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Optimal transmission switching (OTS) enables us to remove selected transmission lines from 

service as a cost reduction method. A mixed integer programming (MIP) model has been 

proposed to solve the OTS problem based on the direct current optimal power flow (DCOPF) 

approximation. Previous studies indicated computational issues regarding the OTS problem and 

the need for a more accurate model. In order to resolve computational issues, especially in large 

real systems, the MIP model has been followed by some heuristics to find good, near optimal, 

solutions in a reasonable time. The line removal recommendations based on DCOPF 

approximations may result in poor choices to remove from service. We assess the quality of line 

removal recommendations that rely on DCOPF-based heuristics, by estimating actual cost 

reduction with the exact alternating current optimal power flow (ACOPF) model, using the IEEE 

118-bus test system.  We also define an ACOPF-based line-ranking procedure and compare the 

quality of its recommendations to those of a previously published DCOPF-based procedure. For 

the 118-bus system, the DCOPF-based line ranking produces poor quality results, especially 

when demand and congestion are very high, while the ACOPF-based heuristic produces very 

good quality recommendations for line removals, at the expense of much longer computation 

times.  There is a need for approximations to the ACOPF that are accurate enough to produce 

good results for OTS heuristics, but fast enough for practical use for OTS decisions.  
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 1 

Chapter 1  
Introduction1 

1.1 Overview of power systems terminology 

The power network is responsible to transfer electrical energy and can be decomposed into 

different levels. The highest voltage scale is called a transmission network or power grid. Each 

network has various elements. Transmission lines are interconnected with each other at the 

network nodes. A network node is referred to as a “bus” in power systems language. In addition 

to connecting lines, some buses are connected to generators to generate electrical power and 

some are connected to  “loads” to serve electricity consumers [1]. The power flowing on a line is 

divided into two components of real power “P ,” which is what is purchased by consumers, and 

reactive power “Q ,” which is a necessary part of the physical description of power flows in 

alternating current (AC) systems. In power systems analyses, both types of power are 

represented by a single complex number having P as the real part and Q as the imaginary part. In 

an AC system, voltage levels vary sinusoidally at a frequency that is held constant throughout the 

system, e.g., 60 cycles per second.  Each bus has a voltage magnitude “V ” and a voltage phase 

angle “! ” which describes the position in the sine wave at time t=0 [1]. For more detailed 

explanations, see Chapter 3.  

Each transmission line is associated with the electrical admittance “Y ,” a complex number. It is 

a measure of how easily current flows through a circuit. Electrical conductance “G ” is the real 

                                                
1 The thesis is an extended version of a submitted journal paper: M. Soroush, J.D. Fuller, "Accuracies of optimal transmission switching 

heuristics based on DCOPF and ACOPF," submitted at IEEE Trans. Power Syst, Apr 2013. 
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part of admittance that measures the ability of an element to pass electric current. Electrical 

conductance is calculated from the reciprocal quantity of electrical resistance “R ”, which 

measures the line’s opposition to the passage of electric current. On the other hand, susceptance 

“B ” is the imaginary part of the admittance, which measures how easily the alternating current 

passes through the line. In other words, it is a property of a line, which shows how easily a 

circuit passes a changing current.  

The power flow or load flow problem is a numerical study associated with an electric power 

system to find the steady-state point of it. In other words, given the demand at load buses and the 

supply of power generation, the problem finds bus voltage magnitudes and phase angles, and 

complex power in the network [2]. The optimal power flow (OPF) problem usually uses a power 

flow problem as constraints, with the objective function of minimizing the generation cost of 

supplying all the power demand [2].   

The equations in a power flow and optimal power flow problem (see Chapter 3) are based on the 

properties of power grid elements such as transmission lines and generators, and Kirchhoff’s 

laws. We can divide the equations into various sets. The network constraints are based on 

Kirchhoff’s laws at nodes; they are called balance constraints because they require that the 

amount of power flowing into a node equals the amount flowing out of the node. They consist of 

2n nodal equations for real and reactive power in a network of n buses [2]. Other inequalities are 

operational constraints such as bus voltage limits and line power flow limits, or limits on control 

variables such as real and reactive power at generators.  
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 In a power flow problem, “P ” and “Q ” line flow variables are nonlinear functions of “V ” and 

“! ” variables at the two ends of the line, and the problem is called an alternating current (AC) 

load flow problem. However, providing a good linear approximation of the dependence of “P ” 

and “Q ” variables on “V ” and “! ” variables is possible, and is called a direct current (DC) load 

flow problem because of its mathematical similarity to the equations that describe power flows in 

direct current networks. To derive the linear approximation, all voltage values V  are 

approximated to 1, in special units scaled by the target voltages at the buses, which makes the 

nonlinear functions much simpler. The other key part of the linear approximation is to recognize 

that the difference in voltage phase angles at the two ends of a line is controlled to be small 

enough that a linear approximation of the sine and cosine of the phase angle differences is 

reasonably accurate.   

1.2 Introduction to Optimal Transmission Switching  

The optimal transmission switching (OTS) problem was recently proposed as a cost reduction 

method by temporarily removing transmission lines from service [3] when there is congestion, 

i.e., when some lines are carrying power at the allowed limits. The OTS problem is a mixed 

integer program based on OPF that is a complex continuous optimization problem. The accurate 

OPF model is called the alternating current optimal power flow (ACOPF) model. There are 

different approximations regarding the OPF model and the most common approximation in the 

literature for OPF problems is the direct current optimal power flow (DCOPF) problem. The 

accuracy of the OTS is directly related to the OPF problem that generated the OTS. Accordingly, 
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the ACOPF model is a nonlinear model that is the most accurate and the most complex OPF 

model. However, the DCOPF model is a linear approximation of the ACOPF model.  

Previous studies in OTS method are mostly based on DCOPF approximations; however, they 

still indicated the long computational time of the problem [3]. They linearized the ACOPF 

problem in order to track cost improvement in the network, which is a reason for the reliability of 

the model to be in question and requiring an assessment of the approximations accuracy in OTS. 

This study provides an assessment of the reliability of the DCOPF-based model for the OTS 

problem and its corresponding heuristics. We assess the reliability of the DCOPF-based line 

ranking of [4] in reducing costs, by estimating the actual cost reduction with the exact ACOPF 

model. We also extend the heuristic line ranking idea of [4] and [5] to a ranking based on the 

ACOPF model, and we assess its reliability in reducing costs. Finally, we modify one heuristic of 

[4] to be based on the ACOPF, for the removal of several lines from service.  

The remainder of the paper is organized as follows. Chapter 2 provides a review of studies on the 

topic. Chapter 3 presents all mathematical models required for the assessments, which includes 

both of the DCOPF and ACOPF models. Chapter 4 outlines the methods to rank lines for 

removal, including the new extension based on the ACOPF model.  Tests of reliability of 

DCOPF and ACOPF based rankings are described in Chapter 5 while Chapter 6 presents 

computational results of the tests. Chapter 7 summarizes the conclusions and suggests directions 

for future research. Appendix-A defines all mathematical symbols. Appendices-B to D provide 

detailed data of the IEEE-118 bus test system. Finally, Appendices-E and F present the GAMS 

codes for the calculations of Chapter 6.  
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Chapter 2  
Literature Review 

Transmission line switching has been proposed and discussed in the literature as a method of 

controlling the grid for regular problems such as voltage level, line flow overloads, and network 

security. It has also been used as a way of reducing power losses of the network [3].  

Recently the optimal transmission switching problem has been used as a method of cost 

reduction [3]. It is developed based on a mixed integer linear programming (MIP) model to 

minimize the cost of generation in a transmission grid, with the linear DCOPF approximation of 

power flows. [3], [6], and [7] reported significant cost reduction by removing from one to several 

lines suggested by the OTS problem. The MIP problem is generated based on using binary 

variables assigned to the lines of the network, which represent the lines being in service or out of 

service. [3] reported achieving about 25% cost saving by solving the MIP and obtaining a few 

line removals in the IEEE 118-bus test system. They also reported computational time issue; 

regarding the solving 118-bus test system, especially when seeking several line removals. Even 

though it is not a large system, the potential solutions make it a complex problem to provide 

optimal solution. [8] tested the MIP model on Independent System Operator of  New England 

(ISONE) test cases with 6652 transmission lines.  By providing feasible solutions, they reached 

4%, 5.5% and 6% with respectively 1, 2 and 4 line removals without guaranteeing optimality. 

Computational times are respectively 2, 50 and 82 hours that is too long to be a practical 

solution. [8]  also used a sequential method to remove lines one by one to improve the 



 

 6 

computational times for more than one line removal.  They removed 20 lines and achieved a 

12% percent cost saving with the solving execution time of 6.3 hours. The time was not still 

short enough to be a practical solution, though it’s better than the MIP problem with even 2 line 

removals at the same time [8]. 

The OTS problem is established based on the direct current optimal power flow (DCOPF) 

problem, which is a linear program (LP) [3]. The exact ACOPF model is not commonly used for 

OPF problems [8] in market operations. Correspondingly, all the heuristics created for the OTS 

problem have been based on the DCOPF model.  

The only reason for using a less accurate model is due to the computational difficulties. [7] 

indicated the necessity of using the ACOPF model on OTS problem; since the DCOPF model 

ignores many features of the network such as voltage differences and reactive power. [9] 

compared the previous results of DCOPF-based optimal solution for line removal with the 

ACOPF-based model and showed that the optimal solution of OTS based on DCOPF model are 

not good solutions in an exact ACOPF model.  

Recently [4] introduced two fast heuristics that significantly improved computational times for 

solving the problem; a similar idea is presented in [5]. The heuristics rely on a ranking of lines 

for removal from service, based on optimal primal and dual variables of the DCOPF model, that 

are combined in parameters designated as kα  (one for each line k) [4]. The short total run time 

of the heuristic methods could make it possible for the OTS problem to be solved in a reasonable 

time in practice. The first heuristic in [4] sequentially solves the DCOPF, LP model, and the 
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second one is a sequential heuristic based on the MIP model for the OTS problem [4], but with 

the binary variables restricted to a small set of lines for which the Alpha parameters predict good 

cost reductions. They tested IEEE 118-bus and IEEE 662-bus test systems and achieved about 

12% cost savings for both systems. The first heuristic, the sequential LP heuristic, showed better 

results in practice [4]. The total run time of the heuristic methods could make it possible for the 

OTS problem to be solved in a reasonable time, i.e., that is a few minutes. It can be used for real-

time decision making in transmission switching [4]. Accordingly, [9] used the heuristic idea for 

1-line removal. Although the heuristic idea is not based on a DCOPF formulation, they used it 

for an ACOPF formulation and achieved good cost reductions based on it. They obtained up to 

6% cost saving in IEEE 118-bus test system with different demand levels. In addition, [10] 

reported the need for more exact model for the heuristic method in some cases, especially when 

resistance loss is included in the model. In this study, we also regenerate the heuristic idea based 

on an AC formulation model to extend it to an ACOPF-based model.  
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Chapter 3  
Models and Formulations 

In this chapter, we present the DCOPF and ACOPF problems as two optimization models. We 

can create the OTS problem based on each of the models. Previous works (see [3] and [4]) used 

DCOPF, an LP model, to create the OTS problem as an MIP model and to devise heuristics. We 

presented the ACOPF model, a nonconvex nonlinear problem for use in Chapter 4 and 5, where 

we extend the heuristic ideas in [4] based on it. 

3.1 DCOPF Formulation for OTS problem 

The optimal power flow problem is often formulated based on the DCOPF formulation [8]. 

Recent papers on the OTS problem are also based on the DCOPF model. A typical DCOPF 

model is in (1) as below. A “bus” is a term for nodes  (indexed by “n” or “m”) that are connected 

by transmission lines in a transmission network. Variables in the mathematical model for OPF 

are Pg ,Qg , knmP ,Qknm , Vn , and !n (see Appendix-A: Nomenclature). Pg is the “active” power 

generation amount by generator “g”, which is the commodity that is sold to consumers. The 

“reactive” power variables, Qg , and Qknm  are set to zero in DCOPF models. Voltage magnitudes 

Vn are controlled in real systems to be close to 1 in special, scaled units; in the DCOPF model 

they are fixed at the value 1. The phase of the steady state, sinusoidal voltage differs from one 

bus to another, as measured by the phase angle, !n , in radians. We use the notation knmP  for the 

power flow on line k, in the direction from bus n to bus m; a negative value for knmP  means that 
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the flow is from m to n. Other symbols are all parameters, e.g. Bnm  is the element nm of the 

susceptance series (for detailed electrical engineering explanations, see [2]). Note that models are 

for one short period of the network system, e.g. 1 hour. 

∑
g

gg Pcmin  (1a) 

:subject to   

nPBP dem
n

m
mnnm

g
g

n

∀=−∑∑
∈

  ,)-(  δδ
G

 (1b) 

gPPP Max
ggg ∀≤≤   ,min  (1c) 

kBP mnnmknm ∀=   ),-( δδ  (1d) 

kPPP Max
kknmk ∀≤≤   ,min  (1e) 

mnMax
mn ,  ,-min ∀≤≤ δδδδ  connected by a line

 
(1f) 

The objective function (1a) used in the DCOPF model is generation cost that is being minimized. 

Constraints are generated from Kirchhoff’s laws. There is a power flow balance in each node 

represented by (1b). The summation over m in (1b) is a sum over buses m such that there exists a 

line k connecting buses n and m. The limit of voltage angle differences is in (1f); this is imposed 

because if the phase angle differences are too large, then the system becomes unstable. 

Constraints (1c) and (1e) represent power generation limit in each generator and power flow 

limit on each line respectively. The approximated power flow for each line in the system is in 
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(1d). Please note that (1d) and (1e) can be combined together as one constraint. It does not have 

an effect on the solution. Constraint (1d) is separated in order to develop an MIP model of OTS 

in (2). Many approximations are made to linearize the mathematical model of AC power flows 

on a transmission network. Therefore, there is no guarantee that using a DCOPF model for OTS 

heuristic line ranking would lead to the same choice of line removal as using the much more 

accurate ACOPF model. The OTS problem first is generated and solved in [3] based on the 

DCOPF model (1).  Model (2) is an MIP first introduced by [3] to make the OTS problem. 

