
Improving Query Classification by
Features’ Weight Learning

by

Arash Abghari

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2013

c© Arash Abghari 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This work is an attempt to enhance query classification in call routing applications.
A new method has been introduced to learn weights from training data by means
of a regression model. This work has investigated applying the tf-idf weighting
method, but the approach is not limited to a specific method and can be used for any
weighting scheme. Empirical evaluations with several classifiers including Support
Vector Machines (SVM), Maximum Entropy, Naive Bayes, and k-Nearest Neighbor
(k-NN) show substantial improvement in both macro and micro F1 measures.

iii

Acknowledgements

I would like to thank my supervisor Prof. Karray for guiding and supporting me
and providing feedback. I would like to acknowledge my readers Dr. Bishop and
Dr. Dabbagh for their helpful feedback and suggestions. I thank Dr. Ghodsi and
Dr. Kohandel for their time and fruitful discussion. Many thanks are also due to
my wife Nilufar for putting up with me and supporting and believing in me. I also
acknowledge Vestec Inc. for providing me with the data sets used in this work.

iv

Dedication

To my wife Nilufar, my daughters Parnia and Kimia, and my parents.

v

Contents

List of Figures viii

List of Tables ix

List of Algorithms x

1 Introduction 1
1.1 Objectives . 1
1.2 Thesis Organization . 1

2 Literature Review 3
2.1 Call Routing Applications . 3
2.2 Weighting Schemes . 6
2.3 Conclusion . 7

3 System Architecture 8
3.1 Query Feature Weight Calculation 8
3.2 Query Feature Weight Estimation 10
3.3 Query Classification . 14
3.4 Methods and Algorithms . 16

3.4.1 TF-IDF Weighting Scheme 16
3.4.2 Feature Selection . 16
3.4.3 Naive Bayes (NB) . 17
3.4.4 Maximum Entropy or Multinomial Logistic Regression (Max-

Ent) . 18
3.4.5 k-Nearest Neighbor (k-NN) 19
3.4.6 Support Vector Machine (SVM) 20

3.4.6.1 Linear SVM . 20
3.4.6.2 The Dual Problem 22
3.4.6.3 Non-linear SVM 23
3.4.6.4 Imperfect separation 23
3.4.6.5 Multiclass SVM . 24

3.4.7 Support Vector Regression (SVR) 25
3.4.7.1 Linear SVR . 25

vi

3.4.7.2 The Dual Problem 27
3.4.7.3 Non-linear SVR . 28

3.4.8 Performance Measures . 28
3.4.8.1 Precision and recall 28
3.4.8.2 Fβ Measure . 29

4 Experimental Results And Interpretations 31
4.1 Data Sets . 31
4.2 Experimental Setup . 31
4.3 Results And Interpretations . 32

4.3.1 Macro Precision and Recall Performance 32
4.3.2 Macro and Micro F1-measure performance 34
4.3.3 Precision vs. Recall . 34
4.3.4 Absolute Improvement . 34
4.3.5 Conclusion . 36

5 Summary and Future Work 38

References 40

Appendix A Data Set Categories 44

Glossary 51

vii

List of Figures

2.1 Simplified Automatic Call Routing System. 3
2.2 Weights of Destination “Deposit-Services” (Figure is taken from [24]) 5

3.1 Training procedure for query classification 15
3.2 Testing procedure for query classification 15
3.3 Illustration of maximum separation. Theoretically, the best line is

the line that maximizes the margin m where there are no data points
between H1 and H2. 21

3.4 Slack variables for non-separable case 24
3.5 Slack variables have been introduced to cope with an impractical

approximation problem . 26

viii

List of Tables

3.1 Query Examples . 9
3.2 tf-idf weight values when treating each query as a separate document 9
3.3 Reorganizing queries into documents 10
3.4 tf-idf weight values after reorganizing queries into documents 11
3.5 Sample of 2511 queries where words in different context are assigned

different weights. Note that stopwords have been removed and all
words are shown in the root form. The tf-idf weights are written
inside the parentheses. 12

3.6 Input and output data to train the regression model for estimating
weight for word charge. 13

3.7 The contingency table for category ci 29

4.1 Data sets Specification . 32
4.2 Percentage of the categories containing 80% and 90% of the queries 32
4.3 Average Absolute Improvement . 37

ix

List of Algorithms

3.1 Data preparation and training regression models 13
3.2 Estimating weights using regression models 14

x

Chapter 1

Introduction

A call routing function routes an incoming call to an appropriate destination. Hu-
man agents do this task very well, however, many enterprises try to reduce their
reliance on human agents by utilizing self-service systems. To this end, touch tone
systems have been used, but they are difficult to navigate and the user must often
go through several levels of menus. Natural language call routing is an alternative
approach to overcome these limitations and problems. The prompt to the cus-
tomers is general and open and they are expected to express their request freely.
The performance of natural language call routing systems is far from ideal. Having
worked with some telecom call centers was the motivation to introduce a method
to improve the quality of the call centers’ performance.

1.1 Objectives
The goal of this work is to introduce a method based on weight learning to improve
the performance of a call routing system specifically, and the query classification
task in general. To achieve this, it requires the following steps:
• Introduce a method to properly calculate the weights from the training query

collection.

• Introduce and develop an algorithm to learn the weights to be used to train
classifiers.

• Apply the learned weights to testing queries.

• Compare the performance of a call routing application with and without
weighting.

1.2 Thesis Organization
The remainder of the thesis is arranged as follows. Chapter 2 reviews call routing
applications and feature weighting methods in the literature. Chapter 3 describes

1

the architecture of the proposed approach, such as training and testing phases, as
well as the methods and techniques used in this work including different classifiers,
feature selection, and performance measuring. Chapter 4 presents the results and
performance discussion. Finally Chapter 5 summarizes the work and discusses
future work.

2

Chapter 2

Literature Review

This work is intended to introduce a new approach for improving automatic call
routing applications based on feature weighting methods. Figure 2.1 depicts a
simplified automatic call routing system. An incoming call gets transcribed by a
speech-to-text engine and then the destination of the call is determined by a clas-
sifier. The focus of this work is on the classifier part. The first part of this chapter
reviews different techniques which have been applied to call routing applications in
the literature. The second part describes different feature weighting schemes used
in text categorization and information retrieval task.

2.1 Call Routing Applications
Gorin et al. [16, 31] first investigated the implementation of such a system using
a probabilistic approach by utilizing a connectionist network. They use a single
layer network to map input requests to the appropriate destination. The mutual
information between features and destinations are used as the initial weights for
the network.

Carpenter et al. [8] took a different approach by constructing an m×n routing
matrix A where m is the number of terms and n is the number of destinations.
The entry of At,d is the term frequency-inverse document frequency (tf-idf) weight
of term t with regards to document d. They then applied Singular Value Decom-
position (SVD) to matrix A, to reduce the dimensionality of the routing matrix.

Figure 2.1: Simplified Automatic Call Routing System.

3

To determine the destination of each caller’s request, the cosine similarity score
between the request and each vector in the routing matrix is calculated. They
achieved over 90% correct routing accuracy using the cosine scores.

Training a call router needs a remarkable amount of data. The data are usually
transcribed by human experts from pre-recorded speech and require huge effort.
To avoid this human effort, Huang et al. [18] experimented with building a call
routing application without transcriptions. They used speech utterances directly
to build a model. Their training algorithm has two steps. First extracting the
important phoneme sequences from speech segments, and building a routing matrix
based on them. Linear Discriminant Analysis (LDA) [43] is then applied to the
routing matrix for classification and dimensionality reduction purposes. To extract
the salient phoneme sequence and reduce error, different techniques are utilized,
including mutual information (MI) and clustering. The accuracy they achieved is
far below the one obtained by the system trained with the transcriptions, however
considering the error rate of the phoneme recognizer, their result is encouraging.
Note that they left the issue of building an independent language model (LM) for
the phoneme recognizer (which usually depends on the transcriptions) for future
research.

Kuo et al. [24] improved the method first introduced by Carpenter et al. [8].
They developed a method based on discriminative training to improve the per-
formance of the routing matrix. They achieved this by adopting a Generalized
Probabilistic Descent (GPD) algorithm. The actual minimization is applied to the
loss function, which is a smooth differentiable function between 0 and 1, like a
sigmoid function. Through the minimization, the elements of the routing matrix
are adjusted to improve the separation between the correct class and the rest. By
re-weighting the elements of the routing matrix, they achieved a 10% to 30% re-
duction of the relative error rate. The weights generated by this algorithm are very
semantically intuitive and negate the need for applying a feature selection algorithm
to filter out the least important feature from the training set. Since the irrelevant
features get very low or negative weights during the training procedure, there is no
need to remove stop words from the training data (a useful property considering
the fact that the stop word list can be different from application to application,
and needs to be fine-tuned by a human expert). Figure 2.2 shows the impact of
discriminative training on the routing matrix entry for the “Deposit-Services” des-
tination. One can see that after discriminative training, the irrelevant features are
assigned either very low or negative values (anti-feature).

