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Abstract

In elliptic curve cryptography, cryptosystems are based on an additive subgroup of an
elliptic curve defined over a finite field, and the hardness of the Elliptic Curve Discrete
Logarithm Problem is dependent on the order of this subgroup. In particular, we often
want to find a subgroup with large prime order. Hence when finding a suitable curve for
cryptography, counting the number of points on the curve is an essential step in determining
its security.

In 1985, René Schoof proposed the first deterministic polynomial-time algorithm for
point counting on elliptic curves over finite fields. The algorithm was improved by Noam
Elkies and Oliver Atkin, resulting in an algorithm which is sufficiently fast for practical
purposes. The enhancements leveraged the arithmetic properties of the lth classical mod-
ular polynomial, where l is either an Elkies or Atkin prime. As the Match-Sort algorithm
relating to Atkin primes runs in exponential time, it is eschewed in common practice.

In this thesis, I will discuss my implementation of the Schoof-Elkies-Atkin algorithm
in C++, which makes use of the NTL package. The implementation also supports the
computation of classical modular polynomials via isogeny volcanoes, based on the methods
proposed recently by Bröker, Lauter and Sutherland.

Existing complexity analysis of the Schoof-Elkies-Atkin algorithm focuses on its asymp-
totic performance. As such, there is no estimate of the actual impact of the Match-Sort
algorithm on the running time of the Schoof-Elkies-Atkin algorithm for elliptic curves de-
fined over prime fields of cryptographic sizes. I will provide rudimentary estimates for the
largest Elkies or Atkin prime used, and discuss the variants of the Schoof-Elkies-Atkin
algorithm using their run-time performances.

The running times of the SEA variants supports the use Atkin primes for prime fields
of sizes up to 256 bits. At this size, the selective use of Atkin primes runs in half the time
of the Elkies-only variant on average. This suggests that Atkin primes should be used in
point counting on elliptic curves of cryptographic sizes.
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Chapter 1

Introduction

1.1 Background

In elliptic curve cryptography (ECC), cryptosystems are based on an additive subgroup
of an elliptic curve defined over a finite field, and the hardness of the Elliptic Curve Discrete
Logarithm Problem is dependent on the order of this subgroup. In particular, we often
want to find a subgroup with large prime order. Hence, when finding a suitable curve for
cryptography, counting the number of points on the curve is an essential step in determining
its security.

In 1985 [17], René Schoof proposed the first deterministic polynomial-time algorithm for
point counting on elliptic curves over finite fields, using the Chinese Remainder Theorem
(CRT) to break the problem down into subproblems for a set of (much smaller) primes,
which can be solved independently. Though the algorithm runs in polynomial-time, it
was on the order of Oplog8 pq bit operations, which for elliptic curves defined over field of
cryptographic sizes was still too slow for practical purposes at the time.

Improvements to Schoof’s algorithm were independently introduced by Noam Elkies and
Oliver Atkin resulting in an algorithm which, with a running time in the order of Oplog6 pq,
is now fast enough for curves in use for ECC. Using a different approach, Satoh [15]
developed a polynomial-time algorithm for point counting on curves over finite fields of
small characteristic.
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1.2 Motivation

1.2.1 Existing Point Counting Implementations

There are various implementations of the SEA algorithm for which source code is freely
available online, such as that in GP/PARI (used in SAGE), and Mike Scott’s implementa-
tion in C/C++ as part of the MIRACL package. The algorithm has also been implemented
in MAGMA, although its source code is not readily available.

The existing C/C++ MIRACL implementation of SEA makes use of lower-level opti-
mizations provided by the MIRACL library to provide very good running times. It also
outputs the intermediate values during its execution, which allows for comparisons of the
choice of primes. One observation is that the implementation eschews the consideration
of a subset of small primes that Atkin uses, instead choosing larger primes. While the
larger primes translate to more expensive field arithmetic, it may be more than offset by
computation time savings elsewhere, which reasonably explains the choice of approach.
This approach is also reflected in Sutherland’s point counting record for elliptic curves
over finite fields (http://math.mit.edu/~drew/SEArecords.html).

Nicole Pitcher [14] proposed the use of Schönhage-Strassen’s algorithm [16], the fastest
integer multiplication method for integers beyond 2215

, to speed up multiplication of polyno-
mials over finite fields in Schoof’s algorithm. This is done by lifting polynomials from Fprxs
to Zrxs, and mapping them into the set of integers by substituting x with 256r lg p

4
� lg N

8
s. The

resulting integers will be sufficiently large for Schönhage-Strassen’s algorithm to provide
speedups, thus improving the performance of Schoof’s algorithm.

1.2.2 Project Aims

As with algorithms in general, there are often gaps in understanding that can only be
filled by the actual process of implementing the algorithm. Our implementation serves
as a tool to investigate why the MIRACL implementation diverges from Atkin’s original
approach for Atkin primes, and if there are possible improvements to support the use of
Atkin’s approach.

2
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The aim is to provide an implementation of SEA, with the use of some Atkin primes,
that can perform better than an Elkies prime-only approach for curves of cryptographic
sizes.

1.3 Author’s Contributions

Computing Classical Modular Polynomials. I have implemented the complex ana-
lytical approach to compute Hilbert class polynomials, as a precursor to computing classical
modular polynomials via isogeny volcanoes, as proposed in [2]. Using MAGMA for verifi-
cation, I wrote the routines for finding suitable parameters for prime l, which then used the
parameters to construct isogeny volcanoes, as well as compute the l-th classical modular
polynomial in ZrXs.

Schoof-Elkies-Atkin. The modular polynomials are subsequently used in the imple-
mentation of the Schoof-Elkies-Atkin algorithm for elliptic curves over prime fields with
characteristic larger than 3. In the implementation of the Match-Sort algorithm, I pro-
posed sorting by absolute values and performing scalar multiplication iteratively to reduce
the size of the scalar multiplications in the routine.

Complexity of Match-Sort. In the existing literature, the complexity analysis of the
SEA algorithm focuses on the asymptotic performance. As such, there is no estimate of
the size of the Match-Sort problem and how much it impacts the overall running time of
the SEA algorithm. I have provided some rudimentary estimates of the size of the largest
prime used in SEA and the number of cases to be checked via Match-Sort. The run-time
performance of the variants of SEA is included as a basis for understanding the size of the
Match-Sort problem.

The running times of the SEA variants supports the use Atkin primes for prime fields
of sizes up to 256 bits. At this size, the selective use of Atkin primes runs in half the time
of the Elkies-only variant on average. This suggests that Atkin primes should be used in
point counting on elliptic curves of cryptographic sizes.
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1.4 Organization of Thesis

In Chapter 2, I will explain the ideas behind in Schoof’s algorithm, and give an overview
of the Schoof-Elkies-Atkin algorithm. In Chapter 3, I will discuss isogeny volcanoes and
their role in the computation of classical modular polynomials. In Chapter 4, I will discuss
the implementation in the cases of Elkies and Atkin primes. I will also provide a detailed
description of the Match Sort algorithm. This allows us to describe the SEA algorithm in
full. In Chapter 5, I will compare the run-time performance of the implementation, using
the different variants of SEA.
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Chapter 2

Schoof and SEA

In this chapter we provide a few preliminary definitions about elliptic curves over finite
fields, leading up to the description of Schoof’s algorithm. Though the material in this
section can be found in most textbooks on elliptic curve cryptography, our treatment is
based on Blake et al. [1] as it contains a more detailed discussion of the Schoof-Elkies-Atkin
algorithm.

2.1 Preliminaries

2.1.1 Elliptic Curves

Definition 2.1.1. An elliptic curve E, defined over a finite field Fq with prime charac-
teristic p, is the set of points (i.e. solutions) px, yq P F2

q satisfying the equation

E : y2 � a1xy � a3y � x3 � a2x
2 � a4x� a6, (2.1)

where a1, a2, a3, a4, a6 P Fq. As the equation defines E, we will equate the definition
of E with that of the equation. Two elliptic curves E (with variables x, y) and E 1 (with
variables x1, y1) defined over Fq are isomorphic over Fq if and only if there exists constants
r, s, t, u P Fq with u � 0, such that the change of variables

x � u2x1 � r, y � u3y1 � su2y1 � t (2.2)

transforms E into E 1.
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For p ¡ 3, the equation above can be replaced by

E : y2 � x3 � ax� b, (2.3)

for some a, b P Fq. We call this the Weierstrass form of E. We say that E is singular
if 4a3 � 27b2 � 0. For the rest of this report, we assume p ¡ 3, and E is assumed to be
non-singular, and hence can be described by its Weierstrass form.

We write E{Fq to denote that the coefficients of E are in Fq and write EpFqq to denote
the points of E in Fq. Although the coefficients of E may be in a field extension and in
practice for p ¡ 3 we usually have q � p, we nevertheless distinguish between the notations
here.

2.1.2 Group Law

Definition 2.1.2. For two points P :� px1, y1q, Q :� px2, y2q on EpFqq, we define the
binary operation point addition ` so that P `Q :� px3, y3q is given by

m : �
#

y2�y1

x2�x1
if x1 � x2

3x2
1�b

2y1
if x1 � x2, y1 � y2

, (2.4)

x3 � m2 � a� x2 � x1, (2.5)

y3 � mpx1 � x3q � y1, (2.6)

Note that when x1 � x2, y1 � y2, we have y2 � �y1. In this case we write �P :� Q,
and define

8E :� P ` p�P q,
which is referred to as the point at infinity. When it is unambiguous, we will use 8 instead.
We also define

P `8 � 8` P � P

and
P aQ :� P ` p�Qq.

For n P N, we define nP :� P ` � � � ` P (n copies of P ). If n � �n1 is negative, then
nP � �pn1P q. Thus for n P Z,

rns : E ÝÑ E, rnspP q � nP (2.7)

is the multiply-by-n function.

6



Theorem 2.1.3. pE,`q is an abelian group, with 8 as the identity element and �P as
the inverse element for each point P P E.

2.1.3 Frobenius Endomorphism

Definition 2.1.4. For the finite field Fq with algebraic closure Fq, the Frobenius map φq
is defined as

φq : Fq ÝÑ Fq, φqpxq � xq (2.8)

Proposition 2.1.5. The Frobenius map φq is an automorphism on Fq, and φqpxq � x if
and only if x P Fq.

We can extend the definition of the Frobenius map to elliptic curves over Fq:

φq : EpFqq ÝÑ EpFqq, φqpx, yq � pφqpxq, φqpyqq � pxq, yqq, φqp8q � 8

Proposition 2.1.6. φq is a group endomorphism on EpFqq.
Theorem 2.1.7. The characteristic equation of φq on E is:

Z2 � t � Z � q � 0 (2.9)

for some integer t. In other words, for all px, yq P EpFqq,�
xq

2

, yq
2
	
� tpxq, yqq � qpx, yq � 8, (2.10)

where addition here is point addition on E. t is called the trace of the Frobenius endo-
morphism φq.

2.1.4 Number of Points

Theorem 2.1.8. The number of points px, yq on E, denoted as #EpFqq, is given by

#EpFqq � q � 1� t, (2.11)

where t is the trace of the Frobenius endomorphism.
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Definition 2.1.9. Let E : y2 � x3�ax�b denote an elliptic curve over Fq. The quadratic
twist of E, is the elliptic curve over Fq given by E 1 : dy2 � x3�ax�b, for some non-square
d P Fq. If #EpFqq � q � 1� t, then #E 1pFqq � q � 1� t.

Theorem 2.1.10. (Hasse’s Theorem) The value of t is bounded as follows[20]:

|t| � |q � 1� EpFqq| ¤ 2
?
q. (2.12)

The interval rq � 1� 2
?
q, q � 1� 2

?
qs is known as the Hasse interval.

Definition 2.1.11. An integer m is called a quadratic residue modulo n if

x2 � m pmod nq
for some integer x. Otherwise it is called a quadratic nonresidue modulo n. We use QRn

and QRn to denote the set of quadratic residues and nonresidues modulo n respectively.

We can use the quadratic character to count the number of points, but this yields an
exponential time algorithm, thus only feasible for small fields.

Definition 2.1.12. For each x P Fq, the quadratic character χqpxq is

χqpxq �
$&% 1 if x is a square in Fq

0 if x � 0 in Fq
�1 if x is not a square in Fq

(2.13)

From the equation of the Weierstrass form of an elliptic curve, we observe that, besides
the point at infinity, a point px, yq P F2

q is a point on E if and only if x3�ax� b is a square
in Fq (y is a corresponding square root). Note that when q is a prime, then

χqpxq �
�
x

q



. (2.14)

If x3 � ax � b � 0 in Fq, then y can only take one value, 0. If χqpx3 � ax � bq � 1,
then y � �?x3 � ax� b, which are two distinct values since the characteristic p is odd. If
χqpx3 � ax� bq � �1, then there are no possible values of y for which px, yq P E. Hence

#EpFqq � 1�
¸
xPFq

�
1� χqpx3 � ax� bq� (2.15)

For small values of q, this formula is very efficient. Unfortunately as this approach requires
a computation over all the elements in Fq, it is exponential in the length of the size of Fq,
and thus becomes impractical very quickly as the size of the field increases.
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2.1.5 Baby-Step Giant-Step

In an elliptic curve discrete logarithm problem, we are given an elliptic E with N :�
#EpFqq, two points P,Q P E, and that Q � rmsP , for some integer 0 ¤ m   N . Shanks’
Baby-Step Giant-Step (BSGS) algorithm first computes and stores a table of ‘baby steps’;
the values

Rb :� Q� rbsP,
with b ranging from 0 to r

?
N s� 1. Next, the ‘giant steps’

Sa :� ras
�
rr
?
N ssP

	
are computed, incrementally from a � 0. Whenever we find that Sa matches with some
Rb in the table, we will have found

Q� rbsP � ras
�
rr
?
N ssP

	
which allows us to compute in Op?Nq computations, the value of

m � ar
?
N s� b.