∑
g

ggPcmin  (2a) 

:subject to   

nPBP dem
n

m
mnnm

g
g

n

∀=−∑∑
∈

  ,)-(  δδ
G

 (2b) 

gPPP Max
ggg ∀≤≤   ,min  (2c) 

Bnm (!n -!m ) - Pknm + (1! zk )M " 0,  #k  (2d) 

Bnm (!n -!m ) - Pknm ! (1! zk )M " 0,  #k  (2e) 

Pk
minzk ! Pknm ! Pk

Maxzk,  "k  
(2f) 

mnMax
mn ,  ,-min ∀≤≤ δδδδ  connected by a line (2g) 

(1! zk ) " j
k
# . (2h) 
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The formulation includes zk  as a binary variable to represent the state of a line and a new 

parameter M, which is a large positive number. The circuit breaker for the line is closed if kz  is 

equal to one and is open if zk  is equal to zero. Constraint (2f) forces a line to be out of the system 

by making the line flow of line k zero if zk is equal to zero. Constraint (1d) breaks to two 

constraints (2d) and (2f) to apply of using the binary variable as mentioned; if zk = 0 , then (2d) 

and (2e) ensure that the model does not relate the voltage angles at the two ends of line k which 

is not in service. The maximum number of removed lines from the system, j, is also considered 

by (2h) [3].  

3.2  ACOPF Formulation for OTS problem 

The ACOPF formulation includes the voltage magnitude variables that were approximated to 1 

in the DCOPF model. It also includes reactive power that shows a different pattern than the 

active power and is not considered in DCOPF models. The reactive power appears in balance 

and limit constraints. The constraints of the following ACOPF formulation are based on [2]. The 

results provided in the rest of the study are also based on model (1) in comparison to the AC 

model below in (3). !nm  is a common shorthand symbol for !n !!m .  

∑
g

gg Pcmin  (3a) 

:subject to   

nPBGVVP dem
n

m
nmnmnmnmmn

g
g

n

∀=+−∑∑
∈

,)sincos( δδ
G

 (3b) 
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nQBGVVQ dem
n

m
nmnmnmnmmn

g
g

n

∀=−−∑∑
∈

,)cossin( δδ
G

 (3c) 

gPPP Max
ggg ∀≤≤   ,min  (3d) 

gQQQ Max
ggg ∀≤≤   ,min

 (3e) 

kSQP Max
kknmknm ∀≤+  ,  222

 (3f) 

Pknm =VnVm (Gnm cos!nm +Bnm sin!nm )!GnmVn
2 ),"k  (3g) 

Qknm =VnVm (Gnm sin!nm !Bnm cos!nm )+Vn
2 (Bnm ! bnm

p ), "k  (3h) 

mnMax
nm ,  ,min ∀≤≤ δδδ  connected by a line (3i) 

nVVV Max
nnn ∀≤≤   ,min

 (3j) 

The summation over m in (3b) and (3c) are sums over all buses m connected by a line k to bus n, 

and also terms for m=n. Constraints (3f), (3g) and (3h) can be written as a single constraint; this 

presentation clarifies the line flow in (3f). (3g) and (3h) represent active and reactive power 

flows. The right side expression of (3g) becomes the right side of (1d) when Vn =1,!n  and the 

cosine and sine functions are approximated to first order in !nm , in an approximated DCOPF 

model. Constraints (3c) and (3e) consider balance and power generation regarding reactive 

power in the network. Constraint (3j) represents voltage magnitude limits which do not appear in 

DCOPF models. When the linear DCOPF is used to formulate the OTS, the computations are 
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impractically long. Therefore, heuristics have been used for the OTS as discussed in the next 

chapter.  
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Chapter 4  
Heuristic Ideas 

In previous studies, [3] introduced an MIP problem to provide optimal solutions of the OTS 

problem. The result of the studies shows really good cost savings up to 25% for different test 

systems. In larger systems, the computational time of the problem was not good enough. Thus, 

they also performed a sequential method, at each step removing the best single line (by setting 

j=1 in (2h)), as a heuristic idea to reduce the computational time in search of a good solution. 

However, computation times were still too long for large, real systems. The sequential method 

removes one line in each of the iterations and finds the next best line based on the new structure 

of the system. The method shows good result though for very large systems it couldn’t solve the 

computational time issue. In response to the issue of computational difficulties, two heuristic 

ideas were proposed by [4] leading to much faster computations and good cost reductions for 

standard test models. A line ranking parameter named
 kα  was introduced and interpreted as the 

key idea of the heuristics. This ranking parameter is based on the optimal primal and dual 

variables of the model (1), as in (5) below; nπ is the dual variable associated with the balance 

constraint (1b) of the DCOPF model [4]. The reformulation of model (1) that [4] used to derive 

the heuristic idea is as follows: Symbols in square brackets represent the dual variables of 

constraints. 

∑
g

ggPcmin  (4a) 
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subject to:   

∑
∈ ng

gP
G

  ! Bnm (!n -!m )
m
" = Pn

dem[" n ],  #n  (4b) 

Pk
min (1-!k ) ! Pknm ! Pk

Max (1-!k ) [" k
L," k

R ],  "k  (4c) 

Pknm = Bnm (!n -!m ) (1-"k ) [# k ],  !k   (4d) 

gPPP Max
ggg ∀≤≤   ,min  (4e) 

mnMax
mn ,  ,-min ∀≤≤ δδδδ  connected by a line

 
(4f) 

!k = 0 ["k ],  !k  (4h) 

!k variables in model (4) represent the fraction of line k which is removed from the system. If 

!k = 0  line k is fully in use and if !k =1  line k is removed from the system [4]. (The only 

possible values in reality are !k = 0  and !k =1, but !k  is treated as a continuous variable to 

derive the line ranking parameters kα .) Therefore, setting all the values to zero in (4h) means 

that the reformulation is equivalent to the DCOPF in model (2).  

The most important part of the method is based on kα  values and the way they are interpreted 

and calculated in the model. The dual variables kα  associated with constraint (4h) are the key 

idea to the method. kα  represents the rate of change in the value of the objective function (4a) 

with an !  amount of change in the right side of constraint (4e); in particular, with ! =1 , kα  

estimates the change in optimal cost if line k is removed, i.e., !k =! =1 . Alpha values are 
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calculated from the Karush-Kuhn-Tucker (KKT) conditions of model (4). The kα  values can be 

calculated from the optimal dual and primal variables of the standard DCOPF model (2) [4]. 

Equation (5) below is used to calculate Alpha values for DC model. nπ  is the dual variable 

associated with balance constraint (1b) of DCOPF model [4]; nπ  is normally interpreted as the 

market price at bus n, when the DCOPF model is used to run electricity market. Considering 

equation (5) for line k, nπ  is associated with the “from” bus and !m  is associated with the “to” 

bus in line knm. In the right side of the equation, the first factor shows the difference between the 

“to” and “from” nodes prices. The second factor is the power flow on the line.   

kPknmnmk ∀= ,  )-( ππα  (5)
 

The idea in [4] suggested that the most negative kα is likely to show the most promising line 

removal for the largest cost reduction. Thus, solving the LP model (1) results in having all lines 

ranked from most to least promising.  Calculations with two test systems showed a good 

agreement between the kα  predictors and actual good line removals of the DCOPF model [4]. 

However, by solving the MIP model including loss approximations, [10] reported poor choices 

by the predictors and proposed the need for a more accurate model of power flows.  

4.1  Extending the fast heuristic methods based on AC model 

In this study, we generate new kα  values derived from the ACOPF model. Following the ideas 

in [4], but replacing the DCOPF with the ACOPF, we first reformulate the ACOPF (3) as in 

model (6) below. To ease the derivation of the new kα  expressions, we define the following 
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functions that give the real and reactive power flows on line k, as measured at bus n in the 

direction towards bus m, in terms of voltage magnitudes and voltage angles:  

Pknm (V,!) = (VnVm (Gnm cos!nm +Bnm sin!nm )!GnmVn
2 ) ,"k  

Qknm (V,!) = (VnVm (Gnm sin!nm !Bnm cos!nm )+Vn
2 (Bnm ! bnm

p )), "k  

As in [4], the kλ in the following model appears as the fraction of line k which is removed from 

service, leaving the fraction )1( kλ−  in service, which is modeled as changing the values of the 

line parameters susceptance Bnm , conductance Gnm , and line flow limit Sk
Max  to )1( kλ−  times of 

their previous amount. The reformulation (6) of the ACOPF (3) includes the requirement 0=kλ , 

i.e., the line is fully in service. Square brackets indicate the dual variable associated with the 

corresponding constraint. 

min
i

ciPi
i
!  (6a) 

subject to: (3d), (3e), (3i), (3j) and   

nPVPP P
n

dem
n

m
kknm

g
g

n

∀=−×∑∑
∈

  ],[ )1( ),(-  πλδ
G

 
(6b) 

nQVQQ Q
n

dem
n

m
kknm

g
g

n

∀=−×∑∑
∈

  ],[ )1( ),(- πλδ
G

 
(6c) 
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(Pknm (V,!)!  (1""k )) 
2 + (Qknm (V,!)!  (1""k )) 

2 # (Sk
Max !  (1""k ))

2     [# k ],  $k  (6d) 

kkk ∀= ],[   0 αλ  (6e) 

The sums over m in (6b) and (6c) are for all m ! n  such that there is a line k connecting n to m. 

The Alpha values are the key to the heuristic ideas. They are calculated from the solution of the 

ACOPF model in the following way. First, note that an optimal solution to (3) is also optimal in 

(6), and also that the Karush-Kuhn-Tucker (KKT) conditions of (6) at its optimal solution are 

satisfied by the optimal primal and dual variables of (3), together with 0=kλ  and kα computed as 

follows. The KKT condition for the derivative of the Lagrangian of (6) with respect to kλ , and 

evaluated at 0=kλ  is  

!k +  " k ! ("2Pknm
2 (V,#)" 2Qknm

2 (V,#)+ 2Sk
Max ) +$ n

P  Pknm (V,#)+$m
P  Pkmn (V,#)

+$ n
Q  Qknm (V,#)+$m

Q  Qkmn (V,#) = 0   [" k ],  #k
 (7) 

The second term of (7) simplifies to  

kVQVPS knmknm
Max
kk ∀−−× , )),(),((2 22 δδγ  

Using the complementary slackness condition of line limit constraint (6d), either 

0),(),( 22 =−− δδ VQVPS knmknm
Max
k  or kγ =0. Thus, the condition indicates 

kVQVPS knmknm
Max
kk ∀=−−× , 0)),(),(( 22 δδγ  

which simplifies equation (7) to 
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!k +" n
P  Pknm (V,#)+"m

P  Pkmn (V,#)+" n
Q  Qknm (V,#)+"m

Q  Qkmn (V,#) = 0,  !k  (8) 

4.2  Alpha values based on DC model 

),( δVPknm  function is approximated by the knmP  variable for a DC model in constraint (1d). 

Considering the DC approximation, power and reactive power flow functions of a line in the DC 

model are as follow: 

kBVPVP mnnmknmkmn ∀−=−= , )-(),(),( δδδδ  (10) 

kVQVQ knmkmn ∀=−= , 0),(),( δδ  (11) 

Applying (10) and (11) in equation (8) leads to the same equation as in (5) in [4] to calculate 

Alpha values for a DC model, which leads to: 

!k = ("m
P -" n

P ) !Pknm  ,"k  (12) 

4.3 Alpha values based on AC model 

We can use equation (8) to calculate kα  values from a solution of the ACOPF model: 

!k = !" n
P  Pknm (V,#)!"m

P  Pkmn (V,#)!" n
Q  Qknm (V,#)!"m

Q  Qkmn (V,#),  "k  

This formula for kα  can be related to the DC-based calculation in (5) or (12) by using the 

relation among power losses loss
kP  and loss

kQ , and power flows at the two end of a line: 

loss
kknmkmn PVPVP +−= ),(),( δδ  (13) 
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loss
kknmkmn QVQVQ +−= ),(),( δδ  (14) 

We apply (13) and (14) in equation (8), which leads to a final formula for calculating  values 

as follows: 

Q
m

loss
kknm

Q
n

Q
m

P
m

loss
kknm

P
n

P
mk

QVQ
PVP
πδππ

πδππα

−×+

−×=

),( )-(

),( )-(  (15)
 

The first term of (15) is the same as the expression generated for the DCOPF model. In addition, 

there are three other terms, one of which is an expression associated with the reactive power 

similar to that for the active power. The other terms are associated with losses of active and 

reactive power in lines and are also not considered in the DCOPF problem.   

 

  

!k
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Chapter 5  
Tests of DCOPF- and ACOPF-based Line Rankings 

In this chapter, we describe the methods to assess the reliability of recommendations for line 

removal that are based on (5) after solving the DCOPF (1), and recommendations that are based 

on (15) after solving the ACOPF (3).  We also describe the modification to one of the DCOPF-

based heuristics of [4], to substitute ACOPF calculations in the heuristic.  

5.1 The 118-bus test system and software used 

We used the IEEE 118-bus test system [11] for the studies described below, with additional data 

from [12]. Small variations in the data are explained in [4] and [3]. The tests are done with three 

different load levels obtained by multiplying load levels in [12] by 0.8, 1.0 and 1.2 to create low, 

high and very high demand respectively. The value Maxδ = minδ−  = 0.6 radians is used in (1f) and 

(3i) to limit voltage angle differences.  

We used CPLEX to solve the DCOPF LP (1), and CONOPT to solve the ACOPF (3), in the 

GAMS environment on a Windows server. We chose CONOPT because in preliminary testing, it 

gave the same or better solutions than other solvers such as MINOS, KNITRO and COIN-ipopt.  

