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Abstract

Digital image acquisition can be a time consuming process for situations where high spatial
resolution is required. As such, optimizing the acquisition mechanism is of high impor-
tance for many measurement applications. Acquiring such data through a dynamically
small subset of measurement locations can address this problem. In such a case, the mea-
sured information can be regarded as incomplete, which necessitates the application of
special reconstruction tools to recover the original data set. The reconstruction can be
performed based on the concept of sparse signal representation. Recovering signals and
images from their sub-Nyquist measurements forms the core idea of compressive sensing
(CS). In this work, a CS-based data-guided statistical sparse measurements method is
presented, implemented and evaluated. This method significantly improves image recon-
struction from sparse measurements. In the data-guided statistical sparse measurements
approach, signal sampling distribution is optimized for improving image reconstruction
performance. The sampling distribution is based on underlying data rather than the com-
monly used uniform random distribution. The optimal sampling pattern probability is
accomplished by learning process through two methods - direct and indirect. The direct
method is implemented for learning a nonparametric probability density function directly
from the dataset. The indirect learning method is implemented for cases where a map-
ping between extracted features and the probability density function is required. The
unified model is implemented for different representation domains, including frequency do-
main and spatial domain. Experiments were performed for multiple applications such as
optical coherence tomography, bridge structure vibration, robotic vision, 3D laser range
measurements and fluorescence microscopy. Results show that the data-guided statistical
sparse measurements method significantly outperforms the conventional CS reconstruction
performance. Data-guided statistical sparse measurements method achieves much higher
reconstruction signal-to-noise ratio for the same compression rate as the conventional CS.
Alternatively, Data-guided statistical sparse measurements method achieves similar recon-
struction signal-to-noise ratio as the conventional CS with significantly fewer samples.
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Glossary

f(r,c) : two-dimensional gray scale digital image, f(r,c) € RE*¢

[ : lexicographically concatenated version of image f(r,c), f &€ RN*! N = RC
y : M length data measurement vector of image f, y € RM*!

U : K-sparse representation domain, ¥ & RV*V

x : f is represented by coefficients vector x in domain ¥

® : sampling basis, ® € R"*M whose columns are {¢; 2,

¢ k™ column in sampling basis ®

orx : k™ sparse column in sampling basis ® with 7" nonzero elements
®' : sampling basis transpose. ®! € RM*N

A : measuring matrix. A = ®'W, A € RM*N

€ : denotes measurement additive noise

Qgrxc :denotes R x C' sampling locations organized in a finite, separable, rectangular
lattice

Qg :denotes K sampling locations in the k space domain organized in a finite sequence
Qr : denotes sampled locations subset whose cardinality is equal to T’

25, : denotes unsampled locations subset whose cardinality is equal to RC' — T

A : denotes the regularization constant

E{.} : denotes average

[(r,c) : function that provides a quantitative measure of saliency at sampling location
(r,c)

pr : sampling basis probability density

S(r,c) : saliency map for all locations (r, ¢)

0; : saliency map is segmented into R clusters 6;, i = {1,..., R} with common saliency
properties

Xvil






Chapter 1

Introduction

1.1 Compressive Sensing Domain

The last five decades have witnessed a digital revolution which set the foundation for
numerous sensing systems with ever-increasing performance and resolution. Shannon’s
sampling theory has had a great impact on signal processing and communications [131, ,

]. The sampling theory claims that a band-limited function can be fully recovered from
its samples if the sampling rate is greater then twice the highest frequency of the signal,
the so called Nyquist rate [102]. The sampling theorem can be interpreted as coefficients of
some basis functions, for example, through shifting and rescaling of multiplication of sinc-
functions and the sampled signal in Euclidean space [118]. The reconstruction is exact
when the sampled function is band-limited and sampled at the appropriate rate. The
sampling function may be forced to be band-limited by multiplying the function with a
box function in the frequency domain or alternatively convolving with a sinc function in
the time domain. This can be an “engineering” view of the sampling theory.

Based on Shannon’s sampling theory, analog signal processing moved almost entirely
to the digital domain creating high fidelity, inexpensive and robust digital systems. With
this incredible advance of digital technology signal processing needs to compute, store and
communicate huge amounts of data. With bandwidth and resolution increases in many
emerging applications, sampling rates have become extremely high, creating expensive and
sometimes not feasible systems that cannot acquire samples at Nyquist rate [102]. Lossy
data compression can be used for applications where some level of fidelity degradation
is acceptable. The core idea of data compression involves only preserving the largest
coefficients of a signal. This process is called sparse signal approximation and the concept



is in the core of common compression standards such as JPEG, JPEG2000, MPEG, and
others [11]. Even though date compression can address challenges such as reducing memory
space, computation time, and communication load, the acquisition must meet Nyquist
rate requirements for appropriate sampling. It would be desirable if one could sample and
compress at the same time rather than sample and only then compress.

An approach with great potential for reducing the sampling rate while maintaining
high reconstruction quality is the utilization of compressive sensing (CS) theory, which
allows for a greatly reduced sampling rate through the use of sparse measurements (sam-
ples). The theory of CS provides an unambiguous proof that discrete signals, which admit
a sparse representation in the domain of a suitable linear transform, can be accurately
recovered from their sub-Nyquist measurements [3, 19, 18 42, 51]. Such reconstruction
can be performed through solution of a convex optimization problem, which maximizes
the sparseness of the signal representation coefficients subject to a set of measurement
constraints. In such cases, the measurement constraints are derived from a signal/image
acquisition model, which normally describes the measurements as a (noise-contaminated)
sequence of inner products between the quantity of interest and the elements of a sampling
basis.

Even though CS is a relatively new theory and is still growing, it has already had

positive impact on multiple applications. CS implementations are highly related to the
acquisition hardware. For example, medical imaging measured directly in a transform
domain such as magnetic resonance imaging (MRI) [0, | and computed tomography
(CT) [27] has a sparse representation in some basis, such as wavelet and sub-sampled in the
frequency domain. This sub-sampling saves scanning time and in the case of CT reduces
x-ray radiation dose due to fewer cross-section samples. Sensor networks [10, 68, | ben-
efit from CS by improving sensor network efficiency by energy and communication traffic
reduction. Other applications use dedicated measuring hardware system for vector data
acquisition implementing compressive sensing method [61], compressive sensing analog to
digital converter [96, 109], and wide-band compressive sensing signal acquisition [112, 141].
A single pixel camera was developed [18] to perform measurements according to a random
sampling method using a digital micro-mirror device (DMD).
It is noted, that even though CS has great potential to improve multiple systems, CS is not
the solution for every problem. In some systems, where signal acquisition is not the bot-
tleneck, compression techniques might be appropriate. In some hardware configurations,
random sampling cannot be implemented currently, therefore CS might be considered for
next generation systems only.



1.2 Motivation and Challenges

The research on CS is very active and its core research can be grouped into three major
research areas.

1. Sparsity reconstruction basis: A priori sparsity knowledge in some basis of the
target image is required to select an appropriate reconstruction basis. This area is
well researched, and based on early results [16, 19, 45, 56, 57, (4], it has been shown
that a sufficiently sparse representation of a signal can give a unique solution for the
signal reconstruction problem.

2. Image reconstruction: Reconstruction techniques based on convex optimization
and greedy methods are commonly used to recover the original signal. Greedy meth-
ods [115, 146], Ly minimization [16, 15, 56, 57], and other methods [21] are used to
recover the original signal from sparsest measurements. These methods have been
well studied.

3. Generalization of the sampling procedure: The common sampling procedure in
the CS research community is random sensing matrices. Common sensing matrices
are based on Gaussian distributions and discrete Bernoulli distributions [95] sampling
the entire image uniformly. Those sensing distributions satisfy the restricted isometry
property (RIP) with a controlled probability [, 20, 22, 43, |. Improvements in
this area have been minimal compared to the other two areas.

While less studied in recent years compared to reconstruction basis and image reconstruc-
tion methods, the design of the sampling procedure can have a significant impact on CS
performance for practical applications such as robotic vision, fluorescence microscopy, op-
tical coherence tomography and laser range measurement, where the objects of interest
have structured characteristics, thus making the sampling procedure a worthwhile area
to study. Existing CS-based systems employ a sampling scheme that sample the entire
scene in the same manner regardless of the underlying data. However, such an approach is
limited for many practical applications, which involve distinct regions of interest in some
basis, with highly salient structural characteristics. Given that such regions are of greater
interest for analysis purposes, one is motivated to obtain higher quality reconstructions for
these regions than the background regions.

The rest of this thesis is organized as follows. Overview of compressive sensing and rel-
evant literature is reviewed in section 2 providing the background and up to date research.
The unified sparse measurements model and framework is provided in 3 describing the



model for constructing a sampling pattern, conventional CS concept as well as data-guided
CS method concept, methods for learning data distribution to guide sampling and method
to construct the sampling pattern. Construct a sampling pattern based on the nonpara-
metric modeling - direct learning approach is provided in 4 describing direct learning model
and realization of energy-guided CS modeling approach in frequency domain as well as pre-
senting experimental results for optical coherence tomography (OCT) and bridge structure
vibrations applications are presented and discussed. While indirect learning approach is
presented in 5 describing indirect learning model in the spatial domain, realization and
experimental results of saliency-guided modeling approach in spatial domain are shown
and discussed for applications such as 3D laser measurements, robotic vision, fluorescence
microscopy. Summary of contributions and future research are presented in 6

1.3 Thesis Contributions

The principle research objective that leads to a significant contribution to the research
community, is a system engineering approach for improving CS reconstruction performance
by reducing the number of samples and improving the image reconstruction signal to noise
ratio.

The thesis makes the following main contributions -

e A novel model to robust sparse image measurements based on learning data statistical
properties, which is described in detail in Chapter 3, is designed, implemented and
tested.

e A novel method to construct optimized sampling patterns based on two learning
methods:

— direct method, for learning a nonparametric probability density function directly
from the dataset, which is described in detail in Chapter 4; and

— indirect learning method, for cases where a mapping between extracted features
and the probability density function is required, which is described in detail in
Chapter 5



Chapter 2

Overview of Compressive Sensing

In 2006, it was proven [18, 19, 12, 51] that through the theory of compressive sensing, dis-
crete signals can be fully recovered from their sub-Nyquist measurements if the signal has
a sparse representation in some domain (2.1). Such reconstruction can be performed by
solving an optimization problem for maximizing the signal sparseness in terms of represen-
tative coefficients, subject to the measurement model constraint (2.2). The signal/image
acquisition model is usually described as a sequence of inner products between the signal
measurements and the sampling basis (2.3). Some standard choices of such sampling bases
include pseudo-random sequences (e.g., Gaussian, Bernoulli, etc.) (2.5), which are often
preferred for the strong theoretical guarantees they provide [3, 20].

2.1 Sparse Representations

The concept of sparse representations is an important method in signal processing and is
in the core of CS theory. To find an efficient representation, one can express a signal as
the linear combination of a few elements taken in a specific basis. For example, natural
images have sparse representation in some basis [23, 120]. Wavelets [110] and total variation
[9, 1] are widely used for representation and compression of images [51, 120]. Images can
be represented in some basis by only a few non-zero coefficients. Despite its great power,
the sparsity concept is simply and intuitive. Let f be an N-vector real signal. To analyze
two-dimensional images, a vector can be chosen that contains all N pixels (column-wise).
Suppose that the basis W = {1, 19, ...y}, provides an N-dimensional representation of
f:

f=Ux (2.1)



This is a linear combination of N vectors from W. where f is an N x 1 vector, the basis
matrix W is NV x N with the basis vectors v, as columns in matrix ¥, and where z is an
N x 1 coefficients vector. When a signal has K-sparse representation in ¥, K < N, one
can represent signal f by linear combination of K vectors only, chosen from ¥, and discard
the zero coefficients without loss [15, 56]. The K vectors are chosen from a large collection
called a dictionary. In practical cases it is not realistic to require:

r, =0; Vn>K (2.2)

Therefore this assumption is replaced by a weaker notion of sparsity called “compressibil-
ity” where the coefficients decay rapidly to zero but not equal to zero [22, 61]:

lzn| <an P Vn>K (2.3)

where a > 0 and g > 0

In this case one can approximate the K-term to };:
Hf - fKH2 < €k (2.4)

for some approximation error €g.

Sparse representations are commonly used as a method for data compression by mini-
mizing the number of vectors (K) in the representation domain. In a broader view, signals
can be modeled efficiently based on sparsity properties [12]. The hope is that a very sparse
representation exists among all possible representations. In other words, a representation
with just a few nonzero coefficients. The search for sparse representation can be performed
using norm ¢, where 0 < p < oo [30, 12, 52]. It was shown [12, 52] that as we move
from convenient /5 regularization towards 0 < p < 1 we promote sparser solutions. The
tendency of £, norm to drive sparser results can be illustrated by considering the following
problem [19, 52]:

argmxin zll, st. f=Vz (2.5)

Intuitively, one can solve the problem by “blowing” an [[z||, balloon centered around the
origin until reaching the constraint f = Wx [52]. The ¢, norm does not promote sparsity
while ¢, with the range 0 < p < 1 does promote sparsity [52, 61]. Moreover, the extreme
¢, norm, where p — 0, provides the ultimate sparsest solution. This norm is denoted as ¢

[38, 52
N
llly = lim ]} = 192_) [al” = # [i¥; # 0] (26)

6



In words, 2.6 is an intuitive measure of vector x sparsity containing the number of nonzero
entries in the vector [52]. Even though the ¢y norm is the common term used, pseudo-£
is more appropriate as the £y norm cannot be calculated according to norm definition [52].
The first problematic point is taking p'* root; it is impossible to take the 0* root. In
addition, the homogeneity property of a norm is not met:

[ty = llzllo # tll2llo (2.7)

2.2 Compressive Sensing Signal Reconstruction Model

As concluded in (2.1), £y norm is a good sparsify operator for the following named exact
sparse optimization:
arg min ||z||, s.t. y = Az (2.8)

where z is an NV x 1 vector and A is M x N matrix. In addition to high sparsity property,
the exact sparse (2.8) optimization leads to a unique solution for x if A is an over-complete
orthogonal basis which is selected properly [15]. Unfortunately, there are some significant
challenges solving exact sparse optimization (2.8) using the ¢y norm. The exact sparse
problem leads to a combinatorial optimization problem with exponential complexity [100].
The solution would require searching among all possible combinations of columns of A. It
was proposed [30] to consider a modified optimization using ¢; norm called basis pursuit
(BP):

arg mxin |z||, st.y=Ax (2.9)

BP optimization (2.9) offers a significant advantage. The ¢; norm is a convex function that
supports a global minimum, unlike £,;0 < p < 1 that is non-convex. BP is a much simpler
problem compared to exact sparse which can be solved by various classical optimization
techniques. A symmetry between exact sparse (¢o norm based) and BP (¢; norm based)
was shown [15, 50, (4], making an important contribution. If a signal has a sufficiently
sparse representation then it has a unique solution for both the exact sparse and BP
problems. Before addressing the condition for this symmetry, an important principle needs
to be introduced - the uncertainty principle. The classical uncertainty principle states
that two conjugate variables such as position and momentum cannot both be known with
arbitrary precision. Therefore, a signal cannot be tightly concentrated both in time and
frequency domains and actually there is lower boundary on product of the variance in
time and frequency [52]. A similar condition exists between discrete uncertainty principles
and sparse approximation [44, 45, 64, |. A signal cannot be sparsely represented in



both time and frequency domain, and actually this applies to any two arbitrary orthogonal

domains [56]. Suppose we have a non-zero vector b and two orthogonal bases U and ®.
Assume b can be represented as a linear combination of vectors of ¥ or ®:
b=Va=op3 (2.10)

For any arbitrary basis W or ®, either o or 8 can be sparse but not both at the same
time [53]. This fact depends on the mutual-coherence between ¥ or ®. The mutual-
coherence p(A), where A is constructed from an arbitrary pair of orthogonal basis W or
® such as A = @', is defined as the maximal inner product between columns from
those two bases [15]. Let ® be the sampling basis: ® = {¢1,...¢x} of function f. The
inner product representation of the sampled signal y is given by y, =< f, ¢, > and the
representation basis is W: W = {¢1,...1¥n}. The coherence between the sensing basis ®
and the representation basis W is defined as:

. . o . t
proximity(P, V) = pu(A) =  max (¢}, 05)] (2.11)
where ¢! is column ¢ transpose of ® and v, is column j of ¥ and where < -, - > is

inner product. The mutual-coherence of such two matrices satisfies \/%7 < uA) <1. In

compressive sensing, it is desired to select high coherence pair (low incoherence) of sampling
basis and representation bases. In the case of classical time-frequency sampling domains,

® is "impulse” basis (Dirac comb [16]) and ¥ is Fourier basis. Apparently this pair has
minimal coherence and is therefore not appropriate for compressive sensing. Based on
mutual-coherence property and previous work [15] it was shown [50] that if a signal has a
sufficiently sparse representation which satisfies (2.12):
1 1
lzll, < =(1 + —=) (2.12)
T2 (A

then the optimization solution for both the exact sparse (2.8) and BP (2.9) problems is
unique. Therefore, in this case, the non-convex program (2.8) can be replaced with the
much simpler and convex (2.9) problem.

