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Abstract 

Physiologically based pharmacokinetic (PBPK) modeling is a tool used in drug discovery 

and human health risk assessment. PBPK models are mathematical representations of the 

anatomy, physiology and biochemistry of an organism.  PBPK models, using both compound 

and physiologic inputs, are used to predict a drug’s pharmacokinetics in various situations. 

Tissue to plasma partition coefficients (Kp), a key PBPK model input, define the steady state 

concentration differential between the tissue and plasma and are used to predict the volume 

of distribution. Experimental determination of these parameters once limited the 

development of PBPK models however in silico prediction methods were introduced to 

overcome this issue. The developed algorithms vary in input parameters and prediction 

accuracy and none are considered standard, warranting further research. Chapter 2 presents a 

newly developed Kp prediction algorithm that requires only readily available input 

parameters. Using a test dataset, this Kp prediction algorithm demonstrated good prediction 

accuracy and greater prediction accuracy than preexisting algorithms. Chapter 3 introduced a 

decision tree based Kp prediction method. In this novel approach, six previously published 

algorithms, including the one developed in Chapter 2, were utilized. The aim of the 

developed classifier was to identify the most accurate tissue-specific Kp prediction algorithm 

for a new drug. A dataset consisting of 122 drugs was used to train the classifier and identify 

the most accurate Kp prediction algorithm for a certain physico-chemical space. Three 

versions of tissue specific classifiers were developed and were dependent on the necessary 

inputs. The use of the classifier resulted in a better prediction accuracy as compared to the 

use of any single Kp prediction algorithm for all tissues; the current mode of use in PBPK 
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model building. With built-in estimation equations for those input parameters not necessarily 

available, this Kp prediction tool will provide Kp prediction when only limited input 

parameters are available. The two presented innovative methods will improve tissue 

distribution prediction accuracy thus enhancing the confidence in PBPK modeling outputs.   
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Chapter 1 

Introduction 

Physiologically-based pharmacokinetic (PBPK) modeling 

Pharmacokinetics (PK) is the mathematical description of the absorption, distribution, 

metabolism and excretion (ADME) of a compound and a quantitative description of how these 

processes affect the time course and intensity of response. One means of predicting and assessing 

the pharmacokinetics of a compound is through the use of PBPK modeling. As a result, PBPK 

models are used in pharmaceutical research, drug development and in toxicological risk 

assessment. PBPK models are mathematical constructions that are developed to represent the 

organism of interest. A whole body PBPK model is comprised of physiological compartments 

that represent organs or tissues (Figure 1-1). Each organ is represented as either one well-stirred 

compartment (e.g. one homogenously mixed unit) or as multiple compartments that represent, 

for example, vascular, interstitial and/or intracellular space. Organ compartments are linked 

together through venous and arterial blood pools with closure of the system through the lungs. 

Mass transfer between each compartment identified in the model is represented using a 

differential equation such that the entire PBPK model becomes a series of differential equations.  
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Figure 1-1. Structure of PBPK model. (SI: Small intestine, LI: large intestine)  

 

Each  organ compartment within the PBPK model is defined by a species specific blood flow 

rate (the sum of which equals the total cardiac output) and a physiologic volume 
[1]

. Compound 

specific parameters such as protein binding affinity, tissue to plasma partition coefficients, 

clearance and permeability x surface area products (if organs are not considered well-stirred) are 

required for the initial parameterization of a PBPK model. Once a PBPK model is structured and 

parameterized, simulations under various dosing regimens or conditions can be made.  
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Figure 1-2. An example of simulated concentration versus time profile in tissues and the plasma by a 

PBPK model  

 

In early drug discovery, a drug candidate is screened among thousands of possible compounds. 

The empirical approach in the selection of a drug candidate can be time consuming, labor 

intensive and costly. Therefore, drug candidate screening and a first-time-in-animal study design 

can be aided by PBPK modeling for the prediction and understanding of a compound’s ADME. 

Furthermore, PBPK models predict the human PK as early as possible which can help to identify 

undesirable PK characteristics of a drug candidate. Early PK prediction can help to reduce the 

cost associated with drug development and potentially reduce the rate of failure in drug 

development. 

The following steps are taken in PBPK modeling for interspecies scaling. Once compound 

specific parameters (e.g. unbound fraction in plasma, species specific clearance) and species 

specific anatomical and physiological parameters are input, a series of concentration vs. time 

profiles are simulated for any organ or tissue that is included in the model (e.g. Figure 1-2). To 
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ensure appropriate distribution and clearance, a comparison of the simulated and the 

experimentally determined profiles are made. Uncertain input parameters are optimized (e.g. 

tissue to plasma partition coefficients) until there is adequate agreement between the simulated 

and experimentally determined curves. This usually occurs in the rat. Scaling to humans is then 

completed by replacing the anatomical, physiological and biochemical inputs to that of humans 

and re-simulating. This provides a biologically rational approach to interspecies scaling of PK. 

 

Tissue distribution 

The distribution of a compound within a system (i.e. tissue distribution) is the process of 

compound partitioning into the tissues from the systemic circulation. Compound properties (e.g. 

lipophilicity) and the nature of tissue cellular membranes determine the ability of the compound 

to permeate into the tissue. For example, lipophilic compounds tend to partition to a greater 

extent into lipid-rich tissues such as adipose and brain whereas hydrophilic compounds tend to 

distribute into lean tissues such as heart and muscle. The extent of tissue distribution is 

dependent on tissue partitioning and the binding affinity of a compound to blood cells, proteins 

and tissue components 
[1]

. The global parameter that quantifies the extent of compound 

distribution from plasma into tissues is the volume of distribution at steady state (Vss). This is a 

PBPK modeling output. For example, a small Vss indicates a lack of tissue specific binding 

and/or an affinity for binding to plasma proteins. Compounds with a large Vss have extensive 

affinity for binding in tissues. 

Due to various tissue compositions, compound concentration is tissue-specific. The extent of 

compound distribution into an individual tissue is expressed by a steady state tissue to plasma 
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partition coefficient (Kp), i.e. the ratio of the concentration of a compound in tissue and plasma 

[2]
. Thus, the relationship between Vss and Kp is expressed as Eqn.1-1 

[3]
: 

Eqn. 1-1     )1(
1

, i

n

itissueiplasma EVKpVVss    

where Vplasma and Vtissue, is the physiologic volume of plasma and respective tissue. E is the 

extraction ratio of an eliminating tissue (i.e. the liver or the kidneys) and is a measure that 

represents the ability of a tissue to remove a compound from the systemic circulation through 

excretion in the urine or enzymatic metabolism in the liver. For non-eliminating tissue, 

extraction ratio is zero (Ei=0).  

Kps are used to quantify the extent of a compounds distribution from the systemic circulation 

into the tissues at steady-state. The Kps used in PBPK models comprise the tissue: plasma 

partition coefficients based on total (Kp) 
[2,4-6]

 or unbound concentration (Kpu) 
[7-9]

 in the case of 

drug compounds or the tissue: blood partition coefficients 
[10]

 based on total concentration for 

environmental chemicals. The tissue distribution prediction within a PBPK model is sensitive to 

the Kp values. Historically, these values were derived experimentally in vivo. This is a costly and 

time consuming endeavor and has been a limitation in the development of PBPK models. As a 

result, Kp prediction algorithms using in vitro and in silico data have been developed to 

overcome the need for experimental Kp determination. These algorithms predict Kps based on the 

underlying physiology and behavior of a compound in the body.  

Kp prediction algorithms are divided into two areas: (i) tissue composition based (TCB) 

algorithms that are created solely using physico-chemical properties of the compound along with 

tissue specific parameters and (ii) correlation based algorithms that are empirically derived using 

both compound specific information and information derived in vivo (e.g. muscle Kp).  
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Tissue composition based algorithms  

TCB algorithms are mechanistic in nature and do not require in vivo information as input. In 

early studies, tissue solubility of a compound was calculated by assuming: (i) solubility of a 

chemical in n-octanol corresponds to its solubility in tissue neutral lipids, (ii) solubility in water 

corresponds to water fraction and (iii) solubility in phospholipids is a function of solubility in 

water and n-octanol 
[10]

. Using this assumption, the solubility of a chemical in tissue was then 

calculated as the sum of the solubilities listed above 
[11]

. Building on this, a mechanistic model 

based on tissue composition, physico-chemistry, and plasma protein binding was developed by 

Poulin and his coworkers and later revised by Berezhkovskiy 
[12]

. The main assumption of this 

TCB model is that the distribution of a compound is primarily governed by passive diffusion into 

tissue compartments and reversible binding to common proteins that are in the plasma and tissue 

interstitial spaces. 

  

Figure 1-3. A schematic showing the underlying processes of tissue partitioning that were 

described by Rodgers et al. model 
[8,9]

.  
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Later, Rodgers and Rowland (2005a) extended and enhanced the TCB model by incorporating 

the electrostatic interactions of moderate to strong bases (pKa ≥ 7) with acidic phospholipids to 

predict Kpu. This model assumes that the electrostatic interactions prevail and compounds 

distribute passively into intra- and/or extracellular tissue water. The equation also accounts for 

two processes: (i) dissolution of both ionized and unionized portions of a compound into tissue 

water and (ii) partitioning of unionized compounds into neutral lipids and neutral phospholipids 

(Figure 1-3). The researchers also attempted to predict Kpu which is the steady state parameter 

that relates the unbound concentration in tissues to unbound concentration in plasma. The reason 

for predicting Kpu as opposed to Kp is that only unbound compounds can distribute across 

cellular membranes.  

 Rodgers and coworker(s) 
[9]

 continued to develop a new mechanistic equation for predicting the 

Kps for neutrals, acids, and weak bases by considering the compound interactions with proteins. 

This is an important factor for the tissue distribution of compounds because of the abundance of 

proteins that are present in the extracellular space. Lipophilic neutrals preferentially bind to 

lipoproteins, whereas acids and weak bases primarily bind to albumin. Zwitterions can be 

divided into two groups. The first group includes compounds with one basic form (pKa ≥ 7), thus 

it is presumed to undergo interactions with acidic phospholipids in the same manner that strong 

bases do. The second group consists of all other zwitter-ionic compounds and they are thought to 

have the same distributional behavior as acids and very weak bases 
[8,9]

. Therefore, the degree of 

the affinity of the compounds to the extracellular proteins is a crucial parameter in the prediction 

of Kps.  
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Schmitt 
[6]

 built a TCB algorithm to calculate Kps of classes of compounds based on their 

lipophilicity, pKa, binding ability to phospholipids and the unbound fraction in plasma. 

Specifically, compound binding to phospholipids was explained in a mechanistic way by 

accounting for the interaction between charged phospholipids and charged molecules along with  

consideration of the phosphatidylcholine:buffer partition coefficient and the phospholipid:water 

partition coefficient. This model can be applied universally for all classes of compounds, which 

implies the significance of this algorithm. Later, Peryet and his coworkers 
[13]

 developed the 

algorithm that unifies the mechanisms involved in the distribution of both drug compounds and 

environmental chemicals. The unified algorithm provides predictions of Kps by calculating the 

ratio of the concentration in cellular and interstitial space to the concentration in plasma and red 

blood cells (RBC). The Peryet et al. (2010) algorithm also accounted for the consideration of 

different volumes in each matrix. The researchers attempted to integrate and reproduce the 

previously published equations into a single algorithm. Their calculations yielded the same level 

of accuracy when compared to previous studies. In addition, this unified algorithm predicts 

partition coefficients at both the macro (tissue: plasma partition coefficient) and the micro (cells: 

fluid partition coefficient) levels 
[13]

. 

 

Correlation based algorithms 

The relationship between experimentally determined in vivo parameters (e.g. a muscle Kp) and 

Kps has been utilized to develop predictive regression equations to estimate Kps. The work of 

Bjorkman 
[4]

 demonstrated that muscle Kp can be used to represent other tissue Kps. Specifically, 

lean tissue Kps can be calculated using a linear regression equation with muscle Kp as a 

predictor. The empirical method was later refined by the work of Jansson 
[5]

. For this model, the 
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relationship between muscle Kp and non-adipose Kp was improved by incorporating compound 

lipophilicity data into the equations.  

For moderate-to-strong bases, it was observed that the Kp predictions were less accurate than for 

neutral, acidic and weakly basic compounds 
[8]

. This was mainly due to their ionic interaction 

with acidic phospholipids such as phosphophatidyl serine (PhS). The work of Yata and 

colleagues demonstrated that the inter-organ variation in tissue distribution of basic compounds 

varies with PhS concentration 
[14]

. The study of Poulin and Theil introduced a correlation based 

algorithm that utilized red blood cell partitioning data for unbound compounds (RBCu) 
[7]

. RBCu 

was determined in vitro and used as an indicator of the degree of binding capacity due to 

electronic interactions of basic compounds with acidic PhS. The rationale for this correlation is 

that RBCs are rich in acidic phospholipids and the membrane of RBCs play a similar role to the 

cellular membrane in a lean tissue. In this study, the relationship between RBCu and tissue Kps 

as well as the relationship between muscle Kps and tissue Kps was used to develop predictive 

regression equations. It was observed that Kp prediction with muscle Kp as a predictor was more 

accurate than the use of RBCu as a predictor alone 
[7]

. This approach was further enhanced by 

identifying outliers of the over-prediction of Kps. Both pharmacological activity of a compound 

and compound specific properties such as pKa and lipophilicity were taken into account to refine 

the correlation approach of the Poulin and Theil model 
[7,15]

. 

 

Input parameters for Kp algorithms 

Various input parameters for the introduced algorithms are often determined in vitro and used in 

TCB algorithms to estimate: (i) the hydrophobic interactions of a compound with neutral 

phospholipids (e.g. n-octanol: buffer partition coefficient, or vegetable oil: buffer partition 
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coefficient), (ii) the ionic interaction with charged phospholipids, (iii) hydrophobic binding to 

hemoglobin (e.g. blood: air partition coefficient)  and (iv) the binding to plasma proteins (e.g. 

unbound fraction in plasma). Some of the important parameters in the previously explained 

algorithms are described below.  

Lipophilicity is one of the most important ADME-related properties and has a major impact on 

pharmacokinetics. Lipophilicity of a compound is determined using LogP from octanol/water 

partitioning. LogP is the logarithm of the partition coefficient of the compound trapped between 

an organic phase and an aqueous phase at a pH where all of the compounds are in their neutral 

forms. N-octanol is thought to mimic the hydro-lipophilicity balance of neutral lipid mixtures; 

therefore, the distribution of a compound into n-octanol was postulated to simulate the ability of 

a compound to passively diffuse across biological membranes. However, n-octanol is not a 

suitable surrogate to mimic the triglycerides of adipose tissue. The solution to this would be to 

use olive oil, which is abundant in triglycerides. Therefore the logarithm of olive oil: buffer 

partition coefficient (LogKvo:w) provides a more accurate Kp prediction for adipose tissue 
[8,9,16]

. 

Additionally, LogD is the logarithm of the distribution coefficient of the compound at a specific 

pH. LogD depends on the partitioning of the ionized portion of the molecules and the 

partitioning of the neutral portion of the molecules.  

The fraction of unbound compound in plasma (fup) is also an important descriptor in Kp 

prediction models. Binding of a compound to plasma proteins affects its distribution. The degree 

of binding is frequently expressed as a ratio of bound to total concentration. The unbound 

fraction of a compound is the proportion of the compound in plasma or in tissue interstitial space 

that is not bound to common proteins such as albumin, glycoproteins, lipoproteins and globulins. 

The steady-state concentration of an unbound compound is equal in all body tissues, regardless 
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to the degree of the binding to the macromolecules. Therefore, the value of Kp can be defined as 

the ratio of the fraction of unbound compound in the plasma to the fraction of unbound 

compound in the tissue. Furthermore, the fraction of the unbound compound is regarded to be 

pharmacologically active. Since bound protein-compound complexes cannot penetrate the 

capillary membrane, the rate of distribution of compound into tissue is dependent on the 

concentration gradient produced by the concentration of unbound unionized compound. 

A molecule's pKa, which is a determining factor in the degree of ionization at a particular pH, is 

a key chemical property in Kp predictions. Compounds that are weak acids or weak bases exist in 

solution at equilibrium between the unionized and ionized form. Only un-ionized nonpolar 

chemicals can cross the tissue membrane as ionized compounds are less permeable than un-

ionized compounds. At equilibrium, the concentrations of the un-ionized compounds are equal in 

both plasma and tissue. However, total concentration in one matrix (e.g. a tissue) may be 

different depending on the degree of ionization of a compound at a tissue-specific physiological 

pH. For the statistical analyses in this study, a variable that indicates the degree of ionization of a 

compound as a function of tissue pH is needed. The ionized fraction of the compound (fi) 

represents the degree of ionization at a tissue-specific physiological pH (equations are presented 

in the chapter 2). The fi equations are derived from the Henderson-Hasselbalch equation.  The fi 

value ranges from 0 to 1 where a highly ionized compound at specific pH approaches 1. 

 Figure 1‑4 presents the simulation of fi value at various compound pKas. The influence of 

different tissue pH is demonstrated (i.e. pH 7.4 for plasma, pH 6.6 for lung).  For a compound 

with an acidic pKa where the pKa value is smaller than the tissue pH, the fi is high (Figure 1‑4, 

top). For a compound with a basic pKa where the pKa value is larger than the tissue pH, the fi is 

high (Figure 1‑4, bottom). With knowledge of pKa (acidic or basic pKa), this variable can 
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distinguish the ionized fraction for compounds with the same value of pKa. For example, for a 

compound with acidic pKa of 7, the fi value at the plasma pH 7.4 is 0.72. For a compound with 

basic pKa of 7, the fi value at the plasma pH 7.4 is 0.28. In addition, for a neutral compound, the 

fi value is zero. Thus, fi is considered to be a better representative parameter for describing a 

compound’s degree of ionization at various tissue pH than the use of pKa alone.  

 

 

Figure 1-4. Simulation of degree of ionization at various tissue pH for monoprotic acids (top) and 

monoprotic bases (bottom). 
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Compound affinity to red blood cells is often used as an indicator of in vivo distribution. It has 

been observed that a compound’s ability to bind to hemoglobin within RBCs correlates with the 

lipophilicity of the compound 
[17]

. Compound binding to RBCs is a crucial factor in representing 

tissue distribution because RBCs are rich in acidic phospholipids, which are responsible for the 

high binding affinity of basic compounds.  Only a few algorithms (e.g. 
[7,8]

) require RBCu. 

Poulin and Theil 
[7]

 demonstrated that the Kp prediction with muscle Kp as an input variable was 

more accurate than the Kp prediction with RBCu as an input variable. The muscle Kp is also an 

important factor in Kp prediction since muscle is a highly perfused organ, and accounts for 

approximately 40% of the total body mass. For compounds with a large Vss, a substantial 

portion of the compound is considered to partition into the muscle.  In addition, Vss also can be 

used as an input as it is the parameter that represents the overall extent of the drug distribution in 

the body 
[5,18,19]

.  

These physico-chemical and physiological inputs represent key input parameters for Kp 

prediction algorithms. Some of these input parameters are readily available such as a measure of 

lipophilicity or pKa while others are not routinely measured such as RBCu or muscle Kp. Due to 

the difficulty in obtaining some of the input parameters; several algorithms have limited utility in 

tissue-specific Kp prediction for a novel compound.  

 

Thesis objectives 

This thesis aims to enhance the confidence in Kp predictions. First, a novel correlation based 

prediction algorithm is developed that uses readily available inputs. The hypothesis for this study 

was that this correlation based algorithm will increase the tissue specific accuracy in Kp 

prediction for a tissue.  
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Second, a machine learning method is used to develop a decision tree that will select, for each 

tissue, the best-predicting Kp algorithm. This will allow the user to harness the best of all of the 

algorithms for their novel compound. The hypothesis for this study was that the use of a decision 

tree will produce a more accurate overall prediction of Kps than any one Kp prediction algorithm 

alone. This will result in an adequate parameterization of a PBPK model. These two innovative 

methods will improve tissue distribution prediction accuracy therefore enhancing the confidence 

in PBPK modeling outputs.   
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Chapter 2 

Correlation-based prediction of tissue-to-plasma partition coefficients using 

readily available input parameters
a
 

2.1 Outline 

1. Rationale: Tissue-to-plasma partition coefficients (Kp) that characterize the tissue 

distribution of a drug are important input parameters in physiologically based 

pharmacokinetic (PBPK) models. The aim of this study was to develop an empirically 

derived Kp prediction algorithm using input parameters that are available early in the 

investigation of a compound.  

2. Methods: The algorithm development dataset (n = 97 compounds) was divided according 

to acidic/basic properties. Using multiple stepwise regression, the experimentally derived 

Kp values were correlated with the rat volume of distribution at steady state (Vss) and one 

or more physicochemical parameters (e.g., lipophilicity, degree of ionization, protein 

binding) to account for inter-organ variability of tissue distribution.  

3. Results: Prediction equations for the value of Kp were developed for 11 tissues. 

Validation of this model using a test dataset (n = 20 compounds) demonstrated that 65% 

of the predicted Kp values were within a two-fold error deviation from the experimental 

values. The developed algorithms had greater prediction accuracy compared to an 

existing empirically derived and a mechanistic tissue-composition algorithm.  

                                                      
a
 Chapter 2 has been published in the journal Xenobiotica. 

Yun, Y. E. & Edginton, A. N. 2013, "Correlation-based prediction of tissue-to-plasma partition coefficients using 

readily available input parameters", Xenobiotica 43: (In press). doi 10.3109/00498254.2013.770182 
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4. Conclusions: This innovative method uses readily available input parameters with 

reasonable prediction accuracy and will thus enhance both the usability and the 

confidence in the outputs of PBPK models.   

