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Abstract

As the capabilities of autonomous vehicles increase, their use in situations that are
dangerous or dull for humans is becoming more popular. Autonomous systems are currently
being used in several military and civilian domains, including search and rescue operations,
disaster relief coordination, infrastructure inspection and surveillance missions. In order to
perform high level mission autonomy tasks, a method is required for the vehicle to localize
itself, as well as generate a map of the environment. Algorithms which allow the vehicle
to concurrently localize and create a map of its surroundings are known as solutions to
the Simultaneous Localization and Mapping (SLAM) problem. Certain high level tasks,
such as drivability analysis and obstacle avoidance, benefit from the use of a dense map
of the environment, and are typically generated with the use of point cloud data. The
point cloud data is incorporated into SLAM algorithms with scan registration techniques,
which determine the relative transformation between two sufficiently overlapping point
clouds. The Normal Distributions Transform (NDT) algorithm is a promising method
for scan registration, however many issues with the NDT approach exist, including a poor
convergence basin, discontinuities in the NDT cost function, and unreliable pose estimation
in sparse, outdoor environments.

This thesis presents methods to overcome the shortcomings of the NDT algorithm,
in both 2D and 3D scenarios. To improve the convergence basin of NDT for 2D scan
registration, the Multi-Scale k-Means NDT (MSKM-NDT) algorithm is presented, which
divides a 2D point cloud using k-means clustering and performs the scan registration
optimization over multiple scales of clustering. The k-means clustering approach generates
fewer Gaussian distributions when compared to the standard NDT algorithm, allowing
for evaluation of the cost function across all Gaussian clusters. Cost evaluation across
all the clusters guarantees that the optimization will converge, as it resolves the issue of
discontinuities in the cost function found in the standard NDT algorithm. Experiments
demonstrate that the MSKM-NDT approach can be used to register partially overlapping
scans with large initial transformation error, and that the convergence basin of MSKM-
NDT is superior to NDT for the same test data.

As k-means clustering does not scale well to 3D, the Segmented Greedy Cluster NDT
(SGC-NDT) method is proposed as an alternative approach to improve and guarantee
convergence using 3D point clouds that contain points corresponding to the ground of
the environment. The SGC-NDT algorithm segments the ground points using a Gaussian
Process (GP) regression model and performs clustering of the non ground points using a
greedy method. The greedy clustering extracts natural features in the environment and
generates Gaussian clusters to be used within the NDT framework for scan registration.
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Segmentation of the ground plane and generation of the Gaussian distributions using nat-
ural features results in fewer Gaussian distributions when compared to the standard NDT
algorithm. Similar to MSKM-NDT, the cost function can be evaluated across all the
clusters in the scan, resulting in a smooth and continuous cost function that guarantees
convergence of the optimization. Experiments demonstrate that the SGC-NDT algorithm
results in scan registrations with higher accuracy and better convergence properties than
other state-of-the-art methods for both urban and forested environments.
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Chapter 1

Introduction

Autonomous vehicle technology has the potential to significantly impact a wide range of
applications, leading to large scale societal impact. For example, autonomous driving
will enable the more efficient use of existing driving infrastructure, reducing the cost and
resource requirements for the construction of new roads. The Netherlands Organisation
for Applied Scientific Research (TNO) estimates that by 2022, cooperative driving will
able to reduce traffic fatalities by 8%, reduce carbon dioxide and fuel consumption by
5%, and reduce the time lost to traffic jams by 50% [59]. Autonomous vehicles also have
the potential to greatly improve the safety of humans in dangerous environments. In the
United States, from 1900 through 2007, there were at total of 12,823 fatalities from mining
related accidents, and the majority of the fatalities involve mine disaster rescue teams who
are specially trained for search and rescue in hostile and dangerous environments [40]. In
search and rescue situations, mobile autonomous vehicles have great potential, where they
can be used to scout ahead of the rescue team and report potentially hazardous conditions
[40, 47]. The range of applications for autonomous vehicles is vast, from autonomous
space rovers which search for evidence of sustained life on Mars [30, 41], to autonomous
air, ground and water vehicles that allow scientists to monitor harmful algal blooms and
pollution spread around the Earth [14].

Innovation in autonomous vehicle technology has already proven to be very effective in
real-world applications. In the area of autonomous cars, the fleet of Google cars has trav-
elled more than 300,000 km in environments ranging from city traffic, to busy highways and
mountainous roads [58]. The VisLab has also performed extensive experiments, where four
autonomous vehicles drove from Parma, Italy to Shanghai, China along a 13,000 km route
where detailed map and environment information was not available [9]. The Mars Explo-
ration Rovers (MERs) have been continuously improving autonomous capabilities in order
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to improve the overall activity time of the vehicle [61, 37]. The Mars Science Laboratory
(MSL), which is commonly referred to as Curiosity, implements parallelized navigation
algorithms, allowing for continuous planetary rover navigation and eliminates the need for
the vehicle to stop and perceive the environment [20]. The Aeryon Scout Unmanned Aerial
Vehicle (UAV) has been deployed in many tactical military, law enforcement and civilian
operations to aid in intelligence missions, emergency response and infrastructure inspec-
tion. The gradually decreasing cost of robotic systems and their increasing capabilities has
brought forth proposed applications within household settings, such as the iRobot Roomba
vacuum cleaner and Willow Garage’s PR2 personal robot [7].

In order to autonomously perform high level tasks such as vehicle path planning, obsta-
cle avoidance and sample return, an autonomous vehicle requires a method to localize its
position and maintain a map of the environment. In the localization problem, the vehicle
uses sensors to detect and locate landmarks, or features, within the environment. Through
the detection and matching of landmarks, the vehicle can determine its location relative
the environment as it travels. In the mapping problem, it is assumed the vehicle pose, its
current position and orientation, is known, and the vehicle uses the collected sensor data
from its traversal to maintain a representation of its surroundings. When the vehicle is
required to traverse the environment and neither the vehicle location nor the map is known,
a solution to the Simultaneous Localization and Mapping, or SLAM problem, is required.
For example, the Mars rover uses a camera based system to detect and map landmark
locations in the environment, while simultaneously localizing its own position against the
landmarks. The SLAM problem is particularly difficult to solve because it is a chicken or
egg problem. That is, an accurate map is required for localization of the vehicle, however,
an accurate vehicle pose is also required to generate a consistent map. As the vehicle
traverses the environment, errors accumulate due to uncertainty in vehicle motion, which
is coupled with sensor error as measurements to landmarks are taken. The accumulation
of error has the potential to distort the map and corrupt the vehicle’s knowledge of it’s
true location within the environment.

Although solutions to the SLAM problem concurrently estimate the map and vehicle
pose, it is also is possible to perform localization and mapping independently [25]. The
naive approach to determine vehicle motion involves using wheel or visual odometry, which
is the use of data from moving sensors to estimate change in position over time. The
integration of odometry information over time is unreliable due to unbounded error and
drift in the pose, thus the approach is rarely ever used in isolation. An improved method to
determine vehicle motion relies on the combination of Global Positioning System (GPS),
inertial measurements and wheel odometry, however these methods also have failure modes
due to loss of GPS and vehicle wheel slip. By using the environmental information to
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maintain a map of the surroundings, the SLAM approach can provide additional robustness
and improved localization accuracy over pure pose estimation.

There are two main categories of environmental information that can be used to gen-
erate two different types of maps, sparse feature based maps and dense maps. Monocular
cameras can be used to generate sparse data in the form of stable, identifiable landmarks
and features, however, dense environment information, such as terrain gradients and ob-
stacle geometry is not readily attainable from camera solutions. The dense environment
information is especially key for autonomy tasks such as drivability analysis, path planning
and obstacle avoidance, as dense environment information is required to generate paths
which are guaranteed to be collision free and traversable by the vehicle. The dense informa-
tion can be used to perform dense SLAM which generates a dense map of the environment,
as opposed to a feature SLAM, where only certain features are tracked in the map.

In typical robotics applications, dense environment information is provided in a struc-
ture called a point cloud. A point cloud is a set of points which represent the environment
as a collection of samples from 2D or 3D space. Point clouds can be generated using many
different sensors, such as stereo cameras, RGB-D sensors, TOF cameras and laser scan-
ners. A stereo camera generates point clouds by identifying corresponding pixels across
time synchronized image frames and calculating the depth of the pixels using known cam-
era geometry. In practice, point cloud generation from a stereo camera requires stereo
matching algorithms which are computationally expensive and unreliable in low texture
environment without sufficient illumination. RGB depth (RGB-D) cameras, such as the
Microsoft Kinect, provide camera colour images as well as depth information, which is de-
termined using structured infared (IR) light projectors and 3D reconstruction algorithms.
Although RGB-D cameras are able to produce dense, accurate point clouds, they are cur-
rently limited to indoor use only. Generally more expensive, the preferred method for the
generation of point cloud data in a robotics application is through the use of a LIDAR
scanner, which generates point cloud data directly using the time of flight of rotating IR
lasers, and is not affected by surface texture or changing illumination. Example point
clouds generated from a 2D and 3D LIDAR are provided in Figure 1.1. A related technol-
ogy to LIDAR is the time of flight (TOF) camera, which uses a modulated IR laser pulse
to capture information regarding an entire section of the environment using a single laser,
in contrast to a scanning LIDAR which rotates the laser to collect data in a point-by-point
fashion.

In order to perform dense SLAM using point clouds, a procedure known as point cloud
scan registration, or simply scan registration, is required. Suppose two point cloud scans,
or simply, scans, are collected with the sensor from two different vehicle poses. Let a
scan that is collected from some initial vehicle pose be called the reference scan, and a
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Figure 1.1: (a) A 2D point cloud of indoor room environment collected with a Hokuyo
LIDAR. (b) A 3D point cloud of a tree within an outdoor environment collected with a
Velodyne LIDAR.
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scan collected at a different vehicle location be the scene scan. Given sufficient overlap
between the two scans, it is possible to determine the relative rigid body transformation
that aligns the two point clouds. The process of determining the relative transformation
between the reference scan and the scene scan is known as scan registration. Specifically,
a scan registration algorithm will return the transformation which must be applied to the
scene scan in order to align it to the coordinate frame of the reference scan. Feature based
scan registration methods, such as Normal Aligned Radial Features [53] and Point Feature
Histograms [49, 48] can be used, but suffer from difficulties in consistently and uniquely
identifying features in the scan data, resulting in less accurate scan registrations when
compared to methods that operate on the entire point cloud.

Much work has been done in the area of scan registration, however many issues re-
main, including the poor convergence properties of the algorithms, high computational
complexity, particularly on large point clouds, and inconsistent pose estimation quality
when applied to a wide range of environments. The scan registration problem is especially
challenging in large, unstructured environments, as the sparsity of the point cloud makes
the extraction of useful information from the scan difficult. The main objective of this
thesis is to address the issues with current scan registration algorithms by presenting im-
proved methods with better convergence and reduced sensitivity to sparsity of points in
the point cloud. The algorithms are evaluated using 2D and 3D point cloud data of indoor
and outdoor environments, using both experimentally collected point cloud scans and data
from well known, open source repositories within the robotics community.

1.1 SLAM Algorithms

The earliest work in the SLAM area established the requirement for a statistical method
for describing relationships between landmark locations and the vehicle position. A key el-
ement of the work was to show the correlation between estimates of the location of different
landmarks in a map, and that the correlations would evolve with successive observations
[15, 51]. In practice, the landmarks can be determined through camera based feature
detection and matching methods, such as Scale Invariant Feature Transform (SIFT) [32],
Speeded-up Robust Features (SURF) [2] or Center-Surround Extreama (CenSurE) features
[1], and alternatives which operate on point cloud data.

The SLAM problem was next solved within the Bayesian estimation framework [55].
The most well known example of this approach used an Extended Kalman Filter (EKF)
formulation known as EKF-SLAM, which solves the SLAM problem by estimating the
vehicle pose and the positions of landmarks or features as states of the EKF. Although
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conceptually the EKF-SLAM method is simple, it suffers from many drawbacks including
computational complexity, sparse feature maps, and poor robustness due to the lineariza-
tion step performed at each update of the EKF. Furthermore, the EKF based SLAM
approach is susceptible to divergence if the data association between currently measured
features and previously visited features is not correct. Computational complexity is a
concern, as the complexity of the algorithm is O(n3), where n is the number of features
being mapped. The map generated through the EKF-SLAM is also a sparse map, as only
feature locations are tracked, thus the map is not directly usable for other tasks such as
path planning and collision avoidance. Computational complexity is somewhat addressed
by the Sparse Extended Information Filter (SEIF) SLAM method [56], which is reported
to operate at nearly constant time by pruning weak links in the information matrix in or-
der to generate a sparse approximation. The issue of linearization is somewhat addressed
with the Sigma Point Kalman Filter (also called the Unscented Kalman Filter or UKF)
approach [22], which uses robust statistical sampling methods to linearize highly nonlinear
motion and measurement model functions. Although the the concerns of computation and
linearization can be addressed through some of the Bayesian SLAM variants, the issues of
sparse map generation and divergence due to poor data association remain. Finally, the
Bayesian SLAM formulations are online SLAM algorithms, meaning that only the current
vehicle pose and landmark locations are estimated. In contrast a full SLAM algorithm
is one which tracks the vehicle and landmark states throughout the traversal history. It
should be noted that although Bayesian SLAM is an online method, a correlation between
states is maintained that allows for the update all of the landmark positions, however, the
linearizations performed at each time step cannot be reversed, thus the state correlations
are potentially inaccurate. The distinction between online SLAM and full SLAM is impor-
tant, as online SLAM algorithms can only correct the vehicle and landmark locations for
the current time-step, while full SLAM algorithms have the ability to correct the history
of the vehicle and landmark states, and can drastically improve the map and localization
accuracy when areas in the environment are revisited.

