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Abstract

Musculoskeletal dynamics is a branch of biomechanics that takes advantage of inter-

disciplinary models to describe the relation between muscle actuators and the correspond-

ing motions of the human body. Muscle forces play a principal role in musculoskeletal

dynamics. Unfortunately, these forces cannot be measured non-invasively. Measuring

surface EMGs as a non-invasive technique is recognized as a surrogate to invasive mus-

cle force measurement; however, these signals do not reflect the muscle forces accurately.

Instead of measurement, mathematical modelling of the musculoskeletal dynamics is a well-

established tool to simulate, predict and analyse human movements. Computer simulations

have been used to estimate a variety of variables that are difficult or impossible to measure

directly, such as joint reaction forces, muscle forces, metabolic energy consumption, and

muscle recruitment patterns.

Musculoskeletal dynamic simulations can be divided into two branches: inverse and

forward dynamics. Inverse dynamics is the approach in which net joint moments and/or

muscle forces are calculated given the measured or specified kinematics. It is the most

popular simulation technique used to study human musculoskeletal dynamics. The major

disadvantage of inverse dynamics is that it is not predictive and can rarely be used in the

cause-effect interpretations. In contrast with inverse dynamics, forward dynamics can be

used to determine the human body movement when it is driven by known muscle forces.

The musculoskeletal system (MSS) is dynamically under-determinate, i.e., the number

of muscles is more than the degrees of freedom (dof) of the system. This redundancy will

lead to infinite solutions of muscle force sets, which implies that there are infinite ways of

recruiting different muscles for a specific motion. Therefore, there needs to be an extra

criterion in order to resolve this issue. Optimization has been widely used for solving the

redundancy of the force-sharing problem. Optimization is considered as the missing con-

sideration in the dynamics of the MSS such that, once appended to the under-determinate

problem, “human-like” movements will be acquired. “Human-like” implies that the human

body tends to minimize a criterion during a movement, e.g., muscle fatigue or metabolic
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energy. It is commonly accepted that using those criteria, within the optimization nec-

essary in the forward dynamic simulations, leads to a reasonable representation of real

human motions.

In this thesis, optimal control and forward dynamic simulation of human musculoskele-

tal systems are targeted. Forward dynamics requires integration of the differential equa-

tions of motion of the system, which takes a considerable time, especially within an op-

timization framework. Therefore, computationally efficient models are required. Mus-

culoskeletal models in this thesis are implemented in the symbolic multibody package

MapleSim R© that uses Maple R© as the leverage. MapleSim R© generates the equations of

motion governing a multibody system automatically using linear graph theory. These

equations will be simplified and highly optimized for further simulations taking advantage

of symbolic techniques in Maple R©. The output codes are the best form for the equations to

be applied in optimization-based simulation fields, such as the research area of this thesis.

The specific objectives of this thesis were to develop frameworks for such predictive

simulations and validate the estimations. Simulating human gait motion is set as the end

goal of this research. To successfully achieve that, several intermediate steps are taken prior

to gait modelling. One big step was to choose an efficient strategy to solve the optimal

control and muscle redundancy problems. The optimal control techniques are benchmarked

on simpler models, such as forearm flexion/extension, to study the efficacy of the proposed

approaches more easily. Another major step to modelling gait is to create a high-fidelity

foot-ground contact model. The foot contact model in this thesis is based on a nonlinear

volumetric approach, which is able to generate the experimental ground reaction forces

more effectively than the previously used models.

Although the proposed models and approaches showed strong potential and capability,

there is still room for improvement in both modelling and validation aspects. These cutting-

edge future works can be followed by any researcher working in the optimal control and

forward dynamic modelling of human musculoskeletal systems.
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Ȧ muscle activation heat rate
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Ṁslow a parameter in the maintenance heat rate
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Chapter 1

Introduction

1.1 Background

Biomechanics is a field that uses the capabilities of mechanical engineering to study bio-

logical problems. The human body is a very complex multi-disciplinary system including

mechanical, chemical, electrical, and other components that are working together simulta-

neously.

Human movement study is a branch of biomechanics which takes advantage of in-

terdisciplinary models to simulate, predict, and analyze different movements of humans.

Computer simulations have been used to estimate a variety of variables that are difficult

or impossible to measure directly, such as joint forces, muscle forces, metabolic energy

consumption, and muscle recruitment patterns. Among a variety of human movements,

gait is recognized as a fundamental yet complex movement that has been challenging for

researchers to model, especially for predictive muscle driven simulations with any degree

of accuracy.

Inverse dynamics is the approach in which net joint moments and/or muscle forces are

calculated given the measured or specified kinematics. It is the most popular simulation
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technique used to study human musculoskeletal systems. The major disadvantage of inverse

dynamics is that it is not predictive and can rarely be used in cause-effect interpretations.

In contrast with inverse dynamics, forward dynamics can be used to determine the human

body movement when it is driven by muscle forces. Forward dynamic simulations look for

“human-like” motions, [22, 23]. For instance in gait, “human-like” implies that the gait

of a human tends to minimize the metabolic energy cost per unit distance, [24, 25]. It is

commonly assumed that using metabolic energy per unit distance traveled as the objective

function, within the optimization necessary in the forward dynamic gait simulations, will

lead to a reasonable representation of real human gait, [26].

Many human multibody models are torque-actuated and use joint torques as the driver

of the dynamic system. These models suffer from serious shortcomings:

• They do not reflect the physiological aspects of the human body by excluding muscle

models, e.g. muscle fatigue or the delay existing in muscle activation dynamics.

• These models may lead to unphysiological results for joint torques that seem fine,

but actually can not be produced by real muscles.

• They are not able to provide valid estimations of joint reaction forces because of the

absence of muscle actuators.

1.2 Motivations and Applications

Many biomechanical studies in movement dynamics are devoted to pure experiments. Using

experiments only involves some considerable restrictions:

1. Muscle forces and also joint forces, as critical components of human movement stud-

ies, can not be measured non-invasively. There are some cadaveric studies, e.g.,

by [27], in which the Achilles force and ligament strain are measured within the
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stance phase of a gait cycle. However, as the measurements are performed on cadav-

ers, these forces reflect the contribution of the passive muscle force only.

2. It is very hard to discover the cause-effect relations of these dynamic systems by

using only measurements. As a well-known example, by examining electromyogram

(EMG) data, one can find out when a specific muscle is active; however, no one can

say what motion will be yielded given these EMG data.

Muscle-actuated dynamic simulations complement the experimental studies by pro-

viding researchers with estimations of muscle and joint forces and body motion. These

simulations present cause-effect relations and allow researchers to conduct “what if” stud-

ies, e.g., by changing the neural excitation of some muscles, how would the resulting motion

change?

Additionally, in our research group, there were two PhD students working on biome-

chanical applications. One worked on torque-actuated models and the development of

more efficient balance controllers for gait, where the other one studied foot-contact mod-

els. Thus, there was a motivation to develop a higher fidelity model that integrated these

available sub-models, to add the vital missing element, i.e., a muscle model, and also to

design an efficient framework for solving the muscle redundancy. The integrated model is

a complete musculoskeletal model, which is able to produce forward dynamic simulations

of human gait.

Since dynamic simulations of musculoskeletal systems involve optimization techniques,

many studies have been focused on finding more efficient and/or more exact approaches

to solve the muscle redundancy, which exists in the human musculoskeletal system. Addi-

tionally, as the model is called by the optimization routine many times, there is ongoing

research to make the simulations faster by taking advantage of model reduction, symbolic

and analytical techniques.

Dynamic modelling of human musculoskeletal systems, including the solution for indi-

vidual muscle forces, has several applications in the following areas:
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• Pathologic studies: for instance, these simulations may help surgeons to examine

the possible improvements in patient movements before and after tendon transfer

surgery.

• Rehabilitation engineering: simulations help to evaluate the design and effectiveness

of prostheses and assistive devices.

• Sports biomechanics: dynamic simulations provide athletes with knowledge to im-

prove sports performance and reduce the incidence of injuries.

• Ergonomics: finding individual muscle forces leads to more efficient design of acces-

sibilities to avoid early fatigue.

1.3 Challenges

There are serious challenges in the dynamic modelling of human musculoskeletal systems,

summarized as the following:

1. Muscle forces cannot be measured non-invasively; therefore, there is no direct way

to validate the calculated muscle forces. The common approach researchers take is

to compare the results for neural excitations with EMGs; however, even if these two

match each other very well, it does not imply that the model has predicted the muscle

forces accurately [14].

2. Optimization processes are always challenging. If global optimizers are to be used,

there will be a high computation cost. On the other hand, if one uses gradient-based

methods, a reasonably good initial guess for the solution will be required. Moreover,

defining the constraints within the optimization problem is very challenging and may

lead to infeasibilities.

3. There are limited data on muscle parameters, which is a great restriction for mod-

elling of the human body.
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4. Most of the time, subject-specific simulations are required for comparison of the

model results to experimental data from different subjects. To this goal, simulation

speed would be vital; therefore the model simulation must run within a reasonable

time using available computers.

1.4 Thesis Outline

In this thesis, a dynamic musculoskeletal model will be developed to predict human gait

motion as the end goal. This model includes a muscle-redundant dynamic system, which

involves solving an optimization problem for individual muscle forces. For a successful

gait modelling, there exist several pre-requisites, such as an efficient muscle force-sharing

approach, an accurate and efficient foot contact model, and a balance control strategy,

that will be discussed in this thesis. In chapter 2, the literature review for musculoskeletal

modelling is presented. In chapter 3, different approaches are introduced for solving the

optimal control and muscle redundancy problems. Chapter 4 discusses a novel foot contact

model within human gait simulations. In chapter 5, forward dynamic simulation of human

gait is described. Finally, chapter 6 presents the conclusions of this thesis and future work.
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Chapter 2

Literature Review

The literature review begins with a review of some muscle models. Then it continues with

the muscle redundancy problem and popular approaches in solving that. Afterwards, a

review of literature foot contact models is presented, and eventually a section on multibody

dynamics of the human musculoskeletal systems is included.

2.1 Muscle Models

Muscle modelling is one of the most challenging parts in the simulation of musculoskele-

tal systems. Indeed, a major difference between industrial robots and the human body

is the muscle recruitment during the movements. Muscle, as a living part of the system,

is a combination of chemical, electrical and mechanical systems. A muscle model should

describe the relation and interaction of neural and mechanical systems of human move-

ment. A good muscle model must be non-task-specific and able to simulate different body

movements without any modification of its parameters.

There are three fundamental models available in the literature, and other models are

developed based on these models. The first model is built on the basis of input-output
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Figure 2.1: Schematic representation of second-order model

analysis of a specific task and is basically formed by a simple second-order ODE (Ordinary

Differential Equation). The second model is the fundamental study done by Hill [28]. This

model leads to a nonlinear system of ODEs. The third model focuses on the microscopic

details of the contraction mechanism and is expressed by PDEs (Partial Differential Equa-

tions). These three different categories of muscle models will be reviewed in the following,

and advantages and disadvantages of each will be discussed in detail.

2.1.1 Second-Order Models

These models simply consist of elastic, damping, and inertial elements. The schematic

representation of these models is depicted in Figure 2.1.

The basic formulation of the model is as follows:

Jẍ(t) + Cẋ(t) +Kx(t) = Gu(t) (2.1)

where K, C, and J are the stiffness, damping, and inertia of the muscle, and G is a gain.

Equation 2.1 may be rearranged as:

ẍ(t) + 2ξẋ(t) + ω2
nx(t) =

G

J
u(t) (2.2)
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where ξ is the damping ratio and ωn is the natural frequency of the system, x(t) can

be either the joint angle or torque, and u(t) can be either the neural input or external

load actuating the system. As a result, the muscle joint structure can be considered as a

second-order ODE with parameters that will change as a function of task and also range

of motion [29]. This second-order model assumes the muscle joint structure as a black box

and tries to approximate the contents of the system as a linear ODE for a specific task and

range of performance.

Many early researchers used this type of model to analyze human movements, such

as [30, 31]. The main advantage of this type of model is its mathematical simplicity,

whereas for example using Hill-type models within a complete muscle-joint system will

lead to higher-order equations.

2.1.2 Hill-Type Models

The second type of model is based on the fundamental studies of Hill [28] on isolated

muscles. The classic model is lumped-parameter and includes a contractile element in

series with a series elastic element. The basic model has been used for complicated dy-

namic simulations including different muscle coordination [32]. These models are called

phenomenological since they are based on the analysis of input-output relations from ex-

periments.

One of the most popular Hill-type muscle models is the three-element model. It includes

a contractile element (CE), a parallel elastic element (PE), and a series elastic element (SE).

The CE is basically an actuator or a force generator and is representative of the active

part of muscle. It accounts for muscle fibers and contraction. The PE models the tissue

parallel to muscle fibers and is parallel to the CE element. The SE acts as whatever is in

series with the CE, usually a tendon.

This model has been modified by many researchers, not only for isolated muscle, such

as [33,34], but also for muscle joint systems, like [34]. The model includes solving ODEs. All
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Figure 2.2: A Hill-type muscle model with three elements

of the elements in the model are inherently nonlinear; the formulations of these nonlinear

elements can be different. The PE and SE force expressions are usually parabolic or

exponential functions of muscle fiber or tendon length, respectively. For instance, the

exponential relation for tendon force f t based on [35] is as follows:

df t

dlt
= K1f

t +K2 (2.3)

where lt is tendon length, K1 and K2 are some shape constants. Equation 2.3 can be

integrated and rearranged using suitable boundary conditions [34]:

F =
F0

eX0
(e

K0
X0

x − 1) (2.4)

where F and x are the force and extension of SE, respectively; F0 and X0 are maximum

force and extension, and K0 is a constant of curve shape.

The most complicated component is the CE that is a function of muscle fiber length,

velocity, and excitation. There are two high level dynamics occurring in the CE element:

activation and contraction dynamics, which are discussed in the following.

Activation Dynamics

Activation dynamics is the relation between the normalized neural excitation signal u(t)
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Figure 2.3: Diagram of excitation signal to CE force

and the activation signal a(t), as depicted in Figure 2.3, during muscle contraction and

force generation, where u(t) reflects the number of motor units recruited as well as relevant

firing rates [32]. As muscle fibers are excited, Calcium ions will bind to troponin, and this

results in the ability of cross-bridge interaction; this state of muscle is called an activation.

For a maximally excited muscle, u is unity and all of the motor units are fully excited at the

maximum of their firing rate. At steady-state conditions and when the muscle fiber is at a

specific length (called optimal fiber length) and the contraction is isometric, the maximum

contraction force Fm
max will be generated. Activation dynamics is usually modelled through

a first-order ODE, which can be linear or quadratic in terms of u(t). The following relation

shows a first-order ODE model presented by [1]:

ȧ(t) = (u(t)− a(t))(t1u(t) + t2) (2.5)

with

t2 = 1/τfall

t1 = 1/τrise − t2

where u and a are the muscle excitation and activation, respectively, τfall is the deactiva-

tion time constant, and τrise is the activation time constant. It should be added that both

excitation and activation signals are normalized and therefore bounded between 0 and 1.

Contraction Dynamics

The force generated by muscle fibers has two separate dependencies: force-length and

force-velocity. Schematic representations of these two relations are depicted in Figure 2.4

(a) and (b). It is notable that these two graphs are for maximal activation, i.e., a = 1 [5].
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In general, the CE force can be formulated as follows:

f ce = f ce(lce, vce, a) (2.6)

where lce and vce are muscle fiber length and velocity, respectively. The general form of

the force-velocity relation of contractile element for concentric contraction during maximal

activation based on [28] is the following hyperbolic equation:

(f ce + AFm
max)(v + Avmax) = AFm

maxvmax(1 + A) (2.7)

where f ce is the CE force, v is the CE velocity, A is a constant that defines the hyperbola

shape, vmax is the maximum CE velocity (x-intercept), and Fm
max is the maximum isometric

force (y-intercept).

There are different studies in the literature on how to scale the CE force from maximal

activation to the entire range of activation signal. A few researchers simply multiply the

force-length-velocity relations by a(t), e.g. [36], and some consider a more complicated

scaling, see e.g. [3,7,37,38]. If the simple scaling is applied, the general muscle total force

can be written as:

fm =
{
Fm
maxf̄

ce(l)f̄ ce(v)a(t) + fpe(l)
}

cos(αp) (2.8)

where fm is the muscle force, Fm
max is the maximum isometric force the muscle can generate,

f̄ ce(l) is the normalized force-length relationship for the CE, f̄ ce(v) is the normalized force-

velocity relationship, a(t) is the activation value bounded between 0 and 1, fpe(l) is the

force-length relationship for the PE, and αp is the pennation angle (the angle that the

tendon makes to the muscle fibers, as depicted in Figure 2.2).

2.1.3 Huxley-Type Models

The last model is famous due to the classic research done by Huxley (1957). This model

focuses on the microstructure of the contraction mechanism. It models the cross-bridge and
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Figure 2.4: Schematic dynamics of the CE element, (a) force-length relation; (b) force-

velocity relation

contraction using distribution functions, which involves solving PDEs. Figure 2.5 shows

the idea of the Huxley model; the sliding element will join another in series and eventually

those are attached to a tendon represented as the elastic element at both ends.

To write constitutive equations simply, the number of states of the attach-detach mech-

anism may be restricted to two, i.e., a cross-bridge is either attached or detached and there

is no other state in between:(
∂n

∂t

)
− v(t)

(
∂n

∂x

)
= f(x)− [f(x) + g(x)]n (2.9)

where n(x, t) is the distribution function and accounts for the fraction of attached cross

bridges, x is the distance from the sarcomere equilibrium position, f(x) and g(x) are

attachment and detachment rate functions, respectively, and v(t) is the contraction velocity

of a half-sarcomere. Rate parameters f(x) and g(x) may typically be linear functions of x.

Once the distribution function n(x, t) is specified, the macroscopic parameters can be

calculated based on different moments of n(x, t). For instance, if the cross-bridge is assumed
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Fig.2-5: Huxley-based model showing the cross-bridge concept 

In order to write constitutive equations simply, the number of states of the attach-detach 

mechanism may be restricted to two, i.e. a cross-bridge is either attached or detached and 

there is no other state between: 

( ) ( )( ) ( ) [ ( ) ( )]x t
n nv t f x f x g x n
t x

∂ ∂
− = − +

∂ ∂
 (11)

where n(x,t) is the distribution function and accounts for the rate of attached cross 

bridges, x is the distance from the sarcomere equilibrium position, f(x) and g(x) are 

attachment and detachment rate functions respectively, and v(t) is the contraction velocity 

of a half-sarcomere. Rate parameters may typically be linear functions of x. 

Once the distribution function n(x,t) is specified, the macroscopic parameters can be 

calculated based on different moments of n(x,t). For instance, if the cross-bridge is 

assumed to have a linear force-displacement relation, muscle force per unit area will be: 

( ) ( , )α
∞

−∞

= = ∫
PS t C xn x t dx
A

 (12)

Where α  is the level of activation, and C is a constant depending on the contractile 

microstructure. 

As modifications have been made over the years, this model has evolved. This evolution 

has usually been toward increasing the number of rate parameters, Hill (1975), Wood 

(1981). Although these studies have been done to improve our understanding of the 

contraction mechanism, they do not include the biomechanical significance of all 

elements and parameters of the model. 

Figure 2.5: Huxley-based model showing the cross-bridge concept

to have a linear force-displacement relation, muscle force per unit area will be:

S(t) =
P

A
= aC

∫ ∞
−∞

xn(x, t)dx (2.10)

where a is the state of activation, and C is a parameter depending on the contractile

microstructure.

As modifications have been made over the years, this model has evolved. This evolution

has usually been toward increasing the number of rate parameters [39,40]. Although these

studies have been done to improve our understanding of the contraction mechanism, they

do not clarify the necessity and biomechanical significance of all parameters of the model.

Since this model is mathematically complicated, only simulations of very stereotypical

motions like iso-velocity contractions are simple to perform. Furthermore, there is not

enough information for model parameter determination, especially for rate parameters;

therefore, as mentioned, this model has not been used for human motion simulations [29].

