
Impact of Cadmium On The 

Hypothalamus-Pituitary-Interrenal Axis 

Function In Rainbow Trout 
 

 

 

by 

 

 

Navdeep Sandhu 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Biology 

 

 

 

Waterloo, Ontario, Canada, 2013 

 

 

© Navdeep Sandhu 2013 

 



 

 ii 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 



 

 iii 

Abstract 

 Cadmium (Cd) is a nonessential metal present in sublethal concentrations within the aquatic 

environment. Cd is an endocrine disruptor and high concentrations of this metal suppress stressor-

induced cortisol production in fish. However, few studies have examined the effect of Cd at 

concentrations that are environmentally relevant on the functioning of the hypothalamus-pituitary-

interrenal (HPI) axis. The HPI axis activity is essential in the stressor-induced cortisol production, a 

highly conserved adaptive response to stress in vertebrates. Elevation of plasma glucose in response 

to a rise in plasma cortisol is mediated through steroid activation of glucocorticoid receptors (GRs), 

but the mechanism of action of Cd in disrupting target tissue cortisol action is not known in fish. 

The overall objective of this thesis was to examine the impact of sublethal and environmentally 

relevant levels of Cd on the stress response and target tissue metabolic capacities, and to investigate 

the mechanisms of action of this metal in disrupting cortisol production and target tissue cortisol 

action in rainbow trout (Oncorhynchus mykiss).  

 The impact of subchronic exposure to environmentally relevant levels of Cd on metabolic 

capacity and stress performance was identified through a 28 day (d) in vivo exposure of juvenile 

rainbow trout to either of two Cd concentrations (0.75 µg/L or 2.0 µg/L). During the exposure period, 

juvenile rainbow trout accumulated Cd within the liver, kidney and gills, but were able to adapt to 

exposure concentrations as no changes were observed in plasma cortisol, glucose and lactate levels. 

However, changes in abundance of mRNAs encoding proteins involved in corticosteroidogenesis, 

including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and P450 

side chain cleavage enzyme (P450scc), and liver GR protein expression suggesting endocrine 

disruption over the 28 d period. Also, target tissue metabolic capacities, including lower liver 

glycogen content and changes in intermediary metabolic enzyme activities in the liver and gill, were 

compromised by the 28 d exposure to Cd. The response to a secondary handling stressor at either 7 or 

28 d exposure was attenuated suggesting that subchronic exposure to low levels of Cd disrupts the 

highly conserved adaptive stress response in rainbow trout.  

 Upon further investigation using in vitro head kidney slices exposed to 0, 10, 100 or 1000 nM 

of Cd and stimulated with adrenocorticotropic hormone (ACTH), a similar inhibition of cortisol 

production was observed, as demonstrated in vivo, suggesting that Cd disrupts interrenal 

corticosteroidogenesis in fish. The impact of Cd on ACTH-stimulated cortisol production involved 
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the suppression in the abundances of MC2R, StAR and P450scc transcripts. This response was also 

mimicked when head kidney slices from 7 d Cd exposed fish were incubated ex vivo with ACTH 

confirming that interrenal tissue is a key target for endocrine disruption by Cd. In both the in vitro and 

ex vivo incubations of head kidney slices 8-Bromo-cAMP (a cAMP analog) completely abolished the 

Cd-mediated cortisol inhibition demonstrating for the first time that Cd disruption of 

corticosteroidogenesis is occurring upstream of cAMP production.  

 Further investigation of Cd-mediated impact on MC2R showed alterations in MC2R mRNA 

transcripts during in vivo exposure after 7 days and an attenuation of MC2R mRNA levels after Cd-

exposed fish were subjected to a handling stressor. Disruptions in the mRNA abundance of MC2R 

was associated with disruptions of melanocortin receptor accessory protein 1 (MRAP1), but not 

MRAP2; a phenomenon that was also observed in ex vivo head kidney slices. Cell transfection studies 

confirmed that rainbow trout MC2R/MRAP1 receptor complex displayed decreased activity in the 

presence of Cd. Taken together these results suggest that Cd directly targets the MC2R/MRAP1 

complex to inhibit ACTH-stimulated cortisol production in juvenile rainbow trout. In addition to Cd 

inhibiting interrenal steroidogenesis, the results also suggest that Cd may impact the negative 

feedback regulation of cortisol through the suppression of brain mineralocorticoid receptor (MR), but 

this requires further investigation. At the target tissue level, Cd by itself did not affect liver 

metabolism, but inhibited the cortisol-induced glucose production in liver slices. This involved 

suppression of GR protein expression along with the suppression of GR-responsive genes, including 

phosphoenolpyruvate carboxykinase (PEPCK) and suppressor of cytokines signaling 1 (SOCS1) and 

changes in enzyme activities, including hexokinase, glucokinase, pyruvate kinase and PEPCK, 

pointing to a disruption in liver GR signaling by Cd. 

 Altogether, Cd exposure disrupts the organismal stress responses in juvenile rainbow trout. 

Furthermore, Cd impairs the ability of juvenile rainbow trout to respond to a secondary stressor, 

which is a vital adaptive process that is fundamental to successful stress performance. Most 

importantly, these studies highlight for the first time that disruption of the HPI axis to attenuate 

cortisol production occurs at the level of the MC2R/MRAP1 complex, suggesting that the mechanism 

of action for attenuation of cortisol occurs at the level of MC2R activation. Also, GR signaling is a 

key target for Cd and may be a mechanism leading to altered metabolic capacities in stressed fish 

from Cd-contaminated sites. Overall environmentally relevant levels of Cd disrupt cortisol production 

and target tissue action of this steroid in rainbow trout. 



 

 v 

Acknowledgements 

There are definitely not enough words or pages that could cover my sincere appreciation and 

gratitude to those who have aided me through my PhD process, but here goes! 

I would first and foremost like to thank my supervisor, Dr. Matt Vijayan who provided me with 

this wonderful opportunity and helped in seeing it through to the very end, I would definitely not be 

at this position without his guidance and support. I would also like to extend a sincere appreciation to 

my committee members, Dr. Heidi Engelhardt and Dr. Deborah MacLatchy for their valuable time 

and input, along with Dr. James McGeer for allowing us to use the aquatic facility at Wilfrid Laurier 

and members of his lab, particularly Jessie Cunningham, Jessica Milne and Amanda Mancini for their 

assistance and maintenance of the fish.  

I am especially indebted to the members of the lab, particularly Laura Dindia, Brian Chow and 

Dinu Nesan, who started their PhD’s alongside me and now are some of my closest friends. I would 

also like to thank other members of the lab, and particularly acknowledge Nita Modi, Jen Ings, 

Nataliya Melnyk-Lamont, Erin Faught, Carol Best, Oana Birceanu, Lynsi Henrickson, Sarah 

Alderman, Maryam Kamkar, Edna Leung and Anju Philip for their support, wisdom, laughs and 

coffee breaks over the past five years. Finally, my sincerest gratitude goes out to the Vijayan lab 

appendages, specifically Liz Drolle, who always knew when to stop by and provide much needed 

humour and joy into our office. 

To my mom and dad, I am completely in your debt. None of this could have happened without your 

support and reassurance that I will (eventually) make it to the other side. You have been such a 

beacon of light and inspiration. I thank you for everything that you have sacrificed to get me to where 

I am, and can only hope that I have made you proud.  

To my sisters, Ravneet and Lovleen Sandhu, just a simple thank you. Those two words are packed 

with undying gratitude and appreciation for putting up with me during these past five years. Every 

time I would stumble and fall you were both there to pick me up, dust me off and encourage me to 

take one more step forward (typically through chocolate bribes and shopping). I could not have asked 

for two better best friends!  

Cheers to the future! 



 

 vi 

Dedication 

I dedicate this thesis to my late grand mother, Tej Kaur Sandhu. Waheguru has you in His keeping; 

we have you in our hearts.  

May you always live on forever. 

 

 



 

 vii 

Table of Contents 
AUTHOR'S DECLARATION ............................................................................................................... ii	
  
Abstract .................................................................................................................................................. iii	
  

Acknowledgements ................................................................................................................................. v	
  

Dedication .............................................................................................................................................. vi	
  
Table of Contents .................................................................................................................................. vii	
  

List of Figures ....................................................................................................................................... xii	
  

List of Tables ....................................................................................................................................... xiv	
  
Chapter 1 Introduction ............................................................................................................................ 1	
  

1.1 General Introduction ..................................................................................................................... 2	
  
1.2 Cadmium in the aquatic environment ........................................................................................... 2	
  
1.3 Cadmium bioavailability and water hardness ............................................................................... 3	
  
1.4 Cadmium route of entry and uptake in freshwater fish ................................................................ 4	
  

1.5 Cadmium tissue accumulation ...................................................................................................... 6	
  
1.6 Cadmium effects in fish ................................................................................................................ 7	
  
1.7 Cadmium as an endocrine disruptor ............................................................................................. 8	
  

1.8 Cadmium as an endocrine disruptor in teleost reproductive axis ................................................. 9	
  
1.9 Cadmium as an endocrine disruptor in teleost stress axis ............................................................ 9	
  
1.10 General introduction to stress and stress response ................................................................... 10	
  

1.11 The Hypothalamus-Pituitary-Interrenal (HPI) axis .................................................................. 12	
  
1.12 Melanocortin 2 receptor and melanocortin 2 receptor accessory proteins ............................... 15	
  
1.13 Cortisol biosynthesis ................................................................................................................. 18	
  

1.14 Cortisol release, corticosteroid receptors and negative feedback pathway .............................. 20	
  
1.15 Metabolism ............................................................................................................................... 24	
  
1.16 Thesis objectives ....................................................................................................................... 27	
  

Chapter 2 Exposure to environmental levels of waterborne cadmium impacts corticosteroidogenic and 

metabolic capacities, and compromises secondary stressor performance in rainbow trout ................. 28	
  
2.1 Overview ..................................................................................................................................... 29	
  

2.2 Introduction ................................................................................................................................. 29	
  

2.2.1 Chemicals ............................................................................................................................ 31	
  
2.3.2 Experimental animals and Cd exposure .............................................................................. 31	
  

2.2.4 Acute stressor exposure ....................................................................................................... 33	
  



 

 viii 

2.2.5 Plasma cortisol ..................................................................................................................... 33	
  
2.2.6 Plasma glucose and lactate analysis ..................................................................................... 33	
  

2.2.7 Tissue preparation ................................................................................................................ 33	
  
2.2.8 Liver glycogen analysis ........................................................................................................ 33	
  

2.2.9 Enzyme activity .................................................................................................................... 33	
  

2.2.10 GR and MR protein expression .......................................................................................... 34	
  
2.2.11 RNA isolation and cDNA synthesis ................................................................................... 35	
  

2.2.12 Primers ............................................................................................................................... 35	
  

2.2.13 Real time quantitative PCR (qPCR) ................................................................................... 37	
  
2.2.14 Statistical analysis .............................................................................................................. 37	
  

2.3 Results ......................................................................................................................................... 38	
  
2.3.1 Plasma analysis .................................................................................................................... 38	
  

2.3.2 MC2R, StAR and P450scc mRNA levels in the head kidney .............................................. 38	
  
2.3.3 Liver glycogen content and enzyme capacity ...................................................................... 42	
  
2.3.4 Gill enzyme capacity ............................................................................................................ 42	
  

2.3.5 GR and MR protein expression in the liver and brain .......................................................... 42	
  
2.3.6 Secondary acute stress response ........................................................................................... 49	
  

2.4 Discussion ................................................................................................................................... 52	
  
2.5 Acknowledgements ..................................................................................................................... 55	
  

Chapter 3 Cadmium-mediated disruption of cortisol biosynthesis involves suppression of 

corticosteroidogenic genes in rainbow trout ......................................................................................... 56	
  
3.1 Overview ..................................................................................................................................... 57	
  

3.2 Introduction ................................................................................................................................. 57	
  
3.3 Materials and methods ................................................................................................................ 59	
  

3.3.1 Chemicals ............................................................................................................................. 59	
  

3.3.2 Fish ....................................................................................................................................... 59	
  

3.3.3 Cortisol production ............................................................................................................... 59	
  

3.3.4 Exposure to cadmium ........................................................................................................... 60	
  

3.3.5 Exposure to 8-Bromo-cAMP ............................................................................................... 60	
  
3.3.6 Cortisol concentration .......................................................................................................... 60	
  

3.3.7 RNA isolation and first strand cDNA synthesis ................................................................... 60	
  

3.3.8 Primers ................................................................................................................................. 61	
  



 

 ix 

3.3.9 Quantitative real-time polymerase chain reaction (qPCR) .................................................. 61	
  
3.3.10 Statistical analysis .............................................................................................................. 63	
  

3.4 Results ......................................................................................................................................... 63	
  
3.4.1 Cortisol Production .............................................................................................................. 63	
  

3.4.2 MC2R, StAR and P450scc gene expression ........................................................................ 66	
  

3.5 Discussion ................................................................................................................................... 81	
  
3.6 Acknowledgements ..................................................................................................................... 83	
  

Chapter 4 Sublethal cadmium concentrations impair the cortisol stress response by disrupting 

melanocortin 2 receptor (MC2R) and MC2R accessory protein function in juvenile rainbow trout ... 84	
  
4.1 Overview ..................................................................................................................................... 85	
  

4.2 Introduction ................................................................................................................................. 86	
  
4.3 Materials and methods ................................................................................................................ 88	
  

4.3.1 Chemicals ............................................................................................................................ 88	
  
4.3.2 Rainbow trout holding conditions ....................................................................................... 88	
  
4.3.3 Cadmium exposure .............................................................................................................. 89	
  

4.3.4 Sampling .............................................................................................................................. 89	
  
4.3.5 Ex vivo study ........................................................................................................................ 90	
  
4.3.6 MC2R/MRAP1 CHO cell expression .................................................................................. 90	
  
4.3.7 Tissue Cd accumulation ....................................................................................................... 91	
  

4.3.8 Plasma ACTH and cortisol .................................................................................................. 91	
  
4.3.9 Gene expression ................................................................................................................... 91	
  
4.3.10 GR and MR protein expression ......................................................................................... 92	
  

4.3.11 Statistical analysis .............................................................................................................. 92	
  
4.4 Results ......................................................................................................................................... 95	
  

4.4.1 Cadmium accumulation ....................................................................................................... 95	
  

4.4.2 Plasma cortisol and ACTH levels ........................................................................................ 95	
  

4.4.3 CRF and CRF-BP mRNA abundance in the preoptic area (POA) .................................... 100	
  

4.4.4 POMCA and POMCB mRNA abundance in the hypothalamus ....................................... 100	
  

4.4.5 Brain GR and MR protein expression ............................................................................... 100	
  
4.4.6 Stressor effect on MC2R, MRAP1 and MRAP2 mRNA levels in the head kidney ............. 107	
  

4.4.7 Ex vivo cortisol levels and MC2R, MRAP1 and MRAP2 mRNA levels in the head kidney

 .................................................................................................................................................... 110	
  



 

 x 

4.4.8 Functional activation of MC2R/MRAP1 ........................................................................... 113	
  
4.5 Discussion ................................................................................................................................. 115	
  

4.5.1 Stress response disruption .................................................................................................. 115	
  
4.5.2 Cd-mediated interrenal axis dysfunction ............................................................................ 117	
  

4.5.3 Conclusion .......................................................................................................................... 118	
  

4.6 Acknowledgements ................................................................................................................... 119	
  
Chapter 5 Cadmium disrupts glucocorticoid receptor signaling in rainbow trout liver ...................... 120	
  

5.1 Overview ................................................................................................................................... 121	
  

5.2 Introduction ............................................................................................................................... 121	
  
5.3 Materials and methods .............................................................................................................. 123	
  

5.3.1 Chemicals ........................................................................................................................... 123	
  
5.3.2 Fish and holding conditions ............................................................................................... 123	
  

5.3.3 Experimental protocol ........................................................................................................ 124	
  
5.3.4 Liver cadmium accumulation ............................................................................................. 124	
  
5.3.5 Media glucose analysis ....................................................................................................... 124	
  

5.3.6 RNA isolation and first strand cDNA synthesis ................................................................. 125	
  
5.3.7 Primers ............................................................................................................................... 125	
  
5.3.8 Quantitative real-time polymerase chain reaction (qPCR) ................................................ 127	
  
5.3.9 Protein Immunoblot ............................................................................................................ 127	
  

5.3.10 Liver enzyme activity ....................................................................................................... 128	
  
5.3.11 Statistical analysis ............................................................................................................ 128	
  

5.4 Results ....................................................................................................................................... 129	
  

5.4.1 Cadmium accumulation ...................................................................................................... 129	
  
5.4.2 Plasma glucose ................................................................................................................... 131	
  

5.4.3 Transcript analysis .............................................................................................................. 131	
  

5.4.4 Protein expression analysis ................................................................................................ 131	
  

5.4.5 Enzyme activities ............................................................................................................... 137	
  

5.5 Discussion ................................................................................................................................. 142	
  

5.6 Acknowledgements ................................................................................................................... 144	
  
Chapter 6 Conclusions ........................................................................................................................ 145	
  

6.1 Chapter conclusions .................................................................................................................. 145	
  

6.2 General conclusion .................................................................................................................... 145	
  



 

 xi 

Copyright Permission ......................................................................................................................... 149 

References…………………………………………………………………………………………...150 

 

 



 

 xii 

List of Figures 
All figures in this thesis are original works by Navdeep Sandhu  

Chapter 1: Introduction 

Figure 1. Schematic diagram of Cd uptake in gills of fish……………………………………………..5 

Figure 2. Schematic diagram of the stress axis in fish………………………………………………..14 

Figure 3. Schematic diagram of MC2R/MRAP1 interaction………………………………………....17 

Figure 4. Schematic diagram of interrenal corticosteroidogenesis…………………………………....19 

Figure 5. Schematic diagram of genomic cortisol signaling………………………………………….23 

Figure 6. Liver metabolism in teleosts……………………………………………………………..…26 

 

Chapter 2: Subchronic exposure to environmentally relevant levels of waterborne cadmium 

impacts liver metabolic capacity and stress performance in rainbow trout 

Figure 1. Head kidney 1,7 and 28 d MC2R, StAR and P450scc mRNA abundance…………………41 

Figure 2. 28 d liver glycogen and 1,7 and 28 d liver enzyme activity………………………………..44  

Figure 3. 1, 7 and 28 d gill enzyme activity…………………………………………………………..46 

Figure 4. Liver and brain GR and MR protein expression……………………………………………48 

Figure 5. Plasma cortisol, glucose and lactate levels during 28 d exposure and secondary stressor…51 

 

Chapter 3: Cadmium-mediated disruption of cortisol biosynthesis involves suppression of 

corticosteroidogenic genes in rainbow trout 

Figure 1. Effect of Cd on ACTH-mediated cortisol production………………………………………65 

Figure 2. Effect of Cd on ACTH-mediated MC2R mRNA levels....…………………………………68  

Figure 3. Effect of Cd on ACTH-mediated StAR mRNA levels……………………………………..70 

Figure 4. Effect of Cd on ACTH-mediated P450scc mRNA levels…………………………………..72 

Figure 5. Effect of 8-Bromo-cAMP on Cd-mediated cortisol disruption…………………………….74 

Figure 6. Effect of 8-Bromo-cAMP on MC2R mRNA levels………………………………………...76 

Figure 7. Effect of 8-Bromo-cAMP on StAR mRNA levels………………………………………….78 

Figure 8. Effect of 8-Bromo-cAMP on P450scc mRNA levels………………………………………80 

 



 

 xiii 

Chapter 4: Sublethal cadmium concentrations impair the cortisol stress response by disrupting 

the melanocortin 2 receptor (MC2R) and MC2R accessory protein function in juvenile rainbow 

trout 

Figure 1. Cd accumulation in brain and head kidney after 7 d exposure…………...………………...97 

Figure 2. Plasma cortisol and ACTH after primary and secondary exposure…...…….……………...99 

Figure 3. CRF and CRF-BP mRNA levels after primary and secondary exposure…………………102 

Figure 4. POMCA and POMCB mRNA levels after primary and secondary exposure…………….104 

Figure 5. Brain GR and MR protein expression at 7 d………………………………………………106 

Figure 6. MC2R, MRAP1 and MRAP2 mRNA levels after primary and secondary exposure……..109 

Figure 7. Cortisol, MC2R, MRAP1 and MRAP2 mRNA levels ex vivo……………………………112 

Figure 8. rtMC2R/zrMRAP1 CRE luciferase activity……………………………………………....114 

 

Chapter 5: Cadmium disrupts glucocorticoid receptor signaling in rainbow trout liver 

Figure 1: Cd accumulation in liver slices…..………………………………………………………..130  

Figure 2: Glucose production in liver slices…………………………………………………………132 

Figure 3. PEPCK and SOCS1 mRNA in 0 and 1000 nM Cd-treated liver slices…………………...134 

Figure 4. GR and HSP70 protein expression………………………………………………………...136 

Figure 5. HK, GK, PK, and PEPCK liver enzyme activity………………………………………….139 

Figure 6. LDH, AlaAT and AspAT liver enzyme activity…………………………………………..141 

 

Chapter 6: Conclusions 

Figure 1: Summary of effects of Cd on stress response in rainbow trout…………………………...148 



 

 xiv 

List of Tables 
 

Chapter 2: Subchronic exposure to environmentally relevant levels of waterborne cadmium 

impacts liver metabolic capacity and stress performance in rainbow trout 

Table 1: Primers used for qPCR and their sequence, Tm and product size…….………………..….....36 

Table 2: Plasma cortisol, glucose and lactate concentrations on day 1, 7 and 28…………………….39 

 

Chapter 3: Cadmium-mediated disruption of cortisol biosynthesis involves suppression of 

corticosteroidogenic genes in rainbow trout 

Table 1: Primers used for qPCR and their sequence, Tm and product size…………………………...62 

 

Chapter 4: Sublethal cadmium concentrations impair the cortisol stress response by disrupting 

melanocortin 2 receptor (MC2R) and MC2R accessory protein function in juvenile rainbow 

trout 

Table 1: Primers used for qPCR and their sequence, amplicon size, accession no., and Tm ………....94 

 

Chapter 5: Cadmium disrupts glucocorticoid receptor signaling in rainbow trout liver 

Table 1: Primers used for qPCR and their sequence, amplicon size, accession no., and Tm ………..126 



 1 

Chapter 1 
Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 2 

1.1 General Introduction 

 Many toxicants have been shown to disrupt cortisol production in teleosts including 

pharmaceuticals and consumer products (Benguira et al., 2002; Lacroix and Hontela, 2004; Gravel and 

Vijayan 2006, 2007; Hontela, 2006; Dann and Hontela, 2011), xenobiotics (Hontela et al., 1992; Pickering, 

1993; Leblond et al., 2001), wastewater effluents (Miller et al., 2009; Ings et al., 2011a,b, 2012a,b; Miller 

and Hontela, 2011), and heavy metals (Brodeur et al., 1997; Playle 1998; Gravel et al., 2005; Gagnon et al, 

2006), including Cd (Lacroix and Hontela, 2004;  Levesque et al., 2002, 2003; Hontela and Lacroix, 2006; 

Lacroix and Hontela, 2006; Gagnon et al., 2007; Sandhu and Vijayan, 2011 [Chapter 3]). However, the 

mechanism of action of these contaminants in impacting the stress and metabolic performance is poorly 

understood.  

 Cadmium (Cd) is a nonessential heavy metal found at trace levels within the aquatic environment 

and is a known endocrine disruptor in both mammals and teleosts (Ricard et al., 1998; Henson and 

Chedrese, 2004; reviewed by McGeer et al., 2012). Most studies have focused on the reproductive axis and 

only a few studies have examined its impact on the stress response (Hontela and Vijayan, 2008). In the 

presence of Cd, cortisol production in rainbow trout is attenuated (Lacroix and Hontela, 2006; Gagnon et 

al., 2007; Sandhu and Vijayan, 2011 [Chapter 3]); however the mechanism of action is unknown. 

Furthermore, current studies examining the impact of Cd on the stress response have looked at 

concentrations that are well above environmentally relevant levels. This chapter will briefly review the 

impact of sublethal Cd concentrations in the environment on fish physiology and the organismal and 

cellular stress responses. 

1.2 Cadmium in the aquatic environment 

 Cd is considered as a toxic and nonessential heavy metals to animals. Due to its many industrial 

uses, Cd is greatly dispersed throughout ecosystems (TRI96, 1998; Pinot et al., 2000). Within the aquatic 

environment, Cd enters via natural (present in Earth’s crust) and anthropogenic activities such as the 

smelting of iron lead and/or zinc, burning of fossil fuels such as coal and incineration of municipal waste 

(Thornton, 1983; WHO, 1992; Camusso et al., 1995; ASTDR, 1999; Frew et al., 1997; Okada et al., 1997; 

Dias and Edwards, 2003; Kumar et al., 2007; Vazques-Sauceda, 2011). Cd is also present in food grown in 

large amounts of phosphate, sewer sludge, cigarettes, batteries, paints, metal coatings and plastics (WHO, 

1992; Okada et al., 1997; Roblenbeck et al., 1999; Olsson et al., 2002; Kumar et al., 2007). From these 

multiple sources, Cd enters the aquatic environment and gets biomagnified in the food chain (Harrison and 

Klaverkamp, 1989; Ayres, 1992; Cope et al., 1994; Burger et al., 2002, 2008; Seebaugh et al., 2005).  
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 Cd is extremely toxic and lethal to aquatic animals at concentrations lower than for many other 

metals (Canadian Council of Ministers of the Environment (CCME), 1994, 1999). The toxic release 

inventory has reported that approximately 3 million kilograms of Cd are annually released in the 

environment due to mining and smelting (TRI96, 1998). The average Cd content in the world’s oceans have 

variously been reported as low as 0.005 µg/L (WHO, 1992) and 0.005-0.02 µg/L (OECD, 1994; Jensen and 

Bro-Rasmussen, 1992), to as high as 0.5-1.5 µg/L (Pan et al., 2010) and > 8.9 µg/L (CRC, 1996; Singh, 

2001; Kaushik et al., 2003). Within fresh waters across Canada, Cd concentrations range from < 0.1 to 122 

µg/L (CCME, 1996). Exposure to toxicants such as cadmium in the aquatic environment can be defined as 

acute and chronic. Although the definitions can be loosely interpreted, acute exposure is generally accepted 

as a stressor that is applied to an organism and removed, allowing the organism to recover, whereas chronic 

exposure is a constant exposure. Currently, the freshwater quality criteria in water hardness ranging from 

20-120 mg/L as CaCO3 for aquatic life is 0.6 – 4.8 µg Cd/L for acute exposure and 0.3 – 1.3 µg Cd/L for 

chronic exposure (US EPA, 2001) in the United States and 0.017 µg Cd/L in Canada (CCME, 1999). 

1.3 Cadmium bioavailability and water hardness 

 Cd within the aquatic environment is present in many forms, such as soluble fractions and bound to 

suspended particles or sediments. Cd is most readily absorbed in its free form Cd (II) (Calamari et al., 1980; 

Wright and Welbourn, 1994; AMAP, 1998; DiToro et al., 2001; May et al., 2001; Lyndersen et al., 2002; 

Okocha and Adedeji, 2011). Water chemistry influences Cd bioavailability: dissolved organic carbon and 

sulfur-containing compounds bind Cd, while calcium (Ca) (involved in water hardness) can compete with 

Cd uptake at the gills (Bucking and Wood, 2006).  

 Water hardness is considered to be the most important factor related to Cd sensitivity in fish (Playle 

et al., 1993b; Hollis et al., 2000) and Ca is considered to be the most important ion as it competes with Cd 

for uptake in fish at branchial uptake sites (Verbost et al., 1987, 1989; Playle et al., 1993a; Wood, 2001; 

Niyogi and Wood, 2003; Baldisserotto et al., 2005; Ng et al., 2009). In teleosts, toxicity of Cd has been 

demonstrated to increase in the absence of extracellular Ca in vitro, suggesting a reciprocal interaction 

between Ca and Cd (Verbost et al., 1989; Zohouri et al., 2001; Franklin et al., 2005; Galvez et al., 2006; 

Lacroix and Hontela, 2006). Ca is an important second messenger in steroid synthesis (Van Der Kraak, 

1991; Yamazaki et al., 1998) and since Cd competes and/or interferes with Ca uptake through cationic 

channels within steroidogenic cells (Mathias et al., 1998; Lacroix and Hontela, 2006; Gagnon et al., 2007), 

it is possible that a link exists between Ca and Cd-mediated inhibition of steroidogenesis although this is 

yet to be verified.  



 

 4 

1.4 Cadmium route of entry and uptake in freshwater fish 

 Metal ions in fish are typically absorbed through passive diffusion or carrier-mediated transport 

across the gills, whereas metals that are associated with organic material are typically ingested and 

absorbed by endocytosis through the intestine (McDonald and Wood, 1993). The route of exposure is 

dependent upon the salinity of the environment (Klinck and Wood, 2013a) and since freshwater fish are 

actively taking up ions (Na+, K+, Cl- and Ca2+) (Schoenmakers et al., 1993), uptake of Cd occurs primarily 

at the gills, although uptake also occurs through the gut and liver (Reid and McDonald, 1991; Pratap and 

Wendelaar Bonga, 1993; Franklin et al., 2005; Baldisserotto et al., 2006; Cooper et al., 2006; Wood et al., 

2006; Ojo and Wood, 2008; Niyogi et al., 2008; Klinck et al., 2009; Kwong and Niyogi, 2009, 2012; 

Kwong et al., 2010, 2011; Klinck and Wood, 2011, 2012, 2013b; McGeer et al., 2012).  