 

2.2 Introduction  

Physiologically based pharmacokinetic (PBPK) modeling is widely used in pharmaceutical 

research, drug development and toxicological risk assessment to make predictions of the target 

tissue exposure following various administration scenarios 
[20]

. An inherent advantage of PBPK 

approaches is the ability to incorporate both intrinsic (e.g., age, organ dysfunction 
[21,22]

) and 

extrinsic (e.g., drug-drug interaction 
[23]

) factors into the models, which provides the ability to 

make biologically plausible PK predictions and extrapolations across and within species 
[24]

. A 

PBPK model uses anatomically and physiologically appropriate compartments of a body (e.g., 

tissues), which are linked through systemic circulation with the system closed through the lung 

[3,25-27]
. In addition to organ-specific inputs, PBPK models also require drug-specific inputs, such 

as a measure of the binding affinity to plasma proteins (fup), the tissue to plasma partition 

coefficients (Kp), the permeability × surface area products and the drug dissolution properties. 

Although anthropometric parameters are available for many organisms, drug-specific inputs are 

more uncertain and just as crucial to the success of the model prediction.  

One of the most important drug-specific input parameters is the tissue to plasma partition 

coefficients, Kp, i.e., the ratio of the concentration of a compound in the tissue to the 

concentration of the compound in the plasma at steady state 
[2,6]

. The value of this coefficient 

indicates the degree of accumulation of a drug in a tissue under steady-state conditions and 
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represents the relative exposure of a drug between different tissues, which enables a target site-

related assessment of absorption, distribution and elimination 
[28]

. 

The Kp values partially define the volume of the distribution at steady state (Vss), which is the 

ratio of the total amount of the drug in the body to the total amount of the drug in the plasma 

under steady-state conditions 
[29-31]

. The Vss value represents the overall extent of the drug 

distribution in the body and is defined as in Eqn. 2-1: 

Eqn. 2-1 )1(
1

, i

n

itissueiplasma EVKpVVss     

where Vplasma is the volume of the plasma and Vtissue,i is the volume of the i
th

 tissue. For non-

eliminating tissues, extraction ratio Ei is zero (Ei=0). If the model is parameterized with the 

appropriate Kp values, PBPK models can predict the Vss because the plasma and tissue volumes 

are inherent parameters in the model. 

 

The Kp values can be experimentally derived in rodents through destructive sampling and are 

generally considered to be the most desirable input parameters because their uncertainty is low. 

However, the experimental in vivo determination of these Kp values can be misleading if steady 

state is not reached at the time of the measurement; for example, highly lipophilic molecules 

require a longer time to reach steady state than the time that researchers might be willing to wait. 

This experimental determination of these parameters is also time consuming and expensive 
[6,32]

. 

As a result, to minimize the need of experimental procedures in animals, algorithms that predict 

the Kp values based on the physico-chemical characteristics of the compound and organism-

specific parameters have been developed. Two types of algorithms exist: mechanistic algorithms 

and empirically derived algorithms. 
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Tissue composition-based (TCB) algorithms are mechanistic in nature and provide initial 

estimation of the Kp values when in vivo information (e.g., muscle Kp) is unavailable. TCB 

modeling aims to describe the combination of the interactions that occur in any one tissue as a 

result of the physiological components of the tissue and the chemical properties of the compound 

[2,6,8,9]
.  In early TCB models 

[2,2,10]
, the tissue-to-blood partition coefficients were predicted by 

estimating the ratio of the solubility of a chemical in tissues to that in blood. The solubility in 

each matrix was approximated as the total solubility of the compound in neutral lipids, 

phospholipids, and water. Rodgers et al. enhanced these models by incorporating the electrostatic 

interactions of basic compounds (pKa ≥ 7) with cellular acidic phospholipids 
[8]

. With neutral, 

acidic, and weak basic compounds, the prediction of Kp values is primarily defined by their 

interaction with extracellular proteins (i.e., lipoproteins, albumin) 
[9]

.  Further modifications to 

the model were made by Schmitt 
[6]

, who accounted for the combination of the effects of the drug 

distribution in the interstitial space, the effects of the pH gradient between the plasma and the 

tissues, the partitioning into the different lipid components in the tissues, and the binding to 

proteins.   

Correlation-based Kp prediction models are empirical in nature and offer an alternative approach 

to the TCB models. These correlation-based models use both physicochemical descriptors of a 

compound 
[5]

 and organism-specific data, such as muscle Kp 
[4,5,7]

 and red blood cell partitioning 

data 
[7]

 as predictor variables.  Early correlation-based models used an experimentally 

determined muscle Kp value that was correlated with other tissue Kp values through regression 

[29]
. Bjorkman 

[4]
 performed similar work but also used adipose Kp values as a predictor 

[4]
. The 

work of Jansson et al. 
[5]

 enhanced Poulin and Theil’s 
[29]

 approach by incorporating the 

compound lipophilicity (i.e., LogP, LogD7.4 or LogK7.4) as a secondary predictor. Jansson et al. 
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[5] 
uses Kp,muscle as the ultimate input parameter.  If the value of Kp,muscle is not available, equation 

2 can be used to generate the value of this parameter from Vss.   

Eqn. 2-2  
citylipophilicbmuscleKpa

n

itissueplasma VVVss   )log(),log(

1

, 10  
[5]

 

The Jansson et al. 
[5] 

method requires either an experimentally derived value for the muscle Kp or 

the value of Vss, which can be used to predict the value of Kp,muscle. This parameter is then used in 

the regression equations. Poulin and Theil 
[7]

 proposed a correlation model that utilized red blood 

cell partitioning data for unbound drugs (RBCu) as an indicator of the degree of the binding 

capacity of basic drugs with acidic phosphatidylserines.   

Recently, a comparison of the current methods for the determination of Vss based on the 

estimation of Kp and the use of Eqn.2-2 found that the correlation-based models, especially 

Jansson et al. model 
[5]

, were more accurate than even the best TCB model, which was developed 

by Rodgers et al. 
[33,34]

. The results suggest that the correlation-based methods have a higher 

accuracy in Kp prediction; however, these models also require input parameters (i.e., muscle Kp 

and RBCu) that are difficult to obtain and not regularly measured. The Vss in rats is a readily 

available parameter; therefore, PK studies in rats are completed relatively early in the drug 

discovery process and are commonly completed for environmental xenobiotics 
[18]

. The current 

study aims to develop a correlation-based Kp prediction model that directly uses the rat Vss as a 

primary Kp predictor and links this value with secondary physicochemical parameters for tissue-

specific Kp estimation.  
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2.3 Methods 

Drug specific parameters  

The drug-specific parameters that affect the tissue distribution are the lipophilicity, the degree of 

ionization, and the plasma protein binding.  In this model, the distribution of a drug into and out 

of a tissue was solely attributed to passive diffusion.  

The lipophilicity of a drug, which is one of the most important ADME-related properties, has a 

major effect on its pharmacokinetics. The lipophilic or hydrophilic properties of a drug can be 

described by the N-octanol-water partition coefficient (LogP). N-octanol is considered to imitate 

the hydro-lipophilicity balance of biological membranes because it contains a saturated alkyl 

chain and a hydroxyl group and has a similar solubility in water 
[29,35]

.  In general, a high lipid 

solubility leads to a high affinity to neutral lipids, proteins and other macromolecules, which 

ultimately imparts extensive drug distribution 
[36]

. LogP values were incorporated into the 

statistical analysis to account for a drug’s affinity to the lipophilic constituents of a tissue.  

 

Table 2-1. Tissue pH values in rats  

Tissue pH
a 

Adipose 7.1 

Bone 7 

Brain 7.1 

Gut 7 

Heart 7.1 

Kidneys 7.22 

Liver 7.1 

Lung 6.6 

Muscle 6.81 

Skin 7 

Spleen 7 
a
Obtained from the literature

[6,37-43]
. 

 



 

 21 

The tissue distribution is greatly affected by the acidic/basic properties of the compound. It is 

hypothesized that an electrostatic interaction between the cellular acidic phosphatidylserine and 

the basic moiety of a drug is crucial to the definition of the tissue distribution of moderately to 

strongly basic drugs 
[7,8,44]

. However, acidic, weakly basic and neutral compounds are known to 

bind to extracellular proteins: acids and weak bases bind to albumin and lipophilic neutrals bind 

to lipoproteins (Rodgers & Rowland 2006). These classes of compounds tend to have smaller 

distribution volumes than moderate to strong bases 
[9,45]

. As a result, compounds were considered 

in two groups: moderate to strong bases and acidic, neutral and weak bases (see below).  

The degree of ionization is an important factor in tissue distribution. This is mainly due to the 

differential pH between the plasma/interstitial space and the intracellular water space. As shown 

in table 2-1, the pH of tissues is lower than the plasma pH (7.4) and varies across the tissue. 

Therefore, the influence of the degree of ionization on the distribution is different for each tissue. 

To account for the inter-tissue distribution variation, the ionized fraction of the drug (fi) was 

calculated (Eqn 2-3 to 2-7); these values represent the degree of ionization at a tissue-specific 

physiological pH: 

Eqn. 2-3 
1]101[1  tissuepHpKafi  for monoprotic bases, 

Eqn. 2-4
12

]1010[1 211 


tissuepHpKapKatissuepHpKa
fi  for diprotic bases, 

Eqn. 2-5
1]10[1  pKatissuepHfi   for monoprotic acids, 

Eqn. 2-6
12

]1010[1 211 


pKapKatissuepHpKatissuepH
fi   for diprotic acids,  

Eqn. 2-7
1]1010[1 

 acidbase pKatissuepHtissuepHpka
fi for zwitterions. 
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The tissue-specific fi values of each compound were incorporated into the statistical analysis as 

potential predictor variables.  

The steady-state concentration of an unbound drug is equal in all of the body tissues, regardless 

of the degree of the binding to macromolecules 
[46]

. Therefore, the value of Kp can be defined as 

the ratio of the fraction of unbound drug in the plasma to the fraction of unbound drug in the 

tissue.  The unbound fraction in the plasma (fup) was therefore incorporated into the statistical 

analysis as a potential predictor of Kp. 

 

Data collection  

A database of the experimentally derived Kp values, the rat Vss and the corresponding 

physicochemical properties was created from the literature (Appendix 1-4). Additional criteria 

for the inclusion of data into the study were: (i) the reported Kp values plausibly represent the 

true steady-state distribution or the pseudo equilibrium and (ii) the Vss and fup values in rats were 

available. It was assumed that all organs were non-eliminating such that the experimental and 

predicted Kp values were not affected by extraction ratio. The stereoselectivity was also 

considered; thus, the R and S enantiomers were regarded separately. In addition, experimentally 

determined LogP and pKa values were preferably used; if these were not available, calculated 

values were used 
[46,47]

. As has been observed previously, the correlation between calculated and 

experimentally determined values is in good agreement 
[5]

. When the tissue-to-plasma water 

(Kpu) parameter is reported, as in Rodgers et al., 
[8,9]

 the associated Kp was obtained by 

multiplying the values of fup and Kpu. If more than one experimental tissue Kp value was 

obtained for a single compound, the geometric mean was used.  
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Regression model development  

A stepwise multiple linear regression analysis using R (i.e. language and environment for 

statistical computing) 
[48]

 was employed to develop a tissue-specific Kp prediction algorithm 

based on Vss, LogP, the degree of ionization and fup. The important drug-specific parameters in 

the tissue distribution were incorporated to account for inter-tissue variation with the resulting 

structure:  

Eqn. 2-8 443322110 xxxxLogKptissue    

Where β0, β1, β2, β3, β4 are coefficients and x1, x2, x3, x4 are Log Vss, LogP, fup, fi, respectively.     

Eqn. 2-8 is the largest model considered for each model. Smaller models were considered 

through stepwise regression. At each step of the stepwise regression analysis, a variable was 

either added or removed. The process was stopped when the fit yielded the greatest reduction in 

the Akaike information criterion (AIC) statistic 
[49]

. The best regression equation for a tissue was 

determined such that it satisfied all of the selection criteria: (i) the equation resulted in the 

smallest AIC value in the analysis, (ii) the equation had the smallest sum of squared residuals, 

and (iii) the inclusion of a variable and the sign of its coefficient were reasonable (discussed 

below). In addition, to detect if the predictor variables were linearly related (i.e., the 

multicollinearity issue), the variance inflation factor (VIF) for each equation was screened. The 

VIF indicates the increase in the variance due to collinearity. A VIF value of 5 was used as the 

cut-off criterion 
[19,50]

. If a multicollinearity problem was deemed to be present (i.e., VIF > 5), a 

given predictor was deleted and the next best equation was sought based on the AIC statistics. 

The dataset was divided into two subsets. Subset A was comprised of moderate to strong bases 

(pKa ≥ 7.4). Subset B consisted of acidic and neutral compounds, zwitterions, and weak bases 
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(pKa ≤ 7.4). For each tissue and each subset, the collected data was randomly divided such that 

80% was used as the development set and 20% was used as the test set. 

 

Evaluation of the obtained regression equations  

The predicted Kp values (Pred) were plotted against the observed Kp values (Obs) for the test 

datasets of Subset A and Subset B.  The adjusted coefficient of determination (Adjusted R
2
) was 

used as a measure of the percentage of Kp variability that was explained by the predictor 

variables 
[50]

. This measure represents the goodness of fit of each obtained equation. The 

precision of the obtained equation was assessed using the root mean square error (RMSE) (Eqn. 

2-9), which ranks the precision of an equation: 

Eqn. 2-9 
n

RMSE

n

ii 

 1

2))log(Pred)Obs(log(

  

 

Comparison of the accuracy of the model with the accuracy of the models developed by Jansson 

et al. and Rodgers et al. 

Using the Subset A and Subset B test datasets, the accuracy of the algorithm was compared 

against the accuracy of an existing correlation-based 
[5]

 and a TCB model 
[8,9]

, both of which 

have been found to be good Kp predictors compared to other published algorithms 
[33,34]

. The 

relative prediction accuracy was measured by calculating the percentage of predicted Kp values 

that exhibited a less than two-fold error deviation from the experimental data. 

For each of the three algorithms, a measure of bias, the average fold error (AFE), was calculated 

(Eqn. 2-10). The AFE indicates an under-prediction (AFE < 1) or an over-prediction (AFE > 1) 

compared to the observed values. The absolute average fold error (AAFE) quantifies the overall 
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magnitude of the deviation between the predicted and the observed Kp values (Eqn. 2-11). To 

rank the overall precision of the model, the root mean squared error (RMSE) was calculated 

(Eqn. 2-9).  

Eqn. 2-10


























n

1 i

i
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log

1

10
n

AFE  

Eqn. 2-11  
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


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
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n
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i

Obs

Pred
log

1

10
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2.4 Results 

Development and prediction accuracy of the algorithm  

The Kp prediction equations for moderate to strong bases (Table 2-2) and acids, neutrals and 

weak bases (Table 2-3) demonstrated a positive association between the Vss and the observed Kp 

values (Figure 2-1). The Vss parameter was used as a primary predictor of all tissue Kp values. 

The incorporation of LogP significantly improved the correlation between the tissue Kp values 

and the Vss for the adipose and lung tissues. The fup was a key factor in the muscle Kp prediction 

(Tables 2-2 and 2-3). In the analysis of the heart, lung and muscle, the degree of ionization was 

an important predictor for all classes of compounds. No single equation displayed 

multicollinearity; thus, all of the VIF values were less than 5. For moderate to strong bases 

(Subset A), the degree of ionization had a positive effect on the Kp, whereas it had a negative 

effect on the Kp for Subset B.   
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Table 2-2.  Correlations between the experimentally derived rat Kp values, the Vss and the 

physicochemical parameters for strong to moderate bases (Training Set A)   

Tissue n Regression parameters Adjusted R2 RMSE 

Intercept LogVss LogP Fi fup 

Adipose 33 -0.800 0.500 0.241 - - 0.66 0.299 

Bone 24 -2.157 0.86 - 2.122 - 0.68 0.263 

Brain 47 -0.406 0.804 0.071 - - 0.37 0.499 

Gut 27 -5.191 0.711 - 5.672 0.275 0.68 0.236 

Heart 50 -1.514 0.850 - 1.648 - 0.84 0.169 

Kidney 54 0.405 0.861 - - 0.309 0.53 0.308 

Liver 52 0.392 1.035 - - - 0.48 0.415 

Lung 51 -5.585 0.933 0.201 5.726  0.80 0.289 

Muscle 53 -2.074 0.707 0.056 1.902 0.318 0.75 0.191 

Spleen 9 0.066 1.041 - - - 0.84 0.159 

Skin 28 -0.144 0.663 0.033 - - 0.80 0.122 

R
2
, coefficient of determination; RMSE, root mean square error  

 

Table 2-3. Correlations between the experimentally determined Kp values, the Vss and the 

physicochemical parameters for acids, weak bases and neutral compounds (Training Set B). 

Tissue n Regression parameters Adjusted R2 RMSE 

Intercept LogVss LogP Fi fup 

Adipose 21 -0.298 1.144 0.231 - - 0.64 0.374 

Bone 13 -0.245 0.984 -  0.42 0.87 0.142 

Brain 31 0.085 0.605 - -0.832 - 0.67 0.302 

Gut 26 0.043 0.831 0.067 - - 0.62 0.238 

Heart 35 0.146 0.644 - -0.308 - 0.75 0.215 

Kidney 31 0.463 0.425 - -0.316 - 0.39 0.277 

Liver 33 0.376 0.726 0.074 -0.333 - 0.79 0.237 

Lung 32 -0.434 0.693 0.185 -0.286 0.520 0.83 0.222 

Muscle 38 -0.122 0.65 - -0.431 0.269 0.7 0.249 
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Spleen 18 0.136 1.008 - -0.26 - 0.77 0.241 

Skin 26 -0.331 0.544 0.158 -0.318 0.384 0.73 0.186 

R
2
, coefficient of determination; RMSE, root mean square error  

 

Using the test datasets (Table 2-4), the calculated Kp values were in good agreement with the 

experimentally determined Kp values. Sixty-seven and sixty-two percent of the predicted Kp 

values fell within a two-fold deviation error of the experimental Kp values for Subset A and 

Subset B, respectively (Figure 2-2), which demonstrates similar relative prediction accuracy.  

Based on the RMSE values, the equations for moderate to strong bases had better precision 

(0.40) than those obtained for acids, neutral compounds and weak bases (0.44). 
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Figure 2-1. Association between Vss and observed Kp values for (a) moderate to strong bases and for (b) acids, neutral compounds, and weak 

bases. The lines indicate the relationship between Vss and the observed Kps for each tissue. 

 

 

 

 

 

 

 

 

Figure 2-2. Logarithmic plot of observed vs. predicted Kp values for (a) moderate to strong bases (test set A) and for (b) acids, weak bases and 

neutral compounds (test set B).  A total of 20 compounds and 154 tissue-specific Kp values are represented. The solid lines represent the ± 2-fold 

deviation from the experimental data.  
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Comparison of the Kp prediction accuracy of the proposed algorithm with the accuracy of 

published algorithms 

The Kp values for the Subset A and B test datasets were predicted using the algorithms presented 

in this study as well as with the algorithms developed by Jansson et al. 
[5]

 and Rodgers et al. 
[8,9]

.  

In terms of the overall prediction performance, the proposed model had greater predictive 

performance with lower RMSE values, AFE values closer to 1 and the greatest percentage of 

values within a 2- to 3-fold deviation error from the experimental values (Table 2-4). The 

prediction accuracy of the algorithms was tissue-dependent (Figure 2-3). For both Subsets, the 

presented algorithm had better prediction accuracy for the brain, kidney, liver, muscle and spleen 

Kp values. The adipose Kp values obtained with the proposed algorithm were under-predicted 

and had a poorer predictive accuracy compared to published algorithms. In addition, all 

algorithms resulted in a poor prediction of both the heart and the muscle Kp values for 

phencyclidine and FTY-720 in Subset A (see outliers in Figure 2-3). 

Table 2-4. Accuracy of the Kp prediction obtained using the proposed algorithm and previously published 

models for the test datasets A and B 
[5,8,9]

 

 Model n AFE AAFE 
% within   2-fold of 

the experimental data 

% within  3- fold of 

the experimental data 
RMSE 

Test set A 

(Moderate to strong 

bases) 

Proposed 

algorithm 
77 1.04 1.99 67% 78% 0.40 

Jansson et 

al. 
[5]

 
72 0.67 3.12 53% 66% 0.67 

Rodgers et 

al. 
[8,9]

 
77 1.69 3.37 29% 51% 0.61 

Test set B 

(Acids, neutral 

compounds, and 

weak bases) 

Proposed 

algorithm 
77 0.91 2.17 62% 75% 0.44 

Jansson et 

al. 
[5]

 
73 1.19 2.60 50% 67% 0.51 

Rodgers et 

al. 
[8,9]

 
77 1.49 3.40 53% 59% 0.72 

AFE, average fold error; AAFE, Absolute average fold error; RMSE, root mean square error  



 

 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3. Box and Whisker plot of the logarithm of the ratio between the predicted and observed Kp 

values. The boxes represent the median (line) and the 25
th
 and 75

th
 percentiles; the bars represent the the 

5
th
 and 95

th
 percentiles. The dots indicate the outliers. 
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2.5 Discussion 

This study proposed a correlation-based Kp prediction algorithm that was built using a total of 96 

compounds and 723 tissue Kp values. The relationships between the experimentally determined 

Vss and the tissue Kp parameters, in addition to the physicochemical properties of the 

investigated drug, were used to derive the relevant Kp prediction equations. The algorithm differs 

from other correlation-based prediction algorithms due to its direct use of Vss as a primary 

predictor variable and its use of the unbound fraction of the drug in the plasma and the degree of 

ionization as secondary predictor variables. 