Shanks-Mestre. To findN , the order of the elliptic curve group, we begin with a random
point P P EpFqq, and compute its order in the group oP . It is known that an elliptic curve
group is isomorphic to the direct product of either one or two cyclic groups, and that we
can expect to find a point P with its order in the elliptic curve group oP ¡ 4

?
q [17]. We

define the points
Q � rq � 1sP and Q1 � Q� rt2?qusP,

and let t1 � t� t2
?
qu. Note that t1 P r0, 4?qs by the Hasse bound 2.12. Since

Q1 � rq � 1sP � rt2?qusP � rq � 1� tsP � rt� t2
?
qusP � rN sP � rt1sP � rt1sP,

and oP ¡ 4
?
q, solving the discrete log problem Q1 � rt1sP by BSGS gives us the exact

value of t1. From this, we can compute the value of t and thus the order of the elliptic
curve group. This algorithm, referred to the Shanks-Mestre algorithm, requires Opq1{4�εq
computations and storage, for some arbitrarily small ε ¡ 0.

9



2.2 Schoof’s Algorithm

In 1985, Schoof proposed the first polynomial-time algorithm for point counting on
elliptic curves, by computing t � #EpFpq � p � 1 via a series of modular computations.
Schoof’s approach is to find the value of tl � t mod l, for l P S, where S � t2, 3, 5, � � � , Lu is
a set of primes. When S is chosen so that mS :�±lPS l ¡ 4

?
p, by the Chinese Remainder

Theorem (CRT) we can solve for t1 � t mod mS uniquely.

Since mr ¡ 4
?
p, we can determine t by finding the only value in the Hasse interval

which is congruent to t1 mod mS. It can be shown using the prime number theorem that
the number of primes required is roughly Oplog pq (see Section 4.4.3).

In the case l � 2, and computing tl means checking ifN is even or odd, which is equivalent
to asking if EpFpq has a point of order 2. From Definition 2.4, a point of order 2 exists if
and only if x3�ax�b has roots in Fp, which is true if and only if gcdpxp�x, x3�ax�bq � 1
in the polynomial ring Fprxs.

Let ModularExponentiationpapXq, e, fpXqq denote the function which returns apXqe mod
fpXq. To compute the gcd above, we observe that

gcdpxp � x, x3 � ax� bq � gcdpxp � x mod x3 � ax� b, x3 � ax� bq. (2.16)

We compute xp mod x3�ax�b � ModularExponentiationpX, p, x3�ax�bq, a polynomial
of degree at most two, and subtract x from the result. This reduces the gcd computation
(by the Euclidean algorithm) to one involving two polynomials of low degree, which can
be performed very efficiently.

Modular exponentiation can be performed in timeOplog pq by square-and-multiply. How-
ever, as p is fixed regardless of prime l, we can incur some computational overhead to find
an addition chain for p, and possibly use the chain to compute the modular exponentiation
more efficiently than square-and-multiply. Chapter 9 of [5] provides an overview of how
addition chains can be computed and used.
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2.2.1 Division Polynomials

Definition 2.2.1. For each non-negative integer l, the l-th division polynomial ψl over
Fprxs is defined recursively as follows:

ψ0 � 0
ψ1 � 1
ψ2 � 2y
ψ3 � 3x4 � 6ax2 � 12bx� a2

ψ4 � 4ypx6 � 5ax4 � 20bx3 � 5a2x2 � 4abx� 8b3 � a3q
ψ2m�1 � ψm�2ψ

3
m � ψm�1ψ

3
m�1 for m ¥ 2

ψ2m � p2yq�1pψmqpψm�2ψ
2
m�1 � ψm�2ψ

2
m�1q for m ¥ 3

Lemma 2.2.2. ψn is a polynomial in Zrx, y2, a, bs when n is odd and ψn is a polynomial
in 2yZrx, y2, a, bs when n is even.

Proof. We prove the lemma by induction on n. For n ¤ 4, the lemma is true by definition.
Suppose n � 2m for some integer m.

If m is even, then by the induction hypothesis ψm, ψm�2, ψm�2 are in 2yZrx, y2, a, bs
and ψm�1, ψm�1 are in Zrx, y2, a, bs, which implies that ψn is in 2yZrx, y2, a, bs.

If m is odd, then by the induction hypothesis ψm, ψm�2, ψm�2 are in Zrx, y2, a, bs and
ψm�1, ψm�1 are in 2yZrx, y2, a, bs, which again implies that ψn is in 2yZrx, y2, a, bs.

Similarly, we can check that if n � 2m�1 for some integer m, then ψn is in Zrx, y2, a, bs.

Lemma 2.2.3. Define the following polynomials:

ϕn � xψ2
n � ψn�1ψn�1

ωn � p4yq�1pψn�2ψ
2
n�1 � ψn�2ψ

2
n�1q

For all n, ϕn P Zrx, y2, a, bs. Also, if n is odd, then ωn P yZrx, y2, a, bs. If n is even, then
ωn P Zrx, y2, a, bs.
Lemma 2.2.4.

ϕn � xn
2 � lower degree terms

ωn � n2xn
2�1 � lower degree terms

(2.17)
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Theorem 2.2.5. Let P � px, yq be a point on the elliptic curve E : y2 � x3 � ax� b over
Fp, and let n P N. Then

rnsP �
�
ϕnpxq
ψ2
npxq

,
ωnpx, yq
ψ3
npx, yq



. (2.18)

Corollary 2.2.6. ϕnpxq and ψ2
npxq have no common roots. Therefore given an elliptic

curve E, multiplication-by-n is an endomorphism on E with degree n2.

From Lemma 2.2.2, we know that if n is odd, then ψn is a polynomial in Zrx, y2, a, bs,
which implies that given a fixed elliptic curve E : y2 � x3 � ax� b, ψn is a polynomial in
x. Therefore by Corollary 2.2.6 and Theorem 2.2.5, we have that nP � 8 if and only if
ψnpxq � 0.

2.2.2 Torsion Points

Definition 2.2.7. For all primes l, we define the l-torsion subgroup of EpFpq as

Erls :� tP P EpFpq : l � P � 8u. (2.19)

Thus for all P � px, yq P EpFpq, P P Erls iff ψlpxq � 0.

Theorem 2.2.8. For l � p, Erls � Zl � Zl.

Recall that to compute the order of EpFpq is equivalent to finding t, the trace of the
Frobenius endomorphism, which satisfies Z2 � t � Z � p � 0 or equivalently,

pxp2

, yp
2q � tpxp, ypq � ppx, yq � 8. (2.20)

for all px, yq P EpFpq.

One approach is to compute, for a given point P � px, yq, pxp2
, yp

2q, pxp, ypq, ppx, yq,
and check which value of t � 0, 1, ..., 2

?
p satisfies the equation above. This would require

Opp1{2q computations, which is prohibitively large.
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By consider the restriction of the characteristic polynomial of φp modulo l, we obtain
the reduced characteristic equation Z2� tl �Z�pl � 0 where tl � t mod l and pl � p mod l
and 0 ¤ tl   l, |pl|   l{2. We also have�

xp
2

, yp
2
	
� plpx, yq � tlpxp, ypq (2.21)

for all the points px, yq P Erls. The idea now is, given a point px, yq P Erls, to compute

the expressions for
�
xp

2
, yp

2
	

, pxp, ypq, plpx, yq, and check which value of tl � 0, 1, ..., l � 1

satisfies the equation above.

We find the expression for xp
2
, xp in the ring Fprxs{ pψlpxqq and yp

2
, yp in the ring

Fprx, ys{ pψlpxq, y2 � x3 � ax� bq. These require Oplog ppl2 log pq2q arithmetic operations
in Fp. Finding tl requires l additions of pxp, ypq, which requires Oplpl2 log pq2q computations.
Since l is of size Oplog pq, the total work required is Oplog8 pq bit operations.

Suppose
�
xp

2
, yp

2
	
� �plpx, yq for some px, yq P Erls. Then px1, y1q :�

�
xp

2
, yp

2
	
�

plpx, yq � 8, which implies that tl � 0 pmod lq

Let pxm, ymq :� mpx, yq for any integer m. Then xp
2 � xpl . From Theorem 2.2.5, we

note that

xm � ϕmpxq
ψ2
mpxq

, ym � ωmpx, yq
ψ3
mpx, yq

(2.22)

i.e. xm � f1,mpxq and ym � yf2,mpxq for some rational functions f1,m, f2,m P Fprxs. We
have

x1 �
�
yp

2 � ypl
xp2 � xpl

�2

� xp
2 � xpl (2.23)

Since �
yp

2 � ypl

	2

� y2
�
yp

2�1 � f2,plpxq
	2

� px3 � ax� bq
�
px3 � ax� bqpp2�1q{2 � f2,plpxq

	2

,

x1 can be written as a rational function in x. Our aim is to find m such that px1, y1q �
pxpm, ypmq. Since the roots of ψlpxq are the x-coordinates of points in Erls, x1 � xpm � 0
pmod ψlq. Note that the roots of ψlpxq have multiplicity 1, as Erls has l2 � 1 distinct
points of order l and ψl has degree pl2 � 1q{2.

13



After m is found, where x1 � xpm � 0 pmod ψlq, we have

px1, y1q � �pxpm, ypmq � pxpm,�ypmq. (2.24)

If py1 � ypmq{y � 0 pmod ψlq, then tl � m pmod lq, otherwise tl � �m pmod lq.

In the remaining case
�
xp

2
, yp

2
	
� �plpx, yq. Suppose

φ2
ppx, yq �

�
xp

2

, yp
2
	
� plpx, yq. (2.25)

We have
tlφppx, yq � φ2

ppx, yq � plpx, yq � 2plpx, yq. (2.26)

Therefore
t2l plpx, yq � t2l φ

2
ppx, yq � 4p2

l px, yq. (2.27)

Thus t2l pl � 4p2
l pmod lq, which implies that pl is a square modulo l. Let pl � w2 pmod lq.

Hence
pφp � wqpφp � wqpx, yq � pφ2

p � plqpx, yq � 8. (2.28)

for all px, yq P Erls.
If φppx, yq � wpx, yq, then tl � 2w pmod lq. If φppx, yq � �wpx, yq, then tl � �2w

pmod lq. If neither condition is met for some point px, yq P Erls, then tl � 0 pmod lq.
If pl is not a square modulo l, then the initial supposition in Equation 2.25 is false.

Therefore
�
xp

2
, yp

2
	
� �plpx, yq, which implies tl � 0 pmod lq. Note that since l is odd,

plpx, yq � �plpx, yq for all values of pl.

14



2.2.3 Algorithm Details

Description of Schoof’s Algorithm We now state Schoof’s algorithm in full:

1. Choose a set of primes S � t2, 3, 5, � � � , Lu (with p R S) such that
±

lPS l ¡ 4
?
p.

2. If l � 2, then t2 � 0 pmod 2q iff gcdpxp � x, x3 � ax� bq � 1.

3. For each odd prime l P S do:

(a) Let pl � p pmod lq such that |pl|   l{2.

(b) Compute x1, the x-cordinate of px1, y1q �
�
xp

2
, yp

2
	
� plpx, yq pmod ψlq.

(c) For m � 1, 2, � � � , pl � 1q{2 do:

i. Compute the x-coordinate xm of pxm, ymq � mpx, yq.
ii. If x1 � xpm � 0 pmod ψlq, try the next value of m in step (c).

iii. If x1� xpm � 0 pmod ψlq, check if py1� ypmq{y � 0 pmod ψlqq. If so, then set
tl � m, else set tl � l �m; proceed to step 4.

(d) If p P QRl, then set tl � 0 and proceed to step 4. Otherwise define w so that
w2 � p pmod lq.

(e) Compute pxw, ywq :� wpx, yq.
(f) If xp � xw, then set tl � 0 and proceed to step 4.

(g) If yp � yw, then set tl � 2w pmod lq, else set tl � �2w pmod lq.
4. Given t � tl pmod lq for all l P S, use CRT to compute t as the unique value satisfying

the congruences and the condition |t| ¤ 2
?
p. Return #EpFpq � p� 1� t.

Although Schoof’s algorithm runs in polynomial-time, it is not sufficiently fast for prac-
tical use with curves of cryptographic sizes. For example, for curves defined over 256-bit
finite fields, the algorithm’s running time is plog 2256q8 � 264, which is barely feasible.

The computations for Schoof’s algorithm are performed in the ring

Fprx, ys{ gcdpψlpxq, y2 � x3 � ax� bq
and as ψlpxq has degree pl2 � 1q{2, the degree of the elements is Opl2q � Oplog2 pq. In the
Schoof-Elkies-Atkin algorithm, we will see that the division polynomials can be replaced
with polynomials of lower degree, which results in considerable speedups over Schoof’s
algorithm.
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2.2.4 Schoof-Elkies-Atkin Algorithm

In Schoof’s algorithm, the characteristic equation of the Frobenius endomorphism is
used to compute its trace t and thus #EpFpq � p� 1� t. Elkies and Atkin independently
suggested improvements, depending on whether the characteristic equation splits over Fp.

Theorem 2.2.9. The group of automorphisms on Erls is isomorphic to GL2pZlq, the group
of invertible 2-by-2 matrices over Zl.

As l � p, φp is an automorphism on Erls. Theorem 2.2.9 tells us that the action of
the Frobenius endomorphism φp on Erls can be represented by Al P GL2pZlq. Since the
characteristic polynomial of φp restricted to Erls is Z2 � tlZ � pl, it follows from the
Cayley-Hamilton Theorem that Al satisfies the polynomial and the eigenvalues of Al are
the roots of Z2 � tlZ � pl. We will see later that Al is diagonal, and the trace of Al is the
sum of its eigenvalues which is just tl, hence justifying calling t the trace of the Frobenius
endomorphism.

Definition 2.2.10. The discriminant of Z2 � tZ � p is ∆ � t2 � 4p and the polynomial
has roots in Zl if and only if ∆ is a square in Zl. For each prime l, we call l an Elkies
prime if ∆ is a square modulo l; otherwise we call it an Atkin prime.

Suppose l is an Elkies prime. Let λ, µ P Zl be the two roots of Z2� tlZ � pl. Then there
exists nonzero vectors vP , vQ P Z2

l so that AlvP � λvP and AlvQ � µvQ. Likewise, there
are nonzero points P,Q P Erls such that φppP q � λP and φppQq � µQ. Therefore l is an
Elkies primes if and only if φp has a 1-dimensional eigenspace defined over Fp.

