Implementing the

Schoof-Elkies-Atkin Algorithm with
NTL

by

Yik Siong Kok

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Combinatorics and Optimization

Waterloo, Ontario, Canada, 2013

© Yik Siong Kok 2013



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11



Abstract

In elliptic curve cryptography, cryptosystems are based on an additive subgroup of an
elliptic curve defined over a finite field, and the hardness of the Elliptic Curve Discrete
Logarithm Problem is dependent on the order of this subgroup. In particular, we often
want to find a subgroup with large prime order. Hence when finding a suitable curve for
cryptography, counting the number of points on the curve is an essential step in determining
its security.

In 1985, René Schoof proposed the first deterministic polynomial-time algorithm for
point counting on elliptic curves over finite fields. The algorithm was improved by Noam
Elkies and Oliver Atkin, resulting in an algorithm which is sufficiently fast for practical
purposes. The enhancements leveraged the arithmetic properties of the [th classical mod-
ular polynomial, where [ is either an Elkies or Atkin prime. As the Match-Sort algorithm
relating to Atkin primes runs in exponential time, it is eschewed in common practice.

In this thesis, I will discuss my implementation of the Schoof-Elkies-Atkin algorithm
in C+4++, which makes use of the NTL package. The implementation also supports the
computation of classical modular polynomials via isogeny volcanoes, based on the methods
proposed recently by Broker, Lauter and Sutherland.

Existing complexity analysis of the Schoof-Elkies-Atkin algorithm focuses on its asymp-
totic performance. As such, there is no estimate of the actual impact of the Match-Sort
algorithm on the running time of the Schoof-Elkies-Atkin algorithm for elliptic curves de-
fined over prime fields of cryptographic sizes. I will provide rudimentary estimates for the
largest Elkies or Atkin prime used, and discuss the variants of the Schoof-Elkies-Atkin
algorithm using their run-time performances.

The running times of the SEA variants supports the use Atkin primes for prime fields
of sizes up to 256 bits. At this size, the selective use of Atkin primes runs in half the time
of the Elkies-only variant on average. This suggests that Atkin primes should be used in
point counting on elliptic curves of cryptographic sizes.
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Chapter 1

Introduction

1.1 Background

In elliptic curve cryptography (ECC), cryptosystems are based on an additive subgroup
of an elliptic curve defined over a finite field, and the hardness of the Elliptic Curve Discrete
Logarithm Problem is dependent on the order of this subgroup. In particular, we often
want to find a subgroup with large prime order. Hence, when finding a suitable curve for
cryptography, counting the number of points on the curve is an essential step in determining
its security.

In 1985 [17], René Schoof proposed the first deterministic polynomial-time algorithm for
point counting on elliptic curves over finite fields, using the Chinese Remainder Theorem
(CRT) to break the problem down into subproblems for a set of (much smaller) primes,
which can be solved independently. Though the algorithm runs in polynomial-time, it
was on the order of O(log®p) bit operations, which for elliptic curves defined over field of
cryptographic sizes was still too slow for practical purposes at the time.

Improvements to Schoof’s algorithm were independently introduced by Noam Elkies and
Oliver Atkin resulting in an algorithm which, with a running time in the order of O(log6 p),
is now fast enough for curves in use for ECC. Using a different approach, Satoh [15]
developed a polynomial-time algorithm for point counting on curves over finite fields of
small characteristic.



1.2 Motivation

1.2.1 Existing Point Counting Implementations

There are various implementations of the SEA algorithm for which source code is freely
available online, such as that in GP/PARI (used in SAGE), and Mike Scott’s implementa-
tion in C/C++ as part of the MIRACL package. The algorithm has also been implemented
in MAGMA | although its source code is not readily available.

The existing C/C++ MIRACL implementation of SEA makes use of lower-level opti-
mizations provided by the MIRACL library to provide very good running times. It also
outputs the intermediate values during its execution, which allows for comparisons of the
choice of primes. One observation is that the implementation eschews the consideration
of a subset of small primes that Atkin uses, instead choosing larger primes. While the
larger primes translate to more expensive field arithmetic, it may be more than offset by
computation time savings elsewhere, which reasonably explains the choice of approach.
This approach is also reflected in Sutherland’s point counting record for elliptic curves
over finite fields (http://math.mit.edu/~drew/SEArecords.html).

Nicole Pitcher [14] proposed the use of Schénhage-Strassen’s algorithm [16], the fastest
integer multiplication method for integers beyond 2215, to speed up multiplication of polyno-
mials over finite fields in Schoof’s algorithm. This is done by lifting polynomials from F,[z]
to Z[x], and mapping them into the set of integers by substituting x with 256/ +"51. The
resulting integers will be sufficiently large for Schonhage-Strassen’s algorithm to provide

speedups, thus improving the performance of Schoof’s algorithm.

1.2.2 Project Aims

As with algorithms in general, there are often gaps in understanding that can only be
filled by the actual process of implementing the algorithm. Our implementation serves
as a tool to investigate why the MIRACL implementation diverges from Atkin’s original
approach for Atkin primes, and if there are possible improvements to support the use of
Atkin’s approach.


http://math.mit.edu/~drew/SEArecords.html

The aim is to provide an implementation of SEA, with the use of some Atkin primes,
that can perform better than an Elkies prime-only approach for curves of cryptographic
sizes.

1.3 Author’s Contributions

Computing Classical Modular Polynomials. I have implemented the complex ana-
lytical approach to compute Hilbert class polynomials, as a precursor to computing classical
modular polynomials via isogeny volcanoes, as proposed in [2]. Using MAGMA for verifi-
cation, I wrote the routines for finding suitable parameters for prime [, which then used the
parameters to construct isogeny volcanoes, as well as compute the [-th classical modular
polynomial in Z[X].

Schoof-Elkies-Atkin. The modular polynomials are subsequently used in the imple-
mentation of the Schoof-Elkies-Atkin algorithm for elliptic curves over prime fields with
characteristic larger than 3. In the implementation of the Match-Sort algorithm, I pro-
posed sorting by absolute values and performing scalar multiplication iteratively to reduce
the size of the scalar multiplications in the routine.

Complexity of Match-Sort. In the existing literature, the complexity analysis of the
SEA algorithm focuses on the asymptotic performance. As such, there is no estimate of
the size of the Match-Sort problem and how much it impacts the overall running time of
the SEA algorithm. I have provided some rudimentary estimates of the size of the largest
prime used in SEA and the number of cases to be checked via Match-Sort. The run-time
performance of the variants of SEA is included as a basis for understanding the size of the
Match-Sort problem.

The running times of the SEA variants supports the use Atkin primes for prime fields
of sizes up to 256 bits. At this size, the selective use of Atkin primes runs in half the time
of the Elkies-only variant on average. This suggests that Atkin primes should be used in
point counting on elliptic curves of cryptographic sizes.



1.4 Organization of Thesis

In Chapter 2, I will explain the ideas behind in Schoof’s algorithm, and give an overview
of the Schoof-Elkies-Atkin algorithm. In Chapter 3, I will discuss isogeny volcanoes and
their role in the computation of classical modular polynomials. In Chapter 4, I will discuss
the implementation in the cases of Elkies and Atkin primes. I will also provide a detailed
description of the Match Sort algorithm. This allows us to describe the SEA algorithm in
full. In Chapter 5, I will compare the run-time performance of the implementation, using
the different variants of SEA.



Chapter 2

Schoof and SEA

In this chapter we provide a few preliminary definitions about elliptic curves over finite
fields, leading up to the description of Schoof’s algorithm. Though the material in this
section can be found in most textbooks on elliptic curve cryptography, our treatment is
based on Blake et al. [1] as it contains a more detailed discussion of the Schoof-Elkies-Atkin
algorithm.

2.1 Preliminaries

2.1.1 Elliptic Curves

Definition 2.1.1. An elliptic curve £, defined over a finite field F, with prime charac-
teristic p, is the set of points (i.e. solutions) (z,y) € Fg satisfying the equation

E 9 + aiwy + azy = 2° + asx® + agw + ag, (2.1)

where ay,aq,as,a4,a6 € F,. As the equation defines E, we will equate the definition
of E with that of the equation. Two elliptic curves E (with variables z,y) and E’ (with
variables 2/, y') defined over F, are isomorphic over F, if and only if there exists constants
r,s,t,u € F, with u # 0, such that the change of variables

r=u’r +r, y = udy + suty +t (2.2)

transforms F into E'.



For p > 3, the equation above can be replaced by
E:y* =2 +ax +0b, (2.3)

for some a,b € F;. We call this the Weierstrass form of £. We say that E is singular
if 4a® + 27b%> = 0. For the rest of this report, we assume p > 3, and E is assumed to be
non-singular, and hence can be described by its Weierstrass form.

We write E/F, to denote that the coefficients of E are in F, and write E(F,) to denote
the points of E in F,. Although the coefficients of £/ may be in a field extension and in
practice for p > 3 we usually have ¢ = p, we nevertheless distinguish between the notations
here.

2.1.2 Group Law

Definition 2.1.2. For two points P := (x1,v1),Q = (x2,92) on E(F,), we define the
binary operation point addition @ so that P @ Q := (x3,ys3) is given by

LU o £
m: o= { g , (2.4)
= i = w0,y =y

2y1
r3 = m2—a—x2—x1,
ys = m(r; —x3) — Y1,
Note that when x1 = 29, y;1 # 32, we have yo = —y;. In this case we write —P := (@),
and define
Op = P@ (—P),

which is referred to as the point at infinity. When it is unambiguous, we will use co instead.
We also define
PPo=00®P =P

and

PoQ =P (-Q).

For n € N, we define nP := P®---@® P (n copies of P). If n = —n' is negative, then
nP = —(n'P). Thus for n € Z,

0] E—E,  [n](P)=nP (2.7)

is the multiply-by-n function.



Theorem 2.1.3. (E,®) is an abelian group, with oo as the identity element and —P as
the inverse element for each point P € E.
2.1.3 Frobenius Endomorphism

Definition 2.1.4. For the finite field F, with algebraic closure Fq, the Frobenius map ¢,
is defined as B B
¢g:Fy —F,, Pg(x) = 21 (2.8)

Proposition 2.1.5. The Frobenius map ¢, is an automorphism on Fq, and ¢q(x) = x if
and only if v € F,.

We can extend the definition of the Frobenius map to elliptic curves over Fy:

Pq : E(Fq) - E(Fq)v Pg(x,y) = (9q(x), 0g(y)) = (2%, y?),  ¢qg(o0) = o0
Proposition 2.1.6. ¢, is a group endomorphism on E(F,).

Theorem 2.1.7. The characteristic equation of ¢, on E is:
72 —t-Z+q=0 (2.9)
for some integer t. In other words, for all (z,y) € E(F,),
(27, 57") = 2", y") + gla,y) = o, (2.10)

where addition here is point addition on E. t is called the trace of the Frobenius endo-
morphism ¢,.

2.1.4 Number of Points

Theorem 2.1.8. The number of points (x,y) on E, denoted as #E(F,), is given by
HEF,) =q+1—t, (2.11)

where t 1s the trace of the Frobenius endomorphism.



Definition 2.1.9. Let £ : y*> = 2°+ax+b denote an elliptic curve over F,. The quadratic
twist of F, is the elliptic curve over F,, given by E’ : dy? = x3+ax +b, for some non-square
deF, If #E(F,) = ¢+ 1 —t, then #E'(F,) = ¢+ 1 + .

Theorem 2.1.10. (Hasse’s Theorem) The value of t is bounded as follows[20]:
it = ¢+ 1—E(F,)] <24 (2.12)
The interval [q +1 —2,/q,q + 1+ 2,/q] is known as the Hasse interval.
Definition 2.1.11. An integer m is called a quadratic residue modulo n if
2> =m (mod n)

for some integer . Otherwise it is called a quadratic nonresidue modulo n. We use QR,,
and QR,, to denote the set of quadratic residues and nonresidues modulo n respectively.

We can use the quadratic character to count the number of points, but this yields an
exponential time algorithm, thus only feasible for small fields.

Definition 2.1.12. For each = € F, the quadratic character x,(z) is

1 if xisasquarein F,
Xq(T) = 0 if r=0inF, (2.13)

—1 if x is not a square in I,

From the equation of the Weierstrass form of an elliptic curve, we observe that, besides
the point at infinity, a point (z,y) € Iﬁ‘g is a point on E if and only if 2® 4+ ax + b is a square
in F, (y is a corresponding square root). Note that when ¢ is a prime, then

Xq(7) = (g) : (2.14)

If 2 + ax + b = 0 in F,, then y can only take one value, 0. If x, (2 + ax + b) = 1,
then y = ++/a3 + ax + b, which are two distinct values since the characteristic p is odd. If
Xq(@® 4+ ax 4+ b) = —1, then there are no possible values of y for which (z,y) € E. Hence

#HEF,) =1+ > (L4 xq(z® + ax + 1)) (2.15)

z€F,

For small values of ¢, this formula is very efficient. Unfortunately as this approach requires
a computation over all the elements in I, it is exponential in the length of the size of F,
and thus becomes impractical very quickly as the size of the field increases.



2.1.5 Baby-Step Giant-Step

In an elliptic curve discrete logarithm problem, we are given an elliptic £ with N :=
#E(F,), two points P,Q € E, and that () = [m]P, for some integer 0 < m < N. Shanks’
Baby-Step Giant-Step (BSGS) algorithm first computes and stores a table of ‘baby steps’;
the values

Rb = Q — [b]P y

with b ranging from 0 to [v/N| — 1. Next, the ‘giant steps’

are computed, incrementally from a = 0. Whenever we find that S, matches with some
Ry, in the table, we will have found

Q— [o1P = [a] ([IVN11P)
which allows us to compute in O(v/N) computations, the value of

m = a[VN] + b.