Cox [11] examined different discriminative techniques including Generalized
Probabilistic Descent (GPD), Linear Discriminant Analysis (LDA), and Correc-
tive Training (CT) [29]. The performance of these classifiers is compared to the
baseline classifier, which is similar to the classifier introduced in [8] with a different
weighting scheme. Although the error rate improvement over baseline classifier is
very remarkable for the training set, they do not enjoy the same rate of improve-
ment for the development set. In fact, the best result for the development set is

4

Figure 2.2: Weights of Destination “Deposit-Services” (Figure is taken from [24])

achieved by the GPD algorithm. Another experiment with a different type of classi-
fiers was carried out by Wu et al. [44]. They evaluated several classifiers, including
the Naive Bayes classifier, a discriminative trained LSI model, a multinomial dis-
tribution method with and without boosting algorithm, etc.. Their finding is that
the discriminative trained LSI model and multinomial model with boosting are the
best in terms of error rate. Liu et al. [19] incorporate the discriminative training
introduced in [24] into a Naive Bayes Classifier (NBC). They experimented with
two different version of NBCs. In the first version, all the NBCs corresponding to
different classes were trained by the same feature set while the other version, used
a separate dependent feature set for each class. They reported that the discrimi-
native trained Naive Bayes classifiers outperformed the vector based classifier used
in [24]. Tyson et al. [38] introduced a different approach by integrating confidence
scores of a speech recognizer into a Latent Semantic Indexing (LSI)-based language
call routing system. The idea is, words with a higher confidence score must have a
bigger impact on the destination decision than words with lower confidence scores.
They found that the confidence-based LSI classifier outperforms the standard one
when the length of input utterance is at least eight seconds. Ullah et al. [39] de-
veloped a soft computing-based approach to improve the performance of a Naive
Bayes classifier for call routing systems. The words in each category are grouped
into a more relevant set with high weight, and a less relevant set with low weight.
Then, the conditional probabilities of the words are adjusted using these weights
and a threshold. The value of weights and threshold are then estimated by utilizing
a soft computing technique such as a Genetic Algorithm (GA). This approach has
shown remarkable improvement over the base line classifier in terms of accuracy.

Zitouni [46] investigated a method to combine multiple classifiers to improve the
performance over any single classifier. He achieved this by using the Constrained

5

Minimization (CM) technique when the classifiers’ errors are uncorrelated. The
experiment is carried out using two classifiers: Cosine Similarity Classifier and
Beta Classifier. The performance of the constrained minimization technique is then
enhanced further by applying the GPD algorithm. Sarikaya et al. [33] investigated
the use of Deep Belief Networks (DBN) in call routing applications. DBN is a
feed-forward, multi-layer neural network whose weights have been initialized by an
unsupervised generative probabilistic model called Restricted Boltzmann Machine
(RBM) [17]. They compared the performance of a DBN with other classifiers such
as Maximum Entropy, Boosting, and Support Vector Machines. The DBN classifier
performed equally well or better than the others in this experiment.

2.2 Weighting Schemes
Term weighting has been well studied in the literature. Term weighting has been
applied to both Text Categorization (TC) and Information Retrieval (IR). Ger-
ard et al. [32] studied different methods of weighting suited for both document
and query vectors. They investigated different forms and combinations of term
frequency, collection frequency, and normalization components. They examined
several combinations of binary weight, raw term frequency, and augmented nor-
malized term frequency with a set of collection frequency components, including
inverse document frequency and probabilistic inverse document frequency. They
also investigated the impact of applying normalization to these combinations.

Yang et al. [45] studied different methods for feature selection. The methods
used for feature selection include document frequency threshold, information gain
(IG), mutual information, χ2 statistic (CHI), and term strength. They found that
the IG and CHI are the most effective methods for term selection without losing
accuracy. Forman et al. [14] carried out another extensive study of feature selection
methods. In this work, they utilized Bi-Normal Separation (BNS) for the first time
as a feature selection metric, as well as other metrics used in the literature at the
time. They concluded that BNS, IG, CHI, and Odds Ratio (OR) are the best
metrics for feature selection.

Debole et al. [12] then introduced supervised term weighting based on the crite-
ria used for feature selection. The idea is to replace the inverse document frequency
(idf) part in the tf-idf weighting scheme with the criteria used for feature selection,
since these criteria take category information into account. They specifically used
information gain (tf-ig), chi-square (tf-chi), and gain ratio (tf-gr) as a replace-
ment for the idf part. However, empirical results showed that these new weighting
schemes are not superior to tf-idf. Jin et al. [20] introduced a new scheme to auto-
matically learn term weights based on the correlation between term frequency and
document categories. This approach showed good performance in an Information
Retrieval task. Soucy et al. [37] introduced a confidence weight scheme which esti-
mates the importance of a word based on the statistical confidence intervals. This
new scheme also replaces the idf part with the new criterion.

6

Forman [13] then expanded the previous work [14] on feature selection to su-
pervised term weighting, which showed that BNS is an excellent ranking metric.
He replaced idf with BNS and other ranking metrics and found that the tf-BNS
combination indeed improves the performance of a SVM classifier, although tf-idf
in his experiment outperformed other supervised term weighting schemes such as
tf-ig, tf-chi, and tf-or (odds ratio), which is consistent with other findings in the
literature. Batal et al. [3] used a supervised technique to boost the performance of
a k-NN classifier. Two schemes, tf-ig and tf-chi, were selected as the term weighting
scheme. They found that the supervised technique does improve the performance
of a k-NN classifier by a remarkable margin. Lan et al. [25] introduced a new
supervised weight factor called relevance frequency (rf) to replace the idf part. In
a nutshell, rf for each term is the ratio of the number of documents in the posi-
tive category to the number of documents in the negative category containing the
term. The tf-rf scheme performs consistently well for both the k-NN and SVM
classifier over different data sets. The performance of tf-idf in this experiment was
also comparably good.

2.3 Conclusion
This chapter has presented call routing applications and several feature weighting
approaches used in the information retrieval and text categorization fields. As men-
tioned earlier, the focus of this work is on the classification part of an automatic
call routing system which is a specific case of text categorization. The classification
task is distinguished from the general text categorization by dealing with a col-
lection of queries instead of documents due to the nature of incoming calls which
are brief and short. This subtle difference makes applying the weight techniques
to a call routing application difficult, whereas other techniques such as feature se-
lection, dimensionality reduction, n-gram model, and etc. are still easily available.
The reason of this difficulty is explained in detailed in Section 3.1.

To the best of the author’s knowledge, none of the mentioned weighting schemes
have been applied to the realm of the query classification problem nor specifically
to the call routing applications. This work investigates an approach to incorporate
weighting methods within the query classification task.

7

Chapter 3

System Architecture

The proposed approach in this thesis consists of using features’ weighting to im-
prove the accuracy of the query classification problem. This technique has been
successfully applied before in the context of document classification; however, port-
ing the weighting concept to the query classification problem is not an easy task.
This work proposes a tailored algorithm to weight features in the context of query
routing [2]. In this chapter, first the system architecture and proposed method is
elaborated, and at the end, all the methods and algorithms used in this work are
described.

3.1 Query Feature Weight Calculation
Tf-idf is the product of two parts. The Term Frequency (tf) part is the number of
occurrences of a term in a given document. The Inverse Document Frequency (idf)
part is obtained by dividing the total number of documents by the number of docu-
ments where the term is appeared and then taking the logarithm. (See Section 3.4.1
for more details). Given a set of documents and terms, it is straightforward to
compute the tf-idf weights. However, the definition of the term frequency-inverse
document frequency cannot be applied directly to a set of labeled queries.

To illustrate the problem, consider the query collection example shown in Ta-
ble 3.1. In this example, there are fifteen queries labeled as either account, ac-
countBalance, or accountNumber. If each query is treated as one document, the
tf part becomes equal to one for almost all the keywords in the collection. This
approach leaves IDF as the only factor impacting feature weighting. Table 3.2 dis-
plays the tf-idf weight values calculated in this way. Since the tf factor is one, the
weights are global and category-independent. Note that weights for the words num-
ber and balance are relatively small, although these words play a very strong role
for distinguishing the accountNumber and accountBalance categories respectively.

In this regard, in order to compute the weights, reorganizing the collection of
queries is proposed. The idea is to cluster all queries with the same label (i.e., cate-
gory) under a single set (i.e., document). In other words, the number of documents

8

Table 3.1: Query Examples

Query Category
add money to account account
can you top up my account balance accountBalance
account number discussion please accountNumber
i’d like to pay my account off account
i wish to pay my account balance accountBalance
i need my account number accountNumber
i’d like to top up the account account
i’d like to pay balance on my bill accountBalance
what is my account number accountNumber
adding money to my account account
i would like to know my balance due accountBalance
what’s my bill customer number accountNumber
i want to add money into my phone account account
a balance inquiry accountBalance
i needed help with my account number please accountNumber

Table 3.2: tf-idf weight values when treating each query as a separate document

tf n N idf tf-idf
account 1 11 15 0.13 0.13
add 1 3 15 0.7 0.7
balance 1 5 15 0.48 0.48
bill 1 2 15 0.88 0.88
money 1 3 15 0.7 0.7
number 1 5 15 0.48 0.48
pay 1 3 15 0.7 0.7
top up 1 2 15 0.88 0.88

9

Table 3.3: Reorganizing queries into documents

Document Category
add money to account

account
i’d like to pay my account off
i’d like to top up the account
adding money to my account
i want to add money into my phone account

can you top up my account balance

accountBalance
i wish to pay my account balance
i’d like to pay balance on my bill
i would like to know my balance due
a balance inquiry

account number discussion please

accountNumber
i need my account number
what is my account number
what’s my bill customer number
i needed help with my account number please

actually becomes equal to the number of categories. The tf-idf weighting scheme
can now be applied to any labeled query collection, in which a document is defined
as the set of queries labeled under the same category.

Table 3.3 depicts the queries after reorganizing queries into documents. In this
case, there are three documents, one for each category, built out of queries under
each category. Given these documents, tf-idf can easily be calculated for each word
in a category. Table 3.4 presents new tf-idf values calculated by this approach.
Note that the word account is now weightless, and the words number and balance
are assigned the highest weight values as expected.

