
Holographic Correspondence and
Exploring New Regimes of AdS/CFT

Duality

by

Miok Park

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Physics

Waterloo, Ontario, Canada, 2013

c© Miok Park 2013



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

We aim to have a comprehensive understanding of holographic correspondence and
to demonstrate how the holographic correspondence (or renormalization) can be applied.
Thus this thesis is divided into two parts. The first part is devoted to the former purpose
(chapters 1 to 4 including appendix A,B, and C), and the second part is dedicated for the
latter purpose (chapter 5 to 7).

In Part I, the structure of the AdS/CFT correspondence is analyzed, and the properties
of the AdS spacetime is studied in the context of the AdS/CFT correspondence; Here, we
investigate the isometry group, the conformal structure, and generation of asymptotic
solution near the conformal boundary. This solution yields significant convenience for
the process of holographic renormalization. Moreover the properties of the Minkowski
spacetime are compared to those of the AdS spacetime. To develop a greater understanding
of the Lifshitz/quantum critical theory correspondence, the quantum phase transition is
studied. Furthermore The holographic renormalization is briefly reviewed.

In part II, the holographic renormalization associated with the Mann-Marolf (MM)
counterterm is investigated for the asymptotically Minkowski spacetime in (n+3) dimen-
sions. As a boundary condition, the cylindrical coordinate is considered. The solution
of the MM-counterterm is obtained by solving the given algebraic equation, and from the
counterterm solution, the boundary stress tensor is calculated. It is proven that the formula
for conserved quantities via the boundary stress tensor holds.

Next, we investigate deformations of Lifshitz holography with the Gauss-Bonnet term in
(n+1) dimensional spacetime. To admit the non-trivial solution of the sub-leading orders,
a value of the dynamical critical exponent, z, is restricted by z = n − 1 − 2(n − 2)α̃,
where α̃ is the (redefined) Gauss-Bonnet coupling constant. Such solution of sub-leading
orders correspond to the marginally relevant modes for the massive vector field and are
generated by U+039B ∼ 0, at the asymptotic region. A generic black hole solution, which
is characterized by the horizon flux of the vector field and α̃, is considered in the bulk. We
explore its thermodynamic properties, which depend on temperature, by varying n and
α̃. As a result, the contribution of the marginally relevant mode is found in a function of
Λz

T
, and the relation between the free energy density and the energy density is numerically

recovered when the marginally relevant mode is turned off ( Λ = 0), is obtained.
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Chapter 1

Introduction

This thesis is concerned with the holographic correspondence principle, constructing the
foundations for exploring new regimes of the AdS/CFT correspondence. Applications
of the holographic correspondence are demonstrated for holographic renormalization in
asymptotically Minkowski spacetime and for Lifshitz spacetime involving a study of quan-
tum criticality. Here we introduce the original AdS/CFT correspondence conjecture and
discuss its interpretation as a UV/IR connection. Then we give an overview of this thesis.

1.1 The AdS/CFT Correspondence

In string theory, a new form of “duality” was conjectured by Maldacena [60], which is that

Type IIB string theory on (AdS5× S5)N plus some appropriate boundary
conditions (and possibly also some boundary degrees of freedom) is dual to
N = 4, d = 3 + 1 U(N) super-Yang-Mills.

To show this, consider N parallel D3 branes, which have a Higgsed configuration and are
separated by some distance r. Then take the low energy limit, where the theory on the
D3 brane decouples from the bulk. This condition is written as

α′ → 0, U ≡ r

α′
= fixed (1.1)

1



where the second is the Higgs expectation value corresponding to this separation, which
remains fixed so that the mass of the stretched string is fixed. Thus U has dimensions
of mass, and is considered to be the energy scale at which the mass of a string state is
translated from the D3 brane (AdS description) to open strings (Yang-Mills description)
by the Higgs field that breaks the symmetry.

