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Abstract

The need to quantify distance between two groups of objects is prevalent throughout
the signal processing world. The difference of group means computed using the Euclidean,
or `2 distance, is one of the predominant distance measures used to compare feature vectors
and groups of vectors, but many problems arise with it when high data dimensionality is
present. Maximum mean discrepancy (MMD) is a recent unsupervised kernel-based pattern
recognition method which may improve differentiation between two distinct populations
over many commonly used methods such as the difference of means, when paired with the
proper feature representations and kernels. MMD-based distance computation combines
many powerful concepts from the machine learning literature, such as data distribution-
leveraging similarity measures and kernel methods for machine learning.

Due to this heritage, we posit that dissimilarity-based classification and changepoint
detection using MMD can lead to enhanced separation between different populations. To
test this hypothesis, we conduct studies comparing MMD and the difference of means in
two subareas of image analysis and understanding: first, to detect scene changes in video in
an unsupervised manner, and secondly, in the biomedical imaging field, using clinical ultra-
sound to assess tumor response to treatment. We leverage effective computer vision data
descriptors, such as the bag-of-visual-words and sparse combinations of SIFT descriptors,
and choose from an assessment of several similarity kernels (e.g. Histogram Intersection,
Radial Basis Function) in order to engineer useful systems using MMD. Promising im-
provements over the difference of means, measured primarily using precision/recall for
scene change detection, and k-nearest neighbour classification accuracy for tumor response
assessment, are obtained in both applications.
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Chapter 1

Introduction

Dissimilarity measures between feature vectors, or groups of vectors, are embedded in an
overwhelming majority of machine learning algorithms such as classification, regression,
clustering and dimensionality reduction. It is therefore not difficult to see that due to their
ubiquity, even small improvements to dissimilarity measures may have a wide impact in
signal processing, image analysis and machine learning applications.

The Euclidean, or `2, distance measure has been traditionally used to compare both
low- and high-dimensional data vectors, but performs poorly compared to alternatives
when high data dimensionality is present. Divergence measures which compare probability
distributions, such as the Kullback-Leibler divergence, are often used in the place of the
Euclidean distance, but require expensive computations of integrals and empirical density
estimates.

Maximum mean discrepancy (MMD) [1] is a modern unsupervised kernel-based pat-
tern recognition method that, paired with the proper feature representations and kernels,
may improve differentiation between two distinct populations over many commonly used
methods such as the difference of means computed using the `2 distance. MMD-based dis-
crimination of data sources and distance computation combines several powerful concepts
from the machine learning literature: data distribution-leveraging similarity measures, and
kernel methods for machine learning.

Due to this heritage, we posit that dissimilarity-based classification and visual change-
point detection using MMD can lead to enhanced group discrimination and accuracy. This
is far from a foregone conclusion, however; recent works such as [2] have found that in a
comparative study of similarity measures for diffusion magnetic resonance imaging (MRI)
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analysis applications, the `2 distance, surprisingly, had superior noise robustness and sen-
sitivity to application-specific criteria compared to over 11 other distance measures and
similarity criteria.

To test our hypothesis, we research desirable properties for distance measures and con-
duct studies comparing MMD and the difference of means computed using the `2 distance
in two subareas of image analysis and understanding: detecting scene changes in video in an
unsupervised manner, and in biomedical imaging, assessing tumor response to treatment
using quantitative ultrasound. Suitable features, transformations, classifiers, and kernels
are selected in order to engineer a useful system.

One comment on the scope of the thesis is in order. We focus on image analysis, not
image processing; our applications have the aim of extracting higher-level patterns and
measurements, as opposed to outputting processed images for downstream consumption.
Accordingly, we restrict ourselves to dissimilarity measures that can compare two sets of
objects, and do not dwell on measures designed to compare just two objects, such as two
images.

We bring together concepts from statistics (changepoint detection, significance tests),
computer vision (colour descriptors, object descriptors), machine learning/data mining
(classifiers; kernel methods), and statistical signal processing (sparse linear combinations,
spectrum analysis methods) in this work.

1.1 Maximum Mean Discrepancy

The concept of maximum mean discrepancy is based on Müller’s definition of an integral
probability metric [3]. This metric was designed as a measure to compare the dissimilarity
of probability measures1 P,Q, and depends on finding a function f from amongst the space
of functions F that can maximize the distance

d(P,Q) := sup
f∈F

∣∣∣∣∫ fdP −
∫
fdQ

∣∣∣∣ (1.1)

Using the properties of a Reproducing Kernel Hilbert Space (RKHS), it is shown in
§3.2 that this concept may be represented as

MMD := ||µ[PP ]− µ[PQ]||H (1.2)

1A probability measure has unit area.
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Figure 1.1: Feature plots illustrating the increased separation achieved on actual cancer
treatment data. ‘Midband-IntHist’ and ‘Intercept-IntHist’ are terms specific to the dataset
detailed in §5.

where µ[PP ] denotes the mean of probability measure P , and similarly for Q. The
symbol || · ||H denotes that the norm is taken in the Hilbert space.

Thus, MMD is related to the unnormalized Fisher ratio, defined as the squared dif-
ference of group means, but MMD is computed in a higher-dimensional (possibly infinite-
dimensional) RKHS. The data is mapped from the original feature space to the RKHS using
a kernel k(xi, xj), a positive semidefinite function which can perform nonlinear transfor-
mations on the data, thereby potentially enhancing the accuracy of linear discriminants in
this alternate feature space.

This concept is illustrated in Figure 1.1. On the left, each data point represents the
data for a different mouse, used as a test subject. The graph plots the value of the `2
difference of means (DOM) between features computed on pre- and post-cancer treatment
ultrasound scans, µpost−µpre, taken in the original feature space. Each axis represents one
of the features, called ‘Midband’ and ‘Intercept’. Some of the subjects have been treated
with placebos, and we therefore expect very little distance between pre- and post-treatment
images. These groundtruth labels are indicated with asterisks and circles. On the right,
each point represents the MMD distance between the same two sets of imagery. Both
dissimilarity measures used the same underlying feature data. Drawing a potential linear
discriminant decision boundary (the dotted line) shows that fewer misclassifications may
be achieved with MMD in this scenario. Furthermore, it may be seen that a larger distance
between class geometric centers is present with MMD.

MMD can be computed efficiently in O(m2) time for m data samples, or instances, and
so compared to other dissimilarity measures for distributions such as Parzen estimation
or divergences, MMD is far more suited to real-time image analysis. In practice, a biased

3



version ˆMMD
2

b of MMD can be empirically estimated as

ˆMMD
2

b(X, Y ) =
1

m2

m∑
i,j=1

k(xi,xj)− 2k(xi,yj) + k(yi,yj) (1.3)

where the b subscript denotes ‘biased’.

Does applying this data transformation to the RKHS result in a measurable and sig-
nificant performance improvement on real-life pattern recognition problems, as opposed
to toy examples on simulated data? This is a key question of this dissertation. We will
elaborate further on RKHS, kernel methods, and MMD in the chapters to follow.

1.2 Application 1: Video Changepoint Detection

Our first application2 of MMD is to video changepoint detection, a scenario with a time
series of objects (image frames), i.e. a series of ordered objects, where we do not know
the group membership of an object. A vast literature has established that scene change
detection algorithms have broad application in video indexing, analytics, summarization,
and compression. We apply MMD and leverage several powerful data representations
from the supervised image classification world, such as bag-of-visual-words and sparse
combinations of SIFT descriptors, to locate scene change points in videos with promising
results.

We introduce a novel method for detecting scene changes in videos, with several de-
sirable properties — it is unsupervised, can work in an online or offline fashion, is not
sensitive to thresholds or the genre of the video, allows for decimation of framerates and
resolutions for high speed processing, and enables detection of different scenes, not just shot
boundaries. It is tolerant, in theory, to rotations, fast movement, and other non-semantic
changes.

Our system differs from others in two main ways. First, we adopt a more modern
and powerful feature descriptor, the visual bag of words [5] using densely sampled scale-
invariant feature transform (SIFT) keys [6] as the base words, which ensures robustness to
noise, rapid motion, rotations, colour shifts, and global brightness/contrast changes. This

2Copyright acknowledgement: This work is based on an accepted manuscript scheduled to appear in the
image analysis conference, ICIAR [4]. The final publication will be available at http://link.springer.

com.
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approach has been shown to perform strongly in still-image scene recognition applications
[7].

The second difference is in our use of the MMD. This kernelized distance measure allows
us to efficiently use very high dimensional feature descriptors, by enabling computation of
the MMD to occur in dissimilarity space and not using the original feature descriptors. The
MMD is computed over the frames of a video sequence in an overlapping sliding window
fashion, successively forming ‘current’ and ‘next’ groups of frames. A standard peak finding
routine is used on the MMD sequence to find local maxima, which are interpreted as scene
change points.

1.3 Application 2: Cancer Treatment Prognosis

The second application demonstrates MMD applied to unordered objects, where the size
and membership of each group is known a priori. We develop a computer assisted cancer
treatment prognosis system using quantitative ultrasound. Quantitative ultrasound (QUS)
methods provide a promising alternative framework to non-invasively, inexpensively and
quickly assess tumor response to cancer treatments using standard ultrasound equipment.
We review features, feature transformations and other statistical techniques presently used
in the QUS literature to differentiate between subjects responding vs non-responding to
treatment. Next, the concept of using the MMD distance measure as an indicator of
cell death level, and as a feature for classification is introduced. Three alternative, com-
monly used feature representation and distance schemes are implemented for comparison
purposes.

While all tested feature representation and distance combinations showed statistically
significant differences between pre- and post-treatment groups, significant improvements in
both correlation to histologically determined cell death ratios and classification accuracy
were observed using MMD and intensity histograms of QUS backscatter parameters in a
study of mice bearing human breast cancer xenograft tumours, treated with chemotherapy,
and imaged with QUS. Our system achieves classification accuracy of 84.7% when given
the target of predicting if cell death in a subject is greater than 20%.

1.4 Summary of Contributions

1. Using MMD as a feature. Previous works have applied MMD as a two-sample sta-
tistical test, cost function, or feature selection method. We propose using MMD as a

5



feature in a dissimilarity-based pattern recognition framework for classification. To
the best of our knowledge, this has not been previously reported in the literature.

2. Contribution to computer vision. We propose a scene change detection system with
two elements novel to the field: the visual bag of words [5] using densely sampled
scale-invariant feature transform (SIFT) keys, coupled with MMD as the similarity
measure. Our system is unsupervised, unlike many alternatives. To our knowledge,
only one previous work [8] has published results on time-series change detection using
MMD, but this was with univariate data, not the 2-D images used here.

3. Biomedical engineering contribution. We present a cancer treatment prognosis sys-
tem utilizing MMD and clinical ultrasound. It is able to give an early indication of
the fraction of cells undergoing apoptosis (cell death) within 24 h after treatment,
using the quantitative parametric maps obtained from coarse human-selected, ultra-
sound guided, region of interest (ROI) windows. It is one of the first works to apply
supervised classification techniques on quantitative ultrasound (QUS) data. We also
introduce the use of nonparametric density estimates of extracted spectrum features,
as a feature for QUS analysis.

1.5 Organization of the Thesis

The thesis attempts to follow a logical order in developing the foundations and alternatives
to MMD, the methods common to both proposed applications, followed by experimental
results arising from our application of MMD.

After some basic definitions in §2.1, we review dissimilarity measures suited for com-
paring sets of instances in image analysis, their desirable properties and evaluation criteria.
Next, in §2.2, we examine Reproducing Hilbert Kernel Spaces and kernel methods, which
form the theoretical framework underlying MMD, and review past applications of MMD.
Our main tools, dissimilarity-based pattern recognition, MMD, and nonparametric den-
sity estimation, are detailed in §3. We present the results of our work on video scene
change detection in §4, and our computer assisted cancer treatment prognosis system in
§5. Conclusions and future work are addressed in the final chapter, §6.
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Chapter 2

Background

Before introducing the formulation of maximum mean discrepancy, we first review dis-
similarity measures on distributions, kernel methods, and prior applications of MMD and
its links to other statistical tools. We defer the review of application-specific background
material, such as image descriptors and past approaches, to their respective sections in §4
and §5.

The motivating problem in this review can be stated thusly: given two sets of 2-D
image data, of size m1 images and m2 images, respectively, how can we we quantify the
distance between their underlying feature distributions?

We note that in image processing, many situations involve the possibility of matching
portions of one image to another, i.e. a registration is desired. However, this is not the
case in our motivating applications, either in the ultrasound parametric maps, which are
2-D maps of features derived from frequency spectra, nor in the scene change detection
scenario, in which we have to detect changes in the semantic ‘gist’ ([9], Ch. 14) or general
concept of each scene. In short, we do not have the expectation that one set of imagery
should have exact visual similarity to the other. Therefore, we do not further discuss
dissimilarity measures specialized for this case, such as the normalized cross correlation,
difference image entropy [10], and structural similarity index (SSIM, [11]).

2.1 Dissimilarity measures

(Dis)similarity measures are at the core of most pattern recognition, machine learning, data
mining, and information retrieval algorithms. They may be defined between individual

7



variables x,y, or between distributions Px,Py. We review the definitions of these terms,
comment on performance criteria for choosing dissimilarity measures, and compare the
significant measures used in the literature.

Definitions

A metric d, also known as a distance, is a function d : F × F → R that maps its two
operands, members of a set F , onto the real number space if and only if it meets these
conditions:

d(x,y) = 0 iff x = y; coincidence axiom (2.1)

d(x,y) ≥ 0 Non-negativity (2.2)

d(x,y) = d(y,x) Symmetry / reflectivity (2.3)

d(x, z) ≤ d(x,y) + d(y, z) Triangle inequality (2.4)

A dissimilarity measure satisfies the non-negativity and coincidence axioms above, but
may not be symmetrical ([12], Appendix A); distances are subsets of dissimilarities. If it
additionally satisfies the triangle inequality, then it may have a geometrical interpretation,
e.g. the underlying objects are embeddable in an Euclidean space, and the dissimilarity
measure is a metric. There is a useful relation between distance metrics and norms of
vector spaces. Given a norm, we can always define the following metric:

d(x,y) = ||x− y|| (2.5)

Conversely, ||x|| = d(x, 0) if the metric additionally satisfies translation invariance and
homogeneity properties, that is

d(x,y) = d(x + a,y + a) (2.6)

d(αx, αy) = |α|d(x,y) (2.7)

Similarity measures s : F × F → R obey the non-negativity axiom, but may not obey
symmetry and often do not obey the triangle inequality. While distances may possess
values in the interval [0,∞], similarities vary from [0, 1], as they cannot have a similarity
greater than one, and so have a natural probabilistic interpretation.

Using our definitions, similarities may be converted to distances using d = 1− s if they

also obey the conditions above; another possible transformation is s =
1

1 + d
. In other

words, there is no canonical transformation.
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2.1.1 Selection criteria for dissimilarity measures

A review of surveys and comparisons of dissimilarity measures for image processing appli-
cations ([2] for diffusion tensor magnetic resonance imaging (MRI) data, [10] for registering
computed tomography (CT) data, and [13] for image and texture retrieval) suggests that
while there is no single ‘best’ dissimilarity measure, we can define several properties of an
‘ideal’ measure:

It is metric. When the measure has the metric property, we may accurately compute
the geometric mean of a set of distances. This is essential for many dissimilarity-based
pattern recognition algorithms that depend on class centroids (§3.1).

Appropriate computational complexity. The timing deadlines of the task may not permit
the most complicated measures to be used. Does the dissimilarity measure involve paral-
lelizable operations; does it need explicit estimates of the probability distribution function,
logarithms, square roots, or exponents? Is the measure iterative or require solving opti-
mization problems? We may further divide complexity into online and offline components;
an example of the latter is precomputing sample averages or variances.

Selective invariance. Recognizing that certain tasks need to be sensitive to features
that other tasks regard as noise, this includes measures such as robustness to scaling, rota-
tions and other affine transforms, normalizing by intra-class variance, and ignoring ‘noisy’
dimensions. The relative positions of the histogram bins may be ignored, or exploited to
encourage correlations between bins. We can see that the ‘dissimilarity selection’ problem
is similar to the ‘feature selection’ problem.

For very high-dimensional descriptors, Aggarwal [14] argues that (dis)similarity can no
longer be viewed as a higher-dimensional extension of proximity in the Euclidean sense.
Instead of loss functions that penalize non-matching bins, he argues for functions that count
the number of statistically significant features that both have non-zero values. Statistically
significant features are defined as those which exceed a per-feature threshold. While his
work was developed in the context of text classification and information retrieval, we also
see these concepts in computer vision contexts, such as max pooling [15] and the histogram
intersection kernel (Eqn. 2.37).

