call Option Prices (T = 1)
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Figure 5.3: Black-Scholes Call Option Prices (T = 1)
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Figure 5.4: Black-Scholes Call Option Prices (T = 2)
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Figure 5.5: Black-Scholes Call Option Prices (T = 2)
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Figure 5.6: Black-Scholes Call Option Prices (T = 2)

We see from Figures 4.2, 4.3, 4.5 and 4.6 that the (relative) errors are generally very

small. The errors for out-of-money options are relatively small. Also, it is more accurate

if the time-to-expiry is longer.
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5.2 Application to a Simplified Version of Brennan

and Schwarz’s Model

The Brennan and Schwarz (1983) model (See [4]) is a two-factor model of interest rates

which is given by the following:drt = (a1 + b1(lt − rt))dt+ σ1rtdW
1
t

dlt = lt(a2 − b2rt + c2lt)dt+ σ2ltdW
2
t

(5.1)

where ai’s and bi’s are constants.

To make the demonstration easier, we assume that lt is a constant process and rewrite

the process of rt as follows:

drt = κ(θ − rt)dt+ σrtdWt (5.2)

The first step of our approximation process is to calculate the moments of rt. We first

apply the Itô’s Lemma to the process (rnt ):

drnt = nrn−1
t drt +

n(n− 1)

2
rn−2
t (drt)

2

= nrn−1
t [κ(θ − rt)dt+ σrtdWt] +

n(n− 1)

2
rn−2
t σ2r2t dt

= [nκθrn−1
t − nκrnt ]dt+

n(n− 1)

2
rnt σ

2dt+ σrtdWt.

In the integral form, we have

rnt − rn0 = nκθ

∫ t

0

rn−1
s ds+ [

(n− 1)σ2

2
− κ]

∫ t

0

nrns ds+ σ

∫ t

0

rsdWs.

Assume that the parameters in (5.2) are nice enough such that rt is square-integrable.

The last term becomes a martingale. Let Fn(t) = E[rnt ]. By Fubini’s theorem, we have

Fn(t) = rn0 + nκθ

∫ t

0

Fn−1(s)ds+ [
(n− 1)σ2

2
− κ]

∫ t

0

nFn(s)ds.
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In other words, Fn(t) can be solved recursively by the following system of ODEs:

F ′
n(t) = nκθFn−1(t) + [

(n− 1)σ2

2
− κ]Fn(t) ; Fn(0) = rn0 for n ≥ 1.

Note that the ODEs in the system are linear. We may solve the system recursively by

using integration factors. However, due to the complexity of the calculation for large n,

a symbolic calculation software, called Mathematica, was used for test purpose.

In the rest of this section, we will present the result of a test on our Gram-Charlier

approach. Below is a list of parameters we use for the model.

Paramters V alues

r0 0.06

r {0.001, 0.002, ...0.1}

T 5

κ 0.2

θ 0.05

σ 0.115

We approximate the distribution of rt by using Theorem 2.1.2. The moments of rt are

calculated by solving the system of ODEs discussed above with Mathematica. We use 7

terms in the Gram-Charler expansion. The results are given in Figures 4.7 and 4.8.

We see that the approximation provides a fairly good fit to the model. The error is in

the middle region is relatively higher, and up to 0.02. This error is acceptable for a risk

management purpose.
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Figure 5.7: Comparison of Distribution Functions
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Chapter 6

Pricing Call Options under Heston’s

Model using Gram-Charlier

Expansions

6.1 Introduction to Heston’s Model of Stochastic Volatil-

ity

We assume that the risk-neutral dynamics of the stock price follows the Heston Model

(1993) (See [10]) which is given by the following system of SDEs:dSt = St(rdt+
√
VtdW

1
t )

dVt = κ(θ − Vt)dt+ σ
√
VtdW

2
t

(6.1)

with initial conditions S0 = s0 and V0 = v0 ≥ 0 where κ, θ, σ > 0 and dW 1
t dW

2
t = ρdt,

ρ ∈ [−1, 1].