In practical cases where we intend to recover a vector from incomplete and contaminated
measurements than:
y=Azxr+e (2.13)

where A is a matrix with fewer rows than columns (M < N) and € represents additive
noise. x can be recovered by solving the following convex quadratic optimization known
as basis pursuit denoising (BPDN) [19]:

argmin ||z, s.t. ||y — Az, <€ (2.14)
T

8



Efficient iterative methods for solving the optimization has been proposed , such as
matching pursuit (MP) [90], iterative thresholding [39], orthogonal matching pursuit (OMP)
[104, 143] and others [54]. Many of those are based on the concept of greedy algorithms
[145]. The greedy algorithms search for a sparse vector x that optimally represent the mea-
sured data in the sparse domain. The iterative process starts by setting an initial value to
x (usually 0) and adding a residue parameter ry to the measured data y. The algorithm
searches for a column in matrix A that best correlates to the data with residue r5. The
value is set according to the selected column and the residue parameter rg is updated ac-
cordingly. This process repeats iteratively for minimizing the energy of the residual value

[54].

Soft-thresholding is a popular approach for solving BPDN (2.14). The regularization
constant A is used as a signal threshold for noise filtering. Therefore, A is been set according
to the noise level.

One approach to solve the BPDN problem is using the augmented Lagrangian form
[54]:

1
L:argmin§||y—AxH§+/\||x||1 (2.15)

where the first term is squared to be differentiable while not affecting the minimization
and the multiplication by % is absorbed within A. Since A is an orthonormal basis, one
can use the Parseval equality to express the minimization by coefficients only:

1
L= argmin > |5 — 23+ A, (2.16)

where 3 = A~'y or in a summation form:

N N
|1 )
L = argmin 5;(@-—@) +A;m| (2.17)

The minimization can be performed for each i coefficient separately by solving g—é =0
The solution to this problem, z} is given by soft-thresholding [5]

xy = sign(B:)(|8i] — M)+ (2.18)
where
, ift>0
(t)+ = {g ifi ~ 0 (2.19)



The total variation (TV) minimization approach has been shown to be an efficient
regularizing criterion for piecewise smoothness in the spatial domain [19, 86]. Therefore,
BPDN (2.14) can be improved:

argmin [lz], + A2l st ly— Az], < e (2:20)

where the first term represents sparsity of coefficients in the selected domain and the
second term represents piecewise smoothness in the spatial domain subject to the data
fidelity term.

2.3 CS Sampling Model for Images

Consider the signal being measured as an image contain R x C' sampling locations organized
in a finite, separable, rectangular lattice (g« ¢, with the measured value at each sampling
location representing the gray-scale value at that location:

Qrxc ={(r,¢)|r=0,...,R—1,¢=0,...,C —1}. (2.21)

The measurements f(r,c) : Qrxc — R are assumed to be bounded, i.e., max|f(r, c)| < oo
Vr, c , given that they represent discrete quantized values of gray-scale. Let ‘H denote the
class of such signals and, given a collection of M < RC' discrete sampling functions {¢y }42,
(with ¢x € H,Vk), the linear measurements of f can be generally written as:

R-1C-1
Yk = <f7 ka> = ZZ]C(T» C) Sok(ra C)? (222)
r=0 c¢=0
where k = 1,2,..., M and where M is the amount of measurements ((2.8)

The data acquisition is done according to (2.22) as a sparse measurements model.
This model can be equivalently expressed in the form of vector matrix multiplications.
Specifically, let N = RC' and let ® be an N x M matrix whose columns are {¢;}2,. Also,
let f € RY be a lexicographically concatenated version of the original image (reorder the
R x C 2-D image as one N = RC vector). Then, the measurement model becomes

y=o'f (2.23)

where y € RM denotes M length data measurement vector and where ®' denotes ® trans-
pose.
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As defined in (2.1), signal f which has K-sparse representation, in a N x N matrix ¥, can
be represented by linear combination of K vectors only, chosen from W.

f=VYx (2.24)
Using matrix algebra, the sensing model is thus:
y=0Vr+e=Ar+e (2.25)

where y is a M x 1 measurements vector and where the sparse representation and the
sensing basis merged into the global M x N sensing basis A = ®'W. And where in a more
practical case, €, which denotes measurement additive noise. In most cases, the noise is
assumed to be Gaussian [19, 18, 51, 12].

The signal f can be recovered by solving the BPDN problem [19] (2.14). In order to
guarantee a reliable signal reconstruction, the required property of the sensing matrix A
meets RIP(2K,J) where RIP - Restricted Isometry Property [3, 20] is defined by :

(1= 8)[lzll; < |Az]l; < (1 +6) [lz]l; 0<d <1 (2.26)

The Restricted Isometry Property replaces the process of verifying linear independence of
all K combinations of A rows [20]. In other words, every combination of K rows of A
behaves as an orthogonal transformation and is (1 — ) far from singularity [55] and the
singular values (-) are bounded such as (1 —0) < Ck(A'A) < (1+6), C >0 [8, 55]. Tt
was shown [20] that 2.8 has a unique solution if dyr < 1 and 2.9 is equivalent to 2.8 if

52K<\/§—1.

Stochastic constructions of RIP matrices exist and promote sparsity [3, 81]. Therefore,
matrix construction based on random sensing can meet the RIP criterion as well as promot-
ing sparsity. A very common RIP random construction is Gaussian white noise ~ A (0, 1)
and a sequence of Bernoulli random variables taking values +1 with equal probability
[20, 95]. The construction of a sampling matrix is done by selecting M basis functions
(¢s; i =1... M) in order to build the sensing orthonormal bases ® = {¢1, ¢a, ... dpr} such
as ¢;; ~ N(0,1). The sampling matrix is used to construct the sensing matrix: A = &'V,
It was shown that for any orthonormal sparsity basis ¥, A which its entries are also ran-
dom variable which are drawn from Gaussian distributed and the RIP properties of the
Gaussian distributed matrix ® are maintained for A. In this case, it was shown [30] that
the number of basis functions M is:

M =0O(6§*Kin(N/K)), § >0 (2.27)
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Random matrix construction is challenging to implement because of practical imple-
mentation reasons. For example, a random sensing matrix that is used for data sampling
is needed for signal reconstruction. This matrix needs to be stored and in many cases
transmitted via a communication line to the decoding side. For large images, the sensing
matrix is significantly large. Therefore, randomizing functions have been used for creating
a pseudo-random variable operating on a “seed” and constructing pseudo-random sensing
matrices. Other then Gaussian distribution have been used for constructing the sensing
matrices such as Noiselet transform [113] that has high mutual-coherence with the wavelet
basis [23].

2.4 Sensing Strategy

The conventional CS method is illustrated in a conceptual flow chart (Fig-2.1) including
the three major steps in CS process: Step #1 image sparse representation (2.1), step
#2 sub-sampling (2.3) through measurement matrix ®, and step #3 image reconstruction
from a sub-set of samples (2.2). The image acquisition is performed according to the CS
sparse measurement model (2.22, 2.23) using sampling basis {¢;}*L,. The measurement
matrix ¢ (2.23) entries are random variable drawn from a given distribution, the most
common distributions used for CS measurement matrix entries are Gaussian or Bernoulli
distributions. According to the required compression rate p, only a certain percentage of
sampling location are sampled. p is defined as one minus the ratio between the number of
measured sampling locations and the total number of sampling locations.

The common constructed sensing matrices in the CS research community are random
and uniformly distributed. In other words, the sampled locations are selected randomly,
drawn from a uniform distribution. A simplistic explanation of sensing matrix construction
can be viewed as setting zero columns in the sampling matrix transpose ®' at random and
uniformly distributed locations. The non-zero entries in the matrix are random variables
drawn from Gaussian or Bernoulli distributions. For illustration purposes, a sampling
matrix construction is presented (Fig-2.2). In this illustration (2.2), the matrix’s zero
elements are marked by X in a square box and a non sampled pixel in the image vector
is marked by X in a circle. If an entire column in the matrix is zero, the multiplication
of sampling matrix and image, equal zero for the corresponding image location, regardless
the pixel value. Therefore, this pixel can be ignored and not sampled at all.
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Figure 2.1: CS implementation flow chart for image reconstruction from sub-sampling
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2.5 Sensing Strategy - Recent Developments

In recent years there has been interest in optimizing the CS sensing probability density for
improving reconstruction performance in imaging applications. Representations of MRI
images have nonrandom structures since most of the image energy is concentrated close to
the representation domain origin [36]. Therefore, it was proposed [150, 86, 112] to consider
a variable density random under-sampling which would sample more near the origin and
less in the periphery of the representation domain. The proposed sampling function was
to adjust the probability density according to the power of distance from the origin [$0]
in the Fourier domain. Based on the same concept, it was proposed [150] to apply a
similar method of variable density random under-sampling for the images domain. Image
reconstruction was evaluated [150] with different sampling patterns (radial, logarithmic
and random). Similarly [36], the sampling function was to adjust according to the concept
of dense sampling near the origin and sparse sampling in the periphery. The coherence
between the sparsity and variable density sensing bases was evaluated |1 12] confirming that
the reconstruction performance was maintained.

In some hardware implementation scenarios, random access to each pixel in the 2D
grid can be challenging [19, |. Structured compressed sensing was proposed [19, ]
where separable (rows and columns) matrices are appropriate. The structured sensing
matrix is constructed from random patterns of rows and columns. The non-uniform sensing
approaches are static, considering general representation domain properties and hardware
constraints in order to improve reconstruction performance. In another study [150], there
was an attempt to reduce the number of measurements by dividing the scene to blocks
and sample each block by uniform distribution random sampling with different number
of samples based on average block saliency level. This approach is missing important
saliency information due to very low resolution through averaging block saliency as well
as uniformly sampling based on an arbitrary block size reduces sampling effectiveness by
missing region of interest within the block.

Sequential adaptive compressive sensing techniques have been recently proposed for
optimizing the support of the sensing matrix [69]. It has been proposed [09] to construct
the measurement matrix adaptively through an iterative process in order to select appro-
priate rows of the sensing matrix A for emphasizing the non-zero coefficients of vector x
(2.13). This sequential process iteratively searches for non-zero coefficients by multiple
sensing matrices starting with a full ranked matrix which measures and considers the en-
tire coefficient vector and iteratively converges to a low support matrix. This sequential
approach is very time consuming repeating the CS reconstruction process every iteration.
Moreover, this method uses acquired data from the entire image in the iteration process.

15



In another study of this adaptive method [21], an assumption of an“infinite number of
observations is available” [21] is taken for constructing a sampling matrix with minimum
support for noisy signals while ignores an important goal of image reconstruction based
on small subset of sampled locations. The adaptive CS method was compared mathemati-
cally to uniform distributed sampling [5] showing that there is not a significant advantage
to adaptive CS universally, where the entire image information is considered equally im-
portant. Even though the analysis seems to be accurate, this hypothetical case does not
represent real-world practical situations where region or interest exist in the image rather
non-practical case where all regions in the image are equally important.

Several novel contributions made in this thesis have been published by the thesis author
recently. A novel saliency-guided sparse measurement method [130] was developed that
significantly improves CS performance for situations where regions of interest have struc-
tured characteristics (5.3.1). This model [130] optimizes the sampling probability density
function (pdf) according to salient regions in the spatial domain in a binary way i.e., high
sampling probability at high saliency and low sampling probability at low saliency. Based
on this concept, a saliency-guided sparse reconstruction ensemble fusion method was im-
plemented [127, ] for improving SNR in compressive fluorescence microscopy (5.3.3).
Using the previous developed model [130] the sampling pdf is adaptively optimized based
on the regions of interest rather than sampling the entire area uniformly. Furthermore,
ten saliency-guided sparse reconstructions are fused together into a much improved recon-
struction.

An improved multi-scale saliency-guided compressive sensing approach [128] was de-
veloped as well (5.3), offering an efficient robotic laser range measurements method. This
model optimizes the sampling pdf gradually and smoothly between high and low salient
regions. It was shown that this approach achieves greater performance in comparison to
the recently published saliency-guided sparse measurement model [130] where images are
contaminated with high noise levels.

A learning process is required to adjust the sampling pdf. It was proposed [127, ,

, | to detect rough saliency in the spatial domain by an initial stage. In this initial
stage, a conventional CS procedure is used where the image is sampled by sparse and uni-
form probability density that requires the acquisition of only a limited number of samples.
An energy-guided learning approach to compressive OCT has been proposed recently [120]
as well. In this method (4.1), a direct learning approach is proposed for off-line learning
the data pdf in the sampled frequency domain. The learned pdf which is based on un-
derlying data then guides the CS sampling probability. A significant improvement in CS
reconstruction performance was archived using this method.
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Chapter 3

Unified Sparse Measurements Model
and Framework

3.1 Model for Constructing a Sampling Pattern

There is an increased interest in improving the sensing strategy of compressive sensing
method (2.5). This can be achieved by optimizing the sensing probability density. In
conventional CS systems, the standard choice of such sampling bases are pseudo-random
sequences (e.g., Gaussian, Bernoulli, etc.) which sample the entire scene uniformly. How-
ever, in practical situations, the object of interest in the sampling domain is typically
characterized by high probability salient characteristics which can be identified by the pdf.
Since we are interested primarily in preserving such salient characteristics when aiming to
achieve high reconstruction performance, the use of conventional pseudo-random sequences
is limited in their suitability for such scenarios. A method to improve compressive sensing
performance is adjusting the sensing distribution based on underlying data rather than
the commonly used uniform distribution sampling for the entire scene. A learning ap-
proach to construct a sampling pattern based on the nonparametric modeling (3.4.3) can
improve significantly compressive sensing performance. This method draws samples from
the distribution to create a sampling pattern which optimizes compressive sensing recon-
struction performance. The core of this method is learning the nonparametric model based
on underlying data and optimizing the sensing probability according to data importance.

Using a measurement system which contains N sampling locations {2y across a scene,
with the measured value at each sampling location across the entire scene define by:

OQv={n|n=0,...,N—1}, (3.1)
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Where Qy € R? and where (3 is defined according to the sampling domain. For example,
if the sampling domain is the frequency domain, Qy is a one dimension domain (5 =
1, Qx € R') while in the case of sampling in the spatial domain, Qp is two dimensional
(B =2, Qn € R?). Subsequently, Qy is partitioned into two complementary sets Q7 and
(2%, such that

QN = QT U Q%, with QT N = @, (32)

whose cardinalities are equal to #€2r = T" which means that number of sampling location
across the scene is T and #25 = N — T'. The subset Q21 denotes sampling location across
the entire scene and 27 denote unsampled locations. Subset (27 is generated based on a
function T'(n) that provides a quantitative measure of sampling probability at sampling
location n

D(n) — [0,1]V n (3.3)

where I'(n) returns a sampling probability level value between 0 and 1 for every location
n:
Qy € R = T'(n), V3. (3.4)

Consider that the signal of interest at the sampling domain f : Qy — R is assumed
to be bounded, i.e., maxy |f(k)| < oo, given that it represents discrete quantized signal
values. Let {1, denote a collection of M < N discrete sampling functions. The linear
measurements of f can be generally written as:

Yo =% [+ €& (3.5)

Where f € RV*! is a concatenated version of the original signal and where ¢! is the
sampling function ;. transpose and ¢, denotes measurement noise.

This model can be described in a matrix form (2.3). Let ® be an N x M matrix whose
columns are {¢;}M, . Then, the measurement model becomes:

y=0f +e (3.6)

Where y € RM denotes M length data measurement vector and where ®! denotes ®
transpose.

