
Dynamic Programming:
Salesman to Surgeon

by

David Qian

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2013

c© David Qian 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Dynamic Programming is an optimization technique used in computer science and math-
ematics. Introduced in the 1950s, it has been applied to many classic combinatorial opti-
mization problems, such as the Shortest Path Problem, the Knapsack Problem, and the
Traveling Salesman Problem, with varying degrees of practical success.

In this thesis, we present two applications of dynamic programming to optimization
problems. The first application is as a method to compute the Branch-Cut-and-Price
(BCP) family of lower bounds for the Traveling Salesman Problem (TSP), and several
vehicle routing problems that generalize it. We then prove that the BCP family provides
a set of lower bounds that is at least as strong as the Approximate Linear Program (ALP)
family of lower bounds for the TSP. The second application is a novel dynamic programming
model used to determine the placement of cuts for a particular form of skull surgery called
Cranial Vault Remodeling.

iii

Acknowledgements

I would like to thank my supervisor and mentor Ricardo Fukasawa. Without his valuable
guidance, input, and time, I would not have been able to write the thesis you are reading
now.

Secondly, I would like to thank my reader Jochen Könemann, who also collaborated
with us on the Cranial Vault Remodeling project. I would also like to thank my second
reader, Laura Sanita, for her valuable comments. Additionally, I would like to thank Nikoo
Saber from The Hospital for Sick Children for her correspondence with us on the CVR
project.

Finally, I would like to thank my friends and fellow graduate students who helped me
with their time and advice. A special thanks goes out to Becky, Brandon, Dale, Devanshu,
Leanne, and Chloe.

iv

Dedication

I dedicate this thesis to my family, for their support, patience, time, and love.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction and Preliminaries 1

1.1 Basic Concepts . 2

1.1.1 Dynamic Programming . 2

1.1.2 Linear Programming . 5

1.1.3 Integer Programming . 6

1.1.4 Column Generation . 8

1.2 Motivations and Outline . 9

2 Dynamic Programming based-Bounds for Routing Problems 11

2.1 Traveling Salesman Problem . 11

2.2 Branch-Cut-and-Price . 12

2.3 Approximate Linear Program for TSP . 15

2.4 Proof of Dominance . 19

2.5 The need for Subtour Elimination constraints 35

2.6 Conclusion . 37

vi

3 Cranial Vault Remodeling 38

3.1 Introduction . 38

3.2 Notation . 39

3.3 Calculating Costs . 42

3.4 Integer Programming Model . 43

3.4.1 Formulation . 43

3.4.2 Constraints . 46

3.5 Dynamic Programming Model . 48

3.5.1 Formulation . 48

3.5.2 Correctness . 49

3.5.3 Complexity . 50

3.6 Computational Results . 50

4 Future Work and Conclusions 55

References 57

vii

List of Tables

3.1 Computational Results . 54

viii

List of Figures

2.1 BCP vs HK . 36

3.1 Orbital Bar clamped to Bandeau Template 39

3.2 Rigid pieces rotated by Cut . 39

3.3 The φC function . 40

3.4 Recursive Definition of φ . 41

3.5 Curve assumptions . 43

3.6 Unicoronal Comparison . 52

3.7 Metopic Comparison . 53

ix

Chapter 1

Introduction and Preliminaries

Dynamic Programming is an optimization technique introduced by Richard Bellman in
the 1950s, and has since grown to be widely used across computer science and operations
research [19]. It is a method for solving complex problems by decomposing them into
simpler, overlapping subproblems. Examples of its use include industrial applications such
as production planning, patient scheduling, long-term investment programs, and inven-
tory policies [5], and medical applications such as RNA secondary structure prediction [27]
and DNA sequence alignment [22]. In addition to the classical model developed by Bell-
man, other flavours of dynamic programming include stochastic dynamic programming,
frequently used to model animal behaviour [21], and approximate dynamic programming.

This thesis presents two different applications of classical dynamic programming to
optimization problems. The first is as a tool for obtaining lower bounds for the Traveling
Salesman Problem (TSP) and several vehicle routing problems that generalize it. The
second is as a method to decide on the placement of cuts for a particular form of skull
surgery, a project undertaken in conjunction with The Hospital for Sick Children.

In the following section we will discuss basic definitions and concepts necessary for
the subject matter of this thesis. Definitions from dynamic programming and linear pro-
gramming will be covered, including duality, integer programming, and column generation.
Therefore, this section may be skipped by the reader if they are familiar with these subjects.
We conclude by giving motivations for and an outline of this thesis.

1

1.1 Basic Concepts

1.1.1 Dynamic Programming

Dynamic Programming is an optimization technique that was created to ‘treat the math-
ematical problems arising from the study of various multi-stage decision processes’ [5].
Given a sequence of decisions to be made, dynamic programming breaks them down into
simpler subproblems. In doing so, it avoids attempting to enumerate all feasible decision
sequences, as even with a moderate number of decisions and a moderate number of choices
at each decision, the resulting dimensionality can be infeasibly high.

For dynamic programming to be applicable to a problem, it must exhibit optimal sub-
structure and overlapping subproblems. A problem has optimal substructure if its optimal
solution can be determined by combining the optimal solutions of its subproblems. The
overlapping subproblem property implies that many of these subproblems within the overall
problem are repeated. Because of this, a dynamic programming algorithm can avoid repe-
tition of work through memoization, the storage of subproblem solutions. When the result
of a subproblem is required, and that subproblem’s solution has already been determined,
its result can be recalled from memory rather than reevaluated.

We describe dynamic programming formally with the Bellman equation. We index our
sequence of decisions with time t, and let xt be the state at that time, with the initial
state being x0. Depending on which state we are in, we are presented with a set of actions
at ∈ Γ(xt). When action a is taken, we say that the state changes from x to a new state
T (x, a), and that the payoff (or cost) from taking action a in state x is F (x, a).

Assuming n decisions are to be made, and the objective is to maximize payoff, we wish
to solve the following:

V (x0) = max
{at}nt=0

n∑
t=0

F (xt, at)

subject to

at ∈ Γ(xt), xt+1 = T (xt, at), ∀ t = 0...n

where V (x0) represents the optimal value obtained from the objective function.

In this form, it is not immediately apparent what strategy should be employed in solving
for the optimal sequence of actions, the ‘optimal policy’. Richard Bellman’s Principle of
Optimality describes how to decompose the overall problem into smaller subproblems: “An

2

optimal policy has the property that whatever the initial state and initial decisions are, the
remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision.”

From this, we consider only the first decision a0.

max
a0

{
F (x0, a0) + max

{at}nt=1

(
n∑
t=1

F (xt, at) : s.t. at ∈ Γ(xt), xt+1 = T (xt, at), ∀ t = 1...n

)}

subject to a0 ∈ Γ(x0), x1 = T (x0, a0).

From here, the recursive nature of our formulation becomes clear, as to solve the smaller
subproblem we start with considering the first decision again, in this case a1. Rewriting
our problem recursively, we get the following:

V (x0) = max
a0
{F (x0, a0) + V (x1)}

subject to a0 ∈ Γ(x0), x1 = T (x0, a0). This gives us the general Bellman equation for any
state x:

V (x) = max
a∈Γ(x)

{F (x, a) + V (T (x, a))}

As an example, we present the dynamic programming formulation for the NP-Hard 0-1
Knapsack Problem [19]: Given n objects with strictly positive weights w1, w2, ..., wn and
values v1, v2, ..., vn, and a bag with maximum carrying weight W , we wish to determine
the subset of items whose total weight is ≤ W and maximizes the sum of the values. In
other words, we wish to solve the following:

max
n∑
i=1

vixi

s.t.
n∑
i=1

wixi ≤ W

xi ∈ {0, 1} ∀ 1 ≤ i ≤ n

We will demonstrate how to solve this problem using Bellman’s equation by presenting
a dynamic programming model. We let our states be the set of pairs (i, w), for 1 ≤ i ≤ n,
0 ≤ w ≤ W . In state (i, w), we wish to make the decision of earning the maximum value
that can be achieved with weight less than or equal to w, using only the items 1 to i. Thus,

3

we can say that the overall problem is to determine the set of objects that maximize the
value of state (n,W), i.e. V (n,W).

Assume we are in state (i, w), and consider the set of actions Γ(i, w) that we could take
from this state. We will focus on item i, and decide on the rest of the items recursively;
therefore, we limit the set Γ(i, w) only to actions regarding the item i. There are two
possibilities for item i: We either include it (which we shall call action I), or exclude it
(action E).

We first note that if the weight of item i is greater than our available weight, i.e. wi > w,
then we cannot include item i in our bag. If wi ≤ w, then both including it or excluding
it are possibilities. Therefore,

Γ(i, w) =

{
{E} : if wi > w

{I, E} : if wi ≤ w

We now observe the payoff and new state that arise from taking either action. Clearly,
by excluding item i we gain no immediate payoff from it, so F ((i, w), E) = 0. Also, our
weight remains unchanged, and we only need to consider the items up to i − 1. Thus,
T ((i, w), E) = (i− 1, w). Now consider the result if we include item i. Our payoff gained
is the value of item i, so F ((i, w), I) = vi. Our available weight is reduced by the weight
of item i, and we again only need to consider the items up to i − 1. Thus, T ((i, w), I) =
(i− 1, w − wi).

We can now describe the recursive formulation for the maximum payoff of a state (i, w),
V (i, w):

V (i, w) =

{
V (i− 1, w) : if wi > w

max{vi + V (i− 1, w − wi), V (i− 1, w)} : if wi ≤ w

where the first case is when the only possible action for i is to exclude it, and the second
case is when both actions are possible. To solve this recursion efficiently, we use a table to
store the values of V (i, w) that have already been computed.

Dynamic programming has been used on many classic optimization problems, though
the efficiency of the resulting algorithms are mixed. The Shortest Path Problem with non-
negative edge weights can be solved in polynomial time using Dijkstra’s Algorithm. The
aforementioned Knapsack Problem can be solved in pseudo-polynomial time using dynamic
programming. Dynamic programming also provides the fastest known exact algorithm for
the Traveling Salesman Problem, but the runtime is exponential.

4

1.1.2 Linear Programming

Linear programming is the study of finding a vector x that minimizes (or maximizes) a given
linear function cᵀx, subject to x satisfying a given system of linear inequalities Ax ≤ b,
where A is an m × n matrix with rational coefficients. A geometric interpretation of
Linear Programming is as an optimization problem within an n-dimensional polyhedron, a
(possibly empty) intersection of half-spaces defined by the constraints. This optimization
problem has been heavily studied, and for many years the Simplex Method devised by
Dantzig was the standard method in solving these programs. The Simplex Method operates
by determining an extreme point (a vertex) of the polyhedron, and moving (pivoting) to
adjacent vertices until an optimal vertex is found. More recently, Karmarkar popularized
an interior-point method as a provably polynomial-time algorithm for solving LPs [10].

A linear program is typically presented as the following:

min cᵀx
s.t. Ax ≤ b

x ≥ 0
x ∈ Rn

(P)

The problem (P), usually referred to as the primal, has a corresponding linear programming
problem called the dual, which represents a maximization problem if (P) is a minimization
problem, and vice-versa. It is typically presented as the following:

max bᵀy
s.t. Aᵀy ≥ c

y ≥ 0
y ∈ Rm

(D)

The dual is a fundamental part of the study of linear programming and convex program-
ming in general. One important fact is that the dual of the dual is the original primal. We
note that it is not necessarily true that the primal or dual is feasible; it is possible for one,
or both, to have no solution. Determining if a given linear program has a feasible solution
requires Farkas’ Lemma.

Lemma (Farkas’ Lemma for Inequalities). The system Ax ≤ b has a solution x if and only
if there is no vector y satisfying y ≥ 0, yᵀA = 0, and yᵀb < 0.

With these definitions, we can describe the Duality Theorems (weak and strong).

5

Theorem (Weak Duality). Let A be an m× n matrix, b ∈ Rm, c ∈ Rn. Suppose that x̄ is
a feasible solution to Ax ≤ b and ȳ is a feasible solution to y ≥ 0, yᵀA = cᵀ. Then

cᵀx̄ ≤ ȳᵀb

Theorem (Strong Duality). Let A be an m× n matrix, b ∈ Rm, c ∈ Rn. Then

max {cᵀx : Ax ≤ b} = min {yᵀb : y ≥ 0 : yᵀA = cᵀ}

provided that both sets are nonempty.

In other words, the objective value of a solution to a linear program is not only bounded
by the value of a solution to its dual, but is in fact equivalent for optimal solutions.

1.1.3 Integer Programming

One aspect of linear programming is that the solution set is continuous and, more strongly
speaking, convex. These characteristics allow for relatively fast methods to solve LPs.
Conversely, Integer Programs (IPs) are problems where some (a mixed IP) or all (a pure
IP) of the variables must take on integer values. These variables are typically used to
model indivisibilities in problems (such as building a number of cars) or to model decisions
by using 0/1 variables (such as facility placement) [26]. While integer programs are able
to model problems that linear programs can’t, solving them is NP-Hard.

