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Abstract

The idea of automatic programming using the genetic programming paradigm is a concept that has been
explored in the work of Koza and several works since. Most problems attempted using genetic programming
are finite in size, meaning that the problem involved evolving a function that operates over a finite domain,
or evolving a routine that will only run for a finite amount of time. For problems with a finite domain, the
internal representation of each individual is typically a finite automaton that is unable to store an unbounded
amount of data. This thesis will address the problem of applying genetic programming to problems that
have a “discrete unbounded domain”, meaning the problem involves evolving a function that operates over
an unbounded domain with discrete quantities. For problems with an discrete unbounded domain, the range
of possible behaviors achievable by the evolved functions increases with more versatile internal memory
schemes for each of the individuals. The specific problem that I will address in this thesis is the problem
of evolving a real-time deciding program for a fixed language of strings. I will discuss two paradigms that I
will use to attempt this problem. Each of the paradigms will allow each individual to store an unbounded
amount of data, using an internal memory scheme with at least the capabilities of a Turing tape. As each
character of an input string is being processed in real time, the individual will be able to imitate a single step
of a Turing machine. While the real-time restriction will certainly limit the languages for which a decider
may be evolved, the fact that the evolved deciding programs run in real-time yields possible applications for
these paradigms in the discovery of new algorithms. The first paradigm that I will explore will take a naive
approach that will ultimately prove to be unsuccessful. The second paradigm that I will explore will take
a more careful approach that will have a much greater success, and will provide insight into the design of
genetic programming paradigms for problems over a discrete unbounded domain.
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Chapter 1

Introduction

Genetic programming is the creation of programs through the process of natural selection. Viewing the
evolved program as a function that accepts input and produces output, the problem has a “finite domain” if
the possible input set for the evolved program is finite. Genetic programming has been successfully applied
to many problems that have a finite domain [11, 12]. The problem has a “discrete unbounded domain” if the
possible input for the evolved programs set is infinite and discrete. I will not consider problems like “symbolic
regression”, which is the problem of determining an algebraic expression to fit data points over a continuous
bounded interval [11, pg. 11]. In symbolic regression the set of inputs to the expression is infinite, however
the inputs form a bounded continuum which is outside the scope of this thesis. A problem which does have
a discrete unbounded domain is the problem of “sequence induction”, which is the problem of determining
an algebraic expression to predict an infinite sequence of integers [11, pg. 10]. In sequence induction the set
of inputs to the expression is the set of natural numbers which is both discrete and unbounded.

In this thesis, the problem that I will address in particular is the problem of evolving a real-time decider
for an arbitrary language. The problem of evolving a real-time deciding program has a discrete unbounded
domain because the domain of possible words is both discrete and infinite. This problem will be analyzed
as a member of the class of problems with a discrete unbounded domain, and the observations made have
the potential to generalize to other problems. In this thesis, while I will examine regular languages, the
“unbounded” aspect is only truly meaningful when I examine non-regular languages. Deciding a non-regular
language in real time requires explicit internal memory, which is a trait shared by other problems over a
discrete unbounded domain. The amount or structure of the internal memory affects what languages are
decidable. In this thesis, each agent will have internal memory that is at least equivalent to a single Turing
machine tape. While there has been much work done on the problem of evolving a Turing machine to act as
a decider for a given language [28, 18], the paradigms described in this thesis will evolve deciding programs
that run in real-time.

The deciding programs evolved by the paradigms presented in this thesis may have practical applications
due to their real-time aspect. The process for generating the test cases will imply that an algorithm that
can decide the sought after language already exists. As the evolved deciding programs run in real-time, the
evolved decider will possibly have an advantage over the existing decider.

The first paradigm that will be described in this paper I will refer to as RTGP1. The programs in RTGP1

will be naively implemented using expression trees and heavy use of “if” statements. The programs will have
access to internal memory in the form of an infinite linked list. RTGP1 will be shown to be ineffective
at evolving deciding programs for all but the simplest regular languages. Analyzing possible reasons to the
failure of RTGP1 will motivate the design of the second paradigm that I will refer to as RTGP2. The programs
in RTGP2 will be finite automatons each with access to a single Turing tape. RTGP2 will be shown to very
effective at evolving deciding automatons for regular languages and succeeds at evolving deciding programs
for a number of non-regular and non-context free languages as well. The contrast between RTGP1 and
RTGP2 will yield an important observation with regards to the design of genetic programming paradigms.

Chapter 2 will detail the genetic programming process that I will use for RTGP1 and RTGP2. I will also
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describe some of the alternative choices for the sake of completeness and describe why I believe the choices
that I have made for my paradigms are justified. Details that are specific to RTGP1 or RTGP2 are left for
chapters 5 and 7.

Chapter 3 will further contrast problems with a finite domain with those with a discrete unbounded
domain using the artificial ant problem and a variation of the artificial ant problem. In this section I will
also describe internal memory paradigms used in previous works with increasing complexity up to the internal
memory capacity that the deciders evolved in this thesis will have.

Chapter 4 will list a number of languages taken from previous publications that I will use as tests for
RTGP1 and RTGP2.

Chapter 5 will describe the RTGP1 paradigm. In chapter 6, RTGP1 will be tested on some of the
benchmark languages and a discussion as to the causes of RTGP1’s failure will be provided.

Chapter 7 will describe the RTGP2 paradigm, aiming to improve upon the shortcomings of RTGP1. In
chapter 8, RTGP2 will be tested on all of the benchmark languages, including a language for which the
existence of a real-time decider is not known.

Chapter 9 will conclude the thesis with a discussion on the importance of proper design of genetic
programming paradigms using the failure of RTGP1 as an example. There will also be a discussion as to
the possible limitations of evolving real time deciders, and a description of possible extensions for RTGP2

to enable RTGP2 to better find real time deciders for some of the more complex languages.
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Chapter 2

Background

Genetic programming is a subclass of a more general set of algorithms known a “genetic algorithms”. Genetic
algorithms solve optimization problems by denoting a set of possible solutions as a “population”, where each
possible solution is an individual in the population. In this thesis, the individuals/possible solutions will be
referred to as “agents”. A genetic algorithm starts with a randomly generated population of agents. At each
generation, a “fitness value” is ascribed to each agent. A fitness value is a measure of how preferable an agent
is, or how close an agent is to solving the “target problem”. The next generation is formed by randomly
selecting agents from the current population according to their fitness. Agents with better fitness should be
preferred to agents with worse fitness. The selected agents may then be subjected to genetic operators such
as mutation or crossover, or may be directly placed in the next generation with no alterations. Mutation
alters the “genome” of an agent by a small amount, while crossover takes two agents and produces a child
whose genome is a mix of the genomes from both parents. The genetic algorithm continues to advance the
population from generation to generation until a “termination condition” is met. The termination condition
may be met by the creation of an optimal agent, or when a preset number of generations have elapsed. If
the termination condition is satisfied by the number of generations running over the generation limit, the
genetic algorithm is typically restarted. If the termination condition is met by the creation of an optimal
agent, this agent is returned as the output for the genetic algorithm.

Genetic algorithms most commonly denote agents using their “genotype” (also referred to as the “genome”),
which is a data structure that stores all information required to specify the agent. This data structure used
for the genome is often engineered to be easily used by the genetic operators. The genome for each agent is
decoded into a “phenotype”, which is a more natural representation of the solution/function denoted by the
agent. The phenotype is what is used to measure the fitness of an agent.

Genetic programming is the use of genetic algorithms to produce expressions or programs that solve a
specific problem. The agents in the case of genetic programming denote expressions or entire programs. As
the search space of programs is enormously complex, genetic programming is likely a more effective search
method than other search methods. In the context of genetic programming, the “genotype” refers to an
agent’s representation within the genetic algorithm, while the “phenotype” refers to the program/function
described by the genotype without regards to its inner workings.

When setting up a genetic program to solve a specific problem, important aspects to be considered are
the genotype representation of an agent; the phenotype representation of an agent; the genetic operators
(initialization/mutation/crossover); the mechanism for determining the fitness of an agent; and the mecha-
nism for selecting agents for the next generation. Some of these aspects will be given consideration in the
sections below:

In the following sections, I will detail some of the aspects of genetic programming listed above. Section
2.1 will detail multiple ways an agent’s program may be stored as a genome, and indicate with motivation
the representation paradigm for the genome that I will be using. Section 2.2 will examine previous works
that discuss the effectiveness of mutation vs. crossover. Section 2.2 will also provide reasons as to why I will
only use the mutation genetic operator in my paradigms, as opposed to the crossover operator. Section 2.3
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will detail the mutation operator with a brief foreword on the initialization process. Section 2.4 will detail
how the fitness of each agent is calculated, and how the next generation is created. The aspects described
here apply to both paradigms I will be introducing in this thesis.

2.1 The structure of agents

The program used by each agent can be expressed using several styles of representation that determine
how the genetic operators of mutation and crossover act on the program. In the next sections, I will list
and describe some of the representation schemes that are used to denote the agents. I will start with
the basic “expression tree” style of representation used in the work of Koza [11, 12]. I will then describe
“Grammatical evolution” which uses a more traditional genome where the program is denoted by a string of
integers that act as alleles. As a precursor to the representation style that I will use, next I will describe the
“automatically defined functions” extension to the expression tree paradigm described in [12]. Lastly I will
describe “Cartesian genetic programming” which is the paradigm that I will be making use of throughout
this paper.

2.1.1 Expression trees

In the work of Koza, programs/agents are denoted using expression trees [11, 12]. Each node in the expression
tree stores a symbol, and the children of that node are the inputs to the given symbol. Non-terminal (non-
leaf) symbols are often connectives that link multiple commands, while terminal (leaf) symbols are single
commands.

While there are many ways mutation and crossover can be implemented for expression trees, the straight
forward implementations of mutation and crossover are as follows. Mutation performed on agent A randomly
selects a subtree of A and replaces it with another randomly generated subtree [11]. The operation of cross-
over performed on agents A1 and A2 randomly selects subtrees from A1 and A2 and swaps them between
A1 and A2 [11].

2.1.2 Grammatical Evolution

Another style of representation used in what is called “Grammatical Evolution” uses a grammar to denote
the program’s syntax [26, 20, 19]. In Grammatical Evolution, the genome is a string of integers. The program
is generated by starting with the grammar’s initial symbol. Each time a transition rule needs to be chosen,
an integer is read from the genome and reduced modulo n where n is the number of possible valid transition
rules. The transition rule is chosen based on this remainder.

The operation of mutation performed on agent A mutates integers in the genome at random. [26] also
describes two other mutation operators: duplication and pruning. Duplication replicates part of the genome
making it longer. Pruning removes the parts of the genome that contribute nothing to the phenotype (not
all integers may be used in generating the program). The operation of cross-over performed on agents A1

and A2 simply breaks both genomes at random locations and swaps the two latter pieces between the two
agents.

2.1.3 Expression trees with automatically defined functions

In [12], Koza expands the expression tree concept to include “automatically defined functions”. With au-
tomatically defined functions, the expression tree contains several subtrees that define functions which can
then be reused as much as needed in the main expression tree. These defined subroutines are referred to
as “automatically defined functions”. Using this paradigm allows complex subexpressions that may appear
multiple times to only need to be evolved once. A limitation with automatically defined functions is that for
a specific agent, the number of automatically defined functions along with their parameter lists must be fixed

4



upon creation and is generally not subject to mutation. In [13] however, Koza provides some mutation op-
erators that can change the number of automatically defined functions or their parameter lists. Crossover is
difficult to implement with automatically defined functions, as the replacement subtree has to be compatible
with the position it is being introduced to.

2.1.4 Cartesian genetic programming

To denote the genome of an agent, I will make use of a relatively recent genetic programming paradigm known
as “Cartesian genetic programming” (CGP). Cartesian genetic programming is explored in [22, 16, 17, 15],
and [7]. It has been shown that in certain cases, CGP is faster than expression trees with automatically
defined functions at generating an optimal solution [22]. In CGP, I use the same expression trees as in
conventional genetic programming, only that the nodes are members of a grid with R > 0 rows and C > 0
columns. Each node is assigned a symbol, and can only have children from the columns to the right of the
current node. Nodes in the rightmost column can only be assigned terminal symbols (have no children). To
the left of all the columns are extra nodes that denotes the root(s) of the expression tree(s). The expression
trees are effectively acyclic directed graphs embedded in the grid of nodes. CGP allows for expression trees
to be reused multiple times without being evolved from scratch, and it also enables the storage of useful,
but inactive expression trees, as not all nodes in the grid will be part of the expression trees. Neutrality
refers to the presence of several genotypes that have identical fitness values, which is very common in CGP
due to the presence of inactive nodes. Neutral mutations are mutations that change the genotype with no
corresponding change to the fitness [16]. The advantages of neutrality and neutral mutations are discussed
in [16, 15]. In this paper, the root nodes will not contain a symbol, but simply a pointer to the actual root of
the expression tree. It is noted in [7] that arranging the nodes in a single row makes for better performance,
so I will let R = 1. CGP also artificially puts a cap on expression tree size as the number of nodes in the
array is fixed.

CGP is a generalized version of the automatically defined functions paradigm, as any subexpression can
be reused as much as needed without needing to be independently evolved in each context [16]. However
automatically defined functions do not need to use the same set of inputs each time they appear, unlike CGP
[16]. Automatically defined functions incorporate parameter symbols in their definition. The subexpressions
that can be reused in CGP cannot be invoked for different inputs. While this may put CGP at a disadvantage
to automatically defined functions, the reusability feature is intrinsic to CGP, and is not intrinsic to ordinary
expression trees. There is also no issue in CGP with adjusting the number of automatically defined functions
or their parameter lists.

Mutation in Cartesian genetic programming has an agent select a fixed number of nodes at random and
changes their symbol/children. In another style of mutation an agent examines each of its nodes, selecting
them for mutation with a fixed probability. A naive crossover can also be implemented that breaks the
parent’s array of nodes at a random point and swaps the two sections [7], and another naive crossover can
swap corresponding nodes between the arrays of each parent [16]. When a node is moved from one parent
to another, pointers to other nodes can be treated as an index of the child node or as a displacement from
the parent node. As I will see later however, crossover in Cartesian genetic programming is not as useful as
previously thought.

I will now consider the idea of restricting mutation to “active nodes” in the array, which are nodes that are
part of an expression tree. This however results in agents having a limited selection of new expression trees
to choose from, and restricts the directions that the agent can explore via mutation. By allowing mutations
to inactive nodes, the set of inactive expression trees that an agent (or its descendants) has to choose from
becomes more diverse, making the probability of finding a useful mutation more likely. [16, 15] also discuss
the advantages of neutral mutations (i.e. “neutral drift”[15]) which are often mutations to inactive nodes so
the phenotype will not be affected. [16, 15] have shown that convergence is greatly improved when neutral
mutations are allowed. As a result, I will allow mutations to be able to affect all nodes in the array, and not
just those that are “active”.
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2.2 Mutation vs Crossover

I have selected the Cartesian genetic programming paradigm to denote the genome of each agent. Now this
section will attempt to justify my decision to use only the mutation operator. This section will summarize
previous research and observations about the mutation and crossover operators in order to justify my decision
to not make use of the crossover operator.

