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Abstract

The nature and complexity of the security threats faced by our society in recent years

have made it clear that a smart pervasive surveillance system constitutes the most effective

cure, as it presents a conducive framework for seamless interaction between preventative

capabilities and investigative protocols. Applications such as wild-life preserve monitoring,

natural disaster warnings, and facility surveillance tend to be characterized by large and

remote geographic areas, requiring large numbers of unattended sensor nodes to cover

the volume-of-interest. Such large unattended sensor networks add new challenges as

well as complicate the system management problem. Such challenges can be in the form

of distributed operation with collaborative decision making, adaptive performance, and

energy-aware strategies, to name a few. To meet the challenges of these mission-critical

applications, the sensor system must exhibit capabilities such as heterogeneous and self-

organized behaviour, data and information fusion, and collaborative resources control and

management.

Sensor Management (SM) refers to the process that plans and controls the use of the

sensor nodes in a manner that synergistically maximizes the success rate of the whole

system in achieving the goals of its mission in assessing the situation in a timely, reli-

able, and accurate fashion. Managing heterogeneous sensors involves making decisions and

compromises regarding alternate sensing strategies under time and resource availability

constraints. As a result, the performance of the collective sensors dictates the performance

of the entire system. Consequently, there is a need for an intelligent Sensor Management

Framework (SMF) to drive the system performance. SMF provides a control system to

manage and coordinate the use of sensing resources in a manner that maximizes the sys-

tem success rate in achieving its goals. An SMF must handle an overwhelming amount

of information collected, and adapt to the highly dynamic environments, in addition to

network and system limitations.

This thesis proposes a resource-aware and intelligent SMF for managing pervasive sensor

systems in surveillance context. The proposed SMF considerably improves the process of

information acquisition by coordinating the sensing resources in order to gather the most

reliable data from a dynamic scene while operating under energy constraints. The proposed

SMF addresses both the operation of the coordination paradigm, as well as, the local and

collaborative decision making strategies. A conceptual analysis of the SM problem in a

layered structure is discussed to introduce an open and flexible design framework based on

the service-oriented architecture to provide a modular, reusable, and extendable framework
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for the proposed SMF solution. A novel sensor management architecture, called Extended

Hybrid Architecture for Sensor Management (E-HASM), is proposed. E-HASM combines

the operation of the holonic, federated, and market-based architectures in a complementary

manner.

Moreover, a team-theoretic formulation of Belief-Desire-Intention (BDI), that represent

the E-HASM components, is proposed as a mechanism for effective energy-aware decision

making to address the local sensor utility. Also, intelligent schemes that provide adap-

tive sensor operation to the changes in environment dynamics and sensor energy levels are

designed to include adaptive sleep, active sensing, dynamic sensing range, adaptive multi-

modality, and constrained communication. Furthermore, surveillance systems usually op-

erate under uncertainty in stochastic environment. Therefore, this research formulates the

collaborative decision-making entities as Partially Observable Markov Decision Processes

(POMDP). To increase the tracking quality and the level of the information reliability,

cooperation between the sensors is adopted, which adds an extra dimension in the de-

sign of the proposed SMFs. The propose SMF is implemented using the Jadex platform

and is compared to the popular centralized architecture. The results illustrate the opera-

tion of the proposed SMF outperforms in terms of tracking quality, detection rate, energy

consumption, network lifetime, and scalability.
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Chapter 1

Introduction

1.1 Motivation

Modern society faces new types of security threats, as such, our security measures have to

go through a paradigm shift from centralized and investigative to distributed and preven-

tative. This has instigated significant efforts of research within academia and industry, so

as to bring about solutions that can effectively address security as a global threat to our

society. The nature, complexity, extent, and spread of the security threats our society has

been witnessing in the recent years have made it clear that Smart Surveillance constitutes

the most effective cure as it presents a conducive framework for seamless interaction be-

tween preventative capabilities and investigative protocols [2,3]. Smart Surveillance adopts

automatic data analysis technologies to transform system observations into situation-aware

knowledge that is actionable [4].

Pervasive systems have demonstrated strong potential in enabling Smart Surveillance.

These systems define what we today know as next-generation Wireless Sensor Networks

(WSNs) which comprise a heterogeneous collection of fixed and mobile Sensor Nodes (SN).

Pervasive surveillance recognizes and monitors targets moving in its Volume Of Interest

(VOI) in a distributed manner. Each sensor has a partial view of the environment, but the

network collectively monitors the entire area under surveillance. The need for such systems

is recognized in applications such as preservation and wildlife monitoring, natural disasters

warning, facility surveillance, health monitoring, to name a few. Pervasive surveillance

systems deal with situations that are characterized by a high density of targets, stochastic

environment, and dynamic threats. This has pushed the information acquisition problem

far from what can be handled by a single sensor. Hence, pervasive surveillance systems need
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to exhibit capabilities such as collaborative control, heterogeneity, self-organized behaviour,

multi-modal data and information fusion. These capabilities provide additional challenges

in designing pervasive surveillance systems, and therefore, intelligent sensor management

approaches are needed to address these capabilities.

Sensor Management (SM) refers to the process that controls and coordinates the use of

the sensory suites in a manner that synergistically maximizes the success rate of the system

in achieving its missions. The sensor manager is expected to take decisions that drive the

performance of the whole system to reach its objectives. To address the challenges of SM,

the research community has directed their efforts to the development of a Sensor Manage-

ment Framework (SMF) which provides a control system to manage and coordinate the use

of sensing resources in a manner that improves the process of situation-awareness, syner-

gistically [5]. Managing heterogeneous sensors involves making decisions and compromises

regarding alternate sensing strategies under time and resource availability constraints. A

SMF has to handle the overwhelming amount of information collected and adapt to the

highly dynamic environments, in addition to network and system limitations. Accordingly,

designing an intelligent autonomous SMF is a complex challenge.

1.2 Objective

This work aspires to design intelligent management strategies for large area sensor net-

works, and to develop decision-making techniques that will mitigate SM under power and

resource constraints. An intelligent SMF is sought as the main objective of this work which

will address the following issues:

• Lack of SM standardization: conceptual analysis of the SM problem is needed

to avoid test-bed specific solutions that are hard to extend or reuse.

• Surveillance over a large area: The need for large area sensor networks has been

recognized in numerous applications. These applications are characterized by large

and remote geographic areas, which need large numbers of sensor nodes to cover the

VOI.

• Energy-aware Operation: Sensor nodes are usually battery-operated and the re-

plenishment of their energy reserve is usually not feasible. Therefore, the lifetime

of sensors must be prolonged as much as possible without degrading the system

performance.
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• Cooperative multi-sensor management: The world model of a multi-sensor

system can be significantly enhanced with cooperative sensing in applications where

the environment dynamics rapidly changes.

1.3 Contribution

This work proposes an intelligent SMF for managing a pervasive system in a surveillance

context. The proposed SMF significantly enhances the process of information gathering

by coordinating the sensing resources in order to collect the most complete data from a

dynamic scene while operating under energy constraints. The proposed SMF addresses the

problem of SM from both an organizational paradigm, as well as, local and collaborative

decision making strategies. This thesis investigates the SM problem in eight essential folds:

• Organizational Design Framework: This work provides a conceptual analysis of

the SM problem in a layer structure and introduces an organizational design frame-

work based on the service-oriented architecture to address the requirements of SMF

from a stacked layer perspective. The proposed framework addresses the large num-

ber of non-functional merits, e.g., modularity, extendibility, and the reusability, to

name a few, that can characterize SMFs.

• Coordination Architecture: The architecture proposed in this work combines the

operation of the holonic, federated, and market-based architectures in a complemen-

tary manner. The proposed approach aims to guarantee the scalability, extendibility,

and reliability of the proposed SMF.

• Energy-aware Operation: Unattended sensor networks suffer from limited battery

resources; hence, the battery lifetime of the sensor node1s must be increased as much

as possible. This work proposes an energy-aware approach to minimize the power

dissipation while maximizing the quality of surveillance.

• Sensor Utility Modelling: Each sensor is responsible for independent reason-

ing and decision-making that affects its state and the overall system state. Every

decision-making process produces a final choice; the collective outcome of these deci-

sions affects the system function in its entirety. This work proposes an energy-aware

team-theoretic formulation using the Belief-Desire-Intention model and the Joint In-

tention theory that represents the hybrid architecture components.
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• Adaptive Sensor Behaviour: This work proposes intelligent schemes to adapt

the sensor setting to the changes in environment dynamics and sensor health. Such

schemes include adaptive sleep, active sensing, dynamic sensing range, adaptive mul-

timodality, and constrained communication, all are designed to operate under re-

source limitation constraints.

• Collaborative Decision-theoretic Modelling: SM can be viewed as a decision-

making process that determines the most appropriate action to perform in order to

achieve maximum utility. The decision-making entities need to be able to operate

under uncertainty in a stochastic changing environment. Thus, this work formu-

lates the decision-making entities as Partially Observable Markov Decision Processes

(POMDP).

• Source Reliability Considerations: The quality and accuracy of sensor measure-

ments may vary between different sensors, due to several factors that include: relative

sensor location, noise, transducers type, partial or full occlusion, etc. The informa-

tion fusion research field has studied the source reliability as a strategy to represent

the credibility of the information acquired from different sensors. This work proposes

a light-weight heuristic approach for estimating the reliability coefficients of the sen-

sor sources that include the impact of sensor settings and estimated environment

dynamics.

• Integrated System: In this work, an intelligent surveillance system (IntelliSurv) is

introduced that automatically detects and localizes abnormal events in a distributed

collaborative manner. The IntelliSurv system is built using the proposed SMF and

helps illustrate the performance of the SMF in operation with different independent

modules.

This thesis maintains that by the use of intelligent sensor management strategies in a

collaborative manner over a distributed localized structure with consideration to resource

and energy constraints, it is possible to achieve a power-efficient large area surveillance

system built using low-cost resource-bounded networks under mission-critical constraints.

1.4 Organization

This thesis is organized as follows: Chapter 2 provides a comprehensive background to

SM problem from the perspective of pervasive surveillance. A generic multi-layered de-
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sign framework for SM is devised in Chapter 3. Chapter 4 proposes the Extended Hy-

brid Architecture for Sensor Management (E-HASM) describing its design details and

discussing its performance. An energy-aware team-theoretic formulation using the Belief-

Desire-Intention model that represents the hybrid architecture components is proposed in

Chapter 5. In Chapter 6, a collaborative decision-theoretic SM algorithm based on sequen-

tial decision-making is designed. Chapter 7 introduces an intelligent surveillance system

(IntelliSurv) that automatically detects and localizes abnormal events in a distributed col-

laborative manner managed by the proposed SMF. Finally, the conclusion and future work

is presented in Chapter 8.
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Chapter 2

Background and Literature Review

This chapter provides an introduction to pervasive surveillance systems and discusses the

needs and challenges of designing an intelligent sensor management framework for such

systems. Moreover, a literature survey of the state-of-the-art sensor management strate-

gies is reviewed in this chapter. The chapter is organized as follows: a brief introduction

of pervasive surveillance and its applications is given in Section 2.1. In Section 2.2, sen-

sor management, its properties and challenges are discussed. Section 2.3 introduces a

taxonomy of the various SMF features and components and surveys the state-of-the-art

SMFs proposed in literature. Finally, Section 2.4 provides some concluding remarks for

the chapter.

2.1 Introduction

Recent world events have amplified the need for enhanced security against natural and man-

made threats. Recognizing that modern society faces new types of threats, the concept

of surveillance has endured major transformation to be able to address attacks that are

directed against civilians and infrastructures. As a result, our security measures have to go

through a paradigm shift from being centralized and investigative to being distributed and

preventative. This global need has instigated significant research efforts, both academic

and industrial, so as to bring about solutions that can effectively address today’s security

threats.

Traditional surveillance systems have been used as an integral component in addressing

a wide range of security threats. From a security stand point, surveillance is the process of

monitoring and interpreting the behaviour of objects within a VOI to construct a complete
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picture of the situation [2]. It involves reliable data collection and analysis, followed by a

rapid dissemination of the findings. These findings are used to direct proper resources to

investigate the event so as to address it and to develop strategies for preventing such events

from happening in the future. Throughout the last decade, digital surveillance systems

have provided the infrastructure to collect, store, and distribute data, while leaving the

task of threat detection exclusively to security experts. Human monitoring and analysis of

surveillance data is a labor-intensive chore. The ability to hold attention and to react to

rarely occurring events is an extremely demanding task. Furthermore, this task is prone

to human errors due to lapses in attention and subjectivity of the human decision-making.

The nature, complexity, extent, and spread of the security threats our society has wit-

nessed in the recent years have made it clear that smart surveillance constitutes the most

effective cure as it presents a conducive framework for seamless interaction between preven-

tative capabilities and investigative protocols [2, 3]. Smart surveillance adopts automatic

data analysis technologies to transform system observations into situation-aware knowl-

edge that is actionable [4]. However, it should be noted that smart surveillance systems

are decision support systems, thus, the final decision-maker must be a security expert.

The need for smart surveillance systems is equally recognized in homeland defence

and homeland security as well as applications such as public safety, health monitoring,

disaster area monitoring, reserve and wildlife monitoring, natural disasters warning, and

facility surveillance, just to name a few. These mission-critical applications tend to spread

over large geographical areas, and hence, may require remote monitoring. To meet the

challenges of all these applications, a surveillance system must exhibit capabilities such

as heterogeneity, self-organized behaviour, multi-modal information fusion, and collabo-

rative resource control and management. Thus, Smart surveillance systems must possess

pervasive capabilities.

2.1.1 Pervasive Surveillance Systems

The latest advances in wireless communication and electronics have enabled the develop-

ment of low-cost low-power multi-functional sensors that exploit a physical phenomenon to

provide data about the state of the environment. These tiny resourceful sensors have insti-

gated the concept of wireless sensor networks [6–9]. A Wireless Sensor Network (WSN) is

a collection of spatially distributed autonomous sensor nodes that communicate with each

other by forming a multi-hop radio network while maintaining connectivity in a decentral-

ized manner to cooperatively monitor physical or environmental conditions, e.g., temper-
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ature, sound, pressure, and/or motion [10].

Under the surveillance umbrella lie many applications that are mission-critical, time-

sensitive, and distributed over large geographical areas: crisis management, border control,

territory control, transportation and critical infrastructure security, disaster area monitor-

ing, reserve and wildlife monitoring, natural disasters warning, to name a few. Such ap-

plications require decentralized intelligent solutions. Hence, the distributed capabilities as

well as the increased sophistication of the sensor nodes make the WSNs a suitable match

for surveillance applications

Pervasive systems are the next-generation of distributed sensor networks. They are

composed of a heterogeneous collection of fixed and mobile sensor nodes, in which the

nodes are small and often embedded as part of a larger system. Pervasive surveillance can

be defined as the active monitoring of recognized targets as they move through a large mon-

itored area using a network of sensors [11]. Each individual sensor has a partial view of the

environment, but collectively the network monitors the entire VOI. Pervasive surveillance

systems monitor ongoing and emerging patterns relevant to abnormal behaviour.

Pervasive surveillance systems deal with situations that are characterized by a high

density of targets, stochastic environments, and dynamic threats, which results in large

amounts of data to be processed. This has pushed the information acquisition problem

far from what can be handled by a single sensor. Hence, pervasive surveillance systems

need to exhibit capabilities such as collaborative control, intelligent data handling, and

adaptive resource management to address the mission-critical application requirements.

These capabilities provide additional challenges and complexities in designing pervasive

surveillance systems. As a result, the research community has dedicated great efforts

in the development of intelligent sensor management approaches to increase the effective

utilization of sensor resources.

2.1.2 Pervasive Surveillance Applications

Smart pervasive surveillance systems were first used by military forces in homeland defence

applications. The homeland security domain was the first to follow in the footsteps of mil-

itary applications in adopting such systems. To date, the homeland defence and homeland

security applications together form the majority share of the pervasive surveillance mar-

ket. However, the last decade has witnessed the emergence of many smart surveillance

applications. As pervasive systems become an affordable technology, different application

domains have originated, as shown in Figure 2.1. For smart sensor applications, the open
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world market for non-military sensors was expected to grow from US $32.5 billion in 1998

to US $ 50.6 billion in 2008 [12].

time
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Figure 2.1: The evolution of pervasive surveillance application domain.

Figure 2.2 shows a basic categorization of pervasive surveillance applications. The

largest application domain is the homeland defence domain, which includes battlefield

monitoring, army base security, and air force and navy surveillance applications, just to

name a few. After the end of the cold war, the homeland security paradigm started being

formulated as a separate national defence [13]. Applications like crisis management, border

security, and territory control are suitable candidates for the use of pervasive surveillance.

Subsequent to the 9/11 events, both the homeland defence and homeland security do-

mains have increasingly invested in the development and deployment of smart pervasive

surveillance systems to address emerging asymmetric threats [13]. In addition to home-

land security programs that are designed to strengthen security along national borders, the

growth of this domain is further fuelled by the increased concern over the effects of ”crime

on economy” [14]. In the mid 1990s, government applications such as environmental mon-

itoring, historic sites and artifacts monitoring, and health monitoring have rapidly gained

popularity.
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Figure 2.2: Classification of the pervasive surveillance applications according to the appli-

cation domains.

In the 2000s, big corporations, such as oil and gas companies, have begun to demon-

strate interest in pervasive surveillance systems to enhance security of their businesses.

Eventually, the advancement in sensor technology has led smart surveillance to be afford-

able enough to be used for consumer and personal applications. Although these appli-

cations still have small market share, smart surveillance systems can play an important

role in many aspects of consumers’ lives, for example, pervasive surveillance of private

properties is an emerging field of application. Wireless operators in North America have

already started to provide smart pervasive surveillance services in the form of home security

systems.

2.2 Sensor Management (SM)

Pervasive surveillance applications may use hundreds, even thousands, of sensor nodes

forming large sensor networks. Sensor networks need intelligent sensor management sys-

tems to coordinate the large number of sensor nodes and the large volume of data to

produce relevant information that can assist in the process of decision-making. In general,

the world model of a multi-sensor system is only as good as the sensors that perceive it

and the intelligence that processes it. Single sensor systems provide partial information

on the state of the environment. To improve the quality of information about the state

of the environment, various sensors have to cooperate and form a multi-sensor system to

provide a global view of the surrounding environment. Multi-sensor systems rely on data

fusion techniques to combine related data from different sensors to obtain better perception

that is then synthesized into situation-awareness. The goal of a multi-sensor system is to
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provide a synergistic effect that enhances the quality and availability of information about

the state of the VOI over that which would be acquired solely from one sensor.

Sensor Management (SM) refers to the process that controls and coordinates the use of

the sensory suites in a manner that synergistically maximizes the success rate of the system

in achieving its missions. The sensor manager is expected to take decisions that derive the

performance of the whole system to reach its objectives. Efficient SM can significantly

enhance the process of information gathering by automatically allocating, controlling, and

coordinating the sensing resources [15]. SM aims to assess the situation in a timely, reliable,

and accurate manner in order to collect complete, relevant, and precise data from a dynamic

scene. The criticality of surveillance applications makes intelligent management of sensory

systems a necessity due to the need to deal with the high time-sensitivity, large amount of

information, and limited resources in these applications. Efficient management of multi-

sensor systems is, however, a challenging task due to the spatially distributed nature of

the network and the scarcity of the energy and processing resources.

2.2.1 Sensor Management and Data Fusion

Data fusion is the integration of information from multiple sources to produce specific

and unified data about an entry. In other words, data fusion techniques combine mea-

surements from multiple sensors, and related information from associated databases, to

achieve improved accuracy of data over that achieved by the use of a single sensor. As

such, data fusion should be coupled with techniques for smart planning and management

of system resources in order to make best use of these assets [16, 17]. Sensor management

can aid the information gathering and fusion processes by automatically allocating, con-

trolling, and coordinating sensing and processing resources to synergistically achieve better

situation-awareness.

Data fusion researchers are well aware of the correlation between SM and data fusion

concepts. The most popular data fusion processing model, Joint Directors of Laboratories

(JDL), introduces sensor management as a part of the data fusion process [18], as shown

in Figure 2.3. The JDL model differentiates the fusion functions into various levels. The

work in [1] has extended the functionality of the JDL data fusion model to address the

sensor management problem in the Process Refinement level (level 4). The definitions of

the revised JDL model levels, as described in [1], are:

• Level 0 - Sub-object assessment: estimation and prediction of object-observable states

on the basis of pixel/signal-level data association and characterization.
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• Level 1- Object assessment: estimation and prediction of entity states on the basis

of inferences from observations.

• Level 2 - Situation assessment: estimation and prediction of entity states on the basis

of inferred relations among entities.

• Level 3 - Impact assessment: estimation and prediction of effects on situations of

planned or estimated/predicted actions by the participants (e.g., assessing suscepti-

bilities and vulnerabilities to predicted threat actions).

• Level 4 - Process refinement (an element of SM): adaptive data acquisition and

processing to support mission objectives.

Data Fusion Domain

Database Management 

System

Human/ 

Computer 

Interaction

Level 3:
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Figure 2.3: The Revised JDL Data Fusion Model [1].

SM provides feedback from the data fusion process to tune the sensor operations, thus,

representing the data fusion process as a closed-loop feedback structure [16]. The sensor

management on level 4 uses information from levels 0-3 to plan future sensor actions,

hence, improving the data collection process. Timeliness of the management feedback is

a necessary requirement for rapid adaptation to environment dynamics, that is to say, a

prompt decision on sensor functions has to be made before a change in the tactical situation

has made such a decision obsolete [16]. However, since sensor management problem is an

exhaustive one, the revised JDL data fusion model does not offer a complete solution

for such a complicated task. Similarly, other data fusion models, e.g., decentralized data

fusion [19], Omnibus [20], and perceptual reasoning [21], have attempted to embed sensor

management into their models.
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2.2.2 Sensor Management Frameworks (SMF)

To address the challenges of SM, numerous researchers have directed their efforts into

the development of sensor management frameworks. A Sensor Management Framework

(SMF) is the organizational control system which seeks to manage and coordinate the

use of sensing resources in a manner that improves the process of situational awareness,

synergistically [5]. A SMF has to handle the overwhelming amount of information collected

and adapt to highly dynamic environments under network and system limitations. The

collective performance of individual sensors dictates the performance of the whole system.

Accordingly, the SMF determines the overall performance and capabilities of the system.

A SMF aspires to provide an optimum sensor configuration based on predicted system

performance [22]. The SMF must allocate the available sensors to the tasks that maximize

the effectiveness of the whole sensing process while reducing the workload on the human

operator. Moreover, the SMF should result in a highly sensitive and self-calibrating system

that compensates for sensor non-linearities, thus maximizing the information acquisition

process. Furthermore, the SMF manages the sensor network to rationalize the power

consumption and the data link usage to increase system lifetime and throughput. Hence,

SMFs aim to provide an intelligent system control that leads to low-cost high resolution

sensor data and high reasoning capabilities. Many research projects have proposed various

SMFs as a standalone approach to address the SM problem [15, 23, 24]. However, the

performance comparison between these SMFs is a difficult task due to the lack of a unified

range of non-functional merits that are strived for in the design of the SMF.

2.2.3 SMF Non-Functional Merits

The SMF non-functional merits are the desirable features and properties that characterize

a system. These features have to be accounted for in the different design phases of the

SMF system. Figure 2.4 offers a basic taxonomy for the SMF non-functional merits. The

taxonomy is based on the design concept in which such merits are incorporated into the

system. The design process of a SMF can be divided into three main categories; design

for architecture, design for development, and design for deployment. To establish a unified

perception, the following lists the different categories, the associated non-functional merits

and their definitions from a pervasive surveillance perspective:
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Figure 2.4: The proposed non-functional merits taxonomy.

2.2.3.1 Design for Architecture

Design for architecture is a phase where the specification of the system topology and

communications network are identified and defined. The associated non-functional merits

include:

• Scalability: a desirable property of a system, a network, or a process, which indi-

cates its ability to either handle growing amounts of work in a graceful manner or to

be readily expanded. It is an important feature in surveillance applications due to the

size and scope of such systems. From a network point-of-view, a scalable system has

to be well designed to take into consideration the implications of an increasing number

of sensors. Such implications can be in the form of increased power consumption and

communication overhead due to congestion and collision. Larger numbers of sensors

means increased management complexity, as well as a more complex programming

model. Other issues like efficiency, security, throughput, and latency between nodes

are trade offs on the size of the system.

• Autonomy: having the power of self-governance. An autonomous agent is an agent

which can perform desired tasks in unstructured environments without continuous

human guidance. Autonomy is a new trend used in surveillance applications as a re-

sult of the need to address emerging types of threats. Autonomous agents collaborate

by deploying a communication network between them. Computational complexity,
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communication overhead, and decision optimality are issues that impact the system

autonumy.

• Fault tolerance: the property that enables a system to continue operating properly

in the event of the failure of some of its components. Surveillance applications have

to be highly fault tolerant due to their safety-critical nature. One of the basic ways

to achieve fault tolerance in networking is through redundancy, however, issues like

cost, efficiency, and system utilization have to be taken into consideration.

• Stability: the property of the system to operate with consistent performance over

time with no changes made to the system. It is vital for surveillance applications

to be stable because they are expected to run with consistent performance for long

periods of time. Design for stability comes early on in the design for architecture

phase. It also affects the choices of network hardware as well as the network protocols

deployed.

• Consistency: the property whereby information and decisions are to be compatible

with system information reservoirs and system objectives and goals. In applications

such as pervasive surveillance, the integrity of the information is essential to the

performance of the system since inaccurate information may result in failure to de-

tect threats. Sensor measurements are collected and aggregated over the network.

Reliable communication, time synchronization, as well as, localization are important

aspects to guarantee the integrity and correctness of information.

2.2.3.2 Design for Development

Design for development is a phase related to the implementation issues and the choice of

the network protocols and software development. The associated non-functional merits

include:

• Extendibility: is a system design principle where the implementation takes into

consideration future growth. It is a systemic measure of the ability to extend a system

and the level of effort required to implement the extension. System extendibility is

considered in the design for development phase. It is a desirable feature from the

software design point-of-view for surveillance applications since the nature of possible

threats is ever-changing. In recent years, the importance of extendable systems has

become more apparent as more functionalities may be added to the system to address

new types of threats.
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• Flexibility: is the ability of a system to respond to potential internal or external

changes in a timely and cost-effective manner. Flexibility is considered in the design

for development phase and, from the software design point-of-view, it is an advanta-

geous feature to incorporate in surveillance applications due to the dynamic nature

of their environment. Wireless networks have the advantage of being flexible systems

that adapt to environmental changes by route discovery and network reconfiguration.

• Reusability: is the property that indicates that the majority of the objects can be

reused for various kinds of applications. Reusability is considered in the design for

development phase. From the software design point-of-view, reusability is a desirable

feature for surveillance applications, especially in the private sector, because it may

save a significant amount of time and money in developing other applications.

• Modularity: is an approach that subdivides a system into smaller parts, i.e., mod-

ules, that can be independently created and then used in different systems to derive

multiple functionalities. Besides reduction in cost, due to less customization and high

flexibility in design, modularity offers benefits such as augmentation and exclusion.

Modularity is a desirable feature from the software design point-of-view and also

provides good programming practice. Although, modularity is not a necessity in the

design of surveillance applications, it can become beneficial in such applications due

to their need to change and adapt to face the ever-changing threats.

• Interoperability: is a property referring to the ability of diverse systems and orga-

nizations to work together. Moreover, it is the ability of systems to provide services

to and accept services from other systems, and to use the services exchanged to

enable them to operate effectively together. The lack of interoperability can be a

consequence of a lack of attention to standardization during the design of a system.

Similar to modularity and reusability, interoperability is a desired feature but not a

necessity in the development of surveillance applications.

• Low complexity: is the property that is concerned with the amount of resources

required to run algorithms. Due to the nature of surveillance applications, efficient

algorithms need to be used to reduce the power consumption of the battery-operated

sensor nodes as well as the processing time.
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2.2.3.3 Design for Deployment

Design for deployment is for specification of the system components, functional organiza-

tion, and configuration. The associated non-functional merits include:

• Heterogeneity: is the property of the system to support static and mobile sensors.

Static sensors are the most popular type of sensors in the surveillance applications.

However, the deployment of mobile sensors have received increased attention in recent

years. Nevertheless, mobility adds new challenges from network points-of-view, such

as, localization, link breakage, handoff management, routing and tunneling.

• Multi-modality: is the property of the system to support different types of sensors,

e.g., , infrared, ultrasound, video. Surveillance applications usually utilize variety of

sensors to best capture the scene in the VOI. The ability of different sensors to

communication will increase the accuracy for the data fusion process, however, issues

like compatibility and standardization should be taken into consideration.

• Other merits: like availability, reliability, and support of wide range of applications.

2.2.4 Challenges of Sensor Management

There is a number of issues that make sensor management a challenging task. The majority

of these issues arise from the limited resources versus application requirements. Achieving

efficient SM is a challenge due to the following:

• System dimensionality: Designing a system that manages hundreds to thousands

of sensor nodes is, in itself, a complicated problem. The large number of sensor nodes

results in a large number of sensory measurements. A SMF must be able to handle

the overwhelming volume of information which must be processed and filtered to

derive situation-aware knowledge.

• Wireless technologies: The spatially distributed nature of pervasive surveillance

applications results in the use of wireless technologies. These technologies introduce a

set of new challenges, e.g., coping with dynamic and uncertain environments, limited

network resources, and addressing information relay capability and reliability.

• Sensor node limitations: Sensor nodes suffer from limited capabilities as a corol-

lary to the use of wireless technologies. Thus, SMF has to address the limited in-
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dividual sensor capabilities such as, processing power, storage capabilities, battery

lifetime, in addition to coping with individual sensor failure.

• System tasks: Due to the increasing demand for high reasoning operations, SM

solutions are expected to exhibit intelligent behaviour and provide an efficient de-

cision support. Accordingly, implementations of SMFs have to perform numerous

functional tasks autonomously and simultaneously, e.g., task allocation, scheduling,

conflict detection, and cooperation, etc.

• Intelligent operations: the system is expected to provide an intelligent decision

support to the human in the loop. Decision support algorithms highly depend on the

quality of information provided by the data fusion algorithm. A SMF has to manage

and improve the data fusion capabilities of the system. However, the need to reduce

the data link utilization causes the data fusion and processing of information to take

place onboard the sensor.

• Operation timeliness: Intelligent SMFs are usually used in mission-critical appli-

cations. Such mission-critical applications dictate timely response to environmental

stimuli, thus, providing fast adaptation to environment changes which is a necessary

requirement for the feedback management of sensors.

• Network efficiency: The conflicting requirements for low-cost sensors that have

high resolution and accuracy creates new challenges for the sensor management

framework. The SMF is expected to compensate for the non-linearities in the sensed

data and maximize the information acquisition process and its accuracy.

• Network dynamism: As a result of the time-varying wireless link, as well as, the

hostile environment, WSNs are characterized with being highly dynamic. Moreover,

sensor node mobility adds another dimension to the network dynamism.

2.2.5 Network Considerations and Issues

Despite the numerous applications of WSNs, these networks have several restrictions, e.g.

limited energy supply, limited computing power, and limited bandwidth of the wireless

links connecting sensor nodes. When designing a WSN, there are several practical network

factors that need to be considered:
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• Hardware Constraints: A sensor node comprises four main components; a sensing

unit, a processing unit, a transceiver unit, and a power unit. Additional application-

dependent components such as a location finding system, power generator, and mo-

bilizer, can also be included in a sensor. Since sensors are usually battery-operated,

their power units may be supported by power scavenging units, e.g., solar cells. Fur-

thermore, limitations on the size of the sensors and their circuits add new challenges

to the design of sensor nodes. Sensor nodes have some other stringent constraints in

terms of power and processing capabilities. Sensor networks operate under extreme

low power, high volumetric densities constraints and should have low production

cost, be dispensable, operate unattended in an autonomous manner, and be adap-

tive to the environment. The choice of the sensor hardware defines the capabilities,

functionalities, as well as lifetime of the sensor network.

• Production Costs: Since WSNs consist of a large number of sensor nodes, the cost

of a single node is important to justify the overall cost of the network. As a result,

the cost of each sensor node has to be kept low while addressing the increased need

for high resolution, low power small-sized sensors.

• Sensor Network Topology: Large number of nodes (hundreds to thousands) are

deployed throughout a field within tens of meters of each other [8]. Deploying a

large number of sensor nodes in high density requires careful handling of topology

maintenance. Topology maintenance can be divided into three phases:

– Predeployment and deployment phase: Sensor nodes can be either thrown in

as a mass or placed one by one in the sensor field. They can be deployed by

dropping from a plane, delivered in an artillery shell, rocket, or missile, or placed

one-by-one by either a human or a robot.

– Post-deployment phase: After deployment, topology changes may occur as a

result of changes in the sensor position, reachability, available energy, or mal-

functioning.

– Redeployment of additional nodes phase: Additional sensor nodes can be rede-

ployed at any time to replace malfunctioning nodes or due to changes in task

dynamics.

Consequently, WSNs has to adapt efficient network configuration and route recovery,

as well as, techniques to guarantee information integrity and consistency over the
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network in case of any failure.

• Environment: Sensors are deployed in a dense manner that usually results nodes

that are in-close proximity to phenomena of interest. WSN applications usually cover

large geographic areas that are remote, thus the sensors have to operate unattended.

Pervasive surveillance applications are characterized by extreme environments that

provides additional demands on the WSNs.

• Power Consumption:

Wireless sensor nodes are equipped by batteries and operate on limited energy bud-

gets where replenishment of power resources might not be feasible [6]. When a sensor

node energy is depleted or falls below a certain threshold, the sensor will fail to moni-

tor and communicate any abnormal phenomenon in its sensing range. Moreover, each

sensor node plays the dual role of data originator and data router forming a multi-

hop network. Thus, the drainage of the energy reserve of a sensor node will result in

the unavailability of the node monitoring and relaying capabilities and may result in

significant topological changes. Hence, power conservation and power management

take on additional importance.