A simpler Huxley-based model was presented by [41], called the DM (Distribution

Moment) model. This model still has the basic specifications of the Huxley model, but,

assuming a normal distribution function for n(x, t), the model is able to simulate eccentric

contractions fairly well through a system of ODEs instead of PDEs. This model could

reduce complications and computations of Huxley model for a specific application.
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2.1.4 Discussion on Different Muscle Models

A second-order model has serious limitations [29]:

1. It inherently has one input location.

2. Secondary inputs like neural co-activation may be taken into account only by chang-

ing parameter values of the system rather than affecting the system as direct inputs.

3. Values of model parameters will change as the task changes or even when the range

of motion of a similar task varies.

For different tasks, using the same biomechanical system, completely different values

for the second-order model will be found. Consequently, second-order models have been

developed and used for one specific purpose, and that is to calculate model parameter

values so that in terms of a specified input, it curve-fits the output. Overall, second-order

models are not considered good representatives for muscle joint systems.

Unlike the second-order model, Hill-based lumped parameter models (with for in-

stance three elements), using appropriate nonlinear functions for CE force-length and

force-velocity relations, are able to simulate human muscle-actuated systems with different

combinations of neural input signal [29, 32]. Hill-based models are very useful for human

muscle-driven simulations and they are task-independent, i.e., they can model different

tasks without changing model parameters.

Huxley-based models have been rarely used for simulations of human movements. In

addition to their complexity, there is no good source for model-required parameters.
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2.2 Muscle Redundancy and Solutions

2.2.1 Introduction

The musculoskeletal system is a complex system and is actuated by muscles redundantly

during different movements; this is because the number of recruited muscles is more than

the degrees of freedom of the dynamic system [10]. Moreover, some muscles are bi-articular

joint (2-joint) muscles, i.e., they span more than one joint, such as the gastrocnemius muscle

which spans both knee and ankle joints. This leads to a more complicated dynamic system.

In such a system, to find individual muscle forces, the resultant joint moment can not be

distributed to each muscle force directly [42]. In order to solve this indeterminacy, an

optimization problem can be posed. In general, objective functions of these optimization

problems are supposed to model some physiological criteria, which are minimized during

a movement [43].

In this section, different methods that have been presented in the literature for solving

the muscle redundancy, or force-sharing, are introduced and at the end, advantages and

disadvantages of each are discussed in detail.

2.2.2 Static Optimization (SO)

In this approach, the goal is to find muscle forces as optimization variables such that an

instantaneous objective function is minimized. SO has low computation cost, which makes

it interesting and popular; however, it includes some drawbacks. In the static optimization

approach, the objective function is minimized at each time step; therefore it does not allow

using a time-integral objective function such as metabolic energy. Different expressions for

objective functions have been presented [42, 44]. The most popular type of cost functions

used in SO is of a polynomial-type:
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Jj =
n∑
i=1

(
fmij
Ni

)P
(2.11)

where n is the total number of muscles considered, fmij is the ith muscle force at time step

j, Ni may have different forms such as muscle maximum strength or physiological cross-

sectional area (PCSA) for muscle i, and P is the polynomial order. References [44–46]

have discussed how changing the objective function would affect results of muscle forces

in detail. Researchers have used different orders of polynomial: for instance, [43, 47] used

P=1, [48–50] used P=2, and Crowninshield and Brand [43] used P=3. The last one has

been considered widely since it claims to model muscle fatigue:

Jj =
n∑
i=1

(
fmij

PCSAi

)3

(2.12)

Rasmussen et al. [51] showed that by increasing P in the polynomial criterion, the results

of the force-sharing problem would converge to the results of the following expression:

Jj = max

(
fmij
Ni

)P
, i = 1, 2, ..., n (2.13)

If Equation 2.13 is applied as the objective function, the technique is called a min/max

optimization.

2.2.3 Modified Static Optimization (MSO)

In static optimization, applying different objective functions may lead to unphysiological

values for muscle forces as the optimization variables. This problem can be resolved by

adding contraction and activation dynamics to the optimization process [14]. The goal

of the modified static optimization method is to find neural excitations of muscles at

each time step uij that minimize an instantaneous objective function and satisfy some

constraints and bounds. The major constraints, which are non-linear in terms of the

decision variables, are first the equality constraints of the equations of motion, and second
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the additional constraints that guarantee the neural excitations are bounded between 0

and 1, i.e., 0 ≤ uij ≤ 1 where i is the muscle number, and j is the time step number. MSO

can apply objective functions usable in SO and also those written as forms of instantaneous

activations or excitations. For example, the instantaneous activation effort can be written

as:

Jj =
n∑
i=1

Sia
P
ij (2.14)

where Si is a muscle-related property, such as muscle volume, and aij is the activation

corresponding to muscle i at time instant j.

As in SO, extra physiological bounds may be added on muscle force and activation

which makes the search space smaller and produces smoother results; however, it may

result in infeasibilities.

Although MSO is a modification of SO, it requires finite difference derivatives of the

muscle force and activation in computing the muscle speed, activation, and excitation,

which potentially leads to numerical issues, such as instability and truncation errors.

2.2.4 Extended Inverse Dynamics (EID)

This approach was presented by Ackermann [14] and was used for an inverse dynamics

simulation of human gait. The major advantage of EID over static optimization is in the

time-history inclusion. In EID, a time-integral function can be used, whereas in SO an

instantaneous objective function must be applied. In other words, since EID is based on

minimizing a function of the entire movement, the objective function can be a desired

time-integral expression, like metabolic energy, which has been adopted as a criterion in

human movements [22, 24, 25]. Using such an approach will increase computation time of

the optimization process compared to SO and MSO. In addition to the possibility of using a

time-integral function to optimize, EID also includes contraction and activation dynamics,

and therefore does not lead to unrealistic results in comparison with SO. On the other

hand, EID does not include numerical integrations of differential equations as will be seen
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in Dynamic Optimization in the following section. This approach is called Extended Inverse

Dynamics as it is used within inverse dynamics and it is based on inverting contraction

and activation dynamics.

Constraints of EID include equality constraints, i.e., equations of motion over the mo-

tion interval, and inequality constraints as bounds on neural excitations. The optimization

problem searches for the muscle forces at all time steps of motion, which minimize a time-

integral cost function, for instance, metabolic energy expenditure, under given constraints.

2.2.5 Dynamic Optimization (DO)

This approach is based on optimal control of a musculoskeletal system, driven by neural

excitations through forward dynamics, in order to determine a motion trajectory. Since

many numerical integrations of equations of motion are required, dynamic optimization

involves a high computation cost [11].

Different studies have investigated muscle recruitment and coordination of human move-

ments using neural excitation as the control signal within an optimal control problem, such

as [52,53].

Pandy et al. [54] introduced a different approach for solving such a problem. They con-

verted this optimal control problem to a parametrized optimization problem. This method

parametrized histories of neural excitations at time steps, and then a nonlinear program-

ming problem was solved. This method was used successfully in some studies, for exam-

ple [55], where the objective function was the normalized metabolic energy, i.e., metabolic

energy per unit of distance travelled. All of these studies focused on gait modelling, and

could simulate optimal gait speed, optimal motion and optimal energy expenditure very

well.

One of the advantages of Dynamic Optimization over Static Optimization is that the

cost function can be calculated over the motion period, which is very desirable; for instance

the objective function can be metabolic expenditure or those introduced for SO and MSO
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but in an integral form instead of a discrete form. Another advantage is that DO includes

the time-history of the control variables and system states. Therefore, it does not result

in unphysiological abrupt changes in controls as in SO.

As mentioned, dynamic optimization is very computationally costly. For instance, for

a 2-D model of gait simulation, this method required many CPU days in 2003 [16]. In

cases that reference motions are specified, in a forward dynamics manner, the optimization

problem must minimize the energy as well as the tracking error. In this case, as a multi-

objective optimization problem, one approach is converting the cost function to a linear

combination of time-integral function (e.g. metabolic energy) and the error between simu-

lated and prescribed motions. This will reduce the quality of results, since using different

weights as multipliers of two objective functions will change the results and interpretations.

Anderson and Pandy in [55] showed that if the goal is to find estimations of muscle

forces and joint contact forces during normal gait, dynamic and static optimizations will

lead to remarkably similar results. They used a 23-dof model with 54 muscles and simulated

an entire normal gait cycle to show this.

2.2.6 Analytical approach for solving the muscle redundancy

This section describes an analytical approach with limited applications to distribute the

muscle moment to muscle individual forces. The contents of this section are mostly from

[56] in which this approach is presented with no bounds on the muscle forces. Especially

with absence of lower bounds on muscle forces, the forces will easily become negative,

which is incorrect. There are some other works that have added the bounds on muscle

forces and numerically solved the rest of the approach, for instance [57], which does not

seem satisfying for the initial logic of the analytical approach.

Assume the goal is to minimize the following objective function in a 1-dof system:

J(Fi) =
n∑
i=1

(
Fi
Ni

)P
subject to geq(Fi) , Tmnet −

n∑
i=1

riFi = 0 (2.15)
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Figure 2.6: Case when P = 1 for two flexor muscles and positive Tmnet

where P is the polynomial order of the objective function, n is the number of muscles, F

is the muscle force, N is a muscle property function such as physiological cross-sectional

area (PCSA), maximum force capacity, etc., geq is the equality constraint imposed to the

problem, r is the muscle moment arm about the joint and Tmnet is the net muscle moment.

Note that the system assumed here is a 1-dof, so all muscles are single-articular.

Convention: ri is positive when the muscle is a flexor and negative when it acts as an

extensor.

For the case that P is unity, assuming all ri and Tmnet to be positive, it is a linear

programming problem that the global minimum value for J occurs when only the muscle

with the greatest moment arm is recruited. For an example, assume a system with only

two flexors where r1 > r2 and net muscle moment Tmnet > 0. As shown in Figure 2.6, the

optimal solution would be the circle, where the feasible line of equality constraint intersects

the minimum line of objective function contour that would be on the far left side of the

constraint line. The arrow on the contour shows the ascent direction of the function.

For higher values of P , one can write the Lagrangian as follows:

L = J + λgeq (2.16)
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where λ is called the Lagrange multiplier. To find the optimal solution, the gradients of

the Lagrangian in terms of the decision variables and Lagrange multiplier are required to

be zero.
∂L
∂Fi

= P
F P−1
i

NP
i

− λri ≡ 0, i = 1..n (2.17)

∂L
∂λ

= geq ≡ 0 (2.18)

Rearrange Equation 2.17 for the Lagrange multiplier, as follows:

λ = P
F P−1
i

riNP
i

(2.19)

For i 6= j, as the Lagrange multiplier is unique, one can write

P
F P−1
i

riNP
i

= P
F P−1
j

rjNP
j

(2.20)

which implies the following:

Fi
Fj

=

(
ri
rj

) 1
P−1
(
Ni

Nj

) P
P−1

(2.21)

Equation 2.21 provides a nice property of the global optimal solution that the ratio of two

muscle forces is a function of the ratio of the moment arms and muscle property function.

By replacing the force ratios in the equality constraint, one can derive the optimal force

expression, as follows:

Fj =

(
rjN

P
j

) 1
P−1

n∑
i=1

(riNi)
P
P−1

Tmnet (2.22)

which can be re-written in the simpler following form:

Fj =
Tmnet

rj
n∑
i=1

(
ri
rj

Ni
Nj

) P
P−1

= ΓjT
m
net (2.23)

where Γj represents the percentage of Tmnet in Fj, function of given parameters. As a special

case that muscle property functions are unity, the expression for the optimal muscle force
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j will be the following:

Fj =
r

1
P−1

j
n∑
i=1

r
P
P−1

i

Tmnet (2.24)

2.2.7 Discussion

Static optimization is desirable due to its simplicity and low computation time, but it

neglects contraction and activation dynamics, which may cause non-physiological results.

Moreover, SO does not allow using a time-integral objective function like metabolic energy,

which results in instantaneous variations of muscle forces.

MSO resolves the first drawback of SO, i.e., it includes contraction and activation

dynamics. Its optimization process includes a loop from neural excitation to motion kine-

matics which avoids reaching unrealistic results by setting bounds for neural excitations.

However, MSO like SO still needs to solve the optimization loop at each time step and a

time-integral cost function may not be used in this approach. MSO is interesting since it

is simple and needs low computation cost like SO.

Extended Inverse Dynamics is limiting since it is developed to be used for inverse

dynamic simulations. Advantages of EID are counted as:

• It allows using a time-integral cost function.

• It includes muscle activation and contraction dynamics.

• It has significantly less computation cost with respect to DO.

It is notable that EID has much more cost of computation with respect to SO because

of using a non-instantaneous cost function.

Dynamic optimization is prohibitive due to its computation cost. However, it contains

contraction and activation dynamics as well as a time-integral objective function. It can
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be used for both forward and inverse dynamics. It was shown that dynamic and static

optimizations will lead to similar results of muscle force estimation during normal gait [55].

Analytically solving the muscle redundancy problem is an efficient approach in terms

of time and accuracy; however, it can be deployed in limited cases, and it has a few serious

shortcomings:

• It can only apply an objective function that is an explicit function of decision vari-

ables.

• Considering lower and upper bounds for muscle forces as the optimization variables

is a major challenge for this approach.

• Solving a system that includes muscle dynamics seem to be cumbersome.

In this thesis, Section 3.5 presentes the solution of a system with bounds on muscle forces

using Maple R©.

In the above, five major groups of approaches to solve the force-sharing and muscle

coordination were introduced. There exist some other approaches which can be categorized

in the mentioned groups. For instance, CMC (Computed Muscle Control) [58], which is

based on Static Optimization, includes a control algorithm to control the system dynamics

to track a measured kinematics. This approach is restrictive because it can not be used in

a predictive forward dynamic simulation that there is no measured motion. Additionally,

as CMC is based on SO, it cannot be used with a time-integral objective function.

Among the discussed approaches, SO, MSO, and EID can not be applied in forward

dynamic simulations, and only DO is able to be implemented in both forward and inverse

dynamics. There would be a trade-off to choose a method for a specific application, com-

putation cost versus possibility of using a time integral cost function, and also inclusion of

activation and contraction dynamics.
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2.3 Foot Contact Modelling

Foot contact modelling is an essential piece in the forward dynamic simulations of gait since

ground reaction forces are not measured a priori, as opposed to inverse dynamics. Contact

forces affect the muscle, ligament, and joint reaction forces. Therefore, it plays a crucial

role in understanding gait simulations, injury biomechanics, and design of prosthetics [13,

22, 38, 59–61]. Muscle forces, along with gravity and ground reaction forces on the feet

during the stance phase, produce the required force for human movements. Therefore, a

suitable foot contact model in terms of both efficiency and quality of results will be crucial

in human gait modelling.

Many studies have included foot contact models in human gait simulations; however,

none as yet can accurately produce the ground reaction forces. Previous studies (except [26]

and finite element models) have modelled the foot-ground interaction by means of point

contact elements, i.e., discrete springs and dampers [12, 55, 62–64]. The point contact

elements result in sharp contact forces that lead to inadequate reproduction of ground

reaction forces (GRFs). For instance, Peasgood et al. [22] and Wojtyra [64] predicted

ground reaction forces that do not match the measured quantities well. Also in [22,55,62],

high frequency oscillations are reported at initial contact instants. One might circumvent

this issue by increasing the number of contact elements as in [63], but this results in longer

simulation time. Also, the more the number of contact elements, the more the number of

parameters, and therefore the more time required for parameter identification.

A nonlinear foot contact model was presented by Sandhu and McPhee [13]. This model

was claimed to be volumetric; however, they did not compute any closed-form volume.

They discretized the foundation to nonlinear spring-damper elements, and calculated the

contact forces by adding the forces of those elements, which is more somewhat similar to

the study by Gilchrist and Winter [62].

The foot model presented by Millard et al. [26] consists of two segments with three

spheres where the metatarsal joint was assumed to be a passive joint with a rotational
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spring and damper. A volumetric foot contact model was based on the work by Gonthier

et al. [65], which assumes a linear elastic foundation, i.e. small deformations. This does

not seem well-suited for modelling of the foot since the heel pad soft tissue undergoes a

significantly large deformation in impact with the ground, which is reported to be up to

12 mm for a subject with 22.8 mm heel pad thickness [26]. The gait simulation results

reported by those authors for the ground reaction forces did not sufficiently match the

experimental data.

In this thesis, chapter 4 is dedicated to foot contact modelling, and a modification of

current models for application in human gait simulations are presented.

2.4 Dynamics of the Human Body as a Multi-Body

System

Analysis of human movement requires the understanding and usage of multi-body dynamics

formulations. In this section, the structure of dynamic equations for a multi-body system

is studied. The human musculoskeletal system is an over-actuated system, i.e., the number

of actuators (muscles) is more than what is needed to drive the degrees of freedom of the

dynamic system. In another statement, this muscle-actuated system is redundant in the

sense that one can choose a different number of muscles to drive a specific joint with the

same degrees of freedom. Therefore, the dynamic system is indeterminate, which means

the number of unknowns is more than the number of equations. In general, this problem is

solved through an optimization process in which the unknown variables are muscle forces

or muscle activations (See Section 2.2). Activations can be applied either as a discrete (in

a finite number of time steps) or continuous function. The activation can be parametrized

in terms of muscle force using a Hill muscle model, which was presented in Section 2.1.2

in detail.

To analyze these biomechanical models, multi-body dynamic equations are required.
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In deriving the equations of motion for a specific height and weight, anthropometric data

are used for bio-fidelity of the model [10].

A biomechanical model can be driven by two different groups of actuators: joint torque

actuators and muscle actuators. If the goal is to calculate the net joint torque of the model,

only joint actuators are considered and the dynamic system is not redundant. However,

if the analysis looks for muscle forces, muscle actuators must be taken into account which

makes the model redundant, i.e., the number of unknowns is more than the available known

equations. It should be noted that redundancy of the model is not dependent on whether

the analysis is inverse or forward dynamics, but it is a nature of the system.

2.4.1 Formulations of Multi-Body Systems

A multi-body system is a set of rigid or flexible bodies and joints that are driven by forces

and moments. Bodies are connected with joints that restrict the degrees of freedom. The

human body is an example of a multi-body system in which the bones are the bodies, and

muscles and soft tissues are considered as elements containing internal force. A multi-body

system may be constrained or unconstrained. Kinematic constraints can be written as a

set of algebraic equations:

Φ(q, t) = 0 (2.25)

where q is the column matrix of generalized coordinates, and t is the time. For instance,

body joints are time-independent constraints, whereas a prescribed trajectory of a joint is

an example of a time-dependent constraint.

For an unconstrained multi-body system, the equations of motion can be written in the

following from:

Mq̈ = Q (2.26)

where Q is the column matrix of quadratic velocity terms and generalized forces on the

system and M is the mass matrix, which contains masses and moments of inertia of all

rigid bodies.
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By combining Equations 2.25 and 2.26, the equations of motion for a multi-body system

with kinematic constraints can be yielded as a set of differential-algebraic equations (DAEs)

via the Lagrange multiplier method:{
Mq̈ + ΦT

qλ = Q

Φ = 0

}
(2.27)

where Φq = ∂Φ
∂q

is the Jacobian matrix. In Equation 2.27, λ is the column matrix of

Lagrange multipliers which corresponds to the reaction forces of joints, or more generally

kinematic constraints. Then, the reaction forces corresponding to the kinematic constraints

can be expressed as:

Q(c) = −ΦT
qλ (2.28)

In this research project, the equations due to the multibody system will be in the form of

ODEs only as given by Equation 2.26. In biomechanical human body modelling, as long as

no kinematics constraint is present, the equations will be in the form of Equation 2.26. For

example, even in gait modelling that there is a double-support phase, if the contact is not

considered through kinematic constraints, multibody equations will still be pure ODEs.

2.4.2 Symbolic Musculoskeletal Modelling with Maple R©

The numerical optimization methods involved in this work may require tens or hundreds of

dynamic simulations. Thus, it is critical to formulate and solve the multi-body equations

as efficiently as possible.

