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Abstract

Piezoelectric actuators have proven to be useful in suppressing disturbances and shape con-

trol of flexible structures. Large space structures such as solar arrays are susceptible to large

amplitude vibrations while in orbit. Moreover, Shape control of many high precision structures

such as large membrane mirrors and space antenna is of great importance. Since most of these

structures need to be ultra-light-weight, only a limited number of actuators can be used. Con-

sequently, in order to obtain the most efficient control system, the locations of the piezoelectric

elements as well as the feedback gain should be optimized. These optimization problems are

generally non-convex. In addition, the models for these systems typically have a large number

of degrees of freedom.

Researchers have used numerous optimization criteria and optimization techniques to find

the optimal actuator locations in structural shape and vibration control. Due to the non-convex

nature of the problem, evolutionary optimization techniques are extensively used. However,

One drawback of these methods is that they do not use the gradient information and so con-

vergence can be very slow. Classical gradient-based techniques, on the other hand, have the

advantage of accurate computation; however, they may be computationally expensive, partic-

ularly since multiple initial conditions are typically needed to ensure that a global optimum is

found. Consequently, a fast, yet global optimization method applicable to systems with a large

number of degrees of freedom is needed.

In this study, the feedback control is chosen to be an optimal linear quadratic regulator.

The optimal actuator location problem is reformulated as a convex optimization problem. A

subgradient-based optimization scheme which leads to the global solution of the problem is

introduced to optimize the actuator locations. The optimization algorithm is applied to optimize

the placement of piezoelectric actuators in vibration control of flexible structures. This method

is compared with a genetic algorithm, and is observed to be faster in finding the global optimum.
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Moreover, by expanding the desired shape into the structure’s modes of vibration, a method-

ology for shape control of structures is presented. Applying this method, locations of piezoelec-

tric actuators on flexible structures are optimized.

Very few experimental studies exist on shape and vibration control of structures. To the best

knowledge of the author, optimal actuator placement in shape control has not been experimen-

tally studied in the past. In this work, vibration control of a cantilever beam is investigated for

various actuator locations and the effect of optimal actuator placement is studied on suppressing

disturbances to the beam. Also using the proposed shape control method, the effect of optimal

actuator placement is studied on the same beam. The final shape of the beam and input voltages

of actuators are compared for various actuator placements.
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Chapter 1

Introduction

Active shape and vibration control of flexible structures has recently become a popular research

interest in modern space industries. In vibration control, it is desired to suppress the effect of

external disturbances and keep the structure in its equilibrium position. In shape control it is

intended to deform the structure to a desired shape and position and maintain the structure in the

desired shape. For instance, ultra-light-weight large-scale space structures such as solar sails

and solar arrays are susceptible to large amplitude vibrations while in orbit. In extreme cases,

these disturbances may lead to instability of the overall structure [1]. Moreover, shape control

of some high-precision structures, such as space antennas and reflectors, is an issue of concern

[2].

In the past few decades, application of piezoelectric actuators in active control of structures

has raised interest in modeling and control of smart structures. These actuators are inexpensive

and available in various shapes and sizes and can be easily bonded to any structure [3]. In

addition, membranes can now be used as surfaces for satellites and reflectors [4]. The small

thickness of these key components makes it necessary to apply actuators with the least impact on
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the system’s dynamics. Consequently, their light weight, make piezoelectric materials suitable

to be applied as sensors and/or actuators in space structures.

While considerable research has been focused on active vibration suppression of flexible

structures, less effort has been dedicated to the use of smart structures for shape control. How-

ever, shape control, arises in many applications, especially when precise tolerances of structure

surfaces are necessary [2].

One essential factor in designing these active control systems is suitable placement of the

actuators (and sensors) since misplaced sensors and actuators lead to degradation of perfor-

mance [5]. Judicious selection of actuator locations can be particularly challenging when there

are multiple actuators because an ad hoc procedure is not feasible. Researchers have used

numerous optimization criteria and optimization techniques to find the optimal actuator loca-

tions in vibration control. Different results can be achieved with different cost functions. A

numerical challenge with any criterion is that the resulting optimization problem is generally

non-convex. Moreover, for simulation and controller design, distributed parameter systems are

approximated, for instance by finite elements methods. For complex systems with several state

space variables a large number of elements is required for accurate modeling. As the number

of elements increases, calculation of the optimal actuator placement can be computationally

costly, particularly due to the non-convexity of the actuator location problem. Consequently,

there is a need for a fast and accurate optimization algorithm that can be used for structures

where there is a large number of degrees of freedom.

Some new studies have focused on applying evolutionary algorithms to find the optimal

locations. A major drawback of these methods is their low convergence speed since they do

not use the gradient information. This is particularly an issue for control of systems, such as

structures where a large number of state variables are needed for accuracy, due to high compu-

tational time of the genetic algorithms as the number of design variables increases. Classical
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gradient-based techniques, on the other hand, have the advantage of using the gradient informa-

tion. However, multiple initial conditions are typically needed to ensure that a global optimum

is found. Consequently, despite the non-convex nature of this optimization problem, it is quite

helpful to seek methods that use gradient-based information. Consequently, a fast, yet global

optimization method applicable to systems with a large number of degrees of freedom is needed.

The aim of this study is to investigate the optimal shape and vibration control of flexible

structures augmented with piezoelectric actuator patches. In this study, a linear quadratic cost

function for multi-input systems is considered. It is desired to optimize the locations of control

devices on flexible structures. The optimal linear quadratic cost is taken as the objective func-

tion. It has been shown that by mapping actuator locations into zero-one vectors and projecting

the solution of the Riccati equation, to a space of design parameters, the cost function becomes

convex in the new topology [6]. This approach has been used to develop a gradient-based

optimization algorithm that finds the optimal actuator locations. Note that due to the reformu-

lation of the problem as a convex problem, the calculated locations are globally optimal. The

optimization scheme is discussed in detail in Chapter 2.

The optimal actuator placement is studied in detail for shape control and vibration control

and the results are compared with a genetic algorithm to verify accuracy. Chapter 3 discusses

the optimal actuator placement in vibration control. In Chapter 4 a methodology is introduced

for shape control of structures. Further, the optimal actuator placement in shape control is

investigated.

Chapter 5 includes experimental studies on both optimal vibration control and shape con-

trol. The importance of optimal actuator placement is discussed in this Chapter. Chapter 6

includes the summary of this study and suggests future works to complete the optimal shape

and vibration control topics.
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1.1 Modeling and Analysis of Piezoelectrically Actuated Struc-

tures

Piezoelectric materials are among the most commonly used smart materials. They have the

ability to generate an electric charge proportional to their externally applied load in a certain

direction, a characteristic known as direct piezoelectric effect [3]. Conversely, an electric field

induces deformation in a piezoelectric material - the inverse piezoelectric effect. This effect is

used in piezoelectric actuators’ design.

Ceramics and polymers are the two classes of piezoelectric materials primarily used in

vibration control. Lead zirconate titanate also called PZT is a piezoceramic that can be used as

an actuator and sensor for a wide range of frequencies. PZT materials can withstand high strain

energies and can be easily bonded to a structure. Piezopolymers are used mainly as sensors;

Polyvinylidene fluoride (PVDF), for example is one member of this material category [7].

1.1.1 Characteristic Equations of Piezoelectric Materials

The constitutive equations of piezoelectric materials can be written as

σ = CES + e∇φ (1.1a)

D = eS − ǫ∇φ, (1.1b)

where, σ is the stress vector, S is the strain vector, φ is the electric potential, CE is the matrix of

elastic constants under constant electric field (dependent on modulus of elasticity and Poisson’s

ration), ǫ is the electric permittivity matrix under constant mechanical strain, e = dC contains

the piezoelectric coupling constants, d is the dielectric constant matrix, and D is the electric

displacement vector [8].
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The elastic strain tensor and the electric field vector can be written as functions of displace-

ment vector u and electric potential φ

S =
1

2
(∇u + u∇),

E = −∇φ.

1.1.2 Modeling and Analysis of Smart Structures

Many authors have modeled piezolaminated beams analytically. Pan et al. modeled the dynamic

response of a pure bending Euler-Bernoulli beam with one set of collocated sensor and actuator

[9]. This modeling was corrected and extended by Rivory and Hansen [10]. The authors ne-

glected the effect of mass and stiffness of the piezoelectric patches. At the same time, Yang and

Lee studied the effect of mass and stiffness of piezoelectric layers on the natural frequencies

and mode shapes of a beam structure [11].

Kim and Jones studied the dynamics of a finite dimensional beam with symmetric and

asymmetric piezoelectric configurations [12]. The beam was entirely covered by the piezoelec-

tric layer. Basak et al. modeled the finite beam with one set of symmetric and asymmetric

patches which covered a part of the beam [13]. Khalatkar et al. used ANSYS finite element

software to three-dimensionally model a cantilever plate augmented with piezoelectric actuator

patches [14]. The authors studied the effect of actuator placement in efficiency of the con-

trol system. In [15] a finite element formulation was developed for modeling the dynamic and

static response of laminated plates containing discrete piezoelectric ceramics subjected to both

mechanical and electrical loadings.

For systems with more complicated boundary conditions and multiple piezoelectric patches,

numerical methods are applied. Few authors have applied the finite difference method to model
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the base structure and piezoelectric patches [16, 17, 18]. Due to its simplicity, the finite element

method has gained more popularity. This method has been applied by many researchers [19,

20, 21] and has been a major area of research [22].

The electric potential at the upper and lower surfaces of a piezoelectric structure can be

treated as electrical degrees of freedom in the finite element modeling. Through several simpli-

fications, some researchers have deduced these quantities from finite element modeling . Some

authors have used the mechanical finite element for very small piezoelectric patches, ignoring

the electrical degrees of freedom [23, 24]. However, Bruant et al. mentioned that in the case of

embedded piezoelectric or when large piezoelectric patches are used it is necessary to take the

electrical degrees of freedom into account [25].

1.2 Control Method

Various control laws are applied to control active structures. In [26], three laws, direct propor-

tional feedback, constant gain negative velocity feedback and linear quadratic regulator (LQR)

optimal control laws are compared. It was concluded that since the negative velocity feedback

adds damping to the system, it is much more effective than the direct proportional feedback

which only adds stiffness to the system; however, the LQR optimal control scheme is even

more effective than the other control laws. A review of the existing control measures in active

and semi-active control of structures can be found in [27].

The LQR control law is applied in various studies. Bruant et al. employed a LQR control

method which includes a state observer to compute the optimal control [25]. LQR control was

also employed in [28]. Roy and Chakraborti used a genetic algorithm to find the optimum Q

and R matrices in designing a LQR controller [21]. This control law is also used in this thesis.
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1.3 Active Vibration Control of Flexible Structures

Since space structures are highly flexible, their performance is strongly affected external distur-

bances. In vibration control, the goal is to nullify the effect of external disturbances by applying

a proper control actuation. Several active control methods have been used for structural vibra-

tion suppression.

Zabihollah et al. studied the concept of vibration suppression of layered laminated beams

[20]. In [29], the influence of laminate configurations and locations of sensors/actuators on

vibration responses of smart laminated beams under random loading was studied. In this paper

the LQR was used to calculate the closed loop feedback control. Ruggiero and Inman studied

vibration control of an active membrane mirror [30].

In [31] the authors studied active vibration control of an Euler-Bernoulli beam with piezo-

electric actuators bonded to the top and bottom surfaces. They used optimal control theory to

control the beam. Kwak et al. studied active vibration control of shells [32]. The paper focused

on active vibration controller design. Through experiments, it was verified that piezoelectric ac-

tuators are effective in vibration control. In [33] vibration control of piezoelectric light weight

structures was studied analytically and numerically. Modal truncation was applied and the con-

troller was designed to suppress the first two flexural vibrations of the beam. In [34], Li et al.

studied active vibration control of large flexible spacecrafts via the use of piezoelectric actuator

stacks. The control devices were active tuned mass dampers which utilized piezoelectric mate-

rials. Butta et al. experimentally studied vibration control of gas turbine blades. Their aim was

to minimize the vibrations and increase the fatigue life of gas turbine [35].
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1.4 Active Shape Control of Flexible Structures

In a structural shape control, it is desired to deform a structure to a certain configuration. The

need for shape control arises in many applications, such as membrane mirrors to improve their

imaging quality [2]. The shape of some flexible structures needs to be precisely regulated to

achieve the desired operation. This allows the weight of these structures to be reduced by replac-

ing rigidizing members with active control devices. Irschik [36] reviewed some applications of

static and dynamic shape control of structures by piezoelectrics.

In [37], Binette et al. analytically studied the shape control of composite structures with

MFC actuators. These structures are subjected to temperature gradients throughout their thick-

ness. Chellabi et al. designed an optimal tracking controller to shape the surface of a flexible

mirror used in an adaptive optic system [38]. The authors took into account the dynamics of the

mirror and included piezoelectric actuators as a control measure. Shaik Dawood et al. used a

weighted shape control method to study the required input voltages of piezo-actuators in static

shape control of composite plates [39]. Hu and Vukovich designed an LQR controller to keep

the structure in a specified shape and reject disturbances [40]. Luo and Tong studied dynamic

shape tracking in piezoelectric actuated structures [41]. Punahi developed a closed loop control

method for dynamic shape control of a PVDF laminated plate with simply supported boundary

conditions [42].

1.5 Optimal Actuator Placement

One essential factor in designing these active control systems is proper placement of the ac-

tuators (and sensors) since misplaced sensors and actuators lead to lack of controllability and

observability in the system. Researchers have used numerous optimization criteria and tech-

8



niques to find the optimal actuator locations in vibration control of structures; see in particular

the papers [43, 44, 45, 46, 47]. Different results can be achieved with different cost functions.

A numerical challenge with any criterion is that the resulting optimization problem is generally

non-convex.

Kumar and Narayanan studied the optimal location of collocated piezoelectric sensor/actuator

patches to control vibrations on an Euler-Bernoulli cantilever beam [48]. The authors min-

imized the linear quadratic cost as the optimization objective function. Daraji and Hale op-

timized the location of piezoelectric sensor-actuator pairs on plates. The authors applied a

genetic algorithm as the optimization method. The objective was to minimize the optimal lin-

ear quadratic control [49]. Li et al. studied optimal actuator placement in vibration control of

satellite antenna reflector [50]. Piezoelectric actuator locations were optimized based on con-

trollability and observability of the system. The authors employed a genetic algorithm as the

optimization technique. Tianbing and Fei optimized piezoelectric sensors and actuators sizes

and locations on beams. The authors applied chaos particle swarm algorithm for the optimiza-

tion. The optimization was based on minimization of the stored and required control energy

[51].

Marinova formulated the dynamics of a thin plate and studied the effectiveness of piezoelec-

tric layers for plate shape control [52]. A genetic algorithm was finally used to find the optimal

voltages for some preselected locations of piezoelectric actuators. Luo and Tong also optimized

the piezo-stiffeners voltages in a plate shape control using the linear least squares method [53].

