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Abstract 

Model discrimination deals with situations where there are several candidate models 

available to represent a system.  The objective is to find the “best” model among rival models 

with respect to prediction of system behavior.  Empirical and mechanistic models are two 

important categories of models. Mechanistic models are developed based on physical 

mechanisms. These types of models can be applied for prediction purposes, but they are also 

developed to gain improved understanding of the underlying physical mechanism or to 

estimate physico-chemical parameters of interest. When model discrimination is applied to 

mechanistic models, the main goal is typically to determine the “correct” underlying physical 

mechanism. This study focuses on mechanistic models and presents a model discrimination 

procedure which is applicable to mechanistic models for the purpose of studying the underlying 

physical mechanism.  

Obtaining the data needed from the real system is one of the challenges particularly in 

applications where experiments are expensive or time consuming. Therefore, it is beneficial to 

get the maximum information possible from the real system using the least possible number of 

experiments.  

In this research a new approach to model discrimination is presented that takes advantage of 

Monte Carlo (MC) methods.  It combines a design of experiments (DOE) method with an 

adaptation of MC model selection methods to obtain a sequential Bayesian Markov Chain 

Monte Carlo model discrimination framework which is general and usable for a wide range of 

model discrimination problems.  
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The procedure has been applied to chemical engineering case studies and the promising results 

have been discussed.  Four case studies, order of reaction, rate of FeIII formation, 

copolymerization, and RAFT polymerization, are presented in this study.  

The first three benchmark problems allowed us to refine the proposed approach. Moreover, 

applying the Sequential Bayesian Monte Carlo model discrimination framework in the RAFT 

problem made a contribution to the polymer community by recommending analysis an 

approach to selecting the correct mechanism.   
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Chapter 1 

Introduction, Motivation and Research Objectives 

1.1 Introduction to the Problem of Model Selection 

The objective of model discrimination techniques is to select the “best model” among rival 

candidate models.  The model discrimination problem could be interpreted as a regression 

problem in variable dimension space.  The variability in dimension is caused by the different 

number of parameters in the rival models.  

Suppose K models are proposed to describe a process and there are N measurements available.  

The rival models have the format shown in equation (1.1) 

 yki = fk(xi, θk) + εki    
k = 1,2, … , K
i = 1,2, … , N

   (1.1)  

where  K is the number of rival models, N the number of observations, θk the vector of 

parameters in the kth model, xi the vector of input variables at the ith experimental trial, εki is 

the error  in the ith observation and the kth model, and finally yki the vector of output values of 

the kth model at the ith experimental trial.  

“Model averaging” is another common term used in the literature (Wasserman, 2000). The 

goal of model averaging methods is to come up with a predictor for the real system. This 

predictor is a weighted combination of candidate models when several models have been 

proposed. To clarify, a model discrimination method selects just one of the K rival models; 

but, a model averaging method leads to a predictor like equation (1.2), where the wk values 

are weights assigned to each rival model.  
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 y(x) =∑wk

K

k=1

fk(x)   (1.2)  

In Bayesian model averaging methods, wk is the final probability of each model to be the 

“correct” one.  

This research is focused on model discrimination, not model averaging, however the main idea 

of some of the methods discussed are common between model discrimination and model 

averaging methods. Thus, the reader may find them under the category of model averaging in 

the literature.  

For the purpose of model selection, the same input condition is applied to all the rival models 

and the real system, and then their outputs are compared to find which model can predict the 

real system better. Sufficient input conditions should be tested to provide enough evidence for 

selecting one of the rival models as the best one (see Figure 1-1). 

 

Figure 1-1:  Model selection process 

Model discrimination methods may be categorized in different ways.  In this research, they are 

classified as sequential or non-sequential approaches, that is, those that include an 

experimental design step and those that do not.  In non-sequential methods, all the available 

observed data from the real system are input to the analysis algorithm, and then the “best” 
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model is selected, using an appropriate criterion, from the candidate set of models.  No 

additional experiments are designed or used to augment the initial data set.  We refer to this 

procedure as model selection analysis. On the other hand, in the sequential methods, an 

experimental design technique is used in conjunction with the model selection method.  In this 

approach, the model discrimination process has an iterative structure in which experiments are 

designed, carried out, and added to the existing data. Then an analysis is performed to see if 

the “best” model can be identified.  If the “best” model can be selected, the process stops.  If 

not, the next iteration will start. The schematic structure of the sequential model discrimination 

procedure is shown in Figure 1-2. 

 

 

Figure 1-2:  Sequential model discrimination scheme 

   Gathering information from the real system, for example in the case of modeling chemical 

or industrial systems, could be expensive and time consuming.  Consequently, it is highly 

desirable to get the maximum amount of information from the minimum number of 
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experiments.  This is the goal of sequential model discrimination techniques in which 

experiments are designed to provide the maximum possible information with respect to 

discrimination between the models.  

Furthermore, modeling is used for two major purposes.  In the first one, finding a model that 

can predict the real system behavior is desired.  These models are often used for prediction 

purposes in process control and optimization applications.  Therefore, the model structure is 

not important; hence, empirical models such as response surface models, neural networks, 

fuzzy models and other statistical models can be used.   

On the other hand, there are mechanistic models, which are developed based on physical-

chemical mechanisms.  These types of models can also be applied for prediction purposes but 

are most often developed to gain improved understanding of the underlying physical 

mechanism or to estimate physico-chemical parameters of interest.   

In particular, we are interested in determining chemical reaction mechanisms.  Therefore, we 

deal with mechanistic models, which generally have more complicated structures in 

comparison to empirical models and in particular are usually nonlinear in the parameters.  

Markov Chain Monte Carlo (MCMC) methods (Gilks et al., 1996) have been used in the 

proposed framework to overcome the need for model linearization which is required in most 

sequential model discrimination methods found in the chemical engineering literature, for 

example (Buzzi-Ferraris and Forzatti, 1984; 1990; Buzzi-Ferraris et al., 1983; Reilly, 1970). 

The usage of Markov Chain Monte Carlo (MCMC) techniques in model selection has become 

popular in the literature (Godsill, 2001) as a solution for model discrimination.   
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To be clear, in this research the term model selection refers to the mathematical process of 

selecting a model from a candidate set, given data. The term model discrimination on the other 

hand indicates a sequential, iterative process, which includes experimental design and model 

selection.   

In this research, a new model discrimination framework will be introduced, the novelty of 

which is that we combine a well-known model discrimination experimental design procedure 

with MCMC marginalization likelihood model selection methods, thus yielding a general 

Bayesian sequential framework of great value to practicing engineers and scientists. Three 

different implementations of this framework will be explained and applied to case studies. 

1.2 Motivation 

Burke et al. (1994, 1996, 1997) compared three different procedures for model discrimination 

in free radical copolymerization reactions.  One of the methods used was the method developed 

by Hsiang and Reilly (HR) (1971), which was not found to work as well as the other two 

methods investigated.  Of the three methods, HR was the only method that does not rely on 

linearizing the model of the system under investigation.  The copolymerization systems were 

nonlinear. Therefore, the HR method was expected to perform somewhat better than methods 

that relied on a linearization of the models.   One possible explanation for the poor performance 

of the method might be related to the awkward way in which the posterior parameter 

distribution had been handled, namely as an array of discrete values.  This could pose a serious 

problem.  A much better method of handling the posterior parameter probability distribution 

would be to use Monte Carlo methods for sampling the distribution.  This somewhat puzzling 

result forms in part the motivation for this project. 
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1.3 Research Objectives 

Based on the research motivation and with information from the literature review, the 

following research objectives were identified: 

 The development of a Bayesian Monte Carlo-based model discrimination framework, 

which incorporates both an experimental design step and an analysis step.    

 Applying the proposed model discrimination method to free radical co-polymerization 

as a benchmark case study and finding the reason why the Hsiang-Reilly method did 

not discriminate between the candidate models in a research previously conducted by 

Burke (1994).  

 Applying the Bayesian MCMC model discrimination method to rival Reversible 

Addition−Fragmentation chain-transfer (RAFT) polymerization models, which is a 

new application. 

 

This thesis consists of six chapters. In Chapter 2, Markov Chain Monte Carlo (MCMC) 

techniques are reviewed. Chapter 3 contains a literature review and classification of model 

discrimination methods. Our proposed framework is presented in Chapter 4. Case studies are 

presented in Chapter 5 and finally Chapter 6 contains conclusions and recommendations for 

future work.    

In this thesis, all symbols are defined upon their first usage and those that are used more 

frequency are also listed in the nomenclature section which precedes this chapter. 
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Chapter 2 

Markov Chain Monte Carlo (MCMC) Techniques 

2.1 Introduction 

The Monte Carlo methods have two major applications (Hammersley et al., 1965). In the first 

application, used in the simulation of stochastic physical process, random values are usually 

generated from a well-known distribution to represent a stochastic event in the system; then, 

using the stochastic and other variables, the system is simulated. The resulting output values 

from the simulation are random variables due to the randomness in the input variables. 

Properties of the output variables distributions could be used in studying the behavior of the 

stochastic system. Some examples of this type of Monte Carlo applications in Chemical 

Engineering can be found in Tamir (1998). 

The second application of Monte Carlo methods is in the estimation of integrals. The 

integration operation appears in different Bayesian statistical calculations, including 

calculation of the normalizing constant in the posterior probability, the marginal distributions 

and expectation estimations with respect to a distribution (Brooks, 1998). 

The term Markov chain refers to a sequence of random events such that any state depends only 

on the last state in the chain. Markov Chain Monte Carlo algorithms (MCMC) are techniques 

which generate Markov chains converging to the desired distributions when it is impossible to 

sample directly from the target distribution. Thus, MCMC methods make it possible to estimate 

the quantities of interest using the sampled values from the target distribution. Consequently, 

they may be used as a numerical solution for the problem of estimating integrals which occur 

in Bayesian calculations. 
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In most of the solutions to the problem of model selection, it is desirable to estimate the 

marginal likelihood of the model by integrating out the model parameters which is the 

normalizing constant of the posterior distribution. For the purpose of estimating this integral, 

different MCMC methods have been proposed in the literature. MCMC model selection 

methods will be reviewed in the next chapter. They all contain a step for sampling from a target 

distribution using an MCMC method. Thus a review of MCMC methods is presented in this 

chapter as a prerequisite for the studying of MCMC Model discrimination methods.  

2.2 MCMC Terminology and Definitions 

This section introduces the basic concepts needed to explain different MCMC methods. As 

mentioned earlier, a Markov chain is a sequence of random variables, {x0, x1, x2, … }, such that 

at each time step t ≥ 0, the next state xt+1 is sampled from a distribution P(xt+1|xt). Thus any 

state depends only on the last state. P(xt+1|xt) is called a transition kernel, which is assumed 

to be time independent; thus, the chain is time-homogenous. 

Considering a chain of S states, the transition matrix of S states in a [(S + 1)  ×  (S + 1)] 

matrix, is defined by equation (2.1). 

 𝐏𝐓𝐫𝐚𝐧𝐬 = [

pr00 pr01
pr10 pr11

… pr0S
… pr1S

… …
prS0 prS1

… …
… prSS

] (2.1)  

where prij denotes the transition probability Pr(Xt+1 = j |Xt = i), which is independent of 

time t. Notice that prij values are probabilities, thus, they need to satisfy the equality (2.2). 
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 prij ≥ 0 ,         ∑prij

S

j=0

= 1 (2.2)  

Under certain conditions which will be defined later, the MCMC chain will converge to its 

stationary distribution also called invariant distribution. 

The Ergodic theorem (Gilks et al. 1996) guarantees the convergence of chains to the target 

distribution. To describe the required assumptions, recurrent, nonnull, and irreducible 

properties will now first be defined. 

Starting from any state, if a Markov chain definitely re-enters the same state, the chain is called 

recurrent; otherwise, it is called transient. Also, a recurrent chain is called nonnull if its 

expected time to return to any state is finite, and null if it is infinite. When any set of states can 

be reached from any other state in finite moves, the related Markov process is called 

irreducible; otherwise, it is reducible. Finally, state i is called periodic if equation (2.3) is true. 

 gcd{t: Prii
t > 0} = d(i)       d(i) > 1 (2.3)  

The gcd abbreviation stands for greatest common divisor and  prii
t  denotes the probability that, 

starting from state i, the process re-enters state i after t steps. In contrast, when d(i) = 1, the 

state is called aperiodic. When all the states in a chain are aperiodic, the chain is called 

aperiodic. 

A Markov chain is called ergodic if it is recurrent nonnull, aperiodic and irreducible. The 

Ergodic theorem states that an ergodic Markov chain has a limiting or stationary distribution. 

According to this theorem, equation (2.4) is true for an ergodic Markov Chain.  

 Qj = ∑ lim
n→∞

𝑆

𝑖=1
prij

(n)
 (2.4)  
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where Qj shows the stationary probability of state j. In equation (2.4) the summation is over all 

possible states i. In the proof of the ergodic theorem, aperiodic and recurrent nonnull implies 

the existence of a limiting distribution, while irreducibility implies the uniqueness of its 

independence on the initial distribution. 

A Markov chain is called reversible if there is a distribution π such that: 

 πi  P(xt+1 = j|xt = i) =  πj P(xt+1 = i|xt = j) (2.5)  

The detailed balance condition determines the stationary distribution. It indicates that, under 

the reversibility condition, distribution Q is the stationary distribution of the Markov chain. 

The reversibility condition is a sufficient condition for the convergence of the Markov chain 

to the stationary distribution but it is not necessary. In other words, it is stronger than the 

required condition Tierney (1998). 

The regularity condition that guarantees convergence to the desired stationary distribution is 

that the Markov chain must be irreducible, aperiodic, and positive recurrent.  Irreducibility 

ensures that a Markov chain, offer some iterations, can reach any non-empty set with a positive 

probability from any initial starting points.  Aperiodicity stops the Markov chain from 

oscillating between different sets of states in a regular periodic movement.  Lastly, positive 

recurrency ensures that all subsequent samples will be distributed as a stationary distribution 

once a previous point is sampled from it.  Generally, these conditions are easily met in most 

MCMC problems.  The mathematical details about these conditions can be found in Chib and 

Greenberg (1995). 
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Ordering methods are used to pick the suitable Markov chain among those that have the same 

stationary distribution. In addition they are used to develop new efficient methods. Mira  

(2001) reviewed the ordering methods on the space of Markov chains.   

Two main criteria used to evaluate the performance of the transition matrix used for MCMC 

simulation are the asymptotic variance (AV) of the resulting estimates and the speed of 

convergence (SC) to stationary distribution (Mira, 2001). The asymptotic variance represents 

the accuracy of  μ̂n =
1

n
∑ g(Xi)
n
i=1  as an estimate of μ = Eqg(X) when Xi are MCMC samples 

from the π(x) distribution and E(. ) shows the expectation value over q. 

2.3 Sampling Methods 

Assume that the objective is sampling values from the distribution π(x) and it is desired to 

generate a chain, {xi}, with Nsample samples from this distribution.  In most applications, 

π(x) has a complex structure and it is not easy to sample from it directly.  In the following 

sections, we review briefly the MCMC sampling methods which we have used during different 

phases of this project or which are used in the methods presented by others referred to in this 

research. In all these methods, Markov chain samples are generated that converge to the target 

distribution.  

2.3.1 Rejection Method 

Let’s assume that Q(x) < Mg(x)  where  M > 1. Thus g(x)  is an upper limit of Q(x) and it is 

a distribution which we know how to sample from. In the rejection method (Karandikar, 2006), 

a candidate sample Y is drawn from g(x) and this candidate value will be accepted if  R <

Q(Y)

M g(Y)
, where R is independently generated from U(0,1). If Y is not accepted, a new sample 
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should be generated from g(x). The efficiency of this algorithm is determined by how close 

the proposal distribution Mg(x) is to Q(x). For example, in the diagram shown in Figure 2-1, 

the candidate point x1, will be accepted with a probability equal to a/b, but this probability is 

c/d, which is higher, for point x2.  Algorithm 2.1 shows the steps in the rejection sampling 

method. 

 

Figure 2-1:  Acceptance-Rejection sampling 

 

 Algorithm 2.1:   Rejection sampling method  

 

Input:     Proposal distribution and M such that: Q(x) < Mg(x)  

Initialize x0 

 for i=0… Nsample − 1 

   Sample Y ∈ g(Y) 

   Sample R ∈ U(0,1) 

    if R <
Q(Y)

M g(Y)
 then 

       xi+1 = Y 

    else 

       Sample  a new Y 
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2.3.2 Gibbs Method 

The Gibbs sampler generates samples from a multi-dimensional target distribution by sampling 

from conditional distributions, so this property is beneficial in cases where it is easier to sample 

from the conditional distributions than from the joint distribution.  Conditional distributions 

are often known in statistical models or can be obtained by assuming other variables in the 

joint distribution fixed.    

To describe the Gibbs sampling method (Spiegelhalter et al., 1994), suppose that x is 

partitioned into r blocks:  x = (x1, … , xr).  Let xt = (x1
t , … , xr

t) denote the current state of x.  

Then in the next step of the Gibbs iterations, xt+1 will be generated block by block from the 

conditional distribution of that block, updating the x value for block 1 to the current one and 

keeping the last iteration value for the current block as the final block. This method is presented 

in algorithm 2.2. 

The Gibbs approach does not include a method for drawing samples from the full conditional 

distributions.  In cases where Q(xi|x−i) has a standard distribution, like the normal distribution, 

some methods can be found in the literature (Robert and Casella, 1999; Tanner, 1991) to 

generate samples.  Another possible solution involves picking a conjugate prior which 

combines with the likelihood, produces a standard distribution for the posterior, and the last 

solution involves using other methods like Metropolis-Hastings (Metropolis et al., 1953; 

Hastings, 1970) for sampling from the full conditional distribution, Q(xi|x−i). 
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 Algorithm 2.2:   Gibbs sampling method  

 Input: 

 r : dimension of x 

Q(xi|x−i): conditional distribution 

 

 Initialize x0 

 for t =0… Nsample-1 

      for i=1 … r 

          sample xi
t+1 from Q(xi|x−i) where  x−i = x1, x2, … , xi−1, xi+1, … , xr 

 

where Q(xi|x−i) shows conditional distribution. 

2.3.3 Metropolis-Hastings Method 

The Metropolis-Hastings (MH) algorithm (see algorithm 2.3), was introduced by Metropolis 

and Rosenbluth (1953), to numerically estimate integrals in computing properties of interacting 

individual molecules.  Later, Hastings (1970) generalized this technique as an easily 

implemented procedure for sampling from distributions. 

At time t, the MH algorithm generates a sample from the target distribution  Q(x) by sampling 

a candidate point Y for the next sample xt+1  from a proposal distribution q(. |xt), from which 

it is known how to sample.  Then it applies a criterion to keep or reject the candidate point.  

Note, that the proposal distribution may depend on the current point xt.  The candidate point 

Y is accepted with probability α(xt, Y), which is defined in equation (2.6).  
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 α(x, Y) = min (1,
Q(Y)q(x|Y)

Q(x)q(Y|x)
)  (2.6)  

 The min operator in this equation represents the selection of the minimum between 1 and   

Q(Y)q(x|Y)
Q(x)q(Y|x) . So, if 

Q(Y)q(x|Y)
Q(x)q(Y|x) is greater than 1, the candidate point is accepted. Otherwise, it will 

be accepted with α probability defined in equation (2.6).  

If the candidate point is accepted, the next state becomes xt+1 = Y.  If the candidate is rejected, 

the chain does not move so xt+1 = xt.   

 Algorithm 2.3:   Metropolis-Hastings Method  

  Initialize x0 

 for t =0… Nsample-1 

   sample 𝐘 ∈ q(Y|xt) 

   calculate 𝛂(xt, Y) = min(1,
Q(Y)q(xt|Y)

Q(xt)q(Y|xt)
)  

xt+1 = Y 

if 𝛂(xt, Y) < 1 

   sample 𝐑 ∈ U(0,1) 

   if 𝐑 >  α(xt, Y) 

      xt+1 = xt     

 

As mentioned, the sufficient condition to generate samples from a desired distribution by using 

a transition kernel ΡTrans(x, Y) is satisfaction of the reversibility condition shown in equation 

(2.5). Using the acceptance probability α(x, y) shown in equation (2.6), with a proposal 
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distribution q(. |xt) in the MH algorithm, guarantees that the reversibility condition is satisfied, 

as shown in equation (2.7) (Chib and Greenberg, 1995). 

 Q(x)q(x, y)α(x, y) =  Q(y)q(y, x)α(y, x) (2.7)  

where x and y are two states in the sampling space. Note that the transition probability for state 

x to y is PTrans(y|x) = q(y|x)α(y|x). However, this form of acceptance probability is not the 

only one which causes an ergodic chain (Brooks, 1998), although Peskun (1973) shows that 

this form is optimal relative to the asymptotic variance (defined in section 2.2).  

The proposal distribution  q(. |x) can be selected from a number of different standard 

distributions.  For instance, q(. |x) might be a multivariate normal distribution with mean x 

given by the current state x and constant covariance matrix Σ.   However, the rate of 

convergence to the stationary distribution will depend crucially on the relationship between 

q(. |. ) and π(x).  The closer the proposal distribution is to the target distribution the faster the 

convergence will be (Mira and Sargent, 2000).    

The original Metropolis algorithm (Metropolis and Rosenbluth, 1953) considers only 

symmetric proposals having the form q(Y|x) = q(x|Y) for all x and Y . In this case, the 

acceptance probability becomes  

 α(x, Y) = min (1,
π(Y)

π(x)
). (2.8)  

2.3.4 Random Walk Metropolis-Hastings (RWMH) Method 

Another special case of the Metropolis algorithm is the random-walk Metropolis (Gilks et al., 

1996), for which q(Y|x) = q(Y − x) =  q(x − Y), the acceptance probability related to this 

symmetric proposal distribution, is same as equation (2.8).  Therefore, the increment random 
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variable z is drawn from the walking distribution, q, and then the candidate point Y is 

determined according to Y=x+z.  Algorithm 2.4 shows the steps of random walk MH.  

 Algorithm 2.4:  Random Walk Metropolis-Hastings Method  

 Initialize x0  

for t = 0… Nsample-1 

   sample z ∈ q(z) 

   Y = xt + z 

   calculate α(xt, Y) = min (1,
Q(Y)

Q(xt)
)  

xt+1 = Y 

if α(xt, Y) < 1 

   sample R ∈ U(0,1) 

   if R >  α(xt, Y) 

     xt+1 = xt     

 

2.3.5 Independence Sampler Method 

The independence sampler (Liang et al., 2011) is a Metropolis-Hastings algorithm whose 

proposal q(Y|x) = q(Y) does not depend on x. So, the acceptance probability is: 

 α(x, Y) = min (1,
w(Y)

w(x)
)      w(x) =

π(x)
q(x)⁄  (2.9)  

where q(. ) should be a good approximation of π(x). w(x) is also called the importance 

weight function. Samples with large weights have more chance to be accepted or re-selected. 

Thus a very high value for w(x) can make the process stall (Tierney, 1994). 
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2.3.6 Single Component Metropolis Hastings Method 

Single-component Metropolis-Hastings (Gilks et al., 1996) or the one block at a time 

algorithm, divides the multidimensional x to sub-blocks and samples from sub-blocks instead 

of sampling the entire vector simultaneously.  Let  x−i present all of x except xi , xi
t the state 

of xi at the end of iteration t and Yi  the candidate state. So x−i
t = {x1

t+1, … , xi
t+1, xi+1

t , … , xr
t}.  

Then the acceptance probability of Yi , which is a candidate value for xi,t+1, may be shown as 

the following equation: 

 α(x−i,t, xi, Yi) = min(1,
Q(Yi|x−i)qi(xi|Yi, x−i,t)

Q(xi|x−i)qi(Yi|xi, x−i,t)
) (2.10)  

where Q(Yi|x−i) is the full conditional distribution which is the distribution of the ith 

component of x conditional on all the remaining components, where x has the Q(.) distribution. 

 Q(xi|x−i) =  
Q(x)

∫Q(x)dxi
 (2.11)  

After selecting the proposal distribution, picking a suitable set of parameters for that proposal 

distribution influences the sampling process.  For example, in random walk Metropolis, there 

is a tradeoff between the acceptance rate and mixing rate, which can be optimized by the 

proposal distribution parameters. 

The Gibbs sampler may be categorized as a special case of single-component Metropolis-

Hastings and it is particularly useful for generating n-dimensional random vectors with the 

following proposal distribution which leads to an acceptance probability equal to 1.   

 qi(Yi|xi, x−i) = Q(Yi|x−i) (2.12)  
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2.3.7 Acceptance Rejection Metropolis-Hastings (ARMH) Method 

If a proposal distribution, q(x) and a constant c can be found to satisfy the dominant condition:  

  D = {x: Q(x) ≤ c q(x)} (2.13)  

Then samples could be generated from the proposal distribution instead of Q(x). After that, 

these samples should be accepted or rejected using the Q(x)/(c q(x))  as the acceptance rate. 

The dominant condition in equation (2.13) is a key requirement of the classical accept-reject 

sampling method. But in the ARMH method the dominant condition may not be satisfied for 

some x.  Let  be the complement of .  The one-block acceptance-rejection Metropolis-

Hastings algorithm consists of two steps: 

A. Accept-reject step:  

Generate a candidate sample Y~q(x), and then accept Y with probability given by equation 

(2.14):  

  αAR = min {1,
Q(Y)

c q(Y)
} (2.14)  

   Continue sampling until a Y is accepted. 

B. Metropolis step: 

   Given the current value x and the accepted proposed value in step A, Y: 

   If   x ∈ D                                      αMH(x, Y) = 1 

  If    x ∈ Dc  and Y ∈ D               αMH(x, Y) = (c q(x)) Q(x)⁄     

 If    x ∈ Dc  and Y ∈ Dc               αMH(x, Y) = min{1, (Q(x) q(x)) ( Q(Y) q(Y))⁄ } 

Accept Y with probability αMH, otherwise keep x. 

ARMH steps are shown in algorithm 2.4. 

cD D
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 Algorithm 2.4:   Accept – Reject  Metropolis-Hastings Method  

  Initialize x0 

 for t =0… Nsample-1 

   sample Y ∈ q(x) 

   calculate αAR = min (1,
Q(Y)

c×q(Y)
)  

   sample R ∈ U(0,1) 

   if R >  α(xt, Y) 

   sample  new Y 

 xt+1 = Y 

  if  x∉ D 

    if  Y ∈ D      αMH(x, Y) =
c×q(x)

Q(x)
 

    if Y ∈ Dc     αMH(x, Y) = min {1,
Q(x) q(x)

 Q(Y) q(Y)
} 

   sample R ∈ U(0,1) 

    if R >  α(xt, Y)    xt+1 = xt 

 

2.3.8 Random Samples from Discrete Distributions 

Assume that there are r different discrete states and the target is to generate n samples from a 

discrete space. Equation (2.15) shows the discretized space of the states and their probabilities 

by: 

 

Φ = {φ1, φ2, … , φr} 

pr(φi)    i = 1,… , r 
(2.15)  
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To generate random samples, the cumulative probability of the states should be calculated by 

 Ci =∑pr(φj)           i = 1,… , r

i

j=1

 (2.16)  

After that, Nsample uniform random numbers are generated from U(0,1) and for each of these 

values, the first discrete state with a cumulative value less than or equal to the u value is 

selected as one of the selected discrete states.  

One application of sampling from discrete probability distributions is the sampling from model 

indicators, which will be discussed in the next chapter. 

2.4 Adaptive MCMC 

The main challenge in applications of MH method is selecting and tuning the proposal 

distribution in such a way that the sampling procedure will be efficient. Adaptive MCMC 

methods may be categorized as internal and external (Moulines and Priouret, 2010). External 

methods use extra processes which interact with the main process. These types of MCMC 

methods have been proposed more recently in comparison to internal adaptive ones. They offer 

efficient sampling methods from complicated distributions which other methods fail to sample 

efficiently. For instance, the Small-World Chain (SWC)  method (Guan et al., 2006) is a non-

adaptive external method which was introduced to overcome the problem of stalling in one 

mode of a multi-modal distribution by using a mixture of local proposals in MH. The adaptive 

Parallel Tempered (PT) MCMC method is another example of external methods. The PT-

MCMC method has been proposed to overcome the problem of sampling from distributions 

which have low probability regions between high probability areas. This method generates 

samples from some auxiliary distributions in addition to the main one Q, which is also called 



 

 22 

the cool one. The target distributions of these extra chains are Q
1
T⁄ , where T must be positive 

and greater than 1. In addition, according to an acceptance probability, samples sweep between 

different chains. The sweeping steps help to provide samples from areas with low probability, 

since Q
1
T⁄  tempered distributions are more flattened. This method needs some extra tuning 

parameters in comparison to the MCMC method. Thus Adaptive PT MCMC methods 

(Miasojedow et al., 2012) propose the auto-tuning method for the parameters. External 

adaptive MCMC methods have not been used in this research; thus, no more details will be 

discussed. However, this class of methods may be useful for some applications of the proposed 

framework, which deal with distributions with discrete high probability areas, and they could 

be used to make the proposed package more general. The other category of adaptive methods 

is internal adaptive methods. These methods use the history of the chain to tune parameters in 

the process.  

