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Abstract

Lazy replication with snapshot isolation (SI) has emerged as a popular choice for distributed
databases. However, lazy replication requires the execution of update transactions at one (mas-
ter) site so that it is relatively easy for a total SI order to be determined for consistent installation
of updates in the lazily replicated system. We propose a set of techniques that support update
transaction execution over multiple partitioned sites, thereby allowing the master to scale. Our
techniques determine a total SI order for update transactions over multiple master sites without
requiring global coordination in the distributed system, and ensure that updates are installed in
this order at all sites to provide consistent and scalable replication with SI. We have built our
techniques into PostgreSQL and demonstrate their effectiveness through experimental evalua-
tion.

iii



Acknowledgements

All praises to Allah Almighty who guided me and gave me strength to complete this thesis.

My deepest gratitude to my supervisor Dr. Khuzaima Daudjee who has given me the oppor-
tunity to pursue this study and has advised me throughout my study. This thesis is the result of
our countless number of discussions, emails, and Google Hangout sessions. I would also like
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Chapter 1

Introduction

Snapshot Isolation (SI) has become a popular isolation level in database systems. Scaling-up a
database system usually involves placing the data at multiple sites, thereby adding system re-
sources over which the workload can be distributed to improve performance. A problem that
emerges as a result of this scale-up through distribution is that of providing global SI over the
distributed database system. This is challenging since a global, total, order for update transac-
tions needs to be determined so that updates can be installed in this order at every site.

There have been proposals to provide global SI over partitioned and replicated databases
[6, 14, 35, 39]. However, none of these proposals consider how to scale-up a single-site (primary)
database system without relying on a centralized site or component to determine a global update
order in the distributed system.

Data replication has become a popular choice to improve the performance, availability, and
fault tolerance of a database. Broadly, we can categorize data replication protocols into eager
and lazy replication. Eager replication protocols ensure that a data item at all replicas has been
updated before the transaction is committed. On the other hand, lazy replication protocols re-
quire a data item to be updated only on a subset of replicas before committing the transaction,
opening up the possibility that some replicas store out-of-date items. Despite this drawback, lazy
replication is an attractive choice to achieve higher performance.

In the lazy master architecture (Figure 1.1) proposed in [29, 25, 35, 11], a client submits trans-
actions to one of the secondary sites. Read-only transactions are serviced locally at a secondary,
while update transactions are forwarded to the primary site for execution. Update transactions
are replicated lazily to the secondary sites. A nice property of this architecture is that as the
read-mostly workload scales-up, the system can be scaled-up by adding more secondary sites.1

1Many common workloads in application areas such as web commerce and decision support are read-mostly
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However, having a single primary site at which all update transactions execute is a restriction
with significant drawbacks. As the read-mostly workload scales-up, an increasing update load is
placed on the primary site. This limits system scalability since the single primary site becomes a
bottleneck [11]. The fact that the primary becomes a bottleneck is not just an artifact of our study.
It is also pointed out in [25] that the scalability of the distributed system is limited by a single
saturated primary site. Other researchers that have proposed lazy master replicated systems have
also acknowledged the system performance degradation that results from an increasing load on
the single primary site [35].

Figure 1.1: Lazy Master Architecture

In prior related work that considers this problem, the update workload needs to be partitioned
a priori or transactions are restricted to updating data at a single site [7, 8, 12]. Other approaches
require some type of centralized middleware or sequencer to determine a global order for update
transactions [35, 21, 2, 23] or the prediction of conflicts between transactions to partition the
primary database a priori into conflict classes [19]. To the best of our knowledge, our approach
is the first to not suffer from any of these restrictions in providing global SI over partitioned
databases.

The contribution of this thesis is a set of techniques that supports scaling-up a database
through partitioning while providing global SI. Distributed update transactions can execute on a

[42, 31].
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database partitioned over multiple primary sites. Note that in many workloads such as TPC-W
and TPC-C, distributed update transactions cannot be avoided. Our work determines a global
order to provide SI for distributed update transactions. We use a novel scheme that merges mul-
tiple update streams from the partitioned sites into a single, unified, stream that is consistent with
global SI ordering and installs these updates in the same order at sites that hold database repli-
cas. Our scheme also avoids transaction inversions, which happens for example when a client is
unable to read its last update despite the update preceding the read in the execution order [14].
Update transactions execute under the well-known two-phase commit (2PC) protocol at the pri-
mary sites and updates are propagated lazily to secondary sites. Our choice of 2PC stems from it
being the most widely used protocol for coordinating transactions in distributed database systems
[5]. We build our techniques into the PostgreSQL open-source database system to demonstrate
their viability and efficiency.

The rest of this thesis is structured as follows. We present our system model in Chapter 2. In
Chapter 3, we describe properties that need to be maintained to guarantee global SI. Chapter 4
presents our protocol for transaction management to provide global SI to update transactions ex-
ecuting over the partitioned primary sites. Chapter 5 describes our log merging scheme to derive
a single stream of updates from multiple primary sites for installation on replicas at secondary
sites. We evaluate the performance of our proposals in Chapter 6 and discuss related work in
Chapter 7 before we conclude the thesis.
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Chapter 2

Overview

In this chapter, we describe an overview of our system model, followed by the terminology and
definitions relevant to the discussion in subsequent chapters.

2.1 System Model

The primary database is partitioned over one or more sites, as shown in Figure 2.1. No restric-
tions are placed on how the primary database is partitioned. The primary sites comprise the
primary cluster. We do not place any restrictions on the contents of each database partition but
note that several techniques for distributed database design have been proposed [30, 3, 22]. A
complete replica of the primary database is held at each secondary site. Each site consists of an
autonomous database system with a local concurrency controller that guarantees SI.

Clients connect to one of the secondary sites and submit transactional requests. Each client’s
transactions constitute a session. Each transaction has associated with it, either explicitly or
implicitly, a session label. The customer sessions may be tracked by the application server or web
server using cookies or a similar mechanism. In this case, the upper tiers can create session labels
and pass them to the database system to inform it of the session labels. We assume that read-
only transactions are distinguished from update transactions in the request streams. Read-only
transactions are executed at the secondary site to which they are submitted. Update transactions
are forwarded by the secondaries to the primary cluster and executed there.

Transactions execute at the primary sites using a 2PC protocol. The primary site that starts the
transaction also acts as the transaction coordinator, which is often the norm. In the 2PC protocol,
the coordinator generates a prepare message, which is sent to all participant sites involved in

4



Figure 2.1: System Architecture

the distributed transaction. The participant sites generate and respond with an acknowledgement
message, which we shall call prepare ack. After acknowledgement messages are received from
all participant sites, the coordinator commits, which generates a global commit message that is
sent to all participants. Each participant then either commits, generating a commit message, or
aborts the transaction. Since the 2PC protocol does not commit a transaction until all read/write
operations of the transaction have executed, and each local concurrency control guarantees SI,
the system of primary sites guarantees global SI.

Update information can be extracted from the database logs using a standard mechanism such
as a log sniffer [18]. The updates from each log are merged into a single stream using the log
merging algorithm described in Chapter 5 after which they are propagated lazily to the secondary
sites in serialization order.

At each secondary site, propagated updates are placed in a FIFO update queue. An indepen-
dent refresh process at each secondary site removes propagated updates from the update queue
and applies them to the local database copy. To distinguish them from the original update transac-
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tion happening at the primary sites, we use the term refresh transaction to refer to the application
of updates at the secondary sites.

2.2 Terminology

We will now define the terminology relevant to update transactions at the primary cluster pre-
sented in Chapters 3 and 4. We will introduce terminology relevant to read-only and refresh
transactions later in Chapter 5.

Transaction i will be denoted as Ti. The participating sites of Ti is the collection of sites
Ti reads data from or writes data to. Throughout the thesis, we use the term participating site
s as any site from among the participating sites of a specified transaction. If there is only one
participating site, then Ti is a local transaction; otherwise, it is a global transaction. Transaction
Ti will have a subtransaction T s

i at each participating site s.

The coordinator site for a transaction Ti is denoted as coordi, and this will be the first partic-
ipating primary site which starts its subtransaction of Ti. If Ti is a global transaction then coordi
will also coordinate the 2PC.

We are specifically interested in the following events happening in the database system: the
begin transaction, read (of an item), write (item), and commit transaction. We assume these
events are totally ordered at each site by the happened-before relation, where e ≺ e′ means that
event e happened before event e′. Existing mechanisms, such as Lamport clock [24], can be used
to derive this relation.

Snapshot Isolation originates from multiversion concurrency control (MVCC) where multi-
ple versions of the same data item may exist at any one time. We use xi to refer to the version
of database item x installed by transaction Ti. A write operation by transaction Ti will always
write its own version of x into the database (i.e. wi[xi]), but it may read data from any transac-
tion, including itself (i.e. ri[xj]). The rule to select which xj to read is key to the definition of a
transaction isolation level, and we will discuss this specifically for SI in the next section.

The begin and commit events of a subtransaction T s
i are denoted as begin(T s

i ) and commit(T s
i )

respectively. A transaction Ti is said to have happened-before Tj if and only if Tj sees Ti’s effects
but Ti does not see Tj’s effects, or simply Ti ≺ Tj . To be more precise, at site s, T s

i ≺ T s
j if and

only if commit(T s
i ) ≺ begin(T s

j ). If neither Ti ≺ Tj nor Tj ≺ Ti is true, then these transactions
are concurrent with respect to each other, denoted as Ti||Tj .

In considering pairs of transactions, we will use the notion of whether one transaction is
dependent on another or not to derive an ordering of these transactions. We formally define the
anti-dependency rather than the dependency since it simplifies the presentation.

6



Definition 2.1 Let RS(T s
i ) and WS(T s

i ) be the read-set and write-set of T s
i . The predicate

¬dependent(Ti, Tj) is true, if and only if (RS(T s
i ) ∩WS(T s

j ) = ∅) ∧ (WS(T s
i ) ∩ RS(T s

j ) =
∅) ∧ (WS(T s

i ) ∩WS(T s
j ) = ∅).

In the thesis, we will use where needed the positive predicate dependent(Ti, Tj), which is the
negation of Definition 2.1, formally defined as:

Definition 2.2 The predicate dependent(Ti, Tj) is true, if and only if (RS(T s
i ) ∩ WS(T s

j ) 6=
∅) ∨ (WS(T s

i ) ∩RS(T s
j ) 6= ∅) ∨ (WS(T s

i ) ∩WS(T s
j ) 6= ∅).

We will not go into specific details on how to track the read and write sets of a transaction,
although it needs to be noted that one may need predicate matching to ensure the read set includes
both selected and scanned items.
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Chapter 3

Transaction Management for Partitioned
SI Database

3.1 Snapshot Isolation

Snapshot Isolation is commonly discussed with reference to the “concurrency phenomena” that
are allowed to happen in the database. The original ANSI-92 SQL standard [1] describes three
phenomena (Dirty reads, Non-repeatable reads, Phantoms) to define four transaction isolation
levels (Read Uncommitted, Read Committed, Repeatable Reads, and Serializable), where the
highest level – Serializable – is defined as the absence of the three phenomena. However, it has
been pointed out to be insufficient by subsequent studies [4], as there are non-Serializable isola-
tion levels that do not exhibit the three phenomena, with Snapshot Isolation being one of them.
Table 3.1 shows a summary of concurrency phenomena that may occur for different transaction
isolation levels, with the concurrency phenomena originally described in ANSI-SQL written in
italics. Since then, there have been further research in uncovering and discovering more concur-
rency phenomena (e.g. [16], and a good summary in [33]), but we will only focus on those in
Table 3.1.