Our approach directly uses Vss as a Kp predictor variable, whereas Jansson et al. 
[5]

 used the 

muscle Kp as a main predictor. In Jansson et al.
[5]

, the muscle Kp can be derived from the Vss; 

this derivation, however, can potentially cause great uncertainty in the estimated value of the 

muscle Kp. When the experimental muscle Kp value is used as an input in Jansson et al.’s model 

[5]
, a better prediction performance was observed (data were not shown in present study). 

However, the value of the muscle Kp is not likely to be available, which limits the use of Jansson 

et al.’s model 
[5]

. By using the positive relationship between the tissue Kp values, an in vivo 

parameter (i.e., Vss) and physicochemical descriptors (i.e., LogP, fup, and the degree of 

ionization), our method had better prediction accuracy than Jansson et al.’s model 
[5]

.  

Moderate to strong bases often have large volumes of distribution with significant inter-organ 

variation 
[44]

. One of the contributing factors to this variation is the uneven pH difference 

between the plasma and the tissues. Basic drugs tend to be stored in tissues with a pH that is 

lower than their pKa values. Due to the lower pH in the tissues, there would be a greater fraction 

of ionized species than unionized species and the positively charged ionized fraction would 

electrostatically interact with the negatively charged cell constituents. Even small differences in 
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the pH between the matrices and the plasma, which has a pH of 7.4, and tissues with a lower pH, 

such as the lung (pH 6.6), muscle (pH 6.81) and kidney (pH 7.22) (Table 2-1), are likely to 

create a large pH gradient that would result in the accumulation of a basic drug in a tissue 
[6]

. The 

electrostatic interaction of the ionized fraction with acidic phospholipids, such as 

phosphatidylserine, phosphatidylinositol, phosphatidylglycerol and phosphatidic acid 
[8]

, is a 

crucial factor in the inter-organ variability of the tissue distribution 
[14]

. There is a positive 

relationship between the Kp values and the concentration of acidic phosphatidylserine for 

moderate to strong bases that contain amines 
[44]

. In addition, tissues vary in their acidic 

phospholipid composition. Thus, due to its inclusion as a predictor variable, the degree of 

ionization was expected to have a positive effect on the tissue partitioning for moderate to strong 

bases, which was indeed demonstrated in the resulting regression equations. The poor Kp 

prediction for some basic drugs can be explained by ion trapping. Basic drugs tend to be 

concentrated in lysosomes due to ion-trapping and/or intracellular binding. Unionized bases 

penetrate membranes and localize to acidic environments in cells, such as lysosomes. In an 

acidic organelle, bases become protonated and are thus unable to diffuse to the cytosol 
[51]

. This 

behavior is an important factor in the drug distribution in lysosome-rich tissues, such as the liver, 

lung and kidneys 
[52]

. Ion-trapping is the primary driving factor in the intracellular retention of 

hydrophilic strong bases, whereas ion-trapping and intracellular binding are equally important in 

the intracellular retention of polar strong basic drugs with high lipophilicity (e.g., propranolol) 

[52]
. One of the outliers in our study was imipramine; there is a clear deviation between the 

observed and the calculated Kp values of this drug in the liver, lung, and kidney.  Lysosomal 

trapping is responsible for approximately 10% of the distribution of this compound 
[53]

. Because 



 

 33 

the tissue pH that was used in the calculation of the degree of ionization was that of the whole 

tissue and not that of the individual organelles, this deviation is reasonable.  

Neutral compounds, acids and weak bases (pKa ≤ 7) are likely to behave similarly to each other. 

In the plasma and tissues, these compounds primarily exist in their neutral form and only a small 

portion of these are ionized. In addition, hydrophobic interactions between the neutral 

components of a cell and reversible binding to extracellular proteins are expected to be prevalent 

with these compounds 
[8,9]

. The level of tissue partitioning of weak bases is generally similar 

across the body and independent of the concentration of phosphatidylserine in the tissues 
[44]

. 

The accumulation of acidic drugs, however, is a function of the differential pH between the 

plasma and the different tissues.  The high degree of ionization of acidic drugs in the plasma 

would limit their entry into cells; in addition, once inside a cell, the acidic phosphatidylserine 

would have repulsive electrostatic interactions with the ionized fraction of these acidic drugs 
[6]

. 

As a result, acidic drugs tend to accumulate to a greater extent in tissues with a higher pH 

because the unionized fraction in these tissues is greater than in tissues with a lower pH. Our 

study demonstrated that the Kp values of acidic drugs are negatively correlated with the degree of 

ionization (Table 2-3). 

In general, the fup and Vss parameters have a positive relationship. However, an increase in fup 

does not yield a proportional increase in Vss, especially when a drug is found to be mostly bound 

to proteins 
[46]

. This result indicates that the protein binding information is an important factor 

that should be utilized in the estimation of the tissue distribution of these drugs. Thus, fup 

provides information on distribution patterns that Vss alone cannot convey. Despite the 

association of these variables, no mathematical evidence of collinearity was found in the 

construction of the prediction equations.  
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The prediction of the brain Kp is considered to be a challenge due to the blood brain barrier 

(BBB), which prevents many molecules from penetrating into the brain 
[8,54]

. Tight junctions 

between the endothelial capillary and the glial processes near the capillaries make the BBB 

impermeable to polar molecules 
[55]

. In general, lipophilicity has a positive effect on the drug 

partitioning to the brain because only lipophilic drugs can be transported through the BBB by 

simple diffusion. However, if the drug is a substrate of p-glycoprotein (Pgp), the resultant poor 

permeability of these lipophilic drugs may be the result of the efflux function of Pgp. Thus, the 

observed brain Kps for Pgp substrates would account for additional processes, such as the rate of 

drug partitioning either by passive diffusion or by active transport, the rate of drugs that are 

repelled back to the blood by Pgp, and the non-specific binding to the BBB 
[56]

. The presented 

approach assumes that the tissue partitioning is driven by the passive transport of a molecule into 

tissues, even though one group of researchers has questioned the validity of assuming passive 

diffusion for any drug 
[57]

.  The input Kp for a PBPK model is the Kp that assumes passive 

diffusion since active processes affecting permeability are accounted for separately. However, 

for algorithm development, the lack of consideration of active processes in the development 

datasets may have led to the poor prediction accuracy that was observed with the brain Kp 

(Figure 2-3).  Although a poor brain Kp prediction with a relatively large standard deviation was 

obtained, the presented algorithm resulted in a better prediction of this parameter than other 

models. 

An under-prediction was observed with the adipose Kp values for both test datasets. A poor 

prediction of the adipose tissue was also reported in the previous Kp estimation studies that used 

a correlation-based approach 
[4,5,7]

. The possible reason for this decreased accuracy in the adipose 

Kp prediction is the different lipid composition of this tissue compared to other tissues. In 
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adipose tissue, neutral lipids are more abundant than other cell constituents, such as 

phosphatidylserine, and other lipids 
[7,8,29]

. Therefore, in these cases, the hydrophobic interactions 

are more dominant than the electrostatic interactions, thereby leading to the accumulation of 

lipophilic drugs in adipose tissues. Jansson et al. 
[5]

 stated that the adipose Kp, prediction from 

the muscle Kp was less accurate compared to other tissues. Poulin and Theil presented a different 

approach that used an adjusted skin Kpu to estimate the adipose Kpu 
[7]

. It has been suggested that 

the variation in the adipose tissue Kp among the different classes of drugs cannot be simply 

explained by the physicochemical and in vivo parameters. Therefore, a different approach is 

required to increase the prediction accuracy of the adipose Kp. Another contributing factor in the 

poor prediction of the adipose Kp may be the inaccuracy of the LogP values and to the inter-

laboratory variation that exists in the determination of these parameters 
[5]

. Thus, this result 

highlights the importance of using accurate physicochemical information for the prediction of 

Kp. 

Phencyclidine is a cationic-amphiphilic drug that acts mainly on the inotropic glutamate 

receptors in the rat brain 
[58]

. All three algorithms resulted in a poor Kp prediction for this drug, 

especially in the muscle and heart (shown in Figure 2-3 as an outlier). The other outlier for heart 

Kp was FTY-720, which is a therapeutic drug used for the treatment of heart failure through the 

activation of Pak1 signaling 
[59]

. Both of these drugs are highly lipophilic with LogP values 

greater than 4.00 and are highly ionized at physiological pH. Because the values of some inputs, 

such as LogP and Vss, were large, the algorithms yielded larger Kp values compared to the 

experimentally determined Kp. There is no current explanation for these results since other 

tissues within each compound were adequately described. A possible explanation is the presence 

of an efflux transporter in those affected tissues that was not considered. 
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Correlation-based models, unlike TCB models, are dependent on the dataset that is used in their 

derivation. The mechanistic equations are potentially applicable for any species if the tissue-

specific physiological parameters are available. Parameterizing TCB models requires less in 

vivo/ex vivo (e.g., fup) information than correlation-based models, which require muscle Kp, Vss 

or RBCu. TCB models require complex parameterization. Many researchers have strived to 

develop prediction algorithms using complex parameters to describe the distribution process at a 

cellular level within a mechanistic structure. Some Kp prediction algorithms require many input 

parameters, such as the blood-to-plasma ratio, red blood cell partitioning data, and the 

phosphatidylcholine-to-water partition coefficient at pH 7.4 
[6-8]

, that may be unavailable. 

Furthermore, some TCB algorithms are mathematically heavy and their reproduction is difficult.  

However, correlation-based models rely on the dataset 
[8]

.  If the dataset used is small, the data 

pool may not represent an accurate sampling and the fit is thus likely to be sensitive to the 

inclusion/exclusion of an observation. The input parameters (e.g., muscle Kp 
[4,5,7]

, skin Kp 
[7]

, 

adipose Kp 
[4]

, and RBCu 
[7]

) are often not easily obtained, which limits the ability to make a 

priori predictions. The proposed algorithm was derived using a larger dataset than all previously 

developed correlation-based algorithms.  

2.6 Conclusion 

The derived Kp prediction algorithm is mathematically simple and employs input parameters 

generally available in pre-clinical drug development or early toxicological assessment. In 

addition, the model has greater prediction accuracy in comparison to the best correlation-based 

and TCB models that are currently available.   
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Chapter 3 

Development of a decision tree to classify the most accurate tissue to plasma 

partition coefficient algorithm for a given compound in rats 

 

3.1 Introduction 

Partitioning of a compound into a tissue is a complex process. In PBPK modeling, the estimation 

of a compound’s distribution parameters has limited the accessibility of this modeling technique 

due to difficulties in their experimental determination (i.e. Kps) in the species of interest 
[28]

. In 

order to overcome this barrier, numerous in silico methods for Kp prediction have been 

developed 
[2,4-9,12,13,16]

. Despite increasing attention and interest in the accurate prediction of 

compound distribution data or tissue dosimetry profiles, a standard Kp prediction method has not 

yet been determined. There is no single prediction algorithm that is applicable for all compounds 

in all tissues (see Table 3-1). The accuracy of the pre-existing Kp prediction algorithms still 

require improvement 
[6]

. The predictability of any single Kp prediction algorithm, whether it is a 

tissue composition based or a correlation based algorithm may vary depending on the physico-

chemical properties of a compound and/or the physiological parameters of an organism. These 

algorithms may also have varying tissue specific prediction accuracies. Furthermore, the 

experimental determination of all of the required compound specific chemical descriptors and in 

vitro and in vivo input parameters can limit the use of some Kp prediction algorithms. In other 

words, the availability of these parameters often determines the usability of an algorithm. For 

these parameters, estimation equations are suggested as an alternative to experimental 
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determination. Therefore, the estimation equations will allow use of Kp prediction algorithms 

with a minimal number of readily available compound specific parameters. With the use of 

estimation equations, this study aims to determine the best performing algorithm in a specific 

physico-chemical space for a single tissue. In order to address this problem, statistical 

classification techniques are used.   

 

Machine learning methods for decision tree development   

Machine learning refers to the construction of a system that can learn from training data. 

Learning algorithms for classification learn based on certain data (e.g. measurement data or 

categorical data) and a response of interest 
[60]

. The objective of machine learning is to 

characterize the observed phenomenon and generalize it (i.e. inductive inference), in an attempt 

to make accurate predictions for a new sample 
[60]

. Decision tree learning is a decision support 

system that uses a tree-like model of decisions. The decision tree based classification methods 

were investigated to identify the best performing algorithm in a specific physico-chemical space 

for each tissue.  
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Table 3-1. Summary of applicability of Kp prediction algorithms  

 Algorithms Acid Base Neutral Zwitterion Adipose Bone Brain Gut Heart Kidney Liver Lung Muscle Pancreas Skin Spleen Testes Thymus RBC 

1 Bjorkman [4] v v   v v v v v v v v   v     

2 Berezhkovskiy [12] v v v v v v v v v  v v v  v     

3 Rodgers et al [8]  v   v v v v v v v v v v v v  v  

 Rodgers & Rowland [9] v  v v v v v v v v v v v v v v  v v 

4 Schmitt [6] v v v v v v v v v v v v v v v v v  v 

5 Jansson et al [5] v v v v v v v v v v v v v  v     

6 Poulin &Theil [7]  v   v v v v v v v v v  v v  v  

7 Yun and Edginton [19] v v v v v v v v v v v v v  v v    

8 The proposed study v v v v v v v v v v v v v  v v    
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Recursive partitioning method  

The recursive partitioning method creates a decision tree that aims to correctly categorize 

members of groups based on several variables 
[61]

. The variables in this analysis are not assumed 

to follow any specific statistical distribution. A classification tree is represented as an inverted 

tree with a root node at the top, branches connecting nodes and leaves at the bottom 
[50]

. The 

schematic below presents an example of an output of the recursive partitioning method. At each 

node, a question regarding a variable is posed. The leaves denote classifications (i.e. a Kp 

prediction algorithm) and the child nodes represent splits that lead to the classifications. The 

numbers at the end of a leaf (Figure 3-1) depict the number of cases within a test dataset that 

were best represented by different categories or Kp prediction algorithms. For the leaf in Figure 

3-1, the classification is category 2 because it has the highest frequency in the leaf (Figure 3-1). 

 

 Figure 3-1. An example of a classification tree developed using recursive partitioning. The left tree is 

unpruned whereas the right tree is pruned.  

 



 

 41 

The classification tree is built using the following steps. A variable (e.g. LogP) that best splits 

the data into two groups is based on the criterion of the Gini index (Eqn. 3-1). Let I(A) be an 

impurity function of a node A.  

Eqn. 3-1 I(A)=  
 j

jj

jk

k ppp 21   

where pk is the fraction of samples in a node A that belong to class k (k=1,2,…K). The 

probabilities (i.e. pk,, pj)  are calculated from node frequency (e.g. Figure 3-1 - 7/18/2).  A split is 

chosen when the split results in maximal impurity reduction. At each possible split, the sample is 

divided into child nodes 
[62]

. The data is subdivided repeatedly until there is no reduction in 

impurity of a node is possible. If a case with the response “true” to the question posed, it is sent 

to the left child node and the “no” responses are sent to the right child node.  

The schematic (Figure 3-1) shows an example of a pruning process of the recursive partitioning 

method. Large trees use a larger number of variables, and these trees may result in overfitting of 

the data. In order to avoid this, a cost-complexity pruning is performed to extract insignificant 

splits 
[63]

. The aim of the tree pruning is to identify a nested version (i.e. subtree) of a fully grown 

tree so that the nested tree minimizes the measure of cost-complexity on an independent test set 

[63]
. The cost-complexity measure can be expressed as following: 

Eqn. 3-2 TtRTR   )()(  

where Rα(T) is the misclassification cost of the whole tree at a complexity parameter α,  and R(t) 

is the misclassification cost evaluated at the node. The number of nodes is denoted as | |. A 

complexity parameter α (α > 0), which penalizes cost, is assigned a one unit increase in 

complexity (i.e. addition of a terminal node) 
[64]

.  
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The sum of all misclassification costs is converted into a penalty for the complexity of the tree. 

The complexity of the tree increases as the number of nodes (i.e. size of the tree) increase 

because the data is further divided into the smaller parts. The complexity parameter α adjusts for 

the influence of tree size on cost-complexity. If α = 0, the largest tree will be chosen. If α 

approaches infinity, then a root node without any child node will be selected (| | = 1).  

 Due to the absence of an independent test set in most cases, cross validation is used as an 

alternative to external validation. Recursive partitioning is implemented in the rpart package in 

R and by default, the rpart function in rpart package performs 10 fold cross validation 
[48,64,65]

. In 

this procedure, the dataset is divided into 10 equally sized segments. Nine segments are used for 

growing a classification tree and the tenth segment is used as a test set. To obtain the optimal 

tree, the complexity parameter that minimizes the 10 fold cross validation error is selected.  

 The function prune() in the rpart package 
[48,65]

 trims the tree to the complexity parameter value 

that minimizes cross validation error 
[64]

. For the left tree in Figure 3-1, according to complexity 

parameter, it is found that a tree with 4 splits had a lower cross validation error as compared to a 

tree with 5 splits. As a result, the last split was extracted. 

 

Random forest and bootstrap aggregation 

Random forest and bootstrap aggregation (Bagging) are also methods of classification. These 

methods are based on a collection of classification trees instead of a single tree, as in recursive 

partitioning. These methods generate multiple versions of a classification tree by using 

bootstrapping, and aggregate the classification from the various trees. Bootstrapping 
[66]

 is a 

procedure inherent in both random forest and Bagging. This procedure determines the reliability 

of estimates in a statistical analysis by generating resamples of the original dataset with the same 



 

 43 

sample size 
[50]

. If the dataset set follows the assumption of independent and identically 

distributed observations, a bootstrap sample is drawn with the same sample size as the original 

dataset with replacement. 

- Random forest  

A random forest is defined as a classifier that is comprised of a set of classification trees  

Eqn. 3-3  Nkxh k ,.....1),,(   

where x is an input vector (i.e. explanatory variables) and the (Θk) are the independent 

identically distributed random vectors 
[67]

.  N bootstrap samples are drawn from the training data. 

For each bootstrap sample, the number of input parameters, mtry (mtry=1,2,…M), are randomly 

chosen (mtry << M) and a classification tree is grown in the same way as recursive partitioning. 

In other words, each tree is created using a random set of samples and input parameters.  

At each node of a tree, the variable that results in the greatest decrease in impurity is selected to 

separate the child nodes. Much like in recursive partitioning, the impurity of the node is 

measured by the Gini index (Eqn. 3-1). The splitting continues until the child node has only 

samples that belong to the same class.  

Each tree is grown without pruning, in that the tree is grown to its largest extent and the tree size 

is not optimized. The random selection of variables results in trees with minimal correlation to 

each other. In order to classify an object from input x (Eqn. 3-3), the object (xnew) is put to each of 

the trees grown in the forest, and consequently, each tree classifies it to a group. With a new 

input xnew, each tree results in a classification. Among unpruned trees (e.g. by default ntree = 500), 

the classification with the most votes is selected by the forest. For each tree, about 67% of the 

data is drawn from an original dataset to create a tree by recursive partitioning, as described 

above. The remaining 33% of the data is left out as an ‘out-of-bag’ (OOB) sample 
[68]

. As 
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bootstrap samples are drawn with replacement, about 36 % of the total data is OOB on average 

[69]
.  

Each classification tree created from a training set makes predictions for the OOB sample at each 

iteration. From the aggregated OOB predictions, the OOB estimate of error rate is calculated. 
[69]

 

This internal estimate of error rate tends to overestimate the error that a tree grown from the total 

dataset would. However, it does allow for an assessment of the classification performance of a 

random forest. Via a built-in cross validation function of rfcv() in the randomForest package in 

R 
[48,69]

, the random forest can be tuned by using the optimal value of the number of variables 

(mtry) 
[70]

.  

- Bootstrap aggregation  

In the Bagging method 
[71]

,  a set of classification trees are grown. A training data α is comprised 

of {(yi, xi), i=1…I} where y is class and x is input vector. A classification tree from the training 

dataset can be expressed as φ(x, α). N bootstrap samples αk (k=1….N), is drawn from a training 

set α at random, but with replacement. A decision tree without pruning is grown based on each 

bootstrap sample using recursive partitioning. However, unlike the random forest method 

described above, all variables are considered as a potential split for each tree (mtry=M) 
[71]

.  Due 

to random variation inherent in bootstrapping, each tree differs from one another.  A set of  

classification trees φ(x, αk) is aggregated by the majority vote as the same principle of majority 

vote in the random forest method 
[69,72]

. Both random forest and bagging methods exploit the fact 

that a single classification tree is very unstable and that a small change in the training set can 

result in different classification. But, the aggregation of multiple versions of the classification 

trees yields a better prediction 
[61]

.  
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3.2 Objectives and Hypothesis 

 The current study aims to develop a decision tree that will choose the most accurate algorithm 

for the prediction of tissue specific Kps. This study employed a classifier learning algorithm to 

develop a classification tree that will identify the most precise algorithm for a compound within 

a given physico-chemical space. The objectives of the predictive classifier are: (i) to provide Kp 

predictions using readily available parameters and (ii) to use the most accurate prediction 

algorithm to calculate tissue-specific Kps for a compound. It is hypothesized that the developed 

classification tree(s) will produce a more accurate overall prediction of Kps than any one Kp 

prediction algorithm alone.  

3.3 Methodology 

Data collection  

A database of experimentally derived partition coefficients with corresponding compound 

physico-chemical properties were created from the literature using several MEDLINE searches. 