Roberts and Rosenthal (2001) presented the scaling method that tries to adapt to the target 

distribution. To preserve the ergodicity property Gilks et al. (1998)  performed adaptation only 

at the time of recurrence to an atom. They defined a proper atom as a subspace of the sampling 

space such that when the chain enters this subspace, it becomes independent of its history.  

Adaptive MH methods have been used in the proposed procedure so they will be explained in 

detail in the following subsections.  

2.4.1 Adaptive MH 

The main challenge in the application of the MH method is the selection and tuning of the 

proposal distribution in such a way that the sampling procedure is efficient. In the following 

section, three adaptive Metropolis Hastings methods will be reviewed. 
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2.4.1.1 Adaptive Proposal (AP) 

Harrio et al. (1999) proposed an Adaptive Proposal (AP) algorithm as an efficient tool for 

reasonably low dimensional problems in random walk MH (RWMH).  The walking 

distribution is tuned by adapting the covariance matrix calculated from a fixed number of 

previous states. This procedure tries to locally adapt the walking distribution to the target 

distribution. In this way, the procedure is kept efficient at all times.   They suggested the 

adaptive proposal distribution shown in equation (2.17). 

 qt(. |X1, … , Xt)~ N(Xt, cd
2Rt) (2.17)  

where d represents the dimension and Rt is the d × d covariance matrix determined from the 

H points Xt−H+1, Xt−H+2, … , Xt and the scaling factor cd, which depends only on the 

dimension d. H is the number of previous states used for tuning the proposal distribution.   K 

is an H × d matrix, where each row represents one sampled point from Xt−H+1, Xt−H+2, … , Xt. 

Then Rt is calculated using equation (2.18). 

 
Rt =

1

H − 1
K̃TK̃ 

K̃ = K − E[K] 

(2.18)  

An easy way to obtain a sample from G: N(Xt, cd
2Rt) is presented in equation (2.19). 

 G ~ Xt + 
cd

√H − 1
K̃TN(0, IH) (2.19)  

The basic choice for cd is 2.4/√d from Gelman et al. (1996). They presented optimal 

acceptance rates for Gaussian target distributions in different dimensions when the proposal 

distribution is also Gaussian.  It is also common to use this optimal acceptance rate for other 
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proposal distributions. Using adaptive approaches, Roberts et al. (1997) proved that the optimal 

acceptance probability is 1/4 as had been suggested earlier by Gelman et al. (1996). 

The proposal distribution can be tuned more easily in single component Metropolis since; we 

get an individual acceptance rate value for each component. However, it is well known that 

this method converges slowly to the target distribution if there are correlations between 

different components.  

Due to the adaptive nature of the AP algorithm, it is neither Markovian nor reversible. But its 

ergodicity and convergence have been proven (Roberts and Rosenthal, 2001). 

2.4.1.2 Adaptive Metropolis Hasting 

Harrio et al (2001) also presented an adaptive MH method (AM), which is an alternative to 

AP.  In it, the proposal distribution is a Gaussian distribution centered at the current state and 

the covariance matrix is updated using all of the previous states.  By comparison, the AP 

method uses a finite number of previous states to update the covariance matrix. They showed 

that the AM method has the ergodicity property.  

The proposal distribution in AM method is N(xt−1, Σt), which is a normal distribution whose 

mean is the last state and the covariance is updated by 

 Σt = {
Σ0 t ≤ t0

cdcov(X0, … , Xt−1) + cd ε Id t > t0
 (2.20)  

where Σ0 is the initial positive definite covariance, cd is a function of dimension d, ε > 0 is a 

constant value, Id is a d-dimensional identity matrix, t0 is an initial period, and  

cov(X0, … , Xt−1) is defined in equation (2.21). 
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 cov(X0, … , Xt−1) =
1

t
(∑xixi

T

t

i=0

− (t + 1)xtxt
T
) (2.21)  

where xk =
1

k+1
∑ xi
k
i=0  and xi are column vectors. 

2.4.1.3 Delayed Rejection Adaptive Metropolis (DRAM) 

Harrio et al. (2006) introduced the DRAM method, which combines the adaptive Metropolis 

sampler and delaying rejection. The ergodicity of this method is proven. Delaying rejection 

(DR) is a way to modify MH according to the asymptotic variance ordering by Peskun (1973). 

The idea is to generate a second or even more samples when the candidate is rejected. The 

probability for accepting the second candidate is dependent both on the rejected candidate and 

the last accepted one.  

2.5 Practical Implementation Issues 

The most important implementation issues regarding Markov Chain generation are the initial 

state x0, length of the chain, burn-in length and its convergence to the stationary point. These 

subjects are discussed briefly in the following sections.   

2.5.1 Initial State  

Subject to regularity conditions, the chain will gradually ‘forget’ its initial state and a chain 

starting from x0, will eventually converge to a unique stationary (or invariant) distribution that 

does not depend on time or x0 (Brooks, 1998).  This means that, after a sufficiently long burn-

in period, points will be independent samples approximately from Q(. ) and the chain 

converges to the stationary distribution.   
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2.5.2 Burn-in Size 

Assume that the chain has been run for n iterations, and the sample points xt where  t =  m +

1, … , n are distributed according to the stationary distribution. Then the first m samples should 

be discarded and the remaining n-m samples can be used to estimate the expectation or the 

point estimate as follows: 

 𝐄[f(x)] ≈
1

n − m
∑ f(xt)

n

t=m+1

 (2.22)  

The number of discarded samples is called the “burn-in” period, and the size of the “burn-in” 

period is a subject of research in MCMC methods.  It is suggested (Geyer, 1992) that the size 

of the “burn-in” period should be between 1% and 2% of n, where n is large enough to obtain 

accurate estimation of the expectation.   

2.5.3 Chain Length 

Besides the initial state and the” burn-in” period, another important issue is the total chain 

length, n.  An informal way of finding n is to run several Markov chains from different starting 

values in parallel; then the estimated expected values are compared.  If the deviation between 

the expected value of chains is high, then the chain length should be increased.   

2.6 Summary 

In this chapter, first the Markov Chain Monte Carlo (MCMC) concept is defined and a review 

of MCMC sampling methods is presented with a focus on adaptive MCMC methods. MCMC 

sampling methods are used in MCMC Bayesian Model selection methods to sample from the 
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parameter probability distributions of the candidate models. Model selection methods will be 

reviewed in the next chapter.  
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Chapter 3 

Model Discrimination 

 

3.1 Introduction 

As mentioned in Chapter 1 and shown in Figure 1-2, page 3, sequential model discrimination 

methods include two main steps: model selection and design of experiments. Different model 

selection methods have been proposed in the literature but there are few sequential model 

discrimination methods. In this chapter, a literature review on the available methods for model 

selection, design of experiments, and sequential model discrimination are provided. 

Model selection methods determine the “best” model out of a set of candidate models to 

represent a real system according to available observed data from the target system. In our 

work we are focusing on choosing the best mechanistic model. Of course there is not any 

guarantee that the “best” model is the “correct” model. The methods usually assign a 

probability to each rival model. These probabilities are actually the probability of being the 

“best” model. Thus when there is not sufficient evidence to support any of the candidate models 

none of them could be used as the model. In other words, more information from the system is 

needed to be able to discriminate or a different candidate model is needed. As shown in Figure 

1-1, the comparison between candidates is based on analysis of the predicted model outputs 

and the real system output under the same input conditions.  

Model selection methods can be classified into two main categories: Bayesian and Non-

Bayesian. Then, Bayesian ones can be categorized as MCMC and non-MCMC. Figure 3-1 

shows the categorization of the model selection methods reviewed during this research. Chib’s 
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method is highlighted in this figure as it is used in our proposed procedure. Chib’s method will 

be explained later in this chapter.  

3.2 Non-Bayesian Methods 

The most common non-Bayesian criterion in model selection is the likelihood ratio, which is 

sometimes called the odds ratio.  The likelihood ratio compares models, two at a time. The 

original format of the likelihood ratio is just appropriate for comparing the probability of a set 

of parameters according to a specific model with another set and model, l(θ1|M1) l(θ2|M2)⁄ . 

But in model selection, we are interested in the likelihood ratio which applies to two rival 

models regardless of their parameters value. One approach for this comparison is usage of the 

maximum likelihood values of each rival model.  For instance, equation (3.1) shows this ratio 

for model 1 with two parameters and model 2 with three parameters.   

 λ12 =

Max
θ1, θ2

l1(θ1, θ2|𝐲)

Max
θ1, θ2,θ3

l2(θ1, θ2,θ3|𝐲)
 (3.1)  

Another example of a non-Bayesian statistical model selection method, was introduced by 

Buzzi-Ferraris and Forzatti (1983), who used an F-test to check the adequacy of single output 

models.  The Buzzi-Ferraris and Forzatti’s method (BFF) was developed later for multi-

response cases by checking model adequacy (Buzzi Ferraris et al., 1984; Buzzi-Ferraris and 

Forzatti, 1990). They applied a  χ2 test with Nr − npark degrees of freedom to the residual sum 

of squares in the kth  model;  the variables r and npark indicate output dimension and the 

number of parameters in the kth model, respectively, and N is the number of experimental data 

points. This method will be explained in more detail in section 3.9.
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Figure 3-1:  Model selection methods classification 
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3.3 Approaches Using the Likelihood of Rival Models 

The two most popular approaches to calculate the likelihood of rival models are 

marginalization likelihood methods and those based on information criteria. Methods based on 

information criteria compare rival models according to their maximum likelihood and they 

penalize the number of parameters. Without a penalty factor, the models with the larger number 

of parameters would fit better the tuning data points, even though the model with the larger 

number of parameters does not necessarily predict the system behavior better. Thus the most 

common format of the information criteria, ℒc,k which has a direct relationship with the 

maximum likelihood and an inverse relation with the number of parameters, is shown in 

equation (3.2).  

 ln ℒc,k = ln ℒk − f(r, n) (3.2)  

where ℒk is the estimated Maximum Likelihood (ML) of candidate model k and ℒc,k is the 

information criterion.  The function f(r, n) is a function of the number of parameters, r, and 

the number of observed data points, n. For instance, in Akaike’s information theory called AIC 

(Akaike, 1987), f(r, n) = r, while in the Bayesian information criteria called BIC (Schwarz, 

1978), fBIC =
1

2
r ln n.  

3.4 Bayesian Methods 

In Bayesian methods, the posterior probability of a hypothesis is proportional to the product of 

the likelihood and the prior probability. In model selection, the hypothesis is that the candidate 

model is the “best” one. Equation (3.3) shows Bayes rule for model selection.  

 P(Mk|𝐲) = L(Mi|𝐲)π(Mk) (3.3)  
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where P(Mk|𝐲) is the posterior probability of the kth candidate model given the observed data 

𝐲, L(Mi|𝐲) is the likelihood function and π(Mk) the prior probability of the model.  The 

likelihood function in a model discrimination problem, L(Mi|𝐲), is independent of the 

parameter values and it is obtained by integrating out the parameter values.  

The marginalization likelihood is another approach to calculating the likelihood of models, 

which has become more popular especially with advances in computing facilities, since it 

needs more extensive numerical calculations when dealing with complex nonlinear models in 

comparison to the information criterion approach. The Marginal likelihood, which is also 

referred to as the “evidence” of each model, is calculated by integrating out the model 

parameters as shown in equation (3.4).  

 L(Mk|𝐲) = ∫ l(θ|Mk, 𝐲)π(θ|Mk)dθ
θ

 (3.4)  

where l(θ|Mk, 𝐲) represents the likelihood of the model Mk and its parameters θ .  The 

function π(θ|Mk) is the prior probability of parameters under model Mk and 𝐲 is the vector of 

all data points. Bayesian model selection methods, which use the marginal likelihood are called 

marginalized methods. Bayesian marginalized model selection methods when applied to 

nested rival models follow a heuristic principle called Occam’s razor.  This principle states 

that “among competing hypotheses favor the simplest one”. Jefferys and Berger (1992) 

illustrated that Bayesian analysis favors the hypothesis with fewer adjustable parameters 

automatically because of their more narrow priors which lead to enhanced posteriors.  
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In this research we focus on marginalization methods for calculation of the L(Mi|𝐲); thus the 

term “marginal likelihood” is sometimes used instead of the more general term “likelihood of 

the rival model”.  

3.5 Model Selection Stopping Criteria 

In addition to the different approaches for calculating L(Mi|𝐲), model selection methods also 

differ in their comparison criteria. The first comparison criterion is to use the normalized 

posterior probability of the models. In this approach, the posterior probabilities of the 

competing models are checked to see if any of them has a probability higher than the selection 

probability criteria, Pselect, which might be set at 95% for example. If the probability of one of 

the candidate models is higher or equal to Pselect, it is selected as the “best model”.  

The second comparison approach is based on comparing models through their Bayes’ factor 

given by equation (3.5).    

 Bij =
P (𝐲𝐧|Mi)

P (𝐲𝐧|Mj)
=
L(Mi|𝐲𝐧)

L(Mj|𝐲𝐧)
 (3.5)  

Odds are defined in statistics as probability (1 − probability)⁄ . Using the definition of the 

Bayes factor when there are only two candidate models, the posterior odds can be defined as 

 Posterior odds = Bij  × Prior odds (3.6)  

If prior probabilities of candidate models are assumed to be equal, then Bij becomes equal to 

the posterior odds. Jeffreys (1961) suggested the following table for interpreting the evidence 

for model i compared to model j.  
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 Bij Evidence for model i 

1 to 3.2 Not worth more than a bare mention 

3.2 to 10 Substantial 

10 to 100 Strong 

>100 Decisive 
 

 
 
 
 
 
 

 

In the proposed framework in this study, the normalized posterior probabilities have been used 

instead of the Bayes’ factor to be able to compare more than two rival models.  

3.6 MCMC Based Model Selection Methods 

Estimation of the marginal likelihood of models is the challenging part of model selection.  In 

what follows we will discuss several specific Bayesian model selection methods that 

incorporate the use of Markov Chain Monte Carlo (MCMC) methods to solve this difficulty. 

MCMC model selection methods may be categorized into those which do not estimate 

marginal likelihoods, and those that do estimate marginal likelihoods directly. 

3.6.1 Model Indicator Sampler Methods 

The first group of MCMC model selection methods adds a random integer auxiliary variable 

to the sampling procedure, which acts as a model indicator variable. After the sampling 

procedure, the ratio of the marginal likelihoods, Bayes’ factor in equation (3.5), is estimated 

from the frequency of the model indicators in the generated samples. 

Carlin and Polson (1991) introduced a model indicator sampler method by adding the model 

indicator variable M, as a random integer number to the Gibbs sampling procedure for model 

discrimination between non-nested models.  Later, Carlin and Chib (1995) developed this 

method more by introducing pseudo-priors and considering model priors as a tool to improve 

the convergence conditions.   



 

 35 

In Carlin and Chib’s method, samples are generated for all the parameters in rival models. 

Having K rival models and npark parameters in each model, each sample in the chain has 

∑ npark
K
k=1 + 1 values. Therefore, samples from θj are generated even when M ≠ j. Because 

of that, linking densities or pseudo-priors are defined to completely specify the joint model 

distribution.  Pseudo-priors, π(θj|M ≠ j), do not participate in the calculation of the marginal 

likelihood, but choosing unsuitable pseudo-priors may cause the procedure to fail.  Carlin and 

Chib used the full conditional distributions shown in equation (3.7) for each set of θj and M. 

 

P(θj|θi≠j, M, 𝐲)  

∝  {
l(θj, M = j|𝐲 )π(θj|M = j)                    M = j

π(θj|M ≠ j)                                                 M ≠ j
 

(3.7)  

Then the conditional distribution for the model indicator is defined by equation (3.8). 

 P(M = j|θ, 𝐲) =  
l(θj, M = j|𝐲 ){∏ π(θi|M = j)K

i=1 }πj

∑ l(θk |M = k, 𝐲 ){∏ π(θi|M = k)K
i=1 }πk

K
k=1

 (3.8)  

In each Gibbs cycle, θj and θi≠j are sampled from the distribution in equation (3.7) and the 

model indicator is obtained by sampling from a discrete model indicator density.  Then the 

joint posterior distribution and Bayesian factor can be estimated by using equations (3.9) and 

(3.10): 

 P(M = j|𝐲) =
number of M(g) = j

total number of M(g)
,          j = 1,… , K (3.9)  

 

 Bij =
L(M = j|𝐲)

LM = i|𝐲)
=
P(Mj|𝐲) πj⁄

P(Mi|𝐲) πi⁄
 (3.10)  

This method can handle discriminating among models that have some common parameters and 

considering those common parameters just one time in the sampling. Thus, if there are common 
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parameters, the number of variables in each sample is less than ∑ npark
K
k=1 + 1. The only 

important thing is that these shared parameters must have exactly the same interpretation in all 

models.  Carlin and Chib (1995) clarified this point in their paper by considering models 1 and 

2 shown in equation (3.11).  Parameter α shows up in both models but it has two different roles 

in these two models; the xi-values are centered far from 0 but the y-values are centered near 0. 

α in the first model is the mean of y-values, but in the second model it represents the intercept. 

 
M = 1         yi = α + εi                    εi~N(0, σ

2)    i = 1,… , N 

M = 2       yi = α + Bxi +  εi        εi~N(0, τ
2)    i = 1,… , N

 (3.11)  

Therefore, α does not have exactly the same role in those two candidate models, although it 

may be seen so at first. Thus two α values should be considered is the sampling procedure.  

Selecting proper linking densities and model priors πj plays an essential role in the 

convergence of the Carlin and Polson’s method (Carlin and Polson, 1991).  In situations where 

p(M = j|𝐲) is extremely large for one of the models, πj should be tuned to make the number 

of samples from each model approximately equal.  

Green (1995) introduced another model indicator sampler method. This method is called 

Reversible Jump Markov Chain Monte Carlo (RJMCMC). It was implemented and improved 

later (Dellaportas and Forster, 1999; Robert and Casella, 1999).  RJMCMC provides a 

procedure to generate samples that travel across different model parameter subspaces. So, it 

can handle the model selection problem between rival models with different parameter space 

dimensions.  In each cycle, npark parameters are sampled where k is the index of the current 

subspace and npark is the dimension of that subspace (model). Thus the number of variables 

in all samples is not fixed.  RJMCMC creates different types of moves between the subspaces 
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by random choice between available moves at each transition, in order to jump freely across 

the combined parameter space. 

To illustrate this method, let the current state of the Markov chain, at time t, be (mt, θm
t ); where 

m indicates the model or subspace index.  If ρ represents a particular proposed move to model 

m′ and corresponding parameter vector θ
m′
′  , a vector u of dimensionality equal to the 

difference in dimensionalities between θm
(t) , θ

m′
′  is used to generate θ

m′
′  by a one-to-one 

function g as : 

 θ
m′
′  = g(θm

(t), u) (3.12)  

Vector u is sampled from a proposal distribution qρ(u).  On the other hand, if the inverse of 

the move ρ is used, and θm
(t)

 is the vector of parameters with higher dimension, then θ
m′
′    is 

created from θm
(t)

 by applying the inverse transformation (θ
m′
′  , u′) =  g−1(θm

(t)) and 

discarding u′.   

Let the probability of making a move of type ρ, given the current state of the Markov chain 

(m(t), θm
(t)
), be  j(ρ,m(t), θm

(t)
), thus ∑ j(ρ,m(t), θm

(t)
) ≤ 1  ρ and with probability 1 −

∑ j(ρ,m(t), θm(t)(t)) ρ , no change to the present state is proposed. For moves that are not 

available from the starting point, j(ρ,m(t), θm
(t)
) equals to zero. 

Jumps considered in this method are classified as increasing and decreasing dimensionality.  

The probability of accepting a move with each of these jumps is as followings:  
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 Increasing dimensionality from θm
(t)

 to θ
m′
′ , generated via the appropriate qp(u) , should 

be accepted as the next realization of the chain, so that m(t+1) = m′ with probability 

α (m(t), θ
m

(t)
, m′, θ

m′
′ ), where 

 

α (m(t), θ
m

(t)
, m′, θ

m′
′ )

= min {1,
p(𝐲|m′, θ

m′
′ )  π(θ

m′
′ |m′)  π(m′)  j(p,m′, θ

m′
′ ) 

p (𝐲|m(t), θ
m

(t)
)   π ( θ

m(t)

(t)
|m(t))  π(m(t))  j (p,m(t), θ

m

(t) ) qp(u)
} 

(3.13)  

And rejected otherwise, so that m(t+1) = m(t) 

 Corresponding accepting probability of downward move from θ
m

(t)
 to θ

m′
′  is shown in 

equation (3.14). 

 

α (m(t), θ
m

(t)
, m′, θ

m′
′ )

= min {1,
P(𝐲|m′, θ

m′
′ )  π(θ

m′
′ |m′)  π(m′)  j(ρ,m′, θ

m′
′ )  qp(θm(t)\m′

(t)
)

P (𝐲|m(t), θ
m(t)

(t)
)  π ( θ

m(t)

(t)
|m(t)) (m(t))  j(ρ,m(t), θ

m(t)

(t) )
}   

(3.14)  

 

Both Carlin and Polson’s model (Carlin and Polson, 1991) indicator and reversible jump 

Markov Chain Monte Carlo methods are based on avoiding estimation of the marginal 

likelihood for each model by sampling from the model indicator. On the other hand, they both 

suffer from the disadvantage of depending upon selecting proper prior and pseudo-priors in the 

model indicator and transition functions in the RJMCMC method. 
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3.6.2 Marginal Likelihood Methods 

The most straightforward approach in calculating the likelihood of models is the estimation of 

its integral directly.  MCMC techniques can be used for the purpose of evaluating the marginal 

likelihood. The basic idea of MCMC integration (Metropolis et al., 1953) is that 

∫ f(x) q(x)dx
x

 can be approximated as closely as desired by:    

 
∫ f(x)q(x)dx ≈ lim

s→∞

1

s
∑ f(Xk)

s

k=1

 

 

(3.15)  

if the  are sampled so that Pr(Xk = x) = q(x). Likewise, in situations where samples are 

generated from another distribution, q∗(xk), instead of q(x), the integral may be estimated 

using equation (3.16): 

 ∫ f(x)q(x)d(x) ≈
∑ wkf(Xk)
m
k=1

∑ wk
m
k=1

x

 
(3.16)  

where wk = q(x)/q∗(xk). 

Comparing equation (3.15) and the marginal likelihood (equation (3.4)), it is concluded that 

the marginal likelihood can be approximated by the expected value of likelihood of samples 

from the prior distribution. A problem arises when the posterior distribution and the prior 

distribution have totally different peaks relative to each other. In this situation, most of the 

sampled parameters will have small likelihood values and the sampling process will be 

inefficient.  

Because of the problem in estimation of the marginal likelihood by prior samples, using 

samples from the posterior distribution seems more reasonable. Let us assume {θk
(g)
} =

{θk
(1)
, … , θk

(G)
} to be G draws from the posterior density of parameters P(θk|Mk, 𝐲).  Then the 

marginal likelihood can be calculated by equation (3.17), (Newton and Raftery, 1994). But this 

i X
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summation may become unstable when the inverse likelihood has infinite variance. In other 

words, a parameter with small likelihood can have a large effect on the approximation. 

Therefore, the variance of the estimated marginal likelihood may be large (Chib and 

Greenberg, 1995).   

 L(Mk|𝐲) = {
1

G
∑(

1

l(θk
(g)
|Mk, 𝐲)

)

G

g=1

}

−1

 (3.17)  

Chib (1995) proposed a marginal likelihood estimation method by sampling from the posterior 

distribution using the Gibbs sampler. This method solves the problem of instability in 

estimation of the marginal likelihood using posterior samples.  Later Chib and Jeliazkov (2001) 

extended this method by using Metropolis-Hastings sampling. In their latest paper (Chib and 

Jeliazkov, 2005) the Acceptance Rejection Metropolis Hastings algorithm is applied. Chib and 

Jeliazkov’s method with a Metropolis-Hastings sampling is used in the model selection step of 

two implementations of SBMCMD in Chapter 4; thus, it is explained in more detail in the next 

section. 

3.7 Chib’s Model Selection Methods 

Chib (1995) proposed using the logarithm of the likelihood to improve stability.  He suggested 

using equation (3.18) to calculate the Bayes factor for any two models i and j.   

 Bij = exp {ln P(𝐲|Mi) − ln P(𝐲|Mj)} (3.18)  

The marginal density function may be written as: 

 P(Mi|𝐲) =
l(θ∗|Mi, 𝐲)π(θ

∗)

P(θ∗|Mi, 𝐲)
 (3.19)  

Taking the logarithm of both sides of equation (3.19) leads to equation (3.20). 
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 ln P(Mi|𝐲) = ln l(θ∗|Mi, 𝐲) + ln π(θ∗) − ln P(θ∗|Mi, 𝐲) (3.20)  

This equation is true for any possible value of the parameters θ∗. Substituting ln P(Mi|𝐲)  from 

equation (3.20) into equation (3.18), yields the Bayes’ factor. The only remaining problem in 

the calculation of ln P(Mi|𝐲), is the estimation of the last term, ln P(θ∗|Mi, 𝐲), which is the 

posterior density of possible values, θ∗. 

What has been described above is the main idea behind Chib’s method.  Chib and his research 

group proposed three different versions of this method later. These methods differ in their 

MCMC methods for sampling from the posterior distribution and the estimation of P(θ∗|Mi, 𝐲). 

In the remaining of this section, these three versions of Chib’s method are discussed.  

3.7.1 Chib’s Method and Gibbs Sampling 

First, Chib used Gibbs sampling to estimate ln P(θ∗|𝐲), (Chib, 1995).  To explain this 

method, assume that parameters are divided to B blocks, θ = (θ1, … , θB). Thus the posterior 

probability of any point, θ∗  may be given by equation (3.21).   

 

P(θ∗|𝐲) = P(θ1
∗|𝐲) × P(θ2

∗ |𝐲, θ1
∗) × …× P(θr

∗|𝐲, θ1
∗ , … , θr−1

∗ ) × …×

P(θB
∗ |𝐲, θ1

∗ , … , θB−1
∗ ) = ∏ P(θi

∗|𝐲,B
i=1 θ1

∗ , … , θi−1
∗ ) . 

(3.21)  

The P(θ1
∗|𝐲) term, marginal ordinate, is estimated from the samples generated by Gibbs 

method from P(θ|𝐲). P(θr
∗|𝐲, θ1

∗ , … , θr−1
∗ ) is defined by the integral shown in equation (3.22),  

and can be estimated from samples of the full conditional densities when θs is set equal 

to θs
∗  (s ≤ r − 1) .  Let the G draws from the reduced full conditional densities be shown as 

{θr
(j)
, θr+1

(j)
, … , θB

(j)
} , then an estimated value of P(θr

∗|𝐲, θ1
∗ , θ2

∗ , … , θr−1
∗ ) can be obtained from 

equation (3.23). 
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P(θr
∗|𝐲, θ1

∗ , θ2
∗ , … , θr−1

∗ )

=  ∫P(θr
∗|𝐲, θ1

∗ , θ2
∗ , … , θr−1

∗ , θl(l > r)) dP(θr+1, … , θB|𝐲, θ1
∗ , θ2

∗ , … , θr−1
∗ ) 

(3.22)  

 

 

P(θr
∗|𝐲, θs

∗(s < r))

= G−1∑p(θr
∗|𝐲, θ1

∗ , θ2
∗ , … , θr−1

∗ , θl
j(l > r))

G

j=1

 

(3.23)  

So the log of the marginal likelihood is given by the following equation:  

 

ln P(Mi|𝐲) = ln f(𝐲|Mi, θ
∗)

+ ln π(θ∗|Mi) −∑lnP(θr
∗|𝐲, θs

∗(s < r))

B

r=1

 

(3.24)  

Although that selection of  θ∗ is not critical, it is more efficient to select it from a high 

density area. Thus it may be selected, after drawing G samples from θ, as the θ with the 

highest  likelihood during sampling. 

3.7.2 Chib’s Method and Metropolis-Hastings Sampling 

Later, Chib and Jeliazkov (2001) used a Metropolis-Hastings sampling procedure to estimate 

the marginal likelihood on the log scale.  If ψi−1, ψi+1  represent 

(θ1, … , θi−1), (θi+1, … , θB) respectively, the transition function of the MH method can be 

written as: 

 

P(θi, θi
′ |𝐲, ψi−1, ψi+1)

= α(θi, θi
′ |𝐲, ψi−1, ψi+1) × q(θi, θi

′ |𝐲, ψi−1, ψi+1) 

(3.25)  
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where α is the acceptance probability and q is the proposal distribution in the MH method. 

