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Abstract 

Environmental simulation models have been playing a key role in civil and environmental 

engineering decision making processes for decades. The utility of an environmental model depends 

on how well the model is structured and calibrated. Model calibration is typically in an automated 

form where the simulation model is linked to a search mechanism (e.g., an optimization algorithm) 

such that the search mechanism iteratively generates many parameter sets (e.g., thousands of 

parameter sets) and evaluates them through running the model in an attempt to minimize differences 

between observed data and corresponding model outputs. The challenge rises when the environmental 

model is computationally intensive to run (with run-times of minutes to hours, for example) as then 

any automatic calibration attempt would impose a large computational burden. Such a challenge may 

make the model users accept sub-optimal solutions and not achieve the best model performance. 

The objective of this thesis is to develop innovative strategies to circumvent the computational 

burden associated with automatic calibration of computationally intensive environmental models. The 

first main contribution of this thesis is developing a strategy called “deterministic model preemption” 

which opportunistically evades unnecessary model evaluations in the course of a calibration 

experiment and can save a significant portion of the computational budget (even as much as 90% in 

some cases). Model preemption monitors the intermediate simulation results while the model is 

running and terminates (i.e., pre-empts) the simulation early if it recognizes that further running the 

model would not guide the search mechanism. This strategy is applicable to a range of automatic 

calibration algorithms (i.e., search mechanisms) and is deterministic in that it leads to exactly the 

same calibration results as when preemption is not applied.  

One other main contribution of this thesis is developing and utilizing the concept of “surrogate 

data” which is basically a reasonably small but representative proportion of a full set of calibration 

data. This concept is inspired by the existing surrogate modelling strategies where a surrogate model 

(also called a metamodel) is developed and utilized as a fast-to-run substitute of an original 

computationally intensive model. A framework is developed to efficiently calibrate hydrologic 

models to the full set of calibration data while running the original model only on surrogate data for 

the majority of candidate parameter sets, a strategy which leads to considerable computational saving. 

To this end, mapping relationships are developed to approximate the model performance on the full 

data based on the model performance on surrogate data. This framework can be applicable to the 
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calibration of any environmental model where appropriate surrogate data and mapping relationships 

can be identified.  

As another main contribution, this thesis critically reviews and evaluates the large body of 

literature on surrogate modelling strategies from various disciplines as they are the most commonly 

used methods to relieve the computational burden associated with computationally intensive 

simulation models. To reliably evaluate these strategies, a comparative assessment and benchmarking 

framework is developed which presents a clear computational budget dependent definition for the 

success/failure of surrogate modelling strategies. Two large families of surrogate modelling strategies 

are critically scrutinized and evaluated: “response surface surrogate” modelling which involves 

statistical or data–driven function approximation techniques (e.g., kriging, radial basis functions, and 

neural networks) and “lower-fidelity physically-based surrogate” modelling strategies which develop 

and utilize simplified models of the original system (e.g., a groundwater model with a coarse mesh). 

This thesis raises fundamental concerns about response surface surrogate modelling and demonstrates 

that, although they might be less efficient, lower-fidelity physically-based surrogates are generally 

more reliable as they to-some-extent preserve the physics involved in the original model.  

Five different surface water and groundwater models are used across this thesis to test the 

performance of the developed strategies and elaborate the discussions. However, the strategies 

developed are typically simulation-model-independent and can be applied to the calibration of any 

computationally intensive simulation model that has the required characteristics. This thesis leaves 

the reader with a suite of strategies for efficient calibration of computationally intensive 

environmental models while providing some guidance on how to select, implement, and evaluate the 

appropriate strategy for a given environmental model calibration problem. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

Advanced technologies have provided detailed spatiotemporal information about a variety of 

environmental variables and natural processes. Environmental model developers tend to make use of 

all available data and rigorously model all the detailed processes in their system of interest. Such 

practice may lead to highly complex models that demand huge computational budgets to simulate the 

system. For example, a hydrologic or groundwater model representing a detailed conceptualization 

with a very fine level of discretization may demand hours (or even days) for a single run [Keating et 

al., 2010; Mugunthan et al., 2005; Zhang et al., 2009]; while many model runs (e.g., thousands or 

more) are required when calibrating the model, analyzing different uncertainties involved or studying 

the best management practices. As such, despite the existence of rapidly advancing computing 

facilities, the computational burden has remained a challenge for many modelling applications in 

water resources and environmental engineering, especially for automatic model calibration. This 

thesis develops methodologies aiming to circumvent such computational burdens imposed when 

calibrating computationally intensive environmental models. 

Environmental model calibration may be of two general types: optimization-based calibration and 

uncertainty-based calibration. Optimization-based calibration refers to the coupling of an 

environmental model with an optimization engine such that the optimization engine adjusts model 

parameters in an attempt to minimize differences between observed data and corresponding model 

outputs (i.e., simulated equivalents). Examples of optimization-based calibration tools include PEST 

[Doherty, 2005], UCODE [Poeter and Hill, 1998] and OSTRICH [Matott, 2005]. Uncertainty-based 

calibration refers to the coupling of an environmental model with an uncertainty engine such that the 

uncertainty engine repeatedly samples model parameter configurations to develop a calibrated 

probability distribution for the parameters. Unlike optimization-based calibration, which is focused on 

identifying a single “optimal” parameter set, uncertainty-based calibration identifies numerous 

“plausible” parameter sets. Examples of tools for uncertainty-based calibration include GLUE [Beven 

and Binley, 1992], Sequential Uncertainty Fitting (SUFI-2 – [Abbaspour et al., 2004]) and various 

Markov Chain Monte Carlo (MCMC) implementations [Kuczera and Parent, 1998]. 
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What is Automatic Calibration? 

An environmental model (such as a rainfall-runoff model) is a simplified mathematical representation 

of a complex real-world system. Environmental models when developed attempt to emulate the real-

world systems of interest as closely as possible so that they enable the users to predict the response of 

the systems under the future/unseen conditions. An environmental model can be mathematically 

represented as: 

 ̂                             (1-1) 

where   represents the model as a function,  ̂ is the vector of model responses (outputs) over spatial 

and/or temporal domains,   is the vector of model forcing data (inputs), and   is the vector of model 

parameters. For example in a rainfall-run model,  ̂ can be the vector of simulated daily streamflows 

at a watershed outlet,   can consist of daily rainfall, temperature, and snow pack data, and   may 

include the average watershed slope, travel time, and different watershed storage parameters. As an 

environmental model is never a perfect emulator of the complex real-world system of interest, the 

vector of real system responses,  , is typically represented as: 

                              (1-2) 

where   is the vector of model errors. Given an environmental model is adequately structured, the 

utility of the model depends on how well the model parameters are “calibrated”. In the process of the 

so-called “model calibration”, the model parameters are adjusted to minimize the discrepancies 

between the model outputs,  ̂, and the real-world system responses,  . This process is also called 

“model inversion” or “parameter estimation”. 

There are typically two types of model parameters: physical parameters and process parameters. 

Physical parameters directly represent physical properties of the system and can be measurable, while 

process parameters are typically conceptual or empirical and cannot be measured in the field 

[Pechlivanidis et al., 2011]. For example in the case of rainfall-runoff models, catchment area and 

average slope are physical parameters, while parameters controlling baseflow recession curve are 

process parameters. Process parameters almost always need to be calibrated against the observed data. 

Moreover, the modellers may opt to calibrate/fine-tune some physical parameters such as average 

catchment slope as they are measured with some level of uncertainty. There are also some physical 

parameters that although are measurable are often calibrated. Examples of such parameters include 
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hydraulic conductivity and porosity in groundwater models; the reason is only point measurements of 

these aquifer parameters can be available, while in a groundwater model such parameters represent 

the characteristics of a large body of soil (average characteristics) possibly very different from the 

point measurements. 

Early efforts to calibrate environmental models, before the wide spread of powerful computing 

facilities, were based on a “manual” approach. “Manual calibration” relies heavily on the modeller’s 

understanding of the simulated processes, model structure, and parameters, and is generally a trial-

and-error procedure. The applicability of manual calibration is typically limited to models with a 

limited number of parameters. Manual calibration becomes very difficult when calibrating interacting 

parameters, which commonly exist in environmental models [Gupta et al., 1999]. In addition, there is 

a great deal of subjectivity involved and different results may be obtained by different modellers 

attempting to manually calibrate the same model to the same data [Pechlivanidis et al., 2011]. 

Because of the time-consuming and difficult nature of manual calibration, researchers in the 1960s 

and early 1970s started investigating more objective and automated approaches to model calibration [ 

Gupta et al., 1999]. These research efforts have led to the development of a variety of methods for 

“automatic calibration”. 

 

 

Figure 1-1. The three main components involved in automatic calibration of environmental models 

 

Any automatic calibration procedure consists of the three main components shown in Figure 1-1. 

The search engine repeatedly generates candidate parameter sets,  , within a hyper-cube of feasible 

parameter space, the simulation model runs with this parameter set and produces the model 

Search Engine 
(e.g., optimization algorithm) 

Simulation Model 
(e.g., hydrologic model) 

Response Evaluation 
(i.e., goodness-of-fit measure) 
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responses,  ̂, and then the third component (i.e., typically a function of modelling errors,     ) 

objectively quantifies the goodness-of-fit between model responses and observed data,  . The 

automatic calibration problem is most often posed in the form of an optimization formulation as: 

 

        
 

      

S.T:    
        

                                     (1-3) 

where n is the number of parameters to be calibrated,   
   and   

   are the lower and upper bound 

constraints on parameter i, and      represents the objective function (i.e., error function) to be 

minimized. The form of the appropriate objective functions relates to the type of the environmental 

model to be calibrated and the modelling objectives. Examples of objective functions in automatic 

calibration include weighted sum of squared errors (WSSE) and root mean squared errors (RMSE). 

Some goodness-of-fit functions take larger values for better fits, such as Nash-Sutcliffe coefficient of 

efficiency [Nash and Sutcliffe, 1970b] and Kling-Gupta efficiency [Gupta et al., 2009], and as such 

require to transform the minimization problem in Equation (1-3) into a maximization problem. A 

variety of optimization algorithms have been developed or used in the literature as the search engine 

for automatic calibration of environmental models such as Levenberg-Marquardt [Doherty, 2005], 

shuffled complex evolution [Duan et al., 1993], genetic algorithms  [Ndiritu and Daniell, 2001], and 

dynamically dimensioned search [Tolson and Shoemaker, 2007]. Automatic calibration procedures 

solving the above optimization formulation typically lead to a single parameter set that best represents 

the real-world system in terms of the selected goodness-of-fit criterion. Such a practice is referred to 

as “optimization-based calibration” in this thesis.  

There is another family of automatic calibration procedures that search and collect a large number 

of high-quality parameter sets, instead of searching for a single optimal parameter set, with the 

objective of developing probability distributions for the model response and/or parameters. Such 

procedures attempt to quantify the uncertainties in model parameters and predictions, and as such are 

referred to as “uncertainty-based calibration” in this thesis. The basic idea behind this type of model 

calibration is that there are always many different parameter sets (or models) that can emulate the 

real-world system (almost) equally well; these equally behavioral (acceptable) parameters/models are 

therefore called equifinal [Beven and Binley, 1992]. In uncertainty-based calibration, a statistical 

(formal or informal) “likelihood function” is used as the goodness-of-fit measure which quantifies 
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how likely a candidate parameter set (or a model) is the true parameter set (or the true model) given 

the observed data. A variety of methods have been developed in the literature for uncertainty-based 

calibration of environmental models including generalized likelihood uncertainty estimation [GLUE - 

Beven and Binley, 1992], sequential uncertainty fitting [SUFI-2 - Abbaspour et al., 2004], null-space 

Monte Carlo [Tonkin and Doherty, 2009], and various Markov-chain Monte Carlo (MCMC) 

implementations [Kuczera and Parent, 1998; Vrugt et al., 2009]. 

Automatic calibration can take the form of a multi-objective (multi-criteria) optimization problem 

[Efstratiadis and Koutsoyiannis, 2010; Madsen et al., 2002; Yapo et al., 1998]. The motivation for 

involving multiple criteria in the automatic calibration process is that the single-criterion calibration 

results are typically biased to the individual aspects of the model response emphasized by the 

goodness-of-fit criterion used. Examples of possibly conflicting goodness-of-fit criteria in rainfall-

runoff modelling include RMSE of peak flow events and RMSE of low flow events. Multi-objective 

automatic calibration results in a suite of parameter sets that approximate the trade-off relationship 

between the various calibration objectives. However, Kollat et al. [2012] have recently found that 

meaningful multi-objective trade-offs in watershed model calibration are less frequent than the 

literature has suggested. 
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1.2 Overview of Solution Approaches 

Figure 1-2 identifies four main solution approaches for alleviating the computational burden 

associated with calibrating computationally intensive models. There are a variety of methods and 

strategies in the literature that fall under each of these main approaches. Notably, these approaches 

are largely complementary and in practice a given calibration exercise may employ a combination of 

approaches to maximize the calibration computational efficiency (e.g., using surrogate modelling in 

concert with a parallelized and computationally efficient optimization algorithm). The focus of this 

thesis is on the first two approaches (i.e., preemption strategies and surrogate modelling) as outlined 

in Section 1.3, and therefore, significant details on these can be found throughout this thesis. The 

other two approaches (i.e., parallel computing and more efficient calibration algorithms) are 

introduced only in this section, and their details are beyond the thesis scope and can be found in the 

references given. The methods developed in this thesis can be extended such that they can be utilized 

on parallel computing resources possibly in conjunction with more efficient calibration algorithms.  

 

 

Figure 1-2. Four general solution approaches to calibration of computationally intensive simulation 

models – various combinations of these four approaches are theoretically possible. 

 

Strategies for opportunistically avoiding model evaluations in the course of simulation-

optimization attempts are called “preemption strategies” in this thesis. Relatively few strategies have 

been proposed in the literature to intelligently avoid unnecessary model evaluations in model 

calibration (i.e., model evaluations that yield implausible, non-behavioral or non-informative 

Preemption Strategies 

Parallel Computing 

Surrogate Modelling 

More Efficient 
Calibration Algorithms 
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simulation results). Conversely, surrogate modelling (also called metamodelling) is an increasingly 

common approach to dealing with computationally expensive simulation models and is concerned 

with developing and utilizing cheaper “surrogates” of expensive simulation models to improve the 

overall computational efficiency. These surrogates replace original computationally intensive models 

in calibration experiments. There is a rich literature on different surrogate modelling methods arising 

from a variety of disciplines. In general, surrogate models may be in the form of statistical or data-

driven models such as kriging and neural networks aiming to emulate the response surface of 

computationally intensive models, or they can be simpler, faster-to-run models of the original 

environmental system of interest; e.g., a finite difference-based groundwater model with a coarse 

mesh may be deemed a surrogate of a similar model with a fine mesh.  

Different strategies have been developed in the literature to divide computationally intensive 

problems into multiple sub-problems that can be run concurrently on parallel computing resources. In 

the model calibration context, depending on the calibration algorithm used, groups of model 

evaluations can be typically run in parallel to save calibration time. Optimization-based calibration 

using parallel search algorithms such as parallel SCE-UA [Feyen et al., 2007; Vrugt et al., 2006a], 

parallel GA [Cheng et al., 2005; He and Hui, 2007], and parallel PSO [Matott and Rabideau, 2008; 

Schutte et al., 2004] can result in considerable time savings when compared with the corresponding 

serial algorithm implementations. Supercomputer networks can also vastly improve the efficiency of 

uncertainty-based calibration techniques, such as GLUE. For example, Brazier et al. [2000]  and 

Freer et al. [2004] each conduct more than 3 million model evaluations for GLUE on parallel 

computing networks. 

A significant amount of research has been directed at developing highly efficient algorithms that 

are suitable for calibrating computationally expensive models. These algorithms are designed to 

generate optimal or near-optimal solutions through a limited number of model evaluations. Examples 

of highly efficient algorithms for optimization-based calibration include: a hybrid tabu search – 

adjoint state method [Tan et al., 2008]; dynamically dimensioned search (DDS - [Tolson and 

Shoemaker, 2007b]); a tuned particle swarm optimizer (PSO - [Beielstein et al., 2002]); stepwise 

linear search (SLS - [Kuzmin et al., 2008]); and gradient-based methods [Doherty, 2005; Ha et al., 

2007], if they are applied in conjunction with smoothing strategies that ensure a “well-behaved” 

objective function [Kavetski and Kuczera, 2007]. Examples of efficient algorithms for uncertainty-

based calibration include: DDS-approximation of uncertainty (DDS-AU - [Tolson and Shoemaker, 
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2008]), automatic calibration and uncertainty assessment using response surfaces (ACUARS - 

[Mugunthan and Shoemaker, 2006]), and limited-memory MCMC [Kuczera et al., 2010].  

1.3 Research Contributions and Thesis Structure 

The objective of this thesis is to develop and formalize new efficiency-increasing strategies for 

automatic calibration of computationally intensive environmental models. This thesis is structured 

around published and submitted articles. Chapters 2 through 4 correspond to three published articles, 

and Chapter 5 corresponds to an article which is currently under review. Chapter 6 ends this thesis 

with research summary, conclusions, and future directions. In the following, the main contributions of 

this thesis along with the associated chapters are outlined.  

1- Develop and formalize the “deterministic model preemption” strategy for opportunistically 

evading unnecessary model evaluations (see Chapter 2). This strategy, which is applicable to a 

range of optimization-based and uncertainty-based algorithms, can save a significant portion of 

the computational budget in model calibration practice while being “deterministic” in that it 

leads to exactly the same calibration results as when preemption is not applied. Notably, the 

application of this strategy is not limited to model calibration, and we have shown its promise 

in two water resources systems optimization studies [i.e., Razavi et at., 2013; Asadzedeh et al., 

2013; not included in the thesis]. 

2- Review, analyze, and standardize the research efforts and publications on surrogate modelling 

arising from a variety of disciplines ranging from Mathematics and Computer Science to Water 

Resources Engineering (see Chapter 3). Surrogate modelling (also called metamodelling) is the 

most commonly used approach to circumventing the computational burden associated with 

computationally intensive simulation models. This thesis attempts to address the lack of 

organization, referencing, and consistencies observed in the literature on surrogate modelling 

especially in the environmental and water resources community. Taxonomies on surrogate 

modelling frameworks, practical details, advances, challenges, and limitations are outlined. 

Two broad families of surrogate modelling strategies namely response surface surrogates and 

lower-fidelity physically-based surrogates are recognized and scrutinized. Multiple applications 

of surrogate modelling in optimization-based and uncertainty-based calibration of 

computationally intensive environmental models are discussed. 
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3- Develop a comparative assessment framework which presents a clear computational budget 

dependent definition for the success/failure of surrogate modelling strategies (see Chapter 4). 

In the literature, evaluation of the algorithms enabled with surrogate models is typically on an 

ad-hoc basis and sometimes unreliable. The developed assessment framework, which 

emphasizes appropriate benchmarking and the dependency on the computational budget, 

enables the user to comprehensively evaluate any calibration algorithm (not only the ones using 

surrogate modelling) and gives reliable insights into the algorithm performance under different 

conditions. 

4- Critically evaluate response surface surrogate strategies, through numerical experiments, against 

other common optimization (calibration) strategies not involving surrogate models (see 

Chapter 4). This assessment challenges the capabilities of response surface surrogates and, in 

contrast to the common belief in the literature, demonstrates that response surface surrogate 

modelling is not always an efficient and reliable approach to optimizing computationally 

intensive problems. Moreover, this research demonstrates that neural networks, although quite 

common in surrogate modelling, are not appropriate tools for this purpose and can be quite 

misleading when the computational budget is limited. 

5- Develop the concept of “surrogate data” and a framework utilizing this concept for efficient 

calibration of computationally intensive hydrologic models (see Chapter 5). A key component 

of this contribution is a mapping system that maps the model performance on surrogate data to 

the model performance on “full calibration data”. The developed calibration framework is 

capable of calibrating the model to full calibration data within very limited computational 

budgets. 

In addition, a significant part of my research efforts during PhD was devoted to develop a general 

purpose, more efficient and transparent neural network model (called Reformulated Neural Network, 

ReNN) to be potentially used in surrogate modelling. However, as this thesis eventually concludes 

that neural networks may not be appropriate tools for surrogate modelling (see #4 above), this 

contribution is not included in the thesis document for the sake of consistency. Full detail of ReNN is 

published in Razavi and Tolson [2011]. 

Note that the methodologies developed throughout this thesis are typically simulation-model-

independent and can be applied to calibration of any computationally intensive simulation model that 



 

 10 

has the required characteristics. A total of five different surface water and groundwater models with 

seven to 62 calibration parameters are used across this thesis to test the performance of the developed 

methodologies. Three of these models have been developed by other researchers as referenced in the 

relevant sections, and only their application with the developed methodologies is within the scope of 

this thesis. 
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Chapter 2 

Model Preemption: A Simple Strategy for  

Opportunistically Evading Unnecessary Model Evaluations 

This chapter is a mirror of the following published article with minor changes to increase its 

consistency with the body of the thesis. Changes were only made in the Summary (abstract), 

Section 2.1, and Section 2.2 and intended to delete the contents that have been presented more 

appropriately in other parts of the thesis. References are unified at the end of the thesis. 

Razavi, S., B. A. Tolson, L. S. Matott, N. R. Thomson, A. MacLean, and F. R. Seglenieks (2010), 

Reducing the computational cost of automatic calibration through model preemption, Water 

Resour. Res., 46, W11523, 17 pages, doi:10.1029/2009WR008957. 

 

Summary 

This chapter introduces and formalizes the concept of simulation model preemption during automatic 

calibration.  The proposed model preemption method terminates a simulation model early to save 

computational budget if it is recognized through intermediate simulation model results that a given 

solution (model parameter set) is so poor that it will not benefit the search strategy.  The methodology 

proposed here is referred to as deterministic model preemption because it leads to exactly the same 

calibration result as when deterministic preemption is not applied. As such, deterministic preemption 

enabled calibration algorithms which make no approximations to the mathematical simulation model 

are a simple alternative to the increasingly common and more complex approach of surrogate 

modelling (see Chapter 3) for computationally constrained model calibration.  Despite its simplicity, 

the deterministic model preemption concept is a promising concept that has yet to be formalized in 

the environmental simulation model automatic calibration literature. The model preemption concept 

can be applied to a subset of uncertainty-based and optimization-based automatic calibration 

strategies using a variety of different objective functions.  Results across multiple calibration case 

studies demonstrate actual preemption computational savings ranging from 14-49%, 34-59% and 52-

96% for the dynamically dimensioned search, particle swarm optimization, and GLUE automatic 

calibration methods, respectively.   
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2.1 Introduction and Objective 

This chapter introduces the “model preemption” strategy to alleviate the computational burden of 

calibrating computationally expensive environmental models and explores, through numerical 

experiments, the potential advantages of performing model calibration with this strategy that allows 

for expensive simulation models to be terminated early. This strategy is general in that it can be 

adapted to a wide variety of existing calibration algorithms (i.e., optimizers or samplers). To 

demonstrate and evaluate the model preemption strategy, it was linked with four separate model 

calibration algorithms: Dynamically Dimensioned Search (DDS - [Tolson and Shoemaker, 2007b]), 

particle swarm optimization (PSO - [Kennedy and Eberhart, 1995]), GLUE ([Beven and Binley, 

1992]), and DDS-approximation of uncertainty (DDS-AU - [Tolson and Shoemaker, 2008]). While 

DDS and PSO are suitable for optimization-based calibration, GLUE and DDS-UA are geared 

towards uncertainty-based calibration. The various preemption enabled algorithms were benchmarked 

using a suite of calibration case studies involving so-called “black-box” environmental models. Case 

studies include: (1) a hydrologic model of the Cannonsville Watershed, New York State; (2) a 

hydrologic model of the Reynolds Creek Watershed, Idaho; and (3) a model of subsurface 

contaminant transport to support a dipole flow and reactive tracer test in the well-known Borden 

aquifer in Ontario, Canada.  

The structure of this chapter is organized as follows: Section 2.2 outlines related research in the 

literature; Sections 2.3-2.5 describe the preemption methodology and its applicability in optimization-

based and uncertainty-based calibration frameworks. Sections 2.6 and 2.7 summarize case studies that 

facilitated demonstration and benchmarking of the new method and experimental settings. 

Preemption results, as applied to the various case studies, are presented in Section 2.8, and Sections 

2.9 and 2.10 contain a discussion of the results and concluding remarks, respectively. 

2.2 Related Research 

Relatively few methods have been proposed to intelligently avoid unnecessary model evaluations 

(i.e., model evaluations that yield implausible, non-behavioral or non-informative results). As 

suggested by Haupt and Haup [1998] and Griffin et al. [2008], a simple way to avoid repeating 

expensive model evaluations is to store and consult a running history of every parameter set (and 

corresponding objective function value) that is evaluated. Known as “caching”, this strategy has been 

implemented in freely available optimization codes [Gray and Kolda, 2006]. 
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Like caching, model preemption is a general purpose mechanism for opportunistically avoiding 

model evaluation. The basic concept behind model preemption is that full evaluation of a given 

candidate solution is unwarranted if the corresponding objective function is predictably poor (i.e., are 

implausible, non-behavioral or non-informative) relative to previous solutions or some fixed 

threshold. The key to model preemption is being able to predict poor performance prior to fully 

evaluating each candidate solution (i.e., prior to completely simulating the entire model simulation 

time period or spatial domain). 

Different variations of model preemption in an optimization framework have been proposed. For 

example, Joslin et al. [2006] describe an optimization framework in which constraint violations are 

determined through a computationally expensive model while the cost function is inexpensive and 

evaluated independently. Under this type of framework, the authors demonstrated significant 

computational savings by first evaluating the cost function and then selectively evaluating the 

constraints only if some threshold cost criteria was satisfied. In an automatic calibration framework, 

Ostfeld and Salomons [2005] proposed constructing a “hurdle” for accepting/rejecting a candidate set 

of parameters during a model simulation – where a hurdle corresponds to a predefined threshold 

objective function value assigned to a specific simulation breakpoint. At a given hurdle, the 

simulation is aborted if the objective function value of the candidate solution does not exceed the 

value of the hurdle.   

SwarmOps [Pedersen, 2008], a recently developed software tool for automating the process of 

tuning the parameters of a given optimization algorithm, also introduces a type of preemption concept 

namely “pre-emptive fitness evaluation” to increase optimization efficiency. The algorithm tuning 

process in SwarmOps involves solving many different optimization problems multiple times each in 

order to assess average algorithm behavior under all candidate algorithm parameter sets. In this 

regard, the SwarmOps tool utilizes what we refer to as “trial-based” preemption to avoid unnecessary 

evaluation of entire optimization trials. Unlike trial-based preemption, the present work employs 

preemption at a much finer level through a “model-based” approach. 

A general preemption strategy has undoubtedly been applied by many modellers performing 

manual (trial and error) calibration on computationally intensive simulation models.  For example, 

modelers often frequently check intermediate simulation results and will terminate poor simulations 

before the end of the simulation period.  In an optimization-based or uncertainty-based calibration 
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context, the preemption concept has not been formalized and although there are similarities to 

previous research, the concept as applied to model calibration is a unique contribution of this paper. 

2.3 Model Preemption Concept 

In traditional optimization-based and uncertainty-based simulation model calibration frameworks the 

quality of a candidate solution (i.e., some model parameter set configuration) is quantified using an 

objective (or likelihood) function that measures model prediction errors calculated over the entire 

model simulation time period. In transient or continuous hydrologic models, however, prediction 

errors accumulate throughout the simulation time period. Making use of this fact, we propose an 

approach that monitors the simulation model performance during the simulation time period. If it is 

recognized through intermediate simulation model results that a given solution (model parameter set) 

is so poor that it will not contribute to guiding the search strategy, the simulation model is terminated 

early (i.e., preempted) to save computational budget. In this paper, we introduce a simple form of 

preemption that we call deterministic model preemption and apply this preemption technique in the 

context of calibrating environmental simulation models.  Deterministic model preemption refers to 

the termination of model simulations that have demonstrated such poor performance that the solution 

will definitely not contribute to guiding the search strategy. In other words, the application of the 

deterministic preemption strategy leads to exactly the same calibration result as when deterministic 

preemption is not applied. This attractive property of deterministic preemption does not hold for 

meta-modeling strategies, or the hurdle approach in Ostfeld and Salomons [2005] as discussed in 

Section 2.2. 

In the hurdle approach to automatic calibration in Ostfeld and Salomons [2005], hurdle magnitudes 

and breakpoints over the simulation period, referred to as parameters of the methodology, are 

assigned arbitrarily prior to the optimization.   No objective procedure is suggested for specifying 

these parameters. In contrast, our preemption threshold is determined objectively and adaptively as 

explained later in Section 2.3.2. Moreover, as the hurdle has a predefined value regardless of the 

objective function value of the current best solution in the course of an optimization trial, there is no 

guarantee that an aborted solution is non-informative. In other words, in the hurdle approach, if users 

select a strict hurdle, they might increase computational saving at the expense of frequently aborting 

informative solutions and thus change algorithm behaviour and potentially the final calibration 

solution. 
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2.3.1 Applicable Objective Functions 

Model calibration may be viewed as the process of adjusting or sampling model parameters within 

prescribed limits (i.e., parameter ranges) to obtain one or more model parameter sets that satisfy some 

criteria. The main criterion in this context is the deviation of model outputs from measured data. This 

deviation is usually formulated as either an objective function to be minimized (i.e., in optimization-

based calibration) or as a likelihood function to be sampled (i.e., in uncertainty-based calibration). 

Many calibration objective functions have been proposed in the literature, but not all of them are 

applicable to preemption enabled model calibration. 

The essential characteristic of any applicable objective function within the model preemption 

framework is that it must monotonically degrade in quality with simulation period length. In other 

words, the objective function must not improve as more simulation time steps are considered. 

Objective functions that can be derived from (or are transformations of) any monotonic function are 

indirectly applicable as well.  

For this study, we selected the sum of squared errors (SSE) and its weighted version as a 

representative objective function suitable for investigating preemption enabled calibration. SSE 

accumulates the squared errors between simulation results and measurements from the beginning of 

calibration period up to the current simulation time step, t, as: 

Tt ,...,1)obs(simSSE
t

1i

2

iit  
                (2-1) 

where T is the length of the calibration period,  simi and obsi are the simulated and observed values at 

time step i, respectively. 

Other commonly used performance metrics in water resources modeling include: the mean squared 

error (MSE), root mean squared error (RMSE), RMSE of peak flow events, RMSE of low flow 

events, and their weighted versions, as well as the Nash-Sutcliffe coefficient of efficiency [Nash and 

Sutcliffe, 1970a]. These metrics are all transformations of the SSE objective and are therefore also 

applicable within the preemption framework.  Alternative metrics to SSE that monotonically degrade 

in quality such as the sum of absolute deviations are also applicable.  
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An example of using transformations of SSE is demonstrated when the Nash–Sutcliffe (ENS) 

coefficient is selected as the calibration objective function. An intermediate Nash-Sutcliffe value,

NS'E , can be calculated as a transformed and normalized SSE measure: 
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where tobs  and tsim  are the measured and simulated data, obs  is the average of measured data 

with the length of T,   is the current time step in the course of a model simulation ( T,...,2,1 ) 

and t is a timing index. Since the denominator of the fraction is only a function of observed data, it is 

a constant value and can be calculated over the entire calibration period prior to the calibration 

process.  As such, NS'E  can be viewed as a linear function of SSE resulting in a monotonically 

decreasing function. At the end of a given simulation, the current time,  , will equal the overall 

simulation time T ( T ) and the intermediate Nash-Sutcliffe coefficient, NS'E , will be equal to the 

overall Nash-Sutcliffe coefficient, NSE , as desired. 

2.3.2 Preemption Threshold  

As a general concept, and for a given calibration algorithm, the deterministic model preemption 

threshold defines a specific objective function value that separates model parameter sets that are 

known to have no influence on calibration algorithm behaviour (and thus have no impact on the 

calibration result) from those that are known to influence algorithm behaviour.  As such, there are 

some calibration algorithms which are not suitable for model preemption (as discussed in Section 

2.4).  In this study, since SSE-based objective functions are utilized, our model preemption threshold 

is the maximum SSE value a solution can have before it is known to have no impact on the model 

calibration result. If, during the course of a model simulation, the accumulated (but intermediate) SSE 

exceeds the preemption threshold, then there is no doubt that continuing evaluation of the current 

model parameter set is unnecessary because the objective function in question will not change the 

behavior of the overlying calibration algorithm.  

In optimization-based calibration, a given preemption enabled optimizer may involve one or more 

preemption thresholds depending on whether the algorithm operates on a single candidate solution or 
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a population of candidate solutions. Importantly, a given preemption threshold may be dynamically 

adjusted as a given optimization algorithm progresses. Dynamic adjustments to the preemption 

threshold(s) generally coincide with the updates to the best solution(s) found so far in a given search. 

Accordingly, initial preemption threshold value(s) can be assigned using the initial solution of a given 

optimization trial. 

2.3.3 Illustrative Example of Model Preemption 

Figure 2-1 illustrates the model preemption concept and the use of a preemption threshold. The figure 

plots a representative monotonic increase of the sum-of-squared errors objective function as a 

function of elapsed simulation time steps. Once the simulation reaches time tp of the T total time 

steps, the SSE value already exceeds a particular preemption threshold and at that point the 

simulation could be aborted to save computational budget. When calibrating continuous hydrologic 

models, modelers often consider a spin-up or initialization period at the beginning of the simulation to 

avoid the effect of initial conditions in the watershed. In such cases, it would be inappropriate to 

compute any portion of the SSE objective function during spin-up. Thus, the preemption concept 

would not apply until just after the spin-up period.  

 
Figure 2-1. Plot of a typical sum of squared errors time series in the course of a model simulation 

period – the SSE is monotonically increasing over time and may pass a specified preemption 

threshold (tp is the earliest possible time of preemption) 
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2.4 Model Preemption in Optimization-based Calibration Algorithms 

Both derivative-based and derivative-free optimizers have been utilized in the calibration of 

environmental simulation models. Many of these algorithms may be modified to take advantage of 

the simulation-preemption concept.  The following sub-sections highlight a representative sub-set of 

optimization algorithms and discuss their suitability (or unsuitability) for utilizing the preemption 

concept. In assessing the suitability of a given algorithm, the key consideration is whether or not a 

deterministic preemption threshold (i.e., one that definitely does not alter the algorithm behaviour) 

can be easily defined based on the algorithm search procedure. 

2.4.1 Ideal Optimization Algorithms for Model Preemption  

Some optimization algorithms are ideal for model preemption in that they stand to benefit 

considerably in terms of increased computational efficiency.  These ideal algorithms have an easily 

defined preemption threshold that can be utilized to preempt the evaluation of any of the candidate 

solutions generated by the algorithm.  Examples of this type of algorithm discussed below include the 

dynamically dimensioned search [Tolson and Shoemaker, 2007b], particle swarm optimization 

[Kennedy and Eberhart, 1995], pattern search [Torczon, 1997] and grid search [Yu et al., 2006] 

algorithms. 

Designed for optimization problems with many decision variables, the DDS [Tolson and 

Shoemaker, 2007b] algorithm is a computationally efficient stochastic global search algorithm that 

requires no algorithm parameter adjustment. In the DDS algorithm, the search dimension is 

dynamically refined as a function of current iteration number and the user-specified maximum 

number of function evaluations.  DDS is a single-solution based algorithm that always searches from 

the current “best” solution.  It is a greedy type of algorithm since moves that would degrade the 

current best solution are never accepted and are not utilized in subsequent algorithm decisions. In 

other words, DDS ignores any candidate solutions which are worse than the current best solution and 

these inferior solutions do not influence the search strategy. Making use of this fact, an obvious 

preemption threshold for the DDS algorithm is to utilize the objective function value of the current 

best solution. 

PSO [Kennedy and Eberhart, 1995] is a stochastic, population-based, global optimization method 

inspired by the social behavior of birds and fish. A swarm consists of a population of “particles” 

distributed throughout the D-dimensional parameter space. Each particle has a position vector ( X ) 
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and a velocity vector (position change) ( v ) and these are updated at each generation, causing the 

particles to fly through hyperspace. During flight, each particle tracks its own “personal” best solution 

(
pX  and associated objective function

pF ), as well as the overall best solution (
gX  and associated 

objective function
gF ) discovered by the entire swarm of particles. Velocity updates for each particle 

are computed each generation using a simple vector calculation that is a random-but-weighted 

function of (1) the particles current position (
curX ); (2) the particles previous velocity (i.e., inertia); 

(3) the particles personal best position (
pX ); and (4) the overall best position (

gX ), Weights are 

applied to bias particle movement, such that the inertia weight (w) biases movement toward the 

previous velocity, the cognitive weight (c1) biases movement toward the personal best position, and 

the social weight (c2) biases movement toward the overall best position. Detailed descriptions of PSO 

can be found elsewhere [Beielstein et al., 2002; Kennedy and Eberhart, 2001]). 

The PSO algorithm only needs to keep track of the personal best and overall best  particle positions 

and corresponding objective function values (i.e.
pF  for each particle and 

gF ) as these are the only 

solutions that influence the path of each particle.  Clearly, for each particle, a given personal best 

objective function value will always be inferior or equal to the overall best objective function value – 

for minimization problems 
gp FF  . The trajectory of individual particles will not be influenced by 

solutions whose objective function values are inferior to their current personal best (
pF ). Making use 

of this fact, a separate preemption threshold can be conveniently defined for each particle – these 

thresholds correspond to the current personal best solution of each particle. 

The pattern search [Torczon, 1997] and grid search [Yu et al., 2006] algorithms are deterministic 

global optimization algorithms that are able to utilize a straightforward model preemption strategy. 

For example, in the polling process of the pattern search algorithm the preemption threshold can be 

conveniently defined to correspond to the objective function value of the current best solution – such 

an assignment will not affect the overall behavior of the algorithm. Similarly, during evaluation of 

grid points in the grid search algorithm, the preemption threshold can be defined to correspond to the 

objective function value of the current best solution.  
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2.4.2 Moderately Suitable Optimization Algorithms for Model Preemption  

Some optimization algorithms would stand to benefit in terms of increased computational efficiency 

from model preemption but the potential benefits are likely reduced relative to the benefits of the 

ideal algorithms discussed in 2.4.1. The ability or likelihood of pre-empting solutions in these 

algorithms is relatively small. Examples of moderately suitable algorithms for preemption discussed 

below include the Nelder-Mead simplex [Nelder and Mead, 1965], shuffled complex evolution [Duan 

et al., 1993] and all derivative-based optimization algorithms. 

In the Nelder-Mead simplex algorithm, a candidate preemption threshold is the objective function 

value of the worst vertex of  d+1 solutions in the current simplex (where d is the problem dimension) 

– model preemption using such a threshold will not have any effect on the algorithm. Accordingly, 

since the Nelder-Mead algorithm is utilized in the competitive complex evolution (CCE) sub-module 

of the popular SCE algorithm, this same model preemption strategy can be used in SCE - the evolved 

complexes that are returned to the main SCE module prior to reshuffling and repartitioning will not 

be altered. Preliminary testing of model preemption efficiency gains in the SCE algorithm confirmed 

that SCE was moderately suitable with achievable computational savings typically less than 10%.  

Since the derivative-free Nelder-Mead algorithm is generally considered a local search, the 

expected preemption savings are less relative to a global search method because a local search would 

concentrate the search too closely around the best solution or set of solutions found so far and the 

associated preemption threshold is based on the worse vertex in a simplex.  Preemption savings are 

generally a maximum for global optimization algorithms that are more likely to evaluate relatively 

poor solutions with significant frequency.  Similar to Nelder-Mead, the stepwise linear search 

algorithm [Kuzmin et al., 2008] proposed for efficient distributed hydrologic model calibration can be 

considered as a moderately suitable optimization algorithm for model preemption. 

The proposed deterministic model preemption strategy has limited applicability and efficiency 

gains when combined with derivative-based optimization algorithms.  In such methods, determining 

the search direction requires evaluating numerical derivatives and obtaining accurate derivatives 

requires fully evaluated objective function values. Any model preemption implemented during the 

search direction step of derivative-based algorithms would yield approximate derivative information 

and as such is incompatible with the proposed deterministic model preemption concept.  However, a 
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preemption strategy might improve the efficiency of line-search algorithms that are used by 

derivative-based algorithms to adjust the step size (given a derivative-based search direction).  

2.4.3 Optimization Algorithms Unsuitable for Model Preemption  

Some optimization algorithms such as genetic algorithms (GA – [Goldberg, 1989]) and ant colony 

optimization (ACO - [Maier et al., 2003]) might have substantial difficulty adopting the proposed 

model preemption strategy.  For example, a GA with roulette-wheel selection requires fully evaluated 

objective function values for the entire population – utilizing preemption would alter the behavior of 

the algorithm. Although some preemption might be possible in GAs with tournament selection, 

defining preemption thresholds becomes more complex and the relative potential benefits would put 

these types of GAs in the moderately suitable algorithm class in Section 2.4.2.  Similar to a GA with 

roulette-wheel selection, the ACO algorithm probabilistically evaluates possible paths (solutions) and 

utilizes the entire colony of fully evaluated objective function values, even if some members of the 

colony are massively inferior. Thus, utilizing preemption would alter the behavior of the ACO 

algorithm. 

2.5 Preemption in Uncertainty-based Calibration Algorithms 

Apart from treating model calibration as an optimization problem, the introduction of the Generalized 

Likelihood Uncertainty Estimation (GLUE) method proposed by Beven and Binley [1992] has 

refocused many calibration efforts towards quantifying model prediction uncertainty. In contrast to 

the optimization-based approach of identifying a single parameter set that minimizes some objective 

function, procedures developed for uncertainty-based calibration are designed to search some prior 

probability distribution of the parameter space with the goal of elaborating a calibrated (i.e., posterior 

or behavioral) probability distribution of model parameters.  Kuczera et al. (2010) introduced a 

limited-memory MCMC sampler for Bayesian uncertainty analysis that is conceptually similar to 

preemption. Here, two other uncertainty-based calibration algorithms were investigated as candidates 

for the model preemption strategy and are described below.  

Generalized Likelihood Uncertainty Estimation (GLUE) is a method introduced by Beven and 

Binley [1992] to quantify the uncertainty of model predictions. GLUE is based on the “equifinality” 

concept [Beven and Freer, 2001], which hypothesizes the existence of several different parameter sets 

(and multiple model structures) that simulate observed system behaviour equally well. When 
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considering parameter uncertainty, GLUE is focused on identifying multiple acceptable or 

“behavioral” parameter sets via a Monte Carlo sampling experiment. Therefore, the modeller must 

subjectively define behavioral in terms of the selected likelihood function by a threshold value for 

each case study. A large number of GLUE studies have utilized transformations of the sum of squared 

errors (SSE), especially the Nash-Sutcliffe coefficient, to define the likelihood function.  