SI gets around the Dirty Read, Non-repeatable Reads, and Phantom phenomena by reading
from a snapshot. Under SI, throughout a transactions’s lifetime, a transaction Ti is guaranteed
to read data items from the snapshot Si obtained when Ti starts. In particular, this only includes
the changes made by all transactions Tj such that commit(Tj) ≺ begin(Ti). Any modifications
made to the data items after Si is read will not be visible to Ti, unless of course if Ti made the
changes itself. All modifications made by a transaction become visible when the transaction
commits.

8



Table 3.1: Concurrency Phenomena on Different Transaction Isolation Levels.
Isolation Level Dirty Read Non-repeatable Phantom Lost Update Write-Skew

Reads
Read Uncommitted YES YES YES YES YES
Read Committed NO YES YES YES YES
Repeatable Reads NO NO YES YES YES
Snapshot Isolation NO NO NO NO YES

Serializable NO NO NO NO NO

To avoid the Lost Update phenomenon, concurrent transactions are not allowed to write into
the same items, and when it happens, only the first commit is successful. This is called the
“First-Committer Wins” rule 1.

The Write-Skew phenomena happens when two concurrent transactions Ti and Tj read some
overlapping items, and then write disjoint sets of items. Under SI, both can commit since their
write sets do not overlap. This is not permitted under Serializable isolation level as there is no
equivalent serial history [4].

In practice, most implementations use the relative order of begin and commit events to decide
whether two transactions are concurrent. More specifically, Ti and Tj are concurrent if and only
if begin(Tj) ≺ commit(Ti) and begin(Ti) ≺ commit(Tj). Since concurrent transactions under
SI do not see each other’s effects, Ti will see the effects of some transaction Tk if and only
if commit(Tk) ≺ begin(Ti). While systems that employ multiversioning by definition store
multiple versions of data items, the default is for Ti to see the latest committed version of data
item x at the time Ti begins.

3.2 Global Snapshot Isolation

When a database is distributed over multiple sites, the challenge is to ensure that SI holds globally
for concurrent, distributed, transactions executing over this partitioned database. These transac-
tions will independently issue begin and commit events at multiple sites, which are autonomous.
We make no assumptions about global clock synchronization, i.e. there is no global clock that
can accurately assign a total order on all such events in the partitioned, distributed, database

1Some SI implementations adopt the First-Updater Rule, which does not prevent our protocol from working
equally well. We chose First-Committer Wins for our system implementation as the underlying PostgreSQL adopts
it also.
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system. In particular, for any transaction pair Ti and Tj running at sites s and t, if T s
i does not

see T s
j ’s effects, we do not want T t

i to see T t
j ’s effects as well. Selecting a snapshot Si for Ti

to access at all sites that host the partitioned database is a challenge. In this context, we use the
concept of consistent snapshot, formally defined as follows:

Definition 3.1 A transaction Ti sees a consistent snapshot Si if for any transaction pair Ti and Tj
executed at different sites s and t, it is not the case that dependent(Ti, Tj)∧T s

i ≺ T s
j ∧T t

i ⊀ T t
j .

Thus, before Ti is allowed to commit, the system needs to ensure that the snapshot Ss
i read

by Ti at site s is consistent with snapshot St
i read by Ti at site t, i.e. both snapshots should

have been installed by the same committed transaction at all sites before Ti starts. There are SI
variants that allow transactions to request a snapshot of the database as of a specific time in the
past [27]. However, they usually use real time to describe a snapshot, which is challenging to
enforce, manage, and synchronize in a distributed system.

Note that we are not interested in solutions that trivially execute a set of transactions serially
in the same order at all sites, thereby ensuring a total order over all sites as this would severely
limit the performance of the system. Previously, we discussed how the relative order of begin
and commit events affects snapshot visibility for a transaction. We will now focus on specific
pairs of begin and commit operations that matter in ensuring global SI.

The database state seen and committed by update transactions at the primary sites correspond
to the transactions’ start and commit events. If a transaction Tk is to see a consistent snapshot Sk

over the partitioned primary sites, the system needs to ensure that the following conditions hold
for each transaction pair Ti and Tj:
C1. If dependent(Ti, Tj) ∧ begin(T s

i ) ≺ commit(T s
j ), then begin(T t

i ) ≺ commit(T t
j ) at all

participating sites t.
C2. If dependent(Ti, Tj) ∧ commit(T s

i ) ≺ begin(T s
j ), then commit(T t

i ) ≺ begin(T t
j ) at all

participating sites t.
C3. If commit(T s

i ) ≺ commit(T s
j ), then commit(T t

i ) ≺ commit(T t
j ) at all participating sites

t.

C1 and C2 are important to consistently determine whether Tj that satisfies dependent(Ti, Tj)
should be visible to a transaction Ti. For example, if site s observes the order begin(T s

i ) ≺
commit(T s

j ) while another site t observes the order commit(T t
j ) ≺ begin(T t

i ), then Tj hap-
pened before Ti at site t, but they are either concurrent at site s, or Ti happened before Tj at site
s.

C3 is important to prevent two different snapshots from seeing partial commits that are in-
compatible with each other. Assume that the value of the data items are originally x0 and y0.

10



Consider the order commit(T s
j ) ≺ begin(T s

p ) ≺ wk[xk] ≺ commit(T s
k ) ≺ begin(T s

q ) at site s,
and the order commit(T t

k) ≺ begin(T t
q ) ≺ wj[yj] ≺ commit(Tj) ≺ begin(T t

p) at site t. Sup-
posing that both Tp and Tq want to read x and y. Tp will read x0 and yj , implying Tj ≺ Tk. On
the other hand, Tq will read xk and y0, implying Tk ≺ Tj . Clearly, both conditions cannot be true
at the same time, and at least one of them needs to be aborted. We avoid the occurrence of such
aborts by enforcing C3.

If ¬dependent(Ti, Tj) ∧ Ti 6= Tj , any possible ordering of begin(T s
i ) and commit(T s

j ) will
not cause inconsistency in Si or Sj . This is trivially true in the absence of any other transactions
in the system. When there is some other transaction Tk where it holds that dependent(Ti, Tk)
and dependent(Tk, Tj), but ¬dependent(Ti, Tk), we need to make sure that at least one of them
is aborted. We do this by detecting the inconsistency between Si and Sk, and also between Sk

and Sj . We will go into more details about this detection in our protocol description in Chapter
4.

An important consequence of the above paragraph is that if the majority of transactions only
touch a small number of non-intersecting items, it allows their begin events to be executed in
any relative order with respect to the other transactions’ commit events, greatly increasing paral-
lelization opportunity. Note that the relative order among commit events is still important even
if the transactions involved are data-independent to each other for the same reason discussed for
condition C3 earlier.

Our work was inspired by Schenkel et al. [39] on achieving global SI under federated setting.
In their work, global transactions are sent to a centralized coordinator, which then sends begin and
commit to participating sites at times in accordance with global SI. The role of the coordinator
is constrained by the fact that they do not control the participating sites, and thus optimization
possibilities are limited.

In contrast, we build a layer, which we call GSI Agent
¯

, to guarantee global SI on top of
PostgreSQL, which guarantees local SI. We are able to precisely control the transactions while
having access to system and transactional state. A nice feature of our work is that all of the
techniques we propose are built on top of PostgreSQL, and do not require modifying the internals
of the PostgreSQL engine itself. This also allows us to instrument the system to generate a
consistent stream of updates that can be installed on replicas at other sites in the distributed
system. Another nice property of our system is that it can be similarly layered in top of other
database systems that provide local SI concurrency controls.

The GSI Agent at each individual site coordinates global transactions with the help of other
GSI Agents at the other sites. To initiate a global transaction Ti, the client can contact the
GSI Agent at any site, after which that GSI Agent instance will become coordi. Preferably, to
minimize the communication overhead, coordi is a site that is involved with processing Ti though
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this is not required. The participating sites of Ti need not be known beforehand, because coordi
will include in the set of participating sites each primary when data at that site is accessed by Ti.
Once the commit request is made to coordi, 2PC is initiated and all participating sites vote on
whether Ti can be safely committed without violating global SI. coordi makes the final decision
and all participating sites commit or abort in accordance with this decision.

We would like to point out two important characteristics of our system. First, any site in
the system can be the coordinator of a transaction. In fact, even if Ti never accesses any data
at a particular site, that site can still be coordi, although this practice is discouraged for perfor-
mance reasons. Second, the outcome of a transaction is determined only by the sites that are
participating in executing transaction Ti. Our protocol obviates the need for a single, centralized,
coordinating site to decide whether a transaction should be committed or aborted. We call our
protocol Collaborative Global SI (CGSI), presented in the next chapter.
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Chapter 4

Collaborative Global Snapshot Isolation

As has been discussed in the previous chapter, ensuring that a transaction sees a consistent snap-
shot is a challenge in the distributed setting. Before describing the approach we take to ensure
this, we first describe two other approaches used in prior work.

The first approach is to agree on a particular snapshot at the time the transaction begins. On
systems where a transaction cannot request which specific database snapshot it wants to see, the
begin operations of subtransactions at all participating sites need to be precisely controlled so
that all subtransactions see a consistent snapshot. Consider two sites s and t participating in Ti.
Suppose both also participate in Tj that is committing, and that dependent(Ti, Tj) is true. For Ti
to see a consistent snapshot, either begin(T s

i ) ≺ commit(T s
j ) ∧ begin(T t

i ) ≺ commit(T t
j ), or

commit(T s
j ) ≺ begin(T s

i )∧commit(T t
j ) ≺ begin(T t

i ) must hold. This is not possible to enforce
unless we know the set of all participating sites from the start. Let us see why this is the case. For
example, suppose we did not know site t was also participating and we started the subtransaction
only on site s, and as it turned out, begin(T s

i ) ≺ commit(T s
j ). Later on, we discovered that

site t is also participating but by then, it was too late to perform begin(T t
i ), as commit(T t

j )
had already happened. In [39], this is achieved by centrally controlling and synchronizing the
begin and commit operations at all sites. This central entity also needs to know the state of all
transactions and all sites. The reliance on precise timing exposes this approach to prolonged
delays due to synchronization of all transaction starts and commits.

In the second, more optimistic approach in [39], subtransactions are started as needed so the
final set of participating sites is known just before commit time. Checks are made every time
a subtransaction is started to verify that the snapshot seen by each new subtransaction at every
site is consistent with the snapshots seen by all previous subtransactions. We shall refer to this
check as certification. If an inconsistency is found, the transaction is aborted. This approach also
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requires a centralized coordinator to make this certification and to control transaction execution
accordingly, presenting a bottleneck in the system.

In our approach, all certifications are performed just before commit time. This provides the
advantage that starting a subtransaction is fast, and the information required for the certifications
can be piggybacked on the 2PC messages. Our approach is more optimistic than the second
approach above and we may end up aborting a transaction to ensure that all of its subtransactions
see consistent snapshots. However, from our experimental results, the abort rate due to this is
very low for workloads where update transactions are not long running, which is usually the case
for many real workloads.

4.1 Consistent Snapshot Determination

Recall that there are three conditions (C1–C3) that need to be maintained for a transaction to see
a consistent snapshot. We describe how CGSI preserves each of these conditions.

To preserve C1 and C2, it is necessary for CGSI to know which transactions have been com-
mitted, and which are still active. At each site s, CGSI keeps sets of active and committed
transactions, and their begin and commit timestamps respectively. We call these sets actives

and committeds. Prior to committing T s
i , the GSI Agent at site s conducts the certification in

the following manner. Each of the transactions in actives and committeds is categorized into
one of two sets: concurrent transactions or serial transactions, denoted as concurrents(Ti) and
serials(Ti) respectively. Concurrent transactions are those Tj where begin(T s

i ) ≺ commit(T s
j );

otherwise they are serial. Thus, Ti completely sees the effects of Tj if and only if Tj ∈ serial(T s
i ).

