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Abstract 

Influenza is a public health problem that causes serious illness and deaths all over the world. Vaccination 

has been shown to be the most effective mean to prevent infection. The primary component of influenza 

vaccine is the weakened strains. Vaccination triggers the immune system to develop antibodies against 

those strains whose viral surface glycoprotein hemagglutinin (HA) is similar to that of vaccine strains. 

However, influenza vaccine must be updated annually since the antigenic structure of HA is constantly 

mutation.  

       Hemagglutination inhibition (HI) assay is a laboratory procedure frequently applied to evaluate the 

antigenic relationships of the influenza viruses. It enables the World Health Organization (WHO) to 

recommend appropriate updates on strains that will most likely be protective against the circulating 

influenza strains. However, HI assay is labour intensive and time-consuming since it requires several 

controls for standardization. We use two machine-learning methods, i.e. Artificial Neural Network (ANN) 

and Logistic Regression, and a Mixed-Integer Optimization Model to predict antigenic variety. The ANN 

generalizes the input data to patterns inherent in the data, and then uses these patterns to make 

predictions. The logistic regression model identifies and selects the amino acid positions, which 

contribute most significantly to antigenic difference. The output of the logistic regression model will be 

used to predict the antigenic variants based on the predicted probability. The Mixed-Integer Optimization 

Model is formulated to find hyperplanes that enable binary classification. The performances of our 

models are evaluated by cross validation. 
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1.0 INTRODUCTION 

1.1 The Influenza Virus 

The influenza viruses are classified into three types: influenza A virus, influenza B virus, and influenza C 

virus. Type A and B viruses routinely spread in people (human influenza viruses). They cause the annual 

influenza epidemics that affect up to 20% of the population in the world. The influenza A viruses are 

subdivided into different serotypes based on the antigenic nature of their surface glycoproteins: 

haemagglutinin (HA) and neuraminidase (NA). Antigenic drift and antigenic shift are the two processes 

driving the antigens to change. Antigenic drift is constantly occurring in both types A and B viruses 

whereas antigenic shift occurs only in type A virus. Antigenic shift refers to the emergence of an entirely 

new virus subtype that was not circulating among people. Since antigenic shift results in the emergence 

of a new influenza virus, a large proportion (or even all) of the world’s population will have no antibodies 

against it. Influenza A/H1N1, A/H3N2, and B viruses have been in global circulation since 1977, and 

these three viruses are currently included in each year’s influenza vaccine [18].  

 

1.2 Influenza Vaccine Update 

To predict the epidemic strains that will prevail in the future flu seasons, a worldwide surveillance 

network has been set up by the World Health Organization (WHO).  Currently, the network consists of 

136 national influenza centers in 106 countries and is continually monitoring antigenic drift and other 

changes (such as antiviral drug resistance) in circulating influenza viruses. Twice a year, the WHO 

committees meet to consider the data and recommend suitable strains to be included in the influenza 

vaccine for the subsequent season. This ensures that the vaccine viruses have identical or similar antigenic 

characteristics to the circulating strains and are effective in preventing the disease [15, 16, 17]. 

Influenza vaccines are currently produced using embryonated chicken eggs and this process can take up 

to 9 months. Therefore, the WHO recommends the vaccine strains under uncertainty with partial 

information. Occurrence of a significant antigenic drift during the lengthy production period can result in 

a mismatch between the circulating strains and the vaccine strains. This will reduce the effectiveness of 

the vaccine and result in a potential for an epidemic outbreak.   
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1.3 Data Collection  

The vaccine strains are collected by national influenza centers within the framework of the WHO global 

influenza surveillance network. A crucial mechanism driving the interaction between the virus and the 

host immune system is cross-immunity: after being infected by a strain, the host acquires partial or total 

immunity to a set of other strains antigenically similar to the infecting one [22]. The degree of cross–

immunity between the two strains can be measured in terms of the Hamming distance between their 

genetic sequences. In this study, we consider the amino acid sequence of the surface glycoprotein 

hemagglutinin which has 329 residues. Our dataset consists of a sample of n=31878 pairwise sequence 

comparison of those 329 residues, taken from Smith et.al [1]. The feature vector is a binary string. For a 

specific position on the 329 amino acids, "1" indicates a mutation (the residue types of the two sequences 

on this position are different) while "0" indicates absence of mutation. The dataset also includes an 

indicator about antigenic variety corresponding to each sample point which will be used as the dependent 

variables in our model. 