Finally, the ideal measure has multivariate support and gives intuitive results for the
application at hand.

Next, we review the mainstream dissimilarity measures used in image analysis, in order
to look for similarities compared to MMD. We draw on the taxonomy and coverage of
Rubner [13] and Webb [12] in categorizing distance functions.
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2.1.2 Distance measures between individual objects/instances

The Euclidean, or `2 distance

The Minkowski family of distances are likely the most common distances in use across
science and engineering. Formally, the Minkowski distance of order p is defined as:

d(X, Y ) =

(
d∑
i=1

|xi − yi|p
)1/p

(2.8)

The case p = 1 is known as the Manhattan, or city-block distance; the p = 0 is the
pseudo-distance of counting the number of dimensions with differences, and the case p =∞,
also known as the Chebyshev distance, essentially compares only the largest-magnitude
dimension between X, Y . The case when p = 2 is the Euclidean, or `2 distance, which is
of special interest to us, as it is the most commonly used Minkowski metric, the natural
distance of Euclidean geometry, and the basis behind the most common loss function in
statistics, the mean squared error (MSE). Specifically, the squared Euclidean distance is
equal to the distance between a true value y and its estimate ŷ, by Pythagoras’ theorem.

Many drawbacks are known with the `2 distance and MSE [16, 17]; it weights all
dimensions equally and does not take into account the variance of particular dimensions.
One attempt to improve upon it is the Mahalanobis distance dM , a generalization of the
`2 distance, and a specialized case of the K-L divergence (§2.1.3, [18]). It utilizes the
covariance matrix Σ between dimensions to decorrelate and ‘whiten’ the input matrix.

dM(X, Y ) =
(
(x− y)TΣ−1(x− y)

)1/2
(2.9)

An object may not necessarily be described with a vector of numbers from a Euclidean
space. Its descriptor may be composed of heterogeneous variable types. Nominal vari-
ables, also known as categorical variables, are unordered, discrete items, such as {plane,
train, car}. Ordinal variables are also discrete, but they are ordered; the interval between
them may not be uniform; an example set is {kindergarten, high school, undergraduate}.
Entirely different similarity measures are employed for binary variables, such as the simple
matching coefficient (SMC) and Jaccard coefficient; they all depend on the construction of
a 2-D histogram-like contingency matrix.

Dissimilarity measures between individual objects are not the focus of this work, but
provide a useful context and contrast to the dissimilarity measures defined for distributions,
covered in the next section. We refer interested readers to [19] for more details and examples
of dissimilarity measures for non-numeric data.
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2.1.3 Distances between groups of objects

In our image analysis applications, we wish to work at a higher level of abstraction than
comparing individual instances, in order that we may utilize the spatial and temporal in-
formation contained in bags or sets of image-like structures. One compelling way to achieve
this is to compare the feature-space means of the two groups; another is to compare the
probability distribution functions (pdf) of the two sets. We organize the most commonly
used dissimilarity measures in Table 2.1, according to four categories: Fisher Criterion-style
distances, which measure the difference between means, measures used as test statistics,
information-theoretic divergence measures, and measures that take the proximity between
two histogram bins into account (which Rubner et al. call the ground distance [13]).

Fisher Criterion-style distances

The Fisher criterion, or Fisher ratio (Eqn. 2.11, where µx = 1
m

∑m
i=1 xi, and µy =

1
n

∑n
i=1 yi, is a popular measure that requires no probability estimation, relying on the

empirical means and variance only. The Euclidean distance is often used for the same
purpose (Eqn. 2.10), and may be seen as a non-normalized version of the Fisher criterion.

Dissimilarity based on Test Statistics

Test statistics are the measures used in statistical hypothesis testing to determine, within
a user-specified probability 1 − α, whether the observed sample values in two groups of
data samples could have occurred due to random variations, a case known as the null
hypothesis, or if it is because the two groups have truly different underlying populations,
that is, statistically significant differences [29]. Although the original χ2-statistic (Eqn.
2.12) is not symmetric, this can be replaced using dχ2sym(X, Y ) = dχ2(X, Y ) + dχ2(Y,X),
an idea which holds for the other non-symmetric dissimilarities.

The Kolmogorov-Smirnov (Eqn. 2.13) and Cramér–von Mises (Eqn. 2.14) measures
utilize the cumulative distribution function (CDF) F c(x) =

∫ x
x′=−∞ p(x

′)dx′, where c de-
notes the channel in the multivariate histogram case (e.g. red, green, blue channels).
CDF-based distances are able to bypass problems with mismatched histogram bin align-
ment and widths, as they do not compare dimension-by-dimension. These problems will
be especially apparent when sample sizes or dimensionality is small. However, X, Y must
be one-dimensional.
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Dissimilarities based on information-theoretic divergences

Divergence functions D(·||·), where x||y denotes the non-symmetric divergence from x
to y, are dissimilarity measures used specifically for probability functions; they are not
necessarily symmetric and may not satisfy the triangle inequality. They are distinguished
from test statistics and other dissimilarities by having the property [30] that g(D) is positive
semidefinite everywhere on the statistical manifold S (the space of all probability spaces
(Ω,F , P )), where matrix g(D) is the inner product, or Riemannian metric.

The Jensen-Shannon divergence (Eqn. 2.17) is a symmetric version of the Kullback-
Leibler divergence (Eqn. 2.16) dKL(x||y). In turn, the Kullback-Leibler divergence is closely
related to the mutual information I(X, Y ) between X, Y : I(X;Y ) = DKL(pX,Y ||pXpX).
They are commonly employed in object trackers, e.g. the mean shift tracker [31].

Dissimilarities considering ground distance

The Earth Mover’s Distance (Eqn. 2.19) is conceptually simple, yet statistically powerful.
The idea is to view the problem of comparing two distributions X, Y as determining the
optimal amount of ‘earth’ gij to be moved from a histogram bin Xi to another bin Yj (the
inter-bin distance is dij), which is solved using linear optimization in order to minimize
the overall cost gijdij. This elegantly deals with the resolution vs. misaligned bins tradeoff
involved with higher numbers of bins, works with multivariate distributions, and allows
each X, Y image to have different numbers of (possibly) differently sized bins.

EMD-based dissimilarities and their applications remain a very active area of research
over ten years after publication of the original papers [28], with over 15,600 search results
for “earth movers distance” on Google Scholar. One theoretical difficulty of using EMD
is that while EMD is a metric for normalized histograms, the kernel matrix composed of
EMD similarities is not guaranteed to be positive semidefinite. This means that in theory,
we cannot use it as a valid kernel for machine learning applications. Nonetheless, in
practice, it is still done anyway and often gives good results [32].

The computational complexity of EMD, which is O(n3), is its biggest drawback. Al-
though enormous computational speedups have been made (e.g. [33]), at the time of
writing, it was not feasible to employ EMD in most real-time applications such as object
recognition.

The quadratic form distance (Eqn. 2.18) is another dissimilarity in the same vein as
EMD. It uses a matrix A of bin-to-bin similarities, but requires no optimization to solve.
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2.1.4 Discussion

An examination of the formulae in Table 2.1 reveals several commonalities. Dissimilarities
rely either on the difference of means, or on the additive, multiplicative, or ratio combi-
nation of distributions. Attempts are then made to normalize them, using the variance of
individual populations, or the average PDF between the two groups. Log-compression, or
square roots may be employed to dampen the impact of very large magnitude differences.

The algorithm designer can decide amongst them depending on the need for high sensi-
tivity, false positive tolerance, computational complexity, data dimensionality, and knowl-
edge of the underlying data distributions. Some choices may be ruled out right away using
these criteria, leaving a few that will need to be empirically compared.

The concept of measuring the dissimilarity between two groups of objects by com-
paring their distributions appeals for several reasons. It handles outliers and noisy data
elegantly; as m → ∞, d → ∞, noisy data will be averaged away. Maximizing the diver-
gence has a strong theoretical link to information theory concepts of minimizing mutual
information. However, practical considerations impede obtaining the necessary probability
estimates Px; when the training set is small, the available data is too sparse, especially for
multivariate data, and we run into the curse of dimensionality [17]. The computed dissim-
ilarity measures will be computationally unstable. Even when greater quantities of data
are available, evaluating the divergence integrals is, practically speaking, extremely slow
and unsuited for real-time operation. We discuss histograms, kernel density estimation
and other nonparametric density estimation methods further in §3.3.

The MMD framework is a compromise between the ‘difference of means’ concept and
the ‘integrated difference of probabilities’ concept. It follows the basic unnormalized Fisher
Ratio idea of taking the squared difference of means, while we show in §2.3.4 that MMD is
also equivalent to the integrated difference of the two distribution functions. The probabili-
ties are estimated using a Parzen window, and are never explicitly calculated. Furthermore,
the designer can plug in kernel functions that possess the desired traits for the task, with
the aim that MMD may allow improved discrimination over and above that provided by
the base kernel, or similarity value, alone.

2.2 Kernel Methods for Machine Learning

The MMD is a kernel-based distance measure, implying that its computations are reliant
on inner products taken in a Reproducing Kernel Hilbert Space (RKHS). In this section, we
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clarify what a RKHS is, provide an introductory background overview of kernel methods,
and introduce the kernel trick.

We will attempt to answer practical questions such as:

• Why do we want to work in the RKHS? Why not simply work in the original feature
space?

• Which operations should be performed in the RKHS?

• Which RKHS should we use?

• How do we convert our data from the original feature space to this RKHS ?

2.2.1 What is a kernel?

A Mercer kernel is a symmetric, continuous function that maps K : [a, b] × [a, b] → R;
that is, a two-operand function that outputs a real number, and satisfies the following
condition: Mercer’s Theorem states [34] that a symmetric function k(x, y) is a Mercer
kernel or simply a kernel, if and only if the kernel matrix

K(X, Y ) = [
k(x1,y1) ... k(x1,yn)

...
k(xn,y1) ... k(xn,yn)

] (2.20)

is positive semidefinite.

The kernel matrix K is positive semidefinite if any only if, for any choices of vectors c,

c>Kc ≥ 0, (2.21)

which we denote as K < 0.

The kernel must have a closed form to be of practical significance. Any positive definite
function is a reproducing kernel for a specific RKHS ([35]).

2.2.2 The Kernel Trick

The main mechanism for incorporating kernel methods into statistical pattern recognition
algorithms is the kernel trick. The key concept is to map both operands of an inner
product 〈x,y〉 into the RKHS, and then compute the dot product there: 〈φ(x), φ(y)〉.
We can do this because the mapping is an isomorphism, between X and a Hilbert space
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H. An isomorphism has a key property: they are injective, meaning they are one-to-
one mappings. The ‘trick’ aspect arises because we do not actually need to calculate, or
even have a formula for, the individual mappings φ(x); we just need the kernel function
k(x,y) = 〈φ(x), φ(y〉, as we shall detail in §2.2.3.

In summary, the kernel trick seeks to replace matrix inner products XX> with the
kernel matrix Kx, which is composed of individual kernel entries (Eqn. 2.20). This m×m
matrix of all pairwise kernel values is also known as the Gram matrix. No claim is made
that the dot products performed in the RKHS output identical numerical results as the
original space X, which would be pointless.

Example 1. Regularized kernel regression.

We provide a simple example of the kernel trick. It is well known [36] that the regular-
ized least-squares fit of regression targets y and feature matrix X is given by

ŷ(x) = w> · x, (2.22)

where w = (λIn + XX>)−1Xy, and In is the identity matrix. The next step is to move to
the RKHS domain using the mapping Φ, such that x→ φ(x), and X→ Φ. This yields

w = (λIn + ΦΦ>)−1Φy (2.23)

= Φ(ΦΦ> + λIn)−1y (2.24)

where Eqn. 2.24 is obtained [37] by applying the matrix identity for positive definite,
invertible matrices P,R [38]

(P−1 +B>R−1B)−1 = PB>(BPB> +R)−1, (2.25)

and then dividing by (λIn). We next represent w as a weighted sum of the training
instances,

w =
m∑
i=1

φ(x)(ΦΦ> + λIn)−1y =
m∑
i=1

αiφ(x) (2.26)

where αi = (ΦΦ> + λIn)−1y. This leads to our final result,

ŷ(x) = w> · Φ(x) =
m∑
i=1

αiφ(x) · φ(x) =
m∑
i=1

αik(x,xi), (2.27)
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where k(xi, xj) = φ(xi)φ(xj), and kernel matrix K := ΦΦ>. We note several benefits:
a d × d multiplication and matrix inverse has been replaced by a m × m operation; the
linear kernel k(x, y) = x ·y implicit in the non-kernel version (Eqn. 2.22) may be swapped
out for more discriminative kernels, such as the Radial Basis Function kernel (§2.2.4); and
we have reduced storage requirements, as α can be of substantially smaller size than w.
These benefits generalize to other kernelized learning algorithms that we mention in the
next section.

Benefits of the Kernel Trick and Kernel Methods

Up to now, we have discussed the mechanics of mapping our data into a RKHS, and dis-
cussed which operations should be performed in the RKHS. The kernel trick allows the
algorithm designer to customize, or ‘plug in’ a variety of application specific kernels, while
leaving the underlying algorithm unchanged. It allows re-invention of many classic algo-
rithms, such as principal component analysis (PCA), penalized regression, and dissimilarity
based classification. We provide a representative list of kernelized algorithms in Table 2.2,
and note that they are all well-regarded, high performing algorithms in their respective
sub-fields.

Kernels and the kernel trick allow vector-space operations over data types which do
not have an intuitive representation in Rn, or even similar dimensionality to be used in
these pattern recognition algorithms. Examples range from graphs, or text documents, to
structured objects such as trees ([39]).

Kernels allow nonlinear transformations to be applied to the data, which can enhance
separation between classes, in part by leveraging a greater number of basis functions (di-
mensions) in the RKHS (we see in the next section that in this function space, there may
be an infinite number of eigenfunctions and eigenvalues).

2.2.3 What is a Reproducing Kernel Hilbert Space?

A Hilbert space is a complete, optionally infinite-dimensional vector space with a norm
and inner product (Fig. 2.1). By complete vector space, we mean that for every infinite
sequence of decreasing elements (formally, every Cauchy sequence), and any arbitrarily
small ε ∈ R, we can find an index N in the sequence such that ||xm − xn|| < ε, and
m,n > N .

It is not a particular space we are interested in so much as a family of hypothesis spaces,
called Reproducing Kernel Hilbert Spaces (RKHS). As we will see, each pair of operands in
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Table 2.2: Examples of kernelized learning algorithms

Learning problem Algorithm

Dimensionality Reduction Kernelized Principal Component Analysis (KPCA) [40]
Kernel Fisher discriminant (≈ Kernel LDA) [41]

Classification Support Vector Machines (SVM) [39]
Gaussian Process Classification [42]
Kernel perceptron [43] (a type of neural network)

Clustering Kernel k-means [44]

Regression Penalized kernel regression [45]
Gaussian Process Regression [46]

Significance test Maximum Mean Discrepancy

a kernel function is represented by a unique RKHS. Much of our treatment follows [35, 47],
but we also recommend [48] and the online resources of Gretton [49] as helpful references.

The elements of this space are functions, and so the ‘meta-functions’ defined on this
space are functionals Ft[f ] that work on functions. Such a function can for example be
a probability distribution. It is useful because it lets us use the vector-space concepts of
min, max, sum, norm, inner product, etc. on spaces of functions.

An evaluation functional is a functional that evaluates all the possible functions in its
Hilbert space at a point t, i.e. Ft[f ] = f(t). It maps an input function in Hilbert space
to a 1-D scalar, Ft : H → R. Note that f refers to the function, and f(t) refers to it
parametrized at a specific point.

A reproducing kernel Hilbert space is a Hilbert space where for every possible evaluation
point t, all functions f are bounded by some M > 0, i.e. no functions have infinite values.

|Ft[f ]| = |f(t)| < M ||f ||H (2.28)

However, it is hard to work with this definition, and we instead turn to the Riesz
representer theorem.

Theorem 1. The Riesz representer theorem. For all functions f in the RKHS, and all
x1 ∈ X, where X is the original feature space (formally, some set or field), the evaluation
functional of f is equal to the inner product between f and a representer of x1, a function
Kx1.
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Reproducing kernel Hilbert 
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Figure 2.1: Venn diagram showing the relation between Reproducing Kernel Hilbert Spaces
and other spaces.