If there exists R P Erls such that R � αP and R � βQ for some α, β P Zl, then
λpβQq � λpαP q � αλpP q � αφppP q � φppαP q � φppβQq � βφppQq � βµpQq � µpβQq.
Since λ � µ, R � βQ � 8. Since Erls � Zl � Zl, we have Erls � xP y � xQy. Thus every
point in Erls can be written as aP � bQ for some α, β P Zl, i.e. tP,Qu is a basis for the
vector space Erls.

Since t is not known, we cannot use the discriminant of the characteristic polynomial to
check if a prime is Elkies or Atkin. Instead, we introduce modular polynomials as a means
to do so.
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2.2.5 Using Classical Modular Polynomials

Classical modular polynomials are used in this implementation for checking if a prime l
is Elkies or Atkin, as they were the polynomials used in Atkin’s theorem for classification
of the primes. Since these polynomials exist independently of the curve parameters, they
are usually pre-computed. As such the coefficients of the polynomials are stored in files
and loaded by the implementation when needed.

The coefficients of the classical modular polynomials are very large, and the storage of the
coefficients of the l-th classical modular polynomials for primes up to 199 requires more than
0.5GB. Fortunately, there are alternative types of modular polynomials with much smaller
coefficients that can be adapted for use in Atkin’s theorem. However, for the purposes
of this work, we focus primarily on the classical modular polynomials. Repositories for
the coefficients of the l-th classical modular polynomials exist online for primes l ¤ 199.
They are also included, for primes l ¤ 59, in the distribution of MAGMA. Since the
coefficients of these polynomials are very large, we would ideally choose to store as few of
these polynomials as necessary. For the purposes of point counting for elliptic curves of
cryptographic sizes, how large do we need the largest l to be?

In Section 4.4, we provide some estimates of the size of the largest prime l as well as
the number of primes needed given the size of a random prime p. From the estimates,
we can deduce that the online resources, with l up to 199, provide us with sufficient pre-
computed polynomials for 521-bit prime fields when using the full SEA (see Section 5.1 for
more discussion on this). For the completeness of the implementation, I have implemented
routines for the computation of classical modular polynomials, allowing us to compute
additional polynomials for counting points on curves over larger fields. In the next chapter,
we will define the classical modular polynomials and examine how they can be computed.
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Chapter 3

Classical Modular Polynomials via
Isogeny Volcanoes

In this chapter we look at the recent advancements in computing modular polynomials,
introduced at ECC2009 by Bröker, Lauter and Sutherland [2]. Using suitably chosen
isogeny volcanoes, we can generate enough information to recover the coefficients of the
classical modular polynomials via the Chinese Remainder Theorem. We proceed by first
defining an isogeny on elliptic curves. From the relationship between isogenies and modular
polynomials, we describe the relation between isogeny volcanoes and class groups. Within
this framework, we can then present the algorithm to compute the modular polynomials.

The main source of material for this chapter is [2], which provides the justification
for the choice of parameters to construct the l-isogeny volcano of interest, as well as the
procedure to compute the modular polynomial using the isogeny volcanoes. As explained in
Sutherland’s expository paper [23] on isogeny volcanoes, David Kohel studied the structure
of isogeny graphs for elliptic curves over finite fields in his thesis [12], while its application
in algorithms came later [10][11]. Silverman’s textbook [20] provides the background on
isogenies and elliptic curves, while the material on the classical modular polynomial, the
class group and the Hilbert class polynomial was referenced from [9] and [7].
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3.1 Isogeny Volcanoes

3.1.1 Isogenies

Definition 3.1.1. An isogeny between two elliptic curves E1 and E2 is a group homo-
morphism ψ : E1 Ñ E2 (with respect to point addition) which is an algebraic map. The
composition of two isogenies is also an isogeny.

Example 3.1.2. The scalar multiplication by n map, denoted by rns : E Ñ E with
rnsP � nP , is an isogeny from E to E.

Proposition 3.1.3. Every isogeny is either constant or surjective.

The only constant isogeny is the zero isogeny ψ : E Ñ t8u, which is equivalent to the
multiplication-by-zero map r0s.
Definition 3.1.4. The degree of a surjective isogeny degpψq is the degree of ψ as an
algebraic map, with degr0s � 0.

Theorem 3.1.5. Let E1, E2 be elliptic curves defined over F and ψ : E1 Ñ E2 be a (non-
constant) surjective isogeny of degree n. There exists a unique isogeny ψ̂ : E2 Ñ E1 so
that

ψ̂ � ψ � rns � ψ � ψ̂.
Definition 3.1.6. We refer to the map ψ̂ as the dual isogeny of ψ.

Theorem 3.1.7. Let E1, E2, E3 be elliptic curves defined over F, and ψ : E1 Ñ E2 and
φ : E2 Ñ E3 be (non-constant) surjective isogenies of degree n. The following hold:

(i) zφ � ψ � ψ̂ � φ̂.

(ii) @n P Z, ˆrns � rns and degrns � n2.

(iii) deg ψ̂ � degψ.

(iv)
ˆ̂
ψ � ψ.
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3.1.2 Modular Polynomials

Definition 3.1.8. Let H :� tx � iy|y ¡ 0;x, y P Ru denote the upper half-plane. The
following functions are defined for τ P H:

g2pτq � 60
¸

pm,nq�p0,0q
pm� nτq�4 (3.1)

g3pτq � 140
¸

pm,nq�p0,0q
pm� nτq�6 (3.2)

jpτq � 1728
g3

2

g3
2 � 27g2

3

(3.3)

The function jpτq is referred to as the j-invariant of the lattice r1, τ s.
Theorem 3.1.9. The elliptic curve

E : y2 � 4x3 � g2x� g3

corresponds to the lattice r1, τ s via the Weierstrass ℘-function for r1, τ s.
Definition 3.1.10. We define the j-invariant of an elliptic curve E : y2 � x3 � ax � b,
where a, b P K a field with characteristic not 2 or 3, as:

jpEq � 1728
4a3

4a3 � 27b2
.

Note that for the elliptic curve E : y2 � x3 � ax� b defined over Fp with p � 2, 3, we can
use the isomorphism px, yq ÞÑ p4x, 4yq to convert the equation to

E : y2 � 4x3 � p�a{4qx� p�b{16q,

which corresponds to the lattice with g2 � �a{4, g3 � �b{16 and

j � 1728
p�a{4q3

p�a{4q3 � 27p�b{16q2 � 1728
4a3

4a3 � 27b2
.

This shows that two definitions for j-invariants are consistent.

20



The reason why jpEq is rightly called an invariant is due to the result below, which can
be proven by considering all possible isomorphisms on E. Note that the j-invariant lies in
the same field K as that which the curve is defined over.

Proposition 3.1.11. Two elliptic curves are isomorphic over Fq have the same j-invariant.
Conversely, two elliptic curves with the same j-invariant are either isomorphic over Fq or
are twists of each other.

Definition 3.1.12. We define the set of matrices

Cplq �
"�

a b
0 d



: ad � l, a ¡ 0, 0 ¤ b   d, gcdpa, b, dq � 1

*
.

For σ P Cplq, we define the action on H as

στ � aτ � b

d

Definition 3.1.13. The l-th (classical) modular polynomial ΦlpX, Y q P CrX, Y s is a
polynomial such that

ΦlpX, jpτqq �
¹
σPCplq

pX � jpστqq. (3.4)

Note that when l is prime, either a � l, d � 1 (and thus b � 0), or a � 1, d � l with
b P r0, l � 1s. This means |Cplq| � l � 1, and thus Φl is monic in X with degree l � 1.

Theorem 3.1.14. Let l be a positive integer.

1. ΦlpX, Y q P ZrX, Y s.
2. ΦlpX, Y q is irreducible as a polynomial in X.

3. ΦlpX, Y q � ΦlpY,Xq.
4. If l is not a perfect square, then ΦlpX,Xq is a polynomial of degree ¡ 1 with leading

coefficient �1.

5. If l is prime, then ΦlpX, Y q � pX l � Y qpX � Y lq mod lZrX, Y s.
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Example 3.1.15. The 5-th classical modular polynomial Φ5pX, Y q P ZrX, Y s is

X6 � X5Y 5 � 3720X5Y 4 � 4550940X5Y 3 � 2028551200X5Y 2 � 246683410950X5Y

� 1963211489280X5 � 3720X4Y 5 � 1665999364600X4Y 4

� 107878928185336800X4Y 3 � 383083609779811215375X4Y 2

� 128541798906828816384000X4Y � 1284733132841424456253440X4 � 4550940X3Y 5

� 107878928185336800X3Y 4 � 441206965512914835246100X3Y 3

� 26898488858380731577417728000X3Y 2

� 192457934618928299655108231168000X3Y

� 280244777828439527804321565297868800X3 � 2028551200X2Y 5

� 383083609779811215375X2Y 4 � 26898488858380731577417728000X2Y 3

� 5110941777552418083110765199360000X2Y 2

� 36554736583949629295706472332656640000X2Y

� 6692500042627997708487149415015068467200X2 � 246683410950XY 5

� 128541798906828816384000XY 4 � 192457934618928299655108231168000XY 3

� 36554736583949629295706472332656640000XY 2

� 264073457076620596259715790247978782949376XY

� 53274330803424425450420160273356509151232000X � Y 6 � 1963211489280Y 5

� 1284733132841424456253440Y 4 � 280244777828439527804321565297868800Y 3

� 6692500042627997708487149415015068467200Y 2

� 53274330803424425450420160273356509151232000Y

� 141359947154721358697753474691071362751004672000

3.1.3 Isogeny Volcanoes

Definition 3.1.16. Two elliptic curves E1 and E2 are said to be isogenous if there is a
surjective isogeny ψ : E1 Ñ E2. E1 and E2 are said to be l-isogenous if the isogeny ψ has
degree l.

It is easy to show that being isogenous is an equivalence relation.

Theorem 3.1.17. (Tate) Elliptic curves E1{Fp and E2{Fp are isogenous over Fp if and
only if #E1pFpq � #E2pFpq.
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Theorem 3.1.18. Let E1, E2 be elliptic curves defined over Fp, with j-invariants j1, j2
respectively. For l prime, E1, E2 are l-isogenous if and only if Φlpj1, j2q � 0 over Fp.

Theorem 3.1.18 tells us that for a given elliptic curve EpFpq with j as its j-invariant, the
l � 1 curves l-isogenous to E have j-invariants which are roots of ΦlpX, jq � 0 over Fp.

Definition 3.1.19. The l-isogeny graphGl is an undirected graph with vertex set tjpEq :
E{Fpu and edges tpj1, j2qu for all j1, j2 P Fp whenever Φlpj1, j2q � 0 over Fp. A connected
component of Gl is referred to as an l-volcano.

Structure of an l-volcano Since isogenous curves have the same number of points over
Fp, they share the same trace for the Frobenius endomorphism t. Thus t2 � 4p is the same
for all curves in an l-volcano. The neighbourhood Npjq of j is made up of the roots of
ΦlpX, jq � 0. From Theorem 4.1.2 in the next chapter, we see that the |Npjq| can take
four possible values.

1. If t2�4p is not a square modulo l, then ΦlpX, jq � 0 has no roots in Fp, which means
|Npjq| � 0.

2. If t2 � 4p is a nonzero square modulo l, then ΦlpX, jq � 0 has two roots in Fp, which
means |Npjq| � 2.

3. If t2�4p � 0 pmod lq, then ΦlpX, jq either splits over Fp, which means |Npjq| � l�1,
or ΦlpX, jq � 0 has exactly one root in Fp, i.e. |Npjq| � l.
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3.2 Computing lth Classical Modular Polynomial

3.2.1 Modular Polynomials via Isogeny Volcanoes

From Theorem 3.1.18, we know that for a given elliptic curve E defined over Fp, the
roots of the l-th classical modular polynomial ΦlpX, Y q over Fp evaluated at Y � j are the
j-invariants of curves that are l-isogenous with j. In the next chapter, we will see how the
SEA algorithm uses ΦlpX, jq to find curves that are l-isogenous with E.

Conversely, if we can find sufficiently many curves that are l-isogenous to an elliptic
curve with its j-invariant equal to j, we can find the distinct roots of ΦlpX, jq pmod pq,
and therefore compute the coefficients of ΦlpX, jq over Fp. To achieve this without knowing
Φl, we might think that we can use Tate’s theorem, since we just need to find l-isogenous
curves that have the same number of points. But this requires us to know the number of
points on E, which is what we are going to use SEA to find!

Thankfully, this is not a real conundrum. As ΦlpX, Y q is defined over Z, independently
of E and p, we can construct a set of curves with j-invariant ji defined over pr for which
we know the number of points a priori. For each pr, with sufficiently many ΦlpX, jiq
pmod prq, we can interpolate for the expression ΦlpX, Y q pmod prq. With sufficiently many
expressions for ΦlpX, Y q pmod prq, we can use the Chinese Remainder Theorem (CRT) to
compute the coefficients of ΦlpX, Y q over Z.

To ensure that after the Chinese Remainder Theorem step, the coefficients obtained for
ΦlpX, Y q modulo

±
r pr are precisely that of ΦlpX, Y q P ZrXs, we must find sufficiently

many primes pr so that
±

r pr is greater than twice the maximum absolute value MAXl of
the coefficients of ΦlpX, Y q.

The key to this approach is constructing curves for which the number of points is known
without the need for a point counting algorithm. This is achieved using the Complex-
Multiplication (CM) Method, which we will describe in the subsection.
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3.2.2 Complex-Multiplication Method

To construct CM curves, we need to define an imaginary quadratic field by choosing a
fundamental discriminant D   0. Let p be a prime for which the diophantine equation

4p � x2 �Dy2

has an integer solution pt, sq. Then N � p � 1 � t are the possible group orders of the
elliptic curves over Fp that we can construct.

Lemma 3.2.1. The following holds for elliptic curves over Fp:

• Every element in Fp is the j-invariant of an elliptic curve over Fp.

• If D   �4, then all elliptic curves, with j-invariant j � 0, 1728, over Fp are given by

Y 2 � X3 � 3kc2X � 2kc3

where k � j{p1728� jq and c is any element in Fp.

• Suppose E and E 1 have the same j-invariant j � 0, 1728 but are not isomorphic.
Then E and E 1 are quadratic twists of each other.