An important concept in Integer Programming is that of a relaxation. Consider the
following pure IP with linear constraints:

min cᵀx
s.t. Ax ≤ b

x ∈ Zn
(IP)

Then the following program
min f(x)
s.t. x ∈ R (R)

is a relaxation of (IP) as long as {x : Ax ≤ b, x ∈ Zn} ⊆ R, and f(x) ≤ cᵀx for all solutions
x to (IP).

A simple example of a relaxation to (IP) is its associated linear program. Instead of
the integrality requirements on x, we relax them to x ∈ Rn.

min cᵀx
s.t. Ax ≤ b

x ∈ Rn

(LP)

6

From this simple example we see that the optimal value for (LP) must be less than or equal
to the optimal value for (IP), since the set of solutions x that satisfy the constraints of
(IP) also satisfy the constraints of (LP). In fact, this must be true for any relaxation of a
given minimization IP. Thus, the optimal value of a relaxation provides a lower (or upper)
bound on the optimal value of a minimization (or maximization) IP. Lower and upper
bounds to integer programs are essential for Branch-and-Bound, an algorithm commonly
used to solve integer programs.

Given this broad definition of relaxations, we focus our interest on useful relaxations.
Generally speaking, we want a relaxation to be quick and easy to solve with respect to
the original problem, and for the lower (or upper) bounds to be as close to the optimal
solution as possible.

Relaxations of an IP may come, for instance, as projections of higher dimensional sets.
Consider (IP), and let P = {x : Ax ≤ b} be the set of points described by its constraints,
excluding the integrality requirements. We can then write (IP) as follows:

min cᵀx
s.t. x ∈ P ∩ Zn (P-IP)

Now, consider the following set R:

R = {(x, y) ∈ Rn × Rm : Bx+ Cy ≤ b}

for some matrices B, C, and vector b. Using this notation, R is a (higher-dimension)
relaxation of (P-IP) if the following is true:

{x ∈ Zn : x ∈ P} = {x ∈ Zn : x ∈ Projx(R)} ⊆ Projx(R)

where Projx(R) is defined as the following [1]:

Projx(R) := {x ∈ Rn : ∃y ∈ Rm : (x, y) ∈ R}

Two different relaxations can be compared by considering their bounds and feasible
regions. Consider two relaxations of (P-IP), R1 and R2. We say that R1 is a tighter
relaxation than R2 if the following holds:

Projx(R1) ⊆ Projx(R2)

Given that R1 is tighter than R2, this leads to the following:

min
x∈Projx(R1)

cᵀx ≥ min
x∈Projx(R2)

cᵀx

7

1.1.4 Column Generation

Column Generation is a technique for solving a mathematical program by iteratively adding
the variables of the model, introduced by Ford et al. [12]. When the number of variables
dominates the number of constraints, most variables are non-basic in an extreme solution,
and have no contribution to the optimal solution. Thus, only a small fraction of variables
are needed to prove optimality [20]. Column Generation is typically used for solving linear
programs with huge numbers of variables.

We would like to solve a linear program, called the master problem (MP),

min
∑
j∈J

cjλj

s.t.
∑
j∈J

ajλj ≥ b

λj ≥ 0, j ∈ J

(MP)

with |J | = n variables and m constraints. In many applications, n is exponential in terms
of m, and working with the full set J is not an option due to its size. Instead, we try to
determine the optimal solution of the restricted master problem (RMP), which contains a
subset J ′ ⊆ J of variables:

min
∑
j∈J ′

cjλj

s.t.
∑
j∈J ′

ajλj ≥ b

λj ≥ 0, j ∈ J ′

(RMP)

The challenge is determining when an optimal solution to the RMP is also an optimal
solution to the MP. Consider an optimal dual solution π∗ of the RMP. In column generation,
we look for a nonbasic variable of negative reduced cost, by solving the pricing problem
(PP):

min {cj − π∗aj : j ∈ J} (PP)

When this value is < 0, the variable λj and its coefficients cj, aj corresponding to a
minimizer j are added to the RMP. Iterating, we again solve the RMP to optimality and
use the dual variables to determine if there are any new variables with negative reduced
cost. Once there are no new variables to be added, an optimal solution to the RMP is
optimal for the MP as well.

In general, solving (PP) by inspecting every element of J might not be computationally
feasible when J is very large. However, in many applications the entities of J can be

8

described as the feasible domain X of an optimization problem, so that the pricing problem
can be solved as

min
x∈X
{c(x)− π∗a(x)}

Thus, rather than having to explicitly enumerate through J , the pricing problem can be
solved through a structured optimization problem.

1.2 Motivations and Outline

In Chapter 2, we discuss two different lower bounds on the Traveling Salesman Problem: the
Branch-Cut-and-Price (BCP) model by Fukasawa et al. [13] in 2006, and an Approximate
Linear Program (ALP) model recently presented in 2012 by Toriello [25], giving a family
of bounds that were demonstrated to be greater than or equal to the Held-Karp bound.
In [24], Toriello shows that a particular member of the family of ALP bounds is equivalent
to the Held-Karp bound.

The BCP bound is obtained through both column generation by using dynamic pro-
gramming, and cut generation. It has shown strong computational success in solving
previously intractable instances of problems which generalize TSP, such as Capacitated
Vehicle Routing, Capacitated Minimum Spanning Tree, Generalized Assignment, Time
Dependent Traveling Salesman, and Capacitated Arc Routing. A natural question to con-
sider is which of the two families of LPs (ALP or BCP) gives a better bound on the TSP,
and if one dominates the other. We answer this question by demonstrating that, given a
solution to the BCP model, we can construct a feasible solution to the ALP model with
the same objective value. This shows that the BCP bound is at least as strong as the ALP
bound.

In Chapter 3, we shift direction to present a medical application of dynamic program-
ming. We briefly discuss Cranial Vault Remodeling. This form of surgery is undertaken
on children experiencing a premature fusing of their soft skull bones. The surgery involves
removing a piece of the front of the skull from the patient and reshaping it into an appro-
priate curvature by cutting and remodelling the bone. The current methodologies require
the artistic judgment of the craniofacial surgeon [6], which can lead to opportunities of
error by less experienced surgeons. Recent advances by The Hospital for Sick Children
introduced the notion of an ideal skull curvature that can be generated for a given patient.
Using this ideal skull curvature, a metal ‘bandeau’ is machined to guide the surgeon. The
question still arises of where the surgeon should cut the removed skull bone in order to
match the bandeau.

9

Using CT scans of patients’ skulls and the bandeau templates, we have developed
a model to determine where the frontal bone should be cut in order to attain an ideal
curvature post-surgery. We present our solutions to the problem, including an Integer
Programming model and a Dynamic Programming model, the latter of which resulted in a
polytime algorithm for solving the problem. Our methods are currently under evaluation
by The Hospital for Sick Children, with very positive initial feedback.

10

Chapter 2

Dynamic Programming
based-Bounds for Routing Problems

2.1 Traveling Salesman Problem

The Traveling Salesman Problem is a classic NP-Hard problem [10]. Its general description
is as follows [10]: Given a set of cities and distances between every pair of cities, the
‘salesman’ wishes to visit every city exactly once, and then return to his starting city, in
the shortest possible total distance. The problem has been the focus of heavy study, and
many heuristics and techniques exist to allow instances of several thousand cities to be
solved to optimality.

For this thesis, we will consider a version of the TSP where we use a directed, complete
graph. Let G = (V,A) be the complete digraph on vertices V = {0} ∪ N , where N =
{1, 2, ..., n}. Without loss of generality, let 0 be the salesman’s starting point, which we
will call the depot. Each directed arc ij has an associated non-negative cost, cij. We make
the arc completeness assumption to simplify notation; however, this assumption on the
graph is not required for our results.

In terms of exact algorithms, a Dynamic Programming model gives the best known
running time. The TSP can be converted into a shortest path problem on a network that
has an exponential number of nodes with respect to the number of cities. Given non-
negative distances, this shortest path problem can be solved using Dynamic Programming.
However, the runtime is O(n22n) [3], exponential with respect to the inputs. Additionally,
the DP solution has exponential space requirements. The details of this model are explained
in section 2.3

11

The Traveling Salesman Problem has been described using an Integer Programming
formulation that dates back as far as the 1950s from the work of Dantzig et al. [11]. The
binary integer formulation is as follows:

min
∑
i∈N

(c0ix0i +
∑
j∈N\i

cijxij + ci0xi0) (2.1)

s.t.
∑
i∈N

x0i =
∑
i∈N

xi0 = 1 (2.2)

x0i +
∑
j∈N\i

xji =
∑
j∈N\i

xij + xi0 = 1 ∀ i ∈ N (2.3)

∑
i∈U

(x0i +
∑
j∈N\U

xji) ≥ 1 ∀ ∅ (U (N (2.4)

xij ∈ Z+ ∀ (i, j) ∈ A (2.5)

In IP form, the variable xij represents the salesman using arc ij in a tour. The objective
function (2.1) aims to minimize the cost of each edge used in the chosen tour. Constraint
(2.2) represents the tour starting and ending at the depot, never visiting it in-between.
Constraint (2.3) is the city flow constraint; each city is entered exactly once, and left
exactly once. Constraint (2.4) is the subtour elimination constraint; for any strict subset
of cities, there can be no cycles within it (i.e. no subtours). In other words, any strict
subset of cities must have an arc leaving it and an arc entering it, so that the resulting
graph is strongly connected.

A simple relaxation of the IP formulation is obtained by replacing the integer require-
ment (2.5) with the relaxation 0 ≤ xij ≤ 1. The lower bound that this heavily studied LP
gives is known as the Held-Karp bound [16], a value that we denote as zHK .

2.2 Branch-Cut-and-Price

The Capacitated Vehicle Routing Problem (CVRP) is an NP-Hard problem that gener-
alizes the TSP. Until recently, it had been particularly resistant computationally, despite
theoretical advances. In 2006, Fukasawa et al. [13] introduced the Branch-and-Cut-and-
Price (BCP) algorithm that produced considerable success for the CVRP. We will look at
the BCP algorithm in the context of the TSP.

A possible way to approach the Traveling Salesman Problem is the set partitioning
formulation. Rather than selecting edges to form a feasible tour, we consider the set of

12

directed Hamiltonian cycles, and pick the one with the lowest cost. Let Q be the set of
such tours, and let cq be the sum of the arc costs of a tour q ∈ Q. Using these definitions,
we get the following formulation:

min
∑
q∈Q

cqλq

s.t.
∑
q∈Q

λq = 1

λq ∈ {0, 1}

Even solving the LP relaxation of this formulation is NP-Hard, since pricing the expo-
nential number of variables is equivalent to actually solving a TSP. Instead, we relax the
conditions on Q to be a set of ‘q-routes’, defined as the following:

Definition. Given the graph G = ({0}∪N,A), a q-route q of G is a sequence of vertices
vq(0), vq(1), ..., vq(n+ 1) such that vq(0) = vq(n+ 1) = 0, and vq(i) ∈ N, ∀ i = 1...n.

Informally, a q-route is a directed walk with n + 1 edges that begins and ends at the
depot 0, and does not visit it in-between. In addition to this tour relaxation, we relax
the integrality condition on λq to 0 ≤ λq ≤ 1. Any solution to the relaxation is thus a
convex combination of these q-routes. To connect the λ variables to the notion of graph
edge variables, we introduce the coefficient dqij:

dqij :=
n+1∑
k=1

1{vq(k−1)=i,vq(k)=j} ∀ i, j ∈ N, q ∈ Q

In other words, dqij is the number of times a q-route q uses the arc ij. Using this coefficient,
we can use the λq variables to set arc variables xij in order to enforce in-degree, out-degree,
and subtour elimination constraints as in the Held-Karp relaxation. We call the resulting
formulation BCP, and present it as follows:

13

min
∑
i∈N

(c0ix0i +
∑
j∈N\i

cijxij + ci0xi0) (2.6)

s.t. xij =
∑
q∈Q

dqij · λq ∀ i, j ∈ N (2.7)∑
i∈N

x0i =
∑
i∈N

xi0 = 1 (2.8)

x0i +
∑
j∈N\i

xji =
∑
j∈N\i

xij + xi0 = 1 ∀ i ∈ N (2.9)

∑
i∈U

(x0i +
∑
j∈N\U

xji) ≥ 1 ∀ ∅ (U (N (2.10)

0 ≤ λq ≤ 1 ∀ q ∈ Q (2.11)

Though computationally this is not the most practical approach for the TSP, a similar
idea introduced by Fukasawa et al. [13] has been very successfully applied to TSP gen-
eralizations such as Capacitated Vehicle Routing, Capacitated Minimum Spanning Tree,
Generalized Assignment, Time Dependent Traveling Salesman, and Capacitated Arc Rout-
ing, which is our motivation for its use.

