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Abstract

Feedbacks between the climate system and the high-latitude carbon cycle will substantially influ-
ence the intensity of future climate change. It is therefore crucial that the net ecosystem exchange
of CO2 (NEE) between the high-latitude land surface and the atmosphere is accurately quanti-
fied, where NEE refers to the difference between ecosystem respiration (R) and photosynthesis
(gross ecosystem exchange, GEE): NEE = −GEE+R in µmol/m2/s. NEE can only be directly
measured over areas of ≈1 km2 through eddy covariance, and modeling approaches such as the
Vegetation Photosynthesis Respiration Model (VPRM) are required to upscale NEE. VPRM is a
remote sensing based model that calculates R as a linear function of air temperature (Ta) when
air temperature is above a given threshold (Tlow), and sets respiration to a constant value when
Ta < Tlow. GEE is estimated according to remote sensing observations of vegetation indices,
shortwave radiation, air temperature, and soil moisture. Although in situ findings have shown
that snow and Arctic species composition have a substantial influence on high-latitude NEE,
model estimates of high-latitude NEE have typically been generated without Arctic-specific veg-
etation classes, and without using remote sensing observations to represent the effects of snow
on NEE. The hypothesis driving this work was therefore that uncertainty in estimates of high-
latitude NEE could be reduced by representing the influences of Arctic vegetation classes and
snow. The central objectives were to determine feasible approaches for reducing uncertainty in
VPRM estimates of NEE by representing the influences of snow and Arctic vegetation, create
PolarVPRM accordingly, and analyze inter-annual variability in PolarVPRM estimates of high-
latitude North American NEE (2001–2012).

The associations between snow and NEE, and the potential to describe these influences on NEE
using remote sensing observations, were examined using time lapse camera observations of snow
cover area (SCA) and eddy covariance measurements of NEE from Daring Lake, Northwest Ter-
ritories, Canada. Analyses indicated good agreement between SCA derived from camera, Land-
sat and Moderate Resolution Imaging Spectroradiometer (MODIS) observations. SCA was also
found to influence the timing and magnitude of NEE. MODIS SCA was therefore incorporated
into VPRM, and VPRM was calibrated using eddy covariance and meteorological observations
collected in 2005 at Daring Lake. VPRM was run through years 2004–2007 over both Daring Lake
and Ivotuk, Alaska, USA, using four model formulations, three of which represented the effects
of SCA on respiration and/or photosynthesis, and another which did not use MODIS SCA. Com-
parisons against eddy covariance observations indicated that uncertainty was reduced in VPRM
estimates of NEE when respiration was calculated as a linear function of soil temperature when
SCA≥50%, and as a linear function of air temperature when SCA<50%, thereby reflecting the
influence of snow on decoupling soil/air temperatures. Representing the effect of SCA on NEE
therefore reduced uncertainty in VPRM estimates of NEE.
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In order to represent spatial variability in high-latitude estimates of NEE due to vegetation type,
Arctic-specific vegetation classes were created for PolarVPRM by combining and aggregating two
existing vegetation classifications: the Synergetic Land Cover Product and the Circumpolar Arctic
Vegetation Map. Levene’s test indicated that the PolarVPRM vegetation classes divided the pan-
Arctic region into heterogeneous distributions in terms of net primary productivity, and passive
microwave derived estimates of snow and growing season influences on NEE. A non-parametric
statistical approach of Alternating Conditional Expectations found significant, non-linear associ-
ations to exist between passive microwave derived estimates of snow and growing season drivers
of NEE. Furthermore, the shape of these associations varied according to the vegetation class
over which they were examined. Further support was therefore provided to the idea that uncer-
tainty in model estimates of NEE could be reduced by calculating snow and growing season NEE
separately within each vegetation class.

PolarVPRM estimates of NEE in 2001–2012 were generated at a three hourly and 1
6

◦ × 1
4

◦
reso-

lution across polar North America (55–170◦W, 55–83◦N). Model calibration was conducted over
three sites: Daring Lake, Ivotuk, and Atqasuk, Alaska, USA. Model validation was then con-
ducted by comparing PolarVPRM estimates of year-round daily average NEE to non-gap-filled
eddy covariance observations of daily average NEE acquired over the three calibration sites, as
well as six other Arctic sites. PolarVPRM performed well over all sites, with an average mean
absolute error (MAE) of 0.20 µmol/m2/s, and had diminished error rates when the influence of
SCA on respiration was explicitly represented. Error analysis indicated that peak growing season
GEE was underestimated at Barrow because GEE at this site showed a stronger response to the
amount of incoming shortwave radiation than at the calibration site, suggesting that PolarVPRM
may underestimate GEE over wetland and barren vegetated regions. Despite these uncertainties,
PolarVPRM was found to generate more accurate estimates of mean monthly and daily NEE
relative to eddy covariance observations than two established models, FLUXNET Model-Tree
Ensemble (MTE) and CarbonTracker. Relative to eddy covariance observations and PolarVPRM
estimates, MTE tended to overestimate snow season respiration, and CarbonTracker tended to
overestimate the amount of midday photosynthesis. Analysis of PolarVPRM output across North
America (north of 55◦ N) found an increase in net annual carbon efflux over over time (2001–
2012). Specifically, increased rates of respiration are estimated when soil and air temperatures
are warmer. Although increases in growing season vegetation indices and air temperature enable
greater photosynthetic uptake by Arctic vegetation, forests and shrublands uptake less CO2 in
the middle of the growing season when air temperatures rise above the physiological optima for
photosynthesis. As a result, PolarVPRM estimated a decline in net photosynthetic uptake over
time. Overall, PolarVPRM output indicates that North American regions north of 55◦N are
losing strength as a carbon sink in response to rising air temperatures.
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Plain language summary

Rising atmospheric concentrations of carbon dioxide (CO2) are causing the Earth’s tem-
perature to rise. Presently, enormous amounts (1.4×1015 kg) of carbon are stored below-
ground in Arctic regions, and it is likely that future atmospheric concentrations of CO2

and global temperatures will rise due to the natural releases of carbon from below-ground
into the atmosphere. It is therefore important to keep track of the net ecosystem exchange
(NEE) of CO2 between the Arctic land surface and the atmosphere, and understand its
responses to climate change. Researchers can measure atmospheric concentrations of CO2

across the entire Arctic using satellite observations, but NEE can only be measured di-
rectly using towers which are expensive and time consuming to keep running. Models are
therefore needed to generate estimates of NEE across regions, but these models tend to
have large uncertainties. The objective of this thesis was to reduce uncertainty in model
estimates of Arctic NEE.

Recent studies have shown that snow influences the rate and timing of soil respiration
in Arctic regions, and that satellite observations can provide good estimates of the timing
of snowfall and snowmelt. Satellite observations of snow were therefore included in a
model of NEE, and these observations were used to help reduce error in snow season
estimates of respiration. Representing these influences therefore means that we might get
better estimates of NEE, and we might also get new insights into the Arctic carbon cycle.
We were therefore curious about what linkages exist between snow and growing season
influences on NEE. In other words, do areas that tend to have conditions more conducive to
photosynthesis also receive more snow, which is conducive to greater rates of respiration?
We studied these non-linear associations and found highly variable associations which
varied by vegetation class. For example, forested sites with more vegetation and colder
summer temperatures tend to accumulate more snow, whereas the opposite is true over
tundra regions. It is clear, then, that including both snow and growing season influences
on NEE is likely to improve model estimates.

PolarVPRM was then developed to estimate NEE in northern regions, using Arctic-
specific vegetation classes and representing the influences of both snow and growing season
processes on NEE. We checked how well this model fit against tower observations of NEE,
carried out a mathematical analysis of model errors, and looked at how PolarVPRM es-
timates of NEE compared against other models. Since these indicated that PolarVPRM
performed well, we then looked at what PolarVPRM could tell us about how NEE had
changed over time between 2001–2012. Over time, it appears that regions north of the
treeline are releasing more CO2, and that forested regions are uptaking less CO2 through
photosynthesis.
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Chapter 1

Introduction

1.1 Motivation

Carbon dioxide (CO2) is a long-lived greenhouse gas whose global emissions have increased
by 80% (21 to 38 Gt CO2/yr) between 1970-2004 (Solomon et al., 2007). Climate change
has been found to both increase photosynthetic uptake of carbon by vegetation due to
northward movements of the shrub and treelines (Hinzman et al., 2005; Tape et al., 2006),
and to increase the amount of CO2 and CH4 released through soil respiration and per-
mafrost thaw (Tarnocai , 2006). Pan-Arctic analyses of trends over time in vegetation and
temperature indicated significant rises in air temperature, the normalized difference vege-
tation index (NDVI), and net uptake of carbon by vegetation (net primary productivity,
NPP) Figure 1.1.

As noted by Lafleur and Humphreys (2008): “the extent to which winter CO2 emissions
may offset increased summer sequestration is not presently known. This is probably one
of the most critical issues in arctic C balance research today”. Not only is this issue
critical within carbon balance research, but the carbon balance of northern ecosystems
has widespread scientific and policy implications. High-latitude cryospheric soils presently
contain between 1400 to 1850 Gt of organic carbon (McGuire et al., 2010). To put this
number in perspective, if 1400-1850 Gt C were theoretically to be instantaneously released
into the atmosphere as CO2, this would cause global concentrations of CO2 to immediately
triple, from ≈397 ppm (as of 03/12) to between 1060-1274 ppm. In the more realistic
IPCC A1B emission scenario for 2200, permafrost thaw alone is predicted to cause a rise
in atmospheric CO2 concentrations of 87±29 ppm (Schaefer et al., 2011).
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Figure 1.1: Trends over time (1982–2000) in pan-Arctic May–September APP-x tempera-
ture (left), GloPEM net primary productivity (centre) and GIMMS normalized difference
vegetation index (right). The Sen’s slope values are indicated only at locations showing
significant (p-value<0.05) change over time. This figure represents an extension of the
analysis provided in Luus (2009).

Accurate estimates of the land-atmosphere exchange of CO2 through photosynthesis
and respiration (net ecosystem exchange, or NEE) are therefore crucial, especially at high-
latitudes. Substantial uncertainties exist regarding NEE across the Arctic and sub-Arctic
land surfaces. Model estimates of Arctic and sub-Arctic NEE are poorly constrained,
due to the scarcity of high-latitude observations of CO2 exchange, and due to the fact that
models do not represent Arctic-specific drivers of NEE. The question therefore arises: Could
uncertainty in estimates of Arctic and sub-Arctic NEE be reduced through the development
of a model that uses a remote sensing approach to explicitly represent Arctic vegetation
classes and Arctic snow season drivers of NEE? If so, what might the implications of
the model outputs be for our present understanding of the northern carbon cycle and its
response to climate change?

1.2 Objectives

The central objective of this research was to improve scientific understanding of the high-
latitude North American carbon cycle in terms of its present-day magnitude and drivers
(2001–2012). This objective was accomplished by first reviewing recent literature to iden-
tify sources of uncertainty in high-latitude measurements and regional estimates of NEE,
and suggesting strategies which could be used to reduce uncertainty in model estimates
of NEE. Investigations indicated that over half of annual CO2 efflux occurs during the
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long snow season, but that no models to date had employed remote sensing observations
to represent snow season influences on NEE. The motivation was therefore provided for
improving model estimates accordingly.

The second objective was to reduce uncertainty in model estimates of high-latitude net
ecosystem CO2 exchange by representing snow season influences on NEE. The third objec-
tive was to examine the spatial associations between snow and growing season influences
on NEE across Arctic vegetation classes, which provided the context and motivation nec-
essary to represent Arctic vegetation and snow in a new model of NEE (PolarVPRM). The
fourth objective was to generate improved model estimates of the North American carbon
budget using PolarVPRM. PolarVPRM was first evaluated over two validation sites along
with two established models, and findings indicated that PolarVPRM had the lowest er-
rors over these sites. Since these model estimates showed reduced uncertainty relative to
field observations, trends over time in PolarVPRM output and drivers (2001–2012) were
analyzed to understand the recent response of the high-latitude North American carbon
cycle to changing climate conditions.

1.3 Organization

Chapter 2 examines the suitability of various cryospheric remote sensing observations and
products for inclusion in models of NEE, and provides recommendations of how carbon
models might incorporate remote sensing observations of snow. One direction which is de-
scribed as especially promising is the use of visible and infrared observations of fractional
snow cover to determine the start and end of the snow season, and the rate of snow onset
and depletion. Another promising research direction involved estimating snow season res-
piration as a function of snow accumulation. Although preliminary analysis indicated that
this strategy might be feasible, it also revealed that this approach might introduce sub-
stantial uncertainties into model estimates due to the coarse resolution of remote sensing
observations of snow accumulation (25 km) and the lack of snow accumulation measure-
ments at eddy covariance sites (Luus et al., 2010b).

The potential for remote sensing observations of fractional snow cover to be incor-
porated into models of NEE is therefore assessed in Chapter 3. Analyses indicated that
associations existed between NEE and snow cover area which could be well described using
remote sensing observations. Uncertainty in VPRM estimates of NEE at paired calibra-
tion and validation sites was reduced by including remote sensing observations of fractional
snow cover, and estimating growing season and snow season respiration as functions of air
and soil temperature, respectively.
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These results therefore indicated the possibility that regional estimates of polar NEE
may be improved by representing fractional snow cover area, and underscored a com-
mon finding in published studies [Chapter 2] that the carbon balance itself is altered by
inter-connected changes in snowpack dynamics and in the factors determining growing
season uptake of CO2 (quantity of vegetation, soil moisture and air temperature). A non-
parametric statistical technique was used to assess the non-linear linkages between satellite
passive microwave observations of pan-Arctic snow accumulation and growing season land
surface properties (air temperature, soil moisture and vegetation) [Chapter 4]. These link-
ages were analyzed within seven pan-Arctic vegetation classes, defined by combining two
established vegetation classifications and aggregating similar vegetation types.

Briefly, within each vegetation class, regions with greater aboveground biomass, wetter
soils and warmer air temperature tend to have less snow at the start and end of the snow
season, likely due to the effects of interception, sublimation and melt. Mean growing
season air temperature and biomass are both inversely associated with snow accumulation
in forested sites, but directly associated with snow accumulation over Arctic tundra regions
with <75 mm of snow water equivalent. Interconnections between the drivers of snow
and growing season NEE, and the possibility of observing linkages in coarse, pan-Arctic
observations that agree with locally observed thresholds and interactions underlines the
complexity of the cryosphere-atmosphere-biosphere system. As a result of this complexity,
it is likely that model estimates of high-latitude NEE could be improved by calculating
snow and growing season NEE separately within each vegetation class.

PolarVPRM estimates of pan-Arctic NEE were therefore generated using the vegeta-
tion classes established in Chapter 4, and the influences of snow on NEE described in
Chapter 3. Model evaluation indicated that PolarVPRM generated estimates of NEE with
good agreement against eddy covariance derived observations of NEE, and against previ-
ous modeling approaches1. PolarVPRM estimates of high-latitude North American NEE
(55–83◦N) showed increases over time (2001–2012) in respiration over tundra regions, and
declines in the rate of photosynthetic uptake by vegetation over forested regions. These
changes in NEE occurred due to warming air/soil temperatures and declines in vegetation
indices, and account for a substantial decline in the net uptake of carbon by northern
ecosystems. The main contributions of this thesis were therefore in reviewing snow season
influences on NEE, describing the non-linear linkages between snow and growing season

1The eddy covariance technique is an established approach for collecting representative observations of
land-atmosphere NEE at a high temporal resolution over ≈1 km2 areas. Although noise and uncertainty
exist in eddy covariance derived calculations of of NEE (as discussed in section 2.3), these are commonly
used as standard estimates of NEE. Likewise, in this thesis, eddy covariance observations represent the
standard against which model uncertainty and improvements are described.
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drivers of NEE, establishing and implementing a remote sensing based approach for repre-
senting the influence of snow on NEE, and analyzing the implications of this model output
for our current understanding of the high latitude North American carbon budget and its
responses to recent climate change.
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Chapter 2

Subnivean Arctic & sub-Arctic net
ecosystem exchange (NEE): Towards
representing snow season processes in
models of NEE using cryospheric
remote sensing
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Overview

In the Arctic and sub-Arctic, up to half of annual net ecosystem exchange (NEE) occurs
during the snow season. Subnivean soil respiration can persist at a greater rate when the
overlying snowpack has a lower thermal conductivity, and the rate of photosynthetic up-
take at the start and end of the snow season can be diminished by fractional snow cover.
Although recent studies have indicated that uncertainty in model estimates of NEE can be
reduced by representing the influence of a modeled snowpack on soil respiration, models
of NEE have not represented the influence of snowpack dynamics on processes such sub-
nivean photosynthesis or CO2 diffusivity, and have not used remote sensing observations
to characterize snow season processes. We therefore: 1) review snow season processes and
their effects on NEE; 2) assess the suitability of cryospheric remote sensing approaches
for models of NEE; and 3) suggest strategies for representing snow season processes in
models of NEE. Satellite visible and infrared remote sensing observations of fractional
snow cover in spring and fall could be used to restrict estimates of photosynthetic uptake
in models of NEE while snow is present. Passive and active microwave observations of
snow accumulation and soil freeze/thaw from satellites could be combined with observa-
tions of air temperature to generate more realistic estimates of soil temperature and soil
respiration. Satellite altimeter or airborne LiDAR observations of snow depth could be
used to estimate the influence of snow accumulation and tree wells on soil respiration.
Including remote sensing observations of snow properties in models of NEE could therefore
reduce uncertainty in snow season estimates of NEE, resulting in a better understanding
of the northern carbon cycle. Furthermore, process-based simulations of snow season NEE
could enable an improved understanding of how the northern carbon cycle is responding
to climate driven changes in the interconnected biospheric, atmospheric and cryospheric
systems.
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2.1 Introduction

Anthropogenic emissions have the potential to increase global atmospheric concentrations
of CO2 to twice the preindustrial level by approximately 2100, which is predicted to cause
warming of high-latitude regions (Christensen et al., 2012). Concern exists that climate
change is likely to be amplified through positive climate-carbon-cycle feedbacks (Cox et al.,
2000; Friedlingstein et al., 2001), such as the biospheric release of CO2 and CH4 from thaw-
ing permafrost (Tarnocai , 2006). Northern cryospheric soils currently contain 1400-1850
Pg stores of organic carbon (McGuire et al., 2010) which, if all released into the atmosphere
as CO2, would theoretically equate to an increase of 666-880 ppm in global atmospheric
concentrations. Simulations using the Intergovernmental Panel on Climate Change A1B
emission scenario for 2200 indicate that permafrost thaw could increase atmospheric con-
centrations of CO2 by 87 ± 29 ppm (Schaefer et al., 2011). As permafrost thaws, a portion
of the increase in CO2 efflux is predicted to be offset by greater uptake of carbon by vege-
tation, although uncertainty exists regarding the magnitude of the biospheric response to
warming and the time period over which it will persist (Cramer et al., 2001; Euskirchen
et al., 2006), partially due to the complexity of the predicted response of high-latitude net
ecosystem exchange to rising atmospheric concentrations of CO2 [Figure 2.1].

Models provide local to global scale estimates of the land-atmosphere exchange of car-
bon based on locally observed associations between carbon cycling, meteorological condi-
tions and land surface characteristics. The modeling approach used to generate estimates
of carbon cycling can be described as either process-based or remote sensing based, where
process based models predominantly represent interacting physical processes and remote
sensing based models rely on spatial observations of the land surface (Cramer et al., 1999).
Several components of the land-atmosphere exchange of carbon can be estimated using
these models, including Net Primary Productivity (NPP), Net Ecosystem Exchange (NEE)
and Net Ecosystem Productivity (NEP) (Cramer et al., 1999). NPP refers to the net car-
bon uptake by vegetation in , and is equal to the total carbon fixed by photosynthesis
(Gross Primary Productivity, GPP) minus the carbon returned as CO2 to the atmosphere
during vegetation growth and maintenance respiration (Autotrophic Respiration, R) (Bo-
nan, 2002):

NPP = GPP −Ra (2.1)

In terrestrial ecosystems, NEE refers to the instantaneous vertical flux of CO into
and out of an ecosystem in which occurs primarily through processes such as photosyn-
thesis and respiration. Terrestrial NEE is equal to total carbon fixed by photosynthesis
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Figure 2.1: Flowchart representing how polar net ecosystem exchange is predicted to re-
spond to rising levels of atmospheric CO2 and subsequent warming. Warming-induced
increases are indicated in red (+), and decreases are indicated in blue (-).

minus autotrophic respiration and carbon loss through soil organic matter decomposition
by microorganisms (Heterotrophic Respiration, HR). Calculations of NEE do not include
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inorganic sources and sinks of CO2 (e.g., precipitation and weathering) which can be sub-
stantial in aquatic ecosystems but are minimal in terrestrial ecosystems. Therefore, when
gaseous fluxes of CH4, lateral fluxes of dissolved organic carbon and dissolved inorganic
carbon are minimal, terrestrial NEE is equal in magnitude to NEP, but with a sign reversal
to reflect the fact that NEE is negative when CO2 is removed from the atmosphere (Lovett
et al., 2006):

−NEE = NEP = GPP −Ra −Rh = NPP −Rh (2.2)

Recent Arctic and sub-Arctic field studies of NEE have indicated that the snow season
accounts for up to 50% of annual CO2 efflux at sub-Arctic (Aurela et al., 2004; Zimov
et al., 1996), low Arctic (Mikan et al., 2002; Sullivan et al., 2008) and high Arctic (Elberling
and Brandt , 2003) sites. Studies have also indicated that greater snow accumulation can
encourage greater releases of CO2 at sub-Arctic (Larsen et al., 2007a), low Arctic (Walker
et al., 1999), and high Arctic (Morgner et al., 2010) sites. The focus of this paper is on
exploring the possibility that incorporating remote sensing observations of snow properties
and their influence on NEE could reduce uncertainty in model estimates of Arctic and
sub-Arctic NEE.

We begin by reviewing model estimates of snow season NEE [Section 2.2], and the
sources of uncertainties in local and regional estimates of high-latitude NEE [Section 2.3].
Within this context, recent findings regarding the influence of snow on spatial [Section
2.4] and seasonal [Section 2.5] patterns in Arctic and sub-Arctic CO2 fluxes are discussed,
as well as the implications of these findings for modeling high-latitude NEE. Established
approaches for remote sensing of snow are then reviewed. The advantages and limitations
of each remote sensing approach are described in the context of how useful they may be for
estimating the influence of snowpack dynamics on NEE [Section 2.6]. Suggestions are then
provided on how to incorporate remote sensing observations into models of NEE [Section
2.6.6], followed by an outline of how the resulting models could be applied to assess the
influence of climate-driven shifts in snow regimes on NEE [Section 2.7].

The central contribution of this paper is therefore in synthesizing recent findings re-
garding the influence of snow on spatial and temporal patterns in high-latitude NEE, and
in providing a framework through which an appropriate remote sensing strategy can be
selected for representing these processes when generating model estimates of Arctic and
sub-Arctic NEE. The locations at which key in situ studies of Arctic and sub-Arctic snow
season NEE were conducted are summarized in Table 2.1, and mapped in Figure 2.2.
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Table 2.1: Locations of selected key in situ studies of snow-CO2 interactions, classified as
sub-Arctic, low Arctic and high Arctic according to (Walker et al., 2005). Sub-Arctic sites
indicated as transitional are considered to be south of the treeline by (Walker et al., 2005),
but are characterized by environmental conditions typical of low Arctic regions.

Site Region Latitude Longitude Snow-CO2 research

S1 Sub-Arctic 61◦08-10’N 149◦38-49’W (Sullivan, 2010)

S2 Sub-Arctic 68◦20-21’N 18-19◦E (Grogan et al., 2004; Grogan and Jonasson, 2005)
(Grogan and Jonasson, 2006; Larsen et al., 2007a)
(Björkman et al., 2010; Bokhorst et al., 2010)

S3 Sub-Arctic 67◦29’N 162◦12’W (Sullivan, 2010)

S4 Sub-Arctic 69◦08’N 27◦17’E (Aurela et al., 2004)

T1 Transitional 58◦45’N 94◦04’W (Lafleur et al., 2001)

T2 Transitional 63◦52’N 149◦15’W (Schuur et al., 2009)

T3 Transitional 64◦75’N 148◦25’W (Grogan and Chapin III , 1999)

T4 Transitional 68◦N 134◦W (Jones et al., 1999)

T5 Transitional 68◦18’N 18◦51’E (Fox et al., 2008)

T6 Transitional 68◦30’N 161◦24’E (Zimov et al., 1993, 1996)

L1 Low Arctic 64◦50-52’N 111◦34-38’W (Nobrega and Grogan, 2007; Oelbermann et al., 2008)
(Buckeridge and Grogan, 2010; Buckeridge et al., 2010)
(Humphreys and Lafleur , 2011)

L2 Low Arctic 68◦37-38’N 149◦18-38’W (Oberbauer et al., 1998; Walker et al., 1999)
(Mikan et al., 2002; Olsson et al., 2003)
(Oberbauer et al., 1998; Sullivan et al., 2008)
(Nowinski et al., 2010; Euskirchen et al., 2012)

L3 Low Arctic 68◦28’N 155◦44’W (Olsson et al., 2003)

L4 Low Arctic 71◦19’N 156◦36’W (Tieszen, 1974; Panikov et al., 2006)

H1 High Arctic 74◦30’N 20◦30’-21◦W (Elberling and Brandt , 2003; Elberling et al., 2008)
(Christensen et al., 2012)

H2 High Arctic 78◦10’N 16◦04’E (Morgner et al., 2010; Björkman et al., 2010)

H3 High Arctic 78◦N 19◦E (Elberling , 2007)

2.2 Modeling snow season NEE

In situ observations of NEE can be upscaled to generate estimates over larger areas of
the Arctic using either 1) meteorological inputs and physiological relationships between
temperature, radiation, hydrology, phenology and respiration (Vourlitis et al., 2000); 2)
direct observations of NEE (McGuire et al., 2012); or 3) a combination of observed NEE
and remote sensing estimates of leaf area index and land cover (Marushchak et al., 2012).
However, due to the size and spatial heterogeneity of landscapes in the Arctic and sub-
Arctic (Lantz et al., 2010; Nobrega and Grogan, 2008), errors can arise when upscaling
is used to generate circumpolar estimates of NEE (La Puma et al., 2007). Challenges in
upscaling NEE are worsened by the sparse and uneven distribution of eddy covariance
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towers at high-latitudes (Baldocchi , 2008).

Estimates of biospheric carbon cycle variables such as GPP, respiration, NEE and
NPP are typically modeled from a variety of remotely sensed, meteorological, and eddy
covariance-derived inputs, in addition to measured or optimized region-specific parameters
(Cramer et al., 1999; Krinner et al., 2005; Sitch et al., 2007; Bondeau et al., 2007; Baker
et al., 2008; Randerson et al., 2009). Biospheric models vary greatly in terms of the
approach used (remote sensing vs. process based), inherent simplifying assumptions, initial
conditions, complexity with which various processes are represented, representation of land-
use change and whether or not they can be applied prognostically. Generally, however,
models must be capable of describing how land surface characteristics (e.g. vegetation,
soil) and meteorological conditions (e.g. temperature, photosynthetically active radiation)
result in given levels of NEE. These model relationships must be adequately generalized
so as to yield estimates over regions where in situ observations are unavailable (Cramer
et al., 1999; Sitch et al., 2007; Dietze et al., 2011; Huntzinger et al., 2012).

The Simple Biosphere Model (SiB) is a process-based model that calculates the regional
land-atmosphere exchange of energy, mass and momentum by representing small-scale
physical processes (e.g. transpiration, runoff, respiration, photosynthesis) using equations
with a physical or biological basis (Sellers et al., 1986). Models such as SiB are highly
useful for simulating the land surface energy balance in a biophysically accurate manner,
and can be used alone or in combination with general circulation models for predictive and
simulation purposes. In a full description of the SiB3 numerical scheme, (Baker , 2005)
indicates that although growing season processes are comprehensively described, and snow
properties are calculated according to the Common Land Model (CLM) formulation by
(Dai et al., 2003), grid cells could only be described as either snow-covered or snow-free.
Including a representation of fractional snow cover may therefore improve estimates of
snow season photosynthesis and respiration by SiB3.

The Vegetation Photosynthesis and Respiration Model (VPRM) is a remote sensing
based model that estimates NEE according to a simple mathematical structure (Mahade-
van et al., 2008). Respiration is described as a linear function of air temperature, and
photosynthetic uptake is calculated as a function of air temperature, incoming shortwave
radiation, and estimates of vegetation biomass and land surface moisture from visible and
infrared remote sensing derived indices. Whereas process-based models contain complex
representations of processes, VPRM contains only four parameters per vegetation class
(Mahadevan et al., 2008). Therefore, although VPRM cannot be used for biophysical sim-
ulation of processes, the resulting estimates of NEE have shown good agreement against
observational data, and the errors and uncertainties can be traced to specific inputs (Lin
et al., 2011), and the utility of these models is therefore in generating regional estimates of
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NEE. Remote sensing based models of NEE such as VPRM have not explicitly represented
the influence of snowpack parameters on NEE.

