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abstract

Use of progression-free survival in the evaluation of clinical interventions is ham-
pered by a variety of issues, including censoring patterns not addressed in the usual
methods for survival analysis. Progression can be right-censored before survival
or interval-censored between inspection times. Current practice calls for imputing
events to their time of detection. Such an approach is prone to bias, underestimates
standard errors and makes inefficient use of the data at hand. Moreover a composite
outcome prevents inference about the actual treatment effect on the risk of progres-
sion. This thesis develops semiparametric and sieve maximum likelihood estimators
to more formally analyze progression-related endpoints. For the special case where
death rarely precedes progression, a Cox-Aalen model is proposed for regression
analysis of time-to-progression under intermittent inspection. The general setting
considering both progression and survival is examined with a Markov Cox-type
illness-death model under various censoring schemes. All of the resulting estima-
tors globally converge to the truth slower than the parametric rate, but their finite-
dimensional components are asymptotically efficient. Numerical studies suggest that
the new methods perform better than their imputation-based alternatives under
moderate to large samples having higher rates of censoring.
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chapter 1

background

The exact time of disease progression in a clinical trial is often difficult to establish.
Maintaining frequent assessments of progression status to study closure may be pro-
hibitive, resulting in dual right-censoring times acting separately on progression and
overall survival. More manageable assessment schedules can be achieved by spacing
inspections further apart, but this leads to interval-censored progression times. To
evaluate the effect of an intervention on the risk of this non-terminal event, standard
practice calls for analysis of progression-free survival (pfs), a composite endpoint
given by the time elapsed between treatment initiation and earliest detection of pro-
gression or death (fda 2007). Use of pfs is fraught with issues, including the reliance
on systematically-imputed progression times (Fleming et al. 2009). This thesis devel-
ops maximum likelihoodmethods for the analysis of alternatives to pfs that mitigate
imputation and incorporate all of the data at hand.

We begin with a brief overview of the relevant statistical framework. Section 1.1
describes the general approach to specifying counting process models from event
history data. Section 1.2 collects results later used to derive asymptotic properties
and computational algorithms. Section 1.3 summarizes related work, with emphasis
on non- and semiparametric methods. Some motivating problems and a plan for the
remaining chapters are outlined in Section 1.4.

1.1 event history analysis

An event history is a record of events arising from some underlying stochastic process.
These events typically coincide with transitions an individual makes between a finite
number of states (Figure 1.1). The process terminates once the individual reaches a
state that is impossible to leave, an event known as absorption. Event history analysis is
the study of a collection of individual event histories. When individuals are observed
continuously over a time period T = [0, τ], 0 < τ < ∞, events can be registered by
jumps in a (possibly multivariate) counting process N = {N(t) ∶ t ∈ T} defined on
a probability space (Ω,F , P). N is assumed to be adapted to a filtration {Ft ∶ t ∈
T}; for each t ∈ T , N(t) is Ft-measurable with F0 containing all P-null sets in F ,
Ft = ∩h>0Ft+h andF = Fτ. Any stochastic process X is trivially adapted to its history
{Xt}, Xt = {X(s) ∶ s ≤ t}.
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models.

A stopping time T with respect to {Ft} is a nonnegative random variable such that
{T ≤ t} ∈ Ft , for all t ∈ T . Any property of an {Ft}-adapted stochastic process X is
said to hold locally if there exists a sequence of {Ft}-stopping times T1 < T2 < . . . with
limk→∞ Tk = ∞, almost surely, such that the stopped process XTk = {X(t∧Tk) ∶ t ≥ 0}
satisfies the property for each k.

Analysis is carried out on the basis of the identity

N = Λ +M , (1.1)

where Λ is a unique nondecreasing right-continuous compensator whose value at
t is Ft−-measurable and M is such that E(M(t) ∣ Fs) = M(s) for all s ≤ t. Since
Λ(t) is nonrandom given Ft, Λ is said to be predictable. M satisfies a property that
characterizes martingale processes. N itself is a submartingale since E(N(t) ∣ Fs) ≥

N(s) for s ≤ t. The identity (1.1) follows from theDoob-Meyer decomposition, a result
that guarantees the unique decomposition of a nonnegative right-continuous local
submartingale into a nondecreasing right-continuous predictable process and a right-
continuous local martingale. This is analogous to the statistical decomposition: data
=model + noise.

1.1.1 The multiplicative intensity model

Often we wish to specify a model on an observed filtration {Gt} that does not nec-
essarily contain {Ft}. The time N is under observation can be represented by the
{Gt}-predictable indicator process or filter Y . Let A = ∫ α denote the cumulative in-
tensity function of N on {Ft}. If the filtered {Gt}-adapted counting process ∫ Y dN
has compensator ∫ Y dA, the filtering of Y is said to be independent (Martinussen
and Scheike 2006, Definition 3.1.1). This preservation of functional form enables us
to specify E(Y(t)dN(t) ∣ Gt−) via themultiplicative intensity model

λ(t, θ) = Y(t)α(t, θ), (1.2)

where α is a nonnegative locally integrable intensity function determined by the pa-
rameter θ. Under the special case where N is a univariate one-jump counting process,
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1.1 event history analysis

the intensity process λ is referred to as the hazard rate and the jump in N coincides
with a failure or survival time.

1.1 example (Independent right-censoring). Consider the survival time T with
hazard rate 1(T ≥ t)α(t). Suppose C is a right-censoring time. Let Y(t) = 1(T ∧
C ≥ t). If the observed process ∫ Y dN has compensator ∫ Y dA, then C follows an
independent right-censoring mechanism. ◽

The stochastic integrals such ∫ Y dN or ∫ Y dA reduce to Lebesgue-Stieltjes inte-
grals.With any two processes X andY , ∫ t

s Y(u)dX(u) is Lebesgue-Stieltjes provided
that ∫ t

s ∣Y(u)∣∣dX(u)∣ < ∞, for eachω ∈ Ω and s ≤ t, andY is a cadlag finite variation
process. If Y is predictable and X is a local martingale then the process ∫ Y dX is,
under some weak conditions, also a local martingale.

1.1.2 Likelihood construction

A multiplicative analog of stochastic integration is the product integral, which can
be defined using various identities. Product integration is central to likelihood con-
struction, as demonstrated in Theorem 1.3 below.

1.2 definition (Product integration, Gill and Johansen 1990). Let A be a m ×m
matrix of cadlag finite variation processes. The product integralπ(I + dA) on the
interval (s, t] is defined by the product-limit

π(s,t] (I + dA) = lim∣S∣→0
∏
i
(I + (A(ti) − A(ti−1))),

taken over refinements of the partition S of (s, t]. Equivalently π(I + dA) is the
unique solution to either the forward or backward equations given by

X(s, t) − I = ∫ t

s
X(s, u−)dA(u) = ∫ t

s
dA(u)X(u, t),

respectively. In the special commutative case where the collection of matrices A on
(0, t] commute (this holds trivially when m = 1),

π(s,t] (I + dA) = exp{ ∫
t

s
d(A− ∆A)(t)} ∏

u∈(s,t](I + ∆A),

where A− ∆A is the continuous part of A. ◽

1.3 theorem (Jacod’s likelihood ratio, Andersen et al. 1993, Theorem ii.7.2). Let
N = (Nh) be a multivariate counting process indexed by the time interval [0, τ] with
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N(τ) < ∞. Put Ft = F0 ∨ σ{N(s) ∶ s ≤ t}. On Fτ, consider two probability measures
Q and P under which N has finite compensators ΛQ and ΛP, respectively. Suppose that
P ≪ Q, ΛP

h ≪ ΛQ
h Q-a.s. for each h and ∆ΛQ⋅ (t) = 1 for any t. Then ∆ΛP⋅ (t) = 1,

Q-a.s. and

dP
dQ
=

dP
dQ
∣
F0

π(0,τ] ∏h dΛP
h(t)∆Nh(t)(1 − dΛP⋅ (t))1−∆Nh(t)

π(0,τ] ∏h dΛQ
h (t)∆Nh(t)(1 − dΛQ⋅ (t))1−∆Nh(t) . (1.3)

In (1.3), P is the measure of interest and Q serves as a convenient reference. Q is
often chosen to make components of N i.i.d. standard Poisson processes. Jacobsen
(2006, Theorem 5.2.1) essentially ensures existence of Q for any given P and ΛP

within the class of multiplicative intensity models (1.2). Under the parametric model
{Pθ ∶ θ ∈ Θ} with intensity function αθ = (αθ

h), an independent filter Y = (Yh) and
some weak condtions, we obtain from (1.3) the likelihood process

L(θ , t) = L(θ , 0)π
s≤t
∏
h
dΛh(s, θ)∆Nh(s)(1 − dΛ⋅(s, θ))1−∆Nh(s) (1.4)

= L(θ , 0)∏
h,s

dΛh(s, θ)∆Nh(s)π
s≤t
(1 − dΛ⋅(s, θ)) (1.5)

= L(θ , 0)∏
h,s

Yh(s)αh(s, θ)∆Nh(s) exp(−Λ⋅(t, θ)), (1.6)

where (1.5) and (1.6) correspond respectively to the cases where Λθ0
h is Pθ0-a.s. contin-

uous and Pθ0-a.s. differentiable on [0, τ]. Typically we assume differentiability and
obtain a maximum likelihood estimator θ̂n from the score process

U(θ , t) = ∂
∂θ

log L(θ , t)

= ∑
h
∫ t

0

∂
∂θ

log(λh(s, θ))(dNh(s) − λh(s, θ)ds) (1.7)

= ∑
h
∫ t

0
Wh(s, θ) ∂

∂θ
λh(s, θ)(dNh(s) − λh(s, θ)ds), (1.8)

whereWh(t, θ) = Yh(t)/λh(t, θ). The score process may lead directly to a valid score
function ℓ̇θ = U(θ , τ). Otherwise an alternative (but predictable) weight matrix
Wh(t, θ) is selected and the estimator is derived using the fact that (1.8) is a (Pθ ,Ft)-
local martingale. In either case large sample properties are obtained by application
of Rebolledo’s (1980) central limit theorem for martingales, which implies that the
sequence Pn ℓ̇θ converges weakly to a mean-zero Gaussian process with variance
determined by αθ .
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1.1 event history analysis

In principle the only constraint for parameter estimation from (1.4) is the Doob-
Meyer decomposition;whatever remains unexplained by themodelwe specify should
be reasonably approximated by a martingale. So, in particular, ∫ Y dN can have cor-
related components and any covariates of the intensity function α(t, θ) can depend
arbitrarily on Gt−. Estimates for the distribution function of the corresponding event
times can be recovered from θ̂n provided that this dependence is confined to external
covariates (Yashin and Arjas 1988). A covariate process Z is said to be external if

E(dN j(u) ∣ Z(u),Yj(u) = 1) = E(dN j(u) ∣ Z(t),Yj(u) = 1), (1.9)

for all 0 < u ≤ t, otherwise Z is deemed internal (Kalbfleisch and Prentice 2002,
Section 6.3.2). When this identity is satisfied for univariate N , the product integral

1 − F(t) =π
s≤t
(1 − dA(s)) = exp(−A(t)),

can be interpreted as the probability of no event up to time t. Extension to multi-
variate N requires some consideration of the multistate structure. In competing risks
with external covariates, for example, exp(−A⋅(t)) corresponds to the survivor func-
tion. In a general multistate model, product integrals yield transition probabilities
provided that the process is Markov; only current information on the state occupied
is required to specify the transition intensities.

1.4 theorem (Andersen et al. 1993, Theorem ii.6.7). Let A = (Ah j) be the p × p
intensity measure of a multistate process X with state space {1, . . . , p}, p < ∞. Define
the transition matrix

P(s, t) =π(s,t] (I + dA(u)), s ≤ t.

If X is Markov then

P(X(t) = j ∣ X(s) = h,Xs−) = P(X(t) = j ∣ X(s) = h) = Ph j(s, t), s ≤ t.

Moreover given that X is in state h at time s, the process remains in h for a duration
with cumulative hazard function

−(Ahh(t) − Ahh(s)), s ≤ t ≤ inf{u ≤ s ∶ ∆Ahh(u) = 1}.

If X(t−) = h and X(t) ≠ h, then the new state occupied at time t is j ≠ h with
probability dAh j(t)/ − dAhh(t).
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The empirical transition intensitymeasure is given by theNelson-Aalen estimator
(Aalen 1975, 1978)

Âh j(t) = ∫ t

0

1(Yh(s) > 0)
Yh(s)

dNh j(s), h ≠ j,

where Yh is the at-risk process Yh(t) = 1(X(t) = h). Its large sample properties follow
easily from the martingale

Âh j(t) − A∗h j(t) = ∫ t

0

1(Yh(s) > 0)
Yh(s)

dNh j(s) − ∫ t

0
1(Yh(s) > 0)dAh j(s)

= ∫ t

0

1(Yh(s) > 0)
Yh(s)

dMh j(s).

A martingale representation for the corresponding Aalen-Johansen estimator (Aalen
and Johansen 1978) of the transition probability matrix

P̂(s, t) =π(s,t] (I + dÂ(u))
is obtained on the basis of the following result, which can be derived from Fubini’s
theorem and the forward and backward equations from Definition 1.2.

1.5 theorem (Duhamel’s equation, Gill and Johansen 1990, Theorem 6). Let A1

and A2 be intensity measures. Then

π(s,t] (I + dA1) −π(s,t] (I + dA2) = ∫(s,t]π(s,u) (I + dA1)(A1 − A2)(du)π(u,t] (I + dA2).

1.1.3 Semiparametric intensity-based models

The multiplicative intensity model (1.2) can be partly specified by (θ ,Λ) ∈ Θ × H,
where θ is Euclidean and Λ is some function of time. The score function for θ is
defined in the usualmanner, with ℓ̇θ ,Λ = ∂ log L((θ ,Λ), τ)/∂θ. A likelihood equation
for Λ is obtained by considering a one-dimensional submodel s ↦ Λs, where Λs

depends on some bounded measurable function of time b running through an index
set H. The score with respect to s at s = 0 defines a score operator b ↦ Bθ ,Λb for Λ.
The maximum likelihood estimator (θ̂n , Λ̂n) is the solution of Pn ℓ̇θ ,Λ = 0 and

Pn Bθ ,Λb − P Bθ ,Λb = 0, b ∈ H.

Typically the form of the intensity function is chosen so that this system of likelihood
equations reduces to a finite set of estimating equations. The following examples
consider estimation in a univariate counting process N . Extension to multivariate
N = (Nh) is straightforward.
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1.1 event history analysis

1.6 example (Cox model). Cox (1972) proposed a model for the hazard rate λ
having the form

λ(t ∣ Z) = Y(t) λ(t) exp(Z(t)⊺θ),
where Z is a covariate process, θ is a vector of unknown regression coefficients and
λ is a nonnegative integrable but otherwise unspecified baseline intensity function.
When Z is time-invariant, the model reduces to proportional hazards and the hazard
ratio θ is interpreted as a relative risk. Taking the model as the intensity of a counting
process N , the score function for θ is given by

n
∑
i=1 ∫

τ

0
Zi(t)(dNi(t) − Yi(t) exp(Zi(t)⊺θ)dΛ(t)). (1.10)

The score of the submodel s ↦ dΛs = (1 + sb)dΛ for some b ∈ H is

∫ τ

0

∂
∂s

log(λs(t) exp(Zi(t)⊺θ))(dNi(t) − Yi(t) exp(Zi(t)⊺θ)dΛs(t)).

At s = 0 the likelihood equation is

n
∑
i=1 ∫

τ

0
b(t)dN(t) =

n
∑
i=1 ∫

τ

0
b(t)Yi(t) exp(Zi(t)⊺θ)dΛ(t).

The system for b ∈ H is satisfied for

∫ dΛ(t) = ∫ dN⋅(t)
∑

n
i=1 Yi(t) exp(Zi(t)⊺θ) . (1.11)

Profiling out Λ in (1.10) gives the likelihood equation for θ

n
∑
i=1 ∫

τ

0
{Zi(t) −

∑
n
j=1 Yj(t)Z j(t) exp(Z⊺jθ)
∑

n
j=1 exp(Z j(t)⊺θ) }dNi(t) = 0. (1.12)

The solution to (1.12) is the maximum profile likelihood estimator θ̂n. With θ = θ̂n,
(1.11) is the maximum profile likelihood estimator Λ̂n. Equivalence between (θ̂n , Λ̂n)

and the partial likelihood estimators originally proposed by Breslow (1972) and Cox
(1972) was first shown by Johansen (1983). Using martingale methods Andersen and
Gill (1982) proved that (θ̂n , Λ̂n) is uniformly consistent and weakly converges to a
Gaussian process. ◽

A similar approachmay be used to derive estimating equations for nonparametric
models, specified only by an infinite-dimensional parameter.
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1.7 example (Aalen model). Aalen (1980, 1989) specified the intensity of an arbi-
trary counting process by the nonparametric additive model

λ(t ∣ Z) = Y(t)Z(t)⊺λ(t),
where Z is a vector-valued covariate process, λ is a vector of integrable regression
functions constrained by YZ⊺λ ≥ 0, almost surely, but is otherwise unspecified. Typ-
ically the first element in Z is fixed at 1 and the remaining components of Z are
appropriately scaled so that the first component of λ can be interpreted as a baseline
intensity function. Additional regression functions account for departures from this
baseline level of risk. LetΛ(t) = ∫ t

0 λ(s)ds. Based on the submodel s ↦ dΛs = sb+dΛ,
the score for Λ is

∫ τ

0
Wi(t, λ)Zi(t)⊺b(t)(dNi(t) − Zi(t)⊺dΛ(t)),

whereWi(t, λ) = Yi(t)/Zi(t)⊺λ(t). The corresponding likelihood equation is satis-
fied for any b ∈ H provided that

n
∑
i=1 Wi(t, λ)Zi(t)(dNi(t) − Zi(t)⊺dΛ(t)) = 0. (1.13)

An approximate score function can be obtained by replacing λ in Wi by a suitable
estimate (Huffer and McKeague 1991; Sasieni 1992). If Wi(t, λ) is predictable, then
(1.13) is the increment of a local martingale process. Aalen (1980, 1989) proposed use
ofWi(t, λ) = Yi(t) to obtain an estimating equation with closed form solution

∫ dΛ(t) = ∫
n
∑
i=1{

n
∑
j=1 Yj(t)Z j(t)Z j(t)⊺}

−1
Zi(t)dNi(t). (1.14)

The resulting estimator is
√
n-consistent and converges in distribution to a Gaussian

process (Aalen 1980). ◽

The Aalen model is suited for exploratory analysis, since the influence of each co-
variate can depend arbitrarily on time. Some of this flexibility can be traded for easier
interpretation through a restricted Aalen model. Lin and Ying (1994) examined the
case where only the first component of λ is time-dependent. McKeague and Sasieni
(1994) considered the special case of a fixed covariate Z(t) = Z with at least one
component having a fixed effect. The following example attempts a balance between
the Cox and Aalen models.

8



1.1 event history analysis

1.8 example (Cox-Aalen model). Scheike and M.-J. Zhang (2002) proposed the
form

λ(t ∣ Z) = Y(t)X(t)⊺λ(t) exp(Z(t)⊺θ),
which combines the features of the Aalen and Cox models. Based on the submodel
s ↦ dΛs = sb + dΛ, the score for Λ is

∫ τ

0

Yi(t)
Xi(t)⊺λ(t)Xi(t)⊺b(t)(dNi(t) − eZ i(t)⊺θXi(t)⊺dΛ(t)).

The corresponding likelihood equation is met for any b ∈ H if
n
∑
i=1

Yi(t)
Xi(t)⊺λ(t)Xi(t)(dNi(t) − eZ i(t)⊺θXi(t)⊺dΛ(t)) = 0.

Replacing 1/Xi(t)⊺λ(t)with a predictableweightWi(t) yields an estimating equation
for Λ given θ. Scheike and M.-J. Zhang’s (2002) choiceWi(t) = 1 yields the solution

∫ dΛ(t) = ∫
n
∑
i=1 Yi(t)X(θ , t)−1Xi(t)dNi(t), (1.15)

for given θ, where X(θ , t)−1 is the inverse of the matrix

X(θ , t) =
n
∑
i=1 Yi(t)eZ i(t)⊺θXi(t)Xi(t)⊺.

The estimating equation for θ
n
∑
i=1 ∫

τ

0
{Zi(t) −∑

j=1 Yj(t)Z j(t)eZ j(t)⊺θ(Xi(t)⊺X(θ , t)−1X j(t))}dNi(t) = 0 (1.16)

is obtained by profiling out Λ in the score for θ. ◽

Inverse weights corresponding to a uniformly consistent estimator for the base-
line intensity function achieve the information bound under the Aalen model and its
variants (Greenwood andWefelmeyer 1991; Sasieni 1992), though in practice modest
efficiency gains are typically seen only with large samples (Huffer and McKeague
1991; Martinussen and Scheike 2006, p. 115).

1.1.4 Alternatives to intensity-based models

Not all models proposed in the literature are intensity-based. The linear transforma-
tion model, for example, assumes that the survivor function S(t ∣ Z) = P(T > t ∣ Z)
satisfies

S(t ∣ Z) = д(h(t) + Z⊺θ), (1.17)

9
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where д is a known continuous decreasing function and h is increasing but otherwise
unknown. This model can be equivalently specified as

h(t) = Z(t)⊺θ + ε,
where ε is an error term from the distribution function 1 − д−1. With ε from the ex-
treme value distribution д(t) = exp(− exp(t)), (1.17) corresponds to the Cox model.
If д is the standard logistic function д(t) = exp(t)/(1 + exp(t)), then (1.17) reduces
to the proportional odds model

S(t ∣ Z)
1 − S(t ∣ Z)

=
S0(t)

1 − S0(t)
exp(−Z⊺θ), (1.18)

where S0 is a baseline survivor function. Under the accelerated failure time model the
survival time follows a log-linear function

log(T) = Z⊺θ + ε, (1.19)

where the distribution of ε can be left unspecified.

1.2 semiparametric maximum likelihood

Most large sample properties for estimators from independently right-censored event
history data can be derived using martingale methods, without formal consideration
of semiparametric theory. This is generally not the case for other censoring patterns,
such as those found in interval-censored data. The current section collects results
used to derive and compute semiparametric maximum likelihood estimators. The
presentation is largely taken from van der Vaart (1998, 2002) and van der Vaart and
Wellner (1996).

1.2.1 Empirical processes

Uniform versions of the law of large numbers and the central limit theorem over an
infinite-dimensional parameter space are defined by way of empirical process theory.
We give some basic definitions and results.

For a given probability space (Ω,A, P), consider a random element X taking
values in a metric space (D, d) and a measurable function f ∶ D → R. X itself need
not be Borel-measurable. We define the outer expectation of f by

E∗ f (X) = inf{EY ∶ Y ≥ f (X),Y ∶ Ω → D, EY exists}.

10



1.2 semiparametric maximum likelihood

Similarly the outer probability of a set B ⊂ Ω is given by

P∗(B) = inf{P(A) ∶ B ⊂ A,A ∈ A}.
The sequence Xn converges in probability to X, Xn

P
→ X, if P∗(d(Xn , X) > ε) → 0

for every ε > 0. Xn converges almost surely to X, Xn
as∗
→ X, if there is a sequence of

measurable random variables ∆n with d(Xn , X) ≤ ∆n and ∆n
as
→ 0.

Consider a random sample X1, . . . , Xn from P. The expectation of f under the
empirical measure Pn is

f ↦ Pn f = ∫ f dPn =
1
n

n
∑
i=1 f (Xi).

Similarly we write P f = ∫ f dP for the expectation of f under P. The empirical
process Gn at f is

f ↦ Gn f =
√
n(Pn f − P f ) = 1

√
n

n
∑
i=1( f (Xi) − P f ).

Provided that P f exists, the law of large numbers is Pn f
as
→ P f . A class F of measur-

able functions f ∶ Ω → R is P-Glivenko-Cantelli if it satisfies the uniform law of large
numbers

∥Pn f − P f ∥F = sup
f ∈F ∣Pn f − P f ∣ as∗

→ 0.

If P f 2 < ∞, then it follows from the central limit theorem that Gn f ↝ N(0, P( f −
P f )2). Consider ℓ∞(F), the set of all functions д ∶ F → R with ∥д∥F < ∞. Suppose
that sup f ∈F ∣ f (x) − P f ∣ < ∞ for every x ∈ D, a condition that can be simply met ifF
has an integrable envelope function F with ∣ f (x)∣ ≤ F(x) < ∞ for every x and f ∈ F .
Then f ↦ Gn f is a map into ℓ∞(F). If the sequence {Gn f ∶ f ∈ F} converges in
distribution to a tight Gaussian process in ℓ∞(F), then the classF satisfies a uniform
version of the central limit theorem and is said to be P-Donsker.

In general, the Glivenko-Cantelli and Donsker properties hold for classes that
are sufficiently “small”. We quantify the size of a class using entropy numbers.

1.9 definition (Covering number). The covering number N(ε,F , ∥ ⋅ ∥) is the
minimum number of balls {д ∶ ∥д − f ∥ < ε} of radius ε needed to cover the set
F . The centers of the balls need not belong to F . The entropy (without bracketing)
is the logarithm of the covering number. The entropy integral is J(δ,F , ∥ ⋅ ∥) =
∫ δ
0

√
logN(ε,F , ∥ ⋅ ∥)dε. ◽

11
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1.10 definition (Bracketing number). The bracket [l , u] for two given functions
l and u is the set of all f ∈ F with l ≤ f ≤ u. An ε-bracket is a bracket [l , u] with
∥u − l∥ < ε. The bracketing number N[ ](ε,F , ∥ ⋅ ∥) is the minimum number of ε-
brackets needed to cover F . The lower and upper bounds l and u must have finite
norms, but need not belong to F . The entropy with bracketing is the logarithm of
the bracketing number. The entropy integral with bracketing or simply the bracketing
integral is J[ ](δ,F , ∥ ⋅ ∥) = ∫ δ

0

√
logN[ ](ε,F , ∥ ⋅ ∥)dε. ◽

Typically ∥ ⋅ ∥ is the Lr(P) norm, given by ∥ f ∥P,r = (∫ ∣ f ∣r dP)1/r. This and any other
normwe consider satisfy theRiesz property: if ∣ f ∣ ≤ ∣д∣ then ∥ f ∥ ≤ ∥д∥. So a 2ε-bracket
[l , u] is contained in the ε-ball around (l + u)/2. Thus

N(ε,F , ∥ ⋅ ∥) ≤ N[ ](ε,F , ∥ ⋅ ∥).

The following results give sufficient conditions for a class to be Glivenko-Cantelli or
Donsker in terms of entropy numbers.

1.11 theorem (van der Vaart 1998, Theorem 19.4). Every class F of measurable
functions with N[ ](ε,F , L1(P)) < ∞ for every ε > 0 is P-Glivenko-Cantelli.

1.12 theorem (van der Vaart 1998, Theorem 19.5). Every class F of measurable
functions with J[ ](1,F , L2(P)) < ∞ is P-Donsker.

Entropy numbers for specific types of classes can be derived up to proportionality.
The semiparametric parameter spaces we encounter later are not much bigger than
the class of uniformly bounded, monotone functions.

1.13 theorem (van der Vaart andWellner 1996, Theorem 2.7.5). Let F be the class
of monotone functions f ∶ R→ [0, 1]. Then

logN[ ](ε,F , Lr(P)) ≤
K
ε
,

for every probability measure P, every r ≥ 1 and some constant K depending only on r.

1.14 theorem (van der Vaart and Wellner 2000, Theorem 3). If F1, . . . ,Fk are
Glivenko-Cantelli classes with and φ ∶ Rk → R is continuous, then the class φ ○
(F1, . . . ,Fk) is Glivenko-Cantelli provided that it has an integrable envelope.

1.15 theorem (van der Vaart and Wellner 1996, Theorem 2.10.6). If F1, . . . ,Fk

are Donsker classes with integrable envelopes and φ ∶ Rk → R is Lipschitz, then the
class φ ○ (F1, . . . ,Fk) is Donsker provided that it has a square-integrable envelope.

12



1.2 semiparametric maximum likelihood

1.2.2 Consistency and rate of convergence

On (Ω,A, P) suppose we specify the set of all possible values for P via the semi-
parametric model P = {Pθ ,η ∶ θ ∈ Θ, η ∈ H}, where Θ is Euclidean and H is some
infinite-dimensional set. Suppose that mθ ,η ∶ Ω → R is measurable for every (θ , η) in
the metric space (Θ ×H, d). Consistency of a semiparametric maximum likelihood
estimator (spmle) can be established using the following generalization of Wald’s
(1949) proof.

1.16 theorem (van der Vaart 1998, Theorem 5.7). Let {mθ ,η ∶ θ ∈ Θ, η ∈ H} be a
P-Glivenko-Cantelli class. Suppose there exists (θ0, η0) ∈ Θ ×H such that

sup{P mθ ,η ∶ d((θ , η), (θ0, η0)) > ε} < P mθ0 ,η0 ,

for every ε > 0. Then for any estimator (θ̂n , η̂n), Pn mθ̂n ,η̂n ≥ Pn mθ0 ,η0 − oP(1) implies
that d((θ̂n , η̂n), (θ0, η0))

as
→ 0.

The spmle maximizes the random criterion

log likn(θ , η) ≡ nPn log lik(θ , η),

where lik(θ , η)(X) is some suitably-defined likelihood function for a single observa-
tion X from (θ0, η0). However note that Theorem 1.16 only needs (θ̂n , η̂n) to “nearly”
maximize Pn mθ ,η in a neighbourhood of the truth (θ0, η0). Often this weaker re-
quirement is used to exploit a functionmθ ,η that is technically more convenient than
log lik(θ , η).

A consistent spmle from interval-censored data typically converges slower than
the parametric rate

√
n, though itmay be possible to show that the finite-dimensional

component θ̂n is asymptotically efficient. Theory used to derive efficiency imposes an
upper bound for the global rate of convergence, which can be obtained by application
of the result below.

1.17 theorem (van der Vaart and Wellner 1996, Theorem 3.2.5). Let (θ̂n , η̂n) be
a consistent estimator satisfying Pn mθ̂n ,η̂n ≥ Pn mθ0 ,η0 . Suppose that, for every (θ , η)
close to (θ0, η0) and sufficiently small δ > 0,

P(mθ ,η −mθ0 ,η0) ≲ −d((θ , η), (θ0, η0)), (1.20)
E∗ sup

d((θ ,η),(θ0 ,η0))<δ ∣Gn(mθ ,η −mθ0 ,η0)∣ ≲ φn(δ), (1.21)

where δ ↦ φn(δ)/δα is decreasing for some α < 2 independent of n. Then d((θ̂n ,
η̂n), (θ0, η0)) = O∗P(1/rn) with any sequence of positive numbers rn such that and
r2
nφn(1/rn) → ∞ no faster than

√
n for every n.
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The spmle presumes that we can a priori identify a finite set on which the
corresponding empirical distribution potentially concentrates its mass. Moreover
the parameter (θ , η) must be jointly estimable at each of these candidate support
points. Under the multiple censoring schemes studied in Chapters 3 and 4, the task
of support-finding proves intractable. One way out is to maximize the log-likelihood
over a finite-dimensional sieve Hn whose size increases to H as n →∞, an approach
generally known as the “method of sieves” (Geman and Hwang 1982; Grenander
1981). The resulting sieve maximum likelihood estimator (smle) is consistent, but
its rate of convergence is slower than the parametric rate; for fixed n the smle con-
verges to some finite-dimensional approximation (θ0, η0,n) ∈ Θ × Hn of the truth
(θ0, η0) ∈ Θ × H. A variant of Theorem 1.17 in this setting is provided by van der
Vaart and Wellner (1996, Section 3.4).