Note that CONOPT is not guaranteed to find a global optimal solution, because the ACOPF (3) 

is a non-convex nonlinear program. However, in preliminary testing at the three demand levels, 

we tried different initial points and different solvers with various options, and found that the 

solution found by CONOPT with standard option settings was always the best, which makes us 

reasonably confident that we are getting global optimal solutions. 
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5.2  Determination of exact line ranking using ACOPF 

The following procedure was carried out for each of the three demand levels to determine the 

exact ranking of lines to remove.  Model (3) was first solved with all lines in service, and the 

optimal cost was noted.  Then model (3) was solved repeatedly again, each time with one of the 

lines removed from service; for each single line removed, the optimal cost was compared with 

the optimal cost when all lines are in service, and the cost reduction was expressed as a 

percentage of the cost with all lines in service.  The largest cost reduction was assigned a rank of 

1, the second largest was given a rank of 2, etc.      

This exact ranking of lines is compared with rankings based on kα  calculated from the DCOPF 

and ACOPF solutions, as described in the next section.  

5.3 Assessment of accuracy of line rankings based on kα from DCOPF and ACOPF 

For each of the three demand levels, the DCOPF (1) was solved with all lines in service, and kα

was calculated from (5) for each line k.  Since kα− can be interpreted as an estimate of the 

reduction in optimal cost if line k is removed from service (see [4] and the discussion in Chapter 

4), we assigned a rank of 1 to the line with the largest kα− , a rank of 2 to the line with second 

largest kα− , etc.  We compared this ranking to the exact ranking described previously, by 

observing which of the top ten exact rankings were among the top ten ranked by kα− . 
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Similarly, for each of the three demand levels, the ACOPF (3) was solved and kα was calculated 

from (15) for each line k.  Rankings were based on the ACOPF-derived kα− and compared to the 

exact rankings in the same manner as for the DCOPF-based rankings. 

5.4  Modification of DCOPF-based heuristic to use ACOPF 

We also tested the sequential LP heuristic in [4] but with the ACOPF replacing the DCOPF. 

Here, we provide a brief description; details may be found in [4]. The heuristic has three control 

parameters, integers L, I and m.  It removes one line at each iteration, up to the maximum 

number of lines to remove, L (or it stops when no cost-reducing line removals can be found).  

The first line is removed by: solving the ACOPF (3) with all lines in service; ranking the lines 

using kα calculated from the ACOPF solution; testing up to I top-ranked line removals by re-

solving the ACOPF without each such line, until m candidate lines have been found that reduce 

the cost, or I have been tested; and removing the candidate line which produces the largest cost 

reduction. Later iterations follow the same procedure, but starting from the current configuration 

of the system, with lines removed from service as decided at previous iterations.    
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Chapter 6  
Results of Tests 

In this chapter, we present the result of line rankings of single line removals. We also examine 

the performances of Alpha values rankings based on the DCOPF and ACOPF models in 

providing reliable predictions. Finally, we run the ACOPF-based heuristic to present the result of 

running the heuristic in different demand levels. In addition, we also compare the cost savings 

opportunities and computational times of the heuristic based on the DCOPF and ACOPF models.  

6.1 Exact ranking of lines using ACOPF  

In this section, we present some of the results of single line removals based on the ACOPF 

model for the three different demand levels.  

TABLE I 
COST REDUCTIONS IN LOW DEMAND 

 
By comparing ACOPF and DCOPF results, recently [9] reported inconsistencies between the 

best line removals from DCOPF model comparing with the ACOPF model and vice versa. In this 
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chapter, we examine the results of single line removals estimated based on the ACOPF model in 

different demand levels.  

First, we operate single line removals and report the best results in Tables I to III for different 

demand levels. High demand level has regular real power demands in the dataset; however, low 

and very high demand levels have regular demands multiplied by 0.8 and 1.2 respectively. The 

high demand level represents a high congestion situation and a very high demand level 

represents a very high congested network that is a critical situation to be assessed in OTS 

problem.   

TABLE II  
COST REDUCTIONS IN HIGH DEMAND 
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TABLE III  

COST REDUCTIONS IN VERY HIGH DEMAND 

 
Figure 1 represents the cost savings that can be achieved by removing one single line for 

different demand levels. Table I to III show the rankings of the lines based on the percentage of 

cost savings. Table I and Table II show achieving up to almost 2.5 percent cost reduction in low 

and high demands by removing just a single line from the system. On the other hand, Table III 

shows significant cost savings for very high demand level. The possibilities of a significant cost 

saving is notably higher in high congestion. For example, the best line to remove, under very 

high demand, would reduce generation cost by over 16%, while the second best line would 

reduce the cost by about 8%.  Therefore, the results show some large cost savings opportunities 

with the higher congestions under very high demand, but much smaller opportunities at the lower 

demand levels.  
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FIGURE 1: BEST LINE RANKINGS FOR DIFFERENT LOAD LEVELS BY 1-LINE REMOVAL 

6.2 Accuracies of line rankings based on kα from ACOPF and DCOPF  

Two kinds of comparison are presented in this section. First, we compare the consistency of 

ranking lines by kα  based on the DCOPF versus the ACOPF models. Second, we note their 

accuracy in predicting good lines to remove in comparison with the results of the exact cost 

reduction estimates. The ACOPF model generated Alpha values by the expression we created in 

previous chapter including all terms in equation (15). The DCOPF model also generates Alpha 

values by using equation (12) which is the same as the equation used for a DC-based model in 

[4]. 
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TABLE IV 
PREDICTIONS IN LOW DEMAND BY ACOPF ALPHAS 

 

Table IV shows a ranking of the lines in low demand level based on the predictions of Alpha 

values from (15) based on the ACOPF model. The most negative Alpha values are considered to 

be the best recommendations for the line switching method. Therefore, we ranked ten best lines 

as long as their corresponding Alpha values are negative. 

Tables IV to IX represent the result of calculating new Alpha values for ACOPF and comparing 

the performances of ACOPF and DCOPF model predictions based on their line rankings. Tables 

IV, VI, and VIII represent the line ranking based on Alpha Values predictions. We also created 

same columns for DCOPF-based model to compare the result of both models with exact line 

rankings. Accordingly, Tables V, VII, and IX show a shaded box when one of the top ten lines 

(exact ranking) appears among the top ten lines as ranked by kα from the ACOPF and the 
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DCOPF. In Table V, for low demand, both kα rankings perform well. They predict eight 

(ACOPF) and seven (DCOPF) of the top ten cost reductions. The result for high demand in 

Table VII shows a poor performance for both kα rankings – only two of the top ten are predicted 

by each, and both miss the number one ranked line; however, the ACOPF ranking is slightly 

better than the DCOPF ranking because the ACOPF ranking includes the sixth best line, but the 

DCOPF ranking includes the eighth best.  

TABLE V 
COMPARING THE PREDICTIONS IN LOW DEMAND 

 
 

 

 

 

 

Lines Rankings Cost Reduction (%) ACOPF DCOPF 
1 1.91
2 1.46
3 0.98
4 0.94
5 0.58
6 0.46
7 0.37
8 0.3
9 0.16
10 0.1

 The line is predicted by Alpha values generated of the model
 The line is NOT predicted by Alpha values generated of the model
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TABLE VI 
 PREDICTIONS IN HIGH DEMAND BY ACOPF ALPHAS 

 
TABLE VII 

COMPARING THE PREDICTIONS IN HIGH DEMAND 

 

Lines Rankings Cost Reduction (%) ACOPF DCOPF 
1 2.6
2 2.11
3 1.79
4 0.17
5 0.15
6 0.13
7 0.09
8 0.04
9 0.04
10 0.04

 The line is predicted by Alpha values generated of the model
 The line is NOT predicted by Alpha values generated of the model
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Table VIII shows the predictions in very high congestion situation and the magnitude of the 

values is significantly bigger than the Alpha values in the other congestion levels (high or low 

demand situations). 

TABLE VIII 
PREDICTIONS IN VERY HIGH DEMAND BY ACOPF ALPHAS 

 
 

Table IX shows very poor accuracy of the DCOPF-based kα ranking in the very high demand 

case – only one of the top ten lines is among the top ten predicted. In contrast, the ACOPF-based 

kα ranking has seven out of the top ten lines among its top ten predictions. If this is generally 

true of most systems, then it is crucial to use the more accurate ACOPF-based kα under highly 

congested conditions, which is when the largest cost reductions are expected for OTS.  
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Therefore, for the first comparison, we note that the kα rankings by the ACOPF and DCOPF are 

very similar under low and high demand conditions, but under very high demand, the ACOPF-

based ranking is much better than the DCOPF-based ranking.  If this observation is true of most 

systems, then it suggests that the DCOPF, which is much faster to solve than the ACOPF, is 

sufficient for line ranking under moderate demand and congestion, but for highly congested 

systems, rankings should be based on the ACOPF. In other words, ACOPF Alpha predictors can 

really make reliable recommendation in very high demand levels.  

TABLE IX 
COMPARING THE PREDICTIONS IN VERY HIGH DEMAND 

 

To summarize the result of Tables IV to IX, ACOPF Alphas are always better predictors for line 

switching especially with very high load level.   

Lines Rankings Cost Reduction (%) ACOPF DCOPF 
1 16.58
2 8.11
3 4.06
4 3.68
5 2.97
6 2.92
7 2.92
8 2.17
9 2.07
10 1.61

 The line is predicted by Alpha values generated of the model
 The line is NOT predicted by Alpha values generated of the model
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We also compared the performance of ACOPF-based kα rankings for which kα is calculated 

using just the first term of (15), i.e., ),( )-( δππ VPknm
P
n

P
m × . For different demand levels, this 

variant has very similar results to those displayed in the ACOPF columns of Tables I to Table III, 

which used the whole of expression (15).  
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6.3 Heuristic using ACOPF-based kα   

For the ACOPF-based heuristic described in the previous chapter, we set the maximum number 

of lines to remove at L=4, the maximum number of line removals to test per iteration at I=12, 

and the maximum number of candidate lines per iteration at m=6. The value for m differs from 

that used in [4] (m=2) because after some experimentation, we found that the larger candidate list 

produced noticeably larger cost reductions. Considering 6, instead of 2, lines that produce cost 

reductions has a better chance of finding the larger cost reductions. Furthermore, if a good line 

removal is missed at the first iteration, due to a small value of m, there is no guarantee that the 

heuristic is capable of finding a similar suggestion in the next iterations since the topology of the 

network is changed.  

The heuristic in [4] is constantly using DCOPF to estimate the cost reduction of each 

recommendation. It also uses the recommendations of Alpha values generated by DCOPF, which 

is not reliable as shown in the previous analysis of the results. Therefore, we expect that the 

heuristic based on the ACOPF model to be able to perform better than the DCOPF-based 

heuristics of [4]. 

 



 

 35 

 

FIGURE 2: COST REDUCTION OF ACOPF-BASED HEURISTIC AND ITS COMPUTATIONAL TIME IN SECONDS BY DIFFERENT 
NUMBER OF LINE REMOVALS IN LOW DEMAND LEVEL. 

 

FIGURE 3: COST REDUCTION OF ACOPF-BASED HEURISTIC AND ITS COMPUTATIONAL TIME IN SECONDS BY DIFFERENT 
NUMBER OF LINE REMOVALS IN HIGH DEMAND LEVEL. 
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Figures 2 and 3 show about 2.5% and 3.5% cumulative cost reductions with four line removals, 

for low and high demand level respectively, using the ACOPF-based heuristic.  In both cases, 

most of the cost reduction is found with the first two line removals. 

Figure 4 shows a very high cost saving – over 16% -- for the very high demand case, which is 

consistent with Table IX results, i.e., that the ACOPF-based kα ranking finds the best line to 

remove at the first iteration, among the ten best lines ranked by kα . The heuristic stopped at 

iteration 2 because no cost-reducing lines were found among the I=12 that were tested, with the 

new topology of the network that was created by the line removal at the first iteration.  A variant 

of the heuristic, discussed in the next subsection, avoids this problem, and finds further cost-

reducing line removals after the first. 

 

FIGURE 4: COST REDUCTION OF ACOPF-BASED HEURISTIC AND ITS COMPUTATIONAL TIME IN SECONDS BY DIFFERENT 
NUMBER OF LINE REMOVALS IN VERY HIGH DEMAND LEVEL. 
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We also compared the total run time and cost saving of the heuristic based on DCOPF and 

ACOPF. We ran the DCOPF with the same values of L, I, and m as in the first runs for the 

ACOPF above. The ACOPF computational time is much higher, but still in a reasonable amount 

of time which is less than a few minutes. Table X shows the difference between computations 

times based on different models and load levels. The total run time for low and high demand 

levels are considerably higher, for the ACOPF-based heuristic, than the very high demand level 

because of running more number of iterations. In general, the differences of run times between 

DCOPF-based and ACOPF-based heuristics are notable. We expect to have a considerable 

difference in very large systems, which is a critical issue to consider for practical 

implementations.  

We compared the actual cost improvements of the heuristic based on DCOPF with cost 

improvements represented in Figure 2 to 4. Cost improvements in high congestion are about the 

same, but the ACOPF based heuristic performed better for low and very high demand levels. 

After a detailed analysis, we found that the DCOPF heuristic could not predict the best lines to 

remove in very high congestion in any of the iterations. It also performed poorly by suggesting a 

line that actually increases cost in an iteration in low demand level. Therefore, it actually 

increases the cost after the cumulative cost changes after 4 iterations. As also reported in [9], the 

DCOPF model doesn’t show consistent results, in which a line removal that is actually 

increasing cost showed as a cost saving option.  
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TABLE X 
TOTAL RUN TIME AND COST SAVING OF HEURISTIC COMPARISON 

Demand  

Levels 

DCOPF   

Run-Time 

DCOPF-based 

Actual Cost Saving 

ACOPF 

 Run-Time 

ACOPF-based 

 Cost Saving 

Low  7.83 sec -4.51% 67.28 sec 2.42% 

High  8.03 sec 3.03% 77.02 sec 3.65% 

Very High  7.11 sec 4.27% 31.72 sec 16.58% 

 

Figures 2 to 4 show that computing times for different demand levels increase almost linearly 

with respect to the number of iterations, which is due to approximately the same number of 

ACOPF calculations done per iteration. Yet, most cost improvements are for the first two line 

removals. Thus, if computing time is limited for the practical reason of needing to make a 

decision in time to implement it, then not much is lost by limiting the iterations to two, for the 

system tested.  