3.2 Query Feature Weight Estimation
Section 3.1 has detailed how to weight features or terms when a collection of la-
beled queries is available. However, in the case where a single query is given, it is
impossible to compute the features’ weights. For example, consider a query such
as adding money to my account. From Table 3.4, one can easily get the idf part,
however estimating the tf part is not an easy task. To estimate the tf factor, the
approach explained in the previous section is not applicable, since the collection of
testing queries is not accessible, and if it were, it would be impossible to cluster
them into groups since the labels of the testing queries are not known in advance.

To overcome this issue, learning features’ weight from a pre-weighted training

10

Table 3.4: tf-idf weight values after reorganizing queries into documents

Category
account accountBalance accountNumber

idf tf tf-idf tf tf-idf tf tf-idf
account 0 5 0 2 0 4 0
add 0.477 3 1.43 0 0 0 0
balance 0.477 0 0 5 2.38 0 0
bill 0.18 0 0 1 0.18 1 0.18
money 0.477 3 1.43 0 0 0 0
number 0.477 0 0 0 0 5 2.38
pay 0.18 1 0.18 2 0.36 0 0
top up 0.18 1 0.18 1 0.18 0 0

query set is proposed. The idea is to learn a feature’s weight based on the context
from which the feature comes. To elaborate this procedure, consider the sample
queries provided in Table 3.5, which displays certain keywords within different
contexts. One can see that the word copy in items 1 to 4 has a higher weight value
where it co-occurs with the word bill. The same observation is valid for the words
final, one, and charge, in items 5 to 18. The word assistance has also been weighted
higher, where the word directory happens to be around for items 18 to 24. Based
on this observation, it must be feasible to estimate the weight of a word according
to its context in a query.

Now the question is how to estimate the weight of a word based on the context.
The assumption is that there is a generative model for each word which generates
the weight according to some input. Here, the context where a word comes from, is
considered as the input to this model. Thus, the input to each model is a couple of
words which are represented in a vector space model and the output is the weight
which is a real number.

This description of the problem leads to use regression modeling to estimate
the weight generator model. This model will interpolate the computed weights
during the training to the testing queries. In other words, the relation between
the weights in a query and their features is going to be learned. Algorithm 3.1
explains the steps needed to prepare data for training the regression models. For
each word or feature fj, there is a regression model rj estimating the weight with
regards to the input query. The training input for model rj would be a set of queries
Qj containing word or feature fj and the corresponding output would be the pre-
calculated tf-idf weight αj,q where q ∈ Qj. To explain how to prepare the input
and output data for each regression model, consider the sample queries introduced
in Table 3.5. Table 3.6 shows the input and output training data for the regression
model estimating weight in the case of the word charge. In this case, all the queries
in Table 3.5 containing the word charge and the corresponding weight values are
taken as training data. An RBF Support Vector Regression(SVR) machine from

11

Table 3.5: Sample of 2511 queries where words in different context are assigned
different weights. Note that stopwords have been removed and all words are shown
in the root form. The tf-idf weights are written inside the parentheses.

1. bill(0.13) copy(0.47)

2. need(0.05) copy(0.47) past(0.09) monthly(0.05) bill(0.13)

3. need(0.05) copy(0.47) last(0.07) bill(0.13)

4. need(0.05) get(0.04) copy(0.22) call(0.04) electronic(0.44)

5. final(0.93) bill(0.09)

6. know(0.04) final(0.93) bill(0.09)

7. final(0.1) payment(0.26)

8. one(0.03) payment(0.26)

9. one(0.03) time(0.04) credit(0.05) top(0.1)

10. one(0.12) bill(0.13)

11. find(0.04) one(0.12) bill(0.13)

12. charge(0.51) bill(0.08)

13. current(0.1) charge(0.51)

14. understand(0.11) current(0.1) charge(0.51) know(0.04)

15. charge(0.51) last(0.06) bill(0.08) understand(0.11) speak(0.05)

16. phone(0.05) get(0.03) charge(0.08) call(0.03) one(0.17)

17. help(0.03) payment(0.26) charge(0.05)

18. directory(0.41) assistance(0.27) charge(0.08)

19. account(0.1) balance(0.46) assistance(0.08)

20. need(0.01) assistance(0.08) bill(0.13)

21. assistance(0.08) message(0.16)

22. directory(0.41) assistance(0.27)

23. fee(0.08) pay(0.02) directory(0.41) assistance(0.27)

24. need(0.04) directory(0.41) assistance(0.27)

12

LIBSVM [9] has been used for regression modeling.

Algorithm 3.1: Data preparation and training regression models
Input:
Q = {q1, . . . , qN}: Collection of N training queries
F = {f1, . . . , fK}: Feature space where each word in a training query can be
a feature
q = {f1q , . . . , fMq}: Each query q consists of Mq features where Mq ≤ K
wq = {α1q , . . . , αMq}: Weights corresponding to the features of query q
(x, y): A pair of training data where x is the input and y is the output
Output:
R = {r1, . . . , rK}: Set of regression models. Each regression model rj
correspons with feature fj where j = 1, . . . , K.
begin

// preparing training data for regression models
foreach q ∈ Q do

foreach fjq ∈ q do
add (q, αjq) to the training set of rjq

end
end
// training regression models
foreach rj ∈ R do

train rj using a regression algorithm such as SVR
end

end

Table 3.6: Input and output data to train the regression model for estimating
weight for word charge.

Input data Target Weight
charge bill 0.51
current charge 0.51
understand current charge know 0.51
charge last bill understand speak 0.51
phone get charge call one 0.08
help payment charge 0.05
directory assistance charge 0.08

Once all the models are trained, they can be used for estimating feature weights.
Algorithm 3.2 describes how to use the regression models to estimate the weights.
Given a query q containingM features, there is a regression model rj for each feature
fj which estimates the weight for the jth feature of q. As an example, consider the

13

input query need copy bill. This query will be fed to the three regression models
responsible for need, copy, and bill. The generated weight values will be something
like 0.05, 0.47, and 0.13, respectively, for need, copy, and bill.

Algorithm 3.2: Estimating weights using regression models
Input:
F = {f1, . . . , fK}: Feature space
q = {f1q , . . . , fMq}: Input query q consists of Mq features where Mq ≤ K
R = {r1, . . . , rK}: Set of trained regression models. Each regression model rj
corresponds to a feature fj where j = 1, . . . , K.
Output:
wq = {α1q , . . . , αMq}: Weights corresponding to the features of query q
begin

foreach fjq ∈ q do
αjq = rjq(q)

end
end

3.3 Query Classification
After weighting the training query collection, and building the regression models (to
weight single queries), the query classification procedure is carried out. The training
procedure is detailed in Figure 3.1. Given a collection of queries, the first step is to
extract the most important words in the collection (features extraction). This step
includes the elimination of all stop words and stemming. Once the set of features
has been identified, the features’ weighting procedure is carried out, as described
in Section 3.2. Each query is fed to a set of regression models corresponding with
the query features. This process results in a weighted set of feature vectors similar
to the one depicted in Table 3.5. The final training step consists of feeding these
updated feature vectors to a classifier for training. Note that the classifier is trained
with the weighted feature vectors, which are estimated by the regression models,
not the weights calculated from the approach described in Section 3.1.

Once a classifier is trained using the weighted query collection set, the testing
is carried out as shown in Figure 3.2. Note that weightings are now estimated
by the regression models. Given a query, similar steps are carried out for pre-
processing including stopwords removal and stemming. The next step is to select
the features. Features will then be weighted using the regression models trained
earlier. The weighted feature vector is then fed to the already trained classifier for
routing purposes.

14

Figure 3.1: Training procedure for query classification

Figure 3.2: Testing procedure for query classification

15

3.4 Methods and Algorithms
This section presents a brief description of the methods and algorithms used in
this work. Tf-idf is the weighting scheme of choice. Information Gain (IG) is
used for feature selection. For query classification task, four different classifiers are
chosen including Support Vector Machines (SVM), Naive Bays, Maximum Entropy,
and k-Nearest Neighbor (k-NN). To learn the weights, Support Vector Regression
is selected as the regression algorithm and Precision, Recall, and F1-measure are
discussed as performance measures.

3.4.1 TF-IDF Weighting Scheme
The term frequency-inverse document frequency, tf-idf, is the weighting scheme
considered in this work. It is worth mentioning that the proposed algorithm is
generic and independent of the weighting mechanism.

The tf-idf is a commonly used numerical statistic in the field of information
retrieval. In a nutshell, this metric reflects how important a word is to a document
in a collection of documents. It is a product of the term frequency and the inverse
document frequency. The term frequency is simply the number of occurrences of
a term in a given document. The inverse document frequency of the term t in the
corpus D is given by equation

idf(t,D) = log
N

n
(3.1)

where N is the total number of documents in the collection and n is the number of
documents to which term t belongs.

Then tf-idf calculation of term t within document d is

tf-idf (t, d,D) = tf(t, d) ∗ idf(t,D). (3.2)

3.4.2 Feature Selection
A text categorization task could easily consist of tens or even hundreds of thousands
of features. Feature selection is one of the means to reduce the number of features,
since most of the learning algorithms in text classifications are not able to deal with
all features effectively. Automatic feature selection is done by selecting the most
informative features, according to the relation between features and the categories
in the training data. In this work, Information Gain has been selected as the feature
selection method of choice, since it has been reported in machine learning as one
of the best examples of a “term-goodness criterion” [45, 13, 14].