The sampling bases {¢; }4L, are chosen to be random with optimized pdf I' (3.3) based
on underlying data rather than the uniform or static distributions (2.5) which are used
for conventional CS. Since this optimized pdf I' is unknown, it should be constructed by
learning and optimization methods (3.4.1, 3.4.2, 3.4.3). In general case, this pdf (I')will
be approximated through a nonparametric method since no known parametric structure
can be identified that represents all cases. This model represents under sampling where
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M < N, the sampling basis definition is modified to account for the lack of observations
at locations in €2

vr(n), ifneQr,
n)= 3.7
erx(n) {0, if n € Q. (37)
Consequently, the sparse measurements model can be expressed as:
yk = (frorp) + e, k=1,2.... M (3.8)

where r ) values are realizations of a random variable z whose probability density is
defined in (3.9):

pr(z | T(n),7) = (1 —=nl(n))d(z) + 7l (n) ps(z)) (3.9)
The sampling basis entries are random variables drawn from distribution pg(z) where the
most common probability functions are Bernoulli or normal (AN(2]0,1). Sampling location
is a random variable drawn from a probability which is defined with a weight at location n
that is guided by underlying data. Underlying data is represented by its pdf: I'(n) — [0, 1].
Here the pdf of 6(z) has zero mean with zero variance and where 7 is the required under
sample level 7 — [0,1]. Thus, each entry to the optimally constructed sampling matrix

®, is random variable drawn from probability pr (3.9) is zero with probability (1 —7['(n))
and is pg distributed with probability 7I'(n).

3.2 Conventional CS - General Concept

The conventional CS method is illustrated in a conceptual flow chart (Fig-2.1) in section
2.4. The conventional CS sampling basis used in existing literature is defined as:

cs;\_ J ern), if (n) € Qes
The measuring matrix ¢ is constructed according to distribution pr (3.9) where each entry
to the sampling matrix is a random variable drawn from ¢ (n) (3.10) for each location n.

The most common probability functions used for ¢, are Gaussian distribution with zero
mean and unit variance or Bernoulli while 0 and 1 are equally distributed.

In the conventional CS, the non-sampled locations are selected randomly drawn from a
uniform distribution. Therefore, for the conventional CS, I'(n) (3.9) represents a uniform
distribution for sampling the entire scene uniformly. Qcg (3.10) represents sparse sampling
locations and 2% (3.10) represents locations that are not sampled. The cardinalities
of data-guided statistical sparse CS measurements (3.2) and conventional CS are equal

therefore #(Q2r) = #(Qcs) and #(Q5) = #(Qg), respectively.
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3.3 Data-guided CS Method - General Concept

For illustration purpose, conceptual flow charts (Fig-3.1 and Fig-3.2) describes the proposed
data-guided statistical sparse method.

The proposed data-guided statistical sparse method optimizes the sampling pattern
according to underlying data while the conventional CS method sample the entire scene
uniformly. In order for optimizing CS reconstruction performance, the proposed model
(3.1) is constructing an optimized sampling matrix ® (3.6) which is determined through
learning. Sampling locations are random variables drawn from a learned pdf I'(n) (3.3)
which provides a quantitative measure of sampling probability at sampling location n.

The proposed data-guided statistical sparse method contains density function learning
process through two methods - direct and indirect. The direct method is used for learning
a nonparametric pdf directly from the dataset where no mediator operation is required.
The indirect learning method is for cases where a mapping between extracted features and
the pdf is required. In both direct and indirect learning methods, a nonparametric pdf
is approximated. The optimized sampling matrix ® is constructed by sampling patterns
which are created by the approximated nonparametric pdf.

The flow chart (Fig-3.1) refers to the proposed data-guided statistical sparse method
steps (3.4.1 and 3.4.2). The flow chart indicates the proposed method innovation as well
as the common steps that are similar to the conventional CS approach. The innovation
focuses on constructing an optimized sampling pattern based on underlying data through
learning. After the optimized sampling matrix ® is constructed, the proposed as well as
the conventional CS methods use the same steps, such as sparse representation and image
reconstruction. All steps which are common to the conventional CS and the data-guided CS
method (such as reconstruction algorithms) use identical implementation and parameters
in order to compare the two methods reliably.

3.4 Learning Data Distribution to Guide Sampling

Learning a data distribution is a key process for optimizing sampling patterns and con-
structing the sampling matrix. In this section, learning methods for constructing an opti-
mized sampling pattern based on nonparametric modeling are discussed. In sections 3.4.1
and 3.4.2 two learning options are discussed - direct and indirect.
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fluorescence microscopy data is calculated. Based on the histogram of the saliency infor-
mation, clusters are formed and pdf is determined. Based on the learning pdf, a sampling
matrix is contracted which creates optimized under-sampling patterns for improving CS
performance
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3.4.1 Learning Nonparametric pdf Based on Underlying Data
Directly

In this work, CS sensing distribution is adjusted based on underlying data rather than
the uniform distribution which is commonly used. Therefore, there is a great interest
in pdf estimation which is guiding sampling pattern construction ¢} (n) (3.7) based on
underlying data. In this section, methods for learning pdf I" (3.3) are described for cases
where I' can be learned based on the dataset directly where no mediator operation, such
as feature extraction for example, is required. For example, if signal energy is considered
as high importance, and sampling is given in the frequency domain, then a direct learning
approach of the frequency domain pdf would be appropriate and constructing the sampling
patterns accordingly is efficient.

A pdf is a fundamental concept in the field of statistics. Let k& be a random variable
that has pdf I' which provides the probability of variable k in the range [a, b]:

Pla<k<b)= /bl“(k)dk:; Va<b (3.11)

Assume that a set of measurements is given which is sampled from an unknown pdf. This
pdf can be reconstructed through density estimation analysis [134]. One option is to per-
form parametric density estimation. In parametric density estimation analysis, the samples
are drawn from a known distribution class that contains a set of parameters. One com-
mon example is the normal distribution where the mean and variance are the parameters.
The measurement’s parametric density function can be determined by approximating the
parameters only and set their approximated values in the known pdf. Since we are inter-
ested in a generic model for constructing a sampling pattern (3.1), it would be preferred to
consider a more general concept, where no formal parametric structure is assigned. In this
practical situation one cannot assume that the measurements belong to any known pdf,
therefore a nonparametric approach is required. In this general case, the pdf belongs to
a large family of densities which cannot be represented by a finite number of parameters
[75]. The field of nonparametric density estimation is well researched and broadly used
in statistical analysis [75]. In the last six decades many nonparametric density estimation
methods were proposed and efficiently implemented for univariate and multivariate data.
One of the oldest density estimation methods, and still very common, is the histogram.
In the histogram density estimation method, the origin and bin width have to be selected,
where the bin width effects and controls the function smoothness level.
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Given the signal X, the multi dimensional pdf approximation is given by:

= D N0 — U)
N -h
where §(Xy — Uy) describes bin k, N k represents the number of times that the level X},

appears at bin k, Uy is the location of the k;, bin location, N = Zszl N* and h is the bin
width.

One of histogram disadvantages is the need to define the bin width. In some appli-
cations, such as this research, the bin width is set to one pixel for the image analysis.
The naive density estimator [L1] is a summation over all measurements of a rectangular
of width 2h (where h is a small number) and height 3 on each measurement. Similarly
to the histogram pdf estimation method, the bin width still applies (parameter h), how-
ever, in the naive estimation, each point is considered to be at the center of the sampling
interval. A generalized presentation of the naive density estimator is the kernel estimator
[121, ] which replaces the weight function with a kernel function The result of kernel
estimation is smoother than the previous methods since a smooth function replaces the
rectangular one in the kernel estimation case. The main disadvantage of the kernel es-
timation method is noise that appears at the long tail of the distribution function. The
nearest neighbor density estimator method [35] improves the performance compared to
kernel estimation regarding noisy long tail distribution. The variable kernel method [15]
also controls the smoothness to local data density but unlike the kernel estimator the scale
parameter changes from one data point to another.

(3.12)

Different approaches and methods to nonparametric density estimation were proposed.
The orthogonal series estimators [25] estimate a pdf by applying a low pass filter in Fourier
domain. This method has been used for multivariate densities and has been implemented
in applications in different areas such as pattern recognition and classification [75]. Statisti-
cal approaches such as maximum penalized likelihood estimators [03] have been developed
and used broadly. This method penalizes the likelihood function for producing “not ac-
curate” estimations through optimization of two elements, data fidelity and smoothness.
The optimization maximizes the logarithm of the likelihood function underlying a set of
independent distributed observations subjected to regularized roughness [134].

3.4.2 Learning Approach for Optimized Mapping to Actual Prob-
ability

In the previous section (3.4.1), a direct learning approach for modeling based on underlying
data through learning a nonparametric pdf is described. This direct approach is applicable
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in cases where the region of interest appears from the data directly and no mediator
operation, such as feature extraction, is required. However, in many cases, the object
of interest within the scene is characterized by structured characteristics with distinct
features. In those cases, an indirect approach is more appropriate since an initial operation,
such as feature extraction is performed, in order to identify structured characteristics.
Therefore, a mapping between extracted features and an approximated pdf I' (3.3) is
required. This pdf is used for construction of sampling pattern ¢x(n) (3.7) based on
underlying data indirectly.

The indirect learning approach is based on learning an optimized mapping between
sampling probability and derived features. Since we are primarily interested in preserving
such important characteristics when aiming to achieve high reconstruction performance,
one can learn the model indirectly via extracting derived features and then learn a non-
parametric model to optimize reconstructed image quality. For example, if patterns and
structures in some domain are considered to be of high importance, then a feature extrac-
tion operation for identifying those regions of interest is required as an initial process. After
identifying regions of interest through features, a mapping between those features and an
optimized pdf is realized through learning. This optimized pdf is used for constructing CS
sampling patterns for maximizing reconstruction performance.

Assume the image has structured characteristics with distinct features and that those
features S were extracted and are represented in a multi dimensional space, S € R”, where
[ represents the feature space dimension. In order to make the feature to pdf mapping
more practical, group the features S in clusters with common importance level. Since this
model is generic and can be implemented in a wide range of applications, the definition
of importance level will be abstractive and will need to be selected appropriately for a
specific practical implementation as will be described in chapter 5. Group the features in
R clusters denoted by 6;, i = {1, ..., R} that have common properties. One efficient way to
perform this clustering process is by learning the features pdf through a multi-dimensional
histogram [1] and cluster features with common probability [1, 72].

G is defined as a mapping operator (3.13):
G:ScR T cR’ (3.13)

where (8 is the dimension of S and I' (3.4). Operator G maps features from S to an
optimized pdf T'. Since G operates on the clusters, G(6%) is a function of cluster 6;,
i = {1,..., R} and where the clusters are sorted by the cluster mean 6, which is the
average importance of region 7.

In order to complete the process, one needs to define the mapping function G (3.13)
which will provide the desired pdf I' leading to improved CS reconstruction performance.
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One can select a parametric or nonparametric approach as was discussed above (3.4.1).
Through the evolution of developing this model, an initial and simpler attempt was made
by selecting a parametric approach. Intuitively, a good mapping function would empha-
size high important features more then lower important ones therefore one can select the
mapping function to be a parametric logarithmic-based function.

An optimized approach which is not depend on an arbitrary parametric selection, is
a nonparametric approach that will find an optimized mapping function G (3.13) which
is generic having no assumptions on parametric function of signal of interest. In this
case, constructing a sampling pattern based on this nonparametric modeling approach
will maximize CS reconstruction performance through learning an optimized pdf. This
optimization approach is evaluated in Section 5.3.4. Monte Carlo can be used as an efficient
optimization method [117] for learning the pdf I' by an optimized mapping function G.

Since our optimization problem is multidimensional problem Zz with R variables, as
the number of clusters, a multivariate method will be appropriate. While the problem
dimensionality is unknown since the number of clusters is affected by the specific image
as well as noise level. In many optimization problems, there is a risk of converging to
a local extremum rather than to the desired global one. This situation is even more
critical where the optimization method deals with multidimensional problems. One good
candidate for addressing this optimization issue is the Markov chain Monte Carlo (MCMC)

method. The MCMC [3, 67, 59] method optimizes the function G(Z) using a Markov
chain. Markov chain principle is that the probability of a random variable in a sequence
Z1, 22, ..., 2, depends on the previous variable only. In other words, there is no “memory”

beyond more than one variable back in the sequence when generating the next variable:
P(Zk|Zk-1,Zk—2,21) = P(Zk|Zx—1), Vk [31] which is called transition probability distribution
at step k.

The mapping function G will optimize the pdf I' which will maximize reconstruction
performance:

arg min If = flla st. {G(z): S — T’} (3.14)

where 7 is a Markov chain Zy,7%,. .., %, where each sequence z; € R, function G (3.13)
is mapping features (saliency in our case) from S to an optimized probability function T’
to maximize CS reconstruction where f is the original image and f is the approximation
image.

A common method for performing this optimization is Metropolis-Hastings method
[31, ]. In Metropolis-Hastings, one draws a sequence of samples Z* to assign to sequence
Zr by a conditional distribution through an accept-reject process. Sequence zZ* will be
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accepted to be Zj with probability a(z*,Z;_1):
a(z,541) = min{1, A(f(2"), f(Zk_1))} (3.15)

where function A is selected according to the application to optimize the process (such
as exponential function for example (see 5.14 in implementation 5.3.4)). The method
compares uniform distributed random number u with the probability criterion (3.15). If
u < «z*,Zk_1) then we accept and assign Z, = Zz* otherwise it is rejected and unlike
acceptance-rejection method where the rejected variable is discard, in our case we assign
the previous variable in the sequence Z, = Z,_1. A random walk chain has been commonly
implemented for creating the Markov chain [31] where Z* = Z,_; + w where w could come
from normal, uniform or other distribution.

3.4.3 Method to Construct the Sampling Pattern

The model for constructing a sampling pattern (3.1) starts with learning data distribution
' (3.3) to guide sampling (3.4), followed by constructing the sampling matrix according to
the learned nonparametric pdf, in order to improve CS reconstruction performance. Unlike
the conventional CS which sample the entire scene uniformly, the optimized sampling
matrix is constructed according to underlying data through this learned pdf (I' (3.3))
which guides sampling sparseness. For example, if the pdf I" is higher, the sampling is
denser. The model (3.1) provides the framework for constructing the sampling basis o1
(3.7). The basis values are realizations of a random variable z whose distribution pr is
defined in (3.9). For illustration purposes and to understand better the main difference
between sampling matrix constructing in the conventional CS method versus the proposed
data-guided statistical sparse method, the simplistic explanation for the conventional CS
(2.2), will be reviewed in Section 2.4. In the conventional CS method, the zero columns in
the sampling matrix transpose ®! are selected at random locations drawn from a uniform
distribution. In the proposed data-guided statistical sparse method, the zero columns of
®' are selected randomly with probability pr (3.9) which is guided by the learned pdf
(I" (3.3)). The non-zero entries in the matrix are random variables drawn from normal
distribution, identical to the conventional CS method.

We can use the illustration (2.2) from the conventional CS discussion CS (2.4) to
illustrate the sampling matrix reconstruction for the data-guided statistical sparse method
as well. In this illustration (2.2), the non-sampled location (non sampled pixel in the image
vector is marked by X in a circle) belongs to Q5 set. In the data-guided statistical sparse
method, those zero column locations are been selected randomly with distribution pr (3.9)
which is guided by the learned pdf (T').
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Inverse transform sampling method is used to construct an optimized sampling pattern
from the direct learning probability (3.4.1). Through inverse transform sampling one can
draw samples from the desired pdf using a uniform distribution. The inverse transform
sampling method is defined [28, 117]: Let Cr(w) be the cumulative distribution function
(cdf) of random variable w over the learned pdf I':

Cr(w) = P(I' < w) (3.16)

In other words, the cdf can be calculated based on the learned pdf T'. Let C5' be the
inverse cdf defined [28, 117]:

Cit(v) =inf{v | Cp(w) >v; ¥V 0 <v <1} (3.17)

An inverse operator Cf 1 is used to draw samples for the direct approach as following:
if random variable v comes from uniform (0,1) distribution, than random variable w =
Cr'(v) comes from the distribution of w. In other words, if the inverse Cr is available
through learning, one can draw samples from it using uniform distribution in order to
create the sampling pattern according to the learned pdf I'.

For creating the sampling pattern in the indirect approach case, pdf I' will guide the
sampling pattern (3.7) sparsity probability where 7 values are realizations of a random
variable drawn from distribution pr (3.9). The learned (3.4.2) mapping operator G (3.13)
maps each sample location within cluster 0;, i = {1,..., R} to I' for constructing the
sampling patterns. The construction of an optimized sampling pattern from an indirect
learning probability (3.4.2), is performed by using Acceptance-Rejection sampling method.

