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Abstract

This thesis concerns sufficient conditions for a matroid to admit one of two
types of structural characterization: a representation over a finite field or a
description as a frame matroid.

We call a restriction N of a matroid M modular if, for every flat F of M ,

rM(F ) + r(N) = rM(F ∩ E(N)) + rM(F ∪ E(N)).

A consequence of a theorem of Seymour is that any 3-connected matroid
with a modular U2,3-restriction is binary. We extend this fact to arbitrary
finite fields, showing that if N is a modular rank-3 restriction of a vertically
4-connected matroid M , then any representation of N over a finite field extends
to a representation of M .

We also look at a more general notion of modularity that applies to minors
of a matroid, and use it to present conditions for a matroid with a large
projective geometry minor to be representable over a finite field. In particular,
we show that a 3-connected, representable matroid with a sufficiently large
projective geometry over a finite field GF(q) as a minor is either representable
over GF(q) or has a U2,q2+1-minor.

A second result of Seymour is that any vertically 4-connected matroid with a
modular M(K4)-restriction is graphic. Geelen, Gerards, and Whittle partially
generalized this from M(K4) to larger frame matroids, showing that any
vertically 5-connected, representable matroid with a rank-4 Dowling geometry
as a modular restriction is a frame matroid. As with projective geometries, we
prove a version of this result for matroids with large Dowling geometries as
minors, providing conditions which imply that they are frame matroids.
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Chapter 1

Introduction

For many types of combinatorial objects, we can often prove that each object
either admits a well-understood structural description or has a small obstruction
to it. A famous example is Kuratowski’s theorem that any graph is either planar
or has one of two specific graphs, K5 and K3,3, as a minor [34]. A remarkable
extension of this fact is Robertson and Seymour’s graph minor theorem, which
says that every class of graphs closed under the minor relation has a finite set
of excluded minors, or minor-minimal graphs not in the class [43].

Moving to the realm of matroids, Tutte showed that every matroid is either
graphic or has one of five particular non-graphic matroids as a minor [53].
Graphicness is one of the two most common types of structural description we
encounter for matroids; the other is that of representability over a fixed finite
field. Tutte showed that there is a unique excluded minor for the class of binary
matroids [51], and there are four and seven excluded minors, respectively, for
the matroids representable over the fields of order three and four [4, 48, 14]. For
each larger finite field F, Geelen, Gerards, and Whittle have recently announced
a proof of Rota’s Conjecture [44], which asserts that there are finitely many
excluded minors for the class of F-representable matroids.

In this thesis, we consider a variant of these excluded-minor questions for
matroids, exhibiting sufficient conditions for a matroid to be representable
over a finite field F. When a matroid M has an F-representable minor with
particular properties, we show that either M itself is F-representable or that it
has a specific small minor obstruction. An example is the following consequence
of one of our main theorems.

Theorem 1.0.1. Any vertically 4-connected matroid with PG(2, q) as a re-
striction is either GF(q)-representable or has a U2,q2+1-minor.

In addition to representability, we will also investigate conditions under
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2 CHAPTER 1. INTRODUCTION

which a matroid belongs to a certain class of ‘graph-like’ matroids called the
frame matroids over a field, which are those that have a representation with at
most two non-zero entries per column. A special case of one of our theorems
is that if a highly connected representable matroid M has a particular large
frame matroid called a Dowling geometry as a minor, then M is either also a
frame matroid or has a small minor obstruction to being a frame matroid.

In the next section, we summarize the concepts of matroid theory that we
refer to in this chapter. Next, we define varieties of matroids, and then we
present two striking theorems of Seymour that give sufficient conditions for a
matroid to be binary and to be graphic. We then outline the main results of
the thesis, which mainly consist of extensions of these two theorems in various
directions. Finally, we discuss two topics to which our results relate: excluded
minors for varieties of matroids and growth-rate functions of minor-closed
classes.

1.1 Matroids

Whitney introduced matroids as a way to capture the linear dependence proper-
ties of finite subsets of a finite-dimensional vector space [55]. A comprehensive
reference on matroid theory can be found in Oxley [37].

We let F be a field, E a finite set, and A ∈ Fk×E a k × |E| matrix whose
columns are indexed by the elements of E. For each X ⊆ E, we denote by
A|X the restriction of A to the set of columns X. The rank of the matrix
A|X, rank(A|X), is equal to the dimension of the subspace of Fk spanned by
the columns indexed by X. We abbreviate rank(A|X) as r(X); this function
always satisfies three properties:

(R1) 0 ≤ r(X) ≤ |X|, for all X ⊆ E,

(R2) r(X) ≤ r(Y ), for all X ⊆ Y ⊆ E, and

(R3) r(X) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y ), for all X, Y ⊆ E.

We take these three properties as axioms to define a more general class of
objects. A matroid is a pair M = (E, r) consisting of a finite set E and a
function r : 2E → Z that satisfies (R1)-(R3). We call E the ground set of M
and r(X) the rank of a set X ⊆ E(M), and to avoid ambiguity we will always
write E(M) and rM for the ground set and rank function of a matroid M . The
rank of a matroid M , denoted r(M), is equal to rM(E(M)).

An F-representation of a matroid M is an F-matrix A with columns
indexed by E(M) such that for all X ⊆ E(M), rM (X) is actually the rank of the
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matrix A|X. We call a matroid representable over F or F-representable
if it has an F-representation, and representable if it has a representation
over some field. Conversely, when A is an F-matrix, we write MF(A) for the
matroid with A as an F-representation. The three axioms (R1)-(R3) turn out
to be quite general, and the class of all matroids includes many examples that
do not correspond to the columns of a matrix; these are the non-representable
matroids. Moreover, a representable matroid may in general be representable
over more than one field, and even for a single field F there are many different
F-representations of the same matroid.

One simple way to get different representations of a matroid is to multiply
a column of an F-representation by a non-zero element of F, because the
rank of a matrix does not change when we scale its columns. Thus we think
of F-representable matroids as lying in the projective space corresponding
to a vector space over F, and for this reason we borrow many terms from
projective geometry. The closure of a set X in a matroid M is the set
clM(X) = {e ∈ E(M) : rM(X ∪ {e}) = rM(X)} and X is a flat, or closed
set, if clM(X) = X. The unique minimal flat containing X is clM(X). A
point, line, or plane is a flat of rank one, two, or three, respectively, and a
hyperplane is a flat of rank r(M)− 1.

A loop in M is an element e such that rM({e}) = 0, and two elements e
and f are parallel if neither are loops and rM({e, f}) = 1. Being parallel is
an equivalence relation, so a parallel class of M is a maximal set of pairwise
parallel elements. A matroid is called simple if it has no loops and no pairs of
parallel elements, and the simplification, si(M), of M is the matroid obtained
by deleting all but one element from each parallel class of elements. We also
refer to matroids of rank two or three as lines and planes, and we denote the
simple line with n elements, which is unique up to isomorphism, by U2,n.

A set X ⊆ E(M) is called independent if rM (X) = |X|, and dependent
otherwise. A circuit of a matroid is a minimal dependent set. A basis is an
independent set of maximum size, so X is a basis if and only if it is independent
and clM(X) = E(M).

1.1.1 Minors and duality

When M is a matroid and D ⊆ E(M), M\D is the matroid with ground
set E(M) \ D and rank function given by rM\D(X) = rM(X) for each X ⊆
E(M) \D. When C ⊆ E(M), M/C is the matroid with ground set E(M) \C
and rank function given for each X ⊆ E(M) \ C by

rM/C(X) = rM(X ∪ C)− rM(X).
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We say that M\D is obtained from M by deleting D and M/C is obtained
from M by contracting C. When e ∈ E(M), we abbreviate M\{e} and
M/{e} by M\e and M/e, and we do the same for larger sets, for example
M\{e, f} = M\e, f and M/{e, f} = M/e, f . Deletion and contraction are
commutative operations, so (M/C)\D = (M\D)/C for any disjoint C,D ⊆
E(M). We call any matroid obtained from M by deletion and contraction a
minor of M . If it is obtained only by deletion, we call it a restriction, and
we write M |X for M\(E(M) \X). An N-minor of M is a minor of M that
is isomorphic to a matroid N , and an N-restriction of M is a restriction of
M that is isomorphic to N .

The dual of a matroid M is the matroid M∗ with the same ground set
whose rank function is defined for each X ⊆ E(M) by

rM∗(X) = |X| − r(M) + rM(E(M) \X).

It is straightforward to check that rM∗ satisfies (R1)-(R3). Duality can be an
extremely useful property. For example, for any disjoint sets C,D ⊆ E(M),
the following identity holds:

(M/C\D)∗ = M∗\C/D.

We define a cocircuit in M to be a circuit of M∗. A set X ⊆ E(M) is a
cocircuit if and only if it is the complement of a hyperplane.

For any field F, the class of F-representable matroids is closed under taking
minors. Suppose A is an F-representation of a matroid M . Then for any
e ∈ E(M), A|(E(M) \ {e}) is an F-representation of M\e. When e is a
loop of M , then M/e = M\e. For contraction of non-loops, we need the
following observation: any matrix obtained from A by applying row operations
(multiplying on the left by an invertible matrix) is also an F-representation of
M . So for any non-loop element e, we may assume that A|{e} is a standard
basis vector of Fr(M). It has exactly one non-zero entry, and deleting the row
and column of this entry from A results in an F-representation of M/e.

1.1.2 Projective geometries

For each prime power q, we write GF(q) for the finite field of order q. The
rank-n projective geometry over GF(q), denoted PG(n− 1, q), is the simple
matroid represented over GF(q) by a matrix whose set of columns consists of a
non-zero element from each of the (qn−1)/(q−1) one-dimensional subspaces of
GF(q)n. Every simple rank-n matroid representable over GF(q) is isomorphic to
a restriction of PG(n− 1, q). We note that the rank-2 projective geometry over
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GF(q) is the line U2,q+1, and so the (q+ 2)-point line U2,q+2 is not representable
over this field.

A rank-3 projective geometry is called a projective plane; see Figure 1.1
for the projective plane over GF(2), also known as the Fano plane, and a matrix
that represents it over GF(2). A matroid representable over the field GF(2) is
called binary. A matroid is binary if and only if it has no U2,4-minor [51].

e

f

g

a

b c

d

a b c d e f g

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1



Figure 1.1: The binary projective plane and a GF(2)-representation

When the order of the field is not relevant, we write PG(n− 1,F) for the
rank-n projective geometry over a finite field F.

1.1.3 Graphic matroids

When G is a graph, we define the rank of a set of edges X ⊆ E(G) to be the
size of the largest subset of X that is the edge set of a forest in G. The edge
set E(G) of G and this rank function form a matroid, which we call the cycle
matroid of G and denote M(G). The independent sets of M(G) are the edge
sets of forests in G and the circuits of M(G) are the edge sets of cycles, the
parallel pairs, and the loops of G. A matroid that is the cycle matroid of a
graph is called graphic.

A graphic matroid is representable over any field F. Denote the vertices of
a graph G by v1, . . . , vn, and let χv1 , . . . , χvn be the standard basis vectors of
the vector space FV (G). We arbitrarily orient each edge of G, so that one of
its ends is called its head and the other its tail; when e is a loop, its unique
end is both its head and its tail. The signed incidence matrix of G is the
matrix A ∈ FV (G)×E(G) such that for each e ∈ E(G) with head u and tail v,
A|{e} = χu − χv. This matrix is a representation of the matroid M(G) over F.
See Figure 1.2 for an example of a graph G and a representation of M(G).

The class of graphic matroids is not only minor closed, but minors of graphs
correspond to minors of their cycle matroids. When G is a graph and e ∈ E(G),
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v1

v2

v3

v4

e1

e2

e4

e3


e1 e2 e3 e4

v1 1 1 0 0
v2 0 −1 −1 0
v3 −1 0 1 1
v4 0 0 0 −1


Figure 1.2: A graph and a representation of its cycle matroid

we have M(G\e) = M(G)\e and M(G/e) = M(G)/e. On the other hand,
the class of graphic matroids is not closed under duality. A matroid whose
dual is graphic is called cographic. Another important fact about graphic
matroids is that a matroid and its dual are both graphic if and only if it is the
cycle matroid of a planar graph—this follows from Tutte’s theorem [53] that a
graphic matroid is cographic if and only if it has no M(K5)- or M(K3,3)-minor,
along with Kuratowski’s theorem that any non-planar graph has either a K5- or
a K3,3-minor. In fact, matroid duality corresponds to planar duality of graphs:
when G∗ is a planar dual of a graph G, M(G)∗ = M(G∗).

1.1.4 Frame and Dowling matroids

For a group Γ, a Γ-labelled graph G is a pair (~G, γG) where ~G is an oriented

graph and γG ∈ ΓE( ~G). We use multiplicative notation for Γ. A Γ-labelled graph
is also known as a gain graph [57]. We set V (G) = V (~G) and E(G) = E(~G).

Let F be a field and G an F×-labelled graph with vertices v1, . . . , vk. We
let χv1 , . . . , χvk be the standard basis vectors of FV (G) and A ∈ FV (G)×E(G)

the matrix such that for each e ∈ E(G) with head u and tail v, A|{e} =
χu− γG(e)χv. We call the matroid MF(A) the matroid represented by G and
write M(G) = MF(A). A frame matroid over F is any matroid represented
by an F×-labelled graph. Note that these are precisely the matroids with an
F-representation with at most two non-zero entries per column. The frame
matroids over a field are part of a more general class of frame matroids that
was introduced by Zaslavsky [58].

We define another class of matroids based on Γ-labelled graphs, where Γ is
any finite group. For each edge e of a Γ-labelled graph G that is incident with a
vertex v, we set γG(v, e) = γG(e) when v is the head of e, and γG(v, e) = γG(e)−1

otherwise. Let C be a cycle of G with a vertex v1 and an edge e1 incident with
it. If we number the rest of its vertices and edges v1, e1, v2, e2, . . . , vk, ek, v1,
appearing in this order as we traverse the cycle, then we define γG(C, v1, e1) =
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γG(v1, e1) · · · γG(vk, ek). We call C a balanced cycle when γG(C, v1, e1) = 1;
this is well-defined because γG(C, v1, e1) = 1 if and only if γG(C, v, e) = 1 for
any choice of vertex v and edge e incident with v. A component of the graph
G is called balanced if all of its cycles are balanced, and we write bal(G) for
the number of balanced components of G.

For any set X of edges of a Γ-labelled graph G, we let G[X] denote the
subgraph of G consisting of X and all vertices incident with an element of X.
If we define the rank of X to be

r(X) = |V (G[X])| − bal(G[X]),

then the pair (E(G), r) is a matroid (see [37, Section 6.10]). Such a matroid
is called a Dowling matroid over Γ, or a Γ-Dowling matroid. When Γ is a
subgroup of the multiplicative group of some field F, then the matroid (E(G), r)
coincides with the frame matroid M(G) defined above; therefore, we also write
M(G) for this Dowling matroid. We denote by D(Γ) the class of all Dowling
matroids over Γ.

When Γ is the trivial group, all the cycles of G are balanced and M(G) is
the cycle matroid of the underlying unlabelled graph; hence the class D(Γ) is
exactly the class of graphic matroids.

For each k ≥ 1,the Dowling geometry over Γ, DG(k,Γ), is the simple
rank-k matroid in D(Γ) with the maximum number of elements, which is
k+ |Γ|

(
k
2

)
. These matroids were introduced by Dowling in 1971 [11, 12]. When

|Γ| > 1, DG(k,Γ) is represented by a Γ-labelled graph G such that

1. V (G) = {v1, . . . , vk}, and

2. E(G) consists of a loop incident with each vi labelled by any non-identity
element of Γ, and for each triple α ∈ Γ and vi, vj ∈ V (G) with i < j, an
edge oriented from i to j with label α.

Dowling showed that, for k ≥ 3, DG(k,Γ) is representable over a field F if
and only if Γ is isomorphic to a subgroup of F× [11]. The elements of DG(k,Γ)
corresponding to loops in G are called the joints of DG(k,Γ). See Figure 1.3
for a diagram and a C-representation of the Dowling geometry DG(3, {1,−1}).
When |Γ| = 1, DG(k,Γ) is represented by Kk+1 (more precisely, by any Γ-
labelled oriented copy of Kk+1). In this case, we arbitrarily choose a vertex v
of Kk+1 and define the joints of DG(k,Γ) to be the edges of G incident with v.

The class of frame matroids over any field is minor closed, as is each class of
Dowling matroids. In Chapter 4 we will define minors of group-labelled graphs
and show that they coincide with minors of frame matroids they represent.



8 CHAPTER 1. INTRODUCTION

e

f

a

b c

d

g

i

h


a b c d e f g h i

2 0 0 1 1 0 0 −1 1
0 2 0 −1 1 1 1 0 0
0 0 2 0 0 −1 1 1 1



Figure 1.3: DG(3, {−1, 1}) and a C-representation

1.1.5 Connectivity

The connectivity function of a matroid M is defined for each set X ⊆ E(M)
by

λM(X) = rM(X) + rM(E(M) \X)− r(M).

This is equal to λM(X) = rM(X) + rM∗(X)− |X|.
For any integer ` ≥ 1, an `-separation of a matroid M is a partition (A,B)

of E(M) such that |A|, |B| ≥ ` and λM(A) ≤ `− 1 (note that λM(B) ≤ `− 1
also). A matroid is called k-connected if it has no `-separation for any ` < k,
and we abbreviate 2-connected by connected. A component of a matroid
M is a minimal non-empty set A ⊆ E(M) with λM(A) = 0.

There are two special types of separations. An internal `-separation is
an `-separation (A,B) such that |A|, |B| ≥ `+ 1, and a matroid is internally
k-connected if it is (k − 1)-connected and has no internal (k − 1)-separation.
A vertical `-separation is an `-separation (A,B) such that rM(A) < r(M)
and rM (B) < r(M). A matroid is vertically k-connected if it has no vertical
`-separation for any ` < k; note that this does not require being (k − 1)-
connected.

Note that for any set X in a matroid M , λM(X) = λM∗(X), so M is k-
connected if and only if M∗ is k-connected, and if M is internally k-connected,
then so is M∗. Vertical connectivity, however, is not closed under duality.

For k ≥ 2, a graph G is k-connected (that is, has no vertex cutset of size
less than k) if and only if its cycle matroid M(G) is vertically k-connected [10,
28, 38].
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1.2 Varieties of matroids

In this thesis we focus on matroids that have as minors two special types of
matroids: the projective geometries and the Dowling geometries. These two
types of matroids play a central role in matroid theory, arising naturally in
several theorems. In this section, we discuss a theorem of Kahn and Kung
which partially explains their importance. We will encounter them again in
Section 1.8 where they come up in the growth-rate theorem of Geelen, Kabell,
Kung, and Whittle.

The direct sum M1⊕M2 of two matroids M1 and M2 with disjoint ground
sets is the matroid with ground set E(M1) ∪ E(M2) and rank function given
by rM(X) = rM1(X ∩ E(M1)) + rM2(X ∩ E(M2)).

A hereditary class of matroids is a minor-closed class that is closed under
direct sums. Hereditary classes of matroids are analogous to structures called
varieties of algebras that come from the field of universal algebra (see, for
example, [8, Chapter IV]). These are hereditary classes of algebraic structures
that are closed under taking homomorphic images and direct products; for
example, the class of all groups is a variety. In a variety of algebras there are
free objects with a certain universal property : for groups these are the free
groups, as every group with n generators is a homomorphic image of the free
group on n generators. Hereditary classes of matroids, however, do not in
general contain members with an analogous property. This motivated Kahn
and Kung to make the following definitions [29]. A sequence of universal
models for a hereditary class of matroids T is a sequence {Tn}n≥1 of elements
of T such that every simple rank-n matroid in T is a restriction of Tn. A
variety of matroids is a hereditary class that has a sequence of universal
models.

We have already seen two types of varieties. First, there is the class of
F-representable matroids for a finite field F; any simple rank-n matroid in this
class is a restriction of the projective geometry PG(n− 1,F). The second is
the class D(Γ) of Dowling matroids over a finite group Γ, whose sequence of
universal models is the set of Dowling geometries {DG(n,Γ)}n≥1.

Surprisingly, apart from three kinds of varieties whose universal models
have low connectivity, all varieties of matroids are of one of these two types.

Theorem 1.2.1 (Kahn, Kung, [29]). If T is a variety that contains a 3-
connected matroid of rank at least three, then either

(i) there is a finite field F such that T is the class of F-representable matroids,
or
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(ii) there is a finite group Γ such that T is the class of Γ-Dowling matroids.

1.3 Three in a circuit and two disjoint rooted

paths

A simple graph with no isolated vertices is 2-connected if and only if any pair
of edges is contained in a cycle. Three edges e, f , and g in a simple 3-connected
graph G, however, need not be contained in a cycle. There are two ways in
which this can happen: when {e, f, g} is a 3-edge cutset of G and when e, f ,
and g are incident with a common vertex. Seymour generalized this fact to
binary matroids, as follows.

Theorem 1.3.1 (Seymour, [50]). If e, f , and g are three elements of an
internally 4-connected binary matroid M and there is no circuit of M containing
{e, f, g}, then either {e, f, g} is a cocircuit of M or there is a graph G such
that M = M(G) and e, f , and g are edges of G incident with a common vertex.

He further conjectured that this is essentially the only way that three
elements of a matroid can fail to be contained in a common circuit; specifically,
that in a sufficiently highly connected non-graphic matroid, any triple of
elements lies in a circuit [50]. This is a weaker version of an earlier conjecture
of Robertson that in a 4-connected non-graphic matroid, any triple of elements
lies in a circuit [49]. In fact, there are highly connected non-graphic matroids
in which this three-in-a-circuit property can fail. However, these conjectures
are quite close to being true, at least for representable matroids. Geelen,
Gerards, and Whittle have recently shown that if M is a vertically 5-connected,
F-representable matroid with a set X of at least four elements no three of
which are in a common circuit, then M is a frame matroid over F [17]. The
case when |X| = 3, however, is not so well understood.

In the next section we will derive a corollary of Theorem 1.3.1 that provides
some motivation for our work in this thesis. First, we look at another application
of this theorem, which is to answer the two disjoint rooted paths question:
given a graph G and distinct vertices s1, s2, t1, t2, are there disjoint paths P1

and P2 such that each Pi has ends si and ti? Algorithms to find such paths are
important in the graph minors project of Robertson and Seymour as well as
many areas of combinatorial optimization. Surprisingly, characterizing when
these paths exist is quite complicated compared to the non-rooted version where
we only ask for two disjoint paths joining {s1, s2} to {t1, t2} (this version is
answered by Menger’s Theorem). One case where two disjoint rooted paths do
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not exist is when G is planar and has a planar embedding in which s1, s2, t1, t2
lie on the boundary of the same face, appearing in that order as we traverse
the boundary. It is an easy corollary of Theorem 1.3.1 that this is actually the
only obstruction, assuming sufficient connectivity.

Theorem 1.3.2. Let G be a 4-connected graph with distinct vertices s1, s2, t1,
and t2. If there do not exist disjoint paths P1 and P2 in G such that P1 joins
s1 and t1 and P2 joins s2 and t2, then G has a planar embedding in which
s1, s2, t1, t2 appear on the boundary of the same face, in that order.

Proof. We may assume that G is simple. We let H be the graph obtained from
G by adding three edges: e joining s1 and s2, f joining s2 and t1, and g joining
t1 and t2 (unless any such edges already exist, in which case we call them e, f ,
or g). The graph H is also 4-connected. Suppose there is a bond (minimal edge
cutset) B of H containing {e, f, g}. Then H −B has exactly two components,
one containing s1 and t1, and the other containing s2 and t2. But then there
exist disjoint paths joining s1 to t1 and s2 to t2, a contradiction; so there is
no bond of H containing {e, f, g}. This means that {e, f, g} is not contained
in a cocircuit of the matroid M(H), and so it is not contained in a circuit of
the dual matroid M(H)∗. The matroid M(H) is vertically 4-connected, and
any simple, vertically 4-connected binary matroid is internally 4-connected
because it has no four-point lines. Therefore, the dual matroid M(H)∗ is also
internally 4-connected. Since {e, f, g} is not the edge set of a cycle in H, it is
not a cocircuit in M(H)∗, so Theorem 1.3.1 implies that M(H)∗ is the cycle
matroid of a graph H ′ in which e, f , and g are incident with a common vertex.
A matroid and its dual are both graphic if and only if it is the cycle matroid
of a planar graph; hence H and H ′ are planar duals, and e, f , and g lie on
the boundary of a face in a planar embedding of H. This induces a planar
embedding of G in which s1, s2, t1, t2 lie on the boundary of a face, in order.

1.4 Modular restrictions

A restriction N of a matroid M is called modular if, for every flat F of M ,

rM(F ) + r(N) = rM(F ∩ E(N)) + rM(F ∪ E(N)). (1.1)

There is a much more useful equivalent characterization of modularity.

Proposition 1.4.1. A restriction N of a matroid M is modular if and only if
M has no minor N ′ with an element e such that N ′\e = N and e ∈ clN ′(E(N)),
but e is not parallel to an element of E(N) in N ′.
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Proof. If such a minor N ′ = M/C\D exists then the flat F = clM(C ∪ {e})
violates equation (1.1). For the other direction, we choose M to be minimal
such that it has a restriction N that is not modular, but no such minor N ′ of M
exists. We choose a flat F that violates equation (1.1). If F \ clM(E(N)) = ∅,
then since rM(F ) > rM(F ∩ E(N)), we can choose an element e ∈ F that is
not parallel to any element of E(N) and set N ′ = M |(E(N)∪{e}). Otherwise,
we pick any element c ∈ F \ clM(E(N)). Then N is a restriction of M/c.
Moreover, N is not modular in M/c, for rM/c(F \ {c}) = rM(F ) − 1 and
rM/c(F \ {c} ∪ E(N)) = rM(F ∪ E(N))− 1, which contradicts the minimality
of M .

We can often show that properties of a modular restriction of a matroid
extend to the whole matroid. For example, consider the following elegant
consequence of a theorem of Seymour.

Theorem 1.4.2 (Seymour, [49]). Any 3-connected matroid with a modular
U2,3-restriction is binary.

As a corollary of Theorem 1.3.1, we can prove a similar result for matroids
with modular M(K4)-restrictions. We can show that such matroids are not
only binary, but graphic.

Theorem 1.4.3 (Seymour, [49, 50]). If M is a vertically 4-connected matroid
with a modular M(K4)-restriction, then M is graphic.

Proof. We may assume that M is simple; a simple vertically 4-connected
matroid is 3-connected. We let N be the modular M(K4)-restriction of M .
There is a modular U2,3-restriction in M(K4), and the relation of being a
modular restriction is transitive (see [37, Proposition 6.9.7]) so it follows from
Theorem 1.4.2 that M is binary. We choose three elements e, f, g ∈ E(N)
that correspond to three edges of K4 incident with a common vertex (see
Figure 1.4). Each element of E(N) \ {e, f, g} is in the closure of some two
elements of {e, f, g}. So if there is a circuit C of M containing {e, f, g}, then
C ∩ E(N) = {e, f, g}. We pick any element h ∈ C \ {e, f, g} and consider
M/(C \ {e, f, g, h}). In this minor, {e, f, g, h} is a circuit; but N has no
circuit containing {e, f, g}, so h is not parallel to any element of E(N). This
contradicts the fact that N is modular in M by Proposition 1.4.1, and so M has
no circuit containing {e, f, g}. Unless M = N , {e, f, g} is not a cocircuit of M
because M is vertically 4-connected. Recall that a simple, vertically 4-connected
binary matroid is internally 4-connected. We conclude from Theorem 1.3.1
that M is graphic.
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Figure 1.4: M(K4)

One reason to study matroids with modular restrictions is their appearance
in structural decomposition theorems for certain minor-closed classes of ma-
troids. An example is Seymour’s Decomposition Theorem, which characterizes
the regular matroids: these are the matroids that can be represented over Q
by a totally unimodular matrix, or a matrix whose square submatrices all
have determinant 0, 1, or −1. This theorem roughly asserts that any regular
matroid M can be built in a tree-like manner from pieces that are graphic or
cographic, in the following way.

We start with a set of vertically 4-connected matroids M1, . . . ,Mk that are
each isomorphic to a minor of M and are either graphic, cographic, or a copy
of one exceptional matroid. For each Mj, there is an Mi with i < j so that
the ground sets of Mj and Mi meet in some flat Xij = E(Mi) ∩ E(Mj) with
Mj|Xij = Mi|Xij. In addition, this intersection Nij = Mj|Xij is modular in
both Mi and Mj. We start with M1 and repeatedly ‘glue’ each matroid Mj,
j > 1, onto Mi along the flat Xij; this is an operation called a modular sum,
which we will define precisely in the next chapter. Finally, we possibly delete
some elements of Xij.

It is the case that if Nij has rank three, then it is isomorphic to M(K4).
But then Theorem 1.4.3 implies that Mi and Mj are graphic, and so we can
‘merge’ Mi and Mj into a single graphic building block before starting our
construction. Thus, Theorem 1.4.3 tells us that we may build M by gluing
together matroids M1, . . . ,Mk which meet each other only in sets of rank at
most two.

A more complicated but similar example comes from Geelen, Gerards, and
Whittle’s forthcoming structure theorem for minor-closed classes of matroids
representable over a finite field F. Here, we give a brief sketch of how modular
restrictions arise, for simplicity only in the case F = GF(4). Let M be a
minor-closed proper subclass of the variety of GF(4)-representable matroids.



14 CHAPTER 1. INTRODUCTION

Then for each matroid M ∈ M, we can build M by joining together smaller
matroids that come from certain basic subclasses of the GF(4)-representable
matroids. These basic classes are the variety of binary matroids, the variety of
Dowling matroids over GF(4)×, and a certain variant of the second class. If
we take a highly connected minor M0 of M , then M0 will be in one of these
basic classes, after applying an operation known as perturbation. In addition,
the rest of the matroid is built by ‘gluing’ matroids M1, . . . ,Mk onto M0 along
restrictions Ni = Mi|(E(M0) ∩ E(Mi)). Each Ni has the property that it is
modular in Mi. When M0 belongs to the basic class of binary matroids, then
Ni is also binary, and Theorem 1.4.2 tells us that this binary structure extends
into Mi if Ni has rank at least two. Hence we may assume that each Mi is
glued onto a single point of M0. Similarly, when M0 belongs to the second
basic class, D(GF(4)×), then a generalization of Theorem 1.4.3 tells us about
how its Dowling structure extends into Mi.

1.5 Conditions for representation over a field

Theorems 1.4.2 and 1.4.3 provide the motivation for much of this thesis. We will
consider classes of matroids of two types: the variety of matroids representable
over a given finite field, and the class of frame matroids over a field (the latter
is a variety of Dowling matroids when the field is finite). Suppose that M is a
class of one of these two types. We prove several results like Theorems 1.4.2
and 1.4.3 showing that, under some weak assumptions, if a matroid M has a
minor N ∈M with certain properties then M is also in M.

We recall that a graphic matroid is representable over every field, so a
corollary of Theorem 1.4.3 is that a vertically 4-connected matroid with a
modular M(K4)-restriction is representable over every field. In Chapter 2 we
will prove one of our main results, the following generalization of this fact from
M(K4)-restrictions to arbitrary restrictions of rank at least three.

Theorem 1.5.1. If M is a vertically 4-connected matroid with a modular
restriction N of rank at least three, then for every finite field F, M is F-
representable if and only if N is F-representable.

Theorem 1.5.1 can be thought of as the equivalent to Theorem 1.4.2 for
finite fields of order greater than two: unlike the binary case, a rank-2 modular
restriction is not sufficient to force representability over a larger finite field, as
we point out in Chapter 2.

A natural question would be to ask if there is a version of Theorem 1.5.1 that
allows N to be an arbitrary minor of M rather than a restriction. One obstacle
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to finding such a version is generalizing the property of modularity, which we
defined for restrictions, to minors. For the case where N is a projective plane
we have the following strengthening of the modularity property that can be
generalized to minors.

Proposition 1.5.2. If a matroid M has a PG(2, q)-restriction N that is not
modular, then M has a U2,q2+1-minor.

Proof. If N is not modular then by Proposition 1.4.1 M has a minor N ′ with
an element e such that N ′\e = N , e ∈ clN ′(E(N)), but e is not parallel to an
element of E(N) in N ′. In the projective plane N , there is an element in the
intersection of any two distinct lines. Since e is not parallel to any element of
E(N) in N ′, there is at most one line L of N such that e ∈ clN ′(L). Therefore,
N ′/e has at most one parallel class of size more than one. So the simple
rank-2 matroid si(N ′/e) contains at least |PG(2, q)| − q = q2 + 1 elements, and
therefore has a restriction isomorphic to U2,q2+1.

Combining Proposition 1.5.2 with Theorem 1.5.1 we get a theorem charac-
terizing the representability of matroids with a projective plane as a restriction,
which we stated earlier as Theorem 1.0.1.

Corollary 1.5.3. Any vertically 4-connected matroid with a PG(2, q)-
restriction is either GF(q)-representable or has a U2,q2+1-minor.

In the q = 2 case, the following theorem of Semple and Whittle extends
Corollary 1.5.3 from matroids with a PG(2, 2)-restriction to matroids with a
PG(2, 2)-minor, though with some different assumptions.

Theorem 1.5.4 (Semple, Whittle, [45]). Any 3-connected, representable ma-
troid with a PG(2, 2)-minor is either binary or has a U2,5-minor.

We are able to generalize this result to arbitrary finite fields, at the cost of
requiring a large projective geometry minor rather than just a projective plane.
The main result of Chapter 3 is the following.

Theorem 1.5.5. For each prime power q, there is an integer n such that
any 3-connected, representable matroid with a PG(n − 1, q)-minor is either
GF(q)-representable or has a U2,q2+1-minor.

In both Theorems 1.5.4 and 1.5.5, the assumption of representability is
necessary, as we will see in that chapter; it cannot be removed even by requiring
vertical 4-connectivity.
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1.6 Conditions for a frame representation

In Chapter 4 we shift our attention to proving sufficient conditions for being a
frame matroid. Geelen, Gerards, and Whittle proved the following version of
Theorem 1.4.3 that provides sufficient conditions for being a frame matroid
over an arbitrary field, rather than a graphic matroid.

Theorem 1.6.1 (Geelen, Gerards, Whittle, [17]). For any field F and finite
subgroup Γ of F×, if M is a vertically 5-connected F-representable matroid with
a modular DG(4,Γ)-restriction, then M is a frame matroid over F.

Note that this theorem requires a modular rank-4 Dowling geometry restric-
tion, DG(4,Γ), whereas in Theorem 1.4.3 the rank-3 clique M(K4) sufficed to
force a matroid to be graphic. Characterizing the structure of matroids with
larger rank-3 Dowling geometries as modular restrictions is an open problem
that we discuss further at the end of Chapter 4.

As we do for projective geometries, we try to extend this type of result to
the case where we have a Dowling geometry as a minor rather than a restriction.
The following corollary of Seymour’s Decomposition Theorem does this for the
binary matroids. It provides conditions that imply that a binary matroid with
the rank-4 Dowling geometry M(K5) as a minor is graphic.

Theorem 1.6.2 (Seymour, [47]). Any vertically 4-connected binary matroid
with an M(K5)-minor is either graphic or has a PG(2, 2)-minor.

We note that PG(2, 2) is the unique binary matroid that is not graphic but
from which deleting one element results in the Dowling geometry M(K4). We
extend this theorem from the binary matroids to those representable over other
finite fields with the following result.

Theorem 1.6.3. For any finite field F, there is an integer n such that if M is
a vertically 5-connected F-representable matroid with a DG(n,F×)-minor, then
either

(i) M is a frame matroid over F, or

(ii) M has a minor N with an element e such that N\e ∼= DG(3,F×) but N
is not a frame matroid over F.

In fact, this generalizes to the following result that holds even for infinite
fields.
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Theorem 1.6.4. For any field F, finite subgroup Γ of F× of order at least
two, and ` ≥ 3, there is an integer n such that if M is a vertically 5-connected
F-representable matroid with a DG(n,Γ)-minor, then either

(i) M is a frame matroid over F,

(ii) M has a U2,`-minor, or

(iii) M has a minor N with an element e such that N\e ∼= DG(3,Γ) but N is
not a frame matroid over F.

In Chapter 4 we will prove a more general theorem that applies to repre-
sentable matroids that have large Dowling geometries over any group as minors.
We will be able to avoid any connectivity requirements in this theorem by
generalizing from frame matroids to more general structures called patchworks,
which we define later.

1.7 Excluded minors of varieties

We finish this introduction by discussing two areas in which the main results
of this thesis can be applied. The first is characterizing the excluded minors of
varieties of matroids. An excluded minor for a minor-closed class of matroids
M is a minor-minimal matroid not in M.

For any finite field F of order at least five, we do not know the set of excluded
minors for the variety of F-representable matroids, although Rota’s Conjecture
states that there are only finitely many. Geelen, Gerards, and Whittle made
the following conjecture, which would be a step towards understanding what
these excluded minors look like.

Conjecture 1.7.1 (Geelen, Gerards, Whittle, [16]). For each finite field F,
no excluded minor for the variety of F-representable matroids has a PG(2,F)-
minor.

In Chapter 2, we prove that no excluded minor for the F-representable
matroids has PG(2,F) as a restriction. On the other hand, Geelen, Gerards,
and Whittle were able to prove a version of the conjecture where the projective
plane PG(2,F) is replaced by some larger projective geometry.

Theorem 1.7.2 (Geelen, Gerards, Whittle, [16]). For each finite field F, there
is an integer n so that no excluded minor for the variety of F-representable
matroids has a PG(n− 1,F)-minor.
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Theorem 1.5.5 provides an alternate proof of a weak version of this fact: for
each prime power q, there is an integer n such that no representable excluded
minor for the variety of GF(q)-representable matroids has a PG(n − 1, q)-
minor. Let M be such an excluded minor that is representable. If M has a
PG(n− 1, q)-minor for large enough n, then Theorem 1.5.5 implies that M has
a U2,q2+1-minor, a contradiction because U2,q+2 is an excluded minor for this
variety.

We could thus prove Conjecture 1.7.1 if we could strengthen Theorem 1.5.5
by removing the assumption of representability and requiring only a projective
plane minor instead of a large projective geometry. However, we know that this
stronger statement is false. For example, let q be a prime power and p a prime
that is less than q and does not divide q. There is a rank-4 matroid obtained
by identifying the p+ 1 points on a line of PG(2, p) with any p+ 1 collinear
points of PG(2, q), which is 3-connected and has no U2,q2+1-minor but is not
GF(q)-representable. On the other hand, if we strengthen the connectivity
assumption to vertical 4-connectivity, then we know of only one counterexample
and its longest line minor is U2,q+2 (we will describe this counterexample in
Section 3.1). We therefore have the following conjecture.

Conjecture 1.7.3. For each prime power q, any vertically 4-connected matroid
with a PG(2, q)-minor is either GF(q)-representable or has a U2,q+2-minor.

Since U2,q+2 is not GF(q)-representable, no excluded minor for the variety of
GF(q)-representable matroids (other than U2,q+2 itself) has it as a minor. There-
fore, Conjecture 1.7.3 would go some way towards proving Conjecture 1.7.1;
there would be further work because of the vertical 4-connectivity requirement.

Apart from the F-representable matroids, the other interesting type of
variety consists of the classes of Dowling matroids. Kahn and Kung [29] asked
whether the following strengthening of Rota’s Conjecture is true: does every
variety have a finite set of excluded minors? In view of this question, perhaps
it would be useful to consider this analogue of Conjecture 1.7.1 for the varieties
of Dowling matroids.

Conjecture 1.7.4. For any finite group Γ of order at least two, no excluded
minor for the variety of Dowling matroids over Γ has a DG(3,Γ)-minor.

This is not true for the group of order one: the binary projective plane
PG(2, 2) is an excluded minor for the variety of graphic matroids and it has
DG(3, {1}) = M(K4) as a restriction. However, this happens because M(K4)
differs by only element from the highly symmetric matroid PG(2, 2), a situation
that does not arise with larger Dowling geometries.
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1.8 Growth rates of minor-closed classes

For a matroid M , we define ε(M) to be the number of points in M , or
equivalently, |E(si(M))|. For any minor-closed class of matroids M, the
growth-rate function of M is

gM(n) = max{ε(M) : M ∈M, r(M) = n},

or we write gM(n) =∞ when this maximum does not exist.
A well-known example of a growth-rate function is that of the class of

planar graphs. It follows from Euler’s Formula that for n ≥ 3, the number
of edges in a simple, n-vertex planar graph is at most 3n − 6, with equality
achieved by planar triangulations. Therefore, when P is the class of cycle
matroids of planar graphs, we have gP(n) = 3n − 3 for n ≥ 2 (because an
(n + 1)-vertex connected graph has a rank-n cycle matroid). In fact, Mader
proved in 1967 that every proper minor-closed class of graphs has a growth-rate
function bounded by some linear function.

Theorem 1.8.1 (Mader, [35]). If a simple graph G has no Kt-minor, then
|E(G)| ≤ 2t−3|V (G)|.

On the other hand, the class G of all graphic matroids is a variety whose
sequence of universal models consists of the cycle matroids of the cliques
{M(Kn+1)}n≥1, so its growth-rate function is quadratic: gG(n) =

(
n+1

2

)
. Simi-

larly, for each prime power q, the variety of GF(q)-representable matroids has
growth-rate function qn−1

q−1
. Perhaps as surprising as the variety theorem of

Kahn and Kung is the fact that these three examples essentially characterize
all possible growth-rate functions of minor-closed classes of matroids. This
is shown by the growth-rate theorem of Geelen, Kabell, Kung, and Whittle,
which was conjectured in 1987 by Kung [33].

Theorem 1.8.2 (Geelen, Kabell, Kung, Whittle, [21, 18, 19]). If M is a
minor-closed class of matroids, then there exists an integer cM such that either

(i) gM(n) ≤ cMn,

(ii)
(
n+1

2

)
≤ gM(n) ≤ cMn

2 and M contains all graphic matroids,

(iii) qn−1
q−1

≤ gM(n) ≤ cMq
n for some prime power q and M contains all

GF(q)-representable matroids, or

(iv) M contains all simple rank-2 matroids.
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For each integer ` ≥ 2, we let U(`) be the class of matroids with no
U2,`+2-minor. If q is the largest prime power less than or equal to `, then
U(`) contains all GF(q)-representable matroids, but it does not contain all
GF(q′)-representable matroids for any prime power q′ > q. Thus Theorem 1.8.2
implies that its growth-rate function is O(qn). But in fact, its growth rate
actually conforms to that of the variety of GF(q)-representable matroids.

Theorem 1.8.3 (Geelen, Nelson, [20]). For each integer ` ≥ 2, when n is
sufficiently large, gU(`)(n) = qn−1

q−1
where q is the largest prime power less than

or equal to `, and the only simple rank-n matroid in U(`) with gU(`)(n) points
is PG(n− 1, q).

For sufficiently high rank, Theorem 1.8.3 characterizes the extremal members
of the class U(`): they are the projective geometries over GF(q). The next
question we might ask is whether it is enough for the number of points in
a matroid in U(`) to be ‘close’ to the value of the growth-rate function to
guarantee that it is GF(q)-representable. It turns out that this is not true:
for ` ≥ 4, U(`) contains non-representable matroids with asymptotically the
same number of points as the projective geometries, as we see in Chapter 3.
However, confining our attention to the representable members of U(`), we will
combine Theorem 1.5.5 with a result of Geelen and Kabell to get the following
characterization of the sufficiently dense members of U(`).

Theorem 1.8.4. For any positive integer `, if M is a 3-connected, representable
matroid in U(`) of sufficiently large rank and |E(M)| ≥ (2

√
`)r(M), then M is

representable over a field of order at most `.

We note that U(2) is precisely the variety of binary matroids. For U(3),
there is actually a stronger result with almost no requirement on the number
of points in the matroid.

Theorem 1.8.5 (Semple, Whittle, [45]). Any 3-connected, representable ma-
troid in U(3) with |E(M)| ≥ r(M) + 3 is representable over either GF(2) or
GF(3).