In turn, the reproducing property says that this is equal to the function evaluated at
that point x1 in the original feature space. Mathematically,

Ft[f ] = 〈Kx1 , f〉H = f(x1) ∀f ∈ H,∀x1 ∈ X (2.29)

Now, let us evaluate the case where the function f is equal to the representer function
Kx1 . Using the reproducing property, and evaluating f at point x2 instead, we arrive at

Kx1(x2) = 〈Kx2 , Kx1〉H. (2.30)

This is our first example of a reproducing kernel, which is any kernel that uses the repro-
ducing property. Each reproducing kernel defines a unique RKHS, and vice versa. In the
literature, we often see this representer of x1, Kx1 denoted as φ(x1), i.e. it is a mapping
from X to H, leading to

K(x1,x2) = 〈φ(x1), φ(x2)〉H. (2.31)

Formally, the properties for a reproducing kernel are:

1. It is symmetric, K(x1,x2) = K(x2,x1)

2. Positive definite, that is
n∑

i,j=1

cicjK(ti, tj) ≥ 0 (2.32)

for any dimension n ∈ N, and any choice of t1, . . . , tn ∈ X, and c1, . . . , cn ∈ R.
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We conclude by noting that in a function space defined by a RKHS, the familiar eigen-
vector equation Av = λv has an equivalent,∫

K(x, x′)φ(x′)dx′ = λφ(x′) (2.33)

or, equivalently, 〈K(x, ·), φ〉X = λφ. Given y ∈ `2, an inner product in a RKHS is
defined as

〈y,y′〉HK
=
∞∑
i=0

yiy
′
i

λi
(2.34)

Note that there are an infinite number of eigenvalues and eigenvectors! This is why
function f evaluated at a point x can be thought of as a possibly infinite-dimension ‘weight-
ing vector’ w for that input x, mapped into a RKHS: f(x) = 〈w, φ(x)〉. An interesting
implication of this is that higher-order moments of features may be computed via this
expansion, compared to the regular inner product. When the representer represents a
probability distribution in a RKHS space, as in the case with MMD, this amounts to
computing higher order moments of the probability distribution.

2.2.4 Selecting kernels for image analysis

The final question from the objectives we laid out at the beginning of this section was how
to select an appropriate RKHS to work in, or equivalently, how to select an appropriate
kernel. Once a reproducing kernel is chosen, [35] shows how a RKHS can be formally
constructed from it. We review several common kernels used in image analysis and the
rationale for selecting them.

The simplest kernel is the identity mapping, which may work reasonably for high-
dimensional problems [50]:

Klinear(X, Y ) = 〈X · Y 〉 =
d∑
j=1

xjyj (2.35)

The radial basis function (RBF) kernel has good analytical properties [51] and is the
default kernel for generic data [50], but performs very poorly on histogram descriptors [52]
used frequently in image analysis and computer vision, our area of interest.
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KRBF (X, Y ) = exp

{
− 1

2σ2
||X − Y ||2`2

}
(2.36)

One important consideration with the RBF kernel is the selection of the hyperparameter
σ. A substantial literature has built up around the optimal choice of this parameter (e.g.
[53]); an often-used heuristic is to use the median distance between all entries of the kernel
matrix, or some quantile of this value.

One principled method is to learn the kernel from training data, using convex optimiza-
tion techniques (semidefinite programming) [54]; while very computationally intensive, it
is an interesting avenue for future work in our application. In practice, the selection of the
kernel depends on the nature of the features, as with the selection of dissimilarity measures
(§2.1.1). We utilize several experimental surveys [32, 55] that compare kernels for different
domains and descriptor types, particularly for the histogram-like descriptors we use in our
work.

One kernel consistently recommended in several works ([32, 7]) for computer vision
descriptors is the Histogram Intersection Kernel, which is parameter free and easy to
compute.

KHIK(X, Y ) =
d∑
j=1

min (xj, yj) (2.37)

We can see that it does not penalize dissimilar dimensions, one of the high-dimensional
criteria discussed in §2.1.1. We report on experiments using the RBF and HIK kernels in
our tests in Chapters 4 and 5.

2.3 Previous Work on Maximum Mean Discrepancy

So far, we have reviewed the most common distance measures, and pointed out that com-
paring probability distributions is more discriminative than simply comparing scalar in-
dices/measures derived from high dimensional data.

We also introduced the kernel trick, the advantages it brings, and reviewed the math-
ematics behind the kernel trick and RKHSs. One might assume the next logical step is to
utilize kernel-based dissimilarity measures. However, kernel-based distance measures that
rely on probabilities, such as the unnormalized Fisher kernel [56]

k(x,x′) := U>θ (x)Uθ(x) (2.38)
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where
Utheta(x) := −∂θ log p(x|θ) (2.39)

still need an estimate of a conditional or marginal probability density in order to compute
most probability measures for distributions, as seen in Table 2.1. As [56] points out, this
requires sophisticated bias correction or feature space partitioning schemes.

By mapping probability distributions into a RKHS, this gives us tools to compare distri-
butions without having to estimate its density, either parametrically or nonparametrically.
In this subsection, we review the relevant works leading up to MMD, key applications
of MMD, and its relationships to other machine learning concepts such as kernel density
estimation. The formulation of MMD is deferred to §3.2. We shall see in this chapter that
these tools are a means to quantify dependence between distributions (using the Hilbert
Schmidt Independence Criterion, HSIC), compute metric distances between distributions
(MMD), or compute the PDF p(x) in a nonparametric way (using a Parzen estimator).

2.3.1 MMD as a statistical test of significance

MMD was originally proposed [57] as a family of test statistics used to determine if two sets
of data vectors are statistically distinguishable. These types of tests may be generically
called as two-sample or homogeneity tests, and this remains the most common use of MMD
[58]. Instead of computing the probability of the null hypothesis being true, known as the
p value, as is done in the t-test, a test threshold τ is computed for a given significance level
α. If MMD(X, Y, α) > τ , then the two samples are deemed to be statistically different.
The significance level α sets an upper bound on the Type I error (the false positive rate)
of the test.

Gretton et al. compared [1] these MMD-based tests against several alternatives, in-
cluding the multivariate t-test, on the attribute matching problem for databases. Suppose
we have have two tables, which we believe to represent the same information, but have
differently named or ordered features. For example, one table has a column ‘Gender’, and
the other ‘Sex’. This problem involves identifying the likeliest matches between pairs of
candidate features.

They did this in two ways. The first, was to simply count the percentage of positive
binary null hypothesis test results, when the matched features were truly the same. An
ideal test would report 100% for cases where the features are different, and 0% when the
two features involved are the same.
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The second method is more relevant to our use of MMD. First, they define a separate
kernel and compute MMD separately for each feature/dimension. Then, they find the opti-
mal permutation π of features which minimizes the total sum of

∑m
i=1 ||µi(Xi)−µi(Yπ(i))||2.

Setting this expression as the cost function, they then treat it as a linear programming
problem, which may be solved in O(n3) time using the Hungarian algorithm [59]. In other
words, they treated MMD as a distance measure to be minimized as part of an objective
function.

2.3.2 MMD Variants and Extensions

Kernel Change Detection

One related algorithm that predated MMD by several years was Kernel Change Detection
(KCD), by Desobry et al. [60]. In it, they propose computing a quantity similar to the
Fisher ratio (Eqn. 2.11) in a RKHS. Their work is based on training two soft margin single-
class Support Vector Machines (a ν-SVM); one for the immediate past set of descriptors,
another for the immediate future set. It is particularly relevant to our scene change detec-
tion application, which also seeks to compute a dissimilarity measure in an online, sliding
window manner. Each SVM outputs a binary indicator matrix of chosen support vectors
αi which is used in the proposed dissimilarity:

dKCD(X, Y ) ∝ arccos

(
αT1K12α2√

αT1K11α1

√
αT2K22α2

)
(2.40)

Eqn. 2.40 is further normalized by a measure representing the intra-class variance, which
we omit here. In the case of a RBF kernel, and in the limit as m → ∞, Desobry et al.
show that

dH(X, Y ) −−−−−→m→∞
g(||µ1 − µ2||2χ)

g(β1σ2
1) + g(β2σ2

2)
(2.41)

where g(u) = arccos(exp(− 1
2σ2u)), and β1, β2 are constants.

The technique was demonstrated by segmenting the different musical notes from a
recording of a church pipe organ. This is a difficult task, due to the lengthy room rever-
beration present in a church, as well as the rapidly changing musical score that presents
abrupt frequency changes intermixed with lengthy notes.

Several criticisms of the Parzen-style approach to distance computation, which includes
MMD, are offered in [60]: they point out that the empirical mean map µ[Px] := Ex[φ(x)]
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used is not robust to outliers, whereas they estimate the empirical probability distribution
with a sparse weighted mean, using only the support vectors of each class. Secondly,
the claim is made that the empirical covariance estimate, σ̂, used to optionally normalize
Eqn. 2.11, is a poor one, due to the limited window sizes needed to detect abrupt changes.
Despite these valid points, KCD was shown to have similar experimental precision and
recall audio segmentation performance to MMD by [61]; we also note that training two
SVMs for every advance of a sliding window will be more computationally intensive than
MMD. A third difference is that they advocate the use of a fixed global threshold on KCD
chosen heuristically to identify the changepoints, whereas our approach in Chapter 4 relies
on local peak-finding.

Kernel Fisher Discriminant Ratio

Harchaoui et al. [61] proposed a modification of MMD, the Kernel Fisher Discriminant
Ratio (KFDR), in which they normalize the measure by the within-class covariance ma-
trix Σ̂W . Furthermore, they perform spectral truncation on the kernel matrix, which is
reminiscent of Kernel PCA [40].

KFDR(X, Y ) =
m1m2

m1 +m2

〈
µ̂2 − µ̂1, (Σ̂W + γI)−1(µ̂2 − µ̂1)

〉
H

(2.42)

= mKVΛ−1V>K>m> (2.43)

where V,Λ are the first p eigenvectors and eigenvalues, respectively, of the bi-centered
kernel matrix, and m is a m×m matrix normalizing for the number of elements.

KFDR was demonstrated by segmenting audio tracks from television shows, both se-
mantically (applause vs movie vs music), and by identifying individual speakers, which is
called the speaker diarization problem. The authors claim substantially improved preci-
sion and recall over MMD and KCD, and comparable performance to a supervised Hidden
Markov Model. While the computational cost of the eigendecompositions may be man-
ageable for real-time operation if the window sizes are kept reasonably small, the issue we
discovered in our informal experiments is that this technique may be less effective for very
small window sizes. In the paper, they recommend the heuristic of keeping only the first
p eigenvalues, where p = max{d, λd > ε}, and ε = 10−10. In practice, for window sizes
w ∈ {10− 30}, we found that only one or two eigenvectors were being removed, and thus
the difference with MMD was negligible.
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Robust MMD

Another attempt to make the empirical mean map more robust to outliers is from Arif
and Vela [62], who proposed Robust MMD (RMMD). Like KFDR, eigenvector-based di-
mensionality reduction is utilized to do eigenvector decomposition. The novelty is that the
PDF is approximated using an orthogonal series density estimator – that is, a weighted
sum of M orthonormal functions,

p(x) =
M∑
k=1

ω(k)Ψ(k)(x). (2.44)

Given the eigendecomposition of the kernel matrix Kx into eigenvectors and eigenval-
ues (Vi, λi) respectively, the k-th orthonormal functions Ψ(k)(x) are found by using the

eigenvector-eigenvalue ratio v
(k)
i = V

(k)
i /

√
λ
(k)
i as a weight on a Parzen estimate:

Ψ(k)(x) = 〈Vk, φ(x)〉 =
d∑
i=1

v
(k)
i k(x,xi) (2.45)

If we think of each orthonormal function as a weighted Parzen estimate, the weight
vector ω(k) is obtained by averaging all such estimates:

ω(k) = E{Ψ(k)(x)} =
1

m

m∑
i=1

Ψ(k)(xi) (2.46)

The RMMD distance between two samples is given by the distance between weights ω.
One major approximation made is to skip the eigendecomposition for the second sample
group Y , and instead reuse the eigenvectors derived from X. Due to this trick, it requires
the two samples being compared to be of the same size, i.e. m1 = m2. This permits the
approximation

RMMD(X, Y ) := ||
M∑
k=1

ω(k)
x V (k)

x −
M∑
k=1

ω(k)
y V (k)

y || ≈ ||ωx − ωy||. (2.47)

where M is the user-defined number of eigenvectors to retain; a heuristic for finding M
is given in [62].

RMMD is applied to the problem of visual tracking, which is, loosely speaking, finding
the visual subregion at frame t + 1 whose feature density has the minimum distance to a
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predefined subregion’s target density in frame t (the tracker must be initialized in some
fashion, e.g. by having the user click on an object to be tracked). The algorithm ran fairly
slowly at 0.5− 1 fps for 320× 240 video, and tracked object sizes of around 30× 30 pixels.
Favorable tracking results are obtained against two well-known tracking algorithms, but
no quantitative comparison was conducted against MMD.

As with KFDR, the same observation about having limited effectiveness for small sam-
ple sizes applies; when no eigenvalues are removed, RMMD is equivalent to MMD.

2.3.3 Link to the Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt Independence Criterion is a measure of similarity, using RKHS con-
cepts, from the same research team [63] that developed MMD. The key idea of the HSIC
is to quantify the degree of dependence between two samples X, Y using ∆ := ||µ[Pxy] −
µ[Px × Py]|| in the RKHS. Recalling that from the definition of covariance of random
variables X, Y, we have

σ2
X,Y = E[XY ]− E[X]E[Y ] (2.48)

and if the two random variables are independent, then E[XY ] = E[X]E[Y ], we see that ∆
will be very small for two statistically independent sets.

Gretton et al. [63] show that ∆ may be empirically estimated (estimates are denoted
with a hat,ˆ), albeit with a bias that varies with O(m−1), and a deviation from the true
expected distance bounded by O(m−0.5), as

ˆHSIC = ∆̂2 =
1

m2
tr KHLH (2.49)

where tr(·) is the matrix trace operator, K is the kernel matrix with elements Kij :=
k(xi,xj), L is a second kernel matrix with elements Lij := l(yi,yj), H = I − 1/m, and
1 is the m ×m matrix of ones; it is a centering matrix which makes the average of each
kernel matrix row and column ≈ 0, i.e. the average similarity between a feature point to
all other training points is zero.

Smola et al. [56] show that many feature extraction criteria, such as the Pearson
correlation r, t-statistic, and the signal to noise ratio, may be expressed as special cases
of the HSIC using specific kernels. Most pertinently, it is shown that tr KHLH can lead
to the distance (in the original feature space) between the two class means, i.e. the Fisher
Ratio (Eqn. 2.11). This is the same idea as the MMD, but in a different feature space.
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Both MMD and the HSIC arise from the key concept of embedding probabilities of a
given feature space in a RKHS. The HSIC is a dependency measure, and is the Hilbert-
Schmidt norm of the covariance operator function (the Hilbert-Schmidt norm is akin to
the Frobenius matrix norm of the covariance matrix in the original feature space. The
Frobenius norm, in turn, is the matrix equivalent of the `2 norm); higher values indicate
more dependence. MMD is a metric distance and test statistic based on population means
only; higher values indicate more independence. MMD is a drop-in replacement for other
information-theoretic distance measures like the Bhattacharyya distance; the HSIC clearly
is not.

2.3.4 Link to the Parzen estimator

The Parzen kernel window estimator [53] is used to obtain a PDF estimate p(x) in a
nonparametric fashion, i.e. without assuming a specific probability distribution for the
data. It takes a one-operand window function, or kernel, K(x), whose area sums to one.
This kernel should not be confused with the two-operand Mercer kernel we use in the kernel
methods of §2.2.

p̂(x) =
1

m

m∑
i=1

h(n)−mK

(
||x− xi||
h(n)

)
(2.50)

h(n) is a sequence of positive numbers which acts as a per-instance weight. It may also
be set to a constant, in which case it is the familiar smoothing parameter σ as seen in the
RBF kernel.

Arif and Vela [64] point out that the link between µ[Pu] (Eqn. 3.7), the mean mapping
to RKHS used in MMD, and the Parzen estimator is

p(u) = 〈µ[Pu], φ(u)〉 ≈ 1

m

m∑
i=1

k(u,ui) (2.51)

which clearly has the same form as Eqn. 2.50 above. An even closer linkage to MMD
was reported by Anderson et al. in 1994 [65], who proposed the two-sample test statistic
based on two Parzen estimates

Th1h2 =

∫
(p̂1(u)− p̂2(u))2 du, (2.52)
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where p̂ is defined as in Eqn. 2.50. This has the same form as MMD2 (Eqn. 3.12), but
was arrived at without any link to RKHS methods, some twelve years before the work
of Gretton [1]. The linkage to RKHS methods contributed by making the connections to
other reproducing kernel based measures, such as the HSIC (Sec. 2.3.3), clearer.
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Chapter 3

Methods

3.1 Dissimilarity-Based Pattern Recognition

Statistical pattern recognition tasks, such as predicting categorical labels (classification) of
a test set T , can be performed using properties that characterize an object, which we call
features, as inputs. Alternatively, the inputs to the algorithm may use dissimilarity values
from T to a set of representative objects R (we will call them prototypes). Examples of
algorithms designed for the former category include the Fisher Linear Discriminant and
logistic regression [17], while algorithms designed from the outset for (dis)similarity inputs
include Support Vector Machines, clustering algorithms, and the kernelized algorithms
listed in Table 2.2.

