
A Spacetime Approach to Defining
Vacuum States and Entropy

by

Yasaman Kouchekzadeh Yazdi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Physics

Waterloo, Ontario, Canada, 2013

c© Yasaman Kouchekzadeh Yazdi 2013



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

We apply a recent proposal for a distinguished ground state of a quantum field in
a globally hyperbolic spacetime to the free massless scalar field in a causal diamond in
two-dimensional Minkowski space. We investigate the two limits in which the Wightman
function is evaluated (i) for pairs of points that lie in the centre of the diamond (i.e. far
from the boundaries), and (ii) for pairs of points that are close to the left or right corner.
We find that in the centre, the Minkowski vacuum state is recovered, with a definite value of
the infrared cutoff. Interestingly, the ground state is not the Rindler vacuum in the corner
of the diamond, as might have been expected, but is instead the vacuum of a flat space
in the presence of a static mirror on that corner. We confirm these results by numerically
evaluating the Wightman function of a massless scalar field on a causal set corresponding
to the continuum causal diamond. We also present an independent calculation of the
entanglement entropy for a free massless scalar field in 1+1 dimensions. We use a recent
formula for a global expression of entropy using Green functions of the theory. This formula
is independent of a density matrix with respect to a hypersurface (as the usual definition
of entropy depends on), and it is applicable to both continuum spacetimes and to discrete
causal sets. We compute the entanglement entropy in a spacetime of two causal diamonds
in the continuum and in a causal set, in the limit that one is much larger than the other.
In the continuum, we obtain the result S = 1

3
ln
(
`
a

)
+ c, where a is the UV cutoff of the

theory, ` is the diameter of the smaller diamond, and c is a constant. This result is in
agreement with results in CFT.
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Chapter 1

Introduction

Taking the relativistic view that the physical world has a space-time character requires
an approach to quantum field theory that is built on spacetime concepts, one that makes
no fundamental appeal to “time as a parameter.” The approach of algebraic quantum
field theory takes this view seriously and attempts to push the foundations towards greater
covariance, basing the theory on appropriate algebras of operators associated to open space-
time regions. The focus on the quasi-local algebras as the central constructs of the theory
has encouraged the point of view that in general in curved spacetime there is no preferred
quantum state and that a choice of state is akin to a choice of coordinates (see e.g. [50]).
However, the algebraic approach has not been completely successful in constructing the
expectation value of the stress-energy tensor or dealing with interacting fields.

With that in mind, an open question is whether quantum field theory requires in ad-
dition the identification of a distinguished “ground state” (or class of them). A ground
state for a quantum field is its lowest energy state. It plays a very important role in the
description and determination of a quantum system’s evolution. One cannot, for example,
speak of particles without first having a ground state defined. However, the ground state
is in general very difficult to define, especially in the presence of gravity.

This work addresses this question. There has been a recent proposal for defining a dis-
tinguished ground state in a general globally hyperbolic spacetime (this includes globally
hyperbolic regions in a larger spacetime) [27, 30]. The Wightman or two-point function,
W (X, Y ), of this “Sorkin-Johnston” (SJ) ground state is defined in an essentially covariant
way starting from ∆(X, Y ), the Pauli-Jordan function or commutator function. The SJ
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proposal is in contrast to conventional ways of choosing a vacuum state, which usually rely
on the existence of symmetries in the spacetime.

In the SJ proposal, the Pauli-Jordan function is treated as an integral operator over
the Hilbert space of square integrable functions in the region of spacetime being consid-
ered. The Wightman function of the quantised field, and therefore the vacuum state of
the theory, is defined by restricting to the positive eigenspace of this operator when it is
self-adjoint. As mentioned, an important feature of this prescription is that it is covariant.
This proposal originated from efforts by R. Sorkin and S. Johnston to develop scalar field
theory on a causal set and was later realized to have an equally important application in
continuum spacetimes as well.

In this work, we study the SJ proposal in particular for the case of a free massless
scalar field in flat spacetime. We look at Minkowksi and Rindler spacetimes, and we
take a detailed look at the proposal applied to the spacetime of a causal diamond of two-
dimensional Minkowski spacetime. We pay particular attention to the Wightman function
obtained in the limit where the size of the diamond is large compared to the geodesic
separation between the two arguments of W , and where spacetime points lie either (i) far
away from the left and right corners or (ii) close to one of the corners.

In the former limit one might hope to recover the unique Poincaré-invariant Minkowski
vacuum state, if such a state existed. But in fact, no such vacuum exists, since W is
logarithmic and depends on an arbitrary length-parameter or “infrared cutoff”. In our
finite diamond, we find that W has the expected form, but with a definite value of the
length-parameter determined by the diamond’s area.

In the latter limit, one might expect to see the Rindler vacuum state, since the geometry
of the corner approaches that of the familiar Rindler wedge as the diamond size tends to
infinity. However, we find that this is not the case. Instead, the SJ state close to the corner
is the vacuum state of Minkowski spacetime with a static mirror on the corner.

Further, we use the original causal set QFT formulation [26] to construct the ground
state on a causal set that approximates the continuum causal diamond. We compare the
results with the foregoing continuum analysis in the subregions of the causal set corre-
sponding to the two limits (i) and (ii). In both cases, the Wightman function on the causal
set is in good agreement with the continuum Wightman function.

A second question that we address is whether a description of entropy can be formulated
without reference to a state on a hypersurface (as the usual definition of entropy depends
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on). This would be useful for example in cases where a quantum field does not admit a
meaningful restriction to a hypersurface. As mentioned in the opening discussion, in the
relativistic view it would be ideal to move towards a description of spacetime quantities in
terms of spacetime concepts. It may also turn out to be necessary to disregard the notion
of state on a hypersurface in quantum gravity, and in particular, in causal set theory which
we consider here. There has recently been found a formula for the entropy of a spacetime
region, for a free scalar field theory, that uses correlation functions of the field [43].

Again, we take a detailed look at this formula applied to the spacetime of causal di-
amonds in 1+1 Minkowski spacetime, for both the continuum theory and the causal set
theory. We consider the entanglement entropy resulting from considering a smaller causal
diamond subregion of the larger one, in a limit where the size of the larger diamond is
much greater than the size of the smaller one. We expect to obtain the results of calcu-
lations done in CFT, where the entanglement between a shorter interval and a longer one
is computed, the intervals being the Cauchy surfaces or diameters of our causal diamonds.
Further understanding is required to interpret the results we obtain in the causal sets. In
the continuum we obtain results in agreement with those in CFT.

We begin with a short chapter introducing causal set theory, followed by chapters
discussing the proposal for the SJ ground state and the formula for entropy.
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Chapter 2

Causal Set Theory

Quantum gravity aims to find a unified framework for quantum mechanics and general
relativity, and it remains an important open problem in physics. Causal set theory is an
approach to quantum gravity.

A causal set, or causet, is a set C together with an ordering relation � that satisfies the
following conditions:

• It is reflexive: for all X ∈ C, X � X.

• It is antisymmetric: for all X, Y ∈ C, X � Y � X implies X = Y .

• It is transitive: for all X, Y, Z ∈ C, X � Y � Z implies X � Z.

• And, it is locally finite: for all X, Y ∈ C, |I(X, Y )| <∞, where |·| denotes cardinality
and I(X, Y ) is the causal interval defined by I(X, Y ) := {Z ∈ C|X � Z � Y }.

The causal structure of a Lorentzian manifold already includes much of the information
about the manifold. The metric, for example in a globally hyperbolic spacetime, is fully
determined up to a conformal factor. The missing information is provided by a volume
measure, which would fix the conformal factor. In a causal set, in addition to the causal
structure we also have a measure of volume, set by the number of elements in the causal
set. This is due to the final condition above, where we have a finite number of points in
the causal set (in contrast to the continuum).
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To produce a causal set CM that is the discrete underpinning of (or approximation to,
depending on the point of view) a given continuous spacetime M, we sprinkle points into
M. A sprinkling generates a causal set from a given Lorentzian manifold by placing points
at random inM via a Poisson process with “density” ρ, such that the probability of having

N points in a region of spacetime volume V is P (N) = (ρV )N

N !
e−ρV . This produces a causal

set whose elements are the sprinkled points and whose partial order relation is that of the
manifold’s causal relation restricted to the sprinkled points. The expected total number of
elements in the causal set will be N = ρVM. A causal set generated by sprinkling provides
a discretisation of M which, unlike a regular lattice, is Lorentz invariant [5].

A causal set formed by sprinkling 500 elements into a finite interval in 1+1 Minkowski
space, with a density ρ = 1, is shown in (figure 2.1).

A useful way to represent a causal set, is through an adjacency matrix. We will often
use causal matrices in our causal set calculations. Let C contain p elements which we label
n1, n2, ...np. The causal matrix is defined by

Axy :=

{
1, if nx ≺ ny.

0, otherwise
(2.1)

The diagonal elements are set to zero. For example, if our causal set is:

C = {n1, n2, n3, n4} (2.2)

where

n1 � n1, n1 � n2, n1 � n3, n1 � n4

n2 � n2, n2 � n3

n3 � n3

n4 � n4 (2.3)

its causal matrix would be;

A =


0 1 1 1
0 0 1 0
0 0 0 0
0 0 0 0
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Figure 2.1: A causal set formed by sprinkling 500 elements into a finite interval in 1+1
Minkowski space, with a density ρ = 1.

Causal matrices are especially useful for constructing the propagators of the theory.
The causal set retarded Green function for sprinklings into 1+1 Minkowski spacetime with
a signature of (+−), which we will be concerned with, is given by [27]:

KR :=
1

2
A

(
I +

m2

2ρ
A

)−1

(2.4)

where I is the identity matrix. For more details on causal set theory the reader may refer
to [7, 40, 24].
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Chapter 3

The Sorkin-Johnston Vacuum

A large portion of this chapter appears in [2].

3.1 The SJ vacuum

We state the SJ proposal for the “ground state” of a free scalar field in a d-dimensional
globally hyperbolic spacetime (M, gµν) [42, 26]. The starting point is the Pauli-Jordan
function ∆(X,X ′), where we use capital letters X,X ′ to denote spacetime points. It is
defined by

∆(X,X ′) := GR(X,X ′)−GR(X ′, X) (3.1)

where GR is the retarded propagator, i.e. the Green function of the Klein-Gordon operator1

�−m2 satisfying the retarded boundary condition, GR(X,X ′) = 0 unless X ′ ≺ X, meaning
that X ′ is to the causal past of X. Notice that ∆ is real and antisymmetric.

The rules of canonical quantisation relate the Pauli-Jordan function to the commutator
of field operators by:

i∆(X,X ′) = [φ̂(X), φ̂(X ′)] , (3.2)

while the Wightman two-point function of a state |0〉 is

W0(X,X ′) = 〈0|φ̂(X)φ̂(X ′)|0〉 . (3.3)

The Wightman function of the SJ state is defined by the three conditions [42]:

1The signature of the spacetime metric in this chapter is (−+ + · · ·+) and � = gµν∇µ∇ν .
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1. commutator: i∆(X,X ′) = W (X,X ′)−W ∗(X,X ′)

2. positivity:
∫
M dV

∫
M dV ′f ∗(X)W (X,X ′)f(X ′) ≥ 0

3. orthogonal supports:
∫
M dV ′ W (X,X ′)W (X ′, X ′′)∗ = 0,

where
∫
dV =

∫
ddX

√
−g(X). On this view the Wightman function is a positive bilinear

form on the vector space of complex functions. The first two conditions must be satisfied
by the two-point function of any state. It is the third and last requirement that acts as
the “ground state condition.”