 Binding of Cd to gills in freshwater fish occurs at either high affinity, low capacity sites or low 

affinity, high capacity sites (Playle et al., 1993a,b; Reid and McDonald, 1998). The high affinity, low 

capacity sites are considered “toxic sites” that are crucial in maintaining Ca homeostasis (Niyogi et al., 

2008). At the gill, Ca influx occurs through active transport against a chemical gradient and is transcellular 

(Flik et al., 1985; Wood, 1991; Perry, 1997; Perry et al., 2003; Moyes and Schulte, 2008), whereas efflux 

occurs passively (Verbost et al., 1987). Ca transport at the gills to the blood occurs via PNA+ MR cells 

(Galvez et al., 2006). Uptake of Cd occurs by competing with Ca at the apical Ca channel of chloride cells 

in gills via mechano-sensitive L-type Ca channels and to a lesser degree, via non-voltage gated Ca 

transporters (Goss et al., 2001; Perry et al., 2003; Galvez et al., 2006; Klinck and Wood, 2011; Klinck et al., 

2012). Alongside competing for uptake through chloride cells, Cd also inhibits Ca uptake within ionocytes 

by inhibiting basolateral Ca-ATPase (Verbost et al., 1987, 1989; Schoenmakers et al., 1992; Kwong et al., 

2011) leading to hypocalcaemia (Wong and Wong, 2000). Hypocalcaemia, which is a decrease of calcium 

in the blood, occurs by non-competitive inhibition by Cd, which irreversibly blocks the Ca-ATPase 

transport enzyme and inhibits Ca transport into the blood (Hollis et al., 2000; Szebedinsky et al., 2001). 

Overall, Cd appears to have multiple mechanisms of uptake into freshwater fish, however, the mechanism 

of basolateral extrusion they are still unclear. 
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Figure 1. Cadmium uptake in the gills of freshwater fish. At the site of the gill, cadmium acts like a 

calcium analogue and uptake occurs through voltage independent epithelial calcium channels that are 

considered to be located on positive peanut lectin agglutinin (PNA+) cells. Once Cd crosses the gill 

epithelium, it is either sequestered at the gill or released into the blood. The basolateral extrusion of Cd 

occurs through Ca-ATPase channels or sodium/calcium (Na/Ca) exchange and is transferred by the blood to 

other internal tissues either bound to metallothioneins, plasma proteins, or in its conjugated form. 

(Abbreviations: negative peanut lectin agglutinin (PNA-), pavement cells (PVC), Cd2+ (cadmium), K+ 

(potassium), CA (carbonic anhydrase), adenosine triphosphate (ATP), H+ (hydrogen), HCO3- (sodium 

bicarbonate), chloride (Cl-)).  
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1.5 Cadmium tissue accumulation 

 The initial site of accumulation and tissue damage occurs at the site of entry, which are the gills of 

freshwater fish (McDonald and Wood, 1993; Niyogi et al., 2008). After the gills, Cd is transferred through 

the bloodstream and distributed to internal tissues (McGeer et al., 2000b, 2007). The amount of metal in 

each of the internal tissues is dependent upon factors such as blood distribution, tissue specific uptake 

processes and detoxification mechanisms (McGeer et al., 2000b, 2007). Generally in freshwater fish, Cd 

accumulates predominately in the liver and kidney, after accumulation in gills (Norey et al., 1990; 

Chowdhury et al., 2004).  

 Physiological adjustments due to Cd exposure are typically accompanied by acclimation though 

enhanced tolerance of the metal (McDonald and Wood, 1993; Stubblefield et al., 1999; Hollis et al., 1999; 

McGeer et al., 2000a). This process, known as the damage-repair model, is characterized by three phases; 

the initial shock phase, the recovery phase and acclimation phase (McDonald and Wood, 1993). Briefly, 

upon exposure to Cd, there is an initial accumulation at the site of exposure, which is primarily the gills, 

resulting in homeostatic disruption (McDonald and Wood, 1993). Accumulation occurs predominantly in 

the gills before Cd begins to accumulate in other tissues, suggesting that there is a lag period and time is 

required to deliver Cd to internal target sites such as the liver (McGeer et al., 2000b; Hollis et al., 2001). 

Transfer of metals to target sites results in the recovery phase, which consists of reallocation of energy 

towards increasing metabolic activity and protein synthesis (McDonald and Wood, 1993). An important 

aspect of the recovery phase is the production of metal-binding proteins, metallothioneins (McDonald and 

Wood, 1993), which internalize metals in forms that are biologically unavailable to react with other target 

tissues (Wallace et al., 2003; Vijver et al., 2004; Rainbow, 2007). The high accumulation in some tissues, 

including the liver, is thought to be due to the presence metallothioneins that bind Cd and reduce the 

biologically active free pool (Olsson and Kille, 1997; Hollis et al., 1999; Kamunde, 2009). Metallothioneins 

will chelate and sequester Cd by binding of the metal to thiol groups, keeping Cd in the cytosol as and in 

soluble particulate structures (Lanno et al., 1987; Wallace et al., 2003). Although metallothioneins 

transcript levels are increased in the presence of Cd, the majority of Cd is sequestered in the liver and 

kidney (Flik et al., 1987), which is thought to be a result of the high affinity binding of Cd at Ca binding 

sites in the gill (Hollis et al., 1999). The reduction in internally available Cd by metallothioneins has been 

shown to protect organisms from chronic Cd exposure (Prakash and Rao, 1995; Kraemar et al., 2005). The 

metabolic cost associated with this protein synthesis may compromise tissue metabolic performance to 

chronic Cd exposure, but this remains to be tested. Finally, if Cd exposure is continuous (i.e. chronic) the 
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final phase occurs, the acclimation phase, whereby the gills begin to acts as a barrier and reduce internal Cd 

loading (Hollis et al., 2000). Reduction in Cd accumulation results in the fish returning to pre-exposure 

conditions, or, a new functional state (McDonald and Wood, 1993).  

1.6 Cadmium effects in fish 

 The sensitivity of aquatic organisms to Cd has been found to vary, and although the reason for this 

is unknown, it is thought to be due to variations in water chemistry, life stage, metal uptake, accumulation 

and sequestration (Spry and Wiener, 1991; Lacroix and Hontela, 2004; McGeer et al., 2000b; McGeer et 

al., 2012). In 2001, the United States Environment Protection Agency (US EPA) compiled a list of effects 

of Cd on an array of freshwater and saltwater organisms (US EPA, 2001). Amongst salmonids, rainbow 

trout are listed as the fourth most sensitive freshwater organism to Cd exposure (Sorensen et al., 1991; US 

EPA, 2001, Hansen et al., 2002) with a final acute value (value that is lower than LC50 and EC50 value for 

nearly all individuals in a genus) for total Cd at a hardness of 50 mg/L to be 2.108 µg/L (US EPA, 2001).  

 Accumulation of Cd in living organisms is a major ecological concern especially because of its 

long-half life and low excretion rate resulting in target tissue toxicity (ASTDR, 1999; Lippmann, 2000; 

Risso-de-faverney et al., 2001). Once Cd is absorbed and brought into the cells, it is accumulated and 

available to interact with cytoplasmic components which results in a variety of toxico-pathological 

responses (Bertin and Averback, 2006), including impaired tissue metabolism, anemia, osmo-ionic 

disturbances and hypocalcaemia along with changes to enzyme regulation (Pratap and Wendelaar Bonga, 

1993; Vaglio and Landriscina, 1999; McGeer et al., 2000a, Wood, 2001; Almeida et al., 2002; Baldisserotto 

et al., 2004; Pratap and Wendelaar Bonga, 2007; Okocha and Adedeji, 2011). Furthermore, changes in 

behaviour (Scott et al., 2003; Sloman et al., 2003), decreased hatch success (Lazardo-Daudt and Kennedy, 

2008) disturbances in respiration (Livingstone, 2001; Shaffi et al., 2001) and/or mitochondrial dysfunction 

(Bagchi et al., 1996; Fernandez et al., 2003; Kurochkin et al., 2011) along with impairment in blood 

parameters such as cortisol and glucose (Fu et al., 1990; Pratap and Wendelaar Bonga, 1990; Gill et al., 

1993; Brodeur et al., 1998; Lacroix and Hontela, 2004) are observed, all of which can lead to mortality. 

Fish exposed to sublethal concentrations of Cd can also be visibly shorter and their reproductive 

competence, which includes the synthesis of sex steroids, can be reduced due to lack of energy allocated 

towards growth and reproduction (Versteeg and Giesv, 1986; Fu et al., 1990; Pratap and Wendelaar Bonga, 

1993; Hontela, 1998; Ricard et al., 1998; Hollis et al., 1999; McGeer et al., 2000a; Jones et al., 2001; 

Hansen et al., 2002; Tilton et al., 2003).  
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 In the aquatic environment, organisms are typically not exposed to high, acutely toxic 

concentrations of Cd, unless they are restricted to that specific vicinity. Downstream of the initial site of 

exposure, Cd concentrations become diluted, which decreases the concentrations to lower levels that are 

defined as sublethal. At these sublethal concentration, Cd can cause changes in the tissue appearance at 

sites of Cd exposure and accumulation including the gastrointestinal tract, gills, kidney and liver at 

concentrations that are below levels resulting in cell death (Forlin et al., 1986; Lizardo-Daudt et al., 2007).  

1.7 Cadmium as an endocrine disruptor 

 The World Health Organization defines an endocrine disruptor as “an exogenous substance or 

mixture that alters function(s) of the endocrine system and consequently causes adverse health effects in an 

intact organism, or its progeny, or (sub)populations” (WHO, 1992).  

 Cd was first identified as an endocrine disruptor in human breast cancer cells over a decade ago 

(Garcia-Morales et al., 1994; Stoica et al., 2000) and has been shown in great detail to impact both the male 

and female reproductive system in mammals (Henson and Anderson, 2000; Byrne et al., 2009; Iavicoli et 

al., 2009). Briefly, in females, Cd works similar to the sex hormone estradiol, and induces proliferation 

(Brama et al., 2007) in the transcription of genes regulated by both the progesterone and estrogen receptor 

(ERα) (Stoica et al., 2000; Wilson et al., 2004; Martinez-Campa et al., 2006). Recent literature suggests that 

the mechanism of action by which Cd exerts toxicity on estrogenic genes is through both genomic binding 

of Cd to ERα and through nongenomic ERα pathways, specifically through the extracellular signal-

regulated kinase (ERK1/2) and serine/threonine kinase (Akt) (Brama et al., 2007; Liu et al., 2008). In 

males, Cd is able to impact genes regulated by the androgen receptor (Martin et al., 2002), but it is not 

known whether Cd directly binds to the androgen receptor. Recent studies suggest that the mechanism of 

action by which Cd acts on androgen receptors should be similar to the direct binding observed in female 

estrogen receptors as the ligand binding domain which binds Cd in the estrogen receptor is highly 

conserved between steroid receptors, including the androgen receptor (Martin et al., 2002).  

 Although a majority of the work involving Cd as an endocrine disruptor has focused primarily in 

mammals, most of these studies have focused on the reproductive axis. In relation to the stress response, not 

many studies have focused on the mechanism of action of Cd, and even fewer on non-mammalian 

vertebrates. It is well known that Cd and other heavy metals impair ACTH-mediated cortisol production in 

both mammals and fish (reviewed by Hontela, and Vijayan, 2008). However, the mechanism of action is 

yet to be elucidated. 
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1.8 Cadmium as an endocrine disruptor in teleost reproductive axis 

 Studies have shown that Cd causes endocrine disruption of the reproductive axis in aquatic 

organisms through disruption of gonadal steroidogenesis (Mukherjee et al., 1994; Arcand-Hoy and Benson, 

1998; Kime, 1999; Jalabert et al., 2000; Le Guével et al., 2000). Similar to mammals, most of the endocrine 

disrupting studies of Cd has been focused on the reproductive axis. Inhibition of gonadal steroidogenesis in 

fish can be due to many reasons such as morphological alterations in the gonads due to exposure (Mousa 

and Mousa, 1999; Sepulveda et al., 2002; Levesque et al., 2003), or as seen in mammals, through binding 

of Cd to sex steroid receptors.  

 17 β-estradiol (E2) is the predominant estrogen hormone in reproductive oviparous vertebrates that 

acts within the liver to induce the expression of vitellogenin (egg yolk precursor), making both the hormone 

and its target (liver) an important site for examining the expression of estrogen-dependent genes. Cd has 

estrogenic effects through different molecular and cellular mechanisms (Safe, 2003). Mechanistically in 

teleosts, Cd has been shown to have a high affinity to the estrogen receptor and therefore competes with 

estrogen for binding sites. Once bound, Cd can reduce or inhibit the expression of genes that are regulated 

by E2 (Le Guével et al., 2000) 

 11-Ketotestosterone (11-KT) is the major androgen in male teleosts that is required for 

gametogenesis and the development of male secondary sexual characteristics (Scott et al., 1980; Arcand-

Hoy and Benson, 1998; Schulz et al., 2001). Within males, Cd has been shown to alter 11-KT levels in 

rainbow trout testes (Sangalang and O’Hallorn, 1973; Sangalang and Freeman 1974; Kime, 1984) in vitro 

and in vivo. Unlike females, the mechanism of action by which Cd inhibits testosterone production in males 

is not fully understood but it is thought to impact the hypothalamus-pituitary-gonadal (HPG) axis prior to 

cAMP formation (Lizardo-Daudt et al., 2008). 

1.9 Cadmium as an endocrine disruptor in teleost stress axis 

 Apart from the reproductive axis, Cd also disrupts other systems (Taylor and Harrison, 1999; 

Hewitt and Servos, 2001; Vetillard and Bailhache, 2005) including the hypothalamus-pituitary-interrenal 

(HPI) axis (Hontela et al., 1992; Brodeur et al., 1997; Lacroix and Hontela, 2004). With respect to the stress 

response in teleosts, there is far less information on the interaction of Cd, or any endocrine disruptor, with 

the HPI axis, and the mechanism of action is not known. Furthermore, the current literature on the impact 

of Cd on cortisol production in teleosts is very inconsistent. While some papers report that Cd increases 

plasma cortisol (Tort et al., 1996), others suggest an inhibition (Lacroix and Hontela, 2004). The 
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inconsistency is due to variations within the studies such as route of exposure, concentration, duration of 

exposure, the reproductive status of the fish (mature versus immature), and the type of fish species used 

(Harrison and Curtis, 1992; Szebedinszky et al., 2001; Niyogi and Wood, 2003; Chowdhury et al., 2004).  

Field studies of fish from metal contaminated sites have shown reduced plasma cortisol concentrations and 

a failure to respond to additional stressors (Hontela et al., 1992, 1997; Hontela et al., 1995; Brodeur et al., 

1997; Girard et al., 1998; Norris et al., 1999, Kakuta, 2002; Levesque et al., 2003). Although the reason for 

the unresponsiveness of fish to a secondary stressor is unknown, Brodeur and colleagues (1998) suggested 

that a sustained stimulation of cortisol secretion and the high metabolic activity of the interrenal tissue 

could lead to exhaustion of steroidogenesis, and that this could account for the low levels of cortisol during 

metal exposure and impairment of the stress response to additional stressors. In vitro, Lacroix and Hontela 

(2004) showed that direct exposure of adrenal cells to various concentrations of Cd caused a dose-

dependent inhibition in cortisol production after 60 min of exposure. Furthermore, this inhibition was 

abolished in Cd-treated cells stimulated with pregnenolone and 25-hydroxycholesterol (pure synthetic 

precursor for cortisol production) suggesting that Cd disrupts cortisol signaling upstream of adenylate 

cyclase activation (Leblond and Hontela, 1999; Tilton et al., 2003; Lizardo-Daudt et al., 2007).  

 Apart from its impact on cortisol production, not much is known about the metabolic impact of Cd 

or its mechanism of action in teleosts (Arcand-Hoy and Benson 1998; Hontela, 1998; Kime, 1999).   

1.10 General introduction to stress and stress response 

 Stress occurs when a perceived stressor threatens to create a homeostatic imbalance within the 

organism (Barton, 1997; Wendelaar Bonga, 1997; Chrousos, 1998; Norris, 2000; Flik and Wendelaar 

Bonga, 2001, Barton, 2002; Barton et al., 2002; Iwama et al., 2006; Chrousos, 2009; Vijayan et al., 2010). 

Briefly, stressors consist of intrinsic and extrinsic stimuli as well as abiotic and biotic factors, including 

physical (e.g. temperature and pH), chemical (e.g. exposure to pollutants), physiological (e.g. disease and 

starvation) and psychological stressors (e.g. predation threat and crowding) (Barton and Iwama, 1991; 

Iwama et al., 1992, 1997; Iwama et al., 2006). In order to re-establish or create a new homeostatic set point, 

organisms elicit a complex suite of compensatory and/or adaptive behavioural and physiological responses 

broadly characterized as the primary, secondary and tertiary response (Selye, 1950, 1973; Barton and 

Iwama, 1991; Pickering and Pottinger, 1995; Wendelaar Bonga, 1997; Barton, 1997; Chrousos, 1998; 

Iwama et al., 1998; Schreck, 2010). 
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 Physiological responses to stress invoke the generalized primary and secondary stress responses 

that have been previously reviewed in detail (Barton and Iwama, 1991; Gamperl et al., 1994; Wendelaar 

Bonga, 1997; Iwama et al., 1998, 2006; Barton et al., 2002; Iwama et al., 2006; Vijayan et al., 2010). 

Although the pathways involved in either adapting or maladapting the animal to stress are not well 

established, the primary stress response involving the role of the hypothalamic-sympathetic-chromaffin 

(HSC) axis and the hypothalamus-pituitary-interrenal (HPI) axis (homologous to mammalian 

hypothalamus-pituitary-adrenal [HPA] axis), leading to the rapid release of catecholamines from 

chromaffin tissue (Randall and Perry, 1992; Reid et al., 1998; Iwama et al., 1999) and the more delayed 

production of cortisol from the interrenal tissue is a well documented area of stress adaptation (Figure 1) 

(Wendelaar Bonga, 1997; Mommsen et al., 1999). Unlike mammals, fish do not possess a discrete adrenal 

gland (Mommsen et al., 1999). Instead, catecholamines are stored in chromaffin cells (adrenal medulla 

homologue) and cortisol is produced from interrenal cells (adrenal cortex homologue) (Wendelaar Bonga, 

1998; Barton, 2002). Both chromaffin cells and interrenal cells along with immune cells are intermingled in 

clusters and found around the walls of the post cardinal vein located within the anterior kidney in teleosts 

(Hart et al., 1989; Randall and Perry, 1992; Reid et al., 1998; Hontela, 2005).  

 The perception of a stressor by the central nervous system (CNS) immediately activates the HSC 

axis and signals sympathetic nerve fibers to stimulate the release of catecholamines, via the cholinergic 

receptors on chromaffin cells, into the blood stream within seconds to minutes (Figure 1) (McDonald and 

Milligan, 1992; Randall and Perry, 1992; Reid et al., 1998; Barton et al., 2002; Vijayan et al., 2010). 

Catecholamines, including epinephrine and norepinephrine, are crucial in adaptation of the cardiovascular 

and respiratory systems, which are necessary for reallocation of energy substrates in order to meet the 

increased energy demand associated with stress (Hart et al., 1989, Randall and Perry, 1992; Wood and 

Munger, 1994; Wendelaar Bonga, 1997; Vijayan et al., 2010).  

 The secondary stress response related to the upregulation of catecholamines and cortisol involves 

physiological and cellular changes such as energy substrate mobilization and reallocation, increased cardiac 

output and oxygen uptake by the gills (Mommsen et al., 1999; Iwama et al., 2006; Vijayan et al., 2010). 

The stress response, in the short-term, is important for metabolic adjustments and for upregulation of 

energy substrate to cope with a stressor (Mommsen et al., 1999). The tertiary stress response occurs when 

the organism is unable to effectively adapt, leading to whole animal and population changes which can 

render the physiological stress response mechanisms maladaptive causing impaired immune function, 
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growth and reproduction as a result of the diversion of energy resources from these processes (Barton et al., 

2002; Hontela and Vijayan, 2009).  

 Most studies related to stress detection in teleosts examine the functioning of the HPI axis because, 

unlike catecholamines, it is possible to obtain resting levels of plasma cortisol (Wedemeyer et al., 1990; 

Barton and Iwama, 1991; Gamperl et al., 1994; Iwama et al., 2006). 

1.11 The Hypothalamus-Pituitary-Interrenal (HPI) axis 

 Unlike the release of catecholamines, the release of cortisol is delayed because cortisol is not stored 

for rapid release. The release of cortisol, the principal corticosteroid in teleosts during stress, follows within 

minutes to hours after stressor exposure and as previously mentioned, involves the HPI axis functioning 

(Figure 2) (Mommsen et al., 1999; Aluru and Vijayan, 2009; Vijayan et al., 2010). The primary step 

involves the stressor-mediated stimulation of the hypothalamus to release corticotropin-releasing factor 

(CRF) (Figure 2) (Feist and Schreck, 2001; Alsop and Vijayan, 2008; Alderman and Bernier, 2009). The 

axons of nucleus preopticus (NPO) CRF cells projects directly onto the pituitary gland, specifically the cells 

of the rostral pas distalis, where CRF stimulates the release of adrenocorticotropic hormone (ACTH) from 

the anterior pituitary (Figure 2) (Flik et al., 2006). Although other neurohormones and peptides can 

stimulate cortisol release from interrenal tissues, ACTH is the primary cortisol secretagogue (Balm et al., 

1994; Wendelaar Bonga, 1997; Barton et al., 2002; Iwama et al., 2006). Once ACTH is produced, it travels 

through the blood stream to the interrenal cells within the head kidney and binds to the melanocortin 2 

receptor (MC2R), leading to the activation of the steroid biosynthetic pathway, and the production of 

cortisol (Figure 2) (Aluru and Vijayan 2008, 2009). 
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Figure 2. The hypothalamic-sympathetic chromaffin cell (HSC) axis and hypothalamus-pituitary-

interrenal (HPI) axis. Schematic diagram of the HSC and HPI axes function preceding stressor exposure, 

adapted from Wendelaar Bonga (1997). Following stressor perception, the HSC axis is activated and 

sympathetic nerves from the hypothalamus stimulate the chromaffin cells in the head kidney to release 

catecholamines (epinephrine and nor-epinephrine) into the blood stream to stimulate physiological changes 

required for an alarm, or fight-or-flight response. During HPI axis activation, corticotrophin-releasing 

factor (CRF) released from the hypothalamus stimulates the anterior pituitary to secrete adrenocorticotropic 

hormone (ACTH), the primary cortisol secretagogue, into the blood stream, which increases cortisol 

synthesis and release from the interrenal cells in the head kidney, which promote physiological changes 

required for regaining and maintaining homeostasis. The physiological changes involve either an increase 

(blue), decrease (red) or could result in both an increase and decrease (brown) depending on the duration of 

stressor. Once cortisol reaches a threshold level, production is inhibited by cortisol acting on glucocorticoid 

(GR) receptors in the hypothalamus and pituitary to suppress CRF and ACTH production, respectively.  
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1.12 Melanocortin 2 receptor and melanocortin 2 receptor accessory proteins 

 The melanocortin receptor (MCR) family consists of five seven-transmembrane G-protein coupled 

receptors (GPCRs) known as MC1R, MC2R, MC3R, MC4R and MC5R (Gantz and Fong, 2003; Cooray 

and Clark, 2011) in mammals. These subtypes have also been identified in teleosts (Ringholm et al., 2002; 

Logan et al., 2003; Haitina et al., 2004; Klovins et al., 2004a,b; Metz et al., 2006; Aluru and Vijayan, 2008) 

and show a high degree of homology to mammalian MCRs (Schiöth et al., 2005). Ligands that bind to 

MCRs include α-, β-, and λ-MSH and ACTH-peptide hormones that originate from the 

proopiomelanocortin precursor peptide (Mountjoy et al., 1992; Cone et al., 1993). All five MCRs act via 

the stimulatory G protein (Gs), which in turn activates adenylate cyclase to produce cAMP (Metz et al., 

2006; Cerdá-Reverter et al., 2011; Veo et al., 2011).  

 Of the five MCRs, MC2R is the only one that is predominately found in the interrenal cells and is 

solely activated by ACTH, which leads to the production of cortisol (Gantz and Fong, 2003). Current 

mammalian literature demonstrates the presence of a trafficking protein that aids in folding, processing and 

translocation of MC2R from the endoplasmic reticulum to the cell membrane, enabling MC2R to bind to 

ACTH (Cooray and Clark, 2011).  MC2R was long suspected to be functional through an accessory protein 

because unlike other MCRs, heterologous expression of MC2R does not occur in nonadrenocortical cell 

lines (Weber et al., 1993; Naville et al., 1996; Yang et al., 1997; Elias et al., 1999; Metherell et al., 2005; 

Roy et al., 2007; Sebag and Hinkle, 2007; Cooray et al., 2008), a phenomenon that is similar to many 

GPCRs (Cooray et al., 2008). However, accessory proteins have been demonstrated to modulate expression 

of all melanocortin receptors (Sebag and Hinkle 2009a,b; Chan et al., 2009). Within mammals, 25% of 

familial glucocorticoid deficiency (FGD) cases, which result in glucocorticoid deficiency due to 

unresponsiveness to ACTH occur through mutations in MC2R, whereas in the other 75%, the receptor is 

normal but mutations are found in a single transmembrane protein, which was later classified as the 

melanocortin receptor accessory protein (MRAP) (Xu et al., 2002; Clark et al., 2005, 2009; Metherell et al., 

2005; Rumié et al., 2007).  

 The MRAP protein is a single transmembrane protein that consists of six exons (Cooray and Clark, 

2011) and is found in the adrenal gland of mammals. Although MRAP has been identified in several 

species, it is not highly conserved (Webb and Clark, 2010). In humans, MRAP has been identified as two 

isoforms called MRAP1 and MRAP2 (Roy et al., 2007; Chan et al., 2009; Webb and Clark, 2010). 

Trafficking of MC2R is not fully known, but it is thought that a 15-residue conserved region in the N-

terminus of MRAP1 interacts with MC2R and is required for trafficking, and the C terminus of MRAP1, 
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which is not well conserved amongst species, is involved in MC2R cell surface expression (Sebag and 

Hinkle, 2009a; Webb et al., 2009). MRAP1 and MRAP2 share a 39% amino acid identity in the N-terminus 

and transmembrane domain (Chan et al., 2009) and in vitro MRAP2 has functional similarities to that of 

MRAP1 (Chan et al., 2009). In vivo, MRAP2 is not able to produce a functional MC2R but increases 

MC2R expression in the presence of MRAP1, suggesting that MRAP2 is not crucial for MC2R trafficking 

and functionalization (Gorrigan et al., 2011). Experiments in Y1 and CHO cells suggest that MRAP2 plays 

an inhibitory role where it competes with MRAP1 to bind to MC2R, thus reducing cAMP production in 

response to ACTH stimulation (Sebag and Hinkle, 2010).  Other studies suggest that MRAP2 has additive 

effects on MRAP/MC2R cAMP response to ACTH (Agulleiro et al., 2010); however, the exact role of 

MRAP2 is yet to be elucidated.  

 In mouse, it was recently proposed that MRAP forms a homodimer with another MRAP within the 

endoplasmic reticulum via its transmembrane domain (Figure 3) (Sebag and Hinkle, 2007). The MRAP 

forms a homodimer with another MRAP within the endoplasmic reticulum via its transmembrane domain 

(Figure 3) (Sebag and Hinkle, 2007). The importance of MRAPs in teleosts is a recent avenue of research 

and thus not a lot is known about MRAPs in fish. MRAPs have recently been identified in some 

nonmammalian vertebrates (Liang et al., 2011) including rainbow trout (MRAP1 and MRAP2) and 

zebrafish. Unlike trout, zebrafish possess three MRAPs known as MRAP1, MRAP2a and MRAP2b 

(Agulleiro et al., 2010). Recently Liang and colleagues (2011) demonstrated that functioning of rainbow 

trout MC2R requires MRAP1, as observed in mammals and this functional MC2R is due to interaction of 

MC2R with amino acids located at positions 30-33 in MRAP1, which are not located in MRAP2, 

suggesting that like mammals, MRAP1 but not MRAP2 is crucial in MC2R trafficking and signaling. Since 

mutations in MRAP1 have been demonstrated to cause familial glucocorticoid deficiency (FGD) in 

mammalian vertebrates (Clark et al., 2005, 2009), it is possible that inhibition of ACTH-mediated cortisol 

by other factors such as Cd could involve disruption of MRAP1; however, this is yet to be determined.  
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Figure 3. Possible melanocortin 2 receptor (MC2R)/ MC2R accessory protein1 (MRAP1) interaction. 