Presumably, there are some benefits to working in dissimilarity space instead of feature
space, otherwise there would be little profit in discussing dissimilarity measures, kernels,
and MMD. We describe three such benefits here, and preview specific techniques that we
use with MMD.

First, using dissimilarities, we can compare objects that have varying dimensionality;
that is, we can calculate inter-object distances even when they compare from two different
feature spaces. These may be two images with different numbers of colour channels or
colourspaces; different shapes with varying numbers of polygons; or two video frames with
varying numbers and locations of interest points (an interest point is a ‘landmark’ in an
image, such as the intersection of two edges, used in computer vision).

Second, objects with missing features or non-continuous valued variables can be com-
pared using dissimilarities. Some features might consist of categorical or ordinal data
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(§2.1.2), which are easier to compare in pairs, than to quantify in isolation. Certain
features might be unknown or unreliable in some instances, either during model training
(induction) or testing time. Instead of requiring each algorithm to specially handle missing
data, this can be abstracted away using dissimilarity measures.

Lastly and most importantly, dissimilarity based pattern recognition can, at least in
certain instances, improve discrimination performance over feature-based representation.
This viewpoint is perhaps most strongly espoused today by Duin and Pȩkalska [66, 67,
68]. One recent work on schizophrenia detection using MRI [69] reported, “classification
onto the dissimilarity space shows improvements of the standard NN (nearest-neighbour)
rule and the support vector classifier on the original space.” The precise reasons and
theory behind the improvement are still an active area of research, but we observe that
dissimilarity representation offers dimensionality reduction (thus, reducing the effect of the
curse of dimensionality), while inheriting the invariance and robustness properties of its
underlying dissimilarity measure (§2.1).

Dissimilarity space representations may be further subdivided into two methods: em-
bedding the dissimilarities into a Euclidean space, if the dissimilarity measure is a metric, or
by treating dissimilarities directly as features for classification. Embedding of dissimilari-
ties is related to multi-dimensional scaling (MDS) [70], in which eigenvector decomposition
and truncation on the kernel matrix of similarities K is used to compute a Euclidean pro-
jection X. Classification and other operations are then performed on X as usual. Several
classifiers are suggested in the literature for this pseudo-Euclidean space [67]: the gener-
alized nearest-mean-classifier (NMC), which is akin to k-nearest-neighbours (Alg. 1), but
using the nearest class centroid instead of nearest neighbour; Fisher’s Linear Discriminant
(FLD), and the Support Vector Classifier (SVC).

Algorithm 1 The k-nearest-neighbour classifier

procedure knnc(x, k)
for i = 1 to k do

li ← the class of the i-th closest prototype of x in dissimilarity space
end for
return mode([l1, l2, · · · , lk]) . break ties randomly

end procedure

The second approach, performing classification on dissimilarities directly, requires a
symmetric dissimilarity measure, ideally obeying the triangle inequality. Tests [67] com-
paring the two approaches, involving the well-known MNIST digits dataset and another
dataset of binary shapes, showed that classifying with the dissimilarity kernel directly had
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lowest error using a variety of classifiers (k-NN, FLD, SVC). The only times that the
embedding approach was superior in classification accuracy was when the size, m, of the
training set, consisting of representative objects, was sufficiently large and the embedded
dimensionality, d, small.

Given that in our applications, the retrieved (target) dimensionality is small while the
training set is also small, we adopt the second approach of classifying on dissimilarity
values directly. Dissimilarity representation is also a natural fit to our second application,
changepoint detection, as it seeks the maxima of a time-series feature. We work with the
k-NN classifier, one of the simplest possible classifiers, as it is the most commonly used
choice in dissimilarity space [67] and performs fairly well. In this way, attention can be
focused on the relative performance differences between MMD and alternatives. We leave
to future work efforts to test more advanced classifiers such as Support Vector Machines
with MMD.

3.2 Maximum Mean Discrepancy

3.2.1 Formulation

After several preliminaries, we are now ready to present the formulation of the maximum
mean discrepancy, for which we have used [57] and [56] as the primary reference sources.

One of the inspirations for the development of MMD was the work of Müller ([3]), who
defined an integral probability metric on probability measures P,Q as

d(P,Q) := sup
f∈F

∣∣∣∣∫ fdP −
∫
fdQ

∣∣∣∣ (3.1)

where F is the space of all functions, and where f is subject to

||f ||H ≤ 1 (3.2)

That is, it was the maximum difference between the mapped distributions. We seek the
feature mapping f which maximizes this; ideally, it is large on points in P , and small-
valued on points in Q, and with a RKHS norm less than or equal to unity. Such a function
is constrained to be “in the unit ball”, or hypersphere, of the RKHS.

The empirical MMDb (the b subscript means biased) was therefore defined on data
samples (not probability distributions) X, Y following Eqn. 3.1,

MMDb(X, Y,F) := sup
f∈F

(
1

m1

m1∑
i=1

f(xi)−
1

m2

m2∑
i=1

f(yi)

)
(3.3)
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and its theoretical counterpart is

MMD := sup
f∈F

(Ex[f(x)]− Ey[f(y)]) (3.4)

= sup
f∈F
〈µ[Px]− µ[Py], f〉H (3.5)

= ||µ[Px]− µ[Py]||H (3.6)

We used the reproducing property, Eqn. 2.29, to proceed from Eqn. 3.4 to Eqn. 3.5, as
well as the property that the RKHS mapping is injective (§2.2.2). To move from Eqn. 3.5 to
Eqn. 3.6, we use Eqn. 3.13 together with the geometric interpretation of the inner product:
the maximum value of the inner product will be reached when there is zero angle between
the vectors 〈a, b〉, i.e. when a, b are identical. The phrase ‘maximum mean discrepancy’ in
MMD is named for this concept.

We stop for a moment, and define the mean mapping functional µ[Px]. Its input is a
function (a probability distribution), and its output is a scalar, as expected. The functional
is defined as the expectation of the evaluation functional – empirically, the sample mean
of the mapped data φ(x).

µ[Px] := Ex[k(x, ·)] = Ex[φ(x)] (3.7)

Its empirical counterpart is

µ[X] :=
1

m

m∑
i=1

k(xi, ·) (3.8)

We still require an empirical formula to evaluate Eqn. 3.6, and so proceed as follows:

MMD2(Px,Py) = || µ[Px]− µ[Py] ||2H (3.9)

= 〈µ[Px]− µ[Py], µ[Px]− µ[Py]〉 (3.10)

= ||E[φ(x)]− E[φ(y)]||2 (3.11)

= E{(φ(x)− φ(y))(φ(x)− φ(y))}
= E{φ(x)φ(x)− φ(y)φ(x)− φ(x)φ(y) + φ(y)φ(y)}
= Ex,x′ [k(x,x′)]− 2Ex,y[k(x,y)] + Ey,y′ [k(y,y′)] (3.12)

where Eqn. 3.10 is obtained by recalling that all inner product spaces have a naturally
defined norm,

||x|| =
√
〈x,x〉. (3.13)
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An unbiased version of Eqn. 3.12, ˆMMD
2

u, where u denotes unbiased, can be empirically
estimated, assuming m1 = m2 = m, using

ˆMMD
2

u(X, Y ) =
1

m(m− 1)

∑
i 6=j

k(xi,xj)− k(xi,yj)− k(yi,xj) + k(yi,yj) (3.14)

This is an unbiased estimate (a U-statistic in the statistics literature). However, for
our proposed applications, we require a biased estimate (known as a V-statistic) of MMD
in order that it fulfills the second condition of a metric, non-negativity (Eqn. 2.2). Using
the fact that the kernel function is symmetric, we finally obtain the main formula used
in this thesis,

ˆMMD
2

b(X, Y ) =
1

m2

m∑
i,j=1

k(xi,xj)− 2k(xi,yj) + k(yi,yj). (3.15)

Unless otherwise specified, we adopt the simplifying convention that empirical results

referring generically to ‘MMD’ utilize ˆMMD
2

b .

Metric property

Eqn. 3.15 has the metric property. Recalling the definition of a distance or metric in §2.1,
the coincidence axiom follows by inspection; if X = Y , MMD2 is obviously zero. That
the converse also holds requires a more technical proof, and is shown in ([57], theorem 5).
Symmetry is obvious by inspection, since the reproducing kernel is also symmetric. The
triangle inequality is slightly more complicated to prove, and is shown in ([57], theorem
18). Finally, non-negativity is is implied by the other three axioms.

Convergence bounds

The following convergence bound, proved in [57], allows us to approximate the distance
between populations D(Px,Py) using just the empirical means, and means that MMD
is a consistent estimator [1]. It holds that under certain conditions, the error between
finite samples will be bounded by O(m−0.5). The conditions are that the Rademacher
average Rm(F ,P), a measure used in defining statistical learning bounds, is itself O(m−0.5)
bounded.
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Theorem 2. ||µ[Px] − µ[X]|| ≤ 2Rm(H,Px) + R
√
−m−1 log(δ), with probability at least

1− δ, where m = number of instances, and R is an arbitrary bound.

Smola et al. [56] pointed out that this concept of bounding the maximum difference
between empirical and expected means is also seen in the Kolmogorov-Smirnov statistic
(Table 2.1, Eqn. 2.13).

3.2.2 MMD, a distance

To date, MMD has been utilized as a two-sample test statistic (§2.3.1), as a clustering
criterion ([71]), as a feature selection method ([72]), and as a cost function for domain
transfer learning [56, 73]. (Real-life machine learning algorithms are usually tested on
data with different underlying feature distributions than they were trained on. Domain
transfer learning is the sub-field of machine learning that tries to reweight the available
training data to minimize the expected loss on the test set.)

MMD as a distance

In our first application, video scene change detection (§4), we utilize MMD as a distance,
for the problem of changepoint detection. Changepoint detection can be summarized as the
task of detecting when the underlying data distribution has changed ‘significantly’. The
peaks of MMD in a local window are used to identify the first frame of a new scene. While
a recent work [8] also used MMD for changepoint detection in electroencephalogram (EEG)
data, our method has two key differences. First, we use a different method of determining
window sizes, rather than exhaustively trying all combinations and second, we search for
visual changepoints in a time series of 2-D data, not of 1-D data.

MMD as a feature for supervised learning

One of our main contributions is to instead propose using MMD as a feature in a dissimilarity-
based, supervised pattern recognition framework (§3.1), which is applied in §5. To the best
of our knowledge, this has not been previously reported in the literature. We use the k-
nearest-neighbour classifier (Alg. 1), in the dissimilarity framework, without embedding
the MMD distances in a Euclidean space, but rather using them directly. As MMD is a
metric, we conjecture that it should perform well.
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One may wonder why we don’t simply use the MMD hypothesis tests in our visual
changepoint and prognosis assessment applications, in place of the approaches to be intro-
duced in Chapters 4 and 5. We present three justifications.

Firstly, by using the test statistic itself as a feature, which contains distance information
not present in the binary significance decision, we may combine it with supervised learning
approaches to enhance group discrimination. Supervised learners can add context, such as
the distance levels needed to achieve utility in a given application (for example, the distance
needed to indicate clinical significance). Secondly, the temporal or spatial behavior of the
test statistic, such as its local minima and maxima, contains information not captured in
the two-sample test. Lastly, we can combine the MMD distance with other features to
again increase context and discrimination.

We provide more implementation details on using MMD as a distance and as a feature,
in their respective application chapters, §4 and §5.

3.3 Nonparametric Density Estimation

Probability density estimates, used as features, can be an effective data descriptor for a
large, multidimensional object, such as an image. We next address the question of how to
obtain these estimates.

Remark. It may appear a bit unusual that we have advocated MMD as a distance
that can avoid explicit density computation, but then return to the topic of nonparametric
density estimation. In fact, there is no contradiction, because the density estimation
described here is performed within an object, whereas we advocate for the use of MMD
between objects. We do not use parametric density estimation to represent the entire set
of objects (e.g. images) as a single histogram; rather, we collect an array of histograms.

Parametric density estimation refers to the practice of assuming a data sample follows
a certain data distribution, allowing us to use the sufficient statistics of that distribution to
estimate the probability density function (PDF). In the example of a multivariate Gaussian,
the sufficient statistic is comprised of the sample mean µ̂ and variance Σ̂, giving:

p(x) =
1√

(2π)m|Σ̂|
exp

(
−1

2
(x− µ̂)>Σ̂−1(x− µ̂)

)
. (3.16)

If the data truly is sampled from this assumed distribution, then we have successfully
managed to condense our representation enormously – we have performed data compres-
sion. This rarely holds in complex domains such as image and audio processing; the data
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may have multiple modes, each following a different distribution. In this case, mixture mod-
els of distributions may be estimated using techniques such as expectation maximization
[74], but this is iterative and computationally expensive.

Due to the very high intrinsic dimensionality and unconstrained input environments
of these domains, we believe it inappropriate to assume a distribution on the data. As
an alternative, we use nonparametric density estimates of the features to represent the
data in our experiments with video and ultrasound data. No assumptions are made about
an underlying distribution of the data (whether it be Gaussian, Poisson, etc.). Nonpara-
metric models support multimodal data, without the complexities of estimating mixture
models, although one disadvantage of such representations is that they are frequently
higher-dimensional than a parametric model.

This concept is illustrated in Figure 3.1, using two images and their Hue, Saturation,
Value (HSV) representations. Using the scalar mean of each colour channel as the feature
(e.g. µdog = [µH µS µV ]), the `2 distance between the two image means is 0.0219, which, in
the context of colour channels each normalized to a range of [0–1.0], provides insufficient
discrimination between the very different images. Taking the greyscale difference of means
instead does not help, with a distance of 7.14 (in a range of [0–255]). A dissimilarity
measure that compares the estimated densities of each image on a local subregion-by-
subregion basis should be more discriminative.

Several leading methods for nonparametric density estimation include histograms, re-
gression fits based on histograms (e.g. smoothing splines [17]) and kernel density estima-
tors.

Kernel density estimators (KDEs) such as the Parzen estimator (Eqn. 2.3.4) generate
smooth probability estimates that are averages of nearby points, with the closest values
weighted most strongly. Two decisions must be made, the choice of kernel and the value of
the kernel hyperparameter σ. While satisfactory algorithms exist to generate KDEs in the
1-D case, the multivariate case is still a matter of active research [75]. This reason, along
with the extra computational load of KDEs (there are at least O(m2) more calculations),
influenced our decision to use histograms for density estimation.

3.3.1 Histograms

One of the most popular, if not the most popular, density estimation method is the his-
togram, which was first described in the published scientific literature under this name by
Pearson in 1895 [76]. They are rotation invariant, scale invariant, simple to compute and
have many distance metrics suited for comparing distributions using them.
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Figure 3.1: The `2 distance between group means often performs poorly on high dimen-
sional data when trying to distinguish two distinct populations (here, the flower vs. dog `2
distance is only 0.0219). Using nonparametric density estimates (right), and dissimilarity
measures that operate on them, may be more effective.
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More formally, given a collection of m samples X = x1,x2, . . . ,xm, we define the
histogram with D bins as a vector of natural numbers h that meets the constraint m =∑D

i=1 hi, where hi is the value of bin i. The samples xi may be scalars or multivariate.

As there can be varying number of instances (pixels or samples), the histograms are
normalized to sum to one, using

h
′

i =
hi∑D
i=1 hi

(3.17)

Additional measures used to reduce data dimensionality include clamping all the values
above xmax and below xmin to the last and first bin, respectively. This is useful when the
variable is a real number and is not inherently quantized.

In a one-dimensional histogram, it is straightforward to find the correct bin to in-
crement, given the underlying variable’s value. However, when the underlying data is
multivariate, then vector quantization is frequently used for d ≥ 2, as it is clearly a case
where we run into the curse of dimensionality [17]. Vector quantization methods, such as
k-means clustering [19], identify k representative prototypes in the original feature space
(akin to finding the Voronoi tessellation); the `2 distance is then used to find the nearest
prototype for each test instance. Each prototype is assigned one of the histogram’s bin
indices, while the bin ordering loses the natural interpretation it had in the 1-D case.

The question arises of how many bins are appropriate, a tradeoff between resolvability
of peaks, and the risk that noise will randomly cause an instance to fall into the neighboring
bin. Cross-validation measures are generally used to find an empirically acceptable result.
Equal depth bins, where the observed population is allocated in equal quantities to variable-
width bins, are also possible and have been found to give good results ([14]), but require
sophisticated dissimilarity measures such as the EMD (Eqn. 2.19).