For the conditions to specify a state fully, their solution must be unique. Suppose
W1 and W2 both satisfy the conditions. Let us express the ground state condition as
WW ∗ = 02. We have W1W

∗
1 = W ∗

1W1 = W2W
∗
2 = W ∗

2W2 = 0 and W1 −W ∗
1 = W2 −W ∗

2 .
This implies

(W1 −W ∗
1 )2 = (W2 −W ∗

2 )2

⇒ (W1 +W ∗
1 )2 = (W2 +W ∗

2 )2 .

Both W1 + W ∗
1 and W2 + W ∗

2 are positive bilinear forms, and if there are unique positive
square roots of such forms then this implies

W1 +W ∗
1 = W2 +W ∗

2

⇒ W1 = W2 .

Formally, we can interpret the ground state condition as the requirement that W be
the positive part of i∆, thought of as an operator on the Hilbert space of square integrable
functions L2(M, dV ) [42]. This allows us to describe a more or less direct construction
of W from the Pauli-Jordan function [26, 27, 30]. The distribution i∆(X,X ′) defines the
kernel of a (Hermitian) integral operator (which we may call the Pauli-Jordan operator
i∆) on L2(M, dV ). The inner product on this space is

〈f, g〉 :=

∫
M
dV f(X)∗g(X), (3.4)

where dV =
√
−g(X)ddX is the invariant volume-element on M. The action of i∆ : f 7→

i∆f is then given by

(i∆f)(X) :=

∫
M
dV ′i∆(X,X ′)f(X ′). (3.5)

2Strictly speaking, to multiply two quadratic forms together requires a metric, here given by a delta
function. In these formulas the star denotes numerical complex-conjugate, not hermitian adjoint.
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When this operator is self-adjoint, it admits a unique spectral decomposition. Whether
or not this (or some suitable generalization of it) is the case depends on the functional
form of the kernel i∆(X,X ′) and on the geometry of M. For the massless scalar field
on a bounded region of Minkowski space, such as the finite causal diamond which is the
subject of this chapter, i∆ is indeed a self-adjoint operator, since the kernel i∆(X,X ′) is
Hermitian and bounded (see (3.28) below). In the following we assume that we can expand
i∆ in terms of its eigenfunctions.

Noting that the kernel i∆ is skew-symmetric, we find that the eigenfunctions in the
image of i∆ come in complex conjugate pairs T+

q and T−q with real eigenvalues ±λq:

(i∆T±q )(X) = ±λqT±q (X), (3.6)

where T−q (X) = [T+
q (X)]∗ and λq > 0. Now by the definition of i∆, these eigenfunctions

must be solutions to the homogeneous Klein-Gordon equation. If they are L2-normalised
so that ||T+

q ||2 := 〈T+
q , T

+
q 〉 = 1,3 then the spectral decomposition of the Pauli-Jordan

function implies that the kernel can be written as

i∆(X,X ′) =
∑
q

λqT
+
q (X)T+

q (X ′)∗ −
∑
q

λqT
−
q (X)T−q (X ′)?. (3.7)

We now construct the SJ two-point function WSJ(X,X ′) by restricting (3.7) to its positive
part:

WSJ(X,X ′) :=
∑
q

λqT
+
q (X)T+

q (X ′)? =
∑
q

Tq(X)Tq(X ′)? (3.8)

where Tq(X) := T+
q (X)

√
λq.

Let us compare this with the familiar case of the vacuum state of a free scalar field
when the spacetime admits a timelike Killing vector κ = ∂t. The free field can be expanded
in a basis of modes, {uk, u∗k}, which are positive and negative frequency with respect to κ:

uk(X) = uk(t,X) = Nke
−iωktUk(X) , (3.9)

where Nk is a normalisation-factor, ωk > 0, and X are the spatial coordinates of X. When
the emission and absorption operators that serve as the expansion coefficients are given
their customary normalisation, then the Pauli-Jordan function can be expressed as a mode
sum

i∆(X,X ′) =
∑
k

[uk(X)u∗k(X
′)− u∗k(X)uk(X

′)] . (3.10)

3 When the spacetime region is non-compact this should be replaced by a delta-function normalisation
〈T+
q , T

+
q′ 〉 = δ(q − q′).
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The vacuum state corresponding to the choice of positive frequency modes uk is the ground
state of the Hamiltonian associated to κ, and its Wightman function is

W (X,X ′) =
∑
k

uk(X)u∗k(X
′) . (3.11)

Comparing (3.11) with (3.8) we see the eigenfunctions Tq :=
√
λqT

+
q chosen by the SJ

condition are the analogues of the positive frequency modes in the static spacetime, but
the SJ construction does not require the existence of a timelike isometry.

When there is a timelike Killing vector, we can show that the SJ state (formally ex-
tended to the case of a spacetime of infinite volume) is the ground state of the Hamiltonian
associated with that Killing vector by showing that the Wightman function defined by
(3.11) satisfies the SJ conditions. Clearly, (3.11) satisfies conditions (i) and (ii), and it
only remains to check the ground state condition (iii). We have

WW ∗(X,X ′′) =

∫
M
dV ′W (X,X ′)W ∗(X ′, X ′′)

=
∑
k

∑
l

uk(X)ul(X
′′)

∫
dtdn−1X′

√
−g(X ′)u∗k(X

′)u∗l (X
′)

=
∑
k

∑
l

uk(X)ul(X
′′)

∫
dn−1X′

√
−g(X′)U∗k (X′)U∗l (X′)

∫ ∞
−∞

dte−iωkte−iωlt

=
∑
k

∑
l

uk(X)ul(X
′′)

∫
dn−1X′

√
−g(X′)U∗k (X′)U∗l (X′)

∫ ∞
−∞

dte−i(ωk+ωl)t

∝ δ(ωk + ωl) = 0

since the sum over modes does not include the zero-mode ωk = 0. Thus, if the globally
timelike Killing vector admits a unique ground state, the SJ conditions also specify a unique
state which agrees with that state.

This might be a good place to comment on the question of whether the SJ vacuum
obeys the so-called Hadamard condition [29, 14] on its short-distance behavior. In static
spacetimes the Hamiltonian vacuum obeys this condition, so the SJ vacuum does as well,
as we have just seen. On the other hand, Fewster and Verch [19] have recently provided
examples of regions where the condition does not hold. In our opinion, the significance
of the Hadamard condition will not be known until we understand better the nature of
quantum gravity and its semiclassical approximations. Outside of that context Hadamard
behavior seems irrelevant “operationally”, since it corresponds in the Wightman function
to the absence of a term that could only be noticed at extremely high energies. We hope
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to return to this question in another place, and to show in particular how, by “smoothing
the boundary”, one can tweak the ultraviolet behavior of the SJ state so that it becomes
Hadamard.

3.2 The massless scalar field in two-dimensional flat

spacetimes

As background for our investigation of the massless scalar field in a two-dimensional causal
diamond, we review the massless scalar field in two-dimensional Minkowski and Rindler
spacetimes. The metric on Minkowski spacetime in Cartesian coordinates (t, x) is given by

ds2
M = −dt2 + dx2. (3.12)

Since the spacetime is globally hyperbolic and static with timelike Killing vector κM = ∂t,
we can separate the solutions to the Klein-Gordon equation into positive and negative
frequency with respect to κM . The field equation is

�Mφ = −∂2
t φ+ ∂2

xφ = 0 (3.13)

and the normalised positive frequency modes can be taken as

uMk (t, x) =
1√

4πωk
e−iωkt+ikx, (3.14)

where ωk = |k|.
These modes and their complex conjugates form a complete orthonormal basis with

inner product

(uk1, uk2) = −i
∫
uk1(t, x)

↔
∂t uk

∗
2(t, x)dx (3.15)

where the integral is over a spacelike hyperplane of simultaneity at an instant t, and the
modes (3.14) are normalized as

(uMk , u
M
k′ ) = δ(k − k′) (3.16)

The field operator can be expanded in terms of the modes (3.14) as:

φ̂(t, x) =

∫
[âku

M
k (t, x) + â†ku

M∗
k (t, x)]dk (3.17)
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and the standard commutation relations hold:

[ak, ak′ ] = 0 (3.18)

[a†k, a
†
k′ ] = 0 (3.19)

[ak, a
†
k′ ] = δ(k − k′) (3.20)

If we try to define a vacuum state, |0M〉 in the usual way as the state annihilated by the
operator coefficients of the positive frequency modes in the expansion of the field operator
φ̂(t, x), then it is well-known that we encounter an infrared divergence [11, 1, 18]:

WM(t, x; t′, x′) := 〈0M |φ̂(t, x)φ̂(t′, x′)|0M〉

=
1

4π

∫ ∞
−∞

dk

|k|
e−i|k|(t−t

′)+ik(x−x′),
(3.21)

which is logarithmically divergent at k = 0.

Following [1], we can remove the divergence by introducing an infrared momentum
cutoff λ

1

4π

∫ ∞
−∞

dk

|k|
e−i|k|∆t+ik∆xθ(|k| − λ)

=
1

4π
lim
ε→0+

∫ ∞
λ

dk

k

[
e−ik(∆t+∆x−iε) + e−ik(∆t−∆x−iε)]

= − 1

4π
lim
ε→0+

[
ln [i(∆t+ ∆x− iε)µ] + ln [i(∆t−∆x− iε)µ]

]
+O(λ∆)

= − 1

2π
lnµ|d| − i

4
sgn(∆t)θ(∆t2 −∆x2) +O(λ∆),

(3.22)

where µ = λeγ, γ is the Euler-Mascheroni constant, and ∆t = t − t′, ∆x = x − x′, and
d =

√
−∆t2 + ∆x2. The logarithm here is given a branch cut on the negative real axis

and ln denotes its principal value. The quantity ∆ here stands collectively for ∆t and ∆x,
such that small λ∆ implies that both coordinate distances ∆t and ∆x are small compared
to λ−1. With non-zero λ, the theory has a preferred frame. However, if we drop the O(λ)
term in (3.22), we obtain a one-parameter family of two-point functions that depend on λ
but are fully frame-independent (in the sense that their real part only depends on d):

WM,λ(t, x; t′, x′) := − 1

2π
lnµ|d| − i

4
sgn(∆t)θ(∆t2 −∆x2) (3.23)

12



Unfortunately, (3.23) cannot itself serve as a physical Wightman function, because it fails
to be positive as a quadratic form (this being condition (ii) above). Nevertheless we will
see that the form (3.23) will emerge in a natural manner as a certain limit of the two-point
function we will derive for the diamond.4

It is worth noting that the theory whose fundamental field is the gradient of φ rather
than φ itself is not infrared divergent, and in fact the vacuum expectation value

〈0M |∇µφ̂(t, x)φ̂(t′, x′)|0M〉 =
∆xµ

2π(∆t2 −∆x2)
(3.24)

already converges, except for the singularity on the lightcone.