 

1.4 Motivation and Contribution 

WHO uses a laboratory procedure called hemagglutination inhibition (HI) assay to evaluate the antigenic 

relationships of circulating influenza viruses. However, HI assay is labour intensive and time-consuming 

since it requires several controls for standardization. Moreover, the vaccine selection strategy has not 

been effective in some recent years [22]. This motivates the research for a faster and better strategy for 

identifying antigenic variety. In this work, we work on the real dataset. We derive two machine-learning 

methods, i.e. Artificial Neural Network (ANN) and Logistic Regression, and a Mixed-Integer 

Optimization Model to identify antigenic variance of influenza strains based on the amino acid sequence 

analysis. The ANN generalizes the input data to patterns inherent in the data, and then uses these patterns 

to make predictions. The logistic regression model identifies and selects the amino acid positions, which 

contribute most significantly to antigenic difference. The output of the logistic regression model will be 

used to predict the antigenic variants based on the predicted probability. The Mixed-Integer Optimization 

Model is formulated to find hyperplanes that enable binary classification. Our goal is to predict the 

antigenic drift outcome for new influenza virus strains on the basis of some or all of the amino acid 

positions for annual vaccine update. And also, we compare the performance of different machine learning 

and optimization techniques for binary classification. 
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2.0 Literature Review 

 

2.1 Hierarchical Clustering   

Hierarchical clustering is one of the most straightforward methods to form clusters. It can be either 

agglomerative or divisive. In the first category, the procedure starts with each object representing an 

individual cluster. These clusters are then sequentially merged according to some distance measure. In 

general, to form clusters using a hierarchical cluster analysis, one should select: 

 the number of clusters needed 

 a criterion for determining distance between objects 

 a criterion for determining which clusters are merged at successive steps 

On the other hand, divisive methods start with all objects in one cluster. In each step, a cluster is chosen 

and split up into two. This process continues until n clusters are produced. In this study, our focus will be 

on the agglomerative clustering. 

2.2 Artificial Neural Network    

ANN is a machine learning technique that can simulate the neurological processing ability of the human 

brain and can address problems with non-linear and complex data [8]. From a statistical perspective, 

neural networks have been successfully applied across a wide range of prediction and classification 

problems [23]. ANNs can be trained to identify correlations in the input data. A multilayer feed-forward 

neural network is very useful in practice since it can represent a very broad set of nonlinear functions. 

Also, feed-forward networks are commonly used for classification problems. In this study, we compare 

the performance of the most popular neural network tool: a feed-forward multilayered network trained 

using backpropagation, against that of logistic regression and integer programming.  

A feed-forward network can be viewed as a graphical representation of a parametric function, which takes 

a set of input values and maps them to a corresponding set of output values [9]. In feed-forward network, 

information flows in one direction from the input layer via the hidden layers to the final output layer. 

Multiple layers of neurons with nonlinear transfer functions allow the network to learn complex 

relationships between input and output vectors.  We trained our network using standard backpropagation 

algorithm. 
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Standard backpropagation is a gradient descent algorithm, which looks for the minimum of the error 

function in the weight space. The mean sum of squares of the network errors between the network outputs 

and the target outputs is the typical performance function that is used for training feed forward neural 

networks. Properly trained backpropagation networks tend to give highly accurate prediction when 

presented with new input data.  

2.3 logistic regression  

Logistic regression, also called a logit model, is used to model dichotomous outcome variables. In the 

logit model the log odds of the outcome is modeled as a linear combination of the predictor variables [34]. 

Since the dependent variable of our problem is dichotomous, a logistic regression model can be built to 

predict the antigenic variety. The predicted values of our problem are always between 0 and 1, and 

correspond to the probability of the sequences being 1 (antigenic variant). 

2.4 Studies Related to Influenza vaccine strain selection 

Understanding the antigenic evolution of influenza virus is one of the critical issues in public health. 

Many methods have been proposed to study the antigenic drift for vaccine development. 