Typical GLUE studies utilize uniform random sampling and report exceedingly high numbers of 

model evaluations.  For example, the vast majority of GLUE studies report using more than 10,000 

model evaluations while multiple studies report using millions of model simulations [Brazier et al., 

2000; Freer et al., 2004].  There are definite practical sampling efficiency issues in GLUE that 

require improved sampling procedures [Beven, 2006] and very low behavioural sampling frequencies 

(<1/1000 for example) are reported in various GLUE studies [Blazkova and Beven, 2009; Freer et al., 

2004].  Therefore, the GLUE procedure typically samples a very high proportion of solutions that 

could be terminated early in the simulation with the preemption concept. 

In the preemption enabled GLUE, the preemption threshold is simply set equal to the subjective 

behavioral threshold as determined by the modeller.  In the GLUE-based preemption experiments in 

this study, variable behavioural thresholds are defined using the Nash-Sutcliffe coefficient (ranging 

from 0.0 to 0.5) and the common uniform random sampling approach is applied.  

The DDS-AU methodology [Tolson and Shoemaker, 2008] is an uncertainty-based calibration 

algorithm that enumerates multiple high-likelihood solutions (i.e., parameter sets) using independent 

DDS optimization trials. Using a relatively small number of model evaluations (e.g., ~100), each 

DDS trial starts from a different initial solution and follows a different randomized search trajectory, 

resulting in the identification of a variety of behavioral solutions. In the simplest implementation of 

DDS-AU, only the best solution from each DDS optimization trial is considered as a possible 

behavioral sample. Therefore, in DDS-AU, each independent DDS trial can conveniently utilize the 

DDS preemption strategy (and associated preemption threshold based on the current best) described 

in Section 2.4.  

2.6 Case Studies 

To demonstrate the model preemption strategy, it was linked with a representative set of 

optimization-based and uncertainty-based calibration algorithms for the purpose of calibrating several 

environmental simulation models. Selected case studies include two SWAT2000 hydrologic (Soil and 
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Water Assessment Tool, version 2000 – [Neitsch et al., 2001]) model applications, a MESH 

hydrological model (Modélisation Environnementale de la Surface et de l’Hydrologie – [Pietroniro et 

al., 2007]) application, and an aquifer parameter estimation problem for the DFRTT interpretation 

model [Roos, 2009]. The calibration periods utilized in case studies above were established based on 

the original studies where the case studies were first introduced [e.g., Tolson and Shoemaker, 2007a; 

MacLean, 2009]. 

2.6.1 SWAT Case Studies  

Tolson and Shoemaker [2007a] utilized SWAT2000 to simulate streamflow and sediment and 

phosphorous transport into the Cannonsville Reservoir in Upstate, New York.  The major land uses in 

this nearly 1200 km
2
 watershed are forest and farmland while urban areas comprise less than 0.5% of 

the watershed. Tolson and Shoemaker [2007b; 2008] derived multiple optimization-based and 

uncertainty-based calibration problems from the Cannonsville case study to demonstrate the 

efficiency of the DDS and DDS-UA algorithms. Two of the calibration problems from the 

Cannonsville watershed case study were included in the suite of model preemption benchmark 

problems utilized in this study. 

SWAT-1 Case Study – Streamflow Calibration at the Walton Gauging Station 

The SWAT-1 case study is a streamflow calibration problem where the SWAT2000 model for the 

Cannonsville Reservoir watershed is calibrated to measured flow at the Walton gauging station 

(drainage area of 860 km
2
) by maximizing the Nash-Sutcliffe coefficient for daily flow. The SWAT-1 

problem seeks to calibrate 14 SWAT2000 model parameters that are subject to various range 

constraints (see Table 2 of Tolson and Shoemaker, [2007a]). The relevant calibration time period is 

2191 days (January 1990 to December 1995) and this is preceded by a model initialization period of 

1095 days – resulting in a total simulation time period of 2191+1095= 3286 days (9 years). A single 

SWAT2000 model evaluation of the SWAT-1 case study requires about 1.8 minutes on average to 

execute on a 2.8GHz Intel Pentium processor with 2 GB of RAM and running the Windows XP 

operating system. 

SWAT-2 Case Study – Streamflow, Sediment, and Phospohorous Calibration 

A second calibration problem (i.e., SWAT-2) involving the Cannonsville Reservoir watershed was 

also included in the benchmarking studies.  The SWAT-2 case study differs from the SWAT-1 case 
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study in that the model is calibrated to flow at the Walton gauging station as well as total suspended 

sediment (TSS) and total phosphorous (P) at the Beerston monitoring station, located few kilometers 

downstream of Walton.  For the SWAT-2 case study a weighted combination of Nash-Sutcliffe 

coefficients was utilized as the objective function – weights of 0.5, 0.2 and 0.3 were assigned to the 

Nash-Sutcliffe coefficients for streamflow, total suspended sediments, and total phosphorous, 

respectively.  

The SWAT-2 case study seeks to calibrate 30 SWAT2000 model parameters subject to various side 

constraints (see Table 3 of Tolson and Shoemaker [2007b]). The calibration time period for SWAT-2 

is 1553 days (October 1991- December 1995) and this is preceded by an initialization period of 365 

days – resulting in a total simulation time period of 1918 days (5.25 years). A single evaluation of the 

SWAT-2 case study takes about 1 minute on average to execute on a 2.8GHz Intel Pentium processor 

with 2 GB of RAM and running the Windows XP operating system. 

Both the SWAT-1 and SWAT-2 case studies were utilized to benchmark model preemption in an 

optimization-based calibration context. The SWAT-2 case study was also utilized to demonstrate the 

model preemption concept in an uncertainty-based calibration context. In this regard, two SWAT-2 

uncertainty-based calibration problems were evaluated – one sampled from default parameter bounds 

while the other utilized reduced parameter bounds as previously defined in Table 3-1 of Tolson and 

Shoemaker [2008].  

2.6.2 MESH Reynolds Creek Watershed Model Calibration 

The MESH (version 1.2.1) model, currently under development by Environment Canada, is a coupled 

land-surface and hydrological model. MESH combines the vertical energy and water balance of the 

Canadian Land Surface Scheme (CLASS) [Verseghy, 1991; Verseghy et al., 1993] with the horizontal 

routing scheme of the WATFLOOD hydrological model [Kouwen et al., 1993].  MacLean [2009] 

applied the MESH model to the Reynolds Creek Experimental Watershed – a research basin 

maintained by the United States Department of Agriculture, located in south western Idaho.  The 

Reynolds Creek model was calibrated to the measured flow at the Tollgate weir. This sub-watershed 

(area = 54.5 km
2
) encompasses the headwaters of the watershed and receives the highest annual 

precipitation in the watershed [Pierson et al., 2000]. The MESH model was initialized using soil 

moisture and soil temperature for September 2, 1986 to minimize the initialization period for the 

model.  For the MESH case study 62 model parameters were calibrated and these are listed along 
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with corresponding ranges in Appendix E of MacLean [2009].  Similar to the SWAT-1 case study, 

the calibration error function for the MESH case study was the Nash-Sutcliffe coefficient for daily 

flow.  Model runs were started on September 2, 1986 and ended on December 31, 1988. The first 120 

days were considered as the initialization period and, therefore, a 731 day calibration period started 

on January 1, 1987. A single evaluation of this model takes about 5.3 minutes on average to execute 

on a 2.8 GHz Intel Pentium processor with 2 GB of RAM and running the Windows XP operating 

system. 

2.6.3 Dipole Flow and Reactive Tracer Test for Aquifer Parameter Estimation 

The final benchmark problem was based on a recently introduced groundwater flow and reactive 

transport model that is designed to aid in the interpretation of aquifer tests. Because the model is less 

well-known, we have included below a detailed description of the aquifer test, the corresponding 

interpretation model, and the calibration case study. 

The DFRTT is a single-well test proposed for in-situ aquifer parameter estimation to aid in the 

design of remedial systems for contaminated sites. The DFRTT circulates groundwater between 

isolated injection (source) and extraction (sink) chambers within a single well. Once steady-state flow 

has been reached, a suite of conservative and reactive tracers are added to the injected solution.  The 

concentration of the tracers and their reaction products are monitored in the extracted solution and 

tracer breakthrough curves (BTCs) are generated.  Movement of the tracer through the aquifer is 

usually preceded by some tracer short-circuiting through the disturbed zone or well skin causing more 

than one peak in field-measured tracer BTCs. Therefore, the overall shape of a BTC is defined by the 

magnitude and time of the skin and bulk aquifer peak as well as the shape of the rising and falling 

limbs. The observed BTCs are analyzed by a DFRTT interpretation model (DFRTT-IM) to estimate 

aquifer parameters.  

The DFRTT interpretation model was developed as a high-resolution two-dimensional radially 

symmetric finite volume model consisting of two major components: a steady-state groundwater flow 

component and a reactive transport component. The model was designed so that it could provide an 

accurate representation of key first-order processes (e.g., biodegradation rate), have the ability to 

conform to a variety of field configurations and site conditions, and be able to handle a range of input 

parameters. The major assumptions used to develop this model are: (1) homogeneous aquifer 

parameters in the vicinity of the test well, and (2) the ambient groundwater flow field does not affect 
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the dipole flow field. To estimate the required aquifer parameters, the simulated BTCs produced by 

the DFRTT interpretation model must be fit to the observed BTCs using an automated calibration 

process.   

The field test used in this paper was conducted in the unconfined sand aquifer at the Canadian 

Forces Base (CFB) Borden near Alliston, ON, Canada. There are 7 parameters to be adjusted by the 

automatic calibration in this study as listed in Table 2-1. The DFRTT model is calibrated according to 

a Nash-Sutcliffe criterion: 
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where NSE  
is the weighted Nash-Sutcliffe coefficient and wt is the weighting function for the BTC 

with the duration of T (i.e., 240 minutes in this experiment). x is a vector of 7 model parameters that 

are subject to bound constraints in Table 2-1. tobs  and tsim  are the measured and simulated tracer 

concentrations at time t and obs  is the average of measured concentrations. Due to the importance of 

capturing the skin effect, wt associated with the skin was set at 0.8 while a value of 0.2 was used for 

the remaining portion of the BTC. A single evaluation of this model takes about 37 minutes on 

average to execute on a 2.8 GHz Intel Pentium processor with 2 GB of RAM and running the 

Windows XP operating system. 

 

Table 2-1. DFRTT parameters to be optimized and their ranges 

Parameter (units) Minimum Maximum 

Radial hydraulic conductivity (m/s) 5.00E-06 7.00E-05 

Vertical hydraulic conductivity (m/s) 5.00E-06 7.00E-05 

Porosity (-) 0.32 0.45 

Longitudinal dispersivity (m) 0.004 0.01 

Radial hydraulic conductivity of skin zone (m/s) 5.00E-06 7.00E-04 

Vertical hydraulic conductivity of skin zone (m/s) 5.00E-06 7.00E-04 

Porosity of skin zone (-) 0.3 0.5 
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2.7 Numerical Experiments 

A series of numerical experiments were performed in order to explore the model preemption concept 

and benchmark potential computational savings in the context of several calibration problems 

involving real-world environmental modeling case studies. Consistent with the goal of addressing the 

challenges of calibrating computationally expensive models, all of the selected benchmark problems 

utilized models with average run-times of at least one minute (i.e., SWAT-1 and SWAT-2) and as 

high as 37 minutes (i.e., DFRTT-IM). Due to computational considerations, the selected numerical 

experiments involved only a representative subset of calibration algorithms that were modified to 

adopt a model preemption strategy. In this regard, PSO and DDS were selected as representative 

optimization-based calibration algorithms and GLUE and DDS-UA were selected as representative 

uncertainty-based calibration algorithms. Importantly, the focus of these experiments was not to 

compare results across different algorithms (e.g., PSO vs. DDS), but to explore the potential savings 

afforded by model preemption for each particular algorithm (e.g., PSO with preemption vs. 

“standard” non-pre-emptive PSO).  

The experimental setup also addressed the potential for variability of results within a given 

algorithm (e.g., due to stochastic or random nature of the algorithm or alternative treatments of 

algorithm parameters). For example, unlike the DDS algorithm, several PSO algorithm parameters 

(i.e., swarm size, number of generations, inertia weight, cognitive weight and social weight) must be 

defined before applying the PSO to a given problem. Following the recommendations of [Beielstein et 

al., 2002] our PSO implementation was configured to linearly reduce the inertia weight (w) from a 

value of 1.2 in the first generation to a value of 0 in the last generation.  Conversely, two separate 

strategies for assigning the cognitive and social weights (c1 and c2) were investigated: one strategy 

utilized constant weights (c1= c2=2) and another strategy linearly varied the values from c1=3 and 

c2=1 in the first generations to c1=1 and c2=3 in the last generation. This strategy encourages a 

gradual transition within the swarm from personal (i.e., global) exploration to local exploration 

around the overall best solution.  As recommended by [Beielstein et al., 2002], both strategies 

constrain the weights such that c1+c2=4.  

The stochastic nature of the DDS and PSO algorithms may affect the preemption computational 

savings.  For DDS, 5 optimization trials with different random seeds, and in all but the MESH case 

study, different random initial solutions, were conducted. Although the stochastic nature of PSO 
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might also affect the preemption efficiency, due to computational limitations, only results based on 

one trial for each of the two PSO parameter configurations were evaluated.  

In both optimization-based (i.e., DDS and PSO) and DDS-AU uncertainty-based benchmarks, 

preemption thresholds are set objectively based on the algorithm search histories and they vary 

dynamically as the algorithms proceed. In the GLUE uncertainty-based algorithm, the preemption 

threshold is set equal to the subjectively determined behavioral threshold (as determined by the 

modeller). Therefore, in the GLUE experiments, different preemption thresholds over the range of 0.0 

to 0.5 (in Nash-Sutcliffe scale) were applied to capture the variability and sensitivity of results with 

respect to the behavioral threshold.  

Two parameter ranges (hereafter termed “default” and “reduced”) were used for the SWAT-2 case 

study. The use of default parameter ranges replicates a calibration example where the modeller has 

little prior knowledge (i.e., expert judgment) and the reduced ranges simulates a scenario in which 

some prior knowledge was available (e.g., through previous case study or simulation model 

experience). 

Importantly, the experimental setup and associated measure of computational savings leveraged the 

definition of “deterministic model preemption” (which requires the use of a preemption threshold that 

has absolutely no effect on algorithm behavior) in order to save the total computation time required to 

conduct all experiments. As a result, a given experiment could be efficiently performed using only 

preemption enabled algorithms – the computational costs of corresponding non-preemptive 

algorithms were then inferred using the assumption that for each case study, the average computation 

time required per pre-empted model time step is equal to the overall average computation time of 

each model time step.  In addition, the model simulation time was assumed to be constant across all 

model parameter sets. These assumptions are consistent with other studies comparing relative 

computational burdens of alternative model calibration methods [Khu and Werner, 2003; Tolson and 

Shoemaker, 2007b].  However, to verify this assumption, the times needed for evaluating 500 samples 

for SWAT-2 and 500 samples for MESH generated by Latin hypercube sampling were measured. The 

model simulation time coefficients of variation obtained for the SWAT-2 and MESH case studies 

were quite small at 0.06 and 0.02, respectively.  

The computational time each model spends on calculations in the initialization period (involves 

SWAT-1, SWAT-2 and MESH case studies) are ignored in the presented saving results due to the fact 
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that the length of any model initialization period is problem specific and in some calibration problems 

such as DFRTT-IM, an initialization period is unnecessary. Therefore, the term “calibration period” 

in this paper is referred to as the period used in the calculation of objective function. Assuming 

computational cost is the same for all model time-steps, the preemption computational saving for each 

solution or objective function evaluation is calculated as follows: 
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where n is the total number of time steps in (or length of) the calibration period, and np is the number 

of time steps simulated in that calibration period before the simulation is terminated (either due to 

preemption or because the entire calibration period was simulated). In non-pre-emptive algorithms, 

the calibration period would be fully simulated with each model parameter set using a computational 

cost of n time steps. 

For the SWAT-1, SWAT-2 and DFRTT case studies model preemption was achieved by a 

separately created monitoring program. Each of the selected calibration algorithms was then 

configured to call upon this monitoring program whenever a new parameter set needed to be 

evaluated. The monitoring program would first launch a given simulation and then track simulation 

progress by periodically reading intermediate model output files and computing a corresponding SSE 

value. If the computed SSE exceeded a given threshold supplied by the preemption enabled 

calibration algorithm, then the monitoring program would terminate the simulation using a readily 

available operating system command (e.g., “TaskKill” in Microsoft Windows or  “kill” in the Linux 

and Mac OS X operating systems).  For the MESH case study, an alternative strategy was utilized in 

which monitoring and terminating a simulation was embedded within the MESH model source code. 

Each calibration algorithm was then modified to directly provide MESH with the preemption 

threshold for a given model evaluation and the MESH model would monitor its own progress and as 

appropriate halt a given simulation at the earliest possible time step of the simulation.  

In all but the MESH calibration experiments, two different measures of np were calculated, the 

“actual” np value and the “theoretical minimum” np value. The actual np for each objective function 

evaluation was recorded as the total number of time steps in the calibration period that were actually 

simulated before termination of the model and thus measures the actual savings due to preemption.  

The theoretical minimum np was established by post-processing the results of each saved model 
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output file.  Measuring savings as a function of the theoretical minimum np reflects the maximum 

savings achievable if the model could be pre-empted at the first possible moment (i.e., the simulation 

model was developed with an internal preemption capability, as in the MESH case study).  Thus, the 

difference between actual and maximum savings reflect limitations of using a separate preemption 

monitoring program which might not pre-empt a given simulation until several time-steps after the 

preemption threshold is exceeded. The computational savings reported in this paper for each 

calibration experiment or optimization trial is the average savings for all model parameter sets 

evaluated in that experiment or trial.  

2.8 Results 

The results are presented in four sections. Sections 2.8.1 and 2.8.2 deal with the performance of the 

model preemption strategy employed within the DDS and PSO optimization algorithms, respectively. 

These preemption enabled optimization algorithms were applied to the SWAT-1, SWAT-2 and 

DFRTT-IM case studies. The preemption enabled DDS was also applied to the MESH case study. 

Sections 2.8.3 and 2.8.4 present the results of model preemption strategy applied in the GLUE and 

DDS-AU uncertainty analysis frameworks. The efficiency of these preemption enabled algorithms is 

demonstrated through the MESH and SWAT-2 case studies.  

2.8.1 DDS with Preemption 

DDS was applied with the preemption strategy (hereafter termed “DDS with preemption”) and tested 

on all four case studies. As discussed in Section 2.7 (Numerical Experiments) and due to the effects 

of randomness on DDS performance, the presented results for all case studies are based on 5 

optimization trials. The number of objective function evaluations per optimization trial was set to 

600, 1000, 1000 and 250 for SWAT-1, SWAT-2, MESH and DFRTT, respectively. When linked with 

DDS, the model preemption strategy yielded average maximum theoretical computational savings of 

19%, 24%, 49% and 50% of the computational budget for SWAT-1, SWAT-2, MESH and DFRTT, 

respectively. The actual preemption savings for SWAT-1, SWAT-2 and DFRTT were 14%, 21% and 

37%. Since the MESH model utilized an embedded preemption capability, the actual savings were the 

same as the corresponding maximum theoretical savings (i.e., 49%). Table 2-2 summarizes all 

preemption savings. 
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Table 2-2. Summary of maximum theoretical (Max.) and actual computational savings (as a 

percentage, according to Equation 2-4) due to model preemption strategy employed in DDS, PSO, 

GLUE and DDS-AU. 

 DDS 
PSO 

(Constant weights) 

PSO 

(Dynamic 

weights) 

GLUE 

Behavioral 

threshold Ens=0 

GLUE 

Behavioral 

threshold Ens=0.5 

DDS-AU 

 Max. Actual Max. Actual Max. Actual Max. Actual Max. Actual Max. Actual 

SWAT-1 19 14 39 34 44 40 --- --- --- --- --- --- 

SWAT-2 24 21 57 53 56 52 
58 

(95)
a
 

52 

 

75 

(97)
a
 

70 

 
22 18 

MESH 49 49 --- --- --- --- 95 95 96 96 --- --- 

DFRTT 50 37 68 59 --- --- --- --- --- --- --- --- 

a)  Using wide or default SWAT2000 parameter ranges. 

Figure 2-2, Figure 2-3, and Figure 2-4 show selected measured vs. calibrated (using DDS) results 

for the SWAT-1, MESH and DFRTT-IM case studies – with corresponding Nash-Sutcliffe 

coefficients of 0.86, 0.77 and 0.98, respectively. These figures qualitatively demonstrate that even 

with 1000 or fewer objective function evaluations, good quality calibration results were achieved 

across the various case studies. The average calibrated Nash-Sutcliffe coefficients over all the DDS 

trials for the SWAT-1, SWAT-2, MESH and DFRTT case studies are 0.85, 0.66, 0.73 and 0.98, 

respectively.  

 

Figure 2-2. Measured and best simulated flow time series of SWAT-1 case study at the Walton station 

over calibration period (found by DDS). 
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Figure 2-3. Measured and best simulated flow time series of MESH case study at the Tollgate station 

over calibration period (found by DDS). 

 

Figure 2-4. Measured and best simulated breakthrough curve of DFRTT case study (found by DDS) 
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function of the time of model preemption during the calibration period. Model preemption times in 

Figure 2-5 are the earliest theoretical times at which the model could be pre-empted. According to 

Figure 2-5a, in the case of SWAT-1, the frequency of model preemption before 55% of the 

calibration period is simulated is negligible. However, about 40% of model evaluations were 

preempted before 75% of the calibration period is simulated. Figure 2-5b demonstrates that, when 

linked with the DDS algorithm, model preemption is active in the early steps of the SWAT-2 

simulation so that, for example, about 5% of simulations were pre-empted in the first 15% of the 
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calibration period. Furthermore, the frequency of model preemption before 60% of the simulation is 

greater than 30%.  

 

 

Figure 2-5. Empirical cumulative distribution function of model preemption in DDS and PSO over 

the course of simulation of (a) SWAT-1, (b) SWAT-2, (c) MESH (without PSO results) and (d) 

DFRTT – based on earliest theoretical time of termination 

 

For the MESH study, and with respect to DDS with preemption, Figure 2-5c shows that on average 

about 40% of simulations were terminated in the first 18% of the calibration period and 73% were 

terminated before simulating 72% of the period. For the DFRTT (Figure 2-5d) case study, model 

preemption in the DDS algorithm is active from the beginning of the calibration period and the 

frequency of model preemption within the first 5% and the first 20% of the calibration period were 

about 25% and 48%, respectively. Note that the high weight of the skin part of breakthrough curve in 

the DFRTT error function significantly contributed to these early time-step model preemptions. 
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The narrowness of bounds in Figure 2-5 demonstrates that randomness in the DDS search strategy 

does not have a considerable effect on the efficiency of the model preemption approach. It is worth 

noting that the savings afforded by model preemption depends on the model under consideration, the 

associated parameters being calibrated and the objective (error) function. Furthermore, as can be 

observed in Figure 2-5, there are a couple of jumps in the empirical CDFs and these jumps represent 

the active parts of the calibration period with respect to model preemption. For instance, by 

comparing Figures 2-2 and 2-5a, it is evident that the flood event of April 1993 had a significant 

influence on model preemption in the SWAT-1 case study. Hence, modellers may increase the 

potential of model preemption substantially by carefully choosing the calibration period. A more 

general discussion of this topic is given below, in Section 2.9.1. 

Since the potential savings afforded by model preemption depends on the search strategy of the 

optimization algorithm, Figure 2-6 quantitatively clarifies this behavior over the course of the 5 DDS 

trials (with 1000 function evaluations) for the SWAT-2 case study. According to this Figure, the 

cumulative computational savings are relatively high in the early iterations of DDS and these savings 

decrease gradually as the algorithm progresses toward its final iteration. For instance, an average trial 

of DDS with preemption saved 16.3% of the total computational budget in the first half of the DDS 

iterations, but the algorithm achieved only 7.7% savings in the second half of its iterations. This 

decrease is due to the fact that DDS searches globally (perturbs in all dimensions) in the early 

iterations and as a function of iteration number it gradually tends to be a more local search (perturbs 

in only one dimension in the final iterations). Relative to the global search performed in early 

iterations, during the local search portion of the DDS algorithm it is more likely that model 

simulations must proceed to near-completion before the preemption threshold is exceeded.  

2.8.2 PSO with Preemption 

PSO was applied with the model preemption strategy (hereafter termed “PSO with preemption”) and 

benchmarked using the SWAT-1, SWAT-2 and DFRTT case studies. As explained previously, two 

PSO strategies (i.e., with and without dynamic cognitive and social weights) were investigated in 

order to assess potential variability due to different treatments of PSO algorithm parameters. The first 

strategy using constant weights was applied to all three of the aforementioned case studies, while the 

second strategy (i.e., dynamic weights) was applied to only the SWAT-1 and SWAT-2 case studies. 

PSO swarm sizes were set equal to 18, 21 and 16 for the SWAT-1, SWAT-2 and DFRTT case 
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studies, respectively, based on the formula (Swarm_Size = 10+2*(number of decision variables)
0.5

) 

suggested by Clerc [2006].  Based on preliminary “tuning” experiments, PSO trials were run for 100, 

150 and 30 generations for the SWAT-1, SWAT-2 and DFRTT case studies, respectively.  

 

 

Figure 2-6. Cumulative computational saving (maximum theoretical) over the course of the DDS and 

PSO trials on SWAT-2 (maximum number of function evaluations in DDS=1000, maximum number 

of generations in PSO=150 & swarm size=21) 

 

As shown in Table 2, PSO with preemption and using constant cognitive and social weights 

achieved maximum theoretical savings of 39%, 57% and 68% of the computational budget for the 

SWAT-1, SWAT-2 and DFRTT case studies, respectively. The actual savings for SWAT-1, SWAT-2 

and DFRTT were 34%, 53% and 59%, respectively.  Maximum theoretical savings when using 

dynamic cognitive and social weights were 44% and 56% for the SWAT-1 and SWAT-2 case studies, 

respectively. Selected “best-fit” PSO calibrations (considering both the constant and dynamic weight 

variants) yielded Nash-Sutcliffe coefficients of 0.82, 0.61 and 0.98 for the SWAT-1, SWAT-2 and 

DFRTT case studies, respectively.  

With respect to PSO with preemption, Figure 2-5 shows the empirical cumulative distribution 

function of the time of model preemption during the calibration period. Model preemption times in 

Figure 2-5 are the earliest theoretical times at which the model could be pre-empted. Because the 

choice of dynamic vs. constant cognitive and social weights did not demonstrate a significant effect 
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on empirical CDFs, the following analysis applies to both PSO parameter settings.  Figure 2-5a 

illustrates the cumulative behavior of PSO with preemption, as applied to the SWAT-1 case study and 

illustrates that after the first 14% of the comparison period, the frequency of model preemption 

increased rapidly so that more than 25% of simulations were pre-empted in the first 40% of the 

calibration period. Moreover, the probabilities of model preemption before 55% and 75% of 

comparison period are about 66% and 80%, respectively.  According to Figure 2-5b, PSO with 

preemption was also highly efficient when applied to the SWAT-2 case study.  For example, about 

12% of simulations were pre-empted in the first 1% of the calibration period. Moreover, in this case, 

the frequency of model preemption before simulation of 15% and 60% of the comparison period was 

about 30% and 72%, respectively. 

When PSO with preemption was applied to the DFRTT case study (Figure 2-5d), model 

preemption was active from the start of the calibration period and the frequency of model preemption 

within the first 5% and 20% of the calibration period was about 58% and 68%, respectively.  

Figure 2-6 demonstrates the cumulative maximum theoretical computational savings as a function 

of generation number over the course of the “PSO with preemption” optimization trials as applied to 

the SWAT-2 case study. As illustrated in the figure, the alternative PSO treatments had little 

influence on the amount of computational savings that may be gained through model preemption. In 

addition, cumulative computational savings increase gradually during the first 85% of PSO 

generations and then reach a turning point at which the savings are to flatten out.  This behavior 

reflects the fact that the PSO algorithm searches aggressively for the global optimal and transitions 

only in later generations to a more localized search. The extensive duration of the PSO global search 

results in relatively frequent evaluation of model parameter sets that are significantly inferior to the 

“personal best” preemption threshold of individual particles. This characteristic makes the algorithm 

particularly suitable for the model preemption concept, and the results confirm that significant 

computational savings can be realized. 

2.8.3 GLUE with Preemption 

The SWAT-2 and MESH case studies were utilized to demonstrate the efficiency of the uncertainty-

based GLUE calibration procedure when it was applied with the model preemption strategy (hereafter 

termed GLUE with preemption). 10,000 SWAT-2 model evaluations and 10,000 MESH model 

evaluations were conducted using GLUE with preemption. Uniform random sampling (the most 
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common sampling approach utilized in GLUE applications) was applied to both case studies.  In the 

MESH case study parameter ranges specified in MacLean [MacLean, 2009] were utilized.  In the 

SWAT-2 case study, the GLUE experiment was repeated twice using both default and reduced model 

parameter ranges.  The use of default parameter ranges replicates a calibration process in which the 

modeller has little prior knowledge (i.e., expert judgment) of the model as applied to the particular 

case study. The range reductions simulated a scenario in which some prior knowledge was available 

(e.g., through previous case study modelling experience).  

As reported in Table 2, using a behavioral threshold of 0.5 (Nash-Sutcliffe coefficient), GLUE with 

preemption yielded maximum theoretical computational savings of 96% and 75% for SWAT-2 with 

default parameter ranges and SWAT-2 with reduced parameter ranges, respectively.  The actual 

preemption savings for SWAT-2 with reduced parameter ranges was 70%.  With the same 

behavioural threshold of 0.5 for the MESH case study, GLUE with preemption yielded a maximum 

theoretical computational saving (which is also the actual computational saving) of 96%.  However, 

in all three of these experiments, the GLUE approach was unable to identify a single behavioral 

sample – indicating that a behavioral threshold of 0.5 is not compatible with the selected number of 

model evaluations (i.e., 10,000).  

Since the choice of behavioural threshold in GLUE studies is a subjective modelling decision, 

Figure 2-7 shows the total computational savings yielded by GLUE with preemption over a range of 

behavioral thresholds (i.e., 0.0 to 0.5), as applied to the different case study configurations. The 

results indicate that the computational savings achieved for two of the case studies (i.e., MESH and 

SWAT-2 with default parameter ranges) was fairly insensitive to changes in the behavioral threshold.  

Even with a very relaxed behavioural threshold of 0.0, the GLUE procedure infrequently samples 

behavioral solutions as the behavioural sampling frequency in the experiments was 894/10000 at best 

and 0/10000 at worst.  This resulted in extremely frequent model preemption and considerable 

computational savings. When expert judgment was applied to the parameter ranges (i.e., the SWAT-2 

case study with reduced parameter ranges), the amount of savings achieved through model 

preemption was reduced compared to default parameter ranges and became sensitive to the selected 

behavioral threshold (see Figure 2-7). 
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Figure 2-7. Maximum theoretical computational saving due to model preemption strategy in GLUE 

framework versus behavioural threshold.  

 

2.8.4 DDS-AU with Preemption 

The SWAT-2 case study was used to demonstrate the efficiency of the uncertainty-based DDS-AU 

method with the model preemption strategy (hereafter termed DDS-AU with preemption). Consistent 

with the “GLUE with preemption” trials, the maximum total number of model evaluations was set 

equal to 10,000 and DDS trials were run using the reduced parameter ranges configuration of the case 

study. The number of function evaluations for each independent DDS trial was set equal to 100 based 

on the recommendation of Tolson and Shoemaker [2008]. Therefore, 100 DDS trials with random 

starting solutions and random seeds were conducted. The total maximum theoretical computational 

savings yielded by model preemption in the DDS-AU trial was 22% (see Table 2-2). The actual 

preemption savings for DDS-AU was 18%. Using a behavioral threshold of 0.5, DDS-AU identified 

40 behavioral samples out of the 100 DDS trials.  

2.9 Discussion 

2.9.1 Selecting the Calibration Period 

Modellers often have some flexibility in defining their model calibration time period, particularly 

when the available system response data for calibration is plentiful (i.e., model validation is also to be 

conducted) and/or when the model is computationally intensive enough to warrant not utilizing the 

entire set of system response data for calibration.  With such flexibility, carefully choosing the 

calibration period in a given optimization-based or uncertainty-based model calibration problem can 
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significantly improve the computational savings associated with preemption enabled calibration 

algorithms. As demonstrated by the SWAT-2 case study, some parts of the calibration period are 

likely to be more fertile than others with respect to triggering model preemption. For example, in 

rainfall-runoff model calibration, extreme flood events are likely to have a significant influence on 

overall model performance (i.e., the error function). 

For clarification, in Figure 2-5 (which contain empirical CDFs of model preemption as linked with 

the DDS and PSO algorithms), several jumps in the CDF curves can be observed and these indicate 

fertile portions of the corresponding calibration period. For instance, comparing Figure 2-2 (measured 

time series of the SWAT-1 case study) and Figure 2-5a (the corresponding empirical CDF of DDS 

with preemption), reveals that the flood event of April 1993 corresponds to a jump in the CDF – 

indicating that this event significantly contributed to model preemption. Therefore, if the calibration 

period were instead aligned to begin closer to the flood event of April 1993, many model preemptions 

would generally occur sooner in the calibration period and thus lead to an increase in computational 

savings (as well as a different calibration result).  Although it is impossible to know a priori the fertile 

periods or events for preemption, it should be clear that it is very likely advantageous with respect to 

computational efficiency to select (if possible) the calibration period such that the largest magnitude 

events/responses are not positioned near the end of the calibration period. 

2.9.2 Comments on the Model Preemption Strategy 

With respect to calibrating environmental models, our results suggest that the computational savings 

afforded by model preemption can be substantial and the amount of achievable savings depends on 

the behavior of the selected search (or sampling) strategy. In general, the more global a search (or 

sampling) strategy is, the greater the expected computational savings that can be achieved through 

model preemption. This is because a global search, as well as a uniform random sampler, will tend to 

visit low quality regions of parameter space more frequently than a more localized search that 

concentrates on portions of the parameter space that are in close proximity to previously identified 

high quality solutions. Accordingly, it is not surprising that the PSO with preemption algorithm 

resulted in computational savings that were nearly twice as high as those obtained by the DDS with 

preemption algorithm.   

Overall, and as shown in Table 2, the model preemption strategy is capable of yielding modest 

(19%) to incredible (97%) computational savings across the various case studies and calibration 
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methodologies considered.  When linked with model preemption, the computational efficiency of the 

PSO, DDS and DDS-UA algorithms were improved by up to 68%, 50%, and 22%, respectively.   Of 

all the considered calibration algorithms, the GLUE approach benefited the most from model 

preemption – with computational efficiency gains of between 58% and 97% depending on case study 

and behavioral threshold.  In contrast, Khu and Werner [2003] demonstrate a meta-modelling 

approach that incorporates both an artificial neural network and a genetic algorithm to enhance GLUE 

efficiency and report computational savings of 61% and 80% for two case studies.  Unlike Khu and 

Werner [2003], who show that their more complex meta-modelling approach introduces some 

approximation error and thus modifies the GLUE sampling results, our computational efficiency 

gains are achieved without introducing any model approximation error and do not change the GLUE 

calibration result.  It is important to note that one factor driving our efficiency gains so high is the fact 

that the behavioral solution sampling frequency is so low (1/1000 or less) in some of our case studies.  

Such low behavioral sampling frequencies are not an uncommon phenomenon in GLUE analyses 

[Blazkova and Beven, 2009; Freer et al., 2004]. 

2.9.3 Model Preemption Limitations 

As explained in Section 2.3.1, the deterministic model preemption approach is applicable only when 

the objective function used is monotonic (e.g., sum of squared errors) or when the objective function 

can be derived from a monotonic objective function (e.g., Nash-Sutcliffe coefficient). Non-monotonic 

error metrics used in water resources modeling include: overall volume error or bias, R-squared 

values and the correlation coefficient. For these types of metrics, the quality of a candidate solution 

can improve (as well as degrade) during the model simulation period. As a result, intermediate 

calculations of these types of objective functions are not reliable predictors of solution quality and 

decisions about solution quality cannot be made with certainty until the given simulation is fully 

evaluated (i.e., model run is completed). The deterministic preemption framework is not suitable for 

these types of non-monotonic performance metrics.  

A variety of optimization algorithms have been utilized for automatic calibration of environmental 

models. However, as explained in Section 2.4, only certain algorithms, e.g., DDS and PSO, are ideal 

for deterministic model preemption. Some optimization algorithms, e.g., SCE, are moderately suitable 

and some, e.g., ACO and some variations of GAs, are unsuitable for deterministic model preemption.  
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2.9.4 Guidelines for Implementing Model Preemption 

Implementing model preemption with the optimization-based algorithms selected in this study 

required minor changes to the algorithm source codes since the model preemption thresholds are 

adaptive by nature to the algorithm progress.  However, model preemption can be implemented 

independent of any GLUE sampling software since the preemption threshold in GLUE is pre-

determined by the modeler so that it matches a desired (albeit subjective) behavioral threshold.  

However, GLUE practitioners may wish to consider a less strict preemption threshold (i.e., greater 

than the behavioural threshold in minimization problems) to have more fully evaluated solutions, 

especially when an appropriate behavioural threshold is not clear before sampling.  

When a separately created monitoring program is utilized (as in the SWAT-1, SWAT-2 and 

DFRTT case studies), the frequency at which intermediate simulation results are written to disk is 

another factor dictating potential computational savings as well as proper monitoring time intervals. 

Given infrequent updates to intermediate simulation results, a preemption threshold may be exceeded 

within a model simulation some time before being detected by the preemption monitor, resulting in 

limited preemption efficiency gains. Our particular model preemption implementation for SWAT-1 

and SWAT-2 utilized a monitoring interval of 2 seconds, and as shown in Table 2, the actual 

computational savings were only 4-5% less than the maximum achievable computational savings. 

Conversely, DFRTT-IM writes its outputs very infrequently to the disk (only two intermediate writes 

per simulation), and accordingly, a monitoring interval of 1 minute was utilized. As a result, the 

actual computational savings for the DFRTT case study were significantly lower than the maximum 

achievable savings (up to 13% less in DDS with preemption).  It should be clear that when 

implementing model preemption in this way, there is little benefit (less than 1% additional efficiency 

gain) to monitoring simulation results at more than 100 evenly spaced intervals during a model 

simulation.  Our experience with preemption via a separate monitoring program suggests that this 

preemption approach is really only beneficial for simulation models requiring one or more minutes 

for each simulation – otherwise efficient software implementation becomes an important 

consideration. 

For environmental simulation model developers interested in maximizing the computational 

savings achievable from model preemption, we recommend embedding an internal preemption 

capability to their model source code, as we implemented in the MESH model. Embedding 

preemption within the source code means the model would receive the preemption threshold prior to 
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initiating the simulation (e.g., via a text file produced by the automatic calibration algorithm) and 

could continuously monitor its own progress, terminating as appropriate at the earliest possible 

moment.  In fact, an embedded preemption approach is even more straightforward in environmental 

modelling software that combines the simulation model source code with an automatic calibration 

tool and associated model performance metrics.  Widely distributed environmental modelling 

software that combines these capabilities and thus allows users to perform “push-button” automatic 

calibration include MODFLOWP [Hill, 1992], SWAT2005 [Neitsch et al, 2004], and MIKE-SHE 

[Refsgaard and Storm, 1995].  

2.10 Conclusions 

The approach of deterministic model preemption has been formalized to reduce the computational 

burden associated with both optimization-based and uncertainty-based calibration of computationally 

expensive environmental simulation models. The approach monitors the intermediate results of a 

given model simulation and terminates the simulation early if a given problem- and algorithm-

specific preemption threshold is exceeded. To formally evaluate the benefits of the approach, it was 

linked with several readily available calibration algorithms and applied to a suite of calibration case 

studies. While we expect that a variety of calibration algorithms can make use of the preemption 

concept, for this study the dynamically dimensioned search (DDS) and particle swarm optimization 

(PSO) algorithms were selected as representative optimization-based calibration algorithms and the 

GLUE and DDS-UA algorithms were selected as representative uncertainty-based calibration 

algorithms. 

For the range of calibration case studies considered, numerical results demonstrate that the model 

preemption strategy can significantly reduce computational costs – with actual savings ranging from 

14-49%, 34-59%, 52-96%, and 18% for the DDS, PSO, GLUE and DDS-UA calibration algorithms, 

respectively, across the multiple calibration case studies considered here. The new model preemption 

strategy is deterministic, and these computational savings can be realized with absolutely no change 

to the search algorithm behavior or calibration results. 

Model preemption computational efficiency gains are likely to be maximized if it is possible to 

select the calibration period such that the largest magnitude events/responses are positioned near the 

beginning of the calibration period. Additionally, maximum theoretical savings were estimated to be 

higher (4-13% more) than the actual savings that were achievable using a separate preemption 
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monitoring program. Thus, to realize the full potential efficiency savings of the preemption strategy it 

may be necessary to make modifications to the environmental model being calibrated to include an 

embedded monitoring and preemption strategy, as was done in this study for the MESH model. 

When combined with efficient search algorithms and parallel computing facilities, the model 

preemption concept has the potential to vastly improve overall model calibration efficiency, relative 

to corresponding serial computing efforts that do not use preemption. Importantly, these vast 

improvements would be achieved without the need to approximate and replace the simulation model 

of interest. 
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Chapter 3 

Surrogate Modelling: Review of the Concepts, Strategies, and 

Applications in Water Resources 

This chapter is a mirror of the following published article. Only minor organizational changes 

were made to be consistent to the body of the thesis. References are unified at the end of the 

thesis. 

Razavi, S., B. A. Tolson, and D. H. Burn (2012), Review of surrogate modeling in water resources, 

Water Resour. Res., 48, W07401, 32 pages, doi:10.1029/2011WR011527. 

 

Summary 

Surrogate modelling, also called metamodelling, has evolved and been extensively used over the past 

decades. A wide variety of methods and tools have been introduced for surrogate modelling aiming to 

develop and utilize computationally more efficient surrogates of high-fidelity models mostly in 

optimization frameworks. This chapter reviews, analyzes, and categorizes research efforts on 

surrogate modelling and applications with an emphasis on the research accomplished in the water 

resources field. The review analyzes 48 references on surrogate modelling arising from water 

resources and also screens out more than 100 references from the broader research community. Two 

broad families of surrogates namely response surface surrogates, which are statistical or empirical 

data-driven models emulating the high-fidelity model responses, and lower-fidelity physically-based 

surrogates, which are simplified models of the original system, are detailed in this chapter. 

