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Abstract

Transmitting quantum information across quantum channels is an important task. However

quantum information is delicate, and is easily corrupted. We address the task of protecting

quantum information from an information theoretic perspective – we encode some message

qudits into a quantum code, send the encoded quantum information across the noisy

quantum channel, then recover the message qudits by decoding. In this dissertation, we

discuss the coding problem from several perspectives.

The noisy quantum channel is one of the central aspects of the quantum coding problem,

and hence quantifying the noisy quantum channel from the physical model is an important

problem. We work with an explicit physical model – a pair of initially decoupled quantum

harmonic oscillators interacting with a spring-like coupling, where the bath oscillator

is initially in a thermal-like state. In particular, we treat the completely positive and

trace preserving map on the system as a quantum channel, and study the truncation of

the channel by truncating its Kraus set. We thereby derive the matrix elements of the

Choi-Jamiolkowski operator of the corresponding truncated channel, which are truncated

transition amplitudes. Finally, we give a computable approximation for these truncated

transition amplitudes with explicit error bounds, and perform a case study of the oscillators

in the off-resonant and weakly-coupled regime numerically.

In the context of truncated noisy channels, we revisit the notion of approximate error

correction of finite dimension codes. We derive a computationally simple lower bound on

the worst case entanglement fidelity of a quantum code, when the truncated recovery map

of Leung et. al. is rescaled. As an application, we apply our bound to construct a family

of multi-error correcting amplitude damping codes that are permutation-invariant. This

demonstrates an explicit example where the specific structure of the noisy channel allows

code design out of the stabilizer formalism via purely algebraic means.

We study lower bounds on the quantum capacity of adversarial channels, where we

restrict the selection of quantum codes to the set of concatenated quantum codes. The

adversarial channel is a quantum channel where an adversary corrupts a fixed fraction

of qudits sent across a quantum channel in the most malicious way possible. The best
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known rates of communicating over adversarial channels are given by the quantum Gilbert-

Varshamov (GV) bound, that is known to be attainable with random quantum codes. We

generalize the classical result of Thommesen to the quantum case, thereby demonstrating

the existence of concatenated quantum codes that can asymptotically attain the quantum

GV bound. The outer codes are quantum generalized Reed-Solomon codes, and the inner

codes are random independently chosen stabilizer codes, where the rates of the inner and

outer codes lie in a specified feasible region.

We next study upper bounds on the quantum capacity of some low dimension quantum

channels. The quantum capacity of a quantum channel is the maximum rate at which

quantum information can be transmitted reliably across it, given arbitrarily many uses of

it. While it is known that random quantum codes can be used to attain the quantum

capacity, the quantum capacity of many classes of channels is undetermined, even for

channels of low input and output dimension. For example, depolarizing channels are

important quantum channels, but do not have tight numerical bounds. We obtain upper

bounds on the quantum capacity of some unital and non-unital channels – two-qubit Pauli

channels, two-qubit depolarizing channels, two-qubit locally symmetric channels, shifted

qubit depolarizing channels, and shifted two-qubit Pauli channels – using the coherent

information of some degradable channels. We use the notion of twirling quantum channels,

and Smith and Smolin’s method of constructing degradable extensions of quantum channels

extensively. The degradable channels we introduce, study and use are two-qubit amplitude

damping channels. Exploiting the notion of covariant quantum channels, we give sufficient

conditions for the quantum capacity of a degradable channel to be the optimal value

of a concave program with linear constraints, and show that our two-qubit degradable

amplitude damping channels have this property.
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Chapter 1

Introduction

1.1 Motivation

The central object of this thesis is the quantum channel, which is a map from quantum

states to quantum states. Quantum channels are building blocks of quantum computers

and quantum networks. There are many explicit examples where the abstract notion of

the quantum channel can be applied. For example, the perfect storage and transport of

quantum information can also both be modeled using the trivial quantum channel, which

is the identity map. Storage of quantum information necessarily occurs when there is

idle time in the quantum information processing task, and quantum transport necessarily

occurs when we have to move quantum information from one location to another.

However in most practical situations, quantum channels are noisy. Quantum infor-

mation once exposed to the environment, often decoheres. The type of decoherence

the quantum information undergoes determines the form of the noisy quantum channel.

In a quantum cryptographic setting, an eavesdropper can eavesdrop on the quantum

information that is transmitted between two parties, thereby introducing quantum noise

into the communication channel. Even if the eavesdropper does not exist, two parties that

are communicating quantum information may assume that their quantum channel belongs

1



to a family of quantum channels, and then concoct strategies to protect their quantum

information against all quantum channels from that family.

Hence we consider the canonical problem of quantum coding, where Alice wants to send

quantum information to Bob over a noisy quantum channel. Alice’s goal is to maximize her

rate of transmitting quantum information reliably to Bob, given arbitrarily many identical

uses of the noisy quantum channel. This rate is known as the quantum capacity, and is the

direct quantum analog of the Shannon capacity. The advent of quantum information theory

addressing the possibility of dealing with quantum channels and quantum information has

greatly deepened our understanding on the limits of how one might harness the additional

power that quantum mechanics offers us.

Unlike the classical setting however, the evaluation of the quantum capacity is an opti-

mization problem of potentially unbounded dimensions, and the exact quantum capacity of

even many low dimension quantum channels remains unknown. A notable example is the

depolarizing channel which replaces the channel’s input with the maximally mixed state

with some probability, where tight bounds on its quantum capacity are still not available.

Hence there is a need to obtain upper and lower bounds of the quantum capacity.

In a practical setting, determining the quantum capacity is even harder, because we

often do not have precise knowledge of the exact form of the noisy quantum channel

corrupting our quantum information. Evaluation of the transition amplitudes of a quantum

channel in a specified basis is non-trivial, even for simple physical models. Thus, the

optimization of quantum error correction procedures with respect to physical noise models

that are not fully quantifiable is a problem.

These difficulties motivate the work of this thesis. In the first part of the thesis, we study

the quantum dynamics of the simplest textbook model, the coupled harmonic oscillator,

with the goal of approximating the dynamics on one of the quantum harmonic oscillators

with error bounds. In particular, we discuss the utility of truncating a quantum channel

to get a quantum operation. We also show how approximate knowledge of the truncated

channel can give us worst case bounds on the performance of quantum error correction.

In the second part of the thesis, we study upper and lower bounds on the quantum
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capacity of various quantum channels. Adversarial quantum channels are those for which

an adversary is permitted to corrupt a fixed fraction of blocks of quantum information in the

worst way possible. We study the lower bounds of the quantum capacity of the adversarial

quantum channels using concatenated codes. We also study upper bounds on quantum

capacities of some low dimension quantum channels using the coherent information of

other quantum channels.

1.2 Outline of the thesis

The original contributions of this thesis have two parts, each related to the different aspects

of the problem of reliable transmission of quantum information across noisy quantum

channels. The first part is about truncated quantum channels, and the second part is

about upper and lower bounds on the quantum capacities of various channels.

In Chapter 2, we address the problem of quantifying the quantum channel in the

coupled harmonic oscillator situation, where one harmonic oscillator defined to be the

quantum system, couples through a spring-like interaction term to the environment –

another harmonic oscillator in a thermal-like state. In doing so, we investigate the validity

of this physical toy-model in accounting for the amplitude damping phenomenon.

In particular, we analyze the dynamics of our coupled harmonic oscillators by treating

the completely positive and trace preserving map on the system as a quantum channel.

We truncate the channel by truncating its Kraus set, and derive the matrix elements of

the Choi-Jamiolkowski operator of the corresponding truncated channel, which are trun-

cated transition amplitudes. These truncated transition amplitudes quantify the typical

transitions of the physical model. We approximate the truncated transition amplitudes as

weighted sums of computable integrals with convergent error bounds. We next numerically

evaluate the approximate truncated transition amplitudes to study the behavior of off-

resonant and weakly-coupled harmonic oscillators.

The numerical approximation of our truncated channel is also useful from the perspec-

tive of quantum error correction, because specialized recovery operations can be construct-
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ed even with knowledge of just approximations to the truncated channel. In Chapter 3,

we study the notion of approximate error correction of finite dimension codes with respect

to approximations of truncated quantum channels. We use the rescaled recovery map of

Leung et al. to obtain a lower bound on the entanglement fidelity of a quantum code, given

the truncated Kraus set of the noisy channel. This extends the Leung et al. result to the

case where the set of Leung et al. code projectors are not orthogonal. As a consequence,

we obtain worst case bounds on the entanglement fidelity of quantum codes with respect

to channels with given approximate truncated representations.

In Chapter 4, we study the achievable performance of concatenated codes under blocks

of quantum channels where a fixed fraction of the blocks are adversarially corrupted. The

best known achievable rate at which information can be sent across these adversarially

corrupted quantum qudit channels of dimension less than seven is known as the quan-

tum Gilbert-Varshamov (GV) bound, and is a lower bound on the quantum capacity of

adversarial quantum channels. While the quantum GV bound is known to be achievable

using random codes, random codes have little structure. We generalize the classical result

of Thommesen [Tho83] to the quantum case, demonstrating the existence of concatenated

quantum codes that can asymptotically attain the quantum GV bound. The outer codes are

quantum generalized Reed-Solomon codes, and the inner codes are random independently

chosen stabilizer codes, where the rates of the inner and outer codes lie in a specified

feasible region. The advantage of our construction is that the concatenated structure of

our code construction leads to a speed-up in decoding time of our concatenated codes as

compared to the decoding time of random codes.

In Chapter 5, we generalize the technical results of Smith and Smolin [SS08] pertaining

to the use of degradable extensions to obtain upper bounds on the quantum capacity

of channels in terms of the coherent information of other channels. Finite dimension

degradable channels have quantum capacities that equal to the maximum value of their

coherent informations optimized over their bounded domain, and are hence tractable to

evaluate (see equation (18) of [DS05]). We extend Smith and Smolin’s procedure to show

that the quantum capacity of channel twirled over a particular unitary group is at most

its coherent information of maximized over a strict subset of the entire state space, where
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this subset is the image of a channel that conjugates input states with unitaries uniformly

at random from the chosen unitary group. Smith and Smolin’s recipe is produced as a

special case of our extension when the projective commutative unitary group is chosen

to be the qubit Clifford group, where they provided an upper bound of the quantum

capacity of the qubit depolarizing channel that was the coherent information of the qubit

amplitude damping channel evaluated on the maximally mixed state. A consequence of

our generalization is that degradable channels that are covariant with respect to diagonal

Pauli matrices have quantum capacities that are their coherent information maximized

over just the diagonal input states, which is just the maximization of a concave objective

function subject to linear constraints.

As an application, we supply new upper bounds on the quantum capacity of some unital

and non-unital channels – m-qubit depolarizing channels, two-qubit locally symmetric

Pauli channels, and shifted qubit depolarizing channels. The main ingredients that we

introduce to obtain these new upper bounds are our higher dimension amplitude damping

channels that are degradable. These higher dimension amplitude damping channels are

generalizations of the qubit amplitude damping channels.
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Part I

Truncated quantum channels
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Chapter 2

Truncated Quantum Channel

Representations for Coupled

Harmonic Oscillators

2.1 Introduction

One of the canonical physical models in quantum physics is that of quantum oscillators

coupled with harmonic baths. The dynamics of such models and their variations has

been extensively studied, using various techniques [FKM65, RLL67, EKN68, BBW73,

Dav73, MH86, NRSS09, YUKG88, HPZ92, CYH08, MG12]. These techniques include

Markovian master equations [Dav74], quantum stochastic processes and quantum Langevin

equations [Dav69, Dav70, Dav71, FKM65, BK81, FLO88], Kossakowski-Lindblad equations

[Kos72, Lin76], methods in density-functional theory [Par94], the standard techniques of

perturbation theory, as well as many others [KK83, LCD+87].

Quantum channels [NC00] can be used to quantify the dynamics of a quantum sys-

tem. There are at least two important representations of quantum channels – the Kraus

representation [NC00] and the Choi-Jamiolkowski representation [Cho75]. Both of these

representations fully describe the dynamics of quantum systems. The matrix elements
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of the Choi-Jamiolkowski operator quantify the probability amplitude that a specified

matrix element of the input state’s density operator contributes to another specified matrix

element of the output state’s density operator, and hence can be interpreted as transition

amplitudes. In this chapter, we approximate the truncated transition amplitudes of a given

channel, where the truncation is performed with respect to the quantum channel’s set of

Kraus operators. hilA truncated quantum channel quantifies the partial dynamics acting

on the system, and its knowledge has utility – lower bounds on the performance of quantum

error correction codes with its knowledge [LNCY97, BK02, FSW08, KSL08, BG09, Tys10,

BO10, BO11, Ouy].

In this chapter, we work towards quantifying the approximate dynamics of a pair of

initially decoupled quantum harmonic oscillators interacting with a spring-like coupling,

where the bath oscillator is initially in a thermal-like state. We work with a truncated

subset of the model’s Kraus operators, and thereby approximate its truncated transition

amplitudes, which are matrix elements of the Choi-Jamiolkowski operator of the truncated

quantum channel. We note that the Kraus operators of oscillator-bath models have also

been approximated by various authors [MH86, CLY97, LOMI04]. Recently, Holevo also

gave a formal exact expression for the Choi-Jamiolkowski operator for Gaussian channels

[Hol11], which describes the dynamics of coupled oscillators. Our contributions in this

chapter, are the explicit upper bounds on the approximation error of the truncated transi-

tion amplitudes of two quantum harmonic oscillators coupled via a spring-like interaction,

where the approximation is an explicit summation of a finite number of computable terms.

Our results can be used to explicitly study this toy model with rigorous error bounds. In

particular, we numerically demonstrate and provide lower bounds for the leakage error,

and show how this leakage error is mitigated via quantum error correction.

The organization of the chapter is as follows. In Section 2.2, we introduce the pre-

liminary material needed for this chapter. In particular, we review notions related to the

L2(R) Hilbert space, quantum states, quantum channels, Hermite functions, and the linear

canonical transformations for the quantum harmonic oscillator. In Section 2.3, we give a

treatment of the truncated dynamics of two quantum harmonic oscillators interacting with

a spring-like coupling, and give explicit bounds on the error term induced by approximating
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the truncated transition amplitudes with a finite sum in Theorem 2.3.1. In Section 2.4 we

give bounds on Hermite functions that are needed for the proof of Theorem 2.3.1. Finally

we apply our results explicitly in Section 2.5 in the case where the oscillators are off-

resonant and weakly coupled.

2.2 Preliminaries

In this section, we review the theory of L2(R) Hilbert spaces, quantum states and various

representations of quantum channels, Hermite polynomials and functions, and coupled

harmonic oscillators.

2.2.1 The L2(R) Hilbert spaces

The theory of quantum mechanics builds upon the formalism of Hilbert spaces, where the

dimensions of these Hilbert spaces are typically infinite in physically realistic scenarios.

Hilbert spaces are complex inner product spaces for which the induced norm is complete.

A separable space is one that admits a countable dense subset, and we restrict our attention

to separable Hilbert spaces [RS72, NNB75], because Hilbert spaces are separable if and

only if they admit countable bases, and countable bases are convenient to work with.

The infinite dimension Hilbert space that we work with in this chapter is the space

L2(S) of square-integrable functions with respect to the Lebesgue measure over the set

S ⊆ R. While this chapter focuses on the case when the set S is the real line R, other

choices of S such as the unit interval may be more appropriate, depending on the physical

model at hand. Examples of countable bases of L2(R) and L2([0, 1]) are the set of Hermite

functions given in (2.2.11) and the set of sinusoidal functions {sinnπx : x ∈ [0, 1]}n∈N
respectively. We use the Dirac’s ‘ket’ |fH〉 to denote a function f in the Hilbert space,

and is typically called a ‘wavefunction’ in physics nonmenclature. We denote a generic

countable basis of a separable Hilbert space H as {|jH〉}j∈N ⊂ H.

9



In this chapter, we often work with tensor products of Hilbert spaces, and hence we

use the notation |fH, gK〉 and |fH〉|gK〉 to denote |fH〉 ⊗ |gK〉. We will drop the explicit

Hilbert space label on our ‘kets’ when the label is clear from the context. For Hilbert

spaces H and K, let L(H,K) denote the set of linear operators mapping H to K, and let

L(H) := L(H,H). Let B(H,K) denote the set of bounded operators in L(H,K).

It is convenient to use the language of sesquilinear forms on an L2(R) Hilbert space as

opposed to the language of linear operators. We believe that the formalism of sesquilinear

forms is a natural one to elucidate some of the intricacies of the functional analysis of

unbounded operators that we will often encounter in the context of the physics of quantum

harmonic oscillators.

A sesquilinear form on a Hilbert space H is a map H × H → C that is linear in one

argument and conjugate-linear in the other. Using the Dirac notation, the inner product on

a Hilbert space L2(R) is a sesquilinear form that maps the function pair (f, g) to the Dirac

bra-ket 〈f |g〉H :=
∫
R
f(x)∗g(x)dx ∈ C. From this definition of the inner product, it is clear

that 〈f |g〉 = 〈g|f〉∗. We interpret the argument x of our functions in our L2(R) function

space as a ‘position coordinate’. Physically, the functions f and g are wavefunctions with

wave amplitudes f(x) and g(x) at position x ∈ R. We often use the Dirac notation

H =
∑
j,k∈N

hj,k|j〉〈k| (2.2.1)

to denote a sesquilinear form that maps the function pair (f, g) to∑
j,k∈N

hj,k〈f |j〉〈k|g〉, (2.2.2)

where {|j〉}j∈N denotes an orthonormal countable basis of H and hj,k ∈ C. However there

might exist function pairs (f, g) for which the expression (2.2.2) is undefined, especially

when |hj,k| is unbounded with respect to j and k. This motivates the definition of Γ(H),

the graph of a sesquilinear form H, which is the set of function pairs (f, g) for which

〈f |H|g〉 is defined. We say that a sesquilinear form H is densely defined on H×H if Γ(H)

is a dense subset of H×H. When referring to sesquilinear forms, we adopt the convention

10



where we implicitly refer to the graph on which these sesquilinear forms are defined.

Now let H = L2(R). The physicist’s position and momentum operators x̂H and p̂H

are sesquilinear forms that map the function pair (f, g) ∈ H × H to 〈fH|x̂H|gH〉 :=∫
R
f(x)∗xg(x)dx and 〈fH|p̂H|gH〉 :=

∫
R
f(x)∗ ~∂

i∂x
g(x)dx respectively. We define the Her-

mitian sesquilinear forms x̂†H and p̂†H to map the function pair (f, g) to 〈f |x̂†|g〉 = 〈g|x̂|f〉∗

and 〈f |p̂†|g〉 = 〈g|p̂|f〉∗ respectively. If h is a univariate power series defined on a real

line (not necessarily in L2(R)), we define the sesquilinear forms h(x̂) and h(p̂) to map

the function pair (f, g) to
∫
R
f(x)∗h(x)g(x)dx and

∫
R
f(x)∗h(~

i
∂
∂x

)g(x)dx respectively if

they exist. The reduced Planck constant ~ makes an appearance in the definition of our

momentum operator because we will work in SI units and thereby not make the assumption

that ~ = 1.

We now give an example of a sesquilinear function that is not everywhere defined.

Consider the sesquilinear form (x̂)2 which is proportional to the potential energy term in

the Hamiltonian of a quantum harmonic oscillator and the function f(x) = 1√
x2+1

. Note

that while 〈f |f〉 = π which implies that f ∈ L2(R), the integral 〈f |(x̂)2|f〉 is undefined.

Intuitively, this is because the function f does not have tails that decay rapidly enough

with respect to the sesquilinear form (x̂)2. Now we denote {|j〉}j∈N as the basis of Hermite

functions, and let |ψ〉 =
∑

j∈N aj|j〉 and |φ〉 =
∑

j∈N bj|j〉 where
∑

j∈N |aj|2 < ∞ and∑
j∈N |bj|2 < ∞. Then 〈ψ|f(x̂) + g(p̂)|φ〉 is always defined for all polynomial functions f

and g, because of the exponentially decaying tails of Hermite functions. In this sense, the

sesquilinear form f(x̂) + g(p̂) is densely defined on H × H (but not everywhere defined

in general). If H = f(x̂) + g(p̂) is the Hamiltonian of our physical system, then Γ(H)

describes the set of ‘physical’ input and output states.

Following the Dirac notation, we denote the map of a general sesquilinear form H on

the function pair (f, g) ∈ H × H as 〈f |H|g〉. Given a sesquilinear form H on H × H, if

there exists some countable basis {|jH〉}j∈N ⊂ H and complex sequence {λj}j∈N such that

for every j, k ∈ N, we have

〈j|H|k〉 = δj,kλj, (2.2.3)
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then we say that H has a countable spectrum {λj}j∈N. Examples of sesquilinear forms

that do not admit countable spectra include the position and the momentum operator.

If the Hamiltonian H of a quantum system admits a countable spectrum and satisfies

(2.2.3), we say that λj is its j-th energy eigenvalue with |j〉 being the corresponding energy

eigenfunction.

2.2.2 Quantum states and channels

We refer the reader to [NC00] for an introduction to quantum states and channels. Define

the set of quantum states on Hilbert space H to be D(H), the set of all positive semi-

definite and trace one operators in B(H). When ρ ∈ D(H ⊗ K), we denote the partial

trace of ρ on Hilbert space H as TrH(ρ) :=
∑

j〈jH|ρ|jH〉.

A quantum channel Φ : L(H) → L(K) is a completely positive and trace-preserving

(CPT) linear map, and its non-unique Kraus representation is [HK69, HK70, Kra83]

Φ(ρ) =
∑
K∈K

KρK†,

where K ⊂ B(K,H) is called the Kraus set of Φ and the Kraus operators in the Kraus set

satisfy the completeness relation ∑
K∈K

K†K = 1H.

Note that in a universe with an underlying Hamiltonian that admits a countable spectrum,

the Kraus set K is countable, because the unitary operation describing the dynamics of

the universe can be written in the form of (2.2.3). We denote the basis-dependent matrix

elements of the Kraus operators by Kj,j′ so that for all K ∈ K,

K =
∑
j,j′

Kj,j′ |j′K〉〈jH|.
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We define the transition amplitudes of Φ with respect to the Kraus set K to be

T
(a,b)→(a′,b′)
K :=

∑
K∈K

Kb,b′K
∗
a,a′ , (2.2.4)

a sum of the product of two Kraus operators over the entire Kraus set. Now let ρ ∈ D(H)

and Φ(ρ) ∈ D(K) have the decompositions

ρ =
∑
a,b

ρa,b|bH〉〈aH|, Φ(ρ) =
∑
a′,b′

ρ′a′,b′ |b′K〉〈a′K|

so that in the Kraus representation,

〈b′K|Φ(ρ)|a′K〉 = 〈b′K|
∑
K∈K

KρK†|a′K〉

=〈b′K|
∑
K∈K

∑
j,j′

Kj,j′|j′K〉〈jH|
∑
a,b

ρa,b|bH〉〈aH|
∑
k,k′

K∗k,k′|kH〉〈k′K|a′K〉

=
∑
K∈K

∑
j,j′

∑
a,b

∑
k,k′

Kj,j′K
∗
k,k′ρa,b〈b′|j′〉K〈j|b〉H〈a|k〉H〈k′|a′〉K

=
∑
a,b∈N

(∑
K∈K

Kb,b′K
∗
a,a′

)
ρa,b =

∑
a,b∈N

T
(a,b)→(a′,b′)
Φ,K ρa,b. (2.2.5)

Hence T
(a,b)→(a′,b′)
K quantifies the transition amplitudes of 〈bH|ρ|aH〉 to 〈b′K|Φ(ρ)|a′K〉. In

this chapter, we focus on the Choi-Jamiolkowski (CJ) representation of a channel. Define

the stacking isomorphism |·〉〉 : L(H,K)→ K⊗H to be a linear map such that

|
∑
i,j

ai,j|iK〉〈jH|〉〉 :=
∑
i,j

ai,j|iK〉|jH〉.