Current state of the art SLAM algorithms [28, 19, 26, 45, 23, 43] can be categorised as
variants of graph based SLAM, or graph SLAM, which poses the SLAM problem within
a graph structure. Graph SLAM algorithms are composed of two components, the front-
end and the back-end. The front-end is responsible for generating a pose graph, which is
a collection of vertices and edges that describe the motion of the vehicle and associated
measurements to landmarks. In the pose graph, a vertex represents a pose of the vehicle
or landmark, and an edge between any two vertices is a constraint which connects the
poses described by the vertices. For example, an edge constraint could be the result of an
odometry reading between vehicle poses, or a measurement to a landmark from a given
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vehicle pose. As the pose graph is populated and as edges are continually added, it is likely
that the pose graph may reach an over-constrained state. In the over-constrained case, a
graph optimization is formulated as a nonlinear optimization problem. The back-end of
the graph SLAM algorithm is responsible for solving the nonlinear optimization problem
and minimizes the sum of the errors introduced by the edge constraints by performing
an optimization over the graph. In practice, the graph optimization is triggered when
a loop-closure is detected, or when the vehicle revisits a portion of the map it has seen
previously. Through the graph optimization, the graph SLAM algorithm updates the full
state of the vehicle and state-of-the art graph SLAM back-ends, such as TORO [18] and
g2o [27], are able to perform the graph optimization in a computationally efficient manner
using intelligent data structure manipulation and problem parametrization strategies. The
ability of the graph SLAM algorithm to update the vehicle pose and the map along its
history allows for the generation of accurate, globally consistent maps that are achievable
in real time.

As a motivating example of graph SLAM, consider the environment and reconstructed
map presented in Figure 1.2. In the example, the vehicle developed for the University of
Waterloo’s entry to the 2012 NASA Sample Robot Return Challenge navigates a figure
eight which covers an area of approximately 400m by 300m. The pose graph is generated
using scan registration, and is then refined using pose graph optimization in real-time.
Qualitatively, the reconstructed map (shown in black) is well aligned to features in the
aerial image such as trees, bushes, buildings and posts. In Figure 1.2, the red dots represent
the vertices of the graph, blue lines represent edge constraints between vertices, and the
green line is the instantaneous vehicle position as it navigates the environment.

1.2 Scan Registration for Graph SLAM

Scan registration is used in the graph SLAM method to generate edges in the pose graph.
Specifically, as the vehicle travels through the environment, a vertex can be added at
the current vehicle position and the associated scan for that vertex can be saved. The
combination of the graph vertex and its associated scan is commonly referred to as a
keyframe. Provided there is sufficient point cloud overlap between the scans of any two
keyframes, a scan registration can be performed to generate an edge constraint between
the two associated vertices. The ability to add edge constraints for vertices where there
is sufficient point cloud overlap allows for the generation of highly connected pose graphs,
especially in the case where the sensor range is relatively large. An example of a map and
a highly connected pose graph is given in Figure 1.3. In Figure 1.3, red dots represent
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Figure 1.2: Reconstructed map and aerial image overlay for scan registration based graph
SLAM algorithm.

the pose graph vertices, blue lines denote the edges of the graph, green represents the
instantaneous vehicle path and black denotes the reconstructed map.

A significant amount of work has been done which uses scan registration within the
graph SLAM frame work. In indoor environments, the earliest graph SLAM approach was
introduced by Lu and Milios, who first proposed the full SLAM formulation as a graph,
generated edge constraints using scan registration, and solved the sparse set of equations
for the graph optimization [33]. The graph slam approach of Lu and Milios has been
extended and refined, namely through methods to improve the efficiency and scalability of
the back-end optimization routine [17]. The introduction of the Microsoft Kinect sensor
has resulted in numerous innovations in indoor 3D mapping algorithms. The RGB-D
SLAM algorithm [19] augments feature tracking using the camera RGB data with scan
registration techniques from the point cloud data to perform an offline graph SLAM. The
Kinect Fusion algorithm [42] is able to perform dense 3D tracking and reconstruction
and achieves real time performance though the use of only scan registration algorithms,
implemented on parallelized GPU architecture. Although the standard Kinect Fusion
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Figure 1.3: Highly connected pose graph and resulting map for scan registration based
graph SLAM algorithm.

algorithm is restricted to operate in a limited space, extensions have been proposed which
seek to extend the work volume [62]. In addition, the Kinect Fusion algorithm is not able
to detect previously visited locations, thus loop closure remains an open problem.

In outdoor environments, high-fidelity and high accuracy maps of urban environments
have been generated using 3D scan registration with both high resolution Reigl laser scan-
ners [8], and with lower resolution sensors such as the 32 and 64 plane Velodyne scanners
[39, 29]. It should be noted that in urban environments, flat, plane like structures such as
walls and roads make the scan registration problem easier. In non-urban and unstructured
environments, 3D scan registration techniques have been used to map locations such as
mines [35], however a mine environment is relatively well structured with walls and cav-
erns, thus making the scan registration problem easier. Mapping and navigation through
forested environments has been performed by an unmanned aerial vehicle (UAV) [52], how-
ever success was mainly achieved with the use of a specialized tree-trunk cylinder feature
detection method designed to operate in dense forested areas, and likely cannot be applied
to generally sparse, outdoor scenes.
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It is clear that scan registration is an important aspect of modern graph SLAM algo-
rithms. The best known and most widely used scan registration algorithm is the Iterative
Closest Point (ICP) algorithm. ICP was independently introduced by Besl and McKay
[4], Chen and Medioni [10], and Zhang [63]. The ICP algorithm attempts to find trans-
form parameters that minimize the Euclidean distance of corresponding nearest neighbour
points between the reference scan and the scene scan. To compute the nearest neighbour
point, a point in the scene scan is queried against the reference scan to determine the
point in the reference scan which is the minimum Euclidean distance to the query point.
The process of computing point correspondences and minimizing the Euclidean distance
between corresponding points is performed iteratively until convergence, when the sum of
Euclidean distances between corresponding point does not sufficiently decrease. It should
be noted that the ICP algorithm does not take into account the underlying surface of the
point cloud, as it operates at the point level. Furthermore, ICP assumes that the two point
clouds can overlap perfectly, however in practice this is not the case due to noise and the
sampling characteristics of the sensor. To address the shortcomings of ICP, Segal et al. in-
troduced generalized-ICP (G-ICP) [50], which calculates the surface normal at each point,
using local neighbourhoods of points, and only includes correspondences between points
with similar surface normals between the two scans. The G-ICP cost fuction is structured
such that it only includes information perpendicular to the plane defined at the point by
the normal, and does not penalize differences in position of points along the plane. G-ICP
explicitly takes sensor noise and sampling characteristic into account, thus improving the
convergence basin and convergence rate when compared to ICP. The major shortcomings
of both the ICP and G-ICP approach is the generation of the nearest neighbour correspon-
dences, which is computationally expensive and has been shown to be the bottleneck of
ICP algorithms [8].

A promising approach for scan registration, which has been recently introduced, is the
Normal Distributions Transform (NDT). The NDT algorithm was first suggested by Biber
and Strasser for scan registration and mapping [5]. It was later expanded for use with 3D
point clouds by Magnusson et al. [34]. The NDT method is desirable because it does not
require the computation of explicit point correspondences. Instead, the NDT algorithm
represents the underlying scan as a set of Gaussian distributions that locally model the
surface of the reference scan as a probability density function (PDF). Given a parameter
estimate for the desired transformation, a score is assigned which quantifies the amount of
overlap between the reference scan and the transformed scene scan. The overlap score is
determined by evaluating the transformed scene scan points at the Gaussian distributions
which model the reference scan. In order to register the two point clouds, a nonlinear
optimization is performed to determine the transformation parameters such that the over-
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lap score is maximized. Stoyanov et al. introduced a distribution to distribution matching
extension to NDT, which generates Gaussian distributions for both the scene and reference
scan and minimizes the L2 distance between distribution sets of the scene and reference
scan in order to perform registration. The distribution to distribution extension was shown
to improve the convergence basin, as well as improve computation time. Although it has
been shown that the NDT algorithm and its extensions are able to produce higher quality
registration results when compared against ICP [36], a major shortcoming of the NDT
algorithm is its poor convergence basin [11]. Furthermore, as the Gaussian distributions
are generated by partitioning the point cloud with rectilinear grid cells, the nonlinear cost
function used to determine the transform parameters is not well defined as points cross
cell boundaries during the optimization. As a result, convergence of the optimization is
not guaranteed.

It should be noted that due to planar structures and high object density, scan reg-
istration algorithms generally perform well in structured urban environments. A large,
forested environment makes laser scan registration based approaches especially difficult
since a typical point cloud from a laser scanner such as the Velodyne-HDL32E sensor is
sparse and relatively noisy in such a setting. The state of the art scan registration algo-
rithms generally make assumptions about point cloud data which are not valid in forested
environments. For example, ICP methods require a high point data density in order to
provide accurate correspondences for nearest neighbour search [44]. G-ICP requires the
computation of surface normal data, which is difficult to perform accurately with noisy
point cloud data of grass, trees and shrubs, all of which are typical of a forested environ-
ment. Conceptually, the NDT approach is suitable for a forested area, as the sparsity issue
can be resolved through the modelling of the point cloud with Gaussian distributions. It
is clear that the NDT algorithm is a promising new approach to perform scan registra-
tion, which is a fundamental aspect of modern SLAM algorithms. Although promising,
the NDT algorithm suffers from three major shortcomings: the convergence basin of the
NDT algorithm is poor, the optimization of the NDT cost function is not guaranteed to
converge, and the partitioning of the point cloud using rectilinear cells is naive and results
in poor registration accuracy in sparse environments.

1.3 Contributions

The goal of this research is to address the issue of poor convergence of the NDT algorithms
through multi-scale optimization methods, and address the accuracy of the NDT algorithm
in sparse environments through improved point cloud clustering techniques.
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The Multi-Scale-K-Means NDT (MSKM-NDT) algorithm is proposed, which divides a
2D point cloud using k-means clustering and performs the optimization step at multiple
scales of clustering. The k-means clustering approach guarantees that the optimization
will converge, as it resolves the issue of discontinuities in the cost function found in the
standard NDT algorithm. The optimization step of the NDT algorithm is performed
over a decreasing scale, which greatly improves the basin of convergence. Experiments
show that the MSKM-NDT approach can be used to register partially overlapping scans
with large initial transformation error, and that the convergence basin of MSKM-NDT is
superior when compared against NDT for the same test data. It is also determined through
experiment that the MSKM-NDT algorithm provides a viable solution for scan registration
in a 2D, indoor, SLAM scenario.

As the k-means clustering does not scale well to 3D, an alternative approach to improve
and guarantee convergence using 3D point clouds is proposed. In order to generate clus-
ters in the 3D point cloud, the ground is first segmented using a Gaussian Process (GP)
regression model, and the non ground points are then clustered using a greedy clustering
method. The proposed method, Segmented Greedy Cluster NDT (SGC-NDT) uses the
natural features in the environment to generate Gaussian clusters and performs scan reg-
istration using the clusters within the NDT framework. By segmenting the ground plane
and clustering the remaining features, the SGC-NDT approach results in a smooth and
continuous cost function which guarantees that the optimization will converge. Experi-
ments demonstrate that the SGC-NDT algorithm results in scan registrations with higher
accuracy and better convergence properties when compared against other state-of-the-art
methods, such as ICP, G-ICP and NDT, for both urban and forested environments.

In summary, the main results presented in this thesis are:

• A multi-scale optimization NDT algorithm which improves the convergence basin of
the NDT algorithm,

• Clustering techniques which can be applied within the NDT framework that modify
the NDT cost function such that the optimization is well defined and guaranteed to
converge,

• A greedy clustering based NDT algorithm which uses natural features in the envi-
ronments to improve registration accuracy,

• Experimental results demonstrating the performance gains of the proposed algo-
rithms in indoors, urban, and sparse forested environments.

12



The proposed MSKM-NDT algorithm and SGC-NDT algorithm are verified methods
that address the shortcomings of the NDT algorithm. Through multi-scale optimization
and modifications made to the NDT cost function, the proposed work improves the conver-
gence basin of NDT and guarantees convergence of the nonlinear optimization. Through
improved clustering methods of 3D point clouds, the proposed work demonstrates signif-
icant performance gains over NDT for scan registration in sparse, forested environments.
With the improved robustness of the MSKM-NDT and SGC-NDT algorithms over standard
NDT, opportunities exist that allow for the deployment of these algorithms on consumer
grade hardware in a variety of autonomous vehicle applications.

The remainder of this thesis is organized as follows. Chapter 2 provides further back-
ground information on scan registration and presents specific details on the ICP, G-ICP
and NDT algorithms. Chapter 3 presents the MSKM-NDT algorithm and experimental
results which validate the approach for indoor settings. Chapter 4 presents the SGC-NDT
algorithm, detailed information on GP based ground segmentation, and experimental re-
sults which validates the SGC-NDT approach in both urban and forested environments.
Finally, Chapter 5 provides a conclusion of the presented work, as well as future directions
for this research.
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Chapter 2

Scan Registration Using Point Cloud
Data

The goal of scan registration is to determine the transformation which can be applied to
the scene scan, such that it best overlaps with the reference scan. To determine the trans-
formation parameters which result in the best overlap, scan registration algorithms define
a cost function which quantifies the amount of overlap between the point clouds. As the
optimization variables consist of translation and rotation parameters, the cost functions
for the scan registration algorithms are nonlinear. As a result, the assumption for scan reg-
istration is that the global minimum of the cost function yields the optimal transformation
parameters that best align the two point clouds. This chapter formulates the scan registra-
tion problem for three competing algorithms: Iterative Closest Point (ICP), Generalized
ICP (G-ICP) and the Normal Distributions Transform (NDT).