1.18 theorem (van der Vaart and Wellner 1996, Theorem 3.4.1). Let (θ̂n , η̂n) be
a consistent estimator satisfying Pn mθ̂n ,η̂n ≥ Pn mθ0 ,η0,n . Suppose that, for every n and
d((θ0, η0,n), (θ0, η0)) ≲ δ < ∞,

sup
δ/2<d((θ ,η),(θ0 ,η0,n))<δ,(θ ,η)∈Θ×Hn

P(mθ ,η −mθ0 ,η0,n) ≤ −δ2, (1.22)

E∗ sup
δ/2<d((θ ,η),(θ0 ,η0,n))<δ(θ ,η)∈Θ×Hn

∣Gn(mθ ,η −mθ0 ,η0,n)∣ ≲ φn(δ), (1.23)

where δ ↦ φn(δ)/δα is decreasing for some α < 2 independent of n. Then d((θ̂n , η̂n),
(θ0, η0)) = O∗P(1/rn) + d((θ0, η0,n), (θ0, η0)) with any sequence of positive numbers
rn such that 1/rn ≳ d((θ0, η0,n), (θ0, η0)) and r2

nφn(1/rn) ≤
√
n for every n.

The following results are useful for verifying the conditions of Theorems 1.16
to 1.18.

1.19 theorem (cf. van der Vaart and Wellner 1996, Corollary 2.3.12 and Problem
2.1.5). Let F be a P-Donsker class with integrable envelope. Then

sup{∣Gn( f − д)∣ ∶ f , д ∈ F , P( f − д)2 < δn}
P
→ 0,

for any sequence δn → 0 as n →∞.

1.20 definition (Hellinger distance). Let P and Q be probability measures pos-
sessing densities p and q with respect to a common σ-finite dominating measure ν.
The Hellinger distance dH(p, q) between P and Q is defined by

d2
H(p, q) = ∫ (√p −√q)2 dν.

14



1.2 semiparametric maximum likelihood

Let dTV(p, q) = ∫ ∣p − q∣dν denote the total variation distance between P and Q.
Then

d2
H(p, q) ≤ dTV(p, q) ≤

√
2dH(p, q), (1.24)

where the first inequality follows from ∣√p −√q∣2 ≤ ∣p − q∣ for any p, q ≥ 0 and the
second is a consequence of the Cauchy-Schwarz inequality. Since log x ≤ 2(

√
x − 1)

for every x ≥ 0 we also have

P log(q/p) ≤ 2 ∫ √pq dν − 2 = − ∫ (√p −√q)2 dν = −d2
H(p, q), (1.25)

with equality only if p = q, ν-a.e. ◽

1.21 lemma (Murphy and van der Vaart 1997, Lemma a.6). Suppose that h, д1 and
д2 are measurable functions with c1 ≤ д0 ≤ c2 and (P д1д2)

2 ≤ c P д2
1 P д2

2 for constants
c < 1 and c1 < 1 < c2 close to 1. Then

P(д0д1 + д2)
2 ≥ K(P д2

1 + P д2
2),

where K is a constant that depends on (c, c1, c2) and approaches (1 −
√
c) as c1 ↗ 1

and c2 ↘ 1.

1.22 lemma (van der Vaart and Wellner 1996, Lemma 3.4.2). Let F be a class of
measurable functions f ∶ X → R such that P f 2 < δ2 and ∥ f ∥∞ ≤ M. Then

E∗P sup
f ∈F ∣Gn f ∣ ≲ J[ ](δ,F , L2(P))(1 +

J[ ](δ,F , L2(P))
δ2√n

M).

1.2.3 Profile likelihood and semiparametric efficiency

A submodel for P = {Pθ ,η ∶ θ ∈ Θ, η ∈ H} is a parametric subset of P containing the
truth P0 ≡ Pθ0 ,η0 . Estimation of the Euclidean parameter θ in a submodel is certainly
easier than estimation in P. Whatever “information” is available to estimate θ in P
should be no larger than the infimum of the Fisher information among all submodels.
A submodel achieving this infimum is least favourable. The information bound for
θ in P can be expressed in terms of the “efficient” score function, defined by the
ordinary score function for θ minus its projection onto the score-space for η. A
semiparametric maximum likelihood estimator θ̂n is deemed asymptotically efficient
if it is asymptotically linear in the efficient score function.

The ordinary score function for θ in P is defined in the usual manner, as the
partial derivative of the log-likelihood with respect to θ

ℓ̇θ ,η(x) ≡
∂
∂θ

log lik(θ , η)(x).
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Consider a path t ↦ ηt(θ , η) inH that induces a differentiable submodel t ↦ Pθ+at,ηt

with
∂
∂t ∣t=0 log lik(θ + at, ηt)(x) = a⊺ℓ̇θ ,η(x) + Bθ ,ηh(x),

where h ∈ L0
2(η) and Bθ ,η ∶ L2(η) → L2(Pθ ,η) is a continuous, linear score operator

for η. We take Bθ ,ηh as a score function for η with θ fixed and L0
2(η) an index of

“directions” in which ηt approaches η. The efficient score function for θ is

ℓ̃θ ,η = ℓ̇θ ,η −Πθ ,η ℓ̇θ ,η ,

where Πθ ,η ℓ̇θ ,η is the projection of the ordinary score function for θ onto the closed
linear span of the score functions for η. The efficient information matrix for θ is
Ĩθ ,η = Pθ ,η ℓ̃θ ,η ℓ̃⊺θ ,η. Let B∗θ ,η ∶ L2(Pθ ,η) → L2(η) be the adjoint of the score operator for
η, Bθ ,η, characterized by

Pθ ,ηh(Bθ ,ηд) = η(B∗θ ,ηh)д, (1.26)

for every h ∈ L0
2(η) and д ∈ L0

2(Pθ ,η). If the information operator B∗θ ,ηBθ ,η is contin-
uously invertible, then the orthogonal projection Πθ ,η is (B∗θ ,ηBθ ,η)

−1B∗θ ,η, the least
favourable direction is −(B∗θ ,ηBθ ,η)

−1B∗θ ,η ℓ̇θ ,η and the efficient score function for θ is
given by

ℓ̃θ ,η = (I − Bθ ,η(B∗θ ,ηBθ ,η)
−1B∗θ ,η)ℓ̇θ ,η .

More often than not this condition fails to hold. For missing data problems, such
as interval censoring, it is convenient to consider the observation X arising from
information loss model (van der Vaart 1998, Section 25.5.2). In particular, we take
X = m(Y), wherem is a knownmeasurable transformation andY is an unobservable
variable from (θ , η). Then a score function Bθ ,ηh for the induced model t ↦ Pθ+at,ηt

at t = 0 is the conditional expectation of the score function for t ↦ ηt(θ , η) at t = 0

Bθ ,ηh(x) = Eθ ,η(h(Y) ∣ X = x).

The adjoint score operator B∗θ ,η reverses the roles of X and Y in the conditional
expectation

B∗θ ,ηBθ ,ηh(y) = Eθ ,η(Bθ ,ηh(x) ∣ Y = y).

The efficient score for θ is then

ℓ̃θ ,η(x) = ℓ̇θ ,η(x) − Bθ ,ηhθ ,Λ(x), (1.27)

where hθ ,Λ is the least favourable direction satisfying

Eθ ,η(Bθ ,ηhθ ,Λ(X) ∣ Y = y) = Eθ ,η(ℓ̇θ ,η(X) ∣ Y = y). (1.28)
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for almost every y.
Now consider a random sequence θ̃n

P
→ θ0. Asymptotic normality and semipara-

metric efficiency can be established by way of the expansion

logplikn(θ̃n) = log plikn(θ0) + (θ̃n − θ0)
⊺ n
∑
i=1 ℓ̃0(Xi)

− 1
2(θ̃n − θ0)

⊺Ĩ0(θ̃n − θ0) + oP0(
√
n∥θ̃n − θ0∥ + 1)2, (1.29)

where logplikn(θ) = n supη∈H Pn log lik(θ , η) is the profile log-likelihood. Condi-
tions under which (1.29) will hold can be made with respect to an approximately least
favourable submodel, defined as follows.

For each (θ , η), consider a map t ↦ ηt(θ , η) from a fixed neighbourhood of θ
to H that passes through (θ , η) at t = θ

ηθ(θ , η) = η. (1.30)

Assume that this submodel ensures t ↦ ℓ(t, θ , η)(x) ≡ log lik(t, ηt(θ , η))(x) is
twice continuously differentiable for every x and the first derivative at the truth
corresponds to the efficient score function for θ

ℓ̇(θ0, θ0, η0) = ℓ̃θ0 ,η0 . (1.31)

Moreover, for any θ̃n
P
→ θ0,

η̂θ̃n
≡ argmax

η∈H log likn(θ̃n , η)
P
→ η0 (1.32)

and
P0 ℓ̇(θ0, θ̃n , η̂θ̃n

) = oP(∥θ̃n − θ0∥ + n−1/2). (1.33)

In other words, themaximizer of the profile log-likelihood at any consistent estimator
θ̃n is also consistent and the corresponding score at t = θ0 tends to zero with order
oP(∥θ̃n − θ0∥ + n−1/2).
1.23 theorem (Murphy and van der Vaart 2000, Theorem 1). Suppose that there
is an approximately least favourable submodel for which (1.30)–(1.33) hold. Further
assume that there exists a neighbourhood V of (θ0, θ0, η)where {ℓ̇(t, θ , η) ∶ (t, θ , η) ∈
V} is P0-Donsker with square-integrable envelope and {ℓ̈(t, θ , η) ∶ (t, θ , η) ∈ V} is
P0-Glivenko-Cantelli and bounded in L1(P0). Then (1.29) is satisfied.

1.24 corollary (cf. Murphy and van der Vaart 2000, Corollary 1). If (1.29) holds,
Ĩ0 is invertible and θ̂n is consistent, then θ̂n is asymptotically normal with

√
n(θ̂n − θ0) =

1
√
n

n
∑
i=1 Ĩ

−1
0 ℓ̃0(Xi) + oP0(1).
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1.25 corollary (Murphy and van der Vaart 2000, Corollary 2). If (1.29) holds,
Ĩ0 is invertible and θ̂n is consistent, then under the null hypothesis H0 ∶ θ = θ0, the
asymptotic distribution of 2 log(plik(θ̂n)/plik(θ0)) is chi-square with d degrees of
freedom.

1.26 corollary (Murphy and van derVaart 2000, Corollary 3). If (1.29) holds and
θ̂n is consistent, then for any sequence υn

P
→ υ in Rd and ρn

P
→ 0 such that (

√
nρn)

−1 =
OP(1),

− 2
logplikn(θ̂n + ρnυn) − log plikn(θ̂n)

nρ2
n

P
→ υ⊺Ĩ0υ. (1.34)

If Pθ ,η ℓ̇(θ , θ , η) = 0 for every (θ , η), then the “no-bias” condition (1.33) reduces to

P0 ℓ̇(θ0, θ0, η̂θ̃n
) = oP(∥θ̃n − θ0∥ + n−1/2). (1.35)

Moreover if η − η0 is a valid direction, then with (1.30)

P0 ℓ̇(θ0, θ0, η) = P0[
p0 − pθ0 ,η

p0
(ℓ̇(θ0, θ0, η) − ℓ̇(θ0, θ0, η0))]

− P0 ℓ̇(θ0, θ0, η0)[
pθ0 ,η − p0

p0
− B0(η − η0)]. (1.36)

The above expression is OP(∥η − η0∥2) when η ↦ pθ0 ,η is twice differentiable and
η ↦ ℓ̇(θ0, θ0, η) is differentiable at η0. In this case a sufficient condition for (1.35) is

∥η̂θ̃n
− η0∥ = OP(∥θ̃n − θ0∥) + oP(n−1/4).

So, under some additional regularity conditions, verifying (1.33) often reduces to
showing that η̂n is consistent and converges to the truth η0 at a rate no slower than
n1/4.

1.2.4 Convex models

Under right-censored data, the semiparametric intensity-based models summarized
in Section 1.1.3 have closed-form estimating equations for the cumulative regression
functions. This is rarely the case with interval-censored data. However the distribu-
tion function defined by any non- or semiparametric maximum likelihood estimator
has nomore than n support points and, in examining the likelihood function, we can
often reduce the dimension further. The resulting finite-dimensional optimization
problem may offer some simplifying features such as convexity. A common example
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is the convex model, where the objective function is convex and the parameters lie in
a convex set.

This section summarizes some useful results for establishing convergence of al-
gorithms to compute nonparametric maximum likelihood estimators under convex
models. Throughout, suppose that the aim is to find a minimizer ϕ̂ of the objective
function L ∶K→ (−∞,∞] over some metric space (K, d).

A sequential computational algorithm for ϕ̂ is specified by an initial value ϕ(0) ∈
K, an algorithmic map A ∶ ϕ(r) ↦ ϕ(r+1) ∈ K and a solution set K̂(r) = {ϕ ∈ K ∶
d(ϕ, ϕ(r)) < ε} for some fixed ε > 0. To avoid overshooting the minimum, the map
A is typically the composition of a minimizer B and line search C. Typically B is given
by

B(ϕ(r)) = argmin
ϕ∈K Q(ϕ, ϕ(r)), (1.37)

where Q(ϕ, y) is a quadratic approximation of the difference L(ϕ) − L(y)

Q(ϕ, y) = (ϕ − y)⊺∇ L(y) + 1
2(ϕ − y)

⊺D(y)(ϕ − y), (1.38)

for some positive definite matrix D(y). The line search C(B(ϕ(r))) is simply the
identity map whenever B(ϕ(r)) satisfies

L(B(ϕ(r))) < L(ϕ(r)) + (1 − ε)(B(ϕ(r)) − ϕ(r))⊺∇ L(ϕ(r)). (1.39)

Otherwise C(B(ϕ(r))) is an element from the segment {ϕ ∶ ϕ = ϕ(r) + ρ(B(ϕ(r)) −
ϕ(r)), 0 ≤ ρ ≤ 1} such that

(1 − ε)(ϕ − ϕ(r))⊺∇ L(ϕ(r)) ≤ L(ϕ) − L(ϕ(r)) ≤ ε(ϕ − ϕ(r))⊺∇ L(ϕ(r)),
for fixed 0 ≤ ε ≤ 1/2. The following result is a generalization of convergence condi-
tions based on the Fenchel dual (Groeneboom 1996, Lemma 2.1).

1.27 proposition (cf. Dümbgen et al. 2006, Section 3). Let L ∶ Rm → (−∞,∞]
be a continuous convex function on the extended real line and (K, d) be a metric space.
Put K0 = {ϕ ∈ K ∶ L(ϕ) < ∞}. Suppose that K0 is non-empty, L is continuously
differentiable on K0 and the set {ϕ ∈ K ∶ L(ϕ) ≤ c} is compact for each c ∈ R. Then
the set K̂ = argminϕ∈K L(ϕ) is nonempty and compact. Consider an algorithmic map
A = B ○ C satisfying A(ϕ) ∈ K̂ for any ϕ ∈ K̂ and B(ϕ) ∈K for each ϕ ∈K0 ∖ K̂. If,
for any y → ϕ in K, lim supy→ϕ ∥B(y) − y∥ < ∞ and

lim inf
y→ϕ
(B(y) − y)⊺∇ L(ϕ) < 0, (1.40)

then the sequence given by ϕ(0) ∈ K0 and ϕ(n) ∶= A(ϕ(n−1)) for n = 1, 2, . . ., is such
that

lim
n→∞min

ϕ̂∈K̂ d(ϕ(n), ϕ̂) = 0.
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1.3 interval-censored data

The martingale methods described in Section 1.1 have limited application in con-
structing estimators from interval-censored data. The current section examines ex-
isting methods to address interval censoring. This review is by no means exhaustive;
the aim is to provide a broad summary of general strategies with emphasis placed on
non- and semiparametric methods.

1.3.1 Censoring patterns and mechanisms

Inference from interval-censored data invariably requires some assumptions about
the type of interval censoring and the mechanism generating the observation times.
“Case 1” or current status is the simplest and most extreme form of interval censoring
in which each subject is inspected for the occurrence of events at only one point in
time. If we determine a subject’s survival status at the inspection time U , then all
we observe about the survival time T is (U , 1(0,U](T)). Inclusion of an additional
inspection time V > U yields “case 2” interval censoring, where we observe (U ,
V , 1(0,V](T), 1(U ,V](T)). Exact event times can sometimes be observed at random,
yielding partly or “mixed” interval-censored data. Doubly-censored data is related to
this observation scheme, but differs in that T is observed exactly whenever U < T ≤
V . If a censored observation cannot be expressed as an interval of time, the data are
generally said to be coarsened. We later study a form of partly coarsened data that
arises due to different censoring mechanisms acting on each event type.

1.28 example (Progression subject to earlier right-censoring, cf. Bebchuk and
Betensky 2001). A progressive illness-death process (Figure 1.2) can be represented
by the trivariate counting process N = (N01,N02,N12) tracking the number of state
transitions over time. Let Th j = inf{t ∶ Nh j(t) = 1} be the time of the transition from
state h to state j, S = T01 ∧ T02 denote the time of progression and T = T02 ∧ T12

be the time of death. Suppose that observation of S is right-censored at C and T is
right-censored at D with C ≤ D. If we observe C and T ∧ D such that C < T ∧ D
and C < S, then the exact progression time T01 is unknown; either T01 ≡ ∞ (that is,
S = T) or T01 ∈ (C , T ∧ D). Given a fixed covariate process Z, we assume that the
censoring times (C ,D) are conditionally independent of (S , T). It is easy to show that
this condition is stronger than a natural extension of independent right-censoring
(Example 1.1). ◽

Ageneralization of case 2 interval-censored data ariseswhen an individual’s status
is observed at a random number K ≥ 1 times over some observation period [σ , τ].
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Schick and Yu (2000) call this “mixed case” interval censoring. A more common
term, particularly under multistate processes, is panel observation. The “potential”
inspection times can be represented by the triangular arrayY = {Yk, j ∶ k = 1, 2, . . . , j =
1, . . . , k} of random variables.

1.29 example (Failure under panel observation, Schick and Yu 2000). Let T be a
failure time under the panel observation scheme (K ,YK). Put YK ,0 ≡ 0 and YK ,K+1 ≡
∞. For j = 1, . . . ,K + 1, we observe 1(YK , j−1 ,YK , j](T). ◽
1.30 example (Progression under panel observation, Joly et al. 2002). Consider
the illness-death model where transition into the intermediate state corresponds to
an irreversible progression in disease status. Let S denote the exit time from the initial
state and T be the time of death. Suppose that T is known exactly whenever it occurs
before τ, but progression is detected only through inspection times over time period
[σ , τ]. We then observe Y = T ∧ τ, 1(0,τ](T) and 1(YK , j−1 ,YK , j](S) for YK , j < Y . ◽

The potential observation scheme (K ,YK) is ignorable provided that the joint
likelihood with the event {K = k,YK = yk} is proportional to the likelihood obtained
by treating (K ,YK) as though it were fixed in advance. This is a standard assumption
of methods for interval-censored data. Note that the relevant inspection times in
panel-observed survival data essentially reduce to case 2 interval censoring. However
the relevant observation times {YK , j ∶ 1(YK , l−1 ,YK , l ](T), l = j, j + 1} are clearly not
ignorable. One obvious way ignorability can be met is to assume that, conditional on
any information known at time zero, (K ,YK) is independent of the event times.

1.31 definition (Conditionally independent panel observation). Let T be an
event time and Z a fixed covariate process. Suppose that T is under a panel observa-
tion scheme (K ,YK) satisfying

T ⊧ (K ,YK) ∣ Z ,

then (K ,YK) is said to be conditionally independent of T . ◽

Conditional independence is a typical assumption made by standard non- and
semiparametric methods. Parametric alternatives often invoke a weaker form of ig-
norable panel observation described in Grüger et al. (1991). It is analogous to inde-
pendent right-censoring, where we typically allow the censoring time to depend on
the observed event history.
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1.32 definition (Noninformative panel observation, Grüger et al. 1991). Let T
be an event time and Z a covariate process. Suppose that T is under the panel
observation scheme (K ,YK). Put ∆K , j = 1(YK , j−1 ,YK , j](T), ∆ j = (∆K ,1, . . . , ∆K , j) and
Yj = (YK ,1, . . . ,YK , j). If

P(T ≤ y j ∣ K = k,YK ,1 = y1, . . . ,YK , j = y j, {Z(u) = z(u) ∶ u ≤ y j}, T > yk, j−1)
= P(T ≤ y j ∣ {Z(u) = z(u) ∶ u ≤ y j}, T > y j−1),

holds and

P(YK , j = y j ∣ K = k,YK ,1 = y1, . . . ,YK , j = y j, {Z(u) = z(u) ∶ u ≤ y j}, T > yk, j−1)
is functionally independent of the parameters specifying the distribution of T , then
(K ,YK) is said to be noninformative about T . If Z is time-invariant and the second
condition is replaced by

P(YK , j = y j ∣ K = k,YK ,1 = y1, . . . ,YK , j = y j, Z = z, T > yk, j−1)
= P(YK , j = y j ∣ K = k,YK ,1 = y1, . . . ,YK , j = y j, Z = z),

then it is straightforward to show that (K ,YK) is conditionally independent of T . ◽

1.3.2 Nonparametric estimation

Computation of the empirical survivor function from current status data dates back
to the pooled-adjacent violators algorithm of Ayer et al. (1955). Turnbull (1976) later
considered estimation from arbitrarily truncated and interval-censored data. This
entailed characterizing the support of the nonparametric maximum likelihood esti-
mator (npmle) and iteratively solving a set of “self-consistency” equations. Turnbull
attributed the approach to Efron (1965), but it can be more formally motivated by
the em algorithm (Dempster et al. 1977). From the results of Wu (1983), it follows
that the self-consistent estimator under case 1 and 2 interval censoring maximizes
the observed data likelihood provided that the starting values put positive mass on
the candidate support set of the npmle (Groeneboom and Wellner 1992).

Groeneboom (1991), Groeneboom andWellner (1992) and Jongbloed (1998) de-
velop the iterative convex minorant (icm) algorithm for direct computation of the
npmle via isotonic regression. It can be considered an instance of the general con-
vex optimization routine described in Section 1.2.4. Groeneboom andWellner (1992)
show that the (modified) icm algorithm computes the npmle from current status
and case 2 interval-censored data. From Schick and Yu (2000) and van der Vaart
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and Wellner (2000) this result can be extended to panel-observed survival times,
though Dümbgen et al. (2006) construct a general framework encompassing icm to
compute the npmle from panel data.

Turnbull’s (1976) self-consistency algorithm has been extended to doubly-cen-
sored data (De Gruttola and Lagakos 1989), partly interval-censored data (Huang
1999), competing risks (Frydman and Liu 2013; Hudgens et al. 2001), the progressive
Markov illness-death model (Frydman 1995; Frydman and Szarek 2009), progressive
semi-Markov processes (Griffin and Lagakos 2010; Sternberg and Satten 1999) and
the conditional survivor function on a continuous covariate (Dehghan andDuchesne
2011). Likewise extensions of isotonic regression with current status data have been
obtained for estimating the subdistribution functions of the competing risks model
(Jewell et al. 2003; Maathuis 2006), the sojourn time distribution in a Markov mul-
tistate model (Datta et al. 2009) and the state occupancy probabilities of a possibly
non-Markov progressive process (Datta and Sundaram 2006).

The npmle from interval-censored data converges to the truth at OP(n1/3) (van
de Geer 1993; Groeneboom 1991). Groeneboom (1991) proves that the limiting distri-
bution of the npmle under case 1 and 2 interval censoring can be derived from the
slope of the convex minorant of a two-sided standard Brownian motion process with
parabolic drift. Groeneboom et al. (2008) show that Jewell et al.’s (2003) competing
risks estimator and the corresponding npmle converge to a distribution character-
ized by a convexminorant, but only the former is based on a drifted Brownianmotion
process. With the availability of exact observation times, the npmle can generally
achieve the parametric rate of convergence

√
n. Yu et al. (1998) show that the npmle

of the survivor function is pointwise asymptotically normal provided that the under-
lying distribution is continuous and the observation times yielding independent case
2 interval-censoring are discrete. Similar results hold without discrete observation
times under doubly-censored (Gu and C.-H. Zhang 1993) and partly case 2 interval-
censored (Huang 1999) data. In the absence of exact data, the rate of convergence
can be increased via a restricted npmle. Dümbgen and Rufibach (2009) show that
OP(n2/5) is achieved under a unimodal distribution. Alternatively, if a parametric
or semiparametric model of the independent censoring mechanism can be correctly
specified, it is possible to obtain a locally

√
n-efficient estimator of the marginal

survivor distribution via an extension of Robins and Rotnitzky’s (1992) generalized
estimating function approach (van der Laan and Hubbard 1997; van der Laan and
Robins 1998).

The limiting distribution is useful for constructing bootstrap or analytic con-
fidence intervals and bands. Various nonparametric tests for comparing survivor
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curves from right-censored data have been extended to independent case 1 and 2
interval censoring. These include the log-rank (J. Sun et al. 2005; Q. Zhao and J. Sun
2004; X. Zhao et al. 2008), survival-based (Fang et al. 2002; Petroni and Wolfe 1994;
Yuen et al. 2006) and likelihood ratio (Groeneboom 2012) tests. Another approach
is to exploit the structure of the observed data. Andersen and Ronn (1995), J. Sun
(1999) and J. Sun and Kalbfleisch (1993) construct specialized tests for current status
data. Dümbgen et al. (2006) propose a permutation test from panel observations.

1.3.3 Semiparametric maximum likelihood

Imposing some structure through a finite-dimensional parameter θ offers a parsimo-
nious way to quantify sample comparisons and examine covariate effects. Provided
that the class of functions containing the infinite-dimensional parameter is suffi-
ciently “small”, we can use the results of Section 1.2 to verify asymptotic normality of
the maximum likelihood estimator θ̂n.

Maximum likelihood estimation of the proportional hazardsmodel (Example 1.6)
from case 2 interval-censored data was first proposed by Finkelstein (1986). Study
of asymptotic properties of the Cox model from case 1 and 2 interval-censored data
largely originates fromHuang’s (1994) PhD dissertation. This workmade use of devel-
opments in empirical processes (van derVaart andWellner 1996) and semiparametric
theory (Bickel et al. 1993; van der Vaart 1988). Huang (1996) derived efficient estima-
tors with current status data. Huang and Wellner (1995) and Kim (2003) obtained
similar results under case 2 and partly interval-censored data, respectively. Wellner
and Y. Zhang (2007) contributed additional large sample theory to obtain a Cox-type
model for panel-observed count data. Huang andWellner’s (1995) estimator has been
further extended to competing risks (J. Sun and J. S. Shen 2009) and to covariates
with measurement error (Wen 2012).

Alternatives to the Cox model have also been examined. Rabinowitz et al. (1995)
and Rossini and Tsiatis (1996) consider the accelerated failure time (1.19) and pro-
portional odds models (1.18), respectively. Estimating functions based on current
status and case 2 interval-censored data for the more general linear transformation
model have been constructed by J. Sun and L. Sun (2005) and Z. Zhang et al. (2005).
Lin et al. (1998) and Martinussen and Scheike (2002) estimate Lin and Ying’s (1994)
restricted Aalen model (Example 1.7) from current status data in which the moni-
toring process follows a Cox model. This censoring mechanism enables the use of
martingale methods in deriving large sample results. Such simplifying assumptions
are unfortunately difficult to find elsewhere. Zeng et al. (2006) consider estimation of
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Lin and Ying’s (1994) model from case 2 interval-censored survival data. They derive
asymptotic results using the basic techniques found in Huang and Wellner (1995),
with some application of updated profile likelihood theory by Murphy and van der
Vaart (2000).

1.3.4 Alternatives

Non- and semiparametric maximum likelihood is computationally intensive when
the sample size large. The dimension of the parameter space can be tempered with
the use of a sieve (Section 1.2.2). X. Shen (2000) derived sieve estimates for the accel-
erated failure time model from current status data. Huang and Rossini (1997) and Y.
Zhang et al. (2010) consider sieves for estimating the proportional odds and hazards
models, respectively, from case 2 interval-censored survival data. They show that
the sieve estimator can have faster asymptotic convergence, though still slower than
the parametric rate. Moreover their empirical results suggest a substantial reduction
in computing time relative to spmle. Y. Zhang et al. (2010) additionally achieved
smaller finite-sample bias by smoothing via a spline-based sieve.

Smooth alternatives to the npmle can also be derived from penalized and local
likelihood. Cai and Betensky (2003) use penalized maximum likelihood to estimate
the proportional hazards model under partly case 2 interval-censored data. This
approach was later extended to estimate the intensity measure of Markov and semi-
Markov processes (Joly et al. 2002, 1998). Groeneboom et al. (2010) andMurphy et al.
(1999) construct penalized likelihood estimators from current status data. Murphy et
al. (1999) consider the semiparametric accelerated failure time model (1.19). Groene-
boom et al. (2010) study the empirical distribution of a survival time. They show that
the smoothed estimators may be biased, but are pointwise asymptotically normal
with mean and variance depending on the densities of the event and inspection
times. In local likelihood the degree of smoothing is determined by a user-defined
bandwidth parameter rather than a penalty term. Betensky et al. (1999) obtain local
likelihood estimates of the proportional hazards model using a local em algorithm.
Tolusso and Cook (2009) extend this to Markov multistate processes.

Methods akin to em based on Cox’s (1972) partial likelihood (Example 1.6) can
avoid estimation of the infinite-dimensional parameter entirely. Heller (2011) con-
structs estimating functions weighted by the inverse probability of censoring. Gog-
gins et al. (1998), Satten (1996) and Satten and Sternberg (1999) sample survival time
ranks compatible with the observed data. Bebchuk and Betensky (2000) simulate
survival times and apply local likelihood methods for right-censored data to obtain
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smooth estimates of the hazard function. Data augmentation also plays a role in
Bayesian methods as the posterior distribution often must be evaluated numerically,
even with a parametric prior (Calle and Gómez 2001; Gómez et al. 2004). Han et
al. (2013) propose estimation of generalized linear models on the basis of pseudo-
observations (Andersen et al. 2003) generated from the empirical distribution func-
tion under interval-censored survival data.

The weakly parametric Cox model permits use of closed-form estimating equa-
tions for baseline intensities while maintaining much of the flexibility of a semipara-
metric estimator (Lawless 2003, Section 7.4; Sutradhar and Cook 2008). “Stronger”
parametric forms are relatively difficult tomotivate with interval-censored data. How-
ever if a parametric model can be reasonably justified, it may offer greater insight
into the underlying event process. Fully-specified models can also be parameterized
in such a way to make maximum likelihood estimation relatively straightforward.
Themultinomial interpretation of the observed data likelihood, for example, permits
the use of generalized linear models in fitting a weakly parametric intensity function
(Farrington 1996; Lindsey and Ryan 1998; J. Sun 1997). Kalbfleisch and Lawless (1985)
proposed the use of transition intensity models having an analytic solution to the
(differential) forward equation (Definition 1.2). Extensions of this approach have
been recently studied by Chen and Zhou (2011) and Titman (2011).