Shanks-Mestre. To find /V, the order of the elliptic curve group, we begin with a random
point P € E(FF,), and compute its order in the group op. It is known that an elliptic curve
group is isomorphic to the direct product of either one or two cyclic groups, and that we
can expect to find a point P with its order in the elliptic curve group op > 4,/q [17]. We
define the points

Q=I[¢+1P and Qi =Q+[2/dqIP.

and let ¢ =t 4 |2,/q]. Note that ' € [0,4,/q] by the Hasse bound 2.12. Since

Q1 =g+ 1P +[12v4llP = [g+ 1 —t]P + [t + [2yq]]P = [N]P + [']P =[] P,

and op > 4,/q, solving the discrete log problem @, = [t'| P by BSGS gives us the exact
value of ¢'. From this, we can compute the value of ¢ and thus the order of the elliptic
curve group. This algorithm, referred to the Shanks-Mestre algorithm, requires O(g'/4*°)
computations and storage, for some arbitrarily small € > 0.



2.2 Schoof’s Algorithm

In 1985, Schoof proposed the first polynomial-time algorithm for point counting on
elliptic curves, by computing ¢t = #E(F,) — p — 1 via a series of modular computations.
Schoof’s approach is to find the value of t; = ¢ mod [, for [ € S, where S = {2,3,5,--- , L} is
a set of primes. When S is chosen so that mg := [ [,.s ! > 4,/p, by the Chinese Remainder
Theorem (CRT) we can solve for ¢’ = ¢ mod mg uniquely.

Since m, > 4,/p, we can determine ¢ by finding the only value in the Hasse interval
which is congruent to ¢’ mod mg. It can be shown using the prime number theorem that
the number of primes required is roughly O(logp) (see Section 4.4.3).

In the case | = 2, and computing ¢; means checking if N is even or odd, which is equivalent
to asking if E(IF,) has a point of order 2. From Definition 2.4, a point of order 2 exists if
and only if 2° +ax 4 b has roots in F,, which is true if and only if ged(2P — 2, 2° + ax+b) # 1
in the polynomial ring F,[z].

Let ModularExponentiation(a(X), e, f(X)) denote the function which returns a(X)® mod
f(X). To compute the ged above, we observe that

ged(a? — 2, 2% + ax + b) = ged(a? — x mod 2* + ax + b, 2° + azx + b). (2.16)

We compute 2P mod x® + ax + b = ModularExponentiation(X, p, x> + ax + b), a polynomial
of degree at most two, and subtract x from the result. This reduces the gcd computation
(by the Euclidean algorithm) to one involving two polynomials of low degree, which can
be performed very efficiently.

Modular exponentiation can be performed in time O(log p) by square-and-multiply. How-
ever, as p is fixed regardless of prime [, we can incur some computational overhead to find
an addition chain for p, and possibly use the chain to compute the modular exponentiation
more efficiently than square-and-multiply. Chapter 9 of [5] provides an overview of how
addition chains can be computed and used.

10



2.2.1 Division Polynomials

Definition 2.2.1. For each non-negative integer [, the [-th division polynomial ¢; over
F,[z] is defined recursively as follows:

Yo =0

(0 =1

(> = 2y

s = 3z* + 6ax? + 12bx — a?

1y 4y(2® + Haz* + 20bx® — 5a’x? — dabx — 8b3 — a)
¢2m+1 = 1/}m+21/}§n - ¢mf1¢1§1+1 form = 2

Yo = (20) (Vo) o 1 — Uy oi 1) form >3

Lemma 2.2.2. v, is a polynomial in Z|x,y?*, a,b] when n is odd and 1, is a polynomial
in 2yZ[z,y?, a,b] when n is even.

Proof. We prove the lemma by induction on n. For n < 4, the lemma is true by definition.
Suppose n = 2m for some integer m.

If m is even, then by the induction hypothesis 1, ¥, 19, Vm o are in 2yZ[x,y?, a,b]
and Y41, Ym_1 are in Z[x,y?, a, b], which implies that 1, is in 2yZ[x, y?, a, b].

If m is odd, then by the induction hypothesis ¥, Y12, ¥m 2 are in Z[x,y? a,b] and
Umt1, Umo1 are in 2yZ[z,y?, a,b], which again implies that 1, is in 2yZ[x, 4>, a, b].

Similarly, we can check that if n = 2m+1 for some integer m, then 1, is in Z[z, 3*, a, b].

O

Lemma 2.2.3. Define the following polynomials:

©n = $¢i_¢n+1¢n—1
Wnp = (43/)71(%%2%2171_wnﬂwiﬂ)

For all n, ¢, € Z|z,y? a,b]. Also, if n is odd, then w, € yZ|z,y* a,b]. If n is even, then
Wy € Z[x,y?, a,b].
Lemma 2.2.4.

On = " + lower degree terms

2.17
wp = n22™' 4 Jlower degree terms ( )

11



Theorem 2.2.5. Let P = (x,y) be a point on the elliptic curve E : y* = 23 + ax + b over
F,, and let n € N. Then
@n(ﬁ) Wn(xay))
n|P = ) . 2.18
1P = (550 S 218)

Corollary 2.2.6. ¢, (z) and ¥?2(z) have no common roots. Therefore given an elliptic
curve E, multiplication-by-n is an endomorphism on E with degree n®.

From Lemma 2.2.2, we know that if n is odd, then v, is a polynomial in Z[x,y?, a,b],
which implies that given a fixed elliptic curve E : y? = 2® + ax + b, 1, is a polynomial in
x. Therefore by Corollary 2.2.6 and Theorem 2.2.5, we have that nP = oo if and only if

n(x) = 0.

2.2.2 Torsion Points
Definition 2.2.7. For all primes [, we define the [-torsion subgroup of E(F,) as
Ell] :={Pe E(F,):1-P = w}. (2.19)

Thus for all P = (z,y) € E(F,), P € E[l] iff ¢y(z) = 0.
Theorem 2.2.8. Forl # p, E[l] = Z; x Z.

Recall that to compute the order of E(F,) is equivalent to finding ¢, the trace of the
Frobenius endomorphism, which satisfies Z2 —t- Z + p = 0 or equivalently,
(a7, y7") =t y") + p(z,y) = . (2.20)
for all (z,y) € E(F,).
Omne approach is to compute, for a given point P = (z,y), (xPQ,yp2), (2P, yP), p(z,y),

and check which value of ¢ = 0,1, ..., 2,/p satisfies the equation above. This would require
O(p'/?) computations, which is prohibitively large.

12



By consider the restriction of the characteristic polynomial of ¢, modulo [, we obtain
the reduced characteristic equation Z? —¢;- Z +p; = 0 where t; = t mod [ and p; = p mod [
and 0 < t; <, |p| < 1/2. We also have

(:pp2,yp2> + pi(x,y) = ti (2P, yP) (2.21)

for all the points (x,y) € E[l]. The idea now is, given a point (z,y) € E[l], to compute
the expressions for (z¥”, yPQ), (P, yP), pi(z,y), and check which value of t; = 0,1,...,1 — 1
satisfies the equation above.

We find the expression for z¥’,z? in the ring F,[z]/ (¢y(x)) and y*°,y” in the ring
Fplz,y]/ (Wi(z), y? — 2® — ax — b). These require O(log p(I*log p)?) arithmetic operations
in F,,. Finding ¢, requires [ additions of (z?, y?), which requires O(I(I* log p)?) computations.
Since [ is of size O(log p), the total work required is O(log® p) bit operations.

Suppose (xpz,yPZ) # +p(z,y) for some (z,y) € E[l]. Then (2/,y') := (xpz,yPQ) +
pi(x,y) # oo, which implies that ¢; # 0 (mod )

Let (Zm,Ym) := m(z,y) for any integer m. Then a?° # z,,. From Theorem 2.2.5, we

note that

%;87 o = % (2.22)

ie. Ty = fim(x) and Y, = yfom(z) for some rational functions fi ., fom € Fplz]. We

have
p? 2
r 1Y Yy .t
= <—$p2 — xm) x Tp, (2.23)

Tm =

Since
2

(v - ypl)Q = (v = (@)
= (2° +ax +b) ((3:3 +ax + b)P V2, (x)>2 )

2’ can be written as a rational function in x. Our aim is to find m such that (z/,y') =
(P ,yP). Since the roots of ¢;(x) are the xz-coordinates of points in E[l], 2’ — 2, = 0
(mod 1/;). Note that the roots of ;(x) have multiplicity 1, as E[l] has [* — 1 distinct
points of order [ and ¢, has degree (I* —1)/2.
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After m is found, where 2’ — 2, = 0 (mod ), we have
(@' y) = 2@}, up) = (an,, Tyn,)- (2.24)

If (v —y2)/y =0 (mod 1), then {, = m (mod I), otherwise t;, = —m (mod ).

In the remaining case (xPZ, yp2) = +p(z,y). Suppose

oix.) = (79" ) = mlo,y), (2:25)
We have
tl¢p(x7 y) = (bi(l’, y) + pl(‘ra y) = 2pl($, y) (226>
Therefore
timi(z,y) = tiga(x,y) = 4pi(z,y). (2.27)

Thus t7p; = 4p? (mod [), which implies that p; is a square modulo . Let p; = w? (mod 1).
Hence

(6p + w)(¢p — w) (2, y) = (¢, — p) (@, y) = . (2.28)
for all (x,y) € E[l].

If ¢p(x,y) = w(z,y), then ¢, = 2w (mod [). If ¢,(z,y) = —w(x,y), then t, = —2w
(mod [). If neither condition is met for some point (x,y) € E[l], then ¢, =0 (mod ).

If p; is not a square modulo [, then the initial supposition in Equation 2.25 is false.
Therefore (xpz,yPQ) = —pi(x,y), which implies ¢, = 0 (mod ). Note that since [ is odd,
pi(x,y) # —pi(z,y) for all values of p.

14



2.2.3 Algorithm Details

Description of Schoof’s Algorithm We now state Schoof’s algorithm in full:

1. Choose a set of primes S = {2,3,5,---, L} (with p ¢ S) such that [l > 4,/p.
2. If | = 2, then t, =0 (mod 2) iff ged(2? — x, 2% + ax + b) # 1.
3. For each odd prime [ € S do:
(a) Let p; = p (mod [) such that |p| < 1/2.
(b) Compute 2/, the z-cordinate of (2',y") = (a:pQ, yPZ) + pi(x,y) (mod vy).
(¢c) Form=1,2,---,(l—1)/2 do:
i. Compute the z-coordinate x,, of (p, ym) = m(z,y).
ii. If ' —aP %0 (mod 1), try the next value of m in step (c).

iii. If 2’ — 2P =0 (mod vy), check if (v —yP,)/y =0 (mod ;)). If so, then set
t; = m, else set t; = [ — m; proceed to step 4.

(d) If pe Q_Rl, then set t; = 0 and proceed to step 4. Otherwise define w so that
w? =p (mod 1).

(e) Compute (X, Yuw) := w(z,y).

(f) If 2P # x,, then set t; = 0 and proceed to step 4.

(g) If y? = yy, then set t; = 2w (mod 1), else set t; = —2w (mod ).

4. Givent =t; (mod [) for all [ € S, use CRT to compute ¢ as the unique value satisfying
the congruences and the condition |t| < 2,/p. Return #E(F,) =p+1—t.

Although Schoof’s algorithm runs in polynomial-time, it is not sufficiently fast for prac-
tical use with curves of cryptographic sizes. For example, for curves defined over 256-bit
finite fields, the algorithm’s running time is (log 2%5¢)® = 264 which is barely feasible.

The computations for Schoof’s algorithm are performed in the ring

Fylz,yl/ ged(t(2),y* — 2° — ax —b)

and as () has degree (I — 1)/2, the degree of the elements is O(I?) = O(log® p). In the
Schoof-Elkies-Atkin algorithm, we will see that the division polynomials can be replaced
with polynomials of lower degree, which results in considerable speedups over Schoof’s
algorithm.
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2.2.4 Schoof-Elkies-Atkin Algorithm

In Schoof’s algorithm, the characteristic equation of the Frobenius endomorphism is
used to compute its trace ¢ and thus #E(F,) = p+ 1 —t. Elkies and Atkin independently
suggested improvements, depending on whether the characteristic equation splits over [F),.

Theorem 2.2.9. The group of automorphisms on E[l] is isomorphic to GLy(Zy), the group
of invertible 2-by-2 matrices over Z;.

As | # p, ¢, is an automorphism on E[l]. Theorem 2.2.9 tells us that the action of
the Frobenius endomorphism ¢, on E[l] can be represented by A; € GLy(Z;). Since the
characteristic polynomial of ¢, restricted to E[l] is Z? — t;,Z + p;, it follows from the
Cayley-Hamilton Theorem that A; satisfies the polynomial and the eigenvalues of A; are
the roots of Z2 — ;Z + p;. We will see later that A; is diagonal, and the trace of A; is the
sum of its eigenvalues which is just ¢;, hence justifying calling ¢ the trace of the Frobenius
endomorphism.

Definition 2.2.10. The discriminant of Z? —tZ + p is A = > — 4p and the polynomial
has roots in 7Z; if and only if A is a square in 7Z;. For each prime [, we call [ an Elkies
prime if A is a square modulo [; otherwise we call it an Atkin prime.

