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Abstract

The following thesis is divided into two main parts. In the first part we study the
problem of characterizing algebras of functions living on analytic varieties. Specifically,
we consider the restrictions MV of the multiplier algebra M of Drury-Arveson space to
a holomorphic subvariety V of the unit ball as well as the algebras AV of continuous
multipliers under the same restriction.

We find thatMV is completely isometrically isomorphic toMW if and only if W is the
image of V under a biholomorphic automorphism of the ball. In this case, the isomorphism
is unitarily implemented. Furthermore, when V and W are homogeneous varieties then
AV is isometrically isomorphic to AW if and only if the defining polynomial relations are
the same up to a change of variables.

The problem of characterizing when two such algebras are (algebraically) isomorphic is
also studied. In the continuous homogeneous case, two algebras are isomorphic if and only
if they are similar. However, in the multiplier algebra case the problem is much harder
and several examples will be given where no such characterization is possible.

In the second part we study the triangular subalgebras of UHF algebras which provide
new examples of algebras with the Dirichlet property and the Ando property. This in turn
allows us to describe the semicrossed product by an isometric automorphism. We also
study the isometric automorphism group of these algebras and prove that it decomposes
into the semidirect product of an abelian group by a torsion free group. Various other
structure results are proven as well.
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Chapter 1

Introduction

This thesis is based on three papers which were written during my time at the University
of Waterloo. Chapter 2 is on the first two papers [32, 33] written with Ken Davidson and
Orr Shalit. The first is published in Advances in Mathematics and the second has been
accepted to Transactions of the American Mathematical Society. Chapter 3 is found in
[59] which has been accepted to Integral Equations and Operator Theory.

The two main chapters then are self-contained and do not relate to each other in any
specific sense. In general they are both in operator algebras and both use the maximal
ideal space to provide structure theory and characterization. However, other than this
very short gloss, there will be no attempt to bring these studies into a cohesive whole, with
apologies if the reader was expecting anything different.

Chapter 2 concerns the study of operator algebras of multipliers on reproducing ker-
nel Hilbert spaces associated to analytic varieties in the unit ball of Cd. Multiplication
by coordinate functions form a d-tuple which is the universal model for commuting row
contractions [11]. Two natural algebras to look at then, are the weak closed and norm
closed algebras generated by these coordinate multipliers. These turn out to be the multi-
plier algebraMd of the Drury-Arveson space and the corresponding algebra of continuous
multipliers. The Hilbert space is a reproducing kernel Hilbert space which is a complete
Nevanlinna-Pick kernel [31]; and in fact when d =∞ is the universal complete NP kernel
[1]. For these reasons, the space and its associated algebras have received a lot of attention
in recent years.

An analytic variety V is the joint zero set of a collection of holomorphic functions.
When MV is the multiplier algebra of the collection of kernel functions coming from V it
is proven in [30] thatMV is a complete quotient ofMd by a wot-closed ideal, specifically,
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the ideal vanishing on V . Under some conditions on the variety it also makes sense to
consider the algebra of continuous multipliers on the variety, AV .

The main question that we address is when two such algebras are isomorphic. We find
first that two such algebras MV and MW are completely isometrically isomorphic if and
only if there is a biholomorphic automorphism of the ball that carries V onto W . In this
case, the isomorphism is unitarily implemented. The continuous algebra characterization
follows similarly and in this case we can determine the C∗-envelope.

The question of algebraic isomorphism (which implies continuous algebraic isomorphism
because the algebras are semisimple) is much more subtle. In the homogeneous variety
setting the algebras AV are completely characterized by biholomorphisms of the varieties.
This was proven up to some technical assumption on the varieties by Davidson, Shalit and
myself and the technical assumption was dispensed with by Michael Hartz in [41].

Outside of this special class, such a characterization problem proves quite difficult. For
instance, one can show that biholomorphic Blaschke sequences need not give isomorphic
multiplier algebras. However, we will show that what seems to be the easy direction, show-
ing that an isomorphism determines a biholomorphism of V onto W , can be established
with some hypotheses. In particular, this will be shown when the varieties are a finite
union of irreducible varieties and a discrete variety. The isomorphism is just composition
with this biholomorphism.

These methods also allow us to show that an isometric isomorphism is just composition
with a conformal automorphism of the ball, and thus is completely isometric and unitarily
implemented.

One should note that there are a few other approaches to algebras of functions living on
varieties or domains. Arias and Latrémolière [5] have an interesting paper in which they
study certain operator algebras of this type in the case where the variety is a countable
discrete subset of the unit disc which is the orbit of a point under the action of a Fuchsian
group. They establish results akin to ours in the completely isometric case using rather
different methods. As well, Popescu has developed an operator theory on noncommutative
domains [55].

Chapter 3 studies the automorphisms and dilation theory of triangular uniformly hy-
perfinite (UHF) algebras. A unital non-selfadjoint operator algebra is a triangular UHF
algebra if it is the closed union of a chain of unital subalgebras each isomorphic to a full
upper triangular matrix algebra. That is, such an algebra can be thought of as the upper
triangular part of a UHF algebra. These were extensively studied by Power [57] and many
others in the early 90’s.
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In their recent paper [26], Davidson and Katsoulis refine various notions of dilation
theory, commutant lifting and Ando’s theorem for non-selfadjoint operator algebras and
show that these notions become simpler when the algebras have the semi-Dirichlet prop-
erty. Moreover, if the operator algebra has this nice dilation theory then one can describe
the C∗-envelope of the semicrossed product of the operator algebra by an isometric au-
tomorphism. However, almost all examples of such algebras arose from tensor algebras
of C∗-correspondences, the exception being given recently by E. T. A. Kakariadis in [46],
which leads to the question whether other examples exist. While it is unknown (at least
to the author) whether a triangular UHF algebra is isomorphic to some tensor algebra it
does provide a new example of an operator algebra which has the Dirichlet property and
the Ando property.

We also address the isometric automorphism group of such triangular UHF algebras.
We prove in Section 3.2 that this group can be decomposed into a semidirect product
of approximately inner automorphisms by outer automorphisms and that the outer auto-
morphism group is torsion free. Section 3.3 provides a different proof to that of Power’s
in [58] showing that the outer automorphism group of the triangular UHF algebra with
alternating embeddings is determined by a pair of supernatural numbers associated to the
algebra. Section 3.4 develops a method of tensoring the embeddings of two triangular UHF
algebras to create a new algebra which combines the automorphic structure of both, giving
a slightly richer perspective on what groups one can obtain.
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Chapter 2

Operator algebras for analytic
varieties

2.1 Algebras, ideals and varieties

2.1.1 Multivariable function theory

For E a finite dimensional Hilbert space with orthonormal basis e1, . . . , ed, let F = F(E)
denote the full Fock space

F = C⊕ E ⊕ (E ⊗ E)⊕ (E ⊗ E ⊗ E)⊕ . . . .

Consider the left creation operators L1, . . . , Ld given by

Ljei1 ⊗ · · · ⊗ eik = ej ⊗ ei1 ⊗ · · · ⊗ eik for 1 ≤ j ≤ d.

Let Ld denote the wot-closed algebra generated by L1, . . . , Ld, called the non-commutative
analytic Toeplitz algebra, in other words, the algebra generated by the left regular repre-
sentation of the free semigroup on d generators. It has been established in [29, 30, 31, 55]
that Ld is the appropriate analogue of the analytic Toeplitz algebra in one variable.
Moreover, the Bunce-Frazho-Popescu Dilation Theorem [17, 36, 52] establishes that ev-
ery pure row contraction T = (T1, . . . , Td) is the compression of L(∞) (the direct sum of
infinitely many copies of L = (L1, . . . , Ld)) to a covariant subspace. Specifically, there is
a unital, completely contractive, surjective homomorphism from the norm closed algebra
Ad = Alg{I, L1, . . . , Ld}, the noncommutative disc algebra, onto Alg{I, T1, . . . , Td} sending
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Li to Ti. Thus, Ad is the universal operator algebra generated by a row contraction [53].
However, it should be noted that there is no equivalent statement in the wot-closures of
these algebras (see [27, 28, 29, 60]).

Again for E a finite dimensional Hilbert space with orthonormal basis e1, . . . , ed, we
write En as the n-fold symmetric tensor product. This is the subspace of E⊗n that is
invariant under all permutations of the basis vectors. The symmetric Fock space then, is
defined to be

Fs := C⊕ E ⊕ E2 ⊕ E3 ⊕ . . . .

Let H2
d be Drury-Arveson space [11] which is defined to be the reproducing kernel

Hilbert space on Bd, the unit ball of Cd, with kernel functions

kλ(z) =
1

1− 〈z, λ〉
for z, λ ∈ Bd.

The theory is a bit different in the case of d =∞, in this case Cd is considered as `2.

Multiplication by the coordinate functions on H2
d ,

(Zih)(z) = zih(z) for i = 1, . . . , d,

gives a commuting row contraction Z = (Z1, . . . , Zd). Let Md denote the multiplier
algebra Mult(H2

d) of H2
d , this is the wot-closed algebra generated by Z. As well, Ad =

Alg{I, Z1, . . . , Zd} is the universal (norm-closed) unital operator algebra generated by a
commuting row contraction [11, 54]. When d = 1, H2

d ,Md and Ad become the classical
Hardy space, H2, the algebra of bounded analytic functions, H∞(D), and the disc algebra,
A(D). This setting then, should be thought of as the appropriate multivariable analogue
of analytic function theory on the disc. Of course, there are important differences, for
example Md ( H∞(Bd) for d > 1.

These two settings, noncommutative and commutative, are in fact strongly related.
Indeed, consider the commutator ideal C generated by LiLj − LjLi, 1 ≤ i < j ≤ d. Then,
H2
d ' Fs = F 	 CF [11], and moreover,

Md ' Ld/C
w∗ ' PH2

d
Ld|H2

d
and Ad ' Ad/C

‖·‖ ' PH2
d
Ad|H2

d

with Zi = PH2
d
Li|H2

d
, [31].
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2.1.2 Analytic varieties

Let an analytic variety be defined as the joint zero set of a family of analytic functions.
Specifically, if F ⊂ H2

d then

V (F ) := {λ ∈ Bd : f(λ) = 0 for all f ∈ F}.

It should be noted that this is a global definition as opposed to the local definition of
classical varieties, that around every point λ in a variety V there is a neighbourhood N of
λ and analytic functions such that these functions vanish on N ∩V , see [39, 68]. However,
we will see that the theory goes through with this definition, though ultimately, a local
definition may work and would be desirable.

Consider that for f ∈ Md we have Mf1 = f ∈ H2
d . Hence, one can define analytic

varieties of multipliers. When V is an analytic variety define the wot-closed ideal

JV = {f ∈Md : f(λ) = 0 for all λ ∈ V } ⊂ Md.

Proposition 2.1.1. Let F be a subset of H2
d , and let V = V (F ). Then

V = V (JV ) = {λ ∈ Bd : f(λ) = 0 for all f ∈ JV }.

Proof. Obviously V ⊆ V (JV ). For the other inclusion, recall that [2, Theorem 9.27] states
that a zero set of an H2

d function is a weak zero set for Md (i.e. the intersection of zero
sets of functions in Md). Since V is the intersection of zero sets for H2

d , it is a weak
zero set for Md; i.e., there exists a set S ⊆ Md such that V = V (S). Now, S ⊆ JV , so
V = V (S) ⊇ V (JV ).

Given the analytic variety V , we define a subspace of H2
d by

FV = span{kλ : λ ∈ V }.

The Hilbert space FV is naturally a reproducing kernel Hilbert space of functions on the
variety V . One could also consider spaces of the form FS = span{kλ : λ ∈ S} where S is
an arbitrary subset of the ball. The following proposition shows that there is no loss of
generality in considering only analytic varieties generated by H2

d functions.

Proposition 2.1.2. Let S ⊆ Bd. Let JS denote the set of multipliers vanishing on S, and
let IS denote the set of all H2

d functions that vanish on S. Then

FS = FV (IS) = FV (JS).
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Proof. Clearly FS ⊆ FV (IS). Let f ∈ F⊥S . Then f(x) = 0 for all x ∈ S; so f ∈ IS. Hence
by definition, f(z) = 0 for all z ∈ V = V (IS); whence f ∈ F⊥V (IS). Therefore FS = FV (IS).

The extension to zero sets of multipliers follows again from [2, Theorem 9.27].

Remarks 2.1.3. In general, it is not true that V (IS) is equal to the smallest analytic
variety in the classical sense containing S ⊆ Bd. In fact, by Weierstrass’s Factorization
Theorem, every discrete set Z = {zn}∞n=1 in D is the zero set of some holomorphic function
on D. However, if the sequence Z is not a Blaschke sequence, then there is no nonzero
function in H2 that vanishes on all of it. So here IZ = {0}, and therefore V (IZ) = D.

Returning to the fact that our definition of a variety is not local, one could consider
the following variant: V is a variety if for each point λ ∈ Bd, there is an ε > 0 and a finite
set f1, . . . , fn in Md so that

bε(λ) ∩ V = {z ∈ bε(λ) : 0 = f1(z) = · · · = fn(z)}.

We do not know if every variety of this type is actually the intersection of zero sets.

In particular, we will say that a variety V is irreducible if for any regular point λ ∈ V ,
a point around which the variety looks like a manifold, the intersection of zero sets of all
multipliers vanishing on a small neighbourhood V ∩ bε(λ) is exactly V . However we do not
know whether an irreducible variety is connected. A local definition of our varieties would
presumably clear up this issue.

It is a natural to also look at the norm closed ideal IV associated to an analytic variety

IV = {f ∈ Ad : f(λ) = 0 for all λ ∈ V }.

It should be noted that in many situations this ideal will give no useful information, this
will be seen later. In general the norm closed ideal is useful for study when its wot-closure
is JV . This will be seen to happen when

[IVH
2
d ] = [JVH

2
d ]. (2.1)

In function theoretic terms, this means that every f ∈ JV is the bounded pointwise limit
of a net of functions in IV . It is not clear when this happens in general but we do have a
fair number of examples.

In dimension d = 1, the analytic varieties are sequences of points which are either finite
or satisfy the Blaschke condition. For such a sequence V , let us denote S(V ) = V ∩ T.
When the Lebesgue measure of S(V ) is positive, there is no nonzero f ∈ A(D) that vanishes
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on V because a non-zero function in the disk algebra must be non-zero a.e. on the unit
circle. So IV = 0. On the other hand, JV 6= 0, because it contains the Blaschke product
of the sequence V . So it cannot be the wot-closure of IV . In particular, the special
assumption (2.1) is not always satisfied. If the Lebesgue measure |S(V )| of S(V ) is zero,
then the special assumption is valid.

Lemma 2.1.4. Let V be an analytic variety in D such that S(V ) has zero measure. Then
the ideal JV is the wot-closure of IV .

Proof. Let B be the Blaschke product with simple zeros on V . It suffices to construct
for every f ∈ JV = BH∞, a bounded sequence in IV converging pointwise to f . Factor
f = Bh with h ∈ H∞. By a theorem of Fatou there is an analytic function g with Re g ≥ 0
such that e−g is in A(D) and vanishes precisely on S(V ). Define

fn(z) = B(z) e−g(z)/nh((1− 1
n
)z) for n ≥ 1.

This sequence belongs to A(D), is bounded by ‖f‖∞, and converges to f uniformly on
compact subsets of the disk. Hence it converges to f in the wot topology.

For d > 1, the canonical example where this special assumption is true is a homogeneous
variety, V = V (I), where I is a homogeneous ideal of C[z], where z = (z1, · · · , zd), that is,
generated by a finite set of homogeneous polynomials. In this circumstance, V is an affine
algebraic variety.

2.1.3 Ideals and invariant subspaces

We will apply some results of Davidson-Pitts [30, Theorem 2.1] and [31, Corollary 2.3] to
the commutative context.

In the first paper, a bijective correspondence is established between the collection of
wot-closed ideals J of Ld and the complete lattice of subspaces which are invariant for
both Ld and its commutant Rd, the algebra of right multipliers. The pairing is just the
map taking an ideal J to its closed range µ(J) := JF . The inverse map takes a subspace
N to the ideal J of elements with range contained in N .

In [31, Theorem 2.1], it is shown that the quotient algebra Ld/J is completely isomet-
rically isomorphic and wot-homeomorphic to the compression of Ld to µ(J)⊥. As was
mentioned, [31, Corollary 2.3] shows that the multiplier algebraMd is completely isomet-

rically isomorphic to Ld/C
w∗

, the quotient by the weak-∗ closure of the commutator ideal.

In particular, µ(C
w∗

)⊥ = H2
d .
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It is easy to see that there is a bijective correspondence between the lattice of wot-
closed ideals Id(Md) of Md and the wot-closed ideals of Ld which contain C. Similarly
there is a bijective correspondence between invariant subspaces N of Md and invariant

subspaces of Ld which contain µ(C
w∗

) = H2⊥
d . Since the algebra Md is abelian, it is also

the quotient of Rd by its commutator ideal, which also has range H2⊥
d . So the subspace

N ⊕H2⊥
d is invariant for both Ld and Rd. Therefore an application of [30, Theorem 2.1]

yields the following consequence:

Theorem 2.1.5. Define the map α : Id(Md) → Lat(Md) by α(J) = J1. Then α is a
complete lattice isomorphism whose inverse β is given by

β(N) = {f ∈Md : f · 1 ∈ N}.

Moreover [31, Theorem 2.1] then yields:

Theorem 2.1.6. If J is a wot-closed ideal ofMd with range N , thenMd/J is completely
isometrically isomorphic and wot-homeomorphic to the compression of Md to N⊥.

2.1.4 The multiplier algebra of a variety

The reproducing kernel Hilbert space FV comes with its multiplier algebraMV = Mult(FV ).
This is the algebra of all functions f on V such that fh ∈ FV for all h ∈ FV . A standard
argument shows that each multiplier determines a bounded linear operator Mf ∈ B(FV )
given by Mfh = fh. We will usually identify the function f with its multiplication opera-
tor Mf . We will also identify the subalgebra of B(FV ) consisting of the elements Mf and
the algebra of functions MV (endowed with the same norm). One reason to distinguish
f and Mf is that sometimes we need to consider the adjoints of the operators Mf . The

distinguishing property of these adjoints is that M∗
f kλ = f(λ)kλ for λ ∈ V , in the sense

that if A∗kλ = f(λ)kλ for λ ∈ V , then f is a multiplier.

The space FV is therefore invariant for the adjoints of multipliers; and hence it is the
complement of an invariant subspace of Md. Thus an application of Theorem 2.1.6 and
the complete Nevanlinna-Pick property yields:

Proposition 2.1.7. Let V be an analytic variety in Bd. Then

MV = {f |V : f ∈Md}.

Moreover the mapping ϕ :Md →MV given by ϕ(f) = f |V induces a completely isometric
isomorphism and wot-homeomorphism of Md/JV onto MV . For any g ∈ MV and any
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f ∈ Md such that f |V = g, we have Mg = PFVMf |FV . Given any F ∈ Mk(MV ), one can

choose F̃ ∈Mk(M) so that F̃ |V = F and ‖F̃‖ = ‖F‖.

Proof. Theorem 2.1.6 provides the isomorphism betweenMd/JV and the restriction of the
multipliers to N⊥ where N = JV 1. Since JV vanishes on V , if f ∈ JV , we have

〈Mfh, kλ〉 = 〈h,M∗
f kλ〉 = 0 for all λ ∈ V and h ∈ H2

d .

So N is orthogonal to FV . Conversely, if Mf has range orthogonal to FV , the same
calculation shows that f ∈ JV . Since the pairing between subspaces and ideals is bijective,
we deduce that N = F⊥V . The mapping ofMd/JV intoMV is given by compression to FV
by sending f to PFVMf |FV .

It is now evident that the restriction of a multiplier f inMd to V yields a multiplier on
FV , and that the norm is just ‖f + JV ‖ = ‖PFVMf |FV ‖. We need to show that this map
is surjective and completely isometric. This follows from the complete Nevanlinna-Pick
property as in [31, Corollary 2.3]. Indeed, if F ∈ Mk(MV ) with ‖F‖ = 1, then standard
computations show that if λ1, . . . , λn lie in V , then[(

Ik − F (λj)F (λi)
∗)〈kλi , kλj〉]

n×n

is positive semidefinite. By [31], this implies that there is a matrix multiplier F̃ ∈Mk(Md)

with ‖F̃‖ = 1 such that F̃ |V = F .

We can argue as in the previous subsection that there is a bijective correspondence
between wot-closed ideals of MV and its invariant subspaces:

Corollary 2.1.8. Define the map α : Id(MV ) → Lat(MV ) by α(J) = J1. Then α is a
complete lattice isomorphism whose inverse β is given by

β(N) = {f ∈MV : f · 1 ∈ N}.

Remark 2.1.9. By Theorem 4.2 in [1], every irreducible complete Nevanlinna-Pick kernel
is equivalent to the restriction of the kernel of Drury-Arveson space to a subset of the
ball. It follows from this and from the above discussion that every multiplier algebra of an
irreducible complete Nevanlinna-Pick kernel is completely isometrically isomorphic to one
of the algebras MV that we are considering here.
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Remark 2.1.10. By the universality of Z1, . . . , Zd [11], for every unital operator algebra
B that is generated by a pure commuting row contraction T = (T1, . . . , Td), there exists
a surjective unital homomorphism ϕT : Md → B that gives rise to a natural functional
calculus

f(T1, . . . , Td) = ϕT (f) for f ∈Md.

So it makes sense to say that a commuting row contraction T annihilates JV if ϕT vanishes
on JV . By Proposition 2.1.7, we may identify MV with the quotient Md/JV , thus we
may identifyMV as the universal wot-closed unital operator algebra generated by a pure
commuting row contraction T = (T1, . . . , Td) that annihilates JV .

Turning to the continuous case, define AV to be the norm closure of the polynomials
in MV . The importance of the special assumption (2.1) is in the following result.