Recently, several process-based models have represented the influence of a model snow-
pack on soil temperature and respiration. For example, process-based simulations of soil
CO2 efflux by (Kucharik et al., 2000) and (Pumpanen et al., 2003) made use of land surface
temperature, including snow surface temperature when available; however, no mention is
made of specific adaptations made to the model for describing subnivean production or
diffusion of CO2. (McGuire et al., 2000) generated estimates of heterotrophic respiration
both with and without a representation of the insulation provided by snow using the fol-
lowing three process-based models: Century, Terrestrial Ecosystem Model (TEM) and the
Carnegie-Ames-Stratford Approach (CASA). When the model deemed snow to be present,
soil temperature was set to 0◦C. Evaluations of the resulting models indicated that mod-
els showed better agreement against observational data when the influence of a snowpack
was explicitly represented, and that this prevents heterotrophic respiration from being
underestimated during the snow season.

Modifications have been made to several process-based models to allow them to better
simulate the physical processes driving Arctic NEE such as snow and vegetation. For ex-
ample, (Wania et al., 2009) modified the Lund-Potsdam-Jena Dynamic Global Vegetation
Model (LPJ-DGVM, by (Sitch et al., 2003)) so that it would include snow densification
over time, permafrost, northern hydrology and peatland vegetation. Snow was simulated
as a homogeneous layer that increased in density from 150 to 500 kg/m3 during the snow
season, with snow season length assumed to be the same length as the previous snow sea-
son and thermal conductivity calculated as a function of density according to parameters
developed by (Sturm et al., 1997). Similarly, snow is modeled as a homogeneous layer in
ORCHIDEE, which changes over time through melt, sublimation and snowfall, all of which
are calculated according to the surface energy balance. The thermal conductivity of the
snowpack is typically fixed, but more realistic estimates of soil carbon have been generated
by incorporating field-based observations of snow properties (Gouttevin et al., 2012).

Therefore, although several models have benefited from including a simple representa-
tion of snow processes or field-based observations of snow characteristics, the influence of
snow on soil respiration is not usually represented in models of NEE, and processes such as
subnivean photosynthesis are not represented in existing models. Furthermore, when mod-
els of NEE do simulate snow accumulation, they do so in a relatively simple manner, such
that snow metamorphism and the formation of ice lenses or depth hoar do not occur, al-
though these influence snowpack thermal conductivity and diffusivity. Site characteristics,
such as vegetation and topography, also may not have a realistic influence on snowpack
development in existing models. Due to the challenges in accurately simulating snowpack
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dynamics, and due to the spatial dependence of snow and NEE, we suggest that remote
sensing observations of snow may provide an optimal approach for characterizing snow sea-
son influences on NEE throughout the Arctic and sub-Arctic. Remote sensing observations
could either be directly included as inputs into remote sensing based or process-based mod-
els of NEE, or incorporated into process-based simulations in order to constrain estimates
of snow accumulation. Remote sensing observations of snow season characteristics could
thereby enable models of NEE to simulate the complex responses of subnivean respiration
and photosynthesis to snowpack properties, and may allow uncertainty to be reduced in
Arctic and sub-Arctic estimates of snow season NEE.

2.3 Uncertainties in Arctic and sub-Arctic NEE

The following section explores uncertainties in local and regional scale observations of
NEE in order to provide a context for later discussion of strategies which may reduce
uncertainty in snow season estimates of high latitude NEE. Uncertainties in observations
of Arctic site scale NEE (< 105 m) exist due to a number of factors involved in acquiring
accurate observations (Björkman et al., 2010) and quantifying the portion of subnivean
NEE that was produced during the snow season (Panikov , 2009). Regional scale (> 105

m) estimates of the carbon budget can be generated using a variety of approaches such
as atmospheric inversion, process-based modeling, spatial upscaling of local observations,
and remote sensing based modeling (Cramer et al., 1999; Sitch et al., 2007; McGuire et al.,
2012). Recent syntheses by (McGuire et al., 2012) and (Huntzinger et al., 2012) have
indicated that although convergence exists regarding decadal trends in the Arctic carbon
cycle, substantial uncertainties exist in estimates of circumpolar Arctic NEE.

2.3.1 Uncertainties in measurements of NEE

Regional surface CO2 fluxes can be estimated using observations from Lagrangian, “airmass-
following” aircraft observations (Lin et al., 2004) and satellites such as the Greenhouse
gases Observing Satellite (GOSAT) (Chevallier et al., 2010). However, satellites are lim-
ited in yielding accurate observations of CO2 over Arctic and sub-Arctic regions due to
the uncertainties introduced by snow/ice covered surfaces, limited availability of cloud-free
observations, and a large solar zenith angle at high-latitudes (Boesch et al., 2011). Obser-
vations from aircrafts are, by necessity, limited in their temporal resolution. Year round
observations of CO2 fluxes and net carbon uptake can therefore be accurately and directly
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measured only at local scales (< 105 m), especially at high-latitude sites (Bréon and Ciais ,
2010).

Local measurements of NEE can be acquired at the plot scale (10-100 m) using cham-
bers, or at the patch scale (10-105 m) using eddy covariance measurements (Fox et al.,
2008), which measure the land-atmosphere turbulent exchange of CO2 (Baldocchi et al.,
1988). Although the accuracy of eddy covariance observations can be compromised by
cold season heat transfer in open path eddy covariance systems (Amiro, 2010), uncertainty
can arise in point measurements due to landscape heterogeneity and site selection bias.
Previously, these factors have resulted in 60% overestimates of chamber measured NEE
compared to footprint modeled eddy covariance NEE, as observed at site S2 by (Fox et al.,
2008). Financial and logistical challenges associated with gathering field measurements
limit the collection process itself, the types of measurements that can be taken, and the
locations at which they can be acquired (Campbell et al., 2005; Bäckstrand et al., 2010),
resulting in a bias towards data collection during the growing season. Recently, however,
the eddy covariance technique has been used to characterize high-latitude NEE year-round
at site L2 by (Euskirchen et al., 2012).

A majority of snow season observations of NEE have been collected using point mea-
surement techniques. Point observations of snow season NEE are collected using chambers
connected to infrared gas analyzers either at the top of the snow surface or over a patch
of ground surface from which snow has very recently been cleared. Alternatively, a trace
gas technique can be used to create a time series of CO2 efflux based on multiple sampling
within the snowpack. NEE can also be measured using air sampling of CO2 concentra-
tions at two points above and below the snowpack then estimating CO2 efflux based on an
assumption of Fickian diffusion. However, the accuracy of these estimates may be com-
promised by deviations from simple Fickian diffusion approaches due to non-steady-state
convection (Jones et al., 1999).

A comparison of the aforementioned CO2 sampling techniques by (Björkman et al.,
2010) at a sub-Arctic (S2) and a High Arctic (H2) site showed that the trace gas and
diffusion based methods found little difference in CO2 between high and low snow accu-
mulation conditions whereas chamber sampling found greater effluxes of CO2 arising from
the sites with greater accumulation of snow. The application of chamber based techniques
may be especially prone to errors since chambers at the top of the snowpack measure only
fluxes from the snow surface (Morgner et al., 2010), and chamber measurements taken
at the soil surface immediately after snow removal can initially show very large fluxes of
CO2 before leveling off (Grogan and Jonasson, 2005). As a result, different techniques
have yielded observations of NEE that vary by up to two orders of magnitude at a single
site (Björkman et al., 2010). The discrepancies found between observations collected using
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different techniques limits the potential for comparisons to be made between sites.

The aforementioned in situ approaches are also prone to errors because they sam-
ple CO2 at a very small scale and are therefore influenced by small-scale heterogeneities.
Furthermore, snowpack stratigraphy and diffusion are altered in the process of acquiring
non-automated observations of NEE, such that the manual collection of NEE observations
during the snow season may be biased. As a result of discrepancies in the spatial scale and
magnitude of observed NEE from different techniques, as well as the overall shortage in
snow season observations at high-latitude sites, it is not possible at this point to conduct
a thorough inter-site comparison of relationships between snow and NEE. However, it is
still possible to rely on findings from individual sites regarding NEE and its association
with snow accumulation. Future improvements in automated measurement techniques and
greater generalization of sampling strategies would also allow an improved understanding of
how associations between snow and NEE vary across study sites. Furthermore, the greater
application of snow sampling strategies to characterize the density, grain characteristics
and total accumulation of snow relative to its snow water equivalent (SWE) could further
assist researchers in understanding the relationship between snow dynamics and NEE and
how it varies between study sites.

2.3.2 Uncertainties in the partitioning of snow season NEE

Uncertainty exists regarding how much of the NEE released during the snow season is being
produced through subnivean respiration and what portion of CO2 released throughout the
snow season was produced during the antecedent growing season. Although the exact
ratio varies by season and site, it is important to evaluate the relative contributions of
production and release as these define the main mechanisms and snowpack characteristics
that affect snow season NEE, as snow influences both the rate of production and diffusion
of CO2.

Using laboratory testing of soil from L4, (Panikov et al., 2006) found that a majority
of snow season effluxes of CO2 occurs due to microbial activity, and that variation in CO2

release (v) can be estimated in a laboratory setting based on incubation temperature (T),
the unfrozen soil water content (W), and three constants (A, λ and k): v = AλT+kW

(R2 >0.98). This study indicated that a smaller portion of CO2 arises from abiotic releases
of accumulated CO2. However, in regions such as T2 that are undergoing permafrost thaw,
abiotic releases of CO2 can form an important portion of net carbon exchange (Schuur
et al., 2009). The exact portion of apparent CO2 flux that arises from abiotic releases
and microbial activity therefore varies according to site conditions. (Elberling and Brandt ,
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2003) found that 40% of total annual soil respiration in a Greenland heath (H1) arose from
subnivean respiration, and that 80% of subnivean respiration between 0 to -9◦C became
trapped in soil. Although abiotic releases of CO account for a more substantial portion of
efflux during the snow season than during the growing season, most of the CO2 annually
released by soil tends to arise from soil respiration (Zimov et al., 1993; Pumpanen et al.,
2003; Panikov et al., 2006).

The main limitation on snow season respiration relates to the influence of sub-zero soil
temperatures on reducing availability of unfrozen water (Panikov , 2009). In loam soils
at site T5, free water has been observed at temperatures of -10◦C (Zimov et al., 1993).
Unfrozen water has even been detected in clayey permafrost soil at temperatures of -60◦C
(Ananyan, 1970) (in Russian, cited by (Wagner , 2008)). In a laboratory setting, sub-
soil microbial activity has been observed to occur at temperatures of -39◦C in an Arctic
soil sample acquired from site L4 (Panikov et al., 2006). Subnivean temperatures are
typically much warmer than -39◦C, and the amount of unfrozen water in soil has been
observed to decline only marginally at temperatures below -5◦C at a high Arctic site (H1)
(Elberling and Brandt , 2003), thereby enabling substantial subnivean production of CO2.
Furthermore, as respiration is an exothermic reaction, greater rates of respiration during
the snow season also induce elevated soil temperatures and rates of decomposition (Zimov
et al., 1993; Khvorostyanov et al., 2008; Koven et al., 2011).

Snow accumulation influences both the rate of diffusion and rate of production of CO2

through respiration, and so it is difficult to quantify the exact contribution of snow accu-
mulation to the release and production of CO2 while uncertainty remains regarding the
partitioning of snow season NEE. Field studies have indicated greater effluxes of CO2 and
warmer soil temperatures in regions with greater snow accumulation using measurement
approaches that observe both instantaneous diffusion through a snowpack (e.g. (Sullivan,
2010)) as well as net accumulated effluxes of accumulated CO2 throughout the snow season
(e.g. (Nobrega and Grogan, 2007)). Likewise, field studies employing experimental winter
warming (e.g. (Bokhorst et al., 2010)) and experimental nutrient enrichment (e.g. (Zimov
et al., 1996)) have found increases in snow season CO2 effluxes relative to control plots.
Since snow season changes in temperature, nutrient enrichment and snow accumulation
alter the total release of CO2, it is clear that a substantial portion of snow season NEE
arises from subnivean respiration.

Furthermore, as more CO2 is released from sites with greater snow accumulation, snow
has a more important role in encouraging greater rates of respiration by insulating the soil
from cold temperatures than in limiting diffusion of CO2. Therefore, despite uncertainties
regarding the exact portion of NEE that arises through biotic production and abiotic
releases, it is clear that snow season production of CO2 accounts for a substantial portion
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of snow season NEE (Elberling and Brandt , 2003; Panikov et al., 2006) and that subnivean
NEE is sensitive to soil temperature and snow accumulation (Bokhorst et al., 2010).

2.3.3 Uncertainties in regional estimates of NEE

Recently, the North American Carbon Program conducted an inter-comparison of nineteen
terrestrial biospheric models (Huntzinger et al., 2012), including Can-IBIS (Wang et al.,
2011), CLM-CASA (Randerson et al., 2009), LPJ-wsl (Bondeau et al., 2007), ORCHIDEE
(Krinner et al., 2005), SiB3 (Baker et al., 2008) and MODIS (Running et al., 2004). These
models vary in terms of how photosynthesis is calculated, which assumptions are made,
which driver datasets are used, as well as which processes and land surface characteristics
are represented, and at what level of complexity, as described in detail by (Huntzinger
et al., 2012). Overall, model estimates of North American NEP ranged from -0.7 to 2.2
PgC/yr, indicating uncertainty regarding whether North America was a net carbon source
or sink (Huntzinger et al., 2012). Estimates of NEE are complicated by the non-linearity
of processes influencing CO2 exchange at various scales (Levy et al., 1999), inherent chal-
lenges in optimizing numerous parameters (Prihodko et al., 2008), and innate challenges
in complex representations of processes (Abramowitz et al., 2007).

Physiological models are used to model NEE over a variety of landscapes, including
temperate rainforests (Coops et al., 2007), evergreen needleleaf forests (Xiao et al., 2004a)
and temperate grasslands (Wu et al., 2008). However, a process-based approach can be
more challenging to implement in Arctic and sub-Arctic regions due to challenges in repre-
senting processes that drive northern NEE such as fire regimes and soil characteristics, as
well as challenges in accurately representing a highly heterogeneous landscape (La Puma
et al., 2007). Model calibration and validation are further complicated in high-latitude
regions due to the limited number of Arctic and sub-Arctic sites at which eddy flux obser-
vations are acquired, and the clustering of northern field studies in Alaska and Scandinavia
[Figure 2.2].

Furthermore, as eddy covariance observations are collected preferentially during the
growing season in high-latitude regions, it can be difficult to calibrate and evaluate the
accuracy of snow season estimates. In light of the many challenges faced in the process
of collecting and analyzing observations of snow season NEE, and in generating regional
estimates of Arctic NEE, we suggest that uncertainty in model estimates of snow season
NEE may be reduced by incorporating objective, regional scale, remote sensing derived
observations of snow properties. A review of the spatial and temporal associations between
snow and NEE is therefore provided in sections 4 and 5, followed by recommendations of
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how these processes can be represented in models of NEE using remote sensing observations
of snow properties. These snow season processes and the suggestions of how they may be
represented in models of NEE also appear in Table 2.3.

2.4 Spatial associations between snow and NEE

Snow season NEE has been observed to vary according to the thickness of snow, soil
temperature and vegetation composition at site H3 (Elberling , 2007). The strength of the
associations between air temperature, soil temperature and NEE depends in part on the
duration of snow cover and the physiological activity of vegetation during winter thaws
(Starr and Oberbauer , 2003; Sullivan et al., 2008). Furthermore, the timing and magnitude
of winter CO2 transport depend on snow conditions, CO2 production, site characteristics
and weather conditions (Jones et al., 1999).

The acquisition of regional estimates of NEE is complicated by the scale dependence of
NEE as well as the spatial variability of the various controlling influences on NEE such as
snow, soil, vegetation and microclimate status. Arctic transect studies have indicated that
macro scale (>104 m) vegetation spatial patterns are influenced by latitudinal climatic
gradients, topography, precipitation and active layer depth (Gould et al., 2003; McGuire
et al., 2002). At the site scale (10–104 m), vegetation varies according to micro-topography
and soil type, which both influence soil moisture (Svensson and Callaghan, 1988). Sim-
ilarly, spatio-temporal variability of snow is scale dependent. At the micro (10–102 m)
scale, transport and surface roughness influence distributions of snow. At the macro scale,
variations in snow are controlled by elevation, orography and latitude, as well as distance
from barriers and water, at the meso (102–103 m) scale, variations tend to be influenced
by slope, elevation, aspect, and vegetation (height, extent, density, etc.) (Bonan, 2002).
Therefore, both vegetation and snow vary across the landscape and both are scale depen-
dant. Likewise, a portion of the spatial variability in NEE is likely due to the influence of
snow and vegetation.

Due to the spatial variability of the factors controlling snow season NEE, it is important
that attempts to reduce uncertainty in sub-Arctic and Arctic NEE estimates during the
snow season be founded upon the current state of knowledge regarding the influence of
snow on the uptake and efflux of COat Arctic and sub-Arctic study sites.The following
section therefore provides a synthesis of recent in situ findings regarding the site-scale
associations between snow, vegetation and snow season NEE. Implications of these findings
for representing the influence of snow on winter NEE are then discussed based on the
physical processes driving these interactions [Table 2.3].
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2.4.1 Greater efflux of CO2 from sites with greater snow accu-
mulation

Snow acts as an insulator because it has a small volumetric heat capacity, undergoes little
heat loss by convection, and has a low thermal conductivity. The thermal conductivity
of snow has been observed to range from 0.025-1.61 W/-m−1-deg-C−1 in snowpacks with
densities of 100-800 kg/m3 (Gray and Male, 1981). Generally, low values of thermal con-
ductivity (e.g. 0.06 W-m−1-deg-C−1) are observed in the Arctic and sub-Arctic (Sturm,
1992). The thermal conductivity of a snowpack is influenced by factors such as snowpack
depth, bonding, temperature, porosity, ventilation, and grain characteristics, but can be
can be estimated as a simple, positive function of snow density (Sturm et al., 1997). A
greater accumulation of snow is generally associated with diminished thermal conductivity
of the land-atmosphere interface (Gray and Male, 1981). Snowpacks can therefore decou-
ple air and soil temperatures (Olsson et al., 2003) since less heat is transferred from the
soil when an overlying layer of snow is present (Bonan, 2002). As a result, the frozen soil
at 40-120 cm depth from which CO2 is emitted has been observed to be 10-40◦C warmer
than the surface air temperature at a Siberian sub-Arctic site T6 (Zimov et al., 1993). For
example, at two low Arctic sites located at L3, minimum 16 cm soil temperatures in the
-10 to -5◦C range were observed with minimum air temperatures of -30◦C (Olsson et al.,
2003).

Microbial fluxes have been observed to increase as a function of temperature over both
organic and mineral soils at site L1 (Oelbermann et al., 2008). The association between soil
respiration and temperature is driven by intracellular desiccation or extracellular barriers
to diffusion in frozen soils, and by soil organic matter in thawed soils (Mikan et al., 2002).
The influence of snow accumulation on CO2 flux has been detected experimentally at
a variety of sites using snow fences, which cause a local increase in snow accumulation
through wind deposition. Across a sub-Arctic gradient in Sweden (S2), comparisons of
treatment and control plots indicated that snow accumulation had an important influence
on soil temperature. Between 41 to 75% of the variation in respiration could be explained
as a function of soil temperature at site S2 (Grogan and Jonasson, 2006). Near the Arctic
treeline in Alaska (S3), CO2 flux varied significantly (p-value<0.01) between sites and years,
and according to both snow depth and soil surface temperature. Soil surface temperature
and snow depth were correlated (r=0.73, p-value<0.01). Soil temperature and snow depth
were greater in forested regions than at the treeline, and both increased in forests with
greater stand density (Sullivan, 2010).

At a low Arctic site in northern Alaska (L2), warmer soil temperatures and greater rates
of respiration were observed at plots that had received a greater accumulation of snow due
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to the installation of snow fences (Walker et al., 1999). At low Arctic site L1, observations
of net seasonal CO2 flux were collected using soda lime traps, which accumulate mass as
CO2 is released throughout the season. These measurements indicated a 60% increase
in total snow season CO2 efflux in snow accumulation plots (1 m of snow) relative to
control plots (0.3 m of snow) (Nobrega and Grogan, 2007). At an Alaskan tussock tundra
site (L2), snow accumulation acted as a stronger control on CO2 distributions than air
temperature (Sullivan et al., 2008). Experimental snow accumulation (30-150 cm) at a
high Arctic site in Svalbard (H2) led to significant increases in both soil temperature and
ecosystem respiration, leading to a doubling of CO2 efflux at both heath and meadow
sites (Morgner et al., 2010). Greater snow accumulation over several varied Arctic and
sub-Arctic ecosystems therefore induced increased CO efflux.

2.4.2 Influence of vegetation on snow and snow season NEE

Interactions between snow and vegetation have been observed to alter snow season photo-
synthesis (Larsen et al., 2007a) and respiration (Grogan and Jonasson, 2006) at site S2. In
regions where tree wells form, the size of tree wells and the resulting soil heat loss depend
on micro-scale (10–102 m) vegetation distributions (Sturm, 1992). The species distribu-
tions of vegetation at a site can therefore influence the soil temperature and respiration.
At the meso scale (102–103 m), groupings of trees act as windbreaks, causing an increase in
snow deposition nearby (Gray and Male, 1981), which could potentially increase the rate
of soil respiration.

Vegetation species composition also has an influence on subnivean photosynthesis and
respiration. Shrub stems encourage the growth of large faceted crystals via metamorphism
under strong temperature gradients. Faceted crystals have one fifth to one twentieth of the
effective thermal conductivity of a high density wind slab (Zhang et al., 1996), resulting
in the release of greater effluxes of CO2 from areas containing shrubs, as observed at site
S2 (Sullivan, 2010). Also, although cold temperatures and diminished light availability re-
duce photosynthetic assimilation of CO2 (Billings and Mooney , 1968), the species present
at a site influence the resulting rate of photosynthesis. While in a dormant state, ever-
green vegetation protects itself from light stress through non-photochemical dissipation
of absorbed light (Öquist and Huner , 2003). Following frost hardening, evergreen trees
have been observed to undergo no growth and “no measurable net photosynthesis” as long
as subzero air temperatures persist (Öquist and Huner , 2003). Although vascular plants
cannot conduct photosynthesis when their tissues are frozen, evidence exists that lichens
can perform photosynthesis at temperatures below -10◦C (Kappen, 1993). Furthermore,
indications exist that low Arctic tundra vegetation, especially mosses and evergreens, may
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be capable of performing photosynthesis at greatly diminished rates under thin snow cover,
as long as conditions are suitably warm (Tieszen, 1974).

(Larsen et al., 2007a) reported that cold season (October to May) photosynthesis ac-
counted for up to 19% of annual photosynthesis in a mesic, moss-dominated sub-Arctic
heath with little (30-40 cm) snow (site S2). Similarly, (Starr and Oberbauer , 2003) found
evidence of subnivean photosynthesis by Arctic evergreens on the north slope of Alaska
(site L2) during a two to four week period at the end of the snow season in the presence
of air temperatures above 0◦C and encouraged by elevated subnivean concentrations of
CO2. At a High Arctic site in Zackenberg (H1), (Christensen et al., 2012) observed low
levels of photosynthesis to continue to occur at the start of the snow season. Vegetation
therefore shows greatly reduced rates of photosynthesis in the presence of snow, even in
Arctic species which are adapted to perform photosynthesis in sub-zero conditions.

2.4.3 Implications for models of NEE

Remote sensing observations of snow water equivalent (SWE) or snow depth could be used
in combination with observations of air temperature to gain more accurate estimates of
subnivean temperatures. The influence of greater snow accumulation on increased rates
of soil respiration observed at many high, low and sub-Arctic sites (e.g. S2- (Grogan and
Jonasson, 2006); S1- (Sullivan, 2010); L1- (Nobrega and Grogan, 2007); H2- (Morgner
et al., 2010)) could therefore be represented in models of NEE. This influence could be
represented using remote sensing observations of SWE or snow depth to determine more
accurate estimates of soil respiration, or by assimilating remote sensing observations of
SWE into model estimates of snowpack accumulation to better constrain estimates of soil
respiration.

The initial appearance of snow and concurrent drops in air and soil temperatures greatly
limit the rate of photosynthetic uptake in Arctic vegetation (Billings and Mooney , 1968;
Carstairs and Oechel , 1978; Öquist and Huner , 2003). The influence of snow on limiting
the rate of snow season photosynthesis could be represented in models of NEE using ob-
servations of fractional snow cover area, and then diminishing the rate of photosynthesis
in regions where snow is accumulating by an appropriate quantity given the vegetation
distribution. The differing abilities of vascular and non-vascular plants to conduct pho-
tosynthesis in sub-zero conditions could therefore be represented. Greater benefits may
be accrued by representing fractional snow cover in autumn than spring as photosynthesis
is more heavily influenced by air temperature and photoperiod at the start of the snow
season than at the end of the snow season, as described by (Euskirchen et al., 2012).
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The influence of vegetation on snowpack properties such as the formation of tree wells
(Sturm, 1992) and faceted crystals in shrub-dominated regions (Zhang et al., 1996), and
their influences on increasing and diminishing local snow thermal conductivities, respec-
tively, could be represented using vegetation species-specific expressions to determine soil
respiration as a function of snow accumulation. Another option may be to incorporate
field observations of grain characteristics to represent the growth of faceted crystals, or
high resolution LiDAR observations to detect the formation of tree wells.

2.5 Seasonal responses of NEE to snow fall, metamor-

phism and melt

Observations of seasonal changes in the relationships between snow cover/accumulation and
CO2 are summarized below according to three time periods: initial snow fall, midwinter
and final snow melt. The implications of seasonal transitions in snow-CO2 associations
for incorporating remote sensing estimates of snow into models NEE are then described.
These associations and their implications are also summarized in Table 2.3.

2.5.1 Initial snow fall

The timing of initial snowfall represents a transition to the snow season, which is accom-
panied by greatly diminished rates of photosynthesis and cooler soil temperatures (Olsson
et al., 2003). The initial accumulation of snow at the start of the snow season cools the
ground surface due to the high emissivity and high surface albedo of snow, which results
in diminished absorption of solar radiation (Zhang et al., 1996). Prior to initial snow fall,
the soil active layer depth is at an annual maximum but starts to diminish as soil cooling
occurs, thereby diminishing the rates of microbial activity (Elberling , 2007) due to indirect
effects such as intercellular desiccation and extracellular barriers to diffusion (Mikan et al.,
2002). Near the end of the growing season, plant productivity becomes limited by the
availability of daylight. Initial snowfall in autumn limits light penetration to vegetation,
thereby reducing photosynthetic uptake (Euskirchen et al., 2012).

Litter loss in autumn occurs mostly due to leaching of organic compounds (Bokhorst
et al., 2010), and is influenced by both temperature and nutrient availability. Nutrient
enrichment with a labile carbon source was found to quadruple September to November
CO2 effluxes at a Siberian sub-Arctic site (T5) (Zimov et al., 1996). (Bokhorst et al., 2010)
found that 90% of winter litter mass decomposition at sub-Arctic site S2 occurred within
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the first month of initial snow fall in autumn. Therefore, the nutrient, soil temperature and
snow conditions present during the short time period immediately following initial snow
fall can have an important effect on net snow season NEE.

2.5.2 Snow metamorphism

Due to soil nutrient and temperature limitations, the rate of CO2 production is greater
during snow fall and snow melt than during the intermediate portion of the snow sea-
son when metamorphism is the dominant process, as observed by (Elberling , 2007) at
H3. However, the middle of the snow season has a long duration and therefore accounts
for a large portion of the annual CO2 budget. In the middle of the snow season, the
snowpack is transformed over time through destructive and constructive metamorphism.
Destructive metamorphism refers to the process through which dendritic crystals are bro-
ken into rounded ice grains that become joined through sintering as snow crystals move to
an equilibrium state, resulting in a minimum ratio of surface area to volume. Destructive
metamorphism is controlled by vapour transfer within the accumulating pack, and is the
dominant process following snow fall (Colbeck , 1980). Constructive metamorphism refers
to the formation of temperature and vapor pressure gradients within snowpacks resulting
in the diffusion of water vapor upwards, from warm to cold regions of the snowpack. Once
the vapor has risen to a <0◦C area of the snowpack, it refreezes in the form of faceted crys-
tals. Cycles of freeze and melt within snowpacks cause the formation of large, irregular
grains that grow upwards from the bottom of the snowpack (Gray and Male, 1981).