The Rindler metric [33, 34] arises from the Minkowski metric via the coordinate trans-
formations t = a−1eaξ sinh aη and x = a−1eaξ cosh aη, where a > 0 is a constant with
dimensions of inverse length and −∞ < ξ, η < ∞. The coordinates ξ and η only cover a
submanifold of the full Minkowski space, namely the right Rindler wedge, x > |t| ; but this
submanifold is conformal to all of Minkowski space as one sees from the form of the line
element in ξ-η coordinates:

ds2
R = e2aξ

(
−dη2 + dξ2

)
. (3.25)

Lines of constant ξ are hyperbolae that correspond to the trajectories of observers acceler-
ating eternally at a constant acceleration ae−aξ (figure 3.1), and are integral curves of the
Killing vector κR = ∂η.

Since Rindler spacetime is globally hyperbolic and static in its own right, the canonical
quantisation of the scalar field can be carried out in a completely self-contained manner [21].
Thanks to the conformal invariance of the massless theory in two dimensions, the field
equation �Rφ = 0 in Rindler coordinates (3.25) is just the usual wave equation, whose
normalised positive frequency solutions, the Fulling-Rindler modes, are given by the plane
waves

uRp =
1√

4πωp
e−iωpη+ipξ , (3.26)

where ωp = |p|. Trying to define a Fulling-Rindler vacuum state |0R〉 as the state annihi-
lated by the operator coefficients of the positive frequency Rindler modes in the expansion
of φ̂ once again results in an infrared divergent integral for the two-point function W . Pro-
ceeding as before, one can introduce a cutoff at small “momentum” λ and discard a term

4Perhaps (3.23) could also be understood as defining an “approximate state” valid when ∆t and ∆x
are small compared to the IR scale λ−1.
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Figure 3.1: The right and left Rindler wedges of two-dimensional Minkowski spacetime.

of order λ to obtain a one-parameter family of two-point functions, which are the same
functions of Rindler coordinates as the Minkowski two-point function (3.23) is of Cartesian
coordinates:

WR,λ(η, ξ; η
′, ξ′) := − 1

4π
lnµ2|∆η2 −∆ξ2| − i

4
sgn(∆η)θ(∆η2 −∆ξ2) (3.27)

where µ = λeγ. As before, this two-point function is symmetric (boost-invariant) but fails
to be positive and depends explicitly on the cutoff λ. At best it can have an approximate
validity when the coordinate-differences ∆η and ∆ξ are small compared to λ−1.

It is well known that the Minkowski and Fulling-Rindler “ground states” corresponding
to (3.23) and (3.27) are not equal, since the Rindler mode functions uRk are linear combi-
nations of both positive and negative frequency Minkowski mode functions uMk and uM∗k .
This phenomenon is by now well understood as an instance of the Fulling-Davies-Unruh ef-
fect [21, 12, 46]: if the Rindler wedge is understood as a subregion of Minkowski space, and
the field is in the usual Poincaré-invariant vacuum state (say in 3 + 1 dimensions, where

14



the latter is well defined), observers that are confined to the wedge and that accelerate
eternally at a uniform rate will feel themselves immersed in a thermal bath of particles.

The preceding calculations suffer from the appearance of infinite integrals and the
consequent need for infrared cutoffs. Nevertheless, we will see that the two-point functions
we have obtained in this section can be related to the case we study next, that of a finite
two-dimensional causal diamond, where the the SJ construction and the integrals it gives
rise to are completely well-defined. In this connection we comment also that inasmuch
as both the Minkowski and Rindler spacetimes possess globally timelike Killing vectors,
the formal demonstration of section 3.1 would apply to show that the SJ vacua of these
two spacetimes would coincide with the ground-states discussed in this section – were such
states actually to exist. (See also [30].)

3.3 The massless SJ two-point function in the flat

causal diamond

A causal diamond (or Alexandrov open set) is the intersection of the chronological future
of a point p with the chronological past of a point q � p. Because such a causal diamond is
a globally hyperbolic manifold in its own right, the scalar field possesses therein a unique
Pauli-Jordan function ∆. In this section we will follow the SJ procedure to derive from ∆ a
two-point function W for the massless scalar field in a causal diamond in two-dimensional
Minkowski space. We will then analyse the limit of W for points (i) in the centre of the
diamond and (ii) in the corner of the diamond.

Lightcone coordinates u = (t+ x)/
√

2 and v = (t− x)/
√

2 are most convenient in this
section. A causal diamond centred at the origin u = v = 0 that corresponds to the region
u, v ∈ (−L,L) is shown in figure 3.2 and will be denoted by CL. Its spacetime volume is
V = 4L2. The commutator function i∆(X,X ′) can be calculated in lightcone coordinates
from the retarded and advanced propagators [4]:

i∆(u, v;u′, v′) = − i
2

[θ(u− u′) + θ(v − v′)− 1] . (3.28)

Given that CL is a bounded region of spacetime, the associated integral operator i∆ defined
in (3.5) is of Hilbert-Schmidt type, i.e. its Hilbert-Schmidt norm is finite:∫ L

−L
du

∫ L

−L
dv

∫ L

−L
du′
∫ L

−L
dv′|i∆(u, v;u′, v′)|2 = 2L4 <∞. (3.29)
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Figure 3.2: The causal diamond, u, v ∈ (−L,L). The shaded portions of the diagram
represent the centre (i) and corner (ii) regions of interest in section 3.3.

Since i∆(X,X ′) = [i∆(X ′, X)]∗, i∆ is also self-adjoint and so the spectral theorem applies.
The positive eigenfunctions T+

k that satisfy i∆T+
k = +λkT

+
k , are given by the two sets [27]

fk(u, v) := e−iku − e−ikv, with k =
nπ

L
, n = 1, 2, . . . (3.30)

gk(u, v) := e−iku + e−ikv − 2 cos(kL), with k ∈ K, (3.31)

where K = {k ∈ R | tan(kL) = 2kL and k > 0} and their eigenvalues are λk = L/k.5 Their
L2-norms are ||fk||2 = 8L2 and ||gk||2 = 8L2 − 16L2cos2(kL). It is clear that the eigen-
functions T−k with negative eigenvalues are given by the complex conjugates T−k = [T+

k ]∗.
To verify that the functions (3.30-3.31) and their complex conjugates are indeed all the
eigenfunctions with non-zero eigenvalue, we can use the fact [27, 45] that the sum over the

5There is a sign error in the commutator function in [27] which results in the fk and gk given here being
the complex conjugates of those there.
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squared eigenvalues of a Hilbert-Schmidt operator is equal to its Hilbert-Schmidt norm. A
short calculation shows that∑

k

λ2
k =

∞∑
n=1

2L4

(πn)2 +
∑
k∈K

2L2

k2
=

2L4

6
+

10L4

6
= 2L4 (3.32)

coincides with (3.29), as required (the analytic evaluation of the second sum in (3.32) can
be found in [27, 44]). The SJ prescription defines the two-point function WSJ,L(u, v;u′, v′)
as the positive spectral projection of i∆:

WSJ,L(u, v;u′, v′) =
∞∑
n=1

L2

πn

1

||fk||2
fk(u, v)f ∗k (u′, v′) +

∑
k∈K

L

k

1

||gk||2
gk(u, v)g∗k(u

′, v′). (3.33)

We denote the two sums in (3.33) by S1 and S2, respectively.
The first sum

S1 =
1

8π

∞∑
n=1

1

n

[
e−

iunπ
L − e−

ivnπ
L

] [
e
iu′nπ
L − e

iv′nπ
L

]
(3.34)

can be evaluated in closed form. We recognize four Newton-Mercator series which converge
to the principal branch of the complex logarithm:

S1 =
1

8π

{
−ln

[
1− e−

iπ(u−u′)
L

]
− ln

[
1− e−

iπ(v−v′)
L

]
+ln

[
1− e−

iπ(u−v′)
L

]
+ ln

[
1− e−

iπ(v−u′)
L

]}
.

(3.35)

The second sum is

S2 :=
∑
k∈K

[
e−iku + e−ikv − 2 cos(kL)

] [
eiku

′
+ eikv

′ − 2 cos(kL)
]

kL [8− 16cos2(kL)]
. (3.36)

We have no closed form expression for this sum but as n→∞, the roots of the transcen-
dental equation tan(x) = 2x rapidly approach xn = (2n−1)π

2
with n ∈ N (see figure 3.3).

Therefore if we approximate the sum by replacing k ∈ K with xn/L, we can expect the
main error to come from a few modes of long wavelength. Consequently we can expect the
resulting error term to be a slowly varying and small correction to the approximated sum.
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Figure 3.3: Plot of tanx and 2x along with vertical lines at 2n−1
2
π for n ∈ Z. The values

of the summation variable are the positions of the intersections tan x = 2x > 0.

Let K0 :=
{

2n−1
2L

π |n = 1, 2, 3 . . .
}

and define the error ε(u, v;u′, v′) by

S2 =
∑
k∈K0

[
e−iku + e−ikv − 2 cos(kL)

] [
eiku

′
+ eikv

′ − 2 cos(kL)
]

kL [8− 16cos2(kL)]
+ ε(u, v;u′, v′)

=
1

4π

∞∑
n=1

1

2n− 1

[
e−

iu(2n−1)π
2L + e−

iv(2n−1)π
2L

] [
e
iu′(2n−1)π

2L + e
iv′(2n−1)π

2L

]
+ ε(u, v;u′, v′) .

(3.37)
The sums above converge to logarithmic terms when L < ∞ and are most conveniently
expressed in the form:

S2 =
1

4π

{
tanh−1

[
e−

iπ(u−u′)
2L

]
+ tanh−1

[
e−

iπ(v−v′)
2L

]
+ tanh−1

[
e−

iπ(u−v′)
2L

]
+ tanh−1

[
e−

iπ(v−u′)
2L

]}
+ ε(u, v;u′, v′)

(3.38)

The two-point function of the SJ ground state in the causal diamond is given by the
sum, WSJ,L = S1 + S2. Using tanh−1(x) = 1

2
ln(1 + x) − 1

2
ln(1 − x) and the fact that
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ln(1− ex)− ln(1 + e
x
2 ) = ln(1− ex2 ), we can combine the two sums to yield

WSJ,L =
1

4π

{
−ln

[
1− e−

iπ(u−u′)
2L

]
− ln

[
1− e−

iπ(v−v′)
2L

]
+ln

[
1− e−

iπ(u−v′)
2L

]
+ ln

[
1− e−

iπ(v−u′)
2L

]}
+ ε(u, v;u′, v′)

= Wbox,L + ε(u, v;u′, v′),

(3.39)

where Wbox,L is the exact continuum two-point function of the ground state of a massless
scalar field in a box with reflecting boundaries at x = ±

√
2L. We shall now investigate

the form of the SJ ground state in the limits (i) and (ii) mentioned above.

The SJ state in the centre and corner

The limits we are concerned with require that two spacetime points be separated by a
small geodesic distance compared to the diamond scale L and that they be confined to (i)
the centre of the diamond or (ii) a region near the left/right corner (we choose the left
corner without loss of generality). In these particular limits, we want the arguments in the
exponentials of the sums above to have a small magnitude so that we can Taylor expand the
functions and obtain more illuminating forms of the two-point function. Keeping in mind
that in u, v-coordinates, the centre of the diamond lies at (0, 0), the limit that corresponds
to a pair of points in the centre (i) can be defined as

|u− u′| � L , |v − v′| � L, |u− v′| � L, |v − u′| � L. (3.40)

The limit that corresponds to the corner can be obtained in a similar manner by first
translating the coordinate system such that the left corner of the diamond lies at the
origin (0, 0) of the new coordinates. This corresponds to the (passive) coordinate transfor-
mation x→ x−

√
2L, or u→ u−L and v → v+L. By “in the corner” we then mean the

limit (ii) where we first perform this translation and then apply the restriction (3.40) to
the translated coordinates.