As mentioned in Chapter 2, sub-kernels in the MH algorithm have the reversibility property. 

Reversibility of sub-kernels in this case is shown by equation (3.26). 

 

P(θi, θi
∗|𝐲, ψi−1, ψi+1

∗ ) π(θi|𝐲, ψi−1, ψi+1
∗ )

= π(θi
∗|𝐲, ψi−1, ψi+1

∗ )P(θi
∗, θi|𝐲, ψi−1, ψi+1) =  

(3.26)  

After integrating both sides of equation (3.26) with respect to θ and using an estimation 

strategy, equation (3.27) is obtained. 

 

P(θi
∗|𝐲, θ1

∗ , … , θi−1
∗ )

=
E1{α(θi, θi

∗|𝐲, ψi−1
∗ , ψi+1)q(θi, θi

∗|𝐲, ψi−1
∗ , ψi+1)}

E2{α(θi, θi
∗|𝐲, ψi−1

∗ , ψi+1)}
 

(3.27)  

where E1 is the expectation with respect to P(θi, Ψi+1|y, ψi−1
∗ ) and E2 is the expectation with 

respect to P(ψi+1|𝐲, ψi
∗)q(θi

∗, θi|𝐲, ψi−1
∗ , ψi+1). 

To estimate  p(θi
∗|y, θ1

∗ , … , θi−1
∗ ) , first  ψi−1 should be set equal to  ψi−1

∗ , and then samples 

from (θk|𝐲, θ−k) k = i, … , B are generated.  These samples may be shown by 

{θi
(g)
, … , θB

(g)
}, g = 1,… ,M 

Secondly, ψi
∗ is set equal to (ψi−1

∗ , θi
∗), and then another set of samples is generated from the 

remaining distribution. Showing these samples by  {θi+1
(j)

, … , θB
(j)
}  j = 1,… , J,  

P(θi
∗|y, θ1

∗ , … , θi−1
∗ ) can be estimated from equation (3.28). 

 

P(θi
∗|𝐲, θ1

∗ , … , θi−1
∗ )

=
M−1∑ α(θi

(g), θi
∗|𝐲, ψi−1

∗ , ψi+1,(g))q(θi
(g), θi

∗|𝐲, ψi−1
∗ , ψi+1,(g))

M
g=1

J−1∑ α(θi
∗, θi

(j)|𝐲,ψi−1
∗ , ψi+1,(j))

J
j=1

 
(3.28)  
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After repeating the above procedure for all blocks, P(θ∗|Mi, 𝐲) is estimated from equation 

(3.21), and will be substituted in equation (3.20) for estimation of the marginal likelihood.  

An specific condition of the above method is when all the parameters can be sampled 

simultaneously, thus there will be just one block. In this case equations (3.26) and (3.27) 

become equations (3.29) and (3.30), respectively:  

 P(θ, θ∗|Mi, 𝐲)π(θ|Mi, 𝐲) =  π(θ∗|Mi, 𝐲)P(θ
∗, θ|Mi, 𝐲) (3.29)  

 P(θ∗ |Mi, 𝐲) =
E1{α(θ, θ

∗|𝐲)q(θ∗, θ|𝐲)}

E2{α(θ
∗, θ|𝐲)}

 (3.30)  

where E1 is the expectation with respect to P(θ|Mi, 𝐲) and E2 is with respect to q(θ∗, θ|𝐲). 

Thus showing samples from the posterior distribution and q(θ∗, θ|𝐲) with {θ(g)} and {θ(j)}, 

respectively, P(θ∗|𝐲) is calculated by equation (3.31). 

 P(θ∗ |𝐲) =
M−1∑ α(θ(g), θ∗|𝐲)q(θ(g), θ∗|𝐲)M

g=1

J−1∑ α(θ∗, θ(j)|𝐲)
J
j=1

 (3.31)  

 

3.7.3 Chib’s Method and Acceptance-Rejection MCMC Sampling 

Chib and Jeliazkov (2005) presented the implementation of the Acceptance Rejection 

Metropolis Hastings method (ARMH) for one-block and multi-block sampling. One-block 

sampling has been used in our framework, thus it will be explained here. For models which 

may require multi-block sampling, one should refer to Chib and Jeliazkov (2001). 

Like other versions of Chib’s method, the problem of estimating the marginal likelihood is 

reduced to the estimation of the posterior probability of a specific value P(θi
∗|Mi, 𝐲) given the 

posterior samples .   (1) , , m 
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If  represents the acceptance probability of a move from the current sample  to

, and g(θ, θ′|𝐲) represents the proposal distribution for the move, then the probability of 

choosing a value  and accepting it, is given by the sub-kernel defined by equation (3.32): 

 Q(θ, θ′|𝐲) = α(θ, θ′|𝐲)q(θ, θ′|𝐲). 
(3.32)  

Regarding the reversibility property of sub-kernels the following equation is valid:  

 Q(θ, θ′|𝐲)P(θ|Mi, 𝐲) = P(θ′|Mi, 𝐲)Q(θ
′, θ|𝐲).. 

(3.33)  

Integrating both sides and setting θ′ = θ∗ yields:  

 

 

P(θ∗|Mi, 𝐲) =  
∫ α(θ, θ∗|𝐲)q(θ, θ∗|𝐲)P(θ|Mi, 𝐲)dθ

∫ α(θ∗, θ|𝐲)q(θ∗, θ|𝐲)dθ
 

  

(3.34)  

By letting ,   and l(θ∗|Mi, 𝐲)π(θ
∗|Mi, 𝐲) ≤ cq(θ∗), where q is the 

proposal distribution in ARMH method. Thus, equation (3.34) becomes, 

 

 

P(θ∗|Mi, 𝐲) =
l(θ∗|Mi, 𝐲)π(θ

∗|Mi, 𝐲) ∫ αMH(θ, θ
∗|𝐲)P(θ|Mi, 𝐲)dθ

c ∫ αAR(θ|𝐲)q(θ)dθ
 

  

(3.35)  

 

Substituting the above equation into equation (3.19) leads to 

 L(Mi|y) =
c ∫ αAR(θ|𝐲)q(θ)dθ

∫ αMH(θ|𝐲)P(θ|Mi, 𝐲)dθ
  

(3.36)  

A numerical estimate of L(Mi|𝐲) could be obtained by equation (3.37). 

 

 

𝐿(Mi|y) = c 
J−1∑ αAR(θ

j|y)J
j=1

G−1∑ αMH(θg, θ∗|y)
G
g=1

 .  

(3.37)  

where  are J samples from q(θ) and  are G samples from P(θ|Mi, 𝐲).  

 

 , |y     

 

*θ D  *

MHα θ ,θ| 1y

j g
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3.8 Design of Experiments 

The term design of experiments (DOE) is more commonly used in regression, where the goal 

is to design experiments, which lead to more accurate parameter estimates. In model 

discrimination however, the goal is to find experimental conditions which contain information 

with which to discriminate between rival models. Burke et al. (1997) classified statistical 

model discrimination experimental design criteria into maximum divergence-based and 

maximum entropy-based methods.  These two categories seem to be able to cover all criteria 

which have been proposed in the literature. 

3.8.1 Methods Based on Maximum Divergence 

Maximum divergence-based methods select experimental conditions where the expected 

difference between the predicted values of the rival models is maximized.  These criteria are 

based on the fact that the “best” model should be able to predict the model responses more 

accurately than other rival models. Hence, it is desirable to do the next trial under conditions 

that lead to the maximum average difference in model outputs.  To achieve this, the following 

criterion is often used: 

 xnext = max
x

∑ ∑ (ŷi(x) − ŷj(x))
2

K

j=i+1

K−1

i=1

 (3.38)  

 

where K shows the number of rival models and  represents the predicted value from the 

ith model under condition x. A better criterion is obtained if the prediction variance is taken 

into account. In this way experimental conditions where the prediction variance is large and 

potentially little information for model discrimination can be gained, can be avoided. So the 

modified version of this criterion may be written as equation (3.39). 

ˆ ( )iy x
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 xnext = max
x

∑ ∑
(ŷi(x) − ŷj(x))

2

var(ŷi(x) − ŷj(x))

K

j=i+1

K−1

i=1

 (3.39)  

Roth (1965) introduced a weighted average of the total separation between the models where 

weights are the Bayesian posterior probabilities.  Let P(Mk|𝐲𝐧−𝟏) denote the posterior 

Bayesian probability of the kth model after n-1 experiments and ŷj(x) represent the predicted 

value of model j, under experimental conditions x.  The conditions which maximize equation 

(3.40) are chosen as the experimental conditions for the nth trial.    

  xn =
arg max

x
 ∑

[
 
 
 
 

P(Mi|𝐲𝐧−𝟏)∏|ŷj(x) − ŷi(x)|

K

j=1
j≠i ]

 
 
 
 K

i=1

 (3.40)  

In its original implementation proposed by Roth the predicted values, ŷi(x), are calculated 

using the parameter point estimates obtained based on the n-1 experimental trials. In our work, 

we refine this method by calculating the predicted values by integrating over all possible 

parameter values as shown in equation (3.41).  This makes the estimates of the predicted values 

independent of the parameter values.    

 ŷi(x) = ∫ yi(x|θ)π(θ)dθ
θ

 (3.41)  

Using the G samples obtained from the current prior distribution,  ŷi(x) is estimated by 

equation (3.42) 

 ŷi(x) = ∫ yi(x|θ)π(θ)dθ
θ

 ≈  
1

G
∑yi(x|θg)

G

g=1

 (3.42)  
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3.8.2 Methods Based on Maximum Entropy 

Entropy-based design criteria provide another alternative to the maximum divergence ones. 

The entropy definition in experiment selection is related to the concept of entropy in 

thermodynamics, which is a measure of the randomness or uncertainty in a system.  Suppose 

there are K models, after n-1 experimental trials, the entropy of the system can be defined as 

equation (3.43): 

 S = −∑P(Mi|𝐲𝐧−𝟏) ln P(Mi|𝐲𝐧−𝟏)

K

i=1

 (3.43)  

Box and Hill (1967) borrowed the concept of entropy from information theory in experimental 

design.  They assumed that in the beginning, all the models are assumed equally probable, so 

having K rival models, each with probability equal to 1 K⁄ . In this situation, the entropy will 

be at a maximum. On the other hand, in the desirable condition, when the probability of one 

model is 1 and others zero, the entropy value is at a minimum.  So in order to obtain the most 

possible information from the next experiment we can try to maximize the difference between 

entropy in the n-1st and the nth step.  This expected change in entropy is usually shown by R, 

R = entropy at input – expected entropy at output 

Box and Hill (1967) derived an upper bound on the change in entropy for linearized models 

under normally distributed errors. They showed that the expected change in entropy resulting 

from the nth trial made under certain conditions x is 

 R =∑P(Mi|𝐲𝐧−𝟏) ∫ P(Mi|𝐲𝐧)ln [
P(𝐲n|Mi)

q(x, yn)
] dyn

yn

K

i=1

 (3.44)  

where, 
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 q(x, yn) =  ∑P(Mi|𝐲𝐧−𝟏)p(yn|Mi)

K

i=1

 (3.45)  

where P(yn|Mi) is the probability density function of the nth observation under model i and 

P(Mi|𝐲𝐧−𝟏) is the probability of model i up to n-1 experiments, so q(x, yn) is the probability 

of observing a specific observed value.  The predicted posterior probability associated with the 

kth model is shown in equation (3.46). 

 P̂(Mi|𝐲𝐧) =
P(Mi|𝐲𝐧−𝟏)P(yn|Mi)

q(yn)
 (3.46)  

Then Box and Hill show by Bayesian analysis that if the errors are normally distributed, an 

upper bound for negative R, D(x) is defined in equation (3.47). 

 

D(x) =
1

2
∑ ∑ P(Mi|𝐲𝐧−𝟏) P(Mj|𝐲𝐧−𝟏) {

(σi
2 − σj

2)2

(σ2 + σi
2)(σ2 + σj

2)

K

j=i+1

K−1

i=1

+ [ŷi(x) − ŷj(x)]
2
(

1

σ2 + σi
2 +

1

σ2 + σj
2)} 

(3.47)  

where σ2 is the known error variance for a single measurement; ŷi(x)  stands for the predicted 

value of y(x) under model i using the first n-1 observations and variance of ŷi(x)   is given by 

σi
2. Therefore, the condition x yielding the largest D(x) will be selected as the next 

experimental condition.  

Reilly (1970) introduced the expected entropy criterion which uses the actual value of the 

expected entropy as a design criterion instead of an upper bound on the expected entropy 

change.  He presented the integral in equation (3.44) in the following format, 

 R = −
1

2
[1 + ln 2π (σ2 + σi

2)] − ∫ P(yn|Mi ) ln q(x, yn)dyn
yn

 (3.48)  
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The remaining integral in the above equation can be recognized as the expression for the 

expectation of ln q(x, yn) under variation of yn assuming model i to be correct.  This may be 

written as ∫ ln q(x, yn) dynyn
 .  It follows that: 

 

R(x) =  −
1

2
(1 + ln 2π) − 

∑P(Mi|𝐲𝐧−𝟏) {
1

2
ln(σ2 + σi

2) + ∫ ln q(x, yn)

yn

}

K

i=1

 

(3.49)  

All of this is easy to evaluate except for the expectation term.  This is the expectation of the 

function ln q(x, yn), where yn is normally distributed with mean ŷn(x) and variance σ2 + σi
2. 

Reilly used Gauss-Hermite quadrature to estimate the expectation term.  

Drovandi et al. (2013) in their recent paper used a DOE criterion, which contains the prediction 

of the posterior probability of models after doing the next experiment. Thus their DOE criterion 

is like other entropy criteria, which use the predicted values of the posterior probabilities. 

3.9 Model Discrimination with T-test (Buzzi-Ferraris and Forzatti method) 

Buzzi-Ferraris et al. (1983) described an experiment design criterion based on the maximum 

variances for linear models or those, which can be assumed approximately linear over the 

relevant region of the parameter space.  Their method can be used for single response methods.  

After that, Buzzi-Ferraris and Forzatti (1984) modified this method to be applicable to multiple 

response models. In this method, errors, are assumed to be normally distributed. The next 

experimental condition is obtained by maximizing a proper indicator of the divergence among 

the responses relative to the limits of error provided by the data, given by 

 T =  SN
2 SD

2⁄  (3.50)  
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where SN
2   indicates the variations between the deviations (δi) and SD

2  is the mean value of the 

variances(σ̂δi
2 ), where δi is the deviation between the observation and the expected response 

from the ith model. By assuming that either we have K rival linear models, or models which 

can be approximated by linear ones, they can be shown as the following equations:  

 

yi(x) =  θ̂1gi,1(x) + θ̂2gi,2(x) + ⋯+ θ̂pigi,pi(x) 

σ̂i
2(x) = gi

T(x)(Gi
TGi)

−1
gi(x) σ̂

2 

where for nonlinear models:  gih =
∂fi(x,θi)

∂θh
|
θi=θ̂i

(n)
 

Gi(x) =
|

|

gi,1(x1) . .

gi,1(x2) . .
. . .

. . gi,pi(x1)

. . gi,pi(x2)

. . .. . .
. . .

gi,1(xN) . .

. . .

. . .

. . gi,pi(xN)

|

|
    gi(x)

= [gi,1(x), … , gi,pi(x)] 

(3.51)  

where θ̂i
(n)

 is the point around which the model is linearized around. Using these assumptions, 

 sN, sD and T are calculated by using equations (3.52), (3.53) and (3.54) respectively.  The 

criterion requires choosing the vector of experimental conditions that maximizes T. 

 

sN
2 =

∑ (δi(x) − δ(x)̅̅ ̅̅ ̅̅ )
2K

i=1

K − 1
=
∑ (ŷi(x) − ŷ(x)̅̅ ̅̅ ̅̅ )

2K
i=1

K − 1

=
∑ ∑ (ŷi(x) − ŷj(x))

2
K
j=i+1

K−1
i=1

K(K − 1)
 

(3.52)  
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sD
2 =

∑ νi(σ̂
2 − σ̂i

2(x))2K
i=1

∑ νi
K
i=1

= σ̂2 +
σ̂2∑ gi

T(x)(Gi
TGi)

−1
gi(x)

K
i=1

K

= σ̂2 +∑
σ̂i
2(x)

K

K

i=1

 

(3.53)  

 T =
∑ ∑ (ŷi(x) − ŷj(x))

2K
j=i+1

K−1
i=1

(K − 1)(Kσ̂2 + ∑ σ̂i
2(x))K

i=1

 (3.54)  

T values below 1 in single output models, indicate that the variance of the divergence among 

responses can be explained in terms of experimental error variance plus variance of expected 

response.  So if there is no condition with T value above one, the procedure should be stopped.  

For multiple responses T was defined as equation (3.55): 

 Tij(x) = (ŷi(x) − ŷj(x))
T

(Sij(x))
−1

(ŷi(x) − ŷj(x)) (3.55)  

where Sij(x) is the covariance matrix of (δi(x) − δj(x)).  In order to discriminate among more 

than two rival models, it is desired to find the vector of independent variables x that maximize 

Tij(x) over any pair of models i and j, providing Tij(x) is greater than R (response dimension).  

The procedure is stopped when no setting of x maximizes Tij(x) above R. 

Buzzi-Ferraris and Forzatti (1990) provided another usable design method for multi-response 

models which can be linearized in the neighborhood of θ̂i
(n)

.  Let y′(xi), y
′′(xi) stand for the 

R × 1 vectors of observations recorded in two genuine independent replications of x = xi with 

normally distributed error as shown in equation (3.56). 
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y′(xu) =  f(xu, θ) + εu
′  

y′′(xu) =  f(xu, θ) + εu
′′  

εu
′ , εu

′′  ~ N(0, Σ) 

(3.56)  

where Σ  is the known positive definite constant covariance matrix shown in equation (3.57). 

 Σ = |

σ11 σ11
σ11 σ11

⋮ ⋮ ⋮ σ11
⋮ ⋮ ⋮ σ11

⋮ ⋮
σ11 σ11

⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ σ11

| = {σhl} (3.57)  

By using linearization the hth output value from the ith rival model may be shown as equation 

(3.58).   

 fih(x, θi) = fih(x, θi
(n)) +∑[θir − θ̂ir

(n)
] 
∂fih(x, θi)

∂θir
|
θi=θ̂i

(n)

pi

r=1

 (3.58)  

θ̂ir
(n)

 denotes parameter estimates from fitting models using the observed data. In this condition, 

the estimated response under model i, ŷi(xn+1), for the new design point is normally 

distributed about fi(xn+1, θ̂i
(n)
) with a covariance matrix equal to Wi(xn+1) :  

 ŷj(xn+1) ≈ N[fi(xn+1, θj ),Wi(xn+1)] (3.59)  

where Θi
−1, Gi(xn+1) and Wi(xn+1) are defined by equations (3.60) and (3.61), respectively. 

 Θi
−1 = ∑∑σhlGih

T Gil

k

l=1

k

h=1

 (3.60)  

 Wi(xn+1) = Gi(xn+1)Θi
−1Gi

T(xn+1) (3.61)  

Buzzi-Ferraris and Forzatti picked the setting of xn+1 which provides the maximum 

information against the null hypothesis that indicates E{fi[xu, θ̂i
(n)
]} = E{fj[xu, θ̂j

(n)
]}, in order 
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to discriminate most efficiently between two rival models.  If we define δi , δj  and δij as 

equation (3.62); 

 

δi(xn+1) = [ŷi
(n)(xn+1) − y′(xn+1)] 

δj(xn+1) = [ŷj
(n)(xn+1) − y′′(xn+1)] 

δij(xn+1) = Rij
−1(xn+1)[δi(xn+1) − δj(xn+1)] 

(3.62)  

where Rij
−1 is a function of  Σ , wi, wj. Then minimizing the PDF of δij(xn+1) over xn+1 leads 

to selecting the next experimental condition that satisfies E{fi[xu, θ̂i
(n)
]} ≠ E{fj[xu, θ̂j

(n)
]}. 

3.10 Hsiang Reilly Method (HR) 

In the HR method, the parameters in each of the candidate models are handled separately as a 

set of discrete arrays in computer storage to facilitate the calculation of the marginal likelihood 

in this Bayesian approach.  Hsiang and Reilly’s method is a complete sequential model 

discrimination framework, including both model selection and the DOE step. The design of 

experiments step is designed specifically for the discrete space in their framework. The steps 

in this method will be explained in the following.  

Initialization 

First, it is required to set the prior probability for each model πk    k =

1,2, … , K  and ∑ πk = 1K
k=1 , where k represents the index of a model and K is the total number 

of candidate models. Then a discrete set of possible values should be assigned for each 

parameter.  Assuming that the kth model has Pk parameters and discretizing each parameter 

space to tij values where j = 1,… , Pk  i = 1,… , K, there are ∏ tij
pk
j=1  possible sets of parameter 

values in the kth model. After defining the discretized space, a distribution of probabilities 
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should be considered. For each possible parameter value a probability is set that represents 

our belief that it is the “true” set of parameter values.  To illustrate this method, assume that 

we have two rival models, each with 2 parameters. In the beginning we may start with non-

informative model priors,  P(Mi = 1) = 0.5  , P(Mi = 2) = 0.5 

Assuming the acceptable range of parameters, 1 ≤ P11 ≤ 2.5, 100 ≤ P21 ≤ 180, 10 ≤

P21 ≤ 20, 1e5 ≤ P22 ≤ 6e5 , Figure 3-2 and Figure 3-3 show the discretized space and the 

prior values, respectively.  

 

Figure 3-2:  Model 1 priors for the HR example 

 

Figure 3-3:  Model 2 priors for the HR example 

 

Calculation of Model Posterior  

When some preliminary measurement from the system are available or after designing and 

carrying out a new experiment, the likelihood of each cell of the parameter tables will be 

calculated. The likelihood is a function of the model error variance and the error value, which 

is the difference between the real system output and the output of the model given the 

parameters value in the cell and the input condition. Then the prior of that set of parameters 

multiplied by the likelihood will be put in the table as the posterior value. Figure 3-4 and Figure 

3-5 show the posterior probabilities for the illustrating example.  



 

 56 

 

Figure 3-4:  HR method, model 1 posterior 

probabilities 

 

 

Figure 3-5:  HR method, model 2 posterior 

probabilities 

 

Rescaling is another step in the HR method implemented by Burke (1994). If all the 

probabilities in a column or a row in the border of the table are insignificant, that part of the 

table is deleted in the rescaling step. Then, the table will be filled again with the prior values, 

following by calculation of the likelihood for the new set of parameters. Figure 3-6 shows the 

rescaled table of parameters in model 1, filled with prior probability values. One column and 

two rows have been deleted from the table presented in Figure 3-4 to obtain the table in Figure 

3-6. 

 

Figure 3-6:  HR method, model 1, rescaled table 
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Updating Model Probabilities  

In this step, the posterior probability of each model is updated using the summation of the prior 

multiplied by the likelihood over all possible discrete value of parameters, 

∑ P(θj,i|Mi) l(θj,i|𝐲𝐧)θj,i
. Equation (3.63) shows the formula for updating the models posterior 

probability, 

 P(Mi|𝐲) =  
P(Mi)∑ P(θj,i|Mi) l(θj,i|Mi, yn)θj,i

∑ P(Mi)∑ P(θj,i|Mi)l(θj,i|Mi, yn)θj,i
K
i=1

 (3.63)  

where P(Mi) shows the prior of model Mi in the current step and P(θj,i|Mi) the prior of θj,i in 

model Mi. Then the tables of parameters are updated by normalized probability values, 

equation (3.64). 

 P(θi|Mi, 𝐲) =
P(θj,i|Mi)l(θj,i|Mi, yn)

∑ P(θj,i|Mi)l(θj,i|Mi, yn)θj,i

 (3.64)  

Design of Experiments 

The design of experiment criterion used by Hsiang and Reilly is based on the Roth criterion, 

equation (3.40). The predicted response at the n+1th condition, ŷi, could be easily estimated by 

weighted summation of predicted values over the table of parameters.  

 ŷi (x) =  ∑ fi(θj,i, x
θj,i

) P(θj,i|Mi, 𝐲) (3.65)  

where θj,i shows parameter values and summation is over all cells. Weights are posterior 

probability of parameters and fi denotes the ith model output. This procedure is repeated until 

one model is identified with sufficient certainty. 
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Chapter 4 

Proposed Model Discrimination Method 

4.1 Introduction 

Assume A and B are two events with probabilities of occurrence equal to Pr(A) and Pr(B) ≠

0,  respectively.  In addition, let Pr(A|B) denote the conditional probability of A given that 

B has occurred and define Pr(B|A) analogously.  Then Bayes' theorem states that: 

 Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)
 (4.1)  

In other words, for any two random events A and B, the conditional distribution of A given B 

is proportional to the product of the conditional probability of B given A and the probability 

of A.  The proof of equation (4.1) can be found in Bard (1974).   

To illustrate Bayes’ theorem to applications in parameter estimation and modeling, suppose 

that 𝐲𝐧 = (y1, … , yn) is a vector of n observations from the system whose probability 

distribution, P(𝐲𝐧|θ) , depends on the values of parameters,  θ.  Also assume that θ has a 

probability distribution P(θ).  Then by using equation (4.1), equation (4.2) is obtained. 

 P(𝐲𝐧|θ) P(θ) =  P(𝐲𝐧, θ) = P(θ|𝐲𝐧) P(𝐲𝐧) (4.2)  

Given the observed data 𝐲𝐧, the conditional distribution of θ may be written as equation (4.3).   

 P(θ|𝐲𝐧) =
P(𝐲𝐧|θ)P(θ)

P(𝐲𝐧)
 (4.3)  

By considering P(𝐲𝐧) = ∫ P(𝐲𝐧|θ)θ
= c−1, P(θ|𝐲𝐧) may be written as the following equation: 

 P(θ|𝐲𝐧) = c. P(𝐲𝐧|θ)π(θ). (4.4)  
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The above equation is referred to as Bayes' theorem, where π(θ), which is equal to P(θ) in 

equation (4.3), is called the prior distribution and contains previous knowledge about θ without 

considering the current data 𝐲𝐧, P(𝐲𝐧|θ) is the probability of the observed data given θ, and 

the variable c is a normalizing constant necessarily to ensure that the posterior distribution 

P(θ|𝐲𝐧) integrates or sums to one.  Bayes’ theorem may be written as equation (4.5) (Box and 

Tiao, 1992). 

 P(θ|𝐲) ∝ π(θ)l(θ|𝐲) (4.5)  

where l(θ|𝐲), which equals P(𝐲𝐧|θ), is called the likelihood of θ given the data and P(θ|𝐲) is 

the posterior probability. The likelihood function plays a very important role in Bayes' theorem.  

It is the function through which the data modifies the prior knowledge. Thus, it can be regarded 

as representing the information about θ coming from the data. Considering the problem of 

model discrimination and assuming that one of the K candidate models is the true model 

description of the real system, then equation (4.5) can be cast into a form suitable for model 

discrimination by replacing the parameter θ, by the model index Mk, where the model index 

Mk represents the kth rival model. Hence, Bayes’ theorem could be re-written as equation (4.6) 

for any of the k candidate models: 

 P(Mk|𝐲) =  π(Mk)L(Mk|𝐲) (4.6)  

In the above equation, P(Mk|𝐲) is the normalized posterior probability. The likelihood 

represented by L(Mk|𝐲) is the likelihood of the model given the data and is usually calculated 

by integrating out the model parameters as will be discussed later. π(Mk) is the prior 

probability of the model Mk. In the initialization step, prior probabilities which satisfy equation 

(4.7) should be assigned to candidate models.  
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 ∑π(Mk)

K

k=1

= 1 (4.7)  

An important feature of the Bayesian approach is that it allows prior knowledge to be 

incorporated in the analysis. In addition, the Bayesian approach lends itself for use in 

sequential statistical procedures and on-line procedures when new information becomes 

available gradually. Assume each observed point is independent of the previous ones and 

introduced in a separate step of the sequential procedure. In this case, equation (4.4) may be 

written as, 

 

Pn(θ|𝐲𝐧) = c∏P(yi|θ)

n

i=1

π(θ) = c.∏P(yi|θ) 

n−1

i=1

π(θ)
⏟          

P(θ|𝐲𝐧−𝟏)

 P(yn|θ) 

Pn(θ|𝐲𝐧) =  P(θ|𝐲𝐧−𝟏) P(yn|θ) 

(4.8)  

where n is the number of observed data points. Equation (4.8) implies that the prior 

probabilities in each step can be replaced by the posterior probabilities from the previous step.  

In a sequential procedure, the probability of the parameter values is interpreted as the last 

updated probability of those values; thus, after the nth observation, it is equal to the product of 

the (n-1) posterior probabilities, which is the prior probability in the current step, and the 

probability of the nth observed data given θ.   