Then the CJ operator of the channel Φ with Kraus set K is the linear operator XΦ ∈
L(K,H) where

XΦ :=
∑
K∈K

|K〉〉〈〈K| =
∑
j,j′

∑
k,k′

(∑
K∈K

Kj,j′K
∗
k,k′

)
|jK, j′H〉〈kK, k′H|. (2.2.6)
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The CPT conditions for channel Φ in the CJ representation are that XΦ is positive

semidefinite and has a trace of one. Knowledge of the CJ operator XΦ enables us to

evaluate the image of Φ because

〈b′K|TrH(XΦ(1K ⊗ ρT ))|a′K〉 = 〈b′K|
∑
K∈K

TrH(|K〉〉〈〈K|ρT )|a′K〉

=
∑
j,j′

∑
k,k′

∑
a,b

(∑
K∈K

Kj,j′K
∗
k,k′

)
ρa,b〈b′K, bH| (|j′K, jH〉〈k′K, kH|) |a′K, aH〉

=
∑
a,b

(∑
K∈K

Kb,b′K
∗
a,a′

)
ρa,b =

∑
a,b∈N

T
(a,b)→(a′,b′)
Φ,K ρa,b. (2.2.7)

The equivalence of (2.2.5) and (2.2.7) implies that

Φ(ρ) = TrH(XΦ(1K ⊗ ρT )) =
∑
K∈K

KρK†. (2.2.8)

The matrix elements of XΦ are also transition amplitudes, in the sense that

T
(a,b)→(a′,b′)
K = 〈b′K, bH|XΦ|a′K, aH〉. (2.2.9)

Now define the transition operator corresponding to the Kraus set K to be TK : H⊗H →
K⊗K where

TK :=
∑

a,b,a′,b′

T
(a,b)→(a′,b′)
K |a′H, b′H〉〈aK, bK|.

Then the stacking isomorphsim |·〉〉 and the transition operator are related by the equation

TK|ρ〉〉 = |Φ(ρ)〉〉. (2.2.10)

For the purpose of quantum information processing, it may not be necessary to work

with the full Kraus set K. In this chapter, we instead restrict our attention to the

truncated Kraus set Ω, which is some appropriately chosen subset of the full Kraus

set. This truncation procedure approximates the channel well if the truncated Kraus
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effects are ‘atypical’. For the purpose of quantum error correction, partial knowledge of

the channel is already of great utility, and recovery channels can be constructed based on

this partial information to give lower bounds on the entanglement fidelity of specifically

chosen quantum codes. Hence in this chapter, the truncated transition amplitudes

T
(a,b)→(a′,b′)
Ω play a central role in quantifying the truncated dynamics of the channel Φ.

2.2.3 Hermite polynomials and functions

The energy eigenfunctions of the Hamiltonian of a quantum harmonic oscillator are Hermite

functions, and hence arise naturally in the study of coupled ensembles of quantum har-

monic oscillators. Hermite functions are products of Hermite polynomials with a gaussian

function, and form a basis for the L2(R) function space. For n ∈ N, define the Hermite

polynomials Hn(x) and the Hermite functions ψn(x) to be

Hn(x) := (−1)nex
2 dn

dxn
e−x

2

, ψn(x) :=
e−

1
2
x2
Hn(x)√

2nn!
√
π
. (2.2.11)

For example, H0(x) = 1 and H1(x) = 2x. Here, we have used the physicist’s convention

for the Hermite functions, as opposed to the probabilist’s convention. The properties of

the Hermite polynomials and functions have been extensively studied, and a reference to

more of their properties can be found in [AS64]. For c > 0, also define the rescaled Hermite

function to be

ψn,c(x) = 〈x̃H|ψn,c,H〉 :=
√
cψn(cx). (2.2.12)

When the rescaling constant c is chosen as an appropriate function of the mass and resonant

frequency of our quantum harmonic oscillator, the rescaled Hermite function ψn,c(x) is the

n-th energy eigenfunction of the corresponding quantum harmonic oscillator’s Hamiltonian.

We often have to deal with infinite sums involving Hermite functions, and Mehler’s

formula gives a closed form expression for one such sum. As stated by Watson [Wat33],
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Mehler’s formula applies in the case when |z| < 1 and z is real, that is

∞∑
n=0

znψn(x)ψn(y) =
1√

π(1− z2)
exp

[
4xyz − (x2 + y2)(1 + z2)

2(1− z2)

]
. (2.2.13)

Mehler’s formula also holds for all complex numbers |z| < 1, with the series converging

uniformly and absolutely [Theorem 23.1 [Won98]]. However when |z| = 1 the sum is

undefined, which makes evaluating the truncated transition amplitudes of our toy model

as a closed form expression quite intractable.

2.2.4 A pair of harmonic oscillators and their linear canonical

transformations

The classical model

The classical Hamiltonian H(p,q, t) of a physical system quantifies the amount of its total

energy, and is a function of its generalized coordinates q, generalized momentum p, and

time t. The power of the Hamiltonian formalism in classical mechanics is demonstrated

from the ease at which one can derive the corresponding equations of motion of the physical

system from the classical Hamiltonian. We introduce notation related to the classical

harmonic oscillator, with the goal of reviewing its corresponding quantum description.

The interested reader may refer to [Sha94] for an introduction to the quantum harmonic

oscillator where the Hamiltonian formalism is used.

Define the classical Hamiltonian of a classical harmonic oscillator with mass m, resonant

frequency ω, position coordinate x and momentum coordinate p to be

Hm,ω;x,p :=
p2

2m
+

1

2
mω2x2. (2.2.14)

The model we study has the classical Hamiltonian

H = Hmx,ωx,o;x,px +Hmy,ωy,o;y,py +Hint,o.

16



where Hint,o := 1
2
k(x − y)2 is the classical Hamiltonian representing the spring-like inter-

action between the oscillators where k ≥ 0. The spring-like interaction Hint,o introduces

quadratic terms kx2

2
and ky2

2
into H, effectively renormalizing the oscillator frequencies

from ωx,o and ωy,o to ωx :=
√
ω2

x,o + k
mx

and ωy :=
√
ω2

y,o + k
my

respectively. Hence when

Hint := −kxy,

H = Hmx,ωx;x,px +Hmy,ωy;y,py +Hint. (2.2.15)

In an experimental setup, it may be impossible to turn off the interaction between the

two oscillators. Then the physically measured oscillator frequencies correspond to the

renormalized frequencies. Therefore, we work with the renormalized representation of the

model Hamiltonian given by (2.2.15).

The quantized model

Define the Hamiltonian of a quantum harmonic oscillator with associated Hilbert space H,

mass M > 0, resonant frequency ω > 0, position operator x̂H and momentum operator p̂H

to be

HM,ω;x̂H,p̂H :=
p̂2
H

2M
+

1

2
Mω2x̂2

H. (2.2.16)

The set of rescaled Hermite functions {|ψ
n,
√

Mω
~ ,H〉}n∈N is the set of energy eigenfunctions

of the Hamiltonian H(M,ω;x̂H,p̂H). Let the Hilbert space of the first and second oscillators

be X and Y respectively, both isomorphic to L2(R). Define x̂ := x̂X ⊗ 1Y , ŷ := 1X ⊗ x̂Y ,

p̂x := p̂X ⊗ 1Y and p̂y := 1X ⊗ p̂Y . Then the quantized model Hamiltonian (2.2.15) is

H = Hmx,ωx;x̂X ,p̂X ⊗ 1Y + 1X ⊗Hmy,ωy;x̂Y ,p̂Y + Hint

= Hmx,ωx;x̂,p̂x + Hmy,ωy;ŷ,p̂y + Hint (2.2.17)

where Hint := −kx̂ŷ is the quantized interaction.

The coupled quantum harmonic oscillators can be decoupled by a linear canonical
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transformation of the oscillator positions and momenta [JMM11]. Define the rotation

matrix, the rotation angle, and the rescaled mass by

R :=

(
cos θ sin θ

− sin θ cos θ

)
, θ :=

1

2
tan−1

(
2k/m

ω2
y − ω2

x

)
, m :=

√
mxmy (2.2.18)

respectively. The use of straightforward trigonometry then gives

cos θ =
1√
2

1 +
1√

1 + 4k2/m2

(ω2
y−ω2

x)2

1/2

, sin θ =
1√
2

1− 1√
1 + 4k2/m2

(ω2
y−ω2

x)2

1/2

. (2.2.19)

where
4k2/m2

(ω2
y − ω2

x)
= 4

(√
mxmy

k
(ω2

y,o − ω2
x,o) +

mx −my√
mxmy

)−2

.

Note that the rotation angle quantifies the strength of the coupling, in the sense that

cos θ ≈ 1 and sin θ ≈ 0 when the coupling constant k is small and the oscillators are off-

resonant. Define the normalization parameter µ := 4

√
mx

my
. Then we choose the transformed

position and momenta operators to be given by

(û, v̂) := R(µ−1x̂, µŷ),

(p̂u, p̂v) := R(µp̂x, µ
−1p̂y) (2.2.20)

where (x1, x2, ...) denotes a column vector. The quantized Hamiltonian is H = Hm,ωu;û,p̂u +

Hm,ωv ;v̂,p̂v where

ωu =

√√√√(ω2
x

ω2
y

)
·

(
cos2 θ

sin2 θ

)
− k

m
sin(2θ), ωv =

√√√√(ω2
x

ω2
y

)
·

(
sin2 θ

cos2 θ

)
+
k

m
sin(2θ). (2.2.21)

Note that the frequencies ωu and ωv are real as long as the original oscillator frequencies

ωx,o and ωy,o before renormalization are also real, because the renormalized frequencies ωx

and ωy increase as the coupling strength k increases.

The linear canonical transformation that decouples the pair of harmonic oscillators is
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not unique. We chose the transformation that gives the same mass m for the decoupled

oscillators, so that the only parameter different between them are the frequencies ωu and

ωv. Since the transformation we have performed is canonical, [û, v̂] = [p̂u, p̂v] = [û, p̂v] =

[v̂, p̂u] = 0, [û, p̂u] = i~ and [v̂, p̂v] = i~. Hence there exist Hilbert spaces U ,V isomorphic to

L2(R) such that X ⊗Y = U ⊗V , û = x̂U ⊗1V , v̂ = 1U ⊗ x̂V , p̂u = p̂U ⊗1V and p̂v = 1U ⊗ p̂V .

Let cu :=
√

mωu

~ and cv :=
√

mωv
~ , cx :=

√
mxωx

~ and cy :=
√

myωy

~ . Then the set of

eigenstates of the uncoupled Hamiltonian Hmx,ωx;x̂,p̂x +Hmy,ωy;ŷ,p̂y and the full Hamiltonian

H are {|ψκ,cu,U , ψχ,cv,V〉}κ,χ∈N and {|ψj,cx,X , ψ`,cy,Y〉}j,`∈N respectively.

2.3 Truncated dynamics of the interacting system

This section highlights the main results of our chapter. We provide a computable approx-

imation to our physical model’s truncated channel with corresponding error bounds that

are simple to describe.

2.3.1 The general model

The Hilbert space of our model has the general form H = X ⊗ Y where X and Y are

separable Hilbert spaces of the system and the environment respectively. Our model’s

Hamiltonian is

H := Hx ⊗ 1Y + 1X ⊗Hy + Hint

where H,Hx,Hy and Hint,j are (typically unbounded) Hermitian operators in the sets

L(H), L(X ), L(Y) and L(H) respectively. The Hamiltonians Hx and Hy describes the

bare dynamics on X and Y respectively, and Hint describes the system-bath interaction.

Let the initial state of the entire model be ρall := ρ0 ⊗ σy, where ρ0 ∈ D(X ) and

σy =
∑

`∈N p`|`Y〉〈`Y | ∈ D(Y). Let the time evolution operator of the entire model at time

t be the unitary operator Ut ∈ B(H). Then the time evolved state of system X at time t
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is

ρt := Φt(ρ0) = TrY UtρallU
†
t

=
∑

j,j′,`,`′∈N

〈`′Y |Ut|jY〉〈jY |ρ0 ⊗ p`|`Y〉〈`Y |j′Y〉〈j′Y |U
†
t |`′Y〉

=
∑
`,`′∈N

〈`′Y |Ut|`Y〉p`ρ0〈`Y |U†t |`′Y〉. (2.3.1)

Using (2.2.4), a feasible Kraus set and transition amplitudes for Φt are

Kt :=
{√

p`〈`′Y |Ut|`Y〉 : `, `′ ∈ N
}

(2.3.2)

T
(a,b)→(a′,b′)
Kt

=
∑
`,`′∈N

p`〈b′X , `′Y |Ut|bX , `Y〉〈aX , `Y |U†t |a′X , `′Y〉. (2.3.3)

The transition amplitudes (2.3.3) of the full quantum channel might not have closed form

expressions and hence be impossible to evaluate. In view of this, we can instead evaluate

the truncated transition amplitudes by truncating the infinite summation. These truncated

transition amplitudes are the transition amplitudes of the truncated quantum channel.

2.3.2 Coupled harmonic oscillators

The approximate dynamics of coupled harmonic oscillators is still actively studied [CC07,

CC09]. In our chapter, we use the model as described in Section 2.2.4. Let zu := e−iωut

and zv := e−iωvt. For j ∈ N, define |jx〉 := |ψj,cx,X 〉, |jy〉 := |ψj,cy,Y〉, |ju〉 := |ψj,cu,U〉, and

|jv〉 := |ψj,cv,V〉. Then the unitary operator Ut has the spectral decomposition

Ut =
∑
κ,χ∈N

√
zuzvz

κ
uz

χ
v |κu, χv〉〈κu, χv|. (2.3.4)

Let r = exp(− ~ωy
kBT

) ∈ [0, 1), where kB is the Boltzmann constant and 0 ≤ T < ∞ is the

effective temperature of the bath. The state of the bath with a Boltzmannian distribution
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is

σy =
∑
`∈N

r`(1− r)|`y〉〈`y|. (2.3.5)

Thus p` = r`(1− r) in equations (2.3.2) and (2.3.3).

Kraus operators and transition amplitudes

Using (2.3.2), the matrix elements of our Kraus operator K ∈ Kt indexed by `, `′ ∈ N are

〈j′x|K|jx〉 =
√
p`〈j′x, `′y|Ut|j′x, `y〉

=
√
p`〈j′x, `′y|

∑
κ,χ∈N

z
κ+ 1

2
u z

χ+ 1
2

v |κu, χv〉〈κu, χv|jx, `y〉 (2.3.6)

The goal is now to find an expression for the truncated transition amplitudes for small

values of a, b, a′ and b′. We first give an expression for the transition amplitude with

respect to the full Kraus set Kt, which is

T
(a,b)→(a′,b′)
Kt

=
∑
`,`′∈N

r`(1− r)〈b′x, `′y|Ut|bx, `y〉〈ax, `y|U†t |a′x, `′y〉

=
∑
`,`′∈N

r`(1− r)〈b′x, `′y|
∑
κ,χ∈N

z
κ+ 1

2
u z

χ+ 1
2

v |κu, χv〉〈κu, χv|bx, `y〉

× 〈ax, `y|
∑

κ′,χ′∈N

z
−κ′− 1

2
u z

−χ′− 1
2

v |κ′u, χ′v〉〈κ′u, χ′v|a′x, `′y〉. (2.3.7)

The matrix elements in the expression above can be simplified by expressing them in

the x and y coordinates of the original oscillators. In particular, the expression above

becomes an integral of the product of rescaled Hermite functions. To simplify notion, let

ux,y := cu( x
µcx

cos θ + µy
cy

sin θ) and vx,y := cv(− x
µcx

sin θ + µy
cy

cos θ) denote the coordinates

of the decoupled oscillators in the basis of the original oscillators. By making appropriate
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substitutions, we have that

ux,y =

√
myωu

mxωx

x cos θ +

√
mxωu

myωy

y sin θ

vx,y = −
√
myωv

mxωx

x sin θ +

√
mxωv

myωy

y cos θ. (2.3.8)

The summation indices in the transition amplitude corresponding to the full Kraus set Kt

in (2.3.7) are ` and `′ respectively. In this chapter, we choose our truncated Kraus set to

be ΩL,t, where only the summation over `′ is truncated.

By applying Mehler’s formula (2.2.13) on the variable `, the expression for the truncated

transition amplitude is

T
(a,b)→(a′,b′)
ΩL,t

=
∑
`′≤L

∑
κ,χ∈N
κ′,χ′∈N

zκ−κ
′

u zχ−χ
′

v f [a, b, a′, b′; `′, κ, κ′, χ, χ′]
ωuωv

ωxωy

√
1− r

π(1 + r)
(2.3.9)

where the path-dependent and time-independent transition amplitudes f [a, b, a′, b′; `′, κ, κ′, χ, χ′]

are

f [a, b, a′, b′; `′, κ, κ′, χ, χ′] :=

∫
x,y∈R4

dx dy exp

[
− 1 + r2

2(1− r2)

(
y2

3 −
4ry3y4

1 + r2
+ y2

4

)]
×
(
ψa′(x1)ψb′(x2)ψb(x3)ψa(x4)

)(
ψ`′(y1)ψ`′(y2)

)
× ψκ′(ux1,y1)ψχ′(vx1,y1)ψκ(ux2,y2)ψχ(vx2,y2)

× ψκ(ux3,y3)ψχ(vx3,y3)ψκ′(ux4,y4)ψχ′(vx4,y4). (2.3.10)

where x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) are the rescaled position coordinates of

the system and environment oscillator respectively. The integral f can be more easily

evaluated if we express it as a product of three integrals, in the sense that

f [a, b, a′, b′; `′, κ, κ′, χ, χ′] = Ia′,`′,κ′,χ′Ib′,`′,κ,χJb,a,κ,χ,κ′,χ′,r (2.3.11)
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where the integrals are

Ia′,`′,κ′,χ′ :=

∫
R2

Θx,y(a
′; `′)ψκ′(ux,y)ψχ′(vx,y) dx dy (2.3.12)

Jb,a,κ,χ,κ′,χ′,r :=

∫
R4

Θw,x,y,z(b, a; r)ψκ(uw,y)ψχ(vw,y)ψκ′(ux,z)ψχ′(vx,z) dw dx dy dz,

(2.3.13)

and the kernels are

Θx,y(i; j) := ψi(x)ψj(y) (2.3.14)

Θw,x,y,z(i, j; r) := ψi(w)ψj(x) exp

[
− 1 + r2

2(1− r2)

(
y2 − 4r

1 + r2
yz + z2

)]
. (2.3.15)

Now our truncated transition amplitude is still a sum over an infinite number of

integrals, and hence we intend to approximate it by the finite sum

A
(a,b)→(a′,b′)
L,N,t =

∑
`′≤L

∑
κ,χ≤N
κ′,χ′≤N

zκ−κ
′

u zχ−χ
′

v f [a, b, a′, b′; `′, κ, κ′, χ, χ′]
ωuωv

ωxωy

√
1− r

π(1 + r)
(2.3.16)

for some positive integer N . In Theorem 2.3.1, we prove that the absolute value of the error

term by approximating the truncated transition amplitude (2.3.9) with (2.3.16) vanishes

as N becomes large while a, b, a′, b′ and L remain small. Restricting a, b and a′, b′ to be

small corresponds to truncating the dimension of the input space and the dimension of the

output space respectively. The integer L corresponds to the cutoff in the truncation of the

quantum channel’s Kraus set. The proof of our theorem uses mainly the Cauchy-Schwarz

inequality, Lemma 2.4.3 and Lemma 2.4.4. The intuition behind our technical lemmas

arises from the behavior of order n Hermite functions in the oscillatory interval [−
√
n,
√
n]

and outside of it. Within the oscillatory interval, Hermite functions have amplitudes that

vanish as n gets large. Outside the oscillatory region, Hermite functions have exponentially

small amplitudes as their arguments becomes large. Thus we construct our upper bounds

for the integral of the product of Hermite functions by performing the integration separately
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in two overlapping regions, as depicted in Figure 2.1.

Theorem 2.3.1. Let mx,my, ωx, ωy, t > 0, k ≥ 0 and 0 ≤ r < 1 be real numbers, and

D,L and N be positive integers. Let C be a constant that depends on mx,my, ωx, ωy and

k (see (2.3.21)), and A, Ã, B, B̃ be constants that depend on D and L (see (2.3.22)). Let

T
(a,b)→(a′,b′)
ΩL,t

be the truncated transition amplitude defined in (2.3.9) have approximation

A
(a,b)→(a′,b′)
L,N,t given by (2.3.16). Then for all integers 0 ≤ a, b, a′, b′ ≤ D,∣∣∣T (a,b)→(a′,b′)

ΩL,t
− A(a,b)→(a′,b′)

L,N,t

∣∣∣
≤

(
4
√
A2B

9(N − 1
2
)3

+
4
√
AÃB

3N5/4(N − 1
2
)3/2

e−NC/2

1− e−C/2
+

√
Ã2B

N5/2

e−NC

(1− e−C/2)2
+

√
A2B̃

N5/2

e−NC

(1− e−C/2)2

+
2
√
AÃB̃

N5/4

e−3NC/2

(1− e−C/2)(1− e−C)
+
√
Ã2B̃

e−2NC

(1− e−C)2

)2

ωuωv

ωxωy

√
1− r

π(1 + r)
(L+ 1).

(2.3.17)

Remark 2.3.2. When the ratio between the coupling constant k and the difference between

the square of resonance frequencies of the oscillators is small, the the rotation angle θ

(given in 2.2.18) is small, which causes C to be very large. We call this the off-resonant

and weakly-coupled regime. In this situation, the upper bound of the above theorem is

dominated by the expression

4A2B

81(N − 1
2
)6

(
ωuωv

ωxωy

√
1− r

π(1 + r)
(L+ 1)

)
≤ 14.7103(L+ 1)ñ4

Dñ
2
L

(N − 1
2
)6

(
ωuωv

ωxωy

√
1− r
1 + r

)

as N becomes large (and ñi is defined as (max0≤j≤i ‖ψj‖1).

Remark 2.3.3. If the parity of a+ b differs from that of a′ + b′, the approximate truncated

amplitude is necessarily identically zero for all positive integers L and N . This is a result

of a simple parity counting argument after noting that the I-type integrals (2.3.12) and

J-type integrals (2.3.13) are zero whenever the parity of the sum of their indices are odd.

Hence parity is conserved with regards to our physical model.

Remark 2.3.4. The bounds of Theorem 2.3.1 can be substantially tightened using informa-
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tion pertaining to the I-type integrals (2.3.12), which are substantially simplier to evaluate

than the J-type integrals (2.3.13). Using bounds for the J-type integrals (2.3.24), we have

that for integer N ′ greater than N ,∣∣∣T (a,b)→(a′,b′)
ΩL,t

− A(a,b)→(a′,b′)
L,N,t

∣∣∣ ≤ ∑
0≤`≤L

∑
N<κ,κ′≤N ′
N<χ,χ′≤N ′

|Ia′,`′,κ′,χ′Ib′,`′,κ,χ|B(κκ′χχ′)−5/2

+
∣∣∣T (a,b)→(a′,b′)

ΩL,t
− A(a,b)→(a′,b′)

L,N ′,t

∣∣∣ (2.3.18)

Proof of Theorem 2.3.1. Our goal is to obtain upper bounds on each of the integrals I and

J defined in (2.3.12) and (2.3.13). Applying the Cauchy-Schwarz inequality on |Ia′,`′,κ′,χ′ |
gives

|Ia′,`′,κ′,χ′| ≤

√∫
R2

∣∣Θx,y(a′; `′)
∣∣ψκ′(ux,y)2 dx dy

√∫
R2

∣∣Θx,y(a′; `′)
∣∣ψχ′(vx,y)2 dx dy. (2.3.19)

We similarly use the Cauchy-Schwarz inequality to obtain an upper bound of the absolute

value of (2.3.13), which is

|Jb,a,κ,χ,κ′,χ′,r| ≤

√∫
R2

∣∣Θw,x,y,z(b, a; r)
∣∣ψκ(uw,y)2ψκ′(ux,z)2 dx dy

×

√∫
R2

∣∣Θw,x,y,z(b, a; r)
∣∣ψχ(vw,y)2ψχ′(vx,z)2 dx dy. (2.3.20)

For the purpose of using Lemma 2.4.3 and Lemma 2.4.4, define the constants

c1 = min

{√
myωu

mxωx

cos θ,

√
mxωu

myωy

sin θ

}
c2 = min

{√
myωv

mxωx

sin θ,

√
mxωv

myωy

cos θ

}
C = min{1/(4c2

1), 1/(4c2
2)} (2.3.21)
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and

A = 1.742

(
max

0≤j≤D
‖ψj‖1

)(
max

0≤j≤L
‖ψj‖1

)
, Ã = (4.74)(2e−

1
2 )D+L

√
D!DDL!LL

B = 57.6

(
max

0≤j≤D
‖ψj‖1

)2

, B̃ = (39.6)(2e−1)DD!DD. (2.3.22)

Noting that sin θ and cos θ are positive by definition (see (2.2.19)), and using the definitions

of c1, c2 and C with Lemma 2.4.3, we have that

|Ia′,`′,κ′,χ′| ≤
√
A(κ′)−5/2 + Ãe−κ′C

√
A(χ′)−5/2 + Ãe−χ′C (2.3.23)

and we have a similar upper bound of |Ib′,`′,κ,χ|. Using Lemma 2.4.4, we have that

|Jb,a,κ,χ,κ′,χ′,r| ≤
√
B(κκ′)−5/2 + B̃e−(κ+κ′)C

√
B(χχ′)−5/2 + B̃e−(χ+χ′)C . (2.3.24)

By expanding out the terms of the products of the upper bounds given by (2.3.23) and

(2.3.24), our upper bound on the absolute value of (2.3.11)∣∣∣f [a, b, a′, b′; `′, κ, κ′, χ, χ′]
∣∣∣ ≤√Wκ,κ′Wχ,χ′

where

Wκ,κ′ :=
A2B

κ5(κ′)5
+

AÃB

κ5(κ′)5/2
e−κ

′C +
AÃB

κ5/2(κ′)5
e−κC +

Ã2B

κ5(κ′)5/2
e−(κ+κ′)C

+
A2B̃

κ5/2(κ′)5/2
e−(κ+κ′)C +

AÃB̃

κ5/2
e−(κ+2κ′)C +

AÃB̃

(κ′)5/2
e−(2κ+κ′)C + Ã2B̃e−(2κ+2κ′)C .