  To determine the optimal design of influenza vaccine, Ozaltin [21] quantifies the tradeoffs in the 

optimization of the strain selection decisions arose between the composition of the annual flu shot and the 

timing of its production. They build two models. The first model takes the view of a social planner, and 

optimizes strain selections based on a production plan that is provided by the flu shot manufacturers. The 

second model relaxes the exogenous production planning assumption and, hence, provides a more 

accurate representation of the hierarchical decision mechanism between a social planner, who designs the 

flu shot, and the manufacturers, who make the flu shot available. 

       Lee and Chen [18] investigate the amino acid positions for predicting antigenic variants of influenza 

A/H3N2 viruses. They build a model based on amino acid differences in the whole HA1 polypeptide (329 

residues). It is shown that there is a correlation between the antigenic distance and the number of amino 

acid changes in the HA1 polypeptide (R= 0.74, p < 0.001). Different cutoffs of amino acid changes in the 

HA1 polypeptide are evaluated for predicting antigenic variants. They find that cutoff with more than 7 

amino acid changes give the highest agreement (77%). 

       In practice, not all 329 amino acid positions on the HA1 polypeptide contribute significantly to 

antigenic difference, some amino acid positions are more important than others. Liao et al. [20] employ 



 

 5 

stepwise multiple regression and backward conditional logistic regression to select the amino acid 

positions which are related to antigenic variety. They identify twenty-two amino acid positions with a 

92.06% agreement rate. 

       Huang et al. [19] identify nineteen critical amino acid positions on the HA gene based on the 

information gain between each amino acid positions. Then they propose rules for predicting antigenic 

variants using a decision tree. 
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3.0 Classification via Logistic Regression 

3.1 Model Building 

We formulate a logistic regression model to identify critical amino acid positions, which contribute 

significantly to antigenic variety. After the model refinement and selection, we evaluate the performance 

of our model using cross validation. The parameters and variables of our model are defined as follows: 

Parameters 

   : predicted probability of antigenic drift of sequence i =1,…,31878 

    : threshold of logistic regression 

      if there is an antigenic drift on sequence i and      otherwise for i =1,…,31878 

Variables 

      if      and      otherwise for i =1,…,31878 

       In the first step of our approach, we fit a logistic regression model to the training dataset and apply 

this model to the testing data to get the predicted antigenic drift probabilities   ̂ . The logit function of our 

model is given by: 

                                               (
  

    
)                        

After calculating the maximum likelihood estimates of the regression coefficients,  ̂ , the predicted 

probabilities for sequences are given by: 

 ̂  [      ( ∑ ̂ 

   

   

   )]

  

 

where      . 

       In the second step, predictions can be made for the testing set by using a threshold p* on the output 

probability of the model.  

3.1.1 Variable Selection and Performance Measurement   

       We randomly split our data into 10 training sets and 10 testing sets and build a logistic regression 

model for each training set. For logistic regression models, it is possible to test the statistical significance 

of the coefficients in the model by using a z-statistic (sometimes called a Wald z-statistic), and the 

associated p-values. We start with the full model and at each step remove those variables which fail to 

meet the threshold of p < 0.1, and build the second model with only the significant variables. The process 
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iterates until all variables are significant.  For each training set, we identify all critical amino acid 

positions and build our final model with only significant variables. 10-fold cross validation is used to 

validate how well our model learns from the training data. We use the classification matrix to evaluate the 

accuracy of our model’s prediction. If the predicted and actual value is the same, i.e. 1 and 1 or 0 and 0, 

then the prediction is accurate for that case. If predicted value and actual value are different, the model is 

not accurate for that case.  Agreement rate, sensitivity and specificity are calculated for each fold. 

Sensitivity measures the proportion of actual positives which are correctly identified as positive. 

Specificity measures the proportion of negatives which are correctly identified as negative. A perfect 

predictor would be described as 100% sensitivity and 100% specificity. We use Receiver operating 

characteristic (ROC) curve to illustrate the performance of our model. Table 1 summarizes the results of 

the analysis for both training and testing dataset.  