Si is deemed to be inconsistent if there exists a Tk such that dependent(Ti, Tk)∧(Tk ∈ serials(Ti))
∧(Tk ∈ concurrentt(Ti)) for some participating sites s and t.

The distributed version of the certification that GSI Agent performs is as follows.

1. coordi asks each participating site s to send the transactions in concurrents(Ti).

2. Participating site s sends its concurrents(Ti) to coordi.

3. coordi waits until all participating sites have responded. All responses of concurrents(Ti)
are merged into a single set gConcurrent(Ti). If Tj ∈ gConcurrent(Ti), then T t

j ||T t
i for

at least one participating site t.

4. coordi sends gConcurrent(Ti) to all participating sites.
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5. Each participating site s checks if there exists a Tj , such that dependent(Ti, Tj) ∧ (Tj ∈
gConcurrent(Ti))∧(Tj ∈ serials(Ti)). If such Tj is found, it is proven that Ti is seeing an
inconsistent snapshot Si, and site s should send a negative certification result. Otherwise,
site s sends a positive certification result.

6. coordi aggregates the certification results from all participating sites. If any participating
site replies negatively, it means some subtransactions of Ti see inconsistent snapshot, and
Ti has to be aborted. Otherwise, Ti can proceed to commit.

Theorem 4.1 For a committing transaction Ti, if there exists a Tj satisfying dependent(Ti, Tj),
such that (Tj ∈ concurrents(Ti)) ∧ (Tj ∈ serialt(Ti)) for some sites s and t, the distributed
version of the certification algorithm above will detect Ti as seeing an inconsistent snapshot.

Proof Let us assume that there is a transaction Tj where (Tj ∈ concurrents(Ti)) ∧ (Tj ∈
serialt(Ti)) for some sites s and t, but the algorithm determines that Ti sees a consistent Si. If
the algorithm does not detect the inconsistency, it means that all responses from the sites are
positive. Let us now see it from the perspective of site t, where it happens that Tj ∈ serialt(Ti).
If site t responded positively during the conflict detection, it means site t could not find a data-
dependent Tj , such that (Tj ∈ gConcurrent(Ti)) ∧ (Tj ∈ serialt(Ti)). It has been estab-
lished that Tj ∈ serialt(Ti) from the initial condition. Then, in order to avoid the inconsistency
from being detected, it needs to be the case that Tj /∈ gConcurrent(Ti). However, because
gConcurrent(Ti) is actually the union of all concurrents(Ti) from all participating sites s,
there cannot be some site s such that Tj ∈ concurrents(Ti), a contradiction. �

Several MVCC-based systems including PostgreSQL are already tracking the list of concur-
rent transactions to determine tuple visibility in a snapshot. What remains is to track the full set
of committed transactions, which is usually not readily available in memory and is only recover-
able from the logs. To avoid the need to consult the logs, CGSI keeps track of this set separately.
To prevent the set from growing forever, we employ an expiration strategy.

In this expiration strategy, we set a limit for the maximum number of transactions kept in
the committed transactions set of a site. Once the maximum is reached at site s, it will evict the
oldest committed transaction from the set. We maintain and utilize the site’s Lamport clock [24]
to infer partial ordering between events. Each site s keeps track of the value αs, which is the
highest Lamport clock value as ever evicted from its set. After that, we modify the distributed
certification algorithm executed when Ti is committing as follows:

1. At step 2, each site s does the following processing. Let L[x] be the Lamport clock value
of event x. Let Tj be a transaction such that Tj ∈ concurrents(Ti) and there is no Tk ∈
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concurrents(Ti)∧L[begin(T s
k )] < L[begin(T s

j )]. The value θs(Ti) = min(L[begin(T s
i )],

L[begin(T s
j )]) is then piggybacked on the response sent to coordi.

2. At step 4, coordi computes the value Θ(Ti), which is the lowest value among all θs(Ti),
and piggybacks this value in the message sent back to the participating sites.

3. At step 5, if any participating site s finds that Θ(Ti) ≤ αs, it immediately sends a negative
response.

In using the expiration strategy, if any site s finds that Θ(Ti) ≤ αs, then committeds no
longer contains the necessary information to ascertain whether Ti sees a consistent Si. Thus,
transaction Ti needs to be aborted.

Proposition 4.2 If Ti sees an inconsistent Si, and for each participating site s, Θ(Ti) > αs, then
there is at least one participating site t which detects that Ti sees an inconsistent Si.

Proof Since Ti sees an inconsistent Si, then for some sites s and t, there is a Tj where dependent(
Ti, Tj) ∧ (Tj ∈ concurrents(Ti)) ∧ (Tj ∈ serialt(Ti)). As Tj ∈ concurrents(Ti), then
Θ(Ti) ≤ L[begin(T s

j )]. With 2PC, we also know that L[begin(T s
j )] < L[commit(T t

j )], as
all subtransactions must have been started and prepared at all participating sites before it can
be committed at any site. Since t is a participating site, αt < Θ(Ti), and consequently, we can
derive the inequality αt < Θ(Ti) ≤ L[begin(T s

j )] < L[commit(T t
j )]. It follows that Tj cannot

have been evicted at site t, and site t will be able to detect the conflict. �

Next, we will show how CGSI preserves C3. In systems with a centralized controller, the
responsibility to assign a deterministic global order usually falls to that controller. Since we
do not rely on such a centralized component, all sites collaboratively work to achieve a global
ordering. To reduce communication overhead between sites, we piggyback information onto
existing messages where possible.

Under CGSI, each site s stores a monotonically increasing event clock (henceforth denoted as
event clocks), which will be communicated and updated with each 2PC message in the following
manner (we omit any database action from the description as we want to focus on the clock
manipulation):

1. On coordinator receiving request to prepare a global transaction to commit, the coordinator
piggybacks its event clock value to the broadcasted prepare messages.
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2. On participant receiving prepare message from coordinator, the participant updates its
event clock with the maximum between its current event clock value and the one carried
by the prepare message. Then, the participant sends back a prepare ack piggybacking the
updated clock value.

3. On coordinator receiving prepare ack message from participants, the coordinator updates
its event clock with the maximum between its own event clock value and the one carried
by the prepare ack message. Once all participants have replied with positive prepare ack,
the coordinator atomically increases its event clock and globally decides to commit the
transaction. The incremented event clock value becomes the commit timestamp of the
transaction.

4. On participant receiving commit message from coordinator, the participant updates its
event clock with the maximum between its own event clock value and the one carried
by the commit message.

All global transactions coordinated by a particular site will have a total order defined on them
by virtue of atomically increasing the event clock. Thus, there cannot be two global transactions
coordinated by site s having the same commit timestamp. Across sites, two global transactions
may still be assigned the same commit timestamp. To break ties, we can choose some identifier
unique to each transaction coordinator, such as IP, hostname, or an assigned value. This scheme
is similar to the timestamp generation methodology used in [41]. Naturally, we require the
existence of a total order among the identifiers themselves. Together, the commit timestamp and
the coordinator’s identifier form the global commit timestamp of a transaction.

Definition 4.1 The global commit timestamp of a transaction Ti, denoted as gct(Ti)), is an
ordered pair 〈commit tstamp(Ti), id(Ti)〉, where commit tstamp(Ti) is the commit timestamp
of Ti, and id(Ti) is the identifier of coordi.

Definition 4.2 For every distinct two transactions Ti and Tj , Ti ≺ Tj if and only if:

1. commit tstamp(Ti) < commit tstamp(Tj), or

2. commit tstamp(Ti) = commit tstamp(Tj) and id(Ti) < id(Tj).

The second case in the definition above is used to break ties in the case of assigned commit
timestamps that are the same. The actual commit actions to the database have to be executed
strictly in the order of the commit timestamps. Under the assumption of no deadlock, as long
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as each site locally commits its global transactions in the order defined by ≺, for any global
transaction Ti, there will always exist a snapshot of the database such that a transaction {Tk|Tk �
Ti} has been committed and no transaction {Tk|Ti ≺ Tk} has been committed.

As a consequence of this ordering requirement, there may be times when some transaction
commits need to be postponed. More formally, a site s has to postpone the commit of global
transaction Ti until site s is sure that there cannot be any other uncommitted global transaction
Tj in which s is a participating site with Tj ≺ Ti.

To accomplish this, CGSI has a priority queue data structure containing prepared global trans-
actions, intuitively called PreparedQueue. Each prepared global transaction in PreparedQueue
has a highest clock attribute, which stores the highest event clock value ever received re-
garding the global transaction. There is also a flag ready to commit, which indicates whether
the global transaction has passed 2PC (i.e. the site has received global-commit decision from the
coordinator) and is ready to be written to the database. This flag also serves another important
purpose: when it is true, the stored highest clock must correspond to the transaction’s
commit tstamp, because the event clock value carried by a transaction’s global commit mes-
sage will always be at least one greater than the highest event clock value carried by any of its
prepare or prepare ack messages. The identifier of the coordinator is also saved so that the prior-
ity queue can order the global transactions by their global commit timestamps using the ≺ total
ordering. This way, the root of PreparedQueue will be the transaction with the lowest global
commit timestamp.

Proposition 4.3 When the global transaction Ti present at the root of the priority queue of site
s has ready to commit flag set to true, there cannot be any other uncommitted global trans-
action Tj in which site s is participating with Tj ≺ Ti.

Proof There are four cases to consider, depending on whether site s is the coordinator of Tj , and
whether 2PC has been started for Tj:

1. Suppose s = coordj and Tj has been prepared. Hence, we know that commit tstamp(Ti)
≤ event clocks. As the coordinator increases its event clock value on commit, it will be
the case that commit tstamp(Tj) ≥ event clocks + 1. Regardless of the coordinator’s
identifier, Ti ≺ Tj .

2. Suppose s 6= coordj and Tj has been prepared. Since we find Ti at the root of the priority
queue, it means for every other global transaction Tk in the queue, its highest clock
must be at least commit tstamp(Ti). As Tj has been prepared, then Tj must be in
the queue, and its highest clock must refer to the event clock piggybacked in the
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prepare ack message. Because the coordinator updates its event clock with the piggy-
backed one, the coordinator will eventually assign a commit tstamp(Tj) value of at least
highest clock +1. Regardless of the coordinator’s identifier, Ti ≺ Tj .

3. Suppose s = coordj and Tj has not been prepared yet. When site s prepares Tj , the
highest clock will be at least event clocks. Following the same argument as when Tj
has been prepared, commit tstamp(Tj) will be at least
event clocks + 1, thus Ti ≺ Tj .

4. Suppose s 6= coordj and Tj has not been prepared yet. Then, commit tstamp(Ti) must be
at most event clocks. When the prepare message for Tj comes in, site s will piggyback an
event clock value of at least event clocks. Consequently, the eventual commit tstamp(Tj)
will be at least event clocks + 1, thus Ti ≺ Tj .

�

Unlike the regular 2PC, transaction Ti is not immediately committed after the global decision
to commit has been made. Instead, CGSI records the commit timestamp in highest clock,
turns on the ready to commit flag, and then inserts Ti into the PreparedQueue. The actual
commit operations are issued from a separate committer thread which continuously monitors
the root of PreparedQueue for any transaction with the ready to commit flag set to true.
Algorithm 4.1 shows the steps taken by this committer thread.

Theorem 4.4 If each primary site runs CGSI and enforces SI locally, the transactions in the
system will run under global SI.