2.1 Problem Formulation

Define a point cloud as the set of points P = {p1, . . . , pNP } where pi ∈ Rd for i ∈
{1, . . . , NP}. Let d denote the dimensionality of the point cloud data, where d = 2 for
2D data and d = 3 for 3D data. In the 3D case, a point pj ∈ P consists of three compo-
nents, pj = {pxj , p

y
j , p

z
j}, which refer to the x, y, and z components of the point, respectively.

Similarly in 2D, the point pj ∈ P consists of two components, pj = {pxj , p
y
j , }, which refer

to the x and y components of the point, respectively.

To transform a point from the coordinate frame of the scene scan to the coordinate
frame of the reference scan, transformation parameters are required. In 2D, these transform
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parameters are given by E = [tx, ty, tθ]
T ∈ SE(2) and in 3D, the transform parameters are

given by E = [tx, ty, tz, tφ, tθ, tψ]T ∈ SE(3). Note that the rotations will be defined by a
3− 2− 1 Euler angle parametrization. In 3D, the transformation function, TE : R3 7→ R3,
that maps a point from the scene scan, p ∈ P S, into the coordinate frame of the reference
scan, using a parameter estimate, E , is given as

TE(p) =
[
RφRθRψ

]
p+

 tx

ty

tz

 (2.1)

where Rφ is the rotation matrix for a rotation about the x axis by angle φ, Rθ is the
rotation matrix for a rotation about the y axis by angle θ, Rψ is the rotation matrix for a
rotation about the z axis by angle ψ, and [tx, ty, tz]

T is the translation vector between the
origins of the two frames. Note that although the mapping TE as presented is for the 3D
case where d = 3, a similar transformation function can be derived for the 2D case. For
notational simplicity, the mapping, TE , is applied for both the 2D and 3D case.

Scan registration algorithms seek to find the optimal transformation between two point
cloud scans, a reference scan, PR, and a scene scan, P S. The goal is to determine trans-
formation parameters which best align the two, such that the two scans overlap as much
as possible. To quantify the amount of overlap between the two scans, a score function
is required, and is denoted by the mapping Λ : SE(d) 7→ R. Finally, the scan registration
problem can be defined as determining the optimal transform parameters, E∗, such that

E∗ = argmin
E∈SE(d)

Λ(E) (2.2)

Note that the score function is algorithm specific. The remainder of this section will
introduce competing scan registration algorithms found within the literature, including
ICP, G-ICP and NDT.

2.2 The Iterative Closest Point Algorithm

Given a scene scan P S, and a reference scan PR, the ICP algorithm seeks to find the
parameters E which minimize a cost function based on corresponding points between the
reference scan and the scene scan. For ICP, the point correspondence for point pi in the
reference scan is its nearest neighbour point pj within the scene scan. Define the point to
set distance between a point p and a point cloud P as
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d̄(p)P := min
p̂∈P
‖p− p̂‖ (2.3)

Using the definition of the point to set distance, a correspondence term w can be
defined. For a point in the scene scan pj ∈ P S that has been transformed by parameter
estimate E , denote wj as the respective correspondence term to it’s nearest neighbour in
the reference scan PR. The correspondence term wj is given as

wj =

{
1, if d̄(TE(pj))PR < δmax,

0, otherwise.

where δmax denotes the maximum allowable neighbourhood to consider for a point cor-
respondence. In practice, the point clouds are partially overlapping, thus a point in the
scene scan may not have a corresponding point in the reference scan. To ensure that outlier
points are not corresponded, the maximum allowable neighbourhood should be appropri-
ately determined. If the δmax is too large, potential outlier point correspondences will be
allowed, which reduces the accuracy of the scan registration. If the δmax parameter is not
sufficiently large, correct point correspondences may be rejected, which could result in the
optimization converging to local minimum. Define pEj as the point in the reference scan
that is the nearest neighbour to point pj in the scene scan that has been transformed by
E , or

pEj = arg min
p̂∈PR

(‖TE(pj)− p̂‖)

Finally, the score function for ICP minimization can be presented as,

Λicp(E) =

|PS |∑
j=1

wj‖pEj − TE(pj)‖
2

(2.4)

The ICP algorithm iteratively calculates the transformation parameters E by selecting
the nearest neighbour points between the reference scan and incoming scan as correspon-
dences, then minimizing Equation 2.4. Let ME be the total number of point correspon-
dences between the point clouds, given the current transform parameters, E . Then, denote
the point clouds of the reference scan and the scene scan containing only corresponding
points as PR ⊆ PR and P S ⊆ P S , where |PR| = |P S| = ME . Further assume that the
point clouds PR and PR have been re-ordered such that corresponding points between the
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scans are indexed in order. It should be noted that while the nearest neighbour point cor-
respondence assumption is somewhat valid for dense point cloud data, in situations where
the point cloud data is relatively sparse, the assumption is poor.

Once the corresponding points for the current iteration are known, the optimal solution
for the iteration can be determined through numerical methods such as Gauss-Newton
or Levenberg-Marquardt, or closed form methods [44]. For the closed form solution, the
computation of the optimal rotation and optimal translation can be decoupled [44]. Denote
the rotation matrix and translation vector corresponding to the optimal transformation
parameters as E∗r ∈ Rd×d, and E∗t ∈ Rd, respectively. To determine the optimal parameters,
first the centroid of each scan is calculated,

CR =
1

ME

∑
pR∈PR

pR

CS =
1

ME

∑
pS∈PS

pS

where CR ∈ Rd is the centroid for the reference scan PR and CS ∈ Rd is the centroid
for the scene scan P S. Once the centroids have been calculated, the point clouds can be
redefined as deviations from their centroid values. The deviated reference and scene point
clouds, P̂R and P̂ S, are defined as

P̂R = {p̂ ∈ Rd : p̂ = p− CR ∀ p ∈ PR}
P̂ S = {p̂ ∈ Rd : p̂ = p− CS ∀ p ∈ P S}

Using the centroid deviated point clouds, a correlation matrix, H ∈ Rd×d, can be
constructed using the points p̂R ∈ P̂R and p̂S ∈ P̂ S. The correlation matrix is computed
as

H =

ME∑
i=1

p̂Ri ⊗ p̂Si

where ⊗ denotes the vector outer product. As described in [44], from the correlation matrix
H, the optimal rotation is given as
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E∗r = V UT

where V ∈ Rd×d and U ∈ Rd×d are unitary matrices given by the singular value decompo-
sition H = UDV T . Once the optimal rotation has been calculated, the optimal translation
is given by

E∗t = CR − E∗r CS (2.5)

The full proof for the optimal close form solution is presented in [44]. It should be noted
that the nearest neighbour search is generally the most computationally expensive compo-
nent of the ICP algorithm. To decrease the computation time required by nearest neighbour
search, methods such as the kd-tree look-up have been developed, which can significantly
improve the nearest neighbour query time. For a full description of nearest neighbour look
up methods, the reader is directed to [44].

For the current iteration, denoted by I, the ICP algorithm calculates the optimal trans-
form parameters, E∗, using the corresponding nearest neighbour points of the current iter-
ation, as well as the respective score value for the iteration, EI = Λicp(E∗). The algorithm
terminates either after Imax iterations or if the decrease in the score is not sufficient,
‖EI−1 − EI‖ < εicp, where εicp is a user defined threshold value. Figure 2.1 illustrates
the correspondences between two typical 2D scans. The ICP method is summarized in
Algorithm 1.

There are also many variants of the ICP algorithm which compute additional properties
of the point cloud and use these to improve the registration result. A popular variant of the
ICP algorithm is the point-to-plane ICP algorithm. In the point to plane algorithm, the
surface normal of the scan at a particular point is computed, and using this information
the ICP cost function is modified to minimize the error along the surface normal direction.
The point to plane version of the ICP algorithm has been shown to have a wider basin of
convergence, at the cost of increased computational complexity associated with having to
determine the surface normal direction at every point in the point cloud [44].

2.3 The Generalized Iterative Closest Point Algorithm

Through the minimization of the Euclidean distance between nearest neighbour points, the
ICP algorithm fundamentally assumes that the application of the optimal transformation
parameters to the scene scan will result in perfect overlap between the reference scan
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Algorithm 1 Register scene scan P S to reference scan PR using ICP and initial parameter
estimate Ê

1: for I = 0 to Imax do
2: PR ← ∅
3: P S ← ∅
4: E∗ ← Ê
5: Perform nearest neighbour point correspondence:
6: for all p ∈ P S do
7: if d̄(TE∗(p))PR < δmax then

8: P S ← P S ∪ TE∗(p)
9: p∗ = arg min

p̂∈PR
(‖TE∗(p)− p̂‖)

10: PR ← PR ∪ p∗
11: end if
12: end for
13: Minimize ICP cost function:
14: ME ← |P S|
15: CR = 1

ME

∑
pR∈PR

pR

16: CS = 1
ME

∑
pS∈PR

pS

17: P̂R ← {p̂ ∈ Rd : p̂ = p− CR ∀ p ∈ PR}
18: P̂R ← {p̂ ∈ Rd : p̂ = p− CS ∀ p ∈ P S}

19: H =
ME∑
i=1

p̂Ri ⊗ p̂Si
20: UDV T ← svd(H)
21: E∗r ← V UT

22: E∗t ← CR − (E∗r )CS
23: EI = Λicp(E∗)
24: if ‖EI−1 − EI‖ < εicp then
25: terminate
26: end if
27: end for
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Figure 2.1: Scan registration using ICP with point correspondences shown.

and the scene scan. In practice, perfect overlap is an incorrect assumption, as due to
sensor noise and vehicle movement, even scans taken from the same vehicle position will
not overlap perfectly. Instead, a laser scanner can be seen as a sensor which samples the
surface locally, and the scan registration algorithm can explicitly take this information into
account.

One attribute of local surface structure which can aid in the scan registration process is
the surface normal. In practice, surface normals are estimated using principle component
analysis (PCA) for a neighbourhood of points. The point-to-plane ICP algorithm somewhat
addresses the issue of local point sampling, by modelling the point cloud locally as planes
using the surface normal, then minimizing the distance of a point in the scene scan to its
associated plane in the reference scan. The point-to-plane approach however, does not take
into account any local surface information of the scene scan, and it further assumes that
the points in the scene scan are noiseless.

The G-ICP algorithm can be seen as a plane-to-plane matching algorithm. For G-ICP,
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it is assumed that every point in the point clouds of the reference and scene scan have
been sampled from a Gaussian distribution. The Gaussian distribution has a covariance
such that there is confidence about the point’s distance from the surface along the normal
direction, but less confidence about where the point lies along the surface. The Gaussian
distribution is generated using the G-ICP surface covariance matrix Σε ∈ Rd×d, where for
d -dimensional points, the matrix Σε has a small value, ε, as the first element, a value of
one for the remaining elements along the diagonal, and zero for all other elements. In order
to capture the surface information in the correct orientation, the G-ICP surface covariance
matrix is rotated according to the surface normal directions for corresponding points of
the scene and reference scan. The surface covariance matrix is given as

Σε =


ε . . . 0
...

. . .
...

0 · · · 1

 (2.6)

where ε < 1. For the G-ICP algorithm, the process of using nearest neighbours for point
correspondences is used. By doing so, all of the well developed methods for nearest neigh-
bour look-up such as kd-trees can also be used for G-ICP. For the ith pair of corresponding
points, denote the residual vector for the point in the reference scan, pRi ∈ PR, and the
point in the scene scan pSi ∈ P S, as

αi = pRi − TE(pSi ) (2.7)

Let nRi and nSi be the surface normal for the ith point correspondence from the reference
and scene scan, respectively. Denote the functionR : Rd 7→ Rd×d, which accepts the surface
normal and returns a rotation matrix that provides the rotation between the co-ordinate
frame of the scan and the surface normal direction. Then, denote the rotated G-ICP
surface covariance matrices, SRi and SSi , for the reference scan and scene scan, respectively
as

SRi = R(nRi )ΣεR(nRi )T

SSi = R(nSi )ΣεR(nSi )T

Denoting Er as the rotation matrix constructed from the rotation parameters from
parameter estimate E , the G-ICP score function is given as

Λgicp(E) =

ME∑
i=1

αi
T (SRi + ErSSi ErT )−1αi
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The G-ICP score function can be used in place of the ICP score function when perform-
ing G-ICP based scan registration using a procedure similar to Algorithm 1. Intuitively, the
G-ICP score function penalizes the divergence between the Gaussian distributions mod-
elling the surface at corresponding points in the scene and reference scan. For a given
point, the G-ICP algorithm models an associated Gaussian distribution such that there is
high uncertainty in the point location perpendicular to the surface normal direction and
low uncertainty in the location of the point in the normal direction. Through distribution
to distribution matching, the G-ICP algorithm takes the sensor noise associated with both
the reference and scene scan into account, whereas the point to plane ICP algorithm ac-
counts for the sensor noise in only the reference scan. It is also evident that the G-ICP
algorithm requires accurate surface normal information in order to generate the Gaussian
distribution associated with each point. It should be noted that in practice, surface normal
information is difficult to compute, especially in outdoor environments where trees, shrubs
and bushes are present.

2.4 The Normal Distributions Transform Algorithm

The Normal Distributions Transform (NDT) is a method by which sections of a point cloud
are represented as Gaussian distributions within a grid structure. The transform maps a
point cloud to a smooth surface representation described as a set of local distributions which
capture the shape of the surface. Similar to an occupancy grid map, the NDT generates
a subdivided representation of the environment. However, the occupancy grid represents
the probability that the cell is occupied, whereas the NDT represents the probability of
measuring a point cloud sample for each position within a given cell.