There are several well-known drawbacks with histograms. The spatial connectivity
contained within neighbouring pixels in a certain configuration is lost, for example, when
we build histograms of pixel intensities. Part of the solution was the development of a
higher layer of abstraction, the bag of words, such that in many computer vision problems,
we build histograms of atoms, which may be 2-D image intensity patches, SIFT keys, or
textons (we introduce SIFT keys and textons in §4 and §5, respectively). Spatial Pyramid
Matching [7] is an effective method to capture spatial connectivity at an even larger spatial
scale using histograms.
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3.4 Summary

Dissimilarity-based pattern recognition enables us to compare groups of potentially vary-
ing dimensionality, and can improve discrimination of the groups compared to operations
performed in the original feature space. Simple classifiers, such as k-NN, are often used
when treating dissimilarities as features for classification.

Maximum mean discrepancy is a kernelized distance measure used to quantify the dis-
similarity between two groups of data. MMD may be treated as a distance, as a statistical
two-sample test, or as a feature for dissimilarity-based classification. When used as a fea-
ture, we gain the benefits of supervised learning, and we are able to combine the MMD
feature with other features for classification. Furthermore, by examining the time-domain
behavior of MMD, we may gain additional context for classification purposes.

Comparing nonparametric density estimates can be much more discriminative vs. com-
paring the difference of means for two individual instances, and are very useful for complex,
high-dimensional, multi-modal data such as images. Histograms are one of the most pop-
ular methods of obtaining this density estimate.

By combining different variants of the three powerful techniques presented in this chap-
ter — dissimilarity-based pattern recognition, maximum mean discrepancy, and descrip-
tors based on nonparametric density estimates — we are able to design statistical pattern
recognition systems that may outperform the traditional difference of means approach on
two very different applications – video scene change analysis and computer assisted cancer
treatment prognosis.

In the next chapter, we utilize a more sophisticated version of the histogram, the bag of
words, which is able to represent underlying data that is multivariate. We utilize MMD as
a distance and perform dissimilarity-based peak finding to detect scene changes in videos.

Dissimilarity-based classification, using the maximum mean discrepancy distance as a
feature, computed on histogram estimates of the data density, is the essence of our system
in §5 to assist clinicians with determining the prognosis of cancer treatment using sets of
ultrasound imagery.
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Chapter 4

Application 1: Video Scene Change
Detection
Utilizing MMD as a distance, on time series data

4.1 Introduction

A vast literature has established that scene change detection algorithms have broad appli-
cation in video indexing, analytics, summarization, and compression (see [77] for one repre-
sentative survey). We introduce a novel method for detecting scene changes in videos, with
several desirable properties — it is unsupervised, can work in an online or offline fashion,
is not sensitive to thresholds or the genre of the video, allows for decimation of framerates
and resolutions for high speed processing, and enables detection of different scenes, not
just shot boundaries. It is tolerant to rotations, fast movement, and other non-semantic
changes.

Work in this field has been underway for many years, under names such as video
summarization, keyframe extraction, shot boundary detection, and changepoint detection.
Inspired by the nomenclature of [78], such systems may be broadly decomposed and distin-
guished by the features used, their spatial support, the feature similarity metric employed,
the region of temporal support chosen, and finally the boundary detection method.

Our system differs from others in two main ways. First, we adopt a more modern
and powerful feature descriptor, the visual bag of words [5] using densely sampled scale-
invariant feature transform (SIFT) keys [6] as the base words, which ensures robustness to
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noise, rapid motion, rotations, colour shifts, and global brightness/contrast changes. This
approach has been shown to perform strongly in still-image scene recognition applications
[7]. Secondly, we use a kernelized distance metric, the maximum mean discrepancy (MMD)
[1] that is computationally simple, involving the inner product between the difference in
means of the two distributions, yet statistically powerful, because these distributions are
mapped into a high-dimensional, nonlinear feature space using kernels, whereupon the
means are estimated via the Parzen estimator. The kernel representation allows us to
efficiently use very high dimensional feature descriptors, by enabling computation of the
MMD to occur in dissimilarity space and not using the original feature descriptors.

The MMD is computed over the frames of a video sequence in an overlapping sliding
window fashion, successively forming ‘current’ and ‘next’ groups of frames. A standard
peak finding routine is used on the MMD sequence to find local maxima, which are inter-
preted as scene change points. Previous work has demonstrated the usefulness of MMD
and closely related variants in tasks such as speaker discrimination [61]; for segmenting mu-
sical notes [60], and EEG/ECG data [8]; and in matching small image patches for visual
tracking [62].

To the best of our knowledge, neither of these two elements (the feature descriptor or
similarity measure) have been previously proposed for scene boundary detection, although
high-level video feature extraction [79] uses similar descriptors to summarize an entire
video, obtaining its ‘gist’, without localizing the endpoints of individual scenes.

4.1.1 Previous Work

A review of the recent literature and surveys from the last decade ([77, 78, 80]) suggests con-
tinued research interest and activity in shot boundary and keyframe extraction techniques;
fifty-seven groups and approaches participated in the annual NIST TRECVID [81] shot
boundary detection competition held between 2001 and 2007. We suspect this popularity
is in part because this application provides a nice testbed for new theoretical approaches in
feature representations, dimensionality reduction techniques, distance measures, classifiers
and clustering algorithms. Commercial applications of video indexing/summarization tech-
niques include the keyframe summary that is available in the Google Youtube video service,
and the multimedia indexing and search features for large corporate video collections in
Autonomy Virage [82].

Based on the final TRECVID SBD workshop report [81], we may remark on some
commonly observed characteristics of the top-performing shot boundary detection systems.
They are based on local or global changes, as measured by some similarity measure, of raw
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pixel feature vectors, colour histograms, or 2D-transformed versions of the frame (e.g.
Fourier transform, wavelets), or of the frame’s edges. One recent, representative work is in
[83], which used wavelet features modeled using a generalized Gaussian distribution, and
compared with the Kullback-Leibler divergence. The local maxima of the divergence in a
fixed size window is marked as a shot boundary (cluster in their terminology) if it exceeds
a threshold determined experimentally. However, a ‘shot segment’ or cluster derived using
such an approach does not necessarily correspond to notable semantic changes in the video;
rather, new shot segments may be formed due to camera or object motion.

A more general concern shared with other approaches, particularly parametric modeling
approaches, is that there are a great number of parameters to be set. One way to handle
this is to learn these parameters in a supervised manner; seven out of the top ten systems
in the TRECVID 2005 competitions used SVMs [81], which require manually annotated
groundtruth and may limit the system’s ability to generalize to other video content genres.

Statistical models of scene change probability can also be built using supervised train-
ing data, and an a posteriori estimate of scene change probability computed, as in [84].
However as one might imagine, they are highly content-dependent (consider sports vs.
nightly news) and also medium-dependent; that is, very different models may be seen in
movies vs. surveillance video vs. mobile robotics.

Our approach differs from these works in major ways that have not been previously con-
sidered in the scene recognition field. We use a visual descriptor more robust to inter-frame
motion, translation, and colour and lighting shifts, borrowing from the scene recognition
world, in order that the similarity measures may discriminate between different scenes
more precisely while being less sensitive to intra-scene changes.

4.2 Methodology

4.2.1 A Spatial Relationship-Preserving Scene Descriptor

We first turn our attention to the base feature vector used in the MMD computations when
comparing one group of frames against another, that is, the scene descriptor that describes
each frame. Given a greyscale input frame, SIFT keys are first computed on a dense grid
spacing. The closest match to this key is found from a linear combination of visual ‘words’
in a dictionary, using a technique called locality-constrained linear coding (LLC) [15],
and the coefficients of the linear combination used to increment each word’s histogram
bin by an amount proportional to their coefficients, thus forming the descriptor for the
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image. Rather than choosing a combination of words that minimizes `1 or `2 constraints,
as in many sparse coding approaches, LLC regularizes the constraint equation using the
distances between keys xi and atoms di, as shown in (4.1), where B is the dictionary of
words, and ci the coefficient vector (� represents element-by-element multiplication).

min
C

m∑
i=1

||xi −Bci||2 + λ||di � ci||2 s.t. 1Tci = 1,∀i (4.1)

The coefficients are constrained to be shift-invariant, which was found in [15] to have
highest accuracy amongst the alternatives evaluated. The dictionary is built offline using
the k-means unsupervised clustering technique with a dictionary size D. Larger dictionary
sizes led to higher precision and recall, but are limited by increasing clustering time and
memory requirements. Dictionaries from other videos may be used to enable scene change
detection in online applications. Spatial relationships between words are utilized through
the use of the spatial pyramid matching (SPM) technique, which, in a series of levels
L, recursively subdivides the image by factors of four into regions, as illustrated in Fig.
4.1, and computes a LLC-based histogram within each region. These histograms are then
concatenated together to form a final descriptor. We refer readers to [7] for further details.

4.2.2 Scene Detection System

Finally, we discuss the integration of the MMD and the scene descriptor into a scene
detection system, which is summarized in a block diagram, Fig. 4.2.

Aside from hard cuts from one scene to another, other common editing techniques
that may confuse scene detectors (causing false negatives) are dissolves, fades, and wipes.
Whereas many previous works have dealt with the problems of these special effects by
essentially developing an independent detector for each special case [78], our scene descrip-
tor deals with them in a simplified, unified, and elegant manner. Dissolves and wipes to a
new scene, or fades to white/black, appear as prominent maxima in the MMD due to the
significant change in the bag of words histogram. For accurate localization, we only need
to ensure that the window size is longer than the longest expected fade. One benefit of
the LLC-based feature descriptor is that dissolves and wipes involving two scenes may be
directly modeled as a linear combination of words from the past and future scenes. This
should, in theory, give us a smooth MMD peak rather than creating a noisy MMD signal
by incorrectly allowing unrelated words to be matched to the image patch. Camera flashes
are another kind of video content that can cause false positives, but may be dealt with by
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Pyramid level 1

Pyramid level 2

Pyramid level 3

Figure 4.1: An illustration of the spatial pyramid matching technique, showing a three-level
pyramid of histograms. Each histogram bin represents one ‘visual word’.
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ensuring that there are no descriptors immediately on both sides of the large peak that
have low mutual dissimilarity.

The histogram intersection kernel (HIK), (4.2), popularized in [7], is used to compare
the descriptors of two images X and Y , as it is parameterless and outperformed alternatives
such as the RBF kernel in our tests.

KHIK(X, Y ) =
d∑
j=1

min (xj, yj) (4.2)

The MMD is then computed as in (Eqn. 3.15) in a sliding window fashion for each
frame t, with the w/2 frames prior to t forming group P , and the next w/2 frames forming
group Q. The necessary SIFT keys and scene descriptors may also be computed in small
batches which lends itself to online computation and reduced memory requirements. The
common kernel computations between windows may be reused; only the kernel distance
between each new frame and the w − 1 other frames in its window need to be computed.

Finally, a standard peak finding approach is used to find local MMD maxima within
the window. This falls in the class of adaptive thresholding methods, where a scene change
is declared for a frame if it is a local maxima, and was preceded in time by a MMD value
lower by at least δ.

4.3 Experimental Setup and Results

We demonstrate our system on a 30 minute documentary video used in the NIST TRECVID
2001 shot boundary detection competition, ‘Challenge at Glen Canyon’, featuring complex
natural outdoor scenes, compression artifacts and noise, and a wealth of object and camera
motion. SIFT keys are computed at every 8 pixels in both dimensions, with each SIFT key
having a spatial support of 16×16 pixels. A visual dictionary of D = 768 visual words was
learned by applying k-means clustering over 25% of the video. Using a three-level pyramid
(L = 3), as recommended in [15], this yields a 768 + 4 · 768 + 42 · 768 = 16, 128 dimension
feature descriptor for each image.

The top graph of Fig. 4.3 shows sample scene changes and the output MMD values.
Further examples of false positives, false negatives, and correctly detected changepoints are
shown in Figure 4.4. For video summarization and change detection purposes, we observe
that it is unnecessary to locate the shot boundary with frame accuracy; a latency may be
specified, which allows us to reduce computational complexity significantly by temporal
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subsampling. We hypothesize that the similarity operators used in systems based on the
motion field, edges, or colour histograms would likely produce spurious false peaks due
to the scene discontinuities, in contrast with our system. To investigate this we have
decimated the framerate from 29.97 fps to 1 fps.

4.3.1 Tested Alternatives

To put the performance of our proposed solution (entry #1 in Table 4.1, ‘LLC + SPM
+ HIK + MMD’) in context, we have also tested several combinations of the features
and kernels individually, without MMD on the same data. We have also tested solutions
proposed by other groups that do not rely on the bag-of-words approach at all.

In entry #2, we wished to isolate the contribution of MMD from the contribution of the
features and kernels. To test this, we searched for minima of the similarity kernel between
successive frames, and classified them as scene changes, without using MMD. This variant
is labelled ‘LLC + SPM + HIK’.

In entry #3, in §4.1 we hypothesized that by computing the difference of group means
in a remapped feature space, increased discrimination could be obtained. This variant is
denoted ‘LLC + SPM (`2)’, where the simple Euclidean distance (denoted by `2) is used
as the distance measure. The same feature descriptor is used as our proposed solution.

Entry #4, ‘BOW + HIK + MMD’, serves to illustrate the improvement in performance
gained from the LLC and SPM techniques, compared to the base bag of words (BOW)
approach. It should be compared to ‘LLC + SPM + HIK + MMD’.

Finally, the last two entries of Table 4.1 test two schemes representative of contemporary
approaches to scene change detection on the same data, in order to illustrate their ability
to adopt to different content genres and framerates. Entry #5, ‘Local edge-based SAD’, is
a change-of-edge-intensity approach using fixed thresholds and local subregions compared
with the sum of absolute differences (SAD) function, while the rank tracing approach,
entry #6, is a shot boundary detector tuned for a particular genre, sports videos [85].

4.3.2 Ground truth data generation

The ground truth changepoints were obtained by manually reviewing the extracted frames
of the video, and identifying the first frame of each semantically different scene. Different
camera angles and lighting changes were not considered new scenes. It is a subjective
process; for example, a slight zoom of a scene would not be considered as a new scene,
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but a large zoom, say from a full body shot to a close-up of the hand, would be. This
annotation was done before the algorithm was run to avoid inadvertent bias. A total of
233 scene changes were identified in this manner from the entire set of 1615 frames.

4.3.3 Results

Results are shown in Table 4.1 using the well known precision and recall metrics, where
Precision = TP/(TP + FP) and Recall = TP/(TP + FN). TP, FP, and FN are the number
of true positives, false positives and false negatives, respectively. The table entries are or-
dered by overall harmonic mean of the two, F1 = 2 · Precision · Recall/(Precision + Recall).
The first entry is the system as presented in §4.2. We set the window size to w = 2 ex-
perimentally with the aim of ensuring that we do not have any scenes shorter than this
window. We examined the dynamic range R of the MMD over the video sequence and
experimentally set the peak finding parameter δ = 0.05R, but found the results are not
too sensitive to this value.

We can see that entry #2 (‘LLC + SPM + HIK’) of Table 4.1, ‘LLC + SPM + HIK’,
the variant without MMD, does not perform as well in terms of precision and recall to the
MMD solution. The bottom graph of Fig. 4.3 shows its time-series behavior, and we see the
primary issue is oversensitivity, leading to many spurious detections and oversegmentation.

The non-kernelized difference-of-means approach, ‘LLC + SPM (`2)’, entry #3 of Table
4.1 has 3.6% lower F1 than the proposed approach. One reason for its reduced performance
can be visually seen in the middle plot of Fig. 4.3 — its dynamic range is much lower than
that of the kernelized solutions, which makes it very sensitive to peak finding thresholds.

A 3.8% improvement in F1 was obtained by layering the LLC and SPM techniques
over the base bag of words (BOW) approach, as seen by comparing entries one and four of
Table 4.1. Finally, results for the edge-based SAD approach and the rank tracing approach
are listed as entries five and six respectively. Settings were left at their default values for
both systems, and we observe that they do not perform well in the domain outside one that
they were trained in, which suggests there is a role for our unsupervised, non-parametric
robust scene detection scheme to fill.

4.4 Conclusions

We have presented the design and experimental results of a scene detection system that
models the concept of ‘scene’ at a higher level of abstraction than previous works, using
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Figure 4.4: Examples of correctly and incorectly detected visual changepoints using our
proposed scheme.

False positive.

False negative. The right-side frame
represented a quick zoom in followed
by a zoom out, resulting in a scene
that was not longer than the window
size w.

Correctly detected changepoint

False positive. Computer-generated
overlays not present in the visual
dictionary will present issues with
our approach.

Correctly detected changepoint.