Suppose [ is an Elkies prime. Let A, i € Z; be the two roots of Z2 —t,Z + p;. Then there
exists nonzero vectors vp,vg € Z? so that Ajup = Avp and Ajwg = pvg. Likewise, there

are nonzero points P, Q € E[l] such that ¢,(P) = AP and ¢,(Q) = pQ. Therefore [ is an
Elkies primes if and only if ¢, has a 1-dimensional eigenspace defined over F,,.

If there exists R € E[l] such that R = aP and R = [Q for some «, € Z;, then
ABQ) = MaP) = aX(P) = agy(P) = ¢p(aP) = ¢,(6Q) = Bdp(Q) = Su(Q) = n(BQ).
Since A # u, R = Q = co. Since E|l] = Z; x Z;, we have E[l] = (P) x {Q). Thus every
point in E[l] can be written as aP + bQ) for some «, 5 € Z;, i.e. {P,Q} is a basis for the
vector space E[l].

Since t is not known, we cannot use the discriminant of the characteristic polynomial to
check if a prime is Elkies or Atkin. Instead, we introduce modular polynomials as a means
to do so.
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2.2.5 Using Classical Modular Polynomials

Classical modular polynomials are used in this implementation for checking if a prime [
is Elkies or Atkin, as they were the polynomials used in Atkin’s theorem for classification
of the primes. Since these polynomials exist independently of the curve parameters, they
are usually pre-computed. As such the coefficients of the polynomials are stored in files
and loaded by the implementation when needed.

The coefficients of the classical modular polynomials are very large, and the storage of the
coefficients of the [-th classical modular polynomials for primes up to 199 requires more than
0.5GB. Fortunately, there are alternative types of modular polynomials with much smaller
coefficients that can be adapted for use in Atkin’s theorem. However, for the purposes
of this work, we focus primarily on the classical modular polynomials. Repositories for
the coefficients of the [-th classical modular polynomials exist online for primes [ < 199.
They are also included, for primes [ < 59, in the distribution of MAGMA. Since the
coefficients of these polynomials are very large, we would ideally choose to store as few of
these polynomials as necessary. For the purposes of point counting for elliptic curves of
cryptographic sizes, how large do we need the largest [ to be?

In Section 4.4, we provide some estimates of the size of the largest prime [ as well as
the number of primes needed given the size of a random prime p. From the estimates,
we can deduce that the online resources, with [ up to 199, provide us with sufficient pre-
computed polynomials for 521-bit prime fields when using the full SEA (see Section 5.1 for
more discussion on this). For the completeness of the implementation, I have implemented
routines for the computation of classical modular polynomials, allowing us to compute
additional polynomials for counting points on curves over larger fields. In the next chapter,
we will define the classical modular polynomials and examine how they can be computed.
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Chapter 3

Classical Modular Polynomials via
Isogeny Volcanoes

In this chapter we look at the recent advancements in computing modular polynomials,
introduced at ECC2009 by Broker, Lauter and Sutherland [2]. Using suitably chosen
isogeny volcanoes, we can generate enough information to recover the coefficients of the
classical modular polynomials via the Chinese Remainder Theorem. We proceed by first
defining an isogeny on elliptic curves. From the relationship between isogenies and modular
polynomials, we describe the relation between isogeny volcanoes and class groups. Within
this framework, we can then present the algorithm to compute the modular polynomials.

The main source of material for this chapter is [2], which provides the justification
for the choice of parameters to construct the [-isogeny volcano of interest, as well as the
procedure to compute the modular polynomial using the isogeny volcanoes. As explained in
Sutherland’s expository paper [23] on isogeny volcanoes, David Kohel studied the structure
of isogeny graphs for elliptic curves over finite fields in his thesis [12], while its application
in algorithms came later [10][11]. Silverman’s textbook [20] provides the background on
isogenies and elliptic curves, while the material on the classical modular polynomial, the
class group and the Hilbert class polynomial was referenced from [9] and [7].
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3.1 Isogeny Volcanoes

3.1.1 Isogenies

Definition 3.1.1. An isogeny between two elliptic curves F; and FEs is a group homo-
morphism ¢ : By — FE5 (with respect to point addition) which is an algebraic map. The
composition of two isogenies is also an isogeny.

Example 3.1.2. The scalar multiplication by n map, denoted by [n] : £ — E with
[n]P = nP, is an isogeny from E to E.

Proposition 3.1.3. Every isogeny is either constant or surjective.

The only constant isogeny is the zero isogeny ¢ : E — {00}, which is equivalent to the
multiplication-by-zero map [0].

Definition 3.1.4. The degree of a surjective isogeny deg(v)) is the degree of ¢ as an
algebraic map, with deg[0] = 0.

Theorem 3.1.5. Let Fy, Es be elliptic curves defined over F and ¢ : Ey - E5 be a (non-
constant) surjective isogeny of degree n. There exists a unique isogeny ¥ : Fy — Ey so
that

Yo =[n]=vod.
Definition 3.1.6. We refer to the map ) as the dual isogeny of ).

Theorem 3.1.7. Let Ey, Ey, E3 be elliptic curves defined over F, and ¢ : Ey — Fy and
¢ : Ey — E3 be (non-constant) surjective isogenies of degree n. The following hold:

— ~ ~

(i) poyp=9og.
(ii) Vn e Z,[n] = [n] and deg[n] = n?.
(iii) degv) = deg .

(iv) o = v
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3.1.2 Modular Polynomials

Definition 3.1.8. Let H := {z + iy|ly > 0;x,y € R} denote the upper half-plane. The
following functions are defined for 7 € H:

g(r) = 60 > (m+nr) (3.1)
(m,n)#(0,0)

gs(r) = 140 > (m+n7)" (3.2)
(m,n)#(0,0)

j(r) = o (3.3)
93 — 2793 '

The function j(7) is referred to as the j-invariant of the lattice [1, 7].
Theorem 3.1.9. The elliptic curve

E:y* = 42" — gox — g3
corresponds to the lattice [1,7| via the Weierstrass p-function for [1,7].

Definition 3.1.10. We define the j-invariant of an elliptic curve E : y*> = 2® + ax + b,
where a,b € K a field with characteristic not 2 or 3, as:
4a?
(F) = 1728———.
IE) 4a® + 2712

Note that for the elliptic curve E : y* = 2° + az + b defined over F, with p # 2, 3, we can
use the isomorphism (z,y) — (4x,4y) to convert the equation to

E:y* =42° — (—a/4)x — (—b/16),
which corresponds to the lattice with go = —a/4, g3 = —b/16 and

—a/4)? 4a?
(=a/4) —1728— 1
(“a/4) — 27(—b/16)? 1a3 + 270?

j=1728

This shows that two definitions for j-invariants are consistent.
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The reason why j(F) is rightly called an invariant is due to the result below, which can
be proven by considering all possible isomorphisms on F. Note that the j-invariant lies in
the same field K as that which the curve is defined over.

Proposition 3.1.11. Two elliptic curves are isomorphic over F, have the same j-invariant.
Conversely, two elliptic curves with the same j-invariant are either isomorphic over I, or
are twists of each other.

Definition 3.1.12. We define the set of matrices
c(l) = {( g Z ) cad=1,a>0,0 <b < d,ged(a,b,d) = 1}.

For o € C(l), we define the action on H as

ar +b
d

oT =

Definition 3.1.13. The [-th (classical) modular polynomial ¢;(X,Y) e C[X,Y] is a
polynomial such that

O(X, () = [ ] (X = (o). (3.4)

oeC(l)

Note that when [ is prime, either a = [,d = 1 (and thus b = 0), or @ = 1,d = [ with
be [0,l —1]. This means |C(l)| = [ + 1, and thus ®; is monic in X with degree [ + 1.

Theorem 3.1.14. Let | be a positive integer.

1. &(X,Y) € Z[X,Y].
®,(X,Y) is irreducible as a polynomial in X.
(I)I(X7 Y) = (I)l(Y7X)

DR

If 1 is not a perfect square, then ®;(X, X) is a polynomial of degree > 1 with leading
coefficient +1.

5. If L is prime, then ®)(X,Y) = (X' - Y)(X —Y!) mod IZ[X,Y].
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Example 3.1.15. The 5-th classical modular polynomial ®5(X,Y) € Z[X,Y] is

X6

X5Y? +3720X°Y* — 4550940 X°Y3 4 2028551200 X°Y % — 246683410950 X°Y
1963211489280.X° 4+ 3720X*Y? + 1665999364600.X *Y*
107878928185336800.X1Y 3 + 383083609779811215375X Y2
128541798906828816384000X 1Y + 1284733132841424456253440X* — 4550940X3Y®
107878928185336800.X Y4 — 441206965512914835246100.X3Y3
26898488858380731577417728000X3Y 2
192457934618928299655108231168000.X3Y
280244777828439527804321565297868800.X 3 + 2028551200.X %Y
383083609779811215375X2Y* + 26898488858380731577417728000X %Y
5110941777552418083110765199360000.X %Y >
36554736583949629295706472332656640000.X %Y
6692500042627997708487149415015068467200X % — 246683410950.X Y
128541798906828816384000X Y* — 192457934618928299655108231168000.X Y?
36554736583949629295706472332656640000.X Y
264073457076620596259715790247978782949376 XY
53274330803424425450420160273356509151232000X + Y + 1963211489280Y°
1284733132841424456253440Y* + 280244 777828439527804321565297868800Y >
6692500042627997708487149415015068467200Y 2
53274330803424425450420160273356509151232000Y
141359947154721358697753474691071362751004672000

I+ + + + + L+ +

+ o+ o+ 4+ o+

3.1.3 Isogeny Volcanoes

Definition 3.1.16. Two elliptic curves F; and FE, are said to be isogenous if there is a
surjective isogeny ¢ : E; — FE,. E; and F5 are said to be [-isogenous if the isogeny 1) has
degree [.

It is easy to show that being isogenous is an equivalence relation.

Theorem 3.1.17. (Tate) Elliptic curves E,/F, and Ey/F, are isogenous over F, if and
only if #E1(F,) = #E»(F,).
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Theorem 3.1.18. Let Ey, Ey be elliptic curves defined over F,, with j-invariants ji, ja
respectively. For | prime, Ey, Ey are l-isogenous if and only if ®;(j1, j2) = 0 over F,,.

Theorem 3.1.18 tells us that for a given elliptic curve E(F,) with j as its j-invariant, the
[ + 1 curves [l-isogenous to E have j-invariants which are roots of ®;(X,j) = 0 over F,,.

Definition 3.1.19. The [-isogeny graph G is an undirected graph with vertex set {j(E) :
E/F,} and edges {(j1,72)} for all ji, jo € F, whenever ®;(ji, ja) = 0 over F,. A connected
component of (G, is referred to as an [-volcano.

Structure of an /[-volcano Since isogenous curves have the same number of points over
[, they share the same trace for the Frobenius endomorphism ¢. Thus ¢? — 4p is the same
for all curves in an [-volcano. The neighbourhood N(j) of j is made up of the roots of
®,(X,j) = 0. From Theorem 4.1.2 in the next chapter, we see that the |N(j)| can take
four possible values.

1. If * —4p is not a square modulo [, then ®;(X, j) = 0 has no roots in F,, which means
IN()| =0.

2. If t* — 4p is a nonzero square modulo [, then ®;(X, j) = 0 has two roots in F,,, which
means |N(j)| = 2.

3. Ift*—4p = 0 (mod 1), then ®;(X, j) either splits over F,, which means |N(j)| = [+1,
or ®;(X,j) = 0 has exactly one root in F,, i.e. |[N(j)| = L.
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3.2 Computing /th Classical Modular Polynomial

3.2.1 Modular Polynomials via Isogeny Volcanoes

From Theorem 3.1.18, we know that for a given elliptic curve E defined over [F,, the
roots of the I-th classical modular polynomial ®;(X,Y’) over F, evaluated at Y = j are the
j-invariants of curves that are [-isogenous with j. In the next chapter, we will see how the
SEA algorithm uses ®;(X, j) to find curves that are l-isogenous with FE.

Conversely, if we can find sufficiently many curves that are [-isogenous to an elliptic
curve with its j-invariant equal to j, we can find the distinct roots of ®;(X,7) (mod p),
and therefore compute the coefficients of ®;(X, j) over F,. To achieve this without knowing
®;, we might think that we can use Tate’s theorem, since we just need to find /-isogenous
curves that have the same number of points. But this requires us to know the number of
points on E, which is what we are going to use SEA to find!

Thankfully, this is not a real conundrum. As ®;(X,Y) is defined over Z, independently
of £ and p, we can construct a set of curves with j-invariant j; defined over p, for which
we know the number of points a priori. For each p,, with sufficiently many ®;(X, j;)
(mod p,.), we can interpolate for the expression ®;(X,Y") (mod p,). With sufficiently many
expressions for ®;(X,Y) (mod p,), we can use the Chinese Remainder Theorem (CRT) to
compute the coefficients of ®;(X,Y) over Z.

To ensure that after the Chinese Remainder Theorem step, the coefficients obtained for
®;(X,Y) modulo [], p, are precisely that of ®;(X,Y) € Z|X], we must find sufficiently
many primes p, so that [ [ p, is greater than twice the maximum absolute value MAX; of
the coefficients of ®;(X,Y).