Another consequence of Theorem 1.8.2 is that when F is a field of charac-
teristic zero, any minor-closed class of F-representable matroids that does not
contain all simple lines has at most a quadratic growth rate (since no projective
plane over a finite field is representable over a field of characteristic zero). An
example is this theorem of Heller from 1957.

Theorem 1.8.6 (Heller, [26]). If M is a minor-closed class of C-representable
matroids that does not contain U2,4, then gM(n) ≤

(
n+1

2

)
.
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We define C(k) to be the class of C-representable matroids with no U2,k+3-
minor. Heller’s Theorem says that C(1), which contains the variety of graphic
matroids, has the same growth-rate function as it. Actually, Heller proved a
theorem about the maximum size of a totally unimodular matrix, but it is
equivalent to the statement above by Tutte’s 1958 result that the matroids
represented by these matrices, the regular matroids, are exactly the class
C(1) [51]. Suppose that Γ is the subgroup of C× of order k. As the Dowling
geometries over Γ form a sequence of universal models for the variety of Dowling
matroids D(Γ), no matroid in D(Γ) has a line with more than |DG(2,Γ)| = k+2
points as a minor. Hence C(k) contains D(Γ) and its growth-rate function
gC(k)(n) is at least n + k

(
n
2

)
. We saw in Theorem 1.8.3 that the class U(`)

matches the growth rate of the ‘closest’ variety to it (for large enough rank).
In a similar way, perhaps we can generalize Heller’s Theorem to show that
the class C(k) has the same growth-rate function as the variety of Γ-Dowling
matroids.

Conjecture 1.8.7. If C(k) is the class of C-representable matroids with no
U2,k+3-minor, then gC(k)(n) = n+ k

(
n
2

)
for sufficiently large n.

In fact, any frame matroid with no U2,k+3-minor and rank n has at most
n+ k

(
n
2

)
points. So the following easy corollary of our Theorem 1.6.4 makes

some progress towards Conjecture 1.8.7 by bounding the number of points in
matroids in C(k) with a large Dowling geometry as a minor.

Corollary 1.8.8. For each k ≥ 2, if Γ is the subgroup of C× of order k, there
is an integer n such that any vertically 5-connected matroid in C(k) with a
DG(n,Γ)-minor is a frame matroid over C.

Proof. By Theorem 1.6.4 it suffices to show that there exists no matroid
N ∈ C(k) with an element e such that N\e ∼= DG(3,Γ) but N is not a frame
matroid over C. Suppose such a matroid N exists. We let B = {a, b, c} be
the joints of N\e and Lab, Lbc, and Lca the lines clN({a, b}), clN({b, c}), and
clN({c, a}). Each of these lines has k + 2 points, and is thus modular in N ,
which has no U2,k+3-minor. We let A be a C-representation of N ; recall that we
can choose A so that A|B is an identity matrix and for each d ∈ E(N\e) \B,
the column A|{d} has two non-zero entries, 1 and −ω for some ω ∈ Γ. We
index the rows of A by {a, b, c} so that Azz = 1 for each z ∈ B. Since N
is not a frame matroid over C, the column A|{e} has three non-zero entries,
and by scaling we may assume it has the form (−x, 1,−y)T ∈ C{a,b,c} for some
x, y ∈ C.

Since Lbc is modular in N , {a, e} spans some point of Lbc and thus (0, 1,−y)T

is parallel to a column of A indexed by an element of Lbc, so y ∈ Γ. Similarly,
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x ∈ Γ. We let f be any element of Lab \ B other than the one lying on
clN ({c, e}). By the modularity of Lbc again, there is an element g ∈ Lbc so that
{e, f, g} lies on a line of N . Since f 6∈ clN({c, e}), g ∈ Lbc \B. Up to scaling,
for some v, w ∈ Γ the matrix A|{e, f, g} is equal to


e f g

a −x 1 0
b 1 −v −w
c −y 0 1

.
It has determinant zero, so xv = 1 − yw. Note that Γ consists of the roots
of xk − 1 in C. The number xv ∈ Γ lies on the unit circle centred at 0 in
the complex plane, while 1− yw lies on the circle of unit radius with centre
1. These two circles intersect at eiπ/3 and e−iπ/3, so xv ∈ {eiπ/3, e−iπ/3}. Thus
given x there are at most two possible values of v, and hence at most two points
f ∈ Lab \B other than the point that lies on the line clN({e, c}). This proves
that k = |Lab \ B| ≤ 3. However, we also have eiπ/3 ∈ Γ so k is a multiple of
six, a contradiction.

If M is a minor-closed class with greater than linear growth rate, then for
large n we can expect any rank-n matroid M achieving the maximum number
of points gM(n) to have high vertical connectivity. This is because a vertical
separation allows us to partition M into two restrictions M1 and M2 of smaller
rank, and as long as the growth-rate function gM is convex and n is large
compared to the order of the separation, |E(M)| ≤ gM(r(M1)) + gM(r(M2))
will be less than gM(n). Thus Corollary 1.8.8 reduces the problem of proving
Conjecture 1.8.7 to considering the minor-closed subclass of C(k) that excludes
a given Dowling geometry over the cyclic group of order k. It is possible that
the growth rate of such a class is closer to that of the variety of Dowling
matroids over a (k − 1)-element group.

Conjecture 1.8.9. If Γ is the subgroup of C× of order k and M is a minor-
closed subclass of C(k) that does not contain all Dowling geometries over Γ,
then gM(n) ≤ cn+ (k − 1)

(
n
2

)
for some constant c and sufficiently large n.



Chapter 2

Modular planes

In this chapter, we generalize Seymour’s result that a vertically 4-connected
matroid with a modular M(K4)-restriction is representable over all fields. The
main theorem of this chapter is the following.

Theorem 2.0.1. If M is a vertically 4-connected matroid with a modular
restriction N of rank at least three, then every representation of N over a finite
field F extends to an F-representation of M .

Interestingly, we will be able to derive this theorem easily from the following
special case.

Theorem 2.0.2. For any finite field F, any vertically 4-connected matroid
with a modular PG(2,F)-restriction is F-representable.

We focus on proving Theorem 2.0.2, and we will see how it implies Theo-
rem 2.0.1 in Section 2.2 after we introduce the concept of ‘modular sums’.

The converse of Theorem 2.0.2 is well-known: a restriction isomorphic to a
projective geometry over F is modular in any F-representable matroid. This
follows from our equivalent characterization of modularity (Proposition 1.4.1):
if a PG(n − 1,F)-restriction in a matroid M is not modular, then M has a
rank-n minor with more than |PG(n−1,F)| points, so it is not F-representable.

For the field GF(2), recall that we have a much stronger result (this was
Theorem 1.4.2 — note that PG(1, 2) is the line U2,3).

Theorem 2.0.3 (Seymour, [49]). Any 3-connected matroid with a modular
PG(1, 2)-restriction is binary.

The direct generalization of Theorem 2.0.3 however is not true: even a
3-connected matroid with a modular PG(1, 3)-restriction need not be GF(3)-
representable (see Figure 2.1 for an example that is not GF(3)-representable

23
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Figure 2.1: A non-GF(3)-representable matroid with a modular PG(1, 3)-
restriction

because it has a binary projective plane as a restriction). Therefore, we will
have to replace modular lines with modular planes. But even then, to show that
a matroid M with a modular PG(2,F)-restriction is F-representable we need M
to be vertically 4-connected rather than just 3-connected. For each prime power
q > 2, there is a prime p < q such that p does not divide q. We can construct
a rank-4 matroid from PG(2, q) and PG(2, p) by identifying the elements of a
line in PG(2, p) with any p+ 1 collinear elements of PG(2, q). It is 3-connected
and has a modular PG(2, q)-restriction, but is not GF(q)-representable.

The main idea of our proof of Theorem 2.0.2 is as follows. Given a certain
non-F-representable matroid M with a modular PG(2,F)-restriction, we define
an F-representable matroid M ′ on the same ground set whose rank function
equals rM on every subset of E(M) except those containing a particular two-
element subset {x, y}. We exploit the relation between these two matroids to
constrain the structure of M . This technique was introduced by Seymour [48]
and Kahn and Seymour [30] in their proofs of Rota’s Conjecture for GF(3) and
arises in many other proofs, such as Geelen, Gerards, and Kapoor’s proof of
Rota’s Conjecture for GF(4) [14].

Although Theorem 2.0.2 does not appear to be related to excluded minors,
the majority of our proof is actually an investigation of the minor-minimal
3-connected matroids that have a modular PG(2,F)-restriction but are not
F-representable. This consists of proving the following main lemma, which we
do in Sections 2.3 to 2.7. It tells us that the only way to construct one of these
matroids is as we did in the example above: by ‘gluing’ a non-F-representable
matroid onto a line of PG(2,F).

Lemma 2.0.4. For any finite field F, if M0 is a 3-connected, non-F-
representable matroid with a modular restriction N0

∼= PG(2,F), then M0

has a 3-connected, non-F-representable minor M such that N0 is a restriction
of M and λM(E(N0)) = 2.
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In the final section of this chapter after proving our main theorem, we apply
this lemma again to show that for every finite field F, no excluded minor for
the variety of F-representable matroids has PG(2,F) as a restriction. This
verifies a special case of Conjecture 1.7.1 of Geelen, Gerards, and Whittle.

2.1 Modular sums

We define the local connectivity of two sets A,B ⊆ E(M) in a matroid M
to be

uM(A,B) = rM(A) + rM(B)− rM(A ∪B).

Two sets A and B are called skew if uM (A,B) = 0. Recall that a restriction
N of M is called modular if, for every flat F of M ,

rM(F ) + r(N) = rM(F ∩ E(N)) + rM(F ∪ E(N)).

Equivalently, N is modular if uM(E(N), F ) = rM(F ∩ E(N)) for every flat F
of M .

Suppose that the ground sets of two matroids M1 and M2 intersect on a set
T such that M1|T is a modular restriction of M1. We can then define a certain
matroid on E(M1) ∪ E(M2) that generalizes the notions of the direct sum and
the 2-sum. The following construction was introduced by Brylawski in 1975.

Proposition 2.1.1 (Brylawski, [7]). Let M1 and M2 be matroids and let
T = E(M1)∩E(M2). If M1|T = M2|T and M1|T is modular in M1, then there
is a unique matroid M such that E(M) = E(M1) ∪ E(M2), M |E(M1) = M1,
M |E(M2) = M2, and r(M) = r(M1)+r(M2)−r(M1|T ). Moreover, F ⊆ E(M)
is a flat of M if and only if F ∩ E(M1) is a flat of M1 and F ∩ E(M2) is a
flat of M2, and the rank of a flat F is

rM(F ) = rM1(F ∩ E(M1)) + rM2(F ∩ E(M2))− rM1(F ∩ T ).

We call the matroid M obtained as in Proposition 2.1.1 the modular sum
of M1 and M2 and denote it by M1⊕mM2. We note that the matroid M1⊕mM2

is often called the generalized parallel connection [7].
When M1 and M2 are matroids on disjoint ground sets, M1 ⊕mM2 is equal

to the direct sum M1⊕M2. When M1 and M2 are matroids whose ground sets
intersect in a single element e, then we define the 2-sum of M1 and M2 to be
M1 ⊕2 M2 = (M1 ⊕mM2)\e.
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We remark that the rank function for M given in Proposition 2.1.1 tells
us that for any e ∈ E(M2) \ T , M\e = M1 ⊕m (M2\e), and for any e ∈
E(M2) \ clM2(T ), M/e = M1 ⊕m (M2/e).

We now state four facts about modular sums; the first one was proved
by Brylawski and concerns their representability. A matroid M is called
uniquely representable over a field F if any F-representation of M can be
transformed into any other by row operations, scaling columns, and applying
an automorphism of F to all its entries.

Proposition 2.1.2 (Brylawski, [7]). If M = M1⊕mM2 is the modular sum of
two matroids M1 and M2 that are representable over a field F and M |(E(M1)∩
E(M2)) is uniquely representable over F, then M is representable over F.

Proof. We let T = E(M1) ∩ E(M2). Consider an F-representation A1 of M1.
We can choose A1 to have the form

A1 =

( T

C1 0
C2 A

)
for some matrices C1, C2, and A with rank(A) = r(M1|T ). Then A1|T is an
F-representation of M2|T . Let A2 be an F-representation of M2. Since M |T
is uniquely F-representable, we may assume by row operations, scaling, and
applying an automorphism of F that A2|T is obtained by adding zero rows to
A, and write A2 in the form

A2 =

( T
A C3

0 C4

)
.

Then the matrix 
E(M1) \ T T E(M2) \ T

C1 0 0
C2 A C3

0 0 C4


is an F-representation of M .

The next three facts concern connectivity properties of modular sums. The
corank of a set X in a matroid M is defined to be the rank of X in its dual
M∗, and the corank function of M is r∗M(X) = rM∗(X).

Proposition 2.1.3. If M = M1 ⊕m M2 is the modular sum of matroids M1

and M2 with T = E(M1) ∩ E(M2), then
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(i) for any X ⊆ E(M1) \ T , r∗M(X) = r∗M1
(X) and λM(X) = λM1(X), and

(ii) for any X ⊆ E(M2) \ T , r∗M(X) = r∗M2
(X) and λM(X) = λM2(X).

Proof. We let X ⊆ E(M1) \ T and compute the corank of X in M . We see
that r∗M(X) = |X| − r(M) + r(M\X) is equal to

|X| − (r(M1) + r(M2)− r(M1|T )) + (r(M1\X) + r(M2)− r(M1|T )),

which is equal to r∗M1
(X). Hence λM (X) = rM (X) + r∗M (X)− |X| = rM1(X) +

r∗M1
(X) − |X| = λM1(X). The same proof shows that a set X ⊆ E(M2) \ T

satisfies r∗M(X) = r∗M2
(X) and λM(X) = λM2(X).

This next fact is due to Brylawski.

Proposition 2.1.4 (Brylawski, [7]). If M is a matroid with a modular restric-
tion N and M/E(N) is not connected, then M is a modular sum of two proper
restrictions whose ground sets meet in E(N).

Finally, we have a converse to Proposition 2.1.4.

Proposition 2.1.5. If M = M1⊕mM2 is the modular sum of matroids M1 and
M2 with T = E(M1) ∩ E(M2), then (E(M1) \ T,E(M2) \ T ) is a 1-separation
of M/T .

Proof. Let X1 ⊆ E(M1)\T . Then rM/T (X1) = rM1(X1∪T )−rM (T ). Similarly,
for X2 ⊆ E(M2) \ T , we have rM/T (X2) = rM2(X2 ∪ T ) − rM(T ). Also,
rM/T (X1 ∪X2) = rM (X1 ∪X2 ∪T )− rM (T ), and this is equal to rM1(X1 ∪T ) +
rM2(X2 ∪ T )− 2rM(T ), which is rM/T (X1) + rM/T (X2).

Hence for any X ⊆ E(M/T ), rM/T (X) = rM/T (X ∩ E(M1)) + rM/T (X ∩
E(M2)).

2.2 General modular restrictions

Having defined modular sums, we are ready to show that Theorem 2.0.1 is
a corollary of Theorem 2.0.2. We need one more fact, sometimes called the
Fundamental Theorem of Projective Geometry (for a proof, see [1, Theorem
5.4.8]) as well as a few definitions about matroid representations.

Fundamental Theorem of Projective Geometry. For each finite field F
and integer n ≥ 3, the projective geometry PG(n−1,F) is uniquely representable
over F.
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We note that when B is a basis of a matroid M , any representation of M
can be transformed by row operations into one where the columns indexed by
B are an identity matrix. This is called a representation in standard form
with respect to B. When A is a representation of M in standard form with
respect to B, we index the rows of A by the elements of B, so that Abb = 1
for each b ∈ B. For each X ⊆ B and Y ⊆ E(M), we write A[X, Y ] for the
submatrix of A in the rows indexed by X and the columns indexed by Y .

A set D in a matroid M is called coindependent when it is independent
in the dual, M∗; a set is coindependent if and only if it is disjoint from a basis
of M . Whenever N is a minor of a matroid M , we can partition E(M) \E(N)
into an independent set C and a coindependent set D such that N = M/C\D
(see [37, Lemma 3.3.2]). Suppose that B is a basis of N and that B′ = B ∪ C,
so B′ is a basis of M . Let F be a field and A′ an F-representation of M in
standard form with respect to the basis B′. Then the matrix A = A′[B,E(N)]
is an F-representation of N in standard form with respect to the basis B.
We say that the representation A′ of M extends the representation A of N
and that A extends to A′. Conversely, A is the representation of N that is
induced by A′. Any representation of N that is row-equivalent to A is also
said to extend to A′.

We restate Theorem 2.0.1 here and prove it assuming Theorem 2.0.2, towards
whose proof we resume working in the next section.

Theorem 2.0.1. If M is a vertically 4-connected matroid with a modular
restriction N of rank at least three, then every representation of N over a finite
field F extends to an F-representation of M .

Proof. We may assume that M is simple. We let F be any finite field over
which N is representable. We let N ′ be a copy of the projective geometry
PG(r(N)− 1,F) that has N as a restriction, and whose ground set is disjoint
from E(M) \ E(N). Since N is modular in M , the modular sum M ⊕m N ′

exists; we denote it by M ′.

(1) N ′ is a modular restriction of M ′.

If not, then by Proposition 1.4.1, there is a set C ⊆ E(M ′) \ E(N ′) and
an element e ∈ E(M ′) \ E(N ′) such that M ′/C has N ′ as a restriction and
e ∈ clM ′/C(E(N ′)) but e is not parallel to an element of E(N ′) in M ′/C. But
then M/C has N as a restriction, e ∈ clM/C(E(N)), and e is not parallel to an
element of E(N), contradicting the modularity of N in M .

(2) M ′ is vertically 4-connected.
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Suppose M ′ has a vertical (≤ 3)-separation (A,B). Since M is vertically
4-connected, (A ∩ E(M), B ∩ E(M)) is not a vertical (≤ 3)-separation of
M . Hence we may assume that B ∩ E(M) ⊆ clM(A ∩ E(M)). Then as
(A,B) is a vertical (≤ 3)-separation of M ′, B \ E(M) is not contained in
clM ′(A). But this means that B \ E(M) is not in clM ′(E(M)), a contradiction
because E(M ′) \ E(M) = E(N ′) \ E(N) which is in clN ′(E(N)) and hence in
clM ′(E(N)). This proves (2).

The relation of being a modular restriction is transitive (see [37, Proposition
6.9.7]). Therefore, any PG(2,F)-restriction of N ′ is modular in M ′ by (1) and
the fact that a PG(2,F)-restriction is modular in any F-representable matroid.
So M ′ is vertically 4-connected and has a modular PG(2,F)-restriction, and
Theorem 2.0.2 implies that it is F-representable.

We let A be any F-representation of N and A′ an F-representation of N ′

that extends A. By the Fundamental Theorem of Projective Geometry, any
F-representation of M ′ that extends a representation of N ′ ∼= PG(2,F) can be
transformed into one that extends A′, by row operations, scaling, and applying
an automorphism of F. Thus there is an F-representation of M ′ that extends
A′, and its restriction to E(M) is an F-representation of M that extends A.

2.3 Duality

A deletion pair in a 3-connected matroid M is a pair of elements {x, y} such
that M\x and M\y are 3-connected and M\x, y is internally 3-connected. A
contraction pair in M is a deletion pair in the dual, M∗.

The proofs in Sections 2.6 and 2.7 will require a counterexample to
Lemma 2.0.4 that has a deletion pair. However, we will be able to prove,
in Section 2.4, only that it contains either a deletion pair or a contraction
pair. We would therefore like a way to show that if a counterexample with a
contraction pair exists, then there is another one with a deletion pair. In this
section, we describe a useful matroid construction involving modular sums that
will let us prove this fact in Section 2.4.

An important fact is that for any field F, the class of F-representable
matroids is closed under duality, and further, if we take any F-representation
of a matroid M in standard form (I A), then (AT I) is an F-representation of
its dual, M∗ (see [37, Theorem 2.2.8]).

We fix a finite field F and let N0 and N1 be matroids isomorphic to PG(2,F)
on disjoint ground sets. We let ϕ : E(N0)→ E(N1) be an isomorphism between
N0 and N1.
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We choose some basis B0 of N0 and let B∗1 = E(N1) \ ϕ(B0); so B∗1 is a
basis of N∗1 . We choose A to be a matrix such that (I A) is an F-representation
of PG(2,F) in standard form with respect to B0; note that (AT I) is an F-
representation of N∗1 in standard form with respect to the basis B∗1 . We define
the F-matrix C with columns indexed by E(N0) ∪ E(N1) by

C =

(B0 E(N0) \B0 E(N1) \B∗1 B∗1
I A I 0
0 0 AT I

)
.

We denote by R = MF(C) the matroid represented by C over F. We
observe that R\E(N1) = N0 and R/E(N0) = N∗1 . Furthermore, since R is
F-representable, N0 is a modular restriction of R.

We can now state the main result of this section.

Proposition 2.3.1. If M0 is a 3-connected, non-F-representable matroid with
N0 as a restriction and λM0(E(N0)) = 3, then M1 = ((R⊕mM0)\E(N0))∗ is
internally 3-connected with all parallel pairs containing an element of E(N1),
M1 is non-F-representable, M1 has N1 as a restriction, and λM1(E(N1)) = 3.
Moreover, N1 is modular in M1 if and only if N0 is modular in M0.

We prove Proposition 2.3.1 through a sequence of lemmas. First, we show
that the matroid M1 has N1 as a restriction, then we show that M1 is not
F-representable, and finally we prove the required connectivity properties.

For a set S in a matroid M and sets X ⊆ E(M) \ S, Y ⊆ S, we say that
Y subjugates X relative to S in M if

uM(X,S) = uM(E(M) \ S, Y ) = uM(X, Y ).

If for all X ⊆ E(M) \ S there is a set Y ⊆ S that subjugates X relative
to S in M , then we say that S subjugates M . Whenever N is a modular
restriction of a matroid M , the set E(N) subjugates M . In particular, for any
X ⊆ E(M) \ E(N), clM (X) ∩ E(N) subjugates X relative to E(N). However,
unlike modularity, the property of subjugating a matroid is invariant under
matroid duality, as we now show.

Proposition 2.3.2. Let M be a matroid and S ⊆ E(M). For any X ⊆
E(M) \S and Y ⊆ S, if Y subjugates (E(M) \S) \X relative to S in M , then
S \ Y subjugates X relative to S in M∗.

Proof. We start with the following claim:

(1) If (A,B,C) is a partition of E(M), λM(A) = uM(A,B) + uM∗(A,C).
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uM(A,B) + uM∗(A,C) is equal to

rM(A) + rM(B)− rM(A ∪B) + rM∗(A) + rM∗(C)− rM∗(A ∪ C)

= λM(A) + |A| − rM/B\C(A)− rM∗/C\B(A)

= λM(A) + |E(M/B\C)| − r(M/B\C)− r((M/B\C)∗)

= λM(A).

Let X ⊆ E(M) \ S and Y ⊆ S such that Y subjugates (E(M) \ S) \ X
relative to S in M . Then

uM((E(M) \ S) \X,S) = uM(E(M) \ S, Y ) = uM((E(M) \ S) \X, Y ).

By (1) we have uM ((E(M)\S)\X,S) = λM (S)−uM∗(X,S) and uM (E(M)\
S, Y ) = λM(E(M) \ S)− uM∗(E(M) \ S, S \ Y ), implying that uM∗(X,S) =
uM∗(E(M) \ S, S \ Y ).

Similarly, from the equality uM(E(M) \ S, Y ) = uM((E(M) \ S) \X, Y )
and (1) we have λM(Y ) − uM∗(Y, S \ Y ) = λM(Y ) − uM∗((S \ Y ) ∪ X, Y ).
From this we have −rM∗(S \ Y ) + rM∗(S) = −rM∗((S \ Y ) ∪X) + rM∗(S ∪X)
and hence uM∗(X,S) = uM∗(X,S \ Y ). This proves that S \ Y subjugates X
relative to S in M∗.

Now we can show that the matroid M1 has N1 as a modular restriction.

Lemma 2.3.3. If M0 is a matroid with N0 as a restriction and λM0(E(N0)) = 3,
then M1 = ((R ⊕mM0)\E(N0))

∗ has N1 as a restriction. Moreover, if N0 is
modular in M0 then N1 is modular in M1.

Proof. The fact that λM0(E(N0)) = 3 means that N∗1 = R/E(N0) =
M∗

1/(E(M0) \ E(N0)), so N1 = M1|E(N1) is a restriction of M1. We now
assume that N0 is modular in M0.

We observe that E(N1) subjugates R∗, for R∗ is F-representable so
R∗|E(N1) = N1

∼= PG(2,F) is modular in R∗. By Proposition 2.3.2, E(N1)
also subjugates R. Then the fact that E(N0) is coindependent in R im-
plies that for a set X ⊆ E(M0) \ E(N0), there is a set Y ⊆ E(N1) with
clR(Y ) ∩ E(N0) = clM0(X) ∩ E(N0). Let r = rN0(clR(Y ) ∩ E(N0)). The
modularity of N0 in M0 and in R implies that uM0(X,E(N0)) = r and
uR(Y,E(N0)) = r. By Proposition 2.1.5, (E(M0) \ E(N0), E(N1)) is a separa-
tion of (R⊕mM0)/E(N0). This fact, with the coindependence of E(N0) in M0

and R, implies that

u(R⊕mM0)\E(N0)(X,E(N1)) = uM0(X,E(N0)) = r, and
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u(R⊕mM0)\E(N0)(Y,E(M0) \ E(N0)) = uR(Y,E(N0)) = r.

Moreover we have r ≤ uM∗1 (X, Y ) ≤ uM∗1 (X,E(N1)) = r. This proves that
E(N1) subjugates M∗

1 , and then Proposition 2.3.2 implies that E(N1) subju-
gates M1.

Let F be a flat of M1, let X = F \ E(N1), and let Y ′ ⊆ E(N1) be
a set that subjugates X relative to E(N1) in M1. As E(N1) is indepen-
dent in R, it is coindependent in M1. Therefore, uM1(E(M1) \ E(N1), Y

′) =
rM1(Y

′), so uM1(X, Y
′) = rM1(Y

′) and uM1(X,E(N1)) = rM1(Y
′). The first

equation implies that Y ′ ⊆ clM1(X), which with the second implies that
uM1(X,E(N1)) ≤ rM1(clM1(X) ∩ E(N1)). Then as F is closed, we have
uM1(X,E(N1)) ≤ rM1(clM1(X) ∩ F ∩ E(N1)) ≤ uM1(X,F ∩ E(N1)). Thus
uM1(X,E(N1)) = uM1(X,F ∩ E(N1)), implying that rM1(E(N1))− rM1(F ∪
E(N1)) = rM1(F ∩E(N1))− rM1(F ). This proves that N1 is a modular restric-
tion of M1.

Next, we show that for a matroid M0 with N0 as a restriction, the operation
M0 7→ ((R⊕mM0)\E(N0))∗ is an involution, in the following sense.

Lemma 2.3.4. If M0 is a matroid with N0 as a restriction, λM0(E(N0)) = 3,
and M1 = ((R⊕mM0)\E(N0))∗, then M0 = ((R∗ ⊕mM1)\E(N1))∗.

Proof. By Lemma 2.3.3, M1 has N1 as a restriction, so we can define the matroid
M2 = ((R∗ ⊕m M1)\E(N1))

∗. Let N ′0 be a copy of N0 on a disjoint ground
set. Let R′ and M ′

0 be the matroids obtained from R and M0, respectively, by
relabelling each element in E(N0) by its copy in E(N ′0). The next claim is a
straightforward calculation.

(1) r((R∗ ⊕m (R′ ⊕mM ′
0)∗)∗) = r((R∗ ⊕m R′∗)∗) + r(M ′

0)− r(N ′0).

(2) (R∗ ⊕m (R′ ⊕mM ′
0)∗)∗ = (R∗ ⊕m R′∗)∗ ⊕mM ′

0.

We observe that (R∗⊕m(R′⊕mM ′
0)∗)∗, when restricted to the sets E((R∗⊕m

R′∗)∗) and E(M ′
0), yields the matroids (R∗⊕mR′∗)∗ and M ′

0, respectively. Along
with (1), this proves (2) because of the uniqueness of the modular sum as in
Proposition 2.1.1.

(3) M2 = ((R∗ ⊕m R′∗)∗ ⊕mM ′
0)\E(N ′0)/E(N1).

We have M2 = ((R∗⊕m ((R′⊕mM ′
0)\E(N ′0))∗)\E(N1))∗ = (R∗⊕m ((R′⊕m

M ′
0)
∗/E(N ′0)))

∗/E(N1). Since N∗1 = R′/E(N ′0) = (R′ ⊕m M ′
0)/E(M ′

0), N1 is
a restriction of (R′ ⊕mM ′

0)
∗. Hence we have R∗ ⊕m ((R′ ⊕mM ′

0)
∗/E(N ′0)) =

(R∗ ⊕m (R′ ⊕m M ′
0)
∗)/E(N ′0). This implies that M2 = ((R∗ ⊕m (R′ ⊕m

M ′
0)∗)/E(N ′0))∗/E(N1), and (3) now follows from (2).
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(4) (R∗⊕mR′∗)∗/E(N1) is the matroid obtained from N ′0 by adding each element
of E(N0) in parallel to its copy in E(N ′0).

We observe that R∗ is represented over F by the matrix

E(N0) E(N1)(
AT I 0 0

)
.

I 0 I A

Thus we have the following representation of R∗ ⊕m R′∗

E(N0) E(N1) E(N ′0) AT I 0 0 0 0
,I 0 I A I 0

0 0 0 0 AT I

hence (R∗ ⊕m R′∗)∗ has the representation

E(N0) E(N1) E(N ′0) I A I 0 0 0
,0 0 AT I 0 0

0 0 I 0 I A

which is row-equivalent to

E(N0) E(N1) E(N ′0) I A 0 0 −I −A
,0 0 0 I −AT −ATA

0 0 I 0 I A

which proves (4).

By (3) we have M2 = ((R∗⊕mR′∗)∗⊕mM ′
0)\E(N ′0)/E(N1). By (4), (R′∗⊕m

R∗)∗/E(N1) has N ′0 as a restriction, and M2 = ((R′∗ ⊕m R∗)∗/E(N1) ⊕m
M ′

0)\E(N ′0) = M0, as required.

The next lemma shows that our modular sum operation preserves F-
representability.

Lemma 2.3.5. If M0 is a matroid with N0 as a restriction and λM0(E(N0)) = 3,
then M1 = ((R⊕mM0)\E(N0))∗ is F-representable if and only if M0 is.
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Proof. First we assume that M0 is F-representable. Then M0 has an F-
representation of the form

D =

(E(M0) \ E(N0) B0 E(N0) \B0

A1 0 0
A2 I A

)
where (I A) is, as before, the matrix representing N0

∼= PG(2,F). Then


E(M0) \ E(N0) B0 E(N0) \B0 B∗1 E(N1) \B∗1

A1 0 0 0 0
A2 I A 0 I
0 0 0 I AT


is an F-representation of R⊕mM0 and therefore M1 = ((R⊕mM0)\E(N0))∗

is F-representable.
Next we assume that M1 is F-representable. By Lemma 2.3.3, M1 has N1

as a restriction, and the matroid R∗ ⊕m M1 exists. By the same argument
we applied to R ⊕mM0, R

∗ ⊕mM1 is F-representable. But by Lemma 2.3.4,
M0 = ((R∗ ⊕mM1)\E(N1))∗, and so M0 is F-representable.

Next, we show that M1 is internally 3-connected.

Lemma 2.3.6. Let M0 be a matroid with N0 as a restriction, λM0(E(N0)) = 3,
and M1 = ((R ⊕m M0)\E(N0))

∗. Then λM1(E(N1)) = 3 and if M0 is 3-
connected then M1 is internally 3-connected and each of its parallel pairs
contains an element of E(N1).

Proof. M1 has N1 as a restriction and λM1(E(N1)) = λR⊕mM0(E(N1)), which
is three by Proposition 2.1.3, part (i).

We assume that M0 is 3-connected. If M1 is not connected, it has a sepa-
ration (W,Z). Since λM0(E(N0)) = 3, (R⊕mM0)\E(N0)/(E(M0) \ E(N0)) =
R/E(N0) = N∗1 , which is 3-connected. Therefore, we may assume that
E(N1) ⊆ W . Then since E(N0) ⊆ clR(E(N1)), (W ∪ E(N0), Z) is a sepa-
ration of R⊕mM0. This implies that (W ∪ E(N0) \ E(N1), Z) is a separation
of M0, a contradiction; so M1 is connected.

If M1 is not internally 3-connected, then M∗
1 = (R⊕mM0)\E(N0) has an

internal 2-separation (U, V ). Since M∗
1/(E(M0) \ E(N0)) = R/E(N0) = N∗1

is 3-connected we may assume that all but at most one element of E(N1) is
contained in U . If there is an element e ∈ E(N1)∩ V then as V \ {e} ⊆ E(M0)
we have rM∗1 (V ) = rM∗1 (V \ {e}) + 1, implying that (U ∪ {e}, V \ {e}) is a
2-separation of M∗

1 . Therefore, M∗
1 has a 2-separation (A,B) with E(N1) ⊆ A
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(either A = U or A = U ∪ {e}). Since E(N0) ⊆ clR(E(N1)), (A ∪ E(N0), B) is
a 2-separation of R⊕mM0, and thus (A ∪ E(N0) \ E(N1), B) is a separation
or 2-separation of M0, a contradiction.

Suppose that M1 has a parallel pair X that is disjoint from E(N1). Then
X is a series pair of (R ⊕m M0)\E(N0). Since E(N0) ⊆ clR⊕mM0(E(N1)), X
is also a series pair of R⊕mM0. But then Proposition 2.1.3, part (ii) implies
that X is also a series pair of M0, a contradiction. Therefore, M1 is internally
3-connected and each of its parallel pairs contains an element of E(N1).

We conclude this section by remarking that Lemmas 2.3.3, 2.3.4, 2.3.5, and
2.3.6 together prove Proposition 2.3.1.

2.4 Finding a deletion pair

We recall that a deletion pair in a 3-connected matroid M is a pair of elements
x, y such that M\x and M\y are 3-connected and M\x, y is internally 3-
connected. The purpose of this section is to show that if there exists a
counterexample to Lemma 2.0.4, then there is one that has a deletion pair. We
will start with several useful facts on connectivity. The first, Bixby’s Lemma
[2, Theorem 1], is one we will use many times throughout this chapter.

Bixby’s Lemma. If M is a 3-connected matroid and e ∈ E(M) then at least
one of M\e and M/e is internally 3-connected.

A triangle is a three-element circuit and a triad is a three-element cocircuit.
A coloop in a matroid is a loop in its dual and a series pair of elements is a
parallel pair in the dual. A series class is a parallel class in the dual, and is a
maximal set of corank one. Next we state a useful lemma of Tutte [52].

Tutte’s Triangle Lemma. If T = {a, b, c} is a triangle in a 3-connected
matroid M with |E(M)| ≥ 4 then either M\a is 3-connected, M\b is 3-
connected or there is a triad of M that contains a and exactly one of b and
c.

The next is a corollary of Tutte’s Triangle Lemma and is proved in [16].

Lemma 2.4.1 (Lemma 2.7, [16]). If T is a triangle in a 3-connected matroid
M with |E(M)| ≥ 4 then there exists e ∈ T such that M\e is internally
3-connected.

A fan in a matroid is a sequence (s1, s2, . . . , sn) of distinct elements such
that:
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• {si, si+1, si+2} is a triangle or a triad for each i = 1, 2, . . . , n− 2, and

• if {si, si+1, si+2} is a triangle then {si+1, si+2, si+3} is a triad, and if
{si, si+1, si+2} is a triad then {si+1, si+2, si+3} is a triangle, for each
i = 1, 2, . . . , n− 3.

An easy fact about fans is that λM (S) ≤ 2 for any set S forming a fan in a
matroid M . Recall that λM(S) = rM(S) + r∗M(S)− |S|.

Lemma 2.4.2. If (s1, . . . , sn) is a fan in a matroid M , then λM ({s1, . . . , sn}) ≤
2.

Proof. By duality we may assume that {si, si+1, si+2} is a triad of M for odd i
and a triangle for even i. Then rM ({s1, . . . , sn}) ≤ rM ({s1, s2, s3}) + |{5 ≤ i ≤
n : i is odd}|. In M∗, we have rM∗({s1, . . . , sn}) ≤ rM∗({s2, s3, s4})+ |{6 ≤ i ≤
n : i is even}|. Hence λM({s1, . . . , sn}) ≤ rM({s1, s2, s3}) + r∗M({s2, s3, s4}) +
n− 4− n ≤ 2.

An element e of a 3-connected matroid M is called essential if neither
M\e nor M/e is 3-connected. The next two results of Oxley and Wu are
specializations of the statements of Lemma 8.8.6 and Theorem 8.8.8 in [37].

Lemma 2.4.3 (Oxley, Wu, [39]). If M is a 3-connected matroid containing a
projective plane restriction and S = (s1, . . . , sn) is a maximal fan in M with
n ≥ 4, then the set of non-essential elements in S is {s1, sn}.

Theorem 2.4.4 (Oxley, Wu, [39]). If M is a 3-connected matroid and e is an
essential element of M that is in a four-element fan, then either

(i) e is in a unique maximal fan in M , or

(ii) e is in exactly three maximal fans each of which has exactly five elements,
the union X of these three fans has exactly six elements, and one of M |X
and M/(E(M) \X) is isomorphic to M(K4).

In the following lemma, we find either a deletion pair or a contraction
pair in a matroid. It is a generalization of a lemma of Geelen, Gerards
and Whittle [16, Lemma 2.8], and we partly follow the outline of their proof.
We make extensive use of Tutte’s Triangle Lemma, as well as the following
consequence of it: when a matroid has no element in a both a triangle and a
triad, every triangle contains at least two elements whose deletion leaves the
matroid 3-connected.

Lemma 2.4.5. If M is a 3-connected matroid such that
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(a) M has N0
∼= PG(2,F) as a modular restriction with λM(E(N0)) = 3,

(b) M/E(N0) is connected and non-empty, and

(c) no element of M is in both a triangle and a triad,

then either

(i) M has a restriction K ∼= M(K5) with a cocircuit {a, b, c, d} such that
M = K ⊕m (M\a, b, c, d),

(ii) M has a deletion pair x, y ∈ E(M) \ E(N0), or

(iii) M has a contraction pair x, y ∈ E(M) \ E(N0).

Proof. We let M be a counterexample; so M is 3-connected and satisfies (a),
(b), and (c), but none of the conclusions (i), (ii), or (iii) hold. The fact that M
is simple and N0 is modular in M means that E(N0) is closed in M .

We let Λ denote the set of elements e ∈ E(M) \ E(N0) such that M\e is
3-connected and Λ∗ the set of elements e ∈ E(M) \ E(N0) such that M/e is
3-connected. The first two claims are straightforward.

(1) Let e, f be distinct elements of E(M) \E(N0). If e ∈ Λ then M\e, f is not
3-connected, and if e ∈ Λ∗ then M/e, f is not 3-connected.

(2) If N is a 3-connected matroid with |E(N)| ≥ 4 and there are elements e, f
such that N\e/f is 3-connected, then either N/f is 3-connected or there is a
triangle of N containing e and f .

(3) Each element of E(M) \ E(N0) is either in Λ ∪ Λ∗ or is in a triangle that
contains an element of E(N0) and not in any triangle disjoint from E(N0).

Suppose that e ∈ E(M) \ E(N0) is not in Λ ∪ Λ∗ and is either not in a
triangle containing an element of E(N0) or is in a triangle disjoint from E(N0).
By Bixby’s Lemma, either M\e or M/e is internally 3-connected. Since neither
M/e nor M\e is 3-connected, e is either in a triangle or a triad. If it is contained
in a triangle, then it is contained in a triangle disjoint from E(N0). If it is
contained in a triad, then since N0 is 3-connected, the triad is disjoint from
E(N0).

We assume that e is contained in a triangle T = {e, a, b} disjoint from
E(N0). A dual argument covers the case where T is a triad disjoint from
E(N0). Neither a nor b is in a triad and M\e is not 3-connected, so by Tutte’s
Triangle Lemma, both M\a and M\b are 3-connected. We will prove (3) by
showing that M\a, b is internally 3-connected so that M satisfies (ii). Let



38 CHAPTER 2. MODULAR PLANES

(A,B) be a 2-separation in M\e with a ∈ A. Then b ∈ B. Since neither a
nor b is in a triad, |A|, |B| ≥ 3. Since |E(M)| ≥ 8 (from (a) and (b)), by
possibly swapping A and B we may assume |A| ≥ 4. Note that (A,B ∪ {e})
is a 3-separation of M , and a ∈ clM(B ∪ {e}). Thus (A \ {a}, B ∪ {e}) is a
2-separation of M/a and hence (A \ {a}, B ∪ {e} \ {b}) is a 2-separation in
M/a\b, and it is an internal 2-separation. Thus by Bixby’s Lemma, M\a, b
is internally 3-connected, contradicting the fact that (ii) does not hold for M .
This proves (3).

(4) If e ∈ E(M) \ E(N0) is in a triad, then e ∈ Λ∗, and if e is in a triangle
disjoint from E(N0), then e ∈ Λ.

If e ∈ E(M) \ E(N0) is in a triad, then e 6∈ Λ and by (c) e is not in a
triangle, so (3) implies that e ∈ Λ∗. If e ∈ E(M) \ E(N0) is in a triangle
disjoint from E(N0), then e 6∈ Λ∗ and (3) implies that e ∈ Λ.

(5) If T is a triangle of M disjoint from E(N0), then Λ ⊆ T , and if T ∗ is a
triad of M , then Λ∗ ⊆ T ∗.

Suppose that there is a triangle T disjoint from E(N0) and an element e of
Λ \ T . Then M\e is 3-connected, so by Lemma 2.4.1, there exists f ∈ T such
that M\e, f is internally 3-connected. Also, since f is in a triangle disjoint from
E(N0), it follows from (3) that M\f is 3-connected. Then e, f is a deletion
pair of M , contradicting the fact that M does not satisfy (ii). This proves the
first part of (5) and the dual argument, along with the fact that all triads of
M are disjoint from E(N0), proves the second.

(6) If M has a triangle T disjoint from E(N0), it is unique and Λ = T , and if
M has a triad T ∗, then it is unique and Λ∗ = T ∗.

This follows immediately from (4) and (5).

(7) If e ∈ Λ and f ∈ E(M)\(E(N0)∪{e}), then either M\e, f is not internally
3-connected, or e is in a triangle containing exactly one element of E(N0), or
Λ is a triangle.

Suppose that M\e, f is internally 3-connected. Then M\f is not 3-
connected, since M does not satisfy (ii). Let (A,B) be a 2-separation in
M\f with e ∈ A. If |A| = 2 then A ∪ {f} is a triad of M , contradicting the
fact that M\e is 3-connected. Thus |A| ≥ 3, and (A \ {e}, B) is a 2-separation
in M\e, f , which is internally 3-connected, so |A| = 3. As (A,B ∪ {f}) is a
3-separation of M , A is a triangle (not a triad since e ∈ Λ). Since E(N0) is
a closed set and e 6∈ E(N0), A contains at most one element of E(N0). Then
either A is a triangle containing exactly one element of E(N0), or (6) implies
that Λ = A.
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(8) If e ∈ Λ∗ and f ∈ E(M)\(E(N0)∪{e}), then either M/e, f is not internally
3-connected, or Λ∗ is a triad.

Suppose that M/e, f is internally 3-connected. Then M/f is not 3-
connected, since M does not satisfy (iii). Let (A,B) be a 2-separation in
M/f with e ∈ A. If |A| = 2 then A ∪ {f} is a triangle of M , contradicting the
fact that M/e is 3-connected. Thus |A| ≥ 3, and (A \ {e}, B) is a 2-separation
in M/e, f , which is internally 3-connected, so |A| = 3. As (A,B ∪ {f}) is a
3-separation of M , A is a triad (not a triangle since e ∈ Λ∗), and (6) implies
that Λ∗ = A.