Lemma 3.2.1 tells us that every j-invariant defines a unique elliptic curve over Fp, up
to curve isomorphism and twists, and that we can construct an elliptic curve with the
specified j-invariant explicitly if D   �4. Furthermore, the j-invariants of the curves we
construct by the CM method can be characterized precisely as the roots of a polynomial,
determined by D, over Fp. This allows us to construct the vertices of an l-volcano and
thereby determine the roots of ΦlpX, jq.

As we are only interested in finding the j-invariants of l-isogenous elliptic curves so as to
determine the roots of , rather than distinguish between an elliptic curve and its quadratic
twist. Hence it is justified to use jpEq and E interchangeably and refer to the j-invariants
as curves when unambiguous. We will now narrow our focus to CM curves that are used
in our computation. Further details on the CM method can be found in [21] and [4].
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For our purpose of computing Φl, we seek integer parameters v,D, with D   �4, D � 0
or 1 mod 4, for which we can find sufficient integers t and corresponding prime p that
satisfy the conditions

4p � t2 � v2l2D, (3.5)

p � 1 pmod lq, (3.6)

l � v, (3.7)�
D

l



� 1, (3.8)

hpDq ¥ l � 2 (3.9)

From 3.5 and 3.6, we gather that t2 � 4 pmod lq. We can fix v � 2, t � 2 pmod 2lq, so
that

4p � t2 � 4l2D � p2� 2klq2 � 4l2D � 4p1� 2kl � k2l2 � l2Dq
and thus ensure that p � 1 pmod lq. This also ensures that equation 3.7 is met, since l is
an odd prime. Note that this restriction does not prevent us from finding an appropriate
D.

With these parameters in place, for each p, we can define a family of elliptic curves ji
over Fp, with p � 1 � t points, that are the vertices of an l-volcano. Furthermore, since
t2 � 4p mod l � 0, from our earlier discussion, we note that each ji in the l-volcano has
either l� 1 neighbours or only one neighbour. In fact, the choice of parameters guarantees
a specific structure for the l-volcano.

Definition 3.2.2. We refer to an l-volcano, with parameters D, p, l, v, t satisfying condi-
tions 3.5, 3.6, 3.7, 3.8, 3.9 as a Bröker-Lauter-Sutherland (BLS) l-volcano. For the
rest of this thesis, we will further assume that v � 2 and t � 2 pmod 2lq.
Proposition 3.2.3. The structure of a BLS l-volcano satisfies the following:

• The subgraph of vertices with l � 1 neighbours is a cycle.

• Every vertex with l � 1 neighbours is adjacent to exactly l � 1 vertices with one
neighbour.

• Every vertex with one neighbour is adjacent to exactly a vertex with l� 1 neighbours.
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Definition 3.2.4. We refer to the set of vertices with l � 1 neighbours as the rim of the
l-volcano, and the set of vertices with one neighbour as the floor of the l-volcano. We
define an n-isogeny cycle as an ordered set of j-invariants j1, j2, � � � , jm where ji, ji�1 are
n-isogenous and j1, jm are n-isogenous. Thus the rim of an l-volcano naturally defines an
l-isogeny cycle.

Figure 3.1: A 5-Isogeny Volcano

Example 3.2.5. In Figure 3.1, l � 5. There seven vertices with 6 � l � 1 neighbours,
forming the rim of the 5-volcano. The remaining 28 vertices each have one neighbour, and
they form the floor of the 5-volcano.

For each jpEiq on the rim of an l-volcano there is a curve Ei,s on the floor, and an isogeny

φi,s : Ei Ñ Ei,s of degree l, for s � 1, � � � , l � 1. We use the l2-isogeny ψi,s :� xφi,s � φi,s�1,
for s � 1, � � � , l � 1 to define an l2-isogeny cycle on the floor of an l-volcano for each Ei.

Example 3.2.6. For l � 5, we can choose D � �151, v � 2. Condition 3.5 becomes
p � pt{2q2 � 3775. The primes that we generate are

p � 4451, 6911, 9551, 28111, 54851, 110051, 123491, 160591,

211711, 280451, 434111, 530851, 686051, 736511,

corresponding to t � 52, 112, 152, 312, 452, 652, 692, 792, 912, 1052, 1312, 1452, 1652, 1712.
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3.2.3 Details of Algorithm

We summarise the above as an algorithm before explaining the steps in greater detail.

ComputeModularPolynomial(l)
Input: Prime l
Output: ΦlpX, Y q over Fp.

1. Find suitable discriminant D, and compute the Hilbert class polynomial HD.

2. Find suitable t, p.

3. While
±
p   2 MAXl do:

(a) Find suitable prime p.

(b) Find a root j1 of HD over Fp.
(c) Enumerate the roots of HD and identify the l-isogeny cycle on the rim.

(d) Find a curve j11 on the floor which is l-isogenous to j1.

(e) Enumerate the curves on the floor of the volcano, and identify the l2-isogeny
cycle.

(f) Match each ji on the rim to the l � 1 curves on the floor it is l-isogenous to.

(g) For each ji, compute ΦlpX, jiq P FprXs via interpolation.

(h) Interpolate ΦlpX, Y q over Fp as a polynomial in pFprY sqrXs, using ΦlpX, jiq P
FprXs.

4. Compute coefficients of ΦlpX, Y q P ZpX, Y q via CRT using ΦlpX, Y q P FprX, Y s.
5. Return ΦlpX, Y q.
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3.3 On the Rim

3.3.1 Hilbert Class Polynomials

Theorem 3.3.1. Let OD denote the imaginary quadratic order Zr1�?D
2

s for D   0. The
j-invariant of an elliptic curve C{OD is an algebraic integer ω.

Definition 3.3.2. The minimal polynomial of ω, as defined in Theorem 3.3.1, over Z is
the Hilbert class polynomial, which we write as HD P ZrXs. The class number hpDq
is defined as the degree of HD.

Theorem 3.3.3. E{Fp is an elliptic curve on the rim of a BLS l-volcano if and only if
jpEq is a root of HD when defined over Fp.

The Hilbert class polynomialHD P ZrXs is first computed via a complex-analytic method
(more details later in this chapter). We then express it as a polynomial over Fp. Theorem
3.3.3 tells us that the roots of HD over Fp will be precisely the j-invariants of curves on
the rim of the BLS l-volcano. Instead of finding all the roots of HD over Fp, we begin
with one such root, and use the class group of binary quadratic forms of discriminant D
to enumerate the rest.

Example 3.3.4. The Hilbert class polynomial for D � �151 and t � 52, p � 4451 is

HDpXq � X7 � 2230X6 � 1720X5 � 3225X4 � 2587X3 � 2019X2 � 2242X � 803

and has roots 351, 701, 901, 1582, 2215, 2501, 2872, with hpDq � 7. These roots are the
j-invariants of elliptic curves defined over Fp on the surface of the l-volcano, each with
p� 1� t points.

3.3.2 Binary Quadratic Forms

Definition 3.3.5. A binary quadratic form is a quadratic polynomial fpx, yq :� ax2 �
bxy � cy2 where x, y are indeterminates. We write the form as xa, b, cy for brevity. We
are interested in integral binary quadratic forms with discriminant D, where a, b, c P Z
and b2 � 4ac � D. A binary quadratic form is primitive if gcdpa, b, cq � 1 and positive
definite if a ¡ 0 and D   0 (thus c ¡ 0). A binary quadratic form is reduced if
0 ¤ |b| ¤ a ¤ c and if |b| � a or a � c, then b ¥ 0.
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For the remainder of this thesis, we will assume that any binary quadratic form will be
integral, primitve and positive definite.

Proposition 3.3.6. Any non-reduced binary quadratic form can be reduced to a unique
reduced form by a combination of the following steps recursively:

1. If a ¡ c, then swap a, c and set b � �b.
2. If |b| ¡ a, set b � b� 2ta�b

2a
ua and recompute c � b2�D

4a
.

Note that the above steps leave the discriminant unchanged.

Definition 3.3.7. Two binary quadratic forms are equivalent if they share the same
reduced form after reduction. Given two binary quadratic forms xa1, b1, c1y , xa2, b2, c2y, let

g � gcdpa1, a2,
b1 � b2

2
q, %a1 � ςa2 � νs � g

and

β � 1

g

�
%a1b2 � ςa2b1 � ν

b1b2 �D

2



We define the Dirichlet composition as

xa1, b1, c1y � xa2, b2, c2y � xa3, b3, c3y
with a3 � a1a2

g2 , b3 � β mod 2a3, |b3| ¤ a3, c3 � b23�D
4a3

. We write xa, b, cyk to denote xa, b, cy
composed with itself k times.

Proposition 3.3.8. The set of reduced binary quadratic forms together with the Dirichlet
composition forms a finite abelian group. The identity element is x1, 0,�D{4y when D � 0
pmod 4q, and x1, 1, p1�Dq{4y when D � 1 pmod 4q. The inverse of xa, b, cy is xa,�b, cy.
We refer to this group as the class group of binary quadratic forms with discriminant D
and denoted it by clpDq.
Theorem 3.3.9. clpDq induces a free transitive group action on the roots of HD.

Corollary 3.3.10. The order of the clpDq is hpDq, the class number.

Corollary 3.3.11. The class number hpDq is the number of reduced binary quadratic forms
with discriminant D.

Example 3.3.12. The class group clp�151q consists of the reduced forms

x1, 1, 38y , x2, 1, 19y , x2,�1, 19y , x4, 3, 10y , x4,�3, 10y , x5, 3, 8y , x5,�3, 8y
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3.3.3 Finding Discriminants

Binary quadratic forms are easy to work with, since they are defined as integer tuples
and require only basic arithmetic to manipulate. This gives us a concrete way to study the
isogeny relations between the roots of HD, in particular to check if our choice of D meets
the condition hpDq ¥ l� 2, before computing HD itself. This is noteworthy, as computing
HD takes non-negligible time.

Furthermore, the class number hpDq can be computed by counting the number of reduced
forms directly. With D � b2 � 4ac and |b| ¤ a ¤ c, we have a ¤ a�D{3, and thus only
�D{3 possible pairs of pa, bq to check.

Theorem 3.3.3 states that the roots of HD are the j-invariants on the rim of a BLS-
volcano. With a root j0 of HD, Theorem 3.3.9 tells us that the action of clpDq on j0

will yield the remaining roots of HD. To be specific, for distinct forms α1, α2 P clpDq,
α1j0 � αa2j0, and the identity element in clpDq fixes j0.

In the context of a BLS-volcano, we are interest in the fact that any l-isogeny on the
rim corresponds to the action of either xl, b, cy or xl,�b, cy. However, instead of using an
explicit action of a form on the j-invariant, we will instead specify a prime parameter
l0 ! l, for which there exists a form xl0, b0, c0y P clpDq, and xl0, b0, c0ykrim � xl, b, cy for
some 0 ¥ krim   hpDq. This relation between the forms guarantees that any l-isogeny on
the rim is equivalent to the composition of some krim l0-isogenies. Thus we can use the
l0-th classical modular polynomial, which is known since l0 is very small, in place of the
l-isogeny.

Therefore, when determining D for each l, we need to check that indeed such an l0
exists. The approach that used in this implementation is to check that there exists a binary
quadratic form xl0, b10, c10y which generates clpl2Dq, the class group acting on the curves on
the floor of the l-volcano. This condition ensures that there exists xl0, b0, c0y that generates
clpDq. As such, we can define parameters krim and kfloor where xl0, b0, c0ykrim � xl, b, cy and
xl0, b10, c10ykfloor � xl2, b1, c1y. As xl, b, cy is also a generator of the class group, krim will be
coprime with hpDq. kfloor will be equal to hpDq.
Example 3.3.13. For the class group in Example 3.3.12, x2, 1, 19y generates the sequence

x2, 1, 19y , x4,�3, 10y , x5, 3, 8y , x5,�3, 8y , x4, 3, 10y , x2,�1, 19y , x1, 1, 38y .

31



Hence x2, 1, 19y is a generator with x2, 1, 19y3 � x5, 3, 8y. Thus we can choose l0 � 2 and
krim � 3.

The class group on the floor is clpl2Dq � clp�3775q, and has pl�1q�hpDq � 28 elements.
We can check that x2, 1, 472y generates the group

x2, 1, 472y , x4, 1, 236y , x8, 1, 118y , x16, 1, 59y , x32,�31, 37y , x19, 5, 50y , x25,�5, 38y ,
x29, 13, 34y , x17,�13, 58y , x31,�21, 34y , x22, 3, 43y , x11, 3, 86y , x22,�19, 47y , x25, 25, 44y ,
x22, 19, 47y , x11,�3, 86y , x22,�3, 43y , x31, 21, 34y , x17, 13, 58y , x29,�13, 34y , x25, 5, 38y ,
x19,�5, 50y , x32, 31, 37y , x16,�1, 59y , x8,�1, 118y , x4,�1, 236y , x2,�1, 472y , x1, 1, 944y

with x2, 1, 472y7 � x52,�5, 38y. Thus kfloor � 7 � hpDq.

As Φl0pX, Y q has to be known, we require l0 ! l. In practice, we are able find l0 ¤ 7
for l   200 that satisfies our needs. The table below shows a set of possible selection of
parameters, along with the corresponding class number:

Table 3.1: Full Parameters for l   200
l D hpDq l0

3 -71 7 2
5 -151 7 2
7 -271 11 5
11 -439 15 2
13 -599 25 2
17 -919 19 5
19 -1367 25 3
23 -1759 27 5
29 -2551 41 2
31 -2879 57 3
37 -3767 39 2
41 -4583 61 3
43 -5039 83 3
47 -6311 89 5
53 -7607 89 2

l D hpDq l0

59 -9431 91 2
61 -10247 105 2
67 -11783 95 2
71 -15287 137 7
73 -14431 85 5
79 -16823 95 3
83 -17903 85 2
89 -20639 179 3
97 -25367 141 7
101 -26479 105 2
103 -27791 203 5
107 -29879 195 7
109 -30983 145 2
113 -33191 133 5
127 -41231 163 5

l D hpDq l0

131 -43711 147 2
137 -47951 241 3
139 -49919 189 2
149 -57047 163 2
151 -58967 253 3
157 -63527 211 2
163 -67759 191 2
167 -74311 251 5
173 -76039 221 2
179 -81031 193 2
181 -83399 359 2
191 -94727 355 7
193 -95191 259 5
197 -98927 335 2
199 -99767 249 3
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3.3.4 Isogeny Cycle

NTL has a FindRoot() function that helps find a root j1 of HD. From this first root,
we compute Φl0pX, jq and search its roots for the next root j2 of HD. We expect to find
l0 � 1 roots, but only two roots will correspond to j-invariants on the rim. To distinguish
between them, we check the number of l0-isogenies from each root. Exactly two roots will
have l0 � 1 l0-isogenies, while the other l0 � 1 roots will have only one l0-isogeny defined
from it. We continue with this process until we arrive back at j1.

