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Abstract

This thesis research has attempted to address two challenging problems in winter road
maintenance, namely road surface condition (RSC) estimation and forecasting. For RSC
estimation, the goal of the research was to develop models to discriminate RSC classes based
on continuous friction measurements (CFM) and other available data such as temperature
and precipitation history. A systematic exploratory study was conducted on an extensive
field data set to identify the categorical relationship between RSC and various aggregate
CFM measures, such as those related to probability distribution and spatial correlation.
A new multi-level model structure was designed, under which binary logistic regression
models were calibrated and validated utilizing several carefully chosen aggregate measures
to classify major RSC types. This model structure was found to be effective in capturing
the overlapping nature of CFM ranges over different RSC types – a problem which has not
been addressed adequately in the past studies. An alternative model with support vector
machine (SVM) was also developed for benchmarking the performance of the proposed
logit model. It was found that the two types of models are comparative in performance,
confirming the high performance of the proposed multi-level model.

For road surface condition forecasting, a novel conceptual framework for short-term
road surface condition forecasting is proposed, under which the short-term changing pro-
cess of surface temperature, friction level and contaminant layer depths, is comprehensively
explored and analyzed. This study framework is designed to consider all important con-
ditional factors, including weather, traffic and maintenance operations. The maintenance
operations, especially salting, are handled by loosening the strict Markovian assumption,
i.e., a history instead of one single time interval of salting operations is considered. In this
way, the variation of snow/ice melting speed caused by both residual salt amounts and
salt/contaminant mixing states is incorporated in the forecasting model, which enables
accurate short-term forecasting for contaminant layers. This approach practically circum-
vents a major limitation of previous studies, making the post-salting RSC forecasting more
reliable and accurate.

Under the proposed model framework, several advanced time series modelling method-
ologies are introduced into the analysis, which can capture the highly complex interactions
between RSC measures and conditional factors simultaneously. Those methodologies, espe-
cially the univariate and multivariate ARIMA methods, are for the first time applied to the
winter RSC evolution process. The forecasting errors of surface temperature, friction level
and contaminant layer depths are all found to be small, implying that both the proposed
study framework and the resulting solutions closely match the real-world observations.
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The proposed forecasting models are simple in structure, easy to interpret and mostly
consistent with physical knowledge. Compared to the existing models, the proposed mod-
els provide extra flexibility for refactory, tuning and deployment. Furthermore, all the
modelled RSC measures are numerical and the forecast errors are relatively small, sug-
gesting empirical models could be an efficient alternative to physical models. With the
well-designed modelling methods, the resulting empirical models as calibrated in our study
can be implemented into a decision support and simulation tool with high temporal reso-
lution and accuracy.
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Chapter 1

Introduction

1.1 Background

Winter is a beautiful season. But in countries with severe cold weather, heavy snowfall
and low temperatures could pose significant challenges to various aspects of people’s lives.
Among these challenges, automobile transportation is probably the most significant. Road
safety and mobility could be significantly compromised during snow events accompanied
by high wind, poor visibility, and cold and slippery road surface conditions.

The impact of winter weather on the safety and mobility of a road network has long
been the subject of research from different perspectives. Ontario Road Safety Annual
Reports (1993-2009) indicated that crashes happening on wet and snowy/icy road surface
respectively accounted for 17.6%∼23.8% and 9.4%∼19.9% of total car accidents. In a study
on identification of dangerous highway locations in Quebec, Brown & Baass (1997) found
the winter season is associated with low rates of mortality-and-serious-injury accidents and
high rates of property-damage-only accidents. Wallman & Åström (2001) estimated that
collision risk increases by 50%∼100% during snowfall. The increase in risk is more related
to the friction reduction of the road surface. Goodwin (2002) found that over 22% of total
crashes in the United States are weather-related with 13% happening during snowfall.
Wallman (2004) also found that accident rates could be 16 times higher on black ice road
surfaces than on bare dry road surfaces. In their meta-analysis about the findings of thirty-
four papers between 1967 and 2005 examining the interaction of weather and traffic safety,
Qiu & Nixon (2008a) concluded that snow events could increase the crash rate by 84% and
injury rate by 75%. Usman et al. (2010) were trying to quantify the empirical relationship
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between accident occurrence and road surface conditions on event-based data and they
found that their correlation is highly significant.

The adverse impact of snow events on roadway mobility can be more straightforwardly
observed. Hanbali & Kuemmel (1993) and Knapp & Smithson (2000) reported snow events
could lead to as high as 50%∼60% reduction in traffic volume. Wallman & Åström (2001)
found the speed reduction due to wet/snowy/icy roadway conditions could be as large as
20%. A study based on 350 permanent traffic counter stations on the Alberta provincial
highway network showed a reduction of 0.5%∼3% in traffic volume for each centimeter of
snowfall during severe cold conditions (Datla & Sharma, 2008).

In summary, snow storms and the resulting adverse road surface conditions could have
a significant impact on road safety and mobility, increasing the crash probability and re-
ducing service accessibility, highway capacity and traffic speed. To minimize these impacts
of winter weather, systematic snow and ice control programs, involving plowing, salting,
sanding or their combinations, are commonly implemented in cold countries. These winter
road maintenance operations play a critical role in keeping highway transportation safe
and fast, but they have significant financial and environmental implications. For instance,
the monetary cost of winter maintenance activities in Canada is in the range of $1.3 bil-
lion per year (Jones, 2003). Morin & Perchanok (2003) estimated that approximately five
million tons of sodium chloride are used each winter season across Canada for snow and
ice control. Road maintenance chemicals may induce corrosion of vehicles and highway
infrastructures, contaminate ground and surface water in close proximity to highways by
runoff and seepage, and damage roadside vegetation. The severity of these adverse effects
on the environment is proportionate to the amount of salt used (Perchanok et al., 1991;
Transportation Association of Canada, 2008; Burtwell, 2001). Therefore, maintaining a
satisfactory level of service (LOS) for road users using less salt has become a significant
challenge for road maintenance authorities and practitioners.

As for improving the efficiency of maintenance work, a large body of knowledge and
experience has been accumulated, summarized and transformed into maintenance guides,
manuals and policies. Meanwhile, a lot of research work is ongoing, new thoughts and
innovative ideas are being proposed and tested, and advancing technologies are continuously
employed. The next several sections of this chapter serve as an introduction of relevant
knowledge about winter road maintenance.
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1.2 Winter Road Maintenance

Many methods and techniques are available for roadway snow and ice control, and they
generally fall into two categories, namely, chemical and mechanical (Minsk, 1998). Chem-
ical methods involve applications of chemical agents, such as Calcium Chloride or Sodium
Chloride, to lower the freezing-point of the water on a pavement surface. Mechanical meth-
ods include plowing, scraping, and air blowing (scouring a snow covered pavement using
high-velocity air).

Figure 1.1: Phase Diagrams for NaCl and CaCl2
(Canadian Strategic Highway Research Program, 2000)

Each maintenance method has its own working mechanism, and thus it is only effective
under certain road weather and surface conditions. This is especially true for chemical
based methods. The freezing point of a chemical solution, also called the eutectic tem-
perature, could vary markedly, depending on the type and concentration of the applied
chemical. Figure 1.1 shows the phase states of Calcium Chloride and Sodium Chloride

3



by temperature and concentration. If there is no chemical in a solution (i.e. zero con-
centration), the freezing point of the solution is 0 ◦C. When the chemical concentration
increases, the freezing point decreases until reaching the tipping point beyond which adding
more chemical will have no effect on the freezing point. An important implication of this
pattern is that any decisions on chemical application, such as type and rate, must ensure
the effective temperature range of the chemical matches the actual road surface temper-
ature. Some field studies have confirmed the large variation in freezing-point depressing
capability of different chemicals (Ketcham et al., 1996; Minsk, 1998; Fu et al., 2006).

Deicing chemicals may be applied in either solid, pre-wetted solid or liquid form, and
the decision on which form to apply usually depends on many factors such as weather,
road surface condition, availability of salting equipment, and costs. Solid chemicals require
moisture to become effective and are therefore most suitable when the road surface is wet.
On the other hand, pre-wetted salt or liquid salt solutions become more effective when
the road surface is dry. Salt can be applied in advance of a snow storm event to prevent
snow and ice from being bonded to the pavement surface. This proactive strategy, called
“anti-icing”, makes the subsequent maintenance operations, especially plowings, much eas-
ier. When this anti-icing strategy is adopted, the amount of chemicals needed is usually
significantly less than if the chemical is applied to existing compacted snow/ice (Canadian
Strategic Highway Research Program, 2000). Regardless of the form of application, accu-
rate information about the current and future conditions of road surface temperature and
precipitation is critical to determine time, location, and chemical amount.

When the road surface temperature drops below the effective temperature range of any
available deicing chemicals, sand is usually applied as a direct means of increasing road
surface friction level. On the other side, when snow and ice accumulate to a certain depth,
applying a mechanical process to remove pavement contaminants becomes a more effective
approach than salting and sanding.

1.3 Road Weather and Surface Condition Monitoring

With the availability of a wide variety of snow and ice control methods, each having unique
characteristics and optimal working conditions, timely and accurate information about the
road weather and surface conditions of maintenance routes is a basic requirement in the
development of efficient maintenance strategies and operation plans. In other words, the
delivery of an effective winter road maintenance program largely depends on the level of
knowledge about the current and future road weather and surface conditions, which is the
primary concern of this research.
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Real-time road surface conditions are traditionally monitored by human observation.
This practice is changing around the world as new technologies are being developed and
implemented. Some of these technologies have shown great promise in improving the
monitoring of winter road surface conditions and thus the efficiency and cost-effectiveness
of maintenance operations. However, applications of most of these technologies are still at
an experimental stage due to incomplete understanding of their effectiveness, reliability, and
costs/benefit tradeoff. A detailed discussion about these technologies is given in Chapter 2.

1.4 Policy and Performance Measure

In order to promote consistent service delivery and optimal resource planning, most high-
way agencies have established their own winter road maintenance standards or policies
that designate a minimum LOS that must be maintained for different classes of highways.
LOS is a concept used to represent the driving quality of the road surface from the drivers’
perspective and is commonly defined on the basis of road surface conditions such as snow
cover, snow depth and friction level. Once a service standard is established, the road
surface condition (RSC in short) is monitored accordingly to measure the performance of
maintenance operations and thus evaluate how well the service standard is met. Winter
road maintenance policies are generally classified into two major types in terms of RSC
measure:

1. bare pavement (BP) policy

2. friction-based (FB) policy

A BP policy sets a service goal of recovering snow/ice covered roadways to a bare state
within a specific time frame. In general, a set of LOS classes are defined for different types
of roadways on the basis of bare pavement recovery requirements in combination with some
other RSC measures, like snow depth. For example, Ministry of Transportation Ontario
(MTO) specifies that the Class I roads should be restored to essentially bare condition no
later than eight hours after a storm ends (http://www.mto.gov.on.ca/english/engineering/
winter-highway-maintenance.shtml).

BP policies are currently adopted by most provinces and states in Canada and the US.
One major advantage of BP policies is that they are easy to implement and monitor. Bare
pavement status and snow depth are usually reported by maintenance or quality assurance
personnel based on periodic visual inspection during and after snow events. Because of
the descriptive nature of the measure, it conveniently circumvents the need to account
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for the random variations of RSC. On the other hand, the same nature also suggests the
drawbacks of this method, mainly, the lack of objectivity and repeatability. Also, BP
policies do not consider the winthin-storm conditions. Actually, maintaining RSC to meet
certain minimum requirement during a snow event could become very important if the
snow event lasts a long time.

FB maintenance policies represent an alternative to BP policies with the intention of
addressing the drawbacks of BP policies. Friction is the level of the resistive force to
the movement between road pavement and vehicle tires and is therefore by definition the
most accurate and objective measure of driving quality of a road surface. Many field
and laboratory studies have confirmed the significant correlation between RSC types and
friction level, and have suggested that using friction measurement as a tool for decision
making and performance measure is highly feasible. But field studies have also shown
that different RSC types could produce very similar friction levels. This could be caused
by the uncertainties associated with friction measurement itself or the fact that friction
measurement is a line measurement and poor in lateral coverage. As a result, using friction
levels solely as the maintenance policy standard could cause serious problems under certain
circumstances. This is probably the major obstacle hindering a wide adoption of FB policies
around the world. In any implementation of FB policies, technically, the following issues
inevitably need to be addressed:

� How to consistently and reliably infer RSC based on friction measurement? The liter-
ature review in Chapter 2 indicates that existing friction-based performance measure
methods vary significantly in terms of classification schemes. Furthermore, all ex-
isting approaches use mean friction measurement as the only RSC discriminator,
and ignore other factors that could potentially influence the friction measurement.
Thirdly, different friction measuring devices give quite different measuring results. In
order to give consistent measurement, they have to be inter-calibrated, which is very
challenging due to their different measuring mechanisms.

� How a friction measuring device should be operated to maximize its effectiveness
as a road condition monitoring tool, e.g. what are the best sampling and reporting
intervals and methods?

1.5 Research Objectives

As discussed in previous sections, effective winter road maintenance requires timely and
reliable monitoring, estimation and forecasting of RSC. The latest developments in sensor
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and information technologies have significantly advanced the means for RSC monitoring
and data collection, making sheer volumes of real-time data available for maintenance man-
agement and traveller information systems. How to efficiently turn these data into models
and tools giving information that is directly useful for the decision-making of maintenance
service providers and travellers is the major concern of this thesis study. The goal of this
research is to address this concern with the following specific objectives:

1. To conduct a systematic study on the characteristics of RSC types, their representa-
tion schemes and measures available in literature.

2. To investigate the correlation patterns between alternative measures of RSC. The
research will primarily focus on two condition measures that are critical to the current
state of maintenance practice, which are friction level and types of RSC.

3. To show the possibilities of inferring RSC by using vehicle driving data, especially
speed. This type of data can be ubiquitously collected at very low cost and with
negligible measurement error.

4. To systematically explore the relationship between RSC changing processes and main-
tenance operations under the influence of environmental factors, such as weather and
traffic.

5. To develop models that make short-term RSC forecasting during and/or after snow
events. These models should recognize the need to account for their inherent uncer-
tainties and variations, and the availability of a variety of real time data such as road
weather and surface conditions, maintenance operations, and traffic.

As indicated above, the modelling work of this thesis study consists of two major parts:
RSC estimation and forecasting. The main task is to develop models for both parts, and
the models should be easy to interpret and reconcile with common physical knowledge. Of
particular importance, the modelling methodologies should make the resulting models be
more actionable and agile. Actionable models can be calibrated, validated, and applied in
situ under current technology conditions at reasonable cost. Agile models can be promptly
tuned and refactoried with continuously collected data.

The focus of this study is not to build solid general first principles. Instead, the overall
philosophy of the modelling work is data driven, result oriented and cost conscientious from
an engineering point of view; notwithstanding, the calibrated models and their implications
should not contradict physical common sense and widely agreed judgments.
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1.6 Overview of Chapters

The main body of this thesis comprises five chapters and a set of supporting appendices.
Chapter 1 introduces the background, addressed problems, study objectives and scope
of this thesis. Chapter 2 details an extensive literature review on RSC monitoring and
estimation, friction measurement and RSC forecasting. Chapter 3 describes the process and
results of a systematic analysis of RSC estimation using friction measurement and vehicle
speed data. Chapter 4 comprehensively explores the RSC changing process. A modelling
framework tailored to the study objective is proposed, under which a set of calibrated short-
term RSC forecasting models is calibrated, validated and discussed. Chapter 5 summarizes
the major findings, implications and conclusions, and provides recommendations for future
study.
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Chapter 2

Literature Review

The primary objective of this research is to develop models that can be used to estimate
and forecast RSC during/after winter storm events based on the data collected from various
automatic monitoring technologies. This chapter reviews recent developments in relevant
research fields including road weather monitoring technologies, traditional and state-of-the-
art de-icing methods, RSC estimation methodologies, RSC forecasting models and related
decision support systems.

2.1 RSC Monitoring

The modelling efforts related to RSC estimation and forecasting are mostly based on and
limited by availability of data relevant to the corresponding physical processes. The ba-
sis for this study is the RSC measure data and related monitoring instruments/systems.
Therefore, this literature review starts from RSC monitoring technologies and the measures
they provide.

As mentioned in Section 1.3, winter road surface conditions (RSC) are traditionally
monitored by human observations; however, the rapid development in sensor technologies
is likely to make this practice obsolete. A variety of popular RSC monitoring instruments/
systems are introduced below. Some of them are under active testing, while the others
have already been extensively studied and reliably used in practice.
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(a) Ontario RWIS Sites (b) RWIS Station and Pavement
Sensor

Figure 2.1: RWIS Stations

2.1.1 Road Weather Information System (RWIS)

RWIS is a system consisting of meteorological stations strategically located alongside the
roadway that monitor roadside weather and/or pavement conditions. An RWIS station
is a system of sensors connected together and commonly configured to provide accurate
real-time site-specific pavement conditions and weather data. These data usually include
air and pavement temperature, relative humidity, wind speed and direction, precipitation
rate and so on (http://www.aurora-program.org/rwis.cfm). The observational data from
RWIS stations is usually communicated in real time to a central computer server where it
is archived, organized and then presented on web pages. The real-time data can reduce
the need and dependency for road patrolling in specific locations by providing timely and
accurate information to those responsible for directing winter maintenance operations.

RWIS technology has been adopted widely around the world (Toivonen & Kantonen,
2004). Ontario started to implement RWIS in the mid-1990s and the Ministry of Trans-
portation Ontario (MTO) had installed more than 100 RWIS stations across the province
by 2005 (Buchanan & Gwartz, 2005). Figure 2.1 shows the map of RWIS sites across On-
tario and the images of a typical RWIS station tower and an embedded pavement sensor,
which is a part of an RWIS station.

The technologies used on RWIS sensors are under fast development and MTO is very
active in testing and adopting such innovative winter maintenance technologies (Perchanok
et al., 1991; Perchanok, 1994; Ministry of Transportation Ontario, 2003; Pilli-Sihvola et al.,
2006; Feng & Fu, 2008). The installation cost of an RWIS station with basic functions is
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more than $50,000, not including the cost for maintenance and installation of additional
pavement sensors (Buchanan & Gwartz, 2005). With such a high cost, it is economically
impossible to install RWIS stations with a high spatial density along the roadway. There-
fore, the sparsely distributed spot-wise measurements at RWIS stations can only draw an
incomplete picture about the RSC over the whole roadway network. The lack of informa-
tion at locales not close to the stations is a major limitation of RWIS systems. During
winter snowstorms, the RSC is affected by environmental factors, such as snowfall, sunlight,
temperature, plowing, salting, traffic, etc., which naturally vary widely across different ar-
eas of a large road network. This fact usually causes the RSC to significantly vary along
the roadway. So using spot-wise RWIS measurements to represent the RSC of one section
or multiple sections of roadways is intrinsically questionable.

2.1.2 Thermal Mapping

Thermal mapping is a process by which the spatial variation pattern of road surface temper-
ature is measured, archived, modelled and mapped. Usually the road surface temperature is
remotely measured with an infrared thermometer mounted on the operating vehicle. As the
distribution pattern of warm and cold sections within a specific road section is determined
by its local environmental factors and weather conditions, quantifying the spatial variation
of the road surface temperature is a process of generating a unique temperature map (or
fingerprint) for this road section. With thermal mapping, it is possible that salt applica-
tion schedules and rates can be optimized to match the variation pattern of the pavement
temperature along a route, reducing the chance of over-application or under-application of
salt.

Achieving reliable thermal mapping is, however, a challenging task. First, years of
pavement temperature data need to be collected and analyzed in order to identify and
establish reliable condition-dependent temperature profiles, as RSC is affected by snow
precipitation and maintenance operations. Another limitation of thermal mapping is that
pavement temperature is only one RSC measure; thus, it does not consider other important
RSC measures, like snow coverage and depth.

2.1.3 Continuous Friction Measurement (CFM)

Friction measurement is the measurement of the friction coefficient between the vehicle tires
and the roadway surface. The friction coefficient is measured with some specially designed
testing tires mounted on a normal vehicle in touch with the pavement surface. Most recent
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popular friction measuring devices can continuously collect data by certain spatial intervals
along the test road; therefore, they are called continuous friction meters. The friction
measurement they make is called continuous friction measurement (CFM). As the friction
measurements are relatively easy to make and can cover long stretches of routes, CFM
has been used in Nordic countries as a powerful tool to monitor winter RSC and evaluate
maintenance performance (Norwegian Ministry of Transport and Communication, 2003).

It has been widely accepted that CFM is a technology that enables an objective, rapid
and reliable assessment of RSC. As the snow coverage on road surface is negatively corre-
lated to its friction coefficient, measuring the friction coefficient can give the most direct
information on RSC. With real-time on-the-spot CFM, the quality of maintenance oper-
ations can be objectively evaluated, timely location-specific information on driving condi-
tions can be relayed to the users, and salt application can be directed to where it is most
needed (Nixon, 1998b; Perchanok, 1998; Wallman & Åström, 2001; Al-Qadi et al., 2002).

But CFM technology has several major limitations. First, characteristics of tire and
pavement affect CFM, causing a large degree of uncertainty. Repeated CFMs on the same
patch of roadway surface could be quite different suggesting a measurement variance that
cannot be ignored. Second, different CFM meters usually give different value ranges for
the same RSC type; therefore, CFM meters have to be inter-calibrated to allow their
measurements to be meaningfully integrated/compared. Lastly, it is highly challenging to
get a reliable mapping from CFM value ranges to RSC types due to the reasons detailed
in Section 2.2.

2.1.4 Web-Based Surveillance Video and Automatic Road Sur-
face Image Recognition

RSC can be monitored using remote video technologies such as web cameras and CCTV
(Closed-Circuit Television) and transferred in real time to maintenance staff and road users
via the Internet. As the Internet has become a ubiquitous media, web-based surveillance is a
cost-effective alternative for remote monitoring during winter storms. It can provide timely
warning of snowy or slippery conditions and reduce response time in directing plowers and
spreaders to the monitored site. An example of such a system is shown in Figure 2.2. The
image is extracted from MTO Traveller’s Road Information Portal web page, on which
the interactive map enables users to select a CCTV camera at certain location to show
RSC (http://www.mto.gov.on.ca/english/traveller/trip/map.shtml). The CCTV cameras
automatically capture and update the video image at a pre-configured time interval.

While RSC images can be manually monitored using CCTV cameras by maintenance
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Figure 2.2: MTO Traveller’s Road Information Portal

staff, the development of image recognition technology has made it possible to quickly
classify RSC, based on video images using advanced computer algorithms. Image recog-
nition technology has been a subject of intensive research for a couple of decades and has
been applied to a variety of engineering problems. As common commercial web cameras
are much cheaper, and the video image can be transferred and analyzed in real time, this
monitoring technology has shown huge application potentials (Omer & Fu, 2010; Kawai et
al., 2012).

While the technologies discussed previously have shown great promise in improving the
monitoring of winter road surface conditions and thus the efficiency and cost-effectiveness
of maintenance operations, they have limitations in terms of not only the types of condition
parameters being monitored but also spatial and temporal coverage. For example, RWIS
sensors are capable of providing temporally continuous monitoring of road weather and
RSC such as temperature, precipitation, snow/ice but are limited to specific locations. In
contrast, CFM can map out the surface slipperiness of a whole maintenance route or road
network, but only at a few limited patrol observation runs. Image recognition accuracy is
significantly affected by the changing ambient light, which is always a concern during snow
events.
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2.2 RSC Measures

Because of the limitations of these monitoring technologies, human observation is still the
most important approach for RSC monitoring. Taking Ontario for example, maintenance
staffs are sent out during and after snow storms to inspect highway surface conditions such
as snow depth, snow coverage and BP status (Ministry of Transportation Ontario, 2007).
Patrolling frequency may vary from every half an hour to six hours depending on the nature
of the storm and the time of the day.

The reported RSC based on human observations are usually defined by contaminant
types, contaminant coverage patterns, contaminant depths or a combination of them. The
semantics used in the report are mostly descriptive, qualitative and fuzzy, sharing some
major properties of human natural language. For example, NCHRP (2004) proposed a
systematic RSC representation scheme that covers the following RSC types:

� center-line bare

� wheel path bare

� loose snow covered (percent area and depth)

� packed snow covered (percent area and depth)

� bare (percent area)

� thin ice covered (percent area)

� thick ice covered (percent area)

� dry

� damp

� slush (percent area and depth)

� frost

� wet

Note that the NCHRP classification is not completely categorical as additional quan-
tifiers (e.g. percent area and depth) are required to define some of the categories, such as
loose snow covered and slush. Those quantifiers are manually estimated thus are inherently
subjective and inaccurate. Recognizing the challenge of establishing a comprehensive de-
scription of RSC, this classification system is relatively complete and free of ambiguity, and
can be conveniently applied to almost all types of highways by the personnel with minimum
training. MTO uses a much simpler RSC monitoring scheme in their weather/operation
report sheets, which classifies RSC of a maintenance route into the following categories
(Ministry of Transportation Ontario, 2007):
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� bare dry

� bare wet

� slushy

� partially snow covered

� snow covered

� snow packed

Transport Quebec uses a very similar video-based RSC classification scheme including
the following categories (http://www.quebec511.gouv.qc.ca/en/index.asp):

� bare (dry or wet)

� partly (snow covered,snow packed or ice covered)

� snow covered, snow packed or ice covered

A guide has been developed by TAC to define common terminologies that describe
winter road conditions across Canadian provinces and territories (Hodgins et al., 2011).
The RSC classification scheme in the guide is as follows:

1. bare

� bare and wet
� bare and dry

2. partly covered

� partly ice covered
� partly snow packed
� partly snow covered

3. covered

� ice covered
� snow packed
� snow covered

The major problem with this descriptive approach of representing RSC is that there is
no clear distinction between some of the categories. As a result, people could give different
descriptions about the same RSC, which stems from the fuzzy nature of human languages.
In addition, the snow coverage and depth could have a wide interpretation due to their
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significant spatial variation along a maintenance route. Similarly, a highway section, even
a very short one, is likely to show obviously different RSCs, especially during snow event
periods. Although the monitoring personnel can make multiple-choice style reports on RSC
to address this spatial variation problem, the geospatial boundaries of different RSC types
cannot be quantitatively identified; thus it helps very little in improving the efficiency of
maintenance operations.

To address the drawbacks of categorical RSC monitoring schemes, CFM of winter RSC
is used in some countries (Al-Qadi et al., 2002; Nixon, 1998b; Perchanok, 1998; Wallman
& Åström, 2001). Sweden, Norway and Finland have their own CFM-based roadway
maintenance standards and LOS definitions. Friction measurements can be used as the
main basis for the decisions of sanding and salting operations (Norwegian Ministry of
Transport and Communication, 2003). It is also used as a benchmark to evaluate the
efficiency of the maintenance activities (Toivonen & Kantonen, 2004).

Besides categorical representation of RSC and numerical CFM, RSC measures could
also include pavement surface temperature, freezing point and residual salt, both of which
are measured by specific types of sensors (Mechler et al., 2000; Hunt et al., 2004). Table 2.1
summarizes RSC measures with respective monitoring approaches.

Table 2.1: RSC measures

RSC Measure Measuring Method
contaminant types human observation
snow depth pavement sensors
snow coverage
coefficient of friction CFM meters
pavement surface temperature pavement sensors
contaminant freezing point
residual salt

2.3 RSC Estimation

Among the RSC measures listed in Table 2.1, friction level and contaminant types have
close correlations. They could be considered as two perspectives of the same thing: one
is the visual appearance, and the other is the resulting slipperiness level. The visual
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appearance of RSC is the most important performance measure for maintenance operations,
especially in North America. On the other hand, the objective and quantitative nature
of friction measurement can provide highly reliable support for decision making when
combined with visual RSC observations. In fact, even in the countries using friction-
based (FB) policies, human visual observation and descriptive RSC reporting are still used
as an indispensable monitoring means. One major objective of this study is to explore
the mapping relationships between friction level ranges and visually different RSC types,
find ways to improve the reliability of this mapping, and numerically model this mapping.
In this section, previous studies in this aspect are reviewed, and important findings are
discussed.

2.3.1 Road Surface Friction Measuring Devices

The term “friction” used in this study refers to the friction coefficient, which is a measure
of the resistive forces to movement between two opposing object surfaces, mathematically
expressed by the equation:

µ =
F

N
(2.1)

where µ is the friction coefficient, F is the resistive force between two surfaces, and N is
the normal force applied on the surfaces, which is usually the weight of the moving object.

The friction coefficient between moving vehicle tires and winter road surfaces is the
major concern in our study. Thus, in this context, F is the slippery resistive force between
the moving tire surface and the winter road surface, and N is the force put on the moving
tire.

Based on Equation 2.1, the characteristics of the tire and pavement have a significant
effect on the amount of friction that can develop (Kummer, 1996; Sandberg, 1997). The use
of standardized friction measuring devices helps reduce the effect of tires on the variation
of the friction measurement (Andresen & Wambold, 1998). The effect of pavement con-
taminants on friction measurement can therefore be isolated by using standardized friction
measurement devices for further RSC analysis.

The most important factors related to friction measuring devices that influence the
friction measurement are tire, position and normal force (Bachmann, 1998; Henry, 2000).
In order to get stable and comparable friction coefficient values on a patch of road surface,
friction measurement must be standardized in terms of these factors (Wallman & Åström,
2001). Existing standardized friction measuring devices fall in four major categories based
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on the relative movement pattern between the measuring wheel and pavement: locked
wheel, constant slip ratio (slip speed is normally between 10 and 20% of vehicle speed),
variable slip ratio (slip speed is changing between 0 and 100% of vehicle speed) and constant
slip angle (usually 20 degrees) measurement meters. The following list includes some
popular friction measuring devices available in the market:

� Locked Wheel Devices: VDOT

� Constant Slip Ratio Devices: RFT, ASFT, Griptester, BV11, BV14, SFT, TWO

� Variable Slip Devices: French IMAG, RUNAR, ROAR, SALTAR

� Constant Slip Angle Devices: SCRIM, Mu-Meter, SafeDrive, Halliday RT3

Al-Qadi et al. (2002) have given a detailed review on these devices and their historical
usage on measuring winter road and airport runways. Most state-of-the-art friction mea-
suring devices are easy to install and operate, and continuously make measurements with
the mounted vehicle driven at a normal speed. Also, they work well under a wide range
of vehicle speeds, which makes the measurement more convenient and reliable. With the
development of the GPS (Global Positioning System) technology, the location of the op-
erating friction measuring device can be accurately tracked; therefore, each single friction
reading can be easily associated with its location stamp. The CFM with high-resolution
location stamps can be a powerful tool for hotspot targeting, job tailoring, resource de-
ployment, and performance tracking. If the mapping between CFM value ranges and RSC
types can be reliably established, it can further improve several important aspects of winter
road maintenance works. First, maintenance personnel can straightforwardly apply their
accumulated maintenance experiences based on visually distinguished RSC types. Second,
decision makers will gain more freedom in transplanting relevant guidelines, standards and
policies with different origins. Third, road travelers can easily understand what RSC they
are facing. Finally, with this mapping as a translator, estimated RSC types through CFM
can be compared, synthesized and combined with RSC measures from RWIS pavement
sensors or CFM from other friction measuring devices. For these reasons, a number of
studies have been conducted trying to reliably establish this mapping relationship.

2.3.2 RSC Mapping by Mean Friction Level

Most available FB maintenance standards are essentially built on the foundation of some
reliable mapping relationship between RSC types and measured mean friction levels (Nord-
strom, 1998; Katko, 1993; Finnish National Road Administration, 2001). One example of
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Table 2.2: Friction Ranges of RSC Types in Finland Standards

Friction
Value

0.00-0.14 0.15-0.19 0.20-0.24 0.25-0.29 0.30-0.44 0.45-1.00

RSC
Description

bad driving
conditions,
wet ice,
very
slippery

icy,
slippery

tightly
packed
snow,
satisfactory
winter
conditions

rough packed
ice and snow,
good winter
conditions

bare wet,
not slippery

bare dry,
not slippery

this friction to RSC category mapping is from Finland roadway maintenance standards
shown in Table 2.2 (Katko, 1993; Finnish National Road Administration, 2001).

