
Outsourced Private Information
Retrieval with Pricing and Access

Control

by

Yizhou Huang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2013

© Yizhou Huang 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We propose a scheme for outsourcing Private Information Retrieval (PIR) to untrusted
servers while protecting the privacy of the database owner as well as that of the database
clients. We observe that by layering PIR on top of an Oblivious RAM (ORAM) data layout,
we provide the ability for the database owner to perform private writes, while database
clients can perform private reads from the database even while the owner is offline. We can
also enforce pricing and access control on a per-record basis for these reads. This extends
the usual ORAM model by allowing multiple database readers without requiring trusted
hardware; indeed, almost all of the computation in our scheme during reads is performed
by untrusted cloud servers. Built on top of a simple ORAM protocol, we implement a real
system as a proof of concept. Our system privately updates a 1 MB record in a 16 GB
database with an average end-to-end overhead of 1.22 seconds and answers a PIR query
within 3.5 seconds over a 2 GB database.

We make an observation that the database owner can always conduct a private read
as an ordinary database client, and the private write protocol does not have to provide a
“read” functionality as a standard ORAM protocol does. Based on this observation, we
propose a second construction with the same privacy guarantee, but much faster. We also
implement a real system for this construction, which privately writes a 1 MB record in a
1 TB database with an amortized end-to-end response time of 313 ms.

Our first construction demonstrates the fact that a standard ORAM protocol can be
used for outsourcing PIR computations in a privacy-friendly manner, while our second
construction shows that an ad-hoc modification of the standard ORAM protocol is possible
for our purpose and allows more efficient record updates.

iii

Acknowledgements

I would like to thank my supervisor, Ian Goldberg, for his always constructive sug-
gestions, feedback and support. I thank my thesis readers (Alfred Menezes and Douglas
Stinson) for their time.

iv

Dedication

This is dedicated to my parents, family and many friends.

v

Table of Contents

List of Tables viii

List of Figures ix

List of Algorithms xi

List of Notation xii

1 Introduction 1

1.1 Outsourcing PIR . 2

1.2 Related Work . 2

1.3 Our contribution . 4

2 Background 5

2.1 Oblivious RAM . 5

2.2 Goldberg’s IT-PIR . 8

2.3 Symmetric PIR and Oblivious Transfer . 8

2.4 SPIR and OT with Data Privacy . 9

3 Constructions 11

3.1 Privacy Constraints . 11

3.2 Overview . 12

vi

3.3 Construction One . 14

3.4 Efficient server-side Index . 17

3.5 Pricing and Access Control . 19

3.6 Construction Two . 19

3.7 De-amortized ORAM . 22

3.8 Discussion . 23

3.9 Security Analysis . 23

4 Performance Evaluation 26

4.1 Experimental Setup . 26

4.2 Results for Construction One . 26

4.3 Results for Construction Two . 33

4.4 Implementation Details . 40

4.4.1 Oblivious Reshuffle . 40

5 Conclusion 45

References 46

vii

List of Tables

1.1 Related protocol comparison . 3

3.1 Size of local storage required on database owner 15

3.2 How each level in the ORAM is organized 16

4.1 Construction Two: Different part sizes for Mrec 40

viii

List of Figures

3.1 The layout of Mrec . 12

3.2 The layout of a data item. 13

3.3 The layout of Mind . 18

3.4 Our second construction . 21

4.1 Construction One: Amortized end-to-end response time for writes 27

4.2 Construction One: Average end-to-end response time for reads 28

4.3 Construction One: Predicted amortized end-to-end response time for writes
(1 MB record) . 30

4.4 Construction One: End-to-end response time for level shuffling 31

4.5 Construction One: Predicted amortized end-to-end response time for writes
(256 KB record) . 32

4.6 Construction Two: End-to-end response time for each private write 34

4.7 Construction Two: Distribution (CDF) of private write costs on our local
machine . 36

4.8 Construction Two: Simulated distribution (CDF) of private write costs over
ADSL . 36

4.9 Construction Two: Simulated distribution (CDF) of index entry update cost
over ADSL connections . 37

4.10 Construction Two: Simulated distribution (CDF) of private write costs over
ADSL connections . 38

4.11 Construction Two: Distribution (CDF) of private write costs on our local
machine . 39

ix

4.12 Construction Two: Simulated distribution (CDF) of private write costs over
ADSL connections . 39

4.13 Construction Two: Distribution (CDF) of private write costs for different
block sizes on our local machine . 41

4.14 Construction Two: Simulated distribution (CDF) of private write costs for
different block sizes over ADSL connections 41

x

List of Algorithms

1 LabelPhantomItemsOnLevel . 43

2 LabelPhantomItems . 44

xi

List of Notation

Symbol Explanation
T length of access sequence
n number of records
b ORAM level base
L number of ORAM levels
γ constant in Goodrich et al.’s ORAM scheme [GMOT12]
τ Collusion threshold for database sharing
M matrix used to model database
r number matrix rows
s number of matrix columns
F some finite field
ej a standard basis vector
v a share of vector
t Collusion threshold for PIR queries
` number of servers in multi-server IT-PIR scheme
x x coordinate of a point on a polynomial

Mkey matrix of keys
Mind matrix of encrypted indices
Mrec matrix of encrypted records
Ei message to be signed in a blind signature scheme
k exponent used to blind a message
σ a blinded signature
h a secret key used to sign a blinded message
K a symmetric encryption/decryption key
ci a Shamir’s secret share of a constant c
O a database owner
id a unique id assigned to a record

Continued on next page

xii

Continued from previous page
Symbol Explanation

S number of data items in each row of Mrec

N number of data items in Mrec

R number of rows in Mrec

Ki the symmetric encryption/decryption key to record i
ERi encrypted content of record i under Ki

EKi encrypted Ki under the master secret key
IV Initialization vector (IV) for block cipher
IVr IV used to generate ER
IVk IV used to generate EK

ENCK,IV symmetric encryption with key K and IV IV
MACi Message Authentication Tag (MAC) tag for record i
MACKi

A hash function keyed with Ki used to generate MAC
ri content of record i in plain text

OFFSETi offset of record i in Mrec

EIi encrypted OFFSETi under Ki for record i
p number of partitions of Mind

parti the ith partition of Mind

q size limit of each partition of Mind

LOCi the ith location of a given partition of Mind

Q constant parameter for Mind

P number of partitions of Mrec in the alternative construction
B number of blocks in each partitions of Mrec

di list of unaccessed locations in partition i of Mrec

F a constant determining the reshuffling frequency on Mrec

C constant parameter for Mrec

Trans a transcript generated by record update operations
X an access sequence variable
β a random bit in the security game
κ security parameter
ε some negligible function
DR set of records that the server knows the decryption key of
bs size of private buffer for oblivious shuffle

xiii

Chapter 1

Introduction

Private Information Retrieval, or PIR, is a privacy enhancing technology (PET) that allows
clients to query a database in a privacy-preserving manner. The goal is that the database
server should be able to respond to client requests without learning any nontrivial infor-
mation about which record the client is seeking. A trivial solution is to download the
entire database and issue queries locally. This solution is clearly information-theoretically
secure: no matter how much computation the server employs, it cannot learn which record
the client seeks; however, it is highly impractical to transmit large databases over the In-
ternet. PIR protocols aim to provide the same level of privacy, while incurring a strictly
sublinear communication cost.

PIR schemes can be computational or information theoretic. Computational PIR
(CPIR) schemes use cryptographic techniques to encrypt the user’s query in such a way
that the server can combine the encrypted query with the plaintext database to yield the
encrypted result. This encrypted result is then returned to the client, who can decrypt it.
The security of these schemes rely on the security of the underlying encryption.

Information-theoretic PIR (IT-PIR) schemes, on the other hand, are “perfectly secure”
in the same sense as above — even a server employing unlimited computation cannot
determine what the client was after. However, in order to achieve sublinear communication
and information theoretic security at the same time, one must employ multiple database
servers [CKGS98], and rely on the assumption that some number of these servers are not
colluding. This non-collusion assumption is not unusual with distributed PETs; other
PETs such as Tor [DMS04] and electronic voting [CCC+09] make the same assumption.

In 2011, Olumofin and Goldberg [OG11] identified a CPIR scheme and a number of
IT-PIR schemes that process PIR queries faster than trivially downloading the database.

1

Their experimental results show that the fastest scheme examined processes a PIR query
on a 16 GB database in less than 10 seconds, over 3 orders of magnitude (1000 times) faster
than downloading the database over a 10 Mb/s network.

1.1 Outsourcing PIR

Although the end-to-end PIR response time for databases of a few gigabytes is somewhat
reasonable, doing PIR over a one-terabyte database using the same amount of computa-
tional power still requires over 10 minutes, which is beyond practicality. Even worse, as
shown by experiments [OG11], when the size of the database exceeds the size of the RAM
available on the local machine, the performance begins to deteriorate as disk access times
dominate.

Luckily, the computation in most PIR schemes can be easily parallelized. A recent
experimental study by Devet [Dev13] has shown that with the help of 64 cores, Goldberg’s
IT-PIR protocol [Gol07] is indeed about 64 times faster than in a single-core setting. This
promising result, measured on databases of up to 256 GB, raises the possibility of reasonable
private query times to databases of even larger sizes, if the required computational power
is available.

Providing PIR services on large databases offers a strong motivation to outsource them
to a cloud, where the computational power of hundreds of cores can be utilized. However,
this outsourcing can come at a cost to privacy: although the PIR ensures the privacy
of the database clients, and encryption can ensure the database contents are protected
from the untrusted cloud, the database owner may also wish to protect his updates to the
database from being observed by the cloud. Even the update patterns — which records
get updated when, or how often — may be sensitive information. We will later formalize
this notion as outsourcing privacy. While outsourcing privacy protects the database owner,
the complementary notion of information retrieval privacy protects the database clients by
hiding their access patterns. We aim to construct a system that provides both of these kinds
of privacy. In our system, a database owner can privately update an outsourced database,
and the database servers are able to serve PIR queries while the owner is completely offline.

1.2 Related Work

Oblivious RAM (ORAM), first proposed by Goldreich and Ostrovsky [GO96], provides
a solution for outsourcing storage to an untrusted server. With a reasonable amount of

2

Multiple Multiple Avoids Hides Access

Readers Writers Trusted Hardware from DB Owner

ORAM [GO96] × × X ×
ORAM-aided PIR [WDDB06,WS08] X X × X

Delegated ORAM [FCS+11] X X X ×
This work X × X X

Table 1.1: This table shows how our protocol differs from related work. In all of the
schemes, the access histories of clients are hidden from the untrusted server.

private storage on the client side, ORAM has been shown [WST12,SSS12,GMOT12] to be
much more efficient than when it was first proposed [GO96]. ORAM allows a single user
(who possesses a secret key) to read and write data to a database housed on an untrusted
storage server. ORAM completely hides the access patterns of records from the server, in
the sense that the server cannot even tell whether an access to the ORAM is a read or
write operation, nor can it tell how the current access is related to previous ones. ORAM
does not allow access from multiple users unless they share the same key: a user either has
the key and is able to access the whole ORAM obliviously, or she does not have the key,
and cannot access any record at all. It is not obvious how to enforce any access control
or pricing which allows partial access to the database for entitled users. Also, users who
share the secret key see the access histories of each other. In that sense, users who share
the same key should really be conceptually treated as one single user, and what they are
reading or writing is not oblivious to anyone holding the secret key, including the database
owner.