In [11] and [12] where the expression trees nodes are not embedded in an array, it is argued that mutation
for genetic programming is unnecessary for the following reasons. If the problem has a small set of symbols,
any given symbol is unlikely to be lost from the population and does not need to be reintroduced via mutation.
As long as every symbol is retained by the population as a whole, any expression tree can be generated via
a sequence of crossover operators. Another reason states that since subtrees are the fundamental building
blocks of the internal structure of each agent, keeping “useful” subtrees intact via crossing over will allow
for greater improvements to the fitness than simply altering subtrees via mutation. This is referred to as the
“Building Block Hypothesis” [3]. Despite these reasons however results from [14, 3] seems to suggest that
using crossover to evolve a population of agents has no real advantage over using mutation. [3] describes
the crossover operator as being mutation where the new subtree is taken from elsewhere in the population.
In Cartesian genetic programming however, the primary genetic operator is mutation. A naive crossover
operator that involves breaking the array of nodes at a single point and swapping the latter pieces can be
applied to Cartesian genetic programming and is in fact known to slow the progress of the algorithm in
finding a solution [17, 7]. In [7], a new crossover operator is proposed for Cartesian genetic programming
which augments the speed of the algorithm in finding a solution. This new crossover operator requires the
integer fields in the genome to be replaced with real numbers. Replacing the integer field with real numbers
as well as the crossover operator itself may complicate certain aspects of my paradigms, and to avoid over
complicating my paradigms, I will do without crossover altogether. However the implementation of the
crossover operator described in [7] for my paradigms can be the object of future research.

2.3 Mutation

I have selected the Cartesian genetic programming paradigm to denote the genome of each agent. Now this
section will describe in detail the mutation operator.

Initialization of each agent is done randomly. Self adaptive parameters, which I will describe later, do
not affect the initialization process and are all initialized to 0.

2.3.1 The basic mutation step

The “basic mutation” operation on an agent A acts as follows: A list of possible “mutation sites” is to be
compiled. Each “mutation site” is a value within A that will be subjected to mutation if chosen. Such
mutation sites are listed below:

• Each of the root node pointers.

• Each node n from the array has the following mutation sites:

– Each symbol field of n.

– Each child pointer of n.

Once the list of mutation sites is compiled, one of these sites is chosen at random. The parameter at this
site is assigned a new randomly chosen value.

The “basic mutation” operator can only influence a single parameter within an agent. One possible
problem this can have is that helpful changes generally require more than one “step” to pass through a zone
of poor fitness. That is why during mutation, the number of “basic mutation” steps will be randomly chosen
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from the range {1, 2, . . . ,max mutations}. Once the number of “basic mutation” steps has been chosen,
these steps are carried out one after another in sequence.

Another possible style for mutation is to sweep through each of the mutation sites, and choosing to
mutate each of them with a probability of pmutation rate. pmutation rate can be chosen to be very small to
limit the expected number of mutations that occur. In practice however, I have found that this impedes the
progress of the genetic algorithm and so this style of mutation is not used.

2.3.2 Self adaptive parameters

In this paper, the mutation operator will be influenced by component level “self adaptive parameters” [1].
Component level self adaptive parameters are parameters that are assigned to each node in each agent
that influence the genetic operators, in this case mutation [1]. The parameters will have “empirical update
rules”, meaning that the parameters themselves are subject to mutation, and will evolve alongside the agents
themselves [1].

In [2], two different component level self adaptive parameter schemes are applied to the crossover genetic
operator, and both are shown to improve the standard crossover operator.

Using these parameters, each agent has a degree of control over how it is affected by the mutation
operator. To further understand why I will use self adaptive parameters, consider the following example. An
agent A has a better fitness than agent A′. Imagine that A’s structure is “fragile”, meaning that a random
mutation to the structure of A is likely to produce an individual of considerably worse fitness than that of A
itself. Imagine that A′’s structure is “robust”, meaning that a random mutation to the structure of A′ is not
likely to produce an individual of considerably lower fitness than A′. At the current generation, A will have
better reproductive success than A′, but in the next generation, the children of A′ will overall have better
success than the children of A effectively implying that A′ has better reproductive success than A. Since
agents with a more “robust” structure are implicitly preferred to agents with a more “fragile” structure, this
will lead to the proliferation of agents that are better able to protect their children from harmful mutations,
rather than a proliferation of agents with high fitness.

It could be argued that agents such as A′ that produce high fitness children are to be desired over fragile
agents like A. However it should also be noted that simply because a larger fraction of mutations harm A
doesn’t mean that A′ should have greater reproductive success than A. If there exists even a small fraction
of mutations that enhance A it is worth giving A a greater reproductive success by suppressing the harmful
mutations. Self adaptive parameters can help restrict mutations on A to helpful mutations.

As an agent approaches optimality, it is likely that a larger fraction of mutations will harm the agent’s
fitness due to a larger fraction of the agent’s structure being “correct”. With self adaptive parameters, agents
may protect vital or “completed” parts of their structure so mutations instead focus on sections that are not
“correct” or “complete”. Without self adaptive parameters, agents may possibly protect themselves from
harmful mutations in unintended ways. For example, in the case where expression trees denote the genotype
for each agent, an agent may generate “dead code”, meaning that there will be branches of the expression
trees that will never see use and exist solely to soak harmful mutations. It is possible that if the fraction of
harmful mutations for a near optimal agent is too great, the population may be unable advance due to near
optimal agents being ruined by mutation faster than they are produced.

The self-adaptive parameter scheme that I will use in this thesis is similar to the scheme used in [10].
Every mutation site s in an agent is assigned an integer value that I will call θ(s). θ(s) controls the weight
of s being chosen for mutation. During initialization, θ = 0 for all sites. The weight given to a site by θ is:

weight(θ) =

{ 1
1−θ (θ ≤ 0)

2− 1
1+θ (θ ≥ 0)

When a mutation site is to be chosen, the probability that a specific mutation site s is chosen is:

Pr(s is chosen) =
weight(θ(s))∑

s′ is a mutation site weight(θ(s′))
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The θ’s are themselves subject to mutation after all “basic mutation” steps have been completed, or the
parameters will not be able to evolve alongside the agent. After mutation, the probability that a given θ
will mutate is µθ. If a self adaptive parameter mutates it either increases or decreases by 1.

The primary purpose of including the θ parameters is to let the agents protect themselves from harmful
mutations as larger sections of their structure become “correct” and need to be protected. The larger an
important subexpression becomes, the larger the probability that part of this subexpression will be affected
by mutation. An agent can “protect” this subexpression by decreasing the subexpression’s θ parameters
until the probability of mutation affecting this subexpression is bounded from above by a fixed quantity.

The optimal value of a self adaptive parameter is often tied to the quantity (symbol/pointer) currently
at the mutation site. If a mutation site is being shielded by its θ, θ << 0, the quantity at that site is what is
being protected. If the mutation site is chosen, the quantity will most likely be changed and the protection
will no longer be relevant. If a mutation cite is chosen for mutation, its θ will be set to 0 no matter its former
sign. This is done because when the quantity (symbol/pointer) at a mutation site changes, the former θ
value is no longer relevant.

One possible problem with these self adaptive parameters is the potential for quantities (symbols/pointers)
to become “stuck” at a suboptimal state due to the influence of self adaptive parameters. The intention of
the parameters as indicated above were to allow the agent to decrease the probability of mutation affecting
an arbitrarily large subexpression to below a fixed bound. I do not however want this protection to be
applied to incorrect parts of the genome either. I will introduce two new factors that will allow an agent to
mutate without the parameters influence with a fixed probability.

With probability α, after mutation the agent will reset all of its self adaptive parameters to 0 instead
of mutating them after all “basic mutation” steps have been completed. With probability β, an agent will
ignore its self adaptive parameters during all of the “basic mutation” steps. These events are independent,
and the probability of either of these events occurring is:

1− (1− α)(1− β) = α+ β − αβ

For any ε > 0, the agent can reduce the probability of harmful mutations to α + β − αβ + ε. What is
important is that this probability is independent of the size of the to be protected subexpression, so any
large subexpression can be sufficiently protected.

Although concrete results are not presented here, when working with the RTGP2 paradigm I have ob-
served that self adaptive parameters are very beneficial when the minimum size of a deciding program for a
language becomes large.

2.4 Creating the next generation

To create the next generation, a genetic program must first compute the fitness of each agent. After the
fitness of each agent has been computed, agents must be selected according to a selection scheme which
chooses agents based on their fitness. In this thesis, selection is always done with replacement so an agent
may be selected twice. Once an agent has been selected, it will be copied, subjected to mutation and then
added to the next generation. I will also make use of what is known as the elitist strategy in this thesis.

2.4.1 Measuring fitness

In this section, I will specify how the fitness of each agent is measured. The specific set of problems being
addressed by this thesis is the creation of a real time decider for an arbitrary language of words. The deciders
will process an input word character by character. From here on, I will let Σ = {0, 1, . . . , |Σ| − 1} be the
alphabet of letters that each word can use.

For problems with a finite domain, measuring fitness is simply a matter of counting up the number of
correct responses for every possible input from the domain. For problems with a very large or infinite domain,
it is intractable or impossible to test the agent for every possible input from the domain. The compromise
that I can make for large or unbounded domains is that for a specific generation, I will generate T >> 0 test

8



cases using a randomized process for each generation. The T test cases will be constant throughout each
generation, and will be randomly generated fresh for each generation, similar to what is done in [33]. This
“moving target” [33] approach stands in contrast to the approach taken in most other works where the test
cases are fixed.

If test cases from a large domain are fixed from generation to generation, then there is the possibility
that the agents will evolve to satisfy only those test cases. By randomizing the test cases from generation
to generation, a larger portion of the domain can be covered and there is a greater chance that the agents
will evolve to form general solutions.

The approach to measuring fitness will differ based on the language that I am attempting to find a decider
for. All agents will receive the same tests within the same generation. Let U denote a set of T test cases.
For most problems where |Σ| = 1, my set of test cases is U = {0i : 0 ≤ i < T}. In this case, the fitness is
being measured deterministically. For most problems where |Σ| = 2, I will randomly generate a set U of T
test scenarios at each generation. To generate these scenarios I will follow the following algorithm:

repeat
Chose a random length L from the range 0, 1, . . . , Lmax with a uniform distribution.
Let w be a new world with length L.
Choose “temp” at uniform from {0, 1}.
if temp = 0 then

Create w randomly so it is likely that w belongs to the language.
else

Create w randomly so it is likely that w does not belong to the language.
end if
for i = 0 to L do

Add a word consisting of the first i characters of w to U .
Break the loop if U contains T test scenarios.

end for
until U contains T test scenarios

This particular process ensures that I not only test word w, but also check each output of the deciding
program as w is being processed. In essence the sequence of outputs leading up to word w are tested, similar
to the tests when |Σ| = 1. For most of the languages I will address, fitness is the number of failed test cases.
For some languages however I will perform additional tests that will add to the fitness computed from the
test cases. It should be noted that in all problems that the larger fitness values are considered worse than
lower fitness values. “Better” fitness refers to having a lower fitness value, while “worse” fitness refers to
having a higher fitness value. A fitness value of 0 is considered optimal. This is known as “standardized
fitness” [11, pg. 96].

There is no fixed routine for generating the fitness cases. The fitness cases should be generated so that
all possible behavior of the language is covered. This is a subjective process that depends on the user’s
“intuition” regarding the language. As I present my results, I will lay out in detail how the fitness cases are
generated.

It may seem that nothing is being gained by generating the tests repeatedly so that a roughly equal
number fall into or out of the sought after language. The use of an algorithm for generating tests that are
split roughly evenly between the language and its complement implies that the user already has sufficient
knowledge about the language to construct a decider without the help of genetic programming. What should
be accounted for is that the algorithms that my genetic program produces run in real-time, while the decider
that the user is aware of may run with a greater time complexity. By using these genetic programs, it is
assumed that a real-time algorithm for a known problem is being sought by the user.

9



2.4.2 Selecting agents for the next generation

There are many ways an agent can be selected for the next generation. One of these selection methods is
“fitness proportionate selection”. For fitness proportionate selection, the fitness needs to be positive real
number where higher numbers indicate better fitness. Currently for our paradigms, higher fitness values
indicate worse fitness. Using the transformation [11, pg. 97]:

f ′(A) =
1

1 + f(A)

where f(A) is the original fitness of agent A, the new fitness f ′(A) has larger values when A has better
fitness. f ′(A) is then known as the “adjusted fitness”[11, pg. 97]. In fitness proportionate selection, the
probability of randomly selecting A from population P is:

Pr(A) =
f ′(A)∑

A′∈P f
′(A′)

The method of selection that I will use in this thesis is “tournament selection”. With tournament
selection, the numerical value of the agent’s fitness does not matter, only its rank relative to other agents.
An agent is chosen by first choosing a subset of k = 2 agents from the population. The agent that has the
better fitness is selected for the next generation with probability ptournament > 0.5, otherwise the agent with
worse fitness is selected. The benefit of tournament selection is that the absolute measure of fitness does
not have an effect, the only aspect of the fitness that is important is how it compares to the fitness of other
agents.

2.4.3 Bloat control

Bloat refers to the unbounded growth in program size as the generations progress. Methods of controlling
bloat have included “parsimony pressure” where an individual’s fitness is penalized due to its size [23].
Another method is known as “Tarpeian bloat control”. An individual whose size is greater than the mean
program size may be assigned a very unfit fitness value according to a fixed probability [23]. [24] shows how
the weight of the size penalty in the “parsimony pressure” bloat control method can be adjusted to control
the average program size. [24] also shows how when using “Tarpeian bloat control”, the probability of being
assigned a very unfit fitness value for above average size program can be adjusted to control the average
program size.

For our paradigm, I may consider using what is known as “lexicographic parsimony pressure” [21]. In
lexicographic parsimony pressure, size is only used as a tie-breaker in determining the better fitness when
two individuals have equal fitness. The agent selection mechanism must only depend on the comparison of
agents rather than an absolute fitness value. Tournament selection fits this restriction.

In this thesis I will not rely on any bloat control mechanisms. There are two reasons for this. Firstly,
the finite fixed sized array of nodes used in Cartesian genetic programming puts a natural cap on program
size. Lastly, parsimony pressure or lexicographic parsimony pressure makes otherwise neutral mutations
non-neutral, reducing the benefits due to neutrality discussed in [16, 15] and in section 2.1.4.

2.4.4 Elitist strategy

The “elitist strategy” refers to a condition where the best individual from a generation is preserved unchanged
for the next generation [11, pg. 113]. In addition to the population of M >> 0 agents, there is an additional
slot where the best individual yet encountered is copied to. This individual I will refer to as the “prime”
agent. The prime agent may partake in the creation of the M ordinary agents in the next generation. Once
the M agents in the next generation have been created, the prime agent may be replaced by an ordinary
agent that performs strictly better than the prime agent on the current test cases. If the prime agent and its
contender both have the a fitness of 0 (which is the optimal fitness), then the prime agent may be replaced if
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the prime agent did not have a fitness of 0 in some of the previous generations. The test cases are randomly
chosen for each generation so a single agent’s fitness may vary from generation to generation.