Schematic diagram of the possible role of MRAP1 in proper functioning of MC2R in teleosts, adapted from 

Clark et al., 2009. Upon production and release of adrenocorticotropic hormone (ACTH), MRAP (pink) 

forms a homodimer that binds to MC2R (blue) and traffics the structure from the endoplasmic reticulum to 

the plasma membrane. Upon arrival MRAP is thought to remain bound for proper interaction and binding 

of ACTH or for production of an intracellular signal.  
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1.13 Cortisol biosynthesis 

 Under non-stressed conditions, cortisol is released in teleosts in a circadian manner to maintain 

regular physiological functions (Wendelaar Bonga, 1997). Stimulation of target tissue by cortisol has been 

implicated in a wide array of biochemical and physiological responses that are thought to be adaptive, 

including osmotic- and ionic-regulation, growth and metabolism, immune responses and reproduction 

(Laurent and Perry, 1990; Van der Boon et al., 1991; Wendelaar Bonga, 1997; Mommsen et al., 1999; 

Vijayan et al., 2005). In teleosts, cortisol is the primary circulating glucocorticoid and is released from the 

interrenal tissues (Mommsen et al., 1999). It is well established that a rapid increase in plasma cortisol 

occurs following an acute stress exposure and this transient increase in plasma cortisol concentrations 

returns to basal (resting) levels within a 24 h period (Mommsen et al., 1999; Vijayan et al., 2010). Since 

plasma cortisol levels rise dramatically during stress, an increase in plasma cortisol is a widely accepted 

indicator of stress in fish, since basal (resting) cortisol levels can be measured and are generally very low to 

stress-induced levels (Barton et al., 2002). Characteristically, cortisol elevations of fishes in response to 

acute stressors are typically in the range of 20 to 300 ng/ml, however, values can vary depending on the 

species of fish, hierarchy status (dominate versus subordinate) and integrity of the stress response 

(Wendemeyer et al., 1990; Barton and Iwama, 1991).  

 As previously mentioned, the secretion of cortisol in teleosts is under the control of the HPI axis 

(Wendelaar Bonga, 1997, Mommsen et al., 1999). Once ACTH binds to MC2R leading to a G-protein 

response (Midzak et al., 2011), cholesterol (the precursor of cortisol) is shuttled from the outer 

mitochondrial membrane to the inner mitochondrial membrane by the steroidogenic acute regulatory 

protein (StAR) (Figure 4) (Papadopoulos, 2004; Gravel and Vijayan, 2006). Once cholesterol is transported 

to the inner mitochondrial membrane, it is converted to pregnenolone by cytochrome P450 side chain 

cleavage enzyme (P450scc), specifically CYP11A1 (Figure 4) (Geslin and Auperin, 2004; Payne and Hales, 

2004 Midzak et al., 2011). After pregnenolone is produced within the mitochondrion, it enters the 

endoplasmic reticulum and undergoes a string of hydroxylations and isomerizations to produce cortisol 

(Figure 4) (Mommsen et al., 1999). The order is as follows: 1) 17α-hydroxylase (17-OHase) to produce 17-

α-hydroxypregnenolone; 2) 3β-hydroxysteroid dehdryogenase (3β-HSD) to produce 17-α-

hydroxyprogesterone; 3) 21-hydroxylase (21-OHase) to produce11-deoxycortisol; and finally, 4) 11β-

hydroxylase (11-β-OHase) to produce cortisol (Figure 4) (Mommsen et al., 1999; Geslin and Auperin, 

2004; Papadopoulos, 2004). 
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Figure 4. ACTH-mediated corticosteroidogenesis. Schematic diagram of G-protein coupled melanocortin 

2 receptor (MC2R) signaling leading to cortisol biosynthesis. Binding of ACTH to MC2R on plasma 

membrane leads to increase in cyclic adenosine monophosphate (cAMP) from the activation of adenylyl 

cyclase (which converts ATP to cAMP). Elevation of cAMP leads to activation of protein kinase A, which 

phosphorylates steroidogenic acute regulatory protein (StAR). StAR then transports cholesterol from the 

outer mitochondrial membrane to the inner mitochondrial membrane where it hydroxylated and cleaved by 

cytochrome P450 side chain cleavage enzyme (P450scc) to pregnenolone. Eventually through further 

hydroxylations and cleavages pregnenolone is converted to cortisol.  
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1.14 Cortisol release, corticosteroid receptors and negative feedback pathway 

 Once cortisol is produced in the interrenal cells it is circulated through the plasma and acts on target 

tissues (primarily the brain, liver, gill, and heart) where it provides an adaptive role in osmotic- and ionic-

regulation, immune response, reproduction, growth and metabolism (Bamberger et al., 1996; Mommsen et 

al., 1999; Vijayan et al., 2003; Kudielka et al., 2006). In vertebrates it is well known that the transport of 

steroid hormones, including cortisol, in the blood in is mediated by specific protein systems (Hammond, 

1995). In mammals and birds, the majority of cortisol (70-90%) is bound to cortisol binding globulin 

(CBG), while some cortisol (7-20%) is found bound to albumin (Gayrad et al., 1996; Aaron et al., 2004). In 

fish, there is no known cortisol binding protein 

  The mechanism(s) of action of cortisol on target tissues begin with the binding of cortisol to 

corticosteroid receptors, a steroid/thyroid/retinoid receptor superfamily of ligand-bound transcription 

factors (Bamberger et al., 1996; Mommsen et al., 1999; Aluru and Vijayan 2009). Within teleosts, 

corticosteroid receptors involved in cortisol signaling consist of multiple glucocorticoid receptors (GRs) 

and one mineralocorticoid (MR) receptor (Vijayan et al., 2005; Prunet et al., 2006; Alsop and Vijayan, 

2008). Distribution of GR and MR varies in teleosts where an overall greater amount of MR is observed in 

the brain and a greater amount of GR is found in the kidney, gill, spleen, heart, and liver (Greenwood et al., 

2003; Sturm et al., 2005; Stolte et al., 2008; Arterbery et al., 2010; Takahashi and Sakamoto, 2013).  

 Unlike mammals that possess a known ligand to bind to MR (aldosterone), no ligand has been 

found to bind specifically to MR in fish, although 11-deoxycorticosterone is a circulating corticosteroid in 

teleosts that can bind to MR in vitro (Sturm et al., 2005; Milla et al., 2006, 2008; Bury and Sturm, 2007; 

Kiilerich et al., 2007, 2011; Stolte et al., 2008; McCormick et al., 2008; Sakamoto et al., 2011). 

Furthermore, a role for the multiple GR isoforms has also not been established (Bury et al., 2003; Vijayan 

et al., 2005). In teleosts, cortisol binds to both GR and MR implicating a role of cortisol in hydromineral 

balance as aldosterone does in mammals (McCormick, 2001; McCormick and Bradshaw, 2006). Although 

cortisol binds to both receptors, MR typically has a 10-fold greater affinity for cortisol (Greenwood et al., 

2003). The exact role of cortisol/MR in the stress response is not well known, thus most studies focus on 

cortisol/GR signaling (Aluru and Vijayan, 2009).  

 Once cortisol binds to GR the molecular chaperones inactivating GR dissociate and a homodimer 

forms (Figure 5). The cortisol-GR heterocomplex translocates from the cytoplasm to the nucleus where it 

then binds to a specific DNA region in the promoter of target genes known as glucocorticoid response 

elements (GREs) resulting in the transactivation or repression of glucocorticoid responsive genes (Evans, 
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1988, Pearce, 1994; Pickering and Pottinger, 1995; Farman and Rafestin-Oblin, 2001; Vijayan et al., 2005; 

Bury and Sturm, 2007; Prunet et al., 2006) (Figure 5). Two key aspects of glucocorticoid receptors are the 

activation of gluconeogenic genes in the liver to aid in the increased energy demand and suppression of 

corticotropin releasing factor (CRF) and adrenocorticotropin hormone (ACTH) from the hypothalamus and 

anterior pituitary, respectively, to suppress cortisol production (Figure 5) (Mommsen et al., 1999; Young, 

2004; Vijayan et al., 2005). Suppression of cortisol is crucial by a negative feedback regulation as 

prolonged elevation of glucocorticoids in fish can result in suppression of reproduction, immune response 

and decrease in body weight (Wendelaar Bonga, 1997; Weyts et al., 1999; Norris, 2000).  
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Figure 5. Genomic cortisol signaling. Schematic diagram of the genomic cortisol response through 

glucocorticoid receptor activation. After cortisol is released into the circulation from the interrenal tissue, it 

crosses cell membranes and binds to glucocorticoid receptors (GR) in the cytosol leading to dissociation of 

molecular chaperones and dimerization of the activated receptor. The cortisol/GR heterotimeric complex 

then translocates to the nucleus and binds to glucocorticoid response elements (GREs) on target genes to 

initiate transcription.  
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1.15 Metabolism 

 During stressor exposure, tissues including liver, brain, gills and heart show an increased energy 

demand (Mommsen et al., 1999). Cortisol plays a key role in stress adaptation by mobilizing energy 

substrates to fuel increased energy demand that is associated with stressor exposure (Vijayan et al., 2010). 

In teleosts, a clear link has been established between increased plasma cortisol levels and the corresponding 

increase in plasma glucose levels (Mommsen et al., 1999; Aluru and Vijayan, 2009; Vijayan et al., 2010; 

Ings et al., 2011a,b, 2012a,b). The initial stressor-induced release of glucose is mediated by catecholamine-

induced glycogenolysis and the maintenance of plasma glucose levels (e.g. depletion of liver glycogen) is 

through cortisol-induced hepatic gluconeogenesis (Mommsen et al., 1999). In fish, cortisol has been shown 

to affect carbohydrate, protein and lipid metabolism, enabling the organism to increase plasma glucose to 

fuel homeostatic recovery following stressor exposure (Wendelaar Bonga, 1997; Mommsen et al., 1999; 

Vijayan et al., 2010). Plasma glucose and other substrates used for energy such as lactate have been used to 

assess the effects of stressors on metabolism (Vijayan et al., 1994, 2003, 2010).   

 A key target tissue for metabolic effects of cortisol is the liver, which increases glucose production 

primarily through gluconeogenesis, decreasing liver glycogen content (Figure 6) (Goldstein et al., 1992, 

1993; Jones et al., 1993), and also through other mechanisms such as glycogenolysis, proteolysis and 

lipolysis (Mommsen et al., 1999). Previous studies have shown that both cortisol and stress increase the 

activity, and/or the transcript levels of key gluconeogenic enzymes such as phosphoenolpyruvate 

carboxykinase which is a rate-limiting step in gluconeogenesis that converts oxaloacetate into 

phosphoenolpyruvate and carbon dioxide as well as enzymes involved in amino acid metabolism such as 

alanine aminotransferase (AlaAT) and aspartate aminotransferase (AspAT) (Vijayan et al., 1994; Sathiyaa 

and Vijayan, 2003; Vijayan et al., 2003; Gravel and Vijayan, 2007; Wiseman et al., 2007) and the C3 

substrates are channeled for gluconeogenesis. Glycolytic enzymes including hexokinase and pyruvate 

kinase, that are rate-limiting, along with lactate dehydrogenase are also upregulated in response to cortisol 

and/or stressor exposure (Vijayan et al., 1994; Gravel and Vijayan, 2007). The upregulation of these 

enzymes has also been shown to be associated with an increase in their transcript levels in the liver when 

there is an increase in glucose production (Sathiyaa and Vijayan, 2003; Vijayan et al., 2003; Aluru and 

Vijayan, 2007; Momoda et al., 2007; Wiseman et al., 2007). Although a clear link has been shown between 

increased cortisol and increased plasma glucose and lactate levels, which can provide insight into energy 

repartioning in response to stress (Mommsen et al., 1999; Vijayan et al., 2010), very few studies have 

looked at target tissue metabolic adjustments, particularly in response to contaminant exposure, including 
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Cd (Sangiao-Alvarellos et al., 2005, Tintos et al., 2006, 2007, Vijayan et al., 2006; Gravel and Vijayan, 

2007). As the activation of HPI axis functioning is a highly conserved response in vertebrates and critical 

for stress adaptation, the disruption of the axis by Cd can lead to altered fish performances and reduced 

fitness (Hontela et al., 1992, Hontela, 1997; Vijayan et al., 1997a,b; Hontela and Vijayan, 2008, Ings et al., 

2011a,b; Sandhu and Vijayan, 2011 [Chapter 3]), but the mechanisms are far from clear.  
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Figure 6. Liver metabolism. Glucose production in the liver of freshwater fish. Increase of glucose 

production in the liver that is associated with greater plasma cortisol levels occurs through genomic 

signaling to upregulate gluconeogenesis and to a lesser extent, glycogenolysis. Other pathways such as 

glycolysis have been previously shown to be upregulated in response to a stressor or greater plasma cortisol 

levels. Lactate, a byproduct of muscle proteolysis can also act as a substrate for glucose production. Once 

glucose is produced, it can either be used endogenously in the liver or is transported to other tissues that use 

glucose such as the brain and gill (Abbreviations: glucocorticoid receptor (GR)). 
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1.16 Thesis objectives 

The overall objective of this thesis was to examine the impact of environmentally relevant sublethal Cd 

concentrations on HPI axis functioning in juvenile rainbow trout (Oncorhynchus mykiss). The overall 

objective was met by conducting a series of controlled lab studies either in vivo or in vitro using head 

kidney preparations to determine whole animal and metabolic responses and to investigate the mode of 

action of this metal in disrupting target tissue responses.  

Specific objectives include: 

1. Examine the impact of Cd during exposure and in response to a secondary stressor (Chapter 2); 

2. Determine the impact of Cd on ACTH-mediated cortisol production within the hypothalamus-

pituitary-interrenal (HPI) axis (Chapter 3); 

3. Determine the impact of cadmium on the negative feedback pathway and at the level of the 

MC2R/MRAP1 complex (Chapter 4); 

4. Determine the impact of cadmium on metabolic capacity of the liver (Chapter 5).  

 

Specific hypotheses include: 

1. Subchronic Cd exposure affects hormonal and metabolic levels during exposure and in response to 

a secondary stressor in rainbow trout in vivo (Chapter 2); 

2. Cd exposure disrupts ACTH-mediated cortisol production by disrupting the HPI axis in rainbow 

trout in vitro (Chapter 3); 

3. Subchronic Cd exposure impacts cortisol production through disruption at the hypothalamus and/or 

at the level of the melanocortin 2 receptor and its accessory proteins in rainbow trout in vivo and ex 

vivo (Chapter 4); 

4. Exposure to Cd impacts liver target tissue response to cortisol, which is important in energy 

production during stress response in vitro (Chapter 5). 
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Chapter 2 
Exposure to environmental levels of waterborne cadmium impacts 
corticosteroidogenic and metabolic capacities, and compromises 

secondary stressor performance in rainbow trout 
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2.1 Overview 

The physiological responses to waterborne cadmium exposure have been well documented; however, few 

studies have examined animal performances at low exposure concentrations of this metal. We tested the 

hypothesis that longer-term exposure to low levels of cadmium will compromise the steroidogenic and 

metabolic capacities, and reduce the cortisol response to a secondary stressor in rainbow trout 

(Oncorhynchus mykiss). To test this, juvenile rainbow trout were exposed to 0 (control), 0.75 or 2.0 µg/L 

waterborne Cd in a flow-through system and were sampled at 1, 7 and 28 d of exposure. There were only 

very slight disturbances in plasma cortisol, lactate or glucose levels in response to cadmium exposure over 

the 28 d period. Chronic cadmium exposure significantly affected key genes involved in 

corticosteroidogenesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein 

(StAR) and cytochrome P450 side chain cleavage enzyme (P450scc). At 28 d, the high cadmium exposure 

group showed a significant drop in the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) 

protein expressions in the liver and brain, respectively. There were also perturbations in the metabolic 

capacities in the liver and gill of cadmium-exposed trout. Subjecting these fish to a secondary handling 

disturbance led to a significant attenuation of the stressor-induced plasma cortisol, glucose and lactate 

levels in the cadmium groups. Collectively, although trout appears to adjust to subchronic exposure to low 

levels of cadmium, there may be a cost associated with impaired interrenal steroidogenic and tissue-specific 

metabolic capacities, that may play a role in the attenuated stress performance in rainbow trout. 

2.2 Introduction 

  Fish encounter elevated cadmium (Cd) concentrations in their aquatic environment due to both 

natural and anthropogenic sources, which usually results in elevated Cd bioaccumulation in tissues (Hollis 

et al., 1999, 2001; reviewed by McGeer et al 2011). In vertebrates, Cd has no known physiological function 

but can exert toxicity at sublethal concentrations (McGeer et al 2011). The primary route of entry of Cd in 

fish is through their gills and/or GI tract and accumulates predominately in the kidney, gills and liver, and 

to a lesser extent in the brain (McGeer et al., 2007; Kamunde, 2009; McGeer et al 2011). The effects of 

chronic exposure to waterborne Cd at sublethal concentrations include disturbances in whole-body or 

plasma ion homeostasis, modifications in tissue-specific enzyme activities and metabolic capacity, as well 

as endocrine disruption (see McGeer et al 2011).  

A well-known endocrine disrupting effect of sublethal Cd exposure involves the impairment of cortisol 

stress axis functioning in fish (Brodeur et al., 1997, 1998; Ricard et al., 1998; Lacroix and Hontela, 2004; 

Raynal et al., 2005; Lacroix and Hontela, 2006; Lizardo-daudt et al., 2007; Hontela and Vijayan, 2008; 
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Sandhu and Vijayan, 2011). The corticosteroid stress response in teleosts involves the activation of the 

hypothalamus-pituitary-interrenal (HPI) axis culminating in the release of cortisol into circulation (Aluru 

and Vijayan, 2009). The primary hormonal step in HPI activation involves the secretion of corticotropin-

releasing factor (CRF) that stimulates the pituitary to produce adrenocorticotrophic hormone (ACTH), a 

proopiomelanocortin (POMC)-derived hormone (Aluru and Vijayan, 2009). ACTH activates melanocortin 

2 receptor (MC2R), a G-protein coupled receptor leading to corticosteroid biosynthesis (Metz et al., 2006; 

Aluru and Vijayan, 2008a). The key steps in cortisol biosynthesis is thought to include the transfer of 

cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane by the 

steroidogenic acute regulatory protein (StAR), as well as the conversion of cholesterol to pregnenolone 

catalyzed by the cytochrome P450 side chain cleavage enzyme (P450scc) (Payne and Hales, 2004; Stocco 

et al., 2005; Aluru and Vijayan, 2006). The terminal step in corticosteroid biosynthesis involves the 

conversion of deoxycortisol to cortisol by 11-β hydroxylase (Payne and Hales, 2004; Aluru and Vijayan, 

2006).  

The target tissue cortisol action is mediated by activation of either the glucocorticoid receptor (GR) and/or 

the mineralocorticoid receptor (MR) (Bury et al., 2003; Greenwood et al., 2003; Sturm et al., 2005; Prunet 

et al., 2006; Aluru and Vijayan, 2009; Takahashi and Sakamoto, 2013). In teleosts, unlike mammals, there 

are multiple copies of GRs but a functional role for these isoforms has not been established (Bury et al., 

2003; Prunet et al., 2006; Aluru and Vijayan, 2009). The cortisol response during stress allows for 

physiological adjustments that are essential to restore homeostasis (Mommsen et al., 1999; Aluru and 

Vijayan, 2009). A primary role for stressor-induced cortisol elevation is to allow for metabolic adjustments, 

including stimulation of gluconeogenesis in the liver to restore homeostasis (Mommsen et al., 1999). While 

Cd has been shown to target the HPI axis and disrupt cortisol production (Hontela and Vijayan, 2008; 

Sandhu and Vijayan, 2011), the effect of subchronic exposure to environmentally relevant levels of Cd on 

target tissues involved and the mechanisms of action are far from clear.  

We tested the hypothesis that subchronic exposure to Cd disrupts the metabolic capacity and compromises 

the cortisol stress performance to a secondary stressor in juvenile rainbow trout (Oncorhynchus mykiss). 

This was tested using a water-borne exposure in a flow-through system as described before (McGeer et al., 

2000 a, b) and further detailed in Milne et al. (2013). Trout were exposed to either 0 (control), 0.75 (low 

exposure) or 2.0 µg/L (high exposure) Cd for 28 d and then subjected to a 5 min handling disturbances as 

described before (Ings et al., 2012). We examined plasma cortisol, glucose and lactate levels as markers of 

stress response, while transcript abundances of MC2R, StAR and P450scc in the head kidney tissue were 



 

 31 

used as markers of steroidogenic capacity. Liver and gill metabolic capacities were determined by 

measuring the activities of glycolytic (hexokinase, glucokinase, pyruvate kinase and lactate 

dehydrogenase), gluconeogenic (phosphoenolpyruvate carboxykinase) and oxidative (citrate synthase) 

enzymes, while GR and MR protein expressions in the liver and brain were used to assess target tissue 

cortisol responsiveness.  

2.2.1 Chemicals 

 Tricaine methanesulfonate (TMS) and sodium bicarbonate were purchased from Syndel 

Laboratories Ltd., (Vancouver, BC, CAN). Borosilicate and scintillation tubes, monobasic and dibasic 

sodium phosphate, potassium bicarbonate, perchloric acid, potassium chloride and sodium bicarbonate were 

purchased from Fisher Scientific (Fairlawn, NJ, USA). Scintillation cocktail and cortisol antibody were 

purchased from MP Biomedicals (Solon, OH, USA). [1,2,6,7-3H] cortisol tracer and ECl plus western 

detection system were purchased from GE Healthcare (Upsala, Sweden). D-glucose, Tween 20, Cadmium 

chloride and 96-well plates were purchased from Bioshop (Burlington, ON, CAN). Thimerasol, activated 

charcoal, dextran (from Leuconostoc mesenteroides) amyloglucosidase, imidazole, beta-nicotinamide 

adenine dinucleotide disodium salt (β-NADH), phosphoenol pyruvate (PEP), lactate dehydrogenase (LDH), 

pyruvate kinase, adenosine diphosphate (ADP), adenosine triphosphate (ATP), deoxyguanosinediphosphate 

(2-DGDP), magnesium chloride and sodium bicarbonate were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). Manganese chloride was purchased from Roche (Mannheim, Germany). Protein ladder and 

Sybr green for qPCR were purchased from Bio-Rad (Hercules, CA, USA). 

2.3.2 Experimental animals and Cd exposure 

 Juvenile rainbow trout (27 ± 8 g) were obtained from Rainbow Springs Hatchery (Thamesford, ON, 

CAN) and held at Wilfrid Laurier University using previously described methods (McGeer et al., 2000a,b) 

and described in detail by Milne (2010). Initially, 420 fish were randomly divided among two 220 L 

polyethylene tanks (RTS Plastics, New Hamburg, ON, CAN) and acclimated for two weeks to flowing 

water at 140 mg/L CaCO3 with Ca, Mg and Na concentrations of 868 ± 28, 480 ± 16 and 338 ± 16 

uM (mean ± SEM), pH 7.2 and 11ºC) that was a mixture of local well water and reverse osmosis 

product water. Fish were fed 2% of their body weight daily as a single meal (Bio Oregon Protein Inc., 

Warrenton, OR, USA) and photoperiod (16 h: 8 h; light:dark) was maintained throughout the experiment.  

Following the acclimation period, trout were nonselectively distributed to six 220 L polyethylene 

tanks (70 per tank) supplied with flowing (700 ml/min) water.  Continuously flowing well and 
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reverse osmosis water to achieve the desired chemistry (see previous paragraph) were mixed in a 

60 L polyethylene head tank and then delivered to three smaller 10 L polypropylene exposure head 

tanks before distribution to fish tanks.  Concentrated stock solutions of Cd (as CdCl2) were 

metered (QG6 pump, Fluid Metering Inc, New York) into two of the exposure head tanks to 

achieve the desired waterborne Cd concentration (either 0.75 or 2.0 µg Cd/L).  Test solution (or 

unmodified (control) water) delivery from the exposure head tanks was split to replicate fish tanks 

(n=2 tanks of 70 fish each for control, 0.75 or 2.0 µg Cd/L). Measured total  Cd concentrations 

were determined using graphite furnace atomic absorption spectrometry (see Milne et al 2013) and 

were 0.03 ± 0.0002 µg Cd/L, 0.71 ± 0.101 µg Cd/L and 1.85 ± 0.119 µg Cd/L for control, low and 

high exposures, respectively. Exposures were initiated by spiking tanks with appropriate volumes 

of concentrated stock solution to achieve the target exposure concentrations and throughout the 

exposure all header and fish tanks were aerated. The concentrated Cd stock solutions were 

renewed weekly and water pH , conductivity and temperature ) were also measured daily weekly 

using a pH meter (Seven Go, Mettler Toledo, Fisher Scientific, Mississauga ON) and a 

conductivity meter (YSI 30, Yellow Springs Instruments, Yellow Springs, OH). Feeding was 

stopped 24 h prior to sampling. 

2.3.3 Sampling 

 The Cd exposure study was conducted for 28 d and fish were sampled at 1, 7 and 28 d after the start 

of Cd exposure. At each sampling time point 8 fish were sampled, except on day 28 for the 2.0 µg Cd/L 

 Group, where only 6 fish (3 from each tank) were samples, from each treatment group (4 fish per replicate 

exposure tank) and euthanized quickly with an overdose of TMS buffered with an equal weight of sodium 

bicarbonate. On the last sampling day (28 d), only 6 fish (3 from each replicate tank) were sampled from 

the 2.0 µg Cd/L group.  

 Fish were bled by severing the caudal peduncle. The blood was collected in heparinized tubes and 

centrifuged at 10, 000 x g for 2 min to separate the plasma and stored at  -80 °C until cortisol, glucose and 

lactate analysis. Plasma samples were used to measure cortisol, glucose and lactate levels in both primary 

(Cd) and secondary (chasing and netting) fish. Tissues (brain, liver and head kidney) were samples on 1, 7 

and 28 d post-Cd exposure to assess enzyme activities, metabolite level, protein expression and mRNA 

abundances.  
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2.2.4 Acute stressor exposure 

 After 28 d exposure, fish in each group were subjected to a handling disturbance for 5 min as 

described previously (Ings et al., 2011). Fish were sampled at 1 and 24 h post-handling stressor. 0 h time 

point constitutes the pre-stress samples at 28 d    

2.2.5 Plasma cortisol 

 Plasma cortisol was measured using a radioimmunoassay (RIA) as previously described (McMaster 

et al., 1995; Alsop and Vijayan, 2008).  

2.2.6 Plasma glucose and lactate analysis 

 Plasma glucose and lactate were measured using commercially available colormetric kits (Raichem, 

CA, USA and Trinity Biotech, St Louis, MO, USA, respectively) as described in (Ings et al., 2011b). 

2.2.7 Tissue preparation 

 Tissue preparation for protein and enzyme analyses followed the protocols described previously 

(Dindia et al., 2012; Ings et al., 2012). Briefly, 50 mg of tissue was added to 200 µL of 50 mM Tris and 1X 

proteinase inhibitor (PI). Samples for immunodetection were then diluted to a concentration of 2 mg/ml in 

Laemmli’s buffer (Laemmli, 1970), and an aliquot was taken for enzyme determinationand added to 50% 

glycerol buffer (50% glycerol, 21 mM Na2HPO4, 0.5 mM EDTA-Na, 0.2% BSA, 5 mM β-mercaptoethanol, 

pH 7.5) as described before (Ings et al., 2012). 

2.2.8 Liver glycogen analysis 

 Glycogen content (28 d samples only) was determined as glucose before and after hydrolysis to 

glucose with amyloglucosidase according to Ings et al., 2012. Briefly, samples were mixed with 35% 

perchloric acid (PCA) and endogenous glucose was measured colormetrically using glucose colour reagent 

as previously mentioned above. Samples were then mixed with KHCO3 and amyloglucosidase (1 mg/ml in 

sodium acetate buffer) and incubated at 40 °C for 2 h, and the reaction stopped by the addition of 35% PCA 

and glucose measured. 

2.2.9 Enzyme activity 

 All reagents were prepared using 50 mM imidazole buffer (pH 7.5) and liver and gill enzyme 

activities were measured kinetically at 340 nm at room temperature using a microplate reader (VersaMax; 

Molecular Devices Corp., Palo Alto, CA, USA) as described before (Vijayan et al., 2006). The enzymes 
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measured included glucokinase (GK), hexokinase (HK), lactate dehydrogenase (LDH), pyruvate kinase 

(PK), phosphoenolpyruvate carboxykinase (PEPCK) and citrate synthase (CS). The following assay 

conditions were used:  

 

• HK (EC 2.7.1.1): 1 mM glucose, 5 mM MgCl2, 10 mM KCl, 0.25 mM NADH, 2.5 mM PEP, 5 

U/ml LDH, and 2.5 U/ml PK; reaction started with 1 mM ATP. 

• GK (EC 2.7.1.2): 15 mM glucose, 5 mM MgCl2, 10 mM KCl, 0.25 mM Nicotinamide adenine 

dinucleotide (NADH), 2.5 mM phosphoenolpyruvate (PEP), and 5 U/ml LDH, 2.5 U/ml PK; 

reaction started with 1 mM adenosine triphosphate (ATP).  

• PK (EC 2.7.1.40): 10 mM MgCl2, 3 mM KCl, 0.12 mM NADH, 20 U/ml LDH, 0.05mM PEP, and 

2.5 mM ADP; reaction started with 2.5 mM PEP.  

• LDH (EC 1.1.1.27): 0.12 mM NADH; reaction started with 1mM pyruvic acid 

• PEPCK (EC 4.1.1.32): 20mM NaHCO3, 0.12 mM NADH, 0.5 mM PEP, and 1 mM MnCl2; 

reaction started with 5mM deoxyguanosine diphosphate (DGDP).  

• CS (E.C. 2.3.3.1): 12 mM 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB), and 4 mM Acetylcoenzyme 

A; reaction started with 2.4 mM OXA. Soup was prepared in Tris-HCl buffer at pH 8.0 and 

samples were measured at 405nm. 

The enzyme activity is expressed as micromole of substrate consumed or product liberated per minute (U) 

per gram protein.  