In terrestrial Arctic or sub-Arctic snowpacks unaffected by melt or strong wind activity,
the top layer will remain less dense, weak and contain relatively unchanged snow crystals
that have had their dendrites broken off. The middle layer will be dense and strong with
small ice crystals due to destructive metamorphism, where air space and crystal size are
diminished under densification processes. The bottom layer is generally weak, with low
thermal conductivity. It will typically contain faceted crystals, or depth hoar (Gray and
Male, 1981) [Table 2.2]. The structure and low density of depth hoar cause it to have a
very low thermal conductivity relative to other layers of snow (Zhang et al., 1996). Arctic
and sub-Arctic snowpacks often contain wind slabs or ice lenses; when present, multiple
layers of depth hoar can be formed (Sturm et al., 1995).

Steady state soil heat flux is influenced by the thermal conductivity, temperature and
thickness of the snowpack (Gray and Male, 1981). In other words, the influence of mid-
season snow on CO2 flux depends on the thermal conductivity of snow (in Wm−1 ◦ C−1)
as greater water availability with warmer soil temperatures leads to greater rates of CO2
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Table 2.2: Description of general snowpack characteristics, arranged in their order of place-
ment in the snowpack, with fresh snow at the top and depth hoar forming closest to the
ground. In situ snow characteristics, however, are highly spatially and temporally variable,
and are heavily influenced by site characteristics. Multiple layers of depth hoar interspersed
by layers of ice can often be observed in Arctic and sub-Arctic snowpacks.

Density Grain size Grain shape Primary process Thermal cond.
Fresh snow Low Medium Various Precipitation event Low
Rounded High Small Round Destructive metamorphism Medium
Depth hoar Low Large Faceted Constructive metamorphism Very Low

production (Panikov et al., 2006). In general, the thermal conductivity of a snowpack
increases as the quantity of air relative to ice/water decreases. Packed, dense snowpacks
therefore tend to transfer heat from soil at the greatest rate (Slaymaker and Kelly , 2007).
Thermal conductivity (kt) can be estimated according to snowpack density (ρ) using a
quadratic expression or logarithmic expression (Sturm et al., 1997). For example, (Jeffries
et al., 1999) estimated thermal conductivity of snow on the Alaskan North Slope as kt =
0.138−1.01ρ+3.233ρ2. The development of new sampling strategies has also allowed direct
measurement of thermal conductivity, enabling analysis into the influence of snowpack
stratigraphy on thermal conductivity (Sturm et al., 2002). Surface melt, freezing rain
and wet snow refreezing at night cause the formation of ice layers and crusts. Rain can
fall in temperatures as low as -10◦C when ice nucleation is not present, resulting in ice
crusts (Gray and Male, 1981). When ice lenses and wind crusts form, the porosity of the
snowpack decreases while the pathways through which air could travel become increasingly
tortuous, resulting in diminished permeability and air flow. Under these conditions, larger
CO2 concentration gradients form between the bottom of the snow pack and ambient air
(Jones et al., 1999). Ice cover also limits exchange of gas with the atmosphere, but is not
thought to limit seasonal total gas exchange (Gray and Male, 1981). Ice lenses within the
snowpack can also influence the accuracy of diffusion-based measurements, since they defy
the assumption of a linear CO2 gradient within the snowpack (Sullivan, 2010). The use
of snow pits to examine the presence of ice lenses can, therefore, improve the reliability of
measurements (Sullivan, 2010). Erosion and windpacking in tundra snowpacks cause slabs
to form, and blizzards cause massive hard drifts.

Air temperature also influences snow-CO2 relationships, even though this influence is
limited by the insulating properties of the snowpack. At a low Arctic tundra site (L1), a
cold front was observed to cause a temporary drop in soil temperature at 2 cm below the
surface and produced diminished fluxes of CO2 (Buckeridge and Grogan, 2010). Extreme
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winter warming events initially encourage microbial activity and soil respiration. Follow-
ing warming, however, soil refreezes more deeply as the insulation provided by snow is lost
(Bokhorst et al., 2010), which can cause damage to vegetation that will substantially di-
minish net primary productivity over the following growing season (Bokhorst et al., 2009).
Meteorological influences during the snow season can therefore alter snowpack properties
as well as NEE.

2.5.3 End of season snow melt

Snow melt occurs due to a combination of rainfall, absorption of solar radiation and sensi-
ble heat exchange from the air to ground (Gray and Male, 1981). The process of snowmelt
is accelerated by albedo effects as the snowpack water content increases, snow depth de-
creases and low albedo vegetation is uncovered (Bonan, 2002). Due to the higher thermal
conductivity of water relative to air, wet snow cannot maintain temperature gradients or
insulate soil as well as dry snow (Gray and Male, 1981). The high thermal conductivity of
the snowpack at the end of the snow season therefore limits the influence of snow on soil
temperature (Zimov et al., 1996). As a result, changes in snowpack stratigraphy in a wet
snowpack are therefore likely to have little influence on CO2 production during snow melt.
However, in regions characterized by low Arctic vegetation, the diffusivity of the snowpack
may continue to influence the rate of soil CO2 release during snow melt (S2- (Björkman
et al., 2010)) and warmer temperatures can increase the rate of soil respiration at the end
of the snow season (T5- (Zimov et al., 1996)).

Effluxes of CO2 at the end of the snow season occur due to an increase in CO2 production
as nutrients and moisture are released through soil thaw, and due to snowmelt, which allows
CO2 trapped beneath the snowpack to be released (Elberling et al., 2008). An increase in
snow accumulation has been associated with diminished growing season photosynthesis
due to delayed onset of the growing season at site H2 (Morgner et al., 2010). Thicker
snow cover and later timing of snowmelt have been found to increase the magnitude and
delay the timing of CO2 released in late winter and early spring in mesic low Arctic tundra
at site L1 (Buckeridge and Grogan, 2010). Conversely, in upland tundra and sedge fen
locations at site L1, variations in the timing of snowmelt did not substantially alter early
season or total NEP (Humphreys and Lafleur , 2011). Springtime freeze-thaw cycles have
likewise been observed not to significantly influence total springtime CO2 efflux rates in
a sub-Arctic heath (S2) (Grogan et al., 2004). Springtime variations in air temperature
at a low Arctic mesic birch hummock site (L1) did not bring about freeze-thaw cycles in
soil, and also did not cause pulses of CO2 (Buckeridge and Grogan, 2010). The timing
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of snowmelt onset and end therefore appears to have a more important influence on NEE
than concurrent fluctuations in air temperature.

2.5.4 Implications for modeling snow season NEE

Following the first snowfall of the snow season, soil cooling limits the rate of respiration
and the rate of photosynthesis declines due to cold air temperatures and diminished light
availability under snow (Olsson et al., 2003). The timing of these transitions could be
represented in models of NEE using remote sensing observations of fractional snow cover
[Table 2.3]. Similarly, as nutrient availability declines following initial snow fall (Bokhorst
et al., 2010), the limiting influence of nutrients following litter loss could be described
according to a time period following initial snowfall.

In midwinter, snow metamorphic processes act as a dominant influence on the thermal
conductivity of the snowpack (Gray and Male, 1981). However, little NEE occurs during
the middle of the snow season (Elberling , 2007). Mid-winter fluxes of CO2 have been ob-
served to vary little between sites (Zimov et al., 1993) and are minimal due to nutrient
limitation (Mikan et al., 2002). Existing process-based model and inversion approaches
simulate diminished midwinter NEE, even when the influence of snow on NEE is not ex-
plicitly represented (McGuire et al., 2012). Models of NEE are therefore more likely to
benefit from improved characterizations of early and late snow season NEE than of midwin-
ter NEE, especially due to the lack of operational remote sensing estimates of snow thermal
conductivity or microphysical structure [Table 2.4], and existing challenges in accurately
modeling snowpack thermal conductivity and density, as described by (Saito et al., 2012).
However, if snowpack metamorphism was to be included in models of NEE, it may be
best to use a process-based approach to simulating snowpack dynamics, and assimilating
remote sensing observations of SWE to ensure accuracy in snowpack accumulation.

Extreme winter warming events (Bokhorst et al., 2010) could be identified by tracking
fractional snow cover and snow wetness throughout the cold season. At sites where ex-
treme winter warming events occur, the resulting damage to the photosynthetic capacity of
vegetation could be examined using satellite observations of mid-growing season vegetation
health via the Normalized Difference Vegetation Index (NDVI). In DGVMs, the influence
of extreme winter warming events on hindering NPP could therefore be simulated using
remote sensing observations of both the snow and growing seasons. Representing these
processes in models could allow insights into the complex responses of the carbon cycle to
warmer snow and growing season air temperatures. During snowmelt, CO2 stored within
the snowpack is released, and CO2 production also increases due to warmer temperatures
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and the release of nutrients as soil thaws (Elberling et al., 2008; Buckeridge and Grogan,
2010). Delayed timing of snowmelt can also lead to a later start of the growing season at
certain sites (Morgner et al., 2010). Incorporating remote sensing estimates of fractional
snow cover at the end of the snow season, or the snow state as wet or dry, may therefore
prove beneficial for representing snow season processes that drive NEE [Table 2.3]. The
following section provides a summary of recent approaches used to collect remote sensing
observations of snow, and provides an assessment of which strategies may be most useful
for reducing uncertainty in snow season estimates of Arctic and sub-Arctic NEE.

2.6 Remote sensing of influences on snow season NEE

Ideally, remote sensing observations incorporated into models of NEE would be at an
appropriate resolution, with reasonable accuracy and would have the ability to characterize
aspects of the land surface with the greatest influence on NEE, as described in Table 2.3.
The advantages and limitations of visible/infrared, altimeter, passive microwave and active
microwave approaches for observing snow characteristics are evaluated below in light of
their potential contribution to models of NEE. A brief summary of these remote sensing
products and their relevance to models of NEE can be found in Table 2.4.

2.6.1 Visible and infrared observations of snow cover area

Fractional snow cover area can be estimated from visible and infrared remote sensing
observations using the Normalized Difference Snow Index (NDSI) to differentiate snow
from clouds. Although both clouds and snow strongly reflect visible radiation, snow has
a much lower reflectance in the mid-infrared range than clouds (Crane and Anderson,
1984). On this basis, estimates of snow cover area from Earth Observing System (EOS)
Moderate Resolution Imaging Spectroradiometer (MODIS) observations can be generated
using the ratio of (green (rGREEN=0.545-0.565 µm) to mid-infrared (rMIDIR=1.628-1.652
µm) reflectance (Hall et al., 1995):

NDSI =
rGREEN − rMIDIR

rGREEN + rMIDIR

(2.3)

In regions where low illumination, surface water or vegetation complicate retrievals,
thresholds can be set to further differentiate snow covered surfaces (Hall and Riggs , 2007;
Riggs and Hall , 2004). For example, snow and water can have similar values of NDSI but
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water has a lower rNIR (0.841-0.876 µm) reflectance than snow. Therefore, non-forested
regions with NDSI≥0.4 and where ≥10% and rNIR ≥10% can be designated as snow
covered (Foster et al., 2011). Similarly, in regions with dense forest cover, observations of
NDVI can be used to set lower NDSI thresholds in order to detect sub-canopy snow cover
area (Hall et al., 1998).

MOD10 daily, 8-day and monthly composites of snow cover are generated at 500 m
to 0.25◦ grid resolutions using MODIS surface reflectance and masks for cloud cover and
land/water (Hall and Riggs , 2007). Surface temperature is also incorporated in order
to mask out regions with temperatures of >283◦K (Riggs and Hall , 2011). Validation of
MOD10 snow cover has shown an accuracy of 93% relative to in situ observations and other
operational snow cover products, with the main source of error arising from snow/cloud
discrimination (Hall and Riggs , 2007). The NDSI has also been used to estimate fractional
snow cover from a variety of other platforms ranging from 1-25 km in resolution (Xiao
et al., 2004b). For example, the NSDI in SPOT VEGETATION images (1 km) has shown
good agreement with ground observations of snow cover (Dankers and De Jong , 2004).

A major limitation of visible and infrared observations is that they cannot be used
to estimate the quantity of snow because of the short penetration depth of light due
to scattering (Dozier and Painter , 2004). Furthermore, the acquisition of visible and
infrared observations is limited at high-latitudes due to cloud cover and polar darkness.
The most suitable applications for optical remotely sensed images of snow are therefore in
characterizing the snow cover area at the start and end of the snow season (e.g. (Vikhamar
and Solberg , 2003; Paudel and Andersen, 2011)).

Year-round estimates of snow cover extent are therefore often generated using a combi-
nation of visible and infrared derived observations with remote sensing observations from
a variety of other sensors. For example, the U.S. National Oceanic and Atmospheric Ad-
ministration (NOAA) has been generating weekly estimates of Northern Hemisphere snow
cover extent since 1966, and have been producing interactive multisensor snow and ice
mapping system (IMS) estimates of snow and ice cover since 1999 at 24 km from a variety
of inputs (Ramsay , 1998). Since 2004, IMS estimates of snow cover extent have addition-
ally been generated at a daily, 4 km resolution (Helfrich et al., 2007) using visible and
infrared observations from MODIS and the Advanced Very High Resolution Radiometer
(AVHRR) in additional to several non-optical sources of imagery.

The main difference between the IMS and MOD10 products is that MOD10 is produced
in a fully automated manner, whereas IMS requires human intervention (Frei and Lee,
2010). Relative to higher resolution optical data and passive microwave observations of
snow, NOAA snow charts have had a late season bias by up to four weeks (Wang et al.,
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2005). Conversely, the MODIS snow cover area product tends not to identify snow in
autumn over Eurasian deciduous needleleaf forest when this is observed by IMS (Frei
et al., 2012). Since autumn snow cover influences the photoperiod and photosynthetic
uptake by vegetation more than spring snow cover, it may be best to use IMS products for
modeling NEE over Eurasia. However, if the influence of fractional snow cover on NEE is
represented in either process-based or remote sensing based models of NEE, and estimates
of pan-Arctic fractional snow cover are required after 2000, it may be beneficial to use the
MODIS snow cover area product.

2.6.2 Altimeter observations of snow depth

Light detection and ranging (LiDAR), or laser altimetry, measures the time between emis-
sion and reception of a laser pulse in order to map the three dimensional aspects of topog-
raphy. LiDAR has been used for a variety of applications ranging from biophysical canopy
mapping (Lefsky et al., 2002) to sea level height (Lemoine et al., 2010). Estimates of snow
depth can be made by subtracting measurements of the topography at a time when snow
is not present from measurements of topography during the snow season (Fassnacht and
Deems , 2006; Deems et al., 2006; Hopkinson et al., 2004).

However, LiDAR based techniques for accurately estimating snow depth (<10 cm) may
also be compromised by snowfall, fog or large grain size within the snowpack (Prokop,
2008) and the acquisition of high-resolution LiDAR observations by aircraft is expensive.
An alternative may therefore be to use observations from NASAs Geoscience Laser Al-
timeter System (GLAS) carried on the Ice, Cloud and land Elevation Satellite (ICESat).
ICESat/GLAS collects topographic measurements every eight days over regions with a 70
m diameter every 175 m, and these observations have previously been used to generate
daily estimates of snow depth over sea ice (Kwok and Cunningham, 2008), Arctic land
cover (Ranson et al., 2004) and topography of land (Atwood et al., 2007). One of the
stated potential applications of ICESat was to estimate terrestrial snow depth (Zwally
et al., 2002); however, no studies to date have applied ICESat for characterizing terres-
trial snow depth. Radar altimeter measurements from Topex-Poseidon have been used
to characterize terrestrial snow depth (Papa et al., 2002). Terrestrial snow depth could
therefore potentially be characterized using ICESat/GLAS or Topex-Poseidon altimeter
observations, and to apply these estimates of snow depth to reduce uncertainty in models
of NEE. The low spatial resolution of satellite altimeter observations or the high cost of
airborne observations may limit the utility of LiDAR estimates in models of NEE. With
the development of ICESat-2, this exploration may be possible.
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Although field studies focusing on snow-NEE associations have tended to quantify snow
in terms of its depth (e.g. (Grogan and Jonasson, 2006; Sullivan, 2010)), the regional
scale thermodynamic properties of snow cannot be well estimated as a direct function of
snowpack thickness alone (Slaymaker and Kelly , 2007). Altimeter observations are likely to
be most useful in situations where estimates of NEE are required for a small homogeneous
region where the site-scale association between snow depth and NEE has already been
characterized from in situ observations. Airborne LiDAR estimates of local snowpack
depth and vegetation may also be of use in characterizing local snow microtopography and
features such as tree wells, which can alter soil temperature and respiration.

2.6.3 Passive microwave observations of SWE

Passive microwave sensors measure the Earths brightness temperature (Tb) at frequencies
ranging from 1 to 18 GHz. Tb represents the amount of radiation emitted by an object
at a given wavelength, as expressed by the radiation emitted by a hypothetical blackbody
at the same physical temperature (T). Since real objects emit less energy radiation than
perfect (blackbody) emitters, brightness temperature at a given wavelength is a function
of the physical temperature and emissivity (ε <1) of a material (Chang et al., 1976):

Tb = εT (2.4)

Passive microwave observation can be used to estimate the timing of freeze/thaw cycles
(Zhang and Armstrong , 2001; Smith et al., 2004) and to detect ice lenses (Rees et al., 2010).
The state of the soil as frozen or thawed influences soil respiration, and ice lenses alter the
diffusion of CO2 through the snow pack (Elberling , 2007; Sullivan, 2010). The quantity
of snow accumulation in terms of its snow water equivalent (SWE) can also be estimated
from passive microwave observations. SWE is more useful than snow cover area for many
hydrological and climatological applications as it relates directly to the amount of water
accumulated in the snow cover, rather than the simple presence of snow (Foster et al.,
2005).

SWE can be estimated from passive microwave observations using site-specific regres-
sion values or inversion modeling approaches. Typically, SWE is estimated according to
the amount of volume scatter of microwave radiation through the snowpack, which in-
creases with the depth and density of the snowpack (Ulaby and Stiles , 1980). Estimates
of SWE are usually generated according to the difference between brightness temperature
at two frequencies, such as 19 and 37 GHz observations from AMSR-E (e.g. (Pulliainen
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and Hallikainen, 2001)), since 37 GHz observations display greater scatter than 19 GHz
observations with greater snow accumulation. However, several aspects of the Arctic and
sub-Arctic environment such as microwave emission from dense snowpacks and high lake
fractional coverage necessitate the use of tundra-specific algorithms for SWE using observa-
tions at 37 GHz (Derksen et al., 2010). Currently, a leading product containing estimates of
SWE across the northern hemisphere is GlobSnow, which shows strong agreement against
ground-based measurements (Takala et al., 2011).

A drawback of using passive microwave observations of SWE in models of NEE is that
estimates of the SWE from deep (>0.5 m) snowpacks may not be accurate since the scatter-
ing signal at 37 GHz loses sensitivity at these snow depths (Shi , 2008). Another drawback
is that SWE can only be estimated from dry snowpacks using passive microwave observa-
tions. Wet snow mainly emits passive microwave radiation, and the influence of volume
scattering on the passive microwave signal is therefore difficult to discern (Stiles and Ulaby ,
1980). However, this may not be a great concern in representing the influence of snow ac-
cumulation on NEE since only dry snowpacks maintain air-soil temperature differentials
that affect the production of CO2 (Zimov et al., 1996). The main drawback of incorpo-
rating passive microwave observations into models of NEE is that the resolution at which
observations are collected (25 km) may not be fine enough for characterizing variability in
cryospheric influences on NEE over heterogeneous Arctic landscapes. The main advantage
of passive microwave observations is that they can be collected throughout the snow sea-
son over high latitudes, and are not hindered by polar darkness or non-precipitating cloud
cover (Foster et al., 2011). Furthermore, the thermal conductivity of the snowpack, which
influences soil respiration, is determined through a combination of snowpack density, grain
characteristics and accumulation (Gray and Male, 1981).

Although thermal conductivity is not a direct function of SWE, strategies do exist for
estimating snow temperature using passive microwave derived observations of SWE, when
combined with a land surface model and atmospheric forcing (e.g. (Sun et al., 2004).
The influence of snow accumulation on soil respiration could therefore be estimated by
including observations of SWE. Furthermore, in regions where moisture resulting from
snowmelt influences soil moisture, estimates of water availability upon snowmelt could be
improved by incorporating estimates of SWE at the end of the snow season into hydrological
estimates by process-based models.

2.6.4 Active microwave observations of snow characteristics

Active microwave observations of backscatter can be used to estimate snow wetness, ther-
mal resistance and snow water equivalent (SWE) (Shi , 2008; Rott et al., 2010). The timing
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of snowmelt can also be estimated from active microwave observations (Royer et al., 2010;
Wang et al., 2008) since backscatter diminishes as the snowpack liquid moisture increases
(Chang et al., 1985). Presently, active microwave observations are being collected at the
C-band, and these observations can, be used to characterize snow liquid water content
(Niang et al., 2007).

Measuring the amplitude and phase of polarization state and interferometry from repeat
pass observations could also be used to characterize other snow characteristics such as grain
size, snow depth, structure and density (Shi , 2008). However, to date, current approaches
to estimate SWE and snow characteristics from existing space-borne synthetic aperture
radar (SAR) observations have been complicated by the dependence of these algorithms
on the study site location and the year. The active microwave signal is influenced by
a number of different characteristics of the snowpack that alter the snowpack geometry,
composition and volume. Efforts to estimate specific characteristics of the snowpack are
therefore complicated by the need to decompose this signal. Ground-based and airborne
active microwave observations are currently being collected to assess the potential for
snowpack properties to be estimated from twin frequency observations at 9.6 and 17.2
GHz (Rott et al., 2010).

Several products are being developed to make use of active microwave observations
in combination with other sensors. For example, daily estimates of the state of the land
surface as frozen or thawed will be available at a 3 km resolution from the Soil Moisture
Active-Passive (SMAP) mission (Entekhabi et al., 2010; Kim et al., 2010). Similarly, the
Air Force Weather Agency/NASA Snow Algorithm (ANSA) combines MODIS visible and
infrared observations with active and passive microwave observations in order to generate
estimates of SWE, fractional snow cover, snowmelt onset and regions of active melt (Foster
et al., 2011). Unfortunately, the active microwave observations were acquired by NASAs
QuickSCAT, which was in operation from 1999-2009. Presently, no established products of
SWE or snowmelt onset/end exist that use active microwave observations alone. In future,
it may be advantageous to use a combined product in models of NEE if estimates of a
variety of snow season characteristics are desired.

2.6.5 Suitability of different remote sensing approaches for mod-
els of NEE

The suitability of various remote sensing approaches in estimating snowpack characteris-
tics that alter snow season NEE are summarized in Table 2.4. Visible and infrared remote
sensing data are most useful in situations where high resolution estimates (weekly, >30
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m) of snow cover area are desired at the start or end of the snow season. Laser altimeter
estimates of snow depth may be useful where the association between snowpack depth
and NEE is known, and where snow cover is adequately consistent and homogeneous so
that point observations could adequately characterize regional snow depth. High resolu-
tion observations (<20 cm) by airborne LiDAR could likewise assist in characterizing the
snowpack depth, but are unlikely to be collected routinely or regionally for scientific studies
due to the high financial cost. Although a majority of field studies have investigated the
influence of snow accumulation on NEE in terms of snow depth, the stratigraphy, SWE
and snow grain characteristics are more important for the thermal conductivity and gas
diffusivity of a snowpack. Therefore, estimates of SWE are likely to be of greater use in
models of NEE than altimeter observations of snow depth, as SWE has a more important
influence on soil respiration and soil moisture availability than snow depth.

The inclusion of passive microwave observations in models of NEE would be most likely
to be beneficial in regions that are sufficiently homogeneous so as to not be hindered by the
coarse (≈ 25 km) resolution of these products. Presently, active microwave observations
can be used to assess snowmelt timing, but existing systems cannot be used to generate
regional estimates of SWE or other snow characteristics due to challenges in decomposing
the active microwave signal, as the relationships between SWE, snowpack stratigraphy
and the active microwave signal vary across study sites and years. Established products
exist for passive microwave observations of SWE from GlobSnow, and visible and infrared
observations of fractional snow cover area from MODIS 10. Synergistic products indicating
soil freeze/thaw such as SMAP and ANSA estimates of SWE and fractional snow cover
which are currently in development may prove helpful in future studies involving NEE.

2.6.6 Incorporating remote sensing of snow into models of NEE

Remote sensing observations could be incorporated into models of Arctic and sub-Arctic
NEE in several ways. Firstly, these observations could be brought in as model inputs in
remote sensing or process-based models of NEE in order to represent snowpack properties
relevant to NEE [Table 2.3]. Another option is that model calibration or evaluation could
consist of comparing remote sensing observations of factors such as the dates of initial snow
fall and snow melt against estimates of NEE for portions of the year when observations
of NEE are unavailable in order to better understand model performance. This approach
could be used both for models that explicitly represent snow processes, and for those which
do not. A final option is for models of NEE to explicitly represent physical processes during
the snow season, and to incorporate remote sensing observations of snowpack properties
into model representations of snowpacks in order to better constrain estimates of NEE.
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The optimal strategy depends largely on the model class (prognostic or diagnostic), its
formulation (remote sensing or process based), and the intended purpose of the model.

Incorporating remote sensing observations directly into models of NEE is advantageous
when model output is required over large regions or many years, as a comparison of 33
snow models by (Rutter et al., 2009) indicated that model performance in estimates of
SWE and snow depth varied by site and year. It may therefore be more difficult to
examine the sources of uncertainty in models of NEE if these models make use of process-
based representations of snowpack properties which are unconstrained by in situ or remote
sensing observations.

Certainly, representing the influence of fractional snow cover area on photosynthesis
and respiration could be conducted by directly incorporating remote sensing based esti-
mates of snow cover area [Tables 2.3 & 2.4]. Due to the scale dependence of NEE, snow
and vegetation, it is important that model representations of interactions between snow,
vegetation and NEE consider whether discrepancies exist in the spatial scales at which
these interactions are observed and modeled, and how uncertainties due to this effect can
be mitigated. Remote sensing observations are acquired at a coarse resolution that is more
similar to typical model resolutions than the scale at which field observations are acquired,
and this may prove beneficial in characterizing snow at an appropriate resolution.

The combination of a process-based model of snow and NEE, and remote sensing ob-
servations of snow, would be optimal for representing the response of NEE to changes in
snowpack characteristics (e.g. timing of snow on/off, ice layers, metamorphism, changes
due to warming events). A process-based approach may also be beneficial in estimating
light penetration and its influence on subnivean photosynthesis, and in representing the
influence of ice lenses on altering the portion of CO2 which results from biotic and abiotic
releases. The effects of snow metamorphism, snow cover and snow-vegetation interactions
on albedo could likewise be simulated using a process-based approach. Representing these
snow season processes in models of NEE, as well as interactions between vegetation, me-
teorological conditions, permafrost, soil carbon content, snow albedo, soil respiration, and
photosynthesis, could contribute to an improved understanding of the drivers of Arctic and
sub-Arctic NEE.

2.7 Conclusions

In situ studies have indicated that a substantial portion of NEE in the Arctic and sub-
Arctic occurs during the snow season (Zimov et al., 1996; Sullivan et al., 2008; Aurela
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et al., 2004), and that the spatiotemporal dynamics of NEE are influenced by the timing
of initial snow fall in autumn (Euskirchen et al., 2012), the timing of final snowmelt in
spring (Buckeridge and Grogan, 2010; Morgner et al., 2010), and the quantity of snow
accumulated (Sullivan et al., 2008; Nobrega and Grogan, 2007). The main contribution
of this paper has been to provide a summary of the physical processes driving NEE, and
in providing strategies for representing these processes in models of NEE [Table 2.3] and
selecting an optimal remote sensing approach for characterizing snow season properties
[Table 2.4]. Incorporating remote sensing observations of snow season properties of the
land surface may assist in both reducing uncertainty in model estimates of Arctic and sub-
Arctic NEE, and in providing insights into the complex physical interactions that occur
between snow and NEE throughout the snow season.

Understanding the interactions between snow, vegetation and the northern carbon cycle
is especially important due to the complex and interconnected reactions of biological,
cryospheric, hydrological and atmospheric systems to climate change and rising levels of
atmospheric CO2 [Figure 2.1]. Uncertainty regarding the response of Arctic systems to
predicted changes in climate remains one of the most critical issues in Arctic carbon balance
research today (Lafleur and Humphreys , 2008). Climate change is predicted to cause
a rise in temperature and an increase in precipitation (Christensen et al., 2007), which
is predicted to result in diminished snow cover extent and greater snow accumulation
across the Arctic (AMAP , 2011). Deeper snowpacks could accelerate the rate of winter
respiration, but a longer growing season may result in greater photosynthetic uptake by
vegetation. Changes in vegetation composition are likely to increase the uptake of carbon
in short-lived tissues as temperature constraints on productivity are relaxed (Schlesinger
and Lichter , 2001), but species change may also lead to larger effluxes of CO2 at Arctic sites
since greater shrub prevalence is associated with diminished thermal conductivity of snow
(Sturm et al., 2001a). The net influence of climate change on the northern carbon balance
therefore depends on the relative magnitude of changes in CO2 uptake and efflux by soil
microbial communities resulting from changes in snow, temperature and vegetation [Figure
2.1]. Model estimates of NEE are thus important for quantifying and understanding the
net effect of these cumulative changes.