2.3 State-of-the-Art Sensor Management Frameworks

Although the SM research field dates back to the early 90s [25–29], it has started to

receive increased attention from the research community during the last decade. This is

attributed to the changing nature, characteristics, cost, and use of wireless sensors, as

well as, the emerging application domains of WSNs. Over the past decade, a number of

research projects have provided a study of the SM problem [30–33]. Nevertheless, a truly

comprehensive critical study of SM methodologies and design approaches is still absent.

In 2000, Ng et al in [30] provided the first study that focuses on the SM problem as it

was understood at the time. In 2003, the work by Feng in [31] provides a short introduction

to SMF. Although the work by Hero in [33] provides a recent study to sensor management,

it mainly focuses on the combinatorial problem solving techniques in contrast to the work

offered in this chapter which provides a comprehensive study to problem solving strategies

used in literature as well as studies the various aspects of designing SMFs.

A survey of the state-of-the-art sensor management approaches is provided in this work.

This section studies the various features of the SMFs and categorizes the state-of-the-art
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according to their underlying techniques. Figure 2.5 shows the high-level components that

comprise a SMF and its interaction with the environment. Each of these components

comprise a module in the SMF that defines the SMF operation, from capturing the data

characteristics, to sensors interaction, and decision-making. A detailed taxonomy is pre-

sented in Figure 2.6 based on the SMF components and features. Further discussions of

the SMF features and their subcategories will be explored in the rest of this section.
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Figure 2.5: SMF high-level component design.

2.3.1 SM Environment Representation

Representing knowledge of the environment is a primary challenge in designing intelligent

SM systems. In order to reach a satisfactory level of autonomy, the SM system should be

provided with a compact, though effective, method for modeling the environment. There

are several ways researchers in the field of sensor management adopted to capture and

model the properties of the environment.
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2.3.1.1 Probabilistic Representation

The most popular method to model a sensor network environment used is the probabilistic

environment representation. This is attributed to the natural characteristics of the environ-

ment, e.g., the stochastic occurrence of events, noise in the sensed data, and partial-view of

the environment. The work in [34–51] have used various probabilistic methods to capture

the uncertainty in environment. One of the most prominent work that used probabilistic

environment representation is the work by Kreucher et al. in [42–51] where a Joint Multi-

target Probability Density (JMPD) is used. The JMPD is a single probabilistic entity that

represents all of the uncertainty about a surveillance region including uncertainty about

the number of targets present in the region, as well as the kinematic state, class, and mode

of each. The JMPD is computed recursively by fusing measurements, target models, sensor

models, and ancillary information over time.

The use of probabilistic environment representation offers high degree of flexibility

because it accounts for the credibility and correlation of the experts. Moreover, the prob-

abilistic representation makes it easier for a decision maker to rank alternative options.

Nevertheless, it does not help the decision-maker assess the relative importance of impre-

cision over random uncertainty. Furthermore, the system operates under assumptions of

the Prior and the Error in the estimations which can affect the performance of the system

significantly.

2.3.1.2 Fuzzy Representation

In this approach, the environment is represented using principles of Fuzzy logic. Fuzzy logic

utilizes the underlying modes of reasoning which are a way of processing data by allowing

partial set membership rather than crisp set membership. The importance of fuzzy logic

derives from the fact that most modes of human reasoning, and especially common-sense

reasoning, are approximate in nature. In fuzzy logic, knowledge is interpreted as a collection

of elastic fuzzy constraint on a collection of variables.

Limited attention have been given by the research community to fuzzy environment

representation to address the SM problem. However, an interesting work in [52] used fuzzy

inference in modeling the environment to evaluate the multi-sensor tasks priority in defence

surveillance applications.
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2.3.1.3 Evidence-theory and other Representations

A number of research projects have used the principles of evidence theory to model the en-

vironment. Shafer’s evidence theory is a branch of the mathematics of uncertain reasoning

that allows for novel possibilities to be conceived by a decision-maker. Evidence theory

does not attempt to formalize the emergence of novelties, but it is a suitable framework

for reconstructing the formation of beliefs when novelties appear.

The evidence theory approach does not require the user to assume anything beyond

what that is already available. This approach treats uncertainty due to imprecision differ-

ently than uncertainty due to randomness. Evidence theory yields maximum and minimum

bounds of the probability of survival and the probability of failure of a system, which can

help assess the relative importance of the two types of uncertainty. These results could

help a decision-maker decide if it is worth collecting additional data to reduce imprecision.

On the other hand, if the gap between maximum and minimum probabilities was large,

the decision-maker would have difficulty ranking alternative options. If the decision-maker

needs to make an immediate decision, evidence theory does not indicate which option is

better. Research work in [53–56] have used evidence theory to establish an environment

model for SMFs that can capture the uncertainty and randomness of the environment

dynamics.

2.3.2 SM Problem-solving Strategies

SM is a complicated problem; this is attributed to the various limitations of the sen-

sory nodes, the network restrictions, and large number of environmental constraints to

be consider. Numerous problem-solving strategies were used in literature to address the

SM problem. In this study, the authors categorize the SM problem-solving strategies into

six main subcategories; combinatorial, heuristic optimization, classical AI, expert systems,

control-theoretic, and other strategies. In the rest of this section, each of these strategies

is explored in the context of the related state-of-the-art SMF.

2.3.2.1 Combinatorial Strategies

Combinatorics is “a branch of mathematics concerning the study of finite discrete struc-

tures” [57]. The research community has focused significant attention on the use of com-

binatorics in solving the SM problem. This is due to the natural formulation of the SM

problem as a combinatorial one with uncertain parameters and numerous attributes. Com-
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binatorial strategies adopt mathematical techniques, such as probability theory and graph

theory, to address the SM problem as discussed in this section.

2.3.2.1.1 Probabilistic Strategies Probabilistic Strategies employ probability the-

ory to study the SM problem. Due to sensing errors, low sensor resolution, lack of sensor

calibration, and sensory data noise, sensor information is presented with a degree of un-

certainty. This set of strategies take into account the uncertainty nature of SM and derive

a set of solutions that aims to deals with such uncertainty.

The most popular probabilistic strategy used is Bayesian networks. A Bayesian network

is a probabilistic graphical model that represents a set of random variables and their

conditional dependencies via a Directed Acyclic Graph (DAG). This approach has been

used in the work presented in [58–65] to address the SM problem. However, the system

operates under assumptions of the Prior and the Error in the estimations which can affect

the system performance significantly. Moreover, the use of such techniques may suffer from

combinatorial explosion as the size of the problem increase.

An emerging approach used in [66] and [67] is based on the formal theory of Random

Finite Sets (RFS), originally proposed by Mahler [68]. Using the mathematical tools of

the framework of finite set statistics, Mahler generalized the well-known Bayesian state-

space estimation recursions for a single object, to their multi-object counterparts. The

RFS framework is completely free of explicit data associations. A RFS is simply a random

variable which is random in both the number of elements and the values of the elements

themselves. In order to deal with situations where both the number of objects and their

positions in the state space are random and unknown, a multi-object state is modelled by

a RFS. However, the RFS may become intractable as the size of the problem increases.

2.3.2.1.2 Decision-theoretic Strategies Sensor management can be viewed as a

decision-making problem. Numerous researchers have modeled the SM problem as a

stochastic decision making one. The most popular decision-making approach, Markov De-

cision Processes (MDP), provides a mathematical framework for modeling decision-making

in situations where outcomes are partly random and partly under the control of a deci-

sion maker. MDPs are useful for studying SM coupled with dynamic programming and

reinforcement learning. The main drawback of such stochastic approaches is the proposed

algorithms may suffer from combinatorial explosion when solving moderate to large size

problems.

Research projects such as [34, 35] have applied Markov decision processes as a mecha-
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nism for decision-making in SMF. Other work in [36–39] have modeled the SM problem as

a Partially Observable Markov Decision Processes, while work in [40] adopted hierarchal

MDP in solving the SM problem. A comprehensive study of the formulation of the SM

problem as MDP is offered in [41,69].

2.3.2.1.3 Information-Theoretic Approaches In this strategy, a multi-sensor sys-

tem is concerned with increasing the amount of information, thereby reducing the amount

of uncertainty about the state of the external world. As such, the task of the SMF is

to optimize the data acquisition in a manner that maximizes the information obtained

whenever a measurement is made. Methods; like Kullback Leibler divergence, Information

gain ratio, and other information theory measures, can be used to measure the amount of

information gained.

Information-theoretic approaches use probabilistic methods to estimate the future in-

formation gain of a sensor measurement. Information-theoretic approaches have received

significant attention in the last decade. The most prominent work in this field has been

carried by Kastella in [70], Kolba in [71–76], and Kreucher in [42–51]. Also, more recent

work has been proposed in [77] which use 3-D noisy projection and object feature extraction

to manage the sensor resources in a target tracking mission. However, the information-

theoretic approaches can give over-emphasizes on the quality of information on the expense

of various network parameters, e.g., energy, bandwidth, network life-time, etc.

2.3.2.2 Heuristic Optimization Techniques

Heuristic strategies are experience-based techniques that attempt to solve SM problems

using learning and discovery. A heuristic method seeks near-optimal solutions at a reason-

able computational cost without being able to guarantee either feasibility or optimality,

or the quality of the found solution compared to the optimal solution. Research projects

have used heuristic optimization techniques to address difficulty and size of the sensor

management problem.

The most popular heuristic optimization techniques are genetic algorithms and swarm

optimization. Genetic algorithms are search heuristics that mimics the process of natural

evolution and have been used to address the SM problem in [11, 54, 78]. Also, swarm

optimization belongs to the class of direct search methods used to find an optimal solution

to an objective function in a search space. Particle swarm optimization is one of the

most popular fields of swarm optimization [79, 80]. Many research studies have tried to
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address SM by using particle swarm optimization techniques [23, 81, 82]. The heuristic

optimization techniques are computationally expensive to evaluate onboard of the sensor

due to its limited processing resources and limited power supply. An off-line estimation

approaches have been used, however, it decreases from the system overall optimality and

the quality of solution is dependent on the training data.

2.3.2.3 AI-based Strategies

Various AI-based strategies were attempted to solve the sensor management problem, no-

tably search-based and learning

2.3.2.3.1 Search-based Strategies Many problems in AI can be solved, in theory,

by intelligently searching through many possible solutions. In other words, reasoning can

be reduced to performing a search through the solution-space. However, simple exhaustive

searches are rarely feasible for most real world problems; the search space can quickly

grow to astronomical numbers. This leads to a search that is too slow or never completes.

The solution, for many problems, is to use ”heuristics” or ”rules of thumb” that eliminate

choices that are unlikely to lead to the goal, e.g., pruning the search tree. The work

in [83, 84] have employed search-based techniques to address the SM problem. These

techniques are computationally expensive even for small sized problems. Hence, search-

based techniques may drain the sensor resources and lack fast adaptation to environment

stimuli.

2.3.2.3.2 Learning-based Strategies are a set of algorithms that allow computers to

evolve behaviours based on empirical data, such as from sensor measurements or databases.

A system can take advantage of data examples to capture characteristics of interest and

their unknown underlying probability distribution. Data can be seen as examples that

illustrate relations between observed variables. Learning-based strategies aim to automati-

cally learn to recognize complex patterns and make intelligent decisions based on available

data. However, the difficulty lies in the fact that the set of all possible behaviours given

all possible inputs is too large to be covered by the set of observed training data. Research

work in [60,85,86] have adopted various learning techniques to increase the system ability

to gather experience through interactions within the environment. Issues like the online

versus offline learning and the size of data sets add limitations to the system performance

and stability.
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2.3.2.4 Expert Systems

An expert system emulates the decision-making ability of a human expert. Expert systems

are designed to solve complex problems by utilizing and reasoning about knowledge pro-

vided from an expert. Designing SMFs using such strategy is a widely popular approach

for SM, especially in military applications. Research projects based on this approach in-

clude [87–94]. However, this approach is the least flexible or reusable of those studied here

as it is highly application and platform dependent.

2.3.2.5 Control-Based Approaches

Control-based approaches are the algorithms that define the aggregate of responses to

internal and external stimuli. These approaches can either be classical or adaptive control

architecture implemented to address a specific problem in a known context. The classical

architecture provide a rigid control to the sensor management problem with no feedback

from the environment. However, the adaptive control architectures can adjust to various

situations autonomously and they mainly depend on a flexible organizational architecture

for defining the interactions between the different components of the system and providing

a closed-loop feedback from the environment. Work in [5,15,95–97] are an example of the

control-based SM approaches. Control-based approaches lack intelligent reasoning and are

application-specific, thus, lack reusability.

2.3.2.6 Other Problem-solving Strategies

There are number of promising approaches that have been used to address the SM problem

in literature, however, these approaches have received limited attention up-to-date.

Game-Theoretic Approaches: Game theory defines strategic interactions among agents

to produce outcomes with respect to agents preferences or goals. Game theoretic ap-

proaches have been utilized to solve the sensor management problem in [98].

Belief-Desire-Intention Model (BDI): BDI is a software model developed for program-

ming intelligent agents such that each agent has a set of beliefs, desires and intentions.

Sensor nodes are modeled as intelligent agents that deliberate about different plans to

achieve various goals. The work in [99,100] have used the concepts of BDI in SM design.

Fuzzy Logic Approaches: Fuzzy logic deals with reasoning that is approximate rather

than fixed and exact. SMF based on the concepts of fuzzy logic has been proposed in

[52,101].
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2.3.3 SMF Objective

The research community have studied the SM problem with a focus of number of key

objectives. These system objectives pave the path for the performance of the SMF. There

are three recurrent system objectives that were considered in the design of state-of-the-art

SM.

2.3.3.1 Information-Driven

Information-driven SMFs aims to maximize information gain. Such systems refer to choos-

ing the best action for a sensor to take such that the total sensor information is maximized.

These actions may include where to point, what mode to use, or where to move. Actions

are ranked based on the amount of information expected to be gained from their execu-

tion. The information-driven objective has several advantages; the policies that optimize

information gain are near universal. They perform nearly as well as task-specific optimal

policies for a wide range of tasks, e.g., minimize target tracking MSE, or target misclas-

sification. However, focusing on the information gain only can drain the system resources

and decrease the network lifetime.

2.3.3.2 Resource-Aware

Resource management in distributed sensor networks is a challenging problem. This can be

attributed to the fundamental trade off between the value of information in a distributed set

of measurements versus the cost of acquiring measurements, fusing them, and transmitting

the fused data. Numerous research worked on designing SMFs that try optimize energy

consumption, communication overhead, as well as, computational overhead, among others.

2.3.3.2.1 Energy Consumption Sensor nodes operate on limited energy budgets

where replenishment of power resources might not be possible. When a sensor node energy

is depleted or falls below a certain threshold, the sensor will fail to monitor and communi-

cate any abnormal phenomenon in its sensing range. In a multi-hop sensor network, each

node plays the dual role of data originator and data router. The drainage of the energy

reserve of a sensor node will result in the unavailability of the node monitoring capabilities

and may result in significant topological changes. Hence, power conservation and power

management take on additional importance. It is for these reasons that researchers are

currently focusing on the design of power-aware SM for sensor networks [37,97,102–104].
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2.3.3.2.2 Communication Overhead A WSN consists of a large number of spatially

distributed autonomous sensor nodes that communicate with each other by forming a multi-

hop radio network while maintaining connectivity in a decentralized manner. Due to the

broadcast nature of WSNs, bandwidth is a scarce resource that needs to be responsibly

used. The limited caching of the sensor nodes is another example of a scarce resource

that may affect the network performance. The research community attempted to address

the network challenges via efficient bandwidth utilization, congestion-awareness, as well as

communication overhead reduction [105–108].

2.3.3.3 Application-specific Objectives

Every sensor system can mandate a set of specific objective to be achieved to address

the requirements of such application. Cost functions are used to model the application

specific objectives. As an example, Quality of Surveillance (QoSv) is a newly used notion

in [109] that can evaluate the performance of a surveillance system. QoSv reflects the

overall system performance regardless of the WSN coverage.

2.3.4 System Setup

This section studies the different system parameters used in the design as well as the

evaluation of the state-of-the-art SMFs. The system setup refers to the model deployed in

the design and simulations and/or experimentations phases that are carried to verify the

operation of a SM system. The state-of-the-art have studied various system models in the

design of SMFs. These models comprise different sensors and targets characteristics, like

number of sensors/targets, as well as, their mobility, and modalities to name a few. The

work in [36,51,110] have considered the design of a SMF for a multiple mobile sensor system,

while research in [34, 35, 39, 84, 111] have adopted a multiple static sensor system. Also,

the case of sensor multi-modality has been studied in the work done by Kolba in [110].

Moreover, various target characteristics were studied in literature; the multiple mobile

target system was adopted in the SMF design in [39,51,84] and the multiple static target

has been considered in [111].

2.3.5 Evaluation Merits

In literature, the most popular SMF evaluation metric used in pervasive surveillance appli-

cations is the tracking error [39,40,108,112,113] that is presented in the form of Root Mean
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Square Error (RMSE). Although the RMSE gives a good indication of the accuracy of the

system at hand, however, it fails to reflect the performance of the surveillance system and

its management. The normalized root mean square tracking error (Errks (t)) is computed

by

Errks (t) =

√
E[ ||ζkpos(t)− Zk

s |(t)||2]

ζkmaxpos(t)− ζkminpos(t)
, (2.1)

where ζkpos(t) is the actual position of target t at time k and Zk
s (t) is the observed position

of target t by sensor s at time k.

In information-driven systems, the information gain metric is used as a performance

indicator. The information gain metric indicates the added value by further sensor measure-

ments using probabilistic distribution divergence such as the Kullback Leibler divergence.

The expected value of the information gain is the mutual information I(X;A) of X and A,

i.e., the reduction in the entropy of X achieved by learning the state of the random variable

A.

Other metrics like the probability of error and misclassification ratio has been used to

evaluate the performance of the SMF [111]. Furthermore, SMF-specific cost functions were

used in [34,97] to evaluate the system performance, however, the use of SMF-specific cost

function make it hard to compare the performance of the system to the related work.

2.3.6 SMF Coordination Architecture

The architecture of a system defines the organizational behaviour of the nodes that com-

prise it and the inter-node communications pathways that enable control and flow of

data [15]. The coordination design employed by an agent system can have a significant

effect on its characteristics and performance. A range of coordination architectures have

emerged from research, each with different strengths and weaknesses [114, 115]. This sec-

tion surveys the popular coordination paradigms in the context of SMFs. The advantages

and disadvantages of each are discussed with reflections on the surveillance applications.

2.3.6.1 Centralized Architectures

The centralized strategy typically involves the classical techniques of control theory applied

to the analysis and design of small-scale systems [116]. The centralized approach is one of

the oldest and most popular techniques used. Significant SMF research efforts have been

conducted on centralized approaches [37, 40, 72, 87, 97, 110, 112, 113, 117]. A centralized
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system is one in which most processing and control overhead are carried over one or more

major central nodes. This simple approach allows a cohesive, consistent view of the world,

as well as, a central decision node. Figure 2.7 illustrates the centralized architecture.

Nodes 

Centralized Server

Figure 2.7: Centralized architecture.

Earlier, the centralized approach was the main architecture deployed in the homeland

security applications due to its simplicity, consistency in information handling, and single-

point decision operation. However, the scale and scope of homeland security applications

have grew extensively in recent years. The inability of the centralized architecture to scale

well as the control problem grows made it fall short in addressing such critical applications.

In particular, when large-scale systems, such as border security and control, are considered,

the problem becomes difficult, if not impossible to solve using the techniques of classical

centralized control theory. Furthermore, the single-point decision advantage can also be a

major disadvantage as it becomes a single-point of failure. The central node can also suffer

from congestion and overload and can become a bottleneck to the system.

2.3.6.2 Decentralized Architectures

In a decentralized architecture, there are at least two nodes with two or more paths be-

tween them to provide redundant paths forming a mesh topology. The full-mesh topology

connects all devices to each other for redundancy and fault tolerance. Full mesh topol-

ogy provide a high degree of reliability due to the multiple paths for data, as shown in

Figure 2.8. In case of link failure, information can flow through other links to reach its

destination. In partial mesh topology, at least one devices maintains multiple connections

to others without being fully meshed, a partial mesh topology still provide redundancy by

having several alternative routes.
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Figure 2.8: Decentralized architecture - full mesh topology.

This decentralization is the main advantage of the mesh topology since it compensates

for the single-point failure disadvantage that is present when using a single device as a

central node. The number of arbitrary forks in mesh networks makes them more difficult

to design and implement, however, their decentralized nature makes them useful. The fully

connected mesh topology is generally too costly and complex in terms of communication

overhead and management for practical large scale networks. Though, the topology can

be efficiently used when there are only a small number of nodes to be interconnected. The

decentralized architecture is also unsuitable for the pervasive surveillance problem because

of its lack of the necessary structure needed for such mission-critical applications. This

makes the decentralized architecture relatively robust because there is little to break, but

also makes it difficult to control, which can lead to an undesirable chaotic behaviour.

2.3.6.3 Hierarchical Architectures

The hierarchal architecture is a structured organizational design [118]. Agents are con-

ceptually arranged in a tree-like structure, where each agents in a higher layer in the tree

have higher authority over lower agents and have a larger global view than those lower in

the tree. The data collected by lower-level nodes travels upwards to the upper layer nodes

in the hierarchy, while control flows downward as the higher level agents provide direc-

tion to those below. The hierarchy efficiency is derived from this notion of decomposition,

such that the divide-and-conquer approach allows the system to be come more scalable

by using large number of agents efficiently. Figure 2.9 shows the hierarchal organizational

architecture.

In hierarchies, every node is constrained to a number of interactions that are small

relative to the total population size. As a result, control actions and decisions commands

become more tractable, parallelism between various sub-trees of the hierarchy can be ex-

33



Figure 2.9: Hierarchal architecture.

ploited. However, a hierarchical architecture can also lead to an overly rigid or fragile orga-

nization, prone to a single-point of failures with potentially global consequences. Moreover,

the hierarchical architecture may suffer from bottleneck effects if not effectively managed.

A centralized system is considered a flat hierarchal system. Research projects such as [40]

have proposed a hierarchal SMF.

The structured control, as well as, the increased parallelism of the hierarchal architec-

ture makes it a good candidate for the homeland security applications. The hierarchal

architecture can scale gracefully for applications like border security and control due to

its divide-and-conquer nature. However, being prone to single-point failures is a major

disadvantage for using this architecture in such a safety critical applications.

2.3.6.4 Market-based Architectures

The market-based architecture is composed of buying agents, who place bids for items

or services of interest, and selling agents. Selling agents are the agents that provide

items or services to the market to be sold. Auctioneers are intelligent agents that are

responsible for handling the bids and determining the winner. This arrangement creates a

producer-consumer system which models and enables real-world market economies. Mar-

ket architecture is based on the idea of a distinguished individual or group of individuals,

e.g., auctioneers, that is responsible for coordinating the activities of a number of other

agents. The agents in a market-based architecture are usually competitive and they do not

cede operational authority to the auctioneers, however, participants do trust the entities

managing the market and abide by decisions they make. Figure 2.10 shows a market-based

architecture.

Markets operate typically as an open systems such that agents can participate in the

system activities as long as they abide by the system rules and interface. There market-

based architectures suffer from several drawbacks. The first is the potential complexity
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Buyers & Sellers

Auctioneer

Figure 2.10: Decentralized market-based architecture.

required to both reason about the bidding process and determine the auction outcome as

the number of participants increase. The second is the communication overhead incurred

as a result of communicating bids. In addition, the security issues inherent in any open

system presents a drawback. Moreover, the validity of the auction approach must be

verified to avoid collusion. The market-based architectures have been applied to the SM

problem in [5, 109].

The market-based architecture is a highly flexible architecture that can be used in var-

ious types of applications, thus, it can be a possible candidate for the homeland security

applications. Market-based applications can be used in the border security and control

application, however, there is a trade of between the number of participants and the sys-

tem performance and efficiency as the number of participants significantly grows. This is

attributed to the auction reasoning complexity and the bids communication overhead.

2.3.6.5 Localized Architectures

These architectures operate in distributed manner where nodes form clusters based on

proximity to cooperate.

2.3.6.5.1 Holonic Architectures The holonic architecture is an organizational de-

sign that consists of a set of autonomous holons that cooperate to achieve the system

objective [119]. Holons are autonomous, self-reliant units that can be a single sensor or

a group of sensors. The holonic architecture posses intermediate properties compared to

both the decentralized and the hierarchal architectures. The holonic concept was first

introduced by Arthur Koestler in [120] as a result of two observations. The first is that

simple systems can evolve and grow to satisfy increasingly complex and changing needs
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by creating stable intermediate forms which are more capable than the initial systems.

The second observation is that, in living organisms and social organization, it is generally

difficult to distinguish between wholes and parts in an absolute manner; almost every dis-

tinguishable element is simultaneously a whole, i.e., an essentially autonomous body, and a

part, i.e., an integrated section of a larger, more capable body. These observations inspired

Koestler to coin the term “holon” to describe the hybrid nature of sub- wholes/parts in

real-life systems. Holon is derived from the Greek word “holos” meaning whole and the

suffix “on” implying particle as in proton or neutron. A holon is both a distinct entity

built from a collection of subordinates and as part of a larger entity. Figure 2.11 illustrates

the holonic architecture.

Holon

Interaction

Sphere of influence  

Figure 2.11: Holonic architecture.

The key properties of a holonic system, as developed in Koestler s model [120], are

autonomy, cooperation, self-organization, and reconfigurability. Another important holonic

concept is the notion of functional decomposition. The complexity of dynamic system can

be dealt with by decomposing the system into smaller parts. Thus, recursiveness appears

as a consequence of this decomposition, i.e., the idea that holons can contain other holons.

Koestler defines a holarchy as a hierarchy of self-regulating holons which are groups of

cooperative basic holons and recursive holons that are themselves holarchies. One of the

major differences between holons and agents concerns recursiveness. A holon may be

composed of other holons, while there is no recursive architecture as such in multi-agent

systems. Moreover, holons are cooperative in nature and they cannot be competitive, thus,

there is no potential of gaming in a holonic architecture. In a nutshell, the holonic paradigm

models different entities of the system as an autonomous holons that work to achieve local

objects. Together these holons can cooperatively form a localized holarchies to achieve
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sub-system or system goals. one of the major disadvantages of the holonic architecture

is the lack of predictable system performance due to the increased decomposition. In the

recent years, few research projects have considered applying the holonic paradigm to the

sensor management problem [15,22,78,121].

Although the application of the holonic architecture as an organizational paradigm is

relatively recent, several research work have been directed to design and develop holonic

SMF for homeland security applications. [15, 22, 121]. For the border security and control

application, holonic architecture can scale seamlessly, moreover, the autonomous agents

can cooperate to handle increasing amounts of data. However, the holonic architecture has

to be well-designed to avoid the possible chaotic behavior that might result for excessive

system decomposition.

2.3.6.5.2 Federated Architectures This organizational style is modelled on the gov-

ernmental system, where regional provinces retain some amount of local autonomy, while

operating under a single central government, e.g., the delegate. The delegate is a distin-

guished member of the group, sometimes called a facilitator. Delegation members interact

only with the delegate, which acts as a facilitator between the member of the delegation

and the outside world. As a result, the group is provided with a single, consistent interface.

Figure 2.12 demonstrates the federated architecture.

Group Members

Delegate

Figure 2.12: Federation architecture.

The delegate must be able to interact with both its local federation members as well

as other delegates. The capabilities of the delegate masks the differences between the

delegations. As a result, member nodes of a delegation do not require a common language

with other system components, as they never directly interact. Thus, a delegate reduces

the complexity and messaging burden on the outside world, however, it may suffer from
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the potential bottleneck problems.

The federated architecture can lend itself to the homeland security applications due to

its distributed nature with structured-control. In the border security application, the use

of the federated system by deploying an intermediary node allows better system scalability

and hides the system complexity from the nodes within a federation. A federated system

can be coupled with a cluster-based network topology, thus, utilized the fact that phe-

nomena are usually localized. However, this architecture may suffer from the single-point

failure again, nevertheless, in case of the intermediary failure, the architecture suffers only

local consequences; a proficiency the hierarchal architecture lacks.

2.3.6.6 Other Architectures

There are number of other architectures that posses characteristics that can be used to

address the SM problems.

Coalitions: Coalitions is defined by Horling in [114] as “a flat organizational structure

that in general is goal-directed and short-lived”. Coalitions are formed agents to cooperate

and address a specific purpose. Agents join coalition to maximize their individual gain

and the coalition is dissolved when specific goal is achieved or when it fails to address that

goal.

Teams: A team architecture comprise of a group or cooperative agents that jointly

work to achieve a common goal [114]. In comparison to coalitions, teams attempt to

maximize the utility of the team itself, rather than that of the individual members. Within

a team, the type and pattern of interactions can be quite arbitrary.

Congregations: Agent congregations are similar to the coalitions and teams in the

sense that a group of agents form a typically flat architecture such that additional benefits

can be derived by its members [114]. Congregations are long-lived and have a heterogeneous

purpose behind each grouping. Agents may join and depart the congregation dynamically.

2.3.7 Application Context

The application context of WSNs dictates the characteristics of the SMF. For example

large and remote surveillance systems need large numbers of sensor nodes to cover the VOI

and needs a SMF that can deal will such dimensionality. Moreover, unattended networks

add new challenges as well as complicate the sensor management (SM) problem. As dis-

cussed in Section 2.1.2 homeland defence and homeland security applications are the most

dominant applications to the sensor management market. Such applications demands that
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the sensory system is able to scale to high dimensionalities and to function autonomously

is a hostile environment. While, consumer-based property surveillance applications may

not demand such scalability or intelligence as that of the homeland applications.

2.4 Summary

Pervasive surveillance systems are embedded systems that are composed of self-organizing

sensor networks managed by an intelligent sensor framework. Pervasive surveillance have

wide range of applications in military and homeland security, as well as commercial and

consumer-based. To achieve efficient pervasive surveillance, sensor management approaches

have to be deployed. A Sensor Management Framework is the organizational control

system that seeks to manage and coordinate the use of sensing resources in a manner that

improves the process of situation-awareness. This chapter has discussed the fundamentals

of sensor management, and its non-functional merits. Many challenges face the design

of an intelligent SMF, e.g., handling the limited node and network resources, the need

of intelligent real-time operation, and managing the large number of nodes and extensive

amounts of data. Thus, the sensor management problem is a highly complex one.

Based on the study of the state-of-the-art, it can be noticed that most SMFs proposed

to-date are point solutions that do not use generic SM design framework, so their ap-

plicability and reusability beyond their original test-beds is not guaranteed. Therefore,

an organizational design framework is needed to provide a common base for design and

comparison between different SMFs. In the next chapter, a generic organizational design

framework for the SM will be proposed based on the popular service-oriented architecture

to provide a modular, reusable, and extendable organizational framework.
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Chapter 3

Organizational Multi-layered Design

Framework

This chapter introduces a new generic multi-layered organizational design framework for

sensor management and provides a conceptual analysis of the functional properties of the

SMFs. The proposed design framework is based on the Service-Oriented Architecture

(SOA) and provide a framework for the design of modular, extendable, and reusable SM

solutions. The chapter is organized as follows: Section 3.1 discusses the motivation for

the multi-layered design framework. Section 3.2 gives a brief introduction on the Service-

Oriented Architecture (SOA). Section 3.3 provides a literature survey of the state-of-the-

art. In Section 3.4, SMFs are viewed in a layered perspective. Section 3.5 presents the

proposed layered organizational design framework. Section 3.6 addresses the different

functional properties of a sensor management system. Section 3.7 describes the use case

adopted in this thesis. Simulation results for a case study using the multi-layered framework

are introduced in Section 3.8. Finally, Section 3.9 summarizes this chapter.

3.1 Introduction

Pervasive surveillance applications deal with situations that are characterized by dense and

highly dynamic environments, thus, producing large amount of sensor measurements. As a

result of the size of the sensor observation space, the sensory system has to use automatic

data analysis technologies to transform sensor observations into situation-aware knowledge.
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3.1.1 Situation-Awareness

The term Situation-Awareness (SA) is defined by [4] as “the perception of environmental

elements within a volume of time and space, the comprehension of their meaning, and the

projection of their status in the near future”. The use of the SA term can be traced to World

War I where it was recognized as a crucial component for crews in military aircraft [122,123].

The most popular theoretical model for situation-awareness is provided by Endsley [124].

The SA model is composed of four levels: sensing, perception, comprehension of sensed

data, and projection of this data into the future. Figure 3.1 shows the SA module, in

addition to the sensing module.
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Figure 3.1: Situation-awareness model.

The basic step in achieving SA is to sense the status and attributes of elements in

the environment. Sensing is the observation or measurement of physical quantities that

arise from physical stimuli. Sensing, in its raw meaning, does not imply the assessment

or the understanding of this physical stimuli. However, perception [125] is the process

of attaining awareness and understanding of sensory information. In essence, perception
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constitutes the first level of the SA model and involves the processes of simple recognition

of situational elements, e.g., objects and people, and the observation of the dynamics of

relevant elements in the environment.

The next step in SA formation is the comprehension of the perceived situational ele-

ments through the processes of pattern recognition and interpretation. SA level 2 requires

integrating the acquired information to understand its impact on individual goals and ob-

jectives. Finally, the third and highest level of SA involves the ability to project future

actions of the elements in the environment. SA level 3 is achieved through extrapolating

the information forward in time to determine the way the current state will affect future

states of the environment. Figure 3.1 depicts that the algorithmic complexity increases

going upwards in the SA model; however, the data volume passed upwards from one level

to the other decreases.