This cyclic sequence of roots of HD gives us a l0-isogeny cycle. Since we know that
the composition of krim consecutive l0-isogenies gives us an l-isogeny, we can reorder the
l0-isogeny cycle to obtain the l-isogeny cycle that we require.

Example 3.3.14. For l � 5, D � �151, and hpDq � 7. The first l-volcano has t � 52, p �
4451, and the first root of HD P FprXs is j � 351. From Example 3.3.13, we have l0 � 2.
The roots of Φl0pX, jq are 65, 701, 2501. We expect to find exactly two l0-isogenies on the
rim, and thus we need to distinguish between the three.

We accomplish this by finding the roots of Φl0pX, 65q, Φl0pX, 701q, Φl0pX, 2501q. Since
Φl0pX, 65q has only a single root (which must be 351) in Fp, we conclude that 65 does not
correspond to a j-invariant on the rim.

Repeating the process, we see that we have the l0-isogeny cycle

351
2ÝÑ 701

2ÝÑ 2872
2ÝÑ 2215

2ÝÑ 901
2ÝÑ 1582

2ÝÑ 2501.

Since krim � 3, the l-isogeny cycle is

351
5ÝÑ 2215

5ÝÑ 2501
5ÝÑ 2872

5ÝÑ 1582
5ÝÑ 701

5ÝÑ 901.

33



3.4 On the Floor

3.4.1 Descending to the Floor

To find a curve E 1 on the floor that is l-isogenous to E on the rim, we need to define
an l-isogeny φ : E Ñ E 1 explicitly. When l is prime, every l-isogeny is separable, and
hence every isogeny φ with | kerφ| � l has degree l. Furthermore, the kernel of a separable
isogeny uniquely defines the isogeny. Thus for a given kernel (of a separable isogeny) C,
we can use E{C in place of E 1 to denote the image of the isogeny. In our case, we only
need to construct a subgroup of E of order l to define E 1 � E{C.

The order of EpFpq is p � 1 � t. For a BLS l-volcano, we have chosen p � 1 and t � 2
pmod lq. Hence p � 1 � t � 0 pmod lq, which means that EpFpq contains a subgroup of
order l. We can pick P PR E until we get Q :� rp�1�t

l
sP � 8, and use the cyclic group

generated by Q as C, the kernel of an l-isogeny.

With the kernel C, we can use Vélu’s formulae [24] to write down the Weierstrass equa-
tion for the curve E 1

1, and thus the j-invariant j11 :� jpE 1
1q that is l-isogenous to j1 :� jpEq

on the rim. If j11 is on the rim, we repeat the process with a new random point, until we
obtain j11 not already on the rim.

3.4.2 Running along the Floor

Binary quadratic forms on the floor have discriminant l2D and the class group on the
floor has order pl� 1qhpDq. To find the j-invariants on the floor of the l-volcano, we begin
with j11 :� jpE 1q given by Vélu’s formulae, and again find the roots j̃ of Φl0pX, j11q P FprXs
to enumerate the l0-isogeny cycle, using the splitting of Φl0pX, j̃q P FprXs to identity the
curves on the floor.

Since the l0-isogeny cycle on the floor can take either of two possible orientations, we
need to check which orientation corresponds to that of the l-isogeny cycle on the rim of the
l-volcano. Knowing that j1 on the rim is l-isogenous to j11 on the floor, we check if the next
curve in the l0 isogeny cycles, namely j2, j

1
2, are l-isogenous. This can be accomplished by

again finding an l-isogeny from j2 that descends to the floor.
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Once we have ascertained that the two l0-isogeny cycles have the same orientation, we
can traverse the cycles simultaneously to establish the incidence between the j-invariants
on the rim and those on the floor. For each l0-isogeny on the rim, we traverse the cycle on
the floor by an l0-isogeny on the floor to locate the next edge of the l-volcano. Every hpDq
consecutive l0-isogenies on the floor will be an l2-isogeny between two curves on the floor
that are incident with the same curve on the rim.

Example 3.4.1. Continuing from Example 3.3.14, we find j11 :� 2464 to be a curve on
the floor which is l-isogenous to j1 � 351 on the surface. The roots of Φl0pX, j11q are
1180, 2138, 4221. Since Φl0pX, 2138q has only a single root in Fp, 2138 does not correspond
to a j-invariant on the floor. Suppose we choose j12 :� 1180 to be the next j-invariant in
the l0-isogeny cycle.

Repeating the process, we obtain the l0-isogeny cycle

2464
2ÝÑ 1180

2ÝÑ 3497
2ÝÑ 2970

2ÝÑ 676
2ÝÑ 1502

2ÝÑ 2843
2ÝÑ

3508
2ÝÑ 3144

2ÝÑ 945
2ÝÑ 3188

2ÝÑ 3341
2ÝÑ 2087

2ÝÑ 4397
2ÝÑ

2566
2ÝÑ 3147

2ÝÑ 291
2ÝÑ 3328

2ÝÑ 1868
2ÝÑ 1064

2ÝÑ 3345
2ÝÑ

2976
2ÝÑ 2255

2ÝÑ 3244
2ÝÑ 1478

2ÝÑ 2434
2ÝÑ 4228

2ÝÑ 4221

The seven l2-isogeny cycles and the corresponding curve on the rim are

351
5ÝÑ 2464

25ÝÑ 3508
25ÝÑ 2566

25ÝÑ 2976

2501
5ÝÑ 1180

25ÝÑ 3144
25ÝÑ 3147

25ÝÑ 2255

1582
5ÝÑ 3497

25ÝÑ 945
25ÝÑ 291

25ÝÑ 3244

901
5ÝÑ 2970

25ÝÑ 3188
25ÝÑ 3328

25ÝÑ 1478

2215
5ÝÑ 676

25ÝÑ 3341
25ÝÑ 1868

25ÝÑ 2434

2872
5ÝÑ 1502

25ÝÑ 2087
25ÝÑ 1064

25ÝÑ 4228

701
5ÝÑ 2843

25ÝÑ 4397
25ÝÑ 3345

25ÝÑ 4221
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3.5 Putting it Together

3.5.1 Evaluation on the Rim

Recall that the BLS l-volcano has lhpDq vertices. There are hpDq vertices on the rim,
which we refer to as ji, i � 1, � � � , hpDq, that forms an l-isogeny cycle. Each vertex ji on
the rim is incident to l�1 vertices on the floor, which we label as ji,s, with s � 1, � � � , l�1.
Upon establishing the j-invariants at each vertex of the l-volcano, we can write down hpDq
polynomials

fi � pX � ji�1qpX � ji�1q
l�1¹
s�1

pX � ji,sq, (3.10)

for i � 1, � � � , hpDq, taking j0 :� jhpDq. Each of these polynomial has degree l � 1, and is
precisely the value of ΦlpX, Y q P FprXs evaluated at Y � ji, i.e. ΦlpX, jiq.

Since we have hpDq ¥ l � 2, we have the values of pΦlpXqqpY q P pFprXsqrY s evaluated
on at least l�2 instances of Y . The degree of Φl P pFprXsqrY s is l�1, so these are sufficient
for interpolation. Thus we obtain ΦlpX, Y q P FprX, Y s.
Example 3.5.1. Continuing from Example 3.4.1, we write down the seven polynomials
defined over F4451.

ΦlpX, 351q :� pX � 901qpX � 2215qpX � 2464qpX � 3508qpX � 2566qpX � 2976q
ΦlpX, 901q :� pX � 351qpX � 701qpX � 2970qpX � 3188qpX � 3328qpX � 1478q
ΦlpX, 701q :� pX � 901qpX � 1582qpX � 2843qpX � 4397qpX � 3345qpX � 4221q
ΦlpX, 1582q :� pX � 701qpX � 2872qpX � 3497qpX � 945qpX � 291qpX � 3244q
ΦlpX, 2872q :� pX � 1582qpX � 2501qpX � 1502qpX � 2087qpX � 1064qpX � 4228q
ΦlpX, 2501q :� pX � 2872qpX � 2215qpX � 1180qpX � 3144qpX � 3147qpX � 2255q
ΦlpX, 2215q :� pX � 2501qpX � 351qpX � 676qpX � 3341qpX � 1868qpX � 2434q

After interpolation, we obtain Φ5pX, Y q over F4451:

X6 � 4450X5Y 5 � 3720X5Y 4 � 2433X5Y 3 � 3499X5Y 2 � 70X5Y � 3927X5

� 3720X4Y 5 � 3683X4Y 4 � 2348X4Y 3 � 2808X4Y 2 � 3745X4Y � 233X4

� 2433X3Y 5 � 2348X3Y 4 � 2028X3Y 3 � 2025X3Y 2 � 4006X3Y � 2211X3

� 3499X2Y 5 � 2808X2Y 4 � 2025X2Y 3 � 4378X2Y 2 � 3886X2Y � 2050X2

� 70XY 5 � 3745XY 4 � 4006XY 3 � 3886XY 2 � 905XY � 2091X
Y 6 � 3927Y 5 � 233Y 4 � 2211Y 3 � 2050Y 2 � 2091Y � 2108

(3.11)
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3.5.2 Chinese Remainder Theorem

We use aij and āij,r to denote the coefficients of X iY j in ΦlpX, Y q in ZrX, Y s and
FprrX, Y s respectively. In Section 3.2.1, we alluded to the need to find a set of pr so
that

±
r pr ¥ 2 MAXl, where MAXl :� max0¤i,j¤l�1 |aij| denotes the maximum that the

absolute value of the coefficients of ΦlpX, Y q can take. The upper bound below, as proven
in [3], allows us to decide on the number of pr’s needed a priori.

Theorem 3.5.2. A logarithmic upper bound for the explicit height MAXl is

logpMAXlq ¤ 6l log l � 16l � 14
?
l log l (3.12)

After the interpolation step, we have the system of congruence equations

āij,r � aij pmod prq

from the expressions for ΦlpX, Y q P FprrX, Y s. Solving this system using the Chinese
Remainder Theorem gives us the solution

āij � aij pmod
¹
r

prq,

restricting |āij| ¤ 1
2

±
r pr. Since |aij|   MAXl ¤

±
r pr, we must have aij � āij, which

means that we recover the coefficient aij P Z.
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Chapter 4

Schoof-Elkies-Atkin Algorithm

In this chapter we will describe and explain the workings of the Schoof-Elkies-Atkin algo-
rithm [17][8], as well as discuss some of the considerations involved during the implemen-
tation. Most of the content follows the exposition in Chapter 17.2 of [5], with details of
the Match-Sort algorithm from Chapter VII of [1]. Besides using NTL 5.5.2 [19] for its
support for generic finite field and polynomial arithmetic, some routines for factorization
and Frobenius computations [18][25] were used.

4.1 Use of Modular Polynomials

In this section, we will look at the algorithms that Atkin and Elkies used to extract
information from the l-th modular polynomial to decide if a prime l is Atkin or Elkies.

Proposition 4.1.1. Let E{Fp be an elliptic curve with j-invariant j � 0 or 1728. Then

• the polynomial ΦlpX, jq has a zero ̃ P Fpr if and only if the kernel C of the isogeny
ψ : E Ñ E{C is a one-dimensional eigenspace of φrp in Erls
• the polynomial ΦlpX, jq splits completely in FprrXs if and only if φrp acts as a scalar

matrix in Erls.

Proposition 4.1.1 tells us that l is an Elkies prime if and only if ΦlpX, jq has a zero in
Fp. Hence we can study the splitting of ΦlpX, jq over Fp to classify primes as Elkies or
Atkin. Atkin’s theorem below takes this one step further by characterizing the possible
factorizations, thus providing us with a sufficient condition to do the classification.
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Remark We will be using classical modular polynomials in this thesis for SEA, even
though there exist other types of modular polynomials that are used in practice, such as
Weber and Atkin polynomials which can perform the same task. In fact, these alternatives
have much smaller coefficients, and are thus easier to store. We have used the classical
polynomials here as the theoretical justification for their use is more obvious.

4.1.1 Atkin’s Classification Theorem

Theorem 4.1.2. (Atkin) Let E{Fp be an ordinary elliptic curve with j-invariant j � 0
or 1728. Let ΦlpX, jq � f1f2 � � � fs be the factorisation of ΦlpX, jq P FprXs into irreducible
polynomials. Then we have three possible cases for the degrees of f1, f2, � � � , fs, depending
on the relation between the discriminant ∆ � t2 � 4p and l.

1. ∆ � 0 pmod lq : the degrees are (1,l) and r � l, or p1, 1, � � � , 1q and r � 1.

2. ∆ P QRl � t0u : the degrees are p1, 1, r, r, � � � , rq and r � l � 1, and φp acts on

Erls as

�
λ 0
0 µ

�
, where λ, µ P F�l are the roots of Z2 � tlZ � pl.

3. ∆ P QRl : the degrees are pr, r, � � � , rq and r ¡ 1, r � l � 1.

Remark In cases 1 and 2, l is an Elkies prime and in case 3, l is an Atkin prime. Note
that r in the above theorem is the order of the Frobenius endomorphism φp as an element
of PGL2 Fl, i.e. φrp � id. We refer to r as the order of the Frobenius endomorphism on
AutpErlsq. It can be shown that r ¡ 1 is the smallest integer so that λr � µr, where λ, µ
are the roots of the characteristic polynomial for φp.

Propostion 4.1.1 tells us that φp has an eigenspace of dimension one defined over Fp
if and only if ΦlpX, jq has a root in Fp. Theorem 4.1.2 tells us that the factorisation of
ΦlpX, jq indicates if l is an Elkies or Atkin prime.