Predictions for the year 2050 indicate that climate change may bring about an increase
in maximum snow depth and a 20% decline in average pan-Arctic snow cover duration,
which could increase the rate of both subnivean respiration and photosynthetic uptake in
spring and fall (AMAP , 2011). The timing of initial snow fall alters the photosynthetic up-
take of carbon by vegetation at the end of the growing season (Euskirchen et al., 2012) and
changes in the timing of snowmelt can alter the carbon balance of a site (Morgner et al.,
2010). Furthermore, permafrost thaw may be accelerated by increased accumulation of
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snow or warming temperatures, which can result in effluxes of CO (Nowinski et al., 2010;
Schuur et al., 2009). Over the next century, thawing permafrost is predicted to release
16-20%, of soil organic carbon, resulting in large effluxes of CO2 and CH4 through aerobic
and anaerobic decomposition (Zhang et al., 2008). An increase in snow accumulation would
therefore be likely to bring about greater effluxes of CO2 both through more extensive per-
mafrost thaw and greater rates of soil respiration. Including observations of fractional snow
cover at the start and end of season, as well as snow accumulation, could therefore assist
in determining how climate driven shifts in precipitation, temperature, snow accumulation
and snow duration alter the timing and magnitude of the northern carbon budget.

Extreme winter warming events have already begun to be observed regionally in the
Mackenzie Basin (Cao et al., 2007), and these events are predicted to increase in prevalence
over time due to climate change (AMAP , 2011), which may result in damaged vegeta-
tion and diminished photosynthetic uptake during the following growing seasons (Bokhorst
et al., 2009). Conversely, diminished snow duration has been observed to increase the up-
take of CO2 at the start and end of the growing season as well as the rate of respiration
at an Alaskan tundra site (Oberbauer et al., 1998). Identifying mid-winter melt events,
and quantifying the subsequent change in soil temperature, could therefore prove crucial
in understanding the response of the carbon cycle to warming winter temperatures.

Previously, studies have assessed the response of the biosphere-atmosphere system to
changes in snowcover using a combination of longitudinal field studies (e.g. (Aurela et al.,
2004)) and biosphere-atmosphere transfer models (e.g. (Yang et al., 1997)). Process-based
ecosystem models have been applied in order to estimate past (McGuire et al., 2001) and
future (Cramer et al., 2001) changes in the global carbon balance resulting from climate
change and shifts in atmospheric levels of CO2. As climate change continues to alter
northern ecosystems and the relationships between cryospheric and biospheric components
of the Earth system, the ability to accurately quantify the Arctic carbon budget and its
response to climate change will be crucial. Including remote sensing observations of the
cryosphere in models of NEE will allow these models to simulate snow season NEE, and
its response to regional cryospheric changes.
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Figure 2.2: Pan-Arctic locations at which field studies of snow season NEE were conducted
(red points) and locations of northern Fluxnet stations (black triangles). Regions are
defined as low Arctic (yellow), high Arctic (red) and below the treeline (green) according
to the Circumpolar Arctic Vegetation Map (Walker et al., 2005). Mean AVHRR NDVI
values from the CAVM are shown for regions south of the treeline, where darker shades of
green correspond to larger values of NDVI.
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Chapter 3

Modeling the influence of snow cover
on low Arctic net ecosystem
exchange
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Overview

Arctic net ecosystem exchange (NEE) of CO2 between the land surface and atmosphere is
influenced by the timing of snow onset and melt. Snowpacks influence the rate of respira-
tion by decoupling soil and air temperatures, and hinder the rate of photosynthetic uptake
by vegetation at the start and end of the snow season by inducing dormancy and limiting
light availability. The objective of this study was therefore to examine whether uncertainty
in model estimates of NEE could be reduced by representing the influence of snow on NEE
using remote sensing observations of snow cover area (SCA). Observations of NEE and
time-lapse images of fractional snow cover collected at a low Arctic site (Daring Lake,
NWT) in May–June 2010 were first analyzed in relation to Landsat and MODIS estimates
of SCA. As findings indicated good agreement between local and satellite observations of
SCA, MODIS estimates of SCA were incorporated into the Vegetation Photosynthesis Res-
piration Model (VPRM). VPRM was calibrated at Daring Lake using 2005 observations of
NEE, shortwave radiation and temperature acquired from eddy covariance and meteoro-
logical stations. Estimates of NEE were then generated using model formulations with and
without explicit representations of the influence of SCA on respiration and/or photosyn-
thesis. Model performance was assessed relative to unfilled eddy covariance observations
from Daring Lake and Ivotuk, AK for years 2004–2007. Uncertainty in VPRM estimates of
NEE was reduced when respiration was estimated as a function of air temperature during
the growing season, and as a function of soil temperature during the snow season, when
soil and air temperatures are decoupled by an overlying snowpack.
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3.1 Introduction

In low Arctic regions, the initial onset and final melt of snow mark important transitions
in net ecosystem exchange (NEE) (Olsson et al., 2003; Grogan et al., 2004; Bokhorst et al.,
2010; Buckeridge and Grogan, 2010), where NEE is defined as the biospheric flux of CO2

into and out of the land surface (Lovett et al., 2006). NEE can be described as the sum of
photosynthetic uptake by vegetation (GEE, or gross ecosystem exchange) and ecosystem
respiration (R): NEE = −GEE+R. According to the sign convention used in this study,
uptake of CO2 from the atmosphere is represented as negative NEE, and release of CO2

into the atmosphere is shown as positive NEE.

Photosynthetic uptake by vegetation is maximized during the growing season, when
above-freezing air temperatures and sunny conditions support plant growth. During snow
onset in autumn, the land surface is cooling (Zhang et al., 1996), light availability is lim-
ited, and most plants are in senescence, resulting in diminished rates of photosynthesis and
respiration (Billings and Mooney , 1968; Carstairs and Oechel , 1978; Öquist and Huner ,
2003; Olsson et al., 2003; Euskirchen et al., 2012). Snowpack development decouples soil
temperatures (Tsoil) and air temperatures (Tair) (Bonan, 2002), allowing subnivean respira-
tion to persist at low Tair (Zimov et al., 1993; Olsson et al., 2003). Snow melt in the Arctic
normally takes place within a month of the solstice. Light availability is therefore high,
and melt is accompanied by warmer Tair, soil thaw and greater availability of nutrients. As
a result, snowmelt is accompanied by rapid increases in rates of respiration (Zimov et al.,
1996; Mikan et al., 2002; Oelbermann et al., 2008; Elberling et al., 2008). Although the
length of time between snowmelt and green-up varies by species (Humphreys and Lafleur ,
2011), the timing of snowmelt at a site influences the timing of photosynthetic uptake by
vegetation (Morgner et al., 2010; Buckeridge and Grogan, 2010).

Landscape rates of photosynthesis and respiration during snow onset and snow melt
are also influenced by the proportion of the land surface which is snow covered at any
given point in time (snow cover area, or SCA). Comparisons of NEE at plots with differing
quantities of snow have found diminished rates of photosynthesis and respiration during
snow onset/melt at plots with greater SCA (e.g. Buckeridge and Grogan (2010) and
Morgner et al. (2010)). Representing SCA in biospheric carbon flux models could therefore
allow the snow, transitional and growing seasons to be clearly delimited. Model estimates
of NEE during these time periods could therefore be generated by simulating the differing
seasonal drivers of NEE for each period. Hence, uncertainty in model estimates of Arctic
NEE might be reduced by explicitly representing the influence of SCA on NEE.

Although most model estimates of Arctic NEE do not simulate snow season influences
on NEE, several process-based approaches (e.g. (McGuire et al., 2000; Wania et al., 2009;
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Gouttevin et al., 2012)) have represented snowpack properties (e.g. density, diffusivity)
mechanistically, and have then generated estimates of subnivean respiration in light of
these snowpack properties. Findings from such studies indicate that model approaches
which represented snowpack properties had lower error rates compared to model approaches
which did not explicitly represent snowpack properties. Since >50% of annual low Arctic
CO2 efflux can occur during the snow season (Mikan et al., 2002; Sullivan et al., 2008),
the resulting improvements in model performance can have important implications for
accuracy in estimates of the Arctic carbon cycle.

To date, model estimates of NEE have not made use of remote sensing observations
of snowpack characteristics, although many established approaches exist which would be
suitable for inclusion in models of NEE (Luus et al., In press). Specifically, estimates of
SCA can be made from visible and infrared remote sensing observations from satellites
such as Landsat (Dozier , 1989; Rosenthal and Dozier , 1996) and MODIS (Moderate Res-
olution Imaging Spectroradiometer) (Hall et al., 2002; Hall and Riggs , 2007; Riggs and
Hall , 2011). Applying a remote sensing approach to estimating snowpack properties for
inclusion in model estimates of NEE offers several advantages over a process-based ap-
proach. Incorporating remote sensing observations of snow characteristics in a model of
NEE limits the propagation of meteorological biases into estimates of snow characteristics,
and allows spatially variability in snow distributions to be captured without having to sim-
ulate the many land surface influences on snow accumulation and melt (e.g. topography,
aerodynamic roughness).

Estimates of SCA from satellites such as Landsat and MODIS could therefore be incor-
porated into models of biospheric CO2 fluxes, potentially improving the representation of
respiration and photosynthesis processes. For example, when the land surface is partially
snow covered (0% <SCA< 100%) at the start and end of the snow season, photosynthesis
could be suppressed according to the percentage of the land surface which is snow-covered,
in recognition of the influence of snow on hindering photosynthesis. Incorporating remote
sensing observations of SCA could also allow the snow and growing seasons to be delineated
clearly and accurately, such that variations in model formulations for respiration and pho-
tosynthesis specifically related to snow and no-snow conditions could be simulated. The
goal of this research was to explore the potential for incorporating SCA and its effects on
biospheric carbon fluxes into the Vegetation Photosynthesis Respiration Model (VPRM),
a diagnostic, remote sensing based model designed to provide regional estimates of NEE
(Mahadevan et al., 2008). The specific objectives were to examine the feasibility of as-
similating MODIS SCA into a model of biospheric carbon fluxes, and to examine whether
uncertainty in VPRM estimates of NEE could subsequently be reduced by simulating the
influences of SCA on photosynthesis and/or respiration.
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3.2 Methodology

Preliminary analysis was conducted using eddy covariance observations of NEE, meteoro-
logical observations, and time-lapse camera images acquired in May-June 2010 from Daring
Lake, NWT, Canada. The four parameters in the VPRM were then calibrated using 2005
NEE and meteorological observations from the mixed tundra site at Daring Lake. Evalua-
tion of VPRM performance with and without the representation of snow season processes
was conducted by running VPRM over years 2004–2007 at two low Arctic sites: Daring
Lake and Ivotuk. Model evaluation then consisted of comparing outputs to unfilled eddy
covariance observations of NEE from these two sites. Field observations of NEE were
filtered only to remove periods of time with low frictional velocity.

3.2.1 Study sites

The Daring Lake site is located in the southern portion of the Northwest Territories at
64◦52N, 111 ◦34’W, ≈200 km northeast of Yellowknife. Daring Lake receives an average
of 200-300 mm in precipitation annually, and has a mean annual temperature of -12.5
to -10.5 ◦C (Lafleur and Humphreys , 2008). At this study site, four time-lapse cameras
were set to capture thrice daily images of the land surface in May–June 2010 from towers
overlooking mixed tundra (MT), fen (FN), lakeside mixed tundra (LK), and tall shrub
(SB) vegetation. Observations of NEE were simultaneously acquired from eddy covariance
towers at MT and FN in May–June 2010. Measurements of NEE and meteorological
variables have been collected at the Daring Lake MT site since 2004. The MT site is
underlain by sand to loamy sand textured soil and is composed of shrub tussock tundra
and mesic heath. The FN site is a wet sedge meadow with 40 cm of peat soil overlying silt
loam textured soil. The dominant vegetation is sedges, with minor amounts of dwarf birch
and a moss understory (Humphreys and Lafleur , 2011; Lafleur and Humphreys , 2008).

Ivotuk is an Ameriflux site located on the North Slope of Alaska at 68◦29N, 155◦44′,
≈300 km south of Barrow. Eddy covariance observations of NEE and meteorological
measurements were collected at Ivotuk from 10/03–10/07. The average temperature and
liquid precipitation at Ivotuk are reported within the range of -8.9 to -14.6 ◦C and 123–221
mm by Laskowski (2010). The site is classified as a moist, acidic, tussock tundra site
dominated by Eriphorum vaginatum and containing shrubs, mosses and lichen (Thompson
et al., 2006; Laskowski , 2010).
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Figure 3.1: Camera images of fractional snow cover over four vegetation types at Daring
Lake (from top to bottom: mixed tundra, fen, lakeside mixed tundra and tall shrub) on
May 9 (DOY 129), May 31 (DOY 151) and June 3 (DOY 154) 2010.

3.2.2 Calculating snow cover area

Snow cover area was estimated from visible or infrared observations available at three
resolutions, from three different sources: time-lapse camera (<10 m), Landsat (30 m) and
MODIS (500 m). Although images from both May 1–June 30 2010 and August 30 –
December 7 2010 were examined, we focus the analysis of snow-NEE associations on the
time period when camera images were acquired simultaneously with meteorological and
eddy covariance observations: May 1–June 30 2010. All camera images acquired during
this two month time period were individually classified in ENVI/IDL using a combination
of supervised parallelepiped and unsupervised isodata classifiers in ENVI. The accuracy of
these estimates was assessed visually, and supervised classifications were used in situations
where isodata did not perform well. Figure 3.1 shows a selection of time-lapse images from
the four locations at Daring Lake at the start, middle and end of snow melt in 2010. From
these analyses, a percentage of fractional snow cover was calculated.
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Landsat images were collected over the 2004-2007 and 2010 periods in May–June. These
images were classified in terms of snow presence/absence using the Normalized Difference
Snow Index (NDSI). The NDSI is used to identify snow on the basis that snow reflects
less middle-infrared (rMIDIR, 1.55-1.75 µm) than visible (rGREEN, 0.52-0.60 µm) radiation
relative to other land surface covers:

NDSI =
rGREEN − rMIDIR

rGREEN + rMIDIR

(3.1)

Regions with NDSI> 0.4 and r0.76−0.90µm > 11% were classified as snow covered, whereas
other regions were classified as non-snow covered, as according to Hall et al. (1995). The
MODIS MOD10A1 fractional SCA product was used as the 500 m estimate of SCA. As
Landsat is available on 7-9 day intervals, interpolation was used to generate half-hourly
estimates of snow cover. Furthermore, as MOD10A1 daily estimates of SCA were very
noisy, the date at which <50% was first achieved was set as the initial date of snow off,
and snow depletion was then linearly interpolated.

3.2.3 Incorporating the influence of snow cover in VPRM

VPRM has previously been used to simulate NEE over mid-latitude (south of 56◦N) sites
in North America (Mahadevan et al., 2008; Hilton et al., 2012). Photosynthetic uptake by
vegetation (gross ecosystem exchange, GEE) is calculated according to incoming photo-
synthetically active radiation (PAR), the fraction of PAR which can be absorbed by pho-
tosynthetically active vegetation (FAPARPAV) and scalar values representing the limiting
influences of air temperature (T scale), land surface water (W scale), and phenology (P scale).
PAR and Tscale are derived from North American Regional Reanalysis (NARR) down-
ward shortwave radiation and Tair at 2m datasets, whereas Wscale, Pscale and FAPARPAV

are derived from MODIS. PAR0 and λ are empirically calibrated parameters representing
light use efficiency (Mahadevan et al., 2008).

GEE = (λT scaleW scaleP scale)FAPARPAV
1

1 + PAR
PAR0

PAR (3.2)

Respiration is calculated using a piecewise approach. When air temperatures (Tair) are
warmer than a threshold temperature (Tlow), respiration is calculated as a linear function of
air temperature (RESP=α×Tair+β). When Tair<Tlow, respiration is set to a low, baseline
value that is independent of temperature. Tlow, α, and β are calculated according to the
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relationships observed between NEE and Tair in tower observations. NEE is calculated
according to the sum of GEE and respiration: NEE = −GEE +RESP .

VPRM does not explicitly include the effects of snow cover on respiration and photosyn-
thesis. Instead, respiration is assumed to remain at a constant rate throughout the time
period when Tair<Tlow, regardless of fluctuations over time in subnivean temperatures.
Photosynthesis is diminished under conditions of low Tair, EVI or shortwave radiation.
MOD10A1 SCA (SCA, 0-100%) was incorporated as a driver dataset into VPRM, and
daily estimates of NEE in 2004–2007 at Daring Lake and Ivotuk were then generated using
four model formulations, some of which include NARR Tsoil (at 0-10cm). The α, β, Tlow,
αsoil, and βsoil parameters were all individually calibrated to eddy covariance observations
collected at Daring Lake in 2005. In all of the model formulations below, GEE0 is used to
refer to GEE as calculated in equation 3.2, and NEE = GEE +RESP .

i. RESP0 & GEE0:
GEE = GEE0

R =

{
T air ≥ T low : αT air + β
T air < T low : RESP low

ii. RESP0 & GEEs:
GEE = GEE0(100%− SCA)

R =

{
T air ≥ T low : αT air + β
T air < T low : RESP low

iii. RESPs & GEE0:
GEE = GEE0

R =

{
SCA < 50% : αT air + β
SCA ≥ 50% : αsT soil + βsoil

iv. RESPs & GEEs:
GEE = GEE0(100%− SCA)

R =

{
SCA < 50% : αT air + β
SCA ≥ 50% : αsT soil + βsoil

VPRM performance under these four model formulations was assessed both qualitatively,
and statistically. The error ε, or difference between predicted (VPRM) and observed (eddy
covariance) daily average values of NEE (εi =predi−obsi), was evaluated using two metrics:
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the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) (Willmott and
Matsuura, 2005):

MAE = n−1
n∑
i=1

|εi| (3.3)

RMSE =
[
n−1

n∑
i=1

|εi|2
] 1

2
(3.4)

Results were evaluated over two time periods: May 1–June 7 of 2004–2007 (MJ), and the
portion of years 2004–2007 when MOD10A1 reported >0% SCA (snow season, or SS).

3.3 Results and Discussion

The feasibility of representing snow season processes in VPRM was addressed by comparing
ground-mounted camera observations of SCA to satellite estimates of SCA. Subsequently,
reductions in model uncertainty arising from explicitly representing the effects of SCA on
NEE are described.

3.3.1 Landsat and MODIS estimates of local snow cover

Time-lapse camera observations of fractional SCA agree well with linearly interpolated
Landsat NDSI observations of whether the pixel containing each camera was snow-covered
or snow-free [Figure 3.2]. Both Landsat and time-lapse cameras showed snow depletion
to occur within a seven day period, with no substantial melts before snow depletion and
no snow accumulation following depletion. To assess the agreement between Landsat and
MODIS with time-lapse images of fractional snow cover, the timing of 50% snow cover
was linearly interpolated from the camera, MODIS and Landsat observations. There was
a slight advance or delay of two to five days in MODIS Landsat estimates of depletion
relative to the cameras, depending on the site [Table 3.1]. This slight discrepancy is likely
due to the coarser resolution of MODIS and Landsat relative to time-lapse camera images.
Since lakes melt more gradually than land surfaces, this results in a bias towards late
estimates of SCA. However, this slight discrepancy appears reasonably small.

Examination of MODIS SCA tiles containing Daring Lake and Ivotuk found that <10%
of each mid-winter scene had false negatives, and <10% of each growing season scene
contained false positives. These errors are likely due to low solar angles and cloud edges,
respectively, and will be fixed in upcoming versions of MOD10A1 (Riggs and Hall , 2011).
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FN LK MT SB
Camera 150 151 151 150
Landsat 155 155 155 148
MODIS 155 155 155 155

Table 3.1: The ordinal date at which SCA is first below 50% according to time-lapse camera
observations and interpolated estimates of SCA derived from Landsat and MODIS over
four vegetation types at Daring Lake.
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Figure 3.2: Fractional snow cover % over time (May 25–June 11 2010) from classified,
thrice daily camera images from four sites Daring Lake, NWT: MT (blue), FN (green),
LK (yellow), and SB (red). Landsat derived estimates of SCA appear as straight undotted
lines. Landsat SCA for the pixel containing SB is shown in red. Landsat SCA for the
pixels containing MT, FN and LK are all indicated in black, as weekly Landsat estimates
of snow on/off showed identical values at these three sites.

As snow melt was observed to occur as a single snow depletion event at Daring Lake [Figure
3.2], a locally weighted least squares smoothing algorithm was applied to the MODIS
observations to ensure that false negatives or false positives would not appear in mode
inputs, and to ensure good agreement between local and coarse (500 m) resolution estimates
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of fractional snow cover.

3.3.2 Associations between NEE and SCA
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Figure 3.3: Landsat SCA, MODIS SCA, time-lapse camera SCA, NEE, 5 cm soil temper-
ature and air temperature from May 25 – June 11 2010 at the Daring Lake mixed tundra
(MT) site.
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Daring Lake MT (2005).
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Preliminary investigation of SCA, Tsoil, air temperature and NEE over time at the
Daring Lake MT site indicated several important effects of snow cover area on NEE [Figure
3.3]. Although the low thermal conductivity of snow maintains warmer Tsoil than Tair

throughout the middle of winter [Figure 3.4], in the time period immediately preceding
snow melt, air temperatures are warmer than Tsoil. As Tair rises, Tsoil slowly follows to
reach a temperature of 0◦C, at which point snow melt begins.

A decline in SCA initially increases the rate of CO2 efflux, leading to greater respira-
tion. Tair and Tsoil become more closely synchronized following snow melt. Once snow
melt is complete, vegetation begins to green-up, leading to an increase in the rate of pho-
tosynthetic uptake of CO2. It is therefore possible that model uncertainty may be reduced
by representing the influence of snow on hindering photosynthetic uptake by vegetation.
Furthermore, as respiration depends on Tsoil (Mikan et al., 2002; Oelbermann et al., 2008),
it is reasonable that subnivean respiration should be estimated as a function of Tsoil when
Tair and Tsoil are decoupled.

3.3.3 VPRM estimates of NEE with and without MOD10A1
SCA

All four VPRM formulations generated reasonable estimates of NEE over Ivotuk and Dar-
ing Lake MT in years 2004–2007 (MAE=0.2-0.5 µmol/m2/s and RMSE=0.6-1.8 µmol/m2/s).
MAEs were similar between the DL-MT and IV sites. RMSE values tend to be greater at
the IV site because a greater portion of observations were collected in mid-winter, a time
of year in which uncertainty in measurements of NEE is greatest (Amiro, 2010).

Uncertainty in VPRM estimates of NEE was reduced when snow season respiration
was calculated as a function of Tsoil, and when snow season photosynthesis was simulated
using the original VPRM formulation [Table 3.2]. When considering May–June estimates
of NEE, the improved VPRM formulation (RESPs & GEE0) had mean MAEs and RMSEs
of 0.20 and 0.75 µmol/m2/s, whereas the original VPRM formulation (RESP0 & GEE0)
had mean MAEs and RMSEs of 0.31 and 0.80 µmol/m2/s. Likewise, MAEs and RMSEs
were diminished throughout the snow season with the improved (RESPs & GEE0) VPRM
formulation.

These reductions in model uncertainty are important because the extended duration
of the winter period in the Arctic means that even small biases in daily average NEE can
have a substantial effect on annual estimates of net carbon exchange. Comparisons of the
cumulative carbon exchange for each site indicated that the RESP0 & GEE0 formulation
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consistently estimated greater quantities of net carbon efflux than the RESPs & GEE0

formulation [Table 3.3].

Time Site VPRM form 2004 2005 2006 2007
MJ DL RESP0 & GEE0 0.320 (0.366) 0.408 (0.587) 0.415 (0.742) 0.212 (0.405)
MJ DL RESP0 & GEEs 0.356 (0.417) 0.594 (0.850) 0.422 (0.748) 0.566 (0.727)
MJ DL RESPs & GEE0 0.223 (0.278) 0.122 (0.392) 0.404 (0.737) 0.083 (0.501)
MJ DL RESPs & GEEs 0.240 (0.288) 0.303 (0.428) 0.413 (0.740) 0.209 (0.354)
MJ IV RESP0 & GEE0 0.201 (0.968) 0.194 (0.627) 0.517 (0.826) 0.228 (1.845)
MJ IV RESP0 & GEEs 0.247 (1.042) 0.315 (0.623) 0.502 (0.824) 0.103 (1.658)
MJ IV RESPs & GEE0 0.085 (0.913) 0.045 (0.589) 0.415 (0.741) 0.194 (1.832)
MJ IV RESPs & GEEs 0.141 (0.935) 0.137 (0.595) 0.417 (0.743) 0.195 (1.832)
SS DL RESP0 & GEE0 0.475 (0.672) 0.307 (0.791) 0.283 (0.603) 0.295 (0.597)
SS DL RESP0 & GEEs 0.517 (0.723) 0.341 (0.837) 0.350 (0.618) 0.364 (0.717)
SS DL RESPs & GEE0 0.425 (0.649) 0.251 (0.767) 0.258 (0.610) 0.206 (0.613)
SS DL RESPs & GEEs 0.433 (0.652) 0.286 (0.771) 0.260 (0.611) 0.269 (0.591)
SS IV RESP0 & GEE0 0.270 (0.722) 0.063 (1.163) 0.244 (0.789) 0.045 (1.840)
SS IV RESP0 & GEEs 0.207 (0.775) 0.269 (1.37) 0.229 (0.832) 0.139 (1.801)
SS IV RESPs & GEE0 0.179 (0.656) 0.185 (1.198) 0.178 (0.808) 0.055 (1.837)
SS IV RESPs & GEEs 0.193 (0.664) 0.175 (1.199) 0.179 (0.809) 0.055 (1.836)

Table 3.2: Uncertainty in May 1–June 30 (MJ) and snow season (SS) estimates of NEE
by VPRM both with (s) and without (0) representations of the influences of snow on
respiration and GEE. Results are indicated for the Daring Lake MT calibration site, as
well as the Ivotuk validation site, for years 2004–2007. Mean absolute error (MAE) values
are indicated first, followed by root mean squared error (RMSE) values in brackets. All
error rates were calculated by comparing daily average eddy covariance NEE to daily
average model NEE.

Site VPRM form 2004 2005 2006 2007
DL RESP0 & GEE0 0.08 1.61 4.27 -0.86
DL RESPs & GEE0 -3.52 -2.37 0.57 -3.49
IV RESP0 & GEE0 5.37 5.22 4.19 4.89
IV RESPs & GEE0 1.36 1.49 0.63 1.03

Table 3.3: Estimates of annual net carbon exchange (gC/m2/y) by different VPRM for-
mulations.
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Figure 3.5: NEE from May 1-June 7 of years 2004–2007 at Daring Lake MT (left) and
Ivotuk (right) as observed using the eddy covariance technique (black), and as estimated
by VPRM both with (blue) and without (orange) a representation of the influence of snow
on soil respiration. Within each plot, the date where the model estimates appear to merge
represents the day at which SCA initially decreases below 50%. Within each plot, the date
where estimates from the two models appear to merge represents the day at which SCA
initially decreases below 50%.
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Time Site VPRM form 2004 2005 2006 2007
MJ DL RESPTsoil Linear 0.662 (1.042) 0.558 (0.830) 0.806 (1.126) 0.583 (0.800)
MJ DL RESPTsoil PWL 0.623 (0.991) 0.520 (0.754) 0.736 (1.021) 0.532 (0.732)
MJ IV RESPTsoil Linear 1.161 (1.753) 1.550 (2.310) 0.619 (0.874) 1.510 (2.073)
MJ IV RESPTsoil PWL 1.110 (1.714) 1.536 (2.293) 0.598 (0.864) 1.512 (2.076)
SS DL RESPTsoil Linear 0.329 (0.476) 0.650 (0.883) 0.367 (0.532) 0.457 (0.659)
SS DL RESPTsoil PWL 0.309 (0.475) 0.605 (0.820) 0.371 (0.528) 0.423(0.609)
SS IV RESPTsoil Linear 0.438 (0.717) 0.802 (1.393) 0.527 (0.819) 1.390 (2.000)
SS IV RESPTsoil PWL 0.422 (0.718) 0.785 (1.378) 0.512 (0.809) 1.379 (1.993)

Table 3.4: Uncertainty in May 1–June 30 (MJ) and snow season (SS) estimates of NEE
by VPRM at Daring Lake and Ivotuk, using the alternate formulations through which
respiration is calculated year-round as a linear or piecewise linear (PWL) function of Tsoil.
Mean absolute error (MAE) values are indicated first, followed by root mean squared
error (RMSE) values in brackets. MAE and RMSE were calculated from daily average
observations.