The authors of [13] showed that the pricing problem for the dual variables can be solved
in polynomial time, and thus the LP primal can be solved in polynomial time as well. In
each column generation iteration, the reduced cost of each edge, c̄ij, is calculated from the
dual variables of the Restricted Master Problem. Let α, γ, and ω be the dual variables
associated with constraints (2.8), (2.9), and (2.10) respectively. The reduced cost c̄ij of an
edge ij is given by:

c̄ij =

cij − γi − γj −

∑
U(N
δ(U)3ij

ωU : i, j ∈ N

cij − α− γj −
∑
U(N
δ(U)3ij

ωU : i = 0, j ∈ N

The pricing subproblem of finding the q-routes (columns) to add to the RMP can be solved
by using an (n+1)×n matrix M . Each entry, M(k, i), represents the least costly walk that
reaches vertex i from vertex 0 using exactly k steps. The entry contains a label consisting
of three elements: the vertex identifier (i), the current cost of the walk c̄(M(k, i)), and a
pointer to a label representing the walk up to the previous vertex.

14

Initially, the only known label, M(0, 0), represents an empty walk and has cost zero,
with all other labels initialized to be empty walks with infinite cost. From M(0, 0), we use
dynamic programming to populate the matrix, starting with lower step values of k. For
each row k, the algorithm goes through each entry i and, for each neighbour j of i, evaluates
the extension of the walk represented by M(k, i) to j. If c̄(M(k, i)) + c̄ij ≤ c̄(M(k+ 1, j)),
then M(k + 1, j) is updated. Formally,

c̄(M(k, i)) =

min
j∈N\i

{c̄(M(k − 1, j)) + c̄ji} : if i ∈ N , 1 < k ≤ n, or i = 0, k = n+ 1,

c̄0i : if k = 1.

where M(k, i) is the most negative q-route of length k that ends at vertex i.

Eventually, we will have the most negative walk with length exactly n that arrives at
each vertex i. Extending the walk to the depot, we obtain the corresponding q-route. All
negative q-routes found this way are added to the RMP. There are n2 + n entries in the
matrix, and each is processed in O(n) time, so the runtime of the pricing problem is O(n3).

The authors of the same paper also demonstrated a method to strengthen the for-
mulation through cycle elimination. Since eliminating cycles entirely from the q-routes
is NP-Hard, they settle for ‘t-cycle-free’ q-routes for small values of t, where a walk is
t-cycle-free if it contains no cycles of length t or less, including 2-cycles (directed walks
of the form i − j − i). Formally, we say that a q-route q is t-cycle free if the vertices
{vq(k), vq(k + 1), ..., vq(k + t)} are all distinct for every 0 ≤ k ≤ n− t+ 1.

The pricing algorithm for t-cycle-free q-routes operates as previously described, except
with additional memo-ization by keeping track of a bucket of labels for each entry in M .
When t > 2, Irnich et al. [17] showed that using a simple labeling rule would result in a
runtime bounded by O(nt+2). A much more complex labeling rule improves this bound to
a runtime of O(t · t!2 · n3), polynomial for fixed t. In practice, t is usually at most 4. The
reader is referred to [13] and [17] for additional details. Using this strengthening, we can
replace the set Q of q-routes with the set Qt of t-cycle-free q-routes, for t ≥ 1, noting that
Q1 = Q. We call its associated LP relaxation the BCPt formulation.

2.3 Approximate Linear Program for TSP

Recently, Toriello [25] introduced a method for constructing lower bounds for the TSP
that he later showed were equivalent to the Held-Karp bound [24]. Before presenting his
formulation, we first discuss the dynamic programming formulation for the TSP.

15

The DP formulation for the TSP uses the observation that when the salesman is at a
city i, the only information required to make the decision of which city to visit next is the
subset U ⊆ N of cities that has not yet been visited [4]. This pair, (i, U), can be considered
as a state that has unique cost (the minimum cost to visit the vertices of U , starting from i,
and then return to the depot 0). The set S = {(i, U) : i ∈ N, U ⊆ N \ i} ∪ {(0, N), (0, ∅)}
denotes every possible state. Using this set of states, we can create a ‘shortest path’
formulation; we start at the node (0, N), and wish to end at the node (0, ∅). Our arc set
is as follows:

A = {((0, N), (i, N \ i)) : i ∈ N} ∪ {((i, ∅), (0, ∅)) : i ∈ N}
∪{((i, U ∪ j), (j, U)) : i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j}}

where the cost of using any arc ((i, U ∪ j), (j, U)) ∈ A is the cost of the edge cij, and the
costs of ((0, N), (i, N \ i)) and ((i, ∅), (0, ∅)) are c0i and ci0 respectively.

Using this formulation, the TSP has been changed to solving the shortest path problem
for the graph (S,A), which can be done with dynamic programming. This formulation is
not straightforward to solve, however, due to the exponential number of nodes in (S,A)
with respect to our original graph G.

This shortest path problem can be formulated as a linear program. The primal is

min
∑
i∈N

c0ix(0,N),(i,N\i) +
∑
U⊆N\i

∑
j∈U

cijx(i,U),(j,U\j) + ci0x(i,∅),(0,∅)

s.t.

∑
i∈N

x(0,N),(i,N\i) = 1

−x(0,N),(i,N\i) +
∑
j∈N\i

x(i,N\i),(j,N\{i,j}) = 0, ∀ i ∈ N

−
∑

k∈N\{U∪i}

x(k,U∪i),(i,U) +
∑
j∈U

x(i,U),(j,U\j) = 0, ∀ i ∈ N, U ⊆ N \ i

−
∑
k∈N\i

x(k,i),(i,∅) + x(i,∅),(0,∅) = 0, ∀ i ∈ N∑
i∈N

x(i,∅),(0,∅) = 1, ∀ i ∈ N

xa ≥ 0, ∀ a ∈ A.

As mentioned, explicitly solving this LP is not computationally feasible due to its size, and

16

is equivalent to solving the TSP. The dual of the shortest path formulation is

max y0,N − y0,∅
s.t. y0,N − yi,N\i ≤ c0i ∀ i ∈ N

yi,U∪j − yj,U ≤ ci,j ∀ i, j ∈ N, U ⊆ N \ {i, j}
yi,∅ − y0,∅ ≤ ci0 ∀ i ∈ N
y0,N , y0,∅ ∈ R
yi,U ∈ R ∀ i ∈ N, U ⊆ N \ i

We notice that due to the fact that the variables are free, and every constraint plus
the objective function involves a pair of variables with opposing signs, given any solution
y to the dual, a translation of each component by the same constant c would still result
in a feasible solution of the same cost. Thus, without loss of generality we can set y0,∅
to 0, and remove it from our dual. This dual can be interpreted as a pricing problem
for a tolled shuttle service; a shuttle company wishes to offer rides between the cities of
{0} ∪N that the salesman can use in lieu of his own transportation. The company wants
to maximize their own profit, and the toll between two cities, yi,U∪j − yj,U can depend not
only on the cities i and j, but the remaining set of cities U that the salesman wishes to visit
afterwards. The toll that the company charges cannot be greater than the salesman’s own
cost, cij, between these two cities. The variable yi,U can thus be viewed as a ‘cost-to-go’;
the maximum cost that the shuttle service can charge the salesman from city i when he
still must visit U .

While solving this dual LP is still NP-Hard, Toriello [24] proposed approximating the
variables yi,U and solving the Approximate Linear Program (ALP) in order to obtain a
dual-feasible solution (and thus a bound on the optimal TSP value). First, we pick a
parameter t ∈ Z, such that 0 ≤ t ≤ n+1

2
, and replace our variables with the following

assignment:

yi,U = πi,∅ +
∑
k∈U

πi,k +
∑
W⊆U
|W |≥n−t

λi,W +
∑

W⊆N\(U∪i)
|W |≥n−t

µi,W

The variable πi,∅ is a cost associated with being at the vertex i. The variable πi,k represents
the cost of being at i and still having to visit city k. λi,W is a state entrance toll; given that
we are at city i and still need to visit W ⊆ U , a toll needs to be paid for entering that set of
cities W . Similarly, µi,W is a state exit toll. The parameter t determines the granularity of
our approximation; when t is 0, we do not consider any state entrance or exit tolls. When
the cardinality constraints are removed, we consider the state tolls of every possible subset
of cities W ⊆ U , which Toriello [25] showed is equivalent to solving the original dual LP.

17

After this variable replacement, the approximation becomes the following dual ALPt:

max y0,N

s.t. y0,N − πi,∅ −
∑
k∈N\i

πi,k −
∑
U⊆N\i
|U |≥n−t

λi,U ≤ c0i

∀ i ∈ N
πi,∅ +

∑
k∈U∪j

πi,k +
∑

W⊆U∪j
|W |≥n−t

λi,W +
∑

W⊆N\(U∪{i,j})
|W |≥n−t

µi,W

−πj,∅ −
∑
k∈U

πj,k −
∑
W⊆U
|W |≥n−t

λj,W −
∑

W⊆N\(U∪j)
|W |≥n−t

µj,W ≤ cij

∀ i, j ∈ N, U ⊆ N \ {i, j}
πi,∅ +

∑
U⊆N\i
|U |≥n−t

µi,U ≤ ci0

∀ i ∈ N

(ALPt)

It was shown in [25] that the separation problem for ALPt requires O(nt+2 + n3) arith-
metic operations, and therefore ALPt is solvable in polynomial time for fixed t. Toriello
showed in [24] that when t = 0, the approximate linear program’s optimal objective value
is equivalent to that of the Held-Karp bound.

From this dual approximation, we can generate the primal of ALPt. The constraints of
the primal can be considered in two classes: Those associated with the π variables of the
dual, and those associated with the λ and µ variables of the dual. We will first present
the part of the primal LP corresponding to the objective function and π dual variables,
with an implicit reference to the constraints associated with λ and µ. The reason for
presenting these constraints separately is due to the nature of the λ and µ variables in the
dual based on our choice of t: When t increases, new λ and µ variables are admitted into
the approximation, whereas the π variables are always present regardless of the choice of
t.

18

The primal is then:

min
∑
i∈N

c0ix0i +
∑
j∈N\i

∑
U⊆N\{i,j}

cijx
U
ij + ci0xi0

 (2.12)

s.t.
∑
i∈N

x0i = 1 (2.13)

− x0i +
∑
j∈N\i

∑
U⊆N\{i,j}

(xUij − xUji) + xi0 = 0, (2.14)

∀ i ∈ N

− x0i +
∑

U⊆N\{i,j}

xUij +
∑

k∈N\{i,j}

∑
U⊆N\{i,j,k}

(xU∪jik − xU∪jki) = 0 (2.15)

∀ i, j ∈ N
x ≥ 0 (2.16)

And constraints (2.17), (2.18)

Constraint (2.13) represents outflow from the depot. Constraint (2.14) states that any
in-flow and out-flow of any city i must be balanced, whether that flow comes from a
different city or from the depot. Constraint (2.15) has been termed an “i− j” flow balance
requirement; the flow into i when j must still be visited must be equal to the flow out of i
when j still remains, either directly to city j or to any other city.

The second class of constraints depends on the choice of t. For any city i, there is a
variable in the dual, λi,W and µi,W for each subset W ⊆ N \ i, such that |W | ≥ n − t.
These variables have the following associated constraints in the primal:

λi,W : −x0i +
∑
j∈N\i

∑
U⊆N\{i,j}
U∪j⊇W

xUij −
∑
j∈N\i

∑
U⊆N\{i,j}
U⊇W

xUji = 0 (2.17)

µi,W : xi0 +
∑
j∈N\i

∑
U⊆N\{i,j}

N\(U∪{i,j})⊇W

xUij −
∑
j∈N\i

∑
U⊆N\{i,j}
N\(U∪i)⊇W

xUji = 0 (2.18)

2.4 Proof of Dominance

Given these two relaxations ALPt and BCPt, a natural question is to ask which one provides
a stronger bound on the TSP. In this section, we show that, for any 0 ≤ t ≤ n+1

2
, BCPt+1

19

is stronger than ALPt. We do so by taking any solution to BCPt+1 and use it to create a
solution to ALPt that has the same objective value and satisfies its constraints. We note
that BCPt is only defined for t ≥ 1, while ALPt is for t ≥ 0. Additionally, the complexities
of solving these two formulations are comparable.

Recall the definition of dqij; it is the number of times that a q-route q crosses arc ij.

Since each q-route has exactly n+ 1 edges, we can define dq,kij , with 1 ≤ k ≤ n+ 1, as the
following binary coefficient:

dq,kij := 1{vq(k−1)=i,vq(k)=j} ∀ i, j ∈ N, q ∈ Qt

Since each route has exactly n+ 1 edges, we get the following identity:

n+1∑
k=1

dq,kij = dqij (2.19)

Thus, the BCPt program can be written as the following:

min
∑
i∈N

(c0ix0i +
∑
j∈N\i

cijxij + ci0xi0) (2.20)

s.t. xij =
∑
q∈Qt

(
n+1∑
k=1

dq,kij

)
· λq ∀ i, j ∈ N (2.21)

∑
i∈N

x0i =
∑
i∈N

xi0 = 1 (2.22)

x0i +
∑
j∈N\i

xji =
∑
j∈N\i

xij + xi0 = 1 ∀ i ∈ N (2.23)

∑
i∈U

(x0i +
∑
j∈N\U

xji) ≥ 1 ∀ ∅ (U (N (2.24)

0 ≤ λq ≤ 1 ∀ q ∈ Qt (2.25)

where Qt is the set of q-routes without t-cycles. Using this formulation, we will prove our
main result:

Theorem 1. Let 0 ≤ t ≤ n+1
2

. Given a solution (x̂, λ̂) to the BCPt+1 relaxation, it
is possible to construct a feasible solution to the primal of ALPt with the same objective
value.