The key to this approach is constructing curves for which the number of points is known
without the need for a point counting algorithm. This is achieved using the Complex-
Multiplication (CM) Method, which we will describe in the subsection.
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3.2.2 Complex-Multiplication Method

To construct CM curves, we need to define an imaginary quadratic field by choosing a
fundamental discriminant D < 0. Let p be a prime for which the diophantine equation

4p = 2° — Dy

has an integer solution (¢,s). Then N = p 4+ 1 £t are the possible group orders of the
elliptic curves over [F,, that we can construct.

Lemma 3.2.1. The following holds for elliptic curves over F,:

o Bvery element in IF), is the j-invariant of an elliptic curve over ).

o If D < —4, then all elliptic curves, with j-invariant j # 0,1728, over IF,, are given by
V2= X%+ 3k*X + 2k’
where k = j/(1728 — j) and ¢ is any element in F,.

e Suppose E and E' have the same j-invariant j # 0,1728 but are not isomorphic.
Then E and E' are quadratic twists of each other.

Lemma 3.2.1 tells us that every j-invariant defines a unique elliptic curve over F,, up
to curve isomorphism and twists, and that we can construct an elliptic curve with the
specified j-invariant explicitly if D < —4. Furthermore, the j-invariants of the curves we
construct by the CM method can be characterized precisely as the roots of a polynomial,
determined by D, over F,. This allows us to construct the vertices of an [-volcano and
thereby determine the roots of ®;(X, 7).

As we are only interested in finding the j-invariants of [-isogenous elliptic curves so as to
determine the roots of , rather than distinguish between an elliptic curve and its quadratic
twist. Hence it is justified to use j(F) and E interchangeably and refer to the j-invariants
as curves when unambiguous. We will now narrow our focus to CM curves that are used
in our computation. Further details on the CM method can be found in [21] and [4].
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For our purpose of computing ®;, we seek integer parameters v, D, with D < —4, D =0
or 1 mod 4, for which we can find sufficient integers ¢t and corresponding prime p that
satisfy the conditions

4p = t* —v*I*D, (3.5)

p = 1 (modl), (3.6)

L /o, (3.7)
<?) _ (3.8)
h(D) = 1+2 (3.9)

From 3.5 and 3.6, we gather that t* = 4 (mod [). We can fix v = 2, t = 2 (mod 2I), so
that
4p =1* — 4I’D = (2 + 2kI)* — 4I°D = 4(1 + 2kl + k*I* — I>D)

and thus ensure that p =1 (mod ). This also ensures that equation 3.7 is met, since [ is
an odd prime. Note that this restriction does not prevent us from finding an appropriate
D.

With these parameters in place, for each p, we can define a family of elliptic curves j;
over IF,, with p + 1 — ¢ points, that are the vertices of an [-volcano. Furthermore, since
t2> —4pmod | = 0, from our earlier discussion, we note that each j; in the l-volcano has
either [ + 1 neighbours or only one neighbour. In fact, the choice of parameters guarantees
a specific structure for the /-volcano.

Definition 3.2.2. We refer to an [-volcano, with parameters D, p, [, v,t satisfying condi-
tions 3.5, 3.6, 3.7, 3.8, 3.9 as a Broker-Lauter-Sutherland (BLS) [-volcano. For the
rest of this thesis, we will further assume that v = 2 and ¢ = 2 (mod 2I).

Proposition 3.2.3. The structure of a BLS l-volcano satisfies the following:

o The subgraph of vertices with | + 1 neighbours is a cycle.

o Fvery vertex with | + 1 neighbours is adjacent to exactly | — 1 wvertices with one
neighbour.

o Fuery verter with one neighbour is adjacent to exactly a vertexr with [+ 1 neighbours.
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Definition 3.2.4. We refer to the set of vertices with [ + 1 neighbours as the rim of the
[-volcano, and the set of vertices with one neighbour as the floor of the [-volcano. We
define an n-isogeny cycle as an ordered set of j-invariants ji, jo, - , j,,» Where j;, 7,11 are
n-isogenous and ji, j,, are n-isogenous. Thus the rim of an [-volcano naturally defines an

Figure 3.1: A 5-Isogeny Volcano

Example 3.2.5. In Figure 3.1, [ = 5. There seven vertices with 6 = [ + 1 neighbours,
forming the rim of the 5-volcano. The remaining 28 vertices each have one neighbour, and
they form the floor of the 5-volcano.

For each j(E;) on the rim of an I-volcano there is a curve E; ; on the floor, and an isogeny
Gis : B — E; s of degree [, for s = 1,--- 1 — 1. We use the [*-isogeny 1; s := ¢; s © @i sy1,
for s =1,---,1—1 to define an [?-isogeny cycle on the floor of an I-volcano for each E;.

Example 3.2.6. For [ = 5, we can choose D = —151, v = 2. Condition 3.5 becomes
p = (t/2)* + 3775. The primes that we generate are

p = 4451,6911,9551, 28111, 54851, 110051, 123491, 160591,
211711, 280451, 434111, 530851, 686051, 736511,

corresponding to t = 52, 112, 152, 312, 452, 652, 692, 792, 912, 1052, 1312, 1452, 1652, 1712.
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3.2.3 Detalils of Algorithm

We summarise the above as an algorithm before explaining the steps in greater detail.

ComputeModularPolynomial(l)
Input: Prime [
Output: ©,(X,Y) over F,,.

1. Find suitable discriminant D, and compute the Hilbert class polynomial Hp.
2. Find suitable t, p.

3. While [ [ p < 2MAX, do:

(a
(b
(

) Find suitable prime p.
)

(c) Enumerate the roots of Hp and identify the [-isogeny cycle on the rim.
)
)

Find a root j; of Hp over [F),.

d
(e

Find a curve j; on the floor which is l-isogenous to jj.

Enumerate the curves on the floor of the volcano, and identify the [*-isogeny
cycle.

(f) Match each j; on the rim to the [ — 1 curves on the floor it is [-isogenous to.
(g) For each j;, compute ®;(X, j;) € F,[X] via interpolation.

(h) Interpolate ®;(X,Y’) over F, as a polynomial in (F,[Y])[X], using ®;(X, j;) €
F,[X].

4. Compute coefficients of ®;(X,Y) € Z(X,Y') via CRT using ¢;(X,Y) e F,[X,Y].
5. Return ¢;(X,Y).
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3.3 On the Rim

3.3.1 Hilbert Class Polynomials

Theorem 3.3.1. Let Op denote the imaginary quadratic order Z[”;@] for D < 0. The
j-invariant of an elliptic curve C/Op is an algebraic integer w.

Definition 3.3.2. The minimal polynomial of w, as defined in Theorem 3.3.1, over Z is
the Hilbert class polynomial, which we write as Hp € Z[X]. The class number h(D)
is defined as the degree of Hp.

Theorem 3.3.3. E/F, is an elliptic curve on the rim of a BLS l-volcano if and only if
J(E) is a root of Hp when defined over F,,.

The Hilbert class polynomial Hp € Z[ X] is first computed via a complex-analytic method
(more details later in this chapter). We then express it as a polynomial over F,. Theorem
3.3.3 tells us that the roots of Hp over [F, will be precisely the j-invariants of curves on
the rim of the BLS [-volcano. Instead of finding all the roots of Hp over F,, we begin
with one such root, and use the class group of binary quadratic forms of discriminant D
to enumerate the rest.

Example 3.3.4. The Hilbert class polynomial for D = —151 and ¢t = 52, p = 4451 is
Hp(X) = X" +2230X°% + 1720X° + 3225X* + 2587.X° + 2019X? + 2242X + 803

and has roots 351,701,901, 1582,2215, 2501, 2872, with h(D) = 7. These roots are the
j-invariants of elliptic curves defined over F, on the surface of the [-volcano, each with
p+ 1 —1t points.

3.3.2 Binary Quadratic Forms

Definition 3.3.5. A binary quadratic form is a quadratic polynomial f(z,y) := az® +
bry + cy? where z,y are indeterminates. We write the form as {a,b,c) for brevity. We
are interested in integral binary quadratic forms with discriminant D, where a,b,c € Z
and b? — 4ac = D. A binary quadratic form is primitive if gcd(a,b, ¢) = 1 and positive
definite if @ > 0 and D < 0 (thus ¢ > 0). A binary quadratic form is reduced if
0<|b|<a<candif |b| =aora=c then b= 0.
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For the remainder of this thesis, we will assume that any binary quadratic form will be
integral, primitve and positive definite.

Proposition 3.3.6. Any non-reduced binary quadratic form can be reduced to a unique

reduced form by a combination of the following steps recursively:

1. If a > ¢, then swap a,c and set b = —b.

b2—D
4a

2. If |b] > a, set b ="0b+ 2|%2]a and recompute ¢ =

Note that the above steps leave the discriminant unchanged.

Definition 3.3.7. Two binary quadratic forms are equivalent if they share the same
reduced form after reduction. Given two binary quadratic forms {(ay, by, ¢1), {as, by, c2), let

by +b
g = ged(ay, as, : 5 2), 0a1 +GSas +vs =g
and X D
+
b= P <9a152 + Gashy + v——" 22 )

We define the Dirichlet composition as

<a1, b, C1> o <@2, ba, 02> = <613, bs, C3>

2_
with as = #32,b; = £ mod 2ag, |b3] < as,c3 = %. We write {a, b, c>k to denote {a,b,c)
composed with itself k times.

Proposition 3.3.8. The set of reduced binary quadratic forms together with the Dirichlet
composition forms a finite abelian group. The identity element is (1,0, —D/4) when D =0
(mod 4), and {1,1,(1 — D)/4) when D =1 (mod 4). The inverse of {a,b,c) is {a,—b,c).
We refer to this group as the class group of binary quadratic forms with discriminant D
and denoted it by cl(D).

Theorem 3.3.9. cl(D) induces a free transitive group action on the roots of Hp.
Corollary 3.3.10. The order of the cl(D) is h(D), the class number.

Corollary 3.3.11. The class number h(D) is the number of reduced binary quadratic forms
with discriminant D.

Example 3.3.12. The class group cl(—151) consists of the reduced forms
(1,1,38),¢(2,1,19),(2, —1,19),{4,3,10), {4, —3,10), (5, 3,8), {5, —3,8)
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3.3.3 Finding Discriminants

Binary quadratic forms are easy to work with, since they are defined as integer tuples
and require only basic arithmetic to manipulate. This gives us a concrete way to study the
isogeny relations between the roots of Hp, in particular to check if our choice of D meets
the condition h(D) = [ + 2, before computing Hp itself. This is noteworthy, as computing
Hp takes non-negligible time.

Furthermore, the class number h(D) can be computed by counting the number of reduced
forms directly. With D = 0? — 4ac and |b] < a < ¢, we have a < 4/—D/3, and thus only
—D/3 possible pairs of (a,b) to check.

Theorem 3.3.3 states that the roots of Hp are the j-invariants on the rim of a BLS-
volcano. With a root jo of Hp, Theorem 3.3.9 tells us that the action of cl(D) on jy
will yield the remaining roots of Hp. To be specific, for distinct forms oy, aq € cl(D),
aqjo # aagjo, and the identity element in cl(D) fixes jo.

In the context of a BLS-volcano, we are interest in the fact that any [-isogeny on the
rim corresponds to the action of either {I,b, ¢y or (I, —b,c). However, instead of using an
explicit action of a form on the j-invariant, we will instead specify a prime parameter
lo « [, for which there exists a form (o, by, co) € cl(D), and o, by, co)™ = (I, b, ¢) for
some 0 > ky, < k(D). This relation between the forms guarantees that any Il-isogeny on
the rim is equivalent to the composition of some ki, lp-isogenies. Thus we can use the
lo-th classical modular polynomial, which is known since [y is very small, in place of the
[-isogeny.

Therefore, when determining D for each [, we need to check that indeed such an [
exists. The approach that used in this implementation is to check that there exists a binary
quadratic form (lg, bf), ¢y which generates cl(I>D), the class group acting on the curves on
the floor of the [-volcano. This condition ensures that there exists (ly, by, ¢oy that generates
cl(D). As such, we can define parameters kyy, and kgoor where (o, by, cod™ = (I, b, ¢) and
(o, By, e oor = (12,0 /Y. As (I,b,¢) is also a generator of the class group, kym will be
coprime with h(D). kgeor Will be equal to (D).

Example 3.3.13. For the class group in Example 3.3.12, (2,1, 19) generates the sequence
(2,1,19),{4,-3,10),¢(5,3,8),¢{5,-3,8),(4,3,10>,(2,—-1,19),(1,1,38).
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Hence (2,1,19) is a generator with (2,1,19)* = (5,3,8). Thus we can choose [, = 2 and
kyim = 3.

The class group on the floor is cl(12D) = cl(—3775), and has (I—1)+h(D) = 28 elements.
We can check that (2,1,472) generates the group

(2,1,472) ,{4,1,236),{8,1,118),(16,1,59), (32, —31,37), (19, 5,50), (25, —5, 38,
(29,13,34), (17, —13,58), (31, =21, 34), (22, 3,43) , (11, 3,86 , (22, —19, 47}, (25, 25, 44),
(22,19,47) {11, —3,86), (22, —3,43) (31,21, 34) (17, 13, 58), (29, —13, 34), (25,5, 38) ,

(19, —5,50),(32,31,37),(16, 1,59, (8, —1,118), ¢4, —1,236),¢2, —1,472) <1, 1,944)

with (2,1,472)" = (52, —5,38). Thus kgoor = 7 = h(D).

