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Abstract  

This research study examined the effect of corrosion of web reinforcement (stirrups) on the shear 

behaviour of slender reinforced concrete (RC) beams. The experimental program consisted of 

seventeen slender shear-critical RC beams: five uncorroded and twelve corroded beams. The test 

variables included: 1) corrosion level (0%, 7.5% and 15%); 2) type of stirrups (smooth and 

deformed); 3) stirrup diameter (D6, D12 and 10M); 4) stirrups spacing (100mm and 200mm); 

and 5) the presence of CFRP repair. The corroded beams had their stirrups subjected to corrosion 

using an accelerated corrosion technique and the mass loss in the stirrups was estimated based on 

Faraday’s law. All of the beams were monotonically tested to failure in three point bending. The 

corrosion cracks formed were parallel to the locations of stirrups as evidence of the corrosion 

damage in the corroded beams. The maximum decrease in the ultimate shear strength ranged 

from 11% to 14.4% for beams with high corrosion level of 15.6% mass loss. At a low corrosion 

level (4.39% mass loss), the shear strength of beams with smooth stirrups increased up to 35% 

due to the enhancement of shear friction at the concrete-corroded stirrups interface. The stiffness 

of the corroded beams was enhanced in comparison to the control beams. The ultimate deflection 

of the corroded beams was decreased up to 25% in comparison to the control beams. The CFRP 

repair increased the shear strength by 36% and improved the overall stiffness by 39% in 

comparison to the corroded unrepaired beams. All of the unrepaired beams failed in diagonal 

tension splitting, while the CFRP repaired corroded beams failed in diagonal tension splitting in 

addition to debonding of the FRP or concrete cover delamination. The actual corrosion mass loss 

results were in good correlation with Faraday’s law for the D12 and 10M stirrups. Poor 

correlation between actual and estimated mass loss was obtained for D6 smooth stirrups, 

possibly due to errors in the impressed corrosion.  
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The analytical model used the modified compression field theory (MCFT) to predict the shear 

strength of uncorroded and corroded slender RC beams. In the corroded beams, two reduction 

factors were added to the MCFT model including the mass loss factor and the effective web 

width. Predictions based on the model revealed that the control beams gave a very good 

correlation with the ratio of experimental to predicted values that ranged from 0.94 to 1.02. On 

other hand, the ratio of experimental to predicted strength in the corroded beams ranged 

between1.06 to 1.4. The poor correlations were obtained for the beams with the D6 smooth 

stirrups. 

This study demonstrates that corrosion of web reinforcement can have a detrimental effect on the 

shear strength and ductility of slender shear-critical RC beams. The experimental results and 

analytical approach will be very useful for practicing engineers and researchers dealing with 

corrosion damage in slender RC members.    
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Chapter 1: Introduction and Background 

 Introduction 1.1

Reinforced concrete (RC) is a composite material consisting of two primary components with 

different mechanical and physical characteristics. The combination of concrete (which is strong 

in compression) and steel reinforcement (which is strong in tension) allows RC members to resist 

the applied loads that cause either flexural and/or shear failures. These failures can occur in real 

structures because of various factors such as design errors, corrosion damage of steel 

reinforcement, or overloading on the RC members.  

Corrosion of reinforcing steel is a fundamental deterioration mechanism that reduces the service 

life of reinforced concrete (RC) infrastructure (ACI 222, 2001). Naturally, the alkalinity of 

concrete is high and thus protects the reinforcing steel from corrosion. However, the lack of 

concrete durability leads to corrosion damage. Chloride ingress from de-icing chemicals in 

Northern climates or sea salts in coastal areas and carbonation of the concrete lead to a reduction 

in the concrete’s alkalinity and loss of passivity; consequently, corrosion of the steel 

reinforcement will initiate. As the corrosion progresses, its product (rust) increases in volume 

and causes concrete cracking and eventually spalling of the concrete cover, and hence loss of 

structural bond between the reinforcement and concrete. Additionally, corrosion causes a 

reduction in the steel cross-sectional area which leads to a reduction in the load capacity of 

structural members.  

Due to the ductile mechanisms of flexural failure in RC members, pre-failure or pre-collapse 

signs can be easily deduced by noting excessive vertical cracks in the middle (in tension region) 
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of short spans and/or by excessive deflections for long spans. However, shear failures, on the 

contrary, do not have sufficient prior warning signs, which makes shear failure in RC members 

mechanically brittle, and those a potential cause of catastrophic collapse. The recent collapse due 

to shear failure of the de la Concorde overpass in Laval, Quebec, 2006 as shown Figure 1.1 

(Gouvernement du Québec, 2007), raised researcher’s awareness of the importance of shear 

behaviour.  

Figure 1.1 Collapse of de la Concorde overpass in Laval, Quebec, 2006 (Gouvernement du Québec, 

2007) 

 

Aging structures, which were built over a half century ago, have reached their design service 

lives and are experiencing a lack of durability due to three main reasons: (1) improper or non-

restricted building standards that were applied at the time of construction; (2) the absence of 

quality assurance guidelines on the construction process which are applicable nowadays; and (3) 

the lack of regular assessment and maintenance of the structures. The American Society for Civil 

Engineers (ASCE) reported that over a quarter of American bridges are structurally deficient or 

aging; additionally, the annual budget is over $15 billion in rehabilitation for existing bridges 

(ASCE, 2009). In 1985, Engineers Canada stated that 70% of the total civil infrastructure 

systems or municipal infrastructure are in need of repair and that the approximate cost of repair 
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is over $20 billion; although, the municipal backlog has grown to over $50 billion. 

Consequently, neglect of this problem will raise the rehabilitation cost up to $110 billion by 2027 

as shown in Figure 1.2 (Engineers Canada, 2013).  This led government agencies to forecast the 

economic impacts of the deficient infrastructure and researchers to investigate the current 

conditions and behaviour of the deteriorated infrastructure.   

 

 

 

 

 

 

Figure 1.2 Infrastructure deficient cost ($-billions) versus Time (years) (Engineers Canada, 

2013) 

 

The effect of corrosion damage on the flexural capacity and the bond behaviour of RC beams is 

widely understood. Nevertheless, the behaviour of damaged shear reinforcement in slender RC 

beams is not well investigated. This study is focused on the deterioration of shear reinforcement 

(stirrups) of slender beams since the loss of ductility in the stirrups caused by corrosion damage 

can be detrimental in these RC structures. 
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 Background    1.2

1.2.1 Corrosion of Reinforcing Steel in Concrete 

Concrete binder (cement paste) has a high alkalinity (pH >13.5), which provides strong 

protection for the reinforcing steel bars from corrosion by forming a passive film of iron oxide 

around the steel surface. The passive film or so-called “barrier layer” can be broken in the 

presence of carbon or chloride ions. These ions can be transmitted through the capillary pores of 

the concrete and through concrete surface cracks. Carbon ions affect the alkalinity of the 

concrete while chloride ions depassivate the passive film of the steel rebar. The corrosion 

process depends on the availability of two major conditions including 1) a high level of humidity 

around the reinforcing steel to activate the electrolyte loop or stray current, 2) oxygen diffusion 

to sustain the corrosion process (ACI 222, 2010).  

Corrosion of reinforcing steel in concrete is referred to as galvanic corrosion due to the 

formation of a galvanic cell within the concrete (Broomfield, 1997). The corrosion of steel 

occurs in an aqueous medium paste and proceeds through electrochemical reactions, which are a 

combination of chemical and electrical reactions. The electrochemical reactions, similar to what 

happens in a flashlight battery which has negative and positive poles, have anodic and cathodic 

reactions. In the anodic site, the iron is oxidized and releases two ferrous ions and electrons as 

given in Equation 1.1. On the other hand, in the cathodic site, the electrons (2e
-
) from the anodic 

site will react with water and oxygen to dissolve hydroxide ions (Broomfield, 1997) as given in 

Equation 1.2.                              

Fe →Fe
2+

 + 2e
-   

                                                                              (1.1) 

2e
-
 +H2O + ½O2 →2OH

- 
                                                                (1.2) 
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The formed ferrous ions (Fe
2+

) and hydroxide ions (OH
-
) will undergo further reactions to 

produce corrosion rust (Equations 1.3 to 1.5) 

Fe
++

 + 2OH
-
 → Fe(OH)2                                                                   (1.3) 

4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3                                                (1.4) 

2Fe (OH)3 →Fe2O3⋅H2O + 2H2O                                                       (1.5) 

The volumes of the corrosion products including iron hydroxide and oxides are greater than the 

original iron (Fe). These volumes grow when the secondary reactions are continued. Figure 1.3 

shows the rust densities for different forms of iron hydroxides and oxides in comparison to the 

original iron (Fe) (Liu and Weyers, 1998). 

 

 

 

 

 

 

Figure 1.3 Relative volumes of iron and iron oxides and hydroxides (Liu and Weyers, 1998) 

 

As corrosion progresses, the rust densities dramatically increase and create cracks that surround 

the surface area of the reinforcing steel and lead to a reduction in the permeability of the 

concrete. When the passive layer is broken, galvanic corrosion in the reinforcing steel will form 
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as macrocell or microcell corrosion. In macrocell, the corrosion occurs where the anode is far 

from the cathode (Figure 1.4a), while microcell corrosion takes place which the anodic and 

cathodic surfaces fairly adjacent (Figure 1.4b) (Hanson et al., 2006). 

 

Figure 1.4 Corrosion macrocell and microcell on steel in concrete (Hansson et al., 2006) 

 Shear in RC Beams 1.2.1

1.2.1.1 Shear Mechanisms in RC Beams  

The 2009 ASCE-ACI Committee 445 reports five mechanisms of shear transfer in RC beams 

including 1) shear resistance of the top flexure reinforcement (in the uncracked concrete); 2) 

interface shear transfer (aggregate interlock or crack friction); 3) dowel action of the tension 

flexure reinforcement; 4) arch action, and 5) residual tensile stresses transmitted directly across 

cracks for beams without web reinforcement. Additionally, for beams with web reinforcement, 

the principle tensile stress can be resisted by stirrups when the diagonal crack is growing. Prior 

to shear failure, the stress condition in the web of a cracked RC beam (the field between the top 

and bottom of longitudinal reinforcement) is different from the predicted stress by the theory of 

linear elasticity (ASCE-ACI, 2009). 

a) Macrocell   b) Microcell   
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Inclined shear cracks are formed when the tensile stress exceeds the tensile strength in concrete; 

these cracks usually form perpendicular to the orientation of the principle tensile stress. In RC 

elements subjected to pure axial tension or bending, the cracks will be perpendicular to the 

longitudinal reinforcement because the tensile stresses are parallel to the longitudinal axis of the 

member. The diagonal shear cracks, which are caused by shear stress or biaxial stress conditions, 

are formed with an inclination to the longitudinal axis of the member. (Collins and Mitchell, 

1991). 

The failure mode in RC beams is mainly governed by the shear span-to-depth ratio a/d; the beam 

can be categorized as a slender (a/d>2.5) or deep (2.5<a/d) beam. A slender RC beam consists of 

two regions: D-region (Disturbed or Discontinuous) and B-region (Beam or Bernoulli) as shown 

in Figure 1.5. D-region behaviour is based on St. Venant’s principle that the load disturbances 

(e.g. applied load or reactions) are dissipated out within a beam height away from the point load 

or reaction. In this case, the stresses and strains would be irregularly distributed in this region. B-

region, on other hand, is based on Bernouli or beam theory with regular distribution of stress and 

strains in the beam. In a slender beam the shear span is greater than 2.5d; the shear strength will 

be governed by B-region behaviour (MacGregor and Bartlett, 2000). RC slender beam without 

stirrups are usually governed by beam action as it has a weak B-region in between two D-

regions. Beam action occurs in the zones away from the supports. Furthermore, a distinct shear 

resistance mechanism, in a slender member can occur due to the different stress and strain 

distribution of the B-region and D-region. The failure mode in slender beams without stirrups 

occurs following the commencement of the critical inclined cracks; this type of failure is called 

diagonal tension splitting failure. 
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Figure 1.5 Overview of region locations for slender RC beam (ACI 318-08) 

In conclusion, the load transfer mechanisms in slender RC beam are complex due to the 

complexity of the shear transfer of beam action. In slender RC beam without stirrups, the 

inclined cracking will be directly followed by failure of the beam which is in the form of 

diagonal splitting failures. 

1.2.3 Shear Design in RC Beams  

There is no unique way to design or analyze RC beams for shear because shear failures are 

varied and depend on many parameters including applied load, sectional configuration or 

properties of the RC elements. In the early19
th

 century, the shear design of RC beams adopted 

the concept of truss analogy by Ritter and Morsch. Since then, different developments have been 

carried out using the truss analogy. Nowadays, this truss analogy is referred to as the plastic truss 

model with the compression and tension zones are represented by dashed and solid lines, 

respectively (Figure 1.6). The main assumption of this analogous truss is that the applied shear 

force (V) is transferred by diagonal compression struts from loading point to the support. The 

applied shear force V is first received by the compression fan, and then the compressive forces of 

the compression fan achieve equilibrium with the tensile forces of the stirrups. With the presence 

of stirrups, the direction of the applied shear force V is reversed and the force is transferred into 

the compression field. It can be seen in Figure 1.6 that the compression fans occur in the 
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concentrated load and end support regions. These areas are within the zone of the D-region and 

shear-compression failures may occur as a result of the stress concentration. Furthermore, in 

between the compression fans there is a compression field consisting of parallel diagonal struts. 

(MacGregor and Bartlett, 2000; and Kuo et al, 2010). The shear resistance is calculated by 

satisfying the equilibrium and compatibility conditions of this plastic truss. 