20

This leads to the following corollary about the optimal value for the BCP relaxation
zBCP t+1 , and the optimal value for the ALP relaxation, zALP t :

Corollary 1. zBCP t+1 ≥ zALP t, ∀ 0 ≤ t ≤ n+1
2

.

To prove this theorem, we will first demonstrate how we will construct our solution to
ALPt, given a solution (x̂, λ̂) of BCPt+1. We will first set the depot variables:

x0i = x̂0i =
∑

q∈Qt+1

dq,10i · λ̂q (2.26)

xi0 = x̂i0 =
∑

q∈Qt+1

dq,n+1
i0 · λ̂q (2.27)

for all i ∈ N . The second equality in each line holds because any q-route always begins
and ends at the depot 0, and never visits it in-between.

For the non-depot arc variables, consider a pair of cities i, j ∈ N . For each U ⊆
N \ {i, j}, such that |U | ≥ n− (t+ 1), we define the set of q-routes Qt+1

U :

Qt+1
U = {q ∈ Qt+1 : {vq(1), ..., vq(|N \ U |)} = N \ U}

In other words, if q ∈ Qt+1
U , then the first |N \ U | cities visited after the depot in q are

exactly the cities in N \ U .

For each U ⊆ N \ {i, j}, such that |U | ≤ t+ 1, we define the set Q̄t+1
U :

Q̄t+1
U = {q ∈ Qt+1 : {vq(|N \ U |+ 1), ..., vq(n)} = U}

i.e. if q ∈ Q̄t+1
U , then the last |U | cities visited by q before returning to the depot are

exactly the cities in U .

Now, we set our variables as follows:

xUij =
∑

q∈Qt+1
U

d
q,|N\U |
ij · λ̂q, ∀ U ⊆ N \ {i, j}, |U | ≥ n− (t+ 1) (2.28)

xUij =
∑

q∈Q̄t+1
U

d
q,|N\U |
ij · λ̂q, ∀ U ⊆ N \ {i, j}, |U | ≤ t+ 1 (2.29)

∑
U⊆N\{i,j}
|U |=k

xUij =
∑

q∈Qt+1

d
q,|N\U |
ij · λ̂q, ∀ t+ 1 < k < n− (t+ 1) (2.30)

21

Lemma 1. Let 0 ≤ t ≤ n+1
2

, and let (x̂, λ̂) be a solution to BCPt+1. Then if we define xUij
as in (2.28), (2.29), and (2.30), the objective value of our constructed solution x for ALPt

has the same objective value as (x̂, λ̂) for BCPt+1.

Proof. First, we note that for a given k such that k ≤ t+1, the sets Qt+1
U , for all |U | = n−k,

partition the q-routes in Qt+1. This is because any q-route in Qt+1 is (t+1)-cycle-free, and
thus the first k cities of that q-route are all unique, and thus it must fall into exactly one
set Qt+1

U . Therefore, we get the following identity:∑
q∈Qt+1

dq,kij · λ̂q =
∑
U⊆N
|U |=n−k

∑
q∈Qt+1

U

dq,kij · λ̂q

Consider any set U ⊆ N that contains i or j (or both). By definition, the routes of Qt+1
U

cannot contain both i and j in their first n− |U | cities. Therefore, dq,kij = 0 for k ≤ t + 1.
Using this fact, we can exclude the sets U that contain either i or j, and extend our
identity: ∑

q∈Qt+1

dq,kij · λ̂q =
∑
U⊆N
|U |=n−k

∑
q∈Qt+1

U

dq,kij · λ̂q

=
∑

U⊆N\{i,j}
|U |=n−k

∑
q∈Qt+1

U

dq,kij · λ̂q

=
∑

U⊆N\{i,j}
|U |=n−k

xUij ∀ k : n− k ≥ n− (t+ 1)

for all k such that n− k ≥ n− (t+ 1). Through a similar argument for Q̄t+1
U partitioning

Qt+1, we can establish the same identity for k such that n− k ≤ t+ 1:∑
q∈Qt+1

dq,kij · λ̂q =
∑

U⊆N\{i,j}
|U |=n−k

xUij ∀ k : n− k ≤ t+ 1

Combining this identity with our third variable setting (for all k such that t+ 1 < k <

22

n− (t+ 1)), we conclude that

n+1∑
k=1

∑
U⊆N\{i,j}
|U |=n−k

xUij =
n+1∑
k=1

∑
q∈Qt+1

dq,kij · λ̂q

∑
U⊆N\{i,j}

xUij =
∑

q∈Qt+1

dqij · λ̂q

= x̂ij

Thus, the objective value of x in ALPt matches that of (x̂, λ̂) in BCPt+1.

What remains to be shown is if our constructed solution satisfies the constraints of
ALPt. To demonstrate that it does, we will prove the following two theorems:

Theorem 2. Let 0 ≤ t ≤ n+1
2

, and let (x̂, λ̂) be a solution from BCPt+1. Then by setting
xUij as in (2.28), (2.29), and (2.30), we get that xUij satisfies the first constraint class (2.13),
(2.14), and (2.15) for the primal of ALPt.

Theorem 3. Let 0 ≤ t ≤ n+1
2

, and let (x̂, λ̂) be a solution from BCPt+1. Then by setting
xUij as in (2.28), (2.29), and (2.30), we get that xUij satisfies the second constraint class
(2.17) and (2.18) for the primal of ALPt.

These two theorems, along with Lemma 1, imply our main result, Theorem 1. We start
by proving Theorem 2. This proof is adapted from Toriello [24].

Proof of Theorem 2. Recall that, given our variable setting as in (2.28), (2.29), and
(2.30), the following hold:

x0i = x̂0i, xi0 = x̂i0,
∑

U⊆N\{i,j}

xUij = x̂ij

for all i ∈ N, j ∈ N \ i. Enforcing these immediately satisfies (2.13) and (2.14) because x̂
satisfies (2.22) and (2.23). It remains to show if the following system is feasible:∑

k∈N\{i,j}

∑
U⊆N\{i,j,k}

(x
(U∪j)
ik − x(U∪j)

ki) = x̂0i − x̂ij, ∀ i ∈ N, j ∈ N \ i

∑
U⊆N\{i,j}

xUij = x̂ij, ∀ i ∈ N, j ∈ N \ i

x ≥ 0

23

Using Farkas’ Lemma, this system is feasible if and only if the system∑
i∈N

∑
j∈N\i

((x̂ij − x̂0i)βij − x̂ijρij) < 0 (2.31)

∑
k∈U

(βik − βjk) + ρij ≤ 0, ∀ U ⊆ N \ {i, j} (2.32)

with variables β and ρ is infeasible. Given any β, we can always satisfy (2.32) by choosing
small enough ρ values. To make the left-hand side of (2.31) as small as possible, we can

therefore choose −ρij = max
U⊆N\{i,j}

∑
k∈U

(βik − βjk). Thus, we can project out the ρ variables,

and now need to check whether any choice of β can satisfy

∑
i∈N

∑
j∈N\i

(
βij(x̂ij − x̂0i) + x̂ij max

U⊆N\{i,j}

{∑
k∈U

(βik − βjk)

})
< 0

We note that the set U that is a maximizer for the terms within the parentheses can be
determined greedily; if k ∈ U is such that (βik−βjk) is negative, we remove it from U , and
if k /∈ U is such that (βik − βjk) is positive, we add it to U . Because of this, we can use
(·)+ := max{0, ·} and rearrange terms to rewrite this expression as

∑
i∈N

∑
j∈N\i

βij(x̂ij − x̂0i) + x̂ij
∑

k∈N\{i,j}

(βik − βjk)+

=
∑
i∈N

∑
j∈N\i

βij(x̂ij − x̂0i) +
∑

k∈N\{i,j}

x̂ij(βik − βjk)+

=
∑
i∈N

∑
j∈N\i

(βij(x̂ij − x̂0i)) +
∑
i∈N

∑
j∈N\i

∑
k∈N\{i,j}

x̂ij(βik − βjk)+

The condition on the last set of summations is that i, j, and k are all distinct, so we can
switch the variable names for j and k, and reorder the summands:

=
∑
j∈N

∑
i∈N\j

(βij(x̂ij − x̂0i)) +
∑
j∈N

∑
i∈N\j

∑
k∈N\{i,j}

x̂ik(βij − βkj)+

=
∑
j∈N

∑
i∈N\j

βij(x̂ij − x̂0i) +
∑

k∈N\{i,j}

x̂ik(βij − βkj)+

24

The terms have been rearranged so that within the first summation, all β variables share
the same second city index j. We focus on an arbitrary summand given by a fixed j
and show that it is always non-negative. Without loss of generality, we can assume that
j = n, and also assume that β1n ≥ ... ≥ βn−1,n. These assumptions are made for ease of
notation; other cases of j and β can be proved in a similar fashion. Because of the ordering
assumption on β, we can specify our bounds on k and remove the need for (·)+. Thus, this
summand for fixed j can be written as

n−1∑
i=1

(
βin(x̂in − x̂0i) +

n−1∑
k=i+1

x̂ik(βin − βkn)

)

Grouping by β terms:

=
n−1∑
i=1

βin(x̂in − x̂0i +
n−1∑
k=i+1

x̂ik)−
n−1∑
i=1

n−1∑
k=i+1

x̂ikβkn

=
n−1∑
i=1

βin(x̂in − x̂0i +
n−1∑
k=i+1

x̂ik)−
n−1∑
i=1

n−1∑
k=1
k>i

x̂ikβkn

=
n−1∑
i=1

βin(x̂in − x̂0i +
n−1∑
k=i+1

x̂ik)−
n−1∑
k=1

n−1∑
i=1
i<k

x̂ikβkn

Swapping the k and i variable names for the last summation, we get:

=
n−1∑
i=1

βin(x̂in − x̂0i +
n−1∑
k=i+1

x̂ik)−
n−1∑
i=1

n−1∑
k=1
k<i

x̂kiβin

=
n−1∑
i=1

βin

(
−

i−1∑
k=0

x̂ki +
n∑

k=i+1

x̂ik

)

=β1n

(
−x̂01 +

n∑
k=2

x̂1k

)
+

n−2∑
i=2

βin

(
−

i−1∑
k=0

x̂ki +
n∑

k=i+1

x̂ik

)
+ βn−1,n

(
−

n−2∑
k=0

x̂k,n−1 + x̂n−1,n

)

=β1n

(
n∑
k=2

(x̂0k + x̂1k)− 1

)
+

n−2∑
i=2

βin

(
−

i−1∑
k=0

x̂ki +
n∑

k=i+1

x̂ik

)
− βn−1,n

(
n−2∑
k=0

(x̂k,n−1 + x̂kn)− 1

)

where in the last equality we use (2.22) for the leftmost sum and (2.23) for the rightmost

25

sum, where i = n. Finally, we use the identity

−
i−1∑
k=0

x̂ki +
n∑

k=i+1

x̂ik = −
i−1∑
k=0

x̂ki +

(
−

i−1∑
k=0

n∑
`=i+1

x̂k` +
i−1∑
k=0

n∑
`=i+1

x̂k`

)
+

n∑
k=i+1

x̂ik

= −

(
i−1∑
k=0

x̂ki +
i−1∑
k=0

n∑
`=i+1

x̂k`

)
+

(
i−1∑
k=0

n∑
`=i+1

x̂k` +
n∑

k=i+1

x̂ik

)

= −
i−1∑
k=0

n∑
`=i

x̂k` +
i∑

k=0

n∑
`=i+1

x̂k`

for each i = 2, ..., n − 2, and we can manipulate the middle sum of our last line to the
following:

n−2∑
i=2

βin

(
−

i−1∑
k=0

x̂ki +
n∑

k=i+1

x̂ik

)

=
n−2∑
i=2

βin

(
−

i−1∑
k=0

n∑
`=i

x̂k` +
i∑

k=0

n∑
`=i+1

x̂k`

)
From here, we can further manipulate our terms to separate the sums:

=
n−2∑
i=2

βin

(
−

i−1∑
k=0

n∑
`=i

x̂k` +
i∑

k=0

n∑
`=i+1

x̂k` + 1− 1

)

=
n−2∑
i=2

βin

(
−

i−1∑
k=0

n∑
`=i

x̂k` + 1

)
+

n−2∑
i=2

βin

(
i∑

k=0

n∑
`=i+1

x̂k` − 1

)

=−
n−2∑
i=2

βin

(
i−1∑
k=0

n∑
`=i

x̂k` − 1

)
+

n−2∑
i=2

βin

(
i∑

k=0

n∑
`=i+1

x̂k` − 1

)
Using this, we can collapse our original equality into the following:

=
n−2∑
i=1

(βin − βi+1,n)

(
i∑

k=0

n∑
`=i+1

x̂k` − 1

)
This quantity must be non-negative because of the non-increasing assumption on the βin
values and the subtour elimination constraints (2.24) for U = {i+1, ..., n} and i = 1, ..., n−
2. Thus, by Farkas’ Lemma, we have shown that the i−j-flow constraints (2.15) are satisfied
by our variable setting. Thus, all of the constraints in the first class ((2.13), (2.14), and
(2.15)) are satisfied.