Six RSC types are defined based on mean friction level. The lowest two ranges of
friction value, 0.00-0.14 and 0.15-0.19 correspond to the two worst types, namely wet ice
and icy. When the friction value increases, the RSC becomes better. When the friction
measurements are between 0.45-1.00, the category is bare, i.e., there is no snow or ice. It
can be found that the descriptions for some types in Table 2.2 are very similar, for instance
wet ice and icy. It is really difficult to visually distinguish between these two types, implying
that CFM could be more accurate in RSC classification than human observation. Another
example is Swedish airport runway maintenance standards (Antvik, 1997), which evaluate
the quality of RSC using friction measurement, and the RSC is only described with simple
words like “good” or “poor”. Certain mean friction ranges are mapped to these simply
described RSC types as shown in Table 2.3.

Table 2.3: Friction Ranges of RSC Types in Swedish Airport Runway Standards

RSC Type Friction Value

good 0.4 and above
medium to good 0.36-0.39
medium 0.30-0.35
medium to poor 0.26-0.29
poor 0.25 and below

Different from Swedish and Finnish standards, a study in Japan addresses the issue of
mapping mean friction levels to RSC types which are easier for human visual discrimination
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(Tokunaga et al., 2008). As shown in Figure 2.3, the probability distributions of friction
measurements for six RSC types are plotted together. Dry and wet types have higher
friction levels while types with snow or ice have lower friction levels. Friction ranges of
different RSC types may largely overlap although they are visibly different.

Figure 2.3: Mapping of Mean Friction Levels to RSC Types (Tokunaga et al., 2008)

A survey by Öberg & Gregersen (1991) showed similar overlapped fiction ranges for
different visually discriminable RSC types as shown in Table 2.4.

Table 2.4: Friction Ranges of RSC Types (Öberg & Gregersen, 1991)

RSC Type Friction Value

bare dry 0.8-1.0
bare wet 0.7-0.8
packed snow 0.20-0.30
loose snow/slush 0.20-0.50
black ice 0.15-0.30
loose snow on black ice 0.15-0.25
wet black ice 0.05-0.10

In summary, three major problems exist in the above RSC classification schemes:

1. For some very similar RSC types, friction levels are different in different classification
schemes, which could be due to two reasons. One is that the description for the same
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RSC type may vary from study to study, or from country to country. The other
reason is that the measuring devices used in these studies may be different, so that
even in similar RSC classification schemes, very different measurements could result.

2. The mean friction levels of different RSC types may significantly overlap, which makes
it difficult to reliably identify the nature of pavement contaminants solely based on
friction measurements.

3. The valid friction value ranges of some RSC types are relatively wide suggesting
friction measurements are usually associated with large tolerance intervals. This
phenomenon can substantially compromise the reliability and validity of the whole
classification scheme. Note that the second problem is directly linked to this problem.

To address the first problem, measurements of standard friction devices working under
different mechanisms can be calibrated to each other. Some field studies have shown that
the measurements of most friction measuring devices can be inter-calibrated in a simple
linear way (Wambold et al., 1995; Vaa, 2001). Although device inter-calibration can be
successfully achieved, it is still unlikely to unify so many classification schemes due to the
heterogeneity in application context, language and cultural barriers, or just researchers’
personal preferences or bias.

The second problem cannot be technically solved until some other explanatory param-
eters than the mean friction level are introduced into the classification scheme. These new
parameters should be able to provide certain information about RSC that the mean friction
level cannot sufficiently capture. This information, by itself or combined with the mean
friction, should be able to efficiently distinguish between RSC types.

The third problem arises out of the general friction measurement mechanism, as the
factors related to road surface textures, contaminants and tires all affect the measurement
and cause more uncertainty when directly mapping mean friction levels to different RSC
types. These factors are summarized in Table 2.5 (Kummer, 1996; Sandberg, 1997).

2.3.3 RSC Estimation Modelling Using CFM

The second and third problems identified in the last section suggest a need for further
research to build more reliable CFM-based RSC estimation models using other explana-
tory variables in addition to the mean friction level, and it is preferable that these RSC
estimation models address the uncertainty of friction measurement. Some studies have
attempted to address this challenge by different approaches.
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Table 2.5: Factors Influencing Road Friction Measurement

Road Surface Contaminant Tire
Macrotexture Chemical structure Tread pattern design
Microtexture Viscosity Rubber composition
Unevenness/Megatexture Density Inflation pressure
Chemistry of materials Temperature Rubber hardness
Temperature Thermal conductivity Load
Thermal conductivity Specific heat Sliding velocity
Specific heat Film thickness Temperature

Thermal conductivity
Specific heat

Perchanok (2002) conducted a discriminant analysis using three friction measurements,
namely, peak resistance (Fp), slip speed at which the peak resistance occurs (Vcrit), and
locked wheel resistance (F60), to classify RSC into categories, like bare wet, bare dry, loose
snow, packed snow, slush, and so on. The analysis built a series of linear discriminant
functions of Fp, Vcrit and F60 which could optimally discriminate different RSC types.
Although the discriminant functions were not explicitly listed in the article, the validation
results reported in the article suggest that these discriminant functions using more variables
than solely mean friction level could significantly improve the classification accuracy. This
study also suggests that certain probability density parameters of friction measurements,
which reflected the spatial distribution patterns of snow cover, could be used to improve
the discrimination power of the classification model. Variance and skewness of CFM are
two such parameters recommended by this study.

In another study by Perchanok (2008), CFMs were treated as time series and trans-
formed from the time domain to the frequency domain so that some hidden properties
of CFMs related to RSC types were disclosed. A special frequency-domain exploratory
graph, called “periodogram”, was used to show the influence of roadside terrain features
on large-scale highway spatial snow cover distribution patterns. The periodograms in his
study suggest that the spectral density curves of CFMs on snowy RSCs can reflect the
characteristics of road side terrain features, such as periodical changes of the elevation of
the adjacent terrains. Accordingly, some CFM parameters in the frequency domain can
possibly improve RSC classification quality.

Although these two studies have shed light on which potential aggregate features of
CFMs could be used to distinguish between different RSC types, they are exploratory in
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nature and are short in developing any substantial models. Our study will probe further
along the path they pointed out to systematically examine the distinguishing capabilities
of those aggregate features. Another implication of these two studies is to use stochastic
models to capture the uncertainty of friction measurements, so that the estimation results
are more realistic and reliable.

Chapter 3 will revisit some important technical details of these two studies and present
our extensive study on RSC type estimation using CFM.

2.3.4 RSC Estimation Using Other Data

Chapter 1 has reviewed some studies which show that RSC is associated with the decrease
in traffic speed and volume. However, using these traffic data to deduct RSC type is not
a good practice due to the following reasons:

� The changes of traffic speed, density and volume on a slippery road surface are more
reasonably considered as the results of drivers’ self-adjustment on driving behaviors
according to RSC. Therefore the large variance of people’s driving habits would cause
substantial unreliability if they are used to estimate RSC.

� Driving behavior and traffic flow properties could be affected by other factors si-
multaneously in addition to RSC, such as weather condition, traffic controls, road
geometries, and so on. With so many confounding factors, estimating RSC from
driving behavior would face overwhelming challenges.

� In a common sense, it is more logical to infer driving behavior from RSC, but not
vice versa. In other words, a specific driving behavior caused by slippery RSC could
also be caused by some other factors. Therefore, this inference link is considered
unidirectionally valid.

The above reasons can also explain why there is almost no study trying to use vehicle
driving data to infer RSC. Lack of study does not mean impossibility. If some driving data
are found to be strongly affected by RSC but affected much less than drivers’ behavior and
other factors, they are potentially useful for classifying RSC.

The driving data, which commonly include speed and longitudinal acceleration, can be
recorded in real time by most vehicles in the market. These data can be read from the
computer port of the vehicle, called on-board diagnostics port. The commercially available
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vehicle telematics devices can export those data and wirelessly transfer them at very low
cost.

Besides, a lot of cell phones, especially smart phones, have been equipped with GPS
chips and 3-axis accelerometers. GPS chips can not only measure the location of the ve-
hicle, but also can give highly accurate estimations on the Doppler speed of the vehicle
(http://en.wikipedia.org/wiki/Doppler effect). 3-axis accelerometers can measure the ve-
hicle acceleration in longitudinal, lateral and vertical directions all at once. All the data
collected by smart phones can be transferred by GSM to computation servers to estimate
RSC. Actually most smart phones already have substantial computation capability to pro-
cess the data and do calculations in situ.

Although we have found no studies addressing the RSC estimation problem with those
data, we will try to calibrate a set of RSC classification models using vehicle speed. Those
models are only to show possibilities, with no intention of giving physical interpretations
or applying to the real world.

2.4 RSC Forecasting

RSC forecasting has for years caught the attention of researchers, maintenance practi-
tioners, standard and policy makers, and roadway authorities all around the world. The
highly developed weather monitoring technologies have made weather forecasting models
more and more intelligent and powerful, which gives an edge in RSC forecasting. Numer-
ous studies, mostly initiated by governments, have attempted to tackle this problem with
a variety of approaches; however, most of the study results are not satisfactory enough
to establish reliable models which can be efficiently and reliably used in real-world winter
maintenance practice. We will review those studies in the following sections and summarize
what has been gained and what is missing.

2.4.1 Factors Affecting RSC Changing

RSC during a snow event could change quickly due to many factors related to meteoro-
logical process, maintenance operations and traffic (Klein-Paste, 2008). Meteorological (or
“weather” colloquially) factors such as temperature, precipitation, humidity, cloudiness,
wind, and so on, are direct causes of formation and melting of snow/ice on road surface.
Maintenance operations, such as plowing and salting, are aimed at reducing the amount of
snow/ice on road surfaces. Plowing is to remove snow physically while salting is to melt the
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snow/ice and break their bondage with the pavement surface. Abrasives such as sand, slag,
or cinders are also used to provide an immediate increase in traction. Sanding is usually
done at low temperatures where chemical reactions are ineffective, and snow or ice has a
strong bond to the pavement. However, traffic can cause this increase to be short-lived by
rapidly dispersing the applied abrasives (Ketcham et al., 1996; Minsk, 1998; Perchanok et
al., 1991).

The salting chemical agent can be applied in a dry state, or pre-wetted before appli-
cation. It can also be 100% dissolved in water and applied in a liquid state, which is
called Direct Liquid Application (DLA). Dry salt (usually referring to NaCl) needs initial
moisture before it goes into solution and this results in a lag between the time of applica-
tion and the time it becomes effective. Also, solid salt particles could be displaced from
the pavement by wind and traffic actions even before the solution process starts. Pre-
wetted salt can reduce this time lag by providing the initial moisture for the salt to go
into a solution and it can also help salt particles to adhere to the pavement. This has
the potential to reduce salt usage and be more effective than dry salt since the amount of
displaced salt is minimized and initial melting is expedited (Ketcham et al., 1996; Minsk,
1998; Transportation Association of Canada, 2008; Burtwell, 2001).

DLA is used primarily for anti-icing purposes, i.e., the chemical application is done
before the start of or very early into a snowfall to ensure that snow or ice are not bonded
to the pavement. Chemicals commonly used for DLA include solutions of calcium chloride,
magnesium chloride, sodium chloride, calcium magnesium acetate, and potassium acetate
(Ketcham et al., 1996; Minsk, 1998; Transportation Association of Canada, 2008).

As discussed in Section 1.2, pavement surface temperature is a critical variable in de-
ciding the amount and type of chemical agent to use. The effect of chemical agents in
melting snow or ice decreases as the pavement temperature drops. Table 2.6 lists the low-
est effective temperature (Eutectic point) for most common salting chemicals (Ketcham et
al., 1996; Minsk, 1998).

Besides application methods and temperature, some other factors, such as timing for
application, precipitation type, prevailing weather conditions, pavement structure and ma-
terial, and so on, also affect the efficiency of salting operations (Perchanok et al., 1991;
Ketcham et al., 1996; Minsk, 1998).

The effect of traffic on RSC is three-fold. First, vehicle tires can pack the snow/ice to
the road surface causing reduced traction. Secondly, traffic can accelerate the blending of
de-icing chemicals with snow/ice through pressure and heat generated from vehicles, im-
proving the de-icing effect of chemicals. Third, traffic can dilute the contaminant solution
and decrease the amount of the de-icing chemical on the road surface. The chemical dilu-
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Table 2.6: Eutectic Point of Chemicals

Chemical Eutectic Point (◦C)
Calcium chloride (CaCl2) -29.0
Calcium magnesium acetate (CMA) -7.0
Magnesium chloride (MgCl2) -23.0
Potassium acetate (KAc) -25.0
Sodium chloride (NaCl) -7.0

tion effect of traffic has been explored and modelled in a number of field studies (Blomqvist
& Gustafsson, 2004; Hunt et al., 2004; Lysbakken & Norem, 2008; Marchetti et al., 2008).
The findings of these studies indicate that the traffic-induced dilution process is exponen-
tial in nature as shown in Figure 2.4. The difference of the two dilution models in the
figure suggests that other factors, such as weather and pavement characteristics, affect the
way traffic dilutes the road surface contaminant solution. Few studies, however, have sys-
tematically investigated these factors, and there is a shortage in both theoretical studies
and empirical observations in this aspect. Hence, knowledge about the effect of traffic on
salt residual is largely vague and incomplete.

Figure 2.4: Traffic and Amount of Residual Salt at Two Locations (Blomqvist &
Gustafsson, 2004)

26



2.4.2 RSC Forecasting with Physical Approach

As discussed previously, winter RSC is affected by weather, maintenance and traffic factors
simultaneously and thus changes with high uncertainty and by a complex mechanism,
making it a challenging task to calibrate reliable forecasting models. Previous studies
address this RSC forecasting problem with two major approaches: physically based vs.
experience based models. We called them physical models and empirical models hereafter
in this thesis.

Physical models explain the whole snow/ice melting process taking place on a road
surface using physical mechanisms, which usually include complex numerical equations
modelling pavement energy balance/conduction and accumulation of surface contaminants.
One typical physical model is the Model of the Environment and Temperature of Roads
(METRo), which has been integrated into the MDSS (Maintenance Decision Support
System)–a sophisticated winter maintenance decision system developed in the United States
(Crevier & Delage, 2001; Pisano et al., 2004; The National Center for Atmospheric Re-
search, 2008). METRo uses roadside weather observations from RWIS stations together
with the weather forecast as input and solves the energy balance at the road surface and
the heat conduction in the road material to calculate the evolution of important RSC fac-
tors, such as temperature and water/ice depth. METRo is composed of three modules: the
surface energy balance model, the road material heat-conduction model and the surface
water/ice accumulation model. These three models work together to develop forecasts on
the pavement contaminant depth. A series of mathematical equations is applied to forecast
the energy flux of the pavement material and then the surface water/ice accumulation. The
surface energy balance model of METRo (Crevier & Delage, 2001) is used to estimate the
net energy flux at/near the road surface and its equation is:

R = (1− α)S + εI − εσT 4
s −H − LaE ± LfP + A (2.2)

R: the net solar radiation flux (joule/m2)

S: incoming solar radiation (joule/m2)

α: albedo of pavement surface, reflectivity of sun light (%)

ε: emissivity (%)

I: incoming infrared radiation flux (joule/m2)

εI: absorbed incoming infrared radiation flux (joule/m2)

σ: the Stefan-Boltzmann Constant (joule/m2K4)
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Ts: pavement surface temperature (K)

εσT 4
s : emitted flux (joule/m2)

H: turbulent heat flux (joule/m2)

La: vaporization heat or sublimation heat (joule/kg)

E: water vapour flux (kg/m2)

Lf : heat of fusion of water either for freezing or thawing (joule/kg)

P : precipitation rate (kg/m2)

A: anthropogenic flux, positive flux caused by traffic (joule/m2)

Any time units, such as second, minute or hour, can be applied to Equation 2.2, but
should be consistent across all variables. It can be seen that the flux of pavement surface
energy on unit area of the pavement is determined by the following factors: solar radiation
(S), pavement properties (α, ε), pavement surface temperature (Ts), precipitation (Lf , P ),
air humidity and wind (La, E, H), and traffic (A). The net energy flux of road surface
(R) estimated by Equation 2.2 is conducted downward along pavement’s ground profile as
a function of time given the heat conductivity and capacity of the road material. This is
done in the road heat-conduction model whose equation is not listed here.

The net energy flux calculated by Equation 2.2 can then be used to model the change
of amounts of water and ice on the pavement surface. The road surface condition model
in the surface water/ice accumulation model consists of Equation 2.3 and 2.4.

dWl

dt
= P − E +

R−G1

Lf
− r (2.3)

dWs

dt
= P − E − R−G1

Lf
− r (2.4)

Wl: amount of liquid water at road surface (kg/m2)

Ws: amount of snow/ice at road surface (kg/m2)

t: time

G1: downward heat flux to the lower layer of the road surface contaminant (joule/m2)

r: runoff (kg/m2)

Again, second, minute or hour, are all applicable for the time unit t, but should be
consistent for all variables. The change in the amount of liquid water and solid snow/ice is
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affected by precipitation (Lf , P ), energy balance (R,G1) and factors affecting runoff speed
(r). The values of input variables in Equation 2.2, 2.3 and 2.4 are determined by accurate
measurement of several pavement characteristics and important meteorological factors.
Some of those factors, such as solar radiation, incoming infrared radiation, turbulent heat,
anthropogenic flux, water vapor, and so on, are either difficult or costly to measure for
current RWIS installations. When using those equations to do forecasting, the values of all
those input variables should ideally be forecasted instead of monitored. Forecasting values
for so many variables is a very challenging task. Using the input variables forecasted in
this way to further forecast RSC would face a lot of technical difficulties in practice, one
of which is that, the forecast errors from so many variables will accumulate, interact and
make the resulting RSC forecast highly unreliable.

Moreover, METRo needs accurate road surface heat flux and solar radiation information
to give reliable surface temperature and water accumulation forecasts. Such information
is, however, only available at some fixed spots over the road network where RWIS stations
are located. As a result, the spot forecasts made by METRo are quite questionable when
they are applied to the road sections far from the RWIS stations.

Furthermore, although the surface temperature forecast by METRo is reliable according
to the testing results (Crevier & Delage, 2001), it does not estimate chemical concentra-
tion of the road surface contaminant and its effect on RSC. This limits the application
of METRo into a long-term (usually 24 hours) maintenance resource planning tool. If
some major maintenance operations, like plowings or saltings, are conducted, the METRo
forecast would no longer be trustworthy, which stems from the limitations in its working
mechanism.

In order to enhance METRo to be capable of short-term RSC forecasting and thus
used as a maintenance decision making tool, the RSC forecasting module of MDSS simply
designates some simple linear dilution function to the de-icing chemical so that the chemical
concentration of road surface contaminant can be estimated (The National Center for
Atmospheric Research, 2008). The general form of this linear dilution function is:

Chem = (1− tFactor) ∗ (AppRate+ResChem+ ChemInSol) (2.5)

Chem: salt on pavement surface after current salting operation

tFactor: fraction of salt lost from the road surface due to traffic

AppRate: applied salt of current salting operation

ResChem: solid salt residual before current salting operation

ChemInSol: salt in pavement surface solution before current salting operation
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When Equation 2.5 is used recursively at a short time interval such as one hour, the
amount of salt on the pavement surface exponentially decreases with accumulated traffic
with tFactor defined as hourly decreasing rate of the de-icing chemical. By integrating
this chemical concentration model with METRo, MDSS forecasts on pavement surface
temperature, contaminant depth, and chemical concentration over a certain time horizon.
It should be noted that the current version of MDSS is deterministic in nature and does
not consider the uncertainty of the RSC changing process.

Another similar physical pavement temperature and surface condition forecasting model
was developed by Tokunaga et al. (2008). The model uses a similar set of water balance
equations and variables as METRo to forecast pavement temperature and RSC. The only
significant difference is that snow and ice depths are modelled separately; therefore, there
are three water balance equations instead of two as in METRo. Obviously, this set of
models has almost the same limitations as METRo, including no consideration of main-
tenance operations, requiring a large amount of weather forecasting information as input,
not addressing prediction uncertainty, and difficulties to apply to locales far from RWIS
stations, which are theoretically shared by all possible physical models.

2.4.3 RSC Forecasting with Empirical Approach

To address the issues of physical models, empirical models have been developed in some field
studies. Instead of using complex first-principle style numerical equations, empirical models
are usually built with data-mining approaches. The real-world information of weather,
maintenance and traffic are archived and stored in database systems, and systematically
analyzed for relevant patterns. The isolated patterns can as simple as lists of rules, or as
complex as structural linear or non-linear statistical functions.

The data for calibrating empirical models usually come from RWIS observations with-
out the unrealistic requirements on the input parameters as in physical models. Also, the
number of input variables appearing in an empirical model is usually relatively small com-
pared to most physical models, which makes it much more convenient to be calibrated and
applied. In addition, empirical models are inherently capable of associating the forecasting
result with some uncertainty measures, such as occurrence frequency or probability. This
makes it convenient to capture the uncertainty nature of the RSC changing process.

Some previous studies have resulted in some very simplistic empirical models–rule ta-
bles, which are just look-up tables with a list of rules for RSC forecasting. A simple
rule table was developed in Sweden using RWIS data (Norrman, 2000). The RWIS data
included real-time observed weather information, such as precipitation, air temperature,
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surface temperature, relative humidity and wind speed. Some example rules are listed in
Table 2.7.

Table 2.7: RSC Estimation Rule-Table (Norrman, 2000)

Precipitation Tair Troad RSC Estimation
yes >0◦C <0◦C It is probably rain or sleet that freezes on to

the road surface. The probability of snowfall
decreases rapidly with increasing Tair.

yes <0◦C <0◦C It is probably snowfall onto a frozen road sur-
face.

yes <0◦C >0◦C It is probably snowfall or sleet forming slush
on a warm road surface.

The estimation rules in the table are consistent with basic physical principles and easy
to explain and use. If the real-time observed weather information is substituted by a short-
term weather forecast, this rule table can be then used for RSC forecasting. The validation
results showed poor estimation accuracy, which is not surprising because the rules were
built by directly borrowing findings of previous field studies and experts’ opinions without
any formal statistical analysis, necessary local calibrations, or considerations of complex
interaction effects of weather factors (Norrman, 2000). The rules are deterministic in nature
and do not consider winter maintenance and only consider traffic effect in a very limited
manner. This type of rule tables can hardly be considered as models and can only give
rough guesses without any uncertainty measures.

A study in Japan tried to make forecasts according to the occurrence probability in
observed field data (Yamagiwa et al., 2004). RSC is classified into 13 types, which are
assigned to three severity ranks as shown in Table 2.8. The RSC forecasting is given based
on the occurrence frequency of each surface type under similar weather conditions. The
forecast frequencies are grouped by rank, and the probability of each rank is calculated
by simply summing up the frequency percentages of all RSC types in the rank. This rule-
based system is calibrated for the forecasting horizon of 6-14 hours, and can only be used
for maintenance operation planning. Probability distributions for the three ranks can serve
this purpose very well, because the long-term snow/ice danger can be effectively identified
with this rank resolution. Obviously, the rules listed in a tabular format cannot handle
situations with a higher level of complexity, especially the one caused by maintenance oper-
ations. Therefore, both of the previous rule-table-based forecasting systems are incapable
of making reliable forecasting on RSC under de-icing operations.
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Table 2.8: RSC Types by Rank (Yamagiwa et al., 2004)

RSC Type Rank
1 very slippery compacted snow
2 very slippery ice sheet 1-very slippery road surface
3 very slippery ice film
4 ice sheet
5 ice film 2-slippery road surface
6 powder snow on ice
7 granular snow on ice
8 compacted snow
9 powder snow

10 granular snow 3-relatively easy driving road surface
11 slush
12 wet
13 dry

In order to simultaneously incorporate the effects of weather, maintenance operations
and traffic, a conceptual short-term RSC forecasting model has been proposed by the
Swedish National Road and Transport Research Institute (VTI in short) (Wallman, 2004;
Möller, 2008). Following the similar empirical-style modelling philosophy to the Japanese
study, weather, maintenance and traffic data are collected, archived and integrated with
RSC data at one-hour time intervals. Cross-classification rules by important conditional
variables of weather, maintenance operations and traffic are used together with current
RSC to forecast RSC of the next time stamp. Figure 2.5 shows the model framework.

To incorporate the complexity and uncertainty characteristics of the RSC changing
process, the VTI model forecasts in the form of multiple possible RSC types instead of just
one single type. Some important input parameters for this RSC model are:

� road condition at t

� amount of residual salt at t

� weather condition from t to t+1, including air temperature, road surface temperature,
dew point temperature, precipitation type and amount, wind speed, and so on.

� traffic volume from t to t+ 1

� maintenance operations taking place during the period from t to t+ 1
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Figure 2.5: Framework of the VTI RSC Model

The forecasting output includes possible RSC types, amount of residual salt and friction
level at t+ 1. RSCs are classified into five types as follows:

� dry bare ground

� moist or wet bare ground

� hard-packed snow or thick ice

� black ice or hoar-frost

� loose snow or slush

The model is still in the data accumulation stage and under development, so the sys-
tematic evaluation on its performance has not yet been available. Although the VTI model
is intent on short-term forecasting with one hour time intervals, forecasts with longer hori-
zons can be obtained by chaining the short-term forecasts of each time step sequentially.
One major limitation of this model is that the design of the model does not explicitly give
probability estimation for the forecasted RSC at each time step as Yamagiwa’s model has
done.

In summary, the empirical models reviewed above share the following characteristics:
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� They are all based on large amounts of archived data, which usually come from
multiple sources and need significant amount of processing and integration work.

� The data are usually analyzed using data mining techniques by people with consid-
erable statistical knowledge. The resulting models are stochastically rooted, capable
of producing probabilistic forecasts.

� The models are not built based on first-principles and are not intended to describe
the process in a physical way. Instead, they summarize the observations into rules,
which could be some simple look-up tables or possibly some highly complex regression
equations.

The above characteristics reflect the empirical philosophies of those studies, which re-
flect some important properties of the RSC changing process. As for the particular mod-
elling techniques, the following characteristics can hardly win common consent.

First, in all available models, RSC is classified into discrete types, which are mostly
defined by descriptive language. RSC is either observed and reported based on visual ob-
servation or RWIS measurement. Visual observation lacks objectivity and repeatability
compared to RWIS measurement. Even for RWIS measurement, however, the categorical
RSC measurement still faces the challenge related to classification resolution. As an ex-
treme example, if the RSC is classified into only two types–bare or icy, the RSC could jump
from one type to the other by very few times even within a long snow event. In this case,
the RSC forecasting becomes too obtuse making it of little use. If the RSCs are further
classified into more types, more RSC jumps can be identified and the forecasting becomes
more sensitive thus more helpful for maintenance practice. But how many types should
the RSC be classified into? Are there any better alternative options other than discretizing
RSC? Is current sensing technology able to support such alternatives?

Second, all available models are built upon a single time interval Markovian assumption
(Lefebvre, 2007), i.e., the RSC at the next time stamp is completely conditional on the
RSC at the current time and the interventions happening between the current and the
next time stamp. The interventions refer to the influence exerted by weather, maintenance
and traffic. The Markovian assumption in this context is reasonable only when all critical
influencing factors are measured and considered in the resulting model. If some important
factors are missing, the state of the process the model is trying to capture is incomplete and
the Markovian assumption is violated. Take the salting operation for example; the VTI
model only considers the amount of salt residual, and overlooks its mixture state with road
surface contaminant. This could make its short-term RSC forecasting highly unreliable
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especially after salting operations, because the mixture state could essentially determine
the melting speed of the road surface contaminant.

2.5 Summary

In this Chapter, major studies on RSC estimation and forecasting are reviewed. Some
possible problems, limitations or shortcomings of them are identified and discussed.

To improve the reliability of RSC estimation, more features need to be extracted from
CFM to capture the spatial distribution patterns of snow coverage. Moreover, the uncer-
tainty associated with RSC estimation needs to be addressed.

RSC forecasting needs to address the high uncertainty and complex nature of the RSC
changing process. Models based on physical theories face the challenges of obtaining mea-
surement for a large number of factors. Empirical models face fewer challenges in data
availability but the model framework and modelling techniques need to be given more
consideration.

In the next two chapters, the RSC estimation and forecasting problems are defined and
tackled under new analysis frameworks based on our own recognitions and understandings.
In addition, the modelling results and major findings are discussed and concluded.
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Chapter 3

RSC Estimation

A major research objective of this thesis study is to systematically investigate the relation-
ships between winter RSC types and CFM, enhance existent RSC classification schemes,
and calibrate RSC classification models. Besides CFMs, vehicle driving data are also within
our research scope, especially the available vehicle speed data. In this chapter, CFM and
speed data are separately integrated, explored, analyzed and introduced into the RSC type
estimation models under a new study framework.

3.1 Problem Definition and Modelling Framework

As discussed in Chapter 2, there are several major challenges in obtaining reliable map-
ping from CFM to specific RSC types. The first and foremost is that the friction levels
corresponding to different RSC types may overlap, implying that the direct mappings from
CFM value ranges or means to RSC types, as already tried in many previous studies,
may not work well in many situations. The second challenge is that many factors besides
RSCs affect the CFM, and the resulting uncertainty and complexity make it difficult to
infer RSCs based only on mean friction level, especially in a deterministic manner. The
third challenge is the lack of lateral coverage of CFM, which adds more uncertainty to the
resulting RSC estimation.

To address these three major challenges, a probabilistic modelling framework incorpo-
rating multiple aggregate measures of CFMs is proposed, as shown in Figure 3.1. The first
challenge is addressed by considering additional statistical measures that can be derived
from CFMs. Those statistics, particularly features extracted from probability distribution
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Figure 3.1: RSC Estimation Model Framework

and spectral density of CFMs, are intended to represent the spatial variation patterns
of CFMs along the measuring route. Section 3.3 explains in detail why these features
can enhance the RSC classification quality. To address the second and third challenges,
the proposed framework has adopted a stochastic modelling approach which estimates
the probability distribution of all possible RSC types. This approach is considered more
appropriate to calibrate models based on data of high uncertainty or variance.

The focus of this framework is to estimate the RSC types based on CFMs and other
relevant data, especially environmental parameters. The RSC types are several major
different RSC states defined by visual observation and judgment. The classification features
are extracted from the CFM or the environment. This is a typical classification problem,
and is usually solved through the following steps:

1. Define the set of concerned types (classes, states or categories) of the studied object,
which in this study is the winter RSC.

2. Explore available data and find/extract relevant classification features.

3. Calibrate and cross-validate a single or multiple structured classification model.

The framework emphasizes the importance of considering environmental parameters,
like air temperature, tire surface characteristics and so on, because they directly affect

38



friction measurement as discussed in Chapter 2. Unfortunately, in our collected data, the
only available environmental parameter is air temperature and a large proportion of the
test runs did not collect it. For this reason, environmental parameters are not considered
in our subsequent modelling process. Ideally, these environmental parameters should be
simultaneously measured with CFMs, and directly introduced into the modelling process.
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3.2 Data Collection

The CFM and speed data were collected on a section of Highway 417 in eastern Ontario,
which has asphalt pavement with a total length of 40 km. Friction data were collected using
a fixed-slip-ratio continuous friction measuring device called Traction Watcher One (TWO)
(http://www.pon-cat.com/en/Traction-Watcher-One/). The TWO trailer was attached to
the rear of the tow vehicle with its slip speed ratio fixed at 16.6%. During data collection,
the tow vehicle was operated in the driving lane with the measuring tire running in the left
wheel track. The sampling frequency is one reading per 10 meters, i.e., the device outputs
one friction measurement for every ten meters the driving vehicle covers. The driving speed
was measured at the same time and reported at the same spatial frequency.