(9) There is no cocircuit {a, b, c, d} of M such that uM ({a, b}, E(N0)) = 1 and
either uM({a, c}, E(N0)) = 1 or uM({c, d}, E(N0)) = 1.

Let {a, b, c, d} be a cocircuit of M with uM(E(N0), {a, b, c, d}) ≥ 2. If
λM ({a, b, c, d}) = 2 then by (b), E(M) = E(N0)∪{a, b, c, d} and λM (E(N0)) =
2, a contradiction. So λM ({a, b, c, d}) = 3, and {a, b, c, d} is independent in M .

Suppose that uM(E(N0), {a, b, c, d}) = 3. Then rM/E(N0)({a, b, c, d}) = 1
and since {a, b, c, d} is a cocircuit of M , it is a rank-one cocircuit of M/E(N0),
which means it is a component of M/E(N0). Then since M/E(N0) is connected,
E(M) = E(N0)∪ {a, b, c, d}. By the modularity of N0, for each pair of distinct
elements f, g ∈ {a, b, c, d}, there is an element efg ∈ E(N0) such that {f, g, efg}
is a triangle in M ; let X be the set of these six elements. For each triple
of distinct elements f, g, h ∈ {a, b, c, d}, {efg, egh, ehf} is a triangle. Hence
M |({a, b, c, d} ∪X) ∼= M(K5). Moreover, M = (M |({a, b, c, d} ∪X)) ⊕m N0,
so outcome (i) holds. So we may assume that uM(E(N0), {a, b, c, d}) = 2.

First, we assume that uM ({a, c}, E(N0)) = 1; then also uM ({b, c}, E(N0)) =
1 and there are elements eab, ebc, eca ∈ E(N0) such that {a, b, eab}, {b, c, ebc}
and {c, a, eca} are triangles. We claim that a, b, c ∈ Λ. If not, by symmetry we
may assume that M\b is not 3-connected. Then it has a 2-separation, (U, V ),
with eab ∈ U and a ∈ V . We have a 6∈ clM(U) and eab 6∈ clM(V ). Hence
since eca is in triangles of M\b with each of eab and a, eca ∈ clM(U) ∩ clM(V ).
Then we have c ∈ V and ebc ∈ U . Since |V \ {eca}| ≥ 2, we may assume that
eca ∈ U . Now (U, V ∪ {b}) is a 3-separation of M and U ∩ clM(V ∪ {b}) =
{eab, ebc, eca}. So λM/E(N0)(U \ E(N0)) = 0, implying by (b) that U = E(N0),
since clM(V ) ∩ E(N0) = {eca}. This contradicts the fact that λM(E(N0)) = 3.
Therefore, a, b, c ∈ Λ and by (6), d is not in a triangle of M .

We now show that one of M\a, b and M\b, c is internally 3-connected.
Suppose that M\b, c is not internally 3-connected. Then M\b, c has an internal
2-separation (W,Z). Since |E(M)| > 8 (by (a) and (b)), one of W and Z has
size at least four. So since {a, d} is a series pair of M\b, c, we may assume that
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a, d ∈ W . Since M\b is 3-connected, eca ∈ Z and a 6∈ clM (Z). Therefore, since
|W | ≥ 3, (W \ {a}, Z) is a 2-separation of M\b, c/a. Since {c, eca} is a parallel
pair in M\b/a, (W \ {a}, Z ∪ {c}) is a 2-separation of M\b/a. The unique
triangle of M\b containing a is {a, c, eca}, so W \ {a} is not a parallel pair of
M\b/a; nor is it a series pair as M\b is 3-connected. Hence |W \ {a}| > 2 and
(W \ {a}, Z ∪ {c}) is an internal 2-separation of M\b/a. By Bixby’s Lemma,
M\a, b is internally 3-connected. Therefore, outcome (ii) holds.

We may therefore assume that uM({c, d}, E(N0)) = 1. We let eab, ecd ∈
E(N0) be the elements such that {a, b, eab} and {c, d, ecd} are triangles. Then
by Tutte’s Triangle Lemma, we may assume that b, c ∈ Λ, and by (6), a and
d are not contained in any triangles except these two. If M\b, c is internally
3-connected, then outcome (ii) holds, so there is an internal 2-separation
(W,Z) of M\b, c. Since {a, d} is a series pair of M\b, c, we may assume that
a, d ∈ W . Then since M\b is 3-connected, ecd ∈ Z. Since (W,Z) is an internal
2-separation, (W \ {d}, Z) is a 2-separation of M\b, c/d. Then as c is parallel
to ecd in M\b/d, (W \ {d}, Z ∪ {c}) is a 2-separation of M\b/d. But d is in a
unique triangle of M , so W \ {d} is not a parallel pair of M\b/d. Nor is it a
series pair since M\b is 3-connected. So |W \ {d}| > 2 and (W \ {d}, Z ∪ {c})
is an internal 2-separation of M\b/d. By Bixby’s Lemma, M\b, d is internally
3-connected. Thus either outcome (ii) holds, or M\d is not 3-connected. We
let (X, Y ) be a 2-separation of M\d with c ∈ X and E(N0) ∈ Y (this exists as
{c, d, ecd} is a triangle). Since M\c is 3-connected, c is not in a triad of M so
|X| > 2. Thus if {a, b} ⊆ Y then as {a, b, c} is a triad of M\d, (X \{c}, Y ∪{c})
is also a 2-separation of M\d; but then (X \{c}, Y ∪{c, d}) is a 2-separation of
M , a contradiction. So at least one of a and b is in X. Then as {a, b, c} is a triad
of M\d, (X ∪ {a, b}, Y \ {a, b}) is also a 2-separation of M\d, hence we may
assume that a, b ∈ X. But then (X∪{d}, Y ) is a 3-separation of M . Also, since
ecd and eab are in Y ∩clM (X∪{d}), uM (X∪{d}, E(N0)) = uM (X∪{d}, Y ) = 2.
Then X ∪ {d} is a component of M/E(N0), which is connected, so Y = E(N0).
This contradicts the fact that λM(E(N0)) = 3. This proves (9).

(10) M has no U2,4-restriction whose ground set is not contained in E(N0).

Suppose {a, b, c, d} is a set of rank two in M not contained in E(N0). We
may assume that a, b, c 6∈ E(N0). By Tutte’s Triangle Lemma, we may assume
that M\a is 3-connected. Then by Tutte’s Triangle Lemma applied to the
triangle {b, c, d} in M\a, we may assume that M\a, c is 3-connected. Then
{a, c} is a deletion pair and M satisfies (ii), proving (10).

(11) There is at most one triangle of M containing exactly one element of N0.
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By (10), no two triangles that are not contained in E(N0) can meet in
more than one element. Thus there are three ways in which M could have
two triangles that each contain exactly one element of N0: either they meet in
an element of E(M) \ E(N0), they are disjoint, or they meet in an element of
E(N0).

First, we assume that there are two triangles {a, b, d} and {a, c, e} where
a 6∈ E(N0) and d, e ∈ E(N0). By the modularity of N0, there is an element
f ∈ E(N0) ∩ clM({b, c}), so M has a triangle containing {b, c}. By Tutte’s
Triangle Lemma and the fact that no element of M is in both a triangle and
a triad, at least one of M\b and M\c is 3-connected. By symmetry between
b and c we may assume that M\b is 3-connected. Since M does not satisfy
(ii), neither M\b, c nor M\b, a is 3-connected. So by Tutte’s Triangle Lemma
applied to the triangle {a, c, e}, a and c are both in triads of M\b. But since e
is not in a triad, a and c are contained in the same triad. Since a and c are not
in a triad of M , this means that {a, b, c} is contained in a 4-element cocircuit
of M , contradicting (9).

Next, we assume there are two triangles T1 and T2 that do not meet in any
element of E(M) \ E(N0). Let {a, b, e} and {c, d, f}, where e, f ∈ E(N0). So
a, b, c, d are distinct, but e and f may not be distinct. By Tutte’s Triangle
Lemma applied to {c, d, f}, either M\c or M\d is 3-connected; by symmetry
we may assume M\c is. Since M does not satisfy (ii), M\c, a and M\c, b are
not 3-connected. Thus by Tutte’s Triangle Lemma and the fact that no triad of
M\c contains an element of N0, {a, b} is contained in a triad of M\c. Therefore,
as a is not in any triad of M , {c, a, b} is contained in some 4-element cocircuit
of M . Since this cocircuit does not contain exactly one element of {c, d, e}
and does not contain exactly one element of N0, it contains d. So {a, b, c, d}
is a cocircuit of M . If e and f are distinct, then uM({a, b, c, d}, E(N0)) = 2,
contradicting (9). Hence we may assume that e = f .

We may assume by Tutte’s Triangle Lemma applied to {a, b, e} that M\a
is 3-connected (recall that we have already applied Tutte’s Triangle Lemma to
{c, d, e} to assume that M\c is 3-connected). Hence M\a, c is not internally
3-connected or {a, c} would be a deletion pair. We let (X, Y ) be an internal
2-separation of M\a, c with E(N0) ⊆ clM(X). Since M\a and M\c are 3-
connected, we have b, d ∈ Y \ clM(X). Suppose that |Y | > 3. Then recall
that {b, d} is a series pair of M\a, c, so (X ∪ {b, d}, Y \ {b, d}) is also a 2-
separation of M\a, c. But as a, c ∈ clM(X ∪ {b, d}), we have a 2-separation
(X ∪ {a, b, c, d}, Y \ {b, d}) of M , a contradiction. Hence |Y | = 3, and the
unique element w of Y \ {b, d} lies in clM(X) ∩ clM({b, d}). Applying Tutte’s
Triangle Lemma to {b, d, w}, one of M\b and M\d is 3-connected; by symmetry
we may assume that M\b is 3-connected. Now since M\a and M\b are both
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3-connected, we have restored the symmetry between a and b, and so by a
symmetric argument {a, d} is also contained in a triangle; we let z be its third
element. Since {a, b, c, d} is a cocircuit of M and u,w, z ∈ clM({a, b, c, d}), it
follows that {u,w, z} is a triangle of M . So by Tutte’s Triangle Lemma and the
symmetry between w and z, we may assume that M\w is 3-connected. Hence
M\w, a is not internally 3-connected, or {w, a} would be a deletion pair. We
let (A,B) be an internal 2-separation of M\w, a with E(N0) ⊆ clM(A). Since
M\w and M\a are 3-connected and {u,w, z} and {u, a, b} are triangles, we
have z, b ∈ B \ clM (A). Also, since {b, w, d} and {d, u, c} are triangles, we have
d ∈ A and c ∈ clM(A). Suppose that |B| = 3 and let y be the unique element
of B \ {b, z}. Then B is a triangle of M and y ∈ clM(A). A triangle cannot
contain just one element of the cocircuit {a, b, c, d}. But a, d ∈ A, and if c ∈ B
then c and y are both in clM(A) ∩ clM(B) and hence parallel, a contradiction.
This proves that |B| > 3. Now b is in the closure of B \ {b, z}, for if not then
(A ∪ {w, b, z}, B \ {b, z})) is a 2-separation of M\a. This is a contradiction
because {a, b, c, d} is a cocircuit that is disjoint from B \ {b, z}. This proves
(11).

(12) Either Λ is not a triangle or Λ∗ is not a triad.

Suppose that Λ is a triangle and Λ∗ is a triad. Then Λ and Λ∗ are disjoint,
and by (3) and (11), E(M) \E(N0) consists of the union of Λ, Λ∗, and at most
one triangle, which contains an element of N0.

Suppose that E(M) ∪ E(N0) = Λ ∪ Λ∗. Since Λ∗ has corank two,
λM\Λ∗(E(N0)) ≥ λM(E(N0)) − 2 = 1, so uM(Λ, E(N0)) ≥ 1. By the mod-
ularity of N0, this means that clM(Λ) contains an element of N0, hence M
has a four-point line not contained in E(N0), contradicting (10). Therefore,
E(M) \ E(N0) is the union of Λ ∪ Λ∗ with a triangle T that contains precisely
one element, u, of N0.

We write Λ = {a, b, c} and Λ∗ = {d, e, f}. Tutte’s Triangle Lemma implies
that T cannot be disjoint from Λ, so we may assume that c ∈ T . We let w
denote the element of T \ {u, c}. Since w 6∈ Λ, M\w is not 3-connected, and
being in a triangle, w is not in a triad, so M\w is not internally 3-connected.
Let (X, Y ) be an internal 2-separation of M\w with E(N0) ⊆ clM(X). Then
c ∈ Y \ clM(X) and we may assume a, b ∈ Y . Moreover, we may assume
that Λ∗ is contained in either X or Y . If Λ∗ ⊆ Y then (E(N0),Λ ∪ Λ∗ ∪ {w})
is a 3-separation of M , contradicting the fact that λM(E(N0)) = 3. So
Λ∗ ⊆ X. Hence λM({a, b, c, w}) = 2 and so {a, b, c, w} is a cocircuit of M .
We let d, e, and f denote the elements of Λ∗. Recall that M/f and M/d
are 3-connected; so M/d, f is not internally 3-connected or we would have a
contraction pair. So M/f has a 3-separation (A,B) with E(N0) ⊆ clM/f(A),
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d ∈ clM/f(A) ∩ clM/f(B), and |B \ {d}| ≥ 3. If Λ ⊆ clM/f(A) then e would
be a coloop of M/f ; so we may assume that Λ ⊆ B. We assume that w is
in clM/f (A). Then so is c, and hence e ∈ B \ clM/f (A) or else {a, b} would be
a series pair of M/f . Then {c, d} is contained in clM/f(A) ∩ clM/f(B), which
implies that E(N0) is disjoint from clM/f(B) because otherwise {c, d} would
be contained in a triangle by the modularity of N0. Thus {a, b, c, e} and E(N0)
are skew in M/f , and so {a, b, c, e, f} and E(N0) are skew in M . But then
uM ({a, b, c, d, e, f, w}, E(N0)) ≤ 2, contradicting the fact that λM (E(N0)) = 3.
This proves that w ∈ B. If e ∈ A then we have d ∈ clM/f({a, b, c, w}). But
then uM({f, d}, {a, b, c, w}) = 1 so ({a, b, c, w, d, f}, E(N0)) is a 2-separation
of M\e, which means λM (E(N0)) ≤ 2, a contradiction. So e ∈ B. Then since u
is the unique element of N0 in clM/f (B), clM ({a, b, c, e, f}) contains no element
of N0 except possibly u. So λM\w,d(E(N0)) ≤ 1, but since w is in the closure
of {a, b, c, u}, we have also λM\d(E(N0)) ≤ 1, and then λM(E(N0)) ≤ 2, a
contradiction. This proves (12).

(13) If Λ∗ is not a triad then for each e ∈ Λ∗, E(M) \ (E(N0) ∪ {e}) ⊆ Λ.

We assume that Λ∗ is not a triad and that there exists e ∈ Λ∗. Let
f ∈ E(M) \ (E(N0)∪{e}). By (8), M/e, f is not internally 3-connected. Thus
by Bixby’s Lemma, M/e\f is internally 3-connected. But M has no triads by
(6) so M/e\f is actually 3-connected. Also, as M has no triads, the dual of (2)
implies that M\f is 3-connected. Thus f ∈ Λ, proving (13).

(14) If Λ is not a triangle then for each e ∈ Λ that is not in a triangle of
M meeting E(N0), each f ∈ E(M) \ (E(N0) ∪ {e}) that is not in a triangle
meeting E(N0) is in Λ∗.

We assume that Λ is not a triangle and that there exists e ∈ Λ that is not in
a triangle of M meeting E(N0). Let f ∈ E(M) \ (E(N0) ∪ {e}) such that f is
not in a triangle meeting E(N0). By (7), M\e, f is not internally 3-connected.
Thus by Bixby’s Lemma, M\e/f is internally 3-connected. But M has no
triangles disjoint from E(N0) by (6) so M\e/f is actually 3-connected. Also, as
M has no triangles disjoint from E(N0), (2) implies that M/f is 3-connected.
Thus f ∈ Λ∗, proving (14).

(15) Λ is not a triangle and Λ∗ is not a triad.

Since λM(E(N0)) = 3, |E(M) \ E(N0)| ≥ 4. If this is an equality then
E(M) \ E(N0) is a cocircuit, contradicting (9), so |E(M) \ E(N0)| ≥ 5.

It follows from (3) and (11) that E(M) \ (E(N0)∪Λ∪Λ∗) is contained in a
triangle meeting E(N0). By Tutte’s Triangle Lemma, such a triangle contains
an element of Λ, so |E(M) \ (E(N0) ∪ Λ ∪ Λ∗)| ≤ 1. Hence |Λ ∪ Λ∗| ≥ 4.
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Assume that Λ is a triangle. Then by (12), Λ∗ is not a triad. We have
|Λ| = 3, so Λ∗ is not empty. Thus by (13), for any e ∈ Λ∗, E(M)\(E(N0)∪{e}),
which has size at least four, is contained in the triangle Λ. This proves that Λ
is not a triangle.

Next, assume that Λ∗ is a triad. We have |Λ∗| = 3, so Λ is not empty.
Suppose that there exist two distinct elements e, f ∈ E(M) \ (E(N0) ∪ Λ∗)
that are not in a triangle meeting E(N0). Then e ∈ Λ and by (14), f ∈ Λ∗, a
contradiction. So there is at most one element of E(M) \ (E(N0) ∪ Λ∗) that
is not in a triangle meeting E(N0). Hence such a triangle, T , exists. Denote
the elements of Λ∗ by {x, y, z}. Suppose that E(M) \ E(N0) = Λ∗ ∪ T . Then
r(M) = 5, and r(M/x, y) = 3 and si(M/x, y) is 3-connected. So either {x, y}
is a contraction pair, or M/x, y has a parallel class of size at least three, in
which case M/x has a line L with at least four points and y ∈ L. If L contains
T \E(N0), then uM ({x, y}, T ) = 1, but then (E(N0), (T \E(N0))∪{x, y}) is a 2-
separation ofM\z, contradicting the fact that λM\z(E(N0)) ≥ λM (E(N0))−1 =
2. Otherwise, L contains {y, z} and exactly one element a ∈ T . But then
rM/x(T ∪ {y, z}) = 3 so rM(T ∪ Λ∗) = 4; but as r∗M(T ∪ Λ∗) < 4, this
means λM(E(N0)) < 3, a contradiction. Therefore, we may assume that
E(M) \ E(N0) contains an element, w, that is not in Λ∗ ∪ T . If r(M\Λ∗) = 4,
then {w} ∪ (T \ E(N0)) is a triad of M\Λ∗, and the modularity of N0 implies
that w is in two triangles, but we know that T is the unique triangle not
contained in E(N0). So r(M\Λ∗) = 5 and hence r(M) = 6. As w 6∈ Λ∗, M
has a 3-separation (A,B) with w ∈ clM(A) ∩ clM(B) and E(N0) ⊆ clM(A).
The set B \ clM(A) is non-empty because w is not in a triangle. Then M
being 3-connected, we must have |B \ clM(A)| ≥ 3. If B \ clM(A) contains
just one element of Λ∗, then it is a triad, but the unique triad of M is Λ∗.
So (A \ Λ∗, B ∪ Λ∗) is also a 3-separation of M and we may assume that
Λ∗ ⊆ B. If any one element of T \ E(N0) is in B \ clM(A), then both are; but
then clM(A) = E(N0) and λM(E(N0)) = 2, a contradiction. So T ⊆ clM(A).
Then w ∈ clM(A \ clM(B)) because (A,B) is a 3-separation. This means that
r(M\Λ∗) = 4 and r(M) = 5, a contradiction. This proves (15).

(16) Λ = E(M) \ E(N0) and Λ∗ contains all elements of E(M) \ E(N0) except
possibly two, which are in a common triangle.

Recall that |E(M) \ E(N0)| ≥ 5 and M has at most one triangle not
contained in E(N0), so the set X of elements of E(M)\E(N0) not in a triangle
meeting E(N0) has size at least three. Thus either |Λ∗| ≥ 2 or |X ∩ Λ| ≥ 2.
If |Λ∗| ≥ 2 then it follows from (13) that Λ = E(M) \ E(N0). So in either
case |X ∩ Λ| ≥ 2. Therefore, by (14), X ⊆ Λ∗. Hence by (13) again we have
Λ = E(M) \ E(N0), proving (16).
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(17) For any distinct e, f ∈ Λ∗ and g ∈ Λ, M\e/f is 3-connected and g is
essential in M\e/f .

We have e, f ∈ Λ, so as {e, f} is not a deletion pair, M\e, f is not
internally 3-connected and Bixby’s Lemma says that M\e/f is internally
3-connected. Since f is not in a triangle of M , M\e/f is 3-connected. Suppose
that M\e, g/f is 3-connected. Then M\e, g is internally 3-connected, and
g ∈ Λ so {e, g} is a deletion pair. Next, suppose that M\e/f, g is 3-connected.
Then M/f, g is internally 3-connected. Also, g is not in a triangle of M , for if
it were then M\e/f, g would have a parallel pair since e is not in a triangle.
Therefore, g ∈ Λ∗ and {f, g} is a contraction pair. Thus neither M\e, g/f nor
M\e/f, g is 3-connected, meaning that g is essential in M\e/f . This proves
(17).

Let e, f ∈ Λ∗. By (17), every g ∈ E(M) \ (E(N0) ∪ {e, f}) is essential in
M\e/f . However, Bixby’s Lemma implies that one of M\e, g/f and M\e/f, g
is internally 3-connected, which means that g is in a triangle or a triad of
M\e/f . But if g is in a triangle then by Tutte’s Triangle Lemma, it is also
in a triad, and if g is in a triad, then by the dual of Tutte’s Triangle Lemma,
it is also in a triangle. A circuit and a cocircuit of a matroid cannot meet in
exactly one element, and a 3-connected matroid has no triangle that is also a
triad. Hence g is contained in a four-element fan of M\e/f .

Let S = (s1, . . . , sn) be a maximal fan of M\e/f containing g. By
Lemma 2.4.3, the set of non-essential elements of S is {s1, sn}. Note that
all elements in E(N0) are non-essential, because deleting a point from a projec-
tive plane leaves a 3-connected matroid. By (17), every element not in E(N0)
is essential. Hence S ∩ E(N0) = {s1, sn}. Moreover, no element of E(N0) is
in a triad, so {s1, s2, s3} and {sn−2, sn−1, sn} are triangles and {s2, s3, s4} is a
triad.

Suppose that S is not the unique maximal fan of M containing g. Then we
apply Theorem 2.4.4 to g and conclude that S has five elements and there is
an element s 6∈ S such that if X = {s, s1, . . . , s5} then X contains another 5-
element fan and one of M |X and M/(E(M) \X) is isomorphic to M(K4). But
if we contract all but two or three elements of a projective plane, the remaining
two or three elements are loops and hence cannot be part of an M(K4). So we
have M |X ∼= M(K4). Then either s ∈ clM\e/f({s2, s5}) ∩ clM\e/f({s1, s4}) or
s ∈ clN0({s1, s5})∩clM\e/f ({s2, s3}. But in the former case, the triad {s2, s3, s4}
meets the triangle {s2, s, s5} in only one element, a contradiction. So s ∈ E(N0)
and all maximal fans containing g consist of S \E(N0) and some two elements
of E(N0).
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Hence we can partition the elements of E(M\e/f) \ E(N0) into sets
Y 1, . . . , Y k such that for each Y j there is an ordering (yj2, . . . , y

j
n−1) of Y j

and elements yj1, y
j
n ∈ E(N0) so that (yj1, y

j
2, . . . , y

j
n) is a fan of M\e/f , and

every maximal fan not contained in E(N0) consists of the union of some Y j

with two elements of E(N0). Note that every element of E(M\e/f) \ E(N0)
is in at most two triangles, and each triangle not contained in E(N0) has
exactly one element in no other triangle. Moreover, this is true for any choice
of e, f ∈ Λ∗.

(18) |Y j| > 3 for all j = 1, . . . , k.

Suppose |Y j| = 3 for some j. Then Y j is a triad of M\e/f , and at least
one element y ∈ Y j is in Λ∗. In M\y/f , at least one of the two elements of
Y j \ {y} is in a triangle with e, otherwise they are contained in a triangle that
meets no other triangle outside E(N0). Let z be the element in a triangle with
e. If k > 1 then there is another part Y j′ . We choose any element e′ ∈ Y j′ ∩Λ∗.
Then z is in three triangles of M\e′/f , a contradiction. Hence k = 1, and so
j = 1 and E(M\e/f) = Y 1. But then Y j ∪ {e} is a four-element cocircuit of
M/f , and M/f, e is internally 3-connected, a contradiction. This proves (18).

(19) For all j = 1, . . . , k, e ∈ clM/f (Y
j).

Let j ∈ {1, . . . , k}. By (18), |Y j| > 3. Hence Yj contains a triangle
T = {yji−1, y

j
i , y

j
i+1} of M\e/f disjoint from E(N0). We consider M\yji /f . Now

the triangles {yji−3, y
j
i−2, y

j
i−1} and {yji+1, y

j
i+2, y

j
i+3} each have two elements

in no other triangle. So one of yji−2, y
j
i−1 is in a triangle with e, and one of

yji+1, y
j
i+2 is in a triangle with e. Let T1 and T2 be these triangles. Note that

they are disjoint from Y m for all m 6= j: this is because every element of Y m

is either in two other triangles in that fan, or is in one triangle of that fan in
which it is the unique element not in any other triangle. Suppose T1 and T2

meet E(N0). Then whichever of yji−1 and yji−2 is in T1 is in three triangles of

M\yji+2/f , a contradiction if yji+2 ∈ Λ∗. But if yji+2 6∈ Λ∗, then yji−2 ∈ Λ∗, and

then whichever of yji+1 and yji+2 is in T2 is in three triangles of M\yji−2/f , a
contradiction. This proves that one of T1 or T2 is disjoint from E(N0), hence
contained in Y j ∪ {e}. Thus e ∈ clM/f (Y

j), proving (19).

If k = 1, then (19) implies that (Y 1 ∪ {e}, E(N0)) is a 3-separation
of M/f , and so λM/f(E(N0)) = 2. But since f 6∈ clM(E(N0)), we have
3 = λM(E(N0)) = λM/f(E(N0)) = 2, a contradiction. Hence k ≥ 2. But
note that uM/f(Y

1, E(N0)) = 2 and uM/f(Y
2, E(N0)) = 2. So the fact that

e 6∈ clM/f(E(N0)) but e ∈ clM/f(Y
1) ∩ clM/f(Y

2) means that λM/f(Y
1) ≥ 3.
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But since e ∈ clM/f(Y
2), we then have λM\e/f(Y

1) = 3. This contradicts
Lemma 2.4.2, which said that a fan always has connectivity at most two.

We can now prove the main result of this section. It asserts that if there
exists a counterexample to Lemma 2.0.4, then there exists one with a deletion
pair disjoint from E(N0), and moreover that we can choose it such that deleting
this pair results in a matroid with at most one series pair.

Lemma 2.4.6. Let M0 be a matroid that is 3-connected, non-F-representable
and has a modular PG(2,F)-restriction, N0, with λM0(E(N0)) = 3, such that
no proper minor of M0 that has N0 as a restriction is 3-connected and non-
F-representable. Then there exists such a matroid M0 with a deletion pair
x, y ∈ E(M0) \ E(N0) such that M0\x, y has at most one series pair.

Proof. We use the matroid R defined in Section 2.3. First we show that a
contraction pair in one of M0 and M1 = ((R ⊕m M0)\E(N0))

∗ is a deletion
pair in the other.

(1) Let x, y ∈ E(M0)\E(N0). If {x, y} is a contraction pair in M0, then {x, y}
is a deletion pair in M1, and any series pair in M1\x, y is a parallel pair in
M0/x, y. If {x, y} is a contraction pair in M1, then {x, y} is a deletion pair in
M0, and any series pair in M0\x, y is a parallel pair in M1/x, y.

We prove the first statement, and the second follows by Lemma 2.3.4.
By Proposition 2.3.1, si(M1) is a 3-connected, non-F-representable matroid
with a modular restriction N1

∼= PG(2,F) and λM1(E(N1)) = 3. Let X be
the set of elements of M1 parallel to an element of E(N1). By Lemma 2.3.4,
M0 = ((R∗ ⊕m M1)\E(N1))

∗, so M0/X = ((R∗ ⊕m si(M1))\E(N1))
∗. By

Proposition 2.3.1 applied toM1, si(M0/X) is a 3-connected, non-F-representable
matroid with N0 as a modular restriction. Thus the minimality of M0 implies
that si(M0/X) = M0, and so X = ∅ and M1 is 3-connected.

We have M1\x = ((R⊕m (M0/x))\E(N0))∗ so by Lemma 2.3.6 applied to
M0/x, si(M1\x) is 3-connected; but M1 is 3-connected so this implies that
M1\x is 3-connected. Similarly, M1\y is 3-connected.

The modularity of N0 in the 3-connected matroid M0/x implies that y 6∈
clM0/x(E(N0)) so M0/x, y has N0 as a restriction. Let S1 be a set consisting of
one element from each parallel pair of M0/x, y that is disjoint from E(N0), and
let S2 be the set of elements of M0/x, y parallel to an element of E(N0). Then
by Lemma 2.3.6, (R⊕m (M0/x, y\S1, S2))\E(N0) is internally 3-connected with
no parallel pairs. But recall that M∗

1 = (R ⊕m M0)\E(N0) is 3-connected,
so (R ⊕m (M0/x, y\S1, S2))\E(N0) has no series pairs either and is thus 3-
connected. Therefore, (R ⊕m (M0/x, y\S1))\E(N0) is also 3-connected as it
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is obtained by adding non-parallel elements without increasing the rank. So
M1\x, y/S1 is 3-connected. Each parallel pair of M0/x, y disjoint from E(N0)
is a series pair of M1\x, y, and contracting an element from each of these
pairs results in the 3-connected matroid M1\x, y/S1, so M1\x, y is internally
3-connected and {x, y} is a deletion pair of M1.

Any series pair of M1\x, y is a parallel pair of (R⊕mM0)\E(N0)/x, y and
hence a parallel pair of M0/x, y. This proves (1).

We see that M0/E(N0) is connected, for if not then by Proposition 2.1.4
M0 is a modular sum of two proper restrictions of M0 containing N0. Both of
these are 3-connected by Proposition 2.1.3 and at least one of them is not F-
representable by Proposition 2.1.2 and the Fundamental Theorem of Projective
Geometry, contradicting the minimality of M0. Moreover, E(M0) \ E(N0) is
non-empty as M0 is not F-representable.

For the following claim, we use the fact that binary matroids are uniquely
representable over all fields [6].

(2) No element of M0 is in both a triangle and a triad.

Suppose f ∈ E(M0) is in both a triangle and a triad. Since a circuit and a
cocircuit cannot intersect in a single element and a triangle in a 3-connected
matroid cannot be a triad, M0 has elements {e, f, g, h} such that {e, f, g} is a
triad and {f, g, h} is a triangle. Since {e, f, g} is not a triangle, e is not in a
four-point line of M0. Suppose that M0/e has an internal 2-separation, (A,B).
Then (A ∪ {e}, B) is a 3-separation of M0 and e ∈ clM0(A) ∩ clM0(B). Since
|A|, |B| ≥ 3 but e is not in a four-point line in M0, neither A nor B is contained
in a parallel class of M0/e. So (A,B) is a vertical separation of M0/e and hence
(A ∪ {e}, B) is a vertical 3-separation of M0. Therefore, e ∈ clM0(A \ clM0(B))
and e ∈ clM0(B \ clM0(A)). Then as {e, f, g} is a cocircuit, one of f and g is
contained in A \ clM0(B) and the other in B \ clM0(A). But then {f, g} cannot
be contained in a triangle. So M0/e is internally 3-connected.

Let N be a copy of M(K4) such that E(N)∩E(M0) = {f, g, h} and {f, g, h}
is a triangle of N . Then M0 is isomorphic to (N ⊕m (M0/e))\f, g. Since N ,
being graphic, is F-representable and U2,3 is uniquely F-representable, M0/e is
not F-representable by Proposition 2.1.2.

So M0 has a proper minor si(M0/e) that is 3-connected and non-F-
representable and has N0 as a restriction, contradicting our minimal choice of
M0. This proves (2).

Since M0/E(N0) is connected and non-empty and no element of M0 is
in both a triangle and a triad, all assumptions of Lemma 2.4.5 hold for M0.
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Suppose that M0 has a restriction K ∼= M(K5) with a cocircuit {a, b, c, d} such
that M0 = K ⊕m (M0\a, b, c, d). Then K\a, b, c, d ∼= M(K4), which is binary
hence uniquely F-representable. Therefore, M0\a, b, c, d is non-F-representable
by Proposition 2.1.2. Also, it is 3-connected by Proposition 2.1.3, contradicting
our minimal choice of M0. This means that outcome (i) of Lemma 2.4.5
does not hold for M0 and so M0 has either a deletion or contraction pair
x, y ∈ E(M0) \ E(N0).

By (1), {x, y} is a deletion pair in a matroid M ∈ {M0,M1}. We choose
such a pair {x, y} so that the number of series pairs of M\x, y is minimum.
We may therefore assume that for any contraction pair {u, v} of M disjoint
from E(N0) and E(N1), M/u, v has at least as many parallel pairs as M\x, y
has series pairs. We now show that M\x, y has at most one series pair.

We denote the series pairs of M\x, y by S1 = {a1, b1}, . . . , Sk = {ak, bk}.

(3) Let c ∈ S1 ∪ · · · ∪ Sk such that c is not in a triangle of M . If {x, y} 6⊆
clM({c} ∪ Sj) for all j, then M/c is 3-connected.

By symmetry we may assume that c ∈ S1. It suffices to show that M/c
is internally 3-connected. Suppose that M/c has an internal 2-separation
(A,B) with y ∈ B. If x ∈ A, then as M/c\x, y is internally 3-connected,
either A or B is a triad of M/c hence also of M , contradicting the fact that
M\x and M\y are 3-connected. So x, y ∈ B. Since {c, x, y} is not a triangle,
|B| > 2, and the fact that M\x is 3-connected implies that B is not a triad, so
|B| > 3. Then since M/c\x, y is internally 3-connected, B \ {x, y} is a series
pair of it, so B = Sj ∪ {x, y} for some j > 1. Since M/c is connected and
λM/c(Sj ∪ {x, y}) = 1, either rM/c({x, y} ∪ Sj) = 2 or r∗M/c({x, y} ∪ Sj) = 2;

but r∗M/c\x,y(Sj) = 1 so we have rM/c({x, y} ∪ Sj) = 2. But this means

{x, y} ⊆ clM/c(Sj) so {x, y} ⊆ clM({c} ∪ Sj), a contradiction. This proves (3).

(4) M\x, y does not have exactly two series pairs.

Suppose that M\x, y has exactly two series pairs. First, we assume that
{x, y} 6⊆ clM(S1 ∪ S2); by symmetry we may assume that y 6∈ clM(S1 ∪ S2).
Then there is at most one triangle containing an element of S1 ∪ S2; either
it contains {x, y} or it contains x and an element of each of S1 and S2. So
we may assume that a1 and a2 are not contained in any triangles, and if b2 is
contained in a triangle then it is {x, b1, b2}. Then by (3), M/a1 and M/a2 are
3-connected. Since M\x, y/a1, a2 is 3-connected, si(M/a1, a2) is 3-connected
and all parallel pairs of M/a1, a2 contain x or y. So if M/a1, a2 has a parallel
class of size greater than two, then it contains x and y, and so {a2, x, y} is a
triangle of M/a1. But then {x, b1, b2} is not a triangle of M , so by (3), M/b2 is
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also 3-connected, and M/a1, b2 has no parallel classes of size greater than two.
So by possibly swapping the labels of a2 and b2, we may assume that M/a1, a2

is internally 3-connected. By our choice of deletion pair x, y, there are exactly
two parallel pairs in M/a1, a2. We call them {x, u} and {y, v}.

We consider M\x, a2, which has {b2, y} as a series pair. In M\x/y,
S1 ∪ S2 is a 4-element cocircuit. Also, λM\x/y(S1 ∪ S2) = 3 because
y 6∈ clM (S1 ∪ S2). Moreover, v ∈ clM\x/y({a1, a2}) but v 6∈ clM\x/y({a1, b1, b2}),
so λM\x,a2/y({a1, b1, b2, v}) = 3 and M\x, a2/y is 3-connected. Thus M\x, a2

is internally 3-connected with a unique series pair, {b2, y}. Then M\a2 is
3-connected because x 6∈ clM (E(M) \ (S2 ∪ {x, y})) and x 6∈ clM ({b2, y}). This
contradicts our choice of deletion pair {x, y}. Therefore, we may assume that
{x, y} ⊆ clM(S1 ∪ S2).

Suppose {x, y} is contained in a triangle; we may assume that either
{b1, x, y} is the only such triangle or {b1, x, y} and {b2, x, y} are the only two.
Then (3) implies that M/a2 is 3-connected. Also, {b1, b2, x, y} is a 4-point
line of M/a2, so M/a2\b1 and M/a2\b2 are 3-connected. Then M\b1 and
M\b2 are internally 3-connected and any series pair of each contains a2. But
neither {a2, b1} nor {a2, b2} is contained in a triad of M , so M\b1 and M\b2

are 3-connected. In M\b1, b2, {x, y} is a series pair. In M\b1, b2/y, {a1, a2, x}
is a triad which is not a triangle, so λM\b1,b2/y({a1, a2, x}) = 2 and M\b1, b2/y
is 3-connected. Therefore, M\b1, b2 is internally 3-connected with a single
series pair, {x, y}, contradicting our choice of deletion pair {x, y}. So {x, y} is
not contained in a triangle.

At least one of {a1, x} and {b1, x} is skew to S2, for if not then since
{a1, b1, x} is not a triangle we have uM(S1 ∪ {x}, S2) = 2, contradicting the
fact that rM(S1 ∪ S2) = 4. By symmetry we may assume that {a1, x} is skew
to S2. We claim that M\x, a1 is internally 3-connected with one series pair,
{b1, y}. If not, then M\x, a1/b1 is not 3-connected. But M\x/b1 is 3-connected
and has a triad {a2, b2, y}, so {a2, b2, y} is also a triad of M\x, a1/b1. Then
we may choose a 2-separation (A,B) of M\x, a1/b1 with a2, b2, y ∈ A. But
then a1 ∈ clM\x/b1({a2, b2, y}) ⊆ clM\x/b1(A), a contradiction. So M\x, a1 is
internally 3-connected with a unique series pair. Moreover, M\a1 is 3-connected
because x 6∈ clM({b1, y}) and x 6∈ clM(E(M) \ (S1 ∪ S2 ∪ {y})), contradicting
our choice of deletion pair {x, y}. This proves (4).

(5) There is at most one c ∈ S1 ∪ · · · ∪ Sk such that {c, x, y} is a triangle.

If not, then we may assume that there are distinct triangles {c1, x, y} and
{c2, x, y} with c1 ∈ S1 and c2 ∈ S2. Then x, y ∈ clM(S1 ∪ S2). But (4) implies
that there is a third series pair S3 of M\x, y, and in this case S3 is also a series
pair of M , which is 3-connected. This proves (5).
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(6) If M\x, y has more than one series pair, it has exactly three and {x, y} is
in the closure of their union.

By (4), we may assume that M\x, y has at least three series pairs, and by
(5) we may assume that for any c ∈ S2 ∪ S3, {c, x, y} is not a triangle. Then
any triangle of M containing c contains exactly one of x and y, say x. But
if such a triangle exists then for some r, Sr is skew to it and is thus a series
pair of M\y, a contradiction. So c is in no triangles of M , and by (3), M/c
is 3-connected. For any two such elements c ∈ S2, d ∈ S3, any parallel class
of M/c, d contains x or y since M/c, d\x, y has no parallel pairs. If M/c, d is
internally 3-connected, this implies that there are at most two parallel pairs in
M/c, d, which contradicts our choice of {x, y}. Thus it suffices to show that
M/c, d is internally 3-connected.

Assume that M/c, d is not internally 3-connected. Then M/c, d has an
internal 2-separation (A,B) with y ∈ B. If x ∈ A then, as M/c, d\x, y is
internally 3-connected, A or B is a triad ofM/c, d hence also ofM , contradicting
the fact that M\x and M\y are 3-connected. So x, y ∈ B, and since M\x, y/c, d
is internally 3-connected, |B| ≤ 4.

Let z ∈ B \ {x, y}. If B is a parallel class, then {c, d, z, x} and {c, d, z, y}
are circuits of M . If z ∈ S1, then (6) holds, while if not then {x, y} is in the
closure of E(M) \ S1 so S1 is a series pair of M , a contradiction. Therefore,
rM/c,d(B) ≥ 2. Also, r∗M/c,d(B) = r∗M(B) ≥ 2 since M is 3-connected. It

follows that if |B| = 3, then B is a triad of M/c, d and hence also of M , a
contradiction. So |B| = 4, rM/c,d(B) = 2, and B \ {x, y} is a series pair Si of
M\x, y. Therefore, x, y ∈ clM(S2 ∪ S3 ∪ Si) and (6) holds.

(7) M\x, y has at most one series pair.

If not, then by (6) it has three. By (5) and (3), we may assume that M/a1,
M/b1 and M/a2 are 3-connected. S3 is a series pair of M/a1, a2\x, y and
of M/b1, a2\x, y, which each have a unique 2-separation. This implies that
M/a1, a2\y is 3-connected if and only if x 6∈ clM/a1,a2(S3), and M/b1, a2\y is
3-connected if and only if x 6∈ clM/b1,a2(S3). If at least one of M/a1, a2\y and
M/b1, a2\y is 3-connected, then one of M/a1, a2 and M/b1, a2 is internally
3-connected with at most one parallel pair, contradicting our choice of
{x, y}. So we may assume that x ∈ clM/a1,a2(S3) and x ∈ clM/b1,a2(S3).
But then we have a1 ∈ clM({x, a2} ∪ S3) and b1 ∈ clM({x, a2} ∪ S3), so
rM(S1 ∪ S3 ∪ {a2}) ≤ 4, a contradiction. This proves (7).

If M = M0, then we are done by (7). If M = M1, then it remains to show
that M1 has no 3-connected, non-F-representable proper minor with N1 as a
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restriction. If it does have such a minor M1\D/C, then by Lemma 2.3.4 we
have M0/D\C = ((R∗ ⊕m (M1\D/C))\E(N1))

∗ and then Proposition 2.3.1
implies that si(M0/D\C) is a 3-connected, non-F-representable proper minor
of M0 with N0 as a restriction, a contradiction.

2.5 Stabilizers

Two representations of a matroid over a field F are called equivalent if one
can be obtained from the other by row operations (including adjoining and
removing zero rows) and column scaling; they are inequivalent otherwise.
When N is a minor of a matroid M , we say that N stabilizes M over F if no
F-representation of N extends to two inequivalent F-representations of M . We
will use the following fact about stabilizers for matroids over a finite field F.

Theorem 2.5.1 (Geelen, Whittle, [22]). If M is a 3-connected matroid with
PG(2,F) as a minor, then PG(2,F) stabilizes M over F.

A matroid M is called stable if it is connected and is not a 2-sum of two
non-binary matroids (this definition differs slightly from the original in [14] in
that we require that M be connected).

We observe that Theorem 2.5.1 implies that any stable matroid M with
PG(2,F) as a minor is stabilized by it over F; this follows from the fact that
binary matroids are uniquely representable over any field [6]. In particular, if
M is a direct sum or a 2-sum of a 3-connected matroid N and a binary matroid,
then every F-representation of N extends to a unique F-representation of M .
For a field F, we call a matroid a stabilizer for F if it stabilizes over F all
stable matroids that have it as a minor.

In the next section we will apply the following two lemmas about stabilizers.
They were proved by Geelen, Gerards and Whittle in [16] and can also be
derived from results in [56].

Lemma 2.5.2 (Geelen, Gerards, Whittle, [16]). Let N be a uniquely F-
representable stabilizer for a finite field F. Let M be a matroid with x, y ∈ E(M)
such that {x, y} is coindependent and M\x, y is stable and has an N-minor.
If M\x and M\y are both F-representable, then there exists an F-representable
matroid M ′ such that M ′\x = M\x and M ′\y = M\y.

We remark that although their statement of the above lemma [16, Lemma
5.3] requires that M be 3-connected, their proof requires only that {x, y} be
coindependent in M .