Information Gain measures how many bits on average would be saved, if a
category were going to be transmitted by knowing the presence or absence of a
term in a document. In other words, the term with the highest number of saved
bits is the most important term.

16

Assuming there arem categories {ci}mi=1, the information gain of term t is defined
as [45]:

IG(t) = −
m∑
i=1

P (ci) log2 P (ci) (3.3)

+P (t)
m∑
i=1

P (ci | t) log2 P (ci | t)

+P (t̄)
m∑
i=1

P (ci | t̄) log2 P (ci | t̄)

where t̄ means the absence of term t, P (ci) is the probability of having ith category,
P (ci | t) is the conditional probability of having ith category given term t, and
P (ci | t̄) is the conditional probability of having ith category given the absence
of term t. Equation (3.3) measures the information gain of term t globally with
respect to all categories.

3.4.3 Naive Bayes (NB)
A Naive Bayes (NB) classifier is a simple probabilistic classifier. It is based on
Bayes’ theorem. All features are assumed to be independent. In other words, given
the class variable, the presence (or absence) of a particular feature of a class has
no relation to the presence (or absence) of any other feature. Despite that, these
assumptions are rarely true in the real world, naive Bayes classifiers have proved
to be competitive in solving complex problems.

In abstract, the probability of having class c given document d is

P (c | d) ∝ P (c)
nd∏
i=1

P (wi | c) (3.4)

where P (wi|c) is the conditional probability of occurring word wi in a document
of class c. P (c) is the prior probability of having a document in class c. The best
class representing document d is then the most likely or maximum a posteriori (
MAP) class cMAP :

cMAP = arg max
c

P̂ (c | d) = arg max
c

P̂ (c)
nd∏
i=1

P̂ (wi | c) (3.5)

where P̂ is the estimation of P from training data. In Equation (3.5), many proba-
bilities are multiplied; this can result in calculation instability. Thus, it is a common
practice to take the logarithm of Equation (3.5). Since logarithm is a monotonic
function, it results:

cMAP = arg max
c

[
ln P̂ (c) +

nd∑
i=1

ln P̂ (wi | c)
]

(3.6)

17

The prior is estimated as:
P̂ (c) = Nc

N
(3.7)

where Nc is the total number of documents in class c and N is the total number of
documents. The estimation for conditional probabilities is

P̂ (wi | c) = Tcwi∑
wj∈V

Tcwj

(3.8)

where Tcwi
is the number of occurrences of word wi in class c and V is the vocabulary.

One problem with the estimation of conditional probabilities in Equation (3.8) is
that it becomes zero if the frequency of word wi in class c is zero. Since the
conditional probabilities are being multiplied, P̂ (c | d) in Equation (3.4) becomes
zero. To avoid this zero problem, smoothing techniques such as add-one or Laplace
smoothing, which increases the frequency of each word by one, can be used:

P̂ (wi | c) = Tcwi
+ 1∑

wj∈V
(Tcwj

+ 1) = Tcwi
+ 1∑

wj∈V
(Tcwj

) +B
(3.9)

where B = |V | is the number of words in the vocabulary.

3.4.4 Maximum Entropy or Multinomial Logistic Regres-
sion (MaxEnt)

Maximum Entropy (MaxEnt) is a general-purpose machine learning technique that
produces the least biased estimate possible based on the given information. It
assumes no conditional independence between features, unlike the Naive Bayes
classifier. The idea behind this classifier is to “model all that is known and assume
nothing about that which is unknown”[5]. To achieve this, only those classifiers
are taken into consideration which are empirically consistent with a set of training
data, and maximizing entropy. The estimation of how the decision of a classifier is
predictable is provided by the classifier’s entropy. A classifier with a higher entropy
behaves more randomly. For example, a classifier with zero entropy always classifies
inputs into the same label. On the other hand, a classifier with a very high entropy,
classifies inputs randomly.

Maximum entropy’s estimate of P (y), where there are m + 1 categories with
category 0 being the reference category, takes the following exponential form:

P (y = j) =
exp(βj.x)

1 +∑
j

exp(βj.x) j = 1, 2, . . . ,m

P (y = 0) = 1
1 +∑

j
exp(βj.x) (3.10)

18

where x is the input vector, β is the weight vector and P (y = j) is the probability
of having jth category. The solution for β is usually an iterative procedure such as
Iteratively Re-weighted Least Squares (IRLS), or a quasi-Newton method such as
the L-BFGS method. The explanation of these methods is outside the scope of this
work. To read more see Regression Models for Categorical and Limited Dependent
Variables [26].

A single layer neural network with logistic function as the activation function is
identical to a maximum entropy or logistic regression model. This relation is more
obvious if Equation (3.10) is rewritten as

ln
(
P (y = j)
P (y = 0)

)
= βj.x (3.11)

There are other aliases to multinomial logistic regression in the literature, which is
mentioned here for the sake of clarity:

• Polytomous Logistic Regression.
Multinomial logistic regression is also known as polytomous, polychotomous,
or multi-class logistic regression, or just multilogit regression.

• Ridge Regression and the Lasso.

• Shrinkage and Regularized Regression.

• Generalized Linear Model and Softmax.

3.4.5 k-Nearest Neighbor (k-NN)
is one of the simplest and most popular classification techniques. It can be used
for both classification and regression purposes. It is a non-parametric lazy learn-
ing algorithm that makes no assumptions about the underlying distribution of the
training data. Laziness means there is no training phase, and it does no gener-
alization base on the training data. For classification, k-NN assigns a new point
to the class which has the majority among its k nearest neighbors. This means
that all the training data are needed in the testing phase, and this makes k-NN
computationally expensive. This naive method takes a time complexity of O(dn)
where d and n are the dimension and the number of data respectively. To reduce
the time complexity, some methods have been proposed such as KD-tree indexing
[4]. There are different distance metrics to measure the distance between a point
and their neighbors, such as Euclidean, Manhattan, and Cosine distance, although
Euclidean distance is the most commonly used metric. The selection of parameter
k is critical. A small value of k makes the result very sensitive to noise, while on the
other hand, a large value of k makes it computationally expensive, and classes with
a large number of data values tend to dominate the result. The best value for k is
usually selected by techniques like cross-validation [15]. To enhance the classifica-
tion result, it can be useful to weight the contribution made by each neighbor, so

19

that the nearer neighbors have bigger weights and contribute more than the distant
ones. One of the common weighting schemes is to assign weight to each neighbor
according to its similarity, or the inverse of its distance.

In this work, the weighted k-NN with a cosine similarity metric [35] is used:

sim(x,y) = cos(θ) = x.y
‖ x ‖ ‖ y ‖

. (3.12)

f(xi, ck) =

0 ifxi /∈ ck
1 ifxi ∈ ck

(3.13)

y(tj) = arg max
k

∑
xi∈knn

sim(tj,xi)f(xi, ck) (3.14)

where xi and ck are training data and classes respectively, and tj is the test data.

3.4.6 Support Vector Machine (SVM)1

Support Vector Machine (SVM) is a new generation of learning systems that has
been developed and introduced by V. Vapnik [40] for classification and pattern
recognition based on supervised learning and statistical theory. Like neural net-
works and fuzzy systems, SVM is a typical non-parametric classifier, meaning that
no primary knowledge is assumed for tackling the pattern classification problem [1].
SVM theory was originally developed to tackle the separation of two series of data
points (binary separation).

3.4.6.1 Linear SVM

Suppose that one wants to classify some data points into two classes. For N training
data points:

{(x1, y1), . . . , (xN , yN) | xi ∈ Rn, yi ∈ {−1, 1}}Ni=1 (3.15)

the task is to find a linearly separable hyperplane

H0 : wT · x + b = 0 (3.16)

where w is the weight vector and b is the bias. Hyperplane H0 should have the
maximum separating margin (see Figure 3.3). Since the aim is maximizing the
margin, and the data are linearly separable, w and b can be chosen to maximize
the distance between two hyperplanes parallel to H. These parallel hyperplanes can
be described as

H1 : wT · x + b = 1 (3.17)
H2 : wT · x + b = −1 (3.18)

1To see the full explanation and complete details, see Burgs tutorial [7].

20

w

m
=

2

‖w
‖

H
0
:
w

T

· x
+
b
=
0

H
2
:
w

T

· x
+
b
=
−
1

H
1
:
w

T

· x
+
b
=
1

Figure 3.3: Illustration of maximum separation. Theoretically, the best line is the
line that maximizes the margin m where there are no data points between H1 and
H2.

or
yi(wT · xi + b) = 1. (3.19)

The distance between H1 and H2 is 2
‖w‖ . To maximize the distance, one can mini-

mize ‖ w ‖2. Note the constraint that there should be no data points between H1
and H2. Thus the problem can be written as

min 1
2 ‖ w ‖2 (3.20)

subject to
yi(wT · xi + b) ≥ 1 for all data points. (3.21)

This is a convex, quadratic programming problem, in a convex set. Using Lagrange
multipliers αi ≥ 0, results the following:

L(w, b,α) = 1
2 ‖ w ‖2 −

N∑
i=1

αiyi(wT · xi + b) +
N∑
i=1

αi. (3.22)

where L is the . This problem can be solved by standard quadratic programming.
The superiority of SVM comes from this specific formulation of a convex objective
function with constraints. Since the function is solved using Lagrange multipliers,
it guarantees the following:

1. A global optimal solution exists that will be found.

2. The result is a general solution avoiding over-training.

21

3. The solution is sparse and only a limited set of training points contribute to
this solution.

4. A non-linear solution can be calculated efficiently due to the using of inner
products.

3.4.6.2 The Dual Problem

Equation (3.22) could be solved as a Wolfe dual problem as well:
∂L

∂w
= 0 (3.23)

∂L

∂b
= 0 (3.24)

αi ≥ 0 (3.25)

Here, w and b are primal variables and the gradient of L with respect to primal
variables need to be eliminated. Equations (3.23) and (3.24) result:

w =
∑

αixiyi (3.26)

and
N∑
i=1

αiyi = 0. (3.27)

Only data points whose αi is greater than zero contribute to the solution. These
data points are support vectors. The dual form is then obtained by substituting
(3.26) and (3.27) into (3.22):

LD ≡
N∑
i=1

αi −
1
2
∑
i,j

αiαjyiyj(xi·xj) (3.28)

in which the primal variables are vanished. Note that threshold b is not determined
by training procedure, but can be easily calculated by using Equation (3.19) for
any i which αi 6= 0. One can observe that for each αi 6= 0, there will be a different
threshold, thus in practice, it is more accurate to take the average of all possible b
over all support vectors:

b = 1
NSV

NSV∑
i=1

(w · xi − yi) (3.29)

where NSV is the number of support vectors. Replacing the newly evaluated value
for w in the initial linear separating hyperplane Equation (3.16) results in the
following:

H0 :
N∑
i=1

αiyi(xi · x) + b (3.30)

Note the training vectors xi occur only in the form of dot product, both in the
objective function, Equation (3.28), and the solution, Equation (3.30).