Acceptance-Rejection sampling [28, 31, | is another popular sampling method to
draw samples from desired distribution. Similarly to the inverse transform sampling case,
an easy to access and available distribution is used to draw samples from the targeted
distribution. The function G(6;) maps cluster sampling locations to their appropriate
sparsity probability level in the range (0,1) according to pdf I'. Acceptance-Rejection
method is used for this allocation as follows (3.18): draw a sample n; from this cluster 6;.
The sample will be accepted with probability which is mapped for this cluster G(6%') where
0! is the " cluster mean (3.4.2).

The implementation algorithm uses random number u with uniform distribution in
the range (0, 1), in order to implement the Acceptance-Rejection method. This random
number is compared with the probability criterion I'(n;). In other words, n; is accepted
if u < I'(n;). The higher I'(n;) is (for cluster i), the higher the acceptance probability
is. If n; is accepted, this location will be sampled, therefore n; € Qp (3.7). If n; is
rejected this location will not be sampled and n; € Q5. (3.7). The excepted location value
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in the sampling matrix will be a random number, with normal distribution according to
probability pr (3.9), and the rejected location value will be zero. In this case, the sampling
pattern (3.7) construction is modified according to the learned mapping function (3.18):

(3.18)

N(z|0,1), ifu<T(n;); n;€0;Vi,i={1,...,R}
orr(ni) = . .
0, ifu>T(n;); n;€0; Vi, i={1,...,R}.

Where a random variable is been drawn from normal distribution A/(z]0,1) with 0 mean
and variance 1, I'(n;) is the acceptance rejection criterion for location n; that is belong to
cluster 6;.
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Chapter 4

Nonparametric Direct Learning
Approach to Sampling Pattern
Generation

The proposed sensing model (3.1) allows for the creation of an improved CS sampling
pattern according to a learned pdf. The model is generic, providing the foundation for
improved CS sampling of images in multiple applications and wide range of sparse rep-
resentation domains. The optimized CS sampling pattern is based on underlying data
and require learning. A direct learning approach to construct a sampling pattern based
on the nonparametric modeling is proposed. The nonparametric direct learning method
optimizes the sampling probability according to data importance in the domain of interest.
One important example as a domain of interest in many systems and applications (such as
spectral-domain optical coherence tomography (SD-OCT), Magnetic Resonance Imaging
(MRI), vibrational sensors) is the frequency domain. In many cases, high energy in the
frequency domain represents data importance. In this chapter, a frequency domain energy
guided CS (EGCS) model is presented based on the energy distribution of the measured
signal in the frequency domain, with applications to SD-OCT and bridge vibration data
collection.

4.1 Frequency Domain Energy-guided CS Model

A frequency domain EGCS model is proposed which learns the energy spectral density to
improve CS reconstruction performance. In applications such as SD-OCT and MRI, the
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measurements are made in what is known as k-space [30], which is a formalism referring
to the Fourier domain. Consider the spatial/time domain signal d being measured in
k-space/frequency domain D. The relationship between d and D is formulated as

d=F1{D} (4.1)

where F~! is the inverse Fourier operator. To reduce the number of samples, one wishes
to reconstruct the signal d, from only a small subset of measured signal in the k-space
domain. Let an undersampled reconstruction d, be expressed as

d, =F'{®'D} (4.2)

where D is a vector and where ®' is a measurement operator defining which spectral
locations would be considered. The goal is to reconstruct d from a sparse sampling of D.
According to the theory of compressive sensing (2) one can reconstruct d by maximizing
the sparsity of the signal in the transformed domain and enforcing data fidelity in the
k-space domain (2).

The sampling method can have a significant impact on data acquisition efficiency in
terms of the number of required samples in the frequency domain while maintaining high
reconstruction quality in the spatial/time domain. In the conventional CS approach, the
entire scene is sampled randomly and uniformly distributed, where all sampling locations
are considered with equal probability [3, 20].

A static non-uniform sampling approach was implemented in the frequency domain for
MRI measurements [36]. In this case, a static function (one over power distance from the
origin) is used, not considering the underlying data. However, in practical situations, the
energy of coefficients in the frequency domain are usually concentrated in some frequency
bands and sparse in others. In other words, the energy spectral density (ESD) has struc-
tural characteristics. The conventional sampling approach is limited in the capability of
preserving high ESD.

The proposed frequency domain energy guided CS model addresses this important
aspect, preserving high energy spectral density to improve reconstruction performance.
Consider the scene being measured using a measurement system to contain N sampling
frequency locations (3.1). Subset Qr is generated based on a probability function I'(n)
(3.3) that provides a quantitative measure of ESD at frequency sampling location n. The
linear measurements of D can be generally written as:

yr = (D, pr) + e (4.3)
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where k = 1,2,..., M and ¢, denotes measurement noise vector. In a more compact matrix
form:

y=oL D+e (4.4)

where y and € are M X 1 vectors, D is N x 1 vector and ®k. is M x N sampling matrix
with 7" non-zero elements. Since M < N in the EGCS learning model, the sampling
basis is modified to account for the lack of observations at frequency locations in 5. (3.7)
Consequently, the frequency domain energy guided CS model can be expressed as

Y = <D7§0T,k>+6k; k: 1,2,...,M (45)

where ¢r ), value is a realizations of a random variable whose probability density is defined
in (3.9) and where each sampling basis entry is random variable drawn from distribution
ps (3.9) where its probability here is defined as Bernoulli with equal probability 0 and 1.
Sampling location is random variable drawn from probability pg (3.9) which is defined with
weights at sampling location n that is guided by the learned spectral measured coefficients
represented by its pdf: I'(n) — [0, 1] (3.9).

In this model, the measurement sparsity is ESD-guided for each n frequency location of
D(n) where I'(n) is in the range of [0, 1] and is proportional to the energy spectral density.

4.2 Direct Learning Model in the Frequency Domain

The energy spectral density is quantified based on the signal measurements in the frequency
domain. Given that high energy measurements within the frequency domain scene can
have structural characteristics, it would be useful to quantify such characteristics using the
measurements pdf. Therefore, in the proposed implementation, spectral measurements pdf
are learned in step one (3.4.1). Let I' be the measurements pdf (4.6) that will be used to
implement the sparse sampling probability pr (3.9):

D)
H = = 5~ 100m)

where D; are k-space measurements at spatial location i (4.1) which are the Fourier trans-
form of the spatial signal d;. In the EGCS learning approach, the measurement sparsity is
guided by the measurement pdf. Since I' is an univariate distribution, inverse transform
sampling method can be easily implemented [28, 117] (3.17).

(4.6)
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4.3 Realization of Energy-guided Modeling Approach
in Frequency Domain

The implementation of the proposed EGCS modeling approach in frequency domain in-
cludes two steps: learning step and EGCS step. For this practical realization, based on
the learned pdf, the measurement sparsity is ESD-guided for each n frequency location of
D(n). The first learning step is concluded once the sampling probability (3.9) as well as
subset Q7 are determined. In the second step, the EGCS step, D is sampled by &' (4.4)
with probability pr (3.9) in order to measure higher energy coefficients at higher accuracy.
The samples from subset Q7 are used for creating the sampling basis ¢, that create
sampling matrix ®' (4.4). The acquired samples are used to reconstruct the signal at a
higher quality.

4.3.1 SD-OCT Application

Given the aforementioned EGCS model, one can illustrate the effectiveness of such a model
by applying it to the application of SD-OCT. Optical coherence tomography (OCT) is
a non-invasive optical imaging modality that can provide cross-sectional and volumetric
images of biological tissue with cellular level resolution and at depths of up to 2mm in
biological tissues [17, 73]. As such, OCT is well suited for non-invasive imaging of ocular
tissue (retina and cornea) and over the past 15 years has emerged as one of the dominant
ophthalmic diagnostic modalities [58, 62, 119].

Imaging large volumes of retinal or corneal tissue, while keeping the image quality high
requires high density sampling of the imaged volume, which results in very large data sets
and increases significantly the image acquisition time. As a result, natural eye motion that
occur with frequency of 1Hz [93] such as fixational micro-saccade, can introduce motion
artifacts in the imaged data, which can render partial or whole data sets unusable, and
indirectly increase the patient examination time significantly.

Different hardware or software approaches to dealing with eye motion have been pro-
posed in the past. Low density scanning protocols are typical for commercial OCT system
however, in this approach the shorter imaging time comes at the expense of reduced image
quality. Recently, a compressive sparse sampling algorithm was proposed for optimal OCT
scanning in XY direction, that preserves high OCT image quality [155]. Use of FDML
lasers has increased the OCT scanning rate from kilohertz to megahertz [78], however, cur-
rently OCT systems based on FDML technology are very complex, expensive and require
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high speed electronics. Combining eye tracking with OCT can correct most of the mo-
tion artifacts, however, this solution requires very complex hardware redesign and software
algorithms.

Furthermore, some clinical applications of OCT, such as, whole eye imaging, require
a very large scanning range, while maintaining the image quality (spatial resolution and
SNR). In SD-OCT, the scanning range and the depth variation of the system SNR are
dependent on the sampling density of the interferometric signal [32, 82].

In SD-OCT, the number of sampling points is determined by the number of illuminated
pixels in the camera interfaced to the spectrometer [$2]. In swept source OCT (SS-OCT),
the number of sampling points is determined by the sweep rate of the tunable laser in
relation to the digitizer rate [32]. In both cases, the cost of the detection technology, CCD
and CMOS cameras in the case of SD-OCT, and digitizers in the case of SS-OCT, increases
monotonically and significantly with increasing the number of camera pixels or digitizing
rate. Furthermore, the increased number of sampling points inevitably leads to longer data
and image processing time.

Recently, the use of compressive sensing for reconstruction in high resolution OCT
imagery has been reported by a number of different researchers such as Mohan et al. [97],
and Young et al. [151]. Those publications show promising efficient reconstruction of OCT
images from highly under-sampled k-space data. However, these studies utilized either
simulated OCT signals or actual images of onions, which have very different and much less
complex morphology as compared to living biological tissues such as the human retina,
cornea, skin, etc. In a recent work [33], a non-local strategy for sparse OCT reconstruction
algorithm was evaluated on living tissues, which showed better results compared with the
Ly minimization approach. However, the experimental results showed that for tissues with
complex morphology, such as human retina, cornea and skin, a high percentage of the
originally sampled data is required to generate a reconstructed image of sufficiently good
quality, which is still a very large data volume to process in clinical applications where real
time visualization of volumetric images is becoming a requirement.

While the main focus of the CS research community is image reconstruction, an opti-
mized and adaptive sampling procedure has been less studied for practical applications such
as compressive as SD-OCT. The design of a data adaptive sampling procedure can have a
significant impact on CS performance for practical applications such SD-OCT, where the
objects of interest have structured characteristics in the frequency domain, thus making
the sampling procedure worth investigating. Existing CS based systems employ a sampling
scheme that samples the entire scene in the same manner regardless of the underlying data.
However, such an approach is limiting for many practical applications, which involve dis-

35



tinct regions of interest in some basis, since it does not consider data importance. In many
cases such region of interest are of greater interest for analysis purposes, one is motivated
to obtain higher quality reconstructions for these regions than the background regions.

In a recent study, a saliency-guided sparse measurement model [127, | has been
proposed for a significant CS reconstruction improvement. This method optimizes the
sampling pdf according to salient regions in the spatial domain, where high saliency is
sampled with high probability and low saliency is sampled at lower probability. It has
been shown that this approach achieves greater reconstruction performance in comparison
to the common uniform sampling distribution or matching reconstruction performance with
significantly fewer samples.

While signal acquisition in most current SD-OCT systems is based on static pixel array,
studies [0, 84, , | have explored in detail the development of CCD cameras with
randomly addressable pixel sensors that are being designed for high speed imaging. As
with all existing literature in compressive SD-OCT, the novel methodology being developed
here acts as the theoretical foundation for advanced research in high speed SD-OCT systems
that are optimized for the integration of such cameras once they become available for SD-
OCT systems, with the aim to acquire significantly fewer samples while maintaining image
quality.

In this section, a direct learning approach to construct a sampling pattern based on
nonparametric modeling is presented. This approach, improves compressive SD-OCT re-
construction performance by dynamically adapting the sampling model based on the under-
lying data in the frequency domain. Consider the spatial domain signal d being measured
in k-space domain as one dimension D (4.1), where d represents one OCT reflectivity pro-
file (A-scan) vector, which contains spatial information of the OCT depth dimension. An
OCT 2D slice (B-scan), is represented by image f(r,c¢) and is created by combining all
depth spatial data d in this slice. The 3D volume OCT data is created by the collection
of all 2D B-scan slices. The motivation for CS in general and for EGCS more specifically,
is measuring the data by much fewer A-scan spectral coefficients. In CS, the sub-sampling
is selected randomly and uniformly distributed while in EGCS, the spectral coefficients
are selected based randomly according to learned pdf. The proposed learning method can
be based on a reference B-scan from another tissue which has similar properties (such as
retina from another sample for example). Another learning option can be based on the
OCT light source energy spectral distribution which is selected according to the tested
tissue therefore can be used as previous knowledge.

For illustration purposes, the learned distribution of different types of tissues are demon-
strated in Fig. 4.1. Retinal and corneal pdf are presented in Fig. 4.1(a) and Fig. 4.1(b).
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The pdf of a different type of tissue, fingertip, is examined as well in Fig. 4.1(c). In the
case of the sampling pdf learned from retina data acquisitions, the energy is concentrated
at two ranges, highest energy range at spectral coefficients 600-800 and secondary energy
peak at spectral coefficients 250-350. For the sampling pdf learned from cornea data ac-
quisitions, the energy is concentrated at two ranges, with highest energy range at spectral
coefficients 550-650 and secondary energy peak at spectral coefficients 250-300. The finger-
tip pdf is more uniformly distributed in comparison to retinal and corneal pdfs. The energy
is concentrated at two ranges, with the highest energy at spectral coefficients 350-750 and
secondary energy peak at spectral coefficients 100-150.

The three learned pdfs (retina, cornea, and fingertip) were obtained from OCT volume
datasets which are separated from the tested datasets. The energy spectral densities have
structural characteristics which are different for the three tissues (Fig. 4.1). The learned
pdf is obtained according to 4.6 using one B-scan for each tissue.

To demonstrate the sampling distribution, histogram of spectral coefficients for 70%
sampling rate is presented (Fig. 4.2) for each tissue. The sampling pattern is created for op-
timizing CS reconstruction performance. In the conventional CS, the sampling distribution
is uniform across the entire scene.

In the implementation of the conventional CS as well as the EGCS, the OCT non-local
regularization reconstruction method [$3] is used for efficient OCT image reconstruction

4.3.2 SD-OCT - Experimental Results and Discussions

To evaluate the performance of the proposed EGCS learning approach to compressive SD-
OCT, a number of experiments were conducted. For comparison purposes, the conventional
CS approach was also evaluated as a baseline reference where sparse random sampling
locations are distributed uniformly. In this case, I' (4.6) is distributed uniformly. To
evaluate the effectiveness of the proposed method, a series of OCT images acquired in-vivo
from the human i) retinal fovea (Fig. 4.3(a)), ii) cornea (Fig. 4.4(a)), and iii) fingertip
(Fig. 4.5(a)).

The images were acquired with a research grade, high-speed, SD-OCT system [l 11],
operating at 1060nm wavelength, that utilizes a super-luminescent diode (A, = 1020nm,
0A = 110nm, P,,; = 10mW) and a 47kHz InGaAs linear array, 1024 pixel camera (SUI,
Goodrich) interfaced with a high performance spectrometer (P&P Optica). The SD-OCT
system provides 3um axial and 15um lateral resolution in the human corneal and fingertip
tissue, and 6pum axial resolution in the human retina. The OCT images were acquired from
healthy subjects using an imaging procedure carried out in accordance with the University
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Figure 4.1: Sampling data pdf I' (4.6) obtained from EGCS learning approach based on
different type of tissues. (a) Retina, (b) Cornea, and (c) Fingertip

38



1000 1200 600 800 1000 1200

(a) T m

GO0 800 1000 1200

Figure 4.2: Example of EGCS sampling histogram at 70% sampling rate guided by learned
pdfs of different tissues. The EGCS learned sampling distribution follows the data energy
spectral densities (Fig. 4.1) to optimize CS reconstruction. In the conventional CS case,
the sampling is uniformly distributed, not considering underlying data: (a) Retina, (b)
Cornea, and (c) Fingertip
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(b) CS

Figure 4.3: Reconstruction results from 50% of the acquired human retinal fovea data.
The reconstruction results using 100% of the samples are provided as a reference.
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Figure 4.4: Reconstruction results from 50% of the acquired human corneal data. The
reconstruction results using 100% of the samples are provided as a reference.