The rationale for using the elitist strategy is the same as the rationale for self adaptive parameters, in that
I seek to protect “fragile” agents with good fitness. While the self adaptive parameters attempt to protect
agents from harmful mutations, the elitist strategy carries the best agent found so far from generation to
generation with no mutation. Near optimal agents are much more likely to be adversely affected by mutation
due to the fact that there is less room for further improvement. By retaining the best agent found so far,
the best agent can continue to contribute to the search without being “lost”.
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Chapter 3

Unbounded problems and Internal
memory

In this section I will make a distinction between problems that have a “finite domain” vs problems that have
a “discrete unbounded domain” using variations of what is known as the “Artificial Ant Problem”. The
“Artificial ant problem” is not what is being studied in this thesis, and is only being used to highlight the
distinction between bounded and unbounded problems, and also to highlight the capabilities of increasing
levels of internal memory. In this section I will also discuss the importance and capabilities of internal
memory for each agent, and also discuss the internal memory schemes of previous works.

One of the traditional problems used as a benchmark for genetic programming is the “Artificial Ant
Problem”, a description of which can be found in [11]. In the artificial ant problem, an “artificial ant” is
confined to a toroidal rectangular grid that contains a trail of food. The ant, and each grain of food can each
only occupy one grid square. If the ant passes over a square containing food, the food is consumed. The
goal is to program an ant that will consume every grain of food. The ant can be oriented in four different
directions, and is able to determine if the square directly in front of it contains food or not. The image below
shows the traditional “Santa Fe trail” that is commonly used as the ant’s “environment”. The green square
is the ant’s starting position and orientation, and the brown squares denote the food. The environment itself
is a 32× 32 toroidal grid and a total of 89 pellets are present. The Santa Fe Trail is shown in figure 3.1.

The ant’s phenotype is an expression tree consisting of the following symbols:

• VOID(): Denotes an empty program.

• MOVE(): Moves the ant forward in the direction it is facing by exactly one square.

• TURN-LEFT(): Swivels the ant 90◦ counter clockwise.

• TURN-RIGHT(): Swivels the ant 90◦ clockwise.

• PROG2(P1, P2): Runs programs P1 and P2 in sequence.

• PROG3(P1, P2, P3): Runs programs P1, P2, and then P3 in sequence.

• IF-FOOD(P1, P2): Runs program P1 if food is detected ahead, otherwise runs program P2.

I have referred to the ant’s internal expression tree as its “phenotype” as the “genotype” may denote the
expression tree in a completely different manner. The “genome” itself may be a string of integers in the case
of Grammatical evolution, or an array of nodes in the case of Cartesian genetic programming.

In the traditional artificial ant problem, the ant’s environment is fixed. This problem is of course finite,
due to the constancy of the environment and moreover due to the fact that the environment is limited in
size. For me to consider the problem to be “unbounded”, there must be an infinite number of possible
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Figure 3.1: The Santa Fe ant trail. Image replicated from [11, pg. 55].

environments, or a single environment with infinite size. To make the artificial ant problem “unbounded”,
I may assume that the ant is not going to be placed in a fixed environment like that of the Santa Fe trail.
The ant can be presented with a randomly generated environment with arbitrarily chosen dimensions, and
arbitrarily laid paths of food pellets. The grid will still be toroidal in nature. I will call this problem the
“generalized artificial ant problem”. It should be noted that an ant that solves the Santa Fe trail is also
likely to solve a randomly generated trail like the arbitrarily generated trail shown in figure 3.2. The Santa
Fe trail can be seen as a testing scenario for the “generalized artificial ant problem”.

An ant that only uses the aforementioned symbols as part of its program is only a finite automaton with
no mechanism for storing data for the long term. This memory scheme, where the only stored value is the
current position in the program, is known as an “implicit memory scheme” [25]. As a result, the ants will
only ever be able navigate straightforward trails like the one shown in figure 3.2. While the “generalized
artificial ant” problem is now “unbounded”, I have seen that it is trivially different from the original problem
in the sense that ants evolved on the Santa Fe trail will likely work for a general environment as well. To
make the “unbounded” aspect truly meaningful, the ant’s environment will have to consist of more than just
a straightforward path. One way the space of environments can be expanded beyond the limited environment
of the Santa Fe trail is to instead have a “network” of paths such as the environment shown in figure 3.3.

To navigate the network in figure 3.3, the ant must have what is known as “explicit” internal memory
[25]. In particular the ant needs a way of recording its past moves so it can backtrack to other branches.

I will now discuss internal memory schemes that have been used in previous works. [6] continues to
explore the artificial ant problem. The set of symbols available to the expression trees is expanded to include
symbols that represent loops. The symbols that are introduced are:

• FOR-LOOP1(N , P ): Runs program P for N iterations.

• FOR-LOOP2(N1, N2, P ): Runs program P for N2 −N1 + 1 iterations.
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Figure 3.2: An arbitrarily generated ant trail.

Figure 3.3: An arbitrarily generated network of paths that requires explicit internal memory to traverse
completely.

Differing from the paradigm commonly used for the artificial ant problem, in [6] the program is executed
only once instead of repeatedly like in the original artificial ant problem. The loops must therefore account for
all the necessary steps. In this paradigm, the memory scheme is still implicit, but due to the loop symbols the
programs have many more internal states than programs without the loop symbols. The number of internal
states is still finite however. The loops themselves can be “unwound” to produce much larger programs of
fixed length that have the same effect as a program without loops. In [6], artificial ants that use and do
not use the loop symbols are evolved in an environment where the pellets are arranged in large squares.
The population that was allowed use of the loop symbols evolved elegant programs that enabled the ant to
consume all of the food pellets. When loop symbols were forbidden, only one extremely complicated solution
was produced that had the ant consume every food pellet. While having loop symbols does not escape the
realm of finite automata, it is a step towards more powerful memory schemes.

In [25], the programming of agents that use explicit internal memory is discussed. Explicit internal
memory is an explicit data storage that the program can write and read quantities from. The problem being
investigated by [25] is the “Asteroid Avoidance” problem which requires piloting a space craft around moving
asteroids. At each time frame, the space craft can detect nearby asteroids, but not their velocities. This
means that the space craft must have some internal memory in order to predict the asteroid’s trajectories.
The space craft’s internal memory is a vector of 20 real numbers. I will now examine this memory scheme
in the context of the artificial ant problem.

If the internal memory is a finite length vector, and the entry of each vector comes from a finite domain,
the ant will still function as a finite automata, but in this case information can still be passed between
successive calls to the program which is not possible with implicit memory. If the entry of each vector comes
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from an infinite domain such as the set of integers or real numbers, the ant will no longer function as a finite
automaton, but this still gives limitations on the type of data that can be stored. It is theoretically possible
to store a vector of discrete quantities as an integer, but accessing these quantities will require a complicated
mathematical expression.

In [31], an explicit internal memory scheme consisting of a fixed length vector of bounded integers is used
to evolve an agent tasked with pushing boxes out of the center of a fixed environment. In both [25] and [31],
the use of explicit internal memory outperformed experiments that had no memory or only implicit memory.

In [30], an internal memory paradigm that uses an unbounded array is presented. Entries are referenced
via integer addresses. It is shown in [30] that using an unbounded array of integers as internal memory
allows an agent to simulate an arbitrary Turing machine. Given an arbitrary Turing machine, there is a
program that enables the agent to simulate one step of the Turing machine each time it is called. [30] does
not perform any experiments with the proposed paradigm however. The ability to imitate a Turing machine
is the expressive power that I will implement for my paradigms.

The problem that I am attacking in this thesis is the problem of generating a decider for an arbitrary
language that runs in real time. This problem is of course, unbounded due to the fact that the domain of
possible words is infinite. Without an explicit memory scheme only regular languages are decidable. Evolving
finite automatons that serve as deciding programs for a regular language has been discussed in [4, 9].

Evolving programs with a single stack that serve as deciding programs for a context free language has
been explored in [34]. Evolving production rules for context free grammars has been discussed in [33].

Evolving Turing machines that serve as deciding programs for non-context free languages has been ex-
plored in [28, 18, 5]. While [28, 18, 5] evolve Turing machines that decide non-context free languages, the
deciding programs evolved by my paradigms are designed to run in real time.
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Chapter 4

Test Languages

This section will list the languages that have been studied by previous works, some of which I will use as
test languages.

Below are 7 regular languages explored in [4, 9]. These regular languages are known as the “Tomita
regular languages”. In [4], a deciding finite automaton is evolved for all but one of the “Tomita regular
languages”, in particular TL6. In [9], a deciding finite automaton is evolved for all 7 of the “Tomita regular
languages”.

The “Tomita regular languages” are [4, 9]:

• TL1 = b∗

• TL2 = (ba)∗

• TL3 = {s ∈ {a, b}∗|no odd length block of a’s can follow an odd length block of b’s}

• TL4 = {s ∈ {a, b}∗|no aaa substrings}

• TL5 = {“”, a, b} ∪ a{a, b}∗a ∪ b{a, b}∗b

• TL6 = {s ∈ {a, b}∗|# of a’s - # of b’s ≡ 0 mod 3}

• TL7 = a∗b∗a∗b∗

The context free languages studied in [34] are:

CFL1 = {anbn|n ≥ 0}

and the parentheses matching problem:

CFL2 = {s ∈ {“(”, “)”}∗|parentheses are balanced}

The genetic programming paradigm presented in [34] successfully evolved deciding programs for both
languages.

The context free languages studied in [33] are CFL2 and:

CFL3 = {s ∈ {a, b}∗|# of a’s = # of b’s}

The genetic programming paradigm presented in [33] successfully evolved production rules for CFL2, but
not CFL3.

The non-regular languages studied in [28] are CFL1 and:

NCFL = {anbnan|n ≥ 0}
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The genetic programming paradigm presented in [28] successfully evolved deciding Turing machines for
both CFL1 and NCFL.

The non-regular languages studied in [18] are CFL1, NCFL, and

CFL4 = {anbn+1|n ≥ 0}

and,
NCFL2 = {anbncn|n ≥ 0}

The genetic programming paradigm presented in [18] successfully evolved deciding Turing machines for
CFL1, CFL4, NCFL, and NCFL2.

When I measure the performance of the two paradigms that I will describe below, I will use all seven
Tomita test languages and the languages, CFL1, CFL2, CFL3 and NCFL. I will also use some other languages
that will be described later.
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Chapter 5

A real-time Turing complete
paradigm: RTGP1

In this section I will describe a paradigm that is capable of generating a decider for a target language that
runs in real time. As indicated previously, the decider will be able to emulate one step of a Turing machine
for each character processed. I will refer to this paradigm as RTGP1 (Real Time Genetic Programming). The
approach that I am taking is a straightforward approach where each program involves IF statements as its
main approach to logic. The agent will be provided with each letter in sequence and will update its internal
memory, which is denoted by x. x references a “memory node”. A memory node is an object that stores a
single bit (b), a pointer (p), and a “next” pointer. The “next” pointer references another unique memory
node and is never subject to change. The internal memory x is effectively a linked list. The “pointer” (p)
field can point to any other memory node in the linked list. For implementation purposes, a memory node is
not created until it has been accessed by a read command, a write command, or has its address assigned to a
pointer field (p). Initially all memory nodes have their bit field (b) set 0, and their pointer field (p) points to
themselves. As can be seen, this memory scheme can store an unbounded number of bits in a linked list, and
the presence of pointer fields allow for remote locations in the linked list to be accessed quickly. Figure 5.1
depicts the initial layout of the internal memory, while figure 5.2 depicts one possible configuration of the
internal memory after it has been manipulated by the agent.

x ...... 0
next

p

0
next

p

0
next

p

0
next

p

0
next

p

Figure 5.1: Initial internal memory configuration for RTGP1.

x ...... 0
next

1
next

0
next

1
next

1
next

Figure 5.2: Possible internal memory configuration for RTGP1.

Let Σ denote the set of possible letters that may comprise strings. I will refer to each of these letters
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using an index from the range: {0, 1, . . . , |Σ| − 1}.
I will now describe the programs that comprise each agent. Each of these programs is an expression

tree that will be embedded in the array of nodes required for Cartesian genetic programming. All of the
programs will share the same array. The programs that comprise an agent are:

• StartUp: This routine prepares the internal memory to receive input.

• Input0: This routine processes the input of letter “0”.

• Input1: This routine processes the input of letter “1”.

• ..............

• Input(|Σ| − 1): This routine processes the input of letter “|Σ| − 1”.

• EndOfInput: This routine prepares the internal memory to return the output bit. (true if the word
belongs to the target language, and false if otherwise)

• Output: Not actually a routine, but an address for the final output within the internal memory.

When an agent A is given a word w, A begins by calling “StartUp”. Each letter of w is processed by A
in sequence, and if l ∈ {0, 1, . . . , |Σ| − 1} is the letter currently being processed, A calls “Input(l)”. After all
characters have been processed, “EndOfInput” is called. The output is returned by the reference “Output”.

The symbols that I will use for the expression trees are separated into two categories: “program” (P )
symbols, and “reference” (R) symbols. Categories “program” and “reference” are disjoint. Symbols in
category P can have symbols from P and R as children, but symbols in category R can only have symbols
from R as children. Due to this hierarchy I will modify the row of nodes in Cartesian genetic programming as
follows: The row of nodes will consist of two sections. Starting with root node(s) at the left, I will first have
a section of Np ≥ 2 nodes each whose symbol must come from P . To the right of this section, I have section
of Nr ≥ 2 nodes each whose symbol must come from R. This setup ensures that each agent always has
syntactically correct expression trees. It should be noted that in a single agent there are |Σ|+ 2 expression
trees that denote programs, so there are in fact |Σ|+ 2 root nodes to the far left of the array that can only
point to P nodes. “Output” is the one expression that denotes a reference and will have its root node only
able to point to the R nodes. This scenario is depicted in figure 5.3.

Nodes from category P except the rightmost node can have symbols that require up to 2 children from
P and up to 2 children from R. Even though not every symbol uses all of these 4 children, all P nodes
(excluding the rightmost node) will be equipped with these child pointers in case the symbol is mutated to
another symbol that requires these pointers. The rightmost node in category P will just have the 2 children
from R. Likewise, nodes from category R except the rightmost node can have symbols that require up to 1
child from R, and even though not all symbols use this child, all nodes except the rightmost node will be
equipped with a child from R.

If a node n is assigned a symbol s not all children may see use. I express which children see use using
the notation:

s : 〈C1 × C2 × · · · × Ck〉

where C1, C2, . . . , Ck denote the children of n. ∅ indicates that a child is not being used.
For P nodes; P1 and P2 denote the children from P and R1 and R2 denotes the children from R.
For R nodes, the child is denoted by R1.
The symbols in category “program” (P ) are:

• Void: 〈∅ × ∅ × ∅ × ∅〉

• Combine: 〈P1 × P2 × ∅ × ∅〉

• If: 〈P1 × P2 ×R1 × ∅〉
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Figure 5.3: The internal structure of an agent in the RTGP1 paradigm.

• Set0: 〈∅ × ∅ ×R1 × ∅〉

• Set1: 〈∅ × ∅ ×R1 × ∅〉

• SetPointer: 〈∅ × ∅ ×R1 ×R2〉

The symbols in category “reference” (R) are:

• X: 〈∅〉

• Next: 〈R1〉

• Pointer: 〈R1〉

The descriptions of each symbol are shown below.