2.6. FINDING DISTINGUISHING SETS 53

Lemma 2.5.3 (Geelen, Gerards, Whittle, [16]). Let F be a finite field and let
M and M ′ be F-representable matroids on the same ground set with elements
x, y ∈ E(M) such that M\x = M ′\x and M\y = M ′\y. If M\x and M\y are
both stable, M\x, y is connected, and M\x, y has a minor that is a uniquely
F-representable stabilizer for F, then M = M ′.

2.6 Finding distinguishing sets

In this section, we show that if M is a matroid with a restriction N0
∼= PG(2,F)

and a deletion pair x, y 6∈ E(N0) such that M\x and M\y are F-representable,
then there is a unique F-representable matroid M ′ on E(M) whose rank function
can differ from that of M only on sets containing x and y. Moreover, we find
two such sets with special properties that will be used to prove Lemma 2.0.4.

Lemma 2.6.1. Let M be a 3-connected matroid with a restriction N0
∼=

PG(2,F) and a deletion pair x, y ∈ E(M) \ E(N0). If M\x and M\y are
F-representable, then there is a unique F-representable matroid M ′ such that
M ′\x = M\x and M ′\y = M\y.

Proof. The definition of a deletion pair implies that M\x, M\y, and M\x, y
are all stable. We recall from Theorem 2.5.1 that PG(2,F) is a stabilizer for
F, and that PG(2,F) is uniquely F-representable. Therefore, with N = N0 all
the hypotheses of Lemma 2.5.2 are satisfied, and there is an F-representable
matroid M ′ such that M\x = M ′\x and M\y = M ′\y. Then by Lemma 2.5.3,
M ′ is the unique such matroid.

The purpose of the remainder of this section is to find two ways to distinguish
the matroids M and M ′ of Lemma 2.6.1; these are

(a) elements e ∈ E(M) such that M\e 6= M ′\e and M/e 6= M ′/e, and

(b) sets S ⊆ E(M) \ E(N0) such that clM(S) 6= clM ′(S).

In a matroid M with a restriction N , we call a set S ⊆ E(M) \ E(N) a
strand for N if uM(S,E(N)) = 1. If M and M ′ are matroids on the same
ground set, both contain a restriction N , and S is a strand for N in both M
and M ′, then we say that S distinguishes M and M ′ if clM(S) ∩ E(N) 6=
clM ′(S) ∩ E(N).

When B is a basis of a matroid M and e is an element not in B, then
the fundamental circuit of e with respect to B is the unique circuit of M
contained in B∪{e}. The fundamental matrix of a matroid M with respect



54 CHAPTER 2. MODULAR PLANES

to a basis B is the matrix A ∈ {0, 1}B×(E(M)\B) such that for each e ∈ E(M)\B,
the column of A indexed by e is the characteristic vector of the fundamental
circuit of e with respect to B. If A′ is any representation of M in standard form
with respect to B, then the matrix obtained from A′|(E(M) \B) by replacing
each non-zero entry with 1 is the fundamental matrix of M with respect to B.

Lemma 2.6.2. Let M and M ′ be matroids on the same ground set that both
have a modular restriction N0

∼= PG(2,F), such that M is 3-connected and
M 6= M ′, but for some x, y ∈ E(M) \E(N0), M ′\x = M\x and M ′\y = M\y.
There are sets B and B′ such that

(i) B is a basis of both M and M ′ and contains a basis of N0,

(ii) B′ is a basis of exactly one of M and M ′,

(iii) |(B \B′) \ E(N0)| ∈ {1, 2}, and

(iv) |B∆B′| = 4.

Proof. Since M 6= M ′, there exists a set B′ that is a basis of exactly one of M
and M ′. We choose B′ and a basis B of M\x, y containing a basis of N0 such
that |B∆B′| is minimum. As M is 3-connected, B is a basis of M and also of
M ′.

(1) B′ \B ⊆ E(M) \ E(N0).

Suppose there exists an element u of (B′ \B) ∩ E(N0). Then by the basis
exchange property, there is v ∈ B \B′ such that B∆{u, v} is a basis in M or
M ′. But since B∆{u, v} is contained in E(M) \ {x, y}, it is a basis of both M
and M ′. Because u ∈ E(N0), B∆{u, v} contains a basis of N0, contradicting
the minimality of |B∆B′|. This proves (1).

It follows from the fact that M\x = M ′\x and M\y = M ′\y that the
fundamental matrices of M and M ′ with respect to the basis B are equal; we
denote this matrix by A.

(2) A[(B \B′) \ E(N0), (B′ \B) \ {x, y}] = 0.

Suppose there exist elements u ∈ B′\B\{x, y} and v ∈ (B\B′)\E(N0) such
that B∆{u, v} is a basis of M or M ′. Then since B∆{u, v} ⊆ E(M) \ {x, y},
it is a basis of both M and M ′. Furthermore, B∆{u, v} contains a basis of N0

because v 6∈ E(N0), contradicting the minimality of |B∆B′|. Therefore, for
every u ∈ (B′ \B) \ {x, y} and every v ∈ (B \B′) \ E(N0), the set B∆{u, v}
is dependent in both M and M ′. This proves (2).
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(3) |(B \B′) \ E(N0)| ≤ 2.

Let e and f be two elements of (B \B′) \ E(N0). It follows from (2) that
B′ is a basis of M ′′ ∈ {M,M ′} if and only if B∆{x, y, e, f} and B∆((B∆B′) \
{x, y, e, f}) are both bases of M ′′. The latter is not a basis of M ′′ in the case
when |(B \ B′) \ E(N0)| > 2, as in this case (2) implies that A[B \ (B′ ∪
{e, f}), B′ \ (B ∪ {x, y})] has a zero row. This contradicts the fact that B′ is a
basis of exactly one of M and M ′, proving (3).

(4) |(B \B′) \ E(N0)| ∈ {1, 2}.

We suppose that |(B \ B′) \ E(N0)| = 0. Then B \ E(N0) ⊆ B′. Hence
the set B′ \ (B \ E(N0)) is independent in exactly one of the matroids
M/(B \ E(N0)) and M ′/(B \ E(N0)). But it follows from the modularity
of N0 and the definition of M ′ that M/(B \ E(N0)) = M ′/(B \ E(N0)), a
contradiction. This proves (4), showing that (iii) holds.

It remains to show that B and B′ satisfy (iv). If not, then there is an
element w of B′ \B other than x and y. By the modularity of N0 and (2), there
is an element z ∈ E(N0) such that w is parallel to z in both M/(B∩B′\E(N0))
and M ′/(B ∩B′ \ E(N0)). Then B′∆{w, z} is independent in exactly one of
M and M ′. Also, |B∆(B′∆{w, z})| = |B∆B′|, so (1) holds with B′∆{w, z} in
place of B′, a contradiction.

We will need the following two facts about fundamental matrices. For
matrices P and Q of the same dimensions, we write P ≤ Q when Pij ≤ Qij for
each row i and column j.

Proposition 2.6.3 (Brualdi, [5]). Let B be a basis of a matroid M , A the
fundamental matrix of M with respect to B, and X ⊆ B and Y ⊆ E(M) \B
sets of the same size. If (B \ X) ∪ Y is a basis of M then there exists a
permutation matrix P such that P ≤ A[X, Y ].

Proposition 2.6.4 (Krogdahl, [32]). Let B be a basis of a matroid M , A the
fundamental matrix of M with respect to B, and X ⊆ B and Y ⊆ E(M) \B
sets of the same size. If there is a unique permutation matrix P such that
P ≤ A[X, Y ], then (B \X) ∪ Y is a basis of M .

Next we find a strand for N0 in one of M and M ′ that either distinguishes
M and M ′ or is not a strand in the other.

Lemma 2.6.5. Let M be a 3-connected, non-F-representable matroid with a
modular restriction N0

∼= PG(2,F) and elements x, y ∈ E(M) \ E(N0). Let
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M ′ be an F-representable matroid such that M ′\x = M\x and M ′\y = M\y.
Either there exists a strand for N0 that distinguishes M and M ′, or there is
a set S that is a strand for N0 in one of M or M ′ and skew to E(N0) in the
other.

Proof. We choose B and B′ as in the statement of Lemma 2.6.2. We denote
the two elements of B \B′ by e and f and let A denote the fundamental matrix
of M (and also M ′) with respect to the basis B. We observe that all entries of
A[{e, f}, {x, y}] are equal to 1 by Propositions 2.6.3 and 2.6.4.

We let N = M/((B ∩ B′) \ E(N0)) and N ′ = M ′/((B ∩ B′) \ E(N0)). If
there is a strand distinguishing N and N ′, then since E(N0) is closed, the
union of this strand with B ∩B′ \E(N0) is a strand distinguishing M and M ′.
We note that by (iii) of Lemma 2.6.2, r(N) ≤ r(N0) + 2 and at most one of
e, f is contained in E(N0).

(1) If r(N) = r(N0) + 2 then there is a set S ⊆ E(M) \ E(N0) such that one
of uM(S,E(N0)),uM ′(S,E(N0)) is 0 and the other is 1.

The set (B∩E(N0))∪{x, y} is independent in exactly one of N and N ′. So
{x, y} is a strand for N0 in one of N and N ′ and skew to E(N0) in the other.
Then {x, y}∪((B∩B′)\E(N0)) has the same property inM and M ′, proving (1).

We may assume that r(N) = r(N0) + 1, and by symmetry that e 6∈ E(N0)
and f ∈ E(N0).

(2) If r(N) = r(N0) + 1 then either {x, y} is independent in both N and N ′ or
there is a set S ⊆ E(M)\E(N0) such that one of uM (S,E(N0)),uM ′(S,E(N0))
is 0 and the other is 1.

We assume that {x, y} is a parallel pair in one of N and N ′. Then they
are parallel in exactly one of N and N ′ because B′ ∩ E(N), which contains
{x, y}, is a basis of one of N and N ′. We note that {x, e} is not a parallel
pair in N or N ′, otherwise {x, y, e} is a parallel class of both matroids. Let
w be the element of N0 in clN({x, e}) (and hence also in clN ′({x, e})). Then
in the matroid in which x and y are parallel, {y, e} also spans w; this means
{x, y, e, w} has rank two in both N and N ′.

In the matroid in which {x, y} are independent, {x, y} is a strand for N0,
while in the other it is skew to E(N0). Therefore, S = {x, y}∪ (B∩B′ \E(N0))
is a strand for N0 in one of M and M ′ and skew to E(N0) in the other. This
proves (2).
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Now we may assume that {x, y} is independent in both N and N ′. Since
Aex = Aey = 1, neither x nor y are in the closure of E(N0) in N or N ′. Then
{x, y} is a strand in both N and N ′.

We letD andD′ be the fundamental matrices ofN andN ′, respectively, with
respect to the basis B∆{e, y}. Since (B∆{e, y})∆{f, x} = B′ is independent
in exactly one of N and N ′, it follows that exactly one of Dfx and D′fx
is equal to 1. Thus D[E(N0), {x}] 6= D′[E(N0), {x}]. If w is the element
of E(N0) ∩ clN({x, y}) and w′ is the element of E(N0) ∩ clN ′({x, y}), then
D[E(N0), {w}] = D[E(N0), {x}] and D′[E(N0), {w′}] = D′[E(N0), {x}]. But
because N\x = N ′\x, D[E(N0), {w}] = D′[E(N0), {w}], so w 6= w′. This
proves that {x, y} is a strand distinguishing N and N ′ and so there is a strand
distinguishing M and M ′.

For disjoint sets S, T in a matroid M , we define

κM(S, T ) = min{λM(A) : S ⊆ A ⊆ E(M) \ T}.

Let M and M ′ be two matroids on the same ground set. We write Σ(M,M ′)
to denote the set

Σ(M,M ′) = {e ∈ E(M) : M\e 6= M ′\e and M/e 6= M ′/e}.

We now prove the main lemma of this section.

Lemma 2.6.6. Let M be a 3-connected, non-F-representable matroid with a
modular restriction N0

∼= PG(2,F) such that no proper minor of M with N0

as a restriction is 3-connected and non-F-representable. If λM(E(N0)) = 3,
x, y ∈ E(M) \ E(N0) are distinct, and M ′ is an F-representable matroid with
M ′\x = M\x and M ′\y = M\y, then

(i) |Σ(M,M ′)| ≥ 2, and

(ii) there are non-nested sets S, T ⊆ E(M) \ E(N0) such that clM(S) ∩
E(N0) 6= clM ′(S) ∩ E(N0), clM(T ) ∩ E(N0) 6= clM ′(T ) ∩ E(N0), and
S∆T ⊆ Σ(M,M ′).

Proof. We start with some short claims.

(1) M/E(N0) and M ′/E(N0) are connected.
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If M/E(N0) is not connected, then by Proposition 2.1.4, M is a modular
sum of two proper restrictions M1 and M2 of M with E(M1)∩E(M2) = E(N0).
Both M1 and M2 are 3-connected by Proposition 2.1.3 and so both are F-
representable by the choice of M . Then Proposition 2.1.2 implies that M is
F-representable, a contradiction. Suppose that M ′/E(N0) is not connected.
Then M ′/E(N0) has at least two components. Let A be that containing x. We
can choose a basis B of M ′ that contains a basis of N0 and does not contain
x or y. Then B ∩ (E(N0) ∪ A) spans x in M ′\y and hence also in M . Now
M/E(N0)\x has at least two components, and we can choose one, A′, disjoint
from A \ {x}. But B ∩ (E(N0) ∪ A) spans x and so A and A′ are components
of M/E(N0), contradicting the fact that M/E(N0) is connected and proving
(1).

(2) λM ′(E(N0)) = 3.

Suppose that λM ′(E(N0)) < 3; then λM ′(E(N0)) = 2 since M ′\x = M\x.
We let L be the line of N0 that is spanned by E(M ′) \ E(N0). Since M ′ is
3-connected, it has a basis B disjoint from {x, y}; since λM ′(E(N0)) = 2, we
may further choose B so that it contains at most one element of E(N0) \ L.
Then the set B ∩ clM ′(E(M ′) \E(N0)) is a basis for M ′\(E(N0) \L) and hence
spans {x, y}. This means that x, y ∈ clM (B ∩ clM ′(E(M ′) \E(N0))), and then
λM(E(N0)) = λM\x,y(E(N0)) < 3, a contradiction. This proves (2).

(3) If S is a strand for E(N0) in N ∈ {M,M ′}, then there exist
sets U1 and U2 in E(N) \ E(N0) such that κN |(E(N0)∪U1)(S,E(N0)) > 1,
κN |(E(N0)∪U2)(S,E(N0)) > 1, and clN(U1) ∩ E(N0) and clN(U2) ∩ E(N0) are
distinct lines containing clN(S) ∩ E(N0).

Let L be a line of N0 such that uN(S, L) = 1, and A = E(N0) \ L.
Suppose that κN\A(S, L) < 2. If κN\A(S, L) = 0 then N/A is not connected;
so κN\A(S, L) = 1. We have a 2-separation (U, V ) of N\A with S ⊆ U and
L ⊆ V . But since uN (S, L) = 1, we have uN (U,L) = 1. Then either N/E(N0)
is not connected or V = L, which implies that λN (E(N0)) < 3; this contradicts
either (1) or (2).

Therefore, κN\A(S, L) ≥ 2, and there exists a minimal set U ⊆ E(N\A)
such that κN |(L∪U∪S)(S, L) = 2. Choosing two lines L of N0 with uN (S, L) = 1,
we obtain the two sets U1 and U2 as required, proving (3).

(4) Let N ′′ be a restriction of N ∈ {M,M ′} containing N0 such that E(N ′′) \
E(N0) is independent. If X and Y are minimal strands for N0 in N ′′ such that
clN(X) ∩ E(N0) = clN(Y ) ∩ E(N0), then X = Y .
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Suppose there are two distinct minimal strands X and Y for N0 in N ′′

such that clN(X) ∩ E(N0) = clN(Y ) ∩ E(N0). We denote by e the element
of N0 spanned by X and Y . By the minimality of X there exists an element
b ∈ Y \X. Then b ∈ clN (Y ∪ {e} \ {b}) ⊆ clN (X ∪ Y \ {b}), contradicting the
fact that E(N ′′) \ E(N0) is independent. This proves (4).

(5) If S is a strand for N0 in N ∈ {M,M ′} and U is a subset of E(N) \E(N0)
containing S such that κN |(E(N0)∪U)(S,E(N0)) > 1, then U contains two strands
T1 and T2 such that clN (S)∩E(N0), clN (T1)∩E(N0) and clN (T2)∩E(N0) are
all distinct.

We may assume that U is minimal and thus independent, and that S is
minimal. We pick any element z ∈ S. Then uN (U \{z}, E(N0)) ≥ 1 so U \{z}
contains a minimal strand T1. It follows from (4) that clN(T1) ∩ E(N0) 6=
clN(S) ∩ E(N0).

If S ∩ T1 6= ∅, then there is an element s ∈ S ∩ T1 and U \ {s} contains a
minimal strand T2 for N0 distinct from S and T1. Similarly, if for some s ∈ S
and t ∈ T1, uN (U \{s, t}, E(N0)) ≥ 1, then U \{s, t} contains a minimal strand
T2 for N0 distinct from S and T1. In both cases, (4) implies that clN (T2)∩E(N0)
is distinct from clN(S) ∩ E(N0) and clN(T1) ∩ E(N0).

Therefore, we may assume that S and T1 are disjoint and that for any
s ∈ S and t ∈ T1, uN(U \ {s, t}, E(N0)) = 0. This means that for any u ∈ U ,
uN(U \ {u}, E(N0)) = 1, and S and T1 are in the coclosure of E(N0).

But because S and T1 are disjoint, uN(U \ T1, E(N0)) = 1, so T1 is a
series class of N |(E(N0) ∪ U). For the same reason, S is a series class of
N |(E(N0) ∪ U). This contradicts the fact that κN |(E(N0)∪U)(S,E(N0)) = 2,
proving (5).

We now let N and N ′ be matroids such that {N,N ′} = {M,M ′}.

(6) If there is an independent strand S for N0 in N such that uN ′(S,E(N0)) = 0,
then either

• there is a strand for N0 distinguishing N and N ′, or

• there is a strand T for N0 in N such that clN (T )∩E(N0) 6= clN (S)∩E(N0)
and uN ′(T,E(N0)) = 0.

We let U be a minimal set containing S such that κN |(E(N0)∪U)(S,E(N0)) >
1. By (5), U contains two strands T1 and T2 for N0 such that clN(S) ∩
E(N0), clN(T1) ∩ E(N0), and clN(T2) ∩ E(N0) are distinct. We may assume
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that uN ′(T1, E(N0)) > 0 and T1 is not a strand distinguishing N and N ′, and
that the same holds for T2. Therefore, uN ′(U,E(N0)) ≥ 2.

Let e ∈ U \ S. By the minimality of U , uN(U \ {e}, E(N0)) = 1. If
clN ′(U \ {e})∩E(N0) 6⊆ clN (S)∩E(N0), then there is a strand T for N0 in N ′

such that S ⊆ T ⊆ U \ {e} and clN ′(T ) ∩ E(N0) 6= clN(S) ∩ E(N0), proving
(6). So we may assume that clN ′(U \ {e}) ∩ E(N0) = clN(S) ∩ E(N0) and
uN ′(U \ {e}, E(N0)) = 1.

The fact that uN ′(U,E(N0)) ≥ 2 but uN ′(U \ {e}, E(N0)) = 1 for all
e ∈ U \S implies that U \S is contained in the coclosure of E(N0) in N ′. Then
since uN ′(S,E(N0)) = 0, it follows that r∗N ′(U \ S) ≥ 2. Furthermore, for any
two elements e, f ∈ U \S that are not in series in N ′, uN ′(U \{e, f}, E(N0)) = 0.

Therefore, for each series class X of U \ S, there is a circuit containing
clN(S) ∩ E(N0) and (U \ S) \X. This implies that for each series class X of
U \ S, X ⊆ clN ′(U \X). But then uN ′(U,E(N0)) = uN ′(U \X,E(N0)) = 1, a
contradiction. This proves (6).

(7) If there exists a strand S for N0 in N such that either S distinguishes N
and N ′ or uN ′(S,E(N0)) = 0, then

• |Σ(N,N ′)| ≥ 2, and

• there is another strand T for N0 in N such that clN(S) ∩ E(N0) 6=
clN (T )∩E(N0), clN (T )∩E(N0) 6= clN ′(T )∩E(N0) and S∆T ⊆ Σ(N,N ′).

First we suppose that there is no strand that distinguishes N and N ′; so
uN ′(S,E(N0)) = 0. Then by (6), there is a strand T for N0 in N such that
clN(T ) ∩ E(N0) 6= clN(S) ∩ E(N0) and uN ′(T,E(N0)) = 0. We observe that
S 6⊆ T and T 6⊆ S, and S∆T ⊆ Σ(N,N ′).

Therefore, we may assume that S is a strand for N0 that distinguishes N and
N ′. By (3), there are two lines L1 and L2 of N0 containing clN (S)∩E(N0), and
sets U1 and U2 containing S such that clN (U1)∩E(N0) = L1, clN (U2)∩E(N0) =
L2, κN |(E(N0)∪U1)(S,E(N0)) > 1, and κN |(E(N0)∪U2)(S,E(N0)) > 1. Then by (5),
each of U1 and U2 contains two more strands that span distinct elements of
E(N0) \ clN(S). If all of these four strands are strands for N0 in N ′ that
do not distinguish N and N ′, then clN ′(U1) = L1 and clN ′(U2) = L2, so
clN ′(S) = L1 ∩ L2 = clN (S), contradicting the fact that S distinguishes N and
N ′. Therefore, there exists a strand S ′ for N0 in N with clN(S ′) ∩ E(N0) 6=
clN(S) ∩ E(N0) such that either S ′ is a strand for N0 in N ′ that distinguishes
N and N ′, or S ′ is not a strand for N0 in N ′.

Now we observe that S∆S ′ ⊆ Σ(N,N ′), and since clN(S) ∩ E(N0) 6=
clN(S ′) ∩ E(N0), we have |S∆S ′| ≥ 2. This proves (7).
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According to Lemma 2.6.5, there is a strand for N0 in one of M or M ′ that
is either a strand for N0 in the other matroid and distinguishes M and M ′, or
is skew to E(N0) in the other matroid. The result now follows from (7).

2.7 Connectivity

In this section we prove Lemma 2.0.4. First, we state two useful results on
matroid connectivity.

Theorem 2.7.1 (Tutte, [52]). If M is a connected matroid and e ∈ E(M),
then at least one of M\e and M/e is connected.

The second is another theorem of Tutte [54] that generalizes Menger’s
Theorem to matroids.

Tutte’s Linking Theorem. If M is a matroid and S, T ⊆ E(M) are disjoint
then κM(S, T ) = max{uM/Z(S, T ) : Z ⊆ E(M) \ (S ∪ T )}.

Recall that sets S and T in a matroid M are called skew if uM(S, T ) = 0.
We can choose the set Z that attains the maximum in Tutte’s Linking Theorem
so that it is skew to both S and T . We have the following stronger version of
the theorem, for which an explicit proof can be found in [37, Theorem 8.5.7] or
[15, Theorem 4.2].

Tutte’s Linking Theorem, Version 2. If M is a matroid and S, T ⊆ E(M)
are disjoint then there is a set Z ⊆ E(M) \ (S ∪ T ) such that uM/Z(S, T ) =
κM(S, T ), (M/Z)|S = M |S, and (M/Z)|T = M |T .

Before the main result of this section, we prove one last short lemma that
is similar to Lemma 2.3 of [14].

Lemma 2.7.2. Let F be a finite field, M a 3-connected matroid with a re-
striction N0

∼= PG(2,F) and a deletion pair x, y ∈ E(M) \ E(N0), and M ′ an
F-representable matroid with M ′\x = M\x and M ′\y = M\y. If there are sets
C,D ⊂ E(M) disjoint from E(N0) ∪ {x, y} such that

(a) {x, y} is coindependent in M\D/C,

(b) (M\D/C)\x and (M\D/C)\y are stable,

(c) (M\D/C)\x, y is connected, and

(d) M\D/C 6= M ′\D/C,
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then M\D/C is not F-representable.

Proof. Since M\x and M\y are F-representable, so are (M\D/C)\x and
(M\D/C)\y. By Lemmas 2.5.2 and 2.5.3 applied to M\D/C, there is a
unique F-representable matroid N such that N\x = (M\D/C)\x and N\y =
(M\D/C)\y. But M ′\D/C satisfies this condition and is F-representable, so
N = M ′\D/C. Then M\D/C 6= N , so M\D/C is not F-representable.

We now prove Lemma 2.0.4, which we restate for convenience. We will use
the fact that a matroid M that is not 3-connected is a direct sum or a 2-sum
of matroids isomorphic to proper minors of M ([3, 9, 47], see [37, Theorem
8.3.1] for a proof).

Lemma 2.0.4. For any finite field F, if M0 is a 3-connected, non-F-
representable matroid with a modular restriction N0

∼= PG(2,F), then M0

has a 3-connected, non-F-representable minor M such that N0 is a restriction
of M and λM(E(N0)) = 2.

Proof. First, we need the following easy fact.

(1) Let M = M1 ⊕2 M2 with B = E(M2) \ E(M1) such that |B| = 3. If M2 is
non-binary, then B is a triangle and a triad in M .

Since M2 is non-binary and has four elements, it is isomorphic to U2,4

and has no series pairs. Thus B is a triangle in M . Since λM(B) = 1 and
rM(B) = 2, we have r∗M(B) = 2 and B is a triad of M . This proves (1).

By choosing M0 minimally, we may assume that it has no proper minor that
is 3-connected, non-F-representable, and has N0 as a restriction. We assume
that λM0(E(N0)) = 3 to obtain a contradiction.

By Lemma 2.4.6, there is a 3-connected, non-F-representable matroid M
with N0 as a modular restriction and λM(E(N0)) = 3 such that M has a
deletion pair x, y ∈ E(M) \E(N0) and no proper minor of M containing N0 is
3-connected and non-F-representable. Furthermore, M\x, y has at most one
series pair.

By Lemma 2.6.1 there is an F-representable matroid M ′ such that M\x =
M ′\x and M\y = M ′\y. We recall that Σ(M,M ′) is the set of elements
e ∈ E(M) \E(N0) such that M\e 6= M ′\e and M/e 6= M ′/e. By Lemma 2.6.6,
|Σ(M,M ′)| ≥ 2.

(2) If e ∈ E(M) \ E(N0), then M\e and M/e are F-representable.
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We let P be either M\e or M/e. Suppose that P is not F-representable.
Then the fact that P is a proper minor of M implies that it is not 3-connected.
Since N0 is 3-connected, there exists a matroid P ′ containing N0 such that si(P ′)
is 3-connected and P is obtained by 2-sums of P ′ with matroids M1, . . . ,Mt.
Since P ′ is isomorphic to a proper minor of M , it is F-representable; this means
that for some i, Mi is not F-representable. We let U = E(Mi) \ E(P ′) and
V = E(P ) \ U . Then (U, V ) is a 2-separation of P , and (U ∪ {e}, V ) is a
3-separation of M . By Tutte’s Linking Theorem, there is a minor N of M
such that E(N) = E(N0)∪U ∪ {e} and λN (E(N0)) = 2. Since λN (U ∪ {e}) =
λM(U ∪ {e}), we note that N |(U ∪ {e}) = M |(U ∪ {e}). This means that N
is 3-connected, as M is. Furthermore, uN(U,E(N0)) = 1 so the modularity
of N0 implies that N contains a restriction isomorphic to Mi. Therefore, N
is not F-representable. But then N is not a proper minor of M , so N = M ,
contradicting the fact that λM(E(N0)) ≥ 3. This proves (2).

(3) If e ∈ Σ(M,M ′), and N is one of M\e or M/e, then either N\x is not
stable, N\y is not stable, or N\x, y is not connected.

Since M\x, y is connected, {x, y, e} is not a triad of M and {x, y} is
coindependent in M\e. With C = ∅ and D = {e}, hypotheses (a) and (d)
of Lemma 2.7.2 are satisfied by M\D/C. But M\e is F-representable by (2).
Therefore, (b) and (c) of Lemma 2.7.2 do not both hold, and we conclude that
either M\e\x is not stable, M\e\y is not stable, or M\e\x, y is not connected.

Similarly, with C = {e} and D = ∅, (a) and (d) of Lemma 2.7.2 are satisfied
by M\D/C, and M/e is F-representable by (2). Therefore, (b) and (c) of
Lemma 2.7.2 do not both hold, and either M/e\x is not stable, M/e\y is not
stable, or M/e\x, y is not connected. This proves (3).

(4) If e ∈ Σ(M,M ′) then either M\x\e and M\y/e are not stable, or M\x/e
and M\y\e are not stable.

Up to symmetry between x and y, (3) implies that one of the following five
cases occurs:

(a) M\x, y\e is not connected and M\x, y/e is not connected,
(b) M\x, y\e is not connected and M\x/e is not stable,
(c) M\x, y/e is not connected and M\x\e is not stable,
(d) M\x\e is not stable and M\x/e is not stable, or
(e) M\x\e is not stable and M\y/e is not stable.

As M\x, y is connected, case (a) contradicts Theorem 2.7.1, and since M\x
is 3-connected, case (d) contradicts Bixby’s Lemma. We suppose case (b) holds.
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Since M\x/e is not stable, Bixby’s Lemma implies that M\x\e is internally
3-connected. Then since M\x, y\e is not connected, y is in a series pair of
M\x\e, so {x, y, e} is a triad of M . This contradicts the fact that M\x, y is
connected. Next, we suppose that case (c) holds. Since M\x\e is not stable,
by Bixby’s Lemma M\x/e is internally 3-connected. There are no series pairs
in M\x/e, so M\x, y/e is connected, a contradiction. We conclude that, up to
symmety, case (e) holds, which proves (4).

(5) M\x, y is not 3-connected.

We say that a 2-separation (A,B) in a matroid N corresponds to a 2-sum
of non-binary matroids if N = N1 ⊕2 N2 for some non-binary matroids N1 and
N2 with A = E(N1) \ E(N2) and B = E(N2) \ E(N1).

Let e ∈ Σ(M,M ′). From (4) we may assume that M\x\e and M\y/e are
not stable. Suppose M\x, y is 3-connected. Then by Bixby’s Lemma, either
M\x, y/e or M\x, y\e is internally 3-connected.

First, assume that M\x, y/e is internally 3-connected. Let (A,B) be a
2-separation of M\y/e corresponding to a 2-sum of two non-binary matroids,
with x ∈ B. Since M\y/e\x is internally 3-connected, |B| = 3. Since M\x, y
is 3-connected, M\x, y/e has no series pairs, so B \ {x} is a parallel pair of
M\y/e, contradicting the fact that (A,B) is a 2-separation that corresponds
to a 2-sum of two non-binary matroids.

Therefore, M\x, y/e is not internally 3-connected, and M\x, y\e is. Let
(A,B) be a 2-separation of M\x\e corresponding to a 2-sum of two non-binary
matroids, with y ∈ B. Then |B| = 3 since M\x, y\e is internally 3-connected.
So by (1), B is a triangle and a triad of M\x\e containing y. Denote the
other two elements of B by a and b. Since M\x is 3-connected, {a, b, y, e} is a
cocircuit of M\x that contains the triangle {a, b, y}, and {a, b, e} is a triad of
M\x, y.

Let (C,D) be an internal 2-separation of M\x, y/e. Then e ∈ clM(C) ∩
clM (D), so a and b are not both contained in the same one of C or D because
{a, b, e} is a cocircuit of M\x, y. Thus we may assume a ∈ C, b ∈ D. So
in M\x we have uM\x({e, a}, C \ {a}) = 1, uM\x({e, b}, D \ {b}) = 1, and
uM\x({a, b, y}, C ∪ D \ {a, b}) = 1, but {a, b, y} and {y, e} are each skew to
both C \ {a} and D \ {b}.

We pick a second element f ∈ Σ(M,M ′). Then either M\x\f and M\y/e
are not stable, or M\x/f and M\y\f are not stable. First we assume that
M\x\f and M\y/f are not stable. By the same argument that was applied
to e, M\x has a cocircuit {c, d, f, y} with a triangle {c, d, y}, and there is an
internal 2-separation of M\x, y/f , (U, V ) with c ∈ U, d ∈ V . So {e, a, b} and
{f, c, d} are both triads in M\x, y, and {y, a, b} and {y, c, d} are both triangles
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of M\x. But the only triangle of M\x containing y is {y, a, b}, so we may
assume that a = c and b = d. Now (V \{b})∪{f} spans b, so e ∈ (V \{b})∪{f}.
But e 6= f so e ∈ V . Symmetrically, (U \ {a}) ∪ {f} spans a so we also have
e ∈ U , a contradiction.

Therefore, there are only two elements of Σ(M,M ′), e and f , and M\x/f
and M\y\f are not stable.

Applying to f the same argument as for e but with x and y swapped, we
see that M\y has a cocircuit {c, d, x, f} with a triangle {c, d, x}.

We assume that e 6∈ {c, d} and f 6∈ {a, b}. Then {a, b, e} and {c, d, f}
are disjoint because {a, b} is a series class of M\x, y, e but {c, d} is not. By
Lemma 2.6.6, there are two distinct sets S, T ⊆ E(M) \ E(N0) such that
S∆T = {e, f}, clM(S) ∩ E(N0) 6= clM ′(S) ∩ E(N0) and clM(T ) ∩ E(N0) 6=
clM ′(T ) ∩E(N0). By symmetry, we may assume S \ T = {e} and T \ S = {f}.
Note that x, y ∈ S ∩ T . We may also assume that S and T are minimal, so
neither contains {a, b} or {c, d}, both of which are in triangles with y. Suppose
that a ∈ S. then clM (S)∩E(N0) = clM ((S ∪{b})\{y})∩E(N0) since {a, b, y}
is a triangle. But then clM(S) ∩ E(N0) = clM ′((S ∪ {b}) \ {y}) ∩ E(N0),
which equals clM ′(S) because {a, b, y} is also a triangle of M ′. This is a
contradiction, so a 6∈ S, and by the symmetric argument, b 6∈ S. Suppose
that a, b, e 6∈ T . Then since {a, b, e, y} is a cocircuit of M , clM(T ) ∩ E(N0) =
clM (T \{y})∩E(N0) = clM ′(T \{y})∩E(N0). But this equals clM ′(T )∩E(N0),
because {a, b, y, e} is a union of cocircuits in M ′\x, a contradiction. Hence
T contains at least one of a or b, and by symmetry we may assume a ∈ T .
Then a ∈ S∆T = {e, f}, so we have a = f , contradicting our assumption that
f 6∈ {a, b}.

Therefore, we may assume by symmetry that a = f . Hence {f, b, y} is a
triangle, in both M and M ′. But then clM(T ) = clM((T \ {y}) ∪ {b}) and
clM ′(T ) = clM ′((T \ {y}) ∪ {b}), so these sets are equal, a contradiction. This
proves (5).

Note that, since our deletion pair {x, y} was arbitrary up to the assumption
that M\x, y has at most one series pair, (5) implies that there is no deletion
pair x′, y′ ∈ E(M) \ E(N0) such that M\x′, y′ is 3-connected. Whenever
u, v ∈ E(M) are elements such that M\u, v is 3-connected, then M\u and
M\v are internally 3-connected. But they have no parallel pairs so they are
actually 3-connected, and {u, v} is a deletion pair of M . Therefore, there are
no two distinct elements u, v ∈ E(M) \E(N0) such that M\u, v is 3-connected.

(6) If e ∈ Σ(M,M ′), then e is not in a series pair of M\x, y.

From (4) and the symmetry between x and y, we may assume that M\y/e
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is not stable. Suppose e is in a series pair of M\x, y. Since M\x, y is internally
3-connected with at most one series pair, M\x, y/e is 3-connected. This
contradicts the fact that M\y/e is not internally 3-connected, proving (6).

By Lemma 2.6.6, there is an element e ∈ Σ(M,M ′) and sets S, T ⊆
E(M) \ E(N0) such that e ∈ S \ T , clM(S) ∩ E(N0) 6= clM ′(S) ∩ E(N0), and
clM(T ) ∩ E(N0) 6= clM ′(T ) ∩ E(N0). From (4) we may assume that M\x\e
and M\y/e are not stable. By (5), M\x, y has exactly one series pair; we
denote it by {a, b}. Then M\x, y/a is 3-connected, and by Bixby’s Lemma
either M\x, y/a\e or M\x, y/a/e is internally 3-connected.

(7) For any set H ⊆ E(M), if a ∈ H or b ∈ H then clM(H) = clM ′(H).

Since M\x, y/a is 3-connected, it follows that M\x/a and M\y/a are
both stable and M\x, y/a is connected. Also, M/a is F-representable by (2).
Therefore, Lemma 2.7.2 implies that M/a = M ′/a. For any set H ⊆ E(M)
containing a, clM/a(H \ {a}) = clM ′/a(H \ {a}), which means that clM(H) =
clM ′(H). The same argument applies with b in place of a, proving (7).

(8) M\x, y, e is not internally 3-connected.

We assume that M\x, y, e is internally 3-connected. Since M\x\e is not
stable, it has an internal 2-separation (A,B) where y ∈ B, and by (1), B is
a triangle and a triad. We let c and d be the other two elements of B. Then
B is coindependent in M\x and {c, d} is coindependent in M\x, y. Thus at
most one of a, b is in {c, d}; but {y, a, b} is a triad of M\x and {y, c, d} is a
triangle, so {c, d} contains exactly one of a or b. We may assume that c = b so
B = {y, b, d} and d 6= a. Then a ∈ A and {a, b} is not a series pair of M\x, y, e,
because {b, d} is and M\x, y, e is internally 3-connected. This contradicts the
fact that {a, b} is a series pair of M\x, y, proving (8).

(9) M\x, y/a, e is internally 3-connected if and only if M\x, y/e is internally
3-connected.

Suppose that M\x, y/e is internally 3-connected. Since {a, b} is a series
pair of M\x, y, it is a series pair of M\x, y/e, so M\x, y/a, e is also internally
3-connected.

Conversely, suppose thatM\x, y/a, e is internally 3-connected andM\x, y/e
is not internally 3-connected. Since {a, b} is a series pair, M\x, y/e has an
internal 2-separation (W,Z) with a, b ∈ Z. But M\x, y/a, e is internally 3-
connected, so |Z| = 3; let c denote the third element of Z. Recall that M\x, y/a
is 3-connected, so M\x, y/a, e has no series pairs. Hence {b, c} is not a series
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pair of M\x, y/a, e so it is a parallel pair, and Z is a triangle of M\x, y/e.
It is not a triad, however, since {a, b} is a series pair, so c ∈ clM\x,y/e(W ).
Note that (W, {a, b, c}) is the unique (up to ordering parts) 2-separation of
M\x, y/e. Hence since M\y/e is not stable, x must lie in clM\y/e({a, b}) but
not in clM\y/e(W ). So (W, {a, b, c, x}) is a 2-separation of M\y/e and {a, b, c, x}
is a four-point line in M\y/e. Therefore, (W, {a, b, c, e, x}) is a 3-separation of
M\y and c, e ∈ clM(W ) ∩ clM({a, b, x}). By our remarks after (5), we know
that M\y, c is not 3-connected, so it has a 2-separation (A,B) with at least
two of a, b, x in B. Since {a, b, x} is a triad, λM\y,c(B ∪ {a, b, x}) = 1, but
(A\{a, b, x}, B∪{a, b, x}) is not a 2-separation of M\y, c since c ∈ clM ({a, b, x}).
Therefore, |A| = 2, A is a series pair of M\y, c, and A contains one element of
{a, b, x}. This implies that there is a triad L of M\y containing c and precisely
one element of {a, b, x}. Since e ∈ clM(W ), e 6∈ L. Therefore, either c 6∈
clM ({b, x, e}), c 6∈ clM (a, x, e}), or c 6∈ clM ({a, b, e}). But rM ({a, b, x, e, c}) = 3,
so one of {b, x, e}, {a, x, e} and {a, b, e} is a triangle of M\y, contradicting the
fact that {a, b, c, x} is a four-point line in M\y/e. This proves that M\x, y/e
is internally 3-connected and proves (9).

(10) If M\x, y/e is internally 3-connected then {a, b, x, e} is a circuit and a flat
of M and M has a three- or four-element cocircuit L containing e, one of a or
b, and another element c ∈ E(M) \ {a, b, x, y, e}, and if |L| = 4 then y ∈ L.

Since M\y/e is not stable, it has an internal 2-separation (U, V ) with x ∈ V .
Since (U, V \ {x}) is not an internal 2-separation of M\x, y/e, |V | = 3 and
V is closed in M\y/e. Hence by (1), V is a triangle and a triad of M\y/e.
Therefore, V \{x} is a series pair of M\x, y, so V = {a, b, x}. Also, (U, V ∪{e})
is a 3-separation of M\y with e ∈ clM\y(U), so rM({a, b, x, e}) = 3, and since
{a, b, x} is independent in M\y/e, {a, b, x, e} is a circuit of M . Since M\x/e
is internally 3-connected, (U, {a, b, y}) is not a 2-separation of M\x/e, so y is
not in clM({a, b, e}). Since V is closed in M\x, y/e, V ∪ {e} is a flat of M .

By Bixby’s Lemma, M\y, e is internally 3-connected. But it is not 3-
connected, so it has a series pair and thus e is contained in a triad L of M\y.
At least one other element of the circuit {a, b, x, e} is in L, but x 6∈ L since e
is not in a series pair in M\x, y. So L contains one of a and b. Recall that
{a, b, x} is a triad of M\y, and e ∈ clM({a, b, x}; thus as M\y is 3-connected,
e ∈ clM (E(M)\{a, b, x, y}) and so {a, b, e} is not a triad. Therefore, L contains
exactly one of a and b, plus another element c. Since L is a triad of M\y,
either L is a triad of M or L ∪ {y} is a cocircuit of M , which proves (10).

(11) If M\x, y/a, e is internally 3-connected, then there is an element c ∈
E(M) \ {x, y, a, b, e} such that λM ({x, y, a, b, c, e}) = 2, {a, b, x, e} is a circuit,
{a, b, y, c} is a circuit, and neither e nor c is in clM(E(M) \ {x, y, a, b, c, e}).
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Assume that M\x, y/a, e is internally 3-connected. Then by (9), M\x, y/e
is internally 3-connected, and by (10), {a, b, x, e} is a circuit and a flat of M and
there is an element c ∈ E(M) \ {a, b, x, y, e} such that either {e, c} or {e, c, y}
along with one of a or b forms a cocircuit of M . By symmetry, we may assume
that either {e, c, b} or {e, c, b, y} is a cocircuit. Note that y 6∈ clM({a, b, x})
because then λM\x/e({a, b, y}) = 1 and M\x/e is not internally 3-connected,
contradicting Bixby’s Lemma and the fact that M\x, e is not stable. Therefore,
{a, b, x, y} is an independent cocircuit of M and λM({a, b, x, y}) = 3. Let
U = E(M) \ {a, b, x, y, e, c}. Since {b, c} is a series pair of M\y, e, we have
c 6∈ clM(U), hence uM({a, b, x, y}, U) = 2. If c ∈ clM({a, b, y}), then we
have λM({x, y, a, b, c, e}) = 2 and we have proved (11), so we may assume
c 6∈ clM({a, b, y}). Also, since e 6∈ clM(U), ({a, b, x, e}, U) is a 2-separation of
M\y, c. But M\y is 3-connected, so c ∈ clM({a, b, x} ∪ U).

Recall that there are sets S and T such that e ∈ S \ T , clM(S) ∩ E(N0) 6=
clM ′(S) ∩ E(N0) and clM(T ) ∩ E(N0) 6= clM ′(T ) ∩ E(N0). We note that
x, y ∈ S ∩ T .