The NDT registration algorithm begins by subdividing the space occupied by the ref-
erence scan into fixed size, rectilinear grid cells, c ⊆ Rd, where the set of all cells in the
reference scan is denoted as CR. Denote the collection of the reference scan points in
cell ci as PR

ci
= {p ∈ PR : p ∈ ci}. Given the ith cell, the points of the reference scan

occupying that cell are used to generate a mean, µi, and a covariance matrix, Σi, for a
representative Gaussian distribution, N (µi,Σi). The Gaussian distribution can be inter-
preted as a generative process that models the local surface points PR

ci
within the cell. In

other words, it assumes that PR
ci

is generated by drawing from the Gaussian distribution
NR
i (µRi ,Σ

R
i ). Assuming that the locations of the reference scan surface points are drawn

from this distribution, the likelihood of having measured a point p, within cell ci, can be
modelled as
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ρci(p) = exp

(
−(p− µTi )Σ−1

i (p− µi)
2

)
(2.8)

A sample scan transformed by the NDT and a corresponding probability distribution plot
is given in Figures 2.2 and 2.3.
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Figure 2.2: Sample 2D LIDAR scan with a 50cm by 50cm NDT grid.

Since the point cloud is modelled by a piecewise continuous and piecewise differentiable
summation of Gaussians, numerical optimization tools can be used in order to register the
scene scan with the reference scan. A fitness score can be calculated which quantifies the
measure of overlap between the reference scan and the scene scan transformed by parameter
estimate E . The original work by Magnusson for point to distribution NDT registration
calculates the cost by evaluating each point in the transformed scan at the distribution
corresponding to the NDT cell which each transformed point occupies [34]. The NDT
point-to-distribution (p2d) score is given as

Λp2d
ndt(E) = −

∑
p∈PS

ρccur(TE(p)) (2.9)
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Figure 2.3: Probability density of the laser scan from NDT for each cell. Lighter areas
indicate higher probabilities of sample points
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where ccur denotes the cell which point p occupies when transformed by parameter esti-
mate E . Stoyanov et al. introduced a modified version of NDT which generates an NDT
representation of both scans, then compares the distributions of the scans in order to align
them [54]. Thus, the scene scan P S is also divided into a set of cells, CS, where the points
contained in the ith cell are used to model the distribution N S

i (µSi ,Σ
S
i ). To align the scans,

an optimization is formulated to minimize the L2-distance between the sets of Gaussian
distributions of the reference and scene scan. Denote the difference of mean values for the
ith Gaussian distribution from the reference scan and the jth Gaussian distribution of the
scene scan as

βij =
[
TE(µ

S
j )− µRi

]
Using the difference of means, the NDT distribution-to-distribution (d2d) score function

is given as

Λd2d
ndt(E) = −

|CR|∑
i=1

|CS |∑
j=1

exp(−1

2
βTij
[
ETr ΣS

j Er + ΣR
i

]−1
βij) (2.10)

The distribution to distribution cost function evaluates all pairwise Gaussian compo-
nents for both the scene and the reference scan. In Stoyanov’s work however, the cost
function is only evaluated at the nearest Gaussian component in order to reduce compu-
tation. Evaluation at the nearest Gaussian results in discontinuities in the overall cost
function, which implies that the cost function is non-smooth and the gradient and Hessian
do not exist in the transformation space when the correspondences between mean points
change. The issue of the non-smooth and discontinuous cost function is also present in
point-to-distribution NDT, when scene scan points cross cell boundaries. Magnusson et
al. address the discontinuous cost function using a tri-linear interpolation scheme which
takes distributions from neighbouring cells into account when calculating the gradient and
Hessian contributions [34]. However, the tri-linear interpolation does not fully solve the
issue, as the cost functions are still discontinuous.

It should be noted that it is possible to compute an analytic gradient, g, and Hessian
H, for both NDT cost functions, which can be used for improving the performance of the
nonlinear optimization method selected. For point to distribution matching, denote the
functions Πg(pk, E), and ΠH(pk, E), which use a point in the scene scan and the transfor-
mation parameters to calculate an associated gradient and Hessian contribution for point
pk. The optimization is initialized from a parameter estimate Ê , and terminates once the
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norm of the gradient, ‖g‖, is less than a user specified threshold, εndt. Biber et al. use
a Newton method with line search to perform the optimization [5], however other meth-
ods such as Levenberg-Marquardt or Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
could be used. The NDT point to distribution registration algorithm is summarized in
Algorithm 2. The NDT distribution to distribution registration algorithm is performed
analogous to Algorithm 2, except the NDT is performed for both the scene and reference
scan, and the distribution to distribution cost function given by Equation 2.10 is used in
place of Equation 2.9.

2.5 K-means Clustering

K-means clustering is a well known data partitioning technique [31] which, given a set of
data points, seeks to divide the data points k sets, Γ = {γ1, γ2, . . . , γk}. The associated
clustering metric is the squared distance between the points in the data set and their
associated closest cluster mean, µi. K-means seeks to divide the data points into k sets
such that the function

fkm =
k∑
i=1

∑
p∈γi

‖p− µi‖2 (2.11)

is minimized. The k-means algorithm is typically performed using an iterative method and
has two main steps. Given a set of initial k mean locations, the first step assigns each
of the data points in point cloud, P , to the cluster with the closest mean value. In the
second step, the means are re-calculated as the mean value of the data points assigned
to each cluster. These steps are repeated until the change in the vector of mean values,
M, between t and t − 1 iterations, δ, falls below a certain threshold, εkm. The k-means
algorithm for clustering is summarized in Algorithm 3.
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Algorithm 2 Register scene scan P S to reference scan PR using point to distribution
NDT

1: Initialization of NDT:
2: allocate NDT cells CR, for reference scan PR

3: for all ci ∈ CR do
4: PR

ci
= {p ∈ PR : p ∈ ci}

5: µi ← 1
|PRci |

∑
p∈PRci

p

6: Σi ← 1
|PRci |−1

∑
p∈PRci

(p− µi)(p− µi)T

7: end for
8: Registration of scene scan with the reference NDT:
9: E ← Ê

10: I ← 0
11: while g > εndt and I<Imax do
12: s← 0
13: g ← 0
14: H ← 0
15: for all p ∈ PR do
16: p̄← TE(p)
17: ccur = {c ∈ CR : p̄ ∈ c}
18: s← s+ ρccur(p̄)
19: g ← g + Πg(p̄, E)
20: H ← H + ΠH(p̄, E)
21: end for
22: ∆E = (H)−1(−g)
23: E ← E + ∆E
24: end while
25: E∗ ← E
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Algorithm 3 Algorithm for k-means clustering of point cloud P

1: Randomly choose k mean locations:
2: M0 ← {µ0

1, µ
0
2, . . . , µ

0
k}

3: while δ > εkm do
4: Perform assignment step:
5: for all γi ∈ Γ do
6: γi ← {p ∈ P : ‖p− µti

∥∥ ≤ ‖p− µtj‖ ∀ j ∈ {1, . . . , k}
7: end for
8: Perform mean update step:
9: for all i ∈ {1, . . . , k} do

10: µti ← 1
|γi|
∑
p∈γi

p

11: end for
12: Check for convergence:
13: Mt ← [µt1 µ

t
2 . . . µtk]

T

14: δ ← ‖Mt−1 −Mt‖
15: end while
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Chapter 3

Multi-Scale K-Means NDT

The NDT approach in 2D seeks the transform parameters x, y and θ such that the trans-
formed scene scan is best aligned with the reference scan according to the NDT cost
function. The 2D NDT algorithm divides the reference scan of the environment using a
rectilinear grid and models the points contained in each grid cell as a Gaussian distribu-
tion, which results in a nonlinear optimization that is not guaranteed to converge, and is
susceptible to local minima if not initialized sufficiently close to the minimum.

To demonstrate the weak convergence characteristics of the standard NDT algorithm,
a projection of the 3D cost function onto the x and θ plane for NDT is presented in Figure
3.1, which illustrates numerous local minima of the NDT cost function surrounding the
global minimum. It is clear that if the optimization is not initialized close to the global
minimum, the optimization may converge to a local minimum. In this chapter, a method
to improve the convergence basin of NDT, the Multi-Scale K-Means NDT (MSKM-NDT),
is presented. The grid based division of the scan is replaced with a multi-scale k-means
clustering technique. The number of clusters is selected such that, as the registration scale
decreases, the number of cluster increases. In order to increase the basin of convergence,
the optimization step is performed across varying scales, as the optimization for the current
scale is initialized with the solution from the previous scale. The multi-scale method avoids
local minima and is experimentally shown to reliably converge to the global minimum for
large initial transformation errors. Experimental results also demonstrate that the MSKM-
NDT algorithm can be used in a SLAM scenario to accurately reconstruct the environment
map and vehicle path from partially overlapping laser scans.

Another issue with the standard NDT formulation is that arbitrarily small changes
in the parameter estimate could cause the scene scan points to cross cell boundaries,
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resulting in discontinuities in the overall cost function. As a result, the cost function is
non-smooth and the gradient and Hessian do not exist in the transformation space at cell
boundaries. To remove the discontinuities with the standard NDT formulation, every point
of the scene scan would have to be evaluated at the Gaussian distribution of every grid
cell, which is generally not computationally feasible as even modestly sized environments
results in many grid cells, depending on the discretization resolution. Magnusson et al.
address the discontinuities using a tri-linear interpolation scheme which takes the influence
of neighbouring cells into account when calculating the gradient and Hessian contribution
from a single scene point [36]. However, the interpolation approach merely reduces, but
does not entirely resolve the issue of cost function discontinuity, as a boundary crossing
could still cause a finite change in the cost function for an arbitrarily small change in
the transformation parameters. Thus, even with the use of tri-linear interpolation, the
cost function remains discontinuous and therefore convergence of the optimization is not
guaranteed. The MSKM-NDT approach, on the other hand, performs k-means clustering of
the scan, generating comparatively fewer Gaussian distributions compared to the grid based
approach. Since fewer Gaussian distributions are generated, the MSKM-NDT approach
can feasibly evaluate the points of the scene scan at every distribution for a given scale,
which removes discontinuities in the cost function caused by the cell boundaries found
in the standard NDT algorithm. Evaluation of the scene scan points at all Gaussian
distributions guarantees that the nonlinear optimization is well defined and all standard
nonlinear optimization algorithms will converge to a solution satisfying necessary conditions
for optimality.

3.1 Proposed Method: Multi-Scale K-Means NDT

(MSKM-NDT)

In order to overcome the poor convergence basin of the NDT algorithm, a multi-scale reg-
istration approach is proposed. The proposed approach uses k-means clustering to cluster
the scan at different scales and perform the optimization at successively decreasing scales.
The k-means clustering results in a smooth cost function and removes the discontinuities
in the gradient and Hessian associated with the standard NDT algorithm. The multi-scale
optimization improves the convergence basin with a course-to-fine approach that avoids
local minima. The standard NDT algorithm is modified in the following ways:

1. The grid based approach in NDT for the division of the scan is replaced with the
k-means algorithm for clustering the reference scan, PR, into k clusters. Let the
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Figure 3.1: Cost surface for NDT registration, for varying x and θ parameters. The black
markers denote the local minima and the white marker denotes the global minimum. The
true transform parameters are x = 30 cm and θ = 20 deg.

set of all clusters be Γ = {γ1, γ2, . . . , γk}, where each cluster has Nγj points and
k∑
j=1

Nγj = |PR|. Where standard NDT models the distribution of points within

each cell as a Gaussian distribution, MSKM-NDT models each k-means cluster as a
Gaussian distribution.

2. The standard NDT algorithm performs the optimization step for one fixed grid spac-
ing, while MSKM-NDT performs the optimization step at decreasing scales, increas-
ing the number of clusters as the scale is decreased. Each scale represents the num-
ber of clusters the reference scan is divided into, using k-means. The set of scales,
Φ = {φ1, φ2, . . . , φN}, is selected in descending order, resulting in a course-to-fine
optimization scheme which improves convergence to the global minimum of the cost
function.
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3. To accommodate the clustering of the reference scan, the standard NDT cost calcu-
lation is modified. Standard NDT evaluates the Gaussian distribution within the cell
that a transformed point, TE(p), falls into. For MSKM-NDT, each transformed point
is evaluated with respect to all cluster distributions in the current scale, φi, with
the strongest contributions coming from the most likely clusters. For each cluster
in the current scale, the transformed point, p̄, is evaluated using the score function
associated with the current cluster, γj, denoted as

ργj(p̄) = exp

(
−

(p̄− µTj )Σ−1
j (p̄− µj)
2

)
(3.1)

where µj and Σj are the mean and covariance for cluster γj, respectively. Evaluation
of the point at all of the clusters of the current scale results in a continuous and
differentiable cost function at each stage of the multi-scale optimization.

An example of a reference scan clustered using k-means at three different scales is
presented in Figures 3.2, 3.3 and 3.4. The red ellipses represent one standard deviation for
the Gaussian distributions of the cluster points. The figures demonstrate that clustering
at larger scales captures very coarse features within the scan and clustering at smaller
scales captures the finer details. It is this phenomenon which MSKM-NDT exploits. At
smaller scales, the cost function has a wider basin of convergence, however due to the
coarseness of the clustering, the minimum at that scale may not correspond to the true
transformation parameters. At higher scales, the cost function has a much narrower basin
of convergence, however due to the details captured at higher scales, the global minimum is
likely to correspond to the true transformation parameters. An example of the cost surface
projection over multiple scales is depicted in Figure 3.5. In the multi-scale approach, the
optimization for a scale, φi, is initialized with the parameter solution from the previous
scale, φi−1. The end result is a method which effectively widens the basin of convergence
for the NDT algorithm, making it more robust to poor initializations. The MSKM-NDT
algorithm is summarized in Algorithm 4.