The inequalities (3.40) constrain the pairs of spacetime points to be separated by a small

geodesic distance |d| = (2|u− u′||v − v′|) 1
2 � L and furthermore imply that |x|, |x′| � L.

This means that the points are confined to a narrow vertical strip centred on (i) the centre
of the diamond or (ii) the left corner of the diamond, as illustrated in figure 3.2. Let the
width of the strip be D � L.
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The centre

We first analyse the sum in the centre by expanding to lowest order in δ/L, where δ
collectively denotes the coordinate differences u−u′, v−v′, u−v′, v−u′. Using ln(1−ex) =
ln(x) +O(x) we identify the leading term in S1 as

S1 =
1

8π

[
−ln|u− u′||v − v′|+ ln|u− v′||v − u′|+ C1

iπ

2

]
+O

(
δ

L

)
(3.41)

where C1 = sgn(u−u′)+sgn(v−v′)− sgn(u−v′)− sgn(v−u′). Similarly, in S2, we expand
tanh−1(ex) = −1

2
lnx

2
+O(x) to obtain

S2 =
1

8π

[
−ln|u− u′||v − v′| − ln|u− v′||v − u′| − 4ln

π

4L
+ C2

iπ

2

]
+ ε+O

(
δ

L

)
, (3.42)

where C2 = sgn(u− u′) + sgn(v − v′) + sgn(u− v′) + sgn(v − u′).
Now we deal with the correction, ε. Over a small region, ε should not vary much. To

investigate this, we now further restrict the arguments of W to lie in a small square centred
on the origin, of linear dimension D, the width of the strip. After an analysis and numerical
investigation given in the appendix, we find that ε is indeed approximately constant over
the small diamond and tends to a value εcentre ≈ −0.063 as L tends to infinity.

The terms with arguments u− v′ and v − u′ cancel in S1 + S2 so we obtain:

Wcentre(u, v;u′, v′) = − 1

4π
ln|∆u∆v|− i

4
sgn(∆u+∆v)θ(∆u∆v)− 1

2π
ln
π

4L
+εcentre+O

(
δ

L

)
,

(3.43)
as L gets large. Recall now that |∆u∆v| = 1

2
|d|2. It is then evident that (3.43) matches the

“cut off” Minkowski two-point function WM,λ (3.23) with a particular value of the cutoff
λ given by

λ =
π

4
√

2
exp(−γ − 2πεcentre)L

−1 ≈ 0.46× L−1 , (3.44)

where γ is the Euler-Mascheroni constant.

As one would expect, λ−1 ∼ L for large L, leading to a logarithmic factor of the form
ln|L2/∆u∆v|.

Whilst strictly speaking we cannot take the L→∞ limit of such an expression, it seems
fair to say that the SJ state takes on the character of a Minkowski vacuum in the centre
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of a large diamond. (One might wonder how this is possible given that the regularized
Minkowski vacuum violates positivity but the SJ state does not. It is possible that the
discrepancy is to be found in the last term of (3.43), and in any case, as already mentioned,
we cannot really take the limit L→∞). Notice finally that, for any L, the imaginary part
of the two-point function does satisfy the requirement =(W ) = ∆/2, as had to be the case.

The corner

For spacetime points close to the edges of the diamond, the boundaries of the diamond
appear like the causal horizons of a Rindler wedge (see figure 3.1). To evaluate the SJ
two-point function in this limit, we perform the translation u → u − L and v → v + L
described above, which shifts the corner of the diamond to the position (0, 0). We then
Taylor expand using (3.40) in the new coordinates.

The sums S1 and S2 can be evaluated as before, but the translation introduces ± signs
multiplying integer multiples of iπ. A brief inspection shows that the first sum (3.34) is un-
altered by the translation, since only factors of exp(2πi) arise, while the second sum (3.36)
picks up factors of exp(πi) that induce sign changes in the terms involving u−v′ and v−u′.
The second sum now evaluates to

S2 =
1

8π

[
−ln|u− u′||v − v′|+ ln|u− v′||v − u′|+ C2

iπ

2

]
+ ε+O

(
δ

L

)
, (3.45)

where C2 = sgn(u − u′) + sgn(v − v′) − sgn(u − v′) − sgn(v − u′) = C1. The correction
term ε can again be analysed numerically — see appendix A — and the result is that it
varies very little over the small corner region for fixed L and tends to zero as L → ∞. A
consequence of the sign changes is that the constant terms that depend on L cancel in S2,
whence there is no longer any obstruction sending L → ∞. Taking this limit, we obtain
the two-point function

lim
L→∞

Wcorner(u, v;u′, v′) =− 1

4π
ln

∣∣∣∣(u− u′)(v − v′)(u− v′)(v − u′)

∣∣∣∣
− i

4
sgn(∆u+ ∆v)[θ(∆u∆v)− θ((v′ − u)(u′ − v))],

(3.46)

which can be recognised as the two-point function of the scalar field in Minkowski space
with a mirror at rest at the corner x = 0 (x = −

√
2L in the original coordinates) [3, 13]:

Wcorner(t, x; t′, x′) = WM,λ(t, x; t′, x′)−WM,λ(t, x; t′,−x′). (3.47)
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This two-point function is scale-free and does not have the character of a canonical vacuum
for a Rindler wedge.

What conclusions can we draw from this? Previously, we argued heuristically that the
SJ state in the Rindler wedge should be the Fulling-Rindler vacuum (to the extent that
either is defined at all in the presence of the IR divergences). Now we have seen that a
well-controlled limiting procedure gives a different result. As L gets large, the spacetime
geometry approaches that of the Rindler wedge, as far as points that remain close to one
corner of the diamond are concerned, but the SJ state approaches the ground state of a
scalar field with reflecting boundary conditions at the corner.

In fact, this “mirror behaviour” is already visible at the level of the SJ modes themselves.
The first set of modes fk (3.31) vanish on the two vertical lines at the spatial positions
of the corners fk(x = ±

√
2L, t) = 0 (recall that the corners are at x = ±

√
2L in the

coordinate system before translation), while the second set gk also vanish on these vertical
lines in the approximation K → K0. The SJ conditions thus satisfy approximately the
boundary conditions for two static mirrors, one at each corner of the diamond. How would
such a two-mirror state appear near to the left corner? As the size of the diamond tended
to infinity, one might expect the field in the left corner to become unaware of the right
mirror, and this is consistent with our calculation above. On the other hand there remains
the puzzle of where the left-hand mirror comes from in the limit. Its very existence selects a
distinguished timelike direction, and since this direction can only be covariantly defined by
reference to the right hand corner of the diamond, it seems difficult to avoid the conclusion
that the presence of the right corner retains its influence no matter how large L becomes!

It seems reasonable to attribute these counter-intuitive effects to our having set the mass
to zero. As an aspect of its infrared pathology, the massless field might be able to sense
the boundaries of the finite system, no matter how far away they are. If this explanation
is correct, one would not expect to find the same mirror behavior for a massive scalar field,
since the mass should shield it from such long range effects. It would also be interesting
to study massless and massive fields in finite regions of Minkowski spacetime in 3 + 1
dimensions.

3.3.1 Comparison with the discrete SJ vacuum

In this section, following [26, 27], we will apply the SJ formalism to the massless scalar
field on a causal set that is well-approximated by the two-dimensional flat causal diamond.
In the case of non-zero mass, the second of these references has shown numerically that
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the mean of the discrete SJ two-point function approximates well the Wightman function
of the continuum Minkowski vacuum.

The discrete version of the SJ prescription can be interpreted in two ways. In the context
of quantum gravity, causal sets are considered to be fundamental — more fundamental than
continuum spacetimes which are just approximations to the true discrete physics [7]. On
this view, the discrete SJ proposal is a starting point for building a theory of quantum
fields on the physical discrete substratum of spacetime and one can hope that it will give us
clues about quantum gravity, just as quantum field theory in curved continuum spacetime
has done. From another viewpoint, the discrete formalism can be seen as simply a Lorentz-
invariant discretisation of the continuum formalism and can therefore be used to test or
extend the results of the continuum theory, in particular when analytic calculations are
difficult.

Causal sets and discrete propagators

In the remainder of this section, we will set ρ = 1 so that area will be measured directly
by number of causet elements. Distance and area will thus be measured in natural units.

The discrete SJ two-point function for a scalar field on a finite causal set [27, 26]
is constructed using the same procedure as described above: from the retarded Green
function GR, the Pauli-Jordan operator i∆ (a finite Hermitian matrix) is constructed and
the Wightman function6 w is then obtained as the positive part of i∆. In a finite causal set,
this procedure is rigorously defined since everything is finite. It is of course necessary that
the discrete analogue of the retarded Green function be known, which it is for massless [41]
and massive [25] scalar fields on a sprinkling into two–dimensional Minkowski spacetime.
The SJ two-point function is a complex-valued function of pairs of causal set elements,
w : C × C → C; equivalently it is a complex matrix wij := w(νi, νj), where νi, νj ∈ C.
When C is obtained by sprinkling, each causal set element νi corresponds to a point Xi

in the embedding continuum spacetime. This allows us to directly compare the values
of the discrete two-point function wij and those of the continuum Wightman function
W ij := W (Xi, Xj).

There is numerical evidence [26] for a massive scalar field that at high sprinkling den-
sity, the SJ two-point function in the causet approximates the known Minkowski-space
Wightman function.

We will extend this study to the massless case and compare with our results above for
the continuum SJ vacuum. We will compare the mean of the massless discrete two-point

6We use a lower case w for the causet counterpart of the continuum function W .
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Figure 3.4: An N = 211 = 2048 element sprinkling into a diamond CL (with L = 2
9
2

in natural units). The subregions corresponding to the centre (i) and the corner (ii) are
highlighted.

function w with its continuum counterparts, using two separate methods. In the centre
of the diamond, the continuum two-point function (3.43) is approximately a function of
the geodesic distance only, in the limit of large L. We therefore plot the amplitudes wij

against the proper time |d(Xi, Xj)| and ask how well they agree with the continuum result.
In the corner, the continuum W does not reduce, to a function of a single variable. In that
case, we provide a “correlation plot” between the discrete two-point function and several
continuum two-point functions (evaluated on the sprinkled points), so that the relative
goodness of fit can be assessed.

We restrict ourselves here to timelike related points; the analysis for spacelike related
points is similar. Furthermore we only need to analyze the real parts of W and w. The
imaginary parts add nothing new since they are given by the Pauli-Jordan function and
tell us nothing about the quantum state.
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We work in a causal diamondM = CL and evaluate the discrete propagator on an N =
211 = 2048 element sprinkling into this diamond, which implies L =

√
V /2 =

√
N/2 = 2

9
2

in natural units. A typical sprinkling is shown in figure 3.4. Highlighted are the two
subregions in which we shall sample the discrete SJ two-point function. Each subregion
occupies 8% of the area of the full diamond.