As ¢, (X,Y) has to be known, we require [y « . In practice, we are able find [y < 7
for [ < 200 that satisfies our needs. The table below shows a set of possible selection of
parameters, along with the corresponding class number:

Table 3.1: Full Parameters for [ < 200

l D h(D) I l D h(D) l D h(D) Iy
3 -7l 7 2 29  -9431 91 2 131 -43711 147 2
5 -151 7 2 61 -10247 105 2 137 -47951 241 3
7 =271 11 5 67 -11783 95 2 139 -49919 189 2
11 -439 15 2 71 -15287 137 7 149 -57047 163 2
13 -599 25 2 73 -14431 8 5 151 -58967 253 3
17 -919 19 5 79 -16823 95 3 157 -63527 211 2
19 -1367 25 3 83 -17903 8 2 163 -67759 191 2
23 -1759 27 5 89 -20639 179 3 167 -74311 251 5
29 -2551 41 2 97 -25367 141 7 173 -76039 221 2
31 -2879 57 3 101 -26479 105 2 179 -81031 193 2
37 3767 39 2 103 -27791 203 5 181 -83399 359 2
41 -4583 61 3 107 -29879 195 7 191 -94727 355 7
43 -5039 &3 3 109 -30983 145 2 193 -95191 259 5
47 -6311 89 5 113 -33191 133 5 197 -98927 335 2
53 -7607 89 2 127 -41231 163 5 199 -99767 249 3
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3.3.4 Isogeny Cycle

NTL has a FindRoot () function that helps find a root j; of Hp. From this first root,
we compute @, (X, j) and search its roots for the next root jo of Hp. We expect to find
lo + 1 roots, but only two roots will correspond to j-invariants on the rim. To distinguish
between them, we check the number of [y-isogenies from each root. Exactly two roots will
have [y + 1 lp-isogenies, while the other [ — 1 roots will have only one ly-isogeny defined
from it. We continue with this process until we arrive back at j;.

This cyclic sequence of roots of Hp gives us a lyp-isogeny cycle. Since we know that
the composition of k,,, consecutive lyp-isogenies gives us an [-isogeny, we can reorder the
lo-isogeny cycle to obtain the [-isogeny cycle that we require.

Example 3.3.14. For [ =5, D = —151, and h(D) = 7. The first [-volcano has ¢t = 52,p =
4451, and the first root of Hp € F,[X] is 7 = 351. From Example 3.3.13, we have [y = 2.
The roots of ®,(X, j) are 65,701,2501. We expect to find exactly two lp-isogenies on the
rim, and thus we need to distinguish between the three.

We accomplish this by finding the roots of ®;,(X, 65), ®;,(X, 701), ®,,(X,2501). Since
®;, (X, 65) has only a single root (which must be 351) in [F,,, we conclude that 65 does not
correspond to a j-invariant on the rim.

Repeating the process, we see that we have the [yp-isogeny cycle
351 % 701 5 2872 % 2215 % 901 2 1582 3 2501.
Since ki, = 3, the l-isogeny cycle is

351 2 2215 2 2501 2 2872 2 1582 2 701 > 901.
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3.4 On the Floor

3.4.1 Descending to the Floor

To find a curve E’ on the floor that is [-isogenous to E on the rim, we need to define
an [-isogeny ¢ : E — FE’ explicitly. When [ is prime, every [-isogeny is separable, and
hence every isogeny ¢ with | ker ¢| = [ has degree I. Furthermore, the kernel of a separable
isogeny uniquely defines the isogeny. Thus for a given kernel (of a separable isogeny) C,
we can use F/C in place of E’ to denote the image of the isogeny. In our case, we only
need to construct a subgroup of E of order [ to define E' = E/C.

The order of E(F,) is p+ 1 —t. For a BLS [-volcano, we have chosen p = 1 and ¢t = 2
(mod [). Hence p+1—t =0 (mod /), which means that E(FF,) contains a subgroup of
order [. We can pick P eg E until we get @) := [@]P # o0, and use the cyclic group
generated by @) as C, the kernel of an [-isogeny.

With the kernel C', we can use Vélu'’s formulae [24] to write down the Weierstrass equa-
tion for the curve Ef, and thus the j-invariant j; := j(F}) that is [-isogenous to j; := j(F)
on the rim. If j] is on the rim, we repeat the process with a new random point, until we
obtain 7| not already on the rim.

3.4.2 Running along the Floor

Binary quadratic forms on the floor have discriminant /2D and the class group on the
floor has order (I —1)h(D). To find the j-invariants on the floor of the I-volcano, we begin
with j| := j(E') given by Vélu’s formulae, and again find the roots j of ®;, (X, j1) € F,[X]
to enumerate the lg-isogeny cycle, using the splitting of ®;, (X, j) € F,[X] to identity the
curves on the floor.

Since the [p-isogeny cycle on the floor can take either of two possible orientations, we
need to check which orientation corresponds to that of the l-isogeny cycle on the rim of the
[-volcano. Knowing that j; on the rim is [-isogenous to ji on the floor, we check if the next
curve in the [y isogeny cycles, namely jo, jb, are [-isogenous. This can be accomplished by
again finding an [-isogeny from j, that descends to the floor.
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Once we have ascertained that the two [g-isogeny cycles have the same orientation, we
can traverse the cycles simultaneously to establish the incidence between the j-invariants
on the rim and those on the floor. For each [y-isogeny on the rim, we traverse the cycle on
the floor by an ly-isogeny on the floor to locate the next edge of the [-volcano. Every h(D)
consecutive lp-isogenies on the floor will be an [?-isogeny between two curves on the floor
that are incident with the same curve on the rim.

Example 3.4.1. Continuing from Example 3.3.14, we find j; := 2464 to be a curve on
the floor which is l-isogenous to j; = 351 on the surface. The roots of @, (X, j;) are
1180, 2138, 4221. Since ®;,(X, 2138) has only a single root in IF,,, 2138 does not correspond
to a j-invariant on the floor. Suppose we choose jj := 1180 to be the next j-invariant in
the [p-isogeny cycle.

Repeating the process, we obtain the [y-isogeny cycle

2464 > 1180 > 3497 > 2970 > 676 > 1502 > 2843 >
3508 > 3144 > 945 > 3188 > 3341 > 2087 > 4397 >
2566 = 3147 > 291 2 3328 2 1868 > 1064 > 3345 >
2076 5 2255 2 3244 5 1478 3 2434 5 4228 3 4221

The seven [%-isogeny cycles and the corresponding curve on the rim are

351 2 2464 3508 2% 2566 2> 2976
2501 > 1180 2 3144 2 3147 2 2955
1582 5 3497 2 945 2 9291 2, 39244
5 25 25 25
901 > 2070 2 3188 2 3328 2 1478
2215 > 676 2> 3341 2 1868 2% 2434
2872 1502 2 2087 25 1064 2 4228
701 > 2843 2, 4397 3, 3345 B, 49221
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3.5 Putting it Together

3.5.1 Evaluation on the Rim

Recall that the BLS [-volcano has [h(D) vertices. There are h(D) vertices on the rim,
which we refer to as j;, i = 1,--- , h(D), that forms an l-isogeny cycle. Each vertex j; on
the rim is incident to [ —1 vertices on the floor, which we label as j; ;, with s =1,--- [ —1.
Upon establishing the j-invariants at each vertex of the [-volcano, we can write down h(D)

polynomials
-1

fo= (X = jim)(X = jir) [ [(X = ji), (3.10)
s=1
fori =1,---,h(D), taking jo := jnp). Each of these polynomial has degree [ + 1, and is
precisely the value of ®;(X,Y) € F,[X] evaluated at Y = j;, i.e. O;(X, ji).

Since we have h(D) = [ + 2, we have the values of (9,(X))(Y) € (F,[X])[Y] evaluated
on at least [+2 instances of Y. The degree of @, € (F,[X])[Y] is [+1, so these are sufficient
for interpolation. Thus we obtain ®;(X,Y) € F,[X,Y].

Example 3.5.1. Continuing from Example 3.4.1, we write down the seven polynomials
defined over F4451.

Oy(X,351) = (X —901)(X —2215)(X — 2464)(X — 3508)(X — 2566)(X — 2976)
O(X,901) = (X —351)(X —T701)(X —2970)(X — 3188)(X — 3328)(X — 1478)
O (X,701) = (X —901)(X — 1582)(X — 2843)(X — 4397)(X — 3345)(X — 4221)
O)(X,1582) = (X —701)(X —2872)(X — 3497)(X — 945)(X — 291)(X — 3244)
O)(X,2872) = (X —1582)(X —2501)(X — 1502)(X — 2087)(X — 1064)(X — 4228)
O)(X,2501) := (X —2872)(X — 2215)(X — 1180)(X — 3144)(X — 3147)(X — 2255)
O,(X,2215) = (X —2501)(X —351)(X — 676)(X — 3341)(X — 1868)(X — 2434)

After interpolation, we obtain ®5(X,Y") over Fyys;:

4450X5Y° + 3720X5Y* 4 2433 X5Y3 + 3499X°Y? + 70X°Y + 3927X°
3720X1Y5 + 3683 X1Y? + 2348 X 1Y + 2808 X1Y? + 3745X 1Y + 233X
2433X3Y5 4 2348 X3Y* + 2028 X3Y3 + 2025 X3Y 2 + 4006 X3Y + 2211.X3
3499X2Y5 + 2808 X2Y* + 2025X2Y3 + 4378 X2Y? + 3886 X2Y + 205072
70XY? + 3745XY* + 4006 X Y3 + 3886 XY? + 905XY + 2091X

3927V + 233V 4 2211Y3 + 20502 + 2091Y + 2108

XG

+ o+t

YG
(3.11)
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3.5.2 Chinese Remainder Theorem

We use a;; and @, to denote the coefficients of X'Y7 in ®(X,Y) in Z[X,Y] and
F,,.[X,Y] respectively. In Section 3.2.1, we alluded to the need to find a set of p, so
that [[, p, = 2MAX,, where MAX; := maxXo<; j<i+1 |a;j| denotes the maximum that the
absolute value of the coefficients of ®;(X,Y") can take. The upper bound below, as proven
in [3], allows us to decide on the number of p,’s needed a priori.

Theorem 3.5.2. A logarithmic upper bound for the explicit height MAX; is

log(MAX,) < 6llogl + 161 + 14v/1log (3.12)

After the interpolation step, we have the system of congruence equations
aij,'r = Qi (IIlOd pr)

from the expressions for ®;(X,Y) € F, [X,Y]. Solving this system using the Chinese
Remainder Theorem gives us the solution

. . — 1 . — .
restricting |a;;| < 5[], pr- Since |a;| < MAX; < [], pr, we must have a;; = a@;;, which
means that we recover the coefficient a;; € Z.
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Chapter 4

Schoof-Elkies- Atkin Algorithm

In this chapter we will describe and explain the workings of the Schoof-Elkies-Atkin algo-
rithm [17][8], as well as discuss some of the considerations involved during the implemen-
tation. Most of the content follows the exposition in Chapter 17.2 of [5], with details of
the Match-Sort algorithm from Chapter VII of [1]. Besides using NTL 5.5.2 [19] for its
support for generic finite field and polynomial arithmetic, some routines for factorization
and Frobenius computations [18][25] were used.

4.1 Use of Modular Polynomials

In this section, we will look at the algorithms that Atkin and Elkies used to extract
information from the [-th modular polynomial to decide if a prime [ is Atkin or Elkies.

Proposition 4.1.1. Let E/F, be an elliptic curve with j-invariant j # 0 or 1728. Then
e the polynomial ®;(X,j) has a zero j € Fyr if and only if the kernel C of the isogeny
Y E— E/C is a one-dimensional eigenspace of ¢ in El]

e the polynomial (X, j) splits completely in Fyr[X] if and only if ¢;, acts as a scalar
matriz in E[l].

Proposition 4.1.1 tells us that [ is an Elkies prime if and only if ®;(X,j) has a zero in
[F,. Hence we can study the splitting of ®;(X, j) over F, to classify primes as Elkies or
Atkin. Atkin’s theorem below takes this one step further by characterizing the possible
factorizations, thus providing us with a sufficient condition to do the classification.
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Remark We will be using classical modular polynomials in this thesis for SEA, even
though there exist other types of modular polynomials that are used in practice, such as
Weber and Atkin polynomials which can perform the same task. In fact, these alternatives
have much smaller coefficients, and are thus easier to store. We have used the classical
polynomials here as the theoretical justification for their use is more obvious.

4.1.1 Atkin’s Classification Theorem

Theorem 4.1.2. (Atkin) Let E/F, be an ordinary elliptic curve with j-invariant j # 0
or 1728. Let ®)(X,j) = fifa--- fs be the factorisation of ®,(X, j) € F,[X] into irreducible
polynomials. Then we have three possible cases for the degrees of fi, fa, -, fs, depending
on the relation between the discriminant A =t — 4p and [.

1. A=0 (mod ) : the degrees are (1,1) and r =1, or (1,1,---,1) and r = 1.

2. Ae QR, —{0} : the degrees are (1,1,r,7,--- ,r) andr | I — 1, and ¢, acts on

El] as [ ())\ 2 ], where \, € T} are the roots of Z* —t,Z + p.

3. Ae QR,: the degrees are (r,r,--- ,r) andr>1,r | [+ 1.

Remark In cases 1 and 2, [ is an Elkies prime and in case 3, [ is an Atkin prime. Note
that r in the above theorem is the order of the Frobenius endomorphism ¢, as an element
of PGLy [y, i.e. ¢, = id. We refer to r as the order of the Frobenius endomorphism on
Aut(E[l]). It can be shown that r > 1 is the smallest integer so that A" = u”, where A,
are the roots of the characteristic polynomial for ¢,.