2.2.10 GR and MR protein expression 

 Protein concentration was measured using the bicinchoninic acid (BCA) method with bovine serum 

albumin as a standard. Sample preparation and immunodetection followed the protocols described 

previously (Sathiyaa and Vijayan, 2003; Dindia et al., 2012). Briefly brain and liver samples in Laemmli’s 

buffer were loaded (40 µg protein/sample) onto 8% SDS-PAGE gel. Samples were run for 40 min at 200 V 

using 1 X TGS running buffer and the separated proteins were transferred onto a nitrocellulose membrane 

using a semidry transfer unit (Bio-Rad, Hercules, CA, USA) at 20 V for 25 min in a transfer buffer (25 mM 

Tris, pH 8.3, 192 mM glycine and 10% (vol/vol) methanol). The membranes were blocked for 1 h with 5% 
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skim milk in 1 X TTBS buffer (20 mM Tris, 300 mM NaCl, 0.1% Tween 20, with 0.02% sodium azide pH 

7.5). 

 The blots were incubated with either rabbit polyclonal anti-trout GR (1:1000; Sathiyaa & Vijayan, 

2003) for 1 h at room temperature or rabbit polyclonal anti-trout MR (1:1000; Jeffrey et al., 2012) 

overnight for 18 h at 4 °C. Blots were subsequently washed in 1 X TTBS three times (10 min/wash) and 

followed with a 1 h incubation with either alkaline phosphatase-conjugated goat anti-rabbit IgG (1:3000; 

Bio-Rad, Hercules, CA, USA) for GR or HRP-conjugated goat anti-rabbit IgG (1:3000; Bio-Rad, Hercules, 

CA, USA) for MR. Blots were then washed again with 1 X TTBS (3x10 min/wash) followed by one final 

wash in 1 X TBS (20mM Tris, 300mM NaCl, pH 7.5) for 10 min. The protein bands were detected using 

either NBT (0.033% w/v) and BCIP (0.017% w/v) color substrates (Bio-Rad, Hercules, CA, USA) for GR 

or ECl plus detection system (GE Healthcare, Upsala, Sweden) for MR. The blots were scanned and the 

intensities were quantified using AlphaEase software (AlphaEase, Innotech, San Leandro, CA, USA). 

Equal loading of samples were confirmed by probing the blots with β-actin (Cy3-coupled monoclonal 

primary antibody produced in mouse at 1:1000; Sigma-Alrdich, St. Louis, MO, USA). 

2.2.11 RNA isolation and cDNA synthesis 

 Total RNA (DNase treated) was isolated from head kidney tissue using the RNeasy Mini Kit 

protocol (Qiagen, Mississauga, ON, CAN), and the RNA was quantified using a NanoDropTM 

spectrophotometer (Thermo Scientific, Nepean, ON, CAN) at 260/280 nm. First strand cDNA was 

synthesized from 1 µg total RNA using First strand cDNA synthesis kit (MBI Fermentas, Burlington, ON, 

CAN). Briefly, total RNA was heat denatured (70 °C) and cooled on ice, and the sample was used in a 20 

µl reverse transcriptase reaction using 0.5 µg oligo (dT) primers and 1 mM each dNTP, 20 U ribonuclease 

inhibitors and 40 U M-MuLV reverse transcriptase. The reaction was started by incubating at 37 °C for 1 h 

and stopped by heating for 10 min at 70 °C. 

2.2.12 Primers 

 The primers (Table 1) were designed using rainbow trout MC2R, StAR and P450scc sequences and 

zebrafish β-actin sequence as the housekeeping gene (Gen-Bank accession nos. EU119870, AB047032, 

S57305.1 and AF157514 respectively). The primer pairs amplified ~ 100 bp fragments for genes used in 

quantitative real-time PCR (qPCR) (iCycler, Bio-Rad, Hercules, CA, USA). Table 1 lists primer names, 

sequence, melting temperature and product size for all genes analyzed.  
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Table 1. Primer details. Oligonucleotide primers [forward (F) and reverse (R)] for melanocortin 2 

receptor (MC2R), steroidogenic acute regulatory protein (StAR), cytochrome P450 side chain 

cleavage (P450scc) and β-actin used in quantitative real-time PCR along with their melting 

temperature  (Tm) and amplicon size.  

Gene Primer Sequence (5’-3’) Tm Product Size 
(bp) 

MC2R F:  

R: 

GAGAACCTGTTGGTGGTGGT 

GAGGGAGGAGATGGTGTTGA 

63.9°C               

64.1°C 

105 

StAR F: 

R: 

TGGGGAAGGTGTTTAAGCTG 

AGGGTTCCAGTCTCCCATCT 

63.8°C               

63.8°C 

101 

P450scc 

 

 

F: 

R 

GCTTCATCCAGTTGCAGTCA 

CAGGTCTGGGGAACACATCT 

64.1°C               

63.1°C 

140 

β -actin F 

R 

TGTCCCTGTATGCCTCTGGT 

AAGTCCAGACGGAGGATGG 

64.5°C               

64.1°C 

 

121 
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2.2.13 Real time quantitative PCR (qPCR) 

 Quantification of transcript levels was performed as previously described (Gravel and Vijayan, 

2006) using qPCR (iCycler, Bio-Rad, Hercules, CA, USA). Briefly, cDNA samples were used as template 

for amplification of the housekeeping gene (β-actin) and target genes (MC2R, StAR and P450scc) using 

appropriate primers and their respective annealing temperatures (Table 1). A master mix containing Sybr 

green and RNase free water was prepared and the specific primers were added to 2 µL of sample. The 

samples were performed in triplicates on a 96-well plate and PCR was performed to amplify the predicted 

products using the following conditions: initial denaturation for 2 min at 94 °C, 40 cycles of 15 s at 94 °C, 

30 s at 60 °C and 30 s at 72 °C. PCR products were subjected to melt curve analysis to confirm presence of 

a single amplicon. Negative controls with no template were carried out for each gene analyzed. Transcript 

Ct values for β-actin between treatments and across time points were similar and, therefore, used as the 

housekeeping gene for normalization and the data are shown as percent control (0 µg Cd/L). 

2.2.14 Statistical analysis 

 All statistical testing was performed with Sigmaplot 11 (Systat Software Inc., San Jose, CA, USA) 

and data are shown as mean ± standard error of mean (SEM). Two-way analysis of variance (ANOVA) was 

used to determine changes in cortisol, glucose, lactate and transcript levels between treatments and 

sampling day.  Liver glycogen, liver and gill enzyme activities, and liver and brain protein expressions were 

compared using a one-way ANOVA. Significant differences between groups were compared using  the 

Holm-Sidak post hoc test or Student-Nuwman Keul’s test for comparison of ranks. The data were 

transformed, wherever necessary, to meet assumptions of homogeneity of variance, although non-

transformed data are shown in the table and figures. A probability level of P<0.05 was considered 

significant. 
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2.3 Results 

2.3.1 Plasma analysis 

 Plasma cortisol levels were <3 ng/ml in all treatment groups over the 28 d period (Table 2). There 

was a significantly lower plasma cortisol levels in the Cd groups compared to the control group on day 1 

and day 28 (only in the 2.0 µg Cd/L) but not on day 7 (Table 2). There was also a time effect and plasma 

cortisol levels were significantly lower at 7 and 28 d compared to day 1 (Table 2). There was no significant 

treatment effect on plasma glucose concentrations at 1 or 28 d post-exposure, but on day 7 glucose levels 

were significantly higher in the 2.0 µg Cd/L compared to the control group (Table 2). There was an overall 

time effect and plasma glucose levels were significantly higher at 7 and 28 d compared to day 1 (Table 2). 

There were no significant treatment effect on plasma lactate levels at 1 or 7 d, but on day 28 lactate levels 

were significantly higher in the cadmium groups compared tio the control group (Table 2).  

2.3.2 MC2R, StAR and P450scc mRNA levels in the head kidney 

 MC2R mRNA levels were significantly higher in the 2.0 µg Cd/L group on all days compared to 

the 0.75 µg Cd/L s and control groups (Figure.  1A). MC2R mRNA levels were also significantly higher in 

the 0.75 µg Cd/L group compared to the control on days 1 and 28, but was significantly lower on day 7 

(Figure. 1A).  StAR mRNA levels were significantly higher in the 2.0 µg Cd /L group on all days compared 

to the control but not the 0.75 µg Cd / L group ( (Figure. 1B). StAR mRNA abundance was also 

significantly higher in the 0.75 µg Cd/L group compared to the control group at 28 d but not at 1 or 7 d of 

exposure (Figure. 1B). P450scc mRNA levels were significantly higher in the cadmium groups at 1 (only in 

the 2.0 µg Cd/L) and 28 d but not at 7 d compared to eh control groups ((Figure.1C).  
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Table 2. Plasma analysis. Plasma cortisol (ng/ml), glucose (mM) and lactate (mM) 

concentrations in juvenile rainbow trout sampled at 1, 7 and 28 d after exposure to 0 (control), 

0.75 (low dose) or 2.0 (high dose) µg/L Cd. Values are expressed as mean ± SEM (n=8 for control 

and 0.75 µg/L; n=6 for 2.0 µg/L). Different letters indicate significant differences (P<0.05, two-

way ANOVA) between time-points (time effect column). Asterisks indicate significant differences 

from control within a time-point (P<0.05, one-way ANOVA).  

Sampling 

Day 

Stress 

Parameter 

Control 0.75 µg/L 2.0 µg/L Time 

Effect 

1  2.95 ± 0.43 1.36 ± 0.40* 1.36 ± 0.78* A 

7 Cortisol 0.23 ± 0.17 1.30 ± 0.39 0.47 ± 0.45 B 

  28  2.0 ± 0.58 0.84 ± 0.31 0.39 ± 0.30* B 

1  1.59 ± 0.07 1.52 ± 0.05 1.43 ± 0.04 A 

7 Glucose 1.72 ± 0.07 1.83 ± 0.08 2.08 ± 0.17* B 

28  1.92 ± 0.08 1.86 ± 0.09 1.84 ± 0.04   B 

1  0.85 ± 0.07 0.81 ± 0.06 0.88 ± 0.05  

7 Lactate 0.79 ± 0.06 0.89 ± 0.09 0.89 ± 0.10  

28  0.75 ± 0.08 0.99 ± 0.09* 0.86 ± 0.07*  
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     Figure 1. Head kidney steroidogenic genes. MC2R (A), StAR (B) and P450scc (C) mRNA levels in 

rainbow trout at 1, 7, and 28 d after exposure to 0, 0.75 or 2.0 µg/L Cd. Values are expressed as mean ± 

SEM (n=6); different letters within each sampling day are significantly different (one-way ANOVA; 

P<0.05). 
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2.3.3 Liver glycogen content and enzyme capacity 

 Liver glycogen content in fish treated with 0.75 or 2.0 µg/L Cd were ~68% and ~52% significantly 

lower than control fish (Figure 2A). There was a significant increase of ~ 30% in liver HK (Figure 2B) and 

GK (Figure 2C) activities in both 0.75 and 2.0 µg/L Cd treated fish compared to the controls. No significant 

changes were seen in liver PK (Figure 2D), LDH (Figure 2E) or PEPCK (Figure 2F) activities between 

control and Cd treated groups. 

2.3.4 Gill enzyme capacity 

 There was no significant difference in HK or PK activity between control and 0.75 µg/L Cd treated 

fish, whereas there was a ~20% significant increase in HK and PK activity in fish treated with 2.0 µg/L Cd 

compared to control fish (Figure 3A and 3B). No significant differences were seen in either LDH (Figure 

3C) or CS (Figure 3D) activities between the control and Cd groups.  

2.3.5 GR and MR protein expression in the liver and brain 

 At 28 d, GR protein expression in the liver was slightly lower (~60%) in fish treated with  2.0 µg 

Cd/L, but not 0.75 µg Cd/L, compared to the control group (Figure 4A), while there was no significant 

effect of Cd exposure on MR protein expression (Figure 4B). In the brain, there were no significant effect 

of Cd exposure in GR protein expression (Figure 4C), but MR protein expression was significantly lower 

(~50%) in fish exposed to 2.0 µg Cd/L, but not to 0.75 µg Cd/L, compared to control fish (Figure 4D) 
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Figure 2. Liver metabolic capacity. Liver glycogen (A) and activities of hexokinase (B), glucokinase (C), 

pyruvate kinase (D), lactate dehydrogenase (E), and phophoenolpyruvate carboxykinase (F) in rainbow 

trout after exposure to 0, 0.75, or 2.0 µg/L Cd for 28 d. Glycogen content is shown as micromoles glucosyl 

units per mg protein, while enzyme activity is expressed as micromoles of substrate consumed or product 

liberated per minute (U) per gram protein. Values are expressed as mean ± SEM (n=8 for control and 0.75 

µg/L; n=6 for 2.0 µg/L). Bars with different letters are statistically significant (one-way ANOVA; P<0.05). 
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Figure 3. Gill metabolic capacity. Gill hexokinase (A), pyruvate kinase (B), lactate dehydrogenase (C), 

and citrate synthase (D) activities in rainbow trout after exposure to 0, 0.75, or 2.0 µg/L Cd for 28 d. 

Enzyme activity is expressed as micromoles of substrate consumed or product liberated per minute (U) per 

gram protein Values are expressed as mean ± SEM (n=8 for control and 0.75 µg/L; n=6 for 2.0 µg/L). Bars 

with different letters are statistically significant (one-way ANOVA; P<0.05). 
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Figure 4. Corticosteroid receptor protein expression. Liver GR (A) and MR (B) and brain GR (C) and 

MR (D) protein expression in rainbow trout 28 d after exposure to 0, 0.75, or 2.0 µg/L Cd. The image 

above each histogram is a representative western. Values represent mean ± SEM (n=8 fish for control and 

0.75 µg/L; n=6 for 2.0 µg/L). Bars with different letters are statistically significant (one-way ANOVA; 

P<0.05). 
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2.3.6 Secondary acute stress response 

 As expected, the stressor-induced cortisol levels showed a transient and significant increase 1 h 

after stressor exposure (time effect; two-way ANOVA) and dropped significantly below pre-stress levels at 

24 h post-handling disturbance (Figure 5A). There was a was a significant reduction in plasma cortisol 

levels (treatment effect; 2-way ANOVA) in a dose-related fashion in the Cd groups compared to the control 

groups prior to and at 1 h but not at 24 h post-handling disturbance (Figure 5A). Plasma glucose levels were 

significantly elevated at 1 h after the handling disturbance, but returned to the pre-stress levels at 24 h post-

disturbance (Figure 5B). Cadmium treatment significantly reduced the stressor-induced elevation of plasma 

glucose levels compared to the control group at 1 h post-handling disturbance, but not at other time points 

(Figure 5B).    

 There was a significant elevation in plasma lactate levels at 1 h but the levels were back to the pre-

stress values at 24 h post-handling disturbance (Figure 5C).  Plasma lactate levels were significantly higher 

in the cadmium groups compared to the control group prior to stress and at 24 h post-handling disturbance 

(Figure 5C). However, the stressor-induced plasma lactate elevation seen in the control group at 1 h post-

handling disturbance was significantly reduced in a dose-related fashion in response to cadmium exposure 

(Figure 5C). 
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Figure 5. Acute stress performance. Plasma cortisol (A), glucose (B) and lactate (C) levels in rainbow 

trout in response to an acute stressor challenge at 28 d after exposure to 0, 0.75, or 2.0 µg/L Cd. Values 

represent mean ± SEM (n=8 for control, 0.75 µg/L, and 2.0 µg/L at both 0h; 1h and 24 h; n=6 for 2.0 µg/L 

at 0 h). Lines above bars with different letters are statistically different from other sampling days (two-way 

ANOVA; P<0.05) and inset above graph represent statistical differences between overall treatment (two-

way ANOVA, P<0.05). Different letters within each sampling days indicate significant difference between 

treatment groups within a time point (one-way ANOVA; P<0.05). 
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2.4 Discussion 

The results demonstrate that subchronic exposure to low levels of Cd impacts longer-term tissue metabolic 

capacities and compromises the stress performance of rainbow trout. The Cd concentrations of 0.75 and 2.0 

µg/L used in were within the concentrations measured in North American surface waters and within the US 

EPA freshwater quality criteria for aquatic life (US EPA, 2001; McGeer et al., 2011). While the fish did not 

show a chronic cortisol response to low level Cd exposure over a 28 d period, there were changes at the 

level of target tissue steroidogenic and metabolic capacities. Also, acute stressor-induced plasma cortisol 

and glucose responses were clearly compromised by low level Cd exposures in trout, implying 

perturbations in the highly conserved stress response that is essential to re-establish homeostasis.  

The absence of a chronic plasma cortisol elevation in response to Cd exposures in this study is in agreement 

to a previous study that also showed a lack of cortisol response at lower Cd concentrations in juvenile trout 

(Ricard et al., 1998). However, the cortisol response to Cd exposure in fish is equivocal, and may be in part 

due to species differences, but also due to the generally unrealistic concentrations of Cd used in the 

majority of exposures (McGeer et al., 2011). Although plasma cortisol levels in all groups over the 28 d 

period of exposure were well below the resting levels reported for salmonids (Barton et al., 2002), there 

were treatment differences with levels significantly lower in the Cd groups. This supports studies that have 

reported impaired HPI axis activity in response to Cd exposure (Hontela and Vijayan, 2008) 

 Stressor-induced plasma cortisol elevation is achieved by the activation of the HPI axis (Mommsen 

et al., 1999; Aluru and Vijayan, 2006, 2009), and this involves the upregulation of key genes involved in 

steroid biosynthesis including MC2R, StAR and P450scc (Kusakabe et al., 2002, 2003, 2006; Geslin and 

Auperin, 2004; Hagen et al., 2006; Aluru and Vijayan, 2006; Gravel and Vijayan, 2007; Aluru and Vijayan 

2008a, 2009). The stimulation of steroid biosynthetic pathway in the interrenal tissue involves the 

activation of MC2R, a G protein coupled receptor that increases adenylate cyclase activity, leading to 

elevated intracellular levels of cAMP and activation of protein kinase A (PKA) (Cooke, 1999; Gantz and 

Fong, 2003; Manna et al., 2006, 2009; Aluru and Vijayan, 2008a). PKA phosphorylates a suite of proteins, 

including StAR, making cAMP/PKA signaling cascade an important secondary messenger pathway for 

corticosteroidogenesis (Stocco, 2000). Cd has been shown to impair adrenocortical function in response to 

stressors (Hontela and Vijayan, 2008), leading to the proposal that the site of action of Cd-mediated cortisol 

disruption occurs within the intracellular signaling pathway (Leblond and Hontela, 1999; Lacroix and 

Hontela, 2004). Our previous study suggested that the inhibition of ACTH-mediated cortisol production 
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might occur upstream of cAMP production, implicating MC2R as a possible target for endocrine disruption 

by Cd in trout (Sandhu and Vijayan, 2011).  

In the present study although plasma cortisol levels were at resting levels (< 5 ng/ml) in the Cd groups, 

there was an upregulation of MC2R, StAR and P450scc mRNA abundances, especially at 28 d of exposure, 

suggesting disruptions in the molecular regulation of corticosteroidogenesis. These genes involved in 

steroidogenesis are upregulated in response to acute stress in vivo and or ACTH stimulation in vitro 

suggesting a key role in cortisol production (Kusakabe et al., 2002; Geslin and Auperin, 2004; Hagen et al., 

2006; Aluru and Vijayan, 2006; Aluru and Vijayan 2008a). This was further confirmed by studies showing 

that treatments, including AhR agonist (Aluru and Vijayan, 2006) and Cd (Sandhu and Vijayan, 2011), that 

suppress ACTH-stimulated cortisol production also reduces the transcript levels of corticosteroidogenic 

genes.  However, longer-term exposure to waterborne Cd in the present study led to higher mRNA 

abundances of steroidogenic genes, but this was not reflected in either elevated plasma basal cortisol levels 

or a secondary stressor-induced elevation in cortisol response, suggesting disruptions in interrenal 

steroidogenic capacity. The attenuated secondary stressor-induced plasma cortisol levels in the Cd group 

further confirms disruption in stimulated interrenal steroidogenesis by longer-term Cd exposure.  

While altered steroidogenic capacity may be one factor leading to abnormal cortisol production, we cannot 

rule out other factors involved in HPI axis functioning as targets for Cd impact. For instance, a disturbance 

in negative feedback regulation may also lead to attenuated cortisol response to stressor exposure. To this 

end, brain GR, a key sensor thought to be involved in negative feedback regulation of cortisol (Aluru and 

Vijayan, 2008b), protein expression was not altered. However, brain MR protein expression was lower in 

the high Cd group and recently we proposed that brain MR signaling may be a key player in the 

suppression of stressor-induced cortisol elevation in fish (Alderman et al., 2012; Alderman and Vijayan, 

2012). Although the mechanisms are unclear, subchronic low level exposure to Cd disrupts the stressor-

induced cortisol response, a highly conserved stress response among vertebrates and essential for metabolic 

adjustments to re-establish homeostasis (Aluru and Vijayan, 2009), in rainbow trout. Also, the reduction in 

GR protein expression in the liver, a key target for metabolic regulation by cortisol (Mommsen et al., 1999; 

Aluru and Vijayan, 2009), by Cd in the present study suggests disruption also in target tissue cortisol 

signaling, while the mechanism is unknown. The reduced capacity to produce a cortisol response along 

with impaired steroid signaling may compromise the stress performance leading to reduced fitness in fish 

exposed to low levels of waterborne Cd.  Given that short-term Cd exposure in vitro inhibits steroidogenic 

genes in trout (Sandhu and Vijayan, 2011), we hypothesize that the longer-term bioaccumulation of Cd 
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noted in the kidney (Milne et al., 2013) may be affecting mRNA stability and/or translation of genes 

encoding proteins involved in corticosteroidogenesis, but this remains to be tested.   

 A key role for stressor-induced cortisol elevation is the metabolic regulation that is essential to re-

establish homeostasis (Mommsen et al., 1999; Momoda et al., 2007). The liver is an important target tissue 

for cortisol action (Vijayan et al., 1994, 2003, 2010) and stressor-induced cortisol elevation increases the 

metabolic capacity of this tissue (Mommsen et al., 1999; Aluru and Vijayan, 2009). A major role of cortisol 

in stress adaptation is to enhance glucose production by gluconeogenesis to meet the increased energy 

demand (Mommsen et al., 1999; Aluru and Vijayan, 2009). During the 28 d exposure period, there were no 

major changes in plasma glucose or lactate levels, suggesting either minor impact or rapid adjustment of 

plasma metabolite levels to low level Cd exposure. However, the metabolic capacity of the liver was clearly 

compromised after 28 d of Cd exposure. There was a significant accumulation of Cd in the liver in both 

treatment groups (Milne et al., 2013), similar to the concentration reported in trout from contaminated sites 

(McGeer et al., 2011). These results suggest that Cd accumulation increased the liver metabolic demand, 

and this was supported by the lower liver glycogen content at 28 d post-exposure. This along with the 

higher activities of hexokinase and glucokinase, key enzymes involved in glucose uptake, points to an 

increase in liver glycolytic capacity to meet the higher metabolic demand in response to Cd exposure in 

teleosts (Ricard et al., 1998; Levesque et al., 2002, 2003). The reduced stressor-induced plasma glucose 

levels seen in the Cd groups at 1 h after the handling disturbance may be related to the reduced liver 

glycogen content, as epinephrine-induced glycogenolysis is involved in the rapid elevation of plasma 

glucose levels after an acute stressor exposure (Reid et al., 1998; Mommsen et al., 1999; Vijayan et al., 

2010).  

A major target tissue that uses glucose as fuel is the gill and this tissue is also a key site for waterborne Cd 

uptake and accumulation. In the present study, Cd accumulated in the gills over a 28 d period (Milne et al., 

2013), and our results suggest an enhanced metabolic capacity associated with this metal accumulation. The 

higher hexokinase and pyruvate kinase activities in the Cd groups confirm an increased glycolytic capacity 

to cope with the increased energy demand. The increased demand for glucose utilization by the gills 

coupled with a lower stressor-induced plasma glucose elevation may compromise gill function by reducing 

the fuel availability to cope with the stressor in the Cd exposed fish. The acute stressor-induced plasma 

lactate levels was also reduced in the Cd exposed fish suggesting disturbance to muscle metabolism. A 

recent study showed that cortisol elevation associated with exercise was involved in the muscle lactate 

production (Milligan, 2003). Consequently, the lower stressor-induced lactate levels in the present study in 
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the Cd groups may be due to their reduced cortisol levels and/or a reduction in target tissue GR signaling 

(Milligan, 2003), but this remains to be determined.     

 Altogether, 28 d subchronic exposure to low levels of waterborne Cd impacts liver and gill 

metabolic capacities and disrupts interrenal steroidogenic capacity in rainbow trout. Cd exposure also 

attenuates the secondary stressor-induced transient cortisol and glucose response that are essential to allow 

animals to cope with stress and regain homeostasis. Overall, subchronic exposure of trout to 

environmentally relevant levels of Cd impair the stress performance and may compromise their ability to 

respond to multiple stressors, leading to reduced fitness.  
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Chapter 3 
Cadmium-mediated disruption of cortisol biosynthesis involves 

suppression of corticosteroidogenic genes in rainbow trout 
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3.1 Overview 

 Cadmium (Cd) is widely distributed in the aquatic environment and is toxic to fish even at sublethal 

concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the 

suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal 

tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the 

hypothesis that Cd targets genes encoding proteins critical for corticosteroid biosynthesis, including 

melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side 

chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices 

(containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000 nM) 

for 4 h either in the presence or absence of ACTH (0.5 IU/mL). In the unstimulated head kidney slices, Cd 

exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR 

gene expression was significantly reduced. Cd exposure significantly suppressed ACTH-stimulated cortisol 

production in a dose-related fashion. This Cd-mediated suppression in corticosteroidogenesis corresponded 

with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The 

inhibition of ACTH-stimulated cortisol production and suppression of genes involved in 

corticosteroidogenesis by Cd were completely abolished in the presence of 8-Bromo-cAMP (a cAMP 

analog). Overall, Cd disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout 

head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene 

expression by cAMP analog suggests that Cd impact occurs upstream of cAMP production. We propose 

that MC2R signaling, the primary step in ACTH-induced corticosteroidogenesis is a key target for Cd-

mediated disruption of cortisol production in trout. 

3.2 Introduction 

 The elevation in plasma corticosteroid levels in response to stressor exposure is an evolutionary 

conserved response in vertebrates and is thought to be essential for re-establishing homeostasis (Sapolsky et 

al., 2000). Corticosteroid biosynthesis occurs in the adrenal cortex of mammals, while teleosts lack a 

discrete adrenal gland and the steroidogenic cells are predominately distributed in the anterior region of the 

kidney (interrenal tissue) (Wendelaar Bonga, 1997; Mommsen et al., 1999). Cortisol is the primary 

circulating corticosteroid in teleosts and its release involves the coordinated activation of the hypothalamus-

pituitary-interrenal (HPI) axis. They key mediators include the release of corticotropin-releasing factor 

(CRF) from the hypothalamus, and stimulating the release of adrenocorticotropic hormone (ACTH) from 

the pituitary (Wendelaar Bonga, 1997). Circulating ACTH binds to melanocortin 2 receptor (MC2R) on the 
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steroidogenic cells within interrenal tissue and activates the signaling pathway leading to cortisol 

biosynthesis (Aluru and Vijayan, 2008). 

 MC2R is a G-protein coupled receptor and its activation by ACTH leads to enhanced adenylate 

cyclase activity, followed by elevated production of cyclic AMP (cAMP), a key second messenger 

triggering the onset of steroid biosynthesis (Mountjoy et al., 1994; Gantz and Fong, 2003). The two key 

steps in corticosteroid biosynthesis involve the transport of cholesterol from the outer mitochondrial 

membrane to the inner mitochondrial membrane by the steroidogenic acute regulatory protein (StAR), 

followed by the conversion of cholesterol to pregnenolone, the primary steroid intermediate, by cytochrome 

P450 side chain cleavage (P450scc) enzyme (Stocco, 2000; Payne and Hales, 2004). Consequently, either 

stressor-induced elevation of plasma cortisol in vivo or ACTH-induced production of cortisol in vitro using 

head kidney preparations corresponds with an upregulation of StAR and P450scc transcripts in rainbow 

trout (Geslin and Auperin, 2004; Hagen et al., 2006; Aluru and Vijayan, 2006; Gravel and Vijayan, 2006). 

Indeed, several biotic and abiotic stressors are known to modulate cortisol biosynthesis through alterations 

in the expression of genes encoding proteins involved in the functioning of the HPI axis (Hontela and 

Vijayan, 2008).  

