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 ABSTRACT 

The two main challenges of the twenty-first century are the scarcity of energy sources and global 

warming; trigged by the emission of greenhouse gases.  In this context, solar energy became 

increasingly relevant. Because it makes optimal use of the resources, minimizes environmental 

impacts, and is sustainable over time. 

However, before installing solar panels, it is convenient pre-assessing the amount of energy that 

a building can harvest. This study proposes a methodology to semi-automatically generate 

information a building scale; on a large area. 

This thesis integrates airborne Light Detection and Ranging (LiDAR) and WoldView-2 satellite 

data for modelling the solar energy potential of building rooftops in San Francisco, California. 

The methodology involved building detection solar potential analysis, and estimations at 

building scale. 

First, the outline of building rooftops is extracted using an object-based approach. Next, the solar 

modelling is carried out using the solar radiation analysis tool in ArcGIS, Spatial Analyst. Then, 

energy that could potentially be harvested by each building rooftop is estimated. The energy 

estimation is defined in economic and environmental terms. 
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 GLOSSARY OF TERMS AND ABBREVIATIONS 

2.5D: 2D representation of 3D data. It refers to a raster representation of the ALS data. 

2D: Two dimensional 

2D α-shape: polygonal boundary defined by a list of x, y positions. 

3D: Three-dimensional 

ALS data:  data collected by Airborne Laser Scanning technique, each datum is a three-

dimensional point. 

DEM: digital elevation model, a raster grid that stores the elevation as function of the position, it 

can be a DTM or a DSM. 

DSM: digital surface model represents the elevation data of a surface, including elements above 

the ground such as: cars, trees, power lines, and buildings. 

DTM: digital terrain model represents the elevation at the ground level. 

NDSM: normalised digital surface model represents object highs, it is the ground subtracted 

from a DSM, and makes the segmentation invariant to local changes in the terrain. 

Pixel oriented classification: it is the traditional classification approach based on the spectral 

information of the pixel.  

Object oriented classification: the processing units are no longer single pixels but image objects; 

the image has to be segmented into meaningful pixel groups or objects.  

Raster: a regular grid, composed of pixels. 
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Roughness:  In this work, roughness refers to local high variations. 

Segmentation: “In computer vision, segmentation is the process of partitioning a digital image 

into multiple segments (sets of pixels, also known as superpixels). The goal of segmentation is to 

simplify and/or change the representation of an image into something that is more meaningful 

and easier to analyze” (Shapiro and Stockman, 2001) 

Objects: all the connected pixels that hold the same value. 

zMax: this grid stores the highest z-value found for each raster cell. It contains more values on 

top of trees and other semitransparent objects than zMin, making it possible to classify those 

objects. Note that trees are denser in zMax than in zMin. 

zMin: this grid stores the lowest z-value found for each raster cell. It is useful when generating 

the ground surface. 

  

http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Image_segment
http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Pixel


 

 

xii 

 

  

 LIST OF FIGURES 

Figure 2-1 Effect of the topography on the solar radiation, adapted from Durbayan and Rich 

(1995) ............................................................................................................................................ 11 

Figure 3-1: Study Area San Francisco California ......................................................................... 33 

Figure 3-2: Location of the Weather Station WBAN 23234 ........................................................ 39 

Figure 3-3 Building feature extraction process ............................................................................. 41 

Figure 3-4 Digital Elevation Models derived from Lidar Data: DTM, DSM , and nDEM .......... 44 

Figure 3-5: Object generation for Decision Tree One DT1 .......................................................... 45 

Figure 3-6 Median Filter, adapted from Solomon and Breckon (2011) ....................................... 47 

Figure 3-7-(a) Sobel component for X derivate, and (b): Sobel component for y derivate .......... 48 

Figure 3-8: Object Generation for Decision Tree Two and Three (DT2 and DT3) ..................... 50 

Figure 3-9 Structure of Decision Tree One (DT1) and Two DT2 ................................................ 54 

Figure 3-10 Structure of Decision Tree One (DT1) and Three (DT3) ......................................... 55 

Figure 3-11 (a) sky obstruction of a point respect to the nearby topography, (b) Sunmap 

representing the Direct solar radiation  at different hours of the day throughout the months June 

to December for a latitude of 39° (c) Skymap representing the Diffuse solar radiation coming 

from different sectors of the sky (Fu & Rich, 1999)..................................................................... 58 

Figure 3-12 (a) Viewshed overlaying sunmap (b) viewshed overlaying skymap. (Fu and Rich 

1999). ............................................................................................................................................ 58 

Figure 4-1 ROC curves for NDVI, PA, Sobel and Area for DT1 ................................................. 71 

Figure 4-2 ROC curves for NDVI, PA, Sobel and Area for DT2 ................................................. 77 

file:///F:/Thesis/Thesis_finalobservations.docx%23_Toc356586991
file:///F:/Thesis/Thesis_finalobservations.docx%23_Toc356586991
file:///F:/Thesis/Thesis_finalobservations.docx%23_Toc356586992
file:///F:/Thesis/Thesis_finalobservations.docx%23_Toc356586993
file:///F:/Thesis/Thesis_finalobservations.docx%23_Toc356586994
file:///F:/Thesis/Thesis_finalobservations.docx%23_Toc356586995
file:///F:/Thesis/Thesis_finalobservations.docx%23_Toc356587000


 

 

xiii 

 

Figure 4-3 ROC curves for NDVI, PA, Sobel and Area for class I of DT3 ................................. 85 

Figure 4-4 ROC curves for NDVI, PA, Sobel and Area for Class II of DT3 ............................... 85 

Figure 4-5  Building outlines (in pink) derived from LiDAR data and NDVI derived from satelite 

imagery (a) LiDAR and satelite data matching perfectly  (b) LiDAR and satelite data 

Mismatching ................................................................................................................................. 91 

Figure 4-6 Roads detection (a) DT1, (b) DT2, and (c) DT3 ......................................................... 92 

Figure 4-7 Building detection (a) DT1, (b) DT2, and (c) DT3 ..................................................... 93 

Figure 4-8  Overlaping features (a) DT1, (b) DT2, and  (c) DT3 ................................................. 94 

Figure 4-9 Building detection by DT3 .......................................................................................... 95 

Figure 4-10: Solar map of places with tilt of zero ........................................................................ 96 

Figure 4-11: Image histogram of places with tilt of zero.............................................................. 97 

Figure 4-12 Sensitivity of the solar radiation to the atmospheric parameters. Dp: diffuse 

proportion. ................................................................................................................................... 100 

Figure 4-13 Monthly solar radiation ........................................................................................... 102 

Figure 4-14 Solar energy (wh/m
2
day) at different tilts measured and modeled values. ............. 105 

Figure 4-15 Solar radiation map for the full scene ..................................................................... 107 

Figure 4-16 Solar radiation map masked by the building detection by T25 (DT3 using the 

predictors NDVI and PA) ........................................................................................................... 109 

Figure 4-17 Solar radiation of the rooftops................................................................................. 110 

Figure 4-18 Image histogram of the rooftops ............................................................................. 111 

Figure 4-19 Shade-free Areas from the rooftops ........................................................................ 111 

Figure 4-20 Suitable areas to harvest energy .............................................................................. 112 

Figure 4-21 Accessing the information of each building............................................................ 113 

file:///F:/Thesis/Thesis_finalobservations.docx%23_Toc356587013
file:///F:/Thesis/Thesis_finalobservations.docx%23_Toc356587014
file:///F:/Thesis/Thesis_finalobservations.docx%23_Toc356587020
file:///F:/Thesis/Thesis_finalobservations.docx%23_Toc356587022
file:///F:/Thesis/Thesis_finalobservations.docx%23_Toc356587023
file:///F:/Thesis/Thesis_finalobservations.docx%23_Toc356587024


 

 

xiv 

 

Figure 4-22 Potential solar energy map, the industrial zones are pointed with and arrow. ........ 115 

Figure 4-23 Building for the analysis of energy daily distribution ............................................. 116 

Figure B-1 False Color of the Study Area……………………………………………………..147 

Figure B-2 NDVI of the Study Area…………………………………………………………..147 

Figure B- 3 Building outlines over nDEM……………………………………………………..148 

Figure B- 4 Building outlines over nDEM……………………………………………………..148 

Figure B-5 Building outlines over NDVI………………………………………………………148 

Figure B- 6 Table of properties of the Building outlines……………………………………….148 

Figure B-7 Solar radiation map………………………………………………………………....149 

Figure B-8 Solar radiation on rooftops……………………………………………………...….149 

Figure B-9 Suitable areas to install PV (red) …………………………………………………..149 

Figure B-10 Solar radiation map……………………………………………………………..…149 

Figure B- 11 Solar radiation on rooftops…………………………………………………….....149 

Figure B-12 Install PV (red) …………………………………………………………………...149 

 

  

file:///F:/Thesis/Thesis_finalobservations.docx%23_Toc356587026


 

 

xv 

 

 LIST OF TABLES 

Table 2-1: Summary of Modelling Approaches to Measure Solar Radiation Data. ..................... 18 

Table 3-1 LiDAR points classification code ................................................................................. 36 

Table 3-2: World View-2 spectral bands ...................................................................................... 38 

Table 3-3 Building extraction experimental design ...................................................................... 42 

Table 3-4 First derivate in x and y, continuos and discrete case. ................................................. 48 

Table 3-5 Atmospheric calibration experimental design .............................................................. 62 

Table 3-6 CO2 released to generate a 1 kwh by burning different fossil fuel ............................... 65 

Table 4-1 Classification Results DT1 ........................................................................................... 68 

Table 4-2 Group statistics for training- and test-datasets for DT1 (measured based on number of 

observations) ................................................................................................................................. 69 

Table 4-3 T-test for independent samples training dataset DT1 ................................................... 70 

Table 4-4 Selected cut point for treatment T1 to T10, training dataset ........................................ 72 

Table 4-5 T-test for independent samples test-dataset DT1 ......................................................... 73 

Table 4-6 Cross validation of the cut values for treatments from T1 to T10 on the test-datasets 74 

Table 4-7 Classification result of DT2.......................................................................................... 74 

Table 4-8 Group statistics for training and test-dataset for DT2 .................................................. 75 

Table 4-9 T-test for independent samples training-dataset DT2 .................................................. 76 

Table 4-10 Selected cut points for for treatments T11 to T20, training dataset ........................... 78 

Table 4-11 T-test for independent samples test -dataset DT2 ...................................................... 79 

Table 4-12 Cross validation of the cut values for treatment T11 to T20, test-dataset of DT2 ..... 80 

Table 4-13 Classification result of DT3........................................................................................ 81 

Table 4-14 Group statistics for training and test dataset for DT3................................................. 82 



 

 

xvi 

 

Table 4-15 Independent samples t-test for training-dataset DT3 .................................................. 83 

Table 4-16 Selected Threshold Values for the Training Dataset DT3.......................................... 86 

Table 4-17 T-test for independent sample for the test-dataset DT3 ............................................. 87 

Table 4-18 Cross validation of the cut values DT3 ...................................................................... 88 

Table 4-19 Summary of Independent Sample t-tests .................................................................... 89 

Table 4-20: Summary of cut value of each criteria, sensitivity and specificity ............................ 89 

Table 4-21: Area under the curve AUC ........................................................................................ 90 

Table 4-22 Image statistics for solar energy map (wh/m
2
day) on places with similar conditions to 

solar collectors using default atmospheric parameters. .............................................................. 98 

Table 4-23 Yearly result of solar parameter combination. ........................................................... 98 

Table 4-24 square errors of the treatments. .................................................................................. 99 

Table 4-25 Solar radiation from Best treatments (Kwh/m
2
/day). ............................................... 101 

Table 4-26 Square difference between best treatments and weather station data....................... 101 

Table 4-27 Characteristic of the solar energy picks (wh/m
2
day) ................................................ 103 

Table 4-28 Image statistics of the solar energy values (wh/m
2
day) on places facing south and 

shade-free using atmospheric parameters of T45 ....................................................................... 104 

Table 4-29 Interpolated solar energy values (wh/m
2
day) for places shade-free and facing south

..................................................................................................................................................... 104 

Table 4-30 Error estimated for the solar Radiation model T45 .................................................. 106 

Table 4-31. Summary of estimations at building scale ............................................................... 113 

Table 4-32 Distribution of the solar energy (wh/m
2
) throughout the day ................................... 117 

Table 4-33 Distribution of the solar energy (%) throughout the day .......................................... 118 

Table 4-34 Daily energy production peaks ................................................................................. 118 



 

 

1 

 

1 CHAPTER 1 INTRODUCTION 

1.1 Motivation 

Climate change and energy supply are major challenges for the twenty-first century. The 

consumption of fossil fuel has being dramatically increasing during the last 200 years, mainly 

because of the industrialisation of developed countries, and the rising world population 

(Colligon, 2006). This intensive use of fossil fuel has improved the quality of human life; 

however, the implementation of clean energies became urgent because the limited quantity of 

fossil fuel as well as its polluting nature. 

 In this context, solar energy is becoming increasingly relevant (Panwar et al., 2011). With a 

continual input of 170 billion megawatts, solar radiation is the main source of energy of the 

Earth, and drives its physical and biological processes (Geiger, 1965); all human activities 

depend upon solar radiation. Moreover, solar energy makes optimal use of the resources, 

minimizes environmental impacts, and is sustainable over time (Panwar et al., 2011). 

In their efforts to develop solar energy many governments have subsidized urban residences to 

install solar panels; the photovoltaic market is rising at 30% per annum, especially in German 

and Japan (Green, 2004). In Canada, the Government of Ontario officially launched Canada's 

first feed-in tariff policy in September 2009. That expects it to be reflected in the increment of 

building-integrated photovoltaic BIPV. 

 In order to efficiently implement solar panels, it is necessary to assess the amount of energy that 

a building is able to harvest; estimating this amount in a whole area requires a building city 

model, as well as, a high-resolution solar radiation model. In this way is possible to 

http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=35564029900&zone=
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automatically or semi-automatically predict how much energy every building in the area can 

harvest, and even the best locations to install solar panels. 

According to Dubayah and Rich (1996), topography is the primary factor determining the 

amount of solar energy at local scale. The attributes of the terrain such as elevation, slope, aspect 

(orientation), and shadowing can generate strong local gradients in energy. Because of these 

heterogenic special distributions of solar energy, accurate local scale maps are required for solar 

prospection; weather station data are not enough to yield accurate high-resolution results because 

a simple interpolation of measurements does not yield accurate local information. In order to 

create accurate isolation maps at local scale, it is necessary to take into account the spatial and 

temporal variation of radiation over the landscape. 

This thesis proposes an object-based approach to integrate airborne Light Detection and Ranging 

(LiDAR) data and high-resolution multispectral imagery in order to semi-automatically generate 

a three-dimensional (3D) city model. In addition, the LiDAR data are used as input to feed a 

solar radiation model using a GIS approach, taking in account the spatial and temporal variation 

of solar radiation over a specific landscape, and producing a high-resolution solar radiation map, 

based on the topography of building roof tops. The model is parameterised using weather station 

data. Finally, solar energy prospection is performed for every building in the scene. 
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1.2 Research Objectives and Questions 

This study is intended to contribute to the development of solar energy, replacement of fossil 

fuel, and reduction of the greenhouse emissions realised to the atmosphere. In that way, this 

research contributes to the solution of the two main challenges for our century: climate change 

and energy supply. 

This study uses data from San Francisco, California, to generate information at building scale, 

about the potential of each structure to harvest solar energy. This energy amount will be 

expressed as economic and environmental benefits. This information can support decision 

makers such as administrators, owners, and energy planners. 

This study uses an object-based approach to integrate LiDAR and multispectral imagery in order 

to semi-automatically extract building outlines. In addition, the local topography is derived from 

the LiDAR data, and the resulting digital surface model (DEM) is used to build a solar radiation 

model. The solar model is computed using an ArcGIS tool, Solar Analyst, which is 

parameterised using weather station data. A last stage assesses the potential energy that can be 

harvested from each building; this amount is expressed as economic saving and environmental 

benefits. The general objectives of this study can be summarized as follows: 

1) To explore the dependency of building detection on different methods of segmentation 

and object sizes. 

2) To analyse the efficiency of the predictors: The Normalized Difference Vegetation Index 

(NDVI), ratio Perimeter-Area (PA), Sobel, and Area, applied individually and combined 

for the task of separating buildings from vegetation. 

3) To assess the result of a GIS approach for a local solar radiation model. 
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4) To develop a methodology to semi-automatically extract the building outlines and asses 

the solar potential of the building roofs, based on LiDAR data and Multispectral imagery. 

In addition, this study aims to generate the follow information for each building: 

5) Quantified the potential solar energy that each building can harvest by installing solar 

panels (on the rooftop). 

6) Estimates the economic saving of harvesting this energy by comparing the price of 

buying the same amount of energy from a local distributor. 

7) Quantify the contribution of the solar panels to mitigate greenhouse emissions; by 

calculating the alternative pollution (CO2 realised to the atmosphere) of generating the 

same amount of energy by burning fossil fuels.  

8) Map the best to locate solar panels places, in each building rooftop. 

1.3 Thesis Structure  

This thesis encompasses seven chapters: 

Chapter 1 introduces the research motivation, general objectives and specific questions, finally, 

this chapter describes the thesis structure. 

Chapter 2 examines the literature related of the two main branches of the research: solar 

radiation modelling and building extraction from LiDAR data. 

Chapter 3 describes the study area, imagery, LIDAR data, and software packages used in this 

study. In addition, this chapter describes the methodology used in the building detection, solar 

radiation modelling, and presents a methodology to estimate at building scale: the potential 

energy harvestable, its cost, and carbon dioxide reductions. 
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Chapter 4 presents the results of the building detection process, the solar radiation modelling, 

and the estimations at building scale.  

Chapter 5 discusses building detection dependency on predictors, segmentation and object sizes, 

discusses the calibration of the solar model, and the factors affecting the estimations at building 

scale. 

Chapter 6 summarises the conclusions, discusses the limitations of this research, and does some 

suggestions for future studies. 
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2 CHAPTER 2 LITERATURE REVIEW 

This chapter provides the present state of the art of mapping solar potential using LiDAR. The 

first section reviews the current research in solar potential modeling and the second section 

describes the theoretical basis of building outlines extraction from LiDAR data, and reviews 

related works. 

2.1 Predicting Solar Potential of Rooftops Using LiDAR Data: An 

Overview 

This section presents an overview of solar potential modeling. It outlines the relevance of solar 

resource, analyses spatial variation as a relevant factor influencing solar energy, describes the 

existing approaches used to measure and model solar radiation, and describes current research 

projects related to the present study. 

2.1.1 The Solar Resources 

The sun is the main source of energy on the Earth providing the power for the photosynthesis, 

and causing flows of air and water (Dubayah and Rich, 1996). The solar constant is the amount 

of energy that arrives to a surface facing the Sun; it is in equivalent to 1380 J/s and its average 

variation is 0.2% (NASA, 2006). Solar radiation is naturally expressed as light and heat, and can 

be transformed into electricity through solar panels. Solar energy can be captured through 

passive solar design (such as large windows), through thermal systems (to heat water) or 

harvested by solar panels (to generate electricity). The electricity can be stored or used for 

heating and lighting buildings (Gadsden et al., 2003). 
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Urban areas can be used to harvest solar energy through the application of solar technologies. 

Wiginton et al. (2010) state that 30% of the Ontario electricity demands could be generated by 

urban solar panels. Levinson et al. (2009) identify roof surfaces as an urban resource to harvest 

energy, one that has the advantage of generating few land-use conflicts; however, they highlight 

the need of regulation to access the solar resource.  

Suri and Hofierka (2004) describe three categories of factors affecting solar energy: Earth 

features, terrain characteristics, and atmospheric extinction. 

The Earth features determine the extraterrestrial solar radiation, which is the energy available at 

the top of the atmosphere. It varies according to the relative position of the Sun above the 

horizon, and is given by the Earth geometry and movements (rotation and translation). The exact 

position of the Sun respect to a point in the Earth can be accurately computed by applying 

astronomic formulas. It depends on Earth declination (time of the season), latitude, and solar 

hour angle (time of the day). 

The topography affects the available solar radiation on a specific place. It depends on the 

landscape characteristics: elevation, slope, aspect and shadow. The attenuation of energy due to 

these factors can be precisely modeled from topographic data.  

The atmospheric attenuation is given by scattering and absorption; both caused by gases and 

suspended particles solid and liquid (including clouds) on the atmosphere. Atmospheric 

attenuation involves complex interactions and can be modelled just with moderate level of 

accuracy. 
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The atmospheric extinction reduces the solar energy available at a specific place. That is because 

of the absorption and scattering produced by the atmospheric components: solids, liquids, and 

gases (including the clouds). This category depends on the atmospheric components and on the 

elevation, which determine thickness of the atmosphere. 

Photovoltaic technology 

The energy output of a PV panel depends on the incidental solar radiation and on the efficiency 

of the solar technology. The peak power, expressed as Watt-peak (Wp), is the maximum energy 

output obtained from a PV under standard conditions: a light intensity of 1000 W/m
2
, 

temperature of 25°C, and an air mass of 1.5.  

According to Bermasco and Asinari (2011) the main PV technologies are mono-crystalline, poly-

crystalline and amorphous silicon or thin film. The mono-crystalline is the most efficient 

technology converting solar ration to electricity (15%). The poly-crystalline have an efficiency 

of 12%, however it cost is lower. The amorphous technology consist on a thin film of silicon that 

is spread over glass or stain-free-steal it efficiency is 6%, however, it price is lower too. 

Under non-standard condition the efficiency decrees due to variation on temperature (10%), 

efficiency of the tilt angle (10%), and general losses of the system (16%). 

The optimal tilt of the panels is the one that maximise the exploitation of the solar radiation; it 

varies according to the latitude and season. In winter, the sun beams are more horizontal, and a 

large angle (of the panel) obtains the higher amount of harvest radiation. In summer, the sun rays 

are more direct, and a small angle is recommended. In a fixed installation, a mean angle that 

maximises the yearly harvest is recommended. However, according to Chaudari et al. (2004) 
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near 98% of PV systems are installed without tilt to low the installation cost, in addition non tilt 

allows denser panels installation. The orientation is other factor influencing solar harvesting in 

the northern hemisphere the panels should be preferably facing south. 

Chaudari et al. (2004) carry out a market study for the PV grid connected. This study analyses 

the potential market for PV under different price levels and the best states in USA to install PV. 

This study depicts an increasing demand for PV systems from 2003 (70MWp) to 2010 (2.9 

GWp). This demand represents a market of 6.6 billion dollars. The states from the pacific and 

mid-Atlantic regions account for a 52% of the PV demand. In California, the potential demand 

was estimated between 5 and 500 MWp per year; depending on the price of the PV system, and 

other factors such as the price of the natural gas.  

This study assessed the most suitable states, from U.S.A, to install PV systems. The evaluation 

was made based on utility rates, solar resources and roof space availability. The states that 

represent higher demand for PV were California 39%, New York 6.6%, and Florida 5.9%. 

This study identify three factors that affect the demand on PV systems, they are: the high price of 

the system, government subsidies and customer behaviour. The elevated price of PV systems is a 

disadvantage of the solar energy compared to the regular electricity. On other hand, the 

government incentives reduce the impact of the initial investment trough measurements such as 

green tag, tax credits, subsidies, low-interest loans, and accelerated depreciation. In addition, this 

study affirms that the certainty about the long term governmental policy is an important factor 

promotes PV. According to Chaudari et al. (2004) the attitude of the population toward energy 

generation has changed over the years. The first customers of solar panels were mainly concern 

about the environment. However, in the present, the companies improve their corporative image 
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by generating clean energy, and at residential levels, PV is a symbol of social status. In addition, 

many PV customers are seeking for an independent source of energy to reduce energy costs. 

There are many forms to economically assess the cost-benefice of buying PV. For example, 

amount of investment, payback period, cost of electricity, or comparing the potential energy 

generated (by the PVs) to the electricity bill. Other considerations are cost of PV should not 

surpass 2% of the property value. 

In 2010 the average payback period was estimated in 9-12 years (considering $2.00-2.50/Wpdc), 

and 13-19 years (for a price of $4.25-$5.30/Wpdc). The payback period was estimated based on 

system price and first year savings. For payback periods longer than 20 years, the demand for PV 

is considered zero. 

2.1.2 Spatial Variation 

At global scale, the amount of solar energy depends mainly on factors such as, the Earth latitude, 

rotation, and revolution around the Sun (Suri and Hofierka, 2004). However, at local scale, 

spatial variation is the main factor affecting the amount of solar energy captured (Miller et al., 

2011). Because, at a given latitude and time period, the solar radiation is mainly affected by 

factor as cloud cover, shade, and aspect. These factors are all dependent on the 3D form of the 

landscape.  