 

Figure 1.6 Shear transfer mechanism of slender beam (Kuo et al., 2010) 

 

1.2.4 Modified Compression Field Theory 

The Modified compression field theory (MCFT) is based on the compression field theory (CFT). 

CFT was originally derived by Collins (1973) in order to determine the inclination angle of the 

concrete struts in plates subjected to shear. This angle can be approximately identified as the 

angle of average compression stress and strain based on Mohr’s circle. In 1986, Vacchio and 

Collins modified the CFT by adding the contribution of the principle tensile strain in the concrete 

between the cracks and renamed the theory as MCFT. The MCFT accounts for the tensile 

stresses in the concrete between cracks and the concrete shear contribution is assumed to be 

carried by these tensile stresses in the concrete. The MCFT theory is applicable to slender beams 

as it is based on sectional analysis and arch action is neglected in this theory. The Canadian 

Highway Bridge Design Code (CAN/CSA-S6-06) and Concrete Design Code (CSA A-23.3-04) 
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have adopted the MCFT for shear design or analysis of reinforced concrete members (Eqs. 1.1-

1.5). Two approaches are given in the codes: (1) simplified method by assuming constant factors 

for   and θ (crack inclination angle) in determining the Vc and Vs or (2) generalized method by 

calculating   and θ as shown in Equations 1.4 and 1.5. The shear strength can be calculated 

based on the MCFT using the following equations: 

                                                                                                                       Equation 1.1 

Where Vr: total shear resistance, Vs: shear resistance of steel, Vc: shear resistance of concrete. 

       √  
                                                                                                      Equation 1.2 

   
             

 
                                                                                                      Equation 1.3 

   
   

        
 

    

        
                                                                                              Equation 1.4 

                                                                                                                Equation 1.5 

    

      

  
           

     
                                                                                                     Equation 1.6 

Where:    = resistance factor for the concrete,    = resistance factor for the steel, λ= concrete 

density factor, β=factor accounting for shear resistance of cracked concrete, f’c = concrete 

compressive strength, bw = the web width, dv = effective shear depth (equal or greater of two 

values 0.72h or 0.9d), θ: crack inclination angle,   : the longitudinal strain of flexural tension 

chord, Mf = factored bending moment, Vf = factored shear resistance, Es = modulus of elasticity 

of steel, As = area of flexural reinforcement. 
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For sections having at least minimum shear reinforcement, the factor     shall be taken equal to 

300. Otherwise,     shall be computed using equation 1.7. 

    
    

     
                                                                                                      Equation 1.7 

The crack spacing parameter    shall be taken as the least of either    or the maximum vertical 

distance between layers of distributed longitudinal reinforcement. Each layer of such 

reinforcement shall have an area at least equal to 0.003   .    . Factor    is the maximum size 

of the coarse aggregate. 

1.2.5 Fibre Reinforced Polymers  

In the last few decades, the use of externally bonded fibre reinforced polymer (FRP) systems has 

widely emerged as a strengthening or remediation technique for RC members. FRPs are 

available as stiff plates or flexible sheets (ISIS, 2008). FRPs have superior mechanical (with high 

tensile strength to weight ratio) and chemical properties (non-corrosive). FRPs are lightweight 

and easy to apply in the field.  FRPs are made of continuous fibers (carbon, glass, or aramid) 

embedded in a polymeric matrix such as epoxy resin to form the composite (Khalifa 1998, ACI 

440.2-10). The fiber gives the composite its strength with carbon fibers possessing the highest 

strength and stiffness among used fibers. The epoxy resin binder plays the main role in bonding 

the FRP sheets and in transferring the applied stress from the RC members to the fibers. The 

epoxy can prevent the structural elements from abrasion or chemical attacks (e.g. sulfate or 

chloride ions). Table 1.1 gives a comparison of mechanical properties of different FRPs in 

comparison to steel.   
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                 Table 1.1 Typical properties of materials (ISIS, 2008) 

 

 

 Literature Review 1.3

 Effect of Corrosion on Bond Strength of RC elements  1.3.1

The effect of corrosion-damage on the bond strength of reinforced concrete elements are well 

investigated by many researchers. The previous works concluded that the bond strength 

increased initially with low corrosion levels prior to the initiation of concrete-surface cracking 

and then as corrosion progressed further the bond strength decreased significantly (Al-Sulaimani 

et al., 1990; Almusallam et al., 1996; Sherwood and Soudki 2003; Fang, 2004; Craig, 2005). 

Fang et al. (2004) also reported that the deformed steel bars had a 65% reduction in the bond 

strength at 9% mass loss, while in smooth steel bars, as the corrosion level reached 6.8% mass 

loss the bond strength increased up to 27% as shown in Figure 1.7a,b (Fang et al. 2004). 
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Figure 1.7 Load-slip plot for corroded and un-corroded smooth and deformed steel bars (Fang et 

al., 2004) 

 

1.3.2 Effect of Corrosion on Flexural Capacity of RC elements  

The flexural behaviour of corroded RC beams has been investigated by many researchers (Al-

Sulaimani et al., 1990, Almusallam et al., 1996, Mangat and Elgarf, 1999, Sherwood, 2000, 

Masoud, 2002, Badawi, 2003, ElMadawy, 2004). For example, it was reported that low corrosion 

level loss up to 1.5% did not affect the flexural strength of RC members (Al-Sulaimani et al., 

1990). As the corrosion level increased to 5% and 25%, the flexural strength was reduced by 

25% and 60%, respectively (Almusallam et al., 1996). Another study also showed that 10% mass 

loss reduced the flexural strength by 75% (Mangat and Elgarf, 1999). Therefore, the main 

conclusion from previous work was that pitting corrosion plays the main role in reducing the 

flexural strength of a corroded RC member.   

a) Deformed bars b) Smooth bars 
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1.3.3 Effect of Corrosion of Shear Reinforcement on Shear Behaviour of RC members 

A limited number of research work was reported in the literature about corrosion of stirrups in 

reinforced concrete. The results of these studies are discussed below. 

A study was conducted by Rodriguez et. al. (1997) on the effects of corrosion of the flexural and 

shear reinforcement on the load capacity of the reinforced concrete beams. The beam geometry 

was 150 mm wide by 200 mm height by 2300 mm long. The tension steel reinforcements were 

two or four deformed bars of 10 mm and 12 mm diameter, respectively. The compression 

reinforcements were two or four 8 mm diameter deformed bars. The shear reinforcement was 6 

mm diameter deformed bars and spaced at 85 mm, 150 mm, or 170 mm. The research parameters 

were the ratio of the tension reinforcement, the compression reinforcement, the stirrups spacing, 

the anchorage availability, and the corrosion-damaged steel reinforcements such as flexural or 

both flexural and shear. The specimens were slender RC beams with shear span to height ratio of 

4. The beams were tested in four point bending. The results of study showed that there was a 

65% reduction in shear strength caused by high pitting corrosion with 20% and 90% attack 

penetration for flexural and shear reinforcements, respectively. Therefore, the researchers 

concluded that pitting corrosion on stirrups influenced the drop of ultimate strength. 

Regan et al. (2004) artificially investigated the effect of corrosion damage on stirrups in deep and 

slender RC beams. This study simulated the corrosion-damage of the stirrups and the spalling of 

the concrete cover. Figure 1.8 shows a schematic of the slender RC beam cross section. The 

damage of the end anchorage of the stirrups was simulated by replacing the closed stirrups by 

straight vertical bars, except in one specimen where U shaped stirrups were used. The simulation 

of spalling of the concrete cover was done by exposing the concrete cover below the main 
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flexural reinforcement during casting of the beams. 14 beams were tested: 10 beams were 400 

mm deep, 150 mm wide, and 3000 mm long; and 4 beams were 200 mm deep, 150 mm wide, 

and 2000 mm long. The specimens were simply supported, and the load was applied at mid span. 

The ratios of the shear span to effective depth varied from 3.5 to 3.66. The main flexural 

reinforcement was 4-20 mm or 4-25 mm diameter deformed bars; the compression reinforcement 

consisted of 4 deformed bars of 20 mm or 25 mm diameter. The shear reinforcement was plain 

bars: 6 mm diameter bars placed at 75 mm or 150 mm c/c; and 8 mm diameter bars located at 

150 mm. The researchers concluded that deficient end anchorage stirrups still resist shear 

strength in RC beams. The decrease in shear strength ranged from 14% to 33% corresponding to 

65% to 75% of the deficient end anchorage stirrups, respectively. 

 

 

 

 

 

Figure 1.8 Beam cross section showing stirrups configuration (Regan et al. 2004) 

 

Toongoenthong and Maekawa (2005) artificially studied the effect of the shear reinforcement 

fracture on the shear capacity of slender RC beams. The RC beams were 350 mm deep by 250 

mm wide by 3000 mm long, and the shear span to depth ratio was 3.2. The main flexural 

reinforcement consisted of 4-19 mm diameter bars in both the compression and tension zone. 

The shear reinforcements were 6 mm diameter deformed bars inverted U shaped stirrups located 
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at 100 mm c/c that enclosed the top portion and were open at the bottom portion of the beam as 

indicated in Figure 1.9. The fracture of the shear reinforcement replicated the damage due to 

corrosion or alkali-aggregate reaction of concrete. The bond near the edges of the stirrup legs 

was removed by using a 50 mm strip of vinyl tape. The authors reported that the capacity of the 

damaged shear reinforcement was decreased by 37% compared to non-damaged stirrups. It was 

also observed that insufficient anchorage led to initiation of longitudinal cracks along the 

flexural reinforcement and then a diagonal crack propagated. The authors concluded that the tied 

or truss mechanisms could not be used to model the response because the damaged stirrups were 

functionally no able to carry the loads. This fact was correlated by the fact that the stirrups did 

not yield. 

 

 

 

 

 

Figure 1.9 Load-displacement plot (Toongoenthong and Maekawa, 2005) 

 

Higgins and Farrow (2006) studied the shear behaviour of damaged shear reinforcement of deep 

beams. A total of 14 beams were tested with two different configurations: 3 T-section and 3 

inverted T-beams which were 610mm deep with a flange 610 mm wide by 102 mm deep, and a 

web width of 254 mm; and 8 rectangular beams (610 height by 254 mm wide). The total length 
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and clear span of these specimens were 3050 mm and 2440 mm, respectively. The beam 

configurations are shown in Figure 1.10. The variables of this study were: the level of corrosion 

(none (A), light (B), moderate (C), and severe (D)) and various stirrups spacing at 203 mm, 254 

mm, and 305 mm. The specimens were tested in four point bending with a span shear to depth 

ratio of 2.0. 

Figure 1.10 Beams and span configurations (Higgins and Farrow, 2006) 

 

The authors found that shear-compression failure occurred when the corrosion level was light or 

zero; however, shear reinforcement fracture happened when the level of corrosion was moderate 

and severe. It was observed that the highest strength reductions for the rectangular, non-inverted 

T, and inverted T beams were 30%, 26%, and 42% respectively. Figure 1.11 shows the load-

deflection behaviour of rectangular RC beams in the following order (10RA-no corrosion 

damage, 10RB-light corrosion damage, 10RC-modorate corrosion damage, 10RD-severe 

corrosion damage). The authors concluded that the inspection of corrosion damage in the high 

shear regions should focus on identification of sequential stirrups because the corrosion of the 

stirrups produced nonuniform section loss along the length of the stirrups. 



18 

 

 

 

 

 

 

 

Figure 1.11 Load-displacement behaviour in rectangular beams (Higgins and Farraw, 2006) 

Suffern (2008) carried out an experimental work that investigated the shear behaviour of 

reinforced concrete deep beams with corroded stirrups. A total of 15 rectangular beams were 

tested. The beams were 350 mm deep by 125 mm wide by 1850 mm long. These specimens were 

simply supported over a clear span of 1.5 m. The tension and compression reinforcement 

consisted of 2-25M bars and 2-10M bars, respectively. The stirrups were 10M deformed bars 

spaced at 150 mm. The test variables included: the shear span to depth ratio (1.0, 1.5, and 2.0), 

stirrups availability (without stirrups and with stirrups) and corrosion levels (control, low, 

medium, high). After the accelerated corrosion reached the target mass loss, the specimens were 

tested in three-point bending with the different shear span to depth ratios (a/d) (1.0, 1.5 and 2.0). 

Figure 1.12 shows the comparison of the load-deflection response for corroded specimens versus 

the control and corroded-repaired beam with a/d=2.The author concluded that there was a 

reduction of the shear capacity at all levels of corrosion: low corrosion level had a 26% reduction 

in shear capacity; for medium corrosion level, the reduction in shear was 18%-53%; for high 

corrosion level, the reduction was 41%. The author found that the corroded specimens with the 

lowest shear span-to-depth ratio experienced the highest reduction in ultimate shear strength. 
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Figure 1.12 Load-displacement behaviour in rectangular beams (Suffern 2008) 

1.3.4 Effect of FRP on the Corroded RC Members 

FRP repair of corroded beams exhibited an enhancement of the flexural and bond performance of 

RC beams in terms of stiffness and strength (Masoud, 2002; Craig, 2002; El Maaddawy, 2004; 

Badawi, 2007). The effect of FRP repair on corroded web reinforcements of deep beams 

exhibited an increase in shear strength and stiffness up to 16% in comparison to the un-repaired 

corroded beam (Suffern, 2008). There is no study found in the literature on the effect of FRP 

repair of slender RC beams with corroded stirrups.  