The data were collected during the winter seasons of year 2007 and 2008. The lengths
of test runs varied between 2km and 30km. The test runs were scheduled carefully to cover
different stages of the snow storms with a wide variety of snow coverage and environmental
conditions. In addition to friction measurement and driving speed, vehicle locations were
recorded using a GPS device. A video camera was also operated to record the RSC, and
the video images were used to determine the type of RSC at corresponding road segments
on the testing route and served as the basis for further supervised classifier calibration.
According to the recorded video images, the RSC is assigned into the following six visually
discernible types:

1. Type 0: bare dry

2. Type 1: bare wet

3. Type 2: thin snow cover

4. Type 3: slushy snow cover

5. Type 4: partially snow covered

6. Type 5: mostly snow covered

Type 0, 1, 4 and 5 are easy to distinguish using only video images. Type 3 is much like
a mid-type between Type 2 and 4. Therefore, the boundaries between Type 2 and 3, and
Type 3 and 4 are quite ambiguous and subject to observers’ personal judgment. Typical
images of Type 2, 3 and 4 are shown in Figure 3.2. Although sometimes it is difficult
to visually discriminate between these three types, some guidelines can be followed. For
example, slushy snow means chemical treated, wet and traffic trodden dirty snow. Partially
snow covered means significant amounts of dry snow distributed unevenly across the lane.
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(a) Thin Snow Cover (b) Slushy Snow Cover (c) Partially Snow Covered

Figure 3.2: Video Images of RSC: Type 2, 3 and 4

Thin snow cover means slushy snow of very small depth and coverage, and usually occurs
just before the BP condition is regained.

Besides the easy visual discernibility, another reason that these six types are defined is
that the order of their appearance during a snow storm period corresponds to the typical
RSC improvement process with maintenance operations. Usually, when the pavement is
fully snow covered due to snowfall, plowing and/or salting operations are conducted, and
the RSC usually changes from Type 5 to 4, 3, 2 and 1 sequentially, and finally to Type 0,
which is bare dry. In other words, these six types are the major critical states the highway
pavement condition experiences in a typical BP recovering process. Accurate estimation of
these states is beneficial to the decision making and performance measure of maintenance
operations.
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3.3 Feature Extraction

To estimate RSC by friction measurement, certain “relevant” features (or statistics) need
to be extracted from CFMs as classification parameters. Several previous studies have
suggested that specific parameters extracted from the probability distribution and spectral
density of CFMs could serve as these “relevant” features and enhance the discrimination
power of the classifiers (Perchanok, 2002a, 2008). Although, these parameters are all de-
fined in a statistical perspective, they all have solid physical interpretations. The following
sections systematically explore and analyze how those parameters can enter the model to
improve the classification accuracy.

3.3.1 Probability Distribution Parameters

Perchanok (2002a) suggested that some aggregate features of CFMs, e.g. variance and
skewness, are correlated with RSC types, thus are potentially able to enhance RSC es-
timation accuracy. In his study, continuously collected point-wise friction measurements
were aggregated by a fixed spatial interval to obtain variance and skewness. It was shown
that when average friction measurements were extremely low or high, variance was very
small. A low average friction reading coupled with small variance was a sign of a surface
with fully covered snow/ice. Large variance usually corresponded to a partially snow/ice
covered surface, due to the heterogeneity of tire-pavement contact caused by snow/ice con-
taminants. It was also shown that mean friction did not represent a continuous variation in
surface characteristics. A low mean could result from a combination of many small values
and a few large values while a high mean could come from many high values and a few
much lower values. Therefore, low snow/ice coverage can correspond to a strong left-tailed
frequency distribution and high snow/ice coverage to a less left-tailed distribution. At the
middle range of mean friction, the numbers of high and low readings were balanced and
the frequency distribution was not skewed. These findings suggest that the parameters
reflecting the shape of a probability distribution, like skewness and variance, could contain
additional information on snow/ice coverage distribution pattern in space.

Equation 3.1, 3.2 and 3.3 define the sample mean, standard deviation (representing
variance) and skewness.
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f̄ =

∑n
i=1 fi
n

(3.1)

s =

√∑n
i=1(fi − f̄)2

n− 1
(3.2)

γ = 3

√∑n
i=1(fi − f̄)3

(n− 1)s3
(3.3)

fi: i
th friction measurement

f̄ : mean friction
n: total number of friction measurements
s: standard deviation of friction measurements
γ: skewness of friction measurements

Although only standard deviation and skewness are mentioned here, some other prob-
ability distribution features, like kurtosis, could also have certain degrees of RSC discrim-
inating power. It is impossible to test every probability distribution parameter; however,
one should focus on those which have physical interpretations.

3.3.2 Spectral Density Parameters

In the modelling framework shown in Figure 3.1, it is proposed to incorporate spectral
density parameters of CFM in the RSC estimation model. This is motivated by some
positive results from initial efforts by Perchanok (2008), which showed that the spectral
density patterns of CFMs can reflect the spatial distribution patterns of the pavement con-
taminants. The concept of spectral density stems from time-series analysis works focused
on the frequency domain. As CFMs are collected on highway surfaces continuously and
evenly in distance, the CFMs collected in a single test run can be treated as a time series
and certain time series analysis techniques can be applied. Spectral analysis is one such
technique, which can be applied to the series data in the frequency domain. The observed
series of values is considered as the superposition result of a number of underlining periodic
processes with complex sinusoidal forms of different amplitudes and periods. The periods
of those underlying processes correspond to the series of discrete frequency values. More
often than not, it is difficult to reveal important data patterns from the traditional time
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domain analysis. In such cases, frequency domain analysis could be a handy and efficient
alternative (Zadeh, 1953; Jenkins & Watts, 1968).

Frequency domain analysis is a major technique of time series analysis and has been
used in a wide variety of science and engineering fields (Shumway & Stoffer, 2006). For our
RSC estimation problem, the periodicity and the period-specific amplitudes in the data
series could reflect the spatial distribution patterns of the snow coverage. As a result, the
“relevant” frequency domain features could potentially significantly increase the estimation
accuracy and reliability. Based on the preliminary analysis of the CFM data, we could
find out what those “relevant” features could be and how they should be mathematically
extracted from raw CFMs. Before starting the formal discussion about feature extraction
from spectral distribution patterns, several basic concepts in frequency domain analysis
are introduced first, including auto-covariance function, auto-correlation function, spectral
density function, and periodograms.

Basic Concepts

The sample auto-covariance function of a time series TS (x1, x2, . . . , xt, . . . , xn) can be
calculated as

γ(h) = cov(xt+h, xt) (3.4)

=
1

n

n∑
t=1

(xt+h − µx)(xt − µx) (3.5)

γ(h): covariance of two x values in TS with time distance h
µx: mean of TS
n: number of observations in TS

γ(h) measures to what degree the pairs of the values within TS are related to each
other using a function of their distance h. The sample auto-correlation function (ACF
in short) is derived from the auto-covariance function and can be calculated as

ρ(h) =
γ(h)

γ(0)
(3.6)

γ(0) is the covariance of x with distance 0, which is exactly the variance of TS. There-
fore, the auto-correlation function ρ(h) is the auto-covariance function scaled by the total
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sample variance. The range of ρ(h) is from −1 to 1. The absolute value of ρ(h) repre-
sents the strength of the auto-correlation, where the sign represents the direction of the
auto-correlation. If TS is “stationary” and ρ(h) satisfies

∞∑
h=−∞

|ρ(h)| <∞ (3.7)

then it has the representation

γ(h) =

∫ 1/2

−1/2
e2πiωhf(ω)dω (3.8)

where

h = 0,±1,±2, . . .

as the inverse transform of the spectral density function, which has the representation

f(ω) =
∞∑

h=−∞

γ(h)e−2πiωh (3.9)

where

−1/2 6 ω 6 1/2

In other words, f(ω) is the discrete Fourier transform of γ(h) and these two measure-
ments of TS consist of a so-called “fourier transform pair”. ω is the frequency, whose range
is from −1/2 periods per data point to +1/2 periods per data point. Putting h = 0 in
Equation 3.8 yields

γ(0) = var(TS) =

∫ 1/2

−1/2
f(ω)dω, (3.10)

i.e., the total variance is the integrated spectral density over all of the frequencies. In
probability theory, the fourier pair like γ(h) and f(ω) are considered to contain the same
information, which is expressed in two different ways. Shumway & Stoffer (2006) explained
this concept in this way:

“The autocovariance function expresses information in terms of lags, whereas
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the spectral density expresses the same information in terms of cycles. Some
problems are easier to work with when considering lagged information and we
would tend to handle those problems in the time domain. Nevertheless, other
problems are easier to work with when considering periodic information and we
would tend to handle those problems in the spectral domain.”

The idea of extracting spectral domain features from CFMs and using them to classify
RSC has the same philosophy as Shumway & Stoffer (2006) have said. In the next chapter,
we will be dealing with another major research problem, RSC forecasting, which is easier
to work with by considering lagged information in the time domain. Therefore, the set
of analyzing and modelling methods used in the next chapter is very different from this
chapter, although they are all under the same roof: “time series analysis”.

A common frequency domain graphical exploratory tool is periodograms, the simplest
form of which is just a plot showing f(ω) against ω. As f(ω) is an even function, i.e.
f(ω) = f(−ω), usually periodograms only show f(ω) where 0 6 ω 6 1/2.

Periodograms

Perchanok (2008) used periodograms of CFMs on winter snowy road surfaces to analyze
the influence of roadside terrain features on large-scale highway spatial snow cover distri-
bution patterns. The study showed that the shape of spectral density curves of CFMs
can reflect the characteristics of road side terrain features, particularly periodical changes
of the elevation of roadside terrains. The study is focused mostly on the spectral density
(or simply “spectra”) in relatively low frequency ranges, i.e., long period ranges, which is
suitable to study friction variations at a scale of maintenance route length (10∼40km).

Following a similar approach, we have conducted a preliminary examination on the
periodograms of Type 0, 1, 2, 4, 5 based on 34 test runs randomly selected from available
CFM data. These 34 CFM series are treated as 34 time series (or spatial series), each of
which has 250 continuous point-wise measurements, i.e., covering 2.5km. Fourier frequen-
cies (ω) for all runs are discretely set to k/250 with k = 0, 1, . . . , 125. That is, the range of
ω is from 0 to 1/2, and the unit of ω is periods/measurement or periods/datapoint. Our
primary examination of the periodograms suggests that the CFM series of all runs are“non-
stationary” with some drastic low-frequency spectra. In mathematical terms, “stationary”
means

1. the expectation of all xt in a time series is an equal constant, and
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2. the covariance of any two observations in this time series can be determined solely
by their distance.

This definition of stationary is usually called “secondary stationary” in most of the lit-
erature. The terms “stationary”, “stationarity” and “non-stationary” previously mentioned
in this thesis are all based on this definition, i.e., secondary stationary.

The non-stationarity characteristics of our CFM data, especially the existence of long-
period (or low-frequency) trends (level changes), can be interpreted by the distribution
patterns of snow cover along the test route. On a bare dry surface, this level change of
friction could be caused by the natural variation of the pavement surface texture. On a
snowy surface, this level change could be caused by the variations in snow depth or snow
coverage along the test lane. Because the major concern of this study is the characteristics
that distinguish different types of road surface contaminants, the spectra in both low and
high frequency ranges must be fully considered. However, the low-frequency level changes
tend to obscure the appearance of spectra at the high frequency range. A basic approach
to solve this problem is to apply a “high-pass” filter to the raw time series data, in other
words, to retain or pass high-frequency variation and attenuate low-frequency variation,
so that the long-term trend of the series is removed and the mean of the filtered series is
forced to be zero. A common high-pass filtering operation is “first-order differencing” or
“first differencing” in short, mathematically defined as:

∆xt = xt − xt−1 (3.11)

Figure 3.3 shows the original and the first-differenced CFM series of a test run. The
overall mean of the original CFM series is larger than zero, and there is an obvious long-
term variation of the mean level. After first-differencing, the mean becomes zero and the
whole series looks to be randomly fluctuating around zero, i.e., much more stationary. The
effect of differencing on the shape of the periodogram curve is shown in Figure 3.4. By
first differencing, the spectra in the extreme low frequency range are largely attenuated
and the spectra in the relatively high frequency range are kept unchanged or strengthened
moderately. In this way, the spectra information contained in both high and low frequency
ranges is revealed in a balanced manner in terms of spectral magnitude.

48



Figure 3.3: Raw and First-Differenced CFMs

Figure 3.4: Periodograms of Raw and First-Differenced CFMs
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(a) High-Frequency Spectra (b) Low-Frequency Spectra

Figure 3.5: Spectra and Mean Friction by Frequency Range

Preliminary Findings

In the preliminary exploratory analysis, after first differencing is applied to the CFMs
of all 34 test runs, the mean spectra of two frequency ranges (high frequency: 0.4∼0.5
periods/point; low frequency: 0.05∼0.25) are used to illustrate the relation between the
spectral patterns and the overall snow coverage levels (Feng & Fu, 2009). Mean frictions of
the runs are plotted against their mean high-frequency and low-frequency spectra respec-
tively in Figure 3.5.

Each data point in Figure 3.5 represents one single test turn. The mean friction is
considered as a surrogate for the level of snow coverage; therefore, this figure presents the
correlation patterns between snow coverage and spectra in high and low frequency ranges.
Figure 3.5 (a) shows that the high-frequency spectra are positively correlated with mean
friction in a linear manner implying that the area of the exposed bare pavement is positively
related to the high-frequency spectra. Although the high-frequency spectra of the thin wet
snow surface vary widely, most of them are greater than those of the partially snow covered
surface and smaller than those of the bare dry surface. Based on this observation, it can be
assumed that the main source of the high-frequency spectra is the bare pavement surface
not covered by snow/ice.

When a significant portion of the road surface is covered by snow/ice with a low mean
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friction (left part of Figure 3.5 (b)), low spectra result due to the low proportion of bare
pavement. On the other hand, extremely low snow coverage leads to the low spectra of
bare surfaces as shown in the right part of Figure 3.5 (b). When snow coverage is in
the middle range, the low-frequency spectra could be very high due to the long period
changes in friction level caused by the alternation between large patches of snow/ice and
bare surfaces. Additionally, surfaces with very different degrees of snow coverage could
result in similar low-frequency spectra, which implies that low-frequency spectra are not a
direct indicator of snow coverage.

Table 3.1 summarizes the correlation patterns between CFM spectra and friction levels.

Table 3.1: Spectral Comparison by Frequency Range

RSC Type Low-Frequency Spectra High-Frequency Spectra
Bare Dry low high
Bare Wet low high
Thin Wet Snow Cover wide range high
Partially Snow Covered high middle
Mostly Snow Covered low low

Although not tested in any strictly controlled experimental set-up, the following propo-
sitions can be made, which are strongly supported by our preliminary exploratory analysis:

1. The major source of high-frequency spectra of CFM is bare pavement; thus the less
the snow coverage is, the higher the high-frequency spectra are. Therefore, the high-
frequency spectra of mostly snow covered condition are the lowest, while bare dry
and wet conditions highest.

2. As the source of low-frequency power of CFM is mainly from the spatial alternation
of snow and bare pavement along the longitudinal direction of the measured lane,
the partially snow covered condition produces strong low-frequency spectra. Both
bare conditions and mostly-snow covered conditions lack this alternation and thus
produce much lower low-frequency spectra.

3. The mostly snow covered condition has the lowest spectra at all frequency ranges.

4. It is difficult to discriminate bare dry and bare wet conditions solely by spectral
information.
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3.4 Data Preparation

The features from the probability distribution and spectral density of CFMs are all ag-
gregate measures, i.e., they are derived from a set of raw single CFMs and reflect certain
summary characteristics of the set. For the purpose of this chapter, a CFM set should be
the CFMs consecutively collected within a certain length of the roadway. This length is
the spatial aggregation interval of the CFM samples, which should be determined with the
following considerations:

� RSC estimation of a high spatial resolution is preferable to maintenance personnel or
decision makers. As the friction data can be collected automatically, transferred to
servers in real time, and presented on maps with accurate location, RSC estimations
with as high as possible spatial resolutions can give the most accurate RSC informa-
tion. Therefore, the spatial integration interval should be minimized conditional to
other possible limitations.

� Most aggregate measures need certain minimum sample size in order to obtain reliable
estimation results. To get a reliable estimation of skewness, a large sample size is
needed as skewness is of a higher order moment than standard deviation. Some prior
studies suggest that a sample size as large as 50 may not be enough to get the reliable
skewness estimation (http://www.spcforexcel.com/are-skewness-and-kurtosis-useful-
statisticsquick).

� The amount of available data poses a strong limit to the aggregation interval. For this
study, only the segments of CFMs of a single RSC type are used in data aggregation.
If a longer interval, e.g. 2km, is used, we have to exclude the CFMs of all test runs
shorter than 2km or without any pure segments longer than 2km.

3.4.1 Sample Size

The CFMs are divided into parts of certain length, which is the aggregation interval. Each
part becomes a single sample, whose aggregation features are calculated. Figure 3.6 shows
how the sample size of each RSC type decreases when the length of the integration interval
increases. Note that there is one friction reading for every 10 meters, so the number of
friction measurements in each sample is the distance in meters on X-axle divided by 10.
Table 3.2 lists the sample size by RSC type and integration interval.

From Figure 3.6, it can be seen that the sample sizes of all RSC types decrease expo-
nentially with the increasing aggregation interval length. Table 3.2 shows that Type 0 and
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Figure 3.6: Sample Size and Aggregation Interval Length

Type 3 have the smallest sample sizes among the 6 RSC types at all aggregation intervals,
and both their sample sizes drop under 20 if the aggregation interval is larger than 1000m.
In our following modelling work, the sample will be divided into two sets, one of which is
for model calibration and the other is for model validation. Thus the sample size less than
20 could be the lowest tolerable number of samples for our study, i.e., 1000 meters might
be the longest aggregation distance limited by our collected CFMs.

Although it seems that we can select any aggregation interval length between 0 and
1000 meters, we still need to find a meaningful way to optimize the resulting models’
classification performance. In our preliminary modelling works, logit models using the
aggregation interval of 100m, 500m and 1000m have been calibrated and validated, and the
models’ performance was found acceptable (Fu et al., 2008). With a systematic approach
detailed in Section 3.6.3, 700m is choosen as the major spatial aggregation interval for the
later modelling work in this chapter.

54



Table 3.2: Sample Size and Aggregation Interval Length

Interval (m) Type0 Type1 Type2 Type3 Type4 Type5
100 183 325 2400 264 4147 1003
200 91 161 1189 130 2051 494
300 61 105 784 85 1351 322
400 45 77 581 62 1008 239
500 36 62 460 48 794 182
600 30 50 384 40 650 154
700 25 45 325 33 555 129
800 22 35 279 29 479 114
900 19 31 248 26 420 95

1000 17 29 223 22 373 83
1100 15 27 201 20 333 76
1200 15 23 183 19 307 70
1300 13 22 169 14 282 59
1400 12 22 152 13 254 57
1500 11 17 135 13 239 52
1600 11 15 128 13 220 51
1700 10 15 119 11 206 45
1800 9 13 115 11 191 42
1900 9 13 105 11 184 37
2000 8 11 101 10 175 35
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3.4.2 Data Aggregation

The CFM test segments of all test runs are cut into 700m (70 point-wise measurements) long
intervals. For each interval, the sample mean, standard deviation and skewness of friction
measurements are calculated using the formulae listed in Section 3.3.1. Measurements
of each interval are also treated as a time series and first differenced. Then the mean
spectra for low (0.00∼0.25 periods/point) and high frequency (0.25∼0.50 periods/point)
are calculated using the statistical analysis software R (R Core Team, 2012) based on
Equation 3.8 and 3.9. In this way, each aggregated interval of CFMs becomes a single
sample, and the RSC type of each such sample is designated by visual observation as
mentioned before. The basic features of one such single sample are

1. mean friction

2. standard deviation

3. skewness

4. low-frequency spectra

5. high-frequency spectra

Using exactly the same integration method, interval lengths of 300m and 1000m are also
applied to the CFM data. Although these two aggregation intervals are not considered in
the subsequent modelling work, they will be studied together with 700m aggregated samples
in the exploratory analysis to give a more complete picture about the existent patterns of
the extracted features. The sample sizes after aggregation by 300m, 700m and 1000m have
already been listed in Table 3.2.
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3.5 Exploratory Analysis

In this section, the aggregate features are examined by RSC types in order to find the
patterns which are potentially helpful in RSC classification and model interpretations.
Each aggregate feature is separately explored, and the interaction effect of two spectra
features–low-frequency and high-frequency spectra, is also examined.

3.5.1 Mean Friction

Figure 3.7: Mean Friction

Figure 3.7 shows the distribution patterns of the mean friction of the aggregate samples.
For all three aggregation intervals, the average mean frictions decrease when the snow/
ice coverages increase. The ranges of mean friction of Type 0 and 1 overlap to a large
extent, and both of them are within the upper 25% of the range of Type 2. Type 3 and
4 overlap a lot, and the full range of Type 5 is bracketed by Type 4. As mean friction is
the most direct and accurate estimator of RSCs suggested by most previous studies, the
overlapping structure of the mean friction levels of multiple RSC types could be considered
as a representation of the degrees of pair-wise similarity between these types, and thus
treated as the reliable basis to design any nested model structure regardless of model type.
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3.5.2 Standard Deviation

Figure 3.8: Standard Deviation of Friction

Figure 3.8 shows the distribution patterns of the standard deviation of the aggregate
samples. For all three aggregation intervals, the standard deviations of Type 5 are the
smallest, and of Type 3 and 4 are the largest. The average standard deviations of Type
0, 1 and 2 are very close, but the range of Type 2 encloses the full ranges of Type 0 and
1. The patterns suggest that standard deviation can be effective in distinguishing certain
RSC types, e.g. Type 3 and 5, from the others.
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3.5.3 Skewness

Figure 3.9: Skewness of Friction

Figure 3.9 shows the distribution patterns of the skewness of the aggregate samples. For
all three aggregation intervals, the average skewness of Type 0, 1, and 2 are negative, and
the other three types are positive. Negative skewness corresponds to a heavy left-tailed
distribution pattern, i.e., a lot of large friction values with a small proportion of small
friction values. This pattern means the snow coverage is small and the surface is mostly
bare. Vice versa, positive skewness implies that the snow coverage is relatively large, which
corresponds to Type 3, 4 and 5. This observation implies that the sign of skewness could
be an efficient discriminator of the degree of snow/coverage.
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3.5.4 Low-Frequency Spectra

Figure 3.10: Low-Frequency Spectra of Friction

Figure 3.10 shows the distribution patterns of low-frequency spectra. For all three
aggregation intervals, Type 3 is the highest and Type 5 is the lowest, with other types in
the middle range. It appears that low-frequency spectra can be used to reliably identify
Type 3 and 5. The other four types have heavily overlapped ranges and very similar means,
suggesting that skewness is most likely not an effective measure for discriminating them
from each other.
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3.5.5 High-Frequency Spectra

Figure 3.11: High-Frequency Spectra of Friction

Figure 3.11 shows the distribution patterns of high-frequency spectra. For all three
aggregation intervals, the high-frequency spectra generally decrease with increasing snow
coverage. Type 0 and 1 have the highest high-frequency spectra, while Type 5 the low-
est. Type 3 is on average higher than Type 2, which contradicts our presumption made
in Section 3.3.2 about the correlation pattern between high-frequency spectra and snow
coverage. In general, the patterns in Figure 3.11 suggest that high-frequency spectra could
be another powerful estimator of snow coverage.
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3.5.6 Proportion of High-Frequency Spectra

Figure 3.12: Proportion of High-Frequency Spectra of Friction

In addition to the main effects of individual features, the interaction effects of some
features could be used to distinguish some important patterns in high-dimensional feature
space for enhanced model performance. Adding an interaction term, which is usually
obtained by multiplying relevant explanatory variables, to the model is a common technique
to examine the corresponding interaction effect. This interaction term can be obtained in
a manner other than multiplication, e.g. by division. In this study, we are interested in
studying the interaction effect between the spectra of two frequency ranges; therefore, the
interaction term between them is obtained by dividing the high-frequency spectra by the
sum of high-frequency and low-frequency spectra. The reason for including the interaction
effect in this way is that the division operation has an easier interpretation. Equation 3.10
indicates that the total variance of the series is the integrated spectral density over all
of the frequencies. The interaction term obtained in the above way is the proportion of
high-frequency spectra in the total spectra, i.e., the proportion of the total variance caused
by high-frequency sub processes.

Figure 3.12 shows the distribution patterns of high-frequency spectra proportion. For all
three aggregation intervals, the high-frequency spectra proportion generally decreases with
increasing snow coverage, which is similar to high-frequency spectra distribution. Type 4
is the lowest instead of Type 5 being the lowest in Figure 3.11. This could be caused by
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the smaller variance of CFMs on Type 5 surfaces. Such an interaction term can provide
some additional information and help in identifying certain RSC types, for example Type
4 in this case.

In a similar way, all relevant and meaningful interaction effects could be explored and
tested. In this study, we did not proceed with this process for the following reasons.

� Main effects are usually much more important than interaction effects. If there are
some limitations in sample size or data quality, main effects should be studied with
priority.

� Interaction effects could sometimes cause unexpected difficulties in model interpre-
tation.

� Interaction effects may seriously blur the main effects of some important explanatory
variables, an undesirable result for empirical studies.

In fact, another consideration in deciding the number of features and interactions to
include in a model is the “curse of dimensionality”, which is a term referring to the prop-
erties of high-dimensional feature spaces often appearing counterintuitive because human
experience with the physical world is in a low-dimensional space, such as a space with two
or three dimensions. Kantardzic (2002) has clearly explained this phenomenon conceptu-
ally, numerically and graphically. To avoid the “curse of dimensionality”, the number of
the tested explanatory variables should be as small as possible, preferably fewer than four.
Although the numbers of tested explanatory variables in this chapter and the next chapter
both exceed four, we should always be aware of this issue and focus on the most important
variables. Therefore, in the model calibration process, only the parameters discussed in
this explanatory analysis are considered. Other features and interaction terms will not
enter the resulting models, notwithstanding some of them might be good estimators of
RSC.
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3.6 Methodology

Using the features explored in the last section as explanatory variables to classify the RSCs
into the most possible RSC type or types is a typical supervised classification problem and
can be addressed by a number of traditional modeling approaches. In order to model the
uncertainties inherent in friction measurements, the modelling method must be capable of
estimating RSCs in a probabilistic way, i.e., the probabilities associated with individual
types. Several statistical methods can be used to deal with this stochastic estimation
problem, and they generally belong to two schools: white-box classifiers and black-box
classifiers.

A white-box classifier is a classification model whose internal structure and the effects
of explanatory variables are transparent to the users and can be easily interpreted and
corroborated with the modelled physical process. A white-box classifier usually consists of
one or a set of structured numerical models each of which is a linear combination of relevant
explanatory variables. Linear discriminant functions (FISHER, 1936; Gnanadesikan, 1997),
logistic regression models (McCullagh & Nelder, 1989), and classification trees (Breiman,
1984) are three common white-box classifiers.

A black-box classifier is usually a data structure calibrated and adapted to the dataset
according to some highly complex optimization criteria. This data structure could be a
set of critical data points outlining the class boundaries, a function dynamically calcu-
lating the class similarity of neighboring sample points, or multiple layers of weighing,
combination and transformation of explanatory variables. The data structure is usually
high-dimensional and very complex thus difficult to interpret. The most popular black-box
classifiers are nearest neighbors (Cover & Hart, 1967; Ripley, 1996), neural networks (Rip-
ley, 1996; Venables & Ripley, 1999) and support vector machines (SVMs) (Vapnik, 1999;
Kecman, 2001).

3.6.1 Logistic Regression

As the major objective of this part of the thesis study is to understand how the aggregate
measures of CFMs can augment the capability of the resulting RSC estimation models,
white-box classifiers usually have a decided advantage over black-box classifiers as they
can clearly reveal the effect of each individual feature and allow both the modeller and
model users to comprehend the possible causal relationships between features and the
estimated variable. Table 3.3 compares the main characteristics of the mentioned white-
box classifiers.
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Table 3.3: White-Box Classifier Comparison

Classifier Complexity Interpretation Statistic Assumption
Linear Discriminant Analysis (LDA) simple easy strong

Logistic Regression (LR) simple easy mild
Classification Trees complex difficult mild

Fisher’s discriminant function (DF) is a single linear combination of the explanatory
variables. The coefficients of the DF are chosen so that the DF values are differentiated
between the two classes as much as possible in the training data. In particular, those
coefficients of the DF are estimated by maximizing the ratio of between-class variation to
within-class variation. The basic DF cannot give any probabilistic estimation, as the only
important assumption for LDA is that the distribution of observations within each class
has an identical variance-covariance matrix of explanatory variables. In order to estimate
probabilities, certain distribution has to be assumed within each class, and Gaussian distri-
bution is mostly used. The assumption of Gaussian distribution with identical within-class
variance-covariance is usually too strong for high dimensional complex classification prob-
lems, although the discriminant functions generated by linear discriminant analysis are
simple and easy to interpret.

Another widely used white-box classifier is the classification tree. The basic idea of the
classification tree is to partition the space of explanatory variables into successively smaller
hyper-rectangles in order to make the sample more and more pure in terms of the response
variable’s class within the newly created hyper-rectangles. This recursive structure can
be represented as a tree and the successive hyper-rectangles are then represented by the
nodes of the tree. Breiman (1984) has shown that multiple explanatory variables can be
linearly combined at each split to model interaction effects, but the resulting tree tends
to be more difficult to explain and more data-sensitive. The criteria for finding optimal
splittings can be Shannon entropy (Shannon, 1951), Gini coefficient (Gini, 1971) or any
customized numerical measurement of class dispersion. So classification trees are very
flexible in incorporating different statistical assumptions, and thus can be applied to a
wide variety of classification problems. Additionally, although its structure tends to be
more complex and difficult to interpret when interaction terms are considered, the whole
composition of a classification tree is completely transparent.

Logistic regression (LR) is a special form of generalized linear models and is an extension
of the regression-motivation for Fisher’s LDA. As LR is chosen as the major modelling
method for the RSC type estimation, a detailed discussion is given as follows.

66



The general form of an LR model is

ln
p(Y = Ck)

1− p(Y = Ck)
= η(x) ∀Ck ∈ C (3.12)

Y : the categorical response variable Y
C: the set of classes, which includes all possible discrete classes of Y
Ck: Class k in C
p(Y = Ck): the probability of Y being in Class k
X: the explanatory variable vector of d features, i.e., X = (x1, . . . , xd)

T

η(x) is a function describing the dependence of the odd ratio p(Y=Ck)
1−p(Y=Ck)

on X. η(x) is
commonly defined as a linear function as

η(x) = β0 + β0x1 + . . .+ βdxd (3.13)

where β0,β1,. . .,βd are model coefficients to be estimated. Therefore the probability of Y
belonging to any specific class can be estimated by the following simple transformation of
Equation 3.13:

p(Y = Ck) =
eη(X)

1 + eη(X)
(3.14)

Equation 3.14 shows that the estimated probabilities can never go beyond the range of
[0, 1], which is a major appeal of logistic regression versus the ordinary linear regression
model. The coefficients for η(x) in Equation 3.13 are usually estimated using the maximum
likelihood method, which is implemented in most statistical software packages.

In order to estimate coefficients for the ordinary binary case, (i.e., there are only two
possible classes), Y is assumed as a Bernoulli random variable, which is a special case of a
binomial random variable with one trial. Where there are more than two classes, based on
their assumption and corresponding strategies in handling inter-class structures, LR models
could be classified into three types in terms of models structures, namely, multinomial logit
(MNL) models, ordered MNL models and multi-Level LR models.

Ordinary MNL Models

If all observed Y s in the training dataset are statistically independent, and all classes (more
than two) are unordered and non-overlapping, the categorical variable Y is multinomially
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distributed, such that the binary LR model in Equation 3.14 is extended to a multinomial
logistic (MNL) model as follows:

p(Y = Ck) =
eηk(X)∑c−1
i=0 e

ηi(X)
k = 0, . . . , c− 1 (3.15)

With c classes, c− 1 linear predictor functions ηk(x) are calibrated for k = 1, . . . c− 1
and η0(x) are arbitrarily set to 1 in order to estimate the unknown parameters in ηk(x) for
k = 0, . . . , c− 1 using the maximum likelihood method.

Ordered MNL Models

If Ck have some ordered relationship in terms of certain feature, which appears in ηk(X),
this relationship can be utilized by calibrating ordered MNL models to enhance the an-
alytical power of the resulting model set. For instance, the studied set of RSC types in
our study can be ordered by their slipperiness level as Type 0,1,2,3,4,5 as suggested by
Figure 3.7. If the mean friction level or other correlated explanatory variables is entering
the model calibration process, a set of MNL models can be calibrated and interpreted as
follows.