 Cd is a metal that is widely distributed in the aquatic environment and is toxic to fish at sublethal 

concentrations (Pratap and Wendelaar Bonga, 1990; Hontela, 1997; Gillesby and Zacharewski, 1998; 

Lacroix and Hontela, 2006). Due to its long half-life and low excretion rate, Cd can also accumulate in 

various organs, primarily within the liver, kidney and reproductive and respiratory systems in fish (Norey et 

al., 1990; Sorensen et al., 1991; Hollis et al., 2000). This metal is known to disrupt head kidney 

corticosteroid production in fish (Hontela and Vijayan, 2008), while the mechanisms involved are far from 

clear. Recent studies suggest that the targets for Cd-mediated cortisol production are located upstream of 

pregnenolone synthesis (Lacroix and Hontela, 2004; Lizardo-Daudt et al., 2007), while the molecular 

mechanisms have received scant attention. We tested the hypothesis that Cd inhibits the expression of genes 

encoding proteins critical for cortisol biosynthesis in rainbow trout. To this end, we examined the 

expression of three key genes, including MC2R (ACTH signaling), StAR (cholesterol transport to the inner 

mitochondrial membrane) and P450scc (hydroxylation and cleavage of cholesterol to pregnenolone), 

essential for steroid biosynthesis in the interrenal tissue of fish (Aluru and Vijayan, 2006). This was tested 

using rainbow trout head kidney slices in vitro, a well established model system for studies pertaining to 

xenobiotics impact on corticosteroid biosynthesis (Hontela and Vijayan, 2008). 
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3.3 Materials and methods 

3.3.1 Chemicals 

 ACTH (1-39), 2-Phenoxyethanol, gelatin, thimerasol, activated charcoal, dextran (from 

Leuconostoc mesenteroides) and 8-Bromo-cAMP were purchased from Sigma-Aldrich (St. Lous, MO, 

USA). CdCl2 was purchased from BDH chemicals (Toronto, ON, CAN). D-Glucose was purchased from 

Bioshop (Burlington, ON, CAN), while monobasic and dibasic sodium phosphate, sodium bicarbonate and 

borosilicate tubes were purchased from Fisher Scientific (Ottawa, ON, CAN). Multiwell (24-well plate) 

tissue culture plates was from Sarstedt (Newton, NC, USA). 96-well and RNeasy mini kits were purchased 

from Qiagen (Mississauga, ON, CAN). First strand cDNA synthesis kit was from Fermentas (Burlington, 

ON, CAN). Scintillation cocktail and cortisol antibody were purchased from MP Biomedicals (Solon, OH, 

USA), while [1,2,6,7-3H] cortisol tracer was purchased from GE Healthcare (Upsala, Sweden).  

3.3.2 Fish 

 Juvenile rainbow trout (average body mass 150 g) were obtained from Alma Aquaculture Research 

Station, Alma, Ontario, Canada, and maintained at the University of Waterloo Aquatic Facility. The 

experimental protocol was approved by the animal care committee at the University of Waterloo and is in 

accordance with the guidelines established by the Canadian Council for Animal Care. Fish were acclimated 

for 3 weeks in 2000-L tanks with continuous running water at 13 °C and 12-h light:12-h dark photoperiod 

before use in the in vitro studies. The fish were fed to satiety once daily 5 d a week with a commercial trout 

chow (Martin Feed Mills, Ellora, ON, CAN). 

3.3.3 Cortisol production  

 Cortisol production in vitro was determined using head kidney tissue preparations as previously 

described (Aluru and Vijayan, 2006) with slight modifications. Briefly, trout were euthanized with an 

overdose of 2-phenoxyethanol (1:1000 dilution). The anterior region of the kidney (containing the 

interrenal tissues) from each fish was finely minced (approximately 1mm3 pieces) and rinsed with Hank’s 

buffer (NaCl (136.9 mM), KCl (5.4 mM), MgSO4 7H20 (0.8 mM), Na2HPO47H20 (0.33 mM), KH2HPO4 

(0.44 mM), HEPES (5.0 mM), HEPES NA (5.0 mM), 5 mM NaHCO3 and 5 mM glucose, pH adjusted to 

7.63) to remove blood clots and the resulting mixture was distributed equally (500 µL buffer with 

approximately 50 mg of head kidney tissue in each well) into a 24-well tissue culture plate. The tissues 

were maintained for 2 h at 13 °C with gentle shaking. The buffer was replaced and the tissue was incubated 

for an additional hour after which the tissues were exposed to either fresh buffer (control) or fresh buffer 
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containing 0.5 IU/mL ACTH for 4 h. The ACTH concentration and the 4 h incubation period were chosen 

based on previous work from our laboratory (Aluru and Vijayan, 2006, 2008). At the end of the incubation 

period, samples were collected, quickly centrifuged down at 13,000 x g for 1 min and the supernatant and 

pellet were stored at -30 °C and -80 °C for later determination of cortisol concentration and gene 

expressions, respectively. Tissue viability was determined by measuring LDH leakage into the media 

according to established protocols (Boone et al., 2002).  

3.3.4 Exposure to cadmium 

 Using the protocol described above, preliminary studies with head kidney slices involved exposing 

the head kidney preparation to a range of Cd concentrations (0, 0.01, 0.1, 1, 10 or 100 µM of cadmium 

chloride) and measuring either unstimulated or ACTH-stimulated cortisol production. Head kidney slices 

exposed to higher concentrations (10 or 100 µM) showed a high amount of cell lysis through lactate 

dehydrogenase leakage so lower concentrations were used (0, 10, 100 or 1000 nM cadmium chloride). The 

tissues were exposed to Cd 1 h prior to ACTH challenge. Cortisol released into the culture medium and 

tissue gene expressions were assessed either in the presence or absence of ACTH after 4 h incubation as 

mentioned above. 

3.3.5 Exposure to 8-Bromo-cAMP 

 To examine if Cd effects may be due to impaired production of cAMP, a key second messenger for 

ACTH-induced cortisol production (Aluru and Vijayan, 2008), we exposed head kidney slices to 8-Bromo-

cAMP (a cAMP analog) and measured cortisol production along with tissue transcript changes. For this 

experiment, head kidney slices were exposed to 0 or 100 nM (concentration that inhibited cortisol 

production by around 50% but did not affect cell viability) Cd exactly as mentioned above either in the 

presence or absence of 8-Bromo-cAMP (0.5 mM). 

3.3.6 Cortisol concentration 

 Cortisol concentration in the media was determined by radioimmunoassay using the protocol 

described by Alsop and VIjayan (2008). 

3.3.7 RNA isolation and first strand cDNA synthesis 

 Total RNA (DNase treated) from head kidney slices was extracted using RNeasy mini kit following 

the manufacturer’s protocol (Qiagen, Mississauga, ON, CAN) and quantified by spectrophotometry at 260 

nm using a nanodrop. First strand cDNA was synthesized from 1 µg of total RNA following the 
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manufacturers instructions (MBI Fermentas, Burlington, ON, CAN). Briefly, total RNA was denatured at 

70 °C and cooled on ice, and the sample was used in a 20-µL reverse transcriptase reaction using 0.5 µg 

oligo dT primers and 1 mM each of dNTP, 40 U ribonuclease inhibitor, and 40 U M-MuLV reverse 

transcriptase. The reaction was started by incubating at 37 °C for 1 h and stopped by heating at 70 °C for 10 

min.  

3.3.8 Primers 

 The primers (Table 1) were designed using StAR, P450scc and MC2R cDNA sequences from 

rainbow trout and β-actin cDNA sequence from zebrafish (GenBank accession nos., AB047032, S57305.1, 

EU119870, and AF157514), respectively. The gene expression was analyzed using quantitative real-time 

PCR (iCycler, Bio-Rad, Hercules, CA, USA).  

3.3.9 Quantitative real-time polymerase chain reaction (qPCR) 

 MC2R, StAR and P450scc mRNA levels were analyzed using qPCR and the values in the treatment 

groups are shown as relative to controls. Briefly, a master mix containing SYBR green, RNase free water 

and the specific primers were added to 2 µL of sample. The samples were in triplicates and PCR was 

performed to amplify the predicted products using the following conditions: initial denaturation for 2 min at 

94 °C, 30 sec at 60 °C and 30 sec at 72 °C. β-actin was used as the housekeeping gene for data 

normalization. The threshold cycle for β-actin with the initial Cd study varied among samples and 

therefore, the genes of interest were quantified by equalizing the β-actin expression following the method 

described previously (Billiau and Vanderbroeck, 2001; Essex-Fraser et al., 2005; Ings and Van Der Kraak, 

2006).  

 

 

 

 

 

 

 

 



 

 62 

 

 

Table 1. Primer details. Oligonucleotide primers [forward (F) and reverse (R)] for steroidogenic acute 

regulatory protein (StAR), cytochrome P450 side chain cleavage (P450scc), melanocortin 2 receptor 

(MC2R) and β-actin used in semi-quantitative real-time PCR along with their melting temperature  (Tm) and 

product size.  

Gene Primers                                                                          Tm      Product size 

                                                                                                           (bp) 

StAR 

 

 

P450SCC 

 

 

MC2R 

 

 

β-actin 

F: 5’-TGGGGAAGGTGTTTAAGCTG-3’               63.8 ºC           101 

R: 5-AGGGTTCCAGTCTCCCATCT-3’                 63.8 ºC           101 

 

F: 5’-GCTTCATCCAGTTGCAGTCA-3’                64.1 ºC           140 

R: 5’-CAGGTCTGGGGAACACATC-3’                 63.1 ºC           140 

 

F:  5’-GAGAACCTGTTGGTGGTGGT-3’              63.9 ºC            105      

R:  5’-GAGGGAGGAGATGGTGTTGA-3’            64.1 ºC            105 

 

F: 5’-TGTCCCTGTATGCCTCTGGT-3’                 64.5 ºC            121 

R: 5’- AAGTCCAGACGGAGGATGG -3’              64.1 ºC            121 
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3.3.10 Statistical analysis 

 All statistical analyses were performed on Sigmaplot 11 software (Systat Software Inc., San Jose, 

CA, USA) and data are shown as mean ± standard error of mean (SEM). However, for figures showing % 

change the SEM is only for reference and not a true reflection of the variance. Repeated measured one way 

analysis of variance (ANOVA) was used to determine changes in cortisol production and transcript levels 

in response to Cd and 8-Bromo-cAMP. Significant differences between treatment groups were compared 

using Holm-Sidak post hoc test or Student-Newman-Keul’s test for rank comparisons. Paired t-test was 

performed to compare ACTH-mediated effect from control on cortisol production and gene expressions 

(see inset figures). The data were transformed wherever necessary to meet the assumption of homogeneity 

of variance, although non-transformed data are shown in the figures. A probability level of P<0.05 was 

considered statistically significant. 

3.4 Results 

3.4.1 Cortisol Production 

 ACTH-induced cortisol production was completely abolished at concentrations above 1 µM Cd 

(data not shown). As this also coincided with reduced cell viability all subsequent dose-response studies 

focused on Cd concentrations to a maximum of 1 µM (0, 10, 100 or 1000 nM). The cell viability was not 

affected at any of these concentrations as determined by lactate dehydrogenase leakage (~10% LDH 

leakage in all groups).  

 ACTH stimulation resulted in approximately a three-fold increase in cortisol production in trout 

head kidney slices (Figure 1A). Cd concentrations (10, 100 or 1000 nM) did not significantly affect 

unstimulated cortisol production compared to the control group (Figure 1B). There was a significant dose-

related suppression of ACTH-mediated cortisol production by Cd in trout head kidney preparations (Figure 

1C). The maximal suppression (> 50%) was seen at 100 and 1000 nM concentrations of Cd and this was 

significantly different from the control group. 
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Figure 1. Cortisol levels. (A) The basal (open bar) and ACTH-induced (closed bar) cortisol production in 

control tissues. (B) Effect of cadmium chloride exposure (0, 10, 100 or 1000 nM) on basal cortisol 

production. (C) Effect of cadmium chloride exposure (0, 10, 100 or 1000 nM) on ACTH (0.5 IU/ml) – 

stimulated cortisol production in rainbow trout head kidney tissue slices; values represent magnitude of 

change with ACTH stimulation compared to basal cortisol levels and expressed as % control (no Cd); data 

shown as mean ± SEM (n =5 fish); * significantly different from the no ACTH group (paired t-test, 

P<0.05); bars with different letters are statistically significant (one-way repeated measures ANOVA; 

P<0.05). 
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3.4.2 MC2R, StAR and P450scc gene expression 

 Expression of genes encoding proteins critical for cortisol biosynthesis, including ACTH signaling 

(MC2R), cholesterol transport to the inner mitochondrial membrane (StAR) and the rate-limiting primary 

enzymatic step (P450scc), were measured from head kidney slices (Figures 2-4). Cd did not significantly 

affect the basal (unstimulated) expressions of MC2R (Figure 2B) and P450scc (Figure 4B), whereas StAR 

expression was significantly reduced by around 60-90% in the Cd-treated groups (Figure 3B). ACTH 

exposure for 4 h elevated the mRNA levels of MC2R, StAR and P450scc by 5-, 3-, and 8-fold, respectively, 

in trout head kidney slices compared to the unstimulated slices (Figures 2A, 3A and 4A). The magnitude of 

change in gene expression seen with ACTH was significantly decreased by more than 60% at 100 and 1000 

nM, but not at 10 nM Cd concentrations compared to the control group (Figures 2C and 3C). The mRNA 

levels of P450scc were significantly decreased by more than 50% at all concentrations of Cd tested 

compared to the control group (Figure 4C). 

3.4.3 Effect of 8-Bromo-cAMP stimulation 

 Treatment of head kidney slices with the cAMP analog stimulated cortisol production and gene 

expressions and were not statistically different from ACTH-stimulated control groups (Figures 5A, 6A, 7A 

and 8A). The 100 nM Cd-mediated suppression of cortisol production and MC2R, StAR and P450scc gene 

expressions were completely abolished in the presence of 8-Bromo-cAMP exposure (Figures 5B, 6B, 7B 

and 8B). 
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Figure 2. MC2R mRNA levels. (A) The basal (open bar) and ACTH-induced (closed bar) MC2R mRNA 

levels in control tissues. (B). Effect of cadmium chloride exposure (0, 10, 100 or 1000 nM) on basal MC2R 

mRNA levels. (C) Effect of cadmium chloride exposure (0, 10, 100 or 1000 nM) on ACTH (0.5 IU/ml) – 

stimulated MC2R mRNA levels in rainbow trout head kidney tissue slices; values represent magnitude of 

change with ACTH stimulation compared to basal levels and expressed as % control (no Cd); data shown 

as mean ± SEM (n = 5 fish); *significantly different from the no ACTH group (paired t-test, P<0.05); bars 

with different letters are statistically significant (one-way repeated measures ANOVA; P<0.05).  
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Figure 3. StAR mRNA levels The basal (open bar) and ACTH-induced (closed bar) StAR mRNA levels in 

control tissues. (B) Effect of cadmium chloride exposure (0, 10, 100 or 1000 nM) on basal StAR mRNA 

levels. (C) Effect of cadmium chloride exposure (0, 10, 100 or 1000 nM) on ACTH (0.5 IU/ml) – 

stimulated StAR mRNA levels in rainbow trout head kidney tissue slices; values represent magnitude of 

change with ACTH stimulation compared to basal levels and expressed as % control (no Cd); data shown 

as mean ± SEM (n = 5 fish); * significantly different from the no ACTH group (paired t-test, P<0.05); bars 

with different letters are statistically significant (one-way repeated measures ANOVA; P<0.05) 
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Figure 4. P450scc mRNA levels. (A) The basal (open bar) and ACTH-induced (closed bar) P450scc 

mRNA levels in control tissues. (B) Effect of cadmium chloride exposure (0, 10, 100 or 1000 nM) on basal 

P450scc mRNA levels. (C) Effect of cadmium chloride exposure (0, 10, 100 or 1000 nM) on ACTH (0.5 

IU/ml) – stimulated P450scc mRNA levels in rainbow trout head kidney tissue slices; values represent 

magnitude of change with ACTH stimulation compared to basal levels and expressed as % control (no Cd); 

data shown as mean ± SEM (n = 5 fish); *significantly different from the no ACTH group (paired t-test, 

P<0.05); bars with different letters are statistically significant (one-way repeated measures ANOVA; 

P<0.05).  
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Figure 5. Cortisol levels. (A) Stimulation of cortisol secretion by ACTH or 8-Bromo-cAMP in head 

kidney slices of rainbow trout. (B) Effect of cadmium chloride (Cd) exposure (0 or 100 nM) on cortisol 

production in the presence of either ACTH or 8-Bromo-cAMP in the rainbow trout head kidney slices; 

values represent the magnitude of change with stimulation compared to the basal levels and expressed as % 

ACTH; data shown as mean ± SEM (n = 5 fish); bars with different letters are statistically significant (one-

way repeated measures ANOVA; P<0.05).  
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Figure 6. MC2R mRNA levels. (A) Stimulation of MC2R mRNA levels by ACTH or 8-Bromo-cAMP in 

head kidney slices of rainbow trout. (B) Effect of cadmium chloride (Cd) exposure (0 or 100 nM) on MC2R 

mRNA levels in the presence of either ACTH or 8-Bromo-cAMP in rainbow trout head kidney slices; 

values represent the magnitude of change with stimulation compared to the basal level and expressed as % 

ACTH; data shown as mean ± SEM (n = 5 fish); bars with different letters are statistically significant (one-

way repeated measures ANOVA; P<0.05).  
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Figure 7. StAR mRNA levels. (A) Stimulation of StAR mRNA levels by ACTH or 8-Bromo-cAMP in 

head kidney slices of rainbow trout. (B) Effect of cadmium chloride (Cd) exposure (0 or 100 nM) on StAR 

mRNA levels in the presence of either ACTH or 8-Bromo-cAMP in rainbow trout head kidney slices; 

values represent the magnitude of change with stimulation compared to the basal levels and expressed as % 

ACTH; data shown as mean ± SEM (n = 5 fish); bars with different letters are statistically significant (one-

way repeated measures ANOVA, P<0.05). 
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Figure 8. P450scc mRNA levels. (A) Stimulation of P450scc mRNA levels by ACTH or 8-Bromo-cAMP 

in head kidney slices of rainbow trout. (B) Effect of cadmium chloride (Cd) exposure (0 or 100 nM) on 

P450scc mRNA levels in the presence of either ACTH or 8-Bromo-cAMP in rainbow trout head kidney 

slices; values represent the magnitude of change with stimulation compared to the basal levels and 

expressed as % ACTH; data shown as mean ± SEM (n = 5 fish); bars with different letters are statistically 

significant (one-way repeated measures ANOVA; P<0.05).  
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3.5 Discussion 

 We demonstrate for the first time that Cd impact on the interrenal (adrenal homolog of mammals) 

cortisol production involves suppression of genes encoding proteins critical for corticosteroid biosynthesis 

in rainbow trout. In teleosts, the corticosteroidogenic cells are distributed predominately in the anterior 

region of the kidney (Wendelaar Bonga, 1997), a key organ that accumulates and retains waterborne Cd 

during chronic sublethal exposures (Hollis et al., 2000; McGeer et al., 2000; Szebedinszky et al., 2000, 

2001). Consequently, the interrenal tissues exposed to Cd during sublethal exposures in vivo leads to 

impaired plasma cortisol levels, especially in response to secondary stressors (Levesque et al., 2003). This 

was further confirmed in vitro using either dispersed interrenal cells or head kidney slices, underscoring the 

inhibition of ACTH-stimulated cortisol production by Cd (Ricard et al., 1998; Leblond and Hontela, 1999; 

Lacroix and Hontela, 2004; Raynal et al., 2005; Lizardo-Daudt et al., 2007). 

 Our results implicate Cd as a disruptor of corticosteroidogenic gene expression and this may play a 

role in the inhibition of ACTH-induced cortisol production in trout head kidney preparations in vitro 

(Lacroix and Hontela, 2004; Raynal et al., 2005; Lizardo-Daudt et al., 2007). The Cd-mediated transcript 

changes were seen mostly in the ACTH-stimulated tissue slices, except for StAR gene expression, and not 

under basal conditions suggesting that this metal impacts ACTH signaling and not the steroidogenic 

capacity of the tissue. Cd may be affecting StAR as their mRNA levels in the unstimulated tissue slices 

were suppressed. The absence of any changes in unstimulated basal cortisol output with Cd leads us to 

propose that this metal may be affecting the StAR mRNA stability and/or turnover. This is primarily based 

on the findings that higher StAR mRNA levels reflect a higher steroid production capacity in vitro and 

elevated plasma steroid levels in vivo (Aluru and Vijayan, 2008; Kocerha et al., 2010). However, we cannot 

rule out a direct effect of Cd on StAR regulation, but this will require characterization of the StaR promoter 

in trout.  

 In the present study, Cd exposures at very low concentrations, relative to other studies in trout 

(Lacroix and Hontela, 2004; Raynal et al., 2005; Lizardo-Daudt et al., 2007), suppressed the ACTH-

stimulated cortisol production in a dose-related manner. The higher interrenal sensitivity to Cd in the 

present study may be due to the absence of calcium in the incubation medium. This is because calcium 

competes with Cd for cellular uptake and it has been shown that absence of extracellular calcium 

concentration increases Cd toxicity (Lacroix and Hontela, 2006). The absence of extracellular calcium led 

to a lower magnitude in cortisol response (3-fold decrease), compared to our other studies (Aluru and 
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Vijayan, 2006, 2008), but is in agreement with results obtained previously with trout adrenocortical cells in 

vitro (Lacroix and Hontela, 2006). 

 The rate-limiting steps in ACTH-stimulated steroid production involve the transport of cholesterol 

from the outer mitochondrial membrane by the steroidogenic acute regulatory protein (StAR), and the first 

enzymatic step, the cytochrome P450 side chain cleavage (P450scc) enzyme, which catalyzes the 

conversion of cholesterol to pregnenolone. In trout, the genes encoding StAR and P450scc are upregulated 

in response to ACTH stimulation in head kidney tissue slices in vitro and correspond with an increased 

cortisol output into the medium (Geslin and Auperin, 2004; Aluru et al., 2005, Aluru and Vijayan, 2006, 

2008; Hagen et al., 2006; Gravel and Vijayan, 2007). This increase in transcript abundance of StAR and 

P450scc in the head kidney is also seen in response to an acute stressor-induced elevation in plasma cortisol 

levels in vivo (Aluru and Vijayan, 2008). This supports the overall enhancement of the steroidogenic 

capacity in response to ACTH stimulation. 

 While very few studies have actually examined ACTH signaling in trout, we have shown that 

MC2R is upregulated in response to ACTH stimulation in vitro or to an acute stressor in vivo (Aluru and 

Vijayan, 2008). The suppression of MC2R gene expression by Cd in the present study points to a disruption 

in ACTH signaling, leading to the inhibition of stimulated cortisol production. Indeed, StAR and P450scc 

mRNA levels were also suppressed by Cd suggesting other potential sites of impact in impairing 

corticosteroidogenesis. Although to out knowledge no other study has examined MC2R impact by 

contaminants, several studies have shown that StAR and P450scc are targets for xenobiotic impact, 

including AhR ligands, pharmaceuticals, tributyltin and nonylphenol (Aluru et al., 2005; Aluru and 

Vijayan, 2006; Gravel and Vijayan, 2007; Kortner et al., 2009; Pavlikova et al., 2010). While the 

mechanisms involved are far from clear, our results also include Cd to the list of contaminants targeting the 

steroidogenic genes leading to the disruption of steroid output in fish (Arukwe, 2008).  

 Interestingly, the suppression in cortisol production and expression of steroidogenic genes in 

response to Cd exposure is completely abolished in the presence of cAMP analog (8-Bromo-cAMP). A key 

signal for stressor-induced cortisol production is the binding of ACTH to the MC2R and activation of the 

signaling pathway leading to cAMP production, which is a key inducer of StaR gene expression in fish 

(Geslin and Auperin, 2004; Aluru and Vijayan, 2006; Hagen et al., 2006; Aluru and Vijayan, 2008). 

Although there are five known melanocortin receptors (MCRs) (MC1R-MC5R) in tetrapods, and there are 

multiple ligands for some of these receptors, only ACTH appears to bind to MC2R (Gantz and Fong, 2003; 

Klovins et al., 2004a,b; Metz et al., 2005; Aluru and Vijayan, 2008). Melanocortin receptors, including 
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MC2R, are G-protein coupled receptors containing seven-transmembrane domains with extracellular and 

intracellular amino- and carboxyl-terminals, respectively (Schiöth, 2001; Schiöth et al., 2005). 

Functionally, MC2R is coupled to adenylate cyclase and its effects are mediated through the cAMP-

dependent signaling pathway (Schiöth, 2001). Specifically, upregulation of adeynylate cyclase increases 

production of cAMP which in turn activates protein kinase A leading to phosphorylation of StaR on the 

serine 194/195 residues and the subsequent activation of the steroid biosynthetic pathway (Schiöth, 2001; 

Lacroix and Hontela, 2001; Schiöth et al., 2005; Aluru and Vijayan, 2008).  

 The observation that 8-Bromo-cAMP rescues the Cd-mediated suppression of 

corticosteroidogenesis clearly implies that the mechanism leading to steroid disruption is upstream of StAR 

gene expression. This is in agreement with recent studies suggesting that the toxic action of Cd on cortisol 

production may be acting upstream of pregnenolone synthesis in trout (Lacroix and Hontela, 2004; Lizardo-

Daudt et al., 2007). Similar to 8-Bromo-cAMP exposure, we also observed rescue of Cd-mediated cortisol 

production and steroidogenic genes with forskolin (an adenylyl cyclase activator; data not shown) leading 

us to hypothesize that Cd toxicity may involve disrupting MC2R signaling, leading to reduced cAMP 

production in the steroidogenic cells. The dose-related suppression of ACTH-stimulated MC2R gene 

expression by Cd supports the above contention. Whether this involves disruption of MC2R gene 

transcription, translation, and/or regulation by accessory proteins remains to be established. The rescue of 

MC2R gene expression by a cAMP analog in the present study is not surprising, especially given the recent 

finding that this gene is upregulated by its own ligand in rainbow trout (Aluru and Vijayan, 2008).  

 Taken together, disruption of ACTH signaling may be a mechanism leading to the impairment of 

cortisol production by Cd in fish. We propose that Cd disruption of MC2R activation, the key signaling step 

in ACTH-induced steroidogenesis, is involved in the inhibition of cortisol production, while the 

mechanisms involved remain to be established. 
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Chapter 4 
Sublethal cadmium concentrations impair the cortisol stress response 

by disrupting melanocortin 2 receptor (MC2R) and MC2R accessory 
protein function in juvenile rainbow trout 
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4.1 Overview 

 We tested the hypothesis that juvenile rainbow trout continuously exposed to low levels of 

cadmium (Cd), commonly detected in the environment, will exhibit impaired functioning of the 

hypothalamus-pituitary-interrenal axis. Specifically, we tested the hypothesis that melanocortin 2 receptor 

disruption is a key mechanism leading to the inhibition of steroid biosynthesis in the interrenal tissue. Fish 

were exposed to either one of two sublethal concentrations of Cd (0.75 or 2.0 µg/L) for 7 days (d), and were 

then subjected to a handling disturbance for 5 min and the fish were allowed to recover over a 24 hour (h) 

period after which samples were collected at 1, 4 and 24 h after exposure to secondary stressor (0 h). Cd 

accumulation was greatest in the liver followed by the kidney and brain in both concentration groups. Cd 

exposure for 7 d did not affect plasma cortisol and ACTH concentrations or mRNA levels encoding 

corticotropin-releasing factor (CRF) and corticotropin-releasing factor binding protein (CRF-BP) in the 

preoptic area (POA) or proopiomelanocortin receptor (POMCA or POMCB) in the hypothalamus or 

melanocortin receptor accessory protein 1 and 2 (MRAP1 and MRAP2) in the head kidney. However there 

was a significant increase in head kidney melanocortin 2 receptor (MC2R) mRNA levels in both Cd groups. 

In the brain, a significant decrease was observed in mineralocorticoid receptor (MR) protein expression in 

the high Cd dose group, but no changes were seen in glucocorticoid receptor (GR) expression. Subjecting 

the fish to a secondary handling stressor led to a transient attenuation in the stressor-induced plasma cortisol 

and ACTH levels in both Cd groups 1 h post-stressor exposure. No significant changes were observed in 

CRF, CRF-BP or MRAP2 mRNA levels in Cd or control groups at 1, 4 or 24 h post-stressor exposure. 

However, there was a significant decrease in POMCB mRNA levels 1 h after exposure to secondary 

stressor. Furthermore there was a decrease in stressor-induced MC2R and MRAP2 mRNA levels at 1 h for 

both Cd groups. An ex vivo study using head kidney tissue from the Cd groups at 7 d confirmed attenuation 

of ACTH-stimulated cortisol production that was abolished by 8-Bromo-cAMP treatment, confirming for 

the first time that MC2R activation is the likely target for Cd-mediated cortisol disruption. Furthermore, 

MC2R and MRAP1, but not MRAP2, mRNA levels were impaired in both Cd groups. Reporter assays with 

CHO cells transiently transfected with rainbow trout MC2R (rtMC2R) and zebrafish MRAP1 (zfMRAP1) 

cDNAs showed a dose-related inhibition of ACTH stimulation with Cd (0, 0.1, 10, or 100 nM). 

Collectively, 7 d exposure to sublethal Cd concentrations compromises the stressor-induced cortisol 

response by disrupting multiple pathways involved in HPI axis functioning. Our results highlight for the 

first time that the MC2R/MRAP1 complex is a key target for Cd-mediated inhibition of interrenal 

steroidogenesis in rainbow trout.  
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4.2 Introduction 

 Accumulation of Cd and other metals in aquatic organisms is dependent upon the route of 

exposure, which are either waterborne or dietary pathways (Kamunde et al., 2002; Franklin et al., 2005; 

Kwong et al., 2011) and uptake occurs primarily through the gut and/or gills (Alazemi et al., 1996; 

Alquezar et al., 2008; Ojo and Wood; 2008; Klinck et al., 2009; Klinck and Wood, 2011) where toxicity is 

dependent upon calcium competing with Cd for uptake (Zohouri and Wood, 2001; Adiele et al., 2011). 