Taxonomies on surrogate modelling frameworks, practical details, advances, challenges, and 

limitations are outlined. Important observations and some guidance for surrogate modelling decisions 

are provided along with a list of important future research directions that would benefit the common 

sampling and search (optimization) analyses found in water resources. 

3.1 Introduction 

Computer simulation models, which simulate abstract representations of physically-based systems 

using mathematical concepts and language, are playing a key role in engineering tasks and decision 

making processes. There are various types of problems utilizing computer simulation models (for 

simplicity referred to as “simulation models” hereafter) including prediction, optimization, 
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operational management, design space exploration, sensitivity analysis, and uncertainty analysis. 

There are also problems such as model calibration and model parameter sensitivity analysis dealing 

with simulation models to enhance their fidelity to the real-world system. Fidelity in the modelling 

context refers to the degree of the realism of a simulation model. Modern simulation models tend to 

be computationally intensive as they rigorously represent detailed scientific knowledge about the real-

world systems [Keating et al., 2010; Mugunthan et al., 2005; Zhang et al., 2009]. Many model-based 

engineering analyses require running these simulation models thousands of times and as such demand 

prohibitively large computational budgets.  

Surrogate modelling, which is a second level of abstraction, is concerned with developing and 

utilizing cheaper-to-run “surrogates” of the “original” simulation models. Throughout this thesis, the 

terms “original functions”, “original simulation models”, and “simulation models” are used 

interchangeably. A wide variety of surrogate models have been developed to be intelligently applied 

in lieu of simulation models. There are two broad families under the large umbrella of surrogate 

modelling, response surface modelling and lower-fidelity modelling. Response surface surrogates 

employ data-driven function approximation techniques to empirically approximate the model 

response. Response surface surrogates may also be referred to as “metamodels” [Blanning, 1975; 

Kleijnen, 2009] as a response surface surrogate is a “model of a model”. “Model emulation” is 

another term referring to response surface surrogate modelling [O'Hagan, 2006]. The term “Proxy 

models” has also been used in the literature to refer to response surface surrogates [Bieker et al., 

2007]. Unlike response surface surrogates, lower-fidelity surrogates are physically-based simulation 

models but less-detailed compared to original simulation models, which are typically deemed to be 

high-fidelity models; they are simplified simulation models preserving the main body of processes 

modeled in the original simulation model [Forrester et al., 2007;  Kennedy and O'Hagan, 2000]. 

In a surrogate modelling practice (response surface surrogates or lower-fidelity physically-based 

surrogates), the goal is to approximate the response(s) of an original simulation model, which is 

typically computationally intensive, for various values of explanatory variables of interest. The 

surface representing the model response with respect to the variables of interest (which is typically a 

non-linear hyper-plane) is called “response surface” or “response landscape” throughout this thesis. 

For the majority of response surface surrogate modelling techniques, different response surfaces must 

be fit to each model response of interest (or each function aggregating multiple model responses).  

The neural network technique is one exception capable of fitting multiple model responses. In 
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contrast, since lower-fidelity surrogates retain some physically-based characteristics of the original 

model, one lower fidelity surrogate model is typically capable of approximating multiple model 

responses of interest.  

The main motivation of developing surrogate modelling strategies is to make better use of the 

available, typically limited, computational budget. Simpson et al. [2008] report that the common 

theme in six highly-cited metamodelling (or design and analysis of computer experiments) review 

papers is indeed the high cost of computer simulations.  Global optimization algorithms based on 

response surface surrogates such as EGO [Jones et al., 1998], GMSRBF and MLMSRBF [Regis and 

Shoemaker, 2007b], and Gutmann’s method [Gutmann, 2001] and also uncertainty analysis 

algorithms such as ACUARS [Mugunthan and Shoemaker, 2006] and RBF-enabled MCMC [Bliznyuk 

et al., 2008] all have been developed to circumvent the computational budget limitations associated 

with computationally intensive simulation models. In this regard, surrogate modelling may only be 

beneficial when the simulation model is computationally intensive, justifying the expense of moving 

to a second level of abstraction (reduced model fidelity) which typically leads to reducing the 

accuracy of analyses. Therefore, even though Jones [2001] and Simpson et al. [2008] both point out 

that surrogate modelling is more than simply reducing computation time, reviewing other possible 

motivations for surrogate modelling is beyond the scope of this thesis.  

Many iterative water resources modelling analyses potentially stand to benefit from surrogate 

modelling.  Benefits are only potential because any surrogate-enabled modelling analysis provides an 

approximation to the analysis with the original model and the error of the analysis result seems 

difficult or impossible to assess without repeating the exact analysis with the original simulation 

model.  For example, there is no guarantee that a model parameter deemed insensitive on the basis of 

surrogate modelling analysis is truly insensitive in the original simulation model.  An incomplete list 

of classic or popular iterative modelling analyses in water resources, which are candidates for 

efficiency enhancement with surrogate modelling, include deterministic model parameter 

optimization (calibration) studies with evolutionary algorithms [e.g., Duan et al., 1992;  Wang, 1991], 

uncertainty-based or Bayesian model calibration studies [e.g., Beven and Freer, 2001; Kavetski et al., 

2006; Vrugt et al., 2009b], management or design optimization with evolutionary algorithms [e.g., 

McKinney and Lin, 1994; Savic and Walters, 1997], multi-objective optimization algorithms [e.g., 

Cieniawski et al., 1995; Reed et al., 2003], global sensitivity analysis methods [e.g., Hornberger and 
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Spear, 1981; Saltelli et al., 2000], and any traditional Monte Carlo-based reliability or uncertainty 

analysis [e.g., Melching et al., 1990; Skaggs and Barry, 1997].  

This chapter aims to review, analyze, and classify the research on surrogate modelling with an 

emphasis on surrogate modelling efforts arising from the water resources modelling field.  Simpson et 

al. [2001] and Wang and Shan [2007] also review the literature on response surface surrogates for 

engineering design optimization problems. Simpson et al. [2004] summarize a discussion panel on 

response surface surrogate modelling held at the 9
th
 AIAA/ISSMO Symposium on Multidisciplinary 

Analysis & Optimization. Simpson et al. [2008] review the literature on response surface modelling 

and motivations from a historical perspective and also emphasise  the appeal of lower-fidelity 

physically-based surrogate modelling. Forrester and Keane [2009] review recent advances in 

surrogate modelling including advances in lower-fidelity physically-based surrogates in the field of 

optimization. Special journal issues on surrogate modelling  summarize the first and second 

International Workshops on Surrogate Modeling and Space Mapping for Engineering Optimization 

(see Bandler and Madsen [2001] and Bandler et al. [2008]). Another special issue publication on 

surrogate modelling is a recent thematic journal issue on surrogate modelling for the reduction and 

sensitivity analysis of complex environmental models (see Ratto et al. [2012]). In addition, there are 

more specific review papers focusing on specific tools/strategies involved in surrogate modeling. 

Kleijnen [2009] reviews kriging and its applications for response surface surrogate modeling. Jin et 

al. [2001] and Chen et al. [2006] review and compare multiple function approximation models acting 

as response surface surrogates. Jin [2005] focuses on response surface surrogate modelling when used 

with evolutionary optimization algorithms.  

Surrogate modelling has been increasingly more popular over the last decade within the water 

resources community and this is consistent with the increasing utilization of metamodels in the 

scientific literature since 1990 as documented by Viana and Haftka [2008]. A research database 

search of formal surrogate modelling terminology in mid-2011 (search of Thomson Reuters (ISI) 

Web of Knowledge) in 50 journals related to surface water and groundwater hydrology, hydraulic, 

environmental science and engineering, and water resources planning and management returned 110 

articles on surrogate modelling in water resources. We believe that the actual number of articles on 

surrogate modelling in water resources is higher as there are articles not using the formal terminology 

of surrogate modelling and/or not published in water resources related journals. Forty eight of the 

available surrogate modelling references published until mid-2011 dealing with water or 
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environmental resources problems were selected for detailed review based on their relevance, our 

judgement of their quality and clarity of reporting and the significance of surrogate modelling to the 

contribution of the publication.  The phrase “water resources literature” used throughout this chapter 

refers to the 50 water resources journals and these 48 surrogate modelling references. 

3.1.1 Goals and Outline of Review 

The primary objective (1) is to provide water resources modellers considering surrogate modelling 

with a more complete description of the various surrogate modelling techniques found in the water 

resources literature along with some guidance for the required subjective decisions when utilizing 

surrogate models.  The depth of the review of the topics covered here generally varies with the 

popularity of the topic in the water resources literature and as such, discussion largely revolves 

around optimization applications. Additional more specific objectives are as follows: (2) describe 

each of the components involved in surrogate modelling practice as depicted in Figure 3-1; (3) 

provide a categorization of the different surrogate-enabled analysis frameworks (i.e., the different 

ways the components in Figure 3-1 can interact); (4) relate existing surrogate modelling efforts in the 

water resources literature with similar efforts in the broader research community; and (5)  identify 

relevant underutilized ideas for consideration in future water resources studies.  

Figure 3-1 presents a diagram that shows all the components involved in the surrogate modelling 

analysis framework and the sections in the paper that are directly related to each component. 

Conventional frameworks not involving surrogate models, such as different simulation-optimization 

frameworks, consist of only the original model and the search or sampling algorithm components 

being directly linked together. In surrogate-enabled frameworks, however, three new components, 

design of experiments, response surface surrogate, and/or lower-fidelity surrogate, may also be 

involved. These three components, and the framework through which all the components interact, are 

of particular interest in this paper. Such frameworks generally begin with a design of experiments to 

generate a sample with which to train or fit a response surface or lower-fidelity surrogate model; then 

the sampler/search algorithm repeatedly runs the original computationally expensive model and/or the 

surrogate and collects their response.  During this metamodel-enabled analysis, the surrogate model 

can be static or dynamically updated.  Any original model evaluation which is utilized to fit the 

surrogate model is referred to as a design site.  Section 3.2 details the elements associated with the 

response surface surrogates and presents their advances, considerations, and limitations. Section 3.3 
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presents the motivation and different types and frameworks for lower-fidelity surrogate modelling. 

Section 3.4 discusses how the performance of a surrogate-enabled framework should be evaluated 

and benchmarked against other alternatives. The paper ends with summary and concluding remarks in 

Section 3.5. 

 

Design of Experiments (DoE)

Random Sampling, Latin Hypercube Sampling, Fractional Factorial 

Design, etc.

See Sections 2.2, 2.5.2, and 2.5.3

Original Model

Hydrologic Models, Groundwater Models, Water Distribution 

Network Models, etc.

Response Surface Surrogate

Polynomials, kriging, RBFs, ANNs, SVMs, etc.

See Sections 2.1, 2.3, 2.5.4, 2.5.5, and 2.6

Lower-fidelity Physically-based Surrogate

Lumped Hydrologic Models, Groundwater Models with Coarse 

Mesh, Reduced Water Distribution Network Models, etc.

See Sections 3.1 and 3.3

Search or Sampling Algorithm

Optimization Algorithms, Sensitivity and Uncertainty Analysis 

Algorithms, Monte Carlo Experiments, etc.

Surrogate enabled Analysis Framework

See Sections 2.4, 2.5, 3.2, and 4

and/orand/or

 
 

Figure 3-1. Diagram of the elements involved in surrogate (metamodel) enabled analysis framework. 

 

3.1.2 Case Study or Problem Characteristics influencing Surrogate Model Design 

The most critical problem characteristics that should influence surrogate model/technique selection 

are as follows:   

1. Model analysis type to be augmented by the surrogate model – search or sampling.  For the 

remainder of this paper, search analysis is meant to refer to optimization (management, 

calibration, single- or multi-objective) or uncertainty-based/Bayesian model calibration 

procedure while all other modelling analyses are referred to as sampling analyses. 

2. Computational budget constraints.  This refers to how many original model evaluations can 

be utilized to build the surrogate model and ultimately perform the model analysis of interest.  

In applications where a surrogate model is to be repeatedly utilized after it is initially 

constructed (i.e., optimize real-time operational decisions), the time available for each 

utilization can be critical.  
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3. Dimensionality of the problem.  In general, as the number of explanatory variables increases, 

surrogate modelling becomes less advantageous and even infeasible.   

4. Single-output versus multi-output surrogates.  This is a key distinction in the context of 

environmental simulation modelling, where model outputs are typically variable in both time 

and space.  Single-output surrogates are common where the original model output of interest 

is a function calculated from a large number of model outputs (i.e., calibration error metric). 

5. Exact emulation versus inexact emulation.  In other words, should the surrogate model 

exactly predict the original model result at all design sites? 

6. Availability of original model developers/experts.  Some surrogate modelling techniques 

require these experts (lower fidelity modelling), and Gorissen [2007] notes that they can 

provide valuable insight into the significance of surrogate modelling errors relative to original 

model errors. 

Although not an original problem characteristic, the availability of surrogate modelling software 

and experts also has an impact on surrogate model design.  The aforementioned surrogate modelling 

reviews and the literature in general do not precisely map all problem characteristics to specific or 

appropriate types of surrogate models.  We also do not attempt this and instead only make periodic 

observations and judgements as to when certain types of surrogate modelling techniques might be 

more or less appropriate than others.  Properly considering the case study specific factors above is the 

first key to avoid implementing a poor surrogate modelling technique. 

3.2 Response Surface Surrogates 

Response surface surrogate modelling as a research field arising from various disciplines has been in 

existence for more than six decades and has become very active since the beginning of 1990s 

[Simpson et al., 2008]. The first generation of response surface surrogates, initiated by Box and 

Wilson [1951], relied heavily on polynomials (typically second-order) and have been the basis of the 

so-called response surface methodology (RSM). Response surface surrogates do not emulate any 

internal component of original simulation models; instead they approximate the relationships between 

several explanatory variables, typically the simulation model parameters and/or variables affecting 

model inputs, and one or more model response variables. In other words, a response surface surrogate 

is an approximation or a model of the “original” response surface defined in a problem domain – 
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response surface surrogates are metamodels of original models. The terms “metamodel” and 

“response surface surrogate” are used interchangeably throughout this paper. Notably, the existence 

of the response surface concept dates back to well before formalizing modern response surface 

approaches as, for example, the traditional non-linear local optimization techniques based on the 

Taylor series expansion (i.e., different variations of Newton’s method) use simple approximations. In 

such methods, a response surface surrogate, typically a variation of polynomials, is locally fitted on 

the (single) current best solution through the use of first- and/or second-order derivative information 

of the original function, unlike the formalized response surface approaches in which surrogates are 

fitted on multiple design sites usually regardless of derivatives. Trust-region methods are another 

example family of traditional local optimization strategies based on the response surface concept, as 

they iteratively approximate a certain region (the so-called trust region) of the original function 

typically using polynomials. 

Research and advances in response surface surrogate modelling can be classified into three main 

categories: 1- identification and development of experimental designs for effective approximation, 2- 

developing and applying function approximation techniques as surrogates, and 3- framework 

development utilizing surrogates. The research efforts in the water resources community tend to focus 

on the second and third categories. In the following, the literature on response surface surrogate 

modelling for water resources applications is reviewed in Section 3.2.1. Then Sections 3.2.2-3.2.6 

further detail this review in relation with the above three categories and outline the advances, 

considerations, and limitations. 

3.2.1 Response Surface Surrogates in Water Resources Literature 

Response surface surrogate modelling has been widely applied in various water and environmental 

modelling problems for decades.  Table 3-1 summarizes 32 studies utilizing response surface 

surrogate models in water resources problems published since 2000. Although this table does not 

cover all surrogate modelling studies over that period, we believe that it provides readers with an 

adequate coverage of the subject area. Note that not all these studies have been published in water 

resources related journals. According to Table 3-1, about 45% of the surrogate modelling studies 

focus on automatic model calibration. Most surrogate-enabled auto-calibration studies involve 

surrogates in conjunction with optimization algorithms; in four studies, surrogates have been used 

with uncertainty analysis algorithms for the purpose of model calibration (i.e., GLUE in Khu and 
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Werner [2003] and Zhang et al. [2009], ACUARS in Mugunthan and Shoemaker, [2006], and 

Markov Chain Monte Carlo in Bliznyuk et al.[2008]). Schultz et al. [2004; 2006] and Borgonovo et al. 

[2012] also use surrogates to speed up Monte Carlo sampling studies. Ten studies of the surrogate 

model applications listed in Table 3-1 are groundwater optimization problems, mostly groundwater 

remediation. Four surrogate modelling studies are in the context of water distribution system design 

and optimization. Borgonovo et al. [2012] is the only study in Table 3-1 using surrogate modelling 

for sensitivity analysis and interested readers are thus referred to Blatman and Sudret [2010], Ratto et 

al. [2007], and Storlie et al. [2009] for metamodel-enabled sensitivity analysis examples from the 

broader research community. Five studies, Liong et al. [2001], Bau´ and Mayer [2006], Behzadian et 

al. [2009], di Pierro et al. [2009], and Castelletti et al. [2010], use response surface surrogates in 

multi-objective optimization settings. In addition, most studies fit the response surface surrogates on 

continuous explanatory variables. Five studies [i.e., Bau and Mayer, 2006; Behzadian et al., 2009; 

Broad et al., 2005; Broad et al., 2010; Castelletti et al., 2010] apply surrogates to integer 

optimization problems (response surface surrogates are fitted on discrete variables), and Yan and 

Minsker [2006, 2011] and Hemker et al. [2008] apply surrogate modelling in mixed-integer 

optimization settings. Note that problems with discrete or mixed variables require special 

considerations and have been solved largely on an ad-hoc basis [Simpson et al., 2004]. For mixed-

integer optimization problems, Hemker et al. [2008] utilize response surface surrogates within a 

branch-and-bound optimization framework such that the surrogate model is employed when solving 

the relaxed optimization subproblems (integer variables allowed to assume non-integer values).  

Shrestha et al. [2009] use neural networks as a surrogate to completely replace computationally 

intensive Monte Carlo sampling experiments. In their approach, neural networks are used to emulate 

the predictive uncertainty (i.e., 90% prediction intervals) of a hydrologic model. The surrogate in this 

study does not follow the general strategy of response surface modelling where surrogates map model 

parameters or other problem variables to the system response, and instead their neural network model 

maps observed rainfall and runoff in the preceding time intervals to the model predictive uncertainty 

in the next time interval. In Sections 3.2.2-3.2.6, and also Section 3.4, we refer back to the studies 

listed in Table 3-1 to elaborate the details related to the subject of each section. 
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Table 3-1. Summary of closely reviewed metamodelling applications in the water resources literature.  
 

Work by: Type of problem 
Type of 

metamodel 

Type of Search or 

Sampling 

Algorithm 

Type of framework 

Number and Type 

of explanatory 

variables  

Computational 

saving 

Johnson and 

Rogers [2000] 
Groundwater remediation 

Linear Regression 

and 

Neural network 

(single hidden layer) 

Simulated Annealing 
Basic sequential 

framework 

30 

Continuous 
Not reported 

Liong et al. 

[2001] 

Automatic calibration of the 

HydroWorks watershed 

model 

(Bi-objective) 

Neural network 

(three hidden layers) 

accelerated 

convergence GA 

(ACGA) 

Basic sequential 

framework 

8 

Continuous 
Not reported 

Khu and 

Werner [2003] 

Uncertainty based 

Automatic calibration of the 

SWMM rainfall-runoff 

model 

Neural network 

(single hidden layer) 
GLUE 

Basic sequential 

framework 

(Instead of formal DoE, 

GA with niching was 

used to generate design 

sites) 

8 

Continuous 

80% in number of 

full evaluations 

Schultz et al.  

[2004; 2006]  

Uncertainty analysis of a 

water quality model for 

regulatory decision support 

Linear Regression, 

polynomial, and 

process-inspired 

simple functions 

Monte Carlo 

Simulation 

Basic sequential 

framework 

9 

Continuous 
Not reported 

Khu et al. 

[2004] 

Automatic calibration of 

MIKE11/NAM 

Radial basis 

functions 
Genetic algorithms 

Metamodel-embedded 

evolution framework, 

No formal DoE 

9 

Continuous 

60% in number of 

full evaluations 

Regis and 

Shoemaker 

[2004] 

Groundwater 

bioremediation optimization 

and 17 test functions 

Radial basis 

functions and 

second-order 

polynomial (both 

local) 

(µ,λ) -evolution 

strategy 

Metamodel-embedded 

evolution framework 

12 

Continuous 
Not reported 

Ostfeld and 

Salomons 

[2005] 

Automatic calibration of 

CE-QUAL-W2 water 

quality model 

k-nearest neighbors 

(kNN) 
Genetic algorithms 

Metamodel-embedded 

evolution framework, 

No formal DoE 

3 

Continuous 
Not reported 

Mugunthan et 

al. [2005] 

Automatic calibration of a 

groundwater bioremediation 

model 

Radial basis 

functions 

Gaussian random 

sampler 

Approximation 

uncertainty based 

framework 

8 

Continuous 
Not reported 

Broad el al. 

[2005] 

Water distribution system 

design optimization 

Neural network 

(single hidden layer) 
Genetic algorithms 

Basic sequential 

framework 

22 

Discrete 
21% of CPU time 

Mugunthan and 

Shoemaker 

[2006] 

Automatic calibration and 

parameter uncertainty 

analysis of groundwater 

models 

Radial basis 

functions 

Gaussian random 

sampler 

Approximation 

uncertainty based 

framework 

3 and 7 

Continuous 

More than 87% in 

number of full 

evaluations * 

Bau´ and Mayer 

[2006] 

Pump-and-treat 

optimization 

(Bi-objective) 

Kriging 
Complete 

enumeration 

Approximation 

uncertainty based 

framework 

4 

Discrete 
Not reported 

Yan and 

Minsker [2006] 

Groundwater remediation 

design – MODFLOW and 

RT3D models used for flow 

field and contaminant 

concentration 

Neural network 

(single hidden layer) 
Genetic algorithms 

Metamodel-embedded 

evolution framework, 

No formal DoE 

9 and 28 

Mixed integer 

85-90% in number 

of full evaluations 

Zou et al. 

[2007] 

Automatic calibration of the 

WASP water quality model 

Neural network 

(single hidden layer) 
Genetic algorithms 

Basic sequential and 

adaptive-recursive 

frameworks 

19 

Continuous 
97% of CPU time 

Regis and 

Shoemaker 

[2007a] 

Groundwater 

bioremediation optimization 

and 17 test functions 

Radial basis 

functions 

Gaussian and 

uniform random 

samplers 

Approximation 

uncertainty based 

framework 

Test functions: 2-14 

Groundwater 

problem: 12 

Continuous 

Not reported 

 

* Computational saving is not explicitly mentioned in the paper, and this value is interpreted based on the available 

information. 
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Table 3-1. Summary of closely reviewed metamodelling applications in the water resources literature 

(cont.). 
 

Work by: Type of problem 
Type of 

metamodel 

Type of Search or 

Sampling 
Algorithm 

Type of framework 

Number and Type 

of explanatory 

variables  

Computational 

saving 

Shoemaker et 

al. [2007] 

Automatic calibration of 

two SWAT watershed 

models  

Radial basis 

functions 

(µ,λ) -evolution 

strategy 

Metamodel-embedded 

evolution framework, 

No formal DoE 

8 and 14 

Continuous 
Not reported 

Hemker et al. 

[2008] 

Well field design 

optimization and hydraulic 

capture problem 

Kriging 

Branch-and-bound 

on main problem - 

Sequential quadratic 

programming on 

sub-problems 

Adaptive-recursive 

framework 

5+ Integer with  

15+ Continuous 
Not reported 

Bliznyuk et al. 

[2008] 

Automatic calibration and 

Bayesian uncertainty 

analysis of an 

environmental model 

Radial basis 

functions 

Markov-Chain 

Monte Carlo 

Sampler 

Basic sequential 

framework 

4  

Continuous 

More than 90% in 

number of full 

evaluations 

Kourakos and 

Mantoglou [2009] 

Coastal aquifer pumping 

management 

Neural network 

(modular) 

single hidden layer 

Evolutionary 

Annealing Simplex 

Scheme 

optimization 

Metamodel-

embedded evolution 

framework, 

No formal DoE 

34  

Continuous 

(For metamodelling, 

disaggregated into 

smaller sub-sets 

having members with 

negligible correlations 

with members of other 

sub-sets) 

95% of CPU time 

Fen et al. [2009] 

Cost and contaminant 

removal optimization for 

soil vapor extraction 

system design 

Second-order 

polynomials and 

exponential 

functions 

Genetic algorithms 
Adaptive-recursive 

framework 

6 and 9 

Continuous 

40-94% of total CPU 

time across 4 case 

studies * 

Behzadian et al. 

[2009] 

Water distribution system 

monitoring locations 

optimization 

(Bi-objective) 

Neural network 

(single hidden 

layer) 

NSGA-II 

Metamodel-

embedded evolution 

framework, 

No DoE 

15 and 50 

Discrete 

87% and 96% of CPU 

time (~34% of total 

saving is due to 

caching) 

Zhang et al. [2009] 

Uncertainty-based 

automatic calibration of 

SWAT models 

Support vector 

machines (SVMs) 

and Neural network 

(single hidden 

layer) 

GLUE 

(was used only with 

SVMs, ANN was 

used for 

bechmariking 

SVMs) 

Basic sequential 

framework 

6, 9, 12, and 16 

Continuous 

20-42% of total CPU 

across 4 case studies 

Zou et al. [2009] 

Automatic calibration of 

the WASP water quality 

model 

Neural network 

(single hidden 

layer) 

Genetic algorithms 
Adaptive-recursive 

framework 

19 

Continuous 
Not reported 

Regis and 

Shoemaker [2009] 

Groundwater 

bioremediation 

optimization problems, 

automatic calibration of a 

groundwater 

bioremediation model, and 

20 test functions 

Radial basis 

functions 

Gaussian and 

uniform random 

samplers 

Approximation 

uncertainty based 

framework 

Test functions: 2-6 

Groundwater 

optimization 

problems: 12 

Automatic calibration: 

6 

Continuous 

Roughly 50-97% in 

number of full 

evaluations * 

Shrestha et al. 

[2009] 

Predictive uncertainty 

estimation of a hydrologic  

model (HBV) 

Neural network 

(single hidden layer) 

N/A 

(see Section 2.1) 

N/A 

(see Section 2.1) 

N/A 

(see Section 2.1) 
Not reported 

di Pierro et al. 

(2009) 

Water distribution system 

design optimization (bi-

objective) 

Kriging Genetic algorithms 
Approximation 

uncertainty based 

34 and 632 

(Continuous) 

N/A 

Inferior 

performance 

Broad et al. 

[2010]  

Water distribution system 

design optimization 

Neural network 

(single hidden layer) 
Genetic algorithms 

Basic sequential 

framework 

49 

Discrete 

98% of wall clock 

time 

 

* Computational saving is not explicitly mentioned in the paper, and this value is interpreted based on the available 

information. 
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Table 3-1. Summary of closely reviewed metamodelling applications in the water resources literature 

(cont.). 
 

Work by: Type of problem 
Type of 

metamodel 

Type of Search 

or Sampling 
Algorithm 

Type of 

framework 

Number and Type 

of explanatory 

variables 

Computational 

saving 

Castelletti et. 

[2010] 

Water quality rehabilitation 

in reservoirs 

(multi-objective 

optimization) 

Radial basis 

functions, n-

dimensional linear 

interpolator, and 

inverse distance 

weighted 

Complete 

enumeration 

Adaptive-recursive 

framework 

3 

Discrete 
Not reported 

Yan and Minsker 

[2011] 

Reliability-based 

groundwater remediation 

design – MODFLOW and 

RT3D models used for 

flow field and contaminant 

concentration 

Three Neural 

networks 

(single hidden 

layer) 

Noisy Genetic 

algorithm 

Metamodel-

embedded evolution 

framework, 

No formal DoE 

28 

Mixed integer 

86-90% in number of 

full evaluations (this 

figure includes saving 

due to caching) 

Sreekanth and 

Datta [2011] 

Coastal aquifer pumping 

management 

Ensemble of 

genetic 

programming-

based models  

NSGA-II 
Basic sequential 

framework 

33 

Continuous 
Not reported 

Razavi et al. 

[2012] 

Automatic calibration of a 

SWAT model and a 

groundwater model and 4 

test functions 

Kriging, radial 

basis function, and 

Neural networks 

(single hidden 

layer) 

Genetic algorithms 

and Gaussian 

random sampler 

Adaptive-recursive 

and approximation 

uncertainty based 

frameworks 

7, 10, 14, and 15 

Continuous 
Not reported 

Borgonovo et al. 

[2012] 

Sensitivity analysis of an 

environmental nuclear 

waste model and three test 

functions 

Smoothing spline 

ANOVA and 

kriging 

Monte Carlo 

Simulation 

Basic sequential 

framework 

Test functions: 2, 3, 

and 3 

Environmental 

problem: 12 

Continuous 

96% of CPU time 

 

* Computational saving is not explicitly mentioned in the paper, and this value is interpreted based on the available 

information. 
 

3.2.2 Design of Experiments 

Deterministic simulation systems like computer simulations can be very complex involving many 

variables with complicated interrelationships. Design of Experiments (also referred to as DoEs) 

employ different space filling strategies to empirically capture the behaviour of the underlying system 

over limited ranges of the variables. As a priori knowledge about the underlying (original) response 

surface is usually unavailable, DoEs tend to assume uniformity in distributing the commonly called 

“design sites”, which are the points in the explanatory (input) variable space evaluated through the 

original simulation model. Most metamodel-enabled optimizers start with DoEs as in 23 out of 32 

studies listed in Table 3-1. There are a wide variety of DoE methods available in the literature; 

however, full factorial design [e.g., used for metamodelling in Gutmann, 2001], fractional factorial 

design, central composite design [Montgomery, 2008], Latin hypercube sampling [LHS - McKay et 

al., 1979], and symmetric Latin hypercube sampling [SLHS - Ye et al., 2000] appear to be the most 

commonly used DoE methods. Full and fractional factorial designs and central composite design are 



 

 56 

deterministic and typically more applicable when the number of design variables is not large. For 

example, the size of the initial DoE sampled by the full factorial design in a 10 dimensional space 

with only two levels would be 1024 (=2
10

), which may be deemed extremely large and beyond the 

computational budget. Latin hypercube sampling and symmetric Latin hypercube sampling both 

involve random procedures and can easily scale to different numbers of design variables. Research 

efforts on the metamodelling-inspired DoEs mostly focus on determining the optimal type [e.g., Alam 

et al., 2004] and size of existing DoEs [i.e., number of initial design sites – e.g., Sobester et al., 2005] 

for a specific problem or to develop new and effective DoEs  [e.g., Ye et al., 2000]. 

3.2.3 Function Approximation Models 

Response surface surrogates approximate the response surface of computationally intensive models 

(i.e., original models) by fitting over a set of previously evaluated design sites. A variety of 

approximation techniques have been developed and applied as surrogates. Examples of such 

techniques include: polynomials [Fen et al., 2009; Hussain et al., 2002; Myers and Montgomery, 

2002; Wang, 2003], kriging, which is also sometimes referred to as design and analysis of computer 

experiment (DACE) in the surrogate modelling context [Sacks et al., 1989; Sakata et al., 2003; 

Simpson and Mistree, 2001], k-nearest neighbours [kNN - Ostfeld and Salomons, 2005], artificial 

neural networks [ANNs - Behzadian et al., 2009; Khu and Werner, 2003; Papadrakakis et al., 1998], 

radial basis functions [RBFs - Hussain et al., 2002; Mugunthan et al., 2005; Mullur and Messac, 

2006; Nakayama et al., 2002; Regis and Shoemaker, 2007b], support vector machines [SVMs - Zhang 

et al., 2009], multivariate adaptive regression splines ([MARS - Friedman, 1991;  Jin et al., 2001], 

high-dimensional model representation [Rabitz et al., 1999; Ratto et al., 2007; Sobol, 2003], treed 

Gaussian processes [Gramacy and Lee, 2008], Gaussian emulator machines [Kennedy and O'Hagan, 

2001; O'Hagan, 2006], smoothing splines ANOVA models  [Gu, 2002; Ratto and Pagano, 2010; 

Curtis B. Storlie et al., 2011; Wahba, 1990], and proper orthogonal decomposition [Audouze et al., 

2009]. In the RBF references above, the RBFs are not associated with ANNs, whereas in some 

publications [e.g., Jin, 2005; Khu et al., 2004], as well as in the MATLAB neural network toolbox 

[Beale et al., 2010], RBFs are considered as a type of feed-forward artificial neural networks. 

In the recent water resources related response surface surrogate modelling literature, ANNs and 

RBFs are the most commonly used function approximation techniques as, among all surrogate 

modelling studies listed in Table 3-1, 14 and 10 of the 32 studies have applied ANNs and RBFs, 
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respectively. In addition, according to Table 3-1, polynomials have been used in five studies, and in 

two of these [i.e., Johnson and Rogers, 2000; Regis and Shoemaker, 2004], polynomials were used to 

highlight their weakness in comparison with other more promising alternatives. Five studies in Table 

3-1 have employed kriging. Each of SVMs, k-NN, and smoothing spline ANOVA has been used in 

only one study. Moreover, the approximation models mostly act as global surrogates of underlying 

functions, which represent the original models over the entire input range. However, in some studies 

[e.g., Regis and Shoemaker, 2004; Wang et al., 2004], the approximation model is fitted locally only 

over a specified (limited) number of design sites (a sub-set of all available design sites), which are in 

close vicinity of the point of interest in the explanatory variable space.  

The information used to fit the response surface surrogates are typically the response values of the 

original function (i.e., original simulation model) at the design sites; however, there are studies 

aiming to include the sensitivity (gradient information) of the original function with respect to the 

explanatory variables (i.e., derivative values) to enhance the approximation accuracy and form the so-

called “gradient-enhanced response surface surrogates”.  Examples include Kim et al. [2005] and van 

Keulen and Vervenne [2004] for gradient-enhanced polynomials and Liu [2003] for gradient-

enhanced kriging and gradient-enhanced neural networks. In practice, such methods have serious 

limitations as in most of the problems that response surface surrogates are applied, the derivatives are 

not readily available and have to be calculated using numerical methods requiring the evaluation of 

the original function at extra points. The extra computational burden imposed can become 

prohibitively large when the number of dimensions in the explanatory variable space is more than a 

few, whereas this extra computation could be saved to evaluate the original function at new more 

intelligently sampled points.  

Selection of an appropriate function approximation technique for a given surrogate-enabled 

analysis requires careful consideration. There are significant differences in the logic inspiring the 

development of different techniques and also in their level of practicality for a particular problem. In 

the following, some practical and technical details are presented on five common function 

approximation techniques used as response surface surrogates of computer simulation models 

(polynomials, RBFs, kriging, SVMs, and ANNs), all of which have been used for surrogate 

modelling in the water resources literature. SVMs were selected for detailed review in addition to the 

four most common techniques in Table 3-1 because Vianna and Haftka [2008] include them as one of 
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the four main classes of techniques in their surrogate modelling review paper. The basic information 

and formulations of these techniques were not included as they are available elsewhere.  

Polynomials and Simple Functions 

Polynomials have the simplest type of parameters (i.e., coefficients in a polynomial regression), 

which are objectively determined usually through the least square regression method. Second-order 

polynomial functions, which are the most popular polynomials used as response surface surrogates, 

have (D+1)(D+2)/2 parameters where D is the number of explanatory variables (dimension of the 

input space). First- and second-order polynomials have had very successful applications in local non-

linear programming optimization algorithms (e.g., different variations of gradient-descent and 

Newton/quasi-Newton methods) where, for example, a second-order polynomial is used to emulate a 

local mode in the original response landscape. However, the use of polynomials as global surrogates 

may be only plausible when the original response landscape is, or is reasonably close to, unimodal, 

which is not often the case in many water resources related problems.  

Application of higher order polynomials (third-order or more, which are common in curve-fitting) 

is typically infeasible when  D is greater than only a few variables. This is largely because specifying 

a proper polynomial form for a particular problem may become very challenging.  Secondly, the 

number of polynomial parameters to be tuned (and therefore the minimum number of design sites 

required – see also Section 3.2.6) becomes excessively large. The inferior performance of 

polynomials compared to other function approximation techniques mostly due to having fairly 

inflexible pre-specified forms and being inexact emulators (see Section 3.2.6) has been acknowledged 

in several studies [e.g., Hussain et al., 2002; Regis and Shoemaker, 2004; Simpson and Mistree, 

2001]. Note that when the form of the underlying function is similar to a polynomial and when this 

form is known a priori [e.g., in Fen et al., 2009] polynomials had been reportedly successful for the 

problem of interest) polynomials can be one of the best options to choose for surrogate modelling. 

Other simple functional forms such as exponential functions [Aly and Peralta, 1999; Fen et al., 

2009] fitted by least square methods may also be applied for response surface modelling. Schultz et 

al. [2004] and Schultz et al. [2006] develop “reduced-form models” based on components of the 

actual process equations in an original model and fit them to design sites sampled from the original 

model. They point out that when the specified functional forms “are informed by the mechanics” of 

the original model, the reduced-form models demonstrate better predictive (generalization) ability. 
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Notably, what is called a reduced-form model in these publications is different from the lower-fidelity 

physically-based surrogates outlined in Section 3.3.   

Radial Basis Functions 

Radial basis function (RBF) models consist of a weighted summation of typically n (sometimes 

fewer) radial basis functions (also called correlation functions) and a polynomial (usually zero- or 

first- order) where n is the number of design sites. There are different forms of basis functions 

including Gaussian, thinplate spline, and multiquadric and some forms (e.g., Gaussian) have 

parameters specifying the sensitivity/spread of the basis function over the input domain, while some 

(e.g., thinplate spline) have fixed sensitivity (no parameter in the basis function) regardless of the 

scale (unit) and importance or sensitivity of each input variable. To address the scale problem, all the 

data are typically normalized to the unit interval. However, in RBF models, the sensitivity of the basis 

functions in all D directions is typically assumed identical (only one single parameter, if utilized, in 

all dimensions for all basis functions) treating all variables as equally important, although such an 

assumption is often not true. An RBF model is defined by the weights of the basis functions, the 

coefficients of the polynomial used, and the basis function parameter if it exists. Weights of the basis 

functions as well as the polynomial coefficients can be objectively determined by efficient least 

squares techniques; however, the basis function parameter is usually specified arbitrarily or by trial 

and error. The minimum number of design sites required to fit an RBF model is the number of 

coefficients of the polynomial used to augment the RBF approximation.  

Kriging 

Application of kriging in the context of design and analysis of computer experiments (DACE) was 

first formalized by Sacks et al. [1989] and since then has been frequently called DACE in some 

publications [Hemker et al., 2008; Ryu et al., 2002; Simpson et al., 2001]. More recent literature uses 

DACE to refer to the suite of all metamodel/emulation techniques [e.g., Ratto et al., 2012; Simpson et 

al., 2008]. Similar to RBF models, the kriging model is also a combination of a polynomial model, 

which is a global function over the entire input space, and a localized deviation model (correlation 

model consisting of basis functions) based on spatial correlation of samples. The special feature of 

kriging (main difference from RBF models) is that kriging treats the deterministic response of a 

computer model as a realization of a stochastic process, thereby providing a statistical basis for 
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fitting. This capability enables kriging to provide the user with an approximation of uncertainty 

associated with the expected value predicted by kriging at any given point. Approximation of 

uncertainty is the basis of the so-called “approximation uncertainty based framework” for surrogate-

enabled analyses, described in Section 3.2.4. Note that such approximation of uncertainty may be 

available (heuristically or directly) for other function approximation models (see Section 3.2.4). 

As opposed to RBF models, the correlation parameters (sensitivities) in kriging are typically 

different along different directions in the input space (D different values for correlation functions in a 

D-dimensional space), resulting in higher model flexibility. All the kriging parameters, including the 

correlation parameters, can be determined objectively using the maximum likelihood estimation 

methodology. Like RBF models, the minimum number of design sites needed to fit a kriging model is 

the number of coefficients in the polynomial augmenting the approximation. Kriging users only need 

to specify the lower and upper bounds on the correlation parameters, although the appropriate bounds 

are sometimes hard to specify [Kleijnen, 2009]. The kriging correlation parameters can be interpreted 

to some extent in that large values for a dimension indicate a highly non-linear function in that 

dimension, while small values indicate a smooth function with limited variation. Moreover, Jones et 

al. [1998] pointed out that the correlation matrix in kriging may become ill-conditioned (nearly 

singular) towards the end of an optimization run as then the optimization algorithm tends to sample 

points near the previously evaluated points (design sites); this ill-conditioning is usually manageable. 

Support Vector Machines 

Support vector machines (SVMs) are a relatively new set of learning methods designed for both 

regression and classification. Although SVMs to some extent rely on utilizing the concept of basis 

(correlation) functions as used in RBFs and kriging (especially when using Gaussian kernel function), 

unlike RBFs and kriging, they only involve a subset of design sites lying outside an ε-insensitive tube 

around the regression model response, referred to as support vectors, to form an approximation. When 

fitting the SVMs on data, the ε-insensitive tube is formed to ignore errors that are within a certain 

distance of the true values. This capability enables SVMs to directly control and reduce the 

sensitivities to noise (very suitable for inexact emulation, see Section 3.2.6). The other special feature 

of SVMs is that in the SVM formulation, there is a term directly emphasizing the regularization 

(smoothness) of the fitted model. There are two specific SVM parameters which are associated with 

the radius of the ε-insensitive tube and the weight of the regularization term. The Kernel function 
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used within SVM (e.g., Gaussian function) may also have a parameter to be determined; this 

parameter acts like the correlation parameters in RBF and kriging models and adjusts the 

sensitivity/spread of the Kernel function with respect to explanatory variables. Users only require 

dealing with these two or three SVM parameters, and once their values are available, the dual form of 

the SVM formulation can be efficiently solved using quadratic programming to determine all the 

other SVM formulation parameters. SVM can better handle larger numbers of design sites as the 

operator associated with design site vectors in the SVM formulation is dot product [Yu et al., 2006]. 

The two aforementioned specific parameters are mutually dependent (changing one may influence the 

effect of the other) and usually determined through a trial-and-error process or optimization.  

Cherkassky and Ma [2004] present some practical guidelines to determine these parameters. Optimal 

SVM parameter values are difficult to interpret and relate to characteristics of the response surface. 