In vivo parameters such as the fraction unbound in plasma (fup) and volume of distribution (Vss) 

were also included in the database. Data was included in the study based on the following 

criteria: (i) reported Kp values plausibly represent true steady state distribution/ pseudo 

equilibrium and (ii) fup, pKa, and one of the lipophilicity measures (i.e. LogP, LogD, 

LogKvo:w) were available. When experimental physicochemical parameters (e.g. all 

lipophilicity measures, pKa) were not available in the literature, the values were obtained from 

predictions made in ChemEbl 
[47]

. Experimentally determined values were preferably used over 

predicted values. Stereoselectivity of a compound was considered, if applicable, so that R and S 

enantiomers were considered separately. As shown in Table 3-1, decision trees for pancreas, 
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testes, thymus and RBC were not generated since the number of data points was insufficient for a 

classification analysis.   

 

Estimation of required inputs 

Table 3-2 presents the required input parameters for each algorithm. In the event that a required 

input parameter was not available, it was calculated based on regression equations presented in 

Table 3-3. For example, if only LogP was available but LogD was the necessary input parameter, 

LogD was calculated using equations based on the equations derived by Poulin et al 
[15]

 (see 

Table 3-3). For some input parameters [e.g. LogMA, LogHSA, and blood: plasma ratio (B:P)], a 

regression equation was derived using the datasets in the Rodger et al. 
[8]

 and Schmitt  
[6]

 

publications.  

 Affinity for blood cells (KpuBC)  (i.e. unbound compound concentration in blood cells) is one of 

the required parameters for the Rodgers et al. 
[8,9]

 algorithms. KpuBC is the function of fup, B:P 

and hematocrit. KpuBC is estimated using the standard equation (Eqn. 3-10) in the Rodgers 

models 
[8,73]

. In the absence of an observed B:P, B:P is estimated using the estimation equation 

(Eqn. 3-11) proposed by Paixao et al. 2009 
[74]

. This equation was derived from Rodgers et al. 

2006. The assumptions for the equations are that: (i) in erythrocytes, there is no extracellular 

space and (ii) albumin and lipoproteins are not contained within the space.  

While the first approach to B:P estimation was the use of a mechanistic model as descried above, 

another approach was also taken for B:P estimation. This was the development of a regression 

equation (Eqn. 3-12). Experimentally determined B:P, LogP and fup (n = 28) were obtained from 

Rodgers et al. 
[8]

 and a predictive regression equation was developed based on the dataset. For 

the linear regression analysis, the statistical software R version 2.12 
[48]

 was used. The estimation 
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equation that yielded a more accurate Kpu prediction when compared to the observed Kpu values 

was selected for the calculation of Kps for Rodgers et al. 
[8,9]

 in this study.  

For the calculation according to Schmitt’s algorithm 
[6]

, the logarithmic value of 

phosphatidylcholine: water partition coefficient at pH 7.4 (LogMA) and the logarithmic value of 

human serum albumin (LogHSA) must be estimated in the absence of the experimentally 

determined values. Using the dataset provided by Schmitt, LogP, LogMA, and LogHSA (n =60 

data points) were obtained. The regression equations for LogMA (Eqn. 3-8) and LogHSA (Eqn. 

3-9) were generated.   

 

Table 3-2. Summary of Kp prediction algorithm and their main inputs.   

Algorithm Approach Main inputs 

Bjorkman 
[4]

 Correlation based Muscle Kp 

Berezhkovskiy 
[12,16,29]

 Tissue composition based LogP, LogKvo:w, fup 

Rodgers et al.  
[8,9]

 Tissue composition based LogP, pKa, fup, B:P 

Schmitt 
[6]

 Tissue composition based LogP, LogD, LogKvo:w, LogMA, LogHSA, pKa, fup 

Jansson et al. [5]
 Correlation based Vss, Muscle Kp, LogP, LogD, LogKvo:w 

Poulin and Theil 
[7]

 Correlation based Muscle Kp or RBCu 

Yun and Edginton 
[19]

 Correlation based Vss, LogP, pKa, fup 
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Table 3-3. Summary of equations used to estimate an unknown input parameter. 

 Parameter Description Equation Reference 

Eqn. 3-4 Fut_lean tissue Fraction of unbound 

compound in lean tissue  

1/(1+(((1-fup)/fup)*0.5)) 

 

[2]
 

Eqn. 3-5 Fut_adipose 

tissue 

Fraction of unbound 

compound in adipose tissue  

1/(1+(((1-fup)/fup)*0.15)) 

 

[2]
 

Eqn. 3-6 LogD  Partition coefficient of 

octanol and water at specific 

pH  

Monoprotic base 

)10+Log(1-LogP 7.4-pKa1
 

Diprotic base  

)10+10+Log(1-LogP 7.42pKa2-+pKa17.4-pKa1 
 

Monoprotic acid 

)10+Log(1-LogP pKa17.4-
 

Diprotic acid  

)10+10+Log(1-LogP pKa2-pKa17.4-2pKa17.4- 
 

Zwitterions 

)10+10+Log(1-LogP pKa_acid7.4-7.4-pKa_base
 

Where pKa1 > pKa2 

[15,16]
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Eqn. 3-7 

 

LogKvo:w Logarithmic value of 

partition coefficient between 

vegetable oil and water.  

1.115*LogP-1.34 

 

[75]
 

Eqn. 3-8 

 

LogMA  Logarithmic value of 

membrane affinity.  

LogMA =1.294+0.304*LogP 

This equation was obtained using Schmitt’s dataset. In the dataset, 

there were 60 logMA values available. The regression equation was 

developed and was statistically significant (P<0.05). 

[6]
 

Eqn. 3-9 

 

LogHSA Logarithmic value of 

Human serum 

albumin(HSA) 

LogHSA=0.294+0.135*LogP 

This equation was obtained using Schmitt’s dataset. In the dataset, 

there were 60 logHSA values available. The regression equation was 

developed and was statistically significant (P<0.05). 

[6]
 

Eqn. 3-10 Kpu_BC  

(Affinity for 

blood cell)  

Red blood cell to plasma 

partition coefficient of 

unbound compound, 

Affinity of a compound for 

a red blood cell  

 

fupHematocrit

HematocritBP

*

)1( 
 

[73]
  

Eqn. 3-11 
KpuBC 

 

 








 




Y

fPPf

Y

fX
RBCNPRBCNLRBCIW ,,_ )7.03.0(

Where 

[74]
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 fIW=.0914,fNL=0.0017,fNP=0.0029 

For monoprotic base: X=1+10
pKa-7.22

, Y=1+10
pKa-7.4 

For monoprotic acids: X=1+10
7.22-pKa

, Y=1+10
7.4-pKa 

Eqn. 3-12 

 

Blood to plasma 

ratio(B:P) 

 Log(B:P) = -0.004282 +0.067028 LogP + 0.214590 Log(fup)  

 (n=28 , R
2
=0.40 )  

This equation was obtained using Rodgers et al. 
[8]

 dataset. In the 

dataset, there were 28 experimentally determined BP values available. 

The regression equation was developed and was statistically significant 

(P<0.05). 

[8]
 

Eqn. 3-13 

 

Muscle Kp   
citylipophilicbmuscleKpa

n

itissueplasma VVVss   )log(),log(

1

, 10  

[5]
 

Eqn. 3-14 Degree of 

ionization at a 

tissue pH  

 1]101[1  tissuepHpKafi  for monoprotic bases  

12
]10101[1 21  

tissuepHpKapKatissuepHpKafi  for diprotic 

bases  

1]101[1  pKatissuepHfi   for monoprotic acids  

12
]10101[1 21  

pKapKatissuepHpKatissuepHfi   for diprotic 

acids  

1]10101[1 
 acidbase pKatissuepHtissuepHpka

fi for zwitterions 

[19]
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Separation of classifier groups 

For researchers requiring Kp prediction for a novel compound, the availability of input 

parameters will not be consistent. For example, when in vivo work has not been done on the 

compound, researchers are likely to have only physico-chemical input parameters and lack any in 

vivo input parameters such as muscle Kp. Therefore, a decision tree incorporating algorithms that 

require in vivo inputs will not be useful for the researcher. Based on this, several versions of the 

classification trees were created and were based on the likely groupings of input parameters 

researchers may have. Any additional algorithm-specific input parameters that were required 

were estimated using the equations in Table 3-2.  

The development and evaluation of Classification tree #1 was dependent on compounds for 

which muscle Kp, one of the lipophilicity measures (e.g. LogP), pKa, and fup were available 

(Table 3-4). The development and evaluation of Classification tree #2 was dependent on 

compounds for which Vss, one of the lipophilicity measures, pKa and fup were available. The 

development and evaluation of Classification tree #3 was dependent on compounds for which 

one of the lipophilicity measures, pKa and fup were available. The algorithms that were 

classified in each of the Classification trees are listed in Table 3-4 along with the number of 

compounds used in the development and evaluation of each tree.  
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Table 3-4. Physicochemical and/or in vivo parameter inputs for a classifier algorithm and 

included algorithms for each group.   

 Inputs for classification Algorithms 

Group 1 

(N=107 compounds) 

Muscle Kp, LogP, 

fi, 

fup, Class
a 

Berezchkovskiy 
[12]

 

Bjorkman 
[4]

 

Rodgers et al. 
[8,9]

 

Schmitt 
[6]

 

Jansson et al. 
[5]

 

Poulin and Theil 
[7]

 

Group 2 

(N=97 compounds) 

Vss, LogP, 

fi, 

fup, Class
 a
 

Berezchkovskiy 
[12]

 

Rodgers et al.
[8,9]

 

Schmitt 
[6]

 

Jansson et al. 
[5]

 

Yun and Edginton  
[19]

 

Group 3 

(N=121 compounds) 

LogP, fi, 

fup, Class
 a
 

Berezchkovskiy 
[12]

 

Rodgers et al. 
[8,9]

 

Schmitt 
[6]

 

a
Class: acid-base properties of a compound (A: acid, B: base (pKa≥7.4), WB: base (pKa≥7.4), Z: 

zwitterion)
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Kp calculations according to the previously published algorithms   

To ensure that the use of estimated input parameters as defined in Table 3-3 produced Kp 

predictions that were similar to those predicted using existing algorithms, a comparison of 

outcomes was completed.  Kps were calculated according to each published equation using only 

those input parameters required for Classification trees #1 through #3 and using estimation 

equations for any remaining inputs required.  For Rodgers et al.’s method, Kps of bases with 

pKa    were calculated by Rodger et al. 
[8]

. LogKvo:w and B:P were estimated by Eqn. 3-7, 

Eqn. 3-12 (Table 3-2). Kps of acids, neutrals, and weak bases were calculated by Rodgers et al. 
[9]

. 

In Jansson’s algorithm 
[5]

, Kp prediction equations of bases and neutrals, and Kp prediction 

equations of acid and zwitterions were separately used. For Classification Tree #1, the 

experimentally derived muscle Kp value was used as an input. For Classification Tree #2, 

experimental Vss was used as a direct input for those algorithms requiring it and was used to 

estimate muscle Kp in those algorithms where muscle Kp was an input (Eqn. 3-13). LogD and 

LogKvo:w were calculated as a function of LogP using Eqn. 3-6 and Eqn. 3-7. In Schmitt’s model 

[6]
, compound class was separated by acids, neutrals, bases, and zwitterions and Kps were 

calculated accordingly. LogMA and LogHSA were estimated using the regression equations Eqn. 

3-8 and Eqn. 3-9. In the Yun and Edginton algorithm 
[19]

, Kps were estimated by using equations 

for moderate to strong bases and equations for acids, neutrals and zwitterions. The degree of 

ionization at a specific tissue pH was calculated using Eqn. 3-14. Since Poulin and Theil’s Kp 

prediction approach 
[7]

 was targeted for predicting Kps for bases, only Kps of bases were 

estimated. In Bjorkman’s model 
[4]

, Kp prediction equations for acids and bases were separately 

developed and Kps were calculated accordingly.   
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 The difference between calculated Kp values using both experimental and estimated input 

parameters were compared to the calculated Kps published in  Rodgers et al. 
[8,9]

, Schmitt 
[6]

, and 

Jansson et al.
[5]

. The comparison could not be made for Berezhkovskiy 
[12]

, Bjorkman 
[4]

, and 

Poulin and Theil 
[7]

 as the calculated Kps were not presented in their publications.   

Mean fold error (MFE,  Eqn. 3-16), average fold error (AFE, Eqn. 3-18), absolute average fold 

error (AAFE, Eqn. 3-19), and root mean square error (RMSE, Eqn. 3-20) were used to measure 

the deviance of the published algorithm predicted Kps and the Kps calculated using experimental 

and estimated inputs (Table 3-5).   

Table 3-5. Statistics for comparative assessment of prediction accuracy 

 Metrics Formula 

Eqn. 3-15 Fold Error (FE) i

i

Obs

Pred
 

Where Predi is predicted value, Obsi is observed value. 

Eqn. 3-16 MFE  









n

1 i

i

Obs

Pred  

Eqn. 3-17 % within k-fold error 

%100
Obs

Pred11

1 i

i 




















n

i

k
k

I
n

, I(·) is an indicator 

function, k= 1.25,1.5,2,3

 

Eqn. 3-18 AFE 


























n

1 i

i

Obs

Pred
log

1

10
n

 

Eqn. 3-19 

 

AAFE 




























n

1 i

i

Obs

Pred
log

1

10
n

 

Eqn. 3-20 RMSE 

n

n

ii 
1

2))log(Pred)Obs(log(
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Dataset Development 

Using the compound specific properties and the in vivo parameter data in Group 1, 2, and 3 

(Table 3-4), a comparison of experimentally derived Kps with predicted Kps from each applicable 

algorithm were made. The Kp prediction algorithm that resulted in a value that was closest to the 

experimental one was selected for the compound. The selected model for the compound was then 

coded numerically so that the compound could be categorized by the best predicting model 

(coded as in Table 3-6). This coded information was used as the dependent variable in the 

statistical analysis. In order to determine which Kp prediction method should be used for a given 

physicochemical space, statistical methodologies such as ‘recursive partitioning method’, 

random forest, and bagging were investigated in this study. A classification learning algorithm 

that identified the best prediction Kp algorithm with a lower classification error rate was chosen 

for this study.     

 

Recursive partitioning and Classification learning algorithms 

The recursive partitioning, bagging, and random forest methods were utilized to build a classifier 

that identified the most accurate Kp prediction model. Those classification analyses were 

performed using the statistical software R (version 2.14) 
[48]

. Recursive partitioning is 

implemented in the rpart package. After an unpruned classification tree was grown, by using the 

function of printcp(), the cross-validated prediction error for different numbers of splits was 

calculated. A tree was pruned by setting the complexity parameter that resulted in the smallest 

cross-validation error. 

Random Forest is implemented in randomForest package (4.6-6) 
[48,65]

. Initially, the parameters 

were set to the number of trees in a forest (ntree= 500) and number of variable (mtry =   ) by 
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default. By using rfcv function embedded in the randomForest package 
[48,69]

, the optimal mtry 

that resulted in the smallest cross-validated error was chosen. A final random forest model was 

generated by setting the optimized variable of mtry when trees are grown. The Bagging function 

is implemented in the ipred package 
[48,72]

. In this analysis, unpruned classification trees were 

grown from 25 bootstrap samples. The prediction of a new observation is aggregated by the 

majority vote 
[72]

.  

 

Evaluation of classification performance of random forest, bagging and recursive partitioning 

In order to find the most appropriate classification method, the output of 3 methods: random 

forest, bagging and recursive partitioning were compared. Using the same development dataset 

of n=99 (80% of the total dataset), tissue specific classification trees using recursive partitioning, 

bagging and random forest were generated. The sample R-code is shown in the Appendix 5. The 

rate of correct classification was used as a metric to determine which classification method 

performed best within this study. The rate of correct classification of each method was obtained 

using an independent test set of n = 23 compounds (20% of the total dataset). The classification 

method that resulted in the highest rate of correct classification in the most tissues was chosen 

for this study (Eqn. 3-21).  

Eqn. 3-21 Rate of correct classification =  
n

iObsI
n 1

i )Pred(
1

 

Where I(•) is an indicator function, Obsi is observed classification, Predi is predicted 

classification, and n is the number of observation. 
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Evaluation of the random forest using cross validation  

The developed random forests for Classification tree #1, Classification tree #2 and Classification 

tree #3 that corresponded to each group in Table 3-4, were evaluated. The predictive performance 

of each Classification tree was evaluated with the total dataset by using 20 fold cross validation 

[70]
. This method assumes that a random forest developed from 95% (19/20) of a total dataset is 

reasonably the same as a final random forest that is developed using 100% of the total dataset. 

The sample R-code is shown in the Appendix 6.   

 

The steps taken in the 20 fold validation and analysis were as follows:  

(i) The total dataset was partitioned into 20 subsets.   

(ii) A random forest was created using a training set comprised of 19 subsets. The 

developed random forest then predicted the classification for samples in the 20
th

 

subset as a test set. The predicted classification (e.g. best algorithm for compound X 

= Jansson et al.
[5]

) for the test set was recorded. This step was repeated 20 times so 

that each subset was used only once as a test set. As a result, each compound was 

used once as a test compound.  

(iii) For the test dataset that includes all compounds, each compound is associated with a 

random forest generated best prediction algorithm.  

(iv) The rate of correct classification is calculated (Eqn. 3-21).  

(v) The Kp is calculated using the algorithm identified as the most accurate during the 

cross-validation (Table 3-6).   
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Using this method, the predictive performance of previously published algorithms was compared 

to the random forest generated Kps with the use of the same total dataset (n=122 compounds, 

shown in Appendix 7, Appendix 8)  
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Table 3-6. An example of a dataset for the random forest analysis and corresponding calculated Kp values.   

Compound Observed 

Heart Kp 

1.Berezhkovskiy [12] 2.Rodgers et al. [8,9] 3.Schmitt [6] 4.Jansson et al. [5] 5.Yun and Edginton [19] Code1a Code2 b Predicted Kp  

by a  random forest 

Compound1 3.87 5.74 8.18 27.59 14.84 4.39 5 5 4.39 

Compound2 5.71 1.41 7.24 22.07 5.22 8.99 4 4 5.22 

Compound3 2.61 1.02 0.72 1.64 2.74 3.62 4 2 0.72 

Compound4 1.66 1.28 1.04 3.99 6.67 6.75 1 1 1.28 

Compound5 0.55 0.85 0.64 1.09 1.23 1.97 2 4 1.23 

a Code1 is the coded information of the best predicting model for the compound.  
b Code2 is the predicted coded information by a random forest.  
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Model evaluation – Comparative prediction accuracy  

The prediction accuracy of each Classification tree was compared to the prediction accuracy for 

each existing algorithm within its group (Table 3-4). This means that, using inputs required by 

the Classification Tree with all others estimated based on Table 3-3, the prediction accuracy of 

the Classification Tree was compared to the prediction accuracy of each algorithm in the group.   

Prediction accuracy was based on a comparison of the predicted and observed Kps for each 

algorithm. To assess the overall precision of each algorithm, the root mean squared error 

(RMSE) was calculated (Eqn. 3-20) as well as the overall percentage within k-fold deviation 

(k=1.25, 1.5, 2, 3). Tissue specific RMSE was also calculated for comparison of precision of the 

models with respect to the tissue. As a measure of bias, the average fold error (AFE) was 

calculated for each Classification tree (Eqn. 3-18). The AFE indicates an under-prediction (AFE < 

1) or an over-prediction (AFE > 1) compared to the observed values. The absolute average fold 

error (AAFE) quantifies the overall magnitude of the deviation between the predicted and the 

observed Kp values (Eqn 3-1). Second, using the predicted values from previously published 

algorithms (e.g. Jansson et al.
[5]

, Rodgers et al. 
[8,9]

) the same procedure (i.e. % within k-fold 

error, AFE, AAFE, global and tissue specific RMSE calculations) was conducted. The accuracy 

of prediction for each Classification tree was compared to each of the previously published 

algorithms within its group to assess if any one previously published algorithm performed better 

than the Classification tree.   
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3.4 Results 

Dataset 

The dataset was comprised of a total of 122 compounds with 852 Kps in 11 tissues (Appendix 7 

and 8). The physicochemical properties and in vivo properties were gathered from the literature. 

The dataset consisted of 29 acids, 70 bases (63 moderate to strong bases with pKa ≥ 7.4 and 7 

weak bases with pKa ≤ 7.4), 12 neutrals, and 11 zwitterions (Figure 3-2).  

 

Figure 3-2. Proportion of molecular species of compounds in the total dataset 

 

Kp calculations according to the previously published algorithms   

Predicted Kps as published by existing algorithms were compared to Kps predicted using 

experimental input data and estimation equations for input parameters not required for 

Classification tree use. The Kp predictions deviated from the original published predictions 

(Table 3-7, Table 3-8, Table 3-9); however, the mean fold error per tissue was comparable to that 

in the original publications.  

Acids, 24% 

Bases, 52% 

Neutrals, 10% 

Weak bases, 6% 

Zwitterions, 9% 
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Table 3-7. Comparison of predicted Kps from Rodgers et al. 
[8,9]

 vs. those predicted using experimental/estimated input parameters.  