Let p(Ck) denote the probability of belonging to Type k for k = 0, . . . , 5 given the
explanatory variable vector X. βj are held the same across ηk(X) for j = 1, , d, where
d is the number of explanatory variables. The intercepts of all ηk(X), (i.e., all β0), are
allowed to vary. In this way, five binary LR models are calibrated sequentially for p(0),
p(01), p(012), p(0123) and p(01234). The types can accumulate in the direction consistent
with their assumed order; thus the probability of a single type can be recovered in the
accumulation direction.

The set of MNL models organized in this way and calibrated assuming equal β′js and
varying β′0s across models are called proportional-odds models as the odds ratio of p(Y ≤
Ck) for two different observations X1 and X2 is

e−β
T (X1−X2) (3.16)

where β is the vector of βj for j = 1, . . . , d.

This odds ratio of X1 and X2 is independent of class id so that no matter how the
classes are directionally divided and the model of which class is tested against, the effect
of X can be analyzed in a more consistent manner. Therefore, after the binary models
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are calibrated, neighboring classes can be flexibly amalgamated and the models are not
required to be recalibrated. This property makes ordered MNL models more appealing
than ordinary MNL models in terms of easiness of interpretation and application.

Multi-Level LR Models

The structure of the ordinary MNL model is based on the assumption that the classes are
completely independent and mutually exclusive. This assumption may be violated in some
applications where some of the classes are more similar to each other and thus share more
common characteristics than others. As a result, a more proper classification scheme is a
multi-level structure. Take the RSC type classification scheme of this study for example;
the mean friction level ranges of RSC types may overlap, and some pairs of RSC types
may overlap more than others, i.e., the similarity degrees between discrete classes may be
different. Figure 3.7 shows the box-plot of mean friction of all six types. Ranges of the
mean friction of Type 0 and 1 overlap seriously, while both of them are within the range
of Type 2. Type 3 and 4 overlap a lot, while the full range of Type 5 is bracketed by
Type 4. As the mean friction value is the most significant estimator of RSC as shown in
most previous studies, the overlapping structure of the mean friction distribution could
be treated as the reliable basis to design a multi-level structure representing the degree of
similarity between RSC types.

In our preliminary work, a classfication tree was calibrated to provide quantitative
evidence to support this intuitive finding. The mean friction, skewness, standard deviation,
low-frequency spectra and high-frequency spectra were extracted from 500m aggregated
sample and used as the exploratory variables of this classification tree. The response
variable was the RSC type valued 0 to 5. The calibrated classification tree is shown in
Figure 3.13.

Mean friction (F) and low-frequency spectra (LowFreq) appeared in the tree to classify
samples at different levels of the tree structure. This tree could not efficiently distinguish
between Type 0 and 1, and between Type 3 and 4, which suggests that Type 0 and 1 are
very similar and so are Type 3 and 4. Based on this observation, a multi-level modelling
structure is designed in the way shown in Figure 3.14.

At each level of this structure, a single binary LR model is calibrated. A new observation
can be classified by sequentially applying the LR model at each level from top to bottom.
In total, five binary LR models are required to assign the RSC into one of six types. Split
1 model resides at the top level of the structure and estimates p(0, 1, 2) and p(3, 4, 5). Split
2 model estimates p(01|012) and p(2|012). Similarly, Split 3 model estimates p(34|345) and
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Figure 3.13: RSC Type Classification Tree

p(5|345). Split 4 model and Split 5 model are at the lowest level of the tree for capturing
binary probability divisions between Type 0 and 1, and between Type 3 and 4.

The unconditional probability for each individual type can be derived by sequentially
multiplying the corresponding estimated probabilities in different levels of the tree. There-
fore, the probability estimations for the six studied types are calculated as

p(0) = p(0, 1, 2)p(0, 1|0, 1, 2)p(0|0, 1)
p(1) = p(0, 1, 2)p(0, 1|0, 1, 2)p(1|0, 1)
p(2) = p(0, 1, 2)p(2|0, 1, 2)
p(3) = p(3, 4, 5)p(3, 4|3, 4, 5)p(3|3, 4)
p(4) = p(3, 4, 5)p(3, 4|3, 4, 5)p(3|3, 4)
p(5) = p(3, 4, 5)p(5|3, 4, 5)

The multi-level LR models, which are usually called nested LR models or structured
LR models, can deal with classes with various similarity levels. In certain circumstances,
this nested model structure is a requisite to circumvent possible fallacies in classfier design
so that the estimated probability distribution of classes is more reasonable and reliable.

For example, the RSC estimate using a binary CFM-based LR model is {BareWet:
0.5, PartiallySnowCovered: 0.5}. If the bare dry type is added to the possible RSC type
set and a CFM-based MNL model is applied, according to the Independence of Irrelevant
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Figure 3.14: RSC Estimation Model Structure

Alternatives (IIA) property of the logit model, the probabilities of bare wet and partially
snow covered types are still equal. We assume CFMs of bare dry and bare wet types
are very similar, which is supported by Figure 3.7, the resulting probability distribution
would be close to {BareDry: 0.33, BareWet: 0.33, PartiallySnowCovered: 0.33}. The
probability of the partially snow covered type decreases significantly from 0.5 to 0.33. If
we keep adding more types for consideration whose CFMs are similar to bare wet, we would
expect the estimated probability of the partially snow covered type will keep decreasing;
however, the true RSC could be 50% partially snow covered, and the other 50% possibility
is shared by all other types, i.e., the probability of being partially snow covered should not
be significantly affected by just considering more possible RSC types. In such situations,
MNL models can not successfully capture this distribution pattern and nested structures
must be implemented.

Besides this forte at handling complex class structures, multi-level LR models can easily
incorporate interaction effects by adding interaction terms to the concerned single LR
models. Moreover, the statistical assumption behind LR models is a binary distribution,
which is very mild thus friendly to data anomalies. Additionally, the LR models are in the
linear form and all model coefficients straightforwardly reflect the effect of corresponding
features. Finally, LR models directly produce probabilistic estimations which fit our study
objective very well. Due to these merits, we use logistic regression as the major modelling
approach for RSC estimation and the modelling process will follow the multi-level structure
specified in Figure 3.14. Other alternatives of the structure can also be designed depending
on how the class similarity is defined.
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3.6.2 Support Vector Machines

Although black-box classifiers are usaully difficult to interpret, they can capture some
highly complex interaction effects which even the most advanced white-box classifiers can-
not. Usually such interaction effects are only visible within the high-demensional feature
space, and since the class boundaries in this space are irregular, they cannot be represented
as interpretable numerical functions. Therefore, more often than not, the performance of a
black-box classifier is better than a white-box classifier using the same set of classification
features. So even black-box classifiers are not considered as the major modelling tool for
our RSC estimation problem, such classifiers can be calibrated in parallel with the LR
models in order to examine the maximal classification accuracy that can be obtained by
using the selected set of explanatory variables. Although such classifiers are almost impos-
sible to interpret, they set some visible upper limits for the model performance so that we
can assess the calibrated LR models with more confidence. For this purpose, we choose
support vector machines as such auxiliary estimation tools; i.e., for each split, a support
vector machine is trained with the same set of variables and data as the corresponding LR
model.

The support vector machine (SVM) is a modern classification method, which can find
the class boundaries in a transformed feature space in a very efficient way. Its algorithm
depends on so called“kernel functions”to find highly irregular boundaries in high-dimension
feature space. Due to its special mechanism, a small sample size does not pose a serious
problem to the successful calibration of an SVM. Although the calibration is fast for SVM,
the final form of the model is fairly complex and the degree of complexity depends on the
number of support vectors. Support vectors are the samples close to the class boundaries in
the feature space and the number of support vectors depends on the geometrical complexity
of the corresponding boundaries. The mathematical properties and training method of
SVMs are detailed by Vapnik (1999) and Kecman (2001).
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3.6.3 Selection of Aggregation Interval

One of the most important goals of interval aggregation is to find reliable estimations of
aggregate features within the interval, thus using them to calibrate models with the highest
classification accuracy about the interval’s RSC type. Although there is more than one
way to achieve this goal, for our study, we solidify this idea with the following steps:

1. The continuous segments, over which CFMs were collected are divided by different
interval lengths from 100 meters to 2000 by 100-meter increments, i.e., the intervals
of 100, 200, 300, . . . , 2000 meters are respectively tested.

2. The aggregate features are calculated for each divided interval of CFMs.

3. The aggregate features are used to calibrate classification models for each aggregation
interval length.

4. Choose the aggregation interval, which results in a classification model with the
highest classification accuracy. The classification accuracy is measured using “hit
rate”, which is the proportion of correct estimates of all the estimates made by the
model.

The aggregate features include standard deviation, skewness, mean high-frequency
(0.25∼0.5 periods/point) spectra, and mean low-frequency (0.00∼0.25 periods/point) spec-
tra. An additional term, mean high-frequency spectra divided by the total spectra, is added
as the interaction term of high-frequency spectra and low-frequency spectra. Physically
speaking, it is just the proportion of high-frequency spectra in the total variance of the
spatial series. Additionally, the mean friction does not enter the model at this stage for
the following reasons:

� As previous studies suggested, mean friction is a strong discriminator of RSC types. If
it enters the model, sometimes its effect may overwhelmingly mask the discriminating
power of other features.

� A main purpose of this analysis on the aggregation interval length selection is to
choose an appropriate interval so that the aggregate features can substantially show
their discriminating powers.

The RSC types are first divided into two classes–Type (0,1,2) and Type (3,4,5), and
a binary logit model and a support vector machine (SVM) with the Gaussian radial basis
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function as the kernel function are respectively calibrated with all available aggregated
samples for each aggregation length. In other words, 20 logit models and 20 SVMs are
calibrated for 20 aggregation interval lengths. Logit models and SVMs will be discussed
in detail in the methodology part of this chapter. These models are used to estimate
RSC types in terms of the two classes. The hit rates of all these models are shown in
Figure 3.15. Another classification scheme is also tested, i.e., RSC types are divided into
two classes: Type (0,1,2,3) and Type (4,5), and the hit rates of the new 40 models are
shown in Figure 3.16.

Figure 3.15: Model Hit Rates for Different Aggregation Interval Lengths
Type (0,1,2) vs. Type (3,4,5)

For both classification schemes, the hit rates of both logit models and SVMs increase
with the aggregation interval length. When the aggregation interval length is shorter than
500 meters, the hit rates increase faster, i.e., increasing the aggregation interval length can
significantly improve model hit rates. When the aggregation interval length is longer than
500 meters, this improving effect still exists but is not that significant, as suggested by the
curves becoming more and more flat in both figures. The most significant changes of the
slopes of all these four curves coincidentally occurs within the area where the aggregation
interval length is between 500 and 1000 meters. Another observation from the figures is
that the hit rates of SVMs are higher than logit models at all aggregate interval lengths
with the biggest difference being less than 10% and most less than 5%. The following are
some interpretations of these observed patterns.
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Figure 3.16: Model Hit Rates for Different Aggregation Interval Lengths
Type (0,1,2,3) vs. Type (4,5)

� With the aggregation interval becoming longer, more point-wise CFMs are used to
calculate aggregate features, which makes those feature estimations more reliable,
thus reflecting the RSC characteristics of the interval in a more accurate and stable
way. Consequently, the performance of the resulting models using these features
keeps improving with the increase of aggregation interval. Therefore, there is an
upward trend for all four curves.

� For both classification schemes and both classifiers, the improvement of the model
performance becomes more and more marginal after the aggregation interval reaches
500 meters. This model performance transition zone exists in the aggregation interval
length between 500 to 1000 meters.

� SVMs are better classifiers than logit models for all tested aggregation interval
lengths, suggesting the RSC classification features have some high dimensional inter-
action effects, which are difficult to capture using traditional classifiers; however, the
overall performance of SVMs is not significantly better than logit models as their hit
rates are not substantially different, suggesting that those high dimensional interac-
tion effects are not playing an important role.
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From the perspective of model performance, a longer aggregation interval length is
preferable; however, as mentioned previously, a longer aggregation interval means a fewer
aggregated sample size; and our available dataset does not allow the interval length to be
larger than 1000 meters. Furthermore, from the operational perspective of maintenance
personnel and decision makers, a shorter aggregation interval is a better choice. Therefore,
in our study, 700 meters is chosen as the primary aggregation interval length for extracting
aggregate features and calibrating models. Again, this interval length is determined based
on a carefully selected trade-off point of sample availability, model performance and the
easiness of model application.

Another implication by Figure 3.15 and 3.16 is that although traditional linear classifi-
cation models, like logit models, are not as efficient as modern classifiers, such as SVMs, in
capturing high dimensional feature patterns, their performance is comparably acceptable,
at least for the purpose of this study. Moreover, one major objective of this study is to
give explicit interpretations for the resulting models so that they can be applied in the real
world with more confidence.
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3.7 Model Calibration and Validation

For each split in Figure 3.14, a binary LR model and an SVM with the Gaussian radial
basis kernel function are separately calibrated using the following explanatory variables:

� Mean Friction (mean fric)

� Standard Deviation (sd fric)

� Skewness(skew fric)

� Low-Frequency Spectra (lowspec fric)

� High-Frequency Spectra (highspec fric)

� Proportion of High-Frequency Spectra (highspec prop fric)

The outliers are filtered out at first. Outliers are the observations with the value of
any major feature larger than the respective 97.5% quantile. The values of all variables
are linearly scaled to the range [0,1], with 0 as the scaled minimum and 1 as the scaled
maximum. The purpose of this scaling is to show the effects of explanatory variables in a
comparable way within the same model. Unless specified otherwise, all model calibration
and validation will be conducted using the scaled data. Scaling variables in this way for
linear regression models leaves the t and F tests and R2 unchanged and coefficients rescaled
by a constant (Faraway, 2002).

As in this study, only conditional probability is modelled at each split, so only samples
of relevant RSC types are used for model calibration and validation. For example, at Split
1, samples of all RSC types are involved, so the samples of Type 0, 1, and 2 are treated
as Class 0, and the other three types are treated as Class 1. At Split 5, the relevant RSC
types are limited to 0 and 1; thus the samples of Type 0 are treated as Class 0, and Type
1 as Class 1. Therefore, the closer the split is to the root of the structure, the more RSC
types are involved.

Another issue in model calibration and validation is that some samples should be held
out for cross-validation so that only a part of total relevant samples are used for model
calibration. The cross-validation results obtained by applying the calibrated model to the
hold-out data can represent the performance of the model when it is applied to new data.
As the available sample sizes of some RSC types (e.g. Type 0, 1 and 3) are very small,
when specific splits involve any of these types, the allocation of calibration and validation
data should comply with the following rules of thumb:

77



� No matter how many RSC types are relevant to the split, the samples are first assigned
the class id of 0 or 1 according to the splitting direction. After that, “balanced
numbers” of samples in Class 0 and 1 are randomly selected for model calibration
from all relevant samples. The term “balanced” means the numbers should not differ
too much, as extremely unbalanced numbers of samples in two classes could seriously
bias the calibration results. If the sample size is large enough, 50%-50% is the most
preferable proportion.

� When the sample size is very small, the priority is to leave enough data for model
calibration and at the same time to avoid extreme unbalance. In other words, we have
to meet the minimum sample size requirements for model calibration first (usually 5
each class) and try to get balanced numbers of sample for each class. Then the rest
of the samples can be used for model validation.

At each split, the calibration and validation datasets are carefully chosen according to
the above rules. The classification accuracy of the calibrated LR model and SVM at each
split is evaluated using hit rates at that split, which include the hit rates of both calibration
and validation datasets. For each sample, the LR model estimates the probabilities of
belonging to both classes; therefore, the class with an estimated probability greater than
0.5 is deemed as the sample’s estimated class, which is used to calculate the hit rate of the
LR model.

All the calibrated LR models are calibrated with the “glm” function in R and the R
outputs are listed in the Appendix of this thesis. The SVMs are trained with the “svm”
function in the R package “e1071” with the Gaussian radial basis kernel function; but R
outputs are not explicitly listed because the model structures are too complex and we do
not attempt to give any interpretations on them. Again, the only thing concerning SVMs
is their hit rates compared to those of LR models.

The calibrated LR models based on CFM data for all five splits are summarized in
Table 3.4. The coefficients of significant and marginally significant explanatory variables
are listed in the table. The numbers in parentheses are the standard deviations of respective
estimated coefficients. Several major diagnostic statistics for model fitness are also shown
in the table including AIC, BIC, log likelihood and deviance.
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Table 3.4: CFM-Based LR Models for RSC Estimation

Split 1 Split 2 Split 3 Split 4 Split 5

(Intercept) 25.73∗∗∗ 90.06∗ 1.48 1.36∗∗ −43.00·

(4.13) (42.84) (0.98) (0.52) (26.12)
mean fric −21.94∗∗∗ −97.49∗ −19.71∗∗∗ 41.20·

(2.70) (47.26) (2.98) (21.26)
highspec prop fric −9.33∗∗ 3.25∗ −20.76·

(3.22) (1.41) (11.01)
skew fric −12.50∗∗∗ 35.53·

(3.75) (19.03)
sd fric −7.21∗∗∗ 36.02∗

(2.06) (17.12)
highspec fric 10.29∗∗ −13.66∗ −9.82∗∗∗

(3.27) (6.02) (2.91)
lowspec fric −6.59∗ 6.66∗ −24.48·

(2.79) (2.95) (12.59)

AIC 128.23 21.61 153.12 68.95 36.60
BIC 157.40 29.40 163.08 75.52 44.59
Log Likelihood -57.12 -7.81 -73.56 -31.47 -12.30
Deviance 114.23 15.61 147.12 62.95 24.60
Num. obs. 477 99 204 66 28

***p < 0.001, **p < 0.01, *p < 0.05, ·p < 0.1
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3.7.1 Split 1: Type 0, 1, 2 vs. Type 3, 4, 5

To calibrate Split 1 LR model needs the samples from all RSC types, which are divided into
two classes: Class 1 {0,1,2} and Class 2 {3,4,5}. The calibration process in R is step-wise
with AIC as the criterion of parameter entrance/exit.

AIC is the short form of the Akaike Information Criterion, which is a measure of the
relative fitness of a statistical model (Akaike, 1974). The AIC of a model describes the
tradeoff between accuracy and complexity of the model; thus it provides a means for model
selection. AIC can be generally calculated as

AIC = 2k − 2 ln(L) (3.17)

where k is the number of parameters in the model and L is the maximum likelihood for
the model with those variables. According to Equation 3.17, a smaller AIC indicates a
better balance between model complexity and model fitness. An important goal of using
AIC to control the model complexity is to avoid overfitting, i.e., to make the model fit the
assumed physical process instead of the dataset used for model calibration.

There are several other major model fitness measures based on similar ideas as AIC,
among which BIC is widely used (Schwarz, 1978). BIC reprents Bayesian Information
Criterion and is calculated as

BIC = −2 ln(L) + k ln(n) (3.18)

where n is the sample size. The BIC penalizes the number of parameters less strongly than
does the AIC.

Using different fitness measures in the process of step-wise model calibration may gen-
erate very different models, although the performance of these models could be very close.
Therefore, a model stepwisely calibrated using such fitness measures is not the only valid
one. This is a very important perception for statistical modelling, which underscores a
modeler’s involvement in parameter selection. For most modelling works in this section,
we will adjust the model structure in all the step-wise calibration processes with the AIC,
and the resulting models are reviewed and intepreted in terms of parameters’ physical
meaning. If there is no major conflict in this process, the model is considered valid.

In the calibrated model for Split 1, besides the intercept, only mean fric is left at the
end of the step-wise calibration process. As indicated before, this does not mean that the
effects of other variables are insignificant. It just suggests that with the specified fitness
measure–AIC in this case, the model takes this form. The coeffecient of mean fric is
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negative suggesting that the larger the mean friction level is, the more likely the RSC type
belongs to Class 0 (Type 0, 1, 2). The sign of this coefficient is consistent with the fact
that higher friction measurements are associated with better RSCs.

The hit rates of the calibrated LR model and the correspoinding SVM are listed in
Table ??. The hit rates of the LR model are very high for both calibration and validation
datasets, and the corresponding confusion matrices are reasonably symmetrical suggesting
the estimation is reliable with little bias. Compared to the SVM, this LR model has very
similar hit rates, which from another perspective confirms its good classification perfor-
mance.

LR SVM
Calibration Validation Calibration Validation

True True True True
0 1 0 1 0 1 0 1

E
st 0 223 11

E
st 0 80 17

E
st 0 224 12

E
st 0 78 21

1 11 232 1 6 384 1 10 231 1 8 380
95% 95% 95% 94%

In the LR model, all aggregate variables are significant, suggesting that all of them
have contributed to the high hit rates. Taking a closer look at the coefficients, it can be
found that

� Higher mean fric, highspec prop fric, skew fric and sd fric correspond to lower
probability of being Class 1, which is consistent with the physical meanings presumed
in previous discussion and/or the dicovered patterns in the exploratory analysis.

� Higher highspec fric corresponds to higher probability of being Class 1, which con-
flicts with the explored pattern of highspec fric in Section 3.5.5. As the calibration
dataset is a mixture of the samples from all six RSC types with unequal proportions,
the effect of highspec fric exhibited in the model could be biased by this inequality
of sample proportions and thus the sign of the coefficient is not as expected.

� Higher lowspec fric corresponds to lower probability of being Class 1, which is dif-
ficult to interpret in terms of physical meaning. This is likely to be caused by the
unbalanced sample sizes in certain RSC types.

� Compared to mean fric, the effect magnitudes of other variables are smaller but
not negligible, which suggests that besides the mean friction, the other aggregate
variables can significantly improve the RSC classification accuracy.
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Although the signs of coefficients of some significant variables are questionable, the
overall performance of this LR model for Split 1 is satisfactory. Its hit rates are almost
the same as the SVM, suggesting that the model structure has efficiently exploited the
classification power of the explanatory variables.
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3.7.2 Split 2: Type 0, 1 vs. Type 2

The hit rates of the Split 2 model and the corresponding SVM are listed in Table ??. Similar
to the Split 1 model, the hit rates of the LR model are very high for both calibration and
validation datasets, and the confusion matrices are reasonably symmetrical suggesting the
estimation is reliable.

LR SVM
Calibration Validation Calibration Validation

True True True True
0 1 0 1 0 1 0 1

E
st 0 28 0

E
st 0 8 9

E
st 0 29 0

E
st 0 9 8

1 2 69 1 2 202 1 1 69 1 1 203
98% 95% 99% 96%

In this model, only mean fric and highspec fric are significant, and their coefficients
are both negative, i.e., higher mean fric and highspec fric correspond to higher proba-
bility of being Class 0. This fact is consistent with their presumed physical meaning, and
also reflects the feature patterns as explored in Section 3.5. The coefficient magnitude of
mean fric is overwhelmingly larger than that of highspec fric suggesting mean fric is
very important for this split model and the contribution by highspec fric could be rela-
tively marginal. This model is satisfactory in terms of of both model structure, coefficient
interpretation and classification performance.
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3.7.3 Split 3: Type 3, 4 vs. Type 5

The hit rates of the Split 3 model and the correspoinding SVM are listed in Table ??.
Compared to the Split 1 and 2 models, the hit rates of this model are a bit lower but
acceptable. The confusion matrix of the calibration dataset is symmetrical, but that of the
validation dataset is extremely asymmetrical. For the validation dataset, a much larger
proportion of Class 0 samples are incorrectly classified into Class 1, but most of Class 1
samples are correctly classified, which implies some possible bias associated with the model.
This phenomenon is substantially alleviated in the SVM, although the overall hit rates of
the LR model and the SVM are very close.

LR SVM
Calibration Validation Calibration Validation

True True True True
0 1 0 1 0 1 0 1

E
st 0 88 12

E
st 0 331 3

E
st 0 91 11

E
st 0 336 4

1 22 82 1 83 23 1 19 83 1 78 22
83% 80% 85% 81%

In this model, only mean fric and highspec prop fric are significant. As expected,
highermean fric corresponds to higher probability of being Class 0. Higher highspec prop fric
corresponds to higher probability of being Class 1, which is consistent with its distribution
patterns as explored in Section 3.5.6.

Similar to the Split 2 model, the coefficient magnitude of mean fric in this model is
overwhelmingly large, suggesting mean fric is very important for this split model and the
contribution by other variables could be marginal. This model is also acceptable in terms
of validity and classification performance.
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3.7.4 Split 4: Type 3 vs. Type 4

The hit rates of the Split 4 model and the corresponding SVM are listed in Table ??.
Its hit rates are close to those of the Split 3 model, but lower than those of the Split 1
and 2 models. The confusion matrices of the calibration and validation datasets are both
asymmetrical, and the same phenomenon occurs with the SVM. This suggests at this split,
the boundaries of Type 3 and 4 are fuzzier in the feature space and the estimation based
on current features could face a large degree of uncertainty. In other words, these two RSC
types are similar and it is more difficult to distinguish one from the other.

LR SVM
Calibration Validation Calibration Validation

True True True True
0 1 0 1 0 1 0 1

E
st 0 9 3

E
st 0 0 46

E
st 0 10 1

E
st 0 1 46

1 12 42 1 3 409 1 11 44 1 2 409
77% 89% 82% 90%

In this model, mean fric does not appear significant. The step-wise calibration process
in R has chosen highspec fric and lowspec fric as the only significant variables. Higher
highspec fric corresponds to higher probability of being Class 0, which is consistent with
the presumed physical interpretation that larger high-frequency spectra are associated with
better RSCs. Higher lowspec fric corresponds to higher probability of being Class 1,
which is obviously in contradiction to the distribution pattern shown in Figure 3.10. This
is difficult to interpret and may be attributed to some interaction effects not captured
by the model. This model is acceptable in terms of classification performance, but some
discretion should be given in both interpretation and application.
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3.7.5 Split 5: Type 0 vs. Type 1

The sample sizes for model calibration and validation of Split 5 are both very small, so the
model validity and estimation performance could be highly questionable; however, we can
still get some interesting hints from the modelling results. For example, the hit rates of
both the LR model and SVM shown in Table ?? beat the uninformative ratio of 50% for
the calibration dataset, which suggests that both classifiers have shown certain capability
in RSC estimation.

LR SVM
Calibration Validation Calibration Validation

True True True True
0 1 0 1 0 1 0 1

E
st 0 10 4

E
st 0 3 5

E
st 0 13 5

E
st 0 2 8

1 4 10 1 0 4 1 1 9 1 1 1
71% 58% 79% 25%

The only significant variable in the model is sd fric with a positive coefficient; i.e.,
larger standard deviation is associated with Class 1, which corresponds to RSC Type 1
(bare wet). This is consistent with our expectations based on its physical interpretation
and distribution patterns across RSC types. Until more CFM data are collected on Type 0
and Type 1 road surfaces, it is difficult to give a more conclusive assessment on this model.
It is easy to see that the hit rates and the structure of the current model both imply there
is a large room for improvement.

3.7.6 Propagation Error

Besides the validation of each binary split model, validating the performance of the whole
model structure is also a great concern, especially for the decision support in maintenance
practice. Propagation error is evaluated for this purpose.

When a sample is input into the structured models, starting from the root of the tree
shown in Figure 3.14, the binary model at each split is recursively applied to assign the
sample to the appropriate branch until it reaches a certain leaf of the tree, which is its
estimated RSC type. If the estimated type is not the true type, it is a case of propagation
error. In this way, all the samples are propagated along the tree through several binary
assignments, and the propogation errors for the calibrated logit models are summarized in
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the confusion matrix shown in Table 3.5. The row names of this confusion matrix are the
true RSC types and the columns names are the estimated types. Two columns are added
to represent the total numbers and estimation accuracy (represented by hit rates) for all
RSC types. Besides, two rows are added to represent the total numbers and estimation
confidence (represented by specificity rates). The rate of specificity for each type is the
number of cases correctly classified as this type divided by the total number of cases
classified as this type.

Table 3.5: Propagation Errors of LR Models

0 1 2 3 4 5 Total Accuracy (%)
0 11 4 2 0 0 0 17 64.7
1 8 13 2 0 0 0 23 56.5
2 5 4 254 4 13 0 280 90.7
3 1 0 3 6 14 0 24 25.0
4 0 0 24 38 333 105 500 66.6
5 0 0 0 1 14 105 120 87.5

Total 25 21 285 49 374 210 964
Specificity (%) 44.0 61.9 89.1 12.2 89.0 50.0

The accuracy is relatively high for true types 0, 2, 4, and 5, and low for the other two
types. As for the specificity, estimated types 1, 2 and 4 are relatively high.

From the perspective of practical maintenance decision, different types of propagation
errors may have various consequences. For example, if the models are used to determine
BP status, a reliable classification between bare (0 and 1) and non-bare (2, 3, 4 and 5)
types is more important than other classifications. When the true condition is bare but
estimated to be non-bare, it is a false alarm. On the other hand, if the true condition is
non-bare but wrongly estimated to be bare, it is a miss. Observed from Table 3.5, it can
be found that the false alarm rate is 4/40 = 10% and the miss rate is 10/924 = 1.08%.
The extremely low miss rate means the models can identify non-bare slippery road surface
in a highly efficient manner. The 10% false alarm rate appears to be a little high, but
the estimated types of those false alarms are all Type 2, which is very similar to the bare
condition so that the cost of those false alarms is very low. These observations about the
propagation errors suggest that this structure of models can be a powerful tool for BP
status monitoring.

Another observation about the propogation errors is that the misclassifications mostly
occur at the RSC types of similar severity. For example, 17 out of 18 misclassifications
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of Type 3 cases are estimated as Type 2 or 4; 143 out of 167 misclassifications of Type
4 cases are estimated as Type 3 or 5; and 14 out of 15 misclassifications of Type 5 cases
are estimated as Type 4. All those misclassifications are associated with low cost, which
implies the performance of the structured models is reliable and they can be applied with
confidence.

The propogation errors for the trained SVMs are summarized in Table 3.6. It is very
similar to Table 3.5 in terms of accuracy, specificity, misclassification rates, false alarm
rates and miss rates. This suggests that SVMs do not show significant advantage over logit
models when organized and applied under the proposed multi-level structure.

Table 3.6: Propagation Errors of SVMs

0 1 2 3 4 5 Total Accuracy (%)
0 14 2 1 0 0 0 17 82.4
1 12 10 1 0 0 0 23 47.1
2 7 1 254 2 16 0 280 90.7
3 1 0 3 7 12 1 24 29.2
4 0 0 29 36 339 96 500 67.8
5 0 0 0 0 15 105 120 87.5

Total 34 13 288 45 382 202 964
Specificity (%) 41.2 76.9 88.2 15.6 87.4 52.0
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3.8 RSC Estimation by Vehicle Speed

As mentioned at the beginning of this chapter, speed data are used separately to classify
RSC types. Although the features in the speed data are totally different from CFMs, the
definition of the study problem, the model framework and the modelling steps are very
similar except that the basic classification data are the aggregate features of vehicle speed
instead of CFMs.

The speed data available to this study were collected by the GPS device mounted on
the friction meter operation vehicle. As discussed in Section 2.3.4, the ideal features for
RSC estimation should not be closely related to the driving behavior. Obviously, speed is
not such a feature, so the models calibrated in this section should be taken cautiously. The
purpose of calibrating this set of models is to show a possible framework for such type of
studies.

3.8.1 Aggregation Interval Length

The vehicle speed is studied under a very similar frame work as in Figure 3.1. The only
difference is that all the aggregate measures are extracted from vehicle speed instead of
CFMs. The aggregate measures from speed data are exactly the same, i.e.,

1. mean speed (of original series)

2. standard deviation (of original series)

3. skewness (of original series)

4. low-frequency spectra (of first differenced series)

5. high-frequency spectra (of first differenced series)

6. proportion of high-frequency spectra (of first differenced series)

Like what has been done in Section 3.6.3, the hit rates of preliminary LR models and
SVMs calibrated with speed data are plotted against corresponding aggregation intervals
in Figure 3.17 and 3.18.