26

To prove Theorem 3, i.e. that we can satisfy the constraints (2.17) and (2.18) of the
second class, we will need the following two lemmas:

Lemma 2. Let 0 ≤ t ≤ n+1
2

. Given i ∈ N , and W ⊆ N \ i, |W | ≥ n − t, the constraint
associated with λi,W (2.17) and the constraint associated with µi,W (2.18) in ALPt can be
rewritten as

∑
Z⊆N\i
Z⊇W

φi,Z = 0 and
∑

Z⊆N\i
Z⊇W

ηi,Z = 0 respectively, where

φi,Z = −
∑

j∈N\(Z∪i)

xZji +
∑
j∈Z

x
Z\j
ij

and

ηi,Z =
∑

j∈N\(Z∪i)

x
N\Z∪{i,j}
ij −

∑
j∈Z

x
N\(Z∪i)
ji

for all Z (N \ i, with a similar construction for when Z = N \ i:

φi,N\i = −x0i +
∑
j∈N\i

x
N\{i,j}
ij

and

ηi,N\i = xi0 −
∑
j∈N\i

x∅ji

Lemma 3. Let 0 ≤ t ≤ n+1
2

. Given a solution (x̂, λ̂) to BCPt+1, and using our variable
setting defined in (2.28), (2.29), and (2.30), φi,Z = 0 and ηi,Z = 0 for all i ∈ N , Z ⊆ N \ i,
|Z| ≥ n− t.

These two lemmas imply that the constraints (2.17) and (2.18) are satisfied, proving
Theorem 3.

Proof of Lemma 2. We define φi,Z , for Z (N \ i, as the following:

φi,Z = −
∑

j∈N\(Z∪i)

xZji +
∑
j∈Z

x
Z\j
ij

There is a special case when Z = N \ i, for notational reasons. We define φi,N\i as
follows:

φi,N\i = −x0i +
∑
j∈N\i

x
N\{i,j}
ij

27

With these definitions, we can write out
∑

Z⊆N\i
Z⊇W

φi,Z .

∑
Z⊆N\i
Z⊇W

φi,Z = φi,N\i +
∑
Z(N\i
Z⊇W

φi,Z

= −x0i +
∑
j∈N\i

x
N\{i,j}
ij +

∑
Z(N\i
Z⊇W

− ∑
j∈N\(Z∪i)

xZji +
∑
j∈Z

x
Z\j
ij

= −x0i +

 ∑
Z⊆N\i
Z⊇W

∑
j∈Z

x
Z\j
ij

−
 ∑
Z(N\i
Z⊇W

∑
j∈N\(Z∪i)

xZji

We compare this to (2.17):

λi,W : − x0i +

∑
j∈N\i

∑
U⊆N\{i,j}
U∪j⊇W

xUij

−
∑
j∈N\i

∑
U⊆N\{i,j}
U⊇W

xUji

 = 0

We will demonstrate that these summations are in fact the same by using bijective argu-
ments. First, we will compare the positive terms:

From φi,Z :

 ∑
Z⊆N\i
Z⊇W

∑
j∈Z

x
Z\j
ij

 , (2.33)

From λi,W :

∑
j∈N\i

∑
U⊆N\{i,j}
U∪j⊇W

xUij

 (2.34)

We will rewrite the second summation (2.34). Let Z = U ∪ j:∑
j∈N\i

∑
U⊆N\{i,j}
U∪j⊇W

xUij =
∑
j∈N\i

∑
Z⊆N\i
Z⊇W
j∈Z

x
Z\j
ij =

∑
Z⊆N\i
Z⊇W

∑
j∈Z

x
Z\j
ij (2.35)

Thus we see that (2.33) and (2.34) are the same.

28

We now consider the negative terms:

From φi,Z : −

 ∑
Z(N\i
Z⊇W

∑
j∈N\(Z∪i)

xZji

 (2.36)

From λi,W : −

∑
j∈N\i

∑
U⊆N\{i,j}
U⊇W

xUji

 (2.37)

Each term in either summation appears at most once. We show that these two summations
are the same through the following:

Observation 1. For any Z ⊇ W , j ∈ N , the following holds:

Z (N \ i, and j ∈ N \ (Z ∪ i)
⇐⇒

j ∈ N \ i, Z ⊆ N \ {i, j}

Using this observation, and by letting Z = U , we see that the sums (2.36) and (2.37)
are equal. Thus, we have shown that the constraints are equal.

We will use a similar technique for the constraint associated with µi,W . We define ηi,Z ,
for Z (N \ i, as the following:

ηi,Z =
∑

j∈N\(Z∪i)

x
N\Z∪{i,j}
ij −

∑
j∈Z

x
N\(Z∪i)
ji

Again, for notational reasons we specifically define ηi,N\i as follows:

ηi,N\i = xi0 −
∑
j∈N\i

x∅ji

From here, we write out
∑

Z⊆N\i,Z⊇W ηi,Z

29

∑
Z⊆N\i
Z⊇W

ηi,Z = ηi,N\i +
∑
Z(N\i
Z⊇W

ηi,Z

= xi0 −
∑
j∈N\i

x∅ji +
∑
Z(N\i
Z⊇W

 ∑
j∈N\(Z∪i)

x
N\(Z∪{i,j})
ij −

∑
j∈Z

x
N\(Z∪i)
ji

= xi0 −

 ∑
Z⊆N\i
Z⊇W

∑
j∈Z

x
N\(Z∪i)
ji

+

 ∑
Z(N\i
Z⊇W

∑
j∈N\(Z∪i)

x
N\Z∪{i,j}
ij

We compare this to (2.18):

µi,W : xi0 −

∑
j∈N\i

∑
U⊆N\{i,j}
N\(U∪i)⊇W

xUji

+

∑
j∈N\i

∑
U⊆N\{i,j}

N\(U∪{i,j})⊇W

xUij

 = 0

Again, we will demonstrate that these summations are in fact the same by using bijective
arguments. First, we will compare the positive terms:

From ηi,Z :

 ∑
Z(N\i
Z⊇W

∑
j∈N\(Z∪i)

x
N\Z∪{i,j}
ij

 , (2.38)

From µi,W :

∑
j∈N\i

∑
U⊆N\{i,j}

N\(U∪{i,j})⊇W

xUij

 (2.39)

We will rewrite the second summation (2.39). Let Z = N \ (U ∪ {i, j}) (and thus U =
N \ (Z ∪ {i, j}):∑

j∈N\i

∑
U⊆N\{i,j}

N\(U∪{i,j})⊇W

xUij =
∑
j∈N\i

∑
Z⊆N\{i,j}
Z⊇W

x
N\(Z∪{i,j}
ij =

∑
Z(N\i
Z⊇W

∑
j∈N\(Z∪i)

x
N\Z∪{i,j}
ij

where the last equality holds because of Observation 1.

30

We now consider the negative terms:

From ηi,Z : −

 ∑
Z⊆N\i
Z⊇W

∑
j∈Z

x
N\(Z∪i)
ji

 (2.40)

From µi,W : −

∑
j∈N\i

∑
U⊆N\{i,j}
N\(U∪i)⊇W

xUji

 (2.41)

We rewrite (2.41) by letting Z = N \ (U ∪ i). Since j /∈ U , this implies that j ∈ Z, and
that Z ⊆ N \ i.

−
∑
j∈N\i

∑
U⊆N\{i,j}
N\(U∪i)⊇W

xUji = −
∑
j∈N\i

∑
Z⊆N\i
Z⊇W
j∈Z

x
N\(Z∪i)
ji = −

∑
Z⊆N\i
Z⊇W

∑
j∈Z

x
N\(Z∪i)
ji

as required.

In conclusion, we have shown that the constraints associated with λi,W and µi,W can be
decomposed into a sum of terms based on the supersets Z of W , φi,Z and ηi,Z respectively.
In other words, the constraints can be rewritten as follows:

λi,W :
∑
Z⊆N\i
Z⊇W

φi,Z = 0

µi,W :
∑
Z⊆N\i
Z⊇W

ηi,Z = 0

In the next section, we will show that each of the φ and η terms are equal to 0 through
our variable setting, and thus the constraints are satisfied.

Proof of Lemma 3. We have shown in Lemma 2 that for a city i and set of cities
W ⊆ N \ i such that |W | ≥ n− t, the constraint associated with λi,W in the primal is the
sum of φi,Z terms. We will now prove that each φi,Z term is equal to 0 from the way that
we’ve set our variables, and thus the whole constraint is satisfied.

31

Recall the definition of φi,Z , and combine it with our variable setting (2.28), (2.29),

and (2.30) when given a solution (x̂, λ̂) to BCPt+1. Since Z ⊇ W , and |W | ≥ n − t, then
|Z| ≥ n− t. Thus, we can use our definition of Qt+1

Z :

φi,Z = −
∑

j∈N\(Z∪i)

xZji +
∑
k∈Z

x
Z\k
ik

= −

 ∑
j∈N\(Z∪i)

∑
q∈Qt+1

Z

d
q,|N\Z|
ji · λ̂q

+

∑
k∈Z

∑
q∈Qt+1

Z\k

d
q,|N\(Z\k)|
ik · λ̂q

First, we note that |N \ (Z \ k)| = |N \ Z| + 1. To proceed, it would be convenient to
factor out the λ̂q terms, but the two sums are indexed by different sets of q-routes, Qt+1

Z

and Qt+1
Z\k. However, the following claim shows that we can rewrite the second sum in a

more convenient way:

Claim 1. ∑
k∈Z

∑
q∈Qt+1

Z\k

d
q,|N\Z|+1
ik · λ̂q =

∑
k∈Z

∑
q∈Qt+1

Z

d
q,|N\Z|+1
ik · λ̂q

Proof. We will prove our claim by showing that any q-route in q ∈ Qt+1
Z\k for which

d
q,|N\Z|+1
ik = 1 is also in Qt+1

Z , and that the reverse is also true.

First, for any k ∈ Z, consider a q-route q ∈ Qt+1
Z\k for which d

q,|N\Z|+1
ik = 1. By definition,

{vq(1), ..., vq(|N \Z|+1)} = N \(Z\k) = (N \Z)∪{k}. Since d
q,|N\Z|+1
ik = 1, vq(|N \Z|) = i

and vq(|N \ Z| + 1) = k. Recall that |Z| ≥ n− t, which implies that |N \ Z| + 1 ≤ t + 1.
Since q ∈ Qt+1

Z\k ⊆ Qt+1, q is (t+ 1)-cycle-free, and therefore k could not have already been

visited in the first |N \Z| cities after the depot. Therefore, {vq(1), ..., vq(|N \Z|)} = N \Z,
and so q ∈ Qt+1

Z .

Next, for any k ∈ Z, consider a q-route q ∈ Qt+1
Z for which d

q,|N\Z|+1
ik = 1. By

definition, {vq(1), ..., vq(|N \ Z|)} = N \ Z. Since d
q,|N\Z|+1
ik = 1, vq(|N \ Z| + 1) = k, and

thus {vq(1), ..., vq(|N \ Z| + 1)} = (N \ Z) ∪ {k} = N \ (Z \ k). Therefore, q is also in
Qt+1
Z\k.

Because of this observation, we can replace Qt+1
Z\k in the second summation with Qt+1

Z ,

32

switch the order of the summands, and then factor out λq. Thus,

φi,Z = −

 ∑
q∈Qt+1

Z

∑
j∈N\(Z∪i)

d
q,|N\Z|
ji · λ̂q

+

 ∑
q∈Qt+1

Z

∑
k∈Z

d
q,|N\Z|+1
ik · λ̂q

=
∑

q∈Qt+1
Z

λ̂q ·

− ∑
j∈N\(Z∪i)

d
q,|N\Z|
ji +

∑
k∈Z

d
q,|N\Z|+1
ik

We now claim that this is equal to 0 because the value within the parentheses is 0:

Claim 2.

−
∑

j∈N\(Z∪i)

d
q,|N\Z|
ji +

∑
k∈Z

d
q,|N\Z|+1
ik = 0

for Z ⊆ N \ i such that |Z| ≥ n− t, for any q-route q ∈ Qt+1
Z .

Proof. Consider any route q ∈ Qt+1
Z . By definition of d, all terms are 0 if vq(|N \ Z|) 6= i.

If vq(|N \Z|) = i, then since q ∈ Qt+1
Z , vq(|N \Z| − 1) ∈ (N \Z) \ {i} = N \ (Z ∪ i). Thus,

there is exactly one j ∈ N \ (Z ∪ i) so that d
q,|N\Z|
ji = 1, and therefore the left sum is -1.

Now consider the right sum. Since |N \ Z|+ 1 ≤ t+ 1, vq(|N \ Z|+ 1) /∈ N \ Z, since q is
(t + 1)-cycle-free. Thus, vq(|N \ Z| + 1) = k for exactly one k ∈ Z, and so the right sum
is 1. These two sums combine to 0, as claimed.

We conclude that, given i and W such that W ⊆ N \ i, |W | ≥ n− t, φi,Z is zero for all
Z ⊆ N \ i, Z ⊇ W . Therefore, the constraint associated with λi,W is satisfied.