 The Problem Statement 1.4

The literature review has revealed that while the effects of corrosion on the flexure and bond 

behaviour of RC beams are reasonably well understood, there are limited studies on the effects of 

stirrup corrosion on the shear behaviour of RC beams. Previous work simulated the corrosion-

damage in shear reinforcement by reducing the stirrup diameter, removing the stirrup anchorage 

(using open shaped stirrups with only two vertical legs), debonding the stirrups (with vinyl tape), 
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or corroding stirrups in deep beams. The effects of corrosion on the web reinforcement in RC 

slender RC beams have not been extensively studied. According to the author's review, there has 

been no study on the effect of corrosion damage on the shear reinforcement in slender RC 

beams.  

 Research Objectives 1.5

The main objective of this investigation is to study the effects of corrosion of web reinforcement 

(stirrups) on the shear behaviour of slender RC beams. The specific objectives are the following: 

1.  Evaluate the efficiency of Faraday’s law to estimate corrosion of stirrups in an accelerated     

corrosion technique.  

2.  Study the effect of corrosion on smooth versus deformed bar stirrups. 

3.  Study the effects of bar size (D6, D12, and 10M), corrosion level (low 7.5%, high 15%) and 

stirrups spacing on the shear strength of RC beams with corroded stirrups. 

4. Assess the feasibility of carbon fibre reinforcement polymer (CFRP) repair to efficiently 

restore the shear resistance of RC beams with corrosion- damaged stirrups. 

5.  Develop a model to quantify the shear strength of slender RC beams with corroded stirrups. 
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Chapter 2: Experimental Program 

 General 2.1

This chapter presents the details of the experimental program, which was designed to investigate 

the effect of corrosion damaged web reinforcement (stirrups) on the shear behaviour of slender 

RC beams. The following sections describe the test program, specimen design, the accelerated 

corrosion setup and load test setup.  

 Test Program 2.2

The program consisted of testing a total of seventeen slender RC beams (200 mm wide by 350 

height by 2200 mm long). The beams were categorized based on three variables: stirrup type 

(none, 10M-deformed bars, D12-smooth bars, D6-smooth bars), corrosion rate (0%, 7.5%, and 

15%), stirrup spacing (200 mm or 100 mm), and repair availability (un-repaired and CFRP 

repaired).  The test matrix is presented in Table 2.1.  The beams were divided into five groups 

(A, B, C, D and E) based on stirrup diameter and spacing. Groups A, B, and C had their web 

reinforcement as 10M-deformed rebars, D12-smooth bars, and D6-smooth bars, respectively 

spaced at 200 mm c/c. Group D had web reinforcement of D6-smooth bars with a tight spacing 

of 100 mm c/c. Groups A, B, C and D contained four beams with different levels of corrosion in 

the stirrups (none 0%, moderate 7.5% mass loss, and severe 15% mass loss with or without 

CFRP repair).  Group E consisted of one beam without web reinforcement. 
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Table 2.1 Test matrix 

 

Note: 10M: 10 mm deformed rebars; D12: 12.7mm smooth bars; D6:6.35mm smooth bars; UR: unrepaired, R: 

CFRP repaired beam designation: (stirrups type-level of corrosion- presence of repair)- Group D beams have an 

additional suffix – 100 denoting 100 mm stirrup spacing.    

 

 Beam Design 2.3

The beams were designed to fail in shear according to the Canadian Building Code CSA A23.3-

1994. All the beams were reinforced in the flexure and shear as shown in Figures 2.1 and 2.2, for 

the control and corroded beams, respectively. The tension reinforcement and compression 

reinforcement were epoxy coated bars to avoid corrosion in the longitudinal reinforcement. The 

tension reinforcement consisted of 2-30M (bottom layer) and 2-25M (top layer) reinforcing bars. 

The compression zone was reinforced with 2-20M epoxy coated reinforcing bars. Compression 

steel reinforcement was used to avoid concrete crushing in the compression zone. The web 

reinforcement was closed stirrups and consisted of 10M – deformed rebars and D12 or D6-

smooth bars (not coated). The clear concrete cover was 25 mm. The beam cross-section is shown 

Group 

No. 

Stirrups 

ID 

Stirrup 

dia. 

(mm) 

Area 

(mm
2
) 

Spacing 

c/c 

(mm) 

Corrosion Level Assessment 

None (0%) Low (7.5%) High (15%) 

A 10M 11.3 100 

200 

(0.7d) 

10M-0%-UR 10M-7.5%-UR 10M-15%-UR 

- - 10M-15%-R 

B D12 12.7 123 
D12-0%-UR D12-7.5%-UR D12-15%-UR 

- - D12-15%-R 

C D6 

6.35 28 

D6-0%-UR D6-7.5%-UR D6-15%-UR 

- - D6-15%-R 

D D6 
100 

(0.35d) 

D6-0%-UR-100 D6-7.5%-UR-100 D6-15%-UR-100 

- - D6-15%-R-100 

E - without stirrups 0-0%-UR - - 
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in Figure 2.1a. The geometry and details of the control beam layout was identical with stirrups 

spacing at 200 mm c/c for groups A, B, and C as shown in Figure 2.1b. Group D had a tight 

stirrups spacing of 100 mm c/c as shown in Figure 2.1c. Group E was without web reinforcement 

as shown in Figure 2.1d. 

 

Figure 2.1 Control beam geometry and reinforcement details 

 

 

 

 

a) Beam cross section (dimensions in mm) 

b) Full span overview of group A, B, and C specimens 
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Figure 2.1 Control beam geometry and reinforcement details (continued) 

 

The corroded beams (for groups A, B, C, and D) contained two types of concrete: salted concrete 

(in the corroded shear span) and un-salted concrete (in the non-corroded shear span) as shown in 

Figure 2.2.  A U-shaped stainless steel tube (6.35 mm outside diameter, and 0.71mm wall 

thickness) was embedded between the stirrups in the corroded zone to act as internal cathode in 

the corrosion process (Figure 2.2). 

d) Full span overview of group E specimen 

c) Full span overview of group D specimens 
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Figure 2.2 Corroded beam geometry and reinforcement details  

b) Full span overview of groups A, B, and C specimens  

c) Full span overview of group D specimens 

a) Beam cross section  
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 Materials Properties 2.4

2.4.1 Steel Reinforcement 

The steel reinforcement for the tension and compression zone were G400 epoxy coated rebars 

with yield stress of 480 MPa based on mill tests. The 10M deformed stirrups were G400 with 

nominal yield stress of 400 MPa. The D12 and D6 smooth stirrups had a nominal yield stress of 

380 MPa. 

2.4.2 Concrete 

The concrete was batched and delivered by a local ready-mix company. The concrete mixture 

had Type 10 Portland cement and the maximum coarse aggregate size was 10 mm.  The concrete 

was batched in the plant at w/c = 0.45, then salted and unsalted water were added on site to bring 

w/c = 0.55. Pure salt was mixed with water to give 2.3% chlorides by mass of cement. Two 

trucks delivered the concrete: the salted and un-salted water were poured into both trucks to get 

the salted and unsalted concrete. The mix design and the fresh properties of the concrete are 

presented in Table 2.2.        

                Table 2.2 Concrete mix design 

Constituent (kg/m
3
) Concrete # 1 (Un-salted) Concrete # 2 (Salted) 

Sand 825 825 

Aggregate 10mm 1100 1100 

Initial Water 160 160 

Water added (on the site) 36 36 

Type 10- Portland Cement 357 357 

Admixture 714 714 

Salt (NaCl) 0 8.2 

Slump (mm) 200 190 
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 Beams Construction 2.5

The beams were cast in wooden formwork as shown in Figure 2.3. The formwork consisted of 

three sets; each set had the capacity to cast four beams (200 mm wide x 350 height × 2200 mm) 

long as shown in Figure 2.3a. The steel reinforcement of the beams were caged and built as 

shown in Figure 2.3b. The formwork was oiled to ease the stripping of the beams. The steel 

cages were then placed carefully on top of the plastic chairs (to maintain a constant concrete 

cover of 25 mm). The beams after casting are shown in Figure 2.3c. 

 

Figure 2.3 Beams fabrication 

 

 

a) One full formwork set consists of four beams b) Cross section view of caged steel reinforcement  

c) One set of four beams after casting 
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 Accelerated Corrosion of the Stirrups 2.6

The corrosion damage in the stirrups was accelerated in twelve RC beams. The targeted mass 

losses were theoretically calculated using Faraday’s law to reach two levels of corrosion (7.5% 

and 15%). Sample calculations to get the required time for the accelerated corrosion process are 

provided in Appendix A. The accelerated corrosion was conducted by impressing a constant 

current into the RC beams using an external direct current (DC) power supply. The positive 

terminal of the power supply was connected to the stirrups to act as an anode using an electrical 

wire. A U-shape stainless tube (6.5 mm diameter and 0.71mm wall thickness) was embedded 

inside the concrete in the beams acting as an internal cathode. The RC beams were placed in a 

corrosion chamber that provided a mist of pressurized air / water to maintain high relative 

humidity. The internal stirrups and stainless steel tubes in a beam were connected in series. The 

current density was kept constant at 250 μA/cm
2

 (or 250 micro-Ampares/ surface area) for all 

beams. This corresponds to an applied current based on the surface area of the stirrups of 43 μA, 

77 μA and 86 μA
 

for D6, 10M, and D12 closed stirrups, respectively. A schematic drawing of 

the accelerated corrosion process is shown in Figure 2.4a. The beams were stacked on the steel 

rack inside the corrosion chamber as shown in Figure 2.4b, c.  

Figure 2.4  Corrosion process and set up 

a) Schematic drawing of impressing corrosion process in stirrups 
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b) Typical beams layout on the rack c) Beams covered with plastic sheet to maintain 

high    humidity 

 

 

Figure 2.4 Corrosion process and set up (continued) 

 

 Carbon Fibre Reinforcement Polymer (CFRP) repair  2.7

One beam from groups A, B, C and D that was corroded to a high corrosion level (15% mass 

loss) was loaded up to 80% of its ultimate (based on the un-repaired corroded companion beam). 

Then, the beams were repaired in shear with U-wrapped CFRP sheets in an intermittent 

configuration as shown in Figure 2.5. The FRP repair procedure included five major steps: First, 

grinding of the beam corners to an approximate radius of 25 mm based on the Canadian Bridge 

Design Code (CAN/CSA-S6-06) this was done to avoid stress concentration when applying the 

FRP U-wrap; Second, sandblasting the surface area where the CFRP sheets were applied to get a 

rough surface ensuring that the epoxy bonded CFRP sheets have a strong bond with the concrete 

surface. Third, the beams were cleaned with compressed air to ensure no dust residue was on the 

concrete surface from the sandblasting and then they were washed with water.  Fourth, the CFRP 

sheet was applied as U-wraps onto the beam cross-section. The CFRP sheet used was Sikawrap 

230C and the epoxy resin used was Sikadur 330. The epoxy resin was produced by mixing two 
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Beam after repair 

Bottom side  

 

Beam before repair 

components A and B based on the manufacturer’s specifications. The epoxy was carefully spread 

on the concrete surface in a thin layer by a plastic spatula. The CFRP sheet was then attached 

onto the epoxied concrete surface; then, a steel laminating roller was rolled over the CFRP sheet 

to ensure the CFRP sheet was impregnated by epoxy resin and to remove air bubbles. Finally, a 

thin epoxy layer was applied onto the CFRP sheet. The repaired beams were left to cure for 7 

days at room temperature according to the manufacturer’s specifications. Figure 2.6 shows the 

beams before and after applying the CFRP repair.  

 

Figure 2.5 CFRP repair configuration 

 

 

 

  

 

 

 

 

 

Figure 2.6 Photo of repaired beams before and after applying CFRP sheets 

 

Critical shear span 

Beam after repair 
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 Instrumentation 2.8

Strain gauges were placed at critical locations on the concrete compression surface (at mid span) 

and the steel reinforcement (flexure and transverse) to measure the strain behaviour with applied 

load. In the compression zone, 60 mm long strain gauges were attached onto the top fibre of the 

concrete surface as shown in Figure 2.7. In the flexure zone, 5 mm long strain gauges were 

attached onto the steel rebars at the middle of the bottom layer of the flexural reinforcement as 

shown in Figure 2.7. The un-corroded beams had strain gauges on the transverse reinforcement 

(Figure 2.7). The strain gauges were 5 mm long and had a resistance of 120 Ω. The strain gauges 

were placed according to the following procedure: first, the steel surface was ground to have a 

smooth surface to adhere the gauges; second, the steel bar surface was cleaned with alcoholic 

isopropylene and neutralized with a conditioner; third, glue was place on the steel surface and 

then the gauges were mounted onto the rebar.  

 

Figure 2.7 Locations of strain gauges on steel reinforcement and concrete surface  

 

 

a) Full span overview of group A, B, C  
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Figure 2.7 Locations of strain gauges on steel reinforcement and concrete surface (continued) 

 

30 mm long strain gauges were mounted along the height of CFRP sheets; each sheet had three 

strain gauges as follows: level A- 60 mm from the bottom, level B-175mm from the bottom, 

level C-60mm from the top ( Figure 2.8). 

 

Figure 2.8 Locations of strain gauges on the CFRP sheets 

 

 

 

b) Full span overview of group D 



33 

 

 

The mid span deflection of the beams was measured using linear variable differential transducers 

(LVDTs), with a range of 0-25 mm. Three LVDTs were also attached onto the concrete surface 

in the critical shear zone (within the middle shear span) to measure the principle strains as 

follows (εv –vertical, ε1 –Tension diagonal 45  , ε2.- Compression Diagonal 45  ). Figure 2.9 shows 

the LVDTs mounted on the beam. 