6.4 Variation in Calculating Alpha Values 

We also calculated kα from a modified version of (15) using just the first term, i.e., 

),( )-( δππα VPknm
P
n

P
mk ×= , and ran the heuristic based on it. The performance of the method in the 

first iteration, for each demand level, is almost the same as reported above; however, this 

variation shows a better performance in cost savings for very high demand. Whereas, the 

heuristic based on (15) finds only one line to remove, the variation finds four lines to remove, for 

greater cumulative total cost savings, about 20%.; see  Figure 5.  
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FIGURE 5: COST REDUCTION OF PERFORMING HEURISTIC AND ITS COMPUTATIONAL TIME IN SECONDS BY DIFFERENT 
NUMBER OF LINE REMOVALS IN VERY HIGH DEMAND LEVEL. 
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Chapter 7  
Conclusions and Directions for Future Research 

OTS calculations – exact and heuristic – have relied on the DCOPF approximation of the optimal 

power flow problem. This paper presents evidence that reliance on the DCOPF can give poor 

choices for removal of lines from service in various demand levels, especially at high demand 

levels, when congestion and the need for transmission switching are greatest.  Therefore, the 

much more accurate ACOPF is highly recommended as the basis for OTS heuristics, especially 

for highly congested conditions.  

This thesis modifies one such heuristic -- the sequential LP heuristic of [4] – to rely on repeated 

ACOPF calculations instead of DCOPF calculations.  The main effect of the cost savings is for 

the first term of expression (15) in this system. The key idea in the heuristic, a line-ranking 

procedure based on the solution of the OPF problem, has been extended from the DCOPF case of 

[4] to reliance on an ACOPF solution. 

However, substituting ACOPF calculations for DCOPF increases computing times a great deal, 

which may be impractical for real applications. Therefore, faster methods such as heuristic and 

metaheuristic methods (see, e.g., [13] and [14]), or approximations to the ACOPF that are better 

than the DCOPF, should be investigated for OTS in future research.  
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Appendix-A 

Nomenclature 

Sets and Indices 

mn,  bus 

g  generator 

 
set of generators at bus n 

k  transmission line 

knm  transmission line with a flow measured at node n going toward m 

 

Parameters  

nmB  element nm of the susceptance matrix 

p
nmb  shunt susceptance of line knm 

nmG  element nm of the conductance matrix 

gc  unit cost power from generator g 

MaxV  maximum bus voltage 

minV  minimum bus voltage 
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dem
nP  real power demand at bus n 

dem
nQ  reactive power demand at bus n 

 maximum real power from generator g 

 minimum real power from generator g 

 maximum reactive power from generator g 

 minimum reactive power from generator g 

Max
kS  maximum flow of apparent power on line k 

Maxδ  maximum voltage angle difference  

minδ  minimum voltage angle difference  

 

Variables 

gP  real power from generator g 

gQ  reactive power from generator g 

knmP  real power flow on line k 

knmQ  reactive power flow on line k 

Pg
Max

Pg
min

Qg
Max

Qg
min
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nδ  voltage angle at bus n  

 voltage angle difference, )-( mn δδ  

 voltage at bus n 

kλ  fraction of line k out of service 

,  dual variables 

P
nπ , Q

nπ , nπ  dual variables 

loss
kP  active power loss on line k 

loss
kQ  reactive power loss on line k 

 

  

nmδ

Vn

!k ! k
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Appendix-B 

Bus Data 

The bus data of the IEEE-118 bus test system is shown in Table B-1. 2 

TABLE XI  
The Bus Data of the IEEE-118 Test System 

Bus Number 

Real Power 

Demand 

(MW) 

Reactive Power 

Demand 

(MVAR) 

Maximum 

Real Power 

Output 

Minimum 

Reactive Power 

Output 

Max 

Reactive Power 

Output 

Cost 

Of 

Power Generation 

Shunt 

Susceptance 

1 0.51 0.27 0 0 0 0 0 

2 0.2 0.09 0 0 0 0 0 

3 0.39 0.1 0 0 0 0 0 

4 0.3 0.12 0 0 0 0 0 

5 0 0 0 0 0 0 -0.4 

6 0.52 0.22 0 0 0 0 0 

7 0.19 0.02 0 0 0 0 0 

8 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 

10 0 0 5.5 -1.47 2 217 0 

11 0.7 0.23 0 0 0 0 0 

12 0.47 0.1 1.85 -0.35 1.2 1052 0 

13 0.34 0.16 0 0 0 0 0 

14 0.14 0.01 0 0 0 0 0 

15 0.9 0.3 0 0 0 0 0 

16 0.25 0.1 0 0 0 0 0 

17 0.11 0.03 0 0 0 0 0 

18 0.6 0.34 0 0 0 0 0 

19 0.45 0.25 0 0 0 0 0 

20 0.18 0.03 0 0 0 0 0 

21 0.14 0.08 0 0 0 0 0 

22 0.1 0.05 0 0 0 0 0 

                                                
2 Bus and branch data are basically from IEEE-118 test system and are modified based on [12].   
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23 0.07 0.03 0 0 0 0 0 

24 0 0 0 0 0 0 0 

25 0 0 3.2 -0.47 1.4 434 0 

26 0 0 4.14 -10 10 308 0 

27 0.62 0.13 0 0 0 0 0 

28 0.17 0.07 0 0 0 0 0 

29 0.24 0.04 0 0 0 0 0 

30 0 0 0 0 0 0 0 

31 0.43 0.27 1.07 -3 3 5882 0 

32 0.59 0.23 0 0 0 0 0 

33 0.23 0.09 0 0 0 0 0 

34 0.59 0.26 0 0 0 0 0.14 

35 0.33 0.09 0 0 0 0 0 

36 0.31 0.17 0 0 0 0 0 

37 0 0 0 0 0 0 -0.25 

38 0 0 0 0 0 0 0 

39 0.27 0.11 0 0 0 0 0 

40 0.2 0.23 0 0 0 0 0 

41 0.37 0.1 0 0 0 0 0 

42 0.37 0.23 0 0 0 0 0 

43 0.18 0.07 0 0 0 0 0 

44 0.16 0.08 0 0 0 0 0.1 

45 0.53 0.22 0 0 0 0 0.1 

46 0.28 0.1 1.19 -1 1 3448 0.1 

47 0.34 0 0 0 0 0 0 

48 0.2 0.11 0 0 0 0 0.15 

49 0.87 0.3 3.04 -0.85 2.1 467 0 

50 0.17 0.04 0 0 0 0 0 

51 0.17 0.08 0 0 0 0 0 

52 0.18 0.05 0 0 0 0 0 

53 0.23 0.11 0 0 0 0 0 

54 1.13 0.32 1.48 -3 3 1724 0 

55 0.63 0.22 0 0 0 0 0 

56 0.84 0.18 0 0 0 0 0 

57 0.12 0.03 0 0 0 0 0 

58 0.12 0.03 0 0 0 0 0 
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59 2.77 1.13 2.55 -0.6 1.8 606 0 

60 0.78 0.03 0 0 0 0 0 

61 0 0 2.6 -1 3 588 0 

62 0.77 0.14 0 0 0 0 0 

63 0 0 0 0 0 0 0 

64 0 0 0 0 0 0 0 

65 0 0 4.91 -0.67 2 249.3 0 

66 0.39 0.18 4.92 -0.67 2 248.7 0 

67 0.28 0.07 0 0 0 0 0 

68 0 0 0 0 0 0 0 

69 0 0 8.05 -3 3 189.7 0 

70 0.66 0.2 0 0 0 0 0 

71 0 0 0 0 0 0 0 

72 0 0 0 0 0 0 0 

73 0 0 0 0 0 0 0 

74 0.68 0.27 0 0 0 0 0.12 

75 0.47 0.11 0 0 0 0 0 

76 0.68 0.36 0 0 0 0 0 

77 0.61 0.28 0 0 0 0 0 

78 0.71 0.26 0 0 0 0 0 

79 0.39 0.32 0 0 0 0 0.2 

80 1.3 0.26 5.77 -1.65 2.8 205 0 

81 0 0 0 0 0 0 0 

82 0.54 0.27 0 0 0 0 0.2 

83 0.2 0.1 0 0 0 0 0.1 

84 0.11 0.07 0 0 0 0 0 

85 0.24 0.15 0 0 0 0 0 

86 0.21 0.1 0 0 0 0 0 

87 0 0 1.04 -1 10 7142 0 

88 0.48 0.1 0 0 0 0 0 

89 0 0 0 0 0 0 0 

90 0.78 0.42 0 0 0 0 0 

91 0 0 0 0 0 0 0 

92 0.65 0.1 1 -0.5 1.55 10000 0 

93 0.12 0.07 0 0 0 0 0 

94 0.3 0.16 0 0 0 0 0 
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95 0.42 0.31 0 0 0 0 0 

96 0.38 0.15 0 0 0 0 0 

97 0.15 0.09 0 0 0 0 0 

98 0.34 0.08 0 0 0 0 0 

99 0 0 0 0 0 0 0 

100 0.37 0.18 3.52 -0.03 0.09 381 0 

101 0.22 0.15 0 0 0 0 0 

102 0.05 0.03 0 0 0 0 0 

103 0.23 0.16 1.4 -0.15 0.4 2000 0 

104 0.38 0.25 0 0 0 0 0 

105 0.31 0.26 0 0 0 0 0.2 

106 0.43 0.16 0 0 0 0 0 

107 0.28 0.12 0 0 0 0 0.06 

108 0.02 0.01 0 0 0 0 0 

109 0.08 0.03 0 0 0 0 0 

110 0.39 0.3 0 0 0 0 0.06 

111 0 0 1.36 -1 10 2173 0 

112 0.25 0.13 0 0 0 0 0 

113 0 0 0 0 0 0 0 

114 0.08 0.03 0 0 0 0 0 

115 0.22 0.07 0 0 0 0 0 

116 0 0 0 0 0 0 0 

117 0.2 0.08 0 0 0 0 0 

118 0.33 0.15 0 0 0 0 0 
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Appendix-C 

Branch Data 

The Branch Data of the IEEE-118 bus test system is shown in Table C-2. 3 

TABLE XII 
The Branch Data of the IEEE-118 Test System 

Line  

Number 

Tap Bus 

 Number 

(From) 

Z Bus  

Number 

 (To) 

Branch Resistance 

 (R) 

, per unit 

Branch Reactance 

 (X) 

, per unit 

Line Charging 

 (ch) 

Transformer  

Final Turns 

 Ratio 

Line Limit 

 (MVA) 

1 1 2 0.0303 0.0999 0.0254 0 2.2 

2 1 3 0.0129 0.0424 0.01082 0 2.2 

3 4 5 0.00176 0.00798 0.0021 0 4.4 

4 3 5 0.0241 0.108 0.0284 0 2.2 

5 5 6 0.0119 0.054 0.01426 0 2.2 

6 6 7 0.00459 0.0208 0.0055 0 2.2 

7 8 9 0.00244 0.0305 1.162 0 11 

8 8 5 0 0.0267 0 0.985 8.8 

9 9 10 0.00258 0.0322 1.23 0 11 

10 4 11 0.0209 0.0688 0.01748 0 2.2 

11 5 11 0.0203 0.0682 0.01738 0 2.2 

12 11 12 0.00595 0.0196 0.00502 0 2.2 

13 2 12 0.0187 0.0616 0.01572 0 2.2 

14 3 12 0.0484 0.16 0.0406 0 2.2 

15 7 12 0.00862 0.034 0.00874 0 2.2 

16 11 13 0.02225 0.0731 0.01876 0 2.2 

17 12 14 0.0215 0.0707 0.01816 0 2.2 

18 13 15 0.0744 0.2444 0.06268 0 2.2 

19 14 15 0.0595 0.195 0.0502 0 2.2 

20 12 16 0.0212 0.0834 0.0214 0 2.2 

21 15 17 0.0132 0.0437 0.0444 0 4.4 

22 16 17 0.0454 0.1801 0.0466 0 2.2 

                                                
3  The data also is modified by combining parallal lines. It can also be tested with the original data with separate lines; however, the code 

should be changed based on it. 
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23 17 18 0.0123 0.0505 0.01298 0 2.2 

24 18 19 0.01119 0.0493 0.01142 0 2.2 

25 19 20 0.0252 0.117 0.0298 0 2.2 

26 15 19 0.012 0.0394 0.0101 0 2.2 

27 20 21 0.0183 0.0849 0.0216 0 2.2 

28 21 22 0.0209 0.097 0.0246 0 2.2 

29 22 23 0.0342 0.159 0.0404 0 2.2 

30 23 24 0.0135 0.0492 0.0498 0 2.2 

31 23 25 0.0156 0.08 0.0864 0 4.4 

32 26 25 0 0.0382 0 0.96 2.2 

33 25 27 0.0318 0.163 0.1764 0 4.4 

34 27 28 0.01913 0.0855 0.0216 0 2.2 

35 28 29 0.0237 0.0943 0.0238 0 2.2 

36 30 17 0 0.0388 0 0.96 6.6 

37 8 30 0.00431 0.0504 0.514 0 2.2 

38 26 30 0.00799 0.086 0.908 0 6.6 

39 17 31 0.0474 0.1563 0.0399 0 2.2 

40 29 31 0.0108 0.0331 0.0083 0 2.2 

41 23 32 0.0317 0.1153 0.1173 0 2.2 

42 31 32 0.0298 0.0985 0.0251 0 2.2 

43 27 32 0.0229 0.0755 0.01926 0 2.2 

44 15 33 0.038 0.1244 0.03194 0 2.2 

45 19 34 0.0752 0.247 0.0632 0 2.2 

46 35 36 0.00224 0.0102 0.00268 0 2.2 

47 35 37 0.011 0.0497 0.01318 0 2.2 

48 33 37 0.0415 0.142 0.0366 0 2.2 

49 34 36 0.00871 0.0268 0.00568 0 2.2 

50 34 37 0.00256 0.0094 0.00984 0 4.4 

51 38 37 0 0.0375 0 0.935 6.6 

52 37 39 0.0321 0.106 0.027 0 2.2 

53 37 40 0.0593 0.168 0.042 0 2.2 

54 30 38 0.00464 0.054 0.422 0 2.2 

55 39 40 0.0184 0.0605 0.01552 0 2.2 

56 40 41 0.0145 0.0487 0.01222 0 2.2 

57 40 42 0.0555 0.183 0.0466 0 2.2 

58 41 42 0.041 0.135 0.0344 0 2.2 



 