Proposition 2.1.11. Let V be an ideal such that [IVH
2
d ] = [JVH

2
d ]. Then

1. For every f ∈ Ad, the compression of Mf to FV is equal to Mg, where g = f |V .

2. AV = {f |V : f ∈ Ad}.

3. Ad/IV is completely isometrically isomorphic to AV via the restriction map f 7→ f |V
of Ad into AV .

4. For every f ∈ Ad, dist(f, IV ) = dist(f, JV ).

Proof. The first item is just a restatement of Proposition 2.1.7. By universality of Ad,
AV is equal to the compression of Ad to FV . Therefore, by (a slight modification of)
Popescu’s results [55], AV is the universal operator algebra generated by a commuting row
contraction subject to the relations in IV = JV ∩ Ad. But so is Ad/IV . So these two
algebras can be naturally identified. Since compression is restriction, (2) and (3) follow.
Item (4) follows from the fact that

dist(f, IV ) = ‖f + IV ‖A/IV = ‖PFVMfPFV ‖
= ‖f + JV ‖M/JV = dist(f, JV ).

Corollary 2.1.12. Let V be a homogeneous variety, or a Blaschke sequence in the disc such
that S(V ) has measure zero. Then Ad/IV embeds into Md/JV completely isometrically.
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2.1.5 The character space of MV

If A is a Banach algebra, denote the set of multiplicative linear functionals on A by M(A);
and endow this space with the weak-∗ topology. We refer to elements ofM(A) as characters.
Note that all characters are automatically unital and continuous with norm one. When A
is an operator algebra, characters are completely contractive.

When V is an analytic variety in Bd, we will abuse notation and let Z1, . . . , Zd also
denote the images of the coordinate functions Z1, . . . , Zd ofMd inMV . Since

[
Z1, . . . , Zd

]
is a row contraction, ∥∥(ρ(Z1), . . . , ρ(Zd)

)∥∥ ≤ 1 for all ρ ∈M(MV ).

The map π : M(MV )→ Bd given by

π(ρ) = (ρ(Z1), . . . , ρ(Zd))

is continuous as a map from M(MV ), with the weak-∗ topology, into Bd (endowed with
the weak topology in the case d =∞). We define

V
M

= π((M(MV )).

Since π is continuous, V
M

is a (weakly) compact subset of Bd. For every λ ∈ VM, the

fiber over λ is defined to be the set π−1(λ) in M(MV ). We will see below that V ⊆ V
M

,
and that over every λ ∈ V the fiber is a singleton.

Every unital homomorphism ϕ : A → B between Banach algebras induces a mapping
ϕ∗ : M(B) → M(A) by ϕ∗ρ = ρ ◦ ϕ. If ϕ is a continuous isomorphism, then ϕ∗ is a
homeomorphism. We will see below that in many cases a homomorphism ϕ :MV →MW

gives rise to an induced map ϕ∗ : M(MW ) → M(MV ) which has additional structure.
The most important aspect is that ϕ∗ restricts to a holomorphic map from W into V .

The weak-∗ continuous characters of MV

In the case of Md, the weak-∗ continuous characters coincide with the point evaluations
at points in the open ball [6, 29]

ρλ(f) = f(λ) = 〈fνλ, νλ〉 for λ ∈ Bd,

12



where νλ = kλ/‖kλ‖. The fibers over points in the boundary sphere are at least as compli-
cated as the fibers in M(H∞) [30], which are known to be extremely large [43].

As a quotient of a dual algebra by a weak-∗ closed ideal, the algebra MV inherits a
weak-∗ topology. As an operator algebra concretely represented on a reproducing kernel
Hilbert space, MV also has the weak-operator topology (wot). In Ld these topologies
coincide [29], which leads to the following:

Lemma 2.1.13. The weak-∗ and weak-operator topologies on MV coincide.

Proof. By [7, Proposition 1.2] (see also [25, Theorem 5.2]), Ld/JV has property A1(1).
This means that for every ρ in the open unit ball of (Ld/JV )∗, there are x, y ∈ FV with
‖x‖‖y‖ < 1 such that

ρ(T ) = 〈Tx, y〉 , T ∈ Ld/JV .

The conclusion immediately follows from this because the commutator ideal C is a subset
of JV as an ideal of Ld and so Ld/JV 'MV .

Proposition 2.1.14. The wot-continuous characters of MV can be identified with V .

Moreover, V
M ∩ Bd = V . The restriction of each f ∈MV to V is a bounded holomorphic

function.

Proof. As MV is the multiplier algebra of a reproducing kernel Hilbert space on V , it is
clear that for each λ ∈ V , the evaluation functional

ρλ(f) = f(λ) = 〈fνλ, νλ〉

is a wot-continuous character.

On the other hand, the quotient map from the free semigroup algebra Ld onto MV

is weak-operator continuous. Thus, if ρ is a wot-continuous character of MV , then it
induces a wot-continuous character on Ld by composition. Therefore, using [30, Theorem
2.3], we find that ρ must be equal to the evaluation functional ρλ at some point λ ∈ Bd.
Moreover ρλ annihilates JV . By Proposition 2.1.1, the point λ lies in V .

If ρ is a character onMV such that π(ρ) = λ ∈ Bd, then again it induces a character ρ̃
on Ld with the property that ρ̃(L1, . . . , Ld) = λ. By [30, Theorem 3.3], it follows that ρ̃ is
wot-continuous and coincides with point evaluation. Hence by the previous paragraph, λ

belongs to V . So V
M ∩ Bd = V .

Therefore π : π−1(V ) → V is seen to be a homeomorphism between π−1(V ) endowed
with the weak-∗ topology and V with the (weak) topology induced from Bd.

13



By Proposition 2.1.7,MV is a quotient ofMd, and the map is given by restriction to V .
Hence f is a bounded holomorphic function by [30, Theorem 3.3] or [11, Proposition 2.2].

Thus the character space M(MV ) consists of V and M(MV ) \ V , which we call the

corona. By definition, the corona is fibered over V
M \ V , and by the above proposition

this latter set is contained in ∂Bd.

The continuous characters

Define
V
A

= {λ ∈ Bd : f(λ) = 0 for all f ∈ IV }.

Clearly V
A

contains the closure of V in Bd. But it is not clear exactly what else it contains.
However, it seems most reasonable to restrict our attention to the algebras AV such that
V = V (IV ), so that the variety V is determined by functions in Ad. In this case, we obtain

Bd ∩ V
A

= V. (2.2)

The proof is the same as that of Proposition 2.1.1. It is not clear whether this holds
for arbitrary varieties. This identity does hold when V ⊆ D is a Blaschke sequence and
|S(V )| = 0.

Proposition 2.1.15. Let V be a variety satisfying condition (2.1). Then the character

space M(AV ) of AV can be identified with V
A

.

Proof. Let λ ∈ V A. Then the evaluation functional ρλ given by ρλ(f) = f(λ) is a character
of Ad with kernel equal to I{λ} ⊇ IV . Thus ρλ can be promoted to a character of AV =
Ad/IV .

Denote by Z1, . . . , Zd the images of the coordinate functions in AV . If ρ is a character
of AV , let

λ = (λ1, . . . , λd) = (ρ(Z1), . . . , ρ(Zd)).

Then λ ∈ Bd because ρ is completely contractive. For every f ∈ IV , f(Z1, . . . , Zd) = 0.
Thus

ρ(f(Z1, . . . , Zd)) = f(λ1, . . . , λd) = 0.

So λ lies in the set of all points in Bd that annihilate IV , which is V
A

.

This identification is easily seen to be a homeomorphism.
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2.1.6 Nullstellensatz for homogeneous ideals

Our goal in this section is to obtain a (projective) Nullstellensatz for a large class of
operator algebras, including Md, Ad and the “ball algebra” A(Bd).

Let Ω ⊆ Cd be an open bounded domain that is the union of polydiscs centered at 0.
Then Ω has the following property:

λ ∈ Ω⇒ tλ ∈ Ω , for all t ∈ D

and Ω also the property that every function f holomorphic in Ω has a Taylor series that
converges in Ω.

Let H be a reproducing kernel Hilbert space of analytic functions in Ω containing the
polynomials with the additional property that f(z) 7→ f(eitz) is a unitary operator on H
for all t ∈ R. It follows that if p, q ∈ H are homogeneous polynomials of different total
degrees, then 〈p, q〉 = 0.

In the discussion below AH will denote the closure of the polynomials in the multiplier
algebra MH = Mult(H). If H = H2

d , then MH = Md, which is the case of principal
interest. If H is taken to be the Bergman space on Ω, then AH is A(Ω), the space of
continuous functions on Ω which are analytic on Ω, with the sup norm. As is always the
case with algebras of multipliers, the norm of MH, which will be denoted simply by ‖ · ‖,
satisfies ‖f‖∞ ≤ ‖f‖ (see [2, Chapter 2]).

Every f ∈MH has a Taylor series in Ω, f(z) =
∑

α aαz
α. We write

f =
∞∑
n=0

fn (2.3)

where fn(z) =
∑
|α|=n aαz

α is the nth homogeneous component of f . The series (2.3)
converges locally uniformly in Ω.

Lemma 2.1.16. For all n, the map Pn : MH → C[z] ⊆ MH given by Pn(f) = fn is
contractive. Furthermore, the series (2.3) is Cesàro norm convergent to f in the norm of
AH if f ∈ AH and the Cesàro means converge weakly otherwise.

Proof. Consider the gauge automorphisms on MH:

[γt(f)](z) = f(eitz).
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The unitary group given by [Ut(h)](z) = h(eitz) is continuous in the strong operator
topology, and γt = adUt. Hence the path t 7→ γt(f) is continuous with respect to the
strong operator topology. One sees therefore that the integral

Pn(f) =
1

2π

∫ 2π

0

γt(f)e−intdt

converges in the strong operator topology to an element of B(H). The operator Pn is a
complete contraction, as it is an average of complete contractions. Note that Pn maps
C[z] onto the space Hn of homogeneous polynomial of degree n. This fact follows from the

simple identity UsPn(f) = einsPn(f). Therefore, Pn maps MH = C[z]
‖·‖

onto Hn. A stan-
dard argument using the Fejér kernel shows that the Cesàro means Σn(f) are completely
contractive and converge weakly to f , and in norm if f ∈ AH, and that Pn(f) = fn.

In particular, we see that f is in the closed linear span of its homogeneous components.
This will be used repeatedly below.

Definition 2.1.17. An ideal I ⊆ MH is said to be homogeneous if fn ∈ I for all n ∈ N
and all f ∈ I.

Proposition 2.1.18. A closed ideal I ⊆ AH is homogeneous if and only if for all t ∈ D
and all f ∈ I, one has f(tz) ∈ I.

Proof. Assume that I is homogeneous, and let f(z) =
∑

n fn(z) ∈ I. By the previous
lemma ‖fn‖ ≤ ‖f‖, so for all t ∈ D, f(tz) =

∑
n t

nfn(z) is a norm convergent series of
elements in I. Hence f(tz) ∈ I.

Conversely, let f ∈ I, and assume that for all t ∈ D, f(tz) ∈ I. Assuming that I is
proper, f0 = 0 follows from taking t = 0. But then

f(tz)

t
=
∞∑
n=0

tnfn+1 ∈ I.

Taking t→ 0 we find that f1(z) ∈ I. Now we consider

f(tz)− f1(tz)

t2
=
∞∑
n=0

tnfn+2(z) ∈ I,

taking the limit as t→ 0 we find that f2(z) ∈ I. The result follows by recursion.
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Lemma 2.1.19. Let I ⊆ C[z] be a homogeneous ideal. Then the closure of I in AH and

the weak-∗ closure inMH are homogeneous. If p is a homogeneous polynomial in I
w∗

, then
p ∈ I.

Proof. This follows easily from the continuity of Pn.

Lemma 2.1.20. Let J be a homogeneous ideal in AH. Then the ideal I = C[z]∩J of C[z]
satisfies I ⊆ J ⊆ I, and it is the unique homogeneous ideal in C[z] with this property.

Proof. Clearly I ⊆ J , and that J ⊆ I follows from Lemma 2.1.16. If K is another
homogeneous ideal in C[z] such that K ⊆ J ⊆ K, then we have I ⊆ K and K ⊆ I. From
Lemma 2.1.19, I = K.

Corollary 2.1.21. Let J be a homogeneous ideal in MH. The the ideal I = J ∩ C[z]

satisfies I ⊆ J ⊆ I
w∗

, and it is the unique homogeneous ideal in C[z] with this property.

Proof. The Pn from Lemma 2.1.16 extend to be wot-continuous on MH and recall that
this corresponds to the weak-∗ topology.

Corollary 2.1.22. Every weak-∗ closed homogeneous ideal in MH and every norm closed
homogeneous ideal in AH is finitely generated (as a closed ideal).

Remark 2.1.23. There do exist closed ideals in A(Bd) which are not finitely generated
(one may adjust the example in [61, Proposition 4.4.2]).

For a weak-∗ closed ideal in J ⊂ MH, the radical of J is defined to be the ideal
√
J

given by √
J = {f ∈MH : fn ∈ J for some n ≥ 1}.

Note that we will also be working with the radical of ideals in AH and C[z] as well.

Lemma 2.1.24. The radical of a weak-∗ closed homogeneous ideal J ofMH (resp. a norm
closed ideal in AH) is homogeneous.

Proof. Let f and m be such that fm ∈ J . Write the homogeneous decomposition of f
as f(z) =

∑
n≥k fn(z), where fk(z) is the lowest non-vanishing homogeneous term. Then

fm(z) = fk(z)m+. . .. Since J is homogeneous, fmk ∈ J , so fk ∈
√
J . Proceeding recursively,

we find that fj ∈
√
J for all j.
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Theorem 2.1.25. Let J ⊆ MH be a weak-∗ closed homogeneous ideal (resp. a norm
closed ideal in AH). Then there exists N ∈ N such that fN ∈ J for all f ∈

√
J .

Proof. By the effective Nullstellensatz [49, Theorem 1.5] there is an N ∈ N such that

pN ∈ J ∩ C[z] for all p ∈
√
J ∩ C[z] =

√
J ∩ C[z]. If f ∈

√
J , then f ∈

√
J ∩ C[z] by

Lemma 2.1.20 and Corollary 2.1.21. If {fn} is a sequence in
√
J ∩ C[z] converging to f ,

then fNn ∈ J for all n, thus fN = w∗ − limn f
N
n ∈ J .

Corollary 2.1.26. The radical of a weak-∗ closed homogeneous ideal J ⊆ MH (resp. a
norm closed ideal in AH) is weak-∗ closed (resp. norm closed).

Proposition 2.1.27. If I ⊆ C[z] is radical, I =
√
I, then I is radical in AH and I

w∗

is
radical in MH.

Proof. Put J = I. Then
√
J ∩ C[z] is the unique homogeneous ideal in C[z] with closure

equal to
√
J . But

√
J ∩ C[z] =

√
J ∩ C[z] = I, so

√
J = I = J . The weak-∗ proof follows

identically.

The main result of this section is a projective Nullstellensatz for closed ideals in AH
and MH. We shall need the following notation. For an ideal J in some algebra B and a
set X, recall the notation for varieties and ideals

VX(J) = {z ∈ X : f(z) = 0 for all f ∈ J}.

and
IB(X) = {f ∈ B : f(λ) = 0 for all λ ∈ X}.

First we prove the Nullstellensatz in our context in for ideals of C[z].

Lemma 2.1.28. Let I be a radical ideal in C[z] such that all the irreducible components
of VCd(I) intersect Bd. Then IC[z](VCd ∩ Bd) = I.

Proof. This is an exercise in algebraic geometry. Assume first that VCd(I) is irreducible.
Let f ∈ C[z] such that f(λ) = 0 for all λ ∈ VCd(I) ∩ Bd. Denote W = VCd(f). By
assumption, W ∩Bd ⊇ VCd(I)∩Bd, therefore dimW ∩VCd(I) = dimVCd(I). It follows from
[50, Proposition 1.4] that W ∩ VCd(I) = VCd(I), therefore f ∈ IC[z](VCd(I)) = I.

Finally, if VCd(I) is reducible then we apply this argument to each irreducible compo-
nent.
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Corollary 2.1.29. If I is a homogeneous ideal in C[z], then

√
I = IC[z](VCd(I)) = IC[z](VBd(I)).

Now we prove the main Nullstellensatz result:

Theorem 2.1.30. Let I ⊆ AH be a closed homogeneous ideal and J ⊆ MH be a weak-∗
closed homogeneous ideal. Then

√
I = IAH(VΩ(I)) and

√
J = IMH(VΩ(J)). (2.4)

Proof. Define K = IAH(VΩ(I)). First, note that K is closed. Next we show that K is
homogeneous. Notice that VΩ(I) = VΩ(I ∩ C[z]), so tVΩ(I) ⊆ VΩ(I) for all t ∈ D. Thus
if f ∈ K, then for all λ ∈ VΩ(I) it follows that f(tλ) = 0. By Proposition 2.1.18, K is
homogeneous.

Finally, K ∩ C[z] is the set of all polynomials vanishing on

VΩ(I) = VΩ(I ∩ C[z]) = V (I ∩ C[z]) ∩ Ω.

So by an easy extension of Corollary 2.1.29, we find

K ∩ C[z] =
√
I ∩ C[z] =

√
I ∩ C[z].

By Lemma 2.1.20 and Corollary 2.1.26,

K = K ∩ C[z] =
√
I ∩ C[z] =

√
I.

The weak-∗ proof follows similarly.

Corollary 2.1.31. Let I ⊆ C[z] be a radical homogeneous ideal, and let f ∈ AH (resp.

MH) be a function that vanishes on VCd(I) ∩ Ω. Then f ∈ I (resp. I
w∗

).

Proof. Define J = I. Then, using Theorem 2.1.30 and then Proposition 2.1.27,

f ∈ IAH(VΩ(I)) = IAH(VΩ(J)) =
√
J = J = I.
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2.2 Completely isometric isomorphisms

2.2.1 The general case

The automorphisms of M arise as composition with an automorphism of the ball (i.e.,
a biholomorphism of the ball onto itself). This can be deduced from [30, Section 4], or
alternatively from Theorems 3.5 and 3.10 in [56]. In fact we can say more than this,
specifically that the Voiculescu unitaries, when restricted to symmetric Fock space, are
just composition with the conformal map followed by an appropriate multiplier.

Theorem 2.2.1. Let ϕ ∈ Aut(Bd). Then there is a completely isometric automorphism
Θϕ of Md (and Ad) given by Θϕ(f) = f ◦ ϕ = UfU∗, where the unitary U : H2

d → H2
d is

Uf =
(
1− |ϕ−1(0)|2

)1/2
kϕ−1(0)(f ◦ ϕ).

Proof. We begin with Voiculescu’s construction of automorphisms of the Cuntz algebra
[67]. Consider the Lie group U(1, d) consisting of (d + 1) × (d + 1) matrices X satisfying

X∗JX = J , where J =
[ −1 0

0 Id

]
. When X is of the form X =

[
x0 η∗1
η2 X1

]
it must have the

following relations:

1. ‖η1‖2 = ‖η2‖2 = |x0|2 − 1

2. X1η1 = x0η2 and X∗1η2 = x0η1

3. X∗1X1 = Id + η1η
∗
1 and X1X

∗
1 = Id + η2η

∗
2.

Furthermore, if X ∈ U(1, d) then JXTJ ∈ U(1, d) since

(JXTJ)∗J(JXTJ) = J(X∗)TJXTJ = (XJX∗J)TJ = Id+1J = J.

It follows from Voiculescu’s work that the map U(1, d)→ Aut(Bd) given by

X 7→ ϕX(z) :=
X1z + η2

x0 + 〈z, η1〉

is a surjective homomorphism. Thus, fix X ∈ U(1, d) such that ϕ = ϕJXT J which makes

ϕX = ϕ−1

JX∗J
= ϕ−1

JXT J
= ϕ−1.
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There is a unique automorphism of Ld which preserves Ad defined by

Θϕ(Lζ) = (x0I − Lη2)−1(LX1ζ − 〈ζ, η1〉I),

where we use the convention that Lζ =
∑n

i=1 ζiLi for ζ ∈ Cd. This extends to an automor-
phism of the Cuntz-Toeplitz algebra. As well, Voiculescu defined a unitary U ∈ U(F(Cd))
by

U(AΩ) = Θϕ(A)(x0I − Lη2)−1Ω, for all A ∈ Ld,

establishing that the automorphism Θϕ(A) = UAU∗ is unitarily implemented. It is easy
to see that H2

d is an invariant subspace of U and so Θϕ also yields an automorphism of
Md which preserves Ad implemented by the restriction of U . We will show that U has the
desired form.

For w ∈ F+
d , |w| = m, we have

U(zw) = U
( 1

m!

∑
σ∈Sm

ξσ(w)

)
= PH2

d
U
(( 1

m!

∑
σ∈Sm

Lσ(w)

)
Ω
)

= PH2
d
Θϕ(Mzw)PH2

d
(x0I − Lη2)−1Ω.

As noted above, because H2
d must reduce U , we obtain PH2

d
Θϕ(A) = PH2

d
Θϕ(A)PH2

d
. Sup-

pose that ζ ∈ Cd. Then

PH2
d
(Lζ)(z) =

d∑
i=1

ζizi(z) =
d∑
i=1

ζi〈z, ei〉 = 〈z, ζ〉.

Now with x−1
0 η2 = ϕX(0) = ϕ−1(0), we have that

PH2
d
(x0I − Lη2)−1Ω =

1

x0 − 〈z, η2〉
= x−1

0 kϕ−1(0).

Note that if |θ| = 1, then θX implements ϕX as well. So we may assume that x0 ≥ 0. As
well, X ∈ U(1, d) implies that |x0|2 − |η2|2 = 1. Hence,

|ϕ−1(0)|2 = |ϕX(0)|2 =
|η2|2

|x0|2
=
|x0|2 − 1

|x0|2
.

Thus x0 = (1− |ϕ−1(0)|2)−1/2.
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Next we compute

PH2
d
Θϕ(Mzw) = PH2

d
Θϕ

( 1

m!

∑
σ∈Sm

Lσ(w)

)
=

1

m!

∑
σ∈Sm

m∏
j=1

PH2
d
Θϕ(Lσ(w)j)

=
m∏
j=1

PH2
d
Θϕ(Lwj)

=
m∏
j=1

PH2
d

LX1ewj
− 〈ewj , η1〉I

x0I − Lη2
.

Observe that

JXTJ =

[
x0 −η2

∗

−η1 XT
1

]
.