Liu et al. applied piezoelectric stiffeners to control the shape of a plate structure [47]. By the

minimization of the square of the error between the actuated and desired shapes, their goal was

to optimize the size and voltages of actuators. Chee et al. optimized the orientation of piezo-

electric actuators for static shape control of composite plates [54]. Andoh et al. expanded the

reference shape as a set of eigen functions and optimized the actuators’ locations based on con-
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trollability of the system [55]. Bruch et al. optimized the location and length of piezo-actuators

for static shape control of beams [16]. Their objective was to find the minimum control effort

for the maximum deflection of the beam. Applying a genetic algorithm, Yu et al. optimized the

applied voltages to laminated piezoelectric actuators in static shape control of a cantilever beam

structure [56]. Marinova formulated the dynamics of a thin plate and studied the effectiveness

of piezoelectric layers on the plate shape control [52]. A genetic algorithm was applied to find

the optimal voltages for some preselected locations of piezoelectric actuators. Kudikala et al.

optimized the location of actuators and their input voltages in static shape control of plates [43].

They applied genetic algorithm to solve this multi-objective optimization problem. Sun and

Tong studied the optimal location of piezoelectric patches in static shape control of composite

plates [57]. The authors applied an evolutionary actuator location optimization method in which

actuators with smallest voltages are removed sequentially until a desired error is reached.

Lui and Lin optimized voltage channel distribution and voltage of each channel for tracking

dynamic shapes of the structure [58]. The authors applied a two-level optimization method

based on a simulated annealing algorithm. In [59] a genetic algorithm is applied to optimize the

location and input voltages of piezoelectric actuators for steering a parabolic antenna. In [60],

the authors optimized the distribution of single channel input voltages in static shape control of

structures.

1.5.1 Optimization Criteria

Over the past decade, researchers have applied numerous optimization criteria to find the opti-

mal location of piezoelectric sensors and actuators. The most popular optimization criteria are

controllability measures and linear quadratic control. In this section, these criteria and some

other optimization criteria are reviewed.
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Controllability Measures

To locate actuators in a linear time-invariant system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t)
,

where x(t) and u(t) are state and input vectors respectively, it is desirable to minimize the re-

quired control energy, Jc, to bring the system to a final state x f . Consequently, this optimization

problem can be defined as

minuJc =

∫ t f

0

uT (t)u(t)dt,

subjected to the system dynamics with given initial and final conditions. The solution to this

problem is

u0(t) = −BT eA(t f−t)W−1(t)(eAt f x0 − x f ),

where W(t) is called the controllability grammian of the system, stated as

W(t) =

∫ t

0

eAτBBT eAT τdτ.

As a result, the minimum eigenvalue of the grammian matrix can be applied to estimate

controllability of the system [61]. In [62], the objective function is defined based on the max-

imization of the trace of the grammian and to ensure that all eigenvalues of the grammian are

large, the product of all eigenvalues is included in the objective function.

In [63], the authors applied modal controllability by investigating the product of the singu-

lar values of the normalized matrix B. The authors studied the piezoelectric locations based on

maximum controllability while having the minimal change in the system’s natural frequencies.

In [19], they applied genetic algorithm to find the piezoelectric locations based on maximum

controllability and minimum change in natural frequencies. The maximization of the product
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of the singular values of the normalized matrix B is also considered in [64]. Many authors op-

timized actuator locations based on maximization of observability and controllability in active

control methods [58, 65, 66, 67, 68].

Linear Quadratic Control

Linear quadratic control is a commonly used strategy for controller design which minimizes

both the control and output energies simultaneously. It is intended to find the input u(t) to

minimize the quadratic cost function

J =

∫ ∞

0

(xT (t)Qx(t) + uT (t)Ru(t))dt,

where Q and R are positive semi-definite and positive definite matrices, respectively. The solu-

tion to this problem is

uopt(t) = −R−1BT Px(t),

and the optimal cost is

Jopt = xT
0 Px0,

where x0 indicates the initial condition and P is the solution of algebraic Riccati equation (ARE)

AT P + PA − PBR−1BT P + Q = 0.

Several studies are focused on the minimization of the linear quadratic cost e.g. [5, 48,

69, 70]. Kumar and Narayanan applied the optimal quadratic regulator controller to find the

optimal placement of collocated piezoelectric sensor/actuator pairs [5]. They minimized the

LQR performance as the objective function of a zero-one optimization problem, and solved it

by applying a genetic algorithm. Ruggiero and Inman developed an LQR controller to suppress

vibrations in a Kapton membrane with a PZT biomorph [30].

12



As a performance index, LQR has proved to be effective for placing and sizing actuators.

Specifically, for an optimal actuator location problem, Geromel showed that by mapping actu-

ator locations into zero-one vectors and projecting the solution of Riccati equation to a special

space of design parameters, the minimum cost shows convexity properties [6]. A formulation to

find the global solution of this problem was presented. Based on this formulation Geromel de-

scribed an optimization method which made it possible to find the optimal location of actuators.

Moreover, the optimal control equation cannot be solved unless, finite-rank approximations are

made, which lead to solving a finite-dimensional ARE. In [71], Morris developed conditions

for convergence of the approximated optimal cost to its exact value and mentioned that the

sequence of Riccati operators need to converge uniformly to the exact operators.

Other Objective Functions

Ning applied an eigenvalue distribution of energy correlative matrix of control input force to

determine the optimal number of actuators and the genetic algorithm with the objective of active

vibration control effects to find the optimum actuators location [72]. In [73], Barboni et al.

tried to find the optimal placement of piezoelectric sensor/actuator pairs on a flexible beam by

maximizing the dynamic influence function of the beam’s deflection under the action of PZT

patches. Kang et al. used the structural damping index which can be defined as the product of

modal damping and mode shape function as the optimization objective function in laminated

beams [74]. Yang et al. calculated the optimal size and location of collocated piezoelectric

sensors/actuators as well as the optimal feedback control gain in a beam applying the genetic

algorithm [75]. This optimization criterion was based on maximization of dissipated energy

by the active controller. Seeger and Gabbert minimized the H2 norm of the transfer function

between an external excitation disturbance and the plate vibration amplitude to find the optimal

positioning of collocated sensor/actuators on a simply supported plate [76]. Silva and Lopez
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calculated the optimal location of actuators by using the H∞ norm to excite the desired modes

most effectively [77]. Kasinathan and Morris also used H∞ norm as the performance index in

optimal actuator placement [78].

In [79], the authors located piezoelectric actuators to maximize the harvested strain energy

in piezoceramic materials. The objective in [80] was to minimize the vibration amplitude.

In [81], actuators and sensors are located in buildings based on two objective functions, the

number of sensors and actuators and the inter-story drifts. In [21], the optimization criterion

was to maximize closed-loop damping ratio.

Kondoh et al. [82] proposed an optimization criterion based on minimization of the sum of

the integrated square regulating error and the integrated square input.

1.5.2 Optimization Method

Most researchers have used evolutionary optimization techniques. In a number of studies, [19,

48, 83, 84, 85, 86], the authors used genetic algorithms. In [81] the authors optimized the

location of sensors and actuators as well as the inter-story drifts of large civil structures applying

a multi-objective genetic algorithm.

Some studies have applied particle swarm methods [68, 87, 88]. In [68], two swarm intelli-

gence algorithms, the artificial bee colony and glow worm swarm optimization algorithms, were

considered to obtain the optimal location of sensors and actuators. These algorithms mimic the

behavior of insect swarms. Swarm methods are different from genetic algorithms since they

are based on cooperation rather than competition. In [89, 90] an invasive weed optimization

technique was applied, which is a new numerical stochastic technique and is inspired from the

colonizing behavior of weeds.
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In [91], the authors optimized sensor locations in structural health monitoring. They applied

a new intelligent algorithm called monkey algorithm. In this method, the diversity of the mon-

keys is increased by introducing Hamming distance in the initial location, in order to improve

the capacity of global search, and the random disturbance mechanism of Harmony search is in-

troduced in the process of climbing to improve the capacity of local search. Harmony search is

a metaheuristic algorithm that finds the best solution to a given problem without using the gra-

dient function [92]. It is inspired by improvisation process of musicians. In [93], placement of

sensors is optimized for detecting damages in composite structures. The problem is formulated

as a minimax optimization in which the goal is to find the coordinates of a given number of

sensors so that the worst (maximum) probability of non detection of the sensor network is made

as good as possible (minimized). The authors used fminimax algorithm in MATLAB which

applies sequential quadratic programming for the solution.

One drawback of many of these methods is that they do not use gradient information and

so convergence can be very slow. This is particularly a problem when controlling structures

where a large number of state variables are needed for accuracy. That is because genetic algo-

rithms have a dramatic increase in computation time as the number of design variables increases.

Classical gradient-based techniques, on the other hand, have the advantage of using gradient

information; however, they may be computationally expensive [94, 95, 96]. Gradient-based

optimization algorithms may lead to local minima. Consequently, multiple initial conditions

are typically needed to ensure that a global optimum is found. Lee and Chen for instance,

solved the optimal actuator location problem, using the gradient-based quasi-Newtonian algo-

rithm [97]. To assure a global solution, the authors ran the algorithm with 380 different initial

conditions and chose the best design.

A fast, yet accurate optimization method applicable to systems with a large number of

degrees of freedom is needed. In [6] a gradient based optimization algorithm was introduced
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by mapping the optimization objective into a convex function in a binary space of actuator

locations. This optimization algorithm is extended in this thesis to be applicable to placement

of arbitrary number of actuators on structures.

1.6 Experimental Study

Many experimental works on piezoelectric active structures so far has been conducted on alu-

minum or Kapton materials. Suhariono et al., experimentally compared the efficiency of dif-

ferent types of piezoelectric patches on a cantilever aluminum beam [98]. The authors applied

a laser displacement device to measure the displacement at the tip of the beam. Lou and Tong

studied the dynamic shape tracking of piezoelectric smart structures. They validated their ap-

proach on an aluminum cantilever beam with two sets of piezo-actuators and applied eddy

probes as displacement transducers [53]. Agrawal and Treanor carried out two phases of exper-

iments on an aluminum cantilever beam with four groups of two piezoelectric patches attached

to one side of the beam [99]. The authors investigated the performance of each actuator and

also verified their analytical model for static shape control. They noticed some residual dis-

placement on all measurement runs and a nonlinear relation between the actuator input voltage

and the beam tip displacement. Roggiero experimentally verified the results of the derived dy-

namic model of a Kapton membrane strip with a PZT biomorph [30]. In this study, a vacuum

chamber was used to minimize the effect of ambient air pressure, and, due to the excessively

small thickness of the model, a laser vibrometer was used to measure the beam’s response.

The SigLab data acquisition board was used to excite the attached PZT biomorph. The same

experimental setup was used in [2]. Yocum and Abramorich [100] experimentally studied the

static behavior of a cantilever beam actuated using piezoceramic patches. In [101] switching

control schemes were studied on an aluminum steel plate augmented with piezoelectric patches
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as sensors and actuators. In this study the aim was to compare the performance of the proposed

control scheme with traditional non-switched control schemes.

1.7 Summary

Many authors investigated optimal actuator placement in vibration control. In optimal vibra-

tion control, the actuators are placed to optimally suppress external disturbances. Relatively

a smaller number of studies were focused on optimal shape control, where the actuator loca-

tions are calculated to optimally achieve a desired position for the structure. As can be antici-

pated from Section 1.5.1 various optimization criteria have been considered in optimal actuator

placement. Different optimization criteria might lead to different results. Applying the linear

quadratic regulator as the control law and optimizing the control effort with respect to actuator

locations, also minimizes the control energy. This criteria is applied here to minimize actuator

locations.

Moreover, as mentioned in Section 1.5.2, due to the non-convex nature of the objective

function, many authors have used evolutionary techniques to solve the problem, which have

their own difficulties for large host structures with a large number of degrees of freedom. Hence,

in subsequent chapters of this thesis, a fast and accurate convex optimization algorithm is pre-

sented for structural shape and vibration control and its results are experimentally verified.
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Chapter 2

Optimization Scheme

In this chapter, an optimization scheme is presented to optimize actuators’ placement in flexible

structures. This optimization algorithm is applicable to actuator placement problems in vibra-

tion and shape control. In Section 2.1 the optimization problem is formulated. An objective

function is presented and a mapping algorithm introduced in [6] is used to transform the op-

timal actuator placement problem into a convex optimization problem. The applied objective

function is not smooth. Consequently, an optimization scheme is presented in Section 2.2 which

is applicable to a non-smooth objective function.

The formulation of the optimization method requires an integer optimization scheme for

the solution. The optimization algorithm is composed of branch and bound technique for the

integer part and a minimax optimization for the relaxation part. It is explained in Section 2.3.

This section includes two parts. In the first part, the branch and bound method is explained

in detail. In the second part, the minimax optimization is explained and sequential quadratic

programming is presented to solve the minimax optimization.
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2.1 Problem Formulation

Consider a linear time-invariant system,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t).
(2.1)

The control u(t) is chosen to minimize a quadratic performance index

J =

∫ ∞

0

(x(t)T Qx(t) + u(t)T Ru(t))dt, (2.2)

where Q and R are positive semi-definite and positive definite weighting matrices, respectively.

For stabilizable (A, B) and detectable (Q1/2, A), the optimal cost is [102]

Jopt = xT
0 Px0 (2.3)

where P is the unique positive semi-definite solution of the algebraic Riccati equation (ARE)

AT P + PA − PBR−1BT P + Q = 0. (2.4)

The optimal control is

u(t) = −R−1BT Px(t) = −Gx(t).

The optimal cost (2.3) depends on the initial condition. This dependency can be handled

in several ways, depending on the application. Most commonly, the initial condition that has

the worst effect on the cost or else a random initial condition is considered. In this study, we

optimize the actuator location by considering the worst initial condition. The cost is [71]

max
‖x0‖=1

xT
0 Px0 = ‖P‖.

Letting λi indicate the eigenvalues of P,

‖P‖ = max
i
λi.
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Now consider the situation where there are a number of possible actuator locations. The

control operator B in (2.1) is dependent on the actuator locations. This yields a cost ‖P‖ that

varies with actuator location. This cost function in general is a non-convex function of the actua-

tor locations. However, in [6] the problem is re-formulated into a convex optimization problem.

The formulation relies on considering a discrete set of N possible actuator locations. In some

situations, the number of possible actuator locations is finite due to engineering constraints. In

other cases, the region of possible actuator needs to be discretized. Since each actuator occu-

pies a non-zero amount of space, this does not present a practical constraint on possible actuator

locations.

Suppose that there are MN actuators and N possible actuator locations. Define a set of

possible control operators B j by considering a single actuator at the jth location. Define similarly

R j by considering one actuator at the jth location. Following the approach in [6], let π be a vector

of N logical elements where the jth entry has a 1 when an actuator exists in that location and a

value of 0 otherwise. Note that π has exactly MN non-zero elements so

N
∑

j=1

π j = MN .