22

3.4.6.3 Non-linear SVM

In many cases the surface separating the two classes is not linear. In 1992, B. Boser,
I. Guyon and Vapnik [6] suggested a way to create non-linear classifiers by applying
the kernel trick. The trick for separating these classes is transformation of the data
points to another high-dimensional space such that the data points will be linearly
separable. Assuming the transformation function is φ, the Lagrange equation can
be rewritten for such a case as:

LD ≡
N∑
i=1

αi −
1
2
∑
i,j

αiαjyiyj(φ(xi)·φ(xj)) (3.31)

where
φ(xi).φ(xj) = k(xi,xj). (3.32)

k(xi,xj) is a kernel function of the input space and equivalent to the dot product of
that high-dimensional space. This implies that transformation function φ does not
need to be explicit. There are many kernel function formats that can be used in
the above equation, such as linear, Radial Basis Function (Gaussian Kernel), and
polynomial:

kLinear(xi,xj) = xi.xj (3.33)

kRBF (xi,xj) = exp
(
−‖ xi − xj ‖2

2σ2

)
(3.34)

kPoly(xi,xj) = (xi.xj + c)d (3.35)

3.4.6.4 Imperfect separation

Note that so far a linearly separable case is investigated. In practice, there is a large
overlap of the classes due to noise or bad labeling, so there are two solutions. One
is to use a powerful kernel, which is not suitable because it ends up over-fitting.
The other solution is to introduce positive slack variables ξi , i = 1, . . . , l in the
constraints to relax the hard margin constraints [10]. The slack variables permit
some examples to violate the constraints. One possible form for incorporating slack
variables in the objective function is

min 1
2 ‖ w ‖2 +C

∑
i

ξi (3.36)

subject to

yi(wT · xi + b) ≥ 1− ξi for all data points, (3.37)
ξi ≥ 0. (3.38)

The parameter C is a term to penalize the misclassified points. The parameter C
can also be considered a trade-off between the complexity term and the empirical

23

H
0
:
w
T

· x
+
b
=
0

H
2
:
w
T

· x
+
b
=
−
1

H
1
:
w
T

· x
+
b
=
1

ξ i
ξ j

Figure 3.4: Slack variables for non-separable case

error [28]. The dual form becomes

LD ≡
N∑
i=1

αi −
1
2
∑
i,j

αiαjyiyjk(xi·xj) (3.39)

subject to

0 ≤ αi ≤ C (3.40)∑
i

αiyi ≥ 0. (3.41)

The difference from the perfectly separable case is that αi is now bounded by C.
The linear separation for the non-separable case is shown in Figure 3.4.

3.4.6.5 Multiclass SVM

The SVM classifier is a binary classifier. Due to various complexities, a direct
solution of multiclass problems using a single SVM is usually avoided. To solve a
multiclass problem, a combination of several binary SVM classifiers is used. Here,
some popular methods for the combination of binary classifiers are briefly described:

1. One-against-all or Winner-Takes-All: Considering an M class problem,
one can construct M classifiers which separate one class from the others. In
this method, there are some areas which remain unassigned or assigned by
several classes.

2. Pairwise or Max-Wins-Voting: This method builds one binary classifier
for every pair of distinct classes. Therefore, M(M-1)/2 binary classifiers will

24

finally be constructed. Each of those M(M-1)/2 classifiers makes its own vote
to a new example. Pairwise strategy assigns the example to the class with
the largest number of votes.

A fuzzy version of both the above methods has been also developed. For more
discussion see [1].

3.4.7 Support Vector Regression (SVR)2

There exist different variations of Support Vector Regression (SVR). Here ε-SVR
[41] is explained which is the most commonly used version. Given a set of data

{(x1, y1), . . . , (xN , yN) | xi ∈ Rn, yi ∈ R}Ni=1, (3.42)

the goal is to find a function f(x) which should meet two criteria. First, the
maximum deviation of f(x) from actual training data must be at most equal to
ε for all training data. Second, the solution must be as flat as possible. In other
words, the maximum error tolerated is ε.

3.4.7.1 Linear SVR

Consider the case where f(x) takes a linear function

f(xi) = wT .xi + b. (3.43)

To make sure that the flatness condition is met, w needs to be small. One way to
achieve this is to minimize ‖ w ‖2 obtaining a convex optimization problem:

min 1
2 ‖ w ‖2 (3.44)

subject to

yi −wT .xi − b ≤ ε

wT .xi + b− yi ≤ ε. (3.45)

Equations (3.44) and (3.45) imply that such a function f which can approximate all
data with ε precision exists. However, this is not always the case. In practice, one
need to relax the first criterion. Similar to SVM (Section 3.4.6.4), one can introduce
slack variables ξi and ξ∗i to deal with an infeasible approximation problem. So
Equation (3.44) can be rewritten as

min 1
2 ‖ w ‖

2 +C
N∑
i=1

(ξi + ξ∗i) (3.46)

2To see more discussion about SVR, see Smola et al. tutorial [36].

25

−ε

+ε

ξ

ξ∗

0

Figure 3.5: Slack variables have been introduced to cope with an impractical ap-
proximation problem

subject to

yi −wT .xi − b ≤ ε+ ξi

wT .xi + b− yi ≤ ε+ ξ∗i (3.47)
ξ

(∗)
i ≥ 0

Note that notation A(∗) refers to both A and A∗. The C parameter is the trade-
off between the flatness and the tolerance of having a deviation larger than ε.
Figure 3.5 displays the situation. Only points outside the tube contribute to the
penalty term. The quadratic problem (Equations (3.46) and (3.47)) can be solved
using Lagrange multipliers:

L = 1
2 ‖ w ‖2 +C

N∑
i=1

(ξi + ξ∗i) (3.48)

−
N∑
i=1

(ηiξi + η∗i ξ
∗
i)

−
N∑
i=1

αi(ε+ ξi − yi + wT .xi + b)

−
N∑
i=1

α∗i (ε+ ξ∗i + yi −wT .xi − b)

where
α

(∗)
i , η

(∗)
i ≥ 0. (3.49)

26

3.4.7.2 The Dual Problem

Equation (3.48) can be rewritten in the form of a dual problem by taking the
derivatives of L with respect to the prime variables which are w, b, ξ(∗)

i .
∂L

∂w
= ∑N

i=1(α∗i − αi) = 0 (3.50)
∂L

∂b
= w−∑N

i=1(αi − α∗i)xi = 0 (3.51)
∂L

∂ξ
(∗)
i

= C − α(∗)
i − η

(∗)
i = 0 (3.52)

The dual form is then obtained by substituting (3.50), (3.51), and (3.52) into (3.48):

max −1
2

N∑
i,j=1

(αi − α∗i)(αj − α∗j)xi.xj (3.53)

−ε
N∑
i=1

(αi + α∗i) + yi
N∑
i=1

(αi − α∗i)

subject to
N∑
i=1

(αi − α∗i) = 0

0 ≤ α
(∗)
i ≤ C. (3.54)

Note that η(∗)
i has disappeared from the dual form. Equation (3.51) results in the

following:

w =
N∑
i=1

(αi − α∗i)xi (3.55)

thus
f(x) =

N∑
i=1

(αi − α∗i)xi.x + b. (3.56)

The solution for w is a linear combination of the training data xi, and therefore the
complexity of the solution depends only on the Support Vectors, and is independent
of the dimensionality of the input data. One can observe that for evaluating f , there
is no need to calculate w explicitly, since the solution of f is described in terms of
the dot product between the data.

So far, equations (3.50), (3.51), and (3.52) do not provide any means to calculate
b. Since Karush-Kahn-Trucker conditions [21, 23] have to be satisfied by the dual
problem, it is possible to calculate the lower and upper bound of b. It can be shown
[36] that b boundaries are:

max{−ε+ yi −w.xi | αi < C or α∗i > 0} ≤ b ≤ (3.57)
min{−ε+ yi −w.xi | αi > 0 or α∗i < C}.

One option for choosing b is to take the midpoint of the preceding range. For
alternative ways to choose b, see [22].