Situation-awareness modules analyze target intent and capability and environmental

opportunity to evaluate the threat behavioural pattern. Target intent is the goal and

the course of action of the threat. On the other hand, target capability is assessed by

evaluating whether the threat has sufficient resources to achieve its goal or execute its

plan. Environmental opportunity is evaluated by verifying that the environment provides

the required preconditions for the threat plan to succeed. By adapting situation-awareness

models in autonomous surveillance applications, the raw sensory observation is transformed

into situation-aware knowledge, thus, resulting in a more efficient and smart surveillance

system.

3.1.2 Motivation

In smart sensor management, sensor observations are collected and examined from differ-

ent aspects and by different layers of reasoning to constitute situation-aware knowledge.

Therefore, the SMF has to offer numerous services that enable the deployment of different

algorithms that can be applied to formulate the situation-aware knowledge.

Various research projects have proposed various SMF architectures [87–90,92–94] as a

solution for the SM problem. However, most SMFs proposed in the literature are “point so-

lutions” that do not use generic SMF development architectures. As a result, applicability

of the SMFs proposed in the literature beyond their original test-beds is not guaranteed.

Moreover, in the absence of a generic design framework, the SMFs proposed to-date are

application-oriented solutions, hence, these solutions are hard to compare or reuse in a dif-

ferent application. Furthermore, the available SMFs suffer from the lack of a unified range
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of functionality, e.g., cooperation, data fusion, and resource management, that establish

the minimum requirements for the SMF.

The management of a large number of sensor nodes in a typical SMF application re-

quires a flexible, extendible, modular, and reusable development methodology. The service-

oriented architecture is a software engineering concept that facilitates the building of ex-

tensible and reusable software solutions. Hence, in this work, a layered generic design

framework based on the service-oriented architecture is proposed as a software engineering

solution to address the design and development issues of the SMFs.

3.2 Service-Oriented Architecture (SOA)

Service-Oriented Architecture (SOA) [126,127] is a software engineering concept that views

a software solution as a set of distributed capabilities offered by a system. SOA divides

the system capabilities into distinct service blocks in which each service block performs

a specific function. The SOA solution is formulated using well-defined, independent, and

inter-operable service blocks with a simple interface that abstracts away the implemen-

tation complexity. The collection of services that form the SOA solution communicate

with each other through defined protocols and do not include embedded calls to any other

services. There are two types of services offered by SOA: fine-grained and coarse-grained

services. Fine-grained services perform a single discrete function, while coarse-grained

services are composed of a related set of functions [126].

Dividing the system into a set of service blocks results in increasing the system gran-

ularity and modularity, thus enabling other applications to reuse the provided services.

Moreover, the SOA allows the sharing of functions in a widespread and flexible manner.

Traditionally, the use of SOA technology refers to allowing “plug and play” features in soft-

ware design. Numerous SOAs for developing wireless sensor network applications have been

proposed in the literature [91, 128–130]. However, the task of developing an autonomous

control management systems did not receive enough attention in the literature.

3.3 Related Work

Due to the complexity of the SM problem, several research projects have attempted to

propose design frameworks to facilitate the development of SMFs. Sentire [131] is a devel-

opment framework for building middleware for sensor networks. Sentire aims to addresses
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the lack of reusability and inter-operability in the custom code written for sensor appli-

cations. The approach proposed in [131] divides the SMF into a set of different manager

objects, i.e., resource, interface, data, and sensor and actuator managers. However, Sentire

lacks standardization and only provides a basic solution.

The work in [93] proposes a software framework approach for the management of large-

scale video surveillance networks. The approach is built around the use of a blackboard

architectural style and specifies three architectural views of a system: functional, physi-

cal, and interactional. However, the architecture developed in [93] is application-specific,

lacks standardization and does not address the reusability and extendibility of the target

application.

In [132], the authors proposed a P2P-based framework for managing distributed sensor

information, where the sensing data is semantically analyzed. The architecture designed

in [132] consists of three layers: the raw layer, abstract layer, and logical layer. The

architecture allows the generation of the necessary information from the retrieved data,

semantically. However, the architecture in [132] also lacks standardization and does not

address the reusability and extendibility of the targeted application.

3.4 A Multi-Layered Perspective of SMF

Designing a SMF is a challenging problem due to the significant sensory system size and

complexity. SOA can provide a promising development framework for such a complicated

problem. To establish a generic SMF development framework, the system must first be

viewed from the point of view of the services being offered. This section will break down

the operation of SMFs into different service layers, where each service layer is subject to

further handling by the SOA.

The goal of the SMF is to assist the human operator in setting the strategic goals of the

whole system. Relying on a divide-and-conquer approach, the SMF has the responsibility

of analyzing and dividing the system strategic goals into tactical tasks. These tasks can

be carried out either by a single sensor, or by a group of cooperating sensors that manage

their operation and the functionality of the whole system. Dividing the strategic tasks

into tactical and data centric ones inspired the division of the whole SMF into layers that

support the various levels of task complexity. Figure 3.2 illustrates a layered perspective

for a generic SMF from the strategic view down to the tactical view. The proposed layered

perspective divides the sensor management system into five layers, listed as follows:
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Figure 3.2: Layered view for sensor management system.

• Layer 0 provides an interface with the physical hardware of the smart sensors and

transducers.

• Layer 1 performs the sensor level tasks though managing the operation of each sensor

individually, e.g., sensor model, sensor measurement interpretation, and sensor mode

management.

• Layer 2 supports the network level tasks by managing the communication between

the different nodes in the system.

• Layer 3 supports the system level tasks by enabling collaboration between different

system entities to achieve the functional tasks.

• Layer 4 takes the computer aided decisions and presents them to the human observer.

It should be noted that this layer is optional.
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3.5 Layered Organizational Design Framework for SM

Based on the SOA and the layered view of the SMF presented in Section 3.4, this Sec-

tion proposes a layered organization design framework for SMFs that allows granularity,

modularity, and interoperability. The design framework views the SMF as a set of layers

with standardized interfaces between them, where each layer carries out the execution of

some functional tasks. Each functional task is mapped into a single SOA service. The

communication and collaboration between the different tasks is done through a standard-

ized interface. Figure 3.3 shows the details of each layer in the proposed organizational

framework.

Figure 3.4 illustrates the interaction of the different layers and the flow of communica-

tion. In the proposed organizational design framework, each layer is divided into several

SOA modules, which are further subdivided into a number of SOA services. These mod-

ules can either be simplex or complex modules. The simplex modules are modules that

implement a single task that cannot be further broken down. On the other hand, complex

modules implement coarse-grained tasks which consist of a number of related tasks.
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Figure 3.3: Layered SM organizational design framework.
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Figure 3.4: The signal flow and the interaction of the different layers in the SMF organi-

zational design framework.

• Physical Layer: corresponds to layer 0 in the layered view of the SMF and con-

sists of a physical sensor module (PHY) for each sensor in the network. The PHY

is a simplex module that implements the low-level interaction model of the physi-

cal hardware of the smart sensor, i.e., transducers, micro-controller, actuators, and

communication unit. The physical layer allows for the utilization of different sen-

sors types in a seamless manner for the rest of the SMF by only replacing the PHY

module.

• Sensor Node Management (SEN) Layer: maps to layer 1 in the SMF layered

view. The SEN is divided into two submodules in the organizational design frame-

work, where each submodule provides a different SOA service to the SEN layer. The

first submodule is the Sensor Reactive Module (SRM) which responds to the raw

signals received from the physical layer and converts it to normalized sensor mea-

surements. The SRM also responds to high-level control signals by analyzing them

and setting the corresponding actuator to perform the appropriate action. The SRM

is a simplex module.

The second submodule is the Sensor Deliberate Module (SDM), a complex module

which acts as the brain of the sensor. The SDM processes the sensor measurements

received from the SRM to convert them into sensor observations that can be used to

locally determine a simple action to be carried out by the sensing node. The SRM

uses less computational resources compared to the SDM. Moreover, the SRM uses

the short-term memory of the sensor node, while the SDM uses long term memory.

Furthermore, tactical tasks can also be passed to the SDM to result in high-level

control signals.

• Network Management Layer (NET): represents layer 2 in the layered view of

the SMF. This layer is responsible for managing the connectivity between the sensor
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nodes and the control center and maps with the datalink layer, the routing layer, and

transport layer in the network protocol suite. Although the NET layer is concerned

with networking more than management, this work adds it to the organizational

design framework as a black box to allow future extendibility of the SMF e.g., to add

QoS assurance and utilize data retrieved from routing tables.

• System Management Layer (SYS): supports the system level tasks and repre-

sents layer 3 in the layered view of the SMF. This layer consists of various modules

where each module is an implementation of a functional task according to the SOA.

The processing of the modules is either handled by a single node for the whole system

or is distributed between various nodes. The SYS layer receives sensory observations

for processing, converting them into attributes. These attributes are divided into

kinematic attributes such as the position of the target, its speed and acceleration;

geometrical attributes such as height, width and length of the target; and identifica-

tion attributes such as the object ID. These attributes are processed further resulting

in tactical tasks for the system. The system goals are fed to this layer, where they

are analyzed and broken down into simpler tasks.

The SYS layer manages the coordination and control tasks, in addition to the data

fusion tasks that refine the perceived information in accordance with the system goals.

The control module of the SYS layer manages two optional submodules that perform

resource conflict detection, resolution tasks, and cooperation tasks, e.g., cueing and

handoff tracking. Similarly, the data fusion module manages data conflict detection

and resolution and selective perception.

• Decision Support Layer (DEC): represents layer 4 in the layered view of the SMF.

The DEC provides computer-aided decision capabilities to the human operator. This

layer can also have a submodule for Human Machine Interface (HMI) in addition to

the decision support submodule. The main objective of the DEC layer is to reduce

the workload on the human observer by providing decision fusion that facilities threat

assessment.

3.6 SMF Functional Properties as SOA Services

SMF Functional Capabilities are the set of tasks a SMF can perform to control and man-

age the sensory system. By viewing the system from a layered perspective, this work
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proposes dividing the SMF tasks into three main categories: sensor management, network

management, and system management, as shown in Figure 3.5.

Sensor Management Tasks Network Management Tasks System Management Tasks

SMS Functional Tasks

Figure 3.5: SMF functional properties categorization.

3.6.1 Sensor Management Tasks

Sensor management tasks are the set of tasks that manage the operation of each sensor

individually. Sensor management tasks are processed locally by each sensor and lead to a

decision that is implemented only by that sensor. Since sensors are autonomous devices that

interact directly with the environment, the SMF has to address the following challenges:

• Managing limited capabilities: The SMF on the sensor level has to address

the limited individual sensor capabilities. Each sensor has to minimize its power

consumption, usage of memory and cache, and choose an operating mode suitable to

its current resources.

• Managing limited processing: The SMF has to address the trade off between

onboard processing on the sensor or transmitting the raw sensed data to a fusion

node for further processing.

• Managing node failure: Sensor nodes are cheap, small in size with sensing, pro-

cessing, and communicating units that are highly prone to failure. Each sensor node

has to cope with individual sensor failure, that may result from hardware limitations,

software limitations, or external environmental influence.
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3.6.2 Network Management Tasks

A Wireless Sensor Network (WSN) consists of a large number of spatially distributed

autonomous sensor nodes that communicate with each other by forming a multi-hop radio

network while maintaining connectivity in a decentralized manner. These properties of

sensor networks lead to the emergence of a new set of responsibilities for the SMF to

manage such a network. The network management tasks are the set of tasks that are

responsible for managing the connectivity between the sensor nodes and the control center.

The SMF must be designed to address these system challenges:

• Handling dynamic environments: The SMF has to be able to cope with highly

dynamic and uncertain environments. Hence, there is a need for the SMF to be

highly adaptable to rapid and unpredictable changes in the environment.

• Managing communication: Due to the absence of global identification in sen-

sor networks, the network management level in the SMF has to allow for different

identification schemes.

• Performing information relay: Sensor networks are multi-hop networks, where

each node acts as both a host and a router, thus, appropriate protocols need to

manage multi-hop communication. Moreover, due to the instability of the wireless

link, the sensor network has to be able to quickly recover from link failures, node

failures, and path breakages. Furthermore, the SMF has to maintain information

relay reliability.

• Managing insufficient resources: Due to the broadcast nature of wireless sensor

networks, bandwidth is a scarce resource that needs to be used responsibly. The

limited caching of sensor nodes is another example of a scarce resource that may

affect network performance.

• Handling random deployment: The random deployment of WSNs puts addi-

tional requirements on sensor network protocols and algorithms to be self-organizing

and to provide distributed capabilities. Since the exact location of a particular phe-

nomenon is unknown, distributed sensing results in a larger coverage area and a

higher probability of close proximity to the phenomenon.
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3.6.3 System Management Tasks

Besides managing the framework at the sensor and the network level, many challenges

remain to enable the SMF to manage and improve the understanding of the system on the

global world view. The SMF has to perform various tasks to address the following system

requirements:

• Enhance data fusion: The SMF on a system level aims to improve the information

data fusion capabilities. This can be achieved by using feedback from the data fusion

algorithm to redirect the sensing resources to gather relevant data about a specific

phenomenon.

• Task allocation: Task allocation is the problem of allocating a set of sensor nodes

to a set of sensing tasks. Task allocation has been intensively studied in the literature

[133,134].

• Cooperation: In multi-sensor systems, cooperation among sensors entails the har-

monization of effectively unifying the information obtained from each sensor [135]. It

is a joint or collaborative behaviour that is directed towards improving situation-

awareness by sharing information among distributed sensing resources [136]. In

surveillance applications, there are two primary cooperative functions: cueing and

handoff [137,138].

• Scheduling: Since the limited lifetime of batteries directly impacts the lifetime

of sensor networks, one of the key considerations in the design of sensor networks

is the ability to maximize battery lifetime. Task scheduling aims to maximize the

lifetime of the sensing network by minimizing energy consumption while fulfilling its

requirements.

• Conflict detection and resolution: Due to the distributed nature of sensor net-

works, simultaneous accessing of a shared resource by different sensors has to be

efficiently managed and coordinated. Furthermore, if two or more sensors provide

conflicting data, the SMF has to detect this inconsistency and take the necessary

actions to resolve it.

• Control and coordination: Control and coordination are the tasks responsible for

managing and organizing the information and command flow of the sensor manage-

ment architecture. The main role of control and coordination is to generate actions
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based on the state of the resources, the sensing information, and the goals of the

architecture.

• Synchronization: Time synchronization is a critical piece of infrastructure for any

distributed system. Distributed WSNs make particularly extensive use of time syn-

chronization to integrate data, to localize objects, to distribute control commands,

or to suppress redundant messages and information [139]. Thus, the SMF has to

provide a synchronization mechanism that has unique requirements in terms of the

scope, lifetime, and precision of the synchronization achieved, as well as the time and

energy required to achieve it.

• Selective perception: Due to the overwhelming amount of information that must

be processed and filtered to derive situation-aware knowledge, the SMF has to be

able to support selective perception. Selective perception is the ability of a system to

focus its resources on certain phenomena, thus minimizing the amount of irrelevant

data with respect to the studied phenomena.

• Others: There are many other functionalities that can be supported by the SMF de-

pending on the application and the sensed environment, e.g., focus of attention, mode

control, mode switching control, emission control, failure recovery, and contingency

handling.

3.7 Airport Security & Border Control as a Use Case

Border control deals with the problems of impeding the entrance into a national territory

of unauthorized persons and materials. It typically deals with illegal immigration and

smuggling, but can also be concerned with more serious issues such as incoming weapons of

mass destruction [13]. National borders typically stretch over thousands of kilometres and

are split into blue (sea side) and green (land side) borders. The green borders typically have

designated border crossing points which monitor millions of human and vehicle crossings.

Another form of border crossing are the international airports, where people arrive from

different parts of the world to enter a specific country.

Airports are can be seen as stations for airplanes that consist of buildings and airfields

that serve to house airplanes and provide runways for takeoff and landing. Most airports

have terminals for passengers to transfer onto and disembark from airplanes. A large num-

ber of people pass through airports everyday; this presents potential targets for terrorism
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and other forms of crime because of the number of people at a particular location. More-

over, given the high concentration of people on large airliners, the potentially high death

rate resulting from attacks on aircraft, and the ability to use a hijacked airplane as a lethal

weapon may provide an alluring target for terrorism.

Airport security refers to the techniques and methods used to protect passengers, staff

and aircraft at airports from accidental or malicious harm, crime and other threats. Airport

security attempts to prevent threats from entering the country or potentially dangerous

situations from arising. As such, the nature and size of the VOI, as well as the randomness

and scarcity of the events make airport security applications a highly challenging problem.

Moreover, the need to aggregate information, collect statistics, and alert security experts

in the case of an event imposes further demands on the problem.

3.8 SMF organization design framework Experimen-

tation

This Section provides a case study of the proposed layered organizational design frame-

work. This case study aims to investigate the extendibility and reusability of a scenario

implemented using the proposed design framework. The experiment is carried out in two

phases, where phase two is an extension to phase one.
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Figure 3.6: Case study scenario.
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Table 3.1: Simulation environment setting.
Parameter Value

Area 4x4 grid

# Sensors 4

# Targets 10, 20, 30, 50

Target motion 4 direction

Simulation time 200 sec

3.8.1 Phase One

The adopted scenario, shown in Figure 3.6, is for a surveillance application and is imple-

mented using Matlab software. The area under surveillance, AREAX , is represented by

a 4x4 mesh grid monitored by four sensors. Each sensor has a sensing range that encom-

passes the four surrounding square units of the grid. It is assumed that each sensor node

can sense targets anywhere within the four block area. Suppose that the surveillance sys-

tem has to protect AREAX from a certain type of aircraft, e.g., Falcon aircrafts. Assume

that nearby there is an airport where only one type of airplane lands, e.g., Airbus planes,

hence, Airbus planes are considered friendly targets. The aircrafts are modelled as mobile

targets that can move in a straight line in only one of four directions, +x, +y, −x, and
−y. The number of mobile targets introduced to the environment varies from 10 to 50

targets. The type of the aircraft, i.e., the threat level, is randomly generated, as well as

their entry point into AREAX . The simulation was carried out for 200 seconds. Table 3.1

summarizes the simulation parameters used.

In the first part of the experiment, shown in Figure 3.6(a), the sensor system can

perform a certain set of actions: detect, classify, and destroy. When the system detects

and identifies a target, the target is assigned a threat level. In this part of the scenario,

the threat level is either low or high. If the system classifies an aircraft as a low threat

level, e.g., Airbus planes, the system will only record it in the database. However, when

the system identifies a high threat level, it passes the information to the human operator

who may run a destroy module. Figure 3.7 shows the UML class diagram for phase one

of the experiment designed according to the SMF layered organization design framework

methodology.
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Figure 3.7: UML class diagram for the surveillance scenario.

3.8.2 Phase Two

It is assumed that in emergency situations, various types of aircrafts are authorized to land

in the airport. These aircrafts may also be military aircrafts. Hence, the sensor system has

to extend its functionality to tracking these planes in order to secure the premises. The

tracking function as implemented includes two submodules: cueing and handoff. In this

scenario, three threat levels are introduced: low, unidentified, and high, as shown in Figure

3.6(b). Taking into consideration that sensor data is often corrupted by statistical noise

inherent in the transducers, discretization from the digitalization process, and occasional

nonsensical values [6], a noise module is added to provide a more realistic scenario. Figure

3.8 shows the UML class diagram for phase two designed according to the SMF layered

organization design framework methodology.

By comparing Figure 3.7 and Figure 3.8, it is noted that to extend the system to allow

tracking by contact-level cueing and handoff, and to add statistical noise to the simulation,

only two simple classes were added. This illustrates that a SMF designed using the layered

organizational design framework enables a more seamlessly extendible solution than by

means of a custom code written to the SMF development. To study the reusability of the
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Figure 3.8: UML class diagram for the extension of the surveillance scenario.

system, a code reusability metric is used. The reusability ratio is the percentage of the

number of reused source code lines to the total number of source code lines [140].

Reusability Ratio =
#Reused SLOC

TotalSLOC
∗ 100% (3.1)

where SLOC is the number of lines of source code. The value of the reusability metric in

the adopted case study is 85.2%. This shows that extending a SMF based on the layered

organizational design framework enables the reusability of the code to a great extent.

3.9 Summary

Most SMFs that are proposed in the literature to-date are “point solutions” that do not

use generic SMF design frameworks, so their applicability beyond their original test-beds

is not guaranteed. This chapter introduces a layered generic organizational design frame-

work for the development of the SMF based on the service-oriented architecture. Sensor

management is studied from a layered perspective and the functional tasks carried by the
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SMF are categorized into three categories: sensor management, network management, and

system management. Two case studies are presented to demonstrate the extendibility and

reusability of the organizational design framework. The proposed organizational design

framework is used in the design and development of the extended hybrid architecture for

sensor management introduced in following chapter.
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Chapter 4

Extended Hybrid Architecture for

Sensor Management

The size and complexity of pervasive surveillance systems requires efficient coordination

of the flow of information and control commands between system components. This chap-

ter introduces the proposed Extended Hybrid Architecture for Sensor Management. The

chapter is organized as follows: Section 4.1 provides an introduction to the proposed work.

In Section 4.2, the Belief-Desire-Intention model is introduced. In Section 4.3, the archi-

tectural design details of the proposed coordination architecture are discussed. Section

4.4 provides the mathematical model for the proposed evaluation metrics used to analyze

the performance of the SMFs. Simulation results for a pervasive surveillance scenario are

introduced in Section 4.5. Finally, Section 4.6 summarizes this chapter.

4.1 Introduction

The management of resource-bounded heterogeneous sensor nodes involves making deci-

sions regarding sensors’ operations and interactions. The collective performance of all the

sensors dictates the performance of the whole system. Thus, defining efficient coordination

approachs between sensor nodes is of great importance. The Sensor Management Archi-

tecture (SMA) coordinates the flow of information and control commands between sensor

nodes and determines the overall performance and capabilities of the system. A SMA has

to handle the overwhelming amount of information collected and adapt to highly dynamic

environments under network and system limitations.

This work focuses on developing an autonomous SMF that strives to achieve the system
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objectives while maximizing the lifetime of the sensor network. The proposed Extended

Hybrid Architecture for Sensor Management (E-HASM) addresses the sensor management

problem from a control perspective. The proposed E-HASM is designed based on the SOA

organizational design framework introduced in Chapter 3. The proposed E-HASM architec-

ture combines the holonic, federated, and market-based architectures in a complementary

rather than a competitive way and models the system subcomponents as intelligent nodes

using the Belief-Desire-Intention model [141]. The main goal of the proposed paradigm is

to guarantee scalability, flexibility, and structured control, as well as, localized operation,

and distributed autonomy.

Though this research work is concerned with the design and development of SMA that

can address the functional and non-functional aspects of a sensor network, emphasis will

be made on aspects that relate to coordination, control, and decision-making. Aspects

such as task allocation, data fusion, and scheduling, are highlighted in light of their role

in sensor management, but are excluded from the scope of this research.

4.2 Belief-Desire-Intention (BDI) Model

Bratman [141] has developed a theory of practical reasoning that includes intention as

a distinct mental state; distinct from the mental states of belief and desire. Bratman’s

work has inspired the Belief-Desire-Intention (BDI) Model [141]. The BDI model is a

software model developed for programming intelligent agents which is inspired from folk

psychological studies of mind and human behaviour. The term intentional systems refers

to systems whose behaviour can be attributed to system mental attitudes such as beliefs,

preferences, and intentions, which play different roles in determining an agent’s behaviour.

Such attitudes are categorized into: 1) cognitive, such as beliefs and knowledge, 2) conative,

such as intention, commitment and plans, and 3) affective, such as desire, goals, and

preferences [141]. A BDI model can be envisioned as having four main components :

1. Beliefs: represent the informational state of the agent; in other words, its beliefs

about the world. Using the term belief rather than knowledge recognizes the fact

that what an agent believes may not necessarily be true and may change in the

future.

2. Desires: represent the motivational state of the agent. They represent objectives or

situations that the agent would like to accomplish or bring about.
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Figure 4.1: The BDI solver model.

• Goals: A goal is a desire that has been adopted for active pursuit by the agent.

Usage of the term goals adds the further restriction that the set of active desires

must be consistent.

3. Intentions: represent the deliberative state of the agent, i.e., what the agent has

decided to do. Intentions are desires to which the agent has to some extent committed

to.

• Plans: are a sequence of actions that an agent can perform to achieve one or

more of its intentions. Plans may include other plans, i.e., sub-plans.

4. Events: are triggers for the agent’s reactive operation. An event may update beliefs,

trigger plans, or modify goals. Events may be generated externally and transmitted

to sensors or systems.

One of the attractive features of a BDI model is the ability of a BDI agent to continu-

ously reason about beliefs, goals, and intentions and act accordingly. This model represents

both present uncertainties, due to limitations in perception, and future uncertainties, due

to dynamism. BDI agents are able to balance the time spent on deliberating about plans

and executing those plans. However, the BDI model does not explicitly describe mecha-

nisms for interaction with other agents and integration into a multi-agent system.
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4.3 Extended Hybrid Architecture for Sensor Man-

agement

Due to the nature of the pervasive surveillance application, the sensor management sys-

tem is expected to make decisions and compromises regarding alternate sensing strategies

under time and resource availability constraints. Accordingly, SMF has to support various

functional and non-functional capabilities to be able to address the system requirements.

Traditional coordination architectures fall short in achieving the required merits to meet

the various system requirements, such as structured control with a high degree of flexility,

scalability, and low complexity. With a specific application in-mind, the combination of

different architectures in a tailored manner results in a hybrid system that can benefit from

the various architectural advantages and avoid their limitations. This customized hybrid

architecture can lend itself to application-specific system requirements and characteristics.

This has instigated the idea behind the proposed architecture. This section introduces the

proposed E-HASM to address the SM challenges in pervasive surveillance.

E-HASM is a multi-layer architecture for SMFs designed for pervasive surveillance

applications. The proposed approach is based on the layered organizational design frame-

work discussed in Chapter 3 which implements the design concepts of the service-oriented

architecture and offers system extendibility, modularity, and reusability. The proposed

architecture aims to combine the advantages of the holonic, federated, and market-based

architectures. Usually, a phenomenon of interest is localized in terms of proximity to a

subset of sensors in the physical environments. To efficiently manage the system, E-HASM

utilizes this property by using localized subsystems of sensor nodes forming a holarchy.

The main coordination architecture of the proposed approach is the holonic paradigm.

As discussed in Section 2.3.6.5.1, the “whole” vs “part” concept of the holonic paradigm

allows autonomy, flexibility, and fault tolerance. Authority and control are highly dis-

tributed among holons belonging to different levels of the holarchy to increase autonomy.

The holonic architecture can offer a high degree of scalability and reliability by accounting

for them in the design. All of these merits makes the holonic paradigm a suitable match for

the SMF. However, holonic systems can grow significantly and become extremely complex

which can lead to unpredictable overall system performance. Since the success rate of the

overall system depends on the combined success rate of the various holons, a structured

organization is needed to achieve effective coordination between the holons and define the

flow of information and control commands so as to derive predictable performance.
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E-HASM offers a multi-layered management approach that defines the interaction be-

tween different groups of holons. E-HASM consists of autonomous, self-reliant, and recur-

sive holons that interact differently according to the management level of operation. The

peer holons can be organized to form either a federated or a market based structure. As

shown in Figure 4.2, the E-HASM approach divides the system into five main levels: the

decision support level, the system management level, the macro-management level, the

micro-management level, and the sensor level. Each of these levels is considered a holon

in itself and is also composed of a set of holons that perform some functional tasks.
Human Operator
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Support Holon

System 

Management 

Holon

Macro-

Management 

Holon

Micro-

Management 

Holon

Level 0

Level 1

Level 2

Level 3

Level 4
Computer
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Figure 4.2: Extended Hybrid Architecture for Sensor Management coordination structure.

This multi-layer approach allows E-HASM to increase the sensor system scalability by

dividing the system operational complexity over different layers. The proposed breakdown

of the different levels of E-HASM allows a more efficient scalable system with the struc-

tured control needed for pervasive surveillance applications. From Figure 4.2, level 0 is

compromised of sensor holons; each is responsible for the autonomous operation of the

sensor. The sensor holons in level 1 form a federated architecture. The localized feder-

ated architecture allows an organized interaction and structured control of the resources,

in addition to rapid response to real-time environmental stimuli. The delegate of each

federation is denoted by the dark gray node. On the other hand, the peer holons in level
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2 form a market-based architecture. Since the number of holons decreases going up the

chain of command between different levels, the market-based architecture in level 2 offers

efficient resource management and role adoption with relatively low communication over-

head. The localized collaboration of holons allows for timely operation. It should be noted

that in Figure 4.2 the dashed lines represent a breakdown of the holon contents and not a

communication link.

Each holon in E-HASM is designed as an intelligent entity using the BDI model. Such

intelligent holons possess the capabilities of localized reasoning and planning based on

their short-term and long-term objectives. The set of beliefs of each holon represents the

perception of its surrounding environment and it is continuously updated and modified over

time,e.g., location, energy level, or environmental events. The set of desires are represented

by the holon objectives and goals. In the pervasive surveillance application, the desires of

the sensor holons can, for example, be detecting any abnormal behavior in the VOI. The

intentions provide the plans of action that should be taken by each holon, such as scanning

the VOI for abnormalities.

In recent years, a number of research projects have considered applying the holonic

paradigm to the sensor management problem [15,22,78,121]. The holonic sensor manage-

ment algorithms proposed in the literature lack considerations for non-functional merits,

e.g., scalability, flexibility, and structured characteristics. Furthermore, the networking

aspects are not considered. The work reported in this chapter aims to address these issues

and provide a flexible sensor management solution. Moreover, this work shows how using

the BDI model to design the various holons allows for the autonomy of different system

subcomponents, as well as, localized reasoning and distributed decision-making.

4.3.1 E-HASM Design Details

In the following, a top-bottom approach is adopted in discussing the design considera-

tions of the E-HASM holons: decision support holon, system management holon, macro-

management holon, micro-management holon, and sensor holon.

4.3.1.1 Level 4: The Decision Support Holon (DSH)

The Decision Support Holon (DSH) resides on the human operator side of the system.

The main aim of the DSH is to provide a computer-aided decision for the human operator.

It should be noted that the actual decision is taken by the human operator. The DSH

consists of four main holons: decision assistant holon (DAH), human-machine interface
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holon (HMIH), system holon (SYSH), and the control and coordination holon (CCH).

Figure 4.3 shows the architectural design of the decision support holon. The dashed lines

show the flow of control commands within the SYSH, while the solid lines show the flow

of information attributes.

Interface Holon

Coordination & 

Control Holon

Decision Assistant 

Holon

System 

Management Holon

Human Operator

Decision Support Holon

Figure 4.3: Decision Support Holon (DSH) design structure.

The Decision Assistant Holon (DAH) analyzes the current state of the system and

accordingly rationalizes the appropriate action. The Human-Machine Interface Holon

(HMIH) aims to facilitate the interaction of the human operator and the system and

provides a Graphical User Interface (GUI) for ease of use. The Control and Coordination

Holon (CCH) is the holon responsible for carrying out the human operator’s actionable

decisions. The CCH analyzes the strategic goals and breaks them down into tactical goals.

Finally, tactical tasks are passed to the system holon to be executed.

4.3.1.2 Level 3: The System Management Holon (SYS-MH)

The System Management Holon (SYS-MH) is responsible for the operation of the whole

system. Figure 4.4 shows the architectural design of the system level holon. The SYS-MH

is composed of four main holons: the control and coordination holon, the task management

holons, the macro-management holon, and the fusion holon. The dashed lines show the flow

of control commands within the SYS-MH, while the solid lines show the flow of information

attributes.

The control and coordination holon acts as the brain of the system and interfaces

with the decision support holon. The control and coordination holon is responsible for
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Figure 4.4: System management holon (SYS-MH) design structure.

analyzing the tactical goals received from the DSH and breaking it down into tactical

tasks. These tactical tasks are, accordingly, passed to the task management holons to be

further processed and scheduled. The macro-management holon allocates the tactical tasks

to the appropriate sub-system holon. Finally, the fusion holon is responsible for fusing the

observations reported by the macro-management holon. These observations are further

processed to form information attributes that can be passed to the DSH.

4.3.1.3 Level 2: The Macro-Management Holon (mMH)

The macro-manager (mMH) divides the system into a small number of sets, where each sub-

system represents a specific set of sensors in the system, e.g., based on the geographical

area. These sub-systems interact with each other using the market-based paradigm to

assign or delegate tasks.

Macro-Management Holon

Sub-System HolonSub-System HolonSub-System HolonSub-System Holon

Auctioneer Holon

Figure 4.5: Macro-Management Holon (mMH) design structure.
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The market-based architecture appears to be a suitable match for the interaction be-

tween the mMH sub-systems in task assignment. This is attributed to the higher operation

level of the mMH which is comprised of a relatively small number of µMH. The limited

number of buyers and sellers in the market results in less communication overhead, thus

saving energy, and increasing the probability of reaching optimal or sub-optimal solutions

in a distributed manner. Using a market-based approach in this manner to achieve task

allocation and decision-making can result in fast sub-optimal solutions, reliable and flexi-

ble control, and the ability to handle applications that have a natural spatial distribution.

Figure 4.5 shows the simplified architectural design of the market sub-system holon. A

simplified market-based architecture was implemented for demonstration purposes.

4.3.1.4 Level 1: The Micro-Management Holon (µMH)

Micro-Management Holon

Sensor HolonSensor HolonSensor HolonSensor Holon

Delegate Holon

Figure 4.6: Micro-Management Holon (µMH) design structure.