3.2 Experimental Results

To validate the MSKM-NDT approach, two sets of experiments are performed. In the first
experiment, SLAM is performed in an indoor environment using a series of 2D laser scans
and three scan registration techniques: ICP, NDT and MSKM-NDT. The environment
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Figure 3.2: Reference scan clustering at scale φ = 3

map and resulting vehicle motion is determined through pair-wise scan registration SLAM,
where the entirety of the map and vehicle motion is determined through the integration
of incremental pose updates provided through scan registration of successive laser scans.
To validate scan registration accuracy, the experiment is performed using the three scan
registration techniques. The resulting maps are compared qualitatively based on knowledge
of the indoor environment, and also based on the resulting vehicle motion ground truth
provided by an indoor positioning system. To demonstrate the convergence properties of
the MSKM-NDT algorithm compared to the standard NDT algorithm, a second experiment
is performed where a known relative transformation between a pair of sequential laser
scans is applied and compared to the transform parameters resulting from a given scan
registration algorithm. The initial relative transformation applied to each scan pair is
systematically varied such that scan registration is attempted over a wide range of initial
parameter errors, resulting in a pattern for the convergence basin of each tested algorithm.

To collect data for the experiment, a Hokuyo UTM-30LX LIDAR with a 40Hz update
rate is mounted to a Clearpath Robotics A100 Husky chassis and driven through the en-
vironment, which is approximately 5m by 6m in size. Although the LIDAR scan range is
30m, the view of the entire room is occluded due to large obstacles present in the centre of
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Figure 3.3: Reference scan clustering at scale φ = 9
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Figure 3.4: Reference scan clustering at scale φ = 20

the room. Vehicle motion ground truth is collected with an OptiTrack indoor positioning
system (IPS) that is capable of millimeter translation accuracy and sub degree rotation
accuracy.

Although comparison of the proposed method against G-ICP registration is highly
desirable in the SLAM scenario, the G-ICP algorithm is currently implemented for 3D
point clouds only, and a full implementation of 2D G-ICP and comparison against the
MKSM-NDT approach is left as an area of future work.

3.2.1 SLAM Experiments

For the first set of experiments, an indoor environment is reconstructed from a series of
overlapping 2D laser scans, taken from multiple poses in an indoor lab environment, using
pair-wise SLAM. The ICP, NDT and MSKM-NDT algorithms are compared to one another
for qualitative correctness of the resulting map, and the RMS error of the vehicle motion
over its trajectory. Note that for the experiment, no vehicle odometry is used and the
registration is instead initialized with a parameter estimate of Ê = {0, 0, 0}. The resulting
maps and vehicle motion are illustrated in Figures 3.6, 3.7 and 3.8, respectively.
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Figure 3.5: Contour plots for cost surfaces with differing numbers of clusters. Contour
plots of cost surfaces with (a) 3 clusters. (b) 6 clusters. (c) 9 clusters. (d) 15 clusters.
This example shows the cost functions for two scans which have only been transformed
in x and θ. The white marker indicates the true transformation parameters, x = 30 and
θ = 20. Using successive optimizations at decreasing scales, the overall optimization of the
cost function avoids the local minima and converges to the global minimum.
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Figure 3.6: Map and vehicle motion using the ICP algorithm for a pair-wise registration
SLAM solution. Note the drifting of the map due to the accumulation of registration error.
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Figure 3.7: Map and vehicle motion using the NDT algorithm for a pair-wise registration
SLAM solution. Note the poor map quality due to the NDT algorithm converging to local
minima.
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Figure 3.8: Map and vehicle motion using MSKM-NDT algorithm for a pair-wise registra-
tion SLAM solution. Note the noise in some of the corners of the room due to the LIDAR
beam glancing between edges of objects and registering false readings. The MSKM-NDT
algorithm is able to generate a high quality map, even with this noise present.
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It can be seen that the structure of the room, such as the corners and walls, are better
represented using the MSKM-NDT approach, and the recovered map using MSKM-NDT
shows accurate scan registration, as verified by the strong overlap between the recovered
vehicle path and the IPS ground truth path. In contrast, the ICP based SLAM is prone
to drift over time due to the accumulation of pairwise registration errors, while the NDT
SLAM solution produces a warped map due to the optimization converging at local minima.
The RMS position error for the MSKM-NDT is significantly less compared to the other
approaches, as the RMS position error over the experiment is 38.47 cm using ICP SLAM,
9.48 cm using the NDT SLAM, and 1.16 cm using MKSM-NDT SLAM.

To further illustrate the robustness of the MSKM-NDT algorithm in a SLAM scenario,
a similar experiment with the same data set is performed, however, using every 50th scan
in the sequence of laser data, as opposed to the previous experiment where every scan was
used. The use of every 50th scan represents a much larger initial transformation between
the scans. As with the previous experiment, no vehicle odometry is used to initialize the
registration and is initialized with a parameter estimate of Ê = {0, 0, 0}. The resulting map
using the MSKM-NDT algorithm with every 50th laser scan is visually indistinguishable
from the map generated using MKSM-NDT with every laser scan, and is thus not displayed.
The calculated RMS error over the entire run is calculated to be approximately 1.34 cm,
which is comparable to the results of the MKSM-NDT approach using every laser scan.
It should be noted that the SLAM results using the ICP and NDT algorithms with every
50th laser scan are omitted, as the scan registrations failed to converge. It is evident that
the MSKM-NDT method is robust to initial transformation errors, as it is able to generate
accurate maps in a SLAM scenario using subsequent, partially overlapping scans, which
greatly differ in pose.

3.2.2 Convergence Tests

In order to test the convergence basin of the MSKM-NDT approach, a pair of sequential
scans are transformed relative to each other by a known amount and a registration algo-
rithm is performed in order to determine the transformation parameters. If each of the the
resulting transformation parameters are within 5% of the true transformation parameters,
the registration is deemed successful. To test a wide case of scenarios, the scans are tested
over an x-position range of -200cm to 200cm (with a 50cm resolution), a y-position range
of -200cm to 200cm (with a 50cm resolution) and a rotation range of -30 degrees to 30
degrees (with a 15 degree resolution), resulting in a total of 405 combinations.

Three scan registration approaches are compared: the standard NDT algorithm (NDT),
a multi-scale grid discretization NDT (MSG-NDT) and the proposed method, a multi-scale
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NDT MSG-NDT MSKM-NDT
Full overlap 4.9% 22.2% 94.3%

Partial overlap 3.0% 20.0% 75.9%

Table 3.1: Summary of success rates for registration experiments

k-means clustering NDT (MSKM-NDT). The multi-scale grid discretization approach is
an intuitive scale based optimization approach suggested by Magnusson et al. [34], where
the scale size corresponds to the spacing between grid cells. A large scale denotes large
grid spacing, while a small scale denotes finer grid spacing. For the experiment a cluster
scale setting of Φ = {3, 6, 9, 15} for the MSKM-NDT is selected and a grid scale setting
of Φ = {400, 200, 100, 50} (distance between grid cells in [cm]) for MSG-NDT, is selected.
The scale sizes are determined experimentally through rough testing of scale sequences that
perform best for each algorithm. Although the experimental selection of the scale sequence
sufficiently demonstrates the behaviour of each algorithm, a more intelligent, automated
approach for scale selection is left as future work.

The experiment is performed for two test cases. In the first case, the two scans to
be registered are fully overlapping, which is, in general, the best case scenario for scan
registration. In the second case, the scans to be registered are partially overlapping, which
is more realistic scenario for a mobile robotics application. The results are shown in Figures
3.9 to 3.11. For Figures 3.9 to 3.11, the blue dot indicates the x, y displacement between
scans and the arrow shows the rotations which were tested at that x, y location, describing
a full parameter set for the transformation. A red arrow indicates the registration failed
for that parameter set, while a green arrow indicates the registration succeeded.

Table 3.1 summarizes the results of the registration tests. The NDT algorithm has
the smallest basin of convergence, as it is essentially only able to converge to correct
solutions for small initialization errors for both the fully and partially overlapping case.
The MSG-NDT algorithm has a wider basin of convergence, but still generally fails for
large translations in the x and y directions. The MSKM-NDT algorithm had the highest
success rate and suggests the widest valley of convergence. Furthermore, there is no visible
trend to when the MSKM-NDT algorithm fails. The failures for MSKM-NDT could be
geometry specific and could be rectified by performing the registration with additional
scales.

It can be seen that in general, the MSKM-NDT algorithm converges for significantly
more initial parameter errors compared to the NDT or MSG-NDT algorithms. While
the MSG-NDT is also a multi-scale algorithm, the grid based discretization produces rapid
changes in the cost surface as points pass between cell boundaries, resulting in a discontinu-
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(a) Full scan overlap: NDT
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(b) Partial scan overlap: NDT

Figure 3.9: Plots illustrating the registration results for the NDT algorithm using a pair
of scans from various initial transformations.
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(a) Full scan overlap: MSG-NDT
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(b) Partial scan overlap: MSG-NDT

Figure 3.10: Plots illustrating the registration results for MSG-NDT algorithm using a pair
of scans from various initial transformations.
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(a) Full scan overlap: MSKM-NDT
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(b) Partial scan overlap: MSKM-NDT

Figure 3.11: Plots illustrating the registration results for the MSKM-NDT algorithm using
a pair of scans from various initial transformations.
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ous and non-smooth cost function that is difficult to optimize. In contrast, the MSKM-NDT
algorithm does not discretize the scan using a voxel grid, but instead performs k-means
clustering which ultimately results in a smooth and differentiable cost function. As a re-
sult, the MSKM-NDT yields better registration results, even though both approaches are
multi-scale.
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Algorithm 4 Register scene scan P S to reference scan PR using multi-scale NDT with
k-means clustering (MSKM-NDT)

1: E ← Ê
2: for all φi ∈ Φ do
3: Perform k-means clustering of scan:
4: Γ← kmeans(PR, φi)
5: for all γj ∈ Γ do

6: µγj ← 1
|γj |
∑
p∈γj

p

7: Σγj ← 1
|γj |−1

∑
p∈γj

(p− µγj)(p− µγj)T

8: end for
9: Registration of scene scan:

10: while g > εndt do
11: s← 0
12: g ← 0
13: H ← 0
14: for all p ∈ PR do
15: p̄← TE(p)
16: for all γj ∈ Γ do
17: s← s+ ργj(p̄)
18: g ← g + Πg(p̄, E)
19: H ← H + ΠH(p̄, E)
20: end for
21: end for
22: ∆E = (H)−1(−g)
23: E ← E + ∆E
24: end while
25: end for
26: E∗ ← E
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Chapter 4

Segmented Greedy Cluster NDT

The voxel based discretization of NDT generates Gaussian distributions which do not nec-
essarily model the environment accurately. The distributions only locally model the points
within each cell, and may not capture broader features present within the scan. Further-
more, the crossing of points between cell boundaries during the optimization process results
in a cost function which is discontinuous. The MSKM-NDT method partitions a 2D laser
scan using k-means clustering over multiple scales. The sets of clusters resulting from the
partitioning are used in a course-to-fine optimization method in order to avoid local minima
and improve convergence. The MSKM-NDT approach results in a smooth and continuous
cost function, but requires fixing the number of partitions a priori. Furthermore, the use
of k-means clustering for 3D point clouds is not practical, as the computational complexity
for the algorithm is on the order of O(ndk+1 logn), where k is the number of clusters, n
is the number of points in the point cloud, and d is dimensionality of the data [21]. In
addition to the clear increase of dimensionality when transitioning from 2D to 3D data, 3D
point clouds also typically contain a larger number of points, causing significant growth in
computational complexity.

The idea of partitioning 3D point clouds has previously been proposed by Moosmann
et al., who used a graph based approach to segment a laser scan based on local convexity
criterion [38]. The graph based partitioning method computes surface normal information
in order to partition the scan, however good quality surface normal information is diffi-
cult to generate for sparse laser scans, or when the environment consists of objects such
as trees, brush, and foliage. Douillard et al. demonstrated scan partitioning of urban
environments using Gaussian processes and incremental sample consensus [13]. The GP
segmentation method was then applied to ICP scan registration, where correspondences
between neighbouring points were constrained to belong to corresponding segments [12].
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Thus, the notion of using point cloud partitioning to aid scan registration is valid, however
a different approach is required for less structured environments, such as sparse forested
areas.

The contribution of this chapter is the application of a segmentation and clustering
algorithm to improve the accuracy and convergence of the NDT algorithm, specifically
for large, open, outdoor environments with sparse point-clouds. Ground segmentation is
performed in order to separate sparse, natural features in the environment, and are used to
generate Gaussian clusters for the NDT algorithm. Clustering according to natural features
is desirable since it allows for accurate modelling of the environment using significantly
fewer distributions compared to the standard NDT algorithm. The application of ground
segmentation also results in the decomposition of the environment into ground and obstacle
partitions which can be used for higher level mission execution.

To perform ground segmentation, a Gaussian process regression [60] and incremen-
tal sample consensus [13] is applied to the 3D laser scan. A greedy clustering algorithm
which partitions the non-ground points into clusters is then proposed. Assuming that the
non-ground points are fully removed by the ground segmentation, the greedy clustering
algorithm generates clusters which group together points belonging to features in the en-
vironment, such as trees, bushes, etc., and the clusters are used to construct Gaussian
distributions. The NDT algorithm is then modified to evaluate the cost function for all
generated clusters, which guarantees that the nonlinear optimization is well defined and all
standard nonlinear optimization algorithms will converge to a solution which satisfies the
necessary conditions for optimality [3]. Evaluation at all Gaussian clusters is performed for
both the point-to-distribution and distribution-to-distribution variants of the NDT algo-
rithm. Finally, the proposed method is evaluated for accuracy and convergence using laser
data obtained from the Ford campus data set [46] and a sparse forested park at Worcester
Polytechnic Institute.