Neural Networks 

Feedforward artificial neural networks (ANNs) are highly flexible tools commonly used for function 

approximation. ANNs in this paper refer to multilayer perceptrons (MLPs), which are by far the most 

popular type of neural networks [Maier et al., 2010]. Development and application of ANNs involve 

multiple subjective decisions to be made by the user. Determination of the optimal structure of ANNs 

for a particular problem is probably the most important step in the design of ANN-based surrogates. 

ANN structural parameters/decisions include number of hidden layers, number of neurons in each 

hidden layer, and the type of transfer functions. Various methodologies have been developed to 

determine appropriate ANN structures for a given problem, including the methods based on the 

growing or pruning strategies [Reed, 1993] such as the methods presented in Teoh et al. [2006] and 

Xu et al. [2006], methods based on the network geometrical interpretation such as Xiang et al.’s 

method [2005], and methods based on the Bayesian approaches such as the methods in Kingston et al. 

[2008] and Vila et al. [2000]. However, these methods, each of which may result in an appropriate but 

different structure for a given problem, typically require extensive numerical analyses on the training 

data as they generally attempt to test different network structures in systematic ways.  Despite these 

methodologies, trial-and-error is the approach to determine the number of hidden neurons in all ANN-

based surrogate modelling studies listed in Table 3-1. Considering alternative types of neural network 

architectures beyond MLP (such as generalised regression neural network, GRNN [Maier et al., 

2010]) may provide another way to reduce or eliminate subjective ANN building decisions.  
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ANNs with one sigmoidal hidden layer and the linear output layer have been proven capable of 

approximating any function with any desired accuracy provided that associated conditions are 

satisfied [Hornik et al., 1989; Leshno et al., 1993]. Although one hidden layer is adequate to enable 

neural networks to approximate any given function, some researchers argue that neural networks with 

more than one hidden layer may require fewer hidden neurons to approximate the same function. It is 

theoretically shown in Tamura and Tateishi [1997] that to be an exact emulator (interpolating 

approximator – see also Section 3.2.6), neural networks with two hidden layers require considerably 

fewer hidden neurons compared to neural networks with one hidden layer. However, developing an 

exact emulator is not usually the objective of neural network practitioners (except when used as 

response surface surrogates of deterministic computer simulation models) as the data used are usually 

noise-prone and the number of input-target sets is typically large.  The need for exact emulation is 

still a case study specific determination. In addition, to be an exact emulator, excessively large ANN 

structures are required, whereas such networks would more likely fail in terms of generalization 

(perform poorly at unsampled regions of input space). Section 3.2.6 deals with exact emulation versus 

inexact emulation. From a more practical perspective, it is shown in de Villiers and Barnard [1993] 

through extensive numerical experiments that single-hidden-layer neural networks are superior to 

networks with more than one hidden layer with the same level of complexity mainly due to the fact 

that the latter are more prone to fall into poor local minima in training. 

Neural network practitioners tend to use single-hidden-layer neural networks as, for example, ten 

of eleven neural network applications in response surface surrogate modelling listed in Table 3-1 

have used feed-forward neural networks with only one hidden layer; Liong et al. [2001] is the only 

study in Table 3-1 using more than one hidden layer. Single-hidden-layer neural networks form the 

approximation by combining m sigmoidal units (i.e., sigmoidal lines, planes, or hyperplanes in the 1-, 

2-, or 3-and-more- dimensional problem space) where m is the number of hidden neurons. The 

number of parameters (weights and biases) of the single-hidden-layer neural networks is m×(2+D)+1 

where D is the dimension of input space (i.e., number of input variables of the response surface 

surrogate). The optimal number of hidden neurons, m, is a function of shape and complexity of the 

underlying function [Xiang et al., 2005] as well as the training data availability [Razavi et al., 2012a]. 

In the response surface surrogate modelling context, the form of the original function is often unclear, 

therefore, the number of data points available (i.e., design sites) for training, p, is the main factor 

involved in determining m. It is usually preferred that the number of ANN parameters be less (or 
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much less) than p as discussed in Maier and Dandy [2000], although mathematically, there is no 

limitation when the number of parameters is higher than p. A possible strategy is to enlarge m 

dynamically as more design sites become available.  Generally, for a specific problem, there are 

multiple appropriate ANN structures, and for each structure, there are many appropriate sets of 

network weights and biases. The term “appropriate” here refers to the network structures and weight 

and bias values that can satisfactorily represent the training data. Neural network training (adjusting 

the network parameters) can be a time-consuming optimization process depending on the ANN 

structure and training method selected. Second-order variations of backpropagation algorithms (i.e., 

quasi-Newton algorithm such as Levenberg-Marquardt) are the most computationally efficient ANN 

training methods [Hamm et al., 2007] the role of each weight and bias in forming the network 

response is typically unclear 

3.2.4 Metamodel-Enabled Analysis Frameworks 

Research efforts on metamodelling arising from water resources modelling are mainly focused on 

framework development for utilizing metamodels. Metamodel-enabled analysis frameworks in the 

literature can be categorized under four main general frameworks outlined in the following. The basic 

sequential framework and adaptive-recursive framework are multi-purpose frameworks (conceivably 

applicable in all sampling or search analyses), while the metamodel-embedded evolution framework 

is clearly limited to search analyses dependent on evolutionary optimization algorithms.  The 

approximation uncertainty based framework is primarily used for search analyses but may also be 

applicable in some sampling studies. 

Basic Sequential Framework 

Basic sequential framework (also called off-line) is the simplest metamodel-enabled analysis 

framework consisting of three main steps. It starts (Step 1) with design of experiment (DoE) through 

which a pre-specified number of design sites over the feasible space are sampled and their 

corresponding objective function values are evaluated through the original function. In Step 2, a 

metamodel is globally fitted on the design set. Then in Step 3, the metamodel is fully substituted for 

the original model in performing the analysis of interest. In this step, a search or sampling algorithm 

is typically conducted on the metamodel. The result obtained from the metamodel is assumed to be 

the result of the same analysis with the original model; for example, in metamodel-enabled optimizers 

with the basic sequential framework, the optimal point found on the metamodel is typically evaluated 
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by the original function and is considered as the optimal (or near optimal) solution to the original 

function. In some studies on optimization with metamodelling such as Broad et al. [2005] and Broad 

et al. [2010], at Step 3, extra promising points on the metamodel found on the convergence trajectory 

of the optimization algorithm may also be evaluated by the original function. The size of DoE in Step 

1 of this “off-line” framework is large compared to the size of initial DoEs in more advanced “on-

line” metamodelling frameworks since almost the entire computational budget allocated to solve the 

problem is spent on Step 1 in the basic sequential framework.. In this regard, the other frameworks 

(explained below) may be called “on-line” as they frequently update the metamodel when new data 

become available. 

According to Table 3-1, eleven out of 32 recent metamodelling studies use the basic sequential 

framework. As the sampler in Step 3, Khu and Werner [2003] and Zhang et al. [2009] use the GLUE 

uncertainty-based calibration algorithm, Schultz et al. [2004; 2006] use traditional Monte Carlo 

simulation for uncertainty analysis, Borgonovo et al. [2012] use Monte Carlo simulation for 

sensitivity analysis, and Bliznyuk et al. [2008] use a Markov Chain Monte Carlo (MCMC) sampler 

for uncertainty-based calibration. In all the other studies with the basic sequential framework, 

different optimization algorithms are used in Step 3. In Liong et al. [2001] and Khu and Werner 

[2003], instead of fitting the metamodel over the design sites obtained through a formal DoE, which 

tends to assume uniformity, an optimization trial is conducted on the original function and the set of 

points evaluated over the convergence trajectory is used for metamodel fitting (see Section 3.2.5 for 

discussion on whether an initial DoE is required). Instead of having a conventional DoE at Step 1, 

Bliznyuk et al. [2008] first locate a high posterior density region of the explanatory variable space by 

direct optimization on the original function and then fit a metamodel on the approximate high 

posterior region (local) rather than the entire space (global). Zou et al. [2007] contrast the basic 

sequential framework with the adaptive-recursive framework. 

Although widely used, the basic sequential framework has potential failure modes arising from the 

fact that the metamodel, especially when developed off-line, is not necessarily a reasonably accurate 

representation of the original model in the regions of interest in the explanatory variable space. For 

example, in the optimization context, the global optimum of the metamodel found in Step 3 (i.e., the 

final solution returned by the framework) is very unlikely to be a local optimum of the original 

function. In other words, there is no guarantee that the returned solution is even located close to a 

stationary point of the original function. Figure 3-2 demonstrates a simple case in which the basic 
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sequential framework fails and returns a solution close to a local maximum of the original function in 

a minimization problem. The metamodel in Figure 3-2 is a tuned kriging model rather than a 

conceptual example. The original function used in Figure 3-2 (and also used in Figures 3-3 to 3-7) 

was generated in this review to demonstrate the behaviour of different surrogate modelling strategies. 

When the original function is simple (e.g., unimodal functions), the probability of such failures is 

minimal. 

 

 
Figure 3-2. A failure mode of basic sequential framework for response surface surrogate modeling 

where the minimizer of surrogate function very poorly approximates the local or global minimum of 

the original function.  

 

Adaptive-Recursive Framework 

Like the basic sequential framework, in Step 1, the adaptive-recursive framework starts with a DoE to 

design the initial set of design sites. In Step 2, a global/local metamodel is fitted on the set of design 

sites. In Step 3, a search or sampling algorithm is employed on the metamodel, identify the regions of 

interest in the explanatory variable space, and screen out one or multiple points. When used for 

optimization, an optimization algorithm is typically used to find the near-optimal point (or multiple 

high-quality points) on the metamodel. The point(s) in the explanatory variable space obtained in Step 

3, are evaluated by the original function and added to the set of design sites to update the metamodel. 

Step 2 and Step 3 are subsequently repeated many times to adaptively evolve the metamodel until 

convergence or stopping criteria are met. When the adaptive-recursive framework is used for 

optimization, the best point the framework finds (available in the final set of design sites) is 

considered as the optimal (or near-optimal) solution to the original function.  
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Six out of the 32 studies listed in Table 3-1 apply procedures lying under the adaptive-recursive 

framework. Five studies utilize formal optimization algorithms in Step 3, but Castelletti et al. [2010] 

conduct a complete enumeration at this step since their combinatorial optimization problem has only 

three decision variables. Johnson and Rogers [2000] point out that the quality of solutions obtained 

through a metamodel-enabled optimizer is mostly controlled by metamodelling performance, not the 

search technique applied on the metamodel.  

 

 

 
Figure 3-3. Failure modes of adaptive-recursive framework for response surface surrogate modeling: 

(a) minimizer of surrogate function is located at a previously evaluated point, (b) minimizer of 

surrogate function is a local optimum of original function far from the global optimum as surrogate 

function is misleadingly inaccurate in the vicinity of global region of attraction, and (c) minimizer of 

surrogate function is located at a plateau of original function 

 

The adaptive-recursive framework attempts to address the drawbacks of the basic sequential 

framework [Zou et al., 2007]. When used for optimization purposes, however, the adaptive-recursive 

framework is helpful at best for local optimization as reported by Jones [2001] who identified some 

possible cases where the adaptive-recursive framework may even fail to return a stationary point on 
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the original function. Figure 3-3 which depicts possible behaviours of the adaptive-recursive 

framework, was partially inspired by the discussion in Jones [2001]. As shown in Figure 3-3a, if the 

optimal point on the metamodel (found in Step 3) is located at a previously evaluated point on the 

original function (i.e., a point already existing in the set of design sites used in Step 2), the algorithm 

would stall as re-evaluating and adding this point to the set of design sites would not change the 

metamodel (may also cause mathematical problems in some function approximation methods such as 

kriging). Another similar failure mode that is less likely to occur is when the optimal point on the 

metamodel (found in Step 3) has the same objective function value in both the metamodel and the 

original function (see Figure 3-3a but assume there was no design site at the surrogate minimizer, 

which is on a non-stationary point of the original function); evaluating and adding this new point to 

the set of design sites would not have any effect on the updated metamodel. Although it seems very 

unlikely that Step 3 returns a point exactly the same as the points described in Figure 3-3a, returning 

new points lying in their close vicinity may also result in very little change in the updated metamodel 

and lead to the same problems. Some procedure is required in this framework to address these 

algorithm stalls and revive the search (one example procedure is in Hemker et al. [2008]).  Jones 

[2001] notes that one way to mitigate these algorithm stalls is to match the gradient of the response 

surface surrogate with the gradient of the original function at the sampled points (at least on the 

sample point at which the search stalls). However, as explained in Section 3.2.3, the application of the 

“gradient-enhanced response surface surrogates” is non-trivial with practical limitations.  

The adaptive-recursive framework when used for optimization can easily miss the global optimum 

of the original function [Gutmann, 2001; Jones, 2001; Schonlau, 1997b; Sobester et al., 2005]. 

Although significance of missing the global optimum depends on a number of factors, Figure 3-3b 

depicts a case where the framework has found a local optimum, but as the metamodel is misleadingly 

inaccurate in the neighbourhood of the global optimum, Step 3 would never return a point in the 

global region of attraction to be evaluated by the original model. The adaptive-recursive framework 

with gradient-enhanced response surface surrogates (see Section 3.2.3) may only guarantee 

convergence to a stationary point on the original function, which may be a global/local optimum, 

plateau, or saddle point [Jones, 2001]. Figure 3-3c shows a case where the framework has converged 

to a point on a plateau on the original function at which the gradient of the metamodel matches the 

gradient of the original function. Notably, the surrogate functions in Figure 3-3a-3c represent the 
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actual response of a kriging model developed for the purpose of this review and tuned for the given 

sets of design sites. 

Metamodel-embedded Evolution Framework 

The metamodel-embedded evolution framework is a popular framework for optimization. Among the 

32 studies on metamodelling listed in Table 3-1, eight studies utilize algorithms lying under this 

framework. The metamodel-embedded evolution framework shares some characteristics with the 

adaptive-recursive framework but with significant differences including: the metamodel-embedded 

evolution framework is inherently designed to be used with evolutionary (i.e., population-based) 

optimization algorithms, no formal DoE is typically involved at the beginning (except very few 

studies [e.g., see Regis and Shoemaker, 2004]), and decision criteria through which candidate 

solutions are selected for evaluation by the original function are different. In the metamodel-

embedded evolution framework, a population-based optimization algorithm is employed and run 

initially on the original function for a few generations. All the individuals evaluated by the original 

function in the course of the first generations are then used as design sites for metamodel fitting. In 

the following generations, individuals are selectively evaluated by either the metamodel or the 

original model. The metamodel is usually updated (re-fitted) a couple of times in the course of 

optimization as more design sites become available. Jin et al. [2002] adopt the metamodel-embedded 

evolution framework and formalize the concept of evolution control with two approaches: controlled 

individuals through which a subset of the individuals in the population at each generation (i.e., the 

best η individuals or η randomly selected individuals) are evaluated by the original function and 

controlled generations through which all the individuals in the population, but at selected generations, 

are evaluated by the original function. The parameters of metamodel-embedded evolution framework, 

such as η and the frequency of metamodel updating, can be adaptively changed in the course of 

optimization depending on the accuracy of the metamodel.  

When an evolutionary algorithm is enabled with metamodels through the metamodel-embedded 

evolution framework, it typically exhibits less consistent behaviour compared to when the same 

evolutionary algorithm is used without metamodelling  [Jin et al., 2002]. This degradation in stability 

is expected as such an algorithm switches between two different response landscapes (the original 

function and the metamodel) while searching. A metamodel-enabled optimizer with this framework 

should satisfy at least two necessary conditions to become a global optimizer: 1- the evolutionary 
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algorithm used should be a global optimizer, and 2- any solution (i.e., any individual in any 

generation) regardless of the approximate function value obtained by the metamodel should have the 

chance to be selected for evaluation through the original function. Thus, like the optimizers with the 

adaptive-recursive framework, metamodel-enabled optimizers with evolution control strategies that 

only evaluate best individuals (best in terms of approximate function values) through the original 

function are at best local optimizers. In such cases, the failure modes explained in Figure 3-3 for the 

adaptive-recursive framework may also apply to the metamodel-embedded evolution framework. 

Convergence properties of metamodel-embedded evolution framework with other evolution control 

strategies could likely overcome these failure modes. 

Some variations of the Learnable Evolution Model (LEM) [Michalski, 2000] might also fall under 

the metamodel-embedded evolution framework. LEM is an attempt to improve upon the basic and 

inefficient Darwinian evolution operators by using machine learning tools. Unlike the conventional 

metamodelling practice which typically produces a continuous approximate response surface, LEM 

employs classifying techniques (e.g., decision tree learners) to discriminate promising/non-promising 

solutions based on the search history. The classifier in LEM can involve domain-specific knowledge 

for rule induction. Jourdan et al. [2006] develop a multi-objective version of LEM, called LEMMO 

(LEM for multi-objective), for water distribution network design problems. LEMMO embeds a 

decision tree classifier within the NSGAII multi-objective optimization algorithm; the solutions 

generated by the evolution operators in NSGAII are first evaluated by the classifier and then modified 

if needed. di Pierro et al. [2009] compare LEMMO with ParEGO which is a multi-objective 

metamodel-enabled optimization algorithm on water distribution network design problems. 

Approximation Uncertainty based Framework 

The approximation uncertainty based framework may be deemed as an extension to the adaptive-

recursive framework designed for optimization. The adaptive-recursive framework relies solely on 

the approximate values from the response surface surrogate in the course of optimization. As the 

adaptive-recursive framework assumes these approximate values as true, it may easily miss the main 

region of attraction where the global optimum lies. This behaviour is illustrated above and also 

reported in Gutmann [2001], Jones [2001], Schonlau [1997a], and Sobester et al. [2005]. Addressing 

this shortcoming, the approximation uncertainty based framework considers the uncertainties 

associated with the approximation. In this framework, the approximation value resulting from the 
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response surface surrogate is deemed as approximation expected value and then a measure is utilized 

to quantify the associated approximation uncertainty. Such a measure is explicitly available in some 

function approximation techniques, e.g., in polynomials, kriging , Gaussian Radial Basis Function 

models [Sobester et al., 2005], and smoothing spline ANOVA [Gu, 2002]. To provide the 

approximation uncertainty, these techniques assume that the deterministic response of a simulation 

model is a realization of a stochastic process. Unlike these techniques, which provide some statistical 

basis for approximation uncertainty, Regis and Shoemaker [2007b] propose a distance-based metric 

(i.e., the minimum distance from previously evaluated design sites) as a heuristic measure of the 

approximation uncertainty applicable to any given response surface surrogate. Other deterministic 

function approximation techniques may also provide measures of uncertainty when trained with 

Bayesian approaches; for example, Bayesian neural networks [Kingston et al., 2005] provide the 

variance of prediction. Bayesian learning typically involves a Markov Chain Monte-Carlo procedure, 

which is more computationally demanding than conventional learning methods. 

The approximation uncertainty based framework consists of the three steps outlined  in the 

adaptive-recursive framework with a major difference in Step 3 being, instead of optimizing the 

approximate response surface (i.e., the surface formed by approximation expected values) as in the 

adaptive-recursive framework, it optimizes a new surface function that is defined to emphasize the 

existence of approximation uncertainty. Different ways have been proposed in the literature to define 

such a surface function, each of which emphasizes the approximation uncertainty to a different extent. 

In this regard, the adaptive-recursive framework, in which the surface function totally ignores the 

approximation uncertainty, can be deemed an extreme case that typically yields a local optimum. The 

other extreme is to build and maximize a surface function solely representing a measure of 

approximation uncertainty (e.g., approximation variance available in kriging) over the explanatory 

variable space. In the approximation uncertainty based framework with such a surface function, Step 

3 returns the point where the approximation uncertainty is the highest, and as such, subsequently 

repeating Step 2 and Step 3 in the framework would evolve a globally more accurate metamodel on 

the basis of a well-distributed set of design sites. Although globally convergent under some mild 

assumptions [Sobester et al., 2005], the framework solely using the approximation uncertainty would 

require impractically large number of original function evaluations, especially when the number of 

decision variables is more than a few.  
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An effective uncertainty based surface function to be optimized in Step 3 combines the 

approximation expected value and the associated approximation uncertainty in a way that balances 

exploration (i.e., searching unexplored areas of high approximation uncertainty) and exploitation (i.e., 

fine-tuning a good quality solution by reducing the attention to approximation uncertainty) during the 

search. Most common methods to define the uncertainty based surface functions assume that the 

hypothetical stochastic process is normal with the expected value  ̂ and standard deviation   

generated by the surrogate model for any given point in the explanatory variable space, x. Figure 3-4a 

depicts the information typically available from a response surface surrogate that is capable of 

producing approximation uncertainty – this plot is the outcome of an actual experiment with kriging. 

There are two popular approaches to make use of such information in Step 3 of the approximation 

uncertainty based framework: 1- maximizing a new surface function representing the probability of 

improvement and 2- maximizing the so-called “expected improvement” surface function [Schonlau, 

1997b].  

Figure 3-4(a-c) illustrates the concept of probability of improvement during optimization based on 

a real experiment with a tuned kriging model. As can be seen, fmin is the current best solution found so 

far (the design site with the minimum original function value), and as such, any function value which 

lies below fmin is an improvement. Thus, at any given point x in the explanatory variable space, a 

possible improvement, I, and the probability of improvement, PI, over the current best are given by: 

  {
                          

                                        
                  (3-1) 

    (
      ̂   

    
)                    (3-2) 

where Y(x) is a possible function value at the point x being a random number following N( ̂   , 

     ), and    is the normal standard cumulative distribution function. Notably, if the probability of 

improvement over the current best is used as the surface function in the framework, the search will be 

highly local around the current best solution unless there is a point on the response surface surrogate 

having an estimated expected value,  ̂, less than fmin. To address this drawback, a desired target 

improvement, T, which is smaller than fmin, is assumed and then the probability that the original 

function value is equal or smaller than T  would be: 

    (
   ̂   

    
)                    (3-3) 
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The higher the desired improvement is (the smaller the value of T is), the more global the search is. 

As such, when desired improvement is assumed very small, the search would be very local typically 

around the current best until the standard error of the surrogate in that local area becomes very small. 

Very large desired improvements (T values much smaller than fmin) may force the algorithm to search 

excessively global resulting in very slow convergence. As Jones [2001] also points out, the 

performance of the algorithm based on the probability of improvement is highly sensitive to the 

choice of desired target, T, and determining the appropriate value for a given problem is not trivial. 

To diminish the effect of this sensitivity, Jones [2001] presents a heuristic way to implement the 

probability of improvement approach based on multiple desired target values. Further details are 

available in Jones [2001], Sasena et al. [2002], and Watson and Barnes [1995]. 

 

 

 

 
 

Figure 3-4. (a) Probabilistic output of a response surface surrogate capable of producing 

approximation uncertainty assuming the deterministic response of simulation model follows a normal 

stochastic process, (b) approximation uncertainty function (AU or σ), (c) function representing 

probability of improvement (PI), and (d) function representing expected improvement (EI) 
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The so-called expected improvement approach might be considered as a more advanced extension 

to the probability of improvement approach. Expected improvement is a measure that statistically 

quantifies how much improvement is expected if a given point is sampled to evaluate through the 

original function. Expected improvement at a given point x, EI(x), is the expectation of improvement, 

I(x), (defined in Equation 3-1) for all possible Y(x) function values, which follow N( ̂   ,      ), 

and calculated by: 

   (      ̂   ) (
      ̂   

    
)       (

      ̂   

    
)                (3-4) 

where   is standard normal cumulative distribution function, and   is standard normal probability 

density function. Interested readers are referred to Schonlau [1997b] for derivation of Equation 3-4. 

Figure 3-4d is a real example of the new surface function formed by the expected improvement 

approach. The EGO (Efficient Global Optimization) algorithm developed by Jones et al. [1998] is the 

most commonly used metamodel-enabled optimizer with the approximation uncertainty based 

framework that utilizes the expected improvement surface function.  

The approximation uncertainty based framework may utilize a different statistical approach than 

the approaches explained above to build a new surface function to use in Step 3. This approach, 

introduced by Gutmann [2001] and implemented first using Gaussian radial basis functions, 

hypothesizes about the location and the objective function value of the global optimum, and then 

evaluates the “credibility” of the hypothesis by calculating the likelihood of the response surface 

surrogate passing through the design sites conditioned to also passing through the hypothetical global 

optimum. As such, for any given hypothetical objective function value, a surface function can be 

formed over the entire variable space representing the credibility of having the hypothetical objective 

function value at different points. If kriging is used as the response surface surrogate, its parameters 

can also be optimized for any given point in the variable space to maximize the conditional likelihood 

[Jones, 2001] – different kriging parameter values are generated for different points in the variable 

space. Jones [2001] points out that the key benefit of this approach over the expected improvement 

approach is that the next candidate solution in this approach is not selected solely based on the 

parameters of the surrogate, which may be in substantial error when the initial design sites are sparse 

and/or deceptive. However, as even an estimate of the optimal objective function value is not known 

a priori in many real-world problems, hypothesizing about the optimal objective function value to be 

used in the framework may be non-trivial. Therefore in practice, the hypothetical optimal function 
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value(s) should be heuristically defined and changed as the framework proceeds [Gutmann, 2001; 

Jones, 2001]. In addition, this approach is typically more computationally demanding than the 

expected improvement approach, especially when the surrogate parameters (e.g., kriging parameters) 

are also to be optimized to calculate the conditional likelihood for any given point. Regis and 

Shoemaker [2007a] propose a strategy to improve the method by Gutmann [2001] by controlling and 

increasing its local search ability.  

Among the studies listed in Table 3-1, three studies utilize the statistics-based approaches for the 

approximation uncertainty based framework: di Pierro et al. [2009] use the expected improvement 

approach through the ParEGO algorithm, Mugunthan et al. [2005] use the conditional likelihood 

approach developed by Gutmann [2001], and Bau and Mayer [2006] make use of the kriging error 

estimates to make termination decisions in their surrogate-enabled optimization framework. Regis 

and Shoemaker [2007b] also emphasize the need of considering the approximation uncertainty from a 

non-statistical point of view and develop a metamodel-enabled optimizer involving a heuristic 

distance-based measure indirectly representing the uncertainty in approximation. Among the studies 

listed in Table 3-1, Mugunthan et al. [2005], Razavi et al. [2012a], and Regis and Shoemaker [2007b; 

2009] use the Regis and Shoemaker [2007b] metamodel-enabled optimizer. 

The metamodel-enabled optimizers with the approximation uncertainty based framework such as 

EGO are essentially for global optimization. They work very well when the general shape of the 

original function and its degree of smoothness are properly approximated typically as a result of a 

good initial DoE [Schonlau, 1997b]. However, there are two possible drawbacks associated with this 

framework. Any new surface function based on the approximation uncertainty is highly multi-modal, 

and as such finding its global optimum in Step 3 is not easy especially when the number of decision 

variables is large. To search for the global optimum in Step 3 of the framework, the original EGO 

algorithm [Jones et al., 1998] uses the branch-and-bound algorithm, the EGO-based metamodel-

enabled optimizer developed in Sobester et al. [2005] uses a multi-start BFGS algorithm, and the 

algorithm by Regis and Shoemaker [2007b] uses a brute-force random sampler.  

The other possible drawback of this framework arises from the fact that the approximation 

uncertainty based framework relies extensively on a measure of approximation uncertainty to select 

the next candidate solution as if it is correct; whereas such a measure is only an estimation of the 

approximation uncertainty suggesting that if poorly estimated, the approximation uncertainty would 
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be very deceptive in guiding the search. The approximation uncertainty at a given point is mainly a 

function of the  degree of non-smoothness of the underlying (original) function being approximated 

through the design sites and then the distance from surrounding previously evaluated points (i.e., 

design sites) (note that the measure of uncertainty proposed in Regis and Shoemaker [Regis and 

Shoemaker, 2007b] is solely based on distance). As such, if the degree of non-smoothness of the 

original function is poorly captured by poorly distributed initial design sites, the framework would 

result in a very slow convergence or even, in extreme cases, premature stalls.  

 

 

 

 

 

Figure 3-5. A possible failure mode of approximation uncertainty based framework when the degree 

of non-smoothness of the original function is largely underestimated and as such the standard 

deviation of surrogate function, σ,  is misleadingly very small resulting in an exhaustive search 

around the minimizer of surrogate function;   ̂    and  ̂    series are almost on  ̂ and not visually 

distinguishable. 
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Figure 3-5 demonstrates one of our experiments with kriging where the degree of non-smoothness 

of the original function is underestimated by the response surface surrogate due to a poor distribution 

of the initial design sites. In such a case, the framework tends to search locally around the minimum 

of the surrogate (similar to the behaviour of the adaptive-recursive framework) until a point better 

representing the degree of non-smoothness of the original function is evaluated or until an exhaustive 

search is completed in this local region of attraction, which results in very small approximation 

uncertainty values at this region guiding the search to other regions. Jones [2001] identifies an 

extreme case where the framework stalls. There are different modifications in the literature to 

improve upon the approximation uncertainty based framework when enabled with the expected 

improvement concept. These modifications, include the generalized expected improvement 

[Schonlau, 1997b] and the weighted expected improvement [Sobester et al., 2005], dynamically 

changing the emphasis on the global search capability of the approximation uncertainty based 

framework.  

3.2.5 Design Considerations of Metamodel-enabled Search (Optimization) 

Frameworks  

Local Optimization vs. Global Optimization 

As illustrated in Section 3.2.4, the metamodel-enabled optimizers under the approximation 

uncertainty based framework aim to improve upon other frameworks by recognizing the importance 

of approximation uncertainty for global optimization. In this framework, the chance of missing 

unexplored promising regions in the feasible space is reduced, and the evolved metamodels have 

more uniform global accuracies. Nonetheless, these gains might be at the expense of increasing the 

number of required original function evaluations and thus lowering the speed of convergence to a 

promising solution [Sobester et al., 2005]. In some cases when the original function is highly 

computationally expensive to evaluate, the maximum possible number of original function 

evaluations will be very limited (sometimes as small as 100-200). As such, practitioners have to be 

satisfied with adequate solutions that might not be very close to the global optimum. There is 

typically a trade-off between the global search (exploration) capability and the efficiency of a 

metamodel-enabled optimizer when computational budget is limited, especially in higher dimensional 

problems where the size of the feasible space is very large. In such cases, the adaptive-recursive 

framework might be more favourable as it may find an adequate local optimum within fewer original 
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function evaluations than the approximation uncertainty based framework. This statement is 

consistent with Regis and Shoemaker’s conclusion [2007b], after evaluating different metamodel-

enabled optimizers involving approximation uncertainty, that “… more emphasis on local search is 

important when dealing with a very limited number of function evaluations on higher dimensional 

problems.” In this regard, Regis and Shoemaker [2007a] propose strategies to control the local search 

ability of two metamodel-enabled optimizers with the approximation uncertainty based framework. 

Is Initial DoE required?  

As demonstrated in Section 3.2.2, most metamodel-enabled optimizers developed in the literature 

start with formal DoEs to generate an initial set of design sites that is uniformly distributed in the 

explanatory variable space. A well-distributed initial set helps the metamodel better represent the 

underlying (original) function. Nonetheless, there are metamodelling studies not involving formal 

DoEs. There are studies that only use previously evaluated points typically from previous 

optimization attempts to initially develop the metamodel.  Furthermore, as pointed out in Section 

3.2.4, the studies that follow the metamodel-embedded evolution framework typically use the points 

evaluated in the early generations of the evolutionary algorithm to develop the first metamodels.   

We believe that an initial DoE is in fact required and a sufficiently large, well-distributed initial set 

of design sites to develop the metamodel is a key factor to success of a metamodelling practice. As 

demonstrated in Section 3.2.4, metamodel-enabled optimizers can be easily deceived by metamodels 

fitted to poorly distributed design sites. Typically, the metamodel fitted on a set of points collected in 

a previous optimization attempt would be biased towards the already explored regions of the feasible 

space (probably containing local optima) and could be quite misleading; therefore, the unexplored 

regions would likely remain unexplored when optimizing on such metamodels [Jin et al., 2002; Regis 

and Shoemaker, 2007b; Yan and Minsker, 2006].  

In an evolutionary algorithm the initial population is usually uniformly distributed, but the 

individuals in the following generations are conditioned to the individuals in the previous generations. 

As such, in the metamodel-embedded evolution framework, the initial set of design sites to develop 

the metamodel, which is a collection of points evaluated in the initial and first few generations, may 

not be adequately distributed, and therefore the resulting metamodel may not have adequate global 

accuracy. In such a case, the metamodel that is only accurate in small regions might be completely 

misleading in the remaining parts that may contain the global optimum [Broad et al., 2005]. 
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However, if a sufficiently large subset of well-distributed points exists in the initial set of design sites 

(formed by the first few generations in an evolutionary algorithm), the subset may act as if it is from a 

formal DoE.  

Size of Initial DoE 

The optimal size of an initial set of design sites is highly dependent on the shape and complexity of 

the original response surface as well as the computational budget available. The term ‘optimal’ here 

reflects the fact that, for a given original response function, increasing the number of initial design 

sites would enhance the accuracy of fit (a positive effect), however, after some point (which is the 

optimum) this enhancement would be at the expense of unnecessarily increasing the computational 

budget having to be initially spent on DoEs while it could have been spent more effectively in the 

next steps (a negative effect). The framework through which the metamodel is used (see Section 3.2.4 

for different frameworks) is also a factor affecting the optimal size of initial DoEs; for example, 

smaller initial DoEs may suffice when the metamodel-enabled optimizer puts more emphasis on 

approximation error (global accuracy). The optimal size also varies for different function 

approximation techniques based on their level of flexibility and conformability.  

In practice, determination of the optimal size for a particular problem may only be possible through 

extensive numerical experiments. The only prior knowledge is usually the minimum limit on the 

number of design sites, which is mathematically required to use a particular function approximation 

technique. There are some suggestions in the metamodelling literature on the size of initial DoEs 

when the approximation techniques are kriging and RBFs as summarized in the following. Jones et 

al. [1998] find that the approximate number of initial design sites required, p, is: 

p = 10D                     (3-5) 

where D is the number of dimensions of the explanatory variable space. Gutmann [2001] uses a 2-

level full factorial design, which samples the corners of the variable space, and as such the number of 

initial design sites used is: 

p = 2
D
                      (3-6) 

which becomes very large when the number of dimensions is more than a few. Regis and Shoemaker 

[2007b], based on the fact that kriging and RBFs with linear polynomials need at least D+1 design 

sites to fit, suggest that: 
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p = 2(D+1)                     (3-7) 

Razavi et al. [2012a] (also in Chapter 4) relate the proper size of the initial DoE to the available 

computational budget for optimization and suggest the following equation for kriging and RBFs with 

linear polynomials: 

p = max [2(D+1), 0.1n]                     (3-8) 

where n is total number of original function evaluations (which typically accounts for almost all 

available computational budget) to be evaluated during the optimization. For relatively small n 

values, Equation 3-8 is equivalent to Equation 3-7, but when n becomes larger, in order to design a 

more detailed metamodel with a better global accuracy, 0.1n is used as the size of the initial DoE.  

Sobester et al. [2005] conduct extensive numerical experiments with their proposed metamodel-

enabled optimizer based on EGO on multiple test functions to study the effect of the size of initial 

DoEs on the algorithm performance. They suggest that:  

p = 0.35n                      (3-9) 

Sobester et al. [2005] also note that the size of initial DoEs from Equation 3-9 is an upper bound 

(safe choice) suitable for very deceptive, highly multi-modal functions, and for simpler functions, 

smaller initial DoEs may be more appropriate. They also demonstrate that if the size of the initial 

DoE exceeds 0.60n, the metamodel-enabled algorithm becomes inefficient. Overall, as the size of 

initial DoEs (and the total number of function evaluations) cannot typically be large when the original 

function is computationally expensive, there is no guarantee that the initial design sites are adequately 

well distributed to effectively represent the shape of the underlying function (e.g., estimate locations 

of the regions of attraction), particularly when it is very deceptive. 

Metamodel Refitting Frequency 

All algorithms utilizing metamodels except those using the basic sequential framework, aim to evolve 

the metamodels over time by refitting them over the newly evaluated points (the growing set of 

design sites). The ideal strategy is to refit the metamodel after each new original function evaluation; 

this strategy is the basis of the adaptive-recursive and approximation uncertainty based frameworks 

(see Section 3.2.4). Metamodel-enabled optimizers with the metamodel-embedded evolution 

framework do not fundamentally need to refit the metamodel frequently (e.g., after each original 

function evaluation), although the higher the frequency, the more accurate the metamodel, and 
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therefore, the better algorithm performance. Generally, the computational time required for refitting a 

metamodel (mostly non-linearly) increases with an increase in the size of the set of design sites. The 

type of the function approximation technique used to build the metamodel is also a main factor in 

determining the appropriate refitting frequency. As such, the computational time required for the 

metamodel refitting substantially varies for different types of function approximation techniques and 

different data sizes and may become computationally demanding and even sometimes prohibitively 

long. Neural networks may suffer the most in this regard, as the neural network training process is 

typically computationally demanding relative to other alternatives even for small sets of design sites. 

Kriging refitting may also become computationally demanding for large numbers (more than a few 

hundreds) of design sites [Gano et al., 2006; Razavi et al., 2012a]. The maximum likelihood 

estimation methodology for correlation parameter tuning is the main computational effort in the 

kriging (re)fitting procedure. Chapter 4 (also in Razavi et al. [2012a]) proposes a two-level strategy 

for refitting ANNs and kriging in which the first level (fast but not very accurate) is performed after 

each original function evaluation, but the frequency of performing the second level (complete 

refitting, computationally demanding but more accurate) is reduced through a function representing 

the complexity of the fitting problem as the number of design sites becomes larger. Refitting 

polynomials and RBFs with no correlation parameters is very fast even for moderately large sets (i.e., 

about 1000) of design sites. SVMs, as explained in Section 3.2.3, also have two or more parameters 

that are determined by trial-and-error or direct optimization and as such their refitting might be time 

consuming. The appropriate metamodel refitting frequency for a given problem is also a function of 

the computational demand of the original computationally expensive model as the computational 

budget required for metamodel refitting may sometimes be negligible and easily justified when 

compared to the computational demands of the original computationally expensive models. 

Optimization Constraint Function Surrogates 

In the water resources modelling literature, as well as the scientific literature in general, surrogate 

modelling has been used the most in an optimization context where the surrogate of a computationally 

intensive simulation model is used to approximate either the objective function or the constraints or 

both. The discussions in this paper mainly apply to surrogate modelling when emulating the objective 

functions and also when constraints are included in the objective function through penalty function 
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approaches. When a binding constraint is approximated using a surrogate model, the approximation 

accuracy is highly important as it determines the feasibility/infeasibility of a solution. 

A number of the optimization studies in Table 3-1 [e.g., Broad et al., 2005; Broad et al., 2010; 

Kourakos and Mantoglou, 2009; Yan and Minsker, 2006; Yan and Minsker, 2011] apply surrogate 

models to approximate constraint functions and these constraint functions are built into the overall 

objective function via penalty functions. Overlooking the importance of constraint satisfaction and 

thus failing to take special precautions to ensure the metamodel-enabled optimizer yields a feasible 

solution could compromise the entire metamodelling procedure [Broad et al., 2005]. As a result, 

Broad et al. [2005] demonstrate an insightful three stage approach to deal with constraint function 

inaccuracies and part of this approach simply involves archiving the good quality solutions found in 

the course of optimization with the surrogate and then evaluating a set of these with the original 

model after optimization if it turns out that the final solution is infeasible.  They also note the 

importance of training the surrogate model on both feasible and infeasible design sites.  Yan and 

Minsker [2011] report for their ANN surrogate model of constraints that their penalty function 

parameters were determined by trial and error experiment.  Although such a trial and error approach 

to penalty function parameters can be difficult to avoid, such experimentation with a metamodel-

enabled optimizer will present incredible computational challenges.  There are also different 

approaches in the broader research community to more accurately handle constraints with surrogates 

[e.g., Kim and Lee, 2010; Lee et al., 2007; Picheny et al., 2008; Viana et al., 2010].  The paper by 

Viana et al. [2010] nicely overviews these general approaches (designing conservative surrogates and 

adaptively improving surrogate accuracy near the boundary between feasible and infeasible 

solutions). 

Multi-objective Optimization  

Surrogate models have been used in combination with a variety of multi-objective optimization 

algorithms to approximate the true Pareto-front within limited original model evaluations. Example 

metamodel-enabled multi-objective optimization algorithms are formed by 1- fitting response surface 

surrogate models to only one computationally expensive objective (or constraint) when other 

objectives are fast to run [e.g., Behzadian et al., 2009], 2- aggregating multiple objectives into one 

response function (e.g., by a weighting scheme) to be approximated by a single response surface 

surrogate [e.g., di Pierro et al., 2009; Knowles, 2006; Zhang et al., 2010], and 3- using multiple 



 

 82 

surrogate models for multiple objectives [e.g., Bau and Mayer, 2006; Keane, 2006; Li et al., 2008; 

Ponweiser et al., 2008]. The design considerations/limitations of surrogate modelling in single-

objective optimization also typically apply to all metamodel-enabled multi-objective optimization 

algorithms; however, the algorithms following form 3 have additional considerations or limitations 

discussed below.  

The use of multiple surrogate models for multiple objectives would have the potential to increase 

the problems with inaccuracy and would definitely increase metamodelling time. The multi-objective 

optimization algorithms that utilize multiple surrogates commonly assume that the approximation 

errors (uncertainties) of these multiple surrogates are independent (no correlation) despite the fact that 

the objectives are typically conflicting [Wagner et al., 2010].  These considerations practically limit 

the metamodel-enabled optimization algorithms in applicability to problems with only a small 

number of objectives. The issue of multiple correlated outputs being approximated by surrogate 

models that is discussed in Section 3.2.6 becomes relevant for metamodel-enabled multi-objective 

optimizers that approximate two or more objectives. Recent research by Bautista [2009] and Svenson 

[2011] address the dependencies between multiple objective functions when these functions are 

emulated with multivariate Gaussian processes. 