The macro-management sub-system is further divided into smaller clusters. Each clus-

ter is a small group of sensor holons that are in close proximity to each other. Each cluster

forms a federation. The operation of these federations is managed by a decision-making

holon, i.e., delegate holon, as shown in Figure 4.6. The sensor holons communicate solely

with the delegate to report sensory observation and to receive the assigned task. The

delegates of different federations form the mMH and communicate with each other either

directly or through the auctioneer.

Figure 4.7 shows the design of the delegate holon. The delegate analyzes the assigned

tasks and allocates them to various sensor holons. Moreover, the delegate holon is responsi-

ble for fusing the sensory observations of the sensor holons in its federation. Furthermore,

the delegate manages and coordinates the collaboration of the sensors in a cooperative

manner, such as cueing and handoff.
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Figure 4.7: Delegate Holon design structure.

4.3.1.5 Level 0: The Sensor Holon (SENSH)

The sensor holon is responsible for the management of a single sensor operation. It is com-

posed of the control and coordination holon, the task management holons, the basic fusion

holon, and a sensor physical interface holon to interface with the sensor hardware. The

control and coordination holon interfaces with the delegate holon, analyzes the assigned

task, and manages the operation of the other holons on the same sensor. As the task

management holons at this level of operation only handles local tasks only locally, the task

assignment holon is absent since it is unnecessary. In addition, the mode holon may also be

present, controlling the operating mode of the sensor to decrease energy consumption and

increase the survivability rate. The sensor interface holon controls the operations of the

sensor hardware, e.g., transducers, actuators, and others, and converts the sensor signal

into normalized measurements. Finally, the basic fusion holon is an optional holon and is

responsible for low-level measurement processing so as to provide the delegate with a more

refined quality of measurement and a reduction in communication overhead.

It is also assumed that the sensors are capable of cooperative tracking functional prop-

erty in the form of cueing or handoff to increase the quality of surveillance. Cueing is the

process of using the detections or tracks from a sensor to point another sensor towards the

same target, while, the handoff includes transferring the surveillance responsibility of the

target. Figure 4.9 shows the cueing and the handoff operations between two sensors.
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Figure 4.9: Sensor cooperation using cueing and handoff of targets.

4.3.2 Comments and Network Considerations

After describing the design details of the E-HASM architecture, this section reflects on

system characteristics and advantages. The proposed E-HASM is built using the holonic

paradigm and therefore inherits its autonomy, flexibility, and scalability characteristics.

Furthermore, the E-HASM design was based on the multi-layered organization design

framework presented in Chapter 3 and offers an extendable, reusable system that can

lend itself to multiple services and functionalities.

In addition, the implementation of the holons as intelligent agents with beliefs, desires,

and intentions captures the uncertainty about the environment and allows rapid adapta-

tion of its operations in accordance with its adopted intentions. The mMH market-based

approach balances between the local and the global utility in a fast optimal/sub-optimal
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manner. Moreover, the proposed E-HASM maintains the structured characteristics needed

for efficient control by the federated control structure embedded into the system. This

structure is highly necessary for seamless interaction with the human-in-the-loop and for

the surveillance problem. Furthermore, localized reasoning decreases the number of com-

munication messages transmitted or forwarded by the sensor nodes as well as the required

communication signal strength which is based on distance between nodes, and thus in-

creases network lifetime significantly.

A sensory system may consist of large number of sensor nodes that may be spread over

a large geographical area. However, a physical phenomenon is usually localized within a

certain area in VOI. Taking this fact into consideration, E-HASM utilizes that phenomenon

proximity to achieve efficient sensor management. The operation of the SMF is divided

into numerous sub-systems based on the proximity of each set of nodes, thereby, provid-

ing a fast response time to the phenomenon and limiting the communication overhead of

the subsystem. Such an approach increases scalability, reduces energy consumption, pro-

vides localized operation, allows autonomy of different sub-systems, and has many other

advantages. A cluster-based network topology is recommended for such systems. In this

work, the process of cluster head selection is assumed to be performed in an energy-aware

distributed manner.

The main advantage of the proposed E-HASM over the work proposed in [121] is that

the E-HASM is not only divided into layers but also that the system is viewed from the

perspective of the functional tasks offered. This allows the seamless extendibility of the

functionality of the system. Furthermore, peer sensor holons can form a federated structure

that allows efficient control of the resources needed to perform the required function in a

localized manner without the overhead of passing it up the chain of command between

different layers. The federated µMH allows the SENSHs to use their collective knowledge

to avoid false detection. In addition, higher control levels can be designed with more

flexible architectures allowing seamless system growth and fault tolerance.

4.4 Sensor Management Evaluation Metrics

This section provides the mathematical formulation of the quality metrics used to study

and compare the performance of the E-HASM. In the literature, the most popular SMF

evaluation metric used in tracking missions is the tracking error [40, 97, 108, 112, 113] that

is presented in the form of Root Mean Square Error (RMSE). Although the RMSE gives
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a good indication of the accuracy of the system at hand, it fails to reflect the performance

of the surveillance system and its management.

Quality of Surveillance (QoSv) is a newly used notion that can evaluate the perfor-

mance of a surveillance system. In the literature, QoSv metrics were previously used when

studying partial coverage in WSNs with the aim of finding the smallest number of awake

sensors that can achieve system objectives [142, 143]. In this work, the QoSv metric is

defined in a more general manner that can reflect overall system performance regardless of

WSN coverage. We define the QoSv as a quantitative metric that represents the effective-

ness of the surveillance system. The main objective of pervasive surveillance systems is to

detect abnormal phenomena in a timely manner and successfully track it for the duration

of its existence in the VOI. Thus, QoSv is quantified by the target detection quality and the

tracking quality of the system, and both are mathematically formulated in the following.

Let Ω be the set of all sensors in the system, Ω = {s0, s1, s2.....sns−1}, where si denotes
the sensor with label i, ordered in sequence, and ns is a constant that denotes the total

number of sensors in the system. Moreover, let βk be the set of all targets in the system

at time k, βk = {t0,k, t1,k, t2,k.....tnk−1,k}, where ti,k denotes the target with label i at time

k, and nk is the total number of targets in the system at time step k that varies at every

time step, thus, nk is dynamic.

Target Ti,k is said to be engaged/detected if and only if there exists a set of sensor

αj,k ⊂ Ω such that Ti,k is observable by αj,k, that to say, Ti,k is in the field of view of

sensors αj,k at time k. The set αj,k is the superset of sensor sy ∈ Ω where Ti,k is in the

field of view of sy at time k, given that i, j, and y are labels. And let O(Ti,k, αj,k) be a

binary variable that is set to 1 if the target Ti,k is engaged by set of sensors αi,k at time k,

and is reset to zero otherwise. This binary variable denotes the detection status of target

Ti,k at time k.

For all targets at time k to be engaged,∑
∀i

∑
∀j

O(Ti,k, αj,k) = nk (4.1)

for a given time k.

Thus, for all the targets to be engaged for the duration of the surveillance,

∀ k,
∑
∀i

∑
∀j

O(Ti,k, αj,k) =
∑
∀k

nk = N (4.2)

However, due to the systematic or random deviation of the sensor nodes as well as

the environmental characteristics, sensor observations can exhibit errors. The Detection
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Quality (DQ) evaluates the sensor ability to correctly detect threats; this is given by the

Detection Success Ratio (DSR) and the Detection Rate (DR) metrics. The DSR is an

indicator of the ratio of the number of targets that were successfully detected to the total

number of targets detected and is given by

DSR =
φ

φ+ ϱ
× 100% (4.3)

Where φ stands for the number of targets that were truly detected; i.e., true detections,

where φ ≤ N and ϱ stands for number of false detections. While, the Detection Rate

(DR) indicates ability of the system to detect threats, we can also get an indication of the

system DR by using the miss rate. The miss rate represents the failure of the system to

detect a threat; thus, as the DR increases the miss rate decreases and vice versa, hence,

DR ∝ 1
Misses

. We will refer to the miss rate as misses and it is given by

Misses =
ϕ

τST
(4.4)

where ϕ is the number of undetected threats, and can be given by N − φ and τ is a finite

time horizon. In this work, it is assumed to be the total simulation time and is denoted

by τST .

When Target Ti exists within the VOI for several time units, the association between

the target Ti and its track measurements for the duration of time in which it is in the

volume-of-interest is called track continuity.

Let ζki,j be the fused measurement of set of sensors αj for the target Ti at time unit k,

To have track continuity, an association function must exist between target Ti, the

detection status, and the sensory measurements of the target Ti for each time units it

exists within the VOI.

For a given target Ti at time unit k

Ti,k O(Ti,k, αj,k)−−−−−−−−→
ζki,j : A(Ti,k) (4.5)

For a given target Ti at time unit k

A(Ti,k) =
∑
∀j

O(Ti,k, αj,k) ∗ ζki,j (4.6)

The track continuity ratio of target Ti which is denoted as C(Ti), is the ratio of time

units in which the association function of target Ti exists G(Ti) and the overall time in
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which target Ti was present in the VOI, which is denoted by K(Ti). It is assumed that

ζki,j > 0 iif O(Ti,k, αj,k) > 0, thus,

for a given target Ti

∃A(Ti,k) : G(Ti,k) =
∑
∀j

O(Ti,k, αj,k) > 0 (4.7)

Consequently, for a given target Ti

C(Ti) =
(
∑

∀kG(Ti,k))

K(Ti)
=

(
∑

∀k
∑

∀j O(Ti,k, αj,k))

K(Ti)
(4.8)

Accordingly, the average track continuity ratio Cavg for all targets within the environ-

ment provides an evaluation metric of the performance of the entire system, and it can be

denoted

Cavg =
(
∑N

i=1C(Ti))

N
(4.9)

N is the total number of targets that were present in the system during the whole time

of surveillance, such that

N =
∪
∀k

nk (4.10)

Accordingly, the Tracking Quality (TQ) is a function of the average track continuity

ratio over the course of system lifetime and the normalized root mean square tracking error

Err. Thus, the TQ for threat t is given by

TQ(t) =

∫
∀k

∑
∀s

[Cavg ∗ (1− Errks (t))] (4.11)

where k is the time unit over the course of the system lifetime, s is the tracking sensors,

and (Errks (t)) is the normalized root mean square tracking error and is computed by

Errks (t) =

√
E[ ||ζkpos(t)− Zk

s |(t)||2]

ζkmaxpos(t)− ζkminpos(t)
(4.12)

where ζkpos(t) is the actual position of target t at time k and Zk
s (t) is the observed position

of target t by sensor s at time k. Under the assumption that a sensor only needs to know

the threat cell on the grid to determine its exact location, it is conceivable to ignore the

contribution of Errks (t) to the TQ(t) in the simulation carried out in this thesis.
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4.5 Simulation Setup and Results Discussion

The performance of the E-HASM is demonstrated in this section. The E-HASM approach

is compared to the most popular centralized approach. The proposed approach is tested

in a pervasive surveillance application context. In the rest of this section, the simulation

platform is described, then simulation setup is illustrated, followed by simulation results

and a discussion of the analysis.

4.5.1 Jadex Platform

Jadex [144] is an agent-oriented reasoning engine for the implementation of rational agents.

It simplifies the implementation of multi-agent systems through a middle-ware that com-

plies with the Foundation of Intelligent Physical Agents (FIPA) specifications and through

a set of graphical tools that support the debugging and deployment phases. One main

advantage of Jadex is that no new programming language is introduced. Instead, Jadex

agents can be programmed using XML and Java programming languages in state-of-the

art object-oriented Integrated Development Environments (IDEs) such as eclipse [145].

Another important aspect concerns the middleware independence of Jadex. As Jadex is

loosely coupled with its underlying middleware, Jadex can be used in different scenarios

on top of agent platforms and enterprise systems.

Jadex offers a communication architecture based on the Agent Communication Lan-

guage (ACL). The communication architecture offers flexible and efficient messaging, where

Jadex creates and manages a queue of incoming ACL messages that are private to each

agent. Moreover, the Jadex standalone platform is a multi-agent development environment

based on the joint intention theory [146]. Jadex is a Belief-Desire-Intention (BDI) reasoning

engine for intelligent agents. The term reasoning engine means that it can be used together

with different kinds of middleware providing basic agent services such as communication

infrastructure and management facilities. Figure 4.10 shows the Jadex Platform.

Jadex rational agents have an explicit representation of their environment in the form

of some beliefs about their world model and of their objectives in the form of goals. Ra-

tionality indicates that the agent will always perform the most promising actions (based

on the knowledge about itself and the world) to achieve its objectives. As it usually does

not know all of the effects of an action in advance, it has to deliberate about the available

options. For example, a game playing agent may choose between a safe action or a risky

action that has a higher reward in case of success.
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Figure 4.10: Jadex Platform.

4.5.2 Simulation Setup

The airport concourse is represented by a square area divided by a mesh grid into cells,

monitored by numerous sensors. Each sensor has a sensing range of the 3 × 3 grid units.

The sensors are static and are represented in the graphical user interface by a yellowish

round object. Passengers enter and leave the airport concourse randomly. Impulsive bursts

of passengers arrival and departure are also randomly generated to simulate the real world

scenario. The passengers are considered targets to the threats in the environment. The

number of targets injected into the environment varies between 50 to 200 targets for the

duration of the simulation. Moreover, the injected targets depart the environment at

random times. These benign targets are represented in the simulation by white and black

images.

The threat is represented as an intelligent mobile agent with sets of beliefs, desires and

intentions. The number of threats vary from 1 to 12 threats. The threats do not depart the

scene for the duration of the simulation. The threats move all around the concourse. The

74



Table 4.1: Simulation environment setting.
Parameter Value

Area 6× 6 to 18× 18 grid

# Sensors 4 to 36

# Threats 1 to 12

# Targets 50 - 300

Target motion preset pattern

random change in direction

Direction 4 direction

Simulation time 1000 sec

motion of the threat is set to a pre-specified pattern, however, a random motion pattern

is invoked arbitrarily. The simulation is carried out for 1000 seconds. Table 4.1 shows the

simulation configuration parameters used.

Two different approaches, E-HASM and a centralized approach were implemented for

comparison. Figure 4.11 shows a snapshot of the implemented graphical user interface for

the two approaches. The E-HASM is composed of a group of smart sensors nodes and a

group of delegate nodes as shown in Figure 4.11(a). The centralized system shown in Figure

4.11(b) is composed of a group of sensors and a centralized processing unit represented on

the top left side of the simulation environment.

In a centralized approach, the central unit collects data from the sensors and processes

all the collected data to formulate global knowledge about the state of the environment.

This allows the central server to compute the global optimal decision or action of each node.

The centralized approach is quite popular for pervasive surveillance applications because of

its simplicity, structured control, and near-optimal solutions [37,40,72,87,97,110,112,113,

117]. The centralized approach implemented in this work is an adaptation of the research

proposed in [37]. The centralized unit is assumed to be 10 times faster than the delegate

nodes. All the nodes within the system communicate via wireless channels over a broadcast

network with limited bandwidth. Both the delegate nodes and the centralized server have

limited queuing space, however, the queue size of the centralized server is larger than that

of the delegate.

The communication between the nodes is done using ACL message passing. Figure 4.12

shows the directed graph of the communication messages plotted by the Jadex command

center. These directed graphs are plotted for an 18x18 environment size with 36 sensors,

and 4 delegates for E-HASM or 1 centralized processing unit. The human-like icon rep-

resents agents in the system. Figure 4.12(a) shows that the communication is localized
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(a) The E-HASM GUI (b) The Centralized GUI

Sensors

µManger

Threat
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(c) Key

Figure 4.11: The airport concourse surveillance scenario implemented using Jadex Stan-

dalone Platform.

between the delegate nodes and the follower sensor nodes. Please note that although

delegate holons can communicate with each other, this inter-delegate communication is

rarely used. Therefore, delegate intercommunication is not plotted in Figure 4.12(a) to

increase the visibility of the diagram. Figure 4.12(b) shows that all the sensors actually

communicate directly with the centralized unit.

(a) E-HASM comm. (b) Centralized comm.

Figure 4.12: The directed graph of the communication messages plotted by the Jadex

command center.

A global tracking mission of all threats is used as the main mission of the SMF. It is

assumed that a sensor only needs to determine the cell on the grid in which the threat

resides to determine the exact location of the threat.
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4.5.3 Results and Discussion

Six different sets of experiments were conducted to compare the performance of E-HASM

to the single-layer centralized approach, as shown in Figure 4.13.

Detections 

Ratio
Track Quality

Experiments Evaluation Metrics 

Detection 

Success Ratio
Scalability 

Effect of # 

Target

Effect of 

Network Size

Figure 4.13: A summary of the experiments used to evaluate the performance of the

proposed E-HASM.

4.5.3.1 Detection Rate

This experiment is carried out over a 6 × 6 grid environment with a varying number of

threats; from 1 to 12, and a number of passengers that ranges from 150 to 200. The sensory

system main objective is to secure the VOI by detecting and tracking threats throughout

the environment for the duration of their existence. It should be noted that the task of

cueing and handoff is not being considered in these simulation runs. The miss rate is

used to indicate the detection rate based on Equation 4.4, i.e., the miss rate is inversely

proportional to the detection rate.

Figure 4.14 plots number of misses made by both the E-HASM and the centralized

architecture over a varying number of threats. The trendlines are superimposed over the

simulation results. From Figure 4.14, it can be deduced that the E-HASM yields a lower

number of misses when compared to the centralized approach for all values of threats in

the experiment. In fact, the average number of misses recorded by E-HASM is less than

one over the whole experiment with a maximum of 3 misses. On the other hand, the

centralized approach has an exponentially increasing number of misses as the number of

threats increases. This is attributed to the fact that the increasing number of threats

results in a significant increase in the communication overhead between the centralized

server and the sensor nodes. The increase in the volume of communicated data incurs

queueing delays, thus, resulting in delayed logging and actuation. However, the E-HASM

benefits from the localized control of the architecture and does not suffer from a hike in

data communication as the number of threats increases.
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Figure 4.14: The number of misses for the E-HASM and the centralized architecture.

4.5.3.2 Detection Success Ratio

Using a similar simulation environment as that described in Section 4.5.3.1, the detection

success ratio for both the E-HASM and the centralized architecture over a varying number

of threats is investigated and plotted in Figure 4.15. From Figure 4.15, it can be noticed

that the E-HASM yields a higher success rate percentage over the simulation time when

compared to the centralized architecture. The centralized approach results in an exponen-

tially decreasing detection success rate as the number of threats increases. Similarly, the

exponential decrease in the success rate witnessed by the centralized system is attributed

to the communication and processing overhead that burdens the centralized system as the

number of threats increases.

4.5.3.3 Tracking Quality

Figure 4.16 plots the tracking quality versus the number of threats for both the E-HASM

and the centralized architectures. The size of the simulation environment is an 18x18 grid

with the number of threats varying from 1 to 40. Passengers randomly enter or leave the

simulation environment with 50 passengers waiting in the concourse at any instant in time.

Cooperative tracking between sensors is utilized to keep a close monitoring of high threat

level targets. The sensors detect and keep track of the movement of threats in addition
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Figure 4.15: The detection success rate for the E-HASM and the centralized architecture.

to cueing the delegate node whenever a threat is about to move out of the range of the

sensor. The delegate node subsequently locates and cues the sensor that monitors the area

where the threat is headed.
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Figure 4.16: The tracking quality of the E-HASM and the centralized architecture.
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From Figure 4.16, it can be noted that the performance of the E-HASM and the cen-

tralized approach are almost identical for low number of threats. This observation is

attributed to the fact that the E-HASM does not benefit from localized control operation

for the case of only one threat in the environment. However, for large number of threats,

it can be deduced that the E-HASM offers higher tracking quality as defined by Equation

4.11 than the centralized approach. Moreover, the decrease in tracking quality with an

increasing number of threats is higher for the centralized approach when compared to the

E-HASM approach. This is attributed to the communication and processing overhead of

the centralized architecture.

4.5.3.4 Scalability

Scalability is the ability of the system to handle a growing workload in a graceful manner

and is a highly desirable feature in pervasive surveillance applications. Figure 4.17 plots the

number of sensors needed to achieved a tracking quality of 99.99% with a growing number of

threats for both the E-HASM and the centralized architectures. Figure 4.17 shows that the

number of sensors required by E-HASM to achieve a tracking quality of 99.99% increases

linearly with the number of threats. On the other hand, the number of sensors needed in the

centralized approach to achieve the same tracking quality increases almost exponentially

with the number of threats. This is attributed to the increased communication overhead

of the centralized approach as the number of threats increase which leads to packet losses

and delays that compromise the tracking quality of the centralized system. Additional

sensors are added to the centralized approach to introduce redundancy which increases the

tracking quality to reach 99.99%. It should be noted that the centralized approach requires

8 times the number of sensors needed by the E-HASM to track 12 threats at a tracking

quality of 99.99%. These results prove that the proposed E-HASM scales well with the

increasing number of threats, unlike the centralized approach.

4.5.3.5 Effect of the Number of Targets

This experiment is carried out over an 18×18 grid environment with 12 threats and number

of targets varying from 50 to 400 passengers entering or leaving the environment randomly.

In this experiment, the sensors cooperate to increase the continuity of the tracking of the

movement of the threats through cueing.

Figure 4.18 plots the effect of increasing the number of targets on tracking quality for

both the E-HASM and the centralized architecture. From Figure 4.18, it can be deduced
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Figure 4.17: Number of sensors required by E-HASM and centralized architecture to track

a growing number of threats with a tracking quality of 99.99%.

that the E-HASM yields a higher tracking quality when compared to the centralized ap-

proach for large number of targets in the environment. It can be noted that an increasing

number of targets results in a decreasing tracking quality for the centralized approach.

This is a result of the additional communication overhead incurred by the centralized ap-

proach as a result of the sensors communicating the target findings to the central server

along with the additional target detection and evaluation procedures. On the other hand,

the E-HASM architecture yields a near-constant tracking quality. This is attributed to the

distributed processing and localized threat evaluation by each sensor node in the E-HASM

approach.

4.5.3.6 Effect of Network size

This experiment is carried out over a varying grid area size with 12 threats and 50 passen-

gers. As the area size increase, the number of sensors needed to monitor the area increases,

e.g., an area of 6x6 needs 4 sensor to provide full coverage in the surveillance scenario, while

an area of 27x27 needs 81 sensors to monitor it. Figure 4.19 plots the effect of increasing

the network size on tracking quality for both the E-HASM and the centralized architecture.

From Figure 4.19, it can be noted that the increasing area size results in a decrease in the
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Figure 4.18: The effect of increasing the number of targets on the tracking quality for the

E-HASM and the centralized architecture.

tracking quality for both approach. However, the E-HASM maintains linear performance

as the grid size increases, while the tracking quality of the centralized approach decreases

in a faster manner as the size of the VOI increases. This is attributed to the localized

operation of the E-HASM system which results in distributed processing and minimizes

the communication overhead.

4.6 Summary

Pervasive surveillance systems need intelligent management to control the large number

of sensor nodes and process the large amount of data. Therefore, a sensor management

architecture is vital component in the design of SMF to efficiently coordinates the flow of

information and control commands between system components. This chapter introduces

the Extended Hybrid Architecture for Sensor Management (E-HASM). E-HASM combines

the advantages of the holonic, federated, and market-based architectures in a multi-layered

approach to guarantee scalability while offering a structured system with localized control.

The E-HASM subcomponents are modelled as intelligent nodes using the BDI model which

increase the local autonomy of subsystems. Moreover, this work formulate mathematically

the Quality of Surveillance (QoSv) evaluation metric in a general manner and uses it to
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Figure 4.19: The effect of increasing the network size on track continuity for the E-HASM

and the centralized architecture.

investigate and compare the performance of the proposed architecture to the popular cen-

tralized one in a target tracking mission using simulation. The E-HASM is implemented

using the Jadex standalone platform. The results illustrate the scalability of the E-HASM

and the superior performance of the E-HASM to the centralized approach in all the evalua-

tion metrics used. However, this comes with the expense of higher management complexity.

The main contribution of this chapter is as follows:

• Propose the E-HASM architecture that combines the holonic, federated, and market-

based architectures in a complementary manner,

• Present the design details of E-HASM based on the Layered SM organizational design

framework [147] and the design principles of the service-oriented architecture [126],

• Model the E-HASM subcomponents as intelligent nodes using the BDI model and

define the cooperative interaction between them,

• Formulate mathematically the Quality of Surveillance (QoSv) evaluation metric in a

general manner,

• Compare the performance of the proposed architecture to the popular centralized

approach in a target tracking mission using simulation,
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• Investigate the scalability of the proposed approach via simulation,

The proposed E-HASM can provide energy savings when compared to the centralized

architecture due to reduced communication overhead and the localized structure. How-

ever, the limited power reserves of the sensor nodes is a precious resource that must be

intelligently managed. In the following chapter, an autonomous energy-aware reasoning

performed in a distributed manner on-board the sensor nodes is proposed to efficiently

manage sensor energy resources and thereby prolong the lifetime of such networks.
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Chapter 5

Energy-Aware Decision Making: A

BDI Model

Power is a scarce commodity in sensor networks, hence, it is imperative that the network

resources are managed so as to prolong the lifetime of the network as much as possible.

Since a sensor node is expected to sense as well forward/route information from other

sensors, its failure due to power shortage denies the network of its sensing capability and

affects other sensors’ ability to transport their data. This chapter introduces an energy-

aware team-theoretic formulation based on the Belief-Desire-Intention model. Section 5.1

provides an introduction to the proposed work. Section 5.2 briefly discusses the state-of-the

art of energy-aware sensor management. The proposed sensor operation and characteris-

tics are presented in Section 5.3, while, the energy consumption model used is introduced

in Section 5.4. The novel energy-aware sensor management approach is proposed in Sec-

tion 5.5. Section 5.6 discusses the experimental work conducted to test and validate the

proposed energy-aware sensor management scheme. Section 5.7 concludes the chapter.

5.1 Introduction

Sensor nodes operate on limited energy budgets where replenishment of power resources

might not be possible. When a sensor node energy is depleted or falls below a certain

threshold, the sensor will fail to monitor and communicate any abnormal phenomenon in

its sensing range. Thus, the nodes limited energy supply is a critical resource that needs

to be efficiently utilized. Energy-aware Sensor Management can prolong the lifetime of

the network and conserve scarce energy resources. The sensor management is expected to
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make decisions that drive the performance of the whole network to reach its objectives while

handling the overwhelming amounts of information collected. Furthermore, the network

is expected to adapt to the dynamics of its environment despite, and often as a result

of, its limited resources. Indeed, resource scarcity makes the collective and collaborative

behaviour of sensor nodes a driving factor to the overall system performance.

This chapter focuses on developing an autonomous energy-aware SM that thrives to

maximize the lifetime of the sensor network. A team-theoretic formulation of smart sensor

nodes based on the Belief-Desire-Intention (BDI) model is proposed as a mechanism for

effective collective decision-making. The proposed formulation draws upon the initial de-

sign of the components of the E-HASM introduced in Chapter 4. A novel team-theoretic

formulation is developed that manages the sensor network in an energy-ware manner using

the following 5 measures: (i) adaptive sleeping, (ii) active sensing, (iii) dynamic sensing

range, (iv) multi-modality, and (v) constrained communication. The proposed formula-

tion is designed using the design principle of the multi-layered SM organizational design

framework discussed in Chapter 3.

5.2 Related Work

The research community has devised various ways to effectively manage the sensor networks

energy budget over the different protocol layers; a comprehensive study of the state-of-the-

art energy-aware schemes can be found in [148].

A significant number of research projects has focused on developing sensor sleeping

policies as a strategy for energy conservation. Several schemes have modelled the problem

as a Partially Observable Markov Decision Processes (POMDP) to devise sleep polices using

centralized sensor scheduling techniques [149–155]. The works in [156–158] considered the

design of sensor sleeping protocols via wakeup mechanisms. These schemes suffer from high

computational cost that prohibits them from running on-board of a sensor node. Moreover,

the centralized approach limits the system scalability and presents a processing bottleneck.

Other schemes that are proposed in the literature to schedule the nodes sleeping strategies

depend on the routing information and network coverage, while neglecting the environment

and threat dynamics [97,102–104].

Numerous research work have focused on developing energy efficient active sensing

policies. Most of these research efforts focus an information-theoretic approach to decide

on the frequency by which sensor measurements are acquired [159–161]. Approaches, such
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as Markov Decision Processes and Monte-Carlo Optimization, have been used to derive

a policy for active sensing. However, such approaches are computationally expensive to

run on-board a sensor. Moreover, information-theoretic schemes depend on the history

of sensor measurement in devising the active sensing policy and ignore the environmental

characteristics and dynamics.

Adjusting the sensing radius dynamically has been discussed in the literature to ad-

dress multiple objectives: increase network coverage, decrease energy consumption, and

minimize the number of active nodes [162,163]. Dynamic adjustment of the sensing range

can balance the trade-off between the incomplete network coverage, that may result in

undetected threats, and redundant coverage of the VOI that wastes the system resources.

The problem of the dynamic sensing range adjustment has been investigated from both an

optimization [163] and an algorithmic [162] point of views. Another strategy that has been

investigated by the research community to reduce the energy consumption is constraining

the sensor communication [105,106,164–166], where the sensor network has been modelled

as a constrained optimization problem. However, these schemes ignored the target and

environment dynamics, as well as, the sensor changing status. Therefore, it is clear that

there is a need for an energy-aware SM that can make decisions on alternate realtime sens-

ing strategies in a highly dynamic environment and can be practically placed on-board of

the sensor node.

5.3 Sensor Characteristics and Operation

The operation of sensor nodes plays an important factor in the effectiveness of the overall

system performance. This section discusses the assumptions of the sensor nodes character-

istics and operations. A smart sensor node typically comprises of four main building units:

a processing unit, a communication unit, a transducer (sensing unit), and an actuation

unit, as shown in Figure 5.1.

In this work, a sensor node is assumed to be able to control its sensing range within

certain bounds, i.e., decrease or increase the sensing range to a certain threshold; Tηmin ≤
ηi ≤ Tηmax ; where Tηmin and Tηmax are the minimum and maximum sensing ranges of a

sensor node, and ηi is the current sensing range of a sensor node i. It is assumed that, for

the sensing range ηi < Tηmax , the sensor is highly informative, i.e., there is no degradation

in the quality of sensed measurements within the range Tηmin ≤ ηi ≤ Tηmax . The sensing

range is directly proportional to the power consumed in the sensing process, hence, the
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Figure 5.1: Sensor nodes architecture.

larger the sensing range the greater power consumed by the sensing process.

Moreover, the sensor nodes are assumed to have more than one modality for operation;

each of these modalities provides a different quality of measurements about the threats in

the environment. At higher sensing resolution modalities, the sensor node consumes more

power than at lower resolution modalities. In addition, the sensor nodes are capable of

active sensing by dynamically changing the frequency by which it is acquiring the sensor

measurements.

The sensor nodes have four modes of operation; active/sensing, idle/listening, trans-

mitting/receiving, and sleeping. A sensor node must be in one of these four modes at any

given time. Each of these modes consumes different power level. Figure 5.2 illustrates the

sensor state transition diagram. When a sensor is in sleep mode, it is assumed that the

sensor can not be waken-up externally. The sleep time has to elapse before the sensor is

allowed to wake-up. It is assumed that the transmitter and receiver circuits are symmetric

in terms of energy, i.e., both consume equal amounts of energy when active. Moreover,

the sensor is able to estimate the location of any detected threat within a certain error

probability.
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Figure 5.2: Sensor states.

5.4 Energy Consumption Model

Sensor networks are usually battery-operated, hence, it is always required to optimize the

battery utilization to extend the lifetime of these equipments as much as possible. If there

is no limitation on the energy reserve, the sensor network would collect every possible

measurement to maximize the situation-awareness. However, the limited energy budget

dictates that the sensor should only collect the measurements that contribute in achieving

higher situation-awareness. As a result, sensor nodes are required to operate under the

lowest energy consumption needed to achieve the required performance.

Smart sensor nodes are typically compromised of four main building units as shown

in Figure 5.1. The operation of each of these units consumes a portion of the energy

reserve, thus, affecting the sensor lifetime. Moreover, as discussed in Section 5.3, the

smart sensor node has various sensing modalities, sensing frequencies, sensing ranges, and

operation modes. Each of these sensor settings consumes different energy costs to operate.

This section will provide the adopted energy consumption model for each of these sensor

building units.

According to the work in [167–169], each of the sensor components dissipates different

energy levels in the different operation states as well as during the state transition as

explained in the following:

• Sensing Acquisition: The sensing component transforms physical stimuli into a digital

sensor measurement. Sources of sensor power consumption in the sensing acquisition

component are: signal sampling and conversion of physical signals to electrical sig-

nals, signal conditioning, and analog-to-digital conversion (ADC). Let Isense be the
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total current required for sensing activity and Tsense be the time duration of sensing.

The total energy dissipation for the sensing activity, ESensing, for b-bits packet per

sensing cycle given the supply voltage, Vsup, is given by

ESensing(b) = b ∗ Vsup ∗ Isense ∗ Tsense . (5.1)

• Sensor Logging: Logging consumes energy in the form of reading a b-bits packet and

writing it into memory. The energy consumption of a single logging process in a

sensor node is formulated as

ELogging(b) = Ewrite ∗ Eread =
b ∗ Vsup

8
∗ (Iwrite ∗ Twrite + Iread ∗ Tread) , (5.2)

where Ewrite is energy consumed in writing data, Eread is energy consumed in reading

b-bits packet data, Iwrite and Iread are the currents for writing and reading one byte

of data, respectively. Twrite and Tread are the time for writing and reading one byte

of data, respectively.