Non-sequential model selection methods use equation (4.6) just once. By contrast, a sequential 

model discrimination method uses Bayes’ formula repeatedly as new data becomes available 

until a stopping criterion is satisfied.  This process is represented by the pseudo-code in 

Algorithm 4.1. In this algorithm,  𝐲𝐧 represents the vector of all observed data collected up to 

and including experiment n and yn is the observed data at step n.  
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 Algorithm 4.1:   A sequential model discrimination algorithm  

 Inputs: 

K : Number of rival models 

Nmaxexperiment : Maximum number of experiments  

Pselection criterion: Stop criterion probability  

𝐲𝟎 : Preliminary information  

 

 

Algorithm: 

Set rival model priors : P0(Mk|𝐲𝟎) 

for n=1 to Nmaxexperiment 

   Design the next experiment inputs xn 

   Carry out the experiment to observe the new output data yn   

     for k=1 to K 

         Calculate L(Mk|yn) 

         Update posterior probability Pn(Mk|𝐲𝐧) = Pn−1(Mk|𝐲𝐧−𝟏 ) L(Mk|yn) 

stop if   ∃ k ∈ {1,… , K}: Pn(Mk|𝐲𝐧) > Pselection criterion   

 

 In this chapter, first our modification to the Hsiang and Reilly’s (HR) method (section 3.10) 

will be presented. After the HR method, the Sequential Bayesian Monte Carlo Model 

Discrimination (SBMCMD) framework and its three implementations are presented.  

4.2 Modification of the Hsiang and Reilly  Method  

As explained before (section 3.10) in the HR method, the parameter spaces are discretized. 

Thus the marginal likelihood of each model can be estimated by equation (4.9).  

 L(Mk|𝐲𝐧) ~∑P(θj,k|Mk) l(θj,k|Mk, 𝐲𝐧)
θj,k

 ∆θj,k (4.9)   (4.1)  
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where ∆θi shows the parameter cell width in each discretized cell. When there are 𝑝𝑘 

parameters in model 𝑀𝑖, ∆𝜃𝑖 is calculated by,  ∆𝜃𝑘 = ∏ ∆𝜃𝑘,𝑗
𝑝𝑘
𝑗=1  where ∆θj,k shows the 

parameter cell width of the jth discretized cell in the kth model. Therefore, the posterior 

probability of each model is directly proportional to: 

 Pn−1(Mk|𝐲𝐧)∑Pn−1(θj,k|Mk, 𝐲𝐧)l(θj,k|Mk, yn)∆θj,k
θj,k

 (4.10)   (4.1)  

Thus, the normalized posterior probability of the models is given by: 

 P(Mi|𝐲) =  
Pn−1(Mi|𝐲𝐧)∑ Pn−1(θj,k|Mk, 𝐲𝐧)l(θj,k|Mk, yn)∆θj,kθj,k

∑ Pn−1(Mi|𝐲𝐧)∑ Pn−1(θj,k|Mk, 𝐲𝐧)l(θj,k|Mk, yn)∆θj,kθj,k
K
i=1

 (4.11)  

In situations that all candidate models have the same search area, like the example in Hsiang 

and Reilly (1971), equation (4.11) can be simplified to:  

 P(Mi|𝐲) =  
Pn−1(Mi|𝐲𝐧)∑ Pn−1(θj,k|Mk, 𝐲𝐧)l(θj,k|Mk, yn)θj,k

∑ Pn−1(Mi|𝐲𝐧)∑ Pn−1(θj,k|Mk, 𝐲𝐧)l(θj,k|Mk, yn)θj,k
K
i=1

   (4.1)  

The above equation was shown on page 57 as equation (3.63). The HR method with equation 

(4.11) instead of (3.63) is called the modified HR method in this research. The modified 

method is applicable to candidate models with different parameters search space.  

In the copolymerization model discrimination case study, which was previously tested in our 

research group (Burke, 1994), there were two models with different numbers of parameters. 

Therefore equation (4.11) should be used for the copolymerization case study but equation 

(3.64) was used by Burke (1994). This seems to be the reason why the HR method shows poor 

result in her research. The modified HR method has been applied to the copolymer case study 

in this research. Results, which will be shown and discussed in Chapter 5 (section 5.3), prove 
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that the modified equation can address the question of the previously observed unsuccessful 

results of the HR method for this system. 

Although this modification addresses some questions about the HR method, it is not efficient 

compared to the proposed SBMCMD method for use in more complicated case studies. The 

reason is that this method uses a discretized parameter space and therefore the accuracy is 

dependent upon the discretization used, while the Monte Carlo approach, in general, gives 

better coverage.  

Like the HR method, the sequential MC model discrimination framework has the advantage 

that it is not restricted to linear models. In addition, the use of a discretized parameter space is 

replaced with sampling from the probability distribution of the parameters by Monte Carlo 

methods. 

4.3 Sequential Bayesian Monte Carlo Model Discrimination (SBMCMD) 

As mentioned in the introduction, a sequential Bayesian framework includes both model 

selection and the design of experiment (DOE) steps. Different implementations of the SBMCMD 

framework are similar in the design of experiments (DOE) and initialization steps, but they 

differ in the model selection part.  

Three implementations of the framework are presented in this research to show that different 

Monte Carlo sampling methods can be used in the sampling step. Furthermore, these 

implementations are different in their marginal likelihood estimation step. The reason is that 

for different cases, using samples from the prior or posterior distributions may be more 

convenient or accurate.  
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During the course of this research, we first started with the posterior and prior based 

implementation, which is the third implementation described in this chapter. This 

implementation applies Acceptance-Rejection MH (ARMH) sampling (section 2.3.7). In the 

first iteration of this implementation, the marginal likelihoods are estimated by Chib & 

Jeliazkov’s method (section 3.7.3), but as of the second iteration, the marginal likelihoods are 

estimated from the average of likelihoods based on the prior parameters samples as discussed 

in section 3.6.2. The reason that we started with this implementation was that the Chib & 

Jeliazkov’s method with ARMH sampling is more efficient with respect to the calculation 

effort compared to the Chib and Jeliazkov’s method with RWMH sampling (Chib and 

Jeliazkov, 2005).  After testing more case studies, we came across case studies in which the 

ARMH sampling algorithm needed too much tuning effort to generate samples with acceptable 

acceptance ratios. Therefore, we tried the posterior based implementation, which is the second 

implementation described in this thesis, which uses samples from the posterior distribution of 

the parameters obtained by the MH method and the Chib and Jeliazkov’s model selection 

method (section 3.7.2) with adaptive MH sampling.  Later, we implemented the prior based 

implementation to be used in cases which require the use of advanced sampling methods to 

sample efficiently from the parameter distributions. Details of these three implementations will 

be explained in the remainder of this chapter. After describing the details of these three 

implementations, they will be compared in section 4.4.  

4.3.1 First Implementation of SBMCMD: Prior Based 

The advantage of this implementation is that its model selection analysis is not 

dependent upon the sampling procedure. Thus any MCMC sampling procedure, which is 
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efficient and covers the whole parameter space can be applied. The disadvantage of this 

implementation is that the user should decide if there is enough information for updating the 

model probabilities or if the model updating should be skipped until more experimental data 

from the real system is obtained.  

When preliminary data are available from the system and these data are used to build the initial 

prior distribution, it is possible to use samples from the parameter prior distributions to estimate 

the marginal likelihood. In this situation, the criticism that the prior parameter probability 

distribution may have a completely different shape compared to the shape of the posterior 

probability of the parameters is not valid any more as discussed in section 3.6.2. This is also 

true for the second and later iterations, since the prior distribution, being the posterior 

distribution from the previous iteration, is informed by the data.   

Therefore the marginal likelihoods are estimated according to equation (3.15). Considering J 

samples from the prior distribution {θj}, which are the saved posterior samples from the last 

iteration, the marginal likelihood estimation can be rewritten as 

 L̂(Mi|y) ≈
1

m
 ∑ l(θj|Mi, yi )

J

j=1
 (4.12)  

 

Figure 4-1 shows the SBMCMD implementation with samples from the parameter prior 

distributions. Steps of this implementation are explained in more detail in the following and 

summarized in algorithm 4.2, page 69.  
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Initialization  

Before starting model selection on these data, the proper prior distribution of the parameters 

must be defined. The selected priors must be proper, since improper priors, whose integral over 

the parameter space is not equal to one, affect the marginal likelihood by a multiplier and can 

mislead the model selection algorithm. In addition to parameter priors, the prior of the models 

should be assigned. If there is no prior information available, the models are assumed equally 

probable, and hence have equal prior probabilities. 

Whenever experimental data are already available, they could be used as the preliminary data. 

Otherwise, a preliminary experiment could be planned using a design criterion. For this 

purpose, one of the candidate models can be assumed as the “correct” one, and then the 

experimental conditions can be determined using the D-optimality design criterion. Another 

useful approach for designing the preliminary experiments is the factorial design method. The 

last solution is to generate samples from the assumed parameter prior distributions and then 

move directly to the model discrimination DOE step. After carrying out the designed 

experiment, a new sample of parameter values should be obtained for the current parameter 

posterior distributions, which include the designed data. The calculation of the model marginal 

likelihood and model probabilities will occur after enough model discrimination experiments 

are carried out to have an informative prior distribution. A rough criterion for deciding to 

update models probabilities or not, is having at least max
k
(npark) experimental points, where 

npark represents the number of parameters in the kth candidate models.  

Also, if there are npark or more preliminary data points available, parameter estimation 

methods should be used in this step to find the best parameters. Then estimated parameters 
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may be used as the starting point of the sampling process, which is the next step of the 

procedure. This could help to have a more efficient sampling process with reasonable 

acceptance probability in the Adaptive Proposal Random Walk Metropolis-Hastings (AP) 

method.  

 

Figure 4-1:  Sequential Bayesian MC Model Discrimination - using prior samples 

 

 

Sampling from the Parameter Distribution  

The Random-Walk MH method has been used in this implementation to sample from 

 P(θ|Mk, 𝐲) .  We used Adaptive Proposal RWMH (AP) method (section 2.4.1.1) to address 

the problem of tuning the walking distribution. In each sampling step the original prior is used 

as the prior and the likelihood is calculated as the product of the likelihoods for all observed 

data including the preliminary ones.  
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Although using the AP method helps to keep the acceptance rate in the recommended range, 

0.15-0.40 (Gelman et al., 1996), cases may occur where AP cannot tune the covariance to force 

the acceptance range in the desired range. In this situation, our implemented program will stop. 

Low standard deviation in the likelihood function may decrease the acceptance probability 

because the likelihood becomes too sharp. By contrast, high values of standard deviation for 

the likelihood function increase acceptance probability. The size of samples, which are used to 

update the covariance matrix, H, is another parameter which influences the average of the 

acceptance rates.  

Experimental Design  

For the purpose of designing the experiments, the Roth criterion given by equation (3.40) is 

used.  In any design of experiments step, P(Mi|𝐲𝐧−𝟏) which is the prior of the model, is 

replaced by the posterior probability of the model in the last iteration.  The variable ŷj(x), the 

predicted value from model i, is evaluated at experimental condition x. Approximating the 

predicted model outputs is possible by using equation (3.42). Then this new experiment is 

carried out and the result is added to the available data.  

Marginal Likelihood Calculation 

As mentioned earlier, the marginal likelihood is estimated by equation (4.12). Note that the 

likelihood in this equation is calculated only using the last observed experimental point. The 

reason is that the data points from the preliminary data to the last iteration experiment, have 

already influenced the prior distribution from which parameter samples are generated. Thus if 

the likelihood of the parameters was calculated using all the data points, the previous data 

would affect the marginal likelihood more than once.  
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Updating Model Probabilities 

Model probabilities are updated by equation (4.6). In this equation the prior is the current 

probability of the model and the likelihood is the estimated marginal likelihood. 

 

Decision Making 

In the decision-making step, a criterion is checked to decide whether to stop the procedure or 

start a new iteration, meaning that an additional experiment is required. Our stopping criterion 

is to check all the model probabilities to see if one exceeds the stopping probability and to 

check the number of experiments, to see if the maximum possible number of experiments has 

been reached. If the stopping criteria are not satisfied, another iteration is required, and then 

MCMC samples from the current posterior parameter distribution should be generated.   

 Algorithm 4.2:   SBMCMD : First implementation  

 Inputs: 

K : Number of rival models 

Nmaxexperiment : Maximum number of experiments  

Pselection criterion: Stop criterion probability  

y0 : Preliminary information  

θ0,k: Initial guess for parameters in the kth model   

cd:  Scaling coefficient 

R1 : Initial covariance matrix 

 

 Gather preliminary data points, 𝐲𝟎  

 Set rival model priors : P0(Mk|𝐲𝟎) = π(Mk) so that  ∑ π(Mk)
K
k=1 = 1 (equation 

(4.7)) 
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 Set proper prior distributions for the parameters in each model  

 If ( number of preliminary data points > number of parameters in a model) 

find the best parameters in the kth model, use θ0,k as the initial guess. Save the 

best parameter to the θ0,k. 

 

  for n = 1 to Nmaxexperiment  

  for k=1,… K  

  Generate G samples using AP method (section 2.4.1.2), 

 Initialize θ0 : if n = 1, θ0 = θ0,k otherwise, θ0 = θbest,n−1,k 

 for j = 1… Nsample 

 Sample z ∈ N(0, cd
2Rj) 

 φ = θj−1 + z 

 
Calculate α(θj−1, φ) = min (1,

π(φ) l(φ|Mk,yt)

π(θj−1) l(θj−1|Mk,yt)
) (equation (2.8)) 

 θj = φ 

 if α(θj−1, φ) < 1,    sample R ∈ U(0,1) 

      Then if R >  α(θj−1, φ), θj = θj−1     

 Update Rn  :  

 If (j\H =0) 

 Rn =
1

H−1
K̃TK̃                     (equation (2.18)) 

 K̃ = K − E[K]      K=[θj−H+1, … , θj+H] 

 else 

 Rj = Rj−1   

 

 Save them as θg  g = 1,… , G 

 Save the θg with highest l(θg|Mk, yt) as θbest,t,k 
 

 

  Design the next experiment inputs xt  
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xt =
arg max

x
 ∑

[
 
 
 
 

Pt−1(Mk|𝐲𝐭−𝟏 )∏|ŷj(x) − ŷi(x)|

K

j=1
j≠i ]

 
 
 
 K

i=1

 

(equation 

(3.40)) 

 

   where   ŷi(x) =
1

G
∑ yi(x|θg)
G
g=1  (equation 

(3.42)) 

 

  Carry out the experiment to observe the new output data yt    

  for k=1 to K  

  Calculate L(Mk|yt) using L̂(Mi|y) ≈
1

m
 ∑ l(y|Mi, θg)

G
g=1  , (equation (4.12))  

  Update probability of models Pt(Mk|𝐲𝐭) = Pt−1(Mk|𝐲𝐭−𝟏 ) L(Mk|yt), (equation 

(4.6))  

 

  Normalize Pt(Mk|yt) values  

  Stop if   ∃ k ∈ {1,… , K}: Pt(Mk|yt) > Pselection criterion    

 

4.3.2 Second Implementation of SBMCMD: Posterior Based 

The second approach, shown in Figure 4-2, uses the posterior distribution samples in all the 

iterations to estimate the likelihood. The sampling and the marginal likelihood estimation 

blocks are different in this implementation from the corresponding blocks in the first 

implementation. Thus only these two steps will be explained.  The advantage of this 

implementation compared to the first implementation is that it uses the last information 

available in each step by using the parameter posterior probability samples. However it is 

limited to using the MH sampling method only. This method works for most of the cases but 

in situations where multi-modal or discontinuous parameter distributions occur the first 

implementation should be applied using a suitable MCMC methods that can adequately cover 

the parameter space.  
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Figure 4-2:  Sequential Bayesian MC model discrimination - using posterior samples 

 

MC Sampling  

Sampling from the posterior probability has been done by the method in section 2.4.1.1; to 

address the problem of tuning the walking distribution, an adaptive period of sampling is 

considered. For this purpose the adaptive proposal (AP) (Haario et al.,1999) method has been 

used (see section 2.4.1.1).   

Chib’s method uses the reversibility property of the chain. So it is necessary to preserve this 

property. Therefore, AP has been applied only during a preliminary adaptive tuning period.  

According to the diminishing adaptation property (Rudnick, 2009) of the AP method, the 

influence of the adaptation tends to zero.  We check the convergence of the updated covariance 
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matrix and continue the adaptation phase until the condition in equation (4.13) is satisfied or 

the maximum number of iterations is reached:  

 
1

n
∑Σi

n

i=1

−
1

n + 1
∑Σi

n+1

i=1

=
∑ Σi − n × Σn+1
n
i=1

n (n + 1)
= 0 (4.13)  

 

Estimating the Marginal Likelihood 

After generating and saving samples for each candidate model, the marginal likelihood of 

candidate models is estimated using equations (3.20) and (3.31). Then, the model 

probabilities are updated by using equation (4.6) . This implementation is summarized in 

algorithm 4.3. 

 Algorithm 4.3:   SBMCMD : Second implementation  

 Inputs: 

K : Number of rival models 

Nmaxexperiment : Maximum number of experiments  

Pselection criterion: Stop criterion probability  

Nsample: Number of samples in MCMC parameters sampling 

𝐲𝟎 : Preliminary information  

θ0,k: Initial guess for parameters in the kth model   

cd:  Scaling coefficient 

R1 : Initial covariance matrix 

 

 Gather preliminary data points, 𝐲𝟎  

 Set rival model priors : P0(Mk|y0) = π(Mk) so that  ∑ π(Mk)
K
k=1 = 1 (equation 

(4.7)) 
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 Set parameters proper prior distributions for the parameters in each model  

 If ( number of preliminary data points > number of parameters in a model) 

find the best parameters in the kth model, use θ0,k as the initial guess. Save the 

best parameter to the θ0,k. 

 

 for n=1 to Nmaxexperiment  

 for k=1,… K  

 Generate G samples using AP method (section 2.4.1.2), 

 Initialize θ0 : if t=1, θ0 = θ0,k otherwise, θ0 = θbest,n−1,k 

 for j = 1… Nsample 

 Sample z ∈ N(0, cd
2Rj) 

 φ = θj−1 + z 

 
Calculate α(θj−1, φ) = min (1,

π(φ) l(φ|Mk,yn)

π(θj−1) l(θj−1|Mk,yn)
) (equation (2.8)) 

 θj = φ 

 if α(θj−1, φ) < 1,    sample R ∈ U(0,1) 

      then if R >  α(θj−1, φ), θj = θj−1     

  If ( ( j<burn-in size ) & ( j\H =0) ) 

 Rt =
1

H−1
K̃TK̃                     (equation (2.18)) 

 K̃ = K − E[K],    K=[θj−H+1, … , θj+H] 

 else 

 Rj = Rj−1   
 

 save the θg with highest l(θg|Mk, yt) as θbest,t,k 
 

 

 Save them as θg  g = 1,… , G  

 Save final θbest,t,k as θ∗  

 Samples from q(θ∗, θ|𝐲) , save them as {θ(j)}  j = 1,… , J   

 
Calculate  P(θ∗ |𝐲𝐧) =

G−1∑ α(θ(g), θ∗|𝐲)q(θ(g),θ∗|𝐲)G
g=1

J−1∑ α(θ∗, θ(j)|𝐲)J
j=1
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 Update P(Mi|𝐲𝐭): ln P(Mi|𝐲𝐭) = ln l(θ∗|Mi, 𝐲) + ln π(θ∗) − ln P(θ∗|Mi, 𝐲)  

(equation (3.20)) 

 

 Normalize Pt(Mk|yt) values  

 Stop if   ∃ k ∈ {1,… , K}: Pt(Mk|𝐲𝐭) > Pselection criterion    

 Design the next experiment inputs xt  

 

xt =
arg max

x
 ∑

[
 
 
 
 

Pt−1(Mk|yt−1 )∏|ŷj(x) − ŷi(x)|

K

j=1
j≠i ]

 
 
 
 K

i=1

 

(equation (3.40)) 

where   ŷi(x) =
1

G
∑ yi(x|θg)
G
g=1  (equation (3.42)) 

 

 

 Carry out the experiment to observe the new output data yt    

 

4.3.3 Third Implementation of SBMCMD: Posterior and Prior Based Implementation  

 

Figure 4-3 presents the flowchart of SB-MCMD approach with Acceptance –Rejection 

Metropolis Hastings sampling and Chib’s method (Chib and Jeliazkov, 2005). In this 

implementation the model selection procedure is different for the preliminary iterations from 

the others. In the preliminary iterations there may be still not enough information available 

about the system. Thus the marginal likelihood is estimated from the posterior distribution 

samples. But after the preliminary iterations, the prior distributions are informed by the data, 

thus the prior samples are substituted in the likelihood to find the marginal likelihood. The 

advantage of this implementation compared to the first implementation is that updating model 

probabilities are not skipped during the preliminary step. But it is limited to the MCMC 

sampling methods, which can be used with Chib and Jeliazkov’s method, MH and ARMH. 

The advantage of this implementation compared to the second implementation is la lower 
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computation effort after the preliminary steps. In brief, the third implementation tries to benefit 

from both advantages of the first and the second implementations.  

Three blocks from this flowchart are slightly different from the first and the second 

implementations of the SBMCMD framework but other steps are common between all the 

implementations of the SBMCMD framework. These three steps are explained in the following 

and the complete pseudo-code is presented in Algorithm 4.4. 

 

Sampling 

After design of the preliminary experiments and data gathering followed by assignment of 

priors, samples from the posterior distribution of parameters, P(θi|Mi, 𝐲), are generated by 

using the Acceptance Rejection Metrolpolis Hastings method (refer to section 2.3.7). Then 

these samples are saved as the current posterior samples. The most probable sample in each 

model is named as θ∗.  

One of the challenges in the implementation of this framework is selecting the constant c, in 

sampling from the posterior probability, equation (2.13). Using the same c value for different 

iterations is not efficient, since the posterior probability distribution of the parameters, which 

is a stationary distribution of this sampling process changes in each cycle, thus its upper limit 

changes. To overcome this problem and to achieve a reasonable acceptance probability in all 

iterations, we generate a batch of samples of parameters from the posterior distribution before 

the main sampling process and estimate the c value.  
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Another important issue is the selection of the prior and the proposal distributions. This 

implementation is used in the first case study in Chapter 5. In this case, we assumed that the 

prior and the posterior both are beta distributions. In addition, we updated the prior and the 

posterior distribution parameters in each cycle to adapt their pick with the best parameter found 

in the last cycle. This updating occurs before starting a new loop; thus, the MCMC sampling 

is not affected.  

 

 

Figure 4-3:  Sequential Bayesian MC model discrimination using both prior and posterior samples 

 

 

Estimation of the Marginal Likelihood Using Posterior Samples 

The posterior probability of θ∗ is estimated by equation (3.31). Obtaining p(θ∗|Mi, 𝐲), the 

marginal likelihood of each model is estimated by equation (3.20). After that the posterior 

probability of each model could be updated using equation (4.6).  
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Estimation of the Marginal Likelihood Using Prior Samples 

From this point, the first iteration of the sequential procedure is over and the second iteration 

starts; thus, the saved parameter samples are the prior samples.  

 Algorithm 4.6:   SBMCMD : Third implementation  

 Inputs: 

K : Number of rival models 

Nmaxexperiment : Maximum number of experiments  

Pselection criterion: Stop criterion probability  

𝐲𝟎 : Preliminary information  

θ0,k: Initial guess for parameters in the kth model   

 

 Gather preliminary data points, 𝐲𝟎  

 Set rival model priors : P0(Mk|𝐲𝟎) = π(Mk) so that  ∑ π(Mk)
K
k=1 = 1 (equation 

(4.7)) 

 

 Set parameters proper prior distributions for the parameters in each model  

 if ( number of preliminary data points > number of parameters in a model) 

find the best parameters in the kth model, use θ0,k as the initial guess. Save the best 

parameter to the θ0,k. 

 

  for n = 1 to Nmaxexperiment  

   for k=1,… K  

   generate G samples using ARMH method (section 2.3.7), 

 Initialize θ0 : if n = 1, θ0 = θ0,k otherwise, θ0 = θbest,t−1,k 

 for j = 1… Nsample 

 Sample φ ∈ q(θ) 

 Calculate αAR = min (1,
π(φ)l(φ|Mk,𝐲)

c×q(φ)
) (equation (2.14)) 

 Sample R ∈ U(0,1) 

  if R >  α(θj−1, φ) , Sample  new φ 
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 θj = φ 

 if   θj−1 ∉ D 

 if φ ∈ D      αMH(θ
j−1, φ|𝐲) =

c×q(θj−1)

π(θj−1)l(θj−1|Mk,𝐲)
 

 if φ ∈ Dc     αMH(θ
j−1, φ|𝐲) = min {1,

π(θ)l(θ|Mk,𝐲) q(θ)

 π(φ)l(φ|Mk,𝐲) q(φ)
} 

 Sample R ∈ U(0,1) 

 if R >  α(θj−1, Y)    θj = θj−1 

 Save the θg with highest l(θg|Mk, yt) as θbest,t,k 
 

   Save samples as θg  g = 1, … , G  

   Save final θbest,t,k as θ∗  

   Samples from q(θ∗, θ|𝐲) , save them as {θ(j)}  j = 1,… , J   

   
Calculate  P(θ∗ |y) =

G−1∑ α(θ(g), θ∗|y)q(θ(g),θ∗|y)G
g=1

J−1∑ α(θ∗, θ(j)|y)J
j=1

 
 

   Calculate P(Mi|𝐲): ln P(Mi|𝐲) = ln l(θ∗|Mi, 𝐲) + ln π(θ∗) − ln P(θ∗|Mi, 𝐲)  

(equation (3.20)) 

 

  Normalize Pt(Mk|yt) values  

  Stop if   ∃ k ∈ {1,… , K}: Pt(Mk|yt) > Pselection criterion    

  Design the next experiment inputs xt  

  

xt =
arg max

x
 ∑

[
 
 
 
 

Pt−1(Mk|yt−1 )∏|ŷj(x) − ŷi(x)|

K

j=1
j≠i ]

 
 
 
 K

i=1

 

(equation (3.40)) 

where   ŷi(x) =
1

G
∑ yi(x|θg)
G
g=1  (equation (3.42)) 

 

 

  Carry out the experiment to observe the new output data yt    

4.4 Comparing the Three Implementations 

Table 4.1 summarizes the difference between three implementations of the SBMCMD.  
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Table 4-1:   Comparison between three implementations of SBMCMD 

 Implementation 1 Implementation 2 Implementation 3 

Sampling from : Prior parameter 

distributions 

Posterior parameter 

distributions 

Prior and posterior 

parameter 

distributions 

Implemented 

sampling method: 

Adaptive Random 

Walk Metropolis 

Hasting 

Metropolis Hasting 

with preliminary 

adaptive period 

Acceptance 

Rejection 

Metropolis Hastings  

Marginal likelihood 

estimation method 

Average of sample 

marginal likelihoods 

Chib and Jeliazkov’s  

method 

First, Chib and 

Jeliazkov’s  method, 

then Average of 

sample marginal 

likelihoods 

MCMC sampling 

method applicable in 

this framework 

Any  Either ARMH or 

MH with related 

Chib and Jeliazkov’s  

method 

Either ARMH or 

MH with related 

Chib and Jeliazkov’s 

method for the 

preliminary steps. 

Any for after 

preliminary steps.  
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In conclusion when preliminary knowledge are available from the physical system under 

investigation and it is desired to implement the simplest version of the SBMCMD, the first 

implementation is recommended. Also in cases where the models have discontinuous 

parameter spaces, or multi-modal parameter distributions, this implementation is the only 

choice because it has no limitations with respect to the MCMC sampling method and a suitable 

sampling method, which can handle the particular parameter space, can be used.  

Of the three implementations, the posterior based implementation should produce the most 

accurate results, since it uses all the updated information in its sampling procedure. The case 

study presented in section 5.2 shows slightly better results for this implementation compared 

to the first implementation.  

The third implementation is like the first implementation after the preliminary steps. But it is 

limited to ARMH and MH sampling procedures like the second implementation. Whenever it 

is possible to tune the proposal distribution in the ARMH sampling, it is computationally more 

efficient compared to the MH method.  

4.5 Computational Implementation 

 

The proposed framework is implemented in C++ programming language, and parallel 

programming is used to speed up the program by evaluating independent “for loops” in 

parallel.  The framework has been designed based on the object oriented concepts.  Some parts 

of the structure of the implemented program are shown in in UML diagrams in Appendix E.  
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4.5.1 Parallel Model Discrimination  

The sampling procedure and the optimization in the DOE step are two computational time 

bottle-necks in these procedures. In a multi-thread program, the sampling procedure for 

different models and calculation of the predicted outputs could be assigned to different threads.  