The metamodel-enabled frameworks outlined in Section 3.2.4 are all applicable to multi-objective 

optimization (see Table 3-1 for example applications). When using the basic sequential framework, at 

the end of Step 3, all approximate tradeoff solutions should be evaluated with the original 

computationally expensive objective functions to determine which of these solutions are actually non-

dominated (i.e., still tradeoff solutions). The EGO (Efficient Global Optimization) single-objective 

optimization algorithm [Jones et al., 1998] under the approximation uncertainty based framework, 

explained in Section 3.2.4, has stimulated a great deal of research to extend the expected 

improvement concept to multi-objective optimization [Bautista, 2009; Ginsbourger et al., 2010; 

Jeong et al., 2005; Keane, 2006; Knowles, 2006; Ponweiser et al., 2008; Svenson, 2011; Wagner et 

al., 2010; Zhang et al., 2010]. ParEGO [Knowles, 2006], which utilizes EGO to optimize a single 

aggregated function (weighted sum with varying weights) of all the objective functions, and SMS-

EGO [Ponweiser et al., 2008], which develops multiple surrogates for multiple objectives, are among 

the most popular algorithms extending EGO to multi-objective optimization. Li et al. [2008] propose 

an approximation uncertainty based approach independent of EGO to account for uncertainties of 

multiple surrogate models for multi-objective optimization. 
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3.2.6 Limitations and Considerations of Response Surface Surrogates 

In addition to the considerations listed in Section 3.2.5 that are specific to the design of response 

surface surrogate-enabled search frameworks, there are more general limitations and considerations 

that are relevant in any modelling analysis utilizing response surface surrogates. These limitations and 

considerations are discussed in the following. 

High-dimensional Problems 

Dimensionality is a major factor affecting the suitability of response surface surrogate modelling. 

Response surface surrogate modelling becomes less attractive or even infeasible when the number of 

explanatory variables is large. In such problems, the primary issue is that the minimum number of 

design sites required to develop some function approximation models can be excessively large. For 

example, to determine the coefficients of a second-order polynomial in a D-dimensional input space, 

at least p=(D+1)(D+2)/2 design sites are required in a 25-variable input space, at least 351 design 

sites are required. Koch et al. [1999] demonstrate that in order to obtain a reasonably accurate second-

order polynomial, the minimum number of design sites may not be sufficient and suggest that 4.5p 

design sites (1580 when D=25) are necessary, which might be well beyond the computational budget 

available when dealing with computationally expensive models. Note that this curse of dimensionality 

problem exists in all other function approximation models that are augmented by second-order 

polynomials (e.g., RBFs and kriging used in conjunction with second-order polynomials). 

Most importantly, high-dimensional problems have an extremely large search space. As such, the 

number of design sites required to reasonably cover the space becomes extremely large for higher 

number of variables. As an example, O’Hagan [2006] notes that 200 design sites in a 25-D space 

yield a very sparse coverage, but the same figure can result in a quite dense, adequate coverage for 

metamodelling in a 5-D space. As a result, the number of explanatory variables (decision variables, 

DVs, in optimization problems) in metamodel-enabled frameworks is typically not large. Among the 

metamodelling studies listed in Table 3-1, more than 65% of the metamodel applications are on 

functions having less than ten decision variables, and more than 85% have less than 20. Behzadian et 

al. [2009] and Broad et al. [2010] are the only studies reporting successful applications of 

metamodelling in relatively large-sized problems (with 50 and 49 decision variables, respectively). 

Notably in both studies, the number of original model evaluations are very large (>>10,000), and 

ANNs are used as metamodels to fit the very large sets of design sites. However, di Pierro et al. 
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[2009] report an unsuccessful application of a metamodel-enabled optimizer [ParEGO by Knowles, 

2006] on problems having 34 and 632 DVs – the other optimizer they used (LEMMO by Jourdan et 

al., 2006 ) considerably outperformed ParEGO on both problems. They point out that they could not 

improve the final solution quality of ParEGO even with increasing the total number of original 

function evaluations. 

Shan and Wang [2010a] survey existing strategies to tackling the problems associated with high-

dimensional problems in optimization. These strategies, which are also typically applicable to 

metamodel-enabled optimization, include: 1- screening aiming at identifying and removing less 

important decision variables [e.g., Ratto et al., 2007; Young and Ratto, 2009], 2- decomposition 

aiming to decompose the original problem into a set of smaller scale sub-problems [Shan and Wang, 

2010a], and 3- space reduction being concerned with shrinking the feasible decision variable space by 

reducing the variable ranges to only focus on more attractive regions in optimization [Shan and 

Wang, 2004; Shin and Grandhi, 2001]. Notably, none of the above strategies is a complete remedy to 

the issues arising in metamodelling in the context of high-dimensional problems, and as outlined by 

Shan and Wang [2010a], each has its own limitations in applicability and usefulness. Shan and Wang 

[2010b] develop a new function approximation model that is computationally efficient for larger 

number of decision variables. 

Exact Emulators versus Inexact Emulators 

A question that metamodel users need to address in any metamodelling practice is whether an exact 

fit (i.e., exact emulator) to the set of design sites or an approximate fit (i.e., inexact emulator), 

possibly with smoothing capabilities, is required. Exact emulation, also referred to as interpolation in 

numerical analysis, aims to construct a response surface surrogate representing the underlying 

function that goes through all design sites (i.e., exactly predicts all design sites). Kriging for computer 

experiments, RBFs, and Gaussian emulator machines [O'Hagan, 2006] are examples of exact 

emulators. Unlike exact emulators, there are emulation techniques that are inexact in that they 

produce a varying bias (deviations from the true values that are sometimes unpredictable) at different 

design sites. Polynomials, SVMs, MARS (multivariate adaptive regression splines), and ANNs are 

example inexact emulators generating non-interpolating emulator of the underlying function.  

Under certain (usually impractical) circumstances, inexact emulators may turn to exact emulators. 

For example, a polynomial can exactly reproduce all design sites when the degree of freedom of the 
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polynomial regression is zero – in case where there are as many coefficients in the polynomial as 

there are design sites. SVMs can also behave as if they are (almost) exact emulators when the radius 

of the ε-insensitive tube is set very close to zero and the weight of the regularization term is set very 

small so that it becomes non-dominant (see Section 3.2.3 for the details of SVM parameters). It has 

been proven that single-hidden-layer ANNs are also able to exactly fit n design sites provided that 

there are n-1 neurons in the hidden layer [Tamura and Tateishi, 1997]. ANNs with two hidden layers 

having (n/2)+3 hidden neurons are also capable of acting as almost exact emulators [Tamura and 

Tateishi, 1997]. Nevertheless, neither SVMs nor ANNs have been developed to apply as exact 

emulators and such applications would be impractical.  

SVMs have been fundamentally developed for inexact emulation with strong and direct smoothing 

capabilities. Although ANNs are inexact emulators, their smoothing properties are usually unclear to 

the user and very hard to manipulate [Razavi and Tolson, 2011]. Kriging with the so-called “Nugget 

effect” [Cressie, 1993] is also an inexact emulation technique with smoothing capabilities producing 

a statistics-based bias at design sites. Any smoothing capability usually has an associated tuning 

parameter that controls the extent of smoothing.  

There are two general types of problems involving function approximation models: physical 

experiments and computer experiments. There may exist substantial random errors in physical 

experiments due to different error sources, whereas computer simulation models are usually 

deterministic (noise-free), which means observations generated by a computer model experiment with 

the same set of inputs are identical. The inexact emulators are more suitable for physical experiments 

than computer experiments as the usual objective is to have an approximation that is insensitive (or 

less sensitive) to noise. An example application where inexact emulation is recommended is data-

driven hydrologic and rainfall-runoff modelling as e.g., neural networks have been extensively used 

in this context. Conversely, exact emulators are usually more advisable when approximating the 

deterministic response of a computer model.  

Figure 3-6 presents two real example experiments with inexact emulators to show how the non-

interpolating behaviour can be quite misleading in optimization especially in the vicinity of regions of 

attraction. Figure 3-6a shows a case where the set of design sites is relatively well distributed and 

includes a point very close to a local optimum, however, the quadratic polynomial fitted on this set is 

quite misleading and returns a point (surrogate function minimizer) on the plateau while ignoring the 
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already found local region of attraction; evaluating the surrogate function minimizer and re-fitting  

would not noticeably change the polynomial. Figure 3-6b demonstrates a similar case where a single-

hidden-layer neural network with 5 hidden neurons is trained to be used as the surrogate. In this case, 

the set of design sites is intentionally very well distributed such that there are design sites located at 

both regions of attraction (one global and one local). As can be seen, in our experiment with this 

neural network, the local region of attraction (local mode on the left) is easily ignored despite the fact 

that there is a design site very close to the local minimum, and secondly the location of the global 

region is misinterpreted. We believe that such a misleading behaviour is not unlikely as we easily 

observed it in this simple experiment after a few trial-and-errors in network initialization and training. 

Notably, evaluating and adding the surrogate function minimizer to the set of design sites and re-

fitting might not properly change the shape of the surrogate.  

 

  

Figure 3-6. Example misleading responses of inexact emulators: (a) a quadratic polynomial, and (b) a 

neural network with 5 hidden neurons 

 

In search-based metamodel-enabled analyses, it might be beneficial to have a smooth inexact 

emulator generating a surface passing smoothly across the design sites in the regions of the 

explanatory variable space with inferior quality as it may lead the search smoothly to the main 

regions of attraction. In contrast, inexact emulators can be very misleading in the regions of attraction 

(i.e., regions containing good quality local/global optima) where even a marginal superiority of 

candidate solutions over each other is very important and the key to continue the search.  Combining 

the two behaviours (i.e., exact emulation and inexact emulation) and adaptively switching from one to 

the other may appear promising, although how to implement this adaptive switching using the 

common function approximation techniques is not trivial.  
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Exact emulation would seem to be the most appropriate way of approximating the deterministic 

response of computer simulation models. To our knowledge, the issues and shortcomings of inexact 

emulation for response surface modelling as described above have not been fully addressed in the 

literature, although the problems associated have been acknowledged to some extent in some 

publications, e.g., in Sacks et al. [1989], Jones [2001], and Razavi et al. [2012a]. For example, Jones 

[2001] points out that inexact emulators are unreliable because they might not sufficiently capture the 

shape of the deterministic underlying function. In particular, it is not clear to us from the water 

resources literature on surrogates for constraints, why the inexact emulation of a penalty function 

(which for large and sometimes continuous regions of decision space can be zero) is preferred or 

selected over an exact emulator. In contrast, for reliability-based optimization studies where a 

metamodel is fit to predict solution reliability [e.g., Bau and Mayer, 2006; Yan and Minsker, 2011], 

the metamodel is usually trained to design sites with a non-deterministic estimate of reliability that 

was generated by an approximate Monte Carlo sampling type of experiment.  In this case, the choice 

between exact versus inexact emulation is not so clear.     

Limits on Number of Design Sites 

The number of design sites used for metamodel fitting can be a limiting factor affecting the suitability 

of a function approximation technique for a specific problem. The appropriate range (lower and upper 

bounds) for this number varies from one function approximation technique to another. Generally, the 

more design sites used for metamodel fitting, the higher the computational expense incurred in the 

fitting process. The computational expense associated with metamodel development and fitting 

should be taken into account in any metamodelling application. This expense may be limiting and 

directly affect the suitability of a function approximation technique for a specific problem especially 

when the total number of original model evaluations (and accordingly the number of design sites) in a 

metamodel-enabled application is relatively large.  

The function approximation techniques utilizing basis (correlation) functions, such as kriging, 

RBFs, SVMs, and Gaussian Emulator Machine (GEM), are the most prone to the limitations arising 

from the large numbers of design sites. In these techniques, except for SVMs, the number of 

correlation functions is typically as many as the number of design sites, and as such, their structures 

and the computations associated for large sets of design sites become excessively large. GEM may 

suffer the most in this regard as the maximum number of design sites utilized in GEM applications in 
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the literature is only 400 [Ratto et al., 2007]. Kriging has also a limited applicability when the number 

of design sites is large, mostly because determining the kriging correlation parameters through the 

maximum likelihood estimation methodology can become computationally demanding for large sets. 

Practical numbers of design sites in kriging applications are typically less than a few thousands. 

RBFs and SVMs can handle larger numbers of design sites. Least squares methods can efficiently 

fit RBFs even on large sets of design sites. SVMs are also capable of more efficiently handling larger 

numbers of design sites as the operator associated with the design site vectors in the SVM 

formulation is dot product [Yu et al., 2006]. However, both RBFs and SVMs may involve a relatively 

computationally demanding parameter tuning process for the correlation parameters and the other two 

specific parameters of SVMs.  

Unlike the correlation functions existing in GEM, kriging, RBFs and SVMs, each of which only 

responds to a small region in the input space close to the corresponding design site, ANNs consist of 

sigmoidal units each of which is associated with a hidden neuron having an active part over a large 

domain of the input space. As such, even for large sets of design sites, ANNs may have relatively 

limited numbers of hidden neurons forming reasonably sized ANN structures. There are ANN 

applications for very large sets of design sites; for example, Broad et al. [2005] use 10,000 design 

sites in ANN fitting and Behzadian et al. [2009] utilize ANNs in the adaptive-recursive framework 

with 590,000 and 2,098,400 original function evaluations. 

As opposed to the above function approximation techniques, which consist of a number of locally 

active building blocks, polynomials have a single global form covering the entire input space. As 

such, polynomial structure does not expand as the number of design sites increases. Polynomials can 

be fitted very fast even over very large sets of design sites. Similar to polynomials, the structure and 

complexity of multivariate adaptive regression splines (MARS) is not a function of the number of 

design sites, and instead, it is a function of the shape and complexity of the underlying function 

represented by the design sites. MARS builds multiple piece-wise linear and non-linear regression 

models (basis functions) to emulate the underlying function in the design sites [Friedman, 1991], and 

its main computational effort is to search over a variety of combinations by first adding the basis 

functions to the model (forward pass) and then extensively prunes the model (backward pass) to find 

a parsimonious model with a satisfactory generalization ability.  
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The minimum number of design sites required to develop a metamodel also varies for different 

function approximation techniques. For a polynomial, the minimum number equals the number of 

coefficients existing in the polynomial. Thus, for zero-, first- and second-order polynomials the 

minimum numbers are 1, D+1 and (D+1)(D+2)/2, respectively, where D is the dimension of the input 

space. When using these minimum numbers, the polynomials would act as exact emulator (i.e., zero 

degree of freedom). The minimum number of design sites in kriging and RBFs depends on the 

polynomials by which they are augmented; as zero- and first- order polynomials are commonly used 

in conjunction with kriging and RBFs, the minimum number of design sites in these techniques can 

be very small (e.g., 11 for D=10 when augmented with first-order polynomials). GEM, SVM, and 

MARS also require reasonably small sets of design sites. For ANNs, although mathematically there is 

not any minimum limit for the number of design sites, it is commonly accepted that neural networks 

require relatively larger sets of design sites to be properly trained. The studies listed in Table 3-1 are 

consistent with this fact as the minimum number of initial design sites for neural network training in 

these studies is 150 [in Zou et al., 2007] and the second smallest number is 300 [in Yan and Minsker, 

2006], while this number can be as small as 20-25 when the RBFs are acting as metamodels [in Regis 

and Shoemaker, 2007b]. 

Validation and Over-fitting 

Validation may be an important step in developing a response surface surrogate and reflects how the 

model performs in terms of generalizability. When a function approximation model exhibits a good fit 

to the design sites (i.e., zero error for exact emulators and satisfactorily small errors for inexact 

emulators), a validation measure is also required to ensure that the model performs consistently for 

unseen areas in the model input space. Cross validation strategies, such as k-fold cross validation and 

leave-one-out cross validation, are the commonly used means of validation of response surface 

surrogates [Wang and Shan, 2007], particularly when the set of design sites is not large. The 

importance of validation differs for different approximation techniques. For example, the process of 

developing the polynomials, RBFs, or kriging approximation models is less dependent on validation 

as there are studies utilizing them without conducting a validation step; whereas, validation is an 

inseparable step in developing SVMs and ANNs. Bastos and O'Hagan [2009] claim that there has 

been little research on validating emulators before using them (i.e., in a surrogate-enabled analysis 

framework).  While this statement is accurate for some emulators (in particular Gaussian process 
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emulators studied in Bastos and O'Hagan [2009]), it is much less accurate when emulators such as 

SVMs and ANNs are considered.  The studies in Table 3-1 that do not utilize SVMs or ANNs as 

response surface surrogates, also show little in the way of metamodel validation (although most do 

attempt to demonstrate the utility of the overall surrogate-enabled analysis).  Bastos and O'Hagan 

[2009] propose some diagnostics to validate Gaussian process emulators. 

Over-fitting (over-training) degrades the generalization ability of approximation models. All 

approximation models are prone to over-fitting. In statistics, over-fitting is usually described as when 

the model fits the noise existing in the data dominantly rather than the underlying function. However, 

as discussed in Chapter 4 (also in Razavi et al. [2012a]), surrogate models fitted on noise-free data 

(e.g., data generated from deterministic computer models) are also prone to over-fitting, because there 

is another factor affecting the risk of over-fitting, which is the conformability of the model structure 

with the shape of the available data. Over-fitting due to conformability is more likely when the 

approximation model has a large degree of freedom (is over-parameterized) compared to the amount 

of available data. Curve-fitting (regression analysis) practices are typically less prone to the negative 

effects of this factor, especially for low orders, because they have a global pre-specified model form 

covering the entire input variable space. But in highly flexible approximation models, including 

ANNs, the problem associated with the conformability factor can be substantial.  

Neural networks are highly prone to the risk of over-fitting. However, not all of the studies 

involving neural networks listed in Table 3-1 pay attention to over-fitting/generalizability. Seven 

studies  listed in Table 3-1 [Broad et al., 2005; Broad et al., 2010; Johnson and Rogers, 2000; Khu 

and Werner, 2003; Razavi et al., 2012a; Zou et al., 2007; 2009] apply the early stopping approach 

[Beale et al., 2010] to avoid over-training, and one study [Kourakos and Mantoglou, 2009] applies 

the Bayesian regularization procedure [Foresee and Hagan, 1997]. The main problem with early 

stopping is that the available design sites have to be split into a training set, a testing sets, and 

sometimes a validation set resulting in fewer data available to train ANNs. In contrast, the Bayesian 

regularization procedure does not require this splitting of design sites – all can be used for training.  

Razavi and Tolson [2011] recently proposed a neural network regularization measure that also does 

not require a testing/validation set.  

Over-fitting due to the conformability factor may also occur in the function approximation 

techniques that are based on basis functions such as kriging and RBFs. However, the risk and extent 



 

 91 

of over-fitting in kriging and RBFs is typically less compared to ANNs. The risk of over-fitting is 

higher when there are very few design sites relative to the number of kriging and RBF parameters to 

be tuned. Note that, for example, a kriging model with Gaussian correlation functions has D 

correlation function parameters each of which is associated with one dimension in the D-dimensional 

input space and an RBF model with thin-plate splines has no correlation parameter to tune; as such, 

the number of parameters in these approximation models is typically small compared to the number 

of available design sites. As over-fitting in kriging is not a major challenge, it has not been directly 

addressed in most kriging studies. To mitigate the possible over-fitting problem in kriging, Welch et 

al. [1992] propose to initially keep all the correlation function parameters the same in all input space 

dimensions in the maximum likelihood estimation process, and then relax them one-by-one to 

identify the ones resulting in higher increase in the likelihood function and only  let them be different.  

Emulating Multiple Outputs or Multiple Functions  

The literature reviewed in Table 3-1 shows that even though the vast majority of response surface 

surrogate studies involve a simulation model with temporally and spatially varying outputs, the 

required number of model outputs or number of output functions (e.g., calibration error metrics) to 

approximate with surrogates is typically limited to only handful of outputs/functions (often just one).  

Recently, Bayesian emulation techniques have appeared that are tailored to approximate a time series 

of output (e.g., emulating a dynamic simulator in Conti and O’Hagan [2010]).  According to Conti 

and O’Hagan [2010], there are three approaches to emulating dynamic simulators: 1- multi-output 

emulators that are unique because it accounts for correlations among outputs 2- multiple single-output 

emulators and 3- time input emulators that uses time as an auxiliary input.  They conclude that the 

multiple single-output emulator approach is inappropriate because of its failure to account for 

temporal correlations and believe that multi-output emulators should eventually lead to the successful 

emulation of time series outputs. Fricker et al. [2010] also propose multi-output emulators 

considering correlation between multiple outputs based on multivariate Gaussian processes. 

In terms of the common function approximation techniques in Table 3-1, since ANNs have the 

ability to predict multiple outputs simultaneously, ANNs are a type of multi-output emulators.  None 

of the other function approximation techniques reviewed in detail in Section 2.3.1.-2.3.4 can directly 

act as multi-output emulators.  Thus, a single ANN model of multiple correlated outputs should 

conceptually be able to account for these correlations among outputs.  Based on the work by Conti 
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and O’Hagan [2010], we believe that the ability to account for correlations among outputs that are 

significantly correlated (even multiple output functions such as two model calibration objective 

functions) in the response surface surrogate should conceptually lead to increased surrogate accuracy.  

However, there are multiple studies demonstrating the need for multiple ANN surrogates to model 

multiple outputs (e.g., Kourakos and Mantangoglou [2009], Yan and Minsker [2011], and Broad et 

al. [2005]).  Yan and Minsker [2011] approximate six outputs with three independent ANN surrogate 

models while Broad et al. [2005] model each output of interest with independent ANNs.  Kourakos 

and Mantangoglou [2009] utilize ANNs to approximate 34 outputs and they explain how their single 

ANN to model all outputs would lead to a practically infeasible ANN training procedure as nearly 

2400 ANN parameters were to be specified.  Instead they built and trained 34 modular sub-networks 

to circumvent this computational bottleneck in ANN training, assuming that the correlations between 

the outputs are negligible (justified based on the physics of their case study). Further studies could 

investigate scenarios where multiple-output ANNs are beneficial and to determine all the reasons they 

can fail relative to multiple single output ANNs.   

3.3 Lower-Fidelity Physically-based Surrogates 

In contrast to response surface surrogates, which are data-driven techniques for approximating the 

response surface of high-fidelity (original) models based on a limited number of original model 

evaluations, lower-fidelity physically-based surrogates are essentially cheaper-to-run alternative 

simulation models that are less faithful to the system of interest. For any real-world system, there may 

exist several simulation models with different levels of fidelity (accuracy). A high-fidelity model 

refers to the most accurate and as such the most desirable model available to users.  As the high-

fidelity models may typically be computationally intensive, there are frameworks concerned with 

efficiently utilizing the high-fidelity models in conjunction with lower-fidelity models (as surrogates 

of high-fidelity models) to enhance the overall computational efficiency; these surrogate modelling 

frameworks when applied in the field of optimization are also referred to as “multi-fidelity” or 

“variable-fidelity” optimization [Forrester et al., 2007; Gano et al., 2006; Leary et al., 2003; Madsen 

and Langthjem, 2001; Sun et al., 2010]. In some publications, low-fidelity models are called “coarse” 

models, and high-fidelity models are called “fine” models [e.g., in Bandler et al., 1994]. As a simple 

example, a numerical model with very small numerical time steps may be deemed a high-fidelity 

model and its corresponding low-fidelity model may be one with larger numerical time steps. In this 
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paper, we often refer to “lower-fidelity physically-based surrogates” as “lower-fidelity surrogates” for 

simplicity. 

Lower-fidelity surrogates have two immediate advantages over the response surface surrogates: 1- 

they are expected to better emulate the unexplored regions in the explanatory variable (input) space 

(i.e., regions far from the previously evaluated points with the high-fidelity model) and as such 

perform more reliably in extrapolation, and 2- they avoid or minimize the problems associated with 

high-dimensional problems (see section 3.2.6), as they use domain-specific knowledge. There is a 

main assumption behind any lower-fidelity surrogate modelling practice: high-fidelity and low-

fidelity models share the basic features and are correlated in some way [Kennedy and O'Hagan, 

2000]. As such, the response of the low-fidelity model for a given input vector is expected to be 

reasonably close to the response of the high-fidelity model for the corresponding input vector in the 

high-fidelity model input space. This closeness enables the lower-fidelity model to relatively reliably 

predict the performance of the high-fidelity model in unexplored regions in the variable space. If this 

assumption is violated, the surrogate modelling framework would not work or the gains would be 

minimal. 

There are multiple strategies to reduce the number of expensive original model evaluations when a 

lower-fidelity model is available. The immediate strategies include using the lower-fidelity model 

first to reduce the variables’ feasible space and/or to identify unimportant variables to reduce the 

problem dimensionality [Madsen and Langthjem, 2001]. Most studies utilizing lower-fidelity models 

are concerned with developing optimization strategies where low- and high-fidelity models are 

adaptively chosen to be evaluated in the course of optimization [Forrester et al., 2007; Gano et al., 

2006; Huang et al., 2006; Leary et al., 2003; Viana et al., 2009]. There are also lower-fidelity 

surrogate applications in uncertainty analysis [Allaire, 2009; Kennedy and O'Hagan, 2000]. 

Lower-fidelity surrogate modelling has only very recently started to gain popularity in the water 

resources literature. Although it is a well-established area of research in the broader research 

community, formal terminologies and common methods available for lower-fidelity surrogate 

modelling in other disciplines seem to be largely unused in water resources literature. This section 

first reviews and categorizes the research efforts for lower-fidelity surrogate modelling in the broader 

research community and then reports the research efforts accomplished in water resources literature. 
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3.3.1 Types of Lower-Fidelity Physically-based Models 

Depending on the original model type, at least three different general classes of strategies may be 

used to yield lower-fidelity models. In the first class of strategies, the lower-fidelity models are 

fundamentally the same as the original models but with reduced numerical accuracy. For example, in 

numerical simulation models of partial differential equations, a lower-fidelity model can be a 

variation of the original model but with larger (coarser) spatial/temporal grid size [Leary et al., 2003; 

Madsen and Langthjem, 2001; Thokala and Martins, 2007]. Finite element models with simpler basis 

functions can also be a low-fidelity model of an original model involving more complex basis 

functions. Whenever applicable, lower-fidelity models can be essentially the same as the original 

model but with less strict numerical convergence tolerances. Forrester et al. [2006] employ a 

partially converged CFD model as a lower-fidelity surrogate of a fully converged (original) model.  

A second class of strategies to derive lower-fidelity models involves model-driven approximations 

of the original models using model order reduction (MOR) techniques [Gugercin et al., 2000; 

Rewienski and White, 2006; Willcox and Megretski, 2005]. MOR aims to reduce the complexity of 

models by deriving substitute approximations of the original complex equations involved in the 

original model. These substitute approximations are systematically obtained by rigorous mathematical 

techniques without the need of knowing the underlying system. 

In the third class of strategies, lower-fidelity models can be simpler models of the real-world 

system of interest in which some physics modeled by the high-fidelity model is ignored or 

approximated. Strategies such as considering simpler geometry and/or boundary conditions in the 

model, utilizing a lumped-parameter model in lieu of a distributed model, and utilizing a two-

dimensional model instead of a three-dimensional model lie under this class. For example in fluid 

dynamics, numerical models solving Navier-Stokes equations are the highest-fidelity and the most 

expensive models, models based on Euler equations are the lower-fidelity and less expensive models, 

and analytical or empirical formulations are the lowest-fidelity and cheapest models [Alexandrov and 

Lewis, 2001; Simpson et al., 2008; Thokala and Martins, 2007]. Note that for any real-world system, 

there may be a hierarchy of models with different levels of fidelity. 

Thokala and Martins [2007] conduct multiple experiments utilizing different types of lower-

fidelity models and conclude that the lower-fidelity models that share the same physical components 

with the original models (i.e., lower-fidelity models lying under the first and second classes) are more 
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successful than those having different/simplified physical bases (i.e., lower-fidelity models lying 

under the third class), as no correction (see Section 3.3.2 for definition of correction functions) can 

compensate for ignoring a component of the physical characteristics of a system. 

3.3.2 Lower-Fidelity Model Enabled Analysis Frameworks 

Variable-Fidelity Models with Identical Variable Space 

Models with different levels of fidelity may be defined over the same variable/parameter space. There 

are multiple frameworks selectively utilizing lower-fidelity models as substitutes of the original 

models to reduce the number of expensive evaluations of the original model. These frameworks have 

mostly arisen from the optimization context but have also applied for other purposes including 

uncertainty analysis. The main challenge to be addressed in these frameworks is that the response 

landscapes of the original and lower-fidelity models are somewhat different. Figure 3-7 presents an 

illustrative hypothetical example of high- and low-fidelity response landscapes in a one-dimensional 

space. As can be seen, there are discrepancies between the two response landscapes; the low-fidelity 

function under-estimates the response on the left part of the plot and over-estimates in most of the 

right part. Moreover, both functions have two regions of attractions (modes), but the global minimizer 

of the low-fidelity function coincides with the local minimizer of the high-fidelity function which is 

far from the global optimum.  

 

 

Figure 3-7. A hypothetical example of lower-fidelity functions along with the high-fidelity (original) 
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There are three main independent (but sometimes complimentary) approaches to formally address 

the discrepancies between low- and high-fidelity models: correction functions, space-mapping, and 

hybrid strategies. The most common approach is to build a correction function to correct the response 

landscape of the lower-fidelity model and align it with the response landscape of the original model. 

This process in the multi-fidelity modelling literature is referred to as correction, tuning, scaling, or 

alignment. Suppose that       and       represent the response surfaces of the high- and low-fidelity 

models of the real-world system of interest, respectively; the two general strategies for defining a 

correction function are the additive approach [Gano et al., 2006; Leary et al., 2003; Viana et al., 

2009] in Equation 3-10 and the multiplicative approach [Alexandrov and Lewis, 2001; Madsen and 

Langthjem, 2001; Thokala and Martins, 2007] in Equation 3-11: 

                                    (3-10) 

                ⁄                   (3-11) 

where       is the additive correction function directly emulating the discrepancies between the 

high- and low-fidelity response surfaces and       is the multiplicative correction function. As the 

exact form of the correction function is typically unknown for any given problem, an approximate 

correction function is to be built by a limited number of high- and low-fidelity model evaluations. 

Then, the surrogate model can be: 

             ̂                       (3-12) 

             ̂                      (3-13) 

where  ̂     and  ̂     are the approximate correction functions that are designed to correct the 

low-fidelity model response by offsetting (additive) and scaling (multiplicative), respectively. 

Notably, the multiplicative form is prone to ill-conditioning when the model response approaches 

zero; to avoid this ill-conditioning, a constant can be added to both the numerator and denominator of 

Equation (3-11). Eldred et al. [2004] demonstrate the superiority of the additive form over the 

multiplicative form across multiple test problems.  

The process of developing the approximate correction function is analogous to response surface 

surrogate modelling; however, the correction function is supposedly less complex than typical 

response surface surrogates, as the response surface of a lower-fidelity model is supposed to be 

reasonably close to the response surface of the original model. Different approaches or tools have 
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been proposed to develop the approximate correction function. Linear regression [Alexandrov and 

Lewis, 2001;  Madsen and Langthjem, 2001; Vitali et al., 2002] and quadratic polynomials [Eldred et 

al., 2004; Sun et al., 2010; Viana et al., 2009] are two common, simple approaches to build the 

correction functions. More flexible function approximation models have also been used for this 

purpose, including kriging [Gano et al., 2006] and neural networks [Leary et al., 2003].  

Note that limitations and considerations raised in Section 3.2.6 for response surface surrogates may 

also hold when using complex function approximation models to build the approximate correction 

functions. However, the limitations of response surface surrogates used in this context for high 

dimensional problems (see section 3.2.6) are not as important. This is because the correction function 

for a good quality lower-fidelity surrogate is only of secondary importance (it adjusts the lower-

fidelity model output). As a result, less complex approximate correction functions may be more 

desirable in practice. Building correction functions that are correlated for multiple outputs is similarly 

not as important. 

The general correction-function-based framework utilizing lower-fidelity surrogates is as follows: 

the framework, in Step 1, starts with an initial DoE to generate sample points and then evaluates them 

by both the original and lower-fidelity models. In Step 2, a global correction function is developed to 

emulate the discrepancies (errors) between the responses of the original and lower-fidelity models at 

the sampled points. In Step 3, a search or sampling is applied on the corrected response surface of the 

lower-fidelity model, identify the regions of interest in the explanatory variable space, and screen out 

one or multiple points. In cases where the search algorithm is for optimization, this step returns the 

optimal/near-optimal point (or multiple high-quality points) of the corrected response surface of the 

lower-fidelity model. In Step 4, the candidate points from Step 3 are evaluated by the original 

function. If needed, the framework goes back to Step 2 to modify the correction function and repeat 

the analyses in Step 3.  

Trust-region approaches for optimization have also been applied in correction-function-based 

framework [Alexandrov and Lewis, 2001; Eldred et al., 2004; Robinson et al., 2006]. In such a 

framework, an initial DoE is not required and the framework may start with any (but desirably a good 

quality) initial solution (Step 1). The initial trust region size is also specified in this step. In Step 2, 

the current solution is evaluated by both original and lower-fidelity models. In Step 3, the correction 

function is locally fitted around the current (best) solution. In Step 4, the corrected lower-fidelity 
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response surface is optimized within the trust region (centered at the current best solution) and the 

best solution found is evaluated by the original model. In Step 5, depending on how close this high-

fidelity response is to the low-fidelity response, the trust region is expanded, remains the same, or is 

reduced. Steps 3 through 5 are repeated until convergence or stopping criteria are met. The trust-

region based framework is provably convergent to a local optimum of the original model response 

surface if the corrected lower-fidelity response surface is at least first-order accurate at the center of 

the trust region [Robinson et al., 2006]. Eldred et al. [2004] demonstrate that second-order accurate 

corrections can lead to more desirable convergence characteristics. 

The second main approach to tackle the discrepancies between low- and high-fidelity response 

surfaces is the so-called space mapping approach. Initially introduced by Bandler et al. [1994] for 

optimization purposes, space mapping aims to locally establish a relationship between the original 

model variables and the lower-fidelity model variables. By definition, space mapping can be used to 

make use of any sufficiently faithful lower-fidelity model even if it is defined on a different variable 

space. To establish a space mapping relationship, multiple points on the original response surface and 

their corresponding points on the lower-fidelity response surface are required. For any given point x 

in the original variable space, a corresponding  ̂ point in the lower-fidelity variable space is defined 

as the point where     ̂  is equal (or reasonably close) to      . To find each point required in the 

lower-fidelity variable space, one optimization sub-problem is to be solved with the objective of 

minimizing |    ̂       | by varying  ̂. Notably, there may exist multiple points  ̂ having the same 

lower-fidelity response value equal to       leading to the failure of space mapping. Many 

approaches have been proposed to address this problem of non-uniqueness [Bakr et al., 1999; Bandler 

et al., 1996; Bandler et al., 2004]. Once the corresponding points in the two spaces are available, 

different linear or non-linear functions may be used to relate the two spaces by fitting over these 

points [Bandler et al., 2004]. Then any solution in the lower-fidelity variable space obtained in 

analyses with the lower-fidelity model can be mapped to the original variable space. The space 

mapping relationships can be updated as the algorithm progresses. As many optimization sub-

problems are to be solved on the lower-fidelity model to adaptively establish/update the mapping 

relationships, the total number of lower-fidelity model evaluations is relatively high. As such, if the 

low-fidelity model is not much cheaper than the original model, space mapping would not be 

computationally feasible.  
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There are hybrid strategies following a third general approach to make use of lower-fidelity models 

jointly with original models to build response surface surrogates. These strategies may be used with 

any of the frameworks utilizing response surface surrogates (detailed in Section 3.2.4) with the main 

difference that there are (at least) two sets of design sites with different levels of fidelity.  These two 

sets of design sites are used to either build a single response surface surrogate formed by the sets or 

two response surface surrogates representing the two sets independently.  Forrester et al. [2007] 

develop a single response surface surrogate using co-kriging, which is an exact emulator on the high-

fidelity design sites and an inexact emulator on the lower-fidelity design sites – such a response 

surface surrogate can capture the exact behaviour of the underlying function where high-fidelity 

design sites are available in the variable space and only extract the trends and curvatures in the 

unexplored regions from the cheaply available lower-fidelity design sites that are far from the high-

fidelity design sites. Leary et al. [2003] propose a heuristic way to incorporate the lower-fidelity 

model response into ANN- and kriging-based response surface surrogates. Huang et al. [2006] 

develop a methodology to incorporate the data obtained by a lower-fidelity model to enhance the 

EGO algorithm. Vitali et al. [2002] and Sun et al. [2010] use a fourth-order polynomial and an RBF 

model, respectively, to develop response surface surrogates of their developed lower-fidelity models 

and then utilize a correction function approach to correct these response surface surrogates to be used 

in optimization problems with their original computationally expensive models. 

Variable-Fidelity Models with Different Variable Spaces 

The variable space associated with a lower-fidelity model may differ from the original model variable 

space. In such cases, the number of variables associated with the lower-fidelity model can be unequal 

to (typically less than) the number of original variables. Since their application is not trivial, multi-

fidelity models when defined on different variable spaces have been less appealing in surrogate 

modelling literature [Simpson et al., 2008]. When the spaces are different, a mapping must be 

established such that      ̂  or  ̂       where   and  ̂ are corresponding points in the original 

and lower-fidelity variable spaces, and P and Q are mapping functions that transform points from one 

space to the other. In some cases, the space mapping relationship is clear based on the physics of the 

problem, and the lower-fidelity variable vector is a sub-set or interpolation of the original variable 

vector. However, when such knowledge is not available, empirical relationships are to be derived. 

The space mapping approach, explained above, is a means to derive these empirical relationships 
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[Bandler et al., 1994; Bandler et al., 2004]. The main procedure in space mapping between different 

spaces is essentially the same as the space mapping procedure when the spaces are identical. Another 

mapping approach has been proposed based on proper orthogonal decomposition (also called 

principal component analysis) and compared against space mapping in a trust-region optimization 

framework [Robinson, 2007; Robinson et al., 2006]. Robinson et al. [2006; 2008] incorporate the idea 

of correction function into space mapping to match the gradients of the lower-fidelity and original 

response surfaces at points of interest.  

3.3.3 Related Research in Water Resources Literature 

The basic idea of replacing a high-fidelity simulation model with a lower-fidelity model of the system 

for the purposes of optimization and uncertainty or sensitivity analysis is an intuitive concept that 

exists in the water resources literature.  However, the vast majority of such studies have applied this 

idea independent of the lower-fidelity surrogate modelling studies, methods and terminology from 

other disciplines described in Section 3.3.2. This section reviews the research efforts arising from 

water resources modelling and relates them to the general methodologies for lower-fidelity surrogate 

modelling. The terms in quotations below represent the terminology used in the associated 

publications. 

There are research efforts to reduce the complexity level of various water resources models to be 

typically used in optimization or calibration. Ulanicki et al. [1996] and Maschler and Savic [1999] 

develop “model reduction methods” to simplify water distribution network models by eliminating less 

important pipes and nodes and allocating their demands to the neighbouring nodes. Shamir and 

Salomons [2008] and Preis et al. [2011] utilized the model reduction method developed by Ulanicki 

et al. [1996] to create “reduced models” of water distribution networks to be used in optimization 

frameworks. McPhee and Yeh [2008] develop a “reduced model” of a groundwater model and linked 

it with optimization in lieu of the original model for the purpose of groundwater management – this 

“reduced model” was defined over a different parameter space based on empirical orthogonal 

functions (ordinary differential equation instead of partial differential equation). Vermeulen et al. 

[2004] and Siade et al. [2010] propose methods to develop “reduced models” of high-dimensional 

groundwater models based on proper orthogonal decomposition. Vermeulen et al. [2005] and 

Vermeulen et al. [2006] utilize such “reduced models” as substitutes of the original groundwater 

models for model inversion (calibration).  
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The well-established idea of using response matrices in place of full groundwater models for 

groundwater management [e.g., in Reichard, 1995], where the same methods for developing response 

surface surrogates are typically used, can also be classified as lower-fidelity surrogates. Cheng et al. 

[2011] also refer to the response matrix as a “reduced model” replacing a groundwater model in their 

optimization problem formulated for groundwater management. Pianosi and Soncini-Sessa [2009] 

use a “reduced model” of a reservoir system to improve the computational efficiency of stochastic 

dynamic programming for designing optimal reservoir regulation plans. Crout et al. [2009] develop a 

methodology to “reduce” water resources models by iteratively replacing model variables with 

constants.  

Notably, in all the above studies that are for optimization purposes, reduced models (i.e., lower-

fidelity models) after being developed are treated as if they are high-fidelity representations of the 

underlying real-world systems and fully replace the original models (i.e., high-fidelity models) in 

their analyses. In other words, the discrepancies between the high- and low-fidelity models are 

ignored.  

Simplified surrogate models have been also used with different Markov Chain Monte Carlo 

(MCMC) frameworks for uncertainty analysis of water resources models. Keating et al. [2010] 

develop a simplified groundwater model as a “surrogate” of a computationally intensive groundwater 

model, defined over a different parameter space. They conduct auto-calibration and uncertainty 

assessment experiments on the surrogate instead of the original model and tune the algorithm 

parameters of an MCMC uncertainty analysis method; the tuned MCMC is then used on the original 

computationally expensive model.  Efendiev et al. [2005] develop a two-stage strategy employing a 

groundwater model with a coarse grid, referred to as “coarse-scale model”, as a lower-fidelity 

surrogate of the original “fine-grid model” to speed up an MCMC experiment. In their methodology, 

both the surrogate and original models are defined over the same parameter space, and the surrogate 

is first evaluated to determine whether the original model is worth evaluating for a given solution.  

There are very few surrogate modelling studies in water resources addressing the discrepancies 

between the response surfaces of the lower-fidelity surrogate and the original model.  Mondal et al. 

[2010] develop “coarse-grid models” (also called “upscaled models”) of a (high-fidelity) groundwater 

model to speed up MCMC computations for uncertainty quantification; in their study, the 

discrepancies are recognized and quantified by a linear correction function built off-line before 
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MCMC experiments to avoid biased approximated posterior distribution. Cui et al. [2011] also 

develop a “reduced order model” of a “fine model” by coarsening the gird structure and employ it 

within a correction function framework to enhance the efficiency of an MCMC algorithm for 

groundwater model inversion; an adaptive local correction function is used in their study in the course 

of MCMC sampling to improve the accuracy. 

3.4 Efficiency Gains of Surrogate-enabled Analyses 

The most important question in assessing a surrogate-enabled analysis is how efficient or effective it 

is in comparison with other efficient alternative tools without surrogate modelling, especially because 

the computational efficiency achieved is the main factor motivating the research and application of 

surrogate modelling. Surrogate-enabled analyses typically sacrifice accuracy for efficiency as they 

utilize approximate models (less accurate than the original models) to more efficiently achieve the 

analysis objectives. As such, there is always a risk that surrogate models yield misleading results; this 

risk is higher when the original response landscape is complex and deceptive and is minimal for 

simple original response landscapes (e.g., almost negligible for smooth unimodal functions being 

optimized). A thorough discussion of this matter in the context of optimization is available in Chapter 

4 (also in Razavi et al. [2012a]) where a comparative assessment framework for metamodel-enabled 

optimizers is developed presenting a computational budget dependent definition for the 

success/failure of the metamodelling  strategies. The careful selection of a benchmark alternative 

analysis or decision-making procedure without surrogate modelling is a vital step for fair assessment 

of a given surrogate-enabled analysis.  To be clear, a benchmark alternative analysis has available at 

least the same number of original model simulations as utilized in the surrogate-enabled analysis.  