Any ORAM scheme naturally yields a computational PIR scheme with trusted hard-
ware [WDDB06, WS08]. The private storage required on the client side now sits on the
trusted hardware, which keeps the required ORAM secret key within itself, and interacts
with the untrusted server exactly the same way as an ORAM client would do. A database
client simply tells the trusted hardware which record she wishes to retrieve and waits for
the response through a secure channel, hoping that the trusted hardware does not leak her
query to others, and does not fool her with a wrong answer.

Another piece of work of particular relevance to ours is Delegated Oblivious RAM
proposed by Franz et al. [FCS+11]. Each record in the Oblivious RAM is encrypted and
signed by a unique set of keys initially only known by the database owner. Giving out
the decryption key to someone allows her to read that record “obliviously”, and giving
out both the decryption key and the signing key allows both read and write access to the
record. However, the database owner is able to learn the access patterns for all the other

3

users because she knows all the keys. Even worse, she is required to do so; the database
owner has to come back periodically to look at the access history, reshuffling the ORAM
according to that history to allow further unlinkable ORAM accesses.

It is not surprising that none of these schemes keeps the access histories of multiple
clients private from the database owner, because a general ORAM models only a single
client interacting with an untrusted storage. The notion of multiple clients was not intro-
duced in ORAM’s original design, which looks into hiding the access pattern of records
from the untrusted storage, not hiding the access history of users from each other. Table 1.1
shows how our protocol is different from those above.

1.3 Our contribution

1. We propose a definition for outsourcing privacy that reflects the privacy interests of
a database owner against both the untrusted servers housing the outsourced data, as
well as database clients who access that data.

2. We make a key observation that an ORAM scheme and a PIR scheme can be fruitfully
combined. We combine this observation with a novel server-side indexing structure to
produce a system to allow a single database owner to privately and efficiently write
data to, and multiple database clients to privately read data from, an outsourced
database, meeting our above definition of outsourcing privacy. Moreover, our scheme
does not rely on trusted hardware.

3. We implemented our system as a proof of concept. We experiment with databases up
to 2 GB in size, with reasonable performance on a single commodity server. Based on
the benchmarks, we predict the performance for our protocol running on databases
up to the size of one terabyte, showing its feasibility when the database owner has
a high-speed corporate Internet connection (at least 100 Mb/s), even if the database
clients only have slow ADSL connections.

4. We propose an improved construction which runs much faster, by allowing the
database owner to read records only through PIR queries (not through the stan-
dard ORAM protocol). We implement a system based on this construction on our
local machine, and simulate its performance on a terabyte-sized database over ADSL
connections, showing its feasibility even if the database owner only has a slow network
such as ADSL.

4

Chapter 2

Background

2.1 Oblivious RAM

Oblivious RAM (ORAM) was first studied by Goldreich and Ostrovsky [GO96]. In their
model, a CPU with some trusted storage of constant size wishes to conduct a computation
in T virtual steps using n virtual items. Oblivious RAM simulates the computation in
an untrusted storage such that for any two computations that require the same number
of virtual steps, the two actual access sequences of actual items look indistinguishable
to the untrusted storage. A trivial solution for ORAM is to scan all the actual items
for each virtual step and rewrite every actual item with a semantically secure encryption
scheme — decrypting and then re-encrypting the original value if the actual item is not
to be updated, and decrypting and freshly encrypting the new value if it is. (Recall that
semantically secure encryption satisfies the property that someone without the decryption
key must be unable to distinguish two different encryptions of the same plaintext from
encryptions of different plaintexts. We will assume in the rest of the thesis that any write
operation to an ORAM will use a semantically secure encryption scheme unless otherwise
specified.) This trivial solution requires Θ(T ·n) computation cost and communication cost.
To bring down the asymptotic overhead, Goldreich and Ostrovsky gave two constructions
for ORAM, a Square Root Solution and a Hierarchy Solution.

The Square Root Solution is composed of a shelter of size
√
n, as well as a main part

that contains n real items and
√
n dummy items. Both parts are encrypted. Items in

the main part are randomly permuted using a secret nonce. Each access to the ORAM
first iterates through the shelter. If the required virtual item is found in the shelter, then
a dummy item from the main part is fetched. Otherwise, the required virtual item is

5

fetched from the main part. In either case, the updated virtual item is appended to the
end of the shelter. After every

√
n accesses, the shelter becomes full, and all the items are

obliviously reshuffled1 into the main part using a new secret random permutation. Not a
single actual item in the main cell is accessed twice between two consecutive shufflings, and
previous accesses become unlinkable to the ones after a shuffling. Thus, no information
about the access pattern is revealed to the adversary. In order to obliviously shuffle the
ORAM, each item is given a tag produced by a hash function, and an oblivious sorting
algorithm is executed with the tags treated as sorting keys. Using the Θ(n · log2 n) sorting
network by Batcher [Bat68], this Square Root Solution achieves an amortized overhead of
Θ(
√
n · log2 n) for each virtual access.

The Hierarchy Solution organizes the ORAM into L levels. Level i contains at most bi

real items for i = 1, · · · , L, which are hashed to bi buckets using a hash function unique to
that level, where b is an integer greater than 1.2 Each of the buckets is of size s = Θ(log T)
to reduce the probability of rehashing due to hash collisions filling up buckets. To access
a virtual item, the CPU first scans all the buckets on the first level. Then, for each of
following levels, the CPU scans the bucket that possibly stores the item required according
to the hash function used to hash that level, or accesses a dummy item if the required item
has already been found. Finally, the CPU writes the updated value to the top level (level
1). After bi−1 virtual accesses, level (i− 1) becomes potentially full,3 and all its items are
obliviously rehashed to level i along with the items already on level i, using a new hash
function. The total number of actual items required is Θ(T · log2 T), and the amortized
cost for each virtual access is Θ(log3 T).

Reasonable asymptotic costs are achieved in both of their constructions [GO96]. How-
ever, an unrealistically large constant is hidden behind the big Θ notation because of the
expensive oblivious sort required to reshuffle the ORAM periodically. For this reason,
ORAM has long been considered an impractical protocol.

Recently, with the increasing popularity of cloud services, ORAM has been proposed
as a way to outsource data storage to the cloud while hiding the access pattern of the
underlying data. Encryption alone prevents the untrusted server from learning the contents
of the outsourced data. However, the access pattern might be enough for the adversary to
gain confidential information. For example, for a medical database, the access frequency

1Remove out-of-date or duplicated items; re-order and re-encrypt all the remaining items.
2b is often chosen to be 2 or 4. The best choice of b is not well studied in the literature, and it might

depend on the particulars of the ORAM scheme. However, in all the hierarchical schemes we are aware
of, a very large b is not desirable, as this defeats the purpose of the hierarchy structure.

3It is possible that level i− 1 is not full at this point because of repeated accesses to the same virtual
item. However, not rehashing would leak this access pattern.

6

of a record might help the adversary identify the disease the record is about, and reveals
possible medical conditions of patients who access those identified records. ORAM makes
accesses to the database indistinguishable; the server cannot tell which record is accessed,
how the accesses are interrelated, nor whether a given access is a read or write operation.

In the data outsourcing model, the constraint of O(1) client-side storage does not apply
any more, and the practicality of ORAM has been revisited. We denote the number of
records stored on the untrusted server by n. Built on top of the primitive of cuckoo hashing
and an efficient randomized Shellsort, Goodrich et al. [GMOT11,GM11,GMOT12] propose
several ORAM schemes with Θ(log n) amortized access overhead and Θ(n1/γ) storage on
the client side for some constant γ > 1. Stefanov et al. [SSS12] suggest keeping track of all
the records on the client side, because the size of a data item is much larger than the size of
its entry in an index. The ORAM is partitioned into smaller ORAMs, such that each small
ORAM can fit in the client-side memory to allow very efficient oblivious reshuffling. The
access overhead of their scheme is Θ(log n). They claim that their construction is the most
efficient scheme so far in practice, with private access times only 20–35 times slower than
normal unprotected access times, under practical parameter choices. Recently, Williams et
al. [WST12] implemented an oblivious file system called PrivateFS, which utilizes a set of
optimizations to make ORAM practical. On a 1 TB database across 50 ms network links,
they achieve multiple queries per second to the file system. The underlying ORAM uses
a hierarchy structure similar to Goldreich et al.’s Hierarchy Solution. Instead of trying a
bucket that possibly contains the required record, the client downloads an encrypted Bloom
filter on each level that tells her whether that record is on that level; if not, a dummy item
is fetched instead of a possibly real one. This allows the server to use a collision-free hash
function for each level, which lowers the storage overhead on the server from Θ(n log n) to
Θ(n). An efficient oblivious merge sort with Θ(

√
n) client storage scrambles a level as it

becomes full, and succeeds with overwhelming probability.

We do not intend to make an exhaustive review of all the ORAM schemes in the
literature, nor do we intend to cover full details of the schemes above. The important
point is that the practicality of ORAM has been shown under the assumption that the
client also has a moderate amount of private storage, which is entirely reasonable in the
data-outsourcing setting. A typical client might work with a local private storage in the
order of gigabytes, wishing to store a database in the order of terabytes to the cloud.

7

2.2 Goldberg’s IT-PIR

Our construction builds on top of Goldberg’s multi-server IT-PIR protocol [Gol07]. We
choose Goldberg’s IT-PIR for three reasons: 1) it supports the notion of τ -independence,
which is important for protecting the privacy of the database owner, as will be discussed in
more detail in Section 2.4; 2) it has an open-source implementation Percy++ [GDHH12];
and 3) it is experimentally quite efficient [OG11].

Goldberg’s construction models the database as a r-by-s matrix M over some finite
field F. Let ej be a standard basis vector in Fr with the jth entry being 1, so that ej ·M
yields exactly the jth row of M . In the simplest version of the scheme, each of ` servers
holds a copy of the matrix M . In order to retrieve the ith record, the database client sends
a share of ei under Shamir secret sharing [Sha79] (with threshold t) to each of the servers,
who sees a vector v that looks indistinguishable from one chosen uniformly at random,
and computes v ·M . Because of the linearity of Shamir’s secret sharing, by interpolating
the resulting vectors using Lagrange interpolation, the ith row can be reconstructed by the
PIR client. Unless more than t servers collude to share the queries they received from
the client, none of them learns anything whatsoever about which record the client is after.
The communication cost is `(r+ s) field elements, which optimally equals 2`

√
rs when the

matrix is square; i.e. r = s.