In this limit, the superconformal N = 4 U(N) super-Yang-Mills theory has a symmetry
described by the conformal group SO(2, 4), and the supergravity solution carrying D3
brane charge yields five dimensional Anti-de Sitter (AdS5) space times a five sphere, where
the supergravity solution can be trusted in the limit gN � 1, that is, whenN is large. Since
it was known that the supersymmetry group of AdS5× S5 is the same as the superconformal
group in 3 + 1 spacetimes [44], Maldacena’s new duality conjecture is established.

Subsequent to this conjecture, Witten proposed a precise correspondence of observables
between the conformal field theory and the supergravity [90]. First, the ansatz for the
supergravity partition function computed at the boundary of spacetime was suggested to
be

ZS(Φ0) = exp(−IS(Φ)) (1.2)

where Φ is a field on AdSn+1 and approaches Φ0 at infinity. The generating functional for
the conformal field on the boundary of AdSn+1 spacetime is then constructed so that Φ0

couples to a conformal field O, i.e.

ZCFT =

〈
exp

∫
Sn

Φ0 O
〉

CFT

. (1.3)

Then the AdS/CFT correspondence is interpreted to be

ZCFT(h) = ZS(h) (1.4)

for a given conformal structure h. Based on this, the equation of the motion for Φ0 is
calculated at the boundary of the spacetime, and the singularity of the solution is identified
with the Green’s function under an SO(1, n + 1) transformation. As a result, it can be
shown that correlation functions in conformal field theory are derived by using the Green’s
function, and the dimension of the operator O in conformal field theory is influenced by
masses of particles in supergravity. Inspired by this idea, for AdS spacetime, the process
of obtaining well-defined holographic correlation functions, which is called holographic
renormalization, is more precisely constructed and is discussed in detail by [11, 81].

2



1.2 Introduction of Renormalization

The holographic correspondence can be interpreted as a “UV/IR connection”

Gauge/Gravity correspondence⇔ UV/IR connection

i.e. the UV divergence in the field theory is related to the IR divergence in the gravity
theory [85]. As this interpretation is an important part of the holographic correspondence,
before proceeding to our study of holographic correspondence, we need to clarify what
causes divergences in the field theory and in the gravity theory. Also we must study the
remedy for those divergent problems, which is known as the field theoretical/holographic
renormalization method (or counterterm method). Here we briefly introduce the UV di-
vergence in the field theory, the renormalization method, the renormalization group, and
the IR divergence in the gravity theory. The details of the UV divergence, the field theo-
retical renormalization, and the renormalization group are presented in appendix B. The
Wilsonian renormalization is also reviewed in appendix C. The statistical renormalization
group is introduced in chapter 3.

Perturbative quantum field theory involves radiative corrections, which form loops that
carry large momenta k and yield infinity as k →∞ in the calculation of correlation func-
tions. This ultraviolet divergence was first discovered in quantum electrodynamics in the
1930’s. In order to resolve this divergence problem, Bethe, Feynman, Schwinger, Tomon-
aga, and Dyson proposed the renormalization method in the late 1940’s. The main idea
of the renormalization method is to obtain finite values by separating fields and physical
variables into the bare quantities (i.e. the infinite part) and renormalized quantities (i.e.
the finite part) via some regularization method, which provides a way to subtract the
infinity. As there is no restriction that the finite parts should be physical quantities, an
ambiguity occurs in the process of separating the infinite part and the finite part. This
ambiguity can be fixed by choosing a proper renormalization scheme, which works in a
way so as not to change the physical results. That is, the final physical result is required
to be independent of the renormalization scheme. This idea became a motivation for the
renormalization group later.

In the 1970s the renormalization group was developed in condensed matter physics by
Wilson in order to understand a certain property, which is known as universality. The
idea is based on the scale-dependent effective action, which is obtained by eliminating
the high energy degrees of freedom. The renormalization is performed by integrating over
momentum in the range Λ < k < Λ0 where Λ0 is a UV cutoff, or by decimating suitably
chosen subsets of fields until the sequence reaches a fixed point. This process does not

3



require any strong assumptions about the structure of the theory like renormalizability
in the field theoretic sense, and does not yield any divergence problems since the lattice
spacing itself plays the role of a natural cutoff. As a result, this process gives a bridge from
the microscopic state to the macroscopic state.