• Void() denotes an empty program with no statements.

• Combine(P1, P2) denotes a program which runs programs P1 and P2 is sequence, one after the other.
This symbol is used to link commands similar to “PROG2” from the artificial ant problem.

• If(P1, P2; R1) denotes a program that examines the bit field (b) in the node referenced by R1. If
R1 = 1, P1 is executed, and if R1 = 0, P2 is executed.

• Set0(R1) sets the bit field in the node referenced by R1 to 0.

• Set1(R1) sets the bit field in the node referenced by R1 to 1.
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• SetPointer(R1, R2) sets the pointer field in the node referenced by R1 to the node referenced by R2.

• X() is agent’s internal memory variable, and references the root memory node.

• Next(R1) references the node that is pointed to by the “next” pointer of the node referenced by R1.

• Pointer(R1) references the node that is pointed to by the pointer field of the node referenced by R1.

The next several sections will describe the following. I will first give a proof of the real-time Turing
completeness of RTGP1, that is that RTGP1 can emulate one time step of a Turing machine with each
received character. Next I will derive upper bounds for some of the minimal 〈Np, Nr〉 pairs that describe the
number of P nodes and R nodes required to describe a real time Turing machine given the number of states
q; the size of the input alphabet |Σ|; and the size of the tape alphabet |Γ|. These upper bounds will be useful
when setting up our experiments. I should note that in practice, one likely has no knowledge of the number
of nodes required. The ideal number of nodes will have to be determined experimentally. Lastly, I will give
example deciding programs for the languages TL2 and CFL2 implemented in the RTGP1 paradigm. These
example deciding programs will be engineered to decide the given language (TL2 and CFL2) to illustrate to
the reader how such programs can be expressed in the RTGP1 paradigm.

5.1 The real-time Turing completeness of RTGP1

RTGP1 is real time Turing complete. I will assume wlog that the tape for the real-time Turing machine I
wish to emulate extends infinitely in only one direction, namely to the right. I will also ascribe similar
directions to the linked list in memory. “Left” will denote towards the root, while “right” will denote away
from the root.

I will let ε denote the blank symbol.
I will let Γ denote the set of symbols that the Turing machine will use not counting the blank symbol.
Define l = max(1, dlog2(|Γ|+ 1)e).
l is the number of bits required to denote a symbol from Γ ∪ {ε}.
I will let Q denote the set of internal states of the Turing machine.
Define lq = max(1, dlog2(|Q|)e).
lq is the number of bits required to denote a state from Q.
I will partition the linked list of memory nodes as follows: The first lq nodes will store bits that denote

the current state of the Turing machine. The rest of the nodes will be grouped into blocks of length l. Each
of these blocks is a stand in for a cell of the Turing machine, starting with the left most cell and counting to
the right.

The head for the Turing machine is denoted by the pointer field of X(). Pointer(X()) references the
leftmost memory node of the block that represents the cell under observation.

In one step, a real-time Turing machine reads its current state as well as the letter under the tape head.
Depending on the state and letter the Turing machine updates the state and the letter under the tape head
and possibly moves the tape head left or right.

The block under the tape head can be reached through the reference Pointer(X()). Using the “If” symbol,
it’s easy to create a subroutine that reads both the state and the letter under the tape head and performs
different actions depending on what is read. Using the “Set0” and “Set1” symbols, it’s easy to update both
the state and the symbol under the tape head.

When the machine moves the tape head to the right, it first sets the pointer field of the leftmost node
in the right side block to point to the leftmost node in the current block. This is so it has a reference to the
current block from the right side block so the tape head can return to the current block from the right side
later. It then updates Pointer(X()) to point to the first node in the right side block. This can be done using
the following sequence of commands:
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SetPointer(Next(Next(. . . Next(︸ ︷︷ ︸
l

Pointer(X())). . . )), Pointer(X()))

SetPointer(X(), Next(Next(. . . Next(︸ ︷︷ ︸
l

Pointer(X())). . . )))

When the machine moves the tape head to the left, it updates Pointer(X()) to point to the leftmost
node in the left side block which is referenced by Pointer(Pointer(X())). This reference was created when
the head first moved to the right from the left side block to the current block. If the head is at the leftmost
cell, Pointer(Pointer(X())) references the same node as Pointer(X()) so the tape head does not move. The
command is:

SetPointer(Pointer(X()), Pointer(Pointer(X())))

Figure 5.4 depicts how the pointer fields in the list x are setup to imitate the tape of a Turing machine as
described above. The top part of the diagram depicts the list, while the lower part depicts the Turing tape.

…

lq

… … …… 

l l

…

l

tape head

…… 

…… …… state

x

Figure 5.4: A diagram of RTGP1 imitating a Turing machine. The top part depicts the list, while the lower
part depicts the Turing tape.

This finishes the proof that my paradigm can emulate a Turing machine with each step.

5.2 Size of the representation

In this section, I will derive upper bounds for some of the minimal 〈Np, Nr〉 pairs that describe the number
of P nodes and R nodes required to describe a real time Turing machine with q ≥ 2 states, an input alphabet
of Σ, and a tape alphabet of Γ, where |Γ| ≥ 1.

I will give upper bounds on the minimal numbers of nodes required to express a real-time Turing machine
using the style for emulating a real-time Turing machine described in the proof above of real-time Turing
completeness (section 5.1).

The references that the implementation will require are:

• There are dlog2(q)e references for accessing the current state:

– X()
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– Next(X())

– . . .

– Next(Next(. . . Next(︸ ︷︷ ︸
dlog2(q)e−1

X()). . . ))

• There are dlog2(|Γ|+ 1)e references for accessing the letter under the tape head.

– Pointer(X())

– Next(Pointer(X()))

– . . .

– Next(Next(. . . Next(︸ ︷︷ ︸
dlog2(|Γ|+1)e−1

Pointer(X())). . . ))

• The reference required to set the tape head to its initial position is:

Next(Next(. . . Next(︸ ︷︷ ︸
dlog2(q)e

X()). . . ))

• The reference required to move the tape head to the right is:

Next(Next(. . . Next(︸ ︷︷ ︸
dlog2(|Γ|+1)e

Pointer(X())). . . ))

• The reference required to move the tape head to the left is:

Pointer(Pointer(X()))

This is a total of dlog2(q)e + dlog2(|Γ| + 1)e + 3 references. Since the references can be generated from
each other using only 1 symbol for each new reference, this requires dlog2(q)e+ dlog2(|Γ|+ 1)e+ 3 reference
nodes.

I will now indicate how many program nodes are required.
For each of the dlog2(q)e + dlog2(|Γ| + 1)e references that access state and tape letter bits, there must

exist “Set0” and “Set1” commands. This yields 2dlog2(q)e+ 2dlog2(|Γ|+ 1)e new program nodes.
There are q possible states that the dlog2(q)e state bits could be set to. A sub-routine that sets the

state to state i consists of up to dlog2(q)e “Set0” or “Set1” nodes which are already accounted for. These
commands are linked by up to dlog2(q)e− 1 “Combine” nodes. The sub-routine for setting the state to state
i introduces dlog2(q)e − 1 new “Combine” nodes. The total number of new “Combine” nodes introduced
is q(dlog2(q)e − 1). By similar reasoning, creating sub-routines that set the letter under the tape head
introduces (|Γ|+ 1)(dlog2(|Γ|+ 1)e − 1) new “Combine” nodes.

The following 4 sub-routines allow for initializing the tape head, as well as for moving it left or right.
There is also an additional implicit “Combine” node when moving the tape head to the right yielding a total
of 5 new program nodes.

Initialize the tape head:
SetPointer(X(), Next(Next(. . . Next(︸ ︷︷ ︸

dlog2(|Γ|+1)e

X()). . . )))

Move the head to the right:
SetPointer(Next(Next(. . . Next(︸ ︷︷ ︸

dlog2(|Γ|+1)e

Pointer(X())). . . )), Pointer(X()))

SetPointer(X(), Next(Next(. . . Next(︸ ︷︷ ︸
dlog2(|Γ|+1)e

Pointer(X())). . . )))

23



Move the head to the left:
SetPointer(Pointer(X()), Pointer(Pointer(X())))

The routine “StartUp” simply initializes the tape head. The initial state is denoted by a string of dlog2(q)e
0’s. No new program nodes are introduced.

To read the state and letter under the tape head requires q(|Γ| + 1) − 1 “if” statements. q(|Γ| + 1) − 1
new “if” nodes are introduced for each “Inputi” routine.

At the end of each branch in the tree of “if” statements in the routine “Inputi” the machine can change
the state, change the letter under the tape head, or move the tape head. Program nodes have already been
accounted for for each of these actions, so up to 2 “Combine” nodes are necessary to link the sub-routines
at the end of each branch in the tree of “if” statements. A total of 2q(|Γ| + 1) new “Combine” nodes are
introduced for each “Inputi” routine.

The routine “EndOfInput” only introduces at most q(|Γ|+ 1)− 1 new “if” statements. Only 1 “Set0” or
“Set1” command exists at the end of each branch which generates the output at preferably X().

In summary:

• There is at most dlog2(q)e+ dlog2(|Γ|+ 1)e “Set0” nodes.

• There is at most dlog2(q)e+ dlog2(|Γ|+ 1)e “Set1” nodes.

• q(dlog2(q)e − 1) new “Combine” nodes are introduced by the sub-routines that set the state.

• (|Γ| + 1)(dlog2(|Γ| + 1)e − 1) new “Combine” nodes are introduced by the sub-routines that set the
letter under the tape head.

• 5 new program nodes are introduced by the sub-routines that initialize and move the tape-head.

• For each i = 0, 1, . . . , |Σ| − 1; the routine “Inputi” introduces at most q(|Γ| + 1) − 1 new “if” nodes
and 2q(|Γ|+ 1) new “Combine” nodes.

• At most q(|Γ|+ 1)− 1 new “if” nodes are introduced by the routine “EndOfInput”

The total number of program nodes is:

2dlog2(q)e+ 2dlog2(|Γ|+ 1)e
+ q(dlog2(q)e − 1) + (|Γ|+ 1)(dlog2(|Γ|+ 1)e − 1)

+ 5 + |Σ|(3q(|Γ|+ 1)− 1) + q(|Γ|+ 1)− 1

Therefore:
dlog2(q)e+ dlog2(|Γ|+ 1)e+ 3

is an upper bound on the minimum number of reference nodes; and

2dlog2(q)e+ 2dlog2(|Γ|+ 1)e
+ q(dlog2(q)e − 1) + (|Γ|+ 1)(dlog2(|Γ|+ 1)e − 1)

+ 5 + |Σ|(3q(|Γ|+ 1)− 1) + q(|Γ|+ 1)− 1

is an upper bound on the minimum number of program nodes.
In the case where all I am trying to simulate is a finite automaton with q ≥ 2 states,

dlog2(q)e

is an upper bound on the minimum number of reference nodes; and

2dlog2(q)e+ q(dlog2(q)e − 1) + (|Σ|+ 1)(q − 1)

is an upper bound on the minimum number of program nodes.
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5.3 Example deciding programs using RTGP1

In this section I will give some example deciding programs to better illustrate how the RTGP1 paradigm
works. The languages for which I will provide examples are TL2 and CFL2. These programs will be
engineered to give the reader an idea as to how programs that decide a specific language can be constructed
in the RTGP1 paradigm.

5.3.1 Example deciding program for TL2 using RTGP1

In this section, I will give an example deciding program for the 2nd Tomita regular language. Recall that
the 2nd Tomita regular language is TL2 = (ba)∗. I will index the symbols from the alphabet as follows:
Σ = {a, b} = {0, 1}.

The subroutines that comprise the program are:

StartUp:
Void()

Input0:
if X() then

Void()
else

if Next(X()) then
Set0(Next(X()))

else
Set1(X())

end if
end if

Input1:
if X() then

Void()
else

if Next(X()) then
Set1(X())
Set0(Next(X()))

else
Set1(Next(X()))

end if
end if

EndOfInput:
if X() then

Set0(X())
else

if Next(X()) then
Void()

else
Set1(X())

end if
end if
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Output = X()

This program works by representing the 3 states of the memory using the two bit sequences 00, 01, and
10. The first bit is X(), while the second bit is Next(X()). State 00 means that a b is expected as the next
character. State 01 means that an a is expected as the next character. State 11 means that the string is not
part of the language. Only if the final state is 00 is the string accepted.

Figure 5.5 depicts the above subroutines as expression trees.

Ø

StartUp Input0

if

Ø if

Set0

X

Next

Set1

X

X

X

Next

Input1

if

Ø Xif

X

NextC Set1

X

NextSet1

X

Set0

X

Next

EndOfInput

if

Ø

XifSet0

X

X

NextSet1

X

Output

X

Figure 5.5: Expression trees for TL2 in the RTGP1 paradigm. ∅ denotes the “Void” symbol, C denotes the
“Combine” symbol, and the dashed edges denote pointers from program (P ) nodes to reference (R) nodes.

The precise structure of an agent in the RTGP1 paradigm that implements the subroutines is shown
below. The nodes are listed in order from left-to-right. Recall that all program nodes except the rightmost
node has 2 program node and 2 reference node children; and that all reference nodes except the rightmost
node has 1 reference node child. Unused children are not part of the description.

StartUp: P0
Input0: P6
Input1: P9
EndOfInput: P11
Output: R0

Program nodes:

P11: If(P1, P10; R0)
P10: If(P0, P2; R1)
P9: If(P0, P8; R0)
P8: If(P7, P4; R1)
P7: Combine(P2, P3)
P6: If(P0, P5; R0)
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P5: If(P3, P2; R1)
P4: Set1(R1)
P3: Set0(R1)
P2: Set1(R0)
P1: Set0(R0)
P0: Void()

Reference nodes:

R1: Next(R0)
R0: X()

5.3.2 Example deciding program for CFL2 using RTGP1:

In this section I will give a deciding program for the parenthesis matching problem, CFL2. I will index the
symbols from the alphabet as follows: Σ = {‘(’, ‘)’} = {0, 1}.

The subroutines are:

StartUp:
Set1(X())
Set1(Next(X()))
SetPointer(X(), Next(X()))

Input0:
SetPointer(Next(Pointer(X())), Pointer(X()))
SetPointer(X(), Next(Pointer(X())))

Input1:
if Pointer(X()) then

Set0(X())
else

SetPointer(X(), Pointer(Pointer(X())))
end if

EndOfInput:
if Pointer(X()) then

Void()
else

Set0(X())
end if

Output = X()

This program works by storing the output in X(). Next(X()) always stores 1, and all subsequent
nodes store 0. Pointer(X()) points to Next(X()) if there are no unpaired ‘(’. Pointer(X()) points to
Next(Next(. . . Next(︸ ︷︷ ︸

n

Next(X())). . . )) if there are n unpaired ‘(’. X() stores 0 when there are excess ‘)’.
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Chapter 6

Results for RTGP1

In this section I will collect and present data related to the convergence and overall speed of RTGP1 on
several test bed problems. Important parameters for the population are:

• M = 500 is the size of the population (not including the prime agent).

• ptournament = 0.9 is the probability of selecting the better agent during tournament selection.

