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Abstract

A gas hydrate refers to the state in which hydrogen-bonded water molecules form a
rigid lattice structure of so-called ‘cages’, wherein ‘guest’ molecules of natural gas are en-
trapped. Not unlike ice, gas hydrates are prone to form at low temperatures and high
pressures; however, their crystalline structure allows them to remain stable at tempera-
tures and pressures under which the phase limits of ice would otherwise be exceeded. To
date, a number of instances of gas hydrates forming in the subsurface of Arctic climates
below layers of permafrost have been identified, however the challenge of identifying past
occurrences of methane hydrates during episodes of global cooling and glacial advance re-
mains relatively unmet. During these periods of glacial/permafrost cover, the presence
of hydrates could have a significant impact on the groundwater flow system due to the
significant reduction of the porosity and permeability of hydrate saturated sediments. The
purpose of this study is to investigate whether there is evidence to suggest that methane
hydrates could have formed in the sedimentary units of the Michigan Basin at the Bruce
nuclear site near Kincardine, Ontario, particularly when subjected to the impacts of glacial
ice sheet loading. This study aims to provide insight into whether the potential impact of
gas hydrates should be considered in the design of the proposed deep-geologic repository
(DGR) for low- and intermediate-level nuclear waste.

This study presents a framework employing regional-scale numerical modelling to es-
timate the evolution of temperature, pressure and salinity profiles across the study area,
combined with thermodynamic predictive modelling to identify potential paleo- methane
hydrate stability zones in the subsurface at the Bruce nuclear site. This study represents
the first step to ultimately assess the extent of paleo-methane hydrates and their impact
on subsurface conditions at the site. Transient subsurface conditions at the Bruce nuclear
site were modelled over a period of 120,000 years (120 ka), encompassing episodes of glacial
advance and retreat during the Pleistocene epoch. The spatial and transient outputs from
numerical modelling of the study area were then used as inputs to thermodynamic predic-
tive modelling of methane hydrate stability.

The results of this study show that, based upon the subsurface temperature, pressure
and salinity histories determined using a three-dimensional regional-scale numerical mod-
elling approach, paleo- conditions at the Bruce nuclear site become conducive with methane
hydrate stability during the study period. Two separate episodes of methane hydrate sta-
bility were identified - lasting from 62.5 to 56 thousand years before present (kaBP) and
from 23 to 13.5 kaBP, respectively - which were found to correspond to periods of glacial
advance across the study area. The vertical extent of the estimated hydrate stability zones
varied across the site, however it generally followed the limits of the Upper Silurian units,
penetrating to deeper elevations towards the south west end of the study area.
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Chapter 1

Introduction

A gas hydrate refers to the state in which hydrogen-bonded water molecules form a rigid
lattice structure of so-called ‘cages’, wherein ‘guest’ molecules of natural gas are entrapped.
These crystalline lattices occur as three types of structures - called I, IT and H - of which
structure I is the most commonly occurring in nature with methane being the most common
guest molecule. Not unlike ice, gas hydrates are prone to form at low temperatures and high
pressures; however, their crystalline structure allows them to remain stable at temperatures
and pressures under which the phase limits of ice would otherwise be exceeded (Carroll,
2009). Based on their physical properties, gas hydrates can be regarded as dense non-
flowing solids containing highly concentrated amounts of natural gas - greater than 150
volumes of gas per hydrate volume (Sloan Jr and Koh, 2007). These properties have
stimulated a growing body of contemporary research motivated by a variety of industrial
and scientific interests, ranging from the formation of gas hydrates in oil and gas pipelines
and their negative implications on gas conveyance, to the natural occurrence of gas hydrates
in subsurface terrestrial environments and ocean sediments of the continental margins,
which are regarded as potentially viable sources of energy and are believed to play a
significant role in global climate change (Dickens, 2003).

The naturally occurring gas hydrates in subsurface sediments - which are the focus of
this study - are predominantly host to methane gas and are believed to represent more
than 98% of the methane gas resources on Earth. Moreover, the abundance of methane
hydrate is, even by conservative estimates, considered to be equivalent to double the mass
of all other fossil fuels (Sloan, 2003), representing a potentially massive resource for nat-
ural gas energy, and drawing increasingly more attention from governments and energy
suppliers around the world. In addition, a number of researchers have proposed - quite
convincingly - that the cataclysmic dissociation of massive natural gas hydrate reservoirs



in the ocean sediments could have been the cause for dramatic climate change episodes
in the Earth’s past. Dickens et al. (1995) cites this as the cause for the Latest Paleocene
Thermal Maximum (LPTM), during which a sudden 4°C increase in the ocean water tem-
perature occurred over a span of <10* years approximately 55 million years ago. This
event was proceeded by two larger events - the Early Toarcian Ocean Anoxic Event (OAE)
(183 million years ago) and the Early Aptian Event (OAE) (120 million years ago) - which
were believed to have released approximately 5000 and 3000 gigatonnes of methane, re-
spectively, and increase the land surface temperature by as much as 2 to 3 °C (Beerling
et al., 2002; Hesselbo et al., 2000). While the risk of another large-scale dissociation event
is certainly deserving of scientific attention, it is the changes in environmental conditions
that bring about these dissociation events that are of particular concern for this study -
more specifically those that take place in terrestrial sediments within regions subject to
permafrost and glacial cover.

To date, a number of instances of gas hydrates forming in the subsurface below layers
of permafrost have been identified (Dallimore et al., 2005; Yakushev and Chuvilin, 2000;
Collett et al., 1990), while the challenge of identifying past occurrences of methane hy-
drates during episodes of global cooling and glacial advance remains relatively unmet. The
impacts of global cooling and glacial advance are understood to encourage the stabilize the
formation of hydrates in terrestrial polar regions as a result of the lower temperatures and
the increased pressures imparted on the subsurface pressure regime (Kvenvolden, 1998).
During these periods of glacial /permafrost cover, the presence of hydrates in subsurface
sediments could have a significant impact on the groundwater flow system, due to the
significant reduction of the porosity and permeability of hydrate saturated sediments, re-
sulting in the obstruction of glacial melt water penetration (Stotler et al., 2010). The
impact of hydrates on the evolution of groundwater chemistry can also be significant, not
only due to the inhibition of freshening effects by melt water intrusion, but also by the
preferential exclusion of solutes, accumulation of gases and fractionation of isotopes that
occur during hydrate formation. The challenge of identifying past occurrences of hydrates
during these events (termed “paleo-hydrates”) in the subsurface sediments arises because
dissociated hydrates leave few uniquely definitive markers as to their spatial and temporal
extent that are preserved in the geologic time frame of major glacial episodes (Lorenson
et al., 2005).

1.1 Research Objectives

The purpose of this study is to investigate whether there is evidence to suggest that
methane hydrates could have formed in the sedimentary rock of the Michigan Basin at



the Bruce nuclear site — specifically during the advance of glacial ice sheets across the
region. This work is being undertaken in support of the Nuclear Waste Management Or-
ganization’s (NWMO’s) proposed deep-geologic repository (DGR) located at a proposed
depth of approximately 680 mBGS.

The formation of gas hydrates in the subsurface at the site of the proposed DGR could
have significant implications for the proposed repository, potentially altering the present
understanding of the natural barrier afforded by the deep geosphere hydrogeologic system.
In addition, the impact of gas hydrates on engineered barriers (shafts and seals) may
need to be considered, as large volumes of dissociating gas hydrates could result in drastic
increases in pressure Mclver (1982).

The motivation of this research is therefore to establish whether there is sufficient ev-
idence for the presence of methane hydrates during the site’s history to warrant further
consideration in the design of the proposed DGR. This study will be undertaken using
a framework employing regional-scale numerical modelling and thermodynamic predictive
modelling to identify potential paleo- methane hydrate stability zones within the subsur-
face. This study will also consider present day measurements of methane gas and solute
distributions across the study site to evaluate whether residual hydrate dissociation signa-
tures could have persisted, which might be used to corroborate the predictive modelling
results.

1.2 Research Scope

The study area is located at Ontario Power Generation’s (OPG’s) proposed Deep Geologic
Repository (DGR) at the Bruce nuclear site in the Municipality of Kincardine, Ontario
(Figure 1.1). This study considers transient subsurface conditions over a period of 120
thousand years (ka), encompassing several glacial episodes during the Pleistocene epoch.
Since this period is typically characterised by lower subsurface temperatures due to sur-
face cooling, and periods of increased pressures from overlying ice sheets, conditions were
ostensibly more conducive to the formation of gas hydrates.

Regional numerical modelling of the study area shown in Figure 1.1 is undertaken using
FRAC3DVS-OPG. Developed from the analytical software FRAC3DVS (Therrien et al.,
2003), this model provides a solution to three-dimensional density-dependent groundwater
flow and solute transport equations in porous and discretely-fractured media. FRAC3DV'S-
OPG’s one-dimensional hydromechanical coupling capabilities also enable the simulation
of transient flow affected by the surface loading conditions during the advance and retreat
of glacial cycles (Guvanasen, 2007; Neuzil, 2003).

3
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Figure 1.1: Location of the Bruce nuclear site and study area.

The formation of gas hydrates is limited to the locations where (1) the required pressure
and temperature conditions for a given aqueous system are such that the equilibrium point
between the hydrate, liquid and free-gas phases (called three-phase equilibrium point) is
reached or exceeded; and (2) where the abundance of methane is sufficient to exceed the
local solubility. As illustrated in Figure 1.2, gas hydrates are stable in the region where
the temperature is below the phase boundary at a given pressure (expressed in terms of
depth in Figure 1.2). When pressure-temperature conditions are outside of this boundary,
gas exists either as free gas or as dissolved gas.

Thermodynamic models proposed by Duan and Mao (2006) and Sun and Duan (2007)
are used to determine the solubility of methane gas and the conditions for methane hydrate
formation across the study area, respectively. The inputs required for the thermodynamic
modelling of methane solubility and methane hydrate stability are generated in this study
by combining the independently-run transient three-dimensional temperature model out-
put, with the pressure and salinity outputs from the base-case regional-scale model pre-
pared by Sykes et al. (2011). Not considered in this study are the impacts of sediment
porosity on the thermodynamics of methane hydrate stability, which has been recognized
as having an inhibitive impact on formation of gas hydrates (Dallimore et al., 2005).
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In this study, the formation of methane is expressed in terms of a threshold hydrate
stability pressure that must be exceeded in order for methane hydrates to form at a given
temperature and salinity. Methane saturation pressure was not incorporated into this hy-
drate pressure threshold (contrary to Figure 1.2) in an attempt to isolate potential sources
of error from unreliable methane distribution data. While this study does attempt to evalu-
ate whether methane is available in sufficient quantities to exceed local solubility (and thus
permit hydrate formation), because methane migration/formation was not modelled and
present-day formation methane concentration data is of limited availability for the study
area (Figure 1.1), comparison with theoretical methane solubility calculations is of limited
reliability; however, in recognition of the importance of this step as a necessary component
in estimating the extent of hydrate stability zones, it has therefore been included in the
framework provided by this study, with the expectation that it be improved upon in future
work.



Chapter 2

Background

The following sections are included to provide the reader with a background understanding
of the geologic and hydrogeologic characteristics of the Bruce nuclear site, including the site
hydrogeochemistry with respect to solute and isotope distributions, and the presence and
origin of methane gas within the sedimentary lithologies. Information regarding naturally
occurring methane hydrate is also provided in the chapter, with particular emphasis placed
on those that form in terrestrial sediments.

2.1 Geological Setting

The Michigan Basin (Figure 2.1) is a roughly circular intracratonic basin bounded by the
southwest-northeast trending Findlay/Algonquin arches to the southeast, which acts as
the boundary between the Michigan Basin and the Appalachian Basin. The Chatham Sag
is a structural low point that separates the Findlay and Algonquin Arches. The Michigan
Basin is further bounded by the northwest-southeast trending Frontenac arch to the north-
east, and by the southwest-northeast trending Fraserdale arch on the northwestern flank.
Like much of south-western Ontario, the study site is underlain by sequences of Paleozoic
sedimentary rocks of Upper Cambrian (~510 million years (Ma)) to Devonian (354 Ma)
age, resting unconformably upon a Precambrian basement (ca. 1600-540 Ma) (Figure 2.2
- 2.4). The succession of Paleozoic sedimentary rock atop this basement material thins
from a maximum thickness of approximately 4,800 m at the centre of the basin, to approx-
imately 850 m at the study site, located on the flank of the Algonquin arch. A geologic
cross-section of the Michigan Basin is presented in Figure 2.3 and again in Figure 2.4, the



latter of which focusses on the sedimentary sequences in the vicinity of the study area as
they pinch out against the Algonquin arch.

Paleogene

| Cretaceous
Jurassic
Triassic

- Permian
Pennsylvanian
Mississippian
Devonian
Silurian
Ordovician

Cambrian

Late Proterozoic
Middle Proterozoic
Early Proterozoic
Late Archean
Middle Archean

Early Archean

Figure 2.1: Location of the Michigan Basin and bounding Findlay, Algonquin, Frontenac,
Cincinnati and Fraserdale Arches. Geologic map shaded based on geologic ages from
Quaternary to Archean is adapted from the United States Geologic Survey (Barton et al.,
2003).

The sedimentary strata that dominate the lithology below the study site are presented
in Figure 2.5 using the generally accepted stratigraphic nomenclature. Also presented in
Figure 2.5 are the Paleozoic strata encountered toward the basin centre and in the Ap-
palachian Basin to the west. For ease of conceptualization and discussion, the stratigraphic
units at the site can be grouped into three horizons based upon their hydrogeologic char-
acteristics - a shallow zone, an intermediate zone, and a deep zone - which are discussed
in the following sections.

Tables 2.1-2.3 present the thicknesses of the sedimentary rock formations of the Michi-
gan Basin for the deep, intermediate and shallow hydrogeologic zones, respectively. The
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mean thicknesses for the basin stratigraphy in southern Ontario were generated from the
Oil, Gas and Salt Resources (OGSR) Petroleum Wells Subsurface Database, which were
used in the development of the ITASCA Canada and AECOM (2011) geologic framework
model. For comparison, the observed formation thicknesses from the DGR-~1 and DGR-2
site exploration boreholes, as provided by INTERA (2011), are also included in Tables
2.1-2.3.

Deep Hydrogeologic Zone

The deep zone extends down to the Precambrian basement of the basin and is comprised
of the very low permeability shales and carbonates of the Upper and Middle Ordovician
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is provided below the main figure. Modified from the Nuclear Waste Management Orga-
nization Geosynthesis Report (Al et al., 2011).

units, respectively, and the comparatively high permeability Cambrian sandstones and
dolostones. The Precambrian bedrock below the study area is composed of gneiss and
metamorphic rocks of the Grenville Province within the Central Gneiss Belt of the Cana-
dian Shield. An alteration zone of several metres in thickness exists atop the Precambrian
bedrock (Ziegler and Longstaffe, 2000), which is believed to cause local increases in poros-
ity and permeability along the contact zone with the overlying Cambrian unit (Armstrong
and Carter, 2010).

The Cambrian deposits that overlie the Precambrian basement are considered to be
a succession of (in ascending order) marine sandstones, sandstones and dolostones and
dolostones (Al et al., 2011). These units are present across both the Michigan and Ap-
palachian basins, however post-depositional erosion along the Algonquin Arch has resulted
in the gradual pinching out of these units along the edges of the Michigan Basin. Regionally
occurring sandstones and sandy dolostone give this unit a significantly higher permeabil-
ity than its surrounding units (Armstrong and Carter, 2010). However, because this unit
pinches out against the Precambrian basement along the Algonquin Arch and due to the
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Figure 2.4: Geologic cross-section of Michigan Basin at the Study Site. Modified from the
Nuclear Waste Management Organization Geosynthesis Report (Al et al., 2011).

overlying low permeability Ordovician carbonates, this unit is likely hydrologically isolated
from its surrounding units.

The Middle Ordovician carbonate-dominated package is divided into the Black River
Group and the overlying Trenton Groups. The Black River Group consists of (in ascending
order) the Shadow Lake, Gull River and Coboconk Formations and is believe to range in
thickness from 10 m along the erosional edge to 150 m toward the basin centre (Armstrong
and Carter, 2010). The Shadow Lake Formation is composed of poorly sorted sandy shales,
and argillaceous sandstones and dolostones that unconformably overlie the Precambrian
basement or (where present) the Cambrian units. The presence of more porous sandstones
in the Shadow Lake Formation likely causes local increases in permeability and could allow
more communication between this unit and the underlying Cambrian (Armstrong and
Carter, 2010). The overlying Gull River Formation is composed primarily of very fine-
grained limestone with minor shale and dolostone interbeds. The Coboconk, at the top of

the Black River Group, is composed of fine- to medium-grained bioclastic limestone (Al
et al., 2011).