Within fish, Cd is known to accumulate predominantly in metabolically active tissues, including gills, liver, 

gastrointestinal tract, and to a lesser extent in the muscle and brain (Norey et al., 1990; Gill et al., 1991; 

Lemaire-Gony and Mayer-Gostan, 1994; Melgar et al., 1997; Camusso et al., 1999; Kamunde, 1999; 

McGeer et al., 2000b; Chowdhury et al., 2004; Franklin et al., 2005). Typically, subchronic exposure to 

elevated waterborne Cd is accompanied by physiological adjustments and enhanced tolerance (McDonald 

and Wood, 1993; McGeer et al., 2000a,b). However, at sublethal concentrations, such as those found in the 

environment (Jensen and Bro-Rasiriussen, 1992; CCME, 1994, 1999), Cd can act as an endocrine disruptor, 

by inhibiting cortisol biosynthesis in the interrenal tissues of teleosts (Hontela, 1997; Gillesby and 

Zacharewski; 1998; Burger et al., 2002; Lacroix and Hontela, 2004; Vetillard and Bailhache, 2005; Lacroix 

and Hontela, 2006; Hontela and Vijayan, 2008; Sandhu and Vijayan, 2011 [Chapter 3]).  

 The stress response is a highly conserved response and essential for re-establishing homeostasis 

after a stressor exposure (Wendelaar Bonga, 1997; Mommsen et al., 1999; Sapolsky et al., 2000; Barton, 

2002; Bury and Sturm, 2007; Prunet et al., 2008; Alsop and Vijayan, 2008; Aluru and Vijayan, 2009; 

Pankhurst, 2011). Cortisol production in teleosts is regulated by the hypothalamus-pituitary-interrenal 

(HPI) axis function (Wendelaar Bonga, 1997; Mommsen et al., 1999; Sapolsky et al., 2000; Alsop and 

Vijayan, 2008; Aluru and Vijayan, 2009). Briefly, activation of the HPI axis occurs through stressor-

induced stimulation of the hypothalamus, leading to the release of corticotropin-releasing factor (CRF), 

which in turn stimulates the anterior pituitary to release adrenocorticotrophic hormone (ACTH), a peptide 

derivative of pro-opiomelanocortin (POMC), the primary cortisol secretagogue (Baker et al., 1996; 

Wendelaar Bonga, 1997; Mommsen et al., 1999; Pepels et al., 2004; Flik et al., 2006; Alderman and 

Bernier, 2007, 2009; Dores and Baron, 2011; Fuzzen et al., 2011). Within teleosts, two versions of POMC 

(POMCA and POMCB) exist as a result of the salmonid genome duplication event (Gonzalez-Nunez et al., 

2003; Karsi et al., 2004; Leder and Silverstein, 2006). ACTH binds to the melanocortin 2 receptor (MC2R), 

a G-protein coupled receptor, on the steroidogenic cells of the interrenal tissues and activates the signaling 

cascade leading to cortisol production (Mountjoy et al., 1994; Wendelaar Bonga, 1997; Schiöth, 2001; 
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Gantz and Fong, 2003; Charmandari et al., 2005; Aluru and Vijayan; 2008). The presence of MC2Rs on the 

plasma membrane for binding and activation by ACTH has recently been shown to require the presence of 

melanocortin receptor accessory proteins (MRAPs) (Rachel et al., 2005; Cooray et al., 2008, 2009; Hinkle 

and Sebag, 2009; Sebag and Hinkle, 2009a; Agulleiro et al., 2010; Webb and Clark 2010; Cooray and 

Clark, 2011; Veo et al., 2011; Liang et al., 2011, 2013a; Valsalan et al., 2013). In trout, two MRAPs have 

been isolated and sequenced (MRAP1 and MRAP2), but only MRAP1, and not MRAP2, is essential for 

MC2R activation (Sebag and Hinkle, 2009a; Liang et al., 2011, 2013b). However, very little is known 

about MRAP regulation in vivo in response to stressor exposure in animal models. 

 In addition to corticosteroid biosynthesis, a key aspect of the stress response is the action of cortisol 

on target tissues, which is mediated by activation of either glucocorticoid receptor (GR) and/or 

mineralocorticoid receptor (MR) (Lee et al., 1992; Mommsen et al., 1999; Bury and Sturm, 2007). In 

teleosts, there are multiple copies of GR and one MR with an extensive tissue distribution, including the 

brain (Bury and Strum, 2007; Alsop and Vijayan, 2008), although functionally distinct roles for GR 

isoforms have not yet been reported (Bury et al., 2003; Greenwood et al., 2003; Prunet et al., 2006; Stolte et 

al., 2008; Kim et al., 2011. Plasma cortisol levels after stressor exposure are returned to basal levels by 

negative feedback regulation that involves the binding of this steroid to GR and/or MR to inhibit CRF 

and/or ACTH secretion, respectively (Mommsen et al., 1999; Aluru and Vijayan, 2009; Alderman et al., 

2012; Alderman and Vijayan, 2012). This integrated stress response is considered a potential target for 

endocrine disruption by contaminants (Hontela and Vijayan, 2008), but little is known about the impact of 

environmentally relevant levels of Cd on HPI regulation in teleosts.  

 The objective of this study was to determine the mode of action of sublethal Cd levels in impacting 

key aspects of the HPI axis functioning in juvenile rainbow trout (Oncorhynchus mykiss). Specifically, the 

hypothesis tested was that MC2R signaling is a key target for Cd-mediated endocrine disruption of the 

cortisol stress axis. For this, trout were exposed to Cd for 7 d and then subjected to a secondary chasing and 

netting stressor to assess the functionality of the stress performance. Plasma cortisol and ACTH levels were 

measured as indicators of stress response, while brain GR and MR protein expression were used to assess 

brain corticosteroid responsiveness. Transcript abundances of CRF and CRF-BP from the preoptic area 

(POA) and POMCA and POMCB from the hypothalamus were used to determine regulation of the stress 

axis at the hypothalamus. Transcript abundances of MC2R, MRAP1 and MRAP2 from the head kidney 

were analyzed to indicate responsiveness of interrenal tissue to ACTH, while ACTH-stimulated cortisol 

production in ex vivo head kidney tissues indicated steroid biosynthetic capacity. Also, a reporter assay 
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using CHO cells transfected with MC2R and MRAP1 was used to confirm a direct effect of Cd on ACTH-

stimulated MC2R signaling.   

4.3 Materials and methods 

4.3.1 Chemicals 

 Tricaine methanesulfonate (TMS) and sodium bicarbonate were purchased from Syndel 

Laboratories Ltd., (Vancouver, BC, CAN). RNase free water was purchased from Qiagen (Toronto, ON, 

CAN). Nitric acid, borosilicate and scintillation tubes, monobasic and dibasic sodium phosphate, potassium 

bicarbonate, perchloric acid, potassium chloride and sodium bicarbonate were purchased from Fisher 

Scientific (Fairlawn, NJ, USA). Scintillation cocktail and cortisol antibody were purchased from MP 

Biomedicals (Solon, OH, USA). [1,2,6,7-3H] cortisol tracer and ECl plus Western Detection System were 

purchased from GE Healthcare (Upsala, Sweden). Cadmium chloride, D-glucose and Tween 20 were from 

Bioshop (Burlington, ON, CAN). 96-well plates were purchased from VWR (Mississauga, ON, CAN). 

Thimerasol, activated charcoal and dextran (from Leuconostoc mesenteroides) were purchased from Sigma 

–Aldrich (St. Louis, MO, USA). DNase and bicinchoninic reagent were from ThermoScientific (Nepean, 

ON, CAN). Protease inhibitor tablets were purchased from Roche (Mannheim, Germany). Protein ladder 

for western analysis and Sybr green for qPCR were purchased from Bio-Rad (Hercules, CA, USA). 

4.3.2 Rainbow trout holding conditions 

 Experimental holding conditions for the 7 d in vivo study were similar to those conducted during 28 

d in vivo study (Chapter 2) and by McGeer and colleagues (2000a,b). 7 d was used as a time point based on 

previous studies showing significant accumulation within day 7 (Milne, 2010).  Briefly, juvenile rainbow 

trout (Oncorhynchus mykiss) (30.4 ± 1.1 g) were obtained from Rainbow Springs Hatchery (Thamesford, 

ON, CAN) and held at Wilfrid Laurier University using previously described methods (McGeer et al., 

2000a,b) and described in detail by Milne (2010). Fish were initially held in 220 L tanks (2 tanks with 50 

fish in each) (RTS Plastics, New Hamburg, ON, CAN) with water flowing though each tank at 700 ml/min. 

Water was a 1:1 mixture of well water and soft water produced by reverse osmosis (500 mg/L as CaCO3, 

650 µS/cm, pH 7.2, 15 °C). Fish were acclimated to moderately hard water by gradually decreasing the 

flow of the well water over a two-week period. After the two weeks, fish were randomly distributed among 

six 200 L polyethylene tanks (16-17 fish in each). 60 L polyethylene mixing head tank received 2.4 L/min 

of soft water plus 0.6 L/min of well water, for a total of 3 L/min to achieve the chemistry of moderately 

hard water used for experimental exposures (140 mg/L as CaCO3, 786 ± 25 Ca, 440 ± 18 Mg, 383 ± 32 Na 
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(all in µM ± 1SD, n=63), with a conductivity (YSI 30, Yellow Springs Instruments, Yellow Springs, OH, 

USA), pH (Seven Go, Mettler, Toledo, Fisher Scientific, Mississauga, ON, CAN), and temperature of 255 

µS/cm, pH 7.2, 15 °C respectively. The mixing head tank delivered water (2 L/min) to three smaller 11.2 L 

polyethylene head tanks that have equally split outflows of water delivered to the two fish tanks running in 

duplicate. In order to reach the desired concentration of Cd, the flow rate for 0.75 µg Cd/L was 1290 

ml/min and 1210 ml/min for 2.0 µg Cd/L. The flow rate for the control tanks was 1250 ml/min. All water in 

head tanks and fish tanks were well aerated. Fish were acclimated to their respective tanks for two weeks 

before Cd exposure and fed at 2% of their body weight daily as a single meal (Bio Oregon Protein Inc., 

Warrenton, OR, USA). 

4.3.3 Cadmium exposure  

 Two head tanks were used to receive desired concentrations of 0.75 and 2.0 µg Cd/L (as CdCl2, 

VWR International Mississauga, ON, CAN) and the remaining head tank was used for control (0 µg Cd/L). 

Dissolved actual Cd concentrations measured in fish tanks were (means ± SEM): -0.2 ± 0 0.03 µg Cd/L 

(control), 0.73 ± 0.12 µg Cd/L, 2.38 ± 0.35 µg Cd/L. All three exposure conditions (control (0), 0.75 and 

2.0 µg Cd/L) were done in duplicate, therefore n = 24 fish for control, 0.75 and 2.0 µg Cd/L. Initially, head 

tanks and fish tanks were spiked with appropriate volume from a master stock of 1.0 g/L of Cd to achieve 

exposure concentrations. Additionally, appropriate volumes from a master stock were added to two 10 L 

carboys, each delivering Cd solution to the head tanks via pumps (FIM lab pump, Fluid Metering Inc., 

Oyster Bay NY, USA; 1.2 ml/min) to maintain the desired Cd concentrations in the exposure tanks. Water 

pH meter (Mettler Toledo SevenGOTM, Fisher Scientific, Fairlawn, NJ, USA) and conductivity and 

temperature were measured using a conductivity meter (YSI 30, Yellow Springs Instruments, Yellow 

Springs, Ohio, USA). 

4.3.4 Sampling 

 Rainbow trout were exposed to 0 (control), 0.75 (low dose) or 2.0 (high dose) µg Cd/L for 7 days 

and plasma and tissue samples were collected (0 h time point). Following the 0 h sampling, the remaining 

fish were exposed to a secondary stressor consisting as a 5 min handling disturbance as previously 

described (Ings et al., 2011; Wiseman et al., 2011) and the fish allowed to recover. Samples were taken at 1, 

4 and 24 h post-stressor exposure. Fish were euthanized with an overdose of 0.3 g/L MS-222 buffered with 

0.6 g NaHCO3/L. One ml of blood was collected from the caudal peduncle in 1.5 ml centrifuge tubes 

containing 5 mM EDTA as an anticoagulant. Blood samples were immediately centrifuged at 10,000 x g for 
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2 min. Plasma was separated and stored at -30 °C to measure cortisol and ACTH levels later. Head kidney 

and regionalized brain tissues were stored at -80 °C for transcript and protein expression analyses later. The 

brain was regionalized into the preoptic area to measure CRF and CRF-BP and the hypothalamus to 

measure POMCA and POMCB.  

4.3.5 Ex vivo study 

Juvenile rainbow trout were sampled at 7 d post-Cd exposure as previously described. Trout were 

euthanized with an overdose of TMS buffered with sodium bicarbonate and the anterior region of the 

kidney (containing interrenal tissues) from each fish was finely minced (approximately 1 mm3 pieces) and 

rinsed with modified Hank’s buffer (NaCl (136.9 mM), KCl (5.4 mM), MgSO47H20 (0.8 mM), 

Na2HPO47H2O (0.33 mM), KH2PO4 (0.44 mM), HEPES (5.0 mM), HEPES NA (5.0 mM), 5mM NaHCO3 

and 5mM glucose pH adjusted to 7.63) to remove blood clots. The resulting mixture was distributed equally 

(500 µL modified Hank’s buffer with approximately 50 mg of head kidney tissue in each well) into a 24 

well tissue culture plate (Sarstedt, Newton, NC, USA). The tissues were maintained for 2 h at 13 °C with 

gentle shaking. After 2 h, the buffer was replaced and the tissues were incubated for an additional 1 h after 

which the tissues were replaced with fresh buffer containing no ACTH (control), 0.5 IU/mL ACTH or 5 

mM 8-Bromo-cAMP for 4 h. The ACTH and 8-Bromo-cAMP concentrations and the incubation period 

were chosen based on previous work from our laboratory (Aluru and Vijayan, 2006, 2008; Sandhu and 

Vijayan, 2011 [Chapter 3]). At the end of the incubation period, samples were collected, quickly 

centrifuged (13,000 x g for 1 min) and the supernatant and pellet were separated and stored frozen at -30 oC 

or -80 °C, respectively, for later determination of medium cortisol concentration and tissue transcript 

abundance. 

4.3.6 MC2R/MRAP1 CHO cell expression 

 The functional expression of rainbow trout MC2R/MRAP was performed in CHO cells. CHO cells 

were grown and transfected as previously described (Liang et al., 2011). Briefly, 2 µg rtMC2R, zfMRAP1 

and CRE-Luc reporter plasmid were transfected using a Cell Line Nucleofector Kit (Amaxa Inc., 

Gaithersburg, MD, USA) with solution T and program U-23, and seeded on a 96-well plate. Two days after 

transfection, cells were treated with 0, 0.1, 10, or 100 nM Cd and stimulated for 4 h at 37 °C in the absence 

or presence of ACTH (0.1 nM). At the end of the incubation, 100 µl of Bright-Glo luciferase assay reagent 

(Promega, Inc, San Luis Obispo, CA, USA) was applied to each well and incubated for 5 min at room 

temperature. Luminescence was measured using Bio-Tek Synergy HT plate reader to determine MC2R 
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activity (Winooski, VT, USA). The cell viability was not affected in response to Cd treatment (data not 

shown). 

4.3.7 Tissue Cd accumulation 

 Cd concentrations were measured as previously described (Playle et al., 1993a, 1993b; Janes and 

Playle, 1995; McGeer et al., 2000b). Briefly brain and kidney samples (60-250 mg) were weighed, thawed 

and digested using approximately 5 volumes of 1N TraceMetal grade HNO3 and then baked for 3 h at 80 

°C. After digestion, tissues were vortexed for 5 seconds and then centrifuged for 2 min at 10,000 rpm 

(Spectrafuge 16M; Labnet International, Edison, NJ, USA) and left to settle. The supernatant was then 

diluted between 10-to 100-fold with 1% acidified ultrapure water. The resulting sample was then measured 

for Cd using graphite furnace atomic absorption spectrophotometer (GFAAS; SpectraAA 880 GTA 100 

atomizer, Varian, Mississauga, ON, CAN). The concentration of Cd in the brain and head kidney is 

expressed as µg/g wet weight. 

4.3.8 Plasma ACTH and cortisol 

 Plasma cortisol was measured using a radioimmunoassay (RIA as previously described (Sandhu 

and Vijayan, 2011 [Chapter 3]).  Plasma ACTH was measured using a commercially available ImmuChem 
125I-labeled RIA kit (MP Biomedicals, Santa Ana, CA, USA). This assay has been previously validated for 

measuring plasma ACTH levels in trout plasma (Aluru and Vijayan, 2004; Doyon et al., 2006; Aluru and 

Vijayan, 2008).  

4.3.9 Gene expression 

 RNA from head kidney, hypothalamus and POA were extracted using Ribozol RNA extraction 

reagent (Amresco, Solon, OH, USA). Briefly, 500 µl of Ribozol was added to 30-50 mg of tissue. Tissues 

were sonicated for homogenization and chloroform was added. The samples were then spun at 12,000 x g 

for 15 min and the aqueous phase (top layer) containing RNA was added to a new microcentrifuge tube. 

RNA was then precipitated using isopropanol and the dried pellet was redissolved in RNase free water. 

RNA was then DNase treated using manufacturer’s instructions (Fermentas, Pittsburgh, PA, USA) and 

stored at -80 °C until analyzed. One microgram of total RNA was reverse-transcribed with high capacity 

cDNA reverse transcription kit (Applied Biosystems, Streetsville, ON, CAN).  

 Real-time quantitative PCR (qPCR) was used to measure transcript abundances for MRAP 1, 

MRAP 2 and MC2R within the head kidney; CRF and CRF-BP in the POA; and POMCA and POMCB in 
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the hypothalamus. Primer pair sequences, melting temperatures, and amplicon sizes are listed in Table 1. 

qPCR was performed using iCycler (Bio-Rad, Hercules, CA, USA) under the following conditions: 2 min 

at 94 °C followed by 40 cycles of 15 sec at 94 °C, 30 sec at desired melting temperature (Table 1), and 30 

sec at 72 °C. PCR products were subjected to melt curve analysis to confirm presence of a single amplicon. 

Negative controls with no template were carried out for each gene analyzed. Elongation factor 1 alpha 

(EF1α) was used as the housekeeping gene as no differences were observed between treatments or time-

points.  

4.3.10 GR and MR protein expression 

Tissue homogenization and sample preparation for immunodetection was described previously (Sathiyaa 

and Vijayan, 2003; Dindia et al., 2012). Briefly, 50 mg of brain tissue was added to 200 µl of 50 mM Tris 

and 1X proteinase inhibitor (PI). Protein concentration was measured using the bicinchoninic acid *BCA) 

method with bovine serum albumin as a standard and samples for immunodetection were diluted to a 

concentration of 2 mg/ml in Laemmli’s buffer (Laemmli, 1970). Samples for GR and MR protein detection 

were loaded (40 µg/g protein) onto 8% SDS-PAGE gel. Samples were run for 40 min at 200 V using 1 X 

TGS running buffer and the proteins were separated by mass. The separated proteins were transferred to a 

0.45 µM nitrocellulose membrane (Bio-Rad, Hercules, CA, USA) using the Transblot ® SD-semi-dry 

electrophoretic transfer cell (Bio-Rad, Hercules, CA, USA) at 20 V for 25 min with a transfer buffer (25 

mM Trish, pH 8.3, 192 mM glycine, and 10% methanol). The membrane was blocked with 5% non-fat dry 

milk with 0.02% sodium azide made in 1 X TTBS (2 mM Tris, 300 mM NaCl, 0.1% Tween 20, pH 7.5) for 

1 h at room temperature. The membranes were probed with polyclonal rabbit antibodies to either trout GR 

(1:1000 Jeffrey et al., 2012) for 1 h at room temperature or polyclonal anti-trout MR (1:1000 Jeffrey et al., 

2012) overnight for 18 h at 4 °C, followed by incubation with the secondary anti-rabbit horseradish 

peroxidase (HRP)-labeled secondary antibody (Bio-Rad, 1:3000 dilution in 5% skim milk). Protein bands 

were detected using ECl PlusTM chemiluminescence (GE Health Care, Baie, d’Urfe, QC, CAN) and imaged 

using Pharos FX molecular Imager (Bio-Rad, Hercules, CA, USA). Equal loading was confirmed through 

incubation of membranes with Cy3TM conjugated monoclonal mouse β-actin antibody (1:1000; Sigma-

Aldrich, St. Louis, MO, USA) for 1 h at room temperature.  

4.3.11 Statistical analysis 

All statistical analyses were performed using SigmaPlot 11 software (Systat Software Inc., San Jose, CA, 

USA) and data are presented as mean ± SEM. Data comparisons for plasma cortisol, ACTH and transcript 
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levels during 7 d study utilized two-way analysis of variance (ANOVA), and significant differences within 

each time point were assessed using one way-ANOVA. Significant differences among cortisol and 

transcript levels in the ex vivo study and CHO cell expression of MC2R/MRAP1 were confirmed using 

two-way repeated measures-ANOVA and a paired t-test to compare differences within treatments. 

Significant differences in brain GR and MR protein levels and tissue Cd accumulation were assessed using 

a one-way ANOVA. Significant differences between treatment groups for cortisol, ACTH and transcripts 

were compared using Holm-Sidak post hoc test or Student-Newman-Keul’s test for comparison of ranks. 

The data were transformed wherever necessary to meet the assumption of homogeneity of variance, 

although non-transformed data are shown in the figures. A probability level of P<0.05 was considered to be 

significant. 
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Table 1. Primer details Oligonucleotide primers [forward (F) and reverse (R)] for corticotropin-releasing 

factor (CRF), corticotropin-releasing factor binding protein (CRF-BP), proopiomelanocortin (POMCA and 

POMCB), melanocortin 2 receptor (MC2R), melanocortin receptor accessory protein (MRAP1 and 

MRAP2) and elongation factor 1 alpha (EF1α) used in quantitative real-time PCR along with their melting 

temperature (Tm) and amplicon size and accession number.  

PRIMER SEQUENCE Amplicon 

Size (bp) 

Accession #  Annealing 

Tm (°C) 

CRF F: ACAACGACTCAACTGAAGATCTCG 

R: AGGAAATTGAGCTTCATGTCAGG 

54 NM_001124286.

1 

60 

CRF-BP F: GGAGGAGACTTCATCAAGGTGTT 

R: CTTCTCTCCCTTCATCACCCAG 

51 NM_001124631.

1 

60 

POMCA F: AGGGTTGAGGGAGGAAGAGA 

R: TGTCAGAGGACAGGGCTTTT 

116 NM_001124718.

1 

60 

POMCB F: CCAGAACCCTCACTGTGACGG 

R: CCTGCTGCCCTCCTCTACTGC 

199 

 

NM_001124719.

1 

60 

MC2R F: GAGAACCTGTTGGTGGTGGT 

R: GAGGGAGGAGATGGTGTTGA 

105 EU119870 60 

MRAP1 F: GACGAGCGCAAACTGAAA 

R: CTGACTGAACGGGACATGAA 

116 NM_001246347.

1 

60 

MRAP2 F: CGGACCCGGACTACAAGTGGA 

R: GGCCCACCCAGAAGCCTATCA 

111 NM_001246353.

1 

60 

EF1α F: CATTGACAAGAGAACCATTGA 

R: CCTTCAGCTTGTCCAGCAC 

95 NM_00124339.1 56 
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4.4 Results 

4.4.1 Cadmium accumulation 

 Cd accumulation was measured in brain and head kidney for fish treated with control, 0.75 and 2.0 

µg Cd/L (Figures 1A and B). There was no significant difference in Cd accumulation in the brain of Cd 

exposed fish relative to control fish (Figure 1A). Basal Cd levels for control samples in brain (0.14 µg/g) 

and head kidney (0.24 µg/g) were above background levels. In the kidney, there was only a significant 

increase in Cd accumulation in the fish treated with 2.0 µg Cd/L (0.32 µg /g) compared to control (Figure 

1B). 

4.4.2 Plasma cortisol and ACTH levels 

 No significant differences were measured in plasma cortisol levels between treatments during 7 d 

Cd exposure (0 h), but there was an overall treatment effect with plasma cortisol levels significantly lower 

in the Cd groups compared to the control group (Figure 2A). A time dependent effect was also observed 

whereby cortisol production at 1 h after application of a stresor was greater than cortisol production at 0, 4 

and 24 h post-stressor exposure (Figure 2A). In the Cd groups, plasma cortisol levels were significantly 

reduced in a dose-related fashion compared to the controls at 1 h (~30% for 0.75 µg/L and ~64% for 2.0 

µg/L Cd), but not at 4 and 24 h post-stressor exposure (Figure 2A).  

 No significant differences were observed between treatments in plasma ACTH concentrations 

during 7 d Cd exposure (0 h). There was an overall temporal effect on plasma ACTH levels during the post-

stressor exposure period. ACTH concentrations were higher at 1 h than at those observed at 0, 4 and 24 h 

post-stressor exposure (Figure 2B). The stressor-induced elevation in plasma ACTH levels were 

significantly lower in the Cd groups at 1 h (~18% for 0.75 µg /L and ~38% for 2.0 µg/L Cd) but not at 0, 4 

and 24 h post-stressor exposure (Figure 2B).  
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Figure 1. Cd accumulation in brain (A) and head kidney (B) of juvenile rainbow trout exposed to 0, 0.75 or 

2.0 µg/L Cd for 7 days. Bars represent mean ± SEM  (n=6). Different letters above bars indicates significant 

differences among concentrations (P<0.05; one-way ANOVA) 
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Figure 2. Plasma analysis. Plasma cortisol (A) and plasma ACTH (B) from juvenile rainbow trout 

exposed to 0, 0.75 or 2.0 µg/L Cd after 7 d exposure (0 h) and after 1,4 and 24 h after exposure to a 

secondary stressor. Bars represent mean ± SEM (n=6). Different letters above lines indicate significant 

differences between time-points (P<0.05; two-way ANOVA). Lower case letters indicate significant 

differences within the time-point (P<0.05; one-way ANOVA). Inset indicates significant differences 

between treatments (P<0.05; two-way ANOVA). 
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4.4.3 CRF and CRF-BP mRNA abundance in the preoptic area (POA) 

 No significant differences due to Cd exposure were observed in CRF or CRF-BP mRNA levels in 

the POA during 7 d exposure (0 h) (Figures 3A and B). There was a time-dependent increase in CRF 

mRNA levels after exposure to a secondary stressor over the 24 h period (Figure 3A). CRF-BP mRNA 

abundance also showed a time effect with levels significantly higher at 1 and 4 h compared to 0 and 24 h 

post-stressor exposure (Figure 3B). Cd exposure did not modify CRF-BP mRNA levels in the present 

study. 

4.4.4 POMCA and POMCB mRNA abundance in the hypothalamus 

 POMCA mRNA levels were not statistically different between control and Cd-treated fish at any 

time point (Figure 4A). Although there was no treatment effect, a time-dependent effect was observed 

whereby POMCA mRNA levels were statistically different between 1 and 24 h post-stressed compared to 0 

and 4 h (Figure 4A). 

 POMCB mRNA levels were not statistically different between control or Cd-treated fish at any 

time point except at 1 h post-stressed where POMCA mRNA levels were significantly decreased by ~72% 

and ~75% in fish exposed to 0.75 µg Cd/L or 2.0 µg Cd/L, respectively (Figure 4B). No other time or 

treatment effect was observed (Figure 4B). 

4.4.5 Brain GR and MR protein expression 

 GR and MR protein expressions in the brain were measured after 7 d exposure to Cd. There was no 

significant effect of Cd exposure on GR protein expression (Figure 5A), whereas MR protein expression 

was significantly reduced by ~83% in the 2.0 µg Cd/L group compared to the control fish (Figure 5B). 
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Figure 3. Preoptic area mRNA levels. CRF (A) and CRF-BP (B) mRNA levels in preoptic area of 

juvenile rainbow trout exposed to 0, 0.75 or 2.0 µg/L Cd after 7 d exposure (0 h) and after 1,4 and 24 h after 

exposure to a secondary stressor on day 7. Bars represent mean ± SEM (n=6). Different letters above lines 

indicate significant differences between time-points (P<0.05; two-way ANOVA).  
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Figure 4. Hypothalamus mRNA levels. POMCA (A) and POMCB (B) mRNA levels in the hypothalamus 

of juvenile rainbow trout exposed to 0, 0.75 or 2.0 µg/L Cd after 7 d exposure (0 h) and after 1, 4 and 24 h 

after exposure to a secondary stressor on day 7. Bars represent mean ± SEM (n=6). Different letters above 

lines indicate significant differences between time points (P<0.05; two way ANOVA). Lower case letters 

indicate significant differences within the time-point (P<0.05; one way ANOVA).  
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Figure 5. Corticosteroidogenic protein expression. GR (A) and MR (B) protein expression in 

whole brain of juvenile rainbow trout exposed to 0, 0.75 or 2.0 µg/L Cd for 7 days. Bars represent 

mean ± SEM (n=6). Different letters above bars indicates significant differences between 

concentrations (P<0.05; one-way ANOVA). A representative immunoblot for both GR and MR is 

shown. Equal loading was confirmed by β-actin (representative immunoblot image shown).   
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4.4.6 Stressor effect on MC2R, MRAP1 and MRAP2 mRNA levels in the head kidney 

 At 7 d exposure (0 h), MC2R mRNA levels were increased by ~50% and ~75% in in fish exposed 

to 0.75 µg Cd/L and 2.0 µg Cd/L, respectively, compared to control fish (Figure 6A). After 1 h post stressor 

exposure MC2R mRNA levels increased ~97% compared to control at 0 h (Figure 6A). In response to a 

secondary stressor, no significant changes were observed in MC2R mRNA levels at 4 or 24 h, but there was 

a ~97% decrease in MC2R levels in both Cd groups 1 h after exposure to a secondary stressor compared to 

the control group (Figure 6A). There was an overall treatment effect with the MC2R mRNA abundance 

significantly lower in the Cd groups compared to the control groups (Figure 6A). Furthermore, a time-

dependent effect was observed whereby MC2R mRNA levels were statistically different at 1 and 4 h 

compared to 0 and 24 h post-stressor exposure (Figure 6A).  