 51 

59 43 44 0.0608 0.2454 0.06068 0 2.2 

60 34 43 0.0413 0.1681 0.04226 0 2.2 

61 44 45 0.0224 0.0901 0.0224 0 2.2 

62 45 46 0.04 0.1356 0.0332 0 2.2 

63 46 47 0.038 0.127 0.0316 0 2.2 

64 46 48 0.0601 0.189 0.0472 0 2.2 

65 47 49 0.0191 0.0625 0.01604 0 2.2 

66 42 49 0.03575 0.1615 0.172 0 1.1 

67 45 49 0.0684 0.186 0.0444 0 2.2 

68 48 49 0.0179 0.0505 0.01258 0 2.2 

69 49 50 0.0267 0.0752 0.01874 0 2.2 

70 49 51 0.0486 0.137 0.0342 0 2.2 

71 51 52 0.0203 0.0588 0.01396 0 2.2 

72 52 53 0.0405 0.1635 0.04058 0 2.2 

73 53 54 0.0263 0.122 0.031 0 2.2 

74 49 54 0.039672921 0.144998276 0.1468 0 1.1 

75 54 55 0.0169 0.0707 0.0202 0 2.2 

76 54 56 0.00275 0.00955 0.00732 0 2.2 

77 55 56 0.00488 0.0151 0.00374 0 2.2 

78 56 57 0.0343 0.0966 0.0242 0 2.2 

79 50 57 0.0474 0.134 0.0332 0 2.2 

80 56 58 0.0343 0.0966 0.0242 0 2.2 

81 51 58 0.0255 0.0719 0.01788 0 2.2 

82 54 59 0.0503 0.2293 0.0598 0 2.2 

83 56 59 0.040692568 0.122426531 0.1105 0 1.1 

84 55 59 0.04739 0.2158 0.05646 0 2.2 

85 59 60 0.0317 0.145 0.0376 0 2.2 

86 59 61 0.0328 0.15 0.0388 0 2.2 

87 60 61 0.00264 0.0135 0.01456 0 4.4 

88 60 62 0.0123 0.0561 0.01468 0 2.2 

89 61 62 0.00824 0.0376 0.0098 0 2.2 

90 63 59 0 0.0386 0 0.96 4.4 

91 63 64 0.00172 0.02 0.216 0 4.4 

92 64 61 0 0.0268 0 0.985 2.2 

93 38 65 0.00901 0.0986 1.046 0 4.4 

94 64 65 0.00269 0.0302 0.38 0 4.4 
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95 49 66 0.009 0.04595 0.0496 0 2.2 

96 62 66 0.0482 0.218 0.0578 0 2.2 

97 62 67 0.0258 0.117 0.031 0 2.2 

98 65 66 0 0.037 0 0.935 2.2 

99 66 67 0.0224 0.1015 0.02682 0 2.2 

100 65 68 0.00138 0.016 0.638 0 2.2 

101 47 69 0.0844 0.2778 0.07092 0 2.2 

102 49 69 0.0985 0.324 0.0828 0 2.2 

103 68 69 0 0.037 0 0.935 4.4 

104 69 70 0.03 0.127 0.122 0 4.4 

105 24 70 0.00221 0.4115 0.10198 0 2.2 

106 70 71 0.00882 0.0355 0.00878 0 2.2 

107 24 72 0.0488 0.196 0.0488 0 2.2 

108 71 72 0.0446 0.18 0.04444 0 2.2 

109 71 73 0.00866 0.0454 0.01178 0 2.2 

110 70 74 0.0401 0.1323 0.03368 0 2.2 

111 70 75 0.0428 0.141 0.036 0 2.2 

112 69 75 0.0405 0.122 0.124 0 4.4 

113 74 75 0.0123 0.0406 0.01034 0 2.2 

114 76 77 0.0444 0.148 0.0368 0 2.2 

115 69 77 0.0309 0.101 0.1038 0 2.2 

116 75 77 0.0601 0.1999 0.04978 0 2.2 

117 77 78 0.00376 0.0124 0.01264 0 2.2 

118 78 79 0.00546 0.0244 0.00648 0 2.2 

119 77 80 0.010771552 0.033175896 0.07 0 1.466666667 

120 79 80 0.0156 0.0704 0.0187 0 2.2 

121 68 81 0.00175 0.0202 0.808 0 2.2 

122 81 80 0 0.037 0 0.935 2.2 

123 77 82 0.0298 0.0853 0.08174 0 2.2 

124 82 83 0.0112 0.03665 0.03796 0 2.2 

125 83 84 0.0625 0.132 0.0258 0 2.2 

126 83 85 0.043 0.148 0.0348 0 2.2 

127 84 85 0.0302 0.0641 0.01234 0 2.2 

128 85 86 0.035 0.123 0.0276 0 2.2 

129 86 87 0.02828 0.2074 0.0445 0 2.2 

130 85 88 0.02 0.102 0.0276 0 2.2 
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131 85 89 0.0239 0.173 0.047 0 2.2 

132 88 89 0.0139 0.0712 0.01934 0 4.4 

133 89 90 0.016307407 0.065149809 0.1588 0 1.65 

134 90 91 0.0254 0.0836 0.0214 0 6.6 

135 89 92 0.007907927 0.038274449 0.0962 0 1.1 

136 91 92 0.0387 0.1272 0.03268 0 2.2 

137 92 93 0.0258 0.0848 0.0218 0 2.2 

138 92 94 0.0481 0.158 0.0406 0 2.2 

139 93 94 0.0223 0.0732 0.01876 0 2.2 

140 94 95 0.0132 0.0434 0.0111 0 2.2 

141 80 96 0.0356 0.182 0.0494 0 2.2 

142 82 96 0.0162 0.053 0.0544 0 2.2 

143 94 96 0.0269 0.0869 0.023 0 2.2 

144 80 97 0.0183 0.0934 0.0254 0 2.2 

145 80 98 0.0238 0.108 0.0286 0 2.2 

146 80 99 0.0454 0.206 0.0546 0 2.2 

147 92 100 0.0648 0.295 0.0472 0 2.2 

148 94 100 0.0178 0.058 0.0604 0 2.2 

149 95 96 0.0171 0.0547 0.01474 0 2.2 

150 96 97 0.0173 0.0885 0.024 0 2.2 

151 98 100 0.0397 0.179 0.0476 0 2.2 

152 99 100 0.018 0.0813 0.0216 0 2.2 

153 100 101 0.0277 0.1262 
 

0 2.2 

154 92 102 0.0123 0.0559 0.01464 0 2.2 

155 101 102 0.0246 0.112 0.0294 0 2.2 

156 100 103 0.016 0.0525 0.0536 0 4.4 

157 100 104 0.0451 0.204 0.0541 0 2.2 

158 103 104 0.0466 0.1584 0.0407 0 2.2 

159 103 105 0.0535 0.1625 0.0408 0 2.2 

160 100 106 0.0605 0.229 0.062 0 2.2 

161 104 105 0.00994 0.0378 0.00986 0 2.2 

162 105 106 0.014 0.0547 0.01434 0 2.2 

163 105 107 0.053 0.183 0.0472 0 2.2 

164 105 108 0.0261 0.0703 0.01844 0 2.2 

165 106 107 0.053 0.183 0.0472 0 2.2 

166 108 109 0.0105 0.0288 0.0076 0 2.2 
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167 103 110 0.03906 0.1813 0.0461 0 2.2 

168 109 110 0.0278 0.0762 0.0202 0 2.2 

169 110 111 0.022 0.0755 0.02 0 2.2 

170 110 112 0.0247 0.064 0.062 0 2.2 

171 17 113 0.00913 0.0301 0.00768 0 2.2 

172 32 113 0.0615 0.203 0.0518 0 2.2 

173 32 114 0.0135 0.0612 0.01628 0 2.2 

174 27 115 0.0164 0.0741 0.01972 0 2.2 

175 114 115 0.0023 0.0104 0.00276 0 2.2 

176 68 116 0.00034 0.00405 0.164 0 4.4 

177 12 117 0.0329 0.14 0.0358 0 2.2 

178 75 118 0.0145 0.0481 0.01198 0 2.2 

179 76 118 0.0164 0.0544 0.01356 0 2.2 
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Appendix-D 

IEEE 118-bus test system diagram4  

 
FIGURE 6: IEEE 118-BUS TEST SYSTEM DIAGRAM   

                                                
4 The diagram of the test system is as follow in [11] 
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Appendix-E 

The Alpha Values Calculation GAMS Code 

* Milad Soroush - 2012 
* This code is written by Milad Soroush, using same code fragment from the 6-bus example by 
K. Battacharya in class for notes from ECE-666, and from OPF code by M. Pirnia.  
 
 
scalar phi   /3.141592654 / 
Var /1.2/  Demand Multipliers; 
Parameters AngleMax limit on absolute value of all voltage angles /.6/ 
*         LoadSupVar Global scaling for effect of QdSup /0/ 
           QdVar % of maximum demand as required(min) demand /1/ 
*         rpow /0.0/ 
*         qpow /0.0/ 
; 
 
$onecho > input6.txt 
set=i rng=type!a2 rdim=1 cdim=0 values=nodata 
par=type rng=type!a2 cdim=0 rdim=1 
set=k rng=resis!a2 rdim=1 cdim=0 values=nodata 
set=lines rng=resis!a2 rdim=3 cdim=0 values=nodata 
par=resis rng=resis!a2 cdim=0 rdim=3 
par=react rng=react!a2 cdim=0 rdim=3 
par=Pdem rng=Pdem!a2 cdim=0 rdim=1 
par=Qdem rng=Qdem!a2 cdim=0 rdim=1 
par=c rng=c!a2 cdim=0 rdim=1 
par=ch rng=ch!a2 cdim=0 rdim=3 
par=M rng=M!a2 cdim=0 rdim=1 
par=U rng=U!a2 cdim=0 rdim=3 
par=Qmin rng=Qmin!a2 cdim=0 rdim=1 
par=Qmax rng=Qmax!a2 cdim=0 rdim=1 
par=btype rng=btype!a2 rdim=3 cdim=0 
par=transformer rng=transformer!a2 rdim=3 cdim=0 
par=shuntB rng=shuntB!a2 rdim=1 cdim=0 
par=vlevel rng=vlevel!a2 cdim=0 rdim=1 
par=pinitial rng=pinitial!a2 rdim=1 cdim=0 
par=qinitial rng=qinitial!a2 rdim=1 cdim=0 
par=vinitial rng=vinitial!a2 rdim=1 cdim=0 
par=tinitial rng=vinitial!a2 rdim=1 cdim=0 
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par=vfx rng=vfx!a2 rdim=1 cdim=0 
$offecho 
 
$CALL GDXXRW.EXE input=118bus.xls @input6.txt 
$GDXin 118bus.gdx 
 
set      i   buses 
$load i 
alias (i,j); 
 
set  k  lines 
$load k 
alias(k,k1); 
 
set kk(k) /170*179/; 
display k; 
 
parameter transformer(k,i,j) bus type index 
$load transformer 
 
parameter shuntB(i) bus shunt susceptance index 
$load shuntB 
 
parameter vlevel (i) voltage desired level 
$load vlevel 
 
parameter btype(k,i,j) bus type index 
$load btype 
 
parameter type(i) bus type index 
$load type 
 
set      is(i)  supply buses ; 
is(i)=yes$(type(i)=2); 
 
 
 
parameter resis(k,i,j) resistance between bus i and j 
$load resis 
display resis; 
 
parameter react(k,i,j) reactance between bus i and j 
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$load react 
 
parameter ch(k,i,j) Line Charging (per unit) 
$load ch 
 
parameter Pdem(i) demanded real power (per unit) 
$load Pdem 
 
parameter Qdem(i) demanded reactive power (per unit) 
$load Qdem 
 
parameter Pinitial(i) initial real power (per unit) 
$load Pinitial 
 
parameter Qinitial(i) initial reactive power (per unit) 
$load Qinitial 
 
parameter  Vinitial(i)   initial 
$load Vinitial 
 
parameter  tinitial(i)   initial 
$load tinitial 
 
Parameter  vfx(i)   desired voltage 
$load vfx 
 
Scalar k2 /0/; 
Set  lines(k,i,j)  mapping of line numbers to from & to nodes; 
$load lines 
 
Set  isb(k,i,j) transformer branches; 
isb(k,i,j)$(lines(k,i,j))= yes$(btype(k,i,j)=1); 
 
Parameter lines2(k,i,j); 
Parameter Z(k,i,j)  is X2+R2 = magnitude of impedence power two; 
Parameter ZA(i,j) absolute value of Z; 
Parameter BB(k,i,j),GG(k,i,j),Bx(k,i,j),Gx(k,i,j) small susceptance and conductance  ; 
Parameter B(i,j), G(i,j), YCL(i) susceptance and conductance ; 
Parameter Y(i,j), Theta(i,j) admittance magnitude and its angle; 
Parameters 
        U(k,i,j)    line capacity 
        c(i)  supply cost coefficient 
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        M(i)   supply capacity parameter 
        qd(i)   quantity demanded at i  (Mw) 
        QdSup(i) random percentage increases in demand 
        Qmax    reactive power max 
        Qmin reactive power min   ; 
 
 
QdSup(i)=0; 
 
Parameter ppdem(i)  augmented demand ; 
*         ppdem(i) = Pdem(i)*(QdVar + LoadSupVar*QdSup(i)) ; 
 