Consequently,

PH2
d
Θϕ(Mzw)(z) =

m∏
j=1

PH2
d
LX1ewj

(z)− 〈ewj , η1〉
x0 − PH2

d
Lη2(z)

=
m∏
j=1

〈z,X1ewj〉 − 〈η1, ewj〉
x0 − 〈z, η2〉

=
m∏
j=1

〈XT
1 z, ewj〉+ 〈−η1, ewj〉
x0 + 〈z,−η2〉

=
m∏
j=1

zwj

(
XT

1 z +−η1

x0 + 〈z,−η2〉

)
=

m∏
j=1

zwj(ϕJXT J(z))

=
m∏
j=1

zwj(ϕ(z)) = (zw ◦ ϕ)(z).

Combining these equations, we get that

U(zw) =
( m∏
j=1

zwj ◦ ϕ
)

(1− |ϕ−1(0)|2)1/2kϕ−1(0)

= (zw ◦ ϕ)(1− |ϕ−1(0)|2)1/2kϕ−1(0).

Extending this to the span, we have that

Uf = (1− |ϕ−1(0)|2)1/2kϕ−1(0)(f ◦ ϕ)

for all f ∈Md.
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Proposition 2.2.2. Let V and W be varieties in Bd. Let F be an automorphism of Bd
that maps W onto V . Then f 7→ f ◦ F is a unitarily implemented completely isometric
isomorphism of MV onto MW ; i.e. Mf◦F = UMfU

∗. The unitary U∗ is the linear
extension of the map

U∗kw = cwkF (w) for w ∈ W,

where cw = (1− ‖F−1(0)‖2)1/2kF−1(0)(w).

Proof. Let F be such an automorphism, and set α = F−1(0). By the previous theorem,
the unitary map U ∈ B(H2

d) is given by

Uh = (1− ‖α‖2)1/2kα(h ◦ F ) for h ∈ H2
d .

As F (W ) = V , U takes the functions in H2
d that vanish on V to the functions in H2

d that
vanish on W . Therefore it takes FV onto FW .

Let us compute U∗. For h ∈ H2
d and w ∈ W , we have

〈h, U∗kw〉 = 〈Uh, kw〉
=
〈
(1− ‖α‖2)1/2kα(h ◦ F ), kw

〉
= (1− ‖α‖2)1/2kα(w)h(F (w))

=
〈
h, cwkF (w)

〉
,

where cw = (1 − ‖F−1(0)‖2)1/2kF−1(0)(w). Thus U∗kw = cwkF (w). Note that since U∗ is a
unitary, |cw| = ‖kw‖/‖kF (w)‖.

Finally, we show that conjugation by U implements the isomorphism betweenMV and
MW given by composition with F . Observe that UcwkF (w) = kw. For f ∈MV and w ∈ W ,

UM∗
fU
∗kw = UM∗

f cwkF (w) = f(F (w))UcwkF (w)) = (f ◦ F )(w)kw.

Therefore f ◦ F is a multiplier on FW and Mf◦F = UMfU
∗.

Now we turn to the converse.

Lemma 2.2.3. Let V ⊆ Bd and W ⊆ Bd′ be varieties. Let ϕ be a unital, completely
contractive algebra isomorphism of MV into MW . Then there exists a holomorphic map
F : Bd′ → Bd such that

1. F (W ) ⊆ V .
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2. F |W = ϕ∗|W .

3. the components f1, . . . , fd of F form a row contraction of operators in Md′.

4. ϕ is given by composition with F , that is

ϕ(f) = f ◦ F for f ∈MV .

Proof. Consider the image of the coordinate functions Zi in MV . As ϕ is completely
contractive, Proposition 2.1.7 shows that

[
ϕ(Z1) . . . ϕ(Zd)

]
is the restriction to W of a

row contractive multiplier F =
[
f1, . . . , fd

]
with coefficients in Md′ . As F is contractive

as a multiplier, it is also contractive in the sup norm. Moreover, since ϕ is injective, the fi
and F are non-constant holomorphic functions. Therefore F must have range in the open
ball Bd.

Fix λ ∈ W , and let ρλ be the evaluation functional at λ on MW . Then ϕ∗(ρλ) is a
character in M(MV ). We want to show that it is also an evaluation functional. Compute

[ϕ∗(ρλ)](Zi) = Zi(ϕ
∗(ρλ)) = ρλ(ϕ(Zi)) = ϕ(Zi)(λ).

So ϕ∗(ρλ) lies in the fiber over (ϕ(Z1)(λ), . . . , ϕ(Zd)(λ)) = F (λ). This is in the interior
of the ball. By Proposition 2.1.14, ϕ∗(ρλ) is the point evaluation functional ρF (λ) and
F (λ) ∈ V . We abuse notation by saying that ϕ∗(ρλ) ∈ V .

Finally, for every f ∈MV and every λ ∈ W ,

ϕ(f)(λ) = ρλ(ϕ(f)) = ϕ∗(ρλ)(f)

= ρF (λ)(f) = (f ◦ F )(λ).

Therefore ϕ(f) = f ◦ F .

Lemma 2.2.4. Let 0 ∈ V ⊆ Bd and 0 ∈ W ⊆ Bd′ be varieties. Let ϕ : MV → MW be
a completely isometric isomorphism such that ϕ∗ρ0 = ρ0. Then there exists an isometric
linear map F of Bd′ ∩ spanW onto Bd ∩ spanV such that F (W ) = V , F (0) = 0 and
F |W = ϕ∗.

Proof. By making d smaller, we may assume that Cd = spanV . Similarly, we may assume
Cd′ = spanW .

By Lemma 2.2.3 applied to ϕ, there is a holomorphic map F of Bd′ into Bd that
implements ϕ∗. Thus F (W ) ⊆ V and F (0) = 0. By the same lemma applied to ϕ−1, there
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is a holomorphic map G of Bd into Bd′ that implements (ϕ−1)∗. Hence G(V ) ⊆ W and
G(0) = 0. Now, ϕ∗ and (ϕ−1)∗ are inverses of each other. Therefore F ◦G|V and G ◦ F |W
are the identity maps.

Let H = F ◦ G. Then H is a holomorphic map of Bd into itself, such that H|V is the
identity. In particular H(0) = 0. By [62, Theorem 8.2.2], the fixed point set of H is an
affine set equal to the fixed point set of H ′(0) in Bd. Therefore H is the identity on Bd since
Cd = spanV . Applying the same reasoning to G ◦ F , we see that F is a biholomorphism
of Bd′ onto Bd such that F (W ) = V . In particular, d′ = d. It now follows from a theorem
of Cartan [62, Theorem 2.1.3] that F is a unitary linear map.

Now we combine these lemmas to obtain the main result of this section.

If V ⊆ Bd and W ⊆ Bd′ are varieties, then we can consider them both as varieties in
Bmax(d,d′). This does not change the operator algebras. Therefore, we may assume that
d = d′.

Theorem 2.2.5. Let V and W be varieties in Bd. Then MV is completely isometrically
isomorphic to MW if and only if there exists an automorphism F of Bd such that F (W ) =
V .

In fact, every completely isometric isomorphism ϕ :MV →MW arises as composition
ϕ(f) = f ◦F where F is such an automorphism. In this case, ϕ is unitarily implemented by
the unitary sending the kernel function kw ∈ FW to a scalar multiple of the kernel function
kF (w) ∈ FV .

Proof. If there is such an automorphism, then the two algebras are completely isometrically
isomorphic by Proposition 2.2.2; and the unitary is given explicitly there.

Conversely, assume that ϕ is a completely isometric isomorphism ofMV ontoMW . By
Lemma 2.2.3, ϕ∗ maps W into V . Pick a point w0 ∈ W and set v0 = ϕ∗(w0). By applying
automorphisms of Bd that move v0 and w0 to 0 respectively, and applying Proposition 2.2.2,
we may assume that 0 ∈ V and 0 ∈ W and ϕ∗(0) = 0.

Now we apply Lemma 2.2.4 to obtain an isometric linear map F of the ball Bd∩spanW
onto the ball Bd ∩ spanV such that F |W = ϕ∗. In particular, spanW and spanV have
the same dimension. (Caveat: this is only true in the case that both V and W contain
0.) We may extend the definition of F to a unitary map on Cd, and so it extends to a
biholomorphism of Bd.

Now Proposition 2.2.2 yields a unitary which implements composition by ϕ∗. By
Lemma 2.2.3, every completely isometric isomorphism ϕ is given as a composition by
ϕ∗. So all maps have the form described.
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There is a converse to Lemma 2.2.3, which may provide an alternative proof for one
half of Theorem 2.2.5. Arguments like the following are not uncommon in the theory of
RKHS; see for example [44, Theorem 5].

Proposition 2.2.6. Let V ⊆ Bd and W ⊆ Bd′ be varieties. Suppose that there exists
a holomorphic map F : Bd′ → Bd that satisfies F (W ) ⊆ V , such that the components
f1, . . . , fd of F form a row contraction of operators in Md′. Then the map given by com-
position with F

ϕ(f) = f ◦ F for f ∈MV

yields a unital, completely contractive algebra homomorphism of MV into MW .

Proof. Composition obviously gives rise to a unital homomorphism, so all we have to
demonstrate is that ϕ is completely contractive. We make use of the complete NP property
of these kernels.

Let G ∈ Mk(MV ) with ‖G‖ ≤ 1. Then for any N points w1, . . . , wN in W , we get N
points F (w1), . . . , F (wN) in V . The fact that ‖G‖ ≤ 1 implies that the N × N matrix
with k × k matrix entries[

Ik − (G ◦ F )(wi)(G ◦ F )(wj)
∗

1− 〈F (wi), F (wj)〉

]
N×N

≥ 0.

Also, since ‖F‖ ≤ 1 as a multiplier on FW , we have that[
1− 〈F (wi), F (wj)〉

1− 〈wi, wj〉

]
N×N

≥ 0.

Therefore the Schur product of these two positive matrices is positive:[
Ik − (G ◦ F )(wi)(G ◦ F )(wj)

∗

1− 〈wi, wj〉

]
N×N

≥ 0.

Now the complete NP property yields that G◦F is a contractive multiplier in Mk(MW ).

2.2.2 The continuous case

If the varieties satisfy condition 2.1, i.e. [IVH
2
d ] = [JVH

2
d ], then the general multiplier

results drop down to the continuous multiplier algebras.
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Proposition 2.2.7. Let V ⊆ Bd and W ⊆ Bd′ be varieties which satisfy condition (2.1).
Let ϕ : AV → AW be a unital algebra homomorphism. Then there exists a holomorphic
map F : Bd′ → Cd that extends continuously to Bd′ such that

F |
W
A = ϕ∗.

The components of F are in Ad′, and norm of F as a row of multipliers is less than or
equal to the cb-norm of ϕ. Moreover, ϕ is given by composition with F , that is

ϕ(f) = f ◦ F for f ∈ AV .

Proof. Every character in M(AW ) is an evaluation functional at some point λ ∈ W
A

.

Identifying W
A

and M(AW ), we find, as in Lemma 2.2.3, that the mapping ϕ∗ is given by

ϕ∗(λ) = (ϕ(Z1)(λ), . . . , ϕ(Zd)(λ)) for all λ ∈ WA
.

Proposition 2.1.11 implies that ϕ(Z1), . . . , ϕ(Zd) are restrictions toW of functions f1, . . . , fd
in Ad′ . (This is only true under our special assumption (2.1). Otherwise we only get
f1, . . . , fd in Md′ .) Defining

F (z) = (f1(z), . . . , fd(z)),

we obtain the required map F . Finally, for every λ ∈ WA
,

ϕ(f)(λ) = ρλ(ϕ(f)) = ϕ∗(ρλ)(f) = ρF (λ)(f) = f(F (λ)).

Therefore ϕ(f) = f ◦ F .

This immediately yields:

Corollary 2.2.8. Let V ⊆ Bd and W ⊆ Bd′ be varieties satisfying condition (2.1). If
AV and AW are isomorphic, then there are two holomorphic maps F : Bd′ → Cd and

G : Bd → Cd′ which extend continuously to the closed balls, such that F (W
A

) = V
A

,

G(V
A

) = W
A

, and F |
W
A and G|

V
A are inverses of each other. If V and W satisfy the

condition (2.2), then F (W ) = V and G(V ) = W .

From these results and the techniques of Lemma 2.2.4, we also get if AV and AW
are completely isometrically isomorphic, then there exists an automorphism F ∈ Aut(Bd)
such that F (V ) = W . On the other hand, the completely isometric isomorphisms of
Proposition 2.2.2 are easily seen to respect the norm closures of the polynomials in MV

andMW . Together with the above corollary we obtain the following analogue to Theorem
2.2.5.
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Theorem 2.2.9. Let V and W be varieties in Bd satisfying (2.1). Then AV is completely
isometrically isomorphic to AW if and only if there exists an automorphism F of Bd such
that F (W ) = V .

Every completely isometric isomorphism ϕ : AV → AW arises as composition ϕ(f) =
f ◦ F where F is such an automorphism. In this case ϕ is unitarily implemented by a
unitary sending the kernel function kw ∈ FW to a scalar multiple of the kernel function
kF (w) ∈ FV .

Remark 2.2.10. In the first paper with Davidson and Shalit [32], this theory was estab-
lished by working with subproduct systems [14, 63, 66], which is a subject of much interest
in and of itself. In fact, it provided similar results in the non-commutative setting.

2.2.3 Toeplitz algebras and C*-envelopes

Central to the theory of non-selfadjoint operator algebras is the notion of a C∗-envelope
[12, 34, 40, 45], which can be thought of as the smallest C∗-algebra that contains the
operator algebra.

In this section we consider the Toeplitz algebra of V , defined as TV = C∗(AV ). Theorem
2.2.9 tells us that every completely isometric isomorphism between continuous multiplier
algebras is unitarily implemented. This gives us that:

Proposition 2.2.11. Let V and W be varieties satisfying condition 2.1. If AV and AW
are completely isometrically isomorphic then TV and TW are ∗-isomorphic.

One can say some things in general without the special assumption. In particular, [19,
Proposition 6.4.6] tells us that TV contains all compact operators on FV . This is due to the
fact that the compression of the compact operator I −

∑d
i=1 Z

∗
i Zi to FV is still non-zero.

In light of this, call OV = TV /K(FV ), the Cuntz-Toeplitz algebra. A variant of another
part of the same proposition in [19] gives:

Lemma 2.2.12. If d > 1 then the quotient map q : TV → OV is not a complete isometry
on AV .

By [10, Theorem 2.1.1], the identity representation is a boundary representation if and
only if the quotient map q : TV → OV is not a complete isometry. Thus the above lemma
gives immediately:

Corollary 2.2.13. The identity representation of TV is a boundary representation for AV .
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Since the Silov boundary ideal is contained in the kernel of any boundary representation,
we find that the Silov ideal of AV in TV is {0}. Thus we obtain:

Theorem 2.2.14. The C*-envelope of AV is TV .

Having brought C*-algebras into our discussion about universal operator algebras, one
might wonder whether our methods give any handle on the universal unital C*-algebra
generated by a row contraction subject to homogeneous polynomial relations. Unfortu-
nately, these universal C*-algebras are out of our reach. All we can say is that TV is not,
in general, the universal unital C*-algebra generated by a row contraction subject to the
relations in V . One can see this by considering the case d = 1 and no relations. Then TV
is the ordinary Toeplitz algebra, which is not the universal unital C*-algebra generated by
a contraction.

2.3 Algebraic isomorphisms

2.3.1 The general case

We turn now to the question: when does there exist an (algebraic) isomorphism between
MV and MW? This problem is more subtle, and we frequently need to assume that
the variety sits inside a finite dimensional ambient space. Even the construction of the
biholomorphism seems to rely on some delicate facts about complex varieties.

We begin with a well-known automatic continuity result. Recall that a commutative
Banach algebra is semi-simple if the Gelfand transform is injective.

Lemma 2.3.1. Let V and W be varieties in Bd. Every homomorphism from MV to MW

is norm continuous.

Proof. The algebras that we are considering are easily seen to be semi-simple. A general
result in the theory of commutative Banach algebras says that every homomorphism into
a semi-simple algebra is automatically continuous (see [22, Prop. 4.2]).

Lemma 2.3.2. Let V and W be varieties in Bd and Bd′, respectively, with d′ < ∞. Let
ϕ : MV → MW be an algebra isomorphism. Suppose that λ is an isolated point in W .
Then ϕ∗(ρλ) is an evaluation functional at a point in V .
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Proof. The character ρλ is an isolated point in M(MW ). (Here is where we need d′ <∞.)
Since ϕ∗ is a homeomorphism, ϕ∗(ρλ) must also be an isolated point in M(MV ). By
Shilov’s idempotent theorem (see [15, Theorem 21.5]), the characteristic function χϕ∗(ρλ)

of ϕ∗(ρλ) belongs to MV . Now suppose that ϕ∗(ρλ) is in the corona M(MV ) \ V . Then
χϕ∗(ρλ) vanishes on V . Therefore, as an element of a multiplier algebra, this means that
χϕ∗(ρλ) = 0. Therefore χϕ∗(ρλ) must vanish on the entire maximal ideal space, which is a
contradiction. Thus ϕ∗(ρλ) lies in V .

Next we want to show that any algebra isomorphism ϕ between MV and MW must
induce a biholomorphism between W and V . This identification will be the restriction of
ϕ∗ to the characters of evaluation at points of W . In order to achieve this, we need to
make some additional assumption.

Our difficulty is basically that we do not have enough information about varieties. In
the classical case, if one takes a regular point λ ∈ V , takes the connected component
of λ in the set of all regular points of V , and closes it up (in Bd), then one obtains a
subvariety. Moreover the closure of the complement of this component is also a variety [68,
ch.3, Theorem 1G].

However our varieties are the intersections of zero sets of a family of multipliers. Let
us say that a variety V is irreducible if for any regular point λ ∈ V , the intersection of zero
sets of all multipliers vanishing on a small neighbourhood V ∩ bε(λ) is exactly V . We do
not know, for example, whether an irreducible variety in our sense is connected. Nor do we
know that if we take an irreducible subvariety of a variety, then there is a complementary
subvariety as in the classical case.

A variety V is said to be discrete if it has no accumulation points in Bd.

We will resolve this in two situations. The first is the case of a finite union of irreducible
varieties and a discrete variety. The second is the case of an isometric isomorphism. In
the latter case, the isomorphism will turn out to be completely isometric. This yields a
different approach to the results of the previous section.

We need some information about the maximal ideal space M(MV ). Recall that there
is a canonical projection π into Bd obtained by evaluation at [Z1, . . . , Zd]. For any point µ
in the unit sphere, π−1(µ) is the fiber of M(MV ) over µ. We saw in Proposition 2.1.14 that
for λ ∈ Bd, π−1(λ) is the singleton {ρλ}, the point evaluation at λ. The following lemma
is analogous to results about Gleason parts for function algebras (see [13]). However part
(2) shows that this is different from Gleason parts, as disjoint subvarieties of V will be at
a distance of less than 2 apart. This is because MV is a (complete) quotient of Md, and
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thus the difference ‖ρλ− ρµ‖ is the same whether evaluated as functionals onMV orMd.
In the latter algebra, λ and ν do lie in the same Gleason part.

Lemma 2.3.3. Let V be a variety in Bd.

1. Let ϕ ∈ π−1(µ) for µ ∈ ∂Bd. Suppose that ψ ∈M(MV ) satisfies ‖ψ−ϕ‖ < 2. Then
ψ also belongs to π−1(µ).

2. If λ and µ belong to V , then ‖ρµ − ρλ‖ ≤ 2r < 2, where r is the pseudohyperbolic
distance between µ and λ.

Proof. If ψ ∈ π−1(ν) for ν 6= µ in the sphere, then there is an automorphism of Bd that
takes µ to (1, 0, . . . , 0) and ν to (−1, 0, . . . , 0). Proposition 2.2.2 shows that composition
by this automorphism is a completely isometric automorphism. So we may suppose that
µ = (1, 0, . . . , 0) and ν = (−1, 0, . . . , 0). But then

‖ψ − ϕ‖ ≥ |(ψ − ϕ)(Z1)| = 2.

Similarly, if ψ = ρλ for some λ ∈ V , then for any 0 < ε < 1, there is an automorphism
of Bd that takes µ to (1, 0, . . . , 0) and ν to (−1+ε, 0, . . . , 0). The same conclusion is reached
by letting ε decrease to 0.

If λ and µ belong to V , then there is an automorphism γ of Bd sending λ to 0 and µ
to some v := (r, 0, . . . , 0) where 0 < r < 1 is the pseudohyperbolic distance between λ and
µ. Given any multiplier f ∈ MV with ‖f‖ = 1, Proposition 2.1.7 provides a multiplier
f̃ in Md so that f̃ |V = f and ‖f̃‖ = 1. In particular, f̃ ◦ γ−1 is holomorphic on Bd and
‖f̃ ◦ γ−1‖∞ ≤ 1. Hence the Schwarz Lemma [62, Theorem 8.1.4] shows that∣∣∣∣∣ f(µ)− f(λ)

1− f(µ)f(λ)

∣∣∣∣∣ =

∣∣∣∣∣ f̃ ◦ γ−1(v)− f̃ ◦ γ−1(0)

1− f̃ ◦ γ−1(v)f̃ ◦ γ−1(0)

∣∣∣∣∣ ≤ r.

Hence
‖ρµ − ρλ‖ = sup

‖f‖≤1

|(ρµ − ρλ)(f)| ≤ r sup
‖f‖≤1

|1− f(µ)f(λ)| ≤ 2r.

This provides some immediate information about norm continuous maps between these
maximal ideal spaces.

Corollary 2.3.4. Suppose that ϕ is a homomorphism of MV into MW .
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1. Then ϕ∗ maps each irreducible subvariety of W into V or into a single fiber of the
corona.

2. If ϕ is an isomorphism, and V and W are the disjoint union of finitely many irre-
ducible subvarieties, then ϕ∗ must map W onto V .

3. If ϕ is an isometric isomorphism, then ϕ∗ maps W onto V and preserves the pseu-
dohyperbolic distance.

Proof. (1) Let W1 be an irreducible subvariety of W , and let λ be any regular point of W1.
We do not assert that W1 is connected.

Suppose that ϕ∗(ρλ) is a point evaluation at some point µ in Bd. Then by Proposi-
tion 2.1.14, µ belongs to V . Since ϕ is norm continuous, by Lemma 2.3.3 it must map the
connected component of λ into a connected component of V .