For both classification schemes, the hit rates of logit models and SVMs increase with
the aggregation interval length. The hit rates of SVMs are all higher than LR models as
expected. When the aggregation interval length is longer than 500 meters, the hit rates
of LR models level off, while the hit rates of SVMs keep increasing but at a lower rate.
This pattern suggests an optimal aggregation interval between 500 to 1000 meters, which
is very similar to what has been suggested by Figures 3.17 and 3.18.
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Figure 3.17: Model Hit Rates for Different Aggregation Interval Lengths (Speed Data)
Type (0,1,2) vs. Type (3,4,5)

Compared to speed-based models with the same aggregation interval, CFM-based mod-
els have significantly higher hit rates, suggesting friction measurements can give more re-
liable RSC estimations than speed data. However, the reasonable hit rates of speed-based
models suggest that vehicle speed may be used to explain some variations in road surface
conditions.
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Figure 3.18: Model Hit Rates for Different Aggregation Interval Lengths (Speed Data)
Type (0,1,2,3) vs. Type (4,5)
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3.8.2 Exploratory Analysis

Similar to what has been done in Section 3.5, the aggregate features are examined by RSC
types. Using exactly the same integration method, the interval lengths of 300m, 700m and
1000m are applied to the speed data.

Figure 3.19: Mean Speed

The distribution of each extracted feature is plotted against the RSC types as shown
in Figure 3.19 to 3.24. It can be found that

� Mean speed generally decreases when the RSC becomes worse but this could be due
to the drivers’ self-adjustment of the speed and is only an indirect reflection of RSC.
The average levels of the mean speed of Type 0 to 3 are very similar, while those of
Type 4 and 5 are also similar with a slightly lower average.

� Standard deviation, skewness and low-frequency spectra may not be good estimators
of RSC, as their value ranges overlap a lot across all six RSC types.

� The high-frequency spectra of Type 4 and 5 are very small, while the other four types
have similar levels of high-frequency spectra.

� The proportion of high-frequency spectra of Type 4 and 5 is similar and lower than
the other four types and the other four types significantly overlap.
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Figure 3.20: Standard Deviation of Speed

These observations suggest that, if mean speed is not used in model calibration, only
the classification between Types (0,1,2,3) and Types (4,5) can be reliably made using the
current set of aggregate features.
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Figure 3.21: Skewness of Speed

Figure 3.22: Low-Frequency Spectra of Speed
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Figure 3.23: High-Frequency Spectra of Speed

Figure 3.24: Proportion of High-Frequency Spectra of Speed
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3.8.3 Model Calibration and Validation

The same nested structure as shown in Figure 3.14 is used for RSC estimation. For each
split, a binary LR and SVM are calibrated using the following variables:

� Standard Deviation (sd speed)

� Skewness(skew fric)

� Low-Frequency Spectra (lowspec speed)

� High-Frequency Spectra (highspec speed)

� Proportion of High-Frequency Spectra (highspec prop speed)

Each aggregate measure of speed in the list corresponds to the same aggregate measure
of CFMs but the mean speed is not used as we assume it is significantly affected by non-RSC
factors, such as speed limits, traffic controls, roadway geometries, traffic flow characteristics
and driving behaviors. The other variables could be correlated more closely with RSC, and
thus are tested in our modelling process. Again, this decision is based on our presumption
with no solid support from any empirical studies.

In fact, the model structure based on CFMs may not fit the speed data and should be
adjusted according to the patterns revealed in the exploratory analysis on speed data. As
in this study, the speed-based modelling is only for the purpose of demonstration. The
same model structure and sample allocation scheme are used so that it is more convenient
to compare the resulting models to the CFM-based models at individual splits.

The calibrated LR models based on speed data are summarized in Table 3.7. The hit
rates of the LR models and SVMs for the calibration and validation datasets for all the
splits are listed in Table 3.8 to Table 3.12. From the calibrated LR models, it can be found
that

� No explanatory variables are significant for Split 2 and 5, which suggests that the
tested aggregate features can not be used for RSC classification for these two splits.

� The hit rates of the LR models for Split 1, 3 and 4 are from 60% to 80%, which are
acceptable for the testing purpose. The Split 4 model has the highest hit rates and
the confusion matrices are symmetrical. This is expected because at this split, there
are some good discriminators, like highspec prop speed, as shown in the exploratory
analysis.
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Table 3.7: Speed-Based LR Models for RSC Estimation

Split 1 Split 2 Split 3 Split 4 Split 5

(Intercept) 4.14∗∗∗ 0.83∗∗∗ −0.15 11.27∗∗ 0.00
(0.89) (0.22) (0.24) (4.09) (0.38)

skew speed −2.47· −10.15·

(1.48) (5.92)
lowspec speed −3.49∗∗∗ −4.36·

(1.01) (2.43)
highspec prop speed −4.15∗∗∗ −5.50∗∗∗

(0.48) (1.61)
sd speed 2.70∗ −7.43∗∗

(1.22) (2.84)
highspec speed −5.80∗

(2.85)

AIC 544.97 123.46 273.18 67.42 40.82
BIC 561.64 126.05 286.46 76.18 42.15
Log Likelihood -268.48 -60.73 -132.59 -29.71 -19.41
Deviance 536.97 121.46 265.18 59.42 38.82
Num. obs. 477 99 204 66 28

***p < 0.001, **p < 0.01, *p < 0.05, ·p < 0.1
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� At all splits, the hit rates of speed-based models are equal to or lower than those of
the CFM-based models except Split 4. It again concurs with the findings of most
previous studies that friction level is a very reliable measurement of RSC.

On the whole, the RSC estimation based on speed data is substantially worse than
CFM-based estimation, but at Split 4, the speed-based model has performed very well,
suggesting vehicle driving data could be very helpful in RSC estimation if their corre-
lations with RSC types are well understood and they enter the model after appropriate
aggregation/preprocessing.

Table 3.8: Hit Rates of Split 1

LR SVM
Calibration Validation Calibration Validation

True True True True
0 1 0 1 0 1 0 1

E
st 0 163 72

E
st 0 67 117

E
st 0 164 63

E
st 0 68 109

1 71 171 1 19 284 1 70 180 1 18 292
70% 72% 72% 74%

Table 3.9: Hit Rates of Split 2

LR SVM
Calibration Validation Calibration Validation

True True True True
0 1 0 1 0 1 0 1

E
st 0 0 0

E
st 0 0 1

E
st 0 0 0

E
st 0 0 0

1 30 69 1 10 211 1 30 69 1 10 211
70% 95% 70 95%
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Table 3.10: Hit Rates of Split 3

LR SVM
Calibration Validation Calibration Validation

True True True True
0 1 0 1 0 1 0 1

E
st 0 80 49

E
st 0 268 17

E
st 0 83 32

E
st 0 269 17

1 30 45 1 146 9 1 27 62 1 145 9
61% 63% 71% 63%

Table 3.11: Hit Rates of Split 4

LR SVM
Calibration Validation Calibration Validation

True True True True
0 1 0 1 0 1 0 1

E
st 0 12 5

E
st 0 1 83

E
st 0 11 4

E
st 0 0 54

1 9 40 1 2 372 1 10 41 1 2 401
79% 81% 79% 88%

Table 3.12: Hit Rates of Split 5

LR SVM
Calibration Validation Calibration Validation

True True True True
0 1 0 1 0 1 0 1

E
st 0 0 0

E
st 0 0 0

E
st 0 12 1

E
st 0 2 4

1 14 14 1 3 9 1 2 13 1 1 5
50% 75% 89% 58%
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3.9 Summary

In this chapter, the relationship between CFM and RSC is systematically studied. The
aggregate measures of CFMs are explored from different perspectives, such as aggregation
length, probability distribution, patterns in the frequency domain, and so on. According
to the exploration results and certain presumptions suggested by preliminary studies, a
multi-level model structure is designed in order to accurately estimate RSC types using
CFM data. Several aggregate measures of CFMs are carefully chosen and used as the
explanatory variables in calibrating and validating a set of binary LR models. In the mean
while, an SVM is trained corresponding to each LR model to benchmark its performance.
The modelling results are acceptable and the aggregate measures have shown significant
effects in most LR models.

Vehicle driving data, especially speed, are also tested under the similar model structure
and methodology. The overall performance of speed-based models are not as good as
CFM-based models, but there is some success in classifying certain RSC types.
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Chapter 4

RSC Forecasting

As discussed in Chapter 2, the approaches used for RSC forecasting expand over a wide
spectrum, from rule-based to data-driven, from purely physical to statistically rooted, and
from short-term to long-term perspectives; however, each of them has some of the following
limitations:

� the effects of de-icing operations such as salting or plowing are not considered,

� the set of input parameters is very large,

� the uncertainty in the snow/ice melting process is not systematically addressed.

These limitations could seriously affect the model’s feasibility for supporting real-world
maintenance decision making and performance measure. The RSC model framework of
VTI (Möller, 2008; Wallman, 2004), as shown in Figure 4.1, is an attempt to overcome the
above limitations.

The core of this model is to use the RSC at t and the forecast of relevant explanatory
variables during the period from t to t+ 1 to forecast the RSC at t+ 1. Although the VTI
model is the most comprehensively defined short-term RSC forecasting model framework
up until now, several aspects of it need some adjustment or improvement. Specifically,

1. The RSC is defined as a set of discrete categories instead of numerical measures. The
categorical RSC definition could easily introduce subjective bias from both modellers
and model users, impairing the validity and performance of the model.
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Figure 4.1: VTI RSC Model

2. The nature of the RSC changing process is essentially continuous instead of discrete
in time, i.e. the depths of snow/ice contaminants usually change gradually under the
influence of environmental factors. The forecast in the form of multi-class probability
distributions can address this continuity nature indirectly, but it is subordinate to
the forecast directly aiming at some numerical measure, like contaminant depths.

3. The model framework implicitly assumes that the RSC changing in time is a simple
Markovian process. The future RSC is only conditional on the current RSC and
related factors. The RSC at hour t + 1 can be successfully predicted from hour t
without any residual effect from the previous hours (t − 1, t − 2, . . . ). It is a very
strong assumption having overlooked an important factor in the ice/snow melting
process, namely the lasting melting effect of salt. In other words, the applied salt
could take a much longer time than one hour to show its effect as melting takes time.
Therefore, the knowledge of the amount of salt residual at t might not help a lot in
predicting its melting effect at t+ 1.

To address the limitations of the VTI model, a new RSC forecasting model framework
is proposed as described in Section 4.1. The data collection and aggregation process and
the modelling methodology are respectively described in Section 4.2, 4.3 and 4.6. The
model calibration and validation results are presented in Section 4.7 and 4.8.
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4.1 Problem Definition and Modelling Framework

Due to different objectives of RSC modelling, the problem can be defined in a variety of
constructs in terms of short or long term forecasting, stochastic or deterministic forecasting,
discrete RSC classes or numerical RSC measure forecasting, considering maintenance op-
erations or not, point-wise (study site is only a spot on the roadway) or macroscale (study
site is one or multiple road sections) forecasting. The scope of this chapter is to make
short-term forecasting at a fixed spot on the roadway surface. The factors incorporated in
the framework include weather, traffic and maintenance operations, which is similar to the
conceptual model proposed by Klein-Paste (2008). This scope is defined in consideration
of the objectives of the overall thesis study, which is to address the estimation and fore-
casting accuracy and model applicability in real-world maintenance decision making and
performance measure. In addition, this scope is also defined based on the data available
for the study, which will be discussed in details in Section 4.2, 4.3 and 4.6.

The framework makes a Markovian assumption similar to that of the VTI model, but
with the following major changes (Figure 4.2).

1. The RSC is defined as a set of numerical measures, which are surface temperature,
friction level and contaminant layer depths. RSC types are not considered in both
model calibration and application.

2. Applied salt is treated as an exogenous variable instead of an endogenous variable.
It is considered as an external factor affecting the RSC changing just like weather
variables, instead of as a part of the RSC measurement.

3. The RSC is predicted using its previous state and the historical observations of the
relevant factors. Only one time interval of traffic, weather and plowing information
is entered into the model, but a longer history of salting operations is considered.

As shown in Figure 4.2, more than one time interval of previous salting operations enter
the model as it is assumed that applied salt may take more than one time interval to clearly
show its melting effect. The one time interval from t to t+ 1 could be any constant length
besides one hour, e.g. 20 minutes–the measuring time interval by most RWIS stations.

The model framework also assumes a Markovian process, of which a snapshot of the
system state spans more than one study time interval (t − p to t) in order to incorporate
historical salting operations. The RSC is defined mainly by three measures:
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Plowing
t to t + 1

Traffic
t to t + 1

RSC
t

RSC
t + 1

Salting
t− p to t + 1

Weather
t to t + 1

Figure 4.2: RSC Forecasting Model Framework

1. pavement contaminant depth

2. road surface temperature

3. road surface friction level

Detailed descriptions about each component in Figure 4.2 are given in Section 4.2 and
4.3.
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4.2 Data Collection

The data required by the model framework in Figure 4.2 consist of four major parts:

1. numerical measures of RSC

2. weather information

3. traffic volume

4. plowing and salting operation records

A high quality model requires that all four parts of the data be collected at or very
close to the same spot on the roadway. After a diligent process of searching and requesting,
especially with our research partner, Ministry of Transportation Ontario (MTO), it is found
that no study site in Ontario has the complete dataset for the scope of this study. The
reason and the solution to this problem are discussed as follows.

4.2.1 RSC Measures

RSC measures are the foundation of the model framework. Most installed RWIS pavement
surface sensors in Ontario do not measure the contaminant depth. At the data collection
stage of this study, only one RWIS station on Highway 417 could give this measure. This
RWIS system is produced by Vaisala and the surface sensor set is different from other
traditional ones in both measuring mechanism and monitored factors. This surface sensing
system consists of two new remote optical sensors (collectively called Vaisala Spectro/Cyclo
sensors): namely, the Vaisala Remote Road Surface State Sensor (DSC111) and the Vaisala
Remote Road Surface Temperature Sensor (DST111), as shown in Figure 4.3.

DSC111 is an active near-infrared band (-1 µm) remote sensor, which sends infrared
light beams to the road surface and detects the backscattered signals at selected wave-
lengths. Based on observed differences in light absorption, it can differentiate pavement
contaminant layers and thus surface states such as dry, moist, wet, icy, snowy/frosty or
slushy. The sensor also provides a measure called grip level which is intended to represent
the level of friction of the road surface. This grip level is estimated using an empirical
model based on the surface state and contaminant depth detected by the sensor. DSC111
reports the following data items:

� pavement states: dry, wet (thin water layer), slushy (thick water layer, no ice or
snow), snow or frost (white ice), ice (black ice)
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(a) DSC111 (Spectro Sensor) (b) DST111 (Cyclo Sensor)

Figure 4.3: Image of Vaisala Sensor Set

� pavement contaminant depths in equivalent liquid water amount (in mm)

� estimated surface friction level (0.01-1.00)

DST111 is a temperature sensor based on infrared technology. It measures the difference
of long wave infrared radiations between the sensor instrument itself and the road surface.
This difference can be calibrated to a known temperature difference and thus used to
estimate the pavement temperature. According to its product specifications, DST111 is
accurate up to 0.3 ◦C in typical icing conditions. DST111 reports the following data:

� pavement surface temperature in ◦C

� air temperature in ◦C

� dew point temperature in ◦C

� relative humidity in percentage

The detailed specifications for DSC111 and DST111 are attached in Appendix A. The
most recent development of both sensors can be found on the Vaisala website (http://www.vaisala.com).
Pilli-Sihvola et al. (2006) and Feng & Fu (2008) have evaluated both sensors in their field
studies and confirmed that their performance was fairly acceptable.

This Vaisala sensor set is located beside the eastbound lanes of Highway 417 near
Casselman, Ontario, as shown in Figure 4.4. The monitored spot is right beside the sensor
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set on the roadway and at the downstream direction of the Nation River Bridge. The
sensors are installed on a pole at the roadside and are vertically 8.3m over the roadway
level. The monitored spot covers a 20cm-diametered area near the right wheel track of the
lane. The installed sensor and the monitored area are shown in Figure 4.5.

Figure 4.4: Location of Vaisala Sensor Set
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(a) Sensor Installation (b) Monitored Area

Figure 4.5: Vaisala Sensor Installation and Monitored Area
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The pavement contaminant depth reported by DSC111 consists of three components,
which are

1. water layer depth

2. ice layer depth

3. snow layer depth

DSC111 also reports the estimated friction levels. As DST111 reports road surface
temperature, this sensor set gives all the RSC measures needed in this study. So the data
of other factors indicated in the model framework are collected based on this study site
and the study period conforms to the available RSC dataset from this Vaisala site.
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4.2.2 Weather Data

There is a traditional RWIS station located right beside the Vaisala station, which is shown
in Figure 4.5. It reports data on a number of weather variables, such as air temperature,
relative humidity, windchill and so on. In this study, precipitation rate, a very important
variable, is available from this RWIS station but only over a limited time period.
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4.2.3 Maintenance Data

As the study is concerned with short-term RSC changing considering the effects of main-
tenance operations, the spatial and temporal resolution of the maintenance data should
be as high as possible. However, the available maintenance operation database of MTO,
called MMIS (Maintenance Management Information System) (Ministry of Transporta-
tion Ontario, 2003), does not record the exact location and time of each plowing or salt-
ing operation. Therefore, the available AVL (Automated Vehicle Location system) data
of maintenance vehicles are used (http://www.mto.gov.on.ca/english/transtek/m02-03/02-
03fs.shtml).

The AVL system tracks the maintenance operations conducted by MTO and contractor
vehicles. For location tracking, the AVL system reports the time and location of the
monitored vehicles with a high frequency (mostly from several seconds to 30 seconds). For
the salting operations, it tracks the application rate of both dry salt and pre-wetting salt
solution. There are three maintenance vehicles doing plowing or salting at the study site.
Their information is listed in Table 4.1, which is copied from MTO maintenance equipment
description sheets.

Table 4.1: Maintenance Vehicles at Testing Site

Name Equipment Task
Plow 78-7 Plow Truck 14’ Reversible Plowing
Combo 78-8 Combo 7.6 m3 Dual Spinner Salting
Combo 78-9 Combo 7.6 m3 Dual Spinner Salting ramps

Plow 78-7 only conducted plowing and Combo 78-8 salting. Combo 78-9 conducted
salting as well but its main task was to apply salt on ramps and bridges. Although the
study site is not on any ramp or bridge, it is very close to Nation River Bridge, and Combo
78-9 could also be dispatched to salt the section of the route containing the study site.
Therefore, the data of Combo 78-9 are also considered for the study.

4.2.4 Traffic Data

After checking available RSC, weather and maintenance data, it was found that the time
period for which all those data are available is only one winter season–November, 2007 to
March, 2008. Therefore, this time period is designated as the study period. After searching
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the traffic volume data for this period near the study site, it was found that the data of
only one traffic counter in Ottawa covered this period. Although on Highway 417, this
traffic counter is 66.4 km from the study site, and the city of Ottawa is in between. The
difference of the traffic volume between this location and the study site could be very large.
There is another traffic counter at Dunvegan, which is only 17.4 km from the study site,
and there is no big town in between. This traffic counter only has the data up to April,
2006, but the traffic volume after that can be estimated using Ottawa’s data if some model
can be built using the historical data of both traffic counters. The locations of the traffic
counters at Ottawa and Dunvegan, and the study site are shown in Figure 4.6. Detailed
procedure for this model calibration and traffic estimation are given in Section 4.3.

Figure 4.6: Traffic Counters Close to Study Site
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4.2.5 Summary

After the availability of the data is examined, the study site and the study period is
determined as:

� Study Site: Vaisala monitored spot on Highway 417 (45◦18’11.81”N, 75◦6’2.52”W)

� Study Period: Winter season 2007-2008 (Nov.2007-Mar.2008)

Data sources and respective collection procedures are summarized in Table 4.2.

Table 4.2: Summary of Data Collection

Data Source Collection Procedure
RSC Vaisala sensor set downloaded from Vaisala website
Weather RWIS station obtained from MTO
Maintenance Record AVL system downloaded from AVL data archive website
Traffic Volume Traffic Counters obtained from MTO
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4.3 Data Integration

4.3.1 RSC and Weather Data

Most Vaisala and RWIS data are spaced 20 minutes apart, so 20 minutes is determined as
the study time interval, i.e., one time interval in the model framework is 20 minutes. All
Vaisala and RWIS data are integrated according to this time interval, and a long time series
of RSC and weather datasets is generated for the study period. The data fields include the
following variables:

� air temperature

� precipitation

� pavement surface temperature

� water depth

� ice depth

� snow depth

� friction level

There are other variables available, like relative humidity and windchill. As their effect
on RSC changing is expected to be relatively small compared to air temperature and
precipitation, they are not considered in further modelling analysis.

4.3.2 Maintenance Data

The timestamps for the maintenance vehicles passing the study site are calculated by some
interpolation algorithm. As the AVL data have a very high temporal resolution, the error
of these timestamps is mostly under 30 seconds, which is trivial compared to the 20 minute
study time interval. If the vehicle is applying salt or salt solution, the application rate
is extracted. Afterward, the salt application rate of salting operations at the study site
is inserted into the RSC/weather time series dataset at the location where its timestamp
corresponds to the row timestamp.

For the plower, the AVL data do not have any record indicating active plowing opera-
tions. Therefore, a simple rule is applied to estimate its behavior: i.e., when the plower is
passing the study site, if the sum of the water, ice and snow layers is more than 0.4mm, and
the timestamp is more than 20 minutes later than the last salting operation, the plower is
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doing plowing. Otherwise, the plower is just passing without plowing. The 0.4mm thresh-
old value is chosen after manually examining the change of the contaminant depths before
and after the plower operations.

4.3.3 Traffic Data

As the traffic data at Dunvegan does not cover the study period, an ordinary regression
model is calibrated to relate traffic at this site for the study period to those at a counting
station near Ottawa. The data used for model calibration are the hourly traffic volume
at the two traffic counters from 2004-03-28 to 2006-04-30. The R output of the model
calibration is given in Appendix B. The model can be written as

lnY = 1.68 + 0.17× lnX + 0.04× (lnX)2 (4.1)

i.e.

Y = e1.68+0.17×lnX+0.04×(lnX)2 (4.2)

where X is the hourly traffic at Ottawa and Y is the hourly traffic at Dunvegan.

The model has shown that the traffic volumes at these two locations are highly corre-
lated and the model itself explains more than 86% of total data variation. This suggests
that the estimation made by this model is acceptable. The calibration data and the cali-
brated function curve are plotted in Figure 4.7. When the Ottawa traffic volume is larger
than 3000, the variance of the estimation increases significantly. Except this estimation,
there is no better source of traffic information at the study site for the study period, so it
was used for the modelling work at the current stage. Ideally, observed traffic data should
be used instead of the estimated data.

The hourly traffic volume at Dunvegan is estimated using the traffic data at Ottawa
with this model, and this estimation is used to represent the traffic volume level at the
study site. Obviously, it could be much different from the true traffic volume at the study
site. However, we can reasonably assume that the correlation of the traffic volume between
the study site and Dunvegan is high, and the variation at the study site can be surrogated
to a large degree by the variation at Dunvegan. It is therefore expected that using traffic
volume at Dunvegan is similar to using traffic volume at the study site for RSC modelling,
especially when the RSC forecast model is essentially linear. The only difference in the
RSC forecast model will be the scale of the coefficient of the traffic term.
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Figure 4.7: Traffic Volume from Traffic Counters
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4.4 Data Summaries

The RSC, weather, maintenance and traffic data are integrated into a single data table
for further analysis. As mentioned before, each row of the table has a timestamp and the
time interval between the rows is an even 20 minutes. The columns of the table correspond
to the endogenous and exogenous variables, where the endogenous variables are five RSC
measures (surface temperature, friction level, water depth, ice depth, snow depth) and
the exogenous variables are air temperature, precipitation, plowing operation, application
rate of dry salt and hourly traffic volume. The application rate of the salt solution is not
considered due to the following facts:

� In the study dataset, salt solution is mostly applied together with dry salt, i.e., salt is
applied in a pre-wetted manner. This is one of the limitations of the study dataset, as
the effects of pre-wetting vs non pre-wetting salting operations can not be compared.

� The salt solution is usually of 2% to 5% concentration for the pre-wetting purpose.
Hence, the amount of salt in the solution is insignificant to that of the dry salt applied
at the same time.

Therefore, this study will only examine the de-icing effect instead of anti-icing or pre-
wetting effect. The concepts of de-icing, anti-icing and pre-wetting are discussed in Chap-
ter 2.

4.4.1 RSC Variables

In total, there are 8277 data rows, which correspond to 8277 20-minute time intervals during
the study period from November 20, 2007 to March 31, 2008. During a large proportion
of the study period, there is no contaminant on the pavement surface. In order to show a
clearer picture of the information about the RSC measures, those data rows are excluded
from this analysis. The summary statistics of five RSC variables are shown in Table 4.3.

“n” in the table is the number of data rows considered by the summary. Without special
notes, this meaning does not change in all the summary tables in this chapter. The value
range of each RSC variable in this subset of the full data is fairly large, which gives more
confidence to the reliability and validity of the modelling results. The histograms for the
RSC variables in Figure 4.8 and 4.9 show their dispersions more intuitively.
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Table 4.3: Summary of RSC measure Variables

n mean sd median min max range
Surface Temperature (◦C) 2514 -4.60 4.93 -4.20 -18.21 10.60 28.81

Friction Level 2514 0.34 0.27 0.21 0.09 0.82 0.73
Water Layer (mm) 2514 0.49 0.82 0.08 0.00 6.52 6.52

Ice Layer (mm) 2514 0.13 0.18 0.05 0.00 1.32 1.32
Snow Layer (mm) 2514 0.93 1.43 0.00 0.00 5.30 5.30

Figure 4.8: RSC Variable Distributions: Surface Temperature and Friction Level
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Figure 4.9: RSC Variable Distributions: Water, Ice and Snow Layers
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4.4.2 Weather Variables

Only two weather variables are considered in the modelling work: air temperature and
precipitation. The reasons for this decision are summarized as follows.

� These two variables are the most important weather factors affecting RSC changes,
which are suggested by most previous studies.

� Some seemingly important variables, like relative humidity, are highly correlated with
precipitation. When more than one highly correlated variable enters a regression-
style model, the phenomenon of“multicolinearity”occurs, which makes the coefficient
estimation highly unreliable (Faraway, 2002).

� Other variables, like wind and windchill, may have an effect on RSC, but this effect is
likely to be much smaller in magnitude than air temperature and precipitation. Even
if their effects end up significant in the resulting model, it could be very difficult to
explain their causal effects on RSC changing.

The statistical summaries of air temperature and precipitation are shown in Table 4.4.
Again, the data rows with zero precipitation are excluded from this summary in order to
show a clearer view of the distributions.

Table 4.4: Summary of Weather Variables

n mean sd median min max range
Air Temperature (◦C) 1241 -3.9 5.2 -3.6 -22.4 11.0 33.4

Precipitation (mm/20 minutes) 1241 1.8 1.8 1.0 0.0 13.0 13.0

Additionally, the distributions of both variables are shown in Figure 4.10. Although
the data are only for one winter season, the air temperature covers a fairly large range
(from -22.36 to +11 ◦C) and so does the precipitation.
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Figure 4.10: Weather Variables Distributions
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4.4.3 Maintenance Operations

During the study period, there were 200 plowing operations and 305 salting operations at
the study site.

As indicated in Section 4.3.2, the plowing operations are identified by a rule of thumb.
According to a close review of the timestamps when the plowers pass the study site and
the changes of the pavement contaminant depths before and after those timestamps, it is
then determined whether or not there were plowing operations.

An interesting fact is that 143 out of 200 plowing operations are just seconds or minutes
before salting operations, which reflects a common salting practice in Ontario. A plower
is operating right in front and removes pavement contaminant before the salting vehicle
behind applies the salt to the road surface. Another interesting fact is that most plowing
operations are three hours later than previous salting operations, which is also a common
practice to avoid the waste of salt residual on the roadway.

These two facts largely affect how the plowing and salting operations will appear in
the RSC model and how the model is explained and applied. For instance, if a plowing
operation and a salting operation take place during the same 20-minute interval, it is very
difficult to isolate their effects on RSC changing for this time interval.

Since a salting operation takes place after a plowing operation, and there are no plowings
in the following three hours in most cases, the effect of this salting operation can be isolated
and studied without any confounding effect with the plowing operation for nine continuous
20-minute intervals (3 hours) except for the first time interval when the plowing takes place
and the time intervals after another plowing operation takes place.

In other words, with the maintenance data of this pattern, it is likely that the calibrated
model may not clearly disclose the instantaneous effect of plowing, but it should be able
to show the effect of salting more clearly except for the time interval when the salting
operation takes place.

Table 4.5: Summary of Salting Rates

n mean sd median min max range
Dry Salt Rate (kg/km) 305 128.65 27.14 130.00 6.00 260.00 254.00

Solution Rate (l/tonne of salt) 305 34.02 16.57 39.00 0.00 82.00 82.00

The application rates of dry salt and salt solution are summarized in Table 4.5 and
their distributions are shown in Figure 4.11. For both dry salt and salt solution, the
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Figure 4.11: Salting Rate Distributions

application rates are concentrated in certain discontinuous ranges, which implies that the
application rates are usually preset before the salting runs start. This observation has been
confirmed by a review of the maintenance data. Also, this fact makes the spatial-temporal
interpolation of the salt application at the study site much easier.
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4.4.4 Traffic Volume

The estimated hourly traffic volume data at Dunvegan is summarized in Table 4.6, and its
distribution is shown in Figure 4.12.

Table 4.6: Summary of Traffic Volume

n mean sd median min max range
Traffic(vehs/lane/hour) 305 249 151 262 41 561 520

Figure 4.12: Hourly Traffic Volume Distribution

The traffic data are estimated by the traffic counts at a distant location, and they only
approximately represent the variations of local traffic. Therefore, we are not reading too
much into its distribution if there are no obviously anomalous patterns.
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4.5 Exploratory Analysis

It is the most challenging part of the exploratory analysis to uncover how the RSC is
related to other factors in an intuitive way using real world data. The reason is that
many factors could jointly cause RSC changing: that is, the observed change could result
from the aggregate effect of those factors. The simultaneous plowing and salting operation
discussed in Section 4.4.3 is a typical example. To deal with this challenge, the complexity
of the RSC changing process is explored from different perspectives. The findings together
give a more complete picture, providing clues on the appropriate modelling methodology
and techniques.

4.5.1 Surface Temperature and Air Temperature

Surface temperature could be the first and foremost factor affecting RSC changing, as
it directly determines the state transformation of pavement contaminants. According to
common physics knowledge, the variation of the surface temperature follows that of the
air temperature, and shows very similar periodical patterns to the air temperature. The
lengths of cycles are usually daily and yearly, i.e., a short cycle of 24 hours and a long cycle
of 1 year.

Figure 4.13 shows the surface temperature as a time series during one week (2007-11-20
∼ 2007-11-27). Although one week is too short to uncover any yearly periodical pattern,
the daily periodical pattern is clearly shown. Other than the daily periodical pattern, the
surface temperature is highly correlated with the air temperature.

An advanced approach to exploring a periodical time series is the non-parametric clas-
sical decomposition method (Chambers & Hastie, 1992), which assumes the time series is
generated by the following random process:

Yt = Tt + St + It (4.3)

where St+d = St,
∑d

t=1 St = 0, E(It) = 0

S is the seasonal component, T is the trend component, I is white noise, t is the time index
and d is the length of a cycle. The classical decomposition on the 20-minute intervaled
surface temperature is conducted using R and the results are shown in Figure 4.14.

The raw time series data are plotted in the top panel of Figure 4.14. The third panel
from the top is the discovered trend after the smoothing operation. The seasonal compo-
nent is shown in the second panel from the top. There is an obvious 24-hour (72 points)
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Figure 4.13: Surface Temperature of One Week

periodical variation with the peaks at early afternoon, and the bottoms at night time.
The bottom panel shows the remainders (or residuals) which cannot be explained by the
decomposition model. Although most remainders are within 2 standard deviations to zero,
they are auto-correlated, i.e., the temporally neighbouring remainders are more similar.

The classical decomposition of the surface temperature time series suggests that an
appropriate model should be able to efficiently capture the temporal correlations. If the
model can also use the information of other covariates, as suggested by Figure 4.13, both its
theoretical basis and forecasting performance will be further improved. For this purpose,
a popular time series analysis technique, ARIMA, is applied as discussed in Section 4.6.
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Figure 4.14: Classical Decomposition of Surface Temperature Time Series
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4.5.2 Friction Level and Contaminant Depths

The friction level reported by the Vaisala sensor is not the real measurement; instead,
it is estimated using current pavement contaminant depths. The estimation is made by
an empirical model, which was calibrated in Vaisala’s field studies with a certain type of
decelerometer. The estimated friction level against the depths of three contaminant layers
is plotted in Figure 4.15.