Next, we claim that {x, y} and U are skew in both M and M ′.
First, suppose uM({x, y}, U) = 1 and uM ′({x, y}, U) = 1. Note that
uM({x, y, a}, U) and uM ′({x, y, b}, U) cannot both equal two; we may assume
that uM ({x, y, a}, U) = 1. Then uM ({x, a}, U) = uM ({y, a}, U) = 0 so we have
also uM ′({x, y, a}, U) = 1. But then clM(S ∪ {a}) ∩ E(N0) = clM(S) ∩ E(N0)
and clM ′(S ∪ {a}) ∩ E(N0) = clM ′(S) ∩ E(N0), contradicting (7). Next, sup-
pose that {x, y} and U are skew in one of M and M ′, which we call N ,
and not in the other, which we call N ′. By Tutte’s Linking Theorem, there
is a set C ⊆ E(N) such that N/C has N |{x, y, a, b, e, c} and N0 as restric-
tions, and uN/C({x, y, a, b, e, c}, E(N0)) = 2. Then uN/C({x, y}, E(N0)) = 1
and by the modularity of N0, there is an element z ∈ clN/C({x, y}) ∩ E(N0).
By (7), z ∈ clN ′/C({x, y, a}) and z ∈ clN ′/C({x, y, b}). But this implies that
z ∈ clN ′/C({x, y}), which means that uN ′({x, y}, U) = 1, a contradiction.
Hence {x, y} and U are skew in both M and M ′.

Since clM(T ) 6= clM ′(T ), it follows from (7) that a, b 6∈ T . We also see
that c ∈ T ; if not then T \ U = {x, y} and since {x, y} is skew to U in both
M and M ′, we would have clM(T ) ∩ E(N0) = clM(T \ {x, y}) ∩ E(N0) and
clM ′(T ) ∩ E(N0) = clM ′(T \ {x, y}) ∩ E(N0), and these two sets are equal, a
contradiction.

Since c ∈ T , clM/c(T \ {c}) 6= clM ′/c(T \ {c}), so M/c 6= M ′/c. By
Lemma 2.7.2, this implies that either M\x/c is not stable, M\y/c is not
stable, or M\x, y/c is not connected. But M\x, y is internally 3-connected and
c is not in its unique series pair {a, b}, so M\x, y/c is connected. We note that
λM\y,c({a, b, x, e}) = 1 so M\y, c has an internal 2-separation, and by Bixby’s
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Lemma, M\y/c is internally 3-connected and stable. We conclude that M\x/c
is not stable.

Let (W,Z) be a 2-separation of M\x/c. Since {a, b, y} is a triad of M\x/c,
we may assume that a, b, y ∈ W . Since M\x is 3-connected, c ∈ clM(W ) ∩
clM(Z). But c 6∈ clM(U), so Z 6⊆ U and thus we have e ∈ Z. Since c 6∈
clM({a, b, y}), W \ {a, b, y} is not empty and has an element not in clM(Z).
But then M\y/c has a 2-separation (W \ {a, b, y}, Z ∪ {a, b, x}). But M\y/c
is internally 3-connected and M\y is 3-connected, so M\y/c is connected and
W \ {a, b, y} is a parallel pair. But this implies that c is in a triangle with two
elements of W \ {a, b, y}, contradicting the fact that c 6∈ clM(U).

(12) There is an element c ∈ E(M) \ {x, y, a, b, e} such that
λM({x, y, a, b, c, e}) = 2, {a, b, x, e} is a circuit, {a, b, y, c} is a circuit,
and neither e nor c is in clM(E(M) \ {x, y, a, b, c, e}).

By (11), we may assume that M\x, y/a, e is not internally 3-connected; by
Bixby’s Lemma, M\x, y/a\e is internally 3-connected.

By (8), M\x, y, e has an internal 2-separation (U, V ) with a ∈ V . Since
(U, V \ {a}) is not an internal 2-separation of M\x, y, e/a, |V | = 3 and V
is a series class of M\x, y, e. So V consists of {a, b} and another element
c ∈ E(M)\{x, y, a, b, e}. Moreover, up to ordering the parts, this is the unique
internal 2-separation of M\x, y, e, so {a, b, c} is a flat of M\x, y, e. We have
y 6∈ clM (E(M) \ {a, b}) because M\x is 3-connected. Thus if y 6∈ clM ({a, b, c})
then M\x, e is internally 3-connected, a contradiction because it is not stable.
Therefore, we have y ∈ clM({a, b, c}). Also, e 6∈ clM(E(M) \ {x, y, a, b, c, e})
because then {a, b, c}, which is a series class of M\x, y, e, would also be a series
class of M\x, y.

Let (W,Z) be a 2-separation of M\y/e; since {a, b, x} is a triad of
M\y/e, we may assume that a, b, x ∈ W . Since M\y is 3-connected,
e ∈ clM(W ) ∩ clM(Z). But e 6∈ clM(E(M) \ {a, b, x, y, c}), for then
λM\x({a, b, y, c}) would equal λM\x,e({a, b, y, c}) = 1, but M\x is 3-connected.
Thus Z ∩ {a, b, x, y, c} is non-empty and we have c ∈ Z. If e ∈ clM({a, b, x})
then we are done. If not, then W \ {a, b, x} is not contained in clM({a, b, x})
and λM\x/e(W \ {a, b, x}) ≤ 1. Since M\x/e is internally 3-connected,
W \ {a, b, x} is a parallel pair, since if it had a single element that element
would be in clM(Z) ∩ clM({a, b, x}). But this implies that e is in a triangle
with two elements of E(M) \ {x, y, a, b, c}, which contradicts the fact that, as
we pointed out above, e 6∈ clM(E(M) \ {a, b, x, y, c}). This proves (12).

See Figure 2.2 for an illustration of M . The last step in the proof is to show
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E(M) \ {x, y, a, b, e, c}

Figure 2.2: The matroid M

that {x, a} is a deletion pair of M and that M\x, a has one series pair; from
this we will get a contradiction.

Let (U, V ) be a 2-separation of M\x, a; we may assume that b, y ∈ V since
{b, y} is a series pair of M\x, a. We claim that V = {b, y}. If not, then |V | > 2
and (U, V \ {b}) is a 2-separation of M\x, a/b.

Suppose that |V | = 3. Then V \ {b} is a series pair of M\x, a/b. But
{e, c, y} is a triad, so V \ {b} consists of y and another element z 6∈ {e, c}. But
then {b, y, z} has corank at most two in M\x, a, which means that {b, z} has
corank at most one in M\x, y, a. But if it has corank one then {a, b, z} is a
series class of M\x, y, a contradiction; and if it has corank zero then {a, b, z}
is a series class of M\x, y, also a contradiction.

Otherwise, |V | > 3. Note that since λM\x,a/b({e, c, y}) =
λM({x, y, a, b, c, e}) = 2, there is no 2-separation (A,B) of M\x, a/b with
A or B disjoint from {y, e, c}. If e, c ∈ U , then since {y, e, c} is a triad of
M\x, a/b, (U ∪ {y}, V \ {y}) is a 2-separation of M\x, a/b; a contradiction as
V \ {y} is disjoint from {e, c, y}. So e and c are not both contained in U . But
then (U \ {e, c}, V ∪ {e, c}) is a 2-separation of M\x, a, also a contradiction,
unless |U \ {e, c}| < 2. This means that either e or c is contained in a series
pair of M\x, a, and hence a is in a triad of M\x containing e or c. But the only
triad of M\x containing a is {a, b, y}, since {a, b} is a series class of M\x, y.
This proves that V = {b, y} and so M\x, a is internally 3-connected and its
unique series pair is {b, y}.

Suppose that M\a is not 3-connected, and let (W,Z) be a 2-separation
of M\a with x ∈ Z. Since M\x, a is internally 3-connected and M\a has
no parallel pairs, |Z| = 3 and Z \ {x} is a series pair of M\x, a. Therefore,
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Z = {x, y, b}. This means that λM({x, y, a, b}) = 2, but {x, y, a, b} is an
independent cocircuit of M and therefore we have r∗M({x, y, a, b}) = 2. Then
r∗M\x({y, a, b}) = 1, contradicting the fact that M\x is 3-connected. This

proves that M\a is 3-connected and that {x, a} is a deletion pair of M .
Since {x, a} is a deletion pair of M and M\x, a has a unique series pair

{b, y}, (12) holds for the deletion pair {x, a} in place of {x, y}, for possibly some
new choice of e. In particular, there are elements e′, c′ ∈ E(M) \ {x, y, a, b}
such that λM({x, y, a, b, c′, e′}) = 2, {a, b, x, e′} and {a, b, y, c′} are circuits
of M , and neither e′ nor c′ is in clM(E(M) \ {x, y, a, b, c′, e′}). Let U =
E(M) \ {x, y, a, b, e′, c′}. We have uM({x, y, a, b}, U) = 2.

Since {a, b, x, e} is a circuit of M and neither {a, b, x, e′} nor {a, b, x, c′}
are, at least one of c′ and e′ is distinct from e. Then since e′, c′ 6∈ clM(E(M) \
{x, y, a, b, e′, c′}) and e′, c′ ∈ clM({x, y, a, b}), we have λM({x, y, a, b}) ≥ 1 +
uM ({x, y, a, b}, E(M) \ {x, y, a, b, e′, c′}) = 1 +λM ({x, y, a, b}), a contradiction.

2.8 Vertically 4-connected matroids

We let M be a vertically 4-connected, non-F-representable matroid with N0
∼=

PG(2,F) as a modular restriction. In this section, we show that M has a minor
that is a counterexample to Lemma 2.0.4, and then we finish the proof of the
main result of this chapter, Theorem 2.0.2. Before proceeding, we state two
useful facts.

Bixby-Coullard Inequality. If M is a matroid, e ∈ E(M), and (C1, C2)
and (D1, D2) are partitions of E(M) \ {e}, then λM\e(D1) + λM/e(C1) ≥
λM(D1 ∩ C1) + λM(D2 ∩ C2)− 1.

The following lemma is proved in a more general form in [16] but we
only need a special case. Recall that for disjoint sets A,B in a matroid M ,
κM(A,B) = min{λM(U) : A ⊆ U ⊆ E(M) \B}.

Lemma 2.8.1 ([16, Lemma 4.3]). If (A,B, V ) is a partition of the elements
of a matroid M such that for each e ∈ V , either κM\e(A,B) < κM(A,B) or
κM/e(A,B) < κM (A,B), then there exists an ordering v1, . . . , vk of V such that
λM (A) = κM (A,B) and for all i = 1, . . . , k, λM (A ∪ {v1, . . . , vi}) = κM (A,B).

The main lemma of this section is the following.

Lemma 2.8.2. If F is a finite field and M is a simple vertically 4-connected
matroid that is not F-representable and has a modular restriction N0

∼= PG(2,F),
then there is a minor M0 of M that is minor-minimal subject to
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(a) M0 is 3-connected,

(b) N0 is a restriction of M0, and

(c) M0 is not F-representable,

such that λM0(E(N0)) ≥ 3.

Proof. First, we make two claims involving connectivity.

(1) Let (A,B,C,D) be a partition of the ground set of a matroid Q such that
for each e ∈ D, κQ\e(A,B) < κQ(A,B) and for each e ∈ C, κQ/e(A,B) <
κQ(A,B). Then for e ∈ D, κQ/e(A,B) = κQ(A,B) and for e ∈ C,
κQ\e(A,B) = κQ(A,B).

Let e ∈ D and suppose that κQ/e(A,B) < κQ(A,B). Since we also have
κQ\e(A,B) < κQ(A,B), there exist partitions (W1,W2) and (U1, U2) of E(Q\e)
such that B ⊆ W1 ∩ U1, A ⊆ W2 ∩ U2, and λQ\e(W1) = κQ(A,B) − 1 and
λQ/e(U1) = κQ(A,B)− 1. Then the Bixby-Coullard Inequality implies that

2κQ(A,B)− 2 = λQ\e(W1) + λQ/e(U1) ≥ λQ(U1 ∩W1) + λQ(U2 ∩W2)− 1.

But the right hand side of this inequality is at least 2κQ(A,B)− 1. This proves
the first half of (1) and the second half is the dual argument.

(2) If (A,B,C,D) is a partition of the ground set of a matroid Q such that
for each e ∈ D, κQ\e(A,B) < κQ(A,B) and for each e ∈ C, κQ/e(A,B) <
κQ(A,B), then there exists an ordering v1, . . . , vk of C ∪D such that for all
vi ∈ D, λQ\vi(A ∪ {v1, . . . , vi−1}) < κQ(A,B) and for all vi ∈ C, λQ/vi(A ∪
{v1, . . . , vi−1}) < κQ(A,B).

We apply Lemma 2.8.1 with V = C ∪D to obtain an ordering v1, . . . , vk
of the elements of C ∪D such that λQ(A) = κQ(A,B) and for all i = 1, . . . , k,
λQ(A ∪ {v1, . . . , vi}) = κQ(A,B).

This implies that for each vi ∈ C ∪D, vi is either in the closure of Ai =
A ∪ {v1, . . . , vi−1} and the closure of Bi = {vi+1, . . . , vk} ∪ B, or vi is in the
coclosures of both sets.

If vi is in the closures of both Ai and Bi, then λQ/vi(Ai) < κQ(A,B) and
by (1), e ∈ C. Similarly, if vi is in the coclosures of these two sets then
λQ\vi(Ai) < κQ(A,B) and by (1), e ∈ D. Thus for vi ∈ C ∪D, vi ∈ C if and
only if λQ/vi(Ai) < κQ(A,B) and vi ∈ D if and only if λQ\vi(Ai) < κQ(A,B).
This proves (2).

We let N ′ be a minor of M that is minimal subject to (a), (b), and (c).
Then we let M ′ be a minor of M that is minimal such that
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• M ′ has a minor N satisfying (a), (b), and (c) with |E(N)| = |E(N ′)|,
and

• κM ′(E(N0), E(N) \ E(N0)) = 3.

This exists since M itself satisfies these conditions. We may assume that N is
a proper minor of M ′, otherwise with M0 = M ′ we are done.

We let X = E(N) \ E(N0). We may assume that λN(E(N0)) < 3. Let
(C,D) be the partition of E(M ′) \ E(N) such that N = M ′\D/C. Then by
the minimality of M ′, for each e ∈ D, κM ′\e(E(N0), X) = 2 and for each e ∈ C,
κM ′/e(E(N0), X) = 2.

By (2) applied with Q = M ′, A = E(N0) and B = X, there exists
an ordering v1, . . . , vk of C ∪ D such that for all vi ∈ D, λM ′\vi(E(N0) ∪
{v1, . . . , vi−1}) < κM ′(E(N0), X) and for all vi ∈ C, λM ′/vi(E(N0) ∪
{v1, . . . , vi−1}) < κM ′(E(N0), X).

Since N0 is modular and M ′ is simple, v1 6∈ clM ′(E(N0)) so v1 ∈ D.

(3) k ≤ 2 and if k = 2 then v2 ∈ C.

Suppose there are vj, vj+1 ∈ C. Then vj, vj+1 ∈ clM ′(E(N0)∪{v1, . . . , vj−1}),
and since λM ′/vj(E(N0) ∪ {v1, . . . , vj−1}) = 2, we have λM ′/vj ,vj+1

(E(N0) ∪
{v1, . . . , vj−1}) ≤ 1, a contradiction. Therefore we may assume that there
exists j > 1 with vj ∈ D.

Then (E(N0)∪{v1, . . . , vj−1}, X∪{vj+1, . . . , vk}) is a 3-separation of M ′\vj .
Now since uM ′(E(N0), X) = 2, uN(E(N0), X) = 2, M ′|E(N0) = N |E(N0) =
N0 and v1 6∈ clM ′(E(N0)), it follows that M ′\vj/v1 has N as a minor, and
hence so does M ′/v1. Then with (1), the properties of M ′/v1 contradict the
minimality of M ′. This proves (3).

(4) k = 2.

If not, then (3) and the fact that M ′ 6= N imply that k = 1. We note that
v1 6∈ clM ′(E(N0)) and v1 6∈ clM ′(X). This implies that M ′/v1|E(N0) = N0 and
M ′/v1|X = M ′|X. Also, clM ′(X) ∩ E(N0) ⊆ clM ′/v1(X) ∩ E(N0). Since N
is not F-representable, N |X = M ′|X has no F-representation extending any
representation of clM ′(X)∩E(N0) induced by a representation ofN |E(N0) = N0.
Therefore, M ′/v1|X also has no F-representation extending any representation
of clM ′/v1(X) ∩ E(N0) induced by a representation of N0, and M ′/v1 is not
F-representable.

Therefore, M ′/v1 has a minor satisfying (a), (b), and (c), has the same num-
ber of elements as N , and by (1) satisfies κM ′/v1(E(N0), E(M ′/v1)\E(N0)) = 3.
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This contradicts the minimality of M ′ and proves (4).

We may now assume from (4) that k = 2. Since λM ′\v1(E(N0)) <
λM ′(E(N0)), v1 6∈ clM ′(X ∪{v2}), so M ′/v1|(X ∪{v2}) = M ′|(X ∪{v2}). Also,
since v1 6∈ clM ′(E(N0)), M ′/v1|E(N0) = N0. Therefore, as no F-representation
of M ′|E(N0) extends to M ′|(X∪{v2}), M ′/v1 is not F-representable. So M ′/v1

contains a minor satisfying (a), (b), and (c), and by (1), κM ′/v1(E(N0), X) = 3.
But since N0 is modular, and v2 ∈ clM ′(E(N0) ∪ {v1}) by (3), v2 is parallel in
M ′/v1 to an element of E(N0), so M ′/v1\v2 also contains a minor satisfying
(a), (b), and (c); but |E(M ′/v1\v2)| = |E(N)|, so this minor is M ′/v1\v2 itself.
Then the fact that λM ′/v1\v2(E(N0)) = κM ′/v1\v2(E(N0), X) = 3 completes the
proof with M0 = M ′/v1\v2.

Finally, we restate and prove Theorem 2.0.2.

Theorem 2.0.2. For any finite field F, any vertically 4-connected matroid
with a modular PG(2,F)-restriction is F-representable.

Proof. We let M be a vertically 4-connected matroid with a modular restriction
N0
∼= PG(2,F) and assume that M is not F-representable. By Lemma 2.8.2,

there is a 3-connected, non-F-representable matroid M0 containing N0 with
λM0(E(N0)) ≥ 3, such that M0 has no 3-connected, non-F-representable proper
minor M containing N0. But Lemma 2.0.4 implies that M0 has a 3-connected,
non-F-representable minor M containing N0 with λM (E(N0)) = 2, a contradic-
tion. Therefore, M is F-representable.

2.9 Excluded minors

In this section we apply the results of this chapter to prove that no excluded
minor for the variety of matroids representable over a finite field F has a
PG(2,F)-restriction.

The rank-n affine geometry over a finite field F, denoted AG(n− 1,F),
is the matroid obtained from the projective geometry PG(n− 1,F) by deleting
a hyperplane. We use the fact that, for each finite field F and n ≥ 3, the affine
geometry AG(n − 1,F) is uniquely representable over F. This is sometimes
called the Fundamental Theorem of Affine Geometry; see [1, Theorem 2.6.3].
Note that this implies that any restriction of PG(2,F) containing AG(2,F) is
uniquely representable over F: each element of PG(2,F) lies in the closures of
two distinct lines of AG(2,F) so its column in any representation is uniquely
determined, up to scaling, by the representation of these lines. The following
corollary verifies a special case of Conjecture 1.7.1.
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Corollary 2.9.1. For any finite field F, no excluded minor for the variety of
F-representable matroids has a PG(2,F)-restriction.

Proof. We let M be an excluded minor for the variety of F-representable
matroids and assume that M has a PG(2,F)-restriction, N0. If N0 is not
modular in M , then by Proposition 1.5.2 M has a rank-2 minor that is not
F-representable, so M is not an excluded minor for F-representability. Hence
N0 is a modular restriction of M . The class of F-representable matroids is
closed under direct sums and 2-sums by Proposition 2.1.2, so M is 3-connected
because a matroid that is not 3-connected is a direct sum or 2-sum of its
proper minors. It follows from Lemma 2.0.4 that λM(E(N0)) = 2. Let L
be the line of N0 contained in clM(E(M) \ E(N0)) and let e ∈ E(N0) \ L.
Then M |L is modular in M\(E(N0) \ L) so N0\e is modular in M\e, and M
is equal to the modular sum (M\e) ⊕m N0. As M is an excluded minor for
F-representability, M\e is F-representable. We remarked above that N0\e is
uniquely representable over F, so it follows from Proposition 2.1.2 that M is
F-representable, a contradiction.





Chapter 3

Projective geometries

For each prime power q, a line that is representable over GF(q) can have at
most q + 1 points, so U2,q+2 is an excluded minor for the variety of GF(q)-
representable matroids. Tutte proved that U2,4 is the unique excluded minor
for the variety of GF(2)-representable matroids [51]. However, this is the only
case where the unique excluded minors are a line and its dual (U2,4 is its
own dual). The binary projective plane PG(2, 2) is an excluded minor for the
GF(q)-representable matroids whenever q is odd, and the non-Fano matroid
F−7 (see Figure 3.1) is an excluded minor whenever q is even and greater than
two.

Figure 3.1: The non-Fano matroid, F−7

In this chapter, we present some conditions under which excluding a line
as a minor does suffice to show that a matroid is representable over a given
finite field. We look at matroids that have a projective geometry over a field
GF(q) as a minor but do not have a U2,q2+1-minor. This is the longest line
representable over GF(q2), the smallest field with GF(q) as a proper subfield.
For example, recall the following condition for representation over GF(2).

77
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Theorem 3.0.1 (Semple, Whittle, [45]). Any 3-connected, representable ma-
troid with a PG(2, 2)-minor is either binary or has a U2,5-minor.

It is possible that Theorem 3.0.1 extends to all prime powers q, and that
any 3-connected, representable matroid with a PG(2, q)-minor is either GF(q)-
representable or has a U2,q2+1-minor. We prove a weaker version where the
projective plane is replaced by a large projective geometry.

Theorem 3.0.2. For each prime power q, there is an integer n = n3.0.2(q)
such that any 3-connected, representable matroid with a PG(n− 1, q)-minor is
either GF(q)-representable or has a U2,q2+1-minor.

We actually prove a slightly stronger statement, which more directly mirrors
our work with modular restrictions in the last chapter.

Theorem 3.0.3. For each prime power q and integers k, ` ≥ 2, there is
an integer n such that if M is a 3-connected, representable matroid with a
PG(n− 1, q)-minor, then either

(i) M is GF(q)-representable,

(ii) M has a U2,`-minor, or

(iii) M has a minor N with an element e such that N\e ∼= PG(k − 1, q) but
N is not GF(q)-representable.

A natural way to extend the notion of modularity to minors is to say that a
minor N0 of a matroid M is ‘modular’ if M has no minor N with an element e
such that N\e = N0 and e ∈ clN(E(N0)), but e is not parallel to any element
of E(N0). Thus we can view the three outcomes of Theorem 3.0.3 as saying
that either M is GF(q)-representable, M has a given line as a minor, or one of
the PG(k − 1, q)-minors of M is not modular.

We note that Theorem 3.0.2 is an easy consequence of this stronger theorem:
we simply choose ` = q2+1 and k = 3, and as we pointed out in Proposition 1.5.2,
the matroid N given by outcome (iii) has a U2,q2+1-minor.

We will conclude this chapter with the application that we promised in the
introduction, characterizing the representability of ‘dense’ matroids in the class
U(`) of matroids with no U2,`+2-minor.

3.1 Non-representable matroids

Both the assumptions of 3-connectivity and representability are necessary in
Theorem 3.0.3. First, for any prime power q, consider a modular sum of copies
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of PG(n− 1, q) and U2,q+2 whose ground sets meet in a single element. This
matroid is not 3-connected, but it is representable (over GF(q2)) yet it is neither
GF(q)-representable nor has a U2,q+3-minor. Next, we consider the following
class of matroids which provide a counterexample to the stronger versions of
both Theorems 3.0.3 and 3.0.2 without the assumption of representability. A
matroid M in this class is 3-connected and has a PG(n− 1, q)-minor, but it is
not representable and has no U2,q+3-minor.

For n ≥ 3, we let H be a hyperplane of PG(n, q), C a circuit of size
n + 1 contained in H, and M(n, q) = PG(n, q)\(H \ C). In M(n, q), C is a
hyperplane. We let M ′(n, q) be the matroid on the same ground set as M(n, q)
whose rank function is the same as rM(n,q) except that rM ′(n,q)(C) = |C|; this
is a matroid, referred to as the matroid obtained from M(n, q) by relaxing the
circuit-hyperplane C (see [37, Proposition 1.5.14]).

Recall that the affine geometry AG(n− 1,F) over a finite field F is obtained
from PG(n− 1,F) by deleting a hyperplane; we also denote it by AG(n− 1, q)
when F has order q. As the complement of a hyperplane in a matroid is a
cocircuit, AG(n− 1,F) is equal to the restriction of PG(n− 1,F) to one of its
cocircuits. For any element e ∈ AG(n − 1,F), the minor si(AG(n − 1,F)/e)
is isomorphic to PG(n − 2,F). This is true because si(PG(n − 1,F)/e) ∼=
PG(n− 2,F) and each point of this minor is a parallel class corresponding to
a line of PG(n− 1,F) containing e, and such lines contain at least one other
element of E(AG(n− 1,F)).

The matroid M ′(n, q) has an AG(n, q)-restriction, so it has a PG(n− 1, q)-
minor. Suppose that M ′(n, q) has a vertical separation (A,B) of order at most
three. Neither A nor B is in the closure of the other, so the AG(n, q)-restriction,
which has the same rank as M ′(n, q), contains an element from each of A and
B, contradicting the fact that AG(n, q) is vertically 4-connected. This proves
that M ′(n, q) is vertically 4-connected, and being simple, it is also 3-connected.
Also, this matroid is quite close to being GF(q)-representable: the next fact is
an immediate consequence of [37, Proposition 3.3.5].

Lemma 3.1.1. For any element e of M ′(n, q), if e ∈ C then M ′(n, q)\e is
GF(q)-representable while if e 6∈ C then M ′(n, q)/e is GF(q)-representable.

It follows from this lemma and the fact that rM ′(n,q)(C) = r(M ′(n, q)) that
any minor of M ′(n, q) that is not GF(q)-representable has an element of C in
its ground set. Thus from any minor of M ′(n, q), deleting one element yields a
GF(q)-representable matroid. Therefore, M ′(n, q) has no U2,q+3-minor.

On the other hand, we can show that M ′(n, q) is not representable, which
means that Theorem 3.0.2 would not hold if we did not require that M be
representable. To prove this, we use the following classical result of projective
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geometry. Figure 3.2 depicts the configuration described in Theorem 3.1.2; see
[1, Proposition 5.4.1] for a proof.

Theorem 3.1.2 (Pappus’s Theorem). Let L1 and L2 be lines in a plane
representable over a field with points a, b, c ∈ L1 \ L2 and d, e, f ∈ L2 \ L1. If
g, h, and i are respectively the points on the intersections of the lines spanned
by {e, a} and {d, b}, {f, a} and {d, c}, and {f, b} and {e, c}, then g, h, and i
are collinear.

e f

a

b

c

d

g
h

i

Figure 3.2: A Pappus configuration

Lemma 3.1.3. For each n ≥ 3, M ′(n, q) is not representable.

Proof. We choose a set X ⊆ C with |X| = |C| − 3 and let N = si(M(n, q)/X)
and N ′ = si(M ′(n, q)/X). Then the rank functions of N ′ and N agree except
on the set C \X, where we have rN(C \X) = 2 and rN ′(C \X) = 3.

If q = 2, then N ∼= PG(2, 2) and N ′ is isomorphic to the non-Fano matroid
shown in Figure 3.1. The non-Fano matroid is not representable over any field
of characteristic two while PG(n − 1, 2) is only representable over fields of
characteristic two (see [37, Proposition 6.4.8]). Hence M ′(n, q), which has both
these minors, is not representable.

The other case is when q > 2. We denote by {a, b, c} the set C \X. Since
every line of N has at least four points, we can choose a triangle {d, e, f} of
N such that a, b, c 6∈ clN({d, e, f}). In addition, we set g, h, and i to be the
elements of N that respectively lie in clN({e, a}) ∩ clN({d, b}), clN({f, a}) ∩
clN ({d, c}), and clN ({f, b}) ∩ clN ({e, c}). We observe that rN ({g, h, i}) = 2 by
Pappus’s Theorem.

We apply this theorem again to these nine points in N ′, but in a different
order. In N ′ the two triangles {d, e, f} and {g, h, i} lie on distinct lines,
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and a ∈ clN ′({f, h}) ∩ clN ′({e, g}), b ∈ clN ′({f, i}) ∩ clN ′({d, g}), and c ∈
clN ′({e, i}) ∩ clN ′({d, h}). If N ′ is representable over a field then Pappus’s
Theorem asserts that a, b, and c are collinear. But rN ′({a, b, c}) = 3, so N ′,
and hence M ′(n, q), is not representable.

3.2 Representation over a subfield

In this section we look at the following question: if F is a field and F′ is a
subfield of F, when can we transform an F-representation of a matroid into an
F′-representation? First, we consider projective geometries and give a proof
of the well-known fact, which we have already mentioned, that the projective
plane PG(2,F) over a finite field F is representable only over extension fields
of F. We also show that any representation of this projective plane over
an extension field of F can be transformed by row operations and column
scaling into an F-representation. Next, we present the ‘confinement theorem’ of
Pendavingh and Van Zwam [40]. This theorem gives us convenient conditions
under which we can transform a representation of a matroid M over a field F
into a representation over a subfield F′ of F, assuming that M has a certain
type of F′-representable minor.

When F is an extension field of a field F′, we say that an F-matrix A is a
scaled F′-matrix if there is a F′-matrix obtained from A by scaling rows and
columns by elements of F×. Recall that a representation A of a matroid M is
in standard form with respect to a basis B if A|B is an identity matrix, and
that in this case we index the rows of A by the elements of B, so that Abb = 1
for each b ∈ B. Also, recall that for each e ∈ E(M), the fundamental circuit of
e with respect to B is the unique circuit of M contained in B ∪ {e}. Part (b)
of the following result appears in Nelson [36].

Theorem 3.2.1. For any prime power q and n ≥ 3,

(a) PG(n− 1, q) is representable only over fields isomorphic to extension fields
of GF(q), and

(b) every standard-form representation of PG(n−1, q) is a scaled GF(q)-matrix.

Proof. Let A be a representation of PG(n − 1, q) over a field F in standard
form with respect to a basis B. For each ordered pair (x, y) of distinct elements
of B, a third element e in the closure of {x, y} can be associated with a field
element −A−1

xeAye ∈ F. We define Hxy to be the set of such numbers:

Hxy =
{
−A−1

xeAye : e ∈ clPG(n−1,q)({x, y}) \ {x, y}
}
.
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We note that |Hxy| = | clPG(n−1,q)({x, y})| − 2 = q − 1. Also, for all such pairs
(x, y), Hxy is equal to H−1

yx , the set of inverses of elements in Hyx. We fix some
u ∈ B, and for each z ∈ B \{u} we may assume by scaling the row and column
of A indexed by z that 1 ∈ Huz.

Suppose that v and w are distinct elements of B \ {u}, and e ∈
clPG(n−1,q)({u, v}) \ {u, v} and f ∈ clPG(n−1,q)({u,w}) \ {u,w}. Recall that
any two lines in a projective plane intersect in a point; so there exists
g ∈ clPG(n−1,q)({e, f}) ∩ clPG(n−1,q)({v, w}). Then the matrix


e f g

u Aue Auf 0
v Ave 0 Avg
w 0 Awf Awg


is singular, so (A−1

ueAve)(A
−1
wfAuf )(A

−1
vg Awg) = −1. This proves that

HuvHwu = {αβ : α ∈ Huv, β ∈ Hwu} ⊆ Hwv.

Moreover, since 1 ∈ Huv ∩Hwu, and the sets Huv, Hwu, and Hwv have the same
size, Huv = Hwu = Hwv. We denote this common set by Γ = Huv. It is closed
under multiplication and is finite, so it is a subgroup of F×.

(1) Γ ∪ {0} is a subfield of F.

Since Γ is a finite multiplicative group, it suffices to show that Γ ∪ {0} is
closed under addition. Let α, β ∈ Γ. There exist elements e ∈ clPG(n−1,q)({u, v})
and f ∈ clPG(n−1,q)({u,w}) such that −A−1

ve Aue = α and −A−1
wfAuf = β. Since

1 ∈ Γ, there is also an element g ∈ clPG(n−1,q)({v, w}) such that −A−1
vg Awg = 1.

The columns of A[{u, v, w}, {e, f, g}] can be scaled to


e f g

u −α −β 0
v 1 0 1
w 0 1 −1

.
Let z be the element in the intersection of the two lines clPG(n−1,q)({e, f})
and clPG(n−1,q)({u, g}). Then A[{u, v, w}, {z}] is parallel to (−(α− β), 1,−1)T .
Let z′ be the element that lies in the two lines spanned by {u, v} and {w, z}.
Then A[{u, v, w}, {z′}] is parallel to (−(α − β), 1, 0)T , which means that
α − β ∈ Γ ∪ {0}. Thus Γ − Γ ⊆ Γ ∪ {0}, and as Γ ∪ {0} is finite it is closed
under addition, proving (1).
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Since |Γ ∪ {0}| = q, it follows from (1) that we may assume that F is
an extension field of GF(q). Then Γ ∪ {0} = GF(q) because Γ is the unique
subgroup of F× of order q − 1 (it consists of the q − 1 roots of the polynomial
xq−1 − 1 in F).

We claim that each column of A is a multiple of a vector with entries
in GF(q). For each a ∈ E(PG(n − 1, q)) \ B, we let Ca be the fundamental
circuit of a with respect to B in PG(n − 1, q) and Xa = Ca \ {a}. Suppose
|Xa| = 2 and write Xa = {u, v}. Then −A−1

uaAva ∈ GF(q) so A|{a} can be
scaled to a vector with entries in GF(q). We proceed by induction on |Xa|.
If we pick any distinct u1, u2 ∈ Xa then for some w1 ∈ clPG(n−1,q)(Xa \ {u1})
and w2 ∈ clPG(n−1,q)(Xa \ {u2}), a is in both the lines clPG(n−1,q)({u1, w1}) and
clPG(n−1,q)({u2, w2}). All of u1, u2, w1, and w2 are distinct because |Xa| > 2.
Since Xw1 and Xw2 are proper subsets of Xa, by assumption the four columns of
A|{u1, u2, w1, w2} are all scalings of vectors over GF(q), hence so is A|{a}.

Next, we define confinement. Let N be a minor of a matroid M such that
N = M/C\D for disjoint sets C,D ⊆ E(M) where C is independent and D is
coindependent. We choose a basis B of N and let B′ = B ∪C, so B′ is a basis
of M . Let A′ be an F-representation of M in standard form with respect to
the basis B′. Recall that if A = A′[B,E(N)] then we say that A′ extends A
and that A is induced by A′.

Suppose that N is a minor of an F-representable matroid M and F′ is a
subfield of F. We say that N confines M to F′ if whenever N ′ is a minor of M
isomorphic to N , every F-representation of M that extends an F′-representation
of N ′ is a scaled F′-matrix. The following theorem of Pendavingh and Van Zwam
reduces the problem of proving that a matroid M with a PG(n−1, q)-minor N is
GF(q)-representable to checking minors of M with at most |E(N)|+2 elements.
Although they prove a theorem for representations over a generalization of
fields called partial fields [40, Theorem 1.4], we state here only a specialization
of it to fields.

Theorem 3.2.2 (Pendavingh, Van Zwam, [40]). If F′ is a subfield of a field F,
M and N are 3-connected matroids, and N is a minor of M , then either

(i) N confines M to F′, or

(ii) M has a 3-connected minor M ′ such that N does not confine M ′ to
F′ and N is isomorphic to one of M ′/x, M ′\y, or M ′/x\y for some
x, y ∈ E(M ′).
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3.3 The main theorem

To prove Theorem 3.0.3 we need a result from Ramsey theory. This is a
corollary of the Hales-Jewett Theorem [25]; it is also a special case of the Affine
Ramsey Theorem of Graham, Leeb, and Rothschild [23], for which a proof can
be found in [24, p. 42].

Theorem 3.3.1. For any prime power q and integers c and k, there is an
integer n = n3.3.1(q, c, k) so that if the elements of AG(n− 1, q) are c-coloured,
it has a monochromatic restriction isomorphic to AG(k − 1, q).

We can now prove Theorem 3.0.3, which we restate here.

Theorem 3.0.3. For each prime power q and integers k, ` ≥ 2, there is
an integer n such that if M is a 3-connected, representable matroid with a
PG(n− 1, q)-minor, then either

(i) M is GF(q)-representable,

(ii) M has a U2,`-minor, or

(iii) M has a minor N with an element e such that N\e ∼= PG(k − 1, q) but
N is not GF(q)-representable.

Proof. We set n to be the integer n3.3.1(q, `, k + 1) given by Theorem 3.3.1
such that any `-colouring of the elements of AG(n− 1, q) has a monochromatic
restriction isomorphic to AG(k, q); note that n ≥ k + 1 ≥ 3. We let M be
a 3-connected, representable matroid with a PG(n− 1, q)-minor. Then M is
representable over an extension field F of GF(q) by part (a) of Theorem 3.2.1.
Part (b) of Theorem 3.2.1 implies that M has an F-representation that extends
a GF(q)-representation of PG(n− 1, q). Hence if PG(n− 1, q) confines M to
GF(q), then M is GF(q)-representable. Otherwise, we apply Theorem 3.2.2
to M with N = PG(n − 1, q) and F′ = GF(q), and conclude that there is
a 3-connected minor M ′ of M such that PG(n − 1, q) does not confine M ′

to GF(q) and M ′ has a PG(n − 1, q)-minor equal to either M ′/x, M ′\y, or
M ′/x\y for some x, y ∈ E(M ′). We rule out the M ′\y case with the following
claim.

(1) If M has a minor P with an element y such that P\y ∼= PG(n− 1, q) but
PG(n− 1, q) does not confine P to GF(q), then (iii) holds.

If y were a coloop of P then PG(n − 1, q) would confine P to GF(q),
so r(P ) = n. Suppose that y is contained in a parallel pair of P . Then



3.3. THE MAIN THEOREM 85

the only PG(n − 1, q)-minors of P are P\y and the one obtained by
deleting the element parallel to y. Any representation of P that extends a
GF(q)-representation of one of these restrictions is a scaled GF(q)-matrix,
contradicting the fact that PG(n − 1, q) does not confine P . Therefore, P
is simple, and hence not GF(q)-representable because it has more points
than PG(n− 1, q). We note that any two lines in a projective plane intersect
in a point. Thus, since y is not parallel to any element of P\y, there is
at most one line L of P\y such that y ∈ clP (L). If we choose any line
L′ of P\y distinct from L, then for any z ∈ L′ not in L, y is not in a
parallel pair of P/z and si(P/z)\y ∼= PG(n − 2, q). We can repeatedly
contract elements of such lines and simplify, n − k times, until we obtain a
minor P ′ of P such that P ′ is simple and P ′\y ∼= PG(k−1, q), so that (iii) holds.

By (1) with P = M ′ we may assume that M has a PG(n− 1, q)-minor N
equal to either M ′/x or M ′/x\y for some x, y ∈ E(M ′).

We let B be a basis of N and A an F-representation of M ′ in standard
form with respect to the basis B ∪ {x} of M ′. Since PG(n − 1, q) does not
confine M ′ to GF(q) we may assume that A is not a scaled GF(q)-matrix
but it induces a GF(q)-representation A[B,E(N)] of N . Moreover, when
N ∼= M ′/x\y, applying (1) with P = M ′/x lets us assume that PG(n− 1, q)
confines M ′/x to GF(q) and that the induced representation A[B,E(N)∪{y}]
of M ′/x also has all its entries in GF(q).

(2) There are two elements f, g ∈ E(M ′/x) such that Axf , Axg 6= 0, A−1
xfAxg 6∈

GF(q), and {f, g} is independent in M ′/x.

There are elements f, g ∈ E(M ′/x) such that Axf , Axg 6= 0 and
A−1
xfAxg 6∈ GF(q), for if not we could scale the row and column of x to get a

GF(q)-matrix. If f, g ∈ E(N) then {f, g} is independent in M ′/x because N
is simple. Otherwise, N = M ′/x\y and y ∈ {f, g}. Since M ′ is 3-connected,
M ′/x has no loops so in M ′/x, {f, g} is either independent or a parallel pair of
elements. Suppose {f, g} is a parallel pair in M ′/x and that there is no other
choice of {f, g} that is independent in M ′/x. There is at most one element
parallel to y in M ′/x, so Axh = 0 for all h ∈ E(M ′) \ {x, f, g}. Then {x, f, g}
is both a circuit and a cocircuit of M ′, so ({x, f, g}, E(M ′) \ {x, f, g}) is a
2-separation of M ′, a contradiction. This proves (2).

We choose a pair of elements f, g ∈ E(M ′/x) as in (2), and by scaling
we may assume that Axf = 1 and Axg = ω for some ω 6∈ GF(q). We choose
some hyperplane H of M ′/x that contains {f, g} and we choose an element
z ∈ E(M ′/x) \H. We let B′ be the union of {z} with a basis of H in M ′/x, so
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B′ ∪ {x} is a basis of M ′, and we let A′ be a representation of M ′ in standard
form with respect to B′ ∪ {x}. We can obtain A′ from A by row operations
without using the row of x, so that A′[B′, E(M ′)] has all its entries in GF(q).
We let C = E(M ′/x) \H, so C is a cocircuit of M ′/x containing z. Then the
restriction (M ′/x)|C is isomorphic to AG(n − 1, q). For each e ∈ E(M ′/x),
the entry A′ze is non-zero if and only if e ∈ C, and by scaling columns of
A′ we may assume that all entries in the row of z are either 0 or 1. The
submatrix A′[{x, z}, C] represents (M ′/(B′ \ {z}))|C, which is a rank-2 minor
of M ′. If this matrix contains a set of at least ` non-parallel columns, then
M ′, and hence M , has a U2,`-minor, and (ii) holds. Otherwise, since A′ze = 1
for all e ∈ C, there are fewer than ` distinct elements of F that appear in
A′[{x}, C]. We can therefore `-colour the elements of (M ′/x)|C by assigning
to each e ∈ C the colour A′xe. Since (M ′/x)|C ∼= AG(n− 1, q), with our choice
of n = n3.3.1(q, `, k + 1) Theorem 3.3.1 implies that there is a monochromatic
restriction of (M ′/x)|C isomorphic to AG(k, q). We denote by Y the ground
set of this restriction. The entries A′xe for e ∈ Y are all equal to some β ∈ F, so
A′[{x}, Y ] is a multiple of A′[{z}, Y ] and M ′|Y is also isomorphic to AG(k, q).
Since f, g 6∈ C, A′zf = A′zg = 0, so the row space of A′ contains a vector

u ∈ FE(M ′) such that ue = −β for all e ∈ Y and uf = ug = 0.

As N is 3-connected, κN({f, g}, Y ) = 2. Also, when N = M ′/x\y,
κM ′/x({f, g}, Y ) = 2 because y is parallel to an element of N in M ′/x. By
Tutte’s Linking Theorem, there is a set Z ⊆ E(M ′/x) disjoint from Y and
{f, g} such that u(M ′/x)/Z(Y, {f, g}) = 2, and Z and Y are skew. This means
that {f, g} is independent in (M ′/x)/Z and f, g ∈ cl(M ′/x)/Z(Y ). Since Z and
Y are skew, there exists a basis B′′ of M ′/x that contains Z and a basis of Y .
We apply row operations to A′ to get a representation A′′ of M ′ in standard
form with respect to the basis B′′ ∪ {x}. The row of x is the same in A′′ and
A′ and the vector u is also in the row space of A′′.

Consider the matrix D obtained from A′′ by adding the vector u to the row
of x then restricting to the submatrix in rows {x} ∪ (B′′ ∩ Y ) and columns
Y ∪ {f, g}. This matrix D represents M ′′ = (M ′/(B′′ \ Y ))|(Y ∪ {f, g}) and it
has the form

D =

( Y f g

0 1 ω
D1 α α′

)
,

where D1 is a GF(q)-representation of AG(k, q) and α and α′ are columns with
all entries in GF(q). Since {f, g} is independent and contained in the closure
of Y in (M ′/x)/Z, α and α′ are both non-zero and are not parallel to each
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other. The minor M ′′/f has the following representation

( Y g

D1 α′ − ωα
)
.