This PIR scheme also supports robustness and Byzantine robustness [DGH12]. For
the above privacy parameter t, as long as at least t + 2 servers respond to the query
correctly, the other (misbehaving) servers will be identified, and the client will still be able
to reconstruct the correct response. This allows us to withstand — and identify — servers
that attempt to disrupt the protocol.

2.3 Symmetric PIR and Oblivious Transfer

Symmetric PIR (SPIR) protects the privacy of the database server by making sure that
the database client learns only one record per access request. (This rules out the triv-
ial download scheme, for example.) Oblivious Transfer (OT) provides the same privacy
guarantee, but it does not have SPIR’s constraint of sublinear communication cost, and
so it is a strictly weaker notion. Coupled with anonymous credentials and zero-knowledge
proofs, some of the SPIR and OT schemes in the literature can support pricing and access
control over the records in the database, which is well-suited for e-commerce applications,
such as selling e-books in a privacy-friendly way. We briefly introduce two flavors of such
constructions below.

8

Henry et al.’s SPIR Built on top of Goldberg’s IT-PIR protocol [Gol07] and Kate et
al.’s polynomial commitments [KZG10], Henry et al.’s SPIR protocol [HOG11] supports
tiered pricing, which naturally induces an SPIR scheme with access control. The database
client proves to each database server that her query vector evaluates to a standard basis
vector at x = 0 with an efficient batch zero-knowledge proof. If the proof is valid, the
server receiving the proof is convinced that only one row is retrieved by multiplying the
input vector with the database matrix. By utilizing the homomorphism of the polynomial
commitments, the database client can also prove in zero-knowledge that her wallet, which
is encoded as an anonymous credential, stores enough balance to purchase the record with
a price corresponding to the tier encoded in the wallet. For full details, please refer to the
paper [HOG11].

Camenisch et al.’s OT In Camenisch et al.’s OT construction [CDN09, CDN10], the
entire encrypted database is published. The encryption key for the ith record is a unique
signature on the message “i”. (A unique signature scheme is one in which there is exactly
one valid signature for any given message and public key.) In order to decrypt a record, an
OT client requests a blinded signature on the desired index. Since the signature is blinded,
the signer does not learn the message to be signed, which is the index of the record. In
order to enforce access control (AOT [CDN09]) or pricing (POT [CDN10]), access control
or pricing information is encoded in the signature as well. The client proves that the
blinded message is well-formed, and that her credential satisfies the access control policy
specified in that blinded message. We refer readers to the papers [CDN09, CDN10] for
further details.

2.4 SPIR and OT with Data Privacy

Our protocol will contain a component where the untrusted cloud servers need to provide
access to records from a database Mkey of symmetric keys, using pricing or access control
to limit who gets to see which keys. This can be easily accomplished with the SPIR or OT
protocols above. Importantly, however, the cloud servers themselves must not be allowed
to see the keys.4 We now provide two solutions to this problem.

4If a cloud server acts as a database client and purchases a key for itself, then it of course will learn
that key. Note that this scenario does not violate our security notions, however.

9

τ-independence The idea of τ -independence was introduced by Gertner et al. [GGM98].
It ensures that a coalition of τ or fewer servers can deduce nothing nontrivial about the
contents of the database. As observed in later work [HHG13], this feature is supported by
Henry et al.’s SPIR protocol [HOG11]. With τ -independence enabled, rather than each
server storing a copy of Mkey, the servers instead each hold a Shamir secret share of Mkey.
Unless more than τ of them come together to combine their shares, none of them learns
the contents of Mkey.

Threshold signature In Camenisch et al.’s OT construction [CDN09,CDN10], the en-
cryption key of a record is a unique signature on its index. In a nutshell, the client blinds
a message Ei, which is a one-way function of the record index i (as well as of pricing or
access control information, if needed), by raising it to a random power k. The server signs
the blinded message Ei

k using a secret key h by computing σ = e(Ei
k, h) where e is a bi-

linear pairing. The client then computes K = σ1/k = e(Ei, h) which is then the decryption
key. We can prevent the servers from learning K by turning this into a threshold signature
scheme. Now, the database owner generates ` secret shares c1, · · · , c` for the value c = 1
using Shamir secret sharing with threshold τ . Each server gets a share hj = hcj and uses
it to compute σj = e(Ei

k, hj). The client then performs Lagrange interpolation in the
exponent to recover σ = e(Ei

k, h) with τ + 1 valid responses. Each Ei (i = 1, · · · , n) is
stored on all ` servers and is considered public information. Database clients can retrieve
any portion of the Ei’s using PIR queries and recover Mkey entries for records they are
entitled to access with the above threshold signature scheme.

In both solutions, if there is no coalition of servers exceeding some threshold τ , none
of the servers learns any nontrivial information about Mkey by providing the SPIR or OT
service. In reality, cloud computing service providers care about their reputation. It is not
an unrealistic assumption that they would honestly follow the protocol instead of actively
breaching from it by talking to parties they are not supposed to talk to, although they
might be curious to try to learn something from the transcripts they are allowed to see. It
would interesting to examine the non-collusion assumption from the perspective of game
theory, and provide more incentives for non-colluding behaviours. This is, however, out of
the scope of the thesis.

10

Chapter 3

Constructions

We now describe the construction of our scheme. There are three parties involved: one
database owner, denoted by O; ` servers each holding a copy of the outsourced database;
and database clients who issue read queries for records stored in the database. In reality,
each of the ` “servers” might be a cloud service itself, such as Windows Azure, Amazon
AWS, etc. Note that in this case, ` servers do not refer to ` computation units within one
cloud, but rather ` non-colluding clouds. We denote by private storage the storage local
to O. The database owner stores records in the database; these correspond to the virtual
items in Section 2.1 above. We denote the number of records by n, and each record is
associated with a unique id ranging from 1 to n.

3.1 Privacy Constraints

We care about privacy both for the database clients and the database owner. We define
information retrieval privacy and outsourcing privacy for them respectively below.

Information retrieval privacy The definition of information retrieval privacy starts
with a database client retrieving a record with id i. Assuming that the number of colluding
servers in transaction with the client does not exceed the privacy threshold t, none of the
servers learns anything about i through the transaction. The database owner O also learns
nothing about i.

11

item1 item2 · · · itemSROW1

· · ·ROW2

· · ·ROW3

...
· · ·ROWR−1

· · ·ROWR

Figure 3.1: The layout of Mrec. Each row places S data items from the underlying ORAM
in a level-by-level order, starting from the top level. S = dN/Re, where N ≈ 4n is the
number of data items (n real plus about 3n dummy) in the ORAM and R is the number
of rows in Mrec.

Outsourcing privacy The database owner O updates the database over time. Neither
the database clients nor the untrusted servers learn anything about the update pattern for
records they are not entitled to access.

All of the interactions between a database client and the servers are standard PIR or
SPIR transactions, and the database owner can be completely offline during those trans-
actions; thus it is easy to see that information retrieval privacy is guaranteed by the
properties of PIR and SPIR.1

3.2 Overview

Our system stores three matrices on the cloud servers. First, Mrec stores the encrypted
database records. These records are arranged logically into an ORAM and then laid out
into a matrix by concatenating the elements of the ORAM in some deterministic order (say,
level-by-level), and having each row of the matrix Mrec consist of some (integer) number
of the ORAM elements so as to make the shape of Mrec as close to square as possible.
Database clients will use PIR to retrieve rows of Mrec; this novel combination of ORAM
and PIR will allow for multiple database clients to privately read records, while a single
database owner can privately update the database. Figure 3.1 shows the layout of Mrec.
The second matrix, Mind, stores the encrypted indices that keep track of the location
of each record within Mrec. Finally, Mkey stores a list of uniformly random symmetric
encryption keys {K1, . . . , Kn}, one for each record in the database.

1Note that although Goldberg’s IT-PIR protocol is information-theoretically secure, the zero knowledge
proofs required for SPIR makes information retrieval privacy protected only computationally when exactly
t servers collude in Henry’s SPIR scheme [HOG11].

12

IVr i ri IVk Ki MACi

Figure 3.2: The layout of a data item. The light grey parts are encrypted.

Mrec and Mind are replicated across each of the ` clouds, while Mkey is distributed using
one of the data privacy techniques from Section 2.4 so that no coalition of τ or fewer cloud
providers can read the contents of Mkey.

The data owner maintains a master secret key KEY , which is used to access Mrec and
Mind as described in detail below.

A data item in Mrec contains three parts (as shown in Figure 3.2): the encrypted
content ERi of the underlying database record, the encryption EKi of key Ki (both
under a semantically secure encryption scheme), and a MAC tag MACi. Here ERi =
IVr‖ENCKi,IVr(i‖ri), EKi = IVk‖ENCKEY,IVk(Ki), ENCK,IV (·) is symmetric encryption
with key K and initialization vector IV , and MACi = MACKi

(i‖EKi‖ERi),
2 where ri is

the content of the record with id i. We allow ri to carry whatever necessary metadata is
required by the particular ORAM scheme in use. EKi helps the database owner recover
Ki for reshuffling operations. For simplicity, we call the record with id i the ith record or
record i. A dummy data item can simply be a random string of the appropriate length.

The elements of Mind can be thought of as a list of authenticated semantically secure
encryptions, such as (IV, EIi,MACKi

(IV ‖EIi)), where EIi = ENCKi,IV (i‖OFFSETi)
and OFFSETi indicates where record i resides within Mrec.

Every time a record is updated in Mrec, the ORAM will move records around, due to
the rewrite to the top level or because of the reshuffling of some levels. Therefore, Mind

will also need to be updated. However, updating a subset of the entries in Mind can leak
information about the access pattern. For now, consider our scheme to update the entire
Mind for each update operation on Mrec. For records that do not change their offsets in
Mrec, their entries in Mind are simply re-encrypted using a new IV. We will provide a more
efficient construction for Mind in Section 3.4.

Now, a complete retrieval action for the ith record in the database requires three PIR
queries on the three matrices mentioned above.

1. A PIR query on Mind for the offset of record i in Mrec. No access control is required
for this PIR query, since the database client can decrypt the offset only if she has

2For good cryptographic hygiene, separate keys derived from Ki should be used for the encryption and
the MAC. We elide this detail for ease of notation.

13

already retrieved Ki. There might be multiple data items corresponding to a record
in Mrec (depending on the underlying ORAM scheme), and Mind keeps track of the
one that reflects the most recent update. With Ki, the database client is able to
verify the MAC and decrypt the offset for record i.