Dynamic equations governing a multi-body system can be expressed numerically or

symbolically. Numerical techniques produce matrices which are meaningful only at a spe-

cific instant of time; as a result the equations must be reformulated at each time step of

the analysis. Although numerical approaches are used in most popular simulation pack-

ages such as MSC.ADAMS, they suffer from the relatively slow process in reformulating

equations of motion.
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Symbolic formulation techniques produce sets of equations that describe the system mo-

tion over the entire time, thereby increasing the simulation speed. Prior to the simulation,

symbolic expressions can be greatly simplified through different ways such as simplification

of trigonometric expressions, removing repeated calculations, and removing multiplications

by zero and one. For example, in many multi-body applications, some parameters have

zero values; all of these values are treated similarly to the non-zero values in a numer-

ical process, which causes time loss. A symbolic package such as Maple R© performs the

simplifications as well as code optimization to reduce computation time. These simplifica-

tions lead to simulations five to ten times faster than those simulated through numerical

approaches [66].

Finally, unlike the numerical model, a symbolic approach allows the user to apply

the equations of motion in a meaningful and faster way in design and analysis of the

multi-body system [67, 68]. However, symbolic formulation techniques may produce large

expressions for a complex system. Large systems may need more memory for a symbolic

simulation. However, an efficient package like Maple R© using a suitable formulation process

can overcome this drawback.

In this thesis, musculoskeletal models will be implemented in MapleSim R© (physical

modelling toolbox of Maple R©), and will take advantage of symbolics, possible simplifica-

tions, and code optimization [69]. It is to be noted that MapleSim R© automatically gen-

erates simplified equations of motion governing a multi-body system using graph theory.

Afterwards, the optimized and simplified equations of motion and other model expressions

can be exported to another package like MATLAB R© to perform the optimization needed

for the force-sharing problem. Figure 2.7 illustrates the schematic flowchart of such a

process. The modelling begins from an implemented muscle model in MapleSim R©, which

will be inserted into the multi-body system. Dynamic equations will be generated auto-

matically and transferred to Maple R© afterward. Different types of simplifications will be

automatically performed on those dynamic expressions using Maple R© commands. Then

using the Maple R© ability for code optimization, a highly efficient code will be exported to

MATLAB R©. Once the code is imported in MATLAB R©, the optimization process needed
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Figure 2.7: Work flow from MapleSim R© to MATLAB R©

for the force-distribution or the optimal control problem will be performed.

2.4.3 Solution Approaches of Equations of Motion

There are two approaches to solve the equations of motion: forward and inverse dynamics.

In forward dynamics, forces and moments are known, and the motion and kinematics of

bodies are unknown. In inverse dynamics, given the kinematics of the multi-body system

(MBS), the goal is to find the corresponding forces and moments. In general, to perform

a forward dynamics approach on a MBS, a set of DAEs in Equation 2.27 are required to

be solved.

In inverse dynamics, the motion is generally specified from measurements using video

imaging techniques [70, 71]. The following assumptions are required in doing an inverse

dynamics analysis:

1. The prescribed motion is completely known.

2. The motion is consistent with the kinematic constraints of the defined model.

The column matrix Q can be separated into unknown and known terms Qunknown and

Qknown, respectively. Let the unknown forces be considered as follows [18]:

Qunknown = CTFunknown (2.29)
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where C is a matrix mapping the force space to the space of generalized forces. Now, the

first row of Equation 2.27 can be written in the following form:

ΦT
qλ−CTFunknown = −Mq̈ + Qknown (2.30)

This equation will have a unique solution if the number of unknown forces and independent

kinematic constraints is equal to the number of coordinates in the model. Otherwise,

Equation 2.30 will not yield a unique solution due to the redundancy. It is to be noted

that since there is no closed kinematic chain, and no constraint equation, in musculoskeletal

models, the term ΦT
qλ will be zero.

2.4.4 Kinematic Relations due to Muscles

In early models of musculoskeletal systems, muscles were considered as single lines, i.e., one

single line connects the origin and insertion of the muscle, which is not a valid assumption

in general. Muscles have different paths of effect; some can be assumed as a straight line,

called two point muscles, but for most of muscles there is not a reasonable line that can

model the force line of effect through the muscle. In Figure 2.8, two typical muscles are

depicted to show this statement better. Semimembranosus (SM) is a two point muscle

within the knee joint range of motion; however, the Tensor Fasciae Latea (TFL) has a

more complicated geometry and can be modelled as a multi-linear path muscle passing

through some via points [18]. According to Figure 2.8, SM as a two-point muscle is a

bi-articular joint muscle; therefore length and velocity of the tendon-muscle unit can be

written as follows:

ltmSM = ltmSM(θ1, θ2) and vtmSM = vtmSM(θ1, θ2, θ̇1, θ̇2) (2.31)

where θ, θ̇ are joint angle and angular speed, respectively.

As shown in Figure 2.8, the TFL can be divided to three straight lines 1, 2, and 3, in

which each segment can be treated as a two-point muscle, e.g., the length and velocity of

TFL1 will be functions of θ1, θ̇1, respectively. Consequently, given the origins and insertions
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Figure 2.8: Different force effect paths of two typical muscles, SM and TFL [18]

of muscles, above relations can be used to calculate the tendon-muscle lengths (ltm) and

velocities (vtm) at different system kinematics.

2.5 Chapter Summary

In this chapter, a literature review for modelling of human musculoskeletal systems was

presented. The chapter started with muscle modelling where three major muscle models in

the literature were introduced, and advantages and disadvantages of each were brought up.

The chapter was continued with muscle redundancy solutions; SO and DO were discussed

as main approaches and also popular objective functions were presented. Eventually, a

section was dedicated to multibody formulation of musculoskeletal system dynamics.

The next chapter introduces the proposed techniques to solve the optimal control prob-

lem and also muscle redundancy involved in human musculoskeletal modelling.
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Chapter 3

Optimal Control of Musculoskeletal

Systems

In this chapter, a few approaches to solve the optimal control and muscle redundancy

problems of human musculoskeletal systems are addressed. In each section, the approach

is introduced, an example is presented, and a discussion of the efficacy, advantages, and

disadvantages of the approach is given.

3.1 Introduction

When the goal is to find the optimal time-history of functions of interest, such as muscle

forces or activations, one must solve a Dynamic Optimization (DO) or an Optimal Control

Problem (OCP). DO, in spite of high computation cost, results in more realistic results

as it considers all the time-course in the optimization procedure and solves for the time-

history of the decision signals. Therefore, in contrast to SO, DO takes into account the

effect of previous time instants on the current instant of simulation.

In the books by [72–74], several approaches for solving a general optimal control prob-

lem are presented, including linear quadratic regulator (LQR) control, linear quadratic
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Gaussian (LQG) control, variational approaches such as direct collocation (DC), model

predictive control (MPC), and parametrization. For all techniques, pros and cons are in-

volved. It should be noted that not all of those approaches are applicable to musculoskeletal

modelling; for instance, LQR and LQG are for linear systems only, MPC normally works

in linear or linearized systems with quadratic optimization form only, and DC requires a

complicated implementation and thus has been scarcely applied recently [75].

Local parametrization has been used by a few researchers, e.g., [14,76]. Locally parametriz-

ing the control signals or state variables sounds like a promising approach as it captures

the local dynamics of the system as long as the local considered windows are small enough,

which is relative. However, by increasing the number of parametrization windows, the

scale of the optimization problem, and therefore CPU time, increases significantly, which

is a serious challenge.

The main focus in the next two sections of this chapter is to introduce the global

parametrization approach and proposed functions. Using a control signal parametrization

method, the OCP is converted to a nonlinear optimization problem by using parametric

pattern functions as the control inputs, the neural excitations. Different parametrization

functions might be used, based on the information of the system, degree of nonlinearity,

and a priori data. Global and local parametrization might be utilized. For instance,

different orders of polynomials can be used for the global control parametrization [77], or

splines as local functions within finite windows of the simulation [76,78]. Although global

parametrizing, compared to local parametrization, seems to be possibly missing some local

dynamics of the system, this approach will provide good sub-optimal results in general.

Also, for applications with no drastic changes in the control signals (a priori knowledge

of the system behaviour is required), global parametrization will still output reasonable

results. In addition, global parametrization will reduce the number of decision variables

considerably, which results in significant reduction of the CPU time.
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3.2 Polynomial Global Parametrization

3.2.1 Introduction

In this section, a model for forward dynamic simulation of the rapid tapping motion of

an index finger is presented. The model consists of a 1-dof horizontal pendulum with two

muscles (one as flexor and the other as extensor). The goal of this analysis is to solve

the force-sharing problem during a desired motion, as well as to investigate the maximum

motion frequency that the assumed muscles can achieve for the finger. The pattern of each

muscle excitation signal is assumed to be a sixth-order polynomial function of time. The

first reason for assuming such a pattern is that filtered, rectified, and normalized EMG

signals are quite smooth and can be curve-fitted by a suitable continuous mathematical

function such as a polynomial, and the second is that assuming a continuous and continu-

ously differentiable function like a polynomial will help the optimizer to meet the nonlinear

constraints on the excitation signal within the optimization problem definition. Thirdly,

assuming a parametric continuous function may lead possibly to symbolic simplifications

and analytical solutions.

3.2.2 Example: Finger Tapping

The muscle model is a three-element Hill model based on [3]. The activation and contrac-

tion dynamics expressions employed for this model are presented in Appendix A.3.

The following assumptions are made for the finger modelling and simulation:

1. The maximum isometric force Fm
max is assumed to be 100 N for both the extensor

and the flexor muscles. It seems reasonable for the flexor muscle since it is supposed

to act as a resultant of all flexor muscles. For the sake of similarity of the flexor and

the extensor, the same value is assumed for both.
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2. Anthropometric properties of the index finger, including length, mass and moment

of inertia are taken from [79]. The composite moment of inertia is calculated given

the moments of inertia of the three phalanges of the index finger.

3. Muscle moment arms are assumed to be constant during the motion because of small

finger rotation amplitude, and both radii are assumed to be 10 mm, which agrees

with the dimensions of metacarpophalangeal joint [80].

4. The desired motion is defined as follows:

θd(t) = 0.21 sin(ωdt) (3.1)

where 0.21 rad is the amplitude of the considered motion according to [81], and

ωd = 2πfd in which fd is the frequency of the sinusoidal defined motion.

Optimization Problem Description

The control signals are globally parametrized by 6th-order polynomials:

u = p6t
6 + p5t

5 + p4t
4 + p3t

3 + p2t
2 + p1t+ p0 (3.2)

Therefore, the optimizer job is to look for the optimal coefficients of the two control

signals, for a total of 14 variables. A set of nonlinear constraints will be imposed to the

problem to meet the bounds on the neural excitations, i.e., 0 ≤ u ≤ 1.

The objective function for simulating this model is defined as a linear combination of

two cost functions J = µJ1 + (1− µ)J2:

J =
µ

τ

2∑
j=1

∫ τ

0

a2j dt+
1− µ

τ max(θ2d)

∫ τ

0

(θs − θd)2 dt (3.3)

where the first term in the objective functional describes a physiological objective function

(activation effort) based on [50], whereas the second term accounts for the tracking job. In
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Equation 3.3, τ = 1/fd is the motion period, j is the muscle index, and θs is the simulated

joint angle. The weight factor µ indicates the relative importance of the physiological term

against the tracking error. Since in this simulation, tracking of the motion is much more

important, the weight factor is assumed to be 0.1, which implies higher significance of the

tracking error. It must be noted that the objective functional is written so that each term

in dimensionless.

Finally, Sequential Quadratic Programming (SQP) as implemented in the fmincon func-

tion in the Optimization Toolbox of Matlab R© is used as the optimizer. For the initial guess

needed in SQP, results of the same case using a Genetic Algorithm as the optimizer were

used. Consequently, the optimization approach applied to solve for the muscle redundancy

is a hybrid method.

Results and Discussion

Different sets of simulations are run. The major focus is on motion frequency variation; to

be brief, only the plots regarding some frequencies are shown. Another set of simulations

is performed to examine the effect of gravity, and a separate one is done to see the finger

mass effect. Also, it is investigated how the optimization weight factor affects the results.

The first set of results are presented in Figures 3.1 to 3.3. Each figure includes one

set of simulations and consists of four plots: θd and θs (desired and simulated motions),

excitations, activations, and muscle forces. Figures 3.1 to 3.3 are dedicated to motion

frequency variations. In this investigation, the focus is on how increasing the motion

frequency affects the results. The purpose is to find the maximum frequency that this

biomechanical system can follow. Motion frequency is started from 2(Hz) (Figure 3.1) and

increased to 3, 4, 5, 6 (Figure 3.2), and 7 Hz (Figure 3.3), where it was observed that the

system is not able to produce the desired motion any more. In this case, values of the total

cost function increased significantly, see Table 3.1, and the created motion differs from the

desired motion definitely.
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Figure 3.1: Simulation results with fd=2 Hz: (a) desired and simulated joint angle θ, (b)

muscle forces, (c) muscle excitations, and (d) muscle activations
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Figure 3.2: Simulation results with fd=6 Hz: (a) desired and simulated joint angle θ, (b)

muscle forces, (c) muscle excitations, and (d) muscle activations
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Figure 3.3: Simulation results with fd=7 Hz: (a) desired and simulated joint angle θ, (b)

muscle forces, (c) muscle excitations, and (d) muscle activations
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Table 3.1: Variation of motion frequency and cost function values

Frequency(Hz) J J1 J2

2 0.041 0.101 0.035

4 0.196 0.145 0.201

5 0.211 0.176 0.215

6 0.898 0.109 0.986

7 1.553 0.097 1.714

It must be mentioned that, in general, what activation dynamics does, based on the

first order model, is to make a time delay between neural excitation and activation signals;

moreover, a small scaling also occurs between these two signals [1]. When fd=2 (Figure 3.1),

the simulated and the desired motions are the same, i.e., J2 is relatively small as seen in

Table 3.1. Excitation values of the extensor are much more than those of the flexor, due

to the fact that the muscles are uni-articular joint muscles (they span only one joint) and

theoretically no coactivation will occur [56]. It implies that at this frequency, the extensor

and the gravity perform the extension and flexion without any requirement to the flexor.

The flexor muscle has negligible values of excitation, which again is related to the help of

gravity and absence of co-activation.

As the motion frequency is increased from 2 Hz, the ability of the finger to follow the

desired motion decreases, as can be observed from increased J2 values in Table 3.1. Also

the cost of activations to track the desired motion is increased, resulting in more activation

(greater J1 value).

Table 3.1 implies that as the motion frequency increases from 2 to 5 Hz, the demand

of cost (J1) increases, and the error of tracking, J2, increases as well. From 6 Hz on, it is

observed that although the total cost function increases, the physiological cost required for

motion tracking, J1, decreased; it means that in this case, increasing the muscle activations

does not help to better imitate the desired trajectory. By looking at Figures 3.2 and 3.3,
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it is seen that the optimization process has found the simulated trajectories at the least

activation efforts, although those trajectories do not look similar to the desired ones.

There are a number of studies in the literature on finding the maximal frequency or

speed at which a finger can move. Kuboyama et al. [82] mentions 6.46 Hz while [83] reports

6.92±0.56 Hz. The results of this study imply that this maximal frequency is around 6 Hz

which is close to the available values in the literature. These mentioned references have

measured the desired value experimentally, so the maximal motion frequency extracted

from the results of this study predicts the experiments quite well.

The reason why the model is not able to track the desired motion is that at high motion

frequencies, the required contraction velocity is more than the velocity at which muscle can

produce the force to satisfy the equations of motion. Figure 2.4(b), which shows the force-

velocity relationship schematically, implies that when the concentric contraction velocity

increases, the force production ability decreases. Therefore, the muscle can move faster

only if it can produce enough force to satisfy the equations of motion. At around 6 Hz, as

the maximal frequency, muscle must contract with the maximum velocity of 79.2 mm/s,

which will lead to small force generation ability. Since the muscle can not create enough

force at such a velocity in order to satisfy the equations of motion, it is not able to move

at this velocity and can not track the desired motion.

A separate study is also done to investigate the sensitivity of the simulation outputs

to the finger mass. To this goal, finger mass is reduced to 50%, and the optimal control

problem is resolved for this case at fd=2. The quality of the motion tracking was the same

as the one shown in Figure 3.1(a). Optimal muscle excitations, activations, and forces of

this case are depicted in Figure 3.4. These results can be compared to those of the same

case but with 100% finger mass, illustrated in Figure 3.1. The excitation values in the

case with 50% mass are less, which is reasonable, and the values are approximately scaled

compared to those of the case with 100% mass. This can also be observed by comparing

the activations and forces of two cases better. Based on that, the modelling framework

is able to simulate the system response even with a large change in model mass, which is
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necessary for subject-specific simulations.
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Figure 3.4: Optimal results for fd=2 Hz and 50% of index finger mass: (a) excitations, (c)

activations, and (d) forces

3.3 Fourier Series Global Parametrization

The aim of this section is to introduce a Fourier series (FS) based parametrization function

for the muscle excitations, which are the control signals in musculoskeletal dynamics. The

Fourier series patterns implemented here are similar to those presented by Peasgood et

al. [22], but deployed for joint angles. Here, the optimal control is converted to a parametric

optimization problem that looks for the optimal coefficients of the control vector, a set of

muscle excitations. Although desired control signals are approximated with finite-term

patterns, this approach is potentially efficient as it reduces the number of optimization

variables considerably, especially compared to the alternative case that discrete control

node values are the search variables as in [54], or control signals are locally parametrized.

In other words, in a global parametrization approach, the variables are a few function

coefficients, in contrast to the many control nodes at the simulation time instances, which

are the variables in the alternative approach. Finally, numerical optimization is used to

solve the muscle redundancy problem.

Fourier series terms are chosen here to approximate the excitation signals globally,
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where these functions consist of the first 2K + 1 terms of a FS as follows:

u(t) = A0 +
K∑
k=1

[Ak sin(
2πkt

τ
) +Bk cos(

2πkt

τ
)] (3.4)

where K is assumed to be 5 according to [22], resulting in 11 coefficients for each muscle

neural state. Then, the optimization algorithm seeks the optimal set of coefficients for

excitation parametrized functions to minimize the objective functional and satisfy the

constraints. At each iteration of optimization, after constructing the excitation functions,

the system dynamics including muscle activation and contraction dynamics, and system

equations will be integrated to find the relevant state vector of that iteration. It should be

highlighted that neural excitations must be bounded between 0 and 1. These bounds will

be in the form of nonlinear constraints imposed to the optimization framework.

3.3.1 Objective Functions

Two major objective functions, which are variously used in the literature, are used here:

activation effort and metabolic energy.

Activation Effort

The first type of objective function group is the one that computes the amount of activation

effort of the muscles to perform a motion. It can be formulated as the following:

J =
1∑
Si

1

τ

n∑
i=1

Si

∫ τ

0

aPi dt (3.5)

where ai is the muscle activation, τ is the motion period, Si is a weighting factor for muscle

i, n is the number of muscles considered in the model, and P is an exponent. This type of

objective function has been used by many researchers with different weighting factors and

exponents, either in discrete form for SO or integral form for DO, such as [43, 75, 84, 85].

It should be noted that J is dimensionless.
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Metabolic Energy

Metabolic energy expenditure of the muscles can be also considered as another form of

the objective function. There are different phenomenological models in the literature for

computing the heat rate produced by a muscle during contraction. Here, the model utilized

for formulating the metabolic energy rate, which includes the muscle mechanical power,

activation heat rate, maintenance heat rate, and the shortening/lengthening heat rate, is

based on [7]. These equation are presented in Appendix B. Based on these, the objective

function can be written as follows:

J =
1∑

max(Ėi)

1

τ

n∑
i=1

∫ τ

0

Ėidt (3.6)

where Ė is the muscle metabolic energy rate. The objective function computes the total

metabolic energy consumed by the musculoskeletal system from time 0 to τ of the mo-

tion. Again, the presented objective function is non-dimensionalized. A similar objective

function is used by [55] except they divided it by the distance travelled in a human gait

simulation.