Table 1 Classification accuracy of logistic regression  

Model No. of 

Selected 

positions 

Testing dataset Training dataset 

Sensitivity Specificity Agreement 

Rate 

Sensitivity Specificity Agreement 

Rate 

1 18 0.992 0.964 0.988 0.992 0.956 0.987 

2 15 0.990 0.952 0.985 0.991 0.955 0.985 

3 15 0.991 0.962 0.987 0.989 0.954 0.984 

4 18 0.993 0.964 0.988 0.992 0.955 0.986 

5 17 0.991 0.942 0.984 0.992 0.957 0.986 

6 19 0.990 0.962 0.986 0.991 0.961 0.987 

7 18 0.994 0.962 0.989 0.991 0.955 0.986 

8 17 0.991 0.958 0.986 0.991 0.964 0.987 

9 14 0.991 0.970 0.988 0.991 0.954 0.986 

10 21 0.990 0.957 0.985 0.991 0.960 0.986 

Average 17 0.991 0.959 0.987 0.991 0.957 0.986 

 

We observe that model 7 has the highest agreement rate for both training and testing datasets. Its high 

sensitivity rate helps identify antigenic variants more easily. The high specificity rate indicates a great 

accuracy of identifying similar viruses. In model 7, we identify 18 positions as critical amino acid 

positions, which are positions: 63, 133, 137, 143, 144, 145, 156, 158, 172, 189, 190, 193, 197, 208, 214, 
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219, 275 and 299. We build our final model, with all significant variables (all critical amino acid 

positions). Figure 1 and Figure 2 show the ROC for training and testing sets of model 7, respectively. 

 

Figure 2 ROC plot for testing dataset 

 

Figure 3 ROC plot for Training dataset 
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From the summary output of the final model, as the p-values of 18 variables are less than 0.1, they are all 

statistically significant in the logistic regression model. The null deviance for the logistic model fit to the 

final model data is 24250.2 on 28690 degrees of freedom. The residual deviance is 2214.2 on 28672 

degrees of freedom. The deviance is reduced by 22036 points on 18 degrees of freedom, with a p-value of 

almost 1. Large P-value means we have no/very weak evidence against our null hypothesis. In this case 

the null hypothesis states that the logistic regression model provides an adequate fit to the data. The 

residual deviance of 2411 is small with a p-value of almost 0, which indicates a good fit of the logistic 

model.  

       ROC shows the tradeoff between sensitivity and specificity (any increase in sensitivity will be 

accompanied by a decrease in specificity). The area under curve (AUC) provides a measure of the model's 

ability to discriminate between those with and without antigenic variants. From Figure 1 and Figure 2, we 

observe that the curve follows very close to the left-hand border and the top border of the ROC space. 

This means the AUC is very close to 1 and the prediction accuracy is very high. 
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4.0 Classification via Integer Programming 

4.1 Classification Problems 

We apply a two-class classification problem proposed by Bertsimas and Shioda [3] with input 

sequence   , i =1,…,n, where n is the size of the training set. Each sequence is a pattern of 329 amino acid 

positions. The indicator variable          , i =1,…,n, where      if there is an antigenic variant and 0 

otherwise. Therefore, we identify the two classes with the binary value 1 and 0.  We classify the 

sequences with antigenic drift (      as Class 1 sequences and sequences with the same genetic 

characteristics        as Class 0 sequences. Let    and   be the number of Class 0 and Class 1 

sequences, respectively. Let     1,…,  } and     1,…,  }. Class 0 and Class 1 sequences are 

denoted by   
          , and   

          , respectively. Our goal is to partition Class 1 sequences 

into K disjoint groups such that no class 0 strain can be expressed as a combination of Class 1 sequences. 

Then new sequences can be classified as Class 1 if it belongs to one of these groups or as Class 0 

otherwise. Let  ̅          and    be the set indices of Class 1 sequences that are in group k, where 

⋃         ̅  and                 ̅     .  Variables and parameters are defined in Table 2. 

Table2 Definition of Variables and Parameters 

Variables Definition 

  , i=1,…,n Pattern of 329 amino acid positions 

  , i=1,…,n Indicator variables      if there is a antigenic variant and 0 otherwise 

   Number of Class 0 strain 

   Number of Class 1 strain 

  
           Class 0 strains 

  
           Class 1 strains 

   Set of indices of Class 0 strains             

   Set of indices of Class 1 strains              

  Number of disjoint groups to which Class 1 sequences will be classified  

 ̅ Set of indices of groups  ̅          

   Set indices of Class 1 strains that are in group k 
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To ensure that there is no Class 0 sequence in any of the Class 1 group, model (1) has to be infeasible for 

all              ̅: 

∑     
 

    
   

    

∑          
                                                                                                                                  (1) 

            

From Farkas’ Lemma [4], model (1) has no solution if and only if: 

    
        

    
                                                                                                                                (2) 

We check the feasibility of model (2) using the optimization problem:  

                                                                                                            

    s.t     
                                                                                           (3.1) 

             
     ,                                                                                 (3.2)                         (3) 

                                                                                                                  (3.3) 

Model (3) determines if there exists a hyperplane         that separates sequence   
  from all Class 1 

sequences in group k.  If     >0, then model (2) is feasible, which also implies that model (1) is infeasible. 