41



i

T

Figure 4.5: Reconstruction results from 50% of the acquired human fingertip data. The
reconstruction results using 100% of the samples are provided as a reference.
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of Waterloo research ethics regulations. To reconstruct OCT images from only a percentage
of the camera pixels, the original data is sampled in the spectral domain using a uniformly
distributed pseudo-random mask in the CS case. The obtained spectral data was then used
to populate the k-space grid according to the known functional dependency of wavenumber
on the pixel index [34].

A systematic assessment of the reconstruction performance of the different methods
is performed. Reconstruction performance is evaluated by computing the peak signal to
noise ratio (PSNR) for a wide range of sampling rates. The PSNR metric was computed
as follows:

_ maz(f)?
and (MSE) was defined as mean squared error between original image and reconstructed
image:
1 ~ N2
MSE =+ > (fm) = Fm)) (48)
neQn

where f(n) is original image, f(n) is reconstructed image, and N is the number of pixels
in each image.

For illustrative purposes, the PSNR was measured for retinal, corneal and fingertip
measurements reconstructed across the range of 25% and 70% of the camera pixels

From the PSNR vs. sampling rate plot shown in Fig. 4.6, the PSNR achieved using
the EGCS outperforms conventional CS through the entire tested sampling rate and for
the different OCT images. The average difference between the EGCS and conventional CS
for the tested sampling rate of 25%-70% is corneal: 2.3dB, fingertip: 0.8dB and retinal:
3.1dB. Through the experiments, the training datasets were separated from the testing
dataset and all data were obtained from the same volumetric data. More specifically, one
plane of the volumetric dataset is dedicated for training and other planes are used for
testing. To validate the concept even further, additional processing was performed, where
the learning dataset is based on a different retinal eye tissue which means one volumetric
dataset was used for training and another volumetric dataset for testing. The average
PSNR for this case is 3.0dB, which is very similar to the experiment where the training
dataset is obtained from the same volumetric data with average PSNR of 3.1dB. The OCT
light source is selected appropriately according to the tissues type, therefore the light source
energy spectral distribution can be considered as previous knowledge that can guide EGCS.
The PSNR vs. sampling rate plot shown in Fig. 4.7 compares reconstruction performance
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Figure 4.6: PSNR vs. sampling rate for cornea, retina and fingertip measurements. EGCS
outperforms conventional CS through the entire tested sampling rate and for the different
OCT images. The average difference between the EGCS and conventional CS for the tested
sampling rate of 25%-70% is corneal: 2.3dB, fingertip: 0.8dB and retinal: 3.1dB.
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by learning process based on data energy spectral distribution and learning based on light
source energy spectral distribution. Even though learning based on data provides better
performance, the difference is small. As transparent the tissue is as small the difference.
For the cornea case, which is transparent tissue, the performance is almost identical with
difference average of 0.3dB. In the case of retina the difference is slightly larger (average
of 0.4dB) and the largest difference is in the fingertip case with 0.7dB in average. In this
case there is a larger shift in the spectrum since the tissue less transparent compared to
the eye tissue (Fig. 4.7).

Furthermore, a qualitative visual assessment was performed on the reconstructed data
to investigate the reconstruction performance and the preservation of details achieved using
the tested methods at 50% sampling rate.

Figures 4.3, 4.4, and 4.5 show examples for each of the three types of in-vivo human
OCT imaging data, each reconstructed using the two reconstruction methods from spectral
data acquired using 50% of the camera pixels. The human retina (Fig. 4.3) contains
a number of morphological details. Cross-sections of retinal capillaries (circular black
features in the retina), as well as blood vessels. The EGCS method results in noticeably
better image quality as compared to that produced using the conventional CS method,
although the contrast of the individual retinal layers is not as good as in the original image.
The image reconstructed using the EGCS approach is closer to the image reconstructed
from 100% of the acquired samples.

The human cornea (Fig. 4.4) contains a number of morphological features of different
size and optical properties. As observed in Fig. 4.4, the conventional CS method results
in an image where most of the layers are still visible, however, the overall contrast of
the image is drastically lower as compared to the image reconstructed from 100% of the
acquired samples. The EGCS approach result in significantly better reconstruction of
the corneal morphological details, as well as higher image contrast as compared to the
conventional CS method. The image reconstructed using the EGCS approach is closer to
the image reconstructed from 100% of the acquired samples.

The human fingertip contains spiral shaped sweat glands in the skin epithelial region,
which are clearly visible in Fig. 4.5. The conventional CS method and EGCS method
have almost similar reconstruction performance (Fig. 4.5) with only 1 dB PSNR difference
(Fig. 4.6(d)). The reason is the fingertip energy spectral distribution. The energy is
more concentrated in certain frequencies at the retinal and corneal datasets (Fig. 4.1(a)
and Fig. 4.1(b)) while the energy is more spread in the fingertip case (Fig. 4.1(c)). The
EGCS method optimizes the sampling probability according to underlying data. Since
the energy is spread in the fingertip case, an optimized sampling probability is closer
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Figure 4.7: PSNR vs. sampling rate for cornea, retina and fingertip measurements based on
two learning cases:learning based on data energy spectral distribution and learning based
on light source energy spectral distribution. The OCT light source is selected appropriately
according to the tissues type, therefore the light source energy spectral distribution can be
considered as previous knowledge that can guide EGCS. Even though learning based on
data provides better performance the difference is small. As transparent the tissue is as
small the difference.
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to uniform probability in comparison to retinal or corneal data. The proposed EGCS
approach produces reconstructed OCT data with higher PSNR values for all levels of
camera pixel under-sampling when compared to the conventional CS method. The EGCS
method outperformed the conventional CS even for fingertip data even though not as much
as for retinal and corneal data.

4.3.3 Bridge Structure Vibration Data Compression Application

Structural monitoring through a large set of uncorrelated measured signals is common. In
the last decade, blind source separation (BSS) methods [1] have been used for processing
those large sets of signals towards modal identification of various civil and mechanical
structures. The application of BSS methods to flexible structures such as bridges have
been investigated for a large number of numerical and experimental cases [, 70, ].
These results clearly manifest the potential of using BSS for a broad range of structural
modal identification problems.

Structural monitoring can be performed using sensor technology for measuring vibra-
tions in multiple locations and then been received at remote location. Popular ambient
modal identification methods published in the literature utilize measurements simultane-
ously collected from a large array of sensors [141] to obtain the modal characteristics such
as natural frequency, damping and mode shape matrix of the system. The process involves
a centralized processing unit performing the necessary processing tasks [39].

Recent advances in micro-electro-mechanical systems (MEMS) and wireless smart sen-
sor networks (WSSNs) have provided an affordable hardware environment that can be
deployed for large scale structures [14, 60, 87, |. The main advantage of WSSNs is that
limited processing can be undertaken at the sensor level, which allows performing identifi-
cation and health monitoring tasks in a de-centralized fashion, thereby reducing the need
for a centralized processing unit. [124, , |. In structure monitoring applications,
large volume of data is collected and processed. In those applications, reducing the volume
of transmitted data still remains a significant issue to be addressed.

The objective of data compression methods is to find a concise representation of a signal
that is possible with an acceptable level of distortion upon reconstruction [124]. Several
forms of lossless and lossy data compression techniques have been adopted in seismic data
and in vibration response data [7, 88, 158].

Compressive sensing can be a good candidate to address this challenge within the
framework of BSS modal identification [124]. In this applications [124], the volume of data
is large and the node hardware resources are limited. Each sensor measures the requiered
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signal and produces spectral coefficients. Due to hardware limitations, the node can handle
only a small subset of spectral coefficients while maintaining high data fidelity for bridge
resonance monitoring is required.

Similar to the direct learning approach for construct a sampling pattern based on the
nonparametric modeling used for SD-OCT application (4.3.1), a direct learning approach in
the frequency domain is implemented to perform an efficient signal compression for bridge
resonance monitoring data. The sub-set data selection is done according to energy-guided
statistical learning approach based on the underlying data in the frequency domain. By
doing so, the proposed method optimizes the compressed sub-set data to minimize the
number of samples needed while maintaining high reconstruction quality. The learning is
based bridge structure resonance frequencies.

Consider the time domain signal d and its frequency domain representation as one di-
mension D (4.1), where d represents vibrations monitoring signal which is measured by
each sensor on the bridge. To reduce data volume, the system selects a sub-set of spectral
coefficients D. EGCS has great potential for reducing the data volume by representing
the data by much fewer spectral coefficients. EGCS selects the spectral coeflicients ran-
domly according to learned pdf while CS selects the coefficients randomly and uniformly
distributed. The learning method is based on previous knowledge regarding the bridge
structure resonance spectrum.

The proposed method is illustrated using a full-scale ambient vibration data obtained
from UCLA structure [79, |. For illustration purposes, the learned bridge structure
resonance pdf from different type of bridges are demonstrated in Fig. 4.8. pdf of synthetic
bridge signals are presented at Fig. 4.8(a), Fig. 4.8(b), and Fig. 4.8(d) where Fig. 4.8(a) is
the pdf of noiseless synthetic bridge signal with two resonance frequencies, Fig. 4.8(d) is
pdf of noisy synthetic bridge signal with two resonance frequencies and Fig. 4.8(b) is pdf of
noiseless synthetic bridge signal with four resonance frequencies. In addition an example of
pdf of real bridge signal is demonstrated at Fig. 4.8(c). In the case of sampling pdf learned
from the synthetic signals, the resonance frequencies can be seen clearly. The real signal
contain multiple resonance frequencies at different energy levels and is contaminated by
noise.

The four bridges under test have different resonance frequencies therefore represented by
different energy spectral densities (Fig. 4.8). The learned pdf is obtained by 4.6 according
the bridge structure data. The sampling distribution is illustrated using histogram of
spectral coefficients for 40% sampling rate (Fig. 4.9) for each bridge. The sampling pattern
is implemented for optimizing CS reconstruction performance. In the conventional CS, the
sampling distribution is uniform across the entire scene.
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Figure 4.8: Sampling data pdf (I' 4.6) obtained from EGCS learning approach based on
different type of bridge resonance measurement signals:

(a) Noiseless synthetic bridge signal with two resonance frequencies (“Bridge01”)

(b) Noiseless synthetic bridge signal with four resonance frequencies (“Bridge02”)

(c) Real and noisy bridge signal (“Bridge03”)

(d) Noisy synthetic bridge signal with two resonance frequencies (“Bridge04”)
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Figure 4.9: Example of EGCS sampling histogram at 40% sampling rate guided by learned
pdfs of different bridges. The EGCS learned sampling distribution follows the data energy
spectral densities (Fig. 4.8) to optimize CS reconstruction. In the conventional CS case,
the sampling is uniformly distributed, not considering underlying data.

(a) Noiseless synthetic bridge signal with two resonance frequencies (“Bridge01”)

(b) Noiseless synthetic bridge signal with four resonance frequencies (“Bridge02”)

(c) Real and noisy bridge signal (“Bridge03”)

(d) Noisy synthetic bridge signal with two resonance frequencies (“Bridge04”)
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4.3.4 Bridge Structure - Experimental Results and Discussions

In the first set of experiments, a reconstruction performance evaluation is performed at
different compression rates. The analysis is performed with four signals:

e noiseless synthetic bridge signal with two resonance frequencies (“Bridge01”)
e noiseless synthetic bridge signal with four resonance frequencies (“Bridge02”)
e real and noisy bridge signal (“Bridge03”)

e noisy synthetic bridge signal with two resonance frequencies (“Bridge04”)

Examples of fully sampled data in the time domain used for the experiments, are shown
in Fig. 4.10.

The reconstruction performance is evaluated by computing the signal-to-noise ratio of
each signal at a wide range of compression rates (75% - 99%). For comparison, reconstruc-
tion of conventional CS at the same conditions is provided as well.

Based on the SNR vs. compression rate plot shown in Fig. 4.11, the SNR achieved
using the learning process based on data energy spectral distribution method outperforms
significantly conventional CS through the entire tested sampling rate and for the different
signals. The average difference between the EGCS and conventional CS for the tested
sampling rate of 75%-99% is: “Bridge01” 38.4 dB, “Bridge02” 28 dB, “Bridge03” 8 dB
and “Bridge04” 20 dB.

For visualization purposes, several examples of signal reconstruction in high compres-
sion rate (85% and 95%) are shown in Fig. 4.12. To emphasize the reconstruction perfor-

mance and since the signal contains many samples, a zoom-in presentation is presented in
Fig. 4.13.

The reconstruction examples demonstrated that signal reconstruction based on learn-
ing the data energy spectral distribution method provides very high reconstruction quality.
The synthetic bridge signal with two resonance frequencies (“Bridge01”) is almost perfectly
reconstructed at 95% compression rate which means only 5% of data is used. The noise con-
taminated reconstruction of the same signal (“Bridge04”) shows slightly lower reconstruc-
tion performance but still excellent performance at very high compression rate. The more
complicated signal - synthetic bridge signal with four resonance frequencies (“Bridge02”)
shows also very high reconstructed quality at 95%. The proposed method achieved very
high signal reconstruction performance even for the real noisy bridge signal (“Bridge03”)
which contains multiple resonance frequencies and is contaminated by noise.
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Differently from the conventional CS which distribute the samples uniformly across
the spectrum, the EGCS sampling distribution follows the data energy spectral densities
(Fig. 4.10) to optimize CS reconstruction.

Bridge Structure - summary

The main objective in bridge structure application, is reducing data volume significantly
while maintaining data integrity. The system selects a sub-set of spectral coefficients to
have a compressed representation of the data. The data is structured in the frequency
domain with distinct resonance frequencies which are typical to a specific bridge structure.
While CS method under-sample the entire spectrum randomly and uniformly distributed,
EGCS under-sample spectral coefficients randomly and guided by a learned distribution.
Therefore, and supported by test results (4.3.4), EGCS achieves much better compression
rates compared to conventional CS, at similar reconstruction performance.
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Figure 4.11: SNR vs. compression rate for bridge resonance measurements signals ob-
tained from EGCS learning approach based on different type of bridge resonance data sets
compared to conventional CS. SNR achieved using the learning process based on data en-
ergy spectral distribution method outperforms significantly conventional CS through the
entire tested sampling rate and for the different signals. The average difference between
the EGCS and conventional CS for the tested sampling rate of 75%-99% is: “Bridge01”
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38.4 dB, “Bridge02” 28 dB, “Bridge03” 8 dB and “Bridge04” 20 dB:

(a) Noiseless synthetic bridge signal with two resonance frequencies (“Bridge01”),
(b) Noiseless synthetic bridge signal with four resonance frequencies (“Bridge02”),
(c) Real and noisy bridge signal (“Bridge03”),

(d) Noisy synthetic bridge signal with two resonance frequencies (“Bridge04”)
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Figure 4.12: Signal reconstruction of bridge resonance measurement data:

(a) Synthetic bridge signal reconstruction at 95% compression rate with two resonance
frequencies (“Bridge01”),

(b) Synthetic bridge signal reconstruction at 95% compression rate with four resonance
frequencies (“Bridge02”),

(c) Real noisy bridge signal reconstruction at 85% compression rate (“Bridge03”),

(d) Synthetic bridge noisy signal reconstruction at 95% compression rate with two reso-
nance frequencies (“Bridge04”)
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Figure 4.13: Zoom-in signal reconstruction of bridge resonance measurement data. The
BLUE color is the original signal while RED is the reconstructed signal.

The synthetic bridge signal (“Bridge01”) is almost perfectly reconstructed where only 5%
of data is used. The noise contaminated reconstruction of the same signal (“Bridge04”)
shows slightly lower reconstruction performance. The synthetic bridge signal with four res-
onance frequencies (“Bridge02”) shows also very high reconstructed quality at 95%. EGCS
achieves very high signal reconstruction performance even for the real noisy bridge signal
(“Bridge03”) which contains multiple resonance frequencies and is contaminated by noise:
(a) Synthetic bridge signal reconstruction at 95% compression rate with two resonance
frequencies (“Bridge01”),

(b) Synthetic bridge signal reconstruction at 95% compression rate with four resonance
frequencies (“Bridge02”),

(c) Real noisy bridge signal reconstruction at 85% compression rate (“Bridge03”)

(d) Noisy synthetic bridge signal reconstruction at 95% compression rate with two reso-
nance frequencies (“Bridge04”)
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Chapter 5

Nonparametric Indirect Learning
Approach to Sampling Pattern
Generation

As previously shown (4) the direct learning approach is efficient for optimizing sensing
probability density for improving compressive sensing reconstruction performance. As
previously described, the direct learning approach relays on learning the nonparametric
model directly based on underlying data. However, in many situations, the areas of interest
within the signal are not characterized directly by the data itself, but by an indirect
derived product of the data. For example, objects of interest within an image may be
characterized by the structural characteristics with highly salient features. In this chapter,
an indirect learning approach based on saliency in the spatial domain, with applications
to robotic vision and fluorescence microscopy, will be explored to illustrate the usefulness
of such data-adaptive approaches. The core of this indirect learning approach is based
on learning an optimized mapping between sampling probability and derived features.
Since we are primarily interested in preserving such salient characteristics when aiming to
achieve high reconstruction performance, one can learn the model indirectly via extracting
derived features and then learn a nonparametric model for the features in order to optimize
reconstructed image quality.
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5.1 Spatial Domain Saliency-guided Sparse Measure-
ments Model

To address this important issue, a saliency-guided sparse measurements model is proposed
that makes use of these saliency characteristics of objects of interest to improve the per-
formance of CS systems for data reconstruction under such practical scenarios.