1.4 motivation and plan

Our motivation is drawn from clinical studies in which the endpoint of interest
considers what we loosely call “progression”: a transition into an irreversible, non-
terminal disease state. Progression-related endpoints can offer a pragmatic alterna-
tive to overall survival in terms of sample size demands, requisite follow-up time
and (perhaps most importantly) relevance to the intervention under study. However
evaluation of such outcomes poses a variety of challenges not encountered with
overall survival (Fleming et al. 2009). Time to progression (ttp), defined as the time
from randomization to progression, is a convenient endpoint when death is rare or
arises only as a result of progression. Otherwise ttp is right-censored at death before
progression (fda 2007, p. 5). The underlying ttp then measures the time to pro-
gression after the subject’s death. As this value has no reasonable interpretation the
preferred endpoint is progression-free survival (pfs), measured from randomization
to the earliest of progression and death.

As a composite endpoint, standard time-to-event methods are applied to evaluate
pfs. Such an approach does not directly measure the individual effects of treatment
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on progression or survival. This limitation has been examined in the literature. Semi-
competing risks partially specify the joint distribution of progression and death via a
copulamodel (e.g. Day et al. 1997; Fine et al. 2001; Peng and Fine 2007;W.Wang 2003).
This is largely a hypothetical construct in which the density of progression following
death is deemed unobservable. One need not look very far to find alternatives that
avoid latent distributions; Frydman (1995) and Xu et al. (2010) endorse the use of the
traditional illness-death model. Xu et al. (2010) further show that semicompeting
risks model is closely related to a rather restrictive illness-death process (Figure 1.2).

Evaluation of progression-related endpoints is complicated by censoring. When
progression is censored by amechanism separate from the one acting on survival, pfs
is subject to multiple right-censoring schemes (Example 1.28). In both ttp and pfs
progression is commonly observed through a discrete inspection process, leading
to interval censoring (Examples 1.29 and 1.30). Standard practice is to systematically
impute event times to the right-endpoint of the censoring interval (e.g. fda 2007,
Appendix 3). Variance estimates are likely too optimistic, unless some attempt ismade
to reflect error in the imputed values. Potential bias can probably be deemed small
if sensitivity analysis gives similar results, but it is unclear how investigators should
proceed when a variety of imputation rules offer meaningfully different estimates.

Section 1.3 summarized methods to more formally account for interval-censored
data. These offer a variety of ways to deal with interval censored data in ttp, provided
that progression is inspected at one or two points in time. Frydman and Szarek (2009)
addresses panel-observed progression times in pfs through the construction of a
self-consistency algorithm under a Markov illness-death process. The asymptotic
properties of this nonparametric estimator are unknown. Dejardin et al. (2010) incor-
porate covariates in a three-state process related to the illness-death model by setting
α02(t) = 0 and α01(t) = α12(t) = γα(t).

Bebchuk and Betensky (2001, 2002) examine local likelihood and multiple impu-
tation for handling different censoring schemes in the analysis of progression and
survival times. Bebchuk and Betensky (2005) construct comparison tests in aMarkov
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Cox-type illness-death model where baseline intensities are assumed constant and
departures from homogeneity are incorporated with a time-dependent covariate.
Yuan et al. (2012) propose Bayesian estimation for covariate effects on the marginal
distribution of progression and survival. A shortcoming of existing methods is that
they either invoke parametric assumptions not often made in evaluating clinical end-
points or have limited provision for the censoring scheme encountered in practice.

This thesis extends variants of the Coxmodel (Example 1.6) to censoring patterns
typically encountered with ttp and pfs via semiparametric or sieve maximum like-
lihood. Throughout we make the simplifying assumption that the censoring mecha-
nism is (conditionally) independent and the covariates of interest do not vary with
time. Chapter 2 considers estimation from interval-censored time-to-event data (Ex-
ample 1.29). The resultingmethods are appropriate for intent-to-treat analysis of ttp
when death rarely ever precedes progression. Chapters 3 and 4 evaluate pfs via the
illness-death model. Chapter 3 considers the case where progression and death are
observed under different right-censoring schemes (Example 1.28). Nonparametric
estimation of the illness-death model from interval-censored progression times has
been previously studied by Frydman and Szarek (Example 1.30). In Chapter 4 we
propose the extension of this work to account for covariates under a refinement of
this observation scheme.
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chapter 2

interval-censored time-to-event data

“Mixed case” interval-censoring arises when failure status is assessed a random num-
ber of times (Example 1.29). Up to two of these times specify the censoring interval,
so case 2 methods constructed on the basis of Grüger et al.’s (1991) noninformative
censoring mechanism (Definition 1.32) easily permit mixed case interval-censored
data. These are primarily limited to weakly parametric models (Lawless 2003, Sec-
tion 7.4). Case 2 non- and semiparametric methods derived under (conditionally)
independent censoring (Definition 1.31) could likely be extended through some ad-
justment to the derivation of asymptotic properties. Schick and Yu (2000) and van
der Vaart andWellner (2000) have already proved consistency for the nonparametric
maximum likelihood estimator. A consistent npmle allows for use of Han et al.’s
(2013) jacknife pseudo-observations to fit a variety of semiparametric transformation
models (Section 1.1.4) from mixed case interval-censored data, but their approach
requires a completely independent censoring mechanism.

Semiparametric methods developed specifically to address mixed case interval-
censoring are primarily limited to the Cox model. Wen (2012) derives an estimator
for the proportional hazards model under both mixed case interval-censoring and
covariate error. Cox-type models for panel count data have been examined under
various censoring mechanisms and estimation schemes (e.g. Hu et al. 2003; J. Sun
et al. 2007; J. Sun and Wei 2000; Wellner and Y. Zhang 2007). Although failure is
essentially a one-jump counting process, these methods are constructed on the basis
of a Poisson assumption and thus suited for recurrent events, rather than failure
times.

Entry Progression Death

α(t ∣ w , z) = w⊺λ(t) exp(z⊺θ) figure 2.1
Time to
progression in a
chain-of-events
model.

The Aalenmodel and its variants (Examples 1.7 and 1.8) offer a flexible alternative
to the Cox model. Their estimation schemes currently address only right-censored
data (Aalen 1989; Huffer and McKeague 1991; Scheike and M.-J. Zhang 2002). This
chapter considers maximum likelihood estimation for the Cox-Aalen model under
mixed case interval-censored data and fixed covariates. The resulting estimator is
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relevant to the analysis of time to progression, particularly when death rarely ever
precedes this event (Figure 2.1).

2.1 model and observation scheme

Consider a failure time T with hazard function

α(t ∣W , Z) = w⊺λ(t) exp(Z⊺θ), (2.1)

whereW = (W1 ≡ 1,W2, . . . ,Wdw)
⊺ and Z = (Z1, . . . , Zdz)

⊺ are vectors of fixed covari-
ates, θ is a dz-vector of regression coefficients and Λ = ∫ λ is a dw-variate cumulative
regression function such that the hazardW⊺Λ is almost surely nondecreasing. This
corresponds to a restricted Cox-Aalen model; in its most general form bothW and
Z can depend arbitrarily on time (Example 1.8).

Instead of observing T exactly, suppose that we can only assess the event status
up to K times, at YK = (YK ,1, . . . ,YK ,K) with K ≥ 1 and 0 ≡ YK ,0 < YK ,1 < ⋯ < YK ,K <

YK ,K+1 ≡ ∞, but (K ,YK) is otherwise random. Let Y denote the triangular array of
“potential” inspection times {Yk, j ∶ j = 1, . . . , k, k = 1, 2, . . .} and ∆K , j = 1(YK , j−1 ,YK , j](T)
denote the failure status at YK , j, j = 1, 2, . . . ,K + 1 (Figure 2.2).

Y4,0 ≡ 0
σ
[

Y4,1

T

Y4,4Y4,2
(

Y4,3
]

τ
]

Y4,5 ≡ ∞
∆4,1 = 0 ∆4,2 = 0 ∆4,3 = 1 ∆4,4 = 0 ∆4,5 = 0

figure 2.2
Intermittent

inspection of an
event time.

From Definition 1.2 and Theorem 1.3, the status vector ∆K = (∆K ,1, . . . , ∆K ,K+1)
given (K ,YK ,W , Z) follows a multinomial distribution with one “trial” and “cell”
probabilities

1 − exp(−W⊺Λ(YK ,1)eZ
⊺θ), exp(−W⊺Λ(YK ,1)eZ

⊺θ) − exp(−W⊺Λ(YK ,2)eZ
⊺θ), . . . ,

exp(−W⊺Λ(YK ,K−1)eZ⊺θ) − exp(−W⊺Λ(YK ,K)eZ
⊺θ), exp(−W⊺Λ(YK ,K)eZ

⊺θ).

Let x = (δk , yk , k,w , z) denote a realization of the observation X = (∆K ,YK ,K ,W ,
Z). Assume that:

a1 The event time T is conditionally independent of (K ,Y) given (W , Z).

Then the density of X = x with respect to a dominating measure ν determined by
the distribution of (K ,Y,W , Z) is

pθ ,Λ(x) = {1 − exp(−w⊺Λ(yk,1)ez⊺θ)}δk ,1
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×
k
∏
j=2
{exp(−w⊺Λ(yk, j−1)ez⊺θ) − exp(−w⊺Λ(yk, j)ez⊺θ)}δk , j

× {exp(−w⊺Λ(yk,k)ez⊺θ)}δk ,k+1 (2.2)

= δk,1{1 − exp(−w⊺Λ(yk,1)ez⊺θ)}
+

k+1
∑
j=2

δk, j{exp(−w⊺Λ(yk, j−1)ez⊺θ) − exp(−w⊺Λ(yk, j)ez⊺θ)},
+ δk,k+1 exp(−w⊺Λ(yk,k)ez⊺θ).

Let Xi = (∆i
K i
,Y i

K i
,Ki ,Wi , Zi), i = 1, . . . , n, be n iid observations of X from (θ0,Λ0),

where Y i
K i
= (Y i

K i ,1, . . . ,Y
i
K i ,K i
) and ∆i

K i
= (∆i

K i ,1, . . . , ∆
i
K i ,K i+1). The corresponding

log-likelihood function is

log likn(θ ,Λ) =
n
∑
i=1∆

i
K i ,1 log{1 − exp(−W

⊺
i Λ(Y i

K i ,1)e
Z⊺i θ)}

+
K i

∑
j=2

∆i
K i , j log{exp(−W

⊺
i Λ(Y i

K i , j−1)eZ⊺i θ) − exp(−W⊺
i Λ(Y i

K i , j)e
Z⊺i θ)}

−∆i
K i ,K i+1W⊺

i Λ(Y i
K i ,K i
)eZ⊺i θ . (2.3)

2.1 remark. The expression in (2.3) reduces to same likelihood function obtained
under the noninformative censoring mechanism from Definition 1.32 (Lawless 2003,
p. 65). The stronger requirement in a1 simplifies the derivation of asymptotic prop-
erties. It may be motivated by the setting in which individuals are assessed according
to a predetermined schedule, with the completion and exact timing of assessments
determined by some random process related to T only via (W , Z). ◽

2.2 maximum likelihood estimation

The regression model (2.1) is a valid intensity function provided that W⊺Λ is almost
surely nondecreasing. Estimating equations derived from the likelihood process (1.4)
often dispense with the requirement entirely, but (1.4) applies only to filters. A dis-
crete inspection process necessitates constrained maximization of the likelihood. To
address this complication, consider two simplifying assumptions:

a2 The support of FW , W ≡ supp(FW), is a bounded subset of Rdw . In particular,
there exists some known w0,w1 ∈W such that P(w0 ≤W ≤ w1) = 1.

a3 FW2 ×⋯ × FWdw
≪ FW and, for every w ∈W, we have P(T > τ ∣W = w) > 0.
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2.2 remark. Condition a3 essentially implies that we need w⊺Λ nondecreasing for
every w ∈W. Condition a2 allows us to ensure monotonicity only in w⊺Λ, where w
is a matrix whose entries are determined from the values inw0 andw1. The choice of
w0 and w1 is relatively straightforward by standardizing any continuous covariates.
In general W is appropriately scaled so that the first entry in Λ, Λ1, is a baseline
cumulative hazard function. ◽

Not every inspection time contributes information to the likelihood function. As
in Groeneboom and Wellner (1992, Part ii, Definition 1.1) irrelevant inspections can
be discarded to obtain a “thinned” set of observation times.

2.3 definition. Let Y(1), . . . ,Y(m) be the order statistics of

Y = {Y i
K i , j, j = 1, . . . ,Ki , i = 1, . . . , n ∶ ∆i

K i , j + ∆
i
K i , j+1 = 1}

and (W(i), ∆(i)) denote the (W , ∆K , j) corresponding to the ith order statistic Y(i). ◽
If ∆(1) = 0, then the Λ maximizing (2.3) should satisfy Λ(Y(1)) = 0. If ∆(m) = 1, then
the maximizing Λ satisfies w⊺Λ(Y(m)) = ∞ for every w ∈ W or, in other words,
Λ1(Y(m)) = ∞. When combined with the remaining observations in Definition 2.3,
these cases contribute nothing to the likelihood. So without loss of generality assume
that ∆(1) = 1 and ∆(m) = 0.

Let Θ andH denote the set all possible θ andΛ, respectively. In particular H is the
set of all zero-at-time-zero cadlag functions {Λ} on [0, τ] with w⊺Λ nondecreasing.
Since ∆(m) = 0 we can (again without loss of generality) assume that each Λ ∈ H is
uniformly bounded with 0 < w⊺Λ(τ) < ∞. Under conditions a1 to a3 themaximum
likelihood estimator (θ̂n , Λ̂n) is defined by

log likn(θ̂n , Λ̂n) = max
θ∈Θ,Λ∈H log likn(θ ,Λ).

Since the likelihood depends on Λ only through its value at the inspection times,
we take (θ̂n , Λ̂n) as the semiparametric maximum likelihood estimator (spmle) that
concentrates its distribution function on a subset of Y. Themaximal subset can be
identified by adapting Turnbull (1976, Lemmas 1 and 2).

2.4 definition. Let (L, R] denote the censoring interval (YK , j−1,YK , j] satisfying
∆K , j = 1; that is, T ∈ (YK , j−1,YK , j] = (L, R]. From the random sample X1, . . . , Xn

put L = {L1, . . . , Ln} and R = {R1, . . . , Rn}. Let I = {(s1, t1], . . . , (sd , td]} be the
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2.2 maximum likelihood estimation

maximal intersections (Figure 2.3) given by the set of disjoint intervals whose left-
and right-endpoints are selected respectively from L and R such that

(s j, t j] ∩ (Li , Ri] =

⎧⎪⎪
⎨
⎪⎪⎩

(s j, t j], or
∅,

for every j = 1, . . . , d and i = 1, . . . , n. ◽

(
L1

]
R1

t1
(
L2

]
R2

t2
(
L3

s1
]

R3
(
L4

s2
]

R4 figure 2.3
Maximal
intersections.

2.5 proposition.W⊺Λ̂n is almost surely constant outside I. Moreover for fixed Λ̂n

on the boundary of I, the likelihood is invariant to the behaviour of Λ̂n on the interior
of I.

Proof (cf. Alioum and Commenges 1996, Lemmas 1 and 2). Fix some (s j−1, t j−1] and
(s j, t j] in I. Consider Λ̄, Λ̃ ∈ H with Λ̄ is constant outside I and Λ̄ = Λ̃ except on
(s j−1, t j]. In particular suppose that W⊺Λ̃ almost surely increases on (t j−1, s j]. Then
there is some u j ∈ (t j−1, s j] such that u j > r ∈R, u j < l ∈ L and one of the following
hold almost surely

W⊺Λ̃(t j−1) <W⊺Ã(u j) =W⊺Λ̄(t j−1)
W⊺Λ̄(s j) =W⊺Λ̃(u j) <W⊺Λ̃(s j).

This implies that likn(θ , Λ̄) > likn(θ , Λ̃). The last statement follows from the fact
that likn(θ ,Λ) depends on Λ only through its value at the inspection times. ◾

The maximal set to which Λ̂n assigns mass is given by T = Y ∩ I = {t1, . . . , td}. Esti-
mation reduces to a finite-dimensional optimization problemwith objective function
(2.3) continuous in the set of feasible solutions. The spmle (θ̂n , Λ̂n) therefore exists.
Uniqueness is established in the following result.

2.6 proposition. Let H0 be the set of all possible Λ satisfying likn(θ ,Λ) > 0 for
every θ. Then likn(θ ,Λ) is log-concave in Λ ∈ H0 for each θ.Moreover for fixed Λ ∈ H0,
likn(θ ,Λ) is log-concave in θ.

Proof. The function д(θ) = pθ ,Λ(x) satisfies д(θ)д′′(θ) ≤ д′(θ)2 for each x and any
fixed Λ ∈ H0. This inequality is strict unless Zi = 0, i = 1, . . . , n. Let e1, . . . , edw be
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interval-censored time-to-event data

the unit vectors in Rdw . For the jth component in Λ ∈ H0, j = 1, . . . , dw , consider the
path Λ+ s jφ ∈ H with s j = se j, s sufficiently small and φ some arbitrary function. It is
straightforward to show that the second partial derivative of log pθ ,Λ(x)with respect
to s j is bounded above by zero if x corresponds to an interval- or right-censored
observation. Moreover if x is left-censored, the second derivative is strictly negative.
Since ∆(1) = 0 the log-likelihood is concave in each component of Λ, holding all
remaining entries and θ fixed. ◾

2.3 asymptotic properties

This section shows that, under some additional regularity conditions, the maximum
likelihood estimator (θ̂n , Λ̂n) is globally n1/3-consistent and θ̂n is asymptotically effi-
cient at (θ0,Λ0). This exercise largely amounts to adapting derivations from Huang
andWellner (1995), Murphy and van der Vaart (1997, Section a.3), van der Vaart and
Wellner (2000, Section 5) andWellner and Y. Zhang (2007). The limiting distribution
of n1/3(Λ̂n − Λ0) remains an open problem.

2.3.1 Consistency

Surely we cannot make any statements about the consistency of Λ̂n outside the sup-
port of the inspection times, supp(FY). One method to address this limitation is to
simply assume that supp(FY) = (0, τ]. An alternative is to consider convergence in
measure. Following van der Vaart and Wellner (2000) and Wellner and Y. Zhang
(2007), define for any B ∈ B(0, τ] and C ∈ B(Rdw+dz)

µ(B × C) = ∫C
∞
∑
k=1 P(K = k ∣W = w , Z = z)

×
k
∑
j=1 P(Yk, j ∈ B ∣W = w , Z = z)dFW ,Z(w , z),

µ̃(B × C) = ∫C
∞
∑
k=1 P(K = k ∣W = w , Z = z)

×
1
k

k
∑
j=1 P(Yk, j ∈ B ∣W = w , Z = z)dFW ,Z(w , z),

and µy(B) = µ(B ×Rdw+dz).
a4 θ0 lies in the interior of Θ and Θ is a compact subset of Rdz .

a5 There is 0 < σ < τ and 0 < M < ∞ such that 1/M < w⊺Λ0(σ−) < w⊺Λ0(τ) < M.
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2.3 asymptotic properties

a6 E(K) < ∞.

a7 The support of FZ , Z, is a bounded subset of Rdz .

a8 µy × FW × FZ ≪ µ.

a9 P(Z⊺a ≠ c) > 0 for all a ∈ Rdz with a ≠ 0 and c ∈ R. Similarly, if dw > 1, then
P(W⊺a ≠ c) > 0 for all a ∈ Rdw , a ≠ 0, and c ∈ R.

2.7 theorem. Under the conditions listed previously, θ̂n
as
→ θ0 and Λ̂n → Λ0, µy-a.e.

Proof. We verify the requirements of Theorem 1.16 with criterion function

mθ ,Λ = log
pθ ,Λ + p0

2
.

Under conditions a2, a4, a5 and a7, p0 is bounded away from zero and pθ ,Λ is
bounded above by 1. So mθ ,Λ(x) is uniformly bounded in (θ ,Λ) and x. Since the
logarithm is concave and the spmle (θ̂n , Λ̂n) is the unique maximizer of the log-
likelihood function nPn log pθ ,Λ,

Pn mθ̂n ,Λ̂n
− Pn mθ0 ,Λ0 = Pn log

pθ ,Λ + p0
2p0

≥ Pn
1
2 log

pθ̂n ,Λ̂n

p0
+ Pn

1
2 log

p0
p0
= 1

2(Pn log pθ̂n ,Λ̂n
− Pn log p0)

≥ 0.

Since log x ≤ 2(
√
x − 1) for every x ≥ 0,

P mθ ,Λ − P mθ0 ,Λ0 = P log
pθ ,Λ + p0

2p0

≤ 2 ∫
√

pθ ,Λ + p0
2p0

dP − 2 = 2 ∫
√

1
2(pθ ,Λ + p0)p0 dν − 2

≤ − ∫ [
√

1
2(pθ ,Λ + p0) −

√
p0]

2
dν = −d2

H(
1
2(pθ ,Λ + p0), p0)

≤ −d2
H(pθ ,Λ , p0) (2.4)

≤ 0,

where the last inequality holds with equality only if pθ ,Λ and p0 define the same
measure. By Lemma 2.8 below, this is equivalent to (θ ,Λ) = (θ0,Λ0). It remains
to show that {mθ ,Λ ∶ θ ∈ Θ,Λ ∈ H} is P-Glivenko-Cantelli. Each Λ ∈ H can be
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interval-censored time-to-event data

written as Λ = Λ+ − Λ− with both Λ+ and Λ− bounded and monotone on [σ , τ]. By
Theorem 1.13 we can cover {Λ+,Λ−} with exp(K/ε)dw cubes of Lr(P)-size ε. Thus

N[ ](ε, Θ ×H, Lr(P)) ≲ (diamΘ/ε)dz × exp(2dwK/ε). (2.5)

Let ΛL ≤ Λ ≤ ΛR be a bracket for Λ in H. From conditions a2 and a5 and the
Cauchy-Schwarz inequality

∣mθ ,ΛL −mθ ,ΛR ∣
2 ≲ ∫ τ

σ
(ΛL − ΛR)

2(t)dt. (2.6)

Similarly if (θL , θR) is a bracket for θ in Θ then

∣mθL ,Λ −mθR ,Λ∣
2 ≲ ∥θL − θR∥, (2.7)

from conditions a4 and a7 and the mean value theorem. So {mθ ,Λ ∶ θ ∈ Θ,Λ ∈ H}
is P-Glivenko-Cantelli with bracketing number proportional to (2.5) in L2(P). ◾

2.8 lemma. For every (θ ,Λ) ≠ (θ0,Λ0) on (σ , τ), pθ ,Λ ≠ p0, almost surely.

Proof. Let Sθ ,Λ(y ∣ w , z) = exp(−w⊺Λ(y)ez⊺θ) denote the survivor function with
Sθ ,Λ(0 ∣ w , z) ≡ 1, Sθ ,Λ(∞ ∣ w , z) ≡ 0 and Fθ ,Λ = 1−Sθ ,Λ. Then pθ ,Λ = p0 almost surely
implies that

0 = ∫ ∣pθ ,Λ − p0∣dν

= ∫
∞
∑
k=1 P(K = k ∣W = w , Z = z)

×
k+1
∑
j=1 ∫ ∣(Fθ ,Λ − F0)(yk, j−1, yk, j]∣dFYK ∣K(yk ∣ k,w , z)dFW ,Z(w , z).

A lower bound for the inner summation is given by condition a6 and the following
inequalities (cf. van der Vaart and Wellner 2000, Lemma 4).

k+1
∑
j=1 ∫ ∣(Fθ ,Λ − F0)(yk, j−1, yk, j]∣dFYK ∣K(yk ∣ k)

≥max
1≤ j≤k ∫ ∣Fθ ,Λ(yk, j) − F0(yk, j)∣dFYK , j ∣K(yk, j ∣ k)

≥
1
k

k
∑
j=1 ∫ ∣Sθ ,Λ(yk, j) − S0(yk, j)∣dFYK , j ∣K(yk, j ∣ k).

Thus
0 = ∫ ∣pθ ,Λ − p0∣dν ≥ ∫ ∣Sθ ,Λ − S0∣dµ̃. (2.8)
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2.3 asymptotic properties

Conditions a2, a6 and a7 ensure that both µ̃ and µ are finite. Since µ ≪ µ̃, the
dominated convergence theorem gives

∫ ∣Sθ ,Λ − S0∣dµ = 0.

From a5, W⊺Λ0 is µ-almost everywhere bounded away from zero. So ez⊺(θ0−θ) =
w⊺Λ(y)/w⊺Λ0(y), µ-a.e., and Z⊺(θ0 − θ) is then degenerate given Y ∼ µy. Under a8
and a9 this implies that θ = θ0 and hence w⊺(Λ(y) − Λ0(y)) = 0, µ-a.e. Appealing
to conditions a8 and a9 again yields Λ = Λ0, µy-a.e. ◾

2.3.2 Rate of convergence

The global rate of convergence for (θ̂n , Λ̂n) follows from Theorem 1.17. The require-
ments for this result are verified largely by adaptation of Murphy and van der Vaart
(1997, Section a.3) and Wellner and Y. Zhang (2007, Section 5). This requires one
additional assumption.

a10 For (Y ,W , Z) ∼ µw ,z = µ/µ(W × Z × (0, τ]), there exists some 0 < ρ < 1 such
that a⊺Var(Z ∣ Y ,W)a ≤ ρa⊺E(ZZ⊺ ∣ Y ,W)a, almost surely, for all a ∈ Rdz .

2.9 remark (cf. Wellner and Y. Zhang 2007, Remark 3.4). The condition can be
reasonably justified as follows. The matrix E(ZZ⊺) is positive definite by a9 and
the Markov inequality. Assume that Varµw ,z(Z ∣ Y ,W) is also positive definite. Let
λmin denote the smallest eigenvalue of Varµw ,z(Z ∣ Y) and λmax the largest eigenvalue
of Eµw ,z(ZZ⊺ ∣ Y ,W). Then 0 < λmin ≤ λmax. Suppose that the ratio λmin/λmax is
bounded away from zero uniformly in (Y ,W). Then a10 holds with ρ equal to this
uniform lower bound. ◽

2.10 theorem. Under the above conditions ∥θ̂n − θ0∥ + ∥Λ̂n − Λ0∥µy ,2 = OP(n−1/3),
where

∥Λ̂n − Λ0∥µy ,2 =
dw
∑
j=1 [ ∫ ∣Λ̂n, j − Λ0, j∣

2 dµy]
1/2

.

is the L2(µy) distance between Λ̂n and Λ0.

Proof. We verify the requirements of Theorem 1.17 with the same criterion function
mθ ,Λ from the proof of Theorem 2.7. From (2.4) and Lemma 2.11 below, P(mθ ,Λ −

mθ0 ,Λ0) ≲ −∥θ − θ0∥
2 − ∥Λ − Λ0∥

2
µy ,2. This gives (1.20). From (2.6) and (2.7)

∫ (mθ ,Λ −mθ0 ,Λ0)
2 dν ≲ ∥θ − θ0∥ + ∥Λ − Λ0∥2,
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interval-censored time-to-event data

and with (2.5),

J[ ](δ, {mθ ,Λ ∶ θ ∈ Θ,Λ ∈ H}, L2(P)) ≲ ∫ δ

0

√
1/ε dε ≲

√
δ.

Since mθ ,Λ is uniformly bounded, (1.21) is satisfied for

φ(δn) =
√
δn (1 +

1
δn
√
δnn
) ,

by Lemma 1.22. ◾

2.11 lemma. Let dH denote the Hellinger distance (Definition 1.20). Under the previ-
ous conditions, d2

H(pθ ,Λ , p0) ≳ ∥θ − θ0∥
2 + ∥Λ̂n − Λ0∥

2
µy ,2.

Proof. The squared Hellinger distance can be rewritten as

d2
H(pθ ,Λ , p0) = ∫ (pθ ,Λ − p0)2

(
√pθ ,Λ +

√p0)2
dν.

Under a4, a5 and a7, p0 is bounded away from zero and pθ ,Λ is bounded above by 1,
so the denominator in the above integrand is uniformly bounded. Thus

d2
H(pθ ,Λ , p0) ≳ ∫ (pθ ,Λ − p0)2 dν ≳ ∫ (Sθ ,Λ − S0)

2 dµ,

where the second inequality up to proportionality follows from (2.8), µ ≪ µ̃ with
µ, µ̃ < ∞ and the inequality ∣p−q∣2 ≤ ∣p−q∣ for every p, q ∈ [0, 1]. Let θ t = tθ+(1−t)θ0

and Λt = tΛ + (1 − t)Λ0. From the mean value theorem, there is some t ∈ (0, 1)
depending on (y,w , z) such that

(Sθ ,Λ − S0)(y ∣ w , z) =
∂
∂t

Sθ t ,Λt(y ∣ w , z)

= exp(−w⊺Λt(y)ez
⊺θ t)tez⊺θ t

× {[1 + t(θ − θ0)
⊺z]w⊺(Λ − Λ0)(y) + (θ − θ0)

⊺zw⊺Λ0(y)}.

For (Y ,W , Z) ∼ µw ,z, define д0(Z) = 1 + t(θ − θ0)
⊺Z, д1(Y ,W) =W⊺(Λ − Λ0)(Y)

and д2(Y ,W , Z) = (θ − θ0)
⊺ZW⊺Λ0(Y). So (Sθ ,Λ − S0)(Y ∣ W , Z) is equal to

д0(Z)д1(Y ,W) + д2(Y ,W , Z) up to the factor exp(−W⊺Λt(y)eZ
⊺θ t)teZ⊺θ t , which

is bounded away from zero under a4, a5 and a7. By the Cauchy-Schwarz inequality,

[Eµw ,z(д1д2)]
2

= [Eµw ,z(Eµw ,z(д1д2 ∣ Y ,W))]2

≤ Eµw ,z(д2
1 )Eµw ,z([W⊺Λ0(Y)]2[Eµw ,z((θ − θ0)

⊺Z ∣ Y ,W)]2)
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2.3 asymptotic properties

= Eµw ,z(д2
1 )Eµw ,z([W⊺Λ0(Y)]2

× Eµw ,z((θ − θ0)
⊺{Z − [Z − Eµw ,z(Z ∣ Y ,W)]}⊗2(θ − θ0) ∣ Y ,W))

≤ (1 − ρ)Eµw ,z(д2
1 )Eµw ,z([W⊺Λ0(Y)]2(θ − θ0)

⊺Eµw ,z(ZZ⊺ ∣ Y ,W)(θ − θ0))

= (1 − ρ)Eµw ,z(д2
1 )Eµw ,z(д2

2).

where the last inequality appeals to a10 (cf. Wellner and Y. Zhang 2007, pp. 2126–27).
Since ρ is bounded away from zero and д0(z) is uniformly close to 1 for θ close to θ0,
applying Lemma 1.21 gives

∫ (Sθ ,Λ − S0)
2 dµ ≂ µ(д0д1 + д2)

2 ≳ µд2
2 + µд2

1 ≳ ∥θ − θ0∥ + ∥Λ − Λ0∥
2
µy ,

where the last inequality up to a constant holds under a2 and a5. ◾

2.3.3 Asymptotic normality

This section derives the asymptotic distribution of θ̂n using the profile likelihood
method described in Section 1.2.3. Having already established consistency of (θ̂n , Λ̂n)

and the rate of convergence for Λ̂n, this task reduces to identifying an approximately
least favourable submodel that meets the structural requirements of Theorem 1.23.
We begin with the last of our regularity conditions.

a11 Λ0 is continuously differentiable with bounded derivative λ0 satisfyingw⊺λ0 > 0
on [σ , τ].

a12 There is a constant y0 > 0 such that P(TK , j − TK , j−1 ≥ y0 ∶ j = 1, . . . ,K , Z) = 1,
almost surely.

a13 For k = 1, 2, . . ., j = 2, . . . , k the conditional density functions fYk ,1 ∣W ,Z , fYk , j ∣W ,Z

and fYk , j−1 ,Yk , j ∣W ,Z exist. Moreover the partial derivatives of the conditional ex-
pectations EK∣W ,Z(∑

K
j=1 fYK , j ∣W ,Z(u ∣ w , z)) and EK∣W ,Z(∑

K
j=2 fYK , j−1,YK , j ∣W ,Z(u, υ ∣

w , z)) with respect to u and υ are uniformly bounded in (w , z).