The overlying Trenton Group includes (in ascending order) the Kirkfield, Sherman Fall,
and the Cobourg Formations and is considered to range to 170 m in thickness (Armstrong
and Carter, 2010). The Kirkfield Formation is composed of very fine- to fine-grained fos-
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siliferous limestone with interbeds of green shale that become more limited shallower in
the formation. The Sherman Fall Formation overlies the Kirkfield, and is characterized by
an upper “fragmented” region of medium- to coarse-grained tan to light-grey fossiliferous
limestone that overlies a lower argillaceous and bioclastic region of fine- to coarse-grained
limestone. The Cobourg Formation is the shallowest of the Trenton Group, and is com-
posed of bluish-grey to brown-grey limestone and argillaceous limestone. A dark-grey to
black calcareous shale cap - referred to as the Collingwood Member - lies overtop of the
Cobourg Formation. Although there is evidence to suggest that this shale-cap becomes
quite discontinuous beyond the basin margins, the organic rich nature of this shale unit sug-
gests that natural gas could be present where the Collingwood Member subcrops beneath
glacial drift (Armstrong and Carter, 2010).

The extensive Upper Ordovician shale units are composed of the Blue Mountain and
Georgian Bay Formations consisting of thick non-calcareous shales with minor limestone,
sandstone and siltstone interbeds, overlain by the younger Queenston shale characterized
by calcareous to non-calcareous shale with minor limestone and siltstone interbeds. Due
to the close similarity between the lower two shale units of the Upper Ordovician package,
the Georgian Bay Formation is poorly differentiated from the underlying Blue Mountain
Formation (Armstrong and Carter, 2010).

Intermediate Hydrogeologic Zone

The intermediate zone is comprised of the lithological units of Silurian age that overlie
the Ordovician sedimentary strata. These Silurian age units are subdivided based on the
traditional convention used by Johnson et al. (1992) into Upper, Middle and Lower Sil-
urian packages corresponding to general lithological characteristics: the Lower Silurian is
characterized by alternating intervals of sandstone, shale and limestone; the Middle Sil-
urian contains predominantly carbonate-dominated strata; and the Upper Silurian package
contains alternating intervals of evaporites, carbonates and shales (Armstrong and Carter,
2010).

The low permeability Lower Silurian package consists of the Manitoulin Formation,
overlain by the Cabot Head Formation, which comprise a combined thickness of 37 m at
the Bruce Site (Al et al., 2011). The Cabot Head Formation consists of predominantly
non-calcareous shales that grade with depth to interbedded shale and limestone. The Man-
itoulin Formation consists of dolostone, shale, and argillaceous dolostone. The Whirlpool
Formation, which typically underlies the Manitoulin Formation, irregularly pinches out
towards the eastern margin of the Michigan Basin and is not present at the study site (Al
et al., 2011).
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Table 2.1: Summary of Formation Details for the Geologic Units within the Deep Hydro-
geologic Zone

Thickness Depth

Formation Rock Type at DGR [m] at DGR [m]

Upper Ordovician

Queenston Shale with some dolostone, 70.3 447.6
limestone and siltstone.

Georgian Bay/Blue Mtn. Shale and limestone interbeds.? 133.6 518.0

Middle Ordovician

Cobourg Limestone with calcareous shale 28.6 659.5
cap.

Sherman Fall Limestone. 28.0 688.1

Kirkfield Limestone with shale interbeds. 45.9 716.1

Coboconk Limestone. 23.0 762.0

Gull River Limestone with shale interbeds. 53.6 785.0

Shadow Lake Sandy shale, sandstone and 5.2 838.6
dolostone.

Cambrian

(undifferentiated) Sandstone and dolostone. 16.9 843.8

& Calcareous shale cap called the Collingwood Member.
Note: Unit thicknesses and depths based on DGR-1/2 boreholes, respectively (Al et al., 2011).

The Middle Silurian consists locally of the low permeability dolostones of the Fossil Hill,
Lions Head, Gasport and Goat Island Formations underlying the more permeable dolostone
of the Guelph Formation. The Lions Head, Gasport, Goat Island and Guelph Formations
are sometimes collectively referred to as the Niagaran group (Al et al., 2011). The Guelph
Formation is generally characterized by sucrosic dolostone, although various depositional
facies - ranging from reefal to inter-reefal - exist that dictate the characteristics of the
dolostone (Al et al., 2011). The Fossil Hill Formation is a very fine- to coarse-crystalline,
very fossiliferous dolostone unit that overlies the Cabot Head Formation of the Lower
Silurian package.

The Upper Silurian package includes the Bass Island Formation and the underlying
Salina Group. The Salina Group consists of sequences of a cyclically varying lithological
units grading upwards from basal carbonates to anhydrites to halite/evaporites with the
tops of each evaporite cycle often being marked by shaley strata (Armstrong and Carter,
2006). At the study site, the sequences of the Salina Group are the A-0 unit, A-1 Evaporite,
A-1 Carbonate, A-2 Evaporite, A-2 Carbonate, B Unit, C Unit, D Unit, E Unit, F Unit
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Table 2.2: Summary of formation details for the Geologic Units within the Intermediate
Hydrogeologic Zone

Thickness Depth

Formation Rock Type at DGR [m] at DGR [m]

Upper Silurian

Bass Islands Dolostone with shale. 70.3 124.0

G Unit Dolostone with anhydrite. 9.3 169.3

F Unit Dolomitic shale with dolomite. 44.4 178.6

F Salt Anhydrite. a a

E Unit Dolostone, dolomitic shale and 20.0 223.0
argillaceous dolostone interbeds.

D Unit Dolostone with anhydrite. 1.6 243.0

B and C Units Dolomitic shale, shale, 46.6 244.6
argillaceous dolostone and
dolostone.

B Unit Dolostone and anhydrite 1.9 291.2
interbeds.

A-2 Unit Dolostone with dolomitic shale 26.6 293.1
and shale.

A-2 Unit Dolostone and anhydrite 5.8 319.7
interbeds.

A-1 Unit Dolostone and shale interbeds 41.5 325.5
with anhydrite.

A-1 Unit Dolostone and anhydrite 3.5 367.0
interbeds.

Middle Silurian

Guelph Dolostone with shale. 4.1P 374.5

Goat Island Dolostone. 18.8P 378.6

Gasport Dolomitic limestone. 6.8" 397.4

Lions Head Dolostone. 4.4> 404.2

Reynales/Fossil Hill Dolostone. 2.3 408.7

Lower Silurian

Cabot Head Shale to shale/limestone 23.8 411.0
interbeds.

Manitoulin Dolostone, shale and argillaceous 12.8 434.8
dolostone.

& Formation not present at site.

b Comprises part of Niagaran Group (Mean Thickness = 55 m, DGR Thickness = 34.1 m) (INTERA,
2011).
Note: Unit thicknesses and depths based on DGR-1/2 boreholes, respectively (Al et al., 2011).
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and G Unit. A description of each of these lithologies is provided in Table 2.2. The A-0
Unit is a thin limestone/dolostone sequence overlying the Guelph Formation that is poorly
mapped in Ontario (Armstrong and Carter, 2010) and was not identified at the study
site. The Bass Island Formation represents the youngest of the Silurian age sedimentary
sequences at the site and consists of dolostone with minor shale that conformably overlies
the Salina Group. The evaporite and shale units of the Salina Group are characterised as
low permeability layers and generally act as a major barrier impeding vertical hydraulic
connection between the shallow groundwater regime and the deep hydrogeologic zone. It
should be noted that the Bass Island and Salina A Upper Carbonate units are notable
exceptions, having hydraulic conductivities 5 to 6 orders of magnitude higher than the
surrounding Salina units (INTERA, 2011).

Shallow Hydrogeologic Zone

The shallow zone is comprised of the dolomite and limestone units of the Devonian units,
which are generally characterized by relatively high permeabilities compared to the units
of the intermediate and deep hydrogeologic zones. The Devonian carbonates include the
Bois Blanc Formation of the Lower Devonian and the overlying Detroit River Group of
the Middle Devonian, which are both composed primarily of limestone toward the basin
centre with localized dolomitization along the Algonquin Arch (including at the study site).
The Detroit River Group is composed of the Amherstburg and overlying Lucas formation,
which form the bedrock surface below the overburden at the study site (Armstrong and
Carter, 2006). Toward the southern portion of the regional domain, the limestones and
dolostones of the Middle Devonian Dundee and the interbedded shale and limestone of the
Hamilton Group overlie the Detroit River Group.

Glacial drift aquifers that overlie the bedrock units of sedimentary and Precambrian
metamorphic rocks are also considered to be part of the shallow hydrogeologic zone. These
drift aquifer materials are composed of outwash deposits of sand and gravel, although
OGSR borehole data indicate that the thickness of this drift is less than 1 metre for
much of the study area (Al et al., 2011). Inclusion of the glacial drift layer in the shallow
hydrogeologic zone is a logical assignment as modern groundwater regimes at the study site
are primarily limited to migration through glacial moraines and shallow Devonian bedrock
aquifers (McIntosh and Walter, 2006), with limited circulation of meteoric waters into the
deeper sedimentary formations (Sykes et al., 2011).

Table 2.3 provides a description of the rock types that dominate the sedimentary rock
lithologies in the shallow hydrogeologic zone (drift is not presented) as well as their re-
spective thicknesses at the study site. Note that although the younger Dundee, Hamilton
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Group and Kettle Point Formations pinch out as they approach the Algonquin Arch and
were not encountered by exploratory boreholes DGR-1 and DGR-2 (located at the Bruce
Site), these formations are present to the southwest of the Bruce nuclear site within the
study area.

Table 2.3: Summary of formation details for the Geologic Units within the Shallow Hydro-
geologic Zone

Thickness Depth

Formation Rock Type at DGR [m] at DGR [m]

Upper Devonian

Kettle Point Shale and limestone interbeds. -8 -a

Middle Devonian

Hamilton Group Shale and limestone interbeds. -8 -2

Dundee Limestone and dolostone. -a -a

Lucas Dolostone with bituminous shale 10.4P 20.0
laminae.

Amherstburg Cherty dolostone with bituminous 44.6° 30.4

shale laminae.

Lower Devonian

Bois Blanc Cherty dolostone with bituminous 49 75.0
shale laminae.

2 Formation not present at site.

b Comprises part of Detroit River Group (Mean Thickness = 103 m)(INTERA, 2011). Full thickness
not present at site.
Note: Unit thicknesses and depths based on DGR-1/2 boreholes, respectively (Al et al., 2011).

2.2 Hydrogeochemistry

Over the geologic history of the Michigan Basin, a number of overlapping mechanisms of
fluid migration and solute transport have contributed to gradual and complex evolution
of the groundwater/porewater geochemistry. These processes include basinal disturbances
during the Taconic, Acadian and Alleghenian orogenic events, evaporation of sea water
and downward migration of the resulting hypersaline brines, penetration of glacial melt
water during period of ice sheet advance, and extensive rock-water interactions related to
diagenic processes and halite formation/dissociation (Al et al., 2011). In general, the hy-
drogeochemical profile of the formation waters and sedimentary brines at the Bruce nuclear
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site can be divided into two regions based on their chemical and isotopic characteristics:
(1) a deeper region (generally corresponding to the lithologies of the aforementioned deep
and intermediate hydrogeologic zone) with hypersaline brines formed during the evapora-
tion of sea water, and (2) a shallow region subjected to glacial melt water and meteoric
water penetration (MclIntosh et al., 2010). It is worth noting that the hydrogeochemistry
at the study site deviates from the lithology-based distinctions used in this section towards
the eastern edge of the Michigan Basin, where many of the older formations subcrop along
the Algonquin Arch and show signs of freshening due to meteoric water infiltration (Hobbs
et al., 2011). The vertical trends in the salinity (TDS) and stable isotopes (680 and §?H)
using data from the study site boreholes are presented in Figure ?7?7. The steep concentra-
tion gradient that appears in both the stable isotope and TDS profiles (Figures 2.7 and 2.6,
respectively) suggests that the separation between the shallow and deep hydrogeochemi-
cal regions occurs within the Salina A1 Unit at the Bruce nuclear site. Furthermore, the
persistence of this steep concentration gradient suggests that a significant hydrogeologic
barrier exists around this lithological unit, that has limited the interaction between the
shallow and deep hydrogeochemical regions.

Figure 2.8 shows the ratio of 6'®0 and §%2H, where meteoric water and the more iso-
topically depleted glacial melt water generally plot along the Global Meteoric Water Line
(GMWL) and water hypersalinated by evaporation typically falls below the GMWL. These
plots support the conceptual model of a deeper hydrogeochemical regime of hypersaline
brines subjected to ongoing dilution by meteoric water infiltration in the modern flow sys-
tem, as well as historical dilution by glacial melt water intrusion during glacial ice sheet
advance (Figure 2.9).

The deep zone hydrogeochemistry can be interpreted as being the product of the mod-
ification of the original seawater by gradual diffusion of salts from overlying hypersaline
brines and prolonged rock-water interactions. A trend of increasingly depleted §'*0 with
depth (from -5%¢ to -8%q), starting in the Upper Ordovician Queenston and Georgian Bay
shales, is attributed to the prolonged water-rock interaction processes between the origi-
nal seawater and the surrounding sedimentary matrix. The smooth decrease in TDS with
depth from approximately 300 g/L in the Upper Ordovician Queenston shale to about 200
g/L in the Shadow Lake carbonate can be attributed to the gradual diffusion of salt down
from the hypersaline brines of the overlying Lower Silurian formations (Al et al., 2011). In
both cases, these trends terminate at the underlying Cambrian Formation, where the con-
centrations of the natural tracers rebound. This rebound phenomenon has been observed
at other locations within the Michigan Basin, and while no definitive explanation yet exists
for this trend, it has been suggested that the higher hydraulic conductivity of this unit may
have enabled the relatively rapid spatial propagation of a more recent episode of migration
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Figure 2.6: Vertical profiles of TDS determined in porewater and groundwater at the Bruce
nuclear site. Developed by Al et al. (2011)

of basin brines (Al et al., 2011).

The hydrogeochemistry of the intermediate zone units reflects the onset of more re-
stricted marine conditions during the Silurian period, leading to the formation of hyper-
saline brines, as well as a variety of post-depositional (and in some cases ongoing) diagenetic
processes. The formations of the Middle and Lower Silurian packages at the Bruce Nuclear
Site represent locally undiluted regions of concentrated seawater, characterized by high
salinities (ranging from approximately 250 g¢/L to 375 g/L) and enriched §'¥0O composi-
tions (approximately -6%o to 1%o), as illustrated in Figure 2.8. In the interval between the
top of the intermediate zone and the A1 Carbonate Unit, salinity is generally reduced from
the levels present in the underlying hypersaline brines, suggesting subsequent dilution by
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Figure 2.7: Vertical profiles of stable isotopes (6'*0 and §?°H) determined in porewater
and groundwater at the Bruce nuclear site. Developed by Al et al. (2011).

meteoric and/or melt water penetration; exceptions can been seen (such as in the B Anhy-
drite and Carbonate units) throughout this interval, implying that the degree of dilution
varies from unit to unit. This interpretation of variable dilution is supported by the stable
isotope compositions, which also vary significantly within this interval (ranging from -15%
to -T%o for §'80, and from -120%0¢ to -60%¢ for 6*H). The variability in the stable isotope
profiles also eludes to the fact that the sources of the diluting waters have also been in-
consistent; where glacial melt water tends to be depleted in 80 and 2H isotopes, meteoric
water tends have isotopic compositions closer to present day precipitation (-11%o to -7.5%0
for 680, and -50%0 to -70%0 for §?H). It is worth noting that the highly depleted stable
isotope compositions within the A1 Carbonate Unit at approximately 328.5 metres below
ground surface (mBGS) are interpreted to be the extent of glacial melt water penetration
at the Bruce nuclear site (Al et al., 2011).