2. An SPIR query over Mkey to retrieve Ki. Pricing and access control can be enforced
using existing schemes in the literature, such as Henry et al.’s PSPIR [HOG11] or
Camenisch et al.’s ACOT or POT [CDN09,CDN10]. ACOT and POT are not SPIR
schemes per se, because they all require downloading the whole encrypted database
(albeit just the smaller database of keys Mkey and not the entire database Mrec).
However, as observed by Henry et al. [HHG13], clients can issue PIR queries to re-
trieve the part of the encrypted database they are interested in, and then conduct
zero-knowledge proofs required in ACOT or POT with constant communication over-
head, thus achieving overall the sublinear communication cost required by SPIR.

3. A PIR query on Mrec for the encrypted record. Note that the database client needs
to learn OFFSETi before she knows which row (containing the desired record) to
retrieve from Mrec.

Dummy entry in Mkey. In a priced PIR scenario, a PIR user might not want to reveal
the fact that she is retrieving the up-to-date version of a record she has already purchased
by skipping the SPIR query. To circumvent this, we can add a dummy entry to Mkey

which allows database clients to purchase a dummy key with price 0. This of course
requires that the price of an SPIR query be hidden from the SPIR servers, as in Henry et
al.’s work [HOG11].

Sequence of PIR/SPIR queries. Each retrieval request should start with a PIR query
on Mind, followed by a SPIR query on Mkey, and end with a PIR query on Mrec. Querying
Mkey before Mind works as well for some applications, but not always, as we will discuss in
Section 3.5.

3.3 Construction One

We must consider which ORAM scheme should be used for our construction. Some ORAM
schemes cannot be employed directly for our purpose, such as that of Stefanov et al. [SSS12],

14

Database size

64 GB 256 GB 1 TB

R
e
c
o
r
d

si
z
e 4 KB 240 MB 1 GB 4 GB

64 KB 12 MB 48 MB 240 MB
1 MB 704 KB 3 MB 12 MB
8 MB 64 KB 288 KB 1.5 MB

Table 3.1: Size of local storage required by the database owner O for the index. The
column headers show the number of bytes required if the database were to be stored on O
without outsourcing; note that if the database is organized as an ORAM on an untrusted
server, there is a storage overhead inherently required by ORAM, which is about 4 times
in our ORAM scheme. The row headers indicate varying record sizes.

which stores some up-to-date data items in private storage; in our scheme, we require the
database owner be able to be completely offline when clients read the database.

Another consideration is efficiency. There are various engineering factors in all dimen-
sions that would affect the performance of a real-world system, especially in a cloud setting,
such as data replication, load balancing, etc., the discussion of which is out of the scope of
this thesis. We do not intend to find a particular ORAM scheme that would work best with
those engineering factors, which are probably highly dependent on the specific underlying
application as well. A concrete scheme that fulfills our privacy requirement is shown here
for the sake of completeness. However, we do not argue that it is the most suitable ORAM
scheme for all purposes.

We present a simplified version of William et al.’s ORAM scheme which replaces the
Bloom filters with a full index that keeps track of where each individual record resides in
the ORAM. This index is stored entirely on O, which consumes roughly n · log2(4n) bits
of private storage, where log2(4n) is the number of bits to encode a single index record.

The private storage also keeps track of a list of locations storing dummy items on each
level that have not been visited; this consumes about (2n) · log2(2n) bits, where 2n is
roughly the number of dummy items that the database owner needs to keep track of and
log2(2n) is the number of bits to encode each of them (since there are at most 2n locations
on each level). Note here that the total number of blocks in the ORAM is about four times
the number of records n.

Table 3.1 lists the estimated amount of private storage required given different record
sizes measured in bytes. Each record is encrypted in a data item. A data item is slightly
larger than the record because of the metadata encoded, such as EKi, IVk, etc.

15

items dummy items reshuffled moved down
level 1 2 0 to 2 every update every two updates

level i (i > 1) 2i at least 2i−1 every 2i−1 updates every 2i updates

Table 3.2: This table shows how each level in the ORAM is organized. Note the column
“items” includes the number of dummy items. A reshuffle of level 1 means fetching the
entire 2-item level and writing the entire updated level back.

Our ORAM is organized into L levels with 2i items on the ith level (i = 1, · · · , L),
including at least 2i−1 dummy items. An exception is the first level, where there are only
two items, and no dummy items are required. Because the full index is in private storage,
O knows in which level an up-to-date record resides and where exactly the corresponding
item is on that level. An access to the ORAM starts with a single request, which fetches
the target location on the target level, the entire first level, and also a unique dummy
item from each of the other levels. The updated record is then written back to the top
level. The outdated item should be erased by writing back a new dummy item. To avoid
leaking which level the required record is at, every single dummy item accessed should be
re-encrypted as well.

Initially, all the items are on the bottom level (so n ≤ 2L−1), and they are gradually
moved to top levels with update accesses from O. After each 2i accesses, the contents of
levels 1 through i are moved down to level i + 1, which is reshuffled using an oblivious
sort algorithm, such as the Θ(n · log n) oblivious merge sort introduced by Williams and
Sion [WS08]. Table 3.2 shows how each level is organized in our ORAM.

Our construction is similar to Williams et al.’s ORAM protocol, the key difference being
that we do not need a Bloom filter on each level, because the owner-side index stored in O
tells her directly where the target item is. The reason behind this simple construction is to
make the guarantee for outsourcing privacy less obscure, and we think it is good enough for
a proof-of-concept implementation, which is discussed in Section 4. Assuming an oblivious
sorting scheme of complexity Θ(n · log n) is used to sort n items, after 2L−1 updates, the
number of operations required for reshuffling is Θ(

∑L
i=1 2i+1 · (i + 1) · 2L−i) = Θ(2L · L2),

and all the items are moved back to the lowest level again. Therefore, the amortized cost
for each update is Θ(log2 n).

How outsourcing privacy is protected. We call records that someone is entitled to
access (due to access control or purchase) “disclosed records” to her. For update operations
corresponding to the records disclosed to an untrusted cloud server, the server does learn

16

the fact that those records are updated after these operations, but this is allowed by the
definition of outsourcing privacy. For an update of a non-disclosed record to a server, by
comparing Mind with the older version, the server only learns that her disclosed records
are not updated, and nothing more. In Mrec, she simply sees the entire first row is fetched
with a new item written back that looks random to her, and for each of the following levels,
a unique position is fetched since the last reshuffling, and that position is not any of the
positions where her disclosed records are. Thus by looking at Mrec, the server cannot tell
which record is being accessed, and how the current access could be linked to previous
ones. The same argument holds for a database client, who has strictly less information
than the cloud server.

3.4 Efficient server-side Index

From Table 3.1, we see that the size of a full indexing structure goes up to the order of
gigabytes under some parameter choices. This is a manageable size for the client-side index
in private storage, because accessing that structure from O is completely local and does not
require any network transmissions. For Mind, however, if after each database update, the
entire structure needs to be re-encrypted and transmitted over the Internet, the overhead
is rather high and seems unrealistic to deploy for databases with large numbers of records.

We propose an enhancement: partition the list of indices in Mind into p parts denoted
by part1, · · · , partp. Each of these parts is organized as a queue of constant limited size,
and parti contains the indices for records with id ranging from (i−1) · dn/pe+1 to i · dn/pe
(though not in any particular order, and intermingled with dummy elements). When the
index of a record needs to be updated, an index item should be appended to the end of the
corresponding queue and when the size of a queue hits its limit, O needs to retransmit all
the encrypted indices for that part. The choice of p will be discussed later in this section.

Each part is treated as a row in Mind for the database clients to issue PIR queries;
that is, when looking for the offset of record i in Mrec, the database client will perform a
PIR query to retrieve row di/dn/pee from Mind. This will be a part containing the offset
information for record i somewhere inside it. In order to find the right index record, the
database client, once it learns Ki, simply tests each MAC value in the retrieved row to find
the right one, which it then decrypts to yield OFFSETi. The database client should test
the MAC values starting from the end of the queue to get the most up-to-date OFFSETi.
Figure 3.3 shows the layout of Mind.

To update an index in partj, the database owner appends the updated index item to
partj for the target record index, and appends a random string the same length as an index

17

part1
part2
part3

LOC1 · · · · · · LOCq

· · ·

· · ·
...
· · ·
· · ·

partp−1
partp

Figure 3.3: The layout of Mind. Each row parti is organized as a limited-sized queue with
a size limit of q ≈ Q dn/pe, which stores the indices for records with id ranging from
(i− 1) · dn/pe+ 1 to i · dn/pe (as well as some dummy items). The light grey part in part2
indicates the length of the current queue in part2 (known only by O). When that queue
grows to LOCq, the entire part2 needs to be rewritten by O. Q is a parameter that trades
off write performance for read performance.

item as a dummy item for all the other parts. For this construction to work, we require O
to store the entire index locally, which has been justified in Table 3.1.

If we limit each queue size to Q · dn/pe, then for every (Q− 1) dn/pe index changes, O
needs to replace each individual part only once. Thus the amortized end-to-end response
time for updating one index is p · (1 + 1

Q−1) · U , where U is the overhead to encrypt an
index item and upload it to ` servers.

With p equal to 1, we achieve the maximum savings for update operations, but database
clients will need to download the entire indexing structure for each query. A proper choice
of p is required to strike a balance between the efficiency of update operations and PIR
queries.

For example, for a 1 TB database with block size 1 MB, with 128-bit AES and 128-bit
HMAC-MD5, the server-side index is roughly 96 MB, (there is about two times storage
overhead if we set Q = 2), which can be partitioned into 64 parts, each with size 1536 KB,
which could be transmitted over the Internet within a few seconds. The cost for updating
one entry in the index here should be roughly equal to uploading 64 · (1+ 1

2−1) ·48B = 6 KB
of data. Note that each index item is of size 48 bytes and that in an Internet setting,
the cost for uploading 6 KB of data should dominate the cost to encrypt them. For a
database client, Mind is a matrix of dimension 64 × 1536 KB, and thus the communication
cost between the client and one server is then about 1.5 MB for each query. These parts
should be initialized to different states to avoid the replacing of all parts simultaneously;
this affords some measure of de-amortization. When a reshuffling of some level i in Mrec

happens, we need to update the indices for more than one record. To avoid leaking access

18

patterns, the database owner should pretend that 2i−1 records were updated (it might be
true) and access each part 2i−1 times. When the cost of doing so becomes too high, it
might just be more efficient to replace the part with an entirely new one using a single
write. It is straightforward to verify that our efficient server-side indexing structure does
not break outsourcing privacy.

3.5 Pricing and Access Control

In our construction, each record is associated with a unique key. We enforce pricing and
access control when a database client retrieves this key obliviously, through Henry et al.’s
PSPIR [HOG11], or Camenisch et al.’s ACOT [CDN09] and POT [CDN10].