Propostion 4.1.1 tells us that ¢, has an eigenspace of dimension one defined over F,
if and only if ®;(X,j) has a root in F,. Theorem 4.1.2 tells us that the factorisation of
®,(X, j) indicates if [ is an Elkies or Atkin prime.

To classify primes as Atkin or Elkies, it is not necessary to factorize ®;(X, j) over [F,; it
suffices to determine if ®;(X, j) has a root in F,. This is equivalent to finding

9(X) = ged(®i(X, j), X” — X) = ged(®(X, ), X — X mod &,(X,))  (4.1)

(similar to Equation 2.16). Note that the latter expression allows us to exploit existing
speed ups in performing modular exponentiation of X over the ring IF,[ X ]/(®;(X, 7)).
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We describe the algorithm for Atkin’s classification below, assuming that we have the
algorithm ModularExponentiation(a(X), e, f(X)) which returns a(X)® mod f(X).

Algorithm: AtkinClassification
Input: The [-th classical modular polynomial ®;(X, j) over [F, evaluated at Y = j.
Output: ATKIN or ELKIES.

1. Compute h(X) = ModularExponentiation(X, p, ®;(X, 5)).
2. Compute g(X) = ged(h(X) — X, (X, j)).

3. If deg(g) = 0, return ATKIN.

4. Otherwise, return ELKIES.

Proposition 4.1.3. (Atkin) Let r be as defined in Theorem 4.1.2. Then t, satisfies the
equation
ti=pE+£&1)? (modl), (4.2)

for some primitive r'-th root of unity & € F;, where v’ = r if v is odd, 7' = 2r if r is even.

Remark In some sources, such as equation 17.9 in [5] and Proposition 6.2 in [17],  has
been defined as a r-th root of unity. However, if we have r = 2 for some Atkin prime [
(i.e. case 3), if € is a 2nd root of unity, then ! = ¢ = —1. That gives us t? = 4p (mod 1),
which means A = ¢ — 4p = 0 (mod [), which is a contradiction. This motivates a second
look at the proof for the above proposition.

Proof. Since A, u are the roots of Z2 — ;7 + p;, we have Ay = p (mod [) and X\ + pu =t
(mod [). Then
M= \p" = (A\p)" =p"  (mod 1),

and so A2 = (p (mod 1) for some primitive r-th root of unity ¢ € ;. Therefore

L=A+p)=A+p/A) =X +2p+ A = +2p+ p=p((+2+¢Y) (mod ).

(4.3)
Let €2 = ¢, which implies that ¢ is a primitive r’-th root of unity, where ' = r or v’ = 2r.
Then we can rewrite the final equation as

=pE+&t)
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Case 1: r odd ¢ = i(rél, since these are two solutions to

r+1

= (£ ) =C"=C=¢

r+1 r+1

We then have " = ("2 )" = ((")z = 1, i.e. £ is an r-th root of unity. Since £ is a
primitive r’-th root, ' | r. But r | r’ in our definition of r/, so ' = r if r is odd.

Case 2: r even Suppose ¢ is an r-th root of unity. Thus we can write & = ¢ for some
integer i, and . .

(=€ =(() =™
Thus (%! = 1, which implies » | 2i — 1. But this contradicts r being even. Therefore £ is
not an r-th root of unity, and so r’ = 2r if r is even.

It should be noted that (r’) = ¢(r), since p(2%) = 2¥~! for k > 1. Hence the error in the
definition for £ in 4.2 does not change the number of possible values for ¢;. Alternatively,
one can use 4.3 instead to avoid considering cases for odd and even 7. O

Proposition 4.1.4. (Atkin) Let E/F, be an ordinary elliptic curve with j-invariant j # 0
or 1728. Let s be the number of irreducible factors of ®,(X, j) in F,[X]|. Then s satisfies

the equation
(—=1)° = (%) : (4.4)
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4.2 Elkies Primes

4.2.1 Elkies’s Algorithm

We have explained at the beginning of this chapter that when [ is an Elkies prime,
the eigenspaces of ¢, acting on E[l] are subgroups of order [ that are stable under ¢, and
correspond to eigenvalues in [F;. For the M-eigenspace C, there is a divisor F(X) € F,[X] of
the [-th division polynomial ¥;(X). We refer to this polynomial as the kernel polynomial.
This divisor is of degree (I — 1)/2 and its zeroes are the (I —1)/2 distinct z-coordinates of
the points in C'.

Given the A-eigenspace C', we check, for each of N =1,--- [ — 1, if the relation
Sp(,y) = (2",97) = X' - (2,9)
holds for all (z,y) € E[l]. The value of ¢; is then computed as
tt=X+p -\ modl.

Instead of computing separately for each of the [ points in C', the polynomial F'(X) will
allow us to check across all points in C' simultaneously. Note that we can use a Baby-Step
Giant-Step (BSGS) approach to lower the number of computations from O(1) to O(V/1).

Computing torsion points The z-coordinates of the [-torsion points in the associated
subgroup satisfies the kernel polynomial F'(X). Since the torsion points lie on £ : Y? =
X3 + aX + b, their coordinates satisfy Y2 — X3 — aX — b as well. Therefore we perform
elliptic curve arithmetic on [-torsion points over the ring

F,[X,Y]

=y — v —ax —b)

(4.5)

We store a torsion point in the form (z(X),y(X), 2(X)), where z(X), y(X), 2(X) € F[X]
and z(X) is 0 or 1. While Y is not stored explicitly, we define our point arithmetic with
the assumption that the polynomial in the y-coordinate is Y - y(Y'). For example, (z,y, 1)
is stored as (X, 1,1), and the point at infinity is stored as (1, 1,0).
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Torsion point doubling To obtain (2/(X),y(X), 2/(X)) := [2](z(X),y(X), 2(X)) (as-
suming not point at infinity or point of order two), we use the following equations, computed
modulo F(X):

y (X)) = (y(X)?(X®+aX +0)7" (4.6)
m(X) = 3z(X)*+a (4.7)
Jx) - MY f ) _9(x) (4.8)
/) = 0 (MR ) - w0) - 1) (1.9)
J(X) = 1 (4.10)

Torsion point addition To obtain (2"(X),y"(X),2"(X)) = (2/(X),y'(X),2 (X)) +
(x(X),y(X), 2(X)) (assuming distinct points that are not inverses, and no points at infin-
ity), we use the following equations, computed modulo F(X):

y'(X) — y(X)

O
m(X) = 7(X) = 2(X) (4.11)
2"(X) = m(X)? (X’ +aX +b) —2(X) - 2'(X) (4.12)
y'(X) = m(X)- (z(X) - 2"(X)) —y(X) (4.13)
(X)) = 1 (4.14)

There exists also, an isogenous elliptic curve E=F /C and a separable isogeny of degree
[ between E and E. From Theorem 3.1.18, we see that j(F) is a root of ®;(X,j) =0 in
[, which we can efficiently compute. The following theorem provides an explicit equation
for F.

Theorem 4.2.1. (Elkies) Let E/F, be an ordinary elliptic curve with j-invariant j # 0
or 1728, where E : y* = 2* + ayx + ag. Let ®; x and @,y denote the partial derivative
of ©(X,Y) with respect to X and Y respectively. Suppose E is l-isogenous to E over IF,,
with 7 being its j-invariant. Then a Weierstrass equation for E is given by

E:y? =2 + ayx + G,

where
~ 1 jl2 q _ 1 j’IS
MGty M 9T TRe43(G — 1728)
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j €, is given by
5 18asPux(jJ) .
I ay Py (5,3)"

Theorem 4.2.2. (Elkies) Let £y = —48ay4, Eg = 864ag and E, = —48a,, Eg = 864ag.
Then the sum py € F,, of the x-coordinates of the non-zero points in C' is given by

l | (E2 FE? |l (Es  Eq
=977y <E6 E6> 3 <E4 B

7 72P xx(4,]) + W71 xv (4,]) + P7*Pryy (4,])
7'®1x(7,3)

with j' = —jFEg/Ey and ] = —jE6/E4; ®; xy is shorthand for aixaiyq)l'

where J is defined as

Computing partial derivatives NTL does not have a definition of multivariate poly-
nomials, and has only a function for differentiation for univariate polynomials. However,
since we seek to compute the partial derivative of ®;(X,Y’) with respect to X, followed by
evaluation at Y = J, we can obtain the desired partial derivative by computing

- d -
Py x(X,]) = X (P:(X,])) (4.15)
We can compute (I)Ly(j,j), CI)LX)(('].,!T), (I)l’yy(j,j) similarly.

®,(X,Y) is a symmetric polynomial with degree [ + 1, and can be stored in roughly half
the space since the coefficients of XY and XY™ are the same. As ®; yy is the only
partial derivative that remains symmetric, ®; xx(7,)) is the only partial derivative that
can be computed without increasing the number of coefficients stored.

Kernel polynomial Now that we have the Weierstrass form for the two isogenous curves
E and F = E/C and the value of p;, we would like to compute the degree (I — 1)/2

polynomial
aX)= ] X—-=z(P).

+PeC—{w}

Instead of using the curves E/F, and E/F,, we consider their analogues £/C and E/C, as
it is easier to define the isogeny between E/C and E/C.
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Let a4 = l%a, and ag = [Gg. We define the curve E : y? = 2% + aux + ag, to which we
can associate the reduced Weierstrass p-function by

1 o6}
c k=1
as s 3 ki for k >3
L =——, Co = ——, Cp = Cjck‘—l—j or = 9.
5 7 (k—2)(k+3) =

A similar function ¢ for E is defined.

Theorem 4.2.3. Let g,(X) € F,[X] be the divisor of V(X)) having the x-coordinates of C
as its zeroes. Let ¢, : E — E be the isogeny with ker(¥,) = C. Then

1 - ¢ —le
-1 2 k k 2k+2
= —— — E ) 4.17
2 gi(p(2)) = exp ( oP1z i 2k + D)2k + 2)2’ ) ( )
We inductively compute the coefficients ¢, and ¢, from a4, ag and a4, ag respectively.

Although equations (4.16) and (4.17) involve infinite series, it suffices to compute the
infinite series with &k up to d = (I — 1)/2, the degree of the kernel polynomial g;(X).

With the value of p; from Theorem 4.6, we can compute the polynomial on the RHS of
(4.17), storing its coefficients as a vector b of length d + 1. Next, we compute 22?9 g (z)’
for each ¢ = 0,--- , d, and store its coefficients as the i-th row of a (d + 1)-by-(d + 1) square
matrix M. Note that M, by its definition, will always be invertible. M b gives us the
vector with the coefficients of g;(X) € F,[X] as its entries.

Note that the formula has terms of the form (k — 2)(2k + 3) in the denominator, which
means that the formula would fail if £ > (p — 3)/2. This means that for finite fields of
small characteristic, alternative methods to compute g;(X) are required.
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4.3 Atkin Primes

4.3.1 Atkin’s Algorithm

In Atkin’s classification theorem, we used r to the order of the Frobenius endormorphism
on Aut(E[l]), which is equivalently the smallest positive integer such that ®;(X,j) splits
over . In the case where [ is Atkin, we need to compute r to determine the set of possible
values for ¢;.

For each i = 2,3, -, we compute

gi(X) 1= ged(®)(X, j), XP' — X)

until we find the value i such that ¢;(X) = ®;(X,7), upon which we set r = i. Since r
divides [+ 1 and s = (I + 1)/r, we can limit the values of i to the divisors of [ + 1 for which

(_1)(l+1)/z’ _ (%) .

With 7 and thus 7" determined, there are ¢(r’) choices for £ (where ¢ is Euler’s totient
function) in Equation 4.2. Since

1

E+et=(N)+ (),
there are ¢(r')/2 choices for #? and thus
pri=p(r') <2l
possible values for t;.
To find the correct value of t, we repeat this computation for various small Atkin primes

[ and search for the correct value of ¢ using a modified version of the Baby-Step Giant-Step
algorithm called the Match-Sort algorithm, described in Section 4.4.

The Match-Sort algorithm combines the known values of ¢; for Elkies primes and the set
of possible t; for Atkin primes, to solve a discrete logarithm problem on the restricted set
of values.

46



4.3.2 Computing Order of Frobenius

The most obvious approach to computing r, the order of the Frobenius endormorphism
on Aut(E[l]) is to perform ModularExponentiation(X, p*, ®;(X, 7)) for each i that divides
[+ 1 to get hy(X) = X?, followed by computing g;(X) = ged(®;(X, 5), hi(X) — X).

Algorithm: OrderFrobeniusl(®,(X, j))
Input: For an Atkin prime I, the {-th classical modular polynomial ®;(X, j) over F,.
Output: 7 so that ged(®;(X, 7), X?" — X) = &;(X, ).

1. compute b := (%)
2. fori=1,---,14+1do

3. ifi|l+1and (-1)=bdo

4. compute h(X) = ModularExponentiation(X, p’, ®;(X, 7))
5. compute g(X) = ged(P,(X, j), h(X) — X)
6. if g(X) = ®)(X,5) do

7. return <.

Suppose we use Square-and-Multiply to perform modular exponentiation. We can see
that OrderFrobeniusl repeats the computation of X2 (X?)? ... for each factor of [ + 1
that is considered, resulting in a large number of repeated computations when the number
of factors are large.