Dubayah and Rich (1996) state that the attributes of the terrain (elevation, slope, orientation, and 

shadowing) generate strong local gradients in solar radiation, creating microclimates. These 

microclimates influence local balances of water and energy, which determine patterns of snow 

melting, soil moistening, photosynthetic processing and plant growth.  
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Durbayan and Rich (1995) identify three sources of solar radiation on a slope: direct, diffuse, and 

reflected. The direct solar radiation is related with the solar angle. The diffuse solar radiation is 

not dependent on the solar truck; rather it depends on the percent of obstructed sky over a 

specific point. The reflected solar radiation depends on the albedo of the surrounding landscape 

(Figure 2-1). 

 

 

 

 

 

 

 

 

The direct solar radiation depends on the angle (i) between the Sun’s beam and the slope normal 

(Figure 2-1). It is maximum when i=0, or the Sun’s ray hit directly in 90 degrees the slope 

surface. Durbayan and Rich (1995) differentiate two concepts shading and shadowing. The 

shading is defined on function of the solar angle (i), and express how directly the Sun hit the 

surface. Shading varies with the solar position in the sky (defined by a zenithal and azimuthal 

angle), as well as with the slope’s tilt and orientation. The shadowing is independent of the solar 

i 

Direct Solar Radiation 

Diffuse Solar Radiation 
Visible sky 

Reflected Solar Radiation 

Figure 2-1 Effect of the topography on the solar radiation, adapted from Durbayan and Rich 

(1995) 
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angle (i); it is the effect of nearby objects that obstruct the Sun’s rays and cast a shadow over a 

specific place. 

The diffuse solar radiation depends on the atmospheric components, which have effects of 

absorption and scattering on the sun light; the atmospheric thickness, given by the elevation 

above sea level; and the quantity visible sky (at the specific place). Diffuse solar radiation is 

considered anisotropic; it varies according to the sky angle. However, for simplicity, many 

models assume the same amount of diffuse solar radiation coming from all directions. 

Shadowing also affect the diffuse solar radiation; nearby objects that obstruct the visible. 

Durbayan and Rich (1995) highlight that topographic effects on solar radiation vary according to 

the atmospheric conditions. Under clear sky conditions, the solar radiation map is more 

dependent on the direct solar radiation; and under cloudy conditions the diffuse solar radiation 

became more relevant in the model. Consequently, under clear sky condition the topographic 

factors of tilt, orientation, and shadowing have a major influence on the spatial variation. By 

contrast under cloudy condition, the amount of sky obstructed will dominate the resulting solar 

map.  

Yu et al. (2009) states that in urban environments, topography drives the spatial distribution of 

solar radiation. On a plain terrain, all the places receive the same solar radiation, and the solar 

radiation varies only throughout the day and seasons. However, the presence of the buildings 

creates strong elevation differences in the landscape. That generates significant spatial variability 

of the solar radiation. This study found that, in landscapes with high elevation differences, the 

shadowing change quickly according to the Sun truck.  
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Yu et al. (2009) found that the spatial variability (of solar radiation) is maxima on zones with a 

dense distribution of skyscrapers. Diffuse solar radiation became more relevant in this scenario, 

where skyscrapers obstruct the Sun-light. This effect became extreme in winter because the solar 

angle is low. In contrast, in open areas (as parking lots), solar radiation has little spatial 

variability. In flat landscapes, direct solar radiation is the main component of the total solar 

radiation. In addition, this study found that the spatial variation of the Sun light generates 

different ecosystems, into the city, affecting plant species, distribution, and abundance.  

In urban environments, according to Miller et al. (2011), spatial variation is the main factor to 

consider when placing solar panels, including orientation (in the north hemisphere the best 

location is facing south), shade (cast by neighboring features), and panel angle. Coincidently, 

O’Brien et al. (2010) identify building orientation and shape as the main factors influencing the 

amount of harvestable solar radiation. 

2.1.3 Existing Approaches to Estimating Solar Radiation 

According to (Miller et al., 2011) the main methods used to estimate solar energy are measuring, 

modeling, and remote sensing.  They describe the measuring approach as the directly application 

of an instrument to a specific location; the data acquired in this way provide a precise 

representation of the energy potential, however, a dense network monitoring solar radiation 

would have a high cost. In addition, values measured by weather station are not continuous on 

the space. Suri (2006) states that measured data can be interpolated to obtain a continuous spatial 

dataset. However, the interpolated values have a high level of uncertainty, which rises in regions 

with complex high variation. 
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Modeling approaches 

The modelling approaches are defined as a simplified representation of reality that follows a 

logic pattern. The main modelling approach derives solar radiation from other weather station 

data. 

For example, Meteonorm is a database that derives continuous data sets from solar radiation data 

measured by weather station. It uses 3D inverse method for interpolate the data of direct and 

diffuse solar radiation. This database uses satellite imagery for region with low density network 

of weather stations (Meteotest, 2008). Almeida and Landsberg (2003) derived global radiation 

from net radiation data; derived from a network of automatic weather stations, in Brazil. 

In addition, Bindi and Miglietta (1991) developed a model to estimate daily global radiation 

based on air temperature and rainfall measurements, in Italy. Coop (2000) developed a model to 

estimate the mean solar radiation based on the extreme monthly temperature, in USA. Angleis-

Dimarkis et al. (2011) report, for locations where there are not instruments implemented, the 

irradiation is derived from the cloud cover and sunshine duration of the day.  

The estimation of solar radiation through models is less precise than the measured solar 

radiation. However, the models are more affordable. In addition, there is a dense network of 

weather stations measuring temperature, precipitation, cloud cover and long of the day; from 

which is possible to estimate solar radiation. 
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Remote sensing approaches 

Remote sensing methods do not measure directly solar radiation values; rather they model it 

from parameters such as elevation or satellite imagery. For example, Rigollier et al. (2004) 

developed the Meteosat-2 method to derive solar radiation from satellite images. This model is 

available through the open-source software Helisat-2. The project Heliosat2 created a long term 

series of solar radiation for Africa and Europe. This dataset encompasses 2004 to 2007, with a 

temporal resolution of 15 min and a spatial resolution of 5 km. This method has the advantage of 

being able to model solar radiation over large areas. In addition, Rigollier et al.(2004) state that 

Meteosat-2 method, using imagery over 10km resolution, can yield s more precise results than 

interpolated data (from weather stations that are farther apart). 

Other models are based on geophysical calculations; starting with the solar constant (at the top of 

the atmosphere), applying reduction factors (to account for atmospheric attenuation), and using 

DEMs (to account for the topographic factors). LiDAR techniques offer precise and detailed 3D 

models, which have been basis of pioneering energy models. These models consider the spatial 

and temporal variation of the energy. In addition, they generate datasets continuous in the space, 

and are able to simulate future scenarios (Miller et al., 2011). Geographic Information Systems 

(GIS) have been broadly applied to model solar energy; especially in urban areas because of their 

ability to account for spatial variation, as well as for the energy process. According to Hofierka 

and Suri (2002), the GIS approach provides an affordable, fast, cost-efficient, and precise 

estimation of the solar radiation. In addition, GIS solar models take into account topographic 

factors such as: slope, orientation, and shadowing (cast by the surrounding).  The accuracy of a 
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GIS solar radiation model depends on two main factors the quality of the algorithm and the 

quality of the DEMs (Yu et al., 2009), and (Kumar et al.,1997). 

According to Suri and Hofierka (2004) the main factors to take into account when modelling 

solar radiation in GIS are: extra-terrestrial radiation, terrain characteristics, and atmospheric 

extinction. The extraterrestrial solar radiation depends on: Earth declination, latitude, and solar 

hour-angle; these factors can be accurately computed by applying astronomic formulas. The 

terrain characteristics depend on: elevation, slope, aspect and shadow; that can be accurately 

modeled from topographic data. The atmospheric attenuation is given by processes of scattering 

and absorption; both caused by the solids and liquids and gases in the atmosphere (including 

clouds). These factors involve complex interactions and are difficult to model with accuracy.  

The Solar Analyst module from ArcView GIS was developed by Fu and Rich (1999). This solar 

model computes an angular distribution of the hemispherical view (from a specific point); it is a 

discrete model of the sky obstruction. A raster is computed, for a specific point, by computing 

the horizontal angle between the point and a set of directions; for directions outside the set, the 

horizon angles are interpolated, the result is similar of a fisheye photograph (Rich, 1989),(Rich 

1990). As input, this model uses a DEM, which serves as basis to derive the parameters of 

latitude, elevation, orientation, and shadows (cast by nearby topography). In addition, the model 

requires setting a period of time for which the isolation variance is integrated; it considers daily 

and seasonal variations in the solar angle. Two atmospheric parameters are considered 

Tranmissivity (of the atmosphere) and Diffuse proportion (of the global normal radiation fluxes). 
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Suri and Hofierka (2004), created the Photovoltaic Geographic information system (PVGIS). 

This model interpolates solar radiation values from the European Solar Radiation Atlas through 

the model r.sun, which was implemented in a software open-source called GRASS GIS. The 

model use as input a DEM and a clear sky index to derive the direct, diffuse and reflected 

fraction of the solar radiation.  This model can predict solar potential for photovoltaic systems 

considering local factors such as: different levels of tilt and the shadowing (derived from the 

nearby topography). This model is especially suitable for large areas with complex terrain; also 

due to its interpolation tools this model is especially helpful in zones with lack of ground 

measurements. In addition, the authors test the model r.sun in an urban environment, using a 3D 

city model including: DEM, topographic maps, orthomaps, building food prints and morphology 

maps. This analysis concluded that two third parts of the electric demand of the city of Slovakia 

can be covered by the use of solar energy panels. However, this potential has high spatial and 

temporal variation.  

Summary of methods to estimate solar radiation  

In summary, direct measuring is the more precise method to estimate solar radiation. However, 

there is an economic limit on the number of weather stations that can be equipped to this 

purpose. In this context, modelling approaches became increase relevant, summarise the 

modelling approaches presented on this section.  

 

 



 

 

18 

 

 

Table 2-1: Summary of Modelling Approaches to Measure Solar Radiation Data. 

Model Author Input Method to 

derive solar 

radiation 

Extension 

Meteonorm 

 

Meteotest (2008) Weather Station 

measurement 

3D inverse 

distance 

interpolation 

Global 

Bindi and Miglietta Bindi and 

Miglietta (1991) 

Temperature and 

rainfall 

Probabilistic 11 countries 

Almeida and 

Landsberg 

Almeida and 

Landsberg 

Net radiation data Probabilistic Brazil 

Coop Coop (2000) Extreme monthly 

temperature 

Probabilistic U.S.A 

Meteosat-2 Rigollier (2004) Satellite imagery Heliosat-2 Europe 

PVGIS Model 

 

Suri and Hofierka 

(2004) 

Weather station 

measurement and 

DEM 

r.sun Europe 

Solar Analyst 

 

Fu and Rich 

(1990) 

DEM Fu and Rich 

(1990) 

U.S.A 

 

Usually, if the stations are farther apart, interpolated values have a high level of uncertainty. 

However, there are dense networks of weather stations that measure other parameter such as rain 

fall or temperature from which solar radiation can be derived. 

Solar radiation modeled from satellite imagery seems to be more precise than interpolated values 

(when the weather stations are farther apart more than 10km). However, the spatial resolution of 

the satellite image is about 5km, which is not precise enough to work at building scale.  

On the other hand, GIS models are very suitable to work in urban environment. They are 

affordable, fast, precise, and can use LiDAR data as input (which provide very precise and high 

resolution 3D models). Notice that the accuracy of the model depends on quality of the DEM, as 

well as on the algorithm. In addition, the algorithm can start with a theoretical solar constant or 
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be fitted with weather station data (such as r.sun model does). Finally, GIS models are based on 

some assumptions and generalizations and when the spatial resolution increases, the model 

became more complex.  

2.1.4 Related Works 

Wigton et al. (2010) predict the available solar energy on the rooftops of a large area of Ontario, 

Canada. This study combines GIS capabilities and an object-oriented approach to extract the 

building outlines of the region rooftops using Feature Analyst (FA); an extension of ArcGIS. FA 

extracts objects from an image based on their color, size, shape, texture and orientation. This 

study reports FA as a very useful tool to extract building outlines. However, it describes some 

difficulties arising from two factors: the wide variety of rooftops in the cities and the spectral 

similarity between some rooftops and other land covers (such as pavement). After obtaining the 

total roof area, a reduction factor of 50% is applied to account for orientation, and a 30% to 

account for shading, pitch, and availability.  The total annual energy output was estimated from 

the mean daily global isolation of the zone reduced by the efficiency of the panel. This study 

suggests that a 30% of the Ontario demand can be cover by the using PV panels. 

Levinson et al. (2009) applied LiDAR data and aerial ortho-photos to assess the reduction on 

solar radiation caused by shadowing in four cities of California. The boundaries from roofs, trees 

and parcels were manually digitalised from aerial ortho-photos. The elevation raster were 

obtained from the LiDAR imagery and a function was applied to simulate the tree growth. The 

Hill-shade function of ArcGIS was applied to know if a cell was in a shaded position. This study 

concludes that at the south-, southeast-, and southwest –plane of the roof; the tree growth may 

cause a light loss between 50 and 70%; throughout a range of 30 years. 
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The City of San Francisco through its Department of Environment and the consultant company 

CH2M HILL developed the San Francisco Solar Map. This project supports people to estimate 

the solar potential that they could obtain by installing solar panels; promoting in this way the use 

of solar technologies. In addition, the web site offer information about the local PV installers, tax 

incentives, and permitting process; this information is addressed to house holders, multi-tenants 

and industrial building owners. The site provides a free solar assessment that can be accessed by 

typing an address. The solar potential is estimated based on the surface of the building rooftop, 

which is obtained from the cadastral outlines of the buildings of San Francisco. A reduction 

factor of 0.25 is used to account for obstructions (such as chumminess and exhaust fans), shade, 

tilt, and orientation. It is assumed a requirement of 9 to 18 square meters to produced one 

kilowatt (kW); assuming an annual solar radiation between 4.1 and 4.6 (kw/day). The cost saving 

assumes a tariff equal of $0.1868 per kilowatt-hour (kWh) for residential customers based on 

data published on February, 2010. The CO2 reductions assume a mitigation factor of 

0.29(kgCO2/kWh), based on data published on 2008 by the San Francisco Community-Wide. 

Finally, as a disclaiming, the City of San Francisco recommends verifying the information and 

calculus before investing (City of San Francisco, 2013). 

Dr. Martina Klärle and her team carried out the research project Sun-Area at the Osnabrück 

University of Applied Sciences. The project carried out an automated solar cadastre from LiDAR 

data. The research project started at the City of Osnabrück, Germany in 2006, and included 

70,000 buildings. The method estimated the potential solar energy at the level of rooftops, 

county, and city, taking in account local factors such as tilt, orientation and shade from vertical 

features such as chimneys, masts, nearby vegetation, and constructions. The outputs were the 
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suitable roof areas, potential power generated, levels of CO2 reduced, and investment required. 

In addition, it is possible linking the cadastre to other municipal data to generate more 

information. This study concludes that 20% of German roofs are suitable for setting solar panels, 

and the power generated would be able to cover the energy demand of the houses throughout the 

country (Sun-Area, 2013). 

The Solar Atlas of Berlin applies the algorithms developed on the Sun-Area project to create an 

atlas of the potential solar energy of Berlin (Ludwig and McKinley, 2010). This atlas is available 

online through a website, which is expected to generate a demand for solar technology, visualises 

the existing solar installation, estimates the solar potential of the city, and identifies the best 

locations in which setting solar panels. In addition, this study states that two thirds of the house 

power demand can be met by solar panels.  

The City of Boston has implemented a project to follow the implementation of alternative 

energies such as wind, biomass, hydro, and solar power. This project has been implemented in a 

web GIS called the Renew Boston Solar Map. This project expects to help meeting the goal of 

reducing 20% the greenhouse emissions by 2020; by reducing the investment required for solar 

panels. In this way the City of Boston aims helps the citizens to save energy and money. For 

solar radiation, this site implements an application that allows visualising the monthly energy 

received by each building, total suitable roof area, potential system size, annual potential output, 

solar radiation (kwh/m
2
), monetary saving, and potential CO2 reductions. This estimation 

assumes flat roofs, a solar panel delivering 126.98 watts per square meter, and an annual panel 

producing 1200 kilowatt-hour. The price of the kilowatt-hour is estimated in 0.18 dollars. 

Finally, to estimate the reduction on greenhouse emissions, the project considers that per each 
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kilowatt-hour produced, the carbon dioxide will be reduced by 0.519 kg, sulfur dioxide by 1.088 

kg, and nitrogen oxide by 0.498 kg (City of Boston, 2009) 

2.2 Building Modeling 

This section does an overview of Building modeling. It reviews the current method applied to 

building detection, outline extraction, building segmentation, and describes the related studies.  

2.2.1 Building Detection 

 According to Dorninger and Pfeifer (2008), generating a 3D city model involves representing 

the buildings next to other urban elements such as vegetation, streets, and power lines. They 

divide the building model generation process into five steps: building detection, outline 

extraction, roof shape reconstruction, model generation, and quality analysis.  However, most of 

the existing research work has been done on individual aspects of this process. This study 

especially concerns on the first two steps: building detection and outline extraction. 

Building detection is the process of identifying all the points containing building information in 

the horizontal x-y plane. This process is often performed on a raster representing a Digital 

Surface Model (DSM) derived (interpolated) from the LiDAR point cloud. This two-dimensional 

(2D) representation of heights is called a 2.5D raster.  

The difference of 2.5D raster and LiDAR data is that in the raster the x (latitude) and y 

(longitude) positions are implicit in the layer structure; and only the z (elevation) position is 

explicit as a number. In addition, in a raster the neighbours of a cell are already defined by the 
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layer structure. In Contrast, in the LiDAR point cloud the x, y and z position are explicit as 

numbers and the neighbors of a point need to be defined using an algorithm.  

In the present study a 2.5D was preferred because the raster format has the advantages of 

reducing the amount of data, being faster to process, and being less computationally expensive. 

However, a 2.5D raster has some limitations representing 3D forms as caves and hanging 

elements because each x (latitude), y (longitude) position can represent just one z (elevation 

value). Other disadvantages of working with 2.5D rasters is that the resampling process 

introduces smoothing effects, especially on sharp surfaces (Dorninger and Pfeifer, 2008) (Maas 

and Volssman 1999). 

Often, roughness measurements, such as local high variations, are used to separate manmade 

structures from vegetation. First, a normalized digital surface model (nDEM) is computed by 

subtracting a digital terrain model DTM (a layer that contains elevation data at ground level) 

from a digital surface-model DSM (layer containing elevation data form a surface including 

elements above the ground such as trees, power lines, and buildings). Then, high objects with 

low high variations are classified as buildings, and high objects with high roughness are 

classified as vegetation. For example Matikainen et al. (2003) classified as building all the 

objects higher than 2.5 m with high levels of co-occurrence (of heights). They applied this 

criterion, together with the homogeneity of intensity and the average length of edges. Morgan et 

al. (2000) detected buildings by setting a minimum area and applying a Laplacian filter to 

measure changes in elevation. Rutzinger et al. (2006) selected the buildings by setting a 

minimum object area. Then, buildings were separated from vegetation by using two criteria the 

difference between the first and last LiDAR pulse (assuming that objects with multiples pulses 
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are less likely to be building) and the standard deviation of height (assuming that constructions 

have lower elevation differences than  vegetation). 

2.2.2 Outline Extraction 

Outline extraction is the generation of a polygonal boundary, called the 2D α-shape (Dorninger 

and Pfeifer, 2008), of all the building points. The building boundaries are defined as the 

intersection of the building with its surroundings. It can be obtained from cadastre sources or can 

be generated from the aerial image or the LiDAR point cloud data.  

This study chooses to generate the building outlines from the LiDAR point cloud. That because a 

technique that generates the outlines can be used in any location, independent of the availability 

of cadastral data, and the resulting outlines would be coincident with the solar analysis that, also, 

was derived from the LiDAR points.  

Usually, the process of building boundary generation starts by detecting a coarse estimate of the 

outline, after a generalization and regularization is performed (Sampath et al., 2007) (Jwa et al., 

2008) 

2.2.3 Building Segmentation 

Segmentation is the process of segregating a digital image into multiple parts (sets of pixels) 

with the objective of transforming the image into something more meaningful and easier to 

analyze (Shapiro and Stockman, 2001). 

http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Pixel
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Building segmentation decomposes the building points into planar patches and other elements. 

The building segmentation process defines homogeneity criteria to group similar pixels (or 

points). Some homogeneity criteria may be similar height, normal vector, slope, or aspect.  

The present study used 2.5D grids instead of the original LiDAR points in order to reduce the 

complexity and to increase computational performance. The advantages of this approach are the 

reduction of the amount of data and the fact that in a raster the neighbours are implicitly defined 

by the grid representation. In contrast, the disadvantages of grid resampling are its smoothing 

effect, especially at sharp surfaces, and some constrains in the segmentation process, because the 

grid allows just one height position for each x-y position (Maas and Volssman, 1999). 

Segmentation using a LiDAR point cloud is suggested for a better representation of complex 

geometries such as caves and hanging elements (Filin and Pfeifer, 2006). However, LiDAR a 

point (during the segmentation process) requires explicitly defined the neighbourhoods (Filin and 

Pfeifer, 2005).  

2.2.4 Related Works 

Yu et al. (2009) used a GIS approach to quantify the impact of urban morphology (derived from 

high resolution LiDAR data) on the distribution of solar radiation; at the center of Houston, 

Texas. This study fussed LiDAR data and aerial-photograph to map the different components of 

the urban landscape. Object were created by segmenting the aerial image and geometric 

attributes derived from LiDAR data were used to support the object classification.  This study 

implement, in ArcGIS,  the equations developed by Kumar et al. (1997); in order to estimate the 

spatial distribution of solar radiation.  
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Kassner et al. (2008) used LiDAR data to carry out building detection followed by a solar energy 

potential analysis. The field test encompassed 13 buildings located in the University of Cologne, 

Germany. The study area included roofs with different levels of inclination and shapes. As 

primary data, the authors used a normalized digital elevation model, nDEM. Then, in order to 

select the buildings and eliminate incorrect-positioned points, a threshold value of 3m (selecting 

points at 3m or higher) was applied. From the segmented image, the buildings outlines were 

generated and the LiDAR point cloud was masked to this outline. As an alternative, Kassner et 

al. (2008) suggested the use of polygons from an official cadastral dataset to mask the LiDAR 

data. The filtered LiDAR points were analyzed according to the slope and were classified 

between flat (<10°) and sloped (10°-60°) roof areas. Flat roofs were segmented in classes 

according to their height; a distance of half a standard deviation was used as the inclusion 

margin. Sloped roofs were classified according to their slope and inclination. Slopes between 10° 

and 60° were classified as suitable, as well as those with an azimuthal position between 90° east 

and 270° west.  

The main obstacles to overcame when modeling on this scale are the nDEM resolution and 

possible inaccuracies in the point-positions. Kassner et al. (2008) found a 1.5m wide band 

around the buildings where the points were misplaced (for example a point with a height value 0 

located inside the building). Many of these problems were avoided by segmenting the points 

equal to or greater than 3m. These misplaced points make identifying the roof outlines difficult, 

as well as, the determining the internal limits of the roof patches. Finally, to assess the results of 

the analysis, Kassner et al. (2008) generated a raster layer from panchromatic stereo-

photogrammetric aerial photographs (scale 1:13,000). The data were imported to GIS and 

rasterized.  
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Brandin and Hamren (2003) developed and implemented algorithms for classification of urban 

elements derived from LiDAR data (buildings, vegetation, power lines, posts, and roads). For 

building classification, they used an object-based approach, whereby the process units were not 

the pixels (basic unit of the raster-grid) but image objects, derived from an image segmentation 

process. Ideally, an object is a group of connected pixels that represent an element of the reality 

such as a building or a tree; however, achieving an accurate representation is not always 

possible. One advantage of working with objects is the possibilities to study the characteristic of 

the whole group instance of just the pixel characteristics. For example, man-made structures 

often have a rectangular shape, difference to that vegetation; this feature can be used to classify 

an object, but not a pixel. The disadvantage of working with objects is that sometimes is difficult 

to separate objects that are close to another. For example, constructions and trees that overlap 

each other. In addition, if the separation fails, the classification fails too. 