• max mutations = 2 is the maximum number of basic mutation steps during mutation.

• µθ = 0.1 is the probability of mutating any given θ during mutation.

• α = 0.1 is the probability of reseting the self adaptive parameters during mutation.

• β = 0.1 is the probability of ignoring the self adaptive parameters during mutation.

• Np = 20 and Nr = 10 are the sizes of the arrays of P and R nodes respectively.

When the genetic program succeeds in finding a solution, I will measure P (i), the probability of finding
a solution by generation i = 0, 1, 2, . . .. I now perform an analysis described by Koza in [11]. I let z = 99%
be the desired probability of success. If a genetic program were to “give up” and reset the population after i
generations, the number of independent runs R(i) required to find a solution by generation i with probability
at least z is:

R(i; z) =

⌈
log(1− z)

log(1− P (i))

⌉
The total number of individuals that need to be generated and tested to find a solution with z = 99%

probability where the population resets after i generational steps is:

I(i; z) = M × (i+ 1)×R(i; z) = M(i+ 1)

⌈
log(1− z)

log(1− P (i))

⌉
I(i; z) is effectively a measure of the computational “effort” required of the genetic program to solve a

problem with a probability of z = 99%. Also note that when i = 0, no run advances a single generation and
the genetic program reduces to random search.

In addition to measuring the probability of success and the effort required for success, I will also keep
track of the average minimum fitness for each generation to get a look at how the genetic program converges.
I will denote the average minimum fitness with f(i).
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6.1 TL1 using RTGP1

TL1 = b∗ = 1∗

For each generation a set U of T = 1000 test strings are randomly generated using the algorithm described
2.4.1. The exact algorithm used to generate the test cases can be found in A.1.

T = 1000 is the number of test cases used in [4], although in [4] these test cases were fixed for the entire
genetic algorithm.

As was indicated at the end of section 2.4.1, the algorithm for generating the test cases already relies
on advance knowledge of the language. I have noted however that the decider that will be produced by the
genetic program is guaranteed to run in real time.

The termination condition occurs when the prime agent has never had a fitness other than 0, and has
been the prime agent for 5 generations. This condition allows us to further test the prime agent over 5000
test cases while propagating the population at the same time. The 5000 test cases that the prime agent is
tested over helps diminish the possibility of the prime agent being chosen as optimal due to a “bad” set of
test cases.

The following graphs use a sample of 100 runs with a generation limit of 500.
Below is a graph displaying P (i) (solid curve) and I(i; 99%) (dashed curve) vs generation i for TL1:

The gap before the start of the I(i; z) curve indicates that the required effort is “infinite”: a solution was
not found before generation i.

The next graph shows the average minimum fitness f(i) vs generation i:

As can be seen, RTGP1 evolves a decider for TL1 almost always in the initial population. The delay of
5 generations seen in the graph is due to the necessity of testing the prime agent for 5 generations so the
prime agent is shown to be correct for 5000 test cases.

6.2 TL2 using RTGP1

TL2 = (ba)∗ = (10)∗

This language can be decided by a 3 state finite automaton. Using the results from 5.1, q = 3 and
|Σ| = 2 indicates that dlog2(q)e = 2 is an upper bound on the minimum number of reference nodes, and that
2dlog2(q)e+ q(dlog2(q)e− 1) + (|Σ|+ 1)(q− 1) = 2(2) + 3(2− 1) + (2 + 1)(3− 1) = 4 + 3 + 6 = 13 is an upper
bound on the minimum number of program nodes.
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For each generation a set U of T = 1000 test strings are randomly generated using the algorithm described
2.4.1. The exact algorithm used to generate the test cases can be found in A.2.

The termination condition occurs when the prime agent has never had a fitness other than 0, and has
been the prime agent for 5 generations.

The following graphs use a sample of 100 runs with a generation limit of 500.
Below is a graph displaying P (i) (solid curve) and I(i; 99%) (dashed curve) vs generation i for TL2:

The next graph shows the average minimum fitness f(i) vs generation i:

6.3 TL3 using RTGP1

TL3 = {s ∈ {0, 1}∗|no odd length block of 0’s can follow an odd length block of 1’s}
This language can be decided by a 5 state finite automaton. Using the results from 5.1, q = 5 and

|Σ| = 2 indicates that dlog2(q)e = 3 is an upper bound on the minimum number of reference nodes, and that
2dlog2(q)e+ q(dlog2(q)e − 1) + (|Σ|+ 1)(q − 1) = 2(3) + 5(3− 1) + (2 + 1)(5− 1) = 6 + 10 + 12 = 28 is an
upper bound on the minimum number of program nodes. For this problem, I will set Np = 40.

For each generation a set U of T = 1000 test strings are randomly generated using the algorithm described
2.4.1. The exact algorithm used to generate the test cases can be found in A.3.

The termination condition occurs when the prime agent has never had a fitness other than 0, and has
been the prime agent for 5 generations.

My data uses a sample of 100 runs with a generation limit of 500.
Only 2 of the 100 runs found a decider for TL3.
The following graph shows the average minimum fitness f(i) vs generation i for TL3:
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6.4 Simple cyclic output using RTGP1

As indicated by the previous tests, RTGP1 can find a decider for TL2 but has considerable difficulty finding
a decider for TL3. To give an indication of the limits of RTGP1, I will attempt to evolve a decider where
the output follows a cycle with a period of 3. The alphabet of symbols will simply be: Σ = {0}, and the
specific language will be Cyclic Output = {0n|n is divisible by 3}. The set of test strings is U = {0i|0 ≤ i ≤
200}. Due to the fitness being computed in a deterministic manner (no cases are generated randomly), the
termination condition is when the prime agent has a fitness of 0.

This language can be decided by a 3 state finite automaton. Using the results from 5.1, q = 3 and
|Σ| = 1 indicates that dlog2(q)e = 2 is an upper bound on the minimum number of reference nodes, and that
2dlog2(q)e+ (|Σ|+ 1)(q − 1) + |Σ|q(dlog2(q)e − 1) = 2(2) + (1 + 1)(3− 1) + 1(3)(2− 1) = 4 + 4 + 3 = 11 is
an upper bound on the minimum number of program nodes.

My data uses a sample of 100 runs with a generation limit of 500.
No run found a decider for “Cyclic Output”.
The next graph shows the average minimum fitness f(i) vs generation i for “Cyclic Output”:

As can be seen, the average minimum fitness shows no improvement as the generations progress.

6.5 Failure of RTGP1

Having failed to evolve a decider whose output follows a 3-cycle as the word length increases, I will not
bother testing the rest of the languages. In this section I will investigate several possible causes of the failure
of RTGP1 to produce deciding programs for mildly complex regular languages.

I will examine possible reasons as to why RTGP1 failed to evolve a decider for the language “Cyclic Output”.
This explanation will focus on the general complexity of a program/expression in RTGP1 that cycles between
3 distinct states. To denote 3 distinct states in RTGP1, I need to use at least 2 memory nodes from the
internal memory. The pair of bits in these memory nodes can have up to 4 states 00, 01, 10 and 11. A
program/expression built from the library of symbols that can cycle between these 3 of the 4 states requires
at least 2 nested “if” statements. Agents that are a short distance “mutation wise” from a correct program
likely express very different behavior than the correct program.

In [29] Teller notes that when using genetic programming to evolve an expression or function, small
changes to the genotype may result in small changes to the phenotype. In the case of evolving an expression
that is iterated over a number of steps however, small changes to the genotype “usually cause[s] complete
chaos” [29] as differences in the internal state build with each iteration. The mapping of genotype to
phenotype is so discontinuous, that small changes to the genotype very rarely yield small changes to the
phenotype [32]. The near absence of minor mutations to the genotype that result in minor changes to
the phenotype means that the fitness of the parent(s) is not at all indicative of the fitness of the children.
This nullifies the reason for giving fitter agents priority in reproduction. Genetic programming is effectively
reduced to random search. In the next section, I will try to “smooth” the fitness landscape by allowing for
plenty of mutations that result in small/gradual changes to the phenotype.
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Chapter 7

A new real time Turing complete
paradigm: RTGP2

The new paradigm will be similar to the direct state transition table/graph representation that can be
found in [9, 34, 28, 18] ([4] instead uses a program that “grows” a finite automa from scratch). In these
papers, the state transition graph of the program is directly embedded in either an expression tree with some
semi-complicated schemes to denote back-pointers (pointers that can connect to ancestor nodes to complete
cycles) [9, 34], or a graph itself [28, 18]. Since I am using Cartesian genetic programming I can allow for
back pointers in the array of nodes by lifting the restriction that nodes in the array can only have nodes
strictly to the right as children. I will refer to this paradigm as RTGP2.

The array of nodes in RTGP2 will not be broken into 2 pieces, and all nodes in the array will be created
equal with the possibility of back pointers. Instead of |Σ| + 3 root nodes, there will be only 1 root node.
Like the transition graph paradigms found in found in [4, 9, 34, 28, 18], I will use an internal state graph
rather than a complex program to advance from state to state. I will also include a Turing tape as part of
the program’s internal memory. Unlike what can be simulated in RTGP1, I will have to fix the number of
symbols the embedded Turing tape can use upfront, as this quantity cannot be set during runtime. I will
let Γ denote the set of letters that our embedded Turing tape can use, excluding the blank symbol. The
blank symbol will be denoted by ε. Each node in the array is a possible internal state. Each node in the
array will have 1 “label”, and 2 “tags” that I will refer to as tag0 and tag1. “label” can have the values
0 or 1. tag0 can have the values 0 or 1. tag1 can have the values 0, 1, 2, or 3. Each node in the array
will have |Σ| “primary” children indexed from 0, 1, . . . , |Σ| − 1; and |Γ| “secondary” children indexed from
0, 1, . . . , |Γ| − 1. The primary child edges will also be be assigned 1 letter from Γ∪ {ε} (not the child index),
and 1 “direction”: -1, 0, 1 2. Figure 7.1 shows the new structure of an agent and of one of the nodes.

……  

Nodes

Root

Label: 0, 1

Tag0: 0, 1

Tag1: 0, 1, 
2, 3

0
1
… 
|Ʃ| - 1

… 

<letter, direction>

… 
0
1
… 
|Γ| - 1

primary 
children

secondary 
children

Figure 7.1: The left image depicts the structure of an agent in the RTGP2 paradigm, and the image on the
right depicts the structure of a single node.
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7.1 Processing words in RTGP2

This section will describe how an agent A processes input.
A high level description of how A processes words is as follows. The node array of A functions as a

transition graph of a finite automata, where the primary edges are the transition edges for the possible
input characters. The letter and direction assigned to the primary edges determines how the Turing tape is
updated when the transition is used. tag1 affects what changes can be made to the Turing tape. If tag0 =
1, the node’s “proxy node” is used instead of the node itself for the label, tag1 and the primary edges. The
“proxy node” is the node referenced by the current node’s secondary pointer determined by the letter under
tape head.

A word w ∈ Σ∗ is processed by an agent A as follows:
Each node in A’s node array is an internal state. The current node/state will be denoted by s.
The initial state s0 is the array node referenced by the root node. s = s0.
A’s Turing tape is initialized with all blank symbols, with the tape head focused on what will be referred

to as the “origin cell”.
A will process the letters of w in sequence.
At each step, including the final step after w has been emptied, A will first find the node s′ that acts as

a “proxy” for node s. A will examine “tag0” of node s. If tag0 = 0, then s′ = s. If tag0 = 1, then A will
read the current cell of the Turing tape to get letter b ∈ Γ∪ {ε}. If b = ε, then s′ = s. If b 6= ε, then s′ is the
secondary child of s indexed by b.

If w has been emptied, the output is the “label” of s′. The label can be 0 or 1.
If w still has letters, let a ∈ Σ be the current letter that is being processed. Let snew be the primary

child of s′ (note the “′”) indexed by a. A first updates s to snew, without updating s′ yet. Let l and d
be respectively the letter and “direction” on the primary child edge indexed by a from s′ to snew. A now
examines tag1 of node s′. If tag1 = 1, 3, then the letter in the current cell of the Turing tape changes to l. If
tag1 = 2, 3, then the tape head moves in direction d. d = −1 is “move to the left”; d = 0 is “no movement”;
d = 1 is “move to the right”; and d = 2 returns the head to the “origin cell”. In the case where the tape cell
letter is changed and the tape head moves (i.e. tag1 = 3), the tape head moves after the cell is updated.

Since RTGP2 is a more direct imitation of a Turing machine, I do not need a proof that RTGP2 can
emulate the step of a Turing machine with each character consumed.

7.2 Changes in Mutation from RTGP1 to RTGP2

The initialization of the population of M >> 0 agents in the population is the same as in RTGP1. With
mutation however, there are many more mutation sites for each array node. The listing of mutation sites
are:

• The root node pointer.

• Each array node n as the following mutation sites:

– label

– tag0

– tag1

– Each primary child pointer.

– Each secondary child pointer.

– Each primary child edge c of n has the following mutation sites:

∗ The letter assigned to c.

∗ The direction assigned to c.
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When randomly choosing the value for tag0, choosing 0 has a weight of 4, while choosing 1 has a weight
of 1. When randomly choosing the value for tag1, choosing 0 has a weight of 4; while choosing 1, 2, or 3
each have a weight of 1.

When randomly choosing a letter from Γ ∪ {ε}, the letter is chosen with a uniform distribution. When
choosing a direction, choosing 0 has a weight of 5; choosing −1 has a weight of 2; choosing 1 has a weight of
2; and choosing 2 has a weight of 1.

The weights described above are designed to provide preference to “inert” tags (tag0 = 0, tag1 = 0) or
directions (the head remains stationary).

7.3 Advantages of RTGP2 over RTGP1

I will now detail advantages RTGP2 possesses over RTGP1. I have already noted that any mutation in
RTGP1 is likely to dramatically alter the phenotype of an agent to the point that selection in favor of fitter
agents is useless. To establish that RTGP2 does not have this same pitfall, I will show that the genotypes in
RTGP2 are a more explicit representation of the corresponding phenotype. A real-time deciding program for
a language with character set Σ can be pictured as an infinite decision tree where each node has a 0 or 1 label
and |Σ| children (not counting the parent node). An input string is processed by starting with a reference
to the root node. As each character c is being processed, the reference is moved to the child of the current
node indexed by c. After the input string has been processed, the output is the label of the node currently
being referenced. This “infinite decision tree” style of representation is one of the most explicit ways the
phenotype can be represented. Moreover a change to one of the labels only changes the output for one string,
so the phenotype is minimally changed. As an infinite decision tree cannot be stored as a genotype, it must
be “coiled up” into a more compact form such as the genotypes used in the RTGP2 paradigm. This is the
main reason why mutations in the RTGP2 paradigm do not completely scramble the phenotype.

More specifically, changing the label of one of the nodes in RTGP2 will at most change the output for
some inputs but not completely scramble the phenotype. Changing one of the edges; edge labels; or tags of
a node s will partially scramble the output for words w for which node s is used while w is being processed.
The output for words w that do not use state s during processing are unchanged. If a word w accesses state
s during processing, patterns in the output that occur as characters are appended to the end of w may be
partially conserved by a mutation to s.