Each such vector π defines a possible set of actuator locations. The B and R matrices are then

defined by

B ≡ [π1B1, . . . , πN BN]

R ≡ blockdiag{π1R1, . . . , πNRN},

The column π jB j is a column of the B matrix, and π jR j is a blockdiagonal part of the R matrix,

which both take zero values if there is no actuator on the jth finite element. As an example, if

there is only one actuator (MN = 1), and it is placed at the jth position then B = B j and R = R j.
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The joint actuator placement and control problem is

minπ,u J = minπ,u
1
2

∫ ∞

0
{xT Qx +

∑N
j=1 uT

j π jR ju j}dt

s.t.

ẋ = Ax +
∑N

j=1 π jB ju j

y = Cx.

(2.5)

For each possible set of actuator locations, π, there is a different cost, obtained by solving the

ARE (4.10) and so the the objective function is

σm(π) = ‖P(π)‖. (2.6)

The optimization problem is

min{σm(π); π ∈ Φ},

s.t.

Φ = {π ∈ RN s.t. π j ∈ {0, 1};
∑N

j=1 π j = MN},

(2.7)

where MN indicates the number of actuators.

Theorem [6] : On the convex set Φc = {π ∈ RN s.t. π ≥ 0}, σm(π) : Φc → R is convex. For

π0 ∈ Φc, a subgradient µ of σ(π0) can be defined as

µ(π0) = [µ1(π0). . . µN(π0)],

µ j(π0) = Tr{L jS (π0)}

L j = B jR
−1
j BT

j j = 1, . . . ,N

S (π0) = −1
2
P(π0)θ(π0)P(π0)

(2.8)
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where, with Z = z.z′ and z as the normalized eigenvector associated with the maximum eigen-

value of P(π0), θ(π0) is the solution of the Lyapunov equation

(A − BG(π0))θ(π0) + θ(π0)(A − BG(π0))′ + Z = 0.

2.2 Optimization Method

For a convex optimization problem, any gradient-based optimization method will converge to a

global minimum. This is true when the optimization cost function is a smooth function of the

design variables. Here, however, σ(π) is not a smooth function of π, and the usual gradient-

based algorithms may not lead to a correct result. This problem can be resolved by using µ(π)

which is a subgradient of σ(π).

Since σ(π) is a convex function of π,

σ(π) − σ(π0) ≥ 〈µ(π0), π − π0〉 f or all π ∈ Φc (2.9)

where, µ is defined in (2.8) and 〈µ(π0), π − π0〉 denotes the usual inner product of µ(π0) and

π − π0. To optimize the actuator locations, we should look for the smallest σ(π) that satisfies

(2.9). In [6], an optimization scheme is proposed as follows. Equation (2.9) is rewritten as

σ(π) ≥ σ(π0) + 〈µ(π0), π − π0〉. (2.10)

To solve the optimization, σ(π) in (2.10) can be replaced with θ that can take any real value and

the optimization problem written as

minπ θ

s.t. θ ≥ σ(π0) + 〈µ(π0), π − π0〉

π ∈ Φc

(2.11)
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Letting π∗ indicate the optimizer of (2.11), θ(π∗) is not restricted to be equal to σ(π∗). Conse-

quently, (2.11) is called a relaxation of the original optimization problem [103]. Since (2.11)

is a linear optimization problem, the solution falls on the boundary of the inequality constraint

and

θopt = min
π
σ(π0) + 〈µ(π0), π − π0〉.

If the solution of this relaxed problem, π∗, has an objective value θ(π∗) which equals σ(π∗)

then

σ(π∗) = σ(π0) + 〈µ(π0), π∗ − π0〉.

Since σ is a convex function of π, for all π ∈ Φ, π , π∗,

σ(π) ≥ σ(π0) + 〈µ(π0), π∗ − π0〉

and so for all π , π∗

σ(π) ≥ σ(π∗).

Hence, σ(π∗) is the global minimum for the actuator location problem. If σ(π∗) , θ, then define

σ1 = σ(π∗) and µ1 = µ(π
∗), another constraint

θ ≥ σ(π1) + 〈µ(π1), π − π1〉

is added to (2.11). Continuing this way, a series of linear optimization problems

minπ θ

s.t. θ ≥ σ(πi) + 〈µ(πi), π − πi〉 i = 1, . . . , n

is obtained. Since the optimization problem is linear, θopt at each iteration is on one of the

constraint boundaries. From (2.9) ,

σ(π) ≥ σi + 〈µi, π − πi〉 f or all π ∈ Φ.
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Therefore, in (2.11)

σ(π) ≥ θopt f or all π ∈ Φ.

If θopt = σ(πopt), then πopt is the global solution of the problem. As the number of constraints

for this problem increases, its feasibility space gets smaller and finally converge to the optimal

actuator locations.

This algorithm can be summarized as follows:

A Assume π0 ∈ Φ and calculate σ(π0) and µ(π0). Set k = 1 and choose a sufficiently small

value ε > 0.

B Choose an initial location for actuators π0 ∈ Φ and calculate σ(π0) and µ(π0).

C Equation (2.9) can be relaxed as

minπ∈Φ θ

s.t. θ ≥ σ(πi) + 〈µ(πi), π − πi〉 i = 1, . . . , k
(2.12)

D Using πk+1, calculate σk+1. If (σk+1 − θk+1) ≤ ε, terminate. If not, calculate µk+1 and return to

step C.

For a single actuator, the relaxed problem (2.12) in step C can be simply solved, since the

linear constraint in this problem is a scalar equation. However, for multiple actuators, solution

of the relaxed master problem (2.12) is challenging, especially for large N and MN .

The relaxed master problem (2.12 ) in step C, can be written

min
π∈Φ

max
i
σ(πi) + 〈µ(πi), π − πi〉 i = 1, . . . , k,

which minimizes the largest value of a set of functions. Thus, (??) can be written as

minπ∈Φmaxi σ(πi) − 〈µ(πi), πi〉 + 〈µ(πi), π〉 i = 1, . . . , k

s.t. Φ = {π ∈ RN s.t. π j ∈ {0, 1};
∑N

j=1 π j = MN}
(2.13)
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The variable π in this problem is a vector of binary components. Consequently, an integer

optimization algorithm is required for the solution.

2.3 Integer Optimization Algorithm

A number of integer optimization schemes are presented and used in literature. A few of them

are Branch and bound methods, cutting plane methods and decomposition methods [104]. The

objective function in (2.13) is a linear function of π and can be easily calculated in a consider-

ably short time. For such an objective function, the branch and bound optimization method is a

suitable algorithm. In this study, branch and bound technique is used to solve the integer part of

the problem. The relaxed master problem is then a minimax optimization problem with upper

and lower bounds on each variable.

2.3.1 Branch and Bound Method

In this method a binary tree is first applied to represent 0-1 variable combinations. At first,

all the integer boundaries are removed. According to the binary tree, the feasible region is

partitioned into sub-domains and valid upper and lower bounds are imposed to the relaxed

problem. Figure 2.1 shows a binary tree for a three element vector X. Each branch of this tree

is called a candidate subproblem.

In this method, first the relaxation of the original problem is solved. Consequently, for our

optimization problem (2.13) can be relaxed to

minπ∈Φi
maxi σ(πi) − 〈µ(πi), πi〉 + 〈µ(πi), π〉 i = 1, . . . , k

s.t. Φi = {π ∈ R
N s.t. 0 ≤ π j ≤ 1;

∑N
j=1 π j = MN}

(2.14)
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Figure 2.1: Branch Tree

.

This relaxation of the original problem is then solved. If it does not result in a binary solu-

tion, an element of the π is chosen and equality binary constraints are imposed on this element

and the relaxed problem is solved once again. These added constraints form the branches of

a binary tree similar to the one in Figure 2.1. Each branch of this tree is called a candidate

subproblem.

At each level, the root node can be divided into two or more candidate subproblems. If

the solution of a candidate subproblem is binary, the algorithm returns to the list of candidate

subproblems and selects a new subproblem to solve. Otherwise, it separates the subproblem into
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two or more candidate subproblems and repeats the procedure. These iterations are continued

until the list of candidate subproblems is empty.

Fathoming tests should be applied to avoid enumeration of all candidate subproblems. A

candidate subproblem can be fathomed if one of these 3 criteria is met:

Criterion 1: If the relaxed candidate subproblem does not have a feasible solution then the

optimization subproblem is infeasible.

Criterion 2: If the optimal solution of the relaxed subproblem is greater or equal to the best

feasible solution so far.

Criterion 3: If the optimal solution of the subproblem’s relaxation proves to be a feasible

solution of the candidate subproblem.

In the next level, the current subproblem is separated and its children are added to the list

of candidate subproblems. The optimization is terminated if all the feasible subproblems are

studied. The details of Branch and bound method can be found in [104].

2.3.2 Minimax Optimization Method

The optimization problem is the relaxation of the original minimax optimization in (2.13). In

the relaxed master problem the binary constraints on elements in π vector are changed into

inequality constraints. The minimax problem can be treated as a goal attainment problem.

Consequently, for simplicity let’s define the relaxed master problem in the form of,

minπ∈Φ θ

s.t. θ ≥ σ(πi) + 〈µ(πi), π − πi〉 i = 1, . . . , k
∑N

j=1 π j = MN

0 ≤ π j ≤ 1, j = 1, ...,N

, (2.15)
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where π j is the jth element of a vector π, N is the number of possible actuator positions and MN

indicates the number of actuators. In each candidate subproblem a binary constraint is added

to this relaxed problem. Since the objective function is linear and the constraints are linear, the

optimization problem is convex.

The objective functions in minimax optimization can be written as

Fi(π) = Ui + Yi.π

where

Ui = σ(πi) − 〈µ(πi), πi〉

and

Yi = µ(πi).

Each function Fi is a linear function of π. The constraints are also linear functions of π.

In this problem, the equality and inequality constrains can be written as

g1(π) = 0

g j(π) ≤ 0, j = 2, ...,m + 1

gi(π) ≤ 0, i = m + 2, ...,m + l + 1

,

where g1(π) =
∑N

j=1 π j−MN . As the branch and bound algorithm proceeds binary constraints are

imposed on the π vector. Therefore the number of equality constraints increases. The variable

m is the number of inequality constraints −π j ≤ 0 and πi − 1 ≤ 0. The variable l is the number

of Fi functions and each member of this group of constraints can be written as gi(π) = Fi(π)−θ.

To solve this problem a line search algorithm can be used. A line search procedure updates the

π variable for the new iteration,

πk+1 = πk + pk.
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The vector pk is the trial step which can be chosen as −∇θ(πk) [103]. These iterations should

continue until the convergence criterion is satisfied.

Further, some times the trial step pk cannot be accepted due to violation of the original

constraints. The step size needs to be controlled. For each step k a variable αk can be defined

such that

πk+1 = πk + αk pk.

Line search methods use merit functions to calculate αk. In [105], it is mentioned that it should

be searched along pk to minimize the merit function

Ψ = θ +

m+1
∑

i=1

rigi(x) +

m+k+1
∑

i=m+2

ri.max(0, Fi(π) − θ).

The definitions to calculate the multipliers ri are given in detail in [105].

The fminimax code, from the MATLAB optimization toolbox is applicable to such minimax

optimization problems. In this study, the fminimax code is combined with a branch and bound

method to solve the problem. All the codes are written in MATLAB.

2.3.3 Example

To illustrate the method, consider the following simple example [6]:

σ(p) = minu

∫ ∞

0
(x2 + φ2)dt

s.t. ẋ = −x + b(p)φ,

b(π) = exp(p). sin(2πp), p ∈ D = [0, 1].

(2.16)

Figure 2.2 shows the variation of σ(p) with p. This figure shows that there are two local minima

in this problem, one at p = 0.28 and another, which is the global minimum, at p = 0.78 .
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Figure 2.2: Function σ(p)

The interval D is divided into 100 possible actuator locations and so N = 100 and MN = 1.

Two different initial values, 0.01 and 0.99, were used. In both cases, the algorithm described

above converged to p = 0.78. This problem was also solved with a genetic algorithm. The ’ga’

optimization package in MATLAB was used. The population size was chosen as 20, where

every member of population was a chromosome of length 100 (composed of binary genes).

The optimization constraint was taken into account by assigning a very large number to the

fitness value when the number of ones in binary genes of each chromosome goes higher than

MN = 1. The results and calculation of these two methods are compared in Table 2.1. The

genetic algorithm is not as accurate or as fast as the proposed method presented here. By

increasing the population size to 100, the correct result, 0.78, is calculated. However, it takes

85 seconds which is far more than the 8.5 seconds taken by the proposed method.

31



Proposed Algorithm Genetic Algorithm

Initial point Result Calc. Time (s) Initial pop’n Result Calc. Time (s)

0.01 0.78 8.5 random 0.76 29.

0.99 0.78 6.7 random 0.75 25.

Table 2.1: Comparison of proposed optimization method and genetic algorithm on simple ex-

ample (2.16). A population size of 20 was used for the genetic algorithm.

2.4 Summary

An integer optimization algorithm was developed in this chapter to optimize actuator locations

on flexible structures. A MATLAB code is written based on the developed algorithm. In this

code, first an initial position is assumed for the actuators and an integer optimization problem is

formed. The main advantage of this integer problem is its convexity. For the integer optimiza-

tion, a function is written. The integer objective function is linear. Hence, the integer problem

can be solved in a short time. The code calls the integer optimization function in each iteration.

The integer optimization function, uses the branch and bound technique for the optimization.

In the branch and bound algorithm, the minimax optimization function in MATLAB is called to

solve the relaxation.

Once the integer optimization is solved and a new position is found for the actuators, con-

vergence conditions are checked and if the calculated position is not the optimizer, the code

starts a new iteration. In each new iteration, using the function value and subgradient vector of

the location calculated in the previous iteration, a new linear constraint is added to the integer

problem. The code continues iterating until convergence is achieved.

It should be mentioned that the introduced optimization scheme is applicable to linear mod-

els. The stiffness and mass matrices should remain unchanged. There is no limitation on the
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type and shape of the structure as long as it is linear. The method is also applicable to three

dimensional structures.

In addition, the optimal actuator locations may vary with Q and R matrices. Also since

convexity of the objective function is proved in binary space of actuator locations, it may not

be strictly convex in this space and for constant Q and R matrices there may be more than

one optimal position for actuators. This is the case for symmetric base structures with non-

symmetric optimal actuator locations.
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Chapter 3

Optimal Actuator Placement in Vibration

Control

In vibration control it is desired to maintain the structure in its equilibrium position. Conse-

quently, the actuator locations should be optimized to reject disturbances with minimum control

energy. The optimization scheme presented in Chapter 2 is applied to optimize the location of

piezoelectric actuator patches on beam and plate structures. The results are compared with a

genetic algorithm.

This chapter also studies the relation between the optimal actuator locations and modal

strain energies of the base structure. It might be desired to model the structure with a limited

number of its structural modes. The number of modes required to model the structure in order

to achieve accurate results for optimal actuator placement is briefly studied.
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3.1 Vibration Control with piezoelectric actuator patches

To suppress the disturbances in a structure, the linear quadratic regulator (LQR) is applied as

a control measure. The actuators are piezoelectric patches. It is assumed that the actuators are

perfectly bonded to the top surface of the structure as shown in Figure 3.1. The figure shows an

elastic structure. One layer of piezoelectric material is bonded to its top surface.