2.12 remark. Conditions a11 to a13 greatly simplify the proof of Theorem 2.13
below, but their requirements have practical implications. A consequence of a12
is that the event times must be strictly interval-censored, prohibiting any exactly-
observed times. Condition a13 precludes consideration of any discretely-distributed
inspection process, though methods for grouped time-to-event data (e.g. Lawless
2003, Section 7.3) may be better suited in this setting. ◽
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2.13 theorem. Under the above conditions the maximum likelihood estimator θ̂n is
asymptotically efficient at (θ0,Λ0). In particular the sequence

√
n(θ̂n − θ0) is asymp-

totically normal with mean zero and variance Σ = Ĩ−10 .

Proof. The likelihood function offers no (convenient) closed-form expression for the
efficient score. So we prove the existence of a least favourable submodel satisfying the
requirements of Theorem 1.23 and Corollary 1.24 under the assumption that θ ∈ R;
that is, dz = 1. The case where dz > 1 follows by application of the results here to each
of the dz entries in θ. The score function for θ takes the form

ℓ̇θ ,Λ(x) = zezθ[δk,1
exp(−w⊺Λ(yk,1)ezθ)

1 − exp(−w⊺Λ(yk,1)ezθ)
w⊺Λ(yk,1) − δk,k+1w⊺Λ(yk,k)

+
k
∑
j=2

δk, j
w⊺Λ(yk, j−1) exp(−w⊺Λ(yk, j−1)ezθ) −w⊺Λ(yk, j) exp(−w⊺Λ(yk, j)ezθ)

exp(−w⊺Λ(yk, j−1)ezθ) − exp(−w⊺Λ(yk, j)ezθ)
].

Perturbing each entry in Λ generates a tangent set with respect to the product space
{Λ1 ×⋯ × Λdw} of which the class of cumulative regression functions H is a subset.
Consider a one-dimensional submodel s ↦ Λs,1×⋯×Λs,dw satisfying h j = ∂/∂s∣s=0Λs, j,
j = 1, . . . , dw . For now assume that h = (h1, . . . , hdw) is chosen so that Λs ∈ H; that
is, w⊺Λs is a bounded cumulative hazard function on [0, τ] for each w ∈W. Then a
score function for Λ is Bθ ,Λh = ∑dw

j=1 Bθ ,Λh j, where

Bθ ,Λh j(x) = ezθ[δk,1
exp(−w⊺Λ(yk,1)ezθ)

1 − exp(−w⊺Λ(yk,1)ezθ)
w jh j(yk,1) − δk,k+1w jh j(yk,k)

+
k
∑
l=2

δk,l
w jh j(yk,l−1) exp(−w⊺Λ(yk,l−1)ezθ) −w jh j(yk,l) exp(−w⊺Λ(yk,l)ezθ)

exp(−w⊺Λ(yk,l−1)ezθ) − exp(−w⊺Λ(yk,l)ezθ)
].

Following Section 1.2.3 and Huang andWellner (1995, Section 5), consider the under-
lying event time T as the unobserved variable in an information lossmodel so that the
the adjoint B∗θ ,Λ of the score operator Bθ ,Λ is given by B∗θ ,Λд(t) = Eθ ,Λ(д(X) ∣ T = t).
Then from (1.28) least favourable direction hθ ,Λ satisfies

B∗θ ,Λ ℓ̇θ ,Λ(t) = B∗θ ,ΛBθ ,Λhθ ,Λ(t). (2.9)

By condition a1,

B∗θ ,ΛBθ ,Λh(y) = Eθ ,Λ(Bθ ,Λh(X) ∣ T = t)

= EW ,Z(
∞
∑
k=1 P(K = k ∣W , Z)Eθ ,Λ(Bθ ,Λh(X) ∣ T = t,W , Z ,K = k)).
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For u < υ and j = 1, . . . , dw , put

C1, j(u) =
exp(−W⊺Λ(u)eZθ)

1 − exp(−W⊺Λ(u)eZθ)
WjeZθ

∞
∑
k=1 P(K = k ∣W , Z) fYk ,1 ∣W ,Z(u ∣W , Z),

C2, j(u) =WjeZθ
∞
∑
k=1 P(K = k ∣W , Z) fYk ,k ∣W ,Z(u ∣W , Z),

C3, j(u, υ) =
exp(−W⊺Λ(u)eZθ)

exp(−W⊺Λ(u)eZθ) − exp(−W⊺Λ(υ)eZθ)

×WjeZθ
∞
∑
k=1 P(K = k ∣W , Z)

k
∑
l=2

fYk , l−1 ,Yk , l ∣W ,Z(u, υ ∣W , Z),

C4, j(u, υ) =
exp(−W⊺Λ(υ)eZθ)

exp(−W⊺Λ(u)eZθ) − exp(−W⊺Λ(υ)eZθ)

×WjeZθ
∞
∑
k=1 P(K = k ∣W , Z)

k
∑
l=2

fYk , l−1 ,Yk , l ∣W ,Z(u, υ ∣W , Z).

Then

Eθ ,Λ(Bθ ,Λh(X) ∣ T = t,W , Z ,K = k)

=
dw
∑
j=1 ∫

τ

t
h j(u)C1, j(u)du − ∫ t

σ
h j(u)C2, j(u)du

− ∫ t

u=σ ∫
τ

υ=t
[h j(u)C3, j(u, υ) − h j(υ)C4, j(u, υ)] 1(υ − u ≥ y0)dυ du.

With Di , j = ZCi , j,

Eθ ,Λ(ℓ̇θ ,Λ(X) ∣ T = t,W , Z ,K = k)

=
dw
∑
j=1 ∫

τ

t
Λ j(u)D1, j(u)du − ∫ t

σ
Λ j(u)D2, j(u)du

− ∫ t

u=σ ∫
τ

υ=t
[Λ j(u)D3, j(u, υ) − Λ j(υ)D4, j(u, υ)] 1(υ − u ≥ y0)dυ du,

by conditions a1 and a12. Let ci , j and di , j denote the expectation of Ci , j and Di , j with
respect to the distribution of (W , Z). By Leibniz’s rule,

q(t) ≡ ∂
∂t

B∗θ ,Λ ℓ̇θ ,Λ(t)

=
dw
∑
j=1 −Λ j(t)d1, j(t) − Λ j(t)d2, j(t)

− ∫ τ

t
[Λ j(t)d3, j(t, υ) − Λ j(υ)d4, j(t, υ)] 1(t − u ≥ y0)dυ

+ ∫ t

σ
[Λ j(u)d3, j(u, t) − Λ j(t)d4, j(u, t)] 1(u − t ≥ y0)du,
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r(t) ≡ ∂
∂t

B∗θ ,ΛBθ ,Λh(t)

=
dw
∑
j=1 −h j(t)c1, j(t) − h j(t)c2, j(t)

− ∫ τ

t
[h j(t)c3, j(t, υ) − h j(υ)c4, j(t, υ)] 1(t − u ≥ y0)dυ

+ ∫ t

σ
[h j(u)c3, j(u, t) − h j(t)c4, j(u, t)] 1(u − t ≥ y0)du,

Let q j(t) and r j(t) denote the jth contribution to q(t) and r(t), respectively. It
then follows from conditions a2, a6 and a7 that (2.9) is satisfied if q j = r j for each
j = 1, . . . , dw . Thus the least favourable direction is hθ ,Λ = h1θ ,Λ , . . . , h

dw
θ ,Λ, where each

h j
θ ,Λ, j = 1, . . . , dw , satisfies the Fredholm integral equation of the second kind

h j
θ ,Λ(t) = дj(t) + ∫ K j(s, t)h j

θ ,Λ(s)ds, (2.10)

on [σ , τ], where

дj(t) = −q j(t)/a j(t),
K j(u, t) = [c3, j(u, t) 1(t − u ≥ y0) − c4, j(t, u) 1(u − t ≥ y0)]/a j(t),

with

a j(t) = c1, j(t)+ c2, j(t)+ ∫ τ

t
c3, j(t, υ) 1(υ− t ≥ y0)dυ+ ∫ t

σ
c4, j(u, t) 1(t−u ≥ y0)du.

At the truth (θ0,Λ0), дj = д0, j and K j = K0, j are bounded by a2, a5, a7 and a12.
From Fredholm’s first theorem (e.g. Kanwal 1997, p. 48), (2.10) at (θ0,Λ0) has the
µy-a.e. unique solution

h j
0(t) = д0, j(t) + ∫ Γ0, j(u, t)д0, j(u)du,

where Γ0, j is completely determined by K0, j and is identically zero only if д0, j = 0.
From (1.27) the efficient score for θ at (θ0,Λ0) is ℓ̃0 = ℓ̇0 − Bθ0 ,Λ0h0 and the efficient
information matrix Ĩ0 = P0 ℓ̃0 ℓ̃⊺0 is positive definite. We now identify a submodel that
is indexed by h0 and satisfies the structural requirements of Theorem 1.23. Extending
the arguments of Huang (1996, pp. 563–64) and van der Vaart (1998, p. 411), consider

Λs(θ ,Λ) = Λ + (θ − s)φ(Λ)(h0 ○ Λ−10,1 ○ Λ1), (2.11)

where Λ0,1 and Λ1 are the first components of Λ0 and Λ, respectively, and φ is a
smooth approximation to 1(0,M)(w⊺y) ensuring that 0 ≤ w⊺Λs(θ ,Λ) ≤ M on [σ , τ]
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and ∂/∂s∣s=0Λs(θ ,Λ0) = h0. In particular φ(Λ) = 1 on [Λ0(σ),Λ0(τ)], Λ ↦ φ(Λ)
is Lipschitz and, for every Λ ∈ H, 0 ≤ w⊺Λφ(Λ) ≲ w⊺Λ ∧ (M − w⊺Λ) with the last
inequality satisfied up to a constant depending only on (θ0,Λ0). From condition a5,
φ exists. From condition a11, Λ0,1 is strictly increasing and continuous, so its inverse
is well-defined. Moreover with a13, h0 ○ Λ−10,1 is bounded and Lipschitz. Since the
composition h0 ○Λ−10,1 ○Λ1 has the same jump discontinuities as Λ1 we have, for every
u ≤ υ and s sufficiently close to θ,

w⊺(Λs(θ ,Λ)(u) − Λs(θ ,Λ)(υ)) ≤ w⊺(Λ(u) − Λ(υ))(1 − ∣θ − s∣c0),

where c0 is the Lipschitz constant of Λ ↦ φ(Λ)h0 ○ Λ−10,1(Λ). Thus (2.11) defines
an approximately least favourable submodel such that Λθ(θ ,Λ) = Λ and the map
s ↦ log lik(s,Λs(θ ,Λ))(x) ≡ ℓ(s, θ ,Λ)(x) is twice continuously differentiable with
ℓ̇(θ0, θ0,Λ0) = ℓ̃0. This gives (1.30) and (1.31). The limit in probability (1.32) fol-
lows from Theorem 2.7 and the fact that θ and Λ are variation independent. Under
Lemma 2.8 the no-bias condition (1.33) can be established verifying (1.35). Fix some
x with δk, j = 1. Then each term on the right-hand side of (1.36) depends on Λ only
through one or both of Λ(yk, j−1) and Λ(yk, j). Without loss of generality suppose
that 1 < j < k. Following Murphy and van der Vaart (2000, p. 460), ordinary Taylor
expansions at the vector (Λ(yk, j−1,Λ(yk, j)⊺ yield the inequalities

∣pθ0 ,Λ − p0∣(x) ≲ ∣Λ − Λ0∣(yk, j−1) + ∣Λ − Λ0∣(yk, j),
∣ℓ̇(θ0, θ0,Λ) − ℓ̇(θ0, θ0,Λ0)∣(x) ≲ ∣Λ − Λ0∣(yk, j−1) + ∣Λ − Λ0∣(yk, j),
∣pθ0 ,Λ − p0 − B0(Λ − Λ0)p0∣(x) ≲ ∣Λ − Λ0∣

2(yk, j−1) + ∣Λ − Λ0∣
2(yk, j),

since the first and second derivatives with respect to (Λ(yk, j−1,Λ(yk, j)⊺are uniformly
bounded under a2, a5 and a7. From (1.36)

P0 ℓ̇(θ0, θ0,Λ) ≲ ∥Λ − Λ0∥
2
µy ,2.

Theorem 2.10 showed that the right-hand side is OP(n−2/3), which is more than
enough to establish (1.35). For the same x, ℓ̇(s, θ ,Λ)(x) and ℓ̈(s, θ ,Λ)(x) are Lips-
chitz in z, ezθ , w⊺Λ(yk, j−1) and w⊺Λ(yk, j). By Theorems 1.14 and 1.15, ℓ̈(s, θ ,Λ)(x)
and ℓ̇(s, θ ,Λ)(x) then form P0-Glivenko-Cantelli and Donsker classes, respectively,
for (θ ,Λ) running through Θ ×H. ◾

Theorem 2.13 and Corollary 1.26 give a consistent estimator for the profile infor-
mation matrix of θ̂n.
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2.14 corollary. Let e1, . . . , edz be the unit vectors in Rdz and ρn be a symmetric
dz-matrix whose entries ρi j, i , j = 1, . . . , dz, satisfy (

√
nρi j)

−1 = OP(1). A consistent
estimator for the (i j)th entry of Ĩ0 is

−
1

nρ2
i j
[log plikn(θ̂n + ρi j(ei + e j)) log plikn(θ̂n)]

+
1

nρ2
ii
[log plikn(θ̂n + ρiiei) − log plikn(θ̂n)]

+
1

nρ2
j j
[log plikn(θ̂n + ρ j je j) − log plikn(θ̂n)], (2.12)

for i , j = 1, . . . , dz.

2.4 computation

Use of standardmethods to compute (θ̂n , Λ̂n) is complicated by the size of the param-
eter space and constraints on Λ. The latter cannot be eliminated through transforma-
tion, but can be expressed as a linear inequality. From Proposition 2.6, log likn(θ ,Λ)
is concave, so computation of Λ̂n reduces to quadratic programming (qp). Cheng et
al. (2011) recently applied qp to obtainWellner and Y. Zhang’s (2007) semiparametric
estimators from panel count data. They proposed jointly updating estimates for θ
and Λ using Pan’s (1999) extension of the iterative convex minorant algorithm (Jong-
bloed 1998). The approach proposed here is similar, but the quadratic approximation
is based on the relatively flexible Lagrangian framework of Dümbgen et al. (2006).

2.4.1 Parameter estimates

Let λ j = Λ(t j), where t j is the right-endpoint of the jth maximal intersection from
Definition 2.4. By a2 the almost-sure constraints W⊺λ j ≥ 0 andW⊺Λ(t j) ≤W⊺Λ(tk),
j < k, amount to the inequality Aλ ≥ 0, where λ = (λ⊺1 , . . . , λ⊺d)⊺ and A is the block
diagonal matrix

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w 0 0 0 ⋯ 0
−w w 0 0 ⋯ 0
0 −w w 0 ⋯ 0

⋯

0 0 ⋯ 0 −w w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with w as described in Remark 2.2. In practice the minimum w0 and maximum w1

from w can be drawn from the observed values in the sample.
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2.4 computation

For brevity put ϕ = (θ⊺, λ⊺)⊺ and let log likn(ϕ) ≡ log likn(θ , λ). Following the
results of Section 1.2.4, we specify a computational algorithm by an initial value ϕ(0),
a candidate step η(r) = (η⊺θ , η⊺λ)⊺, a line search finding ϕ(r+1) ∈ seg(ϕ(r), ϕ(r) + η(r))
such that log likn(ϕ(r+1)) ≥ log likn(ϕ(r)), and a stopping rule d(ϕ(r), ϕ(r+1)) < ε.

Applying the framework of Dümbgen et al. (2006, Section 3), the candidate step
for λ(r), η(r)λ , is based on a quadratic approximation. In particular

η(r)λ = argmax
ηλ ∶A(ηλ+λ(r))≥0 ∇λ log likn(ϕ(r))⊺ηλ +

1
2η
⊺
λ∇

2
λ log likn(ϕ(r))ηλ (2.13)

≈ argmax
λ∶Aλ≥0 log likn(θ(r), λ) − log likn(ϕ(r)) − λ(r).

θ(r) is updated via the Newton-Raphson step

η(r)θ = −∇
2
θ log likn(ϕ(r))−1∇θ log likn(ϕ(r)). (2.14)

Following Jongbloed (1998) overshoot is avoided using the step-halving line search,
based on a variant of Armijo’s (1966) rule. It is given by

ϕ(r+1) = ϕ(r) + η(r)/2 j, (2.15)

where j is the smallest nonnegative integer satisfying

log likn(ϕ(r)) − log likn(ϕ(r) + η(r)/2 j) ≤ α∇ϕ log likn(ϕ(r))⊺η(r)/2 j.

Here α is a fixed parameter set to some positive value less than the step factor: 0 <
α < 1/2. Its value can affect the number of iterations needed to achieve the stopping
rule, but is otherwise inconsequential (Fletcher 1987, p. 30).

2.15 algorithm. Set r ∶= 0, θ(0) = 0 and λ(0)j = (t j/τ, 0⊺dw−1)⊺. Let η(r) be the
candidate step with components given by (2.14) and (2.13) and ϕ(r+1) be the result of
the line search (2.15). If

∥ϕ(r+1) − ϕ(r)∥∞ ≤ ε, (2.16)

for small positive value ε, then stop. Otherwise, put r ∶= r + 1. ◽

Convergence of Algorithm 2.15 to the maximum likelihood estimator follows from
Propositions 1.27 and 2.6. Alternative convergence criteria to (2.16) can be based on
the characterization of the spmle implied by Proposition 1.27:

∣∇ϕ log likn(ϕ(r))⊺ϕ(r)∣ ≤ ε. (2.17)

Constrained Newton methods generally require many more iterations than the stan-
dard Newton-Raphson algorithm. Computing time is largely determined by process-
ing power and the software used to carry out qp. The c routines available with ibm’s
(2012) cplex Optimization Studio offer a reasonably fast solution.
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2.4.2 Variance estimates

The variance estimator for θ̂n given by (2.12) is based the curvature of the profile
log-likelihood. This requires repeated evaluation of the profile log-likelihood

logplikn(θ) = sup
λ∶Aλ≥0 log likn(θ , λ),

by fixing θ(r) at θ in Algorithm 2.15. Since we need to approximate the only value
of the profile likelihood and not the profile maximizer, the stopping rule (2.16) is
replaced by

∣ 1 − log likn(θ , λ(r+1))
log likn(θ , λ(r)) ∣ ≤ ε.

This can reduce the computation time considerably since the log-likelihood often
converges faster than λ(r).

The tuning parameter ρn in (2.12) determines the values around θ̂n used to assess
the curvature of the profile log-likelihood. Standard practice calls for a scalar value
ρn ≂ n−1/2 with proportionality constant chosen empirically. Some informal experi-
mentation suggests that variance estimates are not highly sensitive to the choice of ρn,
particularly with larger sample sizes and frequent inspections. This also seems appar-
ent in numerical studies fromZeng et al. (2006). However for the sake of convenience,
a data-driven selection method is desirable. Borrowing methods from numerical dif-
ferentiation we adopt thematrix form of ρn and reduce the choice to specifying broad
parameters describing the magnitude of θ.

Let f ∶ R→ R be a continuously differentiable function. In the finite-difference
approximation

f ′(x) ≈ f (x + ρ) − f (x)
ρ

,

it is standard practice to select ρ ∼
√
є curv(x), where є is the error in evaluating f

and curv =
√

f / f ′′ is the “curvature scale” of f . This choice is a minimizer of the
truncation error ρ3 f ′′ in the above first-order approximation, plus the “round-off”
error є∣ f (x)/ρ∣ (Press et al. 2007, Section 5.7). When little is known about f ′′ one
can simply set ρ ∼

√
єx or, for x close to zero,

ρ ∼
√
є sign(x)max(∣x∣, typ x),

where typ x is a typical absolute value for x (Dennis and Schnabel 1996, p. 98).
In (2.12) the curvature of the profile log-likelihood is evaluated with a second-

order finite difference approximation. The corresponding curvature scale is based on
the ratio of the profile log-likelihood and its third derivative, which can be evaluated
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2.5 simulation study

easily. When the curvature scale too small or too large, the size of θ serves as fallback
value. In particular, the (i j)th entry of ρn is

ρi j = n−1/2 sign(curvi j(θ̂n))

×max{min(∣ curvi j(θ̂n)∣, sup θ), ∣θ̂n,i ∣, ∣θ̂n, j∣, typ θ}, (2.18)

where

curvi j(θ̂n) =

⎧⎪⎪
⎨
⎪⎪⎩

−2 logplikn(θ̂n)

(ei ∨ e j)⊺∇3
θ log plikn(θ̂n)

⎫⎪⎪
⎬
⎪⎪⎭

1/3
,

and ei∨e j is the element-wise maximum of the unit vectors ei and e j. Here the choice
of ρn is reduced to setting the fixed scalar parameters typ θ and sup θ representing
the typical and maximum magnitudes for the entries in θ, respectively.

2.5 simulation study

This section considers numerical properties of the spmle under variants of the
“scheduled” observation scheme described in Remark 2.1. These consider the same
cumulative intensity function

Λ(t ∣W , Z) = (t3/2 +Wt2/3) exp(θ1Z1 + θ2Z2),

where θ1 = log(2), θ2 = − log(2),W is uniform on (0, 1), Z1 is standard normal and
Z2 is uniform on {0, 1}. Failure status is inspected on the basis of k “scheduled” visits,
evenly spaced on (0, τ) with τ = 2. “Actual” visit times follow k independent normal
distributions centred at the scheduled times with common standard deviation

σk =
τ

4(k + 1)
=

1
2(k + 1)

and truncated at zero, τ = 2 and the midpoints between consecutive scheduled times.
This setup ensured that the actual inspection times were continuously distributed on
[σ , τ] with most times occurring close to its scheduled target. Every inspection after
the first was missed with probability p(W , Z), where

logit(p(W , Z)) = β0 + β1Z2.

One thousand Monte Carlo replicates of the sample sizes n = 100, 200 and 500 were
generated under three scenarios:

◾ an independent inspection process with k = 8, β0 = log(1/9) and β1 = 0;
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◾ an independent inspection process with k = 4, β0 = log(1/9) and β1 = 0; and
◾ a conditionally independent inspection process with k = 8, β0 = log(1/4) and
β1 = log(4/9).

With exp(β) = (1/9, 1) the probability of a missing inspection is p = 0.1, irrespective
of (W , Z). Under exp(β) = (1/4, 4/9) the probability remains the same for subjects
with Z2 = 1. Those having Z2 = 0 are twice as likely to miss a scheduled inspection.

Estimates for each sample were obtained using a c implementation of Algo-
rithm 2.15. This routine draws from Anderson et al.’s (1999) lapack library for
matrix inversion and ibm’s (2012) cplex Callable Library to carry out quadratic pro-
gramming. For the tuning parameters, α = 1/3 was used in the line search, ε = 10−7,
typ θ = 1 and sup θ = 10. This ensured convergence within a reasonable number of
iterations over all scenarios and sample sizes.

In addition to the spmle we fit the same Cox-Aalen model to right-censored
variants of the data (Example 1.8) via Martinussen and Scheike’s (2006) cox.aalen
routine from the timereg package. Estimates were based on four different right-
censored data sets:

◾ underlying or “latent” event times right-censored only by τ,
◾ right-censoring times and midpoints of (finite) censoring intervals (mid),
◾ right-censoring times and right-endpoints of censoring intervals (end), and
◾ a variant of end obtained by discarding inspections after two missed visits (ttp).

Note that the last three approaches obtain right-censored data by systematic imputa-
tion. The scheme for ttp is achieved by right-censoring times from end by the last
inspection before two or more visits missed in succession. This can be considered a
loose adaptation of the fda’s (2007) guideline devised to mitigate bias in the analysis
of progression-free survival times.

Censoring parameters Censoring rate

k β0 β1 Left Interval Right

8 log(1/9) 0 0.167 0.622 0.211
4 log(1/9) 0 0.265 0.462 0.273
8 log(1/4) log(4/9) 0.167 0.619 0.214

table 2.1
Average

censoring rates
over 1000

replicates with
n = 500.

The underlying rate of administrative censoring among the samples was roughly
15%, so right censoring in the “latent” data was low. The interval censoring rate in
the observed data under k = 8 was approximately 60%. With half as many scheduled
visits this decreased to just over 45% (Table 2.1).
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The simulation results for the spmle θ̂n summarized by Table 2.3 are compat-
ible with the asymptotic properties derived in Section 2.3. Bias becomes negligible
with larger sample size. Monte Carlo sample standard deviations for the spmle de-
crease with increasing n and are reasonably approximated by the standard error
estimates. Empirical coverage probabilities of the 95% confidence intervals are close
to the nominal level. Estimators from rudimentary imputation performed relatively
well in smaller samples, but under fewer inspection times their bias and coverage
probabilities degrade with increasing sample size. Midpoint imputation generally
outperformed the two alternative imputation schemes based on the right endpoint.

Pointwisemeans and percentiles for the spmle of the cumulative regression func-
tions are depicted in Figure 2.4. Bias and variability in Λ̂n decrease with increasing
sample size and number of inspections. These also tend to be smaller closer to the
scheduled visit times, where inspections are more frequent. Estimates of the cumula-
tive coefficient Λ2 vary considerably more than estimates of the baseline regression
function Λ1.

k n cpu time (minutes) Number of iterations ∇ϕ log likn(ϕ̂)⊺ϕ̂ × 105
4 100 0.13 210 0.79

200 0.72 201 0.88
500 6.60 177 1.05

8 100 0.22 356 6.20
200 1.32 360 2.75
500 14.02 372 4.61

table 2.2
Average
convergence
results for
Algorithm 2.15.
cpu time covers
variance
estimation.

Although the spmle performs better under larger sample sizes having relatively
frequent inspections, much more time is needed to converge. Table 2.2 gives the
average cpu time needed to carry out Algorithm 2.15 and variance estimation on an
amd Opteron 6200 processor with each core rated at 3ghz. The cplex qp solver can
be spread over multiple cores, but this feature offered little to no reduction in comput-
ing time. The reported averages are based on times achieved with multi-threading
disabled. Estimation based on n = 500 was over fifty times slower than with n = 100.
The rate at which computing time increases with n is sharper under more frequent
inspection times. Since the number of iterations to convergence remains fairly stable
with n, the poor scaling of Algorithm 2.15 is likely due to the computational demands
of the qp step. The maximum norm typically reached ε = 10−7 faster than the inner
product∇ϕ log likn(ϕ̂)⊺ϕ̂. Considering the computation time, the stopping rule based
on the maximum norm (2.16) is preferable to the alternative (2.17).
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k, θ1 θ2

eβ1 n Method Bias sd ase cp Bias sd ase cp

8, 100 spmle 0.056 0.157 0.160 0.956 -0.035 0.257 0.257 0.952
1 mid 0.004 0.139 0.135 0.943 0.012 0.241 0.241 0.950

end -0.007 0.138 0.135 0.941 0.034 0.240 0.243 0.952
ttp -0.003 0.139 0.136 0.949 0.031 0.242 0.245 0.953

200 spmle 0.031 0.103 0.104 0.944 -0.030 0.175 0.174 0.950
mid -0.006 0.095 0.092 0.945 0.004 0.167 0.166 0.944
end -0.017 0.094 0.092 0.941 0.020 0.168 0.167 0.944
ttp -0.014 0.095 0.093 0.945 0.017 0.170 0.168 0.945

500 spmle 0.013 0.058 0.062 0.959 -0.010 0.106 0.107 0.955
mid -0.012 0.054 0.057 0.950 0.012 0.102 0.104 0.950
end -0.023 0.054 0.057 0.935 0.024 0.103 0.104 0.950
ttp -0.020 0.054 0.057 0.945 0.021 0.104 0.105 0.949

4, 100 spmle 0.081 0.181 0.186 0.957 -0.056 0.288 0.287 0.957
1 mid -0.024 0.141 0.137 0.929 0.037 0.250 0.251 0.941

end -0.059 0.144 0.137 0.901 0.087 0.259 0.256 0.924
ttp -0.057 0.143 0.137 0.907 0.085 0.259 0.256 0.927

200 spmle 0.045 0.114 0.119 0.958 -0.044 0.194 0.191 0.952
mid -0.035 0.097 0.093 0.916 0.029 0.172 0.173 0.952
end -0.073 0.100 0.092 0.832 0.076 0.176 0.174 0.921
ttp -0.070 0.100 0.093 0.842 0.073 0.176 0.175 0.921

500 spmle 0.023 0.063 0.070 0.964 -0.021 0.117 0.117 0.942
mid -0.037 0.054 0.058 0.898 0.035 0.108 0.108 0.941
end -0.075 0.057 0.057 0.718 0.075 0.108 0.108 0.891
ttp -0.072 0.056 0.057 0.737 0.072 0.108 0.109 0.900

8, 100 spmle 0.057 0.159 0.161 0.955 -0.038 0.259 0.258 0.951
4/9 mid 0.002 0.139 0.135 0.939 0.019 0.242 0.241 0.945

end -0.012 0.138 0.135 0.939 0.068 0.240 0.243 0.945
ttp -0.002 0.140 0.138 0.948 0.073 0.244 0.248 0.940

200 spmle 0.032 0.104 0.105 0.947 -0.031 0.175 0.175 0.945
mid -0.008 0.096 0.092 0.942 0.012 0.166 0.167 0.939
end -0.024 0.096 0.092 0.932 0.055 0.169 0.168 0.927
ttp -0.014 0.097 0.094 0.941 0.060 0.172 0.170 0.924

500 spmle 0.013 0.058 0.062 0.958 -0.010 0.107 0.108 0.951
mid -0.015 0.054 0.057 0.952 0.020 0.103 0.104 0.947
end -0.031 0.054 0.056 0.916 0.059 0.104 0.104 0.903
ttp -0.021 0.054 0.058 0.945 0.065 0.106 0.106 0.897

100 Latent 0.018 0.135 0.133 0.940 0.001 0.236 0.232 0.948
200 0.010 0.095 0.091 0.940 -0.008 0.163 0.160 0.939
500 0.004 0.054 0.056 0.957 -0.002 0.101 0.100 0.951

table 2.3
Bias, standard
deviation (sd),

average standard
error estimate

(ase) and
empirical
coverage

probability of
95% confidence

intervals (cp) for
the spmle of θ

over 1000
replicates.