27

3.4.7.3 Non-linear SVR

From Equation (3.56), it is obvious that this solution can only be applied to the lin-
ear cases. In other words, this solution is capable of modeling the training data with
an acceptable error, if the data has linear behavior. Analogous to the non-linear
SVM (Section 3.4.6.3), it is possible to overcome this problem by means of kernel
functions. Knowing that there exists such a function k(xi,xj) = φ(xi).φ(xj) where
φ transfers a point to the feature space with higher dimension, Equation (3.53) can
be written as follows:

max −1
2

N∑
i,j=1

(αi − α∗i)(αj − α∗j)k(xi.xj) (3.58)

−ε
N∑
i=1

(αi + α∗i) + yi
N∑
i=1

(αi − α∗i)

subject to the following:
N∑
i=1

(αi − α∗i) = 0 (3.59)

0 ≤ α
(∗)
i ≤ C.

The solution for f becomes:

w =
N∑
i=1

(αi − α∗i)φ(xi) (3.60)

f(x) =
N∑
i=1

(αi − α∗i)k(xi.x) + b. (3.61)

Contrary to the linear case, it is not possible to calculate w explicitly.

3.4.8 Performance Measures
There are several measures to evaluate the effectiveness of a classifier, such as error,
accuracy, recall, and precision [34]. Each measure describes one aspect of a classifier
performance. Thus, to have a perfect view of a classifier performance, one needs to
consider a few of them, or even a combination of measures. This chapter explains
some of these measures and some commonly used methods to combine them.

3.4.8.1 Precision and recall

Precision (π) and recall (ρ) are two standard methods for measuring the effective-
ness of a classifier, adapted from Information Retrieval (IR) measures into the text
categorization field. Precision(π) for class C is the number of elements correctly la-
beled as C by the classifier (True Positive), divided by the number of items labeled
as C by the classifier. On the other hand, ρ for class C is the number of items

28

Table 3.7: The contingency table for category ci

classifier expert
ci + -

classifier + TPi FPi
- FNi TNi

correctly labeled as C by the classifier, divided by the number of elements labeled
as C by the expert. If precision (π) is 1.0, it means all the instances labeled as C
indeed belong to C, but it says nothing about whether all the documents related to
category C are retrieved. Recall (ρ) equal to 1.0 means all documents belonging to
C have been successfully retrieved, but says nothing as to whether other documents
not belonging to C have been categorized as C. Precision (π) and recall (ρ) for
class ci , i = 1, . . . , N can be estimated in terms of a contingency table (Table 3.7)
where TPi, TNi, FPi, and FNi are true positive, true negative, false positive, and
false negative respectively. The precision and recall then are defined as :

πi = TPi
TPi + FPi

(3.62)

ρi = TPi
TPi + FNi

. (3.63)

To obtain π and ρ, two different methods exist:

1. micro-averaging: π and ρ are estimated globally by summing over all elements
of the contingency table:

πµ =
∑N
i=1 TPi∑N

i=1(TPi + FPi)
(3.64)

ρµ =
∑N
i=1 TPi∑N

i=1(TPi + FNi)
. (3.65)

2. macro-averaging: π and ρ are estimated globally by averaging over different
precision and recall for each category:

πM =
∑N
i=1 πi
N

(3.66)

ρM =
∑N
i=1 ρi
N

. (3.67)

3.4.8.2 Fβ Measure

Neither precision nor recall are perfect effectiveness measures by themselves. To
have an overall performance of a classifier, one needs to take both precision and

29

recall into account. There are several means to combine these two measures ef-
fectively such as break-even, Receiver Operating Characteristic (ROC), and Fβ
measure. One of the most widely-used combined measures in multiclass classifica-
tion task is the Fβ measure. Fβ measure is the harmonic average of precision and
recall:

Fβ = (1 + β2)πρ
β2π + ρ

. (3.68)

β in Equation (3.68) defines the relative importance degree between precision and
recall. With β = 1, precision and recall contribute equally to Fβ which is tradition-
ally called the F-measure or F1-score:

F1i = 2πiρi
πi + ρi

. (3.69)

To calculate F-measure globally, similar to precision and recall (Section 3.4.8.1),
two methods can be applied:

1. micro-averaging: Global F1-score is the harmonic mean of micro precision
(Equation 3.64) and micro recall (Equation 3.65):

F1µ = 2πµρµ
πµ + ρµ

. (3.70)

2. macro-averaging: Global F1-score is the average of F1-score over different
categories:

F1M =
∑N
i=1 F1i
N

. (3.71)

It is important to note that micro-averaging and macro-averaging results could be
quite different. The micro-averaging methods put more weight on more frequent
categories, whereas macro-averaging methods highlight the performance of the clas-
sifier on rare categories where there are few positive training data. Thus, choosing
one of these methods depends on the type of the application.

30

Chapter 4

Experimental Results And
Interpretations

This chapter describes data set specifications and experimental framework used
in this work. It then provides the empirical results and discussions regarding the
performance of the proposed approach.

4.1 Data Sets
The proposed approach has been assessed on queries collected from four major
telecommunication companies’ call centers. Every query is tagged by a human
expert to one single category. Table 4.1 reports details about the number of queries,
categories, and words for four data sets. Table 4.2 shows the scattering of the queries
among the categories. For example, in the case of Telecom 1 data set, 39% and
50% of the categories contain 80% and 90% of the queries respectively. The data
set categories have been listed in Appendix A.

4.2 Experimental Setup
Four different classifiers, including a Linear Support Vector Machine (SVM) from
LIBSVM [9], a Maximum Entropy (MaxEnt) and Naive Bayes (NB) probabilistic
from MALLET [27], and a k-Nearest Neighbor (k-NN) classifier, have been used
to assess the impact of features’ weighting on query classification. A few metrics
were used to quantify the classification performance, namely micro F1-measure,
macro F1-measure, macro precision, and macro recall1. They provide different views
of the classifier performance, and may give different results. The micro measure
puts more weight on more frequent categories, while macro measures highlight the
performance of a classifier on categories with a small number of positive training

1It can be proved that for a single-label classification, all micro F1-measure, micro recall, micro
precision, and accuracy are equal.

31

Table 4.1: Data sets Specification

Total Queries Number of Categories Number of Words
Telecom 1 2511 18 1043
Telecom 2 4200 26 1550
Telecom 3 13364 26 3357
Telecom 4 116275 100 3208

Table 4.2: Percentage of the categories containing 80% and 90% of the queries

Query Percentage
80% 90%

Category Percentage

Telecom 1 39% 50%
Telecom 2 23% 35%
Telecom 3 42% 58%
Telecom 4 19% 31%

data. To find out if the improvement or regression provided by the proposed method
is statistically significant, the student t-test has been performed on the results. Both
P-value ≤ 0.05 and P-value ≤ 0.01 have been reported.

4.3 Results And Interpretations
All the experiments have been carried out using four-fold cross validation. Each
fold has been repeated ten times, and the average has been taken as a final result.
For the k-NN classifier the numbers are the average taken for different number of
neighborhoods in the range of 1 to 10. A pre-processing task including stemming
and stop-words removal has been applied for both training and testing data sets.
To train the classifiers and regression models, the top 15% most important features,
ranked by Information Gain, have been chosen. To compare the performance of the
proposed approach, all classifiers have also been trained and tested with unweighted
data, which means each feature is assigned a binary weight.

4.3.1 Macro Precision and Recall Performance
Figure 4.1 shows the results for macro precision and macro recall. The performance
for the SVM classifier in the case of macro precision is unsatisfactory. The proposed
approach was not able to improve the precision performance; however, in the case
of macro recall, the proposed approach indeed improved the recall performance for
data set 2 and data set 3. In the case of the MaxEnt classifier, the new weighting
method increased the performance for both macro precision and macro recall for
all data sets but data set 4. For the Naive Bays classifier, the proposed approach

32

boosted the performance for both macro precision and recall, except for Telecom 4’s
macro precision. The k-NN classifier also enjoyed a jump in both macro precision
and macro recall figures, although the proposed method has not been well suited
for data set 3 in the case of k-NN.

Figure 4.1: macro Precision, macro Recall and significance test results
“�” or “�” means P-value ≤ 0.01

“<” or “>” means 0.01 < P-value ≤ 0.05
“∼” means P-value > 0.05

33

4.3.2 Macro and Micro F1-measure performance
Figure 4.2 depicts the macro F1-measure, micro F1-measure, and the significance
test results. The proposed features’ weighting approach improved both macro and
micro F1-measures in the case of Naive Bayes, and k-NN classifiers for all data
sets. One can observe high variance with k-NN compared to other classifiers. The
reason is that these numbers are the average of macro and micro F1-measures over
different neighborhoods (from 1 to 10). Nevertheless, the weighting approach is
able to reduce this variance substantially in most of the cases. The macro and
micro F1-measures have been increased by applying the weighting method to the
Maximum Entropy classifier, except for data set 4 and the micro F1-measure of
data set 1, where some performance degradation is observed. It is interesting to see
that there is no improvement in the case of an SVM classifier except for the second
testing set, where some improvement has been achieved on the macro F1-measure.

4.3.3 Precision vs. Recall
Although the F1-measure combines precision and recall and shows the overall per-
formance of a classifier, a balance between precision and recall is needed for a high
quality F1-measure. It can be beneficial to see what the trade-off is between pre-
cision and recall for each classifier with and without applying a weighting scheme.
Figure 4.3 shows the precision vs. recall for different classifiers. The dotted curves
depict the points with equal F1-measures, showing the direction for getting better
F1-measure performance. In the case of SVM classifiers, binary weighting tends to
have a better precision, while the proposed method tends to have a better recall.
However for data set 2, the approach has boosted the recall without any regression
in precision. For the rest of the classifiers, the proposed approach has yielded a
better balance between precision and recall, and managed to improve both preci-
sion and recall. The exceptions are MaxEnt and Naive Bays for data set 4, and
k-NN for data set 3. One possible explanation for these anomalies is that similar
concepts in data sets 3 and 4 have been labeled differently due to human error.
These errors can yield in contradiction weight values when calculating weights. It
can then result in weak regression models and/or classifiers.