For that purpose, OpenMP (Open Multiprocessing), which is an API (application programming 

interface) library, has been used in the implementation of the SBMCMD framework.  This 

technique speed up the process but is limited to the number of the rival models. When the 

number of models is much less than the number of available processors, using the parallel 

MCMC methods will be beneficial.  

4.5.2 Parallel MCMC Sampling  

Sampling from Markov chains is not easily made parallel although it would be very beneficial 

to do so. The reason is that the current sample depends on the last one so they should be in the 

same thread. Making MCMC sampling an efficient parallel algorithm is still a hot topic in the 

statistical literature. Byrd (2010) introduced a method that is simple and easily implementable 

although the speed up is not proportional to the number of processors. He showed the 

application of speculative moves, where different threads generate candidate samples. For 

example, if there are three threads, three candidate samples are generated by any of them. Let’s 

call them θ′, θ′′, and θ′′′. All these threads calculate their α values. If the first candidate is not 

accepted, then the second one may be accepted. If the second one will be rejected too, the third 

one should be considered. This procedure could be implemented with more threads to increase 

the efficiency of the sampling.  
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This procedure has been tried during this study but has not been used in the final version of 

our framework. However, it is suggested for the future work to make the framework parallel 

and increase its speed.  
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Chapter 5 

Case Studies 

The objective of this study is to explore the effectiveness of the Sequential Bayesian Monte 

Carlo Model Discrimination (SBMCMD) framework. To achieve this objective, the method is 

applied to several case studies. In this research, computer simulation is used to generate 

experimental data for all the case studies presented in this chapter by assuming that one of the 

competing models is the “real system”. This allows us to explore the performance of the 

method in different situations and determine their advantage and disadvantages, which is the 

focus of this research.  

5.1 Order of Reaction  

The example presented here has been used previously in Hsiang and Reilly (1971) and Box 

and Hill (1967) and has been recently used by Masoumi et al. (2012). In this case study, four 

models are proposed as rival ones for modeling a chemical reaction B → C.  These models are 

obtained by assuming that the reaction rate is either first, second, third or fourth order.  The 

competing models are shown in the following:  

 

  

f1(t, T, A1, E1) = exp [−A1t exp (−
E1
T
)] + ε1 

f2(t, T, A2, E2) =  [1 + A2t exp (−
E2
T
)]

−1

+ε2 

 f3(t, T, A3, E3) = [1 + 2A3t exp (−
E3

T
)]

−
1

2
+ε3 

f4(t, T, A4, E4) =  [1 + 3A4t exp (−
E4
T
)]

−1/3

+ε4 

(5.1)  
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where fi(t, T, Ai, Ei)  represents the fraction of component B remaining after time t (minutes) 

at temperature T (Kelvin), Ei is the activation energy divided by the universal gas constant, Ai 

is the pre-exponential factor, and εi is the measurement error which is assumed normally 

distributed with mean zero and known standard deviation.  These models have two input 

variables, which are time and temperature.  The range for time is 0 < 𝑡𝑖 ≤ 150 in minutes and 

the temperature range is 450 ≤ Ti ≤ 600  in degrees Kelvin.   

Experimental results are simulated by assuming one of the candidate models to be the correct 

one with the true values of the parameters set to Ai = 400 and Ei = 5000.  The range of 

parameters is set to 1000 < Ei < 10000 and 100 ≤ Ai ≤ 1000
 
.  Note that outside of this 

range the prior probability is zero.  The preliminary experiments are the same as those used by 

Box and Hill (1976). They obtained the preliminary experimental conditions from a 22 factorial 

design with the levels of ti set to 25 and 125 minutes and levels of Ti equal to 475 and 575 

degrees in Kelvin.  

The third implementation of the SBMCMD framework has been applied to this case study. The 

candidate models have a simpler structure compared to the models in the other case studies 

reported in this thesis. Therefore, selecting a suitable proposal distribution for the ARMH 

sampling procedure was not a problem. Thus the third implementation was applied to test the 

efficiency of this version of the SBMCMD method.  In addition different values of the standard 

deviation were used in our study in order to assess the impact of the error magnitude on our 

ability to discriminate between the rival models.  Here the standard deviation is set to values 

in the range from 0.01 to 0.1 in steps of 0.01.  Each of the rival models was set in turn to be 

the correct model in order to explore whether or not the model structure affected our ability to 
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discriminate.  The discrimination process was stopped either when the number of designed 

experiments reached 20 or one of the model posterior probabilities was greater than 95%.  

In this case study the normal distribution is used both for the error generation of the simulated 

real system and for establishing the likelihood function of the candidate models. The standard 

deviations of the likelihood distributions are set to be higher or equal to the standard deviations 

used to generate the errors in the simulated data.  Normally the true value of the measurement 

standard deviation is unknown. Therefore, a conservative approach is to set the likelihood 

standard deviation to a value, which overestimates the real system standard deviation.   

The effect of the standard deviation was examined in two separate studies.  In the first, the 

results of which are shown in Table 5-1, the standard error was limited to a maximum of 0.07.  

The standard deviation of the errors is varied from 0.01 to 0.07 in steps of 0.01 (7 levels).  With 

the likelihood standard deviation set to be higher than or equal to the measurement error 

standard deviation, a total of 28 cases are tested for each model.  For each of the 28 cases 30 

independent simulations were run, yielding a total of 840 runs for each model, to get an average 

result.  Each of the rival models was used as the “real” model in turn.  So, a total of 112 cases 

involving 3360 runs were tested. For the range of errors studied the correct model was found 

in almost all of the cases.  There were little to no differences in the success of the algorithm 

depending upon which model was the “true” model generating the data.  

Table 5-2 presents results from a case study in which the upper limit of the error standard 

deviation is increased to 0.1. Again the error standard deviation of the model is assumed higher 

or equal to the real system. There are now a total of 220 cases, 55 for each model.  With 30 

independent runs per case, a total of 1650 runs per model, involving a total of 6600 runs were 
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carried out.  The higher error level had little impact on selecting models 1 and 2 as the correct 

model.  However when higher order kinetics were active, it became more difficult to identify 

the correct model within 20 experiments. It should be noted that the responses for models 1 

and 2 are quite different from models 3 and 4, which helps to explain why they are identified 

almost always correctly.  Comparing Table 5-1 and Table 5-2 shows that the higher error makes 

the discrimination more difficult, particularly for models 3 and 4.  

 
Table 5-1:   Error standard deviation 0.01-0.07 (840 cases) 

 “Real” model % of runs where P(Mi) > 0.95 

Model 1 ( i=1 ) 838/840=99.7% 

Model 2 ( i=2 ) 834/840=99.3% 

Model 3 ( i=3 ) 821/840=97.8% 

Model 4 ( i=4 ) 835/840=99.4% 
 

 

  

Table 5-2:   Error standard deviation 0.01-0.1 (1650 cases) 

“Real” model % of runs where P(Mi) > 0.95 

Model 1 1645/1650=99.7% 

Model 2 1625/1650=98.5% 

Model 3 1427/1650=86.5% 

Model 4 1511/1650=91.6% 
 

 

 

Table 5-3 focuses on the cases with high level of error. It shows results when the error has 

three levels: 0.08, 0.09, and 0.1. The second column indicates that the procedure cannot 

discriminate between models 3 and 4 properly when the error is high and the stopping criterion 

is set to a posterior probability of 95% or greater.  The third column shows that if we decrease 

the stopping criterion to 80% instead of 95%, the procedure can pick the correct model in 

significantly more cases. The results are even better when the posterior probability is reduced 

to 70%.  The results show that although for models 3 and 4 the procedure has difficulty picking 

the correct model properly when the stopping criterion was higher than 95% probability, the 
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procedure was moving in the right direction and presumably with more experiments would 

have likely chosen the correct model.  

 
Table 5-3:   Error standard deviation 0.08-0.1 (810 cases) 

“Real” model P(Mi) >0.95 P(Mi) >0.8 P(Mi) >0.7 

Model 1 0.996296 0.997531 0.997531 

Model 2 0.976543 0.991358 0.991358 

Model 3 0.748148 0.917284 0.945679 

Model 4 0.834568 0.944444 0.965432 
 

 

 

Finally, Table 5-4 shows the average number of model discrimination trials that were needed 

beyond the preliminary experiments to identify the correct model with a probability of 95%.  

As expected, lower error levels require fewer model discrimination experiments.  In addition 

the procedure generally requires fewer experiments to detect the correct model, when models 

1 or 2 are the ones generating the data.  This implies that more complex kinetics require more 

experimental effort to detect the correct model.   

 

Table 5-4:   Average number of experiments after the preliminary experiments 

 Average number of experiments 

“Real” model Error: 0.01-0.1 Error: 0.01-0.07 Error: 0.08-0.1 

Model 1 2.147879 0.736905 3.611111 

Model 2 5.286667 2.295238 8.388889 

Model 3 10.0103 5.20119 14.99753 

Model 4 8.221212 3.958333 12.64198 
 

 

The results are also shown in the 3D plots in the following. Figure 5-1 shows the final 

probability of model 2 on the z-axis, for the cases where this model is the correct model, versus 

the standard deviation (s.d.) in the real system and the standard deviation in the likelihood 

function of the models. Cases with probability equal or higher than 80% are shown with red 

dots and cases which have a probability less than 80% are presented with ×. . This plot shows 
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that a few of the results are below this surface. Figure 5-2 shows the same results when the 

correct model is model 3.  

 

Figure 5-1:  Probability of model 2, when it is the correct one (red dots shows probabilities higher 

than 0.8)   

 

Figure 5-2:  Probability of model 3, when it is the correct one (red dots shows probabilities higher 

than 0.8) 
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Figure 5-3:  Probability of model 3, when it is the correct one (red dots shows probabilities higher 

than 0.5) 

 

 

 

Figure 5-4:  Probability of model 4, when it is the correct one (red dots shows probabilities higher 

than 0.8) 
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Figure 5-3 presents the same results but cases with 50% or higher probability are shown with 

red dots. This shows that although some final probabilities are less than 80%, they are still 

mostly higher than 50%. Figure 5-4 shows the same results when the correct model is model 

number 4. 

Table A-1 (Appendix A) shows the average probability of each model, from 30 replicates, 

when it is the “correct” one for each combination of the real error and the likelihood function 

error value. The cells with a probability less than 0.95 are highlighted in this table. The fact 

that highlighted cells are concentrated in the bottom of the table where the errors are higher, 

shows that high levels of error make model discrimination more difficult as expected. 

5.2 Rate of Feiii Formation 

The reaction studied in this section is the steady-state oxidation of ferrous iron by Ferrobacillus 

ferrooxidans.  The experimental conditions consist of the concentration of the FeII ion denoted 

by [A], and the concentration of the FeIII ion denoted by [I] . The parameters in the models are 

the oxidation rate constant ki1 and the inhibition rate constant ki2 .  There are three functional 

forms proposed to explain the mechanism.  The resulting models are shown in equations (5.2)-

(5.4).  

  f1([A], [I], k11, k12) =  
k11[A]

5.5 + [A] +  5.5 k12[I]
+ ε1 

(5.2)  

 f2([A], [I], k21, k22) =  
k21[A]

(5.5 + [A])(1 + k22[I])
+ ε2 

(5.3)  

 f3([A], [I], k31, k32) =  
k31[A]

5.5 + [A](1 + k32[I])
+ ε3 

(5.4)  
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where fi  is the rate of formation of the FeIII ion (mol/ L. s) under the ith model and 5.5 is the 

Michaelis-Menten constant. The measurement error εi is assumed to be normally distributed 

with mean zero and known standard deviation.  This case study has been used previously in 

the assessment of model discrimination techniques by Hsiang and Reilly (1971) and Burke et. 

al (1997).  In this study, data were simulated, by using each of the three models in turn as the 

“real” model.  The “true” parameters used for the data generation are given in Table 5.5.  

Random experimental errors were added to all simulated data.  The experimental error was 

assumed to be Normal and additive.  Errors were generated with standard deviations set to 

values between 1 and 6 in increments of 1. Different values of the error standard deviation 

were used in order to determine whether or not the measurement error magnitude affects our 

ability to discriminate between the models.   

 
Table 5-5: “True” parameter values used for data generation 

Model ki1 ki2 

1 1501 22.1 

2 1502 22.2 

3 1503 22.3 
 

 

 

In this case study, the normal distribution is used to generate experimental errors and to 

establish the likelihood functions of the candidate models.  However the standard deviations 

used in the likelihood functions were set to be higher or equal to the one used to simulate the 

errors.  So for example when the experimental error standard deviation was 3, the standard 

deviations used in the likelihood function were 3 to 6 in increments of 1.  This is done to reflect 

the fact that the true error variance is normally not known and by using a standard deviation in 

the likelihood that overestimates the true standard deviation the approach is a conservative one.  
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In the remainder of this section the results of two tests will be presented where the ranges of 

the unknown parameter space are different. In both tests, there have been considered ∑ 𝑖6
𝑖=1 =

21 scenarios with 5 replicates for each model. Thus, 315 cases were tested in total. The 

procedure stops when one of the model probabilities reaches 95%, or when the number of 

experiments reaches 20.   

5.2.1 Study 1  

In this study, the prior probability for each model was set to 1/3 while a beta distribution was 

used as the prior for the parameters. The ranges of the parameters were set to 100 < k1 <

9000 and 1 < k2 < 1000. These ranges are chosen to be quite broad to ensure adequate 

coverage. As shown in Burke et al. (1997), five preliminary data were generated using a two-

level factorial experiment with center point in [A] and [I].  These data were used to first 

establish the posterior probability density of the model parameters before initiating the model 

discrimination phase of the analysis. In addition, the preliminary data were used to estimate 

the best parameter in each model. Then the prior distribution of parameters in each model was 

adapted to fit its mode to the best parameters value found in the parameter estimation step.  

The posterior base or second implementation is applied to this case study. We first tried the 

third implementation with the ARMH sampling method but the sampling process failed 

frequency and needed to be tuned for each scenario. Therefore we switched to the second 

implementation with adaptive preliminary sampling period to address the tuning problem. 

Table 5-6 shows the results using the SBMCMD. When models 1 and 3 were the model 

generating the data, the method was able to discriminate and identify the correct model in 

virtually all cases indicating that experimental error, over the range studied, has little to no 
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effect on our ability to discriminate.  For model 2, the method identifies it as the correct model 

in 75 out of 105 cases.  If we examine the 30 cases where model 2 was not picked with a 

probability of 95%, there were 20 cases where the maximum number of experiments was 

reached.  In 15 of these cases the model probability for model 2 was 60% indicating that in 

these cases it is likely that if more experiments than 20 had been carried out eventually mode 

2 would be correctly chosen.  In the remaining 10 cases model 3 was incorrectly chosen as the 

right model.  

The results show that the method is successful in discriminating between these models and 

even in most of the cases where a model probability of 95% was not reached, it appears that 

with more trials the correct model would have eventually been found.  

 
Table 5-6:   Cases which the “best” model has selected correctly 

“Real” model Probability > 0.95 Probability > 0.6 

Model 1 105/105=100% 105/105=100% 

Model 2 75/105=71.4% 90/105=85.7% 

Model 3 103/105=98.1% 105/105=100% 

Total 283/315=89.8% 300/315=95.2% 
 

 

 

According to the results in Table 5-6 it is more difficult to discriminate between the models 

when model 2 is the “correct” one. Comparing the denominators of the functions in equation 

5.2 - 5.4 shows that model 2 has an extra term, k2{I][A], in its denominator compared to  model 

1. In the same way, it has term 5.5 k2[I] in its denominator in addition to the three terms that 

model 3 has. Thus model 2 can behave like either model 1 or model 2 for some values of [I] 

and [𝐴]. Therefore the structure of model 2 makes it more difficult to select this model as the 

“correct” one, whenever it is the one generating the “real” data.  



 

 95 

Figure 5-5 shows the joint posterior probability density function for the two model parameters 

for each of the three candidate models for a case where the true model was selected in four 

iterations. In each subplot, the x-axis shows k1 and the y-axis shows k2  values. The figure 

shows how with more iterations, in other words more experimental data, the parameter joint 

distributions become smaller very quickly.  

 

Figure 5-5: The evolution of the joint posterior probability density functions for the two parameters 

(k1 and k2) in each of models 1 to 3 as a function of the iteration number 

 

Figure 5-6 shows probability of models versus iteration or number of experimental data for a 

particular case where the second model is the correct one.  In this case 14 experiments were 
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designed and carried before the stopping criterion was satisfied.   One can see a very smooth 

convergence of the model probabilities to their final values.  

 

Figure 5-6:  The trajectory of model probabilities versus number of iterations 

 

5.2.2 Study 2 

In this study the prior based and the posterior based implementations of the SBMCMD 

framework have been applied to the case study to compare their effectiveness in model 

discrimination. We first tried to apply the prior-based implementation of SBMCMD without 

any preliminary experiment but we found that the sampling process is too sensitive to the 

assumed initial values and the range of the parameters. The parameter distribution plots helped 

to identify the reason. Figure 5-7 contains 9 sub plots, which present the probability 

distribution of parameters in three candidate models when model 3 is the true model.  These 

sub-plots are arranged in a 3 by 3 table where each column represents a model. The first row 
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of subplots shows the posterior distributions using one observed data point. The second row 

shows the posterior distributions after adding another data point and the third row contains 

parameters probability distributions from three experimental data points. The range of 

parameters in these plots are 100 < k1 < 9000 and 1 < k2 < 1000, which are the same 

ranges used in the first study. 

When there is only one data point available (first row of subplots in Figure 5-7) the distribution 

of the parameters is a multi-modal one, which is hard to sample from. That explains why our 

sampling procedure was failing and it was sensitive to the initial point.   

 

Figure 5-7:  Posterior probability of parameters 

 

Based on the preliminary information shown in Figure 5-7, to compare the two 

implementations of the SBMCMD framework, we limited the search space to 1000 < k1 <
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2000 and 10 < k2 < 100. These narrower ranges imply that we have better prior information 

about the model parameters. Then we used a uniform distribution as the prior over these ranges.  

Again the same 315 scenarios from the first study were tried. Table 5.7 and Table 5.8 show the 

results of applying the prior based and posterior based implementations respectively. In the 

prior based implementation we first started the procedure with two preliminary data points then 

updating the models probabilities is skipped until the third model discrimination experiment 

has been designed yielding a total of five data points, including the two preliminary ones. In 

order to determine the effect of using fewer preliminary data points, we performed a second 

analysis in which the model probabilities were updated after the first designed experiment. In 

other words there was a total of three data points including the two preliminary data. The results 

are summarized in Table 5-7.  The entries in each column show the number of times a particular 

model was chosen.  The entries on the left correspond to the cases where five preliminary data 

were used, while the entries on the right correspond to the trials with three preliminary data 

points.  For example when model 2 was used as the “true” model (row 2), model 2 was chosen 

as the correct one 97 times out of 105 when three preliminary data were used and 95 times out 

of 105 when five preliminary data were used.  Overall the results show that fewer preliminary 

data can be used compared to the studies of Burke et al. (1997) and Hsiang and Reilly (1971).   

To compare the prior-based sampling approach to the posterior-based sampling approach we 

repeated the analysis in which five preliminary data were used with the posterior-based 

sampling approach.  Note that for this the five preliminary data were generated using a factorial 

design. 
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Table 5-7:   SBMCMD - Prior implementation 

                      Selected 

Real   

      

Model 1 Model 2 Model 3 

3 points 5 points 3 points 5 points 3 points 5 points 

Model 1 105 105 0 0 0 0 

Model 2 2 3 97 95 6 7 

Model 3 3 1 5 6 97 98 

 

Table 5-8 summarizes the results of this study.  We see a slight improvement when model two 

and three are the “true” models.  This is expected since the posterior-based approach is 

supposed to be more accurate and converge faster to the correct model, since it uses the latest 

available information to estimate the marginal likelihood. The prior based method assumed 

that the prior and the posterior distribution are in good harmony which is only valid when 

enough information from the system is available. As shown, compared with the posterior-based 

approach it performs quite well. In addition it is possible to use different MCMC sampling 

methods with it.  The posterior based method however is limited to using The Random Walk 

Metropolis Hastings sampling procedure.  

 

Table 5-8: SBMCMD - Posterior implementation 

                              Selected 

   Real   

      

Model 1 Model 2 Model 3 

Model 1 105 0 0 

Model 2 0 103 2 

Model 3 1 1 103 
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Note that although here the posterior based one shows slightly better results this might not be 

true in general. The prior based SBMCMD with 5 and 3 preliminary data points, in table 5-7, 

shows close results. That implies that for this case study the estimation in equation (4.12) was 

a good approximation by using two data appoints and the parameters probability distribution 

did not change dramatically by adding two more data points. 

Theoretically, SBMCMD methods can start running without any prior information. But 

accurate sampling from an unshaped posterior distribution may not be easy. Thus it is always 

beneficial to start with some preliminary data.  

The results for tables 5-6 and 5-8, which are both for the posterior-based sampling method 

using five preliminary data, differ only in the ranges used for the model parameters.  Table 5-

8, which is based on narrower parameter ranges, shows somewhat better results for model 2.  

This demonstrates that the selection of the parameter ranges can be important in some cases. 

Table 5-9 shows the average number of total experiments including preliminary ones when 

applying different implementations.  The second method requires slightly fewer experiments 

and that is expected as it uses more experiments designed using the model discrimination 

criterion. Results for the second and the third methods used are not significantly different when 

model 2 and model 3 are used as the “true” model. In all cases when model 1 is the “true” 

model, the discrimination process easily identifies it to be the correct model. 
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Table 5-9:   Average number of experiments 

 Method Model 1 Model 2 Model 3 

1. Posterior implementation (5 preliminary 

points,  

all from the factorial design) 

5.5 8.7 8.2 

2. Prior implementation (5 preliminary points,  

3 from model discrimination DOE) 
5.0 7.3 6.4 

3. Prior implementation (3 preliminary points,  

1 from model discrimination DOE) 
3.1 6.2 5.6 

 

5.3 Copolymerization 

The two main competitive models for copolymerization systems are the terminal and 

penultimate. The difference between the terminal and penultimate copolymerization models is 

in their propagation steps. The terminal model assumes that only the last unit in the growing 

chain influences the rate of monomer addition. On the other hand, the penultimate model 

assumes that the last two monomer units of the growing radical chain influence the monomer 

addition reaction. The terminal propagation step is represented by four reactions, which can be 

shown by: 

 Rn,i. +mj

kij
→ Rn+1,j. (5.5)  

 

where the first subscript on R denotes the radical chain length, i and j are used to denote 

monomer units (1 or 2), and kij is the rate constant for addition of monomer j to a radical 

ending in unit i. mj shows a j unit monomer. Letting Rn,ij represent a radical with terminal 
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unit j and penultimate unit i, eight propagation reactions in the penultimate model can be 

summarized in the form shown in equation (5.6). 

 Rn,ij. +mk

kijk
→ Rn+1,jk. (5.6)  

 

The terminal model is usually expressed in terms of two homo-polymerization rate constants 

k11 and k22 and two monomer reactivity ratios which are defined in equation (5.7). 

 r1 =
k11
k12

;     r2 =
k22
k21

 
(5.7)  

 

In the same way, the penultimate model is usually expressed in terms of the two homo-

polymerization rate constants k111 and k222, along with four monomer reactivity ratios shown 

in equation (5.8), 

 

 

r11 = 
k111
k112

; r21 = 
k211
k212

r22 = 
k222
k221

; r12 = 
k122
k121

 
(5.8)  

 

and two radical reactivity ratios, 

 s1 = 
k211
k111

; s2 =
k122
k222

 
(5.9)  

 

The terminal model can be derived from the penultimate one by applying the constraints in 

equation (5.10). Thus the terminal model is nested within the penultimate model.   

 

r̂11 = r̂21
r̂22 = r̂12

ŝ1 = ŝ2 = 1 
 (5.10)  



 

 103 

 

5.3.1 Simulation of “Real” System  

Three different copolymerization systems are considered, Styrene and Methyl Methacrylate 

(STY/MMA), Styrene Acrylonitrile (STY/AN), and Styrene and Butyl Acrylate (BBA). In this 

section first the general model of the “real” system is described; then the simulation conditions 

for STY/AN, STY/MMA, and STY/BA will be presented.  

Table 5-10 shows all the reactions considered in the “general” copolymerization model. 

“General” in this case means that the model can generate both data for the terminal and for the 

penultimate model.  

 

Table 5-10:   Copolymerization mechanism 

Reaction Reaction step  

Initiator decomposition I
kd
→ R.in  (5.11)  

Propagating R.n,ij +mk

kijk
→ R.n+1,jk (5.12)  

Transfer of radical to monomer R.n,ij +mk

kfM,ijk
→    Pn + R

.
1,k (5.13)  

Termination R.n,ij + R.m,kl

kt,ijkl
→   Pn+m     or  Pn + Pm (5.14)  

 

where I  represents the initiator and Rin. is the primary radical from the initiator. R.n,ij is a 

radical with n monomer units, with the two final monomers being i and j. Pn is a dead polymer 

with n monomer units and mk is a monomer of type k (1 or 2). kd is the initiator decomposition 
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rate constant, kijk and kfM,ijk are the propagation and the transfer to monomer rate constants for the 

radical ending in monomers ij adding monomer k. kt,ijkl is the termination rate constant between 

the radicals ending in monomers ij and kl. 

Table 5-11 presents the mass balance equations in the general modeling of copolymerization. 

The model obtained from these equations is used as the “real” system simulator.  

 

Table 5-11:   Mass balance in copolymerization 

Species Mass balance  

Initiator dNI

dt
= −kdNI (5.15)  

Radical concentration 
[R. ] = (

2fkdNI
ktV

)
1/2

 (5.16)  

Monomer 1 dN1
dt

= −
[r21N1

2 (
r11N1 + N2
r21N1 + N2

) + N1N2] [R. ]

r21 + N1
k111

(
r11N1 + N2/s1
r21N1 + N2

) +
r21N2
k222

(
r22N2 + N1/s2
r12N2 + N1

)
 

(5.17)  

Monomer 2 dN2

dt
= −

[r12N2
2 (
r22N2 + N1
r12N2 + N1

) + N1N2] [R. ]

r21 + N1
k111

(
r11N1 + N2/s1
r21N1 + N2

) +
r21N2
k222

(
r22N2 + N1/s2
r12N2 + N1

)
 

(5.18)  

Bound monomer dNp

dt
= −

dN1
dt

−
dN2

dt
 (5.19)  

Conversion dx

dt
=
dNp

dt

1

N1 + N2 + Np
 

(5.20)  

volume 
dV

dt
=
dN1
dt

MW1 (
1

ρ1
−

1

ρp
)

1

1000
+
dN2

dt
MW2 (

1

ρ2
−

1

ρp
)

1

1000
 

(5.21)  
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where NI denotes initiator moles, N1 moles of monomer 1, N2 moles of monomer 2, and Np 

moles of monomer bound in the polymer. MW and ρ are the  molecular weight and density and  

s1 and s2 are radical reactivity ratios. [R. ] denotes the concentration of radicals, kd the initiator 

decomposition rate constant, and kt the overall termination rate constant. 

For simulation of the real system, first the above set of differential equations is solved until the 

time at which x(t) = x, where x is the target conversion, which is considered to be an input to 

the simulation.  Defining the final moles of monomer 1 and monomer 2 by N1,x and N2,x, the 

final mole fractions of the reacting monomers are calculated from: 

 

f1,x =
N1,x

N1,x + N2,x
 

 f2,x = 1 − f1,x 

(5.22)  

Next the instantaneous triad fractions for the penultimate model, Aijk, are calculated using 

equations (5.23) to (5.25). A222,  A122 and A221 are obtained by replacing indices 1 and 2 in the 

following symmetrical equations:    

 A111 =
r21r11f1,x

2

r21r11f1,x
2 + 2r21f1,xf2,x + f2,x

2  
(5.23)  

 
A211 = A112 =

r21f1,xf2,x

r21r11f1,x
2 + 2r21f1,xf2,x + f2,x

2  
(5.24)  

 
A212 =

f2,x
2

r21r11f1,x
2 + 2r21f1,xf2,x + f2,x

2  
(5.25)  

Equations (5.23) to (5.25) can be simplified to yield the triad fraction equations for the terminal 

model by using the relationship shown in equation (5.10). The homo-polymerization constants 

used for Styrene and Methyl Methacrylate, Acrylonitrile and Butyl Acrylate are shown in 
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Appendix C, Table C-1, Table C-2, Table C-4 and Table C-7, respectively. The reactivity ratios 

and other required parameters for STY/MMA, STY/AN and STY/BA are presented in Table 

C-3, Table C-5 and Table C-6.  

The output results of simulating three copolymerization systems have been compared with the 

real data in the same way that Burke (1994) presented them. To demonstrate that the model 

can predict the experimental data, conversion versus time and composition versus conversion 

in STY/MMA are presented in Figure 5-8 and Figure 5-9, respectively. Also the experimental 

data points, presented by Huang (1988), are shown in these two plots. The symbols in Figures 

5-8 and 5-9 represent the experimental data of Huang (1988) at 60 ℃  and [I] =0.01 mol/L. 