Since ω 6∈ GF(q) and α and α′ are both non-zero and are not parallel, the
column α′ − ωα is not parallel to a vector over GF(q). We have M ′′/f\g ∼=
AG(k, q). Suppose there are two distinct lines L1 and L2 of M ′′/f\g such that
g ∈ clM ′′/f (L1)∩clM ′′/f (L2). Then there is a GF(q)-representation of a matroid
isomorphic to PG(k, q) of the form (D1 D2) for some matrix D2, and as L1∪L2

has rank three, there is a unique element indexing a column of (D1 D2) that is in
the closure of both L1 and L2. This column is parallel to α′−ωα, contradicting
the fact that it is not parallel to a vector over GF(q). So there is at most one
line L of M ′′/f\g such that g ∈ clM ′′/f(L), and there exists an element e of
M ′′/f\g that is not in any such line, so clM ′′/f({e, g}) = {e, g}. Therefore,
g is not in a parallel pair of M ′′/f, e, and si(M ′′/f, e)\g ∼= PG(k − 1, q), so
outcome (iii) holds.

3.4 Growth rates

We can now prove our claim from the introduction about the class U(`) of
matroids with no U2,`+2-minor. Theorem 1.8.4 asserted that any 3-connected,
representable matroid M in U(`) with sufficiently large rank and at least
(2
√
`)r(M) points is representable over a field of order at most `. This will follow

easily from the combination of Theorem 3.0.2 and the following theorem of
Geelen and Kabell.

Theorem 3.4.1 (Geelen, Kabell, [18]). For all integers `, q0 ≥ 2 and n, there
exists an integer c3.4.1(`, q0, n) such that if M is a matroid with no U2,`+2-minor

and ε(M) ≥ c3.4.1q
r(M)
0 , then M has a PG(n − 1, q)-minor for some prime

power q > q0.

We prove the following more precise result, which implies Theorem 1.8.4
because the smallest prime power greater than or equal to

√
` is at most 2

√
`

(there is a power of two in this range).

Theorem 3.4.2. Let ` ≥ 2 and q0 the smallest prime power greater than or
equal to

√
`. There is an integer c such that if M is a 3-connected, representable

matroid with no U2,`+2-minor and |E(M)| ≥ cq
r(M)
0 , then M is representable

over a field of order at most `.
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Proof. We set n to be the maximum of n3.0.2(q) for all prime powers q ≤ `, so
that by Theorem 3.0.2, for any such q a 3-connected, representable matroid with
a PG(n− 1, q)-minor and no U2,q2+1-minor is representable over GF(q). We set

c = c3.4.1(`, q0, n) so that a matroid M with no U2,`+2-minor and ε(M) ≥ cq
r(M)
0

has a PG(n−1, q)-minor for some prime power q > q0. Now, we can choose any

3-connected, representable matroid M with no U2,`+2-minor and ε(M) ≥ cq
r(M)
0 .

Then M has a PG(n − 1, q)-minor for some prime power q > q0. The fact
that M has no U2,`+2-minor implies that q ≤ `. Also, q >

√
` so M has no

U2,q2+1-minor. Therefore, M is GF(q)-representable.

We point out that, for ` > 3, this theorem is false if we do not assume
that M is representable, even if we add the assumption that M is vertically
4-connected. The counterexample is the same set of matroids {M ′(n, q)}n≥3

that we defined in Section 3.1, where q is the largest prime power strictly
less than `. Since ` > 3, we can easily check that q is strictly larger than
q0, the smallest prime power at least

√
`. The matroid M ′(n, q) has more

than |AG(n, q)| = qn = qr(M
′(n,q))−1 points. As we saw, it is 3-connected and

vertically 4-connected and it has no U2,q+3-minor, hence no U2,`+2-minor, yet it
is not representable.

On the other hand, for ` = 2 we have Tutte’s well-known theorem that
any matroid with no U2,`+2-minor is GF(2)-representable. This leaves a gap,
the ` = 3 case, in which we know of no counterexample to the version of
Theorem 3.4.2 without the requirement of representability. If we set c = 1 in
the theorem and consider a matroid M with at least 2r(M) points (which is too
high to be binary) then we have the following open question.

Problem 3.4.3. If M is a 3-connected matroid with no U2,5-minor and
|E(M)| ≥ 2r(M), is M representable over GF(3)?



Chapter 4

Dowling geometries

In this chapter we turn away from the varieties of matroids representable over
a finite field and look at conditions forcing membership in one of the varieties
of representable Dowling matroids, or more generally the frame matroids over
a field. In Chapter 1, we saw the following characterization of representable
matroids with modular Dowling geometry restrictions.

Theorem 4.0.1 (Geelen, Gerards, Whittle, [17]). For any field F and finite
subgroup Γ of F×, if M is a vertically 5-connected F-representable matroid with
a modular DG(4,Γ)-restriction, then M is a frame matroid over F.

We note that we can apply this theorem not just to representable matroids
but to any matroid with a modular DG(4,Γ)-restriction for any finite cyclic
group Γ. A matroid with such a restriction is automatically representable
over the same set of finite fields, by Theorem 2.0.1. Moreover, DG(4,Γ) is
representable over some finite field because it is C-representable, and every
representable matroid can be represented over a finite field [37, Corollary
6.8.13].

As we did in the last chapter for projective geometries, we extend this type
of result from matroids with Dowling geometries as restrictions to those with
them as minors. We will actually prove a theorem involving structures called
patchworks, which generalize the frame matroids over a field. We postpone the
statement of our main theorem until we have defined patchworks precisely in
Section 4.2, but the specialization of it to frame matroids is as follows.

Theorem 4.0.2. For any finite group Γ and integers k, ` ≥ 3, there is an inte-
ger n such that if F is a field and M is a vertically 5-connected F-representable
matroid with a DG(n,Γ)-minor, then either

(i) M is a frame matroid over F,

89
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(ii) M has a U2,`-minor, or

(iii) M has a minor N with a non-coloop element e such that N\e ∼= DG(k,Γ)
but e is not in the closure of any pair of joints of N\e.

When |Γ| > 1, outcome (iii) can be replaced with

(iii’) M has a minor N with an element e such that N\e ∼= DG(k,Γ) but N
is not a frame matroid over F.

Thus the obstruction to being a frame matroid is a non-frame matroid that is
one element away from a Dowling geometry. The equivalence of (iii’) with (iii)
holds because when |Γ| > 1 and k ≥ 3, every automorphism of DG(k,Γ) sends
its set of joints to itself. Hence e is in the closure of two joints of N\e if and
only if N is a frame matroid.

However, when |Γ| = 1 the clique M(Kk+1), which is isomorphic to DG(k,Γ),
can be expressed as a Dowling geometry with respect to many different choices
of joints. In particular, for each vertex v of Kk+1, the set δ(v) of edges incident
with v can be viewed as the set of joints. Consider then the case where e is
in the closure of two elements f, g of N\e ∼= DG(k,Γ) that are not joints but
correspond to edges of Kk+1 incident with a common vertex. Then we can
also view N\e as a Dowling geometry with respect to a different set of joints
that contains f and g, and N is in fact a frame matroid. See Figure 4.1 for an
example where N\e has a set of joints {a, b, c}, no two of which span e, but N
is still a frame matroid.

a

b c

ef g

Figure 4.1: A ‘non-frame’ extension of a clique that is a frame matroid

Our proof has three main parts. First, we have the case where M has a
DG(n,Γ)-minor of the same corank. This case is equivalent to a problem about
minors of certain group-labelled graphs. Second, we have a technical result
about patchworks, and finally we proceed by induction on r∗(M).
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4.1 Represented matroids

Let F be a field. An F-represented matroid, M , is a pair (E,U) where E is
a finite set and U is a subspace of FE. A representation of an F-represented
matroid, M = (E,U), is a matrix A ∈ Fdim(U)×E whose rows are a basis of U .
Given such a representation A, every representation of M has the form PA
where P is an invertible F-matrix. For each F-represented matroid M = (E,U)
there is a corresponding matroid MF(A), the matroid represented by the matrix
A. We note that this matroid is independent of our choice of basis of U used
to construct A. Its rank is equal to the dimension of U .

For D ⊆ E, we define M\D to be the pair (E \ D,U ′), where U ′ is the
row space of A|(E \D). This operation corresponds to the deletion of D from
the corresponding matroid. We also define M∗ = (E,U⊥), whose associated
matroid is the dual of that of M . Lastly, for C ⊆ E, we define M/C = (M∗\C)∗,
which corresponds to contraction of the set C.

We therefore treat every F-represented matroid M = (E,U) as a matroid
with ground set E, and apply the usual minor operations to M . We denote
the ground set of M by E(M) = E.

Let A be a representation of an F-represented matroid M , and α ∈ Fr(M).
If A′ is constructed from A by adding the column α indexed by a new element
e, then we denote by M+e the F-represented matroid represented by A′ and say
that M+e is obtained by extending M by e. Recall that each representation
of M has the form PA, where P ∈ Fr(M)×r(M) is invertible. Therefore, for
each such choice of representation of M , adding the column Pα indexed by e
defines the same F-represented matroid M+e, and we do not need to specify a
particular representation when extending a represented matroid. Suppose that
C,D ⊆ E(M) and N = M/C\D is a minor of M such that e 6∈ clM+e(C). We
define N+e to be the corresponding minor of M+e, that is, N+e = M+e/C\D.

Finally, we write M+W for the matroid obtained by extending M by each
element of a finite set W of new elements.

4.2 Patchworks

A bridge of a set W in a matroid M is a component of M/W . When M is
a represented matroid and M+W is an extension of M by a set W , we define
the bridges of the pair (M,W ) to be the bridges of W in M+W . If W is an
independent set of M+W , then we can define the attachments of a bridge
B of (M,W ) to be the elements of the minimal subset A ⊆ W such that
uM(B,A) = uM(B,W ). A unique such set A exists because whenever W
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is a basis of a vector space Y and Y ′ is a subspace of Y , there is a unique
minimal subset of W that spans Y ′. The attachments of an element e are
the attachments of the bridge containing e.

Let M be an F-represented matroid and M+V an extension of M by a finite
set V . The pair (M,V ) is called a patchwork if V is independent in M+V

and for each bridge B of (M,V ),

(P1) B has at most three attachments, and

(P2) if B has a set X of three attachments, there is no circuit C of M+V such
that X ⊆ C ⊆ X ∪B.

If (M,V ) is a patchwork then we call the elements of V its vertices and the
bridges of (M,V ) its patches. A k-patch is a patch with k attachments.

A patchwork (M,V ) is called a framework if every element of M is spanned
in M+V by a set of at most two elements of V . Equivalently, when M has
no coloops, (M,V ) is a framework if every patch has a single element. When
(M,V ) is a framework, it has no 3-patches and M is a frame matroid.

One way to understand patchworks is to think of them as frame matroids
onto which we attach patches by modular sums. We can make this precise as
follows.

Theorem 4.2.1. If (M,V ) is a patchwork, then there is a framework (N, V )
and a set of matroids M1, . . . ,Mk such that

• M = (M1 ⊕m (M2 ⊕m · · · ⊕m (Mk ⊕m N)))\E(N),

• E(Mi)∩E(N) is contained in clN+V
(A) for a set A ⊆ V of at most three

vertices, and

• E(Mi) ∩ E(Mj) ⊆ E(N) for all i 6= j.

Proof. Let P be a patch of (M,V ) with set of attachments A. For each set
C ⊆ P that is skew to V in M+V , we can extend M by a finite number of new
elements lying in the closure of A such that every element of P \ C is parallel
to one of these elements in M/C. There are finitely many subsets of P , so
the set Z(P ) of all elements we can add in this way is finite. Since there is no
circuit of M+V in P ∪ A that contains three elements of A, every element of
Z(P ) is in the closure of at most two elements of A. Therefore, if we let Z be
the union of the sets Z(P ) for all patches P of (M,V ), the pair (M+Z |Z, V ) is
a framework.

Note that for each patch P , M+Z(P )|Z(P ) is modular in M+Z(P )|(P ∪Z(P ))
by construction. Therefore, M is obtained from M+Z |Z by taking modular
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sums with the restrictions M+Z |(P ∪ Z(P )) for each patch P , then deleting
Z.

We have defined all the terms necessary to state the main theorem of this
chapter, the more general form of Theorem 4.0.2.

Theorem 4.2.2. For any finite group Γ and integers m, ` ≥ 3, there is an
integer n such that if F is a field and M is an F-represented matroid with
DG(n,Γ) as a minor, then either

(i) there is a patchwork (M,V ) of which no patch contains a cocircuit of
DG(n,Γ),

(ii) M has a U2,`-minor, or

(iii) M has a minor N with a non-coloop element e such that N\e ∼= DG(m,Γ)
but e is not in the closure of any pair of joints of N\e.

We note that this generalizes the version for frame matroids (Theorem 4.0.2)
because when M is vertically 5-connected, any patchwork (M,V ) with at least
four vertices is a framework. To see this, suppose P is a patch of (M,V ) that
is not spanned in M+V by its attachment set, A. Since |A| ≤ 3, there is some
element v ∈ V \ A. Then (P,E(M) \ P ) is a (≤ 4)-separation of M , and it is
a vertical (≤ 4)-separation because v 6∈ clM(P ).

The purpose of requiring that no patch contains a cocircuit of DG(n,Γ) in
(i) is to ensure that the Dowling geometry minor is not ‘hidden inside’ a single
patch of (M,V ), so we can think of the patchwork as extending the graph-like
structure of the Dowling geometry.

The skeleton of a patchwork (M,V ) is the simple graph G with vertex set
V in which u, v ∈ V are adjacent if and only if (M,V ) has a patch P with u and
v as attachments. We say that a patch P of a patchwork (M,V ) is realizable
if there is a set C(P ) ⊆ P that is skew to V in M+V such that for each pair
u, v of distinct attachments of P , clM+V /C(P )({u, v}) contains an element of P
that is not a loop and is not parallel to u or v. We note that 0- and 1-patches
are always realizable. The patchwork (M,V ) is called realizable if each of its
patches is realizable. When it is realizable, M has a minor N such that (N, V )
is a framework with the same skeleton as (M,V ).

We close this section by stating an extension of Seymour’s three-in-a-
circuit theorem (Theorem 1.3.1) from binary matroids to arbitrary represented
matroids, which we will use several times in this chapter.
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Theorem 4.2.3 (Geelen, Gerards, Whittle, [17]). For any field F, if M is an
F-represented matroid and X ⊆ E(M) is independent, then either there is a
circuit C of M such that |C ∩X| ≥ 3, or there is a realizable patchwork (M,V )
such that X ⊆ V .

We remark that Theorem 4.2.3 implies Theorem 4.0.1, because no set of
three joints of a modular Dowling geometry restriction can be contained in a
circuit.

4.3 Group-labelled graphs

Recall that when Γ is a group, a Γ-labelled graph G is a pair (~G, γG) where ~G

is an oriented graph and γG ∈ ΓE( ~G). We write G̃ for the graph obtained from
~G by disregarding the edge orientations. For each e ∈ E(G) we call γG(e) the
label of e.

If G is a Γ-labelled graph, v ∈ V (G) and e ∈ E(G) is an edge incident with
v, then we define

γG(v, e) =

{
γG(e), if v is the head of e, including when e is a loop

γG(e)−1, otherwise.

Let G be a Γ-labelled graph, α ∈ Γ, and v ∈ V (G). We let G′ be the

Γ-labelled graph (~G, γG′) where

γG′(e) =


γG(e)α, if v is the head of e and e is not a loop

α−1γG(e), if v is the tail of e and e is not a loop

α−1γG(e)α, if e is a loop incident with v

γG(e), otherwise.

We say that G′ is obtained from G by a shift by α at v. If e is an edge of
G and G′′ is the graph obtained from G by reversing the orientation of e and
replacing its label with γG(e)−1, then we say that G′′ is obtained from G by
flipping e (when e is a loop, flipping it consists of simply replacing its label
with γG(e)−1). We say that two Γ-labelled graphs are equivalent if one can
be obtained from the other by a sequence of shifts and by flipping edges.

We can define minors of a Γ-labelled graph G as follows. Let e ∈ E(G).

We delete e to obtain G\e by deleting the edge e from G̃ and restricting γG
to E(G) \ {e}. We define the contraction of an edge e only when γG(e) = 1.
If e is a loop then G/e = G\e. If not, then we contract e to obtain G/e by
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contracting e from G̃ and restricting γG to E(G) \ {e}. When we contract an
edge e with ends u and v, we may refer to the new vertex of G/e obtained by
identifying u and v by either of the names u or v. For Γ-labelled graphs H and
G, we say that H is a minor of G if it is equivalent to a graph obtained from
G by a sequence of contractions and edge- and vertex-deletions.

Let Γ be a subgroup of F× for some field F, G a Γ-labelled graph with vertices
{v1, . . . , vk}, and χv1 , . . . , χvk the standard basis vectors of FV (G). Recall
that M(G) is represented by the matrix A ∈ FV (G)×E(G) such that A|{e} =
χu − γG(e)χv for each edge e with head u and tail v. When Γ is finite, we call
this a Dowling representation of M(G), and in general we call it a frame
representation.

The minor relation on the frame matroids over F corresponds to the minor
relation on the F×-labelled graphs that represent them.

Proposition 4.3.1. If F is a field and G is a F×-labelled graph, then for every
e ∈ E(G), M(G)\e = M(G\e) and if γG(e) = 1 then M(G)/e = M(G/e). If
H is an F×-labelled graph equivalent to G, then M(H) = M(G).

Proof. We let A be a frame representation of M(G) over F. For any edge
e ∈ E(G), M(G)\e and M(G\e) are both represented by A|(E(G) \ {e}). If e
is a non-loop edge, γG(e) = 1, and e has head u and tail v, then M(G)/e is
represented by the matrix obtained from A by adding the row of u to the row
of v then deleting the row of u and the column of e. This matrix is also the
frame representation of M(G)/e. Shifting at a vertex v by α ∈ F× corresponds
to scaling the row of v by α−1 then scaling each column indexed by an edge
with head v by α. Finally, flipping an edge e corresponds to scaling the column
A|{e} by −γG(e)−1.

4.4 A non-abelian group

Let F be a field, Γ a finite subgroup of F×, and t ≥ 1 an integer. The set
{(α, β) : α ∈ Ft, β ∈ Γ} along with the operation defined by

(α1, β1) · (α2, β2) = (α1β2 + α2, β1β2)

forms a group, which we denote by ΓFt . It has identity (0, 1), and the inverse
of an element (α, β) in ΓFt is (α, β)−1 = (−αβ−1, β−1).

Let C be an independent set in an F-represented matroid M such that
M/C ∈ D(Γ). There is a Γ-labelled graph G′ that represents M/C; we let
A′ ∈ FV (G′)×E(G′) be the corresponding Dowling representation of M/C. Then
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M has an F-representation A ∈ F(C∪V (G′))×(C∪E(G′)) such that A[C,C] is an
identity matrix, A[V (G′), C] = 0, and A[V (G′), E(G′)] = A′. We call such
an F-representation A an extended Dowling representation that extends
the representation A′ of M/C by C.

Let t = |C|. We construct a ΓFt-labelled graph G from G′ by taking the same

oriented graph ~G = ~G′ and for each edge e ∈ E(G), setting α(e) = A[C, {e}]
and labelling the edge γG(e) = (α(e), γG′(e)) ∈ ΓFt . We say that the ΓFt-
labelled graph G represents the matroid M and we write M = MF,Γ(G).
Although we are re-using the word ‘represents’, we use the distinct notation
MF,Γ(G) and not M(G) because G does not represent MF,Γ(G) in the same
way that a Γ-labelled graph H represents the Dowling matroid M(H)—in fact,
the ground set of MF,Γ(G) is not equal to E(G) and ΓFt is not a subgroup of
F×.

There is an equivalent to Proposition 4.3.1 for ΓFt-labelled graphs.

Proposition 4.4.1. If G is a ΓFt-labelled graph then for every e ∈ E(G),
MF,Γ(G\e) = MF,Γ(G)\e and if γG(e) = (0, 1) then MF,Γ(G/e) = MF,Γ(G)/e.
If H is a ΓFt-labelled graph equivalent to G, then MF,Γ(H) = MF,Γ(G).

Proof. We let A be the extended Dowling matrix corresponding to G; so
MF,Γ(G) = MF(A). Let C be the set of size t such that MF(A)/C ∈ D(Γ).
Then as in the proof of Proposition 4.3.1, deleting or contracting an edge
from G corresponds to deleting or contracting it from MF,Γ(G) because they
correspond to the usual minor operations done on A.

Flipping an edge e with label (α, β) corresponds to scaling the column
A|{e} by −β−1. Finally, we show that shifting at a vertex v by (α, β) ∈ ΓFt

corresponds to the following row operations on A. We scale the row of v by
β−1 then add α times this row to each row indexed by an element of C. Then
we scale each column indexed by an edge with head v by β (this includes loops
incident with v). Note that this affects only columns indexed by elements of
δ(v).

Let e be an edge with head v, f an edge with tail v, and g a loop incident
with v, and denote their labels by (αe, βe), (αf , βf ), (αg, βg). Then the original
submatrix of A indexed by {e, f, g} was


e f g

C αe αf αg
v 1 −βf 1− βg
−βe

1

.
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After the row operations, the submatrix becomes


e f g

C αeβ + α αf − αβ−1βf αgβ + α(1− βg)
v 1 −β−1βf 1− βg

−βeβ
1

.
and the entries here are precisely the result of the multiplications that we do to
shift at v by (α, β) in G: (αe, βe) · (α, β) = (αeβ +α, βeβ), (α, β)−1 · (αf , βf ) =
(−αβ−1βf+αf , β

−1βf ), and (α, β)−1 ·(αg, βg)·(α, β) = (αgβ+α(1−βg), βg).

We define one more group-labelled graph operation specific to ΓFt-labelled
graphs. If G is a ΓFt-labelled graph, then for any x ∈ F× and 1 ≤ i ≤ t, we
let G′ be the graph obtaind by changing each edge label (α, β) by multiplying
the ith coordinate of α by x. This corresponds to scaling rows in the matrix
corresponding to G, so MF,Γ(G′) = MF,Γ(G). We say that G′ is obtained from
G by scaling.

4.5 Coextensions of Dowling matroids

In this section we prove the special case of our main theorem for coextensions
of Dowling matroids. We fix the following notation: in any ΓFt-labelled graph
G, for each edge e ∈ E(G) with label γG(e) = (α, β), we define αG(e) = α
and βG(e) = β. If e has a vertex v as an end and γG(v, e) = (α, β), we define
αG(v, e) = α and βG(v, e) = β (recall that γG(v, e) equals γG(e) when e has
head v and γG(e)−1 otherwise).

First we state Ramsey’s Theorem [41] and a version of it for bipartite
graphs, both of which we shall use in the following lemma.

Ramsey’s Theorem. For all integers c, s > 0 there is an integer R(c, s) so
that any clique with R(c, s) vertices whose edges are c-coloured has a monochro-
matic copy of Ks as a subgraph.

This bipartite version has a short direct proof but also follows easily from
the Erdős-Stone Theorem [13].

Theorem 4.5.1. For all integers c, s > 0 there is an integer n = B(c, s) so
that if the edges of Kn,n are c-coloured then it has a monochromatic copy of
Ks,s as a subgraph.
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We can view the labels on a group-labelled graph as colours, and thus
obtain Ramsey-type results for group-labelled graphs if we can bound the
number of distinct labels appearing in the graph. In the next lemma, we show
that if a certain ΓF-labelled clique or complete bipartite graph represents a
matroid without some fixed line minor, then a graph equivalent to it has a large
monochromatic clique (or complete bipartite graph) as a subgraph. Moreover,
such a subgraph represents a Dowling matroid in D(Γ).

Lemma 4.5.2. Let ` ≥ 2 and s ≥ 1 be integers, F a field, Γ a subgroup of F×,
and β ∈ Γ. There is an integer n = n4.5.2(`, s) such that if G is a ΓF-labelled
graph with

G̃ ∼=

{
Kn, β 6= 1

Kn,n, β = 1
,

βG(e) = β for all e ∈ E(G), and MF,Γ(G) has no U2,`-minor, then there is a
graph G′ equivalent to G with a subgraph H such that

H̃ ∼=

{
Ks, β 6= 1

Ks,s, β = 1
,

βG′(e) = β for all e ∈ G′, and γG′(e) = (0, β) for all e ∈ E(H).

Proof. First, we suppose β 6= 1. We set n = 2R(`− 1, s)− 1 and let G be a
ΓF-labelled copy of Kn such that βG(e) = β for all e ∈ E(G) and MF,Γ(G) has
no U2,`-minor.

We choose a vertex v ∈ V (G) and let G′ be the graph obtained from G by
shifting at each u ∈ V (G − v) by (−αG(u, uv), 1). The result is that for all
edges e incident with v, γG′(e) = (0, β) and for all e ∈ E(G′), βG′(e) = β.

We partition V (G− v) into two sets X, Y so that each x ∈ X is incident
with an edge with tail v and each y ∈ Y is incident with an edge with head
v. We let G′′ be the graph obtained by shifting at each u ∈ V (G − v) by
(0, βG(u, uv)−1). Then for each edge e incident with v, γG′′(e) = (0, 1) and for
each edge e ∈ E(G′′[X]) ∪ E(G′′[Y ]), γG′′(e) = γG′(e).

The minor of G′′ obtained by deleting all edges joining X and Y and
contracting every edge incident with v consists of the vertex v and a set of
loops with labels {γG′(e) : e ∈ E(G′)}. It represents the matroid with the
matrix representation

( e1 · · · ek f1 · · · fm
1 αG′(e1) · · · αG′(ek) αG′(f1) · · · αG′(fm)

1− β · · · 1− β 1− β · · · 1− β

)
,
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where e1, . . . , ek are the elements of E(G′[X]) and f1, . . . , fm are the elements
of E(G′[Y ]). Since β 6= 1 and this matroid has no U2,`-minor we conclude that
|{αG′(e) : e ∈ E(G′[X]) ∪ E(G′[Y ])}| < `.

We consider the edges of G′[X] ∪G′[Y ] to be coloured by αG′ . One of X
and Y has at least R(`− 1, s) elements, so by Ramsey’s Theorem there is a
monochromatic subgraph H ∼= Ks of either G′[X] or G′[Y ]. Hence, there is
an element α ∈ F such that every edge in H has the same label, (α, β). If
α 6= 0 we shift at every z ∈ V (H) by (−α(1− β)−1, 1) so that αG′(e) = 0 for
all e ∈ E(H) and βG′(e) = β for all e ∈ E(G′), as required.

We consider next the case where β = 1. We set n = B(` − 1, s) and let
G be a ΓF-labelled copy of Kn,n such that MF,Γ(G) has no U2,`-minor and
βG(e) = 1 for all e ∈ E(G). We denote by X and Y the two independent sets
that partition V (G).

We choose vertices x ∈ X and y ∈ Y , and let G′ be the graph obtained
from G by first shifting at each u ∈ X \ {x} by (−αG(u, uy), 1) and at each
u ∈ (Y \ {y}) by (−αG(u, ux), 1), then flipping edges so that every edge has
its head in Y and tail in X. Then each edge incident with precisely one of x or
y has label (0, 1) while every edge e of G′ has βG′(e) = 1.

We let G′′ be the minor of G′ obtained by contracting all edges incident
with precisely one of x or y. This graph consists of a single parallel class and
MF,Γ(G′′) has the following matrix representation


xy e1 · · · ek

1 0 αG′(e1) · · · αG′(ek)
x 1 1 · · · 1
y −1 −1 · · · −1

,
where e1, . . . , ek are the edges of G′′ other than xy. Since this matroid has no
U2,`-minor, we conclude that |{αG′(e) : e ∈ E(G′′)}| < `. But all edges of G′

not in E(G′′) have the same label as xy, so in fact |{αG′(e) : e ∈ E(G′)}| < `.
We consider the edges of G′ to be coloured by αG′ . Since n ≥ B(`− 1, s),

by Theorem 4.5.1, there is a monochromatic subgraph H ∼= Ks,s of G′. There
is an element α ∈ F such that every edge in H has the same label, (α, 1). If
α 6= 0 we shift at every z ∈ V (H) ∩ Y by (−α, 1) so that αG′(e) = 0 for all
e ∈ E(H) and βG′(e) = 1 for all e ∈ E(G′), as required.

Remark. Although Lemma 4.5.2 is stated for ΓF-labelled graphs, for each fixed
integer t ≥ 1 the corresponding statement holds as well for ΓFt-labelled graphs.
This follows by induction on t: we find a large clique (or complete bipartite
subgraph) in which all edge labels are the same in all but one coordinate of
αG, then apply the argument to this subgraph for the final coordinate.
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Next we show that a large clique whose edges are all labelled with a generator
of a finite group Γ has a minor representing a Dowling geometry over Γ. Recall
that when |Γ| > 1, DG(k,Γ) is represented by a Γ-labelled graph G such that

1. V (G) = {v1, . . . , vk}, and

2. E(G) consists of a loop incident with each vi labelled by any non-identity
element of Γ, and for each triple α ∈ Γ and vi, vj ∈ V (G) with i < j, an
edge oriented from i to j with label α,

and that when |Γ| = 1, DG(k,Γ) ∼= M(Kk+1).

Lemma 4.5.3. Let k > 0 be an integer and Γ a finite cyclic group with
generator β. There is an integer n = n4.5.3(k,Γ) such that if H is a Γ-labelled
graph with γH(e) = β for all e ∈ E(H) and

H̃ ∼=

{
Kn, |Γ| > 1

Kn,n, |Γ| = 1
,

then for any set X ⊆ V (H) of size k, there is a minor G of H on vertex set
X such that M(G) ∼= DG(k,Γ) when |Γ| > 1 and M(G) ∼= DG(k − 1,Γ) when
|Γ| = 1. Moreover, G is obtained from H without shifting at any vertex of X.

Proof. When |Γ| = 1, we set n = n4.5.3(k,Γ) =
(
k
2

)
and the result is equivalent

to the fact that Kn,n has a Kk-minor on any set of k vertices. We therefore

assume that |Γ| > 1, and so H̃ ∼= Kn.
Suppose that there is a set X ′ ⊆ V (H) \ X of size k such that H − X

has a minor G on vertex set X ′ with M(G) ∼= DG(k,Γ). Then we can pick a
matching P joining X to X ′, shift at each vertex of X ′ so that the label of
each edge in P is 1, perform the contractions necessary to get the minor G on
vertex set X ′, and contract the edges of P . A graph representing a Dowling
geometry has an edge with every possible label in each parallel class, so the
shifts at vertices in X ′ simply permute the labels within each parallel class.
The result is that there is a minor on vertex set X that represents DG(k,Γ).
We thus need only show that we can find a minor G with M(G) ∼= DG(k,Γ)
on some set of k vertices of H.

A straightforward Ramsey-type argument shows that for every integer n, if
m ≥ 2n−1 is large enough then every oriented copy of Km has a set of vertices
v1, . . . , vn so that whenever i < j the edge vivj has tail vi and head vj. It
therefore suffices to show that there is an integer n so that if H is a Γ-labelled
clique on vertices {v1, . . . , vn}, every edge has label β, and vivj has head vj for
all i < j, then H has a minor representing DG(k,Γ).
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We choose any set Y of k vertices of H. For each pair of distinct vertices
vi, vj ∈ Y and each t ∈ {1, . . . , |Γ|}, we choose a directed path P0 in H − Y
with tail u and head w of length t + 2. Consider four consecutive vertices
a, b, c, d on P0 and let P1 be the path obtained from P0 by deleting b and
adding the edge ac and P2 the path obtained from P by deleting b and c
and adding the edge ad. For P ∈ {P0, P1, P2}, if we shift at vertices of P ,
contract {viu, vjw}, and contract P to a single edge e, then e has its label
in {β|E(P )|, β|E(P )|−2, β|E(P )|+2} depending on the orientations of the edges viu
and vjw. Since {|E(P0)|, |E(P1)|, |E(P2)|} = {t+ 2, t, t− 2}, this edge label is
equal to βt for some choice of P . We therefore obtain an edge e joining vi and
vj with head vj and label βt.

Next, for each vi ∈ Y we choose a single directed path P0 in H − Y of
length three; by the same argument we can use it to contract a loop onto vi
with label β.

As long as n is large enough to choose all such paths P0 that we used to be
disjoint, we obtain in this manner a minor with vertex set Y such that every
vi, vj ∈ Y with i < j is joined by a parallel class directed from i to j with every
distinct label in Γ, and every vi ∈ Y is incident with a loop with a non-identity
label. This is a minor representing DG(k,Γ).

When v is a vertex in a graph, we denote by δ(v) the set of edges incident
with v. A subgraph of a graph G is called a star if it is a tree whose edges are
contained in δ(v) for some v ∈ V (G), called its centre. A matroid is called
cosimple when its dual is simple; equivalently, when it has no coloops or series
pairs. We can now prove the case of Theorem 4.2.2 for matroids with a Dowling
geometry minor of the same corank. We observe that every finite subgroup of
the multiplicative group of a field is cyclic (see [46, Section 1.2]).

Lemma 4.5.4. Let F be a field, Γ a finite subgroup of F× with generator β,
and ` and k ≥ 5 integers. There is an integer n = n4.5.4(`, k, |Γ|) such that if
H is a Γ-labelled graph,

H̃ ∼=

{
Kn, when |Γ| > 1

Kn,n, when |Γ| = 1
,

and γH(e) = β for all e ∈ E(H), and M is a matroid with an extended Dowling
representation over F that extends the Dowling representation of M(H), then

(i) there is a patchwork (M,V ) of which no patch contains a cocircuit of
M(H),

(ii) M has a U2,`-minor, or
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(iii) M has a minor N with a non-coloop element e such that N\e ∼= DG(k,Γ)
but e is not in the closure of any pair of joints of N\e.

Before the proof, we outline its main ideas. Using M(H) instead of DG(n,Γ)
simplifies our proof and is equivalent for our purposes because when n is large
enough, M(H) is both a restriction of a Dowling geometry and, by Lemma 4.5.3,
has a given Dowling geometry as a minor.

First, we look at a represented matroid M with an element c such that
M/c is M(H). Then M can be represented by a ΓF-labelled graph G. We
need to either express M as a patchwork, or find a non-frame minor N with
an element e such that N\e is a large Dowling matroid. We can get a large
Dowling matroid as a restriction of M by applying Lemma 4.5.2 to find a clique
in G whose edges e all satisfy αG(e) = 0. We then try to build our non-frame
minor N from this using the edges e ∈ E(G) with αG(e) 6= 0. There are three
cases: either there are two such edges that form a matching, or the set of such
edges is contained in a star, or it is contained in a triangle. In each case, we
either find the desired minor N , or we constrain the possible values of the
labels αG(e) enough that we can express M as a patchwork.

More generally, we have a matroid M with a set C such that M/C is M(H).
We apply the above argument to the matroids M/(C \ {c}) for each c ∈ C,
and then we consider the interaction between the group-labels in the graphs
representing each of these matroids. We either find the desired minor N or we
are able to express M as a patchwork.

Proof of Lemma 4.5.4. We may assume that M has no U2,`-minor. We set
n = n4.5.2(`, n4.5.3(k,Γ)); we recall that if H has this many vertices then (up to
equivalence) it has a n4.5.3(k,Γ)-vertex clique subgraph with all labels (0, β),
and such a clique has a minor representing DG(k,Γ).

First, we observe that if any element e ∈ E(M) \ E(H) is a coloop or is
contained in a non-trivial series class, then M satisfies whichever of outcomes
(i) or (iii) that M/e does. Therefore, we may assume that M is cosimple.

We let C be the independent set in M such that M/C = M(H) and
M has an extended Dowling representation, A, that extends the Dowling
representation of M(H) by C. We let G be the corresponding ΓFt-labelled
graph that represents M . We observe that for each e ∈ E(G) with label
(αG(e), βG(e)), αG(e) is a vector in FC and βG(e) = β. For each c ∈ C, the
submatrix of A that represents M/(C \ {c}) corresponds to a ΓF-labelled graph
Gc. Each of the labelled graphs Gc has the same underlying oriented graph
as G, and its edge labels (αGc , βGc) are obtained from the labels (αG, βG) by
restricting αG to the coordinate indexed by c.
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In the next four claims, we choose an arbitrary c ∈ C and determine the
properties that Gc must satisfy if outcome (iii) does not hold. We remark
that if a matrix D is a Dowling representation of DG(k,Γ) and we add to it a
column with at least three non-zero entries, then we get a representation of a
matroid N satisfying outcome (iii).

(1) If supp(αGc) is the edge set of a triangle T of Gc, then either outcome (iii)
holds, or β = −1 and αGc(e) = αGc(f) for all e, f ∈ E(T )

Suppose there is a vertex v ∈ V (T ) and edges e, f ∈ E(T ) incident with v
such that αGc(v, e) 6= αGc(v, f). We choose a set Y of n4.5.3(k,Γ) vertices of
Gc − V (T ) and a subset X ⊂ Y of size k. By Lemma 4.5.3, Gc[Y ] has a minor
on vertex set X that represents a minor of M/(C \{c}) isomorphic to DG(k,Γ).
We pick a matching P in Gc joining any three elements of X to V (T ). We
let G′ be the minor of Gc obtained by doing the appropriate operations on
Gc[Y ] to get a DG(k,Γ)-minor on vertex set X, then shifting on the ends of P
in X so that the edges in P have label (0, 1), contracting the elements of P ,
and deleting all vertices other than X and deleting the edge of T other than e
and f . We note that the shifts on the ends of P do not change the fact that
there is a subgraph of G′ representing a copy of DG(k,Γ), because each pair of
vertices is joined by a parallel class containing an edge with every label in the
set {(0, βt) : βt ∈ Γ} and these simply get permuted by the shifts. Then the
minor MF,Γ(G′) of M/(C \ {c}) has a restriction M ′ ∼= DG(k,Γ). Moreover, if
D is the Dowling representation of DG(k,Γ), then MF,Γ(G′) has the following
matrix representation



c e f E(M ′)

c 1 αGc(v, e) αGc(v, f) 0
v 0 1 1

0 −βGc(v, e) 0 D
0 0 −βGc(v, f)
0 0 0

,
and contracting f and deleting c yields a minor represented by


e E(M ′)

v 1− αGc(v, e)αGc(v, f)−1

−βGc(v, e) D
βGc(v, f)αGc(v, e)αGc(v, f)−1

0

,
which, since αGc(v, e) 6= αGc(v, f), satisfies (iii). We may therefore assume that
for each v ∈ V (T ), if e, f ∈ E(T ) are incident with v then αGc(v, e) = αGc(v, f).
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A straightforward calculation shows that if this holds for all three vertices v of
T then β = −1 and αGc(e) = αGc(f) for all e, f ∈ E(T ), proving (1).

(2) If supp(αGc) is contained in a star of Gc with centre v then either outcome
(iii) holds or |{αGc(v, e) : e ∈ δ(v)}| ≤ 2.

We suppose that supp(αGc) is contained in a star of Gc with centre v and
that |{αGc(v, e) : e ∈ δ(v)}| ≥ 3. We let e, f , and g be three edges incident
with v such that αGc(v, e), αGc(v, f) and αGc(v, g) are all distinct.

We let x, y and z respectively be ends of e, f , and g other than v. We pick
a set Y of n4.5.3(k,Γ) vertices of Gc containing {x, y, z} and disjoint from v. By
Lemma 4.5.3, Gc[Y ] has a minor on vertex set {x, y, z} that represents a minor
of M/(C \ {c}) isomorphic to DG(k,Γ). We let G′ be the minor of Gc obtained
by deleting all edges incident with v except e, f, and g, doing the appropriate
operations on Gc[Y ] to obtain the DG(k,Γ)-minor on {x, y, z}, shifting at v
by (αGc(v, g), β)−1, contracting g, and deleting all vertices except x, y, and z.

The minor of MF,Γ(G′) of M/(C \ {c}) has the following matrix representa-
tion, where D is the Dowling representation of DG(k,Γ).



c e f E(G′) \ {e, f}
c 1 αGc(v, e) αGc(v, f) 0
v 0 1 1

0 −βGc(v, e) 0 D
0 0 −βGc(v, f)
0 0 0

.
The minor N of MF,Γ(G′) obtained by contracting f and deleting c is represented
by the matrix


e E(G′) \ {e, f}

v 1− αGc(v, e)αGc(v, f)−1

−βGc(e) D
αGc(v, e)βGc(v, f)αGc(v, f)−1

0

,
and since αGc(v, e) 6= αGc(v, f), the column indexed by e has three non-zero
entries, so N satisfies outcome (iii), proving (2).

(3) If Gc has a minor G′ with two non-incident edges f, g such that
αG′(f), αG′(g) 6= 0, γG′(e) = (0, β) for all e 6= f, g, and

G̃′\f, g ∼=

{
Kn4.5.3(k,Γ), β 6= 1

Kn4.5.3(k,Γ),n4.5.3(k,Γ), β = 1
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then outcome (iii) holds.

We let uf , vf denote the ends of f and ug, vg denote the ends of g. By
Lemma 4.5.3, G′\f, g has a minor whose vertex set contains {uf , vf , ug, vg}
that represents a minor of M/(C \ {c}) isomorphic to DG(k,Γ). We let G′′

be the minor of G′ obtained by performing the same operations that give the
DG(k,Γ)-minor of G′\f, g.

The minor of MF,Γ(G′′) of M/(C \ {c}) has the following matrix represen-
tation, where D is the Dowling representation of DG(k,Γ).



c f g E(G′′) \ {f, g}
c 1 αG′(uf , f) αG′(ug, g) 0
uf 0 1 0
vf 0 −βG′(uf , f) 0 D
ug 0 0 1
vg 0 0 −βG′(ug, g)

0 0 0

.

The minor N of MF,Γ(G′′) obtained by contracting f and deleting c is repre-
sented by the matrix



g E(G′′) \ {f, g}
uf −αG′(ug, g)αG′(uf , f)−1

vf αG′(ug, g)αG′(uf , f)−1βG′(uf , f) D
ug 1
vg −βG′(ug, g)

0


and since αG′(f), αG′(g) 6= 0, there are four non-zero entries in the column
indexed by g. Therefore, outcome (iii) holds, proving (3).

(4) Either outcome (iii) holds, or there is a graph G′ equivalent to Gc for which
|{αG′(e) : e ∈ E(G′)}| = 2 and either

(a) supp(αG′) is contained in a star of G′, or

(b) supp(αG′) is the edge set of a triangle of G′ and β = −1.

We apply Lemma 4.5.2 to find a graph G′ equivalent to Gc with a subgraph
J of at least s ≥ n4.5.3(k,Γ) vertices such that αG′(e) = (0, β) for all e ∈ E(J),
and such that

J̃ ∼=

{
Ks, β 6= 1

Ks or Ks,s, β = 1
.
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We choose J so that J̃ is a clique rather than a bipartite graph if possible.
Subject to this restriction, we choose G′ and J so that |V (J)| is maximal; thus
shifting at vertices of G′ does not allow us to find a larger such subgraph J .
We may further assume that G′ does not satisfy (a) or (b).

We first consider the case that J̃ ∼= Ks,s; in this case, β = 1. Since we could

not choose J so that J̃ is a clique, there is at least one edge e of G′[V (J)] with
αG′(e) 6= 0. If two such edges exist and they are non-incident, then outcome
(iii) holds by (3). Otherwise, there is a set X ⊂ V (J) of size at most three
such that every edge e of G[V (J)] with αG′(e) 6= 0 has an end in X. But then

we could have chosen J −X in place of J , since J̃ −X is a clique with at least
s vertices, a contradiction. We may therefore assume that J̃ ∼= Ks.

By (2), we may assume that there are at least two vertices ofG′ not contained
in V (J). If v 6∈ V (J) and the set {αG′(v, e) : e joins v to X} has size one, then
by shifting at v we may assume that αG′(e) = 0 for all e joining v to V (J),
contradicting our maximal choice of J . Therefore, for each vertex v 6∈ V (J)
there are two edges ev, fv joining v to V (J) with αG′(v, ev) 6= αG′(v, fv).