The shallow zone hydrogeochemistry reflects the relatively high exposure of the Devo-
nian sediments to meteoric and glacial melt water dilution. This can been seen from the
680 (-15%0 to -10%0¢) and 6*H (-100%0 to -70%¢) isotope compositions at the Bruce Nu-
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water penetration during ice sheet advance and the (relatively shallow) infiltration of mod-
ern day meteoric waters. Modified from McIntosh and Walter (2006).

clear Site, which are typically at or below the lower limit of the present day precipitation
interval in Figure 2.8. Evidence of the significant dilution of the original brines is also
apparent in the TDS concentrations for this unit (typically <50 g/L). The infiltration of
Pleistocene and younger age waters to the Devonian (and in some cases Upper Silurian)
Formations is understandable considering that many of these formations subcrop below
shallow, unconsolidated glacial overburden.

2.3 Methane Gas

Methane occurrences are differentiated based upon the nature of their formation: (1)
thermogenic decomposition of organics under high temperature and pressure regimes, (2)
microbial or biogenic respiration by methanogenic microbes as they break down organic
material, and (3) abiogenic methane generation without the presence of organic material,
whereby COs in the presence of Hy is chemically reduced to CHy, such as in the cat-
alytically driven serpentinization reaction (McCollom and Seewald, 2013). Typically, the
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composition of the natural gas and the ratio of the §3C to §2H isotope compositions are
used as indicators to ascribe the appropriate classification (Whiticar, 1999). Thermogeni-
cally formed gas results in a low methane (C1) to ethane plus propane (C2 + C3) ratio
(<100), and is enriched in §'3C compared to biogenic sources. Conversely, biogenic gas
is characterized by relatively depleted §'3C isotope compositions (<60%o), and by a high
methane (C1) to ethane plus propane (C2 + C3) ratio (>1000) due to the limited for-
mation of higher hydrocarbons. Abiogenic methane is highly enriched in §'3C relative to
the expected biogenic or thermogenic regions (6'3C >-15%¢); however, because abiogenic
methane is generally limited to the high-temperature (>500°C) hydrothermal systems as-
sociated with mid-ocean-ridge environments (Schoell, 1988; Welhan, 1988), it is unlikely
to occur in the sedimentary strata of the intracratonic Michigan Basin.

The occurrences of methane at the Bruce nuclear site, based on groundwater and core
sampling from the DGR boreholes, are presented in Figure 2.10, along with results of
isotopic composition analysis of the extracted gas samples. For ease of discussion, the
vertical CHy profile can be divided into four distinct regions: (1) a low-occurrence region
extending down from the surface to a depth of approximately 300 mBGS in the Silurian
A2 unit; (2) a relatively shallow high concentration region in the Guelph Formation and
proximal units of the Middle and Lower Silurian packages that extends from approximately
375 to 410 mBGS; (3) an intermediate region characterized by a significant concentration
increase corresponding in depth to the Blue Mountain-Collingwood (between 617 and 660
mBGS); and (4) a deep region of intermittent occurrences of elevated concentration that
extends down through the carbonate sediments of the Middle Ordovician package (between
700 and 840 mBGS).
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It is worth noting that because the vertical extents of these methane regions within
the sedimentary strata are based on the data collection efforts towards the centre of the
study area at the Bruce DGR boreholes (INTERA, 2011), their depth of occurrence should
not be taken to be laterally constant. Rather, the thinning and sub-/outcropping of the
sedimentary strata toward the flank of the Algonquin Arch indicates that, if we adopt a
lateral methane occurrence model that favours lithological continuity over specific depth
intervals, the aforementioned methane bearing regions of the study area become far more
shallow towards the north-east end of the study area. This shift in burial depth would
be expected to coincide with a change in subsurface conditions (ie. temperature salinity,
and pressure) that could play an important role in the determination of potential methane
hydrate forming regions.

Further insight into the methane within the noted regions is provided by comparing
the stable isotopic ratios of §'3C and §?°H (Figure 2.11) to determine their biogenic or
thermogenic origins (Whiticar, 1999). The relatively §'*C and §*H enriched nature of the
deep intermittent region related to the Middle Ordovician carbonates suggests the methane
associated with this formation is of thermogenic origin. Conversely, the isotopic signature
of the shallower intermediate region proximal to the Blue Mountain-Collingwood units is
depleted in 6'3C and ¢%H, indicating that this methane is of biogenic origin formed by
fermenting bacteria. Though likely younger than the deeper thermogenic methane, the in-
termediate biogenic methane has been interpreted as being relatively immobile (vertically)
based upon the aforementioned high methane saturation within the Ordovician brines,
resulting in a lack a of concentration gradient to drive the vertical diffusive transport of
methane (Al et al., 2011). This combined with the fact that high salinities (such as those
found in these formations) tend to inhibit microbial activity, suggests that the methane
within this formation is of a relatively old age, potentially dating back to the Paleozoic.
The shallowest region of methane occurrence proximal to the Guelph Formation is also
considered to be of biogenic origin based upon the stable isotope signature, although the
isotopic signature shows a slight deviation toward the thermogenic region on the discrimi-
nation diagram (Figure 2.11). While this could be attributed to mixing of the two methane
source types, given that the lower adjacent methane regions of the Ordovician sediments
show no sign of this mixing, this scenario is unlikely. A possible explanation for this devi-
ation is the impact of isotope fractionation caused by preferential migration of the lighter
isotopes, causing the systematic enrichment of both §'3C and 6*H (Schoell, 1988).
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Figure 2.11: Discrimination diagram indicating fields for CHy of biogenic (CO; reduction
and fermentation) and thermogenic origin.

2.4 Geological Occurrence of Gas Hydrates

Methane hydrates are found in vast quantities around the world, deposited in ocean sed-
iments on the continental margins and terrestrial lithologies in permafrost regions. Esti-
mates of the quantity of methane stored in the global hydrate reservoirs are highly varied,
although the approximate value of 1x10' g of methane carbon has been proposed by
Kvenvolden and Rogers (2005) to represent a ‘consensus estimate’ of the present size of
the hydrate-stored methane. Continental margins account for the vast majority of the
global methane hydrate reservoir (Table 2.4), with estimates 2 to 4 orders of magnitude
larger than the estimated size of methane hydrate reservoirs in Arctic permafrost regions.
Based on these estimates, the global gas hydrates are believed to represent more than half
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of the organic carbon (excluding dispersed organic carbon species such as kerogen and
bitumen) in the Earth, and two orders of magnitude larger than the remaining methane
reservoirs considered to be conventionally recoverable (Kvenvolden, 1998). The sheer size
of these reservoirs necessarily draws the interest of researchers representing both energy
sector interests as well as climatologist concerned about both sudden and gradual releases
of methane gas into the atmosphere - methane gas being 21 to 23 times more potent as a
greenhouse gas than carbon dioxide (Grace et al., 2008). In a more regional-scale geologic
context, methane hydrates are known to impact the physical properties of sediments (per-
meability and porosity)(Winters et al., 2011), as well as the geochemistry of pore fluids,
potentially impacting gas extraction and mining activities in northern permafrost regions.

Table 2.4: Estimated Size of Methane Hydrate Reservoir in Ocean Sediments and Arctic
Permafrost

Methane Carbon  Reference

Ocean Sediments

~ 2.1 x 1019 Kvenvolden and Claypool (1988)
~ 1.0 x 10% Kvenvolden (1988)

~ 1.1 x 10Y% MacDonald (1990)

Arctic Permafrost

~ 3.9 x10'g MacDonald (1990)

~ 1.7 x 10'%¢ Melver (1981)

~ 7.6 x 10'%¢ Meyer (1981)

Instances of naturally occurring gas hydrates have been identified around the world
in both ocean sediments and terrestrial permafrost regions (Figure 2.12), providing re-
searchers with the opportunity to study the properties of gas hydrate reservoirs. Some
of the more recent research undertaken on terrestrial hydrates in the Arctic permafrost
regions include:

e Mallik 2002 Gas Hydrate Production Research Well Program. Northwest
Territories, Canada. The latest of the Mallik research programs, involving an inter-
national collaboration of 5 countries and more than 200 researchers, exploring the
sub-permafrost gas hydrate reservoir below the Mackenzie Delta on the coast of the
Beaufort Sea. The study involved completion of three deep research wells (approxi-
mately 1000 mBGS), with detailed coring geophysical analysis of the hydrate bearing
strata below the permafrost. (Dallimore et al., 2005)

e Mount Elbert Gas Hydrate Stratigraphic Test Well. Alaska North Slope,
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United States. A project conducted since 2001 as a collaborative effort by the US
Department of Energy (DOE), the US Geological Survey (USGS), and BP Explo-
ration (Alaska) Inc. to determine the viability of the Alaska North Slope gas hydrates
as a gas resource. The project produces a full suite of geophysical wireline logs, core,
and formation pressure data along with various modelling studies that improved
estimates of gas hydrate bearing reservoir properties. (Hunter et al., 2011)
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Figure 2.12: Map of known and inferred locations of Gas Hydrates in Ocean Sediments
and Arctic Permafrost Regions around the world (Kvenvolden and Rogers, 2005).

Since gas hydrates become unstable when exposed to temperature and pressure conditions
at ground surface, both the Mallik and Mount Elbert gas hydrate research programs ded-
icated considerable attention to the implementation of advanced down-hole geophysical
logging techniques to identify and quantify gas hydrates within the subsurface (Collett
et al., 2005, 2011). Through comparison of interpreted results with recovered/preserved
cores containing hydrates, it was found that these methods could effectively be used to
identify existing hydrate accumulations in the subsurface. While such detailed studies
have contributed incredibly to the present understanding of the properties of gas hydrates
forming in the subsurface of permafrost regions, the use of down-hole geophysical methods
showcased in these works are of limited use to the determination of the temporal extent
of evanescent gas hydrate accumulations such as those being considered in this study, and
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face the same limitations in determining spatial hydrate distributions on a regional scale
as any subsurface investigation due to the need to make inferences regarding the proper-
ties of a study area many orders of magnitude larger than the observation points. Thus,
when attempting to identify where gas hydrates have formed in the past, there is a need
to consider the lasting impacts left by dissociated subsurface gas hydrates on the physical
and geochemical properties of the host lithologies; a topic that has been investigated by
a number of gas hydrate researchers (including scientists of the Mallik and Mount Elbert
research programs).

The formation and dissociation of gas hydrates is known to influence the geochem-
istry of groundwater systems — predominantly through the process of solute exclusion and
preferential isotope inclusion/exclusion — lending itself to applications in determining the
interval of gas hydrate bearing sediments as well as to providing quantitative estimates
as to the degree of gas hydrate saturation of the pore volume (Matsumoto and Borowski,
2000; Matsumoto, 2006). Furthermore, if a hydraulic system is sufficiently closed with
respect to solute gradient-reducing mechanisms of advective flushing and dispersion, the
geochemical signatures left by the presence of gas hydrates may be preserved (or partially
preserved) for a period after the dissociation of the gas hydrates. Logically, the residual of
these signatures will depend upon the elapsed time since hydrate dissociation and the mag-
nitude of the solute gradient-reducing mechanisms, as well as other rock-water interactions
related to diagenetic processes.

The direct influences of gas hydrate formation on groundwater geochemistry are de-
scribed below (incidental impacts such the limiting of reactant mixing or solute transport
caused by changes to the groundwater flow system have been omitted as these are generally
site specific):

e Solute exclusion. During hydrate formation, solutes within the interstitial water
are excluded from the hydrate structure. The result is the apparent freshening of
hydrate-associated pore waters and an increase in solute concentrations in hydrate-
free pore waters (Ethier et al., 2005). The Chloride (Solute) Anomaly Technique has
been used to estimate the degree of gas hydrate saturation (pore filling) using the
deviation below an estimated baseline concentration gradient caused by gas hydrate
induced freshening (Paull et al., 1996; Matsumoto, 2006).

e Preferential isotope incorporation in host molecules. Gas hydrate formation will pref-
erentially incorporate water (host) molecules that are enriched in O isotopes com-
pared to the ambient water (Hesse and Harrison, 1981), resulting in a spike in the
5180 ratio where hydrates have formed. The §'¥0 Anomaly Technique has also been
used to estimate the degree of gas hydrate saturation, again by comparing baseline
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estimates of §'%0 to the regions of O enrichment (corresponding to gas hydrate
formation) (Matsumoto and Borowski, 2000).

e Preferential isotope incorporation in guest molecules. There is evidence to suggest
from laboratory studies, that methane and ethane hydrate formation will preferen-
tially exclude guest molecules containing the ?H isotope (Hachikubo et al., 2007);
however, this geochemical signature does not represent a significant alteration of gas
isotope composition (less than 10%o), and could be explained by a number of other
geochemical processes, including the process by which the methane was formed in
the first place (Stotler et al., 2010).

e (Gas accumulations and preferential species inclusion. The formation of gas hydrates
represents in an apparent increase in the entrapped hydrocarbon gas concentration as
the hydrate structure is able to contain the gas more densely than in the surrounding
solution. This results in the local accumulation of the guest gas molecule (Sloan,
2003). Since the structure I hydrates most commonly found in nature accommodate
only small diameter molecules such as methane (C;) and ethane gas (Kvenvolden,
1998), the concentration of other hydrocarbon gas species (Cy-Cj) are preferentially
excluded producing an increased carbon wetness ratio (C; /Cs-Cs) in hydrate-bearing
intervals (Lorenson et al., 2005).

The geochemical signatures related to solute exclusion and the preferential incorpora-
tion of isotopically heavy water into the lattice structure have been applied to methods
of identifying and quantifying methane hydrate occurrences by a number of researchers
(Matsumoto and Borowski, 2000; Matsumoto et al., 2005; Tomaru et al., 2005; Winters
et al., 2006; Torres et al., 2011). Although the gas hydrates themselves are not present in
the cored samples — having dissociated during sample recovery — these geochemical signa-
tures are generally well preserved. In most cases, the qualitative results of comparing the
anomalous solute and isotope distributions with the background values to determine the
gas hydrate region are in agreement. Comparisons between the results of gas hydrate sat-
uration estimates using various anomalous solute and 80 isotope distributions at a given
site are also fairly consistent, the variability being attributed to the uncertainty of esti-
mating an appropriate baseline distribution (Matsumoto and Borowski, 2000). Considering
that the scope of this study is to delineate the potential methane hydrate stability region
(and not to provide an estimate as to the quantity of methane hydrates), the geochemical
signatures could be used to evaluate the predictions provided by the regional-scale model
under the assumption that the systems are hydraulically closed to a sufficient degree so as
to allow for the preservation of the gas hydrate-imposed geochemical signatures.
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Residual gas signatures are less likely to be preserved in cases where gas hydrate dis-
sociation has been complete for a long period of time since the gas hydrate itself is one of
the primary inhibitors of gas migration and mixing (Lorenson et al., 2005). This means
regions of 2H depleted methane molecules and high carbon wetness caused by gas hydrate
formation are therefore of little use for estimating regions subject to gas hydrate dissocia-
tion beyond those application where hydrates are presently existing and have dissociated
upon sample recovery.
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Chapter 3

Methodology

The approach used by this study to evaluate the evolution of methane hydrate stability
zones during the advance of glaciers across the study site in Southern Ontario involves
the use of regional-scale numerical models to generate temporal temperature, pressure and
salinity values. These are subsequently used as input values for thermodynamic predictive
modelling to evaluate hydrate stability. An overview of the methodology is presented
below:

1. Calculation of pressure, temperature and salinity distributions across the study site
for the entirety of the study period:

(a) The regional-scale model developed by Sykes et al. (2011) was used to estimate
the pressure and TDS history for the study site during the 120 ka study period.
This model accounts for increases in hydromechanical loading during periods of
glacial cover.

(b) A modified version of the regional-scale model was used to provide the tempera-
ture history across the study site, independent of pressure and TDS parameters.
The model domain (including node assignments and location) was identical to
the regional-model employed for the TDS /pressure history estimations to ensure
referencing consistency in the subsequent steps.

2. Aggregation of output datasets from the regional-scale modelling work to allow for
visualization and determination of methane solubility and hydrate stability by ther-
modynamic models.

3. Input of pressure, temperature and TDS histories determined from regional-scale
modelling work to thermodynamic models:
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(a) The solubility of methane was determined using the thermodynamic model de-
veloped using the theory by Duan and Mao (2006) at each point in the spatial
domain of the study site for each of the time steps during the 120 ka study
period.