3.3.2 Example: Forearm Modeling

A two-dimensional forearm model is studied as an example. The skeletal model consists

of a forearm and hand while the wrist angle is assumed to be constant. The upper arm

is also assumed to be kept beside the torso. Thus, the only dof is due to the elbow joint,

which was assumed to be a revolute joint. Mass, inertia and center of mass position of

the rigid body is according to anthropometric data reported in [10] assuming 80 kg for the

body mass and 1.8 m for body height.

Seven muscles are considered in the model: Brachioradialis (BRD), Biceps Long Head

(BICLH), Biceps Short Head (BICSH), Brachialis (BRA), Triceps Long Head (TRILH),

Triceps Lateral Head (TRILT), and Triceps Medial Head (TRIMH). Muscle models are of
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Figure 3.5: Moment arms plotted versus the elbow flexion angle. The moment arm data

for all muscles is adopted from [8] except BRA, which is from [19].

the three-element Hill type according to [3]. The three components in the muscle model

are the contractile element (CE), the parallel elastic element (PE), and the serial elastic

element (SE). Muscle parameters are presented in Table 3.2. Additionally, muscle moment

arms are implemented as functions of the elbow flexion angle; all moment arm data are

taken from the model presented by Garner and Pandy [8] except that for the BRA muscle,

which is adopted from the model by Murray et al. [19]. These moment arms are plotted

against the elbow angle in Figure 3.5.

A motion tracking forward dynamic analysis is performed. To this goal, the desired

elbow flexion angle motion was measured a priori, and the average motion considering the

number of subjects and trials was calculated. Therefore, a motion tracking constraint is

imposed to the optimization to produce a motion which is close to the average measured

data. To this goal, a nonlinear constraint is adjoined to the optimization objective function

as the following: ∥∥(θsim − θexp)
∥∥
∞ ≤ εtr (3.7)
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Table 3.2: Parameters of the model, adopted from [8]: muscle fiber optimal length lceopt,

muscle maximum isometric force Fm
max, tendon slack length lslack, fiber pennation angle αp,

and muscle volume V

Muscle lceopt(cm) Fm
max(N) lslack(cm) αp(deg) V (cm3)

BRD 27.03 101.58 6.04 5.00 83.19

BICLH 15.36 392.91 22.93 10.00 182.92

BICSH 13.07 461.76 22.98 10.00 182.92

BRA 10.28 853.90 1.75 15.00 256.96

TRILH 15.24 692.21 19.05 15.00 290.67

TRIMH 6.17 1268.87 19.64 15.00 237.28

TRILT 4.90 619.67 12.19 15.00 92.04

where εtr is the tracking constraint violation tolerance, and θsim and θexp are the simulated

and experimental elbow joint angles, respectively. The constraint violation tolerance for

motion tracking was chosen to be 0.1 rad. Other sets of constraints on the optimization

problem include the following:

0 ≤u ≤ 1 (3.8)

where the chosen tolerances for these constraints are 1e-6. Each muscle excitation ui as

a function of time was parametrized with the 11-term Fourier series, so the total number

of control parameters in the model is 77. As explained earlier, two groups of objective

functions J are considered here, activation effort and metabolic energy. For the activation

effort, two different weighting factors Si (unity and muscle volume) and exponents P (2

and 3) are investigated, resulting in four forms of activation efforts. Consequently, five

objective functions, as summarized in Table 3.3, and five sets of results are presented in

this study. Muscle volume data are adopted from [8], which are presented in Table 3.2.

The equations of motion were written as first order ordinary differential equations
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Table 3.3: Five different objective functions

Activation Effort
Metabolic Energy

P = 2 P = 3

Si = 1 J1 J2
J5

Si = Vi J3 J4

integrated with contraction and activation dynamics as presented below:

l̇m(t) = fCD(lm, lmt, l̇mt, a) (3.9)

where lm, l̇m, fCD, lmt, l̇mt, and a are muscle length, muscle velocity, contraction dynamics

function, tendon-muscle length and velocity, and muscle activation, respectively. The

activation and contraction dynamics expressions are presented in Appendix A.3. All the

musculoskeletal dynamic equations were derived in the following form in MapleSim R©:

ẋ = f(x, u, t) (3.10)

where x includes elbow joint angle and velocity, seven lm and seven a, resulting in a total

of 16 states in the state vector of the dynamical system.

3.3.3 Experimental Design

The experiments included motion capture using OptotrakTMand surface EMG using a

DelsysTMwireless system. The motion capture goal was to measure the elbow angle by

attaching three markers on the wrist, elbow and shoulder of the subject. The surface

EMGs of three muscle groups were measured: BRD, BIC, and TRI. The EMG signals,

recorded at 2000 Hz, were high-pass filtered, full-wave rectified, normalized to subject’s

MVC (maximum voluntary contraction), and zero-lag low-pass filtered. The high-pass

filter was done by means of a Butterworth 10th order at 20 Hz, where the low-pass filter
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Figure 3.6: Simulated versus average measured forearm motion

was a Butterworth 3rd order at 5 Hz. Three male subjects, ages from 27-29, heights from

1.78-1.88 m, and body weights from 77-85 kg, were tested. To account for the repeatability

of the experimental data, three trials were performed per each subject resulting in a total

of 9 trials. The subjects were asked to perform the elbow flexion/extension at their own

self-selected speeds. The average forearm motion θexp (with a period of nearly 1.9 s) was

then tracked by the simulation.

3.3.4 Convergence Study

For each objective function, three different random initial points were obtained by solving

the constrained optimization problem using a Genetic Algorithm (GA) in MATLAB R©.

Afterwards, these three solutions were used to run a Sequential Quadratic Programming

(SQP) solver to take advantage of normally faster gradient-based algorithms. From those

three runs, the best one was chosen to be the raw optimum. Using this new solution as a

new initial guess, Pattern Search function as a Direct Search (DS) routine was then run to

ensure the globality of the solution. If the objective function value of the DS was less, it was

put into the SQP again. This cycle was repeated until the change in the objective function
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was less than 1e-6 and the constraint violation values satisfied the defined tolerances, where

the result was accepted as the global optimum.

3.3.5 Results

The results in Figure 3.6 show that the model has followed the desired trajectory very well.

The reason why only one simulation graph is presented for the motion is that the quality

of motion tracking for all five cases of objective function were quite similar.

The optimal muscle excitations using objective functions J1 and J2 (Figures 3.7(a,b)),

and J3 and J4 (Figures 3.8(a,b)) express that in this type of motion, elbow flexors mostly

do the defined job. During extension, joint flexors are active and control the limb that is

under extension by gravity. Only at the beginning and the end of the period of the motion,

elbow extensors are slightly active due to the fact that zero angle of elbow is not the angle

providing the resting length for extensors. In the case that metabolic energy J5 was used

as the objective function, only one flexor and one extensor were recruited, as shown in

Figure 3.9, which is not in agreement with the measured EMGs.

For activation effort cases J1 to J4, the patterns of the four flexor excitations are

very similar. The values of the excitations are between 0 and 0.06, which show that

for this type of motion, small muscle activity is required. To examine the model validity,

simulation results of the muscle excitations using J4 as the objective function are presented

in Figure 3.10 and compared against measured EMGs for three muscle groups. The results

show that there is a reasonable correlation between the measured and simulated values.
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Figure 3.7: Optimal muscle excitations and forces: (a,c) with J1 and (b,d) with J2
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Figure 3.8: Optimal muscle excitations and forces: (a,c) with J3 and (b,d) with J4

3.3.6 Discussion

Although in this section, a Fourier series was applied to a periodic example, this FS function

can be utilized for non-periodic motions as well. Consider Equation 3.4. If τ is set to the

motion period, the created function will be periodic in that time course; however, if τ is
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Figure 3.9: Optimal muscle excitations and forces with J5 as the objective function

free to be less than or greater than the motion duration, then the parametrization function

is able to produce non-periodic patterns in that duration. In that case, the FS period τ ,

which is different from the motion duration, will enter the optimization procedure as an

additional parameter.

Optimal control problems can be converted to nonlinear parameter optimization prob-

lems using parametric pattern functions for the control signals. Choosing a suitable pattern

function depends on the conditions of the problem. FS-based functions are smooth which

can approximate the neural excitations in human movements. The number of FS terms

utilized for each control input can be debatable and depends on the type of movement; it

might be determined by having tentative before-hand information about the motion and

the corresponding excitation signals.

The presented results show that the simulation results are in a fairly good agreement

with the experimental data. Therefore, parametrizing the control signals with Fourier

series terms is a suitable strategy in musculoskeletal simulations. Forearm motion was

chosen to show the efficiency of the approach; however, for future work, more complicated

motions such as human gait or running can be showcased.
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Figure 3.10: Comparison of the simulation results for muscle excitation u (solid line, in

case activation effort J4 is minimized) against normalized EMGs (grey band) depicted as

mean ±1 standard deviation

In Sections 3.2 and 3.3, parametrization was found to be a promising approach in

Dynamic Optimization of human musculoskeletal systems. In terms of the quality of

the optimal results, one can say that global parametrization provides reasonable results;

however, this approach may lead to over-prediction of antagonistic coactivations.
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Another aspect of any approach to solve muscle redundancy would be the time effi-

ciency. The finger tapping example with two muscles using 6th order polynomials (total

14 parameters) took a total CPU time of fifteen minutes to find the global optimum. On

the other hand, the forearm simulation with seven muscles using 11-term Fourier series

(total 77 parameters) took nearly half an hour on the same machine to reach optimality.

Additionally, calling the finger tapping model takes 0.4 seconds to run, whereas the fore-

arm function takes 0.9 seconds. Given the aforementioned information, one can conclude

that the optimizer had an easier job finding the optimal point for the forearm model. This

can be associated with the type of the parametrization function. To explain that, consider

the general form for a polynomial (PN) of order n:

fPN = a0 + a1t+ a2t
2...+ ant

n (3.11)

with

∂fPN
∂an

= tn

As can be interpreted from the Equation 3.11, the sensitivity of the approximated func-

tion with respect to the parameters is unbounded and increases drastically with time and

corresponding order of the polynomial term. Now, consider a Fourier series function with

2K + 1 terms. The sensitivities can be written as:

fFS = A0 +
K∑
k=1

[Ak sin(
2πkt

τ
) +Bk cos(

2πkt

τ
)] (3.12)

with

∂fFS
∂Ak

= sin(
2πkt

τ
)

and

∂fFS
∂Bk

= cos(
2πkt

τ
)

As can be noticed from comparing the sensitivities of the polynomial and FS functions,

the sensitivity of polynomial coefficients blows up easily as the order of corresponding term
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increases; however, the FS sensitivity remains bounded regardless of the value for K, which

is a nice feature of an FS function.

The other interesting characteristic of the FS is that it provides a reasonable path

for the optimization solver in finding the optimal coefficients. Consider simply the curve-

fitting process using numerical optimization. No matter what high frequency is added to

the function, the coefficients of the lower frequencies remain the same as long as the lowest

frequency is kept constant, which is the case for periodic motions. As an example, an

optimal excitation of the BICSH is set as the target, on which different orders of Fourier

series with eleven, seven, and three terms are tested. The comparison of the FS functions

is shown in Figure 3.11(a), and the optimal coefficients of the three cases are presented in

Table 3.4(a). As can be seen from the coefficient values, when increasing the term from

three to seven and eleven, the low frequency coefficients remain the same, which reduces

the effort of the optimizer significantly.

This property of the Fourier series does not exist for polynomials. To show this as it

was done for the FS, the similar target pattern is curve-fitted with three different orders

of polynomials: 4th, 8th, and 10th. Figure 3.11(b) shows that the 11-term FS provides

a much better fit than the comparable polynomial. The coefficient values of these three

polynomial functions are presented in Table 3.4(b), which shows that, by increasing the

order of a polynomial, coefficients of the lower order terms change considerably.

To examine this difference between FS and PN functions in solving a musculoskeletal

problem, the forearm example is resolved by parametrizing the muscle excitations with

11-term polynomials. This can support the claim above. As the number of parameters

for each muscle control and total number of parameters in the optimization is the same

in both FS and PN approaches, the results and computational efficiencies are comparable.

By parametrizing all muscle controls with 10th-order polynomials, the optimal control

problem was solved again with J4 as the objective function, and the optimal results of

the motion tracking and the excitations are depicted in Figure 3.12. The final objective

value functions for FS and PN functions are 0.10 and 0.12, respectively, which confirms
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Figure 3.11: Curve-fitting the results for an optimal BICSH excitation with (a) three

Fourier series functions with 11, 7, and 3 terms and (b) 10th, 8th, and 4th order polynomials

that the results of the FS case are better. Also, by comparing the motion tracking in

Figure 3.12(a) and Figure 3.6, one can observe that the motion tracking quality is better

for the case when Fourier series was used as the parametrization function. Furthermore,

the PN function leads to slightly more antagonistic coactivation between the flexors and

extensors; see Figures 3.12(b) and 3.8(b).

An important aspect of comparing the two cases of FS and PN is the computational

efficiency. It should be noted that both simulations were done on the same machine. The

CPU time for the simulation with 11-term polynomial functions was fifty minutes, whereas

the CPU time for the case using FS patterns was thirty minutes. These CPU times are those

required to reach the global optimum, as discussed in Section 3.3.4. Therefore, Fourier

series provide relatively better results and faster simulations in globally parametrizing the

control signals in the optimal control of musculoskeletal systems.
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Table 3.4: Optimal coefficients of the (a) three Fourier series functions with 11, 7, and

3 terms and (b) 10th, 8th, and 4th order polynomials curve-fitting an optimal BICSH

excitation

(a)

Coefficient 11 7 3

A0 0.0217 0.0217 0.0217

A1 0.0100 0.0100 0.0100

B1 -0.0145 -0.0145 -0.0145

A2 0.0019 0.0019 -

B2 -0.0043 -0.0043 -

A3 -0.0028 -0.0028 -

B3 0.0032 0.0032 -

A4 0.0015 - -

B4 -0.0012 - -

A5 0.0021 - -

B5 0.0024 - -

(b)

Coefficient 10th 8th 4th

P0 1.283 0.009 0.003

P1 -10.537 0.014 0.083

P2 34.854 -0.428 -0.017

P3 -57.844 4.359 -0.060

P4 46.283 -12.641 0.024

P5 -7.438 16.959 -

P6 -14.539 -11.793 -

P7 10.029 4.127 -

P8 -2.277 -0.575 -

P9 0.210 - -

P10 0.005 - -
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Figure 3.12: Optimal control of the forearm model by parametrizing the excitations with

11-term polynomials
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3.4 Using Static Optimization in Forward Dynamic

Simulation of Human Musculoskeletal Models

This section describes possible and efficient ways that static optimization can be used

for forward dynamics (FD) of musculoskeletal simulations. Static Optimization (SO) is

a suitable approach in solving the muscle redundancy in inverse dynamics (ID). In other

words, given all the state values of the system, it can easily solve the under-determinate

problem of assigning a share of each muscle to the torque of the joint(s) it is spanning. The

major issue with SO is that it is an instantaneous optimization. In another statement, it

freezes time and solves the under-determinacy of the system as a nonlinear optimization,

not an optimal control problem (OCP). The outcome of that is the independency of the

results from one instant of time to another, which is prone to result in abrupt changes

of the values of interest [55, 86]. These instantaneous changes are mostly unphysiological.

Another issue with SO is that due to the nature of the technique, a time-integral cost

function (CF) like metabolic energy rate cannot be used.

In forward dynamics, the equations of motion need to be integrated. These equations,

that in the best case are in the form of Ordinary Differential Equations (ODE), are highly

nonlinear and require a good solver. Most of these ODE solvers are variable step, i.e., they

return and correct their step size to reduce the integration error. In FD, if realistic results

are desired regardless of the computation cost, DO is a suitable choice; however, DO needs

a high and somewhat unacceptable simulation time. Then the question is: would it be

possible to take advantage of SO speed in FD? More simply, would it be possible to use

SO for FD?

3.4.1 Implementing SO for FD

To answer these questions, a forearm model with seven muscles is considered; the model

properties are the same as those presented in Section 3.3. First, we run SO to find the
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where index i and j refer to the time instant 
of simulation and muscle index respectively.
F is a muscle force and exponent P is the 
polynomial order of the objective function 
that can be 1, 2, 3, and 10. There is one 
equality constraint on the problem that 
assures the dynamic consistency of the 
results, as follows:

7

1Â Msc
ij ij ji
r F T (0.2)

where ijr is the moment arm of muscle i at 

time j. Msc
jT is the total joint torque due to 

muscles calculated from inverse dynamics at 
each instant of time. Additionally, there are 
a set of box bounds on the optimization
variables, muscle forces to guarantee their 
values are non-negative and does not go 
beyond their physiological maximum force 

capacity, maxF . The results for the optimal 

forces from SO  for different exponent 
values are presented in Figure 2. The 
corresponding simulation time is also 
mentioned.

The idea of using SO in FD is that it needs 
to be implemented in the same way as in ID, 
but we need to come up with a way of 
integrating the ODEs as it is forward 
dynamics. Consequently, integration of the 
state equations should be done 

instantaneously. In other words, starting 
from initial conditions of the states, we use 
any solver to calculate the state values for 
the next time step using discrete state space 
form of the system. As a result, at each 
integration, there would be only two control 
points involved in total that the values of 
one are already known. It should be noted 
that integration points will be more than two 
as the solver might create several 
interpolations; however we will only use the 
first and last. 

At each instant of simulation, the framework 
needs to track the target motion as well.
Thus at each instant of time, in addition to 
aim to solve the muscle redundancy, a 
tracking term must be minimized as follows:

7

1 21
( )m m= ◊ + ◊Â P

j ij ji
J F TrErr (0.3)

Assuming q to be the joint angle, different 
forms of tracking error can be used as 
follows:

2( )= -sim des
j j jTrErr q q (0.4)

1 2l lsim des sim des
j j j j jTrErr q q q q (0.5)

1 2

2

l l

l

sim des sim des
j j j j j

sim des
j j

TrErr q q q q

q q
(0.6)

Figure 1) Reference joint angle and angular velocity used for inverse dynamics in SO and tracking forward 
dynamics in FSO
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Figure 3.13: Reference joint angle and angular speed used for inverse dynamics in SO and

tracking forward dynamics in FSO

optimal solutions for muscle forces given the motions. As there is no integration error

involved in SO, as long as the optimization convergence is assured, we can set these results

as the reference base for comparison. The reference motion is a Gaussian curve over 2 s,

with a peak value of 120 degrees of the joint angle, as shown in Figure 3.13. The objective

function used for SO is as follows:

Jj =
n∑
i=1

F P
ij (3.13)

where index i and j refer to the muscle index and the time instant of simulation, respec-

tively, F is a muscle force and exponent P is the polynomial order of the objective function

that can be 1, 2, 3, or 10. There is one equality constraint on the problem that assures the

dynamic consistency of the results, as follows:

n∑
i=1

rijFij = Tmnet,j (3.14)

where rij is the moment arm of muscle i at time j; these moment arms are assumed to be

constant, based on the average data reported in [9]. Tmnet,j is the total joint torque due to

muscles calculated from inverse dynamics at each instant of time. Additionally, there are

a set of box bounds on the optimization variables (muscle forces) to guarantee their values
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Table 3.5: Moment arms for this forearm model, based on average values of [9]

Muscle BRD BICLH BICSH BRA TRILH TRIMH TRILT

r(cm) 5.40 2.73 3.70 2.10 2.00 2.58 2.00

are non-negative and do not go beyond their physiological maximum force capacity, Fm
max.

The results for the optimal forces from SO for different exponent values are presented in

Figure 3.14. The corresponding CPU time is also mentioned. The idea of using SO in

FD is that it needs to be implemented as in ID, but we need to come up with a way of

integrating the ODEs as it is forward dynamics. Consequently, integration of the state

equations should be done instantaneously. In other words, starting from initial conditions

of the states, we use any solver to calculate the state values for the next time step using

a discrete state space form of the system. As a result, at each integration, there would be

only two control points involved in total, where the values of one are already known. It

should be noted that integration points will be more than two as the solver might create

several interpolations; however we will only use the first and the last.