4.3.4 Absolute Improvement
Table 4.3 shows the absolute improvement averaged over four data sets, obtained
by the proposed weighting method for each classifier. Substantial improvements
have been bolded. As observed by other forms of analysis, the proposed method
has managed to only improve the macro recall measure in the case of SVM classi-
fier. Overall macro F1-measure and macro recall have also been improved for the
MaxEnt classifier. For the Naive Bays and k-NN classifiers, all overall measures
have been improved substantially.

34

Figure 4.2: macro F1-measure, micro F1-measure and significance test results
“�” or “�” means P-value ≤ 0.01

“<” or “>” means 0.01 < P-value ≤ 0.05
“∼” means P-value > 0.05

35

Figure 4.3: Precision vs. Recall

4.3.5 Conclusion
The SVM classifier seems to be somehow weighting-resistant. In other words, SVM
classification performance is not affected much by applying weighting schemes. This
finding is in concurrence with other works in the literature [12, 13]. Having said
this, Forman [13] has shown that Bi-Normal Separation weighting can improve
the performance of the SVM classifier. The significance test results show that
the improvements obtained by the proposed method are reliable and statistically
significant. Overall, the proposed method has done a better job in the case of

36

Table 4.3: Average Absolute Improvement

f1-macro P-macro R-macro f1-micro
SVM -0.08% -1.32% 1.78% -0.32%

MaxEnt 3.09% 0.12% 4.48% 0.34%
Naive Bays 7.66% 2.41% 9.34% 4.05%

k-NN 4.79% 3.16% 4.98% 8.48%

macro recall. Thus, if the intended goal is to increase recall performance, it’s highly
recommended to adopt the proposed method. However as shown in Table 4.3, there
is no substantial overall loss, even in the case of SVM, by adopting the proposed
method, thus adopting the method may not result in regression for most cases.

37

Chapter 5

Summary and Future Work

This work have introduced a novel approach to assign weights to the features in a
query classification task. First pseudo documents are created by grouping queries of
the same category. Feature weights were then calculated, by applying tf-idf weight-
ing scheme to those pseudo documents. Since it is not possible to build those pseudo
documents for testing data, calculating weights for testing query is a challenge. A
set of regression models is then developed to learn weights from training data, and
then applied learned weights to the testing queries. Four different classifiers, in-
cluding SVM, MaxEnt, Naive Bays, and k-NN, have been trained with and without
using feature weights. All micro and macro F1-measures, macro recall, and macro
precision metrics can be substantially improved by applying weight to the queries
using the proposed method. In the experiments , different classifiers enjoyed abso-
lute improvement up to 9% and the proposed approached showed consistent macro
recall improvement. Although experiments have been carried out using the tf-idf
weighting technique, the proposed approach is weighting-scheme-independent, and
therefore can be generalized to any technique.

As a future work, there are three areas which can potentially improve the overall
performance of the approach:

1. An approach is outlined in Section 3.1 which elaborates how to calculate
feature weights for a given collection of queries. The quality of the weights
obtained in this step is a crucial factor for the performance of the whole
proposed approach, since it can deeply impact the performance of the next
steps. Thus investigating a more advanced and smarter way of clustering
queries into groups can be greatly beneficial to the proposed approach. On the
other hand, investigating a completely new approach for calculating weights
for a given query collection is an open area.

2. The next area is to improve the means of learning weights. In this work,
a Support Vector Regression model is used for learning the weights. The
experiments in this work can be expanded by investigating the other regression
models such as Gaussian Process [30]. Gaussian Process has proved itself as
one of the strongest method for doing regressions.

38

Another completely different approach for learning weights is to utilize the
relatively new Stacked Denoising Autoencoders (SDA) [42] method. In a nut-
shell SDA is a method to reconstruct original data from noisy data. The
idea is to train an SDA model with a weighted query collection and use it to
reconstruct a new version of a test query which is weighted by SDA.

3. The other area for improving the performance of the approach is to inves-
tigate other weighting schemes. In those experiments, SVM classifier was
somehow resistance to apply tf-idf weights. Bi-Normal Separation is one of
the candidate weighting schemes to look into, since it has been reported to
work well with SVM classifiers in the text categorization field [13].
The Generalized Probabilistic Descent (GPD) algorithm [24] also looks very
promising to be adopted as a base method for learning weights. It has been
shown that GPD is able to calculate very meaningful feature weights (see
Figure 2.2), thus could be capable of improving SVM classifier performance,
as well as improving the other classifiers performance even more.

39

References

[1] Shigeo Abe. Support Vector Machines for Pattern Classification. Springer,
2005.

[2] Arash Abghari, Kacem Abida, and Fakhri Karray. Features’ weight learning to-
wards improved query classification. In Proceedings of the Third International
Conference on Autonomous and Intelligent Systems, AIS’12, pages 184–191,
Berlin, Heidelberg, 2012. Springer-Verlag.

[3] Iyad Batal and Milos Hauskrecht. Boosting KNN text classification accu-
racy by using supervised term weighting schemes. In Proceedings of the 18th
ACM conference on Information and knowledge management, pages 2041–
2044. ACM, 2009.

[4] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, Sept. 1975.

[5] Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. A
maximum entropy approach to natural language processing. Comput. Lin-
guist., 22(1):39–71, March 1996.

[6] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A Train-
ing Algorithm for Optimal Margin Classifiers. In Proceedings of the 5th An-
nual ACM Workshop on Computational Learning Theory, pages 144–152. ACM
Press, 1992.

[7] Christopher J. C. Burges. A Tutorial on Support Vector Machines for Pattern
Recognition. Data Min. Knowl. Discov., 2(2):121–167, June 1998.

[8] Bob Carpenter and Jennifer Chu-Carroll. Natural language call routing: a
robust, self-organizing approach. In ICSLP’98, 1998.

[9] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:1–27,
2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[10] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. In Machine
Learning, pages 273–297, 1995.

40

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[11] S. Cox. Discriminative techniques in call routing. In Proc. IEEE Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP ’03), volume 1, 2003.

[12] Franca Debole and Fabrizio Sebastiani. Supervised Term Weighting for Auto-
mated Text Categorization. In In Proceedings of SAC-03, 18th ACM Sympo-
sium on Applied Computing, pages 784–788. ACM Press, 2003.

[13] George Forman. BNS feature scaling: an improved representation over tf-idf
for svm text classification. In Proceedings of the 17th ACM Conference on
Information and Knowledge Management, pages 263–270, 2008.

[14] George Forman, Isabelle Guyon, and André Elisseeff. An extensive empirical
study of feature selection metrics for text classification. Journal of Machine
Learning Research, 3:1289–1305, 2003.

[15] Seymour Geisser. Predictive inference: An introduction. Number 0412034719.
Chapman & Hall (New York), 1993.

[16] A.L. Gorin, H. Hanek, R. Rose, and L. Miller. Automated call routing in a
telecommunications network. In Interactive Voice Technology for Telecommu-
nications Applications, 1994., Second IEEE Workshop on, 1994.

[17] Geoffrey Hinton. Training Products of Experts by Minimizing Contrastive
Divergence. Neural Computation, 14:1771–1800, 2000.

[18] Qiang Huang and Stephen J. Cox. Automatic call-routing without transcrip-
tions. In INTERSPEECH’03, 2003.

[19] Hui Jiang, Pengfei Liu, and Imed Zitouni. Discriminative training of naive
Bayes classifiers for natural language call routing. In INTERSPEECH, 2004.

[20] Rong Jin, Joyce Y. Chai, and Luo Si. Learn to weight terms in information
retrieval using category information. In Proceedings of the 22nd International
Conference on Machine Learning, pages 353–360. ACM, 2005.

[21] W. Karush. Minima of Functions of Several Variables with Inequalities as Side
Constraints. Master’s thesis, Dept. of Mathematics, Univ. of Chicago, 1939.

[22] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Im-
provements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Com-
putation, 13:637–649, 2001.

[23] H. W. Kuhn and A. W. Tucker. Nonlinear Programming. In Proc. second
Berkeley Symp. on Math. Statist. and Prob., pages 481–492. Berkeley: Univer-
sity of California Press, 1951.

[24] H.-K. J. Kuo and Chin-Hui Lee. Discriminative training of natural language
call routers. 11(1):24–35, 2003.

41

[25] Man Lan, Chew Lim Tan, Jian Su, and Yue Lu. Supervised and Traditional
Term Weighting Methods for Automatic Text Categorization. IEEE Trans.
Pattern Anal. Mach. Intell., 31(4):721–735, apr 2009.

[26] J. Scott Long. Regression Models for Categorical and Limited Dependent Vari-
ables. Number 978-0-8039-7374-9. Sage, 1997.

[27] Andrew Kachites McCallum. MALLET: A Machine Learning for Language
Toolkit. http://mallet.cs.umass.edu, 2002.

[28] Klaus-Robert Müller, Sebastian Mika, Gunnar Rätsch, Koji Tsuda, and Bern-
hard Schölkopf. An introduction to kernel-based learning algorithms. IEEE
TRANSACTIONS ON NEURAL NETWORKS, 12(2):181–201, 2001.

[29] N.J. Nilsson. Learning Machines: Foundations of Trainable Pattern-
Classifying Systems. McGraw-Hill, 1965.