Similarly, suppose that ϕ∗(ρλ) is mapped into a fiber of the corona. Without loss of
generality, we may suppose that it is the fiber over (1, 0, . . . , 0). Since ϕ is norm continuous,
by Lemma 2.3.3 it must map the connected component of λ into this fiber as well. Suppose
that there is some point µ in W1 mapped into V or into another fiber. So the whole
connected component of µ is also mapped into V or another fiber. Then the function
h = ϕ(Z1) − 1 vanishes on the component of λ but does not vanish on the component
containing µ. This contradicts the fact that W1 is irreducible. Thus the whole subvariety
must map entirely into a single fiber or entirely into V .

(2) Suppose that W is the union of irreducible subvarieties W1, . . . ,Wn. Fix a point
λ ∈ W1. For each 2 ≤ i ≤ n, there is a multiplier hi ∈ Md′ which vanishes on Wi but
hi(λ) 6= 0. Hence h = h2h3 · · ·hk|W belongs toMW and vanishes on ∪ki=2Wi but not on W1.
Therefore ϕ−1(h) = f is a non-zero element ofMV . Suppose that ϕ∗(W1) is contained in a
fiber over a point in the boundary of the sphere, say (1, 0, . . . , 0). Since Z1 − 1 is non-zero
on V , we see that (Z1 − 1)f is not the zero function. However, (Z1 − 1)f vanishes on
ϕ∗(W1). Therefore ϕ((Z1 − 1)f) vanishes on W1 and on ∪ki=2Wi. Hence ϕ((Z1 − 1)f) = 0,
contradicting injectivity. We deduce that W1 is mapped into V .

By interchanging the roles of V and W , we deduce that ϕ∗ must map W onto V .

(3) In the isometric case, we can make use of Lemma 2.3.3(2) because then ϕ∗ is also
isometric. Therefore all of W is mapped by ϕ∗ either into V or into a single fiber. In the
latter case, we may suppose that the fiber is over (1, 0, . . . , 0). Then ϕ(Z1 − 1) will vanish
on all of W , and hence ϕ(Z1 − 1) = 0, contradicting injectivity. Thus W is mapped into
V . Reversing the role of V and W shows that this map is also onto V .
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The proof of Lemma 2.3.3(2) actually yields more information, namely that ‖ρλ − ρµ‖
is a function of the pseudohyperbolic distance r,

‖ρλ − ρµ‖ = r sup
‖f‖≤1

|1− f(µ)f(λ)|.

In the proof of that lemma we only used that the left hand side is less than or equal to the
right hand side, but it is easy to see that one obtains equality by choosing a particular f .
So the fact that the quantities ‖ρλ − ρµ‖ and sup‖f‖≤1 |1− f(µ)f(λ)| are preserved by an
isometric isomorphism implies that the pseudohyperbolic distance r is also preserved.

Remarks 2.3.5. (1) In a previous version of [33], we claimed incorrectly that if ϕ is a
surjective continuous homomorphism ofMV ontoMW , then ϕ∗ must map W into V . This
is false, and we thank Michael Hartz for pointing this out. This follows from Hoffman’s
theory [42] of analytic disks in the corona of H∞. There is an analytic map L of the unit
disk D into the corona of M(H∞), mapping onto a Gleason part, with the property that
ϕ(h)(z) = h(L(z)) is a homomorphism of H∞ onto itself [37, ch.X§1]. Therefore the map
ϕ∗ maps the disk into the corona via L.

(2) The main obstacle preventing us from establishing part (2) of the corollary in greater
generality is that we do not know that if λ ∈ W , then there is an irreducible subvariety
W1 ⊂ W containing λ and another subvariety W2 ⊂ W so that λ 6∈ W2 and W = W1∪W2.
As mentioned in the introduction, for any classical analytic variety this is possible [68,
ch.3, Theorem 1G]. But our definition requires these subvarieties to be the intersection of
zero sets of multipliers. Moreover our proof makes significant use of these functions. So
we cannot just redefine our varieties to have a local definition as in the classical case even
if we impose the restriction that all functions are multipliers. A better understanding of
varieties in our context is needed.

(3) Costea, Sawyer and Wick [20] establish a corona theorem for the algebraMd. That
is, the closure of the ball Bd in M(Md) is the entire maximal ideal space. This result may
also hold for the quotients MV , but we are not aware of any direct proof deducing this
from the result for the whole ball.

A corona theorem for MV would resolve the difficulties in case (2). The topology on
V = Bd ∩M(MV ) coincides with the usual one. In particular, each component has closed
complement. The corona theorem would establish that every open subset of any fiber is
in the closure of its complement. Thus any homeomorphism ϕ∗ of M(MW ) onto M(MV )
must take W onto V . However it is likely that the corona theorem for MV is much more
difficult than our problem.
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Now we can deal with the case in which our variety is a finite union of nice subvarieties,
where nice will mean either irreducible or discrete.

Theorem 2.3.6. Let V and W be varieties in Bd, with d < ∞, which are the union
of finitely many irreducible varieties and a discrete variety. Let ϕ be a unital algebra
isomorphism ofMV ontoMW . Then there exist holomorphic maps F and G from Bd into
Cd with coefficients in Md such that

1. F |W = ϕ∗|W and G|V = (ϕ−1)∗|V

2. G ◦ F |W = idW and F ◦G|V = idV

3. ϕ(f) = f ◦ F for f ∈MV , and

4. ϕ−1(g) = g ◦G for g ∈MW .

Proof. First we show that ϕ∗ maps W into V . Write

W = D ∪W1 ∪ · · · ∪Wn

where D is discrete and each Wi is an irreducible variety. The points in D are isolated, and
thus are mapped into V by Lemma 2.3.2. A minor modification of Corollary 2.3.4(2) deals
with the irreducible subvarieties. Since D is a variety, there is a multiplier k ∈ Md which
vanishes on D and is non-zero at a regular point λ ∈ W1. Proceed as in the proof of the
lemma, but define f = h2 . . . hnk. Then the argument is completed in the same manner.
Reversing the roles of V and W shows that ϕ∗ maps W onto V .

We have observed that ϕ∗(ρλ) lies in the fiber over the point

F (λ) = (ϕ(Z1)(λ), . . . , ϕ(Zd)(λ)).

Since we now know that ϕ∗ maps W into V , we see (with a slight abuse of notation) that
F = ϕ∗|W . In particular, the coefficients of F are multipliers. Thus by Proposition 2.1.7,
each fi is the restriction to W of a multiplier in Md, which we also denote by fi. In
particular, each fi is holomorphic on the entire ball Bd. Thus (since d < ∞), F is a
bounded holomorphic function of the ball into Cd. It may not carry Bd into itself, but we
do have F (W ) = V .

A similar argument applied to ϕ−1 shows that G(V ) ⊂ W and G|V = (ϕ−1)∗|V . Since
(ϕ−1)∗ = (ϕ∗)−1, we obtain that G◦F |W = idW and F ◦G|V = idV . The last two statements
follow as in Lemma 2.2.3.
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Remark 2.3.7. Note that in the above theorem, the map F can be chosen to be a poly-
nomial if and only if the algebra homomorphism ϕ takes the coordinate functions to (re-
strictions of) polynomials; and hence takes polynomials to polynomials. Likewise, F can
be chosen to have components which are continuous multipliers if and only if ϕ takes the
coordinate functions to continuous multipliers; and hence takes all continuous multipliers
to continuous multipliers.

Remark 2.3.8. When d = ∞, there is no guarantee that the map F constructed in our
proof would actually have values in `2. However if we assume that ϕ is completely bounded,
then we can argue as follows. The row operator Z =

[
Z1 Z2 Z3 . . .

]
is a contraction. Thus

ϕ(Z) =
[
ϕ(Z1) ϕ(Z2) ϕ(Z3) . . .

]
is bounded by ‖ϕ‖cb. By Proposition 2.1.7, there are

functions fi ∈Md′ so that fi|W = ϕ(Zi) and∥∥[Mf1 Mf2 Mf3 . . .
]∥∥ ≤ ‖ϕ‖cb.

In particular, F =
[
f1 f2 f3 . . .

]
is bounded by ‖ϕ‖cb in the sup norm. Theorem 2.3.6 can

then be modified to apply in the case d =∞. However these hypotheses are very strong.

Corollary 2.3.9. Every algebraic automorphism ofMd for d finite is completely isometric,
and is unitarily implemented.

Proof. The previous theorem shows that every automorphism is implemented as composi-
tion by a biholomorphic map of the ball onto itself, i.e. a conformal automorphism of Bd.
Proposition 2.2.2 shows that these automorphisms are completely isometric and unitarily
implemented.

Now we consider the isometric case.

Theorem 2.3.10. Let V and W be varieties in Bd, with d <∞. Every isometric isomor-
phism of MV onto MW is completely isometric, and thus is unitarily implemented.

Proof. Let ϕ be an isometric isomorphism of MV onto MW . By Corollary 2.3.4(3), ϕ∗

maps W onto V and preserves the pseudohyperbolic distance. Let F be the function con-
structed as in Theorem 2.3.6. As in Lemma 2.2.3 and Theorem 2.3.6, F is a biholomorphism
of W onto V and ϕ(h) = h ◦ F .

After modifying both V and W by a conformal automorphism of the ball, we may
assume that 0 belongs to both V and W , and that F (0) = 0. Set w0 = 0 and choose a
basis w1, . . . , wk for spanW . Let vp = F (wp) for 1 ≤ p ≤ k.
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Suppose that ‖wp‖ = rp. This is the pseudohyperbolic distance to w0 = 0 = v0, so

‖vp‖ = rp as well. Write vp/rp =
∑d

j=1 cjej. Let hp(z) = 〈z, vp/rp〉 =
∑d

j=1 cjZj(z). This
is a linear function on V , and thus lies in MV . Since Z is a row contraction, f has norm
at most one. Therefore kp := ϕ(hp) = hp ◦ F has norm at most one in MW .

Now let wk+1 = w be an arbitrary point in W , and set vk+1 = v = F (w) ∈ V . By
a standard necessary condition for interpolation [2, Theorem 5.2], the fact that ‖kp‖ ≤ 1
means that in particular interpolating at the points w0, . . . , wk, wk+1, we obtain

0 ≤
[

1−hp(vi)hp(vj)

1−〈wi,wj〉

]
0≤i,j≤k+1

.

In particular, look at the 3× 3 minor using rows 0, p, k + 1 to obtain

0 ≤


1 1 1

1 1 1−〈v,vp〉
1−〈wp,w〉

1 1−〈v,vp〉
1−〈w,wp〉

1−|〈v,vp/rp〉)|2
1−‖w‖2


By the Cholesky algorithm, we find that 1−〈v,vp〉

1−〈w,wp〉 = 1. Therefore

〈v, vp〉 = 〈w,wp〉 for 1 ≤ p ≤ k.

In particular, we obtain

〈vi, vj〉 = 〈wi, wj〉 for 1 ≤ i, j ≤ k.

Therefore there is a unitary operator U acting on Cd such that Uwi = vi for 1 ≤ i ≤ k.
Now since w ∈ W lies in span{w1, . . . , wk}, it is uniquely determined by the inner products
〈w,wi〉 for 1 ≤ i ≤ k. Since v has the same inner products with v1, . . . , vk, we find that
Uw = PNv where N = span{v1, . . . , vk}. However we also have

‖v‖ = ‖w‖ = ‖Uw‖ = ‖PNv‖;

whence v = Uw.

Therefore F agrees with the unitary U , and hence ϕ is implemented by an automor-
phism of the ball. So by Proposition 2.2.2, ϕ is completely isometric and is unitarily
implemented.

Lastly for this section, we conclude that every isomorphism is automatically continuous
with respect to the weak-operator and weak-∗ topologies.
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Lemma 2.3.11. A bounded net {Mfn} in MV converges in the weak-operator topology to
Mf if and only if for all λ ∈ V , fn(λ)→ f(λ).

Proof. If Mfn
wot−−→Mf , then for all λ ∈ V ,

fn(λ)

1− ‖λ‖2
=
〈
kλ, fn(λ)kλ

〉
= 〈Mfnkλ, kλ〉 → 〈Mfkλ, kλ〉 =

f(λ)

1− ‖λ‖2
.

Conversely, suppose {Mfn} ⊂ MV is a bounded net such that {fn} converges pointwise
to f . Since {Mfn} is bounded, it suffices to show that 〈Mfnkλ, kµ〉 → 〈Mfkλ, kµ〉 for all
λ, µ ∈ V , because span{kλ : λ ∈ V } is dense in FV . But

〈Mfnkλ, kµ〉 =
fn(µ)

1− 〈µ, λ〉
→ f(µ)

1− 〈µ, λ〉
= 〈Mfkλ, kµ〉 .

Theorem 2.3.12. Let ϕ : MV → MW , for d < ∞, be a unital algebra isomorphism
given by composition: ϕ(h) = h ◦ F where F is a holomorphic map of W onto V whose
coefficients are multipliers. Then ϕ is continuous with respect to the weak-operator and the
weak-∗ topologies.

Proof. By Lemma 2.1.13 together with the Krein-Šmulian Theorem (Theorem 7, Section
V.5, [35]), it is enough to show that ϕ is wot-continuous on bounded sets.

Let {Mfn} be a bounded net in MV converging to Mf in the weak-operator topology.
By Lemma 2.3.1, {ϕ(Mfn)} = {Mfn◦F} is a bounded net in MW . Therefore, by Lemma
2.3.11, it suffices to show that fn ◦F converges pointwise to f ◦F . But since fn converges
pointwise to f (by the same lemma), this is evident.

2.3.2 The homogeneous case

We have already seen in Corollary 2.2.8 that an algebraic isomorphism of norm closed
algebras induces a biholomorphism of their associated varieties. What is much harder to
establish is the converse. However, homogeneous varieties behave like classical varieties
and so we will have none of the difficulties of the previous section.

We first wish to establish that if AV and AW are isomorphic then there exists another
isomorphism ϕ : AV → AW such that ϕ∗(0) = 0.

Lemma 2.3.13. Let V be a homogeneous variety. Then either V has singular points, or
V is a linear subspace.
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Proof. If V is reducible, then by (iv) of Theorem 8 in [21, Section 9.6] the origin is in the
singular set. So we may assume that V is irreducible.

Let f1, . . . , fk be a generating set for IV , and assume the dimension of V is m. By the
theorem on page 88, [64], the singular locus of V is the common zero set of polynomials
obtained from the (d−m)× (d−m) minors of the Jacobian matrix

∂f1
∂z1

· · · ∂f1
∂zd

...
...

∂fk
∂z1

· · · ∂fk
∂zd

 .

But since f1, . . . , fk are homogeneous, all these minors will vanish at the point 0 unless
at least d −m of the fi’s are linearly independent linear forms. But then V lies inside m
dimensional subspace. Being an m-dimensional variety, V must be that subspace.

Let V be a homogenous variety in Cd. Then by the lemma, either V is a subspace of Cd,
or the singular locus Sing(V ) is nonempty. Now Sing(V ) is also a homogeneous variety,
so either Sing(V ) is a subspace or Sing(Sing(V )) is not empty. Since the dimension of
the singular locus is strictly less than the dimension of a variety, we eventually arrive at
a subspace N(V ) = Sing(· · · (Sing(V ) · · · ) which we call the singular nucleus of V . Note
that N(V ) = {0} might happen, as well as N(V ) = V .

In what follows we will need to consider the group Aut(Bn) of automorphisms of Bn,
that is, the biholomorphisms of the unit ball. We will use well known properties of these
fractional linear maps (see [62, Section 2.2]). For a ∈ Bn, we define

ϕa(z) =
a− Paz − saQaz

1− 〈z, a〉
, (2.5)

where Pa is the orthogonal projection onto span{a}, Qa = In − Pa and sa = (1− |a|2)1/2.
Then ϕa is an automorphism of Bn that maps 0 to a and satisfies ϕ2

a = id. For every
ψ ∈ Aut(Bn) there exists a unique unitary U and a ∈ Bn such that ψ = U ◦ ϕa.

By a disc in Bn we shall mean a set D of the form D = Bn ∩L, where L ⊆ Cn is a one
dimensional subspace.

Lemma 2.3.14. Let ψ ∈ Aut(Bn). Then there are two discs D1, D2 in Bn such that
ψ(D1) = D2.

Proof. If ψ = U ◦ ϕa and a 6= 0, take D1 = span{a} ∩ Bn. Then ϕa|D1 is a Möbius map
of D1 onto itself. Take D2 = UD1. If a = 0, take D1 = D2 to be Bn ∩ L where L is any
one-dimensional eigenspace of U .
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Proposition 2.3.15. Let V and W be homogeneous varieties and assume that there exists
an isomorphism ϕ : AV → AW . Then there exists another isomorphism ψ : AV → AW
such that ψ∗(0) = 0.

Proof. By the discussion following Lemma 2.3.13, the singular nucleus of W must be
mapped biholomorphically by ϕ∗ onto the singular nucleus of V . If these nuclei are both
{0}, we are done. Otherwise, by rotating the coordinate systems we may assume that
N(V ) = N(W ) = B, a complex ball.

Now, ϕ∗
∣∣
B
∈ Aut(B), thus by Lemma 2.3.14 there are two discs D1, D2 ⊆ B such that

ϕ∗(D2) = D1.

Let us introduce the notation

O(0;V,W ) = {z ∈ D1 : z = ψ∗(0) for some isomorphism ψ : AV → AW},

and
O(0;W ) = {z ∈ D2 : z = ψ∗(0) for some automorphism ψ of AW}.

Claim: The sets O(0;V,W ) and O(0;W ) are invariant under rotations about 0.
Proof of claim: For λ with |λ| = 1, write ϕλ for the isometric automorphism mapping Zi
to λZi (i = 1, . . . , d). Let b = ϕ∗(0) ∈ O(0;V,W ). Recall that b = (b1, . . . , bd) is identified
with a character ρb ∈M(AV ) ∩ Bd such that ρb(Zi) = bi for i = 1, . . . , d. Consider ϕ ◦ ϕλ.
We have

ρ0((ϕ ◦ ϕλ)(Zi)) = ρ0(ϕ(λZi)) = λρ0(ϕ(Zi)) = λbi.

Thus λb = (ϕ ◦ ϕλ)∗(ρ0) ∈ O(0;V,W ). The proof for O(0;W ) is the same. This proves
the claim.

We can now show the existence of a vacuum preserving isomorphism. Let b = ϕ∗(0).
If b = 0 then we are done, so assume that b 6= 0. By definition, b ∈ O(0;V,W ). Denote
C := {z ∈ D1 : |z| = |b|}. By the above claim, C ⊆ O(0;V,W ). Consider C ′ := (ϕ∗)−1(C).
We have that C ′ ⊆ O(0;W ). Now C ′ is a circle in D2 that goes through the origin. By
the claim, the interior of C ′, int(C ′), is in O(0;W ). But then ϕ∗(int(C ′)) is the interior of
C, and it is in O(0;V,W ). Thus 0 ∈ O(0;V,W ), as required.

We now follow the discussion in [62, Chapter 2] to obtain some rigidity results for biholo-
morphisms between varieties. These rigidity results will help us determine the possibilities
for isomorphisms between the various algebras AV .
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Lemma 2.3.16. Let V be a homogeneous variety in Cd. Let F : Bd → Cd be a continuous

map, holomorphic on Bd, such that F |V is a bijection of V . If F (0) = 0 and d
dt
F (tz)

∣∣∣
t=0

= z

for all z ∈ V , then F |V is the identity.

Proof. It seems that a careful variation of the proof for “Cartan’s Uniqueness Theorem”
given in [62] (page 23) will work. One only needs to use the facts that V is circular and
bounded. The reason one must be careful is that V typically has empty interior.

Let’s make sure that it all works. We write the homogeneous expansion of F :

F (z) = Az +
∑
n≥2

Fn(z), (2.6)

where A = F ′(0). First let us show that, without loss of generality, we may assume

F (z) = z +
∑
n≥2

Fn(z). (2.7)

Let W be the linear span of V , and let W⊥ be its orthogonal complement in Cd. By the

assumption d
dt
F (tz)

∣∣∣
t=0

= z for z ∈ V , so the matrix A can be written as

A =

(
I B
0 C

)
with respect to the decomposition Cd = W ⊕W⊥. Replacing F by F + I −A we obtain a
function that is continuous on Bd, analytic on Bd, agrees with F on V , and has homogeneous
decomposition as in (2.7).

Following Rudin [62, bottom of page 23], we consider the kth iterate F k of F :

F k(z) = z + kF2(z) + . . . .

Since V is circular and since F k maps V onto itself, we find that for all z ∈ V

kF2(z) =
1

2π

∫ 2π

0

F k(eiθz)e−2iθdθ,

from which it follows that ‖kF2(z)‖ ≤ 1 for all k and all z ∈ V . This implies that F2(z) = 0
for all z ∈ V . Therefore there exists a continuous function G : Bd → Cd that is holomorphic
on Bd and agrees with F on V , that has homogeneous expansion

G(z) = z +
∑
n≥3

Gn(z),
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(namely, one takes G = F − F2). Note that Gn = Fn for all n > 2. This last observation
allows us to repeat the argument inductively and deduce that F (z) = z for all z ∈ V . By
continuity, F |V equals the identity.

We now obtain the desired analogue of Cartan’s uniqueness theorem.

Theorem 2.3.17. Let V ⊂ Bd and W ⊂ Bd′ be homogeneous varieties. Let F : Bd′ → Cd
be a continuous map that is holomorphic on Bd′ and maps 0 to 0. Assume that there exists
a continuous map G : Bd → Cd′ that is holomorphic on Bd such that F ◦G|V and G ◦F |W
are the identity maps. Then there exists a linear map A : Cd′ → Cd such that F |W = A.

Proof. Again we adjust the proof of [62, Theorem 2.1.3] to the current setting. The deriva-
tives F ′(0) and G′(0) might not be inverses of each other, but from G ◦ F (z) = z, we find
that G′(0)F ′(0)z = z for all z ∈ W .

Fix θ ∈ [0, 2π], and define H : Bd′ → Cd′ by

H(z) = G(e−iθF (eiθz)).

Then H(0) = 0 and
d

dt
H(tz)

∣∣∣
t=0

= G′(0)e−iθF ′(0)eiθz = z.

By the previous lemma
H(z) = z

for z ∈ W . After replacing z by e−iθz and applying F to both sides we find that

F (e−iθz) = e−iθF (z) for all z ∈ W.