We claim that there exist two vertices u, v 6∈ V (J) and four edges
eu, fu, ev, fv such that eu and fu join u to V (J), ev and fv join v to V (J),
the ends of eu, fu, ev and fv in V (J) are distinct, αG′(u, eu) 6= αG′(u, fu) and
αG′(v, ev) 6= αG′(v, fv). If this holds, then we obtain a minor G′′ as follows; we
shift at u and v so that eu and ev both have label (0, 1), then we delete all ver-
tices other than V (J)∪{u, v} and all edges other than E(J)∪{eu, fu, ev, fv} and
contract eu and ev. Since αG′(u, eu) 6= αG′(u, fu), we have αG′′(fu) 6= 0, and sim-
ilarly αG′′(fv) 6= 0. But G′′\fu, fv = J , and (3) implies that outcome (iii) holds.
So we may assume that such vertices u and v and edges eu, fu, ev, fv do not
exist. This implies that there is a vertex x ∈ V (J) such that for any v 6∈ V (J),
the set {αG′(v, e) : e is incident with v and an element of V (J) \ {x}} has size
one. But then shifting at each vertex not in J , we may assume that αG′(e) = 0
for all e with an end in V (J) \ {x}.

If |V (G′) \ V (J)| = 2 then (iii), (a), or (b) holds by (1), and if αG′(e) = 0
for all e with no end in J then (iii) or (a) holds by (2). Therefore, we may
assume that |V (G′) \ V (J)| ≥ 3, and so there is an edge f joining x to a
vertex v 6∈ V (J) and an edge g with no ends in common with f such that
both αG′(f) and αG′(g) are non-zero. We let e1, e2, e3 be three edges that join
the ends of f and g not in J to three distinct vertices of J − {x}. We recall
that αG′(e1), αG′(e2), αG′(e3) = 0. We let G′′ be the minor obtained as follows.
We shift at v and the ends of g so that e1, e2 and e3 have label (0, 1), then
we delete all edges except E(J) ∪ {f, g, e1, e2, e3} and all resulting isolated
vertices and then contract e1, e2, and e3. Since αG′(e1), αG′(e2), αG′(e3) = 0 but



4.5. COEXTENSIONS OF DOWLING MATROIDS 107

αG′(f), αG′(g) 6= 0, we have αG′′(f), αG′′(g) 6= 0. We note that G′′\f, g = J so
outcome (iii) holds by (3). This proves (4).

We recall that G is a ΓFt-labelled graph representing M and that each Gc

is obtained from G by restricting the vectors αG(e) ∈ FC to the coordinate

indexed by c, so G and all Gc have a common underlying graph G̃.

We may assume by (4) and by shifting and scaling labels that for each
c ∈ C, either

(A) supp(αGc) is contained in a star of G̃ centred at a vertex v and {αGc(v, e) :
e ∈ δ(v)} ⊆ {0, 1}, or

(B) supp(αGc) is the edge set of a triangle T of G̃, αGc(e) = 1 for all e ∈ E(T ),
and β = −1.

We now consider the interaction between the various graphs Gc. In the next
claim, we show that the labellings of two graphs Gc1 and Gc2 cannot ‘cross’
each other too much without outcome (iii) occuring.

(5) If there are distinct elements c1, c2 ∈ C, v ∈ V (G̃), and four edges
e1, e2, e3, e4 ∈ δ(v) such that e1 ∈ supp(αGc1

) \ supp(αGc2
), e2 ∈ supp(αGc1

) ∩
supp(αGc2

), e3 ∈ supp(αGc2
) \ supp(αGc1

), and e4 6∈ supp(αGc1
) ∪ supp(αGc2

),
then outcome (iii) holds

We let G′ be the ΓF2-labelled graph representing M/(C \ {c1, c2}) that is
obtained from G by restricting the vectors αG(e) to the coordinates indexed
by c1 and c2. We let X be the set of ends of e1, e2, and e3 and let w be the
end of e4 other than v. We note that by (A) and (B), supp(αG′) consists
only of edges incident with v and possibly the two edges joining the ends
of e1 and e2 and the ends of e2 and e3. We can therefore choose a set Y of
n4.5.3(k,Γ) vertices of G−X that contains w and a set X ′ of four elements of
Y that contains w. By Lemma 4.5.3, G′[Y ] has a minor of vertex set X ′ that
represents a minor of M isomorphic to DG(k,Γ). We pick a matching P in
G containing e4 that joins X ′ to X; all edges of P have label (0, β). We let
G′′ be the minor of G′ obtained by doing the appropriate operations on G′[Y ]
to get the DG(k,Γ)-minor on vertex set X ′, then shifting on the ends of P in
X ′ so that the edges in P have label (0, 1) and contracting the elements of P .
Then the minor MF,Γ(G′′) of M/(C \ {c1, c2}) has a restriction M ′ ∼= DG(k,Γ).
Moreover, M has a minor with the following matrix representation, where D is
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the Dowling representation of DG(k,Γ).



c1 c2 e1 e2 e3 E(M ′)

c1 1 1 1 0
c2 1 1 1 0
v 1 1 1

−β D
−β

−β

.

The minor obtained by contracting {e1, e2} has the following representation


c1 c2 e3 E(M ′)

v −1 1
β −β −β D

β β
−β

.
All four entries in the column indexed by e3 are non-zero, so outcome (iii)
holds. This proves (5).

We have identified all cases in which outcome (iii) holds. We can now
assume that (iii) does not hold and complete the proof after the following
technical claim about set systems. We recall that a collection of sets is called
laminar if each pair is either disjoint or one contains the other.

(6) Let S1, . . . , Sk be subsets of a set S such that for any two Si, Sj, at least
one of Si \ Sj, Si ∩ Sj, Sj \ Si, and S \ (Si ∪ Sj) is empty. Then there is a set
Ti ∈ {Si, S \ Si} for each i = 1, . . . , k such that {T1, . . . , Tk} is laminar.

We pick any x ∈ S and for each i, set Ti = Si if x 6∈ Si and Ti = S \ Si if
x ∈ Si. Then {T1, . . . , Tk} is laminar (this proof is from [31, p. 22]).

We recall that V (G) = {v1, . . . , vn}. Since each c ∈ C satisfies either (A)
or (B), there is a set of triangles T1, . . . , Tm of G such that for each c ∈ C,
supp(αGc) is either contained in some δ(vi) or is equal to some E(Ti). We
denote by Ci the set of c ∈ C with supp(αGc) ⊆ δ(vi). We may assume by (5)
and (6) that for each vi, the collection of sets {supp(αGc) : supp(αGc) ⊆ δ(vi)}
is laminar, and that every pair Ti, Tj of distinct triangles is disjoint. It also
follows from (5) and the fact that M is cosimple that, for any vi and Tj,
{supp(αGc1

), supp(αGc2
) ∩ δ(vi)} is laminar whenever supp(αGc1

) ⊆ δ(vi) and
supp(αGc2

) = E(Tj).
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We recall that A that is the extended Dowling matrix representing M that
corresponds to G. The rows of A are indexed by C ∪ V (G). We also index the
standard basis vectors of FV (G) by the elements of V (G), so that (M/C, V (G))
is a framework with vertex set V (G).

Since M is cosimple, the sets supp(αGc) for c ∈ Ci are distinct. For each vi
and each c ∈ Ci, we add a column wc to the matrix A so that wc has a 1 in
the row of vi and in the row of any c′ ∈ C such that supp(αGc) ⊆ supp(αGc′

),
and 0 elsewhere. We let Wi be the set of all these new elements for each vi.

We let C ′ be the union of all sets Ci. We claim that M/(C \ C ′) forms a
framework with vertices V (G) ∪ {W1, . . . ,Wh}. Let e ∈ E(M) \ C have ends
vi and vj in G. If e is not in supp(αGc) for any c ∈ Ci, then we let x = vi;
otherwise we choose c ∈ Ci with supp(αGc) minimal such that it contains e,
and we let x = wc. Similarly, if e is not in supp(αGc) for any c ∈ Cj, then we
let y = vj; otherwise we choose c ∈ Cj with supp(αGc) minimal such that it
contains e, and we let y = wc. Then e is in the span of {x, y} in M/(C \ C ′),
showing that (M/(C \ C ′), V (G) ∪ {W1, . . . ,Wh}) is a framework.

We let M+V be the F-represented matroid obtained by extending M by the
set V = V (G) ∪ {W1, . . . ,Wh}. For each triangle Ti there is a unique c ∈ C
so that supp(αGc) = E(Ti); we let Ui = {c} ∪ E(Ti). Then Ui is a bridge of
(M,V ). It has three attachments; for each vj ∈ V (Ti), if E(Ti) ∩ δ(vj) is not
contained in supp(αGc) for any c ∈ Cj then vj is an attachment of Ui, and
otherwise we choose c ∈ Cj so that supp(αGc) is minimal such that it contains
E(Ti) ∩ δ(vj), and wc is an attachment of Ui. We denote the attachments of
Ui by {x, y, z}; then the representation of M/(C \ {c}), restricted to the set
Ui ∪ {x, y, z} is (recall that β = −1 whenever a triangle Ti exists)


c E(Ti) x y z

c 1 1 1 1
1 1 1

V (Ti) 1 1 1
1 1 1

.
From this matrix it is apparent that there is no circuit of M+V contained in
Ui∪{x, y, z} that contains all three of x, y, and z. Hence (M,V ) is a patchwork
of which each Ui is a patch.

4.6 Vertex- and edge-labelled graphs

We generalize group-labelled graphs to allow labels on vertices as well as edges.
Let F be a field and Γ a subgroup of F×. An (F,Γ)-labelled graph G is a
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triple (~G, γG, xG), where (~G, γG) is a Γ-labelled graph and xG ∈ FV (G). For each
vertex v ∈ V (G), we call xG(v) the label of v. The (GF(2),GF(2)×)-labelled
graphs are often called grafts.

Let G be an (F,Γ)-labelled graph, α ∈ Γ, and v ∈ V (G). A shift by α at

v consists of shifting by α at v in the underlying Γ-labelled graph (~G, γG) and
multiplying the label xG(v) of v by α−1. An (F,Γ)-labelled graph is equivalent
to G if it can be obtained from G by a sequence of shifts, flipping edges of the
underlying Γ-labelled graph, and scaling the vector xG by an element of F×.

We extend the definition of minors of Γ-labelled graphs to (F,Γ)-labelled
graphs. We delete any edge of G by deleting it from the underlying Γ-labelled
graph and restricting the domain of xG. If e ∈ E(G) is a non-loop edge with
γG(e) = 1, head u, and tail v, we contract e to obtain G/e by contracting e
in the underlying Γ-labelled graph and assigning the label xG(u) + xG(v) to
the vertex obtained by identifying u and v.

For (F,Γ)-labelled graphs H and G, we say that H is a minor of G if
it is equivalent to a graph obtained from G by a sequence of contractions,
edge-deletions, and deletions of vertices v with xG(v) = 0. The reason we
restrict the allowed vertex-deletions is that, as we see below, (F,Γ)-labelled
graphs represent certain matroids and deleting a vertex with non-zero label
does not correspond to a minor operation on these matroids. In this thesis,
however, we never delete vertices from (F,Γ)-labelled graphs.

When H is a Γ-labelled graph and G is an (F,Γ)-labelled graph, we say
that H is a minor of G if it is a minor of the Γ-labelled graph obtained from G
by discarding the vertex labels xG.

Let G be a (F,Γ)-labelled graph and let A′ be a frame representation of

(~G, γG) over F, so the rows are indexed by V (G) and the column indexed by
each edge e has non-zero entries only in the rows of its ends. We construct
the matrix A from A′ by adding the vector xG as a new column indexed by an
element x. We say that G represents MF(A) and write M(G) = MF(A). We
note that shifting and flipping in G correspond to scaling in A, so whenever
G′ is a graph equivalent to G, M(G′) = M(G). Also, minor operations on the
(F,Γ)-labelled graph G correspond to minor operations on the matrix A, so we
have the following generalization of Proposition 4.3.1.

Proposition 4.6.1. If F is a field, Γ is a subgroup of F×, and G is a (F,Γ)-
labelled graph, then for every e ∈ E(G), M(G)\e = M(G\e) and M(G)/e =
M(G/e).

An extended framework is a triple (M,V, x) where x is a non-coloop
element of M and (M\x, V ) is a framework. Let A be a representation of
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M+V in standard form with respect to the basis V . There is an F×-labelled
graph G′ corresponding to A with vertex set V so that M(G′) = M+V \x. We
can extend G′ to an (F,F×)-labelled graph G by setting the label xG(v) of
each vertex v to be Avx. Then M(G) = M . We say that G represents the
extended framework (M,V, x).

4.7 Unique maximal skeletons

In this section, we prove that if an M is an F-represented matroid that can
be expressed as a patchwork containing a set X of three vertices, then there
is (almost) a unique maximal way to express M as a patchwork with X as
vertices. Some of the general ideas of our proof are inspired by Geelen, Gerards,
and Whittle’s proof of Theorem 4.2.3.

We start with a fact about 2-patches and then a result about (F,F×)-labelled
graphs.

Lemma 4.7.1. Every 2-patch in a patchwork is realizable.

Proof. Let P be a 2-patch in a patchwork (M,V ) with attachments a and
b. First, we assume that M+V |(P ∪ {a, b}) has a separation (A,B). Since P
is connected in M+V /{a, b} (by the definition of a patch), we may assume
that P ⊆ A, and so we may also assume that b ∈ B. If a ∈ B also, then
uM+V

(P, V ) = uM+V
(P, {a, b}) = 0 and P is a 0-patch. So a ∈ A, and thus

b 6∈ clM+V
(P ∪{a}), which means uM+V

(P, V ) = 1 and that a ∈ clM+V
(P ). But

then a is the unique attachment of P , a contradiction. Therefore, M+V |(P ∪
{a, b}) is connected. It follows from the Bixby-Coullard Inequality that in
any connected matroid, each element can be either contracted or deleted to
preserve connectivity. So we repeatedly remove elements e ∈ P \ clM+V

({a, b})
by either contracting them or deleting them, until we have a connected minor
with basis {a, b}. Being connected, it necessarily has a third element that is
not parallel to either a or b. The set of elements we contracted is skew to {a, b}
in M+V , so P is realizable.

Next is our last lemma before the main theorem of this section. A sep-
aration of a graph G is an ordered pair of subgraphs (G1, G2) such that
E(G1) ∪ E(G2) = E(G) and E(G1) ∩ E(G2) = ∅. Its vertex boundary is
the set V (G1) ∩ V (G2) and its order is ord(G1, G2) = |V (G1) ∩ V (G2)|. A
separation of order k is called a k-separation.

Lemma 4.7.2. If F is a field, G is an (F,F×)-labelled graph and X ⊆ V (G)
such that
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(i) G̃ is 2-connected,

(ii) G̃[X] is a clique and |X| ≥ 3,

(iii) | supp(xG)| ≥ 2, and

(iv) there is no 2-separation (A,B) of G̃ with |V (A)| ≥ 3, supp(xG) ⊆ V (A)
and X ⊆ V (B),

then there is a minor H of G on vertex set X with | supp(xH)| ≥ 2.

Proof. We choose G to be a minimum counterexample. First, we assume that
G̃ is 3-connected. Suppose that every edge of G has an end in X. Let v be a
vertex of G−X and let e and f be two edges joining v to X. Either G/e or
G/f is a smaller counterexample, or | supp(xG/e)| < 2 and | supp(xG/f)| < 2.
But then supp(xG) consists of v and the other ends of e and f , and we can
contract any third edge incident with v to get a smaller counterexample. Thus
there exists an edge e with no end in X. Then G\e is a smaller counterexample
unless it has a 2-separation (A,B) with supp(xG) ⊆ V (A) and X ⊆ V (B).
Then e has an end z ∈ V (B) \ V (A) and since there are three paths joining
{z}∪ (V (A)∩ V (B)) to X, the graph obtained from G[V (A)∪{z}] by putting
a clique on {z} ∪ (V (A) ∩ V (B)) is a smaller counterexample, with this set in
place of X.

This proves that G̃ is not 3-connected. There is a 2-separation (A,B)
with X ⊆ V (B) and |V (A)| ≥ 3. Note that supp(xG) contains a vertex in
V (B) \ V (A). If supp(xG) ∩ V (A) is empty, then we can contract edges in
A to get a minor on vertex set V (B) that has an edge joining u and v, and
this is a smaller counterexample; so supp(xG) ∩ V (A) 6= ∅. Since every edge
in a 2-connected graph can either be deleted or contracted while maintaining
2-connectivity, and contracting an edge decreases | supp(xG)| by at most two,
by contracting edges in A we may assume that | supp(xG) ∩ V (A)| ∈ {1, 2}.
Then we can contract edges in A to get a minor G′ on vertex set V (B) with
at least one vertex of V (A) ∩ V (B) in supp(xG′). This graph is a smaller
counterexample.

We would like to prove that if (M,V ) is a patchwork and X ⊆ V induces a
clique in its skeleton, then there is a unique maximal choice of V containing X
such that (M,V ) is a realizable patchwork with a 3-connected skeleton. This
is essentially true, but there is one type of exception.

Let (M,V ) be a realizable patchwork with skeleton G such that M is 3-
connected. Suppose that G has a triangle T with a vertex v1 that is adjacent
to exactly one vertex v2 outside V (T ), and v2 has exactly one other neighbour,
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Figure 4.2: Shrinking a 3-patch

v3 (see Figure 4.2). Suppose that G is 2-connected and has no 2-vertex-cutsets
besides {v1, v3}. We let P1 be the union of patches with all attachments in
V (T ), P2 the union of patches with attachment set {v1, v2}, and P3 the union
of patches with attachment set {v2, v3} or {v2}. There are two ways to choose
a maximal set V ′ so that (M,V ′) is realizable and has a 3-connected skeleton:
V1 = V \ {v2} or V2 = V \ {v1}. In the first case, P2 ∪ P3 is a patch of
(M,V1) with attachments {v1, v3}, and its skeleton contains the triangle T and
v1 is adjacent to v3. In the second case, P1 ∪ P2 is a patch of (M,V2) with
attachments (V (T ) \ {v1}) ∪ {v2}, and v2 is adjacent to v3 in its skeleton. We
say that (M,V1) is obtained from (M,V2) by shrinking a 3-patch.

We can identify a canonical maximal skeleton by always choosing the first
of these two options. If (M,V ) is a patchwork and X ⊆ V , we say that (M,V )
is X-strong if it is realizable and has a 2-connected skeleton of which there is
no 2-separation (A,B) with X ⊆ V (A), and there is no other such patchwork
obtained from it by shrinking a 3-patch. If, in addition, the skeleton of (M,V )
is actually 3-connected, then we simply call it a strong patchwork; this is
necessarily the case when it is X-strong and X induces a clique in its skeleton.

Whenever (A,B) is a separation of the skeleton of a patchwork (M,V ), we
let (AM , BM ) be the partition of E(M) in which AM is the union of all patches
with attachments in V (A), and BM = E(M) \ AM .

Theorem 4.7.3. If M is a 3-connected F-represented matroid, X ⊆ E(M),
|X| ≥ 3, and no triple of elements of X is contained in a circuit of M , then
there is a unique maximal set V ⊂ Fr(M) containing X such that (M,V ) is an
X-strong patchwork.

Proof. We choose M to be a counterexample minimizing r(M). Consider an
extension M+x of M by a new point in the span of exactly two elements of X.
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Whenever (M+x, V ) is a patchwork with X ⊆ V , (M,V ) is also a patchwork.
Moreover, they have the same skeleton except for possibly one new edge with
ends in X, and (M,V ) is realizable and X-strong if and only if (M+x, V ) is.
Therefore, by adding such points x, we may assume that every pair of elements
of X is contained in a triangle of M . Then X induces a clique in the skeleton
of any patchwork whose vertices contain X, so any patchwork is X-strong if
and only if it is strong.

(1) M is vertically 4-connected.

Suppose that M has a vertical 3-separation (A,B). We recall that every
pair of elements of X is contained in a triangle, so X is in the closure of either
A or B; we may thus assume that X ⊆ B. We let M ′ be the matroid obtained
by extending M by every possible point z for which there is a set Cz ⊆ A with
uM(Cz, B) = 1 and z ∈ clM+z(Cz) ∩ clM+z(B), then deleting A; the set Z of
new points is finite so M ′ is a represented matroid. Note that |Z| ≥ 2 because
M is 3-connected. Moreover, if we pick two such elements a, b ∈ Z, then
(M, {a, b}) is a patchwork in which A is a union of patches with attachments
{a, b}; by Lemma 4.7.1 any such patch is realizable so in fact, |Z| ≥ 3. No
triple of elements of X is in a circuit of M ′, for if such a circuit C contained
an element z ∈ Z then (C \ Z) ∪ Cz would be a circuit of M (if we chose Cz
to be minimal). Also, r(M ′) < r(M), so by our minimal choice of M there
is a strong patchwork (M ′, V ) for some set V . Then, because Z forms a line
in M ′ of size at least three, there is a single patch P of (M ′, V ) containing
all elements of Z except those that form one-element patches. This implies
that (M,V ) is also a strong patchwork, in which (P \ Z) ∪ A is a patch, a
contradiction. This proves (1).

It follows from Theorem 4.2.3 that there exists a realizable patchwork
(M,V ) with X ⊆ V . By (1), it has no 0-patches, it has no 1- or 2-patches
with more than one element, and its skeleton is 3-connected. Therefore, by
shrinking 3-patches as necessary we may assume that (M,V ) is strong.

We assume that there are two distinct maximal sets V,W containing X
such that (M,V ) and (M,W ) are strong patchworks. We choose an element
v ∈ W \ V . Since (M,W ) is a patchwork, there is no circuit of M+v containing
v and at least two elements of X. Our goal is to exploit the properties of the
patchwork (M,V ) to find such a circuit, thereby obtaining a contradiction.

As (M,V ) is realizable, each patch P contains a set C(P ) such that
(M/C(P ), V ) has the same skeleton as (M,V ) and every element of P \C(P ) is
in clM+V /C(P )(V ). We let C be the union of all such sets C(P ). Then (M/C, V )
is a framework with the same skeleton as (M,V ).
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(2) The fundamental circuit of v with respect to the basis V of M+V ∪{v}/C
contains at most one element of V .

We assume that v is in a circuit with at least two elements of V in
M+V ∪{v}/C. Then (M+v/C, V, v) is an extended framework represented by
an (F,F×)-labelled graph G in which | supp(xG)| ≥ 2. We claim that there is a
circuit of M+v containing v and at least two elements of X. This is true for
M+v if it is true in M+v/C or any minor thereof, so it suffices to show that G
has a minor G′ on vertex set X with | supp(xG′)| ≥ 2. Since (M,V ) is a strong

patchwork and (M/C, V ) has the same skeleton, G̃ is 3-connected. Therefore,
the required minor exists by Lemma 4.7.2, which proves (2).

(3) If P1 is a patch of (M,V ), C ′ = C \ C(P1), and v is not parallel to an
element of V in M+v/C

′, then v 6∈ clM+v/C′(P1).

Suppose that v ∈ clM+v/C′(P1) and v is not parallel to an attachment of P1.
If P1 is a 2-patch, then by (1), |P1| = 1, so C ′ = C and (3) follows from (2).
Thus P1 is a 3-patch. We denote by Z the set of attachments of P1. We extend
M by an element x ∈ clM+x(P1) so that v is parallel to x in M+{v,x}/C

′.
First, we assume that there is no circuit of M+V ∪{x}|(P1∪Z∪{x}) containing

at least three elements of Z∪{x}. By Theorem 4.2.3, there is some V ′ containing
Z ∪{x} such that (M |P1, V

′) is a realizable patchwork. By shrinking 3-patches
we may assume that it is (Z ∪ {x})-strong. Then (M,V ∪ V ′) is a realizable
patchwork; if it is strong then this contradicts the maximality of V . Thus
either it is possible to shrink a 3-patch or its skeleton is not 3-connected. But
(M,V ) is strong so any such 3-patch is contained in P1, and (M |P1, V

′) has no
3-patches that we can shrink. If the skeleton of (M,V ∪ V ′) is not 3-connected,
then it has a 2-separation separating some element of Z from the others; but
then the 3-patch P1 could have been shrunk in (M,V ).

We may now assume that there is a circuit Y ′ of M+V ∪{x}|(P1 ∪ Z ∪ {x})
containing three elements of Z ∪ {x}. As the elements of Z are vertices of the
patchwork (M,V ), Y ′ necessarily contains x. We note that Y ′ is still a circuit
in M+V ∪{x}/C

′, so Y = (Y ′ \ {x}) ∪ {v} is a circuit in M+V ∪{v}/C
′. We will

find a circuit of M+v containing v and at least two elements of X to obtain a
contradiction.

We let N be the minor of M+v obtained by contracting Y ∩ P1 then
deleting any elements of P1 that are not in clM+V /(C′∪(Y ∩P1))(V ), and N+V the
corresponding minor of M+V ∪{v}. In N+V , there is a circuit, Y \ P1, consisting
of v and two or three elements of Z. Then (N\v, V ) is a framework, and its
skeleton is obtained from the skeleton of (M,V ) by possibly deleting some
edges with ends in Z. Since v is contained in the circuit Y \ P1 of N+V
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along with two or three elements of V , (N, V, v) is an extended framework
represented by an (F,F×)-labelled graph G such that supp(xG) consists
of two or three elements of Z. Since (M,V ) has a 3-connected skeleton,
there are three disjoint paths joining Z to X in its skeleton and hence also
in that of (N\v, V ) as well as in G. We get a minor G′ of G by shifting
so that all edges of these paths have label 1 and contracting them, then
repeatedly contracting edges with an end not in X until there are none.
Then supp(xG′) ⊆ X, | supp(xG′)| ≥ 2, and the matroid M(G′) is a minor
of N . Hence there is a minor of N in which some two or three vertices
of X (those in supp(xG′)) form a circuit with v, a contradiction. This proves (3).

We let P1, . . . , Pk be a minimal collection of patches of (M,V ) such that
v ∈ clM+V ∪{v}(V ∪P1 ∪ · · · ∪Pk), and we let Zi denote the set of attachments of
each patch Pi. Since (M,V ) has no 2-patches that are disjoint from clM+V

(V ),
all the patches P1, . . . , Pk are 3-patches. Since M is vertically 4-connected,
Zi ⊂ clM+V

(Pi) for each i, so v ∈ clM+V ∪{v}(P1 ∪ · · · ∪ Pk ∪ V \ (Z1 ∪ · · · ∪Zk)).
If v ∈ clM+V ∪{v}(V ), then there is a circuit of M+V ∪{v} containing v and at

least two elements of V , and this is also a circuit of M+V ∪{v}/C, contradicting
(2); hence k ≥ 1. We can extend M+V ∪{v} by new points y1, . . . , yk such that
each yi lies in the closure of Pi and v lies in the closure of {y1, . . . , yk} ∪ V \
(Z1 ∪ · · ·Zk). No point yi is in the closure of Zi in M+V ∪{yi} because of our
minimal choice of the set of patches {P1, . . . , Pk}.

For each i = 1, . . . , k, we claim that there is a circuit Yi of M+V ∪{yi}
contained in Pi ∪ Zi ∪ {yi} that contains yi and at least two elements of Zi.
If not, then by Theorem 4.2.3, there is a patchwork (M |Pi, V ′) for some V ′

containing Zi ∪ {yi}, and we choose V ′ so that it is (Zi ∪ {yi})-strong; then
(M,V ∪ V ′) is a strong patchwork, and since yi is not parallel to any element
of Zi, this contradicts the maximality of V .

We let C ′ = C\P1. In M+V ∪{v,y1}/C
′, the point v is spanned by {y1}∪V \Z1,

and the circuit F contained in {v, y1}∪V \Z1 contains y1. However, by (3) v is
not parallel to y1 in this matroid, so |F∩V \Z1| ≥ 1. But if |F∩V \Z1| > 1, then
{v}∪ (F ∩V \Z1) is a circuit of size at least three in M+V ∪{v}/C, contradicting
(2). Hence |F ∩ V \ Z1| = 1, and we denote by w its unique element, so
{v, y1, w} is a circuit of M+V ∪{v}/C

′.
If y1 is not spanned by C(P1) in M+y1 , then there is a circuit of M+y1/C

consisting of y1 and a non-empty subset Z of Z1; then {v, w}∪Z is a circuit of
M+v/C, contradicting (2). So we may assume that y1 is spanned by C(P1) in
M+y1 . We choose any element y in the minimal subset of C(P1) that spans y1.
We define N = M+v/(C \ {y}), and N+y1 and N+V the corresponding minors
of M+{v,y1} and M+V ∪{v}. Then y1 is parallel to y in N+y1 , so {w, v, y} is a
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circuit of N+V . Since (N/y, V ) is a framework, r(N) = |V | + 1 and for any
element y′ of P1 \ C(P1) that is not in clN+V

(V ), (N/y′, V ) is a framework.
We let a, b, c be the three vertices in Z1. We say that an edge st in the

skeleton of a patchwork is realized if there is a one-element 2-patch with
attachments {s, t}. We have four cases, depending on how many of the three
edges ab, bc, and ca are realized in (N, V ).

(4) At most two of ab, bc, and ca are realized in (N, V ).

If all three of these edges are realized in (N, V ), we contract any one element
of P1 \ (clN+V

(V ) ∪ {y}) in N to get a minor N ′, and then y ∈ clN ′+V
(Z1), so

there is a circuit of N ′+V consisting of {v, w} and at least one element of
Z1. Then (N ′, V, v) is an extended framework with the same skeleton as
(M,V ), and is represented by a 3-connected (F,F×)-labelled graph G with
| supp(xG)| ≥ 2. Then by Lemma 4.7.2 there is a minor G′ of G on vertex
set X with | supp(xG′)| ≥ 2, so M(G′) has a circuit containing v and at least
two elements of X. Then N = M(G) also has such a circuit, as does M+v, a
contradiction.

(5) At least one of ab, bc, and ca is realized in (N, V ).

Suppose none of the three edges ab, bc, ca are realized in (N, V ). Then
there are three elements t1, t2, t3 of N such that {y, t1, a, b}, {y, t2, b, c} and
{y, t3, c, a} are circuits of N+V . We let N ′ = N/t1 and N ′+V = N+V /t1. Then
{y, a, b} is a circuit of N ′+V . Also, {y, t2, b, c} is a circuit, and thus so is {t2, c, a}
because the definition of a patchwork means that {t2, a, b, c} is not a circuit.
Simiarly, {t3, b, c} is a circuit of N ′+V . Therefore, all three edges ab, bc and
ca are realized in (N ′, V ), so it has the same skeleton as (M,V ) and the
extended framework (N ′, V, v) is represented by an (F,F×)-labelled graph G
with supp(xG) = {a, b, w}. As before, Lemma 4.7.2 implies that N ′ = M(G)
has a circuit containing v and at least two elements of X, hence M+v does too,
a contradiction.

(6) Exactly one of ab, bc, and ca is realized in (N, V ).

If not, then by (4) and (5), exactly one of ab, bc, and ca is not realized in
(N, V ); say ab is not. Then there is a four-element circuit of N+V containing
{a, b, y}; call its fourth element t. We let N ′ = N/t and N ′+V = N+V /t, so
{a, b, y} is a circuit of N ′+V and {w, v, a, b} is a also circuit. Then (N ′, V, v)
is an extended framework with the same skeleton as (M,V ) and it is
represented by an (F,F×)-labelled graph G with supp(xG) = {w, a, b}. As
before, Lemma 4.7.2 implies that N ′ = M(G) has a circuit containing v and
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at least two elements of X, hence so does M+v, a contradiction. This proves (6).

We may assume that ca is the one of {ab, bc, ca} that is realized in (N, V ).
There are two elements t1 and t2 of N such that {y, t1, a, b} and {y, t2, b, c}
are circuits of N+V . We let N ′ = N/t1 and N ′+V = N+V /t1, so {y, a, b}
is a circuit in N ′+V and ab is realized in (N ′, V ). The skeleton of (N ′, V )
is obtained from the skeleton of (M,V ) by possibly deleting bc, so it is 2-
connected. The extended framework (N ′, V, v) is represented by an (F,F×)-
labelled graph G with supp(xG) = {w, a, b}. If G has no 2-separation (A,B)
with {w, a, b} ⊆ V (A) and X ⊆ V (B), then it follows from Lemma 4.7.2
that N ′ = M(G) and hence M+v has a circuit containing v and at least two
elements of X, a contradiction. Otherwise, such a separation (A,B) exists.
Then b ∈ V (A) \ V (B) and c ∈ V (B) \ V (A), so a ∈ V (A)∩ V (B). We denote

by d the other element of V (A)∩V (B). Since G̃ is obtained from a 3-connected
graph by deleting bc, there is a path R in A joining w and d that is disjoint
from {a, b, c}. Either w = d, or E(R) ∪ {w, d} is a circuit of N+V , and since
the path R is disjoint from Z1 = {a, b, c}, E(R) ∪ {w, d} is skew to P1 ∪ Z1 in
N+V . Also, {d, a, c} is a 3-vertex cutset in the skeleton of (M,V ), so it has
a 3-separation (A′, B′) with {w, d, a, b} ⊆ V (A′) and {c} ∪X ⊆ V (B′). This
corresponds to a 4-separation (A′M/C′ , B

′
M/C′) in the matroid M/C ′ (where

A′M/C′ is the union of all patches with all attachments in V (A′)).

Recall that y1 is a point in the span of P1 in M+V /C
′ such that {y1, v, w}

is a circuit of M+V ∪{y1}/C
′. By Tutte’s Linking Theorem there is a set Y ⊆ P1

skew to both {a, c} and y1 such that y1 ∈ clM+V ∪{y1}/(C
′∪Y )({a, c}). We let N ′

be the minor of M+v/C
′ obtained by contracting E(R) and Y , then deleting all

elements of B′M/C′ that are not in clM/(C′∪E(R)∪Y )({d, a, c}), and let N ′+V ∪{y1}
the corresponding minor of M+V ∪{v,y1}/C

′. Then y1 ∈ clN ′
+V ∪{y1}

({a, c}) and

{v, y1, d} is a circuit of N ′+V ∪{y1}, so there is a circuit of N ′+V that contains

{v, d} and at least one of a and c. Therefore (N ′, V (B), v) is an extended
framework represented by an (F,F×)-labelled graph G′ obtained from B by
possibly adding edges between d, a, and c, and supp(xG′) consists of d and one
or both of a and c. Since there are three disjoint paths joining {d, a, c} to X in
the skeleton of (M,V ), there are also such paths in B and hence also in G′. As
before, it follows from Lemma 4.7.2 that N ′ = M(G′) has a circuit containing
v and at least two elements of X, and hence so does M+v.
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4.8 Tangles

When H and G are graphs, an H-model in G is a collection of disjoint trees
{Tv : v ∈ V (H)} and distinct edges {im(e) : e ∈ E(H)} such that for each
e ∈ E(H) with ends u and v, im(e) has ends in Tu and Tv in G (if e is a
loop incident with u, im(e) has ends only in Tu). The trees Tv are called
vertex-images of the model. We observe that G has an H-model if and only
if G has an H-minor — the trees of the model contain the edges we contract
to get the minor. When H itself is a minor of G, we will always choose each
im(e) to be equal to e.

Recall that a separation of a graph G is an ordered pair of subgraphs
(G1, G2) such that E(G1) ∪ E(G2) = E(G) and E(G1) ∩ E(G2) = ∅, and that
its order ord(G1, G2) is the size of its vertex boundary V (G1) ∩ V (G2).

The order function of separations is submodular : if (A,B) and (C,D) are
separations of a graph G, then ord(A ∩ B,C ∪ D) + ord(A ∪ B,C ∩ D) ≤
ord(A,B) + ord(C,D).

A tangle in G of order θ is a collection T of separations of G of order less
than θ, such that

(T1) for each separation (A,B) of order less than θ, exactly one of (A,B) and
(B,A) is in T ,

(T2) if (A1, B1), (A2, B2), (A3, B3) ∈ T then A1 ∪ A2 ∪ A3 6= G, and

(T3) if (A,B) ∈ T then V (A) 6= V (G).

Tangles were introduced by Robertson and Seymour [42]. For a tangle T
of order θ, we define the T -rank of a set X ⊆ V (G) to be

rT (X) = min{ord(A,B) : (A,B) ∈ T , X ⊆ V (A)},

when X ⊆ V (A) for some (A,B) ∈ T , and rT (X) = θ otherwise. We say that
X is T -independent when its T -rank is |X|. The submodularity of the order
function implies that whenever (A,B) ∈ T , V (A) ∩ V (B) is T -independent
if and only if there is no separation (A′, B′) ∈ T of order less than ord(A,B)
with A contained in A′. If there is no (A′, B′) ∈ T of order at most ord(A,B)
with A contained in A′, then we call (A,B) ∈ T T -closed. These definitions
are motivated by the fact that (V (G), rT ) is a matroid [42].

Robertson and Seymour showed that the clique Kn has a tangle of order
d2n/3e [42]. Whenever H is a clique we let TH denote this tangle. A clique
has no vertex-cutsets, so for any (A,B) ∈ TH , V (B) = V (H) by (T3).

Let H be a minor of a graph G and T a tangle of H of order θ. Let T ′ be
the set of separations (A,B) of G of order less than θ such that E(A)∩E(H) =
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E(A′) for some (A′, B′) ∈ T . Then T ′ is a tangle of G of order θ and we call
it the tangle induced by T . The truncation of a tangle T ′′ to order θ is the
subset of T ′′ of separations of order less than θ. Whenever T ′′ is a tangle of G
of which T ′ is a truncation, we say that T ′′ controls T . When H is a clique
and T ′′ controls the tangle TH , then it controls H.

When H is a Kn-minor of G, T is a tangle of G that controls TH , and
(A,B) ∈ T , then there is no vertex-image Tv of the H-model in G with
V (Tv) ⊆ V (A) \ V (B). If there were, then every edge of H incident with v
would be in E(A) and hence contained in E(A′) for some (A′, B′) ∈ TH . But
then V (H) = V (A′), contradicting (T3).

When G is a group-labelled graph, we define a tangle in G to be a tangle
in its underlying graph G̃. The next fact is that when a tangle controls a large
clique minor, then for any separation (A,B) in the tangle we can find a clique
minor of B with V (A)∩V (B) in its vertex set. The version of Proposition 4.8.1
without group-labels is a standard fact about tangles, and this extension to
group-labelled graphs introduces almost no changes to the proof. We present a
proof using the argument of [27, Lemma 4.5.3].

Proposition 4.8.1. Let Γ be a group, β ∈ Γ, G a Γ-labelled graph, and H a
minor of G such that H̃ ∼= Kn and γH(e) = β for all e ∈ E(H). Let t be the
order of TH , T the tangle of of G induced by TH , and (A,B) ∈ T such that
V (A)∩V (B) is T -independent. Then B has a minor whose vertex set contains
V (A) ∩ V (B) that is an oriented copy of Kt with all edges labelled β.

Proof. We choose a counterexample with |V (G)| minimum. We let X =
V (A) ∩ V (B). We choose (A′, B′) ∈ T such that ord(A′, B′) = t and A is
contained in A′. Since X is T -independent, there is a collection P of ord(A,B)
disjoint paths joining X to V (A′) ∩ V (B′). Hence if B′ has a minor on vertex
set V (A′) ∩ V (B′) that is a copy of Kt with all edges labelled β, then there is
such a minor of B whose vertex set contains X: we obtain it by contracting
the edges of each path in P , after shifting as necessary (note that we can make
all edges in these paths have label 1 without shifting at the ends of the paths
in V (A′) ∩ V (B′)). Therefore, we may assume that (A,B) has order t, and
that (A,B) is T -closed.

There is a sequence of shiftings, contractions and deletions on G that results
in the minor H; by doing the shiftings first we may assume that G has an
H-model with vertex-images {Tv : v ∈ V (H)} such that for each edge e of H,
γG(e) = γH(e) = β.

(1) There is no v ∈ V (H) such that |V (Tv)| > 1 and V (Tv) 6⊆ X.
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Suppose there is v ∈ V (H) so that |V (Tv)| > 1 and V (Tv) 6⊆ X. There
exists e ∈ E(Tv) with an end outside X. The graph G/e has H as a minor;
we let T ′ be the tangle of G/e induced by H. Then, depending on whether
e ∈ E(A) or e ∈ E(B), (A/e,B) or (A,B/e) is a separation of G/e in
T ′ that has vertex-boundary X. If X is T ′-independent, then as G is a
minimum counterexample the required minor exists in G/e and hence also
in G. So we may assume that X is not T ′-independent and there is a
separation (C ′, D′) ∈ T ′ of order less than t = |X| with X ⊆ V (C ′). Since
X is T -independent, there is no such separation in G, so by uncontracting
e we get a separation (C,D) ∈ T of order exactly t with X ⊆ V (C). Since
e ∈ E(C) \ E(A), A does not contain C. Hence there is a separation
(A ∪ C,B ∩D) distinct from (A,B). Since (A,B) is T -closed, it follows that
(A ∪ C,B ∩D) 6∈ T . But nor is (B ∩D,A ∪ C) in T , for then the fact that
(B ∩D)∪A∪C = G contradicts (T2). Therefore, ord(A∪C,B ∩D) > t. But
then ord(A∩C,B ∪D) < t by submodularity, contradicting the fact that X is
T -independent and proving (1).

We may therefore assume that for all v ∈ V (H), either V (Tv) ⊆ X or
|V (Tv)| = 1. This implies that there are at most |X|/2 ≤ n/3 vertex-images Tv
with |V (Tv)| > 1, so there are at least 2n/3 ≥ |X| vertex-images T1, . . . , Tk that
consist of a single vertex, and these are all contained in B since no vertex-image
can be disjoint from B. We let Y = V (T1) ∪ · · · ∪ V (Tk). Then G[Y ], after
possibly deleting parallel edges, is a clique whose edges all have label β. There
exists a collection P of |X| disjoint paths joining Y to X, for if not then by
Menger’s Theorem there is a separation (C,D) of G of order less than |X| with
X ⊆ V (C) and a vertex-image of the H-model contained in D. This means
(C,D) ∈ T , contradicting the fact that X is T -independent. For each path
P ∈ P, we can shift at the vertices of V (P ) \ Y so that all edges of P have
label 1. This does not affect the labels in the graph G[Y ]. Then we contract
all edges in each P ∈ P , thereby obtaining the required minor with vertex set
X.

Recall that a separation (A,B) in the skeleton of a patchwork (M,V )
corresponds to a partition (AM , BM) of E(M) where AM is the union of all
patches whose attachments are contained in V (A). The next proposition
concerns ‘gluing together’ certain patchwork representations of M |AM and
M |BM .

Proposition 4.8.2. Let M be a represented matroid and e ∈ E(M). Let
(M\e, V ) be a realizable patchwork whose skeleton H is 3-connected and has a
tangle T . Let (A,B) ∈ T be a T -closed separation such that V (A) contains the



122 CHAPTER 4. DOWLING GEOMETRIES

attachments of e in (M,V ). If (M |(AM\e ∪ {e}), V ′) is a realizable patchwork
where V ′ contains V (A) ∩ V (B), then there is a set V ′′ containing V (B) so
that (M,V ′′) is a realizable patchwork with a 3-connected skeleton.

Proof. We recall that (AM\e, BM\e) is the separation of M\e corresponding
to the separation (A,B). Since the attachments of e in (M,V ) are in V (A),
(M |BM\e, V (B)) is a realizable patchwork.

We set V ′′ = V (B)∪ V ′, so (M,V ′′) is a realizable patchwork. Let G be its
skeleton. Note that two distinct components U1, U2 of G− V (B) correspond
to distinct bridges of (M |C, V (B)), so V (U1) and V (U2) cannot be joined by
an edge of H, the skeleton of (M\e, V ). Suppose that G is not 3-connected
and let X be a vertex-cutset of size at most two. Since no edge of H joins
vertices in different components of G− V (B), X cannot be contained in V (B)
or it would also be a vertex-cutset of H. If X is contained in V ′, then there is
a separation (A′, B′) of G with vertex-boundary X such that B′ contains B,
and we can replace V ′′ with V (B′) to get a realizable patchwork (M,V (B′)).
Hence we may assume that X consists of one vertex in V ′ \ V (B) and another
in V (B) \ V ′.