By the subadditivity of the square root function, we have that

√
Wκ,κ′ ≤

√
A2B

κ5/2(κ′)5/2
+

√
AÃB

κ5/2(κ′)5/4
e−κ

′C/2 +

√
AÃB

κ5/4(κ′)5/2
e−κC/2 +

√
Ã2B

κ5/2(κ′)5/4
e−(κ+κ′)C/2

+

√
A2B̃

κ5/4(κ′)5/4
e−(κ+κ′)C/2 +

√
AÃB̃

κ5/4
e−(κ+2κ′)C/2 +

√
AÃB̃

(κ′)5/4
e−(2κ+κ′)C/2 +

√
Ã2B̃e−(κ+κ′)C .
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The summation of the above expression over κ and κ′ can be seen as an inner product of

vectors with exponentially decaying terms and polynomially decaying terms respectively.

We hence apply Hölder’s inequality for sequence spaces on the summation of the above

expression over κ and κ′. We thereby obtain an upper bound of the sum in terms of the

one-norm of the vector with exponentially decaying terms, and the infinity-norm of the

vector with polynomially decaying terms:

∑
κ,κ′≥N

√
Wκ,κ′ ≤

√
A2B

(∑
X≥N

X−5/2
)2

+
2
√
AÃB

N5/4

(∑
X≥N

X−5/2
) e−NC/2

1− e−C/2
+

√
Ã2B

N5/2

e−NC

(1− e−C/2)2

+

√
A2B̃

N5/2

e−NC

(1− e−C/2)2
+

2
√
AÃB̃

N5/4

e−3NC/2

(1− e−C/2)(1− e−C)
+
√
Ã2B̃

e−2NC

(1− e−C)2
.

Now the integral
∫∞
N− 1

2
x−5/2dx is an upper bound of the sum

∑∞
X≥N X

−5/2 by the convexity

of the integrand. Hence
∑∞

X≥N X
−5/2 ≤ 2

3
(N − 1

2
)−3/2, and we can subsitute this bound

into our upper bound of the square of
∑

κ,κ′≥N Wκ,κ′ summed over the index 0 ≤ `′ ≤ L to

get the result. ut

2.4 Bounds on Hermite functions

This section provides the main technical lemmas that are used to obtain error bounds on

our approximation to our truncated transition amplitudes. The main technical tools that

we use in this section are Alzer’s sharp bounds on the gamma function [Alz09] and bounds

on the Dominici’s asymptotic approximation of Hermite functions with error estimates by

Kerman, Huang and Brannan [RKB09].

Lemma 2.4.1. For all positive integers n and reals x ∈ [−
√
n,
√
n], we have |ψn(x)| <

1.74n−5/4.

Proof. This proof combines Alzer’s sharp bounds on the gamma function [Alz09] with

uniform bounds on the envelope of the Hermite functions in the oscillatory region by
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Kerman, Huang and Brannan [RKB09]. Using Kerman, Huang and Brannan’s result (see

equation (2.1) and (1.4) in [RKB09]), for x ∈ [−
√
n,
√
n] we have

|ψn(x)| ≤ 2−3/4
√

35

√
n!π−1/42−n/2√

2Γ((n/2) + 1)
n−1.

Alzer’s sharp bounds for the gamma function are that for all n > 0,

1 <
Γ(n+ 1)

√
2πn

(
n
e

)n (
n sinh 1

n

)n/2 < 1 +
1

1620
n5.

Note that for real n ≥ 1, we have 1 ≤
(
n sinh 1

n

)n/2
< 1.085. Hence we have that for

positive integers n,

√
Γ(n+ 1)

Γ(n
2

+ 1)
<

√√
2πn

(
n
e

)n
(1.085)(1 + 1

1620n5 )
√
πn
(
n
2e

)n/2 < 0.9308(2n/2)n−1/4.

Hence Kerman, Huang and Brannan’s upper bound on the envelope of the Hermite function

for x ∈ [−
√
n,
√
n] and n ≥ 1 becomes

|ψn(x)| ≤ 2−3/4
√

35
π−1/42−n/2√

2

√
Γ(n+ 1)

Γ(n
2

+ 1)
n−1 < 1.74n−5/4.

ut

The next lemma provides a rather coarse upper bound on the absolute value of the

Hermite function, with maximum utility in the monotonic region of the Hermite function.

Lemma 2.4.2. For all reals |x| > 1 and integers n ≥ 0, we have |ψn(x)| ≤ 2n
√

n!nn

en
√
π
e−x

2/4.

Proof. Using the Maclaurin decomposition of the Hermite polynomial Hn(x) [Erd85], we
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get

|ψn(x)| ≤ n!n(2|x|)n e−x
2/2√

2nn!
√
π

=

√
2nn!√
π
n|x|ne−x2/2.

It is easy to verify that sup
x∈R
{|x|ne−x2/4} =

(
2n

e

)n/2
. Hence when |x| > 1,

|ψn(x)| ≤ 2n

√
n!nn

en
√
π
e−x

2/4.

ut

Lemma 2.4.3 provides upper bounds on the one-norm of the product of Hermite func-

tions in terms of the order of the Hermite functions, and is crucial in obtaining upper

bounds on our error estimates.

Lemma 2.4.3. For real numbers a, b 6= 0, let c = min(|a|, |b|). Let j, k, n ∈ N and n ≥ 1.

Then∫
R2

ψn(ax+ by)2|ψj(x)ψk(y)| dxdy ≤ (1.742)‖ψj‖1‖ψk‖1

n5/2
+ (4.74)2j+k

√
j!k!jjkk

ej+k
e−n/(8c

2).

Proof. We split the region over which the integral is performed into two overlapping regions

A1 and A2 (see Figure 2.1), where

A1 = {(x, y) : |ax|+ |by| ≤
√
n}

and

A2 = {(x, y) : x2 + y2 >

√
n√
2c
}.

Then using the Charlier-Cramér bound [Erd85] which states that supn,x |ψn(x)| ≤ 1.086435
π1/4 ,

and the uniform upper bound of the envelope of the Hermite polynomial in the oscillatory
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Figure 2.1: The area inside the square corresponds to the region A1 (where |ψn(ax+by)| ≤
1.74n−5/4), and the area outside the circle corresponds to the region A2 (where all Hermite
functions decay exponentially).

region as stated in Lemma 2.4.1, we get∫
R2

ψn(ax+ by)2|ψj(x)ψk(y)| dxdy

≤
∫
A1

1.742

n5/2
|ψj(x)ψk(y)| dxdy +

∫
A2

1.0864352

√
π

|ψj(x)ψk(y)| dxdy.

The integral of |ψj(x)ψk(y)| over the region A1 is at most

(1.742)‖ψj‖1‖ψk‖1

n5/2
.

Using the exponential upper bound of Lemma 2.4.2, the integral over the annulus region
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A2 is at most

1.0864352

√
π

2j+k
√
j!k!jjkk

ej+kπ

∫
A2

e−(x2+y2)/4 dxdy

≤1.0864352

√
π

2j+k
√
j!k!jjkk

ej+kπ
2π

∫
r>
√
n√
2c

re−r
2/4 dr

=1.08643522j+k+1

√
j!k!jjkk

ej+k
(2e−n/(8c

2)).

Combining the upper bounds for region A1 and A2 then gives the result. ut

The following lemma is needed to obtain upper bounds on the absolute value of |Jb,a,κ,χ,κ′,χ′,r|,
and is similar to the preceding lemma.

Lemma 2.4.4. Let 0 6= a, b ∈ R, c = min(|a|, |b|) and j, k, n, n′ ∈ N where n, n′ ≥ 1. Then∫
R2

ψn(aw + by)2ψn′(ax+ bz)2|Θw,x,y,z(j, k; r)| dxdy

≤57.6‖ψj‖1‖ψk‖1

(nn′)5/2
+ (39.6)2j+k

√
j!k!jjkk

ej+k
e−(n+n′)/(8c2).

Proof. We split the region over which the integral is performed into two overlapping regions

A1 and A2 (just as in the proof of Lemma 2.4.3), where

A1 = {(w, x, y, z) : |aw|+ |by| ≤
√
n, |ax|+ |bz| ≤

√
n′}

and

A2 = {(w, x, y, z) : w2 + y2 >

√
n√
2c
, x2 + z2 >

√
n′√
2c
}.

Then using the Charlier-Cramér bound, Lemma 2.4.1, and Lemma 2.4.2, we get∫
R2

ψn(aw + by)2ψn′(ax+ bz)2|Θw,x,y,z(j, k; r)| dw dx dy dz

≤
∫
A1

1.744

(nn′)5/2
|Θw,x,y,z(j, k; r)| dw dx dy dz +

∫
A2

1.0864354

π
|Θw,x,y,z(j, k; r)| dw dx dy dz.
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Now observe that we can express the kernel Θw,x,y,z(j, k; r) as

Θw,x,y,z(j, k; r) = e−
1
2

(y2+z2) exp

[
− r

1− r2
(y − z)2

]
ψj(w)ψk(x)

and hence the absolute value of our kernel has an upper bound that factorizes, in the sense

that

|Θw,x,y,z(j, k; r)| ≤ e−
1
2

(y2+z2)|ψj(w)ψk(x)|.

Hence the integral over the region A1 is at most

1.744(2π)‖ψj‖1‖ψk‖1

(nn′)5/2
.

The upper bound on the kernel also allows us to find that the integral over the region A2

is at most

1.0864354

π
2j+k

√
j!k!jjkk

ej+kπ

∫
A2

e−(w2+x2)/4e−
1
2

(y2+z2) dw dx dy dz

≤ 1.0864354

π3/2
2j+k

√
j!k!jjkk

ej+k
(2π)2

∫
r1≥

√
n√
2c

e−r
2
1/4dr1

∫
r2≥

√
n′√
2c

e−r
2
2/4dr2

≤1.0864354(2π)2

π3/2
2j+k

√
j!k!jjkk

ej+k
4e−(n+n′)/(8c2)

≤(39.6)2j+k
√
j!k!jjkk

ej+k
e−(n+n′)/(8c2).

Combining our upper bounds on the integrals in the regions A1 and A2 thereby gives the

result. ut
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2.5 A case study: Off-resonant weakly coupled oscil-

lators

In this section, we perform a case study of the dynamics of our physical model when the

oscillators are off-resonant and weakly coupled. In agreement with the standard results of

perturbation theory, we find negligible amplitude damping in the truncated dynamics of

our system. Moreover, we show that leakage error is the dominant error process.

2.5.1 Parameters of the physical model and the truncated chan-

nel

The amount of truncation in our truncated channel is quantified by the parameter L = 2,

and the order of our approximation to the truncated channel is quantified by the parameter

N = 6 (see (2.3.16) for the definition of the truncated transition amplitudes). We restrict

the analysis of our truncated channels to a 4-level system by setting the parameter D = 3.

Table 2.1 shows the parameters used for our physical model. We use the SI units.

The output parameters are numerically computed using floating point numbers with 1024

bits of precision, and are shown up to ten decimal places. For our choice of parameters,

Input parameters Output parameters More bounds
mx 10−6 (kg) ωx 1000499.8750624610 (Hz) ‖ψ0‖1 ≤ 1.882792528
my 2× 10−6 (kg) ωy 10000024.9999687501 (Hz) ‖ψ1‖1 ≤ 2.1245038641
ωx,o 106 (Hz) ωu 1001004.5438332595(Hz) ‖ψ2‖1 ≤ 2.2853242243
ωy,o 107 (Hz) ωv 10000025.0001779494 (Hz) ‖ψ3‖1 ≤ 2.4102377590

k 100 u1 10000025.0001779494
r 0 u2 0.0000031958

v1 -0.0000451621
v2 1.0000000000

Table 2.1: We tabulate the important parameters of our physical model. Here, u1, u2, v1

and v2 are defined implicitly in the equations ux,y = u1x + u2y and vx,y = v1x + v2y (see
(2.3.8)). Also note that ‖ψn‖1 :=

∫
R
|ψn(x)|dx.
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the positive constants AÃB, Ã2B,A2B̃, AÃB̃, Ã2B̃ ≤ 10−288, and are negligible, and hence

Remark 2.3.2 holds.

2.5.2 Approximate dynamics of the truncated channel

We numerically evaluate approximate truncated transition amplitude (2.3.16) correspond-

ing to the transitions within the lowest energy levels of the system. The evaluation of each

such approximate truncated transition amplitude A
(a,b)→(a′,b′)
2,6,t is a sum of 7203 terms for

our choice of L = 2 and N = 6.

We obtain the corresponding error bounds of our approximation from Remark 2.3.4

with N ′ = 15. The error of each of our approximate truncated transition amplitude is at

most 0.00084 – a negligible amount. We plot magnitudes of the non-negligible truncated

transition amplitudes in Figure 2.2.

Numerically, we find that the non-negligible terms of A
(a,b)→(a′,b′)
2,6,t have values of 0 ≤

a, b ≤ 1 and 0 ≤ a′, b′ ≤ 3 that satisfy the relation

a′ − a
2

,
b′ − b

2
∈ Z. (2.5.1)

The above relation holds for two reasons. First, the conservation of the parity of all

truncated transition amplitudes as stated in Remark 2.3.3 implies that the parity of a+ b

equals the parity of a′ + b′. Second, the other negligible transitions are in agreement

with the results of using pertubation theory on off-resonant and weakly coupled harmonic

oscillators. Also note that the negligible damping from the first excited state to the ground

state of our truncated channel suggests that the coupled oscillator model is inconsistent

with the phenomenon of amplitude damping [NC00] even at zero temperature.

The Choi-Jamiolkowski (CJ) operator of the finite input and output dimension channel

Φ with Kraus set K is the linear operator

χΦ :=
∑
K∈K

|K〉〉〈〈K| =
∑
j,j′

∑
k,k′

(∑
K∈K

Kj,j′K
∗
k,k′

)
|jK, j′H〉〈kK, k′H|. (2.5.2)
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where the linear map |·〉〉 : L(H,K)→ K⊗H is a stacking isomorphism such that

|
∑
i,j

ai,j|iK〉〈jH|〉〉 :=
∑
i,j

ai,j|iK〉|jH〉.

We now construct a quantum operation A to approximate the truncated channel N .

Abbreviating our approximate truncated transition amplitudes as Aaba′b′ := A
(a,b)→(a′,b′)
2,6,t ,

our approximation to the CJ operator of our truncated channel is

χ :=


A0000 A0002 A0101 A0103

A0020 A0022 A1012 A0123

A1010 A1012 A1111 A1113

A1030 A1032 A1131 A1133

 (2.5.3)

where the bases labeled by the rows and columns are |0, 0〉, |2, 0〉, |1, 1〉, |3, 1〉 and 〈0, 0|,
〈2, 0|, 〈1, 1|, 〈3, 1| respectively. The first and second entries of our bras and kets correspond

to the output and input Hilbert spaces of the truncated map respectively. We plot the

absolute value of some of these non-negligible matrix elements in Figure 2.2. Let χ have

spectral decomposition χ =
∑4

i=1 λi|λi〉〈λi| where |λi〉〈λi| are orthogonal projectors and the

eigenvalues λi are in non-increasing order 1. For λi ≥ 0, let Ai be the image of the inverse

map of the linear operator |·〉〉 acting on
√
λi|λi〉. Numerically diagonalizing the matrix

χ shows that it has only one dominant eigenvalue. Hence we use the quantum operation

A(v) := A1vA
†
1 to approximate the truncated channel N where A1 =

√
λ1(k0|0〉〈0| +

k2|2〉〈0|+k1|1〉〈1|+k3|3〉〈1|) and |λ1〉 = k0|0, 0〉+k2|2, 0〉+k1|1, 1〉+k3|3, 1〉. Observe that

for i, j ∈ {0, 1, 2, 3} we have

A(|i〉〈j|) = λ1

(
ki|i〉+ ki+2|i+ 2〉

)(
k∗j 〈j|+ k∗j+2〈j + 2|

)
. (2.5.4)

1The matrix χ is symmetric and hence has real eigenvalues.
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Figure 2.2: Absolute values of approximations to our truncated amplitudes are depicted
for our model with parameters given by Table (2.1).

Leakage error

Leakage error, a dominant process of our model, occurs when low energy states transition

into higher energy states within the quantum system. We derive lower bounds on the

minimum amount of qubit leakage in our system, when the quantum channel is Φt with

Kraus set Kt given by (2.3.2). For qubit leakage to occur, it suffices to have the strict

inequality

Leakage(Φt, ρ) :=
∞∑
i=2

〈iX |Φt(ρ)|iX 〉 > 0, (2.5.5)
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for some density operator ρ supported on the span of |0X 〉 and |1X 〉. The above expression

quantifies the amount of leakage from the qubit state space of our system.

We proceed to obtain a strictly positive lower bound on Leakage(Φt, ρ). If Φt = N +M
for some completely positive maps N and M, then the complete positivity of N and M
implies that Leakage(Φt, ρ) ≥ Leakage(N , ρ). Hence it suffices to obtain a lower bound for

Leakage(N , ρ). For our application, N is our truncated channel.

Assume that the initial state of the system is ρ = 1
2

(
|0X 〉〈0X |+|1X 〉〈1X |

)
, the maximally

mixed state in the qubit space. Then the leakage of the truncated channel N is at

least 1
2

(
T

(0,0)→(2,2)
ΩL,t

+ T
(1,1)→(3,3)
ΩL,t

)
. Thus we have that Leakage(N , ρ) ≥ 1

2

(∣∣A(0,0)→(2,2)
L,N,t

∣∣ +∣∣A(1,1)→(3,3)
L,N,t

∣∣) − 2ε where ε is given the upper bound in Theorem 2.3.1. In view of the

data given in Figure 2.2, the amount of qubit leakage can actually be quite substantial.

In particular, when t = 5 × 10−6, the amount of leakage of Φt is at least 0.4 which is

substantially larger than zero.

The large amount of leakage from our qubit state highlights the importance of account-

ing for transitions of low energy states into excited states in oscillator systems, and also

the problem of using the lowest two energy eigenstates as a basis to encode our qubit.

Quantum error correction versus no quantum error correction

We consider a universe with four harmonic oscillators X1,X2,Y1 and Y2. We identify

the oscillators X1 and X2 as x-type oscillators and the oscillators Y1 and Y2 as y-type

oscillators, with their parameters given by Table 2.1. Assume that there are only X1-

Y1 couplings and X2-Y2 couplings in our universe. Suppose that a maximally entangled

two-qubit state is initialized in the X1 and X2 oscillators supported on their two lowest

energy levels. We assume that the oscillators Y1 and Y2 are initialized in the ground state.

We obtain a lower bound on the fidelity of the time-evolved states when instantaneous,

identical and independent recovery operations are performed on oscillators X1 and X2.

Denoting our truncated channel and recovery channel on a single system oscillator by N
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and R respectively, our lower bound on the output fidelity is

fR = 〈Φ|(R⊗R) ◦ (N ⊗N )(|Φ〉〈Φ|)|Φ〉, (2.5.6)

where |Φ〉 = (|0X1 , 0X2〉 + |1X1 , 1X2〉)/
√

2. We now proceed to obtain a lower bound on

the entanglement fidelity of our time-evolved maximally entangled state, with and without

recovery. The maximally entangled state on two qubits written as a density matrix is

|Φ〉〈Φ| = 1

2

∑
i,j∈{0,1}

|i, i〉〈j, j|. (2.5.7)

By linearity, the action of our truncated channels on the maximally entangled state gives

(N ⊗N )|Φ〉〈Φ| = 1

2

∑
i,j∈{0,1}

N (|i〉〈j|)⊗N (|i〉〈j|). (2.5.8)

Let us denote the error of the truncated transition amplitude of Aiji′j′ to be εiji′j′ so that

(N ⊗N )|Φ〉〈Φ| = 1

2

∑
i,j∈{0,1}

N (|i〉〈j|)⊗N (|i〉〈j|)

=
1

2

∑
i,j∈{0,1}

i1,j1∈{0,1,2,3}
i2,j2∈{0,1,2,3}

(Aiji1j1 + εiji1j1)(Aiji2j2 + εiji2j2)|i1, i2〉〈j1, j2| (2.5.9)

If we perform no recovery operation, R is just the identity map I, and we have

fI = 〈Φ|(N ⊗N )(|Φ〉〈Φ|)|Φ〉

= 〈Φ|

 ∑
(i,j)∈{0,1}

N (|iX1〉〈jX1|)⊗N (|iX2〉〈jX2|)

 |Φ〉/2. (2.5.10)
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Dropping the labels on the Hilbert spaces of our bras and kets, we can use (2.5.9) to find

that

fI =
1

2
(〈0, 0|+ 〈1, 1|)(N ⊗N )|Φ〉〈Φ|(|0, 0〉+ |1, 1〉)

=
1

4

∑
i,j∈{0,1}

i1,j1∈{0,1,2,3}
i2,j2∈{0,1,2,3}

(Aiji1j1 + εiji1j1)(Aiji2j2 + εiji2j2)|i1, i2〉〈j1, j2| (2.5.11)

≥ 1

4
(A2

0000 + A2
1111 + A2

0101 + A2
1010)− 8(2ε+ ε2) (2.5.12)

where ε ≤ 0.00084. Note that A2
0101 + A2

1010 can be negative. Equation (2.5.12) gives a

lower bound for fI , which is the fidelity of our initially entangled state after time t if we

are to use no quantum recovery operation. We plot the lower bound for fI in Figure 2.3.

An upper bound for fI can similarly be obtained from (2.5.11).

The Barnum-Knill recovery operatorRBK [BK02] and the Tyson-Beny-Oreshkov quadrat-

ic recovery operator [Tys10, BO10] are near optimal recovery operators defined with

respect to a quantum operation A and a state ρ, and are equivalent when A has only

one Kraus operator. For our application, we study the Barnum-Knill recovery, with

ρ = (|0〉〈0| + |1〉〈1|)/2 and quantum operation A approximating the truncated channel

N . Our choice of ρ shows that our quantum information is encoded in the trivial quantum

code (no encoding). For our application, the Barnum-Knill recovery operator which is also

a quantum operation is defined as

RBK(v) = A†1(A1A
†
1)−1/2+

v(A1A
†
1)−1/2+

A1 (2.5.13)

where (A1A
†
1)−1/2+

is the square root of the psuedo-inverse of the operator (A1A
†
1). When

we use the Barnum-Knill recovery operation RBK, the fidelity of recovery is

fBK = 〈Φ|(RBK ⊗RBK) ◦ (N ⊗N )(|Φ〉〈Φ|)|Φ〉. ≥ λ2
1 −
|λ2|+ |λ3|+ |λ4|

4
− 1

4
(2ε+ ε2).

(2.5.14)
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We plot lower bounds of the fidelity with and without Barnum-Knill recovery in Figure

2.3, and demonstrate that a fidelity of more than 60% is still possible in spite of the leakage

error and the use of truncated quantum channels in our analysis.