• Micro-controller processing: The energy consumed by the micro-controller for pro-

cessing and data aggregation is attributed to two components: energy loss as a result

of switching, Eswitch, and energy loss due to leakage current, Eleak. Leakage energy

occurs when a sub-threshold leakage current flows between the power source and the

ground [167]. Total energy dissipated in data processing and aggregation of b-bits

packet, EProcess, per processing cycle is given by

EProcess(b,Ncyc) = Eswitching + Eleakage , (5.3)

Eswitching = b ∗Ncyc ∗ Cpavg ∗ V 2
sup , (5.4)

Eleakage = b ∗ Vsup ∗
(
I0 ∗ e

Vsup
np∗Vt

)
∗
(Ncyc

f

)
, (5.5)

where Ncyc is the number of clock cycles per task, Cpavg is the average capacitance

switched per clock cycle, I0 is the leakage current, np is the constant which depends

on the processor, Vt is the thermal voltage, Vsup is the voltage of the supply power

source, and f is the sensor frequency.

• Radio Transmission and Receiving: Communication with neighbouring sensor nodes

is enabled by radio communication. According to [167], the energy dissipation due

to transmitting b-bits packet for a distance dij is formulated as
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Ek
Comm(b, dij) = b ∗ Eelec +

[
b ∗ dnij ∗ Eamp

]
tx
, (5.6)

where Eelec is the energy dissipated due to transmit or receive electronics, Eamp is

the energy dissipated by the power amplifier, and n is the distance based path loss

exponent.

• Actuation: Energy dissipation for actuation, Ek
Actuate, is hard to estimate in general

because it is highly application-dependent. A popular form of actuation can be in

the form of motion. The energy dissipation as a result of actuation for duration,

Tactuate, given the current consumed by the actuation circuit, Iactuate, is evaluated by

Ek
Actuate(b, dij) = Vsup ∗ Iactuate ∗ Tactuate . (5.7)

• Sleep, Idle, and Transient Energy: Radio and micro-controller units support different

operating modes including active, idle, and sleep. Transitions between operating

modes involve significant energy dissipation [167]. When a sensor node is in idle

state, it will listen to the channel for a duration of Tidle per round, then becomes

active for a duration of TA, and then sleeps for TS. Let TtranON and TtranOFF be

the times required for sleep-to-idle and idle-to-sleep transitions, respectively, and the

current IA and IS are the currents for active and sleeping modes. Hence, the total

energy dissipation from the sensor node per round is evaluated by

Tcycle =
TtranON + TA + TtranOFF

TtranON + TA + TtranOFF + TS
, (5.8)

ETransient = TA ∗ Vsup ∗
[
Tcycle ∗ IA + (1− Tcycle) ∗ IS

]
. (5.9)

• Initialization: Cluster formation entails a number of messages to be exchanged be-

tween the sensor nodes and the cluster head to establish the membership. The

energy dissipated in the system initialization and the cluster formation is ignored in

this work.

According to the discussion above, the overall sensor node energy consumption can be

modelled as a linear combination of the energy consumed in each component using the
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following relationship

Ek+1
sensor = Ek

sensor − [Ek
Process + Ek

Comm(m, d) + Ek
Sensing + Ek

Logging + (5.10)

Ek
Actuate + EInitialize + Ek

Transient + αk] ,

where Ek+1
sensor is the sensor energy at time k + 1, Ek

Sleep is the energy dissipated by the

sensor when it is in sleeping mode, and finally EInitialize is the energy dissipated by the

sensor in the network startup phase and cluster formation. It is assumed that the sensor

loses no energy while it is in the sleep mode, thus, ESleep = 0.

5.5 Energy-Aware Sensor Management Approach

Managing heterogeneous sensors involves making decisions and compromises regarding the

alternate sensing strategies under time and resource availability constraints. The decision-

making strategy defines the methodology used by the system entities to self-govern and

cooperate to achieve the system goals. The E-HASM architecture, proposed in Chapter 4,

is based on the collective performance of autonomous sensors. Each sensor is responsible

for independent reasoning and decision-making that affects its state and the overall system.

The collective outcome of these decisions affects the overall mission objective. The sensor

has to reason about its current state and its available actions that affect the environment,

its energy reserve, and the overall network survivability.

Network survivability has become a topic of serious concern to the WSN research com-

munity. Due to the criticality of the WSNs applications, the drainage of the energy reserve

of a sensor node will result in the unavailability of the node monitoring capabilities. Such

unavailability may result in partial coverage to the dynamic scene which may degrade the

overall system accuracy and performance. However, low energy use of the sensor resources

may prolong the network lifetime, but will affect the quality of the network services, and

as a result will degrade the overall situation awareness process. Thus, energy-aware deci-

sions should be taken to manage the sensing resources in a manner that not only prolongs

the sensor network lifetime but also improves the process of situation-awareness. In the

following sections, the design of an energy aware sensor management is introduced.

5.5.1 Energy Savings Index Calculation

An energy-aware sensor management approach selects sensing strategies that best achieve

the system objectives while minimizing the energy consumption. The decision-making
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process can be viewed as an optimization problem over the spectrum of available decisions.

The sensor manager processes a large number of local and global parameters in realtime

to adjust the sensing strategies based on the evolving environment dynamics, rendering

the problem quite dynamic. As a result, the sensing strategies have to be frequently

reconsidered throughout the system lifetime. Due to the limited resources of the sensor

nodes, any operations that need to be performed in realtime on-board the node has to

be kept computationally inexpensive, in terms of both processing and power consumption.

Consequently, this section proposes an efficient sensor design-making process to manage the

sensors energy reserves using a heuristics to model the problem. Such heuristic technique

can provide a cost-efficient decision-making approach that is sub-optimal in terms of the

quality of the solution while achieving significant energy savings for the sensor node.

In order to properly explain the proposed algorithm, several metrics that are needed

to model the problem at hand will be introduced. This work formulates a heuristic metric

called Energy Savings Index (ESI) to provide an estimation of the sensor node status and

its need/ability to conserve energy. The ESI is computed locally on-board of the sensor at

realtime. As the energy reserve decreases, ESI has to increase to indicate the higher need

to save energy. Thus, ESI depends on the current energy reserve, as well as, the initial

sensor energy. The ratio between the current energy reserve to the initial sensor energy is

called energy index, ϕ, and is defined as

ϕs
t =

ζst
ζs0
, (5.11)

where ζst and ζs0 are the available energy reserve at time t and the initial sensor energy for

sensor s, respectively. We will also define the energy rate at time instance t, ∆t, as the

difference between the sensor energy level at time t and that at time t − δ, where δ is a

small time difference. The energy rate is given by

∆t = ∥ζt − ζt−δ

δ
∥ . (5.12)

Context awareness is a key aspect of intelligent energy-aware SM since the sensor man-

agers need to adapt to the dynamically changing surrounding environment by discarding

the current sensing strategy once it becomes energy-inefficient. Accordingly, the current

environment dynamics together with the sensor energy index play an important role in

the sensor future health. In this work, the dynamism index, ψ, is used to reflect the en-

vironment dynamics. Knowing that σt is a sensor observation at time t such that σt = 0

if the measurement is considered normal and σt > 0 otherwise, the dynamism index is
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formulated as

ψt =

{
ψt−δ × (1.0 + (0.25× σt)) if σt > 0 : 0 < ψ ≤ 1

ψt−δ × 0.75 if σt = 0 : 0 < ψ ≤ 1
(5.13)

Another parameter needed to properly model the surrounding environment is the

criticality level, which refers to the perception of environmental elements of interest,

e.g., threats, with respect to time and space and the need to closely monitor the changes

inflected by such elements on the environment. The critically is inversely tied with the

ESI. In this work, the criticality level refers to the estimated threat level of the VOI. The

criticality level, ρ, and is given by

ρt =

{
ρt−δ × (1.0 + (0.25× σt)) if σt > 1, : 0 < ρ ≤ 1

ρt−δ × 0.75 if σt ≤ 1 : 0 < ρ ≤ 1
(5.14)

From the discussion above, the ESI at time t, Ωt, is represented as

Ωt = λ ∗ (exp(−c ∗ (ϕt ∗ (ψ + ρ))) , (5.15)

where λ is a variable called the delegate factor and it is equal to 1 throughout this chapter,

while c is a scalar constant. Figure 5.3 plots several ESI curves under varying dynamism

and threat levels versus different energy reserve levels. As it can be seen from Figure 5.3,

the ESI increases with decreasing the sensor energy level, the dynamism, and threat level.

Using the ESI, the sensor node can estimate its need and ability to save energy, and thereby

decide on alternate energy-saving strategies. In the following, the ESI is used to formulate

the operation of the various energy-saving strategies proposed in this work.

5.5.1.1 Adaptive Sleep

This work proposes an adaptive sleep algorithm that dynamically evaluates the sensor node

probability of going into sleep at the current time together with the sleep interval based

on the environment state and sensor health. The proposed algorithm is asynchronous in

nature, i.e., it allows any given node to independently enter/exit sleep mode without any

inter-node communication. Any sleeping node can not be forced by external sources out of

the sleep mode and can only exit the sleep mode once its sleep timer expires. As a result,

the sleep interval algorithm has to take into account all the available information on the

network dynamics, threat level, and energy level while calculating such interval. It should

be noted that the node is able to communicate with its active neighbours whenever it is in

the active state.
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Figure 5.3: Energy saving index over varying dynamism and threat levels versus energy

reserve.

The ESI equation in (5.15) is used to derive the probability of the sensor entering the

sleep mode. Equation (5.16) formulates the probability of a sensor node going into sleep

at time t, Pt(slp)

Pt(slp) = Pt(slp|Ω) ∗ Pt−1(slp ̸= 1) , (5.16)

where Pt(slp|Ω) is the probability of entering the sleep mode given a certain ESI and

Pt−1(slp ̸= 1) is the probability that the sensor was not in sleep mode at time t− 1.

Using Equation (5.15), the sleep interval at time t, τ slpt , can be computed as

τ slpt = Cslp ∗ τ slpmax ∗ Ω2 : τ slpmin ≤ τ slpt ≤ τ slpmin , (5.17)

where τ slpmin and τ slpmax are the minimum and maximum allowable sleep intervals. Setting

minimum and maximum sleep intervals is important to guarantee that the energy savings

from entering and exiting the sleep mode is much greater than that wasted in during the

state transition. Cslp is a scalar constant of value empirically determined to be equal to 2.

Figure 5.4 plots the sleep interval curve versus the increasing ESI.
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Figure 5.4: The sleep interval in time units versus the ESI.

5.5.1.2 Active Sensing

Active sensing is a form of dynamic sensor management for data generation and collection

in which information collected from the environment through sensing is used to guide the

sampling process [160]. The sampled data generally has strong spatial and/or temporal

correlation [148], hence, the sensors resources might end up being wasted collecting redun-

dant information or insignificant ones. Therefore, controlling the data sampling frequency

can result in significant energy savings. Accordingly, active sensing can be defined as the

process of adjusting the time intervals between successive sensing instances such that the

sensor collects the minimum number of data samples that contains the highest volume of

information. The environment dynamics, the threat level, and the sensor energy level are

crucial factors in the choice of the sensing interval. This work formulates the node sensing

interval at time t, τ senset , as

τ senset = τ senset−δ + (((0.4× (2× Ω)2))× τ sensemax )− Ca : τ sensemin ≤ τ senset ≤ τ sensemin , (5.18)

where δ is a small time interval, Ca is a scalar constant, and τ sensemin and τ sensemax are the

minimum and maximum allowable time intervals between successive sensing operations,
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respectively. The minimum and maximum time intervals include the activation time of the

transducers circuit and the time needed to record the measurement itself. A plot of the

active sensing interval is given in Figure 5.5 versus ESI. From Figure 5.5, it can be noticed

that the active sensing interval increases with the ESI.
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Figure 5.5: The active sensing interval in time units versus the ESI.

5.5.1.3 Dynamic Sensing Range

Dynamic sensing range is the ability of the sensor node to change its sensing radius. This

property depends on the transducers type and operation. The sensor nodes can adjust

their sensing range within certain bounds without affecting the quality of the collected

sensor observations. The sensing range has direct impact on the network coverage and

energy consumption, i.e., as the sensor range increases, the network coverage and the

sensor nodes energy consumption increase. In this work, we aim to autonomously adjust

the node sensing range under the environment dynamics, threat level, and the nodes energy

reserve constraints. The node sensing range at time t, ηt, is computed as

ηt = ηt−δ − (((0.4 ∗ (2 ∗ Ω)2))) ∗ ηmax) + Cb : ηmin ≤ ηt ≤ ηmin , (5.19)
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where δ is a small time interval, Cb is a scalar constant, ηmin and ηmax are the minimum and

maximum sensing range, respectively. The dynamic sensing range versus ESI is plotted in

Figure 5.6 which demonstrated the direct relationship between the sensing range and ESI.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

ESI

S
en

si
ng

 R
an

ge

Figure 5.6: The sensing range versus the ESI.

5.5.1.4 Multi-Modality

Smart sensor nodes are usually characterized by multiple sensing modalities, where each

of these modalities provides a different quality of measurements about the threats in the

environment. However, higher resolution modalities result in higher power consumption,

which is not affordable in sensor nodes. Selecting a specific modality to be used throughout

the life of the system may result in either quickly draining the system reserve or missing

some important information that are not captured by that modality. Therefore, this works

proposes an adaptive multi-modality scheme that increases the modality level in response

to the increase in the environment dynamics and/or the threat level. Representing such

multi-modality selection scheme at the individual node level is one of the strengths of this

work.
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ALGORITHM: Multi-modality selection

1 Inputs: currentModality, setAvaliableModalities, ModalityThreshold

2 ESI, threatLevel, dynamismLevel

3 Outputs: newModality

4 If current-Modality is not the minimum modality

5 & ESI ≤ ModalityThreshold & dynamismLevel is low & threatLevel is low

6 {
7 newModality = currentModality − 1

8 ModalityThreshold = ModalityThreshold ∗ 0.75
9 }
10 If threatLevel high or dynamismLevel is high

11 {
12 Activate higher sensing modalities

13 newModality = threatLevel
maxThreatLevel ∗maxModality

14 newModality = newModality > currentModality?newModality : currentModality

15 ModalityThreshold = ModalityThreshold ∗ 1.25
16 }

Table 5.1: Multi-modality selection algorithm.

Table 5.1 shows the multi-modality selection algorithm. The proposed algorithm bases

its decisions on the dynamic environment information, the threat level, the node energy

level, and the set of available modalities. The algorithms activates lower modalities de-

pending on lower environment dynamics and lower threat levels. On the other hand, it

engages higher modalities when there is a need for collecting higher quality observations,

e.g., when the threat level is high or at high environmental dynamism levels. The modal-

ity threshold parameter is dynamically changed over time to reduce the time where higher

modalities are deployed as much as possible.

5.5.1.5 Constrained Communication

A large percentage of the energy consumed in sensor nodes occurs during the data commu-

nication phase compared to the energy consumed during processing. The energy needed

to transmit 1 KB over a 100m distance is approximately equivalent to the energy neces-

sary to carryout 3 million instructions at a speed of 100 million instructions per second

(MIPS) [170]. In a low dynamic environment, the sampled data might contain redundant

or insignificant information, thus, there might be no need to communicate such information

to the delegate. Nevertheless, if the sampled data contain the same information for a long

period of time, it might be important to notify the delegate of the persistence of the mea-
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surements. On the other hand, in a highly dynamic environment, changes happen more fre-

quently and communicating such information might be critical to the success of the mission.

As a result, this work proposes a constrained communication algorithm which provides an

on-demand communication in highly-dynamic environments and an on-demand/periodic

combined communication with fused information in case of low environmental dynamism.

Figure 5.7 illustrates the idea behind the proposed constrained communication scheme.

Table 5.2 lists the pseudocode for the constrained communication algorithm.

Figure 5.7: The proposed constrained communication concept.

5.5.2 Modal Logics Formulation

This section provides the energy efficient SM design modelled in the Modal Logics formal

framework [171]. Section 5.5.2.1 provides a brief introduction of the modal logics language

and operators. Section 5.5.2.2 formulates the proposed energy-aware SM using modal logics

and Section 5.5.2.3 provides the joint responsibility formulation of the sensor nodes.

5.5.2.1 Modal Logics Framework

Modal logics is a formal logic primarily developed in the 1960s that extends the classical

propositional and predicate logic to include operators expressing modality. Modal logic

studies reasoning that involves the use of the expressions “necessarily” and “possibly”.

A formal modal logic represents modalities using modal operators. This section gives an

overview of the Modal Logics formal framework in which the model of the SM problem

will be expressed. A complete formal definition of the modal logics language syntax and

semantics can be found in [171].

The operators of the modal logics language have the following meanings: The operator

true is a logical constant for truth. Knowledge is the strongest individual informational at-

titude and always corresponds to facts. In order to represent knowledge in the Modal Logics

language, Know(i, κ) is used to denote that an agent i knows proposition κ. While, Bx(i, κ)
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ALGORITHM: Constrained Communications

1 Inputs: constrainedComm, counter, commThreshold, threatLevel, dynamismLevel

2 Outputs: constrainedComm

3 If constrainedComm is not activated & dynamismLevel is low & threatLevel is low

4 {
5 Activate constrainedComm

6 Set counter to zero

7 Reset commTimer

8 Send sensor information to delegate

9 While sensing the environment

10 {
11 Fuse observation information

12 Increment counter

13 If counter ≤ commThreshold or commTimer expires

14 {
15 Send fused information to delegate

16 Set counter to zero

17 Reset commTimer

18 }
19 If threatLevel is high or dynamismLevel is high

20 {
21 Deactivate constrainedComm

22 Communicate to the delegate on-demand

23 break

24 }
25 }
26 }

Table 5.2: Constrained communication algorithm.
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and Goal(i, κ) mean that agent i has a belief or a goal of κ, respectively. Intend(i, α, κ)

denotes that agent i has adopted intention α to achieve goal κ. The = operator is the first-

order equality. The ∈ operator relates an agent to groups of agents; it has the expected

set-theoretic interpretation, i.e., (i ∈ g) means that the agent denoted by i is a member of

the group denoted by g. The (Agts α g) operator means that the group denoted by g are

precisely the agents required to perform the actions in the action sequence denoted by α.

The A operator is a path quantifier: Aκ means that κ is a path formula that is satisfied in

all the futures that could arise from the current state. The operators ¬ (NOT), ∨ (OR),

and ∧ (AND) have the classical logic semantics, as does the universal quantifier ∀.
Other operators include: Happens α is a path formula that means that the action α

happens next, α;α′ means the action α is immediately followed by α′, α|α′ means either

α or α′ happens next, α? is a test action, which occurs if α is true in the current state, α∗

means the action α is iterated, α µ β means α is satisfied until β becomes satisfied, ♢α
means α is eventually satisfied, �α means α is always satisfied.

5.5.2.2 Modal Logics Energy-Aware SM Formulation

Modal logics has been acknowledged as a formal framework for representing a cooperative

problem solving model [172]. In this section, the logic used to design the intelligent reason-

ing in each sensor is formally formatted in the Modal Logics language. Individual sensor

nodes are designed to have five different informational attitudes: knowledge, beliefs, goals,

commitments, and intentions. The key mental states that control the agents behaviours

are intentions that define local behaviour based on selected goals.

It is assumed that there is a finite set of sensor nodes that cover the VOI uniformly.

These sensors need to achieve a number of conflicting objectives using multiple intention

plans. Let i be any sensor node and g is the group of all sensor nodes, then

∀ i ∈ g . (5.20)

Since any sensory system should be able to collect information about the state of the

environment, the sensors are capable of performing environment monitoring through scan

actions. The scan action is denoted by α and it can be only carried out by members of the

group g,

Agts α g . (5.21)

Each sensor node has an indication of its energy level; let ν represents the local knowledge
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of sensor i that its current energy level ζ is greater than 0,

ν := ♢(know(i, ζ) > 0) . (5.22)

Moreover, by performing the scan action α, the sensor node can establish a belief state

about the presence of abnormality within the VOI. Let ϱ represents the belief state of

sensor i that an abnormal event, χ, might exist in the environment,

ϱ := ♢(Bx(i, χα)) . (5.23)

Let the abnormality evaluation action be denoted by Γ. Using action Γ, the sensor node

can estimate the belief state, ρ, about the presence of a threat within the VOI as

ρ := ♢(Bx(i, χΓ)) . (5.24)

In a surveillance system, the main system goal is to secure the VOI, which can be denoted

by Ψ. To achieve Goal(i,Ψ), an intention plan has to be adopted that defines the sensor

actions under various outcome, which can be given by

Goal(i,Ψ) ⇒ Intend(i, S,Ψ) . (5.25)

Accordingly, sensor i carries out Intend(i, S,Ψ) plan which provides a sequence of actions

to achieve Goal(i,Ψ). The plan is carried out if the sensor node has not exhausted all of

its energy reserve. The sensor node will perform the scan action α followed by formation

of belief ϱ. If the presence of abnormality belief ϱ is true, then sensor i performs the

abnormality evaluation action Γ to form a belief about the presence of a threat ρ such that

if ρ is true, the cue action to the delegate node ς is performed,

Intend(i, S,Ψ) := (� ν ∧ ((α ; (ϱ ? Γ)) ; ρ ? ς))∗ (5.26)

On the other hand, sensor nodes, being battery-powered, have a limited lifetime. To pro-

long the nodes lifetime, an energy-aware sensor has to reason on various energy conserving

strategies. The goal to conserve energy is denoted by ϑ such that Goal(i, ϑ) is achieved by

an intention plan given by

Goal(i, ϑ) ⇒ (� ν ∧ ((Bx(i, ESI) ; (Mx(ESI → (γ, ϖ, ι, o, υ)) ⇒ Intend(i,Λϑ, ϑ)))))
∗

(5.27)

For sensor i to achieve Goal(i, ϑ), the node energy reserve has to be greater than zero, then

the node formulates its belief about the state of the environment and sensor status using
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the ESI, Bx(i, ESI). Based on that belief, the sensor node activates a meta-reasoning

process Mx to decide which energy conserving sub-goal it will adopt, denoted by Λϑ

Λϑ ∈ {γ, ϖ, ι, o, υ} (5.28)

where {γ, ϖ, ι, o, υ} denotes the adaptive sleep, active sensing, dynamic range, multi-

modality, and constrained communications algorithms, respectively.

Reasoning about which and when each goal is adopted is expressed by the goal to

manage the sensor operations and denoted by Υ. Similar to the previous goals, to achieve

Goal(i,Υ), the sensor i should have sufficient battery power to operate. Subsequently, the

sensor node activates a meta-reasoning process, Mx, to reason between securing the VOI

and energy conserving goals followed by activating the ΛΥ plan and carries out the logging

action L

Goal(i,Υ) ⇒ (� ν ∧ ((Mx(ψ , ϑ) ⇒ Intend(i,ΛΥ,Υ))); L))∗ (5.29)

Λϑ ∈ {ψ , ϑ} (5.30)

5.5.2.3 Joint Responsibility Formulation

In a WSN with constrained resources, sensor nodes have to collectively work to maximize

the system success in achieving its goals. The mental state of individual sensor nodes is

defined by their adopted intentions based on their commitment to achieving a joint goal

with specific motivation. The authors of [146,173] have developed the theory of joint inten-

tions that models the cooperative behaviour of a multi-agent system with mutual beliefs

and goals as well as joint intentions and commitments in achieving a system objectives.

Intelligent agents engaged in a cooperative activity based on their mutual beliefs can

adopt joint intentions and joint commitments to the overall system objective. Nevertheless,

each agent still has its own individual commitments to specific local goals. The mutual

beliefs, M-Bx, and mutual goals, M-Goal, shape the social convention by which joint inten-

tions result in joint commitments. A Joint commitment, J-Commit, defines the conditions

under which such commitment can be dropped, and also describes how the agent should

behave towards its fellow team members. Therefore, the joint commitment, J-Commit, is

defined by

(J-Commit a b y pre c) , (5.31)

where a is the team of agents, b is the goal to be achieved, y is the motivation for goal b,

pre is the precondition that has to be initially satisfied, and c is the convention indicating

a termination condition.
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Using the joint intention theory, the collective performance of the sensor nodes in the

proposed energy-aware SM is modelled. Since the main objective of the sensory system is

securing the VOI, a team of sensors g has a joint persistent goal to achieve goal ψ, thus

having a mutual goal (M-Goal(g,Ψ)), by jointly adopting the intention plan S.

M-Goal(g,Ψ) ⇒ J-Intend(g, S,Ψ) (5.32)

The adopted intention plan of individual sensors (J-Intend(g, S,Ψ)) results in a joint com-

mitment to achieve the mutual goal (M-Goal(g,Ψ)):

J-Intend(g, S,Ψ) := (M-Bx g (Agts α g)) ∧ (J-Commit g S (5.33)

♢(Happens(M-Bx g (Does S)) ? Ψ) (ν ∧ ϱ ∧ ρ) (¬ν))

5.5.3 Meta-reasoning and BDI formulation

A sensor may have multiple conflicting local objectives, e.g., monitoring the VOI and

increasing its lifetime. Each of these objectives entails a list of plans that the sensor has

to choose from. In such case, the sensor needs to decide on what to reason on, i.e., the

sensor needs to use meta-reasoning techniques to decide on a reasoning mode. The term

“meta-reasoning” denotes that the system is able to reason about its own operation. Meta-

reasoning allows adaptability in the sensor behaviour and decisions to accommodate both

the dynamic environment changes as well as the changes in its reasoning about operation

itself. Figure 5.8 illustrates the meta-reasoning model.

Figure 5.8: The meta-reasoning model.

Because of the limited sensor node resources, the sensor node has to change its mode of

operation using on-board deliberations on available commitments. The sensors use meta-

reasoning to decide and modify their current commitments based on realtime variations
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in the environment and the current sensors health. The goal of meta-level control is to

improve the quality of decisions by determining what and how much reasoning is needed.

Although meta-level control allows agents to dynamically adapt to the changes, it could

also interfere with ground-level performance. Thus, identifying the decision points that

require meta-level control is of importance to the performance of resource limited nodes.

Figure 5.9 illustrates the sensor goals and commitments that manage the sensor node

operations and highlights the decision points where meta-control is needed. Jadex pro-

vides an architectural framework for deciding how goals interact and how an agent can

autonomously decide which goals to pursue. This process is called goal deliberation. The

current release of Jadex includes a goal deliberation strategy called “Easy Deliberation”,

which is designed to allow the specification of the relationships between goals based on

goal cardinalities [174].
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Figure 5.9: The Energy-Aware SM goals and commitments.

5.6 Simulation Setup and Results Discussion

The simulations presented in this section aim to quantify the performance of the proposed

approach. The scenario adopted in the experiments performed models the problem of
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an airport surveillance and implemented on the Jadex platform. The rest of this section

explains the simulation setup and discusses the simulation results.

5.6.1 Simulation Setup

The layout of the airport used in these experiments is presented in Figure 5.10. The airport

halls are virtually divided by the sensors during the initialization phase into mesh grid cells.

Each sensor has an initial sensing range of the 3× 3 grid cells. The sensors are stationary

with heterogenous modalities and are represented in the graphical user interface by a gray

round object and the delegates by black ones. Each sensor is equipped with a battery

of 2000 power units. The passengers enter and leave the airport randomly. Impulsive

bursts of passenger arrivals and departures are also randomly generated to simulate the

real world. Moreover, the injected targets depart the environment in random times. These

benign targets are represented in the simulation by white and black human-like images.

Figure 5.10: An international airport simplified plan.

The human threats are represented as intelligent mobile agents with sets of beliefs,

desires, and intentions. The detection and tracking of human threats are the focus of the

system. The number of threats vary between 1 and 20 threats. The threats do not depart

the scene for the duration of the simulation and they move all around the airport. The

motion of the threat is set to a pre-specified pattern, however, a random motion pattern

is invoked arbitrarily. The simulation is carried out until all sensors run out of energy and

the surveillance system fails. Table 5.3 lists the simulation configuration parameters used.

Three different approaches were implemented for comparison; the proposed energy-

aware approach denoted by EC-HASM, E-HASM, and centralized. Figure 5.11 shows a
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Table 5.3: Simulation environment setting.
Parameter Value

Area 9× 9 to 36× 36 grid

# Sensors 6 to 144

Battery power 2000 power units

Danger levels 1 levels (Human Threats)

# Threats 1 to 20

Target motion preset pattern (progressive scan)

random change in direction

Direction 4 direction

snapshot of the graphical user interface for the implemented approaches. The EC-HASM

and E-HASM are composed of a group of smart sensor nodes and a group of delegate nodes.

The centralized system shown in Figure 5.11(b) is composed of a group of sensors and a

centralized processing unit represented on the top left side of the simulation environment.

The processing speed of the centralized unit is 10 times faster than that of delegate nodes

in the EC-HASM and E-HASM. A global surveillance of all threats within the VOI is the

main mission of the system. Similar to Chapter 4, it is assumed that the sensor only needs

to know the cell on the grid in which the threat resides to determine the exact location on

the threat. Moreover, it is assumed that by detecting an entity within the VOI, the sensor

can identify its threat level.

 

(a) The Proposed SMF GUI

 

(b) The Centralized GUI

Sensors

Intelligent Sensor

Threat

Passenger [Target]

Centralized server

Delegate

(c) Key

Figure 5.11: The airport surveillance scenario implemented on Jadex Standalone Platform.
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5.6.2 Simulation Results

The results of the proposed energy-aware algorithm is represented in this section. Various

experiments were executed to evaluate the performance of the proposed technique with

respect to varying network size, number of threats, threat agility, environment dynamism,

tracking quality, and energy consumption.

5.6.2.1 Impact of Network size

This set of experiments were performed to evaluate the systems performance with respect

to varying network sizes. The network size varies from 9 × 9 grid cells monitored by 9

sensors and 1 delegate to 36×36 grid cells monitored by 144 sensors and 18 delegates. The

threats within the VOI are set to 5 threats and their agility is set such that they move in a

progressive scan manner with no sudden changes in direction or location. The environment

dynamism is set to the maximum value, i.e., the changes in the environment happens fast.

A WSN needs a certain number of sensor nodes to be considered functional and able

to perform its tasks. However, the number of sensor nodes needed is highly dependent on

the application requirements and network topology. In this thesis, it is assumed that the

network is considered alive and is able to function with at least one operational sensor.

Thus, the network lifetime, in this work, denotes the lifetime of the network from the start

of the initialization phase until the last sensor to die in the network.

Figure 5.12 plots the overall network lifetime versus the varying grid sizes for the

different schemes tested. The results show that the overall network lifetime increases as the

network size increases for all three approaches studied. However, the network lifetime for

the EC-HASM increases with a larger slope than that of the E-HASM and the centralized

approaches. Moreover, it can be noted that the EC-HASM network lifetime is, in the worst

case, 10× larger than the overall network lifetime for the centralized SM approach. On

the other hand, the network lifetime of the E-HASM is only double that of the centralized

on average. This is attributed to the adaptive energy-aware operation on the EC-HASM

compared to that of the E-HASM and the centralized approaches.

Each sensor node dissipates its energy independently, thus, the sensors energy reserves

are consumed at a different rates. When the energy reserve of any sensor node gets depleted,

gaps may appear in the sensing coverage of the sensor network. As a result, degradation

is witnessed in the overall system ability to detect threats and monitor their behaviour.

In this context, the sensor lifetime signifies the lifetime of the first sensor to die in the

network. Figure 5.13 plots the sensor lifetime versus the varying grid sizes. Similarly, it
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Figure 5.12: The network lifetime over varying network sizes.

can be observed that the sensor lifetime increases as the network size increase in all the

three approaches and EC-HASM outperforms the other two techniques tested. Also, the

increase in lifetime is more significant for the EC-HASM compared to the E-HASM and

centralized SM. This is attributed to the adaptive energy-aware operation of the EC-HASM

and the cooperative design of the EC-HASM sensor nodes .

Figure 5.14 shows the ratio of the communication messages exchanged per unit time

versus the varying grid size. It can be noted that the communication overhead ratio

increases as the network size increases for both the E-HASM and the centralized approaches

while remaining almost constant for the EC-HASM approach. Moreover, the EC-HASM

has lower communication overhead compared to both the E-HASM and the centralized

SM. In the worst case scenario, the communication overhead of the centralized approach

is 100× that of the EC-HASM. This is attributed to the reduced communication of the

EC-HASM approach which is a result of the distributed processing, the localized decision

making, and the constrained communication scheme.

5.6.2.2 Impact of Number of Threats

This set of experiments are carried to investigate the impact of the number of threats on

the system performance. The setup is formed using 9× 9 grid monitored by 9 sensors and
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Figure 5.13: The sensor lifetime over varying network sizes.
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Figure 5.14: The communication overhead over varying network sizes.

1 delegate, the number of threats within the VOI vary between 1 and 20. The threats

agility is set such that there is no sudden changes in their movement. The environment

dynamism is set to the maximum value.
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Figure 5.15 plots the overall network lifetime versus the number of threats. From Figure

5.15, it can be noted that the overall network lifetime remains almost constant with the

number of threats for the E-HASM approach while the overall network lifetime slightly

decreases for the centralized approach. This is attributed to the distributed nature of the

E-HASM design, as well as, the reduced communication overhead of the E-HASM compared

to the centralized approach. On the other hand, the lifetime of the EC-HASM tends to

decrease with increasing the number of threats. This is attributed to the increasing threat

level and environment dynamism as the number of threats increase, which leads the sensor

nodes to become active for longer periods of time. Despite that reduction in the network

lifetime experienced by the EC-HASM, its network lifetime is 10× that of the centralized

in worst-case and 5× that of the E-HASM SM.

1 5 10 15 20
0

2

4

6

8

10

12

14

16
x 10

4

# Threats

N
et

w
or

k 
Li

fe
tim

e 
(s

)

 

 

Centralized E−HASM EC−HASM

Figure 5.15: The network lifetime versus increasing number of threats.