$load c 
$load M 
$load U 
$load Qmin 
$load Qmax 
 
$gdxin 
 
*********** keeping initial value of lines  ********** 
 
parameter  isb2(k,i,j), btype2(k,i,j),transformer2(k,i,j) ; 
parameter line(k,i,j),ch2(k,i,j),resis2(k,i,j),react2(k,i,j); 
parameter GG2(i,j), BB2(i,j),GG3(i,j), BB3(i,j),trans(i,j),charg(i,j); 
 
transformer(k,i,j)$(transformer(k,i,j)=0 and (lines(k,i,j)))=1.0; 
lines2(k,i,j)= lines(k,i,j); 
ch2(k,i,j)= ch(k,i,j); 
resis2(k,i,j)= resis(k,i,j); 
react2(k,i,j)= react(k,i,j); 
isb2(k,i,j)= isb(k,i,j); 
transformer2(k,i,j)= transformer(k,i,j); 
 
********  conductances and suseptances *************** 
Z(k,i,j)= resis(k,i,j)*resis(k,i,j) + react(k,i,j)*react(k,i,j); 
GG(k,i,j)$(Z(k,i,j) ne 0.0000)= resis(k,i,j)/Z(k,i,j) ; 
BB(k,i,j)$(Z(k,i,j) ne 0.0000)= -react(k,i,j)/Z(k,i,j); 
 
************* Just losing K ************************** 
GG2(i,j) = sum((k)$lines(k,i,j), GG(k,i,j)); 
BB2(i,j) = sum((k)$lines(k,i,j), BB(k,i,j)); 
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trans(i,j)= sum((k)$lines(k,i,j),transformer(k,i,j)); 
charg(i,j)= sum((k)$lines(k,i,j),ch(k,i,j)); 
 
************* making G and B matrix ****************** 
G(i,j)$(trans(i,j) ne 0.00)= -GG2(i,j)/trans(i,j); 
G(j,i)$(G(i,j) ne 0.00)= G(i,j); 
 
B(i,j)$(trans(i,j) ne 0.00) = -BB2(i,j)/trans(i,j); 
B(j,i)$(B(i,j) ne 0.00)= B(i,j); 
 
GG3(i,j)$(trans(i,j) ne 0.00)= GG2(i,j)/sqr(trans(i,j)); 
BB3(i,j)$(trans(i,j) ne 0.00)= BB2(i,j)/sqr(trans(i,j)); 
 
G(i,i)= sum(j,GG3(i,j))+ sum(j,GG2(j,i)) ; 
B(i,i)= sum(j,BB3(i,j)) + sum(j,BB2(j,i))+  sum(j,charg(j,i)/2)+sum(j,charg(i,j)/2) + shuntB(i); 
 
************* making admittance matrix *************** 
Y(i,j) = sqrt(G(i,j)*G(i,j) + B(i,j)*B(i,j)); 
ZA(i,j)$(G(i,j) ne 0.00)  = abs(B(i,j))/abs(G(i,j)) ; 
 
****************************************************** 
display resis, react, Z, GG2, BB2, lines2, trans, charg,transformer,vfx; 
 
 
Theta(i,j) = arctan(ZA(i,j)); 
 
Theta(i,j)$((B(i,j) eq 0) and (G(i,j) gt 0)) = 0.0 ; 
Theta(i,j)$((B(i,j) eq 0) and (G(i,j) lt 0)) =  -0.5*phi  ; 
Theta(i,j)$((B(i,j) gt 0) and (G(i,j) gt 0)) = Theta(i,j) ; 
Theta(i,j)$((B(i,j) lt 0) and (G(i,j) gt 0)) = 2*phi - Theta(i,j); 
Theta(i,j)$((B(i,j) gt 0) and (G(i,j) lt 0)) = phi - Theta(i,j); 
Theta(i,j)$((B(i,j) lt 0) and (G(i,j) lt 0)) = phi + Theta(i,j); 
Theta(i,j)$((B(i,j) gt 0) and (G(i,j) eq 0)) = 0.5*phi; 
Theta(i,j)$((B(i,j) lt 0) and (G(i,j) eq 0)) = -0.5*phi; 
Theta(i,j)$((B(i,j) eq 0) and (G(i,j) eq 0)) = 0.0 ; 
***************************************************** 
display Z,GG,BB,G,B,Y,Theta; 
display c,M,U,lines,react,resis,is,ch,Pdem,Qdem,isb; 
**************** various demand levels ************** 
Pdem(i)= Var * Pdem(i); 
***************************************************** 
parameter rstat(k); 
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Variables 
         lineload(k) 
         cost    total generation cost ($) 
         t(i)    theta at bus i (voltage angle in radians) 
         V(i)    voltage magnitude at bus i 
         Qs(i)   reactive power supplied at bus i; 
 
Positive variables 
         q(i)   quantity supplied at i  (Mw); 
*********** initialize voltage and angles *********** 
*V.l(i)  = 1.00 ; 
V.l(i)  = Vinitial(i) ; 
*t.l(i)  =  0.00 ; 
t.l(i)  = tinitial(i) ; 
*q.fx(i)  = Pinitial(i); 
*Qs.l(i) = Qinitial(i); 
 
***************************************************** 
 
Equations 
         GenCost         define objective function 
         powerbal(i)     power balance at node i 
         repowerbal(i)    reactive power balance at node i 
         limit(k,i,j)     line limit power (for poth active and reactive power) 
         angleLimUp(k,i,j)   upper limit on voltage angle difference 
         angleLimLo(k,i,j)   lower limit on voltage angle difference 
         gencap(i)      generation capacity  ; 
 
GenCost..  cost =e= sum(i, c(i)*q(i)); 
 
powerbal(i).. q(i)$is(i) - Pdem(i)- sum((j),Y(i,j)*V(i)*V(j)*cos(theta(i,j) + t(j) - t(i))) =e= 0; 
repowerbal(i).. Qs(i)$is(i) -Qdem(i)+ sum((j),Y(i,j)*V(j)*V(i)*sin(theta(j,i) + t(j) - t(i))) =e= 0; 
 
*powerbal(i).. q(i)$is(i) - Pdem(i)- sum((j),V(i)*V(j)*(G(i,j)*cos(t(i) - t(j))+B(i,j)*sin(t(i) - t(j)))) 
=e= 0; 
*repowerbal(i).. Qs(i)$is(i)-Qdem(i)- sum((j),V(i)*V(j)*(G(i,j)*sin(t(i) - t(j))-B(i,j)*cos(t(i) - 
t(j)))) =e= 0; 
 
limit(k,i,j)$(lines(k,i,j))..  sqr(-V(i)*V(i)*G(i,j)+ V(i)*V(j)*(G(i,j)*cos(t(i)-t(j))+ B(i,j)*sin(t(i)-
t(j))))+ sqr(V(i)*V(i)*B(i,j)+ V(i)*V(j)*(G(i,j)*sin(t(i)-t(j))- B(i,j)*cos(t(i)-t(j)))) =l= 
sqr(U(k,i,j)); 
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angleLimUp(k,i,j)$(lines(k,i,j)).. t(i)-t(j) =l= AngleMax; 
angleLimLo(k,i,j)$(lines(k,i,j)).. t(i)-t(j) =g= -AngleMax; 
 
gencap(i)$is(i)..  q(i)=l=M(i); 
 
Qs.Up(i)  = Qmax(i); 
Qs.Lo(i)  = Qmin(i); 
 
V.UP(i) = 1.06; 
V.Lo(i) = 0.94; 
*V.fx(i)$(vfx(i) ne 0)= vfx(i); 
 
model network /all/; 
 
***************************************************** 
 
*option nlp=coinCouenne 
*option nlp=coinipopt; 
*option nlp=minos; 
option nlp=conopt; 
*option nlp=pathNLP 
 
solve network using NLP Minimizing cost; 
 
parameter costNLP; 
costNLP=cost.l; 
display costNLP; 
 
Parameter rcost(k); 
rcost(k)=0; 
rstat(k)=0; 
 
 
display rstat,rcost; 
***************************************************** 
 
file Line118out2 
put Line118out2; 
 
*** calculating real and reactive power of lines **** 
parameter linepower(k,i,j), linerepower(k,i,j); 
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linepower(k,i,j)= -V.l(i)*V.l(i)*G(i,j)+ V.l(i)*V.l(j)*(G(i,j)*cos(t.l(i)-t.l(j))+ B(i,j)*sin(t.l(i)-
t.l(j))); 
linerepower(k,i,j)= V.l(i)*V.l(i)*B(i,j)+ V.l(i)*V.l(j)*(G(i,j)*sin(t.l(i)-t.l(j))- B(i,j)*cos(t.l(i)-
t.l(j))); 
 
*** calculating Alpha based on the formula ********** 
 
parameter alpha(k,i,j),alpha2(k,i,j); 
 
alpha2(k,i,j)$(lines(k,i,j)) = -linepower(k,i,j)* powerbal.m(i)-linerepower(k,i,j)*repowerbal.m(i); 
alpha2(k,i,j)$(lines(k,j,i)) = -linepower(k,i,j)* powerbal.m(i)-linerepower(k,i,j)*repowerbal.m(i); 
alpha(k,i,j)$(lines(k,i,j)) = alpha2(k,i,j)+ alpha2(k,j,i); 
 
parameter Lalph(k); 
Lalph(k)=sum((i,j)$lines(k,i,j),alpha(k,i,j)); 
 
***************************************************** 
$ontext 
Parameter proportion(k); 
proportion(k)= sum((i,j)$lines(k,i,j),linepower(k,i,j)/linerepower(k,i,j)); 
 
Parameter freeBand(k,i,j),freeBand2(k,i,j),totalfree,totalfree2,perc; 
 
freeBand(k,i,j)$lines(k,i,j)= U(k,i,j)- sqrt(sqr(-V.l(i)*V.l(i)*G(i,j)+ 
V.l(i)*V.l(j)*(G(i,j)*cos(t.l(i)-t.l(j))+ B(i,j)*sin(t.l(i)-t.l(j))))+ sqr(V.l(i)*V.l(i)*B(i,j)+ 
V.l(i)*V.l(j)*(G(i,j)*sin(t.l(i)-t.l(j))- B(i,j)*cos(t.l(i)-t.l(j))))); 
freeBand2(k,i,j)= U(k,i,j)**2-limit.l(k,i,j); 
 
totalfree=sum((k,i,j)$lines(k,i,j),freeBand(k,i,j)); 
perc=sum((k,i,j)$lines(k,i,j),sqrt(linepower(k,i,j)*linepower(k,i,j)+linerepower(k,i,j)*linerepower
(k,i,j))); 
perc=sum((k,i,j)$lines(k,i,j),U(k,i,j)); 
perc=100*(perc-totalfree)/perc; 
totalfree2=sum((k,i,j)$lines(k,i,j),freeBand2(k,i,j)); 
 
Display Lalph,totalfree,totalfree2,perc, freeBand; 
$offtext 
***************************************************** 
loop(k, 
put Lalph(k)/; 
); 
***************************************************** 
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parameter percP(k,i,j),percQ(k,i,j),percLOSS(k,i,j),percSUM(k,i,j); 
 
percP(k,i,j)$(lines(k,i,j)) = (linepower(k,i,j))*(powerbal.m(j)-powerbal.m(i)) ; 
percQ(k,i,j)$(lines(k,i,j)) =  (linerepower(k,i,j))* (repowerbal.m(j)-repowerbal.m(i)); 
percSUM(k,i,j)$(lines(k,i,j)) = percP(k,i,j)+ percQ(k,i,j); 
percLOSS(k,i,j)$(lines(k,i,j)) =  alpha(k,i,j)- percSUM(k,i,j) 
 
parameter perP(k),perQ(k),perLOSS(k),perSUM(k); 
Display percP,percQ,percLOSS,percSUM; 
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Appendix-F 

The Heuristic Method GAMS Code 

* Milad Soroush - 2012 
* This code is written by Milad Soroush, using same code fragment from the 6-bus example by 
K. Battacharya in class for notes from ECE-666, and from OPF code by M. Pirnia.  
 
scalar phi   /3.141592654 / 
Var /1.2/  Demand Multipliers; 
Parameters AngleMax limit on absolute value of all voltage angles /.6/ 
*         LoadSupVar Global scaling for effect of QdSup /0/ 
 *        QdVar % of Demand Multipliers  /1.2/ 
          Jnum maximum number of lines to remove (iterations) /4/ 
*         rpow /0.0/ 
*         qpow /0.0/ 
; 
 
$onecho > input6.txt 
set=i rng=type!a2 rdim=1 cdim=0 values=nodata 
par=type rng=type!a2 cdim=0 rdim=1 
set=k rng=resis!a2 rdim=1 cdim=0 values=nodata 
set=lines rng=resis!a2 rdim=3 cdim=0 values=nodata 
par=resis rng=resis!a2 cdim=0 rdim=3 
par=react rng=react!a2 cdim=0 rdim=3 
par=Pdem rng=Pdem!a2 cdim=0 rdim=1 
par=Qdem rng=Qdem!a2 cdim=0 rdim=1 
par=c rng=c!a2 cdim=0 rdim=1 
par=ch rng=ch!a2 cdim=0 rdim=3 
par=M rng=M!a2 cdim=0 rdim=1 
par=U rng=U!a2 cdim=0 rdim=3 
par=Qmin rng=Qmin!a2 cdim=0 rdim=1 
par=Qmax rng=Qmax!a2 cdim=0 rdim=1 
par=btype rng=btype!a2 rdim=3 cdim=0 
par=transformer rng=transformer!a2 rdim=3 cdim=0 
par=shuntB rng=shuntB!a2 rdim=1 cdim=0 
par=vlevel rng=vlevel!a2 cdim=0 rdim=1 
par=pinitial rng=pinitial!a2 rdim=1 cdim=0 
par=qinitial rng=qinitial!a2 rdim=1 cdim=0 
par=vinitial rng=vinitial!a2 rdim=1 cdim=0 
par=tinitial rng=vinitial!a2 rdim=1 cdim=0 
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par=vfx rng=vfx!a2 rdim=1 cdim=0 
$offecho 
 
$CALL GDXXRW.EXE input=118bus.xls @input6.txt 
$GDXin 118bus.gdx 
 
set      i   buses 
$load i 
alias (i,j); 
 