(b) The stability of methane hydrate was determined using the thermodynamic
model developed using the theory by Sun and Duan (2007) for each of the
time steps during the 120 ka study period. This was achieved by determining
a minimum required pressure based on temperature and salinity that must be
exceeded by the “observed” pressure at a given point in order for hydrates to
form.

4. Output of thermodynamic models were re-incorporated into the aggregated data
set from the regional-scale numerical modelling work to allow for visualization and
interpretation.

This Chapter provides a description of the three-dimensional regional-scale numerical
model domain and the governing equations employed to determine the transient pressure,
temperature and salinity profiles during the study period. The thermodynamic models
used for the estimation of methane solubility and hydrate stability are also presented in this
Chapter, along with supporting validation work performed used laboratory measurements
of solubility and hydrate stability.

3.1 Regional-Scale Numerical Model

The pressure, salinity, and temperature histories used in this study were modelled using
the base-case regional-scale model domain developed by Sykes et al. (2011). The mod-
elling domain (Figure 3.1) occupies an aerial extent of approximately 18,775 km? and
has a vertical elevation range that extends upward from a flat bottom elevation of -1600
mAMSL in the Precambrian basement to 539 mAMSL at the highest point on the Niagara
Escarpment. The domain is discretized into slices, each with 27,728 nodes, which were
then stacked vertically to generate the 32 formation interfaces of the 3D model domain
(Table 3.1). In some cases, formation layers have undergone further vertical discretization
by breaking them into sublayers with the same geologic/hydrogeologic parameters - for
example, the Precambrian layer below the Upper Precambrian has been subdivided into
six sublayers, with a seventh serving as the flat base of the model domain.

A detailed description of the methodology by which the model domain was constructed
can be found in Sykes et al. (2011). The groundwater flow parameters for the formation
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Figure 3.1: Regional model domain of the numerical model.

layers are summarized in Table A.1 in Appendix A. Also included are the one-dimensional
loading efficiency ¢ values assigned to each of the formations. The solute transport param-
eters of density p, total dissolved solids T' DS, and the effective diffusion coefficient D, for
dissolved solids transport are provided in Table A.2. The governing equations for ground-
water flow, one-dimensional hydromechanical coupling, solute transport, and constitutive
relationships for density and concentration as they are implemented in FRAC3DVS-OPG
are provided in the following sections, based on the descriptions provided by Normani
(2010). The handling of transient temperature in FRAC3DVS-OPG for this study is also
described in this chapter.

In the regional-model, it is assumed that there is no free-gas phase present in the
subsurface; since the presence of a gas phase would result in the dissipation of some of
the pressure of glacial loading, this assumption could result in the over-estimation of the
pore pressures used in the study. While the likelihood of a free-gas phase being somewhere
within the domain is high, it is not necessarily a requirement for achieving saturation of
methane and subsequent formation of gas hydrates (Handa, 1990). This would be the case
where a pore water, with dissolved methane concentrations below saturation, undergoes a
decrease in temperature such that the conditions shift to those of a hydrate formational
zone while simultaneously lowering the local solubility sufficiently to shift the dissolved
methane concentration beyond saturation. In this case, the decrease in temperature would
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Table 3.1: Geologic formations represented in the regional-scale model domain (Sykes et al.,

2011)

Period Model Formation Formation
Quaternary Drift Drift
Hamilton Group Hamilton Group
Dundee Dundee
Devonian Lucas
Detroit River Group Ambherstburg (upper 20 m)
Ambherstburg (lower 25 m)
Bois Blanc Bois Blanc
Bass Islands(upper 20 m
Bass Islands Bass Islandsglower 25 rn))
Unit G Salina Unit G
Unit F Salina Unit F
Unit F Salt Salina Unit F
Unit E Salina Unit E
Unit D Salina Unit D
. Salina Unit C
Units B and © Salina Unit B
Unit B Anhydrite Salina Unit B Evaporite
Unit A2 Carbonate Salina Unit A2 Carbonate
Silurian Unit A2 Evaporite Salina Unit A2 Evaporite
. Salina Unit A1 Upper Carbonate
Unit Al Carbonate Salina Unit A1 Carbonate
Unit A1l Evaporite 22522 8212 2(1) Evaporite
Guelph
. Goat Island
Niagaran Group Gasport
Lions Head
Reynales / Fossil Hill Fossil Hill
Cabot Head Cabot Head
Manitoulin Manitoulin
Queenston Queenston
Georgian Bay
Georgian Bay / Blue Mtn.  Blue Mountain
Collingwood
.. Cobourg Cobourg
Ordovician Sherman Fall Sherman Fall
Kirkfield Kirkfield
Coboconk Coboconk
Gull River Gull River
Shadow Lake Shadow Lake
Cambrian Cambrian Cambrian
Precambrian Upper Pr§cambrian Upper Pr?cambrian
Precambrian Precambrian
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result in the formation of gas hydrates without the presence of a free-phase gas phase of
methane since the methane would move directly from being in solution to the hydrate
lattice.

In the regional-scale model, salinity is modelled using a generalized TDS solute in order
to simplify the model and avoid the complexity of representing multiple ion species. The
species that make up the salt were assumed to be dominated by NaCl in all cases, rather
than applying the location/formation specific electrolyte compositions determined from
bedrock borehole sampling. The composition of the salt impacts both the gas solubility
and the hydrate formation pressure threshold, which makes it an important consideration
in identifying the formational zones for gas hydrates. Compared to systems dominated by
NaCl (holding total salt concentrations the same), CaCly, dominated systems have higher
methane solubility values and higher hydrate formation pressure thresholds (Kharrat and
Dalmazzone, 2003). As a result, using a universal assumption that the TDS from the
regional-model is composed entirely of NaCl underestimates the prohibitive impact of salin-
ity on hydrate formation, and contributes to an overall conservative assumption for this
study that favours the formation of methane hydrates.

3.1.1 Fluid Flow

The following equation is used to describe mass conservation for flow in a saturated porous
medium is defined as (Bear, 1988):

) £ Q = ) 1)

where p is the density [g/cm?], ¢; is the Darcy flux vector in direction i [em/yr], @ is the

fluid source/sink term [g/yr - em?], t is the time [yr], and 7 is the total porosity [/]. The

Darcy equation relating flux to the energy potential of the fluid is defined as (Bear, 1988;

Frind, 1982):
Oh 0z P .

g = —K;; —+pT—> h=—+2 1,7=12,3 3.2
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where Kj; is the hydraulic conductivity tensor [em/yr|, h is the freshwater head [em], p,

is the relative fluid density [/], p is the fluid pressure [g/cm - yr?], po is the reference fluid

density [g/cm?], g is the gravitational constant [em/yr?], and z is the fluid elevation [cm].
In Equation 3.2, the relative density p, is defined as:

P
r=——1 3.3
"= (3-3)
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The hydraulic conductivity tensor in Equation 3.2 is defined as:

Ky =99 52123 (3.4)
1
where k;; is the porous media permeability tensor [em?], and pu is the dynamic viscosity
[g - yr/em]. In combining Equation 3.1 and Equation 3.2, the groundwater flow equation
can be simplified to (Frind, 1982):

0 oh 0z oh o
2l (2 Y we=s 2 =1 o5

where S, is the specific storage coefficient [cm™!]. The storage coefficient is a measure of
the compressibility of the porous media and pore fluid and is defined as the volume of water

that a unit volume of aquifer releases from storage under a unit decline of piezometric head
(Freeze and Cherry, 1979).

3.1.2 Hydromechanical Coupling

Assuming that the porous media, solid grains, and pore fluid are all compressible, the
storage coefficient, S, can be re-defined to include one-dimensional vertical loading and
unloading. This simplified one-dimensional approach to hydromechanical coupling is com-
monly used to simulate the impacts of glacial, erosional and depositional mechanisms on
groundwater systems (Van der Kamp and Gale, 1983; Neuzil, 2003; Jaeger et al., 2007).
The modified expression for Sy is provided below:

where K is the drained bulk modulus of the porous media [g/cm - yr?], K is the bulk
modulus of the solids in the porous media [g/cm - yr?], K; is the bulk modulus of the pore
fluid [g/cm - yr?], « is the Biot coefficient [/], and v is the Poisson’s ratio [/]. The bulk
modulus K is defined as the reciprocal of compressibility (/5), therefore K = 1/ (Jaeger
et al., 2007).

Mechanically loading the surface of a porous media results in the loading of both the
porous media and the pore fluid. The amount of stress transferred to each of the com-
ponents is dependent upon the relative compressibility of the porous media to the pore
fluid, as well as the porosity. Due to the somewhat elastic nature of porous media, when a
surface load is applied, the porous media will tend to compress. This results in a reduction
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in the pore size, which in turn compresses the pore fluid. As the pore fluid undergoes
compression, the result is increased resistance to the compression of the porous media, and
increased pore pressure. Mechanical loading of a porous media and pore pressure within
said media are therefore a coupled system. The groundwater flow equation (Equation
3.5) can be modified to account for one-dimensional hydromechanical coupling as follows
(Neuzil, 2003):

0 Oh 0z Oh  S,( 9o, o

where ( is the one-dimensional loading efficiency [/], and o, is the vertical stress [g/cm -
yr?]. Tt should be noted that no lateral strains are considered in this approach, as a
fundamental assumption of one-dimensional hydromechanical coupling is that strains can
only occur in a vertical direction. The loading efficiency is further defined as (Van der
Kamp and Gale, 1983; Neuzil, 2003):

B(1 +v) . (%)
3(1—v)—2aB(1—2v) (1 1

¢= (3.8)

where B is the Skempton coefficient used to represent the ratio of the change in fluid

pressure to a change in mean effective stress under undrained conditions (Neuzil, 2003). A

further simplifying assumption is commonly made whereby the solids of the porous media

are taken to be incompressible (or rigid), such that Ky — oo, resulting in:
1 1 =

Se=pglam +0——) (=

(3.9)
where K’ is the drained confined vertical modulus of the porous media [g/cm - yr?]. K’
can be calculated from properties such as Young’s elastic modulus, £/, and Poisson’s ratio,
v (Neuzil, 2003; Jaeger et al., 2007):

E 3(1—v)
K=—— K =K——— d
3(1—2v) 1+v (310)

Since the geometric deformation of the model grid is not permitted in FRAC3DVS-

OPG, the hydromechanical term %% in Equation 3.7 serves as a fluid source/sink term

to effectively increase or decrease the fluid pore pressure - and therefore head h - based

on the rate of change of the vertical stress, aggz, the storage coefficient, S, and the one-

dimensional loading efficiency, ¢ (Normani, 2010). A loading efficiency that approaches
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zero is representative of a more rigid porous media and/or a highly compressible pore
fluid, such that a minimal amount of the load is transferred to the pore fluid. Conversely,
a loading efficiency that approaches one is indicative of a more compressible porous media
compared to the pore fluid pore fluid, whereby the bulk of the load is supported by the pore
fluid instead of the porous media. Both the storage coefficient, S, and the one-dimensional
loading efficiency, (, are specified inputs to FRAC3DVS-OPG.

3.1.3 Solute Transport

The generalized solute transport equation for a saturated porous media is (Bear, 1988):

0 oC 0 0
D.i— ) — ——(q.C)+Q ), 7 =1,2 A1
ami (77 ] a$]) 81’1 (qlo) Cc — ot (770) 2, ] ) 73 (3 )

where D;; is the hydrodynamic dispersion tensor [cm?/yr], C' is the concentration [g/cm?],
and Q¢ is the concentration source/sink term [g/yr - em?®]. D, is defined by Burnett and
Frind (1987) as

2 2 2
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where «, is the longitudinal dispersivity [em]; ary is the horizontal transverse dispersivity
[em], ary is the vertical transverse dispersivity [em], |¢| is the magnitude of the Darcy flux
[em/yr], T is the tortuosity of the porous medium [/], and D,, is the molecular diffusion
coefficient [cm?/yr].
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In literature, the pore water diffusion coefficient is also referred to as the diffusion
coefficient of the porous medium (Bear, 1988). The relationship between fluid density in
Equation 3.7 and pore fluid concentration is as follows:

C Pmazx
’y =
Cmaw Po

where C,,,, is the maximum concentration [g/cm?], pmae is the maximum density [g/cm?],
and 7 is the maximum relative density [/]. Such a relationship is commonly used to model
concentrated brines with concentrations of 300 g/L or higher, as described in the following
section.

3.1.4 Constitutive Relationships

Constitutive or functional relationships are used to link fluid or porous media properties
to the pressure, temperature or concentration of a system. Various state equations similar
to those used in FRAC3DVS-OPG are presented by Bear (1988) and Adams and Bachu
(2002) along with empirically determined coefficients.

In the groundwater systems of deep geosphere environments, the impact of these con-
stitutive relationships can be very significant, with density and viscosity variations that
can exceed 25% and one order-of-magnitude, respectively. These changes in density and
viscosity can contribute to either the retardation or enhancement of fluid flow or contami-
nant transport. The following expressions describe the relationships between concentration
(expressed as Total Dissolved Solids or TDS), solution density, and mass fraction in char-
acterizing solutes in water:

p = % (3.14a)
m

TDS = — 3.14b

v ( )

X = % (3.14c)

where T'DS is the total dissolved solids [g/cm3], M is the mass of solution [g], V is the
volume of solution [em?], m is the mass of solute (e.g., NaCl or CaCl,) [g], and X is the mass
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fraction [/]. The combination of these expressions, provides an alternative relationship for

TDS: ]
P
TDS=m—=XM-—=X 3.15
my; =X (3.15)
Adams and Bachu (2002) present an empirical relationship between density and brine
conecentration based on the analysis of 4,854 samples within the Alberta Basin. Based
on the data and analyses presented in this work, a mass fraction of 0.25 corresponds to a

density of approximately 1,200 kg/m? and a TDS of 300 g/L.

3.1.5 Thermal History

The transient temperature profiles for the study locations were calculated using a numerical
solution to the three-dimensional heat equation:
0*T oT A

(2

where T is the temperature [°C], x; are components of cartesian coordinates in the i
direction [m], ¢, is the bulk specific heat capacity [J/kg/K], A is the heat production
[mW/m?], p is density [g/cm?], k is the thermal conductivity [W/mK], and ¢ is time [yr].
It should be noted that Equation 3.16 does not include a term for the convective trans-
port of heat within the regional domain; however, convective transport during glaciation
would likely result in lower temperatures than calculated in this study due to the possible
penetration of cold glacial melt waters (McIntosh et al., 2010). It should be noted that
density effects and the presence of methane hydrates in the pore space would tend to re-
strict the penetration of subglacial melt waters, lessening the impact of this assumption on
the overall conservative (favouring hydrate formation) estimates provided by this study.

The study site’s thermal history was modelled using FRAC3DVS-OPG by manipulat-
ing the input files of the regional-scale such that the three-dimensional heat equation is
solved in place of the transient subsurface flow equation. This approach allowed for the
assignment of lithology-dependent geothermal parameters to the various model layers to
better represent the heterogeneous composition of the regional domain. Formation specific
parameters were identified from a number of sources (Everham and Huntoon, 1999; Waples
and Waples, 2004; McIntosh et al., 2010), and assigned to the individual nodes based upon
their stratigraphic location. The geothermal properties assigned to the various formations
are provided in Appendix A Table A.3.

Across the base of the regional model, a constant heat flux boundary condition of
45 W/m? was applied, which is consistent with observed heat flow values at the base of
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the Michigan Basin (Mclntosh et al., 2010). A transient Dirichlet boundary condition
was applied at the top of the model, using the sub-glacial base temperatures calculated by
Peltier (2011) throughout the Pleistocene ice-sheet history. An initial temperature gradient
was established throughout the regional domain by running the model with the fixed
thermal heat flux at the base and a fixed boundary condition at the top of the domain equal
to the initial sub-glacial temperature provided by Peltier (2011) until apparent steady-state
conditions are achieved. It should be noted that this study does not consider the latent
heat impacts of the permafrost zone following glacial episodes, which is considered to act
as a buffer that preserves the hydrate stability conditions, reducing the rate of dissociation
(Taylor et al., 2005).

3.2 Methane Solubility Calculation

In addition to meeting the required pressure and temperature conditions, there must be
sufficient methane in the system to allow the formation of hydrates; the solubility of
methane defines the minimum methane concentration required for hydrate formation (Sun
and Duan, 2007). Although this study does provide the lower limits of the methane re-
quired for the generation of gas hydrates, it does not evaluate whether the amount of
methane present at the investigation points reaches or exceeds these limits.