  Adipose Bone Brain Gut Heart Kidney Liver Lung Muscle Skin Spleen 

Kp predictions 

from Rodgers et al. 
[8]

 

MFE 1.41 4.87 1.62 0.90 1.35 0.93 1.44 0.64 1.57 2.00 1.16 

AFE 1.13 1.27 0.80 0.55 1.17 0.75 0.92 0.44 1.32 1.90 0.83 

AAFE 1.82 2.33 2.62 2.50 1.48 1.76 1.97 2.56 1.62 1.90 2.06 

RMSE 0.33 0.57 0.50 0.53 0.23 0.32 0.36 0.48 0.27 0.32 0.38 

Kp prediction 

using the experimental/estimated 

inputs 

MFE 1.48 7.09 1.48 0.76 1.52 0.96 1.53 0.71 1.62 1.91 0.97 

AFE 1.14 1.17 0.70 0.51 1.22 0.82 0.95 0.43 1.32 1.79 0.78 

AAFE 1.85 2.66 2.89 2.48 1.71 1.63 2.04 2.72 1.62 1.82 1.92 

RMSE 0.34 0.66 0.57 0.48 0.29 0.26 0.40 0.53 0.28 0.30 0.30 

 

 Adipose Bone Brain Gut Heart Kidney Liver Lung Muscle Skin Spleen 

Kp predictions 

from Rodgers & Rowland. 
[9]

 

MFE 1.28 0.67 3.16 1.36 1.06 0.57 0.65 1.40 1.02 2.00 1.23 

AFE 0.97 0.52 2.17 1.04 0.89 0.42 0.45 1.16 0.88 1.69 0.96 

AAFE 1.91 2.05 2.31 1.82 1.68 2.57 2.64 1.67 1.51 1.79 1.72 

RMSE 0.39 0.47 0.47 0.34 0.27 0.53 0.53 0.27 0.24 0.33 0.31 

Kp prediction 

using the experimental/estimated 

MFE 1.10 0.70 3.26 1.37 1.24 0.61 0.68 1.56 0.95 2.08 1.18 

AFE 0.58 0.58 1.87 0.97 0.86 0.39 0.37 1.11 0.77 1.67 0.85 
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inputs AAFE 2.82 1.82 2.29 1.98 1.78 2.89 3.22 1.74 1.63 1.91 1.89 

RMSE 0.66 0.37 0.49 0.39 0.33 0.59 0.63 0.32 0.29 0.37 0.34 

 

Table 3-8. Comparison of predicted Kps from Jansson et al. 
[5]

 vs. those predicted using experimental/estimated input parameters. 

 Metrics Adipose Bone Brain Gut Heart Kidney Liver Lung Muscle Skin 

Kp predictions 

from Jansson et al. 
[5]

 

MFE 1.61 0.77 1.51 1.48 1.20 2.03 4.77 1.90 1.04 1.14 

AFE 0.85 0.74 1.15 1.23 0.95 1.41 1.88 1.47 0.95 1.00 

AAFE 2.16 1.46 1.80 1.66 1.77 2.27 2.46 1.91 1.48 1.47 

RMSE 0.43 0.17 0.33 0.30 0.38 0.44 0.57 0.36 0.20 0.21 

Kp predictions using 

observed Muscle Kp 

 

MFE 2.40 0.78 1.79 1.61 1.13 1.91 3.12 1.46  1.14 

AFE 1.05 0.74 1.15 1.19 0.96 1.34 1.39 1.20  0.99 

AAFE 3.05 1.43 2.30 1.92 1.49 2.14 2.29 1.74  1.51 

RMSE 0.57 0.20 0.48 0.35 0.30 0.41 0.49 0.31  0.24 

Kp predictions using 

estimated Muscle Kp 

 

MFE 2.34 0.77 1.52 1.48 1.13 2.03 4.77 1.76 1.04 1.14 

AFE 1.13 0.74 1.08 1.23 0.93 1.41 1.88 1.36 0.95 1.00 

AAFE 2.67 1.46 1.84 1.66 1.75 2.27 2.46 1.78 1.48 1.47 

RMSE 0.53 0.17 0.35 0.30 0.35 0.44 0.57 0.34 0.20 0.21  
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Table 3-9. Comparison of predicted Kps from Schmitt 
[6]

 vs. those predicted using experimental/estimated input parameters. 

 

 

Adipose Bone Brain Gut Heart Kidney Liver Lung Muscle Skin Spleen 

Kp predictions 

from Schmitt 
[6]

 

 

MFE 9.06 3.43 12.59 2.70 4.09 1.27 1.91 1.20 1.78 4.89 0.92 

AFE 4.45 1.30 7.18 1.35 2.52 0.68 0.80 0.77 1.23 2.82 0.78 

AAFE 4.63 2.73 7.18 2.65 2.90 2.26 2.42 2.03 1.84 3.02 1.64 

RMSE 0.83 0.56 0.97 0.53 0.57 0.45 0.52 0.40 0.35 0.62 0.30 

Kp predictions 

using experimental/estimated 

inputs 

 

MFE 9.25 5.49 13.25 2.10 3.94 0.99 1.65 1.47 1.49 4.27 1.20 

AFE 4.81 1.01 6.63 1.23 2.73 0.65 0.82 0.75 1.16 2.92 0.93 

AAFE 4.89 2.75 7.36 2.46 3.09 2.01 2.36 2.34 1.83 3.03 2.05 

RMSE 0.84 0.62 0.97 0.48 0.58 0.37 0.48 0.49 0.32 0.57 0.34 
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For Kp calculation according to Rodgers et al. 
[8]

, the prediction accuracy based on the use of the 

previously published estimation equation for B:P (Eqn. 3-11) and the developed regression 

equation (Eqn. 3-12) was compared. The use of the developed regression equation resulted in a 

more accurate prediction in Kps with lower tissue specific RMSE values (Table 3-10). As a 

result, the developed regression equation (Eqn. 3-12) was used in all subsequent calculations.  

 Table 3-10. Comparison of Kp prediction accuracy based on the Rogers et al. 
[8]

 algorithm using either 

the Paixao et al. 
[74]

 B:P estimation equation or the regression equation developed in this study. 

B:P estimation 

Method 

RMSE 

Adipose Bone Brain Gut Heart Kidney Liver Lung Muscle Skin Spleen 

Paixao et al. 
[74]

 

(Eqn. 3-12) 

0.51 0.84 0.78 0.87 0.68 0.75 0.74 1.07 0.58 0.39 0.96 

Regression equation 

(Eqn. 3-11) 
0.34 0.66 0.56 0.48 0.29 0.27 0.41 0.54 0.29 0.31 0.31 

 

With the use of estimated input parameters (e.g. B:P, LogKvo:w), the Kps calculated using the 

algorithm of Rodgers et al. 
[8,9]

 resulted in a under-prediction when compared to Kps calculated 

by the author with the experimentally determined parameters (Table 3-7). For Jansson et al. 
[5]

 

and Schmitt 
[6]

, with the use of estimated input parameters (Eqn. 3-6, 3-7, 3-8, 3-12), the Kps 

calculated using each algorithm were in agreement with the Kps obtained by both Jansson et al. 

[5]
 and Schmitt 

[6]
 (Table 3-8, Table 3-9, respectively).  

 

Investigation of various classification methods  

Decision trees were developed for 11 tissues as these contained a sufficient number of data 

points for development (Table 3-11). Among several classification methods (i.e. random forest, 

bagging, recursive partitioning), classification performance was explored using the same set of 
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the data. Based on the rate of correct classification, random forest was superior to others with the 

highest correct classification rates in the majority of tissues among each set (Figure 3-3). 

However, the magnitude and standard deviation are similar among the different methods. Thus, 

random forest was deemed to classify the most accurate Kp prediction model based on the 

physicochemical space of compounds. 
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Figure 3-3. Rates of correct classification of various classifier algorithms with respect to a 

tissue.  

 

Descriptive statistics of Kp algorithm performance based on the chemical properties  

Using the dataset that consists of 122 compounds, Kps were calculated according to the 

published algorithms.  The best prediction algorithm for each compound-tissue combination was 

assessed. This information was stratified by the compound’s acid-base-neutral properties (Figure 

3-4, left), and LogP values (Figure 3-4, right). For example, for basic compounds, 27% of Kps 

were best predicted by Yun and Edginton 
[19]

. For compounds with a LogP value between -3 and 

1, 27% were more accurately predicted by Jansson et al. 
[5]

 (Figure 3-4, right).   
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Figure 3-4. Schematics of the best prediction algorithms based on molecular species (left), and 

lipophilicity (right) in the total dataset (n=122 compounds)  
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Construction of predictive random forest models: Classification tree #1, # 2 and # 3   

Three Classification trees were developed using the random forest method. The number of 

samples and the chosen mtry are listed in (Table 3-11). The classification performance of each 

classification tree was indicated by the rate of correct classification. Classification trees resulted 

in a greater rate of correct classification than random permutation rates of 1/6, 1/5, 1/3, based on 

the probability of a correct classification when there are n categories, (1/n). The prediction 

accuracy for each Classification tree was indicated by the percentage of predicted values within 2 

fold of the observed Kps for each tissue. Based on Table 3-11, a high rate of correct classification 

did not always improve Kp prediction accuracy (i.e. percentage within 2 fold of deviation from 

the observed Kps), especially in Classification tree #3. The rate of correct classification for 

Classification tree #1 and #2 was relatively lower than that of Classification tree #3. This was 

because Classification tree #3 had only two or three algorithms to classify whereas Classification 

tree #1 had 5 to 6 and Classification tree #2 had 4 to 5 (Table 3-4).   
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Table 3-11. Summary of random forest parameter and classification performance.  

 

Classification tree #1 Classification tree #2 Classification tree #3 

n mtry 

Rate of correct 

classification 

% within 2 

fold error 

n mtry 

Rate of correct 

classification 

% within 2 

fold error 

N mtry 

Rate of correct 

classification 

% within 2 

fold error 

Adipose 66 5 0.359 51.6% 65 2 0.384 54.6% 69 4 0.638 60.0% 

Bone 41 5 0.561 73.2% 41 5 0.561 75.6% 42 2 0.643 50.0% 

Brain 78 5 0.385 56.4% 76 5 0.395 51.3% 90 4 0.644 47.8% 

Gut 68 5 0.368 72.1% 65 5 0.446 80.0% 68 4 0.618 60.3% 

Heart 91 5 0.452 83.3% 83 5 0.446 80.7% 96 4 0.563 60.4% 

Kidney 89 5 0.341 73.9% 86 5 0.386 69.8% 94 4 0.684 55.3% 

Liver 84 5 0.243 64.2% 84 5 0.429 63.1% 88 4 0.693 51.1% 

Lung 93 5 0.312 67.8% 85 5 0.365 64.7% 95 2 0.589 56.8% 

Muscle 108 5 0.630 78.7% 93 5 0.355 79.6% 108 4 0.667 80.5% 

Skin 64 5 0.328 77.4% 61 5 0.393 77.1% 64 2 0.719 71.9% 

Spleen 36 5 0.583 61.1% 33 2 0.424 63.6% 36 4 0.528 58.3% 
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Comparative assessment of Kp prediction accuracy of Classification trees and published equations  

 -Comparison of prediction accuracy of classification tree # 1 and published equations 

In order to compare the predictive performance of the published algorithms 
[4-9,12]

 and Classification tree 

#1, the tissue AFE, AAFE, and RMSE were calculated using the same dataset (Appendix 7, Appendix 

8). A plot of percentage within k- fold deviation from observed values showed that predictions based on 

Classification tree #1 performed well with 25.6%, 49.7% and 68.8% falling within 1.25, 1.5 and 2 fold 

deviation from the observed Kp values, respectively (Figure 3-5). Global RMSEs of algorithms in Group 

1 indicated that the Kp prediction errors are similar for Jansson et al. 
[5]

, Rodgers et al. 
[8,9]

, and 

Classification tree #1 with values 0.43, 0.51 and 0.49 (Table 3-12). However, Rodgers et al. 
[8,9]

 and 

Classification tree #1 tended to under-predict Kp with AFE values of 0.89, and 0.94, respectively. The 

under-prediction in Kps of Rodgers et al. 
[8,9]

 was observed in bone, kidneys and liver. Jansson et al. 
[5]

 

had the smallest RMSE values of 0.43 but appeared to over-predict Kp with the AFE of 1.27 (Figure 3-6,  

Table 3-12). The over prediction of Kps by Jansson et al. 
[5]

 was observed in kidneys, liver and adipose 

tissue. The overall bias of deviation between the observed Kps and those estimated using Classification 

tree #1 was the smallest among Group 1 with the AFE value of 0.94 (Table 3-12). This is further 

supported by the tissue specific box whisker plot, where the boxes for Classification tree #1 are small, 

centered around zero, and not showing evidence of serious under- or over- prediction. Tissue specific 

RMSEs showed that the Kp prediction of Jansson et al. 
[5]

 resulted in the smallest error for 6 out of 11 

tissues in Group 1 (Table 3-13). It was observed that Berezhkovskiy 
[12]

, Schmitt 
[6]

 and Bjorkman’s 

models 
[4]

 tended to over-predict the Kps with an AFE value larger than 1 (Table 3-12). On the other 

hand, Rodgers et al. 
[8,9]

 and Poulin and Theil’s 
[7]

 models tended to under-predict the Kps with an AFE 

value less than 1.  
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Figure 3-5. Percentages within k fold error. X-acids represents folds, y-axis represent the percentage within k fold error of deviation 

in Group 1.  

 

Table 3-12. Summary of overall predictive performance for Group 1.   

 Berezhkovskiy 
[12]

 Rodgers et al. 
[8,9]

 Schmitt 
[6]

 Jansson et al. 
[5]

  Bjorkman 
[4]

 Poulin and Theil 
[7]

 Classification tree #1 

AFE 1.14 0.89 1.37 1.27 1.52 0.16 0.94 

AAFE 3.21 2.34 3.36 1.98 2.81 8.34 2.00 

RMSE 0.67 0.51 0.66 0.43 0.62 1.25 0.49 
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Table 3-13. Summary of tissue specific RMSE of different algorithms in Group 1. 

 Berezhkovskiy 
[12]

 Rodgers et al. 
[8,9]

 Schmitt 
[6]

 Jansson et al. 
[5]

  Bjorkman 
[4]

 Poulin and Theil 
[7]

 Classification tree #1 

Adipose 0.79 0.47 0.85 0.75 1.20 1.72 0.77 

Bone 0.60 0.55 0.65 0.49 0.64 1.62 0.44 

Brain 0.84 0.58 1.02 0.43 .62 1.39 0.75 

Gut 0.59 0.39 0.50 0.31 0.45 0.72 0.44 

Heart 0.50 0.34 0.63 0.26 0.49 1.08 0.26 

Kidney  0.64 0.54 0.33 0.47 0.93 0.38 

Liver  0.65 0.59 0.51 0.54 1.25 0.54 

Lung 0.76 0.50 0.57 0.34 0.55 1.42 0.37 

Skin 0.45 0.41 0.56 0.23 0.40 1.00 0.32 

Spleen 0.64 0.34 0.51   1.02 0.34 
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Figure 3-6. Box and Whisker plot of the logarithm of the ratio between the predicted and observed Kp values of predicted Kps from 

published equations in Group 1 and random forest (Classification tree #1). The boxes represent the median (line) and the 25
th 

and 75th 

percentiles; the bars represent the 10
th

 and 90
th

. The dots are the 5
th

 and 95
th

 percentiles. 
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 -Comparison of prediction accuracy of classification tree# 2 and published equations 

For comparison of the predictive performance of the published algorithms 
[4-9,12,19]

 and Classification 

tree #2, the tissue AFE, AAFE, and RMSE were calculated. Both Classification tree #2 and Yun and 

Edginton 
[19]

 resulted in more accurate Kp predictions with higher percentages within k- fold deviation 

from observed Kps (k = 1.25 to 3) compared to other algorithms. The prediction performances of both 

Classification tree #2 and Yun and Edginton’s algorithm  
[19]

 were very similar with almost the same 

AFE, AAFE, global RMSE and tissue specific RMSE values (Table 3-14, Table 3-15).  

Favorable Kp predictive performance of both Classification tree #2 and Yun and Edginton 
[19]

 algorithms 

was further reinforced by their AFE values which were closest to 1, and their small AAFE values less 

than 2. The plot of percentage within k- fold deviation from observed values showed that Classification 

tree #2 based Kp prediction performed well with 31.9% and 50.4% falling within 1.25 and 1.5 fold 

deviation from the observed Kp values, respectively (Figure 3-7). 

 In 6 out of 11 tissues, Yun and Edginton algorithm 
[19]

 resulted in the smallest error associated with Kp 

estimates (Table 3-15). Jansson et al. 
[5]

 showed an over-prediction in Kps that was mainly due to the 

over-prediction in the adipose and liver Kps (Figure 3-8). Schmitt’s algorithm 
[6]

 tended to over-predict 

Kps with an AFE of 1.28 and was less accurate with an AAFE of 3.20 (Table 3-14). An over-prediction 

in Kps by Schmitt 
[6]

 was observed in adipose, brain, heart and skin (Figure 3-8). Although 

Berezhkovskiy’s 
[12]

 algorithm resulted in an AFE value close to 1 (1.02), its AAFE value was 2.92. This 

implies that Kp predictions were less accurate and there were both under and over-predictions in the Kps. 

The box whisker plot showed that there was over-prediction in the brain and adipose tissue Kps and an 

under-prediction in gut and lung Kps. 
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Figure 3-7. Percentage within k-fold error. X-axis represents folds, y-axis represent the percentage within k fold error of deviation in Group 2.  

 

Table 3-14. Summary of overall predictive performance for Group 2.   

Group 2  Berezhkovskiy 
[12]

 Rodgers et al. 
[8,9]

 Schmitt  
[6]

 Jansson et al.  
[5]

 Yun and Edginton 
[19]

 Classification tree #2 

AFE 1.02 0.93 1.28 1.21 1.01 1.03 

AAFE 2.92 2.20 3.20 2.06 1.78 1.82 

RMSE 0.60 0.45 0.64 0.45 0.36 0.37 

AFE: average fold error, AAFE: absolute average fold error, RMSE: root mean square error 
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Table 3-15. Summary of tissue specific RMSE of different algorithms in Group 2.  

 

Berezhkovskiy 
[12]

 Rodgers et al. 
[8,9]

 Schmitt 
[6]

 Jansson et al. 
[5]

 Yun and Edginton 
[19]

 Classification tree #2 

Adipose 0.78 0.48 0.85 0.78 0.45 0.50 

Bone 0.60 0.55 0.65 0.51 0.52 0.43 

Brain 0.73 0.57 0.97 0.47 0.50 0.48 

Gut 0.60 0.38 0.49 0.28 0.25 0.25 

Heart 0.46 0.34 0.62 0.42 0.25 0.31 

Kidney 

 

0.49 0.54 0.35 0.37 0.36 

Liver 

 

0.56 0.58 0.50 0.38 0.43 

Lung 0.73 0.47 0.59 0.41 0.32 0.36 

Muscle 0.48 0.29 0.46 0.33 0.28 0.28 

Skin 0.37 0.39 0.54 0.28 0.28 0.26 

Spleen 0.53 0.33 0.52 

 

0.26 0.32 

RMSE: root mean square error 
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Figure 3-8. Box and Whisker plot of the logarithm of the ratio between the predicted and observed Kp values of predicted Kps from 

published equations in Group 2 and random forest (Classification tree #2). The boxes represent the median (line) and the 25
th 

and 75
th

 

percentiles; the bars represent the 10
th

 and 90
th

. The dots are the 5
th

 and 95
th

 percentiles.  
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-Comparison of prediction accuracy of classification tree# 3 and published equations 

For comparison of the predictive performance of the published algorithms 
[6,8,9,12]

 and Classification tree 

#3, the tissue AFE, AAFE, and RMSE were calculated. Classification tree #3 resulted in accurate 

predictions in Group 3 with the highest percentages within k-fold deviation from observed Kps (Figure 

3-9), the smallest global RMSE of 0.45, AFE of 0.95 and the smallest AAFE of 2.14. In 9 out of 11 

tissues, Classification tree #3 resulted in the smallest tissue specific RMSEs. The Berezhkovskiy 
[12]

 and 

Schmitt 
[6]

 algorithms were less accurate with an AAFE larger than 3 and both had a tendency to over-

predict the Kps with an AFE value larger than 1 (Table 3-16). Rodgers et al. 
[8,9]

 under-predicted the Kps 

with an AFE of 0.91. An under-prediction in the Kps by Rodgers et al. was observed in bone, kidneys, 

liver and lungs (Figure 3-10). The global RMSE, AFE, and AAFE values for Classification tree #1, #2 

and Classification tree #3 were comparable. However, in the case of Classification tree #3, the 

percentage within k-fold deviation from observed Kps was lower than Classification tree #1 and #2.  
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1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

P
e
rc

e
n

ta
g
e

 w
it
h
in

 k
-f

o
ld

 e
rr

o
r

0

20

40

60

80

100

Berezhkovskiy

Rodgers et al

Schmitt

Classification tree #3

 

Figure 3-9. Percentage within k-fold error. X-axis represents folds, y-axis represent the percentage 

within k-fold error of deviation in Group 3. 
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Table 3-16. Summary of overall predictive performance for Group 3.   

Group 3  Berezhkovskiy 
[12]

 Rodgers et al. 
[8,9]

 Schmitt  
[6]

 Classification tree #3 

AFE 1.16  0.91  1.37  0.95  

AAFE 3.18  2.33  3.27  2.14  

RMSE 0.66  0.52  0.65  0.45  

 

Table 3-17. Summary of tissue specific RMSE of different algorithms in Group 3.  