Proof First, Algorithm 4.1 enforces C3 across all sites by processing commit in a deterministic
order. Therefore, it cannot happen that two sites participating in the same transactions Ti and
Tj commit them in different order. Furthermore, the First-Committer Wins rule at each site will
ensure there is no concurrent write by two different transactions to the same item. On a shared-
nothing database, this also holds globally.

Next, since the local concurrency control enforces SI locally, a transaction T s
i at site s reads

from snapshot Ss
i obtained when T s

i starts. By Theorem 4.1, T s
i is allowed to commit only if all

T t
i read from some consistent snapshot that satisfies C1 and C2, where t is the set of participating

sites of Ti. Consequently, globally, Ti sees a consistent snapshot Si that satisfies SI.

Since both of the above statements apply to all committed transactions1 in the database glob-
ally, the database is also running under SI globally. �

1Aborted transactions cannot cause any visible changes, and as such, we can safely exclude them from consid-
eration.
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Normally, the 2PC participants are notified of the global decision after the transaction has
been successfully committed at the coordinator side. If the coordinator fails to commit for any
reason, the transaction can be safely aborted. In CGSI, the global decision and the coordinator
commit do not necessarily happen at the same time. This might actually lead to a deadlock
when two sites want to commit two different global transactions, and each site is the coordinator
of one while being the participant of the other. To break up this deadlock, when the global
commit decision is made, the coordinator sends a notify commit decision message carrying the
transaction’s global commit timestamp. A separate global commit message is sent once the
transaction has actually been committed, after which the participants can insert the transaction
in their own PreparedQueue. However, in the presence of a separate deadlock detection system,
the notify commit decision message is no longer necessary, and can be safely removed.

A disadvantage of the above approach is that it effectively prolongs the duration of the “pre-
pared” state. While in this state, transactions typically keep holding the locks, and no other
transactions can acquire any conflicting locks. To overcome this, we also support an “Optimistic
Commit” or opt-commit mode, where the coordinator sends global commit message immedi-
ately after the global decision has been made without waiting for the actual commit at the co-
ordinator’s side. On some preliminary tests, we found that the opt-commit mode increases the
throughput significantly across the board, so we always activate this mode for all our experi-
ments. In the event that the coordinator fails to commit, we employ the same error handling
mechanism as when a participant fails to commit; thus, a different action is not required. In
opt-commit mode, the coordinator must durably log the global commit decision separately from
the actual commit operation.

Algorithm 4.1 Commit Thread running on all sites
1: procedure COMMITTHREADMAIN(a, b)
2: pt← the root of PreparedQueue
3: if pt.ready to commit then
4: Commit pt into database
5: Update LastCommittedGCT to gct of pt
6: Remove pt from PreparedQueue
7: if this site is the coordinator for pt then
8: Inform client that pt has been committed
9: end if

10: end if
11: end procedure
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4.2 Session Guarantee

In a single-site system, when a client starts a new transaction, the snapshot captures the state
of the database up to the last committed transaction. In a decentralized autonomous, multi-site
system, each site may not always be fully-synchronized with other sites. The CGSI protocol
allows some degree of delay between participating sites. Because a client is notified of the
transaction commit right after the coordinator has committed the transaction, it is possible that
some of the participating sites have not yet processed the commit, as illustrated in Figure 4.1.
First, the client asks coordi, say site s, to commit Ti. coordi initiates the 2PC, and once it
has received positive acknowledgement from all participants, proceeds to issue a global commit
decision, commits T s

i locally, and reports the outcome to the client. The client, satisfied that Ti
has been committed, may initiates a new transaction Tj . If the client, which is free to contact
another site different from the last one, contacts site t, it is possible that site t might not have
committed Ti yet, e.g., due to network latency or delays in thread scheduling. It would then
appear to the client that Ti has never been committed, despite the positive commit result received
from coordi.

Figure 4.1: Transaction Inversion
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This behavior is not unique to CGSI; it has been identified in other lazy systems as a trans-
action inversion [14]. The opt-commit mode reduces the chance of a transaction inversion but it
does not completely eliminate it. To avoid transaction inversions, CGSI offers session guaran-
tees, based on the notion of minimum visible timestamp (MV T ). Simply, a client transaction Tj
can request to see all updates made by all transactions {Ti|gct(Ti) ≺MV T}.

At the server side, enforcing session guarantees using MV T is straightforward. As shown
in Algorithm 4.1, the Committer thread updates LastCommittedGCT every time it commits
a transaction. The MV T of the oncoming transaction Tj is checked and compared against
LastCommittedGCT. If LastCommittedGCT ≺ MV T , then Tj is inserted into a prior-
ity queue of waiting transactions called WaitingQueue. The WaitingQueue is ordered by the
MV T requested by the client, such that the transaction at the root of the queue has the oldest
MV T . A separate thread (which can be the Committer thread) will inspect WaitingQueue peri-
odically to see if LastCommittedGCT is greater than or equal to the oldest MV T . If so, the
transaction at the root of WaitingQueue can be dequeued and processed for execution. The full
algorithm to decide whether Tj needs to be blocked is shown in Algorithm 4.2.

Algorithm 4.2 Enforcing Session Guarantee at Site t
1: procedure CHECKSESSIONGUARANTEE(Tj,MV T )
2: if MV T � LastCommittedGCT then
3: return true
4: end if
5: if event clockt ≤MV T then
6: Update event clock with that in MVT
7: if PreparedQueue is empty then
8: LastCommittedGCT ←MVT
9: return true

10: end if
11: end if
12: Insert Tj into WaitingQueue tagged with MVT
13: return false
14: end procedure

Note that the event clock is updated byMV T in Algorithm 4.2. A client may contact any site
to initiate a transaction. Thus, a global commit timestamp, say, gct(Ti), issued at site s needs to
be valid at some other site t. This is needed even when site t was not participating in Ti. When
a site in the system communicates its event clock in 2PC messages with another site, they will
be synchronized with each other. Depending on the relative frequency of transactions, site s’
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event clocks may differ greatly from event clockt at site t. To prevent a client specifying MV T
issued by site s from waiting at site t, CGSI performs the following actions:

1. Each site periodically broadcasts their event clock to the other site. This can easily be
piggybacked with the heartbeat signal used to detect a lost connection and/or server crash.

2. Treats the MV T as synchronization advice to the other site. When site t receives an
MV T with commit timestamp component greater than event clockt, site t updates its
event clockt to that value.

Proposition 4.5 For some value β, if site s finds that event clocks < β, setting event clocks =
β will ensure that a transaction Tk can have commit tstamp(Tk) ≤ β only if:

1. Tk has been committed and is no longer in the PreparedQueue as of then, or

2. Tk is still in the PreparedQueue with ready to commit flag on, or

3. Tk is in the “prepared” state as of then and s 6= coordk.

The updating of event clockt with MV T allows synchronization between sites without direct
communication between them. A consequence of Proposition 4.5 is that if site s uses MV T
of Tj to update event clocks, Tj will never have to wait for any transaction Tk that does not
fall into one of those categories since commit tstamp(Tk) > MV T assuming Tk eventually
does commit. This behaviour is safe because then Tk can only either be an active transaction
or a prepared transaction under site s’s coordination. In either case, the client could not have
requested Tj to see Tk’s updates, simply because commit tstamp(Tk) has not been assigned yet
and MV T of Tj cannot possibly refer to it. Note that if s 6= coordk and Tk has been prepared,
there is a slight chance that coordk had decided to globally commit Tk and the global commit
carrying commit tstamp(Tk) is just in transit.

A final note for Algorithm 4.2 is that Tj may also immediately proceed if the PreparedQueue
is found to be empty. We can then treat it as if the transaction Ti with gct(Ti) = MV T had
been committed at site t because we have allowed Tj which depends on Ti to execute. Hence,
we update LastCommittedGCT appropriately.
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Chapter 5

Replication by Log Merging

In this chapter, we describe how updates of committed transactions at the primary sites that hold
the partitioned database are captured in the database logs. We then describe an algorithm for
merging the updates from these database logs of primary sites to generate a single stream of
updates that is consistent with the global SI order over the partitioned primary database sites.
We use a physical log-based approach for maintaining replicas, where the log information about
the transactions are transferred over to the replicas. PostgreSQL employs a Write-Ahead Log
(WAL), which we describe next.

5.1 PostgreSQL Write-Ahead Logging

PostgreSQL operates under the Write-Ahead Logging rule and uses a redo log to ensure durabil-
ity of transactions in the event of failure. Log records can only be appended to the end of the log,
which represents a valid sequential execution of operations. In general, it is not safe to replay log
records out of order, even if they concern different transactions. This comes as a consequence
of the tight coupling with the physical database layout. For instance, a tuple deletion operation
from Ti might free up space that can be used to store a new tuple created by Tj . Reversing the
order of the two would result in the new tuple of Tj being freed by Ti.

While logically the log is a stream of records, they are physically stored in blocks. A block
may contain more than one record, and one record is allowed to span multiple blocks. Every
16MB of blocks are organized into one log segment which is represented as a file on the filesys-
tem. We utilize the hot standby feature introduced in PostgreSQL 9.0 that allows log records to
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be transferred as soon as they are generated. Effectively, this enables the replicas to be main-
tained lazily and with little delay. Prior to PostgreSQL 9.0, one could only transfer a full log
segment, meaning that the first log record written into a segment may have to wait for up to
16MB worth of log records to be generated before it gets a chance to be propagated, potentially
causing significant delay to processing client transactions at the secondaries.

5.2 Merging Log Streams from Multiple Masters

The straightforward solution to replicate a partitioned database is to designate a set of replicas for
each partition, so that each replica hosts a copy of one partition only. Running analytical or multi-
join read-only queries involving multiple partitions, however, may incur significant overhead in
terms of coordination and intermediate results communication between the replicas. We propose
a novel log stream merging solution to maintain replicas of multiple partitions under one database
instance per secondary site, so that queries involving these partitions can be serviced locally
without the need for distributed transactions. Our current solution merges log streams from all
masters but it can also be used to merge log streams selectively from only a subset of them.

We design our solution where each partition hosts a distinct set of tables meaning that no
table is in more than one partition. This does not mean that our solution is restricted to partitioned
tables. PostgreSQL supports a basic partitioning scheme to treat a set of tables as a group [38].
Queries and updates can be executed directly on one specific table or on the whole group. Using
this facility, we can still partition a “table” (which is actually a group in this scheme) while
enforcing one responsible master for each table rule.

Our solution merges multiple log streams into one single unified stream, as shown in Figure
5.1. The master servers, which process update transactions, generate one log stream per server.
The log streams are then transferred to the log merger component for merging. PostgreSQL
already has a messaging protocol in place to ship log records, but we chose to use our own log
transfer protocol for simplicity and flexibility reasons.

At the heart of the system is the log merger process, which reads log streams from all master
servers and merges them into a unified stream. It consists of three main modules with distinct
responsibility. The first module, the log fetcher, continuously fetches log records with the help
of the CGSI Agent present at each master server. Then, the multiple log streams are fed into
the log transformer to be processed, reordered, and merged into the unified stream. The unified
stream is then durably written to the local disk. Finally, the log sender module reads the unified
stream from the disk, and sends it over to the replica. As the consumer of the unified stream is a
PostgreSQL instance, the log sender module implements PostgreSQL’s log shipping protocol.
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Figure 5.1: Log Merger Modules

Each replica to which the unified stream of updates is to be shipped is a PostgreSQL instance
running in hot standby mode. Each replica connects to the log merger component by spawning
a WAL receiver to grab log records, and a Startup process to replay log records as they become
available. The Startup process is also involved in initial database recovery, by replaying log
records from the last successful checkpoint. As we will discuss throughout this section, this
Startup process is central to the progress of the replica in keeping up with the primaries, because
the updates are installed by replaying log records. Each replica also spawns a CGSI agent to pro-
cess read-only transactions from the client, and to enforce session guarantee, which we discuss
later.