Sets 
l   maximum # heuristic alpha solves / 1*12 /; 
alias(l,n); 
 
Scalar starttime; 
starttime = jnow; 
scalar elapsed; 
set itn /1*20/; 
parameter CostRedPC(itn); 
parameter Time(itn); 
Parameters 
MaxBest # of cost improvements before selecting best / 6 /; 
 
set  k  lines 
$load k 
alias(k,k1); 
 
set kk(k) /170*179/; 
display k; 
 
parameter transformer(k,i,j) bus type index 
$load transformer 
 
parameter shuntB(i) shunt susceptance index 
index 
$load shuntB 
 
parameter vlevel (i) voltage desired level 
$load vlevel 
 
parameter btype(k,i,j) bus type index 
$load btype 
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parameter type(i) bus type index 
$load type 
 
set      is(i)  supply buses ; 
is(i)=yes$(type(i)=2); 
 
 
 
parameter resis(k,i,j) resistance between bus i and j 
$load resis 
display resis; 
 
parameter react(k,i,j) reactance between bus i and j 
$load react 
 
parameter ch(k,i,j) Line Charging (per unit) 
$load ch 
 
parameter Pdem(i) demanded real power (per unit) 
$load Pdem 
 
parameter Qdem(i) demanded reactive power (per unit) 
$load Qdem 
 
parameter Pinitial(i) initial real power (per unit) 
$load Pinitial 
 
parameter Qinitial(i) initial reactive power (per unit) 
$load Qinitial 
 
parameter  Vinitial(i)   initial 
$load Vinitial 
 
parameter  tinitial(i)   initial 
$load tinitial 
 
parameter  vfx(i)   desired voltage 
$load vfx 
 
 
*Parameter NumLines; 
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*Parameter NumBuses; 
 
*NumLines = card(k); 
*NumBuses = card(i); 
 
Scalar k2 /0/; 
 
 
*display NumLines, NumBuses; 
 
Set  lines(k,i,j)  mapping of line numbers to from & to nodes; 
$load lines 
 
Set  isb(k,i,j) transformer branches; 
isb(k,i,j)$(lines(k,i,j))=yes$(btype(k,i,j)=1); 
 
parameter lines2(k,i,j); 
Parameter Z(k,i,j)  is X2+R2 = magnitude of impedence power two; 
Parameter ZA(i,j) absolute value of Z; 
Parameter BB(k,i,j),GG(k,i,j),Bx(k,i,j),Gx(k,i,j) small susceptance and conductance  ; 
Parameter B(i,j), G(i,j), YCL(i) susceptance and conductance ; 
Parameter Y(i,j), Theta(i,j) admittance magnitude and its angle; 
 
parameters 
        U(k,i,j)    line capacity 
        c(i)  supply cost coefficient 
        M(i)   supply capacity parameter 
        qd(i)   quantity demanded at i  (Mw) 
        QdSup(i) random percentage increases in demand 
        Qmax    reactive power max 
        Qmin reactive power min   ; 
 
 
QdSup(i)=0; 
 
Parameter ppdem(i)  augmented demand ; 
*         ppdem(i) = Pdem(i)*(QdVar + LoadSupVar*QdSup(i)) ; 
 
$load c 
$load M 
$load U 
$load Qmin 
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$load Qmax 
 
$gdxin 
 
*********** keeping initial value of lines  ************ 
 
parameter  isb2(k,i,j), btype2(k,i,j),transformer2(k,i,j) ; 
parameter line(k,i,j),ch2(k,i,j),resis2(k,i,j),react2(k,i,j); 
parameter GG2(i,j), BB2(i,j),GG3(i,j), BB3(i,j),trans(i,j),charg(i,j); 
 
transformer(k,i,j)$(transformer(k,i,j)=0 and (lines(k,i,j)))=1.0; 
lines2(k,i,j)= lines(k,i,j); 
ch2(k,i,j)= ch(k,i,j); 
resis2(k,i,j)= resis(k,i,j); 
react2(k,i,j)= react(k,i,j); 
isb2(k,i,j)= isb(k,i,j); 
transformer2(k,i,j)= transformer(k,i,j); 
 
********  conductances and suseptances ***************** 
Z(k,i,j)= resis(k,i,j)*resis(k,i,j) + react(k,i,j)*react(k,i,j); 
 
GG(k,i,j)$(Z(k,i,j) ne 0.0000)= resis(k,i,j)/Z(k,i,j) ; 
BB(k,i,j)$(Z(k,i,j) ne 0.0000)= -react(k,i,j)/Z(k,i,j); 
 
************* Just losing K ************************** 
GG2(i,j) = sum((k)$lines(k,i,j), GG(k,i,j)); 
BB2(i,j) = sum((k)$lines(k,i,j), BB(k,i,j)); 
trans(i,j)= sum((k)$lines(k,i,j),transformer(k,i,j)); 
charg(i,j)= sum((k)$lines(k,i,j),ch(k,i,j)); 
 
************* making G and B matrix ****************** 
G(i,j)$(trans(i,j) ne 0.00)= -GG2(i,j)/trans(i,j); 
G(j,i)$(G(i,j) ne 0.00)= G(i,j); 
 
B(i,j)$(trans(i,j) ne 0.00) = -BB2(i,j)/trans(i,j); 
B(j,i)$(B(i,j) ne 0.00)= B(i,j); 
 
GG3(i,j)$(trans(i,j) ne 0.00)= GG2(i,j)/sqr(trans(i,j)); 
BB3(i,j)$(trans(i,j) ne 0.00)= BB2(i,j)/sqr(trans(i,j)); 
 
G(i,i)= sum(j,GG3(i,j))+ sum(j,GG2(j,i)) ; 
B(i,i)= sum(j,BB3(i,j)) + sum(j,BB2(j,i))+  sum(j,charg(j,i)/2)+sum(j,charg(i,j)/2) + shuntB(i); 
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************* making admittance matrix *************** 
Y(i,j) = sqrt(G(i,j)*G(i,j) + B(i,j)*B(i,j)); 
ZA(i,j)$(G(i,j) ne 0.00)  = abs(B(i,j))/abs(G(i,j)) ; 
 
****************************************************** 
display resis, react, Z, GG2, BB2, lines2, trans, charg,transformer,vfx; 
 
 
Theta(i,j) = arctan(ZA(i,j)); 
 
Theta(i,j)$((B(i,j) eq 0) and (G(i,j) gt 0)) = 0.0 ; 
Theta(i,j)$((B(i,j) eq 0) and (G(i,j) lt 0)) =  -0.5*phi  ; 
Theta(i,j)$((B(i,j) gt 0) and (G(i,j) gt 0)) = Theta(i,j) ; 
Theta(i,j)$((B(i,j) lt 0) and (G(i,j) gt 0)) = 2*phi - Theta(i,j); 
Theta(i,j)$((B(i,j) gt 0) and (G(i,j) lt 0)) = phi - Theta(i,j); 
Theta(i,j)$((B(i,j) lt 0) and (G(i,j) lt 0)) = phi + Theta(i,j); 
Theta(i,j)$((B(i,j) gt 0) and (G(i,j) eq 0)) = 0.5*phi; 
Theta(i,j)$((B(i,j) lt 0) and (G(i,j) eq 0)) = -0.5*phi; 
Theta(i,j)$((B(i,j) eq 0) and (G(i,j) eq 0)) = 0.0 ; 
***************************************************** 
display Z,GG,BB,G,B,Y,Theta; 
display c,M,U,lines,react,resis,is,ch,Pdem,Qdem,isb; 
**************** various demand levels ************** 
Pdem(i)= Var * Pdem(i); 
***************************************************** 
parameter rstat(k); 
 
*Pdem(i)= Qdvar * Pdem(i); 
*U(k,i,j)=inf; 
 
Variables 
         lineload(k) 
         cost    total generation cost ($) 
         t(i)    theta at bus i (voltage angle in radians) 
         V(i)    voltage magnitude at bus i 
         Qs(i)   reactive power supplied at bus i; 
 
Positive variables 
         q(i)   quantity supplied at i  (Mw); 
*********** initialize voltage and angles *********** 
*V.l(i)  = 1.00 ; 
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V.l(i)  = Vinitial(i) ; 
*t.l(i)  =  0.00 ; 
t.l(i)  = tinitial(i) ; 
*q.fx(i)  = Pinitial(i); 
*Qs.l(i) = Qinitial(i); 
 
***************************************************** 
 
Equations 
         GenCost         define objective function 
         powerbal(i)     power balance at node i 
         repowerbal(i)    reactive power balance at node i 
         limit(k,i,j)     line limit power (for poth active and reactive power) 
         angleLimUp(k,i,j)   upper limit on voltage angle difference 
         angleLimLo(k,i,j)   lower limit on voltage angle difference 
         gencap(i)      generation capacity  ; 
 
GenCost..  cost =e= sum(i, c(i)*q(i)); 
 
powerbal(i).. q(i)$is(i) - Pdem(i)- sum((j),Y(i,j)*V(i)*V(j)*cos(theta(i,j) + t(j) - t(i))) =e= 0; 
repowerbal(i).. Qs(i)$is(i) -Qdem(i)+ sum((j),Y(i,j)*V(j)*V(i)*sin(theta(j,i) + t(j) - t(i))) =e= 0; 
 
*powerbal(i).. q(i)$is(i) - Pdem(i)- sum((j),V(i)*V(j)*(G(i,j)*cos(t(i) - t(j))+B(i,j)*sin(t(i) - t(j)))) 
=e= 0; 
*repowerbal(i).. Qs(i)$is(i)-Qdem(i)- sum((j),V(i)*V(j)*(G(i,j)*sin(t(i) - t(j))-B(i,j)*cos(t(i) - 
t(j)))) =e= 0; 
 
limit(k,i,j)$(lines(k,i,j))..  sqr(-V(i)*V(i)*G(i,j)+ V(i)*V(j)*(G(i,j)*cos(t(i)-t(j))+ B(i,j)*sin(t(i)-
t(j))))+ sqr(V(i)*V(i)*B(i,j)+ V(i)*V(j)*(G(i,j)*sin(t(i)-t(j))- B(i,j)*cos(t(i)-t(j)))) =l= 
sqr(U(k,i,j)); 
 
angleLimUp(k,i,j)$(lines(k,i,j)).. t(i)-t(j) =l= AngleMax; 
angleLimLo(k,i,j)$(lines(k,i,j)).. t(i)-t(j) =g= -AngleMax; 
 
gencap(i)$is(i)..  q(i)=l=M(i); 
 
Qs.Up(i)  = Qmax(i); 
Qs.Lo(i)  = Qmin(i); 
 
V.UP(i) = 1.06; 
V.Lo(i) = 0.94; 
*V.fx(i)$(vfx(i) ne 0)= vfx(i); 
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model network /all/; 
 
***************************************************************** 
 
*option nlp=coinCouenne 
*option nlp=coinipopt; 
*option nlp=minos; 
option nlp=conopt; 
*option nlp=pathNLP 
 
solve network using NLP Minimizing cost; 
 
 
Scalar SolveTime; 
SolveTime = network.ETsolve; 
 
 
parameter costNLP; 
costNLP=cost.l; 
display costNLP; 
 
Parameter rcost(k); 
rcost(k)=0; 
rstat(k)=0; 
 
***************************************************************** 
 
file Line118out2 
put Line118out2; 
 
*** calculating real and reactive power of lines **************** 
parameter linepower(k,i,j), linerepower(k,i,j); 
linepower(k,i,j)= -V.l(i)*V.l(i)*G(i,j)+ V.l(i)*V.l(j)*(G(i,j)*cos(t.l(i)-t.l(j))+ B(i,j)*sin(t.l(i)-
t.l(j))); 
linerepower(k,i,j)= V.l(i)*V.l(i)*B(i,j)+ V.l(i)*V.l(j)*(G(i,j)*sin(t.l(i)-t.l(j))- B(i,j)*cos(t.l(i)-
t.l(j))); 
 
*** calculating Alpha based on the formula ********************** 
 
parameter alpha(k,i,j),alpha2(k,i,j); 
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alpha2(k,i,j)$(lines(k,i,j)) = -linepower(k,i,j)* powerbal.m(i)-linerepower(k,i,j)*repowerbal.m(i); 
alpha2(k,i,j)$(lines(k,j,i)) = -linepower(k,i,j)* powerbal.m(i)-linerepower(k,i,j)*repowerbal.m(i); 
alpha(k,i,j)$(lines(k,i,j)) = alpha2(k,i,j)+ alpha2(k,j,i); 
 
parameter Lalph(k); 
Lalph(k)=sum((i,j)$lines(k,i,j),alpha(k,i,j)); 
 
***************************************************************** 
 
Display Lalph; 
 
Parameter TotDem; 
Parameter TotSup; 
Parameter TotCap; 
Parameter TotLoss; 
Parameter TotLossPC; 
Parameter VangDiff(k,i,j); 
Parameter MaxVangDiff; 
Parameter NumLines; 
 
***************************************************************** 
TotDem = sum(i,qdem(i)); 
TotSup = sum(i,qs.l(i)); 
TotLoss = TotSup - TotDem; 
TotLossPC = 100*TotLoss/TotSup; 
VangDiff(k,i,j)$lines(k,i,j) = abs(t.l(i)-t.l(j)); 
MaxVangDiff = 0; 
 
***************************************************************** 
loop(lines(k,i,j), 
         if(VangDiff(k,i,j)>MaxVangDiff, MaxVangDiff=VangDiff(k,i,j)); 
); 
***************************************************************** 
 
TotCap = sum(is,M(is)); 
NumLines = card(lines); 
Parameter NumZeroPrices; 
NumZeroPrices = sum(i$(powerbal.m(i) = 0),1); 
parameter line3(k,i,j),ch3(k,i,j),resis3(k,i,j),react3(k,i,j), isb3(k,i,j), 
btype3(k,i,j),transformer3(k,i,j); 
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****************** Heurstic Loop ******************************** 
 
Parameter SMalpha smallest alpha value among lines; 
Parameters 
         x optimality flag /1/ 
         yy Jnum counter /0/ 
         zzz counter for cost reductions / 0 / 
         w flag to only remove 1 line if ties / 0 / 
         s counter for number of alpha tries / 0 / 
 