The lines are model predictions using the general model in Table 5-11 with different values 

for f1,0 which are shown in the legend of the plots. The simulated real system outputs produced 

in this study are exactly the same as those reported by Burke (1994). Therefore, for STY/BA 

and STY/AN one can refer to Burke (1994). 

 

 

Figure 5-8:  Conversion versus time for STY/MMA 
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Figure 5-9:  Composition versus conversion for STY/MMA. 

 

Comparison between the experimental data and the model predictions shows that the general 

model predicts the real system behavior well.  

5.3.2 Terminal and Penultimate Copolymerization Models 

Section 5.3.1 presented the model used to generate the data in this case study.  Here we present 

the competing models which represent the candidate models used in the model discrimination 

study.  

The instantaneous mole fraction of monomer 1 bound in the copolymer, shown by F1, for the 

terminal model is calculated from equation (5.26).  

 F1 =
r1f1

2 + f1f2

r1f1
2 + 2f1f2 + r2f2

2 
(5.26)  

Equation (5.27) presents the corresponding equation for the penultimate model.  
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 F1 =
r21f1

2 (
r11f1 + f2
r21f1 + f2

) + f1f2

r21f1
2 (
r11f1 + f2
r21f1 + f2

) + 2f1f2 + r12f2
2 (
r22f2 + f1
r12f2 + f1

)
 

(5.27)  

Feed composition, f1, and molar conversion are related to each other by equation (5.28). This 

equation can be integrated analytically for the terminal model. The resulting equations are 

shown in equation (5.29) and (5.30). This equation is called the Meyer-Lowry equation.  

 ln(1 − x) = ∫
df1

F1 − f1

f1

f1,0

 
(5.28)  

 x = 1 − (
f1
f1,0

)

α

(
1 − f1
1_f1,0

)

β

(
f1,0 − δ

f1 − δ
)
γ

 (5.29)  

 

α =
r2

1 − r2
;       β =

r1
1_r1

 

γ =
1 − r1r2

(1 − r1)(1 − r2)
;        δ =

1 − r_2

2 − r1 − r2
 

(5.30)  

Equation (5.28) should be integrated numerically for the penultimate model.  

 F1 =
f1,0
x
−
(1 − x)f1

x
 (5.31)  

Therefore, considering the terminal and penultimate models as competitive ones with the above 

equations in model discrimination, they have two, {r1, r2} and four {r11, r12, r22, r21} , 

unknown parameters respectively.  The parameters s1and s2 shown in equations 5.9 and 5.10 

are not used here, since they are required only for the calculation of rate data which has not 

been considered in this research. For cases in which the triad fraction is the output, equations 

(5.23) -(5.25) are used.  
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5.3.3 Model Discrimination between the Terminal and Penultimate Models 

The objective of revisiting the work performed by Burke (1994) was to compare the model 

discrimination method proposed in this research with those used by her for discriminating 

between the terminal and penultimate models, the two rival models, which have been proposed 

to describe the propagation mechanism in copolymerization.  In her work she reported results 

using three different model discrimination methods including the Exact Entropy (EE) (Reilly, 

1970), the Hsiang and Reilly (HR) (Hsiang and Reilly, 1971) and the Buzzi-Ferraris and 

Forzatti (BFF) methods (Buzzi-Ferraris and Forzatti, 1984; 1990; Buzzi-Ferraris et al., 1983). 

These three model discrimination methods were used to discriminate between the two 

proposed models for three different copolymer systems, namely Styrene and Methyl 

Methacrylate (STY/MMA), Styrene Acrylonitrile (STY/AN), and Styrene and Butyl Acrylate 

(STY/BA) using composition data (Burke et al., 1994a), triad fraction (Burke et al., 1994b) 

and rate data (Burke et al., 1995). A key feature of the problem is that the proposed models are 

nonlinear in the parameters, as is often the case in chemical engineering applications.  Of the 

three methods, the Exact Entropy and the method of Buzzi-Ferraris and Forzatti rely on a 

linearization of the nonlinear models, while the HR method does not.  Therefore theoretically, 

the HR method was expected to perform better than the other two.  However, Burke’s studies 

showed poorer results for the Hsiang and Reilly method.  

They also used three different sets of parameters for the simulation of each real 

copolymerization system to simulate experimental data with terminal, penultimate and small 

penultimate models. In addition, three error levels were used in the simulation of the “real” 

system outputs and three sets of initial guesses of the parameters were used for the parameter 
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estimation step within the model discrimination method. Thus, 27 case studies were considered 

by combination of the “real” copolymer system, error levels and initial parameter guesses. 

These 27 cases are shown in Table C-9, with initial values and simulation parameters shown 

in Table C-10 to Table C-16. We applied the second implementation of the SBMCMD method 

in this case study, since the second implementation theoretically should lead to the most 

accurate results in model discrimination. In addition this method was efficient with respect to 

the MCMC acceptance rate.  Burke et al. (1994a) showed that of the three methods applied to 

this model discrimination problem, the Buzzi-Ferraris and Forzatti method (BFF) had the best 

results. For the purpose of comparison, Table 5-12 gives the results of the SBMCMD method 

and shows the results of the BFF method presented by Burke et al. (1994a) using the copolymer 

composition data. Columns of this table present the model chosen by the methods and rows 

show the “true” model used to simulate the data. Each cell shows the number of times a 

particular model was selected as the “correct” model by a particular model discrimination 

method. For example, for the STY/MMA system when the terminal model was used to 

generate the data the BFF method picked the terminal model in 4 cases, the penultimate model 

in one case and was not able to discriminate between the two with a maximum of 20 

experiments in 4 cases.  

The BFF method failed to select the “correct” model in cases where the terminal model is the 

correct one. The reason is that when the models are equally good representation, over-fitting 

leads to picking the model with the larger number of parameters as the best model (Burke, 

1994). On the other hand, SBMCMD easily picked the correct model when it is the terminal 

one but it had problems determining the correct model in cases where the real system was the 



 

 111 

penultimate and especially the small penultimate model. As discussed before, the reason could 

be that Bayesian methods favor the model with fewer parameters (Jefferys and Berger, 1992). 

Thus it picks the simpler one when enough data for discrimination is not available. 

Accordingly, neither of these two methods can properly discriminate between the terminal and 

penultimate using copolymer composition data because of the small difference in predictions 

of the competitive models for copolymer composition data.  Berger and Kuntz (2003) have 

observed the same result before experimentally  

Table 5-12:   Application of the BFF and SBMCMD methods to copolymer composition data 

Model Chosen as ‘Best’ at 95% Confidence (number of simulation runs) 

 Terminal Penultimate Neither 

Simulation Model BFF SBMC

MD 

BFF SBMC

MD 

BFF SBMCM

D 
Application to STY/MMA    

Terminal 4 8 1 1 4 0 

Strong penultimate 1 3 7 6 1 0 

Small penultimate 1 5 5 4 3 0 

Application to STY/AN    
Terminal 2 9 2 0 5 0 

Strong penultimate 0 4 9 5 0 0 

Small penultimate 1 7 6 2 2 0 

Application to STY/BA    
Terminal 1 9 1 0 7 0 

Strong penultimate 2 3 6 6 1 0 

Small penultimate 1 7 5 2 3 0 

 

Table 5-13 summarizes results of applying the BFF method presented by Burke et al. (1994b), 

along with results of applying the SBMCMD method. These two methods were applied to the 

same 27 cases with triad fraction data used as the model and the “real” system output. In this 

case, results show that both methods can identify the correct model using triad fraction data. 

One difference between our application of SBMCMD and the BFF method applied by Burke 

et al. (1994b) is that we decided to reduce the number of preliminary experimental points to 
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see if the SBMCMD can discriminate between models with fewer preliminary data. Thus, four 

preliminary experimental data have been used in the application of the SBMCMD method but 

Burke started with 8 preliminary experimental data points obtained from a D-optimal design.  

Note that four is the minimum number of preliminary experiments needed since the 

penultimate model for triad fractions contains four unknown parameters.  The results show that 

fewer preliminary experiments still lead to successful model discrimination.  It is not clear 

however that this would not have been the case with the BFF method.  

 

Table 5-13:   Application of the BFF and SBMCMD methods to triad fraction data 

Model Chosen as ‘Best’ at 95% Confidence (number of simulation runs) 

 Terminal Penultimate Neither 

Simulation Model BFF SBMCMD BFF SBMCMD BFF SBMCMD 

Application to STY/MMA 

Terminal 9 9 0 0 0 0 

Strong penultimate 0 0 9 9 0 0 

Small penultimate 0 0 9 9 0 0 

Application to STY/AN 

Terminal 9 9 0 0 0 0 

Strong penultimate 0 0 9 9 0 0 

Small penultimate 0 1 9 8 0 0 

Application to STY/BA 

Terminal 9 9 0 0 0 0 

Strong penultimate 0 0 9 9 0 0 

Small penultimate 0 1 9 8 0 0 

 

 

Table 5-13 presents the results obtained by applying the HR method to triad data by Burke et 

al. (1994b) and the results that we obtained using our modified HR method but with the same 

initial discretization. The difference between these two implementations is that they used 

equation (3.64) to calculate the posterior probability of parameters but we used equation (4.10), 
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which is the correct one. In addition we used four preliminary data points instead of eight. Our 

modified implementation of the HR method showed better results compared to the 

implementation by Burke (1994) for STY/AN and STY/BA but not for STY/MMA when the 

terminal model is the “true” model.  

Comparing the results of the HR and the SBMCMD method (Table 5-13 and Table 5-14) shows 

that the SBMCMD method can discriminate significantly better. SBMCMD has the advantage 

of working with nonlinear models just like the HR method, but in addition the result are as 

good as the BFF method in discrimination.  

 

Table 5-14:   Application of the original and the modified HR method to the triad fraction data 

Model Chosen as ‘Best’ at 95% Confidence (number of simulation runs) 

Simulation Model Terminal Penultimate  

Neither 
 HR – 

Burke 

HR 

(Modified) 

HR – 

Burke 

HR 

(Modified) 

HR – 

Burke 

HR 

(Modified) 

Application to STY / MMA 

Terminal 6 3 3 6 0 0 

Strong penultimate 0 0 9 9 0 0 

Small penultimate 0 0 9 9 0 0 

Application to STY/AN    

Terminal 7 9 2 0 0 0 

Strong penultimate 0 0 9 9 0 0 

Small penultimate 2 0 7 9 0 0 

Application to STY/BA    

Terminal 4 9  4 0 1 0 

Strong penultimate 0 0 9 9 0 0 

Small penultimate 2 1 7 8 0 0 
 

 

 

Table 5-15 compares the average number of experiments used by the different discrimination 

methods. The averages are between cases with different error and initial values (Table C-9). 
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The comparison shows that SBMCMD can select the best model with fewer experiments. 

Details of results from the SBMCMD method are presented in Appendix D. 

Table 5-15:   Number of experiments in application of different methods to triad fraction data 

Simulation Model HR – Burke HR (Modified) BFF SBMCMD 

Application to STY/MMA 

Terminal 9.1 6.2 9 4.4 

Strong penultimate 9 4 9 4 

Small penultimate 9 4.6 9 4.3 

Application to STY/AN 

Terminal 9.3 4 9 4 

Strong penultimate 9.1 5.1 9 4 

Small penultimate 9.3 6.6 9.1 5.4 

Application to STY/BA 

Terminal 11.4 4 10.2 4 

Strong penultimate 9 4.1 9 5 

Small penultimate 9.2 5.7 9.1 4.7 

 

In the last test we applied the SBMCMD method without any initial preliminary data and with 

one preliminary cycle in which samples are obtained from the assumed prior to investigate the 

effect of the preliminary data. Table 5-16 shows the results. SBMCMD successfully 

discriminated between STY/MMA and STY/AN models but it had problems in model 

discrimination when the real system was the small penultimate for STY/BA.  When the real 

system is the small penultimate, it is hard to discriminate between models because the 

parameters are close to the terminal case.  These results confirm that at least in some cases it 

is better to start with some initial experiments rather than just relying on the selected prior. 

Figure 5-10 shows joint parameter probability contours for the terminal model during 

application of the SBMCMD method. The first picture in the upper left hand side presents 

contours for the terminal parameters (r1 and r2) after one experiment and the picture in the 
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lower right hand side presents the contours in the last iteration. Comparing these plots shows 

that the probability distribution of the parameters becomes significantly sharper by adding 

more data points to the observed data set. 

 

Table 5-16: Application of SBMCMD method to the triad fraction data with no preliminary 

experiments 

Model Chosen as ‘Best’ at 95% Confidence (number of simulation runs) 

Simulation Model Terminal Penultimate Neither 

Application to STY/MMA 

Terminal 9 0 0 

Strong penultimate 0 9 0 

Small penultimate 1 8 0 

Application to STY/AN 

Terminal 9 0 0 

Strong penultimate 0 9 0 

Small penultimate 1 8 0 

Application to STY/BA 

Terminal 9 0 0 

Strong penultimate 1 8 0 

Small penultimate 4 5 0 
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Figure 5-10: The evolution of the marginal joint posterior probability density functions for r1 and r2 

in the terminal model (STY/MMA system) as a function of iteration number 

 

 

Figure 5-11 shows joint parameter contours for the penultimate model. Convergence of the 

parameter samples to the real parameters shows that Random Walk Metropolis Hastings 

sampling can generate samples successfully during the procedure.  
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Figure 5-11: The evolution of the marginal joint posterior probability density functions for pairs of 

penultimate parameters as a function of iteration number STY/MA system 
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5.4 RAFT Polymerization 

Three main groups of controlled polymerization have been introduced: Nitroxide-Mediated 

Radical Polymerization (NMRP), Atom Transfer Radical Polymerization (ATRP), and 

Reversible Addition-Fragmentation chain Transfer (RAFT) (Tobita and Yanse, 2007). All of 

these processes contain a capping and uncapping process, which makes the growing chains 

active and dormant for a while. In this way, chains grow to a more uniform chain length. As a 

result, the produced polymers have a narrow molecular weight distribution and their poly-

dispersity is close to one. Chiefari et al. (1998) introduced the RAFT process as a 

controlled/living radical polymerization method (CLRP).  A major advantage of the RAFT 

polymerization process over other living/controlled free-radical polymerization processes is 

that it can be used with a wide range of monomers and experimental conditions.  Since 1998, 

when RAFT polymerization was introduced, a remarkable amount of research has been done 

on the RAFT process and its mechanism.  A review on RAFT history can be found in Moad et 

al. (2005). 

In addition to initiation, propagation and termination steps, which are included in any free 

radical polymerization process, controlled/living radical polymerization methods contain 

another step which avoids termination of growing chains.  The addition-fragmentation between 

RAFT agent and the growing chains avoids termination in RAFT polymerization.  Figure 5-12 

shows the general structure of a RAFT agent.   
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Figure 5-12:  General chemical structure of a  RAFT agent 

 

 

The mechanism of the addition – fragmentation step is given in Figure 5-13.  It first relies on 

the chain transfer of active molecule (1), to the RAFT agent (2), followed by fragmentation to 

active agent and another active molecule, which then reinitiates polymerization.  Once the 

RAFT agent has been consumed, chain equilibrium is established between the active and 

dormant species (3). 

 

 

Figure 5-13:  Addition – Fragmentation mechanism 

 

Moment equations and different equilibrium mechanisms have been used widely to simulate 

the RAFT process.  As well as the debate about the kinetic mechanism, there was a debate on 

the validity of these predictions for the RAFT process (Wang et al. 2003; Wang and Zhu 2003; 

Barner-Kowollik et al. 2001; Barner-Kowollik et al. 2003). Pallares et al. (2006) presented a 

complete model, which covers most of the mechanisms that had been proposed by that time. 

Despite this development, the mechanism of the RAFT kinetics is not yet adequately 

understood.  The two main kinetic mechanisms that have been proposed for interpreting the 

rate retardation are the irreversible termination and the slow fragmentation methods. 
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The irreversible termination method assumes that the intermediate RAFT radical, produced by 

fast addition of propagating radicals to the RAFT species, may undergo irreversible 

termination with other radical species, cross termination, or even self-termination, which both 

conclude to radical loss and thus retardation (Monteiro and De Brouwer 2001; Zhang and Ray 

2001). 

On the contrary, the slow fragmentation mechanism assigns rate retardation to slow 

fragmentation of the intermediate RAFT radical, but ignores participation of this species in 

irreversible radical-radical termination reactions. The slow fragmentation mechanism causes 

the intermediate radical to be relatively stable and long-lived (Barner-Kowollik et al., 2001). 

The monomer conversion versus time curves measured for a range of input conditions are fitted 

equally well by all proposed mechanisms.  But the experimentally measured concentration of 

intermediate RAFT radicals is several orders of magnitude below the one predicted by the slow 

fragmentation model.  On the other hand, the products from irreversible termination, three-arm 

star species, are not found in the product mixture of acrylate polymerizations.   

Consequently, a mechanism step called the “missing step” was proposed in the dithiobenzoate 

agent RAFT process (Buback and Vana 2006; Buback et al. 2007).  The missing step contains 

a reaction between a highly reactive propagation radical and star-shaped product from the 

termination of a propagating radical and an intermediate RAFT radical. 

Also, Konkolewicz et al. (2008) proposed a RAFT kinetic scheme with a very fast cross-

termination on the RAFT intermediate with short chains and negligible long chain cross-

termination.   
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In conclusion, there are several proposed models for the RAFT mechanism.  So, using model 

discrimination methods to pick the best measurement and experimental conditions which 

provide the most amount of information for model discrimination purposes can lead to finding 

the “best” mechanism that seems to be supported by the process information. 

In this study we considered two candidate models, irreversible and slow fragmentation. These 

are the two main rival mechanistic models in the literature. The reaction mechanism of the 

irreversible model is shown in Table 5-17.  

Table 5-17:   Reaction mechanism for the irreversible model 

Chemical initiation 
I
kd
→ 2Rin

∙  

Rin
∙ +M

ki
→RM1

∙  
(5.32)  

Propagation RMr
∙ +M

kp
→ RMr+1

∙  (5.33)  

Irreversible chain transfer to RAFT Agent RMr
∙ + AB  

kadd
→    RMrȦB 

kbd
→   RMrA + B∙ (5.34)  

Addition fragmentation  RMr
. + RMsA

ka
→RMrȦRMs

kb
→ RMrA + RMs

. (5.35)  

Termination by disproportionation RMr
∙ + RMs

∙
ktd
→ RDr + RDs (5.36)  

Termination by combination RMr
∙ + RMs

∙
ktc
→ RDr+sR (5.37)  

Intermediate radical termination RMpȦRMq + RMr
∙
ktir
→ RMpRMqRMr (5.38)  

 

Equation (5.32) presents the initiation step; where two radicals are generated from an initiator 

with rate constant kd. This initiator primary radical may react with a monomer to generate a 

chain with one monomer, RM1
∙ . Equation (5.33) shows the propagation step, where monomers 

are added to the active radicals. Some studies assume that ki and kp are equal and they just 

consider one propagation step regardless of the radical length. Here we assumed that kp is 
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constant and independent of the radical length but the propagation reaction for the initial radical 

is assumed to be different. Equation (5.34) presents the irreversible chain to the RAFT agent, 

AB. A in equation (5.34) represents the RAFT chain transfer agent. Equation (5.35) shows the 

addition of the radical to the RAFT agent with rate constant ka and the fragmentation of the 

dormant species RMrȦRMs to the RAFT agent and the active radical with rate constant kb. 

Equations (5.36) and (5.37) present termination reactions with rate constants ktd and ktc for 

termination by disproportionation and combination, respectively. Equation (5.39) shows the 

reaction of a two arm-adduct with another radical, thus making a three arm-adduct. This 

reaction is not considered in the slow fragmentation mechanism which is shown in Table 5-18. 

Note that those equations which are the same in Table 5-17 and Table 5-18 have the same 

equation number.  

Table 5-18:   Reaction mechanism for the slow fragmentation model 

Chemical initiation 

I
kd
→ 2Rin

∙  

Rin
∙ +M

ki
→RM1

∙  
(5.32) 

Propagation RMr
∙ +M

kp
→ RMr+1

∙  (5.33) 

Reversible chain transfer to RAFT 

Agent 
RMr

∙ + AB  
kadd
→  
k−add
←   

  RMrȦB  
kbd
→ 
k−bd
←  

  RMrA+ B∙ (5.39)  

addition-fragmentation RMr
∙ + RMsA  

ka
→
 k−a
←  

  RMrȦRMs    

kb
→ 
k−b
←  

  RMrA+ B∙ (5.40)  

Termination by disproportionation RMr
∙ + RMs

∙
ktd
→ RDr + RDs (5.41)  

Termination by combination RMr
∙ + RMs

∙
ktc
→ RDr+sR (5.42)  

In the slow fragmentation model, the equations of addition and fragmentation are considered 

to be reversible. The models in this study are based on moment equations for these two rival 
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models.  For the parameters in the equations, values mentioned in Table 5-19 have been used 

which are values used by Wang and Zhu (2003).  

Table 5-19:   Rate coefficients - Cumyl Dithiobenzoate-Mediated Styrene Homo-polymerization 

 Parameter Irreversible  Slow fragmentation  

 kd 1e-5 1e-5  

 ki 1e3 1e3  

 kp 1e3 1e3  

 ktc 1e7 1e7  

 ktd 1e7 1e7  

 ktir Parameter 3 0  

 f 0.5 0.5  

 ka Parameter 1 Parameter 1  

 k−a 0 Parameter 2  

 kb Parameter 2 Parameter 2  

 k−b 0 Parameter 1  

 kbd Parameter 2 Parameter 2  

 k−bd 0 Parameter 1  

 kadd Parameter 1 Parameter 1  

 k−add 0 Parameter 2  

 

As shown in Table 5-19, two parameters are considered unknown in the slow fragmentation 

model by assuming that ka = k−b = k−bd = kadd . On the other hand in the irreversible model 

three parameters are considered unknown by assuming ka = kadd and kb = kbd.  

A complete model containing 43 differential equations forms the general model. This general 

model is presented in pallares et al. (2006). The scheme of this general model is shown in table 

5-20.  
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Table 5-20:   Reaction mechanism for the complete model (pallares et al., 2006) 

Chemical Initiation 
I
KD
→ 2RIn

∙  

RIn
∙ +M

KI
→ RM1

∙  
(5.43)  

Thermal Self-Initiation 
M+M

KDim
→   D 

D +M
KThi
→  D∙ +M∙ 

(5.44)  

Propagation RMR
∙ +M

KP
→ RMR+1

∙  (5.45)  

Chain Transfer To Monomer RMR
∙ +M

KFm
→  RDR +M∙ (5.46)  

Chain Transfer To Solvent RMR
∙ + S

KFs
→ RDR + S∙ (5.47)  

Chain Transfer To Chain 

Transfer Agent (Cta) 
RMR

∙ + Cta
KFt
→ RDR + Cta∙ (5.48)  

Irreversible Chain Transfer To 

Raft Agent 
RMR

∙ + Ab
KTr
→ RMRA + B∙ (5.49)  

Reversible Chain Transfer To 

Raft Agent 
RMR

∙ + Ab  
KAdd
→   
K−Add
←    

  RMRȦB  
KBd
→  
K−Bd
←   

  RMRA + B∙ (5.50)  

Re-Initiation 

 

First: Re-Initiation Of 

The Raft Segment 

B∙ +M
KI
→ BM1

∙

M∙ +M
KI
→MM1

∙

D∙ +M
KI
→DM1

∙

S∙ +M
KI
→SM1

∙

Cta∙ +M
KI
→Ctam1

∙ }
 
 
 

 
 
 

RM1
∙  (5.51)  

Chain Equilibrium (Addition-

Fragmentation) 
RMR

∙ + RMSA  
KA
→ 
 K−A
←  

  RMRȦRMS    

KB
→ 
K−B
←  

  RMRA + B∙ (5.52)  

Termination By 

Disproportionation 
RMR

∙ + RMS
∙
KTd
→  RDR + RDS (5.53)  

Termination By Combination RMR
∙ + RMS

∙
KTc
→ RDR+SR (5.54)  

Intermediate Radical 

Termination 
RMPȦRMQ + RMR

∙
KTir
→  RMPRMQRMR (5.55)  
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The definitions of the moments used in the model equations are listed in table 5-21. 

 

Table 5-21:   Definition of moments of the polymer distributions (Pallares Et Al. 2006) 

Species Moment 

Polymer Radicals (Living Polymer) YM =∑ RM[RMR
. ]

∞

R=1
 

Dormant Polymer ZM =∑ RM[RMRA ]
∞

R=1
  

Dead Polymer From Termination By 

Disproportionation And Transfer To 

Small Molecules 

QM =∑ RM[RDR ]
∞

R=1
 

Dead Polymer From Termination By 

Combination  
SM =∑ RM[RDRR ]

∞

R=1
 

One Arm Adduct EM = ∑ RM[RMRA
.B ]

∞

R=1
 

Two Arm Adduct (Macro Raft Radical) FMn = ∑ ∑ RMSN
∞

S=1
[RMRA

.RMS ]
∞

R=1
 

Three Arms Dead Polymer 

GAbc

=∑ ∑ ∑ PAQBRC
∞

R=1

∞

Q=1
[RMPRMQRMR ]

∞

P=1
 

 

Two Rival Models Can Be Obtained From This General One. The 43 Differential Equations 

Are Presented In Equations (5.56) To (5.78). 

 
D(V[I])

Vdt
=  −KDI (5.56)  
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Dv[M]

Vdt
= −KI[M]([ṘIn] + [Ḃ] + [Ṁ] + [Ḋ] + [Ṡ] + [Ctȧ ]) − KDim[M]

2

− KThi[M][D] − KP[M][Y0] − KFmv[M][Y0] 
(5.57)  

 
D(V[D])

Vdt
= KDim[M]

2 − KThi[M][D] (5.58)  

 
D(V[S])

Vdt
= −KFs[S][Y0] (5.59)  

 
D(V[Cta])

Vdt
= −KFt[Cta][Y0] (5.60)  

 
D(V[RIn])

Vdt
= 2fKD[I] − KI[RIn][M] (5.61)  

 
D(V[Ṁ])

Vdt
= KThi[M][D] + KFmv[M][Y0] − KI[M][Ṁ] (5.62)  

 
D(V[D])

Vdt
= KThi[D][M] − KI[M][Ḋ] (5.63)  

 
D(V[S])

Vdt
= KFs[S][Y0] − KI[M][S] (5.64)  

 
D(V[Cta])

Vdt
= KFt[Cta][Y0] − KI[M][Cta] (5.65)  

 
D(V[Ab])

Vdt
= −KTr[Ab][Y0] − KAdd[Ab][Y0] + K−Add[E0] (5.66)  

 
D(V[B])

Vdt
= KTr[Ab][Y0] + KBd[E0] − K−Bd[Z0][B] − KI[M][B] (5.67)  

M = 0,1, 2 
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D(V[YM])

Vdt
= 2 F KD [I] + KI [M]([B

.] + [M.] + [D.] + [S.] + [CtA.]) + ΒM

− (KFmv [M] + KFs [S] + KFt [Cta] + KTr [Ab])[YM]

− (KTd + KTc)[Y0][YM] − KTir [YM]F00 +   −K1Ab ∗ Y(M)

+ K2BDotZ(M) − K3 Z0 [YM] + K4 [Y0][ZM]

− K_Add [Ab] [YM] + K_Nadd [EM] − KA [Z0] [YM]

+ K−A [FM0] + KB [FM0] − K−B [Z0] [YM] 

(5.68)  

 

D(V[ZM])

Vdt
 =  KTr [Ab] [YM] + K1 [Ab] [YM] − K2 [B

.] [ZM] + K3 [Z0] [YM]

− K4 [Y0] [ZM] − KA [Y0] [ZM] + K−A  [FM0] + KB [FM0]

− K−B [Y0] [ZM] + KBd [EM] − K−Bd [B
.] [ZM] 

(5.69)  

 
D(V[QM])

Vdt
= (KFmv [M] + KFs [S] + KFt [Cta] + KTd [Y0])[YM] (5.70)  

 
D(V[EM])

Vdt
= KAdd [Ab] [YM] − K−Add [EM] − KBd [EM] + K−Bd [B

.] [ZM] (5.71)  

 
D(VS1)

Vdt
=
KTc

2
Y0
2 (5.72)  

 
D(VS2)

Vdt
= KTcY0Y1 (5.73)  

 
D(VS3)

Vdt
=
KTc

2
(2y0Y2 + 2 Y1

2) (5.74)  

 

D(VFMn)

Vdt
= KAYMZN − K−AFMn − KBFMn + K−BZMYN   Where FMn

= {F10, F01, F00, F20, F02, F11} 
(5.75)  

 
D(VGAbc)

Vdt
= KTirFAbYC   (5.76)  
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Where GAbc = {G000, G001, G010, G100, G002, G020, G200, G011, G101, G110} 

After Solving The Set Of Ode Equations, Equations (5.77) To (5.79) Can Be Used To 

Calculate The Polydispersity Of The Polymer.  