 At 7 d exposure (0 h), no significant changes were observed in MRAP1 mRNA levels in any of the 

Cd groups with respect to control fish (Figure 6B). After 1 h post stressor exposure, MRAP1 mRNA levels 

increased ~91% compared to control at 0 h (Figure 6B). In response to a secondary stressor, no significant 

changes were observed in MRAP1 mRNA levels between treatments at 4 or 24 h, but there was a ~63% and 

~91% decrease in MRAP1 mRNA abundance in fish exposed to 0.75 µg Cd/L and 2.0 µg Cd/L, 

respectively, at 1 h post-stressor exposure compared to the control group (Figure 6B). There was an overall 

treatment effect on MRAP1 mRNA levels showing greater values in control relative to fish treated with 

either Cd concentration. There was a time-dependent effect and MRAP1 mRNA levels were greater at 1 

and 4 h, but not at 24 h after exposure to secondary stressor compared to 0 h samples (Figure 6B). No time-

dependent effects were observed in time between 0 and 24 h (Figure 6B). There was also no significant 

effect of Cd exposure or time post-stressor exposure on MRAP2 mRNA abundance (Figure 6C).   
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Figure 6. Interrenal mRNA levels.  MC2R (A), MRAP1 (B) and MRAP2 (C) mRNA levels from 

juvenile rainbow trout exposed to 0, 0.75 or 2.0 µg/L Cd after 7 d exposure (0 h) and after 1,4 and 

24 h after exposure to a secondary stressor on day 7. Bars represent mean ± SEM (n=6). Different 

letters above lines indicate significant differences between time-points (P<0.05; two-way 

ANOVA). Lower case letters indicate significant differences within the time-point (P<0.05; one-

way ANOVA). Inset indicates significant differences between treatments (P<0.05; two-way 

ANOVA). 
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4.4.7 Ex vivo cortisol levels and MC2R, MRAP1 and MRAP2 mRNA levels in the head 
kidney 

 ACTH-stimulated cortisol production was significantly reduced by ~34% and ~68% in head kidney 

slices from fish exposed to 0.75 µg Cd/L and 2.0 µg Cd/L, respectively, compared to control (Figure 7A). 

No significant differences in cortisol production were observed between control and Cd exposed slices 

stimulated with 8-Bromo-cAMP (Figure 7A). However there was a ~39%, ~57% and ~78% increase in 

cortisol production in control, 0.75 µg Cd/L and 2.0 µg Cd/L head kidney slices stimulated with 8-Bromo-

cAMP, respectively, relative to each treatment group stimulated with ACTH (Figure 7A). A stimulant effect 

was also observed whereby slices stimulated with 8-Bromo-cAMP showed greater cortisol levels than those 

stimulated with ACTH (Figure 7A).  

 Overall, MC2R levels were greater in the presence of ACTH relative to control (sham) (Figure 7B). 

In control (sham) slices stimulated with ACTH, MC2R levels significantly increased by ~96%, however no 

significant differences were observed in MC2R mRNA levels in control (sham) or ACTH-treated slices in 

either Cd group (Figure 7B). An overall treatment effect was observed whereby MC2R mRNA levels were 

greater in control fish relative to fish treated with 0.75 or 2.0 µg Cd/L (Figure 7B). 

 MRAP1 mRNA levels showed a stimulant effect where slices stimulated with ACTH had greater 

MRAP1 mRNA abundance than control (sham) (Figure 7C). MRAP1 mRNA levels significantly increased 

by ~96% in control slices stimulated with ACTH relative to control (sham), however no significant 

differences were observed in MRAP1 mRNA levels in control (sham) or ACTH-treated slices in either Cd 

groups (Figure 7C). MRAP1 had an overall treatment effect where MRAP1 mRNA abundance was greater 

in control fish relative to fish treated with 0.75 or 2.0 µg Cd/L (Figure 7C). No significant effect of Cd 

exposure or stimulant was observed on MRAP2 mRNA abundance (Figure 7D).   
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Figure 7. Interrenal mRNA levels. Magnitude of change in cortisol levels (A) and MC2R (B), 

MRAP1 (C) and MRAP 2 (D) mRNA levels in head kidney slices of juvenile rainbow trout 

exposed to 0, 0.75 or 2.0 µg/L Cd for 7 days in vivo and stimulated with ACTH or 8-Bromo-cAMP 

in vitro. Cortisol values show changes with respect to ACTH and 8-Bromo-cAMP stimulation 

whereas transcript values show changes with respect to ACTH. Values represent mean ± SEM 

(n=8). Lines with difference letters for cortisol data represent significant difference between control 

and Cd groups. Inset indicates significant difference between stimulants (P<0.05, two-way repeated 

measure ANOVA). Asterisks above bars represent significant differences within treatments 

(P<0.05; t-test).  
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4.4.8 Functional activation of MC2R/MRAP1 

 MC2R/MRAP1 expression in CHO cells was not significantly different in control cells 

(background levels) exposed to 0, 0.1, 10 or 100 nM Cd (Figure 8). MC2R/MRAP1 expression in the 

presence of ACTH was ~90% greater in CHO cells exposed to 0 nM Cd relative to control cells (Figure 8). 

In the presence of Cd MC2R/MRAP1 expression was inhibited by ~42% (0.1 nM), ~41% (10 nM) and 

~49% (100 nM) compared to expression in 0 nM CHO cells stimulated with ACTH (Figure 8).   
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Figure 8. CHO cell expression. Maximal responses of rtMC2/zrMRAP1 receptor complex expressed in 

CHO cells exposed to 0, 0.1, 10 or 100 nM of Cd for 4 hour in the presence of absence of ACTH (0.1 nM). 

Values represent mean ± SEM (n=3). Inset indicates overall stimulant effect between control and ACTH 

(P<0.05, two-way repeated measures ANOVA). Lines with different letters above it represent significant 

differences in ACTH groups between control and Cd treatments (P<0.05; one-way ANOVA). Asterisks 

above bar represent significant differences in cell expression within treatments (P<0.05; t-test).  
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4.5 Discussion 

 Cd is an endocrine disruptor of the stress axis in teleosts. Our results suggest that Cd exerts its toxic 

effects at multiple sites, including the brain and interrenal tissue, in impairing the functioning of the cortisol 

stress axis in juvenile rainbow trout. This is the first study to demonstrate that the MC2R/MRAP1 complex, 

an essential component of ACTH signaling, is a target for Cd-mediated inhibition of interrenal 

steroidogenesis in rainbow trout. 

4.5.1 Stress response disruption 

 Exposure to environmentally realistic Cd concentrations led to significant accumulation in the head 

kidney, but not the brain, which is in agreement with previously reported studies in fish (Norey et al., 1990; 

Gill et al., 1991; Lemaire-Gony and Mayer-Gostan, 1994; Kamunde, 1999; McGeer et al., 2000b; Franklin 

et al., 2005). The muscle and brain of fish are highly protected tissues that accumulate only negligible 

levels of total and new Cd from both dietary and waterborne exposures (Shaffi et al., 1999; McGeer et al., 

2000b; Chowdhury et al., 2004; Favorito et al., 2011). The detection of Cd in the control fish is to be 

expected in the kidney based upon previous literature that coincides with values currently shown (McGeer 

et al., 2000b). The presence of Cd in the control fish could be due to many factors including contamination 

of feed and residual Cd in tanks from previous studies.  

 Cortisol, the primary glucocorticoid in teleosts is regulated by the hypothalamus-pituitary-interrenal 

(HPI) axis and predominately produced through binding of ACTH to MC2R (Wendelaar Bonga, 1997; 

Mommsen et al., 1999; Barton, 2002; Aluru and Vijayan, 2009). During the 7 d exposure (0 h), no 

significant differences were observed in either plasma cortisol or ACTH values suggesting that juvenile 

rainbow trout can adapt to sublethal Cd concentrations, which has been previously recorded (McDonald 

and Wood, 1993; Hollis et al., 1999, 2001; McGeer et al., 2000a,b).  

 Although Cd accumulation in brain, liver and kidney were similar between control and 0.75 µg 

Cd/L treated fish, there was attenuation in ACTH levels and cortisol production in both Cd treated groups 

after 1 h of exposure to a secondary stressor. The attenuation in cortisol in the low Cd group, regardless of 

the insignificant accumulation in tissues could be due to the higher presence of dissolved Cd in the water 

compared to the control fish. Actual concentrations of dissolved Cd in the water within each fish tank were 

recorded as negligible values in control fish (<0 µg Cd/L) whereas Cd concentrations of 0.71 and 2.33 µg 

Cd/L were seen in fish exposed to low and high Cd respectively. 
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 Upregulation of the HPI axis in response to acute stress is a well-documented process in teleosts 

(Mommsen et al., 1999; Aluru and Vijayan, 2009). Levels of CRF during an acute stress are increased and 

maintained in teleosts (Doyon et al., 2003; Bernier et al., 2004; Huising et al., 2004; Payne et al. 2004; 

Craig et al., 2005; Doyon et al., 2006) through GR receptor signaling (Alderman et al., 2012). Furthermore, 

CRF-BP, a known binding protein of CRF in mammals (Potter et al., 1991) that limits CRF available for 

binding to CRF receptors and initiating ACTH production is also thought to play a similar role in teleosts 

(Huising et al., 2004; Doyon et al., 2005; Alderman et al., 2008). Within the 7 d exposure, an overall 

increase in CRF mRNA levels was observed during acute stress in both control and Cd treated fish which 

coincided with a similar profile in CRF-BP mRNA levels suggesting that the stress response remained in 

tact at the level of CRF production and bioavailability. Production of CRF during response to a stressor 

results in the production of ACTH from the anterior pituitary (Mommsen et al., 1999). Within the 

hypothalamus, no significant changes were observed in POMCA or POMCB during Cd exposure (0 h), 

however, there was an attenuation of POMCB in both Cd groups 1 h after exposure to a secondary stressor. 

As previously mentioned POMC is the precursor for ACTH in teleosts (Mommsen et al., 1999) that is 

necessary to bind to MC2R and initiate corticosteroidogenesis (Aluru and Vijayan, 2008). Although ACTH 

was not measured in the pituitary, it is highly possible that a reduction in POMC would reflect in a change 

in ACTH production in the pituitary, which has been examined in mammals (Caride et al., 2010).  

 Despite the low Cd concentration in the brain relative to kidney, a disruption of MR protein 

expression was observed in the high Cd group. The physiological effects of cortisol on target tissues is 

mediated by both the glucocorticoid and mineralocorticoid receptor in teleosts (Ducouret et al., 1995; 

Colombe et al., 2000; Bury et al., 2003; Greenwood et al., 2003; Sturm et al., 2005; Prunet et al., 2006; 

Kiilerich et al., 2007; Milla et al., 2008; Alsop and Vijayan, 2008; Aluru and Vijayan, 2009; Kiilerich et al., 

2011; Kim et al., 2011; Takahashi and Sakamoto, 2013). Within teleosts, MR has been shown to bind 

cortisol with a greater affinity than GR when cortisol is present at low concentrations (Bury et al., 2003; 

Sturm et al., 2005) and unlike GR, MR is more abundantly expressed in the brain (Johansen et al., 2011). 

However, the downstream impact of MR signaling in fish is not well known. Classically, it is presumed that 

cortisol binds to GR in the hypothalamus and pituitary to initiate the negative feedback system to suppress 

further cortisol production (Bradford et al., 1992; Mommsen et al., 1999; Aluru and Vijayan, 2009; Bury et 

al., 2003), but this has not been confirmed. Since MR is more abundantly expressed in the brain, it is 

probable that it is crucial in the negative feedback pathway, suggesting that Cd may be disrupting 

corticosteroid signaling in the brain through disruption of MR (Alderman et al., 2012; Alderman and 

Vijayan, 2012).  
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4.5.2 Cd-mediated interrenal axis dysfunction 

 Within the interrenal cells of rainbow trout, corticosteroidogenesis mediated through genomic 

signaling begins with ACTH binding to MC2R (Aluru and Vijayan, 2008). Previous work done on ACTH-

mediated cortisol disruption by Cd shows inhibition of key genes by involved in steroid biosynthesis, 

particularly MC2R (Sandhu and Vijayan, 2011 [Chapter 3]).  A similar inhibition was seen in MC2R 

mRNA levels in the present 7 d in vivo study within the interrenal cells of both Cd groups 1 h after being 

exposed to a secondary stressor suggesting that Cd is inhibiting the G-protein response associated with 

ACTH binding to MC2R.  

Once ACTH binds to MC2R, the G protein response is initiated and activates the adenylyl cyclase 

pathway to produce cAMP which in turn activates protein kinase A, has been shown to phosphorylate 

StAR, culminating in the production of cortisol (Mommsen et al., 1999; Aluru and Vijayan, 2008; Manna et 

al., 2009). Previous in vitro work showed that stimulation of head kidney slices with 8-Bromo-cAMP 

abolished Cd-mediated inhibition of cortisol and MC2R (Sandhu and Vijayan, 2011 [Chapter 3]). A similar 

response was observed in vivo whereby stimulation of head kidney slices exposed to waterborne Cd showed 

an inhibition in cortisol production when stimulated with ACTH but not when stimulated with 8-Bromo-

cAMP. This confirms previous assumptions that Cd-mediated cortisol disruption of the stress response is 

occurring upstream of cAMP production and points at the target being the MC2 receptor.  

 Recently, it has been recognized that the functionalization of MC2R requires the melanocortin 

receptor accessory protein (MRAP) (Clark et al., 2005; Metherell et al., 2005; Rumié et al., 2007; Sebag 

and Hinkle, 2007; Chan et al., 2009; Gorrigan et al., 2011; Reinick et al., 2012), a phenomenon similar to 

other G-protein coupled receptors (Brady and Limbird, 2002; Saito et al., 2004; Dupré et al., 2007; 

Matsunami et al., 2009). If MRAPs are not present, MC2R will not re-localize from the endoplasmic 

reticulum to the plasma membrane where it is required for ACTH binding (Liang et al., 2011). Within 

mammals and teleosts, two MRAPs have been identified, MRAP1 and MRAP2 (Sebag and Hinkle, 2007; 

2009a,b, 2010; Webb et al., 2009), and in zebrafish three MRAPs have been identified (MRAP1, MRAP2a, 

MRAP2b) (Agulleiro et al., 2010). The increase in MRAP1 but not MRAP2 after 1 h of stressor exposure 

during 7 d Cd exposure and through ACTH stimulation of head kidney slices in control fishes in vitro 

suggests that MRAP1 works alongside MC2R to induce expression of MC2R along the plasma membrane. 

This coincides with previous work done in mammals, rainbow trout and frog cell lines where activation of 

MC2R has shown to require the presence of MRAP1 but not MRAP2 (Agulleiro et al., 2010; Liang et al., 

2011; Roy et al., 2012). In fact, MC2R/MRAP2 complexes in cell lines have a lower MC2R activation by 
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ACTH in comparison to MC2R/MRAP1 complexes (Liang et al., 2011). Furthermore, transient 

transcfection of CHO cells with MC2R and MRAP1 was suppressed in the presence of Cd when stimulated 

with ACTH, suggesting for the first time that Cd targets the MC2R/MRAP complex to disrupt cortisol 

production, however the mechanism of action is unknown.  

 Within the reproductive axis, Cd has been shown to bind to estrogen receptors in both mammals 

and teleosts to inactivate or suppress genes regulated by estradiol or estrogens (Le Guével et al., 2000; 

Stoica et al., 2000; Johnson et al., 2003; Jezierska et al., 2009). Therefore, a possible mechanism of action 

could be that once MRAP1 translocates MC2R to the cell membrane, Cd competes with cortisol and 

inhibits downstream corticosteroidogenesis. However, we cannot rule out the possibility that Cd targets 

MRAP1, which would result in inefficient localization of the receptor and thus a decrease in ACTH binding 

receptors, resulting in a suppression of cortisol production.  

4.5.3 Conclusion 

 Exposure of juvenile rainbow trout to environmentally relevant concentrations of Cd over 7 days 

did not lead to significant accumulation in the brain, but there was significant accumulation in the kidney of 

juvenile rainbow trout exposed to 2.0 µg Cd/L. During the exposure period (0 h), no changes were observed 

in plasma cortisol, or ACTH levels, CRF, CRF-BP MRAP1 or MRAP2 mRNA levels or in GR protein 

expression in the brain of Cd exposed fish relative to control suggesting that juvenile rainbow trout are able 

to acclimate to Cd exposure. Significant changes in MR protein expression within the brain and MC2R 

mRNA levels in the head kidney suggests that Cd is impairing cortisol signaling at both the negative 

feedback level and interrenal steroidogenesis. Furthermore, exposure of Cd-treated juvenile rainbow trout 

to secondary stressor exposure similar to a predator-prey scenario did not impact CRF, CRF-BP, or 

POMCA mRNA levels suggesting that the genomic actions in the brain are intact. A decrease in POMCB 1 

h after exposure to secondary stressor suggests that some alterations occur at the brain steroidogenic level 

that could potentially impact downstream sites that utilize precursors of POMC. Interestingly, we show that 

exposure of juvenile rainbow trout to a secondary stressor suppresses plasma ACTH and cortisol along with 

interrenal steroidogenesis and we propose that Cd-mediated cortisol disruption occurs through direct 

inhibition of MC2R and MRAP1 but not MRAP2. However, the mechanism of action remains to be 

elucidated.     
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Chapter 5 
Cadmium disrupts glucocorticoid receptor signaling in rainbow trout 

liver 
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5.1 Overview 

 Although cadmium (Cd) has been shown to inhibit cortisol production in teleosts, the impact of this 

metal on target tissue cortisol action has not been ascertained. We tested the hypothesis that Cd disrupts 

cortisol signaling and the associated metabolic effects in rainbow trout liver. To test this, liver slices were 

incubated for 24 h in L-15 media containing 0, 250, 500 or 1000 nM Cd. Within each Cd concentration, 

liver slices were also exposed to cortisol (100 ng/ml) and mifepristone (glucocorticoid receptor [GR] 

antagonist; 1000 ng/ml) either alone or in combination. Cd accumulated in a dose-dependent manner in the 

liver. Cd at all concentrations abolished the cortisol-induced glucose production in the liver. The 

downregulation of GR expression seen with cortisol in control liver tissue was absent in the Cd treated liver 

slices. No changes were observed in heat shock protein 70 (HSP70) protein expression between sham and 

cortisol treated groups in the presence or absence of Cd, but there was a temporal increase of HSP70. 

Cortisol-induced upregulation of glucocorticoid-responsive genes, including phosphoenolpyruvate 

carboxykinase (PEPCK) and suppressors of cytokine signaling 1 (SOCS1), was completely abolished in 

Cd-treated liver slices. Also, cortisol-mediated upregulation of the activities of pyruvate kinase, PEPCK, 

glucokinase, hexokinase, aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase 

seen in control liver slices was absent with Cd treatment. Taken together, we demonstrate for the first time 

that Cd exposure impairs cortisol responsiveness of the liver associated with disruption of GR signaling and 

the accompanying suppression of liver metabolic capacity in trout liver.  

5.2 Introduction 

 Many freshwater organisms are exposed to metal concentrations that are higher than what are 

considered to be natural background levels due to a continuous release of metals from natural and 

anthropogenic sources (Olsvik et al., 2000). Within a very short time frame, Cd can reach levels that are 

physiologically stressful to an organism and can possibly result in organismal death due to tissue 

accumulation (Gill and Pant, 1983; Gill et al., 1991; Spry and Wiener, 1991; Kamunde, 2009). During 

extended sublethal exposures, Cd accumulates in target tissues, including liver (Giles, 1988; McGeer et al., 

2000b; Szebedinszsky et al., 2001; Hollis et al., 1999, 2000a, 2001). This metal exposure elicits a cellular 

stress response as indicated by the overexpression of heat shock protein 70 (Boone and Vijayan, 2002), a 

molecular chaperone essential for defense against proteotoxicity (Hightower, 1991; Iwama et al., 1998; 

2006). Heat shock proteins (HSPs) are a family of proteins expressed in all cell types and are present in 

response to a wide array of biotic and abiotic stressors (Iwama et al., 1998; Feder and Hofmann, 1999). 

Hsp70, an important chaperone in preventing proteotoxicity and enhancing cell survival (Hightower, 1991; 
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Mommsen et al., 1999; Vijayan et al., 2010), is a commonly used marker for cellular stress in response to a 

variety of stressors (Sanders, 1992; Sanders and Martin, 1993; Vijayan et al., 1994, 1997a,b, 1998; 

Williams et al., 1996; Duffy et al., 1999; Hassanein et al., 1999; Ackerman and Iwama, 2001; Basu et al., 

2001), including Cd (Boone and Vijayan, 2002). However, the effect of Cd accumulation on liver function, 

and its mode of action, has not been previously investigated. 

 The liver plays a critical role in the metabolic adaptation to stress which involves energy substrate 

mobilization and reallocation to fuel the increased metabolic demand (Mommsen et al., 1999; Aluru and 

Vijayan 2009; Vijayan et al., 2010). As glucose is a key fuel, the stressor-induced production of this 

metabolite by the liver is essential for stress adaptation (Mommsen et al., 1999; Aluru and Vijayan, 2009). 

Glucose release from the liver is initially mediated by catecholamine-induced glycogenolysis, while the 

longer-term maintenance of glucose is thought to involve cortisol-induced gluconeogenesis (Mommsen et 

al., 1999; Aluru and Vijayan, 2009). The liver is an important target tissue for cortisol action allowing for 

the metabolic adaptation to stress (Mommsen et al., 1999; Aluru and Vijayan, 2009). The actions of cortisol 

are primarily mediated through genomic signaling via corticosteroid receptors in target tissues (Bern and 

Madsen, 1992; Mommsen et al., 1999; Colombe et al., 2000; Bury et al., 2003; Greenwood et al., 2003; 

Sturm et al., 2005; Prunet et al., 2006; Kiilerich et al., 2007, 2011; Alsop and Vijayan, 2008; Stolte et al., 

2008; Aluru and Vijayan, 2009; Kim et al., 2011; Alderman et al., 2012; Takahasi and Sakamoto, 2013). In 

teleosts (except zebrafish, which only has a single GR; Alsop and Vijayan, 2008), multiple glucocorticoid 

receptors (GRs) and one mineralocorticoid receptor (MR) have been reported with wide tissue distribution, 

including the liver (Vijayan et al., 2005; Aluru and Vijayan, 2009). A key role for cortisol involves 

increasing the liver capacity for gluconeogenesis, which is mediated by GR signaling (Aluru and Vijayan, 

2009).  The upregulation of phosphoenolpyruvate carboxykinase (PEPCK), a key rate-limiting step in 

gluconeogenesis, activity and gene expression has been shown in response to acute stress and/or cortisol 

treatment and this is accompanied by higher activity of enzymes involved in amino acid metabolism, 

including alanine aminotransferase (AlaAT) and aspartate aminotransferase (AspAT) (Vijayan et al., 1994, 

2003; Mommsen et al., 1999; Gravel and Vijayan, 2007; Wiseman et al. 2007; Aluru and Vijayan, 2009). 

This results is an overall increase in liver metabolic capacity during stress and leads to altered activities of 

enzymes involved in intermediary metabolism, including hexokinase (HK), glucokinase (GK), pyruvate 

kinase (PK) and lactate dehydrogenase (LDH) (Mommsen et al., 1999; Aluru and Vijayan, 2009; Wiseman 

et al., 2007; Momoda et al., 2007).  
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  Stressor-induced changes in either gluconeogenic or glycolytic capacity can provide valuable 

information on the effects of toxicants on metabolic performance (Hontela et al., 1992, 1997; Vijayan et al., 

1997a,b, 2006; Ricard et al, 1998; Tintos et al., 2006, 2007; Gravel and Vijayan 2007; Hontela and Vijayan, 

2008; Ings et al., 2011, 2012), and although Cd accumulates in the liver, its impact on liver function is 

unknown. To test this, sublethal concentrations of Cd, relevant to environmental levels that would 

accumulate within the liver, disrupt cortisol signaling and will impair the metabolic capacity of the liver. To 

test this, juvenile rainbow trout (Oncorhynchus mykiss) liver slices in vitro were exposed to 0, 250, 500 or 

1000 nM of Cd either in the presence or absence of stress levels of cortisol (100 ng/ml). These studies were 

also carried out with GR receptor antagonist mifepristone (1000 ng/ml) to confirm that the observed 

metabolic effects were indeed GR mediated.  

5.3 Materials and methods 

5.3.1 Chemicals 

 2-Phenoxyethanol, protease inhibitor cocktail, bicinchoninic acid (BCA), adenosine 5’-triphosphate 

(ATP), L-alanine, aspartic acid, 2-deoxyguanosine-5-diphosphate, α-ketoglutaric acid, lactate 

dehydrogenase, malate dehydrogenase, manganese chloride, β-nicotinamide adenine dinucleotide reduced 

disodium salt hydrate (β-NADH), phosphenolpyruvate, pyridoxal 5-phosphate, pyruvate kinase, pyruvic 

acid, sodium bicarbonate and mifepristone were purchased from Sigma-Aldrich (St.Louis, MO, USA). Cd 

(used as CdCl2) and d-glucose were purchased from Bioshop (Burlington, ON, CAN). Trizol for RNA 

extraction and DNAse were purchased from Invitrogen (Carlsbad, CA, USA) and Fermentas (Pittsburgh, 

PA, USA), respectively. ECl PlusTM chemiluminescence kit was purchased from GE Health Care (Baie 

d’Urfe, QC, CAN). RNase free water for RNA extraction, cDNA synthesis kit and Sybr green were 

purchased from Qiagen (Toronto, ON, CAN). Nitric acid, potassium chloride, sodium bicarbonate were 

purchased from Fisher Scientific (Fairlawn, NJ, USA).  

5.3.2 Fish and holding conditions 

 Juvenile rainbow trout (average body mass of 150-300 g) were purchased from Rainbow Springs 

Hatchery (Thamesford, ON, CAN) and maintained at the University of Waterloo aquatic facility. Fish were 

maintained in 2000 L tanks with a constant flow of aerated water at 13 °C, and under a 12 h light: 12 h dark 

photoperiod. Trout were acclimated for at least 3 weeks prior to experiment and were fed commercial trout 

feed (Martin Mills, Elmira, ON, CAN) to satiety once daily, 5 days a week. Experiments were approved by 
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the University of Waterloo Animal Care Protocol Review Committee and adhere to the guidelines 

established by the Canadian Council on Animal Care for the use of animals in teaching and research. 

5.3.3 Experimental protocol 

 Juvenile rainbow trout that were fasted for 24 h prior to sampling were euthanized by an overdose 

of 2-phenoxyethanol. The liver of each fish was excised and washed twice using modified Hanks media 

(NaCl (136.9 mM), KCl (5.4 mM), MgSO47H2O (0.8mM), Na2HPO47H2O (0.33 mM), KH2PO4 (0.44 

mM), HEPES (5.0 mM), HEPES Na (5.0 mM), 5mM NaHCO3 pH adjusted to 7.63) and sliced into fine 

sections (~1 µm thick and ~10 mm in diameter) using a precision cut liver slicer. The sections (weighing 

~100 mg) were then placed into 6 well plates (Sarstedt, Inc., Newton, NC, USA) containing 2 ml of L-15 

medium (Sigma-Aldrich, St Louis, MO, USA). The tissues were maintained for 2 h at 13 °C with gentle 

shaking, after which the media was removed and fresh L-15 media containing 0, 250, 500, or 1000 nM of 

Cd was added to each well. Liver slices were exposed to Cd concentrations for 1.5 h prior to the addition of 

either no cortisol (control), cortisol (100 ng/ml), mifepristone (1000 ng/ml) or a combination of cortisol and 

mifepristone. The concentration of cortisol and mifepristone used were based on previous studies in trout 

hepatocytes (Aluru and Vijayan, 2007; Ings et al., 2011) Mifepristone was added to liver slices 30 min prior 

to cortisol addition in the combination group. Liver tissue and media were sampled 24 h after exposure and 

stored frozen at -80 °C and -30 °C, respectively, until further analysis. 

5.3.4 Liver cadmium accumulation 

 Cd concentrations were measured as previously described (Playle et al., 1993a, 1993b; McGeer et 

al., 2000b). Briefly, liver samples (30-50 mg) were weighed, thawed and digested using approximately 5 

vol. of 1N TraceMetal grade HNO3 and then baked for 3 h at 80 °C. After digestion, tissues were vortexed 

for 5 sec and then centrifuged for 2 min at 10,000 rpm (Spectrafuge 16M; Labnet International, Edison, NJ, 

USA) and left to settle. The supernatant was then diluted between 10 to 100 fold with 1% acidified 

ultrapure water. Cd was measured in the resulting sample using graphite furnace atomic absorption 

spectrophotometer (GFAAS; SpectraAA 880 GTA 100 atomizer, Varian, Mississauga, ON, CAN). The 

concentration of Cd in the liver is expressed as µg/g wet weight. 

5.3.5 Media glucose analysis 

 Glucose released into L-15 media was measured enzymatically exactly as described previously 

(Bergmeyer, 1983; Birceanu, 2009). 
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5.3.6 RNA isolation and first strand cDNA synthesis 

 Total RNA from liver slices was extracted using Trizol RNA extraction reagent (Carlsbad, CA, 

USA). Briefly, 500 µl of Trizol was added to 30-50 mg of tissue. Tissues were sonicated for 

homogenization and chloroform was added to separate RNA and protein into phases. The samples were 

then spun at 12, 000 x g for 15 minutes and the aqueous phase (top layer) containing RNA was added to a 

new microcentrifuge tube. RNA was then precipitated using isopropanol and the dried pellet was 

redissolved in RNase free water.  