Although Broad et al. [2005] note that “Metamodels should only be used where time constraints 

prohibit the possibility of optimizing a problem with a simulation model.”, in our view, the 

determination of such prohibition is not always clear cut.  In a sampling context, one may take fewer 

samples than they would prefer, while in a search context, the algorithm can be terminated before it 

converges. 

In an optimization or search context, the most tangible measure of efficiency gains over a 

benchmark alternative is computational saving.  For a single metamodel-enabled optimization 

analysis (e.g., optimal design) this can be calculated as:  
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where t is the computational budget or time required to reach a desired solution quality through an 

algorithm without surrogate modelling, and ts is the computational budget or time a surrogate-enabled 

algorithm requires to reach a solution with the same quality. Regis and Shoemaker [2007a] present 

such comparative assessments in terms of efficiency by quantifying t and ts as the numbers of original 

function evaluations the algorithms require to reach within 1% of the optimal value of the original 

function. Computational budgets may be quantified as the total CPU clock time [as in Behzadian et 

al., 2009; Broad et al., 2005; Kourakos and Mantoglou, 2009] or the number of original function 

evaluations [as in Mugunthan and Shoemaker, 2006; Regis and Shoemaker, 2007b; Zou et al., 2007; 

2009]. As stated in Table 3-1, 15 (out of 32) studies present quantitative information demonstrating 

the efficiency of the surrogate modelling strategies used. Some of these studies report the associated 

computational savings explicitly; in the other ones, savings are not clearly reported and we interpreted 

them based on the published results. According to Table 3-1, computational savings achieved through 

the use of surrogate models can vary significantly, ranging from 20% of CPU time in Zhang et al. 

[2009] to 97% in Zou et al. [2007]. 

Chapter 4 (Razavi et al. [2012a]) demonstrates that the failure of metamodel-enabled optimizers is 

a function of not only the degree of complexity and deceptiveness of the original landscape but also 

the available computational budget. In very limited computational budgets surrogate modelling is 

expected to be very helpful, whereas when the computational budget is not severely limited, surrogate 

modelling might not be as helpful, as equivalent or better solutions can be achieved by the benchmark 

optimizer.  We believe similar findings are probable for all other types of metamodel-enabled 

analyses.  However, the details of the comparative efficiency assessment framework for each of these 

other types of analysis (i.e., sensitivity analysis or reliability assessment), along with developing 

meaningful variants for Equation 3-14, would need to be determined.  An example variation to the 

efficiency assessment procedure for metamodel-enabled GLUE is demonstrated in Khu and Werner 

[2003]. 

In any surrogate-enabled analysis, the available computational budget or time is divided between 

three main parts: 1- budget or time required to run the original model, 2- budget or time required to 

develop, run, and update the surrogate model, and 3- budget or time the analyst needs to identify and 

create an appropriate surrogate-enabled analysis framework. Parts 2 and 3, which are referred to as 
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“metamodelling time” and “analyst time”, respectively, should consume a small portion of the 

available computational budget leaving the majority for part 1. Nonetheless, metamodelling time and 

analyst time should ideally be taken into account when assessing the computational efficiency of a 

surrogate-enabled analysis. The computational and perhaps the analyst’s efforts are typically higher 

for lower-fidelity surrogates than response surface surrogates.  As such, it is difficult to imagine any 

comparison involving lower-fidelity surrogates on the basis of the number of original function 

evaluations required as is commonly done with response surface surrogate comparisons. When a 

developed surrogate is to be used in repeat applications the importance of the analyst time is reduced. 

Any conclusion on the efficiency of a developed algorithm with surrogate models must be based on 

performing multiple replicates as any single application of such an algorithm (as with any other 

stochastic algorithm) is a single performance level observation from a statistical population of 

possible performance levels. Despite the obvious computational burden of performing multiple 

replicates, it is the only way to conduct valid numerical assessments and comparisons. 

3.5 Summary and Final Remarks 

There is a large body of literature, from different contexts and disciplines, developing and applying a 

wide variety of surrogate modelling strategies typically to improve the computational efficiency of 

sampling or search-based modelling analyses. The surrogate modelling literature was reviewed with 

an emphasis on research efforts in the field of water resources modelling. A set of publications 

including 48 references on surrogate modelling in water resources problems were analyzed and 

summarized in this paper and 100 other references from other disciplines were also reviewed.  We 

overview the components involved in a surrogate-enabled modelling analysis framework and detail 

different framework designs.   

The most important observations and available guidance on the alternative methods and surrogate 

modelling frameworks that have been applied to the water resources studies reviewed here are as 

follows:  

 It is not trivial to suggest the best function approximation technique for the purpose of 

response surface modelling, and metamodel developers typically pick a technique based on 

their preference and level of familiarity as well as software availability. Function 

approximation techniques that are able to 1- act as exact emulators, 2- provide a measure of 
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approximation uncertainty, and 3- efficiently and effectively handle the size of the data set 

(design sites) of interest, conceptually seem to be the most appealing for modelling the 

deterministic response of computer simulation models.      

 The metamodel-enabled optimization frameworks that utilize metamodel approximation 

uncertainty estimates are conceptually the most robust strategies in comparison with the 

other three frameworks, especially for problems with highly multi-modal and deceptive 

original response surfaces.  In our view, this framework, particularly the statistics based 

approach [e.g., Jones, 2001] is underutilized in the water resources literature as the 

metamodel uncertainty characterization should prove useful in Bayesian model calibration 

studies and traditional Monte Carlo-based reliability or uncertainty analysis. 

 When evidence is available suggesting the original function is a relatively simple/unimodal 

function, using the basic sequential framework or adaptive-recursive framework would be 

the most appropriate as they would be successful and more efficient. 

 Difficulties are introduced moving from unconstrained (or just box-constrained) surrogate-

enabled single optimization to surrogate-enabled constrained or multi-objective 

optimization. 

 Probably the most important limitation of surrogate modelling in applicability, especially 

response surface surrogate modelling, is when the number of dimensions in the problem 

variable space is large (successful surrogate-enabled analyses reviewed here were limited 

to 50 at most and typically less than 20 explanatory variables).  Lower-fidelity surrogates 

are much less vulnerable to this limitation. 

 Lower-fidelity models are conceptually more reliable in exploring the unseen regions in the 

explanatory variable space compared to response surface surrogates.  This reliability 

directly relates to the level of fidelity of a surrogate model and diminishes for the 

surrogates with very low fidelity. As there is typically a trade-off between the level of 

fidelity of a model and its computational demand, the lower-fidelity model developers 

should create a level of fidelity that is sufficiently faithful to the original model while being 

efficient enough to permit the case study specific analysis required.  



 

 106 

 Lower fidelity models have advantages when there is an interest in emulating multiple 

model outputs or in multi-objective optimization with two or more emulated objectives as 

the lower fidelity models would inherently account for output/objective function 

correlations.    

The following remarks summarize some suggestions on future research directions, many of which 

are inspired from ideas not commonly used in water resources literature:  

 Since the level of complexity of the original response function (which is typically unknown a 

priori) plays a key role in the determination of an appropriate function approximation 

technique, future research may be directed at developing methods to pre-analyse the original 

response landscapes with a very limited number of samples to measure their level of 

complexity. The study by Gibbs et al. [2011] is an example of research efforts for the 

response landscape analysis in the optimization context (not involving surrogate modelling). 

 The strategies utilizing lower-fidelity surrogate models are relatively new and seem very 

promising as they circumvent many of the limitations accompanying response surface 

surrogates and although the lower-fidelity surrogate concept is slowly making its way into the 

water resources literature, there are multiple advanced strategies in the broader research 

community that are unseen or underutilized in the water resources literature we reviewed here 

(e.g., correction functions and space mapping).  

 A recent review by Vianna and Haftka [2008] argues against applying a single surrogate 

model and instead suggests that multiple surrogate models should be fit and even used in 

conjunction with one another. The body of multi-surrogate model methods they review 

should prove useful in water resources applications.     

 Building new/revised model analysis specific computational efficiency assessment 

frameworks, similar in concept to the one proposed in Chapter 4 (also in Razavi et al. 

[2012a]), for Bayesian model calibration studies, sensitivity analysis, multi-objective 

optimization and traditional Monte-Carlo based uncertainty analysis would help formalize 

metamodel-enabled methodological comparisons.  In particular, such frameworks should 

account for the challenges noted in Section 3.4 associated with the comparison of response 

surface surrogates with lower-fidelity modelling.   
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Our final direction for future research is the most important one.  Studies demonstrating a 

methodology for validation, or perhaps a case study specific proof of concept, of the entire 

metamodel-enabled analysis would be invaluable.  In practical situations, the metamodel-enabled 

modelling analysis would not be repeated without a metamodel and the analyst either hopes the 

metamodel-enabled analysis yields helpful results (e.g., the list of most sensitive model parameters is 

mostly correct) or provides a better answer than they started with (e.g., the optimization solution is 

better than the initial solution before any metamodelling).  Such complete uncertainty about the 

quality or accuracy of the final analysis result after such a time consuming procedure does not breed 

confidence – in particular given that the success or failure of the entire metamodel-enabled analysis 

depends on many subjective decisions, the computational budget, the case study original model 

characteristics, the random number generator, etc.!  Imagine suggesting and defending a worldwide 

policy decision to combat climate change on the basis of a single metamodel-enabled analysis without 

rigorous validation showing the entire procedure could reliably accomplish what it was intended to 

do.  The real question is how to build relevant case study specific examples for proof of concept - 

clearly, this would involve developing lower-fidelity models of the system. 
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Chapter 4 

Development and Evaluation of  

Response Surface Surrogate Models 

This chapter is based on the published article below with changes outlined in the following. 

Sections 4.1 and 4.2 were shortened (relative to the article) by removing the contents already 

presented in Section 3. In addition, a new case study (i.e., FEFLOW case study) was added to 

this Chapter (not available in the article), and minor organizational changes were made to be 

consistent to the body of the thesis. References are unified at the end of the thesis. 

Razavi, S., B. A. Tolson, and D. H. Burn (2012), Numerical assessment of metamodelling strategies 

in computationally intensive optimization, Environ. Modell. Software, 34, 67–86. 

 

Summary 

As reported in Chapter 3, there is a sizeable body of literature developing and applying a variety of 

response surface surrogate modelling (also called metamodelling) strategies to various environmental 

and water resources related problems including environmental model calibration. Overall, this 

literature generally implies metamodelling yields enhanced solution efficiency and (almost always) 

effectiveness of computationally intensive optimization problems. This chapter initially develops a 

comparative assessment framework which presents a clear computational budget dependent definition 

for the success/failure of the metamodelling strategies, and then critically evaluates metamodelling 

strategies, through numerical experiments, against other common optimization strategies not 

involving metamodels. Three different metamodel-enabled optimizers involving radial basis 

functions, kriging, and neural networks are employed. A robust numerical assessment within different 

computational budget availability scenarios is conducted over four test functions commonly used in 

optimization as well as three real-world computationally intensive model calibration problems. 

Numerical results show that metamodelling is not always an efficient and reliable approach to 

optimizing computationally intensive problems. For simpler response surfaces, metamodelling can be 

very efficient and effective. However, in some cases, and in particular for complex response surfaces 

when computational budget is not very limited, metamodelling can be misleading and a hindrance, 

and better solutions are achieved with optimizers not involving metamodels. Results also demonstrate 

that neural networks are not appropriate metamodelling tools for limited computational budgets while 



 

 109 

metamodels employing kriging and radial basis functions show comparable overall performance 

when the available computational budget is very limited. 

4.1 Introduction and Objective 

One of the most commonly used approaches to dealing with computational burdens of optimization 

efforts involving computationally intensive simulation models is response surface surrogate 

modelling (also called metamodelling) or the use of function approximation. There is a sizeable body 

of literature developing and applying a variety of metamodelling strategies in various environmental 

and water resources related problems including surface water model and groundwater model 

calibration. The wide and extensive application of metamodelling strategies over more than four 

decades in a wide variety of optimization problems from different disciplines [Simpson et al., 2008] 

suggests that this research field is sufficiently mature so that the pros and cons of metamodelling can 

be fairly evaluated. These publications typically give the impression that metamodelling increases the 

overall computational efficiency (i.e., attaining good quality solutions while consuming less 

computational budget compared to when metamodelling is not applied) and almost always 

effectiveness (i.e., attaining better quality solutions than the solutions achieved without 

metamodelling) in computationally intensive optimization problems.  

The main objective of this chapter is to test this common belief through a comparative assessment 

of metamodel-enabled optimizers against optimizers without metamodelling. This comparison is 

focused on serial optimization algorithms only and does not extend the comparison to parallel 

optimization algorithms.  In general, since metamodel-enabled optimizers and optimizers without 

metamodelling can both be implemented to take advantage of a parallel computing network, it is 

expected that these findings would be similar if parallel optimization algorithms were considered.  

Two major factors affecting the performance of metamodel-enabled optimizers namely the 

shape/complexity of the original computationally expensive function being optimized and 

computational budget availability are directly addressed. The experiments and the detailed 

descriptions of the metamodels we implemented were designed in a way that they give metamodel 

users a clear view of metamodel characteristics, benefits and shortcomings and demonstrate the 

complexities and subjective decisions required by analysts building a metamodel-enabled optimizer. 

The organization of this chapter is as follows. Section 4.2 raises some fundamental metamodelling 

considerations that metamodel-enabled optimizer users should consider before any metamodel 
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development/application and any subsequent comparison with optimizers that do not rely on 

metamodelling. Section 4.3 describes three different metamodel-enabled optimizers representing 

different metamodelling strategies from the current literature that are adopted and implemented in this 

study. This section contains detailed practical information regarding the metamodel-enabled 

optimizers implemented in this thesis as such details seem largely unreported in the current literature. 

Conversely, there is only limited information in Section 4.3 on theories and metamodel equations 

(e.g., kriging and neural networks theories and equations), as they are available elsewhere. Section 

4.4 benchmarks the optimization algorithms (without metamodelling) used in this study to develop 

the baseline for metamodelling assessment. Section 4.5 presents the test functions and the real-world 

case studies used as well as the details of experiments settings. Experimental results are reported in 

Section 4.6 and followed by a discussion in Section 4.7 and conclusions and final remarks in Section 

4.8.  

4.2 Fundamental Considerations 

4.2.1 Evaluating the Effectiveness and Efficiency of Metamodelling 

Based on our analysis of the metamodelling in environmental and water resources optimization 

literature, the lowest CPU time saving observed due to metamodelling is 21% in Broad et al. [2005] 

and the highest saving is 97% reported in Zou et al. [2007]. Typically, efficiency or effectiveness of a 

metamodel-enabled algorithm is comparatively quantified with respect to a benchmark algorithm 

without metamodelling. Thus, for any given metamodel-enabled algorithm, it is important to carefully 

choose an appropriate benchmark algorithm to make appropriate and logical conclusions.  

Metamodels become attractive when the maximum possible number of original simulation model 

evaluations is limited. However, there are other computationally efficient optimization algorithms 

independent of metamodelling [e.g. Kuzmin et al., 2008; Tan et al., 2008; Tolson and Shoemaker, 

2007b; Tolson et al., 2009] that have been designed to work in a limited computational budget (i.e., 

limited number of simulation model evaluations or, equivalently, objective function evaluations, or 

simply function evaluations), and there also exist strategies to enhance the efficiency of some 

inefficient metamodel-independent optimization algorithms [Ostfeld and Salomons, 2005; Razavi et 

al., 2010]. Unlike these fast algorithms, there are algorithms like standard genetic algorithms (GAs) 

which are robust and effective given a large number of function evaluations but are not typically 

designed for cases where the number of function evaluations is quite limited. As such, assessing the 
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efficiency/effectiveness of a metamodel-enabled algorithm with respect to a single inefficient 

algorithm without metamodelling is not appropriate when more efficient alternative algorithms 

without metamodelling are available.  

Moreover, there is substantial amount of randomness inherently involved in metamodel-enabled 

optimization algorithms. Any single application of such an algorithm is a single performance level 

observation from a population (statistical) of possible performance levels. Thus, to ensure that the 

findings are representative of the population of possible performance levels, empirical assessment and 

comparison of these algorithms must be based on performing multiple replicates (despite the obvious 

computational burden). Regrettably, there are many example studies in water resources related 

metamodelling literature which make conclusions based on only a single run of their developed 

stochastic metamodel-enabled optimization algorithm(s). 

We believe that there are three possible outcomes (cases) in the evaluation of a metamodel-enabled 

optimizer relative to an optimizer without metamodelling for a given optimization problem (see 

Figure 4-1). As stated in Section 4.1, the current metamodelling literature as a whole presents results 

in a way that implies relative performance of metamodel-enabled optimizers compared to optimizers 

without metamodelling most often looks like Case A (“idealized relative metamodel performance”) 

shown in Figure 4-1. In Case A, which is too optimistic in our view, the metamodel-enabled 

optimizer always outperforms (or equals) the optimizer without metamodelling for any computational 

budget. Conversely, from a pessimistic point of view, there may exist metamodel-enabled optimizers 

that result in inferior relative performance for any computational budget (Case C in Figure 4-1). If 

lying in Case C, the metamodel-enabled optimizer fails and its application is not justifiable. Clearly, 

another case must exist (i.e., Case B in Figure 4-1) in between Case A and Case C.  We refer to Case 

B as “computational budget dependent relative metamodel performance”. In Case B, as its name 

reflects, the relative performance of a metamodel-enabled optimizer is a function of the available 

computational budget (or equivalently  total number of original function evaluations). The most likely 

scenario for Case B is that in smaller computational budgets, the metamodel-enabled optimizer 

outperforms the optimizer without metamodelling; while in higher computational budgets, the 

performance of the metamodel-enabled optimizer is inferior. Notably, “equivalence time”, t*, in Case 

B (see Figure 4-1) is not known a priori, and for any specific problem lying under Case B, 

determination of t* requires multiple comparative numerical experiments. Practically, we do not 

consider relative performance given an infinite computational budget and as such, the computational 
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budgets in Figure 4-1 should be viewed as a range representing relatively limited or practical 

computational budgets. This study aims at demonstrating the three possible relative performance 

cases through extensive numerical experiments with different metamodel-enabled optimizers and 

different optimizers without metamodelling. 
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Figure 4-1. Three possible cases for relative performance of metamodel-enabled optimizers (M) 

compared to optimizers without metamodelling (O) 
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4.2.2 Metamodel-Enabled Optimizer Framework Development  

Development of a successful metamodel-enabled optimizer for a given problem involves several 

subjective, non-trivial decisions. These decisions are important as they affect the behaviour and 

performance of the algorithm. The major decisions include the selection of the appropriate function 

approximation technique capable of acting as a metamodel and the selection of the framework 

through which the original model, metamodel, and the optimizer can be effectively linked. There are 

also a number of subjective decisions to be made for each selected metamodel-enabled optimizer as 

discussed in Section 4.3 for our adopted algorithms. Obviously, any metamodelling effort would be 

burdened by computational plus analyst time, as highlighted in the following. Design of experiment 

(also referred to as DoE) is another subjective component in many metamodel-enabled optimizers. 

DoE is focused on identifying a logical initial set of fully evaluated solutions on which to train or fit 

the first metamodel. DoE considerations for the metamodelling frameworks we implement are 

discussed later where these frameworks are introduced (Section 4.3). 

Selecting a Function Approximation Technique 

Metamodels approximate the response surface of a computationally intensive simulation model (i.e., 

original model) by fitting a simplified function over a set of previously evaluated points, commonly 

referred to as design sites, in the decision variable space. A variety of function approximation 

techniques have been developed and applied as metamodels (see Chapter 3: Section 3.2.3). Function 

approximation techniques can be classified as interpolating (exact emulator) or non-interpolating 

(inexact emulator). DACE and RBF models, which are interpolants, exactly predict all design sites to 

represent the underlying function. Polynomials and ANNs, which are non-interpolants, produce a 

varying bias (unpredictable in ANNs) at different design sites (note that if there are as many 

coefficients in a polynomial as there are design sites, it becomes an interpolant). Note that kriging 

with the so-called “Nugget effect” [Cressie, 1993] can also be a non-interpolating approximator that 

produces a statistics-based bias at design sites and serves as a smoother. As most environmental and 

water resources simulation models perform deterministic simulation (i.e., the outputs of running a 

model multiple times with the same input are identical), exact emulators seem more appealing. 

Section 3.2.6 of Chapter 3 and Section 4.3.3 further deal with the metamodelling  issues related to 

interpolation versus smoothing. 
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How to Link the Metamodel, Original Model, and Optimizer 

The most important part of developing metamodel-enabled optimizers is the framework through 

which the optimizer, metamodel, and original computationally expensive model interact. There is a 

large body of literature developing frameworks that combine metamodels with optimization concepts. 

The main focus of water resources related metamodelling literature is also on this framework 

development [e.g. as in Behzadian et al., 2009; Broad et al., 2005; Mugunthan and Shoemaker, 2006; 

Zou et al., 2007; 2009]. The existing metamodelling frameworks can be classified into four main 

frameworks as outlined in Section 3.2.4 of Chapter 3. The adaptive-recursive and approximation 

uncertainty-based frameworks are probably the most commonly used metamodelling approaches in 

environmental and water resources context [Bau and Mayer, 2006; Bliznyuk et al., 2008; di Pierro et 

al., 2009; Fen et al., 2009; Mugunthan and Shoemaker, 2006; Mugunthan et al., 2005; Regis and 

Shoemaker, 2007a; b; 2009; Zou et al., 2007; 2009].  Therefore, we selected two different 

metamodel-enabled optimization frameworks (DACE-GA and ANN-GA, see Sections 4.3.2 and 

4.3.3) based on the adaptive-recursive framework and one (LMSRBF, see Section 4.3.1) based on the 

approximation uncertainty-based framework in our numerical comparisons.  

Assessing Metamodelling Time and Analyst Time 

To evaluate the true efficiency of a metamodel-enabled optimizer, besides the computational burden 

associated with the original or expensive simulation model evaluations, other time consuming efforts 

should be taken into account, namely “metamodelling time” and “analyst time”. Metamodelling time 

is the time needed for determining the location of initial DoE sites, metamodel fitting and refitting 

[which can be prohibitively long especially when the metamodel is a neural network as in Broad et 

al., 2005], metamodel evaluations, and the search procedure on the metamodel. Metamodelling time 

is considered in some water resources metamodelling studies such as Behzadian et al. [2009], Broad 

et al. [2005], and Kourakos and Mantoglou [2009], and in these studies, metamodelling time is based 

on tracking total optimization run time as opposed to simply counting the number of original model 

runs required. Unfortunately, tracking (and then comparing) total optimization run times requires 

more care than tracking the number of original model runs as it is dependent on the computer 

programming language, the skill of the person writing the code and the processor on which the code 

is executed. 
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Analyst time is the human time required to develop and/or apply a metamodel-enabled 

optimization algorithm. In most of the water resources related metamodelling studies we are aware of, 

although metamodel-enabled algorithms were developed or implemented, none of these studies 

considered the analyst time in their comparative assessment against existing metamodel independent 

optimizers. Obviously, if a practitioner uses readily available software implementing a metamodel-

enabled algorithm, the analyst time for such an experiment is zero (or equivalent to analyst time using 

an optimizer without metamodelling). Unfortunately, analyst time is not something that can be 

ignored currently since most water resources related metamodelling studies introducing new 

frameworks or example metamodel-enabled optimizers do not make corresponding software available 

for future researchers/users.  

Figure 4-2 shows the computational budget dependent relative metamodel performance when 

metamodelling time and analyst time are taken into account. As can be seen, when metamodelling 

time and/or analyst time are considered, the equivalence time, t*, decreases and in situations with 

substantial analyst time, relative metamodel performance can transfer from Case B to Case C. 
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Figure 4-2. Case B relative performance of metamodel-enabled optimizers compared to optimizers 

without metamodelling (O) when metamodelling time and analyst time are taken into account. M0: 

computational budget considered for comparison is only based on the number of original function 

evaluations, M1: computational budget also includes metamodelling time, and M2: both 

metamodelling time and analyst time are considered. 

 

4.2.3 Difficulties in High-dimensional Problems 

As also outlined in Chapter 3 (Section 3.2.6), metamodelling becomes less attractive or even 

infeasible due to the curse of dimensionality when the number of decision variables is large [Wang 
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and Shan, 2007]. In such a problem, the primary issue is that the minimum number of design sites 

required to fit some metamodels can be excessively large. For example, to determine the coefficients 

of a second-order polynomial in a D-dimensional input space, at least p=(D+1)(D+2)/2 design sites 

are required.  Note that this curse of dimensionality problem exists in all other metamodels being 

augmented by second-order polynomials (e.g., RBF models and kriging if used in conjunction with 

second-order polynomials). For example, the kriging software we utilized in this paper [Lophaven et 

al., 2002] allows users an option to use second-order polynomials. The minimum number of design 

sites in RBF models and kriging augmented by first-order polynomials is D+1 which is not very 

limiting. In ANNs, there is no clear mathematical minimum number for design sites, but practically, it 

is commonly accepted that this number should be greater than the number of network weights. 

Most importantly, high-dimensional problems have an extremely large search space. As such, the 

number of design sites required to reasonably cover the space becomes extremely large for a higher 

number of decision variables (DVs). As a result, the number of DVs reportedly tackled by 

metamodel-enabled optimizers is typically not large and most metamodel applications in the 

environmental and water resources context are on functions having less than 15-20 DVs [as in Bau 

and Mayer, 2006; Bliznyuk et al., 2008; Fen et al., 2009; Khu and Werner, 2003; Khu et al., 2004; 

Liong et al., 2001; Mugunthan and Shoemaker, 2006; Mugunthan et al., 2005; Ostfeld and Salomons, 

2005; Regis and Shoemaker, 2004; 2007a; b; 2009; Shoemaker et al., 2007; Zhang et al., 2009; Zou et 

al., 2007; 2009].  Therefore, the main body of numerical experiments conducted in this study utilized 

case studies with only 7 to 15 DVs; some numerical experiments were also conducted with an 

automatic calibration case study with 56 DVs. 

Screening is the most commonly used compensating solution for difficulties associated with 

metamodelling in high-dimensional problems. Based on the fact that models never respond strongly 

to all inputs, DV space is typically screened to identify and remove DVs that are less important. 

Various approaches to screening, especially for high-dimensional model representation, are available 

in the literature [e.g. Ratto et al., 2007; Young and Ratto, 2009]. However, it can be difficult to obtain 

substantial reductions of dimensionality for large-scale problems [Koch et al., 1999], and also any 

reduction in dimensionality is accompanied by a decrease in the overall accuracy of approximation 

unless only the absolutely irrelevant parameters (if they exist) are fixed. 
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4.3 Metamodel-Enabled Optimizers 

We adopted three metamodel-enabled optimizers to be evaluated against the benchmark optimizers 

without metamodelling. Although various metamodel-enabled optimizers have been developed, 

software packages implementing them are not as commonly available as optimizers without 

metamodelling. One available metamodel-enabled optimization software in the environmental and 

water resources metamodelling literature (available at 

http://www.sju.edu/~rregis/pages/software.html) implements multistart local metric stochastic RBF 

(MLMSRBF) developed by Regis and Shoemaker [2007b]. MLMSRBF, described in Section 4.3.1, 

was employed in this study as a well-established, readily available metamodel-enabled optimizer. 

Two other metamodel-enabled optimizers, which are called DACE-GA and ANN-GA hereafter, were 

also tested in this study. Both ANN-GA and DACE-GA were implemented in almost the same GA-

based metamodel-enabled optimization framework with the only difference being the function 

approximation techniques (ANN or DACE) and their associated design/fitting procedures. Sections 

4.3.2 and 4.3.3 deal with developing/implementing DACE-GA and ANN-GA, respectively.   

4.3.1  Multistart Local Metric Stochastic RBF 

Multistart Local Metric Stochastic RBF (MLMSRBF) is an efficient RBF embedded optimizer that 

has shown superior performance over multiple existing metamodel-enabled optimizers, specifically 

for the problems with 8 to 15 decision variables [Regis and Shoemaker, 2007b]. MLMSRBF has been 

successfully applied in multiple studies [e.g. Mugunthan and Shoemaker, 2006; Mugunthan et al., 

2005; Regis and Shoemaker, 2009]. MLMSRBF implicitly considers the metamodel approximation 

uncertainty. The algorithm starts with a DoE and iteratively generates candidate points by perturbing 

the current best solution through a normal distribution with zero mean and a specified covariance 

matrix. MLMSRBF implements a local search algorithm in the close vicinity of the current best 

solution since the spread of this normal distribution is relatively small compared to the size of feasible 

space. To obtain a global search capability, MLMSRBF includes multiple independent restarts each 

initialized using a new DoE whenever it appears to have converged to a local minimum. See Regis 

and Shoemaker [2007b] for full algorithm details.  

4.3.2  Design and Analysis of Computer Experiment – Genetic Algorithm (DACE-GA) 

DACE-GA employs the DACE function approximation technique in conjunction with a GA.  DACE 

has been used as a metamodel in Bau and Mayer [2006] for pump-and-treat optimization and in di 

http://www.sju.edu/~rregis/pages/software.html
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Pierro et al. [2009] for water distribution system design optimization. Although not as common in the 

environmental and water resources optimization literature, DACE has been widely used in other 

fields for approximating computer simulation models, and hence, we selected it as one of our 

metamodelling techniques. We selected a GA as the optimization engine to search over the 

approximated response surface (metamodel) because GAs are so commonly used in conjunction with 

metamodelling [Broad et al., 2005; di Pierro et al., 2009; Fen et al., 2009; Khu and Werner, 2003; 

Khu et al., 2004; Ostfeld and Salomons, 2005; Yan and Minsker, 2006; Zou et al., 2007; 2009]. In 

addition, Johnson and Rogers [2000] report that the quality of solutions obtained through an adaptive-

recursive approach based metamodel enabled optimizer is mostly controlled by metamodelling 

performance, not the search (optimization) algorithm (which is a GA in DACE-GA). This is also 

consistent with the results of our preliminary experiments. In other words, different global 

optimization algorithms require different computational budgets to converge to the near-global 

optimum, but when applied on fast-to-run metamodels, the difference, which is a small part of the 

total computational budget needed for metamodel enabled optimization, is negligible. The GA used in 

developing our metamodel-enabled optimizers is the same as the GA used as a benchmark 

optimization algorithm without metamodelling that is detailed in Section 4.4.1.  

It is worth noting that, initially, our goal was to exactly replicate previously published 

implementations of the DACE-GA (and ANN-GA, explained later in Section 4.3.3) frameworks. 

Unfortunately, since software was unavailable and there is a shortage of required framework 

implementation details in the publications from various sources, exact replication was not possible. 

Instead, we implemented our own interpretation of the framework based on adaptive-recursive 

approach that shares features with other similar metamodel-enabled optimizers [e.g. Regis and 

Shoemaker, 2007a; Zou et al., 2007; 2009]. Figure 4-3 shows the flowchart of our DACE-GA 

metamodel-enabled optimizer. Details of the metamodel, the size of the initial set of design sites, p, 

and the procedure and frequency of metamodel (re)fitting are presented in the following paragraphs. 

To design the metamodelling framework and initial DoE, there is a basic question which needs to 

be answered first: how much extra computational budget or equivalent time should be allocated to 

metamodel associated efforts (i.e., metamodelling time)? Clearly, the metamodelling time allocated 

can be in a direct relationship with the computational time required for the original computationally 

expensive model evaluations. For instance, it is quite logical to allocate 5 seconds on average to 

metamodelling time in order to avoid an original model evaluation when the original model takes 5 
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minutes to run; while it seems illogical to allocate the same 5 seconds when the running time of the 

original model is only 10 seconds. In this study, for the two real-world computationally intensive case 

studies (see Section 4.5.2), we limited ourselves to use at most 5% of our available computational 

budget for metamodelling time. Note that since the four test functions used in this study (see Section 

4.5.1) were assumed to represent the response surface of computationally intensive simulation 

models, we ignored the issue of metamodelling time in these problems as it was assumed negligible.  

 

  DoE with p design sites - LHS and original model

  i = p

  (xbest , ybest) is the best design site

  (Re)fit the metamodel on the i design sites

  Conduct GA on metamodel

     with xbest  in initial population, 
     and return final best solution, xbest

  If  xbest = xbest , conduct GA again on metamodel 

     without xbest in initial population, 
     and return final best solution, xbest 

  Evaluate xbest through original model, f (xbest )

  i = i + 1

  If  f (xbest) better than ybest  ,

     ybest = f (xbest) and xbest =  xbest 

  Add xbest, f (xbest) to
   set of design sites

i<n

  Return  ( xbest ,  ybest )

^

^

^

^ ^

^

^ ^

^ ^

yes no

 
        n : total number of original function evaluations 

Figure 4-3. Flowchart of the developed DACE-GA and ANN-GA metamodel-enabled optimizers – 

the term ‘metamodel’ in this flowchart interchangeably represents ANNs and DACE 

 

In this study, a well-established, well documented implementation of DACE written by Lophaven 

et al. [2002] was utilized. It is a MATLAB add-on toolbox (available at 

http://www2.imm.dtu.dk/~hbn/dace/) which supports a variety of user selected correlation functions. 

The DACE model applied in this study utilizes a Gaussian correlation function augmented with a first 

order polynomial. The minimum number of design sites required to initially fit our selected DACE 

approximation in a D-dimensional space is D+1; while the optimal number is highly function-and-

http://www2.imm.dtu.dk/~hbn/dace/
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computational-budget dependent and very difficult to determine. The term “optimal” here reflects the 

fact that increasing the number of initial design sites would enhance the accuracy of fit (a positive 

effect), however, after some point (which is the optimum) this enhancement would be at the expense 

of unnecessarily increasing the computational budget having to be initially spent on DoE while it 

could have been spent more intelligently in the next steps (a negative effect). In our DACE-GA 

implementation, the size of the initial set of design sites was calculated as follows based on some 

preliminary experiments: 

p = max [2(D+1), 0.1n]                     (4-1) 

where n is total number of original function evaluations (which typically accounts for almost all 

available computational budget) to be evaluated during the optimization. When n is relatively small, 

2(D+1) initial design sites are used, which is twice as many design sites as the minimum requirement 

[Regis and Shoemaker, 2007b, recommend 2(D+1) initial design sites]. When n becomes larger, in 

order to design a more detailed metamodel, 0.1n is used as the size of the initial DoE.  

Fitting/refitting the metamodel can become computationally demanding such that the frequency of 

refitting the metamodel must not be too high. Inversion of an i×i matrix (i=number of design sites, 

p≤i≤n) is the main computational effort of DACE output calculation for a given input.  Therefore, 

assuming Gauss–Jordan elimination is applied for matrix inversion (actual inversion method is 

unclear in DACE software), the complexity of the (re)fitting problem can be assumed to be 

proportional to O(i
3
).  Refitting of DACE in our DACE-GA is performed in two levels: the first level 

is to simply add the new points to the set of design sites in DACE, but the second level is to re-

optimize (re-tune) the DACE hyper-parameters (correlation function parameters), over the entire set 

of design sites through maximum likelihood estimation. As the first level is relatively fast, even for 

large i values (in this study i≤n≤1000), this level is performed whenever the algorithm goes back to 

the refitting step (second box in the flowchart shown in Figure 4-3). However, since the second level 

can be computationally demanding for large i values, in order to limit metamodelling time, the 

frequency of performing the second level should be decreased as i becomes larger. This decreasing 

trend can exactly follow the polynomial form of the complexity equation mentioned above. In our 

DACE-GA implementation, the second level is always performed at the DACE refitting step while 

i≤100, but afterwards, this level is performed less often following the complexity equation so that, for 

example, for the i values around 200, the second level is performed after receiving every 8 new 
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design sites (8=200
3
/100

3
), and for the i values around 500, after receiving every 125 new design sites 

(125=500
3
/100

3
).  Our two level refitting approach seems unique in comparison with previous 

DACE-based studies although exact details of the refitting strategies employed in previous papers are 

not always clearly reported. 

4.3.3  Artificial Neural Network – Genetic Algorithm (ANN-GA) 

ANN-GA utilizes the same framework presented in Section 4.3.2 for DACE-GA. As explained later 

in this section, we believe that there are multiple problems and shortcomings associated with the 

application of ANNs in metamodel-enabled optimizers for computationally intensive problems.  

Despite this view, it is hard to ignore the empirical evidence showing that ANNs are the most 

commonly employed metamodel in environmental and water resources optimization problems [as in 

Behzadian et al., 2009; Broad et al., 2005; Johnson and Rogers, 2000; Khu and Werner, 2003; 

Kourakos and Mantoglou, 2009; Liong et al., 2001; Yan and Minsker, 2006;  Zhang et al., 2009; Zou 

et al., 2007; 2009] and are mostly used in conjunction with GAs [as in Broad et al., 2005; Khu and 

Werner, 2003; Liong et al., 2001;  Yan and Minsker, 2006; Zou et al., 2007; 2009]. Therefore, we 

adopt such a combination (ANN-GA) in this study. Similar to the DACE-GA discussion in Section 

4.3.2, we could not exactly replicate previously published ANN-GA frameworks due to ANN-GA 

software unavailability and a lack of framework implementation details in various ANN-GA 

publications.  Figure 4-3 shows the flowchart of ANN-GA when ANN is used as the metamodel. For 

the ANN implementation, the MATLAB Neural Network Toolbox [Beale et al., 2010] was used.  

ANN Structure and Training 

The ANN design and fitting/refitting procedures along with the difficulties associated with the 

application of ANNs in metamodelling context (and how we tried to address them) are presented in 

this section. Determination of optimal or proper structure of ANNs is a main step in ANN-based 

metamodel design. In a multilayer perceptron neural network (MLP), number of hidden layers, 

number of neurons in each hidden layer, and transfer functions are the subjective decisions (structure 

parameters) the user must make. ANNs with one sigmoidal hidden layer and linear output layer have 

been proven capable of approximating any function with any desired accuracy provided that 

associated conditions are satisfied [Hornik et al., 1989; Leshno et al., 1993]. Almost all metamodel-

enabled optimization frameworks using ANNs have utilized single hidden layer neural networks.  For 

example, we are only aware of one ANN-based metamodelling study (Liong et al. [2001]) that used 
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an MLP with more than one hidden layer. Accordingly, in our study, a single hidden layer neural 

network with a tangent sigmoid function in hidden layer and a linear function in output layer was 

used. The number of parameters (weights and biases) to be adjusted in such an ANN is m×(2+D)+1 

where D is the number of inputs (DVs of the optimization problem) and m is the number of hidden 

neurons. The optimal number of hidden neurons, m, is a function of form and complexity of the 

underlying function [Xiang et al., 2005] as well as the training data availability. In the optimization 

context, the form of a function to be optimized is often unclear, therefore, the number of data points 

available for training, p, is the main factor involved in determining m. It is usually preferred that the 

number of ANN parameters be less (or much less) than p as discussed in Maier and Dandy [2000], 

although mathematically there is no limitation when the number of parameters is higher than p. A 

possibly good idea is to enlarge m dynamically as more design sites become available. In this study, 

we followed the trial-and-error approach used in all similar studies [Behzadian et al., 2009; Broad et 

al., 2005; Johnson and Rogers, 2000; Khu and Werner, 2003; Kourakos and Mantoglou, 2009; Liong 

et al., 2001; Yan and Minsker, 2006; Zhang et al., 2009; Zou et al., 2007; 2009]. Clearly, this trial-

and-error step considerably adds to both analyst time and metamodelling time. Generally, for a 

specific problem, there are multiple good structures, and for each structure, there are many 

good/acceptable parameter sets. However, the error surface (ANN error function with respect to 

network weights and biases) of the more parsimonious networks are more complex and harder to 

train, while the more flexible ones may become over-parameterized and degrade in generalization 

ability [Razavi and Tolson, 2011]. In this study, significant effort was also devoted to determine a 

proper number of initial design sites, p (these numbers are presented in Section 4.6). 

As there is no guarantee to reach to a good solution when whatever ANN training algorithm 

applied has converged, at the first ANN training step, we conduct 50 independent training trials 

starting from different solutions initialized through Nguyen-Widrow method [Nguyen and Widrow, 

1990] and take the best one (the one with lowest error function value – see Equation 4-2). Like 

DACE-GA, refitting the ANN in our ANN-GA is also performed in two levels: the first level is to add 

the new point to the set of design sites and re-train the ANN starting from the current state (current 

weights and biases), but the second level is to re-train an ANN by exactly the same procedure as the 

one used in the first ANN training step (50 independent training trials). Like DACE-GA, the first 

level is performed whenever the algorithm goes back to the refitting step (second box in the flowchart 

shown in Figure 4-3). But the second level is performed after every 50 new design sites are collected. 
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The logic behind frequently re-training the ANN from scratch is that it helps ANN-GA escape from 

false regions of attraction, which sometimes may be captured by an inappropriately formed ANN, and 

thus explore the search space more effectively and globally. The second-order variations of 

backpropagation algorithms (i.e., quasi-Newton algorithm) are the most computationally efficient 

training algorithms [Hamm et al., 2007]. In this study, the highly efficient Levenberg-Marquardt 

algorithm  available in MATLAB neural network toolbox [Hagan and Menhaj, 1994] was used. ANN 

training even through the Levenberg-Marquardt algorithm is computationally demanding. The analyst 

and metamodelling times spent for designing and (re)training an ANN metamodel (even through the 

Levenberg-Marquardt algorithm) can be prohibitively long. 

Non-interpolation Issue in Emulation  

In addition to the ANN challenges associated with its subjective design process and computationally 

demanding training, there is a shortcoming in applying ANNs to approximate the deterministic 

response of computer simulation models. Neural networks are non-interpolating approximators, also 

called inexact emulators, (as opposed to interpolating approximators such as DACE) producing a 

varying bias (usually unpredictable) at different design sites. ANNs may suffer the most from this 

varying bias when emulating deterministic response of a system as, according to Villa-Vialaneix et al. 