Referring to the state transition graph of the program, mutations in the RTGP1 paradigm dramatically
alter the state transition graph, while mutations in RTGP2 only mutate part of the state transition graph.
Hence the phenotype is better preserved by mutations in RTGP2 than by mutations in RTGP1.

7.4 Example deciding programs using RTGP2

In this section, just as with RTGP1, I will give some example deciding programs to better illustrate how
the RTGP2 paradigm works. The languages for which I will provide examples are TL2 and CFL2. These
programs will be engineered to give the reader an idea as to how programs that decide a specific language
can be constructed in the RTGP2 paradigm.

The following sections will give depictions of the programs as directed graphs. The label (L), the tag0

(T 0) and, the tag1 (T 1) of each node is shown. Irrelevant edges are not shown. Primary child edges are
denoted by a,< l, d > where a ∈ Σ is the index of the edge, l ∈ Γ ∪ {ε} is the letter, and d ∈ {−1, 0, 1, 2} is
the direction. Secondary child edges are denoted by [b] where b ∈ Γ ∪ {ε} is the edge index. For simplicity,
directed edges between the same pair of nodes are depicted as a single edge with multiple labels.

7.4.1 Example deciding program for TL2 using RTGP2

Recall that TL2 = (ba)∗, and Σ = {a, b} = {0, 1}. A program that decides TL2 is shown in figure 7.2.
All nodes have both tags set to 0 as the Turing tape has no relevance for a finite state automaton. The

< l, d > pairs also have no effect and are defaulted to < ε, 0 >.
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L   = 1
T0 = 0
T1 = 0 

1,<ε,0>

0,<ε,0>

L   = 0
T0 = 0
T1 = 0 

L   = 0
T0 = 0
T1 = 0 

0,<ε,0>

1,<ε,0>

0,<ε,0>

1,<ε,0>

initial state

Figure 7.2: Example decider for TL2 in the RTGP2 paradigm.

7.4.2 Example deciding program for CFL2 using RTGP2

Recall that CFL2 = {s ∈ {“(”, “)”}∗|parentheses are balanced}, and Σ = {“(”, “)”} = {0, 1}. I will use the
alphabet: Γ = {0}. A program that decides CFL2 is shown in figure 7.3.

L   = 1
T0 = 0
T1 = 3

L   = 0
T0 = 1
T1 = 2

L   = 0
T0 = 0
T1 = 0

0,<0,1>

1,<0,-1>

[0]

1,<ε,0>

0,<ε,0>L   = 1
T0 = 0
T1 = 2

1,<0,-1>

1,<ε,-1>0,<ε,1>

0,<0,1>

initial state

Figure 7.3: Example decider for CFL2 in the RTGP2 paradigm.

This program in figure 7.3 marks the initial square of the Turing tape with the letter “0” (ε is the blank
symbol). The number of squares to the right that the tape head is located relative the initial square denotes
the parenthesis level. If the tape head ever moves to the left of the initial square, the string is invalid.
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Chapter 8

Results for RTGP2

For my tests, I will use the parameters:

• |Γ| = 1 is the size of the alphabet of symbols that the Turing tape can use.

• M = 500 is the size of the population.

• ptournament = 0.9 is the probability of selecting the better agent during tournament selection.

• max mutations = 2 is the maximum number of basic mutation steps during mutation.

• µθ = 0.1 is the probability of mutating any given θ during mutation.

• α = 0.1 is the probability of reseting the self adaptive parameters during mutation.

• β = 0.1 is the probability of ignoring the self adaptive parameters during mutation.

• N = 10 is the size of the array of nodes.

8.1 TL1 using RTGP2

TL1 = b∗ = 1∗

For each generation a set U of T = 1000 test strings are randomly generated using the algorithm described
2.4.1. The exact algorithm used to generate the test cases can be found in A.1. However the maximum
number of “0”s or “1”s is increased to 50 from 20.

The termination condition still occurs when the prime agent has never had a fitness other than 0, and
has been the prime agent for 10 generations.

The following graphs use a sample of 100 runs with a generation limit of 500.
Below is a graph displaying P (i) (solid curve) and I(i; 99%) (dashed curve) vs generation i for TL1:
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The gap before the start of the I(i; z) curve indicates that the required effort is “infinite”: a solution was
not found before generation i.

The next graph shows the average minimum fitness f(i) vs generation i:

8.2 TL2 using RTGP2

TL2 = (ba)∗ = (10)∗

For each generation a set U of T = 1000 test strings are randomly generated using the algorithm described
2.4.1. The exact algorithm used to generate the test cases can be found in A.2. However, the maximum
word length is increased to 50 from 20.

The termination condition still occurs when the prime agent has never had a fitness other than 0, and
has been the prime agent for 10 generations.

The following graphs use a sample of 100 runs with a generation limit of 500.
Below is a graph displaying P (i) (solid curve) and I(i; 99%) (dashed curve) vs generation i for TL2:

The next graph shows the average minimum fitness f(i) vs generation i:
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8.3 TL3 using RTGP2

TL3 = {s ∈ {0, 1}∗|no odd length block of 0’s can follow an odd length block of 1’s}
For each generation a set U of T = 1000 test strings are randomly generated using the algorithm described

2.4.1. The exact algorithm used to generate the test cases can be found in A.3.
The termination condition still occurs when the prime agent has never had a fitness other than 0, and

has been the prime agent for 10 generations.
The following graphs use a sample of 100 runs with a generation limit of 500.
Below is a graph displaying P (i) (solid curve) and I(i; 99%) (dashed curve) vs generation i for TL3:

The next graph shows the average minimum fitness f(i) vs generation i:

As can be seen, RTGP2 has a much greater success with TL3 than RTGP1. I will continue with the rest
of the languages.

8.4 TL4 using RTGP2

TL4 = {s ∈ {0, 1}∗|no 000 substrings}
For each generation a set U of T = 1000 test strings are randomly generated using the algorithm described

2.4.1. The exact algorithm used to generate the test cases can be found in A.4.
The termination condition occurs when the prime agent has never had a fitness other than 0, and has

been the prime agent for 10 generations.
The following graphs use a sample of 100 runs with a generation limit of 500.
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Below is a graph displaying P (i) (solid curve) and I(i; 99%) (dashed curve) vs generation i for TL4:

The next graph shows the average minimum fitness f(i) vs generation i:

8.5 TL5 using RTGP2

TL5 = {“”, 0, 1} ∪ 0{0, 1}∗0 ∪ 1{0, 1}∗1
For each generation a set U of T = 1000 test strings are randomly generated using the algorithm described

2.4.1. The exact algorithm used to generate the test cases can be found in A.5.
The termination condition occurs when the prime agent has never had a fitness other than 0, and has

been the prime agent for 10 generations.
The following graphs use a sample of 100 runs with a generation limit of 500.
Below is a graph displaying P (i) (solid curve) and I(i; 99%) (dashed curve) vs generation i for TL5:

The next graph shows the average minimum fitness f(i) vs generation i:
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8.6 TL6 using RTGP2

TL6 = {s ∈ {0, 1}∗|# of 0’s - # of 1’s ≡ 0 mod 3}
For each generation a set U of T = 1000 test strings are randomly generated using the algorithm described

2.4.1. The exact algorithm used to generate the test cases can be found in A.6.
The termination condition occurs when the prime agent has never had a fitness other than 0, and has

been the prime agent for 10 generations.
The following graphs use a sample of 100 runs with a generation limit of 500.
Below is a graph displaying P (i) (solid curve) and I(i; 99%) (dashed curve) vs generation i for TL6:

The next graph shows the average minimum fitness f(i) vs generation i:

8.6.1 An evolved decider for TL6

Below is an example of an evolved decider for TL6:
Each node is denoted by:

index : (label, tag0, tag1, [primary child0, letter0,direction0],

[primary child1, letter1,direction1], secondary child1)

With regards to the tape alphabet, the blank character is “0” while Γ = {1}.
The boldface indexes indicate which nodes are active in the program.
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Root Index: 0

Nodes:

9: (0, 0, 0, [7,1,0], [5,0,0], 2)
8: (0, 0, 0, [3,1,0], [0,0,0], 0)
7: (0, 0, 0, [9,0,0], [2,1,0], 2)
6: (0, 0, 3, [0,0,0], [8,0,1], 5)
5: (0, 1, 2, [8,0,0], [9,0,1], 6)
4: (0, 0, 3, [8,0,0], [4,0,0], 4)
3: (0, 1, 0, [0,1,0], [8,1,1], 8)
2: (1, 1, 0, [8,1,1], [9,0,-1], 5)
1: (1, 0, 0, [6,0,0], [9,0,1], 8)
0: (1, 0, 0, [8,1,0], [6,1,0], 7)

8.7 TL7 using RTGP2

TL7 = 0∗1∗0∗1∗

For each generation a set U of T = 1000 test strings are randomly generated using the algorithm described
2.4.1. The exact algorithm used to generate the test cases can be found in A.7.

The termination condition occurs when the prime agent has never had a fitness other than 0, and has
been the prime agent for 10 generations.

The following graphs use a sample of 100 runs with a generation limit of 500.
Below is a graph displaying P (i) (solid curve) and I(i; 99%) (dashed curve) vs generation i for TL7:

The next graph shows the average minimum fitness f(i) vs generation i:
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8.8 Cyclic output using RTGP2

I will now repeat the cyclic output test that I gave to RTGP1. To show how successful RTGP2 is compared to
RTGP1, I will attempt to evolve a decider where the output follows a cycle with a period of 20 as opposed to 3.
The alphabet of symbols will simply be: Σ = {0}, and the specific language will be Complex Cyclic Output =
{0n|n ≡ 10, 11, . . . , 19 mod 20}. The set of test strings is U = {0i|0 ≤ i ≤ 1000}. Due to the fitness being
computed in a deterministic manner (no cases are generated randomly), the termination condition is when
the prime agent has a fitness of 0.

An optimal decider requires at least 20 distinct states so each agent has N = 30 nodes as opposed to 10.
The following graph uses a sample of 100 runs with a generation limit of 500.
Below is a graph displaying P (i) (solid curve) and I(i; 99%) (dashed curve) vs generation i for “Com-

plex Cyclic Output”:

The next graph shows the average minimum fitness f(i) vs generation i for “Complex Cyclic Output”:

8.8.1 An evolved decider for “Complex Cyclic Output”

Below is an example of an evolved decider for “Complex Cyclic Output”:
Each node is denoted by:

index : (label, tag0, tag1, [primary child0, letter0,direction0], secondary child1)

With regards to the tape alphabet, the blank character is “0” while Γ = {1}.
The boldface indexes indicate which nodes are active in the program.

Root Index: 24

Nodes:

29: (1, 0, 2, [2,0,-1], 3)
28: (1, 0, 1, [27,0,-1], 17)
27: (1, 1, 2, [21,0,-1], 4)
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26: (1, 0, 0, [14,1,-1], 24)
25: (1, 1, 3, [24,0,2], 14)
24: (0, 0, 0, [15,1,0], 21)
23: (0, 1, 0, [8,1,0], 5)
22: (0, 0, 0, [19,1,1], 22)
21: (1, 0, 3, [8,1,2], 4)
20: (1, 1, 3, [6,1,1], 15)
19: (0, 0, 2, [23,1,1], 1)
18: (1, 1, 1, [20,0,0], 19)
17: (0, 0, 3, [18,1,0], 6)
16: (0, 0, 0, [1,0,0], 8)
15: (0, 0, 3, [17,1,-1], 19)
14: (1, 0, 0, [29,0,0], 6)
13: (0, 1, 3, [19,1,0], 23)
12: (1, 0, 0, [14,1,0], 12)
11: (0, 0, 0, [20,1,0], 29)
10: (1, 0, 0, [9,1,0], 1)
09: (0, 1, 0, [27,1,-1], 2)
08: (0, 1, 0, [16,0,1], 25)
7: (1, 0, 0, [8,0,1], 4)
06: (1, 1, 0, [26,0,2], 5)
05: (0, 0, 0, [19,0,0], 21)
04: (0, 1, 0, [13,1,0], 25)
03: (1, 0, 0, [6,1,0], 12)
02: (0, 1, 0, [29,1,0], 28)
01: (0, 0, 0, [18,1,0], 17)
00: (0, 0, 2, [9,0,0], 25)

To understand how this solution works, the following table shows the progression of the states as successive
0’s are processed:

For the Turing tape, the square brackets surround the character under the tape head, while the underlined
character is the initial position of the tape head.

Node Turing tape proxy node (if tag0 = 1) label (proxy node label if tag0 = 1)
24 [0] 0
15 [0] 0
17 [0]1 0
18 [1]1 19 0
23 1[1] 05 0
19 1[1] 0
23 11[0] 23 0
08 11[0] 08 0
16 11[0] 0
01 11[0] 0
18 11[0] 18 1
20 11[0] 20 1
06 111[0] 06 1
26 111[0] 1
14 111[0] 1
29 111[0] 1
02 11[1]0 28 1
27 11[0]0 27 1
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21 1[1]00 1
08 1[1]00 25 1
24 1[0]00 0
15 1[0]00 0
17 [1]100 0
18 [1]100 19 0
.... ... ... ...

As can be seen, RTGP2 can evolve a decider for language with a period of 20, while RTGP1 can’t even
evolve a decider for a language with a period of 3.

In the following sections I now investigate the non-regular languages.

8.9 CFL1 using RTGP2

CFL1 = {0n1n|n ≥ 0}
The method of computing the fitness of each agent A is given in B.1.
The termination condition occurs when the prime agent has never had a fitness other than 0, and has

been the prime agent for 50 generations. I required the prime agent to perfect for a larger number (50)
of generations due to the fact that there are many agents that are “near perfect”, meaning that they have
perfect fitness but are still incorrect for some inputs.

The following graphs use a sample of 20 runs with a generation limit of 3000. Since the number of data
points/runs is much smaller (20 vs 100) than what was used for the regular languages, the graph below looks
much more blocky than its regular language counter parts.

Below is a graph displaying P (i) (solid curve) and I(i; 99%) (dashed curve) vs generation i for CFL1:

The next graph shows the average minimum fitness f(i) vs generation i:
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8.10 CFL2 using RTGP2

CFL2 = {s ∈ {0, 1}∗|parentheses are balanced where 0 = “(” and 1 = “)”}
The method of computing the fitness of each agent A is given in B.2.
The termination condition occurs when the prime agent has never had a fitness other than 0, and has

been the prime agent for 50 generations.
The following graphs use a sample of 20 runs with a generation limit of 3000. Since the number of data

points/runs is much smaller (20 vs 100) than what was used for the regular languages, the graph below looks
much more blocky than its regular language counter parts.

Below is a graph displaying P (i) (solid curve) and I(i; 99%) (dashed curve) vs generation i for CFL2:

The next graph shows the average minimum fitness f(i) vs generation i:
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8.10.1 Evolved decider for CFL2

Below is an example of an evolved decider for CFL2:
Each node is denoted by:

index : (label, tag0, tag1, [primary child0, letter0,direction0],

[primary child1, letter1,direction1], secondary child1)

With regards to the tape alphabet, the blank character is “0” while Γ = {1}.
The boldface indexes indicate which nodes are active in the program.