The SJ vacuum in the centre

The data for the centre is taken from a sample of 181 points in the square, among which
there were 7599 timelike related pairs. As discussed in section 3 the two-point function of
the massless scalar field in two–dimensional Minkowski spacetime is ill-defined owing to the
infrared divergence, but there exists a one-dimensional family of “approximate Wightman
functions” WM,λ parameterized by an infrared scale or “cutoff” λ. It is thus natural to
compare our discrete function w with WM,λ, where we fix λ = 0.02 from the relation (3.44)

between λ and L when L = 2
9
2 . Then the real part of the continuum Wightman function

we compare to is

< [WM,λ(X,X
′)] = − 1

2π
ln|d(X,X ′)|+ 0.53 . (3.48)

Figure 3.5 displays this function together with a scatter-plot of the discrete SJ amplitudes
< [wij] taken from region (i) in figure 3.4. Evidently, the fit is good, with a slight hint
of a deviation at larger values of proper time which, if real, can be attributed to O(δ/L)
corrections, given that the centre region is still relatively large compared to L. From our
previous analysis we know that WM,λ(X,X

′) approximates the continuum SJ state in the
centre of the diamond, and so our data also supports the conclusion that the continuum
and discrete SJ Wightman functions approximate each other.

The SJ vacuum in the corner and in the full diamond

For the corner, the type of plot we used for the centre is unsuitable because the continuum
two-point functions we want to compare with depend on more variables than just the
geodesic distance. Instead we plot the values of w directly against those of the continuum
W with which we are comparing. More specifically, we use the coordinate values of the
sprinkled points to calculate the values of a particular continuum function W (Xi, Xj) =:
W ij. We then plot a point on the graph whose vertical coordinate is W ij and whose
horizontal coordinate is wij at the corresponding pair of elements of the causet. In this
manner, we will assess the correlation between the data sets wij and W ij for 4 different
continuum two-point functions: the exact continuum SJ function WSJ,L (before Taylor
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Figure 3.5: The real parts of the continuum two-point function WM,λ(X,X
′) (black line)

with λ = 0.02 and the discrete SJ two-point function wij (blue scatter) in the centre of the

finite diamond CL with L = 2
9
2 , plotted against the proper time |d| for timelike separated

events.

expansion), the Minkowski function WM,λ (3.23), the single mirror Wmirror (3.47), and the
Rindler function WR,λ (3.27). Both the Rindler and Minkowski W -functions come with an
arbitrary parameter λ, which shows up on the plots as an arbitrary vertical shift. We set
this shift such that the intercept is zero.

The corner subregion (figure 3.4) contains 181 points, which produce a sample of 11230
pairs of timelike related points. The correlation plots for the real parts of the discrete
and continuum propagators evaluated on this sample are shown in figure 3.6. Evidently,
the plot of the exact SJ function exhibits a good fit with the causal set data, confirming
again that the discrete and continuum formalisms agree. As expected, the correlation with
the mirror two-point function is also high, implying that the ground state in the corner
is indeed that of flat space in the presence of a mirror. (The slightly positive intercept in
the causal set versus mirror plot, can plausibly be attributed to the ε correction and to
O(δ/L) effects, both of which would go away were the corner region made smaller.) As
one would expect for the corner, the Minkowski and Rindler functions exhibit significantly
worse correlations with the causet data-set.
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Figure 3.6: Correlation plots for the two-point functions in the corner of the causal dia-
mond. The horizontal axis represents the causal set two-point function wij. The vertical
axes represent, from top to bottom and left to right: the SJ, the Minkowski, the mirror,
and the Rindler two-point functions.
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Turning to the full diamond, we use a smaller overall causal set with N = 256, which
yields a sample of 16393 pairs of timelike related points. To the four comparison functions
above we add a fifth: the reflecting box (mirrors at both corners) Wbox,L. Of these five con-
tinuum two-point functions, one should expect that in addition to the SJ vacuum, only the
reflecting box ground state would exhibit a reasonable degree of correlation with the causal
set data. (As seen in equation (3.39) above, continuum SJ and reflecting-box are identical
up to the error-term ε(u, v;u′, v′), which, however, can vary more appreciably now that we
do not restrict ourselves to a small subregion of the diamond.) The correlation plots of
figure 3.7 confirm this expectation, although the match with the discrete SJ function is not
a sharp as in the case of the corner, perhaps reflecting the smaller overall sprinkling density.
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Figure 3.7: Correlation plots for the two-point functions in the full causal diamond. The
horizontal axis represents the causal set two-point function wij. The vertical axes represent,
from top to bottom and left to right: the SJ, the Minkowski, the left mirror, the box (two
mirrors), and the Rindler two-point functions.
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3.4 Causal Diamond, Massive Theory

To check whether the mirror result in the massless theory, for the Wightman function in
the corner of the causal diamond, is an artifact of the massless theory, the analysis was
repeated for the massive theory. The massive theory in the continuum was too complex to
work with (due to the integrals involved), so calculations were instead carried out for the
corresponding causal set theory.

The resulting scatterplots are shown in figure 3.8, for a 4096 element causal set. The
mass was set to m = 10, the diameter of the diamond set to 1, and the corner region
extended out to 0.2 along the diameter. The causal set two-point function was compared
to the continuum expressions for three candidate Wightman functions: 1) The Wightman
function for the massive theory in the Rindler vacuum, 2) the Wightman function for the
massive theory in the mirror vacuum, and 3) the Wightman function for the massive theory
in the Minkowski vacuum. These Wightman functions have the following expressions in
the continuum [1, 36]:

WMink(x, t;x
′, t′) =

1

2π
K0[md] (3.49)

WRind(x, t;x
′, t′) =

1

2π
K0[md]

− i

2π

∫ ∞
−∞

K0[m
√
x2 − t2 + x′2 − t′2 + 2

√
(x2 − t2)(x′2 − t′2) cosh[s]]

(π2 + (s− | arctanh[t/x]− arctanh[t′/x′]|)2)
ds (3.50)

WMirror(x, t;x
′, t′) = WMink(x, t;x

′, t′)−WMink(x, t;−x′, t′) (3.51)

where d as before is the geodesic distance d =
√

(t− t′)2 − (x− x′)2.

This time, the scatterplots do not show enough contrast to make a good comparison
possible. A rigorous statistical analysis would be necessary to assess the goodness of each
fit, which we defer to future work. However, it does look like the Rindler function (at the
top of figure 3.8) produces a slightly better fit than the others.
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Figure 3.8: Correlation plots for the two-point functions in the corner of the causal di-
amond, for the massive theory (m = 10). The horizontal axis represents the causal set
two-point function wij. The vertical axes represent, from top to bottom: the Rindler, the
Mirror, and the Minkowski two-point functions.
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3.5 Black Hole Vacua

In this section we will use a convention different from the one used in the previous sections,
such that now v ≡ t + x and u ≡ t − x. This is to be consistent with the references used
[17, 32].

A major question we would like to address with the SJ proposal is: what sort of ground
state is natural for a black hole spacetime? A few candidate vacuum states already exist
for black hole spacetimes, but it is not clear which to work with. For example, for the
eternal black hole there are three well-known vacua. If we call (u, v) lightcone coordinates
of the Schwarzschild chart and (U, V ) lightcone coordinates of the Kruskal chart, then we
have: 1) The Boulware vacuum [8], which is defined with respect to positive frequency
plane wave modes in Schwarzschild coordinates (u, v); 2) the Hartle-Hawking vacuum [22]
defined by positive frequency plane wave modes in Kruskal coordinates (U,V), and 3) the
Unruh vacuum [46] which is the in vacuum, defined with respect to positive frequency
plane waves in (U, v).

A more physical picture which takes into account the formation of the black hole (rather
than considering an eternal black hole), is the case of black hole formation through the
collapse of a shell. This can be described by the Vaidya metric. We turn to this next.

3.6 Vaidya Spacetime

3.6.1 The metric

Vaidya spacetime has the following metric [17]:

ds2 = −(1− 2M(v)

r
)dv2 + 2dvdr + r2dΩ2 (3.52)

It is a solution to Einstein’s equation with a stress-energy tensor of the form

Tvv =
dM(v)

dv

1

4πr2
(3.53)

It represents a purely ingoing radial flux of radiation described by dM(v)
dv

, and can be used
to model the collapse and formation of a black hole [32]. The simplest such model can be
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obtained by considering a single collapsing null shell, located at for example v = 0, such
that

M(v) = Mθ(v) (3.54)

The resulting spacetime can then be separated into a Minkowski region for v < 0 and a
Schwarzschild one for v > 0. It is convenient to define the null coordinates:

ds2 = −dumdvm + r2
mdΩ2, v < 0 (3.55)

ds2 = −(1− 2M

rs
)dusdvs + r2

sdΩ2, v > 0 (3.56)

where um = tm − rm and vm = tm + rm in (3.55), and us = ts − r∗s and vs = ts + r∗s
in (3.56). The m subscripts denote Minkowski coordinates and the s subscripts refer to
Schwarzschild coordinates. The tortoise coordinate r∗ is defined as usual:

r∗ = r + 2M ln(
r − 2M

2M
) (3.57)

figure 3.9 shows the penrose diagram of the Vaidya spacetime, with the locations of the
horizon and collapsing ray marked.

3.6.2 Solutions to the Wave Equation

Let us find solutions for a free massless scalar field, which we now call ψ, in this spacetime.
As usual, ψ satisfies the Klein Gordon equation:

�ψ = 0 (3.58)

Since the background spacetime is spherically symmetric, the solutions to this equation,
can be expanded in terms of spherical harmonics Ylm(θ, φ):

ψ(x) =
∑
l,m

ψl(t, r)

r
Ylm(θ, φ) (3.59)

In the Minkowski region (v < 0) we have:

(− ∂2

∂t2
+

∂2

∂r2
− l(l + 1)

r2
)ψl = 0 (3.60)

while in the Schwarzschild region we have:

(− ∂2

∂t2
+

∂2

∂r∗2
− Vl)ψl = 0 (3.61)
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Figure 3.9: The Vaidya spacetime Penrose diagram.
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where:

Vl = (1− 2M

r
)[
l(l + 1)

r2
+

2M

r3
] (3.62)

This potential vanishes at spatial infinity (r, r∗ = ∞) and at the event horizon (r =
2M, r∗ = −∞), which suggests that the solutions to (3.61) behave asymptotically as e±iωr∗.
In the following we will ignore the potential. A full treatment taking into account the scat-
tering due to the potential would be extremely complex, and in any case, the important
physics is believed to happen near the horizon, where the potential vanishes.

To apply the Sorkin-Johnston prescription, we need the Pauli-Jordan commutator func-
tion i∆(x, x′) = 〈0|[φ(x)φ(x′)]|0〉. This Green function can be constructed using the Wight-
man function W+(x, x′) = 〈0|φ(x)φ(x′)|0〉, computed in any vacuum state of convenience,
not necessarily the Sorkin-Johnston vacuum state that we wish to find.

We will now consider radial solutions to the field equations for our Vaidya model. These
will help us to construct the Wightman function W+(x, x′).