 Piezoelectric Patch

The Base Structure

X

Y

Z

Figure 3.1: Structure with a piezoelectric patch

Lettingσ indicate the stress tensor, f the body force vector, D the electric displacement vec-

tor, q the electric charge density, ρmass density and w the structural deflection, the electrostatic

field in piezoelectric materials is modeled by

∇·σ + f = ρẅ,

∇·D + q = 0.

The first equation is the elasticity equilibrium equation and the second equation is Gauss’s law

of electrostatics [8]. The constitutive equations of piezoelectric materials are

σ = CeS + e∇φ (3.1a)

D = eS − ǫ∇φ, (3.1b)
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where, σ is the stress vector, S is the strain vector, φ is the electric potential, CE is the matrix of

elastic constants under constant electric field (dependent on modulus of elasticity and Poisson’s

ratio), ǫ is the electric permittivity matrix under constant mechanical strain, e = dC contains

the piezoelectric coupling constants, d is the dielectric constant matrix, and D is the electric

displacement vector [8].

In this study, the structure and the bonded piezoelectric materials are modeled applying the

finite element discretization. For voltage driven actuators, the finite element equations take the

form

Ms̈(t) + CD ṡ(t) + Ks(t) − Ksφφ(t) = F(t) (3.2)

where s(t) is the generalized nodal displacement vector. It includes the displacement and ro-

tational degrees of freedom at each element node. The matrices M and K are the mass and

stiffness matrices respectively and CD is the damping matrix. Also Ksφ is the (symmetric)

electro-mechanical coupling matrix, while F(t) is the vector of external forces. Details for fi-

nite element modeling of piezo-laminated smart structures and M, K and Ksφ can be found in

[106]. Next, the finite element equations in equation (3.2) which form the structural dynamic

equations of motion are transferred into state space form

ẋ(t) = Ax(t) + Bφ(t).

The vector x(t) can be defined in a number of ways. In this study, the state vector, x is as

x(t) =



















s(t)

ṡ(t)



















.

Consequently, the A and B matrices take the form
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A =





















0 I

−M−1K −M−1CD





















; B =





















0

M−1Ksφ





















.

It is important that the optimal cost and location of actuators obtained from the finite ele-

ment formulation converge as the size of the finite elements decreases [71]. For damped struc-

tures with a finite number of actuators where B in the partial differential formulation is bounded,

this is ensured for finite element approximations if Q in the LQR equation is compact. For de-

tails, see [71]. When piezoelectric actuators are used however, the B operator is only bounded

in a space larger than the state space [107]. In this study, since the aim is to control the position,

which includes the first part of the state vector,

Q1/2 =

[

I 0

]

,

which is compact on the state space [71]. The R matrix in LQR equation is the identity matrix

and its size is equal to the number of actuators. Numerical tests in [108, 109] indicate conver-

gence of the optimal cost and actuator locations for vibration control of beams and plates. The

examples solved in [110] for shape control of beams present the same idea.

3.2 Energy Realization

In some cases, especially for very thin structures, the A matrix may become ill-conditioned

or numerical problems may arise while solving ARE equation. Such problems may also arise

during optimization of actuator locations.

To avoid numerical difficulties due to poor scaling of the A matrix, in this thesis, energy

realization is used for the state vector. Hence, the state vector x is as
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x(t) =



















K0.5s(t)

ṡ(t)



















.

Consequently, the A and B matrices take the form

A =





















0 K0.5

−M−1K0.5 −M−1CD





















; B =





















0

M−1Ksφ





















.

3.3 Optimal Actuator Placement in Structures

Consider now the problem of optimizing the locations of piezoelectric patch actuators on struc-

tures. The optimization scheme to optimize the actuator locations was discussed in detail in

Chapter 2.

Each structure is discretized into finite elements. To optimize actuator locations, a grid of

possible positions should be selected. With the fact that each actuator occupies a specific area,

the dimensions for each finite element are considered same as the dimensions of the actuators

so that they have the same area. Hence, each finite element can be a possible location for

an actuator and the number of possible actuator locations equals the number of finite elements.

This assumption does not affect the generality of the introduced optimization scheme. However,

when relatively large patches are to be used the finite element meshing needs to be modified to

achieve accurate structural stiffness and mass matrices. One solution can be using higher order

elements to model the structure.

In the following sections, the optimal location of piezoelectric actuators are calculated for

beam and plate structures. Various boundary conditions are considered for the beams and plates.

In all these models the actuators are made of PZT 5A material and they have a 40 µm thickness.
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The base structures are made of steel. Material properties of Steel and PZT 5A are shown in

Table 3.1. In all the models a very small Rayleigh structural damping, CD = 1 × 10−8K, is

assumed.

Properties Piezoelectric Base Structure

Elastic Modulus (Nm−2) 61 × 109 21 × 1010

Density ρ (kgm−3) 7700 7810

Dielectric Constant d31 (mv−1) 171 × 10−12

Poisson’s Ratio 0.3 0.3

Table 3.1: Material Properties

Optimal actuator locations on beams are calculated for beams with pinned-pinned, fixed-

free and fixed-pinned boundary conditions. Two different beam sizes are considered. The

relation between optimal locations and modal strain energies of the beams is also studied. The

beams are modeled in ANSYS using ‘BEAM3’elements. This beam element type is based on

Euler-Bernoulli beam theory. In this theory the beam cross-sections are assumed to remain

perpendicular to centerline of the beam after deformation. The equation of motion for Euler-

Bernoulli beam can be written as

EI
∂4w

∂x4
1

+ ρA
∂w

∂t
= F,

where w is the displacement, x1 is the position on th beam, E is the modulus of elasticity, I is the

beam’s cross-section moment of inertia, A is the cross-section area, t is time F is the external

force. When the beam is augmented with piezoelectric patches, F is the PZT patches’ force.

The finite element equations for Euler-Bernoulli beams with attached piezoelectric patches can

be found in [107] and [106].

To model the plates in ANSYS, ‘SHELL181’elements are used which are based on Reissner
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Mindlin plate theory. Equation of motion for a plate augmented with piezoelectric patches is

ρh
∂2w

∂t2
+CD∇

4∂w

∂t
+ D∇4w =

∂2Mpx

∂x2
1

+
∂2Mpy

∂y2
1

,

D =
Eh3

12(1 − ν2)
,

where, w is the deformation of the plate in z direction, CD is the damping in the plate, Mpx and

Mpy are the bending forces imposed by PZT actuators around x1 and y1 axes.

The finite element equations for plates with attached piezoelectric patches can be found in

[107]. Plate dimensions are 500 mmx500 mmx1 mm and it is divided into 100 finite elements.

The structure is augmented with actuators on its top surface and actuators are 50mm x50mm

x40 µ m each which have the same area as the finite elements.

3.3.1 Beams with pinned end conditions

In the first model, the beam dimensions are 500 mm x 30 mm x 2 mm and it is divided into 15

finite elements. The stiffness and mass matrices are formed and the optimal actuator locations

are calculated using the presented optimization scheme. Figure 3.2 shows the optimal location

of one actuator on the beam. As is clear from this figure, the actuator location is close to the

middle of the beam, but is approximately 45 per cent of the beam length from either of the beam

ends.

To check the validity of this observation, the beam is subjected to a single impulse at one

fourth of the beam’s length from the pinned support and the beam’s vertical response is cal-

culated at the beam’s mid-point as shown in Figure 3.3. The results are compared when the

actuator is at 45 per cent of the beam’s length and when it is in the middle. It should be men-

tioned that the optimal location in this case is not unique. It can be at 45 percent of the beam’s
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Figure 3.2: Optimal location of 1 actuator on a 0.5 m long beam with pinned end conditions

length from either side of the beam’s supports. Both locations are effective in suppressing the

disturbance, but still the actuator is more effective when it is optimally placed. Note that, if the

actuator is placed at the beam mid-point, it can only be effective on disturbances which excite

odd-numbered modes of vibration in the beam. Similar results are presented in [64]. In [64],

the optimal size and location of piezoelectric actuator patches are studied on a 1.5m long simply

supported beam based on controllability. The authors showed that when only the first mode of

a simply supported beam is considered, the optimal location of one actuator is at mid-span of

the beam. However, when considering more than one mode in modeling, the optimal actuator

location will not be in the beam’s midpoint.

Next, the optimal location of 5 actuators is calculated on the same beam. The result is

shown in Figure 3.4. All actuators are concentrated in the middle part of the beam, which

covers one third of the beam span.

To determine whether the optimal location is sensitive to the aspect of the state to be con-

trolled, instead of minimizing the entire state, we choose to minimize the displacement at one

third of the beam’s length from one of the supports, and the weighting matrix Q is modified

appropriately. Calculations reveal that the optimal location of one and five actuators in this case

did not change and were the same as Figure 3.2 and 3.4 respectively.

The optimal location of actuators need to be calculated on higher order models as well.

Consequently, the beam dimensions are changed to 3 m x 0.03 m x 0.002 m with the same

material properties and the actuator locations are calculated on this beam. The beam is divided
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Figure 3.3: The beam’s response at the mid-point to an impulse at one fourth of the beam’s

length for optimal and non-optimal actuator locations on a 0.5m long beam with pinned end

conditions

 

Figure 3.4: Optimal location of 5 actuators on a beam with pinned end conditions

into 100 finite elements. The optimal locations for 1, 2 and 5 actuators was calculated for

this beam. The results are shown in Table 3.2. The locations are shown based on the element

number. Since the beam model is symmetric, either of the beam ends can be the start of element

numbering. The optimal locations are close to the mid-section of the beam, however, the optimal

locations are not symmetric with respect to the mid-section of the beam. The reason is the same

as what discussed about Figure 3.2. When the number of actuators is relatively small, locating

them in the middle of the beam, minimizes their control over a wide range of disturbances.
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It is worth to mention that in Figure 3.4 each actuator covers seven percent of the beam

lengths and five actuators cover one third of the beam’s length. That is why they have covered

the middle one third of the beam. In the three meter long beam each actuator covers one per

cent of the beam’s length and the possible arrangements that five actuators can have are far more

than in Figure 3.4.

Number of actuators Optimal Actuator Locations

1 46 or 55

2 49,56

5 44,46,50,52,55

Table 3.2: Optimal actuator locations on a beam with pinned end conditions

The optimal location is close to the location of maximum modal strain energy for the first

mode as shown in Figure 3.5. Using only the first mode results in the beam’s mid-point as the

optimal actuator location. However, since as shown in Figure 3.6, the strain energy for even-

numbered modes is zero at this point the optimal location is moved to element 46. Using any

higher number of modes leads to similar results.

Returning to the shorter beam in Figure 3.2, regardless of the values on the vertical axis,

the strain energy for the first mode has the same shape as the first modal strain energy for the

longer beam as in Figure 3.5, and in both structures, the locations of high strain energies for the

first mode are in the middle section of the beam. The ANSYS finite element software is applied

to calculate modal strain energies. The actuators are optimally located at high strain energy

locations for the first mode.

The relationship between modal strain energy and optimal actuator locations was first sug-

gested in [48]. In an example of optimal location of sensor/actuator pairs on a cantilever un-

damped beam, the pairs were located in areas of high modal strain energy on the beam. The
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Figure 3.5: First Modal Strain Energy for the beam with pinned ends
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Figure 3.6: Second Modal Strain Energy for the beam with pinned ends

authors also studied the same problem on a cantilever plate [5].

For two actuators one is located in the middle of the beam and the other is at 45 percent of

the beam’s length. Using the first three vibration modes of the beam leads to the same results.
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As Table 3.2 shows the locations for 3, 4 and 5 actuators are also close to the middle section of

the beam. Based on Figure 3.5, these locations are all close to high strain energy points of the

first mode. However, since strain energies of the even-numbered modes are zero in the middle,

the actuators are not at this location. This discussion can be verified by Figure 3.7. This figure

shows the number of modes needed to converge to the accurate results for various numbers of

actuators. Although one mode is not enough, use of the first five modes provides convergence.

This shows that the high strain energy locations of first few modes have a major effect on the

optimal actuator locations.
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Figure 3.7: Number of modes required to accurately calculate the optimal location of actuators

3.3.2 Optimal Actuator Locations on Cantilever Beams

The locations of one and five actuators are calculated on a 0.5 m x 0.03 m x 0.002 m cantilever

beam which is divided into 15 finite elements. The results are shown in Figures 3.8 and 3.9,

respectively. The results reveal that the actuators should be placed close to the fixed end of the
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beam.

 

Figure 3.8: Optimal location of one actuator on a 0.5 m long cantilever beam

 

Figure 3.9: Optimal location of one actuator on a 0.5 m long cantilever beam

The state weight matrix Q was also changed, so that only the vertical motion at the beam’s

tip is to be controlled and the optimal locations of one and five actuators were calculated for

this case. The optimal locations remain the same as in Figures 3.8 and 3.9.

Next, the beam dimensions are changed to 3 m x 0.03 m x 0.002 m with the same material

properties. The beam is divided into 100 finite elements. Table 3.3 shows the optimal location

of one, two and ten actuators. In all the cases the actuators are concentrated close to the fixed

end of the beam.

Figure 3.10 shows the modal strain energy of the first mode. Clearly, the actuators are

distributed on locations of maximum strain energies for the first mode. Moreover, the first

mode of vibration is enough to calculate the optimal location of actuators.

3.3.3 Optimal Actuator Locations on the beam with fixed-pinned bound-

ary conditions

In the first step, the location of one and five actuators are calculated on a 0.5 m x 0.03 m x

0.002 m beam which is divided into 15 finite elements. The beam is fixed at one end and simply
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Figure 3.10: First Modal Strain Energy for a cantilever beam

Number of actuators Optimal Actuator Locations

1 1

2 1,2

10 1,2,3,4,5,6,7,8,9,10

Table 3.3: Optimal actuator locations on a beam with pinned end conditions

supported at the other end. The results are shown in Figures 3.11 and 3.12, respectively.

In the next step, the Q matrix is modified to control only the vertical motion at one third of

the beam’s length. The optimal location of one and five actuators remains unchanged.

Next, the beam dimensions are changed to 3m x 0.03m x 0.002m with the same material

properties. The beam is divided into 100 finite elements. Table 3.4 shows the optimal location

of 1, 2, 5, 10 and 20 actuators on the beam. In all these cases it is observed that the actuators are

concentrated close to fixed end, until they cover 9 percent of the beams length. The remainder

of actuators are placed approximately less than 40 percent of the beam’s length from the pinned
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end. Figure 3.13 shows the first modal strain energy, for this beam. Close to the fixed end 9

percent of the beam’s length has the highest strain energy. The results show that the actuators

are distributed throughout the beam’s length at points of the highest strain energies of the first

mode. As for the cantilever beam example only the first mode of vibration is needed to calculate

the optimal actuators locations even for higher number of actuators.