For building classification, Brandin and Hamren (2003) derived a nDEM and set a high threshold 

of 2m. The trees were removed using an expanded Boolean derived from the number of echoes 

(LiDAR). Brandin and Hamren (2003) assumed that trees often contain multiple echoes, a 

difference from buildings, which have a low concentration of multiple echoes (except by the 

borders). In addition, small objects (less than1.5m
2
) were removed because they were not likely 

being buildings. Finally, three decision values were computed (for each object): the Hough 

value, Maximum slope, and LaPlacian Slope. Later, these values were used in a neuronal 

network to classify the objects. 
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2.3 Chapter Summary 

This chapter provides the current state of the art on solar radiation and building detection. Many 

efforts are being done on modelling solar radiation. At building scale, LiDAR techniques and 

GIS approaches are considered valuable resources. In addition, LiDAR data is considered very 

suitable to semi-automatically generate urban 3D models. The challenge of combining both to 

obtain accurate information at building scale has triggered this study. 
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3 CHAPTER 3 METHODS  

This chapter first introduces the materials used in the research, encompassing the study area, 

software, imagery, and data. Then, it presents the methods used for building detection and the 

outlines extraction process. Next, it describes the implementation of the solar model, and its 

calibration through weather station data. Finally, the last section describes the method for 

estimate the energy retrieved by each building, the economic saving and carbon dioxide 

reduction. 

3.1 Study Area and Datasets 

This study used ArcGIS to grid the LiDAR data and derive a raster 2.5D, as well as to integrate 

the raster 2.5D and multispectral imagery in order to perform the building detection process. In 

addition, the ArcGIS tool Solar Analyst was used to carry out the solar radiation modelling; the 

tool was parameterized with weather station data. The software ENVI was used to carry out 

image filtering.  

The Solar Analyst module from ArcView GIS was developed by Fu and Rich (1999). This solar 

model computes an angular distribution of sky obstruction. Viewsheds are computed by dividing 

the sky into a set of directions and determining the horizontal angle to each one producing the 

equivalent of a photograph in 360 degrees (Rich et al.,1999). The main parameters of the Solar 

Analyst are a DEM, a period of time and two atmospheric parameters.  

The model uses the DEM to derive latitude, elevation, orientation, and shadows cast by nearby 

topography. Because the solar radiation is a flux, it needs to be measured over a period of time. 

This period of time considers daily and seasonal variations in the solar-angle. The atmospheric 
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parameters are Transmissivity and Diffuse Proportion, which account for atmospheric 

attenuation of the diffuse fluxes of solar radiation. 

The direct solar radiation is calculated based on sunmaps, which are raster representations of the 

suntracks defined by the Sun’s positions at different intervals throughout the day and season. The 

position of the sun is defined by zenith and azimuth angles, and is derived from astronomical 

formulae based on the latitude, day of year, and time of day. For sunmaps that encompass one 

day or less, penumbral effects are taken into account. This effect refers to the decreasing of the 

intensity of the solar radiation at the edge of shadow because of the partial obstruction of the 

solar disc. To account for penumbral effects, sunmaps consider the apparent size of the solar 

disc.  

Solar Analyst calculates the global radiation for every pixel by summing direct and diffuse 

radiation from every region. This procedure is repeated through the topographic surface, 

generating isolation values for the whole scene. The solar radiation is derived from the equations 

proposed by Fu and Rich (1999). 

3.1.1 Study Area 

California is the state, from U.S.A., with the higher level of demand for PV panels. That is 

because its abundance of solar resources, as well as its large amount of rooftop areas to place the 

PV panels (Chaudari et al.,2004). The California landscape is mainly modelled by the interaction 

between two tectonic plates: the North American and Pacific plates. The geomorphology is 

marked by three main features: the Sierra Nevada, the Coast Ranges, and the Great Valley of 

California located between them.  
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These three features run from northwest to southeast, parallel to the motion of the Pacific plate. 

San Francisco Bay was formed by the floods caused by ice-sheets melting during the Pleistocene 

era. Currently, this bay is a main water outlet to the pacific, and receives the flow from the rivers 

Sacramento and San Joaquin Rivers, as well as the drainage from the Sierra Nevada and the 

Coast Range.  

The City of San Francisco is located at the northern end of a peninsula on the Coast Range. This 

area is characterised by a steep topography that generates several microclimates over short 

distances. The change in the terrain drives the winds over and around the City. The elevation 

increases toward the south, reaching 60 m above sea level at 1.6 km inland. Dominating the city 

are Mount Davison (285m), Mount Sutro (280m) and South Twin (280m), as well as, several 

significant hills located between North to South. 

According to the NOAA Technical Memorandum (NWS WR-126, 1995), the climate in San 

Francisco is moderated by the cool waters that surround the city and the effect of the Coast range 

that constrains the flow of the winds. These factors moderate the temperature, which ranges from 

summer to winter between 21°C to 12.7°C, reaching minimums of 7.2 °C and 4.4 °C 

respectively. In addition, these conditions generate fog during summer and winter seasons. 

The summer is extended from May to September, with its mornings presenting overcast skies 

clearing by noon; however it have  less than 5% of the total yearly rainfalls. The winter season 

encompasses from November to March. During this time, the fog is thicker than in summer, and 

this season contains most of the precipitation events (80% of the yearly rain). However, snow 

event are very rare (approximately ten occurrences in 150 years). The transition seasons of 

spring and fall usually have the best weather, presenting clearer and warmer days. 
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The study area (Figure 3-1) covers a surface of approximately 11.2 km
2 

of the southwestern zone 

of the City of San Francisco, California. This study area was chosen because San Francisco is a 

city with a broad environmental conscience; from 1970, the city has gradually increasing the use 

solar technologies. The planning department has an easy permitting process to install PV panels 

and gives priority to green building projects. In addition, there are economic incentives through 

the California Energy Commission’s Emerging Renewables to help the affording the up-front 

cost of panels installation. Moreover, the government offers a ten percent tax credit to the 

business that produces electricity through solar panels and offer a five-year accelerated 

depreciation of the equipment. Then despite the seasonal fog and variability of the terrain, San 

Francisco is a very suitable City for installing solar panels. 

The boundaries of the study area are given by the coverage of the LiDAR data. It correspond 

mainly to an urban area, encompassing part of San Francisco Bay, the port, industrial zones, 

highways, bridges, high buildings, and residential housing. In addition, it is possible to find 

community parks, and urban vegetation.  

The main highways on the area are the 101 that run from north to south and the 280 (John F. 

Foran) that goes from northeast to south-west, other main road is the 3
rd

 street that goes from 

north to south. 
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Study Area San Francisco California 

 

 

 

  

Figure 3-1: Study Area San Francisco California 
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The industrial zones are mainly concentrated near the coast (Figure 3-1). There are three sectors 

in which the industrial zones enter to the peninsula. The first is on the northern part of the study 

area; from Cesar Chavez St. (by the north) to the interception between the highways 101 and 280 

(by the south), at the east is limited by the highway 101 and extended to the west until the costal 

line. The second is in the area of Bayview, it encompasses Hunters point, the northern lands 

around South Basin, and the zone of Bayview (until the high way 101). Both zones are 

characterised by large buildings and a lack of vegetation. The third is in the southern part of the 

study area. 

The study area presents four main green areas: Bayview Park (at the south), and the parks:  

Adam Rogers, Hilltop, Heron’s Head and India Basin Shorline. In addition, at the southwest 

corner of the study area is the Candlestick Stadium, which corresponds to a large open-air 

building. 

The remaining sectors on the study are corresponding to residential areas composed by single 

detached houses and adjacent constructions (as townhouses), these zone shows a combination of 

small constructions and vegetation.  

3.1.2 LiDAR Data 

According to the metadata provided in the context of the IEEE GRSS 2012 Data Fusion Contest, 

the LiDAR data were acquired in June of 2010 in the context of the USGS San Francisco Coastal 

LiDAR project (USGS, 2010). The whole project covered an area of approximately 981 km
2
; 

however, the data included in this study is only approximately 12km
2
. The spatial reference is 

NAD83, UTM Zone 10N in the horizontal, and NAVD88 in the vertical. 
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The data are classified into the following classes: Class 1 encompasses vegetation, buildings, 

noise and others unclassified features; Class 2 corresponds to the ground, Class 7 is noise; Class 

9 represents water, and class 10 corresponds to the ground. The extension of the data is bounded 

by West -122.416118, East -122.354930, North37.800935, South37.702583. 

Accuracy Control: According to the metadata provided for USGS, this data were compiled to 

meet 2m of horizontal accuracy at a 95% of confidence level, but no test was run to check 

horizontal accuracy. The vertical accuracy was tested against 21 independent points, and the 

result was RMSEz = 0.06 m at 95% of confidence meeting the 0.09 meters required by NSSDA 

RMSEz. In addition, the data meet a vertical accuracy of 0.12 meters at 95% confidence for all 

land cover types. According with the metadata, as a primary control, three existing CGPS 

stations were observed (CHAB, point 181, and point 222) and used to establish the control 

points. These points were observed during the flight and used to control the flight missions as 

well as the static ground survey. 

The data were collected using an aircraft platform and an instrument Optech ALTM 3100EA. 

The data were collected by overlapping two missions that were flown at different heights and 

parameters, to meet the air traffic control restrictions. The total collection required 14 missions: 

10 were carried out during spring 2010 (between June 11 and June 30), and 4 missions were 

flown during fall 2010 (between October 19 and November 7). All of them were flown under 

good meteorological and GPS conditions to provide complete coverage. For every mission the 

GPS data accuracy was excellent, with residuals of 3cm average, and always less than 10 cm.  

The ellipsoidal heights were transformed to orthometric using the geoid model Geoid09, 

published by the National Geodetic Survey (NGS). 
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Every mission was corrected for residual roll pitch misalignments using TerraSolid's TerraMatch 

software. Then, the points were projected into the coordinate system and one LAS file was 

generated for each swath. In order to ensure no silvers were present, a coverage check was 

carried out in a project level. 

Data Classification: According to the metadata provided by USGS (2010) the LiDAR point 

cloud was processed using TerraScan software. The process encompasses tiling the area to the 

project boundaries, removing outliers and classifying the points using a software routine. In the 

classification, first the ground points were extracted by building an iterative surface model, 

which had three parameters: building size, iteration angle and iteration distance. First, a moving 

window, of a size determined by the building size, selects the lower points (assuming these are 

the ground points). The low points are triangulated and the remaining points that meet the 

constraints of angle and distance are added to the ground model. 

The total number of points recorded was 59525055. The LAS files were classified according to 

the American Society of Photogrammetry and remote Sensing (ASPRS) rules. A histogram of 

the classification point is presented in Table 3-1:  

Table 3-1 LiDAR points classification code 

Code Class Number of 

Points 

1 Unclassified 34858493 

2 Ground 21761010 

7 Low Point (noise) 73827 

9 Water 2821500 

10 Reserved for ASPRS Definition 10225 

(USGS, 2010) 
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The point density of the data set is 2.06 points/m
2 

for all the points and 1.99 points /m
2 

for the 

last return. The average spacing is 0.7 for all the returns and 0.71 for the last returns. 

3.1.3 Satellite Data 

Multispectral imagery was used to derive a Normalised Difference Vegetation Index (NDVI), 

which provides a criterion for the building detection process. NDVI is an excellent predictor to 

separate building from vegetation. It ranges from -1.0 to 1.0, with low values denoting non-

vegetation and large positive values indicating vegetation. (Ünsalan and Boyer, 2011). Buildings 

are separated from other impervious surface (as sidewalks and roads) by using a height criterion. 

The image was a World-View-2, acquired on 9 October, 2011. This image is called ortho Ready 

Standard Imagery, meaning that it has not any topography corrections; each pixel is mapped to 

the average base elevation of the satellite scene. Because of that, the image requires terrain 

correction to obtain the best horizontal accuracy, especially in areas of high relief (Digital 

Global, 2012). World View 2 has an absolute accuracy specification of 5m, excluding viewing 

angle and topographic displacement. This image is recommended for orthorectification. The 

main characteristic of the colour images are: pixel resolution of 2m, format Tiff of 16 bit depth, a 

spatial reference of WGS_84_UTM_zone_10, and the pixel type corresponds to unsigned 

integers. Table 3-2 shows the reflectance of each band in the image. 
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Table 3-2: World View-2 spectral bands  

Band Spectrum 

B1 Coastal: 400 - 450 nm  

B2 Blue: 450 - 510 nm  

B3 Green: 510 - 580 nm  

B4 Yellow: 585 - 625 nm  

B5 Red: 630 - 690 nm 

B6 Red Edge: 705 - 745 nm 

B7 Near-IR1: 770 - 895 nm 

B8 Near-IR2: 860 - 1040 nm 

Source Digital Globe - (2012) 

This image was co-registered to the DSM (derived from the LiDAR data) using four points 

distributed through the image. The total RMS error was 0.495969. 

 

3.1.4 Weather Station Data 

Solar radiation data from a weather station are used to parameterise the Solar Analyst tool. The 

National Resources Energy Laboratory (NREL) provides, through the National Solar radiation 

data bases (NSRDB), statistical information about solar radiation measurements from 1961 to 

1990. For flat collectors, facing south, at tilt of 0, 22.62, 37.62, 52.62 and 90 degrees.  

Meteorological standards consider a 30 year period as adequate to establish normal values , 

means, and extremes. The majority of the measured solar radiation data were collected by the 

National Oceanic and Atmospheric Administration (NOAA) through the National Weather 

Service (NWS).  Primary stations contain measured solar radiation data; however, the data 

available for San Francisco are from a secondary station. It contains solar radiation data 

modelled from satellite imagery and supplementary meteorological data. The METSTAT model 

generates most of the solar radiation data for the NSRDB.  This model is based on the data 

measured from 1977 to 1980 by the NWS.  
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The weather station assigned to San Francisco California is Weather Bureau Army Navy 

(WBAN) number 23234. It is located at latitude 37.62, longitude 122.38, at an elevation of 5m 

above sea level (Figure 3-2). This is the only weather station assigned to San Francisco that 

contains long term solar radiation data. The station is located at approximately 10 km to the 

Candlestick Park, at the southern part of the study area. It is a secondary station that contains 

modelled solar radiation data for flat-plate collectors, facing south, and at fixed tilts.  

Weather Station Assigned to San Francisco, California  

(WBAN) number 23234 

 

 

 

 

 

 

 

 

 

 

 

WBAN 

23234Statio

n 2 

Candlestick 

Park 

Figure 3-2: Location of the Weather Station WBAN 23234 
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3.2 Building Extraction 

The objective of this study was to assess the proposed building extraction design, which used an 

object-based approach and carried out the building extraction through three different Decision 

Tree (DT) models. The tree models are designed to compare the effect of a segmentation using 

and edge detector (Sobel) and a hierarchical classification. Decision Tree One (DT1) represents 

the control it was carried out without Sobel segmentation and without hierarchical classification, 

Decision Tree Two (DT2) implemented a Sobel segmentation, and DT3 applied a hierarchical 

classification.  

The models were fed with five criteria: height, Sobel, Normalised Difference Vegetation Index 

(NDVI), ratio Perimeter-Area (PA) and Area (A). 

The average height value (of each object) was derived from the nDEM layer. The mean Sobel 

value (of the objects) was derived from an Sobel-filtered layer. The average (NDVI) was derived 

from a NDVI layer generated from the colour World-View2 satellite imagery. The (PA) and (A) 

were derived from the geometry of the 2D α-shape objects. In addition, the interaction between 

these predictors was tested. The methods used to derive each criterion as well as the building 

extraction process are shown in Figure 3-3 The explanation of each is detailed in the following 

sections 
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Figure 3-3 Building feature extraction process 
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3.2.1Experimental Design 

To analyse the factors that influence building extraction in an object-based approach, this study 

compares three Decision Tree (DT) models using five criteria to separate vegetation from 

buildings. The interaction between predictors is also examined. The combination of these factors 

generated fifteen treatments, as displayed in Table 3-3. 

Table 3-3 Building extraction experimental design 

Criteria DT1 

Control 

DT2 

Non-

hierarchical  

Classification 

DT3 

Hierarchical 

classification 

(C2)   NDVI T1 T11 T21 

(C3)   PA T2 T12 T22 

(C4)   Sobel T3 T13 T23 

(C5)   Area T4 T14 T24 

(C6)   NDVI OR PA T5 T15 T25 

(C7)   NDVI OR Sobel T6 T16 T26 

(C8)   NDVI OR Area T7 T17 T27 

(C9)   PAOR Sobel T8 T18 T28 

(C10) PAOR Area T9 T19 T29 

(C11) Sobel OR Area T10 T20 T30 

The three DT classification processes explore the effects of hierarchical classification and 

segmentation based on an edge detector Sobel filter.  The Control decision tree (DT1) includes 

an object generation and classification process. Decision trees two (DT2) and three (DT3) 

include the object generation and classification process of DT1, but they add a segmentation 

based on Sobel filtering, followed by a second classification. The second classification, in the 

case of DT2, is carried out for all the objects together; and in the case of DT3, is carried out 

hierarchically, according to the object size. 
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The treatments were assessed by creating a training-dataset that encompassed a hundred 

observations representing building (called true positives) and a hundred observations 

representing vegetation (called negatives or false positives). These data were used to build 

Receiving Operating Characteristic (ROC) curves considering building as presences and 

vegetation as absences. The best criteria were determined by comparing the shape of the ROC 

and area under the curves. The tabulation of the cut values, of the ROC curves, helped to select 

the best threshold to be applied for each criterion. Finally, the results of each treatment were 

compared against a test-dataset that contained 300 observations representing buildings 

(positives) and 300 observations representing trees (negatives or false positives).   

3.2.2 Object Generation 

The basic object generation (Figure 3-5), used for Decision Tree One DT1, includes sorting the 

LiDAR data into regular grids (the raster) and segmenting it to generate groups of pixels that 

represent the elements on the scene. The objects were considered as the connected pixels that 

hold the same value, this object represent the element on the scene. The raster format was chosen 

because it is less time consuming and more computationally efficient. In addition, it makes the 

handling and analysis of the data easier. 

The point cloud was sorted into two different types of Digital Elevation Model (DEM): 1) a 

Digital Terrain Model (DTM) that represents the ground elevation above sea level, without 

accounting for features on the ground such as houses, power lines or vegetation, and 2) a Digital 

Surface Model (DSM) that contains the point heights above sea level (including features on the 

ground). Then, a normalised Digital Surface Model (nDEM) was generated by subtracting the 
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DTM from the DSM. The nDEM layer contains the objects height above the ground (Figure 

3-4).  

 

 

 

 

 

 

 

The objects were considered as all the connected pixels that hold the same value, this objects 

represent the elements on the scene as buildings and vegetation. 

To detect the groups of pixels representing buildings, a high threshold of 2m was applied to the 

nDEM, Node 6 (Figure 3-5). This value does not just separate (segment) the high objects; in 

addition, it removes misplaced points inside the buildings, as described Kassner et al. (2008). 

Two meters is a low elevation threshold for a building. It was selected empirically and it looks to 

include even small buildings and exclude other above-ground elements that are not relevant to 

the study such as cars or bushes. Other high objects as tree are excluded by other criteria. 

In order to exclude most of the vegetation, a raster layer containing the number of echoes was 

derived from the LiDAR data, Node 3 (Figure 3-5). It is assumed that vegetated zones will return 

two or more echoes (because of their semitransparent nature), unlike man-made structures that 

DTM DSM 

nDEM = DSM -DTM 

  Ground Level  

Sea Level 

Height threshold 

 nDEM >=2m 

Figure 3-4 Digital Elevation Models derived from Lidar Data: DTM, DSM , and 

nDEM 
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will return just one echo (because of their solid structure). This echo layer was expanded by 

applying a median filter Node 5 (Figure 3-5), for which a detail description is provided in the 

following section.  

 

Figure 3-5: Object generation for Decision Tree One DT1 
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Then, a Boolean was derived from the expanded version of the echoes by classifying the pixel as 

1 if it holds one echo and setting the pixel to 0 if it contains two or more echoes, Node 7 (Figure 

3-5). This Boolean was multiplied by the high-mask Boolean generating the raster object, Node 8 

(Figure 3-5) In the raster object value 1 represents high objects conforming to solid structures 

(candidates to be buildings), and value 0 represents low semitransparent objects (assumed to be 

ground or vegetation). Finally, an outline was generated around each group of pixels holding the 

same value creating polygons, 2D α shapes, representing the objects. 

The outlines object generation implies the creation of polygons around each group of pixels 

holding the same value. When this process is carried out in a large extension, the number of 

groups generated may surpass the number of objects that the software can handle. Thus, in order 

to remove noise and reduce the number of objects in a meaningful way, a minimum size is set. If 

a group is smaller than 20m
2
, the polygon is dissolved into the larger neighbour. This minimum 

threshold area allows excluding small elements as a cars and at the same time reducing the 

number of objects to a number that the program can handle. 

The final polygons served as object-outlines; later, statistics of the criteria Sobel, NDVI, and 

nDEM were computed for each object (figures of this process are presented in Appendix B). In 

addition, the geometric characteristics of the objects were obtained (Area and PA). These data 

were used to feed the Decision Tree classification methods to detect the buildings. 

3.2.3 Median Filter 

According to Solomon and Breckon (2011), the median filter replaces the pixel in the center of 

the kernel with the median of its neighbourhood (this case involved a 3x3 pixels kernel). The 
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median of a group of numbers is the midpoint of the sorted values. Thus, if a set of numbers is 

sorted in ascendant order, half of the values are over the median and the other half are under the 

median. The median filter is efficient in removing the so-called ‘salt and paper’ noise produced 

by isolated pixels. It is not computationally expensive and preserves the shape of the objects. 

Figure 3-6 shows an example of how the median filter works. In this case, the central pixel 

(value=3) is replaced by the median of the group (median= 7).  

 

Sorted value =1, 2, 3, 7, 7, 10, 21, 22, 23 

Number of values 9, median 5
th

 = 7 

Figure 3-6 Median Filter, adapted from Solomon and Breckon (2011) 

23 2 7 

7 3 10 

 21 22 1 

 

3.2.4 Sobel Filtering 

A Sobel filtering process was carried out to examine its efficiency as criterion to separate 

vegetation and buildings. Sobel yields greater values at higher elevation differences. Then, it is 

assumed that vegetation objects will present greater average Sobel. That is because the 

semitransparent nature of vegetation implies more internal height differences. The threshold 

applied to Sobel, in order to separate buildings and vegetation, was select by applying an 

statistical analysis, which is described in a following section. 

 In addition, Sobel values were used to segment the objects used in Decision Tree One (DT1) and 

generate the objects used in Decision Tree Two (DT2) and Three (DT3). Because Sobel is an 

edge detector, it yields higher values on the object borders. Then, Sobel-segmentation helps 
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separating adjacent elements (such as adjacent constructions) or overhanging features (like 

vegetation hanging over nearby buildings).  

Sobel is a gradient filter; it detects significant changes of the digital number from one pixel to 

another. It gives higher values where the local height differences are larger and lower values if 

the elevation difference between pixels is smaller. It is assumed that vegetation objects present 

higher Sobel values because of their semitransparent nature, which implies more internal 

elevation differences than solid structures. 

This filter approximates the first derivate (Table 3-4), which represents the elevation gradient 

between the central pixel and its neighbours. Because a Sobel filter is isotropic, it needs to be 

passed in both directions (horizontal and vertical). Figure 3-7 shows the components of a Sobel 

filter. 

Table 3-4 First derivate in x and y, continuos and discrete case. 

 Continuos case Discrete case 

Df/dx lim                        f(x+ ∆x,y) - f((x,y) 

d∆x->0                                ∆x 

f(x+1,y)-f(x,y) 

 

df/dy lim                             f(x, y+∆) – f(x,y) 

d∆x->0                                 ∆y 

f(x,y+1) – f(x,y) 

 

(Solomon and Breckon, 2011 pag.98) 
 

1 2 1 

0 0 0 

-1 -2 -1 

 

-1 0 1 

-2 0 2 

-1 0 1 

                               (a)                                                                     (b) 

Figure 3-7-(a) Sobel component for X derivate, and (b): Sobel component for y derivate     

(Source: Solomon and Breckon, 2011, pp.98) 
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To generate the objects for DT2 and DT3, Sobel filtering was applied to the nDEM, Node 1 

(Figure 3-8), Sobel segmentation was carried out to separate adjacent features that are 

represented as a single object; this study assumes that high elevation differences represent 

natural limits between objects.  The segmentation was accomplished by deriving a Boolean from 

the Sobel-filtered layer; values greater or equal to 5 were set to 0, and values smaller than 5 were 

set to 1, Node3 (Figure 3-8). This threshold was selected by image observation by testing 

different thresholds.  