 

Berezhkovskiy 
[12]

 Rodgers et al. 
[8,9]

 Schmitt 
[6]

 Classification tree #3 

Adipose 0.82 0.47 0.84 0.45 

Bone 0.59 0.54 0.65 0.54 

Brain 0.85 0.61 1.00 0.58 

Gut 0.59 0.39 0.50 0.36 

Heart 0.49 0.36 0.65 0.37 

Kidney 
 

0.64 0.54 0.45 

Liver 
 

0.71 0.57 0.53 

Lung 0.75 0.50 0.57 0.46 

Muscle 0.51 0.37 0.47 0.30 

Skin 0.45 0.41 0.56 0.35 

Spleen 0.64 0.34 0.51 0.35 
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Figure 3-10. Box and Whisker plot of the logarithm of the ratio between the predicted and observed Kp 

values of predicted Kps from published equations and random forest (Classification tree #3). The boxes 

represent the median (line) and the 25
th

 and 75
th

 percentiles; the bars represent the 10
th

 and 90
th

. The dots 

are the 5
th

 and 95
th

 percentiles.  
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3.5 Discussion 

Kp predictions with estimated input parameters 

One of the objectives of this study was to develop a tool to provide Kp prediction when only a limited 

number of parameters are available. Many algorithms require input parameters that are not readily 

available to researchers such as muscle Kp or B:P. As a result, Classification trees were built using 

experimental input parameters that are readily available while estimating those that are not considered 

routinely derived. To assess the use of estimation methods for generally unavailable input parameters, a 

comparison of predicted Kps from published algorithms were compared to the predicted Kps using 

readily available experimental parameters and the estimated input parameters.  

In the calculation of Rodgers et al. 
[8,9]

, it was observed that the use of experimentally determined inputs 

such as B:P and LogKvo:w resulted in more accurate Kp predictions with lower tissue specific RMSEs 

when compared to Kps calculated using estimated inputs (Table 3-7, Table 3-8, Table 3-9). In Rodgers et 

al. 
[8]

, the blood cell to plasma water concentration ratio (KpuBC) is one of the parameters that is not 

directly measured but is estimated using a standard equation (Eqn. 3-10). This equation is a function of 

an experimentally determined B:P 
[73]

. Therefore, the prediction of Kps according to Rodger et al. 
[8]

 is 

sensitive to the accuracy of the B:P measurement. Instead of using an experimentally determined B:P, 

Small et al. 
[76]

 introduced an alternative method that directly measures KpuBC using surface plasmon 

resonance (SPR).  It was discovered that the use of the SPR approach resulted in a more accurate 

prediction of Kpu and therefore Vss 
[76]

. This demonstrates that the more accurate the input, the more 

accurate the predictions. Availability of either experimentally determined B:P or KpuBC is likely to lead 

to a more accurate Kp prediction using the algorithm of Rodgers et al. 
[8,9]

. In reality however, these 

parameters are not often available. In order to overcome this problem, a B:P estimation equation (Eqn. 

3-12) was generated in this study. This equation was used and replaced the previously published 
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estimation approach (Eqn 3-11 
[74]

) as the regression equation produced more accurate Kpus (Table 3-10).  

The use of this regression equation may bring uncertainty to our model. However, the use of this 

equation in Kp calculations using the Rodgers et al. 
[8,9]

 algorithm resulted in Kpus that were comparable, 

although not superior to, Kpus calculated using experimentally determined B:P. The accuracy metrics 

such as tissue specific RMSEs and AFEs were comparable (Table 3-7).  

In the calculation of Jansson et al.’s algorithm 
[5]

, the use of an experimentally determined muscle Kp 

resulted in more accurate predictions in heart, kidney, liver and lung when compared to the prediction 

accuracy of Jansson et al. 
[5]

 that used a muscle Kp that was estimated from Vss (Table 3-8). As a result, 

Jansson et al.’s algorithm 
[5]

 was selected as the best predicting algorithm in Classification tree #1, 

which used muscle Kp as an input, more often than in Classification tree #2, which used Vss as an input. 

Overall, based on similar bias and precision estimates, Kp predictions with the estimated input 

parameters were deemed sufficiently agreeable to Kp predictions from Rodgers et al. 
[8,9]

, Jansson et al. 

[5]
, and Schmitt 

[6]
. 

 

Construction of tissue specific Classification trees #1, #2, and #3  

Because compound distribution is the interplay between compound specific properties (pKa, LogP, and 

fup) and physiologic factors such as tissue composition information (e.g. concentration of acidic 

phospholipids), Kp prediction equations should be able to describe the compound distribution process 

affected by both the physicochemical properties of a compound and the tissue specific physiologic 

factors. Those factors should be well formulated to yield a sufficient prediction. Failure to take into 

account one of the above aspects could result in Kp predictions deviating from the true value.  

The predictive performance of a Kp algorithm may be tissue-dependent. One algorithm may have more 

predictive power for a particular tissue than an alternative algorithm. Furthermore, accurate Kp 
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prediction in some tissues is more difficult than others. For example, Kp predictions in lung, adipose, 

and liver are difficult due to the enhanced probability of ion trapping, the large distribution of lipophilic 

compounds into adipose tissue with a relatively large inter-laboratory measurement error on LogP 

(explained in the discussion of Chapter 2) and the role of extraction in Kp estimates. In order to address 

inter-tissue variability, a Classification tree was created for 11 tissues. For each tissue, Classification 

trees #1, #2 and #3 were constructed that were dependent upon user supplied input parameters (i.e. 

LogP, pKa, fup, Vss, and muscle Kp) as well as estimated input parameters that were required but not 

deemed readily available.  

 

Comparison between classification methods  

In the generation of Classification trees, the classification performances of the three different 

classification algorithms (i.e. recursive partitioning, bagging, and random forest methods) were 

investigated. The algorithm with the highest correct classification ratio was selected for this study. The 

three classification methods differ in their methodologies. One of the disadvantages of using a single 

classification tree derived from the recursive partitioning method is that it can be sensitive to the 

modifications in the training set when compared to a collection of classification trees 
[61]

. The single 

classification tree is unstable due to the numerous potential variables that can lead to a reduction in 

impurity when a split is chosen. In other words, depending on the dataset different splitting criteria can 

be chosen for a node resulting in a different classification. In order to overcome the instability of the 

single classification tree, ensemble methods (i.e. random forest and bagging) are used.  

In the bagging and random forest method, because of the random variation of each bootstrap sample 

drawn from the training data, various classification trees with different splitting criteria were generated.  

By combining the classifications from the trees, there is an increase in the correct classification ratio 
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when bagging or random forest is used. However, the easy interpretability of the single classification 

tree (e.g. Figure 3-1) is not available as an output of the ensemble methods. 

Both random forest and bagging are similar in the use of the same recursive partitioning principle when 

growing a collection of trees. Random forest and bagging methods are different in that, with random 

forest the splitting criteria is chosen from the mtry variable. In the bagging model, the splitting criteria is 

chosen from all of the M number of variables 
[69]

. Random forest grew 500 trees whereas, bagging grew 

25 trees by default in this analysis. Therefore, by optimizing mtry in the random forest, more various 

trees can be grown from the bootstrap subsets than with the bagging method.  

It was observed that, in most tissues, Classification trees #1, #2, and #3 were optimized with mtry values 

close to the maximum number of input variables (e.g. for group 3, M=4: LogP, DOI, fup, and class) 

(Table 3-4). In most cases, the number of variables at each node were the same with mtry=M in both the 

random forest and bagging methods. Whereas for bagging, mtry was always set to be M (i.e. mtry=M). 

Random forest grew trees with a different mtry and among the possible mtry, the optimal mtry was found 

by selecting mtry that resulted in the smallest cross validation error. The large number of trees and 

optimized mtry of random forest led to a more precise classification in this study. Among the 

classification methods, random forest was selected for this study due to the higher rate of correct 

classifications in most tissues (Figure 3-3). 

 

Inherent factors in Kp prediction via a Classification tree 

Kp prediction via a Classification tree depends on two important factors. The first factor is the accuracy 

of each Kp prediction algorithm in each group (e.g. Rodgers et al. 
[8,9]

, Jansson et al. 
[5]

), and the second 

factor is the classification performance of a classifier (i.e. a random forest). Although poor prediction of 

the Kps and/or poor classification by a classifier can lead to an undesirable outcome, there is no clear 
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relationship between the accuracy of a Kp prediction method and the classification performance. The 

rate of correct classification did not always result in the lowest RMSE even though the best performing 

algorithm (e.g. Yun and Edginton 
[19]

) for a certain compound was correctly predicted. This is because 

the predicted Kp from an algorithm that was classified by the random forest can largely deviate from the 

corresponding observed Kp (Table 3-11). Thus, the interplay of these two factors should be taken into 

consideration in the interpretation of the Kp prediction via the Classification trees #1, #2 and #3.  

For example, in the case of heart Kp prediction in group 3, it was observed that Berezhkovskiy 
[12]

 under-

predicted and Schmitt 
[6]

 over-predicted the Kps (Figure 3-10). Classification tree #3 for heart resulted in 

a good predictive performance with the standard deviation of log(pred/obs) being close to zero (Figure 

3-10). As well, Classification tree #3 had a lower tissue specific RMSE of 0.36 compared to the other 

three algorithms (Table 3-17). This indicated that the classifier both performed well in classification 

with a rate of correct classification of 0.56 and improved the Kp prediction accuracy with RMSE of 0.45 

(Table 3-16). This case is an example that supports the hypothesis that the use of a Classification tree 

improves Kp prediction accuracy.  

 

Comparison of Classification tree #1, #2 and #3 

When experimentally determined muscle Kp along with physicochemical parameters (e.g. LogP, pKa, 

and fup) are available, 6 Kp prediction algorithms can be used and these were the algorithms used in 

Classification tree #1. It was observed that the use of Classification tree #1 improved the Kp prediction 

accuracy over any one of the 6 prediction algorithms and resulted in a lower global RMSE and a higher 

percentage within K-fold deviation from the observed Kps (Table 3-12, Figure 3-5).  

Both the Yun and Edginton algorithm  
[19]

 and Classification tree #2 had a high Kp prediction accuracy 

with a high percentage within K-fold deviation from the observed Kps. Notably, both the Jansson et al. 
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[5]
 and Yun and Edginton  

[19]
 models that used Vss had high accuracy and precision in Kp prediction. 

This further implies that the availability of the in vivo parameter Vss and the use of these correlation 

models improve Kp prediction accuracy over TCB algorithms. For the most part, the high prediction 

accuracy with low global RMSE may be due to their good predictive performance in bases. It was 

observed that about 27% and 16% of Kps of basic compounds were best predicted by Yun and Edginton 

[19]
, and Jansson et al. 

[5]
 (Figure 3-4) respectively. This predictability might have led to the small global 

RMSE.  

TCB models 
[6,8,9,12]

 only require a minimal number of input parameters such as ex vivo fup and 

physicochemical parameters. Classification tree #3 identified the best predicting model based on the 

basic parameters (pKa, fup, LogP) and improved the Kp prediction accuracy over any one TCB 

prediction algorithm alone. It is expected that Classification tree #3 will be the most applicable in early 

drug discovery when compared to Classification tree #1 and #2. This is because the use of the 

Classification tree #1 and #2 is limited by the availability of an in vivo parameter (i.e. muscle Kp or Vss).  

As discussed in the section 2.5 Discussion, correlation-based models are dependent on the dataset that is 

used in their derivation. The correlation model may perform better if the chemical properties of the new 

compound are similar to the chemical properties that were used for the development of the regression 

equations. This is only true if the chemical properties are only the determinants for tissue distribution of 

the compound. In the case where the chemical properties of the new drug are not similar to the chemical 

properties that were used for the development of the regression equations, a TCB model may perform 

better than a correlation model. This is because a TCB model is not empirical but mechanistic. 

Therefore, the performance of Kp prediction algorithms should be evaluated using an external dataset 

that was not used for the development of the correlation model because the prediction performance of a 

regression-based algorithm could be artificial depending on the dataset. Recently, researchers compared 
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the predictive performance of Kp algorithms using Vss as an outcome. Using an independent dataset 
[34]

 

it was found that a correlation model (i.e. Jansson et al. 
[5]

) had better Kp prediction performance than a 

TCB model (i.e. Rodgers et al. 
[8,9]

). However, the TCB models do have an advantage in that they are 

applicable for any species if the tissue-specific physiological parameters are available. For regression 

based algorithms that were built using rat in vivo or ex vivo data, the ratio of rat to the species of interest 

fup have been used for inter-species scaling 
[7]

.  

For the most part, Classification trees had better prediction performance in most tissues (Figure 3-6, 

Figure 3-8, Figure 3-10) with little bias towards over- or under-prediction (Figure 3-6). According to the 

plots of the percentage of predicted Kps within 1.25 and 1.5 fold deviations from the observed Kps, 

Classification trees #1, #2 and #3 had higher percentages when compared to other algorithms in each 

group. Based on these results, it can be concluded that Classifications trees offer advantages over using 

any single algorithm to predict all tissue-specific Kps for a compound.  

 

Limitations of current Kp prediction algorithms  

The accuracy of the TCB method depends on how well the factors describing the underlying process in 

tissue distribution (e.g. compound binding affinity to cell constituents) are formulated. Unreasonable 

formulation in the structure or uncertainty in physiological and/or chemical parameter values can lead to 

poor prediction in Kp. An underlying mechanism of a Kp prediction algorithm may not be true for a 

compound in certain physicochemical space. For example, a different approach was needed to overcome 

the poor Kp prediction accuracy for highly lipophilic compounds. It is known that the high lipophilicity 

of a compound is associated with a large tissue distribution (i.e. large Kp, large Vss). Rodgers et al. 
[77]

 

demonstrated that Vss increases exponentially when LogP increases above a LogP of 6. In terms of the 

currently available algorithms (e.g. Jansson et al., Rodgers et al., Yun and Edginton), all equations are 
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designed such that an increase in lipophilicity leads to the increase in Kp values. Above a certain LogP 

value, however, this relationship between distributional parameters and LogP may not hold true as Kp 

and/or Vss may reach a plateau 
[15,78]

.  Therefore, in Poulin and Haddad’s simplified model 
[79]

 for highly 

lipophilic compounds (logP > 6), regardless of a compound’s acid-base-neutral properties, compound 

partitioning into neutral lipids is prevalent 
[79]

 and the plateau concept holds true. In the present study, 

the range of LogP values was -3 to 6. This means that all of the algorithms included in the Classification 

trees are not appropriate to use with compounds where LogP is greater than 6. Therefore, user caution is 

recommended for Kp prediction of highly lipophilic compounds (LogP > 6). As drug compounds tend to 

have LogP values less than 6, this is not expected to affect the accuracy of small drug molecule Kp 

prediction. For environmental contaminants however, LogP values often exceed 6 and the use of certain 

algorithms will over-predict Kps.  

In the presence of transport carriers, there would be a discrepancy between true Kp and the estimated Kp 

under the assumption of no carrier mediated tissue partitioning. The empirical model for estimating Kps 

is highly dependent on the development dataset. If a dataset is comprised of numerous compounds for 

which tissue distribution is affected by active transport, those observations in the dataset can be 

influential in determining the coefficient of an equation which can lead to the poor Kp prediction of a 

new observation. The relationship between in vivo parameters, chemical properties of a compound and 

tissue Kps is not currently robust enough to describe the tissue partitioning in the presence of carrier-

mediated distribution. Thus, user discretion is recommended in the use of Kp prediction algorithms for 

compounds that are significantly affected by elimination and active transport. Despite this limitation, the 

predictive performance of the proposed algorithm was evaluated. It was found that the proposed 

algorithm had higher tissue-specific prediction accuracy than previously published Kp prediction 

algorithms in most tissues. 



 

 90 

One of the advantages of Kp prediction algorithms is to provide an estimation of Kps based on 

physiological and physicochemical parameters without experimental determination in animals. A Kp 

prediction algorithm is a simplified model (i.e. assumption of passive diffusion of compounds) and may 

overlook important biological processes (such as elimination or carrier mediated distribution). However, 

in the process of building a PBPK model, this passive diffusion Kp is the desired input parameter. The 

effect of extensive metabolism in an eliminating organ or the effect of transporters in tissue distribution 

is taken into account, not through a Kp, but through the incorporation of the enzyme or transporters.   

3.6 Conclusion 

The Classification tree based Kp prediction requires readily available parameters such as LogP, pKa, 

fup, and in vivo parameters (i.e. a muscle Kp or Vss). Classification trees have the advantage of using the 

best predicting algorithm for a compound within a specific tissue. Each algorithm has its unique theory 

in the Kp prediction and different underlying processes are previously described (Chapter 1 

Introduction). For example, some algorithms put more emphasis on the fact that electrostatic binding of 

basic compounds to phosphophatidylserine mainly drives tissue partitioning. Other algorithms focus on 

the relationship between muscle Kp and lean tissue Kps, and predictive regression equations were 

derived using this relationship. Based on readily available compound-specific parameters, the 

Classification tree classified and identified which algorithm best described the tissue partitioning for a 

compound. As a result, the Classification tree based Kp prediction improved accuracy over using any 

one Kp prediction algorithm.  
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Chapter 4 

Conclusions and future work 

Tissue-to-plasma partition coefficients (Kp) that characterize the tissue distribution of a compound are 

important input parameters in PBPK models. This study proposed two different approaches for Kp 

prediction. Predictive regression equations that use readily available parameters were developed. This 

approach is computationally simple, but the use is limited to the availability of the in vivo parameter of 

Vss. It was found that the developed regression equations had greater prediction accuracy in comparison 

to published Kp prediction algorithms. 

In terms of the Classification tree based Kp prediction method, the use of previously published 

algorithms and the identification of the most accurate algorithms resulted in a competitive Kp prediction 

over any one algorithm alone. This was particularly evident with Classification tree #3 that identified the 

best tissue composition model and greatly improved a priori Kp prediction. In the absence of in vivo data 

(i.e. muscle Kp and Vss), Classification tree #3 had better predictive performance when compared to 

using a single TCB model.  

One of the limitations of the Classification tree based Kp prediction is that it is mathematically 

complicated. In order to overcome this problem, the Classification trees will be available as a web based 

program for public consumption as a future work. This will feature the Classification tree calculator that 

will define the best predicting algorithm as well as a Kp calculator for calculating Kp from the best 

predicting algorithm. This program will be used as a tool for Kp prediction and requires only a minimal 

number of input parameters (i.e. LogP, pKa, fup, Vss and/or muscle Kp).  

 

In conclusion, this study proposed an improved Kp correlation algorithm and a novel Classification tree 

that led to a more accurate Kp prediction. Classification tree based Kp prediction overcomes the 
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limitations of any one algorithm by harnessing the best components of each algorithm. The predictive 

performances of the two methods were demonstrated to be superior to previously published Kp 

algorithms. An accurate prediction of target site concentrations is of great importance as this 

concentration drives pharmacological response. Increased prediction accuracy of Kps will lead to the 

appropriate parameterization of PBPK models and will enhance the predictability of a compounds’ 

pharmacokinetics.  
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Appendix A 

Appendix 1. Development set A of moderate to strong bases to construct a predictive regression equation. 