Let Xt = lnSt − rt be the logarithm of the discount stock price. By Itô’s lemma, we

have

dXt = −rdt+
dSt

St

− 1

2S2
t

(dSt · dSt) = −
1

2
Vtdt+

√
VtdW

1
t ,

with initial condition X0 = x0 = lnS0.
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Thus, we may transform the system (6.1) into the following system:dXt = −1
2
Vtdt+

√
VtdW

1
t

dVt = κ(θ − Vt)dt+ σ
√
VtdW

2
t

(6.2)

with initial conditions X0 = x0 and V0 = v0 ≥ 0.

One can show that the moment generating function of Xt (See [11]) is given by

Mt(u) = E[euXt ] = ex0u

(
e(κ−σρt)/2

cosh(P (u)t/2) + (κ− σρu) sinh(P (u)t/2)/P (u)

)2κθ/σ2

· exp
(
−v0

(u− u2) sinh(P (u)t/2)/P (u)
cosh(P (u)t/2) + (κ− σρu) sinh(P (u)t/2)/P (u)

)
(6.3)

where

P (u) =
√
(κ− ρcu)2 + c2(u− u2).

Hence, the cumulants of Xt can be calculated by

cn =
dn

dun
[lnMt(u)]

∣∣∣∣
u=0

for n = 1, 2, ...

In practice, higher derivatives in the expression can be calculated reasonably fast by

using any symbolic calculation software.

6.2 Calculating Truncated Moment Generating Func-

tion using Gram-Charlier Expansions

Proposition 6.2.1. Let Y be a random variable with a continuous density function f(x)

and finite cumulants (ck)k∈N. Let q0 = 1, q1 = q2 = 0 and

qn =

[n
3
]∑

m=1

∑
k1,...km≥3,

k1+...+km=n,

ck1 ...ckm
m!k1!...km!

√
c2

n , n ≥ 3.

Suppose that eaY is integrable where a ∈ R. Then the following hold:
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(a) The moment generating function of Y truncated below is given by

E[eaxI(Y ≤ K)] = eaC1

∞∑
n=0

qnIn

(
K − C1√

C2

, a
√
C2

)
, (6.4)

where In = In(x, a) satisfies the following recurrence:

I0(x, a) = e
b2

2 N(x− a) ; In(x, b) = aIn−1(x, a)−Hn−1(x)ϕ(x)e
ax.

(b) The moment generating function of Y truncated above is given by

E[eaxI(Y ≥ K)] = eaC1

∞∑
n=0

qnJn

(
K − C1√

C2

, a
√
C2

)
, (6.5)

where Jn = Jn(x, a) satisfies the following recurrence:

J0(x, a) = e
b2

2 N(a− x) ; Jn(x, a) = aJn−1(x, a) +Hn−1(x)ϕ(x)e
ax.

Proof. We first prove part (a). Recall that

f(x) =
∞∑
n=0

qn√
c2
Hn

(
x− c1√

c2

)
ϕ

(
x− c1√

c2

)
.

We have

E[eaxI(Y ≤ K)] =

∫ K

−∞
eax

∞∑
n=0

qn√
c2
Hn

(
x− c1√

c2

)
ϕ

(
x− c1√

c2

)
dx

=
∞∑
n=0

qn√
c2

∫ K

−∞
eaxHn

(
x− c1√

c2

)
ϕ

(
x− c1√

c2

)
dx

=
∞∑
n=0

qn√
c2

∫ K−C1√
C2

−∞
Hn(y)ϕ(y)e

a
√
C2y+aC1

√
C2dy

=
∞∑
n=0

qne
aC1

∫ K−C1√
C2

−∞
Hn(y)ϕ(y)e

a
√
C2ydy.

Let In(x, a) :=
∫ x

∞Hn(y)ϕ(y)e
aydy and write In := In(x, a) for convenience. When
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n = 0, we have

I0 =

∫ x

−∞
H0(y)ϕ(y)e

aydy

=

∫ x

−∞
ϕ(y)eaydy

=
1√
2π

∫ x

−∞
e−

y2

2 eaydy

=
e

a2

2

√
2π

∫ x

−∞
e−

(y−a)2

2 dy

= e
a2

2 N(x− a).

Note that

D[(Dn−1ϕ(x))eax] = [Dnϕ(x)]eax + aeax[Dn−1ϕ(x)].