 

MN
̅̅ ̅̅

=
Y1 + Z1 + Q1 + S1 + E1 +

1
2
(F10 + F01) +

2
3 (G100 + G010 + G001)

Y0 + Z0 + Q0 + S0 + E0 +
1

2F00
+
2
3  G000

MRep 

 

(5.77)  

 

MW
̅̅ ̅̅ ̅

= [
Y2 + Z2 + Q2 + S2 + E2 +

1
2 (F20 + F02 + 2F11)

Y1 + Z1 + Q1 + S1 + E1 +
1
2
(F10 + F01) +

2
3 (G100 + G010 + G001)

+

2
3 (G200 + G020 + G002 + 2(G110 + G101 + G011)

Y1 + Z1 + Q1 + S1 + E1 +
1
2
(F10 + F01) +

2
3 (G100 + G010 + G001)

]MRep 

 

(5.78)  

The Polydispersity Index (PDI) Is Calculated By  

 
PDI =

MW
̅̅ ̅̅ ̅

MN
̅̅ ̅̅

 (5.79)  

 

In this case study, first the complete model is simulated and compared with the results 

presented in the literature to make sure that it gives reasonable trends. Figure 5-14 shows one 

of these outputs for the second model in Pallares et al. (2006), which is the same as the 

irreversible model in our study. In general our model predictions are exactly the same as the 

results in Pallares et al. (2006), which are consistent with the experimental data.  
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Figure 5-14:  Output from the  irreversible model 

 

One of the biggest questions in raft polymerization is the order of magnitude of the 

fragmentation rate constant. Because of that a wide range of values is considered for the 

parameters. Thus the log of parameters is used in the model discrimination process.  

5.4.1 Sensitivity Analysis 

In the RAFT models, there are four possible input conditions namely time, [I0], [M0], and 

[AB0]. In this study, time is considered as an input and the three other initial concentrations 

are assumed fixed at the following values, 

[𝐈𝟎] = 0.05  mol/L 

[M0] = 5 mol/L 

[AB0] = 0.01 mol/L 
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We performed a sensitivity analysis to select potential model outputs that could be used for 

model discrimination purposes. Table 5-22 shows the 7 different models and parameters sets 

which we used. Cases L1 and L5 are the parameter sets used as real parameters in model 

discrimination which will be presented later. The other cases are selected to represent values 

from the lower and the upper ranges of each parameter.  

 

Table 5-22:   RAFT, sensitivity analysis conditions 

 Case  Model Parameters  

 L1 Slow fragmentation  P1=1e6, P2=1e‐2, P3=1e4  

 L2 Slow fragmentation P1=1e2, P2=1e‐2, P3=1e4  

 L3 Slow fragmentation P1=1e6, P2=1e4, P3=1e4  

 L4 Slow fragmentation P1=1e6, P2=1e‐2, P3=1e0  

 L5 Irreversible P1=1e6, P2=1e4  

 L6 Irreversible P1=1e2, P2=1e4  

 L7 Irreversible P1=1e6, P2=1e0  

 

Conversion is the first output tested. Results are shown in Figure 5-15. In this case, L5, L1, 

and L7 show significant differences but the other cases are not significantly different. 

According to the small difference between cases in Figure 5-15, the discrimination between 

models may be possible only if the amount of error in the real conversion measurement is 

small.  
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Figure 5-15:  RAFT models output, conversion - time (hr) 

Adduct concentration is supposed to differ between the two competing models. Figure 5-16, 

Figure 5-17, Figure 5-18, and Figure 5-19 show adduct concentration versus time. 

Unfortunately the concentrations of these species are too low to be of practical use for model 

discrimination. 

 

Figure 5-16:  RAFT models output, one-arm adduct concentration - time (hr) 
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Figure 5-17:  RAFT models output, two arm-adduct concentration - time 

The log scaled plots are presented in Figures 5-18 and 5-19 to show that the competing 

models have different outputs but as mentioned the actual concentrations are too low to be of 

practical use. 

 

Figure 5-18:  RAFT models output, log of one arm adduct concentration - time 
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Figure 5-19:  RAFT models output, log of two arms adduct concentration - time 

 

 

The number average molecular weights are shown in Figure 5-20. This plot shows that the 

L4 and L6 cases are significantly different from the other cases whose outputs are close. 

Although focusing on the lower Mn values, Figure 5-21 shows that other cases show different 

behavior too.   Thus Mn, could be a suitable choice for model discrimination purposes.  
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Figure 5-20:  RAFT models output, Mn – time 

 

 

Figure 5-21:  RAFT models output, Mn – time 
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The polydispersity index (PDI) is a function of Mn.  Therefore is Mn is useful for model 

discrimination purposes then PDI may be useful as well.  PDI versus time curves are shown 

in Figure 5-22, and these curves seem significantly different, thereby confirming that PDI 

could be used as an output for model discrimination purpose.  

 

Figure 5-22:  RAFT models output, PDI – time 

 

The concentration of the dormant molecule versus time is shown in Figure 5-23. The cases L2, 

L3, L4 and L6 show close results but the outputs for L1, L5 and L7 are significantly different 

from the others.  Even zoomed plots, for example Figure 5-24, show that L2, L3, L4 and L6 

cases output are very close. This leads to the conclusion that the dormant concentration is not 

be a good output candidate for the model discrimination.  
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Figure 5-23:  RAFT models output, dormant concentration – time 

 

Figure 5-24:  RAFT models output, dormant concentration – time 

 

5.4.2 Model Discrimination  

According to the sensitivity analysis results, Mn and PDI as well as conversion, x, providing 

the error is small, could be  possible outputs for the purpose of model discrimination between 
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the slow fragmentation and irreversible models. The first implementation of the SBMCMD 

framework has been used in this case study,since the competitive models in this case study 

have more complex structures compared to those in the previous case studies. Therefore it is 

advantageous to use the adaptive MH sampling to ensure that the entire parameters space is 

covered with acceptable acceptance ratios.  

In this section some different scenarios are considered for model discrimination between the 

two competing RAFT models using different combinations of the above-mentioned outputs. 

In the following scenarios, the two competing models will represent the real system in turn. 

Data from two preliminary experiments are considered at times 2.5 and 5 hours.  

The first cases that we tried used conversion with varying amounts of experimental error. We 

observed that whenever the model discrimination algorithm parameters are tuned so that the 

acceptance rates are in the recommended range, the procedure can pick the correct model but 

it is not straightforward to tune these parameters.  The model discrimination procedure is 

sensitive to the level of error considered and the tuning parameters for sampling (H and U), 

see section 2.4.1.1. In cases where the program stops because of a low acceptance probability, 

the user can restart the program after tuning the H and U parameters or changing the likelihoods 

standard deviation. In the restarted program, the last model probabilities should be used as the 

prior model probabilities and all the observed data should be used as preliminary data in the 

restarted program.  According to the suggestion by Haario et al. (2001) in this study, the first 

updated covariance matrix is estimated only based on accepted samples. In addition, during 

the burn-in period, if all the previous H-samples (see equation (2.18)) are the same, the current 

covariance will be reduced by multiplying it by a constant whose value is less than 1. After, 
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the burn-in period updating of the covariance is skipped, whenever there are no accepted 

samples in the last H samples. 

The above-mentioned strategies were used to overcome the problem of sampling from the 

distribution of parameters using the conversion output. While this reduced the number of cases 

where sampling failed, there were still a significant number of occurrences where samples 

could not be obtained reliably. While further tuning of the sampling parameters may lead to an 

acceptable acceptance ratio, MCMC sampling in general was difficult using the conversion 

output. Therefore we moved on to considering other RAFT output variables.  

Table 5-23, Table 5-24 and Table 5-25 show the results of using Mn, as output with and without 

PDI and conversion. In these tables, “sd. real” and “sd. model", represent the standard deviation 

value in the normal distribution of errors added to the simulated real data and the likelihood 

distribution used in the MCMC sampling, respectively. In all scenarios the sd. model value is 

greater than or equal to the sd. real value. This is done to reflect the fact that the true error 

variance is normally not known and by using a standard deviation in the likelihood that 

overestimates the true standard deviation, the approach is a conservative one.  In all these 

scenarios the sampling procedure was tuned easily and the procedure selected the correct 

model.  
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Table 5-23:   RAFT, Mn output (M1 represents the slow fragmentation and M2 the irreversible 

model) 

 Model sd. Real sd. model Num exp. P1 P2  

 M1 0 5 1 0.955663 0.044337  

 M2 0 5 1 3.81E-27 1  

 M1 5 10 2 0.970455 0.029545  

 M2 5 10 1 3.85E-05 0.999961  

 M1 0 10 2 0.98596 0.01404  

 M2 0 10 1 0.019458 0.980542  

 M1 10 20 6 0.96412 0.03588  

 M2 10 20 4 0.008308 0.991692  

 M1 20 20 7 0.953849 0.046151  

 M2 20 20 1 0.019814 0.980186  

 

Table 5-24:   RAFT, conversion and Mn output (M1 represents the slow fragmentation and M2 the 

irreversible model) 

 Model sd. real sd. model Num exp. P1 P2  

 M1 [0, 0] [0.05,10] 1 0.990 0.0099  

 M2 [0, 0] [0.05,10] 1 0 1  

 M1 [0.05,10] [0.05,10] 1 0.999 0.001  

 M2 [0.05,10] [0.05,10] 1 0 1  

 

Table 5-25:   RAFT, conversion, Mn and PDI output (M1 represents the slow fragmentation and M2 

the irreversible model) 

 Model sd. real sd. model Num 

exp. 

P1 P2  

 M1 [0,0,0] [0.05,10,0.1] 1 0.980 0.020292  

 M2 [0,0,0] [0.05,10,0.1] 1 0 1  

 M1 [0.05,10,0.1] [0.05,10,0.1] 1 0.999 0.000739  

 M2 [0.05,10,0.1] [0.05,10,0.1] 1 0 1  
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Figure 5-25 to Figure 5-26 show the parameter distributions in the tested scenarios for the 

correct models. In each figure, the top plot is for the case with no error and the plot in the 

bottom shows the parameters sample for the test with error added to the outputs. These plots, 

which are equivalent to confidence interval plots, contain the true parameters value but they 

are relatively large, implying considerable parameter uncertainty. Thus after model 

discrimination more experiments are needed for parameter estimation. In Figure 5-25 to Figure 

5-27, p1 and p2 are normalized values of the parameters.  Therefore, they could be substituted 

to the following equations to find the actual parameter1 and parameter 2 values in Table 5-19.  

 

parameter1 = 10p1∗10 

parameter2 = 10p2∗10 
(5.80)  

 

 

Figure 5-25:  Output: Mn, Top: no error, Bottom: with error 

 

P1 

P2 

P2 
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Figure 5-26:  Output: x and Mn, Top: no error, Bottom: with error 

 

 

Figure 5-27:  Output: x, Mn and PDI, Top: no error, Bottom: with error 

P2 

P2 

P2 

P2 

P1 

P1 
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Parameters p1 − p3 in Figure 5-28 to Figure 5-30 must be substituted into equation (5.83)  

to find parmeter1-parmeter3 in Table 5-19.  

 

 

parameter1 = 10p1∗10 

parameter2 = 10p2∗10−4 

parameter3 = 10p3∗10 

(5.81)  

 

Figure 5-28:  Output: Mn, Top: no error, Bottom: with error 

 

P1 

P2 

P1 P2 

P3 
P3 

P3 P3 P2 
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Figure 5-29:  Output: x and Mn, Top: no error, Bottom: with error 

 

Figure 5-30:  Output: x, Mn and PDI, Top: no error, Bottom: with error 
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According to the results, the SBMCMD procedure can be used for the design of experiments 

and model discrimination analysis to select the correct model for the RAFT polymerization 

process. For this purpose, the number average molecular weight is the best output.  
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

This study discusses a new approach to model discrimination called the Sequential Bayesian 

Markov Chain Model Discrimination (SBMCMD) procedure. The proposed framework was 

implemented in three versions. The first version estimates the marginal likelihood using 

samples from the prior probability distribution of parameters by Adaptive Proposal (AP) 

Random Walk Metropolis Hastings method. The second and third versions are based on the 

method introduced by Chib’s research group. They sample from the posterior probability 

distribution of parameters using the Acceptance-Rejection Metropolis Hastings and Random 

Walk Metropolis Hastings method respectively. The model selection algorithm in the 

SBMCMD framework is paired with a model discrimination design criterion in a sequential, 

iterative approach. 

The Markov Chain Monte Carlo method samples from the probability distribution of the 

parameters regardless of whether the model structure is linear or nonlinear. This makes it 

particularly suitable for model discrimination problems in chemical engineering where 

mechanistic models are often nonlinear in the parameters. In other words, MCMC model 

discrimination methods do not require any linearization of the models as many other 

approaches do.   The frameworks worked both for single response and multi response in 

addition to nested and non-nested models.  
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This method showed promising results in the case studies presented here.  The first two case 

studies demonstrated the suitability of the SBMCMD as it successfully selected the “correct 

model”. In addition, the effect of error levels was studied in these cases.  

Next we applied this method to previously studied copolymerization systems to discriminate 

between the terminal and the penultimate model which is an ongoing problem in the polymer 

science community. The SBMCMD successfully discriminated between the two competing 

models using triad fraction data and showed that the differences between the copolymer 

composition outputs from the two rival models are too small to be used in model 

discrimination.  

In addition to the SBMCMD, a modified Hsiang and Reilly (1971) method was implemented 

to address a question arising from a previous study (Burke, 1994).  

Finally the SBMCMD framework was applied to the two models proposed for the modeling 

of RAFT homo-polymerization. The results in this study indicate that the average molecular 

weight is the best output to use. Also if one of the competing models represents the real 

mechanism behind the RAFT process, the SBMCMD framework can help to find it.  

6.2 Future Work 

Future studies to extend this project are in four categories. The first is applying this technique 

for discriminating between more mechanistic models where there is still ongoing debate about 

the underlying mechanism or for finding the real mechanism for newly studied systems. In 

addition, as the case studies results are so promising, the framework can be used in real 

situations and it seems reliable enough to use with real experiments. So for example two 

recommendation would be to apply SBMCMD to a real RAFT experimental study and an 
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experimental study of copolymer systems where there is uncertainty about the underlying  

model. 

The second recommendation relates to developing a criterion to determine in each iteration 

if model discrimination may be possible with more information or not. The Buzzi-Ferraris 

method uses a T value for this purpose. An F-test using the variance of differences between 

the model predicted values and the real output and the variance between model predictions 

could be used as this criterion. This criterion, which works like a new stopping criterion, should 

be ignored in the first iteration. It is applicable when the samples of parameter prior become 

informative. Then the predicted outputs using these prior samples could be used in the newly 

suggested stopping criterion.  

Another recommendation related to the design of experiments step is to study the possibility 

of the entropy-based DOE methods and comparing the advantage and disadvantage of entropy-

based and the maximum divergence-based criteria.  

The last recommendation involves making this method available in an easy-to-use and 

executable program in a parallel computational network. Such a software package could 

benefit researchers in both universities and industry. In the proposed software package, 

relatively recent developments in the field of applied statistics involving MCMC methods can 

be used to solve both the problems of model discrimination and data analysis in a Bayesian 

approach coupled with DOE. The challenge here will be computation time since, generally, 

the speed of solving the model within the MCMC cycle should be reasonably fast. Therefore, 

having to solve complicated models has posed a major obstacle to MCMC implementation of 
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these problems. This challenge can be addressed by using the recently introduced methods in 

parallel MCMC (see section 4.3.3) and then improving the already implemented package to 

fully exploit the advantages of parallel computation. Available statistical packages require a 

high level of statistical knowledge to be used properly. Providing such a package helps 

researchers who need to be more focused on their research area rather than on advanced 

statistical theory and methods. Therefore, these days, most experiments are done without a 

suitable design even though DOE can save time and cost along with leading to more reliable 

results.  

In the model selection part of this package, more methods than those tried in this research could 

be used and, in MCMC sampling, new methods could be implemented for the cases where it 

is not easy to sample from the desired stationary distribution, for example TP MCMC methods 

(see section 2.3.8)  
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Appendix A 

Results:  Order Of Reaction Case Study 

 

Table A-1:   Order of reaction case study – average of correct models probability (30 replicates each) 

 "correct" model : Model 1 Model 2 Model 3 Model 4  

 
s.d.  Real  s.d. lilekihood Probability of "correct" model 

 

 0.01 0.01 1.00 1.00 0.97 0.97  

 0.01 0.02 1.00 1.00 0.99 0.99  

 0.01 0.03 1.00 0.99 0.97 0.98  

 0.01 0.04 0.99 0.97 0.97 0.97  

 0.01 0.05 0.98 0.97 0.96 0.96  

 0.01 0.06 0.97 0.96 0.96 0.96  

 0.01 0.07 0.97 0.97 0.96 0.96  

 0.01 0.08 0.97 0.96 0.96 0.96  

 0.01 0.09 0.96 0.96 0.95 0.95  

 0.01 0.1 0.96 0.96 0.95 0.95  

 0.02 0.02 1.00 1.00 0.96 0.99  

 0.02 0.03 1.00 0.99 0.98 0.98  

 0.02 0.04 0.99 0.98 0.97 0.97  

 0.02 0.05 0.99 0.97 0.97 0.97  

 0.02 0.06 0.98 0.97 0.96 0.96  

 0.02 0.07 0.97 0.97 0.96 0.96  

 0.02 0.08 0.97 0.96 0.96 0.96  

 0.02 0.09 0.96 0.96 0.95 0.96  

 0.02 0.1 0.96 0.96 0.94 0.95  

 0.03 0.03 0.97 0.99 0.98 0.99  

 0.03 0.04 0.99 0.98 0.97 0.98  

 0.03 0.05 0.99 0.98 0.97 0.96  

 0.03 0.06 0.98 0.97 0.97 0.97  

 0.03 0.07 0.97 0.97 0.96 0.96  

 0.03 0.08 0.97 0.96 0.96 0.96  

 0.03 0.09 0.97 0.96 0.96 0.96  

 0.03 0.1 0.96 0.96 0.93 0.95  

 0.04 0.04 0.99 0.98 0.94 0.97  
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 0.04 0.05 0.99 0.98 0.97 0.97  

 0.04 0.06 0.98 0.97 0.97 0.97  

 0.04 0.07 0.97 0.96 0.96 0.96  

 0.04 0.08 0.97 0.96 0.96 0.96  

 0.04 0.09 0.97 0.96 0.95 0.96  

 0.04 0.1 0.97 0.96 0.93 0.95  

 0.05 0.05 0.95 0.98 0.97 0.98  

 0.05 0.06 0.98 0.97 0.97 0.96  

 0.05 0.07 0.98 0.97 0.91 0.96  

 0.05 0.08 0.97 0.97 0.95 0.95  

 0.05 0.09 0.97 0.96 0.94 0.93  

 0.05 0.1 0.97 0.96 0.91 0.95  

 0.06 0.06 0.98 0.91 0.91 0.95  

 0.06 0.07 0.98 0.97 0.91 0.95  

 0.06 0.08 0.97 0.97 0.91 0.94  

 0.06 0.09 0.97 0.94 0.93 0.92  

 0.06 0.1 0.97 0.96 0.92 0.93  

 0.07 0.07 0.98 0.90 0.92 0.93  

 0.07 0.08 0.98 0.94 0.96 0.94  

 0.07 0.09 0.97 0.97 0.91 0.87  

 0.07 0.1 0.97 0.96 0.88 0.93  

 0.08 0.08 0.98 0.97 0.90 0.89  

 0.08 0.09 0.98 0.97 0.81 0.95  

 0.08 0.1 0.97 0.95 0.85 0.89  

 0.09 0.09 0.94 0.94 0.82 0.89  

 0.09 0.1 0.97 0.95 0.79 0.90  

 0.1 0.1 0.96 0.96 0.81 0.78  
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Appendix B 

 Results:  Oxidation Case Study 

 

Table B-1:   Oxidation case study - 315 runs result 

 
# M R.E. M.E. N P1 P2 P3 # M R.E. M.E. N P1 P2 P3 

1 1 1.00 1.00 0.00 1.00 0.00 0.00 159 2 2.00 6.00 19.00 0.00 0.84 0.16 

2 1 1.00 1.00 0.00 1.00 0.00 0.00 160 2 2.00 6.00 15.00 0.00 1.00 0.00 

3 1 1.00 1.00 0.00 1.00 0.00 0.00 161 2 3.00 3.00 7.00 0.00 0.99 0.01 

4 1 1.00 1.00 0.00 1.00 0.00 0.00 162 2 3.00 3.00 6.00 0.00 0.99 0.00 

5 1 1.00 1.00 0.00 1.00 0.00 0.00 163 2 3.00 3.00 6.00 0.00 1.00 0.00 

6 1 1.00 2.00 0.00 1.00 0.00 0.00 164 2 3.00 3.00 1.00 0.00 0.96 0.04 

7 1 1.00 2.00 0.00 1.00 0.00 0.00 165 2 3.00 3.00 2.00 0.00 0.98 0.02 

8 1 1.00 2.00 0.00 1.00 0.00 0.00 166 2 3.00 4.00 19.00 0.00 0.95 0.05 

9 1 1.00 2.00 0.00 1.00 0.00 0.00 167 2 3.00 4.00 19.00 0.00 0.86 0.14 

10 1 1.00 2.00 0.00 1.00 0.00 0.00 168 2 3.00 4.00 14.00 0.00 0.97 0.03 

11 1 1.00 3.00 0.00 1.00 0.00 0.00 169 2 3.00 4.00 3.00 0.00 1.00 0.00 

12 1 1.00 3.00 0.00 1.00 0.00 0.00 170 2 3.00 4.00 7.00 0.00 0.95 0.05 

13 1 1.00 3.00 0.00 1.00 0.00 0.00 171 2 3.00 5.00 19.00 0.00 0.93 0.07 

14 1 1.00 3.00 0.00 1.00 0.00 0.00 172 2 3.00 5.00 6.00 0.00 0.97 0.03 

15 1 1.00 3.00 0.00 1.00 0.00 0.00 173 2 3.00 5.00 5.00 0.00 1.00 0.00 

16 1 1.00 4.00 0.00 1.00 0.00 0.00 174 2 3.00 5.00 19.00 0.00 0.90 0.10 

17 1 1.00 4.00 0.00 1.00 0.00 0.00 175 2 3.00 5.00 19.00 0.00 0.91 0.09 

18 1 1.00 4.00 0.00 1.00 0.00 0.00 176 2 3.00 6.00 19.00 0.00 0.77 0.23 

19 1 1.00 4.00 0.00 1.00 0.00 0.00 177 2 3.00 6.00 6.00 0.00 0.99 0.01 

20 1 1.00 4.00 0.00 0.99 0.00 0.00 178 2 3.00 6.00 2.00 0.00 0.95 0.05 

21 1 1.00 5.00 0.00 0.96 0.02 0.03 179 2 3.00 6.00 11.00 0.00 1.00 0.00 

22 1 1.00 5.00 0.00 0.98 0.00 0.01 180 2 3.00 6.00 15.00 0.00 0.99 0.01 

23 1 1.00 5.00 0.00 0.97 0.00 0.02 181 2 4.00 4.00 6.00 0.00 0.96 0.04 

24 1 1.00 5.00 1.00 1.00 0.00 0.00 182 2 4.00 4.00 0.00 0.00 0.04 0.95 

25 1 1.00 5.00 0.00 0.95 0.02 0.03 183 2 4.00 4.00 2.00 0.00 1.00 0.00 

26 1 1.00 6.00 1.00 1.00 0.00 0.00 184 2 4.00 4.00 19.00 0.00 0.71 0.29 

27 1 1.00 6.00 1.00 1.00 0.00 0.00 185 2 4.00 4.00 9.00 0.00 0.00 1.00 

28 1 1.00 6.00 1.00 1.00 0.00 0.00 186 2 4.00 5.00 14.00 0.00 0.99 0.01 

29 1 1.00 6.00 1.00 1.00 0.00 0.00 187 2 4.00 5.00 19.00 0.00 0.65 0.35 

30 1 1.00 6.00 1.00 1.00 0.00 0.00 188 2 4.00 5.00 15.00 0.00 0.98 0.02 

31 1 2.00 2.00 0.00 1.00 0.00 0.00 189 2 4.00 5.00 19.00 0.00 0.57 0.43 

32 1 2.00 2.00 0.00 1.00 0.00 0.00 190 2 4.00 5.00 6.00 0.00 1.00 0.00 

33 1 2.00 2.00 0.00 1.00 0.00 0.00 191 2 4.00 6.00 19.00 0.00 0.85 0.15 

34 1 2.00 2.00 0.00 1.00 0.00 0.00 192 2 4.00 6.00 10.00 0.00 0.95 0.05 

35 1 2.00 2.00 0.00 1.00 0.00 0.00 193 2 4.00 6.00 16.00 0.00 0.97 0.03 

36 1 2.00 3.00 0.00 1.00 0.00 0.00 194 2 4.00 6.00 19.00 0.00 0.42 0.58 

37 1 2.00 3.00 0.00 1.00 0.00 0.00 195 2 4.00 6.00 5.00 0.00 0.04 0.96 

38 1 2.00 3.00 0.00 1.00 0.00 0.00 196 2 5.00 5.00 16.00 0.00 0.95 0.05 
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39 1 2.00 3.00 0.00 1.00 0.00 0.00 197 2 5.00 5.00 4.00 0.00 1.00 0.00 