If      0, model (2) is infeasible, as a result model (1) is feasible.  The constraint     is added to 

prevent unbounded solutions. 

We expand model (3) for all    ̅ and     . 

         

    s.t        
                  ̅                                                       (4.1) 

                
        ,         ̅                                                   (4.2)                        (4) 

                                                                                                                   (4.3) 

We define decision variable           ̅̅̅      to decide if we can assign Class 1 sequence j to group k, 

     {
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To ensure that we enforce constraint (3.2) of model (3) if          we modify the constraint (4.2) as: 

       
              .                    

The model becomes: 

          

    s.t        
                  ̅                                                         (5.1) 

                
             ,         ̅                                          (5.2)                      (5) 

         ∑           
                                                                                     (5.3) 

                                                                                                                     (5.4) 

                                                                                                                  (5.5) 

4.2 The Clustering Algorithm 

By solving model (5), we can check whether Class 1 sequences can be partitioned into K groups without 

including any of the Class 0 sequences in their convex hull. However, finding a hyperplane for each of the 

Class 0 sequences is computationally expensive. As an alternative, we find a hyperplane for a cluster of 

Class 0 sequences at a time. We need an algorithm to cluster our Class 1 and Class 0 sequences to    and 

   clusters, respectively. 

       We apply the hierarchical (agglomerative) clustering procedures to create clusters of Class 1 and 

Class 0 sequences. Initially, we start with each Class 1 (Class 0) sequence representing an individual 

cluster. Then two clusters with the smallest statistical distance between them are merged.  We stop 

merging when none of the clusters can be further merged. During the procedure, we need to ensure that a 

merger of Class 1 (Class 0) clusters will not contain any Class 0 (Class 1) sequences in the resulting 

convex hull. We include the following optimization problem in our clustering algorithm to check whether 

Class 1 clusters r and s can be merged: 

         

         
   

                                                                                         (6.1) 

           
   

                                                                                      (6.1)                   (6) 

where    and    are the sets of indices of Class 1 sequences in clusters r and s, respectively.  
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If       problem (6) is feasible, which means clusters r and s can be merged. If       problem (6) is 

infeasible, indicating that clusters r and s cannot be merged. We present an outline of the algorithm as 

follows: 

Algorithm 1: 

1. Initialize:           

2. While        

3. Find the clusters with minimum pairwise distance, call these r and s. 

4. Solve problem (6) on clusters r and s. 

5. If       then  

6.     k=k+1 

7. else 

8.     Merge clusters r and s. 

9.     K=K-1, k=0 

10. end if 

11. end while 

Initially, each Class 1 sequence represents an individual cluster,     . We can take any random 

sequence as the initial centroids. We obtain the minimum pairwise distance on line 3 by comparing the 

statistical distances between the centroids of all clusters.  

Definition 4.1: The statistical distances between two points            
 and            

  in the 

d-dimensional space    is defined as         √∑
       

 

  
 

 
   , where    

  is the sample variance of     

coordinate of all points in  .  

       For testing purpose, we divide our data into 10 training and testing sets. For training set 1, we get 

        clusters of Class 1 sequences using Algorithm 1 and         clusters of Class 0 sequences 

following the same procedure.  

       An outlier is an observation of the data that deviates from other observations so much that it arouses 

suspicions that it was generated by a different mechanism from the most part of data [5]. In clustering, 
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outliers are considered as observations that should be removed in order to make clustering more reliable 

[6]. In outlier detection methods based on clustering, outlier is defined to be an observation that does not 

fit to the overall clustering pattern [7]. After    and     clusters are obtained, we eliminated all clusters 

with cardinality less than 1% of    and   , respectively. After the outlier removal procedure, we get 25 

clusters of Class 0 sequences and 7 clusters of Class 1 sequences. Since there are only 7 clusters of Class 

1 sequences, we will consider each cluster as a group, which means      .   