 

Figure 2.9 LVDTs locations 

 

 Test Set up  2.9

The beams were tested in three point bending using a closed-loop hydraulic MTS actuator with a 

550 KN capacity actuator mounted in a Uniroyal test frame. The beams were simply supported 

over a clear span of 1800 mm. The applied loading was through one concentrated point load at 

mid-span with roller and hinge supports as shown in Figure 2.10. The load was transferred from 

the actuator to the beam through a steel plate (100mm wide by 200mm long). Due to the non-

uniformity of the concrete surface, hydro-stone was applied under the steel plate and carefully 

leveled with a “bubble level” to ensure the stress transferred evenly on the concrete surface. The 
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loading rate was 0.25 mm/sec. During the test, the observed cracking patterns were mapped 

along the beam and the instrumentation (load cell, strain gauges, LVDTs) were measured and 

recorded by an SCXI National instrument data acquisition system. Photographs of the failure 

modes were taken at the completion of the testing. Each test took 1 hour to complete. 

 

Figure 2.10 Test set up 

 

 Mass loss analysis procedure 2.10

The stirrups in the beams that were subjected to corrosion were carefully extracted following the 

load testing stage; each closed stirrup consisted of two legs and each leg was cut into a 200 mm 

long coupon as shown in Figure 2.11. A total of 96 coupons were extracted and cleaned in 

accordance with the standard cleaning process in ASTM G1-99 (2001). Un-corroded coupons 

that were extracted from the control beams were used as baseline coupons. The numbering of 

stirrups for all the groups is shown in Figure 2.11b, c. 

 

 

 

Actuator 
Loading plate 

Hinge support Roller support 
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Figure 2.11 Schematic drawing of stirrups numbering and extracted coupons dimensions 

 

Figure 2.12 shows the exposed corroded stirrups after carefully removing the concrete cover with 

electrical jackhammer to avoid damaging the stirrups. 

 

Figure 2.12 Stirrups after removing concrete cover 

c) Numbering of stirrups for beams in group D. b) Numbering of stirrups for beams in group A, B and C. 

a) Stirrups cross section  
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Chapter 3: Experimental Results 

 Introduction 3.1

This chapter presents the test results of seventeen shear-critical RC beams with corroded web 

reinforcement. The test variables included; the level of corrosion (0%, 7.5%, 15%), type of 

stirrups (smooth or deformed), spacing and area of stirrups (10M @ 200 mm, D12 @ 200 mm, 

D6 @ 200 mm, D6 @ 100 mm) and repair availability (un-repaired, CFRP repaired). The beams 

were divided into five groups. Four groups (A, B, C, and D) had four beams (control, corroded to 

7.5%, corroded to 15%, corroded to 15% and then CFRP repaired) and the fifth group E had one 

beam without web reinforcement. Groups A, B and C had their web reinforcement as 10M-

deformed bars, D12-smooth bars and D6-smooth bars, respectively, spaced at 200 mm c/c. 

Group D had the web reinforcement as D6-smooth bars with a tight spacing of 100 mm c/c. The 

beam in group E was cast without web reinforcement to determine the concrete shear strength 

contribution (Vc). The beams were tested to failure under three points bending. Prior to testing, 

corrosion crack patterns and widths were recorded and mapped. The corroded stirrups were 

extracted following the load testing to determine the actual mass loss in the stirrups. The 

following sections will present the corrosion results and load test results of the different groups. 

  Corrosion results 3.2

At the end of corrosion phase, corrosion crack patterns were mapped and corrosion crack widths 

were measured using a crack comparator with 0.15 mm accuracy. The mass losses in the steel 

stirrups were measured after load testing. Table 3.1 gives a summary for the corrosion results of 

each stirrup in terms of the average actual mass loss, and diameter reduction and the range of 

corrosion crack widths. 
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 Corrosion cracks 3.2.1

All the corroded beams had similar corrosion crack patterns on the concrete surface that were 

formed due to the expansive pressure of corrosion products from the corrosion-damaged stirrups 

as shown in Figure 3.1. The cracks were mainly aligned with the stirrup locations. At high 

corrosion level, some cracks were also aligned with the bottom face of the cross-section. 

Schematic drawings of typical crack patterns of the bottom and side faces in the corroded beams 

at low and high corrosion levels are shown in Figure 3.2, respectively. The crack patterns for the 

remaining beams are presented in Appendix B. Table 3.1 shows that the maximum crack widths 

in group A (10M @ 200 mm c/c) were 0.9 mm and 2.5 mm at 7.5% and 15% theoretical mass 

loss, respectively. In group B (D12@200 mm c/c), the maximum crack widths were 0.7mm and 

1.5mm at 7.5% and 15% theoretical mass loss, respectively. Group C (D6 @ 200 mm c/c) and D 

(D6@100 mm c/c) had maximum crack widths of 0.1 and 0.3mm for 7.5% and 15% theoretical 

mass loss, respectively. It is evident that corrosion crack widths were significantly reduced for 

the smaller diameter stirrups possibly because of the lower mass losses achieved for these 

specimens during the corrosion phase. 

 

Figure 3.1 Bottom view of corroded shear span (10M-15%-R) 
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Figure 3.2 Typical patterns of corrosion cracking (crack width in mm) 

 

 

a) Beam 10M-7.5%-UR 

b) Beam 10M-15%-UR 
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Table 3.1 Summary of corrosion results  

Group Beam ID 
Stirrups 

No. 

Crossing 

inclined 

crack 

Mass loss, % 
Stirrups 

diameter 

reduction, mm 

 

Range of 

concrete 

surface crack 

width (mm) 

Theoretical Actual 

 

 

 

 

 

 

 

 

A 

10M-7.5%-

UR 

S1 NO 

7.5% 

9.2% 0.5 

0.1-0.9 S2 YES 7.1% 0.4 

S3 YES 9.1% 0.5 

S4 YES 14.1% 0.8 

10M-15%-

UR 

S1 YED  

 

15% 

23.6% 1.4 

0.5-2.5 S2 YES 12.7% 0.7 

S3 YES 12.4% 0.7 

S4 YES 13.8% 0.8 

10M-15%-R 

S1 NO  

 

15% 

 

24.8% 1.5 

0.7-2.2 S2 YES 15.8% 0.9 

S3 YES 14.2% 0.8 

S4 NO 14 % 0.8 

B 

 

D12-7.5%-

UR 

 

S1 YES 

7.5% 

8.7% 0.6 

0.2-0.7 S2 YES 7.4% 0.5 

S3 YES 8.6% 0.6 

S4 YES 7.2% 0.5 

 

D12-15%-UR 

 

S1 NO  

 

15% 

23.1% 1.6 

0.1-1.5 S2 YES 11.4% 0.7 

S3 YES 17.6% 1.2 

S4 YES 7.8% 0.5 

 

D12-15%-R 

 

S1 NO  

 

15% 

 

27.0% 1.8 

0.2-1.3 S2 YES 11.5% 0.8 

S3 YES 16.5% 1.1 

S4 NO 9.1% 0.6 

C 

 

D6-7.5%-UR 

 

S1 NO 

7.5% 

1.1% 0.0 

<0.1 S2 YES 0.8% 0.0 

S3 YES 1.5% 0.0 

S4 YES 1.3% 0.0 

 

D6-15%-UR 

 

S1 NO  

 

15% 

3.3% 0.1 

0.1-0.25 S2 YES 3.0% 0.1 

S3 YES 3.2% 0.1 

S4 YES 5.1% 0.2 

 

D6-15%-R 

 

S1 NO  

 

15% 

 

3.8% 0.1 

0.1-0.25 S2 YES 3.5% 0.1 

S3 YES 3.8% 0.1 

 S4 NO 5.9% 0.2 
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Table 3.1 Summary of corrosion results (continued) 

 

3.2.2 Mass loss results 

The stirrups in the beams that were subjected to corrosion were carefully extracted following the 

load testing stage; each closed stirrup consisted of two legs and each leg was cut into a 200 mm 

long coupon. A total of 96 coupons were extracted and cleaned in accordance with the standard 

cleaning process in ASTM G1-99 (2001). Un-corroded coupons that were extracted from the 

Group Beam ID 
Stirrups 

No. 

Crossing 

inclined 

crack 

Mass loss, % 

Mass 

loss, % 

 

Range of 

concrete 

surface 

crack width 

(mm) 

Theoretical Actual 

D 

D6-7.55%-UR-

100 

S1 NO 

 

 

7.5% 

 

1.0% 0.0 

<0.1 

S2 NO 0.3% 0.0 

S3 YES 0.4% 0.0 

S4 YES 0.6% 0.0 

S5 YES 1.0% 0.0 

S6 YES 0.8% 0.0 

S7 NO 2.6% 0.1 

S8 NO 1.0% 0.0 

D6-15%-UR-

100 

S1 NO 

 

 

15% 

6.8% 0.2 

0.1-0.2 

S2 NO 0.7% 0.0 

S3 YES 3.1% 0.1 

S4 YES 2.5% 0.1 

S5 YES 3.0% 0.1 

S6 YES 2.7% 0.1 

S7 YES 2.7% 0.1 

S8 NO 1.8% 0.1 

D6-15%-R-100 

S1 NO 

 

 

15% 

 

7% 0.3 

0.1-0.3 

S2 NO 3.1% 0.1 

S3 YES 6.3% 0.2 

S4 YES 4.6% 0.2 

S5 YES 4.9% 0.2 

S6 YES 3.0% 0.1 

S7 YES 2.6% 0.1 

S8 YES 2.5% 0.1 
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control beams were used as baseline coupons. The mass losses of the corroded coupons were 

calculated based on the variation of their weight versus the control coupons as shown in 

Equation 3.1. The reductions in the diameter of the stirrups were calculated by subtracting the 

nominal diameter of the uncorroded coupons with the diameter of the corroded coupons as 

shown Equations 3.2 through 3.4. Sample photos of coupons extracted from uncorroded and 

corroded stirrups are shown in Figure 3.3. 

 

Mass loss (%) = 
                           

                              
                                                              Equation 3.1 

Area reduction, ∆A (mm
2
) = Auncorroded - Acorroded                                                      Equation 3.2 

Acorroded = (1- % mass loss) * Auncorroded                                                                      Equation 3.3 

Diameter reduction, ∆d (mm) = duncorroded - dcorroded                                                   Equation 3.4 

Where: Auncorroded = Cross-sectional area of uncorroded coupon, Acorroded = Cross-sectional area of 

uncorroded coupon Cross-sectional area of corroded coupon, duncorroded = bar diameter of 

uncorroded coupon, dcorroded = bar diameter of corroded coupon. 

              

 

 

 

 

 

 

Figure 3.3 Photos of coupons of 10M and D12 ordered by corrosion level (0%, 7.5%, and 15%) 

0% 

 

7.5% 

 

 

15% 
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Figure 3.4a,b,c show the mass loss results for all coupons of different stirrups diameters (D6, 

D12 and10M) at two corrosion levels (7.5% and 15%). It can be observed from the figures that 

for lower mass losses, the actual mass losses were close to theoretical predictions; whereas for 

higher mass losses, there were large variations in measured data which were not close to the 

theoretical corrosion predictions. The large scatter at high corrosion level can be inferred to the 

increase in volume of corrosion rust and therefore reducing the diffusion of oxygen. As a result, 

corrosion mass losses at different locations of the stirrups will vary depending on the availability 

of oxygen and moistures. 

Figure 3.4 Mass loss results of coupons for 10M, D12, and D6 stirrups 

c) Mass loss results for D6 stirrups 

0.0%

7.5%

15.0%

22.5%

30.0%

0 15 30 45 60

M
a

ss
 l

o
ss

 (
%

) 

Time (days) 

D6

b) Mass loss results for D12 stirrups a) Mass loss results for 10M stirrups 
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The mass loss results for 10M deformed bars were consist even at higher corrosion levels (Figure 

3.4a). There were couple outlier data points at 7.5% and 15% mass loss. The mass loss results for 

the D12 smooth bars had more variation at the higher corrosion levels. The D6 smooth bars did 

not achieve the target mass losses as predicted by Faraday’s law (Figure 3.4c). The maximum 

mass loss achieved were 2.6% and 6.8% for theoretical mass loss of 7.5% and 15%, respectively. 

This could be possibly due to applicability of impressed corrosion technique for these bars.   

 Structural performance  3.3

This section presents the structural responses for all groups (A, B, C, D and E). The beams were 

statically tested in a three-point loading regime as shown in Figure 3.5a. The test set up was as 

follows: each beam was located and centered on top of the supports and under one loading. A 

total of four linear voltage differential transducers (LVDTs) were installed as follows: one 

LVDT was located at mid-span to measure the beam displacement; and three LVDTs were 

mounted onto the side-face of the beam to measure the principal strains on the concrete surface 

within the middle region of the critical shear span (Figure 3.5b). The diagonal tensile strain was 

calculated by dividing the change of diagonal deformation, ∆ by the gauge length of the diagonal 

instrumentation, L. 

Typical failure modes that were observed were as follows: 1) diagonal tension splitting, which is 

an inclined crack that occurs due to tensile stresses exceeding tensile strength of concrete and 

propagates from the loading point towards the support; 2) shear compression, which is concrete 

crushing that occurs at the tip of the shear crack in the compression zone; and 3) delamination of 

concrete cover, where the concrete cover peel-off due to the weak bond concrete-corroded stirrup 

interface.  
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Mounted LVDTs at middle of 

critical shear span 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Typical test set up in three-point bending 

 

Table 3.2 presents a summary of the load test results including the average mass loss (for all 

stirrups in corroded shear span), concrete strength, load and displacement values at diagonal 

cracking and the ultimate stage, and failure modes. Due to differences in concrete compressive 

strength of the beams, the measured loads of the beams were normalized based on the lowest 

concrete compressive strength of 38 MPa by using equation 3.5.  