Since for the beam in Figures 3.11 and 3.12, the first modal strain energy has the same

form, in this beam also the first modal strain energy is enough to locate the actuators.

 

Figure 3.11: Optimal location of one actuator on a beam with pinned-fixed end conditions

 

Figure 3.12: Optimal location of 5 actuators on a beam with pinned-fixed end conditions

3.3.4 Comparison with a genetic algorithm

The developed method and a genetic algorithm were both used to calculate the optimal locations

of 10 actuators on a 3m x 0.03m x 0.002m beam with pinned end conditions. The elapsed

time for optimization and the results are compared for both methods. The results are shown in

Table 3.5. For genetic algorithm, the population size is taken as 100, to get results as accurate as

possible. A random initial population is chosen and the optimization constraint on the number
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Figure 3.13: First Modal Strain Energy for a beam with pinned-fixed end conditions

Number of actuators Optimal Actuator Locations

1 1

2 1,2

5 1,2,3,4,5

10 1,2,3,4,5,6,7,8,9,62

20 1-9,58-68

Table 3.4: Optimal actuator locations on a fixed-pinned beam

of actuators is taken into account by assigning a very large number to the fitness value when

the number of ones in binary genes of each chromosome goes higher than 10. The introduced

method converges much faster than the genetic algorithm and the result is more accurate.
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Algorithm Optimal Actuator Locations Elapsed Time (Sec.) Objective Value

Current Method 43,45,46,47,48,49,50,52,53,56 478.4837 71.9857

GA 43,44,45,47,48,49,50,51,54,58 4.1385e4 72.1688

Table 3.5: Optimal location of 10 actuators on a beam with pinned end conditions

3.3.5 Optimal actuator locations in plates and comparison with a genetic

algorithm

First, the location of one actuator is optimized on a cantilever plate. The result is shown in Fig-

ure 3.14. To verify the accuracy of the optimization code, we calculated the value of objective

function for each element, and observed that in the optimized location, the objective function

has its minimum value. Moreover, two other positions are considered for the actuator as shown

in Figure 3.15 and the plate is subjected to a vertical impulse at the tip. Figure 3.16 shows

the vertical deformation at the same point with the three actuator locations. Clearly, when the

actuator is optimally placed, the disturbances are suppressed much faster.

Next, the optimal placement for 10 actuators is calculated on the same plate and Fig-

ure 3.17(a) shows the result.

Genetic algorithm was also applied to calculate the optimal placement of actuators on this

plate as shown in Figure 3.17(b). Applying GA, a random initial population is chosen and as for

previous examples the optimization constraint is taken into account by assigning a very large

number to the fitness value when the number of ones in binary genes of each chromosome goes

higher than 10.

The results for both methods are compared in Table 3.6. In addition to being much faster in

computation, the current applied method is more exact than genetic algorithm.

To verify the optimization results, the plate is subjected to a vertical impulse at its tip.
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Figure 3.14: Optimal Location of one Actuator on a cantilever steel plate

 

  

(a) (b) 

Figure 3.15: Non-optimal actuator locations
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Figure 3.16: Displacements at the plate tip subjected to a vertical impulse at its tip

Objective value Elapsed time(sec.)

Current Method 1.5845 491.9577

Genetic algorithm 1.7483 4.4433E4

Table 3.6: Comparison of GA and the introduced algorithm for the cantilevered plate

The response at the free end of the plate is shown in Figure 3.19 for the optimal placements

from genetic algorithm and the presented method. The responses from two non-optimal ac-

tuator placements are also included in this figure. The non-optimal placements are shown in

Figure 3.18. Figure 3.19 shows that with the optimal placement the vibrations are suppressed

much faster than the other non-optimal locations. Also comparing with the GA results, the

results from the presented scheme are slightly more effective in vibration suppression.

In the next step, the boundary conditions of the cantilever plate are changed to pinned con-

53



(a) Based on the presented method

 

(b) Based on Genetic Algorithm

Figure 3.17: Optimal Location of 10 actuators on a cantilever plate

ditions on the two opposite sides, instead of a fixed side as shown in Figure 3.20. Consequently,

the nodes on these two sides are free to rotate but restricted to move. Figure 3.20 shows the op-

timal location of these actuators on the plate. The same problem is also solved with GA and the

54



 

 

 

 

(a)

 

 

 

 

(b)

Figure 3.18: Non-optimal Actuator Locations
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Figure 3.19: Displacements at the plate tip for ten actuators

results are compared in Table 3.7. Figure 3.21 shows the optimal location of actuators achieved

by GA. Same as previous examples, Table 3.7 shows that the proposed method is much faster
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Figure 3.20: Optimal location of actuators on a plate with pinned end conditions

and more accurate than genetic algorithm.

Objective value Elapsed time(sec.)

Current Method 2.4115 9.1625E3

Genetic algorithm 2.4433 1.553E5

Table 3.7: Comparison of GA and the introduced algorithm for the plate with pinned end con-

ditions

The optimal location of actuators is close to locations of high strain energies for the first

three modes of vibration, see Figures 3.22, 3.23, and 3.24. The optimal actuator locations for

the first three modes of vibration in the plate are shown in Figure 3.25. Applying the first three

structural modes of vibration also leads to locations very close to the full model as in Fig-

ure 3.20. The plate’s modes of vibration are calculated using ANSYS finite element software.

There is only 6 percent error in the optimal objective value when the truncated model with three

modes is applied.

56



 

 

Figure 3.21: Optimal location of actuators on a plate with pinned end conditions applying GA
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Figure 3.22: First modal strain energy of the plate with pinned end conditions on its two oppo-

site edges
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Figure 3.23: Second modal strain energy of the plate with pinned end conditions on its two

opposite edges

3.4 Summary

In summary the presented optimization scheme is an efficient and accurate algorithm in optimal

actuator placement even for structures with a large number of elements. It was observed that the

optimal locations of actuators in vibration control are related to the location of the maximum

strain energies of the first few structural modes. The sufficient number of modes to determine

actuator locations for a given problem, and the weight that should be assigned to each mode

depends on the type of structure. The examples solved in this chapter suggested that rigid

structures require fewer number of modes than flexible structures.
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Figure 3.24: Third modal strain energy of the plate with pinned end conditions on its two

opposite edges

Figure 3.25: Optimal location of actuators on a plate with pinned end conditions applying only

the first three modes of plate to model it
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Chapter 4

Optimal Actuator Placement in Shape

Control

This chapter investigates shape control of flexible structures. Optimal actuator locations are cal-

culated for flexible structures. To optimize actuator placement the optimization scheme intro-

duced in Chapter 2 is applied. In Section 4.1 shape control of flexible structures is formulated.

The shape control formulation is then implemented in a finite element discretization of struc-

tural models. In Section 4.2, the presented optimization scheme is applied to optimize actuator

locations on structures. The actuator placement is optimized in shape control of beams and

plates with various boundary conditions. This section suggests a lower bound in the number of

actuators and studies the importance of optimal actuator placement when a limited number of

actuators are available for shape control.
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4.1 Shape Control Method

For shape control, the shape of a structure is regulated to a position which may be different from

its equilibrium position. Consider the structure as a linear time invariant system.

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t).
(4.1)

where x(t) is the state vector and is a function of displacements and velocities in the structure

and u(t) is the input vector. The vector y(t) is the output vector which is related to the structure’s

shape.

The aim in a shape control problem is to minimize the error between the current state x(t)

and the desired state xd. The structure is required to remain in a fixed position in space, which

is time independent. Let’s name this position vector as sd and the structure’s position at each

time instant s(t).

To solve the shape control problem an augmented state, z(t) is applied, defined as in [111],

z(t) =





















x(t)

q(t)





















. (4.2)

The vector q(t) is an error function and is defined by

q̇(t) = Cx(t) − yd, (4.3)

where

yd = Cxd. (4.4)

The augmented state z(t) can be applied to rewrite equation 4.1 in the form of an augmented

state equation for shape control,
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ż(t) = Azz(t) + Bzu(t) + γ, (4.5)

where

Az =





















A 0

C 0





















, (4.6)

Bz =





















B

0





















, γ =





















0

−yd





















. (4.7)

The term γ can be treated as a constant disturbance and the problem turns into a disturbance

rejection problem. In terms of the augmented state z, the quadratic cost function is

J =

∫ ∞

0

[z(t)T Qz(t) + u(t)T Ru(t)]dt,

where

Q =





















0n×n 0n×m

0m×n Im×m





















, R = Inp×np
.

The number of states in (4.1), the number of outputs and the number of actuators are indicated

by n, m and np, respectively. We must confirm stabilizability of (Az, Bz).

The pair (Az, Bz) is stabilizable if there exists a feedback F such that the system ż(t) =

(Az + BzF)z(t) is asymptotically stable, which means all eigenvalues of Az + BzF are in the open

left-half plane.

Theorem 1 [112]: The pair (Az, Bz) is stabilizable if and only if

rank[Az − λI Bz] = n + m f or all λ ∈ sp+(Az),
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where sp+(Az) is the set of eigenvalues of Az matrix with non-negative real parts .

Theorem 2: The pair (Az, Bz) is stabilizable if and only if rank(





















A B

C 0





















) = n + m.

Proof: To prove stabilizability, first it is required to calculate the eigenvalues of Az. To find

the eigenvalues of Az matrix,

det(Az − λI) = 0,

needs to be solved which leads to

det(





















A − λI 0

C −λI





















= 0. (4.8)

Equation (4.8) has a solution only when λI = 0 or else A−λI is not a full rank matrix which leads

to det(A − λI) = 0. The solution of det(A − λI) = 0 results in eigenvalues of A. Consequently,

the eigenvalues of Az are either zero or a solution of det(A − λI) = 0, which are the eigenvalues

of the A matrix.

Hence the rank condition needs to be satisfied at eigenvalues of A and also λ = 0,

[Az − λI Bz] =





















A − λI 0 B

C −λI 0


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
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









.

Since (A, B) is stabilizable, this matrix has a rank m+n for all eigenvalues of A. Now considering

λ = 0, the matrix becomes













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

A 0 B

C 0 0


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











.

Hence, to have a stabilizable (Az, Bz) pair it is required that

rank(





















A B

C 0





















) = n + m. (4.9)
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To achieve a rank n + m for the matrix in Equation (4.9), the number of columns in B must

be equal to or larger than the number of rows in C. The number of columns in B equals the

number of actuators. The number of rows in C equals the number of desired outputs. This

means that the number of actuators must be larger than or equal to m which is the number of

elements in the output vector, y or the number of desired outputs, yd.

It is worth to mention that all practical structures experience a natural structural energy

dissipation or damping during vibration. Normally, depending on the type and material of the

structures a natural viscous damping ratio of 2 to 15 percent can be recommended in structural

modeling [113]. In the presence of structural damping, all eigenvalues of A have negative real

parts.

To calculate Jopt, the algebraic Riccati equation should be solved [114],

AzPz + PT
z Az − PzBzR

−1BT
z Pz + Q = 0. (4.10)

The optimal input voltage is

uopt(t) = −R−1BT
z Pzz(t) = −Kzz(t). (4.11)

Replacing uopt(t) in Equation 4.5, the closed loop system equation will be

ż(t) = Aczz(t) + γ, (4.12)

where

Acz = Az − BzKz.

Theorem 3 [111]: For detectable (Az,Q
1/2) and stabilizable (Az, Bz), the control law (4.11)

asymptotically tracks the desired shape regardless of the initial state.
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Proof: In Equation (4.12o), γ is time-independent. Consequently, in [111], differentiating

both sides of Equation (4.12) with respect to time leads to,

z̈(t) = Aczż(t). (4.13)

Stabilizability of (Az, Bz) and detectability of Az,Q), results in a strictly stable system in

equation 4.13. Hence, ż(t) approaches zero regardless of the initial conditions. The vector ż(t)

equals

żT (t) = [ẋT (t) q̇T (t)].

Hence as t → ∞,

q̇(t) = y(t) − yd → 0.

Therefore y(t)→ yd as t → ∞.

The discussions so far, i.e., Theorems 1,2 and 3, require that the number of actuators be

larger than or equal to the number of outputs. Consequently, it is required to define y(t) such

that while characterizing the desired shape, the number of its elements is smaller than or equal

to the number of actuators. Choosing y(t) is a designer’s option. Different functions can be

chosen depending on the type of states or the structure’s degrees of freedom. In this study, y(t)

will be formed by writing the C matrix as a function of structural modes of vibration. It is

discussed in detail in the following.

Any desired position can be expanded into the structural modes of vibration. Flexible struc-

tures with distributed mass have infinite degrees of freedom and an infinite number of modes.

However, when structures are modeled with numerical methods such as finite elements or when

the structural mass is considered as a lumped mass system, structural modes of vibrations re-

duce to a finite number. Consider a structure with N modes of vibration (eigenvectors) and N

natural frequencies. The displacement vector, s(t) can be expanded into its natural modes of
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vibration [113]

s(t) =

N
∑

i=1

viζi(t), (4.14)

where vi is the ith mode shape and ζi(t) is the time variation for the ith mode. If s(t) equals the

constant reference position sd, equation 4.14 can be written as

sd =

N
∑

i=1

rivi, (4.15)

where ri is called the participation factor of each mode in the desired position.

For each desired position sd, normally the coefficient ri for the first few modes is signif-

icantly higher than the others. These modes are the dominant modes for sd. With a good

approximation, sd can be expanded into,

sd ≈

N1
∑

i=1

rivi,

where N1 < N is the number of dominant modes.

Now let’s assume that the first half of elements of x(t) are functions of displacements and

the second half are functions of velocity. For instance if the regular state vector is used

x(t) = [s(t)T ṡ(t)T ]T , (4.16)

the desired state xd is

xd = [sT
d 0]T . (4.17)

And if the energy realization is used

x(t) = [(K0.5s(t))T ṡ(t)T ]T , (4.18)

the desired state xd is

xd = [(K0.5sd)T 0]T . (4.19)
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Define the C matrix as

C = [V 0N×N1
],

where V is formed by the first N1 modes of the structure,

V =


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





, (4.20)

Consequently, q̇ is

q̇(t) = [V 0N1×N]x(t) − [V 0N1×N]xd, (4.21)

The function q̇(t) can be defined more effectively in some situations by assigning weights to

elements of y and yd. The weights are also the designer’s choice; however, it is better to assign

larger weights to the modes that have larger participation in the desired shape. This way larger

control effort will be dedicated to these modes. Hence a wise option is to choose the weights as

functions of the participation factor of each mode in sd. Then V is

V =








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


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

w1vT
1
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wmvT
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













,

where w1 and wm are the assigned weights. These weights can simply be the modal participation

factors ri in sd.

4.2 Optimal Actuator Placement in Structures

Consider now the problem of optimizing the locations of piezoelectric patch actuators on struc-

tures. It is assumed that the actuators are perfectly bonded to the top surface of the structure as
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Figure 4.1: Structure with a piezoelectric patch

shown in Figure 4.1. Finite element approximation is used to model the base structures, and the

actuators are assumed to have the same area as the finite elements.