In Figure 5.16, the sensor lifetime is plotted versus the number of threats. The results

show that the EC-HASM, the E-HASM, and the centralized SM approaches exhibit similar

trends to the network lifetime plots in Figure 5.15. It should be noted that for the EC-

HASM, the sensor lifetime decreases as the number of threats increase. However, the sensor

lifetime for the EC-HASM is more than 15× and 8× longer than that of the centralized

SM approach in best and worst cases, respectively.

The communication overhead plotted in Figure 5.17 depict the near-linear relationship

between the number of threats and the communication messages exchanged for the cen-
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Figure 5.16: The sensor lifetime versus increasing number of threats.

tralized and the E-HASM approaches, with the E-HASM experiencing significantly lower

communication overhead compared to that of the centralized approach. This is attributed

to the distributed nature, localized operation, and the on-board processing of the E-HASM.

On the other hand, the EC-HASM SM yields an even lower communication overhead and

remains almost constant as the number of threats increases, mainly because of the reduced

communication overhead due to the constrained communication scheme employed in the

EC-HASM.

5.6.2.3 Impact of Threat Agility

This set of experiments are carried to investigate the effects of increasing the threat agility

levels on the system. The agility in this context refers to how frequent a threat changes

its direction while moving throughout the VOI. The setup is formed using 9× 9 grid cells

monitored by 9 sensors and 1 delegate, the number of threats within the VOI set to 5

threats and the environment dynamism is set to the maximum value.

Figure 5.18 plots the overall network lifetime versus the threat agility. The results in

Figure 5.18 show that the overall network lifetime remains almost constant as the threat

agility levels increase for the E-HASM and centralized approaches, while the overall network

lifetime slightly decreases for the EC-HASM approach. However, the network lifetime of
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Figure 5.17: The communication overhead versus increasing number of threats.

EC-HASM is on average 15× and 9× that of the centralized and the E-HASM approaches,

respectively. Hence, it can be concluded that the EC-HASM scheme is flexible enough

to adapt to the environmental changes to prolong the network lifetime by utilizing the

environment characteristics.

In Figure 5.19, the sensor lifetime is plotted versus the threat agility. Similar to the

trends of the network lifetime graph, Figure 5.19 shows that the sensor lifetime remains

almost constant as the threat agility increases for the E-HASM and centralized approaches,

while the sensor lifetime decreases for the EC-HASM approach. However, the sensor life-

time of EC-HASM is 9× and 7× that of the centralized and E-HASM approaches in the

worst case.

From the plot of the communication overhead versus the the threat agility in Fig-

ure 5.20, it can be observed that the average communication overhead for the centralized

approach slightly increases as the threat agility level increase. On the other hand, the

communication overhead of the E-HASM and the EC-HASM approaches are almost con-

stant as the threat agility increases. Moreover, it should be noted that the communication

overhead for EC-HASM is on average 30× and 3.5× less than that of the Centralized and

E-HASM schemes, respectively.
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Figure 5.18: The network lifetime versus increasing levels of threat agility.
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Figure 5.19: The sensor lifetime versus increasing levels of threat agility.

5.6.2.4 Impact of Environment Dynamism

This set of experiments are carried to investigate the effects of increasing the environment

dynamism on the system. The dynamism level stands for the frequency by which changes
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Figure 5.20: The communication overhead versus increasing levels of threat agility.

are inflected on the environment, as well as the speed by which threats and targets moves

within the VOI. The setup was formed using 9 × 9 grid monitored by 9 sensors and 1

delegate, the number of threats within the VOI is 5 threats and the agility level is set to

minimum value.

Figure 5.21 plots the overall network lifetime versus the environment dynamism, from

which it can be deduced that the overall network lifetime remains almost constant with

the increasing environment dynamism for the EC-HASM approach while it exhibits slightly

reduction for the E-HASM and the centralized SM approaches. The network lifetime of

the EC-HASM is almost 13× and 6× that of the centralized and E-HASM approaches,

respectively. This is attributed to the adaptive nature of the EC-HASM to the environment

and threat dynamics and the onboard threat evaluation.

In Figure 5.22, the sensor lifetime is plotted versus increasing levels of environment

dynamism. From Figure 5.22, it can be noticed that the sensor lifetime exhibits a slight

increase with the environment dynamism for the EC-HASM approach while a minor de-

creases in the sensor lifetime is witnessed in the E-HASM and the centralized SM ap-

proaches. The sensor lifetime of the EC-HASM is on average 13× and 7× that of the

centralized and E-HASM approaches, respectively. This is attributed to the cooperation

between the sensor nodes, the onboard threat evaluation, and t.

The communication overhead for each of the tested schemes is plotted in Figure 5.23
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Figure 5.21: The network lifetime versus increasing levels of environment dynamism.
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Figure 5.22: The sensor lifetime versus increasing levels of environment dynamism.

versus the environment dynamism. From Figure 5.23, it can be noted that the number

of communication messages exchanged in the centralized SM approach increases linearly

with the environment dynamism. Moreover, the E-HASM scheme suffers from a minor
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increase with the dynamism levels. On the other hand, the EC-HASM communication

overhead remains constant with the dynamism level. In addition, the EC-HASM has lower

communication overhead compared to the E-HASM and the centralized approaches. This

is attributed to the constrained communication scheme that is designed to take advantage

of the increase environment dynamics and adapt according to the changing environment

characteristics.
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Figure 5.23: The communication overhead versus increasing levels of environment dy-

namism.

5.6.2.5 Tracking Quality

The tracking quality of the EC-HASM, the E-HASM, and the centralized schemes are

plotted in Figure 5.24 versus time. From Figure 5.24, it can be noted that even though

the centralized approach provides initially high tracking quality, it fails to maintain such

tracking quality and dies relatively quickly. E-HASM shows a better ability to maintain

higher tracking quality than the centralized approach, however, the EC-HASM is able to

achieve high tracking quality for longer periods of time compared to the other approaches.

Figure 5.25 plots the overall tracking quality of the EC-HASM compared to that of the

E-HASM and the centralized schemes versus the network size. From Figure 5.25, it can be

deduced that even with increasing the network size, the EC-HASM is still able to achieve
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Figure 5.24: Tracking quality of EC-HASM, E-HASM, and centralized SM versus time.

higher tracking quality compared to those of the E-HASM and centralized approaches.

This is attributed to the prolonged lifetime of sensors in EC-HASM system that leads to

a full network coverage for a long period of time, thus, leading to better tracking.

5.6.2.6 Energy Consumption

The limited sensor resources dictates that the nodes are required to efficiently manage their

energy consumption. Figure 5.26 plots the energy dissipation of the EC-HASM compared

to that of the E-HASM and the centralized approaches. From Figure 5.26, it can be noted

that the centralized approach dissipates energy in a fast linear steep manner. While the

E-HASM approach dissipates energy in slower rate than the centralized, the EC-HASM

dissipates energy in a significantly slower manner, 12× and 6× slower, than that of the

centralized and E-HASM approaches, respectively.

5.7 Summary

With the limited power reserve of the sensor nodes, it is imperative to efficiently manage

the sensors resources to prolong the lifetime of such networks. This chapter introduces

an autonomous energy-aware SM approach that is carried onboard of the sensor node in
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Figure 5.25: Tracking quality of EC-HASM, E-HASM, and centralized SM versus network

size.
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Figure 5.26: The energy consumption of EC-HASM, E-HASM, and centralized SM.

a distributed manner. A team-theoretic formulation of smart sensor nodes based on the

Belief-Desire-Intention (BDI) model is proposed as a mechanism for effective collaborative
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decision-making. The proposed approach draws upon the initial design of the compo-

nents of the E-HASM introduced in Chapter 4. A novel team-theoretic formulation is

developed that manages the sensory system in an energy-ware manner using 5 folds: (i)

adaptive sleep, (ii) active sensing, (iii) dynamic sensing range, (iv) multi-modality, and

(v) constrained communication algorithms. The results shows the merits of the proposed

approach compared to the E-HASM and the centralized schemes in terms of energy con-

sumption, adaptability, and network lifetime. The main contribution of this chapter can

be summarized as:

• Design of an autonomous energy-Aware SM using a team-theoretic BDI formulation,

• Distributed reasoning and decision-making scheme that is locally computed on-board

of the sensor at realtime,

• A heuristic metric called Energy Saving Index (ESI) to provide an estimation of the

sensor node status and its need/ability to conserve energy, as well as, capture the

environment dynamics.

• An adaptive sleep algorithm that dynamically evaluates the sensor node probability of

sleeping at the realtime and calculates the sleep interval according to the environment

state and sensor health.

• An active sensing scheme that controls the frequency by which these sample data are

collected providing significant energy saving.

• Dynamic sensing range approach aims to autonomously adjust the node sensing range

taking into consideration the environment dynamics, threat level, and the nodes

energy reserve.

• An adaptive multi-modality scheme that changes the modality level at the individual

node level in response to the increase in the environment dynamics and/or the threat

level.

• Constrained communication algorithm that provides an on-demand/periodic com-

bined communication based on the environment dynamism.

• Formal design of the energy-aware SM is presented using the logic modals framework,

• Joint intention modelling for the collective behaviour of the sensor nodes,
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• Use of meta-reasoning to decide and modify the sensor adopted commitment based

on the variations happening in realtime in the environment as well as the current

sensor health.

• Adaptive operation of the sensor node to the environment dynamics, threat level,

and the availability of its own resources.

The distributed decision-making process that is proposed in this chapter can be enhanced

by defining means of collaborate control to maximize the system utility in reaching its

objectives. The following chapter addresses the design of collaborative operation to better

manage the system resources.
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Chapter 6

Collaboration for Enhanced Sensing

Each individual sensor in a WSN has a partial view of the environment, but collectively

the network monitors the entire VOI. Therefore, a WSN that allows the collaborative

operation of the sensor nodes can result in an improvement in the system performance.

Moreover, a reduction in the variance of the different sensors lifetime can also be achieved

simply because the workload can be balanced among the different nodes. This chapter aims

to design such a sensor network scheme through proposing a stochastic decision-making

scheme using POMDP formulation that represents the delegation decision making. The

chapter is organized as follows: Section 6.1 provides an introduction of the proposed work.

In Section 6.2, the collaborative and context aware scheme is proposed. The decision-

making problem, as well as the SM formulation as a POMDP problem and the optimal

policy calculations, are discussed in Section 6.3. Section 6.4 illustrates the performance of

the proposed SM and its simulation results. Finally, Section 6.5 concludes the chapter.

6.1 Introduction

In a smart sensor network, each sensor is responsible for the independent reasoning and

decision-making that affects its state and, consequently, the overall system state. Individual

sensors form a partial view of the VOI, while combining several sensors views allows the

network to build a complete picture of the entire VOI. Therefore, if sensor nodes are able to

collaborate together to form a complete view of the dynamic scene, the performance of such

a network can improve significantly. By taking into consideration that a phenomenon of

interest is usually localized, only a subset of the sensor nodes needs to collaborate to get a

complete view of the phenomenon and there is no need to share all the sensors information
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among the whole network. The E-HASM, proposed earlier in Chapter 4, is structured in a

localized manner forming federations among the sensor nodes and the collective outcome

of sensors in a delegation affects the overall mission objective.

In this chapter, we introduce a means of collaborative operation in the sensor network to

maximize the system ability in reaching its objectives. Since sensor networks are usually

battery-operated, then the biggest challenge faced in SM is making decisions regarding

local and global sensing strategies under time and energy constraints, considering the large

volume of data dealt with. The proposed collaborative scheme for the sensor members of

a delegation can enhance the quality of the system performance and reduce the deviation

of the sensors lifetime by balancing the workload among the network sensors. The main

focus of the newly developed approach is to maximize the information reliability of the

sensor sources in a delegation in an energy-efficient manner.

6.2 The Proposed Context-Aware and Collaborative

Scheme

The proposed E-HASM architecture models the federations in the form of holarchies where

each holarchy is an intelligent entity in itself. Such holarchies achieve their intelligent

operation using collaborative behaviour. In pervasive surveillance context, there are various

motivations for the sensors of a delegation to collaborate, such as: balancing the workload,

reduce the deviation in the sensors lifetime, prolong the lifetime of the network, maximize

the network coverage, and improve the information reliability and surveillance quality.

By using the environment statistics collected over all the regions of a delegation,

context-aware knowledge can be formulated. Such context-aware knowledge of the en-

vironment results in an overall improvement of the collective operation of the sensors and

enhanced adaptability to rapidly changing environment. The delegation statistics and en-

vironment dynamics can define the collaborative strategies needed to enhance the system

performance. Since the phenomena tend to be localized, the delegation can be divided into

smaller regions. Each region is formed of a set of sensors that, at least under their max-

imum sensing settings, have overlapping sensing ranges. The delegation statistics can be

collected by fusing the information about the environment dynamics from each region. An

example of a delegation is illustrated in Figure 6.1(a) and Figure 6.1(b) depicts a delegation

divided into four different regions.
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(a) An example of a delegation (b) An example of delegation divi-

sion

Figure 6.1: An example of a delegation and its division.

6.2.1 Delegation Dynamism and Threat Level

Each sensor node collects information about its VOI and estimates the dynamism level

of the environment as well as the threat level. In this work, the environment dynamism

level for each region is computed using a weighted synthesis of its sensor estimates. The

weighted average of the dynamism levels ψ of all the sensors in the region Ri is computed

as

ψRi = E[ψ] =

∑N
j=0wj ∗ ψj∑N

j=0wj

, (6.1)

where wj is the weight of the dynamism level of sensor j calculated based on the standard

deviation to the mean value of the dynamism level of the region. wj is formulated as

wj =
1

σ2
Ri

=
N − 1∑N

j=0 (ψmean − ψj)2
, (6.2)

where

ψmean =

∑N
j=0 ψj

N
. (6.3)

The total dynamism level ψD of delegation D is computed using

ψD = max(ψRi) : ∀Ri ∈ D . (6.4)

The threat level defines the criticality of the dynamic scene of the VOI. Similar to the

dynamism level, the threat level ρ of each region is Ri can also be computed using the

weighted synthesis in which the higher weights are given to the higher threat levels

ρRi = E[ρ] =

∑N
j=0wrj ∗ ρj∑N

j=0wrj
, (6.5)
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where wrj is the weight of the estimated threat level of sensor j calculated based on the

standard deviation to the largest value of the threat level of the region and is given by

wrj =
1

σ2
Ri

=
N − 1∑N

j=0 (ρmax − ρj)2
. (6.6)

The total threat level ψD of delegation D is computed using

ρD = max(ρRi) : ∀Ri ∈ D . (6.7)

6.2.2 Delegation Health

The limited energy reserve of the battery-operated sensor nodes limits the lifetime of the

network, affects the network coverage, and affects the quality of the surveillance process.

Therefore, the collective operation of a delegation has to be modified based on the energy

reserve available among the member sensors. The delegation health is an indicator of

the energy reserves within the delegation. The delegation health is computed using the

member sensors’ energy index, ϕ, introduced in Section 5.5.1. Since sensors that belong

to each region are located in close proximity with partially overlapping sensing ranges, the

energy index of a region Ri is calculated as the mean value of the various energy indices

of its sensor nodes,

ϕRi = E[ϕ] =

∑N
j=0 ϕj

N
. (6.8)

The delegate heath represents the percentage of the energy reserve within the delegation to

maintain the VOI fully monitored, that is, to achieve full-coverage. Therefore, the delegate

health is computed as

ϕDh = min(ϕRi) : ∀Ri ∈ D . (6.9)

6.2.3 Information Reliability Measurement

Sensor nodes that are close in proximity may have overlapping sensing ranges. As a result,

several sensors may acquire observations about the same phenomenon happening within

their range. The quality and accuracy of these observations may vary between different

sensors, due to several factors that include: relative sensor location, noise, transducers type,

partial or full occlusion, etc. The global knowledge about the sensor sources, properties,

surrounding environment, and the nature of any particular credibility model can provide

some estimation about the reliability of the sensor nodes as information sources, and hence
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the accuracy of their observations. The source reliability has been an area of active research

for the last decade under the information fusion umbrella, where the belief function of a

specific phenomenon is modified based on the estimated reliability of its sensor sources

[17,175].

The majority of sensor management literature is based on an optimistic assumption

about the reliability of the underlying models producing the beliefs associated with im-

perfect data. Nonetheless, different models usually have different reliabilities and are only

valid for a specific sensing range. A recent trend in data fusion has addressed this issue

mostly by accounting for the reliability of beliefs. This has been accomplished through

introducing the notion of a second level of uncertainty, i.e., uncertainty about uncertainty,

represented as reliability coefficients. The main challenge arises in the estimation of these

coefficients.

Estimating the reliability coefficients of various sensor sources is a challenging task, and

the problem has not been widely studied [17]. Most of the approaches used to estimate

reliability coefficients that have been proposed rely on domain knowledge and contextual

information [176, 177], learning through training [178, 179], possibility theory [180, 181],

and expert judgments [182,183].

The challenges in estimating the reliability coefficients stem from the nature of the

factors that affect the reliability sources. The reliability coefficients has to encapsulate

contextual information about the sensor during the measurement acquisition, as well as

the experts judgement, and the estimated accuracy of the setting by which the sensor

has acquired the information. Furthermore, these coefficients have to be recalculated in-

between the different sensor measurements whenever the sensor settings or environment

dynamics change. As a result, the extensive measurements acquired by a single sensor

makes the task quite expensive.

As discussed in Section 5.3, the smart sensor node may have various sensing settings,

modalities, ranges, and frequencies, to name a few, by which the sensor can interface

with the environment. Every sensor setting affects the quality, reliability, and credibility

of the acquired observation in a different manner. The state-of-the-art methodologies

for estimating the reliability coefficients in the literature ignore the sensor setting as an

affecting parameter in the reliability calculation.

This work proposes a light-weight heuristic approach for estimating the reliability co-

efficients of the sensor sources that extends the available coefficients estimation techniques

to include the impact of sensor settings and estimated environment dynamics. Figure 6.2

illustrates an overview of the proposed reliability estimation process which is modelled

127



as a closed-loop process; such that the sensor management module can tune the sensing

transducers to increase the reliability of the acquired information. Moreover, the proposed

approach is modular enough to be fused with any of the state-of-the-art models, used to

estimate the reliability coefficients, by extending the reliability coefficient calculation to

include the sensor and environment considerations. Figure 6.3 shows a high-level diagram

of the proposed model.

Environment Sensor

Data Fusion

Reliability 

Assessment 

Sensor 

Management

Figure 6.2: Proposed reliability closed loop overview.

Figure 6.3: The proposed reliability model.

Based on the sensor operation and characteristics model discussed in Section 5.3, the

sensor node can control a number of the parameters that define the various sensing settings;

modality, sensing range, and sensing frequency. The relationship between these parameters

and the source information reliability index is defined as

Rels ∝ 1

η
,
1

τ
, M,

1

ψ
, (6.10)
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where η is the sensing range, τ is the sensing frequency, M is the sensing modality, and ψ

is the environment dynamism level. Therefore, the proposed reliability index is given by

Rels = e−c∗( η
ηmax

∗ τ
τmax

∗ Mmax
M

∗ ψ
ψmax

) , (6.11)

such that 0 ≤ Rels ≤ 1 and c is a scalar constant. Figure 6.4 plots the reliability index

versus the dynamism level.
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Figure 6.4: The proposed source reliability index versus the dynamism level.

6.2.4 Delegate Factor and Collaborative Algorithm

In Chapter 5, an Energy Savings Index (ESI) is proposed to model the sensor node status

and its need/ability to conserve energy. According to the ESI formulation in Equation

(5.15), the sensor node modifies its current setting to adapt to the changes in its resources

and the environment. In Equation (5.15), the ESI is scaled using variable λ called the

delegate factor. The delegate factor is the parameter that weights the ESI formulation and

accordingly affects the sensor decision on its alternate sensing strategies. In this Chapter,
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the delegate node uses the factor λ to tune the sensing operation of the sensor nodes within

its delegation, such that 0 < λ ≤ 1. Figure 6.5 shows the effects of varying the delegate

factor on the ESI.
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Figure 6.5: The effect of changing the delegate factor on the ESI.

To make decisions on alternate management strategies, the delegate node has to be

aware of the status of its sensor members and their estimated environment dynamics.

Consequently, each sensor node appends a 16-bits codeword that represents the current

sensor setting and its estimated VOI characteristics to every cue message sent from the

sensor node to the delegate node. Figure 6.6 shows the proposed 16-bit codeword and

Table 6.1 provides an explanation of each parameter in the sensor status codeword. When

any given delegate node receives the sensor codeword, it reasons whether to tune/overwrite

the sensor current setting and evaluates the estimated gain versus the communication cost.

The delegate decision can result in the delegate node sending an acknowledgement packet

with the delegate factor λ appended to it, as shown in Figure 6.7(a), or deciding not to

change the sensor current settings, as shown in Figure 6.7(b).
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Figure 6.6: Proposed message format between the delegate and sensor nodes.

Table 6.1: An explanation of parameters of the sensor status codeword
Parameter # bits Meaning Value

CT 1 bit Cooperative Tracking 1: activated, 0: otherwise

CC 1 bit Constraint communication 1: activated, 0: otherwise

Batt 2bits Energy reserve 00: dead, 01: low, 10: medium, and 11: high

Thr 2bits Sensor estimated threat level 01: low, 10: medium, and 11: high

Dyn 2bits Sensor estimated dynamism level 01: low, 10: medium, and 11: high

Rng 2bits Sensing Range 01: small, 10: medium, and 11: large

Tau 2bits Sensing Frequency 01: small, 10: medium, and 11: large

Mod 2bits Sensing Modality 01: low, 10: medium, and 11: high

Slp 2bits Sensor entering sleep mode 11: sensor sleeping, otherwise: active

On-board sensor 

processing

Formulate msg & append 

codeword to outgoing cue

On-board delegate 

processing

Delegate  Factor

(a) Scenario 1

On-board sensor 

processing

Formulate msg & append 

codeword to outgoing Cue 

On-board delegate 

processing

(b) Scenario 2

Figure 6.7: Proposed communication model.

6.3 Stochastic Decision Making

The sensor management problem can be viewed from higher levels of abstraction as a

decision-making problem. The decision-making process produces a final choice that can be

regarded as an outcome of a reasoning process leading to the selection of a course of actions
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among several alternatives [19]. In sensor management systems, the information collected

by the sensors is used to design the activities that change how the underlying systems

evolve over time [184]. Since the state of each sensor changes over time depending on the

performed actions, the sensor management problem is characterized by decisions that are

made sequentiality over time. Moreover, the sensor observations may have some degrees of

uncertainty [185], thus deeming the decisions made based on these sensor observations non-

deterministic. Since each subsequent decision is made based on the previous observations,

the outcome of these decisions is also uncertain. It should be noted that the choice of

actions, i.e., decisions, is subject to some system constraints. Therefore, to maximize the

outcome of each decision and achieve the overall system objective, the problem can be

viewed as an optimization decision-making problem under uncertainty.

In such an application, the theory of Partially-Observable Markov Decision Processes

(POMDP) has received much attention as a natural framework both for modelling and solv-

ing complex structured decision problems [36,186]. POMDPs [187] provide a mathematical

framework for modelling decision-making in situations where outcomes are uncertain and

under the control of a decision maker. A POMDP is a controlled dynamical process use-

ful in modelling a wide-range of resource control problems [36]. Hence, the POMDPs are

a suitable candidate for the decision-making operation in the proposed E-HASM on the

delegate-level.

From a problem solving perspective, the system encompasses different sensors that are

modelled as a set of utility maximizers that inhabit some kind of POMDP. The current

state in a POMDP summarizes the statistical information needed to predict the evolution

of future states, thus, satisfying the Markovian property. This assumption is satisfied

by the operation of the proposed approach. The current state of the federation, such as

the remaining battery charge and threat level, represents sufficient information to predict

the future states without referring to previous states. In SM, it has to be noted that

actions may affect the evolution of the state of the dynamical system or the nature of

the observation acquired. POMDPs model the state evolution dynamics of a stochastic

system based on the choice of a certain action from the available set of actions that invoke

such evolution. The procedure of choosing such an action is called an action policy. The

objective of the work done in this Section is to derive an optimal action policy over the

system state distribution that maximizes the system gain.

The proposed mathematical formulation for the POMDP model of the delegate nodes

decision-making operation is based on the following assumptions:
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• Sensor nodes operation: The operation of sensor nodes is an important factor in

the effectiveness of the overall system performance. The work in this Chapter adopts

the sensor operation model discussed in Section 5.3. It is assumed that when a target

is detected, the current location of the target is known by the sensor.

• Sensor energy consumption model: Maximizing the battery lifetime of sensor

networks is an essential requirement for the operation of such networks because of

their dependence on battery power. As a result, sensor node are required to operate

under the lowest energy consumption needed to achieve the required performance.

This Chapter adopts the sensor energy model in Section 5.4.

• Sensor motion: All sensors are assumed to be at fixed locations, thus, there is no

energy lost in any sensor movements. However, as a future work, sensor mobility will

be considered.

• Target motion: Targets are assumed to be mobile in a 2D plane, such that the

ground targets move on the ground plane, while any flying targets are assumed to

fly at a constant altitude. Moreover, targets are assumed to move in one of four

possible directions; +x, −x, +y, and −y, at any time instance. In the mathe-

matical formulation used in this work, there is no predefined target mobility model

assumed. However, in the simulation and experimentation, different mobility models

are adopted.

6.3.1 Problem Formulation using POMDP

In this section, a brief introduction of the POMDP is given and the mathematical for-

mulation of the problem as a POMDP is described. POMDPs are defined as controlled

stochastic processes satisfying the Markovian property and assigning reward values to state

transitions [188]. A POMDP is a generalization of Markov Decision Processes (MDP) to

the situations where the system states are not fully observable. POMDPs are highly com-

plex compared to the MDP, thus rendering exact solutions virtually intractable. To specify

a POMDP model, a tuple (S,A,Ω, T, P,O,R, b0) needs to be specified, where:

• S is the set of states (the state space) in which the processes evolution takes place,

• A is the set of all possible actions that control the state dynamics,
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• Ω is the set of observations (the observation space) which can map to one or more

underlying states,

• T is the set of time steps where decisions need to be made,

• P () is the state-transition probability function specifying the next-state distribution

given an action taken at a current state,

• O() are observation probabilities,

• R() is the reward function defined on state transition (being in a given state and

taking a given action),

• b0 is an initial probability distribution over the finite set of states.

As shown in Figure 6.8, at each time t ∈ T , the agent does not know the current

state st ∈ S but can only know a partial view of it as an observation ot ∈ Ω [188]. This

observation is given by the observation function O. In a partially observable environment,

observations are probabilistically dependent on the underlying environment state [189].

Therefore, O : S × A → ∆(Ω) is the probability that observation ot will be recorded

after an agent performs action a ∈ A and lands in state st, is given by

O(st, a, ot) = Pr(Ωt = ot|St = st, A
t = at) . (6.12)

A1 A2 A3 A4 A5

O1 O2 O3 O4 O5

S1 S2 S3 S4 S5

R1 R2 R3 R4
R5

...

Figure 6.8: POMDP Graphical Model.

The reward is an award received by the system when action a is chosen and results in

the transformation of the system state from state sk to sk+1. The reward function R(sk) is

a tool to specify priorities in achieving the system goals, and weights are used to represent
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these priorities. Moreover, the rewards function can also be penalized to represent the cost

of a certain action performed or states achieved. The reward is normalized between [0,1]

using

R =
R + C

Rmax −Rmin

. (6.13)

The theory of POMDP does not actually require the set of states, actions, and obser-

vations to be finite. However, in the proposed modelling for the delegate SM problem,

the number of states, actions, and observations are finite, while the time horizon in our

problem modelling is assumed to be infinite. The uncertainty in our knowledge of the

states is due to the stochastic nature of the problem and the probabilities associated with

the various sensor observations. Furthermore, the proposed POMDP model is assumed to

be stationary.

Generally, the main objective of a POMDP system is to calculate the optimal course of

actions in an uncertain environment based on the history of its sensory inputs. This work

assumes an infinite horizon discounted sum of rewards model. The system behaviour is

therefore determined by its policy, which in its most general form is a mapping from the

set of belief states to actions

π : B → A . (6.14)

The expected policy value is defined as the expected value of system trajectories induced

by the policy

V π(b) = R(b, a) + γ
∑
o′

Pr(o′|b, a)V π(bao′) . (6.15)

The value function can be represented as a number of piecewise linear and convex hyper-

plane, as shown in Figure 6.9.

In many application domains, the state space and action space may be very large. This

usually arises due to one of two common reasons: discretization of continuous variables

into many values or states/actions defined by the joint assignment of several variables

[190]. POMDPs with states and actions defined by several variables are often referred

to as factored POMDPs because the transition function typically factors into a product

of conditional probability distributions. Due to the size of the SM problem, the factored

representation of the POMDP is used to model the SM decision-making process. In this

work, we propose two models for the POMDP formulation; a sensor-centric and a region-

centric model, where the stochastic decision-making process using POMDP is performed

on-board of the delegate node. The objective of both models is to derive an action policy
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Figure 6.9: Piecewise convex value function.

that can refine the collective operation of the federation of the delegate. In the rest of this

section, both models are discussed in more detail.

6.3.1.1 Sensor-Centric Model

In this model, the delegate node is responsible for all computations to derive the action

policy based on all the sensor members settings and VOI dynamics. The model allows the

delegate to perform sensor-centric rather than delegation-centric computations.

6.3.1.1.1 States: In the surveillance problem, the system state are modelled as a set

of observations whose values describe the state of the environment. Hence, the state s can

be described as a multi-variant random variable X = (X1, ..., Xn). The state variables for

each sensor i are:

• Sensor-Sleeping (Slpi): a binary variable that is set to one when the sensor enters the

sleep-mode. Based on the sensor decision-making design discussed in Chapter 5, the

sensors by default aim to conserve energy and reduce power consumption. It should

be noted that this work assumes that the sensor does not experience any energy loss

during sleep mode;

• Modality (Modi): an integer variable that represents the level of resolution used by

the sensor nodes to acquire the observations;

• Active-Sensing (Taoi): an integer variable that reflects the environmental observa-

tions acquisition frequency of the sensor nodes;
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• Sensing-Range (Rngi): an integer variable that models the sensing range of the sensor

nodes;

• Constrained-Communication (CCi): a binary variable that reflects the enabling of

the constrained communication algorithm in the sensor on-board decision-making;

• Cued (Qi): a binary variable that is set to one when the sensor receives a cue message

that directs the sensor to a coming threat;

• Dynamism-Level (ψi)): an integer variable that indicates the level of environment

dynamics computed by the sensor nodes;

• Threat-Level (ρi): an integer variable indicating the threat level within the VOI of

sensor i. The threat level vary according to the danger imposed on the area under

surveillance;

• Information Reliability (Reli): an integer variable that models the reliability of mea-

surements acquired by the sensor source;

• Energy Autonomy (ϕi): an integer variable that reflects the remaining energy level

in the sensor battery;

All of the integer variables above (Modi, Taoi, Rngi, ψi, ρi, Reli, ϕi) are allowed to take

only three values, i.e., low, medium and high, to reduce the size of the state space. Thus,

the state sik of a single sensor i at time k is goven by

sik = [Slpik,Modik, Tao
i
k, Rng

i
k, CC

i
k, Q

i
k, ψ

i
k, ρ

i
k, Rel

i
k, ϕ

i
k] . (6.16)

Since each region is formed by sensors that are close in proximity and therefore, can

collaborate to get a better estimation of the environment and prolong the network lifetime,

the region state sRj
k ∈ S is represented by the vector

sRj
k = [ ⃗Slpk, ⃗Modk, ⃗Taok, ⃗Rngk, ⃗CCk, Q⃗k, ψ⃗k, ρ⃗k, ⃗Relk, ϕ⃗k] , (6.17)

where the vector representation indicates the respective values of the states for all sensors

within the specific region j at time k.
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6.3.1.1.2 Observation Space: The observation space Ω represents the set of observa-

tions that can model the underlying state of the environment. In the sensor-centric model,

the delegate node estimates the underlying state of sensor i with partial observability using

an acquire set of observations:

• Estimated Reliability (r̈i): an integer variable representing the estimated information

reliability of the sensor source;

• Estimated Threat Level (ẗi): an integer variable indicating the estimated threat level

within the VOI;

• Estimated Dynamism Level (ψi)): an integer variable that indicates the level of

environment dynamics computed by the sensor nodes.

All the aforementioned variables are limited to only three values, i.e., low, medium, and

high, to reduce the problem size.

6.3.1.1.3 Action: All the possible actions that the sensor node can perform are rep-

resented in the action space denoted by A. In the proposed POMDP modelling of the

delegate decision-making in the pervasive surveillance problem, the set of actions A is

composed of:

• Decrease-Tao (Γi
τ ): is the action by which the sensor i increases the frequency by

which it acquires the observations from the environment.

• Increase-Mod (Γi
M): is the action by which the sensor i increases the sensing modality

by which it observes its sensing range to identify any targets within its vicinity.

• Increase-Rng (Γi
R): is the action by which the sensor i extends its sensing range to

identify any targets within its vicinity.

• Conserve-Energy (Γi
S): is the action by which each sensor switches its operation mode

from awake to sleep mode to reduce power consumption.