In the Minkowski region (v < 0)

(− ∂2

∂t2
+

∂2

∂r2
)f = 0, (3.63)

while in the Schwarzschild region

(− ∂2

∂t2
+

∂2

∂r∗2
)f = 0. (3.64)

(we omit the spherical harmonics for now). Positive frequency ingoing mode solutions have
the form of

fω(v, r) =
1√
4πω

e−iωv

r
(3.65)

and positive frequency outgoing mode solutions have the form of

fω(u, r) =
1√
4πω

e−iωu

r
(3.66)

with ω > 0 in the Minkowski and exterior Schwarzschild regions, and ω < 0 in the interior
Schwarzschild region. We disregard the ω = 0 mode. To describe modes that cross the
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collapsing shell, we need an expression for us(um). This relation can be obtained by
requiring that the radius be continuous across the shell so that:

r(v = 0, um) =
−um

2
=
−us

2
− 2M ln[

r(v = 0, us)

2M
− 1] = r(v = 0, us) (3.67)

leading to

us = um − 4M ln[
−4M − um

4M
] (3.68)

Thus, for example starting with a positive frequency outgoing mode in the exterior
Schwarzschild region 1√

4πω
e−iωus

r
, we can trace it back in time to the Minkowski region

where it will have the form 1√
4πω

e−iω(vm−4M ln[−4M−v
4M

])

r
θ(vH − v) on J −. Let us call these up

modes. There are also modes which fall into the black hole. Positive frequency modes in
the interior Schwarzschild region 1√

4πω
eiωus

r
, can be traced back to the Minkowski region

where they will have the form 1√
4πω

eiω(vm−4M ln[ 4M+v
4M

])

r
θ(v − vH). Let us call these dn modes.

We label as in modes, modes which always remain in Schwarzschild.

So we have three distinct sets of modes:

ψinα =
1√
4πω

eiωv

r
Y`m(θ, φ) (3.69)

ψupα =
1√
4πω

e−iω(v−4M ln[−4M−v
4M

])

r
Y`m(θ, φ)θ(−4M − v) (3.70)

ψdnα =
1√
4πω

eiω(v−4M ln[ 4M+v
4M

])

r
Ȳ`m(θ, φ)θ(4M + v) (3.71)

We have now included the spherical harmonics Y`m(θ, φ) in the solutions. The subscript
α (and later on β) indicates all the quantum numbers (`,m, ω).

We are now ready to expand our field in terms of these three mode solutions. A par-
ticularly convenient basis to work with is the so-called Wald’s basis [32]. This basis forms
a complete orthonormal basis, positive frequency with respect to the J− Cauchy surface.
It is defined using a linear combination of the modes we have introduced thus far.
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Let:
ψdα = cαψ

dn
α + sαψ̄

up
α (3.72)

ψpα = cαψ
up
α + sαψ̄

dn
α (3.73)

where
cα = (1− ω2

α)−1/2, (3.74)

sα = ωα(1− ω2
α)−1/2, (3.75)

and

ωα = e−
πω
κ , (3.76)

such that
c2
α − s2

α = 1. (3.77)

Wald’s basis is:

Ψin
α =

ψinαψdα
ψpα

 (3.78)

Using Wald’s basis, the quantum field may be decomposed as

ψα =
∑
α

[ain,αψ
in
α + ad,αψ

d
α + ap,αψ

p
α + h.c.] (3.79)

Now, using the annihilation operators defined by this decomposition, ain,α = (ain,α, ad,α, ap,α),
and the corresponding vacuum state annihilated by them, ain,α|0, in〉=0, we can construct
a Wightman function:

W+(x, x′) = 〈in, 0|Ψ(x)Ψ(x′)|0, in〉 =
∑
α

[ψinα (x)ψ̄inα (x′) + ψdα(x)ψ̄dα(x′) + ψpα(x)ψ̄pα(x′)],

(3.80)

and the Pauli-Jordan function then is

i∆(x, x′) = W+(x, x′)−W+(x′, x)

=
∑
α

[ψinα (x)ψ̄inα (x′) + ψdα(x)ψ̄dα(x′) + ψpα(x)ψ̄pα(x′)

− ψinα (x′)ψ̄inα (x)− ψdα(x′)ψ̄dα(x)− ψpα(x′)ψ̄pα(x)],

=
∑
α

[ψinα (x)ψ̄inα (x′)− ψinα (x′)ψ̄inα (x) + ψdnα (x)ψ̄dnα (x′)− ψdnα (x′)ψ̄dnα (x)

+ ψupα (x)ψ̄upα (x′)− ψupα (x′)ψ̄upα (x)] (3.81)
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We can now proceed with the SJ prescription. We want to treat i∆(x, x′) as an integral
operator, under the L2 norm, and find its positive eigenspace.

Alternatively, we can use the fact that the SJ Wightman function is uniquely determined
by the following three conditions (as was discussed in the first part of this thesis):

1. causality: i∆(X,X ′) = W (X,X ′)−W ∗(X,X ′)

2. positivity:
∫
M dV

∫
M dV ′f ∗(X)W (X,X ′)f(X ′) ≥ 0

3. orthogonal supports:
∫
M dV

∫
M dV ′

∫
M dV ′′f ∗(X)W (X,X ′)W ∗(X ′, X ′′)g(X ′′) = 0,

∀ functions f, g :M→ C, where
∫
dV =

∫
ddX

√
−g(X).

If we have a conjecture for what the SJ state might look like, checking the above
conditions is a convenient way to find the SJ state. Here for our Vaidya model, a candidate
state is the in vacuum, with its corresponding Wightman function (3.80). We can check
the third condition above for this Wightman function. The first two conditions are satisfied
by the two point function of any state, so it is the third condition that distinguishes our
SJ ground state. To evaluate this, it is useful to define the following integrals:

F [ω, k] ≡
∫
Dn

ψdnα (x′)ψdnβ (x′)
√
|g|dx′

= (−1)m
δ−`jδ−mn

4π
√
kω

(4M)i(ω+k)4Me−i(ω+k)4M(−i(k + ω + iε))−1+i(ω+k)4M

Γ[1− i(ω + k)4M)]

∫
Dn

dr′ (3.82)

H[ω, k] ≡
∫
Up

ψupα (x′)ψupβ (x′)
√
|g|dx′

= (−1)m
δ−`jδ−mn

4π
√
kω

(4M)−i(ω+k)4Mei(ω+k)4M(−i(k + ω + iε))−1−i(ω+k)4M

Γ[1 + i(ω + k)4M)]

∫
Up

dr′ (3.83)
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J [ω, k] ≡
∫
Dn∩In

ψdnα (x′)ψinβ (x′)
√
|g|dx′

= (−1)m
δ−`jδ−mn

4π
√
kω

(4M)iω4Me−i(ω−k)4M(−i(ω − k + iε))−1+iω4M

Γ[1− iω4M)]

∫
Dn∩In

dr′ (3.84)

M [ω, k] ≡
∫
Up∩In

ψupα (x′)ψinβ (x′)
√
|g|dx′

= (−1)m
δ−`jδ−mn

4π
√
kω

(4M)−iω4Mei(ω+k)4M(−i(k + ω + iε))−1−iω4M

Γ[1 + iω4M)]

∫
Up∩In

dr′ (3.85)

where α corresponds to the quantum numbers {ω, `,m} and β corresponds to {k, j, n}.
Dn, Up, and In denote the region of applicability of the ψdn(x) modes, ψup(x) modes, and
ψin(x) modes respectively. The metric determinant is g = −r4 sin2 θ, and we used that the
spherical harmonics obey the normalization condition:

∫ 2π

0

dφ

∫ π

0

dθ sin θȲjn(θ, φ)Y`m(θ, φ) = δj`δmn, (3.86)

and that

Y`,m(θ, φ) = (−1)mȲ`,−m(θ, φ). (3.87)

We also used the relation ∫ ∞
0

xae−bx = b−1−aΓ(1 + a). (3.88)
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To evaluate some of the integrals that are like (3.88), an additional regularization term
ε was inserted (b→ b+ε) to insure they converge [17]. This in effect plays the role of consid-
ering wave packets, where for example ε� 1 would mean the wave packets are very narrow.

With the aid of the above expressions, it was found that the in-vacuum is not the SJ-
vacuum state. Evaluating the SJ state directly, in terms of the positive eigenspace of i∆
is a difficult task, due to the integrals involved. Similar to the case of the massive theory
for the causal diamond, it is more convenient to turn to the causal set to find the SJ state
for our Vaidya model. A sprinkling of Vaidya spacetime would have to be simulated and
the Green functions determined. We defer this to future work. Some work on causal set
simulations of black holes has been done [23].
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Chapter 4

Entropy

A large portion of this chapter will appear in [37].

4.1 A New Formula

In this section, we review a new formula for the entropy of a free scalar field in a globally
hyperbolic region of spacetime. This will in large part be a summary of [43].

The new formula which we review uses the Wightman function of the field, 〈0|φ(x)φ(x′)|0〉,
to define the entropy. In some cases, the derived entropy can also be interpreted as an
entanglement entropy. An advantage of this approach is that it is applicable to both con-
tinuum spacetimes and to discrete causal sets. Entanglement entropy of black holes and
intervals in flat spacetime, as we will see, often depend on a cutoff. In the context of causal
sets there is a natural meaning for this cutoff, as it is the discreteness scale.

In conventional treatments, the entropy is defined with respect to a density matrix
ρ(Σ), where Σ is a hypersurface, as

S = Trρ ln ρ−1 (4.1)

If a Cauchy surface is divided into a subregion A and its complement B, then the reduced
density matrix for region A is

ρA = TrBρ (4.2)
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and the entanglement entropy corresponding to this reduced density matrix would be

SA = −TrρA ln ρA (4.3)

The goal now is to express the entropy associated to a spacetime region in terms of the
two-point function of the theory.

We start by considering a single degree of freedom, with a conjugate pair of variables
q and p that satisfy [q, p] = i. These give us 〈qq〉, 〈pp〉, and Re〈qp〉.

A Gaussian density matrix, in a basis of q, has the following expression

ρ(q, q′) ≡ 〈q|ρ|q′〉 ∝ e(−A
2

(q2+q′2)+ iB
2

(q2−q′2)−C
2

(q−q′)2)). (4.4)

As already mentioned, the entropy will depend on ρ such that S(ρ) = Trρ ln ρ−1. Fur-
thermore, S has to be dimensionless and invariant under unitary transformations. Given
these conditions, S can only depend on the combination:

〈qq〉〈pp〉 − (Re〈qp〉)2 =
C

2A
+

1

4
(4.5)

In [6], it was shown that the entropy takes the form

S = −µ lnµ+ (1− µ) ln(1− µ)

1− µ
(4.6)

with

µ =

√
1 + 2C/A− 1√
1 + 2C/A+ 1

(4.7)

or
S = (σ + 1/2) ln(σ + 1/2)− (σ − 1/2) ln(σ − 1/2) (4.8)

where ±iσ are the eigenvalues of ∆−1R and where

i∆ = 2Im

(
〈qq〉 〈qp〉
〈pq〉 〈pp〉

)
(4.9)
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and

R = Re

(
〈qq〉 〈qp〉
〈pq〉 〈pp〉

)
(4.10)

(4.8) can be simplified further by using the eigenvalues of ∆−1W = ∆−1R+ i/2 rather
than those of ∆−1R 1. Calling these eigenvalues ±iω± (where ±iω± = i(1/2 ± σ)), the
entropy can be written in the simpler form

S = ω+ lnω+ − ω− lnω− (4.11)

To generalize (4.11), we simply extend it to a sum over the full spectrum of ∆−1W , or to
work with real eigenvalues we can define the operator L by

∆−1W = iL (4.12)

and use its eigenvalues, which we call λ, to express the full entropy as the sum

S =
∑

λ ln |λ| (4.13)

We can also define the eigenvalues λ as the solutions to the generalized eigenvalue
problem

Wv = iλ∆v (4.14)

and
∆v 6= 0. (4.15)

The eigenvalues come in pairs of λ and 1− λ.