Figure 4.15: Layer Depths and Friction Level

The friction level is negatively correlated with ice and snow layer depths; however, the
relationship to water layer depth is not clear. As the friction level is deterministically
estimated by contaminant depths with the Vaisala proprietary friction model, it is not the
real friction measurement. However, calibrating a forecasting model for friction levels can
be used to demonstrate how real friction measurements, if available, can be modelled under
the whole study framework.
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4.5.3 Water, Ice and Snow Layers

The three layers of contaminant corresponding to water, ice and snow, are the center piece
of the RSC model framework. Based on physical knowledge, the RSC changing process is
essentially a freezing/melting process between water and snow/ice. These three types of
contaminant interchange from one to another under different environmental conditions. It
can be naturally assumed that they are interrelated temporally, i.e., the current depth of
one type of layer is correlated to the depths of another two types of layers in the previous
time interval. In addition, similar to surface temperature, the depth of each single type of
layer should also show auto-correlation, i.e., each is correlated with its own previous depth.
When multiple time series are correlated in time, cross-covariance and cross-correlation
functions are used to examine the leading and lagging effects between time series. The
sample cross-covariance function of two time series TS1 (x1, x2, . . . , xt, . . . , xn) and TS2

(y1, y2, . . . , yt, . . . , yn) is calculated as

γxy(h) = cov(xt+h, yt) (4.4)

=
1

n

n∑
t=1

(xt+h − µx)(yt − µy) (4.5)

and the sample cross-correlation function (CCF in short) is then derived as

ρxy(h) =
γxy(h)√
γx(0)γy(0)

(4.6)

=
γxy(h)

σxσy
(4.7)

The sample cross-covariance function and the CCF of two time series are the counter-
parts of the sample auto-covariance function and the ACF of a single time series. The
meaning is very similar, except that they are used to explain relationships of lagged or
leading values between two time series. The above definitions can be found in most of the
time series literature (Shumway & Stoffer, 2006; Box & Jenkins, 1990; Mickens, 1991).

The 3 × 3 ACF/CCF plot matrix of water, ice and snow layer depths is shown in
Figure 4.16. The three plots on diagonal lines are the respective ACFs of the water layer,
the ice layer and the snow layer. They all show strong auto-correlation with very long lags
(all greater than 30). Other plots show pairwise CCFs. The title of each CCF plot shows
the relevant two layers and the relative lagging direction of the CCF.

Take the CCF plot at location row 1 and column 2 ([1,2] in short) for example. Its title
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is “WL & IL”, which means the CCF plot is for the water layer and the ice layer, and the
value at lag k in the plot represents the CCF between WLt+k and ILt. As for this plot,
most values before lag k = 20 are significantly positive, suggesting the depth of the ice
layer at time t is positively correlated with that of the water layer at most time intervals
in t, t+ 1, . . . , t + 20. This CCF pattern corresponds with the process of ice being melted
into water.

The CCF plot at [2,1] corresponds to the CCF of the reverse process. It shows that the
depth of ice is not correlated with previous water depth, which suggests that the water is
usually promptly gone from the road surface either by runoff or maintenance operations
and does not refreeze. The CCF plots at [2,3] and [3,2] show that the depth of snow
is correlated with previous ice depth and vice versa, suggesting that snow and ice are
inter-transformable.

The CCF plots at [1,3] and [3,1] represent the interchanging process between water
and snow, but the significant lags in them are hard to explain with physical knowledge.
Statistical analysis often faces this problem which could be caused by measurement errors,
confounding effects, small sample sizes or some unseen reasons.
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Figure 4.16: Contaminant Layer ACFs and CCFs
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4.5.4 Plowing, Salting and Other Factors

To explore how the maintenance operations, like plowing and salting, affect the RSC chang-
ing, a snow event from 2007-2-14 to 2007-2-15 is plotted in Figure 4.17. The mean air
temperature during the snow event is -2.65◦C.

Figure 4.17: Exploratory Analysis of Winter Maintenance Operations

The snow fall is positively related to the snow layer depth. Its correlation with the ice
layer depth is much weaker.

Plowing operations are not associated with significant snow depth reductions, which is
unexpected. As most plowing operations are conducted during precipitation, their effect
could be masked by the snowfall before the next snow depth measurement, especially when
the precipitation rate is high.

The salting operations are mostly correlated with high water layer depth, which is
consistent with the melting effect of salt, but they are not associated with immediate
snow/ice layer depth decrease. Salting 1, 2, 3, 4 are all done when there are snow and/or
ice on the pavement. The ice layer decreases significantly 40 minutes after Salting 2, but
it can also be related to Salting 1 one hour earlier. The ice layer has a big drop one hour
after Salting 3 is done. For Salting 4, this snow/ice decrease happens in half an hour, but it
could also be related to Salting 3, which is done two hours earlier. Again, precipitation and
other factors like traffic make the situation more complicated and blur the whole picture.

The time with low water depth corresponds to the time with high snow/ice depth;
however, examined from another angle, high snow/ice depth is usually followed by high
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water depth at a later time. This time offset is about 2-3 hours for this snow event. During
the period from 12-14 20:00 to 12-15 00:00, there is a significant amount of both snow and
ice, which could cause the large water depth from 12-14 23:00 to 12-15 02:00. Similarly,
the source of the water from 12-15 07:00 to 12-15 10:00 is likely to be the snow/ice on the
pavement during the period from 12-15 05:00 to 12-15 08:00. This phenomenon implies
the salt residual on pavement is likely to take a longer time than one hour to show its
melting effect, which violates the one-hour intervaled Markovian assumption of the VTI
model. Our model framework in Figure 4.2 will account for this delayed salting effect.
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4.5.5 Summary

In this section, a data set containing RSC measures, weather information, maintenance
operation records and traffic volumes is systematically explored, and some of the major
findings are as follows.

1. Surface temperature is not only auto-correlated, but also correlated with air temper-
ature.

2. Friction level is negatively correlated to snow/ice layer depths, and its relationship
to water layer depth is obscure.

3. The depths of three types of pavement contaminant are auto-correlated and cross-
correlated. The cross-correlations are mostly consistent with basic physical knowl-
edge.

4. The major source of the snow and ice on the pavement is the snow precipitation.

5. The effect of plowing is not significantly shown at the corresponding time interval,
which could be caused by confounding factors.

6. Salting operations are the main factor causing snow/ice melting.

7. It could take longer than an hour for salt to take effect.
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4.6 Methodology

After a systematic integration and exploration process, the following RSC measures are
determined for further modelling:

1. road surface temperature (ST )

2. road surface friction (FR)

3. water layer depth (WL)

4. ice layer depth (IL)

5. snow layer depth (SL)

ST is auto-correlated and also correlated with air temperature and possible other fac-
tors, like traffic and maintenance operations. FR is also auto-correlated and affected by
WL, IL and SL. The forecasting model of both ST and FR can be calibrated using the
regression style modelling technique in time series analysis, called the integrated autore-
gressive moving average models. Additionally, some external explanatory variables can
enter the model, which would extend the ARIMA model into an ARMAX model (X comes
from the word eXternal).

WL, IL and SL are both auto-correlated and cross-correlated, and they are also affected
by other factors like air temperature and precipitation. Their forecasting models can be
calibrated in a simultaneous manner using the multivariate modelling technique called
multivariate ARMAX, or shortly VARMAX (vector ARMAX). The detailed discussions
on the theoretical background and application scenarios of ARMA and ARMAX models
are given in various time series analysis literature. Shumway & Stoffer (2006) have given
them a systematic review and present some good examples on how to use the corresponding
packages in R. The rest of this section includes a brief introduction of ARIMA and ARMAX
models.

4.6.1 Autoregressive Models

An integrated autoregressive moving average (ARIMA) model is a combination of an au-
toregressive (AR) model and a moving average (MA) model, which can deal with both
stationary and non-stationary time series. An ARIMA model consists of three compo-
nents: AR, MA and differencing to a certain order.

The AR model is based on the assumption that the current value of the series, xt,
can be explained as a function of p past values, xt−1,xt−2,. . . ,xt−p, where p determines the
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number of steps into the past needed to forecast the current value. This model is called an
AR model of order p, abbreviated AR(p). Its formal mathematical expression is

xt = φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + ωt (4.8)

where xt is a stationary time series, φ values are constants. ωt is usually assumed to be a
Gaussian white noise series with mean zero, but this assumption is not necessary for most
real-world models. If the mean, µ, of xt is not zero, replace xt by xt − µ, i.e.,

xt − µ = φ1(xt−1 − µ) + φ2(xt−2 − µ) + . . .+ φp(xt−p − µ) + ωt (4.9)

or

xt = α + φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + ωt (4.10)

where

α = µ(1− φ1 − . . .− φp) (4.11)

Equation 4.9 can be written as

(1− φ1B −−φ2B
2 − . . .− φpBp)xt = ωt (4.12)

or in a more concise form:

φ(B)xt = ωt (4.13)

where

φ(B) = 1− φ1B − φ2B
2 − . . .− φpBp (4.14)

B in Equation 4.12 is the backshift operator, defined as

Bxt = xt−1 (4.15)

and can be extended to powers

B2xt = B(Bxt) = Bxt−1 = xt−2, (4.16)
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thus

Bkxt = xt−k (4.17)

4.6.2 Moving Average Models

A moving average (MA) model assumes that xt can be expressed as a linear combination
of the white noise ωt. The formal mathematical definition of an MA model of order q
(MA(q)) is

xt = ωt + θ1ωt−1 + θ2ωt−2 + . . .+ θqωt−q (4.18)

or

xt = θ(B)ωt (4.19)

where

θ(B) = 1 + θ1B + θ2B
2 + . . .+ θqB

q (4.20)

4.6.3 Differencing

When there are non-stationary patterns, especially trends and non-zero mean, in the series
xt, the technique of differencing can be applied to make xt stationary. The concept of
stationary and non-stationary time series has already been introduced in Chapter 3. The
first differencing method for high-pass filtering in Chapter 3 can be expressed using B as

∆xt = xt − xt−1 = xt −Bxt−1 = (1−B)xt (4.21)

A more general form of the differencing operator can be defined as

∆d = (1−B)d (4.22)

It is the operator of differences of order d, where (1 − B)d can be expanded algebraically
to evaluate for higher integer values of d.
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4.6.4 Integrated Autoregressive and Moving Average Models

A time series can be assumed as a combination of an AR(p) process and a MA(q) process
expressed as

xt = φ1xt−1 + . . .+ φpxt−p + ωt + θ1ωt−1 + . . .+ +θqωt−q (4.23)

or

φ(B)xt = θ(B)ωt (4.24)

which is an ARMA(p,q) model. If a d order detrending is added, the equation turns into

φ(B)(1−B)dxt = θ(B)ωt (4.25)

which is an ARIMA(p,d,q) model. A further extension of ARIMA models to incorporate
periodical behaviors of the series is called the Seasonal Multiplicative ARIMA (SARIMA)
model. Shumway & Stoffer (2006) have given detailed discussions about both ARIMA and
SARIMA models.

4.6.5 Univariate ARMAX Models

The ARIMA model with all three components (AR, MA, differencing) is a general form,
and a model with one or two components is sufficient to explain most real-world time
series processes. For example, the surface temperature series (ST ) has trends and non-zero
mean and is 24-hour periodical, which suggests an ARIMA process with both differencing
operations and seasonal components. If the air temperature series (AT ) enters the model
as an explanatory variable, the model however can be potentially simplified into an AR(1)
form, e.g.,

STt = αSTt−1 + βATt + ωt (4.26)

This simplification is likely to be successful because the AT series is highly correlated
with ST , and it can explain the trends, the mean and most periodical behaviors of ST . The
explanatory variables added into an ARIMA model like AT , are usually called exogenous
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(or external) variables in the time series analysis field. The model with exogenous variables
is call an ARMAX model. A general definition of the ARMAX model is

xt = φ1xt−1 + . . .+ φpxt−p + ωt + θ1ωt−1 + . . .+ θqωt−q + ΓUt (4.27)

where xt is the element of a univariate time series, Ut is the vector of exogenous variables,
and Γ is the constant coefficient vector.

4.6.6 Multivariate ARMAX Models

The univariate ARMAX model can be straightforwardly extended into the multivariate
ARMAX (called “VARMAX” in the rest of this thesis) model in the following way:

Xt = Φ1t−1 + . . .+ ΦpXt−p + Ωt + Θ1Ωt−1 + . . .+ ΘqΩt−q + ΓUt (4.28)

Xt is a vector of multiple endogenous variables at time t. The definitions of Ut and Γ are
the same as Equation 4.27. Φ, Θ and Ω are the vectorial counterparts of φ, θ and ω in
Equation 4.27.

Endogenous variables are the dependent variables, which are multiple time series and
could be auto-correlated and/or cross-correlated. Usually the dependent variables with bi-
directional causal relationships are grouped as a set of endogenous variables and modelled
together using Equation 4.28. The bi-directional causal relationship means one endoge-
nous variable can cause other endogenous variables to change, and the change of other
endogenous variables can also cause itself to change. Consistent with this idea, water layer
depth (WL), ice layer depth (IL) and snow layer depth (SL) are included in the same set
of endogenous variables, as water, ice and snow can interchange with each other.

Surface temperature (ST ) can cause changes in contaminant layers, but not in reverse
direction. Therefore ST is not included in this endogenous variable set, and it is modelled
separately using univariate ARMAX. Friction level (FR) is modelled separately as well
because its changing is unidirectionally caused by contaminant layers.
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4.7 Model Calibration

As discussed in Section 4.6.6, ST and FR are both modelled using the univariate AR-
MAX method. WL, IL and SL are treated as an endogenous variable set and modelled
simultaneously.

The values of all variables are linearly scaled to the range [0,1] as explained in Sec-
tion 3.7. The minima and maxima of all relevant variables are listed in Table 4.7.

Table 4.7: Ranges of Modelling Variables

Name Meaning Unit Minimum Maximum
ST surface temperature ◦C -19.4 17.7
Plow plowing times 0 1
AT air temperature ◦C -25.0 11.0

Precip precipitation mm 0.0 13.0
Traffic hourly traffic vehs/lane/hour 26 565

Salting LN salt application rate at time lag N kg/km 0 260.0
WL water layer depth mm 0.0 6.5
IL ice layer depth mm 0.0 1.3
SL snow layer depth mm 0.0 5.3
FR friction level NA 0.09 0.82
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4.7.1 Surface Temperature Model

STt can be predicted using a linear function of STt−1, STt−2, . . . , STt−p and the following
exogenous variables :

� ATt: average air temperature during t− 1 to t

� Precipt: average precipitation during t− 1 to t

� Traffict: hourly traffic rate during t− 1 to t

� Plowt: plowing operation during t− 1 to t

� Salting L0 ∼ Salting L9: salting rates during t − 1 to t (L0), t − 2 to t − 1 (L1),
. . . , t − 10 to t − 9 (L9). If there are no salting operation within any time interval,
the value of zero is used. These ten variables represent salting rates during the last
three hours of time t.

� WLt−1: water layer depth at t− 1

� ILt−1: ice layer depth at t− 1

� SLt−1: snow layer depth at t− 1

The exogenous variables for model calibration are chosen according to the model frame-
work in Section 4.2. The most important factors affecting RSC from weather, traffic and
maintenance operations are included in the model.

The model takes the form of ARMAX(p, d, q) with both d = 0 and q = 0, i.e., no
differencing operation is conducted and no MA component is considered. Although the
surface temperature series has non-stationary and cyclical patterns, these patterns can
be explained by air temperature as suggested in Section 4.6.5; thus no differencing or
seasonal component is explicitly added to the model. Including the MA component will
increase difficulties for model interpretation and application. When the AR component and
the exogenous variables can sufficiently explain the response variable, the MA component
should be left out.

The data from 2007-11-20 00:00:00 to 2008-02-09 10:00:00 (81 days) are used for model
calibration. The rest of the dataset from 2008-02-09 10:00:00 to 2008-03-31 23:42:00 (51
days) are held out for cross-validation.

The procedure to determine the optimal p can be found in most time series books. A
general rule-of-thumb is to study the pattern of ACF and PACF (partial auto-correlation
function) graphs and try the suggested p values. Detailed procedures can be found in
Shumway & Stoffer (2006).
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The ACF and PACF graphs are respectively shown in Figure 4.18 and Figure 4.19 up to
84 lags. The ACFs at all lags are significant with a periodical pattern. In the PACF graph,
except the first 8 lags, all other lags are insignificant or marginally significant and there
are some significant lags around 72 lags corresponding to the daily cycle. The patterns of
ACF and PACF graphs suggest an ARMAX(8, 0, 0) model, i.e., p = 8.

Figure 4.18: ACF of Surface Temperature

An ARMAX(8, 0, 0) model is calibrated with the R package “forecast” with the maxi-
mum likelihood approach. Hyndman & Khandakar (2008) have given a detailed discussion
about this package. The coefficients, AIC, BIC and log-likelihood of the model are shown in
Table 4.8. The numbers in parentheses are the standard deviations of respective estimated
coefficients.

The ACF and PACF plots of model residuals are shown in Figure 4.20 and Figure 4.21.
Except for some marginally significant values at lags around the daily period, almost all
ACFs are insignificant. A similar pattern is found in the corresponding PACF plot. It
suggests that p = 8 is a highly acceptable trade-off point of model quality and model
complexity. For the coefficients of the explanatory variables, the following can be found.

� The AR terms at lag 1, 2, 3 and 8 are significant based on the t-values of their
coefficients . Including AR terms at lag numbers greater than 1 in the model ac-
tually breaks the strict Markovian assumption of the model framework. The auto-
correlation and periodical patterns of ST are due to some factors not included in the
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Table 4.8: ARMAX Model for Surface Temperature

Intercept AR1 AR2 AR3 AR4
0.2327 1.1389 -0.1210 0.0549 -0.0255

(0.0138) (0.0133) (0.0198) (0.0199) (0.0199)
AR5 AR6 AR7 AR8

-0.0274 0.0301 0.0152 -0.0756
(0.0199) (0.0199) (0.0198) (0.0131)
WLt−1 ILt−1 SLt−1
-0.0089 -0.0081 -0.0112
(0.0038) (0.0035) (0.0036)

ATt Precipt Traffict Plowt

0.2944 -0.0016 0.0083 0.0000
(0.0130) 0.0026 (0.0035) 0.0001

Salting L0 Salting L1 Salting L2 Salting L3 Salting L4
0.0012 0.0005 -0.0020 -0.0067 -0.0046

(0.0013) (0.0019) (0.0023) (0.0025) (0.0026)
Salting L5 Salting L6 Salting L7 Salting L8 Salting L9

-0.0016 -0.0009 0.0006 -0.0009 -0.0004
(0.0026) (0.0025) (0.0023) (0.0019) (0.0013)

AIC -38048.26
BIC -37868.00
Log Likelihood 19051.13
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Figure 4.19: PACF of Surface Temperature

model, such as the energy influx balance of the pavement material and the daily solar
radiation periodical variation. It is reasonable to loosen the Markovian assumption
to add more AR terms to indirectly address those factors. Although the AR terms
at lag 4, 5, 6, 7 are insignificant, when the term at lag 8 is significant, those terms
are usually kept in the model to make the model more stable and the forecast more
reliable.

� AT is significant and the magnitude of its coefficient is the second only to the AR
term at lag 1. It is consistent with the observation that the air temperature and sur-
face temperature are highly correlated, and including such an exogenous explanatory
variable can significantly improve the forecasting performance of the model.

� Traffic is significant and its coefficient is positive, which suggests more traffic is
correlated with higher surface temperature. This phenomenon can be explained as
vehicles heating the road surface by emission or by wheels compacting the snow. But
it can also be interpreted as a noncausal correlation, e.g., there is much more traffic
during the day than at night, and on average, the daytime temperature is higher than
night time.

� The coefficients of WL, IL, SL are all negative, suggesting that pavement contaminant
is correlated with lower surface temperature. Although Precip is not significant, its
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Figure 4.20: ACF of Surface Temperature Model Residuals

effect could be mediated by pavement contaminant terms.

� Most maintenance operation terms are insignificant and of very small magnitude, sug-
gesting that plowing or salting operations do not significantly influence road surface
temperature.

150



Figure 4.21: PACF of Surface Temperature Model Residuals
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The QQPlot and the histogram of the residual of one-step ahead forecasting are shown
in Figure 4.22 and 4.23. QQPlot is a common diagnostic graph to examine the normality
of the residuals of linear regression models. If the residuals do not deviate far from the
normal distribution, the points in their QQPlot should mostly stay on a straight line. Other
patterns suggest non-normal distributions.

The pattern of the QQPlot of the residuals suggests a non-normal distribution, which
has heavier tails. The distribution in the histogram is centered around zero with roughly
symmetrical tails and the overall pattern is bell-shaped. This pattern of the residuals is
acceptable for a linear regression model.

Figure 4.22: QQPlot of Surface Temperature Residuals – Calibration Data
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Figure 4.23: Histogram of Surface Temperature Residuals – Calibration Data
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The calibrated model suggests that weather, traffic and pavement contaminant have
some effects on road surface temperature changing, although some effects are hard to
explain in a causal way. The validation results of this model are discussed in Section 4.8.1.
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4.7.2 Friction Level Model

The friction level reported by the Vaisala sensor set is deterministically estimated us-
ing some empirical model by Vaisala. The purpose of this study is not to reversely en-
gineer this model; therefore, in this study, FR is predicted using a linear function of
FRt−1,FRt−2, . . . ,FRt−p and the same exogenous variables in the surface temperature
model. As FR is not measured friction using friction meters, the calibration and vali-
dation results are for the purpose of testing and illustrating how the model framework can
be applied to similar situations, especially when real friction measurement is available.

Similar to the ST model, the ARMAX(p, 0, 0) model format is adopted with no differ-
encing and MA components. The same sets of calibration and validation data for modelling
ST are used for the friction level model.

The ACF and PACF graphs are respectively shown in Figure 4.24 and Figure 4.25.
Both graphs show no periodical patterns. The ACF exponentially decreases and the PACF
cuts off after lag 3, which suggests a typical autoregressive process. The models with p = 1
to 8 are all calibrated using the R package “forecast”, and their AIC and BIC diagnostics
are listed in Table 4.9.

Table 4.9: Comparison of Friction Model Diagnostics

p AIC BIC
1 -13640.9 -13525.21
2 -14385.17 -14263.7
3 -14610.48 -14483.22
4 -14697.79 -14564.74
5 -14735.09 -14596.26
6 -14744.67 -14600.06
7 -14743.34 -14592.95
8 -14744.32 -14588.14

As introduced in Chapter 3, lower AIC and BIC values suggest a better model fit.
According to Table 4.9, ARMAX(6, 0, 0) has the lowest AIC and BIC. The calibration
results of this ARMAX(6, 0, 0) model are summarized in Table 4.10, and the summaries of
the models with other p values can be found in Appendix C.
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Table 4.10: ARMAX Model for Friction Level

Intercept AR1 AR2 AR3 AR4
0.3239 1.3148 -0.1336 -0.0626 -0.0280

(0.0185) (0.0204) (0.0339) (0.0340) (0.0338)
AR5 AR6

-0.0358 -0.0697
(0.0338) (0.0205)
WLt−1 ILt−1 SLt−1
0.0058 -0.0085 0.0023

(0.0077) (0.0061) (0.0080)
ATt Precipt Traffict Plowt

0.1994 -0.0245 0.0146 0.0000
(0.0184) 0.0060 (0.0086) 0.0012

Salting L0 Salting L1 Salting L2 Salting L3 Salting L4
-0.0027 -0.0022 -0.0048 -0.0095 -0.0074
(0.0026) (0.0039) (0.0049) (0.0055) (0.0058)

Salting L5 Salting L6 Salting L7 Salting L8 Salting L9
-0.0047 -0.0025 -0.0019 -0.0014 -0.0021
(0.0058) (0.0055) (0.0049) (0.0039) (0.0026)

AIC -14744.67
BIC -14600.06
Log Likelihood 7397.34
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Figure 4.24: ACF of Friction Level

Figure 4.25: PACF of Friction Level
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The ACF and PACF plots of the residuals are shown in Figure 4.26 and Figure 4.27.
Except for a few marginally significant lags, most of auto-correlations have been captured
by the model.

Figure 4.26: ACF of Friction Level Residuals – Calibration Data
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Figure 4.27: PACF of Friction Level Residuals – Calibration Data

159



As for the model coefficients, the following can be found.

� The AR terms at lag 1, 2 and 6 are significant. Including AR terms at lag 2 and
6 in the model breaks the strict Markovian assumption. Similar to the ST model,
including those AR terms is to use them as the surrogate of some factors which
cannot be included in the model. It should not be considered a serious challenge to
the basic Markovian assumption.

� AT is significant and the magnitude of its coefficient is the second only to the AR
term at lag 1, suggesting higher air temperature corresponds to higher friction level.

� Precip is significant and its coefficient is negative, which suggests more precipitation
is correlated with lower friction levels. As most precipitation during the study period
is snow, it can be safely explained as snowfalls causing a slippery road surface.

� WL, IL, SL at lag 1 are all insignificant. As FR at lag 1 has already entered the
model, it could have masked the effect of WL, IL, SL at the same lag.

� Traffic, Plow and all salting operations are insignificant to predict friction, which is
hard to explain. As the modelled friction levels are not real friction measurements, the
resulting model could have difficulties for interpretation under certain circumstances.

The QQPlot and the histogram of the residual of one-step ahead forecasting is shown
in Figure 4.28 and 4.29. The pattern of the QQPlot suggests a skewed non-normal dis-
tribution. The distribution in the histogram is roughly centered around zero with a bell
shape, which is acceptable.
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Figure 4.28: QQPlot of Friction Level Residuals – Calibration Data

Figure 4.29: Histogram of Friction Level Residuals – Calibration Data
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The calibrated model suggests that weather factors have direct effects on friction level
changes. The effects of pavement contaminants could be masked by the effects of previous
frictions in the model. Traffic and maintenance operations do not show clear effects. The
validation results of this model are discussed in Section 4.8.2.
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4.7.3 Contaminant Layer Model

According to the model framework in Section 4.2, the depths of three contaminant layers
– WL, IL and SL – at time t can be predicted using their own previous values and the
following exogenous variables:

� ATt: average air temperature during t− 1 to t

� Precipt: average precipitation during t− 1 to t

� Traffict: hourly traffic rate during t− 1 to t

� Plowt: plowing operation during t− 1 to t

� Salting L0 ∼ Salting L9: salting rates during t − 1 to t (L0), t − 2 to t − 1 (L1),
. . . , t− 10 to t− 9 (L9).

The model takes the form of VARMAX(p, d, q) where d = 0 and q = 0. In both
calibration and validation datasets, there are a lot of samples with no contaminant on the
pavement and no precipitation. These samples usually correspond to the temporal gaps
between snow events. If these samples are all included in model calibration and validation,
the large proportion of zero values in the endogenous variables will introduce significant
bias. So most of the samples with zero pavement contaminant and zero precipitation during
those snow event gaps are cut out. Only a small proportion of such samples adjacent to
the snow events are kept as safe buffers for lagging calculations in both model calibration
and validation. The original dataset as a complete long time series is cut into a number
of shorter time series in this way. Those shorter time series are again stitched together
into a single long time series. With the low proportion of zero values in the safe buffers in
this stitched time series, the VARMAX model is supposed to give comparatively unbiased
results.

The same cut-and-stitch processing should also be applied to the data for the previous
friction level modelling. As the friction data collected for our study are not real friction
measurements, we add friction level modelling into this thesis study only for the purpose of
testing and illustration as indicated in Section 4.7.2; therefore, this step of data processing
is skipped for the friction level modelling. For the surface temperature modelling, this step
of data processing should be avoided, as the resulting abrupt temperature (both surface
and air temperatures) changes at the stitching points are actually invalid. Including those
invalid temperatures into the dataset to directly model temperature changing process may
introduce unexpected and unexplainable bias and unreliability into the resulting models.

The sample sizes of the original and the stitched time series are listed in Table 4.11. It
can be seen that more than half of the samples in the original dataset have been removed.
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Table 4.11: Sample Sizes of Original and Stitched Datasets

Original Stitched
Calibration 5863 2891
Validation 2403 819

For univariate ARMAX models, the scope of p value can be conveniently determined
from ACF and PACF plots. For VARMAX models, this approach does not work well,
especially when the endogenous variables are highly inter-correlated. Based on the model
framework, the model is ideally strictly Markovian so that it is easy to explain. Therefore, a
VARMAX(1, 0, 0) is calibrated first, of which the detailed R output is listed in Appendix D
and summarized in Table 4.12. The model is calibrated with the “VAR” function in the R
package “vars” using the maximum likelihood approach.
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Table 4.12: Contaminant Layer Depth Model

WL Model IL Model SL Model

(Const) −0.0088∗ 0.0121∗∗ 0.0047∗

(0.0035) (0.0038) (0.0019)
WLt−1 0.8903∗∗∗

(0.0084)
ILt−1 0.0292∗∗∗ 0.8760∗∗∗

(0.0082) (0.0088)
SLt−1 −0.0098∗∗ 0.0277∗∗∗ 0.9797∗∗∗

(0.0038) (0.0040) (0.0036)
ATt 0.0174∗∗ −0.0122∗

(0.0056) (0.0059)
Precipt 0.0420∗∗∗ 0.0303∗∗∗

(0.0082) (0.0086)
Traffict −0.0073∗

(0.0033)
Plowt

Salting L1 0.0176∗∗

(0.0066)
Salting L2 0.0148∗

(0.0062)
Salting L3 0.0159∗∗

(0.0062)
Salting L5 0.0129∗

(0.0062)
Salting L6 −0.0139∗

(0.0066)
Salting L7 −0.0157∗

(0.0066)

Multiple R-Squared 0.8597 0.8728 0.9719
Adjusted R-squared 0.8593 0.8725 0.9718
F-statistic 1961 2827 2.491e+04
p-value < 2.2e-16 < 2.2e-16 2.2e-16

***p < 0.001, **p < 0.01, *p < 0.05, ·p < 0.1
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The ACF and CCF plots of model residuals are shown in Figure 4.30. Only the ACFs
of WL residuals at lag 1 and SL residuals are significant, while other ACFs and CCFs are
successfully captured by the model.

The VARMAX model consists of three submodels corresponding to WL, IL and SL. The
adjusted R-square values of three submodels are respectively 0.8593, 0.8725 and 0.9718,
which are quite high.
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Figure 4.30: ACFs and CCFs of Contaminant Layer Residuals – Calibration Data

167



Water Layer Submodel

In the WL submodel, WL is auto-correlated positively as expected. It is also positively
correlated with IL at time t− 1 implying the process of ice melting. Unexpectedly, WL is
negatively correlated with SL at last time interval, but the magnitude of the coefficient is
very small.

AT is positively significant implying higher air temperature can melt more ice into
water. Precip is also positively significant implying more precipitation can generate more
water, which is also reasonable.

Salting at lag 2, 3 and 5 are all positively significant, implying more salt applied during
the last 2 hours especially at lag 2 to 5 could generate more melted water. Salt applied
at the current time interval and lag 1 is insignificant, consistent with the assumption that
salt takes time to show its melting effect.

Ice Layer Submodel

In the IL submodel, IL is auto-correlated positively as expected. It is also positively
correlated with SL of last time interval implying the snow on the pavement could be one
source of the ice. IL is not correlated with WL of last time interval suggesting the refreezing
process from water to ice rarely happens at the observation site and period.

AT is negatively significant implying a higher air temperature can melt more ice and
decrease the depth of the ice layer, which is consistent with the findings in the WL sub-
model. Precip is insignificant suggesting that the precipitation does not directly affect the
ice layer depth. The SL submodel shows that precipitation can increase the snow layer
depth, while this IL submodel suggests that snow can be converted to ice. Therefore, it is
likely that the precipitation increases the ice layer depth in an indirect manner.

Salt applied at lag 6 and 7 are negatively significant, implying more salt applied 2 hours
to 3 hours previously, especially at lag 6 to 7 could decrease more ice. Salt applied at lag 1
is positively significant, which is hard to explain considering the time delay of the melting
process. The aggregate salting effect of these three significant lags is however obviously
negative, which again confirms salting operations can decrease the ice layer depth.