[30] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning. The MIT Press, 2006.

[31] Gorin Parker Sachs, A. L. Gorin, B. A. Parker, R. M. Sachs, and J. G. Wilpon.
How May I Help You? Speech Communication, 23:113–127, 1997.

[32] Gerard Salton and Christopher Buckley. Term-weighting approaches in au-
tomatic text retrieval. In INFORMATION PROCESSING AND MANAGE-
MENT, pages 513–523, 1988.

[33] R. Sarikaya, G. E. Hinton, and B. Ramabhadran. Deep belief nets for nat-
ural language call-routing. In Proc. IEEE Int Acoustics, Speech and Signal
Processing (ICASSP) Conf, pages 5680–5683, 2011.

[34] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
Comput. Surv., 34(1):1–47, March 2002.

[35] Amit Singhal. Modern information retrieval: a brief overview. BULLETIN OF
THE IEEE COMPUTER SOCIETY TECHNICAL COMMITTEE ON DATA
ENGINEERING, 24:2001, 2001.

[36] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector regression.

[37] Pascal Soucy and Guy W. Mineau. Beyond TFIDF weighting for text cate-
gorization in the vector space model. In Proceedings of the 19th International
Joint Conference on Artificial Intelligence, pages 1130–1135. Morgan Kauf-
mann Publishers Inc., 2005.

[38] N. Tyson and V. C. Matula. Improved lsi-based natural language call routing
using speech recognition confidence scores. In Proc. Second IEEE Int. Conf.
Computational Cybernetics ICCC 2004, pages 409–413, 2004.

42

[39] S. Ullah, F. Karray, A. Abghari, and S. Podder. Soft computing-based ap-
proach for natural language call routing systems. In Proc. 9th Int. Symp.
Signal Processing and Its Applications ISSPA 2007, pages 1–4, 2007.

[40] V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer,
1982.

[41] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-Verlag
New York, Inc., 1995.

[42] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-
zagol. Extracting and Composing Robust Features with Denoising Autoen-
coders. In Proceedings of the Twenty-fifth International Conference on Ma-
chine Learning (ICML’08), pages 1096–1103. ACM, 2008.

[43] Andrew R. Webb. Statistical Pattern Recognition. John Wiley & Sons Ltd.,
second edition, 2002.

[44] C. Wu, D. Lubensky, J. Huerta, X. Li, and H.-K. J. Kuo. A framework for large
scalable natural language call routing systems. In Proc. Int Natural Language
Processing and Knowledge Engineering Conf, pages 65–71, 2003.

[45] Yiming Yang and Jan O. Pedersen. A Comparative Study on Feature Selection
in Text Categorization. In Proceedings of the Fourteenth International Con-
ference on Machine Learning, pages 412–420. Morgan Kaufmann Publishers
Inc., 1997.

[46] I. Zitouni. Constrained Minimization and Discriminative Training for Natural
Language Call Routing. Trans. Audio, Speech and Lang. Proc., 16(1):208–215,
jan 2008.

43

Appendix A

Data Set Categories

Telecom 1:

• accountBalance

• accountInformationAndChanges

• ADSLDisambig

• ADSLTroubleshooting

• backoff

• billingAndPayments

• billingProblemsDisambig

• billReprint

• bundledServices

• callBlocking

• callDisplayDisambig

• callForwardingDisambig

• callingCardDisambig

• callingCardPassword

• callWaitingDisambig

• cancelInternet

• cancelPhoneFeatures

• cancelService

44

Telecom 2:

• account

• accountBalance

• accountNumber

• billing

• billingCharges

• billReprint

• collectcall

• collectionAgency

• creditDepartment

• credits

• detailedBilling

• directoryAssistance

• eBill

• finalsDepartment

• firstBill

• genericRequest

• latePaymentCharges

• oneBill

• payment

• paymentNotification

• phone

• preAuthorizedDebit

• refundCheck

• systemAccessFee

• taxes

45

• webBanking

Telecom 3:

• appointment

• authxfer

• autoxfer

• billing

• budgetplan

• credit

• duplicatebill

• energy

• fortyeighthr

• hazard

• help

• meaningless

• outage

• paybyphone

• paylocs

• payplan

• phupdate

• pilot

• programs

• start

• stop

• stopvague

• svcvague

• tentwenty

46

• transfersvc

• xfer

Template 4:

• BillingBalance

• BillingCopy

• BillingDetail

• BillingGeneral

• BillingPassword

• BillingProblem

• CancelService

• ChangeAccount

• ChangeAddress

• ChangeNumber

• ChangePhone

• ChangePlan

• ChangeService

• FeatureAdd

• FeatureAddCallBlock

• FeatureAddCallerIDBlock

• FeatureAddCallForwarding

• FeatureAddGetItNow

• FeatureAddMobileWeb

• FeatureAddUnlimitedInMessaging

• FeatureGeneral

• FeatureGeneralCallBlock

• FeatureGeneralCallerIDBlocking

47

• FeatureGeneralCallForwarding

• FeatureGeneralFnF

• FeatureGeneralGetItNow

• FeatureGeneralMobileWeb

• FeatureGeneralUnlimitedInMessaging

• FeatureHelp

• FeatureHelpCallBlock

• FeatureHelpCallerIDBlock

• FeatureHelpCallForwarding

• FeatureHelpGetItNow

• FeatureHelpMobileWeb

• FeatureHelpUnlimitedInMessaging

• FeatureRemove

• FeatureRemoveCallBlock

• FeatureRemoveCallerIDBlock

• FeatureRemoveCallForwarding

• FeatureRemoveGetItNow

• FeatureRemoveMobileWeb

• FeatureRemoveUnlimitedInMessaging

• GeneralAccount

• GeneralHelp

• GeneralNonWireless

• GeneralPhone

• GeneralPlan

• GeneralService

• International

48

• LNP

• LostOrStolen

• Minutes

• Operator

• PayAddress

• PayArrangement

• PayAutoPay

• PayCreditCard

• PayMakePayment

• PayOnline

• Prepaid

• RecentAccountActivity

• ReturnCall

• RingbackTones

• RingTones

• SalesActivation

• SalesGeneral

• SalesPhone

• Store

• TechBroadband

• TechCalling

• TechDroid

• TechFeature3WayCalling

• TechFeature411

• TechFeatureCallerID

• TechFeatureCallWaiting

49

• TechGeneral

• TechLock

• TechNationalAccess

• TechPDA

• TechPDABlackberry

• TechPDATreo

• TechPhone

• TechPictureMessaging

• TechRoaming

• TechTextBlock

• TechTextMessaging

• TechVCast

• TechVCastMusic

• TechVCastVideo

• TechVCastVPack

• TechVZHub

• TechVZNavigator

• TechWebPasswor

• TechWebPassword

• TechWebSite

• TechWebUsername

• VoicemailGeneral

• VoicemailPassword

• VoicemailProblem

• VoicemailSetUp

50

Glossary

BNS Bi-Normal Separation

CM Constrained Minimization

CT Corrective Training

DBN Deep Belief Networks

FN False Negative

FP False Positive

GA Genetic Algorithm

GPD Generalized Probabilistic Descent

idf Inverse Document Frequency

IG Information Gain

IR Information Retrieval

IRLS Iteratively Re-weighted Least Squares

LDA Linear Discriminant Analysis

LM Language Model

LSI Latent Semantic Indexing

MAP Maximum A Posteriori

MaxEnt Maximum Entropy

MI Mutual Information

NB Naive Bayes

NBC Naive Bayes Classifier

OR Odds Ratio

51

RBM Restricted Boltzmann Machine

rf Relevance Frequency

ROC Receiver Operating Characteristic

SDA Stacked Denoising Autoencoders

SVD Singular Value Decomposition

SVM Support Vector Machine

SVR Support Vector Regression

TC Text Categorization

tf Term Frequency

TN True Negative

TP True Positive

CHI χ2

F Feature Space

fi ith feature

k-NN k-Nearest Neighbor

L Lagrangian function

α Lagrange multipliers

N Total number of documents

P (x) Probability of x

π Precision

P (x|y) Conditional probability of x given y

Q Query Collection

qi ith query

ri ith regression model

ρ Recall

ξ Slack Variables

52

β Weight Vector

w Weight Vector

wi Weight corresponding to the ith feature

x Input Vector

53

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Objectives
	Thesis Organization

	Literature Review
	Call Routing Applications
	Weighting Schemes
	Conclusion

	System Architecture
	Query Feature Weight Calculation
	Query Feature Weight Estimation
	Query Classification
	Methods and Algorithms
	TF-IDF Weighting Scheme
	Feature Selection
	Naive Bayes (NB)
	Maximum Entropy or Multinomial Logistic Regression (MaxEnt)
	k-Nearest Neighbor (k-NN)
	Support Vector Machine (SVM)To see the full explanation and complete details, see Burgs tutorial Burges:1998:TSV:593419.593463.
	Linear SVM
	The Dual Problem
	Non-linear SVM
	Imperfect separation
	Multiclass SVM

	Support Vector Regression (SVR)To see more discussion about SVR, see Smola et al. tutorial Smolaatutorial.
	Linear SVR
	The Dual Problem
	Non-linear SVR

	Performance Measures
	Precision and recall
	F Measure

	Experimental Results And Interpretations
	Data Sets
	Experimental Setup
	Results And Interpretations
	Macro Precision and Recall Performance
	Macro and Micro F1-measure performance
	Precision vs. Recall
	Absolute Improvement
	Conclusion

	Summary and Future Work
	References
	Appendix Data Set Categories
	Glossary