4.1 Proposed Method

In order to improve the accuracy and convergence basin of the NDT algorithm, the Seg-
mented Greedy Cluster NDT (SGC-NDT) method is proposed. The SGC-NDT method
segments the ground points and performs clustering on the remaining points. Segmenting
of the ground point and application of the greedy cluster algorithm is applied to both the
point-to-distribution and distribution-to-distribution registration method for NDT.

The NDT algorithm is modified in the following three ways. First, the ground points of
the scan are removed using the ground segmentation method described in Section 4.2. In
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large, outdoor, field-like environments, the ground points typically do not provide as much
information for the purpose of scan registration as other environmental features such as
large trees, fences, etc., and in fact, can introduce convergence issues for ICP and NDT.
Scan point density also becomes an issue when dealing with the ground, as the ground
points very close to the laser scan are far denser than those farther away. Non-uniform
density of the point cloud is not desirable for NDT, since the high density of points near the
vehicle will have a tendency to generate Gaussian distributions biased towards the sensor
origin. The non-uniform density of a scan can be somewhat mitigated using a down-
sampling voxel based filter for the scan, however the use of a voxel filter adds additional
computation to the scan registration, and removes information from the entire scan due
to the down-sampling process. Although down sampling the scan will remove the biased
distribution issue for NDT, it does not solve the problem of the discontinuous cost function.

Second, the non-ground points are clustered using the greedy clustering method de-
scribed in Section 4.3. By performing the clustering step, natural features in the envi-
ronment, such as trees and bushes, are clustered to form the Gaussian distributions for
SGC-NDT. In contrast, NDT performs a voxel based discretization, generating truncated
Gaussian distributions which do not necessarily correctly model the environment. The
greedy clustering method can be seen as a way to capture representative features from
the environment, assuming they are spatially separated once the ground points have been
removed and are distributed in a configuration that allows for the formation of clusters
that are sufficient for NDT registration.

Finally, to accommodate the greedy clustering of the scan, the NDT cost calculation is
modified as described in Section 4.4. The SGC-NDT algorithm evaluates the transformed
point with respect to the set of all the Gaussian distributions for the clusters identified by
the greedy clustering method. Similarly, for distribution-to-distribution matching NDT,
each Gaussian distribution in the scene scan is scored against all Gaussian distributions
from the reference scan. Evaluation at all of the distributions is computationally feasi-
ble, since the number of clusters identified in the scan is typically significantly smaller
than the number of Gaussian distributions that would result from voxel based discretiza-
tion. Calculating the cost based on all Gaussian distributions in the scans allows for the
strongest contributions to come from the most likely clusters and provides a continuous
and differentiable cost function for the optimization.
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4.2 Ground Segmentation

The basis for the ground segmentation algorithm used for this work was first demonstrated
by Douillard et al. [13]. Their method performs ground segmentation based on a 2D
Gaussian process model of the sparse point clouds. The use of Gaussian processes provides
a probabilistic framework to identify ground points using an incremental sample consensus
(INSAC) method. A modified version of Douillard’s ground segmentation algorithm was
introduced by Tongtong et al. [57]. To reduce computation, Tongtong divides the scan
into sectors based on a polar grid binning, and applies the ground segmentation to each
sector separately. The Gaussian process regression is formulated for an approximate signal,
based on the points contained in each sector. Tongtong’s method was shown to run more
quickly than the 2D method, with comparable results in segmentation quality. The 1D
approximation method for ground segmentation from [57] is used in this work, and is briefly
summarized in this section.

4.2.1 Polar Grid Binning

In order to perform the polar grid binning, the x − y plane of the laser scan, in the laser
frame, is first segmented into Na angular sectors. The angle each sector covers, τa, is given
by

τa =
2π

Na

Each sector is further sub-divided into Nl linear range based bins. The distance each linear
range bin covers, τl, is given by

τi =
Rmax

Nb

where Rmax is the maximum range measurement expected for the given scan. Denote the
cell for the ith sector and jth linear range bin as ξij ⊆ R2, and the set of all bins as Ξ where
|Ξ| = NaNl. Define the points from point cloud P whose projection falls within cell ξij as

Pij = {p ∈ P : (px, py) ∈ ξij}

To perform rapid ground segmentation, a set of tuples is constructed from the cell point
sets, Pij. In order to construct the set of tuples, a prototype point is determined for the
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points within each cell. For the case of ground segmentation, it is desirable to model the
prototype point in each cell such that it best represents the ground. The prototype point
for the points Pij within each cell ξij is selected as the point with the lowest z co-ordinate,
and is given as

xij = argmin
p∈Pij

(pz)

Finally, using the prototype point for the points in each cell, the set of tuples for each
angular sector can be defined. Denote a tuple associated with the prototype point xij
of a cell as yij = (rij, hij) ∈ R2. For the tuple notation, the first element of the tuple
rij ∈ R denotes the range component, and hij ∈ R denotes the height component. Using
the prototype point for the cell, xij, the range and height components for the tuple are
calculated as

rij =
√

(xxij)
2 + (xyij)

2

hij = xzij

The range element, rij, is the Euclidean distance of the x and y components from the
prototype point, xij, to the sensor origin, and the height element, hij, is simply the z
component of the prototype point. The set of tuples, Yi , for angular sector i is defined as

Yi = {yij ∀ j ∈ {1 . . . Nl}}

For the ground segmentation, a seed-set must also be defined. The seed set is the set
of points which is used to initialize the ground segmentation INSAC algorithm. For a
given sector, the seed points are defined as the range-height tuple points that are within a
threshold distance of the laser scan origin, δo. The seed points for each sector, Y seed

i , are
given as

Y seed
i = {(r, h) ∈ Yi : r < δo} (4.1)

4.2.2 Gaussian Process Regression

In this work, ground segmentation is done by performing Gaussian Process (GP) regression.
For a thorough exploration of the usage of GP’s for ground terrain modelling, the reader is
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directed to the work of Vasudevan et al. [60]. In this work, the approximate GP regression
method as described in [57] is applied.

The GP regression provides a probabilistic framework to predict a set of height values
for a set of query inputs, given a set of training data. Suppose the GP model is to be
trained with a subset of the range-height tuple set, denoted as Ȳi ⊆ Yi. A covariance
function is used to quantify the correlation among data points used for the regression.
In this work, a squared-exponential covariance function, κ : R2 7→ R is used. Suppose
the correlation between two scalar data points, b1 ∈ R and b2 ∈ R is desired. Using the
squared-exponential covariance function, the correlation is given by given by

κ(b1, b2) = σ2
f exp(− 1

2l2
(b1 − b2)2) (4.2)

where l ∈ R is the length-scale parameter, and σf ∈ R is the input variance, which are
known as the hyper-parameters for the GP model. Intuitively, from the covariance function
it can be seen that points which have similar values will be highly correlated, while points
which are farther apart are less correlated. Given the covariance function, a regression
problem for ground segmentation can be posed which seeks to predict the height values for
the associated range values from tuple set, Yi, given that the GP model has been trained
using the data from the training set, Ȳi. Using the covariance function, define four matrices
which correlate the query and training range data. Denote Kqq ∈ R|Yi|×|Yi| as the auto-
covariance matrix for the query set. Let the notation K(j, k) access element (j, k) of the
matrix K(j, k). To simplify notation, let the range and height values of a tuple element
yk ∈ Yi be denoted as rk and hk, respectively. Then, each element of the matrix Kqq is
populated using the squared exponential covariance function given by Equation 4.2,

Kqq(j, k) = κ(rj, rk)∀ yj, yk ∈ Yi
Similarly, the cross-covariance matrix between the query and training data, Kqt ∈ R|Yi|×|Ȳi|,
and the auto-covariance matrix for the training data, Ktt ∈ R|Ȳi|×|Ȳi|, can be defined as

Kqt(j, k) = κ(rj, rk)∀ yj ∈ Ȳi and yk ∈ Yi
Ktq = KTqt

Ktt(j, k) = κ(rj, rk)∀ yj, yk ∈ Ȳi

Using the auto and cross correlation matrices, the Gaussian process models the rela-
tionship between the input and training data as a joint distribution. Denote the vector of
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height values from the training set as the vector λ = [h1 . . . h|Ȳi|]
T , where h ∈ Ȳi. Similarly,

denote the vector λ∗ as height values to be inferred using the GP regression. The GP is
then modelled as the joint distribution[

λ

λ∗

]
∼ N

(
0,

[
Ktt + σ2

nI Ktq
Kqt Kqq

])

where σ2
n is an additional hyper-parameter, the process noise variance.

From the joint distribution, an expression for the conditional mean and conditional
variance can be expressed. The conditional mean and covariance expressions result in the
predictive equations. In other words, using the training data and the predictive equations,
a vector of ground height values, λ∗, and associated covariances, Vλ∗ , can be predicted for
a set of queried range values. The conditional mean and covariance predictive equations
are given as

λ∗ = Kqt
[
Ktt + σ2

nI
]−1

λ

Vλ∗ = Kqq −Kqt
[
Ktt + σ2

nI
]−1Ktq

Denote the method Υ(Yi, Ȳi), that generates the four correlation matrices Ktt , Ktq, Kqt,
and Kqq using the training data, Yi, and query points, Ȳi, for the angular sector, i.

From the predictive equations, the estimated ground height for a given range value
from the set of query data can be generated. Using index notation, denote λ∗k as the kth

element of the query height vector, λ∗, and similarly denote λk as the kth element of the
vector of training heights, λ. Further denote N∗λ as the number of elements in the vector,
λ∗ and note that N∗λ = |Yi|. In order to determine if the query point is an inlier according
to the GP model, the predicted ground height, λ∗k, can be compared against the actual
ground height from the tuple, yk = (rk, hk) ∈ Yi, for the query point. To be considered an
inlier with the GP model, two criteria must be fulfilled:

Vλ∗k < δmodel

hk − λ∗k√
σ2
n + Vλ∗k

< δdata

where δmodel defines the threshold of covariance for the test point and δdata defines a normal-
ized distance of the test point to its expected value from the GP model. The comparison
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against δmodel ensures that there is sufficient confidence in the GP model to allow for inlier
classification, and the comparison against δdata uses the distance between the predicted
ground height and measured ground height to classify the query point as an inlier to the
GP model.

4.2.3 Ground Segmentation Using Gaussian Process Regression
and Incremental Sample Consensus

The INSAC algorithm is used in conjunction with the GP regression model to identify all
of the ground points in the laser scan. The ground points are separately identified for each
sector of the polar grid bins. The 3D scan is first binned into sectors as discussed in section
4.2.1. For each sector, the training points for the GP model, Ȳi, are selected as the sector’s
seed points. The remainder of the prototype point tuples in the query set, Yi, are evaluated
against the GP model. The inlier tuples for the current iteration are added to the inlier
set, Yin, and a new GP model is produced. The process of adding inliers and re-generating
the GP model is repeated until no further inliers can be added to the set. Since there are
no remaining inliers, all the prototype points for the bins have been classified as ground
or not ground. To classify the remaining points in each ground bin, the height component
of each point is compared against the height component of the ground prototype point. If
the absolute difference in height is less than a user defined threshold, δg, the points are
also classified as ground points. Denote the method P g ← ϑ(P ), which accepts point cloud
P and returns the ground points P g. The ground segmentation process is summarized in
Algorithm 5. Ground segmentation results for an example laser scan are given in Figure
4.1.

4.3 Clustering of the Non-Ground Points

Once the ground points have been segmented, the remaining non-ground points must be
clustered in order to apply the SGC-NDT algorithm. Clustering of point cloud data is an
active area of research, as Golovinskiy et al. [16] demonstrated 3D point cloud clustering
using a hierarchical approach, and Klasing et al. [24] performed clustering on 3D data
using a radially bounded nearest neighbour (RBNN) graph. Although the demonstrated
segmentation performance for the existing approaches is strong, the algorithms are evalu-
ated on very dense point clouds, and intuitively, the methods would not perform well when
the point clouds are sparse. In order to perform clustering of the non-ground points of a
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Algorithm 5 ϑ(P ): Given point cloud P , find the ground points, P g, using GP-INSAC

1: P g ← ∅
2: for all i ∈ {1 . . . Na} do
3: Yi ← ∅
4: for all j ∈ {1 . . . Nl} do
5: xij = argmin

p∈Pij
(pz)

6: rij =
√

(xxij)
2 + (xyij)

2

7: hij = xzij
8: yij = (rij, hij)
9: Yi ← Yi ∪ yij

10: end for
11: end for
12: for all i ∈ {1 . . . Na} do
13: Y seed

i ← {(r, h) ∈ Yi : r < δo}
14: Ȳi ← Y seed

i

15: Yin ← Ȳi
16: Yi ← Yi\Ȳi
17: while Yin 6= ∅ do
18: Yin ← ∅
19: [Kqq,Kqt,Ktq,Ktt]← Υ(Yi, Ȳi)

20: λ∗ ← Kqt [Ktt + σ2
nI]
−1
λ

21: Vλ∗ ← Kqq −Kqt [Ktt + σ2
nI]
−1Ktq

22: for all yk ∈ Yi do
23: if Vλ∗k < δmodel and

hk−λ∗k√
σ2
n+Vλ∗

k

< δdata} then

24: Yin ← Yin ∪ yk
25: end if
26: end for
27: Ȳi ← Ȳi ∪ Yin
28: Yi ← Yi\Yin
29: for all j ∈ {1 . . . Nl} do
30: if (rij, hij) ∈ Ȳi then
31: Pin ← {p ∈ Pij : |pz − hij| < δg
32: P g ← P g ∪ Pin
33: end if
34: end for
35: end while
36: end for
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(a) Classification of prototype points for one sector

(b) Ground segmentation result for 3D laser Scan

Figure 4.1: Ground segmentation results for an outdoor scene with large trees and shrubs.
Blue points have been classified as ground, and red X points are classified as non-ground.
Figure (a) shows the classification results for a single sector after performing the GP based
ground segmentation. The x-axis shows the division of bins for the sector. Figure (b)
shows the classification results for the entire 3D laser scan. The scan has been binned with
the parameters τa = 8 degrees and τl = 1.875 meters.
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sparse point cloud, greedy clustering technique based on bins of points is used. Using a
similar polar grid technique as described in Section 4.2.1, except using a single index for
notational simplicity, denote a polar grid cell as ξi ⊂ R2 and the set of all such cells as Ξ.
For a point cloud of non-ground points, P ng, denote the points which fall within cell ξi as

P ng
i = {p ∈ P ng : (px, py) ∈ ξi}

and the set of all cell point sets as P = {P ng
1 . . . P ng

|Ξ|} where |P| = |Ξ|. Denote a cluster

of points as γ ⊆ P ng, and the set of clusters as Γ = {γ1 . . . γNΓ
}, where NΓ is the total

number of clusters, which is initially unknown. The clusters are generated by first randomly
sampling an initial bin index, i, from a random uniform distribution, U , such that i ∼ U(i ∈
{1 . . . |Ξ|}). Letting µi ∈ Rd be the mean of point set Pi, denote the distance function
d : P × P 7→ R return the distance between point sets Pi and Pj as

d(Pi, Pj) = ‖µi − µj‖m (4.3)

where m denotes the type of norm to be used. Using Equation 4.3, the nearest neighbour
set of point set Ω, to point set Pi can be given as

Ω = {P ∈ P : d(P, Pi) < δnn}\Pi (4.4)

where δnn determines the size of neighbour to consider for point set Pi.