To classify primes as Atkin or Elkies, it is not necessary to factorize ΦlpX, jq over Fp; it
suffices to determine if ΦlpX, jq has a root in Fp. This is equivalent to finding

gpXq :� gcdpΦlpX, jq, Xp �Xq � gcdpΦlpX, jq, Xp �X mod ΦlpX, jqq (4.1)

(similar to Equation 2.16). Note that the latter expression allows us to exploit existing
speed ups in performing modular exponentiation of X over the ring FprXs{pΦlpX, jqq.
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We describe the algorithm for Atkin’s classification below, assuming that we have the
algorithm ModularExponentiationpapXq, e, fpXqq which returns apXqe mod fpXq.

Algorithm: AtkinClassification
Input: The l-th classical modular polynomial ΦlpX, jq over Fp evaluated at Y � j.
Output: ATKIN or ELKIES.

1. Compute hpXq � ModularExponentiationpX, p,ΦlpX, jqq.
2. Compute gpXq � gcdphpXq �X,ΦlpX, jqq.
3. If degpgq � 0, return ATKIN.

4. Otherwise, return ELKIES.

Proposition 4.1.3. (Atkin) Let r be as defined in Theorem 4.1.2. Then tl satisfies the
equation

t2l � ppξ � ξ�1q2 pmod lq, (4.2)

for some primitive r1-th root of unity ξ P Fl, where r1 � r if r is odd, r1 � 2r if r is even.

Remark In some sources, such as equation 17.9 in [5] and Proposition 6.2 in [17], ξ has
been defined as a r-th root of unity. However, if we have r � 2 for some Atkin prime l
(i.e. case 3), if ξ is a 2nd root of unity, then ξ�1 � ξ � �1. That gives us t2l � 4p pmod lq,
which means ∆ � t2l � 4p � 0 pmod lq, which is a contradiction. This motivates a second
look at the proof for the above proposition.

Proof. Since λ, µ are the roots of Z2 � tlZ � pl, we have λµ � p pmod lq and λ � µ � t
pmod lq. Then

λ2r � λrµr � pλµqr � pr pmod lq,
and so λ2 � ζp pmod lq for some primitive r-th root of unity ζ P Fl. Therefore

t2 � pλ� µq2 � pλ� p{λq2 � λ2 � 2p� p2λ�2 � ζp� 2p� ζ�1p � ppζ � 2� ζ�1q pmod lq.
(4.3)

Let ξ2 � ζ, which implies that ξ is a primitive r1-th root of unity, where r1 � r or r1 � 2r.
Then we can rewrite the final equation as

t2 � ppξ � ξ�1q2
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Case 1: r odd ξ � �ζ r�1
2 , since these are two solutions to

ξ2 � p�ζ r�1
2 q2 � ζr�1 � ζrζ � ζ.

We then have ξr � pζ r�1
2 qr � pζrq r�1

2 � 1, i.e. ξ is an r-th root of unity. Since ξ is a
primitive r1-th root, r1 � r. But r � r1 in our definition of r1, so r1 � r if r is odd.

Case 2: r even Suppose ξ is an r-th root of unity. Thus we can write ξ � ζ i for some
integer i, and

ζ � ξ2 � pζ iq2 � ζ2i.

Thus ζ2i�1 � 1, which implies r � 2i� 1. But this contradicts r being even. Therefore ξ is
not an r-th root of unity, and so r1 � 2r if r is even.

It should be noted that ϕpr1q � ϕprq, since ϕp2kq � 2k�1 for k ¥ 1. Hence the error in the
definition for ξ in 4.2 does not change the number of possible values for tl. Alternatively,
one can use 4.3 instead to avoid considering cases for odd and even r.

Proposition 4.1.4. (Atkin) Let E{Fp be an ordinary elliptic curve with j-invariant j � 0
or 1728. Let s be the number of irreducible factors of ΦlpX, jq in FprXs. Then s satisfies
the equation

p�1qs �
�p
l

	
. (4.4)
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4.2 Elkies Primes

4.2.1 Elkies’s Algorithm

We have explained at the beginning of this chapter that when l is an Elkies prime,
the eigenspaces of φp acting on Erls are subgroups of order l that are stable under φp and
correspond to eigenvalues in Fl. For the λ-eigenspace C, there is a divisor F pXq P FprXs of
the l-th division polynomial ΨlpXq. We refer to this polynomial as the kernel polynomial.
This divisor is of degree pl � 1q{2 and its zeroes are the pl � 1q{2 distinct x-coordinates of
the points in C.

Given the λ-eigenspace C, we check, for each of λ1 � 1, � � � , l � 1, if the relation

φppx, yq � pxp, ypq � λ1 � px, yq

holds for all px, yq P Erls. The value of tl is then computed as

tl � λ� pl � λ�1 mod l.

Instead of computing separately for each of the l points in C, the polynomial F pXq will
allow us to check across all points in C simultaneously. Note that we can use a Baby-Step
Giant-Step (BSGS) approach to lower the number of computations from Oplq to Op?lq.

Computing torsion points The x-coordinates of the l-torsion points in the associated
subgroup satisfies the kernel polynomial F pXq. Since the torsion points lie on E : Y 2 �
X3 � aX � b, their coordinates satisfy Y 2 � X3 � aX � b as well. Therefore we perform
elliptic curve arithmetic on l-torsion points over the ring

R :� FprX, Y s
pF pXq, Y 2 �X3 � aX � bq . (4.5)

We store a torsion point in the form pxpXq, ypXq, zpXqq, where xpXq, ypXq, zpXq P FrXs
and zpXq is 0 or 1. While Y is not stored explicitly, we define our point arithmetic with
the assumption that the polynomial in the y-coordinate is Y � ypY q. For example, px, y, 1q
is stored as pX, 1, 1q, and the point at infinity is stored as p1, 1, 0q.
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Torsion point doubling To obtain px1pXq, y1pXq, z1pXqq :� r2spxpXq, ypXq, zpXqq (as-
suming not point at infinity or point of order two), we use the following equations, computed
modulo F pXq:

y�2pXq � �
ypXq2 � pX3 � aX � bq��1

(4.6)

mpXq � 3xpXq2 � a (4.7)

x1pXq � mpXq2 � y�2pXq
4

� 2xpXq (4.8)

y1pXq � ypXq �
�
mpXq � y�2pXq

2
� pxpXq � x1pXqq � 1



(4.9)

z1pXq � 1 (4.10)

Torsion point addition To obtain px2pXq, y2pXq, z2pXqq :� px1pXq, y1pXq, z1pXqq �
pxpXq, ypXq, zpXqq (assuming distinct points that are not inverses, and no points at infin-
ity), we use the following equations, computed modulo F pXq:

mpXq � y1pXq � ypXq
x1pXq � xpXq (4.11)

x2pXq � mpXq2 � pX3 � aX � bq � xpXq � x1pXq (4.12)

y2pXq � mpXq � pxpXq � x2pXqq � ypXq (4.13)

z2pXq � 1 (4.14)

There exists also, an isogenous elliptic curve Ẽ � E{C and a separable isogeny of degree
l between E and Ẽ. From Theorem 3.1.18, we see that jpẼq is a root of ΦlpX, jq � 0 in
Fp, which we can efficiently compute. The following theorem provides an explicit equation
for Ẽ.

Theorem 4.2.1. (Elkies) Let E{Fp be an ordinary elliptic curve with j-invariant j � 0
or 1728, where E : y2 � x3 � a4x � a6. Let Φl,X and Φl,Y denote the partial derivative
of ΦlpX, Y q with respect to X and Y respectively. Suppose Ẽ is l-isogenous to E over Fp,
with ̃ being its j-invariant. Then a Weierstrass equation for Ẽ is given by

Ẽ : y2 � x3 � ã4x� ã6,

where

ã4 � � 1

48

̃12

̃p̃� 1728q and ã6 � � 1

864

̃13

̃p̃� 1728q ,
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̃1 P Fp is given by

̃1 � �18

l

a6

a4

Φl,Xpj, ̃q
Φl,Y pj, ̃q j.

Theorem 4.2.2. (Elkies) Let E4 � �48a4, E6 � 864a6 and Ẽ4 � �48ã4, Ẽ6 � 864ã6.
Then the sum p1 P Fp of the x-coordinates of the non-zero points in C is given by

p1 � l

2
J � l

4

�
E2

4

E6

� l
Ẽ2

4

Ẽ6

�
� l

3

�
E6

E4

� l
Ẽ6

Ẽ4

�
,

where J is defined as

J � j12Φl,XXpj, ̃q � 1lj 1̃1Φl,XY pj, ̃q � l2̃12Φl,Y Y pj, ̃q
j1Φl,Xpj, ̃q

with j1 � �jE6{E4 and ̃1 � �̃Ẽ6{Ẽ4; Φl,XY is shorthand for B
BX

B
BY Φl.

Computing partial derivatives NTL does not have a definition of multivariate poly-
nomials, and has only a function for differentiation for univariate polynomials. However,
since we seek to compute the partial derivative of ΦlpX, Y q with respect to X, followed by
evaluation at Y � ̃, we can obtain the desired partial derivative by computing

Φl,XpX, ̃q � d

dX
pΦlpX, ̃qq (4.15)

We can compute Φl,Y pj, ̃q,Φl,XXpj, ̃q,Φl,Y Y pj, ̃q similarly.

ΦlpX, Y q is a symmetric polynomial with degree l� 1, and can be stored in roughly half
the space since the coefficients of X i1Y i2 and X i2Y i1 are the same. As Φl,XY is the only
partial derivative that remains symmetric, Φl,XXpj, ̃q is the only partial derivative that
can be computed without increasing the number of coefficients stored.

Kernel polynomial Now that we have the Weierstrass form for the two isogenous curves
E and Ẽ � E{C and the value of p1, we would like to compute the degree pl � 1q{2
polynomial

glpXq �
¹

�PPC�t8u
pX � xpP qq.

Instead of using the curves E{Fp and Ẽ{Fp, we consider their analogues E{C and Ẽ{C, as
it is easier to define the isogeny between E{C and Ẽ{C.
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Let â4 � l4ã4 and â6 � l6ã6. We define the curve Ê : y2 � x3 � â4x � â6, to which we
can associate the reduced Weierstrass ℘-function by

℘pzq � 1

z2
�

8̧

k�1

ckz
2k (4.16)

c1 � �a4

5
, c2 � �a6

7
, ck � 3

pk � 2qpk � 3q
k�2̧

j�1

cjck�1�j for k ¥ 3.

A similar function ℘̂ for Ê is defined.

Theorem 4.2.3. Let glpXq P FprXs be the divisor of ΨlpXq having the x-coordinates of C
as its zeroes. Let ψl : E Ñ Ẽ be the isogeny with kerpΨlq � C. Then

zl�1glp℘pzqq � exp

�
�1

2
p1z

2 �
8̧

k�1

ĉk � lck
p2k � 1qp2k � 2qz

2k�2

�
. (4.17)

We inductively compute the coefficients ck and c̃k from a4, a6 and ã4, ã6 respectively.
Although equations (4.16) and (4.17) involve infinite series, it suffices to compute the
infinite series with k up to d � pl � 1q{2, the degree of the kernel polynomial glpXq.

With the value of p1 from Theorem 4.6, we can compute the polynomial on the RHS of
(4.17), storing its coefficients as a vector b of length d� 1. Next, we compute z2pd�iq℘pzqi
for each i � 0, � � � , d, and store its coefficients as the i-th row of a pd�1q-by-pd�1q square
matrix M . Note that M , by its definition, will always be invertible. M�1b gives us the
vector with the coefficients of glpXq P FprXs as its entries.

Note that the formula has terms of the form pk � 2qp2k � 3q in the denominator, which
means that the formula would fail if k ¥ pp � 3q{2. This means that for finite fields of
small characteristic, alternative methods to compute glpXq are required.
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4.3 Atkin Primes

4.3.1 Atkin’s Algorithm

In Atkin’s classification theorem, we used r to the order of the Frobenius endormorphism
on AutpErlsq, which is equivalently the smallest positive integer such that ΦlpX, jq splits
over Fpr . In the case where l is Atkin, we need to compute r to determine the set of possible
values for tl.

For each i � 2, 3, � � � , we compute

gipXq :� gcdpΦlpX, jq, Xpi �Xq

until we find the value i such that gipXq � ΦlpX, jq, upon which we set r � i. Since r
divides l� 1 and s � pl� 1q{r, we can limit the values of i to the divisors of l� 1 for which

p�1qpl�1q{i �
�p
l

	
.

With r and thus r1 determined, there are ϕpr1q choices for ξ (where ϕ is Euler’s totient
function) in Equation 4.2. Since

ξ � ξ�1 � �ξ�1
�� �ξ�1

��1
,

there are ϕpr1q{2 choices for t2l and thus

ρl :� ϕpr1q   2l

possible values for tl.

To find the correct value of t, we repeat this computation for various small Atkin primes
l and search for the correct value of t using a modified version of the Baby-Step Giant-Step
algorithm called the Match-Sort algorithm, described in Section 4.4.

The Match-Sort algorithm combines the known values of tl for Elkies primes and the set
of possible tl for Atkin primes, to solve a discrete logarithm problem on the restricted set
of values.
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4.3.2 Computing Order of Frobenius

The most obvious approach to computing r, the order of the Frobenius endormorphism
on AutpErlsq is to perform ModularExponentiationpX, pi,ΦlpX, jqq for each i that divides
l � 1 to get hipXq � Xpi , followed by computing gipXq � gcdpΦlpX, jq, hipXq �Xq.

Algorithm: OrderFrobenius1pΦlpX, jqq
Input: For an Atkin prime l, the l-th classical modular polynomial ΦlpX, jq over Fp.
Output: r so that gcdpΦlpX, jq, Xpr �Xq � ΦlpX, jq.

1. compute b :� �pl
l

�
.

2. for i � 1, � � � , l � 1 do

3. if i � l � 1 and p�1qi � b do

4. compute hpXq � ModularExponentiationpX, pi,ΦlpX, jqq
5. compute gpXq � gcdpΦlpX, jq, hpXq �Xq
6. if gpXq � ΦlpX, jq do

7. return i.

Suppose we use Square-and-Multiply to perform modular exponentiation. We can see
that OrderFrobenius1 repeats the computation of X2, pX2q2, � � � for each factor of l � 1
that is considered, resulting in a large number of repeated computations when the number
of factors are large.