The solubility of methane with respect to pressure [P] and temperature [T], is deter-
mined using the method proposed by Duan and Mao (2006), which depends upon balancing
the energy potentials of the methane gas in vapour, uég,, and liquid, e ,» Phases, ex-
pressed by Equations 3.17 and 3.18, respectively.

Mo, = Hop, + RTyen, P+ RTgcy, (3.17)
:ulCH4 = Ng(gu + RTlnmen, + RTInyen, (3.18)

where ug013,4 is the standard chemical potential of methane gas in an idealized solution, and

/fc(% is the standard chemical potential in the vapour. R is the Universal gas constant

equal to 83.145 bar - em?® - mol~* K~'. In this case, the values of ug‘ﬁ}4 is taken to be 0 such
that the difference between the liquid and vapour potential energies is accounted for in the
parametrization of ,ug% (Duan and Mao, 2006). Inpcg, is the fugocity coefficient of the
methane gas, ycop, is the mole fraction of methane gas, and Inyop, is the activity coefficient
of the aqueous solution, which accounts for the reduction in solubility due to the presence
of electrolytes. Combining Equations 3.17 and 3.18 gives the following equation, which is
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solved to find mcp,, the solubility of methane gas in the aqueous solution expressed in
terms of molality [mol/kg]:

1(0)
In yeu, P Hem,

mcH, N RT

— Inpcn, + Inven, (3.19)

The fugacity coeflicient, Ing;, is calculated using the Equation of State (EOS) proposed
by Duan et al. (1992), which is empirically derived for a large range of temperatures and
pressures. The EOS of Duan et al. (1992) is performed by solving Equation 3.20 for the
molar volume, V, [dm?3/mol]. This value is then used to calculate the fugacity coefficient
value using Equations 3.21-3.22. The EOS parameters used to calculate CHy are provided
in Table 3.2. It should be noted that the calculation of V,. requires the use of a non-linear
equation solver, which results in a computational strain on the model.

PV PRV, B C D E F
Z=—r= :1+—+—+—+—+—<ﬂ+%)exp(—7) (3.20a)

S RT T Ve VRV VR v?

B=a + % + ;% (3.20b)

C=as+ % + % (3.20¢)

D=a;+ % + % (3.20d)

E = aip+ ‘;}; ‘;}; (3.20¢)

F= % (3.20f)

P = gc (3.20g)

T, = % (3.20h)

w:% (3.200)

Vv, — }Zc (3.20§)

W
w



r gl gl
S N 14+ L T 21
6 e (e ) e (35) 20
B C D E
© = exp (Z_l_lnz+7r+2‘/7?+4Vr4+5V;5+G) (3.22)

Table 3.2: Fugocity EOS Parameters for CHy (from Duan et al. (1992))

Parameter CH,4
T. [ °K] 190.6
P, [bar] 46.41

ay 8.725539280E-02
as -7.525994760E-01
as 3.754198870E-01
ay 1.072913420E-02
as 5.496263600E-03
ag -1.847728020E-02
ar 3.189931830E-04
as 2.110793750E-04
ag 2.016828010E-05
aio -1.656061890E-05
aiy 1.196145460E-04
a1 -1.080872890E-04
o 4.482622950E-02
I3 7.539700000E-01
0% 7.716700000E-02

The calculation of the mole fraction of methane gas, ycopy,, is conducted using Equations
3.23 and 3.24.

0P Vio (P — Pii,o0)
= == 3.24
Y0 om,0P o ( RT ( )

where yp,0 is the mole fraction of water in the gas phase, Plio is the saturation pressure
of water, Uﬁqzo is the approximation of the saturated liquid-phase molar volume of water,
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and ¢p,0 is the fugacity coefficient of HoO in the gas phase. The mole fraction of H,O in
the liquid, zx,0, can be approximated as 1 — 2xg,; in an aqueous salt solution.

The molar volume, vtiO, is calculated using the following equation of Wagner and Pruss

(1993):

vy o = 20 (3.25)

PH>,O = Pc (1 + dy 73 4 dor?P 4 dy 7t + dyr 3 4 AP 4 d67110/3) (3.26)

where p, is the critical density equal to 322 kg/m?®, MWpy,o is the molecular weight of
water, and parameter 7 = 1 — T'/T, where T, is the critical temperature equal to 647.096
K. The values for the parameters in Equation 3.26 are provided in Table 3.3.

Table 3.3: Parameters for Equation 3.26 (from Wagner and Pruss (1993))

Parameter Value
dq 1.99274064
ds 1.09965342
ds -0.510839303
dy -1.75493479
ds -45.5170352
dg -6.74694450E4-5

The calculation of the fugacity coefficient of water in the gas phase, Inpy,0, is accom-
plished using the following empirical equation, for which the regression parameters g;-gg
are presented in Table 3.4, as provided in Duan and Mao (2006):

gsP | gsP?

Inm,o = g1 + g2 P + g3 P° + gu PT + Tt

(3.27)

Shibue (2003) provides an effective method for calculating the vapour pressure, PEIQO,
for aqueous solutions of NaCl that expands upon the relationships introduced by Wagner
and Pruss (1993) to include both temperature and concentration-dependent terms. The
approach centres around solving Equations 3.28 and 3.29, which apply to NaCl aqueous
solutions. It should be noted that the empirical relationship inherent in this calculation
requires that pressure be in units of MPa.

Cc

PS
In ( ]@20) — InPp + h(X) (3.28)
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Table 3.4: Parameters for Equation 3.27 (from Duan and Mao (2006))

Parameter Value
g1 -1.42006707E-2
92 1.08369910E-2
93 -1.59213160E-6
94 -1.10804676E-5
95 -3.14287155E00
96 1.06338095E-3
1
nPp = — [—7.85951783(1 — Tr) + 1.84408259(1 — Tx)"?]
R
1
T [—11.7866497(1 — Tr)® + 22.6807411(1 — Tr) ]
1
o [—15.9618719(1 — Tx)* + 1.80122502(1 — Tx)"’] (3.29)

where Tp = T/T., and P, and T, are the critical pressure and critical temperature cal-
culated using the salt specific empirical equations for NaCl solutions (Equations 3.30 and
3.31).

T, = 647.096 + 1 X 4+ 2. X + 3 X* + qu X* (3.30)

Pc = 22.064 + Q5X + q6X2 + Q7X3 + q8X4 + QQX5 + Q10X6 (331)

where X is the mole fraction of salt in solution and the regression parameters ¢;-qo for
NaCl aqueous solutions are provided in Table 3.5. The empirical correction function for
dissolved salt, h(X), is calculated using one of two equations depending upon whether
the solutions falls within the dilute solution range (Equation 3.32) or the concentrated
solutions range (Equation 3.33); once again, these ranges are specific to the species of salt
in solution, and are summarized in Table 3.5.

X) =5 2t agX? (3.32)
h(X) = (% + 2a3u> (X — )+ by (X — u)?
+bo(X — u)(X? — u?) + apu/(u + a}) + azu? (3.33)
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Table 3.5: Properties and Parameters for Calculation of Saturation Pressure of NaCl Aque-
ous Solutions (from Shibue (2003))

Parameter NaCl Solution
q 8.78054E+1
% 2.42541E+3
qs3 -6.0777T9E+3
g4 1.17033E+6
qs 9.00404E+2
% -2.92542E+4
q7 1.39806E-+6
qs -2.80756E+7
q9 2.41637E+8
q10 -7.18726E+8
Dilute Region 0<X<0.024
ay 1.28746E-1
as -7.31097E-1
as -3.15058E+2

Concentrated Region 0.024 < X < 0.117

b1 3.92767TE+2
ba -2.46440E+-3
u 0.024

The final term in Equation 3.19 to be solved is the activity coefficient, Inycp,, which
can be expressed in terms of the excess Gibbs free energy of the solution (Denbigh and
Denbigh, 1981) using the virial expansion provided below:

Iy =Y 2Xme+ > 2dmg + > Y Emem, (3.34)

where A and & are second-order and third-order interaction parameters, respectively, and ¢

and a refer to the cation and anion concentrations in the solution (expressed as molality).

The calculation of these interaction parameters, along with the value of ,ug% /RT, is ac-

complished using the pressure-temperature dependent relationship initially introduced by
Busey (1984), provided in Equation 3.35 and regression coefficients in Table 3.6.

Parameter = c1+cyT+cs/T+cyT?+c5/T?+-cgP+cy PTHcg P/T+coP/T?+c10T P? (3.35)
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Table 3.6: Interaction Parameters for Calculating Ml(,(*% J/RT, X and £ (from Duan and Mao
(2006))

Parameter ,u,lc(%l /RT ACH, Eom,
c1 0.83143711E+1 -0.81222036 -0.29903571E-2
co -0.72772168E-3 0.10635172E-2 0
c3 0.21489858E+4  0.18894036E+3 0
cq -0.14019672E-4 0 0
cs -0.66743449E+6 0 0
Cg 0.76985890E-2 0.44105635E-4 0
cr -0.50253331E-5 0 0
cs -0.30092013E+1 0 0
C9 0.48468502E+3 0 0
c10 0 -0.46797718E-10 0

Unlike in the determination of the three-phase equilibrium point for hydrate stability,
finding the solubility of the guest gas does not require an iterative solution method, making
this calculation far less computationally demanding than the former.

3.2.1 Validation of Thermodynamic Solubility Model

The saturation point of methane gas in both pure water and aqueous solutions has been
investigated by a number of researchers, providing experimental results with which to eval-
uate the accuracy of the thermodynamic model used by this study. Culberson et al. (1950)
provides experimentally determined methane solubility values for pure water systems at
298.15°K from 36 to 670 bar. These experimental values are in strong agreement with
those later determined by Chapoy et al. (2004), which also provides experimental solubil-
ity data for pure water systems at temperatures of 275.11°K, 283.12°K, and 313.11°K. The
impact of sodium chloride solutions on the solubility of methane gas was investigated by
O’Sullivan and Smith (1970), providing data for pressures ranging from 100 atm to 600
atm, and solutions ranging in molality from 1 mNaCl and 4 mNaCl.

A comparison of the results provided by the thermodynamic predictive model used in
this study and the experimental datasets is presented in Figures 3.2(a) to 3.2(d). From
inspection of these figures, the thermodynamic model closely matches the experimental
data for a variety of temperature, pressure, and salinity conditions. The average deviation
between the thermodynamic model and the data provided by Chapoy et al. (2004) and
the data of Culberson et al. (1950) are 0.94% and 9.9%, respectively; the higher deviation
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in the latter is understandable due to the larger degree of spread in the Culberson et al.
(1950) dataset. The average deviation between the predictive model and the data provided
by O’Sullivan and Smith (1970) is approximately 5% - with a higher deviation observed for
the more saline solution. In general, these results suggest that the thermodynamic model
used by this study can accurately predict the solubility of methane in both pure water and
aqueous solutions of NaCl for a range of temperatures and pressures.

3.3 Methane Hydrate Stability Calculation

The model proposed by Sun and Duan (2007) is used to predict the stability of hydrates
under three-phase equilibrium, taking into account the effects of temperature, pressure,
and salinity. In this study, the stability of methane hydrates is expressed in terms of
the pressure threshold for a given temperature and aqueous salt solution (ie. minimum
pressure required for the formation of gas hydrates). The pressure threshold (or three-
phase equilibrium point) of a gas hydrate is established at the point of equality between
the chemical potentials of the various phases, such that:

Apyy = oy — iy = py = 1ty = Dy (3.36)

where pf is the chemical potential of water in the hydrate lattice, uZ is the chemical
potential of water in the liquid phase, and p is the chemical potential of water in the
hypothetical empty hydrate lattice.

The statistical mechanics model proposed by Waals and Platteeuw (1959) is used to
calculate Apf| as provided in Equation 3.37.

2 N¢e
Apll = —=RT vin (1 - Zeij) (3.37)
i=1 j=1

where v; is the number of i-type cages per water molecule (equal to 1/23 and 3/23 for the
small and large cages of sl hydrate, respectively). §;; is the fractional occupancy of i-type
cages with j-type guest molecules (C'Hy in this study), which is dependent upon the type of
gas (guest) molecule as well as the size of the host cage. The expression for 6;; is provided
in Equation 3.38.

Cij [

91']‘ = No
1+> Cyfs
j=1

(3.38)
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Figure 3.2: Calculated methane gas solubility using predictive thermodynamic model with
experimental data for a) pure water at 275.11 K (Chapoy et al., 2004), b) pure water at
298.16 K (Chapoy et al., 2004; Culberson et al., 1950), ¢) aqueous solution of 1 mNaCl at
324.65 K (O’Sullivan and Smith, 1970), and d) aqueous solution of 4 mNaCl at 324.65 K
(O’Sullivan and Smith, 1970).
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C;j is the Langmuir constant of gas component j in the i-type cages, I is the universal
gas constant, and f; is the fugacity of gas component j in hydrate phase solved using the
same EOS method of Duan et al. (1992) introduced previously for the determination of

gas solubility conditions where:
f=Pyp (3.39)

The Langmuir constant is specific to the guest molecule cage occupancy and a function
of pressure and temperature. In the approach utilised by this study, the calculation of the
Langmuir constant is undertaken using the Kihara potential model, in which the empirical
parameters are based on experimental phase equilibrium data. This takes the form of the

following equation:
4 —w;i(r)\ o
C; = T /exp ( T ) redr (3.40)

where £ is the Boltzmann constant, and w;;(r) is the cell Kihara potential of gas j in the
i-type cage, solved using Equation 3.41.

B ol? 10 a o A a
wji(r) = 2ze (Rélr <5 + [R05H]> — Ror (5 + —[R055])) (3.41)

SN 1_L_1 _N_ 1_|_L_i " l (3.42)
- R. R. R. R. N '

where z is the coordination number for the cages, R, is the cage diameter, and a, € and
o are regression parameters of the Kihara potential. The values of the Kihara parameters
used in the calculation of the Langmuir constants for CH, vary slightly depending upon
the source. For this study, the values provided by Sloan Jr and Koh (2007) were used and
are presented in Table 3.7.

Table 3.7: Kihara Parameters for Langmuir Constant Calculation
Guest Cage Size 2z R, a e/k o
(pm) (pm) (K)  (pm)

CH4 Large 20 4326 38.34 154.54 316.50
Small 24 390.5 38.34 154.54 316.50

Different approaches have been suggested by a number of sources including empirical
approximations of Equation 3.40 (Sun and Duan, 2007; Dubessy et al., 1992a; Parrish
and Prausnitz, 1972; Munck et al., 1988) and more complex ab initio quantum chemical
methods (Sun and Duan, 2005), however, the use of Kihara potentials in this model seems
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to predict hydrate formation with sufficient accuracy compared to experimental data (see
validation results in section 3.3.1). A notable limitation of this method of calculating the
Langmuir constant is the need for Simpson’s (or similar) numerical integration methods,
which contributes to the computational runtime when applied to the regional model data.

The calculation of the AuZ term is performed using the following expression, introduced
by Holder et al. (1980)

T P
ANV AT AL AVB L
—2 =" - T -1 A4
BT BT, / i d +/ N, (3.43)
To 0
T
ARSE = ARD + ARSTE + / AC,dT (3.44)
To

where Ap? is the reference chemical potential difference of water between the empty hy-
drate lattice and ice at the reference temperature, Ty = 273.15°K, and zero pressure.
ARP~L is the enthalpy difference between water as a hydrate and in the liquid state,
and Ah? is the enthalpy difference between the hydrate phase and ice at the reference
temperature, Ty. AC, is the difference in isobaric thermal capacity, which is dependent
upon whether the temperature of the system is above or below the reference tempera-
ture, as presented in Table 3.8. Once again, due to the experimental determination of the
thermodynamic reference properties used in the Holder et al. (1980) expression, there is
considerable variation between the values provided by different sources; Tester et al. (2002)
provides a thorough summary of the range in these parameters, however, for this study
the values selected by Sun and Duan (2007) are used.

The difference in molar volume between hydrate and liquid water, AV~ can be
calculated by taking the sum of the molar volume of water in the empty hydrate phase,
V8 and the molar volume of ice, V1. Sun and Duan (2005) present expressions for V,?

and VI which are presented below in Equations 3.45 and 3.46, respectively.