Snow Layer Submodel

In the SL submodel, SL is auto-correlated positively as expected, but it is not correlated
with either WL or IL at the last time interval, suggesting that the transformation from
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water or ice to snow rarely occurs on a roadway surface, which makes sense from a physical
point of view..

Precip is positively significant as expected because snowfalls increase snow layer depth.
Traffic is negatively significant, which can be interpreted as traffic compacts snow into ice
or splashes the snow off the lane. This interpretation is just tentative and by no means
conclusive.

The salt applied at previous time intervals does not show a significant effect on snow
layer depth, which is unexpected and hard to explain. It might be an honest reflection of
the truth that salt does not melt snow efficiently.

The QQPlots in Figure 4.31 and the histograms in Figure 4.32 of the residuals of three
submodels show obvious non-normal patterns, but the residuals are concentrated around
zero and the distribution patterns are all roughly bell-shaped.

This model is also cross-validated using the validation dataset and the results are dis-
cussed in Section 4.8.3.

Figure 4.31: QQPlots of Contaminant Layer Residuals – Calibration Data
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Figure 4.32: Histograms of Contaminant Layer Residuals – Calibration Data
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Although the forecast made using the calibration data looks good, increasing p from
1 to a higher order like 2 could potentially improve the forecasting quality, as more than
1 AR term entering the model may catch the effect of some factors not included in the
model. According to this idea, a VARMAX(2, 0, 0) model is calibrated with the same set of
exogenous variables as the VARMAX(1, 0, 0) model. The R output of the VARMAX(2, 0, 0)
model is in Appendix E.

Some AR2 terms are significant, but we have not attempted to explain further as those
terms are added to model some unexplainable hidden effects. The signs and significance of
all exogenous variables are almost the same as the VARMAX(1, 0, 0) model. The R-squared
values of all three submodels are either not improved or just improved marginally. All these
facts imply that the VARMAX(2, 0, 0) model is very similar to the VARMAX(1, 0, 0) model
in terms of model structure and forecasting reliability.
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Salt Residual Estimation

Salting operations appear as a very important factor in the contaminant layer model, but
the calibrated VARMAX(1, 0, 0) and VARMAX(2, 0, 0) models do not directly quantify
the effect of the salt residual. The only implication is that the amount of salt applied
at a specific time lag has a fixed effect on current contaminant layer depths. This is an
oversimplified assumption but could be the best in our case, as there is no direct or indirect
measurement of salt residual. It is also applicable that the salt residual is estimated first
and then enters the model in place of the applied salt. In this way, the effect of the salt
residual can be straightforwardly quantified.

As no salt residual measurement is available in the dataset, a very simple decreasing
function is assumed, which is

SaltRest = SaltAppt +
SaltRest−1

e
(4.29)

SaltRest is the salt residual at time t. SaltRest−1 is the salt residual at time t − 1.
SaltAppt is the salt applied during the period from t − 1 to t. It is assumed that the
salt residual decreases exponentially with time but is not affected by other factors, like
weather or traffic. As the salt residual data are not available, we have to stick with this
oversimplified assumption.

A VARMAX(1, 0, 0) model with salt residual as an explanatory variable is calibrated
and the R output is listed in Appendix F. By comparing the coefficients of this model with
the previous VARMAX(1, 0, 0) model, it can be found that

� the signs and significance of all endogenous variables and exogenous variables in
submodels are exactly the same;

� in the water layer submodels, the significant salting operations are at lag (2, 3, 5)
with the signs (+, +, +), while the significant salt residuals are at lags (2, 4, 5)
with the signs (+, -, +). The aggregate effect of the salt residuals is positive. This
suggests that these two submodels are very similar in terms of model structure;

� in the ice layer submodels, the significant salting operations are at lags (1, 6, 7) with
the signs (+, -, -), while the significant salt residuals are at lag (1, 6) with the signs
(+, -). The signs of the aggregate effects of these two models are different. Overall
these two submodels are very similar;
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� in both snow layer submodels, the signs and significance of all endogenous variables
and exogenous variables are the same.

The log-likelihood and R-squared values of these two models show almost no difference.
As the decreasing function of the salt residual is very simple, the estimated salt residual is
highly correlated to the applied salt. Therefore, replacing applied salt with salt residual in
model calibration is expected to generate very similar results in terms of model structure.

Although estimating salt residual is not in the scope of this study due to the limitation
of the data, it is potentially an important component of a more completed RSC forecasting
model. It is suggested that such an estimation model should be studied and calibrated
using the similar ARMAX analysis technique.
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Interaction Effects

All ARMAX or VARMAX models in preceding sections only consider the main effects, and
the interaction effects between explanatory variables are ignored due to reasons specified
in Section 3.5.

With this proviso, a VARMAX model only considering the interaction effect of air
temperature and salt residual is tentatively calibrated for contaminant layers and the details
are in Appendix G. It can be found that

� the overall model quality is not improved by considering this interaction effect as
suggested by the model log-likelihood and R-Squared values;

� the signs and significance of all weather and traffic main effects are all the same,
implying a very similar model structure;

� the signs of some salting residual variables and interaction terms are difficult to
explain. For example, the coefficient of the term TempResL1 in the snow layer
submodel is positive, suggesting that higher air temperature with more salt residual
at time lag 1 is correlated with more snow depth on the pavement at current time.

Although it is out of the scope of this study, a systematic exploratory analysis and
modelling attempt should be made when the quality of the dataset allows.
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4.8 Model Validation

4.8.1 Surface Temperature Model

Using the model calibrated in Section 4.7.1, the one-step ahead forecasts are made for
both calibration and validation datasets and the observed and forecast values are plotted
together in Figure 4.33.

Figure 4.33: Surface Temperature Dotplots: Observed and One-Step Forecast

For both datasets, the one-step forecasts and observed values are mostly very similar;
therefore, the points in both subplots of Figure 4.33 are overplotted within the narrow
strips close to the lines of slope 1. Figure 4.34 shows the one-step forecasts and observed
values as time series for the two datasets. Except for the two segments of missing data in
the validation dataset, the forecasted and observed surface temperatures overlap each other
most of the time for both datasets. Figure 4.33 and Figure 4.34 suggest that on average the
model residuals are very small in magnitude for both calibration and validation datasets.
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Figure 4.34: Surface Temperature Time Series: Observed vs. One-Step Forecast

176



The statistical summaries of one-step forecast residuals are listed in Table 4.13 for the
calibration and validation datasets. The means of residuals are very close to zero. The
forecast residuals of the validation dataset have a relatively larger standard deviation than
those of the calibration dataset.

Table 4.13: One-Step Forecast Residuals of Surface Temperature Model

Dataset Mean Minimum Maximum Std Std in ◦C
Calibration 0.0000 -0.1654 0.1223 0.0094 0.3459
Validation 0.0005 -0.0689 0.1208 0.0122 0.4490

The residual patterns shown in Figure 4.35 and 4.36 suggest an acceptable distribution,
which is symmetrical, zero-centered and dispersed a little more highly than the residuals
of the calibration data.

Figure 4.35: QQPlot of Surface Temperature Residuals – Validation Data
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Figure 4.36: Histogram of Surface Temperature Residuals – Validation Data
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The ACF and PACF plots of the residuals of the validation data are shown in Fig-
ure 4.37 and Figure 4.38. Both plots show some significant periodical patterns, especially
the ACF plot. This suggests some seasonal components should be added and recalibrating
a SARIMA model could solve the problem. Due to the following reasons, this study will
not consider this extension:

� The sample size of this study is small and the covered period of the calibration dataset
is less than 3 months. It is almost impossible to calibrate a reliable and practical
SARIMA model. Ideally, more than one year of data should be used so that the
seasonal and daily periodical components can be calibrated in a meaningful way.

� Even the model can not eliminate the periodical patterns of the validation data
residuals; the resulting errors are generally very small in magnitude as suggested by
the “Std in ◦C” column in Table 4.13. More than 95% of the residuals deviate less
than 0.9◦C from the true values. This high forecast accuracy eliminates the need for
model recalibration.

Figure 4.37: ACF of Surface Temperature Residuals – Validation Data
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Figure 4.38: PACF of Surface Temperature Residuals – Validation Data
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The one-step forecasting can be recursively made and chained together to make multi-
step forecasts. In this way, short-term forecasting models can be used to make long-term
forecasts. Figure 4.39 shows the recursive multi-step forecasting errors of the ST model
for both calibration and validation datasets.

Figure 4.39: Multi-Step Forecasting Error – ST Model

The forecasting error is measured with the mean absolute error (MAE), which is given
by

MAE =
1

n

n∑
i=1

|ŷi − yi| =
1

n

n∑
i=1

|ei| (4.30)

where n is the number of observations, ŷi is the prediction, and yi is the true value. The
MAE error data shown in Figure 4.39 is listed in Appendix H.

As shown in Figure 4.39, longer forecasting horizons are associated with larger forecast-
ing errors. The forecasting error of the calibration dataset is significantly smaller than that
of the validation dataset at each forecasting horizon. The MAE of three-hour forecasts is
less than 1◦C for the calibration dataset, while larger than 1.5◦C for the validation dataset.
The average forecasting error within three hours is low for both datasets suggesting that
the ST model can make relatively reliable forecasts on expanded horizons much longer
than 20 minutes. This suggestion only makes sense when the conditions of weather, traffic
and pavement contaminant can be accurately forecast, which is not always feasible.

181



4.8.2 Friction Model

Using the model calibrated in Section 4.7.2, the one-step ahead forecasts are made for both
calibration and validation datasets and the observation and forecast values are plotted
together in Figure 4.40.

Figure 4.40: Friction Level Dotplots: Observed and One-Step Forecast

For both datasets, the one-step forecasts and observed values show strong correlation
with relatively large dispersion. Figure 4.41 shows the one-step forecasts and observed
values as time series for the two datasets. The forecast and observed friction levels are
close to each other most of the time for both datasets. Figure 4.40 and 4.41 suggest that,
on average, the model residuals are small in magnitude for both calibration and validation
datasets.
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Figure 4.41: Friction Level Time Series: Observed and One-Step Forecast
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The statistical summaries of one-step ahead forecast residuals are listed in Table 4.14.
The means of both residuals are very close to zero. The residuals of the validation data
have a little smaller standard deviation.

Table 4.14: One-Step Ahead Forecast Residuals of Friction Level

Dataset Mean Minimum Maximum Std Std in Raw Scale
Calibration 0.000 -0.917 0.852 0.089 0.122
Validation 0.003 -0.812 0.728 0.086 0.118
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The residual patterns shown in Figure 4.42 and 4.43 have an asymmetric distribution
with a positive median. This suggests the forecast could be positively biased, but the
magnitude of this bias is very small (less than 0.1).

Figure 4.42: QQPlot of Friction Level Residuals – Validation Data
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Figure 4.43: Histogram of Friction Level Residuals – Validation Data
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The ACF and PACF plots of the residuals are shown in Figure 4.44 and Figure 4.45.
There are only a few marginally significant lags and no periodical patterns, suggesting the
model explains the auto-correlation very well for the validation data.

Figure 4.44: ACF of Friction Level Residuals – Validation Data
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Figure 4.45: PACF of Friction Level Residuals – Validation Data
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Figure 4.46 shows the recursive multi-step forecasting errors of the FR model for the
calibration and validation datasets.

Figure 4.46: Multi-Step Forecasting Error – FR Model

The MAE data shown in Figure 4.46 are listed in Appendix H. As shown in Figure 4.46,
longer forecasting horizons are associated with larger forecasting errors. Contrary to the
common residual patterns found in statistical studies, the MAE of the calibration dataset
is slightly larger than that of the validation dataset at each forecasting horizon. The three-
hour forecasting MAEs for both datasets are smaller than 0.1 suggesting that the FR
model can make quite reliable forecasts on longer horizons when the conditions of weather,
traffic and pavement contaminant can be accurately forecast.
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4.8.3 Contaminant Layers Model

Using the main effect VARMAX(1, 0, 0) model calibrated in Section 4.7.3, the one-step
ahead forecasts are made for both calibration and validation datasets and the observation
and forecast values are plotted together in Figure 4.47, 4.48 and 4.49.

Figure 4.47: Water Layer Depth Dotplots: Observed and One-Step Forecast
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Figure 4.48: Ice Layer Depth Dotplots: Observed and One-Step Forecast

Figure 4.49: Snow Layer Depth Dotplots: Observed and One-Step Forecast
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Except the SL submodel, the forecasts of the WL and IL submodels both have some
systematic bias compared to the observations, as the corresponding figures show that the
forecast values are slightly smaller than the observations on the whole, but the magnitude
of this bias looks insubstantial. While the performances of the three submodels are all
acceptable, Figure 4.50, 4.51 and 4.52 suggest that the SL submodel performs better than
the WL and IL submodels as its one-step forecast values match up the observations more
closely.
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Figure 4.50: Water Layer Depth Time Series: Observed vs. One-Step Forecast
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Figure 4.51: Ice Layer Depth Time Series: Observed vs. One-Step Forecast
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Figure 4.52: Snow Layer Depth Time Series: Observed vs. One-Step Forecast
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The statistical summaries of one-step ahead forecast residuals are listed in Table 4.15.
The means are all very close to zero. The residuals of the calibration and validation
datasets of three submodels all have small standard deviations, implying they all have
reliable forecasting quality.

Table 4.15: One-Step Ahead Forecast Residuals of Contaminant Layers

Dataset Mean Minimum Maximum Std Std in mm
Calibration

WL 0.000 -0.375 0.756 0.045 0.293
IL 0.000 -0.503 0.581 0.048 0.063
SL 0.000 -0.626 0.357 0.049 0.260

Validation
WL 0.000 -0.028 0.064 0.012 0.078

IL 0.001 -0.019 0.099 0.017 0.022
SL -0.001 -0.015 0.009 0.003 0.016
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The patterns of residuals shown in Figure 4.53 and 4.54 have asymmetric distributions
for all three contaminant layers. This suggests some prediction bias, but the magnitude of
this bias is very small.

Figure 4.53: QQPlots of Contaminant Layer Residuals – Validation Data

Figure 4.54: Histograms of Contaminant Layer Residuals – Validation Data
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The ACF and CCF plots of the residuals of the validation data are shown in Fig-
ure 4.55. The residuals show both significant auto-correlation and cross-correlation at the
first 6 lags, which suggests a structural change to the model, like adding MA components
or differencing. As the magnitude of the residuals is already small, using a structurally
complex model is unlikely to improve the overall forecasting quality, although the temporal
correlation is dealt with in a more decent manner. When more data are available, prefer-
ably covering multiple winter seasons, more complex model structures should be tested to
eliminate significant ACF and CCF lags in residuals.
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Figure 4.55: ACFs and CCFs of Contaminant Layer Residuals – Validation Data
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The multi-step forecasting MAEs by the three submodels are shown in Figure 4.56, 4.57
and 4.58. The magnitudes of all MAEs are very small (less than 0.3mm, 0.08mm and 0.2mm
respectively for three submodels) even for the three-hour horizon, and the IL submodel has
the smallest MAE. This fact suggests that the three submodels can efficiently cooperate
with each other, making reliable longer-term forecasts in a recursive manner. The MAE
data shown in these three figures are listed in Appendix H.

Figure 4.56: Multi-Step Forecasting Error – WL Submodel
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Figure 4.57: Multi-Step Forecasting Error – IL Submodel

Figure 4.58: Multi-Step Forecasting Error – SL Submodel
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4.9 Summary

In this chapter, a novel modelling framework for short-term RSC forecasting is proposed.
Under this framework, the short-term changing process of the winter RSC measured by
surface temperature, friction level and contaminant layer depths, is comprehensively ex-
plored and analyzed. A structure of forecasting models considering weather, traffic and
maintenance operations are calibrated and validated using advanced time series analysis
techniques. The forecasting errors of all the models are found to be small implying that
both the proposed framework and the resulting solutions closely match the real-world ob-
servations.
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Chapter 5

Conclusions and Future Work

Based on the findings and insights that have been gained in this research, this chapter makes
general conclusions, highlights important contributions, points out major limitations, and
suggests future research directions.

5.1 Major Conclusions

The main objective of this research is to address two challenging problems in winter road-
way maintenance: reliable RSC estimation and accurate RSC forecasting.

For the RSC estimation problem, a set of aggregate measures of CFM was systemati-
cally studied and discreetly introduced into the modelling process based on their physical
meanings. A structure of LR models were calibrated and validated using those aggregate
measures, and the model performance was compared with the SVMs calibrated in parallel.
The models were found satisfactory in terms of classification hit rate. The proposed mod-
elling framework and methodology were also tested using vehicle speed data. Although
this part of the work was not aimed at developing interpretable and applicable models, the
modelling results have shown some success.

For the RSC forecasting problem, all influential factors including weather, traffic and
maintenance operations were systematically analyzed in terms of their effects on RSC
changing process. Several major RSC measures, such as surface temperature, friction
level, and contaminant layer depths, were studied and modelled with the stochastic time
series analysis approach. The resulting models are easy to interpret and capable of making
highly accurate numerical forecasts.

205



5.2 Contributions

This research has made several significant contributions in two main areas, namely, RSC
estimation and RSC forecasting. In the RSC estimation part, the major contributions of
this research can be summarized as follows.

� The study has examined CFM from the perspectives of its aggregate measures, specif-
ically probability distribution and spectral density features. The information con-
tained in these features is for the first time systematically explored and interpreted
in terms of their correlations with RSC.

� A new study framework is proposed to utilize the RSC information contained in those
CFM aggregate measures to classify the RSC type. The modelling results have proved
that this framework can significantly improve RSC estimation accuracy compared to
existent models.

� The study methodology is directly aimed at capturing the uncertainty nature of
friction measurements. A multi-level model structure is designed and all the single
models are LR models which can make straight forward stochastic estimates. It is
a new and efficient approach to capturing the overlapping structure of CFM ranges
over different RSC types, a problem which has not been satisfactorily tackled by
other field studies.

� Under a similar study framework, a set of RSC estimation models is also calibrated
using speed data. Although the purpose is only to examine the possibilities, it is the
first time that vehicle driving data are organized and analyzed under a comprehensive
study framework for RSC estimation purposes.

In summary, for RSC estimation, this research has made significant contributions in
introducing new explanatory features, proposing a well-grounded analysis framework, and
developing efficient modelling methodologies.

The major contributions in the RSC forecasting part are summarized as follows.

� A rich set of numerical RSC measures is studied and the forecasting models are
calibrated and validated for each one of them. It is the first study to have developed
highly efficient models with such a complete view.
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� A new study framework has been designed to consider all important conditional fac-
tors, including weather, traffic and maintenance operations. This design can reliably
capture the evolution pattern of the winter RSC.

� The maintenance operations, especially saltings, are handled by loosening the strict
Markovian assumption, i.e., a history instead of one single time interval of salting
operations is considered. In this way, the variation of snow/ice melting speed caused
by both residual salt amounts and salt/contaminant mixing states is incorporated in
the forecasting model, which enables accurate short-term forecasting for contaminant
layers. This approach practically circumvents a major limitation of previous studies
and makes the post-salting RSC forecasting more reliable and accurate.

� Under the proposed study framework, several advanced time series modelling method-
ologies are introduced into the analysis, which can capture the highly complex interac-
tions between RSC measures and conditional factors at once. Those methodologies,
especially the univariate and multivariate ARIMA methods, are for the first time
applied to the winter RSC evolution process.

� With the innovative time series analysis methods, the calibrated models are simple
in structure, easy to interpret and mostly consistent with physical knowledge. Com-
pared to contemporary studies, such models provide extra flexibility and economy
for refactory, tuning and deployment.

� All the modelled RSC measures are numerical and the forecast errors are relatively
very small, suggesting the empirical approach could be an efficient alternative to
the physical approach. With the well-designed modelling methods, the resulting
empirical models as calibrated in our study can change the role of empirical models
from a long-term low-temporal-resolution maintenance planning facility into a high-
temporal-resolution high-accuracy decision support and simulation tool.

In summary, for the RSC forecasting problem, this research has made several significant
breakthroughs in modelling methodology and analysis techniques. It is the first study that
clearly shows the power of empirical forecasting models.

5.3 Limitations

This thesis achieves its objectives satisfactorily and is expected to contribute significantly
to the research community. However, there are several limitations. For the RSC estimation
part:
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� Due to the data aggregation process, the available sample size for some RSC types
become very small, causing some difficulties in both model calibration and validation.

� All the test runs are done on a single highway, so without careful validation, the
modelling results may not be directly applicable to other highways of different surface
textures, although the effect of the latter is expected to be small.

� Although it is proposed that relevant environmental factors should be considered as
possible predictors, our collected dataset is short of such data. Inclusion of these
weather related factors could largely improve RSC estimation reliability.

� RSC types were classified manually by a couple of university students based on video
images. The students received a short training by the thesis author only; therefore,
the sample classification may be subject to personal bias and classification errors.

� Only the measurements of one type of continuous friction meter are used in this
study, so the findings can not be generalized to other friction meters without further
study.

For the RSC forecasting part:

� Only one winter season of data is available, which may affect the application scope
of the resulting models. The ideal data should cover as many types of snow storms
as possible, and thus large variances of conditional factors can be captured.

� As the data on plowing operations and traffic are not completely accurate, the impact
of this inaccuracy needs to be evaluated in future study.

� Only one study site maintained by the same contractor is tested in this research. As
a result, the maintenance data are limited in terms of maintenance strategies, meth-
ods and materials being applied. Furthermore, the effects of local factors, like road
geometries, roadside geospatial profiles, and road materials, which could significantly
affect RSC, can not be studied in this research. Therefore the resulting models need
to be further validated before being applied to other sites.

� As the study is focused on spot-wise forecasting, its applicability to forecasting the
RSC of a whole road section needs to be evaluated in future study. This is a major
limitation of all models based on the data collected by static RWIS stations.
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5.4 Future Directions

With all its contributions and limitations, the proposed research work can be extended in
many ways, and first and foremost is the availability of more sample data.

The sample problem in this study is not caused by limited resources or non-carefully de-
signed data collection plans, but by the modelling methodologies. CFM data were collected
by well trained MTO staff and the total length of the test runs is enough for developing
mean-friction based models. However, after the RSC type designation and aggregation
processing, which was proposed after data collection, the sample size turns out to be not
sufficiently large as expected.

The data collection and integration for RSC forecasting has even more challenges.
MTO’s maintenance database did not keep any hourly or more granular operation records,
which are critical for successful short-term RSC forecast modelling. Accurate plowing and
salting information were not always in the AVL dataset as well. In addition, there were
very few Vaisala stations installed in Ontario, so it seriously affects the amount of available
weather and RSC data.

The only way to overcome such sampling problems in future study is to promote better
communications and interactions between government agents, contractors and researchers.
Ideally, the proposed modelling frameworks are integrated with available decision support
or performance monitoring systems, so that the whole process of data collection, data
storage and processing, and model tuning can be seamlessly and dynamically realized.
Besides this long-term goal, there are several conspicuous ways to extend current works.
For RSC estimation:

� Collect CFM data on different classes of highways and road surface textures covering
more winter seasons. The modelling results should also be validated across different
friction meters. As for the modelling techniques, based on new datasets, different
aggregation intervals and aggregate measures can be tested.

� Using driving data to estimate RSC is very attractive. Our study only tests the speed
data, but other driving data like 3-axle accelerations could work much better, .

For RSC forecasting:

� RSC, weather, traffic and maintenance data of more winter seasons from more sites
should be collected. These sites should cover multiple patrol routes maintained by
different contractors.
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� Although this study uses the data from a static RWIS station, specific RWIS sensors,
like the ones used in this study, can be mounted on a driving vehicle and working
mobile (Saarikivi, 2012). In this way, spatially continuous RSC measures can be
collected, and thus the modelling framework can be extended to make forecasts for
a whole road section.

� The performance of the empirical model developed under our framework should be
compared with those physical models that may be able to tackle the lagging effect of
salting more effectively.

5.5 Final Remarks

In this thesis research, the research problems are addressed mainly through statistical
modelling methodologies. The collected data are processed and analyzed to obtain extra
knowledge about the studied physical processes. The resulting models are the outcome
of this data-mining progress and can be used to solve the relevant engineering problems.
This approach is considered suitable for modelling physical processes with significant un-
certainty, like friction measurements, or of highly complex mechanism, like RSC changes
in time.

This research provides a foundation to researchers in winter road maintenance for ex-
panding the existing toolsets in operation decision support and performance measure sys-
tems. The proposed research framework for RSC estimation may evolve in a natural pro-
gression towards developing more reliable and robust winter road monitoring systems. For
the RSC forecasting problem, the modelling framework and techniques relying on ARIMA
analysis are for the first time systematically tested. The modelling methodology coupled
with advanced RSC sensing technology could evolve into sophisticated RSC forecasting
systems.

Some major findings of this thesis research could stimulate many interesting studies.
For example, our study has tested the possibility of using vehicle driving data to estimate
winter RSCs. As such data are ubiquitously available with the help of telematics devices
and smart phones, significant research success in this area could make each vehicle on the
road become a mobile RSC probe.
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Vaisala Non-Invasive Pavement Surface State 

Sensor DSC111 (Spectro)  

 
 

 Features and Benefits 
• Non-invasive remote surface state sensing 
• Spectroscopic measuring principle, 

identifying the presence and thickness of: 
• Water 
• Ice 
• Slush 
• SnowFrost 

• Unique measurement of road friction or grip   
• Accurate and stable measurement results 

even with intense traffic 
• Eye-safe laser technology  
• Easy installation and service 
• Low maintenance costs  
• Weather-proof, durable design 
• Easy integration with Vaisala ROSA Road 

Weather Station, or can operate as a stand-
alone solution with solar/gsm options  

• NTCIP compliant when used with Vaisala 
DMC interface card 

  
The unique Spectro sensor eliminates the 
service disruption which was previously 
associated with the installation of a road 
weather station. The remote installation 
means that there is no requirement to slot-
cut the surface or close the road.  The sensor 
may be installed in a remote location on a 
pole adjacent to the road, or as an addition 
to the Vaisala ROSA Road Weather Station.  
 
The spectroscopic measuring principle 
enables accurate measurement of the 
amounts of water, ice, and snow. Water and 
ice are measured independently of each 
other, enabling Spectro to accurately report 
the surface state.  
 
 
 

 Spectro provides an accurate measure of the 
presence of ice crystals well before they cause 
the road to be slick. The Winter Maintenance 
engineer is therefore able to monitor even the 
smallest changes in grip in order to take the 
appropriate remedial action. 
 
The water reading is useful for advanced 
warning of hydro-planing.  
 
Spectro has proven its capabilities during three 
years of intensive field testing in collaboration 
with Vaisala customers.  
 
Together with Cyclo, which remotely measures 
surface temperature, Spectro forms a versatile 
stand-alone weather station.   
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TECHNICAL DATA  DSC111 (Spectro) 
 
 
ELECTRICAL   INSTALLATION  
Power supply 9 ... 30 VDC  Measuring distance 6 ... 50 ft 
Power consumption for operation   Measuring area Diam. 10” at 30ft 
 0.7 W above 5°C 

max 1.9 W below 5°C  
 Installation angle from 

the horizontal line 
30 ... 85° 

Power consumption for lens heaters    Fits onto the standard sensor arm   
 0 ... 4 W user adjustable  DM32ARM with cross-section of   
Interfaces RS-485 isolated, RS-232  40 mm x 40 mm  
Connectors 3 x M12 (5 pins)    

1: RS-485 and power, male  MEASURING RANGE  
2: RS-232, male  Layer thickness*  
3: RS-485 and power, female   Water 0.00 ... 2 mm 

 Extension connector for the  Ice 0.00 ... 2 mm 
 DST111  Snow 0.00 ... 20 mm 
Cables 3 m, 10 m, 25 m  Resolution 0.01 mm 
 One end without connector  Friction coefficient  0.01 ... 1.00 
 0,6 m extension cable to the DST111  Resolution 0.01 units 
   Surface states  
ENVIRONMENTAL    Dry, Moist, Wet, 
Operating temperature -40°C/°F...+60°C/140°F   Snow/Frost, Ice, Slush 
Operating humidity 0 ... 100 % RH    
CE Compliant IEC(EN)-61326  MECHANICAL  
Safety Eye-safe, Laser class 1   Dimensions (cm) 46 x 21 x 14 
Vibration IEC 60721-3-3  Weight 7 lb / 3.7 kg 
                                                                               *Units can be displayed in inches 
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Example of Spectro display 
 
 

The graph shows Spectro data from 1028am on January 15th to 1013am on January 16th 2006. 
The green line (friction or grip) remains constant at 82% indicating a dry road (see camera 
image A) until the first light snow shower occurs at 4.20am.  
From 8.15am snow accumulates rapidly, as shown by the purple line, which increases to a 
water equivalent level of about half an inch (12.7mm) at 1013am. This corresponds with a 
reduction in friction (or grip) as the green line drops to about 10%. 
Camera image A shows a dry pavement with spectro aimed just to the right of the embedded 
sensor. Images B & C are aimed at the same location, but at later times, showing the snow 
accumulation.  
 

Aim of 
Spectro  

A B 

C 
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Vaisala Non-Invasive Pavement Surface 
Temperature Sensor DST111  (Cyclo) 

 
 

 
 
 
  

Features and Benefits 
• Non-invasive remote temperature 

measurement 
• Unique correction of the error caused by the 

emissivity of the road surface, negating the 
need for emissivity adjustment 

• Easy installation and service 
• Low maintenance costs 
• No internal moving parts 
• Stable measurement results even with 

intense traffic 
• Weather-proof, durable design 
• Assessment of air temperature and humidity 
• Easy integration with Vaisala ROSA Road 

Weather Station  
• Capability to act as stand-alone device in 

remote locations with solar/gsm options 
• NTCIP compliant when used in conjunction 

with Vaisala DMC interface card 
 

 
 
The unique Cyclo sensor provides a non-
invasive alternative to measuring pavement 
surface temperature.  By measuring the 
infrared radiation emitted by the surface and 
applying intelligent signal processing, Cyclo 
provides a reliable remote surface 
temperature measurement. 
 
Cyclo provides reliable results in conditions 
where most of the commercially available 
infrared sensors fail. At night time, when 
the road surface is cooling under a clear sky, 
conventional infrared sensors provide an 
error of up to -3°C (-7°F) due to emissivity 
conditions of the road surface. Cyclo 
compensates for this error by its unique 
design.  
 

 Installation of Cyclo is easy, requiring no slot 
cutting or closure of the road. Supplied with 
solar/gsm options, the sensor is ideal for stand-
alone operation in remote/in-fill locations and 
on bridge decks (when used in conjunction 
with DSC111 – Spectro).  The sensor is simply 
installed on a mast, or existing structure beside 
the road.  
 
Cyclo can also be installed alongside an 
existing Vaisala ROSA Road Weather Station.  
   