The Boolean derived from Sobel was multiplied by the Boolean containing the basic objects 

derived for DT1, Node 4 (Figure 3-8), creating a new set of objects. This segmentation is done in 

a separate step because, otherwise, the number of objects generated may surpass the limit of the 

software. Sobel segmentation was carried out only in the DT2 and DT3 classification processes 

(treatments T11 to T30).  

Finally, outlines were created around each group of pixels holding the same value, Node 6 

(Figure 3-8). The average of the criteria Sobel, NDVI, and nDEM were computed for each object 

and the geometric characteristics of Area and (PA) were obtained from the outlines polygons. 

These data were used to feed DT2 and DT3 during the building detection process. 
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Figure 3-8: Object Generation for Decision Tree Two and Three (DT2 and DT3) 

 

3.2.5 Deriving Normalised Difference Vegetation Index (NDVI) 

The (NDVI) was assessed as criterion to separate objects representing vegetation from manmade 

structures. According to Ünsalan and Boyer, (2011) NDVI is regarded as one of the most 

effective indicators of vegetation in several applications. The NDVI ranges from -1.0 to 1.0, with 
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low values denoting non-vegetation and large positive values indicating vegetation; the higher 

the value is, and the denser the vegetation is.  Notice that the objects already represent elements 

higher than 2m. Thus, objects classified as vegetation only represent trees excluding grass or low 

vegetation elements. The threshold applied to NDVI was selects applying statistical analysis to 

make sure it works evenly good for the whole image. 

The formula proposed by Kriegler et al. (1969) was used to calculate NDVI (3-1). 

      
          
          

 
(3-1) 

 

 

   

where       and      represent the reflectance in the near infrared and red band, respectively.  

In this study, the NDVI was calculated using World View-2 image. This database set the red 

spectrum in Band 5 (red: 630-690nm) and the infrared in Band 7(near infrared: 770-895nm). 

Thus, the NDVI was calculated in ArcGIS
®
 using (3-2) 

      
      
      

                    
(3-2) 

 

 

where B7 and B5 stand for Bands 7 and 5 (Wold-View2) respectively. The NDVI layer was used 

to compute the average NDVI value for each object, and this mean was used to separate 

vegetation from man-made structures. It is assumed that objects representing vegetation have a 

higher NDVI than other structures.  
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3.2.7 Control Decision Tree DT1 

Three decision tree classification processes were carried out; DT1 acts as the control and involve 

an object-generation and an object-classification process. DT2 and DT3 included the same 

object-generation and -classification than DT1. However, DT2 and DT3 added a Sobel 

segmentation; and DT3 include a hierarchical classification, according to the object size. 

In the Control Decision Tree (DT1) building objects were detected by consecutively separating 

them from: the background, vegetation, and highways DT1 (Figure 3-9).  In the first node (I), the 

background was separated from the objects by setting a mean height threshold of 2m. This 

threshold was set based on the image observation. Then, objects higher than 2m were classified 

as non-ground and objects lower than 2m were labelled as ground. After, the object outlines were 

created around each group of pixels. Then, the average of each criterion (Height, NDVI, PA, 

Area, and Sobel) was calculated for each object. 

 In the third node (III), five criteria (NDVI, PA, Area, Sobel and a combination of them) were 

tested to check their effectiveness in separating vegetation from constructions. DT1 encompasses 

the first ten treatments from T1 to T10 (Table 3-3). 

In the fifth node (V), the highway was segregated using the criterion of Area, which threshold 

values were derived from the scene observation. The resulting objects serves as a base for DT2 

and DT3 to refine the selection. 
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 3.2.8 Non-hierarchical Decision Tree DT2 

The Non-hierarchical classification process DT2 (Figure 3-9), starts with the same steps and cut 

values applied in the Control process, DT1 (Figure 3-9). However, the objects classified as man-

made structures (highways and buildings) are re-segmented through a Boolean representing the 

Sobel values lower than 5. Then, a Non-hierarchical classification (with all the objects together) 

starts: at the Node 1 (Figure 3-9) separating the background from the objects by setting a mean 

height threshold of 2m. In the Node 3 (Figure 3-9), the highway was detected by selecting the 

objects intersecting the highway found in DT1 and applying a PA and Area criteria, for which 

cutting values were derived from the scene observation. 

I Node 5 (Figure 3-9), the five criteria used to separate vegetation from buildings (NDVI, PA, 

Area, Sobel and a combination them) were assessed; DT2 involves ten treatments, from T11 to 

T20 (Table 3-3).  
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3.2.9 Hierarchical Decision Tree DT3 

Hierarchical classification (DT3) starts with the same steps and cut values utilised in DT1 

(Nodes I, III, and V from Figure 3-10), the highways and buildings are re-segmented using the 

Sobel Boolean. At Node 1(Figure 3-10), the background is separated from the objects by setting 

a mean height threshold of 2m. 

DT1 

DT2 

I. Objects 

II. Ground III. No ground  

IV. Vegetation V. Man-made structures 

VI. Highway VII. Buildings 

1. Objects 

2. Ground 3. No-Ground 2 

4. Vegetation 2 5. M.M Structures 2 

7. Buildings 6. Roads 

Sobel 

Segmentation 

Figure 3-9 Structure of Decision Tree One (DT1) and Two DT2 
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Figure 3-10 Structure of Decision Tree One (DT1) and Three (DT3) 

 

DT1 

DT3 

I. Objects 

II. Ground III. No ground  

IV. Vegetation V. Man-made structures 

VI. Highway VII. Buildings 

Sobel 

Segmentation 1. Objects 2 

2. Ground 2 3. No-Ground 2 

4.Class I  5.Class II 6.Class III 

8. MM 

Structures 2 

7. Vegetation 2 10.MM 

Structure 2 

12.MM 

Structure 2 

9. Vegetation 2 11. Vegetation 

2 

13. Highway 

2 

14. Buildings 

2 

15. Highway 

2 

17. Highway 

2 

16. Buildings 

2 

18. Buildings 

2 

11. Building Outlines 
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At Node 3 (Figure 3-10) the highway was detected by selecting the objects intersecting the 

highway found in DT1 and applying a PA and Area criterion to refine the selection, for which 

cutting values were derived from the scene observation. 

The objects classified as man-made structures (highways and buildings) were re-segmented 

through a Boolean representing the Sobel values lower than 5. Then, the objects were classified 

hierarchically into: Class I objects smaller than 88m
2
, Class II objects between 88 m

2
 and 259m

2
, 

and Class III objects greater than 259m
2
. The thresholds were selected trying to find the natural 

brakes of the object areas. Class I corresponds to small detached constructions, which size is 

very similar to most of vegetation objects. Class Two are large detached buildings, which size is 

slightly larger than the average vegetation object. Class III correspond to adjacent constructions 

(as town houses) until large commercial buildings, their size is much larger than the vegetation 

objects. 

The best threshold to separate buildings from vegetation is expected to be different for each 

class. Then, statistical analyses were carried out to find the best threshold values for the criteria 

NDVI, PA, Area, and Sobel. DT3 includes ten treatments from T21 to T30 (Table 3-3) 

3.3 Solar Radiation Modelling 

The solar radiation modeling is based on three assumptions 1) the weather station data represents 

the true solar radiation values (in field) 2) the solar panels are set in a flat position respect to the 

roof tilt 3) the  upper two third parts of the histogram (derived from solar radiation map) 

represents the zones free of shade. 
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The solar modelling was carried out using Solar Analyst tool, from ArcGIS®. It is a solar 

transmission model based on latitude, local topography and atmospheric conditions. It generates 

a solar radiation map at landscape scale. This tool was chosen because it takes into account local 

variation factors such as elevation, tilt, orientation, and shade. In addition, Solar Analyst uses as 

input the same DSM layer that was used to generate the building model, which ensures a perfect 

match between the solar radiation map and the building outlines. The detailed explanation of the 

solar radiation model is in Fu and Rich (1999). An overview of the theory is presented as 

follows. 

The global radiation is estimated as the sum of the direct and the diffuse solar radiation as shown 

in (3-3) 

G = Dir. + Diff. 

 

(3-3) 

 

where G is the global radiation,  Dir. Rad. is direct solar radiation and Diff. Rad. is diffuse solar 

radiation (Fu and Rich 1999). 

First, the model generates (for each raster cell) a hemispherical raster view (in 360 degrees), 

similar to a fisheye photography. This layer represents the visible and obstructed sectors of the 

sky, Figure 3-11 (a). 

A sunmap (raster layer) is generated to represent the Direct solar radiation, which arises from the 

Sun angle respect to a specific point (Fu & Rich, 2009). The Sun angle varies throughout the day 

and season tracing the Sun truck on the sky. In the sunmap, the sun track is represented as 

discrete sky sectors and it is specific for given latitude, Figure 3-11(b). 
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 A skymap (raster layer) is generated to estimate the diffuse radiation. Diffuse radiation does not 

proceed directly from the Sun; rather it arises from each position of the sky. Then, in this raster 

the sky is divided into azimuthal and zenithal angles, Figure 3-11(c). 

 

(a)                                              (b)                                            (c) 

Figure 3-11 (a) sky obstruction of a point respect to the nearby topography, (b) Sunmap 

representing the Direct solar radiation  at different hours of the day throughout the months June 

to December for a latitude of 39° (c) Skymap representing the Diffuse solar radiation coming 

from different sectors of the sky (Fu & Rich, 1999). 

 

(a)                                                                   (b)                       

Figure 3-12 (a) Viewshed overlaying sunmap (b) viewshed overlaying skymap. (Fu and Rich 

1999). 
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The sky obstruction of a point is placed over the sunmap Figure 3-12 (a) and skymap Figure 3-12 

(b). Then, the Global solar radiation is computed by summing each non obstructed cell of Direct 

and Diffuse solar radiation.  

Parameterizing the Solar Analyst 

This study used LiDAR data to derive the DSM (raster) to feed the Solar Analyst. This tool 

derives the initial amount of solar radiation (at the top of the atmosphere) from the latitude, 

which is taken from the DSM (37.5° North). The slope and aspect also are obtained from the 

DSM and account for shading, orientation and tilt effects. The parameters set for the study were: 

sky size, period of time, interval of time throughout the day, number of azimuthal and zenith 

angles, and atmospheric parameters. 

The sky size is the resolution of the rasters representing the sky obstruction, as well as the Direct 

and Diffuse solar radiation. The sky size was set to 200 cells, which correspond to the default 

value. The period of time, for which the solar radiation is integrated, was set to one year at 

monthly intervals. The interval of time throughout the day was modeled at half hour. The sky 

map was divided into 8 azimuthal and zenithal angles using the uniform overcast model 

(considering the same Diffuse solar radiation coming from each sky sector).  

The atmospheric parameters should be set according to local atmospheric conditions. There are 

two atmospheric parameters Diffuse proportion and Trasmittivity. They depend on the 

temperature, humidity and atmospheric composition. Even though they have a major influence 

on the resulting solar radiation, are difficult to estimate from classic atmospheric data. Then, the 

atmospheric parameters were calibrated on a number of sample sites as is described in the 

following section. 
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3.3.1 Calibration Samples  

In order to calibrate the solar radiation model, a number of sample sites were collected under 

shade-free and slope zero conditions. However, to estimate the number of sites, the variability of 

the solar radiation is assessed at different tilts. This requires finding places with similar 

conditions to those of the solar collectors, including locations that were shade-free, facing south, 

and with slopes corresponding to the tilt of the solar collectors (0, 22, 37, 52, and 90). Because 

these exact slopes were not found in the scene, the closest tilts were selected (0, 19, 26, 35, 38, 

51, 54, and 89). 

In order to find the places in the image that correspond to the solar collectors, the Arc GIS tools 

Slope and Aspect were used to locate the appropriated tilt-types and orientation, respectively.  

The shade-free condition is estimated by running the Solar Analyst tool using the default 

atmospheric parameters. Then, image histograms are built and the upper two third parts of the 

histogram picks were considered shade-free (according to the third assumption of this solar 

modelling). 

 In order to select the threshold, for the shade-free regions, statistical parameters such as the 

median and the mean were considered, however, these parameters were discarded because these 

are central measurements, and the segmentation is looking for extremely high value. Then, a 

more sophisticated approach was taken; an image histogram was created and the threshold was 

found by analysing its shape.  The objective of the threshold is selecting the area shade-free that 

retrieve the highest amount of energy; including as many pixels as possible. Then, because the 

peak of the histogram is located among the higher values, the threshold was set, by image 

observation, at the initial two third parts of the peak.  
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The image statistic of the shade-free places, at specific tilts and aspect were used to estimate the 

number of sample through (3-4) assuming a normal distribution and with a 99% of confidence 

level. 

     [
       

      
 ]
 

       

 

(3-4) 

 

where n is the number of samples, µ is the mean of the population, σ is the standard deviation of 

the population. This equation was derived from the Central Limit Theorem, which states that for 

a standard normal distribution, the 99% confidence interval for the population mean is given by 

the expression (3-5) 

0.99 µ= X +/- Zσ/√     (3-5) 

 

 

where X is the mean of the sample and Z is the value from the standard normal distribution for 

the selected confidence level (for 99% of confidence level Z=2.57). Then the variability that 

corresponds to 1% of the population mean, which is given by (3-6) 

0.01 µ=Z σ/√  (3-6) 

 

3.3.2 Model Calibration 

In order to adjust the atmospheric parameters to the local conditions, all the possible 

combinations of Trasmittivity and Diffuse proportion were run, generating 100 (Table 3-5).  

Both atmospheric parameters can takes values from 0 to 1. The default values for Transmittivity 

and Diffuse are 0.5 and 0.3, both for conditions of generally clear sky.  The sensibility was tested 
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at interval of 0.1 to assess how much vary the resulting solar radiation vary when the parameter 

increase in 0.1 units.  

Table 3-5 Atmospheric calibration experimental design 

Diffuse 

Proportion 

Atmospheric Trasmittivity 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

0.2 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 

0.3 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 

0.4 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 

0.5 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 

0.6 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60 

0.7 T61 T62 T63 T64 T65 T66 T67 T68 T69 T70 

0.8 T71 T72 T73 T74 T75 T76 T77 T78 T79 T80 

0.9 T81 T82 T83 T84 T85 T86 T87 T88 T89 T90 

1.0 T91 T92 T93 T94 T95 T96 T97 T98 T99 T100 

 

The treatments were run on sample sites taken in place shade-free and tilt 0. These conditions are 

similar to the solar collectors, on the weather station. In this form the modeled values can be 

compared to the values measured at the weather station. The treatment that yielded the closer 

solar radiation to the value measured on the weather station was run in the full scene. 

3.3.3Model Assessment 

The selected treatment was run on the full scene, and the resulting solar radiation map was 

compared with the weather station data measured by solar collectors.  

The characteristic of the solar collector plate are: flat plate, shade free, facing south with tilts of 

0, 22, 37, 52, and 90 degrees. Then, in the image, places with similar condition were found and 

the solar radiation values from the image were compared to the values measured at the weather 

station.  
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Assuming that the value measured at the weather station represents the real solar radiation , the 

errors of the model were estimated as the difference between the modeled and measured values. 

3.4 Estimations at Building Scale 

This section encompasses four parts: the first proposes a methodology to estimate the energy 

harvested by each building in the study area; the second part estimates the CO2 reduction that 

each building can achieve by producing energy through solar panels; the third section estimates 

the economic savings derived from the energy production of each building, and the last estimates 

the hourly energy production by buildings. 

3.4.1 Energy Harvested by Each Building 

The solar radiation harvested by every building was estimated based on the building outlines, 

obtained through the best Decision Tree classification method, and the solar radiation map, 

obtained through the best atmospheric calibration. 

To define suitable areas in which install Photovoltaic panels, two conditions were required: the 

area should be large enough to support a solar panel and be highly efficient retrieving solar 

radiation. An area greater than 4m
2
 is considered large enough to support a solar panel, assuming 

a Photovoltaic (PV) size of 2.25m
2
 and a 65% area available for solar panels).  This study 

considered the 100% of the roof material appropriated to install PV panels. In addition, it was 

assumed most of the roof shapes are square and the tendency would be locate the panels on the 

center of the available space. The most efficient areas to install solar panels on were defined by 

masking the solar map by the building outlines, thus, generating an image that represents the 
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solar energy captured by the building roofs. Then, an image histogram was built and the values 

belonging to the upper two third parts of the histogram pick are considered highly efficient. 

Only values greater than a two third parts of the histogram pick and belonging to areas larger 

than 4m
2
 are consider suitable for placing a Photovoltaic panel.  

The solar potential of each suitable area is computed through an adaptation of the equations 

defined by Bernasco and Asinari (2012) and Chaudhari et al. (2004). It involves the following 

factors: 

1) The module coverage (MC), estimated at 65%, which reduces the available area to 

account for the space required between solar panels, and for access and wires installation. 

2) The module efficiency (ME), which depends on the Photovoltaic technology used.The 

efficiency generally ranges from 6%, for thin film, to 15% for mono-crystalline silicon.  

This study considered an intermediate value of 12% that corresponds to poly-crystalline 

silicon. 

3) The atmospheric efficiency (AE), estimated at 90%, also considers loses of efficiency due 

to changes in temperature and irradiance. 

4) The installation efficiency (IE), estimated at 84% considers loses in the whole PV system 

such as from beam reflectance, dust covering the solar panels, and inverter efficiency. 

The solar potential of the area was calculated by (3-7)    

Solar Potential of the Area = M (wh/m
2
day) x S (m

2
) x 65% x 12% x 90% x 84%               

 (3-7) 

where M represents the mean solar radiation (in the area) and S is the surface of the area. 
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The solar potential of each building was calculated by summing the energy generated by all the 

areas inside the building (3-8) 

                                 ∑(                             )

 

   

 

(3-8) 

3.4.2 Reductions of CO2 Emissions 

This section estimates the reduction on CO2 emissions that every building can achieve by 

harvesting energy through PV. Estimations were based on comparing the CO2 realised to the 

atmosphere with the PV system in place with the CO2 produced to generate the same amount of 

energy by burning fossil fuels. This amount was estimated in accordance tothe data published by 

the U.S. Energy Information Administration (EIA) from USA summarised in Table 3-6. 

Table 3-6 CO2 released to generate a 1 kwh by burning different fossil fuel 

Fuel Type Pound CO2 Kg CO2 

Coal 2.117 0.960255111 

Petroleum 1.915 0.868629446 

Gas 1.314 0.596020414 

Other fuels 1.378 0.625050327 

Average 1.350 0.61234974 

Source: U.S. Energy Information Administration (2012) 

As show in Table 3-6, the amount of CO2 realised to the atmosphere varies in relation to the 

types of fuel burned. This study takes an average (0.61 kgCO2/kwh) to estimate annual reduction 

of CO2 emissions that every building produces, through (3-9): 

Annual Reductions on CO2 (Kg) = Energy (kwh/year) x 0.61(Kg CO2/kw) 

(3-9) 
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3.4.3 Cost Saving  

The buildings can save costs by producing their own electricity instead of buying it from a local 

distributor. This cost are estimated based on information realised for the Bureau of Labor 

Statistics (BLS), from the U.S. Department of Labour (2013), which indicates that the average 

price of the kwh measured from December 2011 to December 2012 was $0.203 dollars. Then the 

annual cost saving derived from harvesting energy is estimated by (3-10): 

 

Annual Cost Saves ($) = Energy harvested (kwh/year)*0.203$/kwh 

(3-10) 

3.4.4 Distribution of daytime energy Harvesting  

Finally, as a first approach to an analysis of the distribution of the daytime solar energy, sixteen 

buildings were selected as subject of Solar Analyst tool. The analysis was carried out using the 

15
th

 day of every month, at daily intervals of one hour, utilising the atmospheric parameter 

selected in the model calibration section. 

3.5 Chapter Summary 

This chapter presents the information of the study area and describes the data used on this study. 

Next, it explains the methodology utilised to carry out the building detection, solar modelling 

and the estimations at building scale. 
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4 CHAPTER 4 RESULTS 

This chapter is divided into three main sections. The first offers the results of building-detection 

processes carried out through the three decision trees (described in Chapter 3). The second 

section presents the results of the solar radiation modelling. Finally, the third part presents the 

estimations at building scale.  

4.1 Results of Building Detection 

The results of the building-detection processes are divided into four sections, one for each 

Decision Tree and a comparison between decision tree classification methods.  

Each decision tree presents classification results and statistical analysis. The statistical analyses 

are applied to find the best predictors and thresholds to separate vegetation from buildings. The 

statistics analysis includes: descriptive statistics, Receiver Operator Characteristic (ROC) curves, 

selection of a criteria and threshold, and a cross validation of the results. 

4.1.1. Results of Control Decision Tree DT1 

The first decision tree (DT1) corresponds to the control. The classification results obtained by 

DT1 are disclosed in Table 4-1. A threshold of 2m height separates ground from non-ground, 

which means the objects higher than 2m such as buildings, trees, or highways are classified as 

non- ground, and elements shorter than 2m such as cars, bushes, or street are classified as 

ground. Two meter is a low threshold that looks to include all kind of constructions. 

 NDVI is higher for vegetation than for others land covers, usually, pixels representing 

vegetation have a value higher than 0.3. However at object level the best threshold (found by 
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statistical analysis) is 0.25. Then, objects with average NDVI higher than 0.25 are classified as 

vegetation; and objects with average NDVI lower than 0.25 are classified as man-made 

structures. Notice that street, bare soil and other impervious that present low NDVI values were 

already separated as ground. Then, the objects higher than 2m and with NDVI lower than 0.25 

are mainly buildings, however, also there are some highways.  

The relationship Perimeter Area (PA) is usually higher for vegetation because natural elements 

usually are less compact and regular in their borders. The best threshold (find through statistical 

analysis) is 0.67. Then, objects with PA higher than 0.67 are classified as vegetation, and objects 

with PA lower than 0.67 are classified as man-made structures. The highways were classified as 

the objects with areas larger than 52000m
2
 (by image observation); highways are separated from 

buildings because they are not suitable to places to locate solar panels. 

Table 4-1 Classification Results DT1 

Node Object Class Number of 

Objects 

Criteria of selection Method of 

threshold 

selection 

I Objects 5933   

II Ground 180 Height < 2m Image Observation 

III Non-Ground 5753 Height > 2m Image Observation 

IV Vegetation 1784 NDVI > 0.25 AND 

PA > 0.67 

Statistical Analysis 

V Man-made 

Structures 

3969 NDVI < 0.25 OR 

PA<0.67 

Statistical Analysis 

VI Roads 2 Area >52000m
2
 Image Observation 

VII Buildings 3967 Area <52000m
2
 Image Observation 

 

Descriptive Statistics DT1 

In order to separate vegetation from man-made structures, in Node III (Figure 3-9), training- and 

test-datasets were built; Table 4-2 presents the descriptive statistics for both. The training-dataset 
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encompasses 100 observations for building presence (Presence=1) and 100 for building absence 

(presence =0). The test dataset includes 295 observations for presence and 300 for absence. 

Remember that a value of 0 means not only the absence of buildings; but also the presence of 

vegetation. 

In both training and test- datasets, a building presence (1) had a lower mean for NDVI, Sobel and 

PA than building absence (0). That is because of NDVI is characteristically lower for man-made 

structures than for vegetation. Sobel is typically lower for constructions than for vegetation 

(because buildings present fewer internal elevation differences). The relationship perimeter-area 

(PA) is supposed to be lower when objects are more compact and regular in their limits, as 

buildings are compared to vegetation.   Finally, the mean Area tends to be higher in the presence 

of buildings (1) than in their absence (0).  

Table 4-2 Group statistics for training- and test-datasets for DT1 (measured based on number of 

observations) 

 Training Dataset for DT1                                               Test Dataset for DT1 

 Pres 

/Abs 

N Mean Std. 

Deviation 

 Pres/ 

Abs 

N Mean Std. 

Deviation 

NDVI 1 100 0.05 0.07 NDVI 1 295 0.07 0.09 

  0 100 0.37 0.19   0 300 0.35 0.22 

P/A 1 100 0.36 0.14 P/A 1 295 0.45 0.15 

  0 100 0.79 0.25   0 300 0.92 0.34 

Sobel 1 100 5.45 2.09 Sobel 1 295 5.97 1.84 

  0 100 8.48 3.74   0 300 8.35 3.83 

Area 1 100 1592.54 2720.34 Area 1 295 1016.51 4188.76 

  0 100 925.13 6137.65   0 300 519.87 3622.91 

N: number of observation; Pres= presences; Abs= absences 

Table 4-3 shows the results of an independent samples t-test: the criteria NDVI, PA, and Sobel 

meet the assumption of the t-test; that is the groups had the same variance. In addition, the means 
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of these criteria are significantly different between presences (1) and absences (0). These results 

indicate them as suitable criteria to distinguish between vegetation and man-made structures. In 

contrast, the Area criterion did not meet the condition of having equal variance; in addition, the 

mean of the Area was not significantly different (between presences and absences), indicating 

that is not an appropriate criterion to distinguish between constructions and plants. 