On the other hand, in gravity theory, the variation of the Einstein-Hilbert action yields
the Einstein equations and additional terms, which are associated with the variation of
metric derivatives at the boundary of the spacetime. Gibbons and Hawking pointed out
that the additional terms at the boundary must not be ignored but instead must cancel.
They introduced the Gibbons-Hawking boundary term to fix this problem,

S =
1

16πG

∫
M

√
−gR− 1

8πG

∫
∂M

√
−hK (1.5)

where g is the determinant of the metric on the spacetime, R is a Ricci scalar with respect
to gab, h is the determinant of the induced metric on the boundary, and K is the trace of
its extrinsic curvature. While this new boundary term is well defined for spatially compact
spacetimes, it diverges for noncompact ones as r goes to∞. That is, in gravity theory, an IR
divergence occurs by having infinite volume of the spacetime at the level of the action. As
a remedy for the IR divergent problem of the gravitational action, counterterms, which are
locally defined and covariant, are added into the action. In other contexts, counterterms
also play an important role by making a contribution to the conserved charges of the
spacetime. From a holographic correspondence perspective, counterterms are required not
only to make the action finite, but also to produce well-defined holographic correlation
functions. This process is called holographic renormalization.

1.3 Overview of Thesis

One of main objectives of this thesis is to get a more comprehensive idea of holographic
correspondence. To do so, we shall consider the basic structure of spacetime, field theory,
and holographic renormalization, with the aim of setting foundations for exploring new
regimes, such as AdS/QCD duality [38, 43, 53], gravity/condensed matter theory duality
[15, 18, 46, 51, 56, 65, 78] or gravity/fluid duality [19, 55, 77]. The other objective is to apply
this understanding to demonstrate how holographic renormalization can be performed in
non-asymptotically AdS spacetimes and how gravitational information is delivered to a
field theory via the holographic correspondence. To clarify these objectives, we divide our
approach for exploring the holographic correspondence into four steps and describe our
work for each step as follows.
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The first step is to understand the basic properties of spacetime and the field theory.
AdS spacetime and conformal field theory possess the same isometry group, and this fact
makes it possible to establish the AdS/CFT correspondence as mentioned above. Thus it
is crucial to investigate symmetries for describing a spacetime and a field theory in order to
expand the breadth of the holographic correspondence. Another factor we should consider
is the properties of an asymptotic boundary of spacetime. The asymptotic boundary is a
place in which matter fields from the conformal theory reside, and where the gravitational
information is transferred to matter fields. Thus it is also important to find a physically
well defined boundary at an asymptotic region of a spacetime. With these factors in mind,
we analyze AdS spacetime comparing it to Minkowski spacetime, and briefly mention
Lifshitz spacetime in chapter 2. Conformal field theory is not covered in this thesis, but
an introduction to quantum critical theory is in chapter 3.1.

The second step is to find a method for holographic renormalization. Holographic
renormalization is the key process for constructing holographic correlation functions and
to accomplish the holographic correspondence. While field theoretical renormalization
methods (including the statistical renormalization) are well established, a standard method
for holographic renormalization has not been found (except for AdS spacetime, whose
general algorithm of generating counterterms is known [11, 61, 36]). Of course the method
of holographic renormalization could differ from field theoretical renormalization. However
it is important to study the field theoretic renormalization process from a holographic
perspective. One of the reasons is that holographic renormalization for asymptotically AdS
spacetimes is inspired by field theoretic renormalization methods, and so we should not
disregard a chance to apply it to other spacetimes. The other is that we could expect that
related phenomena such as renormalization flow could be reproduced via a holographic
dual description. In order to gain an understanding of renormalization, standard field
theoretic renormalization is reviewed in appendix B, and statistical renormalization is
reviewed in chapter 3.2 and 3.3 (the Wilsonian renormalization is also reviewed in chapter
C). The holographic renormalization for the AdS case is reviewed in chapter 4. Indeed,
holographic renormalization is a fundamental problem that should be resolved in gravity
theory, even apart from the holographic correspondence. The reason is that it involves
the gravitational action principle at the boundary of spacetime and provides a way of
yielding conserved quantities. With this motivation, the holographic renormalization for
the Minkowski spacetime is studied in chapter 5.