                       √
  

  
                                                                                         Equation 3.5 

Where:    PNormalized = Normalized load (kN), Pmeasured = Measured load (kN), fc ′ = Concrete 

compressive strength (MPa) 

Actuator 

Loading plate 

Hinge support Roller support 

LVDT at mid-span 

a) Overview of test set up 

b) Locations of LVDTs 

Critical shear span 
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Table 3.2 Summary of test results 

 

SF: shear failure; DS: Diagonal Splitting, SC: Shear Compression, DF: Debonding of FRP, DC: Delamination of 

Concrete cover  

 

Each group in the following sections is analyzed and discussed in terms of their load-

displacement behaviour, failure mode, and strain responses of the steel, concrete and CFRP 

sheets. Additionally, the inclined cracking behaviour (within the middle region of the shear span) 

was only analyzed for groups A and B. This data was not reported for groups C, D and E due to 

technical problems in the diagonal LVDTs. It should be noted that the beam nomenclature is 

revised to indiclude the actual mass loss in brackets. For example, beam 10M-7.5-UR is renamed 

as 10M-7.5%-UR (9.9%) to reflect that is beam had 9.9% actual mass loss. 

Group Beam No. 

Actual 

mass 

loss % 

f’c 

(MPa) 

Measured Load 

(kN) 
Displacement (mm) Failure 

Modes 

 
Diagonal 

Cracking 

Ultimate 

 

Diagonal 

Cracking 
Ultimate 

A 

10M-0%-UR 0% 38 160 450 3.06 11.3 SF-SC 

10M-7.5%-UR 9.9% 44 232 411 4.47 9.8 SF-DS 

10M-15%-UR 15.6% 44 210 385 4.12 8.8 SF-DS 

10M-15%-R 17.2% 44 - 443 - 7.3 DS-DC 

B 

D12-0%-UR 0% 38 210 412 2.72 8.1 SF-DS 

D12-7.5%-UR 8% 44 160 476 3.47 8.8 SF-DS 

D12-15%-UR 15% 44 112 370 3.31 8.3 SF -SC 

D12-15%-R 16% 44 - 497 4.61 9.1 DS-DC 

C 

D6-0%-UR 0% 38 145 253 2.7 6.8 SF-DS 

D6-7.5%-UR 1.2% 44 135 330 3.27 7.4 SF -DS 

D6-15%-UR 3.68% 44 140 306 2.54 5.1 SF -DS 

D6-15%-R 4.25% 44 - 416 5.02 7.22 SF-DS/DC 

D 

D6-0%-UR - 100 0% 38 176 335 3.23 7.5 SF -DS 

D6-7.5%-UR-100 0.77% 44 170 382 4.08 7.9 SF -DS 

D6-15%-UR-100 4.39% 44 160 452 4.0 9.4 SF -DS 

D6-15%-R-100 4.1% 44 - 508 2.64 8.1 SF -DS/DF 

E 0-0-UR - 38 129 175 2.47 5.5 SF -DS 
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3.3.1 Group A: Beams with 10M deformed stirrups spaced at 200 mm 

The beams in group A (10M-0%-UR, 10M-7.5%-UR, 10M-15%-UR, and 10M-15%-R) were 

reinforced with 10M deformed bars (11.3mm nominal diameter) as closed stirrups placed at 200 

mm c/c (which is equivalent to 0.7 of effective depth of the beam). One beam was not corroded 

and tested as the control beam. Two beams were corroded to 7.5% and 15% theoretical mass loss 

then tested up to failure. The fourth beam was corroded up to 15% mass loss, then loaded up to 

80% of the ultimate load of the companion corroded beam, and then it was repaired with CFRP 

sheets and tested up to failure. The actual mass losses in the stirrups achieved were on average 

9.9% and 16.4% corresponding to 7.5% and 15% theoretical mass losses, respectively. The 

following sections present the observed behaviour and measured response of the different beams 

in group A.  

3.3.1.1 Load-displacement behaviour 

The applied load versus mid-span displacement responses of the beams in group A are shown in 

Figure 3.6. The load-displacement plots exhibited a bilinear behaviour and included three distinct 

stages: diagonal cracking, stirrups yielding and ultimate stages. Beam 10M-7.5%-UR  (low 

corrosion level) had an 8.6% reduction in ultimate load in comparison to the control beam, the 

beam with the high corrosion level (10M-15%-UR) exhibited the highest reduction in ultimate 

strength up to 14.4% in comparison to the control beam. The stiffness of the un-repaired and 

repaired corroded beams was almost identical as the control beam within the elastic stage up to a 

load of 170 kN.  Beyond this load, the stiffness of the un-repaired beams started to decrease after 

losing the aggregate interlock; however, the CFRP repaired beam (10M-15%-R) exhibited an 

enhancement in the stiffness up to ultimate strength. The midspan displacement at ultimate load 

ranged from 7.3 mm (CFRP repaired beam) to 11.3 mm (control beam); this indicates the brittle 
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nature of CFRP repaired beam in shear vs. the control. The displacement at ultimate load 

decreased as the corrosion level increased. 

 

Figure 3.6 Load-displacement responses of beams in group A 

 

3.3.1.2 Failure modes 

The beams in group A failed in shear. Initially, flexural cracks were observed at mid-span in the 

un-repaired beams at different loads based on the corrosion level: 65kN (for non-corroded 

beam), 75 kN and 85kN (for low corrosion level, 9.9% actual mass loss; and for high corrosion 

level, 16.4% actual mass loss). The diagonal cracks propagated between the support and the 

loading point at different loads as presented in Table 3.1. As the load increased, the diagonal 

cracks widened and the stirrups started to share in resisting the applied load and consequently the 

beam lost the aggregate interlock. At ultimate strength, the beams exhibited brittle shear failure. 

The failure modes were shear compression failure in the control beam and diagonal tension 

splitting failure in the corroded beams as shown in Figure 3.7. However, the CFRP repaired 

beam experienced delamination of the concrete cover with diagonal tension failure (Figure 3.7).   
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Close up on delamination of concrete cover 

a) Control beam 10M-0%-UR 

c) High corrosion level beam 10M-15%-UR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Failure modes of beams in group A  

 

3.3.1.3 Inclined cracking behaviour 

The diagonal tensile deformation (strain) crossing the inclined cracks within the middle 

instrumented region (300 mm from the support) were measured and plotted versus applied load 

in Figure 3.8. The figure shows a very stiff response with no strain measured until the section 

cracked, then the response was nonlinear until failure occurred. Table 3.1 gives the inclined 

b) Low corrosion level beam 10M-7.5%-UR 

d) CFPR repaired beam 10M-15%-R 
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cracking load based on visual observation of the cracks on the concrete surface. It is evident that 

the corroded beams exhibited a more brittle behaviour in comparison to the un-corroded beam. 

Initiation of the diagonal tension strain in the un-corroded beam (10M-0%-UR) occurred at a 

lower diagonal cracking load in comparison to the corroded beams. As the corrosion level 

increased, the diagonal cracking load increased. This behaviour is possibly due to the enhanced 

bond between the concrete cover and the corroded deformed stirrups. The outside layer (concrete 

cover) was not fully monolithic with the concrete core of the beam (which is inside the closed 

stirrups) as much as the fully bonded or un-corroded stirrups-concrete interface. Consequently, 

the diagonal shear stress in the corroded beams was only transmitted through the beam core 

which led to degradation of the strength. This explains why the strain readings for the corroded 

beams were lower than those of the control beam. 

 

Figure 3.8 Load-diagonal tensile strain in group A 
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3.3.1.4 Strain behaviour 

The load vs. strain responses of the longitudinal steel reinforcement in the tension zone and 

concrete surface in compression zone for all beams are shown in Appendix C. In all beams, the 

ultimate strain in the steel rebar was below the yield strain and the strain in the concrete was 

below the crushing strain. Figure 3.9 shows the load versus strain for the four stirrups in the 

critical shear span. It is evident that the second and third stirrups from the support (St2 and St3) 

reached the yield strain. At beam failure, the strain in St2 was 12,000 με as the gauge 

corresponded to the location of the inclined crack. No strain gauges were mounted on the 

corroded stirrups. 

 

 

 

 

 

 

 

 

Figure 3.9 Load-transverse reinforcement strain relationship of the control beam (10M-0%-UR) 

 

 

Figure 3.10 shows the load-strain plot at mid-height of the CFRP strips for Beam 10M-15%-R. 

The load vs. CFRP strain exhibited a trilinear response. No strain was measured up to a load of 

about 100kN, the second stage had a linear response with varied slopes depending on location of 

strip relative to inclined cracking; and in the third stage, after the peak load was reached, the 

CFRP strain increased rapidly with no increase in load until failure occurred. It is clear that strips 
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2 and 3 (S2 and S3), which are located within the middle region of the shear span, exhibited high 

strains in comparison to strips 1 and 4 (S1 and S4), which are located close to the support and 

loading point, respectively. Strip 3 exhibited higher strains as a result of the diagonal shear crack 

which was located underneath that strip. 

 

 

 

 

 

 

 

 

Figure 3.10 Load-strain behaviour of CFRP strips in Beam 10M-15%-UR 

 

 Group B: Beams with D12 smooth stirrups spaced at 200 mm 3.3.2

The beams in group B (D12-0%-UR, D12-7.5%-UR, D12-15%-UR, and D12-15%-R) were 

reinforced with smooth D12 closed stirrups (12.7 mm diameter) spaced at 200 mm c/c. One 

beam was tested as a control un-corroded beam. Two beams were corroded to 7.5% and 15% 

theoretical mass loss then tested up to failure. The fourth beam was corroded to 15% mass loss, 

loaded up to 80% of the ultimate load of the companion corroded beam, then it was repaired with 

CFRP sheets and tested up to failure. The average measured mass losses in the stirrups were 8% 

and 15.5% for 7.5% and 15% theoretical mass losses, respectively. The observed behaviour and 

measured responses of the beams in group B are presented below.  
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3.3.2.1 Load-displacement behaviour 

Figure 3.11 shows the applied load versus mid-span displacement responses of all beams in 

group B. The curves exhibited a bilinear behaviour with diagonal cracking, stirrups yielding and 

ultimate stages. The beam with low corrosion level (D12-7.5%UR) exhibited a 15% 

improvement in the shear strength and stiffness over the control beam, which is possibly because 

the corrosion products filled the interconnected voids in the corroded stirrups-concrete interface 

thus enhancing the shear friction; and leading to increase of the shear strength and stiffness. The 

beam with high corrosion level (D12-15%-UR) had an 11% reduction in ultimate strength in 

comparison to the control beam. The stiffness of all the beams (control, corroded un-repaired, or 

corroded-repaired) were almost identical in the elastic stage (prior diagonal cracking) up to a 

load of 165 kN. The stiffness of the control and high corrosion level beams decreased after the 

aggregate interlock was lost; however, the beam with low corrosion level and CFRP repaired 

beam did not exhibit a reduction in the stiffness up to ultimate strength. The mid-span 

displacement at ultimate load ranged from 9.1 mm (CFRP repair beam) to 8.1 mm (control 

beam). Corrosion did not have an effect on the ultimate deflection. 
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Figure 3.11 Load-displacement responses of beams in group B 

 

3.3.2.2 3.3.2.2 Failure modes 

Flexural cracks were initially observed in the un-repaired beams at mid-span at different loads 

based on the corrosion level: 65kN (for non-corroded beam), 70 kN and 83 kN (for low and high 

corrosion levels). As load increased, diagonal cracks propagated between the support and the 

loading point at different loads (Table 3.1). As the load increased, the diagonal cracks widened, 

the beam lost the aggregate interlock and the stirrups started to share in resisting the applied 

load. At ultimate strength, the beams failed in brittle shear. The failure modes in the un-repaired 

beams were diagonal tension splitting (Figure 3.12) while the CFRP repaired beam experienced 

delamination of concrete cover with tension splitting (Figure 3.12).  
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Close up on delamination of concrete cover 

a) Control beam D12-0%-UR 

b) Low corrosion level beam D12-7.5%-UR c) High corrosion level beam D12-15%-UR 

d) CFRP repaired beam D12-15%-R 

a) Control beam D12-0%-UR 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Failure modes of beams in group B 
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3.3.2.3 Inclined cracking behaviour 

Figure 3.13 shows a plot of the applied load vs. diagonal tensile strain crossing the inclined 

cracks within the middle instrumented region (300 mm from the support). Again, these beams 

exhibited stiff response until diagonal cracking occurred followed by a nonlinear response up to 

failure. At the ultimate load, it is clear that the corroded beams exhibited more shear deformation 

(or inclined crack opening) in comparison to the un-corroded beam.  The un-corroded beam 

(D12-0%-UR) had diagonal tensile strain initiation at higher diagonal cracking load in 

comparison to the corroded beams. This was opposite to what was observed for beams with 

deformed corroded stirrups. As the corrosion level increased, the diagonal cracking load 

decreased due to the weakening of the bond between the concrete cover and the corroded 

stirrups. In this case, the outside layer (concrete cover) was partially engaged with the concrete 

core of the beam (which is inside the closed stirrups). As such the diagonal shear stresses in the 

corroded beams were mostly transmitted through the beam core leading to a reduction in the 

strength and the stiffness at higher corrosion level.  