We have

D[(−1)n−1Hn−1(x)ϕ(x)e
ax] = (−1)nHn(x)ϕ(x)e

ax + (−1)n−1aHn−1(x)ϕ(x)e
ax.

It follows that

Hn−1(x)ϕ(x)e
ax = −

∫ x

−∞
Hn(y)ϕ(y)e

aydy + a

∫ x

−∞
Hn−1(y)ϕ(y)e

aydy.

Hence,

In = aIn−1 −Hn−1(x)ϕ(x)e
ax.

Therefore, the proof of (a) is completed.
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For the proof of part (b), we have

E[eaxI(Y ≥ K)] =

∫ ∞

K

eax
∞∑
n=0

qn√
c2
Hn

(
x− c1√

c2

)
ϕ

(
x− c1√

c2

)
dx

=
∞∑
n=0

qn√
c2

∫ ∞

K

eaxHn

(
x− c1√

c2

)
ϕ

(
x− c1√

c2

)
dx

=
∞∑
n=0

qn√
c2

∫ ∞

K−C1√
C2

Hn(y)ϕ(y)e
a
√
C2y+aC1

√
C2dy

=
∞∑
n=0

qne
aC1

∫ ∞

K−C1√
C2

Hn(y)ϕ(y)e
a
√
C2ydy

Let Jn(x, a) :=
∫∞
x
Hn(y)ϕ(y)e

aydy and write Jn := Jn(x, a) for convenience. When

n = 0, we have

J0 =

∫ ∞

x

H0(y)ϕ(y)e
aydy

=

∫ ∞

x

ϕ(y)eaydy

=
1√
2π

∫ ∞

x

e−
y2

2 eaydy

=
e

a2

2

√
2π

∫ ∞

x

e−
(y−a)2

2 dy

= e
a2

2 N(a− x).

Note that

D[(Dn−1ϕ(x))eax] = [Dnϕ(x)]eax + aeax[Dn−1ϕ(x)].

We have

D[(−1)n−1Hn−1(x)ϕ(x)e
ax] = (−1)nHn(x)ϕ(x)e

ax + (−1)n−1aHn−1(x)ϕ(x)e
ax.

It follows that

−Hn−1(x)ϕ(x)e
ax = −

∫ ∞

x

Hn(y)ϕ(y)e
aydy + a

∫ ∞

x

Hn−1(y)ϕ(y)e
aydy.
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Hence,

Jn = aJn−1 +Hn−1(x)ϕ(x)e
ax.

Therefore, the proof of (b) is completed.

6.3 Pricing Call Options under Heston’s model

Let Xt = lnSt− rt be the logarithm of the discounted stock price. We have eXt = e−rtSt.

The price of a European call option with strike K is given by

C = E[e−rt(St −K)+] = E[(eXt − e−rtK)+].

Put k = lnK − rt. We may rewrite the price as

C = E[(eXt − ek)+].

Hence, the price of the call option can be calculated by the following formula:

C = E[eXtI(Xt > k)]− ekE[I(Xt > k)].

The first term in the expression on right-hand-side is just a truncated moment gen-

erating function which can be calculated via equation (6.5) and the second term can be

calculated by the formula given in Theorem 2.1.2. Therefore, we are able to calculate the

price of any European call option whenever the moments (or cumulants) of the log-prices

have analytical formulas.

To sum up, we have the following formula:

Theorem 6.3.1. Suppose that the risk-neutral dynamics of the stock price follow Heston’s

model. dSt = St(rdt+
√
VtdW

1
t )

dVt = κ(θ − Vt)dt+ σ
√
VtdW

2
t

(6.6)

with initial conditions S0 = s0 and V0 = v0 ≥ 0 where κ, θ, σ > 0 and dW 1
t dW

2
t = ρdt,

ρ ∈ [−1, 1]. Suppose that we have a European call option with strike K. Let Xt = lnSt−rt,
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k = lnK − rt and cn be the nth-cumulant of Xt. Let q0 = 1, q1 = q2 = 0 and

qn =

[n
3
]∑

m=1

∑
k1,...km≥3,

k1+...+km=n,

ck1 ...ckm
m!k1!...km!