Consider the scene being measured using a measurement system to contain R x C
sampling locations organized in a finite, separable, rectangular lattice QQryxc, with the
measured value at each sampling location (2.21), where the sampling domain is the spatial
domain Qpyc € R2. Subsequently, Q¢ is partitioned into two complementary sets Qr
and €27 such that

Qpxe = Qr U QS with Qr N Q5 =0, (5.1)

whose cardinalities are equal to #7 = T and #€5 = RC — T, respectively. The subset
(27 denotes sampled locations and 2. denote unsampled locations. Subset (27 is generated
based on a function I'(r,c) that provides a quantitative measure of saliency at sampling
location (7, ¢)

I'(r,c) — [0,1] V(r, c) (5.2)

where I'(r, ¢) returns a sparsity level value between 0 and 1 for every location (r, c).

The image function f(r,c) : Qrxc — Ris assumed to be bounded, i.e., max, . |f(r, ¢)| <
00, given that it represents discrete quantized pixel values. Let {ox }HL, denote a collection
of M < RC' discrete sampling functions. The linear measurements of f can be described
in a general form (2.22) or in a more compact vector form

Yo =% [+ € (5.3)

where f € RE*! is a concatenated version of the original image and where ¢! is the
sampling function ¢; transpose. In the case of a saliency-guided sparse measurements
model, when M < RC, the sampling basis is modified to account for the lack of observations
at locations in 2% the sparse sampling function is:

or(r,c), if (r,c) € Qr,
,C) = 54
(7€) {0, if (r,c) € Qf. (5:4)

Consequently, the saliency-guided sparse measurements model is defined in (3.8), where
¢, values are realizations of a random variable z whose probability density pr which is

defined in (3.9) and where pg(z) = N (2|0, 1).
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5.2 Indirect Learning Model in the Spatial Domain

Assume that saliency can be quantified based on structural variations. Given that salient
objects of interest within a scene can have structural characteristics at different scales, it
would be useful to quantify such variations using a multi-scale approach. Therefore, in the
proposed realization, a saliency map S(r,c) [71] is constructed where high values reside at
locations (r, ¢) for situations characterized by large variations at different scales based on a
multi-scale extension of the spectral residual approach [71]. In this extended approach, the
log-spectrum is analyzed in the spectral domain at different scales to extract the spectral
residual at that scale. Therefore, the saliency map S, (7, ¢) is created according the spectral
residual approach [71] for every scale sc =1,2,---q.

Finally, saliency maps from all scales are fused to obtain the final saliency map S(r, c¢):

S(r,c) = E{Ss(r,c)},sc=1,2,---q (5.5)

where E {.} denotes the fusion function (the average in this case) and ¢ is the number of
scales. In this practical realization, ¢ = 3 provides strong results.

The saliency map is then clustered into R clusters 6;, i = {1,..., R} with common
saliency properties [l] implemented by using the Hill-Climbing algorithm [1, 72].

For this practical realization, based on the obtained saliency map, let us define the
continuous saliency function I'(r, ¢) (5.2):

D(r,c) = G(O), G(O") € [0,1] Vi={l,...,R} (5.6)

where G(0) returns a sparsity level value between 0 and 1 and is a function of the cluster
0; index sorted by the cluster mean, which is the average saliency of region i. G(6!') can
be selected to be a function that emphasizes high saliency more then lower salient levels.
All measurement locations that are not sampled due to sparse sampling are grouped into
2%.. The collection of all sampled locations are included in Q.

Through this saliency learning stage, a conventional CS procedure is used where f(r, c)
is sampled by sparse ¢ (r,c¢) with the probability density pr (3.9) where I' represents
uniform distribution that results in very few samples being acquired. The probability
density of ¢k (r,c), denoted by pr, is defined as a Gauss-Bernoulli distribution, where
pr(z) = 0 with probability (1 — 7) and pr(z) is Gaussian distributed with probability 7.
In this saliency learning stage, 7 is selected to be 0.1 (90% compression rate) at the first
stage. Therefore, pr is defined accordingly (5.7) for this example:

pr = 0.9T §(2) + 0.1T N(2[0, 1), (5.7)
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In practical implementations the value for 7 is restricted to minimum value that will still
produce useful information which is application depended. If there will be to many samples
allocated for the saliency learning stage, there will be not sufficient number samples for
the second stage. Therefore, for this realization, the minimum value for 7 is selected to be
0.1 (representing 90% compression rate) as the maximum compression rate where CS can
still produce reasonably reconstructed data. The samples from the first stage are reused in
the second stage. In extreme cases where the requiered sampling rate is lower than 10%,
half of the allocated samples will be used for the first stage and the rest will be used for
teh second stage.

5.3 Realization of Saliency-guided Modeling Approach
in Spatial Domain

In this practical realization of the proposed model and based on the aforementioned saliency
function and probability density distributions, the proposed saliency-guided sampling pro-
cess can be implemented in two stages. In the first stage, which we will refer to as the
saliency learning stage (5.2), a rough saliency map of the scene based on the reconstructed
image using data from the first stage is computed. Hence, a subset Q7 (3.1) is determined
using uniform distribution under-sampling for this saliency learning stage.

In the second stage, f(r,c) is sampled by ¢k (r, c) with pdf pr(3.9) to measure regions
of high saliency with higher accuracy where I' is determined through learning. In this
practical realization, G(0) can be selected as a parametric function or as an optimized
nonparametric function (3.14). The mapping function G is a function of cluster 6; index
sorted by the cluster mean, which is the average saliency of region i. The parametric
function was selected to be logarithmic to emphasizes high saliency more than lower salient
levels while the nonparametric function is optimized by MCMC process (3.4.2).

The samples from subset 27 are used to create the sampling basis ¢y, with the
acquired samples used to reconstruct the image at a higher reconstruction accuracy than
the one obtained in the first stage.

To reconstruct the image, an ¢1-based total variation minimization approach was em-
ployed [120]. The noise-free image f can be approximated via the following ¢1-based total
variation minimization formulation:

) 1
axgmin { A v, + 51197 = o1} 5:5)
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where || - ||y, denotes the ¢1-based anisotropic total variation norm defined by [9]:
i

R-1C-1
||='U||TV11 = Z Z {@re = Trprel + e — Trenal}, T € R (5.9)
r=0 c=0
where A > 0 is a regularization constant, and where || - || stands for /5 norm defined by

(5.10)

The minimization problem can be solved using the fast iterative shrinkage-thresholding
algorithm (FISTA) [0, 10].

5.3.1 3D Laser Measurements

The measurement of height/depth information is used in many applications such as parts
inspection [70], reverse engineering, production validation [13], object recognition, object
registration [12], and others [20]. Industrial systems use range measurement machines for
manufacturing and quality assurance. Traditionally, mechanical systems were implemented
for range measurement purposes. However, the use of optical measurement systems such as
laser measurement systems for range measurements have become increasingly popular and
widespread, and has been a strong focus for research in the last several decades [13, 20].

Range sensing and measuring is in general a time consuming process, especially if
high resolution is required. Laser range measurement has made its progress from single
light-spot scanning to a complex coded pattern that speeds up the scanning operation
[29]. Despite the reduced scanning time achieved using complex coded patterns, single
light-spot scanners have several important advantages over complex coded pattern-based
systems. First, single light-spot scanners avoid geometry discontinuity due to occlusion that
commonly affects the quality of complex coded pattern-based systems. Second, single light-
spot scanners have a less complicated implementation. Therefore, the ability to acquire
laser range data using single light-spot scanners in a highly efficient manner is desired
for achieving high speed, high quality data acquisitions while maintaining low system
complexity.

For the 3D laser measurements realization, a simplified version of saliency-guided ap-
proach in spatial domain was implemented, where saliency guided function is binary in
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nature and not multi-scale (5.3). This simplified version is used where images are less com-
plicated scenes. In other words the saliency function I'(r, ¢) has a value of 1 at location (r, ¢)
for situations characterized by large spatial range variations, based on a frequency-tuned
saliency map strategy [2] and 0 otherwise. The saliency function used in this simplified
binary version is:

L(r,e) =1, if S(r,c) > 1, ¥Y(r,c) (5.11)

where

S(r,e) = |1, —I(r,c)| (5.12)

and where [, is the mean, I(r,¢) is the corresponding vector of the Laplacian of the
Gaussian filtered image, and 7 is the threshold value (set at two times the mean saliency
S(r,c) of a given image [2]).

In the first experiment, reconstruction performance was evaluated in situations where
the measurements were free of noise. In the second experiment, reconstruction performance
was evaluated in situations where the measurements were contaminated by different levels
of noise. In the third experiment, a reconstruction repeatability test was performed to
evaluate the consistency of reconstruction performance using the proposed approach.

Experimental Setup

The first three experiments were performed with 35 laser range datasets from the Na-
tional Research Council (NRC) Three-dimensional Image Data Files [110] database. The
measurement system used by the NRC institute is based on triangulation through a syn-
chronized laser scanning apparatus that was developed at the Division of Electrical Engi-
neering at the NRC [116]. The NRC database contained two data structures: i) raw data,
and ii) interpolated data (z). Due to the scanner geometry (curved), the raw data exhibits
distortion. The interpolated data provided by the NRC compensates for this geometry dis-
tortion, providing a symmetric lattice with corresponding height values. For experimental
purposes, interpolated data was used with horizontal and vertical resolutions Az and Ay
in the range of 0.5mm - 2.0mm. Examples of fully sampled images (where each sampling
location is measured) from the NRC range image database, along with corresponding noise
contaminated versions used for the second experiment, are shown in Fig. 5.1 - Fig. 5.4.

Experiment 1 - Noiseless Range Measurements

In the first experiment, the reconstruction performance was evaluated in the situation
where the measurements were free of noise. This was achieved via a parametric analysis
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(a) (b)

Figure 5.1: Example laser range measurement image used for testing (‘comb’):
(a) Original fully sampled range measurements, (b) Noisy range measurements (standard
deviation = 2%)

by computing the signal-to-noise ratio (SNR) of the reconstructed image for a wide range
of compression rates, where the compression rate p is defined as one minus the ratio
between the number of sampling locations measured and the total number of sampling
locations. Therefore, the higher the compression rate achieved, the fewer the number of
range measurements made. For illustrative purposes, the SNR was measured for images
reconstructed across the range of 0% - 90% compression rates.

From the SNR vs. compression rate plot shown in Fig. 5.5(a), the SNR achieved using
the conventional CS approach decreases almost linearly between p=0% and p=90%. On
the other hand, the SNR achieved using the proposed saliency-guided sparse measurements
model remains largely consistent between p=0% and p=70%, only decreasing noticeably
from p=70% and p=90% due to insufficient salient samples at such a high compression rate.
Furthermore, the SNR achieved using the proposed model is significantly higher than the
one achieved using the conventional CS approach for all compression rates. Alternatively,
the proposed model can achieve the same SNR value at a compression rate of p=70% as
that achieved by the conventional CS approach at a significantly lower compression rate
of p=3%.
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(a)

Figure 5.2: Example laser range measurement image used for testing (‘tools’): (a) Original
fully sampled range measurements, (b) Noisy range measurements (standard deviation =

2%).

Experiment 2 - Noisy Images Reconstruction

In the second experiment, the reconstruction performance was evaluated in the situation
where the measurements made were contaminated by noise. For testing purposes, the
SNR was measured for images reconstructed under two different noise levels (additive
white Gaussian noise with standard deviations of 2% and 3% of the dynamic range) across
the range of 0% - 90% compression rates.

From the SNR vs. compression rate plots shown in Fig. 5.5(b) (Gaussian noise with
standard deviation of 2%) and Fig. 5.5(c) (Gaussian noise with standard deviation of
3%), as with the first experiment, the conventional CS approach achieves SNR that is
significantly lower than the one achieved using the proposed model. For example, at
the same compression rate (72% for example), the saliency-guided model outperforms the
conventional CS approach by 18 dB (32 dB vs. 14 dB) for Gaussian noise with a standard
deviation of 2%. Similarly, in the case of Gaussian noise with a standard deviation of 3%,
the saliency-guided model outperforms the conventional CS approach by 14 dB under the
same compression rate scenario.

Finally, a comparison of the proposed model’s reconstruction performance at different
noise levels is shown in Fig. 5.5(d). The overall SNR is above 28 dB for all noise levels for
compression rates from 0% to 70%, thus illustrating the high level of reconstruction perfor-
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(b)

Figure 5.3: Example laser range measurement image used for testing (’doll’): (a) Original
fully sampled range measurements, (b) Noisy range measurements (standard deviation =

2%).

mance achieved using the proposed saliency-guided sparse measurements model. Fig. 5.6
provides complementary perspective for comparing the two models performance at differ-
ent noise levels and at 50% compression rate. The saliency-guided model outperforms CS
consistently through the entire selected noise range of 0-5%. While that at noise levels
above 3%, saliency-guided performance is decreasing faster than in lower noise levels.

Experiment 3 - Reconstruction Repeatability Tests

Since there are stochastic processes embedded in the proposed model, reconstruction re-
peatability tests were performed to validate that consistent performance can be achieved.
This is achieved by repeating the proposed approach 35 times for the noisy case with
Gaussian noise of 2% standard deviation at 80% compression rate. As shown in Fig. 5.7,
the SNR of the reconstructed data is very consistent with an average SNR of 27.8 dB and
variance of 3.3 dB.

Experiment 4 - Reconstruction Examples

In order to visualize the reconstruction performance of the proposed model, several exam-
ples of reconstructed data are presented in Fig. 5.8 - Fig. 5.15.

Fig. 5.8 demonstrate reconstruction at 70% compression rate and noise-free measure-
ments. The image produced using the proposed model contains significantly more impor-
tant details than the conventional CS approach. This is most evident in the lack of threads
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(a) (
Figure 5.4: Example laser range measurement image used for testing ('nuts and bolts’):

(a) Original fully sampled range measurements, (b) Noisy range measurements (standard
deviation = 2%).

b)

on the bolts in the image constructed using the conventional CS approach, which is well
captured in the image produced using the proposed model.

Fig. 5.9 and Fig. 5.10 are two images ("tools” and ’comb’) at 70% compression rate and
noisy measurements with noise standard deviation of 2%, while Fig. 5.11 shows the ’comb’
image at the same compression rate but with noise standard deviation of 3%. Even under
noise, the proposed model produces images that capture significantly more detail than the
one produced by the conventional CS approach. This is most evident in the scissors in
the ’tools’ image, where the scissor appears disjointed in the image produced using the
conventional CS approach while maintaining its structure in the image constructed using
the proposed model. Similarly, in the 'comb’ image, the teeth of the comb are well captured
using the proposed model when compared to the conventional CS approach.

Fig. 5.13 and Fig. 5.14 shows the reconstructed images from noisy measurements with
noise standard deviation of 2% at 75% and 80% compression rates, respectively. Even
under the higher compression rates, the proposed model produces images that capture
significantly more detail than the one produced by the conventional CS approach.