At each instant of simulation, the framework needs to track the target motion as well. At

each instant of time, in addition to solving the muscle redundancy, a motion tracking must

be done through either motion tracking constraints or as follows:

Jj = µ1

n∑
i=1

F P
ij + µ2TrErrj (3.15)

Assuming q to be the joint angle, different forms of tracking error can be used as follows:

TrErrj =
(
qsimj − qdesj

)2
(3.16)

TrErrj =
(
qsimj − qdesj

)2
+
(
q̇simj − q̇desj

)2
(3.17)

TrErrj =
(
qsimj − qdesj

)2
+
(
q̇simj − q̇desj

)2
+
(
q̈simj − q̈desj

)2
(3.18)
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Figure 3.14: Results of SO for two different values of the exponent P , (a,b) P = 1 (CPU

time: 8 s), and (c,d) P = 2 (CPU time: 6 s)
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Figure 3.15: Results of SO for two different values of the exponent P , (a,b) P = 3 (CPU

time: 7 s), and (c,d) P = 10 (CPU time: 31 s)
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Equation 3.16 sets the joint angle as the target only, whereas Equations 3.17 and 3.18

include joint angular velocity and acceleration, respectively as well. This is very similar to

the Baumgarte constraint violation stabilization (CVS) approach [87], as the idea of both

is to minimize the expression above. In Equation 3.17, the joint angle is controlled with a

Proportional-Derivative (PD) controller and is assisting the acceleration level of the errors

between the simulated and desired values. This PD controller is similar to the Computed

Muscle Control (CMC) approach [58].

A modification to improve the Baumgarte CVS is to add an integral term to the

controller to build up a Proportional-Integral-Derivative (PID) expression [88]. If ψ =

qsimj − qdesj , then the modified instantaneous tracking error, which again can be imple-

mented as either constraints or a sub-objective function, will be the following:

ψ̈ + αψ̇ + βψ + γ

∫ tj

0

ψdt (3.19)

At each instant of forward integration tj, the integral term, calculates the area under the

curve of the joint angle error from the beginning of the simulation. This integral term

can resolve the probable sudden changes of the integrated states in Equation 3.18 as this

integral term adds a time-history of errors to the static optimization problem. Furthermore,

this modification decreases the steady state error, as a PID advantage over PD, compared

to the case Equation 3.18 is applied as the tracking term.

3.4.2 Results and Comparison between FSO and SO

For comparison, two popular cases of P = 2 and P = 3 are presented in Figures 3.16

and 3.17. FSO was simulated on 100 uniformly distributed control points with a variable

step integrator (based on RK45). For each case, four plots are demonstrated, which are

joint angle and angular velocity, optimal muscle forces and force space plot of first muscle

force versus second one. The corresponding CPU times are also presented for comparison

with SO. The FSO results are nearly the same as those of SO. Also the simulation periods

acquired for FSO until convergence are more than SO, but considerably better than the
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similar case with dynamic optimization. It should be added that a DO with Fourier

series parametrization excluding the muscle dynamics takes approximately half an hour to

converge to global optimum, which is not comparable to the FSO CPU time.

3.5 Analytical Muscle Force Sharing Solution with

Maple R©

In this section, solving the muscle redundancy problem analytically using Maple is investi-

gated. This approach provides some nice properties, including its time efficiency; however,

it involves a few shortcomings that will be discussed.

A case study with no bounds on the muscle forces was presented in Section 2.2.6. The

goal here is to add lower bounds on the muscle forces and investigate the possibility of

solving the optimization problem with different objective functions using Maple R©.

3.5.1 Analytical Approach with only Lower Bounds on the Mus-

cle Forces

Assume the same objective function and equality constraint due to the net muscle torque

again, as in Equation 2.15. In addition, another constraint or bound can be adjoined to

the problem, which is due to the fact that muscle forces cannot be negative:

Fi ≥ 0 (3.20)

To make the equations less lengthy, only two muscles are considered and P is assumed to

be 2 and 3 in this section. First P = 2 is investigated.

Case P=2: The objective function and the torque constraint will be given by:

J(Fi) =

(
F1

N1

)2

+

(
F2

N2

)2

subject to geq(Fi) , Tmnet − r1F1 − r2F2 = 0 (3.21)
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Figure 3.16: Results of FSO for the exponent P = 2. CPU time= 20 s
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Figure 3.17: Results of FSO for the exponent P = 3. CPU time= 29 s
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To append the inequality constraint on the forces, it is converted to an equality constraint

using the idea of a slack variable si:

s2i − Fi = 0 (3.22)

As the variable si is always non-negative, it assures the non-negativity of the muscle forces.

Then, the Lagrangian can be written as:

L = J + λgeq + µ1

(
s21 − F1

)
+ µ2

(
s22 − F2

)
(3.23)

L =

(
F1

N1

)2

+

(
F2

N2

)2

+ λ (Tmnet − r1F1 − r2F2) + µ1

(
s21 − F1

)
+ µ2

(
s22 − F2

)
(3.24)

where µi are those Lagrange multipliers associated with inequality constraints converted

to equality ones. For more simplicity, assume N1 and N2 to be unity as well. The gradient

and the Hessian of the Lagrangian with respect to the decision variables, the Lagrange

multipliers and the slack variables, are:

∇L =
{

2F1 − µ1 − λr1, 2F2 − µ2 − λr2, s21 − F1, s
2
2 − F2, T

m
net − F1r1 − F2r2, 2µ1s1, 2µ2s2

}
(3.25)

∇2L = {2, 2, 0, 0, 0, 2µ1, 2µ2} (3.26)

To find the global minimum of the problem, the gradients are required to be equal to

zero and solved while the Hessian needs to be non-negative. From Karush-Kuhn-Tucker

(KKT) optimality conditions, see e.g. [73], µ1 and µ2 need to be zero or positive. Also from

KKT complementary slackness condition and multiplier sign condition, if si is non-zero,

µi should be zero, whereas when si is zero, µi would be non-negative.

From the first two components of the gradient vector, forces can be derived as:

F1 =
1

2
(µ1 + λr1) and F2 =

1

2
(µ2 + λr2) (3.27)

Now, by substituting expressions in Equation 3.27 into the three equality constraints (which

are equal to the third, fourth and fifth component of the gradient vector, respectively),
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three subsequent expressions will be yielded:{
−1

2
µ1 −

1

2
λr1 + s21,−

1

2
µ2 −

1

2
λr2 + s22, T

m
net −

(
1

2
µ1 +

1

2
λr1

)
r1 −

(
1

2
µ2 +

1

2
λr2

)
r2

}
(3.28)

Then by adding last two components of the gradient vector to the components shown in

Equation 3.28, one can equal those to zero and solve them for µ1, µ2, λ, s1, and s2. Due

to the multiple branches of solution, this was done taking advantage of the Polynomial-

Ring command in Maple R© that outputs all the different possibilities of the solution. The

following are all four branches of solution:{
2s21 − λr1, 2s22 − λr2, µ1, µ2, (r

2
1 + r22)λ− 2Tmnet

}
(3.29){

2s21 − λr1, s2, µ1, µ2 + λr2, r
2
1λ− 2Tmnet

}{
s1, 2s

2
2 − λr2, µ1 + λr1, µ2, r

2
2λ− 2Tmnet

}
{s1, s2, µ1 + λr1, µ2 + λr2, 2T

m
net}

To get the final expressions for the original problem, components of each branch need to

be equalled to zero from the last to the first. In the following, the explanations on all the

four branches are presented. First, the last branch is discussed which is the simplest.

Branch four: It is the trivial solution, and means that total muscle torque is zero and s1

and s2 are zero too, which results in zero values for forces no matter whether the muscles

are flexor or extensor.

For branches one to three, for better understanding, let us assume Tmnet > 0 ; the other

case when net muscle moment is negative will be discussed after.

Branch one:

λ =
2Tmnet
r21 + r22

, µ1 = 0, µ2 = 0, s21 =
λr1
2
, s22 =

λr2
2

(3.30)

It can be feasible only if r1 and r2 are positive, i.e., both muscles are flexors. It should be

noted that the zero values for λ1 and λ2 in this branch meets the condition of non-negativity

of Hessian elements and also KKT conditions. The optimal forces for this branch will be
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the following:

F opt
1 =

Tmnetr1
r21 + r22

, F opt
2 =

Tmnetr2
r21 + r22

(3.31)

Branch two:

λ =
2Tmnet
r21

, µ1 = 0, µ2 = −λr2, s21 =
λr1
2
, s2 = 0 (3.32)

The value for λ shows that only the first muscle has contribution to the net torque; µ1

is zero; s2 is zero; µ2 should be non-negative that occurs only if r2 is negative, i.e., this

branch is considering a case that muscle one is a flexor, whereas muscle two is an extensor.

Optimal muscle forces are:

F opt
1 =

Tmnet
r1

, F opt
2 = 0 (3.33)

Branch three: This branch is similar to branch two, but muscle one is an extensor and

muscle two is a flexor. Optimal muscle forces are:

F opt
1 = 0, F opt

2 =
Tmnet
r2

(3.34)

It should be added that if Tmnet is negative, in branch one, both muscles with negative

moment arms are active; in branch two, extensor muscle one is active, whereas in branch

three, extensor muscle two is active only. Note that these branches are in agreement with

the unconstrained problem presented in [56].

Case P=3: Similar to the case P = 2, the system has two muscles and the optimization

framework is imposed to non-negativity inequality constraint of forces. The branches of

solution for this case are:{
Tmnet − r1s21 − r2s22, λr1 − 3s41, λr2 − 3s42,

√
3µ1 + 3λr1 − 3s21,

√
3µ2 + 3λr2 − 3s22

}
{
Tmnet − r2s22, λr2 − 3s42,

√
3µ1 + 3λr1 − 3s21,

√
3µ2 + 3λr2 − 3s22, s1

}
(3.35){

Tmnet − r1s21, λr1 − 3s41,
√

3µ1 + 3λr1 − 3s21,
√

3µ2 + 3λr2 − 3s22, s2

}
{
Tmnet,

√
3µ1 + 3λr1 − 3s21,

√
3µ2 + 3λr2 − 3s22, s1, s2

}
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Again, assuming Tmnet > 0 and a little bit of calculation and simplification, each of the four

branches of solution can be analysed:

Branch one: From component five and three, knowing s2 is non-zero, µ2 will be zero.

Similarly, from components four and two, knowing s1 is non-zero, µ1 will have to be zero.

As s1 and s2 are not zero in this branch, zero values for µi meets the KKT condition. Now,

putting all components to zero and solving for λ, the following solution will be acquired:

λ =
3Tmnet

2(
r
3/2
1 + r

3/2
2

)2 (3.36)

Consequently, the corresponding optimal muscle forces of branch one are:

F opt
1 =

r
1/2
1 Tmnet

r
3/2
1 + r

3/2
2

, F opt
2 =

r
1/2
2 Tmnet

r
3/2
1 + r

3/2
2

(3.37)

which is in agreement with the solution with no bound on muscle forces, Equation 2.24.

Branch two: s1 and µ2 will be zero and the optimal muscle force will be the following:

F opt
1 = 0, F opt

2 =
Tmnet
r2

(3.38)

Branch three: s2 and µ1 will be zero and the optimal muscle force will be the following:

F opt
1 =

Tmnet
r1

, F opt
2 = 0 (3.39)

Branch four: This branch is the trivial solution: s1 and s2 will be zero, and µ1, µ2, and

λ can have any value.

3.5.2 Example: Forearm Modelling

To show the efficiency of the analytical approach, a forearm simulation is run. The model

specifications are the same as those presented in Section 3.3. Muscle moment arms and the

reference motion is the same as that mentioned in Section 3.4. In this way, our results can

be compared to those of the numerical SO presented in Section 3.4. The net muscle torque
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Figure 3.18: Muscle net torque at the elbow joint for the specified Gaussian motion

is plotted in Figure 3.18. As the net muscle torque is positive throughout the course of

motion, based on the description above, only muscles with positive moment arms (elbow

flexors) contribute, and extensors will be off. For P = 2, Equation 3.31 shows the optimal

muscle forces, but for only two flexors; however, there are four flexors in this example. A

generalization based on inductive reasoning and compatible with the analytical solution

for the unconstrained case can be made as follows:

Fj =
r

1
P−1

j
n∑
i=1

r
P
P−1

i

Tmnet (3.40)

From Equation 3.40, which is a duplicate of Equation 2.24, and that the extensors have

zero contribution, the optimal muscle forces can be computed. In Figure 3.19, the results

from the analytical force sharing for the flexors is depicted for case P = 2. Note that n

is the number of muscles contributing to the net muscle torque, which is the number of

flexors here, and therefore is equal to 4.
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Figure 3.19: Simulated muscle forces using the analytical approach with P = 2

3.5.3 Discussion

In the expression yielded for λ, those moment arms which are present are of the muscles

with non-zero force values; in this case, the corresponding µ values will be zero, which is

consistent with KKT conditions. For single-articular muscles, this occurs only if the mus-

cles are flexor with positive muscle torque and extensor with negative muscle torque. This

proves that in single articular systems with the defined objective function, no antagonistic

co-contraction will occur, which is in agreement with [56].

The analytical approach seems to be promising as it finds the optimal solution of

the force sharing problem with no iterational computation and no error as in numerical

optimization. However, in terms of n inequality constraint, there would be a 2n branches of

solutions. For the examples investigated in this section, only considering the lower bound

for muscle forces, the optimal solution created four solutions, which was reasonable. For

the example in Section 3.5.2, if one would like to add the upper bound for the muscles

as well so that the muscle forces do not go beyond the maximum isometric force, there

would be four inequality constraints resulting in 16 branches. Therefore, the number of

branches of the solutions grows rapidly. For more complicated systems like gait, e.g., in a
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system with eight muscles only, the number of branches with lower bound only would be

256, which is practically infeasible to choose as an appropriate approach.

Another major limitation for this approach is that it can only accept those objective

functions that are explicit functions of the design variables, e.g., muscle force effort or

muscle fatigue criterion. However, even in this type of function, the polynomial exponent

P cannot be greater than three; otherwise, it does not have an analytic solution if the

lower or upper bounds are imposed to the problem.

The analytical approach works quite efficiently in systems with uni-articular muscles

where one can reduce the system to a system with only two muscles, one flexor and one

extensor. Then, it is easy to distribute the torque of one side to the muscles of that side

in the original problem, based on the unconstrained problem (Section 2.2.6).

Consequently, the major shortcomings of the analytical solution will lead us back to

numerical optimization; however, one can use the sub-optimal analytical solution of the

system with lower P values as considerably good initial guesses for the numerical optimiza-

tion.

3.6 Chapter Summary

In this chapter different proposed approaches for solving the muscle redundancy and the

optimal control problems involved in modelling the human musculoskeletal system were

presented and discussed. Each method had advantages and disadvantages and it is the

trade-off and conditions of the problem that helps a biomechanist to pick the appropriate

technique. If in a low-dimensional system, a sub-optimal solution is required for an applica-

tion, one can use the analytical approach to find roughly optimal results. If the simulation

time does not matter very much, or high quality results are the target, dynamic optimiza-

tion with high order of parametrization functions might be used. Overall, as mentioned,

the choice of a suitable strategy to solve the redundant musculoskeletal system requires

knowledge of the problem, required output quality, and also CPU time significance.
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The next chapter is devoted to foot contact modelling within gait simulations for the

human gait modelling as the final challenge of this thesis.
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Chapter 4

Foot Contact Modelling within Gait

Simulations

An efficient and accurate foot contact model is a crucial piece in forward dynamics of

gait. Unlike inverse dynamics, in forward dynamics simulations of gait, a contact model

is required to develop ground reaction forces because these forces are not measured a-

priori. Ground reaction forces drastically influence the kinetics, kinematics and energetics

of human gait.

This chapter introduces the foot contact modelling. Three different contact models and

the possibility of applying each in forward gait simulations are investigated here: Kelvin-

Voigt, linear volumetric, and nonlinear volumetric. The final model will be employed in

the gait modelling, which is presented in Chapter 5.

4.1 Model

The foot model is two dimensional with two rigid body segments: the hind-foot, mid-foot,

and fore-foot as one rigid body and the phalanges collectively as the second rigid body.
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Figure 4.1: Parametric foot geometry

The model has four degrees of freedom: ankle positions xA and yA, foot orientation θF ,

and phalange orientation φP . Both ankle and metatarsal joints are assumed to be revolute

joints.

4.1.1 Foot Geometry

The parametric geometry of the foot model is depicted in Figure 4.1. X and x designate

the horizontal distance in global and local frames, respectively. Points A, H, P, and T

represent the ankle, heel, 1st metatarsal joint, and toe, respectively. The lengths in this

model were measured on a subject with 1.62 m height; however, in order to have the best

foot geometry compatible with the marker positions, a geometry fitting procedure is carried

out that is detailed in the following.

In the experimental data presented by Winter [10], marker positions of the 5th metatarsal

were provided, but not those of the 1st metatarsal, which is of interest here. Therefore,

by measuring the distance from the 5th metatarsal to the 1st metatarsal on a subject with

1.62 m height, which is close to the height of the subject of the experimental data, the

kinematics for the 1st metatarsal was generated from those for the 5th metatarsal. While

the foot was flat on the ground, the horizontal and vertical distances (in X and Y directions

shown in Figure 4.1) were both measured to be 10 mm.

The parametrized foot was driven at all four degrees of freedom to produce a set of
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Table 4.1: Optimal parameters of the foot geometry consistent with the marker data.

Parameter Optimal Value

AH (cm) 7.4

AP (cm) 11.0

PT (cm) 7.3

β (deg) 106

kinematics as close as possible to the experimental marker positions within an iterated

optimization procedure. xA, yA, and foot orientation θF were taken from the data presented

in [10], but as the metatarsal joint angle kinematics is not reported in that reference, this

angle was parametrized with an 11-term Fourier series as in Equation 4.1. This implies that

the experimental kinematics should be considered in one period of motion, from one toe-

off to the next toe-off. The Fourier series functions are suitable choices for joint angles in

periodic motions like gait [22]. The coefficients of these functions are treated as parameters

in the identification process, which is a typical method in converting an optimal control

problem to a parametrized optimization.

φP (t) = A0 +
5∑

k=1

[Ak sin(
2πkt

τ
) +Bk cos(

2πkt

τ
)] (4.1)

where τ is the motion period. The parameters to be identified are lengths AH, AP and PT,

angle β, and coefficients of the Fourier series representing metatarsal joint angle, resulting

in a total of 15 parameters. Geometrical parameters of the best fitted geometry that could

follow the experimental marker positions are shown in Table 4.1. The lengths AH, AP

and PT are in good agreement with the lengths measured on the subject. The generated

metatarsal joint angle is presented in Figure 4.2(g); also simulated positions are plotted

against the marker positions for comparison in Figures 4.2(a-f).
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4.1.2 Contact Models

Three different contact models were investigated: nonlinear spring and linear damper, lin-

ear volumetric sphere, and a nonlinear volumetric sphere. In a foot model, one element of

each type is employed at points H, P, and T. Each of the three foot models is presented

separately and the corresponding results are discussed. For each case, the model is kine-

matically driven at the ankle and toe using the experimental position and angle data at

the ankle from [10], and the identified angle at the toe. Parameters of each model are

then iterated within an optimization procedure so that the generated vertical and friction

forces and the centre of pressure position computed by the model match the experimental

data as close as possible. The complete form of the objective function to be minimized, of

matching non-dimensionalized criteria with equal weighting, is written as:

J =
1

T

∫ T

0


[
fmn − f en
max(f en)

]2
+

[
fmf − f ef
max(f ef )

]2
+

[
Xm
cop −Xe

cop

max(Xe
cop)

]2 dt (4.2)

where T is the gait cycle period and fn, ff , and Xcop are normal force, friction force,

and position of the centre of pressure, respectively. In Equation 4.2, superscripts m and

e correspond to model and experiment. For the convergence study for each case, three

different random initial points were obtained by solving the optimization problem running

a Genetic Algorithm (GA) in MATLAB R© for a maximum of 100 populations. Afterwards,

these three solutions were used to run a Sequential Quadratic Programming (SQP) solver

to take advantage of faster gradient-based algorithms. From those three runs, the best

one was chosen to be the raw optimum. Using this new solution as a new initial guess,

a Pattern Search function as a Direct Search (DS) routine was then run to ensure the

globality of the solution. If the objective function value of the DS was less, it was put into

the SQP again. This cycle was repeated until the change in the values of the objective

function and bound violations were less than 1e-6, where the result was accepted as the

global optimum.
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1) Nonlinear Spring-Linear Damper

The general point contact force can be written as:

fn = K(δ) +D(δ̇) (4.3)

which includes a stiffness term as a nonlinear function of spring deformation δ and a

damping term as a function of the rate of deformation δ̇. However, this shape of the

contact function will result in a spiky contact force at the initial contact instant. The

formulation applied here is based on the model proposed by Hunt and Crossley [89], which

inhibits the contact element from undergoing a drastic force change at the initial impact

due to the velocity of the contact point.

fn =

kS | L− L0 |nS (1 + aSvn) L ≤ L0

0 otherwise
(4.4)

where kS and aS are the spring stiffness and pseudo-damping, respectively, L0 is the rest

length, and nS is the nonlinearity exponent, which form the set of four parameters of this

contact model. The variable L is the spring length and vn is the vertical velocity of the

contact point. For this model, the objective function is set to track the vertical contact force

only, to examine the efficacy of the normal contact model explicitly. Table 4.2 shows the

bounds on the parameters and the optimal values acquired from parameter identification

for spring-damper elements at points H, P, and T, respectively. The simulated normal

force is shown in Figure 4.3, which implies that this type of point contact model is not

sufficient for human foot contact during gait. As can be seen, there is not a smooth

transition between peaks present in the contact force. There are some options to improve

the results: one is to modify the contact model, and another is to increase the number of

contact elements as in [62,63]. Modification of the contact model is chosen here.