Hence we have arrived at a covariant formulation of the entropy that depends on Green
functions of the theory.

If we take the Wightman function to be the SJ one from the previous chapter, WSJ ,
the entropy vanishes. When we use WSJ , the eigenvalues are either λ = 1, or λ = 0, and
so the sum (4.13) vanishes. This is expected, since the SJ vacuum is a pure state.

As we have already mentioned, in some cases, the more generally defined entropy of a
region (4.13) can be interpreted as an entanglement entropy. We will consider an example
of such a case in the subsequent section. In Appendix B we compute the entropy of the
harmonic oscillator.

1We work with the invertible part of ∆
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Figure 4.1: Spacetime of two causal diamonds.

4.2 Entanglement Entropy of Causal Diamonds

We now apply the formula in the previous section to compute the entanglement entropy in a
spacetime with two causal diamonds, a smaller one and a larger one, as shown in figure 4.1,
in 1+1. The results can be compared to results in CFT, where the entanglement between
a shorter interval and a longer one is computed, the intervals being the Cauchy surfaces or
diameters of the diamonds here. Usually periodic boundary conditions are imposed in the
CFT calculations. For the massless theory, the entropy has been found to take the form
[9, 10] (see also [35])

S =
1

3
ln[

L

πa
sin(

π`

L
)] + c1, (4.16)

where a is the UV cutoff of the theory, ` is the length of the shorter interval, L is the
length of the longer interval, and c1 is a non-universal constant. In the limit that the
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smaller interval is much smaller than the larger one (lim `
L
→ 0), the entropy reduces to

S =
1

3
ln[
`

a
] + c1. (4.17)

Hence it only depends on the length of the smaller interval and the UV cutoff of the theory.
The dependence on the length of the larger interval drops out. For the massive theory, the
entropy has been found to take the form [9, 10]

S = −1

6
ln[ma] + c1. (4.18)

We now discuss a summary of our calculation for the massless theory in the continuum,
with a UV cutoff a, using the new proposal. We need the Green functions i∆ and W for
our model. In Minkowski lightcone coordinates u = t+x√

2
and v = t−x√

2
, the Pauli-Jordan

function has the form of (3.28):

i∆(u, v;u′, v′) = − i
2

[θ(u− u′) + θ(v − v′)− 1] . (4.19)

and for W, we will use the asymptotic form of WSJ for a large causal diamond when
spacetime points of interest lie far from the corners of the diamond. We found this had
the form of (3.43):

Wcentre(u, v;u′, v′) = − 1

4π
ln|∆u∆v|− i

4
sgn(∆u+∆v)θ(∆u∆v)− 1

2π
ln
π

4L̃
+εcentre+O

(
δ

L̃

)
,

(4.20)
where εcentre ≈ −0.063 and δ collectively denotes the coordinate differences u − u′, v −
v′, u− v′, v − u′. It will be more convenient to work with ˜̀ and L̃, the half side lengths of
the smaller and larger diamonds respectively, rather than the diameters ` and L, although
we express our final answer in terms of the latter (` = 2

√
2˜̀ and L = 2

√
2L̃). We will

scale ˜̀≡ 1 and L̃ ≡ 100, such that the ratio of the diameter of the smaller diamond to the
larger one is 0.01 and we are in a regime where (4.17) applies.

We saw that expressed differently, (4.20) is just the Minkowski Wightman function with
a particular value of the infrared cutoff λIR = π

4
√

2
e−γ−2πεcentreL̃−1 ≈ 0.46× L̃−1:

WM(u, v;u′, v′) = − 1

4π
lim
ε→0+

(− 1

4π
ln
[
−µ2(∆u− iε)(∆v − iε)]

]
) +O(λIR∆), (4.21)
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where µ = λIRe
γ, γ is the Euler-Mascheroni constant, and ∆u = u− u′, ∆v = v − v′, and

the ∆ in the final term stands collectively for ∆u and ∆v. We will use

W (u, v;u′, v′) =
1

4π
lim
ε→0+

(− 1

4π
ln
[
−µ2(∆u− iε)(∆v − iε)]

]
) (4.22)

with µ = 0.00825061 (since we have set L̃ ≡ 100).

We want to solve
Wv = iλ∆v (4.23)

and
∆v 6= 0. (4.24)

We use the basis that diagonalizes i∆, which consisted of two sets of eigenfunctions:

fk(u, v) := e−iku − e−ikv, with k =
nπ
˜̀
, n = ±1,±2, . . . (4.25)

gk(u, v) := e−iku + e−ikv − 2 cos(k ˜̀), with k ∈ K, (4.26)

where K =
{
k ∈ R | tan(k ˜̀) = 2k ˜̀ and k 6= 0

}
. The eigenvalues were λ̃k = ˜̀/k ( λ̃ is

used to avoid confusion with λ in (4.23)). The L2-norms are ||fk||2 = 8˜̀2 and ||gk||2 =
8˜̀2 − 16˜̀2cos2(k ˜̀).

The UV cutoff will correspond to the k at which we truncate our basis. i∆ is diago-
nalized by this basis, so its representation is trivial. For W , we must compute 〈fk|W |fk′〉
and 〈gk|W |gk′〉. The terms 〈fk|W |gk′〉 vanish, so W is block diagonal in this basis. We
compute these two inner products and treat each block separately in (4.23). Summing over
the resulting eigenvalues, we obtain the entropy associated to each block. Figures 4.2 and
4.3 illustrate the results. Figure 4.4 shows the total entropy, as a function of the UV cutoff
1/a.

Our fit matches

S =
1

3
ln

[
`

a

]
+ c1 (4.27)

with c1 ≈ 0.3612. Hence we have arrived at the expected CFT result.
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Figure 4.2: Entropy S versus the UV cutoff 1/a, for the f block.
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Figure 4.3: Entropy S versus the UV cutoff 1/a, for the g block.
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Figure 4.4: The full entropy S versus the UV cutoff 1/a.
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4.3 Causal Set Results

We also carried out calculations for causal set simulations of the same model of causal
diamonds, shown in figure 4.5. We find that the entropies are large compared to the CFT
predictions. For example, for m = 0, ρ = 1, L = 90, ` = 18, the entropy obtained was
S ≈ 75, while in comparison the CFT prediction is SCFT ≈ 1.

A surprising result was obtained by keeping the ratio `/L fixed, while increasing the
number of sprinkled points. This was done for fixed ratios of `/L = 0.2 and `/L = 0.4. It
was found that the entropy increases linearly with the number of sprinkled points. Figures
4.6 and 4.7 show this linear relation. The results fit S = aN + b with {a = 0.513004, b =
−4.12018} and {a = 0.381562, b = −7.31323} for `/L = 0.2 and `/L = 0.4 respectively.

Another analysis was carried out to determine the effect of coarse-graining. Here we no
longer considered two regions and had only one causal diamond. We chose to coarse-grain
by 90%, each time removing points with a probability 0.1. Here also, a simple relation
was obtained. The entropy depended parabolically on the number of points remaining
after coarse-graining. Initially, when all points are present, the entropy is 0. It rises until
about half the points remain, after which it drops, symmetrically, until it reaches near 0
again around when there are no more points left. The results fit S = aN2 + bN + c with
{a = −0.000140482, b = 0.563276, c = 41.064}. The relation is shown in figure 4.8, where
the entropy is plotted versus the number of points in the causal diamond. Initially the
diamond contained 4048 sprinkled points.
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Figure 4.6: S vs N when `/L = 0.2. N is the number of causet elements in the smaller
diamond.
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Figure 4.7: S vs N when `/L = 0.4. N is the number of causet elements in the smaller
diamond.
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Figure 4.8: S vs. N under coarse-graining by 0.9
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Chapter 5

Concluding remarks

At the end of his classic textbook ‘Aspects of Quantum Field Theory in Curved Space-
Time,’ [20] S.A. Fulling points out the central tension in the subject as traditionally studied:

One of the striking things about the subject is the intertwining of the con-
ceptual issues with the mathematical tools. Historically there has been a close
association between relativity and differential geometry, while rigorous research
in quantum theory has looked more toward functional analysis. Field quantisa-
tion in a gravitational background brings these two alliances into head-to-head
confrontation: A field is a function of a time and a space variable,

φ(t,x).

Relativity and modern geometry persuade one with an almost religious intensity
that these variables must be merged and submerged; the true domain of the
field is a space-time manifold:

φ(x), x→ {xµ}

But quantum theory and its ally, analysis, are constantly pushing in the oppo-
site direction. They want to think of the field as an element of some function
space, depending on time as a parameter:

φt(x).
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The split of spacetime into space plus time that Fulling assumes to be inherent in the
quantum aspect of the field theory is actually an artifact of the choice to conceive of a
quantum field as if it were the canonical quantisation of a classical Hamiltonian system. In
a canonical approach, defining the Hamiltonian tends to demand the foliation of spacetime
into spacelike hypersurfaces. However, there is an alternative, long ago identified by Dirac
as more fundamental because it is essentially relativistic: the quantum analogue of the
classical Lagrangian approach, namely the path integral [15].

Like the path integral, the SJ vacuum is also relativistic in character, depending, as it
does, on the geometry of the whole spacetime region via the causal structure encoded in
the retarded Green function. Its construction is inherently covariant, and at no point is
there a need to introduce mode-functions defined on a hypersurface, except as dictated by
calculational convenience. The formulation of the quantum theory along these lines bears
no resemblance to the “canonical quantisation” process: one does not solve the classical
equations of motion or identify canonically conjugate variables or promote them to oper-
ators satisfying canonical commutation relations. Such a formulation seems much more
compatible with a path integral approach to quantum theory, and indeed the SJ proposal
serves as the starting point for the construction of a histories-based formulation of quan-
tum field theory on a causal set [42] which admits a natural generalization to interacting
scalar fields and takes us one step further towards a quantum theory of causal sets.

In this work, we have determined the SJ vacuum of a massless scalar field in the two-
dimensional “causal diamond” spacetime and compared it with suitable reference states in
the full Minkowski spacetime and in the Rindler wedge. Both of these reference “states”,
the “Minkowski vacuum” and the “Fulling-Rindler vacuum”, suffer from infrared patholo-
gies, but to the extent that they are meaningful we can compare them with the SJ state
in the limit that the size of the diamond goes to infinity.