√
c2

n , n ≥ 3.

Then the price of the call option price is equal to the following infinite sum:

ec1
∞∑
n=0

qnJn

(
k − c1√

c2
,
√
c2

)
−ek

[
N

(
c1 − k√

c2

)
+

∞∑
n=3

(−1)n−1qnHn−1

(
c1 − k√

c2

)
ϕ

(
c1 − k√

c2

)]

where Jn = Jn(x, a) satisfies the following recurrence:

J0(x, a) = e
b2

2 N(a− x) ; Jn(x, a) = aJn−1(x, a) +Hn−1(x)ϕ(x)e
ax.

6.4 A Monte Carlo Simulation Method for Heston’s

Model

In order to investigate the accuracy of our result, we calculate the options prices based

on Monte Carlo method. In the second equation of the Heston system, it is a CIR-type

mean-reverting process. Thus, it is tempting to use the exact simulation method as the

distribution of Vt is known as a non-central chi-square distribution. However, it is hard

to include the correlation of the Brownian motions as Cholesky decomposition does not

work in this case.

Inspired by Alfonsi’s result [1], we use the implicit scheme for (
√
Vt) and and exact

simulation for (St). To make it clear, we first obtain the SDE for (
√
Vt) by Itô’s lemma:

d
√
Vt =

κθ − σ2/4

2
√
Vt

dt− κ

2

√
Vtdt+

σ

2
dW 2

t .

Let the time grid be {t0, ..., tn} where t0 = 0, tn = T and ti =
iT
n
for i = 1, ..n. We obtain

the following equation by impliciting the drift term:

√
Vti+1

−
√
Vti =

(
κθ − σ2/4

2
√
Vti+1

− κ

2

√
Vti+1

)
T

n
+
σ

2
(Wti+1

−Wti).
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After simplification, we obtain a quadratic equation in
√
Vti+1

,(
1 +

κT

2n

)
(
√
Vti+1

)2 −
[σ
2
(Wti+1

−Wti) +
√
Vi

]√
Vti+1

−
(
κθ − σ/4

2

)
T

n
= 0,

which has only one positive root when σ2 < 4κθ, namely:

Vti+1
=

 σ
2
(Wti+1

−Wti) +
√
Vti +

√
(σ
2
(Wti+1

−Wti) +
√
Vti)

2 + 4(1 + κT
2n
)(κθ−σ2/4

2
)T
n

2(1 + κT
2n
)

2

.

Since 1
(1+x)2

≈ 1− 2x for small x, we have

Vti+1
≈ 1

4

(
1− kT

n

){
2
(σ
2
(Wti+1

−Wti) +
√
Vti

)2
+ 4

(
1 +

κT

2n

)(
κθ − σ2/4

2

)
T

n
+

2
(σ
2
(Wti+1

−Wti) +
√
Vti

)√(σ
2
(Wti+1

−Wti) +
√
Vti

)2
+ 4

(
1 +

κT

2n

)(
κθ − σ2/4

2

)}
.

Moreover, note that for small x, y > 0, we have

x
√
x2 + y = x2

√
1 +

y

x2
≈ x2(1 +

y

2x2
) = x2 +

y

2
.

It follows that

2x2 + y + 2x
√
x2 + y ≈ 4x2 + 2y.

Thus, we may further approximate Vti+1
by

Vti+1
≈ 1

4

(
1− kT

n

){
4
(σ
2
(Wti+1

−Wti) +
√
Vti

)2
+ 8

(
1 +

κT

2n

)(
κθ − σ2/4

2

)
T

n

}
.