Figure 2.3: Lower bounds on the fidelity of an entangled state without recovery fI (dashed
line) and with Barnum-Knill recovery fBK (solid line) are plotted with respect to time.

2.6 Discussions

The system we consider is described by a quantum harmonic oscillator coupled through

a spring-like interaction to another initially decoupled harmonic oscillator. We provide

approximations to the truncated transition amplitudes of such a system. The converging

error bound of such approximations is our main result. Properties of the integrals of
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products of Hermite functions lies at the heart of the proof. It is also worth noting that

any ensemble of harmonic oscillators with spring-like coupling can be analyzed similarly.

We also show numerically that in agreement with intuition from perturbation theory,

when the oscillators are off-resonant and weakly coupled, amplitude damping is a negligible

physical process. We also use our truncated channel representation to show that qubit

leakage can be a dominant physical process, and how Barnum-Knill recovery can help

protect a maximally entangled state stored in two oscillators each coupled independently

to distinct zero-temperature harmonic baths, in the paradigm of off-resonant and weak

coupling between the system and a zero temperature bath.
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Chapter 3

The Perturbed Error-Correction

Criterion and Rescaled Truncated

Recovery

3.1 Introduction

Quantum information, when left unprotected, often decoheres because of its inevitable

interaction with the environment. The field of quantum error correction arose from the need

to combat decoherence in quantum systems, and treats the decoherence as a noisy quantum

channel. An important problem in quantum error correction is that of determining the

utility of a given code with respect to the noisy quantum channel. The quantum error

correction conditions of Knill and Laflamme [KL97] are equations from which one can

determine whether a quantum code is entirely robust against a given set of Kraus effects

of the noisy channel. The Knill-Laflamme conditions lie at the foundations of Gottesman’s

stabilizer formalism [Got97] from which quantum error correction codes are designed and

studied.

In this chapter, we revisit the approximate error correction of finite dimension codes

via a perturbation of the Knill-Laflamme conditions. We derive a computationally simple
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lower bound on the worst case entanglement fidelity of a quantum code, when the truncated

recovery map of Leung et al. [LNCY97] is rescaled to guarantee its validity as a quantum

operation. Our lower bound arises from repeated application of the Gershgorin circle

theorem on the relevant matrices.

The simplicity of our bound comes at a price – we do not have the near-optimal

guarantees that the methods of Barnum-Knill [BK02] and Tyson-Beny-Oreshkov [Tys10,

BO10, BO11] yield. However in this trade-off, we are able to construct a family of

multi-error correcting amplitude damping qubit codes that are permutation-invariant.

We thereby demonstrate an example where the specific structure of the noisy channel

allows code design out of the stabilizer formalism via purely algebraic means, as op-

posed to optimization techniques [KSL08, FSW08, Yam09, TKL10] and other approaches

[LS07, SSSZ11, DJZ10]. Our qubit permutation-invariant codes also extend the existing

theory of qubit permutation-invariant codes [CLY97, Rus00, PR04, WB07]; while no

qubit permutation-invariant code corrects arbitrary single qubit errors, there exist qubit

permutation-invariant codes that correct multiple amplitude damping errors.

3.1.1 Organization

In Section 5.2, we introduce notation and concepts needed for this chapter, including

quantum channels, quantum codes and the entanglement fidelity of a code. In Section

3.3, we address the perturbed Knill-Laflamme conditions, revisit the Leung et al. recovery

map and determine using Lemma 3.3.3 when the Leung et al. recovery can be rescaled to a

quantum operation. In Section 3.3.3, we prove our algebraic lower bound on the worst case

entanglement fidelity (Theorem 3.3.4). Finally in Section 3.4, we apply our lower bound

to construct a family of qubit permutation-invariant codes that correct multiple amplitude

damping errors (Theorem 3.4.3).
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3.2 Preliminaries

For any integer k and non-negative integer `, define the falling factorial k(`) to be

k(`) :=
∏̀
i=0

(k − i).

For all integers n, k where k ≥ 0, define the binomial coefficient

(
n

k

)
:= n(k)/k!.

3.2.1 Quantum channels

For a complex separable Hilbert space H, let B(H) be the set of bounded linear operators

mapping H to H. Define the set of quantum states on Hilbert space H to be D(H) where

D(H) is the set of all positive semi-definite and trace one operators in B(H). For any

subspace C ⊂ H with orthonormal basis BC, define D(C) to be the set of all elements in

D(H) that are invariant under conjugation by the projector Π =
∑
|β〉∈BC |β〉〈β|.

A quantum operation Φ : B(H) → B(H′) is a linear map that is completely positive

and trace non-increasing. A quantum channel Φ is a trace preserving quantum operation.

In this chapter, the Hilbert spaces H and H′ are always isomorphic. A quantum operation

Φ : B(H)→ B(H) can always be expressed in the Kraus representation [Kra83]:

Φ(ρ) =
∑
A∈KΦ

AρA†, 1H ≥
∑
A∈KΦ

A†A

where ρ ∈ B(H), KΦ ⊂ B(H) is a set of Kraus operators of quantum operation Φ, and 1H

is the identity operator on complex Hilbert space H.
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3.2.2 Quantum codes and Entanglement Fidelity

Define the minimum eigenvalue of a finite dimension Hermitian matrix H restricted to

subspace C to be

λmin,C(H) := min
|β〉∈C
〈β|β〉=1

〈β|H|β〉. (3.2.1)

The entanglement fidelity of a state ρ with respect to the quantum channel N is

Fe(ρ,N ) =
∑

B∈KN

|Tr(Bρ)|2 (3.2.2)

where the set of Kraus operators of N is KN [NC00]. The entanglement fidelity of a state

ρ with respect to the quantum channel N = R ◦ A quantifies how well the entanglement

consistent with state ρ is preserved when the noisy channel is A and the recovery map is

R.

3.3 Rescaled truncated recovery

In this section, we analyze the performance of the rescaled truncated recovery map. Firstly

in Section 3.3.1, we study the diagonalization of the Knill-Laflamme conditions. We next

analyze the rescaling of the truncated recovery of Leung et al. [LNCY97] into a quantum

operation. In Section 3.3.3, we prove Theorem 3.3.4, the main result of this chapter.

3.3.1 The perturbed Knill-Laflamme conditions

In this subsection, we apply the canonical procedure [NC00] to diagonalize the error

correction perturbed Knill-Laflamme conditions. We also introduce notation that is used

both in the statement and the proof of Theorem 3.3.4. We start by introducing the following

notation.
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N1. Let the M-dimension code C be a subspace of the Hilbert space H with projector Π

and orthonormal basis BC. Let A : B(H) → B(H) be a quantum channel with truncated

Kraus set Ω.

Using the notation of N1, define an orthonormal basis {|E〉 : E ∈ Ω} ⊆ C
|Ω| labeling

the effects in Ω. For all A,B ∈ Ω and |α〉, |β〉 ∈ BC, define

ε(A,B, |α〉, |β〉) := 〈α|A†B|β〉 − gA,Bδ|α〉,|β〉. (3.3.1)

to quantify the perturbation to the Knill-Laflamme condition, where

gA,B :=
1

M

∑
|β〉∈BC

〈β|A†B|β〉. (3.3.2)

Define the Hermitian matrix

G :=
∑

A,B∈Ω

gA,B|A〉〈B|. (3.3.3)

The hermiticity of G implies the existence of a unitary matrix V and diagonal matrix D

such that

V =
∑

E,F∈Ω

vE,F|E〉〈F| (3.3.4)

D := VGV† =
∑
E∈Ω

dE|E〉〈E| (3.3.5)

which implies that ∑
F,F′∈Ω

vE,Fv
∗
E′,F′gF,F′ = dEδE,E′ . (3.3.6)
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For all A ∈ Ω, define the transformed Kraus operators

Ã :=
∑
F∈Ω

vA,FF. (3.3.7)

Substituting (3.3.6) into (3.3.7) gives

〈α|Ã†B̃|β〉 = dAδA,Bδ|α〉,|β〉 + ε̃
(
A,B, |α〉, |β〉

)
(3.3.8)

where

ε̃
(
A,B, |α〉, |β〉

)
:=

∑
F,F′∈Ω

(v∗A,F′vB,F)ε
(
F′,F, |α〉, |β〉

)
. (3.3.9)

Equation (3.3.8) gives the ‘diagonalized’ form of the perturbed Knill-Laflamme conditions.

The transformed error is quantified by (3.3.9). Let ε|α〉,|β〉 := maxA,B∈Ω

∣∣∣ε(A,B, |α〉, |β〉
)∣∣∣ .

Then the Cauchy-Schwarz inequality and normalization of the rows of V implies that

|ε̃
(
A,B, |α〉, |β〉

)
| ≤

∑
F,F′∈Ω

|v∗A,F′vB,F|ε|α〉,|β〉 ≤ |Ω|ε|α〉,|β〉. (3.3.10)

3.3.2 The Leung et al. truncated recovery

The truncated recovery of Leung et al. [LNCY97] gives an algebraically simple lower bound

on the entanglement fidelity of a code with respect to a noisy channel, under certain

assumptions on the noisy channel and the quantum code. To understand this truncated

recovery, we need the following notation.

N2. We use the notation of N1. For all A ∈ Ω, define ΠA := UAΠUA
† where UA is

the unitary in the polar decomposition AΠ = UA

√
ΠA†AΠ. Define the completely positive

but not necessarily trace preserving linear operator RΩ,C : B(H) → B(H) where for all

47



µ ∈ B(H),

RΩ,C(µ) :=
∑
A∈Ω

RAµR†A, RA := U†AΠA. (3.3.11)

Without loss of generality, we pick Ω such that
√

ΠA†AΠ is never the zero operator.

We call the completely positive map RΩ,C a truncated recovery map, because Ω is a

truncated Kraus set of the quantum channel A. The truncated recovery map RΩ,C is also

a quantum operation when the projectors ΠA in N2 are orthogonal, that is

ΠAΠB = ΠAδA,B ∀A,B ∈ Ω. (3.3.12)

Lemma 3.3.1 (Leung et al. [LNCY97]). In the notation of N1 and N2, for any ρ ∈ D(C),

the bound
∑

A∈Ω |Tr(RAAρ)|2 ≥
∑

A∈Ω λmin,C(A
†A) holds.

Proof. For A ∈ Ω, define µA := λmin,C(A
†A) and the positive semidefinite residue operator

πA :=
√

ΠA†AΠ−√µAΠ.

Substituting πA into the polar decomposition of AΠ gives

AΠ = UA

√
ΠA†AΠ

= UA(
√

ΠA†AΠ−√µAΠ +
√
µAΠ)

= UA(πA +
√
µAΠ)

= UA(πA +
√
µA1H )Π. (3.3.13)
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The spectral decomposition of ρ in the basis BC and equation (3.3.13) imply that

∑
A∈Ω

|Tr(RAAρ)|2 ≥
∑
A∈Ω

∣∣∣∣∣∣
∑
|β〉∈BC

p|β〉〈β|RAA|β〉

∣∣∣∣∣∣
2

=
∑
A∈Ω

∣∣∣∣∣∣
∑
|β〉∈BC

p|β〉〈β|(ΠU†A)(UA(
√
µA1H + πA)Π)|β〉

∣∣∣∣∣∣
2

. (3.3.14)

Using Π|β〉 = |β〉 and U†AUA = 1H, (3.3.14) becomes

∑
A∈Ω

( ∑
|β〉∈BC

p|β〉〈β|(
√
µA1H + πA)|β〉

)2

.

Moreover πA is positive semi-definite, hence the above expression is at least

∑
A∈Ω

( ∑
|β〉∈BC

p|β〉〈β|(
√
µA1H)|β〉

)2

=
∑
A∈Ω

µA.

ut

Leung et al. proved that when the orthogonality condition (3.3.12) holds, the truncated

recovery map RΩ,C is also quantum operation, and thus Lemma 3.3.1 gives a lower bound

on the worst case entanglement fidelity. We detail this in Lemma 3.3.2.

Lemma 3.3.2 (Leung et.al. [LNCY97]). We use the notation of N1 and N2. Suppose

that (3.3.12) holds. Then the truncated recovery map RΩ,C is a quantum operation and

min
ρ∈D(C)

Fe(ρ,RΩ,C ◦ A) ≥
∑
A∈Ω

λmin,C(A
†A). (3.3.15)

Proof. Observe that ∑
A∈Ω

R†ARA =
∑
A∈Ω

ΠAUAU†AΠA =
∑
A∈Ω

ΠA. (3.3.16)
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Orthogonality of the projectors ΠA implies that(∑
A∈Ω

ΠA

)(∑
A′∈Ω

ΠA′

)
=

∑
A,A′∈Ω

ΠAδA,A′ =
∑
A∈Ω

ΠA. (3.3.17)

Hence
∑

A∈Ω R†ARA is also a projector. The map RΩ,C is also completely positive, that is∑
A∈Ω RAρR

†
A ≥ 0, because U†AρUA ≥ 0 which implies that RAρR

†
A = ΠU†AρUAΠ ≥ 0.

Obmitting non-negative terms in the sum pertaining to the entanglement fidelity, we get

Fe(ρ,RΩ,C ◦ A) ≥
∑
A∈Ω

|Tr(RAAρ)|2. (3.3.18)

Applying Lemma 3.3.1 gives the result. ut

Rescaled maps have been used in the study of near-optimal quantum recovery oper-

ations, including the Barnum-Knill recovery map [BK02] and the Tyson-Beny-Oreshkov

quadratic recovery map [Tys10, BO10]. In the notation of N1 and N2, the completely

positive mapRΩ,C might increase trace and hence not be a quantum operation. Fortunately

a bounded RΩ,C can be rescaled to the quantum operation RΩ,C,η := (1 + η)−1RΩ,C.

Lemma 3.3.3. Using the notation of N1 and N2, let η ≥ |Ω|2 maxA6=B∈Ω

∥∥∥ΠU†AUBΠ
∥∥∥

2
.

Then RΩ,C,η is a quantum operation.

Proof. It suffices to show that
∥∥∥∑A∈Ω R†ARA

∥∥∥
2
≤ 1 + η. First observe that

∑
A∈Ω

R†ARA =
∑
A∈Ω

ΠAUAU†AΠA =
∑
A∈Ω

ΠA.

The projectors ΠA may not be orthogonal, so(∑
A∈Ω

R†ARA

)2

=
(∑
A∈Ω

ΠA

)(∑
B∈Ω

ΠB

)
=
∑

A,B∈Ω

UAΠU†AUBΠU†B

=
∑
A∈Ω

ΠA +
∑

A6=B∈Ω

UAΠU†AUBΠU†B
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and hence∥∥∥(∑
A∈Ω

R†ARA

)2∥∥∥
2

=
∥∥∥∑
A∈Ω

R†ARA

∥∥∥2

2
≤
∥∥∥∑
A∈Ω

R†ARA

∥∥∥
2

+ |Ω|2 max
A6=B∈Ω

∥∥∥ΠU†AUBΠ
∥∥∥

2
.

Let ε =
∥∥∥∑
A∈Ω

R†ARA

∥∥∥
2
− 1 ≥ 0. Then substituting ε and η into the above inequality gives

1 + 2ε+ ε2 ≤ 1 + ε+ η,

which implies that ε ≤ η. Hence
∥∥∥∑A∈Ω R†ARA

∥∥∥
2
≤ 1 + η, and the completely positive

map RΩ,C,η is a quantum operation. ut

3.3.3 Algebraic lower bounds on the worst case entanglement

fidelity

Here, we prove algebraic lower bounds on the worst case entanglement fidelity of a code

using a rescaled truncated recovery map, given partial knowledge of the noisy quantum

channel. Our main technical result is the following:

Theorem 3.3.4. Let the M-dimension code C with an orthonormal basis BC be a subspace

of the Hilbert space H. Let A : B(H)→ B(H) be a quantum channel with truncated Kraus

set Ω. Define G =
∑

A,B∈Ω gA,B where gA,B := 1
M

∑
|β〉∈BC〈β|A

†B|β〉, and suppose that

λmin(G) > 0. Suppose that for all Kraus effects A,B in the truncated Kraus set Ω and for

all distinct orthonormal basis vectors |α〉, |β〉 ∈ BC,∣∣gA,B − 〈α|A†B|α〉∣∣ ≤ ε,
∣∣〈α|A†B|β〉∣∣ ≤ ε. (3.3.19)

Then the minimum entanglement fidelity of our code C with respect to the noisy channel

A is at least (Tr G−M |Ω|2ε)
(

1 +
M |Ω|3ε
λmin(G)

)−1

.

The proof of Theorem 3.3.4 follows from the direct application of Lemma 3.3.3 which
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gives us the important properties of our rescaled truncated recovery, and the repeated

application of the Gershgorin circle theorem.

Proof of Theorem 3.3.4. From (3.3.1), we have

1

M

∑
|α〉∈BC

ε
(
A,B, |α〉, |α〉

)
= 0

which implies that
1

M

∑
|α〉∈BC

ε̃
(
A,B, |α〉, |α〉

)
= 0.

Hence λmax(ΠÃ†ÃΠ) ≥ 1

M

∑
|α〉∈BC

〈α|Ã†Ã|α〉 ≥ dA which is at least λmin(G).

Applying the Gershgorin circle theorem on the matrix ΠÃ†B̃Π with the error estimate

(3.3.10), we get λmax(ΠÃ†B̃Π) ≤M |Ω|ε for distinct A,B ∈ Ω.

For distinct A,B ∈ Ω, let ÃΠ and B̃Π have polar decompositions ÃΠ = UÃ

√
ΠÃ†ÃΠ

and B̃Π = UB̃

√
ΠB̃†B̃Π respectively. Then

ΠÃ†B̃Π =
√

ΠÃ†ÃΠU†
Ã

UB̃

√
ΠB̃†B̃Π =

√
ΠÃ†ÃΠ(ΠU†

Ã
UB̃Π)

√
ΠB̃†B̃Π.

Hence by the sub-multiplicative property for norms, ‖ΠU†
Ã

UB̃Π‖2 is at most

∥∥∥√ΠÃ†ÃΠ
∥∥∥−1

2

∥∥∥ΠÃ†B̃Π
∥∥∥

2

∥∥∥√ΠB̃†B̃Π
∥∥∥−1

2
≤ ‖ΠÃ†B̃Π‖2

min
F∈{A,B}

λmax(ΠF̃†F̃Π)
≤ M |Ω|ε
λmin(G)

.

Hence by Lemma 3.3.3, the map RΩ,C,η is a quantum operation whenever η ≥ M |Ω|3ε
λmin(G)

. By

the Gershgorin circle theorem, λmin,C(Ã
†Ã) is at least dA −M |Ω|ε, and hence∑

A∈Ω

λmin,C(Ã
†Ã) ≥

∑
A∈Ω

(dA −M |Ω|ε) = Tr D−M |Ω|2ε = Tr G−M |Ω|2ε.

Use of Lemma 3.3.1 then gives the result. ut
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Under stronger assumptions on the set of conditions the truncated set of our noisy

channel must satisfy, we can obtain the following corollary.

Corollary 3.3.5. Let t be a positive integer, and γ > 0 be an error parameter, and assume

that the requirements of Theorem 3.3.4 hold with ε = γ2t+1. Suppose that every A ∈ Ω is

of order O(γsA) for some non-negative integer sA ≤ t, and all Kraus effects not in Ω are

of order O(γt+1). Then the minimum entanglement fidelity of the code C with respect to

the noisy channel A is at least 1−O(γt+1).

Proof. Note that Tr G = 1 − O(γt+1), and λmin(G) = O(γt) 6= 0. Substitution of these

parameters into Theorem 3.3.4 gives the result. ut

3.4 Application: Permutation-invariant amplitude damp-

ing codes

In this section, we apply Theorem 3.3.4 to prove the existence of family of multiple

amplitude error correcting permutation-invariant codes.

First we define permutation-invariant codes encoding a single qubit. Define Pm,a to

be the set of all length m binary vectors of weight a, and the corresponding permutation-

invariant qubit states to be |Pm,a〉 :=
∑

x∈Pm,a |x〉
(
m

a

)−1/2

. The permutation-invariant

codes we consider have the logical codewords |jL〉 :=
∑m

a=0

√
λj,a|Pm,a〉 where j ∈ {0, 1}

and |jL〉 are linearly independent. Moreover the non-negative weights λj,a are normalized

so that
∑m

a=0 λj,a = 1.

Now we introduce notation relevant to the amplitude damping channel. The amplitude

damping channel Aγ has Kraus operators A0 = |0〉〈0|+
√

1− γ|1〉〈1| and A1 =
√
γ|0〉〈1|,

where the non-negative parameter γ ≤ 1 quantifies the amount of amplitude damping of

Aγ. We denote the Kraus operators ofA⊗mγ by Ak := Ak1⊗...⊗Akm , where k = (k1, ..., km)

is a binary vector. For positive integers t, we say that a code C is a t-amplitude damping
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code (or a t-AD code) if there exists a quantum operation R such that

max
ρ∈D(C)

(1− Fe(ρ,R ◦ A⊗mγ )) = o(γt). (3.4.1)

The recovery operation that we use in this section is the rescaled recovery map of Leung

et al.

For all i ∈ [m], let Hi denote two-dimension complex Euclidean spaces, which is the

i-th qubit space in a block of length m. Given a subset S ⊆ [m], we use |ψ〉S to denote a

state |ψ〉 ∈
⊗
i∈S
Hi. Let S̄ := {i ∈ [m] : i /∈ S} denote the complement of S with respect to

[m]. Let an indicator vector IS be a length-m binary vector with components equal to 1

on the indices indexed by S and zero everywhere else. Let k = IS where S has a size of k.

Then we have

Ak|jL〉 =
√
γk

m∑
a=0

√
λj,a
√

(1− γ)a−k
(
m

a

)− 1
2

|0〉S
∑

x∈Pm−k,a−k

|x〉S̄. (3.4.2)

Let S ′ be another subset of [m] with size k′, and let k′ = IS′ . Now observe that

∑
x′∈Pm−k′,a′−k′
x∈Pm−k,a−k

〈0|S′〈x′|S̄′ |0〉S|x〉S̄. = δa′−k′,a−k

(
m− |S ∪ S ′|

a− k

)
(3.4.3)

where 0 ≤ a − k ≤ m − |S ∪ S ′|. Hence if λj, a = 0 for all j ∈ {0, 1} and for all integers

a /∈ [k,m− k − k′] we can apply (3.4.3) to get

〈j′L|A
†
k′Ak|jL〉 =

m∑
a=0

m∑
a′=0

√√√√√ λj′,a′λj,a(
m

a′

)(
m

a

)√γk+k′
√

(1− γ)a′−k′(1− γ)a−kδa′−k′,a−k

(
m− |S ∪ S ′|

a− k

)

=
m∑
a=0

√√√√√ λj′,a+k′−kλj,a(
m

a+ k′ − k

)(
m

a

)√γk+k′(1− γ)a−k
(
m− |S ∪ S ′|

a− k

)
. (3.4.4)
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The expression (3.4.4) allows us to deduce algebraically sufficient conditions on λj,a where

the matrix elements of 〈jL|A†kAk′|jL〉 are approximately equivalent to the matrix element

gAk,Ak′
, which is the essence of Lemma 3.4.1. Lemma 3.4.1 is in turn one of the key technical

lemmas to show the existence of t-AD permutation-invariant codes.

Lemma 3.4.1. Let m and t be positive integers, with m > t. Let λj,b = 0 for all integers

b ∈ (m− t,m] and j ∈ {0, 1}. Further suppose that for all non-negative integers c ≤ t and

` ≤ 2t, we have
m∑
b=0

λ0,b

(
m− b
c

)(
b

`

)
=

m∑
b=0

λ1,b

(
m− b
c

)(
b

`

)
.

Let k and k′ be binary vectors of equal weight k where k ≤ t. Then

〈0L|A†kAk′ |0L〉 = 〈1L|A†kAk′|1L〉+O(γ2t+1).