Let a be the vertex of X in V ′ \ V (B) and b the one in V (B) \ V ′. Then G
has a separation (A′, B′) of order two with vertex boundary {a, b}.

Note that neither V (A′) nor V (B′) can contain V (A) ∩ V (B), otherwise
a or b would be a cut-vertex. But now {b} ∪ (V (A) ∩ V (B) ∩ V (B′)) and
{b} ∪ (V (A) ∩ V (B) ∩ V (A′)) are both vertex-boundaries of separations of H.
Let (U1,W1) and (U2,W2) be separations of H with these two sets as vertex
boundaries such that V (A) ⊆ V (U1), V (A) ⊆ V (U2), and W1 and W2 are
edge-maximal. They both have order at most ord(A,B) because neither V (B′)
nor V (A′) contains V (A)∩V (B). Then W1∪W2∪A = H, so by (T2), (W1, U1)
and (W2, U2) are not both in T , hence one of (U1,W1) and (U2,W2) is in T .
But U1 and U2 both contain A as well as b, contradicting the fact that (A,B)
is T -closed.

4.9 Matroids with a Dowling geometry minor

In this section we complete the proof of Theorem 4.2.2. First, we briefly
outline the proof. Given a represented matroid M that has a large Dowling
geometry minor and excludes a given line minor, we want to either express M
as a patchwork (M,V ) of which no patch contains a cocircuit of the Dowling
geometry, or find a minor N that extends a smaller Dowling geometry by a single
element not in the span of any pair of joints. We take an element e ∈ E(M)
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such that M\e also has the Dowling geometry minor (the case where no such
e exists was done in Section 4.5). By induction we may assume that (M\e, V )
is a patchwork for some set V , but (M,V ) is not a patchwork. The skeleton
of (M\e, V ) has a tangle induced by the Dowling geometry minor. There are
two cases, depending on the set X of attachments of e in (M,V ). The first is
that this tangle contains a separation (A,B) with X ⊆ V (A). Theorem 4.7.3
implies that V is essentially the only possible vertex set containing V (B)
with which M\e forms a patchwork. Therefore, we cannot replace V (A) with
another set of vertices V ′ such that (M,V (B) ∪ V ′) is a patchwork. Then
we use Theorem 4.2.3 to get a circuit containing at least three elements of
V (A) ∩ V (B), and we use this to get the required minor N . Otherwise, |X| is
large. We repeatedly contract sets skew to V in M+V to reduce the number of
patches of (M\e, V ) that are not spanned by V . Either we eventually get a
separation (A,B) in the tangle of the patchwork’s skeleton with X ⊆ V (A),
and we apply the earlier argument, or we lose all such patches and obtain a
framework, which reduces to a problem on vertex- and edge-labelled graphs.

Before the main proof we have two short results.

Proposition 4.9.1. For any field F, let Gn be an F×-labelled graph such that
G̃n = Kn and TGn is a tangle in G̃n. Let G be a 3-connected (F,F×)-labelled
graph with Gn as a minor such that supp(xG) has rank at least 7 in the tangle

TG of G̃ induced by TGn. Then G has a 3-connected minor G′ which has Gn as
a minor, and either

(i) |V (G′)| = n and | supp(xG′)| ≥ 3, or

(ii) the rank of supp(xG′) in the tangle of G′ induced by TGn is in {7, 8, 9, 10}.

Proof. If |V (G)| = n then (i) holds with G′ = G. Otherwise we proceed by
induction on |V (G)|. We may assume that supp(xG) has rank at least 11 in TG,
otherwise (ii) holds with G′ = G. Note that any minor of a connected labelled
graph with fewer vertices can be obtained with at least one edge contraction:
otherwise some edge deletion creates an isolated vertex, and this edge can be
contracted instead, after shifting at that vertex if necessary. Therefore, since
|V (G)| > |V (Gn)|, there is an edge e ∈ E(G) such that (after shifting so that
γG(e) = 1) G/e has Gn as a minor.

Let u and v be the ends of e and let X = supp(xG) \ {u, v}. Then
rTG(X) ≥ rTG(supp(xG)) − 2 ≥ 9. Let TG/e be the tangle of G/e induced by
TGn . Then rTG/e

(X) ≥ rTG(X)− 1 so rTG/e
(supp(xG)) ≥ rTG/e

(X) ≥ 8. If G/e
is 3-connected, then we are done by induction, so we may assume that G/e is
not 3-connected.
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We let u denote the vertex of G/e formed by identifying u and v in con-
tracting e. Let (A,B) ∈ TG/e be a separation of order two and z the vertex of
V (A) ∩ V (B) other than u. If V (A) \ V (B) is disjoint from supp(xG/e) then
we repeatedly contract edges with an end in V (A) \ V (B) until there are none.
This does not change the rank of the set of labelled vertices. Otherwise, there
is a minimal path of A joining z to a vertex in supp(xG/e). We contract the
edges of this path, after shifting if required at vertices other than z. We then
repeatedly contract edges joining u to vertices of V (A) \ V (B) as long as there
are any. Let G′ be the graph obtained from G/e by doing these contractions
for every such separation (A,B) ∈ TG/e, and TG′ the tangle of G′ induced by
TGn . Now for every separation (A,B) ∈ TG/e of order two, if V (A) \ V (B)
contains a vertex of supp(xG/e) then the vertex of V (A)∩V (B) other than u is
in supp(xG′). Therefore, we have rTG′ (supp(xG′)) ≥ rTG/e

(supp(xG/e))− 1 ≥ 7.
Moreover, G′ is 3-connected, so we are done by induction.

Let F be a field, M an F-represented matroid, and N a minor of M that
is a frame matroid over F. When (M,V ) is a patchwork, we say that (M,V )
respects N if there is a minor N ′ of M such that (N ′, V ) is a framework and
N is a minor of N ′. In this case there are F×-labelled graphs G and H such
that M(G) = N ′ and M(H) = N and H is a minor of G. The following is a
useful equivalent characterization.

Proposition 4.9.2. If (M,V ) is a patchwork and N is a minor of M of rank
at least four with no non-spanning cocircuits, then (M,V ) respects N if and
only if no patch of (M,V ) contains a cocircuit of N .

Proof. Suppose that (M,V ) respects N . Then if a patch P of (M,V ) contains
a cocircuit X of N , rN(X) ≤ 3, and X does not span N , a contradiction.

Suppose that no patch of (M,V ) contains a cocircuit of N . We let C be a
maximal subset of E(M) such that M/C has N as a restriction, and we let C ′

be a maximal subset of C skew to V in M+V . Then M/C ′ has N as a minor,
and (M/C ′, V ) is a patchwork. No patch of (M/C ′, V ) contains a cocircuit of
N , as every such patch is a subset of a patch of (M,V ). Let P be a patch of
(M/C ′, V ) that is not spanned by V , and let D = P \ E(N). Then M/C ′\D
has N as a minor, since each element of D is skew to V yet is not contained in
C ′. If P ∩ E(N) is non-empty, then it contains a cocircuit of N because no
element of P is spanned by E(M/C ′) \ P . Therefore, P ∩ E(N) is empty for
every patch P that is not spanned by V . Hence, we can delete all such patches
from M/C ′ to obtain a minor M ′ of M such that (M ′, V ) is a framework and
M ′ has N as a minor.
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Recall that when (M,V ) is a patchwork and (A,B) is a separation of its
skeleton, there is a corresponding partition of E(M) that we denote (AM , BM ):
AM consists of the union of all patches whose attachments are contained in V (A)
and BM consists of the union of all other patches (those with all attachments
in V (B) but not all in V (A) ∩ V (B)).

We now prove our main theorem, Theorem 4.2.2, which is restated below.

Theorem 4.2.2. For any finite group Γ and integers m, ` ≥ 3, there is an
integer n such that if F is a field and M is an F-represented matroid with
DG(n,Γ) as a minor, then either

(i) there is a patchwork (M,V ) of which no patch contains a cocircuit of
DG(n,Γ),

(ii) M has a U2,`-minor, or

(iii) M has a minor N with a non-coloop element e such that N\e ∼= DG(m,Γ)
but e is not in the closure of any pair of joints of N\e.

Proof. Recall that if DG(n,Γ) is F-representable then Γ is isomorphic to a
subgroup of F×. All finite subgroups of the multiplicative group of a field
are cyclic (see [46, Section 1.2]), so we can choose a generator β of Γ. For
each integer n, we define Gn to be the set of Γ-labelled graphs Gn such that
G̃n
∼= Kn and γGn(e) = β for all e ∈ E(Gn) (these are the graphs H of Lemmas

4.5.3 and 4.5.4). We will prove that there is an integer n such that if M is an
F-represented matroid with no U2,`-minor and for some Gn ∈ G,

• if |Γ| > 1, M has M(Gn) as a minor, and

• if |Γ| = 1, M has M(Kn,n) as a minor (which in turn has M(Gn) as a
minor),

then either

(a) there is a patchwork (M,V ) that respects M(Gn), or

(b) for some Gk ∈ Gk, M has a minor N with an element e such that N\e ∼=
M(Gk) and N is not represented by a group-labelled graph with Gk as a
subgraph.

It is sufficient to prove this by the following claim along with the fact that
DG(n,Γ) has an M(Gn)-restriction and for large enough n, M(Gn) has any
DG(n′,Γ)-minor, by Lemma 4.5.3.
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(1) If (b) holds with k = 3 + n4.5.3(m+1,Γ) then (iii) holds.

We may assume that m ≥ 6; this is because if (iii) holds with any m > 3,
then for any joint f of the Dowling geometry N\e, si(N/f\e) ∼= DG(m− 1,Γ),
and e is not in the closure of any two joints of si(N/f) unless e is in the closure
in N of a triple of joints of N\e that includes f . But when m > 3, we can
choose f so that this does not occur.

As N\e is represented by Gk, N is represented by a (F,Γ)-labelled graph
G obtained from Gk by adding vertex-labels xG, and | supp(xG)| ≥ 3. It
suffices to show that G has a minor G′ with | supp(xG′)| ≥ 3 whose underlying
Γ-labelled graph represents DG(m,Γ). We let Z ⊆ supp(xG) be a set of three
vertices, and for each z ∈ Z, we pick a set Nz of two neighbours of z such that
the three sets Nz are disjoint. We let X ⊆ V (G) \ Z be a set of m vertices (or
m + 1 if |Γ| = 1) that contains each of the three sets Nz. By Lemma 4.5.3,
Gk −Z has a minor representing DG(m,Γ) on vertex set X. We note that this
minor can be obtained without deleting vertices, as follows. First, we do all
the contractions, so we have a connected minor J with a subgraph representing
DG(m,Γ). If this minor J has a vertex v not in that subgraph, we pick any
edge e incident with v, shift at v so that e has label 1, then contract e. We
repeat as long as there are such vertices, then do any required edge-deletions.
We do the contractions and deletions necessary to obtain this minor of Gk − Z
on the (F,Γ)-labelled graph G itself; let H be the resulting minor. We have
Z ⊆ supp(xH). For each z ∈ Z, we pick one of the edges f joining z to Nz,
and if possible we do so such that the end of f in Nz is not in supp(xH). Then
we shift at z so that f has label 1 and contract f . We obtain a minor G′

representing DG(m,Γ) in which | supp(xG′)| ≥ 3, as required. This proves (1).

We set n = max{3
2
k + 26, n4.5.3(k,Γ), n4.5.4(`, k,Γ)}. Our proof is by in-

duction on r∗(M). First, suppose that |Γ| > 1 and r∗(M) = r∗(M(Gn)) or
|Γ| = 1 and r∗(M) = r∗(M(Kn,n)). As n ≥ n4.5.4(`, k,Γ), we have already
done this case in Lemma 4.5.4. We may therefore assume that, if |Γ| > 1,
r∗(M) > r∗(M(Gn)), and if |Γ| = 1, r∗(M) > r∗(M(Kn,n)). But M(Kn,n) has
M(Gn) as a minor, so in both cases we have r∗(M) > r∗(M(Gn)) and there is
an element e ∈ E(M) such that M\e has M(Gn) as a minor.

In addition, we can assume that M is 3-connected: if not, then it has a
proper 3-connected minor M ′ with M(Gn) as a minor such that if (M ′, V ′)
is a patchwork for some V ′ then (M,V ′) is also a patchwork with the same
skeleton.

If M\e satisfies (b) then so does M , so by induction we may assume that
there is a patchwork (M\e, V ) that respects the minor M(Gn).
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(2) We can choose V so that (M\e, V ) is realizable and has a 3-connected
skeleton.

Since there exists some V such that (M\e, V ) is a patchwork, we can
apply Theorem 4.2.3 with X = V and conclude that we can extend V to a
set V ′ so that (M\e, V ′) is realizable. Thus we may assume that (M\e, V )
is realizable. Suppose that the skeleton of (M\e, V ) has a separation (A,B)
of order t, t ≤ 2, with neither V (A) nor V (B) containing the other. We
have the corresponding (≤ t + 1)-separation (AM , BM) of M ; since M is
3-connected, t = 2. Since M(Gn) has no vertical 3-separations, at most one
of AM and BM contains a cocircuit of M(Gn), so we may assume that AM
does not. Then (M\e, V (B)) is a patchwork in which AM is the union of all
patches with attachments in V (A) ∩ V (B), and all other patches are also
patches of (M\e, V ). Thus no patch contains a cocircuit of M(Gn) so by
Proposition 4.9.2, (M\e, V (B)) respects the minor M(Gn). Also, it has no
3-patches that were not already patches of (M\e, V ), which was realizable, so
it is also realizable. We can repeat this process of shrinking the set V as long
as (M\e, V ) has a 2-separation, until we obtain a 3-connected skeleton. This
proves (2).

We choose V to be maximal such that (M\e, V ) is strong and respects
M(Gn). If (M,V ) is a patchwork then we are done; we will assume that (M,V )
is not a patchwork.

We let X be the set of attachments of the bridge of (M,V ) containing e. If
|X| ≤ 2 then (M,V ) is a patchwork; so we may assume that |X| ≥ 3. Since

the patchwork (M\e, V ) respects M(Gn), its skeleton has G̃n as a minor. We

let TGn be the tangle of order d2n/3e in G̃n and T the tangle in the skeleton
of (M\e, V ) induced by TGn . Whenever M ′ is a minor of M\e with M(Gn) as
a minor and, for some V ′, (M ′, V ′) is a patchwork that respects M(Gn), we
denote by T(M ′,V ′) the tangle of the skeleton of (M ′, V ′) induced by TGn .

(3) If rT (X) ≤ 13 then (a) or (b) holds.

We choose a T -closed separation (A,B) ∈ T with X ⊆ V (A), so V (A) ∩
V (B) is independent in T . We distinguish two cases: either there is no circuit
Y of M+V such that Y ⊆ AM\e∪{e}∪V and Y contains at least three elements
of V (A) ∩ V (B), or there is such a circuit.

If there is no such circuit Y , then by Theorem 4.2.3, (M |(AM\e ∪ {e}), V ′)
is a patchwork for some set V ′ that contains V (A) ∩ V (B). This means that
(M,V (B)∪V ′) is a patchwork. Any patch of it is either also a patch of (M\e, V ),
or is contained in AM\e ∪ {e}. As (AM\e ∪ {e}, BM) is a (≤ 14)-separation of
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M , AM\e contains no cocircuit of M(Gn). Therefore, by Proposition 4.9.2, the
patchwork (M,V (B) ∪ V ′) respects M(Gn) so (a) holds.

Otherwise, such a circuit Y exists. We recall that each patch P of
(M\e, V ) contains a set C(P ) such that, when C is the union of the sets
C(P ), (M\e/C, V ) is a framework and M\e/C has M(Gn) as a minor. When
we contract a set C(P ) in M\e for a patch P with all attachments in V (B), the
skeleton of the resulting patchwork (M\e/C(P ), V ) contains A as a subgraph,
so the rank of X in T(M\e/C(P ),V ) is at most its rank in T . We let M ′ be
the minor of M\e obtained by contracting as many sets C(P ) as possible for
patches P with all attachments in V (B), so that X has the same rank in T(M ′,V )

as it does in T .

Let (A′, B′) ∈ T(M ′,V ) be a T(M ′,V )-closed separation such that X ⊆ V (A′);
it has order ord(A,B). Then A is contained in A′ since A remains a subgraph
of the skeleton of (M ′, V ). Suppose that (M ′, V ) has a 3-patch P with all
attachments in V (B′). Then X has rank less than ord(A′, B′) in (M ′/C(P ), V ),
so there is a separation (S, T ) ∈ T(M ′/C(P ),V ) of order less than ord(A′, B′) with
A′ contained in S. But the skeleton of (M ′/C(P ), V ) contains all edges of the
skeleton of (M ′, V ) except possibly those between attachments of P . So P has
an attachment in V (S)\V (T ) and an attachment in V (T )\V (S). Moreover, one
of these sets contains only one attachment of P , so ord(S, T ) = ord(A′, B′)− 1.
If P has a unique attachment w in V (T ) \ V (S), we let S ′ be the graph
obtained from S by adding the vertex w and the edges between attachments
of P . We have a separation (S ′, T ) ∈ T(M ′,V ) of order ord(A′, B′), and since
(A′, B′) is T(M ′,V )-closed, S ′ = A′, which implies that w ∈ V (A′) and the other
attachments of P are in V (A′) \ V (B′), a contradiction. Otherwise, P has a
unique attachment z in V (S) \ V (T ), and we let T ′ be the graph obtained
from T by adding the vertex z and the edges between attachments of P . We
have a separation (S, T ′) ∈ T(M ′,V ) of order ord(A′, B′), and since (A′, B′) is
T(M ′,V )-closed, S = A′, which implies that z ∈ V (A′) and that z has just two
neighbours in V (B′) \ V (A′). Therefore, every 3-patch of (M ′, V ) with all
attachments in V (B′) has an attachment in V (A′) ∩ V (B′). Moreover, if there
is such a 3-patch P with an attachment z ∈ V (A′)∩ V (B′), then the other two
attachments of P are the only neighbours of z in V (B′) \ V (A′). Thus there
is a separation (A′′, B′′) ∈ T(M ′,V ) of order at most 2 ord(A′, B′) ≤ 26 so that
A′′ contains A′ and there are no 3-patches of (M ′, V ) with all attachments in
V (B′′).

Recall that M\e/C is represented by a graph G with Gn as a minor, and

the simplification of G̃ is a subgraph of the skeleton of (M ′, V ). There exist
at most ord(A′′, B′′) ≤ 26 vertex-images of the Gn-model of G that contain
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any vertex of A′′. Thus there is an induced subgraph G′ of Gn with at least
n − 26 vertices that is a minor of G[V (B′′)]. The tangle T(M ′,V ) controls G̃′.
Since V (A′) ∩ V (B′) is independent in this tangle and n ≥ 3/2k + 26, by
Proposition 4.8.1 there is a graph Gk ∈ Gk such that G[V (B′′)] has a Gk-minor
with vertex set V (A′′)∩ V (B′′). This represents a minor of M ′|B′′M ′ isomorphic
to M(Gk). Recall that (A′′, B′′) induces a separation (A′′M\e, B

′′
M\e) of M\e

and so (A′′M\e ∪ {e}, B′′M\e) is a separation of M of the same order. Thus to

show that (b) holds, it suffices to show that M+V |(A′′M\e ∪ {e} ∪ V (A′′ ∩B′′))
has a circuit containing at least three elements of V (A′′ ∩ B′′). Since every
patch of (M\e, V ) is realizable, there is a set C ′ contained in the union of the
3-patches of (M ′, V ) with attachments in V (B) ∩ V (A′′) such that (M ′/C ′, V )
has the same skeleton as (M ′, V ) and has no 3-patches with attachments in
V (B). Then the skeleton of (M ′/C ′, V ) has a set P of disjoint paths joining
each vertex of V (A∩B) to a vertex of V (A′′∩B′′). Recall that Y is a circuit of
M+V such that Y ⊆ AM\e ∪ {e} ∪ V and Y contains at least three elements of
V (A∩B). We let P ′ be the subset of P consisting of the paths with an end in
Y . Then the union of Y \V (A∩B) with the edges of paths in P ′ and their other
ends in V (A′′ ∩B′′) is a circuit of (M+V /C

′)|((A′′M\e \C ′) ∪ {e} ∪ V (A′′ ∩B′′))
that contains at least three elements of V (A′′∩B′′), as required. This proves (3).

We recall that for each patch P of (M\e, V ), there is a set C(P ) such that
(M\e/C(P ), V ) is a patchwork and M\e/C(P ) has M(Gn) as a minor. We
claim that for each P , the skeleton of (M\e/C(P ), V ) is obtained from the
skeleton of (M\e, V ) by deleting at most one edge, whose ends are attachments
of P . This is clear if P is a 2-patch. If it is a 3-patch, then suppose the skeleton
of (M\e/C(P ), V ) does not contain some two edges of the skeleton of (M\e, V ):
these will be edges joining an attachment v of P to its two other attachments, u
and w. Then in M+V /C(P ) every element of P \C(P ) lies either in the closure
of {u,w} or is parallel to v. But since P is not a 2-patch, there is at least one
such element, f , parallel to v. So uM+V

({v, f}, C(P )) = 1 and we can extend
the represented matroid M by an element x that lies in the closures of {v, f}
and C(P ). Then (M\e, V ∪ {x}) is a patchwork, in which P \ clM+V

({v, f})
is a patch with attachments {x, u, w}, and this patch is realizable because P
is realizable in (M\e, V ). If this patchwork has a 3-connected skeleton, that
contradicts our maximal choice of V . If not, then its unique 2-vertex-cutset
consists of x and another neighbour of v, but then (M\e, (V \ {v}) ∪ {x}) is a
patchwork obtained by shrinking the 3-patch P , contradicting the fact that
(M\e, V ) is strong. Thus the skeleton of (M\e/C(P ), V ) is obtained from
that of (M\e, V ) by deleting at most one edge. Moreover, the skeleton of
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(M\e/C(P ), V ) is 2-connected and any 2-vertex cutset in it is contained in a
3-vertex-cutset of the skeleton of (M\e, V ).

We recall that X is the set of attachments of the bridge of (M,V ) containing
e, and by (3), we may assume that |X| > 13 and that the skeleton of (M\e, V )
has no separation (A,B) ∈ T of order at most thirteen with X ⊆ V (A).

When M ′ = M/C(P ) for some patch P , the set of attachments X ′ of e in
(M ′, V ) is contained in X, and contains all attachments of e in (M,V ) that
are not attachments of P . Thus 10 < |X| − 3 ≤ |X ′| ≤ |X|. The set X ′

has rank at least 9 in T(M ′\e,V ), otherwise it would have rank less than ten in
T(M\e,V ) and so X would have rank less than 13 in this tangle, a contradiction.
If the skeleton of (M ′\e, V ) is not 3-connected, then it has a T(M ′\e,V )-closed
2-separation (A,B) ∈ T(M ′\e,V ). So (M ′\e, V (B)) is a patchwork with a 3-
connected skeleton. If X ′′ is the set of attachments of e in (M ′, V (B)), then
X ′ \ V (A) ⊆ X ′′ so |X ′′| ≥ |X ′ \ V (A)|. We claim that |X ′′| ≥ 7. If not, then
|X ′ \ V (A)| < 7. But recall that if (A,B) is a 2-separation of the skeleton of
(M ′\e, V ) then V (A) ∩ V (B) is contained in a 3-vertex cutset in the skeleton
of (M\e, V ). So there is a separation (A′, B′) of order three in the skeleton of
(M\e, V ) with V (A) ⊆ V (A′). If A′′ is the subgraph of the skeleton obtained
from A′ by adding the vertices in X ′\V (A′), then (A′′, B′) ∈ T is a separation of
the skeleton of (M\e, V ) of order at most nine and X ⊆ V (A′′), a contradiction.
Also, X ′′ has rank at least 7 in T(M ′\e,V (B)) for if not then X ′ would have rank
less than nine in T(M ′\e,V ).

We therefore have a minor M ′ of M obtained by contracting some set C(P ),
and a subset V ′ of V (either V ′ = V or V ′ = V (B) when there is a 2-separation
(A,B) ∈ T(M ′\e,V )) such that (M ′\e, V ′) is a realizable patchwork with a 3-
connected skeleton respecting M(Gn) and the bridge of (M ′, V ′) containing e
has a set of attachments with rank at least 7 in T(M ′\e,V ′).

If the set of attachments of e in (M ′, V ′) has rank at least 13 in T(M ′\e,V ′)
and there is another patch P ′ with C(P ′) 6= ∅, then we can repeat the argument
and contract C(P ′). We do this as many times as possible, and the result is a
minor M ′ of M and a subset V ′ of V such that either

1. (M ′\e, V ′) is a framework, or

2. the set of attachments of e in (M ′, V ′) has rank less than 13 in T(M ′\e,V ′),

but in both cases, the set X ′ of attachments of e in (M ′, V ′) has rank at least
7 in T(M ′\e,V ′), and (M ′\e, V ′) is realizable, has a 3-connected skeleton, and
respects M(Gn).

We claim that we can reduce the first case to the second. We assume that
(M ′\e, V ′) is a framework. In this case, (M ′, V ′, e) is an extended framework,
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and there is an (F,F×)-labelled graph G with vertex set V ′ such that M(G) =
M ′. The attachments of the bridge of e in (M ′, V ′) are supp(xG). The graph
G is 3-connected and has Gn as a minor. If |V ′| = n, then M ′\e has M(Gn) as
a spanning restriction, and the fact that | supp(xG)| > 3 means (b) holds.

Otherwise, |V ′| > n. By Proposition 4.9.1, G has a 3-connected minor
G′ with Gn as a minor such that either V (G′) = n and | supp(xG′)| ≥ 3, in
which case (b) holds, or the rank of supp(xG′) in the tangle of G′ induced
by TGn is between 7 and 10. We let M ′′ be the corresponding minor of M ,
that is M ′′ = M(G′), so (M ′′\e, V (G′)) is a framework with a 3-connected
skeleton and the bridge {e} of (M ′′, V ′) has a set of attachments with rank in
{7, 8, 9, 10} in T(M ′′,V (G′)). Thus we may take M ′ to be equal to M ′′ and V ′ to
be equal to V (G′), and the second case holds.

Therefore, we may assume that the bridge of (M ′, V ′) containing e has
a set of attachments X ′ with rank at least 7 and less than 13 in T(M ′\e,V ′).
We choose (A,B) ∈ T(M ′\e,V ′) of minimum order such that X ′ ⊆ V (A) and
(A,B) is T(M ′\e,V ′)-closed. As we did in the proof of (3), we distinguish two
cases, depending on whether or not there is a circuit Y of M ′

+V ′ such that
Y ⊆ AM ′\e ∪ {e} ∪ V (A ∩ B) and Y contains at least three elements of
V (A) ∩ V (B).

Suppose that there is such a circuit Y . Since (M ′\e, V ′) respects the minor
M(Gn), there is a framework (N, V ′) such that N is a minor of M ′\e and has
M(Gn) as a minor. Then N is represented by an F×-labelled graph G with
Gn as a minor. As (A,B) has order at most 13, G[V (B)] has a minor Gn−13

for some Gn−13 ∈ Gn−13. Then since n ≥ 3
2
k + 26, Proposition 4.8.1 implies

that for some Gk ∈ Gk, G[V (B)] has a Gk-minor with vertex set V (A) ∩ V (B).
Then the existence of the circuit Y means that (b) holds.

Thus we may assume that no such circuit Y exists, and by Theorem 4.2.3,
(M ′|(AM ′\e∪{e}), VA) is a patchwork for some set VA that contains V (A)∩V (B).
This means that (M ′, V (B) ∪ VA) is a patchwork. By Proposition 4.8.2 we
can choose VA so that it is realizable and has a 3-connected skeleton; we can
further choose it so that no 3-patch can be shrunk and so that VA is maximal.

Recall Theorem 4.7.3 which said that there is a unique maximal way in
which we can express any represented matroid as a realizable patchwork with
a 3-connected, strong skeleton that contains some three given vertices. So if
the skeleton of (M ′\e, V (B) ∪ VA) is also 3-connected and realizable, then by
Theorem 4.7.3, V (B) ∪ VA ⊆ V ′. Since (M ′, V (B) ∪ VA) is a patchwork, the
bridge of e has a set Z of at most 3 attachments; but then the bridge of e
in (M ′, V ′) also has at most three attachments, a contradiction because its
attachment set has rank at least 7 in T(M ′\e,V ′). Therefore, the skeleton of
the patchwork (M ′\e, V (B) ∪ VA) is either not 3-connected or not realizable.
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But we claim that this skeleton is either 3-connected or realizable. For if it is
not realizable, it has a patch P that is not realizable, and thus P has three
attachments and P ∪ {e} is a realizable patch of (M ′, V (B) ∪ VA) with the
same attachments, so the skeleton of (M ′\e, V (B) ∪ VA) is the same as the
skeleton of (M ′, V (B) ∪ VA), which is 3-connected.

So we first consider the case that the skeleton of (M ′\e, V (B) ∪ VA) is
not 3-connected but is realizable. Let (U,W ) be a 1- or 2-separation of this
skeleton that is in T(M ′\e,V (B)∪VA) and is closed in this tangle. Then we note that
V (U) ⊆ VA, by Proposition 4.8.2. There are vertices u ∈ V (U) \ V (W ) and
w ∈ V (W )\V (U) that are both attachments of some patch P of (M ′, V (B)∪VA)
but are not both attachments of any patch of (M ′\e, V (B) ∪ VA). Thus e ∈ P .

We claim that any other attachment of P is in V (U) ∩ V (W ). If not,
by symmetry suppose P has another attachment v ∈ V (W ). Then P \ {e}
is a patch of (M ′\e, V (B) ∪ VA) with two attachments, v and w. We have
uM ′

V (B)∪VA
({u, e}, P \{e}) = 1 so we can extend the matroid M ′ by a new point

x that is spanned by both {u, e} and P \ {e}. Then (M ′, V (B) ∪ VA ∪ {x}) is
a realizable patchwork (because P is a realizable patch of (M ′, V (B)∪ VA)). If
its skeleton is also 3-connected, this contradicts our maximal choice of VA. The
skeleton of (M ′, V (B)∪VA) is obtained from the skeleton of (M ′, V (B)∪VA∪{x})
by contracting the edge ux. So if the skeleton of (M ′, V (B) ∪ VA ∪ {x}) is not
3-connected, it is because u has degree two. In this case removing it from the
vertex set yields a realizable patchwork with a 3-connected skeleton. This is a
patchwork obtained from (M ′, V (B) ∪ VA) by shrinking the 3-patch P , which
again contradicts our choice of VA. This proves that u and w are the only
attachments of P not in V (U) ∩ V (W ).

We note that either there is a unique such (U,W ) ∈ T(M ′\e,V (B)∪VA) that
is closed in the tangle, or there are exactly two, (U1,W1) and (U2,W2) with
u ∈ V (U1) \ V (W1) and w ∈ V (U2) \ V (W2). In the first case, (M ′\e, (V (B) ∪
VA)∩V (W )) is a patchwork in which UM ′\e is a patch with attachments V (U)∩
V (W ). It is realizable and has a 3-connected skeleton, so by Theorem 4.7.3,
VA ∩ V (W ) ⊆ V (A). But also UM ′\e ∪ {e} is a patch with attachments
{w} ∪ (V (U) ∩ V (W )) (a set of size at most three), which contradicts the
fact that the attachment set X ′ of the bridge of e in (M ′\e, V ′) has rank
at least 7 in T(M ′\e,V ′). Similarly, if there are two separations (U1,W1) and
(U2,W2), then (M ′\e, (V (B) ∪ VA) ∩ V (W1) ∩ V (W2)) is a patchwork in which
(U1)M ′\e and (U2)M ′\e are patches with attachment sets V (U1) ∩ V (W1) and
V (U2) ∩ V (W2), respectively. It is realizable and has a 3-connected skeleton,
so by Theorem 4.7.3, VA ∩ V (W1) ∩ V (W2) ⊆ V (A). But then the attachment
set of the bridge of e in (M ′, (V (B) ∪ VA) ∩ V (W1) ∩ V (W2)), and hence also
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the attachment set X ′ of the bridge of e in (M ′, V ′), has rank at most six in
the tangle T(M ′\e,V ′), a contradiction.

This concludes the case that the skeleton of (M ′\e, V (B) ∪ VA) is not
3-connected, so we may assume that is it 3-connected but is not realizable.
So it has a unique unrealizable patch P with three attachments and P ∪ {e}
is a patch of (M ′, V (B) ∪ VA) with the same attachments. We let Z be
the set of attachments of P in (M ′\e, V (B) ∪ VA) and Z ′ the set obtained
from Z by removing any vertex with only one neighbour in the skeleton of
(M ′\e, V (B)∪VA) that is not in Z and replacing it with that neighbour. Then by
Theorem 4.2.3, (P \ {e}, Z ′′) is a patchwork for some set Z ′′ containing Z ′, and
we can choose Z ′′ so that it is realizable and Z ′-strong. Then (M ′\e, (V (B) ∪
VA \ Z) ∪ Z ′′) is a realizable patchwork with a 3-connected skeleton. By
Theorem 4.7.3, (VA \ Z) ∪ Z ′′ ⊆ V (A). Also the attachments of the bridge of
e in (M ′, (V (B) ∪ VA \ Z) ∪ Z ′′) are contained in Z ′′, so the attachments of
the bridge of e in (M ′, V ′) are also contained in Z ′′, which means there is a
separation (S, T ) of its skeleton with V (S) = Z ′′ and all attachments of the
bridge of e are in V (S). But V (S) ∩ V (T ) = Z ′ so (S, T ) has order three and
(S, T ) ∈ T(M ′\e,V ′), a contradiction because the attachments of e are contained
in V (S) and have rank at least seven in this tangle.

4.10 Three elements in a circuit

We conclude this chapter with a discussion of an open question related to both
patchworks and modular restrictions. We recall that Seymour proved that if a
highly connected binary matroid has a triple of elements not contained in any
circuit, then it is a graphic matroid. On the other hand, we still do not have a
precise characterization of the non-binary matroids with a triple of elements
not contained in a circuit.

Problem 4.10.1. Characterize the non-binary matroids with a set of three
elements that is not contained in any circuit.

Frame matroids over fields larger than GF(2) fall into this class, but they
are not the only examples, as we see below.

When a patchwork (M,V ) has a 3-patch P , its attachment set X is not
contained in any circuit of M+X |(P ∪X). Therefore, the problem of character-
izing represented matroids with a triple of elements not in a circuit is exactly
the problem of describing the structure of 3-patches in a patchwork.

This is also closely related to the problem of describing matroids with a
rank-3 frame matroid as a modular restriction, since we saw in Theorem 4.2.1
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that a patchwork can be constructed from a frame matroid by modular sums
on planes spanned by up to three vertices.

We have seen that a modular M(K4)-restriction forces any vertically 4-
connected matroid to be graphic. We might therefore be tempted to conjecture
for any finite field F that, up to connectivity, a matroid with a modular
DG(3,F×)-restriction is a Dowling matroid over F×. Although Geelen, Gerards,
and Whittle showed that the corresponding result is true when the matroid
has a modular DG(4,F×)-restriction, they also found the following example
showing that a modular DG(3,F×)-restriction does not suffice, even when
F = GF(3).

We observe that the non-Fano matroid F−7 is in D(GF(3)×); see Fig-
ure 4.3 for an illustration. We can actually construct highly connected GF(3)-
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Figure 4.3: Two drawings of the non-Fano matroid, F−7

representable matroids with modular F−7 -restrictions that are not in D(GF(3)×).
The matroid F−7 is represented by a (GF(3), {1})-labelled copy of K4 where two
vertices {a, b} have label 1 and two vertices {c, d} have label −1. Equivalently,
we add the column (1,−1, 1,−1)T ∈ GF(3){a,b,c,d} to a graphic representation
of M(K4) — note that, although F−7 ∈ D(GF(3)×), this is a non-Dowling
representation of F−7 .

We draw this copy of K4 in the plane by drawing the edges ab, bc, cd, and
da bounding a disc and then drawing the edges ac and bd inside this disc with a
crossing (see Figure 4.4). Then we draw an arbitrary planar graph around this
drawing of K4 with an even cycle C bounding the infinite face, and we assign
the label 0 to every vertex except a, b, c, and d. This gives us a graph G drawn
in the plane with one crossing. Finally, we add a second set of vertex-labels
y ∈ GF(3)V (G) such that every vertex of G− C has label 0 and the vertices of
C are labelled 1 and −1 alternately as we traverse the cycle. This second set
of labels corresponds to adding a new element to the matroid by adjoining the
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column y to the representation of M(G). This matroid is not in D(Γ), as this
last column has too many non-zero entries, regardless of which set of joints we
choose to get a Dowling representation of M(G̃).

1 -1

1-1
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-1 -1
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1 1
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Figure 4.4: A graph representing a matroid with a modular F−7 -restriction

Since cliques are modular in graphs, the only way for the F−7 -restriction to
fail to be modular is if we can find a minor where the final element y forms a new
point in the closure of the non-Fano restriction. But this is impossible thanks
to the planarity of the graph — we can partition V (C) into four consecutive
sequences Ca, Cb, Cc, and Cd, which each get ‘contracted onto’ the four vertices
a, b, c, and d of the K4. For any such partition, the resulting vertex-labels on
a, b, c, and d are the sums of the labels in Ca, Cb, Cc, and Cd, and either at
most two of these are non-zero or they alternate between 1 and −1.

We can also extend the non-Fano restriction by two new elements to get a
modular DG(3,GF(3)×)-restriction. Its set of three joints is not contained in a
circuit, providing an example of a highly connected non-frame matroid that
has three elements not in a common circuit.

This raises the problem of characterizing the matroids with modular Dowling
restrictions like F−7 , with which we end this thesis.

Problem 4.10.2. Characterize the vertically 4-connected matroids with a
modular F−7 -restriction.
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Glossary of Notation

⊕ direct sum. 9
⊕2 2-sum. 25
⊕m modular sum. 25
A[X, Y ] the submatrix of A in the rows indexed by X and the

columns indexed by Y . 28
AG(n− 1,F) the rank-n affine geometry over F. 74
(AM , BM) the partition of E(M) corresponding to a separation (A,B)

of the skeleton of a patchwork (M,V ). 113
C(k) the class of C-representable matroids with no U2,k+3-minor.

21
clM the closure function of a matroid M . 3
DG(n,Γ) the rank-n Dowling geometry over Γ. 7
D(Γ) the variety of Dowling matroids over Γ. 7
δ(v) the set of edges incident with a vertex v in a graph.
E(M) the ground set of a matroid M . 2
ε(M) |E(si(M))|, the number of points in M . 19
E(G) the edge set of a graph G.
F× the group of units of a field F.
F−7 the non-Fano matroid. 77

G̃ the graph corresponding to a labelled graph G. 94
~G the oriented graph corresponding to a labelled graph G. 6
ΓFt the group Ft × Γ, where Γ is a finite subgroup of F×, with

operation (α1, γ1) · (α2, γ2) = (α1γ2 +α2, γ1γ2) and identity
(0, 1). 95

GF(q) the finite field of order q.
γG the edge labels in a group-labelled graph G. 6
gM(n) the growth-rate function of a class M; max{ε(M) : M ∈

M, r(M) = n}. 19

143



144 Glossary of Notation

G[X] the subgraph of a graph G induced by a set of vertices X,
or the subgraph consisting of a set of edges X and the ends
of its elements.

κM(S, T ) min{λM(A) : S ⊆ A ⊆ E(M) \ T} for disjoint S, T ⊆
E(M). 57

Kn the n-vertex complete graph or clique.
Kn,n the complete bipartite graph with two independent sets of

size n.
λM(X) the connectivity function of a matroid M , equal to rM (X)+

rM(E(M) \X)− r(M) and rM(X) + r∗M(X)− |X|. 8
M∗ the dual of a matroid M . 4
M+e,M+V the extension of a represented matroid M by an element e

or a finite set of elements V . 91
MF(A) the matroid represented by a matrix A over the field F. 3
MF,Γ(G) the matroid represented by a ΓFt-labelled graph G. 96
M(G) the cycle matroid of a graph G or the matroid represented

by a group-labelled graph G. 5
ord(G1, G2) the order of a separation (G1, G2). 111
PG(n− 1,F) the rank-n projective geometry over a finite field F. 5
PG(n− 1, q) the rank-n projective geometry over a field of order q. 4
rM the rank function of a matroid M . 2
r∗M the corank function of a matroid M , equal to rM∗ . 26
rT (X) the rank of a set of vertices X in the tangle T . 119
si(M) the simplification of a matroid M . 3
Σ(M,M ′) {e : M\e 6= M ′\e and M/e 6= M ′/e}. 57
uM(S, T ) local connectivity, rM(S) + rM(T )− rM(S ∪ T ). 25
U2,n the simple rank-2 matroid with n elements. 3
U(`) the class of matroids with no U2,`+2-minor. 20
V (G) the vertex set of a graph G.
xG the vertex labels in a vertex- and edge-labelled graph G.

110



Index

2-sum, 25

affine geometry, 74
attachment, 91

basis, 3
binary, 5
Bixby’s Lemma, 35
Bixby-Coullard Inequality, 71
bridge, 91

centre
of a star, 101

circuit, 3
fundamental, 53

closed, 3
in a tangle, 119

closure, 3
cocircuit, 4
cographic, 6
coindependent, 28
coloop, 35
confinement, 83
k-connected, 8

internally, 8
vertically, 8

contraction, 4
contraction pair, 29, 36
control, 120
corank, 26
cosimple, 101
cycle matroid, 5

deletion, 4
deletion pair, 29, 36, 47
direct sum, 9
Dowling geometry, 7
Dowling matroid, 7
dual, 4

equivalent
group-labelled graphs, 94
representations, 52
vertex- and edge-labelled graphs,

110
essential, 36
excluded minor, 17, 74
extend

a representation, 28
a represented matroid, 91

fan, 35
flat, 3
flipping, 94
frame matroid, 6
framework, 92

extended, 110
Fundamental Theorem of Projective

Geometry, 27

graph
Γ-labelled, 6
vertex- and edge-labelled, 109

graphic matroid, 5, 19
ground set, 2
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growth rates, 19, 87
growth-rate function, 19

hyperplane, 3

independent, 3
in a tangle, 119

induce
a representation, 28
a tangle, 120

laminar, 108
line, 3
local connectivity, 25
loop, 3

matrix
fundamental, 53
scaled, 81
totally unimodular, 13, 21

matroid, 2
represented, 91

minor
of a group-labelled graph, 95
of a matroid, 4
of a vertex- and edge-labelled

graph, 110
model

in a graph, 119
universal, 9

modular, 11
modular sum, 25

non-Fano matroid, 77, 134

pair
contraction, 29
deletion, 29

parallel, 3
patch, 92
patchwork, 92
plane, 3

point, 3
projective geometry, 4
projective plane, 5

rank, 2
in a tangle, 119

realizable
patch, 93
patchwork, 93

regular, 13, 21
representation

by a ΓFt-labelled graph, 96
by a labelled graph, 6
by a matrix, 2
by a vertex- and edge-labelled

graph, 110
equivalent, 52
extended Dowling, 96
induced, 28
standard form, 28
unique, 26

respect
a frame-matroid minor, 124

restriction, 4
Rota’s Conjecture, 1, 18

scaling
in a group-labelled graph, 97, 107

separation
internal, 8
of a graph, 111, 119
of a matroid, 8
vertical, 8

series, 35
shift

in a group-labelled graph, 94
in a vertex- and edge-labelled

graph, 110
shrinking a 3-patch, 113
simple, 3
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skeleton, 93
skew, 25
stabilizer, 52
stable, 52
star, 101
strand, 53

distinguishes, 53
strong, 113
subjugation, 30
sum

2-, 25
direct, 9
modular, 25

tangle, 119
induced, 120

totally unimodular matrix, 13, 21
triad, 35
triangle, 35
Tutte’s Linking Theorem, 61
Tutte’s Triangle Lemma, 35

uniquely representable, 26
universal model, 9, 19

variety, 9, 17
vertex

of a patchwork, 92
vertex boundary, 111
vertex-image, 119
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