Modeling subnivean respiration as a function of Tsoil rather than Tair prevented the
magnitude of respiration from being overestimated at the end of the snow season, when
Tair was consistently warmer than Tsoil [Figures 3.3 & 3.5]. This is consistent with pre-
vious findings that freeze-thaw temperature fluctuations accompanying snow melt do not
substantially influence effluxes of CO2 (Grogan et al., 2004; Buckeridge et al., 2010). Cal-
culating subnivean respiration as a function of Tsoil allowed VPRM to simulate both the
gradual, steady increase in respiration accompanying snowmelt, and mid-winter declines
in soil respiration (Bokhorst et al., 2010).

A natural question, then, is whether uncertainty in estimates of NEE could be similarly
reduced by calculating respiration year-round as a function of Tsoil, without an explicit
representation of SCA. VPRM was therefore run under two alternate scenarios, both of
which calculated respiration as a function of Tsoil throughout the snow and growing seasons,
and neither of which explicitly represented SCA [Table 3.4]. In the linear formulation,
respiration was calculated year-round as a function of soil temperature. In the piece-wise
linear formulation, respiration was calculated as a function of Tsoil when Tsoil>Tlow, Tlow=-
2.59◦C, and was otherwise set to a constant value. Parameters describing the year-round
associations between respiration and Tsoil were set according to observations collected in
2005 at Daring Lake.

VPRM estimates of NEE were then generated for years 2004–2007 over Daring Lake and
Ivotuk [Table 3.4]. The RMSE and MAE error rates from the Tsoil formulations of VPRM
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are greater than the error rates from the Tair or combined Tair/Tsoil formulations. Both
Tsoil formulations of VPRM underestimate respiration substantially, especially at the start
and end of the snow season (SCA< 50%), when Tair is substantially warmer and displays
greater diurnal variation than Tsoil [Figures 3.3 & 3.4]. These model formulations then
estimate unrealistically large rates of annual net carbon uptake by both sites. Therefore,
although estimates of subnivean respiration can be improved by calculating respiration as
a function of soil temperature, uncertainty in VPRM estimates of NEE near the start and
end of the growing season is reduced when respiration is calculated as a function of Tair.

Although snow melt is accompanied by an increase in photosynthesis [Figure 3.3], the
subsequent green-up was best captured by the original formulation of VPRM, where snow
season photosynthesis is limited implicitly by darkness, cold Tair and vegetation senes-
cence. Simulating further reductions in photosynthesis when SCA>0% caused VPRM
to underestimate GEE. This finding is consistent with in situ observations of subnivean
photosynthesis in Arctic regions (Larsen et al., 2007b). The RMSEs and MAEs from the
RESP0 & GEEs and RESPs & GEEs formulations therefore exceeded those from the formu-
lations which did not further suppress GEE as a linear function of SCA. Overall, the lowest
errors were found when the model was run with the RESPs & GEE0 formulation [Figure 3.6].
Although the reductions in error appear minor, these substantially change estimates of net
C exchange due to the long duration of the winter season [Figure 3.7].

Tsoil L Tsoil P R0&G0 R0&Gs Rs&G0 Rs&Gs

Summed MAE of VPRM formulations at Ivotuk (2004−2007)
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Figure 3.6: Mean absolute error of all model formulations at Ivotuk for the snow seasons
of years 2004 (dark grey) to 2007 (light grey).

58



RESP0&GEE0 RESPs&GEE0

Net C from RESP0&GEE0 and RESPs&GEE0 at Ivotuk (2004−2007)
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Figure 3.7: Net carbon (tC/ha) predicted in years 2004 (dark grey) to 2007 (light grey) by
RESP0 & GEE0 and RESPs & GEE0.

Climate change is predicted to both increase Arctic snow accumulation and diminish
the length of the Arctic snow season (AMAP , 2011). Previous studies at Daring Lake have
found that natural inter-annual variability in snow melt timing did not markedly affect
early or total growing season CO2 flux (Humphreys and Lafleur , 2011), but that plots with
artificially increased snow depth and duration showed altered CO2 fluxes upon snow melt
(Buckeridge and Grogan, 2010). Incorporating satellite observations of SCA into biospheric
carbon flux models could therefore allow the snow and growing seasons to be delineated,
enable snow season influences on respiration to be represented, and permit reduced un-
certainty in estimates of the Arctic carbon cycle. Insights could therefore be gained into
the regional response of the Arctic carbon cycle to altered biological, meteorological and
cryospheric conditions.

3.4 Conclusions

In Arctic regions, the timing of snow onset and melt influence the rates of photosynthesis
and respiration. The importance of the snow on/off transition suggests that insights into
the northern carbon cycle and its response to changing snow conditions may be gained by
representing the influence of snow on NEE. The feasibility of incorporating remote sensing
observations of snow into models of NEE was demonstrated by findings showing: 1) good
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agreement between time-lapse camera (<10 m) and remote sensing estimates of SCA from
Landsat (30 m) and MODIS (500 m); and 2) associations between in situ NEE and SCA
at Daring Lake, NWT.

Uncertainty in VPRM estimates of NEE at two low Arctic sites was reduced by rep-
resenting the decoupling effects of a snowpack on Tsoil and Tair. Estimating subnivean
respiration as a function of Tsoil prevented respiration from being overestimated when it
was limited by cool Tsoil at the start/end of the snow season, and enabled variability in cold
season NEE to be simulated. The timing and magnitude of photosynthesis at the start and
end of the snow season were best captured by the original VPRM formulation, which used
an indirect approach to simulate the influence of cold temperature, senescent vegetation
and diminished sunlight on hindering photosynthesis. The resulting VPRM formulation,
containing an implicit representation of the effects of SCA on photosynthesis and an ex-
plicit representation of the influence of SCA on respiration, had diminished RMSEs and
MAEs across both sites and all years (2004–2007).

Incorporating remote sensing observations of snow cover into VPRM also allowed the
snow and growing season to be objectively partitioned, and could enable the model to
continue performing in conditions of changing snow regimes. Insights into the response of
the Arctic carbon cycle to climate-driven shifts in snow and growing season land surface
properties could therefore be gained. Future work will consist of applying the snow season
formulation to a variety of sub-Arctic, low Arctic and high Arctic sites in order to determine
if model error may be reduced in all cases.
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Chapter 4

Pan-Arctic linkages between snow
accumulation and growing season air
temperature, soil moisture &
vegetation
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Overview

Arctic field studies have indicated that the air temperature, soil moisture and vegeta-
tion at a site influence the quantity of snow accumulated, and that snow accumulation
can alter growing season soil moisture and vegetation. Climate change is predicted to
bring about warmer air temperatures, greater snow accumulation and northward move-
ments of the shrub and tree lines. Understanding the response of northern environments
to changes in snow and growing season land surface characteristics requires: (1) insights
into the present-day linkages between snow and growing season land surface characteris-
tics; and (2) the ability to continue to monitor these associations over time across the vast
pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north
of 60◦N) linkages between two temporally distinct data products created from AMSR-E
satellite passive microwave observations: GlobSnow snow water equivalent, and NTSG
AMSR-E Land Parameter (growing season air temperature, soil moisture and vegetation
transmissivity). Due to the complex and interconnected nature of processes determining
snow and growing season land surface characteristics, these associations were analyzed us-
ing the modern non-parametric technique of Alternating Conditional Expectations (ACE),
as this approach does not impose a predefined analytic form. Findings indicate that regions
with lower vegetation transmissivity (more biomass) at the start and end of the growing
season tend to accumulate less snow at the start and end of the snow season, possibly due
to interception and shading. Warmer air temperatures at the start and end of the growing
season were associated with diminished snow accumulation at the start and end of the
snow season. High latitude sites with warmer mean annual growing season temperatures
tended to accumulate more snow, probably due to the greater availability of water vapor
for snow season precipitation at warmer locations. Regions with drier soils preceding snow
onset tended to accumulate greater quantities of snow, likely because drier soils freeze
faster and more thoroughly than wetter soils. Understanding and continuing to monitor
these linkages at the regional scale using the ACE approach can allow insights to be gained
into the complex response of Arctic ecosystems to climate-driven shifts in air temperature,
vegetation, soil moisture and snow accumulation.
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4.1 Introduction

Interactions between cryospheric, biological and atmospheric components play an impor-
tant role in the Arctic climate system (Serreze and Barry , 2005), and linkages between
snow water equivalent (SWE), soil moisture, air temperature and the quantity of vegeta-
tion determine the carbon balance of northern regions (Sitch et al., 2007). Northern field
studies have determined that snow accumulation is influenced by the snow season climate
(Sturm et al., 1995). Snow accumulation is also known to be altered by vegetation species
compositions. Patches of shrubs reduce wind speeds, leading to the deposition of wind-
blown snow particles and an increase in snow accumulation immediately downwind (Sturm
et al., 2001a). Regions with greater quantities of evergreen biomass tend to retain less snow
due to interception and sublimation (Pomeroy et al., 2002). Changes in snow accumula-
tion have also been found to alter vegetation species composition at an Arctic tundra site
(Wahren et al., 2005), and have been found to result in anomalous soil moisture values over
the following growing season in a semiarid area of Eurasia (Shinoda, 2001). However, due
to the heterogeneity displayed by northern regions as well as the scale dependence of many
environmental processes, feedbacks and interactions, the pan-Arctic linkages between snow
and growing season land surface properties have not previously been well understood.

A systematic pan-Arctic analysis of these associations over annual and seasonal timescales,
and how they vary across vegetation classes, can therefore provide important insights into
feedbacks and spatial linkages between snow season and growing season land surface charac-
teristics. Due to the lack of exhaustive coverage by ground-based sampling, understanding
the complex response of pan-Arctic environments to climate change relies on the ability
to characterize land surface properties using remote sensing observations, and to analyze
shifts in the associations between snow and growing properties at the regional to circumpo-
lar resolution. The passive microwave data products analyzed in this study were created by
a consortium of researchers led by the Finnish Meteorological Institute (FMI) (e.g. Luojus
et al. (2009)) and the University of Montana’s Numerical Terradynamic Simulation Group
(NTSG) (e.g. Jones and Kimball (2012)) from Advanced Microwave Scanning Radiome-
ter for the Earth Observing System (AMSR-E) observations. The FMI-based research
group produced GlobSnow SWE, and the NTSG group produced AMSR-E Land Param-
eter growing season estimates of air temperature, soil moisture, vegetation transmissivity
and fractional water content. a comprehensive summary of these datasets can be found in
Appendix A.2.

The objective of this study was to analyze linkages between GlobSnow SWE and NTSG
growing season air temperature, soil moisture and vegetation transmissivity for the entire
terrestrial region north of 60◦N. The aims were to examine:
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• similarities in general tendencies of the land surface between seasons (e.g. do regions
that have greater quantities of vegetation also tend to have more SWE?);

• whether regions that experience certain conditions at the end of the growing season
tend to receive altered quantities of SWE (e.g. do areas that tend to be warmer at
the end of the growing season tend to accumulate less snow in the early portion of
the snow season?); and

• associations between snow accumulation at the end of the snow season and land
surface variables at the start of the growing season (e.g. do sites with slower snowmelt
at the end of the snow season tend to have drier soil moisture at the start of the
growing season?).

The modern nonparametric approach of Alternating Conditional Expectations (ACE)
was applied to analyze the relationships between each pair of snow and growing season
variables from passive microwave observations. As the ACE technique has not yet been
widely used in the biogeosciences, a thorough explanation of the theory behind ACE and
the strategies used to assess ACE output are provided below.

4.2 Alternating conditional expectations (ACE)

The ACE approach can be used to describe the underlying, non-linear relationships that
exist between predictor and response variables (Breiman and Friedman, 1985; Frank and
Lanteri , 1988). Previous work has indicated that the ACE technique can be used to reveal
complex relationships that exist in large datasets (e.g. Gel (2007)).

A standard linear regression approach provides a least squares estimate of the linear
relationship between a response variable (y) and one or more predictor variables (xj)
according to regression coefficients (aj) and an intercept (a0):

y = a0 +

p∑
j=1

ajxj (4.1)

Techniques such as linear regression and principal component analysis (PCA) are based
on the assumption that linear associations exist between response and predictor variables.
However, in cases where this assumption is unfounded, applying a linear regression or PCA
approach can lead to erroneous or misleading results (Wang and Murphy , 2004).
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A non-linear approach should therefore be applied whenever it is recognized that only
a small portion of the variance in the response variable can be explained using a linear
model. One common approach is to apply non-linear transformations (e.g. polynomial,
logarithmic, square root) to the response or predictor variables in order to linearize their
association, and to then use the transformed output in a linear model. However, selecting
the best possible transformation for a given dataset can be challenging, especially over large
or noisy datasets, and can be complicated by the fact that the optimal transformation may
not be monotonic or of a standard analytic form.

The ACE technique uses an iterative method to find the least squares optimal smoothing
functions g and fj that linearize the association between g(y) and fj(xj):

g(y) =

p∑
j=1

fj(xj) (4.2)

where the g and fj functions need not be monotonic or of a standard analytic form. By
analyzing the shape of the point pairs [xj, fj(xj)] and [y, g(y)], insights can be gained
into the underlying non-linear relationships between y and xj (Wang and Murphy , 2004;
Breiman and Friedman, 1985; Frank and Lanteri , 1988).

The optimal smoothing functions g and fj are identified by minimizing the error func-
tion

ε2(g, f1, . . .fp) = E

[
g(y)−

p∑
j

fj(xj)

]2
(4.3)

through an iterative two-loop process for p predictors. The ACE algorithm uses initial
guesses g0(y) = y√

[E(y)2]
and f 0

j (xj) = bjxj, j = 1, p, where bj are coefficients estimated

through ordinary least squares regression. A loop is then used to optimize the predictor
transformation function fkj where k refers to the iteration:

fk+1
j (xj) = E

[
gk(y)−

∑
i 6=j

fki (xi)|xj

]
(4.4)

Once ε2 fails to decrease, the values of fj(xj) have been selected. The response trans-
formation function g(y) is then optimized in an outer loop using the final values of fkj (xj)

gk+1(y) =
E
[∑

j f
k
j (xj)|y

]
√
E
[
E
[∑

j f
k
j (xj)|y

]]2 (4.5)
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until ε2 again fails to decrease (Breiman and Friedman, 1985; Frank and Lanteri , 1988).
Through this algorithm, the optimal transformations fj(xj) and g(y) are identified.

Proof exists that the ACE algorithm results in convergence of fj and g to their optimal
transformations, which need not be either of a specific analytic form or monotonic (Breiman
and Friedman, 1985; Frank and Lanteri , 1988). The resulting output is therefore expressed
according to the point pairs [xj, fj(xj)] and [y, g(y)], rather than by a specific mathematical
form. Visual analysis consists of examining scatter plots of these point pairs, where each
plot indicates the original data values (e.g. y and x1) relative to their transformed values
(e.g. g(y) and f1(x1)) (Frank and Lanteri , 1988). Since the ACE technique finds the
least squares optimal values of g and fj such that the linear association between g(y) and∑p

j=1 fj(xj) is maximized, it is crucial that the plots of point pairs [xj, fj(xj)] and [y, g(y)]
be interpreted relative to one another.

4.2.1 ACE examples

Figure 4.1: First example illustrating the application of the ACE algorithm to input data
(left – x over time, y over time, x vs. y), and the resulting point pair output (right –
top:[x, f(x)]; bottom:[y, g(y)]).

In order to demonstrate how the output from ACE is analyzed, two very simple exam-
ples are provided in Figures 4.1&4.2. In both examples, temporal associations are assessed
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Figure 4.2: Second example illustrating the application of the ACE algorithm to input
data (left – x over time, y over time, x vs. y), and the resulting point pair output (right
– top:[x, f(x)]; bottom:[y, g(y)]).

between two meteorological variables measured at the University of Waterloo Weather
Station in 2000. Example 1 focuses on the associations between soil temperature and air
temperature, and example 2 describes the associations between barometric pressure and
precipitation. The relationships between x and y can be easily detected without the ACE
technique in Figure 4.1 but not Figure 4.2.

When both air temperature (x) and soil temperature at 20 cm depth (y) are plotted over
time [Figure 4.1 left], examination of these plots indicates that soil and air temperatures
are greatest in summer, and that air temperature shows greater diurnal variation than soil
temperature in winter. Plotting soil temperature against air temperature (x vs. y) indicates
that an approximately linear association appears to exist between these variables at warm
air temperatures (≈>-5 ◦C). Similarly, point pair output from the ACE algorithm [Figure
4.1 right] indicates an approximately positive linear association between soil temperature
and transformed soil temperature [y,g(y)], and an approximately logarithmic association
between air temperature and transformed air temperature [x,f(x)] when air temperature
is > −5◦C.

When analyzed together, these plots of ACE point pair output indicate that a positive
association exists between soil and air temperatures. The steepness of the slope in the
plot of [x,f(x)] appears to diminish at air temperatures above ≈20◦C, and below -5 ◦C.
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At subzero air temperatures, an overlying snowpack decouples soil and air temperatures
(Bonan, 2002), as can be observed in the plots of x and y over time. Similarly, due to the
greater diurnal variability of air temperature relative to soil temperature seen in Figure 4.1
left, observations of peak daily air temperature likely do not correspond with as substantial
of a peak in daily soil temperature. When considered over all values of x, the slope of f(x)
changes shape at air temperatures of x =-5 ◦C and x =20 ◦C, and is most strongly positive
over intermediate values of x. In other words, if the dataset were to be separated into
three bins according to these x values, we could expect that the coefficients from the linear
regressions would be largest and most positive at intermediate values of air temperature,
and smallest over the coldest values of air temperature.

Likewise, the ACE technique can be applied to find associations within datasets that are
not immediately apparent in exploratory plots. When precipitation from a tipping bucket
(x) and barometric pressure (y) are plotted over time [Figure 4.2left], precipitation shows
spikes with distinct events whereas barometric pressure varies with greater frequency. As
a result, no clear similarity is shown in these plots over time, or when precipitation is
plotted against barometric pressure. Point pair output from the ACE approach [Fig 4.2
right] indicates a negative approximately linear association between barometric pressure
and its transformed values [x,f(x)], and a positive approximately linear association between
precipitation and its transformed values [y,g(y)]. ACE output therefore shows the tendency
for greater quantities of precipitation to be received at lower barometric pressures.

These simple examples were specially selected such that the associations between x
and y could be easily identified with and without ACE [Figure 4.1], and such that the
associations between [x,f(x)] and between [y,g(y)] could be described as linear [Figure
4.2]. Conversely, when the ACE approach is applied to assess associations in the GlobSnow
SWE and NTSG AMSR-E Land Parameter datasets, the relationships are complex, and
non-linear. Likewise, the shape and strength of associations shown in plots of [x, f(x)] and
[y, g(y)] cannot be visually interpreted from plots of [x, y]. The ACE technique therefore
provides insights into associations between x and y that could not be gained through
the application of techniques that rely on assumptions about the underlying shape of
associations.

4.3 Methodology

GlobSnow SWE and NTSG growing season land surface variables were first prepared for
analysis and partitioned into vegetation classes. An exploratory analysis was conducted
to examine the linear spatial relationships between datasets. The modern nonparametric
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method of Alternating Conditional Expectations (ACE) was then applied to examine the
potentially non-linear pan-Arctic linkages between SWE and growing season air tempera-
ture, soil moisture and vegetation transmissivity.

4.3.1 Data preparation

Preliminary data processing consisted of identifying the start and end dates of the snow
season and growing season independently for each 25 km pixel, and each year (2003–
2008) as defined by the NTSG and GlobSnow products. Observations from the NTSG
product were only used during the period of time when the ground was unfrozen and
snow-free according to both the NTSG and GlobSnow products. Conversely, the GlobSnow
observations of SWE were only used for the period of time when the ground was frozen
and dry snow was present, ranging from the date in autumn when SWE >0 mm was
first observed up until the date in spring when the last observation of SWE >0 mm was
recorded. The mean annual (2003–2008) values could therefore be calculated, along with
mean values for the first thirty days and last thirty days of the snow and growing seasons
for each year. As the GlobSnow version 0.9.1 product sets SWE to 0 mm on days where
wet snow is observed, smaller values of SWE at the start or end of the snow season are
indicative of less snow accumulation or more gradual snow onset/melt. Terrestrial regions
with > 50% fractional cover of open water according to the NTSG growing season dataset
were masked out of analysis.

4.3.2 Vegetation classes

As vegetation classes are often used to describe snow and growing season characteristics
of the land surface, associations between snow and growing season variables were analyzed
within seven Arctic vegetation classes defined using two well established categorizations:
the SYNMAP (Jung et al., 2006) and the Circumpolar Arctic Vegetation Map (CAVM)
(Walker et al., 2005). As CAVM is only available north of the treeline, SYNMAP was first
used to classify the entire pan-Arctic, but was substituted with CAVM categorizations
where available. The resulting 67 classes were then reorganized into seven vegetation
classes shown in Table 4.1. Each 25 km pixel in the NTSG and GlobSnow datasets was
then classified according to its fractional vegetation class from the upsampled CAVM-
SYNMAP classification.

In order for the analysis to proceed, it was important to first ensure that the afore-
mentioned vegetation classes represent distinct populations of SWE, soil moisture, air
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Table 4.1: Aggregation of forest SYNMAP and CAVM vegetation classes into a catego-
rization that divides the pan-Arctic into seven broad vegetation classes: evergreen forest
(EVGRN), deciduous forest (DECDS), mixed forest containing shrubs or grasses (MFRST),
shrub dominated region (SHRUB), graminoid tundra (GRMTD), shrub tundra (SRBTD),
barren vegetated region (BARRN). Regions of water or permanent snow and ice (MASKD)
are excluded from the analysis.

Veg class Source Description
EVGRN SYNMAP Trees needle evergreen; trees broad evergreen; trees mixed evergreen
DECDS SYNMAP Trees needle deciduous; trees needle mixed; trees broad deciduous;

Trees broad mixed; trees mixed deciduous; trees mixed mixed
MFRST SYNMAP Trees and shrubs; trees and grasses; trees and crops; crops
SHRUBS SYNMAP Shrubs; shrubs and crops
SRBTD SYNMAP Shrubs and barren
SRBTD CAVM Prostrate dwarf-shrub, herb tundra; erect dwarf-shrub tundra;

Low-shrub tundra
GRMTD SYNMAP Grasses; grasses and crops
GRMTD CAVM Rush/grass, forb, cryptogam tundra; graminoid, prostrate dwarf-shrub,

forb tundra;
Prostrate/hemiprostrate dwarf-shrub tundra; nontussock sedge,
dwarf-shrub, moss tundra; tussock-sedge, dwarf-shrub, moss tundra

BARRN SYNMAP Grasses and barren; barren
BARRN CAVM Cryptogam, herb barren; cryptogam barren complex (bedrock);

Sedge/grass, moss wetland; sedge, moss, dwarf-shrub wetland;
Sedge, moss, low-shrub wetland; noncarbonate mountain complex;
Carbonate mountain complex

MASKD SYNMAP Urban; Snow and ice
MASKD CAVM Nunatak complex; glaciers; water; lagoon

temperature and vegetation transmissivity, and that the interannual variability of each
land surface characteristic was small enough that mean 2003–2008 values could be ana-
lyzed. Furthermore, it was important to assess whether the vegetation classes represented
distinct populations of vegetation net primary productivity.

Analysis of the heterogeneity of distributions of AMSR-E derived variables were as-
sessed between years and between vegetation classes using Levene’s test (Levene, 1960).
Briefly, Levene’s test examines the validity of the null hypothesis that two or more groups
have equal variance (homoscedasticity). Rejection of the null hypothesis is indicative of
heterogeneity of distributions (heteroscedasticity). Levene’s test was selected because it
provides an assessment of the deviation of an observation from a group mean, is robust
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to non-normality, and has been used for a variety of scientific applications, including en-
vironmental sciences (Gatswirth et al., 2009). Findings indicated that heterogeneity of
variances existed across vegetation classes (p-value < 10−5) [Table 4.2], and that homo-
geneity of variances existed between years (0.5≤ p-value≤ 0.99). Analysis could therefore
proceed by aggregating mean 2003–2008 values, and by assessing linkages separately for
each vegetation class.

Table 4.2: Results from Levene’s test examining homogeneity of variances of all variables
within seven vegetation classes (Table 4.1), and a class containing permanent snow and
ice which is masked from analysis (MASKD). These variables are air temperature (TA),
volumetric soil moisture (MV), vegetation transmissivity at 10.7 GHz (TC10), and snow
water equivalent (SWE). All p-values are < 10−5.

TA MV TC10 SWE
EVGRN 2.52 1.06×10−3 4.26×10−3 898
DECDS 1.92 9.25×10−4 3.76×10−3 556
MFRST 1.77 8.35×10−4 3.23×10−3 620
SHRUB 2.46 8.27×10−4 4.76×10−3 675
GRMTD 5.77 6.71×10−4 1.13×10−2 790
SRBTD 4.73 4.90×10−4 1.03×10−2 437
BARRN 6.21 6.67×10−4 1.20×10−2 327
MASKD 6.52 5.56×10−4 8.71×10−3 279
Test statistic 48.4 24.5 67.1 22.3

4.3.3 Exploratory analysis

A brief exploratory analysis of mean values for each variable over the 2003–2008 time pe-
riod [Figure 4.3a–f] indicated that growing season air temperature and vegetation opacity
display a latitudinal gradient, with cooler temperatures and less vegetation at high lati-
tudes, likely due to the temperature dependence of Arctic vegetation (Hare, 1968; Ritchie
and Hare, 1971). Soil moisture and snow water equivalent show greater spatial variability
due to topographic, meteorological, atmospheric, and land surface influences (Callaghan
et al., 2011; Serreze and Barry , 2005).

Greater values of SWE occur in regions where more snowfall occurs, where windblown
snow is accumulated, or where snowmelt during the snow season is less frequent or less
substantial. Ideally, these contributions to SWE could be partitioned so that the linkages
between growing season variables with snowfall, snowmelt and windblown snow deposition
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Figure 4.3: Pan-Arctic (north of 60◦): a) mean 2003-2008 snow season GlobSnow snow
water equivalent (SWE); b-d) mean 2003-2008 NTSG growing season air temperature (TA),
volumetric soil moisture at 2cm (MV), and vegetation transmissivity at 10.7 GHz (TC10);
e) 1982-2000 mean GloPEM net primary productivity (NPP); and f) vegetation classes
used in this study, as described in Table 4.1.

could be analyzed; however, current estimates of precipitation are presently unreliable at
high latitudes, especially during the snow season, and the amount of snow must therefore
be examined in terms of SWE alone. It is important to note that mean values of SWE
at the start and end of the snow season are thus indicative of both accumulation as well
as the speed of snow onset/melt. At the start and end of the snow season, mean values
of SWE are greater at sites where snowmelt and snow accumulation occur more rapidly,
as these have fewer days with low reported values of SWE. Similarly, low values of SWE
at the start or end of the snow season are indicative of less snow accumulation, or slower
snow onset or melt.
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4.3.4 Preliminary regression analysis

Preliminary regression analysis consisted of applying linear regression and principal com-
ponent analysis (PCA) to assess the possibility of linear relationships between snow and
growing season values. However, it is likely that the assumption of linearity cannot be
fulfilled, and in addition, application of the Shapiro-Wilk test (D’Agostino and Stephens ,
1986) indicated that the soil moisture and air temperature datasets had non-normal dis-
tributions at high latitudes (p-values< 0.01). Linear regression and PCA therefore do not
represent suitable techniques for examining associations between the GlobSnow SWE and
NTSG land surface variable datasets, but the findings from these approaches are of interest
because PCA and linear regression are widely used to examine environmental linkages. The
derived R2 from classical single and multiple linear regressions [Table 4.3] along with the
multiple linear regression of SWE vs factor scores obtained from the principal component
analysis (PCA) of air temperature (TA), volumetric soil moisture (MV), and vegetation
canopy transmissivity (TC) [Table 4.4] indicated that the linear associations between SWE
and growing season variables were very weak or non-existent.

Conversely, a multivariate ACE analysis of these associations yielded much greater R2

values for every vegetation class and time period relative to the linear regression [Table 4.5],
while a univariate ACE analysis indicated highly significant (p-value< 10−5) pairwise as-
sociations for all vegetation classes, variables and time periods. Moreover, the p-values of
all coefficients in multivariate ACE analysis were also highly statistically significant. As a
result, we can conclude that there exists no collinearities in the non-parametrically trans-
formed growing season variables when these are transformed to linearize their associations
with transformed values of SWE. The findings from this stage of preliminary regression
analysis strongly support the employment of the non-parametric ACE technique to explore
the non-linear associations within this dataset.