4.3 Assigning Groups to Polyhedral Regions 

To separate Class 0 and Class 1 sequences, Bertsimas and Shioda [3] present an approach using 

hyperplanes such that the minimum Euclidean distance from any point to the hyperplane is maximized. 

For each group  ,    , of Class 1 sequences and for every cluster       , of Class 0 sequences, we 

find a hyperplane     
      . Our objective is to maximize the minimum distance between each 

sequence and the hyperplane. The distance is defined as: 

  (           )  
   

        
             

       .  

By fixing     and minimizing             , the following quadratic optimization problem maximizes the 

distance: 

Min     
      

s.t     
   

             
                                                                (8.1)                        (8) 

         
   

             .                                                              (8.2) 

By solving problem (8) for each group K, we obtained     hyperplanes. The polyhedral region for each 

group k is 

    {    |    
            }. 

However, some of the hyperplanes may be redundant. To check the redundancy of the 

hyperplanes, we solve the following problem: 
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                s.t        
                        

                                                        (9.1)                        (9) 

                                
               .                                                      (9.2) 

If            
, the corresponding hyperplane is redundant. Since this problem needs to be solved for 

each group k,      and for every cluster        , we use the following algorithm to eliminate all 

redundant hyperplanes: 

1. for k=1 to K do 

2.     for   =1 to    do 

3.          Solve problem (9). 

4.          if             then  

5.                Eliminate constraint       
        . 

6.            end if 

7.      end for 

8. end for 

We find that none of the hyperplanes are redundant. After we have the polyhedra, we can test new 

data with this model. If the sequence lies in any of the K polyhedra, we classify the sequence as Class 

1 sequence. If the sequence is not contained in any of the polyhedra, then we classify this sequence as 

Class 0 sequence.   

     4.4 Performance Measurement 

We run the same procedure for all training sets. The training and testing results of our optimization 

model are shown in Table 3. 
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           Table 3 Classification accuracy of integer programming 

Dataset Testing dataset Training dataset 

Sensitivity Specificity Agreement 

Rate 

Sensitivity Specificity Agreement 

Rate 

1 0.999 0.992 0.997 0.998 0.992 0.997 

2 0.893 0.952 0.902 0.885 0.938 0.893 

3 0.856 0.916 0.865 0.839 0.937 0.853 

4 0.981 0.462 0.903 0.978 0.494 0.906 

5 0.949 0.653 0.904 0.949 0.666 0.907 

6 0.960 0.753 0.929 0.956 0.747 0.925 

7 0.980 0.412 0.895 0.980 0.415 0.895 

8 0.887 0.663 0.853 0.880 0.678 0.849 

9 0.915 0.688 0.881 0.922 0.691 0.887 

10 0.976 0.661 0.929 0.980 0.657 0.932 

Average 0.939 0.715 0.906 0.937 0.721 0.904 

From Table 3, we observe that the sensitivity rates for both datasets are very high. This indicates that our 

model can accurately identify antigenic variants. However, the specificity rates are relatively low. A test 

with a high sensitivity but low specificity results in many sequences which have no antigenic variants 

being predicted as antigenically different.  
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5.0 Classification via Artificial Neural Network 

ANNs have been recently applied to clinical problems such as diagnosing myocardial infarcts [11] and 

breast cancer detection [12]. We develop a method of classifying antigenic variant using Artificial Neural 

Networks. We train a neural network on amino acid sequences to test the NN's accuracy of prediction on 

new sequences. The network receives the 329 binary values as an input vector. It is then required to 

identify the antigenic variant by responding an output value between [0, 1].  

5.1 Network Architecture  

Deciding the number of hidden layer and number of neurons in each of these hidden layers are critical 

steps for deciding the overall neural network architecture. Even though the layers do not directly interact 

with the external environment, these layers have a tremendous influence on the final output.  

       We first determine the number of hidden layers to use with the neural network. The most common 

network used with backpropagation is the two-layer feedforward network [10]. Two-layer feed-forward 

networks can represent any input-output relationship with a finite number of discontinuities. It gives a 

general result showing that nonlinear control systems can be stabilized using two hidden layers, but not in 

general using just one [13]. For most problems, it starts with two layers, and then increase to three layers 

if the performance with two layers is not satisfactory. However, there is currently no mathematical theory 

that provides a definitive answer to the choice of number of hidden neurons in each of these hidden 

layers. If too few hidden neurons are used, the network will be unable to model complex data, resulting in 

underfitting. Too many hidden neurons can increase the training time dramatically and result in 

overfitting. We start with a two-layer model with 20 neurons in each hidden layer. 