• Activate-CT (Γi
CT ): is the action by which the sensors are engaged in cooperative

tracking. When the cooperative tracking is activated, the sensor tracks the threat

within its sensing range and cues the neighbouring nodes when the threat gets out

of its sensing range.
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Although it can be argued that using the cooperative tracking mode can be beneficial

for all threat types, it should be noted that cooperative tracking consumes more energy

than the regular tracking and drains the sensor resources faster. The choice of the action

policy is of great importance to increase the sensor network lifetime while achieving the

required system objective. The set of actions to be take by the sensor is denoted by

A = {Γi
τ ,Γ

i
M ,Γ

i
R,Γ

i
S,Γ

i
CT} . (6.18)

6.3.1.1.4 State and Observation Transition Probability Function: The state

transition probability indicate which state is likely to appear after the current state. In

other words, the state-transition probability P (sk+1|sk, ak) specifies the probability of state

sk ∈ S to change into state sk+1 ∈ S when action ak is performed,

sk ak−−→ sk+1 : P (sk+1|sk, ak) , (6.19)

where

∀s, a,
∑
sk+1

P (sk+1|sk, ak) = 1 . (6.20)

The probability P () can be represented in matrix form where Pa is a |S|x|S| matrix that

contains Pa,sk+1,sk = p(sk+1|sk, a).
Since the states in our problem can be decomposed using multiple random variables,

it is possible to decompose the probability P (sk+1|sk, ak) into a product of probabilities.

The independencies between the random variables can be exploited to decrease the size of

the representation of the transition function using

PΓiτ
(sk+1|sk) = PΓiτ

(S⃗lpk+1, M⃗odk+1, ⃗Taok+1, R⃗ngk+1, C⃗Ck+1, Q⃗k+1,

ψ⃗k+1, ρ⃗k+1, C⃗T k+1, R⃗elk+1, ϕ⃗k+1|sk) (6.21)

= PΓiτ
(Slpik+1|sk) ∗ PΓiτ

(Modik+1|sk, ⃗Slpk+1) ∗ ...
∗ PΓiτ

(ϕi
k+1|sk, ⃗Slpik+1, M⃗odk+1, ⃗Taok+1, R⃗ngk+1, C⃗Ck+1, Q⃗k+1,

ψ⃗k+1, ρ⃗k+1, C⃗T k+1, R⃗elk+1) (6.22)

In the pervasive surveillance problem, the value of the variables in time unit k+ 1 depend

only on the variables at time k, hence,

PΓiτ
(sk+1|sk) = PΓiτ

(Slpik+1|sk) ∗ PΓiτ
(Modik+1|sk, ⃗Slpk+1) ∗ ...

∗ PΓiτ
(ϕi

k+1|sk, ⃗Slpik+1, M⃗odk+1, ⃗Taok+1, R⃗ngk+1, C⃗Ck+1, Q⃗k+1,

ψ⃗k+1, ρ⃗k+1, C⃗T k+1, R⃗elk+1)

= PΓiτ
(Slpik+1|sk) ∗ ... ∗ PΓiτ

(ϕi
k+1|sk) (6.23)
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Similarly, state sk can be decomposed to give

PΓiτ
(sk+1|sk) = PΓiτ

(Slpik+1|sk) ∗ ... ∗ PΓiτ
(ϕi

k+1|sk)
= PΓiτ

(Slpik+1| ⃗Slpk, M⃗odk, ⃗Taok, R⃗ngk, C⃗Ck, Q⃗k, ψ⃗k, ρ⃗k, C⃗T k, R⃗elk, ϕ⃗k) ∗ ...
∗ PΓiτ

(ϕi
k+1| ⃗Slpk, M⃗odk, ⃗Taok, R⃗ngk, C⃗Ck, Q⃗k, ψ⃗k, ρ⃗k, C⃗T k, R⃗elk, ϕ⃗k) (6.24)

Given the structure of the problem and the function-specific independencies, the tran-

sition function for the action πi
τ can be represented by defining each probability by the

variables it depends on at time k rather than all the variables composing the state sk. This

results in a reduced probability space and a more trackable problem solution,

PΓiτ
(sk+1|sk) = PΓiτ

(Slpik+1| ⃗Slpk, M⃗odk, ⃗Taok, R⃗ngk, C⃗Ck, Q⃗k, ψ⃗k, ρ⃗k, C⃗T k, R⃗elk, ϕ⃗k) ∗ ...
∗ PΓiτ

(ϕi
k+1| ⃗Slpk, M⃗odk, ⃗Taok, R⃗ngk, C⃗Ck, Q⃗k, ψ⃗k, ρ⃗k, C⃗T k, R⃗elk, ϕ⃗k)

= PΓiτ
(Taoik+1| ⃗Taok, Q⃗k, ψ⃗k, ρ⃗k, ϕ⃗k) ∗ PΓiτ

(ϕi
k+1| ⃗Slpk, M⃗odk, ⃗Taok, R⃗ngk, C⃗Ck, ϕ⃗k)

∗ PΓiτ
(Relik+1| ⃗Slpk, M⃗odk, ⃗Taok, R⃗ngk, C⃗Ck, Q⃗k, ψ⃗k, ρ⃗k, C⃗T k) (6.25)

Similarly, the remaining action transition probabilities can be simplified using the function-

specific independencies.

Observations are probabilistically dependent only on the underlying environment state

[189]. At each time step, the sensor is in an unknown state sik ∈ S and it executes

an action ak ∈ A to reach another unknown state sik+1 ∈ S and getting an observation

oik+1 ∈ Ω. Similar to the state transition, the observation transition probability can exploit

the independencies between the random variables to decrease the size of the representation

of the transition function.

6.3.1.1.5 Immediate Rewards Function: In this work, the R(sk) is represented by

a weighted function of the revenue and the associated cost of being in state sk and is given

by

R(sk) = α ∗ r(sk)−
1

α
c(sk) , (6.26)

where α is the weighting factor such that α > 1. In the pervasive surveillance problem

at hand, the system aims to maximize the detection and tracking of targets that impose

threats to the system, and tune the sensor setting to maximize the information reliability.

However, being battery-operated forces the sensor nodes to conserve energy whenever

possible. Therefore, the rewards function gives higher priority to acquiring highly reliable

information at high threat levels compared to that of conserving energy, and vice versa

when the threat level is low.
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6.3.1.1.6 Overall Reward Function: The main objective of the proposed sensor

network surveillance system is to maximize the surveillance quality while increasing the

network lifetime. This can correspond to the expected cumulative sum of immediate re-

wards for all the states reached by the system. The γ-discounted criterion is commonly

used in infinite horizon frameworks since it allows a simple characterization of the optimal

value function and its associated policies [188]. The γ-discounted criterion is denoted by

∀s ∈ S, V π
γ (s) = Eπ[

∞∑
k=0

γkR(sk)|s0 = s] . (6.27)

6.3.1.2 Region-Centric Model

In the region-centric model, the delegate node focuses on the environment dynamics, threat

level, and overall region autonomy over the individual sensor settings as described in the

previous model.

6.3.1.2.1 States: Similar to the previous model, the system state is described as a set

of observations whose values describe the state of the environment. So, the state s can

be described as a multi-variant random variable X = (X1, ..., Xn). The state variables for

region Ri are:

• Active-Sensors (αRi): an integer variable representing the ration of the number of

active sensors in region Ri to the total number of sensors in that region, such that

αi ∈ [none, low,med, high];

• Dynamism-Level (ψRi): is an integer variable that indicates the level of environment

dynamics within region Ri. To simplify the state space, it can take one of three

values, i.e., low, medium, and high;

• Threat-Level (ρRi): an integer variable indicating the threat level within region Ri.

Similarly, it can take one of three values, i.e., low, medium, and high;

• Delegation Threat-Level (ρD): an integer variable indicating the combined threat

level of the delegation. It can take one of three values, i.e., low, medium, and high;

• Quality of Coverage (ΠRi): an integer variable representing the ratio of area covered

by the sensors of region Ri to that of the total area under surveillance in region Ri,

such that Πi ∈ [low,med, high];
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• Information Reliability (RelRi): an integer variable representing the reliability of

measurements acquired by the sensor source, such that RelRi ∈ [low,med, high];

• Energy Autonomy (ERi): an integer variable indicating the remaining energy level

in the sensor operating battery such that E ∈ [dead, low,med, high];

Since each region is formulated by sensors that are close in proximity and therefore can

collaborate to get better estimation of the environment and prolog the network life time.

The state of region Ri is given by

sRj = [α, ψ, ρ, ρD,Π, Rel, E] (6.28)

6.3.1.2.2 Observation Space: The observation space of the region-centric model is

similar to that of the sensor-centric one presented in Section 6.3.1.1.2.

6.3.1.2.3 Action: All the possible actions that the sensor node can perform is rep-

resented in the action space denoted by A. In the proposed POMDP modelling of the

delegate decision-making in the pervasive surveillance problem, the set of actions A is

composed of:

• Idle (ΓRi
I ): it is the action in which the delegate decides that there is no need to tune

the sensors member performance. Such action can conserve energy and reduce power

consumption of both the sensor and the delegate nodes.

• Increase-Cov (ΓRi
C ): it is the action in which the delegate tunes the sensing range of

the sensors in region Ri to extend its coverage.

• Increase-Rel (ΓRi
Rel): it is the action in which the sensor adjust its settings to acquire

information about the VOI with higher reliability.

• Activate-CT (Γi
CT ): it is the action in which sensor are engaged in cooperative track-

ing. When the cooperative tracking is activated, the sensor would track the threat

within its sensing range and cue the neighbouring node when its getting out of its

sensing range.

Although it can be argued that using the cooperative tracking mode can be beneficial

for all threat types, it should be noted that cooperative tracking consumes more energy

than the regular tracking and drains the sensor resources faster. The choice of the action
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policy is of great importance to increase the sensor network lifetime while achieving the

required system objective. The set of actions to be take by the sensor is denoted by

A = {ΓRi
I ,Γ

Ri
C ,Γ

Ri
Rel,Γ

i
CT} (6.29)

6.3.1.2.4 State and Observation Transition Probability Function: By mod-

elling the problem in to factored POMDP, the state space can be significantly reduced by

exploiting the independencies between the random variables in the factored representation.

Similar to the state simplification in Section 6.3.1.1.4, the state transition probabilities can

be simplified using the function-specific independencies. Also, the observation transition

probability can exploit the independencies between the random variables to decrease the

size of the representation of the transition function.

6.3.1.2.5 Rewards Function: As discussed earlier, there are two types of rewards

associated with the system state; the immediate rewards/cost and the overall rewards. In

the region-centric modelling, the system aims to maximize the detection and tracking of

targets that impose threat to the system, increase information reliability, and manage the

VOI coverage. However, being battery-operated leads the sensor node to conserve energy

whenever possible. The immediate rewards function gives higher rewards to increasing the

information reliability, as well as that of extending the coverage, when the threat level is

high. However, these state have a higher energy consumption cost. The overall rewards is

represented as the accumulative γ-discounted criterion.

6.3.2 Optimal policy Approximation

Factored MDPs permit a compact representation of large MDPs when states or actions

are naturally defined by joint assignments to a set of variables [190]. While the size of the

conditional probability distributions and the local utility functions grows exponentially

with the number of parents for each variable, graphical models are typically sparse and

the number of parents is often small and bounded. As a result, the factored representation

is often exponentially smaller than the original flat representation. This is particularly

useful for large MDPs, but we also need efficient algorithms that can exploit the factored

representations. Unfortunately, finding the optimal policy of a factored MDP is EXP-

hard using both exact and approximate algorithms to find a near optimal policy with an

arbitrarily small additive bound on the loss in value [191]. Consequently, the optimization
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of a POMDP policy is a notoriously hard problem. In general, finding the optimal policy

for finite horizon problems is PSPACE-Complete [192]. As a result, most approaches focus

on approximations and try to exploit problem-specific structure to simplify the problem at

hand.

6.3.2.1 Symbolic Perseus

The proposed modelling for the sensor management problem in both sensor-centric and

region-centric models result in a large state space. Therefore, a policy approximation algo-

rithm that can handle such a large state space has to be used to derive the policy for the

system. Poupart in [190] has proposed a generic POMDP solver, called Symbolic Perseus,

based on the point-based value iteration algorithm [193] and the Algebraic Decision Dia-

grams (ADDs) [194]. Symbolic Perseus can compactly represents the α-vectors with ADDs

by exploiting the problem specific structure to reduce the state space. Symbolic Perseus

have been used to solve problems with millions of states [195].

Although Symbolic Perseus can solve POMDPs with state space in the order of mil-

lions, the operation of the algorithm is computationally expensive and is definitely beyond

the means of any sensor node. In literature, most of the decision-theoretic approaches that

have modelled the SM problem as a POMDP, have assumed powerful central server that

can run such algorithms [36–39, 69]. Moreover, the state-of-the-art research have ignored

the need for real-time operation when making decisions regarding the management strate-

gies. Although, the optimal policy function can be calculated off-line, the process of the

belief state updates has to be done in real-time, which is still relatively computationally

expensive.

Since the sensor or delegate nodes are characterized with limited energy resources, re-

ducing the computation complexity of on-board processing is a necessity. Therefore, this

work adopts an off-line approach to optimal policy approximation. Taking into consid-

eration that both the delegate and the sensor nodes need to make decisions in real-time

regarding the delegation operation, this research work proposes the representation of the

optimal policy in the form of a Finite-State Controller (FSC) to eliminate the need of

continuous belief state updates and relies on the current and next state estimation and the

observation state to compute the optimal action to be carried.
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6.3.2.2 Finite State Controller

The optimal value function V ∗ with a infinite horizon can be approximated using a set

of consecutive finite horizon value functions V0, V1, ..., Vt, where t → ∞ that are called α-

vectors. These α-vectors define a partition of the belief space, such that, for each partition,

there is an optimal action [189,190]. Representing an optimal value function as a finite set of

vectors results in the transformation of all the belief states that belong to one region to new

belief states located within the same single belief partition, given the optimal action and

a resulting observation. In the resulting policy graph or a Finite-State Controller (FSC),

which is made up of the set of partitions and belief transitions, the nodes correspond to

belief space partitions where the optimal actions attached and transitions are guided by

observations [189].

The action to be performed at each internal memory state n ∈ N is selected by the

action selection function. Moreover, the transitions between the different internal states

need to be defined beforehand, which is referred to as the dynamic of the internal process.

A FSC policy graph is represented as a triple (N, a, η), where (N) is a set of controller

nodes n, (a : N → A) is the action selection function that prescribes an action a(n) for

each node n, and (η : N × O → N) is the node transition function that assigns a successor

node n′ for each node and observation.

6.4 Results and Discussions

The realization of the proposed collaborative scheme involves two main implementation

procedures: firstly, the derivation of an optimal action policy, secondly, the integration

of the policy as a part of the intelligent operation of the proposed system. Figure 6.10

illustrates the delegate reasoning operation and the interfacing with the environment and

the sensor members of a delegation.

To derive an optimal action policy, the two proposed POMDP models have been imple-

mented using SPUDD, which is a script-like language that represents factored structured

POMDPs in a format similar to ADDs [190, 196]. An implementation of the Symbolic

Perseus algorithm [196] has been used to derive the approximated optimal policy that

maximizes the value function. Symbolic Perseus is scalable enough to tackle problems

with million of states, however, the sensor-centric model is in the orders of billions with

only four sensors in a delegation which prohibits the use of the Symbolic Perseus in solv-

ing such a model. To the knowledge of the authors, no POMDP algorithm can solve a
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Figure 6.10: An overview for the delegate reasoning process.

Table 6.2: Optimal policy characteristics using Symbolic Perseus

Model Initial Value Best Improvement Worst Decline

Sensor-centric 64.024916 0.005803 -0.030252

Region-centric 79.266446 0.096647 -0.139670

problem with that order in a reasonable runtime. Consequently, this work adopts a sim-

plified version of the sensor-centric model with only one sensor in each region. Although

this simplified version can not be used in large-scale application, we had to resort to such

implementation to investigate the worthiness of the proposed approach. Table 6.2 lists the

policy characteristics extracted from Symbolic Perseus. The proposed sensor-centric model

can be beneficial if the number of sensors in each delegation/region is very small (≤ 2).

In the rest of this sub-section, the performance of the proposed SMF employing the

context-aware and collaborative scheme using the region-centric model is investigated using

five main aspects: network and sensor lifetime, communication overhead, tracking quality,

network coverage, and source information reliability. The proposed scheme, referred to as

Coop-EHASM, is compared to the centralized, E-HASM, and EC-HASM approaches.

6.4.1 Network and Sensor Lifetime

This set of experiments are carried to investigate the effects of increasing the number of

threats on the lifetime of both the network and the sensors. The setup is formed using a

grid of 9 × 9 cells monitored by 9 sensors and 1 delegate, the number of threats within

the VOI vary from 1 to 20 with low agility, that is, the threats move in a progressive scan
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manner with few changes in direction or location.

Figures 6.11 and 6.12 plot the overall network and sensor lifetime versus the number

of threats, respectively. The results show that the overall network lifetime for Coop-

EHASM, at low number of threats, is lower than that of EC-HASM, whereas, at large

number of threats, Coop-EHASM exceeds that of the EC-EHASM. In worst case, the

network lifetime of Coop-EHASM and that of EC-HASM are 10× that of the centralized

approach. This is attributed to the use of intelligent energy management techniques used in

the Coop-EHASM and EC-HASM. At low number of threats, the increased communication

overhead of Coop-EHASM slightly decreases the network lifetime, however, at large number

of threats, the communication overhead of Coop-EHASM proves to be beneficial and results

in a near-constant network lifetime with the increasing number of threats.
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Figure 6.11: The network lifetime over varying number of threats.

Similarly, the sensor lifetime of the Coop-EHASM witnesses a significant decrease with

the number of threats because of the fact that as the threat count increases throughout

the network, the estimated threat level at each sensor goes higher which results in local

reasoning of higher sensor settings. Such a behaviour is attributed to the delegate nodes

in Coop-EHASM overriding the energy savings settings of the sensor nodes to increase
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the coverage and reliability of information observed. In worst case, the sensor lifetime of

Coop-EHASM is almost 4× that of the centralized approach because of the use of intelligent

energy management techniques, as well as, the reduced communication overhead.
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Figure 6.12: The sensor lifetime over varying number of threats.

6.4.2 Communication Overhead

The communication overhead of the Coop-EHASM is plotted in Figure 6.13. From Figure

6.13, it can observed that the communication overhead of Coop-EHASM and EC-HASM

tend to be almost equivalent. Although, the number of messages for Coop-EHASM is

slightly higher than the EC-HASM system because of the added communication overhead

of passing the 16-bits codeword and the λ value between the sensors and the delegate, these

extra messages are compensated for by the increased network lifetime of the Coop-EHASM

system. It should be noted that the communication overhead of the centralized approach

is about 20× that of the Coop-EHASM.
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Figure 6.13: The communication overhead versus the increasing number of threats.

6.4.3 Tracking

Figure 6.14 plots the quality of tracking in Coop-EHASM networks versus the number

of threats. The tracking quality using the Coop-EHASM, EC-HASM, and E-HASM ap-

proaches is consistent with the number of threats, as shown in Figure 6.14 due to the

distributed nature of the architecture and the on-board localized processing. On the other

hand, the tracking quality of the centralized approach decreases as the number of threats

increase. The Coop-EHASM and the EC-HASM provide similar tracking quality with a

4% improvement over that of the centralized approach.

6.4.4 Network Coverage

Figure 6.15 plots the average network coverage throughout the network lifetime versus the

number of threats. From Figure 6.15, it can be deduced that the overall network coverage

of the EC-HASM tends to decrease as the number of threats increase. This is attributed to

the sensor settings, in terms of sensing range, frequency, and sleep durations of the sensor

nodes of the EC-HASM, as the energy reserve decreases from monitoring large number
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Figure 6.14: The quality of tracking versus the increasing number of threats.

of threats. Moreover, as the number of threats increase and become more distributed

throughout the network, the network coverage of the centralized and E-HASM approaches

tend to slightly increase because of the reduced variation in the lifetime between various

system sensors. However, the Coop-EHASM offers the highest network coverage with

99.8% full coverage on average and this is due to the collaborative nature of the sensor

nodes in Coop-EHASM.

6.4.5 Source Information Reliability

The source information reliability refers to the quality and accuracy of observations ac-

quired by a sensor towards a specific phenomenon. Figure 6.16 plots the source reliability

versus the increasing number of threats. The E-HASM and the centralized approaches

yield the highest source information reliability since sensors in both approaches operate

with the highest settings. Nevertheless, both approaches do not maximize the network

lifetime and do not adapt the sensor operation according to the sensor and environment

characteristics, that is, they operate in a greedy manner in terms of quality of surveillance.

On the other hand, the EC-HASM suffers from low source reliability index because of
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Figure 6.15: The network coverage versus the increasing number of threats..

the autonomous energy conservation strategies that lead to lower resolution sensor mea-

surements. Coop-EHASM offers the best of both worlds, such that it uses smart energy

saving strategies to prolongs the network lifetime, while using a reliability-aware scheme

to increase the source reliability when monitoring high-threat objects.

6.4.6 Energy Distribution

This section studies the distribution of energy resources of sensor nodes over time. The

main objective is to study the load balancing between the sensor nodes in a delegation.

Since sensor tasks and operations results in energy dissipation, the load balancing between

sensors can be represented by the energy consumption. Figure 6.17 plots the maximum,

minimum, and average energy levels of sensor members of a delegation over time and

compares the centralized, E-HASM, EC-HASM, and Coop-HASM approaches in terms of

the energy distribution. The overall mean and standard deviation of the energy levels of

sensor nodes is reported in Table 6.3.

For this set of experiments, a 9× 9 environment monitored by 9 sensors and 1 delegate

is modelled. Only one threat resides within the VOI, the threat moves in a progressive
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Figure 6.16: The source information reliability versus increasing number of threats.

scan manner. From Figure 6.17, it can be noted that the centralized and the E-HASM

approaches provide a near-uniform energy distribution among the sensors of a delegation

for each time epoch. However, both approaches do not maximize the network lifetime and

do not adapt the sensor operation according to the sensor and environment characteristics.

Moreover, although EC-HASM deliberates on the use of its sensing strategies in a localized

intelligent manner to prolong the network lifetime, the lack of global information results

in large variations between the energy levels of sensor nodes within a delegation. Coop-

EHASM offers rapid adaptation and collaboration schemes based on sub-global information

and statistics about the delegation and the VOI. Figure 6.17(d) shows that Coop-HASM

has, on average, smaller variations in the energy levels between different sensors within a

delegation. Furthermore, as the energy reserve decreases and the system operation becomes

tuned by the delegate node, the variations in the energy levels decrease, and the energy

distribution among the member sensors become uniform.
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Figure 6.17: The maximum, minimum, and average energy distribution for sensors of a

delegation versus time.

6.5 Summary

Each sensor node has a partial view of the environment, but collectively the network

monitors the entire VOI. Therefore, the collaborative operation of the sensor nodes can

significantly increase the quality of the system performance as well as increase the network

coverage and information reliability. A stochastic decision-making scheme using Partially

Observable Markov Decision Processes (POMDP) formulation that represents the delega-

tion decision-making is proposed in this chapter. The main contribution of this chapter

can be summarized as:

• Computation of the delegation statistics based on the individual sensor estimations.

• Methodology for estimation of source information reliability based on the sensor

setting and environment dynamics.
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Table 6.3: The mean and the standard deviation of the energy distribution over the sensor

members of a delegation.
System Centralized E-HASM EC-HASM Coop-HASM

Mean 1171.944 1162.285 1161.324 975.566

Std Deviation 90.513 145.606 -190.351 168.921

• A low-communication overhead collaborative algorithm,

• Modelling the delegate decision-making as a POMDP using a region-centric and a

sensor-centric approaches,

• Formulation of the optimized action policy into a Finite State Controller (FSC) to

offer a fast low overhead on-board processing of the delegate node decision-making,

• A closed-loop information reliability-aware sensor management under resource and

energy constraints,

• Collaborate operation to maximize the network coverage while minimizing the energy

consumption.

In the following chapter, the proposed SMF will be integrated with two external modules

for abnormality detection and in-door localization to investigate the performance of the

proposed SMF in operation with independent modules.
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Chapter 7

IntelliSurv: An Intelligent Pervasive

Surveillance System

This chapter introduces a novel intelligent surveillance system (IntelliSurv) that automat-

ically detects and localizes abnormal events in a distributed collaborative manner. Intel-

liSurv is built incorporating the proposed SMF and manifests its performance with various

independent modules. The chapter is organized as follows: After the IntelliSurv system

is introduced in Section 7.1, Section 7.2 covers the related literature. In Section 7.3, the

design and integration of IntelliSurv various modules are detailed. The simulation setup

and the results are provided in Section 7.4. Some concluding remarks comprise Section

7.5.

7.1 Introduction

Smart pervasive surveillance systems employ automatic detection of abnormal events and

behaviours, based on information acquired from sensors located in the environment. To

achieve such a level of autonomy, the deployment of an intelligent SMF is a necessity

to increase the effective utilization of the sensor resources in a manner that achieves the

system objectives. This chapter describes a novel intelligent pervasive surveillance system

called Intellisurv, such that in the heart of IntelliSurv is the proposed SMF. This chapter

is an investigation and a study of the performance of the proposed SMF in an elaborate

environment with various independent modules. This chapter is based on the joint work

perviously conducted in [197].

IntelliSurv automatically detects and localizes abnormal events in a distributed collab-
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orative manner. The proposed system consists of three primary modules: the intelligent

sensor management module, the abnormal event detection module, and the indoor local-

ization module. The sensor management module employs the E-HASM architecture and

operates in an energy-aware collaborate manner providing a structured localized control

into the surveillance operation. The second module uses acoustic information to reveal

abnormalities in the monitored scene. Lastly, the localization module relies on the Re-

ceived Signal Strength (RSS) information detected by the sensor nodes to direct the law

enforcement personnel to the location of the abnormal event.

7.2 Related Work

For the past two decades, surveillance systems have been an active research area [198].

These surveillance systems have been developed in three generations [199]. The First Gen-

eration Surveillance Systems (1GSSs) utilized analogue Closed-Circuit Television (CCTV)

technologies. 1GSSs consist of a number of cameras located in multiple remote locations

and connected to a set of monitors. The disadvantages of these systems include the use of

analogue techniques for image distribution and storage, and the requirement of continuous

human supervision which becomes ineffective due to the small attention span of human

operators. Second Generation Surveillance Systems (2GSSs) required the development of

semi-automatic surveillance systems by combining vision technology with digital CCTV

systems [200]. Here, the difficulty lies in the development of robust detection and tracking

algorithms for behavioural analysis [199]. Third Generation Surveillance Systems (3GSSs)

are based on the design of large distributed and heterogeneous surveillance systems for wide

area surveillance. The main applications of 3GSSs are in public monitoring [198], whose

demands include the efficient integration and communication of information, establishment

of design methodologies, and management of multisensory platforms [199].

Building an intelligent surveillance system for event detection and analysis of behaviour

patterns in real life scenarios is still a challenge. Recently, the research of acoustic surveil-

lance with the focus of detecting unusual sound events has attracted a lot of attention [201].

In considering the nature of the target event, the content of the information is more than

just visual information. Many events are accompanied with useful audio information [202].

Other demands of visual systems include the complexity of higher level processing for the

extraction of semantics such as human actions, sensitivity to illumination conditions, oc-

clusions, and the occurrence of events beyond the cameras’ field of view. In addition, there
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are privacy issues. For instance, for events involving humans, the right-to-monitor can

conflict with their privacy rights [198].

Audio-based surveillance systems can overcome some of the privacy issues associated

with the use of visual sensors. In [203], an audio-based tele-monitoring system is introduced

where a multichannel sound acquisition system replaces a video camera. The system

analyzes the sound range of the location in real-time and specifies the emergency situations.

This system must cover all the area of interest, for example, in an apartment, the system

must monitor the bathrooms and the bedrooms. If a video camera is installed in each room,

the client might experience the uncomfortable feeling of being spied on. On the other hand,

a sound sensor is more discreet and the client’s privacy is less disturbed, because there is

no continuous recording of the sound in the room. Only a real-time analysis is applied to

the last 10 seconds of captured audio. The privacy issues depend heavily on the shared

acceptance of the surveillance task as a necessity by the public [204].

7.3 IntelliSurv Architecture

The primary contribution of this chapter is a description of the design and integration

of an autonomous surveillance system, called IntelliSurv, for indoor environments. This

system comprises an intelligent management module that automatically detects anomaly

events within the VOI, and then classifies anomalies by using audio information. The VOI

is surveyed by a number of stationary sensor nodes, performing environmental monitoring

for potential threatening activities. It is assumed that the VOI is fully monitored by

sensors, that is, full coverage of the VOI by the sensor network. It should be noted that

the Regions of Responsibility (RoR) of the sensor nodes are non-overlapping such that

RoR1

∩
RoR2 = ϕ. However, the sensing range can overlap such that η1

∩
η2 ̸= ϕ. Figure

7.1 illustrates a high-level design of the components of the proposed IntelliSurv system

and their interaction with the environment. IntelliSurv is based on the design principles

of the layered organizational design framework discussed in Chapter 3 which is based on

the Service-Oriented Architecture (SOA).

As observed in Figure 7.1, the proposed system has two sets of components: sensors and

delegates. The design details of the sensor module is denoted in Figure 7.2, and the dele-

gate module in Figure 7.3. In practical surveillance scenarios, the abnormal events must

be deduced dynamically, because the operational situation changes with time. Accord-

ingly, the sensor components should be capable of autonomously recognizing the critical
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Figure 7.1: The IntelliSurv system overview.

areas/targets within the VOI. Thus, the sensor components are designed to have local

anomaly detection and evaluations modules. These modules analyze the data, collected

from the ROR, and estimate the level of criticality in the ROR. The level of criticality

is used to make a decision on cueing the neighbouring delegate to further investigate the

situation in the VOI.
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Figure 7.2: The sensor module high-level design.

The anomaly evaluation module integrates audio information in the abnormality detec-

tion process by using the signals’ features and characteristics. The details on the operation

of that module are given in Section 7.3.1. Furthermore, the decision-making process, as

well as the sensor components and their interactions, is governed by the sensor management

module. The sensor management module employs the E-HASM architecture discussed in
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Chapter 4, and operates in a distributed manner with collaboration as discussed earlier in

this thesis. The management module is designed to operate under low-energy consumption

constraints and to allow the system to scale seamlessly.
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Figure 7.3: The delegate module high-level design.

Communication plays an important role in the operation of the modules and com-

ponents of IntelliSurv. In case a sensor detects the presence of an anomaly within the

ROR, the sensor alerts the delegate within the neighbourhood or cluster of the abnormal-

ity via a cue message. Accordingly, the delegate collects the needed sensor measurements

and activates the localization module. The localization module adopts the signal strength

and attenuation factors to locate the position of the anomaly event to inform the law en-

forcement personnel. It should be noted that the proposed system is a computer-aided
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system for the human in the loop. IntelliSurv performs automatic detection, evaluation,

classification, and localization of abnormal behaviour within the VOI.

The underlying sensor network of IntelliSurv comprises a number of stationary hetero-

geneous sensor nodes, equipped with audio and radio detectors. The sensors are assumed

to be battery operated. In the following sections, the anomaly detection and localiza-

tion modules are further explored. These modules are based on the joint work perviously

conducted in [197].

7.3.1 Abnormal Event Recognition Module

To date, visual sensors are the most adopted modality in smart pervasive surveillance

systems. The use of such a modality adds numerous challenges to pervasive surveillance

systems: a higher processing complexity, a sensitivity to illumination conditions, and limi-

tations of the field of view, to name a few. One solution to these problems is to incorporate

audio information. Audio cues provide vital information, especially where it is difficult or

almost impossible to detect visual signals, for example, an explosion event can be easily

captured by microphones compared to video cameras.

Recently, research on acoustic surveillance has attracted a lot of attention, and addresses

various applications [201], including: an audio-based surveillance system for identifying ab-

normal situations, which includes screaming, explosion, and gunshot sound events [205].

Also, an audio based surveillance system for detection and localization of screams and

gunshots is presented in [206]. In addition, a system, based on recognizing and classify-

ing a large set of environmental sounds (i.e., human screams, gunshots, breaking glass,

door slams, explosions, dog bark, phone rings, children’s voices, and machine sounds) for

surveillance and security applications, is reported [207].

IntelliSurv detects and recognizes abnormal events that will provide automatic assis-

tance to human operators in order to focus their attention on possible alarming or danger-

ous situations. Primarily, the system focuses on the detection and recognition of human

screams by classifying the incoming audio signal into a normal speech sound versus a

scream sound. Figure 7.4 illustrates the outline of the abnormal event detection module

which consists of three steps: signal preprocessing, feature extraction, and classification.

The following section presents the framework for the abnormal event detection module.
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Figure 7.4: A block diagram of the abnormal event detection module.

7.3.1.1 Preprocessing Phase

Due to the differences encountered in the recording environment, the preprocessing step

is performed on all input audio signals before extracting the features. The input signal is

filtered with a pre-emphasis radiation filter [208] by using

H(z) = 1− 0.97z−1. (7.1)

This filter is used to reduce the differences in power of the different components in the

signal. In other words, it is used to equalize the effect of the propagation of an audio signal

in air [208].

7.3.1.2 Feature Extraction Phase

After the signal is filtered, it is divided into equal overlapping frames with a 25 ms duration

and a 10 ms shift. Each frame is multiplied by a hamming window to avoid problems due

to discontinuities in the signal and to reduce the ripple in the spectrum. After dividing the

signal into frames, short-time energy and Mel-Frequency Cepstral Coefficients (MFCCs)

are extracted for each frame. The short time energy is obtained by computing

E =
n∑

i=1

(Xi)
2, (7.2)

where E is the short time energy calculated per frame, and X is amplitude of the audio

signal of the corresponding frame. The signal energy contains information that is helpful

in discriminating between normal sounds with low energy amplitudes and scream sounds

which usually have higher energy amplitudes. In addition, MFCCs present a description of

the spectral shape of the sound, widely used in the field of speech recognition and proven to

model the human perception to speech quite well [209]. The MFCC features are obtained

by first calculating the amplitude spectrum by using the short-term Fast Fourier Transform

(FFT) from each frame. Then, the frequency bands are positioned logarithmically (on the

Mel scale) which approximates the human auditory system response more closely than
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the linearly-spaced frequency bands. Finally, the Discrete Cosine Transforms (DCTs) are

calculated. Since the DCTs have a strong compaction property, the signal information

tends to be concentrated in a few low-frequency DCT components. As a result, 13 MFCCs

are kept as the final feature vectors from each frame. Subsequently, statistical measures

(min, max, range, median, mean, and variance) are calculated along all the frames of the

speech signal to produce the final feature vector. Finally, feature normalization is applied

as a post processing step to avoid the differences in scaling among the different features.