Integrating over θ, this implies that if (2.6) is the homogeneous expansion of F , then
Fn(z) = 0 for all z ∈ W and all n ≥ 2. Thus F |W = A.

The following easy result is a straightforward consequence of homogeneity.

Lemma 2.3.18. Let V ⊂ Bd and W ⊂ Bd′ be homogeneous varieties. If a linear map
A : Cd′ → Cd carries W bijectively onto V , then A is isometric on W .

Proof. Each unit vector w ∈ W determines a disc Dw = Cw ∩ Bd′ in W . Observe that A
carries Cw onto CAw, and must take the intersection with the ball to the corresponding
intersection with the ball Bd. Thus it takes Dw onto DAw. Therefore ‖Aw‖ = ‖w‖.
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This lemma can be significantly strengthened to obtain a rigidity result which will be
useful for the algebraic classification of the algebras AV . Note that Sing(V ) denotes the
set of singular points of V .

Proposition 2.3.19. Let V be a homogeneous variety in Bd, and let A be a linear map
on Cd such that ‖Az‖ = ‖z‖ for all z ∈ V . If V = V1 ∪ · · · ∪ Vk is the decomposition of V
into irreducible components, then A is isometric on span(Vi) for 1 ≤ i ≤ k.

Proof. It is enough to prove the proposition for an irreducible variety V . The idea of
the proof is to produce a sequence of algebraic varieties V ⊆ V ′1 ⊆ V ′2 ⊆ ... such that
‖Az‖ = ‖z‖ for all z ∈ V ′i and all i, where either dimV ′i < dimV ′i+1, or V ′i is a subspace
(and then it is the subspace spanned by V ).

First, we prove that ‖Ax‖ = ‖x‖ for all x lying in the tangent space Tz(V ) for every
z ∈ V \ Sing(V ). Since z is nonsingular, for every such x there is a complex analytic curve
γ : D→ V such that γ(0) = z and γ′(0) = x. By the polar decomposition, we may assume
that A is a diagonal matrix with nonnegative entries a1, . . . , ad. Since A is isometric on V ,

d∑
i=1

a2
i |γi(z)|2 =

d∑
i=1

|γi(z)|2 for z ∈ D.

Applying the Laplacian to both sides of the above equation, and evaluating at 0, we obtain

d∑
i=1

a2
i |γ′i(0)|2 =

d∑
i=1

|γ′i(0)|2.

Thus, ‖Ax‖ = ‖x‖ for all x ∈ Tz(V ) and all nonsingular z ∈ V .

Consider now the set

X0 =
⋃

z∈V \Sing(V )

{z} × Tz(V ) ⊆ Cd × Cd.

Let X denote the Zariski closure of X0, that is, X = V (I(X0)). As X sits inside the

tangent bundle
⋃
z∈V {z} × Tz(V ), X0 is equal to X \

(
Sing(V ) × Cd

)
. Therefore X0 is

Zariski open in X. By Proposition 7 of Section 7, Chapter 9 in [21], the closure (in the
usual topology of C2d) of X0 is X. Letting π denote the projection onto the last d variables,
we have π(X) ⊆ π(X0). But π(X0) =

⋃
z∈V \Sing(V ) Tz(V ), therefore ‖Ax‖ = ‖x‖ for all

x ∈ π(X). Now, π(X) might not be an algebraic variety, but by Theorem 3 of Section 2,
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Chapter 3 in [21], there is an algebraic variety W in which π(X) is dense. Observe that
W must be a homogeneous variety, and ‖Az‖ = ‖z‖ for every z ∈ W .

Being irreducible, V must lie completely in one of the irreducible components of W .
We denote this irreducible component by V ′1 , and let W2, . . . ,Wm be the other irreducible
components of W . We claim: if V itself is not a linear subspace, then dimV ′1 > dimV .
We prove this claim by contradiction. If dimV1 = dimV then V = V ′1 , because V ⊆ V ′1
and both are irreducible. Let z ∈ V = V ′1 be a regular point. Since dimTz(V ) = dimV ,
and Tz(V ) is irreducible, Tz(V ) is not contained in V ′1 . But Tz(V ) is contained in W , thus
Tz(V ) ⊆ Wi for some i. But z ∈ Tz(V ) by homogeneity. What we have shown is that,
under the assumption dimV ′1 = dimV , every regular point z ∈ V is contained in

⋃m
i=2 Wi.

Thus V ′1 ⊆ ∪iWi. That contradicts the assumed irreducible decomposition.

If V is not a linear subspace then we are now in the situation in which we started, with
V ′1 instead of V , and with dimV ′1 > dimV . Continue this procedure finitely many times
to obtain a sequence of irreducible varieties V ′1 ⊆ . . . ⊆ V ′n that terminates at a subspace
on which A is isometric. Vn must be spanV . Indeed, it certainly contains V . On the other
hand, every V ′i lies in spanV ′i−1 and hence in spanV .

When the variety V is a hypersurface we sketch a more elementary proof which provides
somewhat more information.

Proposition 2.3.20. Let f ∈ C[z1, . . . , zd] be a homogeneous polynomial, and let V =
V (f). Let A be a linear map on Cd such that ‖Az‖ = ‖z‖ for all z ∈ V . Let A = UP
be the polar decomposition of A with U unitary and P positive. Then one of the following
possibilities hold:

1. P = I;

2. P has precisely one eigenvalue different from 1 and V (f) is a hyperplane;

3. P has precisely two eigenvalues not equal to 1 (one larger and one smaller), and
in this case V is the union of hyperplanes which all intersect in a common d−2-
dimensional subspace.

Proof. After a unitary change of variables, we may assume that A is a positive diagonal
matrix A = diag(a1, . . . , ad) with ai ≥ ai+1 for 1 ≤ i < d. Now A takes the role of P in
the statement.

We first show that a2 = · · · = ad−1 = 1. For if a1 ≥ a2 > 1, there is a non-zero solution
to f = 0 and z3 = · · · = zd = 0, say v = (z1, z2, 0, . . . , 0). But ‖Av‖ > ‖v‖, contrary to the
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hypothesis. Hence a2 ≤ 1. Similarly one shows that ad−1 ≥ 1. Hence all singular values
equal 1 except possibly a1 > 1 and ad < 1.

If A = I then we have (1). When there is precisely one eigenvalue different from 1, A
is only isometric on the hyperplane ker(A − I); thus (2) holds. So we may assume that
there are precisely two singular values different from 1, a1 > 1 > ad. Then f must have
the form f = αzm1 + . . . for some α 6= 0. Indeed, otherwise (if z1 appears only in mixed
terms) there is non-zero solution v = (1, 0, . . . , 0) to f = 0, and ‖Av‖ > ‖v‖, contrary to
the hypothesis. Now there are two cases:

Case 1: f does not depend on z2, . . . , zd−1. In this case f is essentially a polynomial in
two variables, and can therefore be factored as f =

∏
i(αiz1 + βizd), from which case (3)

follows.

Case 2: f depends on z2, . . . , zd−1. Say f depends on z2. Fix z3, . . . , zd such that the
polynomial f(·, ·, z3, . . . , zd) still depends on z2. For every z2 there is a solution z1 to the
equation f(z1, z2, . . . , zd) = 0. As z2 tends to ∞, the form of f forces z1 to tend to ∞ as
well. But since (z1, . . . , zd) is a solution and A is isometric on V (f), one has

a2
1|z1|2 + a2

d|zd|2 = |z1|2 + |zd|2.

This cannot hold when zd is fixed and z1 tends to ∞. So this case does not occur.

Example 2.3.21. Let us show that arbitrarily many hyperplanes can appear in case (3)
above. Let a, b > 0 be such that a2 + b2 = 2, and let λ1, . . . , λk ∈ T. Let V = `1 ∪ · · · ∪ `k,
where `i = C(λi/

√
2, 1/
√

2). Then A = diag(a, b) is isometric on V .

Example 2.3.22. Propositions 2.3.19 and 2.3.20 depend on the fact that we are working
over C. Indeed, consider the cone V = V (x2 + y2 − z2) over R. With a and b as in the
previous example, one sees that A = diag(a, a, b) is isometric on V , but it is clearly not an
isometry on R3 = span(V ).

Let V be a homogeneous variety in Bd and let V = V1 ∪ · · · ∪ Vk be the decomposition
of V into irreducible components. Then we call

S(V ) := span(V1) ∪ · · · ∪ span(Vk)

the minimal subspace span of V . By Proposition 2.3.19, the linear map A must be isometric
on S(V ). Note that V = S(V ) if and only if V is already the union of subspaces.

Our goal is to establish that A induces a bounded linear isomorphism Ã between the
spaces FW and FV given by Ãf = f ◦ A∗. This is evidently linear (provided it is defined)
and satisfies

Ãνλ = νAλ for λ ∈ W. (2.8)
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Conversely, Ã is determined by (2.8) because the kernel functions span FW .

On a single subspace Ã defines an isometric map from FWi
onto FVi because the map

A|Wi
can be extended to an automorphism of Bd, so any difficulties will appear in the

closure
FW = FW1 + · · ·+ FWk

.

However, Hartz proved the following impressive automatic closure result:

Theorem 2.3.23 ([41], Corollary 5.8). Let S1, · · · , Sr ⊂ Cd be subspaces. Then the alge-
braic sum

FS1 + · · ·+ FSk ⊂ F(Cd)
is closed.

Theorem 2.3.24. Let V ⊂ Bd and W ⊂ Bd′ be homogeneous varieties. If there is a linear
map A : Cd′ → Cd that maps W bijectively onto V , then the map Ã : FW → FV given by
(2.8) :

Ãνλ = νAλ for λ ∈ W
is a bounded linear map of FW into FV .

Proof. Suppose V = V1∪· · ·∪Vk and W = W1∪· · ·∪Wk are the respective decompositions
into irreducible varieties, and assume that A maps Wi to Vi for 1 ≤ i ≤ k. Proposition
2.3.19 tells us that A sends span(Wi) isometrically onto span(Vi).

On each subspace span(Wi), since A acts isometrically, it is clear that Ã from Fspan(Wi)

to Fspan(Vi) is a isometric linear map. It is a straightforward application of the open

mapping theorem that this implies that Ã is a well defined map on the algebraic sum
Fspan(W1) + · · ·+ Fspan(Wk) which by the previous Theorem is all of FS(W ) and hence, Ã is
bounded (cf. [41, Proposition 2.5]).

Finally, since Ã is a bounded linear map of FS(W ) into FS(V ), restriction to W yields
the desired result.

Corollary 2.3.25. Let V ⊂ Bd and W ⊂ Bd′ be homogeneous varieties. Let A : Cd′ → Cd
and B : Cd → Cd′ be linear maps such that AB|V = idV and BA|W = idW . Then the map
Ã, νλ 7→ νAλ, λ ∈ W is invertible, and the map

ϕ : f → f ◦ A

is a completely bounded isomorphism from AV onto AW , and it is given by conjugation
with Ã∗:

ϕ(f) = Ã∗f(Ã−1)∗.
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Proof. By Theorem 2.3.24, Ã and B̃ are bounded. By checking the products on the kernel
functions, it follows easily that B̃ = Ã−1. So these maps are linear isomorphisms.

Let f ∈ AV and λ ∈ W . Denote by Mf the operator of multiplication by f on FV .
Then

Ã−1M∗
f Ãνλ = Ã−1M∗

f νAλ = Ã−1f ◦ A(λ)νAλ = f ◦ A(λ)νλ.

Thus (Ã−1M∗
f Ã)∗ = Ã∗Mf (Ã

−1)∗ is the operator on FW given by multiplication by f ◦
A.

Thus, by the previous corollary and Corollary 2.2.8 we have the desired characterization
for homogeneous varieties:

Theorem 2.3.26. Let V ⊂ Bd and W ⊂ Bd′ be homogeneous varieties. Then AV is
algebraically isomorphic to AW if and only if V and W are biholomorphic.

Remark 2.3.27. Originally in [32], we proved Theorem 2.3.24 under some conditions on
the varieties. In particular, it was true for:

1. Any irreducible variety V because S(V ) is a subspace.

2. V = V1 ∪ V2, the union of two irreducible varieties.

3. V = V1 ∪ · · · ∪ Vk where Vi are irreducible and S(Vi) ∩ S(Vj) = E, a fixed subspace,
for all i 6= j.

4. V = V1 ∪ · · · ∪ Vk where dimS(V1) ≥ d− 1.

5. Any variety in C3.

With our method of proof, it became difficult to see whether we could extend our results to
the general case. Consequently, we were very pleased to see Michael Hartz’s clever paper
which completed the characterization with respect to homogeneous varieties.

Remark 2.3.28. The various lemmas established above only require that A be length
preserving on V . It need not be invertible on span(V ) in order to show that the map Ã
is bounded. However, if A is singular on span(V ), then Ã is not injective because the
homogeneous part of order one, M1 := span{ν1

λ : λ ∈ Zo(V )} ' span(V ) and Ã|M1 ' A.

For example, if V = Ce1 ∪ Ce2 ∪ Ce3 and A =

[
1 0 1/

√
2

0 1 1/
√

2
0 0 0

]
, then one can see that A

is isometric on V and maps C3 into span{e1, e2}, taking V to the union of three lines in
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2-space. The map Ã is bounded, and satisfies Ãνλ = νAλ for λ ∈ Zo(V ). But for the
reasons mentioned in the previous paragraph, it is not injective.

On the other hand, if A is bounded below by δ > 0 on spanV , one can argue in each
of the various lemmas that A⊗sn is bounded below by δn for n ≤ N and use the original
arguments for upper and lower bounds on the higher degree terms. In this way, one sees
directly that Ã is an isomorphism.

Although the following example does not disprove Theorem 2.3.24 for arbitrary complex
algebraic varieties, it does illustrate some of the difficulties one must overcome.

Example 2.3.29. In this example we identify C2 with R4. Let

V = {(w, x, y, z) : w2 + x2 = y2 + z2}.

Then V is a real algebraic variety in R4, but is not a complex algebraic variety in C2

because it has odd real dimension. Note that

V =
⋃
θ∈T

{
λ

(
1√
2
,
θ√
2

)
: λ ∈ C

}
.

Let A =
(
a 0
0 b

)
, where a > 1 > b > 0 satisfy a2 + b2 = 2. Then A is an invertible linear

map that preserves the lengths of vectors in V . Put V ′ = AV . We will now show that the
densely defined operator given by Ãνλ = νAλ does not extend to a bounded map taking
span{νλ : λ ∈ V ∩ B2} into span{νλ : λ ∈ V ′ ∩ B2}. Let α, β > 0, and consider

n∑
j=1

(αe1 + θjβe2)n ∈ (C2)n,

where θj = exp(2πi
n
j). We find

n∑
j=1

(αe1 + θjβe2)n =
n∑
j=1

n∑
k=0

(αe1)k(θjβe2)n−k

=
n∑
k=0

αkβn−k(e1)k
( n∑
j=1

θn−kj (e2)n−k
)

= βnnen2 + αnnen1 ,
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because
∑n

j=1 exp(2πi
n

(n − k)j) is equal to 0 for 1 ≤ k ≤ n − 1, and equal to n for k = 0
and n. Thus,

‖
n∑
j=1

(αe1 + θjβe2)n‖2 = (α2n + β2n)n2.

Comparing this norm for (α, β) = (a, b) and (α, β) = (1, 1) we find that the densely defined
Ã is unbounded.

2.4 Examples

In this section, we examine a possible converse to Theorem 2.3.6 in the context of a
number of examples. What we find is that the desired converse is not always true. That is,
suppose that V and W are varieties in Bd and F and G are holomorphic functions on the
ball satisfying the conclusions of Theorem 2.3.6. We are interested in when this implies
that the algebras MV and MW are isomorphic.

2.4.1 Finitely many points in the ball

Let V = {v1, . . . , vn} ⊆ Bd. Then AV =MV and they are both isomorphic to `∞n = C(V ).
The characters are evaluations at points of V . If W is another n point set in Bd′ , thenMW

is isomorphic to MV . Also, there are (polynomial) maps f : Bd → Cd′ and g : Bd′ → Cd
which are inverses of one another when restricted to V and W . And if W is an m point
set, m 6= n, then obviously MV is not isomorphic to MW , and there also exists no
biholomorphism. In this simple case we see that MV

∼= MW if and only if there exists a
biholomorphism, and this happens if and only if |W | = |V |.

Nevertheless, the situation for finite sets is not ideal. Let V and W be finite subsets of
the ball, and let F : W → V be a biholomorphism. It is natural to hope that the norm
of the induced isomorphism can be bounded in terms of the multiplier norm of F . The
following example shows that this is not possible.

Example 2.4.1. Fix n ∈ N and r ∈ (0, 1). Put ξ = exp(2πi
n

) and let

V = {0} ∪ {rξj}nj=1,

and
W = {0} ∪ {r

2
ξj}nj=1.
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The map F (z) = 2z is a biholomorphism of W onto V that extends to an H∞ function of
multiplier norm 2. We will show that the norm of the induced isomorphism MV →MW ,
given by f 7→ f ◦ F , is at least 2n.

Consider the following function in MV :

f(0) = 0 and f(rξj) = rn for 1 ≤ j ≤ n.

We claim that the multiplier norm of f is 1. By Proposition 2.1.7, ‖f‖ is the minimal
norm of an H∞ function that interpolates f . The function g(z) = zn certainly interpolates
and has norm 1. We will show that it is of minimal norm.

The Pick matrix associated to the problem of interpolating f on V by an H∞ function
of norm 1 is 

1 1 1 · · · 1

1 1−r2n
1−r2ξξ

1−r2n
1−r2ξξ2

· · · 1−r2n
1−r2ξξn

1 1−r2n
1−r2ξ2ξ

1−r2n
1−r2ξ2ξ2

· · · 1−r2n
1−r2ξ2ξn

...
...

...
. . .

...

1 1−r2n
1−r2ξnξ

1−r2n
1−r2ξnξ2

· · · 1−r2n
1−r2ξnξn

 .

To show that g is the (unique) function of minimal norm that interpolates f , it suffices to
show that this matrix is singular. (We are using well known facts about Pick interpolation.
See Chapter 6 in [2]).

We will show that the lower right principal sub-matrix

A =

[
1− r2n

1− r2ξiξj

]n
i,j=1

has the vector (1, . . . , 1)t as an eigenvector with eigenvalue n. Therefore it will follow that
(n,−1,−1, . . . ,−1)t is in the kernel of the Pick matrix. The matrix A is invertible, so the
Pick matrix has rank n.
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Indeed, for any i,

n∑
j=1

1− r2n

1− r2ξiξj
= (1− r2n)

n∑
j=1

∞∑
k=0

(r2ξiξj)k

= (1− r2n)
∞∑
k=0

n∑
j=1

r2kξikξjk

= (1− r2n)
∞∑
m=0

nr2mnξimn

= n
1− r2n

1− r2n
= n.

We used the familiar fact that
∑n

j=1 ξ
jk is equal to n for k ≡ 0 (mod n) and equal to 0

otherwise. Therefore ‖f‖ = 1.

Now we will show that f ◦F ∈MW has norm 2n, where F (z) = 2z. The function f ◦F
is given by

f ◦ F (0) = 0 and f ◦ F ( r
2
ξj) = rn for 1 ≤ j ≤ n.

The unique H∞ function of minimal norm that interpolates f ◦ F is h(z) = 2nzn. This
follows from precisely the same reasoning as above. Therefore the isomorphism has norm
at least 2n.

2.4.2 Blaschke sequences

We will now provide an example of two discrete varieties which are biholomorphic but yield
non-isomorphic algebras.

Example 2.4.2. Let

vn = 1− 1/n2 and wn = 1− e−n2

for n ≥ 1.

Set V = {vn}∞n=1 and W = {wn}∞n=1. Both V and W satisfy the Blaschke condition so they
are analytic varieties in D. Let B(z) be the Blaschke product with simple zeros at points
in W . Define

h(z) = 1− e
1
z−1 ,

and

g(z) =
log(1− z) + 1

log(1− z)

(
1− B(z)

B(0)

)
.
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Then g, h ∈ H∞ and they satisfy

h ◦ g|W = idW and g ◦ h|V = idV .

However, by the corollary in [43, p.204], W is an interpolating sequence and V is not.
Thus the algebras MV and MW cannot be similar by a map sending normalized kernel
functions to normalized kernel functions. The reason is that the normalized kernel functions
corresponding to an interpolating sequence form a Riesz system, while those corresponding
to a non-interpolating sequence do not. In fact, MV and MW cannot be isomorphic via
any isomorphism, as we see below.

Theorem 2.4.3. Let V = {vn}∞n=1 ⊆ Bd, with d < ∞, be a sequence satisfying the
Blaschke condition

∑
(1− ‖vn‖) < ∞. Then MV is isomorphic to `∞ if and only if V is

interpolating.

Proof. By definition, V is interpolating if and only if MV is isomorphic to `∞ via the
restriction map. It remains to prove that if V is not an interpolating sequence, then MV

cannot be isomorphic to `∞ via any other isomorphism.

Let V be a non-interpolating sequence, and let W be any interpolating sequence. If
MV is isomorphic to `∞, then it is isomorphic toMW . But by Lemma 2.3.2, this isomor-
phism must be implemented by composition with a holomorphic map, showing that MV

is isomorphic to `∞ via the restriction map. This is a contradiction.

Remark 2.4.4. We require the Blaschke condition to insure that V is a variety of the type
we consider, i.e., a zero set of an ideal of multipliers (see [5, Theorem 1.11]). Any discrete
variety in D satisfies this condition.

2.4.3 Curves

Let V be a variety in Bd. IfMV is isomorphic to H∞(D), then by Theorem 2.3.6 we know
that V must be biholomorphic to the disc. To study the converse implication, we shall
start with a disc biholomorphically embedded in a ball and try to establish a relationship
between the associated algebras MV and its reproducing kernel Hilbert space FV and
H∞(D) and H2(D).

Suppose that h is a holomorphic map from the disc D into Bd such that h(D) = V , and
that there exists a holomorphic map g : Bd → C such that g|V = h−1.

The following result shows that in many cases, the desired isomorphism exists [3]. See
[4, §2.3.6] for a strengthening to planar domains, and a technical correction.
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Theorem 2.4.5 (Alpay-Putinar-Vinnikov). Suppose that h is an injective holomorphic
function of D onto V ⊂ Bd such that

1. h extends to a C2 function on D,

2. ‖h(z)‖ = 1 if and only if |z| = 1,

3. 〈h(z), h′(z)〉 6= 0 when |z| = 1.