We now fix Vti and conserve the terms in T
n
, (Wti+1

−Wti) and (Wti+1
−Wti)

2 using a

Taylor expansion:

Vti+1
≈
(
1− kT

n

){(σ
2
(Wti+1

−Wti) +
√
Vti

)2
+

(
1 +

κT

2n

)(
κθ − σ2

4

)
T

n

}

≈ Vti

(
1− kT

n

)
+ σ(Wti+1

−Wti)
√
Vti +

σ2

4
(Wti+1

−Wti)
2 +

(
κθ − σ2

4

)
T

n

≈ Vti

(
1− kT

2n

)2

+ σ(Wti+1
−Wti)

√
Vti +

(
σ(Wti+1

−Wti)

2(1− kT
2n
)

)2

+

(
κθ − σ2

4

)
T

n

=

(√
Vti

(
1− kT

2n

)
+
σ(Wti+1

−Wti)

2(1− kT
2n
)

)2

+

(
κθ − σ2

4

)
T

n

To sum up, we have the following algorithm for Heston’s model:

63



1. Set S ← s0, V ← v0.

2. Generate a pair of independent Z1, Z2 ∼ N(0, 1).

3. Let U1 =
√

1− ρ2Z1 + ρZ2 and U2 = Z2.

4. Generate

V ←

√V (1− kT

2n

)
+
σ(
√

T
n
U2)

2(1− kT
2n
)

2

+

(
κθ − σ2

4

)
T

n
.

5. Generate

S ← exp

((
r − σ2

2

)
T

n
+
√
V

√
T

n
U1

)
.

We assume the following parameters in the Heston model to demonstrate the mean

behaviors of the scenarios generated by the Alfonsi’s scheme.

Paramters V alues

S0 100

V0 0.03

κ 0.5, 1, 1.5

θ 0.05

σ 0.30

ρ −0.45

T 10

r 0.04

We use 250 time steps per year and generate 10,000 scenarios.The results are given in

Figures 5.1 and 5.2.

64



0 500 1000 1500 2000 2500
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Mean of Volatility Process in Heston

 

 
theta = 0.02
theta = 0.05
theta = 0.07

Figure 6.1: Mean reversion levels of Heston’s Model using Alfonsi scheme
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Figure 6.2: Mean reversion speeds of Heston’s Model using Alfonsi scheme
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6.5 Numerical results

We consider the following parameters in the Heston’s model:

Paramters V alues

S0 100

V0 0.03

K {50, 51, ..., 149, 150}

κ 0.15

θ 0.05

σ 0.05

ρ −0.55

T 1

r 0.04

We take N = 1, 000, 000 Scenarios and 250 time steps per year for the Monte Carlo

simulation of call option prices.

We approximate the price of the call option using only first N terms in the Gram-

Charlier expansions and denote them by GC(N). We also study GC(ND) where N =

3, 4, 5. They are just GC7’s with CN+1 = ... = C7 = 0 where N = 3, 4, 5.

Since the Fourier Transform (FT) approach is popular in the industry and academic

for calculating option price in Heston’s model, we also include the FT results in our graph

for comparison purpose.
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Figure 6.3: Call Option Prices under Heston’s Model (T = 1)

Selected Numerical results:

Value/ Strike 50 80 90 100 110 120 150

MC 51.9653 23.7206 15.5576 9.0765 4.6458 2.0766 0.0872

FT 51.9612 23.7138 15.5526 9.0761 4.6510 2.0835 0.0880

GC3 51.9603 23.7141 15.5635 9.0932 4.6667 2.0889 0.0694

GC4 51.9608 23.7216 15.5510 9.0620 4.6424 2.0883 0.0893

GC5 51.9608 23.7199 15.5469 9.0612 4.6469 2.0939 0.0871

GC3D 51.9604 23.7076 15.5648 9.1068 4.6755 2.0834 0.0674

GC4D 51.9609 23.7154 15.5523 9.0750 4.6508 2.0831 0.0874

GC5D 51.9609 23.7136 15.5482 9.0742 4.6553 2.0887 0.0852
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Figure 6.4: Pricing Errors of Call Options under Heston’s Model (T = 1)
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Figure 6.5: Relative Errors of Call Option Prices under Heston’s Model (T = 1)
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Figure 6.6: Absolute Relative Errors of Call Option Prices under Heston’s Model (T = 1)

We see from Figures 5.3, 5.4, 5.5 and 6.6 that the (relative) errors are generally very

small for out-of-money options. The GC4D and GC5D approach are generally better than

other approximations. They occasionally outperform the FT approach.
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We test the result with other parameters where the time-to-expiry is smaller than the

previous one.