 

Figure 3.13 Load-diagonal tensile strains in group B 
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3.3.2.4 Strain behaviour 

The maximum strains in the steel rebar and the concrete were below the yield strain of the steel 

and the concrete crushing strain, respectively. The strain data for the tension steel reinforcement 

and concrete in compression zone are shown in Appendix C. Figure 3.14 shows the load versus 

strain for four stirrups in the critical shear span of the control beam. It is obvious that the second 

and third stirrups from the support (St2 & St3) reached the yield strain. At beam failure, the 

strain in St2 was 3700 με which indicates that this stirrup crossed a digonal tension crack. No 

strain gauges were used in the beams with corroded stirrups. 

 

 

 

 

 

 

 

 

 

Figure 3.14 shows the load-strain plot at mid-height of the CFRP strips for Beam D12-15%-R 

 

 

The strain response was similar to what was observed for beams of group A with three stages: 

initially a stiff response with no strain measured a nonlinear stage and plataue stage where the 

strain increased with no increase in load. It is clear that strips 2 and 3 (S2 and S3), which are 

located within the middle region of the critical shear span, exhibited high strains in comparison 

to strips 1 and 4 (S1 and S4), which are located close to the support and loading point, 
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respectively. It is evident from Figure 3.15 that strip 3 exhibited higher strains because of the 

diagonal shear crack that occurred at that location. 

 

 

 

 
 

 

 

 

 

 

Figure 3.15 Load-strain behaviour of CFRP strips in Beam D12-15%-R 

3.3.3 Group C: Beams with D6 smooth stirrups spaced at 200 mm 

The beams in group C (D6-0%-UR, D6-7.5%-UR, D6-15%-UR, and D6-15%-R) were 

reinforced with D6 smooth bars (6.35mm diameter) as closed stirrups placed at 200 mm c/c 

(which is equivalent to 0.7 of the effective depth). One beam was not corroded and tested as the 

control beam. Two beams were corroded to 7.5% and 15% theoretical mass loss then tested up to 

failure. The fourth beam was corroded up to 15% mass loss, then loaded up to 80% of the 

ultimate load of the companion corroded beam, and then it was repaired with CFRP sheets and 

tested up to failure. The actual corrosion levels achieved in the stirrups were on average 1.2% 

and 3.68% for theoretical mass losses of 7.5% and 15%, respectively. As a result the un-repaired 

corroded beams did not fail within the expected critical shear span but rather failed in the non-

corroded shear span. This possibly because the achieved corrosion mass losses were very low 

and this was sufficient to increase the shear capacity of the critical shear span and thus led to the 

failure in the non-corroded shear span. The following sections present the observed behaviour 

and measured response of the different beams in group C. 
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3.3.2.1 Load-displacement behaviour 

The applied load versus mid-span displacement responses of the beams in group C are illustrated 

in Figure 3.16. The load-displacement plots, for the un-repaired corroded beams and the repaired 

corroded beam, exhibited a bilinear behaviour with three distinct stages: diagonal cracking, 

stirrups yielding and ultimate stages. Beam D6-7.5%-UR (low corrosion level – 1.2% actual 

mass loss) and D6-15%-UR (high corrosion level – 3.6% actual mass loss) had 30% and 20% 

increase in the ultimate strength in comparison to the un-corroded beam. This was possibly due 

to the enhanced bond behaviour of the concrete-stirrups interface with the low corrosion levels 

achieved. The corrosion products formed on the smooth D6 bars increased the roughness of the 

stirrups thus increasing its contribution to shear resistance. Up to the ultimate load, the stiffness 

of the un-repaired corroded beams was higher than the control and CFRP repaired beam. The 

CFRP repaired beam (D6-15%-R) exhibited a 64% increase in ultimate strength. The 

displacement at ultimate load decreased as the corrosion level increased. The midspan 

displacement at ultimate load ranged from 5.1 mm (D6-15%-UR) to 8.3 mm (CFRP repaired 

beam). 

 

 

 

 

 

 

Figure 3.16 
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a) Control beam D6-0%-UR 

c) High corrosion level beam D6-15%-UR 

3.3.3.2 Failure modes 

The beams in group C failed in shear. Flexural cracks were initially observed at mid-span in the 

un-repaired beams at different loads based on the corrosion level: 58 kN (for non-corroded 

beam), 69 kN and 71kN (for 1.2% and 3.68% corrosion mass loss). The loads at which diagonal 

cracks initiated and propagated for the different beams are given in Table 3.2. As the load 

increased, the diagonal cracks widened and the stirrups started to share in resisting the applied 

load and then the beam lost the aggregate interlock. The failure in the un-repaired corroded 

beams unexpectedly occurred in the non-corroded shear span possibly because the enhancement 

of shear friction due to the low achieved mass loss in the stirrups led to increasing the shear 

resistance in the corroded shear span. At the ultimate stage, the beams exhibited brittle shear 

failure. The failure modes were diagonal tension splitting failure in the control beam and the 

corroded beams as shown in Figure 3.17. However, the CFRP repaired beam experienced 

delamination of concrete cover with diagonal tension failure and stirrups rupture (Figure 3.17).   

 

 

 

 

 

 

 

 

 

Figure 3.17 Failure modes of beams in group C                         

b) Low corrosion level beam D6-7.5%-UR 
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Close up on diagonal crack with stirrups rupture 

 

 

 

 

 

 

 

Figure 3.17 Failure modes of beams in group C (continued) 

3.3.3.3 Strain behaviour 

In all beams, the ultimate strain in the steel rebar was below the yield strain and the strain in the 

concrete was below the crushing strain. The load vs. strain responses for the steel rebar and the 

concrete for all beams are shown in Appendix C. Figure 3.18 shows the load versus strain for the 

four stirrups in the critical shear span. It is evident that none of the stirrups reached the yield 

strain. At beam failure, the strain in St2, which is close to the location of the inclined crack, was 

1100 με. No strain gauge were mounted on the corroded stirrups. 

 

Figure 3.18 Load-transverse reinforcement strain relationship of the control beam (D6-0%-UR) 
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The load-strain plots at mid-height of the CFRP strip for Beam D6-15%-R are shown Figure 

3.19. The shape of the load-strain curves was similar to those of beams in group A and B. Higher 

strains were exhibited by strips 3 and 4 (S3 and S4), which are located close to the loading point, 

in comparison to strips 1 and 2 (S1and S2), which are located close to the support. Strip 3 

exhibited higher strains because of the excessive diagonal shear crack that caused the stirrups to 

rupture at that location. 

 

Figure 3.19 Load-strain behaviour of CFRP strips in Beam D6-15%-R 

 

3.3.4 Group D: Beams with D6 smooth stirrups spaced at 100 mm 

The beams in group D (D6-0%-UR-100, D6-7.5%-UR-100, D6-15%-UR-100, and D6-15%-R-

100) were reinforced with D6 smooth bars as closed stirrups placed at 100 mm c/c. One beam 

was not corroded and tested as the control beam. Two beams were corroded to 7.5% and 15% 

theoretical mass loss then tested up to failure. The fourth beam was corroded up to 15% 

theoretical mass loss, then loaded up to 80% of the ultimate load of the companion corroded 

beam, and then it was repaired with CFRP sheets and tested up to failure. The actual corrosion 
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levels achieved in the stirrups of this group were on average 0.77% and 4.39% for theoretical 

mass losses of 7.5% and 15%, respectively. As a result the un-repaired corroded beams did not 

fail within the expected corroded shear span possibly because the achieved corrosion mass losses 

in the stirrups were very low and thus increased the shear capacity of the critical shear span and 

led to the failure in the non-corroded shear span. The following sections present the observed 

behaviour and measured response of the different beams in group D. 

3.3.4.1 Load-displacement behaviour 

The applied load versus mid-span displacement responses of the beams in group D are illustrated 

in Figure 3.20. The load-displacement plots, of the un-repaired corroded beams and the repaired 

corroded beam, exhibited a bilinear behaviour with three distinct stages: diagonal cracking, 

stirrups yielding and ultimate stage. Beam D6-7.5%-UR-100 (low corrosion level – 0.77% actual 

mass loss) and D6-7.5%-UR-100 (high corrosion level – 4.39% actual mass loss) had 15% and 

35% increase in the ultimate strength in comparison to the un-corroded beam. This possibly due 

to the enhanced bond behaviour of the concrete-stirrups interface with the low corrosion levels 

achieved in the stirrups. The corrosion products formed on the smooth D6 bars increased the 

roughness of the stirrups thus increasing its contribution to shear resistance. Up to the ultimate 

load, the stiffness of the un-repaired corroded beams was higher than the control. The CFRP 

repaired beam (D6-15%-R) exhibited a 52% increase in ultimate strength. The midspan 

displacement at ultimate load ranged from 9.4 mm (un-repaired beam with 4.39% corrosion 

level) to 7.5 mm (control beam); this indicates that the beam with 4.39% corrosion level slightly 

enhanced the displacement. The CFRP repaired beam also had a higher midspan displacement at 

ultimate load in comparison to control beam. 
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Figure 3.20 Load-displacement responses of beams in group D 

 

3.3.4.2 Failure modes 

The beams in group D failed in shear. Initially, flexural cracks were observed at mid-span in the 

un-repaired beams at different loads based on the corrosion level: 61 kN (for non-corroded 

beam), 57 kN and 64kN (for low of 0.77% actual mass loss and high or 4.39% actual mass loss 

corrosion levels). The loads at which diagonal cracks initiated and propagated for the different 

beams are presented in Table 3.2. As the load increased, the diagonal cracks widened and the 

stirrups started to share in resisting the applied load and consequently the beam lost the 

aggregate interlock. The failure in the un-repaired corroded beams unexpectedly occurred in the 

non-corroded shear span possibly because the enhancement of shear friction due to the low 

achieved mass loss led to increasing the shear resistance in the corroded shear span. At the 

ultimate strength, the beams exhibited brittle shear failures. The failure modes were diagonal 

tension splitting failure in the control and the corroded beams as shown in Figure 3.21. The 

corroded beam with high corrosion level experienced stirrups rupture. However, the CFRP 

repaired beam experienced debonding of FRP with diagonal tension failure (Figure 3.21). 
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a) Control beam D6-0%-UR-100 

c) High corrosion level beam D6-15%-UR-100 

3.3.4.3 Strain behaviour 

In all beams, the ultimate strain in the steel rebar was below the yield strain and the strain in the 

concrete was below the crushing strain. The load vs. strain responses for the longitudinal tension 

steel reinforcement and the concrete compression surface for all beams are shown in Appendix 

C. Figure 3.22 shows the load versus strain for the four stirrups in the critical shear span. It is 

evident that the second and third stirrups from the support (St2 and St4) reached the yield strain.  

At beam failure, the strain in St2 was exceeded with 1733 με as this gauge corresponded to the 

location of the inclined crack. No strain gauge were mounted on the corroded stirrups. 

 

 

 

 

 

 

 

 

 

Figure 3.21 Failure modes of beams in group D  

 

 

b) Low corrosion level beam D6-7.5%-UR-100 
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Close up on diagonal crack causing FRP debonding 

 

 

 

 

 

 

Figure 3.21 Failure modes of beams in group D (continued) 

 

Figure 3.22 Load-transverse reinforcement strain relationship of the control beam (D6-0%-UR-

100) 

The load-strain plots at mid-height of the CFRP strip for Beam D6-15%-R-100 are shown Figure 

3.23. The response for gauges S1, S3, and S4 were almost linear up to failure. The response for 

gauges S2 exhibited a trilinear response with a three linear stages. Higher strain was exhibited by 

strip 2, which is located close to the loading point, in comparison to strips 1, 3, and 4 (S1, S3 and 

S4), which are indicated in the drawing (in Figure 3.23). Strip 2 exhibited higher strains because 

of the excessive diagonal shear crack. 
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Figure 3.23 Load-strain behaviour of CFRP strips in Beam D6-15%-R-100 

 

3.3.5 Group E – Beam without web reinforcement 

Beam (0-0-UR) was not reinforced with stirrups to find the concrete contribution for shear 

resistance including the dowel action of longitudinal rebar, Vc.  The load-displacement response 

of beam 0-0-UR is shown in Figure 3.24. The load-displacement plot illustrated a linear 

behaviour up to inclined cracking initiation. Flexural cracks appeared at mid-span at load of 

71kN. The inclined cracks initiated at a load 129 kN, and propagated towards the support. As the 

load increased, the diagonal cracks widened and thus the beam lost the aggregate interlock. The 

beam suddenly failed in shear at an ultimate capacity of 175 kN and a midspan displacement of 

5.5 mm. The failure mode was diagonal tension splitting as shown in Figure 3.25. The strain 

responses of the longitudinal steel reinforcement and top concrete fibre in compression are 

shown in Appendix C. Both steel and concrete strains were below the yield strain of steel and 

crushing strain of concrete, respectively. 
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Figure 3.24 Load-displacement relationship of beam without web reinforcement (0-0-UR) 

 

 

Figure 3.25 Failure mode of beam without web reinforcement (0-0-UR) 
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Chapter 4: Discussion of Test Results 

 Introduction  4.1

This chapter presents the discussion of the test results on the shear behaviour of corroded web 

reinforcement in RC slender beams. The discussion covers the effect of the corrosion of the web 

reinforcement (section 4.2) and the effect of CFRP repair (section 4.3) on the structural 

behaviour (stiffness, strength and deflection) of the different beams. Table 4.1 gives a summary 

of the structural test results. In addition, a modeled is presented to predict the shear strength of 

un-corroded and corroded slender RC beams based on the modified compression field theory. 

Comparisons of the model predictions with measured results for different beams are presented 

and discussed.  