VA = 0.1 x (11.820 4 2.217 x 107°T + 2.242 x 107°72)3
107394
N’B

w

Ve = 0.1 x (1.912 x 107 +8.387 x 1071°T 4 4.016 x 1071°7?) (3.46)

where NP is the number of water molecules per hydrate cell (equal to 46 for sI hydrates
of CHy) and N4 is Avogadro’s number. It should be noted that Equations 3.45 and 3.46
require the units of pressure to be MPa.

exp(—3.5 x 1074(P — 0.1) + 7.07 x 107%(P — 0.1)*%)  (3.45)
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Table 3.8: Thermodynamic Properties for AuZ (from Sun and Duan (2007))

N (J/mol) 1202

ARY (J/mol) 1300

ARSE (J/mol) -6009.5
where T' > Tj

ACS™F (J/mol/K) —38.12 4 0.141(T — Tp)
where T' < Tj

ACE™™  (J/mol/K)  0.565+ 0.002(T — Tp)

Although ions present in aqueous solution are not able to enter the hydrate lattice,
and thus do not impact the chemical potential of the hydrate lattice, they do change the
activity of the solution, impacting both the three-phase equilibrium conditions, as well as
the solubility of methane in the solution (Sun and Duan, 2007); the activity, a,, term is
used to account for this effect in Equation 3.43. The scope of this study specifically focuses
on the consideration of NaCl solutions involved in hydrate formation; however, the method
can be expanded to consider other electrolyte solutions.

The approach for calculating the activity of the solution is based upon the Pitzer (1991)
model, modified to include temperature-dependent parameter as determined by Spencer
et al. (1990). Equation 3.47 is used to calculate the activity of the solution:

MWwatervm

lna, = ———«— 3.47

e 000 ¢ (3.47)

where v is the stoichiometry of salt in solution (equal to the moles of cations and anions

in a mole of salt), m is the molality of the salt solution, and ¢ is the osmotic coefficient.

The value of ¢ is calculated using the following equation presented in Pitzer and Mayorga
(1973):

+.— A$705 +4— 0= )3/2

22T AT 2muto B+C¢m22(v v )Y

1=
¢ 14 1.2705 + vt + o vt +o~

(3.48)

where 2% /2~ are the respective charges of the salt cations and anions, A? is the Debye-
Hiickel parameter for the osmotic coefficient, and [ is the ionic strength of the salt solution.
B and C? are the second and third virial coefficients, respectively; B is a function of the
ionic strength, calculated using Equation 3.49, while C¢ (like A?) is considered to be
independent of ionic strength, and calculated using the temperature-dependent empirical
formula proposed by Spencer et al. (1990):

B = B 4+ 3W exp(—21°%) (3.49)

53



The second virial coefficient parameters 8 and ), along with A? and C?, are cal-
culated using Equation 3.50 along with the values provided in Table 3.9.

Par = c; + cT + ¢3/T + cylnT + csT? + cT° (3.50)

Table 3.9: Temperature Adjustment Constants for NaCl Solution Parameters of the Pitzer
Model (from Spencer et al. (1990))

Parameter A? 51(\?21,01 51(\2,01 Cz(@a,cz
c 86.6836498 7.87239712 8.66915291E+2 1.70761824
Co 8.48795942E-2 -8.3864096E-3 0.606166931  2.32970177E-3
C3 -1.32731477E+3  -4.96920671E+2  -1.70460145E+4 -1.35583596
Ca -17.6460172 -0.82097256 -1.671717296E-+2 -0.387767714
Cs -8.88785150E-5 1.4413774E-5 -4.8048921E-4 -2.46665619E-6
Co 4.88096393E-8 -8.7820301E-9 1.88503857E-7  1.21543380E-9

The determination of the pressure threshold is achieved by providing the system tem-
perature and salinity, and then iteratively solving for the value of pressure that satisfies
the equality between Equations 3.37 and 3.43. Based on these three inputs, Aul, AhP~L
AVP=L 9, and Ina,, are calculated and used to determine values of Apf and ApZ using
Equations 3.37 and 3.43, respectively. This process is repeated for iterations of pressure
until the equality, Aufl = ApL | is met. The tolerance used for this study was a difference
of 0.01%, which seemed to yield good results, although there is an inherent trade-off for
solution precision and computational run-time.

Because of the highly non-linear nature of this solution, and need for iterative ap-
proaches to determine hydrate pressure thresholds, this approach is computationally de-
manding. To reduce the computation time associated with calculating the pressure thresh-
old for hydrate formation associated with the exact salinity, temperature and pressure of
each location and time, characteristic curves were generated for the range of salinities (NaCl
concentrations) across the observed ranges in temperature and pressure. Hydrate pressure
thresholds were then determined at each point by interpolating between the characteristic
curves using the temperature and salinity values extracted from the regional-scale model
results.
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3.3.1 Validation of Thermodynamic Hydrate Stability Model

A number of researchers provide experimentally determined three-phase equilibrium points
for both pure water and aqueous solutions, which can be used to evaluate the accuracy
of the thermodynamic model used in this study. De Roo et al. (1983) provides a quality
data set of methane hydrate stability limits for pure water and aqueous NaCl solutions
for pressures up to 110 bar and concentrations up to 5.5 mNaCl. Jager and Sloan (2001)
later provided a data set with a greater pressure range, extending up to 700 bar and
concentrations of 4.8 mNaCl. Kharrat and Dalmazzone (2003) provides limited data for
the three-phase equilibrium point of methane hydrate in pure water and NaCl solutions;
however, this data does overlap with measurements conducted by Jager and Sloan (2001)
and De Roo et al. (1983), which allows for a comparison of the different datasets. From
inspection of Figures 3.3(a) to 3.3(d), the experimental datasets provide consistent deter-
minations of the methane hydrate three-phase equilibrium point.

The ability of this model to predict the three-phase equilibrium point for methane
hydrate in pure water is very high, with an average deviation of about 3.1% from the
experimentally determined values of hydrate stability pressure. The model predicts the
three-phase equilibrium point in aqueous solutions of NaCl, with average deviations of
2.7%, 4.3% and 6.1% for the NaCl solutions of 1.1m, 2.1m and 5.9m, respectively. As with
the solubility model, the accuracy seems to decrease as the molality of NaCl increases;
however, the deviation remains within an acceptable limit, suggesting that this thermo-
dynamic model is capable of accurately predicting the three-phase equilibrium point of
methane in pure water and NaCl solutions.
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Figure 3.3: Calculated methane hydrate stability using predictive thermodynamic model
with experimental data for a) pure water (De Roo et al., 1983; Jager and Sloan, 2001;
Kharrat and Dalmazzone, 2003), b) aqueous solution of 1.1 mNaCl (Jager and Sloan,
2001), ¢) aqueous solution of 2.1 mNaCl (Jager and Sloan, 2001), and d) aqueous solution
of 5.9 mNaCl (De Roo et al., 1983; Jager and Sloan, 2001; Kharrat and Dalmazzone, 2003).
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Chapter 4

Results of Paleo-Simulation

A primary goal of the analyses of this study is to determine whether the conditions for
methane hydrates to form in the subsurface have arisen at the Bruce nuclear site during
periods of glaciation in southern Ontario. This study was undertaken to provide a first
assessment of whether the potential impacts of these paleo- methane hydrates should be
considered in the design of the proposed DGR. Upon confirming the potential for hydrates
to form, this study provides a first attempt at estimating the potential duration and spatial
extent of these hydrate stability zones. The output files generated from the transient
modelling of temperature, pressure and salinity across the regional domain were combined
and processed using the thermodynamic methane hydrate stability and methane solubility
models.

Based on the methodology employed by this study, conditions conducive to the for-
mation of methane hydrates are achieved within portions of the study site during the 120
thousand year modelling period. A detailed discussion of the evolution of pressure and
salinity profiles in the model domain is provided by Sykes et al. (2011). This chapter will
therefore focus on the more novel results pertaining to the temperature profile, hydrate
stability zones and methane saturation across the study site. In addition to the figures
and results presented in this chapter, block-cut figures and fence diagrams of the regional-
scale model are provided in Appendix B showing the initial conditions at the start of the
simulation, and at the points of maximum potential hydrate extent.
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4.1 Temperature Model

In order to estimate the extent of a hydrate stability zone and methane solubility in the
subsurface, it was necessary to have site-wide estimates of the temperature for the dura-
tion of the study period. Since these values were not provided in the regional-scale model
previously developed by Sykes et al. (2011), a simplified approach to numerically model
temperature was undertaken by this study. The simplified modelling approach was under-
taken using FRAC3DVS-OPG with lithology-dependent geothermal parameters applied to
the various model layers. A constant heat flux equal to 45 W/m? was applied to the base
of the model, while sub-glacial temperatures calculated by Peltier (2011) were applied as
a distributed transient Dirichlet boundary condition along the top of the model. Figure
4.1 presents the temperature histories for points within various formations at two locations
within the study domain: a) at the Bruce nuclear site, and b) approximately 45 km to the
east of the Bruce nuclear site, closer to the eastern edge of the Michigan basin.

Temperatures near the surface of the regional domain fluctuate over time, while gen-
erally demonstrating a decreasing trend until they undergo an eventual recovery at ap-
proximately 12 ka before present. As expected, deeper locations within the study domain
experience less of this temperature fluctuation as the overlying materials act as a thermal
buffer from atmospheric variations. However, as formations pinch out towards the basin
margins, the older formations become more exposed to the atmospheric conditions. This
can be seen by comparing the temperature profiles of the Niagaran, Cobourg and Shadow
Lake formations presented in Figures 4.1(a) and 4.1(b).

It is understood that the method employed by this study to model the transient tem-
perature distribution in the subsurface is overly simplified by not including such potentially
important processes as convective heat transport by flowing waters or the effect of latent
heat storage. However, these results are meant to represent a first approximation of tem-
peratures across the model domain to permit the estimation of methane hydrate stability,
which is the focus of this study. Because temperature, pressure and salinity modelling is
undertaken independent of the thermodynamic models, the framework used by this study
allows for future improvement on how temperature is modelled at the study site. In addi-
tion, the sensitivity of the results of this study are examined with respect to temperature
in the following section (Section 4.2).
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Figure 4.1: Temperature histories for various formations at a) the Bruce nuclear site
(NAD83 UTM 17N 4.54139x10°E 4.90778x10°N) and b) 45 km to the east toward the
basin edge (NAD83 UTM 17N 4.99040x10°E 4.90778x10°N).

4.2 Methane Hydrate Stability Results

The results of thermodynamic modelling of methane hydrate stability at the Bruce nuclear
site have shown that there are periods in which potential hydrate formational zones are
present based on the pressure, temperature and salinity profiles. Figure 4.2 shows that
there are in fact two separate periods during which hydrate stability conditions arise in
the study domain, the details of which are presented in Table 4.1. The second of the two
hydrate stability periods was found to be the larger of the two, both in spatial extent
(occupying 11.3% of the study domain volume) and duration (lasting 9,500 years). The
timing of these two hydrate stability periods correspond to the two periods of ice sheet
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cover identified by the UoT Glacial Systems Model (Peltier, 2011).

100.0%
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Figure 4.2: Percentage of model domain volume where pressure, temperature and salinity
conditions are conducive to methane hydrate stability during the study period.

Table 4.1: Summary of Potential Methane Hydrate Stability Periods

Duration Max. Extent Max. Depth (Elevation)

Period 1

6.5 ka 9.51% Domain Volume -417.0 mAMSL

(62.5 kaBP to 56.0 kaBP) (58.5 kaBP) (57.5 kaBP)

Period 2

9.5 ka 11.28% Domain Volume -437.8 mAMSL

(23.0 kaBP to 13.5 kaBP) (19.5 kaBP) (16.5 kaBP)
Note: Percent volume of model domain calculated using volumetric integration feature in Tecplot
360™.

The evolution of the temperature, pressure, and salinity at discrete points within the
Niagaran (Figure 4.3(a)) and Salina E (Figure 4.3(b)) formations are presented to demon-
strate the application of the predictive hydrate stability and methane saturation models -
although the latter is considerably more straightforward since the thermodynamic model
generates a direct estimation of the saturation limit. The conditions required for the sta-
bility of gas hydrates can be conceptualized as a hydrate stability threshold (pressure) that
is a function of temperature and salinity, and must be exceeded by formation pressures in
order for hydrates to form.
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Further evidence that the two periods of hydrate stability are separate and distinct can
be seen by reviewing the pressure, temperature and salinity histories at specific observation
points within the study domain (Figure 4.3). As can be seen in Figure 4.3, the shallower
Salina E observation point undergoes two periods during which the formation pressures
exceed the hydrate stability threshold, while there is only one period of hydrate stability
at the observation point within the Niagara formation. From these results it can be seen
that the later of the two hydrate stability periods extends deeper into the subsurface as a
result of a higher pressure peak and lower salinities and temperatures than in the previous
stability period.

For consideration of the spatial extent of the two periods of hydrate stability, the fence
diagram montages in Figures 4.4(a) and 4.4(b) illustrate the evolution of the potential
hydrate formational zones across the site during the two periods of anticipated hydrate
stability. At the first instance of hydrate stability conditions (62.5 kaBP), the region
of potential hydrate formation evolves quickly to include the majority of the Devonian
lithologic units and many of the Silurian units where they become shallow toward the
north east end of the site (Figure 4.4(a)). The extent of the potential hydrate formational
zone gradually expands during this period to include nearly all of the Silurian units where
they pinch out against the basin limits (Algonquin Arch). Toward the basin centre, the
hydrate stability zone does not extend past the shallowest units of the Upper Silurian.
After the maximum extent of the hydrate stability zone at approximately 58.5 kaBP, the
stability region begins to recede as excess pressure (above the hydrate stability threshold)
begins to dissipate across the site.

The onset of the second occurrence of hydrate stability (Figure 4.4(b)) begins at 23
kaBP in the shallow Devonian layers. The stability zone quickly expands to include all
of the Devonian and the shallow units of the Upper Silurian. As was the case in the
earlier stability period, the region of potential hydrate formation extends down to include
all of the Silurian units toward the north east corner of the study domain where these
lithological units pinch out against the edge of the basin, while the limit of the stability
zone is restricted to the shallowest units of the Upper Silurian toward the basin centre.
Although there is a slight drop-off in the formation pressure (and therefore the excess
pressure for hydrate stability) after the maximum hydrate extent at 19.5 kaBP, conditions
conducive to hydrate stability are sustained across much of the surface of the site despite
this pressure lull until the end of the second stability period at 14.5 kaBP.

Cross-sections of the site showing the extent of hydrate stability superimposed on litho-
logic layers and key parameters (pressure, salinity and temperature) are provided at the
maximum spatial extent of hydrate stability for the first (Figure 4.5) and second (Figure
4.6) periods of potential hydrate formation. Comparison of the hydrate stability extent
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Figure 4.7: Sensitivity of methane hydrate stability results to modelled temperature pro-
file, presented at discrete points within the a) Niagaran (NAD83 UTM 17N 4.95607x10°E
4.88316x10°N, Z=107 mAMSL), and b) Salina E (NAD83 UTM 17N 4.95607x10°E
4.88316x10°N, Z=250 mAMSL) Formations.

with lithologic layers once again demonstrates how the potential formational zone extends
into the older Late Ordovician units towards the east end of the site, while being restricted
to only the Upper Silurian units towards the basin centre. By investigating the distribution
of key parameters along the same cross-section, it can be seen that pressure and salinity are
largely responsible for this trend: a region of low pressure appears in the Upper Silurian
units extending west from an easting of approximately 4.8x10°m. This location also marks
a dramatic shift in TDS from the fresher waters near the surface to hypersaline brines

in the intermediate geologic zone, which raise the threshold pressure required for hydrate
stability.

Due to the simplified approach used in this study to estimate the subsurface tempera-
ture profile during the study period, a sensitivity analysis was undertaken by adjusting the
modelled temperatures by 4 /-2°C and re-evaluating the methane hydrate stability thresh-
old for the discrete points presented in Figure 4.3. In general, the results of this sensitivity
analysis (Figure 4.7) show that increasing the temperature by 2°C will reduce the extent
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of potential hydrate stability conditions. This can be seen in the deeper Niagaran location
(Figure 4.7(a)), where the second hydrate formational period (corresponding to the second
period of glacial advance) only exceeded the stability threshold for a period of approx-
imately 3ka (compared to original estimates of approximately 9.5 ka). The estimates of
hydrate stability in the shallower units (such as the Salina A formation, presented in Figure
4.7(b)) are less sensitive to modelled temperature results, with subsurface pressures during
both of the two glacial episodes being sufficient to exceed the hydrate stability threshold
calculated with increased temperature inputs. These results suggest that the extent and
duration of the potential methane hydrate stability zone is sensitive to underestimates of
temperature, particularly in the deeper units due to formation pressures that exceeded the
hydrate stability threshold by only a small margin. The shallower units, however, experi-
enced formation pressures that far exceeded the local hydrate stability threshold, making
them considerably less sensitive to error in the estimated temperature profile.