[2011], other non-interpolating emulation techniques may perform better in such cases. The 

interpolative/non-interpolative distinction is important since there are two general types of problems 

involving function approximation: physical experiment and computer experiment. There may exist 

substantial random errors in physical experiments due to different error sources; whereas, computer 

simulation models are usually deterministic (noise-free) which means observations generated by a 

computer model experiment with the same set of inputs are identical. This distinction has also been 

acknowledged in some publications, e.g., Sacks et al. [1989] and Jones [2001]. Accordingly, the non-

interpolating approximation techniques such as ANNs are more suitable for physical experiments 

than computer experiments as the usual objective is to have an approximation that is insensitive (or 

less sensitive) to noise. As a result, ANNs have been widely and successfully applied in relating or 

approximating different error-prone variables existing in the water resources problems including: 

meteorological variable forecasting [e.g. Karamouz et al., 2008; Luk et al., 2000], rainfall-runoff 

modelling [e.g. Hsu et al., 1995; Khan and Coulibaly, 2006; Shamseldin, 1997], and streamflow 

modelling and prediction [e.g. Razavi and Karamouz, 2007; Razavi and Araghinejad, 2009]. 
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Jones [2001] pointed out that non-interpolating surfaces are unreliable because they might not 

sufficiently capture the shape of the deterministic underlying function. However, Ratto and Pagano 

[2010] showed that the most advanced smoothing (non-interpolating) methods compare favourably 

with kriging which is an interpolant. Overall, in metamodel-enabled optimization, it is sometimes 

beneficial to have a smooth approximate response surface passing between design sites in regions of 

the feasible space with inferior quality, and it may lead the search smoothly to the regions of 

attraction. However, on the other hand, it can be very misleading in regions of attraction where the 

superiority of candidate solutions over each other is very important and the key to continue the 

search. To our knowledge, this issue has not been addressed in the metamodelling literature. In this 

study, to diminish this inherent negative effect, we devised a weighted error function to be used in 

ANN training instead of usual error functions which put equal emphasis on all design sites (and in our 

preliminary ANN-GA experiments yielded inferior results compared to when our weighted version 

was used). An ANN error function quantifies the discrepancies between the ANN outputs and design 

sites which are to be minimized in the training process. The new error function is a weighted sum of 

squared errors as follows:  

     ∑       
  

   

                    (4-2)

 

where i is the number of design sites, ej is the approximation error for the j
th
 design site, and wj is its 

corresponding weight. The wj values are linearly proportional to the quality (objective function value) 

of a design site in a way that the best design site gets a weight value of 1 and the worst one gets 0.1. 

This strategy leads the neural network to learn the better design sites (which are more likely in the 

main region of attraction) more accurately and only capture the general trend (less accuracy) of the 

underlying response surface in the poorer quality regions. We implemented our wsse through 

customization capabilities of the MATLAB neural network toolbox.  

Over-fitting Issue 

The other issue in ANN-based metamodels is over-training. Although the likely occurrence of this 

phenomenon is globally accepted when ANNs are applied to approximate physical processes (fitting 

on physical experiments), surprisingly, some researchers believe that over-training never occurs when 

ANNs are fitted over noise-free data (i.e., data obtained from deterministic computer experiments). 

For example, in water resources independent publications, this belief has been explicitly stated in 
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Sexton et al. [1998] expressing “when there is no error in the data, as with the examples so far, a NN 

cannot be over-trained”.  Similarly, in the paper by Jin et al. [2002] which proposes the concept of 

evolution control in metamodel-enabled optimizers based on the metamodel embedded evolution 

approach, no attention/effort was devoted to avoid ANN over-training. Similarly, in ANN enabled 

optimization papers in water resources literature, there are papers involving ANNs as metamodels 

which were not concerned about over-training at all.  

In statistics, over-fitting is usually described as when the model fits the noise existing in the data 

dominantly rather than the underlying function. This phenomenon is more likely when the model has 

a large degree of freedom (is over-parameterized) compared to the amount of available data. 

However, there is another factor affecting the potential for overfitting which is the conformability of 

the model structure with the shape of the available data. Curve-fitting (regression analysis) practices 

are less prone to the negative effects of this factor because they have a global pre-specified model 

structure (form) covering the input variable space. While in the ANN context, as the response of 

neural networks is formed by a union of a number of local flexible nonlinear units, the problem 

associated with the conformability factor can be substantial (especially when the highly efficient 

quasi-newton training algorithms are used). This is not only an issue with noisy data, and it may also 

occur when the data are noise-free, especially when the underlying function in the noise-free data is 

non-smooth or complex (i.e., highly multi-modal). Therefore, the so-called over-training issue in 

ANN context can be caused by both aforementioned factors.  

As in the metamodelling context (noise-free data) the second factor may cause over-training (and it 

is sometimes ignored), Figure 4-4 demonstrates how it may happen and how significant its effect can 

be through a simple illustrative example. In this figure, the underlying function is y =  x
2
-0.1 cos (10 

πx), and the objective is to approximate it with 50 random design sites. Two single-hidden-layer 

ANNs differing in the number of hidden neurons, 15 and 8, are applied. The response of both ANNs 

after 1000 epochs with the Levenberg-Marquardt training algorithm is shown in Figure 4-4. The first 

ANN which has 46 parameters (weights and biases) is a relatively flexible ANN when compared to 

the number of design sites (Figure 4-4a); while the second one with 25 parameters is relatively 

parsimonious (Figure 4-4b). As demonstrated, although in a majority of the problem domain ANNs 

have properly captured the underlying function, both ANNs have presented wild and unpredictable 

fluctuations in some other parts of the domain. The occurrence probability of such behaviour is higher 

in the areas where fewer design sites are found. 
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      (a)            (b) 

 

Figure 4-4. Examples of over-trained ANNs responses over noise-free data: (a) a relatively flexible 

ANN, and (b) a relatively parsimonious ANN 

 

In environmental and water resources modelling literature, there are two well-known approaches to 

avoid over-training: early stopping and Bayesian regularization, and both have been efficiently 

implemented in MATLAB neural network toolbox [Beale et al., 2010]. Most ANN-based 

metamodelling studies considering over-training have applied the early stopping approach [Broad et 

al., 2005; Johnson and Rogers, 2000; Khu and Werner, 2003; Zou et al., 2007; 2009]. The main 

problem with early stopping is that the available design sites have to be split into training and testing 

sets (and also sometimes validation set) resulting in fewer data available to train ANNs which 

decreases the approximation accuracy, especially in cases where the original model is 

computationally expensive and, therefore, the available data are scarce.  

The Bayesian regularization procedure is less common in ANN metamodelling literature. It has 

been used in Kourakos and Mantoglou [2009] to avoid over-training of an ANN metamodel for 

coastal aquifer management. Bayesian regularization has been proposed by MacKay [1992] and 

generalized to neural network applications by Foresee and Hagan [1997]. Although the logic behind 

this technique, which tries to keep a balance between accuracy and smoothness, and the steps 

involved are very sophisticated, it can be easily used through its efficient MATLAB implementation. 

Our understanding is that Bayesian regularization may substantially sacrifice neural network accuracy 

for smoothness, particularly for noise-free data.  We have verified this statement through some 

experiments which are not presented in this paper. In this study, the early stopping approach was used 

to avoid over-training. As higher quality design sites are of more importance in metamodel fitting 
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(higher accuracy in more promising regions is desired), the testing sites were not selected from the 

first one-third best sites. 

Over-fitting may also occur in other function approximation techniques including DACE, even 

when being fitted over noise-free data due to the aforementioned conformability issue. However, the 

risk and extent of over-fitting in DACE is typically less compared to ANNs. The risk of over-fitting 

in DACE is higher when there are very few design sites relative to the number of DACE hyper-

parameters (i.e., correlation function parameters) to be tuned [Welch et al., 1992]. Note that, for 

example, the DACE model we used in this study with Gaussian correlation function has D correlation 

function parameters (hyper-parameters) each of which associated with each dimension in the design 

sites space (D equals the number of decision variables in the original optimization problem) and i 

parameters (i is the number of design sites) determined through BLUP (best linear unbiased predictor) 

[Sacks et al., 1989]. As such, typically, the number of hyper-parameters in DACE is considerably less 

than the number of parameters in ANNs. As an example for the first test problem in this study, as 

demonstrated in Section 4.6.1, the number of ANN parameters was determined as 85, 121, and 181 

for different computational budgets, while the number of DACE hyper-parameters was 10 for the 

same test problem (for all computational budget scenarios). As over-fitting in DACE is not a major 

challenge, it has not been directly addressed in some DACE studies including this work.  Over-fitting 

has been also addressed in other function approximation techniques including smoothing spline 

ANOVA models [Gu, 2002; Curtis B. Storlie et al., 2011]. 

4.4 Benchmark Optimization Algorithms 

Two benchmark optimization algorithms (without metamodelling), GA and dynamically dimensioned 

search (DDS), were used in this study to develop a baseline for assessing the applied metamodel-

enabled optimizers. Whenever applicable, DDS was also enabled with the so-called “model 

preemption” strategy to enhance the efficiency of the optimization process.  

4.4.1  Genetic Algorithm (GA) 

The GA was used as a benchmark optimization algorithm despite its potential ineffectiveness for 

limited computational budgets, because GAs are one of the most commonly used family of 

optimization algorithms in environmental and water resources [Nicklow et al., 2010] and are one of 

the most common benchmark algorithms applied in metamodelling studies [Broad et al., 2005; Fen et 
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al., 2009; Khu et al., 2004; Ostfeld and Salomons, 2005; Zou et al., 2007]. In this study, the GA in the 

MATLAB global optimization toolbox [MathWorks, 2010] was used. The specific GA reproduction 

steps utilized here were tournament selection, scattered crossover, and adaptive feasible mutation, 

chosen based on our previous experience with this GA. Note that scattered crossover and adaptive 

feasible mutation are default operators for bounded optimization problems. Details of these operators 

have been well-documented in MathWorks [2010]. The GA parameters that should be tuned for any 

specific problem are presented in Section 4.5.3. 

4.4.2  Dynamically Dimensioned Search (DDS) 

DDS [Tolson and Shoemaker, 2007b] was selected here as the second benchmark optimization 

algorithm because it was designed and has been demonstrated to work very well when the 

computational budget is very limited. DDS, which is a single-solution based algorithm, is unique 

compared to other optimization algorithms with respect to the way that the neighbourhood is 

dynamically defined by changing the dimension of the search as a function of current iteration 

number and the user-specified maximum number of function evaluations. One valuable feature of 

DDS is that it requires no algorithm parameter adjustment, unlike other commonly used stochastic 

global search algorithms such as GAs. This value becomes more important in computationally 

intensive optimization problems, as tuning algorithm parameters in such problems can be 

prohibitively long, forcing practitioners to use default algorithm parameter settings which may be far 

from optimal.  

4.4.3  DDS with Preemption 

This study also uses a more efficient extension of DDS called “DDS with preemption” hereafter. The 

deterministic model preemption concept developed and formalized in Chapter 2 (also in Razavi et al. 

[2010]) can be used in conjunction with a variety of optimization algorithms to enhance their 

computational efficiency. Model preemption is an approach to opportunistically evade unnecessary 

evaluations of computationally expensive simulation models. Deterministic preemption is applicable 

when the objective function value monotonically increases (decreases) in minimization 

(maximization) problems as simulation proceeds. For example, in hydrologic model automatic 

calibration, preemption is applicable when the objective function is a summation of model prediction 

error terms accumulating throughout the simulation time period. As such, model preemption monitors 

the intermediate results of a model simulation and terminates the simulation early (i.e., prior to 



 

 129 

simulating the entire time period) once it recognizes that this solution is so poor that it will not 

contribute to guiding the calibration algorithm. The attractive feature of the deterministic preemption 

strategy is that its application leads to exactly the same result as when it is not applied. As reported in 

Chapter 2 (also in Razavi et al. [2010]), preemption may lead up to 60% computational saving in an 

optimization problem. In this study, DDS was used for test functions (see Section 4.5.1) and DDS 

with preemption was used for real-world computationally intensive automatic calibration case studies 

(see Section 4.5.2). 

4.5 Design of Numerical Assessments 

This section aims to design a fair and comprehensive numerical assessment of metamodel-enabled 

optimizers versus the optimizers without metamodelling. As outlined in Section 4.1, we believe that 

the shape and the complexity of the original function and the computational budget availability are 

the most important factors affecting the performance of metamodelling. Therefore, as presented in 

Section 4.5.1, four test functions with different characteristics and different levels of complexity were 

used for the comparative assessment. Two computationally intensive water resources optimization 

problems, as presented in Section 4.5.2, were also used as representatives of real-world problems. The 

experiments were conducted within different computational budget availability scenarios. Details of 

experimental settings are presented in Section 4.5.3. 

4.5.1  Test Functions 

Four mathematical functions commonly used as performance test problems for optimization 

algorithms, namely the Griewank, Ackley, Rastrigin, and Schwefel functions were used in this study. 

Figure 4-5 shows the perspectives of the 2-dimensional versions of these test functions which have 

different characteristics. As can be seen in Figure 4-5, the general form of Griewank’s function is 

well-behaved and convex with numerous local minima attached to the global form. Ackley’s function 

is a more difficult function which has a large non-informative area (due to the exponential form of the 

function) containing numerous local minima where there is not a detectable trend towards the global 

region of attraction.  Rastrigin’s function is a fairly difficult, highly multi-modal function with 

regularly distributed local minima and a large search space. Schwefel’s function consisting of a large 

number of peaks and valleys is a difficult and deceptive function in a way that the global minimum, 

which is located near the bound of feasible space, is geometrically distant from the next best local 
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minima; as such, optimization algorithms are potentially prone to converging far from the true 

optimum.  

 

Figure 4-5. Perspectives of the 2-D versions of the applied test functions 

 

Table 4-1 presents the formulations, bound constraints, and arbitrarily selected numbers of 

dimensions used in this study of these test functions. As stated in Section 4.2.3, the number of 

dimensions (i.e., number of decision variables of the optimization problem) in metamodel-enabled 

optimizers cannot typically be large (typically less than 15-20), and the performance of metamodel-

enabled optimizers is expected to degrade when applied to higher dimensional problems. The global 

optima of the Griewank, Ackley, and Rastrigin functions are located at the center of feasible space (xi 

= 0, i=1,…,D), while the global minimum of the Schwefel function is at xi = 420.9687, i=1,…,D. Note 

that increasing the number of dimensions does not necessarily correspond to increasing complexity. 

For example in the Griewank function, although the number of local minima increases exponentially 

with the number of dimensions, Locatelli [2003] has shown that the function becomes very easy to 

optimize for large numbers of dimensions (because local minima become extremely small, resulting 

in an almost uni-modal form of the function), by any optimization algorithms, especially derivative-

based ones. On the other hand, in the Ackley function, the ratio of the size of the main region of 

attraction to the size of the entire feasible space becomes smaller as the number of dimensions 

Rastrigin Schwefel 

Griewank Ackley 
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increases – for example from roughly 25% for the 2-D Ackley function to less than 0.5% for the 15-D 

Ackley function (obtained through Monte-Carlo analysis). It is worth noting that there are 

metamodelling studies optimizing the Ackley function in a reduced DV range, while the reduced 

range only covers the informative part around the global minimum having a clear almost linear 

general trend (with smaller scale sinusoidal fluctuations) towards the optimum. As a result, 

metamodel-enabled optimizers have substantially less difficulty optimizing the Ackley function in the 

reduced range.  

 

Table 4-1. Summary of Optimization Test Functions 
 

Name Equation 
Number of 

dimensions (D) 

Bound 

Constraints 
Min 

Griewank      
 

    
∑   

 
 

   
 ∏      

 

   

  

√ 
    10 [-600, 600]D 0 

Ackley             (    √
 

 
∑   

 
 

   

)     (
 

 
∑          

 

   
)             15 [-32.768, 32.768]D 0 

Rastrigin           ∑ [  
              ]

 

   
 10 [-5.12, 5.12]D 0 

Schwefel*                 ∑ [         √|  |]
 

   
 15 [-500, 500]D 0 

* the first term in the equation does not exist in the original form of the function. Here, it is added to set zero as 

the minimum of the function. 

 

4.5.2  Computationally Intensive Calibration Problems 

In addition to test functions, three benchmark real-world computationally expensive optimization 

problems were utilized in this study. The first one is an automatic calibration problem of SWAT2000 

streamflow model being calibrated over the Cannonsville Reservoir watershed in Upstate, New York. 

This case study, which has been originally developed by Tolson and Shoemaker [2007b], seeks to 

calibrate 14 parameters by maximizing the Nash-Sutcliffe coefficient for daily flow at the Walton 

gauging station. Details of this case study are available in Tolson and Shoemaker [2007b]; for range 

constraints see Table 2 therein. This case study, which is called SWAT hereafter, is exactly the same 

as the so-called SWAT-1 case study in Chapter 2 and Razavi et al. [2010] used to demonstrate the 

performance of DDS with preemption. A single evaluation of this watershed model requires about 1.8 
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minutes on average to execute on a 2.8GHz Intel Pentium processor with 2 GB of RAM and running 

the Windows XP operating system. 

The second benchmark problem is based on a recently introduced groundwater flow and reactive 

transport model that is designed to aid in the interpretation of aquifer tests. Dipole flow and reactive 

tracer test (DFRTT) is a single-well test proposed for in situ aquifer parameter estimation to aid in the 

design of remedial systems for contaminated sites. The observed breakthrough curve (BTC) obtained 

through this test is analyzed by a DFRTT interpretation model (DFRTT-IM) to estimate aquifer 

parameters. DFRTT-IM is a high-resolution two-dimensional radially symmetric finite volume 

model. For details, interested readers are referred to Thomson et al. [2010]. This case study seeks 7 

aquifer parameter values of an unconfined sand aquifer at the Canadian Forces Base (CFB) Borden 

near Alliston, ON, Canada. The objective is to minimize a weighted sum of squared deviations of 

DFRTT-IM outputs from an observed BTC. Detailed description as well as parameter range 

constraints are available in Chapter 2 and Razavi et al. [2010]. A single evaluation of this model takes 

about 37 minutes on average to execute on a 2.8 GHz Intel Pentium processor with 2 GB of RAM and 

running the Windows XP operating system. 

The third case study is the automatic calibration problem of a three-layer confined groundwater 

model with 122km x 167km area located in northeast Alberta, Canada (see Figure 4-6). The first and 

third layers are aquifers characterized by the same parameters and the second layer is a shale unit with 

incised channels that threaten the integrity of this unit as an aquitard. This case study seeks to 

calibrate 56 parameters to transient data of water withdrawal and associated pressure response by 

minimizing weighted sum of squared errors (WSSE) in drawdowns. The parameters include 

horizontal hydraulic conductivities in the aquifer at 52 pilot points (located in local study area), 

horizontal hydraulic conductivity in the shale layer, vertical hydraulic conductivities in the aquifer 

and shale layers, and specific storage. Horizontal hydraulic conductivity of the aquifer in the regional 

study area is the average of 52 pilot point values. This case study is set up with FEFLOW 

groundwater modelling software package and is called the “FEFLOW” case study hereafter. A single 

evaluation of this model takes about 30 seconds on average to execute on a 2.8 GHz Intel Pentium 

processor with 2 GB of RAM and running the Windows XP operating system. 
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Figure 4-6. The 3D view and the map of the groundwater model implemented with FEFLOW – this 

case study seeks to calibrate 56 parameters (including 52 pilot points for horizontal hydraulic 

conductivities) to transient drawdown data 
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4.5.3  Experimental Setting 

Computational budget availability is a limiting factor in solving computationally intensive 

optimization problems. In such problems, practitioners sometimes are restricted to find a reasonably 

good solution within a very small number of function evaluations (for instance, as small as 100). To 

replicate possible common practices, the following four computational budget availability scenarios 

based on the total number of original function evaluations were assumed to be available: 100, 200, 

500, and 1000. Optimization within only 100 or 200 original function evaluations are consistent with 

the benchmark metamodelling study by Regis and Shoemaker [2007b] in which MLMSRBF (see 

Section 4.3.1) was proposed. One thousand function evaluations was deemed as the maximum 

practical budget available as it might require a very long computational time; for example, about 26 

days of serial processing are needed to run the DFRTT model 1000 times which might be practically 

infeasible. The performance of the optimization algorithms (with and without metamodelling) within 

each computational budget scenario can be accurately compared in terms of algorithm effectiveness – 

the final solution quality attained by different algorithms at each computational budget scenario can 

be directly compared. 

Due to the excessively high computational demand of the experiment with DFRTT, only the two 

very limited computational budget scenarios (i.e., the scenarios with 100 and 200 function 

evaluations) were evaluated for this case study. Note that in all cases, experiments in each 

computational budget scenario were independent from the experiments for other scenarios. For 

example, for the budget of 200 function evaluations, we ran the experiments from scratch, without 

getting any feedback from the experiments with the budget of 100 function evaluations. 

As stated in Section 4.4.3, DDS was used in conjunction with the model preemption strategy (i.e., 

DDS with preemption) for the SWAT and DFRTT case studies. Chapter 2 and Razavi et al. [2010] 

show that deterministic model preemption can save approximately 15% and 50% of the 

computational budgets required by DDS to run on the SWAT and DFRTT case studies, respectively, 

while it can find exactly the same near-optimal solutions as when preemption was not applied. 

Therefore, for DDS with preemption, we add 15% and 50% to the total number of function 

evaluations allocated in each scenario for the SWAT and DFRTT case studies. For example, we 

consider 230 (200+0.15×200) function evaluations for DDS with preemption on the SWAT case 

study when the computational budget is equivalent to 200 full function evaluations scenario.  
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To ensure a fair comparison and make statistically valid conclusions, multiple replicates with 

different initial conditions (i.e., random seeds) should be conducted. On the test functions, all 

optimization algorithms were conducted for 30 replicates; however, only five optimization replicates 

were conducted for each algorithm on the real-world computationally intensive case studies, SWAT 

and DFRTT, due to their high computational demand. For the FEFLOW case study, only MLMSRBF 

and DDS were run and only with the computational budgets of 200 and 500 function evaluations. 

This case study is not included for the full analysis with all the algorithms and computational budget 

scenarios, as the number of DVs in this case study is considerably larger than practical numbers of 

DVs in the context of metamodelling. 

For DDS, DDS with preemption, and MLMSRBF, there is no need to tune algorithm parameters; 

while GA (in GA without metamodelling and in DACE-GA and ANN-GA) has multiple algorithm 

parameters that require tuning. In this study, tournament size and crossover ratio were fixed equal to 4 

and 0.8, respectively [the MATLAB default values, MathWorks, 2010], and population size, number 

of generations, and elite count were considered as the GA algorithm parameters that need to be tuned 

for any specific problem. In DACE-GA and ANN-GA, where the GA runs over a fast-to-run 

metamodel (no strict limit on the total number of metamodel evaluations), population size, number of 

generations, and elite count were selected to be large and equal to 100, 100, and 4, respectively. 

However, as GA without metamodelling was to run on an original function (which is assumed 

computationally expensive), selection of a proper GA algorithm parameter set needed more careful 

attention. Obviously, when computational budget is limited and fixed (i.e., total number of function 

evaluations is fixed in advance), the number of generation is a known function of population size, 

elite count and total number of function evaluations. For the test functions, different configurations of 

these GA parameters were tested and only the best GA results were presented in the Results Section 

(Section 4.6). Importantly, the algorithm parameter tuning process substantially adds to the 

computational burden of an experiment, and it is not feasible when the original simulation model is 

computationally expensive. However, as the GA parameters highly affect the algorithm performance, 

we wanted to solicit (almost) the best performance of the GA on the test functions which was to be 

compared with the performance of other algorithms. For the real-world computationally intensive 

case studies, the GA parameters were selected based on our evaluation of the GA results over the test 

functions. 
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In the metamodelling part of DACE-GA, we used the metamodelling parameters presented in 

Section 4.3.2, while for ANN-GA we still had to determine a proper number of hidden neurons for 

any given case study by conducting multiple trials with various numbers of hidden neurons. We also 

had to determine a proper number of initial design sites for ANN-GA in a given computational 

budget, and this was also selected by trial-and-error experiments. The selected numbers of hidden 

neurons and initial design sites for ANN-GA is presented in Section 4.6. 

To quantify the computational budget required for a metamodelling experiment, especially for 

comparison purposes, it is common and convenient to only consider and compare the total number of 

original model evaluations in a given optimization trial [Mugunthan and Shoemaker, 2006; Regis and 

Shoemaker, 2007b; Zou et al., 2007; 2009]. Similarly, in the comparative assessments performed in 

this study, we also ignored the analyst time and the metamodelling time in our experiments and 

comparisons were based on number of original model evaluations. 

4.6 Results 

The average performance of the metamodel-enabled optimizers (DACE-GA, ANN-GA, and 

MLMSRBF) as well as the optimizers without metamodelling (DDS and GA) over the test functions 

and the SWAT and DFRTT real-world case studies are shown in Figure 4-7. Average performance 

for each computational budget scenario is the average of the best original objective function values 

found in all replicates. The empirical cumulative distribution functions (CDFs) of the final best 

function values found within various computational budget scenarios from all 30 optimization 

replicates are shown in Figure 4-8, Figure 4-9, Figure 4-10, and Figure 4-11 for the Griewank, 

Ackley, Rastrigin, and Schwefel functions, respectively. As an example on how to interpret the CDFs, 

according to Figure 4-8, the probability that the GA with 100 function evaluations attains an objective 

function value of at most 30 on the Griewank function is about 0.15. A more vertical CDF indicates 

less variable algorithm performance (more robust), and as such, CDFs that are vertical and as far to 

the left as possible are ideal. When comparing algorithms A and B in terms of their respective 

empirical CDFs of best (minimum) objective function values attained, FA and FB, algorithm A 

dominates algorithm B stochastically at first order if, for any desired objective function value f, FA(f) 

¸ FB(f). As for the real-world case studies the number of replicates is small (i.e., 5), instead of CDFs, 

the dispersion of the final solutions found through each algorithm are compared using the simple plots 

shown on Figure 4-12 and Figure 4-13, for the SWAT and DFRTT case studies, respectively. When 
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the final objective function values found in all replicates through an algorithm are closer to each 

other, the algorithm is less variable. In the following, we have allocated a sub-section to each test 

function and each real-world case study to elaborate the different and function-dependent 

performance of the metamodel-enabled optimizers versus the optimizers without metamodelling. Due 

to the reasons outlined in Section 4.6.1, ANN-GA was only assessed on the Griewank function. 

4.6.1 Griewank Function 

In the Griewank function, DACE-GA and MLMSRBF drastically outperformed DDS and GA and 

both were comparable in terms of approximating the global minimum very fast and efficiently.  

Within only 100 original function evaluations, the average function values found through both these 

metamodel-enabled algorithms are approximately 1 and the standard deviations are less than 0.2. 

However, the ANN-GA was completely unable to find a trajectory toward optimality within 100 

function evaluations. In other words, the ANN metamodel was misleading in this very limited budget 

and the ANN-GA search was hardly ever able to find a better solution based on the metamodelling 

guidance than the solutions initially evaluated though original function for initial DoE. As a result, the 

final best function values reported for ANN-GA with 100 function evaluations are almost always the 

best point in the initial design sites. In 200 function evaluations scenario, the ANN metamodel was 

not as misleading and ANN-GA performance was almost the same as GA in terms of mean function 

value but inferior in terms of robustness (see associated CDFs in Figure 4-8). In the 500 and 1000 

function evaluations scenarios, ANN became able to play the metamodelling role properly although it 

was still outperformed by DACE-GA and MLMSRBF.  

The relatively poor performance of ANN-GA was observed despite the fact that at least four extra 

parameters/decisions existing in ANN-GA, which are not in DACE-GA and MLMSRBF, (i.e., how to 

handle over-training prevention and inexact emulation behaviour as well as determination of the 

number of hidden neurons and the initial DOE size) were manipulated and fine-tuned to optimize its 

performance. As such, substantially more analyst time and metamodelling time were spent for ANN-

GA fine-tuning  compared to the other metamodel-enabled optimizers used herein. As a result, and 

considering its other shortcomings pointed out in Section 4-3-3, ANN-GA was deemed unsuitable for 

such computationally intensive problems and was not assessed on the other test functions and real-

world case studies. 
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Figure 4-7. Algorithms average performance comparisons on the 10-D Griewank, 15-D Ackley, 10-D 

Rastrigin, and 15-D Schwefel functions (over 30 replicates) as well as SWAT and DFRTT case 

studies (over 5 replicates) at different computational budget scenarios 

 

According to Figure 4-8, in all computational budget scenarios, both DACE-GA and MLMSRBF 

are stochastically dominant over the optimizers without metamodelling, and their relative 

performance lies under Case A introduced in Section 4.2.1 (idealized relative metamodel 
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performance). Regarding the optimizers without metamodelling, DDS substantially outperformed GA 

and approached the performance of the metamodel-enabled optimizers in the 500 and 1000 function 

evaluations scenarios. 

 

 

Figure 4-8. Empirical cumulative distribution function of final best function values on the 10-D 

Griewank function 
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the 100, 200, and 500 scenarios (see Figure 4-9). In other words, the relative performance of 

MLMSRBF compared to both GA and DDS is in Case A (idealized relative metamodel performance), 

whereas the relative performance of DACE-GA compared to GA and DDS is in Case C (failure of 
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Ackley function is informative, and there is a very large region having an almost flat (plateau) general 

form with numerous regularly distributed local valleys. Fitting a metamodel on the details of the non-

informative region can be quite misleading and it does not give useful information to locate the main 

region of attraction. In other words, as there is not an effective clue in the general form for locating 

the main region of attraction, a metamodel-based search may wander around wasting the entire 

computational budget unless a point on the main region of attraction is evaluated through the original 

function either in the initial DoEs or while searching. As MLMSRBF restarts once it converges to a 

local minimum, the number of points on the feasible space being evaluated through DoE in a single 

optimization is relatively high in comparison to DACE-GA. In addition, MLMSRBF searches locally 

around the best solution found so far in a trial, therefore, since the main region of attraction is located 

at the center of the feasible space, the chance of finding it is higher (compared to the case when it is 

located near bounds or at the corner – this was verified through an experiment not reported here). 

Once MLMSRBF locates the main region of attraction, it can reach a good solution efficiently due to 

its local search capability. Accordingly, as can be seen in Figure 4-9, the probability of returning a 

relatively poor solution for MLMSRBF from the non-informative region diminishes as the 

computational budget increases – in the 100 and 200 function evaluations scenarios 3-4 replicates 

(out of 30), with 500 function evaluations only one replicate, and with 1000 none of the 30 replicates 

are from the non-informative region.  

Unlike MLMSRBF, DACE-GA starts with an initial DoE and then searches globally around the 

feasible space until it finishes the computational budget. As such, DACE-GA performance is 

drastically inferior compared to MLMSRBF because firstly, the probability of finding a point on the 

main region of attraction through the initial DoE is lower. Secondly, DACE-GA involves a global 

search method as opposed to MLMSRBF, and it is not as efficient in improving a solution found in 

the main region of attraction. As a result in DACE-GA, the metamodel is mostly focused on 

emulating the deceptive local valleys distributed over the non-informative region. According to 

Figure 4-9, DACE-GA in the 100 and 200 function evaluations scenarios became mired in the non-

informative region in all 30 replicates, while in larger computational budgets, particularly in 1000 

function evaluations, some replicates can find the main region of attraction but are unable to 

efficiently approach the global minimum.  
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Figure 4-9. Empirical cumulative distribution function of final best function values on the 15-D 

Ackley function 

 

4.6.3 Rastrigin Function 
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enabled optimizers especially in larger computational budgets. The performance of DACE-GA is 

superior to MLMSRBF in the 100 function evaluations scenario, while it is inferior in the 500 and 

1000 function evaluations scenarios. DACE-GA and MLMSRBF performed comparably in the 200 

function evaluations scenario. 

 

Figure 4-10. Empirical cumulative distribution function of final best function values on the 10-D 

Rastrigin function 

 

4.6.4 Schwefel Function 

For the Schwefel function, the performance of DACE-GA and DDS in the 100 function evaluations 

scenario were comparable and both superior to MLMSRBF and GA, but in larger computational 

budgets, DDS outperformed all other algorithms. DACE-GA performance is considerably better 

(almost stochastically dominant, see Figure 4-11 - note that only CDFs for 100 and 1000 function 

evaluations are depicted) than MLMSRBF in all computational budget scenarios. GA is the least 

effective optimizer in the 100 and 200 function evaluations scenarios, while it outperforms 

MLMSRBF in the 500 and 1000 function evaluations scenarios. Although GA and MLMSRBF 

performed comparably in terms of mean best function values, GA is more robust as the associated 
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to reach close to the global minimum function value of zero in the allocated computational budgets. 
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far from the main regions of attraction. Compared to GA, the relative performance of both 

metamodel-enabled optimizers is in Case B (equivalence time is between the 200 and 500 function 

evaluations scenarios for MLMSRBF and between 500 and 1000 for DACE-GA), while compared to 

DDS, their relative performance is in Case C.  

  

Figure 4-11. Empirical cumulative distribution function of final best function values on the 15-D 

Schwefel function 

 

4.6.5 SWAT Case Study 

On the SWAT case study, DACE-GA outperformed all other algorithms in the 100 function 
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500 and 1000 function evaluations scenarios. In the 100 function evaluations scenario, the dispersion 

of the final solutions found in the 5 replicates is relatively high for all algorithms (see Figure 4-12). 

However, for the higher computational budget scenarios, DDS with preemption resulted in final 

solutions with relatively close quality (close objective function values) indicating that among all, 

DDS with preemption is the most robust and reliable algorithm on this case study. In addition, 
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in terms of robustness and reliability. Compared to GA, the relative performance of MLMSRBF is in 
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Figure 4-12. Algorithms performance comparisons on the SWAT model – a maximization problem 

 

4.6.6 DFRTT Case Study 

The DFRTT case study, as stated in Section 4.5.3, was only used to assess the optimizing algorithms 

within the two very limited computational budget scenarios with 100 and 200 function evaluations. 

Overall, DDS with preemption was the most effective and robust optimization algorithm in both 100 

and 200 function evaluations scenarios. MLMSRBF was almost as effective; however, as shown on 

Figure 4-13, in one of the five replicates in the 100 function evaluations scenario, it failed to approach 

a good quality solution. This one poor result or outlier is why the mean best objective function value 

obtained through MLMSRBF in the 100 function evaluations scenario is not desirable in comparison 

with the other algorithms. The MLMSRBF outlier emphasizes the importance of running multiple 

replicates in an algorithm assessment process. GA performance was the worst in both 100 and 200 

function evaluation scenarios. Compared to GA, the relative performance of both metamodel-enabled 

optimizers lies in Case A, while their relative performance compared to DDS lies in Case C. 

 

Figure 4-13. Algorithm performance comparisons on the DFRTT model – a minimization problem 
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4.6.7 FEFLOW Case Study 

Only MLMSRBF and DDS were compared on this case study. As can be seen in Figure 4-14, DDS 

outperformed MLMSRBF in the two computational budget availability scenarios. As such, the 

performance of this metamodel-enabled optimizer lies in Case C when compared to the DDS 

performance. This case study is different from the test functions used and the other two real-world 

case studies in that it has a relatively large number of decision variables. Given the inherent weakness 

of metamodelling strategies in high-dimensional problems, the results of this case study is not 

included in the discussion in the next section. 

 

 

 

Figure 4-14. Algorithm performance comparisons on the FEFLOW model – a minimization problem 
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computational burden (e.g., metamodelling time and analyst time, both of which were not explicitly 

evaluated in this study). 

As the experimental results on the four test functions confirm, the more complex the original 

response surface, the less effective the metamodelling performance. In other words, when the original 

response surface is very complex, the metamodel inaccuracy may drive the search process towards 

poor regions in the search domain. This risk is higher especially when the original response surface 

has multiple geometrically distant regions of attraction (like the Schwefel function). 

Importantly, it is likely that the relative performance of a metamodel-enabled optimizer depends on 

the allocated computational budget (Case B as discussed in Section 4.2.1 and shown in Figure 4-1). 

Therefore, computational budget availability (i.e., the total number of original function evaluations) is 

an important factor affecting the suitability and superiority of a metamodel-enabled optimizer over an 

optimizer without metamodelling. Typically, the quality of the final solution found through an 

optimizer without metamodelling is enhanced with a reasonably considerable improving rate as the 

computational budget availability increases; whereas, this improving rate with computational budget 

in a metamodel-enabled optimizer can be less if metamodel inaccuracies are substantial (see e.g., 

MLMSRBF on Schwefel’s function or DACE-GA on Rastrigin’s function). As a result and as can be 

seen in Figure 4-7, the performance plots at some computational budget may cross each other; this 

“crossing behaviour” (Case B) was observed 6 times (out of 24 one by one comparisons over the 6 

case studies) between the metamodel-enabled optimizers and optimizers without metamodelling. For 

example, on the Rastrigin function, in the very limited budget scenarios (i.e., with 100 and 200 

function evaluations) both DACE-GA and MLMSRBF were superior to GA, while for larger budget 

scenarios (i.e., with 500 and 1000 function evaluations) GA outperformed the metamodel-enabled 

optimizers. This result suggests that when the total number of function evaluations can be high (in 

cases when a relatively large computational budget is available or the original simulation model is not 

very computationally expensive), the optimizers without metamodelling may be more appealing. The 

results also confirm that equivalence time, t*, in Case B is case study- and algorithm-specific and 

requires extensive numerical experiments to be determined. 

The choice of the benchmark optimizer (without a metamodel) to which a metamodel-enabled 

optimizer is compared can have a large impact on relative performance conclusions. We selected 

DDS as an appropriate benchmark based on our experience developing and using the algorithm to 
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solve computationally intensive optimization problems.  We selected GA as another benchmark 

despite the fact that it is not an appropriate algorithm for limited computational budgets largely 

because it appears as a benchmark optimizer without metamodelling in multiple metamodel-enabled 

optimization studies [Broad et al., 2005; Fen et al., 2009; Khu et al., 2004; Ostfeld and Salomons, 

2005; Zou et al., 2007]. If we consider the GA as the benchmark optimizer without metamodelling, 

relative performance of the metamodel-enabled optimizers (MLMSRBF and DACE-GA) in 6 out of 

12 comparisons (12 = 6 case studies × 2 metamodel-enabled optimizers) are in Case A (idealized 

relative metamodel performance), 5 times in Case B (computational budget dependent relative 

metamodel performance), and only once in Case C (failure of metamodelling). However, when 

DDS/DDS with preemption is considered as the benchmark optimizer without metamodelling, the 

relative performance of the metamodel-enabled optimizers lies 3 times in Case A (out of 12 

comparisons), once in Case B, and 8 times in Case C. Thus, using an inappropriate benchmark 

optimizer (the GA) for this study showed only an 8% failure rate of metamodelling versus a 67% 

failure rate of metamodelling when a more appropriate benchmark optimizer (DDS) was utilized.  

We believe that future metamodelling studies evaluating relative metamodel-enabled optimizer 

efficiency and/or effectiveness should be selecting benchmark optimizers without metamodelling 

which are designed or demonstrated to work well with a limited computational budget. At least, 

instead of simply comparing a GA to metamodel-enabled optimizer performance, the GA parameters 

should first be tuned in a way to improve GA performance at the computational budget of interest 

(i.e., via multiple optimization test functions).  A much better approach would be to benchmark the 

performance of a metamodel-enabled optimizer against metamodel independent algorithms designed 

to work relatively efficiently such as DDS/DDS with preemption as demonstrated herein or other 

algorithms such as the MicroGA technique [see Nicklow et al., 2010 for discusion] or multistart 

derivative-based algorithms [e.g. Doherty, 2005].  Other algorithms we believe to be more effective 

than the GA such as CMA-ES [Hansen et al., 2003] or AMALGAM [Vrugt et al., 2009a] might be 

good additional algorithms in the comparison and in particular for computational budgets above 1000 

function evaluations. 

Numerical experiments in this study also suggest that none of our metamodelling implementations 

work best on all problems and all computational budgets, as MLMSRBF performed better than 

DACE-GA in some cases (e.g., on the Ackley function in all computational budget scenarios and in 

the Rastrigin function in larger budget scenarios with 500 and 1000 function evaluations) and worse 
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in some other cases (e.g., on the Schwefel function and SWAT in all computational budget scenarios). 

Furthermore, the number of times that the performance of MLMSRBF relative to GA lies in Case A, 

Case B, and Case C is 3, 3, and 0, respectively, and relative to DDS these numbers are 2, 0, and 4. 

Similarly for DACE-GA relative to GA, the numbers of times in Case A, Case B, and Case C are 3, 2, 

and 1, respectively, and for DACE-GA relative to DDS, the same figures are 1, 1, and 4.  

Figures 4-8 to 4-13 show the dispersion of the best found solutions across the case studies and 

confirm the essential need of having multiple replicates in the (comparative) assessment of optimizing 

algorithms despite the obvious extreme computational burden that results with computationally 

intensive optimization problems. As an example, consider if the performance of MLMSRBF in the 

100 function evaluations scenario in Figure 4-13 was judged only based on the highly inferior 

replicate instead of all the five replicates (four other solutions are all of much higher quality).  

4.8 Conclusions 

To provide the metamodelling practitioners with a clear view of metamodelling characteristics, 

benefits and shortcomings, this study conducted a numerical assessment of three well-established 

metamodelling strategies involving radial basis functions, kriging and neural networks as metamodels 

within different computational budget availability scenarios on four commonly used test functions 

and three real-world water resources case studies. DDS/DDS with preemption and a GA were used as 

the benchmark optimizers without metamodelling to provide the baseline for assessment. The results 

clearly show that developing a new or approximately replicating an existing metamodel-enabled 

optimization framework is not enough to warrant the assumption that such a product is a more 

effective approach than optimizers without metamodelling. In fact, our results show multiple 

instances where optimizers without metamodels clearly outperform metamodel-enabled optimizers.  

Such a result has been rarely reported in literature; nonetheless, it is consistent with Willmes et al. 

[2003] who developed two metamodel-enabled optimizers and applied them to three test functions 

and concluded that “Neither the kriging model nor the neural network could clearly demonstrate an 

advantageous performance over an evolutionary optimization without metamodels. Very often, 

optimization assisted with a metamodel leads to a degraded performance.” With these metamodel-

enabled optimization failures relative to optimization without metamodels in mind, we hope this 

study motivates similar robust comparisons between new metamodel-enabled optimizers and 

http://scholar.google.ca/scholar?hl=en&as_sdt=2000&q=consistent
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optimizers without metamodelling so as to better focus metamodelling research on only the most 

promising metamodel-enabled optimization frameworks. 

This study proposed a comparative assessment framework which presents a clear computational 

budget dependent definition for success/failure of the metamodelling strategies. Analyzing our results 

within such a framework empirically demonstrated that the suitability and superiority of 

metamodelling strategies can be affected by computational budget availability (i.e., the total number 

of original function evaluations). For example, the success/failure characterization of metamodelling 

strategies often changed in our results when computational budgets were varied between 100 to 1000 

original model evaluations. Typically, the likelihood that a metamodel-enabled optimizer outperforms 

an optimizer without metamodelling is higher when a very limited computational budget is available; 

however, this is not the case when the metamodel is a neural network. In other words, neural 

networks are severely handicapped in limited computational budgets, as their effective training 

typically requires a relatively large set of design sites, and thus are not recommended for use in these 

situations.  