We have also considered the option where a log merger exists at each replica, thus each
replica can fetch and merge logs independently. While this is possible, each replica will then
have to dedicate a portion of its computing resource for log merging, thereby reducing the re-
maining capacity available to service read-only queries. Furthermore, as each replica needs to
fetch complete log records from all master servers, the bandwidth requirement is greater than if
only the unified stream is pushed to the replicas (the unified stream contains less records than
the sum of the original streams, due to reasons explained in Section 5.2.2). As such, we did not
implement this variant as we expect it to be less scalable.

Our log merging solution has the following characteristics. First, replicas can replay the uni-
fied stream successfully as if it came from a single master. Second, we ensure that the replayed
log records will not violate global SI snapshot consistency. Finally, we provide session guar-
antee such that subsequent transactions submitted by the same client see at least the preceeding
transaction’s effects.
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5.2.1 Forming A Unified Stream

The log streams are processed in round robin fashion. We take one record from a stream, process
the record and then proceed with the next stream. If a stream does not have any records available,
the stream is temporarily marked unavailable. Unavailable streams are skipped for processing
for a period of 1 second before they are retried.

Not all log records from the source stream will appear at the unified stream. Log records
pertaining to distributed transactions are present in multiple streams, but the unified stream will
contain only one combined record. Also, log records related to database checkpoints and commit
logs (CLOG) from the source stream cannot be directly placed in the unified stream because the
unified stream will be moving at a different pace than any of the source streams.

Each database item will be assigned a unique object identifier (OId) when it is created. The
OId is heavily used in the log records to identify the item the log record applies to. Now, suppose
that we have two master servers, each hosting one table each. It is likely that if we start each
master from fresh, both tables will end up with the same OId. Thus, when we process a record
specifying that OId, we need to figure out which table it actually refers to. One solution would
be to use the source stream to distinguish them. While that works, we use a simpler method to
solve this problem. Instead of initializing each master independently, we initialize all of them
from a super image. The super image contains the union of tables, indexes, and other database
items from all master servers, but they are all empty. After a master is initialized from this super
image, it will be populated with only the part of data it is responsible for. The replica should also
be initialized from the super image. This way, we entirely avoid OId conflicts, and in fact, we
can simply leave the OIds as it is since the replicas will have the same understanding of what it
refers to.

Transaction identifiers, called XId in short, is another important value which is ubiquitous
throughout the log records. Each record has an XId field indicating which transaction performed
an operation on it. Additional XId fields are also present in some log record types, for example
to specify when an unused disk block can be reused. Whatever the use case, the value of any XId
fields must remain valid and correct after the merging. To avoid ambiguity, we will use the term
ReplicaXId when specifically referring to the XId used in the unified stream. For each master
server, we maintain an XIdMap containing the mapping between an XId in the source stream to
its ReplicaXId. If an XId is found in the map, it will be modified into the mapped ReplicaXId;
otherwise, the XId Manager issues a new ReplicaXId and creates the appropriate entry in the
master’s XIdMap. XIds of distributed transactions are treated specially, and we will discuss this
separately.

To protect against log corruption, each log record in the stream has a CRC value and a back
record pointer. Since the log transformer may modify values in the log record, and it can also
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reorder records, these two values are likely to be invalidated. Hence, the log transformer needs
to recompute the correct values just before placing the record in the unified stream.

5.2.2 Ensuring Snapshot Consistency

As the CGSI and the local concurrency control at each master server have handled the snapshot
consistency aspects among update transactions, the log transformer does not have to perform any
additional checks, though it still needs to ensure that the commit records from various streams
are replayed in the correct commit order. Recall that CGSI assigns a global commit timestamp
to each transaction, and the transactions are committed in order of their timestamps. Therefore,
the log transformer simply follows the same order for the unified stream.

A distributed transaction may have prepare, abort, abort prepared, and commit prepared
records in the master log stream. In the unified stream, however, all distributed transactions will
be represented as local transactions, i.e. only abort and commit records will be present. Post-
greSQL commit prepared and abort prepared records are actually supersets of the corresponding
commit and abort records.

PostgreSQL does not identify a transaction as a distributed transaction until prepare time.
As such, the only identifying information about a transaction before the prepare record is its
XId. This actually poses a complication as follows. Let us say that log transformer reads a log
record mentioning an XId χ. Upon consultation with the stream’s XIdMap, the system finds it
has never seen χ before so then the XId Manager issues a ReplicaXId χ′, and maps χ ⇒ χ′ in
XIdMap. Now, imagine that the transaction referred by χ is a distributed transaction involving
another master server, and the XId assigned by the other server is ω. When the log transformer
first sees ω, it does not know its correlation with χ; to the log transformer it just appears to be
yet another transaction. If χ and ω are two different XIds issued by different master servers, but
they refer to the same distributed transaction, they must be mapped to the same ReplicaXId.

To overcome this problem, we introduce a new AssignGXid record type which will be in-
serted whenever PostgreSQL assigns a new XId for a distributed transaction. As XId assignment
is mandatory before any log record related to a transaction Tj can be written, AssignGXid is guar-
anteed to be the first record seen that mentions Tj . The AssignGXid carries the global transaction
Id, enabling correlation between different XIds of the same distributed transaction from different
log streams.

Algorithm 5.3 depicts how the log transformer handles transactional log records1. First, the
record type is examined. If the type is not one we are interested in, the record will simply be

1We omit handling details of other record types as they do not affect the snapshot consistency.
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Algorithm 5.3 Log Transformer Algorithm to Handle Transactional Log Records
1: procedure TRANSFORMTXNLOGRECORD(master, record)
2: if record.type is ASSIGN GXID then
3: if we haven‘t seen this transaction before then
4: Initialize data structure gXact for the transaction
5: Get a new replicaXid from XIdManager
6: Store gXact in the global mapping GXIdMap
7: end if
8: Store mapping between original record.xid to replicaXid
9: else if record.type is COMMIT PREPARED or COMMIT then

10: Get transaction data gXact from GXIdMap
11: Combine commit record with previously seen commit records of gXact
12: if this is the last commit record for gXact then
13: Update gct(gXact) from the record
14: Insert gXact into CommittedQueue
15: end if
16: else if record.type is ABORT PREPARED or ABORT then
17: Get transaction data gXact from GXIdMap
18: if gXact is NULL then
19: Place abort record in the unified stream
20: else if this is the last abort record for gXact then
21: Place abort record in the unified stream
22: Remove gXact from the GXIdMap
23: end if
24: else . Other record types
25: Place record in the unified stream
26: end if
27: end procedure
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Algorithm 5.4 Log Transformer Algorithm to Flush Committed Queue
1: procedure FLUSHCOMMITTEDQUEUE

2: oldestMaster ← the master with the oldest state
3: while CommittedQueue not empty do
4: gXact← the root of CommittedQueue
5: if oldestMaster.state ≺ gct of gXact then
6: break
7: end if
8: Place the combined commit record of gXact in unified stream
9: Remove gXact from CommittedQueue and GXIdMap

10: end while
11: end procedure

placed in the stream (line 24-25). If it is the AssignGXid record, we will take note of the global
transaction Id and its XId equivalent (line 8). If it is the first time we see that global transaction
Id, we also initialize its data structure (line 4-6).

We process commit and commit prepared records in the same way. After looking up the
global transaction Id in the map (line 10), we combine the data from new commit records with
any previously-seen commit records for this transaction (line 11). This is necessary because each
commit record contains actions related to only one particular site but the commit record in the
unified stream must contain the aggregate of all these data. We also count the number of commit
records we have seen for this transaction, and if this record is the last one, we update the global
commit timestamp of the transaction and place it in the CommittedQueue (line 13-14).

A distributed transaction abort can produce either an abort or an abort prepared record de-
pending on whether the transaction had entered the “prepared” state. There is no need to combine
abort records because the purpose of an abort operation is to rollback previous changes. It is also
possible that an abort record is present without AssignGXid, for instance if it is a local transac-
tion. In such a case, we can immediately place the record in the stream (line 19). Otherwise, we
delay placing the record until it is the last abort record of the transaction (line 21-22). Note that
in all cases, placing the record in the unified stream also includes replacing all XId references
with the appropriate ReplicaXIds, recomputing CRC, and fixing the back record pointer.

The transactions queued into CommittedQueue are placed in the unified stream using
Algorithm 5.4. The log transformer can place the commit record of a transaction only when no
master server can possibly coordinate a transaction with a lower global commit timestamp (line 5-
6 stops the algorithm if this condition is detected). To aid the log transformer in determining this,
we add cgsiState field into commit, abort, commit prepared, and abort prepared log records.
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This field captures CGSI state information, such as the event clock and lowest global commit
timestamp in the commitQueue at the time the log record was written. We deduce whether a
lower global commit timestamp is possible by applying Proposition 4.5 to the CGSI states of all
master servers.

Theorem 5.1 Given that the secondary enforces SI locally, a read-only transaction Ti running
at the secondary will execute under global SI.

Proof Per Theorem 4.4, the primaries are producing a sequence of operations that are consistent
with global SI. Also, the log merger generates commit records via the same deterministic total
order used to enforce C3 at the primaries. Because updates of a transaction are visible only after
the transaction commits, the snapshot Si seen by a read-only transaction Ti at the secondary will
always correspond to a particular global snapshot of the system, such that there exists some Tj
where the effects of all transactions Tk � Tj are visible to Ti and the effects of all transactions
Tk � Tj are not visible to Ti. This is equivalent to executing Ti at the primaries right after Tj has
been committed, and since Ti is a read-only transaction, it does not have any write-write conflict.
Thus, in the absence of deadlock, Ti would have always been successfully committed had it run
at the primaries, and Ti has to be consistent with global SI. �

5.2.3 Scheduling Read-Only Transactions and Updates

While read-only transactions never conflict with update transactions under SI, read-only trans-
actions may interfere with update log installation at a secondary. The first type of interference is
when an update will cause a read-only transaction to lose its consistent snapshot, such as when
the log record wants to drop a table the read-only transaction is using. We can abort the read-
only transaction, but doing so may significantly increase the occurrence of read-only transaction
aborts. We can also block the update installation but doing so for a prolonged period of time
may hamper the progress of update installation, ultimately causing excessive delays incurred by
future read-only transactions to satisfy session guarantees. There is a fine balance between the
two, and the best combination may very well be workload dependent. The second type of in-
terference is caused by resource contention. The higher the number of read-only transactions
running at a secondary, the more resources they will consume, and consequently, less resources
will be available to the Startup process to install updates. Again, we want to balance the number
of read-only transactions served with the update replay progress.

We now discuss several approaches we explored to deal with these possible interferences.
First, we activate the PostgreSQL “vacuum deferral” and “maximum streaming delay” features.
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The former avoid the first type of interference by postponing in-place vacuum while the latter
imposes a limit on how long a read-only transaction can block an update replay, after which the
read-only transaction will be aborted.

Second, we consider implementing an admission control policy based on the difference be-
tween the last received log record and the last record successfully replayed (the replay lag). A
growing replay lag is a sign that the secondary is unable to keep up with the update stream and
is unsustainable in the long run. Whenever the replay lag exceeds a threshold, the secondary
will temporarily cease servicing read-only transactions with the hope that the system will be less
loaded and be able to catch up.