4.3 Methane Solubility Results

In order for methane hydrates to form, there must be sufficient methane present to exceed
the local solubility limits of the aqueous (groundwater) solution. To this end, the methane
solubility across the site was determined by using the temperature, pressure and salinity
outputs of the regional-scale numerical model as input parameters for the predictive ther-
modynamic model based on the theory proposed by Sun and Duan (2007), as described
in Section 3.2. In general, the results of the methane solubility modelling show that the
saturation limit remains relatively low and stable for the periods without ice sheet cover,
and undergoes drastic increases during the two periods of glacial advance (Figure 4.8).

During the periods without glacial cover, the methane solubility in the groundwater
remains relatively low, and does not exceed 0.09 mol/kg at any point within the study
domain. When ice sheets advance across the site, the methane solubility increase drastically
across the site, with a maximum solubility of 0.26 mol/kg achieved during the second
period of glacial advance; this response is predicted by Henry’s Law, according to which
an increase in (formation) pressure will result in an increase in the solubility of a gas in
solution. The extent of the mechanical loading impact by glaciers can be inferred from
Figure 4.8, where all three curves undergo an appreciable increase during these periods.
These increases are presented quantitatively in Table 4.2.

The irregular spatial distribution of methane solubility across the site is understand-
able considering the complex relationship with temperature, pressure and salinity, and the
irregular distribution of these parameters across the study area. While temperature and
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Figure 4.8: Methane solubility (maximum, minimum, average) across the domain for the
120 ka study period. Shaded regions delineate the timing of the two episodes of glacial
advance across the study site.

Table 4.2: Summary of increases in methane solubility (molality = mol/kg) during periods
of ice sheet loading at the site.

Methane Solubility: Maximum Minimum Average
Interglacial Period 0.0889 0.0004 0.0228
First Glacial Period 0.2026 0.0097 0.0912
(% increase from interglacial) 128.0% 2212.8% 299.4%
Second Glacial Period 0.2563 0.0023 0.1000
(% increase from interglacial) 188.4% 447.5% 338.1%

pressure both generally follow an increasing trend with depth, their respective impacts on
the solubility of methane are opposite to one another (ie. increasing temperature reduces
solubility - increasing pressure increases solubility). Salinity also has an inverse relation to
solubility, however, this parameter is governed largely by lithology and does not strictly
adhere to a depth-dependent generalization on a site-wide scale due to the sloping and
pinching-out of formations.

Figure 4.9 presents the distribution of methane solubility along with the key param-
eters (pressure, salinity and temperature) at a cross-section of the site at the end of the
study period. In interpreting these figures, recall that methane solubility during inter-
glacial periods remains fairly constant such that the solubility at the last time step of the
analysis is fairly representative of prior interglacial times. From inspection, it can be seen
that solubility generally increases with depth during interglacial periods with an excep-
tion being at the western side of the study area. This region of increased solubility can
be attributed to the low salinity in the deeper formations at this location, combined with
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increased formation pressures associated with depth. During these interglacial periods, the
high pressures deep in the sedimentary basin overcome the inverse impacts of salinity and
temperature, resulting in the generally increasing trend in solubility across the depth of
the model domain.

The distribution of methane solubility and the key parameters are presented for the two
periods of glacial advance in Figures 4.10 and 4.11 for the same cross-section. In contrast to
the interglacial periods, during the periods of glacial advance the highest solubility values
occur at the top of the model domain during glacial loading, and tend to decrease with
depth into the older geological units. This shift in the methane solubility regime occurs in
response to the high pressure loads imparted by the overlying glaciers to the shallower for-
mations. From inspection of Figures 4.10 and 4.11, it can be seen that solubility decreases
sharply around the Middle Silurian Units, where the groundwater geochemistry shifts from
fresh to hypersaline. Expectedly, the higher pressures present during the second glacial
advance result in larger solubility values at the site, although the solubility spike in the
shallow units sharply decreases along similar boundaries as in the first glacial advance -
around the Niagaran /Fossil Hill to the east, and the upper Salina units to the west. Beyond
the Ordovician sedimentary units, the interglacial trend of increasing solubility with depth
is restored, although solubility remains lower than the values at the top of the domain.
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Chapter 5

Discussion

The modelling results presented in the previous chapter show that the pressure, tem-
perature and salinity conditions conducive to the formation of methane hydrates in the
subsurface were achieved within the study area during two separate periods corresponding
to glacial advances across the region. These results represent a first attempt at evaluating
the presence of paleo-methane hydrates in the region, and therefore provide a spatial and
temporal context for discussing their specific impacts on the evolution of groundwater and
hydrogeochemistry within the region.

5.1 Methane Hydrates as a Barrier to Meltwater Pen-
etration

During the periods of glacial advance, mechanical loading from the ice sheets imposed sig-
nificant increases in hydraulic head upon the underlying groundwater systems. The result
is the generation of large lateral (basin-ward) hydraulic gradients as the ice sheets over-
ride the recharge areas where the sedimentary units outcrop at the ground surface (Bense
and Person, 2008; Mclntosh et al., 2010). Because the extent of meltwater penetration is
strongly dependent upon the permeability of the sedimentary rocks, and the presence of
fractures and conductive faults (Lemieux and Sudicky, 2010), the formation of methane
hydrates within the more hydraulically conductive formations where they subcrop would
reduce the effective permeability and limit the degree of subglacial recharge or pore fluid
efflux. The Salina A1 Carbonate and Guelph (included in the Niagaran Group) regional
aquifer units are considered to be likely conduits for meltwater penetration for these rea-
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sons. The coverage of these two units by the potential hydrate formational zone estimated
by this study is presented in Figures 5.1 and Figure 5.2, respectively.

The pressure-temperature-salinity conditions conducive to the stability of methane hy-
drates within the subcrop areas (and extending farther basin-ward) in both the Guelph
(Niagaran) and Salina A1 Carbonate units suggests that the impact of paleo-methane hy-
drates within the sedimentary aquifer units in conceptual models of Pleistocene glaciation
and recharge should be considered. Supporting modelling work could be conducted to ex-
plore the case where the presence of hydrates results in reduced permeability in these key
subcrop areas, and the influence on glacial, inter-glacial and post-glacial hydraulic head
distributions across the study area.

The interpretation of basin hydrogeochemistry in the context of paleo- methane hy-
drates is fraught with considerable challenges: firstly, the indicators of methane hydrate
dissociation are not necessarily differentiable from a number of other antecedent, con-
current and subsequent diagenic or hydrogeologic processes. Secondly, the understood
signatures of methane hydrates are not necessarily preserved in the subsurface over the
period of approximately 10,000 years since their dissociation at the end of the last glacial
cycle - particularly in the shallower subcrop regions where there is more flux of meteoric
water. Furthermore, the presence of methane hydrates would simultaneously limit the
extent of freshening by meltwater penetration (due to the constriction of permeability in
the recharge areas), and result in local freshening of the groundwater, driven by the salt
excluding nature of hydrate structures and the freshening that ensues during dissociation
(Dallimore et al., 2005).

These factors are compounded in this study by the difficulty in attaining hydrogeo-
chemical data for the region of the study area corresponding to the potential hydrate
formational zone; the geotechnical boreholes at the Bruce nuclear site are approximately
15 km from the edge of the estimated hydrate stability zone in the Upper Silurian for-
mations. The data that is available for the Devonian stratigraphy that falls within the
paleo- hydrate stability region show patterns of reduced freshening (TDS <500 mg/L) and
increased heavy isotope ratios in the groundwater (6**0O = —10%0 and 6 H = —80%0) that
could be indicative of hydrate dissociation (Figure ?7). However, these are much more
likely reflecting the exposure of these systems to far more recent meteoric water recharge
(Al et al., 2011). It is interesting to note that some of the isotope data collected from the
Devonian carbonates and shales show an enrichment in §'¥0 compared to the VSMOW
meteoric water line (Figure 2.8b), which could be caused by selective incorporation of these
heavier isotopic molecules into the hydrate structures (Hesse and Harrison, 1981).

The impact of these hydrates on the subsurface flow system should be examined in fu-
ture work to determine whether they can account for the salinity profiles and environmental
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Figure 5.1: Plan view showing the extent of the potential hydrate formational zone within
the Salina A1 Carbonate formation at the a) first (58.5 kaBP) and b) second (19.5 kaBP)
maximum formational zone extents. Note that the potential hydrate zone (indicated by
dotted area) applies only to the Salina A1 Carbonate unit and the underlying units as they
subcrop to the northeast. 75
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Figure 5.2: Plan view showing the extent of the potential hydrate formational zone within
the Niagaran group at the a) first (58.5 kaBP) and b) second (19.5 kaBP) maximum forma-
tional zone extents. Note that the potential hydrate zone (indicated by dotted area) applies
only to the Niagaran group and the underlying units as they subcrop to the northeast.
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tracer distributions that are present at the study site (Section 2.2). Of particular interest
would be the anomalous salinity and §'*O profiles found in the Middle and Upper Silurian
units. In addition, the localized freshening of the Guelph formation should be analysed in
the context of hydrate-related salt exclusion in order to further support modelling work to
delineate the hydrate stability zone in the study area.

5.2 Consideration of Methane Gas Availability

Since methane must be present at concentrations exceeding local saturation to facilitate
hydrate growth, the delineation and quantification of methane in the subsurface is critical
to accurately predict the occurrence of methane hydrates. Given the scale of the site,
the period of interest, and the complexity of modelling the evolution and migration of
a methane gas phase, the scope of this study was limited to identifying the solubility of
methane in the sedimentary units, in order to determine the amount of methane necessary
for hydrate formation. Many of the Devonian and Silurian aged units are utilized as major
sources of natural oil and gas in southwestern Ontario, with the Upper Silurian pinnacle
and incipient reef complexes of the Upper Silurian representing the majority of the methane
gas plays in Ontario (Barker and Pollock, 1984). Northward from the major oil and gas
plays of southwestern Ontario, the resources of natural gas are regarded as being limited
due to the cementing of reefal pores by halite salt (Barker and Pollock, 1984). However,
laboratory testing of preserved cores from DGR exploration wells at the Bruce nuclear site
by Clarke et al. (2010a,b) did capture notable increases in methane concentration in the
Guelph and Salina A1 carbonate units.

The same analyses by Clarke et al. (2010a,b) identified a significant presence of methane
at the contact between the Middle and Upper Ordovician sequences (Figure 2.10) in excess
of 0.18 mol/kg. The organic-rich shales at the base of the Blue Mountain formation are
the subject of considerable natural gas resource exploration in the United States (where
it is known as the Utica shale formation) (Lehmann et al., 1995) and wells within the
contact aquifer where the Blue Mountain subcrops in Ontario are known to have methane
gas present (Armstrong and Carter, 2010). Figure 5.3 illustrates the extent of the potential
hydrate stability zone within the Late Ordovician predicted by this study; considering the
observed presence of considerable quantities of methane within this unit, there is promising
evidence to support the formation of hydrates towards the subcrops of the Blue Mountain
formation of the Late Ordovician. Contemporary values could be used to infer concen-
trations during the paleo-simulations in place of modelling the multi-phase evolution of
methane gas over the study period, however, such an attempt should be approached care-
fully, as the distribution of methane is not continuous within lithologies across the site.
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Chapter 6

Conclusions and Recommendations

A gas hydrate refers to the specific case in which a gas molecule is entrapped by a lat-
tice of hydrogen-bonded water molecules. Methane hydrates are found in vast quantities
around the world, deposited in ocean sediments on the continental margins and terres-
trial lithologies in permafrost regions. Estimates of the quantity of methane stored in the
global hydrate reservoirs are highly varied, although the approximate value of 1x10!° g
of methane carbon has been proposed by (Kvenvolden and Rogers, 2005) to represent a
‘consensus estimate’ of the present size of the hydrate-stored methane. To date, a number
of instances of gas hydrates forming in the subsurface below layers of permafrost have been
identified, while the challenge of identifying past occurrences remains relatively unmet. The
impacts of global cooling and glacial advance are understood to encourage the stabilize the
formation of hydrates in terrestrial polar regions as a result of the lower temperatures and
the increased pressures imparted on the subsurface pressure regime (Kvenvolden, 1998).
During these periods of glacial/permafrost cover, the presence of hydrates could have a
significant impact on the groundwater flow system, due to the significant reduction of the
porosity and permeability of hydrate saturated sediments, resulting in the obstruction of
glacial melt water penetration or pore fluid efflux (Stotler et al., 2010); however, it is dif-
ficult to measure these impacts because their dissociation leaves few definitive markers as
to their spatial and temporal extent.

The formation of gas hydrates is limited to the locations where (1) the required pressure
and temperature conditions for a given aqueous system are such that the equilibrium point
between the hydrate, liquid and free-gas phases (called three-phase equilibrium point)
is reached or exceeded; and (2) where the abundance of methane is sufficient to exceed
the local solubility. Thermodynamic models initially proposed by Duan and Mao (2006)
and Sun and Duan (2007) are used to determine the solubility of methane gas and the
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conditions for methane hydrate formation across the study area, respectively. The inputs
required for the thermodynamic modelling of methane solubility and methane hydrate
stability were generated in this study by combining the independently-run transient three-
dimensional temperature model output, with the pressure and salinity outputs from the
base-case regional-scale model prepared by Sykes et al. (2011).

6.1 Conclusions

This study presented a framework employing regional-scale numerical modelling and ther-
modynamic predictive modelling to identify potential paleo-methane hydrate stability
zones in the subsurface at the Bruce nuclear site as a first step to ultimately assessing
the extent of paleo-methane hydrates and their impact. Transient subsurface conditions
were modelled over a period of 120ka, encompassing episodes of glacial advance and retreat
during the Pleistocene epoch. The major results of this study are as follows:

e Based upon the subsurface temperature-pressure-salinity histories determined using
a three-dimensional regional-scale numerical modelling approach and a thermody-
namic model for hydrate stability, subsurface paleo-conditions at the Bruce nuclear
site become conducive to methane hydrate formation during the 120,000 year study
period.

e Two episodes of methane hydrate stability conditions were identified at the study site
— lasting from 62.5 kaBP to 56 kaBP and 23 kaBP to 13.5 kaBP — and presumably
separated by periods of hydrate dissociation.

e Both of the potential hydrate formation episodes correspond to periods of substan-
tially increased hydrostatic pressures within the shallow geologic units due to the
mechanical loading of ice sheets during glacial advance across the site.

e During both episodes, potential hydrate formational zones grow from the north end
of the site following the southward progression of the advancing glaciers, ultimately
extending horizontally across the entire study site.

e The second of the two events of potential hydrate stability represents that larger
episode both in terms of spatial extend (covering 11.3 % of the study domain) and
duration (9.5 ka).
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e The vertical extent of the estimated hydrate stability zone varies across the site,
however it generally follows the limits of the Upper Silurian units, penetrating to
deeper elevations towards the south west end of the study area. At the north east
end of the study area where the sedimentary units pinch out against the Algonquin
Arch, the potential hydrate formational zone extended down to the Precambrian
basement.

e During the periods of glacial advance, potential hydrate formational zones were found
to form across the area of the site where the sedimentary units of the Silurian and
Ordovician outcrop below the ice sheets. These are generally regarded as major
conduits of meltwater penetration beneath the ice sheets, in which the formation
of methane hydrates would result in the constriction of rock permeability and the
limiting of recharge.

e Due to the limited availability of hydrogeochemical data within the portion of the
study area identified as being a potential site of paleo- hydrate formation, evaluation
of the potential natural tracer evidence was not possible, and remains a goal for
future research (described in section 6.2).

6.2 Recommendations for Future Work

The recommendations for future work related to the framework proposed in this study
(both specific to the Bruce nuclear site, as well as the more general application of this
approach to other sites with potential hydrate stability zones) can be grouped into two
fields of focus: (1) the augmentation and refinement of the spatial and temporal input
parameters, derived from regional-scale numerical modelling work, and (2) the expansion
of the means by which hydrate stability zones are identified within the model.