Fig. 5.15 shows the sampling distribution across the 'comb’ image for the conventional
CS approach and the proposed approach respectively. White pixels represent locations
that are not sampled (80% of the pixels in this case). In contrast to the conventional CS
approach where samples are distributed uniformly, the proposed saliency-guided approach
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Figure 5.5: Noiseless image reconstruction at different compression rate ('nuts and bolts’):
(a) SNR vs. compression rate for noiseless range measurements,

(b) SNR vs. compression rate for range measurements contaminated by Gaussian noise
with standard deviation of 2%

(c) SNR vs. compression rate for range measurements contaminated by Gaussian noise
with standard deviation of 3%

(d) SNR vs. compression rate comparisons for different noise levels
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Figure 5.6: SNR vs. noise level at 50% compression rate
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Figure 5.7: Repeatability test for saliency-guided reconstruction over 35 trials at 80%

compression rate and Gaussian noise with standard deviation 2%. The SNR of the re-

constructed data is very consistent, with an average SNR of 27.8 dB and variance of 3.3
dB.

distributes the samples according to the object of interest. Regions of high saliency are
sampled densely while all other regions are sampled sparsely. As such, the proposed ap-
proach have low sampling frequency in the background (where few samples are needed for
accurate reconstruction) and high sampling frequency around the object of interest (where
more samples are needed for accurate reconstruction).
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Figure 5.8: Noiseless image reconstruction at 70% compression rate (‘nuts and bolts’)
(a) CS reconstruction, (b) Saliency-guided CS reconstruction

Figure 5.9: Noisy image (standard deviation of 2%) reconstruction at 70% compression
rate (’tools’):
(a) CS reconstruction, (b) Saliency-guided CS reconstruction
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(a) (b)
Figure 5.10: Noisy image (standard deviation of 2%) reconstruction at 70% compression
rate (‘comb’):

(a) CS reconstruction, (b) Saliency-guided CS reconstruction

(a) (b)

Figure 5.11: Noisy image (standard deviation of 3%) reconstruction at 70% compression
rate ('comb’):
(a) CS reconstruction, (b) Saliency-guided CS reconstruction

70



(a) (b)
Figure 5.12: Noisy image (standard deviation of 2%) reconstruction at 60% compression
rate ("comb’):

(a) CS reconstruction, (b) Saliency-guided CS reconstruction

(a)

Figure 5.13: Noisy image (standard deviation of 2%) reconstruction at 75% compression
rate ('doll’):
(a) CS reconstruction, (b) Saliency-guided CS reconstruction
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(a) (b)
Figure 5.14: Noisy image (standard deviation of 2%) reconstruction at 80% compression
rate (‘comb’):

(a) CS reconstruction, (b) Saliency-guided CS reconstruction

250 260

200 200

50

o (b)

Figure 5.15: Samples distribution at 80% compression rate:
(a) uniformly under-sampled, (b) Saliency-guided under-sampled
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5.3.2 Robotic Vision

Robots are evolving from being remotely controlled to become fully autonomous. An ex-
ample of a fully autonomous robot can be the mars exploration rovers [99] developed for
navigating, sampling, and mapping regions of planet Mars. Robot localization is a key fac-
tor allowing autonomous navigation capabilities [36]. Autonomous robots can maintain an
ongoing estimate of their location and orientation with respect to its environment through
a localization process. Autonomous robots create maps of its environment, find current
location, avoid obstacles, and navigate according to a planned path toward the target [133].
Measurement sensors are an important core part of robot localization [17, 50], of which
laser range finders and cameras are commonly used as sensing devices [37]. Robotic local-
ization is a multidimensional problem that can be complex to solve in real-time due to the
amount of data that needs to be processed [137]. Even though many aspects of high dimen-
sionality have been investigated [05], the large amount of data that needs to be acquired
and processed constantly during robotic navigation makes this task challenging, especially
in outdoor land-based [(0], aerial [77], and underwater [101] environments. Natural objects
in outdoor environments such as trees, residential construction, and even indoor objects
such as furniture and staircases are complex and vary greatly in size, shape, orientation,
and texture, and therefore require higher range measurement resolution. However, higher
laser range measurement resolution can significantly effect acquisition and processing time.

The robotic vision tested images are more complected and contains much more fine
details compared to the 3D laser measurements (5.3.1) tested scenes. Therefore, the
multi-scale saliency-guided approach (5.3) in spatial domain was implemented. For the
experiments at this stage, the mapping function G was selected to be logarithmic function
(5.3).

In the first experiment, reconstruction performance was evaluated at different com-
pression rates. In the second experiment, reconstruction performance was evaluated the
situations where the measurements were contaminated by different levels of noise.

Experimental Setup

The experiments were performed with indoor and outdoor laser range data sets from Brown
University range image database [105]. The laser range data in the Brown database were
acquired using the Riegl LMS-Z210 laser range-finding apparatus with a rotating mirror.
Each range image consists of 444x1440 measurements (each measurement based on time
of flight of laser beam) with an angular separation of 0.18 degrees, resulting in a field of
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view of 80 degrees vertically and 259 degrees horizontally. The operational range is around
2-200m.

Examples of fully sampled data (where each sampling location is measured), along with
corresponding noise contaminated versions used for the second experiment, are shown in
Fig. 5.16 - Fig. 5.18.

(a)

Figure 5.16: Example laser range measurement image used for testing (’office’):
(a) Original fully sampled range measurements, (b) Noisy range measurements (standard
deviation = 3%).

Experiment 1 - Reconstruction at Different Compression Rates

In the first set of experiments, a parametric analysis is performed to evaluate the recon-
struction performance of the proposed method at different compression rates. This is
achieved by computing the signal-to-noise ratio (SNR) of the reconstructed image for a
wide range of compression rates. Within the context of CS, the compression rate p is de-
fined as one minus the ratio between the number of measured sampling locations and the
total number of sampling locations. Hence, a higher compression rate means that fewer
range measurements are made. The SNR was measured for noiseless images reconstructed
via the tested methods for the compression rate range of 0% - 90%.

Based on the SNR vs. compression rate plot shown in Fig. 5.19, the SNR achieved
using the conventional CS approach is significantly lower than the one achieved using
the proposed saliency-guided sparse measurements model across all compression rates.
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Figure 5.17: Example laser range measurement image used for testing ('cabinet’):
(a) Original fully sampled range measurements, (b) Noisy range measurements (standard
deviation = 4.7%).

Another way of looking at it is that the proposed model can achieve the same SNR value
at higher compression rates than the value achieved by the conventional CS approach at a
significantly lower compression rates.

Experiment 2 - Noisy Images Reconstruction

In the second set of experiments, the reconstruction performance of the proposed model
is evaluated at different noise levels (additive Gaussian noise of 1.5% and 15.5% of the
dynamic range). Fig. 5.20 shows that the proposed multi-scale saliency guided model with
continuous saliency function I'(r, ¢) (5.6) outperforms both the conventional CS approach
and the recent binary saliency-guided model (5.11) proposed in [130] at all noise levels. This
illustrates the noise robustness of the proposed model, which is important in real-world
scenarios where the measurements made are noisy.

Reconstruction Examples

For visualization purposes, several examples of indoor and outdoor reconstructed laser
range data are shown in Fig. 5.21 - Fig. 5.23.
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Figure 5.18: Example laser range measurement image used for testing ("house’):
(a) Original fully sampled range measurements, (b) Noisy range measurements (standard

deviation = 4.7%).

Multi-Scale SGCS SNR vs Comprassion rate (Noiseless Image 2)

Multi-Scale Saliency-guided G5

WIEI Z‘EI S‘D A‘EI SIEI E;] ?IEI E‘EI 20
Compression rate [%]

Figure 5.19: SNR vs. compression rate for noiseless range measurement. SNR achieved

using the conventional CS approach is significantly lower than the one achieved using the

proposed saliency-guided sparse measurements model across the entire compression rates

range. Alternately, the saliency-guided model achieves the same SNR value at much higher

compression rates compared to the conventional CS approach.

Fig. 5.21 demonstrates noiseless measurements reconstruction at 70% compression rate.
The image produced using the proposed model contains significantly more important details
than the conventional CS approach. This is most evident in the lack of fine details in the
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Multi-Scale Reconstruction %'s Noise at 75% compression rate (Image 2)
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Figure 5.20: SNR vs. noise level at 75% compression rate for the multi-scale saliency guided
model with continuous saliency function I'(r,¢) (5.2), outperforms both the conventional
CS approach and the binary saliency-guided model (5.11) at all noise levels.

tree as well as windows and roof frames in the image constructed using the conventional
CS approach, which is well captured in the image produced using the proposed model.

Fig. 5.22 is a reconstructed images ("cabinet’) at 70% compression rate and with noise
standard deviation of 5%, while Fig. 5.23 shows the ’office’ reconstructed image at 75%
compression rate and with noise standard deviation of 3% . Even using noisy measure-
ments, the proposed model produces images that capture significantly more detail than the
one produced by the conventional CS approach. This is most evident in the 'office’ image,
where objects on the desk and drawer handles are largely missing in the image produced
using the conventional CS approach compared to the proposed model.

5.3.3 Fluorescence Microscopy

Fluorescence is broadly used in many biological microscopy applications such as single
molecular studies of individual proteins and living cells, in-vivo tracking of targets using
fluorescent labeling, and molecular associations in live cells [108]. One key advantage
of fluorescence microscopy is its inherently greater optical sensitivity and dynamic range
in comparison to other methods based on optical density changes or chemiluminescent
emission [108]. Fluorescence microscopy approaches are usually categorized by the way in
which excitation light is delivered to the sample: i) wide-field and structured illumination,
ii) surface illumination, and iii) scanning illumination. One of common most approaches in
fluorescence microscopy is scanning confocal microscopy, where the sample is scanned by
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Figure 5.21: Noiseless image reconstruction at 70% compression rate ("house’):
(a) CS reconstruction, (b) Saliency-guided CS reconstruction

a laser in two dimensions to reconstruct the image [106]. One drawback to confocal scan
microscopy is its inherent slow acquisition speed since the image is been acquired pixel-
by-pixel. Furthermore, the quantum efficiencies of common confocal microscopy CCD
detectors is lower [103], resulting in lower signal to noise ratio (SNR). Achieving high SNR
is of particular interest in biological fluorescence microscopy since the reflective index of
cells is similar to water which forms the background. Therefore, the intensity difference
between the regions of interest and the background is low and sensitivity to noise is high.

To deal with the issue of SNR, many physical noise reduction methods have been
developed for fluorescence microscopy. Such methods include: reducing unwanted room
background light, reducing unwanted fluorescence emission through a diaphragm that fil-
ters reflections or scattering light path [71, 157], time-gated imaging [33, 34, 35] using short
laser pulses for sample illumination, as well as minimizing illumination time. Another way
to improve SNR is maximizing signal cleanliness through specialized lenses [110].

Another issue that can affect SNR is the chemical destruction phenomenon known as
photobleaching, where higher illumination levels beyond the fluorescence saturation point
do not contribute to signal amplitude but continue to increase background scattering lead-
ing to increased noise levels and SNR degradation [94, 108, 138]. Photobleaching can occur
at timescales of milliseconds to minutes. Common strategies to decrease photobleaching
effects can be by reducing illumination levels, applying specialized filters and lenses, and
using less sensitive fluorophore [103, , |. The combination of very weak fluorescence
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Figure 5.22: Noisy image (standard deviation of 5%) reconstruction at 70% compression
rate ('cabinet’):
(a) CS reconstruction, (b) Saliency-guided CS reconstruction

signal (1075 of the level of excitation light that produced it [106]) and photobleaching ef-
fects that limits the excitation light levels provides low SNR. Those limitations can lead
to laser confocal microscopy that needs to measure 10-20 photons from brightest pixels in
the image and as low as zero or one photon from the background [106]. Beyond physical
methods, computational methods have been attempted reduce noise levels through image
filters such as anisotropic diffusion and wavelet thresholding [98, 107, 123].

One promising approach for improving acquisition speed while maintaining low system
complexity and high reconstruction quality for fluorescence microscopy is the concept of
compressive fluorescence microscopy (CFM) [91, 92, 141, 153]. CFM makes use of com-
pressive sensing (CS) theory, which allows for greatly reduced fluorescence microscopy
acquisition times through the use of sparse measurements (samples). The theory of com-
pressive sensing (CS) provides an unambiguous proof that discrete signals, which represent
a sparse representation in the domain of a suitable linear transform, can be accurately
recovered from their sub-Nyquist measurements [3, 18, 19, 42, 51]. Such reconstructions
can be performed through solution of a convex optimization problem, which maximizes the
sparseness of the signal representation coefficients subject to a set of measurement con-
straints. In such cases, the measurement constraints are derived from a signal /image acqui-
sition model. This model normally describes the measurements as a (noise-contaminated)
sequence of inner products between the quantity of interest and the elements of a sampling
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Figure 5.23: Noisy image (standard deviation of 3%) reconstruction at 75% compression
rate (‘office’):
(a) CS reconstruction, (b) Saliency-guided CS reconstruction

basis. Wu et al. [153] demonstrated the applicability of CFM in fast optical-sectioning
imaging. Studer et al. [111] demonstrated the use of CFM for fast hyperspectral imaging.
In addition to tackling the issue of acquisition speed, Marim et al.[91, 92] recently proposed
a CFM system for improving SNR by fusing multiple CFM reconstructions.

To implement the ensemble of saliency-guided reconstructions for data fusion, an addi-
tional stage is added to the saliency-guided approach in spatial domain (5.3) implementa-
tion. This additional stage is the ensemble expectation merging stage for fusing multiple
reconstructions and improving fluorescence microscopy SNR. At this stage, the final recon-
struction f is computed via ensemble expectation merging [92]:

F=E{f} t=tits- 1, (5.13)

where F'{.} denotes average, f; is the image reconstruction at ¢,t = ty,tq,--t, and n is
the ensemble size. Similarly to the 3D laser measurements realization, a simplified version
of saliency-guided approach in spatial domain was implemented (5.11).

In the first experiment, reconstruction performance was evaluated in the situation where
the measurements made were contaminated by different levels of synthetic noise. In the sec-
ond experiment, reconstruction performance was evaluated at different compression rates.
In the third experiment, reconstruction performance of real noisy fluorescence microscopy
data was evaluated.
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Experimental Setup

The experiments were performed with existing fluorescence microscopy data sets provided
by [115]. Five data sets where used for the synthetic noise experiments: YRC PIR ID:
5, 12, 27, 62 and 64. The data sets are largely noiseless, and have the following imaging
settings: pixel size: 0.12758 pm x 0.12758 pm, objective: 100x and image size 512x512.
In addition, three noisy data sets were used for the real noise experiments: YRC PIR ID:
3499, 5352 and 8565. The data sets contain time series of at least 10 images, with the
following imaging settings: pixel size: 0.12758 pm x 0.12758 pum, objective: 100x and
image size 512x512.

Examples of fully sampled data (where each sampling location is measured), along
with corresponding noise contaminated versions used for the first experiment, are shown
in Fig. 5.24 and Fig. 5.25. Fully sampled real noisy images are shown in Fig. 5.26.

Experiment 1 - Noise Sensitivity Tests

In the first experiment, a comparison of the proposed Saliency-guided sparse reconstruction
ensemble fusion (SSREF) model’s reconstruction performance vs. noise levels (additive
white Gaussian noise) with different ensembles is shown in Fig. 5.27. Up to 4% noise
standard deviation there is insignificant gains from increasing ensemble size. From the
other end, at higher noise level, larger ensemble sizes lead to improved SNR reconstruction,
with a 4dB difference between ensemble sizes of 4 and 7, and 3dB between ensemble sizes
of 7 to 10. Since the ensemble expectation merging oparation has some level of bluring
effect, lower ensemble size produces slidly higher SNR at very low noise levels. It might be
interesting to investigate in the future an improved ensemble expectation merging method.

At this point, an ensemble size of 10 is used for further experiments. A comparison
between the fusion of compressive fluorescence microscopy (FCFM) [91, 92] approach and
the proposed SSREF model’s reconstruction performance at different noise levels is shown
in Fig. 5.28. The compression rate is set to 75%. The proposed model outperforms FCFM
significantly and consistently through the entire selected noise range of 1.5-10%. For ex-
ample, a 11.8 dB difference is observed at 5% noise level and a 4 dB difference is observed
at 10% noise. Fluorescence microscopy images contains structures and definite regions of
interest, especially at the edges of of the objects in the images. Therefore, adjusting the
sampling probability according to underlying data provides improved SNR performance
compared to the FCFM, where the entire scene is considered equally important. At very
high noise level, the saliency map is not performing as well as at lower noise levels to
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identify regions of interest. Therefore, at higher noise levels the SSREF performance is
getting closer to the FCFM reconstruction performance.

Experiment 2 - Compression Rate Sensitivity Tests

In the second experiment, the reconstruction performance was evaluated via a parametric
analysis by computing the signal-to-noise ratio (SNR) of the reconstructed fluorescence
microscopy image for a wide range of compression rates, where the compression rate p is
defined as one minus the ratio between the number of sampling locations measured and the
total number of sampling locations. Therefore, the higher the compression rate achieved,
the fewer the number of measurements made. For illustrative purposes, the SNR was
measured for fluorescence microscopy image, contaminated with 3% standard deviation
noise, reconstructed via ensembles of 10 reconstructions across the range of 0% - 80%
compression rates.