For the randomly selected point set Pi, the nearest neighbours are generated and added
to the nearest neighbour set, Ω. An element from the nearest neighbour set, Pj ∈ Ω, can be
compared against Pi to determine if the two can be combined. Merging of the two clusters
is decided using the function % : P × P 7→ {0, 1}. The function %(Pi, Pj) returns 1 if the
two point sets Pi and Pj can be merged, and 0 otherwise. In the merging function, different
metrics can be used to compare the point sets, such as Euclidean distance between the
mean of the points, the L2 distance between Gaussian distributions formed by the point
sets, or a test for Gaussian fit. If the bins can be combined, the neighbour bin is added to
an open list of point sets, Qo, where the notation Qk

o denotes the kth element of Qo. The
neighbour point set is also removed from the set of all point sets and is merged into the
points of the current cluster, γcur. The nearest neighbours of the bins from Qo are explored
and evaluated. When a bin is explored, its nearest neighbours are also added to Qo, based
on the evaluation function, %. Once Qo is empty, it means no further nearest neighbours
can be assigned to the current cluster so a new point set from P is selected, and the process
is repeated. The process continues until all non empty point sets in P have been assigned
to a cluster. The greedy-cluster algorithm is presented in Algorithm 6. Denote the method
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Γ ← ς(P ng) from Algorithm 6, which accepts the point cloud of non ground points and
returns the set of clusters determined by the greedy clustering algorithm. An example
of the resulting Gaussian distributions after the greedy clustering has been completed is
presented in Figure 4.2.

Algorithm 6 ς(P ng): Given the point set for the non ground point cloud, P , perform
Greedy Clustering and return the set of clusters Γ.

1: while P 6= ∅ do
2: i ∼ U(i ∈ {1 . . . |Ξ|})
3: P ← P\Pi
4: γcur ← ∅
5: if Pi 6= ∅ then
6: γcur ← Pi
7: Qo ← {Pi}
8: while Qo 6= ∅ do
9: P̃ ← Q1

o

10: Qo ← Qo\Q1
o

11: Ω = {P ∈ P : d(P, P̃ ) < δnn}\P̃
12: for all P ∈ Ω do
13: if %(P, P̃ ) then
14: Qo ← Qo ∪ {P}
15: γcur ← γcur ∪ P
16: P ← P\P
17: end if
18: end for
19: end while
20: Γ← Γ ∪ {γcur}
21: end if
22: end while

4.4 Segmented Greedy Cluster NDT

Using the Gaussian distributions generated by the greedy clustering, the NDT algorithm is
modified to evaluate the cost function using all of the Guassians. Recall that the standard
NDT registration algorithm subdivides the space occupied by the reference scan into fixed
size, rectilinear grid cells, and models the points occupying each cell with a mean and
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Figure 4.2: The resulting Gaussian distributions after performing the greedy cluster algo-
rithm on the non-ground point laser scan. One-sigma Gaussian distributions are shown.

covariance for a representative Gaussian distribution. For SGC-NDT, the reference scan
is clustered using the greedy cluster method, and the resulting clusters of points are used
directly to generate the Gaussian distributions which model the reference scan. Denote a
point in the scene scan that has been transformed by parameter estimate E , as p̄ = TE(p).
The transformed point can be scored against a Gaussian cluster, γj, using the NDT score
function, ρ, and is given as

ργj(p̄) = exp

(
−

(p̄− µTj )Σ−1
j (p̄− µj)
2

)
(4.5)

The points in the scene scan are scored against all of the Gaussian clusters from the refer-
ence scan, which allows for the strongest contributions to come from the most likely clusters
and provides a continuous and differentiable cost function for the optimization. Similar
to the standard NDT algorithm, it is possible to compute an analytic gradient, g, and
Hessian H, for the cost function, which can be used for improving the performance of the
nonlinear optimization. For point to distribution matching, denote the functions Πg(p̄, E),
and ΠH(p̄, E), which use a point in the scene scan and the transformation parameters to
calculate an associated gradient and Hessian contribution for point p̄. The optimization is
initialized from a parameter estimate Ê , and terminates once the norm of the gradient ‖g‖
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is less than a user specified threshold, εndt.

A summary of the SGC-NDT-P2D is given in Algorithm 7. For SGC-NDT-D2D, a
method similar to the SGC-NDT-P2D version is applied, except both laser scans are seg-
mented and clustered and the set of resulting Gaussian distributions for each scan are
compared using the distribution to distribution NDT cost function. For SGC-NDT-D2D,
the L2-distance between the sets of Gaussian distributions of the reference and scene scan
are minimized, and the cost function evaluates all pair-wise Gaussian components for both
the scene and the reference scan.

4.5 Experimental Results

The SGC-NDT approach is evaluated using two data sets of different environments and is
compared against other scan registration algorithms. The algorithms used for comparison
are ICP, NDT and G-ICP, and for the purposes of comparison, the Point Cloud Library
(PCL) implementations of these algorithms are used [6]. The ICP algorithms are imple-
mented using a maximum correspondence distance of 10m and the NDT algorithm was
implemented with a grid size of 3m. For all optimization based approaches, the optimiza-
tion is terminated when the norm of the gradient or the norm of the step size falls below
10−6. The criteria for merging bins in the greedy cluster algorithm is a test for Gaussian
fit, which is also used by Stoyanov to partition NDT cells [54].

In order to test the accuracy of SGC-NDT against other scan registration methods,
the Ford Campus Vision and LIDAR data set [46] and the Worcester Polytechnic Institute
(WPI) data set are used. The Ford data set was generated using a Velodyne HDL-64E
LIDAR with ground truth acquired by integrating the high quality velocity and acceler-
ation measurements produced by a Applanix POS-LV 420 INS with Trimble GPS. When
scans were aligned using the ground truth measurements, the alignment was seen to have
on the order of sub-degree accuracy in orientation and decimeter accuracy in position. To
determine the robustness of the proposed method, in a sparse, forested environment, the
WPI data set is used. The WPI data was collected as part of the NASA Sample Return
Robot Challenge, at Worcester Polytechnic Institute (WPI). The laser scans were collected
using a Velodyne HDL-32E LIDAR, mounted to a custom made chassis designed for the
challenge. The environment consists mainly of trees and other foliage, as well as a single
small gazebo structure. Forested environments are particularly challenging for registration
because foliage, grass and bush tend to create irregular, noisy point clouds with incon-
sistent local surface normals, making point correspondences and accurate surface normal
calculations difficult.
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Algorithm 7 Register scene scan P S with reference scan PR using SGC-NDT-P2D Algo-
rithm and initial parameter estimate Ê

1: E ← Ê
2: P g ← ϑ(PR)
3: P ng ← PR\P g

4: Γ← ς(P ng)
5: for all γj ∈ Γ do

6: µγj ← 1
|γj |
∑
p∈γj

p

7: Σγj ← 1
|γj |−1

∑
p∈γj

(p− µγj)(p− µγj)T

8: end for
9: while g > εndt do

10: s← 0
11: g ← 0
12: H ← 0
13: for all p ∈ P S do
14: p̄← TE(p)
15: for all γj ∈ Γ do
16: s← s+ ργj(p̄)
17: g ← g + Πg(p̄, E)
18: H ← H + ΠH(p̄, E)
19: end for
20: end for
21: ∆E = (H)−1(−g)
22: E ← E + ∆E
23: end while
24: E∗ ← E
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To further assess the scan registration quality for the tested algorithms, the pair-wise
registered scans are aggregated into a global map. The maps are evaluated using a crispness
measure, which is also used for map evaluation in [12]. The crispness of a map is evaluated
by discretizing the 3D space into voxels and recording the number of occupied voxels. For
the experiment, a voxel size of 0.1 m is used. A map which evaluates to a lower number
is said to be crisper than a map which evaluates to a higher number. Intuitively, the
crispness quality measure captures the blurring of the map caused by incremental pair-
wise registration errors as the scans are aggregated.

4.5.1 Justification of Ground Segmentation

To demonstrate the effect of ground segmentation on scan registration quality, an exper-
iment is conducted where ground segmentation is performed to varying degrees prior to
scan registration. For the Ford data set, a set of scans is composed using every 5th scan
from the data set. Every 5th scan is selected since the differential pose between scans is
relatively small, thus allowing for convergence of the scan registration to the correct pa-
rameters. For every scan in the scan set, the ground is segmented using the GP-INSAC
method. Once the ground is segmented, a portion of the ground points is combined with
the non ground points, and the portion of ground points is combined by first passing the
ground points through a voxel grid filter. The proportion of ground points combined with
the non ground points is controlled by the parameters of the voxel grid filter, as the larger
the size of the voxel grid, the fewer the number of ground points included in the registration
process. In the experiments, the proportion of ground points combined with non ground
points range from full ground (FG) to no ground (NG), with increasing voxel grid filter size
between the FG and NG range. For each scan set, the scans within each set are pair-wise
registered using the ICP, G-ICP and NDT algorithms. The normalized crispness measure
(normalized to the crispness of the aggregated map with full ground) is calculated, as
well as the translation and rotation registration errors as compared against the data set’s
ground truth. The computation time for the registration is also recorded. The results of
the experiment for the Ford data set, comparing ICP, G-ICP, and NDT are presented in
Figures 4.3, 4.4 and 4.5. A similar experiment is performed using the the WPI data set,
however since no ground truth data is available, only the normalized crispness measure and
run time are calculated. The results of the experiment using the WPI data set, comparing
the ICP, G-ICP and NDT algorithms are presented in Figures 4.6, 4.7 and 4.8. It should
be noted that the upper adjacent and lower adjacent whiskers of the box-plots represent
1.5× the interquartile range of the data.

From the results of the experiments, it is evident that the removal of the ground points

62



does not significantly affect the quality of the scan registration. For the aggregated map
using the ICP, G-ICP and NDT algorithms, the normalized crispness measure from the
aggregated map constructed using the down sampled ground point does not deviate sig-
nificantly from the crispness result generated using scans containing the full ground. From
the Ford data set, it is seen that the error in the translation and rotation parameters, as
compared to the ground truth, is relatively constant across the varying degrees of ground
removal, suggesting that the removal of the ground does not negatively affect the scan
registration quality and that the ground points do not contribute any significant infor-
mation to the registration process. The execution time plot illustrates that as increasing
percentages of the ground points are removed, the registration run time decreases. The
decrease in run time is expected, as the reduction of points from the ground removal will
inherently decrease scan registration time, especially for the ICP and G-ICP algorithms
where nearest neighbour correspondences are required. Overall, the experiment illustrates
that the removal of the ground does not negatively affect the quality of the scan regis-
tration, while decreasing the run time for the scan registration algorithm. Similar results
are illustrated by the experiment conducted using the WPI data set, where the crispness
measure remains relatively constant across varying degrees of ground removal, while the
required registration run time is decreased.

4.5.2 Accuracy in Outdoor Urban Environments

In order to test the accuracy of the scan registration in an urban environment, each algo-
rithm performs pair-wise scan registration using every 10th scan produced by the LIDAR
from the Ford data set. The registration is initialized with a parameter estimate of zero
translation and zero rotation. The error in the translation and rotation of registration is
then compared against the ground truth measurements. The translation and rotational
error distributions are displayed in Figure 4.9.

The error distributions from Figure 4.9 demonstrate that both SGC-NDT algorithms
produce accurate results when compared against the ground truth, as does the G-ICP
algorithm. The large translational error distribution for NDT are a result of the algorithm’s
poor convergence characteristics, as the optimization has a tendency to converge to local
minima. The ICP algorithm also shows fairly low translation and rotation errors, however,
these do not appear to be as accurate as SGC-NDT or G-ICP.

The crispness measure is evaluated for SGC-NDT, ICP and G-ICP. A crispness for
NDT is not evaluated since the registration did not converge to the global minimum on
numerous occasions. The crispness measures comparing SGC-NDT, ICP and G-ICP are
presented in Table 4.1.
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(d) Run time evaluation

Figure 4.3: Ford data set: Results of scan registration accuracy and run time for ICP
algorithm with varying degrees of ground removal.
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(d) Run time evaluation

Figure 4.4: Ford data set: Results of scan registration accuracy and run time for GICP
algorithm with varying degrees of ground removal.
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(c) Rotation error
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(d) Run time evaluation

Figure 4.5: Ford data set: Results of scan registration accuracy and run time for NDT
algorithm with varying degrees of ground removal.