5.1.1 Activation Functions    

The sigmoid activation function is a common activation function for neural networks. It constrains the 

outputs of a network to be between 0 and 1. The sigmoid activation function is most useful for training 

data that is also between 0 and 1. Since our input and target (output) data are all binary, we consider a 

sigmoid transfer function for the hidden and output layers. 

5.2 Comparison of Training Algorithm 

Trainlm is the fastest training function and the default training function for feedforward network. The 

quasi-Newton method, trainbfg and trainoss are also quite fast since they do not need to store the large 
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Hessian matrix. All of these methods tend to be less efficient for large networks (with thousands of 

weights), since they require more memories and computation time for these cases. Also, trainlm performs 

better on function fitting (nonlinear regression) problems than on pattern recognition problems [10]. 

When training large networks or pattern recognition networks, the conjugate gradient method, traincgp, 

trainscg and traincgf are good choices. Their memory requirements are relatively small, and yet they are 

much faster than standard gradient descent algorithms (traingd, traingda, traingdx). Trainrp is a network 

training function that updates weight and bias values according to the resilient backpropagation algorithm.  

5.2.1 Train and Test Strategy    

In order to train networks to find the necessary input output relationships without over-fitting the training 

dataset, we apply the early-stopping technique [14]. The dataset is divided into three sets: training, 

validation and testing set.  In early stopping, the training set is split into a new training set and a 

validation set. We train the networks with the training data and evaluate the validation error at each 

iteration. When the performance of the validation test stops improving or a specified number of iterations 

(which is set to 1000 in our study) is reached, the algorithm halts. The network with the best performance 

on the validation set is then used for actual testing on a separate set of data. We apply 10-fold cross 

validation to validate how well our model learns from the training data. 

5.2.2 Result and Discussion    

We compare the performance of various classification algorithms in terms of their predictive abilities and 

computation efficiencies. We use the sensitivity and specificity rates on both training and testing set as 

the measure of predictive accuracy, and the computation time (in CPU seconds) as the measure of 

computation efficiency. Table 4 summarizes the average computation time of different algorithms. Table 

5 summarizes the ANNs’ training performance in terms of accuracy of prediction. 
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Table 4 Comparison of CPU Time using different training algorithms  

Function Algorithm Mean(s) Min(s) Max(s) Std.(s) 