From the SNR vs. compression rate plots shown in Fig. 5.29 (Gaussian noise with stan-
dard deviation of 3%), the FCFM approach achieves SNR that is significantly lower than
the one achieved using the proposed SSREF model. For example, at the same compression
rate (60% for example), the SSREF model outperforms the FCEFM approach by 10.7 dB
(32.5 dB vs. 21.9 dB) for Gaussian noise with a standard deviation of 3%. At 0% com-
pression rate, the FCFM and SSREF achives similar performance, since 100% of samples
are beed used. At very high compression rate, the SSREF is not performing as well as at
lower rates since the initial learning phase do not have sufficient samples to produce useful
information to identify regions of interest. At the mid-compression rate, between 30% and
70%, SSREF achives much better performance compared to FCFM.

To visualize the reconstruction performance of the proposed SSREF model, Fig. 5.30
and Fig. 5.31 demonstrate reconstruction of FCFM as well as the proposed SSREF model at
different levels of synthetic noise. The fluorescence microscopy images produced using the
proposed SSREF model contain significantly more important details than the FCFM ap-
proach. This is most evident in the weak structure definition in the fluorescence microscopy
images constructed using FCFM, which is well captured in the fluorescence microscopy im-
ages produced using the SSREF model. In addition, the proposed model provides improved
noise suppression in the background regions more efficiently than FCFM. SSREF preserves
edges much better in both noise level cases (3% and 5.5%). SSREF reconstruct much better
objects of interest since the sampling distribution is saliency guided while the conventional
CS sample the entire scene by uniform distribution.
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Experiment 3 - Noisy Fluorescence Microscopy Reconstruction Tests
Reconstruction Examples

In the third set of tests, real noisy fluorescence microscopy images were used to compare
reconstruction performance of FCFM vs. the proposed SSREF model Fig. 5.32 - Fig. 5.34.
The proposed SSREF model outperforms the FCFM approach for real noisy images in terms
of image quality namely better structure definition and reduced noise. SSREF preserve
edges of noisy fluorescence microscopy much better than FCFM. For example, elements in
cluster Fig. 5.32 can be identified as separate object at the image produced by SSREF,
while conventional CS reconstruction produced clusters with blurred and noisy edges. It is
most evident that the saliency guided sampling distribution reconstruct regions of interest
such as edges, much better compared to conventional CS approach which sample the entire
scene with uniform distribution.

5.3.4 Learning Nonparametric Sampling Function for Compres-
sive Fluorescence Microscopy

The indirect learning model in the spatial domain (5.2) defines the continuous saliency
function I'(r, ¢) (5.6) where G(6) returns a sparsity level value between 0 and 1 and is a
function of the cluster #; index sorted by the cluster mean, which is the average saliency
of region i. G(0) can be selected to be a function that emphasizes high saliency more
than lower salient levels. In the realization of saliency-guided modeling approach in spatial
domain (5.3), G(#) can be selected to be the logarithmic function of cluster 6;. This loga-
rithmic function emphasizes high saliency more than lower salient levels. The logarithmic
function selection for G(6) was shown to improve reconstruction performance, but is this
arbitrary selection the most efficient choice? In addition this choice is not necessarily an
optimized choice for other type of images.

Construct a sampling pattern based on the nonparametric modeling approach can be ex-
tended for optimizing the model by mapping the extracted features to an optimized pdf
through learning. The function G(0) can be optimized through learning for maximizing
reconstruction performance. In the indirect learning model in the spatial domain (5.2) the
saliency map is clustered into R clusters 6;, i = {1,..., R} with common saliency proper-
ties. In order for optimizing the mapping function G for learning the pdf I', Markov chain
Monte Carlo (MCMC) optimization method (3.14) is selected and implemented through
Metropolis-Hastings sampling algorithm (3.1). By solving this optimization (3.14) one can
maximize the CS reconstruction performance.
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Let define the mapping function G(7;) at iteration i*" where the argument is the Markov
chain sequence z;. Let z7 the initial proposed sequence with initial arbitrary logarithmic
function that showed good results in initial experiments. At step k, a sequence zZ* is
proposed to be assigned to sequence Z; for the mapping function G(Zx) through random
walk chain where z* = Z,_; + w where w come from uniform distribution. An acceptance
parameter « (3.15) with appropriate function A (3.15) for this application, is calculated
(5.14) for each iteration k :

a(z",Zk-1) = min{l, A - exp(SN Ry — SNRf, )} (5.14)
where SN R;;(E*) is the signal to noise ratio of a reconstructed image f, while the sequence
Z* is been used for the mapping function G and X is the regularization parameter. The im-
plementation uses random number w, uniform distributed in the range (0, 1), to implement
the accept/reject method. This random number is compared with the probability criterion
a(zZ*,Zk_1). In other words, if u < «(z*,Zx_1) it is accepted and Z, = Z* is assigned,
otherwise it is rejected and the previous variable in the sequence z; = Z;_; is assigned.
This iterative process is used to find an optimized mapping function G. Since the number
of clusters R might be different for every image or noise level, a continues function G is
estimated that is used an outcome of the learning process.

Experimental Results and Discussions

The sampling function learning process was implemented for fluorescence microscopy im-
ages as well as indoors and outdoors laser range images used for learning an optimized
function GG which is been used as the sampling probability function. Examples of learned
an optimized sampling probability functions are presented at (Fig-5.35 and Fig-5.36) as
well as static log function (Fig-5.37) used as reference.

Reconstruction performance is evaluated for saliency-guided sparse reconstruction through
an optimized function GG that was learned in an initial process. The learned process and
experiments used different images from the same type. In other words, one fluorescence
microscopy image was used for learning and the learned function G is used for other flu-
orescence microscopy images. Similarly for laser range images, one image was used for
learning an optimized G function which is then used for other laser range images. As
reference, the reconstruction based on static log function is presented. This is achieved
by computing the signal-to-noise ratio (SNR) of the reconstructed image for a wide range
of compression rates. Within the context of CS, the compression rate p is defined as one
minus the ratio between the number of measured sampling locations and the total number
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of sampling locations. Hence, a higher compression rate means that fewer measurements
are made. The SNR was measured for noiseless images and compression rate range of 40%
- 80%. Based on the SNR vs. compression rate plot shown in Fig-5.38, the SNR achieved
based on the learned function approach is higher than the one achieved using static log
function across all compression rates, average of 6 dB for fluorescence microscopy image
ID1-1 5.38 (a), average of 4.4 dB for fluorescence microscopy image ID1-4 5.38 (b), average
of 3.5 dB for range measurement indoors image 1D2-7 5.38 (c) and average of 5.7 dB for
range measurement outdoors image ID2-11 5.38(d).

A comparison between reconstruction with static log sampling probability function and
the proposed reconstruction performance which is based on dynamically learned sampling
probability function model at different noise levels is shown in Fig-5.39. The compression
rate is set to 50%. It can be observed that the proposed learning model outperforms the
static logarithmic function through the entire selected noise range. average of 3.1 dB for
fluorescence microscopy image ID1-1 5.39 (a), average of 1.4 dB for fluorescence microscopy
image ID1-4 5.39 (b), average of 1.9 dB for range measurement outdoors image 1D2-7 5.39
(c) and average of 3.7 dB for range measurement outdoors image ID2-11 5.39 (d). It can be
seen that at lower noise level the difference between the two approaches is larger compared
to higher noise levels. It can be interesting to study in the future implementing filters for
the saliency map in order to improve reconstruction performance at higher noise levels.
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(c) (d)

Figure 5.24: Example fluorescence microscopy image used for testing ('ID 127):
(a) Fully sampled data, (b) Noisy measurements (standard deviation = 3%) (c) Noisy
measurements (standard deviation = 5.5%), (d) Noisy measurements (standard deviation

= %)
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Figure 5.25: Example fluorescence microscopy data used for testing (’ID 5):
(a) Fully sampled data, (b) Noisy measurements (standard deviation = 5.5%)
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Figure 5.26: Example fluorescence microscopy measurement image used for testing:

(a) Original fully sampled real noisy fluorescence microscopy measurements ("'ID 8565),
(b) Original fully sampled real noisy fluorescence microscopy measurements (‘1D 3499’),
(¢) Original fully sampled real noisy fluorescence microscopy measurements ('ID 5352’)
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Figure 5.27: SNR vs. noise levels with different ensembles. At higher than 4% standard
deviation noise, larger ensemble sizes lead to improved SNR reconstruction, with a 4dB
difference between ensemble sizes of 4 and 7, and 3dB between ensemble sizes of 7 to 10.
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Figure 5.28: SNR vs. noise level at 75% compression rate and ensemble size of 10. The
proposed SSREF model outperforms FCFM significantly and consistently through the
entire selected noise range of 1.5-10%. For example, a 11.8 dB difference is observed at 5%
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noise level and a 4 dB difference is observed at 10% noise
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Figure 5.29: SNR vs. compression rate for fluorescence microscopy measurements contam-
inated by Gaussian noise with standard deviation of 3%. FCFM approach achieves SNR
that is significantly lower than the one achieved using the proposed SSREF model. For
example, at the same compression rate (60% for example), the SSREF model outperforms
the FCFM approach by 10.7 dB (32.5 dB vs. 21.9 dB) for Gaussian noise with a standard
deviation of 3%
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Figure 5.30: Image ID: 64 with synthetic noise. The fluorescence microscopy images pro-
duced using the proposed SSREF model contain significantly more important details com-
pared to the FCFM approach. SSREF preserves edges much better in both noise level
cases (3% and 5.5%). SSREF reconstruct much better objects of interest since the sam-
pling distribution is saliency guided while the conventional CS sample the entire scene with
uniform distribution:

(a) FCFM reconstruction at 75% compression rate and 3% noise level, (b) SSREF recon-
struction at 75% compression rate and 3% noise level, (¢) FCFM reconstruction at 75%
compression rate and 5.5% noise level, (d) SSREF reconstruction at 75% compression rate
and 5.5% noise level
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Figure 5.31: Image ID: 5 with synthetic noise. Similarly to Fig. 5.30, SSREF image
reconstruction performance outperforms FCFM. This is most evident in the weak struc-
ture definition in the fluorescence microscopy images constructed using FCFM, which is
well captured in the fluorescence microscopy images produced using the SSREF model.
In addition to better edge preserves, SSREF provides improved noise suppression in the
background regions more efficiently compared to FCFM:

(a) FCFM reconstruction at 60% compression rate and 3% noise level, (b) SSREF recon-
struction at 60% compression rate and 3% noise level, (¢) FCFM reconstruction at 65%
compression rate and 5.5% noise level, (d) SSREF reconstruction at 65% compression rate
and 5.5% noise level
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(a) (b)

Figure 5.32: ITmage ID: 8565. SSREF preserve edges of noisy fluorescence microscopy much
better than FCFM. For example, elements in the cluster can be identified as separate object
at the image produced by SSREF while conventional CS reconstruction produced clusters
with blurred and noisy edges. It is most evident that the saliency guided sampling distri-
bution reconstruct regions of interest such as edges, much better compared to conventional
CS approach which samples the entire scene with uniform distribution.

(a) FCFM at 84% compression rate, (b) SSREF at 84% compression rate

(a) (b)

Figure 5.33: Image ID: 3499:
(a) FCFM at 85% compression rate, (b) SSREF at 85% compression rate

93



(a)

Figure 5.34: Image ID: 5352:
(a) FCFM at 78% compression rate, (b) SSREF at 78% compression rate

(b)

fitted curve

sarmpling propability

L L L L I I I I
2 4 B g 10 12 14 16
saliency cluster number

Figure 5.35: Learning an optimized sampling probability function for fluorescence mi-
croscopy image for testing (’ID 1-1") a continues function is estimated by a curve fitting to

G(07)

94



fitted curve

sarmnpling propability

L L L L L L L L
2 4 B g 10 12 14 16
saliency cluster number

Figure 5.36: Learning an optimized sampling probability function for laser range image for
testing ('ID 2-117) a continues function is estimated by a curve fitting to G(0})

T T T
fitted curve

sampling propahility

L . . L L I L
2 4 B g 10 12 14
saliency cluster number

Figure 5.37: Static logarithmic sampling probability function used as reference a continues
function is estimated by a curve fitting to G/(6%)
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Figure 5.38: Reconstruction performance at different compression rates of dynamically
learned sampling probability function vs. static log function for different images

(a) Fluorescence microscopy image 1D1-1,

(b) Fluorescence microscopy image 1D1-4,

(c) Range measurement indoors image 1D2-7,

(d) Range measurement outdoors image 1D2-11
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Figure 5.39: Noise analysis of dynamically learned sampling probability function vs. static
log function for fluorescence microscopy and range measurements at 50% compression rate
at different noise levels

(a) Fluorescence microscopy image ID1-1,

(b) Fluorescence microscopy image 1D1-4,

(c) Range measurement indoors image 1D2-7,

(d) Range measurement outdoors image 1D2-11
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Chapter 6

Summary of Contributions and
Future Research

In this work, compressive sensing based data-guided statistical sparse measurements method
is proposed, implemented and evaluated. This method provides an efficient acquisition
approach at multiple sampling domains and can be implemented for wide range of ap-
plications. A significant image reconstruction performance improvement was shown, com-
pared to the conventional CS. The core idea of data-guided statistical sparse measurements
approach, is image sampling by an optimized sampling patterns based on learning data
statistical properties. The novelty of this method is the constructing sampling patterns dis-
tribution based on underlying data rather than that commonly used in the CS community;,
namely, the uniform distribution.

The learning process of nonparametric pdf is demonstrated through two methods. The
direct approach as the name imples, learns directly from the dataset. The indirect approach
learns indirectly after performing mapping between extracted features and the pdf. A uni-
fied model is developed and demonstrated for different representation domains, such as
frequency domain and spatial domain. Implementation of a unified model is implemented
and evaluated for several applications, such as optical coherence tomography, bridge struc-
ture vibration, robotic vision, 3D laser measurements and fluorescence microscopy.

Experimental results are consistent through different applications and sampling do-
mains, showing that data-guided statistical sparse measurements method provides signifi-
cant improvement compared to the conventional CS. For example, in the OCT application
where sampling is in the frequency domain, it was shown that 4.1dB PSNR improvement
can be achieved for retinal data at 65% sampling rate compared with conventional CS
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sampling method. Furthermore the proposed design allows for substantial reduction in
the number of samples needed to achieve similar performance compared to conventional
uniform CS sampling approach. For example, it was shown that to achieve retina re-
construction PSNR of 16 dB, the data-guided statistical sparse measurements approach
achieves similar performance as the conventional uniform CS sampling approach using 45%
fewer samples.

Another example where the performance of the proposed model is demonstrated for
laser range data acquisition in the spatial domain. In this case, the proposed design allows
for substantial reduction in the number of samples needed to achieve similar performance
as the conventional CS approach. For example, to achieve reconstruction SNR of 40 dB,
the data-guided statistical sparse measurements approach achieves similar performance as
the standard CS approach using 60% fewer samples. In further experiments for compres-
sive fluorescence microscopy application the data-guided statistical sparse measurements
method demonstrated its robustness to noise for experiments involves synthetic noise as
well as real noisy data.

The data pdf can be selected as a static function based on some previous knowledge
or optimized learning based function. Experiments were performed with fluorescence mi-
croscopy and range measurement images, for comparing a static parametric function with
an optimized nonparametric based on learning pdf. Experimental results show significant
improvement in reconstruction SNR were the optimized learned based approach is used.
For example, in the case of fluorescence microscopy images, the nonparametric learned
based approach outperforms the static approach by an average of 4.4 dB in reconstruction
SNR for compression rates range between 40% and 80%.

This work offers a core technology for improved and robust CS based acquisition de-
sign. In future, it will be interesting to investigate additional features that can be mapped
to sampling distribution to improve further CS reconstruction. Multi-dimensional feature
base can be researched, considering features vector which includes color saliency map, tex-
ture based features and more. In this case the learned mapping function will map multi
dimensional feature vector to optimal sampling distribution. The learning methods can
be investigated further in future research for cases where the training dataset is not rich
enough, therefore more relevant data is needed. In this case, an adaptive learning method
can be researched, where tested data is added adaptively to the training dataset to im-
prove the quality of the training dataset for next tests. In addition, it can be interesting
to research in the future the correlation and trade-offs between sparse representation do-
mains and sparse sampling for optimizing further CS reconstruction. In future, it will be
interesting to investigate hardware implementation of the data-guided CS approach as well
as integration within a system such as fluorescence microscopy or OCT. Finally, this data-
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guided statistical sparse measurements system can be easily extended to other imaging
applications as well.
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