Parameters V alues

S0 100

V0 0.03

K {50, 51, ..., 149, 150}

κ 0.15

θ 0.05

σ 0.05

ρ −0.55

T 4

r 0.04

Selected Numerical results:

Value/ Strike 50 80 90 100 110 120 150

MC 57.5787 34.5536 28.0928 22.4256 17.5883 13.5663 5.6970

FT 57.5982 34.5743 28.1104 22.4405 17.6010 13.5764 5.7030

GC3 57.5589 34.5966 28.1521 22.4947 17.6604 13.6328 5.6958

GC4 57.6126 34.5736 28.0705 22.3704 17.5222 13.5110 5.7302

GC5 57.6134 34.5410 28.0416 22.3582 17.5335 13.5458 5.7918

GC3D 57.5517 34.5983 28.1902 22.5629 17.7389 13.6991 5.6607

GC4D 57.6065 34.5750 28.1026 22.4278 17.5882 13.5668 5.7007

GC5D 57.6073 34.5424 28.0737 22.4155 17.5995 13.6015 5.7623
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Figure 6.7: Call Option Prices under Heston’s Model (T = 4)
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Figure 6.8: Pricing Errors of Call Options under Heston’s Model (T = 4)
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Figure 6.9: Relative Errors of Call Option Prices under Heston’s Model (T = 4)
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Figure 6.10: Absolute Relative Errors of Call Option Prices under Heston’s Model (T = 4)

72



We see from Figures 5.7, 5.8, 5.9 and 5.10 that the (relative) errors are generally

very small for out-of-money options. The GC4D approach is generally better than other

approximations. It outperforms the FT approach when the option is in the at-time money

region.

Increasing the number of terms in the approximation formula does not necessarily

increase the accuracy systematically since Gram-Charlier expansions are orthogonal series.

Emprical results show that GC4D outperforms other methods in general.
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Chapter 7

Conclusion

The thesis discussed several applications of Gram-Charlier expansions in pricing swaptions

and European call options. It is important to point out that Gram-Charlier expansions

can actually be used in any affine-term structure model. Our work on the extension

of this method from CIR2 to CIR2++ can actually be generalized to any affine-term

structure++ model (i.e. models with the fitting of the initial term structure). Empirical

results show that GC3 (Gram-Charlier expansions up to the third cumulants) gives the

most efficient and accurate approximation for the swaption prices.

We discussed a procedure to apply the Gram-Cahrlier approach to general models in

Chapter 4. The models are reasonably simple. For example, the drift and diffusion terms

are polynomials. Moments can be found by solving a system of ODEs, which is derived

by Fubini’s Theorem and martingale properties of Itô integrals as shown in section 4.2.

This allows us to calculate prices of any European-type derivatives.

For Heston’s model, the European call option price is usually obtained by a Fourier

Transform; see [7]. This method is proven to be accurate and efficient. For a given set of

parameters, we are able to use a fast Fourier transform to calculate the option prices for

different strikes. While the logarithm of strike prices is assumed to be equally spaced, the

strike prices themselves cannot be equally spaced. However, in our method, cumulants

are fixed whenever the parameters are given for the model. Thus, the option prices with
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different strikes can be calculated in a parallel manner since Gram-Charlier expansions

are easily implemented. For example, we are able to calculate 10,000 option prices with

arbitrary strikes within 0.003 seconds. Therefore, our approach is more efficient if the

parameters are already calibrated or given in advance.

In principle, we may extend our approach to any stochastic volatility model with a

reasonable complexity. To be precise, if the moment generating functions (or moments

themselves) can be found in a model, our approach can be readily applied to it.

However, there are a few limitations in our approach. The main assumption in Gram-

Charlier expansions is that the cumulants of the random variable are finite. This as-

sumption is stronger than we expected in stochastic modeling. For example, pure jump

processes like variance gamma and CGMY do not process this property in general. In

these cases, our approach is totally useless. As a result, our approach cannot beat the

FT approach in general since they can be applied to this kind of models. Also, the error

in the approximations is hard to estimate rigorously since the Gram-Charlier expansions

are orthogonal series. There is no guarantee that adding finitely more terms will make

the approximation better. A lot of testings are therefore needed, especially for pricing

purpose.
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