Correctly detected changepoint.
Note the very similar color dis-
tributions and high-level scene
arrangement.
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Table 4.1: Visual Changepoint Detection results on ‘Challenge at Glen Canyon’ video.
Approach # Detections Precision Recall F1

1) LLC + SPM + HIK + MMD 247 0.887 0.940 0.913
2) LLC + SPM + HIK 247 0.879 0.931 0.904
3) LLC + SPM : 〈µ1 − µ2, µ1 − µ2〉`2 255 0.839 0.919 0.877
4) BOW + HIK + MMD 245 0.853 0.897 0.875
5) Local edge-based SAD approach, 730 0.315 0.987 0.478

|µ1 − µ2| > τ
6) Rank tracing approach [85] 158 0.544 0.369 0.440

the visual bag of words approach and linear combinations of densely sampled SIFT keys.
In doing so, elements of a video that do not represent a true scene change, such as ob-
ject motion or contrast changes that other feature representations would be sensitive to,
are treated as ‘noise’, reducing the false positive rate. The maximum mean discrepancy
kernelized distance was then used with the histogram intersection kernel, with the aim to
use nonlinear basis function expansion to increase separability of group means. Results
showed higher dynamic range, precision, and recall compared to conventional methods.

Our system works well with varying framerates, enabling a CPU vs detection latency
tradeoff, whereas most other scene change detectors are tuned with framerate-dependent
thresholds on color or intensity features. We also illustrated how many special types
of editing transitions can be handled naturally by the framework instead of requiring
special cases and detectors. Three directions for future work are to expand the range of
content tested, to use the MMD statistical significance tests in [1] to further filter out false
positives, and to utilize the visual changepoint information and temporal segmentation
information in the supervised problem of place recognition in videos; that is, to enforce
temporal consistency in classification results by averaging out individual false positive
classifications over a contiguous segment.

The contribution of this work, then, has been to demonstrate the application of the
MMD to a time series of visual data, and to ‘marry’ powerful feature descriptors from the
world of computer vision with a problem based in the more traditional image processing
world.
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Chapter 5

Application 2: Computer Assisted
Cancer Treatment Prognosis
Using MMD as a feature, on unordered groups of data

5.1 Introduction

Assessing the efficacy of cancer treatments on subjects in preclinical and clinical applica-
tions is presently a very slow affair; results may not be available to the researcher or clin-
ician for weeks or even months. This can lead to ineffective cancer treatments continued
needlessly as no faster feedback mechanisms have yet reached broad adoption. Quantita-
tive ultrasound (QUS) methods [86] provide a promising alternative framework that can
non-invasively, inexpensively and quickly assess tumor response to cancer treatments using
standard ultrasound equipment.

In our work, we take steps towards the development of a computer-aided-prognosis
system that uses 2-D QUS parametric maps, together with distances between pre- and
post-treatment images computed using the maximum mean discrepancy (MMD) distance
measure, to estimate the fraction of tumor cells that have died after drug treatment in
a population of mice with breast cancer. QUS methods involve extracting features from
the spectrum analysis of the backscattered radiofrequency signal samples over a region of
interest, forming a QUS parametric map.

Using such an approach, cell death (apoptosis) signs, such as increased backscatter, may
be detected on the timescale of hours to a few days, and are strongly linked [87] to gross
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future anatomical changes (which are detected on the timescale of weeks). This permits
clinicians to receive feedback and switch to alternate treatments far earlier, in a step
towards the goals of personalized medicine. This can save the costs of drugs and hospital
care, while reducing patient recovery time and exposure to side effects. Conventional B-
mode ultrasound images have difficulty being used for this purpose, because the operator-
and machine-dependent settings of B-mode have a higher impact on repeatability and
generalization of machine learning methods compared to QUS methods, which use the
more machine- and operator-independent [86] calibrated backscattered RF values as their
input.

This work has two main contributions. The first, as mentioned earlier, is a methodology
to automatically give an early indication of the fraction of cells undergoing apoptosis (with
respect to the original tumor cell density), using the QUS parametric maps obtained from
coarse human-selected, B-mode ultrasound guided, regions of interest (ROI) windows. The
second novel contribution in the medical imaging field is in our use of the Maximum
Mean Discrepancy distance metric as a feature for classification in a dissimilarity-based
framework. While MMD has also been previously used in medical imaging, such as in
diffusion MRI [72], it was used as a biomarker feature selection method, i.e. statistical
test, using two empirical PDF vectors as features. Our application differs substantially by
using the MMD values themselves as features.

Using intensity histograms of the parametric maps as the feature descriptor, we com-
pare our MMD-based method with three alternate feature representations that use the
`2 distance. These feature representations are found in the QUS literature for detecting
treatment response, and consist of a texton texture representation (‘Texton’), the same
intensity histogram used in the proposed MMD approach (‘IntHist’), and a representation
of each parametric map with its mean intensity (‘MeanInt’).

Performance is quantified by several measures, chiefly Pearson correlation |r| to the
groundtruth cell death fraction, statistical significance tests (t-test) between control and
treatment groups, and binary classification accuracy in estimating the cell death fraction
of a treated subject.

Using the MMD distance as a feature, statistically significant differences were detected
using the unpaired t-test between treated animals and untreated controls within 24 h after
treatment administration. Experimental results showed we were able to correctly classify
a subject as having ‘low’ or ‘high’ cell death with 88.2% classification accuracy, and the
MMD distance had a Pearson correlation coefficient to histologically-determined cell death
ratios of |r| = 0.76.
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5.1.1 Past Work

Imaging tumor response to treatment at cellular levels [88, 89] is a much younger sub-field
of its vast parent area, medical imaging for cancer, which has been well established for
research, clinical screening, and treatment planning purposes; see [90] for a comprehen-
sive survey. The impetus for research in this area is to shift away from the conventional
paradigm of using tumour size as a measure of treatment effectiveness. These changes in
size can take weeks to months to become visible, and do not always occur even when the
treatment is effective [88].

Both biochemical and morphological methods may be used to quantify tumor response.
The goal of the biology-based methods typically involves measuring the differences in re-
ceptor expression or measuring metabolite levels [88]. Most of these biochemical methods,
including magnetic resonance imaging (MRI), positron-emission tomography (PET), X-
ray Computed Tomography (CT), have the disadvantage of requiring contrast agents to be
administered to enhance the contrast from soft tissues. The agents’ cost and potential for
side effects and allergic reactions (for example, some of the agents are radioactive, albeit
at low levels) limits the spread of the technology. Moreover, the cost of these devices is
generally significantly greater than an ultrasound machine.

The morphological methods, which includes quantitative ultrasound (QUS), work on
the principle of directly visualizing, or indirectly quantifying, tumor shape and struc-
ture at varying scales. Cancer therapies, such as photodynamic therapy, radiotherapy,
or chemotherapy, generally function by creating a toxic environment for the tumors, or
by inducing apoptosis, i.e. programmed cell death [91]. During this process, many com-
positional changes occur that will affect the viscoelastic properties of the tumor. These
include nuclear condensation, cell swelling, fragmentation of the nucleus, and chromatin
dissolution, which are hypothesized to directly or indirectly increase echogenity, i.e. the
backscattered energy, of the tumor [86].

Simulation results from [92] demonstrate that a reduction in destructive interference
patterns emanating from the cell nuclei, after changes such as nuclear condensation, can
account for an increase in backscattered energy.

In turn, apoptosis detected at early stages (as soon as 24 h) after treatment has been
linked as a prognostic factor for treatment outcomes measured significantly later (7 to 21
days later) [87]; conversely, the inability of some cancerous cells to initiate apoptosis has
been cited as a reason for variability in cancer treatment efficacy [88].

The first work to utilize ultrasound to detect apoptosis resulting from cancer treatment
in vivo was reported by [93], which used high-frequency ultrasound (40 MHz fc). This
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has recently been extended to conventional clinical US ranges (1-20 MHz) [94, 95], which
enables much broader adoption of the technology by requiring fewer changes by manufac-
turers. It built on the much earlier theoretical work of [96], the seminal work behind QUS
methods, that utilized spectrum analysis of the conventional low-frequency (5-15 MHz) ra-
diofrequency (RF) signal to characterize tissues at much coarser scales, e.g. to distinguish
between normal and detached retinal tissue.

Statistical methods, classifiers, and distances

Many works in the field of QUS analysis [97, 94], rely on 2D/3D feature plots and the t-
test to demonstrate the statistical significance and discriminative power of their proposed
system. The t-test may be paired or unpaired, depending on whether the comparison
is being made between treated vs. non-treated animals (unpaired), or pre- and post-
treatment (paired). Factorial analysis of variance (ANOVA) may be applied when multiple
treatment options are being compared [98].

However, we note that comparisons of treated vs. non-treated animals assume ef-
fectiveness of the treatment in all animals, and therefore may be less helpful in clinical
practice. Alternatively, the learning goal may be redefined to predict responding vs non-
responding animals (defined, e.g. in [94] as those where a pathologist finds there was a
decrease in tumor volume of 50% or more). When such studies obtain groundtruth labels
via histopathologic assessment, such as post-treatment average cell death or average nuclei
diameter, the Pearson correlation coefficient r may be computed, and appropriate super-
vised machine learning techniques applied. In the present work, our target is to predict
responding vs non-responding subjects, defined as those with a cell death fraction > 40%.

Relatively few works have attempted to use supervised learning to detect tumor re-
sponse to treatment using medical imaging data, a logical next step towards developing
decision support systems for clinicians. Larkin et al. [99] worked with contrast MRI to de-
tect cell death, using the Support Vector Machine (SVM) classifier [17] and a ‘Minkowski
functional’ feature to classify whether an image represented a treated tumor, or a non-
treated control image. Classification accuracy after a 24 h period was 75% using 19 sub-
jects. Histological analysis was used to confirm significant increases in cell death after
treatment. A SVM classifier was also applied with the same goal of differentiating between
pre- and post- treatment images of our dataset, using the QUS intercept data in [100];
classification accuracy was 87.3% when assessed 24 h after treatment.

Two works from a related field, computer-aided pathology detection, may also suggest
appropriate supervised learning methods. Sørensen [101] used a fusion of rotation-invariant
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local binary pattern (LBP) features and intensity histograms in a dissimilarity-based clas-
sification approach to predict emphysema in CT imagery. The simple K-NN classifier and
Euclidean distance were used, and the classifier’s posterior probabilities were further used
to compute the correlation to the groundtruth. Feleppa et al. [95] used the multi-layer
perceptron (MLP, a type of artificial neural network) to distinguish between cancerous
and non-cancerous tissues of the prostate at a pixel-by-pixel level using QUS midband and
intercept features. They found SVMs to have similar accuracy to the MLP.

We note that fairly little comparative analysis appears to have been reported on the
possible feature representations/transformations, similarity measures, and supervised clas-
sifiers that are essential components of computer-aided prognosis systems using QUS tech-
nology, which is on the road to commercialization and clinical use. This work aims to take
a step forward in this direction.

5.2 Methods

5.2.1 Data collection and preparation

Experiments carried out at the Odette Cancer Centre, part of the Sunnybrook Medical
Center (Toronto, Canada), on 17 severe combined immunodeficiency (SCID) mice formed
the dataset for this study. The hind legs of the mice were injected with human breast cancer
cells (cell line MDA-MB-231), where they grew into 7–9 mm sized xenograft tumours. All
except two mice were then anaesthetized and given chemotherapy treatment (paclitaxel-
doxorubicin) by way of intravenous tail vein injection. The last two mice served as a control
group (labeled ‘0 h’), receiving a sham treatment.

Ultrasound imagery was taken of the tumour before treatment (‘pre-treatment imag-
ing’). The mice were divided into five groups, where each group was also imaged after a
different, progressively increasing time interval: 0 (for the control group), 4, 12, 24, and
48 h after treatment.

Ground truth data generation

To obtain a ground truth for assessing the effectiveness of our methods, histological studies
were conducted by the pathology department by excising the tumour after post-treatment
imaging. The cells were sliced and stained, and then imaged at 20× and 40× magnifi-
cation. Morphology-aware software (e.g. [102]) was used to count the cell area that had
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undergone apoptosis, or programmed cell death, by way of quantifying the image area that
had responded to the staining agent. We refer to his groundtruth value as the ‘cell death
fraction’. For additional details on the medical aspects of the dataset preparation, we refer
readers to [98, 100].

5.2.2 Quantitative ultrasound

A Sonix RP research ultrasound system (Ultrasonix, Vancouver, Canada), with center
frequency of ˜7 MHz, focal depth 1.5 cm, and 40 MHz sampling rate was used with a
L14-5/38 linear transducer. Multiple scan planes (11 to 15), centered on the tumour in a
region of interest (ROI), were taken at progressively increasing depths, ˜0.5 mm apart.

Standard techniques of spectral estimation [103] were used to derive an estimate of the
frequency spectrum. The transducer, ultrasound machine, and depth-related attenuation
all introduced their own transfer functions, which were compensated for by normalizing
with the power spectrum of an agar-embedded glass bead phantom model [104] (calibration
target). Reported spectral values are therefore relative (dBr) to this target.

Primary Features

The Fourier transform of a sliding window of calibrated, backscattered ultrasound RF
signals, 9–11 wavelengths in the axial direction, and 15 scan lines laterally, was first taken
using the Hamming window function to obtain a power spectrum estimate at each point
in the ROI.

Linear regression performed on this power spectrum, using a 6 dB bandwidth centered
on the transducer’s center frequency, yields three parameters, which we shall refer to as
primary features : (a) the intercept of the fit line to the calibrated y-axis, termed the
intercept ; (b) the slope of the fit line, termed the spectral slope, and (c), the midband fit
(MBF), the power (in dBr) at the center frequency fc. These parameters are extracted for
each movement of the sliding window, thus forming three 2-D parametric maps.

It can be seen that the midband fit is not independent of the slope. The intercept is
theoretically independent of attenuation, as it is a relative measurement with respect to a
calibrated plate at the same depth. Very early work with QUS [93] used raw backscatter
(RF) values directly instead of applying any linear regression; [96] used a simple model
of ocular membrane scattering to derive the membrane’s reflection coefficients directly
from the power spectral density (PSD). Parametric maps of the MBF feature, pre- and
post-treatment, are shown in Figure 5.1 over several time intervals.
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The dataset was compiled and the features (2-D parametric maps of intercept, midband
fit, and slope) extracted by our collaborators at Sunnybrook, while the data analysis has
been my individual work.
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Figure 5.1: (Best viewed in colour.) Representative pre- and post-treatment QUS para-
metric maps of the midband feature for each exposure time group. The colour bar is in
units of dBr, relative dB to the normalized calibration target.

The effectiveness of each primary feature appears to vary depending on many factors:
the ultrasound frequencies used, the pathology type, the effectiveness of the applied ther-
apy, and the test environment (in vivo/in vitro). Further discussion may be found in [98].
In working with high frequency (20-60 MHz) ultrasound, [98] used MBF and intercept;
[105] worked with integrated backscatter spectrum values and SS, while [97] selected SS
and MBF. Intercept alone was found most discriminative in lymph classification tests [95].
Using conventional ultrasound, [95] chose MBF and intercept values as did [94], while [100],
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using the same dataset as the present work, used intercept alone.

One consistent pattern was observed from this review of the QUS literature: the spectral
slope was found to be discriminative in certain cases at high frequencies, but never in low
frequency clinical ultrasound, a result which we also confirm in our work. We know that the
echogenicity of backscattering surfaces varies with frequency, as the wavelengths grow much
longer than the scale of the scattering structures. There may have been no lower frequency
spectral signature (envelope) changes in the structures modified by the treatment. Another
simple theory is that small changes in slope are more pronounced at frequencies further
away from the y-axis.

Feature transformations

Several feature transformations have also been introduced that attempt to reduce the region
of interest (ROI) dimensionality or represent it in a more discriminative fashion.

Using the average scatterer diameter (ASD) and average acoustic concentration (AAC),
which are two parameters of a spherical backscattering model, [106] was able to differen-
tiate between breast carcinomas and sarcomas in mice. These features are both derived
quantities based on the SS and intercept features. ASD and AAC were evaluated along
with intercept and slope features in [95] for detecting tumorous lymph tissue, but this did
not result in higher classification accuracy than using the spectral intercept alone.

More recently, several authors have proposed treating parametric maps of these backscatter-
derived features as images, and to apply traditional methods of texture analysis on them.
These include grey-level co-occurrence matrices (GLCMs) of the MBF and intercept maps
[94], from which several image moments were computed: correlation, contrast, and ho-
mogenity. Comparison of breast tumors after one week of treatment showed statistically
significant differences between pre- and post-treatment populations using these features. A
trained dictionary of texture atoms (textons) was applied by [100] to distinguish between
pre- and post-treatment images, using the same breast cancer dataset as our work; each
ROI is described by a histogram of these textons. We implemented these two methods for
comparisons to our proposed method of representing each ROI with an intensity histogram.