         Bsave(k,i,j) susceptance from previous iteration 
         Gsave(k,i,j) conductance from previous iteration 
 
         Balpha(l,i,j) susceptance without alpha line 
         Galpha(l,i,j) conductance without alpha line 
 
         newcost(l) with largest alpha line removed 
         stat(l) model status with alpha line removed 
         NLPtime(l) keeping executing time of the method 
         lastcost last smallest cost 
         firstcost first NLP cost solution 
         NetStat Solver status of the last best solve /1/ 
         Loss(l) loss  during each alpha solve 
         MaxVDiff(l) maximum voltage angle difference for each l 
         t_alpha(l,i) variables required for computing alpha for each l. 
         V_alpha(l,i) variables required for computing alpha for each l 
         t_save(l,i) 
         V_save(l,i) 
         lines_alpha(l,k,i,j) 
         powerbal_alpha(l,i) 
         repowerbal_alpha(l,i) 
         limit_alpha(l,k,i,j); 
 
lastcost = cost.l; 
firstcost = cost.l; 
 
***************************************************************** 
 
put 'NLP-118Bus-Heuristic-RR-v1' /; 
put 'Time stamp: ' @15 Jnow::4 /; 
put 'Numlines: ' @10 Numlines @25 ' Jnum: ' @35 Jnum /; 
put 'LoadSupVar: ' @10 LoadSupVar @25 ' QdVar: ' @35 QdVar /; 
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put 'Number of Alpha Solves per iteration: ' @40 card(l) /; 
put 'Number of cost reductions before best MaxBest: ' @50 MaxBest /; 
put 'Initial cost: ' @15 cost.l @30 network.Tmodstat /; 
put 'Initial loss %: ' TotLossPC /; 
put 'MaxVangDiff: ' MaxVangDiff / /; 
 
 
 
***** main loop: each iteration for one removal ***************** 
 
while ((x=1 and (NetStat=1 OR NetStat=2) and yy<Jnum), 
         x=0; 
         yy=yy+1; 
         put 'Iteration: ' yy /; 
         zzz=0; 
         s=0; 
         newcost(l)=lastcost + 10000; 
         NLPtime(l) = 0; 
 
***** the loop for alpha tries in each iteration **************** 
 
         loop(l, 
******* picking smallest alpha ********************************** 
 
                 SMalpha = smin((k,i,j)$lines(k,i,j),alpha(k,i,j)); 
 
******* alpha should be bigger than zero to be picked *********** 
******* required at most msxbest=4 nbr of improvements ********** 
 
                 if (SMalpha < 0 AND zzz<MaxBest, 
                         w=0; 
                         s=s+1; 
                         Lalph(k)=sum((i,j)$lines(k,i,j),alpha(k,i,j)); 
 
******* restructuring the values after the removal ************** 
 
                         loop(k1, 
                                 if (Lalph(k1)=SMalpha AND w=0, 
 
                                    YCL(i)=0; 
                                    GG(k,i,j)=0; 
                                    GG2(i,j)=0; 
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                                    GG3(i,j)=0; 
                                    BB(k,i,j)=0; 
                                    BB2(i,j)=0; 
                                    BB3(i,j)=0; 
                                    Z(k,i,j)=0; 
                                    transformer(k,i,j)=0; 
                                    trans(i,j)= 0; 
                                    BB(k,i,j)=0; 
                                    G(i,j)=0; 
                                    B(i,j)=0; 
                                    Y(i,j)=0; 
                                    theta(i,j)=0; 
                                    ZA(i,j)=0; 
                                    ch(k,i,j)=0; 
                                    lines(k,i,j)= no; 
                                    isb(k,i,j)=no; 
 
                                    lines(k,i,j)= lines2(k,i,j); 
                                    lines(k1,i,j)= no; 
 
                                    isb(k,i,j)$(lines2(k,i,j))= isb2(k,i,j); 
                                    transformer(k,i,j)$(lines2(k,i,j))= transformer2(k,i,j); 
                                    ch(k,i,j)$(lines2(k,i,j))= ch2(k,i,j); 
                                    resis(k,i,j)$(lines2(k,i,j))= resis2(k,i,j); 
                                    react(k,i,j)$(lines2(k,i,j))= react2(k,i,j); 
 
                                    ch(k,i,j)$(not lines(k,i,j))= 0; 
                                    resis(k,i,j)$(not lines(k,i,j))= 0; 
                                    react(k,i,j)$(not lines(k,i,j))= 0; 
                                    isb(k,i,j)$(not lines(k,i,j))= no; 
                                    btype(k,i,j)$(not lines(k,i,j))= 0; 
                                    transformer(k,i,j)$(not lines(k,i,j))= 0; 
 
                                    Z(k,i,j)= resis(k,i,j)*resis(k,i,j) + react(k,i,j)*react(k,i,j); 
                                    GG(k,i,j)$(Z(k,i,j) ne 0.0000)= resis(k,i,j)/Z(k,i,j) ; 
                                    BB(k,i,j)$(Z(k,i,j) ne 0.0000)= -react(k,i,j)/Z(k,i,j); 
 
************************ Just losing K ************************* 
 
                                    GG2(i,j) = sum((k)$lines(k,i,j), GG(k,i,j)); 
                                    BB2(i,j) = sum((k)$lines(k,i,j), BB(k,i,j)); 
                                    trans(i,j)= sum((k)$lines(k,i,j),transformer(k,i,j)); 
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                                    charg(i,j)= sum((k)$lines(k,i,j),ch(k,i,j)); 
 
 
                                    G(i,j)$(trans(i,j) ne 0.00)= -GG2(i,j)/trans(i,j); 
                                    G(j,i)$(G(i,j) ne 0.00)= G(i,j); 
 
                                    B(i,j)$(trans(i,j) ne 0.00) = -BB2(i,j)/trans(i,j); 
                                    B(j,i)$(B(i,j) ne 0.00)= B(i,j); 
 
                                    GG3(i,j)$(trans(i,j) ne 0.00)= GG2(i,j)/sqr(trans(i,j)); 
                                    BB3(i,j)$(trans(i,j) ne 0.00)= BB2(i,j)/sqr(trans(i,j)); 
 
                                    G(i,i)= sum(j,GG3(i,j))+ sum(j,GG2(j,i)) ; 
                                    B(i,i)= sum(j,BB3(i,j)) + sum(j,BB2(j,i))+ 
sum(j,charg(j,i)/2)+sum(j,charg(i,j)/2) + shuntB(i); 
 
                                    Y(i,j) = sqrt(G(i,j)*G(i,j) + B(i,j)*B(i,j)); 
                                    ZA(i,j)$(G(i,j) ne 0.00)  = abs(B(i,j))/abs(G(i,j)) ; 
 
                                    display resis, react, Z, GG2, BB2, lines2, trans, charg,transformer; 
 
                                    Theta(i,j) = arctan(ZA(i,j)); 
 
                                    Theta(i,j)$((B(i,j) eq 0) and (G(i,j) gt 0)) = 0.0 ; 
                                    Theta(i,j)$((B(i,j) eq 0) and (G(i,j) lt 0)) =  -0.5*phi  ; 
                                    Theta(i,j)$((B(i,j) gt 0) and (G(i,j) gt 0)) = Theta(i,j) ; 
                                    Theta(i,j)$((B(i,j) lt 0) and (G(i,j) gt 0)) = 2*phi - Theta(i,j); 
                                    Theta(i,j)$((B(i,j) gt 0) and (G(i,j) lt 0)) = phi - Theta(i,j); 
                                    Theta(i,j)$((B(i,j) lt 0) and (G(i,j) lt 0)) = phi + Theta(i,j); 
                                    Theta(i,j)$((B(i,j) gt 0) and (G(i,j) eq 0)) = 0.5*phi; 
                                    Theta(i,j)$((B(i,j) lt 0) and (G(i,j) eq 0)) = -0.5*phi; 
                                    Theta(i,j)$((B(i,j) eq 0) and (G(i,j) eq 0)) = 0.0 ; 
 
                                    display Z,GG,BB,YCL,G,B,Y, Theta, isb; 
 
                                    display c, M, U, lines, react, resis, is, ch, Pdem,Qdem; 
 
                                    V.l(i) = 1.0 ; 
                                    t.l(i) =  0 ; 
                                    q.l(i) = 0 ; 
                                    Qs.l(i)= 0 ; 
                                    cost.l = 0; 
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                                    w=1; 
                                    alpha(k1,i,j) = 0; 
                                    Lalph(k1)=0; 
                                    lines_alpha(l,k,i,j)=lines(k,i,j); 
                                    display lines_alpha; 
                                 ); 
                         ); 
 
 
                         display lines_alpha; 
                         solve network using nlp minimizing cost; 
                         NLPtime(l) = network.ETsolver; 
 
                         t_alpha(l,i) = t.l(i); 
                         V_alpha(l,i) = V.l(i); 
 
                         powerbal_alpha(l,i) = powerbal.m(i); 
                         repowerbal_alpha(l,i) = repowerbal.m(i); 
                         limit_alpha(l,k,i,j) = limit.m(k,i,j); 
 
                         stat(l) = network.Modelstat; 
                         TotDem = sum(i,Pdem(i)); 
                         TotSup = sum(i,q.l(i)); 
                         TotLoss = TotSup - TotDem; 
                         Loss(l) = 100*TotLoss/TotSup; 
                         newcost(l) = cost.l; 
                         put 'Alpha 'l.val ' Cost ' cost.l /; 
                         newcost(l)$(stat(l)<>1 AND stat(l)<>2 )= lastcost + 10000; 
                         if (newcost(l) < lastcost, 
                                 zzz=zzz+1 
                         ); 
 
                          Balpha(l,i,j) = B(i,j); 
                          Galpha(l,i,j) = G(i,j); 
                          Balpha(l,i,i) = B(i,i); 
                          Galpha(l,i,i) = G(i,i); 
 
 
                          alpha(k,i,j)$(alpha(k,i,j)$(lines(k,i,j)) = SMalpha) = 0; 
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                          VangDiff(k,i,j)$lines(k,i,j) = abs(t.l(i)-t.l(j)); 
                          MaxVDiff(l) = smax((k,i,j)$lines(k,i,j),VangDiff(k,i,j)); 
                 ); 
         ); 
         put 'Alpha solves: '  s /; 
 
************** recalculating alphas and updating the costs ******* 
 
         loop(l, 
                 if (((newcost(l) = smin(n, newcost(n))) and (newcost(l) < lastcost) and ((stat(l) = 
1)OR(stat(l) = 2) )), 
 
 
                         display lines, lines2, lines_alpha; 
 
                          lines2(k,i,j)$(lines(k,i,j))= lines_alpha(l,k,i,j); 
                          B(i,j) = Balpha(l,i,j); 
                          G(i,j) = Galpha(l,i,j); 
                          loop((k,i,j), 
                                 linepower(k,i,j)$(lines(k,i,j))= -V_alpha(l,i)*V_alpha(l,i)*Galpha(l,i,j)+ 
V_alpha(l,i)*V_alpha(l,j)*(Galpha(l,i,j)*cos(t_alpha(l,i)-t_alpha(l,j))+ 
Balpha(l,i,j)*sin(t_alpha(l,i)-t_alpha(l,j))); 
                                 linerepower(k,i,j)$(lines(k,i,j))= V_alpha(l,i)*V_alpha(l,i)*Balpha(l,i,j)+ 
V_alpha(l,i)*V_alpha(l,j)*(Galpha(l,i,j)*sin(t_alpha(l,i)-t_alpha(l,j))- 
Balpha(l,i,j)*cos(t_alpha(l,i)-t_alpha(l,j))); 
                          ); 
                          display lines2; 
 
                         alpha2(k,i,j)$(lines2(k,i,j)) = -linepower(k,i,j)* powerbal_alpha(l,i)-
linerepower(k,i,j)*repowerbal_alpha(l,i); 
                         alpha2(k,i,j)$(lines2(k,i,j)) = -linepower(k,i,j)* powerbal_alpha(l,i)-
linerepower(k,i,j)*repowerbal_alpha(l,i); 
 
                         alpha(k,i,j)$(lines2(k,i,j)) = alpha2(k,i,j)+ alpha2(k,j,i); 
 
                         display lines2, alpha; 
                         alpha(k,i,j)$(not lines2(k,i,j)) = 0; 
                         display lines2, alpha; 
                         put 'New cost: ' @10 newcost(l) /; 
                         put 'Cost %: ' @10 (100*(firstcost-newcost(l))/firstcost) /; 
                         put 'Loss %: ' @10 Loss(l) /; 
                         put 'MaxVangDiff: ' MaxVDiff(l) /; 
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                         lastcost = newcost(l); 
 
                         NetStat=stat(l); 
                         x=1; 
                 ); 
         ); 
 
******** if we have no further improvement x=0 to end the main loop ******** 
 
         if (x=0, 
                 put 'No Further Cost Reduction - Heuristic Termination' / /; 
                 put 'Optimal Cost: ' @15 lastcost /; 
                 put 'Cost %: ' @10 (100*(firstcost-lastcost)/firstcost) /; 
         ); 
 
************************ calculating the run-time ************************** 
 
SolveTime = SolveTime + sum(n,NLPtime(n)); 
elapsed = (jnow - starttime)*24*3600; 
put 'Solve Time: ' SolveTime::4 /; 
put 'Total Code Run Time: ' elapsed::4 / / ; 
Time(itn)$(ord(itn)=yy)=elapsed; 
 
); 
 
************************ ending the main loop (when) *********************** 
if (yy=jnum and x<>0, 
         put / 'Jnum Lines Removed - Heuristic Termination' / 
         put 'Last Best Cost: ' @15 lastcost /; 
         put 'Cost %: ' @10 (100*(firstcost-lastcost)/firstcost) /; 
); 
 
display firstcost,lastcost; 
 
 
put /  ; 
put 'Time in Sec,' ; 
loop(itn$(ord(itn) <= Jnum), put Time(itn) ',') ; 
************************************************************************** 

 