Together with Spectro, which measures surface 
state, Cyclo forms a versatile stand-alone 
weather station. 
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Table B.1: Traffic Estimation Model for Dunvegan

Traff Estimation Model
ln(Hourly Traffic Dunvegan)

(Intercept) 1.68∗∗∗

(0.22)
ln(Hourly Traffic Ottawa) 0.17∗∗

(0.06)
ln2(Hourly Traffic Ottawa) 0.04∗∗∗

(0.00)

Multiple R-squared 0.87
Adjusted R-squared 0.87
F-statistic 3.55e+04 on 2 and 10959 DF
p-value < 2.2e-16

***p < 0.001, **p < 0.01, *p < 0.05, ·p < 0.1
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Appendix C

ARMAX(p, 0, 0) Models for Friction
Level

C.1 ARMAX(1, 0, 0)

Series: endo_vars

ARIMA(1,0,0) with non-zero mean

Coefficients:

ar1 intercept Plow AT Precip Traffic Salting_L0

0.9905 0.1185 0.0001 0.5576 -0.0225 0.0507 -0.0037

s.e. 0.0027 0.0306 0.0018 0.0193 0.0087 0.0069 0.0036

Salting_L1 Salting_L2 Salting_L3 Salting_L4 Salting_L5 Salting_L6

-0.0041 -0.0085 -0.0151 -0.0143 -0.0113 -0.0096

s.e. 0.0047 0.0056 0.0061 0.0063 0.0063 0.0061

Salting_L7 Salting_L8 Salting_L9 WL IL SL

-0.0089 -0.0059 -0.0048 0.0077 -0.0086 -0.0016

s.e. 0.0056 0.0047 0.0034 0.0108 0.0086 0.0110

sigma^2 estimated as 0.0001969: log likelihood=6840.45

AIC=-13640.9 AICc=-13640.54 BIC=-13525.21
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C.2 ARMAX(2, 0, 0)

Series: endo_vars

ARIMA(2,0,0) with non-zero mean

Coefficients:

ar1 ar2 intercept Plow AT Precip Traffic Salting_L0

1.5659 -0.5747 0.2726 0.0001 0.2754 -0.0236 0.0383 -0.0036

s.e. 0.0183 0.0182 0.0298 0.0011 0.0201 0.0057 0.0102 0.0030

Salting_L1 Salting_L2 Salting_L3 Salting_L4 Salting_L5 Salting_L6

-0.0041 -0.0078 -0.0133 -0.0114 -0.0085 -0.0058

s.e. 0.0052 0.0070 0.0082 0.0088 0.0088 0.0082

Salting_L7 Salting_L8 Salting_L9 WL IL SL

-0.0043 -0.0023 -0.0024 0.0047 -0.0082 0.0040

s.e. 0.0070 0.0051 0.0029 0.0079 0.0061 0.0082

sigma^2 estimated as 0.0001443: log likelihood=7213.59

AIC=-14385.17 AICc=-14384.78 BIC=-14263.7

C.3 ARMAX(3, 0, 0)

Series: endo_vars

ARIMA(3,0,0) with non-zero mean

Coefficients:

ar1 ar2 ar3 intercept Plow AT Precip Traffic

1.4078 -0.1053 -0.3128 0.3236 -0.0001 0.1926 -0.0225 0.0225

s.e. 0.0194 0.0349 0.0201 0.0250 0.0012 0.0189 0.0059 0.0099

Salting_L0 Salting_L1 Salting_L2 Salting_L3 Salting_L4 Salting_L5

-0.0026 -0.0027 -0.0056 -0.0103 -0.0080 -0.0051

s.e. 0.0028 0.0043 0.0059 0.0069 0.0075 0.0075

Salting_L6 Salting_L7 Salting_L8 Salting_L9 WL IL SL

-0.0026 -0.0015 -0.0007 -0.0016 0.0037 -0.0062 0.0025

s.e. 0.0069 0.0059 0.0043 0.0027 0.0075 0.0060 0.0079

sigma^2 estimated as 0.0001312: log likelihood=7327.24
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AIC=-14610.48 AICc=-14610.05 BIC=-14483.22

C.4 ARMAX(4, 0, 0)

Series: endo_vars

ARIMA(4,0,0) with non-zero mean

Coefficients:

ar1 ar2 ar3 ar4 intercept Plow AT Precip

1.3483 -0.1243 -0.0448 -0.1914 0.3277 0.0000 0.1889 -0.0245

s.e. 0.0200 0.0344 0.0343 0.0201 0.0215 0.0012 0.0185 0.0059

Traffic Salting_L0 Salting_L1 Salting_L2 Salting_L3 Salting_L4

0.0178 -0.0026 -0.0022 -0.0049 -0.0094 -0.0071

s.e. 0.0092 0.0027 0.0040 0.0052 0.0060 0.0065

Salting_L5 Salting_L6 Salting_L7 Salting_L8 Salting_L9 WL

-0.0042 -0.0019 -0.0011 -5e-04 -0.0016 0.0050

s.e. 0.0065 0.0060 0.0052 4e-03 0.0026 0.0077

IL SL

-0.0072 0.0037

s.e. 0.0061 0.0080

sigma^2 estimated as 0.0001264: log likelihood=7371.89

AIC=-14697.79 AICc=-14697.32 BIC=-14564.74

C.5 ARMAX(5, 0, 0)

Series: endo_vars

ARIMA(5,0,0) with non-zero mean

Coefficients:

ar1 ar2 ar3 ar4 ar5 intercept Plow AT

1.3237 -0.1312 -0.0593 -0.0191 -0.1279 0.3260 0.0000 0.1943

s.e. 0.0202 0.0340 0.0340 0.0338 0.0203 0.0195 0.0012 0.0183

Precip Traffic Salting_L0 Salting_L1 Salting_L2 Salting_L3

-0.0245 0.0158 -0.0027 -0.0023 -0.0048 -0.0095
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s.e. 0.0060 0.0088 0.0027 0.0039 0.0049 0.0056

Salting_L4 Salting_L5 Salting_L6 Salting_L7 Salting_L8 Salting_L9

-0.0074 -0.0047 -0.0024 -0.0017 -0.0012 -0.0022

s.e. 0.0060 0.0060 0.0056 0.0049 0.0039 0.0026

WL IL SL

0.0054 -0.0092 0.0023

s.e. 0.0078 0.0061 0.0080

sigma^2 estimated as 0.0001244: log likelihood=7391.55

AIC=-14735.09 AICc=-14734.59 BIC=-14596.26

C.6 ARMAX(6, 0, 0)

Series: endo_vars

ARIMA(6,0,0) with non-zero mean

Coefficients:

ar1 ar2 ar3 ar4 ar5 ar6 intercept Plow

1.3148 -0.1336 -0.0626 -0.0280 -0.0358 -0.0697 0.3239 0.0000

s.e. 0.0204 0.0339 0.0340 0.0338 0.0338 0.0205 0.0185 0.0012

AT Precip Traffic Salting_L0 Salting_L1 Salting_L2 Salting_L3

0.1994 -0.0245 0.0146 -0.0027 -0.0022 -0.0048 -0.0095

s.e. 0.0184 0.0060 0.0086 0.0026 0.0039 0.0049 0.0055

Salting_L4 Salting_L5 Salting_L6 Salting_L7 Salting_L8 Salting_L9

-0.0074 -0.0047 -0.0025 -0.0019 -0.0014 -0.0021

s.e. 0.0058 0.0058 0.0055 0.0049 0.0039 0.0026

WL IL SL

0.0058 -0.0085 0.0023

s.e. 0.0077 0.0061 0.0080

sigma^2 estimated as 0.0001238: log likelihood=7397.34

AIC=-14744.67 AICc=-14744.12 BIC=-14600.06
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C.7 ARMAX(7, 0, 0)

Series: endo_vars

ARIMA(7,0,0) with non-zero mean

Coefficients:

ar1 ar2 ar3 ar4 ar5 ar6 ar7 intercept

1.3136 -0.1348 -0.0625 -0.0290 -0.0378 -0.0475 -0.0171 0.3223

s.e. 0.0204 0.0340 0.0340 0.0339 0.0339 0.0339 0.0209 0.0184

Plow AT Precip Traffic Salting_L0 Salting_L1 Salting_L2

0.0000 0.2026 -0.0246 0.0143 -0.0027 -0.0023 -0.0048

s.e. 0.0012 0.0189 0.0060 0.0085 0.0027 0.0039 0.0049

Salting_L3 Salting_L4 Salting_L5 Salting_L6 Salting_L7 Salting_L8

-0.0095 -0.0074 -0.0047 -0.0026 -0.0019 -0.0013

s.e. 0.0055 0.0058 0.0058 0.0055 0.0049 0.0039

Salting_L9 WL IL SL

-0.0021 0.0059 -0.0083 0.0024

s.e. 0.0026 0.0078 0.0062 0.0080

sigma^2 estimated as 0.0001237: log likelihood=7397.67

AIC=-14743.34 AICc=-14742.75 BIC=-14592.95

C.8 ARMAX(8, 0, 0)

Series: endo_vars

ARIMA(8,0,0) with non-zero mean

Coefficients:

ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8

1.3129 -0.1367 -0.0637 -0.0299 -0.0400 -0.052 0.0289 -0.0353

s.e. 0.0204 0.0340 0.0340 0.0339 0.0339 0.034 0.0339 0.0204

intercept Plow AT Precip Traffic Salting_L0 Salting_L1

0.322 0.0000 0.2037 -0.0245 0.0139 -0.0027 -0.0024

s.e. 0.018 0.0012 0.0189 0.0060 0.0085 0.0027 0.0039

Salting_L2 Salting_L3 Salting_L4 Salting_L5 Salting_L6 Salting_L7

-0.0050 -0.0096 -0.0075 -0.0048 -0.0027 -0.0019
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s.e. 0.0049 0.0055 0.0058 0.0058 0.0055 0.0049

Salting_L8 Salting_L9 WL IL SL

-0.0013 -0.0021 0.0057 -0.0081 0.0019

s.e. 0.0039 0.0026 0.0078 0.0062 0.0081

sigma^2 estimated as 0.0001236: log likelihood=7399.16

AIC=-14744.32 AICc=-14743.69 BIC=-14588.14
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Appendix D

VARMAX(1, 0, 0) Model for
Contaminant Layers

VAR Estimation Results:

=========================

Endogenous variables: WL, IL, SL

Deterministic variables: const

Sample size: 2890

Log Likelihood: 14206.308

Roots of the characteristic polynomial:

0.9797 0.8903 0.876

Call:

VAR(y = endo_vars, p = 1, type = "const", exogen = exog_vars)

Estimation results for equation WL:

===================================

WL = WL.l1 + IL.l1 + SL.l1 + const + AT + Precip + Salting_L2 + Salting_L3

+ Salting_L5

Estimate Std. Error t value Pr(>|t|)

WL.l1 0.890253 0.008365 106.429 < 2e-16 ***

IL.l1 0.029202 0.008229 3.549 0.000393 ***

SL.l1 -0.009805 0.003779 -2.594 0.009526 **
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const -0.008769 0.003522 -2.490 0.012842 *

AT 0.017443 0.005642 3.092 0.002010 **

Precip 0.042038 0.008244 5.099 3.63e-07 ***

Salting_L2 0.014806 0.006208 2.385 0.017147 *

Salting_L3 0.015935 0.006160 2.587 0.009733 **

Salting_L5 0.012904 0.006185 2.086 0.037036 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04511 on 2881 degrees of freedom

Multiple R-Squared: 0.8597,Adjusted R-squared: 0.8593

F-statistic: 1961 on 9 and 2881 DF, p-value: < 2.2e-16

Estimation results for equation IL:

===================================

IL = IL.l1 + SL.l1 + const + AT + Salting_L1 + Salting_L6 + Salting_L7

Estimate Std. Error t value Pr(>|t|)

IL.l1 0.875983 0.008771 99.878 < 2e-16 ***

SL.l1 0.027676 0.004007 6.908 6.04e-12 ***

const 0.012106 0.003767 3.214 0.00133 **

AT -0.012193 0.005889 -2.070 0.03851 *

Salting_L1 0.017582 0.006592 2.667 0.00769 **

Salting_L6 -0.013902 0.006596 -2.108 0.03516 *

Salting_L7 -0.015685 0.006595 -2.378 0.01746 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04841 on 2883 degrees of freedom

Multiple R-Squared: 0.8728,Adjusted R-squared: 0.8725

F-statistic: 2827 on 7 and 2883 DF, p-value: < 2.2e-16

Estimation results for equation SL:

===================================
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SL = SL.l1 + const + Precip + Traffic

Estimate Std. Error t value Pr(>|t|)

SL.l1 0.979746 0.003601 272.057 < 2e-16 ***

const 0.004730 0.001937 2.442 0.014657 *

Precip 0.030264 0.008554 3.538 0.000409 ***

Traffic -0.007286 0.003313 -2.199 0.027945 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04903 on 2886 degrees of freedom

Multiple R-Squared: 0.9719,Adjusted R-squared: 0.9718

F-statistic: 2.491e+04 on 4 and 2886 DF, p-value: < 2.2e-16

Covariance matrix of residuals:

WL IL SL

WL 0.0020417 -3.179e-04 -3.752e-04

IL -0.0003179 2.352e-03 -8.885e-05

SL -0.0003752 -8.885e-05 2.416e-03

Correlation matrix of residuals:

WL IL SL

WL 1.0000 -0.14505 -0.16892

IL -0.1450 1.00000 -0.03727

SL -0.1689 -0.03727 1.00000
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Appendix E

VARMAX(2, 0, 0) Model for
Contaminant Layers

VAR Estimation Results:

=========================

Endogenous variables: WL, IL, SL

Deterministic variables: const

Sample size: 2889

Log Likelihood: 14279.983

Roots of the characteristic polynomial:

0.967 0.8708 0.8708 0.2275 0.1074 0

Call:

VAR(y = endo_vars, p = 2, type = "const", exogen = exog_vars)

Estimation results for equation WL:

===================================

WL = WL.l1 + IL.l1 + SL.l1 + WL.l2 + const + AT + Precip + Salting_L2 +

Salting_L3 + Salting_L5

Estimate Std. Error t value Pr(>|t|)

WL.l1 0.972389 0.018544 52.436 < 2e-16 ***

IL.l1 0.027874 0.008201 3.399 0.000686 ***

SL.l1 -0.010088 0.003765 -2.679 0.007419 **
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WL.l2 -0.091578 0.018469 -4.958 7.52e-07 ***

const -0.009291 0.003510 -2.647 0.008167 **

AT 0.019227 0.005632 3.414 0.000650 ***

Precip 0.042289 0.008212 5.150 2.79e-07 ***

Salting_L2 0.015985 0.006189 2.583 0.009845 **

Salting_L3 0.015380 0.006137 2.506 0.012261 *

Salting_L5 0.014847 0.006173 2.405 0.016232 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04494 on 2879 degrees of freedom

Multiple R-Squared: 0.8609,Adjusted R-squared: 0.8604

F-statistic: 1782 on 10 and 2879 DF, p-value: < 2.2e-16

Estimation results for equation IL:

===================================

IL = WL.l1 + IL.l1 + WL.l2 + SL.l2 + const + Salting_L1 + Salting_L7

Estimate Std. Error t value Pr(>|t|)

WL.l1 -0.053732 0.019767 -2.718 0.00660 **

IL.l1 0.876482 0.008733 100.368 < 2e-16 ***

WL.l2 0.043206 0.019829 2.179 0.02942 *

SL.l2 0.028885 0.004009 7.205 7.40e-13 ***

const 0.004888 0.001253 3.902 9.76e-05 ***

Salting_L1 0.017994 0.006556 2.745 0.00609 **

Salting_L7 -0.013356 0.006560 -2.036 0.04184 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04841 on 2882 degrees of freedom

Multiple R-Squared: 0.8728,Adjusted R-squared: 0.8725

F-statistic: 2825 on 7 and 2882 DF, p-value: < 2.2e-16

Estimation results for equation SL:
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===================================

SL = SL.l1 + SL.l2 + const + AT + Precip

Estimate Std. Error t value Pr(>|t|)

SL.l1 1.194545 0.018144 65.837 < 2e-16 ***

SL.l2 -0.220004 0.018135 -12.131 < 2e-16 ***

const 0.009507 0.003503 2.714 0.006682 **

AT -0.012927 0.005727 -2.257 0.024069 *

Precip 0.028774 0.008404 3.424 0.000626 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04786 on 2884 degrees of freedom

Multiple R-Squared: 0.9732,Adjusted R-squared: 0.9732

F-statistic: 2.095e+04 on 5 and 2884 DF, p-value: < 2.2e-16

Covariance matrix of residuals:

WL IL SL

WL 0.0020273 -3.128e-04 -3.569e-04

IL -0.0003128 2.355e-03 -7.958e-05

SL -0.0003569 -7.958e-05 2.303e-03

Correlation matrix of residuals:

WL IL SL

WL 1.0000 -0.14315 -0.16519

IL -0.1431 1.00000 -0.03417

SL -0.1652 -0.03417 1.00000
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Appendix F

VARMAX(1, 0, 0) Model for
Contaminant Layers With Salt
Residual

VAR Estimation Results:

=========================

Endogenous variables: WL, IL, SL

Deterministic variables: const

Sample size: 2890

Log Likelihood: 14204.607

Roots of the characteristic polynomial:

0.9797 0.8919 0.8776

Call:

VAR(y = endo_vars, p = 1, type = "const", exogen = exog_vars)

Estimation results for equation WL:

===================================

WL = WL.l1 + IL.l1 + SL.l1 + const + AT + Precip + SaltRes_L2 + SaltRes_L4

+ SaltRes_L5

Estimate Std. Error t value Pr(>|t|)

WL.l1 0.891853 0.008397 106.206 < 2e-16 ***
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IL.l1 0.030191 0.008230 3.668 0.000249 ***

SL.l1 -0.009864 0.003778 -2.611 0.009083 **

const -0.007307 0.003593 -2.034 0.042070 *

AT 0.015839 0.005692 2.783 0.005424 **

Precip 0.041997 0.008242 5.095 3.71e-07 ***

SaltRes_L2 0.016377 0.006009 2.726 0.006459 **

SaltRes_L4 -0.014790 0.006161 -2.400 0.016437 *

SaltRes_L5 0.015097 0.006227 2.424 0.015402 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04511 on 2881 degrees of freedom

Multiple R-Squared: 0.8598,Adjusted R-squared: 0.8593

F-statistic: 1962 on 9 and 2881 DF, p-value: < 2.2e-16

Estimation results for equation IL:

===================================

IL = IL.l1 + SL.l1 + const + SaltRes_L1 + SaltRes_L6

Estimate Std. Error t value Pr(>|t|)

IL.l1 0.877582 0.008693 100.955 < 2e-16 ***

SL.l1 0.029347 0.003925 7.478 9.99e-14 ***

const 0.004176 0.001178 3.544 0.000401 ***

SaltRes_L1 0.019436 0.006298 3.086 0.002047 **

SaltRes_L6 -0.015682 0.006291 -2.493 0.012727 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04843 on 2885 degrees of freedom

Multiple R-Squared: 0.8726,Adjusted R-squared: 0.8724

F-statistic: 3952 on 5 and 2885 DF, p-value: < 2.2e-16

Estimation results for equation SL:

===================================
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SL = SL.l1 + const + Precip + Traffic

Estimate Std. Error t value Pr(>|t|)

SL.l1 0.979746 0.003601 272.057 < 2e-16 ***

const 0.004730 0.001937 2.442 0.014657 *

Precip 0.030264 0.008554 3.538 0.000409 ***

Traffic -0.007286 0.003313 -2.199 0.027945 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04903 on 2886 degrees of freedom

Multiple R-Squared: 0.9719,Adjusted R-squared: 0.9718

F-statistic: 2.491e+04 on 4 and 2886 DF, p-value: < 2.2e-16

Covariance matrix of residuals:

WL IL SL

WL 0.0020408 -3.204e-04 -3.756e-04

IL -0.0003204 2.356e-03 -8.537e-05

SL -0.0003756 -8.537e-05 2.416e-03

Correlation matrix of residuals:

WL IL SL

WL 1.0000 -0.14609 -0.16913

IL -0.1461 1.00000 -0.03578

SL -0.1691 -0.03578 1.00000
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Appendix G

VARMAX(1, 0, 0) Model with
Interaction Effect

VAR Estimation Results:

=========================

Endogenous variables: WL, IL, SL

Deterministic variables: const

Sample size: 2890

Log Likelihood: 14213.274

Roots of the characteristic polynomial:

0.9769 0.8919 0.8744

Call:

VAR(y = endo_vars, p = 1, type = "const", exogen = exog_vars)

Estimation results for equation WL:

===================================

WL = WL.l1 + IL.l1 + SL.l1 + AT + Precip + SaltRes_L2 + SaltRes_L4

+ SaltRes_L5 + TempRes_L3

Estimate Std. Error t value Pr(>|t|)

WL.l1 0.891878 0.008385 106.371 < 2e-16 ***

IL.l1 0.030509 0.008193 3.724 0.00020 ***

SL.l1 -0.009394 0.003782 -2.484 0.01304 *
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AT 0.018537 0.005802 3.195 0.00141 **

Precip 0.041792 0.008240 5.072 4.19e-07 ***

SaltRes_L2 0.015235 0.005933 2.568 0.01028 *

SaltRes_L4 -0.015963 0.006095 -2.619 0.00886 **

SaltRes_L5 0.015447 0.006225 2.481 0.01314 *

TempRes_L3 -0.010237 0.004122 -2.484 0.01306 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04509 on 2881 degrees of freedom

Multiple R-Squared: 0.8599,Adjusted R-squared: 0.8594

F-statistic: 1964 on 9 and 2881 DF, p-value: < 2.2e-16

Estimation results for equation IL:

===================================

IL = IL.l1 + SL.l1 + AT + SaltRes_L1 + SaltRes_L5 + SaltRes_L6 + TempRes_L5

Estimate Std. Error t value Pr(>|t|)

IL.l1 0.874438 0.008787 99.515 < 2e-16 ***

SL.l1 0.027450 0.004022 6.825 1.07e-11 ***

AT -0.012857 0.006268 -2.051 0.04035 *

SaltRes_L1 0.016929 0.006381 2.653 0.00801 **

SaltRes_L5 0.014604 0.006735 2.168 0.03022 *

SaltRes_L6 -0.019450 0.006605 -2.945 0.00326 **

TempRes_L5 0.013218 0.004515 2.928 0.00344 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0484 on 2883 degrees of freedom

Multiple R-Squared: 0.8729,Adjusted R-squared: 0.8726

F-statistic: 2828 on 7 and 2883 DF, p-value: < 2.2e-16

Estimation results for equation SL:

===================================
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SL = SL.l1 + AT + Precip + Traffic + TempRes_L1

Estimate Std. Error t value Pr(>|t|)

SL.l1 0.976854 0.003724 262.317 < 2e-16 ***

AT -0.015235 0.006151 -2.477 0.013306 *

Precip 0.032048 0.008604 3.725 0.000199 ***

Traffic -0.007467 0.003296 -2.265 0.023557 *

TempRes_L1 0.016018 0.004546 3.523 0.000433 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04898 on 2885 degrees of freedom

Multiple R-Squared: 0.9719,Adjusted R-squared: 0.9719

F-statistic: 1.998e+04 on 5 and 2885 DF, p-value: < 2.2e-16

Covariance matrix of residuals:

WL IL SL

WL 0.0020465 -3.217e-04 -3.771e-04

IL -0.0003217 2.360e-03 -8.807e-05

SL -0.0003771 -8.807e-05 2.418e-03

Correlation matrix of residuals:

WL IL SL

WL 1.0000 -0.14638 -0.16954

IL -0.1464 1.00000 -0.03687

SL -0.1695 -0.03687 1.00000
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Appendix H

Multi-Step Forecasting MAE of RSC
Models

H.1 Surface Temperature

ForecastHorizon MAE Dataset

1 0 0.0000000 calibration

2 20 0.1678591 calibration

3 40 0.2624593 calibration

4 60 0.3466855 calibration

5 80 0.4301734 calibration

6 100 0.5127732 calibration

7 120 0.6023059 calibration

8 140 0.7004046 calibration

9 160 0.8159428 calibration

10 180 0.9479579 calibration

11 0 0.0000000 validation

12 20 0.2360460 validation

13 40 0.4043886 validation

14 60 0.5648082 validation

15 80 0.7203856 validation

16 100 0.8839116 validation

17 120 1.0509589 validation

18 140 1.2223720 validation
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19 160 1.4109004 validation

20 180 1.6196865 validation

H.2 Friction Level

ForecastHorizon MAE Dataset

1 0 0.00000000 calibration

2 20 0.02556735 calibration

3 40 0.04099866 calibration

4 60 0.05261701 calibration

5 80 0.06143010 calibration

6 100 0.06884161 calibration

7 120 0.07530223 calibration

8 140 0.08091218 calibration

9 160 0.08610781 calibration

10 180 0.09029798 calibration

11 0 0.00000000 validation

12 20 0.02369263 validation

13 40 0.03829639 validation

14 60 0.04860900 validation

15 80 0.05619228 validation

16 100 0.06266128 validation

17 120 0.06796160 validation

18 140 0.07289253 validation

19 160 0.07817058 validation

20 180 0.08212058 validation

H.3 Contaminant Layer Depths

H.3.1 Water Layer

ForecastHorizon MAE Dataset

1 0 0.00000000 Calibration

2 20 0.04831811 Calibration

3 40 0.09069000 Calibration
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4 60 0.12788749 Calibration

5 80 0.16057673 Calibration

6 100 0.18934859 Calibration

7 120 0.21469402 Calibration

8 140 0.23703425 Calibration

9 160 0.25674917 Calibration

10 180 0.27421109 Calibration

11 0 0.00000000 Validation

12 20 0.04816841 Validation

13 40 0.08987051 Validation

14 60 0.12597640 Validation

15 80 0.15728750 Validation

16 100 0.18446759 Validation

17 120 0.20808177 Validation

18 140 0.22866300 Validation

19 160 0.24654359 Validation

20 180 0.26215783 Validation

H.3.2 Ice Layer

ForecastHorizon MAE Dataset

1 0 0.00000000 Calibration

2 20 0.01114412 Calibration

3 40 0.02090849 Calibration

4 60 0.02946494 Calibration

5 80 0.03696389 Calibration

6 100 0.04353738 Calibration

7 120 0.04930138 Calibration

8 140 0.05435855 Calibration

9 160 0.05879816 Calibration

10 180 0.06269608 Calibration

11 0 0.00000000 Validation

12 20 0.01343640 Validation

13 40 0.02522161 Validation

14 60 0.03556038 Validation

15 80 0.04463192 Validation

16 100 0.05259296 Validation
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17 120 0.05958095 Validation

18 140 0.06571627 Validation

19 160 0.07110438 Validation

20 180 0.07583766 Validation

H.3.3 Snow Layer

ForecastHorizon MAE Dataset

1 0 0.00000000 Calibration

2 20 0.02204404 Calibration

3 40 0.04364159 Calibration

4 60 0.06480171 Calibration

5 80 0.08553326 Calibration

6 100 0.10584490 Calibration

7 120 0.12574516 Calibration

8 140 0.14524235 Calibration

9 160 0.16434465 Calibration

10 180 0.18306005 Calibration

11 0 0.00000000 Validation

12 20 0.01454050 Validation

13 40 0.02878650 Validation

14 60 0.04274396 Validation

15 80 0.05641873 Validation

16 100 0.06981653 Validation

17 120 0.08294296 Validation

18 140 0.09580354 Validation

19 160 0.10840364 Validation

20 180 0.12074853 Validation
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Wallman, C., & Åström, H. (2001). Friction Measurement Methods and the Correlation
between Road Friction and Traffic Safety: A Literature Review (Tech. Rep.). VTI, the
Swedish National Road and Transport Research Institute.

Wallman, C., Peter, W., & Gudrun, O. (1997). Effects of Winter Road Maintenance (Tech.
Rep.). VTI, the Swedish National Road and Transport Research Institute.

Wambold, J., Antle, C., Henry, J., & Rado, Z. (1995). International PIARC Experiment
to Compare and Harmonize Texture and Skid Resistance Measurements, Final report
(Tech. Rep.). Permanent International Association of Road Congresses (PIARC).

Yamagiwa, Y., Kajiya, Y., & Uemura, T. (2004). Development of An Advanced Winter
Road Management Support System for Great Sapporo. In Sixth International Sympo-
sium on Snow Removal and Ice Control Technology. Transportation Research Board.
(Transportation Research E-Circular E-C063 SNOW04-005 SNOW04-039)

Zadeh, L. (1953). Theory of filtering. Journal of the Society for Industrial and Applied
Mathematics , 1 (1), 35-51.

259


	List of Tables
	List of Figures
	1 Introduction
	1.1 Background
	1.2 Winter Road Maintenance
	1.3 Road Weather and Surface Condition Monitoring
	1.4 Policy and Performance Measure
	1.5 Research Objectives
	1.6 Overview of Chapters

	2 Literature Review
	2.1 RSC Monitoring
	2.1.1 Road Weather Information System (RWIS)
	2.1.2 Thermal Mapping
	2.1.3 Continuous Friction Measurement (CFM)
	2.1.4 Web-Based Surveillance Video and Automatic Road Surface Image Recognition

	2.2 RSC Measures
	2.3 RSC Estimation
	2.3.1 Road Surface Friction Measuring Devices
	2.3.2 RSC Mapping by Mean Friction Level
	2.3.3 RSC Estimation Modelling Using CFM
	2.3.4 RSC Estimation Using Other Data

	2.4 RSC Forecasting
	2.4.1 Factors Affecting RSC Changing
	2.4.2 RSC Forecasting with Physical Approach
	2.4.3 RSC Forecasting with Empirical Approach

	2.5 Summary

	3 RSC Estimation
	3.1 Problem Definition and Modelling Framework
	3.2 Data Collection
	3.3 Feature Extraction
	3.3.1 Probability Distribution Parameters
	3.3.2 Spectral Density Parameters

	3.4 Data Preparation
	3.4.1 Sample Size
	3.4.2 Data Aggregation

	3.5 Exploratory Analysis
	3.5.1 Mean Friction
	3.5.2 Standard Deviation
	3.5.3 Skewness
	3.5.4 Low-Frequency Spectra
	3.5.5 High-Frequency Spectra
	3.5.6 Proportion of High-Frequency Spectra

	3.6 Methodology
	3.6.1 Logistic Regression
	3.6.2 Support Vector Machines
	3.6.3 Selection of Aggregation Interval

	3.7 Model Calibration and Validation
	3.7.1 Split 1: Type 0, 1, 2 vs. Type 3, 4, 5
	3.7.2 Split 2: Type 0, 1 vs. Type 2
	3.7.3 Split 3: Type 3, 4 vs. Type 5
	3.7.4 Split 4: Type 3 vs. Type 4
	3.7.5 Split 5: Type 0 vs. Type 1
	3.7.6 Propagation Error

	3.8 RSC Estimation by Vehicle Speed
	3.8.1 Aggregation Interval Length
	3.8.2 Exploratory Analysis
	3.8.3 Model Calibration and Validation

	3.9 Summary

	4 RSC Forecasting
	4.1 Problem Definition and Modelling Framework
	4.2 Data Collection
	4.2.1 RSC Measures
	4.2.2 Weather Data
	4.2.3 Maintenance Data
	4.2.4 Traffic Data
	4.2.5 Summary

	4.3 Data Integration
	4.3.1 RSC and Weather Data
	4.3.2 Maintenance Data
	4.3.3 Traffic Data

	4.4 Data Summaries
	4.4.1 RSC Variables
	4.4.2 Weather Variables
	4.4.3 Maintenance Operations
	4.4.4 Traffic Volume

	4.5 Exploratory Analysis
	4.5.1 Surface Temperature and Air Temperature
	4.5.2 Friction Level and Contaminant Depths
	4.5.3 Water, Ice and Snow Layers
	4.5.4 Plowing, Salting and Other Factors
	4.5.5 Summary

	4.6 Methodology
	4.6.1 Autoregressive Models
	4.6.2 Moving Average Models
	4.6.3 Differencing
	4.6.4 Integrated Autoregressive and Moving Average Models
	4.6.5 Univariate ARMAX Models
	4.6.6 Multivariate ARMAX Models

	4.7 Model Calibration
	4.7.1 Surface Temperature Model
	4.7.2 Friction Level Model
	4.7.3 Contaminant Layer Model

	4.8 Model Validation
	4.8.1 Surface Temperature Model
	4.8.2 Friction Model
	4.8.3 Contaminant Layers Model

	4.9 Summary

	5 Conclusions and Future Work
	5.1 Major Conclusions
	5.2 Contributions
	5.3 Limitations
	5.4 Future Directions
	5.5 Final Remarks

	APPENDICES
	A Vaisala Sensor Set Specifications
	B Traffic Estimation Model
	C ARMAX(p,0,0) Models for Friction Level
	C.1 ARMAX(1,0,0)
	C.2 ARMAX(2,0,0)
	C.3 ARMAX(3,0,0)
	C.4 ARMAX(4,0,0)
	C.5 ARMAX(5,0,0)
	C.6 ARMAX(6,0,0)
	C.7 ARMAX(7,0,0)
	C.8 ARMAX(8,0,0)

	D VARMAX(1,0,0) Model for Contaminant Layers
	E VARMAX(2,0,0) Model for Contaminant Layers
	F VARMAX(1,0,0) Model for Contaminant Layers With Salt Residual
	G VARMAX(1,0,0) Model with Interaction Effect
	H Multi-Step Forecasting MAE of RSC Models
	H.1 Surface Temperature
	H.2 Friction Level
	H.3 Contaminant Layer Depths
	H.3.1 Water Layer
	H.3.2 Ice Layer
	H.3.3 Snow Layer


	References