Table 4-3 T-test for independent samples training dataset DT1 
 EVA Levene's Test for 

Equality of Variances 

t-test for Equality of Means Confidence 

Interval of the 

Difference 

  F Sig. t df Sig. 

(2 -tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% 

Lower 

95% 

Upper 

NDVI yes 95.68 0.00 -15.55 198.00 0.00 -0.31 0.02 -0.35 -0.27 

 no     -15.55 128.68 0.00 -0.31 0.02 -0.35 -0.27 

Sobel yes 28.84 0.00 -7.08 198.00 0.00 -3.03 0.43 -3.88 -2.19 

 no     -7.08 155.58 0.00 -3.03 0.43 -3.88 -2.19 

Area yes 0.28 0.60 0.99 198.00 0.32 667.40 671.35 -656.5 1991.31 

 no     0.99 136.45 0.32 667.40 671.35 -660.1 1995.00 

PA yes 25.30 0.00 -14.96 198.00 0.00 -0.43 0.03 -0.48 -0.37 

 no      -14.96 151.46 0.00 -0.43 0.03 -0.48 -0.37 

Variance Significance < 0.05 indicates the groups’ variance is not significantly different and the assumption of the 

test is met. 

Mean significance <0.05 indicates the group mean is significantly different and the criterion is suitable to 

distinguish between presence and absence group. 

EVA=Equal variances assumed  

 

 

Receiver Operator Characteristic (ROC) Curves of DT1 

The training-dataset was used to build ROC curves and select the cut points for the criteria: 

NDVI, PA, Sobel, and Area. In the ROC curves, the sensitivity represents the rate of true 

positive results (the presence of buildings), and one minus specificity represents the number of 

false positive (vegetation classified as buildings). The best predictors should maximise the 

selection of positives and minimise the selection of false positives.  
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In Figure 4-1 the shape-curves suggest that, at this level of segmentation, the best predictors are 

PA and NDVI and the worse is Sobel. The area under the curve is also an indicator of the 

validity of a predictor model; the larger area under the curve belongs to PA (0.93%), followed by 

NDVI (0.91%), Area (0.85%) and finally Sobel (0.75%).  

 

Figure 4-1 ROC curves for NDVI, PA, Sobel and Area for DT1 

 

Because this study is intended to detect the maximum number of buildings, the cut values were 

selected to maximise the sensitivity, while keeping a reasonable percent of false positives (likely 

less than 30% for each individual criterion). 

Selection of Criteria and Thresholds for DT1 

The selected cut points, comparing individual criteria (T1 to T4), are shown in Table 4-4. The 

best result in the training dataset is obtained by PA (with a 100% of buildings detected and 30% 

false positives) followed by NDVI (with 98% of buildings detected and 25% false positives).  
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The combined criteria (T5 to T10) use the logic operation OR, which represents the union of two 

criteria. The combined treatments detected 100% of the building presences; however, the number 

of false positives raise compared to the result of each individual treatments. 

T5 (NDVI OR PA) was selected to be used in Node III (Figure 3-9) because it combines the two 

criteria with better individual performance. In addition, these variables are very independent 

from each other; NDVI is derived from the object reflectance and PA from the object geometry. 

The combination of both increases the efficiency of the results. 

Table 4-4 Selected cut point for treatment T1 to T10, training dataset  

Treatment Criteria Cut 

Value 

Sensitivity 

(true 

positives) 

1-Specificity 

(false positive) 

T1 NDVI (<0.25) 0.98 0.25 

T2 PA (<0.675) 1 0.3 

T3 Sobel (<7.71) 0.89 0.51 

T4 Area (>102) 0.97 0.49 

T5 NDVI or PA (*) 1 0.42 

T6 NDVI  or Sobel (*) 1 0.62 

T7 NDVI or Area (*) 1 0.56 

T8 PA or Sobel (*) 1 0.62 

T9 PAor Area (*) 1 0.51 

T10 Sobel or Area (*) 1 0.72 

(*) The combined treatments keep the individual cut values presented in individual treatments. 

 

Cross Validation DT1 

In order to verify if the thresholds found in the training-dataset are valid for a larger dataset the 

cut values were applied to a test-dataset (group-statistics are provided in Table 4-5) 

Table 4-5 presents the results of the independent sample t-test for the test-dataset. The numbers 

identify NDVI, Sobel and PA as suitable criteria to distinguish between vegetation and man-
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made structures because they met the assumption of equal variance and their means are 

significantly different. In contrast, the mean Area do not show meaningful differences between 

groups (presence and absence), nor it met the assumption of having the same variance. 

Table 4-5 T-test for independent samples test-dataset DT1 
   E

VA 

Levene's Test for 

Equality of Variances 

t-test for Equality of Means Confidence 

Interval of the 

Difference  

   F Sig. t df Sig.  

(2 -tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% 

Lower 

95% 

Upper 

NDVI yes 296.8 0.00 -20.59 593.00 0.00 -0.28 0.01 -0.31 -0.26 

  no   -20.71 400.46 0.00 -0.28 0.01 -0.31 -0.26 

Sobel yes 86.08 0.00 -9.65 593.00 0.00 -2.38 0.25 -2.87 -1.90 

  no   -9.70 431.39 0.00 -2.38 0.25 -2.86 -1.90 

Area yes 1.54 0.22 1.55 593.00 0.12 496.64 320.90 -133.60 1126.89 

  no   1.55 578.06 0.12 496.64 321.29 -134.40 1127.68 

PA yes 126.6 0.00 -22.04 593.00 0.00 -0.47 0.02 -0.52 -0.43 

  no    -22.17 416.07 0.00 -0.47 0.02 -0.52 -0.43 

Variance Significance < 0.05 indicates the groups’ variance is not significantly different and the assumption of the 

test is met. Mean significance <0.05 indicates the group’s mean is significantly different and the criterion is suitable 

to distinguish between presences and absences. EVA=Equal variances assumed 

 

 

Cross validation (Table 4-6) illustrates the results of the selected cut values applied to a test-

dataset. The individual criteria (T1 to T4) that obtain better results are NDVI and PA, both with 

94% of true positives detected and 34% and 21% of false positive, respectively. In the combined 

treatment (T5 to T10), the best results are obtained by T7 (NDVI or Area) and T5 (NDVI or PA). 

T7 can be discarded because of the poor performance of Area criterion in the independent 

samples t-test. Coincident with the training-dataset, T5 appears as the best treatment because it 

detects 100% of the building presences and combines the two criteria that had the better 

individual results, NDVI and PA. 
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Table 4-6 Cross validation of the cut values for treatments from T1 to T10 on the test-datasets 

Treatment Criteria Cut Value Sensitivity 

(true positives) 

1-Specificity 

(false positive) 

T1 NDVI   (<0.25) 0.94 0.34 

T2 PA  (<0.675) 0.94 0.21 

T3 Sobel  (<7.71) 0.85 0.52 

T4 Area  (>102) 0.92 0.34 

T5 NDVI or PA (*) 1.00 0.44 

T6 NDVI  or Sobel  (*) 0.99 0.67 

T7 NDVI or Area  (*) 1.00 0.52 

T8 PA or Sobel  (*) 0.99 0.57 

T9 PAor Area  (*) 0.95 0.36 

T10 Sobel or Area  (*) 0.99 0.63 

(*) The combined treatments keep the individual cut values presented in individual treatments. 

 

4.1.2 Results of Decision Tree Two (DT2) 

The second decision tree (DT2) starts identically to DT1, and then obtains identical results from 

Node I to VII (Figure 3-9). After the Sobel segmentation 80288 objects are created, and then, the 

objects smaller than 20m
2
 are merged into the larger neighbours remaining 5845 objects. The 

classification results obtained by DT2 from node 1 to node 7 (Figure 3-9) are disclosed in Table 

4-7.  

Table 4-7 Classification result of DT2 

Node Object Class Number 

of 

Objects 

Criteria of selection Method of 

threshold 

selection 

1 Objects 5845   

2 Ground 19 Height<2m Image Observation 

3 Non-Ground 5826 Height>2m Image Observation 

4 Vegetation 524 NDVI >0.202 AND PA>0.81 Statistical Analysis 

5 MM Structures 5302 NDVI <0.202 OR PA<0.81 Statistical Analysis 

6 Roads 8 (hwy =1) and  height (>8.5m) and 

Area (>179m
2
) 

Image Observation 

7 Buildings 5294 (hwy <>1) or height (<8.5m) or 

Area (<179m
2
) 

Image Observation 

Hwy = 1: objects that intercept the highway found in DT1;MM structures : Man-made structures 
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Descriptive Statistics DT2 

Two datasets are employed in DT2 to separate vegetation from man-made structures, Node 3 

(Figure 3-9); their descriptive statistics are presented in Table 4-8. The training dataset 

encompasses 100 point samples for building presence (1) and 81 points for building absence (0). 

The test-dataset includes 303 samples for presences and 164 for absences. The tendencies of the 

means in DT2 are similar to those in DT1 for the reasons discussed previously. 

Table 4-8 Group statistics for training and test-dataset for DT2 
 Training Dataset for DT2                                               Test Dataset for DT2 

  Presence/

Absence 

N Mean Std. 

Deviation 

  Presence/

Absence 

N Mean Std. 

Deviation 

NDVI 1 100 0.05 0.10 NDVI 1 303 0.06 0.10 

  0 81 0.36 0.21  0 164 0.37 0.21 

Sobel 1 100 1.58 0.94 Sobel 1 303 1.66 0.83 

  0 81 3.33 1.18  0 164 3.21 1.11 

Area 1 100 444.68 1269.88 Area 1 303 361.92 1184.40 

  0 81 135.99 173.28  0 164 96.29 131.29 

PA 1 100 0.55 0.29 PA 1 303 0.57 0.24 

  0 81 1.10 0.36  0 164 1.20 0.42 

 

Table 4-9 displays the results of an independent samples t-test; NDVI, Area and PA met the 

criterion of equal variance. In addition, PA and NDVI present significantly different means 

(between presences and absences) that indicate they are suitable criteria for separating buildings 

from vegetation. In contrast, the mean Area is not significantly different between presences and 

absences.  The Sobel criterion does not meet the test assumption of equal variance, and so the 

result for the mean is not trustworthy. 
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Table 4-9 T-test for independent samples training-dataset DT2 
 E

V

A 

Levene's Test 

 for Equality  

of Variances 

t-test for Equality of Means Confidence Interval  

of the Difference 

  F Sig. t df Sig. 
(2 -

tailed) 

Mean 

Differ

ence 

Std. Error 

Difference 

95% 95% 

Lower Upper 

NDVI yes 68.13

9 

0.000 -13.11 179.00 0 -0.317 0.0242 -0.36559 -0.26994 

  no     -12.28 110.19 0 -0.317 0.0258 -0.36905 -0.26649 

Sobel yes 1.994 0.160 -11.09 179.00 0 -1.753 0.1580 -2.06532 -1.44158 

  no     -10.83 151.07 0 -1.753 0.1618 -2.07318 -1.43372 

Area yes 9.148 0.003 2.17 179.00 0.031 308.68 142.2308 28.0193 589.348 

  no     2.40 103.53 0.018 308.68 128.4393 53.9707 563.397 

PA yes 8.538 0.004 -11.34 179.00 0 -0.548 0.0483 -0.64345 -0.45270 

  no      -11.06 150.16 0 -0.548 0.0495 -0.64595 -0.45020 

Variance significance< 0.05 indicates the groups’ variance is not significantly different and the assumption of the 

test is met. Mean significance <0.05 indicates the group mean is significantly different and the criterion is suitable 

to distinguish between presence and absence group. EVA=Equal variances assumed 

 

Receiver Operator Characteristic (ROC) Curves DT2 

 The receiver operator characteristic (ROC) curves are built from the training-dataset (Figure 

4-2). They suggest that, at this level of segmentation, the best predictors are PA and NDVI 

because they top the other curves for sensitivities over 90%.  The Area appears to be the least 

useful criterion because its curve barely reaches the reference diagonal that represents a random 

classification.  

The larger area under the curve belongs to PA (0.93%), followed by the Sobel (0.91%), NDVI 

(0.89%), and Area (0.67%). The area under the curve (AUC) is an indicator of the overall 

reliability of a predictor model; however, AUC may be misleading if the the goal is maximizing 

the number of precences, even at the expense of increasing the number of false possitives. For 

example, the Sobel curve (Figure 4-2) is very efficient, detecting up to 84% of positives 

(yielding 12% of false positives); however, it loses efficiency, detecting over 90% of true 
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positive (returning 49% of false positives). Different to PA and NDVI, which  present values 

apropriated to select over 90% of presences, while they keep a low number of false positives (20 

and 22% respectively). 

 
Figure 4-2 ROC curves for NDVI, PA, Sobel and Area for DT2 

 

Selection of Criteria and Thresholds for DT2 

The cut values selected for every criterion are shown in Table 4-10. In individual treatments, 

NDVI (T11) and PA (T12) have the best results, with 95% and 94% of presences detected versus 

26% and 22% false positives respectively. In the combined treatments, the best combinations are 

T15 (NDVI or PA) and T16 (NDVI or Sobel), both detect 100% of the buildings, while they 

yield 44% and 58% of false positive, respectively. T15 was selected because it obtains the best 

results and combined the two predictors with better individual performances (NDVI and PA). 
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Table 4-10 Selected cut points for for treatments T11 to T20, training dataset 

Treatment Criteria Cut 

Value 

Sensitivity 

(true positives) 

1-Specificity 

(false positive) 

T11 NDVI (<0.202) 0.95 0.26 

T12 PA (<0.81) 0.94 0.22 

T13 Sobel (<3.11) 0.90 0.49 

T14 Area (>84) 0.72 0.54 

T15 NDVI or PA (*) 1.00 0.44 

T16 NDVI  or Sobel (*) 1.00 0.58 

T17 NDVI or Area (*) 0.98 0.65 

T18 PA or Sobel (*) 0.97 0.59 

T19 PAor Area (*) 0.94 0.57 

T20 Sobel or Area (*) 0.95 0.73 

(*) The combined treatments keep the individual cut values presented in individual treatments. 

 

Cross Validation DT2 

The independent samples t-test are applied to the test-dataset in DT2. The results are presented in 

Table 4-11. As in the training-dataset, PA and NDVI meet the assumption of the test about 

having equal variance, and their means are significantly different. The Sobel does not meet the 

test assumption of equal variance. Different to the training-dataset, the Area criterion meets the 

assumption of the test and its means are significantly different between presences and absences.  
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Table 4-11 T-test for independent samples test -dataset DT2 
  Levene's Test for Equality 

of Variances 

t-test for Equality of Means Confidence Interval 

of the Difference 

  EVA F Sig. t df Sig. 
(2 -

tailed) 

Mean 

Diff. 

Std. Error 

Diff. 

95% 95% 

Lower Upper 

NDVI yes 178.04 0 -21.504 465 0 -0.31621 0.01470 -0.34510 -0.28731 

  no     -17.821 204.92 0 -0.31621 0.01774 -0.35119 -0.28122 

Sobel yes 3.58 0.059 -17.062 465 0 -1.55390 0.09107 -1.73287 -1.37493 

  no     -15.663 262.86 0 -1.55390 0.09920 -1.7492 -1.35855 

Area yes 9.93 0.002 2.861 465 0.004 265.620 92.8379 83.1871 448.054 

  no     3.86 315.57 0 265.620 68.8099 130.236 401.005 

PA yes 74.62 0 -20.588 465 0 -0.62915 0.03055 -0.68920 -0.56910 

  no      -17.804 225.88 0 -0.62915 0.03533 -0.69878 -0.55951 

Variance Sing < 0.05 indicates the groups variance is not significantly different and the assumption of the test is met. 

Mean sig. <0.05 indicates the group mean is significantly different and the criterion is suitable to distinguish between 

presence and absence groups. 

EVA=Equal variances assumed 

 

Table 4-12 exhibits the cross-validation of the selected cut values applied to the test-dataset. The 

individual criteria that obtain the best result are the Sobel, at 93%, followed by NDVI, at 90%, 

and PA, at 88%. The Area has the lower results, 76%. However, the Sobel returns the highest 

number of false positive (56%), different to NDVI and PA that return 26% and 20%, 

respectively. In the combined treatments, the best result is for T16 (NDVI or Sobel), followed by 

T15 (NDVI or PA). However, because the Sobel criteria does not meet the assumption of equal 

variance in the t-test, and because it gives a high number of false positives, T15 (NDVI or PA) 

appears as the most suitable criterion. 
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Table 4-12 Cross validation of the cut values for treatment T11 to T20, test-dataset of DT2 

Treatment Criteria Cut 

Value 

Sensitivity 

(true 

positives) 

1-Specificity 

(false positive) 

T11 NDVI (<0.202) 0.90 0.26 

T12 PA (<0.81) 0.88 0.20 

T13 Sobel (<3.11) 0.93 0.56 

T14 Area (>84) 0.76 0.39 

T15 NDVI or PA (*) 0.99 0.43 

T16 NDVI  or Sobel (*) 1.00 0.65 

T17 NDVI or Area (*) 0.99 0.55 

T18 PA or Sobel (*) 0.97 0.64 

T19 PAor Area (*) 0.89 0.41 

T20 Sobel or Area (*) 0.97 0.71 

(*) The combined treatments keep the individual cut values presented in individual treatments. 

 

4.1.3 Results of Decision Tree Three (DT3) 

The Third decision tree (DT3) starts identically to DT1 and DT2, and returns identical results 

from Node I to VII (Figure 3-10).  Then, the Sobel segmentation creates 80288 objects, and after 

the objects smaller than 20m
2
 are merged into the larger neighbours; 5845 objects remain. The 

classification results obtained by DT3, from Node 1 to 7, are disclosed in Table 4-13.  
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Table 4-13 Classification result of DT3 

Node Object Class Number of 

Objects 

Criteria of selection Method of 

threshold selection 

1 Objects 2 5845   

2 Ground 2 19 Height<2m Image Observation 

3 Non-Ground 2 5826 Height>2m Image Observation 

4 Class I 2807 Area <88m
2
 Image Observation 

5 Class II 1522 88m
2
<Area <259m

2
 Image Observation 

6 Class III 1497 Area >259m
2
 Image Observation 

7 Vegetation 155 NDVI>0.38 AND PA<1.24 Statistical Analysis 

8 M.M. Structures 2652 NDVI<0.38 OR PA<1.24 Statistical Analysis 

9 Vegetation 46 NDVI>0.171 AND PA>817 Statistical Analysis 

10 M.M. Structures 1476 NDVI<0.171 OR PA<0.817 Statistical Analysis 

11 Vegetation 4 NDVI>0.5 AND Sobel>2.63 Image Observation 

12 M.M. Structures 1497 NDVI<0.5 OR Sobel<2.63 Image Observation 

13 Highway 21 (Hwy=1) AND Sobel  >0.97 

AND Height >3.12 

Image Observation 

14 Buildings 2600 (Hwy<>1) OR Sobel  <0.97 

OR Height < 3.12 

Image Observation 

15 Highway 5 (Hwy=1) AND PA>0.46 Image Observation 

16 Buildings 1471 (Hwy<>1) OR PA<0.46 Image Observation 

17 Highway 8 (Hwy=1) AND PA >0.176 

AND Height >7.78 

Image Observation 

18 Buildings 1485 (Hwy<>1) OR PA <0.176 

OR Height <7.78 

Image Observation 

(hwy=1) :objects that intercept the highway found in DT1; (hwy<>1) objects that do not intercept the highway 

found in DT1. 

 

Descriptive Statistics of DT3 

Group-statistics were built for the training- and test-datasets; they are displayed in Table 4-14. 

The training-dataset encompasses, in Class I, 34 observations for building presences (1) and 37 

observations for their absences (0). In Class II, it comprises 33 observations for presences and 37 

for absences. Finally, in Class III, it includes 33 observations for presences and only 7 

observations for absences. The seven absences are considered insufficient to draw a general rule. 
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Table 4-14 Group statistics for training and test dataset for DT3 
  Training Dataset for DT3                                               Test Dataset for DT3 

   Presence/ 

Absence 

N Mean Std. 

 Dev 

  Presence/ 

Absence 

N Mean Std. 

Dev 

 NDVI 1 34 0.05 0.13 NDVI 1 79 0.04 0.09 

  0 37 0.39 0.23  0 101 0.39 0.23 

 Sobel 1 34 1.98 1.04 Sobel 1 79 1.79 0.99 

Class I  0 37 3.57 1.66  0 101 3.33 1.35 

 Area 1 34 66.69 19.44 Area 1 79 62.16 17.82 

  0 37 49.66 19.51  0 101 41.51 17.91 

 PA 1 34 0.80 0.33 PA 1 79 0.84 0.26 

  0 37 1.33 0.36  0 101 1.39 0.38 

 NDVI 1 33 0.03 0.09 NDVI 1 129 0.05 0.11 

  0 37 0.32 0.21  0 56 0.34 0.20 

 Sobel 1 33 1.50 1.00 Sobel 1 129 1.71 0.86 

Class II  0 37 3.10 0.47  0 56 3.00 0.54 

 Area 1 33 155.56 49.58 Area 1 129 155.7 50.80 

  0 37 140.90 52.11  0 56 136.3 46.76 

 PA 1 33 0.53 0.09 PA 1 129 0.56 0.12 

  0 37 0.94 0.22  0 56 0.91 0.24 

 NDVI 1 33 0.05 0.08 NDVI 1 95 0.08 0.11 

  0 7 0.48 0.12  0 7 0.48 0.12 

 Sobel 1 33 1.25 0.58 Sobel 1 95 1.47 0.59 

Class III  0 7 3.26 0.39  0 7 3.26 0.39 

 Area 1 33 1123.24 2067.1 Area 1 95 891.1 2021.4 

  0 7 566.39 345.77  0 7 566.3 345.77 

 PA 1 33 0.32 0.11 PA 1 95 0.37 0.11 

   0 7 0.72 0.16   0 7 0.72 0.16 

Table 4-15 describes the outcomes of the independent samples t-test carried out with the 

training-and test-datasets. Only NDVI met the assumption of equal variance between presences 

and absences in the three classes. Sobel and PA met the assumption of equal variance in Class II 

(objects between 88 and 259m
2
). The Area criterion did not meet the assumption of the test in 

any of the classes. NDVI, PA and Sobel present significantly mean differences in the three 
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classes. In contrast, the Area criterion does not show a significant mean difference between 

presences and absences in any of the classes.  

Table 4-15 Independent samples t-test for training-dataset DT3 
  EVA Levene's Test 

 for Equality  

of Variances 

t-test for Equality of Means Confidence 

Interval of the 

Difference 

   F Sig. t df Sig.  

(2 -

tailed) 

Mean 

Diff. 

Std. 

Error 

Diff. 