We use a similar argument to show that ηi,Z = 0 for every Z ⊆ N \ i, Z ⊇ W . Recall
the definition of ηi,Z :

ηi,Z =
∑

k∈N\(Z∪i)

x
N\(Z∪{i,k})
ik −

∑
j∈Z

x
N\(Z∪i)
ji

For notational reasons, we will substitute X = N \ (Z ∪ i).

ηi,Z =
∑
k∈X

x
X\k
ik −

∑
j∈N\(X∪i)

xXji

33

Since |Z| ≥ n − t, |Z ∪ i| ≥ n − t + 1, and thus |X| = N \ (Z ∪ i) ≤ t − 1, allowing us
to use Q̄t+1

X . After variable replacement, and swapping the order of the sums, we get the
following:

ηi,Z = −

 ∑
j∈N\(X∪i)

∑
q∈Q̄t+1

X

d
q,|N\X|
ji · λ̂q

+

∑
k∈X

∑
q∈Q̄t+1

X\k

d
q,|N\(X\k)|
ik · λ̂q

Again, we note that |N \ (X \ k)| = |N \X| + 1. As with the φ sums, we will be able to
factor by λ̂q because of the following claim:

Claim 3. ∑
k∈X

∑
q∈Q̄t+1

X\k

d
q,|N\X|+1
ik · λ̂q =

∑
k∈X

∑
q∈Q̄t+1

X

d
q,|N\X|+1
ik · λ̂q

Proof. As before, we will show that for a given k ∈ X, if q ∈ Q̄t+1
X\k such that d

q,|N\X|+1
ik = 1,

then q ∈ Q̄t+1
X , as well as the reverse.

For a given k ∈ X, consider the q-route q ∈ Q̄t+1
X\k such that d

q,|N\X|+1
ik = 1. By

definition, vq(|N \ X|) = i and vq(|N \ X| + 1) = k. Since q ∈ Q̄t+1
X\k, {vq(|N \ X| +

2), ..., vq(n)} = X \ k. Therefore, the set {vq(|N \X|+ 1), ..., vq(N)} = (X \ k)∪{k} = X,
and thus q ∈ Q̄t+1

X .

Now consider a q-route q ∈ Q̄t+1
X such that d

q,|N\X|+1
ik = 1. Since q ∈ Q̄t+1

X , and
vq(|N \ X| + 1) = k, it must be the case that {vq(|N \ X| + 2), ..., vq(n)} = X \ k.
Therefore, q ∈ Q̄t+1

X\k.

We now replace Q̄t+1
X\k with Q̄t+1

X , swap the summand order, and factor:

ηi,Z = −

 ∑
q∈Q̄t+1

X

∑
j∈N\(X∪i)

d
q,|N\X|
ji · λ̂q

+

 ∑
q∈Q̄t+1

X

∑
k∈X

d
q,|N\X|+1
ik · λ̂q

 (2.42)

=
∑

q∈Q̄t+1
X

λ̂q ·

− ∑
j∈N\(X∪i)

d
q,|N\X|
ji +

∑
k∈X

d
q,|N\X|+1
ik

 (2.43)

As before, we will show the quantity within the parentheses is always 0.

34

Claim 4.

−
∑

j∈N\(X∪i)

d
q,|N\X|
ji +

∑
k∈X

d
q,|N\X|+1
ik = 0 (2.44)

for any q-route q ∈ Q̄t+1
X .

Proof. If vq(|N \ X|) 6= i, then all terms are 0. Consider the case when vq(|N \ X|) = i.
Since q ∈ Q̄t+1

X , {vq(|N \ X| + 1), ..., vq(n)} = X. If vq(|N \ X| − 1) ∈ X ∪ i, it would
violate the fact that q is (t + 1)-cycle-free, since |X ∪ i| ≤ t. Thus, there is exactly one
j ∈ N \ (X ∪ i) such that vq(|N \ X| − 1) = j. By definition of Q̄t+1

X , we know that
vq(|N \X|+ 1) ∈ X. Thus, these two sums combine to 0.

The proofs for φi,N\i and ηi,N\i are similar to the other cases, with some minor notational
differences. Thus, we have shown that φi,Z = 0 and ηi,Z = 0 for all Z ⊆ N\i, |Z| ≥ n−t.

2.5 The need for Subtour Elimination constraints

In the previous section, we showed that the BCPt+1 relaxation is at least as good as
the ALPt relaxation. The BCPt+1 relaxation combines column generation with q-route
variables, and cut generation with subtour elimination constraints. One question that can
be asked is where the strength of the BCPt+1 relaxation comes from, or, in other words, is
it possible that the BCPt+1 relaxation is stronger than the ALPt relaxation even if we drop
the subtour elimination constraints? Dropping the subtour elimination constraints leads
to a formulation that we call the q-route formulation. In this section, we give an example
that answers this question for t = 0.

Recall that [24] showed that the optimal solution for ALP0 is equivalent to the Held-
Karp bound. The graph in Figure 2.1 demonstrates a solution to the q-route formulation
that is not feasible for the Held-Karp formulation. The red walk and the blue walk are each
q-routes of weight 1

2
, ensuring that our in-degree and out-degree constraints are satisfied.

We can see, however, that subtour elimination constraints would not be satisfied by this
example.

Claim 5. Our example demonstrates that the HK bound can be strictly better than the
q-route bound.

35

Depot

The red and blue q-routes have weight 1
2
.

Figure 2.1: BCP vs HK

Proof. For the graph given in Figure 2.1, assume all costs going in and out of the 2
rightmost vertices are M , a non-negative constant, and all other costs equal to 0. This
can be achieved even in Euclidean embeddings, by putting the two leftmost vertices in the
same location as the depot and the 2 rightmost vertices at the same location at a distance
of M from the root.

Formally, let S be the 2 rightmost vertices. We have that ca = M if a ∈ δ−(S)∪ δ+(S),
and ca = 0 otherwise. Let each q-route have weight 1

2
. Then the cost of the red q-route is

0, and the cost of the blue q-route is 1
2
(M +M) = M .

Now, let x̂ be an optimal solution to this graph using the Held-Karp formulation. Any
solution that is feasible for the Held-Karp formulation must satisfy the subtour elimination
constraints. In particular, x̂(δ−(S)) ≥ 1 and x̂(δ+(S)) ≥ 1, where S is as we described
previously. Since δ+(S) ∩ δ−(S) = ∅, we have that∑

a∈A

cax̂a ≥
∑

a∈δ−(S)

cax̂a +
∑

a∈δ+(S)

cax̂a

= M

 ∑
a∈δ−(S)

x̂a +
∑

a∈δ+(S)

x̂a

≥ 2M

This shows that the HK bound can be strictly better than the BCP1 bound without subtour
elimination constraints.

36

2.6 Conclusion

We have shown that for any choice of t, the lower bound on TSP achieved by BCP using
(t + 1)-cycle-free q-routes is at least as tight as that achieved by the ALP lower bound.
We have also shown that the strength of such a bound cannot be obtained by using each
component (q-routes and subtour elimination constraints) of the BCPt+1 formulation sep-
arately. Something that remains to be investigated is if the two formulations ALPt and
BCPt+1 are in fact equivalent, or if BCPt+1 attains a strict dominance.

37

Chapter 3

Cranial Vault Remodeling

3.1 Introduction

Craniosynostosis is a condition that afflicts 1 in every 2000 newborn infants [23]. The
soft bones of the skull prematurely fuse, resulting in visible facial deformities such as
asymmetry or centered bulging. Left untreated, there are very serious risks for the infant,
such as visual impairment and stunted mental development [14]. To correct this condition,
patients undergo a form of surgery called Cranial Vault Remodeling, which is performed
on 2 - 3 patients every month at The Hospital for Sick Children (SickKids). The surgeon
removes a strip of bone above the eyebrows called the front orbital bar, and cuts it in
several places, reshaping it into a suitable curvature.

Current methodologies require the artistic judgment of the performing surgeon [6].
Recently, SickKids has developed a system of generating ‘ideal’ skull curves for patients
on an individual basis, based on previous patient history and pre-surgery CT scans. Using
this ideal curve, a stainless steel template called a ‘bandeau’ is machined to assist in the
surgery. The craniofacial surgeon performs incisions on the removed skull piece, a process
called osteotomizing, and then presses the bone against the metal template and screws it
in place.

The placement of these incisions on the strip of bone is still a subjective process. We
are interested in determining a set of cut locations using mathematical methods in order to
provide a consistent solution that ensures the cut skull is as similar to the ideal curvature
as possible. This solution would be presented to the craniofacial surgeon as a guideline.

38

Figure 3.1: Orbital Bar clamped to Bandeau Template

3.2 Notation

In practice, the soft bones of the infant’s skull are malleable and can be bent. However,
one of our goals will be to reduce the amount of bending required to achieve the ideal
shape. Therefore, we view the bone as a rigid material that will not bend, with cuts on
the skull serving as hinges, allowing the cut segments to be repositioned relative to each
other via rotation.

Figure 3.2: Rigid pieces rotated by Cut

We consider the malformed skull as a curve f : [0, 1]→ R2, a continuous curve that is
non-intersecting, i.e. f(k) 6= f(k′), ∀ k 6= k′, k ∈ [0, 1]. We similarly let the ideal skull
be represented by curve g : [0, 1] → R2. In practice, f and g are piecewise linear. The
malformed skull is designated a midpoint, and a cut is made at this midpoint. An equal
number of cuts is to be made on either side of this point, implying an odd number of cuts.

39

In practice, the total number of cuts is between 5 and 11 (2 to 5 on each side, with one in
the middle).

We decouple the problem by considering only the right side of the malformed skull; our
solution for determining the cut locations on the left is independent from the locations on
the right, so the discussion applies for the left side as well. From this point on, we assume
f describes the curve of the right side of the skull, with f(0) being the midpoint of the
entire skull, i.e. the left endpoint of the right curve. Similarly, g describes the curve of the
right side of the ideal skull.

The number of cuts, T , is a fixed parameter, and we wish to determine the locations
of these cuts on f , C = {c0, c1, ..., cT} ∈ [0, 1], with c0 = 0 and cT = 1, serving as the
endpoints of the right side. Without loss of generality, we assume that c0 < c1 < ... < cT .
We chose to solve the problem for fixed T , and then compare the optimal solutions for
different values of T . This not only simplifies the optimization, but also gives the surgeon
more options to choose from. Generally, we have seen that more cuts results in a better
solution, but evaluating if the improved result is worth the additional cuts is difficult to
model, and therefore left for the surgeon’s judgement.

In practice, after a segment of the skull is cut, the endpoints are ‘clamped’ to locations
on the metal bandeau template using screws. Thus, we introduce the notion of ‘mapping’;
a cut applied to the abnormal skull will correspond with a unique location on the ideal
skull, where the endpoint of the skull segment defined by the cuts are clamped to. Given
a set of cuts C, let φC : {c0, ..., cT} → [0, 1] be the function defining these mappings; if
φC(ci) = x, then we say that cut i at location f(ci) maps to g(x) on the ideal curve. The
formal definition of this function will be presented later.

ci

ci+2
ci+1

φ(ci)
φ(ci+2)

φ(ci+1)

f

g

Figure 3.3: The φC function

40

The first cut, c0, is fixed to be the midpoint of the malformed skull, i.e. c0 = 0.
Additionally, it is mapped to the midpoint of the ideal skull, so we set φC(c0) = 0. The
last cut cT is also fixed to be the right endpoint of the malformed skull, i.e. cT = 1. We
do not, however, fix φC(cT) for feasibility reasons.

Given two points a, b ∈ [0, 1] corresponding to two points on the curve f , and an
x ∈ [0, 1] corresponding to a point on g, we define σ(a, b, x) to be the following:

σ(a, b, x) = inf{y ∈ [0, 1] : y ≥ x, ||g(y)− g(x)||2 = ||f(a)− f(b)||2}

In other words, y corresponds to the next point on g after g(x) such that the Euclidean
distance between g(x) and g(y), the length of the ‘chord’ between them, is the same as the
Euclidean distance between f(a) and f(b). Since we are minimizing a continuous function
over a compact set, we may assume that the infimum is in fact a minimum. If such a y
does not exist (i.e. the chord of f(a) and f(b) is too long for the curve g after g(x)), then
we consider the cut that would require such a mapping as infeasible.

With this function, we now define the rest of φC(ci) recursively, for all cuts i > 0.

φC(ci) = σ(ci−1, ci, φC(ci−1)) ∀ i > 0

From this recursive definition, we see that the location on the ideal skull that cut i at f(ci)
maps to depends on the location of cut i− 1 and the location on the ideal skull that it has
been mapped to.

ci

ci+1 ci+2φ(ci)

φ(ci+1)
φ(ci+2)

The chords have the same length

Figure 3.4: Recursive Definition of φ

41

3.3 Calculating Costs

Any two adjacent cuts, ci and ci+1, define a segment of the curve f which we will call
fi, i.e. fi(x) = f(x) for x ∈ [ci, ci+1]. Their corresponding points on g similarly define a
segment of the ideal skull, i.e. gi(y) = g(y) for y ∈ [φC(ci), φC(ci+1)]. By definition of φC ,
the straightline distance between the endpoint of these two curves are equal, i.e.

||fi(ci)− fi(ci+1)||2 = ||gi(φC(ci)− gi(φC(ci+1))||2

We will rotate and shift this segment of f in order to ‘align’ it with its corresponding
segment of g. Define θfi as the angle made by the endpoints of fi(x) and the x axis, i.e.