5.2.3 Maximum mean discrepancy

The inspiration for this study arose from our previous work using maximum mean discrep-
ancy in an unsupervised scenario, for time-series changepoint detection [4]. We realized
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that the problem of detecting semantic scene changes in videos had parallels to detecting
significant changes in tumour properties from a series of ultrasound parametric images.
The analogy is not exact: in the ultrasound case, adjacent images in a population are
taken from discontinuous spatial vantage points (ROIs), and the pre- and post-treatment
populations are temporally separated by a large amount of time.

We expect that such a measure will be useful in exploiting the intra-group variance
information available from multiple samples/instances taken of each of the pre- and post-
treatment populations.

5.2.4 Computer aided prognosis

After the 2-D parametric maps have been prepared for each ROI, the intercept and MBF
values for each region of interest image are separately gathered into normalized (to unit
area) histograms of intensity values. These uniformly spaced histograms have D bins,
and constitute a rotation- and scale-invariant nonparametric density estimate (§3.3) of
the feature. All of the (m1 + m2)

2 pairwise similarities between the m1 ROIs in the pre-
treatment group, and the m2 ROIs in the post-treatment group are then computed using a
similarity kernel K, generating the joint distance matrix Kjoint. The self-distance matrices
Km1 and Km2 are similarly generated using a kernel matrix computed within each group.
We have chosen the histogram intersection kernel (HIK), a parameter-free kernel that has
been used to good effect in many image analysis applications (§2.2.4).

kHIK(X, Y ) =
d∑
j=1

min (xj, yj) (5.1)

We next compute the maximum mean discrepancy (MMD2) distance using the kernel
matrices, using Eqn. 3.15.

ˆMMD
2

b(X, Y ) =
1

m2
1

m1∑
i,j=1

Km1(xi,xj)−
2

(m1 +m2)2

m1+m2∑
i,j=1

Kjoint(xi,yj)+
1

m2
2

m2∑
i,j=1

Km2(yi,yj)

(5.2)

The last stage is to train a k-NN classifier using the MMD values as features, and the
groundtruth values as labels in a dissimilarity-based classification scheme (§3.1, [68]).
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5.3 Experimental Setup and Results

The mice were divided into five exposure time groups, as shown in Table 5.2, and mul-
tiple ultrasound images were taken just prior to treatment with chemotherapy (the ‘pre’
population), and after exposure (the ‘post’ population) of the specified duration. This
represented a total of 443 QUS ROIs with three parametric primary feature maps each –
one for each of the intercept, midband fit point, and the slope. The size of the parametric
maps varied depending on the operator-selected ROIs, but were on the order of 250 × 30
‘pixels’, or feature values.

We selected several main evaluation criteria : t-test, Pearson correlation to cell death,
and ability to predict cell death, and report on each one in a separate subsection. The
naming scheme used throughout our figures, charts and text is

[QUS Feature]-[Representation]-[Distance Measure]-[Kernel (if used)]

e.g. Intercept-IntHist-MMD-HIK.

To set the parameters of the system, a grid search was performed on histograms of sizes
{2-200}, and the histogram size yielding lowest K-NN classification error was selected.
This was 9 bins for MBF, and 10 bins for the intercept feature.

The slope primary feature performed poorly across all feature representations and eval-
uation metrics tested, and so its results have been omitted. Development took place on a
contemporary Windows Core i5-2520M machine with 4 GB of RAM, using MATLAB.

5.3.1 Alternative solutions tested

We compare our proposed approach with three alternative systems published in the recent
literature on detecting tumor response changes using QUS.

Gangeh et al. [100] proposed treating the parametric images of QUS primary features
(e.g. Figure 5.1) as textures that can be analyzed using the bag-of-textons approach, which
is one of the state-of-the-art texture representation methods. Working with each parametric
map in turn, we implemented this approach, extracting 500 randomly chosen textons of
size 5× 5 from each image, and computed the dictionary used to form the bag-of-textons
by using k−means clustering separately over the set of each subject’s pre-treatment and
post-subject images. The per-subject codebooks are then concatenated together. Thus,
if there are N subjects and k atoms per set, the final dictionary is of size 2Nk. We set
k = 10, based on a classification-error-minimizing grid search of k values {5-25} and patch
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Table 5.1: Pearson correlation coefficients |r| for the linear least-squares fit of computed
distances to cell death

Midband Intercept

MMD
Intensity Hist. 0.76 0.67
Texton Hist. 0.75 0.64

L2
Intensity Hist., ||µpost − µpre||`2 0.68 0.57

Mean Intensity, µpost − µpre 0.65 0.65

sizes from {1 × 1} to {12 × 12}. The bag-of-textons histogram descriptor is then formed
for each ROI using the final codebook. We refer readers to [100] for a detailed description.

The second comparison uses the same feature representation as our MMD approach,
intensity histograms (‘IntHist’), but computes the distance using the Euclidean distance
instead of MMD.

The third and final comparison is made by representing each ROI using the mean value
(‘MeanInt’) (a scalar value, µpost1, µpost2, · · · ) of its parametric feature map, and computing
the group means µpre, µpost separately for each exposure time. This approach is implicitly
used in the majority of QUS works that compute 2D feature plots of primary features, e.g.
[105], or report the average pre- and post-treatment differences of a primary feature, e.g.
[97]. As the polarity of the difference is informative, we abuse the notation slightly and do
not take the absolute difference of means (as we see in Fig. 5.3, this affects the 0 h case
only; the other exposure groups are still computed using the proper `2 distance).

5.3.2 Correlation to cell death

Table 5.1 lists the Pearson correlation coefficients r of the different distances under compar-
ison after a linear regression fit to the groundtruth cell death fraction. While a low absolute
value of r may simply indicate a nonlinear relationship of the imagery to cell death, rel-
ative differences in r between data analysis methods, for the same underlying data and
treatment, can give us meaningful performance data on the features and distances. Here, a
16.9% improvement over the traditional method of comparing mean intensities (r = 0.65)
is observed compared to the highest-performing combination, Midband-IntHist-MMD-HIK
(r = 0.76). The linear fit to the MMD values is plotted in Figure 5.2; a nonlinear cell death
to exposure time relation can be seen.

Figure 5.3 compares the average cell death, Midband-IntHist-MMD-HIK distances,
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Figure 5.2: Linear fit of MMD vs cell death fraction to the midband fit (MBF) feature
data, using the HIK kernel

and Midband-MeanInt-L2 distances by exposure time group. Due to the different vertical
scales, it is difficult to compare MMD and `2 directly, although we can see that the pseudo-
`2 method (the discussion in 5.3.1 explains why the value is negative) actually reported a
negative value for the control group, which correlates poorly to the near 10% cell death
experienced. To quantitatively compare the histograms in Figure 5.3, we again turn to
a kernel designed for histograms, the HIK (Eqn. 2.37). The MMD and L2 distances are
normalized to have the same value as the cell death fraction at 24 h. Comparisons against
the groundtruth histogram yielded a similarity score of 1.433 with Midband-IntHist-MMD-
HIK, and 1.303 for Midband-MeanInt-L2 (higher scores indicate higher similarity), a 10%
higher similarity value for MMD.
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Figure 5.3: Cell death, MMD (arbitrary units), and difference of means (relative dB, dBr)
vs Exposure Time. The error bars show the ± standard error of the mean (SEM).

5.3.3 Statistically significant differences from control group

To compare the statistical significance of the different computed distances, we computed
Welch’s unpaired two-sample t-test with unequal variance, using a significance level of
α = 0.05. The unequal variance t-test is used as the sample population varies significantly
between groups. The first group consisted of all of the control subjects’ distances, while
the second group contained an exposure group’s distances. Results are reported in Table
5.2 for the different feature-distance combinations, and are roughly arranged in order of
ascending p values.

All of the feature-distance combinations have p < 0.05 (the standard threshold of
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significance) after 24 h of treatment, and p < 0.01 when using the MBF. The results
are most interesting for the (Intercept/Midband)-MeanInt-L2 combinations which stand
almost alone in reporting significant differences for the 4 h and 12 h groups (the exception
is Midband-Texton-MMD-HIK for the 12 h group). As a t-test between control group and
non-control group groundtruth cell death fractions (Table 5.2) indicates that the control
and 4 h group do not possess statistically significant differences, this suggests that the mean
intensity feature and `2 distance are overly sensitive and are reporting a false positive, in
contrast to MMD.

As a practical matter, we note that a clinician is unlikely to change treatment protocols
after such a short period, when it is known that the peak response is typically seen 24 h
after treatment administration (Figure 5.3). Previous QUS works have also not made
claims about changes being detected so quickly after treatment, with the earliest cited
detection time being 24 h to our knowledge [105, 98]; [97] imaged after intervals as short
as 1 h but did not report the p values per exposure group.

5.3.4 Predicting cell death over a threshold

Next, we train a supervised binary classifier, using the distance value between pre- and
post-treatment populations as the sole feature, and cell death fractions as groundtruth.
The target is to predict whether or not a subject will have cell death greater than a thresh-
old τ . Ten-fold leave-one-case-out (LOCO) cross-validation was used with the K-nearest
neighbours (K-NN) classifier to successively test the instances, as it is the most common
choice in dissimilarity representation [68] and able to represent complex, multimodal clas-
sification surfaces. We performed classification using two cell death thresholds, 20% and
40%. Based on the distribution of cell deaths in the population (Figure 5.2), we observed
noticeable gaps around the 20% and 40% levels, and we have therefore hypothesized that
these levels are less susceptible to misclassifications caused by noise in the feature values.
The classification accuracy, area under curve (AUC) of the Receiver-Operator Curve, and
Type I (1 - Sensitivity) and Type II (1 - Specificity) error rates are summarized in Tables
5.3 and 5.4 for the 20% and 40% thresholds, respectively. Entries are sorted in order of
ascending test error. Class priors were set to their observed frequencies, and class-weighted
classification error results are reported.

Generally, the MBF feature proved more discriminative in terms of classification error
compared to the intercept. MMD with the histogram of midband values had the lowest
error at both threshold levels.
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5.3.5 Discussion

Overall, the Midband-IntHist-MMD-HIK combination had the strongest performance amongst
the different feature-distance combinations on the evaluated metrics and thresholds. Fig-
ure 5.4 visually compares the MMD versus the Euclidean distances in dissimilarity space.
With MMD, we can observe that low cell death subjects are clustered more tightly into
a corner compared to `2, and the inter-class distance is increased. This reduces the like-
lihood of k-NN errors as well as the errors of classifiers employing linear discriminant
functions. We had also tested combinations of features in early feature fusion configu-
rations, as well as late classifier-level fusion (using Intercept-IntHist-MMD together with
Midband-IntHist-MMD, for example), but found they did not improve classification error
over using individual features. Using this plot, we can see why feature fusion may not be
more effective – a diagonal discriminant line is not able to cleanly separate the classes more
than a straight line perpendicular to one of the axes.

The intensity information embodied implicitly in the intercept, and more explicitly in
the midband fit parameter is important to ensure good discrimination, as shown by the
poor performance of the slope, which is insensitive to absolute backscattered energy levels.

The intensity histograms outperformed the texture based methods (textons), which
raises the question of whether the QUS parametric maps are best treated as texture im-
ages, and under which conditions. Texture methods look for familiar, regular patterns of
physical structure, but in this case, the underlying scattering structures (of nuclei fragment-
ing, cell walls disintegrating, etc.) are occurring at much smaller scales than the ultrasound
wavelength, which will cause a speckle pattern to appear superimposed on the B-mode im-
age. Under this hypothesis, we would expect texture representation to show better relative
performance when tested with higher-frequency ultrasound, which has higher spatial res-
olution, or for coarser, anatomical-level tasks such as emphysema detection. Conversely,
we would also expect other texture based approaches, such as the Local Binary Pattern
feature as in [101] to fare poorly on the present dataset.

We found the selection of the kernel has strong impact on kernel-based learning meth-
ods. Experiments (results omitted) were conducted using the Gaussian radial basis function
(RBF) kernel (using heuristics for the tuning of its σ parameter), the Hellinger kernel (re-
lated to the Bhattacharyya distance), χ2 kernel, and correlation kernel in conjunction with
MMD and intensity histograms. No alternative kernel tested consistently outperformed
HIK on different primary features and both cell death thresholds.

At the 40% threshold, which we believe to be more clinically relevant, sensitivity was
80% and specificity 91.7%. As one approximate point of reference, we note that [107]
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reported tumor response detection sensitivity and specificity of 78% and 86%, respectively,
using spectrum analysis of proton magnetic resonance spectroscopy (MRS) data taken one
week after at least three rounds of chemotherapy. That group also studied human breast
cancer tissue treated in vivo with chemotherapy, but with the very significant difference of
using human patients instead of mice.
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Figure 5.4: Midband distances plotted against intercept distances. Difference of means on
left, MMD on right.

5.4 Conclusions

We presented a system for noninvasive tumor response assessment of a system using QUS
parametric maps, containing several aspects novel to the analysis of QUS imagery: a
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dissimilarity-based classification scheme employing the MMD distance measure as fea-
tures, the introduction of the MMD value as a proxy for cell death fraction, and the use of
intensity histograms of primary features. Three alternative, commonly used feature rep-
resentation and distance schemes were implemented for comparison purposes. While all
showed statistically significant differences between pre- and post-treatment groups, signif-
icant improvements in both correlation to histologically determined cell death ratios and
classification accuracy were observed using MMD and intensity histograms, for both the
MBF and intercept features. The system has classification accuracy of 84.7% when predict-
ing cell death <20%, and 88.2% for cell death <40%. Our proposed approach has just one
parameter to set, the number of intensity histogram bins, which is optimized automatically
during the learning phase.

The techniques utilized in this work can be applied to other treatments and patholo-
gies, not just for tumor response, but for the broader problem of pathology detection or
treatment response monitoring using medical imaging. Our work may contribute to one
possible path forward for a fast, noninvasive and inexpensive computer aided diagnosis
system, which can fuse together other metadata and predictors about the patient, such as
age, gender, and family history to assist clinicians. The MMD can be used in an additional
context in such a setting, that is, to identify the additional features and metadata that
will be statistically discriminative between populations.
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Chapter 6

Conclusions

6.1 Summary of accomplishments

Kernel methods based on nonlinearly mapping data to a Reproducing Kernel Hilbert Space
have made significant impacts in many areas of machine learning, thanks to their compu-
tational efficiency, increase in group discrimination, and a wide range of kernels that may
be selected according to the task and data types.

Maximum mean discrepancy is a distance measure between probability distributions,
based on the idea of using the squared sum of probability density differences as a metric. It
utilizes kernels to compute the unnormalized Fisher ratio, or squared difference of means,
taken in a Reproducing Kernel Hilbert Space. MMD has three desirable dissimilarity
properties identified through our literature review: it is a metric; it has relatively low
computational complexity, and it is able to exhibit selective invariance properties via the
designer’s selection of kernels. For example, the histogram intersection kernel ignores
dimensions, with no matching values, making it less prone to noise in high-dimensional
situations.

This thesis has concerned itself with whether MMD-based discrimination of two sets
of image objects may outperform its non-kernel equivalent, the unnormalized Fisher ratio,
computed in the original feature space using the `2 distance, d`2(X, Y ) =

√
(µx − µy)2.

We investigated this hypothesis by applying MMD on two different problems in the area
of image analysis. After investigation of past approaches and experimental testing, we
presented system designs of feature descriptors, data transformations and kernels that
yield promising results in two quite different types of data – time series of multivariate
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data, and unordered grouped data, where the ordering of instances is not information
bearing.

The first problem, video scene change detection, involved a time series of ordered ob-
jects, where we do not know the group membership of an object. We computed SIFT keys
for each image on a dense grid based on a greyscale input, and built a very high dimensional
bag-of-visual-words histogram by matching these keys to the closest visual atom, obtained
through unsupervised clustering. We then further enhanced precision and recall by adding
the Spatial Pyramid Matching technique to capture larger-scale spatial dependencies, and
the Locally-constrained Linear Coding technique to find linear combinations of each visual
atom to represent each SIFT key. The MMD is then computed over the frames of the video
sequence in an overlapping sliding window fashion, successively forming ‘current’ and ‘next’
groups of frames. A standard peak finding routine is used on the MMD sequence to find
local maxima, which are interpreted as scene change points.

Experimental results showed that MMD had improved precision and recall, compared
to the difference of means computed with `2 (which we have often abbreviated to ‘`2’), or
using the raw kernel values alone. Several reasons for this were seen from a visual inspection
of the time-domain behavior of these three measures. The `2 distance, operating in the
original feature space, had very low dynamic range, making peak-finding noise prone. The
HIK value, on the other hand, had high dynamic range, but many spurious peaks, leading
to oversegmentation.