66



FG 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 NG
0

0.5

1

1.5

N
or

m
al

iz
ed

 C
ris

pn
es

s 
V

al
ue

Ground Point Voxel Filter Size [m]

(a) Crispness measure

0

1

2

3

4

5

6

7

8

FG 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 NG
Ground Point Voxel Filter Size [m]

R
un

 T
im

e 
[s

]

(b) Run time evaluation

Figure 4.6: WPI data set: Results of scan registration crispness and run time for ICP
algorithm with varying degrees of ground removal.
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(b) Run time evaluation

Figure 4.7: WPI data set: Results of scan registration crispness and run time for G-ICP
algorithm with varying degrees of ground removal.
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(b) Run time evaluation

Figure 4.8: WPI data set: Results of scan registration crispness and run time for NDT
algorithm with varying degrees of ground removal.

ICP G-ICP SGC-NDT-P2D SGC-NDT-D2D
Ford 132507 124911 125767 125221
WPI - 44609 41884 40560

Table 4.1: Summary of crispness measures for registration tests in urban and forested
environments. Note that the crispness for ICP with the WPI data set is not presented as
the registration did not converge to the global minimum on numerous occasions.

The crispness measures indicate that both SGC-NDT algorithms and G-ICP generate
high quality maps, while ICP produces a lower quality map due to the accumulation of
registration error, as illustrated in Figure 4.10. The global map of G-ICP is visually
indistinguishable from that of SGC-NDT and is therefore not included in the figure. The
qualitative representation of the crispness measure is demonstrated by visually comparing
the two maps. The maps produced by SGC-NDT and G-ICP show very little blurring of
features such as the building walls and cars. Conversely, the map generated by ICP has a
blurred appearance and less sharp features.

4.5.3 Accuracy in Sparse Forested Environments

To determine robustness of the proposed scan registration method in a forested environ-
ment, an experiment analogous to the one described in Section 4.5.2 is performed using
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(b) Absolute rotation error

Figure 4.9: Box-plots of the error distributions for each algorithm for the experiment from
the Ford campus data set. (a) Absolute translation error. (b) Absolute rotation error

the WPI data set. In the experiment, only the two best performing algorithms, SGC-NDT
and G-ICP, from the previous urban scenario experiment are presented, as it was deter-
mined that the ICP and NDT algorithms were unable to converge consistently and did not
provide any meaningful results for comparison. The experiment is performed in a similar
manner to the urban scenario experiment, where scans are pair-wise registered using the
competing algorithms and then aggregated into a global map. Each algorithm performs
pair-wise scan registration using every 50th scan produced by the LIDAR, as the robot
moved slowly through the environment. The registration is initialized with a parameter
estimate of zero translation and zero rotation. The experiment demonstrates performance
in situations where odometry estimates are highly inaccurate, such as in GPS denied envi-
ronments, or on vehicles where wheel slip or other factors make accurate state estimation
difficult. Since accurate ground truth is not available for the WPI data, the global maps
are evaluated based solely on the crispness measure. The crispiness measures for the WPI
data set are presented in Table 4.1.

The crispness measure illustrates that G-ICP was not able to provide accurate scan
registration results as compared to the SGC-NDT algorithms. The inaccuracy is most
likely because G-ICP relies on accurate surface normals to determine the correct point
correspondences, which is difficult to achieve in a forested environment. The SGC-NDT
algorithm models environmental features such as trees and shrubs as a mixture of Gaussian
distributions, thus good registration results are achievable in sparse environments with poor
local surface structure. Visually, the result of aggregating the registered scans is presented
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(a) Top down view of the global map generated by
aggregating scans using pair-wise ICP registration

(b) Top down view of the global map generated
by aggregating scans using pair-wise SGC-NDT-P2D
registration

Figure 4.10: Resulting maps generated by aggregating scans using pair-wise (a) ICP and
(b) SGC-NDT-P2D algorithms. Note the sharper corners, walls, cars and other features
from the SGC-NDT map compared to the ICP generated map. The map is coloured based
on height from the ground.
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in Figures 4.11 and 4.12, which show the maps from top down view of the traversed
area, as well as a close up view of the environmental features. The G-ICP map shows
significant drift and occasionally poor convergence to local minima, while the SGC-NDT
map maintains very crisp features. The crispness of the features can be clearly identified
by inspecting the alignment of the structural columns seen in the close-up view.
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(a) Top-down view of map generated using pair-wise G-ICP regis-
tration

(b) Top-down view of map generated using pair-wise SGC-NDT-
P2D registration

Figure 4.11: Top-down view for the resulting global maps using the SGC-NDT-P2D and
G-ICP algorithms. Note the crispness in features and reduced map drift for SGC-NDT,
compared against the G-ICP map. 72



(a) Close-up view of environmental features from the G-ICP map

(b) Close-up view of environmental features from the SGC-NDT-P2D
map

Figure 4.12: Close up views for the resulting global maps using the SGC-NDT-P2D and
G-ICP algorithms. Note the crispness in features and reduced map drift for SGC-NDT,
compared against the G-ICP map.
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Chapter 5

Conclusion

Advances in autonomous vehicle technologies are improving the ability for unmanned sys-
tems to accomplish tasks without human intervention. Autonomous vehicles are valuable
in many applications, ranging from deployment in hazardous and hostile environments for
search and rescue, to exploration, mapping, and sample collection on Martian surfaces.
The effectiveness of these unmanned vehicles is limited by their ability to perceive and
interact with the environment, thus SLAM for autonomous systems remains an active and
important research topic. High level mission tasks, such as drivability analysis and obstacle
avoidance, require SLAM algorithms which generate dense map representations. Typically,
these dense maps are constructed using point clouds, and are incorporated into the SLAM
algorithm using scan registration techniques. Although a great deal of work has been done
in the area of scan registration, there are many issues with the existing approaches.

The well known ICP algorithm solves the scan registration problem by minimizing the
Euclidean distance of corresponding nearest neighbour points between two overlapping
point clouds. However, since ICP operates at the point level, the algorithm does not take
into account the underlying surface of the environment which is sampled to generate the
point cloud. Instead of performing matching using individual points, G-ICP approximates
the surface normal at each point from its local neighbourhood. The G-ICP cost function
assumes that the point location has low uncertainty along the surface normal direction and
high uncertainty along the surface direction, thus penalizing correspondences for points
with inconsistent surface normals. Finally, the G-ICP approach explicitly takes sensor
noise and sampling characteristic into account, thus improving the convergence basin and
convergence rate when compared to ICP. The major shortcomings of both the ICP and
G-ICP approach is the generation of the nearest neighbour correspondences, as the step is
generally computationally expensive. The NDT approach is desirable because it does not
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require the computation of explicit point correspondences, but rather represents the scan
as a set of Gaussian distributions and solves a nonlinear optimization to determine the
transformation parameters. Although promising, the NDT approach suffers from major
shortcomings: the convergence basin of the NDT algorithm is poor, the optimization of
the NDT cost function is not guaranteed to converge, and the registration performance in
sparse, outdoor environments is weak.

To overcome the limited convergence basin of NDT with 2D data, this work presents a
modified algorithm known as the Multi-Scale K-Means NDT (MSKM-NDT). In contrast
to the standard NDT algorithm, the proposed method divides the scan into clusters at
multiple scales using k-means clustering, instead of discrete grid-based divisions. The op-
timization step is then performed for each scale, and the solution of the optimization from
the ith scale is used to initialize the optimization for the ith+1 scale. The k-means clustering
of the scan generates fewer Gaussian distributions when compared to the standard voxel
based grid division method, which allows for the evaluation of the cost function across all
distributions in a computationally efficient manner. The evaluation of the cost across all
clusters removes the discontinuities of the cost function found in the standard NDT algo-
rithm caused by the cell boundaries, resulting in a smooth and differentiable cost function
which guarantees convergence of the optimization at each scale. The coarse-to-fine opti-
mization approach is experimentally shown to avoid the local minima associated with the
standard NDT algorithm and improve the convergence basin. Experiments also demon-
strate that the MSKM-NDT algorithm is able to generate high quality SLAM solutions
using laser data with large initial transformations between scan pairs.

As the k-means clustering does not scale well for use with higher dimensional point
clouds, a different approach is required for use with 3D data. This work presents the
Segmented Greedy Cluster NDT (SGC-NDT), which specifically addresses the 3D scan
registration problem for sparse outdoor environments, where objects such as trees, shrubs
and bushes make accurate surface normal computation difficult. The proposed method seg-
ments the ground points from the point cloud and greedily clusters the non-ground points
to generate Gaussian distributions representing natural features within the environment.
Similar to the MSKM-NDT approach, the NDT scan registration algorithm is modified to
evaluate the cost function across all of the Gaussians, resulting in a smooth cost function
that guarantees convergence of the optimization. The SGC-NDT approach is applied to
both point to distribution and distribution to distribution NDT, and is shown to produce
accurate results in both urban and sparse, forested environments.

Although this work demonstrates that intelligent clustering methods can be used effec-
tively to improve the accuracy and convergence properties of the NDT algorithm for 2D
and 3D point cloud data, open issues remain with both MSKM-NDT and SGC-NDT that
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require further investigation:

MSKM-NDT: A thorough comparison against G-ICP is required to determine the rela-
tive accuracy and convergence performance between the two algorithms. A full analysis of
computational complexity is also required to fully understand the trade-offs between the
computational overheard imposed by k-means clustering, and the computational savings
achieved by evaluation of the cost function using fewer Gaussian distributions. A real-time
implementation of MSKM-NDT is desirable, as it will enable larger and more numerous
data sets to be evaluated efficiently, which should lead to a better understanding of the
types of environmental characteristics to which the method is best suited. Finally, as
the test data presented in this thesis is somewhat limited, evaluation on a wide range of
environments and determination of specific failure cases remain areas of future work.

SGC-NDT: An investigation of the computational complexity of SGC-NDT is also
required, as the GP regression and greedy clustering add overhead to the scan registration
process. It is advantageous to determine how the GP regression and greedy clustering scale
with the number of points in the point cloud and under what circumstances the overhead
of segmentation and clustering justifies the computational savings from evaluation of the
NDT cost function using fewer Guassians. The SGC-NDT algorithm assumes that the
ground points contribute little to the scan registration process, however, it would be useful
to determine a method to quantify the contribution of the ground points and determine
a threshold on this value. The ability to quantify the contribution of the grounds point
should lead to a better understanding of under what conditions the ground segmentation
approach is valid, and the environments to which the SCG-NDT algorithm is suitable.
Analogous to MSKM-NDT, a real time implementation will enable larger data sets to be
evaluated effectively, and should present a better understanding for the conditions under
with the SGC-NDT approach is viable. Finally, as the NDT algorithm fundamentally
assumes that the clusters are well modelled by Gaussian distributions, the development of
a clustering method which actively seeks to generate clusters based on the similarity of the
clustered points to a Gaussian distribution is left as future work.

In addition to the open issues associated with the presented work, known limitations
to the algorithms also exist, mainly due to the assumptions made in each of the clustering
processes. The MSKM-NDT algorithm clusters the point cloud using k-means, which
assumes that the number of partitions are known before performing clustering. The SGC-
NDT algorithm requires that the natural features are separated by the ground, and assumes
that the ground points do not contribute significant information to the scan registration
process, which is valid only when the ground has very few distinguishing features. The
limitations associated with making assumptions about the clustering methods motivate
future work in the development of a generalized clustering algorithm for NDT, which is
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able to partition and cluster the scan without having to make any assumptions about the
environment. One possible method to achieve generalized clustering would be through
the use of an information theory based approach, which could provide a well established
framework with which to evaluate point cloud data and systematically extract the subset
of points which contribute the most information to the scan registration process. By
performing scan registration using only the points that provide significant information,
accurate registration results could be achieved with significantly less computational burden.

Scan registration remains a challenging problem for the SLAM community. The pre-
sented approaches perform scan registration with superior convergence and accuracy char-
acteristics compared to standard NDT, and greatly improve upon the performance of ICP
and G-ICP methods in situations and environments for which surface normals are difficult
to calculate or are unreliable (outdoors, cluttered indoors, forested, sparse point cloud).
The improvements to scan registration methods presented in this work are a necessity for
the success of graph SLAM algorithms, and through advancements in robotic mapping,
will allow for numerous future applications with large scale societal impact.

77



References

[1] M. Agrawal, K. Konolige, and M. Blas. Censure: Center surround extremas for
realtime feature detection and matching. Computer Vision–ECCV 2008, pages 102–
115, 2008.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (SURF).
Computer vision and image understanding, 110(3):346–359, 2008.

[3] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[4] P.J. Besl and H.D. McKay. A method for registration of 3-D shapes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 14(2):239 –256, Feb 1992.

[5] P. Biber and W. Strasser. The normal distributions transform: a new approach to
laser scan matching. In Intelligent Robots and Systems, Proceedings. 2003 IEEE/RSJ
International Conference on, volume 3, pages 2743 – 2748, Las Vegas, NV, USA, Oct
2003.

[6] R. Bogdan and S. Cousins. 3D is here: Point Cloud Library (PCL). In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 1–4, Shanghai, China,
May 2011.

[7] J. Bohren, R.B. Rusu, E.G. Jones, E. Marder-Eppstein, C. Pantofaru, M. Wise,
L. Mosenlechner, W. Meeussen, and S. Holzer. Towards autonomous robotic but-
lers: Lessons learned with the PR2. In IEEE International Conference on Robotics
and Automation (ICRA), pages 5568–5575, Shanghai, China, May 2011.

[8] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and J. Hertzberg. Globally
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