4.3.5 ACE

The ACE approach was applied to determine the strength and directionality of the associ-
ations between SWE and growing season values for each vegetation class and time period
separately. Associations between these datasets could therefore be examined despite their
lack of temporal overlap by comparing: (1) mean growing season with snow season values;
(2) mean values of SWE over the last thirty preceding the onset of snowmelt with mean
land surface values over the first thirty days with a snow-free and unfrozen land surface
following snowmelt; and (3) mean land surface variables over the last thirty days of the
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Table 4.3: R2 values from the linear regressions of SWE and air temperature (TA), SWE
and volumetric soil moisture (MV), and of SWE and vegetation transmissivity at 10.7 GHz
(TC). Comparisons of SWE and growing season observations were conducted by comparing
mean annual 2003–2008 values (mean), and by examining associations between SWE at the
end of the snow season with growing season variables at the start of the growing season
(spring), and between growing season variables at the end of the growing season with
SWE at the start of the snow season (autumn). R2 values in single linear regression that
correspond to a p-value >0.01 are marked with an asterisk.

Var Time EVGRN DECDS MFRST SHRUB GRMTD SRBTD BARRN
TA Annual 0.00 0.01 0.00∗ 0.02 0.11 0.04 0.20
TA Spring 0.06 0.01 0.13 0.14 0.16 0.14 0.10
TA Autumn 0.13 0.12 0.22 0.13 0.06 0.10 0.06
MV Annual 0.02 0.01 0.01 0.02 0.010 0.02 0.00∗

MV Spring 0.01 0.00∗ 0.00 0.00∗ 0.00∗ 0.00∗ 0.00
MV Autumn 0.05 0.06 0.01 0.01 0.00 0.00 0.00
TC Annual 0.05 0.02 0.02 0.17 0.06 0.05 0.15
TC Spring 0.20 0.11 0.23 0.28 0.20 0.19 0.18
TC Autumn 0.16 0.28 0.22 0.16 0.02 0.06 0.03
(TA, Annual 0.09 0.07 0.07 0.23 0.15 0.07 0.26
MV, Spring 0.01 0.01 0.00 0.01 0.08 0.06 0.14
TC) Autumn 0.13 0.11 0.08 0.12 0.04 0.02 0.08

Table 4.4: R2 values from the multiple linear regression of SWE vs factor scores obtained
from the principal component analysis (PCA) of TA, MV, and TC. The retained principal
components (PC) are determined based on the proportion of explained variance, i.e. only
PC accounting for > 10 % of the total variance are included.

Time EVGRN DECDS MFRST SHRUB GRMTD SRBTD BARRN
Annual 0.03 0.05 0.07 0.10 0.11 0.07 0.24
Spring 0.01 0.01 0.00 0.01 0.08 0.06 0.14
Autumn 0.13 0.11 0.08 0.12 0.04 0.02 0.08

growing season before snow onset with mean values of SWE occurring after the first ob-
servation of dry snow on frozen ground after the end of the growing season. These time
periods are referred to as “mean”, “spring” and “autumn”, respectively, throughout the
paper.
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Table 4.5: R2 values of ACE transformed SWE and ACE transformed air temperature
(TA), volumetric soil moisture (MV) and vegetation canopy transmissivity (TC). Linkages
are indicated using observations collected over three non-overlapping time periods of the
snow and growing seasons. Associations are therefore indicated between mean annual val-
ues of SWE and growing season values, and between mean SWE 30 days prior to snowmelt
and growing season values 30 days following full snowmelt (Spring), and vice versa (Au-
tumn). In the multivariate case, the p-values of all coefficients are statistically significant.
All p-values corresponding to the pair-wise ACE transformations are < 10−5.

Var Time EVGRN DECDS MFRST SHRUB GRMTD SRBTD BARRN
TA Annual 0.08 0.04 0.06 0.04 0.33 0.20 0.38
TA Spring 0.09 0.04 0.15 0.16 0.17 0.15 0.12
TA Autumn 0.16 0.14 0.25 0.17 0.07 0.10 0.06
MV Annual 0.05 0.07 0.05 0.05 0.03 0.02 0.09
MV Spring 0.04 0.02 0.03 0.17 0.08 0.06 0.05
MV Autumn 0.06 0.12 0.10 0.08 0.09 0.06 0.07
TC Annual 0.10 0.03 0.12 0.26 0.25 0.19 0.29
TC Spring 0.22 0.19 0.24 0.31 0.21 0.22 0.19
TC Autumn 0.17 0.30 0.27 0.19 0.04 0.09 0.06
(TA, Annual 0.20 0.33 0.13 0.34 0.37 0.29 0.47
MV, Spring 0.07 0.14 0.02 0.06 0.17 0.11 0.19
TC) Autumn 0.16 0.13 0.11 0.17 0.10 0.07 0.12

4.3.6 Limitations

The AMSR-E derived products analyzed in this study are all established products that have
been individually validated, as summarized in Appendix A.2. However, the retrieval of
accurate estimates of land surface properties from satellite passive microwave observations
remains an area of ongoing scientific progress, and uncertainties therefore exist in these
estimates. Presently, GlobSnow passive microwave retrievals of SWE are considered reliable
over the 15-150 mm range in forested regions, and from 15 to 130 mm in tundra regions.
SWE tends to be underestimated over thicker snowpacks. Analysis of the shape of the
associations between SWE and growing season variables therefore focuses primarily on
values of SWE within these ranges. Furthermore, although the growing season datasets
have been found to perform reasonably well, there inevitably exist uncertainties in these
datasets. The approach employed in this study takes into account the fact that these
uncertainties exist, and therefore only compares relative values which are averaged over
given time periods. For example, it is not assumed that estimates of SWE are highly
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accurate over very thick snowpacks, but that areas with greater mean reported values of
SWE will, in fact, tend to have more snow accumulation than regions with smaller mean
reported values of SWE.

The strength of conclusions drawn from the ACE approach is limited due to uncertain-
ties in passive microwave estimates of land surface properties, and due to the inherently
weak associations existing between snow and growing season land surface properties as
a result of numerous confounding factors (e.g. soil type, vegetation species composition,
rainfall, permafrost). Furthermore, although field studies can reveal insight into the exact
processes determining land surface properties, an assessment of similarities in coarse resolu-
tion (25 km) passive microwave derived estimates of the land surface cannot reveal specific
processes. All results presented are therefore discussed in relation to existing literature
on in situ processes to suggest. Similarities are often found between the associations de-
rived from ACE and observed in situ; in these cases, it is likely that the same mechanisms
and processes observed at the field scale are dominating regional scale land surface condi-
tions. However, it is beyond the scope of this approach to provide definitive conclusions
on regional scale processes.

Finally, the relationships observed through the ACE analysis could be applied to gen-
erate estimates within the 2003-2008 time period. However, since these ecological linkages
may be altered under changing climate regimes, the ACE derived empirical relationships
cannot be used to predict future behaviour. Numerous studies have applied process-based
models to predict the response of high-latitude regions to climate change, and this remains
an important area of research. The ACE technique could, however, be applied to monitor
the strength and directionality of ecological linkages in order to shed light on the response
of northern environments to ongoing changes in snow and growing season conditions. The
role fulfilled by the analysis presented in this paper therefore fills a gap in literature, but is
in no way a replacement for ongoing improvements in passive microwave derived estimates
of land surface properties, in situ investigations of processes, or predictions of how climate
change may affect Arctic regions.

4.4 Results

Findings from the ACE analysis of associations between SWE, air temperature, soil mois-
ture and vegetation transmissivity are presented and discussed below in relation to in situ
observations. The results have been divided into separate sections according to the grow-
ing season values associated with SWE, with subsections corresponding to different time
periods. Each section contains tables showing the strength of associations (R2 value) of
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ACE transformed SWE and growing season values [Table 4.5], and plots indicating the op-
timal transformations of SWE and growing season values according to the seven vegetation
classes [Figures 4.4–4.6].

4.4.1 Air temperature and SWE

At tundra sites, a positive, non-linear association exists between mean annual SWE and
mean growing season temperatures such that sites which tend to be slightly warmer tend
to accumulate more snow than cooler sites. Yet, sites that tend to be warmer at the start
and end of the growing season tend to contain less snow during initial snow onset and final
snow melt each year.

North of the treeline, greater mean annual SWE with warmer growing
seasons

The associations between mean 2003–2008 SWE and growing season air temperature at
tundra sites are non-linear. As a result, findings from the linear regression approach in-
dicate weaker associations at tundra sites (R2 = 0.04–0.20) [Table 4.3] than detected by
the ACE transformations (R2 = 0.20–0.38) [Table 4.5]. The associations between growing
season air temperature and SWE are weaker over forested regions, likely due to seasonal
discrepancies in the mean growing season and mean snow season air temperatures (Over-
land et al., 1997; Rigor et al., 2000; Adams et al., 2000; Serreze and Barry , 2005). The
following analysis therefore focuses mainly on the associations observed north of the tree-
line, although all plots can be found in Figure 4.4.

Examinations of Figure 4.4e–g indicate sharp, positive transformations applied to low
values of SWE (<75 mm). Likewise, these plots show that the positive association between
air temperature and SWE at these locations exists for sites with a mean annual growing
season temperature of <10 ◦C. Analysis of the ACE transformations provides an important
source of information for understanding these linkages. Arctic tundra regions are character-
ized by very cold temperatures during the snow season that limit the availability of water
vapor and the rate of precipitation (Bonan, 2002; Serreze and Barry , 2005), thereby re-
sulting in diminished accumulation of snow, and it is likely that the influence of diminished
water vapor explains the association between SWE and growing season air temperature.
Analysis of the ACE transformations therefore indicates that in tundra regions with <75
mm of SWE and mean growing season temperatures of 0–10 ◦C, sites that tend to have
slightly warmer air temperatures will likely tend to accumulate greater quantities of SWE.
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Warmer spring/autumn temperatures and less SWE

ACE analysis indicated that weak, approximately linear associations exist between warmer
air temperatures and diminished SWE at the start and end of the snow season [Table 4.5].
Regions that tended to be warmer at the start and end of the snow season therefore tended
to have less SWE at the start and end of the snow season, or more gradual snow onset or
melt.

The associations between autumn SWE and air temperature were found to be weaker
over tundra regions (ACE R2 = 0.06–0.10) than forested regions (ACE R2 = 0.14–0.25).
As forest soils have been observed to be warmer and to freeze more gradually than tundra
soils at the start of the snow season (Rouse, 1984; Smith et al., 1998), it is likely that the
influence of antecedent growing season temperatures on the capacity of a dry snowpack to
develop at the start of the snow season would be stronger over regions without permafrost.

Whereas the associations between SWE and air temperature are stronger in autumn
over forested regions, these associations are weaker over forested regions (ACE R2 = 0.04–
0.15) than areas north of the treeline (ACE R2 = 0.12–0.17) [Table 4.5]. High latitude
Arctic sites undergo rapid snowmelt due to the low shading of Arctic vegetation (Pomeroy
and Dion, 1996), and similarity in the timing of the summer equinox and date of snowmelt
(Bonan, 2002). As these effects are stronger at high latitude sites, it is reasonable that the
most rapid snowmelt would be observed in regions north of the treeline.

4.4.2 Soil moisture and SWE

Although the ACE transformed associations between mean annual SWE and mean grow-
ing season soil moisture are weak across all vegetation classes (0.02–0.09) [Table 4.5], an
examination of the shape of these non-linear associations indicates a positive association
between mean annual SWE and soil moisture at sites with very low SWE (< 90 mm) and
low soil moisture (< 0.17), with thresholds that correspond with in situ observations. When
output from ACE transformations are considered over this range of SWE and soil moisture
values, R2 values of 0.08 can be observed over barren vegetated regions. The seasonal
associations between SWE and soil moisture are complex, resulting in deeper freezing and
faster runoff on drier soils, such that an inverse association exists between SWE and soil
moisture in spring and autumn [Figure 4.5].
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Mean annual SWE and soil moisture

The relationships between mean annual SWE and soil moisture are weak, non-linear, and
vary according to vegetation class over which they are examined. Seasonal differences in
precipitation patterns (Serreze and Barry , 2005), as well as confounding factors such as soil
freeze patterns, vegetation (Hardy et al., 2001; Johnsson and Lundin, 1991), ponds (French
and Binley , 2004), topography (Burt and Butcher , 1985) and soil type (Janowicz et al.,
2003; Williams and Ratsetter , 1999) are likely to limit the strength of the associations
between SWE and soil moisture, and limit the extent to which these associations can
be regionally generalized. Nevertheless, the ACE transformations indicate that positive
associations exist between mean annual SWE and soil moisture in forested and barren
regions that accumulate little snow (SWE< 90 mm) and have low soil moisture (< 0.17).
Similarly, a positive association between soil moisture and SWE is observed over shrub
dominated regions for all values of SWE and soil moisture, and over mixed forest regions
accumulating less than 100 mm of SWE.

The influence of very low SWE (< 100 mm) has been studied in situ at barren (Ayres
et al., 2010) and hardwood (Hardy et al., 2001) sites. Findings indicated that snow removal
at the hardwood site resulted in greater soil heat loss, and therefore increased the propor-
tion of ice in soil. As a result, snowmelt infiltration and soil moisture were reduced in plots
where snow was removed (Hardy et al., 2001). Similarly, experimental manipulation of
snow accumulation at a polar desert indicated that sites where greater quantities of snow
were accumulated tended to have greater levels of soil moisture during the following grow-
ing seasons relative to paired control sites (Ayres et al., 2010). In the previously described
experimental plots simulating low snow conditions, the barren site accumulated 10–50 mm
of SWE and the hardwood site accumulated 80–100 mm of SWE. As a result, these studies
indicated that diminished SWE led to diminished soil moisture in barren and hardwood
plots with < 100 mm of SWE. Therefore, although the R2 values from this study indicate
that a weak and non-linear association exists between SWE and soil moisture across all
vegetation classes, the ACE approach has elucidated similar thresholds and linkages as
those which have been recorded in situ.

The ACE approach also indicated that a greater mean annual SWE is associated with
greater soil moisture across all values observed over shrub dominated regions, and at low
(< 0.15) levels of soil moisture in evergreen forests and graminoid tundra. Similarly, in
a study conducted at the regional scale, anomalies in maximum annual snow depth and
soil moisture were found to be associated in a semiarid region of Eurasia north of the
Caspian-Aral seas (Shinoda, 2001). This region has maximum annual values of < 150
mm of SWE, and is classified as evergreen and deciduous forest in the present study. In
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years where snow accumulation tended to be greater, snowmelt onset was found to occur
later and larger values of soil moisture were observed during the following growing season.
The finding by Shinoda (2001) that SWE and soil moisture tend to be associated over
semiarid evergreen regions is therefore consistent with findings from this study, which
indicate positive associations between mean annual SWE and soil moisture at sites that
tend to receive less mean annual SWE and tend to have low soil moisture.

SWE and soil moisture in spring and autumn

The associations between soil moisture and SWE are weak when examined over thirty day
time periods in spring (ACE R2 = 0.02–0.17) and autumn (ACE R2 = 0.06–0.12). At mixed
forest and deciduous sites, ACE transformations indicates that a positive association exists
between spring soil moisture and SWE at sites with low (< 75 mm) snow accumulation.
Similarly, results from a snow depth manipulation experiment conducted in a hardwood
forest indicated diminished soil moisture following snowmelt in a hardwood forest with
very low snow accumulation (Hardy et al., 2001).

The associations between SWE and soil moisture over remaining vegetation classes
and time periods are slightly more complex. Although snow accounts for a large portion
of annual precipitation, little of the moisture released through snowmelt in the Arctic is
retained by soil (Willis et al., 1961) due to rapid snowemlt, runoff and outflow (Hardy et al.,
2001; Johnsson and Lundin, 1991). For example, in a study at the Imnaviat Creek Arctic
headwater, snow accumulation in spring accounted for 28–40 % of annual precipitation,
only 10–19 % of the liquid water arising from snowmelt was stored in the active layer
(Kane et al., 1991). Regions with greater accumulation of snow tend to contribute a larger
percentage of snowmelt to runoff (Willis et al., 1961; Staple et al., 1960). It is therefore
less likely that a positive association would be observed between SWE and soil moisture
in spring and autumn in areas underlain by permafrost.

An inverse relationship is observed to exist between soil moisture at the end of the
growing season, and the accumulation of SWE at the start of the snow season for all
vegetation classes [Figure 4.5]. Soil freezing occurs more slowly over wet soils than dry
soils due to the influence of moisture on soil heat capacity (Willis et al., 1961; Hardy et al.,
2001). As snow can only accumulate over cool soil surfaces, it is reasonable that soils
which cool more rapidly at the start of the snow season may undergo greater net snow
accumulation after freezing than warmer, wetter soils.

Likewise, in spring, an inverse association between soil moisture and SWE was observed
over evergreen, shrub, tundra and barren regions with low (< 0.1) soil moisture. The
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portion of snowmelt that infiltrates into the soil surface relies on the rate of snow melt, soil
water, soil frost and soil drainage (Hardy et al., 2001; Johnsson and Lundin, 1991). An
inverse association therefore exists between seasonal infiltration and soil moisture levels
during snowmelt (Zhao and Gray , 1999). The soil frost and soil drainage patterns at the
end of the snow season can also be influenced by the levels of soil moisture observed prior
to soil surface freezing at the start of the snow season (Hardy et al., 2001; Suzuki et al.,
2006). Soils which are drier at the start of the snow season freeze more deeply than wetter
soils and also thaw out more gradually (Willis et al., 1961). Furthermore, soils with frozen
upper layers have diminished infiltration due to the influence of ice on reducing soil pore
size and permeability (Zhao and Gray , 1999). Therefore, since drier soils tend to freeze
faster and more deeply than wet soils, more opportunity exists for snow accumulation to
occur at the start and end of the snow season over dry soils because melt is less likely to
occur. Soils which are more thoroughly frozen throughout the snow season are likely to
receive less infiltration of snowmelt, and are therefore likely to be drier at the start of the
growing season.

4.4.3 Vegetation transmissivity and SWE

Mean annual SWE and vegetation transmissivity generally have a negative association
north of the treeline, indicating greater SWE accumulation in regions with greater surface
roughness or aboveground biomass [Figure 4.6]. Conversely, the association between SWE
and vegetation transmissivity in forested regions tends to be positive, such that SWE
accumulation is limited in areas with greater aboveground biomass. At the start and end
of the snow season, vegetation transmissivity is positively associated with SWE, which
indicates more rapid melt or less snow accumulation at the start and end of the snow
season in regions with more vegetation.

Mean annual SWE and vegetation transmissivity

The association between mean annual SWE and mean vegetation transmissivity (2003–
2008) varies according to the predominant land cover, as well as the quantity of SWE
received. In Arctic regions north of the treeline with a mean SWE accumulation of < 75
mm, an inverse association exists between vegetation transmissivity and SWE, indicating
that locations with slightly more vegetation lost less snow to sublimation than regions with
less vegetation. Shrub dominated regions north of the treeline have often been observed to
trap snow more readily than regions which are more sparsely vegetated (Pomeroy et al.,
1997; Sturm et al., 2001a,b; Liston and Sturm, 2002; Essery and Pomeroy , 2004). Shrubs
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have greater snow-holding capacity then graminoid or barren vegetation since shrubs reduce
near-ground wind speeds, thereby allowing greater deposition and less loss due to subli-
mation (Essery and Pomeroy , 2004; Sturm et al., 2001a; Fitzgibbon and Dunne, 1979).
From the ACE analysis, it appears that this influence is strongest over regions with less
SWE. Due to the non-linearity of the association between mean annual SWE and vegeta-
tion transmissivity over tundra and barren sites, the ACE transformation is useful since
it identifies the shape of this association (R2 = 0.19–0.29) whereas a linear regression ap-
proach would only have indicated that a weak linear association exists between variables
(R2 = 0.06–0.15).

The association between vegetation cover and SWE may also be due in part to the
influence of local precipitation on vegetation species compositions, which has previously
been observed over the Brooks Range of Alaska by Evans et al. (1989). In northern regions,
the health and productivity of vegetation can be compromised by very cold air, low soil
temperatures and rain-on-snow events. Snow has been observed to provide vegetation with
insulation from cold soil temperatures, and protection from dehydration, frost damage and
high winds (Wardle, 1968; Tranquillini , 1964). Therefore, where snow accumulation is
more substantial and remains on the ground for a longer time in spring, higher NDVI
values have been observed (Grippa et al., 2005), which indicate greater health or quantity
of aboveground biomass (Jensen, 2007).

Areas that tend to lose less snow through sublimation, and accumulate more snow
through windblown deposition, also tend to accumulate greater quantities of windblown
organic materials throughout the snow season (Walker et al., 2001), and undergo greater
rates of organic matter decomposition throughout the snow season since they have warmer
soil temperatures (Nowinski et al., 2010). Both of the aforementioned influences can lead
to nutrient rich conditions in regions receiving greater accumulation of snow, which can
create growing season conditions that are conducive to plant growth. It is therefore possible
that greater quantities of snow and vegetation tend to be collocated in Arctic regions due
to the influence of snow on encouraging plant growth, and the influence of vegetation on
encouraging snow accumulation. Spatial variability may therefore also play a role in this
association, as high Arctic regions both accumulate small quantities of snow and contain
little aboveground biomass.

The ACE analysis indicates that snow accumulation at low SWE (< 115 mm) evergreen
forest sites is maximized when less vegetation is present (R2 = 0.10). Likewise, field studies
have found that snow accumulation is greater in clearings than coniferous forests (Golding
and Swanson, 1986; Gelfan et al., 2004), since coniferous trees intercept snowfall, and
have been observed to allow 20–50 % of precipitation to evaporate or sublimate Lundberg
and Halldin (2001). However, although coniferous stands with dense crowns limit snow
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accumulation, sparser evergreen forests can encourage snow deposition (Church, 1933).
Based on the findings from the ACE analysis, it appears that the effects of evergreen forests
on limiting snow accumulation are strongest at lower SWE (< 115 mm) sites, whereas at
higher SWE (>115 mm) sites, a slightly positive association appears to exist between
vegetation biomass and SWE. This could be due to the effect of dense boreal forest cover,
which causes SWE to be underestimated from satellite passive microwave observations.
However, it is also reasonable that wind redistribution would be a dominant process when
availability of fresh snow is great, but that sublimation, interception and melt would be
dominant processes when snow accumulation is limited. It is also interesting to note in this
context that over deciduous forests, vegetation biomass and SWE are inversely associated
over all levels of SWE.

Assessment of these associations over mixed forest and shrub classes indicates that the
associations between SWE and vegetation transmissivity are intermediate between those
observed over tundra regions, and forested regions. Likewise, as the vegetation classes
represent fractional portions of 25 km pixels according to the CAVM-SYNMAP derived
classification, both the mixed forest and shrub classes contain a mixture of forest and non-
forest vegetation. Over mixed forested regions, vegetation biomass and SWE are positively
associated over areas with lower SWE (<75 mm), just as observed as a result of shrub cover
over tundra regions. In shrubland areas containing large quantities of biomass and SWE,
vegetation biomass and SWE are inversely associated. Conversely, in shrublands with
diminished vegetation biomass, regions with greater biomass have greater SWE. Further
field investigations would be required to better elucidate these drivers and clarify the
dependence of these associations on the stated thresholds.

In spring and autumn, slower snowmelt in areas with more vegetation

Across all vegetation classes, positive associations of moderate strength exist between the
mean values of SWE over the last thirty days of the snow season and the mean values of
vegetation transmissivity over the first thirty days of the growing season (ACE R2 = 0.19–
0.31). The presence of this association indicates that regions with greater quantities of
vegetation or greater surface roughness tend to contain a lower mean quantity of snow
over the last thirty days of the snow season. This association is approximately linear
across all vegetation classes [Figure 4.6].

Field studies have largely indicated that snow depletion occurs more gradually in regions
with greater quantities of vegetation. The rates of snowmelt in boreal and taiga forests
have been observed to diminish with increasing canopy density (Pomeroy et al., 1997;
Metcalfe and Buttle, 1998; Gelfan et al., 2004). This effect is due to the influence of the
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forest canopy on limiting shortwave radiation received by snow, and its effect on slowing
wind speeds, thereby limiting fluxes of latent and sensible heat (Metcalfe and Buttle, 1998).

When examining vegetation transmissivity over the last thirty days of the growing
season against SWE over the first thirty days of the snow season, a positive, approximately
linear association of moderate strength can be identified for all sites south of the treeline
(ACE R2 = 0.17–0.30). Forested sites containing greater quantities of aboveground biomass
therefore tend to accumulate less snow over the first thirty days following the date of initial
snowfall than sites with less biomass. Field studies have indicated that interception and
sublimation by dense canopies diminish snow accumulation (Pomeroy et al., 1999, 2002;
Lundberg and Halldin, 2001). The observed associations between SWE and vegetation
biomass over tundra and barren regions appear weak but positive. However, to date, field
studies have focused mainly on characterizing the influence of vegetation on mean annual
snow accumulation, and on the magnitude and timing of snowmelt. A better understanding
of these interactions could therefore be acquired through in situ observations of the effects
of vegetation compositions on distributions of snow at the start of the snow season.

4.5 Conclusions

The Alternating Conditional Expectation (ACE) approach revealed non-linear associa-
tions between passive microwave derived snow water equivalent, and growing season air
temperature, soil moisture and vegetation transmissivity. Although the drivers of snow ac-
cumulation vary according to the scale at which they are examined (Pomeroy et al., 2002),
and uncertainty exists in passive microwave estimates of the Arctic land surface due to its
heterogeneity and high lake fraction (Duguay et al., 2005; Rees et al., 2006; Green et al.,
2012), it is interesting to note the similarity existing between the linkages, thresholds and
associations found in situ and through ACE analysis of passive microwave observations (at
25 km).

Across all vegetation classes, sites with more aboveground biomass at the start and end
of the growing season tend to have lower mean values of SWE over the first and last thirty
days of the snow season. Field studies have found that snowmelt occurs more gradually
over barren or graminoid tundra regions with more vegetation due to shading and slowed
wind speeds (Metcalfe and Buttle, 1998), and that snow accumulation is diminished over
forested regions with greater canopy density due to interception and sublimation (Pomeroy
et al., 2002). The ACE technique also indicated that sites with drier soils at the end of the
growing season tended to accumulate more snow at the start of the snow season. Likewise,
in situ observations have indicated more rapid and thorough freezing of soils which were dry
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at the start of the snow season (Willis et al., 1961), which could allow snow to accumulate
more easily over cooler soils.

In forested regions, sites that tend to accumulate less snow also tend to have greater
canopy density, as indicated by diminished vegetation transmissivity. Field studies have
indicated that snow accumulation in heavily forested areas is limited due to canopy inter-
ception and sublimation (Church, 1933; Pomeroy et al., 2002). ACE analysis also indicated
that within forested regions accumulating < 90 mm of SWE, sites with greater SWE tended
to also have greater soil moisture, an observation similar to the in situ findings by Hardy
et al. (2001).

In Arctic tundra regions with lower (< 75 mm) SWE, more snow is accumulated at
sites with warmer growing season temperatures and greater biomass or surface roughness,
as indicated by diminished values of vegetation transmissivity. Arctic regions with warmer
annual air temperatures have greater moisture availability for snow season precipitation
(Serreze and Barry , 2005), and snow is preferentially accumulated in regions with greater
vegetation or surface roughness (Walker et al., 2001). Over dry (< 0.1 soil moisture) Arctic
areas, sites that have more snow at the end of the snow season tend to have wetter soils at
the start of the growing season. Arctic regions that have more snow for the last thirty days
of the snow season also tend to have have cooler temperatures at the start of the growing
season, likely due to the rapid snowmelt undergone by cold, high latitude sites (Bonan,
2002).