The third step is to apply the holographic correspondence. One way of approaching
this is to choose the spacetime and then find an applicable field theory to be its dual.
Such is the case for the Minkowski spacetime: it is relatively well understood, but its
dual field theory has not been found yet. Furthermore, if we assume a conformal field
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theory is its dual, we do not know how the isometry group of conformal field theory
is to be connected to the isometry group of the Minkowski spacetime. An alternative
approach is to go from field theory to gravity theory, which is the case for the study of
high temperature superconductors or Lifshitz-like field theories. In this case, we should
configure the gravitational action so that it asymptotically shares the same symmetries as
the field theory. As an example of such a realization for the holographic correspondence,
the deformation of Lifshitz holography in (n+ 1) dimensions is investigated in chapter 6.

The fourth step is to seek richer corresponding structures between the gravity theory
and the field theory. For example, in condensed matter theory, the idea of renormalization
group flow is implemented in the context of the holographic correspondence. This yields
interesting phenomena by inducing transitions of spacetime according to the energy scale.
For example, holographic renormalization group flow from UV Lifshitz spacetime to IR
AdS spacetime has been found [56, 18]. Or we can apply a modified gravitational action
by adding higher curvature terms, and see what new effects to emerge. In this regard, the
deformation of the Lifshitz spacetime with a Gauss-Bonnet term in (n + 1) dimensions is
studied in chapter 7.
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Chapter 2

Anti-de Sitter Spacetime

Anti-de Sitter (henceforth AdS) spacetime is defined by the vacuum solution to the Ein-
stein equations with the negative cosmological constant. AdS spacetime is a somewhat
unrealistic spacetime for describing our universe due to the negative cosmological constant
Λ, which is contrary to the modern cosmological observations consistent with the so-called
Lambda-Cold Dark Matter (Λ-CDM) description as determined from the observed data
of Cosmic Microwave Background Radiation (CMBR). Nevertheless, it has been actively
studied since some interesting features are shown in its theoretical aspects, and moreover
specific properties of this spacetime are essential in formulating the AdS/CFT correspon-
dence.

The purposes of this chapter are to illustrate the general properties of AdS spacetime
comparing it with Minkowski spacetime, and to understand distinguished characteristics
that make it possible to establish the AdS/CFT correspondence.

2.1 General Properties

The Einstein equations with cosmological constant in (n+ 1) dimensions is

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν − Λgµν (2.1)

where Tµν is energy-momentum tensor and is determined by the matter content in space-
time. In the absence of matter (Tµν = 0), this simply becomes

R =
2(n+ 1)

(n− 1)
Λ (2.2)
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where for Λ = 0 the scalar curvature is zero and becomes flat-Minkowski spacetime, for
Λ > 0 the spacetime is positively curved and is called de Sitter spacetime (henceforth dS),
and for Λ < 0 the spacetime is negatively curved and is known as Anti-de Sitter spacetime.
That is, those three spacetimes are vacuum solutions derived from the Einstein equations,
but different from the Minkowski spacetime, the de Sitter and the Anti-de Sitter spacetime
intrinsically (i.e. without matters) curved spacetimes.

One common feature of these three spacetimes is their maximal symmetry: they possess
the maximal number of independent Killing vectors. This is an intrinsic property of space-
time regardless of coordinates chosen and is given by n+1+n(n+1)/2 = (n+1)(n+2)/2
in (n+ 1) dimensional spacetime. Then the Riemann curvature tensor for any maximally
symmetric spacetime with (n+1) dimensions at any point and in any coordinates becomes

Rρσµν =
R

n(n+ 1)
(gρµgσν − gρνgσµ). (2.3)

For the Minkowski space Mn+1, the Killing vectors as generators of symmetry hold both
for Lorentz transformations, which has isometry group SO(1, n) with n(n+1)/2 generators,
and for translations with n+ 1 generators, and so the Minkowski spacetime is represented
by the Poincarè group with (n+1)(n+2)/2 generators. On the other hand, the isometry
groups of the dSn+1 and the AdSn+1 become SO(1,n+1) and SO(2,n) respectively with
(n+ 1)(n+ 2)/2 generators.