Then MV is isomorphic to H∞.

Condition (3) should be seen as saying that V meets the boundary of the ball non-
tangentially. We do not know whether such a condition is necessary.

The authors of [3] were concerned with extending multipliers on V to multipliers on
the ball. This extension follows from Proposition 2.1.7.

By the results of Section 2.2, there is no loss of generality in assuming that h(0) = 0,
and we do so. Define a kernel k̃ on D by

k̃(z, w) = k(h(z), h(w)) =
1

1− 〈h(z), h(w)〉
.

Let H be the RKHS determined by k̃. Write k̃w for the function k̃(·, w).

The following routine lemma shows that we can consider this new kernel on the disc
instead of V .

Lemma 2.4.6. The map k̃z 7→ kh(z) extends to a unitary map U of H onto FV . Hence, the
multiplier algebra Mult(H) is unitarily equivalent toMV . This equivalence is implemented
by composition with h:

U∗MfU = Mf◦h for f ∈MV .

Proof. A simple computation shows that∥∥∑
i

cik̃zi
∥∥2

=
∑
i,j

cicj
1− 〈h(zi), h(zj)〉

=
∥∥∑

i

cikh(zi)

∥∥2
.

So we get a unitary U : H → FV . As in the proof of Proposition 2.2.2, for all f ∈MV we
have U∗MfU = Mf◦h.
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Our goal in this section is to study conditions on h which yield a natural isomorphism
of the RKHSs H and H2(D). The first result is that the Szego kernel kz dominates the
kernel k̃z.

Lemma 2.4.7. Suppose that h is a holomorphic map of D into Bd. Then for any finite
subset {z1, . . . , zn} ⊂ D, [

1

1− 〈h(zj), h(zi)〉

]
≤
[

1

1− zjzi

]
.

Proof. Observe that h(z)/z maps D into Bd by Schwarz’s Lemma [62, Theorem 8.1.2].
Thus by the matrix version of the Nevanlinna-Pick Theorem for the unit disk, we obtain
that

0 ≤
[

1− 〈h(zj)/zj, h(zi)/zi〉
1− zjzi

]
=

[
1

zjzi

]
◦
[

1− 〈h(zj), h(zi)〉
1− zjzi

− 1

]
.

Here ◦ represents the Schur product. But
[

1
zjzi

]
and its Schur inverse

[
zjzi
]

are positive.

Therefore the second matrix on the right is positive. This can be rewritten as[
1
]
≤
[

1− 〈h(zj), h(zi)〉
1− zjzi

]
where

[
1
]

represents an n× n matrix of all 1’s. Now[
1

1− 〈h(zj), h(zi)〉

]
=
[
〈k̃zi , k̃zj〉

]
≥ 0.

So the Schur multiplication by this operator to the previous inequality yields[
1

1− 〈h(zj), h(zi)〉

]
≤
[

1

1− zjzi

]
.

We obtain the well-known consequence that there is a contractive map of H2 into H.

Proposition 2.4.8. The linear map R, defined by Rkz = k̃z for z ∈ D, from span{kz : z ∈
D} to span{k̃z : z ∈ D} extends to a contractive map from H2 into H.
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Proof. This follows from an application of Lemma 2.4.7. Given ai ∈ C, let a = (a1, . . . , an)t.
Observe that

‖R
n∑
i=1

aikzi‖2 = ‖
n∑
i=1

aik̃zi‖2 =
n∑

i,j=1

aiaj〈k̃zi , k̃zj〉

=
〈[
〈k̃zi , k̃zj〉

]
a, a
〉
≤
〈[
〈kzi , kzj〉

]
a, a
〉

=
n∑

i,j=1

aiaj〈kzi , kzj〉 = ‖
n∑
i=1

aikzi‖2

Hence R is contractive, and extends to H2 by continuity.

Example 2.4.9. Let h : D→ Bd be given by

h(z) = (a1z, a2z
n2 , . . . , adz

nd),

where a1 6= 0 and
∑d

l=1 |al|2 = 1. Let V = h(D). Then MV is similar to H∞(D), and
MV = H∞(V ). Moreover, AV is similar to A(D). This follows from Theorem 2.4.5, but
we will provide a direct argument.

First observe that for p ≥ N = max{nl : 1 ≤ l ≤ d}, we have

〈h(z), h(w)〉 − zpw̄p

1− zw̄
=

d∑
l=1

|al|2
(
znlw̄nl − zpw̄p

1− zw̄

)

=
d∑
l=1

|al|2znlw̄nl
(

1− zp−nlw̄p−nl
1− zw̄

)
Therefore if z1, . . . , zk are distinct points in D, the k × k matrix

Ap :=

[〈h(zi), h(zj)〉 − zpi z̄
p
j

1− ziz̄j

]
=

d∑
l=1

|al|2
[
znli z̄

nl
j

]
◦
[

1− zp−nli z̄p−nlj

1− zw̄

]
is positive definite because the second matrix on the right is positive by Pick’s condition,
and the Schur product of positive matrices is positive.

Since the first coordinate of h is injective, we see that h is injective. Moreover,

‖h−1‖MV
≤ ‖a−1

1 z1‖M = |a1|−1 =: C.
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Since the kernel for FV is a complete NP kernel, applying this to (h−1)2n−1
yields the

positivity of the matrices [
C2n − z2n−1

i z̄2n−1

j

1− 〈h(zi), h(zj)〉

]
.

Since z2n−1
has norm one, the Pick condition shows that[

1− z2n−1

i z̄2n−1

j

1− ziz̄j

]
≥ 0.

Thus we obtain positive matrices

Hn :=

[
C2n − z2n−1

i z̄2n−1

j

1− 〈h(zi), h(zj)〉

]
◦
[

1− z2n−1

i z̄2n−1

j

1− ziz̄j

]
=

[
C2n − (C2n + 1)z2n−1

i z̄2n−1

j + z2n

i z̄
2n

j

(1− 〈h(zi), h(zj)〉)(1− ziz̄j)

]

Choose M so that 2M ≥ N . We form a telescoping sum of positive multiples of the
Hn’s:

0 ≤
M∑
n=1

bnHn =

[
(D − 1)−Dziz̄j + z2M

i z̄2M

j

(1− 〈h(zi), h(zj)〉)(1− ziz̄j)

]
=: H

where bM = 1, bn =
∏M

k=n+1(C2k + 1) for 1 ≤ n < M and D =
∏M

k=1(C2k + 1). Thus[
D

1−〈h(zi), h(zj)〉

]
−
[

1

1−ziz̄j

]
=

[
(D−1)−Dziz̄j+〈h(zi), h(zj)〉

(1−〈h(zi), h(zj)〉)(1−ziz̄j)

]
= H + A2M ◦

[
1

1−〈h(zi), h(zj)〉

]
≥ 0.

This inequality shows that the two kernels kz and k̃z are comparable. The argument
of Proposition 2.4.8 shows that ‖R−1‖ ≤ D. In particular, R yields an isomorphism of the
two RKHSs H2 and H. This yields the desired isomorphism of H∞ and MV .

This isomorphism is not isometric. Indeed, if it were, then we would have ‖h−1‖MV
=

‖z‖∞ = 1. This would imply that

0 ≤
[

1− ziz̄j
1− 〈h(zi), h(zj)〉

]
.
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Thus arguing as in Lemma 2.4.7, we obtain[
1

1− zjzi

]
≤
[

1

1− 〈h(zj), h(zi)〉

]
.

But then the map R would be unitary, and the algebras would be completely isometric.
So by Lemma 2.2.4, the map h would map onto an affine disk—which it does not do.

Remark 2.4.10. Kerr, McCarthy and Shalit in [48] have recently extended Theorem
2.4.5. They proved that when V is a finite Riemann surface that is sufficiently nice with a
biholomorphic map h : V → W that extends to be C2, one-to-one and transversal on ∂V ,
then MV and MW are isomorphic.

2.4.4 A class of examples in B∞

We will now exhibit biholomorphisms of D into B∞, some of which yield an isomorphism
and some which do not.

Let {bn}∞n=1 be a sequence of complex numbers with
∑
|bn|2 = 1 and b1 6= 0. Let

h : D→ B∞ be given by
h(z) = (b1z, b2z

2, b3z
3, . . .).

Note that h is analytic (because it is given by a power series in the disc), with the analytic
inverse:

g(z1, z2, z3, . . .) = z1/b1.

The set V = h(D) is the variety in B∞ determined by the equations

zk =
bk
b1

zk1 for k ≥ 2.

As above let

k̃(z, w) =
1

1− 〈h(z), h(w)〉
,

and let H be the RKHS determined by k̃. By Lemma 2.4.6, H is equivalent to FV . The
special form of h allows us to write

1

1− 〈h(z), h(w)〉
=
∞∑
n=0

( ∞∑
i=1

|bi|2ziwi)
)n

=
∞∑
n=0

an(zw)n.
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By a basic result in RKHSs, k̃(z, w) =
∑
en(z)en(w) where {en} is an orthonormal basis

for k̃ (see Proposition 2.18 of [2]). Hence H is the space of holomorphic functions on D
with orthonormal basis {√anzn}∞n=0.

The map R defined in Proposition 2.4.8 is a contraction. Observe that R∗ : H → H2 is
given by composition with the identity mapping because

(R∗f)(z) = 〈R∗f, kz〉 = 〈f,Rkz〉 = 〈f, k̃z〉 = f(z).

It is easy to see that the issue is whether R is bounded below. Since ‖zn‖H2 = 1 and
‖zn‖H = 1/

√
an, we get:

Proposition 2.4.11. H is equivalent to H2 via R if and only if there are constants 0 <
c < C so that c ≤ an ≤ C for n ≥ 0.

The coefficients an are determined by the sequence {|bn|}∞n=1, and can be found recur-
sively by the formulae

a0 = 1 and an = |b1|2an−1 + . . .+ |bn|2a0 for n ≥ 1. (2.9)

The logic behind this recursion is that the term an(zw)n gets contributions from the sum

n∑
k=1

( n∑
i=1

|bi|2ziwi)
)k

=
( n∑
i=1

|bi|2ziwi)
) n∑
k=1

( n∑
i=1

|bi|2ziwi)
)k−1

.

Every |bi|2ziwi from the factor
∑n

i=1 |bi|2ziwi needs to be matched with the (zw)n−i term
from the factor

∑n
k=1(

∑n
i=1 |bi|2ziwi)k−1, which has coefficient precisely an−i. It follows

by induction from equation (2.9) that an ≤ 1. This provides an alternative proof of
Proposition 2.4.8 in this special case.

We will now construct a sequence {bn}∞n=1 that makes lim inf an > 0, and another
sequence that makes lim inf an = 0. By Proposition 2.4.11, this will show that there are
choices of {bn}∞n=1 for which H and H2 are naturally isomorphic, and there are choices for
which they are not.

Example 2.4.12. Define bn = (1/2)n/2 for n ≥ 1. It follows from the recursion relation
(2.9) that an = 1/2 for n > 1. Thus R∗ is bounded below, showing that H and H2 are
naturally isomorphic.
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Example 2.4.13. We will choose a rapidly increasing sequence {nk}∞k=1 with n1 = 1 and
define the sequence {bn}∞n=1 by

bm =

{
(1/2)k/2 if m = nk

0 otherwise .

The sequence {nk}∞k=1 will be defined recursively so that ank−1 ≤ 1/k.

We begin with n1 = 1 and a0 = 1. Suppose that we have already chosen n1, . . . , nk. This
means that we have already determined the sequence b1, . . . , bnk , but the tail bnk+1, bnk+2, . . .
is yet to be determined. We compute

nk∑
m=1

b2
m =

k∑
j=1

b2
nj

=
k∑
j=1

1/2j = r < 1.

Thus, if bnk+1 = bnk+2 = . . . = b(N+1)nk = 0, then it follows from (2.9) that a(N+1)nk ≤ rN

(recall that an ≤ 1 for all n). Therefore we may choose N so large that a(N+1)nk ≤ (k+1)−1,
and we set nk+1 = (N + 1)nk + 1.

Our construction yields a sequence {bn}∞n=1 so that lim inf an = 0. Thus the kernel for
the analytic disk V so defined is not similar to H2.

We do not know whether MV is isomorphic to H∞ or not. We suspect that it isn’t.

Example 2.4.14. It should be noted that there are many reproducing kernel Hilbert
spaces on the disk whose multiplier algebras are non-isomorphic to H∞. One such example
is Dirichlet space, denoted D, consisting of all holomorphic functions on the disk with
derivative in the Bergman space. The canonical norm is given by

‖f‖2
D =

∞∑
n=0

(n+ 1)|f̂(n)|2,

where f̂(n) denotes the nth Taylor coefficient of f at 0.

Dirichlet space has the complete Pick property and so is there is an embedding function
b : D→ B∞ such that D can be identified with H2

∞ restricted to the range of b [2, Theorem
7.33]. In fact, [2, Example 8.8] gives a precise formula for this embedding

b(z) = (bnz
n)∞n=1
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where the bn ≥ 0 come from the equation

∞∑
n=1

b2
nw̄

nzn = 1− 1

kD(z, w)

= 1− 1∑∞
n=0(n+ 1)−1w̄nzn

= 1 +
w̄z

ln(1− w̄z)
.

Hence, by letting w and z approach 1 we see that
∑∞

n=1 b
2
n = 1 and so this map b is

an example of our construction, with credit to Michael Hartz for noticing this. However,
Mult(D) is not isomorphic to H∞ [65].

Remark 2.4.15. Suppose that there is some N such that bn = 0 for all n > N . Then the
mapping h : D→ B∞ given by

h(z) = (b1z, b2z
2, b3z

3, . . .)

can be considered as a mapping into BN . Equation (2.9) implies that for n > N , an will
always remain between the minimum and the maximum of a0, a1, . . . , aN . Therefore, the
conditions of Proposition 2.4.11 are fulfilled, and H is equivalent to H2 via R. This is an
alternate argument to obtain Example 2.4.9.

2.4.5 Quotients of A(D)

Let V = {zn : n ≥ 1} be a Blaschke sequence in the disk. WriteBV for the Blaschke product
with simple zeros at the points in V . Observe that JV = BVH

∞ and IV = JV ∩A(D). By
Lemma 2.1.4 and Proposition 2.1.11, if the measure |S(V )| of S(V ) = V ∩ T is zero, then
AV = A(D)|V ∼= A(D)/IV .

The interpolating sequences play a special role.

Theorem 2.4.16. Let S(V ) = V ∩ T.

1. If |S(V )| > 0 then IV = {0}.

2. If V is interpolating and |S(V )| = 0, then AV is isomorphic to C(V ) by the restriction
map.

3. If AV is isomorphic to C(V ) via the restriction map, then V is an interpolating
sequence.
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Proof. (1) If |S(V )| > 0, then any f ∈ IV must vanish on S(V ), and hence is 0.

(2) The map taking f ∈ A(D) to f |V is clearly a contractive homomorphism of A(D)
into C(V ) with kernel IV . So it factors through AV , and induces an injection of AV into
C(V ). It suffices to show that this map is surjective, for the result then follows from the
open mapping theorem.

Fix h ∈ C(V ). By Rudin’s Theorem (see [43, p.81]), there is a function f ∈ A(D) such
that f |S(V ) = h|S(V ). By replacing h with h−f , we may suppose that h|S(V ) = 0. Hence h|V
is a function that limn→∞ h(zn) = 0. Now it suffices to show that if h(zn) = 0 for all n > N ,
then there is a function f ∈ A(D) with f |V = h|V and ‖f‖ ≤ C‖h‖∞ for a constant C
which is independent of N . Surjectivity will follow from a routine approximation argument.
Let c be the interpolation constant for V .

Fix N . Take h ∈ C(V ) with h(zn) = 0 for all n > N and ‖h‖∞ ≤ 1. By a theorem of
Fatou [43, p.81], there is an analytic function g on D such that Re g ≥ 0 and e−g ∈ A(D)
vanishes precisely on S(V ). There is an integer m > 0 so that |e−g/m(zn)| > .5 for
1 ≤ n ≤ N . Set VN = {zn : n > N}. Since V is interpolating,

min{|BVN (zn)| : 1 ≤ n ≤ N} ≥ 1/c.

We will look for a function f of the form f = BVN e
−g/mf0. By the arguments for Rudin’s

theorem, this will lie in A(D). Clearly it vanishes on VN ∪ S(V ), and we require

h(zn) = f(zn) = BVN (zn)e−g/m(zn)f0(zn).

So we need to find f0 ∈ A(D) with ‖f0‖ ≤ C and

f0(zn) = an := h(zn)eg(zn)/m/BVN (zn) for 1 ≤ n ≤ N.

The estimates made show that |an| ≤ 2c. The interpolation constant for {zn : 1 ≤ n ≤ N}
is at most c, and since this is a finite set, we can interpolate using functions in A(D) which
are arbitrarily close to the optimal norm. Thus we can find an f0 with ‖f0‖ ≤ 3c2. Hence
we obtain f with the same norm bound.

(3) If AV is isomorphic to C(V ) via the restriction map, then by the open mapping
theorem, there is a constant c so that for any h ∈ C(V ), there is an f ∈ A(D) with
f |V = h|V and ‖f‖ ≤ c‖h‖. In particular, for any bounded sequence (an) and N ≥ 1, there
is an fN ∈ A(D) such that ‖fN‖ ≤ c‖(an)‖∞ and

fN(zn) =

{
an if 1 ≤ n ≤ N

0 if n > N
.
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Take a weak-∗ cluster point f of this sequence in H∞. Then ‖f‖ ≤ c and f interpolates
the sequence (an) on V . So V is interpolating.

We can now strengthen Example 2.4.2, showing that there are discrete varieties giv-
ing rise to non-isomorphic algebras which are biholomorphic with a biholomorphism that
extends continuously to the boundary.

Example 2.4.17. We will show that there is a Blaschke sequence V which is not inter-
polating and an interpolating sequence W and functions f and g in A(D) so that f |V is a
bijection of V onto W and g|W is its inverse. Take

V = {zn := 1− n−2 : n ≥ 1} and W = {wn := 1− n−2e−n
2

: n ≥ 1}.

Then W is an interpolating sequence, and V is not. Let

f(z) = 1 + (z − 1)e1/(z−1).

Then since 1/(z − 1) takes D conformally onto {z : Re z < −1/2}, it is easy to see that
e1/(z−1) is bounded and continuous on D \ {1}. Hence f is continuous, so lies in A(D).
Clearly, f(zn) = 1− n−2e−n

2
= wn for n ≥ 1. The inverse of f |V is the map h(wn) = zn.

Since
lim
n→∞

h(wn) = lim
n→∞

zn = 1,

this extends to be a continuous function on W = W ∪ {1}. By Theorem 2.4.16, there is a
function g ∈ A(D) such that g|W = h.

Remark 2.4.18. Let V = {vn} and W = {wn} be two interpolating sequences in D with
lim vn = limwn = 1. Then the algebras AV and AW are both isomorphic to c, the space
of convergent sequences. As in our counterexamples using Blaschke products, we can find
biholomorphisms carrying one sequence onto the other. However there is no reason for the
rates at which they approach the boundary to be comparable.

We now give a strengthening of Theorem 2.4.16.

Theorem 2.4.19. Let V = {vn}∞n=1 be a Blaschke sequence in D, such that |S(V )| = 0.
Then AV is isomorphic to C(V ) if and only if V is interpolating.

Proof. Theorem 2.4.16 says that AV is isomorphic to C(V ) via the restriction map if and
only if V is interpolating. All that remains to prove is that if V is not an interpolating
sequence, then it cannot be isomorphic via any other isomorphism.
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Suppose that V is a non-interpolating sequence and define wn = (1−e−n)vn/|vn|. Then
W = {wn} is an interpolating sequence with S(W ) = S(V ), and V is homeomorphic to W
via the map that continuously extends vn 7→ (1−e−n)vn/|vn|. Therefore, AW is isomorphic
to C(V ) via the restriction map. Now assume that AV is isomorphic to C(V ) by any
isomorphism. Then it is isomorphic to AW . But by Corollary 2.2.8, this isomorphism is
given by composition with a holomorphic map. Therefore AV is isomorphic to C(V ) via
the restriction map—a contradiction.

Remark 2.4.20. In [32], now improved by [41], we saw that in the case of homogeneous
varieties V and W , the algebras AV and AW are isomorphic if and only if the algebrasMV

andMW are isomorphic. The above discussion shows that this is not true in general. If V
and W are two interpolating sequences in D, then MV and MW are both isomorphic to
`∞, whereas the isomorphism classes of AV and AW depend on the structure of the limit
sets.
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Chapter 3

Triangular UHF algebras

3.1 Definitions and Notation

A C∗-algebra is called uniformly hyperfinite (UHF) (or a Glimm algebra) if it is the closed
union of a chain of unital subalgebras each isomorphic to a full matrix algebra. In other
words, suppose we have integers kn, n ∈ N such that kn|kn+1, for all n, and unital C∗-
algebra embeddings ϕn : Mkn → Mkn+1 . Then Aϕ =

⋃
nMkn is a UHF algebra. Such

a sequence of integers kn|kn+1 (and setting k0 = 1) defines a formal product δ(Aϕ) :=∏
n≥0

kn+1

kn
=
∏

p prime p
δp , where δp ∈ N∪{∞}, called a supernatural number or generalized

integer. δ(Aϕ) can also be thought of as the least common multiple of the set {k1, k2, · · · }.
A famous theorem of Glimm’s [38] states that two UHF algebras are isomorphic if and only
if they have the same generalized integers. In particular, the choice of unital embeddings
does not make a difference. See [24, 57] for more on UHF algebras and approximately
finite-dimensional (AF) C∗-algebras, where such algebras are defined to be closed unions
of a chain of finite dimensional subalgebras.

Let Tk be the upper triangular matrices of Mk. We have the following definition:

Definition 3.1.1. Consider a UHF algebra Aϕ =
⋃
nMkn where ϕn : Mkn → Mkn+1 are

unital ∗-embeddings and assume that ϕn(Tkn) ⊂ Tkn+1. Then Tϕ =
⋃
n Tkn is called a

triangular UHF (TUHF) algebra.