Results from
estimates based

on midpoint
imputed (mid),
right-endpoint
imputed (end,

ttp) and latent
event times are

provided for
comparison.
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2.5 simulation study
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figure 2.4
True values for
Λ (−) depicted
with pointwise
lower and upper
2.5th percentiles
and pointwise
means for the
spmle of Λ
based on 1000
replicates with
k = 8 and
eβ = (1/9, 1)
(top), k = 4 and
eβ = (1/9, 1)
(middle), and
k = 8 and
eβ = (1/4, 4/9)
(bottom).
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2.6 application

Hortobagyi et al. (1996) evaluated a placebo-controlled trial of pamidronate, a ni-
trogen-containing bisphosphonate, in reducing skeletal complications due to bone
lesions. This efficacy analysis considered a sample of 380 women with breast cancer
metastatic to bone, followed over a two-year period for the occurrence of skeletal-
related events (sres). These included pathologic fractures, radiation to bone or bone
surgery. Radiographic surveys were scheduled at three- to six-month intervals af-
ter selected treatment cycles (Figure 2.5). Each survey provided information on the
number, size and type of bone lesions. The analysis presented here examines the
effect of pamidronate on the time to the first new bone lesion in a subgroup of 321
women assessed for the presence of new lesions at least once during the trial’s sre
and survival follow-up period. Observations are right-censored at the last negative
inspection preceding death or end of follow-up.

Months since randomization

0 3 6 12 18 24 29

+ − + +
+ − +
− − −
− −
− + − +

figure 2.5
Periodic

inspections for
the formation of

new bone
lesions. Time to
the first positive
assessment + is

right-censored at
the last negative
assessment −
before death

or end of
follow-up .

An r function called icsurv was devised to give a user interface to the c estima-
tion routine described in Section 2.5. Regression models are specified with syntax
similar to Therneau’s (2012) well-known survival package for r. The five relevant
observations depicted in Figure 2.5 are represented using the r data frame

left right mid end trt age

1 90 180 135 180 1 -0.411

2 180 NA 180 NA 0 0.976

3 330 NA 330 NA 0 -0.394

4 0 60 30 60 0 -0.666
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5 0 60 30 60 0 0.050

where the endpoints of the censoring intervals are given by the variables left and
right. For the right-censored observations, the time of right-censoring is stored
in the variable left and right is set to the missing value NA. Additional variables
measure imputed new lesion times and covariates. Note that the times are measured
in days. The frame shown here does not give an excerpt of the actual data; values
have been rounded and randomly generated for confidentiality.

The variables left and right are combined into a response variable using an
interval2-type Surv object. The code fragment below specifies a model with two
terms: an indicator of treatment with pamidronate (trt) and standardized age at
study entry (age). Covariates having a multiplicative effect are identified using the
identity function prop, defined by Martinussen and Scheike’s (2006) timereg pack-
age for r. So the terms prop(trt) and age correspond respectively to Z andW2 in
our notation above. The “intercept” term here is W1, which is always equal to 1.

> fit <- icsurv(Surv(left, right, type = ’interval2’) ~ prop(trt) + age,

data = p19, eps = 1e-9, coef.typ = 1/2, coef.max = 2,

rcsurv = list(Surv(mid, !is.na(right)) ~ .,

Surv(end, !is.na(right)) ~ .))

Additional models based on right-censored data can specified by the list argument
rcsurv. These are fit using the cox.aalen function from the timereg package. Here
the Cox-Aalen model is fit to the midpoint-imputed and right-endpoint–imputed
first new lesion times stored in the variables mid and end, respectively. Themodel pre-
dictor (∼ .) is a shorthand for the terms already specified in icsurv’s first argument,
so the same model is fit throughout.

The remaining arguments set various tuning parameters. Here ε is given a value
of 10−9 by eps = 1e-9. The typical typ θ and large values sup θ for θ needed by the
variance estimation method described in Section 2.4.2 are set with coef.typ = 1/2

and coef.max = 2, respectively. The icsurv function returns a class-icsurv object;
a list of items representing the model fit. Its printmethod reproduces the icsurv
function call, summarizes the multiplicative regression coefficients, reports the log-
likelihood (2.3) at the initial and final parameter values, and gives the rates of left-,
interval- and right-censoring in the provided data frame.

From the output below log likn(ϕ(0)) = −353 and, after r = 104 iterations, the
log-likelihood at ϕ(r) is −323. Time to the first new lesion is right-censored for the
majority (58.6%) of the 291 subjects included in the analysis. Based on the output for
the regression coefficient θ̂n = −0.378, there is moderate evidence in the available
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data to suggest that a treated individual is less likely to develop a new lesion sooner
than someone similar in age who did not receive treatment, with hazard ratio of
0.685 (95% confidence interval 0.486–0.966).

> fit

Call:

icsurv(formula = Surv(left, right, type = "interval2") ~ prop(trt) +

age, data = p19, rcsurv = list(Surv(mid, !is.na(right)) ~ .,

Surv(end, !is.na(right)) ~ .), ... = list(eps = 1e-09,

coef.typ = 1/2, coef.max = 2))

coef se(coef) z p exp(coef) 2.5% 97.5%

prop(trt) -0.378 0.176 -2.15 0.031 0.685 0.486 0.966

Based on n = 321

Initial log-likelihood: -352.546

Log-likelihood after 104 iterations: -322.921

Left Interval Right

Censoring rate 0.19 0.224 0.586

Estimation from imputed data via timereg’s cox.aalen function

Formula:

Surv(mid, !is.na(right)) ~ prop(trt) + age

coef se(coef) z p exp(coef) 2.5% 97.5%

prop(trt) -0.369 0.176 -2.1 0.036 0.691 0.49 0.975

Formula:

Surv(end, !is.na(right)) ~ prop(trt) + age

coef se(coef) z p exp(coef) 2.5% 97.5%

prop(trt) -0.391 0.177 -2.21 0.027 0.676 0.478 0.957

The remaining print output gives the same coefficient summary for the models fit
by cox.aalen. The estimates of θ based on midpoint- and right-endpoint–imputed
data are −0.369 and −0.391, similar to θ̂n.

The spmle for Λ̂n is stored in a data frame given by the icsurv object’s list
argument bhaz. The following code fragment prints the first three rows from the data
frames representing estimates for Λ based on the interval-censored and midpoint-
imputed data. Note that the time variable is measured in days.

> fit$bhaz[1:3, ]

time intercept age

1 0.0 0.0000000 0.00000000

2 49.0 0.2296681 -0.07655604

3 54.9 0.2296681 -0.07655604
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> fit$rcfit[[1]]$bhaz[1:3, ]

time intercept age

1 0.0 0.000000000 0.000000000

2 24.5 0.003690588 -0.005289915

3 27.5 0.007390612 -0.004374364

Values from these data frames are fully displayed in Figure 2.6. The spmle for Λ
shows an excess in risk with younger age. Since the limiting distribution of Λ̂n is un-

Λ̂(t)

Months since randomization
0 3 6 12 18 24

-0.2

0.2

0.6

1.0

1.4

Λ̂2(t)

Λ̂1(t)
WTΛ̂(t)

W = (1, 1)

W = (1,−1)
figure 2.6
Left: midpoint-
imputation (−)
and spmle (−)
cumulative
baseline
regression
function (Λ1)
and cumulative
coefficient of
standardized age
at study entry
(Λ2). Right:
cumulative
baseline
intensity
function for the
oldest (−) and
the youngest (−)
individuals.

known, we cannot formally test properties of Λ2 using the observed data. With right-
censored new lesion times, the cox.aalen routine from the timereg package carries
out a resampling-based test of significance supt≤τ ∣Λ j(t)∣ = 0, and a Kolmogorov-
Smirnov test of time invariance Λ j(t) = tΛ j(τ)/τ (Martinussen and Scheike 2006,
p. 258). The following output suggests that, from the midpoint-imputed data, we
cannot reject the hypothesis of time invariance Λ2(t) = tΛ2(τ)/τ with a p-value of
75%.

> rcfit <- cox.aalen(Surv(mid, !is.na(right), type = ’right’)

~ prop(trt) + age, data = p19)

> summary(rcfit)
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Cox-Aalen Model

Test for Aalen terms

Test for nonparametric terms

Test for non-significant effects

Supremum-test of significance p-value H_0: B(t)=0

(Intercept) 7.62 0.000

age 2.76 0.102

Test for time invariant effects

Kolmogorov-Smirnov test p-value H_0:constant effect

(Intercept) 0.2040 0.006

age 0.0693 0.750

Proportional Cox terms :

Coef. SE Robust SE D2log(L)^-1 z P-val

prop(trt) -0.369 0.176 0.178 0.177 -2.08 0.0374

Test for Proportionality

sup| hat U(t) | p-value H_0

prop(trt) 4.45 0.466

Call:

cox.aalen(Surv(mid, !is.na(right), type = "right") ~ prop(trt) +

age, data = p19)

Replacing the icsurv model term age with prop(age) fits a two-covariate Cox
model. This gives essentially the same age-adjusted hazard ratio for pamidronate
as the Cox-Aalen model, suggesting that the effect of age is adequately described by
a fixed parameter.

> icsurv(Surv(left, right, type = ’interval2’) ~ prop(trt) + prop(age),

data = p19, eps = 1e-9, coef.typ = 1/2, coef.max = 2,

rcsurv = list(Surv(mid, !is.na(right)) ~ .,

Surv(end, !is.na(right)) ~ .))

Call:

icsurv(formula = Surv(left, right, type = "interval2") ~ prop(trt) +

prop(age), data = p19, rcsurv = list(Surv(mid, !is.na(right)) ~ .,

Surv(end, !is.na(right)) ~ .), ... = list(eps = 1e-09,

coef.typ = 1/2, coef.max = 2))

coef se(coef) z p exp(coef) 2.5% 97.5%

prop(trt) -0.378 0.1755 -2.15 0.0310 0.685 0.486 0.967

prop(age) -0.223 0.0856 -2.61 0.0092 0.800 0.677 0.946

Based on n = 321

Initial log-likelihood: -352.546

Log-likelihood after 136 iterations: -326.995
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Left Interval Right

Censoring rate 0.19 0.224 0.586

Estimation from imputed data via timereg’s cox.aalen function

Formula:

Surv(mid, !is.na(right)) ~ prop(trt) + prop(age)

coef se(coef) z p exp(coef) 2.5% 97.5%

prop(trt) -0.372 0.1737 -2.14 0.032 0.689 0.490 0.969

prop(age) -0.217 0.0817 -2.65 0.008 0.805 0.686 0.945

Formula:

Surv(end, !is.na(right)) ~ prop(trt) + prop(age)

coef se(coef) z p exp(coef) 2.5% 97.5%

prop(trt) -0.382 0.174 -2.20 0.028 0.682 0.485 0.960

prop(age) -0.198 0.081 -2.44 0.015 0.821 0.700 0.962

The analysis presented here has some limitations. One is related to the fact that
the primary endpoint of the trial considered the occurrence of the sres during the
first 12 months of follow-up. So efforts of the trialists to ensure balanced comparisons
between the treatment groups may not carry over to the occurrence of bone lesions
over a longer time period. Lesions were also not assessed in the 59 patients excluded
from this analysis. The number excluded was equally-distributed in between the
treatment groups, but the results here may still be subject to selection bias. Right-
censoring preceding death is problematic; just over half of the sample analyzed died
over the study period, with a median follow-up time of 13 months. The indepen-
dent censoring assumption under this scenario is thus difficult to justify. This issue
addressed in Section 4.5, where the occurrence of both new lesion and death are
considered via the illness-death model.
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chapter 3

doubly right-censored data from an
illness-death process

The terminal event in an illness-death process is often subject only to administrative
censoring. Progressionmay be right-censored at an earlier time (Example 1.28), yield-
ing what we call “doubly right-censored” data. Bebchuk and Betensky (2001, 2002)
combine local likelihood and multiple imputation to estimate the marginal distribu-
tion of the event times. They further construct k-sample tests on the basis of aMarkov
Cox-type model with constant baseline transition intensities and time-dependent
covariates (Bebchuk and Betensky 2005). Yuan et al. (2012) apply Bayesian methods
to estimate covariate effect on the marginal distribution of event times within the
family of parametric accelerated failure time models (1.19). Ke et al. (2011) devise a
generalized Kaplan-Meier estimator for the subdistribution function of the exit time
from the initial state.

This chapter considers the estimation of parameters specifying a Markov model
with Cox-type transition intensities (Figure 3.1). Using the Fisher scoring algorithm

0Entry 1 Progression

2
Death

α01(t ∣ z) = λ01(t) exp(zT01θ)

α02(t ∣ z) = λ02(t) exp(zT02θ) α12(t ∣ z) = λ12(t) exp(zT12θ)

figure 3.1
A Markov

progressive
illness-death

model.

proposed by Kalbfleisch and Lawless (1985), Jackson’s (2011) msm package for r readily
handles the time-homogeneous case, λh j(t) = λh j, and can extend to piecewise expo-
nential intensities byway of time-dependent covariates. A relatively flexible piecewise
exponential estimator is developed via sieve maximum likelihood.

3.1 model and observation scheme

Consider a trivariate process N = (N01,N02,N12) counting the 0→ 1, 0→ 2 and 1→ 2
state transitions in the Markov illness-death model. For states h and j, h ≠ j, let Th j =
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3.1 model and observation scheme

inf{t ∶ Nh j(t) = 1} denote the h → j transition time and Yh(t) = 1−∑ j≠h Nh j(t−) be
the h → j at-risk process. Assume that each Nh j has intensity process Yhαh j with

αh j(t ∣ Z) = λh j(t) exp(Z⊺h jθ), (3.1)

where Zh j is a transition-type–specific dz-vector based on the fixed covariate Z, θ is a
dz-variate regression parameter and Λh j = ∫ λh j is a nondecreasing baseline intensity
function. The parameter θ is common to each of the transition intensities, but Zh j

can be suitably constructed from Z to give type-specific covariate effects (Andersen
et al. 1993, pp. 478–80).

Over the finite interval [0, τ], suppose that observation of N is subject to the
right-censoring times 0 < C ≤ D ≤ τ; N01 is known on [0,C] and N02 +N12 on [0,D].
Let S = T01 ∧ T02 denote the exit time from the initial state and T = T02 ∧ T12 the time
of death. Put U = S ∧ C, V = T ∧ D, ∆0 = 1(S < C) and ∆2 = 1(T < D). Then the
transition times (T01, T02, T12) for an observation X = (U ,V , ∆0, ∆2, Z) are available
when ∆0 = ∆2 = 1. In general the progression status 1(S < T) is known only if S
occurs before C; that is, ∆0 = 1. Otherwise (U ,V) is a “potential” censoring interval
for T01. Figure 3.2 illustrates this notation for two individuals, i and j. Exact data are
available for subject j. The observation for i is doubly right-censored.

0 Ci

Ui = Ci , ∆i
0 = 0

T i
01

T j
02

U j = Vj = T j
02, ∆

j
0 = ∆ j

2 = 1

T i
12

Vi = T i
12, ∆i

2 = 1
Di

C j = D j

τ

figure 3.2
Observation of
an illness-death
process under
double right
censoring.

Let Ah j ∫ αh j for h ≠ j and Ahh = −∑ j≠h Ah j. Then from Theorem 1.4 the transi-
tion probabilities are

Phh(s, t ∣ z) = exp{ ∫ t

s
Ahh(dy ∣ z)} , (3.2)

where
P01(s, t ∣ z) = ∫ t

s
P00(s, y ∣ z)A01(dy ∣ z)P11(y, t ∣ z). (3.3)

Assume the following basic condition.

b1 (T01, T02, T12) is conditionally independent of (C ,D) given Z.
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Then the realization X = x = (u, υ, δ0, δ2, z) has density

pθ ,Λ(x) = P00(0, u ∣ z)[α01(u ∣ z)P11(u, υ ∣ z)α12(υ ∣ z)δ2]δ0 1(u<υ)
× [P01(u, υ ∣ z)α12(υ ∣ z)δ2 + P00(u, υ ∣ z)α02(υ ∣ z)δ2]1−δ0
× α02(υ ∣ z)δ0(1−1(u<υ))δ2 (3.4)

with respect to a dominating measure ν determined by the distribution of (C ,D, Z).

3.1 remark. The expression in (3.4) is the same likelihood function obtained under
(conditionally) independent censoring by C and D (Example 1.1). Such a mechanism
permits dependence on the observed history. The stronger requirement in b1 simpli-
fies the derivation of asymptotic properties. It is plausible under an intent-to-treat
analysis in which C represents loss to follow-up for S, Z adequately explains varia-
tion in C, and D is an administrative censoring time for T . This precludes censoring
individuals at the time of a change in treatment due to toxicity or need for addi-
tional therapies—a scenario that likely induces dependent censoring (Fleming et al.
2009). ◽

3.2 sieve maximum likelihood estimation

Let Xi = (Ui ,Vi , ∆i
0, ∆i

2, Zi), i = 1, . . . , n, be n iid observations of X from (θ0,Λ0),
Λ0 = (Λ0

h j) for h ≠ j. Note that Pn log pθ ,Λ a priori maximizes to infinity; with,
say, Λ02 continuously differentiable α02(Vi ∣ Zi) can be made arbitrarily large and
A00(Vi ∣ Zi) close to zero at any Vi = T i

02 < Ci . The usual way out is to replace αh j by
the jump discontinuities ∆Ah j. However consider an individual i having unknown
progression status (∆i

0 = 1) but known survival time (∆i
2 = 1):

Ui = Ci < Vi = Si < Di .

Suppose (L,Vi] is a subinterval of (Ui ,Vi] containing no other observation times
from the sample. Surely we need Λ02(Vi) + Λ12(Vi) − Λ02(L) − Λ12(L) > 0, but the
available data are insufficient to jointly estimate Λ02(Vi) − Λ02(L) and Λ12(Vi) −

Λ12(L). Thus no unbiased semiparametric estimator of (θ ,Λ) exists. This problem is
evaded by employing themethod of sieves (Section 1.2.2) on the basis of the following
assumptions.

b2 There exist 0 < σ < τ and 0 < M < ∞ such that 1/M < Λ0
h j(σ−) < Λ0

h j(τ) < M,
h ≠ j, and Λ0 is continuously differentiable with bounded derivative λ0 on [σ , τ].
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b3 Let nh j denote the number of individuals in the sample with {Th j < ∞} observed
exactly, h ≠ j. Then there exist qh j > 0 such that nh j/n → qh j as n →∞.

Let H = (Hh j) denote the set of Λ = (Λh j) with each Λh j ∶ [0, τ] → [0,M] cadlag
and nondecreasing. Any finite-dimensional approximation toH whose size increases
with n is a sieve. Throughout consider the piecewise exponential sieve given by the
set of piecewise linear interpolants of Λ ∈ H.

3.2 definition. For each h → j, h ≠ j, let Th j,n be a set containing the Kh j,n =

O(nκ), 0 < κ < 1, points in (0, τ) from the partition

0 = t0 < t1 < ⋯ < tKh j ,n < tKh j ,n+1 = τ

constructed so that every subinterval [tk−1, tk) contains at least one exact h → j
transition time observed in X1, . . . , Xn and maxk(tk − tk−1) = O(n−κ). For every
Λh j ∈ Hh j let Λh j,n denote the piecewise linear interpolant

Λh j,n(t) = ∑
tk∈Th j ,n

Ik(t){[1 −
Lk(0, t)
Lk(0, τ)

]Λh j(tk−1) + [ Lk(0, t)
Lk(0, τ)

]Λh j(tk)} , (3.5)

where Ik(t) = 1[tk−1 ,tk)(t) and Lk(s, t) is the length of [tk−1, tk) ∩ [s, t). ◽

Let Ah j(s, t ∣ z) = Ah j(t ∣ z) − Ah j(s ∣ z). Then from b3, Λ02 and Λ12 are jointly
estimable by maximizing

log likn(θ ,Λ)

=
n
∑
i=1 log pθ ,Λ(Xi)

= − A01(Ui ∣ Zi) − A02(Ui ∣ Zi)

+ ∆i
0 1(Ui < Vi)[log α01(Ui ∣ Zi) − A12(Ui ,Vi ∣ Zi) + ∆i

2 log α12(Vi ∣ Zi)]

+ (1 − ∆i
0) log[P01(Ui ,Vi ∣ Zi)α12(Vi ∣ Zi)

∆ i
2 + P00(Ui ,Vi ∣ Zi)α02(Vi ∣ Zi)

∆ i
2]

− ∆i
0(1 − 1(Ui < Vi))∆i

2 log α02(Vi ∣ Zi). (3.6)

over the sieve Hn = (Hh j,n), Hh j,n = {Λh j,n ∶ Λh j ∈ Hh j}. Let Θ denote the set of
all possible θ. Then the piecewise exponential sieve maximum likelihood estimator
(smle) satisfies

log likn(θ̂n , Λ̂n) = max
θ∈Θ,Λ∈Hn

log likn(θ ,Λ). (3.7)

This optimization problem is well-defined and has finite dimension. Its solution is
characterized by the score equations

∂
∂θ

log likn(θ̂n , Λ̂n) = 0,
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∂
∂λh j(tk)

log likn(θ̂n , Λ̂n) = 0, tk ∈ Th j,n ,

which can be solved using a self-consistency algorithm. For fixed Λ it is straight-
forward to show that the log likn(θ ,Λ) is strictly concave in θ, unless Zi = 0, for
every i = 1, . . . , n. Uniqueness of the smle for Λ is relatively difficult to establish. To
safeguard against the potential for non-convexity or multiple stationary points in the
objective function, standard methods such as the examination of different starting
values and profile plots of the log-likelihood (e.g. Lawless 2003, p. 556) can be applied
here. Further details on computation are deferred to Section 3.4.

3.3 asymptotic properties

Under some regularity conditions the sieve maximum likelihood estimator (θ̂n , Λ̂n)

globally converges to the truth (θ0,Λ0) slower than the parametric rate
√
n, but θ̂n is

asymptotically efficient at (θ0,Λ0). Proofs are constructed by adapting results from
Section 2.3.

3.3.1 Consistency

The smle is asymptotically unbiased by application of Theorem 1.16. The conditions
needed for this result can be verified along the same lines as Section 2.3.1, though
some adjustments are needed to accommodate the sieve estimator. These easily follow
by adaption of Y. Zhang et al.’s (2010) proof of consistency.

b4 θ0 lies in the interior of Θ and Θ is a compact subset of Rdz .

b5 The distributions for C and D have support contained in [σ , τ] such that P(C =
D = τ ∣ Z) > 0, almost surely.

b6 The distribution of Z has support Z = supp(FZ) on a bounded subset of Rdz .

b7 For each h ≠ j, P(Z⊺h ja ≠ c) > 0 for every a ∈ Rdz and c ∈ R.

3.3 theorem. Under the above conditions ∥θ̂n − θ0∥ + ∥Λ̂n − Λ0∥2
as
→ 0, where

∥Λ̂n − Λ0∥2 = ∑
h≠ j[ ∫

τ

σ
∣Λ̂h j,n − Λ0

h j∣
2(u)du]

1/2

is the L2 distance between Λ̂n and Λ0 on (σ , τ).
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3.3 asymptotic properties

Proof. We verify the conditions of Theorem 1.16 with criterion function

mθ ,Λ = log
pθ ,Λ + p0

2
.

From b2, H is assumed bounded on [0, τ]. With b4, Θ×Hn is a compact parametric
class for each n with bracketing number

N[ ](ε, Θ ×Hn , Lr(Pn)) ≲ (diamΘ/ε)d(M/ε)Kn , (3.8)

where Kn = ∑h≠ j Kh j,n. The corresponding bracketing integral converges and, by
Theorem 1.12, Θ ×Hn is P-Donsker. Suppose that (θL , θR) and (ΛL ,ΛR) is a bracket
for (θ ,Λ). By conditions b2 and b4 and the mean value theorem

∫ τ

σ
(Λh j,L(u)ez

⊺θL − Λh j,R(u)ez
⊺θR)2 du ≲ ∥θL − θR∥ + ∥Λh j,L − Λh j,R∥2.

Since mθ ,Λ is pointwise Lipschitz in the transition intensities,

∫ (mθL ,ΛL −mθR ,ΛR)
2 dν ≲ ∥θL − θR∥ + ∥ΛL − ΛR∥2. (3.9)

Thus {mθ ,Λ ∶ θ ∈ Θ,Λ ∈ Hn} is also P-Donsker. Following (2.4), P(mθ ,Λ −mθ0 ,Λ0) ≤

−d2
H(pθ ,Λ , p0) ≤ 0 with equality only if (θ ,Λ) = (θ0,Λ0) by Lemma 3.4 below. So it

remains to show that (θ̂n , Λ̂n) is a near maximizer of mθ ,Λ. Adapting the approach
fromY.Zhang et al. (2010, pp. 352–53), letΛ0,n ∈ Hn be the piecewise linear interpolant
of Λ0 given by Definition 3.2. Since the logarithm is concave and the smle is a
maximizer of the log-likelihood function nPn log pθ ,Λ on the sieve Θ ×Hn,

Pn(mθ̂ ,Λ̂n
−mθ0 ,Λ0) = Pn log

pθ̂ ,Λ̂n
+ p0

2p0
≥ 1

2 Pn(log pθ̂ ,Λ̂n
− log p0)

≥ 1
2 Pn(log pθ0 ,Λ0,n − log p0) (3.10)
= 1

2(Pn −P)(log pθ0 ,Λ0,n − log p0) + 1
2 P(log pθ0 ,Λ0,n − log p0).

Elementary results from approximation theory (e.g. Dahlquist and Björck 1974, p. 10)
show that ∥Λ0,n − Λ0∥∞ has order

max{tk − tk−1 ∶ tk−1, tk ∈ Th j,n , h ≠ j} = O(τ/nκ),

under condition b2 and Definition 3.2. So P(log pθ0 ,Λ0,n − log p0)2 ≲ n−2κ and, by
Theorem 1.19, (Pn −P)(log pθ0 ,Λ0,n − log p0) = oP(n−1/2). From (1.25) the Kullback-
Leibler distance between the measures under (θ0,Λ0,n) and the truth is bounded
above by zero. This gives P(log pθ0 ,Λ0,n − log p0) > − o(1). The above inequality then
amounts to Pn mθ̂ ,Λ̂n

− Pn mθ0 ,Λ0 ≥ oP(n−1/2) − o(1) = − oP(1). ◾
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doubly right-censored data from an illness-death process

3.4 lemma. For every (θ ,Λ) ≠ (θ0,Λ0) on (σ , τ), pθ ,Λ ≠ p0, almost surely.

Proof. Under conditions b2 and b4 to b6, each of P(S > τ = C = D ∣ Z), P(S = T <
τ = C = D ∣ Z) and P(S < T < τ = C = D ∣ Z) are almost surely positive. Assume
that pθ ,Λ = p0, almost surely. Then by Duhamel’s equation (Theorem 1.5),

0 = ∣P00(0, τ ∣ Z) − P00,0(0, τ ∣ Z)∣

= ∫ τ

0
P00(0, u ∣ Z)∣A00 − A00,0∣(du ∣ Z)P00,0(u, τ ∣ Z),

almost surely. This is satisfied only if A00 and A00,0 are almost surely equal on (0, τ).
Our assumption also implies that

P00(0, t ∣ Z)α02(t ∣ Z) = P00,0(0, t ∣ Z)α02,0(t ∣ Z),
P00(0, t ∣ Z)α01(t ∣ Z)P11(t, τ ∣ Z) = P00,0(0, t ∣ Z)α01,0(t ∣ Z)P11,0(t, τ ∣ Z),

almost surely for each σ < t < τ. Put t∗ = inf{σ ≤ t < τ ∶ λ02,0(t) > 0}. Then from
b2 and the previous result, the first almost-sure identity above yields eZ⊺02(θ−θ0) =
λ02(t∗)/λ02,0(t∗) and hence Z⊺02(θ − θ0) is degenerate. Under b7 this implies that
θ = θ0, which in turn gives Λ02 = Λ02,0 and Λ01 = Λ01,0 on (σ , τ). With the second
almost-sure identity, we obtain Λ12 = Λ12,0 on (σ , τ). ◾

3.3.2 Rate of convergence

The rate at which the smle converges to the truth is obtained by application of
Theorem 1.18. The requirements of this result can be verified by adapting the approach
of Y. Zhang et al. (2010, pp. 352–53).

b8 For some r ≥ 1, the rth derivative of Λ0 continuous, positive and bounded on
[σ , τ].

3.5 theorem. ∥θ̂n − θ0∥ + ∥Λ̂n − Λ0∥2 = OP(max(n−(1−κ)/2, n−rκ)) under the condi-
tions above.

Proof. We apply Theorem 1.18 where, from the proof of Theorem 3.3 and Lemma 3.6
below, all but requirement (1.23) are verified. In particular for (1.22) the upper bound
up to a constant is −O(n−2rk) by condition b8. From (3.8)

J[ ](δ, {mθ ,Λ ∶ θ ∈ Θ,Λ ∈ Hn}, Lr(Pn)) ≲ δ
√
d + Kn .
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3.3 asymptotic properties

By Lemma 1.22 the function φn(δ) in (1.23) then has order δnκ/2 + nκn−1/2. The
constraint φn(δn) ≤

√
nδ2

n for every n is satisfied with equality by δn = n−(1−κ)/2/2.
Since

n2rκφn(1/nrκ) = n2rκ√n(n−rκn(1−κ)/2 + nκ−1) = √n(nrκn(1−κ)/2 + n2rκn−(κ−1)),
we achieve a tighter bound of nrκ provided that rκ ≤ (1 − κ)/2. Thus the rate of
convergence is OP(min(nrκ , n(1−κ)/2)). ◾
3.6 lemma. Under the previous conditions d2

H(pθ ,Λ , p0) ≳ ∥θ − θ0∥
2 + ∥Λ − Λ0∥

2.

Proof. Adapting the proof of Lemma 2.11,

d2
H(pθ ,Λ , p0) = ∫ (pθ ,Λ − p0)2

(
√pθ ,Λ +

√p0)2
dν ≳ ∫ (pθ ,Λ − p0)2 dν,

since pθ ,Λ + p0 can be uniformly bounded under b2, b4 and b6. By b3 and b8,

∫ (pθ ,Λ − p0)2 dν

≥ q02 ∫Z ∫
τ

0
[P00(0, s ∣ z)α02(s ∣ z) − P00,0(0, s ∣ z)α02,0(s ∣ z)]2 ds dFZ(z)

≥ q02 ∫Z ∫
τ

0
[P00(0, s ∣ z) − P00,0(0, s ∣ z)]2α02,0(s ∣ z)2 ds dFZ(z)

≳ ∫Z ∫
τ

σ
[P00(0, s ∣ z) − P00,0(0, s ∣ z)]2 ds dFZ(z)

= ∫Z ∫
τ

0
[ ∫ s

0
P00(0, s ∣ z)(A00 − A00,0)(du ∣ z)P00,0(u, s ∣ z)]

2
ds dFZ(z)

≳ ∫Z ∫
τ

σ
[ ∫ s

0
(A00 − A00,0)(du ∣ z)]

2
ds dFZ(z),

≥ ∫Z ∫
τ

σ
(A0 j − A0 j,0)

2(s ∣ z)ds dFZ(z), j = 1, 2,

where the inequalities up to a constant holds because q02, α02,0, Phh and Phh,0 are
bounded away from zero on [σ , τ] and the equality follows fromDuhamel’s equation
(Theorem 1.5). Similarly

∫ (pθ ,Λ − p0)2 dν

≥ q12 ∫Z ∫
τ

0 ∫ τ

s
[P00(0, s ∣ z)α01(s ∣ z)P11(s, t ∣ z)α12(t ∣ z)

− P00,0(0, s ∣ z)α01,0(s ∣ z)P11,0(s, t ∣ z)α12,0(t ∣ z)]2 dt ds dFZ(z)

≥ q12 ∫Z ∫
τ

0 ∫ τ

s
[P11(s, t ∣ z) − P11,0(s, t ∣ z)]2
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doubly right-censored data from an illness-death process

× [P00,0(0, s ∣ z)α01,0(s ∣ z)α12,0(t ∣ z)]2 dt ds dFZ(z)

≳ ∫Z ∫
τ

σ ∫ τ

s
[P11(s, t ∣ z) − P11,0(s, t ∣ z)]2 dt ds dFZ(z)

= ∫Z ∫
τ

σ ∫ τ

s
[ ∫ t

s
P11(s, u ∣ z)(A11 − A11,0)(du ∣ z)P11,0(u, t ∣ z)]

2
dt ds dFZ(z)

≳ ∫Z ∫
τ

σ ∫ τ

s
[ ∫ t

s
(A11 − A11,0)(du ∣ z)]

2
dt ds dFZ(z)

≥ ∫Z ∫
τ

σ
(A12 − A12,0)

2(s ∣ z)ds dFZ(z).