95% 

Lower 

95% 

Upper 

 NDVI yes 15.09 0.00 -7.54 69.00 0.00 -0.33 0.04 -0.42 -0.25 

  no     -7.70 58.62 0.00 -0.33 0.04 -0.42 -0.25 

 Sobel yes 0.05 0.83 -4.81 69.00 0.00 -1.60 0.33 -2.26 -0.93 

Class 

I 

 no     -4.90 61.27 0.00 -1.60 0.33 -2.25 -0.95 

 Area yes 0.27 0.60 3.68 69.00 0.00 17.03 4.63 7.80 26.26 

  no     3.68 68.53 0.00 17.03 4.63 7.80 26.26 

 PA yes 1.29 0.26 -6.44 69.00 0.00 -0.53 0.08 -0.70 -0.37 

  no     -6.47 68.98 0.00 -0.53 0.08 -0.70 -0.37 

 NDVI yes 29.48 0.00 -7.30 68.00 0.00 -0.29 0.04 -0.36 -0.21 

  no     -7.58 51.58 0.00 -0.29 0.04 -0.36 -0.21 

 Sobel yes 9.27 0.00 -8.76 68.00 0.00 -1.61 0.18 -1.97 -1.24 

Class 

II 

 no     -8.43 44.16 0.00 -1.61 0.19 -1.99 -1.22 

 Area yes 0.11 0.74 1.20 68.00 0.23 14.66 12.20 -9.67 39.00 

  no     1.21 67.70 0.23 14.66 12.16 -9.61 38.93 

 PA yes 14.20 0.00 -

10.00 

68.00 0.00 -0.41 0.04 -0.49 -0.33 

  no     -

10.41 

49.83 0.00 -0.41 0.04 -0.49 -0.33 

Variance Significance < 0.05 indicates the groups variance is not significantly different and the assumption of the 

test is met. Mean sig. <0.05 indicates the group mean is significantly different and the criterion is suitable to 

distinguish between presence and absence group. EVA=Equal variances assumed 

 

 

The results suggest that the NDVI criterion is appropriate to distinguish between vegetation and 

man-made structures at all object sizes, while the PA and Sobel would be suitable predictors for 

objects between 88 m
2
 and 259m

2
, but not for objects smaller than 88m

2
 (Table 4-15). The Area 

does not seem an appropriated classification criterion in any classes. That is because in Class I 
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the Area do not met the assumption of equal variance (EVA) of the test, and in Class II the Area 

is not significantly different between the groups (presences and absences) 

Receiver Operator Characteristic (ROC) Curves for DT3 

The receiver operator characteristic (ROC) curves for objects smaller than 88m
2 

(Class I from 

DT3) are illustrated in Figure 4-3. For sensitivities greater than 85%, the NDVI curve tops the 

other criteria, followed by PA, Sobel and finally Area. The larger area under the curve (AUC) is 

PA (89.7%), followed by NDVI (87.5%), Sobel (82.9%), and Area (75%). 
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Figure 4-3 ROC curves for NDVI, PA, Sobel and Area for class I of DT3 

 

Figure 4-4 ROC curves for NDVI, PA, Sobel and Area for Class II of DT3 

 

Figure 4-4 shows the ROC curves for the objects between 88 and 259m
2
(Class II of DT3). For 

sensitivities higher than 85%, the PA curve tops the other criteria, followed by NDVI, Sobel and 

Area. The larger area under the curve (AUR) is from PA (98.5%) followed by NDVI (90.9%), 

Sobel (90.2%), and Area (59.3%). 

Selection of Criteria and Thresholds for DT3 

The selected threshold values for DT3 are described in Table 4-16 Selected Threshold Values for 

the Training Dataset; in addition, this table displays the sensitivities and one minus specificity 

for these thresholds.  
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Table 4-16 Selected Threshold Values for the Training Dataset DT3 
 Treatment Criteria Cut Value Sensitivity 

(true positives) 

1-Specificity 

(false positive) 

 

 

T21 NDVI (<0.38) 0.97 0.35 

 T22 PA (<1.24) 0.91 0.43 

 T23 Sobel (<3.06) 0.76 0.41 

 T24 Area (>51) 0.82 0.49 

Class I T25 NDVI or PA (*) 1.00 0.62 

 T26 NDVI  or Sobel (*) 1.00 0.54 

 T27 NDVI or Area (*) 1.00 0.73 

 T28 PA or Sobel (*) 0.94 0.62 

 T29 PAor Area (*) 0.91 0.68 

 T30 Sobel or Area (*) 0.88 0.73 

 Treatment Criteria Cut Value Sensitivity 

(true positives) 

1-Specificity 

(false positive) 

 T21 NDVI (<0.171) 0.97 0.27 

 T22 PA (<0.817) 1.00 0.30 

 T23 Sobel (<2.359) 0.88 0.00 

 T24 Area (>132.5) 0.61 0.38 

Class II T25 NDVI or PA (*) 1.00 0.49 

 T26 NDVI  or Sobel (*) 1.00 0.27 

 T27 NDVI or Area (*) 1.00 0.49 

 T28 PA or Sobel (*) 1.00 0.30 

 T29 PAor Area (*) 1.00 0.54 

 T30 Sobel or Area (*) 0.91 0.38 

(*) The combined treatments keep the individual cut values presented in individual treatments. 

In Class I, objects smaller than 88m
2
, the individual criteria that perform the best are NDVI and 

PA, with 97% and 91% of building detected, and with 35% and 43% false positives, 

respectively. 

In Class II, objects between 88 and 259m
2
, PA is the variable that operates the best, followed by 

NDVI with 100% and 97% of building detected and 30% and 27% false positive, respectively. 
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Cross Validation of DT3 

The results of the independent sample t-testing, carried out on the test-dataset of DT3, are 

disclosed in Table 4-17, in Class I, the NDVI and PA criteria meet the assumption of equal 

variance between the groups (presences and absences), and both present significant differences 

in their means.  In Class I (objects between 88 and 259m
2
) the Sobel and PA criteria meet the 

assumption of equal variance and all of them present significant differences in their means. 

Table 4-17 T-test for independent sample for the test-dataset DT3 

  EV

A 

Levene's Test  

for Equality of 

Variances 

t-test for Equality of Means Confidence 

Interval of the 

Difference 

   F Sig. t df Sig. 

(2 tailed) 

Mean 

Differ

ence 

Std. 

Error 

Differen

ce 

95% 

Lower 

95% 

Upper 

 NDVI yes 91.99 0.00 -13.01 178.00 0.00 -0.35 0.03 -0.40 -0.30 

  no     -14.21 138.71 0.00 -0.35 0.02 -0.40 -0.30 

 Sobel yes 1.17 0.28 -8.48 178.00 0.00 -1.53 0.18 -1.89 -1.18 

  no     -8.79 177.36 0.00 -1.53 0.17 -1.88 -1.19 

Class I Area yes 0.03 0.87 7.70 178.00 0.00 20.66 2.68 15.36 25.95 

  no     7.70 168.10 0.00 20.66 2.68 15.36 25.95 

 PA yes 9.53 0.00 -10.92 178.00 0.00 -0.55 0.05 -0.65 -0.45 

  no     -11.41 175.47 0.00 -0.55 0.05 -0.65 -0.46 

 NDVI yes 46.81 0.00 -12.72 183.00 0.00 -0.28 0.02 -0.33 -0.24 

  no     -10.15 68.96 0.00 -0.28 0.03 -0.34 -0.23 

 Sobel yes 19.18 0.00 -10.36 183.00 0.00 -1.29 0.12 -1.53 -1.04 

Class II  no     -12.33 159.60 0.00 -1.29 0.10 -1.49 -1.08 

 Area yes 4.19 0.04 2.44 183.00 0.02 19.40 7.94 3.73 35.07 

  no     2.52 113.05 0.01 19.40 7.68 4.17 34.62 

 PA yes 38.21 0.00 -13.45 183.00 0.00 -0.36 0.03 -0.41 -0.30 

  no     -10.52 66.97 0.00 -0.36 0.03 -0.42 -0.29 

Variance Significance < 0.05 indicates the groups variance is not significantly different and the assumption of the test 

is met. Mean significance <0.05 indicates the group mean is significantly different and the criterion is suitable to 

distinguish between presence and absence group. 
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In order to validate the threshold selected for the training-dataset, the criteria and thresholds are 

assessed for the test-dataset; the results are presented in Table 4-18. In Class I, NDVI obtains the 

best individual results, followed by PA and Sobel. The combination selected was T25 (NDVI or 

PA) because Sobel does not meet the condition of the independent samples t-test.  

In Class II, as well as in the training dataset, PA obtained the best individual result; however, the 

second place was shared between NDVI and Sobel. The best combined criterion was T25 (NDVI 

or PA) it obtained the best combined results, with 100% of building detected and 55% false 

positives; in addition, both individual predictors met the condition of the t-test.  

Table 4-18 Cross validation of the cut values DT3 
 Treatment Criteria Cut Value Sensitivity 

(true positives) 

1-Specificity 

(false positive) 

Class I 

T21 NDVI   (<0.38) 0.99 0.44 

T22 PA  (<1.24) 0.95 0.33 

T23 Sobel  (<3.06) 0.95 0.33 

T24 Area  (>51) 0.72 0.28 

T25 NDVI or PA (*) 1.00 0.64 

T26 NDVI  or Sobel  (*) 1.00 0.71 

T27 NDVI or Area  (*) 1.00 0.66 

T28 PA or Sobel  (*) 1.00 0.60 

T29 PAor Area  (*) 0.95 0.48 

T30 Sobel or Area  (*) 0.94 0.61 

 Treatment Criteria Cut Value Sensitivity 

(true positives) 

1-Specificity 

(false positive) 

Class II 

T21 NDVI   (<0.171) 0.78 0.11 

T22 PA  (<0.817) 0.97 0.39 

T23 Sobel  (<2.359) 0.78 0.11 

T24 Area  (>132.5) 0.57 0.36 

T25 NDVI or PA (*) 1.00 0.55 

T26 NDVI  or Sobel  (*) 0.98 0.30 

T27 NDVI or Area  (*) 0.96 0.46 

T28 PA or Sobel  (*) 0.98 0.41 

T29 PA or Area  (*) 0.97 0.57 

T30 Sobel or Area  (*) 0.90 0.39 

(*) The combined treatments keep the individual cut values presented in individual treatments. 
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4.1.4 Comparing Treatments 

In order to easily compare decision trees methods, this section summarise, the results of 

independent sample t-test, AUC, and accuracy assessment. In addition, relevant screenshots of a 

visual inspection are presented. 

Summary Tables 

Table 4-19 summarises the results obtained for every variable in the t- tests 

Table 4-19 Summary of Independent Sample t-tests  

 DT1 DT2 DT3 Total 

   Class I Class II  

 Training Test Training Test Training Test Training Test  

NDVI 1 1 1 1 1 1 1 1 9 

PA 1 1 1 1 0 1 1 1 7 

Sobel 1 1 0 0 0 0 1 1 4 

Area 0 0 0 1 0 0 0 1 2 

 

The selected treatment for each decision tree is display in Table 4-20. This table includes the 

criteria, cut values and accuracy assessment results of each treatment. 

Table 4-20: Summary of cut value of each criteria, sensitivity and specificity 

  Treatment Threshold Accuracy 

Assessment 

   NDVI PA Sens. 

 

1-Sp 

DT1  T5 (NDVI OR PA) 0.25 0.675 100% 44% 

DT2  T15 (NDVI OR PA) 0.202 0.81 99% 43% 

Total DT3     100% 59% 

 DT3 class I T25 (NDVI OR PA) 0.38 1.24 100% 64% 

 DT3 class II T25 (NDVI OR PA) 0.172 0.81 100% 55% 

Sens.: Sensitivity(true positives) 

1-Sp: 1-Specificity(false positive) 
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The area under the curve of the predictors for each decision tree is summarised in Table 4-21. 

 

Table 4-21: Area under the curve AUC 

 DT1 DT2 DT3 I DT3 II 

NDVI 0.91 0.89 0.88 0.91 

PA 0.93 0.91 0.83 0.90 

Area 0.85 0.67 0.75 0.59 

Sobel 0.75 0.93 0.90 0.99 

 

Visual Inspection 

Visual inspection is an important criterion used to assess the quality of results. This section 

presents screen shots of relevant issues found during this study. The utility of the object-oriented 

approach for integrating LiDAR data and satellite imagery; a comparison of the performance of 

the tree decision trees, and finally the resulting map of the best treatment (T25). 
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The object oriented approach is a very appropriate 

way to integrate LiDAR and satellite imagery data. 

Figure 4-5 (a) illustrates a perfect match between 

building outlines (in pink), derived from LiDAR 

data, and the NDVI, derived from satellital imagery. 

The white color indicates high NDVI values, for 

which pixels correspond to vegetation. The dark 

colors indicate low NDVI values are caracterict on 

the ground and buildings. A perfect macth between 

data allows a pixel by pixel classification based on 

height and NDVI values. 

In contrast, Figure 4-5 (b) shows an offset between 

the the LiDAR and satellital imagery, in these cases 

a pixel-by-pixel classification would be not useful. 

However, an object classification allows one to 

distiguish between objects based on the average of 

the pixels inside the obejct and the geometry of the 

object. 

  

 

                          (a) 

 

                       (b) 

Figure 4-5  Building outlines (in pink) 

derived from LiDAR data and NDVI 

derived from satelite imagery (a) LiDAR 

and satelite data matching perfectly  (b) 

LiDAR and satelite data Mismatching 
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The roads were detected to separate them from the 

buildings, in order to carry out the solar analysis 

only in places suitable to set solar panels.. 

Figure 4-6 shows the selection of the highway of 

DT1, DT2 and DT3, in (a), (b), and (c), respectively. 

Figure 4-6 (a) depicts DT1 detection of the roads. 

The low level of segmentation of DT1 does not 

allow separating the highway from adjacent 

buildings. 

Figure 4-6 (b) shows the road selection of DT2, 

which does not include neighboring structures.  

Figure 4-6 (c) illustrates the selection of road with 

DT3, which does not include adjacent buildings, but 

does contain small features that are not present in 

DT2 (b) 

 

 

 

  

 
                          (a)                                

 
                     (b)                               

 
                        (c)  

Figure 4-6 Roads detection (a) DT1, (b) 

DT2, and (c) DT3 
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Building detection using DT1, DT2 and DT3 is 

illustrated in Figure 4-7(a), (b), and (c), respectively. 

The low level of segmentation of DT1 does not allow it 

to clearly define complex shapes. Figure 4-7(a) shows 

four buildings that were roughly approximate to a square 

shape by DT1. 

The same four buildings, detected by DT2, in Figure 4-7 

(b), are better defined in their forms. 

Figure 4-7(c) illustrates the building selection of DT3. 

The object shapes are well defined, but DT3 (c) includes 

smaller objects than DT2 (b). 

 

 

 

 

 

  

                      (a)               

                      (b)             

                      (c)                      

Figure 4-7 Building detection (a) 

DT1, (b) DT2, and (c) DT3 
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Figure 4-8 shows the differences between DT1, 

DT2 and DT3 in separating adjacent and 

overhanging features. 

For example, Figure 4-8 (a) shows a tree 

overlapping a building; these two features are 

detected as a single object by DT1. 

In contrast, Figure 4-8 (b) illustrates that DT2 is 

able to distinguish between the tree and 

building, and in (b), only the buildings are 

represented. Moreover, DT2 is better able to 

separate and define adjacent constructions. 

Finally, Figure 4-8(c) presents the building 

detection of DT3, as well as DT2, DT3 (b) is 

able to separate the overlapping tree from the 

building. In addition, DT3 (c) detects smaller 

buildings that DT2 (b) omit. 

 

 

 

Figure 4-8  Overlaping features (a) DT1, (b) DT2, and  (c) DT3 

  

 
                           (a)                                           

 
                        (b)                                              

 
 

                         (c )                                              
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DT 3 was identified as the best decision tree to carry out the building detection, because DT3 

obtained better results than DT2 in the accuracy assessment (Table 4-20). Moreover, visual 

inspection shows that DT3 is better than DT1 at defining shapes (Figure 4-7), and separating 

adjacent and overlapping objects (Figure 4-8).  In addition, T25 was acknowledged as the best 

treatment to carry out building detection because it combines the use of DT3 with the stronger 

predictors, NDVI and PA. Figure 4-9 present the building outlines extracted by T25. 

 

Figure 4-9 Building detection by DT3 
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4.2 Results of Solar Radiation Modelling 

This section encompasses three parts. The first involves estimating the number of calibration 

samples. The second describes the model calibration, which implies the selection of a treatment. 

The third part presents the model assessment. 

4.2.1 Number of Calibration Samples 

The solar radiation of locations with tilt zero are mapped in Figure 4-10. These solar radiation 

values are plotted in a histogram, in Figure 4-11, where the y-axes represents the number of 

pixels that present a solar radiation amount, and the x-axes represents the amount of solar 

radiation present in the image. In the histogram (Figure 4-11), the threshold that separates the 

upper two third parts of the peak is highlighted in blue; solar radiation amounts greater than this 

threshold are considered shade-free.  

 

 

Figure 4-10: Solar map of places with tilt of zero 
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The image statistics of the places- shade-free, facing south and having tilts of 0, 19, 26, 35, 38, 

51, 54, or 89 - were used to calculate the number of calibration samples, according (in Chapter 3) 

According to Table 4-22, the minimum number of samples needed to obtain a 99% confidence 

level is six; this study takes 9 samples, composed of 150 pixels each, in order to ensure a good 

representation of the data. The samples were selected from shade-free places with a tilt of 0. 

 

 

Figure 4-11: Image histogram of places with tilt of zero 

Solar radiation (wh/m
2
day) 
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Table 4-22 Image statistics for solar energy map (wh/m
2
day) on places with similar conditions to 

solar collectors using default atmospheric parameters. 
 Tilts 

  0 19 26 35 38 51 54 

min 3616 3760 3897 3603 3744 3486 3135 

max 3782 3916 4043 3761 3898 3606 3289 

mean 3656 3800 3937 3651 3788 3521 3198 

Std. Dev. 23.8 26.0 22.9 30.1 26.1 22.4 31.2 

error 1% 36.56 38 39.37 36.51 37.88 35.21 31.98 

Number of samples 3 3 2 4 3 3 6 

(*) 99% of confidence 

4.2.2 Model Calibration 

The atmospheric parameters of the Solar Analyst tool of ESRI are: Diffuse proportion and 

Transmittivity.  All their possible combinations were run for the nine calibration sites, generating 

90 treatments, which were assessed by comparing them with the weather station data. The 

monthly results are shown in APPENDIX A; the yearly results are presented in Table 4-23, T45 

(in bold) seems to be closer to the weather station measurements (4.7kwh/m
2
day).  

Table 4-23 Yearly result of solar parameter combination. 
Diffuse 

Proportion 

Atmospheric Trasmittivity 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 0.32 0.80 1.40 2.12 2.96 3.92 5.04 6.31 7.78 9.50 

0.2 0.35 0.87 1.53 2.32 3.25 4.32 5.56 7.00 8.67 10.64 

0.3 0.38 0.96 1.69 2.57 3.62 4.83 6.24 7.88 9.81 12.11 

0.4 0.43 1.08 1.91 2.92 4.11 5.51 7.14 9.06 11.33 14.08 

0.5 0.49 1.25 2.22 3.40 4.80 6.46 8.41 10.71 13.46 16.82 

0.6 0.59 1.50 2.68 4.11 5.84 7.88 10.30 13.18 16.66 20.94 

0.7 0.75 1.92 3.44 5.31 7.57 10.26 13.47 17.31 21.98 27.81 

0.8 1.07 2.76 4.97 7.71 11.03 15.01 19.79 25.55 32.63 41.54 

0.9 2.04 5.28 9.56 14.90 21.41 29.27 38.75 50.29 64.57 82.72 

1.0 Non valid results 
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The square differences of every treatment with the weather station data is presented in Table 

4-24, Treatment 45 (bolded), with a Transmittivity and Diffuse Proportion of 0.5, is the closer 

value to weather station data, with a square error of 0.010.  

Table 4-24 square errors of the treatments. 
Diffuse 

Proportio

n 

Atmospheric Trasmittivity 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 19.16

6 

15.20

4 

10.88

4 
6.665 3.039 0.601 0.113 2.597 9.507 23.038 

0.2 18.93

2 

14.66

3 

10.06

0 
5.674 2.117 0.144 0.744 5.284 15.766 35.330 

0.3 18.63

3 

13.98

1 
9.047 4.517 1.176 0.017 2.372 10.127 26.127 54.982 

0.4 18.23

7 

13.09

7 
7.781 3.179 0.348 0.654 5.970 19.012 43.991 87.916 

0.5 17.69

1 

11.90

9 
6.168 1.700 0.010 3.094 13.747 36.115 76.775 146.950 

0.6 16.88

7 

10.23

1 
4.100 0.343 1.299 10.142 31.407 71.968 142.958 263.777 

0.7 15.58

9 
7.719 1.588 0.375 8.233 30.919 76.828 158.924 298.614 533.890 

0.8 13.14

8 
3.754 0.072 9.050 40.051 106.34

3 
227.619 434.833 779.990 1356.87

3 0.9 7.072 0.342 23.58

9 

103.94

3 

279.11

1 

603.57

1 

1159.58

7 

2078.55

4 

3584.65

0 

6087.86

0 1.0 Non valid results 

 

Figure 4-12 illustrates the sensibility of the solar radiation (Kwh/m
2
day) to the atmospheric 

parameters. The solar radiation, graphed on the y-axis, increases proportionally to the 

Transmittivity, graphed on the x-axis. In addition, the solar radiation rises when the diffuse 

proportion (Dp), represented as nine lines that vary from 0.1 to 0.9, increases. 
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Figure 4-12 Sensitivity of the solar radiation to the atmospheric parameters. Dp: diffuse 

proportion.  

 

Monthly Results  

Every month returns different combination of parameters as being the most suitable for 

calibrating the model; they are described in Table 4-25.  T7 seems the most appropriate for 

November, December and January; T16 for March, April, May, and June; T26 for February, 

July, August and September; T36 for October; and T45 obtained the best yearly results. The best 

treatments for each month are in bolded (Table 4-25), and a combined treatment was created 

with the monthly parameterisation that best fit the data of the weather station. 
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Table 4-25 Solar radiation from Best treatments (Kwh/m
2
/day). 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

Weather Station 2.2 3 4.2 5.7 6.7 7.2 7.3 6.5 5.4 3.9 2.5 2 4.7 

Treatment              

T7 2.20 3.19 4.80 6.43 7.56 7.86 7.89 6.95 5.56 3.59 2.47 1.94 5.04 

T16 1.75 2.63 4.09 5.59 6.63 6.92 6.92 6.06 4.77 2.99 1.99 1.53 4.32 

T26 2.03 3.00 4.59 6.21 7.32 7.63 7.64 6.72 5.34 3.40 2.30 1.78 4.83 

T36 2.41 3.50 5.26 7.03 8.25 8.57 8.61 7.59 6.09 3.94 2.71 2.12 5.51 

T45 1.91 2.91 4.56 6.22 7.38 7.71 7.70 6.75 5.31 3.32 2.18 1.66 4.80 

Best  

Monthly Treatment 
7 26 16 16 16 16 26 26 26 36 7 7  

 2.20 3.00 4.09 5.59 6.63 6.92 7.64 6.72 5.34 3.94 2.47 1.94 4.71 

 

If the Solar Analyst tool were calibrated on a monthly basis, using each moth the combination of 

parameters return the closer values to the weather station measurements, the yearly result would 

be better than a yearly calibration with T45. This is demonstrated in Table 4-26 which presents 

the square differences between the results modeled values presented in Table 4-25 and the 

weather station data. The lowest yearly square error is from the Best Monthly Treatment (4E- 5) 

followed by that of T45 (0.010) and T26 (0.017). 

Table 4-26 Square difference between best treatments and weather station data. 
T Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

7 0.000 0.036 0.356 0.534 0.741 0.439 0.346 0.200 0.024 0.098 0.001 0.004 0.113 

16 0.205 0.136 0.012 0.013 0.005 0.077 0.146 0.197 0.400 0.828 0.265 0.225 0.144 

26 0.029 0.000 0.154 0.257 0.390 0.185 0.118 0.046 0.004 0.253 0.041 0.048 0.017 

36 0.043 0.252 1.128 1.774 2.414 1.890 1.722 1.199 0.479 0.002 0.045 0.015 0.654 

45 0.083 0.007 0.128 0.275 0.462 0.258 0.162 0.061 0.007 0.338 0.102 0.113 0.010 

BMT 7 26 16 16 16 16 26 26 26 36 7 7  

 8E-07 2E-05 1E-02 1E-02 5E-03 8E-02 1E-01 5E-02 4E-03 2E-03 6E-04 4E-03 4E-05 

T:Treatment  

BMT: Best Monthly Treatment 

 

The monthly results are illustrated in Figure 4-13. T45 is the treatment that returns the lower 

yearly square difference (0.010) compared with the weather station (Table 4-26). However, T45 
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tends to overestimate solar radiation during the warmer months from March to September; the 

squared differences between the modeled and measured values varies between 0.07 and 0.462 

(Table 4-26). In contrast, during the months from October to April, T45 tends to underestimate 

solar energy; the squared difference between the model T45 and the weather station varies 

between 0.07 and 0.338 (Table 4-26).  

 

Figure 4-13 Monthly solar radiation 

 

On the other hand, adjusting the atmospheric parameters in a monthly basis (combined 

treatment) yield a yearly result closer to the weather station measurement than that of T45 

(Figure 4-13). Because the atmosphere conditions (humidity, temperature, solar radiation) vary 

throughout the year, it is reasonable that the atmospheric parameters require adjustments 

throughout the months. However, T45 was selected to calculate the yearly solar radiation 

because it is more time and computationally efficient, and T45’s yearly result is considered close 

enough to the weather station measurement (squared error = 0.010). 
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4.2.3 Model Assessment 

T45, the selected treatment (Transmittivity 0.5 and Diffuse proportion 0.5), was run for the full 

scene, and the results were tested against the values measured by the solar collectors at tilts of 0, 

22, 37, 52, and 90. The model assessment involves finding the locations with conditions similar 

to those of the solar collectors at places that are shade-free, facing south, and with slopes 

corresponding to the tilt of the solar collectors. Because the exact slopes corresponding to these 

tilts could not be found, they were interpolated from the closest tilts: 0, 19, 26, 35, 38, 51, 54, 

and 89. The shade-free places were found by building image histograms for each tilt (facing 

south) and selecting the 2/3
th

 upper part of the histogram peak. Table 4-27 summarises 

characteristic of the peak values for every tilt; the threshold were computed as the minimum of 

the peak plus 1/3 of the range; the values over the threshold were considers as shade-free. 