For voltage-driven actuators, the finite element equations take the form

Ms̈(t) + CD ṡ(t) + Ks(t) − Ksφφ(t) = Ksd + F(t),

where M and K are the mass and stiffness matrices respectively and CD is the damping matrix.

A very small Rayleigh structural damping, CD = 10−8K is assumed. Also Ksφ is the (symmetric)

electro-mechanical coupling matrix, while F(t) is the vector of external forces. Details for finite

element modeling of piezo-laminated smart structures and M, K and Ksφ can be found in [106].

Next, the finite element equations are transferred into state space form by defining the state

variable x with the energy realization

x(t) =



















K0.5s(t)

ṡ(t)



















.

The system dynamics can be written as

ẋ(t) = Ax(t) + Bφ(t),
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where

A =










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; B =






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0

M−1Ksφ


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







.

Applying this state vector, the error function q̇ can be defined as

q̇ = [V 0N1×N]x(t) − VK0.5sd. (4.22)

Consequently, as q̇→ 0,

(K0.5s(t) − K0.5sd)→ 0. (4.23)

The matrix K is the structural stiffness matrix and it is positive definite. Hence, in general

K0.5 has non-zero eigenvalues. This means that when equation (4.23) is true, then s(t) − sd →

0. Consequently, applying the energy realization will also result in the desired shape for the

structure.

It should be mentioned that by choosing the V matrix as a function of structural modes, in

fact the intention will be to minimize the modal errors. Hence, the weightings in V should be

chosen in a way to minimize the error for modes that are participating more in the desired shape

regardless of the components of state vector. As an example when state vectors are formed using

the energy realization, in fact the purpose is to minimize the error between strain energies. Now

the strain energies for the modes that are participating more in the desired shape should be

minimized and V should be composed of the first few dominant modes in sd and the weightings

should be chosen as the participation factors of these modes in sd. Using the weights based

on the participation factors in K0.5sd may assign very small weights to some of the dominant

modes in sd and make them completely ineffective. This reduces the accuracy and efficiency of

the system.

Using energy realization results in optimal actuator positions very close to the positions
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Properties Piezoelectric Base Structure

Elastic Modulus (Nm−2) 61 × 109 21 × 1010

Density ρ (kgm−3) 7700 7810

Dielectric Constant d31 (Mv−1) 171 × 10−12

Poisson’s Ratio 0.3 0.3

Table 4.1: Material properties of steel and piezoelectric materials

achieved with regular state space formulation. For some structures such as beams and some

desired shapes, these two realizations result exactly the same. For example the optimal locations

on a cantilever beam are the same for the two realizations for desired shape sd2 discussed later

in this chapter.

For the augmented states, Az and Bz are the same as was discussed in previous sections. In

addition detectability of (Az,Q) needs to be verified before each optimization procedure. This

is checked for all the models in the following examples.

We considered patches 40 µm thick and made of PZT 5A. The base structures are made of

steel. Material properties of Steel and PZT 5A are shown in Table 4.1. The optimal locations of

actuators for shape control of flexible structures are calculated using the presented optimization

scheme. Optimal actuator locations on beams are calculated for beams with pinned-pinned and

fixed-free boundary conditions. ‘BEAM3’finite elements which are based on Bernoulli-Euler

beam theory are used to model the beams in ANSYS finite element software. The equations of

motion for Bernoulli-Euler beams with attached piezoelectric patches can be found in [107].

Optimal actuator locations are also calculated on plates with two different boundary con-

ditions. To model the plates in ANSYS, ‘SHELL181’elements are used which are based on

Reissner Mindlin plate theory. The equations of motion for Reissner Mindlin plates with at-

tached piezoelectric patches can be found in [107].
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4.2.1 Optimal Actuator Locations on a Cantilever Beam

A cantilever beam is shown in figure 4.2. The beam dimensions are 0.5 m x 0.03 m x 0.002 m

and it is divided into 15 finite elements.

�

Figure 4.2: A 0.5m long cantilever beam divided into 15 finite elements

The desired position for this beam, sd1 is

sd1 = 10v3 + 6v5, (4.24)

where v3 and v5 are the third and fifth modes of vibration for the beam as shown in Figure 4.3.

Only the third and fifth modes are present for the reference position. The V matrix is

V =





















10vT
3

6vT
5





















,

and yd is formulated accordingly.

In Figure 4.5, the results for 2, 4, and 5 actuators are compared with the desired shape.

These actuators are optimally located. With 2 and 4 actuators the error is significant.In fact with

2 actuators there is no control over the desired shape. Consequently, it is required to apply at

least 5 actuators. Despite the fact that only 2 modes are involved in the reference shape, applying

fewer actuators than 5, leads to inaccurate results and considerable errors. The reason is that N1

in Equation (4.15) equals 5. Figure 4.4(a) shows the optimal location for 2 actuators. Figure
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Figure 4.3: Third and fifth modes of vibration for a cantilever beam

4.4(b) shows the optimal location for four actuators. The optimal location of five actuators are

shown in Figure 4.4(c).

It should be mentioned that accuracy is not only dependent on the number of actuators, but

also on the desired shape. As another example, the optimal location of actuators is studied on

the same beam with a different reference shape. The desired shape for this problem is

sd2(ξ) = 0.0948

[

(

ξ

50

)3

−

(

ξ

50

)4
]

, (4.25)

where ξ is the distance from the fixed end in centimeters. The dominant modes for this shape are

modes 1, 2, 3, 33 and 35 of the beam. The optimal location of 3, 4 and 5 actuators are calculated

for this problem. The number of actuators is smaller than the number of highest dominant mode.

For np actuators, C is chosen as a matrix with np rows. The rows are the first np modes of the

structure, multiplied by their participation factor in the reference shape. Figures 4.6(a), 4.6(b)

and 4.6(c) show the optimal locations of 3, 4 and 5 actuators, respectively. In Figure 4.7,
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�

(a) 2 actuators

�

(b) 4 actuators

�

(c) 5 actuators

Figure 4.4: Optimal actuator locations for a 0.5m long cantilever beam for desired shape sd1

the achieved shapes with 3, 4 and 5 actuators are compared with the reference position. The

small existing error is because 4 and 5 actuators cannot compensate for the missing part of

deformation related to modes 33 and 35.

As the number of actuators increases, the residual error becomes smaller. Figure 4.6(d)

shows the optimal location of 6 actuators. The achieved shape with 6 actuators as shown in

Figure 4.8, is slightly more accurate than those in Figure 4.7. However, to reach complete

accuracy a larger number of actuators is required.

The required accuracy in a shape control problem depends on the application and operation
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Figure 4.5: Comparison between achieved shapes and desired shape sd1 for a 0.5m long can-

tilever beam

requirements of the structure. According to the results so far, the minimum number of required

actuators depends on the type of structure and desired shape.

To study the efficiency of the introduced optimization method, the optimal locations of

actuators need to be calculated on structures with more elements. Consequently, the beam

dimensions are changed to 3 m x 0.03 m x 0.002 m with the same material properties as previous

models. The actuator locations are calculated on this beam. The beam is divided into 100 finite

elements. The desired position is,

sd3(ξ) = 0.948

[

(

ξ

300

)3

−

(

ξ

300

)4
]

, (4.26)

where d is the displacement in cm from the fixed end. The dominant modes for this shape are
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�

(a) 3 Actuators

�

(b) 4 Actuators

�

(c) 5 Actuators

(d) 6 Actuators

Figure 4.6: Optimal actuator locations for a 0.5m long cantilever beam for desired shape sd2

modes 1, 2, 3, 4, 5 and modes 224 and 232. The last two modes have large modal stiffnesses

and require large control energies. Consequently, despite the fact that these are dominant modes

compared with the others, they might be less important in controlling position than the first

modes. This idea can be studied through calculating optimal actuator locations by considering
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Figure 4.7: Comparison between achieved shapes and desired shape sd2 on a 0.5m long can-

tilever beam

the effect of the first five modes in yd. Hence V in equation 4.22 is

V =










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


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







,

where r1 to r5 are the participation factors for modes 1 to 5. Table 4.2 shows the optimal

locations for 10 actuators. The desired and achieved shapes are compared in Figure 4.9. This

figure shows that both shapes match reasonably well.
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Figure 4.8: Comparison between desired shape sd2 and achieved shapes with 6 actuators on a

0.5m long cantilever beam

Number of actuators Optimal Actuator Locations

10 2,5-8,92,94-97

Table 4.2: Optimal actuator locations on a 3m long cantilever beam for desired shape sd3

4.2.2 Optimal Actuator Locations on a Simply Supported Beam

A simply supported beam is shown in Figure 4.10. The beam dimensions are 0.5 m x 0.03 m x

0.002 m and it is divided into 15 finite elements. The desired shape for this beam is

sd4(ξ) = 0.05(1 − cos 2πξ/50), (4.27)

where ξ is the distance in cm from either of the pinned end conditions. This shape is symmetric.
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Figure 4.9: Comparison between desired shape sd3 and achieved shapes on a 3m long cantilever

beam with 10 actuators

�

Figure 4.10: A simply supported beam

For this reference position, the dominant modes are 1,3,5, 30 and 32. The modal participa-

tion factors for these modes in the desired shape are

r1 = 0.599, r3 = 0.133, r5 = 0.023, r30 = 0.228, r32 = 0.402.

The participation factors for odd-numbered modes are zero for this shape, since all these modes

are anti-symmetric and the desired shape is symmetric. Although the modes 30 and 32 have
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large participation factors, it is not economical to apply actuators all over the beam’s length.

Hence, the optimal location of 3 and 5 actuators are calculated for this shape on the beam. The

desired output, yd, as discussed in the previous section is formed by only including the effects

of first, third and fifth modes. According to the presented formulation, the highest structural

mode involved in yd poses conditions for the minimum number of actuators. The vector yd is

not dependent on the number of actuators as long as this number is larger than the minimum

required. The matrix V in Equation (4.22) is

V =




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
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�

(a) 3 Actuators

�

(b) 5 Actuators

Figure 4.11: Optimal actuator locations for a 0.5 m long simply supported beam for desired

shape sd4

The optimal locations of 3 and 5 actuators for this beam are shown in figures 4.11(a) and

4.11(b). The achieved shapes are compared with the desired shape in figure 4.12. For 3 actuators

the achieved shape does not match the desired shape. The V matrix includes up to the fifth
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structural mode. This means that to be able to control the fifth mode at least 5 actuators are

required to achieve the desired shape. It supports the idea that although V includes 3 modes

and yd has three elements, 3 actuators are not capable of deforming the beam to its desired

position. The highest mode involved in the desired shape is the key factor in specifying the

minimum number of actuators not the number of elements in yd. When 5 actuators are applied

the achieved shape is close to the reference position.
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Figure 4.12: Comparison between desired shape sd4 and achieved shapes on a 0.5m long simply

supported beam

Next, the beam dimensions are changed to 3m x 0.03m x 0.002m . The beam is divided

into 100 finite elements. The desired shape for the beam is

sd5(ξ) =
1

2
(1 − cos 2πξ/300), (4.28)
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Number of actuators Optimal Actuator Locations

10 17-19,49-52,82-84

Table 4.3: Optimal locations of 10 actuators on a 3m long simply supported beam for desired

shape sd5

where ξ is the distance in cm from either of the pinned ends of the beam. For this shape, the

first, third and fifth modes are the dominant modes. The optimal location of 10 actuators is

calculated for the beam. The results are shown in Table 4.3. In Figure 4.13 the achieved shape

when actuators are optimally located on the beam is compared with the desired position.
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beam with 10 actuators
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4.2.3 Optimal Actuator Locations on Plates

In this section the optimal location of 10 actuators is calculated for shape control of a plate

with two different boundary conditions. Plate dimensions are 500 mmx500 mmx1 mm and it is

divided into a 10x10 grid of finite elements. The structure is augmented with actuators on its

top surface and actuators are 50 mm x50 mm x40 µm each, which is the same area as the finite

elements.

The optimization results are also compared with a genetic algorithm. For genetic algorithm,

the population size is taken as 100, to get results as accurate as possible. A random initial

population is chosen and the optimization constraint on the number of actuators is taken into

account by assigning a very large number to the fitness value when the number of ones in binary

genes of each chromosome goes higher than 10.

Cantilever Plate

In the first model, the plate is fixed at one of its edges as shown in Figure 4.14. The desired

shape is

sd6 = 10v1 + 10v4, (4.29)

where v1 and v4 indicate the first and forth mode shape, respectively. Figure 4.16(a) shows this

reference position.

To optimize actuator locations on this plate V in Equation 4.22 can be written as

V =





















10vT
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10vT
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


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







. (4.30)

Figures 4.15(a) and 4.15(b) show the optimal locations of 10 actuators on this plate when the

presented optimization scheme and a genetic algorithm (GA) are applied, respectively. Let’s call
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Figure 4.14: A cantilever plate

the placement in Figure 4.15(a), placement (a) and the placement in Figure 4.15(b), placement

(b). The calculated optimal locations from the two methods are very close. However, the

objective value with the presented method is slightly smaller. The objective value for actuator

placement (a) is 1.8943 and this value for placement (b) is 1.921. This verifies the accuracy of

the presented optimization scheme.

Besides verifying the results, GA is applied to show how important it is to optimally place

actuators for a shape control problem when limited number of actuators are applied. The results

from GA present a near optimal solution for this problem. Figures 4.16(b) and 4.16(c), show

the achieved vertical displacements for placements (a) and (b) respectively. Figures 4.17(a) and

4.17(b) show the error percentage for the deformations in Figures 4.16(b) and 4.16(c) respec-

tively. Despite the fact that placement (b) is a near optimal solution, it does not result in an

accurate achieved position for the plate. The results for actuator placement (a) is much more

accurate that the results from placement (b).
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(a) Presented Optimization Scheme, Objective value=1.8943

                                                          

(b) Genetic Algorithm, Objective value=1.921

Figure 4.15: Optimal actuator locations on a cantilever plate for desired shape sd6 applying two

different optimization schemes

Plate with Pinned-Pinned Boundary conditions

The boundary conditions on the plate are changed to pinned condition on two opposite sides of

the plate. This model is shown in Figure 4.18. The desired shape is

sd7 = 10v1 + 10v4, (4.31)

where v1 and v4 are the plate’s first and forth modes of vibration. Consequently, the V matrix,

takes the same form as Equation 4.30. The desired shape is shown in Figure 4.20(a).

Figures 4.19(a) and 4.19(b) show the optimal locations of 10 actuators on this plate when the

presented optimization scheme and when a genetic algorithm are applied respectively. Let’s call

the placement in Figure 4.19(a), placement (c) and the placement in Figure 4.19(b), placement

(d). Genetic algorithm results in an objective value of 8.9733. The presented optimization

scheme results in an optimum objective value of 8.8905 . The difference between the calculated

optimums by both methods is very small. Almost no difference between the errors in achieved
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shapes is.