Although the focus of this research was the application of the thermodynamic model
to identify the occurrences of methane hydrate stability zones, the accuracy of the results
depends heavily upon the ability to predict subsurface conditions throughout the glacial
advances and retreats during the 120 ka study period using regional-scale numerical mod-
els. To reduce the model complexity (and closely-related computation-time), simplifying
assumptions were made to allow for the development and implementation of the approach
used in this study; however, given the criticality of having accurate output from the numer-
ical modelling work, the following improvements are recommended to address the following
assumptions:
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e The assumption that no free-gas phase is present in the subsurface ignores the pres-
sure buffering impact that a free-gas phase would impart during the mechanical
loading of glaciers. As a result, the pressure spikes that result from these episodes
of glacial cover may be overestimated. Since the results of this study indicate that
these drastic increases in hydrostatic pressure caused by these glacial episodes are
the initiators of the methane hydrate stability zones, further modelling should be
performed to determine the sensitivity of the hydrate stability zone occurrences to
the impact of free-phase gas in the subsurface.

e Coupling of the regional-scale heat flow model with the regional-scale hydraulic head
and solute transport model, to allow for the penetration of cool glacial meltwaters
into the subsurface. The incorporation of latent heat effects of the permafrost and
rock matrix into the model should be considered. Although the results of this study
seem to suggest that the episodes of hydrate formation were induced by the increase
in hydrostatic pressure from the glacial loading rather than reduced temperatures,
refinement of the temperature history may help to elucidate hydrate stability zones
occurring at the fringes of those predicted by this study, as well as the persistence
of these zones due to the thermal buffering effects of the permafrost (Taylor et al.,
2005).

e While this study uses a simplified approach to handle the composition of salinity
within the regional domain, by assuming all TDS is dominated by NaCl, the use
of formation specific mineral compositions is accommodated by the thermodynamic
model and would improve the accuracy of the study results. Present day formation
water mineral compositions could be applied to the TDS profiles generated by the
numerical modelling; in this way, the need for complex, multi-solute modelling may
be mitigated.

The outputs generated by numerical modelling work are compiled and then processed
using the thermodynamic model based on the theory by Duan and Mao (2006) to predict
the location and timing of possible hydrate stability zones within the study domain. The
approach taken in this study offers encouraging evidence for the occurrence of methane hy-
drates during glacial episodes at the Bruce nuclear site; however, even with highly accurate
inputs from numerical modelling work, the ability to declare with certainty if and when
hydrates have formed will remain elusive without due consideration of a number of factors
that have, as yet, not been incorporated into this study. The following recommendations
are made regarding future work to improve both the accuracy and certainty with which
these paleo- hydrate stability zones are identified:
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e Indicators such as 6D depleted methane molecules (Hachikubo et al., 2007) and
elevated concentrations of the C1 (methane) and C2 (ethane) gases compared to the
C3+ gases have been suggested as possible signatures of methane hydrates (Milkov
et al., 2004). These could be evaluated given the availability of reliable data in
the predicted hydrate stability region of the study area. It should be noted that
these geochemical characteristics are far from unique to hydrates and should not be
considered as stand-alone qualifiers for the presence of hydrates.

e Since methane must be present at concentrations exceeding local saturation to fa-
cilitate hydrate growth, further delineation and quantification of methane in the
subsurface is critical in order to accurately identify the occurrence of methane hy-
drates. Contemporary values could be used to infer concentrations during the paleo-
simulations in place of modelling the multi-phase evolution of methane gas over the
study period, which would seem impractical given the size and complexity of the
study domain, and the duration of the simulation. Such an attempt would need
to be approached with careful consideration given to the selection of representative
data, since the distribution of methane is not continuous within lithologies across the
site.

e Based on the delineation of potential hydrate formational sites provided by this
study, the impact of hydrates on the subsurface flow system should be examined
to determine whether they can account for TDS profiles and environmental tracer
distributions that are present at the study site - specifically the anomalous salinity
and %0 profile found in the Middle and Upper Silurian units. Supporting modelling
work could be conducted to explore the case where the presence of hydrates results in
reduced permeability, acting as a barrier to freshening of groundwater from meltwater
penetration and solute transport.

e In order to better understand both the extent and impacts of the presence of paleo-
hydrates in the subsurface, the use of a kinetic model is recommended (particularly for
the dissociation of methane hydrates during glacial retreat) in future work to better
answer the question of how long hydrates persisted in the subsurface subsequent to
their formation. Although the thermodynamic model used in this study is sufficient
for providing a conservative estimate of how long methane hydrates might persist,
dissociation of a hydrate field will not occur spontaneously once conditions are no
longer conducive to hydrate stability. While a number of studies have been conducted
which propose methods for predicting dissociation rates of hydrates that could be
applied to the framework implemented in this study, the effective implementation of
these models is challenging due to the complexity of the multi-phase kinetics of these
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compounds (Sloan, 2003).

Although the impact of porosity on the thermodynamics of methane hydrate forma-
tion was not included in this study, pore size does affect hydrate stability conditions
(Dallimore et al., 2005). Future work should therefore include the addition of this
component to the predictive model, which would extract porosity values from the fi-
nite element mesh along with temperature, pressure, and salinity from regional-scale
numerical model output.
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and Temperature
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Table A.1: Summary of Groundwater Flow Parameters for Formations of the Regional-
scale Numerical Model. Modified from Sykes et al. (2011).

Formation Ky (m/s) Ky (m/s) Ss(m™') 0 s T

Drift 1.0x10°8 5.0x109  9.9x10° 0.200 0.99 4.0x10"
Hamilton Group 2.2x1010  2.2x10'2  1.5x10%  0.100 0.80 1.2x10°"
Dundee 8.4x1078 8.4x107 1.5x10% 0.100 0.80 1.2x10°!
Detroit River Group 5.9x10°7 2.0x10%  1.4x10° 0.077 0.84 9.4x1072
Bois Blanc 1.0x10°7 1.0x10°8 1.4x10°%  0.077 0.84 9.4x1072
Bass Islands 5.0x10® 1.7x10°%  2.0x10°% 0.056 0.92 2.8x107"
Unit G 1.ox10°"  1.0x10'?2  1.1x10% 0.172 0.55 3.0x10°
Unit F 5.0x10°'*  5.0x10'°  9.5x107 0.100 0.68 4.9x1072
Unit F Salt 5.0x10°'*  5.0x10'®  9.5x107 0.100 0.68 4.9x10°2
Unit E 2.0x10°1®  2.0x10*  6.5x107 0.100 0.51 5.7x10°2
Unit D 2.0x10°1®  2.0x10*  6.4x107 0.089 0.53 6.4x1072
Units B and C 4.0x1013  4.0x10™  9.5x107 0.165 0.38 8.4x102
Unit B Anhydrite 3.0x103  3.0x10™  6.9x107 0.089 0.53 1.0x103
Unit A2 Carbonate 3.0x1019  3.0x10  7.2x107 0.120 0.46 1.2x102
Unit A2 Evaporite 3.0x103  3.0x10™  5.8x107 0.089 0.53 1.0x103
Unit A1 Carbonate 9.0x10'2  5.0x10'%  4.1x107 0.007 0.84 1.0x1072
Unit A1 Evaporite 3.0x10  5.0x10*  3.9x107 0.032 0.94 5.2x1073
Niagaran Group 3.6x10°  25x107%  2.7x107  0.026 0.66 1.2x1072
Reynales / Fossol Hill 5.0x1012  5.0x10'%  2.9x107 0.031 0.62 6.2x10"
Cabot Head 9.0x10*  5.0x10"®  1.1x10% 0116 0.60 3.2x1072
Manitoulin 9.0x10*  9.0x10*®  7.5x107 0.028 0.86 6.4x103
Queenston 2.0x10*  2.0x10%  9.0x107 0.073 0.71 1.6x1072
Georgian Bay / Blue Mtn.  3.6x10'*  3.3x10°'®  1.2x10% 0.070 0.79 8.8x1073
Cobourg 2.0x10*  2.0x10%  2.6x107 0.015 0.80 3.0x1072
Sherman Fall 1.0x10°  1.0x105  4.9x107 0.016 0.88 1.7x1072
Kirkfield 8.0x10®  8.0x107'6  4.9x107 0.021 0.85 2.4x1072
Coboconk 4.0x102  4.0x10%  4.6x107 0.009 0.93 3.6x1072
Gull River 7.0x10°1®  7.0x106  4.9x107 0.022 0.85 1.4x107?
Shadow Lake 1.0x10°  1.0x10"?  7.4x107 0.097 0.56 7.6x10°2
Cambrian 3.0x1076 3.0x10%  3.7x107 0.071 0.34 1.3x107"
Upper Precambrian 1.0x10°10 1.0x10'°  2.6x107 0.038 0.49 9.5x103
Precambrian 1.0x10"2  1.0x10'2  1.5x107 0.005 0.88 7.2x102
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Table A.2: Summary of Solute Transport Parameters for the Regional-scale Numerical
Model. Modified from Sykes et al. (2011).

Formation 05 T p (kg/m?) TDS (¢g/L) D, (m?/s)?
Drift 0.200 4.0x107" 1,000 0.0 1.484x107
Hamilton Group 1,008 1.2x107* 12.0 0.80 1.484x107
Dundee 0.100 1.2x10°" 1,005 8.0 1.484x107
Detroit River Group 0.077 9.4x1072 1,001 1.4 1.484x107
Bois Blanc 0.077 9.4x1072 1,002 3.2 1.484x107
Bass Islands 0.056 2.8x107! 1,004 6.0 1.484x107
Unit G 0.172 3.0x1073 1,010 14.8 1.484x10
Unit F 0.100 4.9x1072 1,040 59.6 1.484x1079
Unit F Salt 0.100 4.9x1072 1,040 59.6 1.484x107
Unit E 0.100 5.7x1072 1,083 124.0 1.484x1079
Unit D 0.089 6.4x1072 1,133 200.0 1.484x1079
Units B and C 0.165 8.4x1072 1,198 296.7 1.484x1079
Unit B Anhydrite 0.089 1.0x107 1,214 321.0 1.484x107
Unit A2 Carbonate 0.120 1.2x1072 1,091 136.0 1.484x107
Unit A2 Evaporite 0.089 1.0x1073 1,030 45.6 1.484x107
Unit A1 Carbonate 0.007 1.0x1072 1,120 180.2 1.484x107
Unit A1 Evaporite 0.032 5.2x107 1,229 343.7 1.484x107
Niagaran Group 0.026 1.2x1072 1,206 308.4 1.484x107
Reynales / Fossol Hill 0.031 6.2x10! 1,200 300.0 1.484x107
Cabot Head 0116 3.2x1072 1,204 306.0 1.484x107
Manitoulin 0.028 6.4x1073 1,233 350.0 1.484x107
Queenston 0.073 1.6x1072 1,207 310.0 1.484x107
Georgian Bay / Blue Mtn. 0.070 8.8x10°3 1,200 299.4 1.484x107°
Cobourg 0.015 3.0x1072 1,181 272.0 1.484x107
Sherman Fall 0.016 1.7x1072 1,180 270.0 1.484x107
Kirkfield 0.021 2.4x1072 1,156 234.0 1.484x107
Coboconk 0.009 3.6x1072 1,170 255.0 1.484x107
Gull River 0.022 1.4x1072 1,135 203.0 1.484x107
Shadow Lake 0.097 7.6x1072 1,133 200.0 1.484x107
Cambrian 0.071 1.3x107" 1,157 235.0 1.484x107
Upper Precambrian 0.038 9.5x1073 1,200 300.0 1.484x1079
Precambrian 0.005 7.2x1072 1,200 300.0 1.484x107

@ Brine effective diffusion coefficient for TDS transport modelling assumed to be NaCl at 1
mol/L (Weast, 1983).
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Table A.3: Parameters for Equation 3.16

Formation Lithology p (g/em®)? k (W/mK) ¢, (J/kg/K)®
Drift Drift 2.00 2.00° 1100
Hamilton Group Shale 2.35 2.23% 800
Dundee Carbonate 2.80 2.982 800
Detroit River Group Dolostone /Limestone 2.77 2.98% 840
Bois Blanc Dolostone 2.80 2.98 900
Bass Islands Dolostone 2.80 3.622 900
Unit G Evaporite/Shale 2.20 4.50°¢ 780
Unit F Shale 2.35 1.50¢ 800
Unit F Salt Evaporite/Shale 2.20 4.50°¢ 780
Unit E Shale/Carbonate 2.80 1.50¢ 800
Unit D Evaporite/Carbonate 2.80 4.50°¢ 800
Units B and C Shale 2.35 1.50¢ 800
Unit B Anhydrite Evaporite 2.16 4.50°¢ 765
Unit A2 Carbonate Carbonate 2.80 2.50¢ 800
Unit A2 Evaporite Evaporite 2.16 4.50¢ 765
Unit Al Carbonate Carbonate 2.80 2.50¢ 800
Unit Al Evaporite Evaporite 2.16 4.50¢ 765
Niagaran Group Dolostone 2.80 2.572 900
Reynales / Fossol Hill Dolostone 2.80 257 900
Cabot Head Shale 2.35 1.50¢ 800
Manitoulin Dolostone 2.80 2.57% 900
Queenston Shale 2.35 1.50¢ 800
Georgian Bay / Blue Mtn. Shale 2.35 1.50°¢ 800
Cobourg Limestone 2.77 2.50¢ 780
Sherman Fall Limestone 2.77 2.50°¢ 780
Kirkfield Limestone 2.77 2.50¢ 780
Coboconk Limestone 2.77 2.50°¢ 780
Gull River Limestone 2.77 2.50¢ 780
Shadow Lake Shale 2.35 1.50¢ 800
Cambrian Dolostone 2.80 2.50°¢ 900
Upper Precambrian Granitic Gneiss 2.70 2.50¢ 880
Precambrian Granitic Gneiss 2.70 2.50¢ 880

Note: Parameter values provided by [a] Everham and Huntoon (1999), [b] Waples and Waples (2004)
and [c] McIntosh et al. (2010)
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Appendix B

Fence and Block-Cut Diagrams of
Regional-Scale Modelling Results

99



Formation
Pressure
[bar]

420
400
380
360
340
320
300
280
260
240
1 220
[ 200
S —1 180
Precambrian > ~ 1 160

. 1 140
= 120
100
80
60

Georgian Bay

Lake Huron

Ordovician

Cambrian

Formation
Pressure
[bar]

Lake Huron

Mevonian

Silurian 1 220

| 140
120
100
80
60

Figure B.1: Initial pressure distribution across the regional-scale model domain, presented
using a) block-cut and b) fence diagrams
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Figure B.2: Pressure distribution across the regional-scale model domain at 58 ka before
present, presented using a) block-cut and b) fence diagrams
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Figure B.3: Pressure distribution across the regional-scale model domain at 19.5 ka before
present, presented using a) block-cut and b) fence diagrams
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Figure B.4: Initial salinity (TDS) distribution across the regional-scale model domain,
presented using a) block-cut and b) fence diagrams
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Figure B.5: Salinity (TDS) distribution across the regional-scale model domain at 58 ka
before present, presented using a) block-cut and b) fence diagrams
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Figure B.6: Salinity (TDS) distribution across the regional-scale model domain at 19.5 ka
before present, presented using a) block-cut and b) fence diagrams
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Figure B.7: Initial temperature distribution across the regional-scale model domain, pre-
sented using a) block-cut and b) fence diagrams
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Figure B.8: Temperature distribution across the regional-scale model domain at 58 ka
before present, presented using a) block-cut and b) fence diagrams
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Figure B.9: Temperature distribution across the regional-scale model domain at 19.5 ka
before present, presented using a) block-cut and b) fence diagrams
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Figure B.10: Extent of potential hydrate stability zones across the regional-scale model
domain at 58 ka before present, presented using a) block-cut and b) fence diagrams
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Figure B.11: Extent of potential hydrate stability zones across the regional-scale model
domain at 19.5 ka before present, presented using a) block-cut and b) fence diagrams
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Figure B.12: Predicted solubility of methane gas across the regional-scale model domain
at 58 ka before present, presented using a) block-cut and b) fence diagrams
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Figure B.13: Predicted solubility of methane gas across the regional-scale model domain
at 19.5 ka before present, presented using a) block-cut and b) fence diagrams
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