Recent circumpolar predictions indicate that climate change may diminish the annual
duration of snow cover and increase maximum annual SWE (Callaghan et al., 2011), and
that high latitude warming and altered snow season length can affect Arctic vegetation
phenology and species composition (Arft et al., 1999; Walker et al., 1999). As the ACE
technique has uncovered linkages between snow and growing season land surface variables
that bear great similarity to associations observed in situ, this also suggests that climate-
driven changes in soil moisture, vegetation composition and air temperature may both
influence, and be influenced by, shifts in the timing and accumulation of snow. We therefore
suggest that continued monitoring of Arctic ecosystems at the field scale be accompanied
by applying the ACE technique to monitor linkages between satellite passive microwave
observations of snow and growing season variables.
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Figure 4.4: Point pair output from the ACE algorithm indicating associations between
air temperature (TA) and SWE ([TA,t(TA)] and [SWE,t(SWE)]) over three time periods:
mean annual (black), 30 days preceding and 30 days following snowmelt (red), and 30 days
preceding and 30 days following snow onset (blue). Results are indicated for all seven
vegetation classes separately.
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Figure 4.5: Linkages between SWE and volumetric soil moisture (MV), as indicated by the
optimal transformations identified using the ACE approach. The point pairs [MV,t(MV)]
and [SWE,t(SWE)] were independently calculated for each vegetation class. Associations
between mean 2003-2008 values are shown in black, and associations in ‘spring’ and ‘au-
tumn’ are shown in red and blue.
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Figure 4.6: Associations between satellite estimates of vegetation transmissivity at 10 GHz
(TC10) and SWE over seven vegetation classes, and three time periods: mean 2003-2008
(black), before and after snowmelt (red), and preceding and following snow onset (blue).
Each plot indicates the point pairs [TC10,t(TC10)] and [SWE,t(SWE)] identified using the
ACE technique.
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Chapter 5

PolarVPRM: A remote sensing based
model for estimating high-latitude
net ecosystem CO2 exchange
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Overview

We introduce here the Polar Vegetation Photosynthesis Respiration Model (PolarVPRM),
a remote sensing based approach for generating high resolution (≥1 km, three-hourly) es-
timates of net ecosystem CO2 exchange (NEE) north of 55◦N. Recent field studies have
indicated that the species of Arctic vegetation present at a site and the timing and dura-
tion of snow onset/melt influence NEE. We therefore incorporated Arctic-specific vegeta-
tion classes and remote sensing estimates of fractional snow cover and its influence on NEE
into the existing VPRM in order to create PolarVPRM. We present here a complete descrip-
tion, validation and error analysis of PolarVPRM, followed by a model inter-comparison,
and an analysis of inter-annual variability in PolarVPRM estimates of high-latitude North
American NEE (2001–2012). PolarVPRM was validated by comparing model estimates of
daily average NEE to unfilled eddy covariance observations from nine Arctic sites, of which
three were used in model calibration. Model validation indicated that PolarVPRM esti-
mates of snow season NEE in which the influence of snow on NEE was explicitly represented
had lower MAEs (0.20 µmol/m2/s) relative to PolarVPRM estimates of snow season NEE
in which the influence of snow was not explicitly represented (MAE=0.24 µmol/m2/s).
Furthermore, more realistic estimates of the annual net carbon exchange were generated
at all sites when the influence of snow on NEE was explicitly represented. Model inter-
comparison indicated that PolarVPRM’s estimates of mean daily and monthly NEE fit
more closely against eddy covariance observations than estimates of NEE by FLUXNET
Multi-Tree Ensemble and CarbonTracker at the same temporal resolutions. Further anal-
ysis therefore consisted of examining inter-annual variability in PolarVPRM estimates of
North American NEE and PolarVPRM driver data (2001–2012). Over time, a slight in-
crease in high-latitude air temperatures with concurrent rises in EVI and growing season
length lead to estimates of increased respiration over time, with increased photosynthesis
over tundra regions and diminished photosynthesis over forests. PolarVPRM estimates
indicate that high-latitude regions of North America are changing from a carbon sink to a
weak carbon source over time (2001–2012).
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5.1 Introduction

The high-latitude carbon cycle contains 1400 to 1850 Gt of soil organic carbon (McGuire
et al., 2010), a portion of which is likely to be released due to a warming climate (Schaefer
et al., 2011). The magnitude of future climate change will therefore be influenced by the
response of the high-latitude carbon cycle to climate change. Accurate estimates of the
high-latitude net ecosystem CO2 exchange (NEE) are therefore crucial. However, substan-
tial uncertainties presently exist in model estimate of North American NEE, leading models
to estimate a wide range of possible carbon budgets (Huntzinger et al., 2012). For exam-
ple, a recent inter-comparison of 27 land surface models found substantial uncertainties in
their estimates of Alaskan Arctic NEE (Fisher et al., In Preparation). Models disagreed
on whether the Alaskan Arctic was a strong carbon source, a strong carbon sink, or carbon
neutral. Uncertainty regarding the magnitude of the Arctic carbon cycle and its responses
to climate change are crucial scientific questions (Lafleur and Humphreys , 2008). It is
therefore important that model estimates of high-latitude NEE be generated by a model
specifically designed to simulate high-latitude influences on NEE, and that the sources and
magnitude of uncertainty in this model be well understood.

To address these needs, we introduce the PolarVPRM model of high-latitude net ecosys-
tem CO2 exchange. PolarVPRM is a diagnostic, remote sensing based model well suited
for representing the high-latitude land surface drivers of NEE using a simple mathemati-
cal structure with few parameters. Following a description of PolarVPRM formulation, a
thorough validation and error assessment are provided by comparing model output to eddy
covariance measurements from calibration and validation sites. Output from PolarVPRM
across North America (north of 55◦N) is then compared against monthly NEE from Car-
bon Tracker and the FLUXNET Multi-Tree Ensemble (MTE), and all model outputs are
compared against eddy covariance observations. Comparisons of output from all three
models against eddy covariance observations indicated that PolarVPRM had the lowest
error values. Therefore, changes over time (2001–2012) in PolarVPRM estimates of the
high-latitude carbon cycle are examined in context of changes over time in driver data.
Findings indicate that high-latitude regions may be slowly shifting from being a carbon
sink, to a very weak carbon source in response to warming air temperatures and changing
land surface conditions.
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5.2 PolarVPRM

PolarVPRM estimates net ecosystem CO2 exchange (NEE) at high resolution (3-hourly,
1
4
× 1

2

◦
) over regions north of 55◦N. The original Vegetation Photosynthesis Respiration

Model (VPRM) was developed by Mahadevan et al. (2008). VPRM has been validated
and found to generate realistic estimates of NEE across the USA and southern Canada
(30–56◦ N) (Mahadevan et al., 2008). VPRM is a diagnostic remote sensing based model
through which spatial estimates of biospheric respiration and photosynthesis are generated.
Respiration is simulated as a piecewise linear function. When air temperature (Tair) exceeds
a threshold specific to each vegetation class (Tlow, 1<Tlow< 5), respiration is calculated as
a linear function of air temperature; in colder conditions (Tair<Tlow), respiration is set to
a low constant. Photosynthesis is calculated according to air temperature, the amount of
incoming shortwave radiation, and MODIS derived indices estimating the health or amount
of vegetation (enhanced vegetation index, EVI) and water availability (land surface water
index, LSWI). Each vegetation class contains four parameters which are set according to
meteorological and eddy covariance tower observations:

• α and β, regression coefficients describing the linear association between respiration
and air temperature (R = αTair+β)

• PAR0, which represents the sensitivity of photosynthetic uptake to the quantity of
incoming shortwave radiation

• λ, which represents light use efficiency, or quantum yield, of vegetation

In this study, we develop an Arctic version of VPRM in order to reduce uncertainty
in model estimates of high-latitude NEE. PolarVPRM uses remote sensing observations
to represent Arctic-specific drivers of NEE, as observed in recent in situ studies. Arctic
field studies have shown that >50% of annual carbon efflux can occur during the snow
season (Aurela et al., 2004; Sullivan et al., 2008; Elberling and Brandt , 2003), and that
the timing and magnitude of NEE are influenced by snowpack dynamics (Larsen et al.,
2007a; Walker et al., 1999; Morgner et al., 2010). Specifically, the low thermal conductivity
of Arctic snowpacks decouples soil and air temperatures, thereby allowing respiration to
persist throughout mid-winter and preventing large effluxes of CO2 during snowmelt, when
air temperatures exceed soil temperatures. Investigations at a low Arctic site showed good
agreement between MODIS and local observations of snow cover area, and found that
representing the aforementioned influence of snow on respiration reduced model error over
two low Arctic sites (Luus et al., Submitted). As a result, MODIS observations of snow
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cover area (SCA) were incorporated into PolarVPRM. During the growing season (when
SCA< 50%), respiration is estimated as a function of Tair; during the snow season (when
SCA≥50%), respiration is estimated as a function of soil temperature (Tsoil). The resulting
variability in respiration throughout the snow season can therefore be more realistically
simulated.

Arctic vegetation is highly heterogeneous, and different types of vegetation within a
single site can show important differences in NEE (Humphreys and Lafleur , 2011; Elberling ,
2007). The seven vegetation classes in PolarVPRM are therefore Arctic specific, and set
according to a combination of the Synergistic Land Cover Product (SYNMAP) (Jung
et al., 2006) and the Circumpolar Arctic Vegetation Map (CAVM) (Walker et al., 2005).
The PolarVPRM vegetation classes divide the pan-Arctic region north of 55◦N into seven
zones. Statistical analysis has previously indicated that these seven vegetation classes
capture spatial variability in snow and growing season influences on NEE (Luus et al.,
2013). The resulting classification is therefore likely to capture the varying responses of
the Arctic carbon cycle to meteorological and site conditions. The influence of water
stress on diminishing photosynthesis is represented only over forested regions as in situ
studies have indicated that water stress does not play a critical role in determining the
productivity of Arctic vegetation (Oberbauer and Miller , 1979; Chapin III and Shaver ,
1985; Shaver et al., 1986; Johnson and Caldwell , 1975).

Several changes were made in the remote sensing derived input data used by Po-
larVPRM, relative to VPRM. Firstly, MODIS MOD10A1 observations of fractional snow
cover were included to differentiate the snow and growing seasons. False positives and neg-
atives in MODIS estimates of fractional snow cover were eliminated through the selection of
MODIS observations only over time periods when the surface reflectance observations were
flagged as ‘excellent’, and through the implementation of a mask from NARR Tsoil (at 0–10
cm) to eliminate mid-summer false positives and mid-winter false negatives. Furthermore,
since snowmelt and snow onset occur rapidly in Arctic regions, a smoothing algorithm
was applied to reduce noise in estimates of fractional snow cover during these periods of
time. When MODIS MOD10A1 observations were corrected using this approach, good
agreement was then found between remotely sensed and locally observed fractional snow
cover (Luus et al., Submitted).

The original VPRM calculated LSWI and EVI from MOD09 surface reflectance. How-
ever, initial time series analyses of MOD09 derived observations of EVI at high-latitudes
showed substantial noise exists in the EVI. Conversely, MODIS MOD13A1 estimates of
EVI have been corrected to eliminate a variety of land surface, atmospheric and topo-
graphic errors (Solano et al., 2010). As a result, MOD13A1 estimates of EVI were used at
high-latitudes.
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Furthermore, whereas VPRM typically used meteorological observations from the North
American Land Data Assimilation System (NLDAS), meteorological observations from the
North American Regional Reanalysis (NARR) were used to drive PolarVPRM. Arctic
meteorological estimates tend to be biased towards overestimating shortwave radiation
(Walsh et al., 2009). Preliminary assessments over Daring Lake, NWT, indicated that
the overestimate in air temperature at 2m above ground (Tair) and downward shortwave
radiation from NARR was smaller than that from NLDAS. NARR estimates of downward
shortwave radiation, Tair at 2m and soil temperature at 0–10cm (Tsoil) were therefore
incorporated into PolarVPRM.

5.3 Methodology

Parameters for PolarVPRM’s three Arctic vegetation classes were set using observations
from eddy covariance and meteorological towers collected at three sites in 2005: Dar-
ing Lake, NWT (shrub tundra, Lafleur and Humphreys (2008); Humphreys and Lafleur
(2011)); Ivotuk, AK (graminoid tundra, Laskowski (2010)); and Atqasuk, AK (wetland,
Laskowski (2010)). Parameters for vegetation classes south of the treeline were set ac-
cording to the parameterizations presented Mahadevan et al. (2008) for evergreen forest
(NSA old black spruce forest site), deciduous forest (Harvard forest main site), mixed forest
(Howland forest main site) and shrubs (Walnut-Gulch Lucky Hills shrubland site). Further
information about these sites can be found in Mahadevan et al. (2008).

PolarVPRM estimates of NEE were then generated across North America (north of
55◦N) at a 1

6
× 1

4

◦
and three-hourly resolution for years 2001–2012. PolarVPRM esti-

mates of NEE were then validated against eddy covariance observations of daily NEE,
and compared against CarbonTracker and FLUXNET MTE estimates of mean monthly
and daily NEE. As PolarVPRM’s estimates of NEE were found to be in better agreement
with eddy covariance observations than CarbonTracker and FLUXNET MTE, analysis
then proceeded by assessing the implications of PolarVPRM output. Changes over time
(2001–2012) were therefore assessed in PolarVPRM estimates of the carbon cycle and in
driver data over both the snow and growing seasons.

5.3.1 Error analysis

Due to the simple mathematical formulation of VPRM and PolarVPRM, uncertainties
in estimates of NEE can be easily partitioned into systematic versus random errors (Lin
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et al., 2011), where systematic errors or biases are due to specific inputs or parameters, and
random errors are not. In order to better understand the deviation between PolarVPRM
estimates of NEE and eddy covariance measurements, a comprehensive error analysis was
completed according to the framework developed by (Lin et al., 2011). Within this frame-
work, errors are quantified, and classified as either systematic or random. Systematic errors
are then attributed to input variables and parameters, and their total contributions to un-
certainty in estimates of NEE are examined. Plotting the contribution of each component
to model error allows their relative contributions to be assessed.

5.3.2 Validation

Arctic eddy covariance sites [Figure 5.1] were initially paired in order to allow validation to
be conducted over sites similar to those over which calibration occurred. Ivotuk was paired
with Imnavait, AK (graminoid tundra, Euskirchen et al. (2012)). Atqasuk, AK was paired
with Barrow (wetland, Zona et al. (2010, 2011)). Sites were then designated as either
calibration or validation sites on the basis of having data available for a common year. As
Daring Lake, Atqasuk and Ivotuk all had data collected in 2005, model calibration was
conducted over these sites using 2005 observations. Both validation and calibration were
conducted with unfilled observations of NEE, which were only filtered to remove periods
of time with low frictional velocity (u∗ <0.2) (Goulden et al., 1996).

Figure 5.1: PolarVPRM calibration and validation eddy covariance sites: Ivotuk (IV),
Atqasuk (AT), Barrow (BA), Imnavait (IM) and Daring Lake (DL) plotted over a map of
PolarVPRM’s seven vegetation classes.

Model evaluation consisted of examining the Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) between PolarVPRM estimates of NEE (predi), and eddy

95



covariance observations of NEE (obsi) (Willmott and Matsuura, 2005):

MAE = n−1
n∑
i=1

|predi − obsi| (5.1)

RMSE =
[
n−1

n∑
i=1

|predi − obsi|2
] 1

2
(5.2)

Validation was conducted against 2005 eddy covariance observations at the three cali-
bration sites, and against observations from 2008 and 2001 at Imnavait and Barrow. 2008
and 2001 were selected as these were the closest years to 2005 for which year-round ob-
servations existed. Validation was also conducted using observations of NEE collected in
July 2008 by Lafleur et al. (2012) from four Canadian Arctic sites: Cape Bounty, Iqualuit,
Lake Hazen and Pond Inlet. Validation therefore described the fit between model output,
and in situ observations of NEE.

5.3.3 Model inter-comparison

PolarVPRM estimates of NEE were then compared against those generated by existing
models with different formulations, and all models were compared against eddy covari-
ance observations of NEE. The models selected for inter-comparison were CarbonTracker
and FLUXNET Model-Tree Ensemble (MTE). CarbonTracker (Peters et al., 2007) and
FLUXNET MTE (Jung et al., 2009) were selected on the basis that they are established
models which estimate NEE over northern regions using a very different approach than
PolarVPRM.

CarbonTracker derives estimates of CO2 surface fluxes by analyzing atmospheric CO2

observations using a transport model (Transport Model 5, TM5) in combination with a
land surface biospheric flux model (Carnegie-Ames-Stanford Approach, CASA), and fossil
fuel inventories. One identified source of small uncertainties in CarbonTracker estimates
is from measurement errors or biases in CO2 dry mole fractions (Masarie et al., 2011).
FLUXNET MTE generates regional estimates of mean monthly NEE by first training an
ensemble of model trees using eddy covariance observations from FLUXNET sites and
inputs from the Lund-Potsdam-Jena managed Land (LPJmL) model, and then upscal-
ing these measurements accordingly. Uncertainty in FLUXNET MTE estimates of NEE
has previously been assessed through comparison of GPP against GPP generated by the
LPJmL (Jung et al., 2009).
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PolarVPRM, CarbonTracker and FLUXNET MTE estimates of mean daily and monthly
NEE were compared against mean daily and monthly observations of unfilled NEE avail-
able at the PolarVPRM calibration and validation sites for which annual observations were
available: Atqasuk, Barrow, Daring Lake, Imnavait and Ivotuk. Median values were cal-
culated from eddy covariance observations in order to reduce the impacts of large outliers
on monthly estimates of NEE.

5.3.4 Inter-annual variability

Inter-annual variability in PolarVPRM estimates of the carbon cycle (NEE, GEE & res-
piration) was first assessed in a qualitative manner. Plots were created of mean monthly
values for each variable, and of the cumulative carbon balance for each vegetation class.
Results found an increase in net carbon efflux across high-latitude regions, occurring pri-
marily during the growing season over forested regions.

To determine the trends in annual net carbon uptake, NEE, GEE and respiration
between 2001–2012, a non parametric method (Theil-Sen estimator; aka Sen’s slope) was
applied. To further understand the specific influences driving these shifts, changes over time
in carbon cycle variables and driver data were separately analyzed over the snow season (SS)
and growing season (GS). These time periods were differentiated using MODIS MOD10A1
snow cover area (SCA), such that the time period with SCA≥50% was considered the
snow season, and the time period with SCA<50% was considered the growing season. The
variables studied were GS GEE, GS respiration, GS air temperature, GS EVI, GS LSWI,
SS respiration, SS air temperature and SS length. The mean values of these variables were
first calculated for each annual growing season and snow season using only non-zero values.
The Sen’s slope estimates of median changes in carbon cycle and land surface variables over
time (2001–2012) were then reported for each pixel in the model domain corresponding to
significant (p-value<0.05) change.

5.4 Results and Discussion

5.4.1 Error analysis

Errors in PolarVPRM were assessed over two non-calibration sites, Barrow and Imnavait,
using observations collected in 2001 and 2008. Findings from the error analysis indicated
that the main sources of error in PolarVPRM estimates of NEE arose from biases in how
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the associations between PAR and GEE, and between LUE and GEE, were parameterized
[Figure 5.2]. Despite this large source of uncertainty, the total observed bias in NEE was
very small at both sites, potentially due to correlated errors. Mid-growing season NEE
was overestimated at Barrow, but underestimated at Imnavait. Analysis also indicated
good agreement between most of the the parameter values calibrated at the corresponding
calibration sites (Atqasuk and Ivotuk), and the parameter values which were calculated
according to validation site measurements during the error analysis. The main exception
is in light use efficiency (λ), represented in light blue [Figure 5.2].

It is interesting to note that the vegetation at Atqasuk and Ivotuk showed a diminished
photosynthetic response to incoming photosynthetically active radiation relative to the
vegetation at Barrow and Imnavait. The main bias which appeared in analysis was that
PolarVPRM estimated Barrow to have less GEE than Atqasuk primarily due to its cooler
temperatures, but Barrow in fact uptakes more CO2 than Atqasuk due to differences in
respiration and photosynthesis at the two sites (Oechel et al., 2005). However, the exact
drivers of these opposite patterns in NEE have not yet been well described in literature.

Differences in the carbon balance of Barrow and Atqasuk remain a key question to
be addressed, especially since Barrow is more frequently used as a calibration site than
Atqasuk. Since PolarVPRM is calibrated according to eddy covariance and meteorological
observations collected at Atqasuk, it may therefore estimate that low Arctic wetlands have a
greater net annual efflux of carbon than other models. NASA’s ongoing Carbon in Arctic
Reservoirs Vulnerability Experiment (CARVE) (Miller and Dinardo, 2012) is presently
providing new insights into the Arctic carbon balance and its land surface drivers. As a
small portion of CARVE observations are being collected over regions near Barrow and
Atqasuk, it is hoped that this experiment may also help elucidate the varying drivers of
NEE between these two sites.

Although substantial differences exist in the parameters describing light use efficiency
at Barrow and Atqasuk, the overall influence of this discrepancy appears to have little
influence on the ability of PolarVPRM to simulate NEE at these sites. The total bias
at Barrow is most substantial during the growing season, but is still always < 0.5 tC/ha.
Similarly, at Imnavait, the parameter describing the association between light use efficiency
and GEE is too small, but results in minimal errors in GEE (< 0.1 tC/ha). Characterizing
errors in GEE and respiration according to their drivers is complicated by difficulties in
partitioning GEE and respiration, especially during mid-summer in polar regions. The
fact that PolarVPRM underestimates GEE but can still simulate NEE well is therefore
indicative of error correlation. Conducting a thorough error validation over a larger number
of sites would assist in better understanding the biases in PolarVPRM, and their influences
on estimates of NEE.
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5.4.2 Validation

Uncertainty in PolarVPRM estimates of NEE was generally reduced when the influence
of snow on respiration was explicitly represented [Table 5.1]. Specifically, incorporating
remote sensing observations of snow cover to differentiate the snow and growing seasons,
then calculating snow season respiration as a function of Tsoil, and growing season res-
piration as a function of Tair, prevented respiration from being overestimated during the
snow season and underestimated during the growing season. Reductions in uncertainty
were most substantial over the time period when the land surface is snow-covered, but
as observations are primarily collected during the growing season, the true reductions in
model error are likely underestimated. Although the reductions in model error are small
at daily time scales, these modification have an important influence on estimates of the
annual carbon budget for each site [Figure 5.3].

Model Error AT BA DL IM IV Mean
PolarVPRM without snow MAE 0.02 0.36 0.16 0.54 0.11 0.24
PolarVPRM with snow MAE 0.03 0.34 0.19 0.36 0.10 0.20

Table 5.1: MAE values (in µmol/m2/s) comparing median daily average NEE from Po-
larVPRM with snow and without snow to observations of NEE from five eddy covariance
sites: Atqasuk (AT), Barrow (BA), Daring Lake (DL), Imnavait (IM) and Ivotuk (IV).

Model estimates of NEE in July 2008 were also compared against unfilled observations
acquired at four Canadian Arctic sites in July 2008 (Lafleur et al., 2012). None of these
sites were used for calibration purposes, and all are located far away from the validation
sites. Despite the long distances from corresponding validation sites, PolarVPRM was able
to estimate NEE relatively well across all sites [Table 5.2]. The mean RMSE across all
sites was 0.68 µmol/m2/s, and the mean MAE was 0.21 µmol/m2/s. This indicates that
PolarVPRM’s representation of vegetation is likely to be suitable for high-latitude regions
of North America, even though the calibration sites are found mainly in Alaska.

CB IQ LH PI
MAE 0.12 0.13 0.26 0.32
RMSE 0.55 0.92 0.44 0.82

Table 5.2: MAE and RMSE values (in µmol/m2/s) comparing three-hourly PolarVPRM
NEE to eddy covariance observations of NEE in July 2008 at four Canadian Arctic valida-
tion sites: Cape Bounty (CB), Iqaluit (IQ), Lake Hazen (LH) and Pond Inlet (PI).
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However, although these estimates of NEE have low errors, it is important to note that
the tendency for GEE to be underestimated in the peak of the growing season is observed
when analysis is run over the four Canadian Arctic sites. It is likely that this bias arises from
the tendency for the response of GEE to the amount of incoming photosynthetically active
radiation to be underestimated, as identified previously in the error analysis. A slight bias
is therefore identified in PolarVPRM estimates [Figure 5.2]. However, this bias appears
to have a limited effect on the ability of PolarVPRM to estimate NEE. Before analyzing
inter-annual variability in PolarVPRM, it is therefore important that PolarVPRM is inter-
compared with two existing models.

5.4.3 Model inter-comparison

Both CarbonTracker and PolarVPRM estimated very low rates of mid-winter respiration,
whereas the FLUXNET Model-Tree Ensemble (MTE) assessed greater rates of mid-winter
respiration. All three models show reasonably good agreement in growing season estimates
of mean monthly NEE [Figure 5.4]. The root mean squared deviation (RMSD) and mean
absolute deviation (MAD) RMSD and MAD between MTE and PolarVPRM are greatest
between September to April, with mean values of 0.87 µmol/m2/s. The RMSD and MAD
values are very similar in mid-winter because PolarVPRM estimates of mid-winter respira-
tion are very low in comparison to MTE estimates of mid-winter respiration. Conversely,
as both CarbonTracker and PolarVPRM estimate very low rates of winter respiration,
good agreement is found, with mean September–April RMSD and MAD of 0.09 and 0.05
µmol/m2/s, respectively.

When comparing mean monthly NEE estimated by PolarVPRM and CarbonTracker
across eight three-hourly time periods, it is interesting to note that PolarVPRM consis-
tently estimates lower rates of GEE than CarbonTracker, but estimates that respiration
continues for a much longer duration of the day. These differences are especially notice-
able when examining plots of NEE at 3:00 and 12:00 UTC. PolarVPRM shows a distinct
uptake that is especially noticeable at dates closest to the summer solstice. These dif-
ferences may either be due to underestimates of the amount of daylight available near
solstice by CarbonTracker, or underestimates in peak midday GEE by PolarVPRM due to
a bias in the parameter describing the response of GEE to photosynthetically active radi-
ation, as described in section 5.4.1. Despite this diurnal difference between these models,
they generate very similar mean monthly rates of NEE across all time periods. Compar-
isons across the peak of the Arctic growing season indicated that PolarVPRM appears to
slightly underestimate GEE in some years relative to FLUXNET MTE, and appears to
slightly overestimate GEE relative to CarbonTracker. Overall, PolarVPRM shows more
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similarity with CarbonTracker (RMSD= 0.27 µmol/m2/s, MAD= 0.04 µmol/m2/s), and is
more distinct from FLUXNET MTE (RMSD=0. 78 µmol/m2/s, MAD=0.71 µmol/m2/s)
,especially during the snow season [Table 5.3].

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
CT-RMSD 0.03 0.03 0.04 0.08 0.17 0.37 0.66 0.42 0.21 0.19 0.14 0.06
MTE-RMSD 0.85 0.85 0.62 0.64 0.25 0.50 0.71 0.41 0.80 1.13 1.13 0.98
CT-MAD 0.02 0.02 0.04 0.07 0.12 0.28 0.54 0.36 0.14 0.14 0.13 0.05
MTE-MAD 0.85 0.85 0.62 0.64 0.19 0.47 0.64 0.31 0.76 1.12 1.13 0.97

Table 5.3: Root mean squared deviation (RMSD) and mean absolute deviation (MAD) of
mean monthly PolarVPRM relative to CarbonTracker (CT) and FLUXNET Model-Tree
Ensemble (MTE) from 2001–2009 over the North American region north of 55◦N.

Estimates of NEE generated by the three models were then compared against eddy
covariance observations at the PolarVPRM calibration and validation sites [Table 5.4].
Results indicated that PolarVPRM’s estimates of mean monthly NEE (RMSE= 0.72
µmol/m2/s, MAE= 0.41 µmol/m2/s) and daily mean NEE (RMSE= 1.76 µmol/m2/s,
MAE= 0.50 µmol/m2/s) were in better agreement with eddy covariance observations at
the three sites than monthly estimates of NEE by MTE (RMSE= 0.95 µmol/m2/s, MAE=
1.38 µmol/m2/s) or daily mean estimates by CarbonTracker (RMSE= 2.09 µmol/m2/s,
MAE= 0.62 µmol/m2/s). Based on this analysis, it appears that PolarVPRM is better
able to capture diurnal patterns of NEE than CarbonTracker. Comparisons of monthly
estimates of NEE by CarbonTracker and PolarVPRM indicated that CarbonTracker had
slightly lower MAE values (0.39 vs 0.41 µmol/m2/s) but greater RMSE values than Po-
larVPRM (0.72 vs 0.83 µmol/m2/s). Overall, PolarVPRM’s estimates of high-resolution
NEE fit more closely against year-round eddy covariance measurements of NEE at Arctic
sites than daily mean estimates by CarbonTracker, or monthly mean estimates by MTE.

5.4.4 Inter-annual variability

PolarVPRM output indicates that on average, North American regions appear to have lost
strength as a carbon sink from 2005–2010 [Figure 5.5]. Since PolarVPRM estimates of NEE
are generated using the same parameter set and input data sources across all years (2001–
2012), analyzing inter-annual variability in PolarVPRM estimates of the northern carbon
cycle, and in PolarVPRM input data, can provide insights into the potential responses of
the Arctic carbon cycle to recent changes in environmental conditions.
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Resolution Error Model AT BA DL IM IV Mean
Monthly RMSE PolarVPRM 0.34 0.81 0.38 1.65 0.40 0.72
Monthly RMSE CarbonTracker 0.52 0.47 0.95 1.58 0.64 0.83
Monthly RMSE FLUXNET MTE 0.61 0.71 1.32 1.53 0.60 0.95
Daily RMSE PolarVPRM 1.29 1.52 0.75 3.27 1.97 1.76
Daily RMSE CarbonTracker 1.51 1.23 1.97 3.38 2.36 2.09
Monthly MAE PolarVPRM 0.11 0.47 0.03 1.20 0.22 0.41
Monthly MAE CarbonTracker 0.06 0.16 0.67 0.99 0.07 0.39
Monthly MAE FLUXNET MTE 1.05 1.06 1.55 2.13 1.13 1.38
Daily MAE PolarVPRM 0.03 0.65 0.23 1.43 0.12 0.50
Daily MAE CarbonTracker 0.19 0.38 0.63 1.69 0.22 0.62

Table 5.4: Error statistics (RMSE and MAE, in µmol/m2/s) found through the comparison
of monthly mean and daily mean estimates of NEE from PolarVPRM, CarbonTracker and
FLUXNET Model-Tree Ensemble relative to observations of daily and median monthly
NEE from Atqasuk (AT), Barrow (BA), Daring Lake (DL), Imnavait (IM) and Ivotuk
(IV) at a matching temporal resolution.