Re-purchase on update. In some applications, it might be a desirable feature to force
database clients to re-purchase a record after an important update. The database owner
can change Ki to enforce a re-purchase for record i. To avoid leaking access patterns,
the entire Mkey needs to be re-shared if the underlying SPIR scheme is PSPIR with τ -
independence. On the other hand, with an SPIR scheme based on POT modified with our
threshold signature scheme, it is not obvious how to do this at all; that is, how to hide
which Ki is updated while keeping all the other Kj (j 6= i) unchanged; we leave this as
an open problem, and recommend sticking to PSPIR with τ -independence if support for
forcing re-purchase of records is desired.

A client will realize she has to re-purchase a record when no entry in Mind has a valid
MAC tag. Then she can purchase either the updated key or the dummy entry from Mkey,
depending on whether she wishes to purchase the updated record or not. Note that this
decision can be made only after learning whether the record has been updated since the
last purchase; this justifies our choice of querying Mind before Mkey in Section 3.2.

3.6 Construction Two

The vector-matrix multiplication part of Goldberg’s IT-PIR scheme [Gol07] is easily par-
allelizable. By utilizing highly parallelizable computation resources, Devet’s experimental
results [Dev13] have shown that computing a PIR query takes time inversely proportional
to the number of cores in use. On the contrary, parallelizing ORAM accesses is not well

19

studied. In fact, all of the ORAM schemes we are aware of in the literature involve expen-
sive computation on the database-owner side when executing an oblivious reshuffle. Even
if the underlying reshuffling algorithm were parallelizable, the database owner is unlikely
to be able to provide enough computational resources to take significant advantage of it.
Thus, in a cloud setting, PIR queries have the potential to be computed quickly for very
large database given enough cores, while the speed of ORAM access is always somewhat
limited by the available local computation resources.

Inspired by this observation, without violating our definition of outsourcing privacy,
we propose an alternative scheme for updating database records. In a nutshell, in order
to update a database record, the database owner first conducts the read protocol using
one SPIR query and two PIR queries exactly the same way as she does in Construction
One, and writes the updated record back to Mrec in an oblivious manner. Since we do
not require Mrec to support oblivious read operations through the ORAM protocol (as the
read operations are protected by the PIR protocol), Mrec can be organized to allow much
more efficient oblivious writes.

If the database owner O simply wishes to read a record from the database without
updating it, she still needs to write the same record back re-encrypted through an update
operation. This makes read and write operations indistinguishable to the servers. We do
not make a distinction between read and write operations from O in the remainder of this
section.

Our construction is similar to Stefanov et al.’s ORAM construction [SSS12]. However,
we do not require any up-to-date records to be stored in private storage, so that PIR reads
from other clients can be executed while the database owner is completely offline.

We first describe how Mrec is organized, and what information is required to be kept
in private storage.

Mrec is partitioned into P parts of equal length, each containing B blocks, with records
encrypted and distributed uniformly at random among the parts and among locations
within each part. Each part should be small enough to fit entirely in O’s private storage,
such that an oblivious reshuffle can be executed efficiently for individual parts. The owner
keeps track of the part number as well as the offset within the part for each record. She
also keeps track of, for each part i, a list di of locations that have not been accessed since
the last reshuffle of this part.

In order to update a record, O chooses a random part j in Mrec, a random location i
from the list dj, writes the encrypted record to the ith block of part j, and removes i from
dj. When a certain part has been accessed F · n

P
times, that part is reshuffled. Here F

is a constant that determines the frequency of reshuffle operations. After updating Mrec,

20

Partition 1 · · · Partition j · · · Partition P − 1 Partition P

1 SPIR and PIR Queries2 Update Mrec

Mind

3 Update Mind Database owner O

Figure 3.4: Our second construction. Mrec has P parts. To update a record, the database
owner O first reads it through PIR queries, and then chooses a random part j and a random
location i within part j that has not been touched since the last shuffle of part j. The
same j’s and the same i’s are chosen for each server. Partition j is reshuffled, if it has
been accessed F · n

P
times since its last reshuffle, where F is a constant that determines

reshuffling frequency. O then generates a list of index entries that need to be updated,
and applies these updates to Mind by either re-encrypting and replacing the whole Mind or
using the efficient index update scheme described in Section 3.4.

O should update Mind entirely or append encrypted updated indices to each part of the
efficient server index structure in Section 3.4. If a reshuffle operation occurs, the number of
index items that need to be appended to each part of Mind should be equal to B. Figure 3.4
shows an overview of our scheme.

The number of records stored in each part changes from time to time as the protocol
runs. According to the standard bins and balls analysis [RS98], if P =

√
n, each part

has at most
√
n + O(

√
n) records with a failure probability of 1

poly(n)
. In order to prevent

any part from overflowing, B = (1 + C + F) n
P

, where C is a constant that controls the
failure probability. A larger C introduces a smaller probability of part overflows. A larger
F improves the amortized performance, at the cost of slower private reads and reshuffling
operations. One should choose a set of B,C, F, P for a given n that allows B to fit in
private storage, while at the same time does not cause any part overflow after executing a
reasonably large number of private writes. Given a parameter choice, we have a simulator
that simulates millions of private writes in a few minutes, and reports an error should
any part overflow occur. Since we did not find or derive any good indication of how the
probability of failure relates to C numerically, we suggest that one should test her choice of
B,C, F, P with the simulator extensively before deploying the system. In our experiment
in Section 4.3, we set P =

√
n, C = 0.75 and F = 0.5. We observed no failures.

21

This protocol makes update operations more efficient for at least the two reasons below:

1. Each update not involving a reshuffle operation requires only encrypting and upload-
ing a single block to Mrec.

2. Each part fits entirely in private storage, allowing oblivious reshuffle to be much more
efficient than oblivious sort.

3.7 De-amortized ORAM

One drawback of ORAM is that an expensive periodic shuffling is required, which makes
some accesses far more expensive than others, especially when a high-numbered level needs
to be shuffled. The result is that some update operations have to queue up if the previous
update happens to be an expensive one. For some applications, blocking an update op-
eration for too long can be a serious problem. De-amortized ORAM, well studied in the
literature [BMP11, GMOT11, KLO12, SCSL11, SSS12, WST12], makes each access to the
ORAM bounded by a reasonable overhead.

For some of these schemes, de-amortization comes naturally in their construction, such
as in the work of Shi et al. [SCSL11] and Stefanov et al. [SSS12]. We suspect that these
two schemes can both be used in our construction with some slight modifications. For
example, in Stefanov et al.’s scheme [SSS12] we can move those up-to-date records which
are supposed to be stored in private storage to the untrusted servers by organizing them
in a separate ORAM on each server. However, a careful security examination is required
before building an outsourced PIR system on top of them.

The other works on de-amortized ORAM [BMP11,GMOT11,KLO12,WST12] follow a
particular paradigm. The idea is to construct a new level preemptively in the background,
which becomes ready right before the old level has to be discarded. Some extra space is
required for the construction of the new level, because the old level should be kept in its
entirety to serve continuing ORAM queries before the new level completes its shuffling.
It is not hard to see that such a paradigm can be applied to our ORAM construction as
well, such that outsourcing privacy is still guaranteed. After we apply this de-amortizing
technique to Mrec, updates to Mind are somewhat de-amortized naturally, because we can
update Mind along the way as a new level is being constructed gradually in Mrec.

Similar to Stefanov et al.’s ORAM scheme, our second construction allows update costs
to be somewhat de-amortized because each reshuffle operates on only a small portion of

22

the database. For further de-amortization, each of the reshuffle operations could be de-
amortized using the standard de-amortizing technique, but to deploy the technique requires
extra server storage overhead the same size as required in the original scheme.

3.8 Discussion

Compared to our first construction, our second construction avoids the expensive oblivious
sort required for oblivious reshuffles. It requires on the servers storage overhead less than
1.5 times the size of the underlying database, as compared to three times for our first
construction. This also makes PIR queries less expensive to compute. The most expensive
operation of our second construction is to reshuffle a part, which is much cheaper than
shuffling the entire database. Thus, in terms of worst-case performance, the second con-
struction also outperforms the first one. A question arises naturally: why do we present
the first construction at all?

We have emphasized in Section 3.3 that we do not intend to find the most suitable
ORAM scheme to construct our protocol. We have chosen a simple ORAM scheme as a
proof of concept, for the sake of an easy security analysis and an easy implementation. The
point of presenting the first construction is to demonstrate the fact that a combination of
an ORAM scheme and a PIR scheme can be fruitful. With further development in the
ORAM literature, it is entirely possible that by plugging in some future ORAM scheme,
our first construction may outperform the second construction presented in this thesis.

3.9 Security Analysis

We give a formal definition for outsourcing privacy in this section. Both PIR clients
and database servers are our adversaries in our scheme, but PIR clients have strictly less
information than the database servers, so we only consider the latter in our analysis. Also
the transactions between the database owner and all servers are identical, so we only
consider one of the servers.

Define an access sequence to be a sequence of record id ’s the database owner updates.
When the database owner updates the records in a particular access sequence, it induces
a sequence of physical block accesses, which forms a transcript. The transcript Trans
contains a sequence of encrypted blocks and encrypted index items, a sequence of locations
in Mrec and Mind that are accessed, and the values written to a subset of these locations.

23

Recall that a record id is “disclosed” to the server if the server obtains its decryption
key. This implies that the server is allowed to see the up-to-date decrypted content of this
record, as well as its decrypted content at any point in the history. After all, there is not
much we can do to prevent the server (or any other PIR users) from keeping copies of past
versions of the encrypted database.

From the transcript, the server is able to learn some of the entries in the access sequence
by trying to decrypt all the encrypted blocks and encrypted index items. She might try
to deduce useful information from the sequence of access locations as well. Consider the
game below:

Access Sequence Distinguishing Game. The server sets the length of the access
sequence to be T , and picks a set of disclosed records DR. The challenger gives it the keys
to, and locations of, those records. The server chooses two access sequences A0 and A1

each of length T , so long as they agree in all the entries with record id ’s from DR. The
challenger chooses a uniformly random bit β, and sends back the transcript Trans induced
by Aβ. The server then tries to determine the bit β given the transcript.

We define outsourcing privacy formally as the server wins the game only with prob-
ability 1/2 + ε(κ), where ε is a negligible function in the security parameter κ from the
underlying encryption scheme and pseudorandom permutation (used for reshuffling parts
and determining the sequence of random locations to access in Mrec).

This definition captures the notion that the server’s advantage in distinguishing two ac-
cess sequences, that are both consistent with a seen transcript given the server’s knowledge
about disclosed records, is negligible.

Assume the server were able to gain a non-negligible advantage of winning the game.
First, this advantage cannot be gained from the portion of Trans corresponding to updating
Mind. In the case where Mind needs to be re-encrypted for every record update, any gained
advantage of distinguishing the two access sequences implies that non-trivial information is
learned from encrypted index items to which the server does not know the decryption keys.
This would imply that the underlying encryption scheme is not secure. Similarly, for the
efficient construction of Mind in Section 3.4, an advantage of distinguishing the two access
sequences implies an advantage of distinguishing a valid ciphertext from a random string
appended as a dummy item, which also implies that the underlying encryption scheme is
broken.