Table 4.1 Comparison of the test results    

Group Beam No. 

Actual 

mass 

loss % 

Ultimate Overall Stiffness, K 

(Load/Displacement) 

(kN/mm) 

Load 

(kN) 

Displacement 

(mm) 

A 

10M-0%-UR 0% 450 11.3 40 

10M-7.5%-UR 9.9% 411 9.8 42 

10M-15%-UR 15.6% 385 8.8 44 

10M-15%-R 17.2% 443 7.3 61 

B 

D12-0%-UR 0% 412 8.1 51 

D12-7.5%-UR 8% 476 8.8 54 

D12-15%-UR 15% 370 8.3 45 

D12-15%-R 16% 497 9.1 55 

C 

D6-0%-UR 0% 253 6.8 37 

D6-7.5%-UR 1.2% 330 7.4 52 

D6-15%-UR 3.68% 306 5.1 59 

D6-15%-R 4.25% 416 7.2 58 

D 

D6-0%-UR - 100 0% 335 7.5 45 

D6-7.5%-UR-100 0.77% 382 7.9 48 

D6-15%-UR-100 4.39% 452 9.4 48 

D6-15%-R-100 4.1% 508 8.1 63 

E 0-0-UR - 175 5.5 32 
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 Effect of Corrosion of Stirrups on Shear Behaviour 4.2

Corrosion of the stirrups in reinforced concrete beams reduces the cross section of the transverse 

reinforcement. Moreover, the corrosion products increase the radial corrosion pressure on the 

concrete around the steel stirrups. This will cause weakening of the concrete-corroded steel 

stirrups interface at high corrosion levels (15% mass loss). Figure 4.1 shows the ratio of shear 

strengths of corroded beams to the control beams for different mass losses. In groups C and D, 

the corroded smooth stirrups (D6 @ 200 and D6 @ 100) exhibited 30% and 8% strength gains, 

respectively because of the low corrosion levels (1.18% and 0.77% mass loss) achieved by the 

stirrups in theses specimens. This behaviour can be attributed to the corrosion products that filled 

the interconnected voids surrounding the concrete-stirrups interface, and thus enhanced the shear 

friction of the bar concrete interface and the shear strength was increased. In group B, the D12 @ 

200 mm c/c smooth stirrups showed a 16% increase in shear strength at a medium corrosion 

level (8% mass loss) possibly due to the enhanced frictional resistance at the corroded smooth 

stirrups-concrete interface, but as the corrosion level was increase to 15% mass loss, the shear 

strength decreased by 10% versus the control beam. The beams with deformed 10M stirrups, 

however, exhibited a gradual decrease in the shear strength as the corrosion level increased. The 

shear strength decreased by 8% and 14.4% at corrosion levels of 9.9% and 15.6%, respectively. 

This possibly due to the fact that corrosion reduced the ribs in the deformed bars of the stirrups 

which led to a reduction of the mechanical bond resistance of the stirrups and consequently 

lowered the shear strength of the beam. 
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Figure 4.1 Comparison of unrepaired corroded beams versus control beams 

 

 

Figure 4.2 shows a comparison of the ratio of the overall stiffness of the unrepaired corroded 

beams to the control beams at different corrosion levels. The corroded beams, in group C (D6 @ 

200), achieved less than 5% corrosion levels in the stirrups and exhibited 41% to 58% 

enhancement in the overall stiffness versus the control. On the other hand, in group D (D6 @ 

100) the stirrups had a tighter spacing, but the overall stiffness was increased up to 8%. The 

corroded beams with deformed stirrups in group A (10M @ 200) showed a gradual increase up 

to 10% in the overall stiffness as the corrosion level increased. Group B, D12 smooth stirrups, 

exhibited a slight increase of 6% in the overall stiffness at low corrosion level and a drop in the 

overall stiffness by 12% as the actual mass loss in the stirrups reached 15%.  
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Figure 4.2 Overall stiffness of unrepaired corroded beams versus control beams 

 

Figure 4.3 shows the ratio of ultimate deflection for the unrepaired corroded beams to the 

unrepaired control beams at different corrosion levels. For group C (D6 @ 200), up to actual 

mass loss of 3.68%, the ultimate deflection increased by 10% over the control. However, in 

group D (D6 @ 100), with closely spaced stirrups, the ultimate deflection decreased by 25% as 

the corrosion level was increased to 4.39%. In group B (D12 @ 200), the ultimate deflection 

increased by 8.6% and at 2.4% as the mass loss in the stirrups increased from 8% to 15%. Group 

A (10M @ 200) exhibited a gradual drop in the ultimate deflection trend as the corrosion level 

increased with the maximum reduction of 22% for 15.6% mass loss.  
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Figure 4.3 Ultimate deflection of unrepaired corroded beams versus control beams 

 

 Effect of CFRP repair on Shear Behaviour  4.3

This section discusses the effect of CFRP repair on the structural behaviour (strength, stiffness 

and ultimate deflection) of beams with high corrosion level (15% mass loss). In general, the 

CFRP repair exhibited significant improvements in the stiffness and the shear strength of the 

repaired beams in comparison to the control and the corroded beams. 

4.3.1 Shear Strength 

Figure 4.4a,b shows a comparison of shear strength trends of CFRP repaired corroded beams to 

the control (no mass loss, 0%) and corroded (15% mass loss for group A, B and 4% for group C, 

D) beams. In group A (10M@200), the CFRP repair restored the ultimate strength of the 

corroded beam (17.2% actual mass loss) up to 98% and 115% in comparison to the control beam 

(uncorroded) and corroded beam (15.6% actual mass loss). In group B (D12 @ 200), the CFRP 

repaired corroded beam (16% actual mass loss) exhibited a 21% improvement in ultimate shear 
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strength in comparison to the control beam (un-corroded) and a 34% increase in strength in 

comparison to the unrepaired corroded beam (15% achieved mass loss). Group C and D showed 

the opposite trend from group A and B with the ratio of the shear strength of the repaired 

corroded beams to control beams higher than the ratio of repaired corroded beams to corroded 

beams. The increase in the ratio of shear strengths of the CFRP repaired corroded beams to 

control beams can be attributed to the effect of the low achieved mass loss on the smooth stirrups 

in addition to the effect of CFRP repair. The actual mass losses for the stirrups in group C were 

3.68% and 4.25% for the corroded and repaired-corroded beams. In group D, the actual mass 

losses were 4.39% and 4.1% for the corroded and repaired-corroded beams.  

 

Figure 4.4 Shear strength comparisons of repaired corroded beams to unrepaired control  

and corroded beams versus mass loss 
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C and D ) beams. In group A (10M@200), the CFRP repair enhanced the overall stiffness of the 

corroded beam (17.2% actual mass loss) up to 152% and 139% in comparison to the control 

beam (0% mass loss) and corroded beam (15.6% actual mass loss). In group B (D12 @ 200), the 

CFRP repaired corroded beam (16% actual mass loss) exhibited a 7% and 23% enhancement in 

the overall stiffness in comparison to the control beam (uncorroded) and the unrepaired corroded 

beam (15% achieved mass loss). Group C (D6 @ 200) showed a 57% increase in the overall 

stiffness of the repaired corroded beam (4.25% actual mass loss) versus the control beam. 

However, the repaired beam exhibited a 2% reduction in stiffness in comparison to the 

unrepaired corroded beam (3.68% actual mass loss). Group D (D6 @ 100) showed 40% and 30% 

increases in the overall stiffness of the repaired corroded beam (4.25% actual mass loss) to the 

control beam and the unrepaired corroded beam (3.68% actual mass loss). The enhancements in 

the stiffness of the CFRP repaired-corroded beams in group C and D is mostly due to the low 

corrosion level achieved in the stirrups. 

 

Figure 4.5 Overall stiffness comparisons of repaired corroded beams to unrepaired control  

and corroded beams versus mass loss 
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4.3.3 Ultimate Deflection 

Figure 4.6a,b shows the ratio of ultimate deflection of the CFRP repaired corroded beams in 

relation to the unrepaired control and corroded beams. The CFRP repaired corroded beams with 

smooth stirrups in group B (D12 @ 200) and C (D6 @ 200) exhibited increases in the ultimate 

deflection in comparison to both the unrepaired control and corroded beams. The deflection 

increase ranged from 106% to 136%. However, the CFRP repaired corroded beam with 

deformed stirrups and tighter spacing in group A and D exhibited a reduction up to 35% in the 

ultimate deflection in comparison to the unrepaired control beam (Figure 4.6a,b). The CFRP 

repair in group A had a 17% reduction in the deflection in comparison to the unrepaired corroded 

beam. This was consistent with the fact that unrepaired corroded beam exhibited a 22% 

reduction in deflection in comparison to the control (Figure 4.6a).  

 

Figure 4.6 Ultimate deflection comparisons of repaired corroded beams to unrepaired control  

and corroded beams versus mass loss 
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 Shear strength Prediction  4.4

The shear strengths of the control and corroded slender shear-critical RC beams were estimated 

based on the modified compression field theory (MCFT) procedure in according to the Canadian 

Highway Bridge Code (CAN/CSA-S6-06) and Concrete Design Handbook (CSA A-23.3-04). 

The corrosion effect was considered in predicting the shear strengths of corroded beams by 

introducing reduction factor to the beam cross-section and stirrups cross-section.   

 

4.4.1 Prediction of Shear Strength for Control Beams  

The shear strengths of the control un-corroded beams (10M-0%-UR, D12-0%-UR, D6-0%-UR, 

D6-0%-UR-100, 0-0%-UR) were calculated using the iterative procedure of MCFT as shown in 

Figure 4.7. A sample calculation is presented in Appendix A. 
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Figure 4.7 MCFT procedure (Azam, 2010) 

 

Table 4.2 gives a comparison of the experimental and calculated shear strengths of the five 

control beams. Figure 4.8 shows a plot of the experimental versus the predicted shear strengths 

of the control beams. Beam D12-0%-UR was the only beam that had a slightly unconservative 

ratio of the experimental to predicted shear strength possibly because of the use of smooth 

stirrups in this beam. All other beams had excellent correlation between the predicted and 

measured values. In general, these results demonstrated the applicability of the MCFT to predict 

the shear strength of RC beams with and without stirrups.         
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                 Table 4.2 Experimental and predicted ultimate loads for control beams 

 

 

 

 

 

 

 

Figure 4.8 

Experimental versus predicted shear strengths 

 

4.4.2 Ultimate Shear Strength Prediction of Corroded Beams  

The effect of corrosion damage in the corroded beams was taking into account by considering 

the reduction in the cross sectional stirrups (mass loss) and the reduction in the beam’s cross-

section due to concrete cover cracking. Mass loss due to corrosion has a direct effect on reducing 

cross-sectional area of the stirrups area. The expansive pressure of the corrosion products on the 

Beam 
f’c 

(MPa) 
Vexp. (kN) Vpred.(kN) Vexp./Vpred.  

10M-0%-UR 38 450 448.8 1.01 

D12-0%-UR 38 412 440 0.94 

D6-0%-UR 38 253 252.9 1.01 

D6-0%-UR-100 38 335 330.5 1.02 

0-0%-UR 38 175 174.25 1.01 
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stirrups can significantly lead to weakening the stirrups-concrete interface and thus cause the 

delamination of the concrete cover. It was evident during the careful concrete cover removal to 

extract the corroded stirrups that the interface of concrete cover-corroded stirrups was weak and 

can separate easily as one piece as shown in Figure 4.9.  

 

Figure 4.9 Concrete cover delamination as one layer due to corrosion damage on the stirrups (top 

view of corroded beam) 

 

A simple conservative way to consider the effects of corrosion on the concrete section at the 

ultimate stage would be to reduce the section width based on the concrete cover. While taking 

mass loss into consideration, the concrete confined by the stirrups remains undamaged and can 

resist load. Equation 4.1 provides the proposed effective width formulation. 

 

beff. = b - c if mass loss <5%                                                                              Equation 4.1 

       = b - 2c if mass loss >5% 

Where: beff. = Effective width (mm), b = section width (mm), c = Concrete cover  
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The reduction of the cross sectional area of the stirrups due to corrosion can be calculated based 

on the average mass loss as shown in Equation 4.2. 

Av corroded =(1 - mass loss%) Av uncorroded                                                                                       Equation 4.2 

Where:   Av-corroded=  total area of two legs of corroded closed stirrups (mm
2
) 

Av-uncorroded=  total area of two legs of uncorroded closed stirrups (mm
2
) 

Mass loss% = average mass loss of corroded stirrups (%) 

A simple conservative approach is proposed to calculate the shear strength of beams with 

corroded stirrups. This approach has two main assumptions: 1) the side concrete cover is cracked 

and does not resist the applied shear stress; and 2) the corrosion attack on the stirrups is uniform. 

The tensile strength of the corroded steel bars exhibited marginal reduction in yield strength 

above 75% corrosion mass loss (Almusallam, 2001). Thus, the yield stress of corroded steel bars 

does not change with corrosion and is taken as similar to that of the non-corroded steel bars. 

Therefore, the shear strength calculation based on MCFT is modified by including two main 

reduction factors: 1) Beam section width reduction, beff., applied in the shear strength of concrete  

(Vc); and 2) stirrups area reduction, Av-corroded., applied in the shear strength of steel (Vs) as 

shown in Equation 4.3. 