Instead of viewing each exponentiation p’ individually, we can consider them as perform-
ing a sequence of Frobenius maps, and by writing

i—k

xr' = (xrt’

we can perform the exponentiation iteratively for increasing factors of [+1, thus eliminating
repeated computations. Furthermore, we can utilise the addition chain for p that we found
for the classification algorithm to reduce the time for each Frobenius map.
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Algorithm: OrderFrobenius2(®,(X, j))
Input: For Atkin prime [, [-th classical modular polynomial ®;(X, j) over F,,.
Output: 7 so that ged(®;(X, j), X7 — X) = ®;(X, 7).

1. compute b := (%)
2. set k=0 and h(X) = X.
3. fori=1,---,l+1do

4. ifi|[l+1and (—=1)" =bdo

5. forc=1,---,i—k do

6. compute h(X) = ModularExponentiation(h(X), p, ®;(X, 5)).
7. set k = 1;

8. compute g(X) = ged(P;(X, j), h(X) — X).

9. if g:(X) = (X, 5) do

10. return .

In NTL, Victor Shoup has implemented the subroutine (Algorithm 3.1 in [25]) for com-
puting iterated Frobenius maps, that is X?" modulo a fixed polynomial F' defined over F,,.
The main idea behind the algorithm is to represent the Frobenius image X? as an element
f in the ring F,[X]/(F), and compute a(X)? by evaluating a(/5). This subroutine provides
us with an alternative approach to finding the Frobenius order r.
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4.4 Match-Sort Algorithm

4.4.1 Combining Information

After we have computed the values of (t;,1) for Elkies primes and (7, ) for Atkin primes,
the Match-Sort algorithm is used combine the information gathered from these primes to
compute the value of t € Z. We will use notations similar to that in [1] to describe the
algorithm.

Let £, A denote the set of Elkies and Atkin primes respectively. We define mp := [ [,
and tg := ¢t mod mp. We partition the Atkin primes into two sets Aj, Az (i.e. A= A4;0UA
and & = A; n A). For each A;, i = 1,2, we define m; := HleAil and t; := t mod m;. To
minimise the number of computations to generate the points in each list we will partition
the Atkin primes so that 1 < |A;|/|As] < 2. Putting these definitions together, we can
write

t =tg + mg(rims + romy) (4.18)

for some integers rq, 5. Since
Li=t=tg+megmor;y (mod my) and ty=t=tg+ megmirs (mod ms), (4.19)

we have the relations

t—tp ty —tg

r =

(mod my) and 71y =
mEgms mEgemy

(mod my), (4.20)

We can show (see Lemma VIL10 of [1]) that since tg < mp, if |ri| < ™51, then |ro| < mo.

For each Atkin prime [ € A;, i = 1,2, the value of ' allows us to find a set of p; possible
values for t;. We create the list 7; of possible values for t; mod m; for each i = 1,2 via
Chinese Remainder Theorem. From these we can compute a list R; of [ ], 4, 1 possible
values for r; using equation 4.20. We maintain both R;’s as increasing lists, sorted by the
absolute value of r;. Each possible pair for (r1,75) gives us a possible value for ¢ via 4.18,
and we can find the correct value by performing Shanks’ Baby-Step-Giant-Step (BSGS)
algorithm with R; and R, as the set of possible values for the baby-step and giant-step
respectively.

The order of a point P € E(F,) divides p+1—t, so we can use the condition [p+1—t]|P =
oo with a random point P to check if a value of ¢ is correct.

49



4.4.2 Baby-Step Giant-Step

Baby-Step The baby-step in the algorithm consists of computing, for each possible value
of 1,

In the above equation, the values p + 1 — tg and mompg are constant for all values for
r1, S0 it is possible to compute [p + 1 — tg|P and [mompg|P in advance. Therefore the
computation of @, is subtracting r; copies of [mempg|P from [p+ 1 —tg|P.

If the list R; is sorted, with the i-th entry denoted as 7 ;, then we can write

Qry; = Q = [r1a]([mamp] P) (4.22)

and compute them by computing r; ;memgP recursively. Each point @),, will be converted
to an affine point and stored in a list Q; of (Q,,,r1) sorted by their X-coordinates.

Giant-Step The giant-step in the algorithm consists of computing, for each possible
value of 7o,

Qr, = [r2]([mimp]P). (4.23)

Like in the baby-step, the point [m;mg|P can be computed in advance. Also, with Ry
sorted, we can compute each @, ,,, with a scalar multiplication of magnitude |ry ;1| —|r2,|.
With the list Q; sorted, we can use binary search to check if a match exists for each @,,.

If no match exists for all ),,, then we repeat the baby-step giant-step procedure with a
different randomly generated point P € E. Once a match is found, we can use 4.18 with
the values of r; and r, corresponding to the match to determine the value of .
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4.4.3 Complexity of Match-Sort Algorithm

Full Match-Sort Algorithm
Input: tg, mg, (1;,1) for each prime [ € A.
Output: Trace of Frobenius t.

1.
2.

10.

11.

12.

13.
14.

15.

Compute tg = t mod mg from ({t;},1), [ € £ via CRT.

Sort the pairs (77,1),1 € A by decreasing size.

.Letnlzngzl,fh:fb:@.

. Forle A, if ny <nsy, A = A; U, otherwise Ay = Ay U L.

Compute sets 7; from {(7},1) : l € A;} for i =1, 2.
Compute sets R; from 7; for i = 1,2, restricting |r| < [my/2].
Sort each R; by the absolute values of their entries, as an increasing sequence.

Choose random point P € E and set Q; = J, r; = 0.

. Compute Q := [p+ 1 —tg|P, mgP, mymgP and mympgP, in affine coordinates.

Fori=1,---|Ry,

(a) Compute [ry;]momgP and Q,,, := Q — [r1;|mempP.

(b) Set Q; = Q; U {er,“ﬁ,i}-
Convert Q; to affine coordinates via batch inversion, sorted by z-coordinate.
For 75 € Ry,

(a) Compute romimpgP.
(b) if romimpP equals Q,, ,

i. Set ry = ry,; and exit loop.
If no match is found, then repeat from step 7.
Compute t from (r1,73).

Return ¢.
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Definition 4.4.1. The Chebyshev function [13] ¥(z) is defined as

9(z) = > Inl =1In <]_[ z> (4.24)

I<x <z

where [ is a prime. This function is asymptotically linear, that is to say

0
lim ﬁ =1 (4.25)
T—C0 €T
and it is bounded by the inequalities
rln2 <J(z) <xln4 (4.26)

Number of primes For a random prime p, let n, denote the number of primes /; (starting
with 2) so that [[;”, {; = 4,/p. Let L denote the largest prime; we take I; as an increasing
sequence, so [; = 2 and [,, = L. In other words, we seek to find L so that

In (H l) =9(L)=>LIn2>In2- (2 + %logp) = In(4y/p) (4.27)

I<L

Hence it suffices to choose L > 2+ % log p to guarantee sufficiently many primes are found.
Asymptotically, we will expect L to be lower, approximately In 2- (2 + % log p). The number
of primes can be estimated to be

_— L N 1n2-(2+%10gp) _ 2+%logp
" InL In(In2-(2+1logp)) log(In2-(2+ ilogp))

(4.28)

which tends to QIécg);glfgp for large p.

We proceed to determine the complexity for each step in Match-Sort.

Computing ¢z Step 1 of the algorithm can be performed at the end of the loop for
each Elkies prime without the need to store the value. It would be faster to compute tg
recursively for each subset &, & where £ = & U &, after all the Elkies primes and their
respective traces t; are determined. However, the savings would be marginal, and hence
this latter approach has not been implemented.
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Partitioning Atkin primes If we assume the number of Atkin primes to be half of the
total number of primes, then the size of the sorting problem in step 2 is n,/2, and thus
has complexity O(n,logn,). Step 4 runs in n, steps. The partitions A;, As will have sizes

roughly +/n,/2.

Number of possible ¢; Each T; has size ¢(r) for each Atkin prime [, where r | [ + 1.
We denote by v(l + 1) the number of factors of [ + 1. Assuming that each factor of I + 1
is an equally likely candidate for r (besides r = 1, since that will make [ an Elkies prime),
we expect the size of number of possible ¢; to be

P L O (R Ve z
E(p(r)) = ,,(|1+1)—1 v+ -1 v(+1) -1

since [ 4+ 1 is even and has at least four factors if [ # 2,3, v(I + 1) — 1 = 3. For simplicity
we will use [/3 in place of E(p(r)).

(4.29)

Computing 7, We index A; as the increasing sequence (/;x) and the values in T, as
(tli,k)' Starting with S;; := T, , and m;, = l; 1, compute the set of solutions S; 11 mod m;
to the congruence problem

T
X

s (mod m; k)
tli,k (mod lz,k)

(4.30)

via the Chinese Remainder Theorem for each s € S;, and #;,, € T;,,. Note that the final
Sir has size n;. Each use of CRT requires one inversions for each modulus m;; and [; ,
but since it depends only on the index k, only two inversions need to be computed for each
k. Therefore the expected running time of step 5 is of the order of n;, which is

o) <H gp(r)) =0 (]_[ é) =0 (3’% ]_[z> e o) (3*%";)%) ~ O(p%).  (4.31)

lE.Ai lG.Ai

Computing R; Step 6 involves computing the possible values of 1 and ry given the sets
1
71 and 79, and thus is of the order of n; as well, which is O(ps).

Sorting R; If we use QuickSort in step 7, we will require O(n;log(n;)) steps, which
will be higher than O(ps). Alternatively, we can use BucketSort with O(m;) buckets to
performing sorting in O(n; + m;) = O(ps) time. The storage needed is no bigger than
O(m;) since the r;’s are distinct.
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Computing Q; Since R; is sorted by absolute values, for each ry;,71 ;41 € Ry, the
difference |ry ;41| — |r14| is much smaller than my, the size of the interval of values 7 ; can
take. Assuming that m; and my are of the same order of magnitude, and likewise for m;msy
and mp, m; and my has sizes in the order of magnitude O(ps). The size of |ry 4| — |71,
is in the order of O(my/ny), which is less than O(ps).

As we can compute successive [ry;|lmampP recursively via scalar multiplication by
|71i11] — |r1|, the running time of these steps is dominated by the number of |ry;|’s,
i.e. ny). Thus the computation of Q; is in the order of O(p%) elliptic curve point dou-
bling/additions.

Converting to affine coordinates To convert a point F; on an elliptic curve from
projective coordinates (X;,Y;, Z;) to affine coordinates (x;,y;, 1), we need to compute

T; = Xi/Zia Y = Yz‘/Zz’; (4-32)

which requires the inverse of Z;. When we have a set of projective points {P; : i = 1,--- ,n}
that we wish to express in affine coordinates, we can compute the inverse for each Z;
by performing an inversion only once. We first compute Zy := [],_,, Zi, followed by
its inverse over [F,, Zo_l. Next, we compute Z; := Hlékén,k;ﬁi Z;, storing intermediate
products so as to eliminate repeating the same computations. The inverse of Z; can then
be computed as Z; - Z; '

The extra multiplications that we require to perform coordinate change for the set scales
linearly in the size of the set, but this is more than offset by the cost savings from re-
ducing the number of inversions required. Sorting the points by z-coordinate requires
O(nqlog(ny)) steps if we use QuickSort. As the z-coordinate lies between 0 and p — 1,
and no more than two points can have the same x-coordinate, we can use bucket sort with
O(ny) buckets to reduce the average case complexity to O(ny).

Finding a match As in step 10, the computation of the points rom;mgP takes O(pé)
elliptic curve point doubling/additions. Since Q; is sorted, we can use binary search to
find a match with just O(log(n;)) comparisons. A match may not be found if P does not
have order #E(F,), which occurs with expected probability

1—E(W> %1—2%0.392.

#E(F,) 2
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Overall Complexity The largest complexity amongst all the steps of the algorithm
is O(pé), which occurs whenever we deal with arrays of size m; or n;. Amongst these,
computing Q7 has its running time in terms of elliptic curve arithmetic, which is more
costly than other operations. Hence it is important to use the efficient elliptic curve
arithmetic for our purposes.

4.4.4 Coordinate Systems

We briefly explain the choice of coordinate systems here, as the Match-Sort algorithm is
performed on explicit points rather than kernel polynomials. Further details can be found
in Section 13.2 of [5]. The overriding consideration in this implementation is speed, within
practical memory constraints (single laptop). This gives us the flexibility to use more
coordinates for each point to achieve arithmetic speed ups. This is important as point
arithmetic operations are expensive; the running times of the program have indeed shown
that point arithmetic within the Match-Sort algorithm can dominate the SEA algorithm.

Besides the cost of point addition and doubling, we need to consider the cost of comparing
two points. This is because we need to check if a point generated during the baby-steps
matches one generated by the giant-steps. Affine coordinates provide us with the best
speed, since we can compare two points (z1,v1), (22, y2) by comparing the x; with xo and
the y; with y5. However point addition and doubling are expensive operations, requiring I +
2M + S and I + 2M + 2S respectively, where S and M denotes squaring and multiplication
over IF,,. I denotes inversion over F,,, which requires between 9M and 40M on average. S is
faster than M, taking about 0.8M. In comparison, projective coordinates require 12M + 25
and 7TM + 58S for addition and doubling respectively, while requiring at least 2M for each
comparison as we need to compare x; * zo with x5 » z; (and possibly y; * zo with y, = 1) for
points (x1, 1, 21), (T2, Y2, 22).