Next, consider the possible advantage gained through the portion of Trans correspond-
ing to accessing Mrec.

24

In our first construction, for an entry in the access sequence corresponding to a non-
disclosed record, the server sees, from the transcript, a pseudorandom location (selected
using a pseudorandom permutation) not overlapping with any locations of disclosed records
is accessed on each level. Nothing non-trivial about which record is being accessed can
be learned from these locations. Any advantage possibly gained would imply either an
advantage of distinguishing a valid ciphertext (without knowing the decryption key) from
a random string, or deducing non-trivial information from the ciphertext, both implying
an insecure encryption scheme.

In our second construction, a pseudorandom location (also selected using a pseudoran-
dom permutation) is chosen for each write-back of an encrypted record, which is indepen-
dent of the id of the record being accessed. Thus, no information about id is revealed from
access locations. Any gained advantage of distinguishing the two access sequences implies
that the server learns something non-trivial from the encrypted blocks she does not possess
the decryption keys to. This also leads to the conclusion that the underlying encryption
scheme is insecure.

To conclude, if we assume the underlying encryption scheme and pseudorandom per-
mutation are secure, outsourcing privacy under our definition above is fulfilled in both of
our constructions.

25

Chapter 4

Performance Evaluation

4.1 Experimental Setup

As a proof of concept, we implemented an end-to-end system that fulfills our privacy
requirements. We require the binaries compiled from Percy++ [GDHH12], an open-source
implementation of Goldberg’s IT-PIR protocol, to make our system work. We used AES-
128 for encryption and 128-bit HMAC-MD5 for message authentication codes. In all our
experiments, one client, one database owner and three servers1 ran on a machine with
two quad-core 2.5 GHz Intel Xeon E5420 CPUs, 32 GB of 667 MHz DDR2 memory, and
Ubuntu Linux 10.04.01.

4.2 Results for Construction One

Figure 4.1 and Figure 4.2 present the end-to-end response time for our system. All the
databases in our experiments are stored entirely in RAM, and the figures show the com-
putation time without the I/O time to read the database into memory. Unless otherwise
specified, the size of each ORAM block in Mrec is set to be 1 MB, and when we mention
the size of the database, it is the size of the original database before being organized into
an Oblivious RAM; the ORAM containing the database is about four times as large as the
underlying database. In order to update the server-side index Mind, the database owner
simply sends the entire encrypted Mind over, which is small enough for our parameter

1There do not exist many cloud service providers, and we consider three to be a practical number.

26

0.0

 0.4

 0.8

 1.2

 1.6

 128 512 1024 2048 4096 8192 16384

A
m

o
rt

iz
ed

 R
es

p
o
n
se

 T
im

e
(s

)

Database Size (MB)

Figure 4.1: Construction One: Measured amortized end-to-end response time for private
writes to ORAMs of size up to 64 GB (underlying databases being up to 16 GB). Each
experimental trial consists of n updates for a database with n 1 MB records. We ran 100
trials of experiments for databases of less than 2 GB and 2 trials of experiments for larger
databases. The average amortized response time and its standard deviation is shown in
the figure. The small standard deviations for amortized response times on 2 GB and 4 GB
databases resulted from a stable private write performance for small databases.

choice. (We did not use the enhancement of Section 3.4 in our implementation.) The end-
to-end response time is measured entirely from the perspective of the client for PIR queries
and of the database owner for update requests respectively. We benchmarked our system
only for databases of size up to 16 GB, because the extraordinary amount of time required
to gather enough samples of amortized cost for larger databases. We stress that in prac-
tice, one should use our second construction or an ORAM scheme with better worst-case
performance (a de-amortized version of this construction for example) for such databases.

We predict the performance of our protocol for larger databases based on the number
of block operations (e.g. uploading, downloading, encrypting, and decrypting blocks) and
how fast each of them can be conducted according to our benchmarks of small databases.
Considering an ORAM containing n records organized into L levels where n = 2L−1, after

27

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 128 512 1024 2048

R
es

p
o
n
se

 T
im

e
(s

)

Database Size (MB)

PIR end-to-end response time

Figure 4.2: Construction One: Average end-to-end response time for private reads over
ORAMs of different sizes up to 8 GB (underlying databases being up to 2 GB). The de-
viation is small, implying stable performance. For each parameter choice, we ran the
experiment 100 times. The dominating overhead comes from retrieving the record from
Mrec. For PIR queries over Mrec and Mind, Chor’s PIR scheme [CKGS98] is used for better
performance. We do not test read performance for larger databases, because three 8 GB
ORAMs already hit the limit of our RAM, and the performance will begin to suffer from
hitting the disk. One of the points outsourcing PIR is to utilize the distributed storage
of the cloud such that hitting the disk is not necessary and the linear performance can be
maintained for very large databases.

28

n update requests for the purpose of reshuffling, the total number of blocks that need to
be downloaded and decrypted is

∑L−1
i=2 [2i · i+ (2i+1 − 2)] · 2L−i−1 + 2L+1 − 2 + 2L · L =

(1
2
L2+ 7

2
L−2)·2L−1, and the total number blocks that needs to be encrypted and uploaded is∑L−1

i=2 (2i · i+ 2i) · 2L−i−1+2L+2L·L = (1
2
L2+ 5

2
L−1)·2L−1. According to this computation,

to update an ORAM containing n records in our construction bears an amortized overhead
of 1

2
L2 + 9

2
L− 1 of download and decryption operations as well as 1

2
L2 + 7

2
L of upload and

encryption operations on blocks. We also take into account the cost to update Mind in our
prediction without the efficient Mind construction in Section 3.4. The result is plotted in
Figure 4.3 for different network speeds. The take-away is that each update operation takes
about one minute (amortized) for a database owner with corporate network connections,
which is feasible, especially in applications where updates are infrequent.

Devet’s experiment [Dev13] shows that the time for a cloud to compute a PIR query is
inversely proportional to the number of cores it uses for the computation, which is not a
surprising result at all.

To give an idea of how parallelization might push the boundary of PIR computation,
for example, with the computation power of 256 cores in each untrusted cloud, we estimate
that a PIR query over a 1 TB-sized database (organized into a 4 TB ORAM) takes about
7 seconds to compute using Chor’s IT-PIR [CKGS98] option in Percy++, and less than
2 seconds to transmit between the servers and the PIR client (even if the client has slow
ADSL speeds of 2 Mb/s upload and 10 Mb/s download). To justify our preference of Chor’s
IT-PIR over Goldberg’s scheme [Gol07] for the Mrec and Mind databases, we observe that τ -
independence is not required for them (unlike for Mkey). In addition, a realistic deployment
may not use enough different cloud providers in parallel to effectively take advantage of the
Byzantine robustness of Goldberg’s scheme. The upside of making the choice to use Chor’s
scheme is that it is about 4 times faster than Goldberg’s in the Percy++ implementation.

Figure 4.4 shows the end-to-end overhead to update one ORAM record when varying
levels need to be shuffled after the update. (Recall that level i will be shuffled every 2i−1

updates.) De-amortizing techniques are not implemented, but for a system that is to be
used in the real world, such techniques are recommended.

Our first construction here seems much slower than that of Williams et al.’s ORAM
scheme [WST12]. However, note that in Williams et al.’s experiment, a block size of 4 KB
is used in comparison to 1 MB in our measurement. Indeed, each of our update operations
is updating 256 times as many bytes as in William et al.’s benchmarks. Figure 4.5 shows
our prediction of update request performance for a block size of 256 KB. As the block size
becomes even smaller, encrypting and transmitting index items is becoming a performance
bottleneck. We suspect that employing our efficient Mind construction would address this

29

 2

 20

 200

 2000

 20000

 200000

 64 128 256 512 1024

P
re

d
ic

te
d
 U

p
d
at

e
O

v
er

h
ea

d
 (

s)

Database Size (GB)

ADSL
100 Mb/s

1 Gb/s
local

Figure 4.3: Construction One: Predicted amortized end-to-end response time for a pri-
vate 1 MB record update by the database owner for larger databases. We assume that
the ADSL connection bears upload and download throughputs of 2 Mb/s and 10 Mb/s
respectively, and that the bidirectional throughput of a corporate network is 100 Mb/s.
In a high-throughput network setting (100 Mb/s, Gigabit Ethernet, etc.), the prediction
shows that our protocol is feasible over a terabyte-sized database. On the other hand,
network transmission is a great bottleneck for ADSL users; this is an inherent limitation
of the underlying ORAM scheme. If it is necessary for home users to be database owners,
we propose using a less communication-intensive ORAM scheme (e.g. Stefanov et al.’s
scheme [SSS12], with private cache organized into ORAM on servers) to address this issue,
but a careful investigation of the privacy implications and the performance of the resulting
construction is out of the scope of this thesis.

30

 0.2

 2

 20

 200

 2000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15

U
p
d
at

e
O

v
er

h
ea

d
 (

s)

Level

Figure 4.4: Construction One: End-to-end response time and its standard deviation for one
ORAM update request when the given level needs to be shuffled after the request. Level i
will be shuffled every 2i−1 updates. Note that a deeper slope appears between the update
overhead of level 12 and level 13. This is because we allow up to 8 GB of private storage
in our experiment. The reshuffles of level 2 to level 12 simply require downloading the
whole reshuffling part and reshuffling it in the private storage, while reshuffling lower levels
requires an oblivious sort that is more expensive. The numbers of samples for reshuffling
level 14 and 15 are 2. Starting from level 13, the number of samples for reshuffling each
level is twice as many as the number of samples for reshuffling the level with number one
greater.

31

 2

 20

 200

 2000

 20000

 200000

 64 128 256 512 1024

P
re

d
ic

te
d
 U

p
d
at

e
O

v
er

h
ea

d
 (

s)

Database Size (GB)

ADSL
100 Mb/s

1 Gb/s
local

Figure 4.5: Construction One: Predicted amortized end-to-end response time for a pri-
vate 256 KB record update for larger databases. We assume that the ADSL connection
bears upload and download throughputs of 2 Mb/s and 10 Mb/s respectively, and that the
bidirectional throughput of a corporate network is 100 Mb/s. Compared to Figure 4.3,
the amortized response time for writes here is smaller. However, the difference becomes
less obvious for larger databases, because of a larger Mind that needs to be encrypted and
transmitted per update for a smaller block size.

32

issue.