 RNA was then DNase treated using manufacturer’s instructions (Fermentas, Pittsburgh, PA, USA). 

Briefly, 1 µg of RNA was treated with DNase and heated at 37 °C using an Eppendorf cycler. Afterwards 

DNase treatment was stopped using EDTA and heating the sample at 65 °C for ten minutes. cDNA was 

made from DNase treated RNA using a high capacity cDNA reverse transcription kit following 

manufacturer’s instructions (Applied Biosystems, CA, USA).  

5.3.7 Primers 

 Primers were designed to amplify fragments for suppressor of cytokines 1 (SOCS1), 

phosphoenolpyruvate carboxykinase (PEPCK) and elongation factor 1 alpha (EF1α) using previously 

described sequences (Aluru & Vijayan; 2007; Philip et al., 2012). Table 1 provides primer sequences, 

amplicon size, NCBI accession number and annealing temperature. As SOCS1 and PEPCK are 

glucocorticoid-responsive genes (Vijayan et al., 2003; Philip et al., 2012), their transcript abundances were 

used as markers of liver responsiveness to cortisol treatment.  
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Table 1. Primer details. Oligonucleotide primers [forward (F) and reverse (R)] for suppressor of cytokine 

signaling 1 (SOCS1), phosphoenolpyruvate carboxykinase (PEPCK) and elongation factor 1 alpha (EF1α) 

used in quantitative real-time PCR along with their melting temperature (Tm) and amplicon size.  

PRIMER SEQUENCE Amplicon 

Size (bp) 

Accession # Tm (°C) 

SOCS1 F: TCAGCGTACGCATCGTCTAT 

R: CGGTCAGGCTTTTCTTAGAGG 

120 NM_001146166.1 60 

PEPCK F: TGCTGAGTACAAAGGCAAGG 

R: GAACCAGTTGACGTGGAAGA 

154 AF246149.1 60 

EF1α F: CATTGACAAGAGAACCATTGA 

R: CCTTCAGCTTGTCCAGCAC 

95 NM_00124339.1 56 
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5.3.8 Quantitative real-time polymerase chain reaction (qPCR) 

 qPCR was used to measure mRNA levels of SOCS1, PEPCK and EF1α (housekeeping gene) in the 

liver as previously described (Aluru & Viayan, 2008; Sandhu & Vijayan, 2011 [Chapter 3]; Philip et al., 

2012). Briefly, a master mix containing Sybr green, RNase free water and the specific primer were added to 

2 µl of sample. The samples were added to the wells of qPCR plates in triplicates. PCR was performed 

using iCycler (Bio-Rad, Hercules, CA, USA) under the following conditions: 2 min at 94 °C followed by 

40 cycles of 15 sec at 94 °C, 30 sec at desired melting temperature (Table 1), and 30 sec at 72 °C. PCR 

products were subjected to melt curve analysis to confirm presence of a single amplicon. Copy numbers of 

transcripts for each gene was determined with the threshold cycles (CT) using plasmid standard curves and 

were normalized to EF1α. EF1α transcript levels in all treatments were not variable, making it an 

appropriate housekeeping gene. Negative controls with no template were carried out for each gene 

analyzed.  

5.3.9 Protein Immunoblot 

 Liver slices for protein analysis was carried out exactly as previously described (Ings et al., 

2011a,b; Dindia et al., 2012). Briefly, protein concentration was measured using the bicinchoninic acid 

(BCA) method using bovine serum albumin as the standard. An 8% SDS-PAGE was used to determine GR 

and HSP70 protein expression in the liver in response to Cd exposure. Total protein (40 µg) was separated, 

using the discontinuous buffer system of Laemmli (1970) exactly as described before (Ings et al., 2011b; 

Dindia et al., 2012; Jeffrey et al., 2012). The separated proteins were transferred to a 0.45 µM nitrocellulose 

membrane (Bio-Rad, Hercules, CA, USA) using the Transblot® SD semi-dry electrophoretic transfer cell 

(Bio-Rad, Hercules, CA, USA) at 20 V for 25 min with a transfer buffer (25 mM Tris, pH 8.3, 192 mM 

glycine, and 10 % methanol). The membrane was blocked with 5% non-fat dry milk with 0.02% sodium 

azide made in 1 X TTBS (2 mM Tris, 300 mM NaCl, 0.1% Tween 20, pH 7.5) for 1 h at room temperature. 

The membranes were probed with polyclonal rabbit antibodies to either trout GR (1:1000 dilution; Sathiyaa 

and Vijayan, 2003; Ings et al., 2011a) for 1 h at room temperature or HSP70 (1:5000; Ings et al., 2011a) 

overnight for 18 h at 4 °C, followed by incubation with the secondary anti-rabbit horseradish peroxidase 

(HRP)-labeled secondary antibody (Bio-Rad, Hercules, CA, USA; 1:3000 dilution in 5% skim milk). 

Protein bands were detected using ECL PlusTM chemiluminescence (GE Health Care, Baie d’Urfe, QC, 

CAN) and imaged using Pharos FX Molecular Imager (Bio-Rad, Hercules, CA, USA). Equal loading was 

confirmed through incubation of membranes with Cy3TM conjugated monoclonal mouse β-actin antibody 

(Sigma-Aldrich 1:1000) for 1 h at room temperature.  
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5.3.10 Liver enzyme activity 

 Liver was homogenized in an enzyme buffer (50% glycerol, 21 mM Na2HPO4, 0.5 mM EDTA-Na, 

0.2% BSA, 5 mM β-mercaptoethanol, pH 7.5) exactly as described previously (Vijayan et al., 2006; Ings et 

al., 2011b). Enzyme activities for each sample were measured in duplicate in 50 mM imidazole buffer (pH 

7.4) at 22 °C by continuous spectrophotometry at 340 nm using a microplate reader (VersaMax; Molecular 

Devices Corp., Palo Alto, CA, USA) exactly as described before (Ings et al., 2011b; Vijayan et al. 2006). 

Enzyme activity was expressed as micromoles of substrate consumed or product liberated per minute (U) 

per gram protein. The following assay conditions were used: 

• Hexokinase (HK: EC 2.7.1.1): 1 mM glucose, 5 mM MgCl2, 10 mM KCl, 0.25 mM NADH, 2.5 

mM phosphoenolpyruvate (PEP), 5 U/mL lactate dehydrogenase (LDH) and 2.5 U/mL pyruvate 

kinase; reaction started with 1 mM ATP. 

• Glucokinase (GK: EC 2.7.1.2): 15 mM glucose, 5 mM MgCl2, 10 mM KCl, 0.25 mM NADH, 2.5 

mM phosphoenolpyruvate (PEP), 5 U/mL lactate dehydrogenase (LDH) and 2.5 U/mL pyruvate 

kinase; reaction started with 1 mM ATP. 

• Pyruvate kinase (PK: EC 2.7.1.40): 3 mM KCl, 10 mM MgCl2, 0.12 mM NADH, 2.5 mM ADP, 

20 U/mL LDH; reaction started with 2.5 mM PEP. 

• Lactate dehydrogenase (LDH: EC 1.1.1.27): 0.12 mM NADH and reaction initiated with 1 mM 

pyruvic acid. 

• Phosphoenolpyruvate carboxykinase (PEPCK: EC 4.1.1.32): 20 mM NaHCO3, 1 mM MnCl2, 

0.5 mM phosphoenolpyruvate, and 0.12 mM NADH; reaction started with 5 mM deoxyguanosine 

diphosphate.  

• Alanine aminotransferase (AlaAT: EC 2.6.1.2): 0.12 mM NADH, 200 mM l-alanine, 0.025 mM 

pyridoxal 5-phosphate, and 12 U/mL LDH; reaction started with 10.5 mM α-ketoglutarate. 

• Aspartate aminotransferase (AspAT: EC 2.6.1.1): 7 mM α-ketoglutarate, 0.025 mM pyridoxal 5-

phosphate, 0.12 mM NADH, and 8 U/mL malate dehydrogenase; reaction started with 40 mM 

aspartic acid. 

5.3.11 Statistical analysis 

 All statistical analyses were performed using SigmaPlot 11 software (Systat Software Inc., San 

Jose, CA, USA) and data are shown as mean ± standard error of mean (SEM). Cd accumulation was tested 
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using one-way repeated measures analysis of variance (ANOVA). Glucose production, mRNA and protein 

levels and enzyme activities were analyzed using two-way repeated measures ANOVA. Paired t-test was 

performed to compare cortisol stimulated mRNA levels of PEPCK and SOCS1 and GR and hsp70 protein 

expression relative to control (sham) groups. Significant differences between treatment groups were 

compared using Holm-Sidak post hoc test or Student-Newman-Keul’s test for rank comparisons. Statistics 

were performed either on raw or log- transformed data in order to meet the assumptions of normality and 

equal variance, although non-transformed data are shown in the figures. A probability level of p<0.05 was 

considered significant. 

5.4 Results 

5.4.1 Cadmium accumulation 

 A dose-dependent significant increase was observed in Cd accumulation within liver slices in 

response to 0, 250, 500 and1000 nM Cd exposure in the media over a 24 h period (Figure 1). Cd 

concentrations were measured as 0.48, 0.89 and 1.4 µg/g wet weight in tissues exposed to 250, 500 and 

1000 nM Cd, respectively, and they were significantly higher than control liver slices (0.08 µg/g protein) 

(Figure 1). 
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Figure 1. Liver Cd accumulation. Cd accumulation in liver slices treated with 0, 250, 500 or 1000 nM 

cadmium chloride. Values represented as mean ± SEM (n=6 fish). Bars with different letters are statistically 

significant (one-way repeated measured ANOVA; P<0.05).  
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5.4.2 Plasma glucose 

 No significant differences in plasma glucose were detected in liver slices treated with 250, 500 or 

1000 nM of Cd relative to control (Figure 2). In the presence of cortisol, glucose levels were elevated by 

~64% in liver slices only in the sham group and this elevation was abolished by mifepristone treatment 

(Figure 2). In the Cd groups the cortisol-induced glucose elevation observed in control liver slices 

stimulated with cortisol was completely abolished (Figure 2).  Overall, glucose levels were significantly 

lower in all the Cd treatments compared to the control liver slices (Figure 2).  

5.4.3 Transcript analysis 

 GR signaling in liver slices was confirmed by the significant increases in both PEPCK and SOCS1 

mRNA levels in control liver slices stimulated with cortisol and the absence of this response in the presence 

of mifepristone (Figure 3A,B). In the Cd liver slices treated with 1000 nM Cd, no significant difference was 

observed in either PEPCK or SOCS1 mRNA levels in the presence of cortisol (Figures 3A,B). 

5.4.4 Protein expression analysis 

Liver slices showed a dose-related inhibition in GR protein expression with significant decreases observed 

in liver slices exposed to 500 (~20% lower) or 1000 nM (~30% lower) Cd compared to the sham group 

(Figure 4A). Liver slices treated with 0 nM of Cd showed a ~30% decrease in GR protein expression when 

stimulated with cortisol; however, no significant differences were observed in GR protein expression in 

liver slices exposed to 250, 500 or 1000 nM Cd and stimulated with or without cortisol (Figure 4A).  

Overall, hsp70 protein expression was greater in unstimulated liver slices than liver slices stimulated with 

cortisol. Furthermore, an overall increase in hsp70 protein expression was observed in liver slices treated 

with 1000 nM Cd relative to control, 250 or 500 nM Cd (Figure 4B). There was no effect of cortisol on 

hsp70 expression in any of the Cd treatments (Figure 4B). 
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Figure 2. Glucose production. Glucose production in liver slices treated with 0, 250, 500 or 1000 nM 

cadmium chloride in control, 100 ng/ml cortisol, 1000 ng/ml mifepristone or a combination of cortisol and 

mifepristone groups. Values represented as mean ± SEM (n=6 fish). Bars with different letters are 

statistically significant (one way repeated measures ANOVA; P<0.05).  
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Figure 3. GR-mediated PEPCK and SOCS1 liver mRNA levels. Phosphoenolpyruvate carboxykinase 

(PEPCK) (A) and suppressor of cytokines 1 (SOCS1) (B) mRNA levels in liver slices treated with 0 or 

1000 nM cadmium chloride in control and cortisol stimulated (100 ng/ml) groups. Values represented as 

mean ± SEM (n=6 fish). * significant different from the corresponding control (Paired t-test; P<0.05). 

  



 

 134 

              

              

  

Cadmium Chloride

0nM 1000nM

Ph
os

ph
oe

no
lp

yr
uv

at
e 

ca
rb

ox
yk

in
as

e
(%

 c
on

tro
l)

0

50

100

150

200

250

300

Sham 
Cortisol 

    * A 

0                                    1000 

Cadmium Chloride (nM) 

Ph
os

ph
oe

no
lp

yr
uv

at
e 

ca
rb

ox
yk

in
as

e 
 

   
   

   
   

   
   

   
 (%

 c
on

tr
ol

) 

Control  

Cadmium Chloride

0nM 1000nM

Su
pp

re
ss

or
 o

f C
yt

ok
in

es
 1

(%
 c

on
tro

l)

0

50

100

150

200

250

300

350

Sham 
Cortisol 

     * 

B 

0                                    1000 

Cadmium Chloride (nM) 

Su
pp

re
ss

or
 o

f c
yt

ok
in

es
 1

 (%
 c

on
tr

ol
) 

  Control   



 

 135 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Glucocorticoid receptor and heat shock protein 70 liver protein expressions.  Glucocorticoid 

receptor (GR; A) and heat shock protein 70 (hsp70; B) protein expression in liver slices treated with 0, 

250,500 or 1000 nM cadmium chloride in control or cortisol stimulated (100 ng/ml) groups. Values 

represented as mean ± SEM (n=6 fish). * significant different from the corresponding control (Paired t-test; 

P<0.05);  different letters above lines represent significant differences in mRNA levels between Cd groups 

(two-way repeated measures ANOVA; P<0.05); inset represents significant differences between control and 

cortisol treatment (two-way repeated measures ANOVA; P<0.05); representative images for GR, hsp70 and 

β-actin are shown. 
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5.4.5  Enzyme activities 

 In the presence of Cd there was no significant change in hexokinase (HK) (Figure 5A), pyruvate 

kinase (Figure 5C), lactate dehydrogenase (LDH) (Figure 5A), or alanine aminotransferase (AlaAT) (Figure 

5B) compared to the control group. In the Cd groups cortisol-induced enzyme elevation was abolished. A 

treatment effect was observed in GK activity in which activity was greater in liver slices treated with 500 

and 1000 nM Cd compared to control (Figure 5B) decreased PEPCK activity occurred in 1000 nM-exposed 

liver slices compared to control. Furthermore, no significant differences in aspartate aminotransferase 

(AspAT) activity were observed in any Cd group except at 1000 nM where a ~33% decrease was observed 

(figure 6C). Cortisol treatment significantly increased the activities of HK, GK, PK, PEPCK LDH, AlaAT 

and AspAT enzyme activities in the control liver slices and these effects were abolished in the presence of 

mifepristone (Figures 5A-D, 6A, C, E). This cortisol-mediated enzyme activity changes were absent in the 

Cd treated groups (Figures 5A-D, 6B, D, F).  
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Figure 5. Liver metabolic capacity. Hexokinase (HK; A), Glucokinase (GK; B), Pyruvate Kinase (PK; C) 

and Phosphoenolpyruvate carboxykinase (PEPCK; D) enzyme activity in liver slices treated with 0, 250, 

500 or 1000 nM cadmium chloride in control, cortisol (100 ng/ml), mifepristone (1000 ng/ml) or a 

combination of cortisol and mifepristone groups. Enzyme activity is expressed as micromoles of substrate 

consumed or product liberated per minute (U) per gram protein. Values represented as mean ± SEM (n=6 

fish); bars with different letters within a Cd group is statistically different (P<0.05, one way repeated 

measures ANOVA; P<0.05); different letters above lines represent significant difference in enzyme activity 

between different Cd groups (two-way repeated measures ANOVA; P<0.05).  
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Figure 6. Liver metabolic capacity. Lactate dehydrogenase (LDH; A, B), alanine aminotransferase 

(AlaAT; C, D) and aspartate aminotransferase (AspAT; E, F) in control liver slices and liver slices treated 

with cortisol (100 ng/ml), mifepristone (1000 ng/ml) or a combination of cortisol and mifepristone (A, C, 

E) or in the presence of 0, 250, 500 or 1000 nM cadmium chloride (B, D, F). Enzyme activity is expressed 

as micromoles of substrate consumed or product liberated per minute (U) per gram protein. Values 

represent ± SEM (n=6 fish); bars with different letters are significant (repeated measures one-way 

ANOVA; P<0.05). 
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5.5 Discussion 

 From this study, we show that although exposure of liver slices to sublethal concentrations of Cd is 

not impacting liver function, there is a remarkable disruption of cortisol signaling. As expected, Cd 

accumulated within the liver slices in a dose-dependent manner. In field studies, Cd concentrations in the 

livers of fish range from 0.2 to 30 µg/g wet weight (Huguet et al., 1992; Rieberger, 1992; Jezierska and 

Witeska, 2001; Kraemer et al., 2006), suggesting that the accumulation of Cd seen in the liver slices in the 

present study were environmentally relevant.  

 The Hsp70 family is one of the most highly conserved heat shock proteins that is localized in the 

cytosol, mitochondria and endoplasmic reticulum, and is the prominent protein expressed following stressor 

exposure. The higher expression of hsp70 with Cd in the present study suggests an enhanced cellular stress 

response. The induction of Hsp70 is a common cellular stress response that is typically invoked in response 

to a variety of stressors to assist in the correct folding of nascent and stress-accumulated misfolded proteins, 

preventing protein aggregation or promoting degradation of selective misfolded or denatured 

proteins(Vijayan et al., 1997b, 1998, Ackerman and Iwama, 2001; Boone and Vijayan, 2002). As protein 

synthesis is energy demanding, the induction of hsp70 in Cd treated liver slices suggests an increase 

metabolic demand to the liver and may compromise other energy demanding pathways, especially in 

response to secondary stressor exposure (Boone and Vijayan, 2002). In both rats and fish, Hsp70 is 

associated with hepatic GR (Elez et al., 2001; Basu et al., 2003) and Cd can compete with and displace Zn 

from sulfhydryl groups, which are present in Hsp70 proteins (Wang and Rainbow 2006; Wang and Wang, 

2008), suggesting that Cd could impact the GR/Hsp70 complex to disrupt GR signaling and the assocated 

metabolic capacity of the liver. 

 Elevation of glucose, the primary energy source during response to stress, aids in many 

physiological functions and adaptations. Furthermore, elevation of glucose due to circulating 

corticosteroids is a well-documented response in teleosts (Mommsen et al., 1999; Vijayan et al., 2010) that 

is in part due to an increase in the metabolic capacity of the liver through gluconeogenesis, and to a lesser 

extent by glycogenolysis (Vijayan et al., 1994, 2003, 2010; Mommsen et al., 1999). Elevation of glucose in 

control liver slices stimulated with cortisol implies that the target tissue effects mediated through cortisol 

were functional in these slices. Also, the abolishment of this response with mifepristone confirms that the 

glucose production by cortisol involves GR signaling (Aluru and Vijayan, 2007). Interestingly, Cd 

exposures completely eliminated the cortisol-induced glucose production in liver slices which points to an 
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inhibition in the well-observed GR-mediated glucose upregulation, highlighting for the first time that the 

disruption of glucose production in the liver may occur through disruption of GR signaling.  

 There is an increasing body of evidence suggesting that the cortisol stress axis, including target 

tissue cortisol action mediated by GR, are likely the target for many contaminants, including Cd (Simons et 

al., 1990; Dundjerski et al., 2000; Levesque et al., 2002; Vijayan et al., 2005, 2010; Ings et al., 2011a,b). 

The decrease in GR protein expression in Cd treated groups leads us to propose that disruption of GR 

signaling may be involved in the abolition of cortisol responsiveness in the liver. Further confirmation of 

impaired GR signaling was evident from the absence of an increase in PEPCK (key enzyme in 

gluconeogenesis) and SOCS1 (attenuates cytokine signaling) mRNA abundance, two genes that are 

glucocorticoid-responsive in trout (Sathiyaa and Vijayan, 2003, Vijayan et al., 2003, MackKenzie et al., 

2006; Philip et al., 2012), in the presence of Cd further confirms that GR signaling is a target for Cd impact 

in trout.   

  Lack of glucose production in response to cortisol in Cd treated liver slices were further assessed 

by examination of key enzymes involved in the regulation of glucose production. Studies have shown an 

increase in activity or transcript abundance of key gluconeogenic enzymes that are regulated through 

cortisol, including phosphoenolpyruvate carboxykinase, which catalyzes the conversion of oxaloacetate to 

phosphoenolpyruvate (Wiseman et al., 2007). Upregulation of PEPCK in liver slices was observed in both 

mRNA levels and enzyme activities in control liver slices stimulated with cortisol suggesting proper 

functioning of gluconeogenesis in the liver slices. Amino acid catabolism is another important method in 

providing substrate for hepatic gluconeogenesis, and has been assessed in response to contaminant and 

stress exposure by measuring the activity of aminotransferase enzymes, including alanine and aspartate 

aminotransferase, which convert their respective amino acids into pyruvate (Vijayan et al., 1994; Gravel 

and Vijayan, 2007; Tintos et al., 2007). Furthermore enzymes involved in glycolysis, such as the rate-

limiting hexokinase (HK), pyruvate kinase (PK) as well as glucokinase (GK), have also been measured in 

response to acute stress, and have also shown to have an increased activity in both gene expression 

(Momoda et al., 2007; Wiseman et al., 2007) and enzyme activity (Gravel and Vijayan, 2007) to increase 

the energy demand associated with stressor adaptation.  As expected glucokinase, hexokinase, alanine and 

aspartate aminotransferase, along with pyruvate kinase increased in liver slices stimulated with cortisol 

suggesting an overall increase in liver metabolic capacity with cortisol (Mommsen et al., 1999; Aluru and 

Vijayan, 2009). The metabolic changes associated with elevated cortisol points to an increased tissue 

glucose production (PEPCK activity) and an increase in glucose utilization (HK and GK activity) and 
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glycolytic capacity (PK activity). Interestingly, these cortisol-mediated effects were lacking in the Cd-

treated group leading to the proposal that disruption of GR signaling by alteration in receptor expression 

may be a mechanism by which this metal impacts liver function. Increases in both hepatic and extra-hepatic 

glycolytic enzymes, such as hexokinase, pyruvate kinase and lactate dehydrogenase, have also been 

associated with acute stress and cortisol exposure, and are likely to deliver metabolic fuel required to 

manage the increased energy demand associated with stressor adaptation (Vijayan et al., 1994; Gravel and 

Vijayan, 2007). As cortisol is involved in all aspects of animal physiology, including extra-hepatic energy 

allocations, the disruption in GR signaling by Cd may have wide ranging effects on animal performances. 

 Taken together, we show that Cd accumulates within the liver in a dose-dependent manner and 

impairs the conserved glucose response to cortisol stimulation in trout liver. Glucose is a key fuel to meet 

the increase in energy demand required to cope with the stressor. The lack of cortisol-mediated 

gluconeogenic and glycolytic enzyme activities in the Cd treated fish suggests that this metal impairs 

cortisol responsiveness in the liver. Although the mechanism of action is unknown, we propose that the 

impact of Cd on liver function involves disruption of GR signaling in rainbow trout.  
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Chapter 6 
Conclusions 

6.1 Chapter conclusions 

The overall goal of this thesis was to identify and characterize the impact of sublethal and environmentally 

relevant cadmium (Cd) concentrations on the stress performances in rainbow trout (Oncorhynchus mykiss), 

as well as to investigate the mechanism of action of Cd in disrupting cortisol production and target tissue 

cortisol action. To this end, a series of controlled laboratory studies were performed and the following 

conclusions from each chapter are stated.    

1. Juvenile rainbow trout can adapt to subchronic exposure of environmentally relevant Cd 

concentrations; however, a metabolic disruption associated with an increased energy demand 

occurs within the liver and gills (Chapter 2). Cd impacts the stress performance through attenuation 

of the adaptive cortisol response to a secondary acute stressor (Chapter 2), leading to the hypothesis 

that Cd targets HPI axis functioning. 

2. Cd targets key genes involved in corticosteroidogenesis to disrupt cortisol production, and 

mechanistically, this is likely occurring at the level of melanocortin 2 receptor (MC2R) activation 

(Chapter 3). 

3. Cd exposure disrupts mineralocorticoid receptor protein expression in the brain, and possibly plays 

a role in disrupting the negative feedback cortisol regulation (Chapter 4). In the interrenal tissue, 

Cd-mediated disruption of MC2R is associated with disruption of melanocortin receptor accessory 

protein 1 (MRAP1) leading to the proposal that Cd directly targets MC2R/MRAP1 complex to 

disrupt corticosteroidogenesis (Chapter 4). 

4. Cd impacts target tissue cortisol action by disrupting glucocorticoid receptor (GR) signaling and 

may compromise the metabolic actions of this hormone during stress in fish. (Chapter 5). 

6.2 General conclusion 

 The generalized stress response is a well-conserved phenomenon amongst vertebrates. 

Upregulation of cortisol through the HPI or HPA axis is crucial to help the organism cope with the stressor, 

primarily through its role in intermediary metabolism. Taken together, these studies suggest that exposure 

of juvenile rainbow trout to sublethal concentrations of Cd leads to an overall metabolic disruption and 

impairment of the stress response (Figure 1). A major role for cortisol is to facitlitate energy reallocation by 
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altering tissue metabolic capacities to meet the increased energy demand associated with stress. Disruption 

of this highly conserved adaptive stress response may compromise the reestablishment of homeostasis. 

  From a biological standpoint, the changes observed in both the metabolic capacity and stress 

response in juvenile rainbow trout may have ramifications that go beyond what was measured in these 

studies since cortisol also plays an important role in other processes, including growth, reproduction 

osmoregulation and immune function. These physiological changes could result in alterations in fish 

behaviours and ultimately result in reduced population sizes and an inability to adapt and survive exposure 

to multiple stressors, ultimately affecting fitness. From an ecological standpoint, changes at the biological 

level could alter ecological systems including nutrient cycling, vegetation, productivity, trophic 

interactions, and biodiversity (Hilderbrand et al., 2004; McIntyre et al., 2007).  In North America, 

salmonids are commercially valuables as they are greatly consumed by humans and also support 

recreational fishing activities (Guido, 2011). Therefore, disruption of the stress response due to waterborne 

Cd exposure could result in a decrease in commercially available salmonids, resulting in an economic loss.   

 Toxicity of heavy metals as well as other pollutants in the aquatic environment is rapidly becoming 

an important field. Waterborne Cd exposure can result in metabolic changes as well as the inability to 

escape a predator and also reduce reproductive capacity implying the importance to water managers in 

regulating Cd concentrations. Although a lot of preliminary work has been done to assess the impact of 

toxicants on endocrine disruption, for most, the mechanism of action is unknown. From our studies, we can 

conclude that environmentally relevant concentrations of Cd impairs the melanocortin 2 receptor activation 

and, thereby, inhibits corticosteroidogenesis (Figure 1). Our results suggest that Cd is downregulating 

MC2R activation by impact the melanocortin receptor accessory protein, specifically, MRAP1 (Figure 1), 

but the mechanism by which Cd target MRAP1 and/or MC2R activation remains to be determined.  

 

 

  



 

 147 

Figure 1. Schematic diagram of Cd-mediated cortisol disruption of the stress response in rainbow trout 

from each research chapter. Green arrows represent a typical stress response as outlined in chapter 1 

(introduction), whereas red arrows show sites of Cd-mediated disruption as outlined in data chapters 

(chapters 2-5). Within chapter 2, a Cd-mediated disruption was observed in liver glycogen, glycolysis and 

glucocorticoid receptors in vivo along with glycolytic disruption in the gill and alterations in steroidogenic 

genes in the head kidney (chapter 2). Further disruption was observed in cortisol, glucose and lactate in 

response to a secondary stressor. Within chapter 3, Cd exposure in vitro disrupted ACTH-mediated cortisol 

production, and further disruption was observed in various corticoisteroidogenic genes including MC2R, 

StAR and P450scc. Within chapter 4, Cd-mediated disruption was observed in brain mineralocorticoid 

receptors in vivo and a further disruption was observed in plasma cortisol and ACTH levels in response to a 

secondary stressor. Further analysis showed a disruption in MC2R and MRAP1 mRNA levels both in vivo 

and ex vivo. Finally in chapter 5, disruption of target tissue responses, specifically glycolysis and 

gluconeogenesis were observed in the liver suggesting that Cd is impacting cortisol signaling through 

downregulation of the glucocorticoid receptor.  

 (Abbreviations: Cd – Cadmium, SC – superior collicus, HB – hindbrain, MB – midbrain, OT – optic 

tectum, PO – preooptic area, H – hypothalamus, P – pituitary, T – telencephalon, ON – optic nerve, OB – 

olfactory bulb, ACTH – adrenocorticotropin hormone, MC2R – melanocortin 2 receptor, MRAP1 – 

melanocortin receptor accessory protein 1, ATP – adenosine triphosphate, StAR – steroidogenic acute 

regulatory protein, P450scc – cytochrome P450 side chain cleavage enzyme, 3β – HSD – 3-beta-

hydroxysteroid dehydrogenase).  
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