Drug LogP pKa Drug Classa fup Vss 

(L/Kg) 

Adipose Bone Brain Gut Heart Kidney Liver Lung Muscle Skin Spleen 

Acebutolol-R [80] 1.79 9.7 B 0.79 9.33 1.10 0.06 0.48 22.43 5.71 23.58 31.48 10.31 4.97 3.01  

Acebutolol-S [80] 1.79 9.7 B 0.73 8.90 0.79 0.04 0.36 91.25 4.30 32.70 24.89 6.14 4.45 2.47  

Betaxolol-R [80] 2.59 9.4 B 0.53 20.99 2.95 13.20 12.93 40.23 23.59 58.30 130.91 203.52 13.78 6.52  

Betaxolol-S [80] 2.59 9.4 B 0.54 19.75 2.86 12.85 13.01 37.80 21.52 54.54 108.00 182.52 13.55 6.05  

Bisoprolol-R [80] 1.87 9.4 B 0.85 6.92 1.03 4.88 1.64 26.52 6.49 24.91 22.78 41.82 5.40 2.18  

Bisoprolol-S [80] 1.87 9.4 B 0.85 6.72 1.02 4.43 1.79 25.67 6.69 24.82 22.95 41.99 5.23 2.21  

Caffeine [81] 0.17 10.4 B 0.97 0.71 0.23 0.89 0.60  0.56 0.93      

Carvedilol-R [80] 4.19 8.1 B 0.02 1.79 0.80    1.94 1.92 4.52 34.00 0.81   

Chlorpromazine [2] 5.42 9.7 B 0.11 29   11.50         

Cocaine [2] 2.30 8.6 B 0.63 2.80 5.16  7.02 6.94  13.18   3.02   

Cotinine [2,29] -0.25 8.1 B 0.97 0.43 0.08  0.42 0.64 0.51 0.99 0.64 0.63 0.67   

Haloperidol [2] 4.30 8.7 B 0.23 10  27.20 13.37 10.80 14.30   53.50 29.00 6.20  

Inaperisone [82] 3.50 9.0 B 0.24 6.35 16.00  12.00  7.40 58.00 34.00 33.00 4.10 6.30  

Lidocaine [2] 2.44 8.0 B 0.38 2.62   3.24 3.12 2.73 17.21 11.51 3.80 1.68 2.58 4.79 

Metoprolol-R [80] 2.01 9.7 B 0.80 7.87 1.04 5.18 6.48 12.96 6.89 26.56 40.04 25.56 5.66 3.19  

Metoprolol-S [80] 2.01 9.7 B 0.81 7.74 0.98 5.33 6.97 11.22 6.25 26.89 44.59 26.57 5.57 2.92  

Morphine [83] 0.82 8.3 B 0.72 5.18      9.50 1.20  2.50   

Nicotine [84] 1.17 7.8 B 0.84 1.53 0.32  2.02 1.60 1.12 18.14 4.95 1.24 1.23 1.10  
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Oxprenolol-R [80] 2.18 9.5 B 0.24 2.80 0.58 1.87 1.29 12.71 3.62 14.17 8.59 15.86 3.08 1.37  

Oxprenolol-S [80] 2.18 9.5 B 0.36 3.74 0.69 2.33 2.48 11.18 4.37 17.62 12.33 21.24 3.89 1.70  

Pentazocine [2] 3.31 8.5 B 0.46 7.66 2.50 5.40 4.30 4.70 5.40 20.00 2.30 27.00 5.90 4.70  

Pethidine [80] 2.45 8.6 B 0.15 13.20 4.17   16.60   262.28 24.24 5.20   

Pindolol-R [80] 1.75 9.0 B 0.51 4.32 0.88 2.71 5.10 26.01 13.87 47.40 14.36 33.58 8.08 2.86  

Pindolol-S [80] 1.75 9.0 B 0.76 8.59 0.62 2.29 5.17 18.32 9.27 29.79 7.24 30.32 7.28 2.74  

Procainamide [2] 0.88 9.2 B 0.92 1.77 0.13  2.47  2.48 6.38 3.19  4.38   

Propranolol [2] 3.22 9.4 B 0.08 13.04   14.00 6.60 7.10 15.30 11.60 16.46 4.30  14.20 

Propranolol-R [80] 3.48 9.5 B 0.02 1.88 0.65 1.39 6.51 6.27 3.86 6.19 5.56 24.24 1.89 1.09  

Propranolol-S [80] 3.48 9.5 B 0.13 10.13 2.41 6.73 35.69 23.11 15.75 35.31 29.34 131.70 9.40 5.21  

Pyridostigmine [2] -3.73 10 B 0.50 0.35     1.10 15.20 2.10  0.52   

Theophyllin [2] 0.26 8.7 B 0.60 0.95   0.36     0.71 0.60   

Verapamil [2,85] 3.79 8.5 B 0.05 4.40     6.00 12.50  50.00 3.50   

Quinidine [86] 3.40 9.3 B 0.33 8.94   1.16 14.42 8.92 19.51 20.79 44.03 3.82  23.99 

Timolol-S [80] 1.87 9.2,8,8 BZ 0.63 5.20 0.64 1.00 1.06 20.16 5.36 13.32 7.87 26.96 4.15 1.58  

Enoxacin [87] 0.10 8.7,6.1 BZ 0.66 1.57  1.44   1.07 4.61 3.21 1.14 1.45 1.36 1.63 

Ofloxacin [87] -0.40 8.2,6.1 BZ 0.77 1.50 0.19 1.42 0.24  1.78 6.39 2.04 1.36 1.72 1.19 1.93 

Tetracycline [88] 0.03 9.7,7.7,3.3 BZ 0.50 2.20 1.10 8.11  3.75  4.05 4.70  1.62   

Pefloxacin [87] 0.42 7.6,6.3 BZ 0.77 2.75   0.16  2.36 4.13 5.34 1.94 2.41  3.42 

JNJ1/Domperidone [89] 3.96 7.9 B 0.09 7.40 3.21  0.12  3.87 22.50 13.80 10.90 3.45 4.35  

JNJ13/Prucalopride [89] 2.26 8.5 B 0.71 4.90   0.43  4.30 17.60 8.77 10.60 4.57   

JNJ14/Sabeluzole [89] 4.63 7.8 B 0.02 5.85 8.41 1.83 5.37  2.45 10.40 37.70 29.20 0.83 2.95 5.48 

JNJ15/Lubeluzole [89] 4.88 7.6 B 0.01 4.24   4.13   9.90 27.70 18.10 2.04   

JNJ18/Laniquidar [89] 5.50 7.9 B 0.00 8.95   2.86  5.82 12.00 16.80 38.70 7.07   

JNJ2/Nebivolol [89] 4.03 8.4 B 0.02 5.20   3.73  4.71 10.60 14.10 99.70 2.95   
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JNJ28/Sufentanil [89] 4.02 8.1 B 0.07 4.32 7.72  2.08  1.80 1.17 0.37 6.18 1.71  2.80 

JNJ29 [89] 4.18 8.9 B 0.06 12.90   11.60  13.70 25.30 63.80 122.00 8.00   

JNJ3/Galantamine [89] 1.09 8.2 B 0.76 5.18   1.51   13.90 2.53  2.14   

JNJ30 [89] 4.90 7.7 B 0.02 7.11   1.26  2.61 18.10 12.00 47.70 7.73   

JNJ33 [89] 2.08 8.3 B 0.63 3.00   0.24  3.00 13.80 8.90 7.80 2.60   

JNJ37 [89] 4.60 9.1 B 0.04 32.70   34.00  36.00 44.00 212.00 297.00 14.00   

JNJ6/Loperamide [89] 5.13 8.9 B 0.02 4.42      9.30 5.00 35.90    

JNJ7 [89] 2.47 7.8 B 0.53 3.28     4.44 18.10 31.00 11.70 4.40   

JNJ8 [89] 1.18 9.9 B 0.82 7.08     5.15 29.70 45.90 12.20    

JNJ9/Cisapride [89] 4.22 7.9 B 0.08 4.73   1.56  1.93 7.32 17.10 10.80    

Ketanserin [90] 3.30 7.5 B 0.01 0.67 0.56 0.19 0.19  0.35 1.53 2.60 1.49 0.28 0.46 0.91 

Risperidone [90] 3.04 8.2 B 0.12 1.77   0.23  0.82 0.64 12.30 3.42    

Levocabastine [90] 1.75 9.3,3.2 BZ  0.47 1.36 0.84 0.52 0.59  1.19 8.52 14.00 1.49 0.88 0.98 1.32 

Norfloxacin [2] -1.03 8.8,6.6 BZ 0.58 2.05        1.34 0.92   

Grepafloxacin [91] 1.17 9.08,6.08 BZ 0.59 5.42    6.06 5.19 15.01 11.46 20.23 3.54   

Sparfloxacin [92] 0.21 9.08,5.84 BZ 0.55 3.42 0.18  0.00 9.87 2.09 7.55 4.50 2.45 1.93 2.08  

a
B:base, BZ: polyproritic compound with basic pKa ≥7.4 
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Appendix 2. Development set B of acids, neutrals and weak bases to construct a predictive regression equation.  

Drug LogP pKa Drug Classa fup Vss 

(L/Kg) 

Adipose Bone Brain Gut Heart Kidney Liver Lung Muscle Skin Spleen 

Penicillin [93] 1.64 2.8 A 0.15 0.24    0.97 0.10 3.71 0.25 0.16 0.06  0.10 

Salicylic acid [94] 2.26 4.0 A 0.40 0.19  0.14 0.06 0.66 0.19 0.44 0.23 0.19 0.13 0.27  

Valproic acid [9] 2.75 4.6 A 0.37 0.66 0.15  0.07 0.45 0.43 1.50 1.80 0.42 0.16 0.47  

Glycyrrhizin [2] 2.80 5.3 A 0.05 0.06     0.25   0.06 0.06 0.15 0.07 

Tenoxicam [92] 1.86 5.3 A 0.02 0.13 0.02 0.08 0.01 0.17 0.14 0.78 0.86 0.24 0.06 0.12 0.07 

Fleroxacin [2] 0.24 6.5 A 0.75 1.30  1.20   2.55   2.00 2.00 1.20  

5-hexyl-5-ethyl barbituric acids [95] 2.79 7.7 A 0.19 0.94 6.14  1.66 1.61 1.56 2.28 3.34 1.07 1.20 2.13 0.84 

5-n-Ethyl-5-ethyl barbituric acids [95] 0.68 7.8 A 0.95 0.51 0.42 0.63 0.68 0.59 0.73 1.71 1.64 0.84 0.70 0.77 0.52 

5-propyl-5-ethyl barbituric acid [95] 0.77 7.8 A 0.87 0.56 0.77 1.30 0.91 0.81 1.03 2.81 1.68 1.12 0.90 1.00 0.53 

5-octyl-ethyl-barbituric acid [95] 3.82 7.8 A 0.00 0.44 5.13  1.87 1.32 1.47 2.52 3.47 3.06 0.80 1.91 1.87 

5-n-heptyl-5-ethyl barbituric acids [95] 3.64 7.8 A 0.07 0.56 5.55  1.13 1.34 1.33 2.05 2.23 1.20 0.90 1.46 1.25 

5-n-butyl-5-ethyl barbituric acids [95] 1.70 7.8 A 0.61 0.57 1.31 0.98 1.17 1.23 1.45 3.24 2.09 1.05 0.90 1.09 0.36 

5-nonyl-5-ethyl barbituric acid [95] 4.07 7.8 A 0.01 1.34 5.83  2.49 2.04 2.07 4.07 3.76 2.65 1.00 2.76 3.09 

5-pentyl-5-ethyl barbituric acid [95] 2.20 8.0 A 0.50 0.74 1.63 0.49 0.91 0.82 0.91 2.27 1.72 0.65 0.70 1.11 0.33 

Hexobarbital [29,96] 1.74 8.1 A 0.70 1.20 1.60   1.43 1.28 1.50 6.00 2.81 1.00 0.95  

5-n-Methyl-5-ethyl barbituric acids [95] 0.05 8.1 A 1.00 0.71 0.27 0.98 0.63 0.59 0.68 1.30 1.50 0.73 0.60 0.76 0.70 

Phenytoin [4,97] 2.47 8.2 A 0.12 1.39 1.64  0.70 1.24 0.71 1.60 2.30 0.72 0.70 0.94  

Nalidixic acid [87] 1.10 5.1,3.3 Z 0.29 0.38  0.29 0.22 0.49 0.49 0.54 0.58 0.33 0.36 0.35 0.00 

Ftorafur [9] -0.27  N 0.78 0.34 0.17  0.41 0.36 0.38 0.68 0.39 0.26 0.50 0.40 0.42 

2,3-Dideoxyinosine [2] -1.24  N 0.98 0.51   0.46 0.51  6.86 0.77  0.69  0.96 

Ethoxybenzamide [2] 0.80  N 0.59 0.63 0.71  0.94 0.56 0.99 1.30  0.91 0.81 1.04 0.87 
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a
A: acid, N: neutral, WB: weak base, Z: zwitterion 

 

Appendix 3. Test set A for moderate to strong bases to evaluate prediction accuracy.   

Drug LogP pKa Drug Classa fup 

Vss 

(L/Kg) 

Adipose Bone Brain Gut Heart Kidney Liver Lung Muscle Skin Spleen 

Biperiden [2] 4.25 8.8 B 0.17 14.00 67.64 2.28 7.95 12.92 8.04 12.13 

 

86.31 3.69 4.70 

 

Carvedilol-S [80] 4.19 8.1 B 0.04 3.36 1.90 

   

7.42 7.00 11.77 75.60 1.60 

  

Digoxin [2] 1.23  N 0.73 0.99    5.91 1.65 2.07 15.19 2.09 1.40   

Prednisolone [2] 2.02  N 0.23 1.37   0.48  0.67   0.66 0.35   

Clobazam [2] 1.84  N 0.25 3.29         2.60   

Cyclosporin [98] 2.90  N 0.08 3.62 11.57 3.18 0.79 5.23 4.05 7.99 12.20 5.52 1.35 2.92 5.45 

Propofol [2] 3.79  N 0.03 9.90   8.20  4.33  13.07 4.41 1.06   

Triazolam [3] 2.40  N 0.28 2.24 6.02 0.00  11.90  8.43 3.75  6.02 5.46  

Alprazolam [3] 2.21  N 0.35 1.98 1.08 0.95 1.88 1.67 1.69 3.68 8.39 3.15 2.00 2.96  

Chlordiazepoxide [3] 2.40  N 0.15 1.45 4.31 0.00 0.75 1.97 2.61 2.70 4.85  0.77 0.48  

Midazolam [3] 3.01 5.9 WB 0.04 2.38 4.62 1.92 2.49 2.81 4.64 3.19 8.51 4.08 0.87 1.96 2.42 

JNJ17 [89] 7.00 6.8 WB 0.02 6.94   0.79  4.84  11.70 20.60 2.95   

JNJ20 [89] 3.23 7.0 WB 0.08 1.58   1.34  1.45 4.47 7.44  0.67   

JNJ23 [90] 3.40 7,3.1 WB 0.08 1.58 2.53 0.69 1.39  1.34 4.03 8.64 2.48 0.67 0.92 3.35 

JNJ25 [89] 4.43 7.2 WB 0.04 6.47   0.63  3.39 8.25 21.40 22.90 1.47   

JNJ21 [90] 4.17 7.2 WB 0.01 7.35   1.15  1.53 2.95 15.90 3.49 0.49   

JNJ24 [89] 4.69 7.3 WB 0.02 10.70   4.55  7.41  20.90  4.50   

Ridogrel [90] 3.54 4.9,3.8 Z 0.05 0.78   0.18  0.39 0.25 1.39 0.37 0.11   
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Fentanyl [53,99] 3.97 8.7 B 0.16 4.58 26.70 

 

3.53 8.36 4.50 12.09 3.80 13.50 3.09 2.09 27.60 

JNJ4/Lorcainide [89] 4.16 9.4 B 0.26 3.92 5.27 

 

1.52 

 

2.90 5.67 0.57 19.40 2.82 

  

Imipramine [53] 4.62 9.5 B 0.24 18.69 7.35 

 

22.99 26.66 21.91 54.19 121.28 141.22 9.91 1.68 57.36 

Phencyclidine [2] 4.96 9.4 B 0.47 12.55 61.57 

 

2.57 

 

2.19 11.80 8.04 40.98 1.51 

  

Lomefloxacin [87] -0.30 9.3 B 0.72 1.30 0.27 1.58 0.22 1.63 1.37 4.84 2.30 1.24 1.61 0.94 1.73 

Pipemidic acid [87] -2.15 7.5,4.9 Z 0.82 2.31 0.34 2.02 0.13 

 

0.89 7.41 4.61 1.03 1.05 

 

1.35 

Disopyramide [85] 2.58 9.4 B 0.24 0.90 

  

0.94 

 

2.03 

   

2.30 

  

FTY-720 [100] 4.06 8.7 B 0.00 13.70 

  

49.20 

 

17.40 35.80 47.00 68.20 10.50 

 

62.10 

 
a
B: base, Z: zwitterion  

Appendix 4. Test set B for acids, neutrals and weak bases to evaluate prediction accuracy.   

Drug LogP pKa Drug Classa Fup Vss 

(L/Kg) 

Adipose Bone Brain Gut Heart Kidney Liver Lung Muscle Skin Spleen 

Thiopental [4] 2.85 7.5 A 0.18 0.19 8.00  0.70 1.32 1.40 3.09 2.29 1.54 0.88 1.18 0.53 

Tolbutamide [101] 2.34 5.5 A 0.24 0.20 0.13  0.10 0.12 0.27 0.22 0.30 0.25 0.13 0.22 0.19 

Cefazolin [93] 0.28 2.3 A 0.15 0.40  0.11  0.17 0.10 2.77 0.77 0.19 0.09 0.30  

Ceftazidime [102] -0.50 3.92,2.5,1.9 Z 0.10 0.24 0.16   0.41 0.22 4.80 0.25 0.44 0.19 0.39  

Bromperidol [2] 4.03 8.0 N 0.50 10.10   24.00         

Pentobarbital [2] 2.10 8.1 A 0.66 1.30 1.30        0.80   

Flunitrazepam [3] 2.34 1.8 N 0.25 4.54 73.50 4.36 1.46 2.74 1.66 0.40 3.69 4.78 1.03   

Mazapertine [90] 5.05 7.0 WB 0.03 3.15 8.01  0.62  1.52 7.36 20.50 2.31 1.49 1.12 1.55 

Alfentanil [99] 2.20 6.5 WB 0.16 0.71 1.89  0.13 1.18 0.55 0.82 1.00 0.78 0.31 0.18 0.73 

Diazepam [3] 2.87 3.4 WB 0.13 5.12 12.20 5.45 2.13 7.06 5.56 4.15 13.44 5.89 2.77 4.23  

 
a
A: acid, N: neutral, WB: weak base, Z: zwitterion 
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Appendix 5. Sample R codes Random forest, bagging and Rpart 

rm(list = ls(all = TRUE)) 

library(MASS) 

library(RODBC) 

channel <- odbcConnectExcel() 

mydata <- sqlFetch(channel, "Heart") 

odbcClose(channel) 

tr<-mydata 

logp<-tr$LogP 

fup<-tr$fup 

doi<-tr$DOI7#1 

group<-as.factor(tr$Code) 

muscle<-tr$Muscle 

trdata<-data.frame(logp,fup,doi,muscle) 

library(randomForest) 

rf<-randomForest(group~.,data=trdata,na.action=na.omit) 

library(ipred) 

bag<-bagging(group~.,data=trdata) 

library(rpart) 

rpart<-rpart(group~.,data=trdata,method="class") 

plot(rpart, compress=T,uniform=T,margin=0.1) 

text(rpart, use.n=T,col='blue') 

printcp(rpart) 

plotcp(rpart) 

pfit<- prune(rpart, cp=   rpart$cptable[which.min(rpart$cptable[,"xerror"]),"CP"])  

# pruning the tree with optimal Cp 

ts<-read.csv("DT1-ts-Oct17-final.csv") 

logp<-ts$LogP 

fup<-ts$fup 

doi<-ts$DOI7#1 

muscle<-ts$Muscle 

tsdata<-data.frame(logp,fup,doi,muscle) 

table(predict(rf,tsdata,na.action=na.omit)) 

rfresult<-data.frame(predict(rf,tsdata,na.action=na.omit)) 

rfresult 

table(predict(bag,tsdata)) 

bagresult<-data.frame(predict(bag,tsdata)) 

bagresult 

table(predict(rpart,tsdata),ts$group) 

rpartresult<-data.frame(predict(pfit,tsdata)) 

rpartresult 

printcp(rpart) 

plotcp(rpart) 

 

 

  



 

 100 

 

Appendix 6. Sample R codes for generation of final Classification trees by random forest analysis 

with the total dataset 

rm(list = ls(all = TRUE)) 

library(stats) # calling stats library 

tr<-read.csv("DEC15-DT2-code-Final.csv",sep=",") #reading the dataset 

logp<-tr$LogP # reading dataset for variables  

fup<-tr$fup 

doi<-tr$DOI7 #Degree of ionization at pH 7 

vss<-tr$Vss  

Class<-tr$Class  

group<-as.factor(tr$Code_Spleen) # making the membership as a factor variable 

trdata<-data.frame(logp,fup,doi,vss,Class,group) # making data frame of the training set  

trdata<-na.omit(trdata) 

group<-as.factor(trdata[,6]) 

trdata 

library(randomForest) # calling randomForest library 

rf<-randomForest(group~.,data=trdata[,-6]) #making random forest  

rf # show result of random forest 

result <- rfcv(trdata[,-6], group,cv.fold=20) # finding optimal mtry by random forest cross validation 

result 

cv<-data.frame(group,result$predicted$`5`) # compare the true classification and the classification by random 

forest  

cv #show result 
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Appendix 7. Dataset for random forest analysis; summary of compound specific physicochemical 

parameters  

Compound LogP pKa Drug Classa fup Vss_rat(L/Kg) Groups 

2,4-Dichlorophenoxyacetic acid [2] 2.43 2.98 A 0.05    3 

Glycyrrhetinic acid [2] 5.50 4.71 A 0.05  1  3 

5-hexyl-5-ethyl barbituric acid [95] 2.79 7.74 A 0.19 0.94 1 2 3 

5-n-butyl-5-ethyl barbituric acids [95] 1.70 7.81 A 0.61 0.68 1 2 3 

5-n-Ethyl-5-ethyl barbituric acids [95] 0.68 7.75 A 0.95 0.51 1 2 3 

5-n-heptyl-5-ethyl barbituric acids [95] 3.64 7.78 A 0.07 1.10 1 2 3 

5-n-Methyl-5-ethyl barbituric acids [95] 0.05 8.11 A 0.99 0.57 1 2 3 

5-nonyl-5-ethyl barbituric acid [95] 4.07 7.82 A 0.01 1.90 1 2 3 

5-octyl-ethyl-barbituric acid[95] 3.82 7.78 A 0.00 1.40 1 2 3 

5-pentyl-5-ethyl barbituric acid[95] 2.20 8.00 A 0.50 0.74 1 2 3 

5-propyl-5-ethyl barbituric acid[95] 0.87 7.77 A 0.87 0.56 1 2 3 

Cefazolin[93] -0.58 2.28 A 0.15 0.40 1 2 3 

Dicloxacillin[93] 2.91 2.88 A 0.03  1  3 

Etodolac-R[103] 3.60 4.70 A 0.00    3 

Etodolac-S[103] 3.60 4.70 A 0.02    3 

Fleroxacin[2] 0.24 6.50 A 0.75 1.30 1 2 3 

Glycyrrhizin[2] 2.80 5.30 A 0.05 0.18 1 2 3 

Hexobarbital[2] 1.74 8.10 A 0.70 1.20 1 2 3 

Penicillin [93] 1.64 2.80 A 0.15 0.24 1 2 3 

Phenobarbital [2] 1.47 7.35 A 0.78 1.02 1 2 3 

Phenytoin[4,97] 2.47 8.23 A 0.12 1.39 1 2 3 

p-Phenylbenzoic acid[104] 2.81 4.20 A 0.03  1  3 

Salicylic acid [94] 2.26 3.00 A 0.40 0.19 1 2 3 

Tenoxicam [9] 1.86 5.30 A 0.02 0.13 1 2 3 

Thiopental[2] 2.85 7.50 A 0.18 0.19 1 2 3 

Tolbutamide [2] 2.34 5.50 A 0.24 0.20 1 2 3 

Valproic acid [2] 2.75 4.60 A 0.37 0.66 1 2 3 

Caffeine[5] 1.29 10.40 B 0.97 0.71  2 3 

Chlorpromazine [2] 5.42 9.70, 6.40 B 0.11 29.00  2 3 

Cocaine[5] 2.30 8.61 B 0.63 2.80 1 2 3 

Disopyramide R-  [85] 2.71 9.92 B 0.24  1  3 

Disopyramide S- [85] 2.71 9.92 B 0.24  1  3 

Flecainide R- [85] 4.65 9.80 B 0.52  1  3 

Flecainide S- [85] 4.65 9.80 B 0.52  1  3 

Flurazepam [2] 3.80 9.79 B 0.50  1  3 

N-Acetylprocainamide  [2] 1.50 9.09 B 0.92    3 

Pethidine [105,106] 2.45 8.59 B 0.15 13.20 1 2 3 

Phencyclidine  [8] 4.96 9.40 B 0.47 12.55 1 2 3 
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Trihexyphenidyl  [2] 4.30 8.70 B 0.37  1  3 