4.3 Results for Construction Two

We implemented a system based on our second construction. The experimental setup is
the same as above. We also simulated the performance of our system running over ADSL
connections. We assume that an ADSL connection bears upload throughputs of 2 Mb/s
and download throughputs of 10 Mb/s respectively. In the simulation, we keep track of the
numbers of bytes encrypted, decrypted and transmitted, and translate them into access
overhead based on our benchmark. We set the encryption speed to be 121 KB/ms and
decryption speed to be 114 KB/ ms in our simulation. Our estimation of encryption and
decryption speeds is derived from 1000 trials of encryption and decryption operations on
1 MB blocks.

We do not test the performance of private reads for our second construction, since the
private reads protocol executes in the same way as the first construction.2 In the remaining
part of this section, a “private write” does not include first reading the record with PIR
queries.

Unless otherwise specified, we set P (the number of Mrec parts) to be
√
n, p (the number

of Mind parts) to be
√
n, and F (parameter for reshuffling frequency) to be 0.5. We will

show and discuss later how the choice of P and p affects the performance of our system.
Also, unless otherwise specified, the size of an Mrec block is 1 MB (and the record size is
slightly smaller, due to encryption overhead), and we will show how our system performs
with a smaller block size. Each experimental trial consists of private write operations
between two consecutive reshuffles on Mrec. Unless specified, any experiment or simulation
begins with a randomized state and is executed with 100 trials. A private write consists
of privately updating both Mrec and Mind.

Figure 4.6 shows the cost of each update access in 100 experimental trials (54654 private
writes involved) over a 1 TB database (requiring 2.25 TB of actual server-side storage for
Mrec). We can observe a sparse spectrum of dots around 65536 ms, which is corresponding
to the cost of reshuffling a Mrec part. An more sparse spectrum appears between 1024 ms
and 4096 ms, which is corresponding to the cost of replacing Mind part(s). Note that we
randomize the initial queue length of each Mind part to reduce the number of Mind parts
that require replacement in the worst-case scenario. All the dots below 1024 ms can be

2Note that private reads are cheaper in this construction for the same underlying database because less
server-side storage overhead is required here.

33

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 16384 32768 49152

E
n
d
 t

o
 e

n
d
 R

es
p
o
n
se

 T
im

e
(m

s)

Private write number

Figure 4.6: Construction Two: Measured end-to-end response time for each private write
to database of size 1 TB (2.25 TB storage required for Mrec).

safely regarded as updates that do not involve any reshuffling or replacement operations;
there are various update costs for these operations. We observe in our logs that they
correspond to different disk access response times. The amortized access overhead is 182 ms.

Figure 4.7 and Figure 4.8 show the cumulative distribution (CDF) of write costs for
databases of different sizes on a local machine and over ADSL connections respectively. As
can be seen in Figure 4.7, most private writes take less than 100 ms to complete (note the
logarithmic scale of the y-axis). The spikes nearing the right end of the x-axis correspond
to reshuffling an Mrec part. Since we do not simulate the hard disk access cost, we observe
sharper spikes in Figure 4.8. The little spike in the middle of each curve in Figure 4.8
corresponds to the replacement of an Mind part. Over ADSL connections, the amortized
response time for private writes on a 1 TB database is 63.5 s, but the response time in
the worst case exceeds 8 hours. De-amortization techniques described in Section 3.7 can
trade off worst-case performance for storage overhead; having logarithmic part size also
provides a similar trade-off, which is discussed in further detail later in this section. Note
that uploading 1 MB to three PIR servers over ADSL connections without any privacy
protection for updates takes 3×1×8Mb

2Mb/s
= 12s, and Construction Two is only about five

34

times slower amortized.

Figure 4.9 shows the distribution (CDF) of costs for updating Mind over ADSL connec-
tions given two different choices of p (number of Mind parts), with the underlying database
being 1 TB. We choose p to be 1024 (in the order of

√
n) and 8 (in the order of log n). The

amortized cost for updating an Mind entry is 2.8 s for p = 1024 and 80 ms for p = 8.3 Con-
sistent with the discussion in Section 3.4, a choice of smaller p introduces less overhead for
updating Mind. However, recall that this makes PIR queries slower, since Mind has p rows
and dn/pe columns, which is far from square if p is small, introducing large communication
overhead and more index items to decrypt on the client side.

Figure 4.10 shows the distribution (CDF) of private write costs with p = 8 and p = 1024
respectively on a 1 TB database over ADSL connections. We do not observe a great
difference between the two curves. In fact, the amortized response time for private writes
in our simulation is 70.0 s with p = 8 and 63.5 s with p = 1024. Without giving a thorough
statistical analysis here, we suspect with our preliminary observation that the choice of p
does not affect the overall private write performance too much. This is not too counter-
intuitive, because updating Mind is much cheaper than updating Mrec (amortized).

Figure 4.11 and Figure 4.12 show the distributions (CDF) of private write costs for two
different choices of P (number of Mrec parts) over a 1 TB database on our local machine
and over ADSL connections respectively. We choose P to be 1024 (in the order of

√
n) and

65536 (in the order of n/ log n). For both choices of P , we make extensive simulation in
order to choose a proper C that is just large enough to avoid part overflows. We observe
that for P = 1024, C = 0.75 never causes any overflow, and that for P = 65536, C = 1.75
never causes any overflow. The choice of a large P introduces a larger amortized response
time but a better worst-case performance. Our simulation results show an amortized
response time of 108 s, and a worst-case performance of 937 s for P = 65536 over ADSL
connections.

Figure 4.13 shows the distributions (CDF) of private write costs on a 1 TB database
for two different block sizes on our local machine and over ADSL connections respectively.
On our local machine, even though the distributions are quite different, the amortized end-
to-end performance, somewhat surprisingly, does not differ too much (176 ms for a block
size of 64 KB and 181 ms for a block size of 1 MB). We suspect that the noise from disk
access has dominated the advantage of processing smaller blocks in a local setting. In our
simulation, the amortized response time of private writes with a block size of 64 KB is 18 s,
and the worst-case performance is 22766 s, which outperforms the case of 1 MB block size.

3We run 6400 trials of simulation to make sure that they touch about 100 Mind reshuffles for p = 8.

35

0.998

0.99

0.9

0.8

0.5

0.0
 8 32 128 512 2048 8192 65536

P
er

ce
n
ta

g
e

o
f

D
at

a

Access Time (ms)

1 TB
256 GB
64 GB

Figure 4.7: Construction Two: Distribution (CDF) of private write costs for databases of
different sizes on our local machine.

0.998

0.99

0.9

0.0
8 16 32 64 1024 32768

P
er

ce
n
ta

g
e

o
f

D
at

a

Access Time (s)

1 TB
256 GB
64 GB

Figure 4.8: Construction Two: Simulated distribution (CDF) of private write costs for
databases of different sizes over ADSL connections.

36

0.9999

0.999

0.99

0.9

0.0
4 8 64 1024 32768 655360

P
er

ce
n
ta

g
e

o
f

D
at

a

Access Time (ms)

p=1024
p=8

Figure 4.9: Construction Two: Simulated distribution (CDF) of index entry update costs
with different p (number of Mind parts) over ADSL connections. The underlying database
size is 1 TB.

37

0.998

0.99

0.9

0.0
8 16 32 64 1024 32768

P
er

ce
n
ta

g
e

o
f

D
at

a

Access Time (s)

p=1024
p=8

Figure 4.10: Construction Two: Simulated distribution (CDF) of private write costs with
different p (number of Mind parts) over ADSL connections. The underlying database size
is 1 TB.

38

0.998

0.99

0.9

0.8

0.5

0.0
 8 32 128 512 2048 8192 65536

P
er

ce
n
ta

g
e

o
f

D
at

a

Access Time (ms)

P=1024
P=65536

Figure 4.11: Distribution (CDF) of private write costs with different choices of P (number
Mrec parts) on our local machine. The underlying database size is 1 TB.

0.998

0.99

0.9

0.8

0.5

0.0
8 16 32 64 1024 32768

P
er

ce
n
ta

g
e

o
f

D
at

a

Access Time (s)

P=1024
P=65536

Figure 4.12: Simulated distribution (CDF) of private write costs with different choices of
P (number of Mrec parts) over ADSL connections. The underlying database size is 1 TB.

39

Part size Amortized cost Worst-case cost
d
√
ne About 1 minute 8 to 9 hours

dlog ne About 2 minutes About 15 minutes

Table 4.1: Construction Two: The amortized cost and worst-case cost of our system with
different part sizes for Mrec.

This result indicates that our system delivers acceptable performance even over databases
with small record sizes.

To conclude, Construction Two is indeed much faster than Construction One. Even
the worst-case performance for private writes over a 1 TB database is controlled under
10 s with good parameter choices (P = 65536) on our local machine. Furthermore, our
simulations have also shown a promising result that even over slow ADSL connections,
with a logarithmic part size (P = 65536), the amortized response time for private writes
on a 1 TB database is less than a couple of minutes, and the worst-case performance is
about 15 minutes. With a square root part size (P = 1024), the response time of private
writes on a 1 TB database is about one minute amortized, and between 8 to 9 hours in the
worst case over ADSL connections. If updates to the database are infrequent, even this can
be acceptable. Table 4.1 shows how different choices of part size affect the performance of
our system.

4.4 Implementation Details

We implemented both of our constructions in C++. All of our implementations are avail-
able online at https://crysp.uwaterloo.ca/software/.

4.4.1 Oblivious Reshuffle

Recall that it is required that levels in our Oblivious RAM are reshuffled periodically.
More specifically, after each 2i−1 accesses to the ORAM, all the items from level 1 to level
i − 1 are obliviously reshuffled into level i along with items already on level i. Such an
oblivious reshuffle is composed of three steps: an oblivious labeling of phantom items, an
oblivious removal of dummy items, and an oblivious merge sort on the real/phantom items,
as described below in further detail.

40

https://crysp.uwaterloo.ca/software/

0.998

0.99

0.9

0.8

0.5

0.0
 4 8 32 128 512 2048 8192 65536

P
er

ce
n
ta

g
e

o
f

D
at

a

Access Time (ms)

1 MB blocks
64 KB blocks

Figure 4.13: Distribution (CDF) of private write costs on our local machine with different
choices of block size (of Mrec) on our local machine. The underlying database size is 1 TB.

0.9999

0.999

0.99

0.9
0.8

0.5
0.0

4 8 163264 1024 32768

P
er

ce
n
ta

g
e

o
f

D
at

a

Access Time (s)

1 MB blocks
64 KB blocks

Figure 4.14: Distribution (CDF) of private write costs with different choices of block size
(of Mrec) over ADSL connections. The underlying database size is 1 TB.