Instead of viewing each exponentiation pi individually, we can consider them as perform-
ing a sequence of Frobenius maps, and by writing

Xpi �
�
Xpk

	pi�k

we can perform the exponentiation iteratively for increasing factors of l�1, thus eliminating
repeated computations. Furthermore, we can utilise the addition chain for p that we found
for the classification algorithm to reduce the time for each Frobenius map.
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Algorithm: OrderFrobenius2pΦlpX, jqq
Input: For Atkin prime l, l-th classical modular polynomial ΦlpX, jq over Fp.
Output: r so that gcdpΦlpX, jq, Xpr �Xq � ΦlpX, jq.

1. compute b :� �pl
l

�
.

2. set k � 0 and hpXq � X.

3. for i � 1, � � � , l � 1 do

4. if i � l � 1 and p�1qi � b do

5. for c � 1, � � � , i� k do

6. compute hpXq � ModularExponentiationphpXq, p,ΦlpX, jqq.
7. set k � i;

8. compute gpXq � gcdpΦlpX, jq, hpXq �Xq.
9. if gipXq � ΦlpX, jq do

10. return i.

In NTL, Victor Shoup has implemented the subroutine (Algorithm 3.1 in [25]) for com-
puting iterated Frobenius maps, that is Xpr modulo a fixed polynomial F defined over Fp.
The main idea behind the algorithm is to represent the Frobenius image Xp as an element
β in the ring FprXs{pF q, and compute apXqp by evaluating apβq. This subroutine provides
us with an alternative approach to finding the Frobenius order r.
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4.4 Match-Sort Algorithm

4.4.1 Combining Information

After we have computed the values of ptl, lq for Elkies primes and pr1, lq for Atkin primes,
the Match-Sort algorithm is used combine the information gathered from these primes to
compute the value of t P Z. We will use notations similar to that in [1] to describe the
algorithm.

Let E ,A denote the set of Elkies and Atkin primes respectively. We define mE :�±lPE l
and tE :� t mod mE. We partition the Atkin primes into two sets A1,A2 (i.e. A � A1YA2

and H � A1 XA2). For each Ai, i � 1, 2, we define mi :�±lPAi
l and ti :� t mod mi. To

minimise the number of computations to generate the points in each list we will partition
the Atkin primes so that 1 ¤ |A1|{|A2| ¤ 2. Putting these definitions together, we can
write

t � tE �mEpr1m2 � r2m1q (4.18)

for some integers r1, r2. Since

t1 � t � tE �mEm2r1 pmod m1q and t2 � t � tE �mEm1r2 pmod m2q, (4.19)

we have the relations

r1 � t1 � tE
mEm2

pmod m1q and r2 � t2 � tE
mEm1

pmod m2q, (4.20)

We can show (see Lemma VII.10 of [1]) that since tE   mE, if |r1| ¤ m1�1
2

, then |r2| ¤ m2.

For each Atkin prime l P Ai, i � 1, 2, the value of r1 allows us to find a set of ρl possible
values for tl. We create the list τi of possible values for ti mod mi for each i � 1, 2 via
Chinese Remainder Theorem. From these we can compute a list Ri of

±
lPAi

ρl possible
values for ri using equation 4.20. We maintain both Ri’s as increasing lists, sorted by the
absolute value of ri. Each possible pair for pr1, r2q gives us a possible value for t via 4.18,
and we can find the correct value by performing Shanks’ Baby-Step-Giant-Step (BSGS)
algorithm with R1 and R2 as the set of possible values for the baby-step and giant-step
respectively.

The order of a point P P EpFpq divides p�1�t, so we can use the condition rp�1�tsP �
8 with a random point P to check if a value of t is correct.
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4.4.2 Baby-Step Giant-Step

Baby-Step The baby-step in the algorithm consists of computing, for each possible value
of r1,

Qr1 � rp� 1� tEsP � rr1sprm2mEsP q. (4.21)

In the above equation, the values p � 1 � tE and m2mE are constant for all values for
r1, so it is possible to compute rp � 1 � tEsP and rm2mEsP in advance. Therefore the
computation of Qr1 is subtracting r1 copies of rm2mEsP from rp� 1� tEsP .

If the list R1 is sorted, with the i-th entry denoted as r1,i, then we can write

Qr1,i � Q� rr1,isprm2mEsP q (4.22)

and compute them by computing r1,im2mEP recursively. Each point Qr1 will be converted
to an affine point and stored in a list Q1 of pQr1 , r1q sorted by their X-coordinates.

Giant-Step The giant-step in the algorithm consists of computing, for each possible
value of r2,

Qr2 � rr2sprm1mEsP q. (4.23)

Like in the baby-step, the point rm1mEsP can be computed in advance. Also, with R2

sorted, we can compute each Qr2,i�1
with a scalar multiplication of magnitude |r2,i�1|�|r2,i|.

With the list Q1 sorted, we can use binary search to check if a match exists for each Qr2 .

If no match exists for all Qr2 , then we repeat the baby-step giant-step procedure with a
different randomly generated point P P E. Once a match is found, we can use 4.18 with
the values of r1 and r2 corresponding to the match to determine the value of t.
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4.4.3 Complexity of Match-Sort Algorithm

Full Match-Sort Algorithm
Input: tE, mE, pTl, lq for each prime l P A.
Output: Trace of Frobenius t.

1. Compute tE � t mod mE from pttlu, lq, l P E via CRT.

2. Sort the pairs pTl, lq, l P A by decreasing size.

3. Let n1 � n2 � 1, A1 � A2 � H.

4. For l P A, if n1 ¤ n2, A1 � A1 Y l, otherwise A2 � A2 Y l.

5. Compute sets τi from tpTl, lq : l P Aiu for i � 1, 2.

6. Compute sets Ri from τi for i � 1, 2, restricting |r1| ¤ tm1{2u.
7. Sort each Ri by the absolute values of their entries, as an increasing sequence.

8. Choose random point P P E and set Q1 � H, r1 � 0.

9. Compute Q :� rp� 1� tEsP , mEP , m1mEP and m2mEP , in affine coordinates.

10. For i � 1, � � � , |R1|,
(a) Compute rr1,ism2mEP and Qr1,i :� Q� rr1,ism2mEP .

(b) Set Q1 � Q1 Y tQr1,i , r1,iu.
11. Convert Q1 to affine coordinates via batch inversion, sorted by x-coordinate.

12. For r2 P R2,

(a) Compute r2m1mEP .

(b) if r2m1mEP equals Qr1,i ,

i. Set r1 � r1,i and exit loop.

13. If no match is found, then repeat from step 7.

14. Compute t from pr1, r2q.
15. Return t.
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Definition 4.4.1. The Chebyshev function [13] ϑpxq is defined as

ϑpxq �
¸
l¤x

ln l � ln

�¹
l¤x

l

�
(4.24)

where l is a prime. This function is asymptotically linear, that is to say

lim
xÑ8

ϑpxq
x

� 1 (4.25)

and it is bounded by the inequalities

x ln 2 ¤ ϑpxq ¤ x ln 4 (4.26)

Number of primes For a random prime p, let np denote the number of primes li (starting
with 2) so that

±np

i�1 li ¥ 4
?
p. Let L denote the largest prime; we take li as an increasing

sequence, so l1 � 2 and lnp � L. In other words, we seek to find L so that

ln

�¹
l¤L

l

�
� ϑpLq ¥ L ln 2 ¥ ln 2 �

�
2� 1

2
log p



� lnp4?pq (4.27)

Hence it suffices to choose L ¡ 2� 1
2

log p to guarantee sufficiently many primes are found.
Asymptotically, we will expect L to be lower, approximately ln 2��2� 1

2
log p

�
. The number

of primes can be estimated to be

np � L

lnL
� ln 2 � �2� 1

2
log p

�
ln
�
ln 2 � �2� 1

2
log p

�� � 2� 1
2

log p

log
�
ln 2 � �2� 1

2
log p

�� (4.28)

which tends to log p
2 log log p

for large p.

We proceed to determine the complexity for each step in Match-Sort.

Computing tE Step 1 of the algorithm can be performed at the end of the loop for
each Elkies prime without the need to store the value. It would be faster to compute tE
recursively for each subset E1, E2 where E � E1 Y E2, after all the Elkies primes and their
respective traces tl are determined. However, the savings would be marginal, and hence
this latter approach has not been implemented.
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Partitioning Atkin primes If we assume the number of Atkin primes to be half of the
total number of primes, then the size of the sorting problem in step 2 is np{2, and thus
has complexity Opnp log npq. Step 4 runs in np steps. The partitions A1, A2 will have sizes
roughly

a
np{2.

Number of possible tl Each Tl has size ϕprq for each Atkin prime l, where r � l � 1.
We denote by νpl � 1q the number of factors of l � 1. Assuming that each factor of l � 1
is an equally likely candidate for r (besides r � 1, since that will make l an Elkies prime),
we expect the size of number of possible tl to be

Epϕprqq �
°
r�l�1,r�1 ϕprq
νpl � 1q � 1

� pl � 1q � 1

νpl � 1q � 1
� l

νpl � 1q � 1
(4.29)

since l � 1 is even and has at least four factors if l � 2, 3, νpl � 1q � 1 ¥ 3. For simplicity
we will use l{3 in place of Epϕprqq.

Computing τi We index Ai as the increasing sequence pli,kq and the values in Tli,k as
ptli,kq. Starting with Si,1 :� Tli,1 andmi,k � li,1, compute the set of solutions Si,k�1 mod mi,k

to the congruence problem

x � s pmod mi,kq
x � tli,k pmod li,kq (4.30)

via the Chinese Remainder Theorem for each s P Si,k and tli,k P Tli,k . Note that the final
Si,k has size ni. Each use of CRT requires one inversions for each modulus mi,k and li,k,
but since it depends only on the index k, only two inversions need to be computed for each
k. Therefore the expected running time of step 5 is of the order of ni, which is

O

�¹
lPAi

ϕprq
�
� O

�¹
lPAi

l

3

�
� O

���3�np
¹
l

l

� 1
4

�� O
�

3�
np
4 p

1
8

	
� Opp 1

8 q. (4.31)

Computing Ri Step 6 involves computing the possible values of r1 and r2 given the sets
τ1 and τ2, and thus is of the order of ni as well, which is Opp 1

8 q.

Sorting Ri If we use QuickSort in step 7, we will require Opni logpniqq steps, which

will be higher than Opp 1
8 q. Alternatively, we can use BucketSort with Opmiq buckets to

performing sorting in Opni � miq � Opp 1
8 q time. The storage needed is no bigger than

Opmiq since the ri’s are distinct.
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Computing Q1 Since R1 is sorted by absolute values, for each r1,i, r1,i�1 P R1, the
difference |r1,i�1| � |r1,i| is much smaller than m1, the size of the interval of values r1,i can
take. Assuming that m1 and m2 are of the same order of magnitude, and likewise for m1m2

and mE, m1 and m2 has sizes in the order of magnitude Opp 1
8 q. The size of |r1,i�1| � |r1,i|

is in the order of Opm1{n1q, which is less than Opp 1
8 q.

As we can compute successive rr1,ism2mEP recursively via scalar multiplication by
|r1,i�1| � |r1,i|, the running time of these steps is dominated by the number of |r1,i|’s,
i.e. n1). Thus the computation of Q1 is in the order of Opp 1

8 q elliptic curve point dou-
bling/additions.

Converting to affine coordinates To convert a point Pi on an elliptic curve from
projective coordinates pXi, Yi, Ziq to affine coordinates pxi, yi, 1q, we need to compute

xi � Xi{Zi, yi � Yi{Zi, (4.32)

which requires the inverse of Zi. When we have a set of projective points tPi : i � 1, � � � , nu
that we wish to express in affine coordinates, we can compute the inverse for each Zi
by performing an inversion only once. We first compute Z0 :� ±

1¤k¤n Zi, followed by
its inverse over Fp, Z�1

0 . Next, we compute Z̄i :� ±
1¤k¤n,k�i Zi, storing intermediate

products so as to eliminate repeating the same computations. The inverse of Zi can then
be computed as Z̄i � Z�1

0 .

The extra multiplications that we require to perform coordinate change for the set scales
linearly in the size of the set, but this is more than offset by the cost savings from re-
ducing the number of inversions required. Sorting the points by x-coordinate requires
Opn1 logpn1qq steps if we use QuickSort. As the x-coordinate lies between 0 and p � 1,
and no more than two points can have the same x-coordinate, we can use bucket sort with
Opn1q buckets to reduce the average case complexity to Opn1q.

Finding a match As in step 10, the computation of the points r2m1mEP takes Opp 1
8 q

elliptic curve point doubling/additions. Since Q1 is sorted, we can use binary search to
find a match with just Oplogpn1qq comparisons. A match may not be found if P does not
have order #EpFpq, which occurs with expected probability

1� E

�
ϕp#EpFpqq

#EpFpq


� 1� 6

π2
� 0.392.
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Overall Complexity The largest complexity amongst all the steps of the algorithm
is Opp 1

8 q, which occurs whenever we deal with arrays of size mi or ni. Amongst these,
computing Q1 has its running time in terms of elliptic curve arithmetic, which is more
costly than other operations. Hence it is important to use the efficient elliptic curve
arithmetic for our purposes.

4.4.4 Coordinate Systems

We briefly explain the choice of coordinate systems here, as the Match-Sort algorithm is
performed on explicit points rather than kernel polynomials. Further details can be found
in Section 13.2 of [5]. The overriding consideration in this implementation is speed, within
practical memory constraints (single laptop). This gives us the flexibility to use more
coordinates for each point to achieve arithmetic speed ups. This is important as point
arithmetic operations are expensive; the running times of the program have indeed shown
that point arithmetic within the Match-Sort algorithm can dominate the SEA algorithm.

Besides the cost of point addition and doubling, we need to consider the cost of comparing
two points. This is because we need to check if a point generated during the baby-steps
matches one generated by the giant-steps. Affine coordinates provide us with the best
speed, since we can compare two points px1, y1q, px2, y2q by comparing the x1 with x2 and
the y1 with y2. However point addition and doubling are expensive operations, requiring I +
2M + S and I + 2M + 2S respectively, where S and M denotes squaring and multiplication
over Fp. I denotes inversion over Fp, which requires between 9M and 40M on average. S is
faster than M, taking about 0.8M. In comparison, projective coordinates require 12M + 2S
and 7M + 5S for addition and doubling respectively, while requiring at least 2M for each
comparison as we need to compare x1 � z2 with x2 � z1 (and possibly y1 � z2 with y2 � z1) for
points px1, y1, z1q, px2, y2, z2q.