Let θ t = tθ + (1 − t)θ0, Λh j,t = tΛh j + (1 − t)Λh j,0. From the mean value theorem,
there is some 0 < t < 1 depending on (y, z, h, j) such that

(Ah j − Ah j,0)(y ∣ z) =
∂
∂t

Ah j,t(y ∣ z)

= t exp(z⊺h jθ t)

× {[1 + z⊺h j(θ − θ0)t](Λh j − Λh j,0)(y) + z⊺h j(θ − θ0)Λh j,0(y)}.

For (Y , Z) ∼ µ = 1[σ ,τ] ×FZ , put дh j,0(z) = 1 + z⊺h j(θ − θ0)t, дh j,1(y) = (Λh j −

Λh j,0)(y) and дh j,2(y, z) = z⊺h j(θ − θ0)Λh j,0(y). So (Ah j − A0)(Y ∣ Z) is equal to
дh j,0(Z)дh j,1(Y) + дh j,2(Y , Z) up to the factor t exp(Z⊺h jθ t), which is bounded away
from zero under a4, a5 and a7. By condition b7,

[Eµ(дh j,1дh j,2)]2 < Eµ(д2
h j,1)Eµ(д2

h j,2).

Since дh j,0(z) is uniformly close to 1 for θ close to θ0 and Λh j,0 is bounded away from
zero on [σ , τ],

∫ (pθ ,Λ − p0)2 dν ≳ µ(дh j,0дh j,1 + дh j,2)2

≳ µд2
h j,2 + µд2

h j,1 ≳ ∥θ − θ0∥
2 + ∥Λ − Λ0∥

2,

by Lemma 1.21. ◾

3.3.3 Asymptotic normality

Here the smle is shown to be asymptotically efficient by application of Theorem 1.23
and Corollary 1.24. This result requires two further assumptions.

b9 Λ0 has a second-order derivative that is uniformly bounded on [σ , τ].
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3.3 asymptotic properties

3.7 theorem. Let r be the order of the derivative of Λ0 satisfying condition b8. If
1/(4r) < κ < 1/2 then, under the above conditions, the maximum likelihood estimator
θ̂n is asymptotically efficient at (θ0,Λ0). In particular the sequence

√
n(θ̂n − θ0) is

asymptotically normal with mean zero and variance Σ = Ĩ−10 .

Proof. We prove existence of a least favourable submodel meeting the requirements
of Theorem 1.23 and Corollary 1.24 under the assumption that dz = 1; the result for
dz > 1 follows by repeated application of the proof for this special case. The score
function for θ ∈ R is

ℓ̇θ ,Λ(x) = − z01A01(u) − z02A02(u) + δ0δ2z02

+ δ0 1(u < υ)[z01 − δ2z02 + δ2z12 − z12A12(u, υ)]

+
(1 − δ0)
p(u, υ)

{[δ2z02 − z01A01(u, υ) − z02A02(u, υ)]P00(u, υ)α02(υ)δ2

− ∫ υ
u [z01 dA01(y) + z02 dA02(y)]P01(u, y)α12(υ)δ2

+ [z01P01(u, υ) − ∫ υ
u z12 dA12(y)P01(u, y)P11(y, υ)]α12(υ)δ2

+ δ2 д12(υ)P01(u, υ)α12(υ)δ2},

where conditionals on z are suppressed in αh j, Ah j and Ph j for brevity and

p(u, υ) = p(u, υ ∣ z) = P01(u, υ ∣ z)α12(υ ∣ z)δ2 + P00(u, υ ∣ z)α02(υ ∣ z)δ2 .

Since (3.1) is a multiplicative intensity model, the entries in Λ are essentially variation
independent. A tangent set is then obtained by perturbing each Λh j. Consider a one-
dimensional submodel y ↦ Λh j,y satisfying ∂/∂y∣y=0 dΛh j,y = дh jΛh j. Then the score
for Λ is

Bθ ,Λд(x) = ∑
h≠ j Bθ ,Λдh j(x)

= − ∫ u

0
д01(y)dA01(y) − ∫ u

0
д02(y)dA02(y) + δ0δ2 д02(υ)

+ δ0 1(u < υ)[д01(u) − δ2 д02(υ) + δ2 д12(υ) − ∫ υ
u д12(y)dA12(y)]

+
(1 − δ0)
p(u, υ)

{[δ2 д02(υ) − ∫ υ
u д01(y)dA01(y) − ∫ υ

u д02(y)dA02(y)]P00(u, υ)α02(υ)δ2

− ∫ υ
u [д01(y)dA01(y) + д02(y)dA02(y)]P01(y, υ)α12(υ)δ2

+ ∫ υ
u [д01(y)dA01(y)P00(u, y) − д12(y)dA12(y)P01(u, y)]P11(y, υ)α12(υ)δ2

+ δ2 д12(υ)P01(u, υ)α12(υ)δ2}.
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doubly right-censored data from an illness-death process

Note that the scores have similar form. Thus ℓ̇θ ,Λ(x) can be similarly written as
a sum of terms indexed by zh j. Denote these by ℓ̇h jθ ,Λ(x). Since the distribution of
T0 j < ∞ is specified by (θ ,Λ0 j), we take the 0 → j adjoint B∗θ ,Λ as the conditional
expectation operator given {T0 j = t} under (θ ,Λ). The (positive) duration in state
1 is fully specified by (θ ,Λ12), so the 1 → 2 adjoint is the conditional expectation
operator given {T12 − T01 = t}. Considering the 0→ 1 type-specific terms define, for
an arbitrary function φ on [0, τ],

B01,1(φ)(y) = φ(y)eZ01θλ01(y) 1(0,t)(y)(1 − FC∣Z(y ∣ Z)),
B01,2(φ)(t) = φ(t)(1 − FC ,D∣Z(t, t ∣ Z)),

and

B01,3(φ)(t, y) = φ(y)eZ01θλ01(y)

× ∫ τ

0
EC ,D∣Z(Q(C , t12∧D, 1(t12 < D), Z)(y) ∣ Z) exp(−A12(t, t12 ∣ Z))A12(dt12 ∣ Z),

where

Q(c, υ, δ2, z)(y) =
1(c,υ)(y)
p(c, υ ∣ z)

× {[P00(c, y ∣ z)P11(y, υ ∣ z) + P00(y, υ ∣ z)]α12(υ ∣ z)δ2 + P00(c, υ ∣ z)α02(υ ∣ z)δ2}.

Let B01,k(⋅) ≡ B01,k(1)(⋅) and b01,k be the expectation of B01,k with respect to the
distribution of Z. Then

B∗θ ,ΛBθ ,Λд01(t) = − ∫ τ

0
b01,1(д01)(y)dy + b01,2(д01)(t) + ∫ τ

0
b01,3(д01)(t, y)dy,

B∗θ ,Λ ℓ̇01θ ,Λ(t) = − ∫ τ

0
b01,1(Z01)(y)dy + b01,2(Z01)(t) + ∫ τ

0
b01,3(Z01)(t, y)dy.

If the least favourable direction д01
θ ,Λ exists, it is characterized by

B∗θ ,Λ ℓ̇01θ ,Λ(t) = B∗θ ,ΛBθ ,Λд01
θ ,Λ(t).

This identity reduces to the Fredholm integral equation of the second kind

д01
θ ,Λ(t) = f01(t) + ∫ τ

0
K01(t, y)д01

θ ,Λ(y)dy, (3.11)

where

f01(t) =
B∗θ ,Λ ℓ̇01θ ,Λ(t)

1 − EZ(FC ,D∣Z(t, t ∣ Z))
and K01(t, y) =

b01,1(t, y) − b01,3(t, y)
1 − EZ(FC ,D∣Z(t, t ∣ Z))

.
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3.4 computation

At the truth (θ0,Λ0), f01 and K01 are bounded away from zero by b3 and from infinity
by b5. From Fredholm’s first theorem (e.g. Kanwal 1997, p. 48) there exists a unique
solution д01

0 to (3.11) at (θ0,Λ0). Integral equations for д02
θ ,Λ and д12

θ ,Λ can be similarly
derived. From condition b9, the least favourable directions at (θ0,Λ0) have bounded
derivatives on [σ , τ]. Let дh j

0,n denote the linear interpolant of дh j
0 under the same

partition for Λ̂n. The least favourable submodel can then be defined as

Λh j,y(θ ,Λ) = ∫ (1 + (θ − y)дh j
0,n)dΛh j, h ≠ j,

which is a cumulative baseline intensity function in Hn for y sufficiently close to θ.
Equation (1.32) follows from Theorem 3.3 and the fact that θ and Λ are variation
independent. Ordinary Taylor expansions yield an upper bound for ℓ̇(θ0, θ0,Λ)
proportional to ∥Λ − Λ0∥

2. By Theorem 3.5 and the restrictions on κ, the “bias” term
P0 ℓ̇(θ0, θ̂n , Λ̂n) is faster than the required OP(n−1/4). This satisfies (1.33) via b8 and
(1.35). The remaining structural requirements of Theorem 1.23 and Corollary 1.24 are
met largely by assumption. ◾

Theorem 3.7 and Corollary 1.26 yield a consistent estimator for the profile infor-
mation matrix of θ̂n.

3.8 corollary. Let e1, . . . , edz be the unit vectors in Rdz and ρn be a symmetric
dz-matrix whose entries ρi j, i , j = 1, . . . , dz, satisfy (

√
nρi j)

−1 = OP(1). A consistent
estimator for each entry in Ĩ0 has the same form as (2.12).

3.4 computation

A computational algorithm for the smle can be specified using the same elements
described in Section 1.2.4, though the objective function here is not convex. An em-
type approach is obtained by combining the Newton-Raphson method for θ and a
self-consistency algorithm (Turnbull 1976) for Λ.

Let λh j = (λh j,0, . . . , λh j,Kh j ,n)
⊺ denote the vector representing the piecewise con-

stant values of λh j(t) over [0, τ), with λh j,k = λh j(tk) and tk ∈ Th j,n. For brevity put
λ = (λ⊺01, λ⊺02, λ⊺12)⊺, ϕ = (θ⊺, λ⊺)⊺ and log likn(ϕ) ≡ log likn(θ , λ). The smle is the
solution to the score equation ∇ϕ log likn(ϕ) = 0, which can be solved numerically.
A given value ϕ(r) = (θ(r), λ(r)) is updated via the candidate step η(r) = (η(r)θ , η(r)λ ).
Its first component η(r)θ is handled by the Newton-Raphson method

η(r)θ = −∇
2
θ log likn(ϕ(r))−1∇θ log likn(ϕ(r)). (3.12)
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doubly right-censored data from an illness-death process

For η(r)θ , we incorporate the solution to the self-consistency equations, obtained by
re-arranging ∇λ log likn(θ , λ) = 0 to give a recursive expression for λ. In particular

η(r)λh j ,k = rh j,n(tk; θ(r) + η(r)θ , λ(r)) − λ(r)h j,k , tk ∈ Th j,n , (3.13)

rh j,n(tk; θ , λ) =
∑i E (∫

tk
tk−1

dN i
h j(s) ∣ Xi)

∑i exp(Z i
h j
⊺θ)E (∫ tk

tk−1
Y i
h(s)ds ∣ Xi)

, (3.14)

where the expectations evaluate to 1 if Xi provides exact information; otherwise,
suppressing the dependence on Z,

E (∫ tk
tk−1 dN01(s) ∣ X) =

1(U < V)
pθ ,Λ(X) ∫ R

L
Ik(s)P00(0, s)α01(s)P11(s,V)α12(V)∆2 ds,

E (∫ tk
tk−1

dN02(s) ∣ X) =
1 − ∆0 1(U < V)

pθ ,Λ(X)
Ik(V)P00(0,V)α02(V)∆2 ,

E (∫ tk
tk−1

dN12(s) ∣ X) =
1(U < V)
pθ ,Λ(X)

Ik(V)P00(0, L)P01(L, R)P11(R,V)α12(V)∆2 ,

E (∫ tk
tk−1

Y0(s)ds ∣ X) = 1(U < V)
pθ ,Λ(X) ∫ R

L
Lk(0, s)P00(0, s)α01(s)P11(s,V)α12(V)∆2 ds

+
1 − ∆0 1(U < V)

pθ ,Λ(X)
Lk(0,V)P00(0,V)α02(V)∆2 ,

E (∫ tk
tk−1

Y1(s)ds ∣ X) = 1(U < V)
pθ ,Λ(X) ∫ R

L
Lk(s,V)P00(0, s)α01(s)P11(s,V)α12(V)∆2 ds,

with [L, R] denoting the (potential) censoring interval for T01. The notation in (3.14)
draws a clear analogy to (1.11). Integrals over [L, R] are straightforward to evaluate
over a partition on which the model is time homogeneous; if αh j(u ∣ z) = αh j for
u ∈ [s, t), 0 ≤ s < t ≤ υ ≤ τ, then

∫ t

s
P00(0, u ∣ z)α01(u ∣ z)P11(u, υ ∣ z)du

= P00(0, s ∣ z)
exp(−(t − s)α12) − exp(−(t − s)(α01 + α02))

α01 + α02 − α12
P11(t, u ∣ z).

Overshoot is avoided by a simple step-halving procedure

ϕ(r+1) = ϕ(r) + η(r)/2 j, (3.15)

where j is the smallest nonnegative integer satisfying

log likn(ϕ(r)) ≤ log likn(ϕ(r) + η(r)/2 j).

Putting this together gives the following algorithm, which can be proven to converge
to a local maximizer of the log-likelihood on the basis of results fromWu (1983). The
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3.5 simulation study

presence of a non-unique solution may be detected with different starting values,
though experience thus far has not uncovered any instances of multiple maxima.

3.9 algorithm. Let nh j be the number of the exact h → j transition times ob-
served from X1, . . . , Xn. For given Ch j > 0 and 0 < κ < 1, define Th j,n as a partition of
[0, τ) in which each subinterval contains ⌈nh j/(Ch jnκ)⌉ exact h → j transition times.
Set r ∶= 0, θ(0) = 0 and λ(0) = 1. Let η(r) be the candidate step with components given
by (3.12) and (3.13) and ϕ(r+1) be the result of the line search (3.15). If

∥ϕ(r+1) − ϕ(r)∥∞ ≤ ε,
for small positive value ε, then stop. Otherwise put r ∶= r + 1. ◽

From condition b3 and Theorem 3.5 the optimal choice for κ is 1/(1+ 2k), where k is
the order of the derivative on which we impose condition b8. Numerical studies of
similar estimators suggest that larger partitions give better finite-sample results (e.g.
Huang and Rossini 1997). Some broad comparisons in the choice of κ are provided
in Section 3.5.

Holding θ(r) fixed in Algorithm 3.9 evaluates the profile likelihood needed for
variance estimation under Corollary 3.8. To approximate entries from the profile
information matrix we follow the same procedure outlined in Section 2.4.2.

3.5 simulation study

Numerical properties of the smle were investigated for variants of the censoring
scheme described in Remark 3.1. Each of these considered the same transition inten-
sity model

Ah j(t ∣ Z) = Λh j(t) exp(θ1Z01 + θ2Z02 + θ3Z12), (3.16)

where Λ01(t) = t4/5, Λ02(t) = 3t/4, Λ12(t) = (3t/2)5/4, Z is uniform on {0, 1}, Zh j is
the product of Z and the h → j transition type indicator, θ1 = − log(2), θ2 = − log(2)
and θ3 = 0. Note that Z influences only the risk of transition out of the initial state
0 and its effect is the same for each transition type, but we did not assume either of
these properties in estimating θ. Transition times were right-censored by D = τ = 2
and C = D with probability 1 − p(Z), where

logit(p(Z)) = β0 + β1Z .

In the event that C ≠ D, C = Y ∧ τ where Y is exponentially-distributed with mean
τ/2 = 1. Here D can be thought of as an administrative censoring time and C, when
C < D, a random dropout time occurring earlier in the observation period.
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doubly right-censored data from an illness-death process

Three thousandMonte Carlo replicates with sample sizes n = 500, 1000 and 2000
were generated under three scenarios:

◾ independent censoring with β0 = log(1/3) and β1 = 0,
◾ independent censoring with β0 = log(9) and β1 = 0, and
◾ conditionally independent censoring β0 = log(1/3) and β1 = log(3/2).

With exp(β) = (1/3, 1), the probability of {C < D} is p(Z) = 1/4. Under exp(β) =
(9, 1) this increases to 9/10. Under exp(β) = (1/3, 3/2) the probability is 1/4 for
subjects with Z = 0. For those with Z = 1, p = 1/3.

Estimates for each sample were obtained using a c implementation of Algo-
rithm 2.15 relying on routines from the lapack library (Anderson et al. 1999) to
carry out matrix inversion. Tuning parameters were set to Ch j = 1, κ = 2/5, ε = 10−7,
typ θ = 1 and sup θ = 10. This ensured convergence within a reasonable number of
iterations over all scenarios and sample sizes. Under the first scenario estimates were
re-evaluated with the alternative sieve sizes κ = 4/15 and κ = 2/5.

The spmle based on “singly” right-censored data (Example 1.6) was also consid-
ered for:

◾ the underlying or “latent” transition times (T01, T02, T12) right-censored by D and
◾ the observed transition times (T01, T02, T12) right-censored by C.

Estimates were obtained using Therneau’s (2012) coxph routine from the survival
package for r. The first case above corresponds to the latent data, observable only
if C was always equal to D. The second approach is essentially right-censors all
transition times at C, ignoring any observed T = T02 ∧ T12 with C < T < D. The
resulting spmle for the latter is consistent under both condition b1 and the weaker
assumption of independent right-censoring at C (Example 1.1). In practice, however,
the observed data are often reduced further to obtain the composite endpoint S =
T01∧T02, commonly known as progression-free survival (pfs). Some ad hocmethods
for pfs mentioned by Ke et al. (2011) call for survival analysis of

◾ the observed time U = S ∧ C with event status ∆0 = 1(S ≤ C),
◾ U with any available status max(∆0, ∆2), and
◾ ∆0U + (1 − ∆0)V with max(∆0, ∆2).

The first approach is a reasonable simplification of the three-state model when the
0→ 1 and 0→ 2 intensity functions are similar. The last two methods involve system-
atic imputation and are thus prone to bias. From data under each of these cases we
fit a Cox model with a single covariate Z.
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Under the fixed transition intensity model parameters roughly 50% of subjects
in the sample progressed by τ (S < T ≤ τ), 12% were event-free (S > τ), and 16%
survived to study closure (T > τ). Censoring times generated from β0 = log(1/3),
gave a low proportion of doubly right-censored observations; less than 15%.With β0 =
log(9), the doubly right-censoring rate increases to almost 40% (Table 3.1). Censoring
rates were roughly comparable between the positive and negative progression status
groups.

Censoring rate

Exact observation Singly right-censored Doubly right-censored
eβ0 eβ1 T < C C = D < T or S < C < T C < D and C < S

1/3 1 0.704 0.153 0.142
9 1 0.473 0.142 0.385
1/3 3/2 0.722 0.150 0.128

table 3.1
Average
censoring rates
over 3000
replicates with
n = 2000.

The simulation results for the smle θ̂n summarized by Table 3.2 are compatible
with the asymptotic properties derived in Section 3.3. Bias becomes negligible with
larger sample size. Monte Carlo sample standard deviations for θ̂n decrease with
larger n and is reasonably approximated by the standard error estimates. Empiri-
cal coverage probabilities of the 95% confidence intervals are close to the nominal
level. The spmle arising from singly right-censored data at C has a higher degree
of variability, but achieves lower average bias in some scenarios. The difference in
finite-sample bias between the two estimators becomes small in larger samples with
higher rates of censoring. Since the covariate effect on the exit time from the initial
state is invariant to the transition type, analysis of progression-free survival right-
censored at C also performs reasonably well. However the imputation variants are
heavily biased (Table 3.3).

Table 3.4 suggests that we should generally prefer larger sieves to mitigate finite-
sample bias in θ̂n. Under the independent, low-rate censoring scenario, eβ = (1/3, 1),
the average bias for the smle with a sieve growing at the rate n4/15 was up to eleven
times larger than the bias achieved by an n2/5-sieve estimator. The smle under the
asymptotically optimal rate of n1/3 also fared no better than the n2/5-sieve, with mean
bias ratios up to 4.5. The corresponding standard deviation ratios are close to 1, so
the reduction in bias came at little to no loss in precision. The improvement achieved
by a larger sieve appears to diminish with increasing sample size for the estimates
specific to the terminal event types. The scenarios examined here generate exactly
observed 0→ 1 times more frequently, so in practice selection of the sieve constants
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eβ0 , smle spmle censored by C pfs

eβ1 n θ1 θ2 θ3 θ1 θ2 θ3 θ

1/3, 500 Bias -0.0054 -0.0007 0.0025 -0.0033 -0.0019 0.0011 -0.0022
1 sd 0.1334 0.1508 0.1430 0.1347 0.1572 0.1442 0.1031

ase 0.1352 0.1538 0.1401 0.1374 0.1611 0.1413 0.1047
cp 0.9477 0.9557 0.9427 0.9517 0.9550 0.9453 0.9527

1000 Bias -0.0005 0.0017 0.0010 0.0004 0.0005 -0.0004 0.0007
sd 0.0961 0.1109 0.0988 0.0970 0.1148 0.1000 0.0741
ase 0.0956 0.1082 0.0990 0.0972 0.1135 0.1000 0.0739
cp 0.9540 0.9437 0.9507 0.9547 0.9473 0.9487 0.9490

2000 Bias -0.0008 0.0014 -0.0012 -0.0003 0.0007 -0.0020 0.0002
sd 0.0663 0.0756 0.0703 0.0670 0.0787 0.0708 0.0504
ase 0.0675 0.0765 0.0699 0.0687 0.0802 0.0707 0.0522
cp 0.9510 0.9563 0.9457 0.9547 0.9567 0.9523 0.9607

9, 500 Bias -0.0067 -0.0021 0.0039 -0.0050 -0.0039 0.0021 -0.0035
1 sd 0.1497 0.1618 0.1565 0.1552 0.1866 0.1604 0.1203

ase 0.1499 0.1632 0.1545 0.1560 0.1884 0.1589 0.1203
cp 0.9483 0.9517 0.9433 0.9487 0.9497 0.9437 0.9523

1000 Bias -0.0002 0.0017 -0.0003 0.0019 0.0025 -0.0009 0.0026
sd 0.1065 0.1170 0.1093 0.1098 0.1334 0.1122 0.0849
ase 0.1060 0.1146 0.1091 0.1102 0.1325 0.1123 0.0848
cp 0.9523 0.9497 0.9553 0.9550 0.9503 0.9547 0.9517

2000 Bias -0.0011 0.0004 -0.0002 0.0002 0.0005 -0.0005 0.0006
sd 0.0737 0.0799 0.0776 0.0767 0.0912 0.0796 0.0583
ase 0.0749 0.0810 0.0770 0.0778 0.0937 0.0793 0.0599
cp 0.9523 0.9540 0.9493 0.9583 0.9530 0.9493 0.9630

1/3, 500 Bias -0.0053 -0.0007 0.0024 -0.0033 -0.0019 0.0011 -0.0021
3/2 sd 0.1321 0.1503 0.1425 0.1332 0.1562 0.1435 0.1020

ase 0.1341 0.1532 0.1394 0.1363 0.1595 0.1404 0.1037
cp 0.9520 0.9563 0.9420 0.9550 0.9553 0.9443 0.9510

1000 Bias -0.0001 0.0015 0.0009 0.0009 0.0007 -0.0002 0.0012
sd 0.0953 0.1103 0.0985 0.0962 0.1137 0.0993 0.0737
ase 0.0949 0.1078 0.0985 0.0964 0.1123 0.0994 0.0732
cp 0.9510 0.9460 0.9517 0.9503 0.9493 0.9470 0.9500

2000 Bias -0.0006 0.0014 -0.0012 -0.0002 0.0007 -0.0020 0.0004
sd 0.0657 0.0754 0.0700 0.0664 0.0781 0.0703 0.0500
ase 0.0670 0.0762 0.0696 0.0681 0.0794 0.0703 0.0517
cp 0.9513 0.9543 0.9473 0.9530 0.9553 0.9520 0.9570

table 3.2
Bias, standard
deviation (sd),

average standard
error estimate

(ase) and
empirical
coverage

probability of
95% confidence

intervals (cp) for
the smle of θ

over 3000
replicates. The

same results for
the spmle based

on transition
times and pfs,

both
right-censored at
C, are provided
for comparison.
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U-imputed pfs V-imputed pfs Latent spmle

n θ θ θ1 θ2 θ3

500 Bias 0.0473 0.1471 -0.0034 -0.0020 0.0004
sd 0.0964 0.0872 0.1265 0.1469 0.1359
ase 0.0982 0.0774 0.1292 0.1498 0.1334
cp 0.9253 0.5103 0.9487 0.9513 0.9450

1000 Bias 0.0491 0.1491 0.0016 0.0008 -0.0008
sd 0.0705 0.0631 0.0906 0.1075 0.0947
ase 0.0693 0.0546 0.0914 0.1055 0.0945
cp 0.8797 0.2463 0.9493 0.9463 0.9517

2000 Bias 0.0488 0.1485 -0.0005 0.0012 -0.0022
sd 0.0467 0.0422 0.0632 0.0735 0.0669
ase 0.0490 0.0386 0.0646 0.0746 0.0668
cp 0.8383 0.0447 0.9550 0.9580 0.9500

table 3.3
Simulation
results for
estimators of θ
based on
imputation
variants of pfs
and the latent
data over 3000
replicates from
eβ = (1/3, 1).

Ch j should probably consider relative frequencies of the exact event times.

κ = 4/15 κ = 1/3
n θ1 θ2 θ3 θ1 θ2 θ3

500 Relative bias 2.401 2.184 2.279 1.601 1.497 1.506
Relative precision 1.002 0.998 0.992 1.001 0.999 0.998

1000 Relative bias 10.949 0.736 3.673 4.478 0.920 1.810
Relative precision 1.003 0.998 0.995 1.000 0.999 0.999

2000 Relative bias 6.795 0.737 -0.835 2.450 0.864 0.515
Relative precision 1.001 0.998 0.995 1.000 0.999 0.999

table 3.4
Ratio of bias
(relative bias)
and sd (relative
precision) for θ̂n
between the
specified κ and
κ = 2/5, based
on 3000
replicates from
k = 8 and
eβ = (1/3, 1).

Under the scenarios eβ = (9, 1) and eβ = (1/3, 3/2), pointwise means and per-
centiles for smle of the cumulative baseline intensity functions are depicted in Fig-
ure 3.3. Pointwise estimates for Λ01 and Λ02 appear unbiased. Early in the observation
period the smle for λ12 tends to be larger than the truth, giving a general overestimate
for the cumulative function Λ12. This bias becomes negligible under larger samples
and lower rates of double right-censoring. Variability in each component of Λ̂n is
low and also decreases with increasing n and smaller β0. In smaller sample sizes,
bias appears more influenced by the size of the sieve rather than the rate of double
censoring (Figure 3.4). The level of variability was similar between the largest and
smallest sieve sizes examined.

One apparent trade-off in a larger sieve is longer time to convergence in terms of
both the number of iterations required by Algorithm 3.9 and the computing time for
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n = 500

Λ01(t)
0

1.5

n = 1000 n = 2000

Λ02(t)
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figure 3.3
True values for
Λ (−) depicted
with pointwise

lower and upper
2.5th percentiles
and pointwise
means for the

spmle of Λ with
κ = 2/5 based on

3000 replicates
under

eβ = (1/3, 3/2)
(top) and
eβ = (9, 1)
(bottom).
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n = 500
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0
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figure 3.4
True values for
Λ (−) depicted
with pointwise
lower and upper
2.5th percentiles
and pointwise
means for the
spmle of Λ with
κ = 4/15 (top)
and κ = 1/3
(bottom) based
on 3000
replicates under
eβ = (1/3, 1).
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eβ0 = 1/3 eβ0 = 9
κ = 4/15 κ = 1/3 κ = 2/5 κ = 2/5

n cpu Iterations cpu Iterations cpu Iterations cpu Iterations

500 0.23 30 0.32 30 0.41 30 1.33 48
1000 0.45 30 0.65 30 0.98 30 3.36 49
2000 1.06 29 1.63 30 2.87 29 9.89 50

table 3.5
Average time to
convergence for
Algorithm 3.9.
The cpu time,

given in seconds,
covers variance

estimation.

both parameter and variance estimation (Table 3.5). The latter was however below
10 seconds on average in all of the scenarios and sample sizes considered.

3.6 application

In 2001 zoledronic acid, a later-generation bisphosphonate, was reported to demon-
strate at least equivalent efficacy and safety versus pamidronate, the standard treat-
ment in the prevention of bone lesion complications at the time (e.g.Major et al. 2001;
Rosen et al. 2001). Rosen et al. (2001) evaluated an international phase iii double-
blinded comparative trial of the two bisphosphonates in 1,648 patients with breast
cancer or multiple myeloma and at least one bone lesion. Skeletal-related events
(sres), including fractures, spinal cord compression, radiation to bone and bone
surgery, were recorded up to 30 months following randomization (Figure 3.5). Since

Months since randomization

0 13 30

figure 3.5
Occurrence of

skeletal-related
events ( , ),

right-censoring
( ) and death ( ).

Only the first
radiation or

surgery to bone
( ) is considered
in the analysis.

the primary endpoint for the trial considered the occurrence of at least one sre
over 13 months, follow-up for sres ended before 30 months for many subjects. The
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data over the longer observation period are thus doubly right-censored. This section
illustrates application of the smle to compare the effect of the bisphosphonates on
both time to the first bone intervention and survival in a subgroup of 777 breast
cancer patients from the North American contingent of the trial. “Progression” here
corresponds to the composite event coinciding with the earliest radiation to bone or
bone surgery.