2) Linear Volumetric Contact Model

In this part, three spring/dampers are replaced with three spheres, as shown in Figure 4.4,

to supply wider contact areas and therefore produce smoother normal contact forces. The
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Table 4.2: Optimal contact parameters of the spring-damper elements

Parameter Spring Optimal Value Lower Bound Upper Bound

H 1.2e4 0 -

kS (N/mn) P 1.9e3 0 -

T 6.4e4 0 -

H 64.6 0 -

aS (s/m) P 1.4e3 0 -

T 3e-3 0 -

H 52 1 55

L0 (mm) P 48 1 50

T 43 1 45

H 0.95 0.1 10

nS P 0.96 0.1 10

T 0.96 0.1 10
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Figure 4.3: Simulated results from the spring-damper contact model versus experimental

vertical GRF
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contact model is based on a volumetric approach [65, 90]. This model assumes a linear

elastic foundation for the material. The authors of [26] did some in-vivo measurements of

the heel pad deformation and force, and they concluded that the volumetric contact could

be a suitable candidate for human foot contact modelling.

A

H

P T

Hind Foot Mid Foot Forefoot

Joint

Bone end

Center of mass

Figure 4.4: Schematic foot with three spherical volumetric contact elements

The idea, instead of using a point contact as in the previous model, assumes a linear

pressure distribution p(s), which is a function of the location s on the contact patch S, as

shown in Figure 4.5.

S

Bi

Bj

Bi

V

Ss

S δ(s)

Figure 4.5: Schematic of the volume of the interpenetration between two bodies in contact
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Consider the schematic representation of a sphere interacting with the ground. The

body Bi is the deformable body (foot), whereas Bj is the rigid and fixed body (ground).

Therefore the interpenetration volume V is written as:

V =

∫
S

δ(s)dS =

∫
V

dV (4.5)

where δ is the deformation at location s. The pressure distribution is defined using the

theory proposed by Hunt and Crossley [89] with n = 1 as below:

p(s) = kV δ(s)(1 + aV δ̇(s)) (4.6)

where kV and aV are stiffness and pseudo-damping of the foundation, respectively, and δ̇(s)

is the rate of deformation at point s. Then the total normal contact force will be given by:

fn =

∫
S

p(s)dS (4.7)

which can be written in the form of a vector function of the deformed volume as:

~fn = kV V (1 + aV vcn)n̂ (4.8)

where ~fn is the normal force, V is the interpenetration volume, n̂ is the unit normal vector

to S, and vcn is the normal velocity at the center of mass of the deformed volume. The

optimal parameters of the linear volumetric contact model for spheres at points H, P, and

T are presented in Table 4.3, respectively.

As depicted in Figure 4.6, the total contact force is much closer to the experimental

value than the one shown in Figure 4.3. However, the results are not satisfying as oscillatory

behaviour is still observed in the contact force. These can be related to lack of fidelity of

the contact model, the low number of contact spheres, or due to the errors in the kinematic

data. The aspect here is not to question the kinematic data, and not to increase the number

of contact elements, so the focus remains on modifying the contact model.
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Table 4.3: Optimal contact parameters of the linear volumetric elements

Parameter Sphere Optimal Value Lower Bound Upper Bound

H 2.21e6 0 -

kV (N/m3) P 1.87e6 0 -

T 2.51e5 0 -

H 1.2 0 -

aV (s/m) P 0.45 0 -

T 0.1 0 -

H 51 1 55

RV (mm) P 49 1 50

T 44 1 45
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Figure 4.6: Simulated results from the linear volumetric model versus experimental vertical

GRF
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3) Nonlinear Volumetric Contact Model

The principal shortcoming of the previous model is the linearity assumption in the material

model. Boos and McPhee [91] assumed a linear elastic foundation model, which is suitable

for small deformation ranges, as they initiated the technique for metal on metal contact;

however, the soft heel tissue undergoes a maximum deformation of 53.6% reported by [26]

considering a 22.8 mm thickness for the heel pad and 12 mm of the maximum deformation.

Therefore, the linear foundation assumption is likely not valid for a foot. Alternatively,

the foundation can be modelled as a hyper-elastic material [92]. Consider a hyper-elastic

foundation with no damping. The normal force can be written as:

~fn = (kV Vh)n̂ (4.9)

where the hypervolume Vh is expressed as the following:

Vh =

∫∫
S

δη(s) dS = cv(V )

∫∫
S

δ(s) dS = cv(V )V (4.10)

with

cv(V ) =

∫∫
S

δη(s) dS∫∫
S

δ(s) dS

It was shown in [92] that the hypervolume Vh is a linear function of the penetration volume

V in a double logarithmic scale. Therefore the hypervolume coefficient cv(V ) can be written

as:

cv(V ) = ea0+a1 ln(V ) (4.11)

where a0 and a1 are parameters that depend on the foundation nonlinearity η and geometri-

cal properties. In other words, for a given contact geometry and foundation hyper-elasticity

exponent, there exist unique values for a0 and a1. For more details, see [92]. Therefore,

the normal force can be written as:

~fn = (kV cv(V ) V )n̂ = (kV e
a0+a1 ln(V ) V )n̂ (4.12)
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which can be further simplified as:

~fn = (khV
H)n̂ where kh = kV e

a0 and H = 1 + a1 (4.13)

The pressure distribution assumed for the hyper-elastic foundation in the foot, including

damping, is the following:

p(s) = kV δ
η(s) + kV δ(s)aV vn (4.14)

which implies that there is a nonlinear stiffness term, but the damping term is still linear.

Then the normal force can be written as:

~fn = (khV
H + ahV vcn)n̂ (4.15)

where kh, which is called a hyper-volumetric pseudo-stiffness here, and exponent H depend

on both the volumetric stiffness and geometrical properties; ah is the foundation stiffness

kV multiplied by the damping aV as in the linear volumetric formulation.

4.1.3 Friction Model

An approximation of the dry Coulomb model is used to compute the force of friction

between the contact spheres in the foot model and the ground:

ff = −µ(vct)fn (4.16)

where ff is the friction force for the sphere, vct is the tangential speed of the centroid of

the deformed volume, and µ(vct) is the friction coefficient function defined to guarantee

the differentiability of the expression as follows:

µ(vct) = µf arctan(vct/vs) (4.17)

where µf is the asymptotic friction coefficient and vs is a shape parameter. The smaller

the shape factor vs, the closer the approximation to the dry Coulomb friction.
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-µf

vt

Figure 4.7: Plot of the friction coefficient function versus tangential speed

4.1.4 Relaxing the Contact Characteristic Points

Although the motions of the model characteristic points (H, P, and T) match the exper-

imental marker kinematics very well as shown in Figure 4.2, placing the spheres exactly

at these points is a restricting assumption. To remove this restriction, the position of the

centre of volumetric spheres are relaxed within a certain range. For this goal, the location

of the sphere centres are allowed to move within ±15 mm in both x and y directions, which

is within the amount of “skin stretch” during gait [93]. The schematic configuration of this

model is shown in Figure 4.8 where H∗, P∗, and T∗ are the relaxed locations of the contact

spheres. Finally, the optimal relaxation parameter values dx and dy, which are relative

displacements in local frames of the segment (see Figure 4.1) for each contact spheres from

the characteristic points resulting in a total of 6 more parameters, are determined within

the parameter identification procedure for the nonlinear volumetric contact model.
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Figure 4.8: Schematic configuration of the volumetric spheres on the foot model with

relaxed locations

4.2 Results and Discussion

Results of the nonlinear volumetric model are presented in Figures 4.9 and 4.10. As can be

observed from the plots, the ground reaction forces are smoother than those of the linear

volumetric model, which implies that a nonlinear model is a more accurate representation

of the foot/ground interaction. The comparison of the centre of pressure position also

shows a quite good match. The friction force comparison in Figures 4.9(b,d) however show

some room for improvement. It should be noted that there were only two parameters in

the tangential force for model Coulomb friction. Given that, by looking at the simulated

and experimental tangential ground reaction forces, a reasonable match can be interpreted.

The results of the hyper-volumetric model with relaxed sphere centre locations are

depicted in Figures 4.9(c,d) and 4.10(b) and the optimal parameters for the three spheres

of this model are listed in Table 4.4. As can be observed, a significant improvement is

made to the friction force compared to the case without relaxation. Although the normal

force beginning and end time instants are matching those of the experimental data better,

which can also be observed in the centre of pressure plot, a considerable progress in the

overall normal force was not seen.

Although the volumetric approach was previously utilized by [26] for foot contact mod-

elling, this study had significant differences: the toe was driven with independent kinemat-

88



0 0.2 0.4 0.6 0.8
0

100

200

300

400

500

600

700

800

time (s)

G
R

F
y 

(N
)

 

 

simulated
experimental

(a)

0 0.2 0.4 0.6 0.8
−200

−150

−100

−50

0

50

100

150

200

time (s)
G

R
F

x 
(N

)
 

 

simulated
experimental

(b)

0 0.2 0.4 0.6 0.8
0

100

200

300

400

500

600

700

800

time (s)

G
R

F
y 

(N
)

 

 

simulated
experimental

(c)

0 0.2 0.4 0.6 0.8
−200

−150

−100

−50

0

50

100

150

200

time (s)

G
R

F
x 

(N
)

 

 

simulated
experimental

(d)

Figure 4.9: Simulated results of the hyper-volumetric model compared to experimental

data without relaxing the contact sphere centres: (a) vertical GRF and (b) horizontal

GRF, and with relaxing the contact sphere centres: (c) vertical GRF and (d) horizontal

GRF
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Figure 4.10: Simulated results for the centre of pressure location of the hyper-volumetric

model without relaxing the contact sphere centres (a) and with relaxing the contact sphere

centres (b)

ics to provide a smoother transition at toe-off, and the volumetric contact model used in

this study was nonlinear. These two changes improved the contact forces significantly.

Additionally, the proposed hyper-volumetric model had a different concept than that

presented by Sandhu and McPhee [13]. Their model was nonlinear, but they did not

compute any closed-form volume. In other words, they discretized the foundation to finite

Kelvin-Voigt elements, and then calculated the contact forces by adding the forces of those

elements, which is more similar to the study by Gilchrist and Winter [62] than a volumetric

approach.

To examine the sensitivity of the foot contact model to the optimal parameters shown

in Table 4.4, as an example, the stiffness of the three contact spheres are increased one

at a time by 10% and the perturbation of the total normal contact force is examined.

Figures 4.11(a,b,c) show how the normal force is influenced by varying the optimal stiffness

of points H, P, and T, respectively by +10%. As can be observed, the normal force is more

sensitive to the stiffness of the sphere under the phalangeal joint. This is because that

sphere contributes to both humps at the beginning and at the end of mid-stance. However,

90



Table 4.4: Optimal contact parameters of the hyper-volumetric elements. Parameters dx

and dy for characteristic points H, P, and T are expressed in local frames AH, AP, and

PT, respectively.

Parameter Sphere Optimal Value Lower Bound Upper Bound

H 8.0e5 0 -

kh (N/mh) P 1.4e6 0 -

T 7.5e5 0 -

H 52.3e6 0 -

ah (Ns/m4) P 1.2e5 0 -

T 13e6 0 -

H 50 1 55

RV (mm) P 49 1 50

T 44 1 45

H 0.74 0.1 10

H P 0.80 0.1 10

T 0.79 0.1 10

H 0.20 1e-3 1

µf P 0.22 1e-3 1

T 0.34 1e-3 1

H 0.005 1e-6 0.1

vs (m/s) P 0.050 1e-6 0.1

T 0.034 1e-6 0.1

H 1.89 0 20

dx (mm) P 12.85 0 20

T 14.07 0 20

H 3.80 0 20

dy (mm) P 4.19 0 20

T 0.05 0 20
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Figure 4.11: Effect of increasing the stiffness of the final foot contact model on the normal

force: (a) 110%kh at H∗, (b) 110%kh at P∗, and (c) 110%kh at T∗

the influence of the first sphere is only on the first peak in the normal force, which makes

sense. Furthermore, the normal force is less sensitive to the stiffness of the sphere at the

toes. Quantitatively speaking, by increasing the stiffness at points H, P, and T by 10%, the

total increase in the normal force is 2.4%, 6.3%, and 1.3%, respectively. This implies that

ground reaction forces are more sensitive to the perturbation of the optimal parameters of
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the 2nd contact sphere; however, even the corresponding relative effect of 6.3% is still less

than the 10% perturbation on the model parameter.

The conclusion for this sensitivity analysis above is that the model still works for these

parameter changes; therefore, the model is capable of “what-if” simulations in which the

foot contact parameters are varied, e.g., for different subjects.

4.3 Chapter Summary

A dynamic foot model was developed and validated within a gait simulation. The simula-

tion was performed on an entire period of a gait cycle to ensure the efficiency of the model

over the whole cycle, and that it does not produce any unrealistic early contact forces.

Three different types of contact scenarios were modelled: point contact, linear volumetric,

and hyper-volumetric. The transition from a point contact to a volumetric model showed

a promising progress in generating the contact force in agreement with experimental data.

For the hyper-volumetric model, the vertical and horizontal ground reaction forces and the

center of pressure of the hyper-volumetric foot contact model showed excellent correlations

with the experimental data. This means that a hyper-volumetric contact element is a

suitable choice for human foot contact modelling.

The next chapter will present the gait modelling using the ultimate foot contact model

created here. It is expected that this good foot contact model will help to acquire reasonable

gait simulation results.
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Chapter 5

Forward Dynamics of Gait

Simulations

“Walking is for moving from one place to another to go to table for breakfast,

to climb stairs to bed, to meet a friend, to walk the aisles at the food mart” [20].

Walking is a fundamental human motion that is repeated in a human’s daily activity.

Gait (walking and running) has an undeniable role in a human’s life. Although gait seems

to be basic, it is one of the most complex and challenging human movements. It is the most

common of human movements, and it has been studied more than any other motion [20].

From the modelling point of view, gait is a highly nonlinear dynamic activity, which

includes nonlinear multibody equations, nonlinear muscle dynamics and coordination, and

nonlinear foot/ground interaction. It consists of various phases for which the major events

are graphically presented in Figure 5.1 for right and left legs and are detailed in the

following:

• stance: this phase defines the interval of time that the foot is fully or partially on the

ground. In walking, there is a double-stance phase in which both feet have contact
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Figure 5.1: Schematic of the major phases of human gait

with the ground; this phase is not present in running. Stance (or support) has several

events such as heel-contact (HC), mid-stance (or foot-flat), and toe-off (TO).

• swing: the phase that the foot is not connected to the ground. This phase also

consists of three events: acceleration, mid-swing, and deceleration.

In normal walking, the swing and stance phases form 38% and 62% of the whole gait cycle,

respectively [94]. In addition to the terms defined above, there are two concepts that are

extensively used throughout this chapter: stride and step. Stride is the distance from the

HC of one foot to the next HC of the same foot. In terms of time, one stride is equal to

one gait cycle. On the other hand, step is defined as the distance from HC of one foot to

the HC of another foot. In a normal and nearly periodic gait, this time frame represents

50% of the gait cycle [94].

There are very few studies on forward dynamics of gait in which foot contact models are

explicitly simulated [22, 95] which are required for the simulation of an entire stride (two

steps). In Peasgood et al.’s model [22], joints were kinematically driven, and muscles were
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ideal force actuators. Gilchrist and Winter [95] implemented a forward dynamics model

with no optimization or feedback control leading the model to fall down; their model did

not include any muscles. Millard et al. [26] simulated human gait for multiple steps with

a torque-actuated model.

In this chapter, a two-dimensional model for the forward dynamic simulation of human

normal gait is presented. The model is implemented in the symbolic multibody package

MapleSim R© and then the highly efficient code is exported to Matlab R© for optimization. A

global parametrization approach is applied based on Section 3.3. The novel foot contact

model detailed in Chapter 4 is used in this gait study, in which the foot/ground interaction

is modelled by means of three spheres. The contact expressions are based on hyper-

volumetric contact modelling, which is inspired from considering a non-linear material

foundation. The foot contact model is already validated within a gait simulation cycle.

5.1 Methods

The model is assumed to move in the sagittal plane where the walking pattern is presumed

to be bilaterally symmetric, i.e., the right and left legs perform similar motions but with

a time shift. The multibody model has nine segments as shown in Figure 5.2: right and

left toes, feet, shanks, thighs, and the HAT (Head, Arms and Trunk), leading to eleven

degrees of freedom (dof) as:

{q} = [Xtor, Ytor, φT , φRH , φLH , φRK , φLK , φRA, φLA, φRP , φLP ]T (5.1)

where {q} denotes the column matrix of generalized coordinates, and subscripts RH, LH,

RK, LK, RA, LA, RP , LP represent the right hip, left hip, right knee, left knee, right

ankle, left ankle, right phalange orientation, and left phalange orientation, respectively,

Xtor, Ytor, and φT are torso center of mass X and Y position, and torso orientation,

respectively. Combining head and arms with the trunk is a common approach in gait

modelling [93]. A study by [96] shows that the influence of lumping arms into the trunk

on kinematics, kinetics, and energetics of human gait is less than 10%.
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Table 5.1: Conventional anthropometric data [10] where BM and BH denote the body

mass and height, respectively, dP is the location of the center of mass (assumed to lie on

line joining distal and proximal heads) from the proximal head divided by segment length,

and RoG is the radius of gyration around the center of mass divided by segment length.

HAT length (∗) is defined as the vertical distance between the glenohumeral joint and the

greater trochanter

BM=64.740 kg and BH=1.696 m

Segment Mass dP RoG Length

Shank 0.0465 BM 0.433 0.302 0.246 BH

Thigh 0.100 BM 0.433 0.323 0.245 BH

HAT 0.678 BM 0.626 0.496 0.288∗ BH

The model is muscle-actuated at the hip, knee, and ankle joints, and the toe joints are

driven by the kinematics computed in Chapter 4. The goal is to solve the optimal control

problem for this gait model so that it predicts the optimal lower extremity motions without

falling down in one stride (two steps). In this way, the forward dynamic model can be used

in predictive “what-if” simulations.

The model contains eight muscle groups per leg based on [15]: Iliopsoas (Ilio), Rec-

tus Femoris (RF), Glutei (Gl), Hamstrings (Hams), Vasti (Vas), Gastrocnemius (Gast),

Tibialis Anterior (TA), and Soleus (Sol). The schematic of the model geometry and the

recruited muscles is illustrated in Figure 5.2.

All anthropometric data except for the foot, listed in Table 5.1, are adopted from [10].