trainbfg Quasi-Newton 11527 5915 24434 5261 

traincgf Fletcher-Powell Conjugate Gradient 765.57 462.1 1163.5 213.23 

traincgp Polak-Ribiére Conjugate Gradient 308.87 176.25 468.46 97.597 

traingd Gradient Descent 1643.9 1634.4 1650.6 5.5985 

traingda Adaptive Learning Rate Gradient 

Descent 

109.33 70.481 188.68 32.349 

traingdx Variable Learning Rate Gradient 

Descent 

122.41 83.429 169.42 24.978 

trainlm Levenberg-Marquardt 3163.7 1007.3 8692.3 2548.1 

trainoss One Step Secant 465.78 256.7 1065.7 231.01 

trainrp Resilient Backpropagation 311.77 191.58 438.35 90.346 

trainscg Scaled Conjugate Gradient 423.65 207.29 663.58 151.06 

Table 5 Comparison of results using different training algorithms 

Function Algorithm Testing dataset Training dataset 

Sensitivity Specificity Agreement 

Rate 

Sensitivity Specificity Agreement 

Rate 

trainbfg Quasi-Newton 0.981 0.997 0.995 0.982 0.997 0.995 

traincgf Fletcher-Powell 

Conjugate Gradient 

0.982 0.997 0.995 0.988 0.998 0.996 

traincgp Polak-Ribiére 

Conjugate Gradient 

0.997 0.980 0.995 0.997 0.983 0.995 

traingd Gradient Descent 0.987 0.919 0.977 0.987 0.918 0.976 

traingda Adaptive Learning 

Rate Gradient Descent 

0.971 0.862 0.955 0.972 0.860 0.955 

traingdx Variable Learning 

Rate Gradient Descent 

0.995 0.958 0.989 0.996 0.957 0.990 

trainlm Levenberg-Marquardt 0.997 0.983 0.995 0.998 0.989 0.996 

trainoss One Step Secant 0.997 0.980 0.995 0.997 0.982 0.995 

trainrp Resilient 

Backpropagation 

0.957 0.948 0.955 0.957 0.953 0.956 

Trainscg Scaled Conjugate 

Gradient 

0.997 0.985 0.995 0.998 0.987 0.996 
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Comparing all the different training algorithms, the agreement rates are very close while the training time 

significantly differs. From table 4, we observe that traingda, traingdx and traincgp outperform the other 

algorithms in terms of mean and standard deviation of training time. Traingda and traingdx have 

relatively lower agreement rate than the other algorithms. Traincgp is the third fastest algorithm after the 

traingda and traingdx, with the agreement rates of 0.995 for both training and validation datasets. The 

extremely high sensitivity rates of 0.997 for both datasets help us to identify antigenic variants more 

easily. The specificity rates of the training and validation datasets are 0.983 and 0.980, respectively. This 

indicates a high accuracy of identifying similar viruses. The best result in terms of both classification 

agreement rate and training time is obtained using traincgp. The performance plot and trainstate plot of 

traincgp are shown in Figure 3 and Figure 4, respectively. 

 

 

                                   Figure 3 Performance Plot using traincgp 
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                                         Figure 4 Trainstate Plot using traincgp 

The performance of classification (Figure 3) shows the gradual reduction of mean square error (mse) 

values epoches after epoches. The result is reasonable since the final MSE is small, the test and validation 

set error have similar characteristics, and it doesn’t appear that any significant overfitting has occurred 

until epoch 52. From this observation, we can conclude that our model learns from the training data to 

map the input and output parameters at epoch 52.  The training state plot (Figure 4) shows that the 

gradient will become very small as the training reaches the minimum of the performance. If the 

magnitude of the gradient is less, the training will stop. The gradient decreased to 0.0089049 at epoch 

137. The number of validation checks represents the number of successive iterations that the validation 

performance fails to decrease. If this number reaches 6 (the default value), the training will stop. The 

validation checks increase rapidly to 6 at epoch 137. 
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6.0 Summary and Future Research 

In this study, we aim on speeding up influenza strain selection process using integer programming and 

machine learning methods.  

       In chapter 3, we build a logistic regression model in R 2.15.1 to identify and select the antigenic 

critical amino acid positions, which contribute most significantly to antigenic variants. After the model 

refinement and selection, of the 329 amino acids of HA, we identify 18 positions as critical amino acid 

positions. Based on the final model built with all critical amino acid positions, the accuracies of our 

model are 98.9% and 98.6% for training and testing set, respectively. The identified critical amino acid 

positions are similar to relevant works. We believe our method is efficient for vaccine strain update. 

       In chapter 4, we formulate an integer optimization model and solve the integer programming in IBM 

ILOG         12.4 to define a set of polyhedra. These polyhedra can be used to predict the class of new 

sequences. If a sequence lies in any of the K polyhedra, we classify this sequence as Class 1, otherwise, 

Class 0. The agreement rates are high for both training and validation sets. But the model we formulate, in 

common with many reported by previous studies (Lee and Chen,2004; Liao et al., 2008; Huang et 

al.,2009) can correctly identify the vast majority of sequences with antigenic variant (high sensitivity) but 

tend to overpredict the number of sequences with antigenic variant (relatively lower specificity) [1]. Due 

to its use of integer programming, another shortcoming of classifying through integer optimization model 

is the computation time. Compare to the machine learning method such as logistic regression and neural 

network, this takes much longer running time.  

       In chapter 5, we introduce a method of classifying antigenic variants using Artificial Neural 

Networks (via        ’s neural network toolbox). We train a neural network on amino acid sequences 

using traincgp algorithm and test the NN's accuracy of prediction on new sequences. Based on its 

classification accuracy, neural network outperforms both logistic regression and integer programming 

methods. However, the major weakness of neural network is its lack of interpretability. The results of an 

ANN cannot be explained since it is a “black-box” with a set of weights with no inherent meaning. 
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