In addition, for the non-zero cosmological constant cases, when matter is present with
energy density ρ and pressure p we have

T µν =

 ρ 0 · · ·
0 p · · ·

...

 , (2.4)

the positive cosmological constant Λ (negative Λ) contributes positively (negatively) to the
energy, but negatively (positively) to the pressure.

2.2 Conformal Structure

2.2.1 Conformal Diagram

Let us consider the global coordinates of AdS spacetime

ds2 =
l2

cos2 θ

(
− dt2 + dθ2 + sin2 θdΩ2

n−1

)
.
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This coordinate makes the spacelike infinity finite, but it introduces a singularity at θ = π
2
.

To obtain a spacetime smoothly extending to the boundary, we follow the general process
of compactification as follows.

Let us consider a manifoldM with its boundary ∂M and introduce a function f , which
is called a defining function that satisfies some conditions (i.e. f |∂M = 0, f ′|∂M 6= 0, and
f |M > 0), and plays the role of adding points at the boundary of the original manifold so
that the manifold becomes conformally compact. If ds̃2 is a metric for the compactified
manifold and ds2 is a metric for the original manifold, then

ds̃2 = f 2ds2, (2.5)

and to be general f can be replaced by

f → few (2.6)

where w is a function without poles at the boundary.

By going through this process, we can work with the conformally compactified space-
time and draw conformal diagrams. One for the AdS spacetime is depicted in Fig.2.1 and
one for Minkowski spacetime is also inserted in Fig.2.2 for comparison.

For the AdS case in Fig.2.1 (a), as we illustrated in (A.5), the compactification only
applies to the spatial coordinate θ; there is no way to compactify the time direction, and
so the range of time still remains |t| < ∞. Thus in the diagram spatial infinity is at the
finite length π

2
denoted as i0, but the future and past-timelike infinities, which are i+ and

i− respectively, are just denoted at the top and bottom of the diagram.

Regarding spatial infinity, this conformal structure of AdS spacetime has a uniquely
well-defined boundary at spacelike infinity that provides an opportunity to formulate the
AdS/CFT correspondence.

The consequence of the timelike infinity is very interesting. That fact indicates that
AdS spacetime is not globally hyperbolic, and so a Cauchy surface does not exist; however,
a Cauchy surface can be formulated for the diamond shaped region in Fig.A.2 (b) and
so one can make predictions only in this region. Another feature is found by considering
geodesics as shown in Fig.2.1 (b). The geodesics normal to t = 0 converge at p and q, and
all other timelike geodesics from p expand out and converge to q. This process keeps being
continued as timelike geodesics from the converged point q re-expand out and reconverge
to another p and on and on. This fact implies that the timelike geodesic from p can never
reach the boundary i0. In contrast, a null geodesic from p can reach the boundary. This
property yields interesting physical results involving superradiance [35, 84].
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(a) Conformal Diagram of
AdS spacetime

(b) Geodesics from p

Figure 2.1: Conformal Diagrams and geodesics of the AdS spacetime

Now let us compare the conformal diagrams for the AdS in Fig.2.1 (a) and Minkowski
spacetimes in Fig.2.2. As seen in the diagrams, the big distinction is that the conformal
structure of the Minkowski spacetime has two kinds of infinities (disregarding timelike
infinity), which are the null infinities I± and the spatial infinity i0, represented by two
lines and a point. This means that from the perspective of formulating a dual theory like
AdS/CFT the conformal boundary of Minkowski spacetime is not uniquely determined,
which is different from the AdS/CFT. It can be either the null infinity or the spatial
infinity. Considering the conformal boundary to be a promising place for the gauge theory
to reside, null infinity might be not eligible. For the spacelike infinity, it is depicted as
a point not a line, and so it is hard to expect that physical fields admit smooth limit at
the point i0. These aspects of the conformal structure of Minkowski spacetimes make it
difficult to establish a dual theory.