A new r function, called dcprog, was devised to give a user interface to the c
estimation routine described in Section 3.5. Regression models are specified in a
manner similar to Therneau’s (2012) survival package for r. Observations depicted
in Figure 3.5 are represented using the r data frame

id start stop from to status z z01 z02 z12

1 1 0 360 0 1 0 0 0 0 0

2 1 0 360 0 2 0 0 0 0 0

3 1 360 690 NA 2 1 0 0 0 0

4 2 0 90 0 1 0 0 0 0 0

5 2 0 90 0 2 1 0 0 0 0

6 3 0 660 0 1 0 0 0 0 0

7 3 0 660 0 2 0 0 0 0 0

8 4 0 90 0 1 1 0 0 0 0

9 4 0 90 0 2 0 0 0 0 0

10 4 90 720 1 2 0 0 0 0 0

11 5 0 30 0 1 1 1 1 0 0

12 5 0 30 0 2 0 1 0 1 0

13 5 30 810 1 2 0 1 0 0 1

14 6 0 360 0 1 0 0 0 0 0

15 6 0 360 0 2 0 0 0 0 0

16 6 360 900 NA 2 0 0 0 0 0

17 7 0 30 0 1 1 0 0 0 0

18 7 0 30 0 2 0 0 0 0 0

19 7 30 810 1 2 1 0 0 0 0

where the transition types are indicated in the variables from and to. Left- and right-
endpoints of the at-risk time intervals for a given type are measured in days by the
variables start and stop, respectively. The variable status indicates the occurrence
of a transition at stop. Terminal events having unknown transition type are recorded
in the same manner, but with the from variable set to the missing value NA. Any type-
specific covariates for these cases should provide values corresponding to the 1→ 2
transition. This data format ensures that no modification is needed to fit the spmle
from singly right-censored data at C via the well-known survival function coxph

under r’s default NA action, na.omit. Note that the cases shown here do not represent
an excerpt from the actual data set; values have been rounded or randomized for
confidentiality.
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In the code fragment below the start, stop and status variables are combined
into a response using a counting-type Surv object.

> fit <- dcprog(Surv(start, stop, status) ~ cluster(id)

+ trans(from, to) + I(z * (to==1))

+ I(z * (from %in% 0 & to==2))

+ I(z * (from %in% c(NA,1) & to==2)), data = p10,

sieve.const = 1, sieve.rate = 2/5, eps = 1e-9,

coef.typ = 1/2, coef.max = 2)

Two special terms should appear in any model: cluster and trans. The variable
passed to the survival function cluster should uniquely identify individuals in
the sample. The new function trans is akin to the survival function strata in
that trans indicates transition type terms, but it also extracts information used to
determine the state structure and perform data checks. The remaining model terms
specify the covariates. Calculation of 0 → 1, 0 → 2 and 1 → 2 type-specific copies of
the zoledronic acid treatment indicator z are explicitly shown here using the as-is
function I.

Additional option settings specify values for tuning parameters. A sieve growing
at the rate Ch jnκ = n2/5 is obtained with sieve.const = 1 and sieve.rate = 2/5.
The remaining parameters, fully described in Section 2.6, control variance estimation.
By default dcprog also fits the same model to singly right-censored data at C. This
is essentially done by passing the same model formula and data frame to coxph, but
with the trans term replaced by strata and all rows in the data frame having from
equal to NA excluded. The dcprog function returns an object of the type dcprog.
Its print routine reproduces the function call, summarizes regression coefficients,
reports the initial and final log-likelihood values and gives the rates at which exact
transition times (S , T) and the progression status 1(S < T) were observed in the
sample.

The output below shows that the log-likelihood Equation (3.6) at the initial pa-
rameter value ϕ(0) is −4656. After r = 48 iterations the log-likelihood at the final
parameter value ϕ(r) is −4533. The exact transition times (S , T) are observed for
only 33% of the 777 individuals in the sample. Incomplete transition times but known
progression status 1(S < T) are available from 29%. Observations for the remaining
38% are doubly right-censored; both exact times and progression status are unavail-
able. The 0 → 1, 0 → 2 and 1 → 2 type-specific regression coefficients θ̂n measuring
the increase in the risk of transition associated with receiving zoledronic acid versus
pamidronate are −0.173, 0.189 and −0.101, respectively. None of these differences are
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statistically significant, with p-values for the two-sided test θ j = 0 no smaller than
18%.

> fit

Call:

dcprog(formula = Surv(start, stop, status) ~ cluster(id)

+ trans(from, to) + I(z * (to == 1)) + I(z * (from %in% 0 & to == 2))

+ I(z * (from %in% c(NA, 1) & to == 2)), data = p10,

... = list(sieve.const = 1, sieve.rate = 2/5, eps = 1e-09,

coef.typ = 1/2, coef.max = 2))

coef se(coef) z p

I(z * (to == 1)) -0.173 0.148 -1.166 0.24

I(z * (from %in% 0 & to == 2)) 0.189 0.141 1.344 0.18

I(z * (from %in% c(NA, 1) & to == 2)) -0.101 0.199 -0.507 0.61

exp(coef) 2.5% 97.5%

I(z * (to == 1)) 0.841 0.629 1.12

I(z * (from %in% 0 & to == 2)) 1.209 0.917 1.59

I(z * (from %in% c(NA, 1) & to == 2)) 0.904 0.612 1.34

Based on n = 777 subjects contributing 2231 observation times

Initial log-likelihood: -4655.97

Log-likelihood after 48 iterations: -4533

(S, T) 1(S < T) Neither

Observation rate 0.329 0.29 0.381

Estimation from right-censored data via survival’s coxph function

Formula:

Surv(start, stop, status) ~ cluster(id) + strata(from, to) +

I(z * (to == 1)) + I(z * (from %in% 0 & to == 2)) + I(z *
(from %in% c(NA, 1) & to == 2))

coef se(coef) z

I(z * (to == 1)) -0.133455 0.148 -0.90090

I(z * (from %in% 0 & to == 2)) 0.156815 0.283 0.55368

I(z * (from %in% c(NA, 1) & to == 2)) -0.000385 0.146 -0.00264

p exp(coef) 2.5% 97.5%

I(z * (to == 1)) 0.37 0.875 0.655 1.17

I(z * (from %in% 0 & to == 2)) 0.58 1.170 0.671 2.04

I(z * (from %in% c(NA, 1) & to == 2)) 1.00 1.000 0.751 1.33

Based on 1935 observation times (296 deleted due to missingness)

The print function also provides the same summary of the regression coefficients
obtained from coxph fit to the singly right-censored data at C. The estimate for the
effect on the 1 → 2 transition intensity is markedly different from the smle, but
none of the coefficients were found to be significantly different from zero. Additional
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output indicates that 296 of the 2231 rows in data frame have a missing from value
and were thus excluded from analysis. This corresponds to 38% of the sample having
doubly right-censored data.

Values for the sieve estimates can be accessed directly from the dcprog object’s
list arguments coef and bhaz. The spmle from singly right-censored data at C are
similarly represented, but the corresponding coef vector and bhaz data frame are
nested in the dcprog list argument rcfit.

> fit$coef

I(z * (to == 1))

-0.1728308

I(z * (from %in% 0 & to == 2))

0.1894571

I(z * (from %in% c(NA, 1) & to == 2))

-0.1009796

> fit$bhaz[1:3, ]

hazard time trans

1 0.00000000 0 from=0, to=1

2 0.05814021 31 from=0, to=1

3 0.08540514 57 from=0, to=1

> fit$rcfit[[1]]$coef

I(z * (to == 1))

-0.1334553657

I(z * (from %in% 0 & to == 2))

0.1568147185

I(z * (from %in% c(NA, 1) & to == 2))

-0.0003853867

> fit$rcfit[[1]]$bhaz[1:3, ]

hazard time trans

1 0.000000000 0.01 from=0, to=1

2 0.007047897 1.00 from=0, to=1

3 0.009880123 2.00 from=0, to=1

Results with alternative sieve sizes can be investigated by refitting the model with
different parameters. The above listing shows that similar estimates are achieved with
Ch jnκ = n1/3.
> dcprog(Surv(start, stop, status) ~ cluster(id)

+ trans(from, to) + I(z * (to==1))

+ I(z * (from %in% 0 & to==2))

+ I(z * (from %in% c(NA,1) & to==2)), data = p10,

sieve.const = 1, sieve.rate = 1/3, eps = 1e-9,

coef.typ = 1/2, coef.max = 2)

Call:

dcprog(formula = Surv(start, stop, status) ~ cluster(id)

+ trans(from, to) + I(z * (to == 1)) + I(z * (from %in% 0 & to == 2))
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+ I(z * (from %in% c(NA, 1) & to == 2)), data = p10,

... = list(sieve.const = 1, sieve.rate = 1/3, eps = 1e-09,

coef.typ = 1/2, coef.max = 2))

coef se(coef) z p

I(z * (to == 1)) -0.177 0.149 -1.190 0.23

I(z * (from %in% 0 & to == 2)) 0.194 0.143 1.360 0.17

I(z * (from %in% c(NA, 1) & to == 2)) -0.111 0.200 -0.556 0.58

exp(coef) 2.5% 97.5%

I(z * (to == 1)) 0.838 0.626 1.12

I(z * (from %in% 0 & to == 2)) 1.214 0.918 1.61

I(z * (from %in% c(NA, 1) & to == 2)) 0.895 0.605 1.32

Based on n = 777 subjects contributing 2231 observation times

Initial log-likelihood: -4655.98

Log-likelihood after 46 iterations: -4545.54

(S, T) 1(S < T) Neither

Observation rate 0.329 0.29 0.381

Estimation from right-censored data via survival’s coxph function

Formula:

Surv(start, stop, status) ~ cluster(id) + strata(from, to) +

I(z * (to == 1)) + I(z * (from %in% 0 & to == 2)) + I(z *
(from %in% c(NA, 1) & to == 2))

coef se(coef) z

I(z * (to == 1)) -0.133455 0.148 -0.90090

I(z * (from %in% 0 & to == 2)) 0.156815 0.283 0.55368

I(z * (from %in% c(NA, 1) & to == 2)) -0.000385 0.146 -0.00264

p exp(coef) 2.5% 97.5%

I(z * (to == 1)) 0.37 0.875 0.655 1.17

I(z * (from %in% 0 & to == 2)) 0.58 1.170 0.671 2.04

I(z * (from %in% c(NA, 1) & to == 2)) 1.00 1.000 0.751 1.33

Based on 1935 observation times (296 deleted due to missingness)

To examine estimates achieved with starting values different from the ones de-
scribed in Algorithm 3.9, the dcprog function can accept alternative initial parameter
values via the input argument init. Initial values can also be obtained from the
spmle under singly right-censored data using the option setting rcinit = TRUE.
With the latter approach the difference in the resulting sieve estimates is of the order
10−7.

> fit.rcinit <- dcprog(Surv(start, stop, status) ~ cluster(id)

+ trans(from, to) + I(z * (to==1))

+ I(z * (from %in% 0 & to==2))
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+ I(z * (from %in% c(NA,1) & to==2)), data = p10,

rcinit = TRUE, sieve.const = 1, sieve.rate = 2/5,

eps = 1e-9, coef.typ = 1/2, coef.max = 2)

> max(abs(fit.rcinit$coef - fit$coef))

[1] 3.344081e-07

> max(abs(fit.rcinit$bhaz - fit$bhaz))

[1] 1.584767e-07

Estimates for the cumulative baseline intensity functions are fully depicted in Fig-
ure 3.6. The spmle ignoring any terminal event following C gives smaller estimates
for both Λ02 and Λ12 than the smle. Although both estimators are asymptotically
consistent we should expect to see differences between the two in finite samples,
particularly under high rates of doubly right-censored data.

Λ̂01(t)

Months since randomization

0 30

0

1.6
Λ̂02(t) Λ̂12(t)

figure 3.6
The spmle

based on data
right-censored at
C (−) and smle

(−) for the
cumulative

baseline
transition
intensity
functions.

Interpretation of the results here is limited by the fact that the primary endpoint
considered only the first 13 months of follow-up, so attrition later in the follow-up
period may be related to the transition times. Another consideration is the validity
of two assumptions: proportional hazards and the Markov property. With the avail-
ability of singly right-censored data, these properties can be examined by existing
methods. The survival function cox.zph implements Grambsch and Therneau’s
(1994) test of the proportional hazards assumption based on the correlation between
the event times, under some specified transformation, and the scaled Schoenfeld
residuals. The test with log-transformed times

> cox.zph(fit$rcfit[[1]],transform=’log’)
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3.6 application

rho chisq p

I(z * (to == 1)) 0.0413 0.781 0.377

I(z * (from %in% 0 & to == 2)) -0.0409 0.745 0.388

I(z * (from %in% c(NA, 1) & to == 2)) 0.0163 0.115 0.734

GLOBAL NA 1.598 0.660

indicates that the correlation is not significantly different from zero. The same test
under alternative transformations gives similar results. Following Andersen et al.
(2000), onemethod of assessing departures fromMarkovity is to include the duration
in the intermediate state 1 as a time-dependent covariate. This can be achieved by
calculating the total duration in a new variable wait and refitting the spmle with
total duration as a time-transformed term tt(wait).

> p10$wait <- with(p10, (from == 1) * (stop - start))

> coxph(Surv(start, stop, status) ~ cluster(id)

+ strata(from, to) + tt(wait)

+ I(z * (to==1)) + I(z * (from == 0 & to==2))

+ I(z * (from == 1 & to==2)), data = p10)

Call:

coxph(formula = Surv(start, stop, status) ~ cluster(id) + strata(from,

to) + tt(wait) + I(z * (to == 1)) + I(z * (from == 0 & to ==

2)) + I(z * (from == 1 & to == 2)), data = p10)

coef exp(coef) se(coef) robust se

tt(wait) -0.79645 0.451 0.111 0.448

I(z * (to == 1)) -0.13346 0.875 0.148 0.148

I(z * (from == 0 & to == 2)) 0.15681 1.170 0.285 0.283

I(z * (from == 1 & to == 2)) -0.00205 0.998 0.150 0.157

z p

tt(wait) -1.779 0.075

I(z * (to == 1)) -0.901 0.370

I(z * (from == 0 & to == 2)) 0.554 0.580

I(z * (from == 1 & to == 2)) -0.013 0.990

Likelihood ratio test=147 on 4 df, p=0 n= 1935, number of events= 451

(296 observations deleted due to missingness)

From the output it is apparent the influence of duration on mortality is large, with an
increased risk of death soon after the first bone intervention. The statistical signifi-
cance of this effect is weak, with a p-value of 7.5%, but we should not be confident that
Markov assumption is met. Since the observed data likelihood (3.6) is constructed
on the basis of Theorem 1.4, the smle may not be robust to departures from theMar-
kov property. In cases where this condition cannot be reasonably justified, duration-
dependent models based on the right-censored data at C offer a practical alternative.
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chapter 4

interval-censored data from an
illness-death process

Use of the illness-death model in dealing with both interval-censored progression
times and right-censored terminal events was first proposed by Frydman (1995).
Progression status was assumed known, a requirement that can imposed on the
available data by carrying the last-observed progression status forward to death or
right-censoring. This form of imputation generally known as “last observation car-
ried forward” (locf) is of course prone to misclassification when the last negative
inspection occurs long before the end of follow-up. Such a scenario is addressed in
later works. Joly et al. (2002) construct spline-based penalized maximum likelihood
estimators for Markov cumulative transition intensity functions in the general case
where progression status remains unknown unless it is confirmed by a positive in-
spection (Example 1.30). Frydman and Szarek (2009) estimate the subdistribution
functions F01 and F02 and the cumulative intensity Λ12 (Figure 4.1) also under Exam-
ple 1.30, but allow for the possibility that negative progression status can sometimes
be confirmed at right-censoring or death.

0Entry 1 Progression

2
Death

F01(t) = ∫ t
0 P00(0, u−)dΛ01(u)

F02(t) = ∫ t
0 P00(0, u−)dΛ02(u) Λ12(t)

figure 4.1
Subdistribution
functions in the

Markov
illness-death

model.

This final chapter examines estimation of a Cox-type Markov model under a
variant of Frydman and Szarek’s (2009) scheme that assumes negative progression
status is confirmed at terminal events for some positive proportion of the sample. Es-
timates in the case with constant transition intensities and time-dependent covariates
are easily obtained from Kalbfleisch and Lawless’s (1985) Fisher scoring algorithm,
implemented by msm package for r (Jackson 2011). Here the results of Chapter 3 are
extended to obtain a flexible piecewise exponential sieve estimator.
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4.1 model and observation scheme

4.1 model and observation scheme

Considering the same semiparametric model from Chapter 3, assume that each com-
ponent in the Markov illness-death process N = (N01,N02,N12) has intensity process
Yhαh j with

αh j(t ∣ Z) = λh j(t) exp(Z⊺h jθ), (4.1)

where Zh j is a type-specific d-vector based on the fixed covariate Z, θ is a d-variate
regression parameter and Λh j = ∫ λh j is a nondecreasing baseline intensity func-
tion.Improvement in bias

Let Th j = inf{t ∶ Nh j(t) = 1} denote the h → j transition time. Suppose that
the time of death T = T02 ∧ T12 is observed exactly whenever it precedes the right-
censoring time C, 0 < σ ≤ C ≤ τ, but the progression status 1(S < T), S = T01 ∧ T02,
is detected by the inspection times YK = (YK ,1, . . . ,YK ,K) where

YK ,0 ≡ 0 < σ < YK ,1 < ⋯ < YK ,K < ∞ ≡ YK ,K+1
and 1 ≤ K < ∞. A complete set of inspections at YK gives ∆K = (∆K ,1, . . . , ∆K ,K)

with ∆K , j = 1(YK , j ,YK , j+1](S). Any inspections following V = T ∧ C are presumed
unavailable, though additional information about S may be assessed at V . Denote
this by (∆, ∆1, ∆2), where ∆2 = 1(T ≤ C), ∆1 = 1(S < V) if ∆ = 1 and ∆1 = 0 when
∆ = 0. Under this observation scheme the progression status 1(S < T) is known from

0

σ
[

Y4,1
∆4,1 = 0

T01 T12

V
∆2 = 1

C

Y4,2
∆4,2 = 0

(
Y4,3

∆4,3 = 1
]

Y4,4
∆4,4 = 1

]
τ

0

σ
[

Y3,1
∆3,1 = 0

Y3,2
∆3,2 = 0

C

V
∆ = 1, ∆1 = 0, ∆2 = 0

T01

Y3,3
∆3,3 = 1

]
τ

0

σ
[

Y2,1
∆2,1 = 0

T02

V
∆ = ∆1 = 0, ∆2 = 1

C

Y2,2
∆2,2 = 0

]
τ

figure 4.2
Under
intermittent
inspection of an
illness-death
process, the
progression
status 1(S < T)
may be known
(top, middle) or
unavailable
(bottom) from
the observed
data.

the observation X provided that either a positive inspection precedes V or the status
is assessed, ∆ = 1, atV (Figure 4.2). Otherwise the progression status is unknown over
the time interval from the last negative inspection preceding V up to V (Figure 4.2,
bottom).
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interval-censored data from an illness-death process

Let (YK(V),∆K(V)) be the observed part of (YK ,∆K), X = (K ,YK(V),∆K(V),
V , ∆, ∆1, ∆2, Z) and Y denote the triangular array of “potential” inspection times
{Yk, j ∶ j = 1, . . . , k, k = 1, 2, . . .}. Assume the following:

c1 Suppose that∆ = д(X , Γ)where д is a known function and Γ is a randomvariable
such that (T01, T02, T12) is conditionally independent of (K ,Y, Γ ,C) given Z.

Then under Theorem 1.4 and Λ absolutely continuous, the realization X = x = (k,
yk(υ), δk(υ), υ, δ, δ1, δ2, z) has density

pθ ,Λ(x)

=
k
∏
j=1 [P00(0, yk, j ∣ z)P01(yk, j, yk, j+1 ∧ υ ∣ z)P11(yk, j+1 ∧ υ, υ ∣ z)
× α12(υ ∣ z)δ2]

δk , j 1(0,υ)(yk , j+1)∨δδ1 1(yk , j ,yk , j+1](υ)

×
k
∏
j=1 [P00(0, yk, j ∣ z)P01(yk, j, yk, j+1 ∧ υ ∣ z)P11(yk, j+1 ∧ υ, υ ∣ z)α12(υ ∣ z)δ2

+ P00(0, υ ∣ z)α02(υ ∣ z)δ2]
(1−δ)(1−δk , j) 1(yk , j ,yk , j+1](υ)

× [P00(0, υ ∣ z)α02(υ ∣ z)δ2]δ(1−δ1), (4.2)

with respect to a dominating measure ν determined by the distribution of (K ,Y, Γ ,
C). The same notation from Section 3.1 is used here: Ahh = −∑ j≠h Ah j, Ah j = ∫ αh j,
Phh is defined by (3.2) and P01 by (3.3).

4.1 remark. The expression in (4.2) can be rewritten as a product of transition
probabilities accumulating over the subintervals in yk(υ). This is a valid likelihood
under a noninformative censoring mechanism similar to the one considered in Def-
inition 1.32. The stronger requirement in c1 simplifies the derivation of asymptotic
properties. It may be motivated by the setting in which progression status before V
is inspected according to a predetermined schedule, with the completion and exact
timing of assessments determined by some random process related to (S , T) only
via Z. Whether or not additional inspection occurs at V is essentially known from X
with any extra uncertainty following some mechanism that depends on (S , T) only
through (K ,Y,C , Z). For example, the form ∆ = (1− ∆2)ΓC + ∆2ΓT and Γ = (ΓC , ΓT)

allows for different rates of inspection depending on the terminal event status at V . ◽

4.2 sieve maximum likelihood estimation

Let Xi = (Ki ,Yi
K(Vi),∆i

K(Vi),Vi , ∆i , ∆i
1 , ∆i

2, Zi), i = 1, . . . , n, be n iid observations
of X from (θ0,Λ0), Λ0 = (Λ0

h j) for h ≠ j. As with the density in Chapter 3, Pn log pθ ,Λ
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4.2 sieve maximum likelihood estimation

maximizes to infinity. An empirical-type likelihood is equally problematic as the
increment in Λ02 and Λ12 cannot be jointly estimated at any Vi = Ti for which the pro-
gression status is unknown, max{∆i

K(Vi), ∆i} = 0. So unless the progression status is
observed at every terminal event, no unbiased non- or semiparametric maximimum
likelihood estimators exist. Under at least moderate levels of censoring one might
expect to underestimate Λ01 and Λ12. This seems apparent for Λ12 based on numerical
results reported by Frydman and Szarek (2009, Table 1) and Szarek (2008, p. 125).
Joly et al.’s (2002) smooth estimator may mitigate this problem, but their simula-
tion study is void of replication and thus inconclusive. Bias can be fully eliminated
by smoothing over the survival times with known progression status. For this task
a more restrictive observation scheme is imposed in order to adapt the piecewise
exponential sieve maximum likelihood estimator from Chapter 3.

c2 There exist 0 < σ < τ and 0 < M < ∞ such that 1/M < Λ0
h j(σ−) < Λ0

h j(τ) < M,
h ≠ j, and Λ0 is continuously differentiable on [σ , τ].

c3 Let nh2 denote the number of individuals in the sample with Th2 < ∞ observed
exactly, h = 0, 1. Also let n01 be the number for whom T01 < ∞ is left- or interval-
censored; that is, n01 = ∑i max{∆i

K(Vi), ∆i
1}. Then there exist qh j > 0 such that

nh j/n → qh j as n →∞.

c4 The interval (σ , τ) is a subset of the combined support of the inspection times.

4.2 definition. Under condition c3 consider the spmle based on the observed
data from the ∑h≠ j nh j individuals for whom the progression status is known. Let
I = {(L j, R j] ∶ j = 1, . . . , n01} denote the set of censoring intervals among the n01

individuals known to have progressed; that is,

I = {(L j, R j] ∶ j = 1, . . . , n01}

= {(Y i
K i , j,Y

i
K i , j+1 ∧ Vi] ∶ ∆i

K i , j 1(0,Vi)(YK i , j+1) ∨ ∆i∆i
1 1(YKi , j ,YKi , j+1](Vi) = 1}.

From a straight-forward adaptation of Definition 2.4 and Proposition 2.5 the h → j
component of this estimator increases on the set Uh j given by one of

U01 ⊆ {R j ∶ R j ∈ I},
U02 = {Vi ∶max{∆i

K(Vi)} = 0, ∆i = 1, ∆i
1 = 0, ∆i

2 = 1},
U12 = {Vi ∶max{∆i

K(Vi), ∆i
1} = 1.∆i

2 = 1},

where the superset for U01 can be further reduced to the right-endpoints of the
maximal intersections of I. ◽
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interval-censored data from an illness-death process

Let H = (Hh j), h ≠ j, denote the set of Λ = (Λh j) with each Λh j ∶ [0, τ] → [0,M]
cadlag and nondecreasing. Consider the following finite-dimensional approximation
to H.

4.3 definition. For each h → j, h ≠ j, let Th j,n be a set containing the Kh j,n =

O(nκ) points in (0, τ) from the partition

0 = t0 < t1 < ⋯ < tKh j ,n < tKh j ,n+1 = τ,

defined so that every subinterval [tk−1, tk) contains at least one element from Uh j

and maxk(tk − tk−1) = O(n−κ). For every Λh j ∈ Hh j let Λh j,n denote its piecewise
linear interpolant given by (3.5). ◽

4.4 remark. This partition essentially corresponds to the support of the spmle
based on the observations with known progression status, previously characterized
by Frydman (1995). A requisite of Definition 4.3 is that the inspection times become
dense (σ , τ) as n →∞, a condition implied by c4. ◽

From c3, Λ02 and Λ12 are jointly estimable by maximizing

log likn(θ ,Λ) =
n
∑
i=1 log pθ ,Λ(Xi)

=
k
∑
j=1[∆

i
k, j 1(0,Vi)(Y i

k, j+1) ∨ ∆i∆i
1 1(Y i

k , j ,Y
i
k , j+1](Vi)][A00(0,Y i

k, j ∣ Zi)

+ logP01(Y i
k, j,Y i

k, j+1 ∧ Vi ∣ Zi) − A12(Y i
k, j+1 ∧ Vi ,Vi ∣ Zi) + ∆i

2 log α12(Vi)]

+
k
∑
j=1(1 − ∆i)(1 − ∆i

k, j) 1(Y i
k , j ,Y

i
k , j+1](Vi)[A00(0,Y i

k, j ∣ Zi)

+ logP01(Y i
k, j,Y i

k, j+1 ∧ Vi ∣ Zi) − A12(Yk, j+1 ∧ Vi ,Vi ∣ Zi) + ∆i
2 log α12(Vi ∣ Zi)

+ A00(Vi ∣ Zi) + ∆i
2 log α02(Vi ∣ Zi)]

+ ∆i(1 − ∆i
1)[A00(Vi ∣ Zi) + ∆i

2 log α02(Vi ∣ Zi)]. (4.3)

over the sieve Hn = (Hh j,n), Hh j,n = {Λh j,n ∶ Λ ∈ Hh j}. Let Θ denote the set of
all possible θ. Then the piecewise exponential sieve maximum likelihood estimator
(smle) satisfies

log likn(θ̂n , Λ̂n) = max
θ∈Θ,Λ∈Hn

log likn(θ ,Λ). (4.4)

This optimization problem is well-defined and has finite dimension. As with Chap-
ter 3 its solution is characterized by the score equations, which can be solved by the
following variant of Algorithm 3.9.
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4.3 asymptotic properties

4.5 algorithm. Let nh j be the size of Uh j. For given Ch j > 0 and 0 < κ < 1,
define Th j,n as a partition of [0, τ) in which each subinterval contains ⌈nh j/(Ch jnκ)⌉

elements from Uh j. Set r ∶= 0, θ(0) = 0 and λ(0) = 1. Let η(r) be the candidate step
with components given by (3.12) and (3.13) and ϕ(r+1) be the result of the line search
(3.15). If

∥ϕ(r+1) − ϕ(r)∥∞ ≤ ε,
for small positive value ε, then stop. Otherwise put r ∶= r + 1. ◽

4.3 asymptotic properties

Under some regularity conditions the sieve maximum likelihood estimator (θ̂n , Λ̂n)

globally converges to the truth (θ0,Λ0) slower than the parametric rate n1/2, but θ̂n

is asymptotically efficient at (θ0,Λ0). These results are derived largely by adapting
the proofs from Sections 2.3 and 3.3.

Following Section 2.3.1, define for any A ∈ B[σ , τ] and B ∈ B(Rdz)

µy,z(A× B) = ∫B
∞
∑
k=1 P(K = k ∣ Z = z)

k
∑
j=1 P(Yk, j ∈ A ∣ Z = z)dFZ(z),

µ̃y,z(A× B) = ∫B
∞
∑
k=1 P(K = k ∣ Z = z)

1
k

k
∑
j=1 P(Yk, j ∈ A ∣ Z = z)dFZ(z),

µ1(A) = µy,z(A×Rdz) and µ2 be the Lebesgue measure on [σ , τ].

c5 θ0 lies in the interior of Θ and Θ is a compact subset of Rdz .

c6 The distribution for C has support contained in [σ , τ] such that P(C = τ ∣ Z) > 0,
almost surely.

c7 The distribution of Z has support Z = supp(FZ) on a bounded subset of Rdz .

c8 For each h ≠ j, P(Z⊺h ja ≠ c) > 0 for every a ∈ Rdz with a ≠ 0 and c ∈ R.

The same arguments used to derive Theorem 3.3 give the following result.

4.6 theorem. Under the above conditions ∥θ̂n − θ0∥ + ∥Λ̂n − Λ0∥µ,2
as
→ 0, where

∥Λ̂n − Λ0∥µ,2 = ∑
h≠ j ∫

τ

σ
(Λ̂h j,n − Λh j)

2(u)dµ j,

is the L2 distance between Λ̂n and Λ0 on supp(µ1) × (σ , τ)2.
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interval-censored data from an illness-death process

The rate at which the smle converges to the truth essentially follows by the
approach used to prove Theorem 3.5. Some adaptation is needed to allow for conver-
gence in the measure µ1 × µ2 × µ2. For this we defer to the proof of Lemma 2.11.

c9 For (Y , Z) ∼ µ1/µy,z([σ , τ] × Z) there exists 0 < ρ < 1 such that a⊺Var(Z01)a ≤
ρa⊺E(Z01Z⊺01)a, almost surely, for all a ∈ Rdz .

c10 For some r ≥ 1, the rth derivative of Λ0 continuous, positive and bounded on
[σ , τ].

4.7 theorem. ∥θ̂n − θ0∥ + ∥Λ̂n − Λ0∥2 = OP(max(n−(1−κ)/2, n−rκ)) under the condi-
tions above.

Asymptotic normality is derived by combining the proofs for Theorems 2.13
and 3.7 under the one-dimensional submodels y ↦ Λ01,y and y ↦ Λh2,y satisfying
д01 = ∂/∂y∣y=0Λ01 and ∂/∂y∣y=0 dΛh2,y = дh2Λh2, respectively.

c11 Λ0 has a second-order derivative that is uniformly bounded on [σ , τ].

c12 There is a constant y0 > 0 such that P(YK , j − YK , j−1 ≥ y0 ∶ j = 1, . . . ,K , Z) = 1,
almost surely.

c13 For k = 1, 2, . . ., j = 2, . . . , k, the conditional density functions fYk ,1 ∣Z , fYk , j ∣Z and
fYk , j−1 ,Yk , j ∣Z exist.Moreover the partial derivatives of the conditional expectations
EK∣Z(∑K

j=1 fYK , j ∣Z(u ∣ z)) and EK∣Z(∑K
j=2 fYK , j−1,YK , j ∣Z

(u, υ ∣ z)) with respect to u
and υ are uniformly bounded in z.