θfi = arctan

(
fi(ci+1)y − fi(ci)y
fi(ci+1)x − fi(ci)x

)
θgi is defined similarly.

Thus, to align the endpoints of fi and gi for a given pair of adjacent cuts, we will rotate
fi by θi := θgi − θfi and translate the curve. We define the curve f̂i as the following:

f̂i(x) =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
· fi(x) + [gi(φC(ci))− fi(ci)]

After this transformation, we see that f̂i(ci) = gi(φC(ci)), and f̂i(ci+1) = gi(φC(ci+1)),
i.e. f̂i’s and gi’s endpoints as defined by their domains are in the same coordinates of R2.

Since f̂i and gi share the same endpoints in R2, they define a region. We now make
another assumption on f̂i and gi. Let x, y ∈ [ci, ci+1], and y > x. We assume that

(f(y)− f(x))ᵀ · (f(ci+1)− f(ci)) ≥ 0

i.e. the angle formed by the chord between any two points on f̂i and the chord of the
endpoints of f̂i is always acute with respect to the positive direction. We make a similar
assumption on the chords of gi. Examples of acceptable and unacceptable curves are shown
in Figure 3.5.

Because of these assumptions, if we consider the chord of f̂i to be the x-axis, the curve of
f̂i behaves like a regular function of one variable under this reparameterization. Therefore,
f̂i and gi can be written as functions on this set of axes, on the domain x ∈ [a, b] for some
a, b ∈ R, a ≤ b. We note that these assumptions are made for ease of presentation, and
are not crucial to our algorithm.

42

Acceptable

Not

Figure 3.5: Curve assumptions

Given this reparameterization, we can now define the cost of mapping two segments of
the skulls to simply be the absolute area difference between them via integration, i.e.

cost(f̂i, gi) =

∫ b

a

|f̂i(x)− gi(x)| dx

Since f̂i and gi are defined by ci, ci+1 and φC(ci), φC(ci+1) respectively, we can redefine
cost with those variables:

cost(ci, ci+1, φC(ci), φC(ci+1)) = cost(f̂i, gi)

The reparameterization is only required to simplify calculations and notation; in practice,
since each segment is piecewise linear, the trapezoid method can be used to calculate their
area difference.

3.4 Integer Programming Model

3.4.1 Formulation

With our notation definitions, we can describe an Integer Programming model. We first
note that for our purposes, this was not the best approach computationally. However, the

43

problem of determining the set of cut locations on our 2-dimensional curve is a subproblem
of a more complex 3-dimensional problem. Our IP model may be easier to adapt for the
3-dimensional problem, and so we present it here.

We wish to determine the values for the set of cuts C = {c0, ..., cT} in order to minimize
the total cost of each adjacent pair of cuts. In other words, we wish to find C in order to
minimize

cost(C) =
T−1∑
i=0

cost(ci, ci+1, φC(ci), φC(ci+1))

For our IP formulation, we chose to discretize the malformed skull f into a set of locations L,
and similarly discretize the ideal skull g into a set of locations I. Let L = {`0, `1, ..., `n−1}
be a predetermined set of n locations, such that `i ∈ [0, 1] for each i. Without loss of
generality, let `0 < `1 < ... < `n−1, with `0 = 0 and `n−1 = 1. We then restrict our cut
locations to be from L, i.e. ci ∈ L for each i. In practice, the set L is chosen so that each
f(li) is evenly spaced across the curve, though this is not required.

Similarly, the function φC will need to be redefined so that it maps from C to the set of
discrete locations on the ideal skull, I = {q0, q1, ..., qm−1}, for some choice of m. In practice,
it is preferable that m and n are chosen so that ||f(`i) − f(`i+1)||2 ≈ ||g(qk) − g(qk+1)||2
for any choice of index 0 ≤ i ≤ n− 1 and 0 ≤ k ≤ m− 1, so that as many possible feasible
mapping are considered.

The redefining of φC also requires the redefining of σ. Consider a pair of cuts ci and
ci+1 ∈ L on the malformed skull, with φC(ci) = qk for some k. Then we define σ as

σ(ci, ci+1, qk) = min{ql ∈ I : l > k, |(||g(ql)− g(qk)||2 − ||f(ci)− f(ci+1)||2)| ≤ ε}

where ε is a pre-defined error tolerance parameter. This error tolerance is needed in order to
obtain reasonable results in our model, due to the fact that both the ideal and malformed
skulls are discretized. Otherwise, it would be unlikely that any ql ∈ I would satisfy
||g(ql)− g(qk)||2 = ||f(ci)− f(ci+1)||2 exactly.

Next, we introduce our decision variables. We define yc,i as follows

yc,i =

{
1 : if cut c occurs at location `i

0 : otherwise

Due to the technical constraints of calculating costs in our model, it is necessary to define

44

an additional variable xci,j as follows:

xci,j =

{
1 : if cut c occurs at location `i and is mapped to location qj

0 : otherwise

Thus it follows that

yc,i =
∑
j

xci,j

Let wi1,i2,j1,j2 be defined as cost(i1, i2, j1, j2), where cost is defined as in the previous
section, where we use any cut index c. If the mapping of i1 and i2 to j1 and j2 is not
suitable for our error tolerance, i.e.

|(||g(j2)− g(j1)||2 − ||f(i2)− f(i1)||2)| > ε

then we define it as 0 and say that (i1, i2) is incompatible with (j1, j2), leaving such a
mapping to be prevented by the constraints of our IP.

Our formulation is a binary pure integer quadratic program. Let M be the index of
the middle cut, i.e. M = T−1

2
, and r be the index of the middle location in L.

45

min
∑

(i1,j1) ∈
[n−1]×[m−1]

∑
(i2,j2) ∈

[n−1]×[m−1]

∑
c∈[T−1]

xci1,j1 · x
c+1
i2,j2
· wi1,i2,j1,j2

s.t.
∑

c∈[T−1]

∑
j∈[m−1]

xci,j ≤ 1 ∀ i ∈ [n− 1]

∑
c∈[T−1]

∑
i∈[n−1]

xci,j ≤ 1 ∀ j ∈ [m− 1]

∑
i,j

xci,j = 1 ∀ c ∈ [T − 1]

yc,i ≤
∑
k>i

yc+1,k ∀ c ∈ [T − 1]

xMr,s = 1

xci1,j1 +
∑
i2,j2

incompatible

xc+1
i2,j2

≤ 1 ∀ (i1, j1), ∀ c ∈ [T − 1]

∑
i1,j1

incompatible

xci1,j1 + xc+1
i2,j2

≤ 1 ∀ (i2, j2), ∀ c ∈ [T − 1]

∑
j

x0
0,j = 1∑

j

xT+1
n−1,j = 1

3.4.2 Constraints

min
∑

(i1,j1) ∈
[n−1]×[m−1]

∑
(i2,j2) ∈

[n−1]×[m−1]

∑
c∈[T−1]

xci1,j1 · x
c+1
i2,j2
· wi1,i2,j1,j2

As x is an indicator variable, the cost wi1,i2,j1,j2 only contributes to the objective function
if both xci1,j1 and xc+1

i2,j2
are 1, indicating that some cut c is mapped from i1 to j1, and cut

c+ 1 is mapped from i2 to j2. If this mapping is physically infeasible, then our constraints
prevent the two associated x variables from both being 1.

46

∑
c∈[T−1]

∑
j∈[m−1]

xci,j ≤ 1 ∀ i ∈ [n− 1]

∑
c∈[T−1]

∑
i∈[n−1]

xci,j ≤ 1 ∀ j ∈ [m− 1]

The first constraint ensures that for each location on the abnormal skull, there is at most
one cut at that location. The second constraint ensures the feasibility for the mapped
locations on the ideal skull.

∑
i,j

xci,j = 1 ∀ c ∈ [T − 1]

Each cut c must be assigned to some location pair i and j.

yc,i ≤
∑
k>i

yc+1,k ∀ c ∈ [T − 1]

This constraint ensures that cut order is preserved; if cut c is assigned to location i, then
the next cut c+ 1 must be assigned to a location after i.

xMr,s = 1

As mentioned, the middle cut must map the midpoint of the abnormal skull to the midpoint
of the ideal skull.

xci1,j1 +
∑
i2,j2

incompatible

xc+1
i2,j2

≤ 1 ∀ (i1, j1), ∀ c ∈ [T − 1]

∑
i1,j1

incompatible

xci1,j1 + xc+1
i2,j2

≤ 1 ∀ (i2, j2), ∀ c ∈ [T − 1]

The first constraint ensures that if cut c is made from i1 to j1, then every other cut pair
that would result in an infeasible mapping cannot be made as the next cut. The second
constraint has the same purpose and tightens the relaxation.

47

3.5 Dynamic Programming Model

3.5.1 Formulation

To use our DP method, it is again necessary to discretize the malformed skull f into a set
of locations L. However, it will not be necessary to discretize the ideal skull, and there
will be no need for an error tolerance ε. As before, we will find a minimizer C ⊆ L, with
the assumption that with appropriate choice of L, our solution will be close enough to the
minimizer of C ⊆ [0, 1]. Let L = {l0, l1, ..., ln−1} be a predetermined set of n locations,
such that li ∈ [0, 1] for each i. Again, without loss of generality, let l0 < l1 < ... < ln−1,
with l0 = 0 and ln−1 = 1. We then restrict our cut locations to be from L, i.e. ci ∈ L for
each i.

We define the function ∆(k, a) as the minimum cost of making k + 1 cuts, with the
rightmost (kth) cut at location f(la) and with the leftmost cut 0 at l0 = 0. Thus to
determine the optimal cost for the right side of the skull, we wish to know the value
∆(T, n− 1).

Additionally, we define a function p(k, a). Assume that cut k is at location la, and
all preceding cuts (between cut 0 and k) are arranged as in the optimal solution defined
by ∆(k, a). Then p(k, a) is the location that cut k at location la maps to given this
configuration, i.e. p(k, a) = φ(ck) assuming all previous cuts are defined as in ∆(k, a).
Since the leftmost cut c0 maps the abnormal location f(0) to the ideal location g(0),
p(0, 0) = 0.

In our dynamic programming formulation, we define ∆(k, a) recursively, and populate
a table of values returned by ∆(k, a) and p(k, a) in order to re-use them in subsequent
function calls. As a base case, consider ∆(0, 0). Since there are no cuts preceding c0, the
cut only defines a point on the curve, and so ∆(0, 0) = 0. All higher indexed cuts are
defined recursively:

∆(k, a) =

0 : if k = a = 0

∞ : if a < k

min{∆(k − 1, b) + cost(b, a, p(k − 1, b), σ(b, a, p(k − 1, b))) : ∀ b < a}
: otherwise

The first case is the base case. The second case is an infeasible cut location, since two
cuts cannot share the same location, and the set of cuts is ordered.

48

The third case is recursive. Since we are investigating the case when cut k is at location
a, we next try to determine its left cut neighbour, i.e. the location of cut k − 1. We
enumerate through all possible locations b for this cut, with 0 ≤ b < a. If we place cut
k−1 at location b, we know (through recursion) the cheapest cost of doing so is ∆(k−1, b).
In addition to placing these cuts, we must also add in the cost of mapping the segment
between locations b and a to the ideal skull. When evaluating ∆(k−1, b), we know that cut
k−1 at location b maps to location p(k−1, b), and thus location a maps to σ(b, a, p(k−1, b)).
Thus, the cost of this segment is cost(b, a, p(k − 1, b)).

Enumerating through all valid candidates b, let b′ be the location that minimizes our
total cost, i.e.

b′ = argmin
0≤b<a∆(k − 1, b) + cost(b, a, p(k − 1, b), σ(b, a, p(k − 1, b))) (3.1)

We then set p(k, a) to σ(b′, a, p(k − 1, b′)) and set ∆(k, a) to be the cost as defined by b′.

3.5.2 Correctness

Theorem 4. The Dynamic Programming formulation gives the optimal cut configuration
for ∆(k, a), ∀ k ∈ {0, ..., T}, ∀ a ∈ {0, ..., n− 1}.

Proof. We will prove correctness of our dynamic program using induction on k in ∆(k, a),
∀ a ∈ {0, ..., n− 1}.

Base Case: ∆(1, a), for some a ∈ {0, ..., n− 1}. Since there are only two cuts, c0 and c1,
there are no decisions to be made and the cost is simply 0+cost(c0, a, φ(c0), σ(c0, a, φ(c0))).
From the definition of p(0, 0), we see that this is equivalent to φ(c0), so the cost is equal
to ∆(1, a).

Induction Hypothesis: Assume ∆(k, a) is the optimal cost of making cut k at any
a ∈ {0, ..., n− 1}, ∀ k ≤ m.