Figures 4.20(b) and 4.20(c) show the achieved plate shapes from placement (c) and (d),

respectively. Figures 4.21(a) and 4.21(b) show the error percentage for the deformations in

Figures 4.20(b) and 4.20(c) respectively. Despite the fact that the objective values for both

placements are almost identical, the maximum shape error for placement (d) is significantly

larger than the maximum shape error for placement(c). Although the matrix V includes only

modes one and four of the structure, 4 actuators is a lower bound for the number of actuators

and may not lead to an accurate shape for the plate. To achieve an accurate shape for the plate,

a higher number of actuators is required.

It can be concluded that the minimum number of actuators required to achieve accurate

results depends on the desired shape and type of the structure. A lower band is the number of

desired outputs. However, this is required to achieve stabilizability in the system.
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(a) Desired shape sd6 for the cantilever plate

0

10

20

30

40

50

0
10

20
30

40
50

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Position in x Direction (cm)

Position in y Direction (cm)

V
e
rt

ic
a
l 
D

is
p
la

c
e
m

e
n
t 

(c
m

)

(b) Presented optimization scheme
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(c) A Genetic algorithm

Figure 4.16: The achieved and desired shapes with 10 actuators on a cantilever plate
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(a) Presented optimization scheme
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(b) A Genetic algorithm

Figure 4.17: The errors between achieved and desired shape sd6 on a cantilever plate
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Figure 4.18: A plate with pinned boundary conditions on its two opposite edges

     

                                                           

(a) Presented Optimization Scheme, Objective value=8.8905

                                                          

(b) Genetic Algorithm, Objective value=8.9733

Figure 4.19: Optimal actuator locations for desired shape sd7 on a cantilever plate applying two

different optimization schemes
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(a) Desired shape
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(b) Presented optimization scheme
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(c) A Genetic algorithm

Figure 4.20: The achieved and desired shape sd7 on a plate with pinned boundary conditions on

its two opposite edges
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(b) A Genetic algorithm

Figure 4.21: The errors between achieved and desired shape sd7 on a plate with pinned boundary

conditions on its two opposite edges
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Chapter 5

Experimental Study of Optimal Shape and

Vibration Control

In this chapter optimal location of piezoelectric patches in vibration control and shape control

of a steel cantilever beam is experimentally studied. The linear quadratic regulator (LQR) is the

state feedback control law. Because of the limitations in the number of sensors, the states need

to be estimated. The state estimation approach is discussed in Section 5.4.

The stiffness and mass of the actuator patches are assumed to be negligible. Moreover,

the feedback control is calculated based on finite element estimation of the beam. The finite

element modeling and the aforementioned assumption need to be verified. Section 5.3 explains

the experiments carried out to verify these two criteria.

Moreover, two non-contact laser sensors are used in these experiments. Consequently, it

is important to locate the sensors in optimal positions so that they can read displacements effi-

ciently. The optimal sensor placement is studied in Section 5.5. The same optimization method

is applied to find the optimal sensors locations.
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5.1 Experimental Setup

To study the actual effect of optimal actuator placement, experiments were performed on a

cantilever beam. The experimental setup is shown in Figure 5.1. A thin steel beam is hung

from the top of an aluminum frame. The beam has a fixed boundary condition at the top and is

free at the bottom. The optimal location of two actuators on this cantilever beam is studied for

both vibration and shape control. To study the optimal actuator location problem, 4 patches are

attached to the beam surface with superglue as shown in Figures 5.2 and 5.3. In each experiment

only two of these actuators are activated to suppress the beam’s vibration or regulate it to the

desired shape.

Figure 5.1: Experimental setup for vibration control and shape control of a steel cantilever beam

Table 5.1 shows the beam and piezoelectric patch dimensions. The beam material properties

are shown in Table 5.2. The actuators are PSI-5A4E piezo sheets from Piezosystems. These

actuators are made of Lead Zirconate Titanate and are Industry Type 5A or Navy Type II.
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Figure 5.2: Piezoelectric patch bonded to the beam’s surface

Material properties of piezo-patches are shown in Table 5.2. For this material, the relative

dielectric constant, K3 = 1800 for 1 KHz frequency [3]. Relative dielectric constant is applied

to calculate the capacitance of piezoelectric patches. The capacitance is

Cp =
K3ǫ0A

tp

,

where ǫ0 = 8.9 × 10−12 farads/meter is the permittivity of the free space, A is the area of

electrodes and tp is the thickness of patches [3]. For the piezo-patches used in these experiments,

both top and bottom surfaces are covered by electrode layers . Consequently, A is equal to the

surface area of each patch. For the patch dimensions in Table 5.1 , Cp = 660 × 10−9 F.

Beam Piezoelectric Patch

Length(cm) 70 7

Width(cm) 7 7

Thickness(mm) 0.85 0.127

Table 5.1: Dimensions of the beam and the piezoelectric patches
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Figure 5.3: The beam, actuators and sensors

Properties Piezoelectric Base Structure

Elastic Modulus (Nm−2) 66 × 109 21 × 1010

Density ρ (kgm−3) 7800 7810

Dielectric Constant d31 (mv−1) 190 × 10−12

Poisson’s Ratio 0.3 0.3

Table 5.2: Material Properties

SA11 power amplifier is used for input voltages of actuators. This amplifier is modified to

have 3 input and 3 output channels. It is capable of providing up to 270 V peak to peak, when it

is provided by 115 VAC 60 Hz or 220 VAC 50 Hz. It accepts an input voltage range of ±9 VCD
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or peak AC. Its output current range is from 0 to ±300 mA DC or peak AC. The maximum input

voltage of actuators is dependent on the amplifier’s output current range and the capacitance of

piezoelectric patches. Consequently, the maximum voltage that can be supplied to the actuators

is

Vmax =
Imax

2π fCp

,

where Imax is the maximum current which in this case equals 300mA, f is the frequency which

equals 1 KHz [3]. The maximum voltage that the amplifier provides for actuators is 72 Volts.

Keyence LK081 and LK031 non-contact laser sensors are applied to read the deformations

and estimate the states. Each laser sensor comes with its own controller. Table 5.3 shows

the specifications of these sensors. Hence sensor location 1 in Figure 5.4 is LK-031 since

the range of displacements is smaller in this position. It is located at a 30 mm horizontal

distance from the beam. Sensor location 2 is LK-081 and it is located 80 mm away from the

beam. The data acquisition system (DAQ), includes Sensory 626 data acquisition card and a

computer. This DAQ card is compatible with MATLAB. The controller is programmed using

simulink in MATLAB. Figure 5.4 shows the experimental beam model. The block diagram of

the experimental setup is shown in Figure 5.5. In these experiments, the feedback control and

input voltages of actuators are calculated based on a discrete time system. The time step is one

millisecond.

The next step is to identify the optimal location of actuators. To find the optimal location

of the two actuators on the beam, the beam is modeled with 10 ’BEAM3’ finite elements in

ANSYS finite element software. Each element has the same dimensions as the actuator patches.

To complete the finite element modeling, the damping of the beam’s material also needs to be

estimated. Moreover, the finite element modeling and the estimated damping must be verified

by comparing the experimental and analytical natural frequencies of the beam.
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Sensor Head LK-031 LK-081

Controller LK-2001 LK-2101

Reference Distance(mm) 30 80

Measuring Range(mm) ±5 ±15

Sampling Rate (µs) 512 1024

Resolution (µm) 1 3

Table 5.3: Specifications of non-contact laser sensors

1 2 3 4

7 cm 7 cm7 cm 14 cm 7 cm28 cm

Sensor Location 2Sensor Location 1

Figure 5.4: Experimental beam model and the actuator and sensor positions

5.2 Damping Estimation

To estimate the damping of the beam, the beam is released to vibrate from an initial displace-

ment at its end point. The beam’s displacement is recorded by sensor 2. A Rayleigh damping

model is assumed for the beam. The beam is also modeled with finite element discretization.

Vibration of the model beam is then simulated with the same initial conditions as the experi-

ments. The damping in the model is varied until the vibrations of the model beam match the

vibrations from the experiment. To assure the accuracy of the damping matrix estimation, the
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Data Acquisition
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State Estimation and Feedback 

Control

Figure 5.5: Block diagram of the experimental setup

experiments are repeated for various initial displacements at the beams tip. The analytical and

experimental results are then compared to assure accuracy.

The beam’s damping is estimated as

Cd = 5 × 10−4K,

where K is the stiffness matrix of the beam which is calculated by finite element modeling.

Table 5.4 shows a sample comparison of the decay ratio in vibration amplitude in 10 seconds at

the end of the beam. For this table the initial condition is 7 mm at the end of the beam.

Decay Ratio (Percent)

Experimental Beam 25

Analytical Beam 24.7

Table 5.4: Decay ratio in the beam’s vibration amplitude in 10 seconds
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5.3 Verification of Finite Element Model

The beam is modeled with a finite element method. It is divided into 10 elements and the size of

each element is 7cm×7cm. These elements are relatively coarse. Since the state space equations

of the beam and the feedback control are dependent on the number and size of elements, it is

required to verify that the finite element modeling captures the dynamics of the beam with an

acceptable accuracy. On the other hand, since piezo-patches have a very small thickness, in the

optimization of actuator locations, the stiffness and mass of actuators were neglected. In this

section, experiments are carried out to verify the validity of this assumption.

(c
m
)

Figure 5.6: Frequency response of the beam without actuators

Before attaching the actuators, the beam is subjected to an impulse at one third of its length

from the top. Figure 5.6 shows the frequency response function of the beam. In the next step, the

four piezoelectric patches are bonded to the beam and the beam is subjected to an impulse at the

same location as before. Figure 5.7 shows its frequency response. In both Figures 5.6 and 5.7
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Figure 5.7: Frequency response of the beam with actuators

Natural Frequencies(Hz) First Second Third

Finite Element modeling 1.56 8.480 23.887

Beam without Actuators 1.499 8.438 23.400

Beam With Actuators 1.526 8.385 23.16

Table 5.5: The first three natural frequencies of the beam with and without actuators

the first 3 natural frequencies of the beam are captured. Table 5.5 shows the first three natural

frequencies from finite element modeling of the beam. It also compares the natural frequencies

of the beam before and after bonding the patches. This table shows that the modeling results

are in good agreement with the experimental results. It also shows a negligible change in the

first three natural frequencies after attaching the actuators. Excluding the stiffness and mass

matrices of piezoelectric actuators, leads to 1.8 percent error in the first natural frequency of the

beam. This error is not significant in the optimization of actuators placement. Moreover, there
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is only 4 percent error in the first natural frequency of the beam when it is compared with the

first natural frequency of the beam without actuators.

5.4 State Estimation

In our system,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t)
,

the state vector is

x =



















K0.5ζ

ζ̇



















,

where ζ is the generalized nodal displacement vector. The elements of this vector are the defor-

mations at the element nodes in finite element discretization. Two sensors are available for the

experiments. Each sensor reads the displacement at one node on the beam. A state estimator

should be designed for the experiments. A simple Luenberger observer may be applied as the

estimator,

ẋe(t) = Axe(t) + Bu(t) + L[y(t) −Cxe(t)]

Therefore,

ẋe(t) = (A − LC)xe(t) + Ly(t) + Bu(t).

The gain L is the observer gain.

Defining the error as ė(t) = x(t) − xe(t), the error equation is

ė(t) = Ace(t), (5.1)

where

Ac = A − LC
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.

If all the eigenvalues of Ac have negative real parts, Equation (5.1) will be asymptotically

stable. If (A,C) is observable, the eigenvalues of A − LC can be arbitrarily assigned. However,

the assumption here is that the sensor provides the exact results free of any noise. This is not true

in practice and the sensor is always contaminated by some noise. The noise inserts limitations

on the extent to which the eigenvalues of Ac can be made negative. Moreover, because there is

always integration between y and xe, xe will approach x for a full-order estimator. This is not

true for reduced order estimators. There will be noise in xe arising from that in y, because xe is

partly determined by a memoryless transformation on y. Consequently, the performance for a

reduced order estimator may be worse than a full order estimator [114]. That is why one may

approach the state estimation problem from stochastic point of view.

The Kalman-Bucy filter can be applied as the state estimator. It also removes the noise

effect in the system. Here, the A, B and C matrices are time invariant. For now, let’s assume

we have disturbance noise v(t), and measurement noise w(t) in our system. These are additive

noises and are white, Gaussian and with a zero mean. The noises are assumed white, because

it implies that they are uncorrelated from instance to instance [114]. These assumptions for the

noises applies to many noise occurring processes.The system can be written as

ẋ(t) = Ax(t) + Bu(t) + v(t),

y(t) = Cx(t) + w(t)
,

where x(t) and u(t) are the state and input vectors respectively. Therefore, mathematically the

noise covariances can be written as,

E[v(t)v′(τ)] = Qeδ(t − τ) E[v(t)] ≡ 0,

E[w(t)w′(τ)] = Reδ(t − τ) E[w(t)] ≡ 0.
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The matrices Qe and Re are symmetric non-negative matrices. The presence of δ(t − τ) in

these equations indicates the whiteness property of the noises. The Qe and Re matrices should

be introduced to the estimator. Since the noise information is not available at the start of the

experiments, values need to be chosen for these matrices and the accuracy of the estimator

should be verified in the next stages. For now, Qe = I and Re = I, where I is the identity matrix.

Assuming the initial time is in infinite past, for a completely observable pair [A,C′], the optimal

estimator can be written as [114]

ẋe = Axe + Bu + Ke[Cxe − y],

where Ke is called the gain of the optimal estimator and is given by

Ke = −PeC
T R−1

e .

The matrix Pe is the solution of algebraic Riccati equation

PeAT + APe − PeC
T R−1

e CPe + Qe = 0. (5.2)

To achieve an asymptotically stable system, it is required that A + KeC has eigenvalues with

negative real parts. For Qe = DDT , it can be ensured when the pair [A,D] is stabilizable.

5.5 Optimal Sensor Location

It is desirable to optimally place the sensors on a structure, so that they can operate efficiently.

The optimal sensor locations can be found based on estimator-regulator duality.

Consider a regulator problem defined by A, B,Q and R. Let P the associated Riccati equa-

tion solution and K the control gain. Define matrices

Â = AT , Ĉ = B, Q̂ = Q, R̂ = R,
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and define an estimation problem by Â, Ĉ, Q̂ and R̂. Let P̂e be the solution of the associated

Riccati equation and Ke be the feedback gain [114]. Then

P̂e = P, Ke = K.

Consequently, an approach similar to optimal actuator placement can be applied to optimize

sensor locations. What shall be aimed in an optimal estimation problem is a minimum error

variance. At each time, the error variance is

ErrorVariance = E
{

[x(t) − xe(t)]
T [x(t) − xe(t)]

}

.

In [114], it is shown that

E
{

[x(t) − xe(t)]
T [x(t) − xe(t)

}

= Pe(t).