Verapamil R-  [85] 3.79 8.92 B 0.10  1  3 

Verapamil S-  [85] 4.92 8.92 B 0.10  1  3 

Domperidone [89] 3.96 7.89 B 0.09 7.40 1 2 3 

Nebivolol [89] 4.03 8.40 B 0.02 5.20 1 2 3 

Galantamine  [89] 1.09 8.20 B 0.76 5.18 1 2 3 

Lorcainide  [89] 4.16 9.44 B 0.26 4.59 1 2 3 

Fentanyl  [89] 3.94 8.40 B 0.17 3.65 1 2 3 

Loperamide  [89] 5.13 8.86 B 0.02 4.42  2 3 

Cisapride  [89] 4.22 7.90 B 0.08 4.73  2 3 

Ritanserin  [89] 5.20 8.20 B 0.02 8.00 1 2 3 

Prucalopride  [89] 2.26 8.50 B 0.71 4.90 1 2 3 

Sabeluzole  [89] 4.63 7.80 B 0.02 5.85 1 2 3 

Lubeluzole  [89] 4.88 7.60 B 0.01 4.24 1 2 3 

Laniquidar  [89] 5.50 7.90 B 0.00 8.95 1 2 3 

Acebutolol-R [80] 1.79 9.70 B 0.79 9.33 1 2 3 

Acebutolol-S [80] 1.79 9.70 B 0.73 8.90 1 2 3 

Betaxolol-R [80] 2.59 9.40 B 0.53 20.99 1 2 3 

Betaxolol-S [80] 2.59 9.40 B 0.54 19.75 1 2 3 

Biperiden [2] 4.25 8.80 B 0.17 14.00 1 2 3 

Bisoprolol-R [80] 1.87 9.40 B 0.85 6.92 1 2 3 

Bisoprolol-S [80] 1.87 9.40 B 0.85 6.72 1 2 3 

Carvedilol-R [80] 4.19 8.10 B 0.02 1.79 1 2 3 

Carvedilol-S [80] 4.19 8.10 B 0.04 3.36 1 2 3 

Clozapine [2] 3.23 7.50 B 0.50    3 

Cotinine [2] -0.25 8.10 B 0.97 0.43 1 2 3 

Diazepam [3] 2.87 3.40 B 0.15 5.12 1 2 3 

Haloperidol [2] 4.30 8.70 B 0.23 10.00 1 2 3 

Imipramine [53] 4.62 9.50 B 0.24 18.69 1 2 3 

Inaperisone [82] 3.50 8.97 B 0.24 6.35 1 2 3 

Lidocaine [2] 2.44 8.00 B 0.38 2.62 1 2 3 

Metoprolol-R [80] 2.01 9.70 B 0.80 7.87 1 2 3 

Metoprolol-S [80] 2.01 9.70 B 0.81 7.74 1 2 3 

Morphine [83,107] 0.82 8.28 B 0.72 5.18 1 2 3 

Nicotine [2] 1.17 7.80, 3.00 B 0.84 1.53 1 2 3 

Oxprenolol-R [80] 2.18 9.50 B 0.24 2.80 1 2 3 

Oxprenolol-S [80] 2.18 9.50 B 0.36 3.74 1 2 3 

Pentazocine [2] 3.31 8.50 B 0.46 7.66 1 2 3 

Pindolol-R [80] 1.75 9.05 B 0.51 4.32 1 2 3 

Pindolol-S [80] 1.75 9.05 B 0.76 8.59 1 2 3 

Procainamide [2] 0.88 9.20 B 0.92 1.77 1 2 3 
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Promazine [2] 4.55 9.10 B 0.05    3 

Propranolol [2] 3.22 9.41 B 0.08 13.04 1 2 3 

Propranolol-R [80] 3.48 9.50 B 0.02 1.88 1 2 3 

Propranolol-S [80] 3.48 9.50 B 0.13 10.13 1 2 3 

Pyridostigmine [2] -3.73 10.00 B 0.50 0.35 1 2 3 

Quinidine [86] 3.01 10.00, 5.40 B 0.33 8.94 1 2 3 

Theophyllin [2] -0.02 8.81 B 0.90 0.50 1 2 3 

Thioridazine [2] 5.90 9.50 B 0.01    3 

Timolol-S [80] 1.87 9.20, 8.80 B 0.63 5.20 1 2 3 

Verapamil [6] 3.79 8.50 B 0.05 4.40 1 2 3 

Bromperidol [2] 4.03  N 0.50 10.10  2 3 

Fluphenazine [2] 4.20  N 0.50    3 

Ftorafur [9] -0.27  N 0.78 0.34 1 2 3 

Medazepam [2] 3.89  N 0.50  1  3 

Neostigmine [2] -1.65  N 0.50  1  3 

N-Methylpentobarbital [2] 2.69  N 0.50  1  3 

Propofol [2] 3.79  N 0.03 9.90  2 3 

2,3-Dideoxyinosine [2] -1.24  N 0.98 0.51 1 2 3 

Clobazam [2] 2.86  N 0.25 3.29 1 2 3 

Cyclosporin [98] 2.90  N 0.12 3.62 1 2 3 

Digoxin [2] 1.23  N 0.73 0.99 1 2 3 

Ethoxybenzamide [2] 0.80  N 0.59 0.63 1 2 3 

Chlordiazepoxide [9] 2.40 4.70 WB 0.15 1.45 1 2 3 

Prazepam [2] 3.73 3.44 WB 0.50  1  3 

Triazolam [3] 2.40 2.00 WB 0.28 2.24 1 2 3 

Alfentanil [2] 2.20 6.50 WB 0.16 0.71 1 2 3 

Alprazolam [3] 2.21 2.40 WB 0.35 1.98 1 2 3 

Flunitrazepam [9] 2.34 1.80 WB 0.25 3.81 1 2 3 

Midazolam  [3] 3.01 5.87 WB 0.07 2.38 1 2 3 

Sparfloxacin [92] 0.21 5.84, 9.08 Z 0.55 3.42 1 2 3 

Ceftazidime [102] -1.71 2.50,3.80, 1.90 Z 0.90 0.24 1 2 3 

Nalidixic acid [87] 1.10 5.10,3.30 Z 0.29 0.38 1 2 3 

Enoxacin  [87] 0.10 6.10,8.70 Z 0.66 1.57 1 2 3 

Lomefloxacin  [87] -0.30 5.80,9.30 Z 0.72 1.30 1 2 3 

Ofloxacin  [87] -0.40 6.10,8.20 Z 0.92 1.50 1 2 3 

Grepafloxacin [91] 1.17 6.08,9.08 Z 0.59 5.42 1 2 3 

Norfloxacin [2] -1.03 6.60,8.80 Z 0.58 2.05 1 2 3 

Pefloxacin [2] 0.42 6.30,7.60 Z 0.77 2.75 1 2 3 

Pipemidic acid [2] -2.15 7.00,4.90,3.50 Z 0.82 2.31 1 2 3 

Tetracycline [2] -1.30 7.70,9.70,3.30 Z 0.50 2.20 1 2 3 

a
A: acid, B: base, WB: weak base with basic pKa ≤ 7.4, Z: zwitterion  
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Appendix 8. Dataset for random forest analysis; summary of experimentally determined Kps 

Compound Adipose Bone Brain Gut Heart Kidney Liver Lung Muscle Skin Spleen 

2,4-Dichlorophenoxyacetic acid [2] 
  

1.42 
        

Glycyrrhetinic acid [2] 
  

0.04 
 

0.12 
  

0.22 0.1 0.16 0.07 

5-hexyl-5-ethyl barbituric acid [95] 6.14 
 

1.66 1.61 1.56 2.28 3.34 1.07 1.17 2.13 0.84 

5-n-butyl-5-ethyl barbituric acids [95] 1.31 0.98 1.17 1.23 1.45 3.24 2.09 1.05 0.9 1.09 0.36 

5-n-Ethyl-5-ethyl barbituric acids [95] 0.42 0.63 0.68 0.59 0.73 1.71 1.64 0.84 0.66 0.77 0.52 

5-n-heptyl-5-ethyl barbituric acids [95] 5.55 
 

1.13 1.34 1.33 2.05 2.23 1.2 0.93 1.46 1.25 

5-n-Methyl-5-ethyl barbituric acids [95] 0.26 0.98 0.63 0.59 0.68 1.3 1.5 0.73 0.6 0.76 0.7 

5-nonyl-5-ethyl barbituric acid [95] 5.83 
 

2.49 2.04 2.07 4.07 3.76 2.65 0.99 2.76 3.09 

5-octyl-ethyl-barbituric acid[95] 5.13 
 

1.87 1.32 1.47 2.52 3.47 3.06 0.81 1.91 1.87 

5-pentyl-5-ethyl barbituric acid[95] 1.63 0.49 0.91 0.82 0.91 2.27 1.71 0.65 0.72 1.11 0.33 

5-propyl-5-ethyl barbituric acid[95] 0.77 1.3 0.91 0.81 1.03 2.81 1.68 1.12 0.89 1 0.53 

Cefazolin[93] 
 

0.11 
 

0.17 0.1 2.77 0.77 0.19 0.09 0.3 
 

Dicloxacillin[93] 
   

1.4 0.07 1.3 0.43 0.12 0.05 
 

0.09 

Etodolac-R[103] 0.07 
 

0.03 
 

0.18 0.12 0.12 
    

Etodolac-S[103] 0.17 
 

0.05 
 

0.45 0.39 0.43 
    

Fleroxacin[2] 
 

1.2 
  

2.55 
  

2 2 1.2 
 

Glycyrrhizin[2] 
    

0.25 
  

0.06 0.06 0.15 0.07 

Hexobarbital[2] 1.6 
  

1.43 1.28 1.5 6 2.81 0.99 0.95 
 

Penicillin [93] 
   

0.97 0.1 3.71 0.25 0.16 0.06 
 

0.1 

Phenobarbital [2] 0.31 
 

0.59 1.75 1.47 0.73 1.8 1.18 1.41 1.38 
 

Phenytoin[4,97] 1.64 
 

0.7 1.24 0.71 1.6 2.3 0.72 0.7 0.94 
 

p-Phenylbenzoic acid[104] 0.06 
 

0.06 0.15 0.23 0.3 0.35 0.28 0.08 0.15 0.1 

Salicylic acid [94] 
 

0.14 0.06 0.66 0.19 0.44 0.23 0.19 0.13 0.27 
 

Tenoxicam [9] 0.02 0.08 0.01 0.17 0.14 0.78 0.86 0.24 0.06 0.12 0.07 

Thiopental[2] 15.5 
 

0.7 1.32 2.59 3.09 2.29 2.96 2.05 1.75 0.53 

Tolbutamide [2] 0.13 
 

0.1 0.12 0.27 0.22 0.3 0.25 0.13 0.22 0.19 

Valproic acid [2] 0.15 
 

0.07 0.45 0.43 1.5 1.8 0.42 0.16 0.47 
 

Caffeine[5] 0.23 0.89 0.6 
 

0.56 0.93 
     

Chlorpromazine [2] 
  

11.5 
        

Cocaine[5] 5.16 
 

7.02 6.94 
 

13.18 
  

3.02 
  

Disopyramide R-  [85] 
  

0.94 
 

2.03 
  

7.9 2.3 
  

Disopyramide S- [85] 
  

0.54 
 

2.06 
  

7 2.13 
  

Flecainide R- [85] 
  

1.5 
 

6.75 12.8 
 

111 7.2 
  

Flecainide S- [85] 
  

1.5 
 

6.25 16.5 
 

76.5 6.9 
  

Flurazepam [2] 
        

4.9 
  

N-Acetylprocainamide  [2] 
    

2.17 
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Pethidine [105,106] 4.17 
  

16.6 
  

262.28 24.24 5.2 
  

Phencyclidine  [8] 61.57 
 

2.57 
 

2.19 11.8 8.04 40.98 1.51 
  

Trihexyphenidyl  [2] 76 7.9 21 22 23 
  

74 13 8.1 
 

Verapamil R-  [85] 
    

9.4 20.9 
 

92.2 3.8 
  

Verapamil S-  [85] 
    

5.6 9.4 
 

40 0.75 
  

Domperidone [89] 3.21 
 

0.12 
 

3.87 22.5 13.8 10.9 3.45 4.35 
 

Nebivolol [89] 
  

3.73 
 

4.71 10.6 14.1 99.7 2.95 
  

Galantamine  [89] 0.48 4.79 1.51 
 

2.28 14.5 2.53 4.42 2.14 1.14 2.92 

Lorcainide  [89] 5.27 
 

1.52 
 

2.91 5.68 0.57 19.4 6.5 
 

10.3 

Fentanyl  [89] 
  

3.56 
 

4.54 12.2 3.83 13.6 3.12 
  

Loperamide  [89] 
     

9.3 5 35.9 
   

Cisapride  [89] 
  

1.56 
 

1.93 7.32 17.1 10.8 
   

Ritanserin  [89] 
  

2.2 
  

10.5 18.6 24 3.02 
  

Prucalopride  [89] 
  

0.43 
 

4.3 17.6 8.77 10.6 4.57 
  

Sabeluzole  [89] 8.41 1.83 5.37 
 

2.45 10.4 37.7 29.2 0.83 2.95 5.48 

Lubeluzole  [89] 
  

4.13 
  

9.9 27.7 18.1 2.04 
  

Laniquidar  [89] 
  

2.86 
 

5.82 12 16.8 38.7 7.07 
  

Acebutolol-R [80] 1.1 0.06 0.48 22.43 5.71 23.58 31.48 10.31 4.97 3.01 
 

Acebutolol-S [80] 0.79 0.04 0.36 91.25 4.3 32.7 24.89 6.14 4.45 2.47 
 

Betaxolol-R [80] 2.95 13.2 12.93 40.23 23.59 58.3 130.91 203.52 13.78 6.52 
 

Betaxolol-S [80] 2.86 12.85 13.01 37.8 21.52 54.54 108 182.52 13.55 6.05 
 

Biperiden [2] 67.64 2.28 7.95 12.92 8.04 12.13 
 

86.31 3.69 4.7 
 

Bisoprolol-R [80] 1.03 4.88 1.64 26.52 6.49 24.91 22.78 41.82 5.4 2.18 
 

Bisoprolol-S [80] 1.02 4.43 1.79 25.67 6.69 24.82 22.95 41.99 5.23 2.21 
 

Carvedilol-R [80] 0.8 
   

1.94 1.92 4.52 34 0.81 
  

Carvedilol-S [80] 1.9 
   

7.42 7 11.77 75.6 1.6 
  

Clozapine [2] 
  

20 
        

Cotinine [2] 0.08 
 

0.42 0.64 0.51 0.99 0.64 0.63 0.67 
  

Diazepam [3] 23.54 5.45 2.13 7.06 5.56 4.15 13.44 5.89 2.77 4.23 
 

Haloperidol [2] 
 

27.2 13.37 10.8 14.3 
  

53.5 29 6.2 
 

Imipramine [53] 7.35 
 

22.99 26.66 21.91 54.19 121.28 141.22 9.91 1.68 57.36 

Inaperisone [82] 16 
 

12 
 

7.4 58 34 33 4.1 6.3 
 

Lidocaine [2] 
  

3.24 3.12 2.73 17.21 11.51 3.8 1.68 2.58 4.79 

Metoprolol-R [80] 1.04 5.18 6.48 12.96 6.89 26.56 40.04 25.56 5.66 3.19 
 

Metoprolol-S [80] 0.98 5.33 6.97 11.22 6.25 26.89 44.59 26.57 5.57 2.92 
 

Morphine [83,107] 
     

9.5 1.2 
 

2.5 
  

Nicotine [2] 0.32 
 

2.02 1.6 1.12 18.14 4.95 1.24 1.23 1.1 
 

Oxprenolol-R [80] 0.58 1.87 1.29 12.71 3.62 14.17 8.59 15.86 3.08 1.37 
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Oxprenolol-S [80] 0.69 2.33 2.48 11.18 4.37 17.62 12.33 21.24 3.89 1.7 
 

Pentazocine [2] 2.5 5.4 4.3 4.7 5.4 20 2.3 27 5.9 4.7 
 

Pindolol-R [80] 0.88 2.71 5.1 26.01 13.87 47.4 14.36 33.58 8.08 2.86 
 

Pindolol-S [80] 0.62 2.29 5.17 18.32 9.27 29.79 7.24 30.32 7.28 2.74 
 

Procainamide [2] 0.13 
 

2.47 
 

2.48 6.38 3.19 
 

4.38 
  

Promazine [2] 
  

62.5 
        

Propranolol [2] 
  

14 6.6 7.1 15.3 11.6 16.46 4.3 
 

14.2 

Propranolol-R [80] 0.65 1.39 6.51 6.27 3.86 6.19 5.56 24.24 1.89 1.09 
 

Propranolol-S [80] 2.41 6.73 35.69 23.11 15.75 35.31 29.34 131.7 9.4 5.21 
 

Pyridostigmine [2] 
    

1.1 15.2 2.1 
 

0.52 
  

Quinidine [86] 
  

1.16 14.42 8.92 19.51 20.79 44.03 3.82 
 

23.99 

Theophyllin [2] 
  

0.36 
    

0.71 0.6 
  

Thioridazine [2] 
  

1.4 
        

Timolol-S [80] 0.64 1 1.06 20.16 5.36 13.32 7.87 26.96 4.15 1.58 
 

Verapamil [6] 
    

6 12.5 
 

50 3.5 
  

Bromperidol [2] 
  

24 
        

Fluphenazine [2] 
  

30.8 
        

Ftorafur [9] 0.17 
 

0.41 0.36 0.38 0.68 0.39 0.26 0.5 0.4 0.42 

Medazepam [2] 
        

2.2 
  

Neostigmine [2] 
        

0.59 
  

N-Methylpentobarbital [2] 
        

1.3 
  

Propofol [2] 
  

8.2 
        

2,3-Dideoxyinosine [2] 
  

0.46 0.51 
 

6.86 0.77 
 

0.69 
 

0.96 

Clobazam [2] 
        

2.6 
  

Cyclosporin [98] 11.57 3.18 0.79 5.23 4.05 7.99 12.2 5.52 1.35 2.92 5.45 

Digoxin [2] 
   

5.91 1.65 2.07 15.19 2.09 1.4 
  

Ethoxybenzamide [2] 0.71 
 

0.94 0.56 0.99 1.3 
 

0.91 0.81 1.04 0.87 

Chlordiazepoxide [9] 4.31 
 

0.75 1.97 2.61 2.7 4.85 
 

0.77 0.48 
 

Prazepam [2] 
        

1.8 
  

Triazolam [3] 6.02 
  

11.9 
 

8.43 3.75 
 

6.02 5.46 
 

Alfentanil [2] 1.89 
 

0.13 1.18 0.55 0.82 1 0.78 0.31 0.18 0.73 

Alprazolam [3] 1.08 0.95 1.88 1.67 1.69 3.68 8.39 3.15 2 2.96 
 

Flunitrazepam [9] 73.5 4.36 1.46 2.74 1.66 0.4 3.69 4.78 1.03 
  

Midazolam  [3] 4.62 1.92 2.49 2.81 4.64 3.19 8.51 4.08 0.87 1.96 2.42 

Sparfloxacin [92] 0.18 
  

9.87 2.09 7.55 4.5 2.45 1.93 2.08 
 

Ceftazidime [102] 0.16 
  

0.41 0.22 4.8 0.25 0.44 0.19 0.39 
 

Nalidixic acid [87] 
 

0.29 0.22 0.49 0.49 0.54 0.58 0.33 0.36 0.35 
 

Enoxacin  [87] 
 

1.44 
  

1.07 4.61 3.21 1.14 1.45 1.36 1.63 
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Lomefloxacin  [87] 0.27 1.58 0.22 1.63 1.37 4.84 2.3 1.24 1.61 0.94 1.73 

Ofloxacin  [87] 0.19 1.42 0.24 
 

1.78 6.39 2.04 1.36 1.72 1.19 1.93 

Grepafloxacin [91] 
   

6.06 5.19 15.01 11.46 20.23 3.54 
  

Norfloxacin [2] 
       

1.34 0.92 
  

Pefloxacin [2] 
  

0.16 
 

2.36 4.13 5.34 1.94 2.41 
 

3.42 

Pipemidic acid [2] 0.34 2.02 0.13 
 

0.89 7.41 4.61 1.03 1.05 
 

1.35 

Tetracycline [2] 1.1 8.11 
 

3.75 
 

4.05 4.7 
 

1.62 
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