Third, we also look into thread scheduling to boost the progress of the Startup process. Post-
greSQL creates one worker process for every connected client session. When the secondary is
serving a lot of clients, there will be many more worker processes competing against the Startup
process. To overcome this, we isolate the Startup process to one processor core in the system,
while ensuring that all worker processes are not scheduled to use the same processor core. The
goal is to ensure that for most of the time, the Startup process will always have an idle core to
run on.

Based on our preliminary experiments, a combination of the PostgreSQL “vacuum deferral”
and “maximum streaming delay” features with the thread scheduling produce the most consistent
results. We found that setting the appropriate replay lag threshold for admission control is not a
straightforward issue, and it might benefit from a feedback-loop based control system. Therefore,
for all experiments in this paper, we only use the first and third approaches, and we defer the
exploration of an admission control policy to future work.

5.2.4 Providing Session Guarantee

To provide session guarantee at the replica, we use a similar mechanism as the one used at the
primaries. The biggest difference is that unlike the primaries, the replica does not have a Com-
mitter thread that updates the LastCommittedGCT value. Instead, LastCommittedGCT is
updated by the Startup process every time it replays a commit using the global commit timestamp
included in the log record. Unlike the master, the replicas need not synchronize event clocks as
the only authoritative event clock is the one reflected in the unified stream.

5.2.5 Fault Tolerance

First, distributed transaction failure at the primaries can be handled in accordance with the provi-
sions of the 2PC protocol [5]. When the primary goes down, it is possible that some log records
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have not been transferred to the log merger. Let us say Ti is the last transaction committed at the
failed primary according to the log stream received by the log merger. It is possible there is some
committed transaction Tj � Ti at the failed primary, but Tj’s commit record has not been sent
to the log merger. To avoid inconsistencies, the log merger cannot generate commit record for
any Tk having gct(Tk) greater than gct(Ti). The secondaries can still continue serving read-only
transactions, as long as it does not require MV T that is greater than gct(Ti). When the failed
primary recovers, the Startup process at that primary will first bring the primary to a consistent
database state by replaying log records from the last successful checkpoint and resolving any
unfinished 2PC. Any actions taken by the Startup process during the recovery will result in ad-
ditional records describing the action being written into the log, in particular the resolution of
any unfinished 2PC. Once this completes, the database is back in a consistent state, and the log
merger can reconnect back to the primary. Since the log merger keeps track of the last success-
fully received record from each primary (primary markers), the log merger simply requests the
just-recovered primary to fetch log records starting from that point onwards, and then the log
merging proceeds as normal. The log merger also resumes sending the unified log stream to the
secondaries, and the secondaries continues replaying records as well. Finally, the CGSI agent
reconnects itself with its peers, and the primaries can resume servicing update transactions. At
this point, the system as whole is back to being fully operational. Optionally, to avoid prolonged
blocking of the log merger when a primary fails, it might also be desirable to setup a hot-standby
for each primary, either using the standard PostgreSQL feature [37] or other approaches (e.g.
[32]). We would like to emphasize that this is strictly optional, and our system still maintains its
consistency regardless.

Second, the secondaries can also fail. However, as no update transactions can happen at the
secondaries, the impact is minimal. In the worst case, the client will simply have to find another
secondary and resubmit the read-only transaction. To recover the failed secondary, one can replay
the log from the last log merger checkpoint, or to replicate from another secondary. Once the
secondary catches up with the latest record in the unified log stream, it can start serving read-only
transactions again. If we choose to recover the secondary by replaying the logs straight from the
log merger, there is no extra implementation necessary, as that is precisely what PostgreSQL
Startup process does during database startup.

Finally, the log merger process can fail as well. There is a potential failure window between
reading the log records and propagating them to the secondaries. Again, since the log merger
keeps track of the primary markers, the log merger can simply resume the merging staring from
the primary markers onwards. Alternatively, log merger failures can also be handled by running
multiple log merger processes that each read and process the log records in parallel with primary
markers used to maintain records in case one of the log merger processes fails.
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5.2.6 Parallelizing Log Merging

It is possible to enhance our system to have multiple log mergers, each one responsible to merge
a subset of the tables. This is useful for both scalability and fault tolerance. We will briefly
discuss how to modify our system to support this, and the impacts of such modification.

As has been mentioned in Section 5.2.1, we initialize the primaries and secondaries from
the same super image containing the superset of all tables and indexes. As a result, each of
the tables and indexes in the database will have a unique object Id (OId) in the system. Each
PostgreSQL log record typically describes an action applied to an object that is identified by its
OId. Therefore, we can enhance the log merger so that it only processes log records pertaining
to some OId values. Effectively, that log merger will only process updates related to some subset
of database tables and indexes. Consequently, the generated unified stream will contain only
records related to those tables and indexes, and the secondaries will contain only items in those
tables and indexes as well. What this means is, if a log merger processes updates for a table then
it must also process updates for all of its indexes; otherwise, the index will not be available at the
secondaries.

Next, we designate those secondaries to answer read-only transactions that touch those tables
only, freeing up other secondaries to service other transaction types. With this setting, we can
potentially have one dedicated log merger and a dedicated set of secondaries to answer a partic-
ular transaction type. More popular transaction types can be allocated to more secondaries, and
vice versa. Finally, a client no longer submits the request to a secondary, but rather to a router
that will choose the appropriate secondary instance to answer the client’s transaction type.

5.2.7 Limitations

Some specific features of PostgreSQL are currently not supported with the log streams merging
solution. While we strive to close all the gaps, PostgreSQL is a feature-rich, evolving system.
Nevertheless, the limitations presented here do not prevent the running of workloads.

First, the log streams merger can only keep a limited number of (XId⇒ReplicaXId) mapping
per primary. In PostgreSQL, there can be over a billion XIds, and keeping the full mapping is
prohibitively expensive. Currently, we limit the system to track only the mapping of the last
10,000 XIds. However, this limit can be easily adjusted to fit the characteristics of the update
workload. Typically, workloads containing long-running update transactions will necessitate a
higher limit. We, however, found that this limit is more thcan sufficient to support the TPC-W
workload.
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Whenever the log streams merger finds an XId that is older than the oldest in the XIdMap,
the XId is replaced by the FrozenXId. The FrozenXId is a special value used by PostgreSQL to
refer to transactions that happened “a long time ago”, at least a billion XIds old from the last
generated XId. Effectively, our approach reduces the window before an XId is frozen, but this is
not a problem as long as no older transaction is still running at that time.

Second, we turned off the full page write feature of PostgreSQL. This feature protects against
data corruption due to partially-written blocks. Ordinarily, only the incremental update to a block
is logged. With the feature activated, the whole updated disk block will be logged on the first
update to the block after a checkpoint. As of now, we do not support transformation of a whole
block, although this is a possible future enhancement of our system.

To support block level transformation, the log merger needs to inspect the content of the
whole block, and then converts all XId values to the corresponding ReplicaXId values. In some
ways, this may degrade the performance, as the log merger needs to process and output more
data, and consequently, the secondaries needs to replay more data as well. In any case, there
are already file systems and hardware solutions that can prevent partial disk writes, mitigating
possible negative effect.
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Chapter 6

Experimental Results

In this section, we present results of experiments conducted to study the effectiveness of the
techniques proposed in Chapters 4 and 5. We begin with a description of the workloads and
hardware configuration used in our experiments.

6.1 Experiment Setup

6.1.1 TPC-W Workload

The TPC-W workload models an online book store serving customers’ browsing, ordering, and
administrative functions. We use the TPC-W workload with Shopping (80% read-only and 20%
update) and Ordering (50 % read-only and 50% update) transaction mixes. The initial database
contains 1,000,000 items and 100,000 customers, resulting in a physical database size of approx-
imately 1GB. We used the default TPC-W values for the client think time and session time.

As TPC-W does not specify a particular partitioning scheme to follow, we partition the
database with the goal to balance transactional load on each server. The read-only COUNTRY
table is fully-replicated on all master servers. Each of the ITEMS, CUSTOMER, ADDRESS,
SHOPPING CART, and SHOPPING CART LINE tables are split into equal-sized partitions,
and then spread over the master servers. Thus, each master server will have a chunk of each of
those five tables. The ORDER, ORDER LINE, and CC XACTS tables are not split; they are
hosted under only one partition so that the system can perform order processing locally.

A significant proportion of TPC-W update transactions access multiple tables at once. Left as
it is, nearly all update transactions will be distributed. With such an unrealistic high percentage
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of distributed transactions, the protocol overhead will overshadow any increased concurrency
benefit of the additional server. To better control the ratio of distributed transactions, we adapt the
workload to favor selecting items from the same partition. Also, we reduce address uniqueness
check to within a single partition instead of across all partitions. The resulting workload allows
us to vary the ratio of distributed transactions from 15% upwards.

In addition to the standard TPC-W workloads, we also use a version with “lighter” read-
only transactions, which we call the “TPC-W*” workload. In standard TPC-W, some read-only
transaction types are considerably more work-intensive than others, most notably the Search
Result, Best Sellers, and New Products web interactions owing to the table scans and multi-joins
involved in them. In our custom “TPC-W*” workload, those transactions are replaced with their
“lighter” versions that eliminate the table scans and multi joins so that they are more comparable
with the other read-only transaction types. This is also to avoid bias in the performance evaluation
if one particular run of the experiment executes many more work-intensive read-only transaction
types than the other runs, or vice versa.

6.1.2 TPC-C Workload

The TPC-C workload models store order processing across a number of warehouses. We use
TPC-C because the workload is easily partitionable where the majority of the transactions con-
cern only one warehouse, allowing it to scale to higher number of servers. Transactions involving
more than one warehouses (e.g. ordering an item or processing payment from a different ware-
house) are natural candidates for distributed transactions.

We set up our initial database with 12 warehouses, resulting in an initial database size of ap-
proximately 1.6GB. We partition the warehouses such that each partition hosts the same number
of warehouses, and each warehouse is hosted by exactly one partition. All of the TPC-C tables
are split into equal partitions. All partitions contain the same tables but each only store the data
pertaining to its respective set of warehouses.

In TPC-C, the remote warehouse probability value specifies the chance that a transaction in-
volves more than one warehouse. However, since a partition may host more than one warehouse,
it means the more partitions you create, the higher the distributed update transactions ratio you
will have. This puts a bias against the configuration with more partitions because it will incur
more overhead for distributed transactions. To eliminate this bias, we tweak the workload so
that if the transactions involve more than one warehouse, at least two of the warehouses must be
hosted by two different partitions. Effectively, the remote warehouse probability now refers to
the probability that an update transaction is a distributed transaction.
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The standard TPC-C workload is update intensive, with 92% of the transactions being update
transactions (we will thus name this TPC-C 8/92). We can use this 8/92 mix to demonstrate the
scalability of the primaries, but we will not be able to show the scalability of the secondaries
because they will not receive enough load. To demonstrate the scalability of the secondaries, we
will use a customized version called TPC-C* that has a ratio of 70% read-only to 30% update
transactions. There are three types of update transactions, and their mix relative to each other
remains unchanged. Among the two read-only transaction types, we increase only the number of
the relatively “lighter” OrderStatus transaction because the “heavier” StockLevel transaction is
not intended to be executed frequently. In fact, the StockLevel transaction has lower consistency
requirement where reads in a transaction do not have to be repeatable, i.e. transaction Ti may at
first perform ri[xj] and then later ri[xk], as long as C(Tk) ≺ ri[xk] ∧ Tj ≺ Tk. This means that
transaction Ti does not necessarily see the same snapshot Si throughout its life; it is allowed to
see a newer snapshot S ′

i on subsequent statements. In PostgreSQL, this is the “read committed”
transaction isolation level and we use it specifically for StockLevel transactions only.