Further analysis then consisted of examining spatial patterns of changes over time in
carbon cycle variables using the Theil-Sen estimator (Sen’s slope). Initial analyses were
conducted according to mean annual values of net carbon uptake, NEE, respiration, and
GEE [Figure 5.6]. Findings indicated that substantial rises were observed over time in net
carbon efflux, especially from forests. The observed increase over time in net carbon efflux
from forested regions was due to the tendency of these regions to uptake less photosynthesis,
shown as an increase in the values of GEE. Although northern Alaskan regions and portions
of the Yukon showed increased uptake over time, the trend was much weaker. Smaller
increases were observed over time in high Arctic respiration, leading to increased rates of
net carbon efflux.

Changes over time in carbon cycle variables and driver data were then analyzed sep-
arately over the growing seasons and snow seasons using the Theil-Sen estimator [Figure
5.7]. A qualitative assessment of Sen’s slope output shows an increase in photosynthetic
uptake by low and high Arctic vegetation, with concurrent rises in respiration over Arctic
regions. The number of days per year for which the land surface was >50% snow covered
(snow season, SS) appeared to decrease by several days per year across northern North
America. In these plots, the growing season (GS) refers to the mean annual values over
the portion of the year when the ground is <50% snow covered and GEE>0.

It is interesting to note that the mean annual values of GEE showed less photosynthetic

102



uptake by vegetation over time, but when these same calculations were over the growing
season (GEE > 0), growing season GEE showed increased uptake over time. The decline
in photosynthetic uptake over forested regions is due to warming temperatures. When
temperatures reach higher values in summer, rates of photosynthetic uptake are hindered,
especially in plants adapted to cool temperatures. PolarVPRM contains parameterizations
of these physiological maximums and optimal temperatures for photosynthesis according
to values set in literature. For example, portions of northern forests contain vegetation
classified as shrub and graminoid tundra, both of which perform photosynthesis optimally
under temperatures of 15◦C (Chapin, 1983). If growing seasons are substantially warmer,
rates of photosynthesis can be suppressed.

GS air temperature rose over time, especially over northern boreal and tundra regions,
which increased subsequent rates of GS respiration and GS GEE at high latitudes. Con-
versely, SS Tair declined over time over boreal regions, and increased over time at higher
latitudes. Boreal sites have greater nutrient levels and temperature-driven responses of
respiration to warming air temperatures than Arctic sites. The net effect of declines in SS
Tair were therefore declines in SS respiration over boreal regions. However, the concurrent
rises in GS Tair meant that over boreal regions, declines in SS respiration were counter-
balanced by increases in GS respiration. As a result, only a slight increase in net annual
respiration is observed over Arctic regions, which is influenced by rising Tair throughout
the SS and GS.

Previous studies have described the influence of warming air temperatures on inducing
increased rates of net carbon uptake by vegetation near the shrub and tree lines (Hinzman
et al., 2005; Tape et al., 2006), and on increasing rates of CO2 efflux (Schuur et al., 2009;
Tarnocai , 2006). Remote sensing studies have found trends towards increased growing
season length (Zeng et al., 2011), increased NDVI over tundra regions due to warming
(Stow et al., 2004), and diminished NDVI over boreal regions due to reduced rates of
photosynthesis (Bi et al., 2013; Verbyla, 2008) [Figure 1.1]. Arctic greening and boreal
browning are likewise observed in the trend of GEE [Figure 5.6]; however, when mean values
of EVI were considered only for the portion of the year when vegetation was productive
(GEE > 0), EVI appeared to show an increase over time across North America. The
simultaneous influences of air temperature on allowing greater quantities of biomass to
grow with more limited photosynthetic capacity is thus elucidated.

Since PolarVPRM is driven by remote sensing observations, the influence of these
changes over time in input remote sensing observations can be understood in terms of
its net contribution to the carbon cycle. Using this approach, insights were provided into
the net influence of changes in land surface properties and conditions on the snow and
growing season net ecosystem exchange of CO2.
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5.5 Conclusions

PolarVPRM represents a remote-sensing based approach for generating high resolution
estimates of NEE north of 55◦N that are in agreement with eddy covariance observations
collected year-round at Arctic sites ( MAE=0.20 µmol/m2/s). Although substantial dif-
ferences existed in the optimal values of the parameters describing the response of GEE to
photosynthetically active radiation between calibration and validation sites, error correla-
tions meant that only small biases were observed in NEE at both validation sites.

this source of error appears to have had little net influence on error in NEE. PolarVPRM
generated estimates of mean daily and monthly NEE that were in better agreement with
eddy covariance measurements of NEE than mean daily and monthly estimates of NEE
generated by CarbonTracker and FLUXNET Multi-Tree Ensemble, respectively.

Incorporating remote sensing observations of snow into PolarVPRM not only reduced
uncertainty in high-latitude estimates of NEE relative to eddy covariance observations, but
also allowed insights to be gained into the responses of the high-latitude carbon cycle to
shifting snow and growing season conditions. PolarVPRM estimates of high-latitude (55–
83◦N) North American NEE showed an increase over time (2001–2012) in net carbon efflux
by high-latitude ecosystems. Arctic sites are likely to undergo increased rates of respira-
tion due to warming soil and air conditions. Rates of Arctic photosynthesis are increasing
due to greater availability of light, moisture, along with warmer temperatures. However,
these increases in net carbon uptake are outweighed by diminished rates of photosynthesis
in forests when air temperatures exceed the physiologically optimal temperatures for pho-
tosynthesis. Changes over time in meteorological conditions and land surface properties
are therefore likely to diminish growing season GEE, and increase annual rates of respira-
tion. High-latitude ecosystems appear to be losing strength as a carbon sink in response
to changing conditions, and becoming a small net source of CO2.

——-
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Figure 5.3: Net carbon balance of all calibration and validation sites according to Po-
larVPRM formulations with (red) and without (blue) snow.
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Figure 5.4: Monthly average NEE from PolarVPRM (blue) and CarbonTracker (red) is
shown across each 3 hour time period (in UTC), with years 2001–2009 indicated with
separate lines on each plot. Mean monthly NEE for all time periods is shown in the final
plot for PolarVPRM, CarbonTracker and FLUXNET MTE (green). FLUXNET MTE is
only available at a monthly resolution, so is only indicated in the last plot.
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Figure 5.5: Net carbon balance of North America (north of 55◦ N, 2005–2010) according
to PolarVPRM (in tC/ha). The dotted lines indicate error bars, with values set according
to the mean error in net C at the validation sites [Figure 5.2].
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Figure 5.6: Sen’s slope values, indicating the median change (2001–2012) in PolarVPRM
estimates of mean annual NEE, respiration and GEE (in µmol/m2/s), and mean annual net
carbon exchange in (t C/ha). All Sen’s slope values shown correspond to p-values<0.05.

109



Figure 5.7: Sen’s slope of median change (2001–2012) in PolarVPRM estimates of carbon
cycle variables, and driver data. All variables are shown for either the growing season (GS,
when SCA<50%) or snow season (SS, when SCA≥ 50%), and all values refer to the sums
of non-zero values over these time periods. Values are only shown for locations at with a
significant (p-value<0.05) change over time. NEE, RESP and GEE are all expressed in
µmol/m2/s, Tair is in ◦C, SS length is in days, and both EVI and LSWI are dimensionless
(0-1). 110



Chapter 6

Conclusions

——-

6.1 Summary

Substantial uncertainties regarding the high-latitude carbon cycle and its recent responses
to climate change complicate efforts to understand the biospheric feedbacks between the
climate system and the carbon cycle. These feedbacks will heavily influence the future
intensity of climate change, and it is therefore crucial that models generate accurate es-
timates of the high-latitude carbon cycle. The central objectives of this thesis were to
reduce uncertainty in model estimate of high-latitude NEE by representing polar influ-
ences on NEE, and to then examine the implications of these improved model estimates
of high-latitude NEE for our current understanding of the magnitude and response of the
high-latitude carbon cycle to recent biospheric changes (2001–2012).

PolarVPRM, a model for estimating high-latitude NEE, was developed by making
several important changes to the existing Vegetation Photosynthesis Respiration Model
(VPRM). Model inputs were selected on the basis of performing well over high-latitude
regions, Arctic-specific vegetation classes were implemented and the influence of snow on
NEE was explicitly represent. A literature review indicated that snow properties influence
NEE, and outlined possible approaches to represent these influences using remote sensing
observations [Chapter 2]. One approach involved using MODIS observations of fractional
snow cover to represent the influence of snow on NEE. Analysis over a low Arctic site at
Daring Lake, NWT, Canada indicated good agreement between local and remote sensing
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observations of fractional snow cover. PolarVPRM was calibrated and run over paired cal-
ibration and validation sites using model formulations both with and without an explicit
representation of snow. Findings from this approach showed that uncertainty in estimates
of NEE could be reduced by delineating the snow and growing seasons according to frac-
tional snow cover, such that growing season respiration could be calculated according to air
temperature and snow season respiration could be calculated according to soil temperature
[Chapter 3].

When Arctic vegetation classes were created for PolarVPRM using SYNMAP and
CAVM, questions arose regarding 1) how well these vegetation classes captured distinctly
different regions with the heterogeneous Arctic/sub-Arctic; and 2) the pan-Arctic associ-
ations between snow accumulation and growing season drivers of NEE (air temperature,
soil moisture and vegetation). Preliminary analysis indicated that these relationships were
non-linear, and that their shape varied according to the vegetation class and time period
over which they were investigated [Chapter 4]. The ACE approach was therefore applied
to further analyze these associations in order to determine whether regions undergoing
greater rates of soil respiration (through greater snow accumulation) would also tend to
have greater uptake of CO2 during the growing season.

Findings from this chapter indicated that associations between snow and growing season
processes observed at the pan-Arctic scale showed strong agreement with in situ observa-
tions of these same linkages. For instance, Arctic regions that tended to accumulate more
snow tended to be warmer during the growing season, drier at the start and end of the
snow season, and to contain more vegetation. Conversely, forested regions that accumu-
lated more snow tended to be colder during the growing season and to have less vegeta-
tion. Results therefore indicated that the associations between snow and growing season
influences were non-linear, and could not be generalized across vegetation class. Gaining
accurate pan-Arctic estimates of year-round NEE would therefore require both the snow
and growing season land surface influences on NEE to be well represented. As previous
analysis had indicated that representing the influence of snow cover on rates of respiration
improved model performance, the PolarVPRM model was created with the aforementioned
vegetation classes and remote sensing approach to representing the influence of snow on
respiration.

Overall, representing the influence of fractional snow cover on NEE using remote sens-
ing observations of fractional snow cover reduced uncertainty in model estimates of NEE
[Chapter 5]. Validation of the PolarVPRM model indicated good agreement between model
estimates and eddy covariance measurements of NEE, and found that the main source of
errors in PolarVPRM estimates of NEE arose from strong differences in the associations
between GEE and the amount of inputted shortwave radiation, resulting in underestimates
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of GEE at both validation sites. Model inter-comparison indicated that PolarVPRM esti-
mates of mean daily and monthly NEE fit more closely against eddy covariance observations
than estimates of mean daily and monthly NEE by two existing models: CarbonTracker
and FLUXNET Multi-Tree Ensemble. PolarVPRM estimates of NEE therefore appear to
be adequate in light of even larger uncertainties in other existing models.

To understand the implications discovered by this newly developed model, inter-annual
variability and trends over time were assessed in PolarVPRM estimates of high-latitude
North American NEE. PolarVPRM output indicated a net decline in the uptake of carbon
by North American ecosystems north of 55◦N between 2001–2012, shifting high-latitude
ecosystems from a net carbon sink to a very weak net carbon source. Although tundra
vegetation displays a green-up and increase in photosynthetic uptake in response to warmer
air temperatures, conditions that are too warm hinder the capacity of boreal vegetation to
conduct photosynthesis. Warmer air temperatures also encourage greater rates of respira-
tion. These findings are in general agreement with in situ and remote sensing findings of
changes in vegetation, but provide a unique contribution by estimating the net contribution
of these shifts for the high-latitude carbon cycle.

6.2 Contributions

This research contributed several novel aspects to our understanding of the high-latitude
carbon cycle. The first major contribution was in outlining specific strategies which could
be used to represent snow season processes in model estimates of NEE using remote sensing
observations [Chapter 2]. The second main contribution was in determining that uncer-
tainty in model estimates of high-latitude NEE could be reduced by using a remote sensing
approach to differentiate the snow and growing seasons, such that snow season respiration
could be estimated as a function of soil temperature, and growing season respiration could
be represented as a function of air temperature [Chapter 3]. The third major contribu-
tion of this research was the elucidation of spatial associations between snow and growing
season drivers of NEE, and their dependence on the predominant vegetation class and the
time period over which they are studied [Chapter 4]. Findings indicated variability, non-
linearity and complexity in the associations between snow and growing season influences on
NEE. It therefore became evident that representing snow season influences on NEE could
allow valuable, non-intuitive insights to be gained into the response of the high-latitude
carbon cycle to changes in land surface conditions during the snow and growing seasons.

The final contribution of this research was in developing PolarVPRM [Chapter 5], a
model found to generate more accurate estimates of eddy covariance derived NEE than ex-
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isting approaches. Using this model, inter-annual variability (2001–2012) in high-latitude
North American estimates of the carbon cycle were analyzed in context of changing me-
teorological and land surface conditions. The high-latitude carbon cycle was therefore
quantified, and insights were provided into the estimated influence of warming air temper-
atures on increasing rates of respiration and photosynthetic uptake over tundra regions,
and diminishing growing season uptake of carbon over forests. PolarVPRM estimates indi-
cated a net increase in CO2 efflux over time that has led high-latitude regions to shift from
a carbon sink to a weak carbon source. The majority of research contributions therefore
arose in the process of developing PolarVPRM; however, the resulting model itself may be
the most important contribution.

PolarVPRM estimates of the northern carbon cycle are being employed through col-
laboration with two ongoing research projects. Myung-Gwang Kim, a PhD student in
Earth and Environmental Sciences at the University of Waterloo, is running the Stochastic
Time-Inverted Lagrangian Transport (STILT) model to assess anthropogenic CO2 fluxes
over northern Canada, using PolarVPRM estimates of biospheric CO2 fluxes (2005–2010).
Likewise, NASA’s Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is using
PolarVPRM estimates of NEE in combination with the STILT model to analyze airborne
observations of CO2 concentrations over Alaska (2012).

6.3 Limitations

The accuracy of model estimates are inherently limited by the quality of input data, and
on the assumption that calibration sites are typical of the region from which they originate.
Once sites were paired according to vegetation type, in each case, and then somewhat arbi-
trarily assigned as either calibration or validation. Error analysis revealed that vegetation
at the site shows a smaller photosynthetic response to incoming photosynthetically active
radiation than the vegetation at Barrow. PolarVPRM was calibrated over Atqasuk and
run over Barrow as a validation site; Barrow GEE was therefore underestimated. At this
time, it is not possible to determine which of these paired sites is more representative of
high-latitude wetlands and barren vegetated regions across North America. PolarVPRM
may therefore underestimate peak growing season GEE in wetland or vegetated barren
tundra regions.

A major source of both known and unquantifiable errors in PolarVPRM arises due to
the difficulty associated with collecting year-round observations of NEE at Arctic North
American sites. Few eddy covariance observation sites exist at high-latitudes in North
America, and most are clustered on the North Slope of Alaska. PolarVPRM is calibrated
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and validated primarily over the northern Alaska. Of these sites, few collect observations
throughout the snow season. When snow season observations are collected, these are
characterized by large measurements uncertainties. Therefore, although comparisons of
PolarVPRM output against July 2008 observations of NEE over northern Canada indicated
good model fit, uncertainty in year-round estimates of NEE over the vast majority of
the Canadian Arctic cannot presently be quantified with the existing eddy covariance
observation network.

Furthermore, although a central focus of the PolarVPRM is on generating improved
estimates of snow season NEE, complete characterizations of snowpack properties are not
typically available at high-latitude eddy covariance sites. As a result, many of the complex
associations between snowpack dynamics and NEE observed in situ cannot presently be
simulated in regional estimates of NEE. A possibility may exist to instead represent these
processes using calibration/validation across a variety of Eurasian sites in conjunction
with observations from the Total Carbon Column Observing Network (TCCON), which
may indicate one possible direction for future work.

6.4 Future work

Although most of the aforementioned limitations are the same impossible quandaries that
make this work appealing and necessary, there exist a few possible directions for future
improvements in PolarVPRM estimates of NEE. Future research directions will consist of
calibrating and validating PolarVPRM across Eurasian FLUXNET sites. This will also
allow insights to be gained into the pan-Arctic carbon cycle and its responses to climate
change. These improvements could come about through model calibration according to
high-latitude sites across Eurasia, thereby allowing high resolution pan-Arctic estimates
of NEE. Model validation across Eurasia would also allow a better understanding of the
source and magnitude of errors in PolarVPRM estimates of NEE. PolarVPRM estimates
of pan-Arctic NEE could provide important insights into the response of the circumpolar
carbon cycle to climate driven-shifts in snow and growing season land surface properties.

Future opportunities may exist to represent snow season influences such as snow ac-
cumulation and snowpack dynamics in PolarVPRM if greater availability of in situ obser-
vations of these properties become available. Findings from PolarVPRM indicated that
the parameter describing the maximum temperature at which plants are able to carry out
photosynthesis played an important role in describing the influence of warming air tem-
peratures on NEE. Values for these parameters were set from literature. Future research
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could therefore focus on improving the accuracy of these temperature thresholds for each
vegetation class.

Possibilities may also exist in future for other researchers to use PolarVPRM output for
a variety of applications. Regional-scale output from the PolarVPRM model will therefore
be made available to researchers online (www.polarvprm.com) and through a listing on the
Polar Data Catalogue (www.polardata.ca).
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Appendix A

Appendices

A.1 List of Acronyms

NEE Net Ecosystem Exchange

NEP Net Ecosystem Production

GPP Gross Primary Production

GEE Gross Ecosystem Exchange

NPP Net Primary Production

Rh Heterotrophic Respiration

Ra Autotrophic Respiration

SWE Snow Water Equivalent

PAR Photosynthetically Active Radiation (400-700 nanometers)

LUE Light Use Efficiency

CAVM Circumpolar Arctic Vegetation Map

SYNMAP Synergistic Land Cover Product

CASA Carnegie-Ames-Stanford Approach
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LPJ Lund-Potsdam-Jena Dynamic Global Vegetation Model

fAPAR Fraction of Absorbed Photosynthetically Active Radiation

SiB2 Simple Biosphere model

GCM General Circulation Model

LSWI Land Surface Water Index

NDVI Normalized Difference Vegetation Index

LAI Leaf Area Index

EVI Enhanced Vegetation Index

VPRM Vegetation Photosynthesis Respiration Model

MODIS NASA’s Moderate Resolution Imaging Spectroradiometer

AMSR-E NASA’s Advanced Microwave Scanning Radiometer for Earth Observing Sys-
tems

GloPEM Global Production Efficiency Model

NLDAS North American Land Data Assimilation System

NARR North American Regional Reanalysis

A.2 Description of GlobSnow SWE and NTSG land

surface variables

The products compared in this study are derived from gridded Level 2A brightness temper-
ature from the Advanced Microwave Scanning Radiometer for the Earth Observing System
(AMSR-E). AMSR-E is a multichannel satellite passive microwave radiometer collecting
observations at 6.925, 10.65, 18.7, 23.8 36.5 and 89.0 GHz (Kawanishi et al., 2003). Passive
microwave observations rely on estimates of microwave radiance, which increases propor-
tionally with temperature and emissivity of a surface. Brightness temperature (Tb), the
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variable of observation by passive microwave instruments, is a function of the product of
kinetic temperature (Tk) and emissivity (ε): Tb = Tkε. Tb is equivalent to the physical
temperature of a blackbody (ε = 1) (Jones et al., 2010).

AMSR-E Tb has been used previously to estimate snow water equivalent (Kelly , 2009),
vegetation and soil moisture (Njoku and Chan, 2005). These approaches have continued
improving in accuracy and global coverage, culminating in the recent release of the AMSR-
E derived data sets analyzed in this study: NTSG land parameters by Jones and Kimball
(2012) and GlobSnow SWE by Luojus et al. (2009). The following subsections describe
the methodologies applied by the Finnish Meteorological Institute (FMI)-led consortium
and the University of Montana’s Numerical Terradynamic Simulation Group (NTSG) to
calculate GlobSnow SWE and land surface variables, respectively. All data are calculated
from AMSR-E brightness temperature observations acquired at 6.9, 10.7, 18.7, 23.8, 36.5
and 89.0 GHz twice daily with native resolutions varying inversely with frequency from 5
km to 60 km (Jones and Kimball , 2010a). NTSG and GlobSnow both use NSIDC Level
2A AMSR-E data, which resamples each frequency’s native resolution to that of the 6.9
GHz frequency. The resulting product is on a 25 km grid (Ashcroft and Wentz , 2003) and
use an EASE-Grid projection (Knowles et al., 2010). GlobSnow snow water equivalent
uses 18.7 and 36.5 GHz frequency data (Luojus et al., 2009). Both the GlobSnow and
AMSR-E air temperature datasets have been validated against in situ and AIRS/AMSU
observations, respectively (Jones et al., 2010). Analysis in this study made use of AMSR-E
land surface variables version 1.2 (Jones and Kimball , 2012) and version 0.9.1 of GlobSnow
SWE (Luojus et al., 2009).

A.2.1 GlobSnow snow water equivalent (winter season)

The snow depth and quantity of snow can be estimated from passive microwave observa-
tions as a linear function of the difference between brightness temperatures at two frequen-
cies, such as 18 GHz and GHz with horizontal polarization (Chang et al., 1987). A new
data set used for SWE estimates, GlobSnow, optimizes agreement between measured and
simulated brightness temperature using forward simulation of different grain sizes.

GlobSnow SWE estimates (in mm) are calculated using AMSR-E 18.7 and 36.5 GHz
data as well as meteorological data. Meteorological stations provide estimates of snow
depth, which are filtered to remove spurious values and are then kriged between stations
(Takala et al., 2011). In the GlobSnow algorithm, regions with thin snowpacks, snowmelt or
wet snow are masked out, as wet snow acts as a microwave emitter (Armstrong and Brodzik ,
2001). Snow grain size is estimated through an inversion of AMSR-E observations using the
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Helsinki University of Technology snow microwave emission model (Pulliainen et al., 1999).
Snow water equivalent is then calculated from snow depth through knowledge of snow
density. Single fixed variables are used to estimate snowpack, soil and forest characteristics.
Surface roughness and soil moisture are assumed to have the same value across the entire
pan-Arctic, and forest cover effects are removed using vegetation transmissivity collected
in winter (Pulliainen, 2006).

GlobSnow SWE has been validated for several northern sites, and was found to have a
root mean squared error (RMSE) of 33 mm (Luojus et al., 2009). GlobSnow SWE has been
found to simulate in situ SWE more accurately than other SWE algorithms, especially over
>100 mm snowpacks (Luojus et al., 2010; Takala et al., 2011; Hancock et al., 2013). Overall,
GlobSnow SWE has been found to perform well at estimating values of SWE up to 150
mm. Thicker snowpacks act as a source of emission rather than a scattering medium, which
leads to SWE being underestimated (Takala et al., 2011). Over Canadian tundra regions,
this threshold has been observed at 130 mm (Derksen et al., 2010). It is also important to
note that passive microwave retrievals of SWE are only reliable over >15 mm snowpacks
(Solberg et al., 2009), as thin snowpacks are difficult to detect. Similarly, although specific
modifications are made to the GlobSnow SWE algorithm to enable accuracy over forested
regions, the amount of SWE recorded over densely forested regions can be underestimated
(Takala et al., 2011). GlobSnow estimates of SWE are therefore considered most reliable
over the 15–150 mm range in forested regions without dense canopy cover, and over the
15–130 mm range over tundra regions.

A.2.2 NTSG air temperature (growing season)

The central goal in the creation of the NTSG land surface variable dataset was to gain
accurate estimates of minimum and maximum air temperature (in Kelvin) at a height of
2 m using AMSR-E observations. The accuracy of NTSG air temperature estimates was
improved by quantifying and removing the influence of vegetation, soil moisture and atmo-
spheric water vapor on brightness temperature. Vegetation transmissivity and soil moisture
variables were therefore extracted through this process (Jones and Kimball , 2010b).

Minimum air temperature is calculated according to morning retrievals, and maximum
air temperature is calculated according to late afternoon retrievals. Both estimates care-
fully account for the effects of vegetation, soil moisture, fractional cover of open water
on land, and atmospheric water vapor. The complete details regarding calculations of air
temperature can be found in Jones et al. (2010). Air temperatures from meteorological
stations were used for calibration (270 stations) and validation (273 stations) of result-
ing products, with these stations being assigned randomly. Comparisons indicated root
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mean squared error (RMSE) values of 3.5 K between AMSR-E derived temperature and
meteorological data. Larger errors were observed in regions with sparse vegetation, higher
elevations and higher fractional cover of open water on land. Non-desert regions had RMSE
values between 1 and 3.5 K, which shows better accuracy than previous approaches that
had relied on carefully selected meteorological stations (Jones et al., 2010). For the pur-
pose of this project, daily air temperature was calculated as the daily average of maximum
and minimum temperatures reported by Jones et al. (2010).

A.2.3 NTSG soil moisture (growing season)

The emissivity of soils depends largely on its dielectric properties. The real part of the
dielectric constant increases as a function of soil moisture content. As a result, wetter
soils have a diminished emissivity relative to drier soils (Njoku and Kong , 1977). Passive
microwave observations are most sensitive to subsurface soil moisture at low (. 3 GHz)
frequencies, and at these low frequencies, the influences of vegetation and surface roughness
is also limited (Njoku and Kong , 1977; Njoku and Chan, 2005).

The NTSG soil moisture product therefore relies primarily on the lowest AMSR-E
frequency (6.9 GHz) to generate estimates of surface (≤2 cm) soil moisture (Jones and
Kimball , 2010a). Soil moisture is expressed as a dimension-free value ranging between 0–1.
Soil moisture was found to be correlated with precipitation at meteorological stations in
the Northern Hemisphere (0.2<r< 0.8) (Jones and Kimball , 2010, updated 2011).

A.2.4 NTSG vegetation transmissivity (growing season)

Vegetation acts as an attenuating layer that diminishes the transmissivity of passive mi-
crowave radiation. The vegetation water content alters the dielectric properties of the
landscape, such that there exists diminished emissivity over regions with greater vegeta-
tion water content (Jackson and O’Neill , 1990). Furthermore, the vegetation canopy layers
influence scattering (Jones and Kimball , 2010a), generally resulting in increased scatter-
ing and diminished transmissivity over regions that have greater biomass, although the
canopy structure (stem geometry, leaf orientation, angle distributions, spatial distribution,
etc.) and type of vegetation also influence the surface roughness and scattering (Njoku and
Chan, 2005; Jensen, 2007). The optical depth of vegetation can thus be defined according
to the height of the attenuating layer (ztop) and the extinction with height (k(z) in 1/m)
(Jones et al., 2010):

τ =

∫ ztop

0

k(z)dz. (A.1)
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Over a vegetated region with a single species and relatively constant surface roughness,
the attenuating influence of vegetation, or vegetation optical depth (τ), can be estimated
as a linear function of canopy water content (g in kg/m2) using a species-specific parameter
(b): τ = b × g (Jackson and O’Neill , 1990). A similar description is used by Jones et al.
(2010) to define the optical depth of Northern Hemispheric vegetation as a function of
water content using a parameter α that expresses both the influences of roughness factors
(h) and look angle (θ), as well as frequency and angular impacts on canopy extinction (b
in m2/kg):

τ = αg = bhgsec(θ). (A.2)

Vegetation transmissivity to passive microwave radiation (t) can be expressed as the loga-
rithmically scaled counterpart of vegetation optical depth: t = exp(−τ). Vegetation trans-
missivity is calculated iteratively from a combination of inverted analytical expressions
using AMSR-E inputs, emissivity and ratios, as detailed in Jones et al. (2010). Separate
versions of the NTSG vegetation transmissivity product are available using inputs from
the 6.9, 10.7 and 18.7 GHz channels. There is a great deal of similarity between these
observations, and so only the 10.7 GHz channel is used in this analysis, just as in Njoku
and Chan (2005).

Comparisons of this product with Moderate Resolution Imaging Spectroradiometer
(MODIS) derived leaf area index, normalized difference vegetation index (NDVI) and en-
hanced vegetation index yielded correlations of up to 0.9 (Jones et al., 2011). As the
aforementioned MODIS products are typically used to estimate the vegetation health or
quantity of aboveground biomass, it seems reasonable to assume that vegetation trans-
missivity likewise provides a relatively reliable estimate of the quantity of aboveground
biomass.
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