Proof. For non-negative integers m, k, b, c such that b ≤ m− c and c ≤ k, we have(
m− k − c
b− k

)
(
m

b

) =

(
b

k

)
(

m

k − c

)(m− b
c

)(
k

c

)
(c!)2. (3.4.5)
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Using the identity (3.4.5) with (3.4.4), we get

〈jL|A†kAk′|jL〉 =
m∑
b=0

λj,bγ
k(1− γ)b−k

(
b

k

)
(

m

k − c

)(m− b
c

)(
k

c

)
(c!)2

=
m∑
b=0

λj,bγ
k

b−k∑
β=0

(
b− k
β

)
γβ(−1)β

(
b

k

)
(

m

k − c

)(m− b
c

)(
k

c

)
(c!)2

=

(
k

c

)
(c!)2

(
m

k − c

)−1

γk
m∑
b=0

λj,b

(
m− b
c

) b−k∑
β=0

b(k)(b− k)(β)

k!β!
γβ(−1)β

=

(
k

c

)
(c!)2

(
m

k − c

)−1

γk
m∑
b=0

λj,b

(
m− b
c

) b−k∑
β=0

(
b

k + β

)(
k + β

k

)
γβ(−1)β.

(3.4.6)

Hence the coefficient of γβ+k in the expression above is(
k

c

)
(c!)2

(
m

k − c

)−1
(

m∑
b=0

λj,b

(
m− b
c

)(
b

k + β

))(
k + β

k

)
(−1)β.

By the assumption of the lemma, the desired result follows. ut

We also need the following combinatorial lemma:

Lemma 3.4.2. Let t be a positive integer. Then for any non-negative α ≤ t+ 1 we have

t+1∑
i=0

(
t+ 1

i

)
iα(−1)i = 0.

Proof. Let g(x) := (1 − x)t+1 so that g(α)(x) = (t + 1)(α)(1 − x)t+1−α and g(α)(1) = 0.
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Substituting x = 1 into the expansion

g(α)(x) =
t+1∑
i=0

(
t+ 1

i

)
(−1)ii(α)x

i−α,

we get the binomial identity

t+1∑
i=0

(
t+ 1

i

)
(−1)ii(α) = 0. (3.4.7)

We prove our lemma by induction on α. The binomial identity (3.4.7) implies that our

lemma is true for the base cases α = 0, 1. The identity (3.4.7) also implies that

t+1∑
i=0

(
t+ 1

i

)
(−1)ii(α′+1) = 0.

Expanding the falling factorial i(α′+1) into a sum of monomials in i when α′ ≤ t, we get

t+1∑
i=0

(
t+ 1

i

)
iα
′+1(−1)i =

α′∑
β=0

bβ

(
t+1∑
i=0

(
t+ 1

i

)
iβ(−1)i

)

for some choice of constants bβ ∈ R. Note that the bracketed term in the equation above

is zero by the hypothesis that our lemma is true for α = α′, where 1 ≤ α′ ≤ t. Hence the

lemma also holds for α = α′ + 1. ut

The existence of permutation-invariant amplitude damping codes is given by the fol-

lowing theorem:

Theorem 3.4.3. Let t be any positive integer and m = 9t2 + 4t. For all j ∈ {0, 1} and

integers b ≤ m divisible by 3t let

λj,b =

(
3t+ 1

b/(3t)

)
2−3t1 + (−1)b+j

2
(3.4.8)
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and all other values of λj,b be zero. Then the span of |0L〉 =
∑m

b=0

√
λ0,b|Pm,b〉 and |1L〉 =∑m

b=0

√
λ1,b|Pm,b〉 is a t-AD permutation-invariant code.

Proof. By definition, λj,b satisfy the normalization condition
∑m

b=0 λj,b = 1, so λj,b define

valid logical codewords |jL〉. Moreover, |0L〉 and |1L〉 have distinct support, and are hence

linearly independent spanning a two-dimension codespace.

Now define the truncated Kraus set of amplitude damping effects Ω := {Ak : k ∈
Z
m
2 , ‖k‖1 ≤ t}, so that Ω satisfies the order constraints of Corollary 3.3.5. Define the

matrix Gj to be
∑

E,F∈Ω〈jL|E†F|jL〉|E〉〈F|, and G := G0+G1

2
. To use Corollary 3.3.5, we

first have to prove that the matrix G is positive definite.

Let Ã =
∑

F∈Ω vA,FF and V :=
∑

E,F∈Ω vE,F|E〉〈F| be as defined in (3.3.7) and

(3.3.4) respectively. and correspondingly define the vector |ΨA〉 :=
∑

F∈Ω vA,F|F〉. Ob-

serve that λmin(G) = λmin(VGV†) = minA∈Ω〈A|VGV†|A〉 = minA∈Ω〈ΨA|G|ΨA〉 =

minA∈Ω
1
2
〈ΨA|(G0 + G1)|ΨA〉 = minA∈Ω

1
2

∑1
j=0〈jL|Ã†Ã|jL〉 = minA∈Ω

1
2

∑1
j=0 ‖Ã|jL〉‖2.

Now the Kraus elements in Ω annihilate at most t excitations, but the logical states |jL〉 are

permutation-invariant with support containing at least 3t excitations. Hence ‖Ã|jL〉‖2 > 0

which implies that λmin(G) > 0.

Our choice of λj,b implies that 〈jL|A†kAk′|jL〉 = 0 and 〈0L|A†kAk′|1L〉 = 0 when k,k′ ∈
Z
m
2 such that ‖k‖1 = ‖k′‖1 ≤ t. Now we set t to 3t in Lemma 3.4.2, and note that the

coefficient of λj,b in the assumption of Lemma 3.4.1 is a polynomial of order no more than

3t in the variable b. Then applying Lemma 3.4.2 to Lemma 3.4.1 shows that the conditions

of Theorem 3.3.4 are satisfied with ε = O(γ2t). ut
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Part II

Upper and lower bounds on the quantum

capacity of various quantum channels
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Chapter 4

Concatenated Quantum Codes

attaining the Quantum

Gilbert-Varshamov Bound

4.1 Introduction

A quantum code is a subspace of a Hilbert space with a possibly infinite dimension. In

the context of this chapter, we restrict ourselves to finite dimension Hilbert spaces which

are isomorphic to complex Euclidean spaces. Qubit quantum block codes are subspaces

of an n-fold tensor product of two-dimension Hilbert spaces. Here n denotes the block

length of the quantum block code. We study q-ary quantum codes which are quantum

block codes, and are subspaces of an n-fold tensor product of q-dimension Hilbert spaces.

The dimension of a q-ary quantum code quantifies the amount of quantum information

that the code can encode, and its logarithm to base q is the code’s rate. The distance of a

q-ary code is the minimum number of blocks that can be corrupted such that one can be

fooled to believe that there was in fact no corruption of quantum information. If a q-ary

code has a distance d, there would exist procedures to reverse the corruption of up to d−1
2

blocks of quantum information perfectly.
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A family of q-ary quantum codes [Rai99b] of increasing block length is defined to be

good if the ratio of its distance to its block length approaches a non-zero constant and has

a strictly positive rate. Designing good quantum codes is highly nontrivial, just as it is in

the classical case. The quantum Gilbert-Varshamov (GV) bound [Got97, ABKL00, AK01,

FM04, Ma08, JX11] is a lower bound on an achievable relative distance of a quantum code

of a fixed rate, and is attainable for various families of random quantum codes [Got97,

AK01, Ma08]. Explicit families of quantum codes, both unconcatenated [ALT01, Mat02]

and concatenated [CLX01, Fuj06, Ham08, LXW09], have been studied, but do not attain

the quantum GV bound for q < 7 [Nie07]. We show that concatenated quantum codes can

attain the quantum GV bound.

We are motivated by the historical development of the idea of concatenating a sequence

of increasingly long classical Reed-Solomon (RS) outer codes with various types of classical

inner codes. In both cases where the inner codes are all identical [MS77] or all distinct

[Jus72], the resultant sequence of concatenated codes while asymptotically good nonethe-

less fail to attain the GV bound. A special case of Thommesen’s result [Tho83] shows that

even if the inner codes all have a rate of one, if they are chosen uniformly at random, the

resultant sequence of concatenated codes almost surely attains the GV bound. Our work

extends this classical observation to the quantum case.

We show the quantum analog of Thommesen’s result – the sequence of concatenated

quantum codes with the outer code being a quantum generalized RS code [GGB99, GBR04,

LXW08, LXW09] and random inner stabilizer codes almost surely attains the quantum GV

bound when the rates of the inner and outer codes lie in feasible region defined by Figure

4.1. The property of the outer code that we need is that the normalizer of its stabilizer

is a classical generalized RS code [LXW08]. Our work is closest in spirit to that of Fujita

[Fuj06], where quantum equivalents of the Zyablov and the Blokh-Zyablov bounds are

obtained (not attaining the quantum GV bound) by choosing a quantum RS code with

essentially random inner codes.

In the proof of the classical result, Thommesen uses a random coding argument to

compute the probability that any codeword of weight less than the target minimum distance

belongs to the random code. Subsequently, he uses the union bound, properties of the
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Reed-Solomon outer code, and properties of the q-ary entropy function (defined in 4.2.1),

to prove that the proposed random code almost surely does not contain any codeword of

weight less than the prescribed minimum distance.

The proof of our quantum result follows a similar strategy, with codewords replaced by

elements of the normalizer not in the stabilizer. However the feasible region for the rates

of the inner and outer codes for the classical and the quantum result are not analogous,

because we use a slightly different property of the q-ary entropy function.

The organization of this chapter is as follows: Section 5.2 introduces the notation and

preliminary material used in this chapter. The formalism of concatenating stabilizer codes,

which is crucial to the proof of the main result, is carefully laid out in this section. We

state our main result in Theorem 4.3.1 of Section 5.5, and the remainder of the chapter is

dedicated to its proof.

4.2 Preliminaries

Let L(Cq) denote the set of complex q by q matrices. Define 1q to be a size q identity matrix

and ωq := e2πi/q to be a primitive q-th root of unity, where q ≥ 2 is an prime power. Define

0 logq 0 := 0. Define the q-ary entropy function and its inverse to be Hq : [0, 1]→ [0, 1] and

H−1
q : [0, 1]→ [0, q−1

q
] respectively where

Hq(x) := x logq(q − 1)− x logq x− (1− x) logq(1− x). (4.2.1)

The q-ary entropy function is important because it helps us to count the size of sets with

q symbols. The base-q logarithm of the number of vectors over Fq of length n that differ in

at most xn components from the zero-vector is dominated by nHq(x) as n becomes large.

For a ground set Ω, define |Ω| to be its cardinality. For all n-tuples x ∈ Ωn, define xj

to be j-th element of the n-tuple x. Given tuples x ∈ Ωn and y ∈ Ωm, define the pasting

of the tuples x and y to be (x|y) := (x1, ..., xn, y1, ..., ym). When M1 and M2 are matrices
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with the same number of columns, define (M1;M2) :=

(
M1

M2

)
. For positive integer `, define

[`] := {1, ..., `}. Define the Hamming distance dH(x,y) between x ∈ Ωn and y ∈ Ωn as the

number of indices on which x and y differ. Define the minimum distance of any subset

C ⊂ Ωn minx,y∈C{dH(x,y) : x 6= y}.

A code over a vector field F
n
q is q-ary linear code of length n if it is a subspace of Fnq .

A classical q-ary linear code [MS77] of block length n and k generators with minimum

distance of d is said to be an [n, k]q code or an [n, k, d]q code. A classical [n, k, d]q code is

maximally distance separated (MDS) if d = n − k + 1. A quantum q-ary stabilizer code

[Rai99b] of block length n encoding k qudits is said to be an Jn, kKq code. The rates of an

Jn, kKq code and an [n, k]q code are both defined to be k
n
.

4.2.1 Finite Fields and q-ary Error Bases

In this section, we review the connection between finite fields and q-ary error bases [AK01].

Let q = pk where p is a prime number and k is a positive integer. Let b := (β1, ..., βk) have

components that form a basis for Fq. For any α(j), β(j) ∈ Fq where j is a dummy index, we

have α(j) = (a(j))Tb and β(j) = (b(j))Tb where the coefficients vectors are a(j),b(j) ∈ Fkp.
Let

X :=

p−1∑
j=0

|(j + 1) mod p〉〈j|

Z :=

p−1∑
j=0

(ωp)
j|j〉〈j| (4.2.2)

be generalizations of the qubit Pauli matrices satisfying the commutation property XaZb =

(ωq)
abZbXa for integers a and b. The matrix defined as

Xa(j)Zb(j) := Xa
(j)
1 Zb

(j)
1 ⊗ ...⊗Xa

(j)
k Zb

(j)
k (4.2.3)
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is an element of a q-ary error basis, and is naturally identified with (α(j), β(j)) ∈ F2
q and

also α(j) + β(j)γ ∈ Fq2 where {1, γ} is a Fq-linear basis of Fq2 .

Elements of a q-ary error basis on n qudits have the form

X(a(1)|...|a(n))Z(b(1)|...|b(n))

and can be identified with (α(1)|...|α(n)|β(1)|...|β(n)) ∈ F2n
q and (α(1)+β(1)γ, ..., α(n)+β(n)γ) ∈

F
n
q2 , where the vertical bars denote the pasting operation that we have defined earlier in

the preliminaries. The matrices XaZb and Xa′Zb′ commute if and only if the vectors (a|b)

and (a′|b′) are orthogonal with respect to a well-chosen scalar product1 over F2n
q (see (22)

and (26) of [AK01]) that we denote as ∗. When we use the field Fnq2 , we consider a different

notion of orthogonality using the Hermitian scalar product (see (28) of [AK01]), that maps

the vectors x,y ∈ F
n
q2 to

∑n
i=1(xi)

qyi. The scalar product is called Hermitian because

taking an element of Fq2 to the q-th power is analogous to conjugation over the complex

field. For all non-zero x ∈ Fq2 , xq 6= x and (xq)q = xq
2

= x.

4.2.2 Stabilizer Codes

In this section, we define terminology related to stabilizer codes with a special type of

structure in the context of finite fields and error bases [Got97, AK01].

Consider the generator matrix

G = (GS;GX ;GZ)

over Fq with n+k rows and 2n columns where the stabilizer generator GS = (s(1); ...; s(n−k)),

the logical-X generator GX = (x(1); ...;x(k)), and the logical-Z generator GZ = (z(1); ...; z(k))

are submatrices of G, each of full rank. We also require G = (GS;GX ;GZ) to satisfy the

following properties:

1In [AK01], the authors use the phrase ‘inner product’ to refer to the scalar product in an abuse of
terminology; the scalar product does not satisfy the properties required for an inner product when the
vector space is a finite field.
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1. Each row of GS is orthogonal to every row of G.

2. For all i ∈ [k], the i-th row of GX is orthogonal to every row of G except the i-th

row of GZ . In particular, x(i) ∗ z(i) = c for some fixed non-zero c ∈ F2n
q . (The choice

of c may be set to 1 without loss of generality.)

We also define G̃ = (G̃S; G̃X ; G̃Z) to be a similarly defined matrix over Fq2 , with n + k

rows and n columns. In particular, the matrices G̃S, G̃X , and G̃Z are the Fq2 analogs of

the matrices GS, GX and GZ .

We denote the classical codes generated by GS and G by CS and CN respectively, which

we call the stabilizer and normalizer over Fq respectively. We also denote the classical

codes generated by G̃S and G̃ by C̃S and C̃N respectively, and call them the stabilizer and

normalizer over Fq2 respectively.

An Jn, kKq stabilizer code is a subspace of (Cq)⊗n of dimension qk that is left invariant

by the action of error base elements corresponding to the elements in CS. The error basis

elements corresponding to the rows of GX and GZ are generators for logical operations

that can be applied on the stabilizer code. Here, we refer to the language of finite fields

to work with stabilizer codes developed by Ashikhmin and Knill [AK01]. In this chapter,

we use primarily the representation of stabilizer codes with the generator matrix G̃.

The distance of an Jn, kKq stabilizer code generated by G is the minimum distance of the

punctured classical code C̃N\C̃S:= {x ∈ C̃N : x /∈ C̃S} [AK01], and has a lower bound given

by the minimum distance of the code C̃N . When the lower bound is met with equality, the

stabilizer code said to be degenerate. We denote an Jn, kKq stabilizer code with distance d

as Jn, k, dKq.

In this chapter, a random stabilizer code with parameters Jn, kKq is a stabilizer code

with its generator matrix G = (GS;GX ;GZ) chosen uniformly at random from all possible

generator matrices with n+ k rows and 2n columns.

Let us have two convergent sequences {rn}n∈N, {δn}n∈N ⊂ [0, 1], where limn→∞ rn = r

and limn→∞ δn = δ. Here r and δ are to be interpreted as the parameters of the codes of
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interest, which are the codes’ rate and relative distance respectively. The asymptotic q-ary

classical GV bound is the inequality

δ ≥ H−1
q (1− r), (4.2.4)

and the asymptotic quantum q-ary GV bound is the inequality

δ ≥ H−1
q2

(
1− r

2

)
. (4.2.5)

We say that a sequence of [n, rn, δnn]q classical linear q-ary codes attains the classical GV

bound if the inequality (4.2.4) is satisfied. Similarly we say that a sequence of Jn, nrn, nδnKq
quantum stabilizer codes attains the quantum GV bound if (4.2.5) is satisfied.

The classical GV bound and the quantum GV bound can be attained almost surely by

sequences of random linear codes and sequences of random stabilizer codes respectively.

Classical and quantum random codes almost surely do not have (4.2.4) and (4.2.5) holding

with a strict inequality. Hence the classical and quantum GV bounds characterize the

typical performance of random classical linear codes and quantum stabilizer codes tightly.

However given a random code, its distance is hard to evaluate, and the corresponding

encoding and decoding procedure is inefficient because of its lack of structure. For q < 7,

there are no known efficiently encodable and decodable q-ary quantum stabilizer codes that

satisfy the quantum GV bound strictly. The condition q < 7 is necessary because the q-ary

quantum Goppa codes [Nie07] satisfy the quantum GV bound strictly for q ≥ 7. Finding q-

ary quantum codes that attain the quantum GV bound that are more efficiently encodable

and decodable than purely random stabilizer codes for q < 7 remains an important

problem.

To decode a Jn, kKq quantum stabilizer code, one performs error correction by measuring

n − k times, where each measurement which has q possible outcomes corresponds to a

distinct row of GS. Hence there are qn−k total syndromes. In the absence of any structure

in the stabilizer code, one would have to construct a lookup table with qn−k rows to perform

maximum likelihood decoding. Hence the decoding complexity of a random stabilizer code
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using this näıve strategy is O(qn(1−r)), where the rate of the code r = k/n is viewed as a

fixed parameter, and n is the varying large parameter.

4.2.3 Concatenation of Stabilizer Codes

In this section we only consider the notion of concatenation with respect to stabilizer codes.

Concatenation is a procedure that makes a longer code out of an appropriately chosen set

of shorter codes, and allows both the encoding and decoding procedure each to be broken

down into two steps. Let q = pk where p is prime.

1. Encoding: The quantum message which is a qK-dimension (or equivalently pkK-

dimension) quantum state is encoded into JN,KKq stabilizer code. We call this

code an outer code. The outer code comprises of N blocks of dimension q complex

Euclidean spaces, and each of these N blocks is further encoded by possibly distinct

Jn, kKp codes. These codes with n blocks of dimension p complex Euclidean spaces

are called inner codes. The resultant code is a concatenated code with parameters

JnN, kKKp.

2. Decoding: The quantum state that is to be decoded comprises of nN blocks of

p-dimension complex Euclidean spaces. Each consecutive block of n dimension p

complex Euclidean spaces is decoded using the corresponding decoding procedure for

the corresponding Jn, kKp codes. After this initial layer of decoding, the output is N

blocks of q-dimension complex Euclidean spaces. These N blocks are decoded using

the decoding procedure of the JN,KKq outer code.

Since the encoding and decoding process can be broken down into two layers, concate-

nated codes potentially have better encoding and decoding time complexities than codes

without such a structure. For our main result, we choose our outer code to be a quantum

generalized RS code.

Let our JN,KKq outer code be generated by G(out) = (G
(out)
S ;G

(out)
X ;G

(out)
Z ) and the N

possibly distinct Jn, kKp inner codes be generated by G(in,j) = (G
(in,j)
S ;G

(in,j)
X ;G

(in,j)
Z ) for
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j ∈ [N ]. The concatenation of the JN,KKq outer code with N possibly distinct inner

codes is an JnN, kKKp code generated by G(concat) = (G
(concat)
S ;G

(concat)
X ;G

(concat)
Z ). In the

remaining part of this section, we describe how G(concat) is constructed using G(out) and

G(in,j) for j ∈ [N ].

Define the direct product of the stabilizers of the inner codes to be

C̃
(in,1:N)
S := C̃

(in,1)
S × ....× C̃(in,N)

S

=
{

(σ(1)|...|σ(N)) : σ(j) ∈ C̃(in,j)
S , j ∈ [N ]

}
and denote the logical generators of the j-th inner code as

G̃
(in,j)
X := (x(in,j),1; ...;x(in,j),k)

G̃
(in,j)
Z := (z(in,j),1; ...; z(in,j),k).

Now let σ = (α(1)+β(1)γq, ..., α
(N)+β(N)γq) be an element of FNq2 , where {1, γq} is a Fq-linear

basis of Fq2 , and α(i), β(i) ∈ Fq for all i ∈ [k]. For all i ∈ [k], also let α(i) = (a
(i)
1 , ..., a

(i)
k )Tb

and β(i) = (b
(i)
1 , ..., b

(i)
k )Tb where b ∈ F

k
q has components that form a basis for Fq, and

a
(i)
j , b

(i)
j ∈ Fp. Then we define the map π : FNq2 → F

nN
p2 where

π(σ) :=
k∑
`=1

(
a

(1)
` x(in,1),` + b

(1)
` z(in,1),`|...|a(N)

` x(in,N),` + b
(N)
` z(in,N),`

)
. (4.2.6)

Then the stabilizer generator, X-logical generator and the Z-logical generator of our

concatenated code are given by

G̃
(concat)
S =

π(G̃
(out)
S );


G̃

(in,1)
S 0 0 0

0 G̃
(in,2)
S 0 0

0 0
. . . 0

0 0 0 G̃
(in,N)
S




G̃
(concat)
X = π(G̃

(out)
X ), G̃

(concat)
Z = π(G̃

(out)
Z ) (4.2.7)
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respectively, where the map π acts component-wise on a set of finite-field elements. The

classical codes associated with the stabilizers and the normalizers of the concatenated code

over Fp2 are

C̃
(concat)
S := π(C̃

(out)
S ) + C̃

(in,1:N)
S

C̃
(concat)
N := π(C̃

(out)
N ) + C̃

(concat)
S ,

In this chapter, we use some of the quantum codes of Li, Xing and Wang [LXW08] as

the outer codes of our concatenated codes. The key feature of their code that we use is

that their constructed stabilizer C̃S and normalizer C̃N are classical MDS codes. While

the codes in [GBR04] have the same parameters as the ones that we use, they need not

have the property that their stabilizer and normalizers are classical MDS codes.

Theorem 4.2.1 (Li, Xing, Wang [LXW08] ). Let N be a prime power. Then for all

positive integers D ≤ N
2

, there exists an JN,N −2(D−1), DKN code with stabilizer C̃S and

normalizer C̃N that are classical MDS codes, where C̃N is the Hermitian dual of C̃S.

4.3 The Main Result

Theorem 4.3.1. Let q = N = pk where p is prime and k is a positive integer. Let

0 ≤ R < 1 and 0 ≤ r ≤ 1 be rationals such that R = q−2(D−1)
q

, r = k
n

, k, n,D are positive

integers with D ≥ 2, and the inequality

0 ≤ 1− r ≤ − logp2

(
1−H−1

p2

(
1−R

2

))
. (4.3.1)

is satisfied. Then an JN,RNKN outer code of Theorem 4.2.1 concatenated with N random

Jn, rnKp inner quantum codes is an JnN, rRnN, dKp quantum code, where with probability
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at least 1− (p− p−1)−1p−N(1−R)/2,

d

nN
> H−1

p2

(
1− rR

2

)
− c(p, r)

n

and

c(p, r) :=
logp 2 + 1

logp2

(
(p2 − 1)

(
1

H−1

p2
( 1+r

2
)
− 1

)) . (4.3.2)

Figure 4.1: The shaded region indicates the feasible region of (R, 1− r) for which Theorem
4.3.1 applies. Here R is the asymptotic rate of the outer code, r is the rate of each of the
inner codes, and p = 2.