In the Match-Sort algorithm, we need to compare entries in lists Q1 and Q2. With
Q1 sorted, we expect to take |Q2|{2 log |Q1| comparisons to find a match. The cost of
converting the points in the two lists from projective to affine coordinates is |Q1|�|Q2| times
I + 2M, while the cost of comparison of the lists in projective coordinates is |Q2|{2 log |Q1|
times 2M. Therefore performing comparisons in affine coordinates is asymptotically better,
which justifies our choice in the baby-step.
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4.5 Full SEA Algorithm

4.5.1 Description of the Schoof-Elkies-Atkin Algorithm

Input: An ordinary curve E : y2 � x3 � ax� b over Fp, j :� jpEq not 0 or 1728.
Output: #EpFpq.

1. Compute t2 � t mod 2 by checking if x3 � ax� b has a root in Fp.

2. Let l � 3, Π � 1, ΣA � H, mE � 2, ΣE � tptt2u, 2qu.
3. While Π   r4

?
ps do:

(a) Evaluate the modular equation ΦlpX, Y q P FprX, Y s at Y � j.

(b) Compute Xp mod ΦlpX, jq.
(c) Compute gcdpΦlpX, jq, Xp �Xq and decide if l is an Elkies or Atkin prime.

(d) If l is an Elkies prime do:

i. Compute jpẼq as a root of ΦlpX, jq in Fp.
ii. Determine Ẽ using Theorem 4.2.1 and compute gl using Theorem 4.17.

iii. Find an eigenvalue λ of φp in Fl.
iv. Set tl � λ� p{λ mod l.

v. Add the pair pttlu, lq to ΣE, and set mE � mE � l and Π � Π� l.

(e) Else l is an Atkin prime, so we do:

i. Compute r � OrderFrobenius2pΦlpX, jqq.
ii. Determine the set Tl of possible values for tl from the primitive r-th roots

of unity using Equation 4.2.

iii. Add the pair pTl, lq to ΣA, and set Π � Π� l.

(f) Set l as the next higher prime.

4. Determine t from ΣE Y ΣA via Match-Sort Algorithm.

5. Return #EpFpq � p� 1� t.
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4.5.2 Complexity of SEA

Schoof’s. For Schoof’s algorithm [17] we are working with ΨlpX, Y q, a polynomial of
degree pl2 � 1q{2. Thus the elements in the ring FprX, Y s{pΨlpX, Y q, Y 2 �X3 � Ax � Bq
have size b :� Opl2 log pq.

The amount of work required to compute φpX, Y q and φ2pX, Y q is Oplog pMpbqq, where
Mpnq is the complexity of multiplying two n-bit numbers. The amount of work required
to compute tlφpX, Y q is OplMpbqq. Thus for each l the complexity is Oplog pMpl2 log pqq.
Since np   log p, and L � Oplog pq, the total work required for Schoof’s algorithm is
Oplog2 pMplog3 pqq.

SEA. In contrast, for the SEA algorithm we are working with ΦlpX, jq and F pXq which
are both polynomials of degree Oplq. Thus the elements we are working with have size
b1 :� Opl log pq. Therefore the total work required for the Schoof-Elkies-Atkin algorithm is
Oplog2 pMplog2 pqq.

One of the fastest methods for multiplying two n-bit numbers is the Schönhage-Strassen
algorithm [16], which runs in Opn log n log log nq. Hence the complexity of SEA is

Oplog4 p log log p log log log pq.

Note that although Match-Sort runs in exponential time, its complexity is subsumed into
that of SEA. This is because we can choose to reject the use of ‘bad’ Atkin primes —
those that increase the number of possible values of t by too much. By choosing our Atkin
primes carefully, it is possible to gain information from these primes while keeping the
Match-Sort component from growing too large. We will discuss a few variations of the
Schoof-Elkies-Atkin algorithm next.

4.5.3 Variants of SEA

Elkies Only. A popular variant of SEA in use can be referred to as SE, since it is running
the SEA without using any Atkin primes. Examples of usage of this variant are MIRACL,
as well as Andrew Sutherland’s implementation for current records of point counting on
curves over prime fields.
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The justification for this variant comes from our analysis of the complexity of the Match-
Sort algorithm in Section 4.4.3, where we showed that its running time is in the order of
Opn1q � Opp 1

8 q, where n1 approximately the square root of the number of possible values
for t prior to the Match-Sort algorithm. If every Atkin prime was used for the Match-Sort
algorithm, then the size of the Match-Sort problem will eventually become bigger than
that of the full SEA algorithm.

Since SE outperforms SEA asymptotically, for record setting (the current record [22]
having p � 16219299585 � 216612 � 1 � 216646) it makes sense to use only Elkies primes.
Assuming half of the primes are Atkin primes, and that the product of Atkin primes
equals that of Elkies primes, then instead of having

±
l l ¡ 4

?
p we will require

±
l l ¡ 16p.

However the complexity of the overall algorithm remains the same as that of SEA, since
the largest prime L is now approximately ln 2 � p4� log pq, which is still Oplog pq.

This justisfies us ‘ignoring’ the complexity of the Match-Sort algorithm. However, while
the asymptotic performance of SE remains good, the constant factor growth in complexity
from the doubling of the largest prime L is very large, as each larger prime contributes
more to the complexity than the previous. Furthermore, our current understanding of
analytic number theory is unable to prove sharp bounds on the worst-case distributions of
Elkies prime, and so there is currently no guarantee that a given curve will have sufficient
Elkies primes. Hence it is worthwhile considering using some Atkin primes.

Elkies and some Atkin. We refer to this as SEa; that is using all Elkies primes and
some Atkin primes. From our discussion on the complexity of the Match-Sort algorithm in
Section 4.4.3, we gain some understanding of which Atkin primes should be considered for
use in Match-Sort. For convenience, we will refer to such Atkin primes as good (otherwise
bad).

By including an Atkin prime l, we increase Π by a factor of l, but increase the size of
the Match-Sort problem by a factor of ϕprq for the corresponding r � l � 1. Hence a good
Atkin prime should have a high ratio of l to ϕprq. A straightforward way is to compute
the value of r for each Atkin prime l, and then ϕprq. If ϕprq is too large relative to l, then
we consider it as bad. However, computing r can be a costly operation, and we may incur
computational costs for many bad Atkin primes before finding a good one.
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Equation (4.29) offers a way round this problem. First, we obtain the prime factorization
of l � 1. The expected value of ϕprq decreases if l � 1 has more factors. Hence prior to
computing r, the number of factors of l� 1 can inform us if an Atkin prime is likely to be
good or bad. Also, with more prime factors, the maximum value of ϕprq is reduced. The
number of factors and prime factors of l�1, thus Epϕprqq, can be precomputed and stored
with each l.

Example 4.5.1. Consider l � 2309. We have l � 1 � 2310 � 2 � 3 � 5 � 7 � 11, with
Epϕprqq � l{p25 � 1q � 74.5 and the maximum value of ϕprq is 480. Although r may
range from 2 to 2310, 2309 is likely to be a good Atkin prime, and should be considered
for inclusion if Elkies primes larger than 2309 may be used.

Example 4.5.2. Consider l � 2341. We have l � 1 � 2342 � 2 � 1171. To avoid the high
cost of determining r for large values, we can just check if r � 2 to decide if l is good or
bad. If r � 2 (i.e. r � 1171 or 2342), then l is bad. If r � 2 then l is good (in fact,
very good, since ϕprq � 1). To generalize this example, if pl � 1q{2 is prime, then it is
worthwhile to check whether r � 2.

Note that the definition of good or bad Atkin primes has been rather imprecise, offering
only a vague notion. A better definition requires a detailed analysis of the computational
cost of using a larger Elkies prime, versus the cost of increasing the size of the Match-Sort
problem.
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Chapter 5

Run-Time Performance

5.1 Complexity vs Run-Time

The complexity analysis tells us that asymptotically, using the Schoof-Elkies-Atkin al-
gorithm with Elkies primes only is the best algorithm on average, while using all Atkin
primes will be the worse.

For cryptographic purposes however, the size of the prime field is not very large (521-
bit p to achieve 256-bit security), rendering the analysis much less helpful. The large
hidden constants for SE, vis-a-vis that of SEA, means that for elliptic curves of interest to
cryptographers, the running time of SE could be much worse than that of SEA and SEa.
In [1], it was remarked that the best variant in practice will be one that judiciously selects
Atkin primes.

In this chapter I will present the run-time analysis of my implementation. Five random
curves are generated for each prime fields with bit-sizes 128, 160, 192, 224 and 256, and
SEA, SEa and SE are used to count the points for each of them, and the running times
compared.

5.1.1 Run-Time Performance

For this test, in SEa we choose Atkin primes when their value of r lies in the set tr P N :
r ¤ 66, r � 31, 37, 38, 41, 43, 44, 47, 49, 53, 55, 57, 59, 61, 62, 64, 65u. The excluded values of

60



r tend to occur when ϕprq{l is high. For example, r � 44 may occur when l � 43 with
ϕprq{l � 20{43 ¡ 0.45, thus increasing the Match-Sort problem 20-fold while contributing
only 5.4 bits to the product

±
l. It should be noted that the choice of 66 as the threshold

is somewhat arbitrary; it is optimized for the size of fields considered. A lower threshold
may give better performances if larger prime fields are considered.

This criterion is a blunt tool as it makes no distinction between different l; an optimized
criterion should favour larger l with the same r values. It suffices though, to highlight the
importance of retaining the use of Atkin primes at some level.

The running times below are listed in terms of the logarithm of the CPU’s output (Intel
i5-2520M @ 2.50GHz), with the first table listing the logarithm of the average running
times and the latter the average of the logarithm of the running times. This allows us to
capture some information on the fluctuations in the running times.

Table 5.1: Logarithm of Average Running Time of SEA Variants (s)

bits SEA SEa SE

128 12.02 12.06 13.94
160 13.47 13.44 15.20
192 17.31 16.85 16.58
224 - 16.96 17.20
256 - 16.84 18.07

Table 5.2: Average of Logarithmic Running Time of SEA Variants (s)

bits SEA SEa SE

128 12.00 12.04 13.79
160 13.32 13.39 15.11
192 16.29 15.50 16.46
224 - 16.08 17.09
256 - 16.78 18.05

From the running times, we observe that for small fields of 128 and 160 bits, SEA and
SEa perform comparably, as Match-Sort remains tractable even with many Atkin primes

61



for SEA. SEa at these field sizes omit very few Atkin primes, so savings in Match-Sort
tends to be balanced out by the increases in using larger primes. In contrast, SE performs
poorly at these levels, as the cost of each additional large primes can be as large as the
whole Match-Sort problem.

At 192-bits the performance of SEA varied greatly, with five orders of magnitude differ-
ence in the running times. From 224-bits the run-time of SEA tends to be too large, and
as such the computations were not completed. At these sizes, SEa tends to run twice as
fast as SE, even though SE does run faster in some cases.

5.2 Improvements

To handle larger prime fields, we can prepare classical modular polynomials for l ¡ 200
in our repository. As the size of the polynomial grows very quickly, a better approach will
be to use either Atkin or Weber modular polynomials instead, so as to reduce the amount
of storage needed.

Instead of restricting the modular polynomials to prime l, we can choose prime powers of
l as well. This will delay the need for larger prime fields, and thus speed up the algorithm.
Such an approach is described in [6].

Existing complexity analysis assumes each l to be of size Oplog pq, which does not capture
the increasing costs of successive Elkies primes. When using SEa, choosing the right Atkin
primes to compute and to use in Match-Sort requires a better understanding of the running
time tradeoffs between using a higher Elkies prime and increasing the Match-Sort problem.
It may be worthwhile to obtain tighter estimates for the expected sizes of ϕprq for Atkin
primes for a given curve so as to decide the threshold for r that allows the maximum use
of Atkin primes while keeping the Match-Sort procedure tractable. These estimates can
then be compared against estimates for the expected running time for each Elkies prime.
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Chapter 6

Future Work

6.1 Partitioning Strategy

In this thesis, we have analysed the actual run-time of variants of the Schoof-Elkies-
Atkin algorithm, each employing Atkin primes in varying degrees. For each Atkin prime
l, we partition the set of possible r-values into two sets defined as such: if the actual value
comes from the first set, then we will use this Atkin prime in Match-Sort, else we will not.
In SEA the latter set is empty, while for SE the first set is empty. In this implementation
of SEa, which gives the best average run-times compared to SE and SEA, the partitioning
is independent of l and p.

I believe that the optimal strategy for partitioning the set of r-values should be dependent
on both l and p. Two Atkin primes l1   l2 may have the same r-value and thus contribute
to the size of the Match-Sort problem identically, but the larger prime will have contribute
more bits to the product

±
l l which we need to exceed 4

?
p. Thus the set of acceptable

r-values for l1 should be less than that of l2.

For p1   p2, 4
?
p1   4

?
p2, so the number of primes l that is needed is greater for p2.

The Match-Sort problem is expected to grow exponentially in the number of Atkin primes,
while the running time of the algorithm grows linearly. Hence to control the growth of the
Match-Sort problem, we need to be more selective in our choice of smaller Atkin primes
for p2 than for p1.
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6.2 Run-Time Estimation

Better estimates of the actual running time of the Atkin classification (to determine if
a prime is Elkies or Atkin), the BSGS step for Elkies prime and the Match-Sort step are
needed. From these, we can obtain better predictions of the running times of SEa for each
strategy for partitioning the r-values, and thus minimise the expected running time of the
algorithm a priori.

The run-time results in the previous chapter were generated from a small sample for
each size of p. Further run-time statistics should be gathered for each size, with multiple
curves chosen for each prime as well.

The analysis of the Match-Sort algorithm in Chapter 4 assumed that the probability for
each r-value is uniformly distributed. It will be worthwhile to study the actual distribution,
as this has a significant impact on the likelihood that an Atkin prime will be good.
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