Furthermore, the numerical results confirmed that metamodelling is an effective and efficient 

approach when the original response surface is relatively simple. However, the metamodelling 

performance degrades considerably in case of more complex original response surfaces. In addition, 

our results do not identify a single preferred metamodelling strategy between the MLMSRBF and 

DACE-GA metamodel-enabled optimizers. In practice, as the general form and the level of 

complexity of a simulation model response surface is not usually known a priori, any decision on the 

appropriate type of metamodelling strategy as well as any prediction about its performance are non-

trivial. 

Future research efforts could be focused on predicting the success/suitability of metamodel-enabled 

optimizer for example based on preliminary experiments measuring metamodel accuracy and 

generalizability (e.g., through the initial DoE in Figure 4-3). Conceptually, we believe metamodel-

enabled optimizers can be developed that would almost always show computational budget dependent 

relative performance (Case B in Figure 2) such that they would be preferred over any metamodel 

independent optimizer for at least some limited range of reduced computational budgets. Therefore, 

future research should continue to strive for improved metamodel-enabled optimization algorithms. 
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Chapter 5 

A Framework Utilizing Surrogate Calibration Data 

 for Model Calibration on Long Data Periods 

This chapter is a mirror of the following article which is currently under review. Only minor 

organizational changes were made to be consistent to the body of the thesis. References are 

unified at the end of the thesis. 

Razavi, S. and B. A. Tolson (2012), An Efficient Framework for Hydrologic Model Calibration on 

Long Data Periods, submitted to Water Resour. Res. in December 2012. 

 

Summary 

Long periods of hydrologic data records have become available in many watersheds around the globe. 

Hydrologic model calibration on such long, full-length data periods are typically deemed the most 

robust approach for calibration but at larger computational costs. Determination of a representative 

short period as a “surrogate” of a long data period that sufficiently embeds its information content is 

not trivial and is a challenging research question. The representativeness of such a short period is not 

only a function of data characteristics but also model dependent.  Unlike previous studies, this study 

goes beyond identifying the best surrogate data period to be used in model calibration and proposes 

an efficient framework that calibrates the hydrologic model to full-length data while running the 

model only on a short period for the majority of the candidate parameter sets. To this end, a mapping 

system is developed to approximate the model performance on the full-length data period based on 

the model performance for the short data period. The basic concepts and the promise of the 

framework are demonstrated through a computationally expensive hydrologic model case study. 

Three calibration approaches, namely calibration solely to a surrogate period, calibration to the full 

period, and calibration through the proposed framework, are evaluated and compared. Results show 

that within the same computational budget, the proposed framework leads to improved or equal 

calibration performance compared to the two conventional approaches. Results also indicate that 

model calibration solely to a short data period may lead to a range of performances from poor to very 

well depending on the representativeness of the short data period which is typically not known a 

priori. 
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5.1 Motivation and Objective 

The appropriate length of observation data for effective calibration of continuous hydrologic models 

has been a challenging research question [Andreassian et al., 2001; V K Gupta and Sorooshian, 1985; 

Juston et al., 2009; Perrin et al., 2007; Singh and Bardossy, 2012; Vrugt et al., 2006b; Xia et al., 

2004; Yapo et al., 1996]. In general, longer calibration periods are deemed more robust and reliable in 

identifying the model parameters and quantifying their uncertainty [Perrin et al., 2007]. However, 

longer periods would demand longer model run-times; given that in the calibration process a 

hydrologic model is required to run a large number of times, utilizing the full period of data available 

for model calibration and uncertainty estimation may sometimes become computationally demanding 

or even infeasible. Such computational burdens may become prohibitive for some modern high-

fidelity hydrologic models which simulate detailed representations and processes of the real-world 

system. As such, computational limit is typically one motivation of seeking a representative “short 

period” out of longer available data for model calibration in any watershed of interest. A 

representative short period needs to embed diverse climatic and hydrologic conditions to adequately 

represent hydrologic variability in the watershed of interest such that all simulated processes in the 

model are well-activated [Juston et al., 2009; Perrin et al., 2007; Singh and Bardossy, 2012]. There 

have been numerous research studies attempting to determine the minimum adequate length of data 

for hydrologic model calibration. These studies typically calibrated and compared model parameters 

for different sub-periods with different lengths of a long data period and concluded that several years 

of data could be adequate but their proposed required lengths vary relatively widely in the range of 

two to eight years [Juston et al., 2009]. Singh and Bardossy [2012] pointed out that any of the 

proposed required lengths cannot be generalized as different models have different complexity levels 

and different watersheds have different information content in each year of data period. In addition, 

Xia et al. [2004] found that different model parameters may require different lengths of data to 

achieve calibration results insensitive to the period selected. Moreover, the information contained in 

observation data is not uniformly distributed along the period, and certain sub-periods may contain 

information useful for identifying some specific parameters while irrelevant for other parameters 

[Singh and Bardossy, 2012]. As a result, there is a tendency among hydrologists to utilize the full 

period of available data for calibration of hydrologic models despite possible computational burdens.  

This chapter develops a computationally efficient framework for hydrologic model automatic 

calibration for watersheds with long periods of available data. This framework aims to utilize full-
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length data periods in model calibration (called “full period” hereafter) while reducing computational 

burdens by using representative short periods for most of the model runs and running the model over 

the full period only for selected candidate parameter sets.  Most of these candidates are identified to 

be promising solutions based on the information obtained from model runs on a short period. The 

proposed framework has roots in surrogate modelling which is concerned with developing and 

utilizing more efficient models as surrogates of computationally intensive high-fidelity (original) 

models (see Chapter 3). There are two general families of surrogate modelling strategies: 1- response 

surface surrogates which utilize statistical or data-driven function approximation methods such as 

kriging and neural networks to emulate one (or multiple) response(s) of an original model [Broad et 

al., 2005; Johnson and Rogers, 2000; Regis and Shoemaker, 2007b; Yan and Minsker, 2011], and 2- 

lower-fidelity physically-based surrogates which are simplified models of the original system of 

interest and conceptually or directly preserve its governing physics  [Forrester et al., 2007; Mondal et 

al., 2010; Robinson et al., 2008]. The proposed framework in this study shares some features with 

lower-fidelity physically based surrogate modelling when used for model calibration. However, a 

major difference is that instead of using surrogate models, the proposed framework solely works with 

original high-fidelity models but defines and uses “surrogate data” (i.e., short period data).  

The organization of this chapter is as follows. Section 5.2 presents the basic concepts and 

principles behind the proposed framework. Section 5.3 introduces a computationally demanding 

hydrologic model calibration case study that is used to illustrate the concepts and methodology. 

Section 5.4 presents the proposed framework and the components involved. Results of the numerical 

experiments with this framework in presented in Section 5.5. Section 5.6 is dedicated to outline the 

common features and differences between the proposed framework and surrogate modelling 

strategies. This paper ends with conclusions in Section 5.7. 

5.2 Basic Concepts 

The proposed framework is based on the principle that the performances of a hydrologic model on 

different data periods are correlated. The magnitude of such correlations varies for different pairs of 

data periods from very low (perhaps even negligible) for periods with distinctly different hydrologic 

conditions to very high for periods experiencing similar conditions. Assuming the performance of a 

hydrologic model is measured by one error function (e.g., mean squared errors), Figure 5-1 compares 

the true error function of a hydrologic model (i.e., running on a full calibration period) with three 
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possible surrogate error functions of the same model when running on three different short periods. In 

this conceptual example, the error function to be minimized is assumed to be dependent on only one 

model parameter. Figure 5-1a represents a case where the short period is a good (almost ideal) 

representative of the full period such that there is a high level of correlation (agreement) between the 

model performance over the full and short periods; there may be still a reasonably small displacement 

in the optimal parameter value. Figure 5-1b shows a moderate level of correlation where the model 

performance over the short period almost captures both modes (local and global optima) of the model 

performance over the full period but the global optimum in the short period performance corresponds 

to the local optimum of the performance on the full period. The short periods represented in Figure 

5-1a and Figure 5-1b can be very helpful in calibrating the hydrologic model. Conversely, Figure 5-1c 

represents a case where the short period is quite misleading as there is a large level of discrepancy 

between the two functions. This case may happen when the surrogate data period is unreasonably 

short and/or when it does not include information that can activate most of the simulated processes 

that are active in the full period. 

Figure 5-2 hypothetically depicts possible relationships between the performance of a hydrologic 

model on a full data period (i.e., full-period error function - e.g., mean squared errors) versus the 

performance of the same model on a short data period (i.e., short-period error function). In general the 

full-period error function value is monotonically increasing (linearly or non-linearly) with the short-

period error function value (the global relationship – see Figure 5-2a). Such a relationship can be very 

useful in predicting the performance of a model on the full period using the results of a model 

simulation over a short period and is the basis of the framework developed in the study. However, 

there is some level of uncertainty (i.e., discrepancy from the global relationship) associated with this 

function; this uncertainty becomes larger for less representative short periods. When comparing two 

parameter sets on the basis of their performance on a short period, if their short-period error function 

values are relatively close, it would not be trivial to identify the parameter set with better full-period 

error function value through this global relationship due to this uncertainty (see e.g., the sample of 

local relationship in Figure 5-2a). Figure 5-2b demonstrates a case where the short period is very poor 

such that no clear global relationship between the full-period and short-period error functions is 

identifiable – the uncertainty level is excessively large. Conceptually, Figure 5-2a corresponds to the 

cases depicted in Figure 5-1a and Figure 5-1b, while Figure 5-2b corresponds to the case 

demonstrated through Figure 5-1c. 
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Figure 5-1. Conceptual examples of the performance of a hydrologic model (with one parameter) 

running over different short calibration periods out of a long data period (full period) along with the 

model performance over the full period: (a) a well representative short period, (b) a moderately 

representative short period, and (c) a poor (misleading) short period 

 

 

Figure 5-2. Hypothetical relationship examples between the performance of a hydrologic model over 

a full period and the performance of the same model over (1) a representative and (2) a poor short 

periods – each point in the scatter plots represents a random parameter set that is evaluated by the 

model over the different periods 

The framework proposed in this thesis utilizes such relationships in an attempt to efficiently 

calibrate hydrologic models to full data periods. Note that if a short period is a perfect surrogate of a 
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full period, solely calibrating a hydrologic model to the short period would be accurate. Figure 5-3 

depicts a conceptual (but presumably typical) example of the convergence trend of an automatic 

calibration experiment when the optimization objective function to be minimized is the short-period 

error function. The corresponding full-period error function is also shown in this figure - the 

parameter sets found on the optimization convergence trajectory are also evaluated by running the 

model over the full period. As depicted in Figure 5-3, early on in the search, reducing the short-period 

error function would result in reducing the full-period error function as well; however, after some 

point in the search, further reduction in the short-period error function would result in increasing the 

full-period error function. This behaviour, which is analogous to “over-fitting” in statistics and curve-

fitting, indicates that solely relying on a representative short period may be efficient to initially guide 

a calibration algorithm to the vicinity of the promising regions in the parameter space, but it may 

become ineffective or even misleading in extracting near optimal parameter sets. The proposed 

framework explained in Section 5.4 is designed to address such behaviour.  

 

Figure 5-3. A hypotetical example of optimization convergence trend when minimizing the model 

error function over a short period of data along with the coresponding error function values calculated 

over the full period 

 

5.3 An Example Case Study 

To illustrate the framework proposed, a SWAT2000 (Soil and Water Assessment Tool, version 2000) 

[S. L. Neitsch et al., 2001] hydrologic model calibration case study, originally developed by Tolson 

and Shoemaker [2007a] to simulate streamflows into the Cannonsville Reservoir in New York, is 

used. This automatic calibration case study seeks to calibrate 14 SWAT2000 model parameters, 

subject to various range constraints [Tolson and Shoemaker, 2007b, see Table 2 therein], to measured 
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flow at the Walton gauging station (drainage area of 860 km
2
) by maximizing the Nash‐Sutcliffe 

coefficient for daily flow. A total of nine years of data from January 1987 to December 1995 are used 

in simulations such that the first three years are used as the initialization period and the remaining six 

years are used as the calibration period (see Figure 5-4). In this case study, a single model run over 

the nine-year period requires about 1.8 minutes on average to execute on a 2.8GHz Intel Pentium 

processor with 2 GB of RAM running the Windows XP operating system. 

 

 

Figure 5-4. Streamflow time series at Walton gauging station in Cannonsville Reservoir watershed 

over a nine-year period used for SWAT model calibration 

 

5.4 Methodology 

The framework developed in this study links an optimization algorithm to a hydrologic simulation 

model which is set up to run over a full period of data and a representative short period of data (see 

Figure 5-5). Any optimization algorithm may be used in the framework; however in this study, the 

covariance matrix adaptation-evolution strategy (CMA-ES) [Hansen and Ostermeier, 2001] is used 

for demonstration. CMA-ES is a stochastic, derivative-free optimization algorithm that generates 

candidate solutions according to an adaptive multivariate normal distribution. The covariance matrix 

of this distribution which represents pairwise dependencies between variables is updated iteratively in 

the course of optimization. Notably, CMA-ES does not need the actual objective function values of 

the candidate solutions, and instead it only uses their rankings to learn the specifications of the 

multivariate normal distribution. The algorithm has the form of (μ, λ)-CMA-ES where μ and λ are the 

parent number and population size, respectively. At each iteration, λ new candidate solutions are 

generated following the multivariate normal distribution, and then a weighted combination of the μ 
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best out of λ solutions is used to adapt the parameters of the distribution (i.e., mean and covariance 

matrix) such that the likelihood of previously successful candidate solutions and search steps is 

maximized/increased. Following the recommendations of Hansen and Ostermeier [2001] for 

algorithm parameters, (5, 11)-CMA-ES is used for our case study. 

 

 

Figure 5-5. The proposed framework for efficient model calibration over a long period of data by 

utilzing representative short periods (CF stands for Correction Factor) 

 

5.4.1  Framework 

The framework developed in this study consists of two phases (see Figure 5-5). Phase 1 is basically a 

conventional automatic calibration procedure which simply links the optimization algorithm to the 

hydrologic model but running over the representative short period. As such, the optimization 

algorithm generates candidate parameter sets, xi, for the hydrologic model with the objective of 

minimizing the short-period error function, fs(xi). In phase 1, only the parameter sets that improve the 

current best short-period error function value (i.e., fs
best

) are also evaluated through the hydrologic 

model over the full period of data. Phase 1 continues until a sufficient number of parameter sets are 

evaluated over both short and full periods; the simulation results of these parameter sets are then used 

to develop the performance mapping system. The performance mapping system enables the 

framework to map the performance of new candidate parameter sets on the short period (short-period 

error function) to their corresponding performance on the full period (i.e., full-period error function). 

Details of the proposed mapping system are presented in Section 5.4.3. Notably, phase 1 is only 

active early in the search when minimizing the short-period error function mainly corresponds to 

minimizing the full-period error function (falling part of the full-period error function in Figure 5-3).  
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In phase 2, the optimization algorithm seeks the minimum of a new response surface which is a 

surrogate of the full-period error function such that the majority of candidate parameter sets are still 

only evaluated by the hydrologic model over the short period, but the approximated full-period error 

function values (by the mapping system) are returned to the optimizer. If the approximated full-period 

error function value for a candidate parameter set is better than the current best full-period error 

function value (i.e., ff
best

), the parameter set is also evaluated by running the hydrologic model over 

the full period.  

Switching from one objective function surface to a different one when moving from phase 1 to 

phase 2 may corrupt some of the information the optimization algorithm has collected and as such 

degrades the optimizer performance. For example, the mean and covariance matrix of the multivariate 

normal distribution, which have evolved in the course of a CMA-ES run in phase 1, may change 

abruptly at the beginning of phase 2 if it was to directly minimize the new surface function. Defining 

the “correction factor” at the end of phase 1 is intended to address the discrepancies between the two 

surfaces. The correction factor defined herein is inspired and acts similar to multiplicative correction 

functions that are commonly used in lower-fidelity surrogate modelling [Alexandrov and Lewis, 2001; 

Razavi et al., 2012b; Thokala and Martins, 2007]. Moreover, depending on the optimization 

algorithm used, there may be other conditions to be accounted for to better preserve the optimization 

algorithm behaviour. For example, in population-based optimization algorithms like CMA-ES, it is 

advisable to evaluate all the individuals in a generation by the same function. To this end, the 

framework developed only proceeds to phase 2 at the beginning of a new a CMA-ES generation. The 

correction factor, CF, is calculated as: 

   
  ̅

  ̅
⁄                      (5-1) 

where   ̅ is the best short-period error function value in the last population of the optimization 

algorithm in phase 1 that its corresponding full-period error function value,   ̅, is available.  

Both phase 1 and phase 2 reserve a small chance for any candidate parameter set to be evaluated 

over the full period regardless of its performance over the short period. This chance is controlled by a 

number varying in the range of zero and one, zero indicating no chance and one indicating all 

parameter sets are to be also evaluated over the full period. This capability mainly intends to 

minimize the bias of the performance mapping system by providing a range of possible performances. 
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Our preliminary experiments with the number of zero demonstrated that generating a biased mapping 

system was possible and that could lead to a framework failure. In addition, this capability diminishes 

the risk of possible framework failures in case the short period selected is not very informative. 

Larger numbers would increase the sample size of data used for developing the mapping system and 

make the framework more robust but this would come at the expense of increasing the overall 

computational burden. The optimal number is problem-specific and not known without extensive 

experimentation. This number was arbitrarily selected to be 0.05 in the experiments of this study.  

5.4.2 What is a representative short period? 

Ideally, a short period of the full data period is deemed “representative” if the information contained 

in the short period is sufficiently complete and diverse such that model calibration experiments using 

the short period and the full period would yield almost identical results. Such an ideal representative 

period with a short duration (reasonably shorter than the full data period) may not necessarily exist in 

any watershed. In this study, “representative short period” refers to a reasonably short sub-period 

(contiguous in time) of the full period of data that contains sufficient information to be used in the 

proposed framework. Singh and Bardossy [2012] proposed a method to identify and extract some 

type of representative short periods, what they referred to as “unusual events”, out of the full data 

period based on the statistical concept of data depth. They demonstrated that calibration of a 

hydrologic model to unusual events may be only slightly inferior to the calibration of the same model 

to full periods of available data. According to Singh and Bardossy [2012], unusual events may 

include 1- periods containing extremes, 2- periods with low flows, 3- periods with strong dynamics 

(e.g., droughts ending with heavy rainfall), and 4- periods with temporal intermittence. They also 

pointed out that unusual events can be only a small portion of the full data periods (less than 10 

percent). Although the method of Singh and Bardossy [2012] can be potentially used with the 

proposed framework, there are constraints that may limit its applicability in this framework. First of 

all, the unusual events defined in the work of Singh and Bardossy [2012] may be far apart along the 

full calibration period. In such cases, it is not possible to have a reasonably short period contiguous in 

time including all the unusual events. Moreover, as these events are “unusual”, there is typically 

minimal relationship between the model performance on these events and the model performance on 

the full calibration period.  
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In this study, a representative short period is a period over which the model performance is 

reasonably well correlated with the model performance over the full period. For demonstration, two 

different parts of the full period of data available for our case study were selected as representative 

short periods (see Figure 5-4 and Figure 5-6). The representative short period (a) was selected 

arbitrarily without any prior knowledge/analysis of the system to represent a case when the 

framework user cannot identify the most appropriate representative short period. The first four 

months of this 13-month period was used for model initialization. A preliminary analysis was 

conducted to evaluate the correlation of the hydrologic model performance over this short period with 

the performance of the same model over the full period. A total of 1000 (uniformly) random 

parameter sets were generated in their specified ranges and evaluated through running the hydrologic 

model over the full period. Values of sum of squared errors (deviations of the simulated flows from 

observations, SSE) were calculated over the full calibration period (i.e., six years) and the last nine 

months of the representative short period (a) and plotted in Figure 5-7. According to this figure, the 

linear correlation between the SSE values over the two periods is not very large and the linear 

regression has an R
2
 value of 0.64. The lack of high correlation would imply that the error function 

surfaces for the two periods are somewhat dissimilar and the minimizer of one may not be close to the 

minimizer of the other. Utilizing the simulation results of the 1000 random parameter sets, the 

representative short period (b) was selected such that the linear correlation between the short-period 

SSE values and the full-period SSE values was maximized (see Figure 5-7) - a 12-month window was 

moved along the six years of data to find a linear regression with maximum R
2
 value (i.e., 0.94). In 

general, higher correlations indicate higher degrees of similarity between the short-period and full-

period error function surfaces. When the two surfaces are very similar, model calibration on the short 

period would be almost equivalent to calibration on the full period. As such, representative short 

period (b) may be deemed the best one-year-long surrogate of the full data period. As explained in 

Section 5.4.3, the performance mapping system attempts to address and formulate the dissimilarities 

between the two surfaces such that any short period demonstrating a moderate level of correlation 

with the full period, such as representative short period (a), can be used in the proposed framework. 

 



 

 161 

 

Figure 5-6. Two different representative short periods of the full period of data and the sub-periods 

used for performance mapping 

 

 

 

Figure 5-7. Scatter plots of the sum of squared errors (SSE) calculated over the full period versus the 

SSE calculated over the representative short periods for 1000 randomly generated parameter sets 

 

5.4.3  Performance Mapping 

The performance mapping system developed in this study is on the basis of the relationships 

conceptualized in Figure 5-2 and numerically derived for our case study in Figure 5-7. However, 

instead of considering the short-period error function (e.g., MSE value over the short period) as one 

single predictor, the mapping system disaggregates this function value into multiple values 

corresponding to different sub-periods of the representative short period. Each sub-period is to 

represent a distinct hydrologic behavior/aspect of the data, for example, flood events, recession 

periods, dry periods, etc. This disaggregation enables the mapping system to extract the most of the 
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information contained in a representative short period. Figure 5-6 shows the sub-periods used in the 

representative short periods of our case study. The performance mapping system is to relate the 

performance of the model over all these sub-periods to the performance of the model over the full 

period of data. The performance mapping system consists of a regression model enhanced by a 

localized Gaussian deviation model,     , based on the kriging concept in the form of: 

       ∑         
 
     (               )                 (5-2) 

where    is the i
th
 candidate parameter set,        is the model error function value for sub-periods j, 

  is the number of sub-periods, and        is the full-period error function. We considered        

           where      is the mean squared of model errors over the sub-period j and  ̂  

   (      ) where  ̂  is the approximated MSE value over the full period. The logarithmic form is 

used mainly to generate a mapping system more sensitive and accurate for smaller MSE values. In 

automatic calibration, accuracy of the mapping system becomes more important when the search 

approaches the main regions of attractions (regions containing parameter sets with reasonably small 

error functions).  

The regression-Gaussian model in equation 5-2 was adopted from Sacks et al. [1989] and 

implemented with the software package developed by Lophaven et al. [2002]. This mapping function 

represents the global relationships by the regression component, while the Gaussian component 

attempts to represent the residuals in the regression and also the non-linear local relationships. The 

minimum number of input-output data sets that is mathematically required to develop the mapping 

function and provide confidence intervals is n+2 (n is the dimension of the function input space). 

Interested readers are referred to Sacks et al. [1989] and Lophaven et al. [2002] for details on how to 

develop and fit the model. Notably, unlike regression models, the mapping system developed is an 

exact interpolator for the input-output sets used for developing/updating the system – the system 

would generate the exact model performance (i.e., full-period MSE values) for the parameter sets that 

have been already evaluated over the full data period.  

To select multiple sub-periods out of each representative short period, (a) and (b), shown in Figure 

5-6, the residual time series generated for 1000 random parameter sets in Section 5.4.2 were used. All 

possible configurations of division points in time for different numbers of sub-periods ranging from 2 

to 6 were evaluated for both representative short periods by fitting the mapping system with only the 
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regression component (     was assumed to be constant). The sub-period configurations that 

maximized the regression R
2
 value were selected. In our case study, the representative short periods 

(a) and (b) were disaggregated into 5 and 4 sub-periods, respectively. Notably, all the division points 

of the configurations for sub-periods which generated high R
2
 values coincide with either the lowest 

or peak flows. We noticed that for a given representative short period, there are many configurations 

for sub-periods starting or ending at peaks or lowest flows that can generate a reasonably reliable 

regression model (i.e., with high R
2
).  

To demonstrate the accuracy of the developed mapping system, 1000 new parameter sets were 

generated randomly in their specified ranges and then the model was run for each parameter set over 

the full period and the representative short periods (a) and (b) independently. For each representative 

short period, the mapping system was developed using 100 of these generated input-output sets 

(selected randomly) and then tested over the remaining 900 input-output sets. Figure 5-8 shows the 

scatter plots of the actual full-period sum of squared errors (SSE) versus the predicted full-period SSE 

values for the 900 testing parameter sets. As can be seen, the results of the mapping system are almost 

unbiased as the linear regressions plotted on this figure are very close to the ideal (1:1) line. The 

dispersity of the points around the ideal line is also reasonably low for both representative short 

periods as the R
2
 values are 0.92 and 0.96 for the representative short periods (a) and (b), 

respectively.  

 

Figure 5-8. Scatter plots of the actual sum of squared errors (SSE) values over the full period versus 

the predicted SSE values for the same data period for 900 randomly generated parameter sets – the 

mapping (prediction) system is developed based on the model performance results over 100 randomly 

generated parameter sets (independent of the 900 parameter sets) 
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5.5 Numerical Experiments and Results 

The three different approaches to model calibration, namely calibration solely on a representative 

short period, calibration on the full period of data, and calibration through the proposed framework, 

were evaluated and compared. Seven independent calibration experiments were run for each approach 

with seven different random seeds and random starting points. The comparisons were made within 

four different computational budget scenarios. Computational budget was quantified by the total 

number of years that were simulated by the hydrologic model over the course of each automatic 

calibration experiment and budgets of 450, 900, 1800, and 2250 years were considered. The smallest 

computational budget is equivalent to 50, 415, and 300 hydrologic model runs (optimization function 

evaluations) over the full period, representative short period (a), and representative short period (b), 

respectively. The computational budget of 2250 years of simulation is equivalent to 250, 2075, and 

1500 objective function evaluations with full period, representative short period (a), and 

representative short period (b), respectively. 

Figure 5-9 shows the results of the numerical experiments. The maximum Nash-Sutcliffe 

coefficient value (referred to as “global optimum” in this figure) for this case study that has been 

previously identified through extensive optimization is 0.85. As can be seen, model calibration on the 

full period is improving with the increase in the computational budget. However, model calibration 

solely on representative short period (a) is not as robust, since the performance results of the 

calibrated model when tested over the full period are more variable, and more importantly, are not 

improving (may be even degrading) with the increase in computational budget. Such degradations are 

obvious between the computational budgets of 900 and 1800 years of simulation as the average N-S 

value degrades from 0.68 to 0.63. This degradation is the result of over-fitting as illustrated in Section 

5.2 and Figure 5-3. Moreover, in one experiment, model calibration on representative short period (a) 

failed to find a parameter set with an N-S value of greater than 0.4. The proposed framework with 

representative short period (a) performed consistently well in all the computational budgets and 

outperformed the other two approaches in terms of the average performance over the seven 

calibration experiments. At the largest computational budget considered, the proposed framework 

with representative short period (a) was able to find a parameter set close to the global optimum. 
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       (a) 

 

 
       (b) 

Figure 5-9. Results of the model calibration experiments with representative short period (a) and 

representative short period (b) through the three approaches: calibration solely on a short period, 

calibration on the full period, and the proposed framework – Seven independent calibration 

experiments for each approach were conducted, and Nash-Sutcliffe (N-S) coefficient over the full 

period of data was of interest at the end of each experiment. 

 

Figure 5-9 also demonstrates that representative short period (b) is a near perfect surrogate of the 

full period as model calibration solely on this short period performed consistently well and better than 

calibration on full period in all computational budgets. The proposed framework with representative 
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short period (b) also performed very well. In terms of the average N-S values over the seven 

calibration experiments, the proposed performance worked better or almost equally well at all 

computational budgets compared to the short-period calibration performance. Moreover, the range of 

N-S values obtained by the proposed framework is smaller than the corresponding ranges obtained by 

the two other approaches in all the computational budgets except the smallest one.  

The highest computational budget considered was not sufficient to enable the conventional full-

period calibration to approach the global optimum (the maximum N-S value found with this approach 

is 0.75). Therefore, to further evaluate and compare the performance of this approach, its seven 

calibration experiments were continued with a total budget of 1000 optimization function evaluations 

(i.e., equivalent to 9,000 years of simulation). The average, best, and worst N-S values found in these 

seven calibration experiments were 0.79, 0.83, and 0.76, respectively. Whereas, the proposed 

framework with representative short period (b) at the computational budget of 2,250 years of 

simulation attained the average, best, and worst N-S values of 0.80, 0.84, and 0.77. As such, one may 

conclude that model calibration on the full period with the budget of 9,000 years of simulation and 

the proposed framework with the budget of 2,250 years of simulation performed comparably.  

The results of this experiment demonstrate that a properly-designed framework to utilize surrogate 

data may compensate for the inadequacy (lack of representativeness) of surrogate data in calibration 

practice. For “excellent” surrogate data, the role of this framework in successful calibration is 

minimal. But when highly appropriate surrogate data are not available or not easily identifiable, users 

can heavily rely on a properly-designed framework to reliably utilize less appropriate surrogate data 

to calibrate the computationally intensive model. 

5.6 Relations to Surrogate Modelling 

The framework proposed in this work shares certain features with strategies for lower-fidelity 

physically based surrogate modelling.  Lower fidelity surrogates are simplified models which directly 

or conceptually preserve the physical processes in the real-world system. In general, there are many 

different ways with multiple subjective decisions to develop a lower-fidelity surrogate model for a 

given case study. For example in the hydrologic modelling context, a fully-distributed hydrologic 

model may be deemed the highest-fidelity model, while a semi-distributed model or a lumped model 

may be considered as lower-fidelity models. A low-fidelity hydrologic model may also ignore some 

physical processes simulated in a high-fidelity hydrologic model. One common challenge with any 
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surrogate modelling strategy is the identification of the best way to develop a surrogate model for a 

given case study.  The other challenge in developing and utilizing some (not all) lower-fidelity 

surrogate models is how to map their parameter space to the original model parameter space [Bandler 

et al., 2004; Robinson et al., 2008]. Such a mapping is not always trivial and may introduce a great 

deal of uncertainty in a calibration experiment. 

The proposed framework parallels the primary objective of surrogate modelling which is to 

circumvent the computational burden of optimization attempts involving computationally demanding 

models. However, instead of a lower-fidelity model as the surrogate, the proposed framework utilizes 

the original, high-fidelity model but runs it over a surrogate calibration period which is a 

representative short period of the full available data period. As such, the proposed framework evades 

the two aforementioned challenges as it preserves the original model parameters, complexity and 

processes simulated. 

As outlined in Chapter 3 (also in Razavi et al. [2012b]), there are various methodologies in the 

literature to make use of surrogate models in model calibration and optimization. In some studies, 

surrogate models after being developed are treated as if they are high-fidelity representations of the 

real-world systems of interest and fully replace the original models [e.g., McPhee and Yeh, 2008; 

Siade et al., 2010; Vermeulen et al., 2005; Vermeulen et al., 2006]. Such a strategy can be deemed 

analogous to the strategy for hydrologic model calibration which identifies and solely relies on a 

representative short data period. There are some other studies addressing the discrepancies between 

surrogate and original models [e.g., Bandler et al., 2004; Cui et al., 2011; Forrester et al., 2007; 

Robinson et al., 2006]. Similar to the proposed framework, these studies develop strategies to predict 

the response (e.g., a performance metric) of a high-fidelity model as a function of parameter values 

and the corresponding response of a surrogate model. However, the performance mapping system 

developed in the proposed framework is unique in that, unlike common surrogate modelling 

strategies, model parameters are not directly involved in mapping as predictors and also the response 

of the faster-to-run model is disaggregated into multiple factors (i.e., performance over independent 

events) to extract the most out of the available response. Importantly, since the mapping system does 

not involve the model parameters in the approximation procedure (as inputs to the mapping function), 

the limitations of common surrogate modeling strategies associated with high-dimensional problems 

(e.g., calibration problems with large numbers of model parameters – see Chapter 3 for surrogate 

modelling limitations) may be reduced or diminished. 
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Unlike the proposed framework, most strategies for surrogate modelling use Design of 

Experiments (DoE) at the beginning of the search to empirically capture the general form of the 

underlying function, e.g., a “correction function” representing the difference between the responses of 

lower-fidelity and original models (see Chapter 3 or Razavi et al., [2012]). DoE is an essential part of 

many surrogate modelling strategies and very helpful to generate an unbiased estimate of the general 

form of the function, but at some relatively large computational costs (e.g., 10-20% of the total 

computational budget). The proposed framework does not fundamentally need such computationally 

demanding experiments since unlike the common correction function approaches used in lower-

fidelity surrogate modelling which are purely empirical (see Chapter 3 or Razavi et al. [2012] for 

details), the developed performance mapping system makes use of  the hydrological and statistical 

characteristics of the model responses to establish the relationships.  

5.7 Conclusions 

This study proposed a framework for efficient hydrologic model calibration on long data periods 

(longer than a few years). This framework becomes appealing when a hydrologic model of interest is 

computationally expensive and its run-time on such long periods is a few minutes or more. The basis 

of the framework is the fact that there are certain relationships between a hydrologic model 

performance on the full-length data and its corresponding performance on a representative short 

period of data (i.e., surrogate data). By extracting such relationships, a mapping system was 

developed to approximate the full-period model performance given the model performance on the 

surrogate data. The proposed framework enabled with this mapping system was designed such that in 

the course of a calibration experiment the majority of candidate parameter sets are evaluated by 

running the model on the surrogate data while the full-length data are only used to evaluate selected 

candidate parameter sets. Numerical experiments showed that this framework can increase calibration 

efficiency while being robust, as within a smaller computational budget, it can lead to calibration 

solutions close to the optimal solution of the full-period calibration problem. Results also 

demonstrated that the framework can work very well when the selected surrogate data period has only 

a moderate level of representativeness (i.e., not the best representative sub-period of a full-length data 

period) which is typically identifiable by experts’ knowledge. 

The proposed framework may be categorized under the large umbrella of surrogate modeling with 

the major distinction that unlike common surrogate modeling strategies which utilize a fast-to-run 
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surrogate model of an original high-fidelity model, this framework defines surrogate data and only 

uses the original high-fidelity model. Future extensions to the proposed framework may incorporate 

the approximation uncertainty estimate for model performance predictions (i.e., the variance of errors 

associated with each prediction) that the developed mapping system is capable of producing [see 

Sacks et al., 1989]. Moreover, the framework proposed can be extended and modified to be used in 

conjunction with uncertainty-based approaches to hydrologic model calibration such as GLUE or 

different Markov chain Monte Carlo techniques. Such extensions may also involve the approximation 

uncertainty of performance mapping.   
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Chapter 6 

Conclusions and Future Directions 

This thesis focused on developing new strategies and validating some existing strategies for 

circumventing the computational burden associated with the calibration of computationally intensive 

environmental models. These strategies are basically applicable to a range of simulation-optimization 

methodologies where the embedded simulation model is computationally intensive to run. In the 

following, conclusions attained in each chapter are outlined. 

 The deterministic model preemption strategy developed in this thesis is a simple, efficient, and 

highly reliable approach for opportunistically evading (i.e., terminating) unnecessary model 

evaluations in the course of a calibration process. The numerical results showed that the 

computational savings afforded by enabling search algorithms with deterministic model 

preemption can be modest (~20%) to incredible (~97%) depending on the search algorithm and 

simulation model used, and these computational savings can be realized with absolutely no change 

to the search algorithm behavior or calibration results. Some calibration algorithms are ideal for 

deterministic model preemption in that they have easily definable preemption thresholds and also 

stand to benefit considerably in terms of increased computational efficiency, while some other 

algorithms are moderately suitable and some are unsuitable for deterministic model preemption. 

Moreover, deterministic model preemption is applicable only when the objective function used 

monotonically degrades as the simulation model generates outputs through time (simulates more 

time steps in calibration period) or space (based on Chapter 2).  

 Surrogate modelling has been the most commonly used approach in the literature to circumvent 

the computational burden imposed by computationally intensive simulation models. However, 

there are a suite of fundamental considerations, limitations, and subjective decisions associated 

with surrogate modelling strategies (sometimes ignored in the literature) that must be recognized 

and taken into account by users before any surrogate modelling practice to ensure reliable analyses 

and conclusions. When designed and implemented appropriately, surrogate modelling strategies 

may enable the users to optimizer/calibrate environmental models of interest within a very limited 

number (e.g, as few as 100-200) of original computationally intensive model evaluations. 

Probably the most important limitation of surrogate modelling in applicability is when the number 
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of dimensions in the explanatory variable space is large (e.g., more than 15-20). Response surface 

surrogates are conceptually much more vulnerable to this limitation than lower-fidelity physically-

based surrogates are. Moreover, any conclusion on the efficiency of a surrogate modelling strategy 

should be based on appropriate benchmarks. Such efficiency conclusions were empirically 

demonstrated to be computational-budget-dependent such that often surrogate modelling becomes 

less appealing for larger computational budgets (based on Chapter 3 and Chapter 4). 

 Response surface surrogates which involve statistical or data-driven function approximation 

techniques are the basis of the most popular surrogate modelling strategies. Although these 

strategies are commonly believed to be efficient and reliable, this thesis demonstrates that 

response surface surrogates cannot always reliably emulate original response surfaces, and such 

strategies in some cases can be misleading and a hindrance, in particular for complex original 

response surfaces. This risk also depends on the type of the function approximation technique used 

and the framework through which the surrogate model, original model, and search algorithm are 

coordinated (based on Chapter 4). 

 Lower-fidelity physically-based surrogates that are simplified models of original real-world 

systems of interest are conceptually more reliable in exploring the unseen regions in the 

explanatory variable space compared to response surface surrogates.  This reliability directly 

relates to the level of fidelity of a surrogate model and diminishes for the surrogates with very low 

fidelity. As there is typically a trade-off between the level of fidelity of a model and its 

computational demand, the lower-fidelity model developers should create a level of fidelity that is 

sufficiently faithful to the original model while being efficient enough to permit the case study 

specific analysis required. Model calibration utilizing lower-fidelity surrogate models becomes 

very complicated when the surrogate model is defined on a different variable space (based on 

Chapter 3). 

 The efficient automatic calibration framework developed in this thesis, which defines and utilizes 

surrogate calibration data as a substitute for full calibration data, is an easy-to-implement and 

reliable alternative to lower-fidelity physically-based surrogate modelling. Original 

computationally intensive simulation models run faster on surrogate data. This framework 

preserves the benefits of lower-fidelity surrogate modelling without requiring users to develop a 

secondary model (i.e., a surrogate model) of the real-world system of interest. The efficiency of 
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the framework depends on the level of representativeness of surrogate data. Moreover, the 

framework is designed in a way that can handle surrogate data that are not an ideal representative 

subset of the full calibration data. The establishment of the mapping system that reliably relates 

the model performance on surrogate data to the model performance on full calibration data is a key 

to this framework (based on Chapter 5).  

Computational burdens associated with experiments requiring to repeatedly run computationally 

intensive environmental models will likely remain a challenge in the future. This challenge may be 

even growing as environmental and earth system models are becoming more advanced and 

sophisticated with the increase in availability of new sources of environmental data. This thesis has 

provided the groundwork for more systematic development of efficient strategies to circumvent such 

computational burdens. The following remarks summarize some suggestions on future research 

directions:  

 The strategies developed in this thesis such as model preemption have the potential 

capability to be implemented on parallel computing resources which are becoming more 

readily available. Future research may be directed at developing efficient ways for 

combining the strategies developed here with parallel computing. Such combinations 

would be expected to further increase the computational efficiency of environmental model 

calibration.  

 Although response surface surrogate modelling has been widely explored and applied in 

the literature, further research efforts are still required to address their shortcomings and 

improve their reliability. Improved methods will likely require incorporating the 

approximation uncertainty associated with response surface surrogates into the analysis 

enabled with surrogate modelling. Future research may also be directed at developing 

systematic, more practical strategies to create lower-fidelity physically-based surrogate 

models for different types of environmental models. Lower-fidelity physically-based 

surrogate modelling is still underutilized in water resources applications and seems to be a 

very fruitful area of future research. 

 Surrogate modelling has been largely underutilized in uncertainty-based calibration of 

environmental models. As methods for uncertainty-based calibration are inherently very 

computationally demanding requiring extremely large numbers of model evaluations (e.g., 
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sometimes millions of model runs), surrogate modelling would be expected to deliver huge 

benefits to such calibration methods. Future research may also be aimed at incorporating 

the uncertainty introduced by surrogate models into the uncertainty-based calibration 

process. 

 The concept of “surrogate data” introduced in this thesis can find applications in many 

environmental modelling studies. Large amounts of detailed environmental data are 

typically available and incorporated into environmental models today and that volume of 

data only increases with time. As such, developing methods to extract surrogate data (i.e., 

representative subsets of full data) and methods to utilize original models with the 

surrogate data in calibration problems seems to be a promising and much needed research 

direction.  
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Glossary 

ACO  Ant Colony Optimization 

ANN  Artificial Neural Networks 

BTC  Breakthrough Curve 

CF  Correction Function 

CMA-ES Covariance Matrix Adaptation-Evolution Strategy 

DACE  Design and Analysis of Computer Experiments 

DDS  Dynamically Dimensioned Search 

DDS-AU Dynamically Dimensioned Search-Approximation of Uncertainty 

DFRTT  Dipole Flow and Reactive Tracer Test 

DOE  Design of Experiment 

EGO  Efficient Global Optimization 

EI  Expected Improvement 

GA  Genetic Algorithm 

GEM  Gaussian Emulation Machine 

GLUE  Generalized Likelihood Uncertainty Estimation 

GP  Genetic Programming 

kNN  k-Nearest Neighbors 

LHS  Latin Hypercube Sampling 

MARS  Multivariate Adaptive Regression Splines 

MCMC  Markov Chain Monte Carlo 

MLMSRBF Multistart Local Metric Stochastic Radial Basis Function 

MOR  Model Order Reduction 

MSE  Mean Squared Errors 

N-S  Nash-Sutcliffe 

PI  Probability of Improvement 

PSO  Particle Swarm Optimization 

RBF  Radial Basis Function 

ReNN  Reformulated Neural Network 

RMSE  Root Mean Squared Errors 

rnd  Random 

SCE  Shuffled Complex Evolution 

SSE  Sum of Squared Errors 

SVM  Support Vector Machines 

SWAT  Soil and Water Assessment Tool 
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