In contrast to Glimm’s theorem we must take note of the embeddings as different
embeddings lead to non-isomorphic algebras [57]. Hence, in the above definition ϕ =
{ϕ1, ϕ2, · · · } is the collection of embeddings. Two of the simplest embeddings are:
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Definition 3.1.2. The standard embedding of Tk into Tk′ when k|k′ is

A ∈ Tk 7→ Ik′/k ⊗ A =


A

A
. . .

A

 ∈ Tk′
Definition 3.1.3. The nest or refinement embedding of Tk into Tk′ when k|k′ is

A ∈ Tk 7→ A⊗ Ik′/k ∈ T ′k

or in other words
a11 · · · · · · a1k

0
. . .

...
...

. . . . . .
...

0 · · · 0 akk

 7→

a11 · Ik′/k · · · · · · a1k · Ik′/k
0 · Ik′/k

. . .
...

...
. . . . . .

...
0 · Ik′/k · · · 0 · Ik′/k akk · Ik′/k

 .

As was mentioned in Section 2, an important object for the study of non-selfadjoint
operator algebras is the C∗-envelope [12, 34, 40, 45]. It is immediate in this case that the
C∗-envelope, C∗e (Tϕ), is equal to C∗(Tϕ) = Aϕ because all UHF algebras are simple.

Distinct from the theory of UHF algebras is that there is a partial order on Proj(Tϕ)
which is not the subprojection partial order.

Definition 3.1.4. If p, q ∈ T are projections then we say p � q if there is a partial
isometry v ∈ T such that vv∗ = p and v*v = q.

We will use ekni to denote ei,i ∈ Tkn , the minimal projections at each level, and similarly
ekni,j to denote ei,j ∈ Tkn . From the previous definition we have ekni � eknj and eknj � ekni for
i < j.

A subalgebra T of a UHF algebra is triangular if T ∩T ∗ is abelian. In the terminology
of [57] our TUHF algebras are maximal triangular in that there is no other triangular
algebra sitting strictly between Tϕ and Aϕ. Observe that ϕn(Tkn ∩ T ∗kn) ⊂ Tkn+1 ∩ T ∗kn+1

,
that is, the diagonal is mapped to the diagonal. So there is a maximal abelian self-adjoint
subalgebra (masa) Cϕ ⊂ Tϕ defined as

Cϕ = Tϕ ∩ T ∗ϕ =
⋃
n

Tkn ∩ T ∗kn '
⋃
n

Cn :=
⋃
n

Ckn .
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Hence, Cϕ is an AF C∗-algebra and Cϕ ' C(X) where the Gelfand space is a generalized
Cantor set:

M(Cϕ) = X =
∏
n≥1

[
kn
kn−1

]
,

with k0 = 1 to make the formula work and where [k] = {0, 1, · · · , k − 1}. We will often
refer to Cϕ as the diagonal of Tϕ.

Define the normalizer of Cn in Tkn as

NCn(Tkn) = {v ∈ Tkn partial isometry : vCnv
∗ ⊂ Cn, v

∗Cnv ⊂ Cn}.

It is not hard to see that any element of NCn(Tkn) is the multiplication of a diagonal
unitary by a partial permutation matrix, that is, where there is at most one 1 in each
row and column. We say that an embedding ϕ : Tkn → Tkn+1 is regular if ϕ(NCn(Tkn)) ⊂
NCn+1(Tkn+1). Note that the standard and nest embeddings are regular embeddings. We
will say Tϕ is a regular TUHF if it has regular embeddings. In the same way, define the
normalizer of Cϕ in Tϕ:

NCϕ(Tϕ) = {v ∈ Tϕ partial isometry : vCϕv
∗ ⊂ Cϕ, v

∗Cϕv ⊂ Cϕ}.

The following lemma by Power gives a decomposition of any element in the normalizer
into a product of a unitary and a partial permuation matrix. Note that U(Cϕ) denotes the
unitary group of Cϕ.

Lemma 3.1.5 ([57], Lemma 5.5). Let Tϕ be a regular TUHF algebra. Then v ∈ NCϕ(Tϕ)
if and only if v = dw where w ∈ NCn(Tkn), for some n, and d ∈ U(Cϕ), a diagonal
unitary. Moreover, w can be chosen to be a partial permutation matrix which makes the
decomposition unique.

Finally, when we have a regular TUHF algebra for each point x ∈ X there is a unique
sequence of projections

ek1i1 ≥ ek2i2 ≥ ek3i3 ≥ · · ·

where now we refer to the subprojection partial order, with x(eknin ) = 1 for all n ≥ 1. Define
a partial order on X by letting the following be equivalent for x = (xn)n≥1, y = (yn)n≥1 ∈∏

n≥1

[
kn
kn−1

]
= X which have sequences of projections eknin and eknjn respectively:

1) x ≤ y,

2) ∃ n such that eknin � eknjn and e
kn′
in′

= eknin,jne
kn′
jn′

(eknin,jn)∗ for all n′ > n.
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Note this is a partial order. Let Ekn
ij be all such pairs (x, y) ∈ X × X that depend on

i = in, j = jn and n in the above definition.

Definition 3.1.6. The topological binary relation of Tϕ relative to Cϕ is

R(Tϕ) =
⋃
{Ekn

ij : ekni,j ∈ Tϕ, n ≥ 1},

equipped with the topology defined by basic clopen sets

{x ∈ X : x(ekni ) = 1}, n ≥ 1, 1 ≤ i ≤ kn.

3.2 Isometric automorphisms

Let Tϕ be a regular TUHF algebra and Aut(Tϕ) denote the isometric automorphism group.
Such an automorphism will preserve the masa, the partial order on projections and the
normalizer.

Theorem 3.2.1 ( [57], Theorem 7.5 ). Let Cϕ ⊂ Tϕ ⊂ Aϕ and Cψ ⊂ Tψ ⊂ Aψ be the
algebras defined for two sequences of regular embeddings ϕ and ψ. Then the following are
equivalent:

1. There is an isometric isomorphism θ : Tϕ → Tψ with θ(Cϕ) = Cψ.

2. The topological binary relations R(Tϕ) and R(Tψ) are isomorphic as topological rela-
tions.

3. There is a ∗-isomorphism θ̃ : Aϕ → Aψ with θ̃(Tϕ) = Tψ and θ̃(Cϕ) = Cψ.

Furthermore, by [24, Corollary IV.5.8] all automorphisms of Aϕ are approximately
inner, i.e. the pointwise limit of inner automorphisms. Hence, by the previous theorem
the automorphisms in Aut(Tϕ) are just restrictions of approximately inner automorphisms.
Consider now, that the only unitaries in Tϕ live in the masa, that is U(Tϕ) = U(Cϕ). Since
we refer to Cϕ as the diagonal of Tϕ this leads us to the following definition:

Definition 3.2.2. An approximately inner (or just inner) automorphism of Tϕ is called an
approximately diagonal automorphism. We denote this group by Inn(Tϕ). More specifically,
γ ∈ Inn(Tϕ) if there exists Un ∈ U(Cϕ) such that

lim
n→∞

UnAU
∗
n = γ(A), ∀A ∈ Tϕ.
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Now because U(Cϕ) is commutative we immediately get that Inn(Tϕ) is commutative
as well.

Define as well the outer automorphism group:

Out(Tϕ) := Aut(Tϕ)/Inn(Tϕ).

Lemma 3.2.3. Let θ ∈ Aut(Tϕ) for a regular Tϕ. Then there exists γ ∈ Inn(Tϕ) such that

γ ◦ θ(∪n≥1Tkn) = ∪n≥1Tkn .

Proof. Let n1 ≥ 1 be big enough such that θ(proj(Tk1)) ⊂ proj(Tkn1
) and using Lemma

3.1.5, θ(ek1i,i+1) = diwi ∈ NCϕ(Tϕ) with di ∈ U(Cϕ) and wi ∈ NCn1
(Tkn1

), a partial permu-
tation matrix, for 1 ≤ i < k1.

Set u1 = I ∈ Cϕ and u2 ∈ U(Cϕ) such that u2 = w∗1d
∗
1w1. Now, recursively define

ui ∈ U(Cϕ) by
ui = w∗i−1d

∗
i−1ui−1wi−1, for 2 < i ≤ k1.

Set U1 =
∑k1

i=1 θ(e
k1
i )ui ∈ U(Cϕ) and notice that

U∗1 θ(e
k1
i,i+1)U1 = u∗i θ(e

k1
i,i+1)ui+1 = u∗i (diwi)ui+1 = wi ∈ Tkn1

.

Thus, U∗1 θ(Tk1)U1 ⊂ Tkn1
.

In the same way there exists n2 ≥ n1 and Ũ2 ∈ U(Cϕ) such that Ũ∗2 θ(Tkn1
)Ũ2 ⊂ Tkn2

.
Since the following are both regular embeddings they must differ by a unitary V in Tkn2

:

V ∗Ũ∗2 θ(ϕkn1−1 ◦ · · · ◦ ϕ1(Tk1))Ũ2V = ϕkn2−1 ◦ · · · ◦ ϕkn1
(U∗1 θ(Tk1)U1).

Thus, define U2 = Ũ2V . Repeating this we recursively get nm+1 ≥ nm and Um+1 ∈ U(Cϕ)
such that U∗m+1θ(Tknm )Um+1 ⊂ Tkn+1 with Um+1U

∗
m|θ(Tkm ) = I.

Therefore, the sequence Um defines an approximately inner automorphism γ ∈ Inn(Tϕ)
and γ◦θ(∪n≥1Tkn) = ∪n≥1Tkn . Furthermore, for every n ≥ 1, γ◦θ|Tkn is a regular embedding
into some Tkn′ .

Proposition 3.2.4. Let θ ∈ Aut(Tϕ) for a regular Tϕ and θ(p) = p, for all p ∈ Proj(Tϕ).
Then θ is an approximately diagonal automorphism.
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Proof. By the previous Lemma there exists γ ∈ Inn(Tϕ) such that θ̃ := γ ◦ θ preserves
the unclosed union and from the end of the proof we may assume that θ̃|Tkn is a regular
embedding into Tkn′ .

Hence, for 1 ≤ i < j ≤ kn and λl ∈ T,

ϕn′−1 ◦ · · · ◦ ϕn(ekni,j) =

kn′/kn∑
l=1

λle
kn′
il,jl
.

and so
kn′/kn∑
l=1

e
kn′
il
θ̃(e

kn′
il,jl

)e
kn′
jl

= θ̃(

kn′/kn∑
l=1

e
kn′
il,jl

) = θ̃(ekni,j) ∈ Tkn′

because θ̃(p) = p for all projections p. However, θ̃|Tkn is a regular embedding so there is

no other option than to have θ̃(e
kn′
il,jl

) = µle
kn′
il,jl

where µl ∈ U(Cn′′) where θ̃|Tkn′ ⊂ Tkn′′ and

so θ̃(ekni,j) differs from ϕn′−1 ◦ · · · ◦ ϕn(ekni,j) by a unitary conjugation.

Therefore, θ̃ = Inn(Tϕ) and so θ.

Corollary 3.2.5. Let Tϕ have regular embeddings. Then Tϕ is isomorphic to a TUHF
algebra where the embeddings are not only regular but map partial permutation martrices
to partial permutation matrices.

Proof. Define ψn : Tkn → Tkn+1 by mapping ψn(ekni ) = ϕn(ekni ) and defining

ψn(ekni,j) =

kn+1∑
l=1

e
kn+1

il,jl
, where ϕn(ekni,j) =

kn+1∑
l=1

λle
kn+1

il,jl

because ϕn was regular. The topological binary relations of Tϕ and Tψ are the same and
thus the algebras are isometrically isomorphic by Theorem 3.2.1.

Theorem 3.2.6. For a regular Tϕ we have Aut(Tϕ) ' Inn(Tϕ)oOut(Tϕ).

Proof. By the Corollary above assume that the embeddings have this stronger form. Propo-
sition 3.2.4 tells us that each coset of Out(Tϕ) maps the projections of Tϕ in a unique way.
Then the end of the proof of Lemma 3.2.3 tells us that one can choose a representative
of the coset uniquely, specifically by choosing the automorphism that acts as a regular
embedding at each finite level sending partial permutation matrices to partial permutation
matrices. We denote the collection of these representatives as O ⊂ Aut(Tϕ). Composition
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of regular embeddings gives a regular embedding so it is immediate that if θ, θ̃ ∈ O then
θ ◦ θ̃ ∈ O. Finally, θ−1 must send partial permutation matrices to partial permutation
matrices because θ ∈ O. But then θ−1|Tkn must be a regular embedding and so θ−1 ∈ O
as well. Therefore, O is a group and is isomorphic to Out(Tϕ).

Furthermore, for θ ∈ O and γ ∈ Inn(Tϕ) we have that for any p ∈ proj(Tϕ)

θ−1 ◦ γ ◦ θ(p) = θ−1(θ(p)) = p

because approximately diagonal automorphisms preserve projections. By Proposition 3.2.4
this implies that θ−1 ◦ γ ◦ θ ∈ Inn(Tϕ), which gives an action of Out(Tϕ) on Inn(Tϕ).
Therefore the result follows.

A set of totally ordered projections e1 � · · · � en ∈ Tn when embedded into Tm becomes
a partition A1∪̇ · · · ∪̇An of {1, · · · ,m} where |Ai| = |Ai′| = m/n and Ai ≤ Ai+1 in the sense
that the jth smallest element of Ai is smaller than the jth smallest element of Ai+1. We
will call A an ordered partition.

Suppose we have two such ordered partitions A = ∪̇Ai and B = ∪̇Bi then we say A � B
if for some 1 ≤ j ≤ m, j′ ∈ Ai if and only if j′ ∈ Bi for all 1 ≤ j′ < j and j ∈ Ai, j ∈ Bi′

with i < i′. In other words, the element where they differ occurs in an earlier set. Hence,
this is a total order on ordered partitions of the same set.

Lemma 3.2.7. Let A = ∪̇ni=1Ai and B = ∪̇ni=1Bi be ordered partitions of {1, · · · ,m} and
suppose that ϕ : Tm → Tm′ is a unital embedding. If A � B then ϕ(A) � ϕ(B).

Proof. Let j ∈ Ai, j ∈ Bi′ , i < i′ be the first element that differs in the two partitions.
Consider the first elementary projection of ϕ(ej) ∈ Tm′ , say ej1 ≤ ϕ(ej) then j1 ∈ ϕ(Ai)
and j1 ∈ ϕ(Bi′). Now let j′ < j1. Then ej′ � ej1 which implies that ej′ ≤ ϕ(ej′′) with
j′′ < j but then j′′ ∈ Ai if and only if j′′ ∈ Bi and so j′ ∈ ϕ(Ai) if and only if j′ ∈ ϕ(Bi).
Therefore, ϕ(A) � ϕ(B).

Consider two embeddings ϕ, ψ : Tk → Tk′ . We say that ϕ � ψ if and only if ϕ({1} ∪
· · · ∪ {k}) � ψ({1} ∪ · · · ∪ {k}). By the previous proposition if ϕ′ : Tk′ → Tk′′ is another
embedding then ϕ � ψ implies that ϕ′◦ϕ � ϕ′◦ψ. Note that if ϕ � ψ and ψ � ϕ then they
agree on projections and furthermore, that two such embeddings are always comparable in
this way.

Proposition 3.2.8. For Tϕ regular Out(Tϕ) is torsion free.
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Proof. Let θ ∈ Aut(Tϕ) such that it preserves the unclosed union and θm = id for some
m ≥ 1. For any choice of n1 ≥ 1 there exist nm+1 ≥ · · · ≥ n2 ≥ n1 such that

θ(Tkni ) ⊂ Tkni+1
, for 1 ≤ i ≤ m.

For ease of notation let ki := kni , ϕi := ϕni and θi := θ|Tki . This gives us the following
identities:

ϕm ◦ · · · ◦ ϕ1 = θm ◦ · · · ◦ θ1 and θi+1 ◦ ϕi = ϕi+1 ◦ θi.

If ϕ1 � θ1 then by the previous lemma

ϕm ◦ · · · ◦ ϕ1 � ϕm ◦ · · · ◦ ϕ3 ◦ ϕ2 ◦ θ1

= ϕm ◦ · · · ◦ ϕ3 ◦ θ2 ◦ ϕ1

� ϕm ◦ · · · ◦ ϕ3 ◦ θ2 ◦ θ1

= ϕm ◦ · · · ◦ ϕ4 ◦ θ3 ◦ θ2 ◦ ϕ1

� · · ·
� ϕm ◦ · · · ◦ ϕi ◦ θi−1 ◦ · · · ◦ θ1

= ϕm ◦ · · · ◦ ϕi+1 ◦ θi · · · ◦ θ2 ◦ ϕ1

� · · ·
� ϕm ◦ θm−1 ◦ · · · ◦ θ1

= θm ◦ · · · ◦ θ2 ◦ ϕ1

� θm ◦ · · · ◦ θ1

= ϕm ◦ · · · ◦ ϕ1.

Hence, all of the inequalities are equalities which gives us that ϕ1 = θ1 on proj(Tk1). The
same holds true if we assume θ1 � ϕ1 and thus, θ(p) = p for all projections p ∈ Tϕ and by
Proposition 3.2.4 θ ∈ Inn(Tϕ). Therefore, Out(Tϕ) is torsion free.

3.3 The alternating embedding

Definition 3.3.1. We say that ϕ is an alternating embedding if kn = sntn, n ≥ 1 with
sn|sn+1 and tn|tn+1 and

ϕn(A) = Isn+1/sn ⊗ A⊗ Itn+1/tn .

This is called alternating because ϕn is a standard embedding of size sn+1/sn followed
by a nest embedding of size tn+1/tn, though the order does not matter as tensoring is
associative. To each such embedding associate a pair of supernatural numbers (sϕ, tϕ)
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where sϕ =
∏

n≥1
sn+1

sn
and tϕ =

∏
n≥1

tn+1

tn
, the supernatural numbers of the standard and

nest embeddings treated separately.

For these algebras there is a version of Glimm’s theorem, that an alternating TUHF is
characterized by a pair of supernatural numbers up to finite rearranging:

Proposition 3.3.2 ([57], Theorem 9.6). Let Tϕ and Tψ have alternating embeddings. Then
Tϕ is isometrically isomorphic to Tψ if and only if there exists r ∈ Q such that sϕ = r · sψ
and tϕ = r−1 · tψ.

Proposition 3.3.3. Let Tϕ have an alternating embedding. To every prime p that in-
finitely divides both sϕ and tϕ there is a non-diagonal automorphism of Tϕ, called a shift
automorphism and denoted θp.

Proof. Without loss of generality, by dropping to a subsequence of the kn, we may assume
that p| sn+1

sn
and p| tn+1

tn
. Define a map θp :

⋃
n≥1 Tkn →

⋃
n≥1 Tkn by

A ∈ Tkn 7→ θp(A) = I psn+1
sn

⊗ A⊗ I tn+1
ptn

∈ Tkn+1 .

First off, θp is well-defined:

θp(ϕn(A)) = I psn+2
sn+1

⊗
(
I sn+1

sn

⊗ A⊗ I tn+1
tn

)
⊗ I tn+2

ptn+1

= I sn+2
sn+1

⊗
(
I psn+1

sn

⊗ A⊗ I tn+1
ptn

)
⊗ I tn+2

tn+1

= ϕn+1(θp(A)).

Note that θp(e
(kn)
1 ) 6= ϕn(e

(kn)
1 ) and so if this extends to an automorphism it will not be

approximately diagonal. Second, θ−1
p is defined in the most obvious way:

θ−1
p (θp(A)) = I sn+2

psn+1

⊗
(
I psn+1

sn

⊗ A⊗ I tn+1
ptn

)
⊗ I ptn+2

tn+1

= I sn+2
sn

⊗ A⊗ I tn+2
tn

= ϕn+1(ϕn(A)).

Similarly, θp(θ
−1
p (A)) = ϕn+1(ϕn(A)) as well. Hence, θp is an isometric automorphism on

the unclosed union and so extends to be an isometric automorphism of Tϕ.

Let p1, · · · , pm be distinct primes that infinitely divide sϕ and tϕ and δ1, · · · , δm ∈ N.
For u =

∏m
i=1 p

δi
i define θu ∈ Aut(Tϕ) to be

θu = θδ1p1 ◦ · · · ◦ θ
δm
pm .
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Note that the order of the pi does not matter as all of these automorphisms commute.

We shift focus now back to ordered partitions. Before proving the main theorem of the
section we first need two definitions and two technical lemmas.

Recall that P = ∪̇ni=1Pi is an ordered partition if |P1| = · · · = |Pn| = m and P1 ≤
P2 ≤ · · · ≤ Pn. This ordering can also be given by letting Pi = {p1,i, · · · , pm,i} with
p1,i < p2,i < · · · < pm,i and then Pi ≤ Pj gives pk,i < pk,j for every 1 ≤ k ≤ m.

We will call P = ∪̇ni=1Pi an ordered subpartition if |P1| ≥ |P2| ≥ · · · |Pn| and Pi ≤ Pj
for 1 ≤ i < j ≤ n, meaning that pl,i < pl,j for all 1 ≤ l ≤ |Pj|.

Lemma 3.3.4. Let P = ∪̇ni=1Pi = {1, · · · ,m} be an ordered partition. Then for 1 ≤ m′ ≤
m we have that

P ∩ {1, · · · ,m′} = ∪̇ni=1(Pi ∩ {1, · · · ,m′})

is an ordered subpartition.

Proof. If Pi ≤ Pj then the kth smallest element of Pi precedes the kth smallest element
of Pj. Hence, if the latter is in {1, · · · ,m′} then the former will be as well, and so,
Pi ∩ {1, · · · ,m′} ≤ Pj ∩ {1, · · · ,m′}.

A subset R is called a run if whenever i < j < k and i, k ∈ R then j ∈ R. If R and S
are runs we say that R < S if r < s for all r ∈ R and s ∈ S.

Lemma 3.3.5. Let R1 < R2 < · · · < Rn be runs in {1, · · · , r} and S1 < · · · < Sn < Sn+1

be runs in {1, · · · , s} with |S1| = · · · = |Sn| ≥ 1. If θ is a unital embedding of Tr into Ts
such that θ(R) = S as sets and θ(Ri) ⊃ Si then |R1| ≤ · · · ≤ |Rn|.