41

Step 1: Oblivious Labeling of Phantom Items. Our oblivious removal protocol is
based on Williams et al.’s “Remove Fakes” protocol [WS08]. In order for this oblivious
removal protocol to work (e.g. buffer on private storage does not overflow or underflow),
the ratio of dummy items versus non-dummy items should be fixed to be roughly the same
on each level that has a large number of blocks. In our ORAM scheme, it is possible that
on some levels all the blocks contain dummy items, while on some other levels (e.g. the
lowest level) only around half of the items are dummy. We label some dummy items to be
phantom items, such that they will not be removed as dummy items during the oblivious
removal protocol (although they are also random items as dummy items are). In this way,
we are able to fix the dummy versus non-dummy items ratio to about 1:1 on each level.
A position map is maintained in private storage, which keeps track of the id of the item
stored in each block of the Oblivious RAM. A phantom item is labeled with a negative id,
and thus could be easily identified and unlabeled after the oblivious reshuffle. Note that
all the labeling and unlabeling operations do not need to touch the untrusted storage at
all. See Algorithm 2 for the details of this step.4

Step 2: Oblivious Removal of Dummy Items. After Step 1, we employ Williams
et al.’s “Remove Fakes” protocol to remove all the dummy items from level 1 to level i.
A buffer in private storage is required to store non-dummy items read from the ORAM,
with its size denoted by bs. We read the first bs consecutive items from ORAM, after
which the local buffer is expected to be half full. We then read two blocks from ORAM
and write one item back from the local buffer until we have touched the last block on level
i.5 With roughly equal probability, the number of items in the local buffer either increases
or decreases. Such a random walk causes the buffer to overflow or empty with negligible
probability, given a proper choice of buffer size on the order of

√
n [WS08]. In the end, we

write all the remaining items in the local buffer back to the ORAM.

Step 3: Oblivious Merge Sort. After Step 2, we employ Williams et al.’s “Oblivious
Merge Sort” [WS08] to obliviously reorder the real items mixed with phantom items. The
resulting sequence of real/phantom items are used to fill level i, after which the ORAM
servers generate random blocks to fill all the levels above i. All the phantom items are
then unlabeled in private storage.

4In the real implementation, real items’ id ranges from 0 to n− 1, and the level number ranges from 0
to L− 1.

5We can scan the ORAM blocks starting from the end to achieve an in-place implementation that does
not require extra storage.

42

Function : LabelPhantomItemsOnLevel
Parameters: level, level to shuffle into, target num non dummy items, current label

begin
level offset ← NumBlocksAbove(level);
num non dummy items ← 0;
for i← level offset to level offset + NumBlocksOn(level) do

if PositionMap(i) == DummyItemID then
AddToList(list of dummy item indices, i);

else
num non dummy items ← num non dummy items + 1;

endif

endfor
ShuffleList(list of dummy item indices);
for i← 0 to target num non dummy items −num non dummy items do

index ← list of dummy item indices [i];
while current label < MaxRealItemID && LookupLevel(current label) ≤
level to shuffle into do

current label ← current label + 1;
endw
SetPositionMap(index, 0 − current label);
current label ← current label + 1;

endfor
end

Algorithm 1: LabelPhantomItemsOnLevel

43

Function : LabelPhantomItems
Parameters: level to shuffle into

begin
current label ← 1;
if first level is full == true then

LabelPhantomItemsOnLevel(1, level to shuffle into, 2, current label);
else

LabelPhantomItemsOnLevel(1, level to shuffle into, 1, current label);
endif
for i← 2 to level to shuffle into − 1 do

LabelPhantomItemsOnLevel(i, level to shuffle into, NumBlocksOn(i) /2,
current label);

endfor
if first level is full == true then

LabelPhantomItemsOnLevel(level to shuffle into, level to shuffle into,
NumBlocksOn(level to shuffle into) /2, current label);

else
LabelPhantomItemsOnLevel(level to shuffle into, level to shuffle into,
NumBlocksOn(level to shuffle into) /2 + 1, current label);

endif
end

Algorithm 2: LabelPhantomItems

44

Chapter 5

Conclusion

We construct a protocol that allows one database owner to privately read from and write to
a database, and multiple clients to privately read from the database. The access patterns
of updates are completely hidden from parties who are not entitled to read those records,
and the read histories of any user are completely hidden from all parties other than that
user, under a standard non-collusion assumption and common cryptographic assumptions.
The direct application of our protocol is in outsourcing Private Information Retrieval to
untrusted cloud servers with access control and pricing. We implement and measure a
real system that shows the practicality of our work for a 2 GB database. We estimate
that for a terabyte-sized database with one-megabyte records, a private read can be served
over the Internet in the order of seconds with moderate cloud computing power, and that a
private write from the database owner over a high-speed network (e.g. 100 Mb/s) incurs an
amortized response time of about one minute. We propose an improved construction based
on the observation that the database owner can rely on PIR queries to retrieve records. We
simulate the performance of our system based on this construction, which updates a one-
megabyte record on a one-terabyte database in about one minute on average, even when
the database owner only has slow ADSL connections. Future work includes de-amortizing
private writes and examining the non-collusion assumption from the perspective of game
theory.

45

References

[Bat68] Ken E. Batcher. Sorting networks and their applications. AFIPS Spring Joint
Computer Conference, 32:307–314, 1968.

[BMP11] Dan Boneh, David Mazieres, and Raluca Ada Popa. Remote oblivious storage:
Making oblivious RAM practical. Technical report MIT-CSAIL-TR-2011-018,
MIT, March 2011.

[CCC+09] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan
Popoveniuc, Ronald L. Rivest, Peter Y. A. Ryan, Emily Shen, Alan T. Sher-
man, and Poorvi L. Vora. Scantegrity II: End-to-End Verifiability by Voters
of Optical Scan Elections Through Confirmation Codes. IEEE Transactions
on Information Forensics and Security, 4(4):611–627, Dec 2009.

[CDN09] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. Oblivious Trans-
fer with Access Control. In Proceedings of ACM CCS 2009, pages 131–140,
Chicago, Illinois, Nov 2009.

[CDN10] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. Unlinkable Priced
Oblivious Transfer with Rechargeable Wallets. In Proceedings of FC 2010,
pages 66–81, Jan 2010.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private
Information Retrieval. Journal of the ACM, 45(6):965–981, Nov 1998.

[Dev13] Casey Devet. Evaluating Private Information Retrieval
on the Cloud. Technical Report 2013-05, CACR, 2013.
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-05.pdf.

[DGH12] Casey Devet, Ian Goldberg, and Nadia Heninger. Optimally Robust Private
Information Retrieval. In Proceedings of the 21st USENIX Security Sympo-
sium, Bellvue, WA, August 2012.

46

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The Second-
Generation Onion Router. In Proceedings of the 12th USENIX Security Sym-
posium, pages 303–320, San Diego, California, Aug 2004.

[FCS+11] Martin Franz, Bogdan Carbunar, Radu Sion, Stefan Katzenbeisser, Miroslava
Sotakova, Peter Williams, and Andreas Peter. Oblivious outsourced storage
with delegation. In Proceedings of FC 2011, pages 127–140, St. Lucia, Feb-Mar
2011.

[GDHH12] Ian Goldberg, Casey Devet, Paul Hendry, and Ryan Henry. Percy++.
http://percy.sourceforget.net/, 2012. Accessed January 2013.

[GGM98] Yael Gertner, Shafi Goldwasser, and Tal Malkin. A Random Server Model
for Private Information Retrieval or How to Achieve Information Theoretic
PIR Avoiding Database Replication. In Proceedings of RANDOM 1998, pages
200–217, Barcelona, Spain, Oct 1998.

[GM11] Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access
of outsourced data via oblivious RAM simulation. Automata, Languages and
Programming, pages 576–587, 2011.

[GMOT11] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto
Tamassia. Oblivious RAM simulation with efficient worst-case access overhead.
In Proceedings of the 3rd ACM Cloud Computing Security Workshop, pages
95–100, Chicago, Illinois, Oct 2011.

[GMOT12] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto
Tamassia. Privacy-preserving group data access via stateless oblivious RAM
simulation. In Proceedings of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 157–167, Kyoto, Japan, Jan 2012.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on
oblivious RAMs. Journal of the ACM (JACM), 43(3):431–473, 1996.

[Gol07] Ian Goldberg. Improving the Robustness of Private Information Retrieval.
In Proceedings of IEEE S&P 2007, pages 131–148, Oakland, California, May
2007.

[HHG13] Ryan Henry, Yizhou Huang, and Ian Goldberg. One (Block) Size Fits All:
PIR and SPIR with Variable-Length Records via Multi-Block Queries. In
Proceedings of NDSS 2013, San Diego, Feb 2013.

47

[HOG11] Ryan Henry, Femi Olumofin, and Ian Goldberg. Practical PIR for Electronic
Commerce. In Proceedings of ACM CCS 2011, pages 677–690, Chicago, Illinois,
Oct 2011.

[KLO12] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in) security of hash-
based oblivious RAM and a new balancing scheme. In Proceedings of the 23rd
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 143–156, Jan
2012.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-Size Com-
mitments to Polynomials and Their Applications. In Proceedings of ASI-
ACRYPT 2010, pages 177–194, Dec 2010.

[OG11] Femi Olumofin and Ian Goldberg. Revisiting the Computational Practicality
of Private Information Retrieval. In Proceedings of FC 2011, pages 158–172,
Feb 2011.

[RS98] Martin Raab and Angelika Steger. Balls into bins, a simple and tight analysis.
In Randomization and Approximation Techniques in Computer Science, pages
159–170, 1998.

[SCSL11] Elaine Shi, Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM
with O((logN)3) worst-case cost. In Proceedings of ASIACRYPT 2011, pages
197–214, Seoul, South Korea, Dec 2011.

[Sha79] Adi Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–
613, Nov 1979.

[SSS12] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious RAM.
In Proceedings of NDSS 2012, San Diego, California, Feb 2012.

[WDDB06] Shuhong Wang, Xuhua Ding, Robert H. Deng, and Feng Bao. Private infor-
mation retrieval using trusted hardware. In Proceedings of ESORICS 2006,
pages 49–64, 2006.

[WS08] Peter Williams and Radu Sion. Usable PIR. In Proceedings of NDSS 2008,
San Diego, California, Feb 2008.

[WST12] Peter Williams, Radu Sion, and Alin Tomescu. PrivateFS: a parallel oblivious
file system. In Proceedings of ACM CCS 2012, pages 977–988, Raleigh, North
Carolina, Oct 2012.

48

	List of Tables
	List of Figures
	List of Algorithms
	List of Notation
	Introduction
	Outsourcing PIR
	Related Work
	Our contribution

	Background
	Oblivious RAM
	Goldberg's IT-PIR
	Symmetric PIR and Oblivious Transfer
	SPIR and OT with Data Privacy

	Constructions
	Privacy Constraints
	Overview
	Construction One
	Efficient server-side Index
	Pricing and Access Control
	Construction Two
	De-amortized ORAM
	Discussion
	Security Analysis

	Performance Evaluation
	Experimental Setup
	Results for Construction One
	Results for Construction Two
	Implementation Details
	Oblivious Reshuffle

	Conclusion
	References