In the Match-Sort algorithm, we need to compare entries in lists Q; and Q,. With
Q; sorted, we expect to take |Qs|/2log|Q;| comparisons to find a match. The cost of
converting the points in the two lists from projective to affine coordinates is | Q1 |+| Q| times
I + 2M, while the cost of comparison of the lists in projective coordinates is |Qs|/21og | Q|
times 2M. Therefore performing comparisons in affine coordinates is asymptotically better,
which justifies our choice in the baby-step.
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4.5 Full SEA Algorithm

4.5.1 Description of the Schoof-Elkies-Atkin Algorithm

Input: An ordinary curve E : y? = 23 4+ ax + b over F,, j := j(E) not 0 or 1728.
Output: #E(F,).

1. Compute t5 = ¢t mod 2 by checking if 2* + az + b has a root in F,.
2. Let [ = 3, II = ]_, ZA = @, mg = 2, EE = {({tg},Q)}

3. While IT < [4,/p] do:

(a) Evaluate the modular equation ®;(X,Y) e F,[X,Y]at Y = j.

(b) Compute X? mod ®;(X, j).

(¢) Compute ged(P(X, ), X? — X) and decide if [ is an Elkies or Atkin prime.
)

(d) If [ is an Elkies prime do:

i. Compute j(E) as a root of ®;(X,j) in IF,.
ii. Determine E using Theorem 4.2.1 and compute g; using Theorem 4.17.
iii. Find an eigenvalue A of ¢, in IF;.
iv. Set t;, = A+ p/A mod .
v. Add the pair ({t;},1) to Xg, and set mg = mg x [ and 1T =11 x .
(e) Else [ is an Atkin prime, so we do:
i. Compute r = OrderFrobenius2(®;(X, j)).

ii. Determine the set 1} of possible values for ¢; from the primitive r-th roots
of unity using Equation 4.2.

iii. Add the pair (T},1) to X4, and set IT = II x .
(f) Set [ as the next higher prime.

4. Determine t from g U X4 via Match-Sort Algorithm.

5. Return #E(F,) =p+1—t.
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4.5.2 Complexity of SEA

Schoof’s. For Schoof’s algorithm [17] we are working with W;(X,Y’), a polynomial of
degree (1 —1)/2. Thus the elements in the ring F,[X,Y]/(¥,(X,Y),Y? — X® — Az — B)
have size b := O({*log p).

The amount of work required to compute ¢(X,Y") and ¢*(X,Y) is O(log pM (b)), where
M (n) is the complexity of multiplying two n-bit numbers. The amount of work required
to compute t;¢(X,Y) is O(IM(b)). Thus for each [ the complexity is O(log pM (1% log p)).
Since n, < logp, and L = O(logp), the total work required for Schoof’s algorithm is

O(log? pM (log’ p)).

SEA. In contrast, for the SEA algorithm we are working with ®;(.X, j) and F(X) which
are both polynomials of degree O(l). Thus the elements we are working with have size
b’ := O(llog p). Therefore the total work required for the Schoof-Elkies-Atkin algorithm is

O(log? pM (log” p)).

One of the fastest methods for multiplying two n-bit numbers is the Schonhage-Strassen
algorithm [16], which runs in O(nlognloglogn). Hence the complexity of SEA is

O(log®* plog log plog loglog p).

Note that although Match-Sort runs in exponential time, its complexity is subsumed into
that of SEA. This is because we can choose to reject the use of ‘bad’ Atkin primes —
those that increase the number of possible values of ¢ by too much. By choosing our Atkin
primes carefully, it is possible to gain information from these primes while keeping the
Match-Sort component from growing too large. We will discuss a few variations of the
Schoof-Elkies-Atkin algorithm next.

4.5.3 Variants of SEA

Elkies Only. A popular variant of SEA in use can be referred to as SE, since it is running
the SEA without using any Atkin primes. Examples of usage of this variant are MIRACL,
as well as Andrew Sutherland’s implementation for current records of point counting on
curves over prime fields.
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The justification for this variant comes from our analysis of the complexity of the Match-
Sort algorithm in Section 4.4.3, where we showed that its running time is in the order of
O(ny) ~ O(pé), where n; approximately the square root of the number of possible values
for ¢ prior to the Match-Sort algorithm. If every Atkin prime was used for the Match-Sort
algorithm, then the size of the Match-Sort problem will eventually become bigger than
that of the full SEA algorithm.

Since SE outperforms SEA asymptotically, for record setting (the current record [22]
having p = 16219299585 « 216612 _ 1 ~ 216646) it makes sense to use only Elkies primes.
Assuming half of the primes are Atkin primes, and that the product of Atkin primes
equals that of Elkies primes, then instead of having [ [, > 4,/p we will require [ ],/ > 16p.
However the complexity of the overall algorithm remains the same as that of SEA, since
the largest prime L is now approximately In2 - (4 4 log p), which is still O(logp).

This justisfies us ‘ignoring’ the complexity of the Match-Sort algorithm. However, while
the asymptotic performance of SE remains good, the constant factor growth in complexity
from the doubling of the largest prime L is very large, as each larger prime contributes
more to the complexity than the previous. Furthermore, our current understanding of
analytic number theory is unable to prove sharp bounds on the worst-case distributions of
Elkies prime, and so there is currently no guarantee that a given curve will have sufficient
Elkies primes. Hence it is worthwhile considering using some Atkin primes.

Elkies and some Atkin. We refer to this as SEa; that is using all Elkies primes and
some Atkin primes. From our discussion on the complexity of the Match-Sort algorithm in
Section 4.4.3, we gain some understanding of which Atkin primes should be considered for

use in Match-Sort. For convenience, we will refer to such Atkin primes as good (otherwise
bad).

By including an Atkin prime [, we increase II by a factor of [, but increase the size of
the Match-Sort problem by a factor of ¢(r) for the corresponding r | [ + 1. Hence a good
Atkin prime should have a high ratio of [ to ¢(r). A straightforward way is to compute
the value of r for each Atkin prime [, and then (r). If ¢(r) is too large relative to [, then
we consider it as bad. However, computing r can be a costly operation, and we may incur
computational costs for many bad Atkin primes before finding a good one.
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Equation (4.29) offers a way round this problem. First, we obtain the prime factorization
of [ + 1. The expected value of ¢(r) decreases if I + 1 has more factors. Hence prior to
computing r, the number of factors of [ + 1 can inform us if an Atkin prime is likely to be
good or bad. Also, with more prime factors, the maximum value of ¢(r) is reduced. The
number of factors and prime factors of [ + 1, thus E(p(r)), can be precomputed and stored
with each [.

Example 4.5.1. Consider [ = 2309. We have [ + 1 = 2310 = 2-3-5-7-11, with
E(p(r)) = 1/(2° — 1) ~ 74.5 and the maximum value of ¢(r) is 480. Although r may
range from 2 to 2310, 2309 is likely to be a good Atkin prime, and should be considered
for inclusion if Elkies primes larger than 2309 may be used.

Example 4.5.2. Consider [ = 2341. We have [ + 1 = 2342 = 2 -1171. To avoid the high
cost of determining r for large values, we can just check if r = 2 to decide if [ is good or
bad. If r # 2 (i.e. r = 1171 or 2342), then [ is bad. If r = 2 then [ is good (in fact,
very good, since ¢(r) = 1). To generalize this example, if (I + 1)/2 is prime, then it is
worthwhile to check whether r = 2.

Note that the definition of good or bad Atkin primes has been rather imprecise, offering
only a vague notion. A better definition requires a detailed analysis of the computational
cost of using a larger Elkies prime, versus the cost of increasing the size of the Match-Sort
problem.
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Chapter 5

Run-Time Performance

5.1 Complexity vs Run-Time

The complexity analysis tells us that asymptotically, using the Schoof-Elkies-Atkin al-
gorithm with Elkies primes only is the best algorithm on average, while using all Atkin
primes will be the worse.

For cryptographic purposes however, the size of the prime field is not very large (521-
bit p to achieve 256-bit security), rendering the analysis much less helpful. The large
hidden constants for SE, vis-a-vis that of SEA, means that for elliptic curves of interest to
cryptographers, the running time of SE could be much worse than that of SEA and SEa.
In [1], it was remarked that the best variant in practice will be one that judiciously selects
Atkin primes.

In this chapter I will present the run-time analysis of my implementation. Five random
curves are generated for each prime fields with bit-sizes 128, 160, 192, 224 and 256, and
SEA, SEa and SE are used to count the points for each of them, and the running times
compared.

5.1.1 Run-Time Performance

For this test, in SEa we choose Atkin primes when their value of r lies in the set {r e N :
r < 66,r # 31,37,38,41,43, 44, 47,49, 53, 55,57, 59, 61, 62, 64, 65}. The excluded values of
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r tend to occur when ¢(r)/l is high. For example, r = 44 may occur when [ = 43 with
o(r)/l = 20/43 > 0.45, thus increasing the Match-Sort problem 20-fold while contributing
only 5.4 bits to the product [[,. It should be noted that the choice of 66 as the threshold
is somewhat arbitrary; it is optimized for the size of fields considered. A lower threshold
may give better performances if larger prime fields are considered.

This criterion is a blunt tool as it makes no distinction between different /; an optimized
criterion should favour larger [ with the same r values. It suffices though, to highlight the
importance of retaining the use of Atkin primes at some level.

The running times below are listed in terms of the logarithm of the CPU’s output (Intel
i5-2520M @ 2.50GHz), with the first table listing the logarithm of the average running
times and the latter the average of the logarithm of the running times. This allows us to
capture some information on the fluctuations in the running times.

Table 5.1: Logarithm of Average Running Time of SEA Variants (s)
bits SEA SEa  SE

128 12.02 12.06 13.94
160 1347 13.44 15.20
192 1731 16.85 16.58
224 - 16.96 17.20
256 - 16.84 18.07

Table 5.2: Average of Logarithmic Running Time of SEA Variants (s)
bits SEA SEa  SE

128 12.00 12.04 13.79
160 13.32 13.39 15.11
192 16.29 15.50 16.46
224 - 16.08 17.09
256 - 16.78 18.05

From the running times, we observe that for small fields of 128 and 160 bits, SEA and
SEa perform comparably, as Match-Sort remains tractable even with many Atkin primes
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for SEA. SEa at these field sizes omit very few Atkin primes, so savings in Match-Sort
tends to be balanced out by the increases in using larger primes. In contrast, SE performs
poorly at these levels, as the cost of each additional large primes can be as large as the
whole Match-Sort problem.

At 192-bits the performance of SEA varied greatly, with five orders of magnitude differ-
ence in the running times. From 224-bits the run-time of SEA tends to be too large, and
as such the computations were not completed. At these sizes, SEa tends to run twice as
fast as SE, even though SE does run faster in some cases.

5.2 Improvements

To handle larger prime fields, we can prepare classical modular polynomials for [ > 200
in our repository. As the size of the polynomial grows very quickly, a better approach will
be to use either Atkin or Weber modular polynomials instead, so as to reduce the amount
of storage needed.

Instead of restricting the modular polynomials to prime [, we can choose prime powers of
[ as well. This will delay the need for larger prime fields, and thus speed up the algorithm.
Such an approach is described in [6].

Existing complexity analysis assumes each [ to be of size O(log p), which does not capture
the increasing costs of successive Elkies primes. When using SEa, choosing the right Atkin
primes to compute and to use in Match-Sort requires a better understanding of the running
time tradeoffs between using a higher Elkies prime and increasing the Match-Sort problem.
It may be worthwhile to obtain tighter estimates for the expected sizes of () for Atkin
primes for a given curve so as to decide the threshold for » that allows the maximum use
of Atkin primes while keeping the Match-Sort procedure tractable. These estimates can
then be compared against estimates for the expected running time for each Elkies prime.
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Chapter 6

Future Work

6.1 Partitioning Strategy

In this thesis, we have analysed the actual run-time of variants of the Schoof-Elkies-
Atkin algorithm, each employing Atkin primes in varying degrees. For each Atkin prime
[, we partition the set of possible r-values into two sets defined as such: if the actual value
comes from the first set, then we will use this Atkin prime in Match-Sort, else we will not.
In SEA the latter set is empty, while for SE the first set is empty. In this implementation
of SEa, which gives the best average run-times compared to SE and SEA, the partitioning
is independent of [ and p.

I believe that the optimal strategy for partitioning the set of r-values should be dependent
on both [ and p. Two Atkin primes [; < [y may have the same r-value and thus contribute
to the size of the Match-Sort problem identically, but the larger prime will have contribute
more bits to the product [],/ which we need to exceed 4,/p. Thus the set of acceptable
r-values for [; should be less than that of 5.

For py < p2, 4/p1 < 4,/p2, so the number of primes [ that is needed is greater for p,.
The Match-Sort problem is expected to grow exponentially in the number of Atkin primes,
while the running time of the algorithm grows linearly. Hence to control the growth of the
Match-Sort problem, we need to be more selective in our choice of smaller Atkin primes
for po than for p;.
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6.2 Run-Time Estimation

Better estimates of the actual running time of the Atkin classification (to determine if
a prime is Elkies or Atkin), the BSGS step for Elkies prime and the Match-Sort step are
needed. From these, we can obtain better predictions of the running times of SEa for each
strategy for partitioning the r-values, and thus minimise the expected running time of the
algorithm a priori.

The run-time results in the previous chapter were generated from a small sample for
each size of p. Further run-time statistics should be gathered for each size, with multiple
curves chosen for each prime as well.

The analysis of the Match-Sort algorithm in Chapter 4 assumed that the probability for
each r-value is uniformly distributed. It will be worthwhile to study the actual distribution,
as this has a significant impact on the likelihood that an Atkin prime will be good.
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