These are the conventional anthropometric properties in the literature and are similar to

those used in [93]. There is not a conventional anthropometric data set for foot segments

[93]; data presented in Table 5.2 are used as foot properties, which are similar to those

employed by [12,13]. For foot model geometry, refer to Figure 4.1 and Table 4.1.

There are three different approaches for simulating the forward dynamics of a muscu-
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Figure 5.2: Two dimensional gait model with nine segments, eleven dof, and eight mus-

cle groups per leg: 1-Ilipsoas, 2-Rectus Femoris, 3-Glutei, 4-Hamstrings, 5-Vasti, 6-

Gastrocnemius, 7-Tibialis Anterior, and 8-Soleus

loskeletal system: Fully Forward, Inverse-Forward starting at joint torques, and Inverse-

Forward beginning with muscle forces. These three simulation architectures are introduced

below, and pros and cons of each are discussed.
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Table 5.2: Foot anthropometric data from [11] and also used in [12,13], where Izz denotes

the moment of inertia around the segment center of mass

Foot Segment Mass (kg) dP (m) Izz (kg.m2)

Hind-foot 0.6 0.5 0.0013

Fore-foot 0.6 0.5 0.0013

Toes 0.2 0.5 0.0001

Design 1: Fully Forward (FF)

The schematic framework is displayed in Figure 5.3. The neural excitations u(t) is the

control signal in this design, and due to the muscle redundancy, the optimal patterns of

these controls must be obtained via dynamic optimization (see Chapter 3). This design is

entitled Fully Forward here as it serves forward dynamics; also the activation and contrac-

tion dynamics are solved in the forward dynamics manner, i.e., the differential equations

of muscles as well as the multibody system will be integrated together [55, 75].

Muscle
Model

Moment
Arms

Eqs. of
Motion

dt
u(t) f(t) T(t)

∫
x(t)x(t)

Muscle Excitation
Parametrization (FF Design)

Minimize the Objective Functional

Figure 5.3: Schematic of the FF design work flow in the DO framework

The design of this approach is straight forward in terms of programming; however, it

has the following drawbacks:
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1. In the activation dynamics (AD), the initial activation value is required to solve the

corresponding ODE (see Equations A.1 and A.2). In predictive forward dynamics,

such information does not exist. Usually, studies assume zero values for initial ac-

tivations, which will cause initial jumps in the activation values. Alternatively, the

initial values can enter the optimization problem as new parameters, e.g, as in [55],

which cause longer convergence time, and an increase in the number of local minima.

In periodic motions, one can pick an arbitrary value for the initial activation and run

the model for a couple of periods; as the transients fade, the results of the final period

can be accepted as the simulation results. Although this circumvents the mentioned

limitation, it is inefficient.

2. A similar issue exists in the contraction dynamics (CD); the initial muscle length is

required to solve the corresponding ODE. Similar to item 1, in a predictive forward

dynamics simulation, such information does not exist and only in periodic motions

can the workaround described above be used.

3. This approach involves integration of the full dynamic system, i.e., as well as inte-

grating the equations of motion for the mechanical system, it requires the integration

of the activation and contraction dynamics. Therefore, this approach is excessively

time-consuming as many iterations will be performed within the dynamic optimiza-

tion process, with each iteration requiring a forward dynamic simulation.

Design 2: Inverse-Forward starting at joint Torques (IFT)

In both designs of the Inverse-Forward approach (IFT and IFM), no ODEs for activation

and contraction dynamics will be solved. This speeds up the simulation considerably. The

other positive feature of this approach is that it does not need the unknown values for the

initial muscle activations and lengths as in FF.

Design 2 solves the multibody mechanical system within forward dynamics, and the rest

of the model in the form of inverse dynamics. The schematic work flow of this IFT design
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Motion

dt
u(t) f(t) T(t)

∫
x(t)x(t)

Minimize the Objective Functional

Joint Torque
Parametrization (IFT Design)

Figure 5.4: Schematic of the IFT design in DO framework

is displayed in Figure 5.4. The optimal control problem here is solved for joint torques

T (t). Joint torques are fed into the multibody equations and the states are integrated to

compute the motion of the system. At the same time, the force distribution procedure

finds individual muscle forces from the joint torques and then, knowing the muscle force

and the kinematics, muscle activations can be calculated. Given the activations and the

rate of muscle activations, muscle excitations are computed.

If parametrization is the target approach for the optimal control problem, joint torques

are parametrized and then the muscle forces, after solving the muscle redundancy problem,

have numerical values rather than being mathematical expressions. To solve the muscle

model inversely, muscle force rates are required as in Equation 5.4; therefore, a numeri-

cal differentiation is required. Also, to calculate the activation rates, another numerical

derivative will be required. The numerical differentiation introduces truncation errors, and

numerical instabilities.

Design 3: Inverse-Forward starting at Muscle Forces (IFM)

The IFM performs the forward dynamics starting from muscle forces, for which the joint

torques and then the kinematics are computed. The schematic work flow of this case is
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displayed in Figure 5.5. At each iteration, when muscle force is determined, muscle activa-

tions are calculated through inverse contraction dynamics and then the muscle excitations

are computed via inverse activation dynamics. If a parametrization approach is utilized

with this design, there is no need for numerical differentiation to solve the muscle model

and acquire the activation rates. Muscle forces can be differentiated symbolically and then

the activation rates are acquired, given the muscle force and its derivative. The symbolic

differentiation of the forces, compared to numerical differentiation, avoids numerical er-

rors and also saves computation time. The flowchart in Figure 5.6 shows the procedure

of computing activation a(t) from a given muscle-tendon force and length for the inverted

Hill muscle model employed here. To calculate the activation rate, the following equations

must be considered:

f ce =f(lce, l̇ce, a) (5.2)

where f ce and lce are the force and length of the contractile element (CE), respectively.

Differentiating,

ḟ ce =
∂f

∂lce
l̇ce +

∂f

∂l̇ce
l̈ce +

∂f

∂a
ȧ (5.3)

Rearranging Equation 5.3, the activation rate can be written as:

ȧ =
ḟ ce − ∂f

∂lce
l̇ce − ∂f

∂l̇ce
l̈ce

∂f

∂a

(5.4)

Note that in Equation 5.4, ḟ ce, ∂f
∂lce

, and ∂f

∂l̇ce
are the symbolic derivatives of the CE force

with respect to time, and CE force function with respect to CE length and velocity, respec-

tively. Also, given ltm (length of the tendon-muscle unit), l̇tm, and l̈tm (from the multibody

kinematics) and f tm (force of the tendon-muscle unit), ḟ tm, and f̈ tm, the variables CE

length lce, velocity l̇ce and acceleration l̈ce can be computed through the flowchart depicted

in Figure 5.6.
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Muscle Force
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Figure 5.5: Schematic of the IFM design in DO framework

Based on the analyses above, an IF design with force parametrization is chosen for gait

modelling. The tendon-muscle force is parametrized by the following Fourier series:

f tm(t) = A0 +
K∑
k=1

[Ak sin(
2πk(t+ ∆)

τ
) +Bk cos(

2πk(t+ ∆)

τ
)] (5.5)

where τ denotes the gait cycle and ∆ is equal to zero and τ/2 for muscles of the right

and left limbs, respectively. This expression is the same as that used in Section 3.3 for

periodic forearm simulations. Thereby, similar muscles of the right and left legs have the

same forces, but with a time shift. As discussed in Section 3.3, the Fourier series provides

several positive features for solving the optimal control problem, which is why it is selected

here.

The muscle and tendon models are based on [5] and [4], respectively. The muscle

model includes the contractile element (CE) and series elastic element (SE) only; the

parallel elastic element (PE) is left out because a passive torque is added to the joints to

account for muscle passive properties as well as joint and skin passive properties, which

is presented later. The simulation framework used here is depicted in Figure 5.5, which

requires an inverse tendon and contraction dynamics.

The objective function employed for solving the muscle coordination is the normalized
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Figure 5.6: Schematic of inverse muscle model: lt is the tendon length, lm is the muscle

length, and αp is the muscle pennation angle.

metabolic energy expenditure per distance travelled as follows:

J =
1∑

max(Ėi)

1

τ

∑n
i=1

∫ τ
0
Ėidt

Lr + Ll
(5.6)

where n is the total number of muscles, Ė is the muscle metabolic energy rate, and Lr and

Ll are the simulated right and left step lengths, respectively. In a fully symmetrical gait,

the right and left steps will be equal. The objective function computes the total metabolic

energy consumed by the musculoskeletal system from time 0 to τ of the motion (one gait

cycle), as used in [22,76,97–99]. An optimization process then solves for the Fourier series

coefficients of Equation 5.5 that give muscle forces that minimize J , while satisfying certain

constraints on the motion.

The focus here is on the muscle coordination and not the design of a complicated

balance controller. The strategy to keep the balance of the gait model is to control the

torso kinematics. Therefore, the center of mass position and orientation of the torso are

parametrized by means of a 6th-order polynomial for the longitudinal Xtor and 11-term

Fourier series for Ytor and φT . Using this approach, torso vertical displacement ytor and

orientation φT will be periodic, as desired. In order to have torso trajectories similar to
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the experimental data, a tracking constraint can be defined as follows:

Ctr1 , ‖xstor − xetor‖∞ ≤ εtr1

Ctr2 , ‖ystor − yetor‖∞ ≤ εtr2

Ctr3 , ‖φsT − π/2‖∞ ≤ εtr3 (5.7)

where superscripts s and e denote simulated and experimental results, respectively. Values

of 0.1 m, 0.1 m, and 0.1 rad are chosen for εtr1, εtr2, and εtr3, respectively, which im-

plies a fairly loose tracking. It should be noted that this tracking could be added to the

physiological objective function; however, in that case, the optimization would not remain

single-criterion. Note that the third tracking constraint accounts for the deviation of torso

angle from upright posture based on [100].

Also to satisfy the conditions of bilateral symmetry, ankle position data are checked to

be similar with a 50% of gait cycle time shift, represented by δt:

Csym1 , ‖yRK(t)− yLK(t+ δt)‖∞ ≤ εsymP

Csym2 , ‖yRA(t)− yLA(t+ δt)‖∞ ≤ εsymP

Csym3 , ‖yRP (t)− yLP (t+ δt)‖∞ ≤ εsymP

Csym4 , ‖ẋRK(t)− ẋLK(t+ δt)‖∞ ≤ εsymV

Csym5 , ‖ẋRA(t)− ẋLA(t+ δt)‖∞ ≤ εsymV

Csym6 , ‖ẋRP (t)− ẋLP (t+ δt)‖∞ ≤ εsymV (5.8)

In Equation 5.8, the first three terms are at the position level, whereas the second three

expressions are in terms of velocities. This is because the horizontal positions of right

and left legs are not comparable as the step length is not specified. As muscle forces of

right and left legs are symmetrical already, εsymP is set to 1e-3 m, and εsymV 1e-3 m/s for

the symmetry constraints at y and ẋ levels, respectively, which are fairly tight symmetry

constraints.

It should be noted that as the gait model is a nonlinear dynamical system, periodic

inputs do not necessarily lead to periodic motions, unless a tight tracking of a periodic
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motion is performed or periodicity constraints are added. In this predictive gait study,

a set of constraints is imposed to the problem to satisfy the periodicity of the simulated

motions as follows:

Cper1 , ‖φRH(0)− φRH(τ)‖∞ ≤ εperP

Cper2 , ‖φRK(0)− φRK(τ)‖∞ ≤ εperP

Cper3 , ‖φRA(0)− φRA(τ)‖∞ ≤ εperP

Cper4 , ‖φ̇RH(0)− φ̇RH(τ)‖∞ ≤ εperV

Cper5 , ‖φ̇RK(0)− φ̇RK(τ)‖∞ ≤ εperV

Cper6 , ‖φ̇RA(0)− φ̇RA(τ)‖∞ ≤ εperV (5.9)

where εperP and εperV are the tolerances for periodicity violation, which are set to 1e-3 rad

and 1e-3 rad/s, respectively. The initial conditions in Equation 5.9 enter the optimization

problem as new parameters.

A separate set of constraints are put on muscle neural excitations to keep them within

the physiological bounds, i.e., 0 ≤ u ≤ 1. The error tolerance for these constraints is 1e-6.

The last constraint is on knee joint angle to avoid any hyper-extension, written as:

CHE , φK ≥ −εHE (5.10)

where CHE designates the hyper-extension constraint, and knee joint angle φK is defined

as knee flexion angle (see Figure 5.2). The constraint violation for knee angle εHE is

considered to be 1e-6 rad.

In musculoskeletal system modelling, usually the passive moments produced at the

joints are ignored; however, these moments exist and affect the dynamics of the system. The

sources of the passive moments at the joints are the muscle passive properties, ligaments,

skin, and also the joint dissipative moment. For the gait model here, the expressions

presented by Riener and Edrich [101] are deployed. They measured the passive joint

moments of ten healthy subjects, and found that these moments can be expressed as
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functions of the joint angles.

TAPassive =e(2.1016−0.0843φA−0.0176φK) − e(−7.9763+0.1949φA+0.0008φK) − 1.792 (5.11)

TKPassive =e(1.800−0.0460φA−0.0352φK−0.0217φH) − e(−3.971−0.0004φA+0.0495φK+0.0128φH)

−4.820 + e(2.220−0.150φK)

THPassive =e(1.4655−0.0034φK+0.0750φH) − e(1.3403−0.0226φK−0.0305φH) + 8.072

where joint angles are in deg and torques are in Nm. These equations reflect all the passive

properties of the lower extremity joints and, if used with a three-element Hill muscle model,

the passive properties of the muscle will be duplicated. Therefore, using these expressions,

the muscle model must exclude the PE element.

The convention here is such that extensor muscles (and ankle plantar flexors) take

positive moment arms. Therefore, based on [14, 15] the muscle-tendon lengths can be

written as the following:

ltm = ltm0 − rHφH + rKφK − rA(φA − π/2) (5.12)

where rA, rK and rH are the muscle moment arms around ankle, knee, and hip joints,

respectively. The data for the moment arms are presented in Table 5.3. It should be noted

that based on Equation 5.12 and the convention for the signs of moment arms, the positive

sign for hip and ankle angles implies joint extension, but for knee, the angle is positive

when the joint is flexed (see Figure 5.2).

5.2 Experimental Data

The experimental data used in this chapter for validation is from [20], in which the kine-

matic data, ground reaction forces, and muscle EMGs of nineteen healthy young adults

with ages 24.9±1.9 years, weights 70.8±8.8 kg, and heights 1.75±0.08 m were measured.

The reported ground reaction forces are normalized to body mass (BM). The presented

linear envelope EMGs are divided by the maximum of MVCs reported in the same reference
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Table 5.3: Muscle parameters for the gait model. All parameters are presented in [14].

These parameters are taken from [15] except pennation angles, which are adopted from [16].

Muscle Fm
max lceopt lslack αp ffast rA rK rH ltm0 width

Group (N) (m) (m) (deg) (m) (m) (m) (m) (m) -

Illio 821 0.102 0.142 7.5 0.50 0 0 -0.050 0.248 1.298

RF 663 0.081 0.398 5.0 0.65 0 0.050 -0.034 0.474 1.443

Gl 1705 0.200 0.157 3.0 0.45 0 0 0.062 0.271 0.625

Hams 1770 0.104 0.334 7.5 0.35 0 -0.034 0.072 0.383 1.197

Vas 7403 0.093 0.223 4.4 0.50 0 0.042 0 0.271 0.627

Gast 1639 0.055 0.420 14.3 0.50 0.053 -0.020 0 0.404 0.888

TA 1528 0.082 0.317 6.0 0.25 -0.037 0 0 0.464 0.442

Sol 3883 0.055 0.245 23.6 0.20 0.053 0 0 0.201 1.039

[20]. Although this might not scale those signals accurately, it provides a consistent range

[0,1] for comparison with the simulated activations.

5.3 Results and Discussion

The optimization routine applied and the convergence study performed for gait simulation

are the same as those described in Section 3.3.4.

In this section, simulation results are validated against experimental data taken from

Winter [20], which provides kinematics, ground reaction forces, and muscle EMGs, ex-

pressed in mean±one standard deviation (µ±σ), acquired from several subjects and trials.

108



Ili
o

R
F

G
l

H
am

s
V

as
G

as
t

T
A

S
ol

RHC RTO RHC

0

1

0

1

0

1

0

1

0

1

0

1

0

1

RHC RTO RHC
0

1

Figure 5.7: On the left: comparison of the simulated muscle activations (solid line) against

the muscle EMGs (µ ± σ) from [20] except for the Iliopsoas group where the simulated

normalized force is compared against that of [21] (circles). On the right: simulated muscle

activations (solid line) plotted against the muscle excitations (dashed line). The vertical

axis bounds for the left side is the same as the right side.
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Figure 5.8: Simulated joint angles (hip extension, knee flexion, and ankle plantarflexion)

against the experimetal data (shaded area, µ± σ).

The EMGs of [20] were linear enveloped; once normalized to muscle EMG of maximum

voluntary contractions, those can be compared to muscle activations. Maximum and min-

imum value of MVCs of each muscle group are reported in Winter’s book; however, the

individual MVCs of the trial are not specified. Therefore, the linear enveloped EMGs are

normalized to maximum MVC value reported for each muscle group. Otherwise, muscle

activations will have values greater than unity. Figure 5.7 depicts the comparison of mus-

cle activations and experimental EMGs of eight muscle groups. Both the activations and

excitations have satisfied the lower and upper bounds within the specified tolerance. Over-
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all, the activation patterns agree with the EMGs fairly well. Although the antagonistic

coactivation of single-articular muscles increases the cost of motion, since the optimization

is over time and since muscles cannot be switched on and off rapidly, some amounts of

antagonistic coactivation are observed. Although no EMG data is reported for the Ilipsoas

group in [20], the simulated force of this muscle matches that of the simulated muscle

force (normalized to maximum isometric force) reported in the work by Anderson and

Pandy [21], in which this muscle group is slightly active at heel contact, then its value

decreases to nearly zero, and afterwards the activation rises again and stays active until

the end of the gait cycle. It must be noted that Anderson and Pandy [21] used the same

objective function for simulating gait.

Simulated joint angles are plotted against the experimental data in Figure 5.8. Knee

angle shows a close match to the measured data. Not only are the values approximately

in the range of data reported, but also the timing of the pattern is quite satisfactory. Fur-

thermore, no knee hyper-extension is observed in the simulation results. Even though the

pattern of simulated hip and ankle joint angles is in good agreement with the experimental

data, the peak values show some differences. For instance, ankle angle right after toe-off

is considerably more than the shaded experimental area. This means that the ankle of the

model is plantar-flexed more than that of measured subjects. This can be related to the

existence of a finite number of foot contact spheres and the fact that the model has to

push the entire foot off the ground in a short period of time. Also, this model is 2D that

does not include pelvis yaw rotation to avoid tripping by greater plantarflexion.
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Figure 5.9: Simulated and experimental ground reaction forces divided by body mass

(µ ± σ) and center of pressure location (a,b,c). Comparison of optimal torso kinematics

(solid) against the reference (dashed), torsoX (d), torsoY (e), and torso orientation (f)

Comparing the simulated contact forces and ground reaction forces indicates a good

match in general (see Figures 5.9(a,b)). However, the second peak of the model normal

contact force has higher value, which is also reflected in the friction force, but with a

different relative amount. Although the foot contact had been validated already, since the

ankle kinematics are now different, the excellent match that was observed in Chapter 4 is

not seen here.

The differences between the target and simulated kinematics of torso show that the

maximum deviation for horizontal and vertical quantities are 5 cm and 1 cm, respectively.

Also, the maximum torso leaning forward and backward angles from the vertical posture

are 5 deg and 3.2 deg, respectively, which are more than the literature [102] values of 3.5 deg
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and 2 deg, respectively. Ruder [102] measured the torso angle variation over the gait cycle

averaged on nine separate strides. Note that the maximum torso backward angle occurs

at right and left toe-off phases. It should be added that all deviations of torso kinematics

from the given references are within the specified tolerances.
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Figure 5.10: Optimal simulation results of the gait model with foot mass reduced to 67%

As mentioned earlier, the foot inertial properties are adopted from [11], whereas other

anthropometric data are taken from [10]. To investigate the effect of parameter variations,

one sample study is performed. As the foot mass in [11] is nearly 1.5 times of that in [10],
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here the foot mass in the gait model is lowered to 67% and the whole gait simulation

is rerun. To be brief, optimal muscle activations and excitations are presented only and

illustrated in Figure 5.10. These results are comparable to those shown in Figure 5.7.