Root Index: 5

Nodes:

9: (1, 1, 3, [6,1,2], [9,0,0], 1)
8: (0, 0, 3, [2,0,0], [0,0,0], 4)
7: (0, 0, 0, [7,1,0], [7,1,0], 9)
6: (0, 1, 1, [0,1,0], [5,1,-1], 1)
5: (1, 0, 0, [6,1,1], [7,0,-1], 5)
4: (0, 0, 3, [4,1,1], [2,0,-1], 2)
3: (1, 0, 0, [6,1,-1], [4,1,0], 5)
2: (0, 1, 1, [4,1,0], [8,0,1], 4)
1: (0, 0, 0, [0,1,1], [5,1,-1], 5)
0: (0, 0, 1, [8,0,0], [1,1,1], 4)

7 is the sink state.
Imagine that the string 0n1n is being processed.
As the n “0”s are processed, the sequence of states (not showing the proxy nodes) is:

5→ 6→ 0→ 8→ 2→ 4→ 4 · · · → 4︸ ︷︷ ︸
n−4

As the n “1”s are processed, the sequence of states (not showing the proxy nodes) is:

4→ 2→ 2 · · · → 2︸ ︷︷ ︸
n−4

→ 8→ 0→ 1→ 5

8.11 CFL3 using RTGP2

CFL3 = {s ∈ {0, 1}∗|# of 0’s = # of 1’s}
The method of computing the fitness of each agent A is given in B.3.
The termination condition occurs when the prime agent has never had a fitness other than 0, and has

been the prime agent for 50 generations.
The following graphs use a sample of 20 runs with a generation limit of 3000. Since the number of data

points/runs is much smaller (20 vs 100) than what was used for the regular languages, the graph below looks
much more blocky than its regular language counter parts.

Below is a graph displaying P (i) (solid curve) and I(i; 99%) (dashed curve) vs generation i for CFL3:
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The next graph shows the average minimum fitness f(i) vs generation i:

8.12 The final tests

The previous tests focused on regular languages and context free languages. In the following tests I will
focus on three languages that are neither regular nor context free.

8.12.1 NCFL using RTGP2

NCFL = {anbnan|n ≥ 0}
For this test, each agent has N = 15 nodes as opposed to 10 nodes due to the fact that an optimal decider

for NCFL in RTGP2 paradigm requires approximately 7 nodes.
The method of computing the fitness of each agent A is given in B.4.
The termination condition occurs when the prime agent has never had a fitness other than 0, and has

been the prime agent for 100 generations.
My data uses a sample of 20 runs with a generation limit of 6000.
Only 3 of the 20 runs found a decider for NCFL.
The following graph shows the average minimum fitness f(i) vs generation i:
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8.12.2 Non cyclic output using RTGP2

The second non context free language I will consider uses only a single character: Σ = {0}. The only possible
inputs are strings of various lengths. The sequence of outputs as the string length increases from the empty
string is:

1101001000100001000001000000100000001 . . .

This language I will refer to as NCO (non-cyclic output). More precisely,

NCO = {0i : i =

n∑
j=0

j for some n ≥ 0}

The method of computing the fitness of each agent A is given in B.5.
The termination condition occurs when the prime agent has a fitness of 0. No successive generations with

the prime agent having a fitness of 0 is required as the algorithm for measuring fitness does not depend on
any randomly generated test cases.

The following graphs use a sample of 100 runs with a generation limit of 1000.
Below is a graph displaying P (i) (solid curve) and I(i; 99%) (dashed curve) vs generation i for NCO:

The next graph shows the average minimum fitness f(i) vs generation i:
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Evolved decider for NCO

Below is an example of an evolved decider for NCO:
Each node is denoted by:

index : (label, tag0, tag1, [primary child0, letter0,direction0], secondary child1)

With regards to the tape alphabet, the blank character is “0” while Γ = {1}.
The boldface indexes indicate which nodes are active in the program.

Root Index: 9

Nodes:

9: (1, 0, 0, [6,0,-1], 0)
8: (0, 0, 2, [5,1,-1], 4)
7: (0, 0, 0, [8,1,1], 8)
6: (1, 0, 0, [4,0,0], 3)
5: (1, 1, 0, [3,1,0], 8)
4: (0, 1, 1, [5,0,-1], 8)
3: (0, 0, 3, [5,1,2], 2)
2: (0, 0, 0, [4,0,1], 0)
1: (1, 1, 0, [5,1,0], 1)
0: (0, 0, 0, [9,1,1], 0)

To understand how this solution works, the following table shows the progression of the states as successive
0’s are processed:

For the Turing tape, the square brackets surround the character under the tape head, while the underlined
character is the initial position of the tape head.

Node Turing tape proxy node (if tag0 = 1) label (proxy node label if tag0 = 1)
9 [0] 1
6 [0] 1
4 [0] 4 0
5 [0] 5 1
3 [0] 0
5 [1] 8 0

49



5 [0]1 5 1
3 [0]1 0
5 1[1] 8 0
5 [1]1 8 0
5 [0]11 5 1
3 [0]11 0
5 11[1] 8 0
5 1[1]1 8 0
5 [1]11 8 0
5 [0]111 5 1
... ... ... ...

8.12.3 Finding triangles in a graph using RTGP2

In this final test of RTGP2, I will attempt to find a real time algorithm that can determine if an arbitrary
simple graph has a 3-cycle/triangle sub-graph. A brute force algorithm for determining if a triangle is present
runs in O(n3) steps where n is the number of verticies in the graph.

Let E denote the “edge matrix”, an n× n matrix where Ei,j = 1 if {i, j} is an edge and Ei,j = 0 if {i, j}
is not an edge. The (i, j) entry of E2 is nonzero if a walk of length 2 exists between verticies i and j and
zero if otherwise. A triangle exists iff there exists an (i, j) pair such that the (i, j) entry of both E and E2

is nonzero.
There exists multiple “fast matrix multiplication” algorithms for computing E2. Ordinary matrix mul-

tiplication requires O(n3) operations. “Strassen’s algorithm” for matrix multiplication requires O(nlog2 7) ≈
O(n2.807) steps. A description of Strassen’s algorithm can be found in [27]. The “Coppersmith-Winograd
algorithm” for matrix multiplication requires O(n2.376) steps [8].

Both Strassen and the Coppersmith-Winograd algorithm respectively yield an O(n2.807) step and a
O(n2.376) step algorithm for determining if an n-vertex graph has a triangle.

For this last test, an arbitrary graph will be denoted by the following paradigm. A graph of n verticies

will be denoted by a binary string with length at most: 1 + 2 + · · · + (n − 1) = n(n−1)
2 . In the following

binary string, ei,j = 1 iff an edge exists between verticies i and j:

e2,1e3,1e3,2e4,1e4,2e4,3e5,1e5,2e5,3e5,4 . . . en,1en,2 . . . en,n−1

If the string is too short, ei,j = 0 by default.
If RTGP2 does find a real time algorithm that can detect triangle subgraphs in the input graph, then

the algorithm will run in O(n2) steps for a graph with n verticies.
For this test, each agent has N = 30 nodes as opposed to 10 nodes to allow for greater complexity in the

structure of the agents.
To improve the expressive power of RTGP2 the number of non-blank symbols available to the Turing

tape was increased to |Γ| = 3.
Unlike all of the previous non-regular languages, the fitness will simply be the number test cases failed.

For each generation a set U of T = 1000 test strings are randomly generated using the algorithm described
2.4.1. The exact algorithm used to generate the test cases can be found in A.8.

The termination condition occurs when the prime agent has never had a fitness other than 0, and has
been the prime agent for 10 generations.

With a sample of 20 runs over 2500 generations, no solution was found. Below is a graph depicting the
average minimum fitness as a function of generation over the 20 run sample:
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Chapter 9

Concluding remarks and possible
future work

In this thesis I have presented two distinct genetic programming paradigms RTGP1 and RTGP2 with the
aim of evolving real-time deciding programs for an arbitrary language of strings. The first conclusion that I
will present here relates to the importance of the proper design of genetic programming paradigms. Concerns
about the feasibility of using genetic algorithms to evolve programs using a Turing complete syntax have
been raised in [29, 32]. Objections raised in [29, 32] point out the “roughness” of the fitness landscape,
which ultimately reduces the genetic algorithm to random search. RTGP1 and RTGP2 have real-time
Turing complete syntaxes so there exist deciding programs for the non-context free languages. RTGP1 was
created without any heed to the roughness of the fitness landscape and is subject to the criticisms raised
in [29, 32]. The syntax of RTGP1 bears a resemblance to the syntax described in [30]. [30] introduces a
possible Turing complete syntax but does not state any results. RTGP1 was shown to not perform well on
slightly complicated regular languages. RTGP2 aimed to improve upon RTGP1 addressing concerns raised
in [29, 32] about the roughness of the fitness landscape. It has been found that RTGP2 greatly outperforms
RTGP1 in its ability to find a decider for a complex language. This difference in performance appears to
confirm that the roughness of the fitness landscape has a large effect on how well programs can be evolved, as
was suggested in [29, 32]. The difference in performance also indicates more generally that when designing a
genetic programming paradigm to solve any problem, careful attention must be paid to how the phenotype
is represented by the genotype. Several points to consider in the design of a genetic programming paradigm
are listed below.

• Firstly the genotype must be designed in such a way that the phenotype is explicit as possible. Explicit
representation of the phenotype within the genotype is likely to give rise to genetic operators that alter
the phenotype in logical ways. As an example, the genotypes in the RTGP2 paradigm are much more
explicit representations of the functions they denote than are genotypes in the RTGP1 paradigm. This
was discussed in section 7.3.

• Secondly, mutation must preserve part of the phenotype. If mutation fails to preserve part of the
phenotype, then it is pointless to discriminate in favor of parents that have better fitness as there is
no guarantee that the children will have good fitness. If the genotype was engineered to be an explicit
representation of the phenotype, then it is relatively easy to design a mutation operator that will
preserve much of the phenotype. While this thesis has only looked at the mutation operator, since
crossover is also a significant genetic operator, future work may also examine the crossover operator as
well. A desired feature of such a crossover operator will be to combine the phenotypes of the parents
in a logical way so that the resultant phenotype resembles a “blend” between the two parents.

• Thirdly, while balancing the previous point, the mutation operator must also cover a large range of
possible changes to the phenotype to prevent the population from being trapped in a local optima.
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This trade-off has not been addressed in this thesis and may be the subject of future research. Likewise,
any crossover operators must also produce a variety of mixtures between the two parents.

The second conclusion that I will present here relates to the performance of RTGP2. RTGP2 has been
successful at evolving a decider for every tested language except the decider for detecting 3-cycles in a graph,
for which no real time decider is known to exist. Additionally, RTGP2 also had some difficulty evolving
a deciding program for the language NCFL. The works [28, 18, 5] have also investigated evolving deciding
Turing machines using a paradigm similar to RTGP2. In [28, 18, 5] the evolved Turing machines produced by
their genetic algorithms are not guaranteed to run in real-time. One possible reason for the difficulty RTGP2

has in evolving deciding programs for NCFL relative to other works is the real-time constraint of RTGP2.
Programs from RTGP2 have to process each character and update their internal memory (Turing tape) in a
single transition, and moreover do not have the ability to go back and reexamine the input. Turing machines
described in [28, 18, 5] may take may several steps to process each character, and are able to reexamine
input entries as much as needed.

From the data for RTGP2, it seems that evolving deciding programs is easy for regular languages, and
gets more difficult for context free languages, and more difficult for non-context free languages culminating
with NCFL being the most difficult language to evolve a decider for within the scope of this thesis (not
counting the language of simple graphs with a 3-cycle). This contrasts with what is observed in [5]. [5]
studies the evolution of Turing machines that are not necessarily real-time. In [5] it is concluded that a
language’s position within the “Chomsky Hierarchy” does not affect how difficult it is to evolve a Turing
machine decider for that language.

With the non-regular languages studied in this thesis and in other works [28, 18, 5] none of these languages
required any nested loops to be present in a deciding Turing machine [32]. The tested languages were not
complex enough to require more than one level of loop nesting as indicated by [32]. The claim made in [32]
genetic programming is infeasible for evolving Turing machines with more than one level of loop nesting is
not contradicted by this thesis. The performance of RTGP2 and other paradigms on non-regular languages
that require at least two levels of nested loops can be the subject of future research.

RTGP2 may be improved in evolving deciding programs for the non-regular languages that RTGP2

performed poorly on (i.e. NCFL). Such improvements can be to include more mutation operators that
create a larger variety of changes to help eliminate local optimums from which the population cannot escape,
as mentioned above. One possible new mutation operation can duplicate a number of states which will
not change the phenotype, but open the path for more useful mutations. Another improvement can be
to implement the crossover operator described in [7], and experiment with other crossover operators that
mix the phenotypes of the parents in logical ways. A possible new crossover operator may be the operator
described in [7], or it could be an operator that forms a new program by multiplying the sets of internal
states from each of the parents together to form a new set of internal states.

Further extensions to RTGP2 that may increase the range of languages for which RTGP2 can evolve a
real-time decider could include the addition of multiple Turing tapes, or a multi-dimensional tape to the
internal memory scheme of RTGP2. While these extensions will not increase the expressive power of an
ordinary Turing machine, for a real-time Turing machine such extensions to the internal memory will enable
more parallel computations. These extensions may make it easier for RTGP2 to evolve a decider for NCFL
or other non-regular languages.

Finally, noting the difficulty RTGP2 has evolving deciding programs for the more complex languages, a
practical application of RTGP2 may not involve RTGP2 creating an algorithm from scratch. Instead RTGP2

can search for new algorithms by performing a “local search” around an approximate or near optimal deciding
program devised by the user. The initial population will be filled with these approximations, and RTGP2

can be used to search for an exact solution in the local neighborhood of these approximate solutions.
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Appendix A

Test case generation algorithms

A.1 TL1

TL1 = b∗ = 1∗

The T = 1000 test cases for the language TL1 are generated by the following algorithm:

repeat
Start with an empty word w.
Choose “temp” at uniform from {0, 1}.
if temp = 0 then

Choose L1 at random from {0, 1, . . . , 20}.
Add L1 “1”s to w.

else
Choose L0 at random uniformly from {0, 1, . . . , 20}.
Choose L1 at random uniformly from {0, 1, . . . , 20}.
Create w randomly using L0 “0”s and L1 “1”s.

end if
for i = 0 to length(w) do

Add a word consisting of the first i letters of w to U .
Break loop if U is full; |U | = 1000.

end for
until there is T = 1000 test strings in U

As can be seen, word w is chosen so that the probability of w ∈ TL1 is approximately 50%. When temp
= 0, w is guaranteed to come from TL1. When temp = 1, w is very likely to not come from TL1.

A.2 TL2

TL2 = (ba)∗ = (10)∗

The T = 1000 test cases for the language TL2 are generated by the following algorithm:

repeat
Start with an empty word w.
Choose L at random uniformly from {0, 1, . . . , 20}.
Choose “temp” at uniform from {0, 1}.
if temp = 0 then
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Alternately add 1 followed by 0 to w until length(w) = L.
else

Create w by randomly selecting 0 or 1 until length(w) = L.
end if
for i = 0 to length(w) do

Add a word consisting of the first i letters of w to U .
Break loop if U is full; |U | = 1000.

end for
until there is T = 1000 test strings in U

When temp = 0, w is guaranteed to come from TL2 when L is even, otherwise w cannot come from TL2.
When temp = 1, w is very likely to not come from TL2. Although the chances of w coming from TL2 is in
fact around 25%, the important detail is that this fraction is still significant and does not shrink to 0 as L
increases.