Table 4-27 Characteristic of the solar energy picks (wh/m
2
day) 

Tilts 

 0 19 26 35 38 51 54 89(*) 

Min 4123 4159 4177 4168 4237 3160 2751 2132.8 

Max  4943 4937 4933 4880 4931 4868 4791 2666 

range 820 778 756 712 694 1708 2040 533.2 

Pick value 4533 4548 4555 4524 4584 4014 3771  

Threshold 4396 4418 4429 4405 4468 3729 3431 2311 

(*) At 89 degrees not enough points were found to build histogram; thus the range was consider to be 

20%  of  the maximum. 

 

Image statistics were computed for places with conditions similar to the solar collectors; these 

values are presented in Table 4-28, and the standard deviation tends to increase proportionally to 

the tilt. In addition, by comparing these image statistics with the statistics of the analysis using 

the default parameters (Table 4-22) is possible to appreciate that when the amount of energy 
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increases, the standard deviation increases as well. That indicates that at larger energy amounts, 

the variability increases and more samples are required to calibrate the model.  

Table 4-28 Image statistics of the solar energy values (wh/m
2
day) on places facing south and 

shade-free using atmospheric parameters of T45 

    Tilt     

 0 19 26 35 38 51 54 89(*) 

min 4396 4418 4429 4405 4468 3729 3431 2326 

max 4943 4937 4933 4880 4931 4868 4791 2666 

mean 4535 4593 4587 4539 4628 4121 3840 2429 

stand deviation 80.1 105.5 98.4 83.8 98.4 233.3 247.35 87.8 

(*) At 89 degree the image is composed by few values. 

 

The values corresponding to the tilt of the solar collectors were interpolated from values in Table 

4-28 and are presented in Table 4-29. This allows comparing the modeled solar radiation to that 

measured by the weather station (Table 4-29). The solar energy measured by the weather station 

is closer to the mean, at tilt 0; however, at higher tilts, the weather station values are closer to the 

maximum modeled values. This is confirmed by the correlations: between weather station and 

maximum it is 94% and between weather station and means it is 93%. 

Table 4-29 Interpolated solar energy values (wh/m
2
day) for places shade-free and facing south 

Solar Radiation 

(wh/m
2
/day) 

Tilt Correlation with 

weather station 

values 
0 22 37 52 90 

Weather Station  4700 5300 5400 5100 3400  

Model Minimum 4397 4424 4480 3775 2289.3 0.91 

Model Mean 4535 4590 4598 4027 2389 0.93 

Model Max 4943 4935 4914 4842 2605 0.94 

 

Figure 4-14 displays in green the values measured by the weather station, and the modeled 

values are in yellow, the minimum, in red, the mean, and in blue, the maximum. At tilt 0, the 
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mean is closer to the weather station values; however, at higher tilts, the model tends to 

underestimate the solar radiation values.  

 

 

Figure 4-14 Solar energy (wh/m
2
day) at different tilts measured and modeled values. 

 

Table 4-30 portrays the errors between the modeled and measured values; when the tilt increases 

the error increases as well. At tilt 0, the mean values return smaller errors; however, at higher 

tilts, the maximum modeled values return lower errors.  

The percentage errors of the mean (Table 4-30) vary from 3.5% to 29.7% according to the tilt. 
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Table 4-30 Error estimated for the solar Radiation model T45 

Error  

Tilt 0 22 37 52 90 Sum 

Min 304.0 877.3 953.0 1470.3 1105.6 4710 

Mean 165.0 709.6 801.7 1072.7 1011.3 3760 

Max -243.0 364.7 486.0 257.7 794.7 1660 

Percentage Error  

Tilt 0 22 37 52 90 Sum 

Min 6.5 16.6 17.6 28.8 32.5 19.7 

Mean 3.5 13.4 14.8 21.0 29.7 15.7 

Max -5.2 6.9 9.0 5.1 23.4 6.9 

 

Among the models, T45 returns the solar radiation closer to the value measured by the weather 

station. That is evident in Table 4-26 where is possible to confirm that T45 returns the lower 

yearly squared error, 0.010. Thus, T45 is considered the best treatment, and its combination of 

parameters was run for the whole scene. Figure 4-15 presents the resulting solar radiation map. 

This image represents, in blue, the lower solar radiation values that usually correspond to 

vegetation, such as the Bayview Park at the east of Candlestick stadium, and the parks Hilltop 

and Adam Rogers at the north of the study area. The map represents in orange the higher energy 

amounts, which corresponds mainly to the industrial zones at the north, south, Bayview and 

coast sector.   
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Solar Radiation map T45 

 

Figure 4-15 Solar radiation map for the full scene 
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4.3 Results of Estimations at Building Scale 

This section is divided in two parts. The first part estimates the solar potential of buildings, 

expresses this amount in economic terms, as the cost of buying this energy from a local 

distributor, and finally, estimates the environmental benefits, as the amount of CO2 that would be 

released to the atmosphere if the same amount of energy were produced by burning fossil fuels. 

The second part estimates the solar energy distribution throughout the day.  

 

4.3.1 Estimation at Building Scale 

In order to estimate the solar potential of buildings, first, the selected solar radiation model (T45) 

is calculated for the full scene (Figure 4-15). This solar radiation map is masked into the building 

outlines obtained with DT3 (Figure 4-16). The resulting image is presented in Figure 4-16, which 

is the basis of the calculus at building scale.  The image representing the solar radiation at the 

rooftops is the basis of the calculus at building scales as is explained in the following section. 
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Solar radiation of the Rooftops 

 

Figure 4-16 Solar radiation map masked by the building detection by T25 (DT3 using the 

predictors NDVI and PA) 
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Once the solar radiation map is masked by the building outlines (extracted in DT3), the resulting 

image represents the solar radiation received by the building rooftops (Figure 4-17). 

 

Then, an image histogram is built for the building roofs (Figure 4-18). The most suitable zones 

for installing solar panels are chosen from the upper two thirds of the histogram peak; values 

greater than 4417wh/m
2
day are considered shade-free and they are highlighted in light-blue in 

the histogram (Figure 4-18) and in the image (Figure 4-19). 

 

 

 

 

 

Figure 4-17 Solar radiation of the rooftops 
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Figure 4-18 Image histogram of the rooftops 

 

 

 

 

Figure 4-19 Shade-free Areas from the rooftops 

Solar radiation (wh/m
2
day) 
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In addition, the areas suitable for installing Photovoltaic panels (PV) should be equal to or 

greater than 4m
2
. Consequently, a building may have many suitable areas inside (Figure 4-20). 

The energy produced by each area is estimated by (3-7); and the energy harvested by each 

building is estimated as the sum of the areas inside that building, (3-8)  

 

 

 

 

 

 

 

 

 

The environmental benefits of installing PV on a building are estimated as the CO2 released to 

the atmosphere if the same amount of energy were generated by burning fossil fuels; it is 

estimated by (3-9). The cost of the energy produced by every building, if this energy were 

purchased from a local distributer, was computed by (3-10). The results of this calculus are set 

on the shape file containing the buildings; thus, each individual building can be accessed from 

the map, using the identify function, to know its potential solar energy, the cost of buying this 

Figure 4-20 Suitable areas to harvest energy 
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energy, and the environmental benefits to install solar panels in the most suitable zones of the 

building (Figure 4-21).  

 

 

Considering the total number of buildings detected (5560), the total energy that can be harvested 

in a year is 104,909,378 kwh, which has a value of $ 21,296,603, and reduces the CO2 emissions 

by 63,994,728 kg, as is summarised in Table 4-31. Summary of estimations at building scale 

Table 4-31. Summary of estimations at building scale 

 

 

 

 

In Figure 4-22, the map represents the potential solar energy that each building would be able to 

harvest in a year using PV panels. In red are the buildings that harvest more than 500,000 

kwh/year Cost ($) CO2 (kg) 

104,909,378 21,296,603 63,994,728 

 

Figure 4-21 Accessing the information of each building 
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(kwh/year), corresponding to the biggest industrial structures. In orange are the constructions that 

generate between 180,000 and 500,000 (kwh/year), corresponding to medium industrial 

buildings.  In yellow are the structures generating between 100,000 and 180,000 (kwh/year), 

corresponding to small industrial edifices. In light-blue are the buildings harvesting between 

11,000 and 100,000 (kwh/year), corresponding to residential areas, specifically, constructions 

that are adjacent to each other and that were detected as a single structures. In blue are the 

constructions able to generate more than 0 but less than 11,000(kwh/year), corresponding to 

single detached houses. Buildings labelled as 0 kw/year did not present areas large enough (more 

than 4m
2
) able to achieve high energy rates (4417 wh/m

2
day); these constructions are 

represented in black. 

From the map (Figure 4-22) it is possible to infer that industrial zones (highlighted with arrows) 

would be more efficient energy producer than residential areas, in addition, it is possible to 

identify the most productive buildings.  
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.  

Figure 4-22 Potential solar energy map, the industrial zones are pointed with and arrow. 
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4.3.2 Distribution of the Solar Energy During the Day 

As a fist approach to explore the distribution of the solar energy throughout the day, sixteen 

buildings were selected (Figure 4-23) as subject of the analysis. They were selected with 

different tilts and orientation, and then it is expect the result would be more representative. The 

Solar Analyst tool was carried out (over the sixteen buildings) on the 15
th

 day of every month, at 

intervals of one hour, utilising the atmospheric parameter from T45.  

 

 

 

 

 

 

 

 

In Figure 4-23, it is possible to appreciate that the selected constructions (delineated in red), 

correspond to a residential area. They have different orientations and roof inclinations. In 

addition, the zones that receive more than 4417 (wh/m
2
day) are highlighted in light-red. 

Figure 4-23 Building for the analysis of energy daily distribution  
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The hourly average of the sixteen buildings was used for the analysis of the daily distribution of 

energy. 

Table 4-32 illustrate the hourly distribution of solar energy. The most productive months are Jun 

and July followed by May, August, April and September, with peak of harvesting energy 

occurring at 1:00pm. The coldest months of November, December, and January, are less 

productive and energy peak near 12:00pm.  

Table 4-32 Distribution of the solar energy (wh/m
2
) throughout the day  

Time Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

6           1 1 1         

7       2 1 88 92 106 2       

8 1 1 2 110 98 287 295 316 111 1 1 1 

9 67 90 108 320 305 501 509 525 314 98 74 61 

10 192 249 300 523 517 687 692 695 502 271 209 175 

11 294 387 475 682 697 825 826 806 641 422 320 266 

12 342 469 596 780 823 904 898 851 714 519 378 306 

13 329 485 652 809 886 918 905 827 717 549 372 285 

14 256 434 637 769 882 867 847 737 650 510 305 209 

15 142 324 553 661 812 756 727 586 519 408 189 100 

16 29 172 410 497 681 592 556 392 339 255 59 11 

17 0 32 226 295 500 393 353 181 140 88 0 0 

18   0.02 54 96 291 185 147 23 10 1.24     

19     0 1 95 29 13 0.003 0.000       

20         1 0.0135 0.0002           

21                         

 

Table 4-33 represents the perceptual distribution of energy measures on the 15
th

 day of every 

month. During the whole year, energy peak occurred between 12 to 1pm. The most energy 

productive months are May, June, July and August; during these months, the harvesting period 

spreads throughout 9 hours. Unlike, the coldest months when the energy harvesting is 

concentrated in the 6 hours nearest to the energy peak. 
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Table 4-33 Distribution of the solar energy (%) throughout the day 

Time Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

6 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 1 1 2 0 0 0 0 

8 0 0 0 2 1 4 4 5 2 0 0 0 

9 4 3 3 6 5 7 7 9 7 3 4 4 

10 12 9 7 9 8 10 10 11 11 9 11 12 

11 18 15 12 12 11 12 12 13 14 14 17 19 

12 21 18 15 14 12 13 13 14 15 17 20 22 

13 20 18 16 15 13 13 13 14 15 18 20 20 

14 16 16 16 14 13 12 12 12 14 16 16 15 

15 9 12 14 12 12 11 11 10 11 13 10 7 

16 2 7 10 9 10 8 8 6 7 8 3 1 

17 0 1 6 5 8 6 5 3 3 3 0 0 

18 0 0 1 2 4 3 2 0 0 0 0 0 

19 0 0 0 0 1 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 

 

A summary of the analysis of the hourly distribution of energy is presented in Table 4-34. It 

indicates that the hours of maximum harvestable energy are from 10am to 4pm, overlapping with 

labour hours that represent the maximum demand for energy. In the winter time, the period of 

production is shorter and more concentrated in the peak hours. In contrast, during the warmest 

month of April to September, the harvesting period is longer and more evenly spread throughout 

the day. 

Table 4-34 Daily energy production peaks 

Time  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

from to             

6 9 4.1 3.4 2.7 7.8 6.1 12.5 13.1 15.7 9.2 3.2 3.9 4.3 

10 16 95.9 95.3 90.3 85.1 80.4 78.9 79.5 80.9 87.6 94.0 96.1 95.7 

16 20 0.0 0.0 1.3 1.8 5.9 3.0 2.3 0.4 0.2 0.0 0.0 0.0 
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4.4 Chapter Summary 

This chapter present the results of the building detection, solar radiation modelling and 

estimation at building scale. T25 was selected as the best treatment for building detection. T45 

was selected as the best treatment to calibrate the solar radiation model. At building scale the 

methodology was able to answer the question proposed at in the introductory part. 
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5 CHAPTER 5 DISCUSSION 

This chapter discusses the results of the building detection, solar modelling and estimation at 

building scale. 

5.1 Discussion of Building Detection 

This study carried out a building detection process as a basis of the calculus at building scale. 

The building outlines were extracted from the LiDAR data because that ensures a perfect match 

with the solar modelling (derived from the same data). In addition, LiDAR data are especially 

suitable for urban modelling because it provides precise and detailed information about the 3D 

structures, as Dorninger and Pfeifer (2008), Matikainen et al. (2003), and Rutzinger et al. 92006) 

have reported. 

The building outlines were derived from the LiDAR data and not from the multispectral images 

as Levinson et al. (2009), Wigton et al. (2010), and City of Boston (2009) have done. This 

former approach was undertaken to avoid difficulties arising from the broad variety of rooftops 

and the spectral similarities between rooftops (especially flat roofs  built in concrete) and other 

impervious surfaces that are not roofs (such as pavement).  

Usually, a LiDAR building detection process is carried out on an object-based approach. The 

objects are generated by setting a height threshold. Then the buildings are separated from 

vegetation based on criteria of texture (local high differences) that can be measured by a 

Laplacian filter or Max Slope filter (Brandin and Hamren, 2003), Level Co-occurrence 

(Matikainen et al., 2003), or Homogeneity of Height (Rutzinger et al., 2006). 
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In contrast, this study uses an object-based approach to fuse LiDAR and satellite data and 

perform the building detection. That approach allows using the best characteristics of both 

datasets; LiDAR allows a highly precise extraction of the 3D forms, and multispectral imagery 

clearly distinguishes between land covers such as vegetation and impervious surfaces.  

5.1.1 Statistical Analysis 

The statistical analyses highlight NDVI and PA as the most efficient predictors for separating 

buildings from vegetation. That finding is coincident with Ünsalan and Boyer (2011), who 

consider NDVI as an excellent indicator to differentiate between vegetation and other land 

covers. Non other studies were found that use PA to separate buildings from vegetation.  

The success of the combination of NDVI and PA to separate buildings from vegetation is that 

they are independent one from each other. NDVI is based on the object reflectance and it is an 

outstanding criterion to distinguish between vegetation and other land covers. However, because 

of offset issues (between LiDAR and multispectral imagery), NDVI is not able to detect one 

hundred percent of the building objects. On the other hand, PA is based on the object shape 

(derived from the Lidar data). It is the perfect complement for NDVI because PA is able to detect 

objects that NDVI cannot. 

In addition, NDVI and PA tend to perform better when they are applied to large objects. A high 

levels of segmentation, the objects tend to be more irregular in their borders; thus, their rate 

perimeter area (PA) increases, and the PA of the buildings became similar to that of the 

vegetation; In the case of NDVI, probably when the object are smaller, the average NDVI is 

more affected by an offset between data sources (LiDAR and multispectral imagery). If the 
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predictors have different efficiencies at different object sizes, hierarchical classification has the 

potential to enhance the classification result.  

These findings are broadly applicable to different tasks that require fusing of different data 

sources and performing feature extraction. For example, urban 3D models are useful to support 

governmental policies, planning, solar modeling, commercial analysis, virtual tours, and several 

others fields.  

Independent sample t-test 

The independent sample t-test is summarized in Table 4-19. This identified NDVI and PA as the 

most significant individual variables for separating building from vegetation.  This significance 

arises because NDVI is an excellent criterion to separate vegetation from other land covers, and 

is only limited by the offset between the data sources. PA and Sobel are based on object 

geometry; however, PA seems to be a better predictor because Sobel fails when applied to 

separate small objects (DT2 and DT3 Class I). Finally, the average Area seems not to be 

significantly different between vegetation and building. 

NDVI passed nine of nine t-tests performed, proving to be a consistent criterion for all the 

decision trees. PA passed seven of nine t-tests, confirming its usefulness for DT1, DT2, and 

Class II- DT3; PA is not so efficient in Class I-DT3 because this criterion tends to perform better 

for larger objects. Sobel passed four of nine t-tests. It seems to be a suitable criterion for DT1 

and Class II-DT3; it is not efficient when applied to small objects (DT2 and ClassI-DT3).  The 

variable Area passed two of nine t-tests for independent samples and so seems not to be an 

appropriate criterion for separating buildings from vegetation. 
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ROC curves and AUCs 

The ROC curves (Figure 4-1, Figure 4-2, Figure 4-3 and Figure 4-4) indicate that NDVI and PA 

are the stronger predictors (for building detection), because their curves top the other criteria, 

especially for sensitivities greater than 90%. 

On the other hand, the AUCs, summarised (Table 4-21), shows PA and NDVI as the stronger 

predictors for DT1. The Sobel criterion appears as the most significant variable for DT2 and 

ClassII-DT3. These results are not consistent with the t-tests. That is because Sobel AUC is 

misleading. Its strength is due to its efficiency up to 80% sensitivity (in DT2 and DT3). Sobel’s 

efficiency drop drastically above 90% level of sensitivity, which can be verified in the ROC 

curves of DT2 (Figure 4-2) and DT3 (Figure 4-3 and Figure 4-4).  

 In addition, the AUC shows NDVI and PA criteria as better than Area, which is consistent with 

the ROC curve shapes (Figure 4-1, Figure 4-2, Figure 4-3, and Figure 4-4) and the results of the 

t-tests (Table 4-19). The AUC also suggests that NDVI and PA are more effective identifying 

larger objects. For example, in Table 4-21, DT1 presented higher AUCs than DT2 (which is 

more segmented), and Class II of DT3 presents greater AUCs than Class I of DT3 (which have 

smaller objects). 

Thresholds and Accuracy assessment 

The treatment, thresholds, and accuracy assessment results are summarised in Table 4-20. The 

combined criteria (NDVI OR PA) are selected for all the cases. That corresponds to T5, T15 and 

T25 for DT1, DT2 and DT3 respectively.  This combination is selected because of their 

consistency in the t-tests, their ROCs shape, and their superior results in the accuracy 
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assessment. The combined treatments obtained better results, in the accuracy assessment, than 

individual variables. That is because the combine criteria use the logic operator “OR” that is the 

union of the results of both individual criteria.  

In the accuracy assessment (Table 4-20), NDVI and PA tend to be more efficient for larger 

objects. This can be inferred because the lower levels of thresholds required detecting larger 

objects (Class II-DT3) and the higher levels of threshold required to detect smaller objects (Class 

I- DT3). This tendency can be explain: in the case of PA because at high levels of segmentation, 

the objects tend to be more irregular in their borders; thus, their rate perimeter area (PA) 

increase, and the PA of the buildings became similar to the vegetation; In the case of NDVI, 

probably when the object are smaller, the average NDVI is more affected by a offset between 

data sources (LiDAR and multispectral imagery).  

Comparing the accuracy assessment, between decision trees, DT1 appears to be the most 

efficient method, with a 100% of presences and 44% of false positives (Table 4-20). However, 

by visual inspection it is possible to note that DT1 has several disadvantages arising from its low 

level of segmentation.  On the other hand, DT3 obtained a more complete building detection than 

DT2, however, it introduced a large amount of false positives in the selection (Table 4-20). 

5.1.2 Visual Inspection of Maps. 

The visual inspection is a relevant criterion to choose a decision tree; it allows verifying effects 

of the segmentation and hierarchical classification, which are not evident on the statistical 

analysis. For example, Sobel segmentation allows better defining shapes, individualising 

adjacent structures, and distinguishing between overhanging features (such as a tree that hangs 
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over a building). Moreover, a hierarchical classification allows detecting better small buildings, 

however, it also include more noise (false positive). 

For example, DT2 and DT3 include a Sobel segmentation that DT1 does not. That allows DT2 

and DT3 a better definition of the object shapes, and moreover, permits separating between 

overlapping features. Figure 4-6-(a) shows the highway extraction of DT1, which includes 

adjacent buildings because of the impossibility of separating both objects. In this features DT1 

differs from DT2 and DT3 (Figure 4-6-(b) and   

Figure 4-6-(c), whose road selection do not include neighboring buildings. In addition, the road 

selection of DT3 (  

Figure 4-6) includes smaller features belonging to the highway, which DT2 (Figure 4-6) do not 

include. DT3 can obtain more complete object detection because it allows different thresholds 

according to object size (Table 4-20). 

In addition, complex shapes are roughly approximated by DT1. For example, in DT1, Figure 

4-7-(a) the building shapes appear as a square. In contrast, in DT2 and DT3 (Figure 4-7 - (b) and 

Figure 4-7 -(c) respectively) presents buildings better defined. Moreover, DT3 Figure 4-7 -(c) 

introduces small features that are not present in DT2 Figure 4-7 - (b) because of the broad 

thresholds that DT3 assigned to the small objects (Table 2-1). 

In other side, DT1 (because of its low levels of segmentation) tend to represent overhanging 

features as a single object. For example, a tree overlapping a building is represented by DT1 

Figure 4-8-(a) as one object. In contrast, DT2 and DT3 (in Figure 4-8 -(b) and Figure 4-8 -(c) 

respectively) separate buildings from overhanging trees (and present better defined objects). In 
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Figure 4-8-(c), DT3 also includes more small elements than DT2 Figure 4-8 -(b), because the 

broad thresholds that DT3 use for small objects (Table 4-20). 

 Finally, comparing DT2 and DT3, both are re-segmented using Sobel criteria; DT3, with its 

broader threshold for smaller objects detected a 100% of buildings. Unlike, DT2, with its low 

threshold level reached at only 99% of buildings, but present less level of noise (false positives). 

This higher level of noise of DT3 compared to DT2 is evident comparing Figure 4-6-(b) to 

Figure 4-6 -(c) and Figure 4-7 -(b) to Figure 4-7 -(c), and Figure 4-8 -(b) to Figure 4-8 -(c) 

respectively. 

In summary, DT3 is considered the best decision tree because the Sobel segmentation allows a 

better defining objects shapes, and separating adjacent and overlapping features; as was 

demonstrated by the visual inspection. In addition, DT3 it includes a hierarchical classification, 

which is suitable because the predictors tend to perform different at different object sizes. T25 

was selected as the best treatment to perform the building detection, because it combines DT3 

with the two stronger predictors NDVI and PA. 

5.1.3 Precision of Feature Extraction 

Even though LiDAR data are especially suitable for generating 3D city models because of this 

data already represents the structures, the precision of the product depends on several factors 

especially: the accuracy of the data, the object size and form, and the matching of the different 

data sources. The accuracy of the data sources utilised in this study was described on the 

introductory chapter and all the datasets met a high level of quality control.  
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The object size affects the precision of the building extraction because during the object 

generation a minimum size is set and also because the object size influences the performance of 

the predictors.  