By comparing these two sets of plots, one can conclude that the patterns of the muscle

activations have not changed considerably; however, the values of muscle activities are less

for the case that foot mass is less. Overall, one can interpret that the activations for this

case match the mean±std of the EMGs better. The objective function in this case is 8.8%

less, which is due to the fact that muscles are consuming less metabolic energy because of

the smaller foot mass.

In addition to inertial properties, muscle parameters affect the simulation results. A

thorough sensitivity analysis was done by Scovil and Ronsky [17] in which different muscle

parameters are perturbed by ±50% and the relative perturbation of the simulation out-

puts are calculated. Scovil and Ronsky have reported not only the sensitivity of muscle

outputs, but also that of walking and running simulations to the muscle parameters. For

the walking study, they simulated forward dynamics of a gait model based on [103] that

was driven kinematically at pelvis; the optimal control involved pattern parametrization

based on the work by Neptune [104]. The outputs of the model from most to least sensi-

tive are joint angles, joint torques, GRF, and muscle force. The sensitivity averages are

partially presented in Table 5.4. Based on that, in a walking simulation, the most sensitive

parameters are the tendon slack length and then the optimal fiber length, both of which

should be chosen very carefully.

5.4 Chapter Summary

This chapter presented a two-dimensional gait model that used the optimal control ap-

proach detailed in Section 3.3, and the foot contact model discussed in Chapter 4. The

model was simulated for an entire gait stride. As Fourier series were utilized to represent

muscle forces, the produced motions of left and right legs were periodic and symmetrical.
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Table 5.4: Hill muscle sensitivity by Scovil and Ronsky [17]. Average sensitivity results in

terms of ±50% change of muscle parameters. Small: change from 0.01-0.99 of parameter

perturbation, Large: change from 1-25 of parameter perturbation, and Extreme: change

greater than 25 of parameter perturbation

Parameter Muscle Sensitivity Walking Sensitivity Running Sensitivity

f̂ Large Small Small

Fm
max Large Small Large

lceopt Large Large Large

lslack Extreme Extreme Large

Comparison of simulated muscle activations and experimental EMGs showed a reasonably

good agreement.

The next chapter provides a conclusion of the whole thesis, reviews the contributions

of the work, and discusses the extension of this thesis for future work.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, the topic of optimal control and multibody dynamic modelling of human

musculoskeletal systems was explored. Two new approaches for solving the muscle redun-

dancy as well as the optimal control problems were presented. Global parametrization

as a category of dynamic optimization was introduced, and the proposed functions to

be used for finger tapping, forearm flexion/extension, and gait were showcased. Forward

static optimization as an optimal control approach based on static optimization was also

introduced.

The first optimal control example was the finger tapping motion, in which the goal was

to find the maximum frequency of index finger tapping. The muscle excitation patterns

were globally parametrized with polynomials, and good agreement between the simulated

maximum frequency and that reported in the literature was found. The contributions

of the finger tapping study were: 1) globally parametrizing the neural excitations with

polynomial functions and 2) successfully simulating the maximum frequency of the index

finger tapping capacity.
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The second dynamic optimization was the forearm flexion/extension simulation for

which a global parametrization was again applied, but with Fourier series (FS) for muscle

excitations. The model could follow the experimental motion quite well, but the simulated

excitations did not match the measured EMGs that well. The contributions of the forearm

study were: 1) implementation of the musculoskeletal forearm model in the symbolic multi-

body MapleSim R© environment and 2) globally parametrizing the muscle neural excitations

by means of FS terms for forearm simulations.

Forward Static Optimization (FSO) was introduced as a new approach to solve the

optimal control of musculoskeletal systems efficiently. FSO is similar to the idea of nonlin-

ear model predictive control (NMPC), with control and prediction horizons of unity [105].

This approach was able to produce remarkable results, comparable to the inverse dynamics

results, as reference solutions. Compared to the dynamic optimization approach, the FSO

solved the same forearm simulation with considerably less CPU time. As FSO uses in-

stantaneous objective functions, unlike DO, it is prone to result in unphysiological sudden

changes in the control variables. Nevertheless, it can still provide a reasonable sub-optimal

solution of the system.

In Chapter 4, the hyper-volumetric foot contact model was introduced to the biome-

chanics field for the first time. This novel model predicted the vertical and horizontal

ground reaction forces very well. Before this model, the point contact and the linear vol-

umetric models had not been able to simulate the contact forces with this level of fidelity.

The hyper-volumetric foot contact model is also efficient, as it includes only three contact

elements.

Finally, the gait model, simulated for two steps, was able to predict the lower-extremity

kinematics, the muscle activations, and the ground reaction forces with acceptable agree-

ment to experimental results. This shows that the model, the chosen optimal control

approach, and the foot contact model were working reasonably well. The contributions of

the gait study include 1) implementation of the musculoskeletal gait model using symbolic

programming (MapleSim R©), 2) globally parametrizing the muscle forces by FS terms for
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gait simulations, and 3) applying the efficient hyper-volumetric foot contact model in a

forward dynamic gait simulation.

6.2 Recommendations for Future Research

Although the results of the presented models showed strong potential and capability, there

is still room for improvement in both modelling and validation aspects. The recommended

future research for each part is separately mentioned in the following:

Finger Tapping

1. Adding contact elements that account for a piano key or a key of keyboard. If so,

the model can be more realistically applied for piano playing or typing.

2. Experimental validation of the model: although the maximum frequency was com-

pared to those reported in the literature, it would be informative to experimentally

measure the maximum frequency of the finger tapping under various conditions, such

as piano playing and typing for different subjects with diverse typing or piano playing

skills.

Forearm Modelling

The future work for this model include the following:

1. Collecting more data for various cases, such as the elbow flexion/extension while

holding different weights in the hand. This helps to compare the muscle excitations

and the EMGs more quantitatively.

2. Extending the two-dimensional (2D) model to 3D would be another future work.

In this way, one can see the influence of other degrees of freedom, such as supina-

tion/pronation at the elbow.
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Forward Static Optimization

1. Adding muscle contraction dynamics: in this case, the physiological objective func-

tion can be formed based on activation effort rather than force. This can be done

through forward or inverse contraction dynamics.

2. The proposed FSO approach is very similar to an NMPC approach with control and

prediction horizons of unity [105]. It would be interesting to try larger prediction

and control horizons and investigate the effects on the quality of the results as well

as the CPU time.

Foot Contact Modelling

1. Although the spherical volumetric elements produced reasonable results, which were

much better than the point contact models as they provide a wider contact patch,

more complicated shapes like an ellipsoid can be employed in the future.

2. The contact model was a sphere on surface, which is three-dimensional per se; how-

ever, the forces of the third dimension were not validated. Thus, in the future, it

would be interesting to measure the friction forces of the lateral direction to compare

the simulated and experimental quantities of this force as well.

3. More sets of experimental data will be required to fully validate the foot contact

model. In other words, provided different experimental conditions like slow and fast

walking, jogging, and running, and also with different footwear conditions, the model

can be validated in a more general and therefore robust way.

4. A more complicated friction model such as the bristle model proposed By Gonthier

et al. [91] can replace the Coulomb friction model. There is an obvious room for

improving the friction model by looking at the simulated and experimental results.
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Gait Modelling

1. Extending the model to three dimensions. Other degrees of freedom of the human

skeletal system such as pelvis yaw can be included, and the effects can be studied.

2. A more complicated balance controller can be designed for the gait model, ideally

one that is independent of any a priori torso kinematic measurements.

3. In this thesis, gait motion was assumed to be bi-laterally symmetrical. In future,

non-symmetrical gait will also be investigated, which is a more general case.

4. Although gait is a motion with a moderate range of joint angles for which constant

moment arms for the muscles worked fine, in the future adding variant moment arms,

including origins, insertions, via and wrapping points, will add more fidelity to the

model.

Systematic Sensitivity Analysis

Musculoskeletal models include a great many parameters, including muscle model, foot

contact, and anthropometric parameters. A large future project can be to investigate the

sensitivity of the simulation outputs, such as predicted limb motions, muscle excitations,

and ground reaction forces, to all parameters of the model. A systematic sensitivity analysis

is necessary for these models, which can be done through different approaches explained

in [106].
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Appendix A

Muscle Model

A.1 Activation Dynamics by He et al. [1]

ȧ(t) = (u(t)− a(t))(t1u(t) + t2) (A.1)

with

t2 = 1/τfall

t1 = 1/τrise − t2

where u and a are the muscle excitation and activation, respectively, τfall is the deac-

tivation time constant (approximately 50 ms), and τrise is the activation time constant

(approximately 15 ms).
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A.2 Activation Dynamics by Winters and Stark [2]

A.2.1 Forward

Forward activation dynamics is the case that muscle activation is calculated from known

neural excitation. The differential equation for the activation dynamics used in this thesis:

ȧ =

(u− a)(t1u+ t2) u ≥ a

(u− a)t2 u < a
(A.2)

where u is muscle excitation, and t1 and t2 are defined in the following [107]:

t2 =
1

τfall
(A.3)

t1 =
1

τrise
− t2 (A.4)

where τfall and τrise are assumed to be 68 ms and 11 ms, respectively [2, 12]. It should be

noted that the conditions in Equation A.2, u ≥ a and u < a, are equivalent to ȧ ≥ 0 and

ȧ < 0, respectively.

A.2.2 Inverse

In case the goal is to find neural excitation from the activation and activation rate, the

relation is called inverse activation dynamics. Rearranging Equation A.2, the excitation

can be written as:

u =


at1 − t2 ±

√
(at1 + t2)2 + 4ȧt1
2t1

ȧ ≥ 0

ȧ+ t2a

t2
ȧ < 0

(A.5)

where in the first statement, only the positive value is valid; otherwise, the excitation will

be negative.
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A.3 Muscle-Tendon Dynamics by Thelen [3]

A.3.1 Tendon Dynamics

The tendon force normalized to muscle maximum isometric force Fm
max is represented as

an exponential function of the tendon strain:

f̃ t =


f̃ ttoe

ektoe − 1
(e

ktoeε
t

εttoe − 1) εt ≤ εttoe

klin(εt − εttoe) + f̃ ttoe εt > εttoe

(A.6)

where εt is engineering strain of tendon (calculated based on the slack length lslack), ε
t
toe is a

limit after which the tendon relation switches to the linear expression, ktoe is a shape factor,

klin is the linear slope of the second condition, and f̃ ttoe is the function value at εt=εttoe.

Values of the parameters are adopted from [3]: ktoe=3, f̃ ttoe=0.33, εt0=0.04, εttoe=0.609εt0,

and klin=1.712/εt0.

A.3.2 Parallel elastic element Relation

The relation for muscle passive force normalized to muscle maximum isometric force Fm
max

is expressed as:

f̃pe =
e

kpe(l̃ce − 1)

εm0 − 1

ekpe − 1
(A.7)

where l̃ce is the muscle fiber length normalized to lceopt, k
pe is a shape parameter set to 5, εm0

is called the passive muscle strain and adopted to be 0.6 (for young adults) in this thesis.
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A.3.3 Force-Length-Velocity Relation

The force-length relation is written as:

f ceisom = e
−

(l̃ce − 1)2

γ (A.8)

where γ is a shape factor and is set to be 0.45.

Afterwards, the total force-length-velocity in this muscle model can be formulated as

the following:

vce = (0.25 + 0.75a) vcemax
f̃ ce − af ceisom

b
(A.9)

with

b =


af ceisom + f̃ ce/Af f̃ ce ≤ af ceisom

(2 + 2/Af )(af
ce
isomf̂ − f̃ ce)

f̂ − 1
f̃ ce > af ceisom

where a is the muscle activation, vce is the fiber velocity (velocity of CE element), f̃ ce

is the force of CE element normalized to maximum isometric force, f̂ is the normalized

asymptotic eccentric force (equal to 1.4 for young adults), Af is a shape parameter (adopted

to be 0.25), vcemax=10 lceopt m/s is the maximum contraction velocity of the muscle fiber.

A.4 Tendon Dynamics by Winters [4]

For studying muscle coordination purposes, the tendon can be modelled as a hyper-elastic

component. This model is based on [4] in which tendon force is modelled by means of a

quadratic function of the tendon deformation:

f t =

kt(lt − lslack)2 lt ≥ lslack

0 lt < lslack
(A.10)
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where lslack is the tendon slack length, which is similar to rest length of a spring, and kt is

the tendon stiffness defined as:

kt =
Fm
max

(εt0lslack)
2 (A.11)

where Fm
max is the maximum isometric force of the muscle and εt0 is the tendon characteristic

strain, which is reported to be from 3-5 percent. The value of 4% is adopted for this model.

A.5 Contraction Dynamics by Nagano and Gerritsen

[5]

The force-length-velocity relations of the CE element based on the work by [5] are presented

here. Similar formulations were also previously presented by [37,38]. Like most contraction

dynamics models, this model consists of a piecewise formulation for the contraction velocity.

The force-length-velocity relation for two cases of concentric contraction (vce ≤ 0) and

eccentric contraction (vce > 0) can be expressed as the following:

vce =



−â lceopt

(f ceisom + Arel)Brel

f ce

aFm
max

+ Arel

−Brel

 vce ≤ 0

−lceopt

 c1
f ce

aFm
max

+ c2

− c3

 vce > 0

(A.12)

where â = min(1, 10
3
a), Arel and Brel are parameters that might depend on the ratio of the

fast twitch fibers to all fibers, ffast, [7] or training conditions [5] (adopted to be 0.41 and

5.2, respectively from [5,14]).

The variable f ceisom represents the normalized force-length relation, which can be written
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as:

f ceisom = c

(
lce

lceopt

)2

− 2c

(
lce

lceopt

)
+ c+ 1 (A.13)

with

c =− 1

width2

in which values of the parameter width are presented in Table 5.3 for eight muscle groups

of the lower extremity.

The parameters of the eccentric relation can be formulated as:

c1 =
âBrel(f

ce
isom + c2)

2

(f ceisom + ArelΓ)
(A.14)

c2 = − f ceisomf̂

c3 =
c1

f ceisom + c2

where f̂ is the asymptotic eccentric force, assumed to be 1.4 here based on [3], and Γ is

the slope of the force-velocity relation at zero velocity, which is 2 in references [5, 37, 38],

but is set to be 1 here according to [14, 76]. This avoids difficulties in the convergence of

the optimization problem.
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Appendix B

Metabolic Energy Rate

The equations used for metabolic energy rate are taken from [7]. These equations are

presented to phenomenologically model the metabolic energy rate for a muscle. According

to the thermodynamics 2nd law, the net decrease rate in the internal energy of a muscle

(or total muscle energy expenditure rate) consists of the heat generated and the rate of

work done by the muscle, as follows:

Ė = Ḣ + Ẇ (B.1)

where the work rate is written in the form:

Ẇ = −fce(lce, vce, a)vce (B.2)

where lce, vce, and fce are the length, velocity, and force of the contractile element, respec-

tively in which fce is always non-negative. It should be noted that this work is the one

done by the contractile element only, which is different from the total muscle-tendon work.

Muscle mass is calculated as follows:

m = ρml
ce
opt

Fm
max

σm
(B.3)

where ρm is the muscle density and assumed to be 1059.7 kg/m3, lceopt is the optimum length

of the muscle fiber, Fm
max is the muscle maximum isometric force, and σm is the muscle

specific tension and is assumed to be 0.25 MPa.
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B.1 Heat Rate by [6]

Ḣ = Ȧ+ Ṁ + Ṡ + Ḃ (B.4)

where Ȧ is the activation heat rate, Ṁ is the maintenance heat rate, Ṡ is the shorten-

ing/lengthening heat rate, and Ḃ is the basal metabolic rate.

1) Activation Heat Rate

Ȧ = φdfm[ffastȦfastufast + fslowȦslowuslow] (B.5)

where m is the muscle mass, ffast and fslow are the ratio of the fast and slow twitch fibers

to all fibers, Ȧfast and Ȧslow are constants and are assumed to be 133 W/kg and 40 W/kg

respectively, and ufast and uslow are the contributions of the fast and slow twitch fibers in

the total muscle excitation that can be calculated as follows:

ufast(t) =1− cos(π/2u(t))

uslow(t) = sin(π/2u(t)) (B.6)

φdf is called the decay function and is defined as follows:

φdf = 0.06 + e−tstimu(t)/τφ (B.7)

where τφ is the decay time constant and is set to be 45 ms; tstim is the total time the muscle

excitation has been greater than 0.1.

2) Maintenance Heat Rate

Ṁ = ψH(l̃ce)m[ffastṀfastufast + fslowṀslowuslow] (B.8)

where ψH(l̃ce) is the following piecewise expression:

ψH(l̃ce) =



0.5l̃ce l̃ce ≤ 0.5

l̃ce 0.5 ≤ l̃ce ≤ 1

−2l̃ce + 3 1 ≤ l̃ce ≤ 1.5

0 1.5 ≤ l̃ce

(B.9)

141



Ṁfast and Ṁslow are constants that are assumed to be 111 W/kg and 74 W/kg respectively.

3) Shortening/Lengthening Heat Rate

Ṡ = −αvce (B.10)

where α is defined as below:

α =

0.16f ceisom(a, lce) + 0.18f ce vce ≤ 0

0.157f ce vce > 0
(B.11)

where f ce is the force produced by the contractile element and is a function of muscle

activation, contractile element length and velocity, and f ceiso(a, l
ce) is the f ce when the con-

traction velocity is zero.

4) Basal Metabolic Rate

Ḃ = 0.0225m (B.12)

B.2 Heat Rate by [7]

Ḣ = mḣ (B.13)

ḣ = ḣM + ḣSL + ḣA (B.14)

where ḣM , ḣSL, and ḣA are the maintenance, shortening/lengthening, and activation heat

rates per unit mass, respectively. The final expression for the total mass-specific heat rate

is as follows:

if lce ≤ lceopt

ḣ = ḣAMβ
0.6ξ

+

−ṽceβ0.2ξ(αS(ST )fslow + αS(FT )ffast) ṽce ≤ 0

αLṽ
ceβξ ṽce > 0

(B.15)
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if lce > lceopt

ḣ = ḣAMβ
0.6ξ(0.4 + 0.6f ceisom)

+

−f ceisomṽceβ0.2ξ(αS(ST )fslow + αS(FT )ffast) ṽce ≤ 0

αLf
ce
isomṽ

ceβξ ṽce > 0
(B.16)

where ffast and fslow are the ratio of the fast and slow twitch fibers to all fibers, and other

variables are defined as follows:

β =

u u > a

(u+ a)/2 u ≤ a
(B.17)

ḣAM = 128ffast + 25 (B.18)

αS(ST ) =
100

ṽcemax(ST )
(B.19)

αS(FT ) =
153

ṽcemax(FT )
(B.20)

αL = 4αS(ST ) (B.21)

where ṽce is the velocity of the CE divided by lceopt, f
ce
isom is the force-length relation of CE

normalized by Fm
max, ṽ

ce
max(FT ) and ṽcemax(ST ) are the maximum shortening velocity of fast

twitch and slow twitch fibers divided by lceopt, which are assumed to be 10 s−1 and 4 s−1, ξ is

a scaling factor, where values of 1.0 and 1.5 for ξ are associated with a primarily anaerobic

and aerobic movements, respectively. ξ=1.0 is adopted for the forearm model, whereas

ξ is assumed to be 1.5 for gait modelling. In addition, the term −αS(ST )fslowṽce is not

allowed to exceed 100 W/kg, and the total specific heat rate, ḣ, must be greater than or

equal to 1.0 W/kg. This lower bound condition approximates the muscle energy rate when

the muscle is least active, i.e., in resting state [108]. It should be noted that the variables

αS(ST ), αS(FT ), and αL are energy contents of the muscle tissue and are expressed in J/kg.
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