Let R0 and r0 be feasible asymptotic rates (see Figure 4.1) of the outer and inner codes

respectively with respect to the inequality (4.3.1). When n becomes arbitrarily large,
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there will always exist an epsilon ball about R0 and r0 that contains feasible a (r, R) tuple

for Theorem 4.3.1 to hold, where epsilon becomes arbitrarily small. Thus Theorem 4.3.1

implies that concatenated codes can attain the quantum GV bound.

The significance of the result is a potential saving in decoding complexity of quantum

GV bound attaining codes with a concatenated structure as compared to those that do

not. The decoding complexity of a random JnN, nNrRKq stabilizer code is O(pnN(1−rR)) =

O(pnp
rn(1−rR)). On the other hand, the worst decoding complexity of our concatenated

code is O((pn(1−r)(pk)
N(1−R)

)) = O(pn(1−r)+nrprn(1−R)), which outperforms the decoding of

random codes without a concatenated structure when r > 0.

In this section, the outer and inner codes are of the type stipulated by Theorem 4.3.1,

and their notation follow that of Section 4.2.3.

4.3.1 Technical Lemmas

Proposition 4.3.2. Consider a random Jn, kKp stabilizer code generated by G = (GS;GX ;GZ).

Let a,b ∈ Fkp where (a,b) 6= 0. The probability that nonzero σ ∈ F2n
p , belongs to the set

aTGX + bTGZ + CS is at most p−(n+k).

Proof. Every dimension ` subspace of F2n
q has q2n−` cosets, each of size q`. Given a set X

of x linearly independent vectors, the number of ways to pick the the generating rows of a

feasible GS that corresponds to a Jn, kKp code such that X ⊆ CN is
∏n−k−1

i=0 (p2n−x−i −
pi). Given that a feasible GS is picked, the number of ways to pick GX and GZ is∏n+k

j=n−k p
2n−x−j. Hence the required probability is

∏n−k−1
i=0 (p2n−1−i − pi)

∏n+k
j=n−k p

2n−1−j∏n−k−1
i=0 (p2n−i − pi)

∏n+k
j=n−k p

2n−j

which is at most p−(n+k). ut

Lemma 4.3.3. Let W ∈ C̃(out)
N have weight w ≥ D′, and let h be a positive positive integer
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such that h ≤ p2−1
p2 nw. Then

Pr

[
min

σ∈π(W )+C̃(in,1:N)
wt(σ) ≤ h

]
≤ (p2)nwHp2 ( h

nw
)p−(n+k).

Proof. Applying Proposition 4.3.2, we find that for all σ ∈ π(W ) + C̃(in,1:N), the inequality

Pr [wt(σ) ≤ h] ≤ p−(n+k) supp(W ) holds, where supp(W ) is the number of components of the

vector W that are non-zero. Then application of the union bound gives the result, where

we have used an upper bound on the size of a p2-ary Hamming ball [MS77] which holds

when h ≤ p2−1
p2 nw. ut

Now we proceed to prove our main result, Theorem 4.3.1.

Proof of Theorem 4.3.1. Let Aw be the number of codewords in the code C̃
(out)
N with weight

w. Since C̃
(out)
N is a classical MDS code [LXW08] of alphabet size p2k, all of the Aw’s are

known exactly [MS77] and we can use Thommesen’s result [Tho83] to conclude that

Aw ≤
(
N

w

)
(p2k)w−D

′+1, D′ ≤ w ≤ N. (4.3.3)

where D′ is the distance C̃
(out)
N . Observe that

Pr[d ≤ h] = Pr[min{wt(σ) : σ ∈ C̃(concat)
N \C̃(concat)

S } ≤ h]

≤
∑

W∈C̃(out)
N \C̃(out)

S

Pr
[
min{wt(σ) : σ ∈ π(W ) + C̃(in,1:N)} ≤ h

]

≤
N∑

w=D′

2N(p2k)w−D
′+1(p2)nwHp2 ( h

nw
)−n+k

2
w

The first inequality is from the union bound, and the second inequality comes from
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simultaneous application of Lemma 4.3.3, (4.3.3) and the fact that

(
N

w

)
≤ 2N . Hence

Pr[d ≤ h] ≤
N∑

w=D′

(p2)−nwγ(h,w)

≤ (p2)−nD
′η̄ 1

1− p−2nη̄

where η̄ ∈ (0,minw∈[D′,N ] η(h,w)] and

η(h,w) := −ε− rθ −Hp2

(
h

nw

)
+

1 + r

2
, (4.3.4)

ε = N
w

logp 2

n
and θ = 1− D

w
+ 1

w
. Here RN = 1+R

2
is the rate of C̃

(out)
N . Then 1 ≥ w

N
= 1−RN

1−θ ≥
1−R

2
. Our strategy is to first fix a positive η̄, then select a large feasible h for which the

inequality η(h,w) ≥ η̄ holds for all w ∈ [D′, N ]. We pick η̄ = 1
n
.

The inequality η(h,w) ≥ η̄, the equation (4.3.4), and the monotone increasing property

of the inverse entropy function on the open unit interval imply that

h

nN
≤ 1−RN

1− θ
H−1
p2

(
1 + r

2
− rθ − ε− η̄

)
(4.3.5)

for all w ∈ [D′, N ]. We need to obtain a lower bound on the right hand side of the

inequality (4.3.5) for all w ∈ [D′, N ]. The right hand side of the inequality satisfies the

following lower bounds.

1−RN

1− θ
H−1
p2

(
1 + r

2
− rθ − ε− η̄

)
≥1−RN

1− θ
H−1
p2

(
1 + r

2
− rθ

)
− w

N
(ε+ η̄)

c(p, r)

logp 2 + 1

≥1−RN

1− θ
H−1
p2

(
1 + r

2
− rθ

)
− c(p, r)

n
. (4.3.6)

Using Lemma 4.4.2 on the right hand side of (4.3.5) gives us the first inequality. The
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second inequality comes from the monotonicity of the inverse p2-ary entropy function and

the inequality

w

N
(ε(w) + η̄) =

logp 2

n
+
w

N

1

n
≤

logp 2 + 1

n
. (4.3.7)

Since 0 ≤ θ ≤ RN and 1 + 2 logp2(1−H−1
p2 (1−R

2
)) ≤ r ≤ 1, we can use Lemma 4.4.1 to get

min
0≤θ≤RN

1−RN

1− θ
H−1
p2

(
1 + r

2
− rθ

)
= H−1

p2

(
1 + r

2
− r1 +R

2

)
= H−1

p2

(
1− rR

2

)
. (4.3.8)

Thus it suffices to have

h

nN
≤ H−1

p2

(
1− rR

2

)
− c(p, r)

n
(4.3.9)

for our concatenated code to have a distance of at most h with probability at most

p−D
′ 1
1−p−2 . This is equivalent to saying that the distance of our concatenated code is

strictly greater than h with probability strictly larger than 1 − p−D
′ 1
1−p−2 . Now D′ =

N − N+NR
2

+ 1 = N 1−R
2

+ 1, and thus the result follows. ut

4.4 Appendix : The q-ary Entropy and its Inverse

In this section, we derive properties of the q-ary entropy function and its inverse. Since

Hq is a concave function strictly increasing on (0, q−1
q

), H−1
q is a convex function strictly

increasing on the open interval (0, 1). Observe that for x ∈ (0, 1),

H ′q(x):=
d

dx
Hq(x) = logq(q − 1)− logq x+ logq(1− x) (4.4.1)

(1− x)H ′q(1− x) = Hq(1− x) + logq x. (4.4.2)

Since Hq(y) is a continuously differentiable function for y ∈ (0, 1 − 1
q
), by the inverse
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function theorem, we have that

(H−1
q )′(y):=

d

dy
H−1
q (y) =

1

H ′q(H
−1
q (y))

(4.4.3)

for y ∈ (0, 1).

Lemma 4.4.1. The function

1

1− θ
H−1
q

(
1 + r

2
− rθ

)
is non-increasing with respect to θ for 0 ≤ θ ≤ 1+R

2
when 0 ≤ R ≤ 1 and

1 ≥ r ≥ 1 + 2 logq

(
1−H−1

q

(
1−R

2

))
. (4.4.4)

Proof. First observe that by making the substitution 1− f = H−1
q (1+r

2
− rθ), we have

d

dθ

(
1

1− θ
H−1
q

(
1 + r

2
− rθ

))
=

1

(1− θ)2
(1− f)− r

1− θ
(H−1

q )′
(

1 + r

2
− rθ

)
=

1

1− θ

(
1− f
1− θ

− r

H ′q(1− f)

)
(4.4.5)

where the second equality comes from applying (4.4.3). The expression (4.4.5) is non-

positive if and only if

1− f
1− θ

≤ r

H ′q(1− f)

(1− f)H ′q(1− f) ≤ r(1− θ). (4.4.6)
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Using (4.4.2), we find that

(1− f)H ′q(1− f) = Hq(1− f) + logq f

=

(
1 + r

2
− rθ

)
+ logq f. (4.4.7)

Thus the inequality (4.4.6) holds if and only if

1 + r

2
− rθ + logq f ≤ r(1− θ)

r

(
1

2
− θ
)

+
1

2
+ logq f ≤ r(1− θ)

1 + 2 logq f ≤ r. (4.4.8)

Thus it suffices to obtain an upper bound on 1+2 logq f that holds for all θ ∈ [0, 1+R
2

]. The

monotonicity of the inverse q-ary function and the restrictions on the domains of r and R

imply that

1 + 2 logq f ≥ 1 + 2 logq

(
1−H−1

q

(
1 + r

2
− r1 +R

2

))
= 1 + 2 logq

(
1−H−1

q

(
1− rR

2

))
(4.4.9)

≥ 1 + 2 logq

(
1−H−1

q

(
1−R

2

))
, (4.4.10)

thereby proving the result. ut

Lemma 4.4.2. For all integer q ≥ 2 and for all y, y − ε ∈ (0, q−1
q

) we have

H−1
q (y − ε)≥H−1

q (y)− ε
(

logq(q − 1) + logq

(
1

H−1
q (y)

− 1

))−1

.

Proof. Let g = H−1
q . Since g is convex and continuously differentiable on the open interval

(0, 1), for all y, y−ε in the open interval (0, 1) we have g(y−ε)≥g(y)−εg′(y). The equations
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(4.4.3) and (4.4.1) imply that

g′(y) =
1

(Hq)′(g(y))
=

(
logq(q − 1) + logq

(
1

g(y)
− 1

))−1

(4.4.11)

for y ∈ (0, 1). Hence the result follows. ut
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Chapter 5

The Quantum Capacity of

Degradable Covariant Channels and

their Convex Combinations

5.1 Introduction

The quantum capacity of a quantum channel is the maximum rate at which quantum

information can be transmitted reliably across it, given arbitrarily many uses of it [Wil11].

However, evaluating the quantum capacity of a quantum channel is in general an infinite

dimension optimization problem, and hence difficult, even for quantum channels with low

dimension input and output states. The quantum capacity of even the simply described

family of depolarizing channels is undetermined, and upper bounds of the quantum capacity

of depolarizing channels has only been studied in the qubit case, of which the best-known

upper bounds were obtained by Smith and Smolin [SS08].

The contributions of this chapter are new upper bounds on the quantum capacity of

several families of simply described channels. The key ingredient Smith and Smolin use

in their recipe to obtain upper bounds on the quantum capacity of the qubit depolarizing

channel [SS08] is the family of degradable qubit amplitude damping channels. To obtain
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new upper bounds on the quantum capacity of other families of low dimension channels,

we introduce a new ingredient – degradable amplitude damping channels of dimension four

– in our extension of Smith and Smolin recipe .

In our extension of Smith and Smolin’s recipe, we prove that the quantum capacity

of a degradable channel twirled over a projective commutative unitary group at most its

coherent information of the degradable channels maximized over a contracted input state

space (Theorem 5.4.2). Smith and Smolin’s recipe is produced as a special case of our

extension when the projective commutative unitary group is chosen to be the full qubit

Clifford group.

We find that many degradable quantum channels have quantum capacities that are just

their coherent informations maximized over the diagonal input states. This finding is a

direct consequence of our Theorem 5.4.2, because these degradable channels are covariant

with respect to diagonal Pauli matrices.

We use our main result to produce explicit upper bounds for the quantum capacity

for several families of quantum channels. These include the m-qubit depolarizing channels

(Corollary 5.5.4, Figure 5.1), the two-qubit locally symmetric channels (Corollary 5.5.6,

Figure 5.2), and the shifted qubit depolarizing channels (Corollary 5.5.7, Figure 5.3). The

main ingredients that we introduce to obtain these new upper bounds are our higher

dimension amplitude damping channels that are degradable.

We organize this chapter in the following order. In Section 5.2 we review background

material needed for this chapter, introducing concepts such as the quantum capacity,

complementary channels, and the degradable extension channels of Smith and Smolin.

In Section 5.4, we present the main structural result of the chapter, which is Theorem

5.4.2, placed in the context of channel twirlings and channel covariance. In Section 5.5, we

present our explicit upper bounds on the quantum capacity of some mostly low dimension

unital and non-unital channels.
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5.2 Preliminaries

Define η(z) := −z log2 z where z ∈ [0, 1] and η(0) := 0. Define the Pauli matrices to be

1 :=

(
1 0

0 1

)
,X :=

(
0 1

1 0

)
,Z :=

(
1 0

0 −1

)
,Y := iXZ.

Define the Pauli group on m qubits modulo phases, to be Pm := {1,X,Y,Z}⊗m. For

all P ∈ Pm, define the weight of P to be the number of qubits that the operator P acts

non-trivially on.

For a complex separable Hilbert space H, let B(H) be the set of bounded linear

operators mapping H to H. In this chapter, we only deal with finite dimension Hilbert

spaces. A quantum channel Φ : B(HA) → B(HB) is a completely positive and trace-

preserving (CPT) linear map, and can be written in its Kraus form [Kra83]

Φ(ρ) =
∑
k

AkρA
†
k,

where the completeness relation
∑

k A†kAk = 1dA is satisfied. Here, dA = dim(HA)

and 1dA is a dimension dA identity matrix. We can also write down the action of a

quantum channel Φ in terms of an isometry on the input state. Now define an isometry

W : B(HA)→ B(HE ⊗HB)

W =
∑
k

|k〉 ⊗Ak.

Here {|k〉} is an orthornormal set, and spans a Hilbert space HE that we interpret to be

the environment. Then

WρW† =
∑
j,k

|j〉〈k| ⊗AjρA
†
k

and

TrHE(WρW†) = Φ(ρ).
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Then we can define the complementary channel ΦC : B(HA)→ B(HE) [DS05] as

ΦC(ρ) = TrHB(WρW†).

Since we are free to choose the orthornormal basis of the environment HE, ΦC is only

defined up to a unitary. We use the above definition as our canonical one. Let ΦC(ρ) =∑
µ RµρRµ

†. The j-th row of Rµ is the µ-th row of Aj, where Rµ =
∑

j |j〉〈µ|Aj

[KMNR07]. To see this, observe that

ΦC(ρ) = TrHB(WρW†)

= TrHB

(∑
j,k

|j〉〈k| ⊗AjρA
†
k

)
=
∑
j,k

|j〉〈k|Tr
(
AjρA

†
k

)
=
∑
j,k

|j〉
∑
µ

〈µ|
(
AjρA

†
k

)
|µ〉〈k|

=
∑
µ

(∑
j

|j〉〈µ|Aj

)
ρ
(∑

k

A†k|µ〉〈k|
)

=
∑
µ

RµρR
†
µ.

5.2.1 Quantum Capacity

For a quantum channel Φ : B(HA)→ B(HB), define

Icoh(Φ, ρ) := S(Φ(ρ))− S(ΦC(ρ))

and

Icoh(Φ) := max
ρ
Icoh(Φ, ρ)
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where the maximization of ρ is over all quantum states – trace one positive semidefinite

operators in B(HA) – and

S(ρ) := −Tr(ρ log2 ρ)

is the von Neumann entropy of a given density matrix ρ. Icoh is a function called the

coherent information first introduced by Schumacher and Nielsen[SN96]. Lloyd [Llo97],

Shor[Sho02] and Devetak [Dev05] showed that the quantum capacity of Φ is

Q(Φ) = lim
n→∞

1

n
Icoh(Φ

⊗n), (5.2.1)

and the expression on the right hand side of (5.2.1) exists [BNS98].

5.2.2 Degradable Channels

A channel N is degradable [DS05] if it can be composed with another quantum channel Ψ

to become equivalent to its complementary channel NC , that is NC = Ψ ◦ N . Physically,

this means that the environment associated with channel N can be simulated using its

output quantum state. Conversely, N is antidegradable if its complementary channel

NC is degradable. A channel Next is a degradable extension [SS08] of channel N if Next

is degradable and there exists a quantum operation Ψ such that Ψ ◦ Next = N .

If Next is a degradable extension of some channel, then Q(Next) = Icoh(Next). Degrad-

able extensions allow us to construct upper bounds of the quantum capacity of quantum

channels. In this chapter, all degradable extensions of N have the partial trace as the

degrading map, which is possible because of the following lemma by Smith and Smolin.

Theorem 5.2.1 (Smith, Smolin (Lemma 4 in [SS08])). Let
∑k

i=1 λiNi be a convex combi-

nation of degradable channels Ni. Then the channel

Next(ρ) =
k∑
i=1

λiNi(ρ)⊗ |i〉〈i|

is a degradable extension of
∑k

i=1 λiNi with the degrading map being the partial trace on
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the extending space. Moreover, the quantum capacity is a convex function with respect to

degradable channels in the sense that

Q

(
k∑
i=1

λiNi

)
≤ Q(Next) ≤

k∑
i=1

λiQ(Ni). (5.2.2)

The key utility of Smith and Smolin’s result above is the convexity of the upper bounds

obtained from degradable extensions (see Section IIC, [SS08]). Moreover the no cloning

bounds of Cerf [Cer00] admit degradable extensions too (see Section IIB, [SS08]).

5.3 New Degradable Channels: Higher Dimension Am-

plitude Damping Channels

In this section, we generalize the qubit amplitude damping channel, a channel with Kraus

operators |0〉〈0| +
√

1− γ|1〉〈1| and
√
γ|0〉〈1|, to its higher dimension counterparts. We

say that a channel with dimension d input and output states is an amplitude damping

channel if it admits a Kraus representation such that (i) one Kraus operator is a diagonal

matrix, and (ii) all the other Kraus operators are strictly upper triangular matrices.

Physically, this corresponds to the case where only transitions from excited states to less

excited states are allowed, thereby modeling the phenomenon of spontaneous decay.

Determining whether an amplitude damping channel is degradable is in general a non-

trivial task. In this section, we construct two families of amplitude damping channels that

are degradable.
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5.3.1 Uniformly Amplitude Damping Channels

We first define a uniformly amplitude damping channel of dimension d and damping

strength 0 ≤ γ ≤ 1 to be the quantum channel Aγ,d with the Kraus operators

|0〉〈0|+
d−1∑
i=1

√
1− γ|i〉〈i|,

√
γ|0〉〈j|, for all 1 ≤ j ≤ d− 1.

The complementary channel of Aγ,d is also a d-dimension uniformly amplitude damping

channel A1−γ,d. Moreover, when 0 ≤ γ ≤ 1
2
, the uniformly amplitude dapming channel is

degradable with degrading map A 1−2γ
1−γ

. Hence the uniformly amplitude damping channel

Aγ,d is a degradable channel when 0 ≤ γ ≤ 1
2
, and is anti-degradable when 1

2
≤ γ ≤ 1.

5.3.2 Four-Dimension Amplitude Damping Channels

Qubit amplitude damping quantum channels are examples of qubit degradable channels

that are non-unital. These channels model spontaneous decay in two-level quantum sys-

tems, and hence knowledge of their quantum capacity is a physically relevant problem

[GF05]. An interesting fact is that these channels are covariant [Hol93] with respect to the

diagonal Pauli matrices [WPG07], where the covariance of channels is defined in (5.4.2).

This notion of covariance can help us simplify the evaluation of the quantum capacity of

these channels.

Prior to this work, explicit non-trivial upper bounds on the quantum capacity has

only been performed on single qubit channels. In this chapter, we extend the study of

explicit upper bounds on the quantum capacity to four-dimension channels. Since the

qubit amplitude damping channel has been crucial to obtain explicit upper bounds on

the quantum capacity of the qubit depolarizing channel, one might expect that a four-

dimension amplitude damping channel would also be crucial to obtain explicit upper

bounds on the four-dimension depolarizing channel.
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Hence in this section, we introduce a two-qubit amplitude damping channel which

contains the tensor product of single-qubit amplitude damping channels as special cases.

Define the linear map Φa(ρ) :=
3∑
i=0

KiρK
†
i with two-qubit input and output states, to

have Kraus operators

K0 =
3∑
i=0

a0,i|i〉〈i|

K1 = a1,1|0〉〈1|+ a1,2|2〉〈3|

K2 = a2,1|0〉〈2|+ a2,2|1〉〈3|

K3 = a3,1|0〉〈3| (5.3.1)

where a = (a0,0, a0,1, a0,2, a0,3, a1,1, a1,2, a2,1, a2,2, a3,1) ≥ 0. When

a0,0 = 1, a2
0,1 + a2

1,1 = 1, a2
0,2 + a2

2,1 = 1, a2
0,3 + a2

1,2 + a2
2,2 + a2

3,1 = 1, (5.3.2)

then Φa is also a quantum channel.

For x, y, z ≥ 0, 1− 2y − z ≥ 0, define Φx,y,z : B(C4)→ B(C4) where

Φx,y,z := Φ(1,s1,s1,s2,
√
x,
√
y,
√
x,
√
y,
√
z) (5.3.3)

to be a quantum channel with Kraus operators

A0 = |0〉〈0|+ s1(|1〉〈1|+ |2〉〈2|) + s2|3〉〈3|

A1 =
√
x|0〉〈1|+√y|2〉〈3|

A2 =
√
x|0〉〈2|+√y|1〉〈3|

A3 =
√
z|0〉〈3| (5.3.4)

where s1 =
√

1− x, s2 =
√

1− 2y − z. For x, y, z ≥ 0, 1 − 2y − z ≥ 0, we call Φx,y,z a

two-qubit amplitude damping channel. Observe Φγ,γ(1−γ),γ2 = Φγ ⊗ Φγ where Φγ is the

qubit amplitude damping channel with Kraus operators
√
γ|0〉〈1| and |0〉〈0|+

√
1− γ|1〉〈1|
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for γ ∈ [0, 1
2
].

Let K be the family of four-dimension amplitude damping channels with Kraus oper-

ators of the form (5.3.1). Then we prove that the set of such channels is closed under

complementation. This is the content of the following proposition.

Proposition 5.3.1. K ∈ K if and only if KC ∈ K.

Proof. Using the recipe of King, Matsumoto, Nathanson and Ruskai [KMNR07], if the

Kraus operators of K have the form of (5.3.1), then the channel KC has the Kraus operators

K′0 = a0,0|0〉〈0|+
3∑
i=1

ai,1|i〉〈i|

K′1 = a0,1|0〉〈1|+ a2,2|2〉〈3|

K′2 = a0,2|0〉〈2|+ a1,2|1〉〈3|

K′3 = a0,3|0〉〈3| (5.3.5)

which is also of the form (5.3.1). This proves the forward direction. Since (KC)C = K, the

reverse implication also holds. ut

The linear map Φx,y,z can also be a degradable quantum channel when x, y and z satisfy

the following inequalities.

x, y, z ≥ 0, 2y + z < 1, x <
1

2
,

2z ≤ 1− 2y
(

2− x

1− x

)
. (5.3.6)

We prove this result in the lemma below, and the essence of the lemma’s proof is that we

construct the degrading map of Φx,y,z to its complementary channel explicitly. In this case,

the degrading map and the complementary channels are also hilfour-dimension amplitude

damping channels.
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Lemma 5.3.2. Φx,y,z is a degradable channel with degrading map Φg,h,k when x, y and z

satisfy the inequalities (5.3.6) and where

g =
1− 2x

1− x
, h =

gy

(1− 2y − z)

k = 1− 2h− z

1− 2y − z
. (5.3.7)

Proof. Note that Φx,y,z is a quantum channel for x, y, z ≥ 0 and 2y + z < 1 which Kraus

operators given by (5.3.4). Also note that its complementary channel ΦC
x,y,z = Φ1−x,y,1−2y−z

has the Kraus operators

R0 = |0〉〈0|+
√
x|1〉〈1|+

√
x|2〉〈2|+

√
z|3〉〈3|

R1 =
√

1− x|0〉〈1|+√y|2〉〈3|

R2 =
√

1− x|0〉〈2|+√y|1〉〈3|

R3 =
√

1− 2y − z|0〉〈3|.