7.3.1.3 Classification Phase

Various types of classifiers have been used in audio-based recognition systems. Among

them are Support Vector Machines (SVM). SVM classifiers have been widely used in the

field of pattern recognition in general and extensively used in speech emotion recognition,

and yeild better results than other well-known classifiers [210]. The advantages of SVM

classifiers include the global optimality of the training algorithms and the existence of data

dependent generalization bounds [208]. In this work, an SVM classifier with a Radial Basis

Function (RBF) is chosen to classify the audio signal into two categories: an abnormal or

a normal event. In addition, a Linear Discriminant Analysis (LDA) classifier is also used

as a simple classifier in this work for the purpose of comparison.

7.3.1.4 Abnormal Event Recognition Module Details

In this research, the abnormal event is defined as human screaming, captured by the audio

sensor in the network. The main task of the abnormality detection module is to classify

the incoming audio signal into either a scream or a normal voice signal.

One of the key issues for designing the system is the availability of publicly available

benchmark databases for surveillance application. As a result, the speech under simulated

and actual stress database [211] is selected for this study. It is a spontaneous database

of noisy speech recordings, characteristics of any surveillance environment. The database

consists of recordings from 7 speakers in roller coaster and free fall situations of medium

stress, high stress, and screaming, as well as neutral speech samples. A subset of the

database, which consists of a total of 1115 samples of scream and neural signals (414 scream,

701 neutral), is used to train the classifier. The data is split randomly into two disjoint

sets: 90% for training, parameter optimization for the SVM classifier, and validation, and

the remaining 10% are used in the testing of the system. Five-fold cross validation is

performed to obtain the optimized RBF kernel parameter, the sigma value, by using the
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training partition. The average accuracy of the 5-fold runs is calculated at different values

of sigma (sigma: 0.1-100) to choose the best sigma value, and the model is retrained by

using the entire training subset with the optimized parameter.

Table 7.1 exhibits the mean accuracy results from the 5-fold cross validation runs at

different values of sigma for the SVM classifier. The table conveys that the performance

increases as the sigma value increases until a certain point, where the performance deteri-

oration begins as sigma becomes larger than 10. As a result, the model is retrained by the

optimized sigma value equals to 10 by using the whole training set.

sigma 0.1 2 10 20 50 100

Mean accuracy% 62.8 94.7 99.4 99.3 97.7 91.9

Table 7.1: The mean-accuracy of the SVM abnormality detection model at different sigma

values.

7.3.2 Event Localization Module

The accurate localization of objects and people in an indoor environment has long been

considered as one of the important building blocks in surveillance systems. Indoor environ-

ments are challenging, because the radio propagation in such environments is much more

chaotic than in outdoor settings, where the signals travel with little obstruction. Intel-

liSurv is designed to address the event location estimation problem. The system depends

on inconsistent signal measurements, in the form of Received Signal Strength (RSS) or

time-of-arrival from anchor sensors with known locations, to estimate the location of the

target.

The most common localization sensor for outdoors is the GPS receiver that allows highly

accurate localization. Such accuracy is impacted by a number of factors, including satellite

positions, noise in the radio signal, atmospheric conditions, and natural barriers in the

signal path. Unfortunately, in dense urban areas or indoors, buildings can mask the received

signals and prevent accurate localization significantly. It is necessary to use different data

modalities, for example, audio, radio, and video, to solve localization problems, especially

where the odometry is difficult.

There are several types of measurements such as signal-strength, time-of-arrival, and

angle-of-arrival for source localization. Among those measurements, signal-strength is the

most accessible and affordable measurement for estimating the node-to-node distance; how-

ever, it is prone to noisy and inaccurate measurements or delays due to fading channels.
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Most of the current range-based localization methods consist of estimating the distance,

based on the empirical channel models, and then inferring the location. Most of practical

source localization methods are based on the time delay of the arrival estimation, because

they are conceptually simple and reasonably effective. Moreover, the low computational

complexity of these methods suits real-time implementation within a sensor network [212].

In addition to measurements, a proper localization method is required to process audio

or radio measurements. Trilateration is the most basic and intuitive way for positioning.

This method computes a node position via the intersection of three circles. In real-world

applications, the distance estimation inaccuracies, as well as the erroneous position infor-

mation of the reference nodes, result in an infinite set of possible positions [213].

Figure 7.5: The localization in an indoor wireless sensor network. The available measure-

ments from five sensors are processed to estimate the target location.

Furthermore, when a larger number of reference points are available, multilateration

is employed to determine the event position, and an over determined system of equations

must be solved, as shown in Figure 7.5. Usually, over-determined systems do not have a

unique solution (Ax = b), but can be easily solved with traditional methods (e.g., the least
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squares method) [214,215].

To infer the event location from the signal strength measurements, a propagation chan-

nel model can be utilized. In IntelliSurv, to infer the event location from the delegate by

extracting the radii of the circles, where the event resides with the highest probability [214],

compute

(x− k2x2 − x1
k2 − 1

)2 + (y − k2y2 − y1
k2 − 1

)2 (7.3)

= (
kD

k2 − 1
)2 ∗ log10(k) =

A1 − A2

10n
+N(0,

2σ2(1− ρ)

100n2 )

where signal attenuation (Ai), path loss exponent (n = 4to6) for lossy indoor environments,

distance ratio (k = d1
d2
), distance between two base stations (D), standard deviation (σ2 =

2.2−8.3), and a correlation coefficient of shadow components (ρ = 0.3−0.8) are the input

parameters [216,217].

A simple audio-based localization is to estimate the time delay-of-arrival of a sound

signal between the two sensors. This time delay-of-arrival estimate is then used to calculate

the direction-of-arrival for the triangulation. The direction-of-arrival is calculated by

θ = arcsin (t×v/d), (7.4)

where t is the time delay-of-arrival estimate, v is the speed of sound in air, and d is the

inter-sensor spacing [212].

7.4 Simulation Setup and Results Discussion

The simulations in this section indicate the performance of the proposed IntelliSurv for

the surveillance of an airport. This scenario is implemented on the Jadex platform. The

rest of this section explains the simulation setup and results.

7.4.1 Simulation Setup

The simulation scenario adopted in this work is the surveillance of the Waterloo Interna-

tional Airport. The layout of the airport is reflected in Figure 7.6. The airport halls are

virtually divided into a mesh grid cells by the sensors during the initialization phase. Each

sensor has a sensing range of 3×3 grid units. The sensors are stationary with heterogenous

modalities and are represented in the graphical user interface by a gray round object and
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the delegates by the black ones, as shown in Figure 7.7. Each sensor is equipped with a

battery of 100 power units. The passengers enter and leave the airport randomly. Impulsive

bursts of passengers’ arrivals and departures are also randomly generated to simulate the

real world. Moreover, the injected targets depart the environment at random times. These

benign targets are represented in the simulation by white and black human-like images.

Figure 7.6: The Waterloo Region International Airport layout.

There are two types of threats monitored by IntelliSurv: incidents and human threats.

The human threats are represented as intelligent mobile agents with sets of beliefs, desires,

and intentions. The number of threats vary between 1-20. The threats do not depart the

scene for the duration of the simulation and move all around the airport. Although the

motion of the threat is set to a pre-specified pattern, a random motion pattern is invoked

arbitrarily. The incidents refer to the abnormal events that impose or imply danger to the

passengers in the airport. These incidents can be, for example, a fire, a loud scream, a

gunshot. These incidents occur within the VOI for a small duration of time or until the

law enforcement personnel intervene. The simulation is carried out until all the sensors run

out of energy and the surveillance system fails. Table 7.2 lists the simulation configuration

parameters.

Two different approaches: IntelliSurv and centralized, are implemented for comparison.

Figure 7.7 is a snapshot of the implemented graphical user interface for the two approaches.

The IntelliSurv is composed of a group of smart sensor nodes and a group of delegate

nodes. The centralized system, in Figure 7.7(b), is composed of a group of sensors and a

centralized processing unit, represented on the top left side of the simulation environment.
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Table 7.2: Simulation environment setting.
Parameter Value

Area 9× 9 to 27× 27 grid

# Sensors 6 to 81

Battery power 100 power units

Danger levels 3 levels (Passengers, Incidents and Threats)

# Threats 1 to 20

Target motion preset pattern (progressive scan)

random change in direction

Direction 4 direction

The processing power of the centralized unit is ten times faster than that of the delegate

nodes in the proposed IntelliSurv.

(a) The IntelliSurv GUI (b) The Centralized GUI

Sensors

Intelligent Sensor

Threat

Passenger [Target]

Centralized server

Delegate

(c) Key

Figure 7.7: The airport concourse surveillance scenario implemented using the Jadex Stan-

dalone Platform.

A global surveillance mission of all the threats and incidents, occurring within the VOI,

is the key mission of the IntelliSurv system. It is assumed that the sensor needs to know

only the cell on the grid in which the threat resides to determine the exact location of the

threat.

7.4.2 Simulation Results

In the following sections, the results for each module are represented after its integration

within the entire system. Various experiments are carried out to evaluate the performance
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of IntelliSurv and its modules.

7.4.2.1 Sensor Management Module Results

Five different sets of experiments are conducted to evaluate the performance of the sen-

sor management module. The experiments to investigate the effects of the network size,

number of threats, signal-to-noise ratio, detection success ratio, and energy consumption

on the performance of IntelliSurv SM module will be discussed in the following sections.

7.4.2.1.1 Effects of Signal-to-Noise Ratio: The Signal-to-Noise Ratio (SNR) is a

indicator of the level of a desired signal in comparison to the level of the background

noise within the environment. This section discusses the results of a set of experiments

on the performance of the IntelliSurv SM module over varying SNRs. The experiments

are conducted on a 9 × 9 grid cells, monitored by 9 sensors and 1 delegate. The SNR

is assumed to vary between 0 and 100 db. Moreover, it is assumed that only one threat

exists within the VOI for the duration of the simulation, although, incidents are randomly

generated in the environment in a uniform distribution.

From Figure 7.8, it is evident that as the level of the desired signal increases over that

of the noise, the overall network lifetime increases. Moreover, the results indicate that

the overall network lifetime increases significantly for the IntelliSurv compared to that of

the centralized. In addition, the overall network lifetime for IntelliSurv, in the worst case,

is more than three times that of the centralized. Furthermore, it should be noted that

for higher SNR values, for example, SNR = 100, the network lifetime for IntelliSurv is

almost triple that where SNR = 0. This is due to the decreased false alarm rate and more

accurate measurements which result in better on-board event classification leading to less

communication overhead.

Figure 7.9 signifies the lifetime of the first sensor to die in the network. Similar to

the overall network lifetime, the sensor node lifetime exhibits the same trends over the

increasing SNRs. Furthermore, the sensor lifetime of the IntelliSurv outperforms that of

the centralized system with a ratio of 3:1.

Figure 7.10 displays the ratio of communication messages exchanged per unit time in re-

lation to the varying SNRs. It is noteworthy that the number of exchanged communication

messages decreases, as the SNR increases for both the IntelliSurv SM and the centralized

SM approaches. This is the result of reducing the communication overhead, as the quality

and accuracy of the sensed information increases. Moreover, the IntelliSurv SM has a lower
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Figure 7.8: The network lifetime over varying SNRs.
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Figure 7.9: The sensor lifetime over varying SNRs.

communication overhead, compared to that of the centralized SM. This is attributed to the

reduced communication overhead of the IntelliSurv, compared to that of the centralized

approach; and the sensor nodes’ on-board preliminary abnormality detection of IntelliSurv.
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Figure 7.10: The communication overhead over varying SNRs.

7.4.2.1.2 Effects of Network Size: This set of experiments is carried out on varying

network sizes from 9× 9 grid cells, monitored by 9 sensors and 1 delegate, to 27× 27 grid

cells, monitored by 81 sensors and 9 delegates. The SNR is assumed to be 20 db and the

threats within the VOI is set to 5 threats. It should be noted that incidents are randomly

generated in the environment during the simulation time by using a uniform distribution.

Figure 7.11 demonstrates the overall network lifetime in relation to the varying grid

sizes. The results show that the overall network lifetime increases as the network size

increases in the IntelliSurv SM approach, whereas the overall network lifetime remains

almost constant for the centralized SM approach. This is attributed to the cooperative

nature of the IntelliSurv SM design, as well as the reduced communication overhead of the

IntelliSurv, compared to that of the centralized approach.

Figure 7.12 shows the sensor lifetime in relation to the varying grid sizes. Similar to

the network lifetime, the results indicate that the sensor lifetime increases as the network

size increases in the IntelliSurv SM approach, whereas the overall sensor lifetime remains

almost constant for the centralized SM approach. This is attributed to the cooperative

nature of the IntelliSurv SM design, as well as the reduced communication overhead of the

IntelliSurv compared to that of the centralized approach. Also, the one-hop communication

to the delegate consumes less power than that to a centralized server, which depends on

the distance between the sensor and the server.
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Figure 7.11: The network lifetime over varying network sizes.
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Figure 7.12: The sensor lifetime over varying network sizes.

Figure 7.13 reveals the number of the communication messages that are exchanged

per unit time in regards to the varying grid size. Although the number of exchanged

communication messages increases as the network size increases for both the IntelliSurv
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SM and the centralized SM approaches, the IntelliSurv SM has a lower communication

overhead than that of the centralized SM. The difference in the number of messages between

the IntelliSurv SM and the centralized SM increases as the network size increases. This

is attributed to the reduced communication overhead of the IntelliSurv compared to that

of the centralized approach. It is also attributed to the on-board preliminary abnormality

detection of the IntelliSurv.
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Figure 7.13: The communication overhead over varying network sizes.

7.4.2.1.3 Effects of the Number of Threats: This set of experiments is conducted

to investigate the effects of increasing the number of threats on the performance of the

surveillance systems. The setup is composed o 9 × 9 grid cells, monitored by 9 sensors

and 1 delegate, the number of threats within the VOI vary between 1 to 20. The SNR is

assumed to be 20 db, and incidents are randomly generated in the environment during the

simulation time in a uniform distribution.

Figure 7.14 plots the overall network lifetime in relation to the increasing number of

threats. The results show that the overall network lifetime remains almost constant as the

number of threats increases in the IntelliSurv approach, whereas the overall network lifetime

slightly decreases for the centralized SM approach. This is due to the distributed nature

of the IntelliSurv SM design and the reduced communication overhead of the IntelliSurv,

compared to that of the centralized approach.
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Figure 7.14: The network lifetime versus the increasing number of threats.

In Figure 7.15, the sensor lifetime is plotted in terms of the increasing number of threats.

The results indicate that both the IntelliSurv SM and the centralized SM approaches exhibit

the same trends such that the sensor lifetime decreases as the number of threats increase.

However, the sensor lifetime for the IntelliSurv is more than three times greater than that

of the centralized SM approach. Similar to the previous analysis, this is attributed to the

cooperative nature of the IntelliSurv SM design and the reduced communication.

In Figure 7.16, the number of communication messages, exchanged in the centralized

SM approach, increases linearly as the number of threats increases. On the other hand,

the IntelliSurv SM remains constant as the number of threats increases. In addition, the

IntelliSurv SM has a lower communication overhead than that of the centralized SM. This

is attributed to the distributed nature of the IntelliSurv SM which utilizes the fact that

the phenomena are localized.

7.4.2.1.4 Detection Success Ratio: Figure 7.17 plots the detection success ratio for

the IntelliSurv and the centralized SM approaches combined with the LDA and the SVM

abnormality recognition algorithms. The results are extracted from a 9×9 grid setup with

a 20 db SNR. From Figure 7.17, it is clear that the IntelliSurv approach outperforms the

centralized one. The IntelliSurv, combined with the SVM approach, provides a consistent

performance as the number of threats increases, whereas the centralized approach tends to
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Figure 7.15: The sensor lifetime versus the increasing number of threats.
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Figure 7.16: The communication overhead versus the increasing number of threats.

slightly decrease.
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Figure 7.17: The detection success ratio versus increasing number of threats.

7.4.2.1.5 Energy Consumption: The limited sensor resources dictate that the nodes

are required to operate under the efficient energy consumption performance. Figure 7.18

illustrates the energy dissipation of both the IntelliSurv and the centralized approaches.

From Figure 7.18, it is noted that the centralized approach dissipates energy in a linear,

steep manner, whereas the IntelliSurv approach dissipates energy in a much slower man-

ner. This is due to the fact that enengy-aware operation of Intellisurv which reduces the

communication overhead and better utilizes the energy reserve.

7.4.2.2 Abnormality Detection Module Results

This section presents the experimental results of the abnormal event recognition module.

Two sets of experiments are performed to study the effect of varying the SNR and grid size

on the performance of the module. The abnormality detection rate, that is, the accuracy

of the system, and the false alarm rate are two of the performance measures used in this

simulation. Figure 7.19 presents the accuracy of the abnormal event recognition module

for both the centralized and the IntelliSurv systems by using SVM and LDA classifiers.

In comparing the accuracies at different SNRs, a considerable degradation occurs in the

performance at lower SNR values, where the signal is heavily corrupted. This is due to the

fact that the models are trained on the original data for the training partition, whereas
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Figure 7.18: The energy consumption of the IntelliSurv SM and centralized SM.

the remaining samples are corrupted with white Gaussian noise and used for testing. In

addition, it is shown that, usually, the performance of the SVM classifier is better than

the LDA for both architectures.

Also, the SVM classifier yields a much lower false alarm rate, compared to the LDA

classifier, as denoted in Figure 7.19. For example, when the SNR equals 20 db and the

network size is 9 × 9, the SVM classifier achieves a false alarm rate of 6.33%, compared

to 21.33% for the LDA with the IntelliSurv, and 7.98% compared to 22.64% with the

centralized architecture.

The second set of experiments is performed to investigate the effect of varying the

network sizes on the performance of the abnormality detection module. Figure 7.20 shows

the accuracy results for both the centralized and IntelliSurv systems by varying the network

sizes from 9×9 to 27×27 grid cells. It is evident that the SVM classifiers outperforms the

LDA classifiers for both IntelliSurv and centralized systems. Also, the IntelliSurv system

yields higher accuracy than that of the centralized system for both classifiers used.

Figure 7.21 signifies the false alarm rate of the abnormality detection module at different

network sizes. From Figure 7.21, it is obvious that the SVM classifier still yields a lower

false alarm rate, than that of the LDA for different network sizes.
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Figure 7.19: The accuracy of the abnormal recognition module using SVM and LDA

classifiers versus varying the SNRs.
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Figure 7.21: The false alarms of the abnormal recognition module using SVM and LDA

classifiers versus varying grid sizes.

7.4.2.3 Localization Module Results

This section provides details on the experimental evaluation of the localization module by

using the measurements provided from the IntelliSurv SM module. The error estimates

are normalized with the maximum error estimation, that is, the longest path in the grid,

to provide an accurate result. The estimated sensor location is mapped to one of the grid

points in the discrete spatial, i.e., no refinement process. To find the normalized distance

estimation error of the target in the performance evaluation, the metric is

err =
∥ xi − x̂i ∥2

max(∥ xi − xj ∥2)
, ∀ j ∈ [1 · ·N ], (7.5)

Otherwise, Euclidean distance ∥ xi − x̂i ∥2 is a proper metric. Figure 7.22 demotes the

location estimation error and different SNRs for all the measurements in the system trajec-

tories. The plots are provided for both the actual and snap-to-grid estimates. As expected,

in high-SNR regimes, the sensor location can be fully recovered from the available mea-

surements. In the snap-to-grid estimates, an error floor occurs due to a residual estimation

error. The system performance depends on different parameters such as the mobile agent

trajectory, quality of measurement, environmental noise, and measuring device precision.

178



Approximated Grid Location 

Actual Location

Figure 7.22: The normalized estimated error of the localization module.

7.5 Summary

Smart surveillance systems employ automatic detection of abnormal events and behaviours,

based on information acquired from sensors located in the environment. This chapter

proposes an intelligent surveillance system, called IntelliSurv, that automatically detects

and localizes abnormal events in a distributed collaborative manner. The design of an

autonomous surveillance system is specified for indoor environments with the proposed

SMF at its heart. The proposed SMF, operating in a distributed manner with collaborative

localized decision-making, is the brain of IntelliSurv. IntelliSurv provides a lower energy

consumption operation than that of the most widely used centralized systems.

One of the main contributions of this chapter is the integration of audio information in

the abnormality detection process by using the audio signal features and characteristics.

Furthermore, a novel method for automatic anomaly event classification, based on audio

information within the ROI, is introduced. Also, an indoor localization algorithm for the

signal strength is proposed to localize the anomalies and alert the human in the loop. The

results demonstrates that IntelliSurv outperforms the most widely used centralized system

in terms of energy and communication overhead. The contributions of this chapter are

179



summarized as follows.

• The design and integration of an autonomous surveillance system, IntelliSurv, for

indoor environments,

• The investigation of the operation of the proposed SMF in an elaborate simulation

environment.

• The use of the proposed intelligent SMF, operating in a distributed manner, with

collaboration localized decision-making,

• Seamless interfacing between the sensor management module and the other two elab-

orate modules,

• A lower-energy consumption system, IntelliSurv, than the most widely used central-

ized systems,

• An increased system scalability, as well as increased overall system lifetime,

• The integration of audio information in the abnormality detection process by using

audio signal features and characteristics,

• An automatic anomaly event classification, based on audio information, happening

within the ROI,

• The use of the signal strength to localize the anomalies by using trilateration algo-

rithms.

• A decision-support system and the human-in-the-loop is the final decision-maker.
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Chapter 8

Conclusion and Future Work

This chapter provides a brief summary of the contributions of this thesis and some sugges-

tions for future work. Section 8.1 concludes this thesis, highlighting the main contributions.

Section 8.2 summarizes the research opportunities to extend this work.

8.1 Conclusion

The nature and complexity of emerging security threats have stimulated intense interest in

smart pervasive surveillance systems. Such systems need intelligent management systems

to control the large number of sensor nodes and the large amount of data. This thesis

describes the development of an intelligent Sensor Management Framework (SMF) for use

in pervasive surveillance applications. Four primary challenges have been addressed in this

work:

• Lack of SM standardization: conceptual analysis of the SM problem is needed

to avoid test-bed specific solutions that are hard to extend or reuse.

• Surveillance over a large area: The need for large area sensor networks has been

recognized in numerous applications. These applications are characterized by large

and remote geographic areas, which need large numbers of sensor nodes to cover the

VOI.

• Energy-aware Operation: Sensor nodes are usually battery-operated and the re-

plenishment of their energy reserve is usually not feasible. Therefore, the lifetime

of sensors must be prolonged as much as possible without degrading the system

performance.
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• Cooperative multi-sensor management: The world model of a multi-sensor

system can be significantly enhanced with cooperative sensing in applications where

the environment dynamics rapidly changes.

To address these challenges, the research work in this thesis offers solutions in eight

aspects, as discussed next. Figure 8.1 provides an overview of the proposed system in the

structure of the high-level components that comprise a SMF and its interaction with the

environment.
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Figure 8.1: An overview of the proposed SMF.

• Organizational Development Design Framework: provides a conceptual anal-

ysis of the sensor management problem in a layered structure and introduces an

organizational development design framework, based on the Service-Oriented Archi-

tecture (SOA) to address the requirements of the SMF from a stacked layer perspec-

tive. The proposed design framework addresses the large number of non-functional

merits, that is, modularity, extendibility, and the reusability, to name a few, that can

characterize SMFs.
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• Coordination Architecture: The proposed architecture, called Extended Hybrid

Architecture for Sensor Management (E-HASM), combines the operation of holonic,

federated, and market-based architectures in a complementary manner. The pro-

posed E-HASM guarantees that the proposed SMF is scalable, extendible, and reli-

able.

• Energy-aware Operation: Unattended networks suffer from the limited battery

resources of sensor nodes. This work propose an efficient approach to minimize energy

dissipation while maximizing the quality of surveillance.

• Sensor Utility Modelling: Each sensor is responsible for independent reasoning

and decision-making that affects its and the overall systems’ state. This work pro-

poses a team-theoretic formulation by adopting the Belief-Desire-Intention model and

the joint intention theory to represent the E-HASM architecture components.

• Adaptive Sensor Behaviour: This thesis proposes intelligent schemes to change

the sensor setting in response to the environment dynamics and sensor energy levels.

Such schemes include adaptive sleep, active sensing, dynamic sensing range, adaptive

multimodality, and constrained communication, and are designed to operate under

limited resource constraints.

• Collaborative Decision-Theoretic Modelling: Sensor management can be viewed

as a decision-making process that determines the most appropriate sensor action to

perform to achieve maximum system utility. The decision-making entities are re-

quired to operate under uncertainty in stochastic changing environments. Therefore,

this research leads to formulating the decision-making entities as Partially Observable

Markov Decision Processes (POMDPs).

• Source Reliability Considerations: The quality and accuracy of sensor measure-

ments may vary between different sensors, due to several factors that include: relative

sensor location, noise, transducers type, partial or full occlusion, etc. The informa-

tion fusion research field has studied the source reliability as a strategy to represent

the credibility of the information acquired from different sensors. The proposed SM

aims to maximize the reliability of the obtained sensor measurements under resource

and energy constraints.

• Integrated System: In this thesis, an intelligent surveillance system, IntelliSurv, is

proposed that automatically detects and localizes abnormal events in a distributed
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collaborative manner. IntelliSurv is built by using the proposed SMF and helps illus-

trate the performance of the SMF in operation with different independent modules.

8.2 Future Work

Intelligent sensor management systems is an active area of research. New SM issues arise

as sensory networks develop and new applications emerge. There are a number of issues

that should be investigated in the future.

• Sensor Mobility: The ability of the sensor nodes to move adds a new dimension to

the SM problem such mobility empowers the sensors to make better decisions regard-

ing their positions, such that strategic tasks, such as target tracking, can benefit from

node movement. However, the node mobility actuators can be one of the most energy

consuming modules of a sensor node. Therefore, mobility management is a major

challenge that needs to be addressed in the SMF due, in part, to the dynamically

changing network topologies.

• Network Coverage and Sensor Redundancy: The proper density to achieve re-

gion coverage for random sensors deployment is a fundamentally important problem

in the area of Wireless Sensor Networks (WSNs). So far, it has been assumed that

after the initialization phase, the network assumes full coverage, and the coverage ar-

eas of different sensors do not overlap. In future work, this assumption can be relaxed

and partial network coverage, as well as sensor redundancy, should be investigated.

• System Security: Due to the distributed nature of WSNs and their deployment in

remote areas, these networks are vulnerable to numerous security threats that can

adversely affect their proper functioning. This problem is more critical in mission-

critical applications such as in a tactical battlefield. Due to resource constraints in

WSNs, traditional security mechanisms with high computation and communication

overheads are infeasible to run on-board of resource-bounded sensor nodes. Therefore,

the SMF must take into consideration the required security measures and deal with

infected node or region of a network.
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[52] J. M. Molina, J. Garcia, F. J. Jiménez, and J. R. Casar, “Surveillance multisensor

management with fuzzy evaluation of sensor task priorities,” Engineering Applica-

tions of Artificial Intelligence, vol. 15, no. 6, pp. 511–527, December 2002.

[53] O. Basir and X. Yuan, “Engine fault diagnosis based on multi-sensor information

fusion using dempstershafer evidence theory,” Information Fusion, vol. 8, no. 4, pp.

379 – 386, 2007.

[54] B. Zhao and C. Shi, “Wireless sensor network reliability evaluation based on genetic

algorithm and coarsening combination evidence reasoning,” in Proc. Conf. Compu-

tational Intelligence and Natural Computing Proceedings, sept. 2010, pp. 291 –294.

[55] Y. Chang and F. Liu, “Wireless sensor intrusion detection system based on the theory

of evidence,” in Proc. Conf. Computer Science and Network Technology, vol. 4, dec.

2011, pp. 2811–2814.

[56] D. Qingdong, X. Lingyu, and Z. Hai, “D-s evidence theory applied to fault diagnosis

of generator based on embedded sensors,” in Proc. Conf. Info. Fusion, july 2000, pp.

TUD5/3 – TUD5/8 vol.1.

[57] A. Nica and R. Speicher, Lectures on the combinatorics of free probability. Cambridge

Univ Pr, 2006, vol. 335.

[58] X. Ye, G. Kamath, and L. Osadciw, “Using bayesian inference for sensor management

of air traffic control systems,” in Proc. IEEE Symp. Computational intelligence in

miulti-criteria decision-making, 30 2009-april 2 2009, pp. 23 –29.

[59] R. Cortez, X. Papageorgiou, H. Tanner, A. Klimenko, K. Borozdin, R. Lumia, and

W. Priedhorsky, “Smart radiation sensor management,” Robotics Automation Mag-

azine, IEEE, vol. 15, no. 3, pp. 85 –93, sept 2008.

[60] C. Grappiolo, S. Whiteson, G. Pavlin, and B. Bakker, “Integrating distributed

bayesian inference and reinforcement learning for sensor management,” in Proc. Intl.

Conf. Info. Fusion, july 2009, pp. 93 –101.

[61] P. Harrington and A. Hero, “Information theoretic adaptive tracking of epidemics in

complex networks,” in Proc. Conf. comm., Control, and Computing, 30 2009-oct. 2

2009, pp. 523 –530.

190



[62] F. Bolderheij, F. Absil, and P. van Genderen, “A risk-based object-oriented approach

to sensor management,” in Proc. Intl. Conf. Info. Fusion, vol. 1, july 2005, p. 8 pp.

[63] W. Liao, Q. Ji, and W. Wallace, “Approximate nonmyopic sensor selection via sub-

modularity and partitioning,” Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE transc. on, vol. 39, no. 4, pp. 782 –794, july 2009.

[64] N. Lechevin, C. Rabbath, and M. Lauzon, “A decision policy for the routing and

munitions management of multiformations of unmanned combat vehicles in adver-

sarial urban environments,” Control Systems Technology, IEEE transc. on, vol. 17,

no. 3, pp. 505 –519, may 2009.

[65] C. Kreucher, K. Kastella, and A. Hero, “A bayesian method for integrated multitar-

get tracking and sensor management,” in Proc. Intl. Conf. Info. Fusion, vol. 1, 2003,

pp. 704 – 711.

[66] E. Maggio, M. Taj, and A. Cavallaro, “Efficient multitarget visual tracking using

random finite sets,” Circuits and Systems for Video Technology, IEEE transc. on,

vol. 18, no. 8, pp. 1016 –1027, aug. 2008.

[67] B. Ristic and B.-N. Vo, “Sensor control for multi-object state-space estimation using

random finite sets,” Automatica, vol. 46, no. 11, pp. 1812 – 1818, 2010.

[68] R. Mahler and I. ebrary, Statistical multisource-multitarget information fusion.

Artech House ˆ eBoston Boston, 2007, vol. 685.

[69] A. Hero, D. Castañón, and D. Cochran, Foundations and Applications of Sensor

Management, ser. Signals and Communication Technology. Springer Science and

Business Media, LLC, 2008.

[70] K. Kastella, “Discrimination gain to optimize detection and classification,” IEEE

Trans. Syst., Man, Cybern. A, vol. 27, pp. 112–116, 1997.

[71] M. P. Kolba, P. A. Torrione, and L. M. Collins, “Information-based sensor manage-

ment for landmine detection using multimodal sensors,” in Proc. SPIE Intl. Society

for Optical Engineering, 2005.

[72] M. P. Kolba and L. M. Collins, “Information-theoretic sensor management for multi-

modal sensing,” in Proc. IEEE Intl. Conf. on Geoscience and Remote Sensing Symp.,

2006, pp. 3935–3938.

191



[73] ——, “Information-based sensor management in the presence of uncertainty,” IEEE

transc. on Signal Processing, vol. 55, no. 6, pp. 2731–2735, June 2007.

[74] ——, “Sensor management for static target detection with non-binary sensor ob-

servations and observation uncertainty,” in Proc. IEEE/SP Workshop on Statistical

Signal Processing, 2007, pp. 74–78.

[75] ——, “Managing landmine detection sensors : results from application to amds

data,” in Proc. SPIE Intl. Society for Optical Engineering, 2007, pp. 1–11.

[76] ——, “Sensor management using a new framework for observation modeling,” in

Proc. SPIE, Detection and Sensing of Mines, Explosive Objects, and Obscured Tar-

gets, 2009, pp. 1–12.

[77] K. Jenkins and D. Castanon, “Information-based adaptive sensor management for

sensor networks,” in Proc. American Control Conf., 29 2011-july 1 2011, pp. 4934

–4940.

[78] F. Yu, F. Tu, and K. Pattipati, “Integration of a holonic organizational control ar-

chitecture and multiobjective evolutionary algorithm for flexible distributed schedul-

ing,” IEEE transc. on Systems, Man and Cybernetics, Part A: Systems and Humans,

vol. 38, no. 5, 2008.

[79] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,”

1995, pp. 39–43.

[80] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc. IEEE Intl.

Conf. on Neural Networks, 1995, pp. 1942–1948.

[81] L. Osadciw and K. Veeramacheneni, “A controllable sensor management algorithm

capable of learning,” in Proc. SPIE Multisensor, multisource info.fusion : architec-

tures, algorithms, and applications, 2005, pp. 257–268.

[82] K. Veeramachaneni, L. Osadciw, and P. Varshney, “An adaptive multimodal biomet-

ric management algorithm,” IEEE transc. on Systems, Man, and Cybernetics, Part

C: Applications and Reviews, vol. 35, Aug. 2005.
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