A minimum object size was defined as 20m
2
 in order to obtain a workable number of objects and 

exclude vehicles, which are similar to buildings in reflectance and shape. Then, during the object 

generation, objects smaller than 20m
2 

are merged into its larger neighbours, thus, the precision of 

the building detection is limited to objects larger than 20m
2
.  

In contrast, the efficiency of the predictors decreases when the object size reduces. For example, 

the AUC summarised in Table 4-1 shows that PA obtains excellent results (90%) in DT3-ClassII 

(objects between 88 and 259m
2
), but it loses effectiveness (83%) in DT3-ClassI (objects smaller 

than 88m
2
). This change in efficiency occurred at higher levels of segmentation, the object’s 

borders became irregular and the means (PA) of the building became similar to the means of 

vegetation. In addition, NDVI also decreases in AUC efficiency (Table 4-21) when the object 

size is reduced, because the means average of (NDVI) became more sensitive to mismatches of 

the data. The sensitivity of the predictor to the object size can be partially overcome by carrying 

out a hierarchical classification and adjusting the threshold according to the object size. For 

example, Table 4-20 illustrate that DT3 allows setting larger thresholds for the smaller objects.  

The object shape is other factor influencing the precision of the building detection process, 

especially at low levels of segmentation. For example, DT1 roughly approximates complex 

building shapes, Figure 4-7-(a); this issue can be partially overcome by re-segmenting the objects 

with an edge detector as is done by DT2 and DT3 (Figure 4-7-(b) and -(c) respectively). 

Similarly, overhanging features such as a trees overlapping houses are usually detected as single 
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object by DT1, Figure 4-8-(a); however, the edge detector used by DT2 and DT3 help to separate 

and define the objects (Figure 4-8-(b) and -(c) respectively). Nevertheless, despite that help, 

adjacent buildings, such as townhouses, are always represented as a single object.   

Finally, the integration of LiDAR data and satellite imagery is an important factor influencing 

the precision of building extraction. NDVI is an excellent criterion to distinguish between 

vegetation and constructions; however, integration pixel by pixel is difficult because, usually, 

there is some level of offsetting between the datasets. For instance, the outlines of the objects 

(derived from the LiDAR data) may not perfectly line up with the objects in the satellite image, 

Figure 4-5 - (b), from where the NDVI is derived. 

In this study this issue is overcome through two strategies: an object oriented approach and 

combining a predictor based on the reflectance (NDVI) with a predictor based on the geometry 

of the object as are: PA, Sobel, and Area. These two strategies were successful in integrate the 

LiDAR data and satellite imagery  because the object oriented approach does not require a 

perfect pixel by pixel match; it only requires that the predictors be (in average) significantly 

different between groups (building and vegetation). In addition, the combination of two 

predictors based on different sources such as NDVI (based on object reflectance) and PA (based 

on the object geometry) ensures a high efficiency in the building detection process. 

5.2 Discussion of Solar Modelling 

This study carried out a GIS solar modelling based on LiDAR data, which provides precise and 

detailed information of the 3D structures of the rooftops. Then, the model accounts for the shade, 

tilt, and orientation effects given by the real topography.  Many studies estimates solar radiation 
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based on the cadastral outlines, assuming flat roofs, and using reduction factors for stand for 

shade orientation and tilt. (Chaudari et al., 2004, City of San Francisco, 2013, and City of 

Boston, 2009). However, a solar modelling based on the real 3D structure of the rooftops can 

gives a more price estimation of the potential solar energy that each building can harvest. 

The solar radiation model is based on three assumptions: the values measured by the weather 

station represent the true solar radiation of San Francisco; the solar panels would be set in a flat 

position (with respect to the roof), and the upper two third part of the histogram peak (derived 

from the solar map) represent regions shade-free. 

This study assumes that the weather station data represents the true solar radiation values of San 

Francisco, and uses them to calibrate the model. However, the NSRDB identified an uncertainty 

of 9% based on quantification of random and systematic errors. The random error is due to 

independent influences during measurements, and is different in every measurement process. 

The systematic error is due to a procedure or instrument and it is present in every measurement; 

this error is fixed and repeatable. Because the large sample size for this data set, random error is 

minimum and uncertainty is mostly systematic. 

The second assumption is that the solar panels would be in a flat position with respect to the 

roofs; however, considering the possibility to tilt and orient panels, higher solar radiation values 

may be obtained. In addition, the modeled values do not vary with tilt at the same rate that data 

measured by weather station does (Figure 4-14). Thus, modeled solar radiation values are 

expected to be more precise at lower tilts.  For example, at tilt 0, the error is 3%, and at tilt 90, 

the error is 29% (Table 4-30).  
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Calibration model T45 tends to underestimate solar radiation a high tilt levels.  More precise 

results can be obtained by calibrating every month with an individual combination of 

atmospheric parameters, according with its specific conditions. However, this study chose an 

annual calibration because is more time and computationally efficient due to the large of the 

scene, in addition the annual result was considered sufficiently accurate.  

The third assumption is that the top two thirds parts of the histogram peak represent the zones 

shade-free. The threshold was found by analysing the yearly average masked by the building 

outlines. The idea behind using a masked version of the solar map is to obtain an image free of 

noises, one that represents only the solar energy received by the buildings, non by vegetation or 

ground. 

The thresholding process pretends to label the pixels, from the areas shade-free, which receive 

the highest amount of energy as suitable for installing solar panels and others as not adequate. 

This process can be carried out for an individual building or for the whole image; an individual 

threshold allows to find the cut value that fit better for a specific building. However, this study 

chose a general threshold because it allows comparisons between buildings, determinations of 

which one is the more efficient for energy harvesting. In addition, the threshold allows the 

identification of the best places to locate solar panels, usually the building owners do not cover 

the whole roof with panels, and they rather prefer to install the PV in the most efficient places. 

In order to select this threshold, statistical parameters such as the median and the mean were 

considered, however, these parameters were discarded because these are central measurements, 

and the segmentation is looking for extremely high value. Then, a more sophisticated approach 

was taken; an image histogram was created (Figure 4-11), and the threshold was found by 
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analysing its shape.  The objective of the threshold is selecting the area shade-free that retrieve 

the highest amount of energy; including as many pixels as possible. Then, because the peak of 

the histogram is located among the higher values, the threshold was set, by image observation at 

the initial two third parts of the peak. Figure 4-18 shows the image histogram and the selected 

threshold; Figure 4-19 shows the corresponding places shade-free, in the image. The pixel values 

equal or higher than the threshold were labelled as the best areas (for installing solar panels). 

5.3 Discussion of Estimations at Building Scale 

The estimations at building scale involve the amount of energy that each building can harvest by 

installing solar panels, the cost of buying this energy from a local distributor and the reduction 

on the CO2 emissions that this panels produce. These calculi are based on the building outlines 

and solar model obtained in the previous sections, and then are under of the same limitations and 

constrain than these process.  

In addition, the estimation of the potential energy harvested by each area (3-7) applied the same 

module coverage (65%) to all type of constructions. However, industrial buildings tends to 

present more percentage of surfaces available to set solar panels, then probably, a coverage 

factor customised by building type may obtain a more accurate result.  

Other efficiency factors can be customised to local condition, knowing for example, the specific 

type of solar panel that will be installed and the local cost of the energy. 
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5.4 Chapter Summary 

This chapter discuss the results presented in chapter 4. T25 was selected to carry out the building 

detection because of it combines the best decision tree and the stronger predictors. DT3 is 

considered the best decision tree because its good levels of object-shape definition. In addition, 

the Sobel segmentation allows DT3 to separate overlapping elements such as building and trees. 

Moreover, the hierarchical classification allows DT3 to maximize the number of building 

detected.  

T45 was selected to carry out the solar modelling because of its high levels of precision. Among 

the annual treatments T45 obtained the smaller amounts of error. On other hand, an annual 

calibration was preferred to a monthly calibration; because it is more time and computationally 

efficient. 

At building scale, the methodology proposed was able to answer the questions of how much 

energy each building can produce, and what is the significance of this energy in economic and 

environmental terms. In addition, the best places to locate solar panels (in each building) were 

found. Finally, the information at building scale allows comparing between buildings 

efficiencies.  
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6 CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

This chapter offers the conclusions of this study, describes its limitations and present some 

suggestions for future studies. 

5.1 Conclusions 

Solar radiation is a clean renewable energy that addresses the two main challenges of our times: 

energy scarcity and global warming. The implementation of solar panels involves benefits such 

as providing economic saving, diversifying energy sources, reducing the electric demand on the 

central system, limiting the use of fossil fuels and reducing the greenhouse emissions.  However, 

before installing solar panels, it is important to assess the energy that a building can produce and 

the best location to install them.  

This study provides a methodology to semi-automatically estimate the energy that every building 

can harvest, in an area of 12 km
2
 of the City of San Francisco. This energy was expresses as 

economic saving and environmental benefits. The method involves three main sections: building 

detection, solar modeling, and estimations at building scale. 

The building detection process allows applying this methodology to any location, regardless of 

whether the area counts on cadastral outlines. In addition, a solar modelling based on the real 3D 

feature of each building allows a customised and realistic estimation that take into account the 

many factors that influence energy harvesting, such as roof area available, shade, orientation, tilt, 

and also the many loses of efficiency that the system may have. 
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This study found that an object-based approach allows a good integration between satellite and 

LiDAR data overcoming some offset issues that appear because of the large size of the study 

area and the elevation differences.  

This thesis analyses the dependency of the building detection process on the object size. This 

analysis compares DT3 Class I (smaller objects) and DT3 Class II (larger objects). The statistical 

analysis (t-tests, AUC, ROC curves and accuracy assessment) indicate that the building detection 

process is more efficient when it is applied to larger objects (DT3 Class II), because smaller 

object are more sensitive to offset between data sources.  

Moreover, this study examines the dependency of the building detection process on segmentation 

using an edge detector filter (Sobel). These analyses compare DT1 (without Sobel segmentation) 

to DT2 and DT3 (Sobel segmented). The statistical analyses (t-tests, AUC, ROC curves and 

accuracy assessment) show that the building detection process is more efficient when it is 

applied to objects with lower levels of segmentation (DT1). However, a visual inspection proved 

the value of the Sobel segmentation because DT2 and DT3 were found more precise in defining 

object-shapes. In addition, the Sobel segmentation allows DT2 and DT3 to separate between 

adjacent and overlapping features, such as, neighboring buildings or trees hanging over 

buildings. 

The efficiency of the predictors was analysed by comparing them individually and combined. 

The statistical analysis (t-tests, AUC, ROC curves and accuracy assessment) determined that the 

stronger predictors were NDVI and PA. The interaction between these variables was highly 

positive; the combination of two predictors always yields higher stronger results than each 

individual variable.  



 

 

135 

 

T25 was identified as the best treatment to perform the building detection process, because it 

utilizes the stronger predictors and the best decision tree. The best combination was NDVI and 

PA. This combination succeeded because these predictors are independent of one another. NDVI 

is based on object reflectance and PA on object geometry, thus, their results are complementary. 

On the other hand, DT3 was identified as the best decision tree because of its flexibility in 

assigning different thresholds to different object sizes. The hierarchical classification of DT3 

became especially relevant because the predictor perform different at different objects sizes. 

The Solar Analyst tool is very suitable for modelling solar radiation at building scale; because it 

considers local factors such as orientation, tilt, shadow (cast by local topography), and weather 

conditions. The proper set of atmospheric parameters is crucial to obtaining accurate results. In 

addition, GIS solar modelling generates outputs continuous on the space. 

The combination of atmospheric parameters T45 (Transmittivity 0.5 and Diffuse proportion 0.5) 

was identified as the best for the conditions of San Francisco, California. An annual calibration 

was preferred to a monthly calibration; because it was more computationally and timely efficient. 

At building scale, this study proposes a methodology to assess the solar potential of each 

building.  The methodology successfully generates information about the potential energy that 

each building can harvest, the cost of buying this energy from a local distributor, and the 

reduction on CO2 emissions that this amount of energy represents.  In addition, the most suitable 

areas to locate solar panels in were identified. 
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5.2 Limitations and Suggestions for Future Studies 

One limitation in the building detection process was the object size, because this procedure is 

suitable only for buildings larger than 20m
2
. In addition, the efficiency of the predictors is higher 

when they are applied to larger object and detect the whole building population, imply 

introducing several false positives.   

For future studies in building detection, would be appropriated trying a principal component 

analysis to separate buildings from vegetation, especially applied to the predictors NDVI and 

PA. Because in a rotated plane may be possible to obtain a more efficient thresholds.  

In the solar radiation modelling, Arc GIS tool appears a very suitable as a base of the model; In 

addition, the calibration of the atmospheric parameters using weather station data is a practical 

approach. However, the process of 90 treatments was very tedious and time consuming task. The 

development of a tool for automates the calibration of the atmospheric parameter according 

weather condition would be very suitable and time saving. 

At building scale, the efficiency factors were applied homogenously to all the building 

population. However, may be more accurate applied a larger module coverage to industrial 

buildings than a residential areas. That because the first tend to present more surface available to 

locate solar panels. Other efficiency factors can be customised knowing the specific conditions 

of the system such as the solar technology to be implement. Finally, other reductions on 

greenhouse emission can be estimated by considering gases such as sulfur dioxide, and nitrogen 

oxide.  
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7 APPENDIX A 

Monthly square difference between modeled and measured Solar Radiation Values 

Treatment Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 
1 4.7 8.5 15.7 27.5 36.7 42.2 43.9 35.7 25.9 14.3 6.0 3.9 19.1

7 2 4.3 7.3 12.5 20.9 27.3 31.4 33.1 27.4 20.8 12.4 5.4 3.6 15.2
0 3 3.5 5.6 8.8 14.2 18.1 21.0 22.5 19.0 15.2 9.8 4.4 3.0 10.8
8 4 2.5 3.7 5.2 8.0 10.0 11.8 13.0 11.3 9.6 6.9 3.2 2.2 6.66 

5 1.4 1.8 2.1 3.2 3.8 4.8 5.5 4.9 4.6 4.0 1.8 1.3 3.04 
6 0.5 0.4 0.3 0.4 0.4 0.7 0.9 0.9 1.2 1.5 0.6 0.5 0.60 
7 0.0 0.0 0.4 0.5 0.7 0.4 0.3 0.2 0.0 0.1 0.0 0.0 0.11 
8 0.7 1.5 3.4 4.9 6.2 5.3 5.2 4.0 2.4 0.6 0.8 0.5 2.60 
9 3.7 6.0 11.0 15.0 18.5 17.0 17.2 13.9 9.8 4.2 4.1 3.0 9.51 

10 10.9 15.7 25.0 33.0 39.9 38.5 38.7 31.9 24.3 12.7 11.7 9.5 23.0
4 11 4.7 8.4 15.5 27.1 36.1 41.5 43.2 35.2 25.6 14.2 6.0 3.9 18.9
3 12 4.2 7.1 12.0 20.0 26.1 30.0 31.7 26.3 20.1 12.1 5.3 3.5 14.6
6 13 3.4 5.3 8.1 13.0 16.4 19.1 20.5 17.5 14.1 9.3 4.2 2.9 10.0
6 14 2.3 3.2 4.3 6.7 8.2 9.8 10.8 9.5 8.2 6.2 2.8 2.0 5.67 

15 1.1 1.3 1.4 2.0 2.4 3.1 3.7 3.4 3.4 3.1 1.4 1.0 2.12 
16 0.2 0.1 0.0 0.0 0.0 0.1 0.1 0.2 0.4 0.8 0.3 0.2 0.14 
17 0.1 0.4 1.2 1.8 2.4 1.9 1.7 1.2 0.5 0.0 0.1 0.1 0.74 
18 1.7 3.1 6.4 9.0 11.3 10.1 10.2 8.1 5.3 1.8 1.9 1.3 5.28 
19 6.7 10.2 17.5 23.7 29.0 27.3 27.8 22.7 16.7 7.9 7.3 5.6 15.7

7 20 17.8 24.7 37.5 48.8 58.7 57.6 57.8 47.9 37.6 20.9 19.1 15.9 35.3
3 21 4.7 8.3 15.2 26.5 35.4 40.6 42.4 34.5 25.2 14.1 6.0 3.9 18.6
3 22 4.1 6.9 11.4 19.0 24.6 28.2 29.9 25.0 19.3 11.7 5.2 3.5 13.9
8 23 3.2 4.8 7.2 11.4 14.4 16.8 18.2 15.5 12.8 8.6 4.0 2.7 9.05 

24 2.0 2.7 3.3 5.1 6.2 7.5 8.4 7.4 6.7 5.3 2.4 1.7 4.52 
25 0.8 0.8 0.6 0.9 1.0 1.5 1.9 1.8 2.0 2.2 0.9 0.7 1.18 
26 0.0 0.0 0.2 0.3 0.4 0.2 0.1 0.0 0.0 0.3 0.0 0.0 0.02 
27 0.5 1.2 3.2 4.7 6.0 5.1 5.0 3.8 2.2 0.5 0.6 0.4 2.37 
28 3.7 6.1 11.6 16.2 20.1 18.5 18.9 15.3 10.7 4.4 4.1 2.9 10.1

3 29 11.7 17.3 28.2 37.8 46.0 44.0 45.1 37.2 28.2 14.5 12.9 10.0 26.1
3 30 29.1 39.3 57.4 73.7 88.2 87.7 87.8 73.3 58.8 34.4 31.1 26.6 54.9
8 31 4.6 8.2 14.9 25.9 34.4 39.4 41.2 33.7 24.7 13.9 5.9 3.9 18.2
4 32 4.0 6.5 10.7 17.6 22.6 26.0 27.7 23.2 18.1 11.2 5.0 3.4 13.1
0 33 2.9 4.3 6.1 9.6 11.9 13.9 15.2 13.2 11.1 7.8 3.6 2.5 7.78 

34 1.6 2.0 2.2 3.3 3.9 4.9 5.6 5.1 4.8 4.2 2.0 1.4 3.18 
35 0.4 0.3 0.1 0.1 0.1 0.3 0.4 0.5 0.7 1.2 0.5 0.4 0.35 
36 0.0 0.3 1.1 1.8 2.4 1.9 1.7 1.2 0.5 0.0 0.0 0.0 0.65 
37 1.7 3.3 7.2 10.4 13.2 12.0 12.1 9.6 6.2 2.0 1.9 1.3 5.97 
38 7.3 11.7 20.9 29.0 35.8 33.8 34.9 28.5 20.8 9.6 8.3 6.0 19.0

1 39 20.6 29.6 46.5 61.7 74.7 72.4 74.6 62.0 48.3 26.3 22.7 17.9 43.9
9 40 48.6 64.1 90.4 114.

8 
136.

7 
137.

8 
137.

6 
115.

4 
94.5 57.7 51.7 45.0 87.9

2 41 4.6 8.1 14.5 25.0 33.0 37.8 39.6 32.5 24.1 13.7 5.9 3.8 17.6
9 42 3.8 6.1 9.7 15.7 20.0 23.0 24.6 20.8 16.6 10.6 4.8 3.2 11.9
1 43 2.5 3.6 4.8 7.2 8.8 10.4 11.6 10.2 8.9 6.7 3.2 2.2 6.17 

44 1.1 1.2 1.1 1.4 1.6 2.1 2.6 2.5 2.8 2.9 1.4 1.0 1.70 
45 0.1 0.0 0.1 0.3 0.5 0.3 0.2 0.1 0.0 0.3 0.1 0.1 0.01 
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Treatment
tnt 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 
46 0.5 1.4 4.0 6.2 8.1 7.3 7.1 5.4 3.1 0.6 0.6 0.4 3.09 
47 4.3 7.8 15.4 22.3 28.1 26.5 27.2 21.9 15.1 6.1 5.0 3.4 13.75 
48 14.6 22.6 38.5 53.2 65.2 62.7 65.3 53.8 40.4 20.3 16.6 12.2 36.11 
49 37.4 52.3 79.6 105.

0 
126.

5 
124.

1 
128.

4 
107.

3 
85.3 48.7 41.2 32.7 76.78 

50 84.1 108.
8 

149.
2 

187.
7 

222.
5 

226.
7 

226.
1 

190.
3 

158.
6 

100.
4 

89.3 78.9 146.9
5 51 4.5 7.9 13.9 23.6 31.0 35.5 37.3 30.8 23.1 13.3 5.8 3.8 16.89 

52 3.6 5.5 8.3 13.1 16.4 18.9 20.4 17.5 14.4 9.6 4.5 3.0 10.23 
53 2.1 2.7 3.1 4.3 5.0 6.1 7.0 6.4 6.1 5.2 2.5 1.9 4.10 
54 0.6 0.4 0.1 0.1 0.0 0.1 0.2 0.3 0.7 1.4 0.7 0.6 0.34 
55 0.0 0.4 1.9 3.3 4.7 4.1 3.8 2.7 1.2 0.0 0.1 0.0 1.30 
56 2.3 5.0 11.6 17.8 23.1 21.9 22.1 17.4 11.2 3.7 2.8 1.7 10.14 
57 10.5 18.0 33.7 48.7 60.9 58.7 61.1 49.8 35.8 16.3 12.3 8.5 31.41 
58 30.2 45.6 74.9 103.

0 
125.

8 
122.

6 
128.

7 
106.

9 
82.1 43.7 34.3 25.4 71.97 

59 71.7 98.5 146.
0 

191.
5 

229.
7 

227.
6 

236.
2 

198.
3 

160.
4 

95.2 79.1 63.3 142.9
6 60 155.7 198.

1 
264.

9 
330.

3 
390.

1 
401.

5 
399.

7 
337.

6 
285.

7 
186.

4 
164.

8 
147.

5 
263.7

8 61 4.2 6.9 11.0 17.4 21.8 24.9 26.7 22.9 18.4 11.7 5.3 3.6 15.59 
62 2.4 3.0 3.0 3.6 3.7 4.3 5.3 5.2 5.8 5.6 3.0 2.2 7.72 
63 0.4 0.1 0.2 0.9 1.9 1.8 1.3 0.6 0.0 0.6 0.4 0.5 1.59 
64 0.6 2.7 10.0 18.9 27.0 27.3 26.1 19.2 10.1 2.0 0.8 0.3 0.38 
65 7.7 17.7 41.8 68.9 91.5 92.6 93.4 73.6 47.5 17.5 9.7 5.7 8.23 
66 30.1 55.7 108.

9 
166.

1 
212.

1 
213.

0 
221.

1 
179.

8 
127.

4 
58.2 36.4 23.9 30.92 

67 82.6 133.
5 

230.
5 

331.
8 

412.
0 

410.
7 

433.
5 

359.
3 

271.
3 

141.
2 

97.1 68.2 76.83 
68 192.0 279.

7 
436.

6 
597.

1 
725.

2 
721.

4 
764.

8 
642.

1 
510.

0 
293.

3 
219.

2 
164.

3 
158.9

2 69 409.9 547.
2 

777.
0 

1009
.7 

1203
.8 

1211
.9 

1264
.5 

1070
.3 

889.
4 

558.
8 

452.
0 

366.
5 

298.6
1 70 841.7 1042

.3 
1337

.6 
1644

.4 
1929

.4 
2018

.8 
2005

.0 
1703

.6 
1478

.5 
1012

.4 
886.

7 
809.

7 
533.8

9 71 3.6 5.2 6.3 7.8 8.3 9.3 10.9 10.5 10.7 8.8 4.5 3.1 13.15 
72 0.8 0.2 0.3 2.5 5.5 6.0 4.6 2.2 0.1 0.7 0.9 0.9 3.75 
73 0.9 5.4 23.1 49.5 74.2 79.7 75.3 54.3 27.3 5.4 1.4 0.4 0.07 
74 14.5 38.9 102.

7 
184.

4 
254.

0 
267.

7 
265.

9 
205.

6 
126.

5 
43.7 19.2 10.3 9.05 

75 62.0 129.
1 

277.
1 

452.
1 

594.
2 

615.
8 

630.
1 

504.
7 

343.
0 

146.
8 
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8 APENDIX B 

Intermediate results 

 
Figure B-1 False Color of the Study Area 

 
Figure B-2 NDVI of the Study Area 
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Figure B- 3 Buildingoutlines over nDEM 

 

 
Figure B- 4 Buildingoutlines over Sobel 

 
 

 
Figure B- 6 Table of properties of the Building 

outlines 

 

 

 

 

 

Figure B-5 Building outlines over NDVI 
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Figure B-7  Solar radiation 

map 

 

 

 

 

 

 
Figure B-8 Solar radiation on 

rooftops   

 
Figure B-9 Suitable areas to 

install PV (red) 

 

 
Figure B-10 Solar radiation 

map 

 
Figure B- 11 Solar radiation 

on rooftops   

 
Figure B-12 Suitable areas to 

install PV (red) 

 

 