While TPC-W picks transaction types based on a state machine, TPC-C picks them randomly.
In preliminary experiments, this random picking proves to be problematic because it may con-
siderably change the actual output of the mix. We found that TPC-C update transactions have
significant contention with each other, and they are more likely to be aborted than the read-only
transactions. Especially when the primaries have saturated, a 70/30 mix may shift closer to an
80/20, and as such the results will be difficult to compare with those that are really 70/30. We
will show and discuss this briefly later. To overcome this, we enforce transaction retries for
TPC-C and TPC-C* such that a transaction – be it update or read-only – will be retried until it is
successful. This ensures that the mix will be maintained regardless of the abort rate.

6.1.3 Hardware Configuration

We ran the experiments on a cluster of 16 servers (machines), each equipped with two dual-core
2.4GHz processors, and 8GB of RAM. Each machine stores its data on its local 160GB hard
drive running at 10000 RPM. The machines are connected over a router providing dedicated
high-speed networking. Each of the primaries and secondaries is hosted on a different machine.
The log merger is also hosted on a dedicated machine. All of the clients are hosted on another
machine, separate from the primaries, the secondaries, and the log merger. Each data point in
our experiment is averaged over 5 runs, with computed 95% confidence intervals marked by the
error bars.
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Figure 6.1: 1P/2P/4P/8P Throughput on TPC-W Shopping (80/20)

6.2 Primary Servers Performance

First, we would like to find out the performance of our global SI protocol. We ran the TPC-W
Ordering and Shopping workloads, and TPC-C 8/92, while varying the number of clients in the
system and the number of partitions (we used 1, 2, 4, and 8 partitions for TPC-W; we used 1, 2,
4, and 12 partitions for TPC-C). We will refer to a system with x partitions as xP (e.g. 4P is a
system with 4 partitions). Each primary will host exactly one partition. For the TPC-W Ordering
workload, we set the ratio of distributed update transactions to 30%; for the TPC-W Shopping
workload, we used a ratio of 20% distributed update transactions; for the TPC-C 8/92, we used
the default distributed update transactions ratio. Distributed transactions execute at multiple
primary sites based on the data items referenced in each transaction that is part of the TPC-W
workload. As we want to focus on the primaries’ performance, the clients do not send read-only
transactions and simply assume that the read-only transactions are successful and start the think
time again.

We can see in Figure 6.1 that using the TPC-W 80/20 workload, the 2P, 4P, and 8P systems
can produce nearly two, four, and eight times the throughput of the 1P system respectively.
The average response time observed in Figure 6.2 shows that the 2P, 4P, and 8P systems can
handle 67%, 200%, and 400% more clients respectively for the same response time as the 1P
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Figure 6.2: 1P/2P/4P/8P Update Response Time on TPC-W Shopping (80/20)

system. The same trend for throughput and response time can also be seen for the TPC-C 8/92
results in Figures 6.5 and 6.6. In particular in Figure 6.5, we can see that CGSI scales really
well with partitioned workloads like TPC-C. While we plot all response time data in Figures
6.2 and 6.6, in practice, a response time above 3s may be undesirable, and we include those for
completeness only. Doubling the number of primaries does not double the throughput, but this is
expected because there is some extra overhead to coordinate transactions among servers. As the
number of servers increases, the system administrator can minimize this overhead by designing
a partitioning scheme requiring the least number of servers to complete a transaction. Hotspots
must also be avoided, although this may be difficult in some workloads. The fact that some of our
TPC-W tables are hosted in one partition also reduces performance gain in the 50/50 mix (Figures
6.3 and 6.4), where the proportion of update transactions touching those tables is considerably
higher, making them hotspots. Additionally, the ratio of distributed update transactions is also
higher in the 50/50 mix.
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Figure 6.3: 1P/2P/4P/8P Throughput on TPC-W Ordering (50/50)

6.3 Secondary Servers Performance

The secondaries have three roles in the system: serving read-only transactions, forwarding up-
date requests to the primaries, and acting as a backup for the primaries. Of the three, the first one
usually takes most of a secondary’s resources, especially with the standard TPC-W. The secon-
daries also need to replay updates from the primaries. Thus, to support a particular number of
clients, we expect we would need a higher number of secondaries than primaries. We will discuss
our findings on the TPC-W workload first, followed by the TPC-W* and TPC-C* workloads. As
has been mentioned, we do not use TPC-C 8/92 to evaluate the secondaries as it does not impose
enough load on the secondaries.

6.3.1 TPC-W Workload

We deployed the system varying the number of primaries and secondaries. We use the notation
xPyS to refer to a system with x primaries and y secondaries. Due to the noticeably more
work-intensive read-only transactions in TPC-W, we run the experiments only with the Ordering
(50/50) mix which has a better balanced workload between the read-only transactions and update
transactions. It is desirable that the primaries and secondaries are relatively equally loaded to
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Figure 6.4: 1P/2P/4P/8P Update Response Time on TPC-W Ordering (50/50)

demonstrate scalability. From our preliminary experiments with the Ordering workload, 125
clients exert a moderate load on one secondary so we use this ratio of clients per secondary
to scale up the workload while scaling up the number of secondary sites. Figure 6.7 shows
the throughput of multiple configurations of an xPyS system. The number of secondaries y
is proportional to the number of clients (e.g. we deployed 4 secondaries to serve 500 clients, 6
secondaries to serve 750 clients, etc). At 500 clients, we do not observe any significant difference
across all tested configurations. As we increase the load to 750 clients, the update response time
for 1PyS starts to shoot up, as can be seen in Figure 6.8. Further increasing the load to 1000
clients results in a significant jump of the update response time, but only a slight increase in
the read response time (Figure 6.9). From this observation, the single primary becomes the
bottleneck at about 1000 clients, limiting the overall system throughput.

This bottleneck is removed by adding another primary, resulting in a 2PyS system. Unlike
the 1PyS system, we do not observe the leveling out of performance after 750 clients although
the performance grows at a slower rate between 1000 and 1250 clients. Another important ob-
servation is that for the same value of y, the read response time of a 2PyS system is generally
higher than that of a 1PyS system. This is expected, because we need to merge log streams in the
2PyS system, and a distributed transaction cannot be replayed until its commit record appears in
both streams.
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Figure 6.5: 1P/2P/4P/12P Throughput on TPC-C 8/92

For the 4PyS configuration, the performance deviates from the 2PyS configuration starting
at around 1000 clients. This is because two primaries have sufficient capacity to service up to
1000 clients, so additional primaries do not help much with the throughput until there are more
than 1000 clients. The update response time of the 4PyS system is also lower than the 2PyS
system, most notably when the workload scales up to beyond 1000 clients. Additional primaries
also help lowering the read response time slightly, as evidenced by the difference in 2PyS and
4PyS curves in Figure 6.9. The less-loaded primaries in 4PyS are able to push log records faster
to the log merger, helping the log stream to arrive sooner at the secondaries, thus satisfying the
required session guarantee earlier and lowering the response time.

6.3.2 TPC-W* Workload

The relatively heavy read-only transactions in TPC-W cause the secondaries to be saturated
much earlier than the primaries. Figures 6.7, 6.8, and 6.9 suggest that it takes approximately 6
secondaries to saturate the single primary with TPC-W workload. To examine the xPyS system
performance with higher number of primaries, we switched to use the TPC-W* workload. Our
expectation is that with lighter read transactions, a secondary can support more transactions, thus
letting us examine the scalability of the system with more clients. For the TPC-W* experiments,
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Figure 6.6: 1P/2P/4P/12P Update Response Time on TPC-C 8/92

we assign 150 clients per secondary deployed in the system (e.g. we deployed 4 secondaries to
serve 600 clients, 6 secondaries to serve 900 clients, etc).

As shown in Figure 6.10, we can see that the 1PyS system still saturates at approximately 750
clients, and the single primary remains a bottleneck as indicated by the jump in update response
time in Figure 6.11. If we double the number of primaries – making it a 2PyS system – the
system now saturates at around 1200 clients, at which point the two primaries are becoming the
bottleneck. With the TPC-W* workload, the 2PyS system can support approximately 50% more
transactions than the 1PyS system.

When we double the number of primaries again to 4PyS, the system can support many more
transactions, although we were unable to record the peak throughput capacity of the 4PyS system
under TPC-W* workload due to the limited number of machines available in our experimental
cluster. It has been demonstrated in Figure 6.10, however, that at the very least the 4PyS system
could achieve double the throughput of the 1PyS system. It has to be noted that this is the lower
bound, as the 4PyS system is still not saturated at 1500 clients.

It is worthwhile to note that the results in Figure 6.12 further support the earlier observation
that in addition to lowering the update response time, adding primaries also lowers the read
response time. Thus, for some existing xPyS system, given the possibility to add one extra
server, the system administrator should carefully examine which one between a (x + 1)PyS and
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Figure 6.7: xPyS Throughput on TPC-W Ordering (50/50)

a xP(y + 1)S system provides greater benefit.

6.3.3 TPC-C* Workload

Similar to the TPC-W and TPC-W* experiments, we assign a set number of clients for each sec-
ondary in the TPC-C* experiments. First, we present our preliminary TPC-C* experiment which
led us to implement transaction retries. For this experiment, we found that a secondary can serve
800 clients with moderate load. In Figure 6.13, 4PyS shows only 10% improvement in through-
put over 2PyS. However, when we separate the throughput into read-only and update transaction
throughput, we see a different trend between 2PyS and 4PyS. The 2PyS update throughput peaks
around 4000, and adding more clients does not increase it any further. The 4PyS system keeps
going on, and at 6400 clients it produces 50% more update throughput than 2PyS. What hap-
pened was, at that point the 2PyS system failed almost half of the update transactions resulting
in only 20% of all transactions being update transaction. The 2PyS system then produced more
read-only transaction throughput than the 4PyS system for two reasons: (1) a read-only transac-
tion executing immediately after a failed update transaction is more likely to satisfy the session
guarantee as the secondary has more time to install the update, and (2) each secondary in 4PyS
has to work harder to install the extra 50% updates than 2PyS.

45



 0

 1000

 2000

 3000

 4000

 5000

 500  750  1000  1250

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Number of clients

1PyS Update Response Time
2PyS Update Response Time
4PyS Update Response Time

Figure 6.8: xPyS Update Response Time on TPC-W Ordering (50/50)

The remainder of the TPC-C* results were run using transaction retries. Retrying transactions
puts more stress on both primaries and secondaries, and we found that a secondary can then serve
500 clients with moderate load. Similar to our observations on TPC-W and TPC-W* workloads,
we can see in Figure 6.14 how on TPC-C* workload the single primary of 1PyS quickly becomes
the bottleneck, and adding additional primaries and secondaries allows the system to produce
more throughput. Past 3000 clients, the 2PyS is reaching saturation point and its throughput is
leveling out. The 4PyS still shows linear scalability past this point. Figure 6.15 further shows
the saturation point of the 1PyS and 2PyS primaries. We can also observe in Figure 6.16 how
the additional primaries of 4PyS lower the read response time by 50% compared to 2PyS when
the primaries of 2PyS are saturated at around 4000 clients. This observation confirms the earlier
findings from the TPC-W and TPC-W* experiments that adding primaries also helps lowering
the read response time.

6.3.4 Cost of Enforcing Session Guarantee at the Secondaries

We would like to examine the cost of enforcing session guarantee at the secondaries. We ran
the TPC-W* 50/50 workload again but without session guarantee at the secondaries. Without
session guarantee, the read-only transactions are executed immediately after being submitted to
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Figure 6.9: xPyS Read Response Time on TPC-W Ordering (50/50)

the system even when the update requested in the MV T has not been installed yet. For the
course of this discussion, we use the term “session guarantee” to specifically mean the session
guarantee applied to read-only transactions at the secondaries.