Let us define G := Φg,h,k with Kraus operators

G0 = |0〉〈0|+
√

1− g(|1〉〈1|+ |2〉〈2|) +
√

1− 2h− k|3〉〈3|

G1 =
√
g|0〉〈1|+

√
h|2〉〈3|

G2 =
√
g|0〉〈2|+

√
h|1〉〈3|

G3 =
√
k|0〉〈3|.

When the inequalities in (5.3.6) are satisfied, 0 ≤ g, h, k ≤ 1 and hence G is a valid quantum

operation.

We want to find the conditions where G ◦ Φx,y,z = ΦC
x,y,z which means that G is a

degrading map that takes the output state of Φx,y,z to the output state of ΦC
x,y,z. By the

Kraus representation,

G(Φx,y,z(ρ)) =
∑

k,`∈{0,1,2,3}

GkA`ρA
†
`G
†
k.
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Hence in this representation ΦC
x,y,z = G◦Φx,y,z is a quantum channel with the sixteen Kraus

operators GkA` for k, ` ∈ Z4. Now we evaluate GkA` explicitly.

G1A3 = G1A1 = 0,G1A2 =

√
1− 2x

1− x
y|0〉〈3|

G2A3 = G2A2 = 0,G2A1 =

√
1− 2x

1− x
y|0〉〈3|

G3A3 = G3A2 = G3A1 = 0.

Also we have

G1A0 =
√

1− 2x|0〉〈1|+
√

1− 2x

1− x
y|2〉〈3|

G2A0 =
√

1− 2x|0〉〈2|+
√

1− 2x

1− x
y|1〉〈3|

G3A0 =

√
1− x− 2y(2− 3x)

1− x
|0〉〈3|.

Moreover

G0A1 =
√
x|0〉〈1|+

√
xy

1− x
|2〉〈3|

G0A2 =
√
x|0〉〈2|+

√
xy

1− x
|1〉〈3|

G0A3 =
√
z|0〉〈3|.

Observe then that G0A1 =
√

x
1−2x

G1A0 and G0A2 =
√

x
1−2x

G2A0. Thus applying the

Kraus operators GiA0 and G0Ai is equivalent to applying the Kraus operator Ri for

i ∈ {1, 2}. Similarly, applying the Kraus operators G1A2,G2A1 and G3A0 is equivalent

to applying the Kraus operator R3. Moreover, since 1−g = x
1−x and (1−2h−k)(1−2y−z) =

z, we have that G0A0 = R0. Therefore we have shown that Φx,y,z is degradable with

degrading map G when x, y and z satisfy the inequalities in (5.3.6). ut
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5.4 Twirling, Contraction and Covariance

Let N be a channel with d-dimension input and output states, and V be a set of d-

dimension unitary operators. We define the V-contraction channel to be the channel

VB with Kraus set V√
|V|

, so that

VB(ρ) :=
1

|V|
∑
V∈V

VρV†.

If V is the set of m-qubit Pauli matrices, then the contraction channel VB maps all input

states to the maximally mixed state 12m/2
m. If V is the set of diagonal m-qubit Pauli

matrices, then the contraction channel VB is the m-fold tensor product of the maximally

dephasing qubit channel, and maps the set of m-qubit input states to the set of m-qubit

diagonal states.

The V-twirl of N is the channel

NnVo(ρ) :=
1

|V|
∑
V∈V

V†Φ(VρV†)V.

When the set V is the m-qubit Pauli set Pm, the V-twirl of a channel is also called the

Pauli-twirl of a channel. Note that channels that are Pauli-twirled are Pauli channels

[DCEL09], because their Kraus operators can all be expressed as m-qubit Pauli matrices

P multiplied by the coefficient

1

2m

√ ∑
K∈KN

∣∣∣Tr(PK)
∣∣∣2, (5.4.1)

where KN is the set of Kraus operators of the channel N .

We say that the channel N is V-covariant if the equation

Φ(VρV†) = VΦ(ρ)V† (5.4.2)
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holds for every unitary matrix V in the set V and for every input state ρ. Properties

of quantum channels covariant with respect to a locally compact group were studied by

Holevo [Hol93].

Because the V is a set of unitary matrices, a channel that is V-covariant is also invariant

under V-twirling (however it is not clear whether the converse holds). A V-covariant

channel is hence equal to its V-twirl, and this is how the notion of covariance connects

with the notion of twirling.

This section contains the main structural result of this chapter, which is Theorem 5.4.2.

Our theorem generalizes Smith and Smolin’s technique of obtaining upper bounds of the

Clifford-twirl of a qubit degradable channel (see Lemma 8 in [SS08]). Theorem 5.4.2 gives

an upper bound on the V-twirl of a degradable channel in terms of its coherent information

maximized over the output states of the V-contraction channel.

The covariance of qubit amplitude damping channels with respect to diagonal Pauli

matrices is a well-known fact, and has been used by Wolf and Pérez-Garćıa to prove that

the qubit amplitude damping channel’s quantum capacity is just the maximum coherent

information over all diagonal qubit states [WPG07].

We prove that this property is not restricted just to qubit amplitude damping channels,

which is the essence of Corollary 5.4.3. This in turn is a simple consequence of Theorem

5.4.2, which applies for all degradable channels invariant under the twirling of diagonal

Pauli matrices. We give examples of such degradable channels in Section 5.4.2.

5.4.1 The Quantum Capacity of Covariant and Twirled Channels

In this section, let N be a degradable channel with d-dimension input and output states,

and V be a finite projective group of d-dimension unitary matrices. We say that a set of

d-dimension unitary matrices is a finite projective group if the set satisfies the following

additional properties.

1. Projective Property: No two distinct elements of V are equivalent up to a constant.
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2. Group Property: For all V and W in the set V , there exists complex number of

unit amplitude zV,W† such that zV,W†VW† is also an element of V .

Note that the complex number zV,W† in the second property above defines the binary

operation of the projective unitary group V , in the sense that

V ?W := zV,WVW

for all V and W that are elements of V . Important examples of finite projective unitary

groups include the m-qubit Clifford group, the set of m-qubit Pauli matrices, and the set

of diagonal m-qubit Pauli matrices.

In this section, we also define Ñ to be a particular extension of the V-twirl of N , where

Ñ (ρ) :=
∑
V∈V

1

|V|
V†N (VρV†)V ⊗ |V〉〈V|. (5.4.3)

By using the obvious isometric extensions of N and Ñ , one can show that

ÑC(ρ) =
∑
V∈V

1

|V|
NC(VρV†)⊗ |V〉〈V|. (5.4.4)

We state this fact formally in Proposition 5.4.1.

Proposition 5.4.1. Let N be a quantum channel with d-dimension input and output states,

V be a set of d-dimension unitary matrices, and Ñ be as defined in (5.4.3). Then equation

(5.4.4) holds.

Proof. Let KN denote the Kraus set of the channel N . Using the canonical definition of

the complementary channel of N from its canonical isometric extension, we have for all

V ∈ V ,

NC(VρV†) = TrHB

(( ∑
A,A′∈KN

AVρV†A′†
)
HB
⊗ |A〉〈A′|

)
. (5.4.5)
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Similarly, the canonical complementary channel of Ñ is

ÑC(ρ) = TrHB⊗HC

 1

|V|
∑

V,V ′∈V
A,A′∈KN

(
V†AVρV†A′†V′

)
HB
⊗
(
|V〉〈V′|

)
HC
⊗ |A〉〈A′| ⊗ |V〉〈V′|


=

1

|V|
∑
V ∈V

TrHB

( ∑
A,A′∈KN

(
V†AVρV†A′†V

)
HB
⊗ |A〉〈A′|

)
⊗ |V〉〈V|

=
1

|V|
∑
V ∈V

NC(VρV†)⊗ |V〉〈V|

where we have used the unitary invariance of the partial trace. ut

With equation (5.4.4), one can verify that Ñ is a degradable channel with a degrading

channel ∑
W∈V

Ψ(W†ρW)⊗ |W〉〈W|

where Ψ is the degrading channel for the degradable channel N . Hence Ñ is a degradable

extension of the V-twirl of N .

Let the set of d-dimension quantum states be Md. Define the image of the V-contraction

map to be Im(VB) := {σ = VB(ρ) : ρ ∈ Md}. Now define the V-contracted coherent

information of a channel N to be

Icoh(N ,VB) := max
ρ∈Im(VB)

Icoh(N , ρ).

We now state the main structural result of this chapter.

Theorem 5.4.2 (Twirling and Contraction). Let V be a projective group of d-dimension

unitary matrices, N be a degradable channel with d-dimension input and output states, and

Ñ be a degradable extension of N as defined in (5.4.3). Then

Q(NnVo) ≤ Q(Ñ ) ≤ Icoh(N ,VB).
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Proof. Observe that for all V ∈ V ,

Ñ (VρV†) =
∑
V′∈V

1

|V|
VV†V′†N (V′VρV†V′†)V′VV† ⊗ |V′〉〈V′|

=
∑
V′∈V

1

|V|
V(zV′,VV′V)†N ((zV′,VV′V)ρ(zV,V′V

′V)†)(zV′,VV′V)V† ⊗ |V′〉〈V′|.

By the projective group property of V , we can make the substitution R = zV′VV′V =

V′ ?V and replace the index of the summation so that

Ñ (VρV†) =
∑
R∈V

1

|V|
VR†N (RρR†)RV† ⊗ |R ?V†〉〈R ?V†|

=(V ⊗UV)Ñ (ρ)(V† ⊗U†V) (5.4.6)

where UV :=
∑

R∈V |R〉〈R ? V†| is a unitary matrix. Now we can use the isometric

extensions of the channels N and Ñ to show that (see Proposition 5.4.1)

ÑC(ρ) =
∑
V∈V

1

|V|
NC(VρV†)⊗ |V〉〈V|.

By a similar argument as in (5.4.6),

ÑC(VρV†) = (1dE ⊗UV)ÑC(ρ)(1dE ⊗U†V), (5.4.7)

where dE is the dimension of the output states of the complementary channel NC . Note

that the von-Neumann entropy is additive with respect to each block in a block diagonal

matrix, and is also invariant under unitary conjugation of its argument. Hence the coherent
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information of the degradable extension Ñ evaluated on the input state ρ is

S(Ñ (ρ))− S(ÑC(ρ)) =

(∑
V∈V

1

|V|
S
(
N (VρV†)

))
−

(∑
V∈V

1

|V|
S
(
NC(VρV†)

))

=
∑
V∈V

1

|V|
Icoh
(
N ,VρV†

)
≤ Icoh

(
N ,
∑
V∈V

1

|V|
VρV†

)
where the inequality above results from the concavity of the coherent information of degrad-

able channels with respect to the input state [YHD08]. Hence the coherent information of

the degradable channel N maximized over all output states of the V-contraction channel

upper bounds the coherent information and quantum capacity of the degradable extension

Ñ . ut

Theorem 5.4.2 has several important consequences. Firstly, when the finite projective

unitary group V is chosen to be the set of m-qubit Pauli matrices, then Theorem 5.4.2

implies that quantum capacity of the Pauli-twirl of a degradable channel N is at most the

coherent information of the channel N evaluated on the maximally mixed state.

The second important consequence of Theorem 5.4.2 applies when the degradable

channel N is V-covariant, which means that N is invariant under the V-twirl. Application

of Theorem 5.4.2 gives the following corollary.

Corollary 5.4.3 (Degradable and Covariant Channels). Let V be a finite projective unitary

group and N be a degradable channel. If N is also V-covariant, then

Q(N ) = Icoh(N ,VB).

Proof. Since N is a degradable channel, Theorem 5.4.2 implies that the V-twirl of N has a

quantum capacity that is at most the coherent information of N maximized over all output

states of the V-contraction map. Now the V-twirl of N is precisely the untwirled channel
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N . Moreover the quantum capacity of N is its coherent information maximized over all

its input states. Combining these facts gives the result. ut

An immediate consequence of Corollary 5.4.3 is that degradable channels that are

covariant with respect to m-qubit diagonal Pauli matrices have quantum capacities that

are their coherent information maximized over just their diagonal input states, instead

of the entire set of feasible input states. This simplifies the evaluation of the quantum

capacity of degradable channels with this property. The next section gives examples of

many channels that are covariant with respect to the diagonal Pauli matrices.

5.4.2 Examples of Degradable Channels that are Covariant

In this section, we give sufficient conditions for a m-qubit channel to be covariant with

respect to the m-qubit diagonal Pauli matrices. Many degradable channels have this

covariance property, such as Hadamard channels, all qubit degradable channels, and higher

dimension amplitude damping channels.

Hadamard channels are complementary channels of entanglement breaking channels,

and map a quantum state to their Hadamard product with some matrix [KMNR07,

BHTW10]. Let ρi,j and mi,j be matrix elements a quantum state ρ and a matrix M

respectively. Then a Hadamard channel parameterized by M maps ρi,j to ρi,jmi,j. Of

course, the matrix M has to be carefully chosen for the Hadamard channel to be a valid

quantum channel.

Proposition 5.4.4 (Hadamard channels). An m-qubit Hadamard channel is covariant

with respect to m-qubit diagonal Pauli matrices.

Proof. We prove a stronger fact – that a Hadamard channel is covariant with respect to

diagonal matrices. Notice that the effect of conjugating a density matrix with diagonal

matrices is equivalent to that of applying some Hadamard product to the density matrix.

Since Hadamard multiplication is commutative, the result immediately follows. ut
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We define a quantum channel Φ to be almost Pauli diagonal, if it admits a Kraus

decomposition with all of its Kraus having the form Kj = DjPj where Dj is a size 2m

diagonal matrix and Pj ∈ Pm. Almost Pauli diagonal channels are covariant with

respect to the m-qubit diagonal Pauli matrices because

(DjPj)(ΛWΛ)(PjD
†
j) = Λ(DjPj)W(PjD

†
j)Λ

for all Paulis W and diagonal Paulis Λ ∈ {1,Z}⊗m. The above equality can be proved by

commuting the Λ’s ‘outwards’, by using firstly the fact that Pauli matrices either commute

or anti-commute, and secondly the fact that diagonal matrices commute.

All qubit degradable channels are also covariant with respect to the diagonal Pauli

matrices because they are almost Pauli diagonal.

Proposition 5.4.5 (Qubit degradable channels). All qubit degradable channels are covari-

ant with respect to diagonal Pauli matrices.

Proof. All qubit degradable channels necessarily have Kraus operators of the following

form [WPG07, CRS08](
cosα 0

0 cos β

)
,

(
0 sin β

sinα 0

)
=

(
sin β 0

0 sinα

)
X.

Hence these channels are of the almost Pauli diagonal form, and since we have shown

earlier in this section that almost Pauli diagonal channels are covariant with respect to

diagonal Pauli matrices, the result follows. ut

The four-dimension amplitude damping channels that we study in this chapter are

also almost Pauli diagonal, and hence covariant with respect to diagonal two-qubit Pauli

matrices.

Proposition 5.4.6 (Four-dimension amplitude damping channels). If the linear map Φa

defined by (5.3.1) is a quantum channel, then it is also covariant with respect to two-qubit

diagonal Pauli matrices.
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Proof. It suffices to show that every Kraus operator of Φ can be written in the form

Ki = DiPi with Di being diagonal and Pi being a two-qubit Pauli. We define the vectors

|0〉, |1〉, |2〉, |3〉 to be the two qubit states |0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉 respectively. One can

verify using equations (5.7.14), (5.7.15), (5.7.12), (5.7.13), (5.7.11) that a suitable choice

of the matrices Di and Pi is given by

D0 =
3∑
i=0

a0,i|i〉〈i|, P0 = 1⊗ 1

D1 = a1,1|0〉〈0| − a1,2|2〉〈2|, P1 = Z⊗X

D2 = a2,1|0〉〈0| − a2,2|1〉〈1|, P2 = X⊗ Z

D3 = |0〉〈0|, P3 = X⊗X.

ut

5.5 New Upper Bounds of the Quantum Capacity

This section presents explicit bounds for the quantum capacity of some low dimension

channels. We first introduce the ingredient – a four-dimension degradable amplitude

damping channel – on which we apply our main structural results to obtain our upper

bounds. the main results of this chapter. The qubit amplitude damping channel was used

to give the best known upper bounds for the quantum capacity of the depolarizing channel

[SS08], and hence it is natural to expect that four-dimension amplitude damping channels

can give good upper bounds for the quantum capacity of some four-dimension quantum

channels, such as the four-dimension depolarizing channel (see Figure 5.1).

5.5.1 Four-Dimension Amplitude Damping Channels

Theorem 5.5.1. When x, y and z satisfy the inequalities in (5.3.6), the quantum capacity

of the four-dimension amplitude damping channel Φx,y,z defined by (5.3.3) is the optimal
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value of the following concave program with linear constraints.

max η(p1 + p2x+ p3x+ p4z) + η(p2(1− x) + p4y)

+ η(p3(1− x) + p4y) + η(p4(1− 2y − z))

− η(p1 + p2(1− x) + p3(1− x) + p4(1− 2y − z))− η(p2x+ p4y)

− η(p3x+ p4y)− η(p4z)

subject to p1 + p2 + p3 + p4 = 1

p1, p2, p3, p4 ≥ 0 (5.5.1)

Proof. For the choice of x, y and z, the linear map Φx,y,z is a degradable four-dimension

amplitude damping channel (Lemma 5.3.2). By Proposition 5.4.6, the degradable channel

Φx,y,z is also covariant under the diagonal Pauli matrices. Hence we apply Corollary

5.4.3 to find that the quantum capacity of Φx,y,z is its maximum coherent information

over all output states of the contraction map associated with the diagonal Pauli matrices.

Since such a contraction map is just an m-fold tensor product of the maximally dephasing

channel, its output states are all the feasible diagonal states. It remains to show that the

optimization problem stated in the theorem is equivalent to the coherent information of

the degradable ampliude damping channel Φx,y,z maximized over all diagonal input states.

Firstly note that the objective function of (5.5.1) is concave [YHD08] because Φx,y,z is

a degradable channel. The output state of the four-dimension amplitude damping channel

Φx,y,z evaluated on the diagonal input state diag(p1, p2, p3, p4) is

(p1 + p2x+ p3x+ p4z)|0〉〈0|+ (p2(1− x) + p4y)|1〉〈1|

+ (p3(1− x) + p4y)|2〉〈2|+ p4(1− 2y − z)|3〉〈3|.

The complementary channel of Φx,y,z is also a four-dimension amplitude damping channel

(Proposition 5.3.1), and in particular, ΦC
x,y,z = Φ1−x,y,1−2y−z. Hence the output state of
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ΦC
x,y,z evaluated on the input diagonal state diag(p1, p2, p3, p4) is

(p1 + p2(1− x) + p3(1− x) + p4(1− 2y − z))|0〉〈0|+ (p2x+ p4y)|1〉〈1|

+ (p3x+ p4y)|2〉〈2|+ p4z|3〉〈3|.

Therefore using the definition of the coherent information and the von Neumann entropy,

the coherent information of the degradable amplitude damping channel Φx,y,z evaluated on

the diagonal input state diag(p1, p2, p3, p4) is the objective function in (5.5.1). ut

5.5.2 Two-Qubit Pauli Channels

In this section, we provide upper bounds on the quantum cpacity of some two-qubit Pauli

channels. Theorem 5.5.3 gives upper bounds on the quantum capacity of the Pauli twirl

of our two-qubit amplitude damping channels. Using Theorem 5.5.3, we obtain upper

bounds on the quantum capacities of other channels, including the two-qubit depolarizing

channel in Corollary 5.5.4, locally symmetric two-qubit channels in Corollary 5.5.6, and

other non-unital channels in the subsequent subsection. Proposition 5.5.2 states the effect

of twirling Φx,y,z to a Pauli channel.

Proposition 5.5.2. Let x, y and z be nonnegative real numbers such that Φx,y,z defined by

(5.3.3) is a four-dimension amplitude damping channel. Then the Pauli-twirl of Φx,y,z has
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the Kraus operators(
1 + 2

√
1− x+

√
1− 2y

4

)
1⊗ 1,(

1−
√

1− 2y

4

)
P, P ∈ {1⊗ Z, Z⊗ 1}∣∣∣∣1− 2

√
1− x+

√
1− 2y

4

∣∣∣∣Z⊗ Z∣∣∣∣√x+
√
y

4

∣∣∣∣P, P ∈ {1⊗X, 1⊗Y, X⊗ 1, Y ⊗ 1}∣∣∣∣√x−√y4

∣∣∣∣P, P ∈ {Z⊗X, Z⊗Y, X⊗ Z, Y ⊗ Z}
√
z

2
P, P ∈ {X⊗X, X⊗Y, Y ⊗X, Y ⊗Y}

with probability of weight i Pauli’s being Pi where

P0 =

(
1 + 2s1 + s2

4

)2

P1 = 2

(
1− s2

4

)2

+

(√
x+
√
y

2

)2

P2 =

(
1− 2s1 + s2

4

)2

+

(√
x−√y

2

)2

+
z

4

with s1 =
√

1− x and s2 =
√

1− 2y − z.

Proof. Substituting the equations (5.7.1) to (5.7.10) into the equations (5.3.4), we can
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express the Kraus operators of Φx,y,z in the Pauli basis to get

A1 =

√
x+
√
y

4
(1⊗X + i1⊗Y) +

√
x−√y

4
(Z⊗X + iZ⊗Y)

A2 =

√
x+
√
y

4
(X⊗ 1+ iY ⊗ 1) +

√
x−√y

4
(X⊗ Z + iY ⊗ Z)

A3 =

√
z

4
(X⊗X−Y ⊗Y + i(X⊗Y + Y ⊗X))

A0 =
1 + 2

√
1− x+

√
1− 2y

4
1⊗ 1+

1−
√

1− 2y

4
(Z⊗ 1+ 1⊗ Z)

+
1− 2

√
1− x+

√
1− 2y

4
Z⊗ Z.

Applying (5.4.1) on the above decomposition of the Kraus operators of Φx,y,z in the Pauli

basis, we can derive the probabilities that the Pauli twirl of Φx,y,z applies each two-qubit

Pauli matrix. Subsequently, we obtain the probabilities of the Pauli twirl of Φx,y,z having

Pauli errors of the weights zero, one and two. ut

Given the above proposition, we can determine the explicit form of four-dimension

quantum channels for which we have non-trivial upper bounds on the quantum capacity.

These non-trivial upper bounds come from applying Theorem 5.4.2 on our degradable

four-dimension amplitude damping channels.

Theorem 5.5.3. Let x, y and z satisfy the inequalities in (5.3.6). Then there is a channel

Nx,y,z, a degradable extension of the Pauli twirl of Φx,y,z, such that the quantum capacity

of the Pauli twirl of Φx,y,z is at most

Q(Nx,y,z) ≤ η

(
1 + 2x+ z

4

)
+ 2η

(
1− x+ y

4

)
+ η

(
1− 2y − z

4

)
− η

(
1− 2x+ 2y + z

4

)
− 2η

(
x+ y

4

)
− η

(z
4

)
. (5.5.2)

Proof. The quantum channel Φx,y,z defined in (5.3.3) is degradable for the stipulated values

of x, y and z by Lemma 5.3.2. The two-qubit Pauli-contraction channel maps all input

states to the maximally mixed state. Hence Theorem 5.4.2 implies that there exists a
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degradable extension Nx,y,z of the Pauli-twirl of Φx,y,z, such that the quantum capacity of

the Pauli-twirl of Φx,y,z is at most the quantum capacity of Nx,y,z, which is at most the

coherent information of Φx,y,z evaluated on the maximally mixed state. ut

Depolarizing Channels

Depolarizing channels are often used as toy-models for the noisy quantum channel. In the

Kraus representation, an m-qubit depolarizing channel applies the identity m-qubit Pauli

with probability 1 − p, and each of the other non-trivial m-qubit Paulis with probability
p

22m−1
. Here, p quantifies the depolarizing probability, and varies between 0 and 1. The

m-qubit depolarizing channel is a d-dimension depolarizing channel with d = 2m. The d-

dimension depolarizing channel of depolarizing probability p can be described as a quantum

channel that maps an m-qubit input state to a convex combination of the maximally mixed

m-qubit state and the input state, and is defined as

Dp,d(ρ) = ρ

(
1− pd

2 − 1

d2

)
+
1d

d

(
p
d2 − 1

d2

)
Tr(ρ).