When we look near the centre of the diamond, we find that the SJ Wightman function
agrees with the “Minkowski vacuum”, just as one might have expected. However, when we
look in the corner of the diamond we do not see something having the form of a “Fulling-
Rindler vacuum”. Instead we recognise the flat-space vacuum in the presence of a static
mirror at that corner. This is confirmed by the numerical results. Thus, the continuum
calculations in section 3.1 giving the SJ state in the Rindler wedge do not agree with the
limiting procedure of constructing the SJ state in the finite diamond and letting the size
of the diamond tend to infinity, whilst keeping the arguments of the two-point function
at fixed locations with respect to the corner. Such a ground state, if it is defined at all,
should be unique and be independent of any (physically sensible) limiting procedure. Of

54



course, one cannot really speak of a disagreement between two functions, one of which is
ill-defined, but the fact remains that our limiting procedure yields very different results for
the centre versus the corner of the diamond. It seems likely that these disagreements and
ambiguities stem from the infrared divergences of the two-dimensional massless theory, and
if one were to work instead with a massive field,1 the SJ state for the wedge would be unique
and in agreement with both the Fulling-Rindler vacuum and the limit of the diamond’s SJ
state. Some of these questions will be investigated in future work, but preliminary numer-
ical results for the massive scalar field in the sprinkled diamond indicate that the discrete
SJ function does fit the Fulling-Rindler vacuum better than the state with a mirror present.

In this work we also considered a recent formula for the entropy associated to a space-
time region, for a free scalar field. There has been a significant amount of interest in
formulating measures of quantum entanglement. Entanglement entropy is of course a pow-
erful such measure that can be readily applied to systems of interest such as quantum spin
chains. The formula that we use, much like the SJ proposal, is faithful to using the ge-
ometry of the entire spacetime in a covariant manner. There is no need to split spacetime
into space plus time and to construct hypersurfaces with which to compute the entropy.

We determined the entanglement entropy for a free massless scalar field in a causal
diamond in 1+1 Minkowski spacetime, when the subregion is a smaller causal diamond.
In the continuum we obtained the results found in CFT for the same model. The entropy
scales logarithmically with the ratio of the diameter of the smaller diamond to the UV
cutoff, with a coefficient of 1/3. In the causal set, there are additional subtleties which
remain to be understood.

The SJ proposal and the entropy formula that we have considered take the relativistic
view and define the ground state and entropy of a free quantum scalar field theory using
Green functions of the theory. They are applicable in globally hyperbolic spacetimes, where
unique retarded and advanced Green functions of the theory exist. Due to their spacetime
nature, they can be applied to continuum or discrete spacetimes. In particular, they apply
in causal sets, and thus they play an important role in setting up a quantum theory of
causal sets.

1One might also consider working with the gradient of the field, which would be less sensitive to IR
peculiarities. However, this in itself would not erase the difference between (3.27) and (3.46), if the two
point function of the gradient is the same as the gradient of the two point function.
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Appendix A

Corrections to the SJ two-point
function

In evaluating the second sum (3.36) of the continuum SJ two-point function (3.33), we
made the approximation K → K0. For a given pair of spacetime points, this will induce
an error in the two-point function, which (see (3.37) and (3.33)) is given by

ε(u, v;u′, v′) =
∞∑
n=1

[
L

kn

1

||gkn||2
gkn(u, v)g∗kn(u′, v′)− L

k0,n

1

||gk0,n||2
gk0,n(u, v)g∗k0,n(u′, v′)

]
,

(A.1)
where kn and k0,n denote the nth terms in K and K0, respectively. The contributions to the
right hand side come mostly from long wavelength (small n) terms, since the approximation
K → K0 becomes increasingly accurate for large n (see figure 3.3). This means that we
should expect ε to be constant over small subregions of the diamond. We will first test
this expectation numerically, restricting ourselves for simplicity to timelike related pairs of
points

To estimate the mean and the variation of ε(u, v;u′, v′) over different pairs of spacetime
points in a subregion associated with the centre (i) or corner (ii) of the diamond, we
evaluated ε(u, v;u′, v′) on a random sample P of pairs of timelike related points within
that region. We evaluated (A.1) by truncating the sums on the right hand side at a stage
large enough for the sum to have converged sufficiently. We then calculated the mean
value of ε(u, v;u′, v′) and its standard deviation on the sample P . We present the results
for the real part of ε(u, v;u′, v′) below, since we are mainly interested in the real part of
the Wightman function W . (The imaginary part of W is proportional to ∆ and therefore
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Figure A.1: The mean and standard deviation of ε(u, v;u′, v′) in the centre (left) and in
the corner (right). The vertical axis corresponds to ε(u, v;u′, v′) and the horizontal axis is
−log10(Vsub/V ).

known exactly. Moreover, the imaginary part of ε(u, v;u′, v′) was consistent with zero in
all the regions we investigated numerically.)

Look at subregions in the centre and corner of the form depicted in figure 3.4: a square
in the centre, a triangle in the corner. Fix the linear dimension of the subregion D � L
and denote its spacetime volume by Vsub. Increase the size L of the full diamond while
keeping D fixed, thereby decreasing the volume ratio Vsub/V . The mean and standard
deviation of ε(u, v;u′, v′) obtained in this way are shown in figure A.1 for different values
of Vsub/V ranging from O(10−1) to O(10−6). These results were obtained by truncating
the sum (A.1) at n = 50, which provides sufficient accuracy. We observe that the standard
deviation in ε(u, v;u′, v′) indeed quickly becomes negligible as Vsub/V is decreased. The
mean of ε(u, v;u′, v′) tends to a constant value in the centre given by εcentre = −0.0627
and it vanishes in the corner: εcorner = 0. Notice that these results are unchanged under
a simultaneous rescaling of L and D: the mean and standard deviation of ε(u, v;u′, v′)
depend only on the ratio Vsub/V .

It is worth noting that the asymptotic values for the mean of ε seen at large L above
agree with the values of ε(u, v;u′, v′) that we obtain if we simply evaluate the infinite sum
on a pair of coincident points in the centre of the diamond, (u, v) = (u′, v′) = (0, 0), or in
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the corner (u, v) = (u′, v′) = (−L,L). In the centre, the sum (A.1) reduces to

ε(0, 0; 0, 0) =
∞∑
n=1


(

1−
√

4x2
n + 1

)2

2xn (4x2
n − 1)

− 1

π(2n− 1)

 , (A.2)

where xn is the nth positive solution to tan(x) = 2x. This sum can be evaluated to
arbitrary precision using numerical solutions for xn, and it tends to ε(0, 0; 0, 0) = −0.0627,
corresponding to the horizontal asymptote in the centre plot of figure A.1. In the corner,
both terms in (A.1) vanish because the gk modes (3.31) are identically zero at (−L,L)
for all kn ∈ K and k0,n ∈ K0. It follows that ε(−L,L;−L,L) = 0, corresponding to the
horizontal asymptote in the corner plot of figure A.1.
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Appendix B

Entropy of the Harmonic Oscillator

Let us now apply the formalism presented in Chapter 4 to the harmonic oscillator in one
dimension.

First we compute the entropy of the harmonic oscillator using the standard thermody-
namic relation

S =
∂

∂T
(T lnZ) (B.1)

For the harmonic oscillator, with energies En = (n+ 1
2
)~ω, the partition function Z takes

the form

Z =
e−

βω
2

1− e−β~ω
(B.2)

where β is the inverse temperature. Using (B.2) and (B.1), the entropy we obtain is

S = − ln[1− e−β~ω] +
e−

βω
2

1− e−β~ω
(B.3)

Now let us compute the entropy of the harmonic oscillator using the prescription of
Chapter 4.

Our Pauli-Jordan function is

i∆(t, t′) =
1

2ω
(e−iω(t−t′) − eiω(t−t′)) (B.4)
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and our Wightman function takes the form

W (t, t′) =
1

2ω
(
e−iω(t−t′) + eiω(t−t′)

eβω − 1
+ e−iω(t−t′)) (B.5)

Simultaneous eigenfunctions of these two Green functions, treated as operators, turn
out to be positive and negative frequency plane waves e−iωt and eiωt∫

i∆(t, t′)e−iωt
′
dt′ =

1

2ω
2πδ(0) (B.6)∫

i∆(t, t′)eiωt
′
dt′ = − 1

2ω
2πδ(0) (B.7)

∫
W (t, t′)e−iωt

′
dt′ =

eβω

2ω(eβω − 1)
2πδ(0) (B.8)∫

W (t, t′)eiωt
′
dt′ =

1

2ω(eβω − 1)
2πδ(0) (B.9)

So our two eigenvalues are

λ+ =
eβω

(eβω − 1)
(B.10)

λ− =
−1

(eβω − 1)
(B.11)

Substituting these into

S =
∑
n

λn ln |λn| (B.12)

we get

S = λ+ ln |λ+|+ λ− ln |λ−|

=
eβω

(eβω − 1)
ln(

eβω

(eβω − 1)
)− 1

(eβω − 1)
ln(

1

eβω − 1
)

= − ln[1− e−β~ω] +
e−

βω
2

1− e−β~ω
(B.13)

We obtain the expected result.
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Appendix C

Proof of SA=SB

If a Cauchy surface is divided into a subregion A and its complement B, then the reduced
density matrix for region A is

ρA = TrBρ (C.1)

and the entanglement entropy corresponding to this reduced density matrix would be

SA = −TrρA ln ρA (C.2)

When the system is in a pure state, SA = SB. This can be seen through the Schmidt
decomposition theorem:

For any pure state ψAB there exist orthonormal sets {ψA} and {ψB} such that:

ψAB =
∑
n

λ1/2
n ψ

(n)
A ψ

(n)
B (C.3)

where λ
1/2
n > 0 and

∑
n λn = 1. This holds even if HA and HB have different dimen-

sionalities, and the range of the sum (C.3) is determined by the smaller Hilbert space.
Now

ρA = TrBψABψ
†
AB =

∑
n

λnψ
(n)
A ψ

(n)†
A (C.4)

and
ρB = TrAψABψ

†
AB =

∑
n

λnψ
(n)
B ψ

(n)†
B (C.5)
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Figure C.1: A spacetime divided into two globally hyperbolic subregions 1 and 2.

Therefore since ρA and ρB have the same set of nonzero eigenvalues λn, we have that
SA = SB.

We now derive a proof of this property of entanglement entropy, using the formula of
Chapter 4. Let us divide the spacetime into two globally hyperbolic regions 1 and 2, as
shown in figure C.1. We can write ∆ in block diagonal form:

∆ =

(
∆11 0
0 ∆22

)
and W will have the general form:

W =

(
W11 W12

W21 W22

)
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Let us define M ≡ ∆−1W . We know that M has eigenvalues 0 and 1, so M = M2.
From this we have that:

(∆−1
11 W11)2 −∆−1

11 W11 = ∆−1
11 W12∆−1

22 W21 (C.6)

(∆−1
22 W22)2 −∆−1

22 W22 = ∆−1
22 W21∆−1

11 W12 (C.7)

This pair of equations has the form of Q2
1 − Q1 = RS and Q2

2 − Q2 = SR, where
Q1 = ∆−1

11 W11 and Q2 = ∆−1
22 W22. Using the fact that the spectrum of RS equals that of

SR, it must be that Q2
1 −Q1 and Q2

2 −Q2 have the same spectrum, which means:

λ2
1 − λ1 = λ2

2 − λ2 → (λ1 − λ2)(λ1 + λ2 − 1) = 0 (C.8)

→

{
λ1 = λ2

λ1 = 1− λ2 = λ′2
(C.9)

where the last line follows from the property that the eigenvalues of ∆−1
i Wi come in pairs

of λ and 1− λ. Finally, since ∆−1
11 W11 and ∆−1

22 W22 have the same spectrum, S1 = S2.
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