Proof. Let Ri = {ri1, · · · , rimi} for 1 ≤ i ≤ n. Because θ is a unital embedding we know
that it takes the indices

r1
1 < r1

2 < · · · < r1
m1

< r2
1 < r2

2 < · · · < rnmn

to the ordered partition

θ(r1
1) ≤ θ(r1

2) ≤ · · · ≤ θ(r1
m1

) ≤ θ(r2
1) ≤ · · · ≤ θ(rnmn).

In particular, they all have the same size, |θ(rij)| = s/r. By the previous lemma this order
is maintained when considering only the first part of S, leading to the ordered subpartition

θ(r1
1) ∩ (S1 ∪ · · · ∪ Sn) ≤ · · · ≤ θ(rnmn) ∩ (S1 ∪ · · · ∪ Sn).
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Since θ(Ri) ⊃ Si the ordered subpartition becomes

θ(r1
1) ∩ S1 ≤ · · · ≤ θ(r1

n1
) ∩ S1 ≤ θ(r2

1) ∩ S2 ≤ · · · ≤ θ(rnmn) ∩ Sn.

This implies that

|θ(r1
1) ∩ S1| ≥ · · · ≥ |θ(r1

n1
) ∩ S1| ≥ |θ(r2

1) ∩ S2| ≥ · · · ≥ |θ(rnmn) ∩ Sn|.

However, if i < i′

mi∑
k=1

|θ(rik) ∩ Si| = |Si| = |Si′| =
mi′∑
k=1

|θ(ri′k ) ∩ Si′ |

with every summand on the left being greater than every summand on the right, and so
we must have mi ≤ mi′ . In other words,

|R1| ≤ |R2| ≤ · · · ≤ |Rn|.

Theorem 3.3.6. Let Tϕ have an alternating embedding for kn = sntn and θ ∈ Aut(Tϕ).
Then there exists an approximately diagonal automorphism ψ and u, v ∈ N such that
θ = θu ◦ θ−1

v ◦ ψ. Moreover, this factorization is unique if gcd(u, v) = 1.

Proof. Let m ≥ 1 then there exist m′ ≥ n ≥ m such that

θ−1(proj(Tkm)) ⊂ proj(Tkn), and θ(proj(Tkn)) ⊂ proj(Tkm′ ).

We will use the language of ordered partitions. In particular, let

P =
⋃̇km

i=1
Pi = ϕm′−1 ◦ · · · ◦ ϕm({1} ∪ · · · ∪ {km}),

that is the image in km′ of the elementary projections in km. Writing these as the disjoint
union of runs we get

Pi =
⋃̇sm′/sm

j=1
Pj,i and P1,1 < P1,2 < · · · < P1,km < P2,1 · · · < Psm′/sm,km

with |Pj,i| = tm′/tm, which is obvious from the alternating embedding. Similarly, let

Q =
⋃̇km

i=1
Qi = θ−1({1} ∪ · · · ∪ {km}), that is θ−1(ekmi ) =

∑
j∈Qi

eknj .
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Also decompose this into runs

Qi =
⋃̇s

j=1
Qj,i and Q1,1 < Q1,2 < · · · < Qs,km

where many of the Qj,i may be empty, but there are never km − 1 empty Qj,i all in a row
because if this was not so then we could represent the partition as a shorter sequence. Note
that Q1,1 and Qs,km are nonempty.

Claim: |Q1,1| = |Q1,2| = · · · = |Q1,km|.

Proof of Claim:
First, we know that

P1,i = Pi ∩ P1,i = θ(θ−1(ekmi )) ∩ P1,i = θ(Qi) ∩ P1,i =

kn/km⋃
j=1

θ(Qj,i) ∩ P1,i.

By Lemma 3.3.4 we get an ordered subpartition by intersecting with P1,1,

(θ(Q1,1) ≤ θ(Q1,2) · · · ≤ θ(Qs,km))
⋂

P1,1

= θ(Q1,1) ∩ P1,1 ≤ ∅ ≤ · · · ≤ ∅ ≤ θ(Q2,1) ∩ P1,1 ≤ ∅ ≤ · · ·

· · · ≤ ∅ ≤ θ(Q3,1) ∩ P1,1 ≤ ∅ ≤ · · · ≤ ∅ ≤ θ(Qs,1) ∩ P1,1 ≤ ∅ ≤ · · · ≤ ∅

which implies that if any θ(Qj,1)∩P1,1 is nonempty then all the intermediate Q1,1 < Qj′,i′ <
Qj,1 must be empty to remain an ordered subpartition under the above restriction, but this
contradicts the requirement that there cannot be km − 1 empty Qj′,i′ in a row. Therefore,
θ(Q1,1) ∩ P1,1 = P1,1.

Again

(θ(Q1,1) ≤ θ(Q1,2) ≤ · · · ≤ θ(Qs,km))
⋂

(P1,1 ∪ P1,2)

= θ(Q1,1) ∩ P1,1 ≤ θ(Q1,2) ∩ P1,2 ≤ ∅ ≤ · · · ≤ ∅ ≤ θ(Q2,2) ∩ P1,2 ≤ ∅ ≤ · · ·

to get that θ(Q1,2) ∩ P1,2 = P1,2. Repeat this recursively to get that θ(Q1,i) ∩ P1,i = P1,i.
Noting that all |P1,i| = |P1,i′| we have satisfied the hypotheses of Lemma 3.3.5. Hence,
|Q1,1| ≤ · · · ≤ |Q1,km|. The reverse direction is given by the fact that Q1,1 < · · · < Q1,km is
the first part of an ordered partition. Therefore, |Q1,1| = · · · = |Q1,km| and the claim has
been verified.
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This tells us that any isometric automorphism of an alternating embedding TUHF
sends the elementary projections from a finite level to a partition with a specific starting
pattern, that is, one iteration of equal runs. We apply this to the elementary projections
of Tkn to get that there exist runs

R1 ≤ R2 ≤ R3 ≤ · · · ≤ Rkn

such that |Ri| = |Rj| = r ≥ 1, ∪Ri = {1, · · · , k}, k ≤ km′ and θ(ekni ) ⊃ Ri.

Let Q′j,i = ∪l∈Qj,iRl giving us runs with |Q′j,i| = |Qj,i| · r and θ(Qj,i) ⊃ Q′j,i. Then the
following partitions

P ∩ {1, · · · , k} = θ(θ−1({1, · · · , km})) ∩ {1, · · · , k} = θ(Q) ∩ {1, · · · , k}

must be equal. Which implies that

∪Pj,i ∩ {1, · · · , k} = Q′1,1 < Q′1,2 < Q′1,3 < · · · < Q′j,i < · · · < Q′s,km ,

where both are decompositions into runs. Hence, Pj,i = Q′j,i which implies that t = |Qj,i| =
|Q′j,i|/r = |Pj,i|/r =

tm′
tmr

, they are all the same size. Therefore, for A ∈ proj(Tkm)

θ−1|Tkm (A) = Is ⊗ A⊗ It.

We have then, that t ·s ·km = kn. Let s
sn/sm

= u
v

where u =
∏l

i=1 p
δi
i and v =

∏k
j=1 q

εj
j with

p1, · · · , pl, q1, · · · , qk distinct primes and δ1, · · · , δl, ε1, · · · , εk ∈ N. Because st = kn
km

= sn
sm

tn
tm

then t
tn/tm

= v
u
. This gives us that v| sn

sm
and u| tn

tm
. Hence, for A ∈ proj(Tkm)

θ−1|Tkm (A) = Is ⊗ A⊗ It = I sn
sm

u
v
⊗ A⊗ I tn

tm
v
u
.

= θδ1p1 ◦ · · · ◦ θ
δl
pl
◦ θ−ε1q1

◦ · · · ◦ θ−εkqk
(A).

Repeat this argument for any θ−1(proj(Tkm′ )) ⊂ proj(Tkn′ ), getting a similar result,

θ−1|Tkm′ (A) = θ
δ′1
p′1
◦ · · · ◦ θδ

′
l′
p′
l′
◦ θ−ε

′
1

q′1
◦ · · · ◦ θ−ε

′
k′

q′
k′

(A).

However, these two descriptions must agree on Tkm ↪→ Tkm′ and so u = u′, v = v′ and

note that v| sn′
sm′

and u| tn′
tm′

. In this way we see that θ−1 = θu ◦ θ−1
v on the projections of

Tϕ and that v∞|sϕ, u∞|tϕ. Finally then, by Proposition 3.2.4 there exists a approximately
diagonal automorphism ψ such that θ = θ−1

u ◦ θv ◦ ψ which also gives that u∞|sϕ, v∞|tϕ.
Uniqueness of the factorization when gcd(u, v) = 1 is obvious since we have seen that shift
automorphisms and their inverses commute with other such automorphisms. Therefore,
the result is established.
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Corollary 3.3.7 (cf. [58], Theorem 1). Let Tϕ have an alternating embedding. Then
Out(Tϕ) ' Zd where d is the number of common prime factors that infinitely divide both
sϕ and tϕ.

3.4 Tensoring TUHF algebras

The following section provides a technique to create new automorphism groups from old.
To this end, suppose that Tϕ = ∪∞n=1Tkn and Tψ = ∪∞n=1Tjn are TUHF algebras.

We can create a new TUHF algebra

Tϕ⊗ψ = ∪∞n=1Tknjn

with unital embeddings ϕn⊗ψn : Tknjn → Tkn+1jn+1 defined by tensoring the old embeddings

ϕn ⊗ ψn(A) = ϕn ⊗ ψn([Ai,i′ ]
kn
i,i′=1) = (ϕn ⊗ Ijn+1)([ψn(Ai,i′)]

kn
i,i′=1).

Note that the ψn are ∗-extendable to all of Mjn , meaning that ψn is the restriction of a
unital C∗-embedding from Mjn into Mjn+1 , which is used when i < i′ in the block matrix.
Therefore,

Tϕ⊗ψ = ∪∞n=1Tknjn ) ∪∞n=1Tkn ⊗ Tjn = Tϕ ⊗ Tψ.
The new TUHF algebra is thus strictly bigger than the tensor product of the two previous
algebras, but it inherits the automorphic structure of the two. It should be noted that this
tensor operation is not commutative. That is, Tϕ⊗ψ and Tψ⊗ϕ need not be isomorphic.

This new embedding gives thatM(Tϕ⊗ψ) = M(Tϕ)×M(Tψ) with the order ((x1, x2), (y1, y2)) ∈
R(Tϕ⊗ψ) if and only if (x1, y1) ∈ R(Tϕ) and (x2, y2) ∈ R(Tψ) if x1 = y1.

In the following, G⊕∞ refers to the infinite direct sum of a group G, a subgroup of the
infinite direct product where elements are infinite tuples with all but a finite number of
entries equal to the identity.

Theorem 3.4.1. Let Tϕ and Tψ be regular TUHF algebras then

Aut(Tψ)⊕∞ o Aut(Tϕ) ⊆ Aut(Tϕ⊗ψ).

Proof. Clearly Aut(Tϕ) ↪→ Aut(Tϕ⊗ψ) since if θ is an order preserving homeomorphism of
M(Tϕ) then θ× id is an order preserving homeomorphism of M(Tϕ⊗ψ) = M(Tϕ)×M(Tψ);
and so by Theorem 3.2.1 we get an induced automorphism on Tϕ⊗ψ. The same argument
works for the embedding Aut(Tψ) ↪→ Aut(Tϕ⊗ψ) as well.
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Moreover, we see that if X ⊂ M(Tϕ) is a clopen subset and θ is an order preserving
homeomorphism of M(Tψ) then

idX ×θ + idXC × id

is an also order preserving homeomorphism of M(Tϕ⊗ψ). Since clopen subsets of M(Tϕ)
are in bijective correspondence with the projections of Tϕ then for each n ≥ 1 we see that

idX1 ×θ1 + · · ·+ idXkn ×θkn
is an order preserving homeomorphism where Xj is the clopen subset associated with

e
(kn)
j ∈ Tkn and θj is an order preserving homeomorphism on M(Tψ). Thus, Aut(Tψ)kn ↪→

Aut(Tϕ⊗ψ).

Therefore, we have that lim−→Aut(Tψ)⊕kn ⊂ Aut(Tϕ⊗ψ) where the direct limit has the

following injective homomorphisms: ϕ̃n : Aut(Tψ)⊕kn → Aut(Tψ)⊕kn+1 where

ϕ̃n(γ1, · · · , γkn) = (γi1 , γi2 , · · · , γikn+1
),

with e
(kn+1)
j ≤ ϕn(e

(kn)
ij

), for 1 ≤ j ≤ kn+1. Note that the direct limit lim−→Aut(Tψ)⊕kn is

equal to the infinite direct sum Aut(Tψ)⊕∞.

Finally, we need to describe the action of Aut(Tϕ) on the direct limit. Taking θ and γ
as order preserving homeomorphisms in M(Tψ) and M(Tϕ) respectively, and X clopen in
M(Tϕ) we get that

(γ × id) ◦ (idX ×θ + idXC × id) ◦ (γ−1 × id) = idγ(X)×θ + idγ(X)C × id .

Therefore, Aut(Tψ)⊕∞ o Aut(Tϕ) ⊆ Aut(Tϕ⊗ψ).

Corollary 3.4.2. Out(Tψ)⊕∞ oOut(Tϕ) ⊆ Out(Tϕ⊗ψ)

Proof. By Theorem 3.2.6 the outer automorphisms of both Tϕ and Tψ are well defined
subgroups given by those automorphisms which are regular embeddings when restricted to
a finite level. This property is clearly preserved in the proof of the last theorem and so the
result follows.

This implies that there are non-abelian outer automorphism groups. However, these
groups may not be equal as in the following example:

Example 3.4.3. Let Tϕ be the standard embedding algebra for 2∞ and Tψ be the nest em-
bedding algebra for 2∞. Then Tϕ⊗ψ is the alternating algebra for 2∞. Hence, Out(Tϕ⊗ψ) =
Z 6= {0} = Out(Tψ)⊕∞ oOut(Tϕ).
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3.5 Dilation theory

All the definitions in this last section come from the paper of Davidson and Katsoulis [26].
An operator algebra A is said to be semi-Dirichlet if A∗A ⊂ A+A∗ when A is considered
as a subspace of its C∗-envelope. Moreover, a unital operator algebra A is Dirichlet if
A+A∗ is norm dense in its C∗-envelope, C∗e (A).

Lemma 3.5.1. Triangular UHF algebras are Dirichlet.

Proof. For a TUHF algebra Tϕ we have the much stronger condition that Aϕ = Tϕ + T ∗ϕ .
Therefore, because the UHF algebra is simple we immediately get the desired result.

A unital operator algebra A is said to have the Fuglede property if for every faithful
unital ∗-representation π of C∗e (A) we have π(A)′ = π(C∗e (A))′.

Lemma 3.5.2. Triangular UHF algebras have the Fuglede property.

Proof. Suppose π is a faithful unital ∗-representation of C∗e (Tϕ) = ∪knMkn . Then π(Tkn)′ =
π(Mkn)′ and so π(Tϕ)′ = π(C∗e (Tϕ))′.

An operator algebra A has isometric commutant lifting (ICLT) if whenever there is a
completely contractive representation ρ : A → B(H) commuting with a contraction X,
there is a coextension σ of ρ and an isometric coextension V of X on a common Hilbert
space K so that σ(A) and V commute.

Proposition 3.5.3. Triangular UHF algebras have isometric commutant lifting.

Proof. Let ρ be a contractive representation of Tϕ on H commuting with a contraction X.
Without loss of generality assume that ρ is also unital. Now ρ is completely contractive
when restricted to any Tkn and thus on a dense set of Tϕ. Hence, ρ is a completely
contractive representation. By Arveson’s Extension Theorem and Stinespring’s Dilation
Theorem there is a ∗-homomorphism π and an isometry V : H → K such that ρ(a) =
V ∗π(a)V, ∀a ∈ Tϕ. This argument was given by Paulsen and Power in [51] but can also be
found in [23].

For each n ≥ 1 we know that X commutes with ρ(Tkn) and so by [23, Corollary 20.23]
there is an operator Yn on K commuting with π|Mkn

such that ‖Yn‖ = ‖X‖ and

P (H)Y m
n π(A)|H = Xmρ(A), ∀m ≥ 0, A ∈ Tkn .
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Since all the Yn are bounded by ‖X‖ ≤ 1 there is a subsequence converging in the weak
operator topology to Y ∈ B(K) which clearly commutes with π. Now, dilate Y to a lower
triangular unitary V on K(∞) which commutes with π(∞) because π commutes with Y ∗ as
well. Thus, by restricting to the coextension part of the dilation we see that we have a
coextension of ρ which commutes with an isometric coextension of X. Therefore, Tϕ has
property ICLT.

Let ρ be a representation of a unital operator algebra A. Then a coextension σ of ρ is
called fully extremal if whenever π is a dilation of σ which is also a coextension of ρ then
π is just a direct sum, π = σ ⊕ σ′.

Definition 3.5.4. A unital operator algebra A has the Ando property if whenever ρ is
a representation of A and X is a contraction commuting with ρ(A), then there is a fully
extremal coextension σ of ρ commuting with an isometric coextension of X.

Theorem 3.5.5. Triangular UHF algebras have the Ando property.

Proof. The following commutant lifting properties are all listed in [26] and will not be
defined as they only are used as stepping stones in the proof below.

[26, Corollary 7.4] gives that ICLT implies MCLT and [26, Corollary 5.18] gives that
being Dirichlet and having MCLT implies CLT and CLT∗. Lastly, by [26, Corollary 9.12]
having the Fuglede property, CLT and CLT∗ implies that triangular UHF algebras have
the Ando property.

If A is an operator algebra and θ is an automorphism, the semicrossed product is the
operator algebra

A×θ Z+

that encapsulates the dynamical system (A, θ). This first occurs in the work of Arveson [8]
with a more modern treatment given by [47]. In particular, this is the universal operator
algebra generated by all covariant representations (ρ, T ) where ρ is a completely contractive
representation of A and a contraction T such that

ρ(a)T = Tρ(θ(a)), ∀a ∈ A.

The following corollary says that the C∗-envelope of a semicrossed product of a TUHF
algebra with an automorphism is in fact a full crossed product algebra.

Corollary 3.5.6. Let Tϕ be a TUHF algebra and θ ∈ Aut(Tϕ) then

C∗e (Tϕ ×θ Z+) = C∗e (Tϕ)×θ Z = Aϕ ×θ Z.
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Proof. By [26, Theorem 12.3] if θ is an isometric automorphism of Tϕ then because TUHF
algebras have the Ando property C∗e (Tϕ×θZ+) = C∗e (Tϕ)×θZ. Lastly, recall that Ce(Tϕ) '
Aϕ.

We end with the following example:

Example 3.5.7. Suppose Tϕ is a TUHF algebra with the 2∞ alternating embedding and
consider the shift automorphism θ2. Now Tϕ is a non-selfadjoint subalgebra of the CAR
algebra, M2∞ =

⊗∞
−∞M2. In this form θ2 extends to the so called Bernoulli shift on the

CAR algebra, taking a tensor in
⊗∞
−∞M2 and shifting it to the right.

Bratteli, Kishimoto, Rørdam and Størmer show in [16] that

M2∞ ×θ2 Z ' lim−→M4n ⊗ C(T),

a limit circle algebra with embeddings being two copies of the twice-around embedding.
Moreover, this AT algebra is isomorphic to M2∞ ⊗ B where B = lim−→M2n ⊗ C(T) is

the Bunce-Deddens algebra [18]. Many thanks to Mikael Rørdam for pointing this last
isomorphism out. Among other things, this implies that the crossed product is a unital
simple C∗-algebra which falls into Elliott’s classification.

Therefore, by the above Corollary:

C∗e (Tϕ ×θ2 Z+) 'M2∞ ⊗B.

This leads to the question of whether the semicrossed product is itself isomorphic to a
“nice” subalgebra of M2∞⊗B, for instance a tensor of two non-selfadjoint operator algebras
sitting in the CAR algebra and the Bunce-Deddens algebra.
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[45] E. T. A. Kakariadis, The Šilov boundary for operator spaces, Int. Eq. Op. Th., to
appear.

[46] E. T. A. Kakariadis, The Dirichlet property for tensor algebras, preprint,
arXiv:1301.3167 [math.OA].

[47] E. T. A. Kakariadis and E. Katsoulis, Semicrossed products of operator algebras and
their C∗-envelopes, J. Func. Anal. 262 (2012), no. 7 3108-3124.

[48] M. Kerr, O. Shalit, and J. McCarthy, On the isomorphism question for complete Pick
multiplier algebras, preprint, arXiv:1211.1116 [math.OA].

[49] J. Kollár, Sharp effective Nullstellensatz, J. Amer. Math. Soc. 1 (1988), 963–975.

[50] D. Mumford, Algebraic Geometry I - Complex Projective Varieties, Springer Verlag,
New York, 1976.

[51] V. Paulsen and S. Power, Lifting theorems for nest algebras, J. Op. Th. 20 (1988),
311–327.

[52] G. Popescu, Isometric dilations for infinite sequences of noncommuting operators,
Trans. Amer. Math. Soc. 316 (1989), 51–71.

[53] G. Popescu, Von Neumann inequality for (B(H)n)1, Math. Scand. 68 (1991), 292–304.

[54] G. Popescu, Poisson transforms on some C*-algebras generated by isometries, J.
Funct. Anal. 161 (1999), no. 1, 27–61.

84



[55] G. Popescu, Operator Theory on Noncommutative Domains, Mem. Amer. Math. Soc.
205 (2010), no. 9.

[56] G. Popescu, Free holomorphic automorphisms of the unit ball of B(H)n, J. Reine
Angew. Math. 638 (2010), 119–168.

[57] S. Power, Limit algebras: an introduction to subalgebras of C∗-algebras, Pitman Re-
search Notes in Mathematics 278, Longman Scientific & Technical, 1992.

[58] S. Power, On the outer automorphism groups of triangular limit algebras, J. Func.
Anal. 113 (1993), 462–471.

[59] C. Ramsey, Automorphisms and dilation theory of triangular UHF algebras, Int. Eq.
Op. Th., to appear.

[60] C. J. Read, A large weak operator closure for the algebra generated by two isometries,
J. Operator Theory 54 (2005), 305–316.

[61] W. Rudin, Function Theory in Polydiscs, W.A. Benjamin, New York, 1969.

[62] W. Rudin, Function Theory in the Unit Ball of Cn, Springer-Verlag, 1980.

[63] O. M. Shalit and B. Solel, Subproduct systems, Doc. Math. 14 (2009), 801–868.
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