Our second application is in the biomedical engineering field. We test the ability of
MMD to discriminate between two groups of 2-D parameter maps, obtained through spec-
trum analysis of backscattered ultrasound radiofrequency data. One group represents
ultrasound scans of human breast cancer tissue xenografted into a mouse, taken before
chemotherapy treatment, while the other group represents scans for the same mouse, taken
at a fixed time after treatment. Current research practice involves computing the differ-
ence, in the original feature space, of the sample means to test for statistical significance
between pre- and post-treatment images. We instead represented each parameter map as
an intensity histogram, and computed the MMD distance on these unordered objects with
the HIK, where the size and membership of each group was known a priori.

Experimental results showed that the MMD distance had notably higher Pearson cor-
relation to the groundtruth cell death ratios, compared to `2. In addition, we had proposed
dissimilarity-based classification using MMD as a feature, which is one of the main machine
learning contributions of this work. Tests with the k-NN classifier showed substantially
lower classification error using this method. Quantitative ultrasound methods, to which
this work contributes, has significance for the early treatment assessment, or prognosis, of
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cancer patients as soon as 24 h after treatment, instead of the present standard of weeks
and months.

Significance

Our experimental results confirm our hypothesis that MMD, paired with task-appropriate
feature representations and kernels, can provide an improvement in statistical pattern
recognition applications compared to the difference of means computed using the `2 dis-
tance.

We proposed two ways that MMD can be applied to areas beyond its original remit
as a two-sample test for unordered, grouped data: as a feature in a dissimilarity-based
classification system, and as a distance measure for changepoint detection in ordered data
with unknown group membership. This provided additional experimental confirmation to
existing results [8] on the effectiveness of MMD for changepoint detection.

Consequently, MMD may be evaluated as a replacement wherever the distance and
dissimilarity measures used in Table 2.1 are employed, for example in visual object tracking,
as well as applications outside the field of image processing and analysis.

6.2 Limitations of the work

When comparing results against conventional, non-kernelized algorithms, a difficulty arises
in attributing impacts on performance between MMD and the choice or tuning of the
selected kernel. When the combination of MMD, kernel, and feature representation works
well and outperforms a benchmark, all is well; however, if and when the converse occurs,
it becomes difficult to debug the problem.

This remark is a good backdrop for our next comment – the choice of data representa-
tions and kernels is very important, as our experiments with scene change detection and
quantitative ultrasound data showed. While MMD itself is parameterless, this should be
kept in mind by designers, as it means there will be more potential variables and decisions
to be optimized compared to a kernel-free design.

Obviously, when the data can already be cleanly separated in the original feature space,
the potential gains are very limited, and MMD may not outperform other distances in
applications. This could be seen in the results of the ultrasound data, in the case where
each parametric map was represented by a single scalar mean; MMD had marginal benefit
over `2, but showed significant gains when a histogram descriptor was used.
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Larger group sample sizes may be expected to improve MMD performance. Sample
sizes were limited in both applications, as may be expected from early-stage exploratory
research. Our review of MMD variants, which are largely reliant on eigendecomposition-
based dimensionality reduction, suggested that they will be most effective with larger group
sizes m1,m2 than we have tested in our experiments.

Finally, the definition of MMD assumes independent and identically distributed (i.i.d.)
samples ([57], Lemma 6). In the case of our scene change application, each frame is ordered;
frame t+2 gives more information about the contents of frame t than frame t+10. Despite
this apparent theoretical contradiction, MMD still worked well, outperforming the peak-
finding result obtained by using the same features and kernel, but without MMD. We note
that the other work to address time-series changepoint detection with MMD, [8] does not
appear to have explicitly addressed this point. Therefore, this may be one potential avenue
for future theory-building.

6.3 Future Work

In closing, we list several ideas for future work below:

1. MMD may be applied for changepoint detection on other time series of multimedia
data. Audio segmentation of sounds, speakers, and emotions are potential candi-
dates. Previously difficult domains, such as those described by graphs or trees, may
potentially give good results when combined with appropriate features and kernels.

2. In the scene change detection system, our system should be tolerant, in theory, to
rotations, fast movement, and other non-semantic changes due to the invariance in-
herited from the choice of SIFT and LLC descriptors. However, this has not yet been
rigorously confirmed in experimental testing. To do this, we have already obtained
past NIST TRECVID shot boundary detection datasets, representing hundreds of
hours of video, for comparison against published results.

3. Another logical step would be to directly compare against the other test statistics and
divergences in Table 2.1, in order to make a stronger statement about the performance
of MMD. We note that some of these dissimliarity measures may be turned into kernel
measures of similarity, so it may be a matter of cooperation, and not competition,
with MMD.
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4. One exciting possibility is to use MMD for visual change detection on spatial series
of data, as opposed to time series, as a type of novelty detection scheme. Descriptors
suited to intra-frame analysis, such as texture and colour descriptors, may be applied
to this task.

5. Finally, we have demonstrated promising dissimilarity-based classification results us-
ing MMD. A technique that can be used to further improve performance is combining
multiple distance measures (e.g. MMD and Mahalanobis distances) for classification,
as demonstrated in [69], for MRI-based schizophrenia detection.
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[68] E. Pȩkalska and R. P. W. Duin, “Dissimilarity representations allow for building
good classifiers,” Pattern Recognition Letters, vol. 23, no. 8, pp. 943–956, Jun. 2002.

[69] A. Ula, R. P. W. Duin, U. Castellani, M. Loog, P. Mirtuono, M. Bicego, V. Murino,
M. Bellani, S. Cerruti, and M. Tansella, “Dissimilarity based detection of schizophre-
nia,” International Journal of Imaging Systems and Technology, vol. 21, no. 2, pp.
179–192, 2011.

[70] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–27, 1964.

[71] S. Jegelka and A. Gretton, “Generalized clustering via kernel embeddings,” in Proc.
of the 32nd German Conf. on Advances in Artificial Intelligence, 2009, pp. 144–152.

[72] Y. Rathi, J. Malcolm, O. Michailovich, J. Goldstein, L. Seidman, R. W. McCarley, C.-
F. Westin, and M. E. Shenton, “Biomarkers for identifying first-episode schizophrenia
patients using diffusion weighted imaging.” Proc. of the International Conference on
Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol. 13,
no. 1, pp. 657–65, Jan. 2010.

[73] L. Duan, I. W. Tsang, D. Xu, and S. J. Maybank, “Domain Transfer SVM for
video concept detection,” in Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, Jun. 2009, pp. 1375–1381.

[74] S. J. Russell and P. Norvig, Artificial Intelligence: a Modern Approach, 2nd ed.
Prentice Hall, 2010.

[75] D. W. Scott, Multivariate density estimation: theory, practice, and visualization.
Wiley, 2009, vol. 383.

[76] K. Pearson, “Contributions to the mathematical theory of evolution. II. Skew vari-
ation in homogeneous material,” Philosophical Transactions of the Royal Society of
London. A, vol. 186, pp. 343–414, 1895.

[77] C. Snoek and M. Worring, “A review on multimodal video indexing,” in Proc. of the
IEEE Intl. Conf. on Multimedia and Expo, vol. 2. IEEE, 2002, pp. 21–24.

83



[78] C. Cotsaces, N. Nikolaidis, and I. Pitas, “Video shot detection and condensed rep-
resentation. a review,” IEEE Signal Processing Magazine, vol. 23, no. 2, pp. 28–37,
2006.

[79] A. Yanagawa and S. Chang, “Columbia University’s baseline detectors for 374
LSCOM semantic visual concepts,” Columbia University ADVENT Technical Re-
port #222-2006-8, 2007.

[80] W. Hu, N. Xie, L. Li, X. Zeng, and S. Maybank, “A Survey on Visual Content-
Based Video Indexing and Retrieval,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol. 41, no. 6, pp. 797–819, 2011.

[81] A. F. Smeaton, P. Over, and A. R. Doherty, “Video shot boundary detection: Seven
years of TRECVid activity,” Computer Vision and Image Understanding, vol. 114,
no. 4, pp. 411–418, 2010.

[82] “Autonomy Virage,” [online, cited Apr. 11, 2013] http://www.virage.com.

[83] M. Omidyeganeh, S. Ghaemmaghami, and S. Shirmohammadi, “Video Keyframe
Analysis Using a Segment-Based Statistical Metric in a Visually Sensitive Parametric
Space,” IEEE Transactions on Image Processing, vol. 20, no. 10, pp. 2730–2737, 2011.

[84] A. Ranganathan, “PLISS: labeling places using online changepoint detection,” Au-
tonomous Robots, vol. 32, no. 4, pp. 351–368, 2012.

[85] W. Abd-Almageed, “Online, simultaneous shot boundary detection and key frame
extraction for sports videos using rank tracing,” in Proc. of the 15th IEEE Interna-
tional Conference on Image Processing. IEEE, 2008, pp. 3200–3203.

[86] G. J. Czarnota and M. C. Kolios, “Ultrasound detection of cell death,” Imaging in
Medicine, vol. 2, no. 1, p. 12, 2010.

[87] J. Chang, M. Ormerod, T. J. Powles, D. C. Allred, S. E. Ashley, and M. Dowsett,
“Apoptosis and proliferation as predictors of chemotherapy response in patients with
breast carcinoma.” Cancer, vol. 89, no. 11, pp. 2145–52, Dec. 2000.

[88] K. Brindle, “New approaches for imaging tumour responses to treatment.” Nature
Reviews Cancer, vol. 8, no. 2, pp. 94–107, Feb. 2008.

[89] A. Sadeghi-Naini, O. Falou, J. M. Hudson, C. Bailey, P. N. Burns, M. J. Yaffe, G. J.
Stanisz, M. C. Kolios, and G. J. Czarnota, “Imaging innovations for cancer therapy
response monitoring,” Imaging, vol. 4, no. 3, pp. 311–327, 2012.

84

http://www.virage.com


[90] L. Fass, “Imaging and cancer: A review,” Molecular Oncology, vol. 2, no. 2, pp.
115–152, Aug. 2008.

[91] R. Gerl and D. L. Vaux, “Apoptosis in the development and treatment of cancer.”
Carcinogenesis, vol. 26, no. 2, pp. 263–70, Feb. 2005.

[92] J. W. Hunt, A. E. Worthington, A. Xuan, M. C. Kolios, G. J. Czarnota, and M. D.
Sherar, “A model based upon pseudo regular spacing of cells combined with the
randomisation of the nuclei can explain the significant changes in high-frequency
ultrasound signals during apoptosis,” Ultrasound in Medicine & Biology, vol. 28,
no. 2, pp. 217–226, Feb. 2002.

[93] G. J. Czarnota, M. C. Kolios, J. Abraham, M. Portnoy, F. P. Ottensmeyer, J. W.
Hunt, and M. D. Sherar, “Ultrasound imaging of apoptosis: high-resolution non-
invasive monitoring of programmed cell death in vitro, in situ and in vivo.” British
Journal of Cancer, vol. 81, no. 3, pp. 520–7, Oct. 1999.

[94] A. Sadeghi-Naini, O. Falou, and G. J. Czarnota, “Quantitative ultrasound spectral
parametric maps: Early surrogates of cancer treatment response.” in Proc. of the
2012 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Aug. 2012, pp. 2672–2675.

[95] E. J. Feleppa, J. Mamou, C. R. Porter, and J. Machi, “Quantitative ultrasound in
cancer imaging.” Seminars in Oncology, vol. 38, no. 1, pp. 136–50, Feb. 2011.

[96] F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “The-
oretical framework for spectrum analysis in ultrasonic tissue characterization.” The
Journal of the Acoustical Society of America, vol. 73, no. 4, pp. 1366–73, Apr. 1983.

[97] B. Banihashemi, R. Vlad, B. Debeljevic, A. Giles, M. C. Kolios, and G. J. Czarnota,
“Ultrasound imaging of apoptosis in tumor response: novel preclinical monitoring of
photodynamic therapy effects.” Cancer Research, vol. 68, no. 20, pp. 8590–6, Oct.
2008.

[98] J. Lee, R. Karshafian, N. Papanicolau, A. Giles, M. C. Kolios, and G. J. Czarnota,
“Quantitative ultrasound for the monitoring of novel microbubble and ultrasound
radiosensitization.” Ultrasound in Medicine & Biology, vol. 38, no. 7, pp. 1212–21,
Jul. 2012.

[99] T. J. Larkin, H. C. Canuto, M. I. Kettunen, T. C. Booth, D.-E. Hu, A. S. Krish-
nan, S. E. Bohndiek, A. A. Neves, C. McLachlan, M. P. Hobson, and K. M. Brindle,

85



“Analysis of image heterogeneity using 2D Minkowski functionals detects tumor re-
sponses to treatment,” Magnetic Resonance in Medicine [online, cited Apr. 11, 2013]
http:// onlinelibrary.wiley.com/ journal/ 10.1002/ ( ISSN)1522-2594 , Feb. 2013.

[100] M. J. Gangeh, A. Sadeghi-Naini, M. S. Kamel, and G. J. Czarnota, “Assessment of
cancer therapy effects using texton-based characterization of quantitative ultrasound
parametric images,” in Proc. of the International Symposium on Biomedical Imaging
(accepted), 2013.

[101] L. Sørensen, S. B. Shaker, and M. de Bruijne, “Quantitative analysis of pulmonary
emphysema using local binary patterns.” IEEE Transactions on Medical Imaging,
vol. 29, no. 2, pp. 559–69, Feb. 2010.

[102] I. M. Helmy and A. M. A. Azim, “Efficacy of ImageJ in the assessment of apoptosis,”
Diagnostic Pathology, vol. 7, no. 1, pp. 1–6, 2012.

[103] B. Porat, Digital Processing of Random Signals: Theory and Methods. Dover Pub-
lications, 1994.

[104] F. Dong, E. L. Madsen, M. C. MacDonald, and J. A. Zagzebski, “Nonlinearity pa-
rameter for tissue-mimicking materials,” Ultrasound in Medicine & Biology, vol. 25,
no. 5, pp. 831–838, 1999.

[105] R. M. Vlad, S. Brand, A. Giles, M. C. Kolios, and G. J. Czarnota, “Quantitative Ul-
trasound Characterization of Responses to Radiotherapy in Cancer Mouse Models,”
Clinical Cancer Research, vol. 15, no. 6, pp. 2067–2075, Mar. 2009.

[106] M. Oelze, W. O’Brien, and J. Zachary, “Quantitative Ultrasound Assessment of
Breast Cancer Using a Multiparameter Approach,” in Proc. of the 2007 IEEE Ultra-
sonics Symposium. IEEE, Oct. 2007, pp. 981–984.

[107] N. R. Jagannathan, M. Kumar, V. Seenu, O. Coshic, S. N. Dwivedi, P. K. Julka,
A. Srivastava, and G. K. Rath, “Evaluation of total choline from in-vivo volume
localized proton MR spectroscopy and its response to neoadjuvant chemotherapy
in locally advanced breast cancer.” British Journal of Cancer, vol. 84, no. 8, pp.
1016–22, Apr. 2001.

86

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1522-2594

	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Introduction
	Maximum Mean Discrepancy
	Application 1: Video Changepoint Detection
	Application 2: Cancer Treatment Prognosis
	Summary of Contributions
	Organization of the Thesis

	Background
	Dissimilarity measures
	Selection criteria for dissimilarity measures
	Distance measures between individual objects/instances
	Distances between groups of objects
	Discussion

	Kernel Methods for Machine Learning
	What is a kernel?
	The Kernel Trick
	What is a Reproducing Kernel Hilbert Space?
	Selecting kernels for image analysis

	Previous Work on Maximum Mean Discrepancy
	MMD as a statistical test of significance
	MMD Variants and Extensions
	Link to the Hilbert-Schmidt Independence Criterion
	Link to the Parzen estimator


	Methods
	Dissimilarity-Based Pattern Recognition
	Maximum Mean Discrepancy
	Formulation
	MMD, a distance

	Nonparametric Density Estimation
	Histograms

	Summary

	Application 1: Video Scene Change Detection
	Introduction
	Previous Work

	Methodology
	A Spatial Relationship-Preserving Scene Descriptor
	Scene Detection System

	Experimental Setup and Results
	Tested Alternatives
	Ground truth data generation
	Results

	Conclusions

	Application 2: Computer Assisted Cancer Treatment Prognosis
	Introduction
	Past Work

	Methods
	Data collection and preparation
	Quantitative ultrasound
	Maximum mean discrepancy
	Computer aided prognosis

	Experimental Setup and Results
	Alternative solutions tested
	Correlation to cell death
	Statistically significant differences from control group
	Predicting cell death over a threshold
	Discussion

	Conclusions

	Conclusions
	Summary of accomplishments
	Limitations of the work
	Future Work

	References