 Vu=  Vc  +  Vs =    β√    beff. dv +      
                  

 
 dv cot θ                                    Equation 4.3 

Where: (Vu, Vc,  Vs, β, f’c , dv, θ,   ,    are defined in chapter 1) 

Av-corroded= total area of two legs of corroded closed stirrups (mm
2
) – Eq.4.2 

beff = effective width (mm) – Eq. 4.1 

A sample calculation using the proposed approach is shown in Appendix A. Figure 4.10 shows 

the experimental shear strength versus the predicted shear strength. Table 4.3 gives the values of 
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actual mass loss, experimental shear strength, predicted shear strength and the ratio of 

experimental to predicted strength.  

 

Figure 4.10 Experimental versus predicted shear strengths 
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                 Table 4.3 Experimental and predicted ultimate loads for corroded beams 

 

 

 

 

 

 

It is evident that there is a reasonable correlation between the predicted and experimental values 

particularly at high corrosion levels. The ratio of experimental to predicted strength ranged from 

1.06 to 1.11. The beam with D12 smooth stirrups at medium corrosion level (8% actual mass 

loss) had on experimental shear strength 25% higher than the predicted shear strength. The 

corroded smooth stirrups increase the experimental shear strength of the beam as result of the 

enhancement in the shear friction interface between the corroded stirrups and the concrete. For 

lower corrosion levels (0.77% to 4.39%) the experimental and predicted shear strength ratio 

ranged from 1.4 to 1.15; the model was not able to accurately predict strengths at theses 

corrosion levels. In all cases, the predicted strength was on the conservative side in comparison 

to the measured value. 

Beam 
Actual mass 

loss % 

Vexp.(not 

normalized), kN 
Vpred., kN Vexp./Vpre. 

D6-7.5%-UR-100 0.77% 475 322 1.40 

D6-7.5%-UR 1.20% 348 244 1.33 

D6-15%-UR 3.68% 322 242 1.24 

D6-15%-UR-100 4.39% 382 317 1.15 

D12-7.5%-UR 8% 512 411 1.25 

10M-7.5%-UR 9.90% 437 402 1.08 

10M-15%-UR 15.60% 429 386.7 1.11 

D12-15%-UR 15% 399 378 1.06 



83 

 

Chapter 5: Conclusions and Recommendations 

 Introduction 5.1

This thesis investigated the effect of corrosion of web reinforcement and CFRP repair on the 

structural behaviour of shear-critical RC beams. A total of 17 slender RC beams were tested: five 

beams were control specimens (uncorroded) and twelve beams were corroded; four corroded 

beams of the high corrosion level were repaired in shear. The variables studied included; the 

level of corrosion, the type of stirrups (smooth and deformed), the stirrup spacing, and the 

presence of CFRP repair. All the beams were monotonically tested in three point bending. The 

test results showed that the shear strengths decreased as the corrosion level increased, and that 

CFRP repair enhanced the performance of the corroded beams. The modified compression field 

theory (MCFT) was used to predict the shear strengths of the control beams. Proposed 

modification factors to account for corrosion effects (mass loss and concrete cover cracking) 

were included in the MCFT equations to predict the ultimate shear strength of corroded beams. 

The predicted results were well reasonably correlated with the experimental results. The detailed 

conclusions of experimental and analytical results are presented in the following sections. 

 Effect of Corrosion  5.2

 A decrease in ultimate shear strength was observed in the corroded beams, except for the 

beams with smooth stirrups with low corrosion levels up to 8%. The maximum decrease 

in the ultimate shear strength ranged from 11% to 14.4% for beams with stirrups 

corroded to 15.6% actual mass loss. 
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 The stiffness of the corroded beams exhibited an increase up to 57% in comparison to the 

control beams except for the beams with smooth stirrups of D6 @ 200 mm c/c that 

exhibited a 2% decrease in stiffness versus the control beam. 

 A gradual drop in ultimate deflection was observed in the corroded beams with deformed 

stirrups (10M @ 200 mm c/c) and smooth stirrups (D6 @ 100 mm c/c) as the corrosion 

level increased when compared to that of the control un-corroded beams. 

 Corrosion of the stirrups did not affect the failure mode. All the beams failed in diagonal 

tension splitting. In addition, the CFRP repaired-corroded beams failed with concrete 

cover delamination (due to the weak bond between the corroded stirrups and concrete 

cover).  

 Effect of CFRP Repair 5.3

 The CFRP repair of corroded beams increased their ultimate load and stiffness versus the 

unrepaired corroded and the control beams. 

 The CFRP repair of corroded beams exhibited an increase in the ultimate deflections 

versus the corroded beams for all beams except the corroded beam with deformed 

stirrups. 

 Analytical Modelling 5.4

 The MCFT model was effective in predicting the shear strength of the control 

(uncorroded) shear-critical RC beams with and without stirrups. 

 The experimental to predicted shear strengths of the control beams exhibited an excellent 

correlation with the test-to-predicted ratio ranging from 1.01 to 1.03. The only exception 

was the beam with D12 smooth stirrups with an experimental to predicted ratio of 0.94. 
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 A prediction of the shear strength of corroded beams was done using a modified MCFT 

model with corrosion effect factors applied to the model. 

 The experimental to predicted shear strength ranged between 1.06 to 1.11 for beams with 

high corrosion level and between 1.15 to 1.4 for beams with low corrosion levels. In all 

cases, the prediction was on the conservative side. 

 Recommendations for Future Work 5.5

 An additional experimental investigation is required to examine the behaviour of RC 

beams with corrosion only in web reinforcement or combined longitudinal and web 

reinforcement corrosion. 

 Beams with corroded stirrups at higher corrosion levels (e.g. 25% mass loss or higher) 

should be considered to simulate longer service periods. 

 The effect of cyclic loading on beams with corroded stirrups should be examined. 

 The FRP repair of corroded beams should be used with different configurations (e.g. 

applying diagonal FRP sheets that can resist the diagonal tension failure). 

 The use of the impressed corrosion technique was successful in achieving the corrosion 

levels estimated using Faraday’s Law for beams with 10M deformed and D12 smooth 

stirrups. But for small diameter of D6, the actual mass loss results were below what was 

calculated by Faraday’s Law. This can be attributed either to the small surface area of the 

stainless cathode or the time used in the accelerated corrosion. Modifications should be 

explored when calculating time by Faraday’s Law for corroding stirrups. 
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                                   Appendix A 

A.1 Sample Calculation of Induced Current in 10M stirrups 

Sample calculation for the required time to achieve 15% mass loss in 10m stirrups with a total 

length of 860mm, was calculated based on Faraday’s law.  

    
        

  
 

Where:  

           ML = mass loss (g) 

           M = the atomic weight of the metal (56 g for iron-Fe) 

           Sa is the surface of the corroded stirrups 

           i = current density 

           z (ionic charge – Fe  Fe
+2

 + 2 e
-
) = 2  

           F (Faraday’s constant) = 96500 Ampares.second  

           T = corrosion time (seconds) 

 For 10M stirrups with a length of 860 mm: 

                    

           I = 250 μA/cm
2
  

            F = 96500 Ampares . sec 

           Steel density = 7.86 g/cm
3
 

           Diameter of 10M deformed steel bar = 11.3 mm = 1.13 cm 

           Area of 10M bar = 1 cm
2
,  
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           L = 860 mm = 86 cm 

             

                 1 13      3       

Mass loss (g) = Mass loss (%) x Mass of original steel (g) 

                                                               
      

   
  1            

        

                                                            1         1 1      

Substitute all values in the mass loss equation: 

    
        

  
 

314   
          1      3      

         
 

  4               

 1          

  3      

Induced current (I) = i   Sa 

I= 250   305 = 76.25 μA 

I ≈ 77 μA 
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A.2 Prediction of ultimate shear strength for control beam using the general method (CSA 

A23.3-04) 

Sample calculation for shear strength (Vr) Beam 10M-0%-UR,                        

Materials properties:  

Average concrete compressive strength for cylinder (100 width x 200 height) @ day of testing; 

f
’
c = 38 MPa, Coarse aggregate size = 9.5 mm 

Shear reinforcement: fy (10M-stirrups) = 420 MPa, Av (10M-stirrups) = 200 mm
2
, S (stirrups 

spacing) = 200 mm, concrete cover 25mm. 

- Flexure reinforcement:   2-30M, and 2-25M (total area=2400 mm
2
), fy (flexural reinforcement) 

= 480 MPa, Es = 200000 MPa.  

The flexural resistance, Mr, was calculated by Response 2000 

Mr = 220 kN.m   

The shear resistance, Vr, is given from eq. 4.3 in Chapter 4:     

Vu=  Vc  +  Vs =    β√    beff. dv +      
     

 
 dv cot θ     Assume:    &   = 1, 

1.Calculating effective shear depth:  

dv = 0.9d = 260 mm 

2.Calculate Vr in terms of   β and θ                             
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Vr = β√44 x 200 x 260 + 
            

   
 x 260 x cot θ 

= 320.6β + 1     cot θ 

3. Get θ and β from equation 1.4, and 1.5 respectively. 

   
   

        
 

    

        
  ;           

                   

    
    

     
          =>          = 334          (Eq. 1.7 in Ch. 1) 

4.Try    (assumed) = 0.003 =>          ;         

5.Check if    (assumed) =    (calculated) 

                

      

  
           

     
                                        (Eq. 1.6 in Ch. 1) 

   (calculated) = 0.0002021 

After many iterations based on the flowchart from Figure 4.7 in Ch.4:  

Final try    (assumed) = 0.000697827 =>      1 3 ;   33     , 

    (calculated) = 0.000697828 =>  

6. Calculated Vr :               Vr  = 2 *[320.6(0.193 ) + 1     cot (38.88)] 

Vr = 448.8 kN 
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A.3 Prediction of ultimate shear strength for corroded beam using the general method 

(CSA A23.3-04) 

Sample calculation for shear strength (Vr) of Beam 10M-15%-UR,                            

Materials properties:  

-Average concrete compressive strength for cylinder (100 width x 200 height) @ day testing; f
’
c 

= 44 MPa, Coarse aggregate diameter = 9.5 mm 

-Shear reinforcement: fy (10M-stirrups) = 420 MPa, Av-uncorroded (10M-stirrups) = 200 mm
2
, S 

(stirrups spacing) = 200 mm, mass loss = 15.6%, concrete cover = 25mm 

- Flexure reinforcement:   2-30M, and 2-25M (total area=2400 mm
2
), fy (flexural reinforcement) 

= 480 MPa, Es = 200000 MPa.  

The flexural resistance, Mr, was calculated by Response 2000 

Mr = 220 kN.m   

The shear resistance, Vr, is calculated by eq. 4.3 in Chapter 4:     

Vr-=  Vc  +  Vs =    β√    beff. dv +      
           

 
 dv cot θ , assume:    &   = 1, 

Calculating effective shear depth:  

dv = 0.9d = 260 mm 

2.Calculate Vr in terms of   β and θ               

Vr = β√    beff. dv +              
 

 dv cot θ 

-Since the mass loss >5%, therefore,  beff. = b-2c = 150mm         (from eq. 4.1 in Ch. 4) 

-Effective area of web reinforcement can be calculated using eq. 4.2 in Ch.4: 



96 

 

Av corroded =(1-mass loss%) Av uncorroded   = 168.8 mm
2
      

Vr = β√44 x 150 x 260 +           
   

 x 260 x cot θ 

Vr = 258.7 β + 92.2 cot θ 

3. Get θ and β from equation 1.4, and 1.5  

   
   

        
 

    

        
  ;           

                   

 

    
    

     
          =>          = 334          (Eq. 1.7 in Ch. 1) 

4.Try    (assumed) = 0.003 =>           ;         

5.Check if    (assumed) =    (calculated) 

                

      

  
           

     
                             (Eq. 1.6 in Ch. 1) 

   (calculated) = 0.00016936, and shear resistance 

After many iterations based on the flowchart from Figure 4.7 in Ch.4:  

Final try    (assumed) = 0.000614943 =>   = 0.206 ;   33 3     (calculated) = 0.000614943  

6. Calculated Vr :               Vr  = 2 *[258.7 (0.206) + 92.2 cot (33.3)] 

Vr = 386.7 kN 
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                                 Appendix B 

 

B.1 Map of corrosion crack-concrete surface specimen 10M-7.5%-UR (crack widths in mm) 

 

 

B.2 Map of corrosion crack-concrete surface specimen 10M-15%-UR (crack widths in mm) 
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B.3 Map of corrosion crack-concrete surface specimen D12-7.5%-UR (crack widths in mm) 

B.4 Map of corrosion crack-concrete surface specimen D12-15%-UR (crack widths in mm) 
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B.5 Map of corrosion crack-concrete surface specimen D6-7.5%-UR 

 

 

B.6 Map of corrosion crack-concrete surface specimen D6-15%-UR  
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B.7 Map of corrosion crack-concrete surface specimen D6-7.5%-UR-100  

 

B.8 Map of corrosion crack-concrete surface specimen D6-15%-UR-100  
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Appendix C 

Figure C.1 Load-strain relationship of un-repaired beams (group A) 

 

Figure C.2 Load-strain relationship of repaired beam (group A)  
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Figure C.3 Load-strain relationship of un-repaired beams (group B) 

 

Figure C.4 Load-strain relationship of repaired beam (group B) 
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Figure C.5 Load-strain relationship of un-repaired beams (group C)  

 

 

 

Figure C.6 Load-strain relationship of repaired beam (group C) 
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Figure C.7 Load-strain relationship of un-repaired beams (group D)  

 

 

 

Figure C.8 Load-strain relationship of repaired beam (group D) 
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Figure C.9 Load-strain relationship of beam without web reinforcement (group E)  
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Figure C.10 Load-inclined crack width in group A 

 

 

 

 

 

 

 

 

Figure C.11 Load-inclined crack width in group B 
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