As can be seen in Figure 6.17, turning off session guarantee increases the overall peak
throughput for the 2PyS and 4PyS configurations by 6% and 8% respectively. We do not plot
the 1PyS throughput because there is no difference from when we use session guarantee. The
lack of increase in the 1PyS system is because the single primary is the sole contributor to the
performance bottleneck observed in Figure 6.10; removing session guarantee will not help this
in any way.

For the 2PyS and 4PyS system, turning off session guarantee reduces the read response time
to less than 200ms (Figure 6.19) while increasing the update response time slightly (Figure 6.18).
The reduction in the read response time compared to Figure 6.12 is due to the read-only trans-
actions not having to wait for the session guarantee to be satisfied. This is also indicative of the
propagation delay from producing the log at the primaries to getting the log replayed at the sec-
ondaries. Deploying additional primaries helps to reduce this delay, with a reduction of nearly
40% with the 4PyS system over the 2PyS system at 1500 clients. Since the clients are able to fin-
ish read-only transactions faster, the clients can also send more update transactions over the same
duration. Effectively, this places a higher load at the primaries while eliciting higher throughput

47



 0

 2000

 4000

 6000

 8000

 10000

 12000

 600  900  1200  1500

T
h

ro
u

g
h

p
u

t 
(t

x
n

s
/m

in
)

Number of clients

1PyS Throughput
2PyS Throughput
4PyS Throughput

Figure 6.10: xPyS Throughput on TPC-W* Ordering (50/50)

and at the same time increasing the update response time. The cost of enforcing session guar-
antee is noticeably smaller on the TPC-W* 80/20 workload mix, where the read response time
curves of xPyS systems with session guarantee being only slight above those without session
guarantee (Figure 6.20), up until the point where the system is reaching saturation.

We also ran the TPC-C* 70/30 workload again without session guarantee. The performance
comparison between with and without session guarantee is presented in Figures 6.21, 6.22, and
6.23. For TPC-C*, turning off session guarantee does not produce significant throughput dif-
ference until the system is nearing saturation, as experienced by 2PyS at 4000 clients (the 4PyS
curves are still indistinguishable at this point). This is different from TPC-W and TPC-W*
where the throughput curves start diverging early. The reason is that for TPC-C*, even with
session guarantee, read-only transactions do not need to wait that long, as evidenced from only a
slight increase to read response time in Figure 6.23. This shows that the cost of session guaran-
tee varies from workload to workload depending on factors such as transaction mix, transaction
profile, think time, data distribution, etc.

Across all experiments, we did not encounter the single log merger site to be a bottleneck.
With higher number of primaries, there may come a point where the log merger is unable to
fetch and transform the log records as fast as the records being created. One feasible solution is
to deploy multiple log mergers, as has been described in Section 5.2.6.
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Figure 6.11: xPyS Update Response Time on TPC-W* Ordering (50/50)
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Figure 6.12: xPyS Read Response Time on TPC-W* Ordering (50/50)
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Figure 6.13: xPyS Throughput on TPC-C* 70/30 Without Transaction Retries
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Figure 6.14: xPyS Throughput on TPC-C* 70/30 With Transaction Retries
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Figure 6.15: xPyS Update Response Time on TPC-C* 70/30 With Transaction Retries
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Figure 6.16: xPyS Read Response Time on TPC-C* 70/30 With Transaction Retries
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Figure 6.17: xPyS Throughput on TPC-W* Ordering (50/50), With and Without Read Session
Guarantee

 0

 1000

 2000

 3000

 4000

 5000

 600  900  1200  1500

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Number of clients

2PyS Update Response Time (Session Guarantee)
4PyS Update Response Time (Session Guarantee)

2PyS Update Response Time (No Session Guarantee)
4PyS Update Response Time (No Session Guarantee)

Figure 6.18: xPyS Update Response Time on TPC-W* Ordering (50/50), With and Without
Read Session Guarantee
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Figure 6.19: xPyS Read Response Time on TPC-W* Ordering (50/50), With and Without Read
Session Guarantee
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Figure 6.20: xPyS Read Response Time on TPC-W* Shopping (80/20), With and Without Read
Session Guarantee
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Figure 6.21: xPyS Throughput on TPC-C* 70/30, With and Without Read Session Guarantee

 0

 500

 1000

 1500

 2000

 2500

 3000

 1000  2000  3000  4000

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Number of clients

2PyS Update Response Time (Session Guarantee)
4PyS Update Response Time (Session Guarantee)

2PyS Update Response Time (No Session Guarantee)
4PyS Update Response Time (No Session Guarantee)

Figure 6.22: xPyS Update Response Time on TPC-C* 70/30, With and Without Read Session
Guarantee
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Figure 6.23: xPyS Read Response Time on TPC-C* 70/30, With and Without Read Session
Guarantee
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Chapter 7

Related Work

In [39], Schenkel et al. proposes algorithms to achieve global SI on federated databases. They
outlined the pessimistic and optimistic algorithms to ensure global SI, but both algorithms depend
on a centralized coordinator to issue begin and commit operations on the database. Bornea et al.
[6] show how local SI concurrency controls can be used to provide global serializability on fully
replicated databases using a central certifier. They do not consider partitioning the database
to scale-up. Moreover, we maintain replicas by deriving an SI-consistent update order using
database logs.

A number of cloud-based databases or key-value stores offer the eventual consistency level
with limited or even no support for transactions at all. There have been various works to imple-
ment multi-row transaction support providing global SI using HBase as the underlying database
[47, 34, 28].

Spanner [10] is an SQL-like database that guarantees external consistency for all reads and
writes. It has been used in Google as the data store for their advertising backend. For its con-
currency control, Spanner depends on highly synchronized clocks across the data centers. It has
been noted by the authors that they need to use both GPS and atomic clocks with independent
failure models. This demonstrates the difficulty in keeping clock synchronization across a dis-
tributed system, which our protocol avoids. Additionally, Spanner was built from the ground
up to support reading data with older timestamp. In contrast, our protocol does not need this
capability from the underlying database, and is thus more feasible to install on top of an existing
database.

Session-based SI guarantees have been proposed in [14, 15, 23] but none of these consider
scaling up through partitioning.
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A weaker version of SI, the Parallel SI (PSI), is described in [40], specially targeting geo-
graphically distributed systems. There can be multiple primary sites in PSI, but each primary
site may perform update in different order. In other words, there is no global commit order.
As described in Chapter 4, our distributed solution has a strict commit order, ensuring greater
transaction consistency among the primaries and secondaries.

The problem of partitioning an SI database has also gained interest from the open source
community, as is evident with the release of Postgres-XC 1, which is a transparent synchronous
solution for partitioned SI databases using Postgres as the underlying DBMS. However, Postgres-
XC uses a centralized global transaction manager to assign transaction identifiers and snapshots
[36]. C-JDBC [9] is an open-source system which allows a cluster of database instances to be
viewed as a single database. However, it only allows one update, commit, or abort executing at
any point in time on a virtual database. On top of that, the concurrency control and isolation level
are still handled by the single scheduler in the system.

Prior to the introduction of replication feature on PostgreSQL, there has been several works
on replicating PostgreSQL instances. The Postgres-R, and later Postgres-R(SI) [46] systems are
built into PostgreSQL to provide eager replication, update everywhere protocol over a cluster
of instances. Another system based on Postgres-R, called the RSSI [20], offers a Serializable
Snapshot Isolation consistency level. These works only consider the case where the database is
fully replicated. In contrast, our approach allows the primary sites to be partitioned, and each
replica can contain data from one or more partitions.

Remus-DB [32] offers a novel approach to database replication on virtualized environment.
This is particularly applicable to cloud environment, where database instances run on top of a
hypervisor. By carefully hooking to the virtual machine, a database server can be replicated
with almost no change to the database engine itself. Again, this approach only provides full
replication of a database instance, and does not allow partitioning of primary sites, or merging
several primary sites into the same replica.

Log records are commonly used by database systems to provide durability and fault tolerance.
DB2 uses a form of log merging to assist recovery of its partitioned database [17]. LogBase [44]
is a log-storage system, where updates are stored as log records instead of in disk blocks. Using
log records in database replication has been implemented in PostgreSQL, but it only supports
full replication of one database instance. [13, 26] explored the feasibility of merging multiple
log streams to infer a global serialization order. In contrast, our work focuses on partitioned SI
databases.

Slony-I [45] is a replication system which uses triggers to monitor data changes and produces
equivalent SQL statements for them. The SQL statements can then be replayed on the replicas

1Postgres-XC is available from http://postgres-xc.sourceforge.net/
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to generate the same effect. However, this means that the replicas need to parse and plan the
SQL statements again and perform the actual modification work again. Also, if two statements
modify the same data item, they must be correctly time so as not to raise Write-Write conflict
inadvertently. As our log merging solution uses lower-level PostgreSQL log stream, there is no
penalty from SQL parsing and planning. PostgreSQL log stream is also free from Write-Write
conflicts as it has been taken care of by the concurrency control.

58



Chapter 8

Conclusions

In this thesis, we described the CGSI algorithm to provide global SI on partitioned SI databases
without requiring a centralized coordinator, and without the need of global time synchroniza-
tion. We also developed the log merging technique to efficiently infer transaction order and to
enable the partitioned database to be lazily replicated onto secondary servers. To demonstrate
the practicality and feasibility of our protocol, we implemented it on top of PostgreSQL.

Through experiments using the TPC-W and TPC-W* workloads, we showed how the com-
bination of our solution enables the system to support many more of both update and read-only
transactions with good performance. On the primary-only TPC-W experiments, our 4P config-
uration produces twice the throughput of the 1P configuration on 50/50 mix, while it produces
nearly four times the throughput of the 1P configuration on 80/20 mix. The easily-partitioned
TPC-C workload scales really well on the primary-only experiment, with near linear scalability
observed on up to 12 primaries.

We have also shown the scalability of our log merging solution for the secondaries. The
4PyS produces 50% and 100% more throughput than 1PyS on TPC-W and TPC-W* workloads
respectively with 50/50 mix, while supporting 70% more clients. On TPC-W* 50/50 mix with
higher number of clients, the 4PyS reduces read response time by 37% while also reducing
update response time by 90% over 2PyS. With TPC-C* workload, the 2PyS configuration can
produce almost double the throughput of the 1PyS configuration. Read-only transactions may
have to wait to enforce session guarantee, but the wait time is fairly small: on TPC-C* with
4PyS, the wait time is around 100ms at 4000 clients.
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8.1 Future Work

Our implementation relies on PostgreSQL Startup process to replay the updates at the secon-
daries. In the course of our experiments, we found that configuring PostgreSQL recovery to
properly work is not a trivial issue. As has been noted in Section 5.2.3, PostgreSQL only has a
coarse mechanism to manage interference between the read-only transactions and refresh trans-
actions at the secondary. Devising our own replay algorithm may let us minimize the interfer-
ence, thus improving the throughput.

Another interesting venue is to use a feedback-based admission control policy at the sec-
ondary, so that the secondary can guarantee progress of the log replay. In our current imple-
mentation, we isolate the Startup process to a specific CPU core, thereby avoiding the process
from being blocked by other database processes due to unavailability of free processors. Unfortu-
nately, the Startup process could still be blocked by table locks, disk access requests, etc. We feel
this can be more effectively handled by deciding whether to admit new read-only transactions
based on the current “replay lag”, disk activity level, and other metrics.
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