For a time invariant system, Pe is time independent. Consequently, the error variance is also

time invariant. To minimize the error variance, ‖Pe‖ can be minimized. In equation (5.2), Pe is

the solution of Riccati equation. Assuming constant A, Qe and Re matrices, Pe is dependent on

C and C is a function of sensor locations. Hence, defining a vector of possible sensor locations,

πe, the objective function for sensor location optimization can be written as

σe(π) = ‖Pe(π)‖. (5.3)

This is a non-convex function. However, applying the formulation in [6] the problem is

re-formulated into a convex optimization problem. The formulation is exactly as mentioned in

Chapter 2. Same as optimal actuator location problem, the vector π is a vector of Ne logical

elements where the jth entry has a 1 when a sensor exists in that location and a value of zero

otherwise. When Me sensors are available, the optimization problem is
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min{σ(πe); πe ∈ Φ},

s.t.

Φ = {πe ∈ R
N s.t. πe j

∈ {0, 1};
∑N

j=1 πe j
= Me}.

(5.4)

Each such vector πe defines a possible vector of actuator locations.The optimization proce-

dure, presented in Chapter 2 can be applied to solve Equation 5.4.

This procedure is used to optimize sensor locations. The non-contact sensors in this exper-

iment are placed so that their laser beam is normal to the beam’s surface. Each sensor can read

the normal displacement at one point on the beam. Since the beam is discretized into finite ele-

ments, possible sensor locations can be chosen as the unconstrained element nodes. The beam

is divided into 10 elements and it has 10 unconstrained nodes. Consequently, N = 10 for this

problem. The possible sensor locations are shown in Figure 5.8.

 

Figure 5.8: Possible sensor locations

Two sensors are available. Hence, Me = 2. Solving this optimization problem with the pre-

sented optimization scheme, yields the optimal location of two sensors as shown in Figure 5.9.

The optimal location of one sensor is at the beam’s tip. However, since we have non-contact

sensors, it is not practical to place a sensor at the beam’s tip. Moreover, since the measuring

range for the LK031 series is small, its location is moved one element towards the beam’s fixed

end. Therefore, the sensors are placed as in Figure 5.4.

It should be mentioned that the matrices Qe and Re are functions of measurement and dis-
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Figure 5.9: Optimal sensor locations

turbance noise. Some values are assumed for this matrices and the optimal sensor locations

are calculated. The assumptions for this matrices should be verified and the estimator should

operate properly. If the estimation does not lead to correct results , these matrices should be

changed and the optimal actuator locations should be recalculated. Therefore, optimal sensor

placement is a kind of trial and error problem.

5.6 Vibration Control

To study the vibration control problem, first the optimal location of 2 actuators on the exper-

imental beam is calculated. For the optimization, Q and R matrices are assumed equal to the

identity matrix. The optimal locations are positions 1 and 2 on the beam as shown in Figure 5.4.

The initial condition for the beam vibration is 13 mm initial displacement at the beam’s tip.

The optimal vibration control problem is studied for two different Q matrices. In each test,

two of the actuators in Figure 5.4 are activated and the results are compared to each other.

The first step is to verify the state estimation. Consequently, the vibrations near the beam’s

tip are compared for the analytical and experimental results when the actuators are located at

positions 1 and 2. The results are shown in Figure 5.11(b). It is observed that the results are in

good agreement.

In the first set of experiments, Q matrix is assumed equal to identity. Figure 5.11(a) shows
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Figure 5.10: Beam’s tip displacement to compare experimental and analytical results

1,2 1,3 1,4 2,3 2,4

Suppression Time (Sec.) 8.5 10.46 13.76 13.72 14.42

Table 5.6: Suppression time for various actuating positions

the uncontrolled and controlled responses which are read near the beam’s tip. The controlled

responses in this figure are for 3 combinations of actuators. The actuator numbers are shown

in Figure 5.4. As in Figure 5.11(a), the optimally located actuators, suppress the effect of

vibrations in a shorter amount of time.

Table 5.6 shows the suppression time for all the existing actuator locations in this problem.

It is observed that when actuators are placed optimally, the disturbances are suppressed faster.

To also study the difference in actuators’ voltages for various position combinations, Fig-

ure 5.12(a) shows the actuators’ voltages when they are at positions 1 and 2. Figure 5.12(b)
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(a) Vibrations in 20 seconds
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(b) Magnified beam vibrations

Figure 5.11: Beam’s near tip displacement with different actuating locations in vibration control

experiment

shows actuators’ voltages when they are located at positions 2,3. It can be observed that when

actuators are optimally located, smaller voltages are applied to the actuators to suppress distur-
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(a) Actuators at positions 1 and 2
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(b) Actuators at positions 2 and 3

Figure 5.12: Input voltage of actuators
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For larger values of Q elements, smaller suppression times can be achieved. Consequently,

in the next set of experiments, the same procedure is followed, except that Q = 10000I, where

I is the identity matrix. Figure 5.13 shows the controlled and uncontrolled responses read by

sensor 2. Same as before, the controlled responses in the figure are for the same 3 combinations

as in Figure 5.11(a). Table 5.7 shows the suppression times for all the existing actuator com-

binations. Comparing these results with Table 5.6, shows that the suppression times decrease

considerably by increasing the diagonal elements of Q.
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Figure 5.13: Beam’s tip displacement with different actuating locations in vibration control

1,2 1,3 1,4 2,3 2,4

Suppression Time (Sec.) 5.45 6.44 7.20 7.803 8.056

Table 5.7: Suppression time for various actuating positions
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Figure 5.14: Input voltage of actuators at positions 1 and 2

5.7 Shape Control

To study the optimal shape control problem, the optimal location of 2 actuators on the beam

is calculated. The optimal locations are dependent on the desired shape. The desired shape is

the beam’s first mode of vibration with a 2.3 mm deformation at its tip. Consequently, 2 mm

displacement at sensor 2 location and 0.19 mm displacement at sensor 1 location is expected.

The desired shape is shown in Figure 5.16. The range of displacements is small in this study

and this increases the error ratio. As a result of the 72 volt limitation in the supply voltage of the

actuators, it is impossible to go beyond this limit. However, according to Table 5.3, the applied

sensors in this study can read small range displacements with a good accuracy.

It is desired to compare the achieved beam displacement and actuators’ input voltages when

they are located at different positions. Analyses show that the optimal actuator locations are at

positions 1 and 2 in Figure 5.4.
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Figure 5.15: Input voltage of actuators at positions 1 and 2
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Figure 5.16: The desired shape for the beam

The shape control experiments are repeated for 3 sets of actuator locations. In the first set,

actuators 1 and 2 are activated. In the second set, actuators 1 and 3 and in the third set, actuators
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2 and 3 are activated. Due to the 72 volts limitation in actuators’ voltages as discussed previ-

ously, it was impossible to repeat the experiments for the other possible actuator combinations,

since they needed much higher input voltages.

The beam displacements recorded by sensors include measurement noises. Figure 5.17

shows the actual displacements at sensor locations 1 and 3. These results are not filtered and

include noise effect. These displacement curves are smoothed using the moving average method

in Matlab for the other results.
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Figure 5.17: Unfiltered displacement with actuators at positions 1 and 3

Figure 5.18(a) shows the displacements of the beam at sensor 1 and sensor 2 positions.

At Sensor 1 location (Position 1) the deformation reaches 0.203 mm and at Sensor 2 location

(position 2) it reaches 1.967 mm. The error is 6.8 per cent at Position1 and 1.65 per cent at
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Position 2. Figure 5.18(b) shows the input voltages of actuators. The steady state input voltage

for Actuator 1 is 54 volts and this value for Actuator 2 is 51 volts. The average voltage is 52.5

volts.

To verify repeatability of the experiments, the results for three tests are compared together.

In these tests the actuators are located at positions 1 and 2. Figures 5.19(a) and 5.19(b) show

the results at sensor locations 1 and 2, respectively. It is observed that repeating the experiment

results in the same displacements for the beam.

Next, actuators 1 and 3 are activated to achieve the desired shape. Figure 5.20 shows the

structure deformations at positions 1 and 3. At sensor position 1 the beam’s displacement

reaches 0.249 mm and it reaches 1.76 mm at sensor position 2. The error is 31 percent at

Position 1 and 12 percent at Position 2. Clearly, the errors are higher than when the actuators

are optimally located. Figure 5.21 shows the actuators’ input voltages. The steady state input

voltage for actuator 1 is 70 volts and for actuator 3 is 43 volts. The average voltage is 56.5 volts.

It is observed that the average voltage is higher than when the actuators are optimally located.

In the next step actuators 2 and 3 are activated. Figure 5.22 shows the deformations at

sensor positions 1 and 2. At Position 1 the displacement reaches 0.0996 mm and it reaches

1.774 mm at Position 2. The error is 50.2 percent at Position 1 and it is 11.3 percent at Position

2. On average the errors are higher than the previous actuator locations. Figure 5.23 shows

the steady state input voltages of actuators. The input voltage of actuator 2 is 73 volts and for

actuator 3 is 50 volts. The average voltage is 61.5 which is higher than previous locations.

Figure 5.24 compares the deformations with the desired shape. When actuators 1 and 2 are

activated the results accurately match the desired shape. This is not happening when actuators

at the other positions are activated and as they get further from the optimal locations, the result

becomes more inaccurate.
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(b) Input voltages of actuators

Figure 5.18: Actuators at positions 1 and 2 in shape control
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It is observed that when actuators are optimally located, the input voltages of actuators

are optimal as well. Table 5.8 compares the maximum and minimum actuator voltages for

various actuator placements. As the actuators are located further from the optimal locations the

maximum voltage increases dramatically. This increases the cost of providing input voltages

for actuators.

Actuator locations Maximum Input Voltage Minimum Input Voltage

1,2 54 51

1,3 70 43

2,3 73 50

Table 5.8: Actuator input voltages for various actuator locations
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Figure 5.19: Achieved displacement in repeated experiments

118



�

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (Sec.)

D
is

p
la

c
e
m

e
n
t 
(m

m
)

 

 

Sensor1

sensor 2

Figure 5.20: Displacement with actuators at positions 1 and 3 in shape control
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Figure 5.21: Input voltages of actuators at positions 1 and 3 in shape control
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Figure 5.22: Displacement with actuators at positions 2 and 3 in shape control

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

Time (Sec.)

In
p

u
t V

o
lta

g
e

s 
o

f A
ct

u
a

to
rs

 (
V

o
lts

)

3

2

Figure 5.23: Input voltages of actuators at positions 2 and 3 in shape control
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Chapter 6

Summary and Future Work

With the advent of new ultra-large ultra-lightweight flexible structures, the topic of optimal

actuator placement has absorbed attention during the last few years. The main goal of this

dissertation was to prepare an optimization scheme to determine optimal actuator placement in

control of flexible structures.

6.1 Key Contributions

During the past few years considerable research has been dedicated to optimal actuator place-

ment in flexible structures. This dissertation introduced an optimization algorithm to optimize

the location of multiple control devices. The main contributions of this study can be summa-

rized as follows:

• Developing a new optimization scheme: Various objective functions and a number of

different optimization techniques are introduced in the literature. However, the main dif-

ficulty in optimal actuator placement has always been in non-convexity of the objective
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functions. Mainly evolutionary algorithms are applied to solve the problem. A large

drawback of these methods is that they do not utilize the gradient information of the

objective function and consequently, for large structures, might be computationally ex-

pensive or lead to inaccurate results. Gradient-based techniques on the other hand are

prone to resulting in local optima. The optimization may require a number of repetitions

to yield reliable results.

In this study, the linear quadratic regulator is chosen as the control law for the control

system. The actuator placement is optimized to minimize the optimal quadratic cost. The

main advantage of the developed optimization algorithm is that based on a formulation

presented in [6], the objective function is mapped into a convex space of actuator loca-

tions. The optimization is then a convex integer optimization problem. An integer opti-

mization, composed of branch and bound and minimax optimizations is used to solve the

optimization problem. This optimization method is considerably faster than the existing

evolutionary algorithms.

It is worth mentioning that this method is not only applicable to optimal actuator place-

ment but can also be applied to solve optimal sensor location problems.

• Optimal actuator placement in vibration control: Utilizing the proposed optimization

scheme, the optimal location of actuators is calculated on beam and plate structures. The

computation times and the results are compared to a genetic algorithm and it is observed

that the proposed scheme is faster and more accurate. One main conclusion is that the

modal strain energies are relevant to the optimal actuator locations.

• Optimal actuator placement in shape control Despite the many studies on optimal ac-

tuator placement in vibration control, very few of them are focused on actuator placement

optimization in shape control. Optimal shape control is important in many high precision
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structures and ultra light-weight, large-scale structures. Since these structures are mainly

composed of very thin membranes, a limited number of light-weight actuators can be used

as control devices. Hence, optimal location of actuators in shape control is an important

issue for future research.

This dissertation formulates the shape control problem of a structure by expanding the

desired shape into the structure’s modes of vibration. The equations of motion for the

structure are all in time domain. Based on the number of dominant modes in the desired

shape a lower bound for the number of required actuators is suggested. The optimal

location of actuators is then calculated on beam and plate structures and the results are

also compared with a genetic algorithm.

• Experimental study of optimal shape and vibration control: Relatively few studies

exist on experimentally studying the optimal actuator placement and their effects on the

required control effort in an active control system. This issue has not been studied for

shape control to the author’s knowledge. However, it is important to have a knowledge

of how changing actuator locations may effect the input efforts even in a small structure.

This dissertation studies this issue both for shape control and vibration control. It is

shown that, when the actuators are optimally located , not only does the control system

work more accurately, but the input voltages are also significantly reduced. Moreover,

the introduced optimization scheme was applied to optimized the sensors’ locations in

the experiments.
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6.2 Future Work

The optimization method presented in this dissertation, is formulated based on the number of

finite elements in the structure’s modeling. Piezoelectric patches are assumed to have the same

size as the finite elements. However, when the size of patches exceeds the accuracy limits, this

might not be a realistic model of the structure, since large finite elements might lead to large

modeling errors. Hence, there is need for a code that covers any size of patch with a reliable

accuracy. A future objective is to develop an adaptive mesh refinement procedure. Since during

the optimization process the number of finite elements needs to be kept constant, a p-refinement

or an element subdivision h-refinement method may be applicable. The former method locally

increases the order of polynomials in inaccurate elements [115]. In the latter method, if the

existing elements show too much error, they are simply divided into smaller ones, keeping the

original element boundaries intact [115]. However, this process is cumbersome and leads to a

number of hanging points.

Further, the location of actuators is studied in this dissertation. There has been a brief

discussion on the minimum number of required actuators in shape control. However, it was

later shown that this only presents a lower bound on the number of actuators and it does not

always lead to desirable results, specially in plate structures. It is shown how sensitive the

shape control results are to the number of actuators. The proposed optimization scheme can be

modified to also optimize the number of actuators. This is a future topic for research in both

shape and vibration control.

Chapter 5 includes a brief discussion on optimal sensor placement. The presented opti-

mization scheme is also applicable to sensor placement. In damage detection problems sensor

placement has a significant importance. One future topic is to apply the presented optimization

scheme to an in-depth study of optimal sensor placement.
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