4.8 theorem. Let r be the order of the derivative of Λ0 satisfying condition c10. If
1/(4r) < κ < 1/2 then, under the above conditions, the maximum likelihood estimator
θ̂n is asymptotically efficient at (θ0,Λ0). In particular the sequence

√
n(θ̂n − θ0) is

asymptotically normal with mean zero and variance Σ = Ĩ−10 .

4.9 corollary. Let e1, . . . , edz be the unit vectors in Rdz and ρn be a symmetric
dz-matrix whose entries ρi j, i , j = 1, . . . , dz, satisfy (

√
nρi j)

−1 = OP(1). A consistent
estimator for each entry in Ĩ0 has the same form as (2.12).
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4.4 simulation study

4.4 simulation study

Numerical properties of the smle were investigated for variants of the censoring
scheme described in Remark 4.1. Each of these considered the transition intensity
model as the previous chapter, given by Equation (3.16). Transition times were right-
censored by C = τ = 2. Inspection times were generated in the same manner as
Section 2.5. Recall that this scheme considered k “scheduled” inspections. Here every
visit after the first was missed with probability p(Z) such that

logit p(Z) = β0 + β1Z .

The last observation time V = T ∧ C offered one further inspection of progression
status with a fixed probability of 0.2.

Three thousand Monte Carlo replicates with sample sizes n = 250, 500 and 1000
were generated under three scenarios:

◾ an independent inspection process with k = 8, β0 = log(1/9) and β1 = 0;
◾ an independent inspection process with k = 4, β0 = log(1/9) and β1 = 0; and
◾ a conditionally independent inspection process with k = 8, β0 = log(1/4) and
β1 = log(4/9).

Estimates for each sample were obtained using the same c routine devised for
Algorithm 3.9. Changes needed to address differences in the data format and sieve
construction were handled by an additional r front end. Tuning parameters were
set to the following values: Ch j = 1, κ = 1/3, ε = 10−7, typ θ = 1 and sup θ = 10. This
ensured convergence within a reasonable number of iterations over all scenarios
and sample sizes. Under the first scenario estimates were re-evaluated using the
alternative sieve sizes κ = 4/15 and κ = 2/5. In addition to the smle, the same
or roughly equivalent Cox models were fit to right-censored variants of the data
(Example 1.6) via Therneau’s (2012) coxph routine from the survival package for r.
Estimates were based on four different right-censored data sets:

◾ underlying or “latent” transition times right-censored only by C = τ,
◾ left- and interval-censored progression times imputed to the midpoint of the cen-

soring interval with last negative inspections carried forward (midpoint-imputed),
◾ time to the first positive inspection or death (pfs), and
◾ a variant of pfs obtained by right-censoring times at the (negative) inspection
preceding two missed visits (pfs fda).
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interval-censored data from an illness-death process

The last form of imputed data directly follows the fda guideline presumably devised
to mitigate bias in the analysis of progression-free survival times (fda 2007, Table
a, 2011, Table x).

Rate of known progression status at V

k eβ0 eβ1 Overall S > C S < V = T ∧ C S = T = V < C
8 1/9 1 0.498 0.199 0.789 0.201
4 1/9 1 0.431 0.199 0.656 0.201
8 1/4 4/9 0.493 0.199 0.780 0.201

table 4.1
Average

censoring rates
over 3000

replicates with
n = 1000.

Under the fixed transition intensity model parameters, roughly 50% of subjects
in the sample progressed (S < T), 12% were event-free (S > τ), and 16% survived
to study closure (T > τ). The overall observation rate of progression status ranged
from 43% to 50% (Table 4.1). This rate was held fixed at 20% among progression-free
subjects. The status was known more often among subjects who progressed. Under
k = 8 the ratewas close to 80%.With fewer potential inspections, k = 4, this decreased
to 66%.

The simulation results for the smle θ̂n summarized by Table 4.2 are compatible
with the asymptotic properties in Section 4.3. Bias generally becomes negligible with
larger sample size. Monte Carlo sample standard deviations for θ̂n also decrease with
larger n and are reasonably approximated by the standard error estimates. Empirical
coverage probabilities of the 95% confidence intervals are close to the nominal level.
The spmle based on midpoint-imputed progression times and pfs had, on average,
larger finite-sample bias. Bias in both of these estimators generally did not diminish
with increasing sample size. The omission of inspections following two missed visits
offered a small reduction in the bias of pfs under the independent censoring schemes,
but under conditionally independent censoring this strategy achieved average biases
60 to 80% larger than pfs (Table 4.3).

Table 4.4 suggests that the asymptotically-optimal sieve rate n1/3 performs reason-
ably well in finite samples compared to smaller (n4/15) and larger (n2/5) alternatives.
Under the independent censoring scenario with frequent inspections (k = 9, eβ =
(1/9, 1)), the average bias for the smle with a sieve growing at the rate n4/15 was
up to three and a half times larger than the bias achieved by an n1/3-sieve estimator.
Smaller average bias was achieved by increasing the rate from n1/3 to n2/5, but this
was not entirely the case for coefficients specific to the terminal event times. Since
the standard deviation ratios averaged close to 1, any reduction in bias came at little
to no loss in precision. Instances of negative relative bias were encountered in the
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k, smle Midpoint-imputed spmle pfs

eβ1 n θ1 θ2 θ3 θ1 θ2 θ3 θ

8, 250 Bias -0.0075 -0.0060 0.0078 0.0133 -0.0081 -0.0387 0.0058
1 sd 0.2130 0.2525 0.2131 0.2090 0.1934 0.2059 0.1434

ase 0.2069 0.2489 0.2077 0.2059 0.1893 0.1977 0.1398
cp 0.9477 0.9527 0.9410 0.9480 0.9493 0.9367 0.9440

500 Bias -0.0028 0.0065 -0.0030 0.0162 0.0010 -0.0463 0.0114
sd 0.1474 0.1748 0.1456 0.1455 0.1344 0.1382 0.0984
ase 0.1459 0.1722 0.1460 0.1453 0.1336 0.1396 0.0985
cp 0.9487 0.9450 0.9507 0.9447 0.9483 0.9417 0.9527

1000 Bias -0.0036 -0.0003 0.0004 0.0119 -0.0035 -0.0441 0.0062
sd 0.1029 0.1211 0.1037 0.1016 0.0951 0.0991 0.0699
ase 0.1031 0.1205 0.1032 0.1027 0.0944 0.0986 0.0696
cp 0.9483 0.9477 0.9483 0.9460 0.9487 0.9287 0.9533

4, 250 Bias -0.0089 -0.0045 0.0063 0.0357 -0.0052 -0.0602 0.0171
1 sd 0.2323 0.2785 0.2283 0.2257 0.1831 0.2215 0.1434

ase 0.2267 0.2724 0.2209 0.2257 0.1777 0.2134 0.1401
cp 0.9500 0.9503 0.9430 0.9527 0.9453 0.9357 0.9450

500 Bias -0.0027 0.0062 -0.0028 0.0414 0.0016 -0.0653 0.0223
sd 0.1639 0.1927 0.1572 0.1599 0.1265 0.1520 0.0980
ase 0.1598 0.1867 0.1552 0.1591 0.1255 0.1504 0.0988
cp 0.9487 0.9410 0.9430 0.9427 0.9490 0.9323 0.9490

1000 Bias -0.0061 0.0013 0.0000 0.0362 -0.0024 -0.0637 0.0173
sd 0.1146 0.1314 0.1119 0.1119 0.0883 0.1081 0.0703
ase 0.1128 0.1300 0.1095 0.1124 0.0887 0.1060 0.0698
cp 0.9500 0.9503 0.9417 0.9410 0.9507 0.9073 0.9467

8, 250 Bias -0.0075 -0.0054 0.0076 0.0431 -0.0229 -0.0280 0.0154
4/9 sd 0.2145 0.2543 0.2136 0.2104 0.1929 0.2066 0.1431

ase 0.2084 0.2509 0.2084 0.2068 0.1885 0.1982 0.1397
cp 0.9483 0.9530 0.9433 0.9383 0.9463 0.9383 0.9437

500 Bias -0.0033 0.0071 -0.0031 0.0451 -0.0135 -0.0357 0.0208
sd 0.1484 0.1757 0.1466 0.1460 0.1339 0.1390 0.0982
ase 0.1468 0.1733 0.1465 0.1459 0.1330 0.1399 0.0985
cp 0.9497 0.9493 0.9510 0.9370 0.9463 0.9443 0.9457

1000 Bias -0.0035 -0.0006 0.0007 0.0414 -0.0183 -0.0332 0.0157
sd 0.1035 0.1217 0.1037 0.1021 0.0946 0.0992 0.0698
ase 0.1037 0.1212 0.1034 0.1031 0.0940 0.0988 0.0696
cp 0.9507 0.9503 0.9500 0.9310 0.9417 0.9387 0.9487

table 4.2
Bias, standard
deviation (sd),
average standard
error estimate
(ase) and
empirical
coverage
probabilities of
95% confidence
intervals (cp) for
the smle of θ
over 3000
replicates.
Results for the
spmle based on
midpoint-
imputed
progression
times and pfs
are provided for
comparison.
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interval-censored data from an illness-death process

pfs fda θ Latent spmle

k = 8 k = 4 k = 8
n eβ1 = 1 eβ1 = 1 eβ1 = 4/9 θ1 θ2 θ3

250 Bias 0.0045 0.0168 0.0276 0.0009 -0.0067 0.0021
sd 0.1441 0.1435 0.1447 0.1871 0.2170 0.1963
ase 0.1404 0.1402 0.1411 0.1831 0.2119 0.1886
cp 0.9423 0.9453 0.9410 0.9487 0.9463 0.9363

500 Bias 0.0101 0.0221 0.0333 0.0036 0.0035 -0.0039
sd 0.0989 0.0980 0.0991 0.1293 0.1505 0.1319
ase 0.0990 0.0988 0.0995 0.1293 0.1494 0.1335
cp 0.9527 0.9493 0.9370 0.9510 0.9493 0.9540

1000 Bias 0.0049 0.0171 0.0282 -0.0008 -0.0018 -0.0010
sd 0.0702 0.0704 0.0705 0.0909 0.1068 0.0951
ase 0.0699 0.0698 0.0703 0.0914 0.1056 0.0944
cp 0.9523 0.9480 0.9303 0.9550 0.9453 0.9460

table 4.3
Simulation
results for

estimators of θ
based on the

fda-
recommended
variant of pfs
and the latent
data over 3000

replicates.

largest sample size, implying that the size of the sieve can affect the average direction
of the bias. However from Table 4.2 magnitudes of the associated average biases were
no greater than 0.0004.

κ = 4/15 κ = 2/5
n θ1 θ2 θ3 θ1 θ2 θ3

250 Relative bias 1.816 0.768 1.227 0.656 1.110 0.916
Relative precision 1.001 0.997 0.986 1.003 1.004 1.008

500 Relative bias 2.485 1.175 0.542 0.596 1.059 1.166
Relative precision 0.998 0.998 0.992 1.004 1.002 1.007

1000 Relative bias 1.706 -1.303 3.640 0.833 0.569 -0.839
Relative precision 1.000 1.002 0.996 1.004 1.000 1.005

table 4.4
Ratio of bias
(relative bias)

and sd (relative
precision) for θ̂n

between the
specified κ and
κ = 1/3, based

on 3000
replicates under

k = 8 and
eβ = (1/9, 1).

Under the independent censoring scenarios with k = 4 and k = 8, pointwise
means and percentiles for smle of the cumulative baseline intensity functions are
depicted in Figure 4.3. Pointwise estimates for Λ02 appear unbiased. Late in the obser-
vation the smle for Λ01 tends to provide overestimates. The same is true in estimating
Λ12, but bias appears early in the observation period the smle. Both forms of bias
diminish over larger sample sizes and more frequent inspections. Variability in each
component of Λ̂n is low and also decreases as n increases. Similar features arise in
Λ̂n under the smallest κ = 4/15 and the largest κ = 2/5 sieve sizes (Figure 4.4). Small
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0

1.5
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figure 4.3
True values for
Λ (−) depicted
with pointwise
lower and upper
2.5th percentiles
and pointwise
means for the
spmle of Λ with
κ = 1/3 based on
3000 replicates
under
eβ = (1/9, 1)
and k = 8 (top)
and k = 4
(bottom).

97



interval-censored data from an illness-death process
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figure 4.4
True values for
Λ (−) depicted
with pointwise

lower and upper
2.5th percentiles
and pointwise
means for the

spmle of Λ with
κ = 4/15 (top)
and κ = 2/5

(bottom) based
on 3000

replicates under
k = 8 and

eβ = (1/9, 1).
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4.5 application

improvements in pointwise bias are achieved with a larger sieve, with no obvious
increase in variability.

From Table 4.5, it is apparent that larger sieves need much more time to conver-
gence in terms of both the number of iterations carried out by Algorithm 4.5 and
the computing time for both parameter and variance estimation. Algorithm 4.5 does
not appear to scale particularly well in sieve and sample size, with the cpu ranging
between a fraction of a second up to just over 2 minutes. Longer processing times
are also needed when inspections are infrequent.

k = 8 k = 4
κ = 4/15 κ = 1/3 κ = 2/5 κ = 1/3

n cpu Iterations cpu Iterations cpu Iterations cpu Iterations

250 0.23 48 0.78 154 4.57 793 3.33 666
500 0.62 58 4.48 388 25.85 1675 17.98 1390
1000 1.60 69 22.76 803 129.54 3311 82.08 2576

table 4.5
Average time to
convergence for
Algorithm 4.5.
The cpu time,
given in seconds,
covers variance
estimation.

4.5 application

In this section we return to the bone lesion data examined in Chapter 2. Both time
to the first new lesion and death are considered via the Markov illness-death model,
so all 380 subjects in the sample are included in the analysis. The observed data are
not entirely compatible with the required assumptions of the smle, since the pro-
gression status is not available at right-censoring or terminal events. As convenient
workaround, a narrow form of locf was applied to the last negative inspection
within six weeks of right-censoring or death.

A new r function, called icprog, was constructed to repurpose the c routine
described in Section 3.5. The observations depicted in Figure 2.5 are represented in
the following r data frame.

id start stop from to status mid.start mid.stop mid.status

1 1 90 180 0 1 3 0 135 1

2 1 Inf NA 0 2 0 0 135 0

3 1 870 NA 1 2 0 135 870 0

4 2 180 360 0 1 3 0 270 0

5 2 360 NA 0 2 1 0 270 1

6 2 360 NA 1 2 1 NA NA NA

7 3 330 630 0 1 3 0 480 0

8 3 630 NA 0 2 1 0 480 1

9 3 630 NA 1 2 1 NA NA NA
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interval-censored data from an illness-death process

10 4 0 60 0 1 3 0 30 1

11 4 Inf NA 0 2 0 0 30 0

12 4 480 NA 1 2 1 30 480 1

13 5 0 60 0 1 3 0 30 1

14 5 Inf NA 0 2 0 0 30 0

15 5 870 NA 1 2 0 30 870 0

16 6 Inf NA 0 1 0 60 60 0

17 6 60 NA 0 2 1 60 60 1

pfs.time pfs.event trt trt01 trt02 trt12

1 180 1 0 0 0 0

2 NA NA 0 0 0 0

3 NA NA 0 0 0 0

4 360 1 0 0 0 0

5 NA NA 0 0 0 0

6 NA NA 0 0 0 0

7 630 1 0 0 0 0

8 NA NA 0 0 0 0

9 NA NA 0 0 0 0

10 60 1 1 1 0 0

11 NA NA 1 0 1 0

12 NA NA 1 0 0 1

13 60 1 1 1 0 0

14 NA NA 1 0 1 0

15 NA NA 1 0 0 1

16 60 1 1 1 0 0

17 NA NA 1 0 1 0

The transition types are indicated in the variables from and to. For the 0 → 1 type,
the variables start and stop specify the potential censoring interval for the progres-
sion time in days. The event status for these cases are given the survival interval-
censoring value of 3. If the progression status is observed to be negative, stop is set to
themissing value NA and start to the infinite value Inf.When the progression status
is known to be positive, the 0→ 2 type is similarly coded. Otherwise 0→ 2 times are
recorded in start, stop is set to NA, and status indicates the occurrence of events.
The remaining 1→ 2 type is similarly represented, but is necessary only for subjects
whose 0 → 1 status is 3. Midpoint-imputed progression times with last negative
status carried forward are given by the additional columns mid.start, mid.stop
and mid.status, with values corresponding to the extra 1→ 2 types needed by the
observed data set to missing (NA). This format follows the usual counting process
representation of multistate data (e.g. Therneau and Grambsch 2000, Section 8.6).
Data corresponding to pfs are provided in the standard time-to-event format with
the variables pfs.time and pfs.event. The values can be recorded in one of the
mandatory 0→ 1 or 0→ 2 types, with the remaining types set to missing (NA).

> fit <- icprog(Surv(start, stop, status, type="interval") ~ cluster(id)
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+ trans(from, to) + I(trt * (to==1))

+ I(trt * (from==0 & to==2)) + I(trt * (from==1)),

data = p19.state, sieve.const = 1, sieve.rate = 1/3,

eps = 1e-9, coef.typ = 1/2, coef.max = 2,

rcprog = list(Surv(mid.start, mid.stop, mid.status) ~ .,

Surv(pfs.time, pfs.event) ~ trt))

These variables are collected into an interval-type Surv object to give the model re-
sponse. The remaining model terms follow the same format described in Section 3.6.
Models to be fit using coxph are specified using the optional list argument rcprog.
The code fragment above fits two additional models based on midpoint-imputed
progression times and pfs, with the former having the same predictor terms already
provided in the first argument to icprog. The icprog function returns an icprog-
type object. Its print routine reproduces the function call, summarizes regression
coefficients, reports the initial and final log-likelihood values and gives the rates at
which the terminal event T and progression status 1(S < T) were observed in the
sample.

From the output below the log-likelihood Equation (4.3) at the initial parameter
value is −2532. After 1075 iterations this increases to −2479. Both the terminal event
T and the progression status 1(S < T) were observed for 28% of the 380 individuals
in the sample. Only the progression status was observed in 13%. In the remaining
59% the terminal event was right-censored and the progression status was unknown.
The 0 → 1, 0 → 2 and 1 → 2 type-specific regression coefficients θ̂n measuring the
increase in the risk of transition associated with receiving pamidronate are −0.3905,
−0.0388 and −0.0461, respectively. Only the 0 → 1 effect is significant, with a p-
value for the two-sided test θ1 = 0 of 3.4%. It is estimated that an individual treated
with pamidronate has 0.677 times the rate of new lesion (95% confidence interval
0.472 − 0.971) versus another patient receiving placebo. This result is in general
agreement with the analysis of ttp presented in Section 2.6.

> fit

Call:

icprog(formula = Surv(start, stop, status, type = "interval") ~

cluster(id) + trans(from, to) + I(trt * (to == 1)) + I(trt *
(from == 0 & to == 2)) + I(trt * (from == 1)), data = p19.state,

rcprog = list(Surv(mid.start, mid.stop, mid.status) ~ .,

Surv(pfs.time, pfs.event) ~ trt),

... = list(sieve.const = 1, sieve.rate = 1/3, eps = 1e-09,

coef.typ = 1/2, coef.max = 2))

coef se(coef) z p

I(trt * (to == 1)) -0.3905 0.184 -2.120 0.034
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I(trt * (from == 0 & to == 2)) -0.0388 0.209 -0.185 0.850

I(trt * (from == 1)) -0.0461 0.198 -0.233 0.820

exp(coef) 2.5% 97.5%

I(trt * (to == 1)) 0.677 0.472 0.971

I(trt * (from == 0 & to == 2)) 0.962 0.638 1.450

I(trt * (from == 1)) 0.955 0.648 1.410

Based on n = 380 subjects contributing 1117 observation times

Initial log-likelihood: -2532.27

Log-likelihood after 1075 iterations: -2478.7

T and 1(S < T) Only 1(S < T) Neither

Observation rate 0.284 0.126 0.589

Estimation from imputed data via survival’s coxph function

Formula:

Surv(mid.start, mid.stop, mid.status) ~ cluster(id) + strata(from,

to) + I(trt * (to == 1)) + I(trt * (from == 0 & to == 2)) +

I(trt * (from == 1))

coef se(coef) z p exp(coef)

I(trt * (to == 1)) -0.2251 0.174 -1.292 0.20 0.798

I(trt * (from == 0 & to == 2)) -0.1145 0.141 -0.812 0.42 0.892

I(trt * (from == 1)) -0.0315 0.207 -0.152 0.88 0.969

2.5% 97.5%

I(trt * (to == 1)) 0.567 1.12

I(trt * (from == 0 & to == 2)) 0.676 1.18

I(trt * (from == 1)) 0.646 1.45

Based on 893 observation times (224 deleted due to missingness)

Formula:

Surv(pfs.time, pfs.event) ~ trt

coef se(coef) z p exp(coef) 2.5% 97.5%

trt -0.148 0.11 -1.35 0.18 0.862 0.695 1.07

Based on 380 observation times (737 deleted due to missingness)

The print function also provides the same summary of regression coefficients ob-
tained from the coxph fit to the models specified by the rcprog argument. The esti-
mate for θ based on midpoint-imputed progression times are somewhat similar to
the smle. None of the differencesmeasured are significantly different from zero, with
p-values for the two-sided test θ j = 0 no smaller than 20%. Both estimators based
on the illness-death model suggest that pamidronate has no influence on mortality,
which makes analysis via pfs problematic. The hazard ratio for the earliest of time to
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new lesion and death associated with pamidronate is 0.862 (95% confidence interval
0.695 − 1.07). This is not significantly different from 1, with a p-value of 18%. The
output also provides the number of cases included by coxph.

The smle can be accessed directly from the icprog object list arguments coef
and bhaz. Estimates based on imputed data are similarly represented, but nested in
the icprog list argument rcfit.

> fit$coef

I(z * (to == 1))

-0.1728308

I(z * (from %in% 0 & to == 2))

0.1894571

I(z * (from %in% c(NA, 1) & to == 2))

-0.1009796

> fit$bhaz[1:3, ]

hazard time trans

1 0.00000000 0 from=0, to=1

2 0.05814021 31 from=0, to=1

3 0.08540514 57 from=0, to=1

> fit$rcfit[[1]]$coef

I(z * (to == 1))

-0.1334553657

I(z * (from %in% 0 & to == 2))

0.1568147185

I(z * (from %in% c(NA, 1) & to == 2))

-0.0003853867

> fit$rcfit[[1]]$bhaz[1:3, ]

hazard time trans

1 0.000000000 0.01 from=0, to=1

2 0.007047897 1.00 from=0, to=1

3 0.009880123 2.00 from=0, to=1

Alternative sieve sizes can be examined by fitting the same model with different
parameters. The listing below shows that similar estimates are achieved with Ch jnκ =

n4/15, but the treatment effect measured here is stronger. Since the reduction in sieve
size did not result in a large decrease in the likelihood, we may prefer a smaller sieve
for this data set.

> icprog(Surv(start, stop, status, type=’interval’) ~ cluster(id)

+ trans(from, to) + I(trt * (to==1))

+ I(trt * (from==0 & to==2)) + I(trt * (from==1)),

data = p10, sieve.const = 1, sieve.rate = 4/15,

eps = 1e-9, coef.typ = 1/2, coef.max = 2)

Call:

icprog(formula = Surv(start, stop, status, type = "interval") ~
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cluster(id) + trans(from, to) + I(trt * (to == 1)) + I(trt *
(from == 0 & to == 2)) + I(trt * (from == 1)), data = p19.state,

... = list(sieve.const = 1, sieve.rate = 4/15, eps = 1e-09,

coef.typ = 1/2, coef.max = 2))

coef se(coef) z p

I(trt * (to == 1)) -0.4339 0.183 -2.3667 0.018

I(trt * (from == 0 & to == 2)) 0.0100 0.212 0.0473 0.960

I(trt * (from == 1)) -0.0857 0.197 -0.4359 0.660

exp(coef) 2.5% 97.5%

I(trt * (to == 1)) 0.648 0.452 0.928

I(trt * (from == 0 & to == 2)) 1.010 0.666 1.530

I(trt * (from == 1)) 0.918 0.624 1.350

Based on n = 380 subjects contributing 1117 observation times

Initial log-likelihood: -2532.27

Log-likelihood after 80 iterations: -2481.53

T and 1(S < T) Only 1(S < T) Neither

Observation rate 0.284 0.126 0.589

To check results achieved with starting values different from the ones described
in Algorithm 4.5, the icprog function can accept alternative initial parameter values
via the input argument init. Initial values can also be obtained from estimates based
on imputed right-censored data using the option setting rcinit = TRUE. Under the
latter approach the difference in the resulting sieve estimates is of the order 10−6.

> fit.rcinit <- icprog(Surv(start, stop, status, type=’interval’)

~ cluster(id) + trans(from, to) + I(trt * (to==1))

+ I(trt * (from==0 & to==2))

+ I(trt * (from==1)), data = p19.state,

rcinit = TRUE, sieve.const = 1, sieve.rate = 1/3,

eps = 1e-9, coef.typ = 1/2, coef.max = 2

rcprog = list(Surv(mid.start, mid.stop, mid.status) ~ .))

> max(abs(fit.rcinit$coef - fit$coef))

[1] 2.37378e-07

> max(abs(fit.rcinit$bhaz - fit$bhaz))

[1] 2.587994e-06

Estimates for the baseline cumulative intensity functions are fully represented
in Figure 4.5. The spmle based on midpoint-imputed progression times with last
negative inspection carried forward gives smaller pointwise estimates for Λ01 and
Λ12, and larger estimates for Λ02 compared to the smle. This difference is probably
due to the fact that negative status was carried forward for almost 60% of the sample.
Restricting locf to within six weeks reduces the rate of imputation to less than
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figure 4.5
The spmle from
midpoint-
imputed data (−)
and the smle
(−) for the
cumulative
baseline
transition
intensity
functions.

seven percent. With very few known 0→ 2 transition times meeting the criteria for
restricted locf, the smle is nearly linear.

Even in this restricted form, locf imputation is subject to bias resulting from
misclassification of progression status, so this limits the interpretation of the analysis
based on the smle. Following Section 3.6 it would be useful to examine the propor-
tional hazards and Markov assumptions of this model, but existing methods do not
account for the presence of interval-censored data. We could consider the midpoint-
imputed data, but since the estimates under this imputation scheme are markedly
different the result of any inference tests would be difficult to extend to the smle.
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chapter 5

discussion

Chapter 2 of this thesis examined maximum likelihood estimation of the Cox-Aalen
hazard model (Figure 5.1) from mixed case interval-censored data with fixed covari-
ates. A simulation study showed that resulting estimator is preferable to imputation-
based alternatives, particularly under larger samples with infrequent inspections. The
new methods also mark the first extension of any Aalen model variant to interval-
censored data. The following two chapters constructed sieve maximum likelihood

Entry Progression Death

α(t ∣ w , z) = w⊺λ(t) exp(z⊺θ)figure 5.1
The Cox-Aalen

model
considered in

Chapter 2.

estimators for a Markov illness-death process having Cox-type transition intensities
(Figure 5.2) under two censoring schemes. The first considered “double” right cen-
soring arising when progression is right-censored earlier than survival. The second
examined interval-censored progression times. Both sieve estimators demonstrated

0Entry 1 Progression

2
Death

α01(t ∣ z) = λ01(t) exp(zT01θ)

α02(t ∣ z) = λ02(t) exp(zT02θ) α12(t ∣ z) = λ12(t) exp(zT12θ)

figure 5.2
The extended

Cox model
considered in

Chapters 3 and 4.

superior empirical properties compared to imputation-based alternatives encoun-
tered in practice. Together the new estimators pose a variety of open problems. These
include:

◾ criteria for the selection of tuning parameters,
◾ the limiting distribution for n1/3∣Λ̂n − Λ0∣(t),
◾ estimation of functionals such as the conditional survivor distribution,
◾ methods to assess goodness-of-fit, and
◾ extension to time-dependent covariates.
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discussion

The first issue largely refers to the sieve constant Ch j and growth rate κ for the es-
timators constructed in Chapters 3 and 4. From the relative precision reported in
Tables 3.4 and 4.4, Ch j should compensate for large discrepancies between nκ and
the number of exact h → j transition times available. Detailed simulation study may
prove useful in devising more concrete criteria for selecting the sieve size. Additional
tuning parameters arise in variance estimation via profile likelihood. Section 2.4.2
reduces the choice to specifying the typical and maximum values among the entries
of θ. This is motivated by numerical methods for evaluating derivatives, but some
empirical evidence endorsing such an approach would be valuable.

Estimating variance and functionals of the infinite-dimensional parameter Λ is a
persistent open problem encounteredwithmost semiparametric and sievemaximum
likelihood estimators from interval-censored data. The estimators proposed here are
no exception. Addressing this limitation will likely require an extension of the theory
described in Section 1.2.

New tools for model assessment are also needed. For the Cox-Aalen model con-
sidered in Chapter 2, Martinussen and Scheike (2006, pp. 255–58) offer inference
tests of time-invariance and proportionality for covariate effects. These are limited
to right-censored data. In practice there may be no obvious separation of covariates
into additive (W) and multiplicative (Z) components, so similar tests for interval-
censored data would be useful. An extension of Grambsch and Therneau’s (1994) test
for proportional hazards to interval-censored data would be relevant in checking the
functional form of the sieve estimator proposed in Chapter 4. In the application illus-
trated in Section 3.6, the Markov assumption under the illness-death model proved
too restrictive. Extension of both the sieve estimators to time-dependent covariates
would enable departures from the Markov property.

A few more limitations are found by considering the estimators individually. In
particular the computational demands of the semiparametric estimator devised in
Chapter 2 are prohibitive in practical settings. Adaptation of candidate support reduc-
tionmethods (e.g. Dümbgen et al. 2006; Y.Wang 2008)may offer some improvement
processing time.

Finite-sample efficiency gains achieved by the sieve estimator of Chapter 3 over
the simple alternative obtained by ignoring all events following the earlier censoring
time are modest. More detailed simulation study is needed to investigate settings in
which the proposed estimator may offer a clear advantage. Some informal experi-
mentation suggest that scenarios having moderate-to-high levels of censoring with
sufficient variation in the earlier right-censoring time deserve examination.
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discussion

The application presented in Section 4.5 employed a restricted variant of the
last observation carried forward approach to enforce the data requirements of the
proposed sieve estimator. Since all of the new methods are devised as better alter-
natives to imputation, this is less than ideal. The construction of unbiased support-
or sieve-finding methods would enable application of the estimator to more general
observation schemes similar to the one encountered in the application.

Aside from their practical shortcomings, the new estimators show potential for
some interesting extensions. These include the adaptation of the Cox-Aalen estimator
to panel count data via theWellner and Y. Zhang’s (2007) Poisson process framework.
Spline-based variants of the sieve estimators should easily follow from the results of
Y. Zhang et al. (2010). The Markov assumption imposed on the progressive illness-
death model greatly simplifies the construction of estimators, but is difficult to justify
in practice. A restricted form of duration dependence may be possible through an
extended Cox model and some variant of the observation schemes considered in
Chapters 3 and 4.
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