40 1 2.00 3.00 0.00 1.00 0.00 0.00 198 2 5.00 5.00 3.00 0.00 1.00 0.00 

41 1 2.00 4.00 0.00 0.99 0.00 0.00 199 2 5.00 5.00 9.00 0.00 1.00 0.00 

42 1 2.00 4.00 0.00 1.00 0.00 0.00 200 2 5.00 5.00 7.00 0.00 0.98 0.02 

43 1 2.00 4.00 0.00 0.97 0.00 0.02 201 2 5.00 6.00 3.00 0.00 1.00 0.00 

44 1 2.00 4.00 0.00 0.97 0.01 0.01 202 2 5.00 6.00 19.00 0.00 0.34 0.66 

45 1 2.00 4.00 0.00 1.00 0.00 0.00 203 2 5.00 6.00 5.00 0.00 1.00 0.00 

46 1 2.00 5.00 0.00 0.98 0.00 0.01 204 2 5.00 6.00 4.00 0.00 0.00 1.00 

47 1 2.00 5.00 0.00 0.96 0.03 0.01 205 2 5.00 6.00 10.00 0.00 1.00 0.00 

48 1 2.00 5.00 0.00 0.99 0.00 0.00 206 2 6.00 6.00 19.00 0.00 0.73 0.27 

49 1 2.00 5.00 1.00 1.00 0.00 0.00 207 2 6.00 6.00 15.00 0.00 0.99 0.00 

50 1 2.00 5.00 0.00 0.97 0.02 0.02 208 2 6.00 6.00 14.00 0.00 0.96 0.04 

51 1 2.00 6.00 1.00 1.00 0.00 0.00 209 2 6.00 6.00 4.00 0.00 0.03 0.97 

52 1 2.00 6.00 1.00 1.00 0.00 0.00 210 2 6.00 6.00 3.00 0.00 0.98 0.02 

53 1 2.00 6.00 0.00 0.95 0.01 0.03 211 3 1.00 1.00 1.00 0.00 0.00 1.00 

54 1 2.00 6.00 1.00 0.96 0.00 0.04 212 3 1.00 1.00 0.00 0.00 0.00 1.00 

55 1 2.00 6.00 1.00 1.00 0.00 0.00 213 3 1.00 1.00 1.00 0.00 0.00 1.00 

56 1 3.00 3.00 0.00 1.00 0.00 0.00 214 3 1.00 1.00 4.00 0.00 0.00 1.00 

57 1 3.00 3.00 0.00 1.00 0.00 0.00 215 3 1.00 1.00 7.00 0.00 0.04 0.96 

58 1 3.00 3.00 0.00 1.00 0.00 0.00 216 3 1.00 2.00 2.00 0.00 0.02 0.98 

59 1 3.00 3.00 0.00 1.00 0.00 0.00 217 3 1.00 2.00 3.00 0.00 0.00 1.00 

60 1 3.00 3.00 0.00 1.00 0.00 0.00 218 3 1.00 2.00 7.00 0.00 0.00 1.00 

61 1 3.00 4.00 1.00 1.00 0.00 0.00 219 3 1.00 2.00 10.00 0.00 0.00 1.00 

62 1 3.00 4.00 1.00 1.00 0.00 0.00 220 3 1.00 2.00 5.00 0.00 0.00 1.00 

63 1 3.00 4.00 1.00 1.00 0.00 0.00 221 3 1.00 3.00 11.00 0.00 0.00 1.00 

64 1 3.00 4.00 1.00 1.00 0.00 0.00 222 3 1.00 3.00 3.00 0.00 0.00 1.00 

65 1 3.00 4.00 2.00 1.00 0.00 0.00 223 3 1.00 3.00 1.00 0.00 0.00 1.00 

66 1 3.00 5.00 0.00 0.97 0.01 0.02 224 3 1.00 3.00 2.00 0.00 0.00 0.99 

67 1 3.00 5.00 0.00 0.99 0.00 0.00 225 3 1.00 3.00 1.00 0.00 0.00 1.00 

68 1 3.00 5.00 0.00 0.95 0.02 0.03 226 3 1.00 4.00 7.00 0.00 0.04 0.96 

69 1 3.00 5.00 0.00 0.97 0.02 0.02 227 3 1.00 4.00 8.00 0.00 0.04 0.96 

70 1 3.00 5.00 0.00 0.96 0.02 0.02 228 3 1.00 4.00 11.00 0.00 0.00 1.00 

71 1 3.00 6.00 0.00 1.00 0.00 0.00 229 3 1.00 4.00 5.00 0.00 0.00 1.00 

72 1 3.00 6.00 0.00 0.97 0.01 0.02 230 3 1.00 4.00 3.00 0.00 0.00 1.00 

73 1 3.00 6.00 1.00 1.00 0.00 0.00 231 3 1.00 5.00 12.00 0.00 0.00 1.00 

74 1 3.00 6.00 0.00 0.96 0.02 0.03 232 3 1.00 5.00 19.00 0.00 0.07 0.93 

75 1 3.00 6.00 1.00 1.00 0.00 0.00 233 3 1.00 5.00 7.00 0.00 0.03 0.97 

76 1 4.00 4.00 0.00 0.99 0.00 0.00 234 3 1.00 5.00 6.00 0.00 0.00 1.00 

77 1 4.00 4.00 0.00 1.00 0.00 0.00 235 3 1.00 5.00 1.00 0.00 0.00 1.00 

78 1 4.00 4.00 0.00 1.00 0.00 0.00 236 3 1.00 6.00 9.00 0.00 0.03 0.97 

79 1 4.00 4.00 0.00 1.00 0.00 0.00 237 3 1.00 6.00 10.00 0.00 0.00 1.00 

80 1 4.00 4.00 0.00 1.00 0.00 0.00 238 3 1.00 6.00 6.00 0.00 0.03 0.97 

81 1 4.00 5.00 0.00 0.98 0.00 0.01 239 3 1.00 6.00 5.00 0.00 0.00 1.00 

82 1 4.00 5.00 1.00 1.00 0.00 0.00 240 3 1.00 6.00 8.00 0.00 0.00 1.00 

83 1 4.00 5.00 1.00 1.00 0.00 0.00 241 3 2.00 2.00 6.00 0.00 0.00 1.00 

84 1 4.00 5.00 1.00 1.00 0.00 0.00 242 3 2.00 2.00 7.00 0.00 0.03 0.97 

85 1 4.00 5.00 1.00 1.00 0.00 0.00 243 3 2.00 2.00 3.00 0.00 0.00 1.00 

86 1 4.00 6.00 0.00 0.96 0.02 0.02 244 3 2.00 2.00 5.00 0.00 0.00 1.00 
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87 1 4.00 6.00 1.00 0.99 0.00 0.00 245 3 2.00 2.00 1.00 0.00 0.04 0.96 

88 1 4.00 6.00 1.00 1.00 0.00 0.00 246 3 2.00 3.00 11.00 0.00 0.00 1.00 

89 1 4.00 6.00 1.00 1.00 0.00 0.00 247 3 2.00 3.00 17.00 0.00 0.04 0.96 

90 1 4.00 6.00 0.00 0.98 0.00 0.00 248 3 2.00 3.00 5.00 0.00 0.00 1.00 

91 1 5.00 5.00 0.00 0.97 0.02 0.01 249 3 2.00 3.00 7.00 0.00 0.00 1.00 

92 1 5.00 5.00 0.00 0.96 0.00 0.03 250 3 2.00 3.00 1.00 0.00 0.03 0.97 

93 1 5.00 5.00 0.00 0.99 0.00 0.00 251 3 2.00 4.00 3.00 0.00 0.00 1.00 

94 1 5.00 5.00 0.00 0.98 0.00 0.00 252 3 2.00 4.00 8.00 0.00 0.05 0.95 

95 1 5.00 5.00 0.00 0.99 0.00 0.00 253 3 2.00 4.00 6.00 0.00 0.05 0.95 

96 1 5.00 6.00 0.00 0.98 0.00 0.00 254 3 2.00 4.00 8.00 0.00 0.05 0.95 

97 1 5.00 6.00 1.00 1.00 0.00 0.00 255 3 2.00 4.00 12.00 0.00 0.05 0.95 

98 1 5.00 6.00 1.00 1.00 0.00 0.00 256 3 2.00 5.00 8.00 0.00 0.02 0.98 

99 1 5.00 6.00 1.00 1.00 0.00 0.00 257 3 2.00 5.00 15.00 0.00 0.01 0.99 

100 1 5.00 6.00 2.00 1.00 0.00 0.00 258 3 2.00 5.00 5.00 0.00 0.00 1.00 

101 1 6.00 6.00 1.00 1.00 0.00 0.00 259 3 2.00 5.00 8.00 0.00 0.01 0.99 

102 1 6.00 6.00 1.00 1.00 0.00 0.00 260 3 2.00 5.00 2.00 0.00 0.00 1.00 

103 1 6.00 6.00 0.00 0.99 0.00 0.00 261 3 2.00 6.00 5.00 0.00 0.00 1.00 

104 1 6.00 6.00 0.00 0.95 0.02 0.03 262 3 2.00 6.00 6.00 0.00 0.04 0.96 

105 1 6.00 6.00 0.00 0.97 0.00 0.02 263 3 2.00 6.00 14.00 0.00 0.00 1.00 

106 2 1.00 1.00 0.00 0.00 0.03 0.97 264 3 2.00 6.00 6.00 0.00 0.00 1.00 

107 2 1.00 1.00 0.00 0.00 0.00 1.00 265 3 2.00 6.00 9.00 0.00 0.01 0.99 

108 2 1.00 1.00 0.00 0.00 0.00 1.00 266 3 3.00 3.00 2.00 0.00 0.04 0.96 

109 2 1.00 1.00 4.00 0.00 0.95 0.05 267 3 3.00 3.00 8.00 0.00 0.01 0.99 

110 2 1.00 1.00 2.00 0.00 1.00 0.00 268 3 3.00 3.00 8.00 0.00 0.03 0.97 

111 2 1.00 2.00 0.00 0.00 0.01 0.99 269 3 3.00 3.00 1.00 0.00 0.01 0.98 

112 2 1.00 2.00 7.00 0.00 1.00 0.00 270 3 3.00 3.00 3.00 0.00 0.00 1.00 

113 2 1.00 2.00 2.00 0.00 0.98 0.02 271 3 3.00 4.00 7.00 0.00 0.01 0.99 

114 2 1.00 2.00 11.00 0.00 0.05 0.95 272 3 3.00 4.00 2.00 0.00 0.04 0.96 

115 2 1.00 2.00 5.00 0.00 1.00 0.00 273 3 3.00 4.00 6.00 0.00 0.03 0.97 

116 2 1.00 3.00 4.00 0.00 0.96 0.04 274 3 3.00 4.00 4.00 0.00 0.00 1.00 

117 2 1.00 3.00 8.00 0.00 1.00 0.00 275 3 3.00 4.00 4.00 0.00 0.03 0.97 

118 2 1.00 3.00 3.00 0.00 1.00 0.00 276 3 3.00 5.00 3.00 0.00 0.00 1.00 

119 2 1.00 3.00 11.00 0.00 1.00 0.00 277 3 3.00 5.00 4.00 0.00 0.00 1.00 

120 2 1.00 3.00 13.00 0.00 1.00 0.00 278 3 3.00 5.00 10.00 0.00 0.03 0.97 

121 2 1.00 4.00 16.00 0.00 0.96 0.04 279 3 3.00 5.00 8.00 0.00 0.05 0.95 

122 2 1.00 4.00 19.00 0.00 0.94 0.06 280 3 3.00 5.00 3.00 0.00 0.02 0.98 

123 2 1.00 4.00 19.00 0.00 0.91 0.09 281 3 3.00 6.00 12.00 0.00 0.00 1.00 

124 2 1.00 4.00 5.00 0.00 0.96 0.04 282 3 3.00 6.00 15.00 0.00 0.00 1.00 

125 2 1.00 4.00 8.00 0.00 0.99 0.00 283 3 3.00 6.00 10.00 0.00 0.04 0.96 

126 2 1.00 5.00 19.00 0.00 0.33 0.67 284 3 3.00 6.00 10.00 0.00 0.00 1.00 

127 2 1.00 5.00 16.00 0.00 0.99 0.00 285 3 3.00 6.00 16.00 0.00 0.05 0.95 

128 2 1.00 5.00 1.00 0.03 0.97 0.00 286 3 4.00 4.00 8.00 0.00 0.02 0.98 

129 2 1.00 5.00 9.00 0.00 0.96 0.04 287 3 4.00 4.00 5.00 0.00 0.02 0.98 

130 2 1.00 5.00 3.00 0.00 1.00 0.00 288 3 4.00 4.00 2.00 0.00 0.00 1.00 

131 2 1.00 6.00 16.00 0.00 0.96 0.04 289 3 4.00 4.00 15.00 0.00 0.04 0.96 

132 2 1.00 6.00 19.00 0.00 0.95 0.05 290 3 4.00 4.00 11.00 0.00 0.00 1.00 

133 2 1.00 6.00 19.00 0.00 0.90 0.10 291 3 4.00 5.00 9.00 0.00 0.00 1.00 

134 2 1.00 6.00 16.00 0.00 1.00 0.00 292 3 4.00 5.00 4.00 0.00 0.00 1.00 
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135 2 1.00 6.00 10.00 0.00 1.00 0.00 293 3 4.00 5.00 5.00 0.00 0.00 1.00 

136 2 2.00 2.00 12.00 0.00 0.99 0.01 294 3 4.00 5.00 6.00 0.00 0.00 0.99 

137 2 2.00 2.00 2.00 0.00 1.00 0.00 295 3 4.00 5.00 6.00 0.00 0.05 0.95 

138 2 2.00 2.00 2.00 0.00 1.00 0.00 296 3 4.00 6.00 19.00 0.00 0.07 0.93 

139 2 2.00 2.00 8.00 0.00 1.00 0.00 297 3 4.00 6.00 6.00 0.00 0.00 1.00 

140 2 2.00 2.00 1.00 0.00 0.97 0.03 298 3 4.00 6.00 7.00 0.00 0.02 0.98 

141 2 2.00 3.00 7.00 0.00 1.00 0.00 299 3 4.00 6.00 5.00 0.00 0.00 1.00 

142 2 2.00 3.00 5.00 0.00 0.99 0.01 300 3 4.00 6.00 8.00 0.00 0.05 0.95 

143 2 2.00 3.00 11.00 0.00 1.00 0.00 301 3 5.00 5.00 2.00 0.00 0.02 0.98 

144 2 2.00 3.00 17.00 0.00 0.97 0.03 302 3 5.00 5.00 1.00 0.00 0.00 1.00 

145 2 2.00 3.00 5.00 0.00 0.98 0.02 303 3 5.00 5.00 4.00 0.00 0.00 1.00 

146 2 2.00 4.00 1.00 0.00 1.00 0.00 304 3 5.00 5.00 5.00 0.00 0.04 0.96 

147 2 2.00 4.00 2.00 0.00 1.00 0.00 305 3 5.00 5.00 1.00 0.02 0.00 0.97 

148 2 2.00 4.00 11.00 0.00 0.96 0.04 306 3 5.00 6.00 7.00 0.00 0.00 0.99 

149 2 2.00 4.00 10.00 0.00 1.00 0.00 307 3 5.00 6.00 4.00 0.00 0.00 1.00 

150 2 2.00 4.00 8.00 0.00 1.00 0.00 308 3 5.00 6.00 15.00 0.00 0.00 1.00 

151 2 2.00 5.00 12.00 0.00 0.97 0.03 309 3 5.00 6.00 7.00 0.00 0.04 0.96 

152 2 2.00 5.00 3.00 0.00 1.00 0.00 310 3 5.00 6.00 3.00 0.00 0.00 1.00 

153 2 2.00 5.00 6.00 0.00 0.98 0.02 311 3 6.00 6.00 13.00 0.00 0.03 0.97 

154 2 2.00 5.00 19.00 0.00 1.00 0.00 312 3 6.00 6.00 1.00 0.00 0.00 1.00 

155 2 2.00 5.00 8.00 0.00 0.95 0.05 313 3 6.00 6.00 18.00 0.00 0.00 1.00 

156 2 2.00 6.00 2.00 0.00 1.00 0.00 314 3 6.00 6.00 7.00 0.00 0.00 0.99 

157 2 2.00 6.00 2.00 0.00 0.99 0.00 315 3 6.00 6.00 6.00 0.00 0.04 0.96 

158 2 2.00 6.00 19.00 0.00 0.42 0.58                 
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Appendix C 

Simulation Conditions of Copolymerization Models 

Table C-1:   Parameter values for the homo-polymerization of Styrene 

 Constant     

 MW 104.1512 g/mol   

 kp 1.09 × 107exp (−7051 RT⁄ ) L/(mol. s)   

 kt 1.703 × 109exp (−2268 RT⁄ ) L/(mol. s)   

 kfM 1.096482

× 107exp (−134268.8 RT⁄ ) 

L/(mol. s)   

 ρM 0.924 − 9.18 × 10−4(T − 273.15) g/cm3   

 ρP 1.084 − 6.05 × 10−4(T − 273.15) g/cm3   

 γ 0.00 -   

 

Table C-2:   Parameter values for the homo-polymerization of Methyl Methacrylate 

 Constant    

MW 100.1162 g/mol 
kp 5.365859

× 105exp (−4353 RT⁄ ) 

L

/(mol. s) 
kt 9.8 × 107exp (−701 RT⁄ ) L

/(mol. s) 
kfM 1.557243

× 103exp (−7475.06 RT⁄ ) 

L

/(mol. s) 
ρM 0.966471 − 1.16 × 10−3(T

− 273.15) 

g/cm3 

ρP 1.19343 − 2.8 × 10−4(T

− 273.15) 

g/cm3 

γ 0.84 - 

 

Table C-3:   Reactivity ratios for the modeling of the STY/MMA 1 

 Para

meter 

Value  

 r11 0.472  

 r21 0.472  

 r22 0.454  

 r12 0.454  

 s1 0.412  

 s2 0.170  

                                                      
1 Reactivity ratios are taken from O'Driscoll and Huang (1989)  
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 kt12 
kt1r21N1

2 (r11N1 + N2)
(r21N1 + N2)

+ 2(kt1kt2)
0.5N1N2 + kt2r12N2

2 (r22N2 + N1)
(r12N2 + N1)

r21N1
2 (r11N1 + N2)
(r21N1 + N2)

+ 2N1N2 + r12N2
2 (r22N2 + N1)
(r12N2 + N1)

 
 

 kf,M 

3 

F1kf,M1
+ (1 − F1) kf,M2

  

 ρ F1ρ1 + (1 − F1)ρ_2  

 ϵ 

ϵ1r21N1
2 (r11N1 + N2)
(r21N1 + N2)

+ 2ϵ12N1N2 + ϵ2r12N2
2 (r22N2 + N1)
(r12N2 + N1)

r21N1
2 (r11N1 + N2)
(r21N1 + N2)

+ 2N1N2 + r12N2
2 (r22N2 + N1)
(r12N2 + N1)

  

 ϵ1 -0.170  

 ϵ12 -0.227  

 ϵ2 -0.264  

 dV

dt
4 V0ϵ

dx

dt
 

 

 

 

Table C-4:   Parameter values for the homo-polymerization of Acrylonitrile 

 Constant   

MW 53.0634 g/mol 
kp 1.047 × 108exp (−7278.38 RT⁄ ) L

/(mol. s) kt 2.95 × 1011exp (−5396.88 RT⁄ ) L

/(mol. s) kfM 1.090932

× 106exp (−10.9724 × 103
RT⁄ ) 

L

/(mol. s) 
ρM 0.835549 − 1.38286 × 10−3exp (T

− 273.15) 

g/cm3 

ρP 1.17 g/cm3 

γ 0.00 - 
 

 

                                                      
2 STY is monomer 1 
3 Homo-polymerization rate constant was decreased by a factor of 1.09 by Burke in order to improve the 
prediction for the particular data set 
4 instead of using an overall copolymer density, Burke used the volume contraction factor for the simulation of 
STY/MMA 
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Table C-5:   Parameter values  for the modeling of the STY/AN 

 
Parameter Value  

r11 0.230  

r21 0.634  

r22 0.039  

r12 0.091  

s1 1.00  

s2 1.00  

kd 1.03833

× 1015exp (−30706 RT)⁄  

s−1 

f 2.47

× 10−2exp (2166 RT)⁄  

− 

kt F1kt1 + (1 − F1)kt2  

kfM F1kfM1 + (1 − F1)kfM2  

ρP F1ρP1 + (1 − F1)ρP2  

 s1 = s2 = 1.0  
 

 

 

Table C-6:   Homo-polymerization constants for Styrene in STY/BA models 

 Constant   

MW 104.1512 g/mol 
kp 0.872

× 107exp (−7051 RT⁄ ) 

L

/(mol. s) 
kt 1.703

× 109exp (−2268 RT⁄ ) 

L

/(mol. s) 
kfM 

1.096482

× 107exp (−134268.8 RT⁄ ) 

L

/(mol. s) 

ρM 0.924 − 9.18 × 10−4exp (T

− 273.15) 

g/cm3 

ρP 1.084 − 6.05 × 10−4exp (T

− 273.15) 

g/cm3 

γ 0.00 - 
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Table C-7:   Homo-polymerization constants for Butyl Acrylate 

 Constant   

MW 128.17 g/mol 
kp 1.7 × 108exp (−7128.46 RT⁄ ) L

/(mol. s) 
kt 1.156167

× 1012exp (−7312.25 RT⁄ ) 

L

/(mol. s) 
kfM 3.9374175

× 104exp (−7475.06 RT⁄ ) 

L

/(mol. s) 
ρM 0.9191 − 1.012 × 10−3exp (T

− 273.15) 

g/cm3 

γ 0.00 - 
 

 

 

Table C-8:   Parameter values  for the modeling of the STY/BA 

 Paramete

r 

Value  

r11 0.551  

r21 0.937  

r22 0.225  

r12 0.130  

s1 0.405  

s2 0.505  

kd 1.03833 × 1015exp (−30706 RT)⁄  s−1 

f 2.47 × 10−2exp (2166 RT)⁄  − 

kt kt1r21N1
2 (r11N1 + N2)
(r21N1 + N2)

+ 2(kt1kt2)
0.5N1N2 + kt2r12N2

2 (r22N2 + N1)
(r12N2 + N1)

r21N1
2 (r11N1 + N2)
(r21N1 + N2)

+ 2N1N2 + r12N2
2 (r22N2 + N1)
(r12N2 + N1)

 

 

kfM F1kfM1 + (1 − F1)kfM2  

ρP F1ρP1 + (1 − F1)ρP2  
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Table C-9: Experimental design for simulation runs 

 case Model Initial guess Error   

     1 Terminal Poor Low   

 2 Terminal Poor Medium   

 3 Terminal Poor High   

 4 Terminal Neutral Low   

 5 Terminal Neutral Medium   

 6 Terminal Neutral High   

 7 Terminal Good Low   

 8 Terminal Good Medium   

 9 Terminal Good High   

 10 Strong Penultimate Poor Low   

 11 Strong Penultimate Poor Medium   

 12 Strong Penultimate Poor High   

 13 Strong Penultimate Neutral Low   

 14 Strong Penultimate Neutral Medium   

 15 Strong Penultimate Neutral High   

 16 Strong Penultimate Good Low   

 17 Strong Penultimate Good Medium   

 18 Strong Penultimate Good High   

 19 Small Penultimate Poor Low   

 20 Small Penultimate Poor Medium   

 21 Small Penultimate Poor High   

 22 Small Penultimate Neutral Low   

 23 Small Penultimate Neutral Medium   

 24 Small Penultimate Neutral High   

 25 Small Penultimate Good Low   

 26 Small Penultimate Good Medium   

 27 Small Penultimate Good High   
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Table C-10: Error levels 

 Levels Low Medium High  

 Feed composition 0.005 0.005 0.005  

 Polymer composition 0.005 0.010 0.015  

 Conversion (mole 

fraction) 

0.0067 0.0067 0.0067  

 

 

Table C-11: Simulation Parameters for STY/AN 

 Levels Terminal Strong 

Penultimate 

Small 

Penultimate 

 

 r11 0.400 0.230 0.331  

 r21 0.400 0.634 0.533  

 r22 0.065 0.039 0.052  

 r12 0.065 0.091 0.078  

 s1 0.700 0.700 1.00  

 s2 0.700 0.700 1.00  

 

Table C-12: Simulation Parameters for STY/MMA 

 Levels Terminal Strong 

Penultimate 

Small 

Penultimate 

 

 r11 0.47200 0.25050 0.36125  

 r21 0.47200 0.69354 0.58277  

 r22 0.45400 0.27240 0.36320  

 r12 0.45400 0.63551 0.54475  

 s1 0.41200 0.41200 0.70000  

 s2 0.17000 0.17000 0.60000  

 

Table C-13: Simulation Parameters for STY/BA 

 Levels Terminal Strong 

Penultimate 

Small 

Penultimate 

 

 r11 0.956 0.551 0.648  

 r21 0.956 0.937 0.841  

 r22 0.183 0.225 0.201  

 r12 0.183 0.130 0.154  

 s1 0.405 0.405 0.600  

 s2 0.405 0.505 0.700  
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Table C-14: Initial Reactivity Ratio Estimates for STY/AN 

  Poor Neutral Good  

 r̂11 0.60 0.35 0.20  

 r̂21 0.20 0.45 0.60  

 r̂22 0.10 0.06 0.05  

 r̂12 0.05 0.08 0.10  

 r̂1 0.10 0.30 0.45  

 r̂2 0.45 0.20 0.10  

 ŝ1 1.00 0.85 0.85  

 ŝ2 1.00 0.85 0.85  

 
 

Table C-15: Initial Reactivity Ratio Estimates for STY/MMA 

  Poor Neutral Good  

 r̂11 0.75 0.50 0.30  

 r̂21 0.30 0.55 0.75  

 r̂22 0.70 0.40 0.35  

 r̂12 0.35 0.45 0.70  

 r̂1 0.70 0.55 0.50  

 r̂2 0.30 0.45 0.50  

 ŝ1 1.00 0.50 0.35  

 ŝ2 1.00 0.50 0.35  

 
 

Table C-16: Initial Reactivity Ratio Estimates for STY/BA 

  Poor Neutral Good  

 r̂11 0.90 0.70 0.50  

 r̂21 0.50 0.75 0.90  

 r̂22 0.10 0.15 0.30  

 r̂12 0.30 0.10 0.10  

 r̂1 0.20 0.70 0.90  

 r̂2 0.90 0.50 0.20  

 ŝ1 1.00 0.75 0.50  

 ŝ2 1.00 0.75 0.50  
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Appendix D 

 Results: Copolymer Case Study 

 

Table D-1:   SBMCMD method, triad data, STY/BA 

 

Case 

Number 

Number of 

Experiment 

Pr 

(Terminal) 

Pr 

(Penultimate) 

1 0 1.00 0.00 

2 0 0.95 0.05 

3 0 0.98 0.02 

4 0 1.00 0.00 

5 0 0.99 0.01 

6 0 0.98 0.02 

7 0 1.00 0.00 

8 0 1.00 0.00 

9 0 0.97 0.03 

10 0 0.00 1.00 

11 1 0.01 0.99 

12 7 0.02 0.98 

13 0 0.00 1.00 

14 0 0.00 1.00 

15 0 0.02 0.98 

16 0 0.00 1.00 

17 0 0.00 1.00 

18 1 0.01 0.99 

19 0 0.05 0.95 

20 1 0.04 0.96 

21 1 0.97 0.03 

22 0 0.01 0.99 

23 0 0.00 1.00 

24 1 0.95 0.05 

25 0 0.00 1.00 

26 2 0.02 0.98 

27 1 0.97 0.03 
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Table D-2:   SBMCMD method, triad data, STY/AN 

 Case 

Number 

Number of 

Experiment 

Pr 

(Terminal) 

Pr 

(Penultimate) 

1 0 0.99 0.01 

2 0 1.00 0.00 

3 0 0.99 0.01 

4 0 0.97 0.03 

5 0 0.99 0.01 

6 0 0.97 0.03 

7 0 0.97 0.03 

8 0 0.99 0.01 

9 0 0.99 0.01 

10 0 0.00 1.00 

11 0 0.00 1.00 

12 0 0.00 1.00 

13 0 0.00 1.00 

14 0 0.00 1.00 

15 0 0.00 1.00 

16 0 0.00 1.00 

17 0 0.00 1.00 

18 0 0.03 0.97 

19 0 0.00 1.00 

20 4 0.01 0.99 

21 2 0.00 1.00 

22 0 0.00 1.00 

23 0 0.00 1.00 

24 2 0.01 0.99 

25 0 0.00 1.00 

26 0 0.00 1.00 

27 5 0.03 0.97 
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Table D-3:   SBMCMD method, triad data, STY/MMA 

 Case 

Number 

Number of 

Experiment 

Pr 

(Terminal) 

Pr 

(Penultimate) 

1 0 1.00 0.00 

2 1 1.00 0.00 

3 1 0.96 0.04 

4 0 0.98 0.02 

5 0 0.97 0.03 

6 1 0.99 0.01 

7 0 0.99 0.01 

8 0 0.98 0.02 

9 1 0.99 0.01 

10 0 0.00 1.00 

11 0 0.00 1.00 

12 0 0.00 1.00 

13 0 0.00 1.00 

14 0 0.00 1.00 

15 0 0.00 1.00 

16 0 0.00 1.00 

17 0 0.00 1.00 

18 0 0.00 1.00 

19 0 0.00 1.00 

20 0 0.04 0.96 

21 1 0.00 1.00 

22 0 0.00 1.00 

23 0 0.00 1.00 

24 1 0.00 1.00 

25 0 0.00 1.00 

26 0 0.00 1.00 

27 1 0.00 1.00 
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Appendix E 

RAFT Sensitivity Analysis Plots (versus conversion) 

 

 

Figure 6E-1:   RAFT models output, Mn – conversion 

 

 

 

Figure E-2:   RAFT models output, PDI – conversion 
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Figure E-3:   RAFT models output, one-arm adduct concentration - conversion 

 

 

 

Figure E-4:   RAFT models output, two arm-adduct concentration - conversion 
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Figure E-5:   RAFT models output, dormant concentration – conversion 
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Appendix F 

Structure of the Program 

 

  Figure E-1 shows part of the structure of the implemented program.  

 

 

Figure F-1:   Object oriented structure - Core object 

 

MDSystem is a basic class in the design, and CoreModel is derived from it. A CoreModel has 

pure abstract functions that get parameters and input values and then return output of a 

CoreModel. When a new case study is tested by the framework, the only coding needed is 

driving a new CoreModel class and overwriting the abstract functions. Figure 4-4 shows the 

model class derived for the copolymerization case study (section 5.3). In addition to the 

CoreModel classes for the competitive models, in cases where a computation simulation is 
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used instead of the real system, a child class from the CoreModel is needed to present the real 

system. (Core_real_copolymer and derived classes in Figure F-2) 

 

 

 

Figure F-2:   Object oriented structure - Model object 

 

 

“Real System” class is another important class in this design; one class derived from it is named 

RealSystem_Simulation, which contains an object from “CoreModel” representing the simulated 

real system. Figure 4-5 shows CompetetiveModel class and its derived ones. In this program HR 

method and three implementations of the SBMCMD approach are coded. Figure 4-6 presents 

another part of the design for the RandomGenerator. For any of these methods, a class of 
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Model_Bayesian is derived to handle the specific functions needed in that method. For example, 

any of these classes (Model SAR, model Chib and Model_Hsiang and Reilly) has a different 

implementation of the UpdateSamples function, where Updatesamples is an abstract function in 

Modelbayesian. The functions and features of Model_Chib is shown in Figure F-2.  

Figure F-3 presents the CoreClass. One object from this class is necessary to be built for any case 

study. Case contains an Identifier and List of CompetetiveModels and a realSystem.  

 

 

 

Figure F-3:   Object oriented structure - Random Generator object 
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Figure F-4:   Object oriented structure – Model_Chib 



 

 172 

 

Figure F-5:   Object oriented structure - Case class 
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