A.3 TL3

TL3 = {s ∈ {0, 1}∗|no odd length block of 0’s can follow an odd length block of 1’s}
The T = 1000 test cases for the language TL3 are generated by the following algorithm:

repeat
Start with an empty word w.
Choose L at random uniformly from {0, 1, . . . , 20}.
Choose “temp” at uniform from {0, 1}.
if temp = 0 then

Assign to w a randomly generated string of length L that belongs to TL3.
else

Create w by randomly selecting 0 or 1 until length(w) = L.
end if
for i = 0 to length(w) do

Add a word consisting of the first i letters of w to U .
Break loop if U is full; |U | = 1000.

end for
until there is T = 1000 test strings in U

When temp = 0, w is guaranteed to come from TL3. Generating such a w can easily be done by using a
finite automata to avoid the scenario where an odd block of “0”s follows an odd bock of “1”s. When temp =
1, given a arbitrary block of “1”s followed by a block of “0”s, there is a 1/4 probability that both blocks will
be of odd length, which will violate the condition for membership in TL3. As L increases, the probability of
the odd block of “0”s following an odd bock of “1”s configuration occurring in a randomly generated string
of length L rises to 1 as L→ +∞. Hence a significant fraction of the w’s generated when temp = 1 will not
belong to TL3.

A.4 TL4

TL4 = {s ∈ {0, 1}∗|no 000 substrings}
The T = 1000 test cases for the language TL4 are generated by the following algorithm:

repeat
Start with an empty word w.
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Choose L at random uniformly from {0, 1, . . . , 20}.
Choose “temp” at uniform from {0, 1}.
if temp = 0 then

Assign to w a randomly generated string of length L that belongs to TL4.
else

Create w by randomly selecting 0 or 1 until length(w) = L. For each letter however, there is a 1/5
probability that a 000 block will be initiated.

end if
for i = 0 to length(w) do

Add a word consisting of the first i letters of w to U .
Break loop if U is full; |U | = 1000.

end for
until there is T = 1000 test strings in U

When temp = 0, w is guaranteed to come from TL4. Generating such a w can easily be done by using
a finite automata to avoid the scenario where a “000” substring occurs. When temp = 1, given a block of
3 characters, there is a 1/8 probability that block is “000”, which will violate the condition for membership
in TL4. As L increases, the probability of “000” block occurring in a randomly generated string of length
L rises to 1 as L → +∞. Hence a significant fraction of the w’s generated when temp = 1 will not belong
to TL4. L has a maximum length of 20 and so the probability of a “000” block occurring is at least
1− (7/8)b20/3c ≈ 0.551 when L = 20. To increase the probability of a “000” block occurring I added a 1/5
probability of a “000” block being inserted with each step.

A.5 TL5

TL5 = {“”, 0, 1} ∪ 0{0, 1}∗0 ∪ 1{0, 1}∗1
The T = 1000 test cases for the language TL5 are generated by the following algorithm:

repeat
Start with an empty word w.
Choose L at random uniformly from {0, 1, . . . , 20}.
Create w by randomly selecting 0 or 1 until length(w) = L.
for i = 0 to length(w) do

Add a word consisting of the first i letters of w to U .
Break loop if U is full; |U | = 1000.

end for
until there is T = 1000 test strings in U

TL5 is roughly 1/2 of all strings from {0, 1}∗, so I don’t need to actively choose w from TL5 or its
complement.

A.6 TL6

TL6 = {s ∈ {0, 1}∗|# of 0’s - # of 1’s ≡ 0 mod 3}
The T = 1000 test cases for the language TL6 are generated by the same algorithm that generated test

cases for TL5 (see above).
TL6 is roughly 1/3 of all strings from {0, 1}∗, so I don’t need to actively choose w from TL6 or its

complement.
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A.7 TL7

TL7 = 0∗1∗0∗1∗

The T = 1000 test cases for the language TL7 are generated by the following algorithm:

repeat
Start with an empty word w.
Choose L at random uniformly from {0, 1, . . . , 20}.
Choose “temp” at uniform from {0, 1}.
if temp = 0 then

Assign to w a randomly generated string of length L that belongs to TL7.
else

Create w by randomly selecting 0 or 1 until length(w) = L.
end if
for i = 0 to length(w) do

Add a word consisting of the first i letters of w to U .
Break loop if U is full; |U | = 1000.

end for
until there is T = 1000 test strings in U

When temp = 0, w is guaranteed to come from TL7. Generating such a w can easily be done by using
a finite automata to constrain w to 0∗1∗0∗1∗. When temp = 1, the probability of w not belonging to TL7

when L = 20 is at least 1− 0.519(
(

19
0

)
+
(

19
1

)
+
(

19
2

)
+
(

19
3

)
) ≈ 0.998, and increases to 1 as L→ +∞.

A.8 Finding triangles in a graph

The T = 1000 test cases for the language of graphs that contain a 3-cycle are generated by the following
algorithm:

repeat
Start with an empty word w.
Choose L at random uniformly from {0, 1, . . . , 28}.
Choose “temp” at uniform from {0, 1}.
if temp = 0 then

Assign to w a randomly generated string of length L that denotes a triangle-free graph.
else

Create w by randomly selecting 0 or 1 until length(w) = L.
end if
for i = 0 to length(w) do

Add a word consisting of the first i letters of w to U .
Break loop if U is full; |U | = 1000.

end for
until there is T = 1000 test strings in U

As L→ +∞, the probability that a triangle is present for a randomly generated graph approaches 1. For

L = 28 specifically, the probability of a triangle being present is at least 0.5(1 − 0.5(b7/2c
2 )) = 0.4375, likely

much greater.
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Appendix B

Measuring fitness for the non-regular
languages

B.1 CFL1

CFL1 = {0n1n|n ≥ 0}
For each generation, a set U of T = 2000 test strings are randomly generated using the following algorithm:

repeat
Start with an empty word w.
Choose L at random uniformly from {0, 1, . . . , 20}.
Choose n0 and n1 at random uniformly from {0, 1, . . . , bL/2c}.
for i = 1 to n0 do

Append 0 to the end of w.
end for
for i = 1 to n1 do

Append 1 to the end of w.
end for
for i = 1 to L− n0 − n1 do

Append 0 or 1 chosen randomly to the end of w.
end for
for i = 0 to length(w) do

Add a word consisting of the first i letters of w to U .
Break loop if U is full; |U | = 2000.

end for
until there is T = 2000 test strings in U

Once the test strings have been generated, the fitness of an individual agent A is measured according to
the following algorithm:

The notation A(w) will denote the return value when A is called on word w.

Let f = 0

if A() 6= 1 (the empty string) then
f = f + 1

end if
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for n = 1 to 30 do
Reset agent A.
for i = 1 to n do

Feed character 0 to A.
end for
for i = 0 to 2n do

Let v = A(0n1i).
if the current iteration is the first iteration where v = 1 then
f = f + |n− i|

else if v = 1 for a previous iteration then
if v is the incorrect return value for the string 0n1i then
f = f + 1

end if
end if

end for
if v never had the value of 1 in the previous loop then
f = f + (n+ 1)

end if
end for

for i = 1 to T do
if A does not return the correct output on the ith test case then
f = f + 1

end if
end for

return f

The above algorithm starts with the fitness f being set to 0. I first test the agent A on the empty string
which should return 1. If this test fails, 1 is added to f .

For each n = 1, 2, . . . , 30, A will be subjected to the following tests. For each i = 0, 1, 2, . . . , 2n, the string
0n1i is tested. Let i′ be the smallest i for which A returned 1. |n− i′| is then added to f . For each i > i′, if
A returned the incorrect output, 1 is added to f . If A does not return 1 for any i, then n+ 1 is added to f .
These tests penalize A depending on how too soon or how too late 1 is ultimately returned as i increases.

Lastly A is tested on the T = 2000 test cases, most of which are negatives (i.e. A should return 0 for
most of these cases). For each failed test 1 is added to f .

As can be clearly seen, this algorithm for calculating the fitness of an individual relies heavily on knowledge
about the language CFL1. What is to be gained by generating a decider in the TCGP2 style of representation
using genetic programming is that the decider in the TCGP2 style of representation is guaranteed to run in
real-time.

B.2 CFL2

CFL2 = {s ∈ {0, 1}∗|parentheses are balanced where 0 = “(” and 1 = “)”}
For each generation, a set U of T = 1000 test strings are randomly generated using the following algorithm:

repeat
Start with an empty word w.
Choose L at random uniformly from {0, 1, . . . , 20}.
Choose “temp” at uniform from {0, 1}.
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if temp = 0 then
Generate w by randomly selecting 0 or 1 until length(w) = L. While w is being generated, the number
of “1”s should never exceed the number of “0”s.

else
Generate w by randomly selecting 0 or 1 until length(w) = L.

end if
until there is T = 1000 test strings in U

Once the test strings have been generated, the fitness of an individual agent A is measured according to
the following algorithm:

The notation A(w) will denote the return value when A is called on word w.

Let f = 0

for i = 1 to T do
Let wi be the ith test case from U .
Let p denote the parenthesis level, which will start at 0.
Let g = false be a flag that denotes if the parenthesis level has ever become negative as A scans wi.
for j = 1 to length(wi) do

Let c be the jth character from wi.
if c = 0 then
p = p+ 1

else
p = p− 1
if p < 0 then
g = true

end if
end if

end for

if g = true then
if A(wi) 6= 0 then
f = f + 1

end if
else

for j = 0 to 2p+ 5 do
Let v = A(wi1

j).
if the current iteration is the first iteration where v = 1 then
f = f + |p− j|

else if v = 1 for a previous iteration then
if v is the incorrect return value for the string wi1

j then
f = f + 1

end if
end if
Feed character 1 to A.

end for
if v never had the value of 1 in the previous loop then
f = f + (p+ 6)

end if
end if

end for
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return f

The above algorithm starts with the fitness f being set to 0.
For each test string wi, A is subjected to the following tests. If the parenthesis level of wi dips below 0,

1 is added to f if A(wi) 6= 0. If the parenthesis level of wi remains ≥ 0 and is p at the end of wi, for each
j = 0, 1, 2, . . . , 2p + 5 the string wi1

j is tested. Let j′ be the smallest j for which A returned 1. |p − j| is
then added to f . For each j > j′, if A returned the incorrect output, 1 is added to f . If A does not return
1 for any j, 2p + 6 is added to f . These tests penalize A depending on how too soon or how too late 1 is
ultimately returned as j increases.

B.3 CFL3

CFL3 = {s ∈ {0, 1}∗|# of 0’s = # of 1’s}
For each generation, a set U of T = 1000 test strings are randomly generated using the following algorithm:

repeat
Start with an empty word w.
Choose L at random uniformly from {0, 1, . . . , 20}.
Create w by randomly selecting 0 or 1 until length(w) = L.

until there is T = 1000 test strings in U

Once the test strings have been generated, the fitness of an individual agent A is measured according to
the following algorithm:

Let f = 0

for i = 1 to T do
Let wi be the ith test case from U .
Let p denote the number of 0’s minus the number of 1’s.
for j = 1 to length(wi) do

Let c be the jth character from wi.
if c = 0 then
p = p+ 1

else
p = p− 1

end if
end for

for j = 0 to 2|p|+ 5 do
if p ≥ 0 then

Let string s = wi1
j

else
Let string s = wi0

j

end if
Let v = A(s).
if the current iteration is the first iteration where v = 1 then
f = f + ||p| − j|

else if v = 1 for a previous iteration then
if v is the incorrect return value for string s then
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f = f + 1
end if

end if
end for

if v never had the value of 1 in the previous loop then
f = f + (|p|+ 6)

end if
end for

return f

For each test string wi, A is subjected to the following tests. Let p be the number of 0’s minus the
number of 1’s in wi. For each j = 0, 1, 2, . . . , 2|p| + 5 the string wi1

j is tested if p ≥ 0 or the string wi0
j is

tested if p < 0. Let j′ be the smallest j for which A returned 1. ||p| − j| is added to f . For each j > j′, if
A returned the incorrect output, 1 is added to f . If A does not return 1 for any j, 2|p| + 6 is added to f .
These tests penalize A depending on how too soon or how too late 1 is ultimately returned as j increases.

B.4 NCFL

NCFL = {anbnan|n ≥ 0}
For each generation, a set U of T = 4000 test strings is generated by the following algorithm:

repeat
Start with an empty word w.
Choose “temp” at uniform from {0,1}.
if temp = 0 then

Choose L at random uniformly from {0, 1, . . . , 30}.
Choose n0, n1, and n2 at random uniformly from {0, 1, . . . , bL/3c}.

else
Choose n0 at random uniformly from {0, 1, . . . , 15}.
Choose n1 at random uniformly from {0, 1, . . . , 30− 2n0}.
Let n2 = n0 and L = 2n0 + n1.

end if
for i = 1 to n0 do

Append 0 to the end of w.
end for
for i = 1 to n1 do

Append 1 to the end of w.
end for
for i = 1 to n2 do

Append 0 to the end of w.
end for
for i = 1 to L− n0 − n1 − n2 do

Append 0 or 1 chosen randomly to the end of w.
end for
for i = 0 to length(w) do

Add a word consisting of the first i letters of w to U .
Break loop if U is full; |U | = 4000.

end for
until there is T = 4000 test strings in U

65



Once the test strings have been generated, the fitness of an individual agent A is measured according to
the following algorithm:

Let f = 0

Reset agent A.
if A() 6= 1 (the empty string) then
f = f + 1

end if

for n = 1 to 30 do
for i = 0 to 2n do

Let v = A(0n1n0i).
if the current iteration is the first iteration where v = 1 then
f = f + |n− i|

else if v = 1 for a previous iteration then
if v is the incorrect return value for the string 0n1n0i then
f = f + 1

end if
end if

end for
if v never had the value of 1 in the previous loop then
f = f + (n+ 1)

end if
end for

for i = 1 to T do
if A does not return the correct output on the ith test case then
f = f + 1

end if
end for

return f

This algorithm for computing the fitness works similar to the algorithm for computing the fitness for
CFL1, described in B.1.

B.5 Non cyclic output

NCO = {0i : i =
∑n
j=0 j for some n ≥ 0}

The fitness of an agent A is measured by the following algorithm:

Let f = 0
if A() 6= 1 (the empty string) then
f = f + 1

end if

Let w be an empty string.
desired gap length = 0
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gap length = 0
for i = 1 to 1000 do

if A(w) = 1 then
f = f + |desired gap length− gap length|
desired gap length = desired gap length + 1
gap length = 0

else
gap length = gap length + 1

end if
w = w0, 0 is appended to the end of w.

end for

if gap length > desired gap length then
f = f + (gap length− desired gap length)

end if

return f

This algorithm penalizes the agent depending on how many “0”s appear between successive “1”s as the
sequence of outputs progresses. The number of “0”s expected between each pair of “1”s increments by 1
with each “1” encountered.
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