Upper bounds [Cer00, Rai99a, Rai01, SSW08, SS08] and lower bounds [AC97, DSS98,

SS07, FW08] on the quantum capacity of qubit depolarizing channels, the simplest type

of depolarizing channels, have been studied. However these bounds are not tight when the

depolarizing probability is in the interval (0, 1
4
). Even less is known about the quantum

capacity of higher dimension depolarizing channels. The goal of this section is to tighten

the upper bounds for the quantum capacity of d-dimension depolarizing channels.

The obvious upper bounds for the quantum capacity of the depolarizing channel comes

using Cerf’s no-cloning bounds [Cer00] for depolarizing channels with Smith and Smolin’s

result (Theorem 5.2.1). By Cerf’s result, a d-dimension depolarizing channel of depolarizing

probability p is both degradable and anti-degradable when

p =
d

2d+ 2

d2 − 1

d2
=

d2 − 1

2d(d+ 1)
=
d− 1

2d
. (5.5.3)
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Hence applying Smith and Smolin’s technique of degradable extensions [SS08] immediately

gives the upper bound of

Q(Dp,d) ≤ (log2 d)

(
1− p 2d

d− 1

)
(5.5.4)

for depolarizing probability 0 ≤ p ≤ 2d
d−1

. We call this upper bound the no-cloning upper

bound for the quantum capacity of the depolarizing channel.

An obvious lower bound for the quantum capacity of the d-dimension depolarizing

channel of noise stength p is max(0, log2 d+ (1− p) log2(1− p) + p log2( p
d2−1

), which is its

coherent information evaluated on the maximally mixed state.

Picking a d-dimension channel to twirl to get improvements over the no-cloning upper

bounds for the quantum capacity of the depolarizing channel is non-trivial for two reasons.

Firstly, we have to verify that the channel that we pick is degradable, and checking for the

degradability of a quantum channel is not an entirely straightforward problem. Secondly,

the coherent information of the channel evaluated on the maximally mixed state has to be

sufficiently low, in order to produce an improvement on the no-cloning upper bound of the

quantum capacity of the depolarizing channel.

The four-dimension amplitude damping channel Φx,0,x can be used to improve on the

no-cloning upper bound of the four-dimension depolarizing channel (see Figure 5.1).

With the d-dimension uniformly amplitude damping channel, we can obtain non-trivial

upper bounds for the quantum capacity of the d-dimension depolarizing channels, which

is the statement of the following corollary.

Corollary 5.5.4 (m-qubit Depolarizing Channels). Let d = 2m be the dimension of our m-

qubit depolarizing channel of depolarizing probability 0 ≤ p ≤ d−1
2d

. the quantum capacity of

our d-dimension depolarizing channel with depolarizing probability p is at most the convex

hull (see Figure 5.1)

conv

(
Icoh

(
Aγ,d,

1

d

)
, (log2 d)

(
1− p 2d

d− 1

))
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where

Icoh

(
Aγ,d,

1

d

)
= η
(1 + (d− 1)γ

d

)
+ (d− 1)η

(1− γ
d

)
− η
(

1− (d− 1)γ

d

)
− (d− 1)η

(γ
d

)
and γ = 2d

(d−1)2 (
√

1− p− (1− pd
2

)..

Proof. The only Kraus operator of the d-dimension uniformly amplitude damping channel

with damping parameter γ that is not traceless is A0, which has a trace of 1 + (d −
1)
√

1− γ. Hence using equation (5.4.1), the complete Clifford-twirl of our uniformly

amplitude damping is the m-qubit depolarizing channel of depolarizing probability p, where

1− p =

(
1 + (d− 1)

√
1− γ

d

)2

.

Taking the non-negative solution for γ of the above equation for the feasible values of p

and d, we get

γ =
2d

(d− 1)2

(√
1− p− (1− pd

2
)
)

as required in our corollary. Hence using our Theorem 5.4.2 pertaining to twirling of

degradable channels and the contraction channel, there is a degradable extension of the d-

dimension depolarizing channel Dp,d with an upper bound that is the coherent information

of the d-dimension uniformly amplitude damping channel with damping paramater γ

evaluated on the maximally mixed state. Taking convex combinations of the upper bound

of the quantum capacity of the twirl of our amplitude damping channels and the no-cloning

upper bounds then gives the result. ut

Locally Clifford Covariant Channels

To obtain locally symmetric Pauli channels, we introduce the notion of localized Clifford

twirling. Instead of twirling our channel over the entire Clifford group over all the qubits

[DLT02], we can twirl the channel with respect to the Clifford group for individual qubits
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Figure 5.1: This figure depicts bounds on the quantum capacity for the four-dimension
depolarizing channel of depolarizing probability p, where the upper bounds are given in
Corollary 5.5.4. The upper and lower boundaries of the shaded region depict the upper
and lower bounds for the quantum capacity of the four-dimension depolarizing channel
respectively. The dotted line is an upper bound that comes from Cerf’s no-cloning bound,
and the dashed line is an upper bound that comes from twirling our four-dimension
amplitude damping channel.

independently. The material below is an explicit discussion on the notion of localized

Clifford twirling.

Now define the set of non-trivial Pauli matrices to be P∗1 := {X,Y,Z}. We study a set

of automorphisms on the non-trivial Pauli matrices. To define this set of automorphisms,
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we first define a Hermitian and traceless qubit operator

Hτ1,τ2 :=
τ1 + τ2√

2

for all non-trivial Pauli matrices τ1 and τ2, which is just the Hadamard matrix in an

arbitary Pauli basis. For all non-trivial Pauli matrices W, conjugation of W with Hτ1,τ2

gives the following.

Hτ1,τ2WHτ1,τ2 =


τ1 , W = τ2

τ2 , W = τ1

−W , W /∈ {τ1, τ2}

Hence the automorphism associated with the generalized Hadamards Hτ1,τ2 on the set of

non-trivial Pauli matrices swaps τ1 and τ2. The size of the set of all automorphisms on the

set of non-trivial Pauli matrices is the size of the symmetric group of order 3, which is 6.

Hence we consider the set

B := {1,HX,Y,HX,Z,HY,Z,HX,ZHX,Y,HX,YHX,Z} (5.5.5)

with six qubit operators, each operator corresponding to a distinct automorphism of the

set of non-trivial Pauli matrices. For all P,V ∈ P1, observe that

1

6

∑
B∈B

(B†PB)V(B†PB) =

{
1
3

∑
P′∈P∗1

P′VP′ , P ∈ P∗1
V , P = 1

. (5.5.6)

Lemma 5.5.5 (Localized Clifford Twirling). Let N be a two-qubit Pauli diagonal channel

that applies the two-qubit Paulis P⊗P′ with probabilities aP⊗P′ . Then (Nn1⊗Bo)nB⊗1o is

a two-qubit Pauli channel that applies the identity Pauli operator with probability a1⊗1,

each weight one Pauli operator supported on the first and second qubits with probabilities∑
R∈P∗1

1

3
aR⊗1 and

∑
R∈P∗1

1

3
a1⊗R respectively, and each weight two Pauli operator with proba-
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bility
∑

R,R′∈P∗1

1

9
aR⊗R′.

Proof. Let V and W be single qubit Pauli matrices. Then using (5.5.6) we get

NoB⊗1o(V ⊗W) =
1

6

∑
B∈B

∑
P,P′∈P1

B†PBVB†PB⊗P′WP′aP⊗P′

=
1

6

∑
P,P′∈P1

(∑
B∈B

(B†PB)V(B†PB)
)
⊗P′WP′aP⊗P′

=
∑
P′∈P1

V ⊗P′WP′a1⊗P′ +
1

3

∑
P∈P∗1

(∑
R∈P∗1

RVR
)
⊗
∑
P′∈P1

P′WP′aP⊗P′ .

By rearranging the terms above, we get

NoB⊗1o(V ⊗W) =V ⊗
∑
P′∈P1

P′WP′a1⊗P′ +
(∑
R∈P∗1

RVR
)
⊗
∑
P′∈P1

P′WP′
∑
P∈P∗1

aP⊗P′

3
.

Similarly,

(NoB⊗1o)o1⊗Bo(V ⊗W) =V ⊗ 1

6

∑
B∈B

∑
P′∈P1

(B†P′B)W(B†P′B)a1⊗P′

+
(∑
R∈P∗1

RVR
)
⊗ 1

6

∑
B∈B

∑
P′∈P1

(B†P′B)W(B†P′B)
(∑
P∈P∗1

aP⊗P′

3

)
=a1⊗1V ⊗W + V ⊗

( ∑
R′∈P∗1

R′WR′
)( ∑

P′∈P∗1

a1⊗P′

3

)
+
(∑
R∈P∗1

RVR
)
⊗W

(∑
P∈P∗1

aP⊗1
3

)
+
(∑
R∈P∗1

RVR
)
⊗
( ∑
R′∈P∗1

R′WR′
) ∑

P,P′∈P∗1

aP⊗P′

9
.

ut

Corollary 5.5.6 gives upper bounds on the quantum capacity of locally symmetric Pauli

channels. Such channels are simple examples of two-qubit quantum channels that need not
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have a tensor product structure.

Corollary 5.5.6 (Locally Symmetric Two-qubit Pauli Channels). When x, y and z satisfy

the inequalities in (5.3.6), the quantum capacity of a two-qubit Pauli channel that applies

the weight zero, weight one, and weight two Pauli operators with probabilities q0, q1 and q2

respectively has a quantum capacity at most the right hand side of the inequality (5.5.2),

and is depicted in Figure 5.2, where

q0 =

(
1 + 2

√
1− x+

√
1− 2y − z

4

)2

q1 =
(1−

√
1− 2y − z)2

8
+

(
√
x+
√
y)2

4

q2 =
(1− 2

√
1− x+

√
1− 2y − z)2

16
+

(
√
x−√y)2

4
+
z

4
.

Proof. Using Proposition 5.5.2 for Pauli-twirling and Lemma 5.5.5 for localized Clifford

twirling, the (1 ⊗ B)-(B ⊗ 1)-twirl of the Pauli twirl of the degradable four-dimension

amplitude damping channel Φx,y,z is the Pauli channel as stipulated in our corollary. By

Theorem 5.5.3, the Pauli-twirl of the four-dimension amplitude damping channel has a

degradable extension Nx,y,z with quantum capacity at most the right hand side of the

inequality (5.5.2). Since channel twirling is a special way of taking convex combinations

of channels, we can apply Theorem 5.2.1 on the degradable extension Nx,y,z to find that

there exists a degradable extension Next of the (1 ⊗ B)-(B ⊗ 1)-twirl of the Pauli twirl of

the degradable four-dimension amplitude damping channel Φx,y,z constructed from flagged

extensions of Nx,y,z, where the quantum capacity of Next is no more than the quantum

capacity of Nx,y,z. ut

5.5.3 Non-unital Channels

We give upper bounds for the quantum capacity of certain non-unital and non-degradable

channels [RSW02, Fuk05, GLR05, CGMR08]. Non-unital channels cannot be Pauli-twirled

channels, because Pauli-twirled channels are necessarily unital. However we can still
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Figure 5.2: The concave roof of the depicted dimpled surface is our lower bound for two
minus the quantum capacity of the locally-symmetric Pauli channel (see Corollary 5.5.6).
The locally symmetric channel applies some weight one and weight two Pauli error with
probabilities q1 and q2 respectively.

construct upper bounds on non-unital channels that are convex combinations of twirled

degradable channels. In this case, it is necessary to use twirls weaker than the Pauli-twirl.

In this section, we illustrate how one can obtain upper bounds for the quantum capacity

of the shifted qubit depolarizing channel, which is the content of Corollary 5.5.7. The

shifted depolarizing channel [Fuk05, GLR05] of dimension d is defined by

Dp,d,A(ρ) := Dp,d(ρ) + ATr(ρ) (5.5.7)

where A is a d-dimension Hermitian traceless matrix such that Dp,d,A is a completely

positive map and hence still a quantum channel. Here, the operator A quantifies the

amount by which the depolarizing channel Dp,d is shifted. The shifted depolarizing
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channel Dp,d,A can also be interpreted as a channel that transmits a state ρ perfectly with

probability 1− pd2−1
d2 , and with probability pd

2−1
d2 transmits the state (1d

d
+ d2A

p(d2−1)
) Tr(ρ).

In the following corollary, we provide explicit upper bounds for the quantum capacity of

the shifted depolarizing channel (see also Figure 5.3).

Figure 5.3: Upper bounds on the shifted qubit depolarizing channel Dp,2,εZ are depicted in
this plot for different values of depolarizing probability p, and γ1 is as defined in Corollary
5.5.7.

Corollary 5.5.7 (Shifted Qubit Depolarizing Channels). Let 0 < p ≤ 1
4

be the depolarizing

probability and non-negative number ε quantify the amount of shifting for a shifted qubit

depolarizing channel Dp,2,εZ. Let γ1 =
√

16− 9p+ 9p−16
4

, and γ2 = 4
√

1− p(1−
√

1− p) be

amplitude damping parameters dependent on the depolarizing probability p. Let Φγ1 be the

qubit amplitude damping channel with Kraus operators γ1|0〉〈1| and |0〉〈0|+
√

1− γ1|1〉〈1|
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and

Fss(p) := conv

(
1−H2(p), H2

(1− γ2

2

)
−H2

(γ2

2

)
, 1− 4p

)
be Smith and Smolin’s upper bound for the quantum capacity of the qubit depolarizing

channel [SS08], where H2(q) := η(q) + η(1 − q) is the binary entropy function. Then for

ε ≤ γ1, the quantum capacity of the shifted qubit depolarizing channel Dp,2,εZ is at most

εγ−1
1 Icoh(Φγ1 , {1,Z}B) + (1− εγ−1

1 )Fss(p).

Proof. Let U be the set of unitaries {1,HX,Z,HY,Z}. Then the U -twirl of Φγ1 is a shifted

depolarizing channel, in the sense that

(Φγ1)nUo(1) = 1+ γ1Z

(Φγ1)nUo(P) =
2
√

1− γ1 + (1− γ1)

3
P

for all non-trivial Paulis P ∈ {X,Y,Z}. Thus the U -twirl of Φγ1 is the qubit depolarizing

channel of depolarizing probability p = 4
3

(
1− 2

√
1−γ1+(1−γ1)

3

)
shifted by γ1Z. Solving γ1

in terms of p, and imposing the condition that γ1 is non-negative for p ∈ (0, 1
4
], we get

γ1 =
√

16− 9p + 9p−16
4
, which is less than γ2 on the interval p ∈ (0, 1

4
]. Then the shifted

qubit depolarizing channel is the following convex combination of channels the U -twirled

qubit amplitude damping channel and the qubit depolarizing channel. Hence

Dp,2,εZ = εγ−1
1 (Φγ1)nUo + (1− εγ−1

1 )Dp,2.

Hence applying Theorem 5.2.1 on the degradable extensions of the U -twirl of Φγ1 and Smith

and Smolin’s degradable extension of the qubit depolarizing channel gives the result. ut

Similarly, it is also possible to obtain upper bounds on the quantum capacity of some

four-dimension non-unital channels. For example, let U be any set of four-dimension

unitary matrices, and x, y, z and x′, y′, z′ satisfy the inequalities in (5.3.6). Then the
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quantum capacity of the convex combination of the U -twirl of the four-dimension amplitude

damping channel Φx,y,z and the Pauli-twirl of another two qubit amplitude damping channel

Φx′,y′,z′ is at most the convex combination of the coherent information of Φx,y,z and the

coherent information of Φx′,y′,z′ evaluated on the maximally mixed state.

5.6 Discussions

In this chapter, we have generalized Smith and Smolin’s result (Lemma 8 of [SS08]) to

our Theorem 5.4.2, which is the main tool that we use to provide new upper bounds for

the quantum capacity of several families of quantum channels. We provide upper bounds

on the quantum capacity of some non-unital channels – the shifted depolarizing channels,

and some shifted two-qubit Pauli channels – thereby demonstrating the potential of our

sharpening of Smith and Smolin’s technique.

Upper bounds for the quantum-capacities of the two-qubit locally symmetric channels

were originally investigated in this chapter in hope of improving the upper bound on the

quantum capacity of the qubit-depolarizing channel. However numerical evidence indicates

that this is not impossible, and improving on the upper bound of the qubit depolarizing

channel remains an open problem.
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5.7 Miscellaneous

Observe that

4|0〉〈3| = X⊗X−Y ⊗Y + i(X⊗Y + Y ⊗X) (5.7.1)

4|1〉〈2| = X⊗X + Y ⊗Y + i(−X⊗Y + Y ⊗X) (5.7.2)

4|0〉〈2| = X⊗ 1+ X⊗ Z + i(Y ⊗ 1+ Y ⊗ Z) (5.7.3)

4|1〉〈3| = X⊗ 1−X⊗ Z + i(Y ⊗ 1−Y ⊗ Z) (5.7.4)

4|0〉〈1| = 1⊗X + Z⊗X + i(1⊗Y + Z⊗Y) (5.7.5)

4|2〉〈3| = 1⊗X− Z⊗X + i(1⊗Y − Z⊗Y). (5.7.6)

Also

4|0〉〈0| = 1⊗ 1+ 1⊗ Z + Z⊗ 1+ Z⊗ Z (5.7.7)

4|1〉〈1| = 1⊗ 1− 1⊗ Z + Z⊗ 1− Z⊗ Z (5.7.8)

4|2〉〈2| = 1⊗ 1+ 1⊗ Z− Z⊗ 1− Z⊗ Z (5.7.9)

4|3〉〈3| = 1⊗ 1− 1⊗ Z− Z⊗ 1+ Z⊗ Z. (5.7.10)

We can also rewrite the above matrices in the following form.

|0〉〈3| = (|0〉〈0|)(X⊗X) (5.7.11)

|0〉〈2| = (|0〉〈0|)(X⊗ Z) (5.7.12)

|1〉〈3| = (−|1〉〈1|)(X⊗ Z) (5.7.13)

|0〉〈1| = (|0〉〈0|)(Z⊗X) (5.7.14)

|2〉〈3| = (−|2〉〈2|)(Z⊗X) (5.7.15)
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[Erd85] Arthur Erdélyi. Higher Transcendental Functions 2. Robert E. Krieger

Publishing Company, second reprint edition, 1985.

[FKM65] G. W. Ford, M. Kac, and P. Mazur. Statistical mechanics of assemblies of

coupled oscillators. Journal of Mathematical Physics, 6(4):504, April 1965.

[FLO88] G. W. Ford, J. T. Lewis, and R. F. O’Connell. Quantum Langevin equation.

Phys. Rev. A, 37:4419–4428, Jun 1988.

[FM04] Keqin Feng and Zhi Ma. A finite Gilbert-Varshamov bound for pure stabilizer

quantum codes. IEEE Transactions on Information Theory, 50(12):3323–3325,

2004.

[FSW08] A.S. Fletcher, P.W. Shor, and M.Z. Win. Channel-adapted quantum error

correction for the amplitude damping channel. Information Theory, IEEE

Transactions on, 54(12):5705 –5718, dec. 2008.

117



[Fuj06] Hachiro Fujita. Several classes of concatenated quantum codes: Constructions

and bounds. IEIC Technical Report (Institute of Electronics, Information and

Communication Engineers), 105(662):195–200, 2006.

[Fuk05] Motohisa Fukuda. Extending additivity from symmetric to asymmetric

channels. J. Phys. A: Math. Gen., 38(45):L753, 2005.

[FW08] Jesse Fern and K. Birgitta Whaley. Lower bounds on the nonzero capacity of

Pauli channels. Phys. Rev. A, 78:062335, 2008.

[GBR04] Markus Grassl, Thomas Beth, and Martin Roetteler. On optimal quantum

codes. International Journal of Quantum Information, 2(1):55–64, 2004.

[GF05] Vittorio Giovannetti and Rosario Fazio. Information-capacity description of

spin-chain correlations. Phys. Rev. A, 71:032314, 2005.

[GGB99] Markus Grassl, Willi Geiselmann, and Thomas Beth. Quantum Reed-Solomon

codes. Proceedings Applied Algebra, Algebraic Algorithms and Error-Correcting

Codes (AAECC-13), Springer Lecture Notes in Computer Science, page 1719,

1999.

[GLR05] Vittorio Giovannetti, Seth Lloyd, and Mary Beth Ruskai. Conditions for

multiplicativity of maximal [script-l][sub p]-norms of channels for fixed integer

p. Journal of Mathematical Physics, 46(4):042105, 2005.

[Got97] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. PhD

thesis, California Institute of Technology, 1997. quant-ph/9705052.

[Ham08] M. Hamada. Concatenated quantum codes constructible in polynomial

time: Efficient decoding and error correction. Information Theory, IEEE

Transactions on, 54(12):5689 –5704, dec. 2008.

[HK69] K. E. Hellwig and K. Kraus. Pure operations and measurements. Communi-

cations in Mathematical Physics, 11:214–220, 1969. 10.1007/BF01645807.

118



[HK70] K. E. Hellwig and K. Kraus. Operations and measurements. II. Communica-

tions in Mathematical Physics, 16:142–147, 1970. 10.1007/BF01646620.

[Hol93] A.S. Holevo. A note on covariant dynamical semigroups. Reports on

Mathematical Physics, 32(2):211 – 216, 1993.

[Hol11] A. S. Holevo. The Choi-Jamiolkowski forms of quantum Gaussian channels.

Journal of Mathematical Physics, 52(4):042202, 2011.

[HPZ92] B. L. Hu, Juan Pablo Paz, and Yuhong Zhang. Quantum brownian motion in

a general environment: Exact master equation with nonlocal dissipation and

colored noise. Phys. Rev. D, 45:2843–2861, Apr 1992.

[JMM11] Ahmed Jellal, Fethi Madouri, and Abdeldjalil Merdaci. Entanglement in

coupled harmonic oscillators studied using a unitary transformation. Journal

of Statistical Mechanics: Theory and Experiment, 2011(09):P09015, 2011.

[Jus72] J Justesen. Class of constructive asymptotically good algebraic codes. IEEE

Transactions on Information Theory, 18(5):652–656, September 1972.

[JX11] Lingfei Jin and Chaoping Xing. Quantum Gilbert-Varshamov bound through

symplectic self-orthogonal codes. In Information Theory Proceedings (ISIT),

2011 IEEE International Symposium on, pages 455 –458, 31 2011-aug. 5 2011.

[KK83] D Kosloff and R Kosloff. A fourier method solution for the time dependent

Schrödinger equation as a tool in molecular dynamics. Journal of Computa-

tional Physics, 52(1):35 – 53, 1983.

[KL97] E. Knill and R. Laflamme. A theory of quantum error correcting codes. Phys.

Rev. A, 55:900, 1997. quant-ph/9604034.

[KMNR07] Christopher King, Keiji Matsumoto, Michael Nathanson, and Mary Beth

Ruskai. Properties of conjugate channels with applications to additivity and

multiplicativity. Markov Process and Related Fields, 13:391, 2007.

119



[Kos72] A. Kossakowski. On quantum statistical mechanics of non-Hamiltonian

systems. Reports on Mathematical Physics, 3(4):247 – 274, 1972.

[Kra83] Karl Kraus. Lecture Notes in Physics 190 : States, Effects, and Operations

Fundamental Notions of Quantum Theory. Springer Berlin / Heidelberg, first

edition, 1983.

[KSL08] Robert L. Kosut, Alireza Shabani, and Daniel A. Lidar. Robust quantum error

correction via convex optimization. Phys. Rev. Lett., 100:020502, Jan 2008.

[LCD+87] A. J. Leggett, S. Chakravarty, A. T. Dorsey, Matthew P. A. Fisher, and

W. Zwerger Anupam Garg. Dynamics of the dissipative two-state system.

Reviews of Modern Physics, 59(1), 1987. quant-ph/0610063.

[Lin76] G. Lindblad. On the generators of quantum dynamical semigroups. Commu-

nications in Mathematical Physics, 48:119–130, 1976. 10.1007/BF01608499.

[Llo97] Seth Lloyd. The capacity of the noisy quantum channel. Phys. Rev. A, 55:1613,

1997.

[LNCY97] Debbie W. Leung, M. A. Nielsen, I. L. Chuang, and Y. Yamamoto. Approxi-

mate quantum error correction can lead to better codes. Phys. Rev. A, 56:2567,

1997.
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