Induction Step: We wish to calculate ∆(k, a), a ∈ {0, ..., n− 1}, k = m+ 1. We claim
that the optimal arrangement of these cuts is as configured by ∆(m, b′), where b′ is as
defined in (3.1). Consider any other arrangement of the cuts 0, ...,m + 1, with cut m + 1
at location a and cut 0 at location 0, but with the other cuts not necessarily as defined by
∆(m, b′). Let cut m be at location b̄. Thus the cost of this cut and its preceding cuts is at
least ∆(m, b̄) + cost(b̄, a, p(m, b̄), σ(b̄, a, p(m, b̄))), since by induction, ∆(m, b̄) is the lowest
possible cost of placing cuts 0, ...,m with m at location b̄. But b′ is the minimizer of (3.1),
so this cost cannot be less than ∆(k, a), as required.

49

3.5.3 Complexity

Theorem 5. The worst case runtime of our Dynamic Programming formulation is O(T ·
n3), where T is the number of cuts and n is the number of locations.

Proof. To determine ∆(T, n− 1), at worst we must populate a table of values of ∆(k, a),
for all k ∈ {0, ..., T} and for all a ∈ {0, ..., n − 1}, i.e. T · n values. We will analyze the
runtime for each pair (k, a) starting with lower cut indexes, i.e. k = 1 (since k = 0 is a
base case for ∆).

Let k = 1, and a > 0. Since c0 is fixed, we only have to calculate cost(0, a, 0, σ(0, a, 0)).
This involves comparing a piecewise linear curve of at most n points with a piecewise linear
curve, almost of at most n points. Since the curves are piecewise linear, we can calculate the
area difference using the trapezoid method, and thus we require at most O(n) operations
to do so.

Now consider any higher k. To calculate ∆(k, a), we find the minimizer b′ of ∆(k −
1, b) + cost(b, a, p(k − 1, b), σ(b, a, p(k − 1, b))). Since we populated a table of ∆ and p
values for cut indices lower than k, retrieving those values has constant runtime. The cost
of calculating cost is again O(n). There are at most n potential candidates for b, so the
runtime is O(n2).

Therefore, the runtime of evaluating each label (k, a) has complexity O(n2), and there
are at most T · n labels, so the runtime is at most O(T · n3).

3.6 Computational Results

The following section contains computational results from two test cases given to us by the
Hospital for Sick Children; the metopic case is an example of centerline bulging, and the
unicoronal case is an example of frontal asymmetry. For each case, we were given different
resolutions to represent the skulls; the deformed skull (and its ideal skull counterpart)
would be a curve formed by joining either 51, 101, or 201 ordered points. For the deformed
skull, these points serve as the n predetermined candidate cut locations L. For each of
these cases, we ran our DP and IP formulations for 5, 7, 9, and 11 cuts. Figure 3.6 is a
comparison of the results generated for the Unicoronal case with 201 candidate locations.
Figure 3.7 is a comparison of the Metopic case with 5 cuts.

The abnormal skull f is presented as a red curve, and the ideal skull g is presented as
a blue curve below it. The blue X marks on the red skull represent the set of candidate cut

50

locations L. In each diagram, the red triangles represent cut locations ci on the abnormal
skull, and the green triangles represent where they map to on the ideal skull, φ(ci). Each
deformed skull also has a pair of dummy cuts at its endpoints. The appearance of the
abnormal skull after it has been cut and rotated is interposed as a red curve over the blue
ideal skull in order to demonstrate how well the curves match. The objective values are
the area between the red and blue curves, measured in mm2.

Table 3.1 is a full comparison of our computational results, including runtimes and
objectives from our integer programming model.

51

Figure 3.6: Unicoronal Comparison, 201 Cut Locations

52

Figure 3.7: Metopic Comparison, 51, 101 and 201 Cut Locations with 5 cuts

53

Our tests were executed on a server with 48 AMD Opteron 6176 CPUs, running at 800
MHz each with 256 GB of RAM. Integer programs were solved using CPLEX 12.4, with
parallelization enabled. Runtimes were limited to 1 hour.

Case Name T |L| DP Runtime DP Obj. IP Runtime IP Obj.
metopic-5 5 51 0.03s 45.31 30.31s 45.90
metopic-7 7 51 0.08s 35.96 40.06s 36.19
metopic-9 9 51 0.11s 28.91 50.49s 28.98
metopic-11 11 51 0.24s 24.89 1m0.7s 24.89
metopic100-5 5 101 0.11s 46.44 19m16s 49.83
metopic100-7 7 101 0.17s 36.32 22m32s 37.95
metopic100-9 9 101 0.29s 29.18 35m12s 31.92
metopic100-11 11 101 0.32s 22.89 37m11s 22.64
metopic200-5 5 201 0.88s 46.11 >1h -
metopic200-7 7 201 1.64s 36.50 >1h -
metopic200-9 9 201 2.37s 29.54 >1h -
metopic200-11 11 201 2.98s 23.45 >1h -

unicoronal-5 5 51 0.03s 43.43 30.22s 44.11
unicoronal-7 7 51 0.04s 32.48 40.27s 32.51
unicoronal-9 9 51 0.04s 25.02 49.25s 25.03
unicoronal-11 11 51 0.05s 20.87 1m0.4s 20.13
unicoronal100-5 5 101 0.10s 44.14 20m14s 43.44
unicoronal100-7 7 101 0.17s 34.64 23m10s 35.82
unicoronal100-9 9 101 0.22s 25.52 28m12s 26.93
unicoronal100-11 11 101 0.27s 22.42 35m28s 23.56
unicoronal200-5 5 201 0.92s 41.68 >1h -
unicoronal200-7 7 201 1.59s 33.53 >1h -
unicoronal200-9 9 201 2.30s 25.04 >1h -
unicoronal200-11 11 201 2.96s 20.84 >1h -

Table 3.1: Computational Results

Differences between the DP and IP objectives are due to the discretization of the
ideal skull required for the IP model, as well as the error tolerance that was introduced.
Objective values are measured in mm2. We can see that the DP model is at least 2 orders
of magnitude faster than the IP model, with the benefit of more accurate results.

54

Chapter 4

Future Work and Conclusions

In this thesis, we presented two applications of classic dynamic programming.

In Chapter 2, we presented BCP and ALP, two different families of lower bounds for
the Traveling Salesman Problem. The Branch-Cut-and-Price lower bounds were obtained
by using column generation and cut generation. Dynamic programming is the basis of
the pricing algorithm used during the column generation. Our theoretical results prove
that, given a solution to BCPt+1, we can construct a feasible solution to ALPt with the
same objective value, demonstrating that the lower bound for BCPt+1 is at least as high
as the lower bound for ALPt, i.e. BCPt+1 dominates ALPt. Future work could include
determining if the dominance is strict, understanding the relationship between BCP and
ALP, and designing new ways to approximate the shortest path LP used to solve the TSP.
A possible direction would be to relate ALP with the ng-path relaxation presented by
Baldacci et al. [2].

In Chapter 3, we presented our dynamic programming solution for determining the
placement of cuts in Cranial Vault Remodeling. Our implementation of the model provided
very fast results for the variety of cases and parameters given to us, providing a practical
solution to surgeons who wish to use our model. However, our model is limited to 2-
dimensions, essentially determining the placement of the strip of bone on the skull over
the eyebrows (the frontal orbital bar). While the reshaping of the orbital bar is key to
determining the placement of the rest of the bone pieces, the surgeons at SickKids have
expressed interest in a 3-dimensional model to explicitly determine how the entire skull
should be cut. Such a model would not be able to take advantage of the sequential cut
structure used in the 2D model, thus limiting the usefulness of dynamic programming.
The resulting pieces after the cuts are made could be rotated or moved to different parts

55

of the skull. Additionally, the objective of such a model would be to minimize differences
in volume, rather than area, which would present new challenges for calculating costs. A
possible starting point would be to adapt our Integer Programming model, or to use our
Dynamic Programming approach in multiple 2D ‘slices’ and combine the results into a 3D
solution.

56

References

[1] E. Balas. Projection, lifting and extended formulation in integer and combinatorial
optimization. Ann. Oper. Res., 140:125–161, 2005.

[2] R. Baldacci, A. Mingozzi, and R. Roberti. New route relaxation and pricing strategies
for the vehicle routing problem. Oper. Res., 59(5):1269–1283, 2011.

[3] R. Bellman. Combinatorial processes and dynamic programming. In Proc. Sympos.
Appl. Math., Vol. 10, pages 217–249. American Mathematical Society, Providence,
R.I., 1960.

[4] R. Bellman. Dynamic programming treatment of the travelling salesman problem. J.
Assoc. Comput. Mach., 9:61–63, 1962.

[5] R. Bellman. Dynamic programming. Princeton Landmarks in Mathematics. Princeton
University Press, Princeton, NJ, 2010. Reprint of the 1957 edition.

[6] J. Burge, N. Saber, T. Looi, B. French, Z. Usmani, N. Anooshiravani, P. Kim, C. For-
rest, and J. Phillips. Application of cad/cam prefabricated age-matched templates
in cranio-orbital remodeling in craniosynostosis. Journal of Craniofacial Surgery,
22(5):1810–1813, Sep 2011.

[7] R. Carr and S. Vempala. On the Held-Karp relaxation for the asymmetric and sym-
metric traveling salesman problems. Math. Program., 100(3, Ser. A):569–587, 2004.

[8] M. Charikar, M. Goemans, and H. Karloff. On the integrality ratio for the asymmetric
traveling salesman problem. Math. Oper. Res., 31(2):245–252, 2006.

[9] N. Christofides, A. Mingozzi, and P. Toth. State-space relaxation procedures for the
computation of bounds to routing problems. Networks, 11(2):145–164, 1981.

57

[10] W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver. Combinatorial opti-
mization. Wiley-Interscience Series in Discrete Mathematics and Optimization. John
Wiley & Sons Inc., New York, 1998. A Wiley-Interscience Publication.

[11] G. Dantzig, D. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman
problem. J. Operations Res. Soc. Amer., 2:393–410, 1954.

[12] L. Ford and D. Fulkerson. A suggested computation for maximal multi-commodity
network flows. Management Sci., 5:97–101, 1958.

[13] R. Fukasawa, H. Longo, J. Lysgaard, M. de Aragão, M. Reis, E. Uchoa, and R. Wer-
neck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.
Math. Program., 106(3, Ser. A):491–511, 2006.

[14] D. Gault, D. Renier, D. Marchac, and B. Jones. Intracranial pressure and intracranial
volume in children with craniosynostosis. Plastic and reconstructive surgery, 90(3):377,
1992.

[15] M. Goemans. Worst-case comparison of valid inequalities for the TSP. Math. Pro-
gramming, 69(2, Ser. A):335–349, 1995.

[16] M. Held and R. Karp. The traveling-salesman problem and minimum spanning trees.
Operations Res., 18:1138–1162, 1970.

[17] S. Irnich and D. Villeneuve. The shortest-path problem with resource constraints and
k-cycle elimination for k ≥ 3. INFORMS J. Comput., 18(3):391–406, 2006.

[18] N. Kaneshiro. Cranial sutures. Medline Plus, U.S. National Library of Medicine,
2011.

[19] J. Kleinberg and E. Tardos. Algorithm Design. Pearson Education, 1st edition, 2006.

[20] M. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations
Research, 53(6):1007–1023, Nov - Dec 2005.

[21] M. Mangel and C. Clark. Dynamic modeling in behavioral ecology. Princeton Univer-
sity Press, 1989.

[22] S. Needleman and C. Wunsch. A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins. J Mol Biol, 48(3):443–453, Mar
1970.

58

[23] B. Slater, K. Lenton, M. Kwan, D. Gupta, D. Wan, and M. Longaker. Cranial sutures:
a brief review. Plastic and Reconstructive Surgery, 121(4):–8, Apr 2008.

[24] A. Toriello. Equivalence of an approximate linear programming bound with the held-
karp bound for the traveling salesman problem. Submitted, 2013.

[25] A. Toriello. Optimal toll design: A lower bound framework for the asymmetric trav-
eling salesman problem. Mathematical Programming A, 2013.

[26] L. Wolsey. Integer programming. Wiley-Interscience Series in Discrete Mathematics
and Optimization. John Wiley & Sons Inc., New York, 1998. A Wiley-Interscience
Publication.

[27] M. Zuker. The use of dynamic programming algorithms in RNA secondary structure
prediction. In Mathematical methods for DNA sequences, pages 159–184. CRC, Boca
Raton, FL, 1989.

59

	List of Tables
	List of Figures
	Introduction and Preliminaries
	Basic Concepts
	Dynamic Programming
	Linear Programming
	Integer Programming
	Column Generation

	Motivations and Outline

	Dynamic Programming based-Bounds for Routing Problems
	Traveling Salesman Problem
	Branch-Cut-and-Price
	Approximate Linear Program for TSP
	Proof of Dominance
	The need for Subtour Elimination constraints
	Conclusion

	Cranial Vault Remodeling
	Introduction
	Notation
	Calculating Costs
	Integer Programming Model
	Formulation
	Constraints

	Dynamic Programming Model
	Formulation
	Correctness
	Complexity

	Computational Results

	Future Work and Conclusions
	References