2.3 Asymptotic Solution Near Conformal Boundary

For the AdS spacetime, it is known how to formulate gravitational solutions at the confor-
mal boundary in general [33], [81]. In this section, we study the construction of gravita-
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Figure 2.2: Conformal diagram for Minkowski spacetime

tional solutions in the AdS spacetime by following [33, 81], and investigate the possibility
of applying the same method to the Minkowski spacetime.

Let us start with the gravitational action in (n+ 1)-dimensional AdS spacetime

Sgravity =
1

16πGN

∫
M
dn+1x

√
G(R[G] + 2Λ)− 1

8πG

∫
∂M

ddx
√
γK (2.7)

where Gµν is the bulk gravitational field and K is the extrinsic curvature. The equation
of motion is

Rµν −
1

2
RGµν = −ΛGµν . (2.8)

and the curvature tensor is given by

Rκλµν =
1

l2
(GκµGνλ −GµλGνκ) (2.9)

where l is the AdS radius which is Λ = n(n− 1)/2l2. The equation is satisfied with

ds2 = Gµνdx
µdxν =

l2

cos2 r

(
− dt2 + dr2 + sin2 θdΩ2

n−1

)
(2.10)

which is obtained in (A.6), but in this coordinate the metric becomes singular at r = π
2

and is not defined at the conformal boundary r = π
2
. Thus we need to find a well-defined
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solution at the conformal boundary. This can be achieved by determining the defining
function f , which is defined in (2.5) and, at the conformal boundary, f is additionally
restricted by

|df |2 = G̃µν∂µf∂νf. (2.11)

where G̃ = f 2G and which is related to

Rκλµν [G] = |df |2(GκµGνλ −GµλGνκ) +O(r−3). (2.12)

This quantity describes the curvature tensor near the boundary and the order r−4 becomes
the leading order as the boundary is r = 0. The |df |2 is obtained by solving the Einstein
equations with (2.12), and it becomes

|df |2 =
1

l2
. (2.13)

Here we take the defining function f to be the radial coordinate r, and then the bulk metric
expanding near the boundary becomes

ds2 = Gµνdx
µdxν =

l2

r2
(dr2 + gij(x, r)dx

idxj) (2.14)

which is known as the Graham-Fefferman coordinate system [37]. Expanding gij(x, r) in
powers of r, its general form is given by

gij(x, r) = g(0)ij + rg(1)ij + r2g(2)ij + · · ·+ rng(n) + h(n)r
n log r2 +O(r(n+1)) (2.15)

where n is from the (n+ 1)-dimensions and the logarithmic term with h(n) enters only for
even n. As the terms associated with odd powers of r vanish by the Einstein equations, for
convenience, we replace the parameter r with ρ by ρ = r2 and then the metric is rewritten
as

ds2 = Gµνdx
µdxν = l2

(
dρ2

4ρ2
+

1

ρ
gi,jdx

idxj
)

(2.16)

where
g(x, ρ) = g(0) + · · ·+ ρn/2g(n) + h(n)ρ

n/2 log ρ+ · · · . (2.17)

Plugging (2.16) into the Einstein equations, it yields

ρ(2g′′ − 2g′g−1g′ + Tr(g−1g′)g′) +R(g)− (n− 2)g′ − Tr(g−1g′)g = 0, (2.18)

DiTr(g−1g′)−Djg′ij = 0, (2.19)

Tr(g−1g′′)− 1

2
Tr(g−1g′g−1g′) = 0 (2.20)
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where the prime denotes the derivative with respect to ρ, and Di is the covariant derivative
with associated with g, and R is the Ricci tensor of g. Expanding equations (2.18)-(2.20)
order by order in ρ with (2.17) and setting ρ = 0, the relations between coefficients in
(2.17) are obtained. In this process, cases of even n break down at order ρn/2 unless the
logarithmic term is present. This is the reason that h(n) is present in (2.17) where h(n) is
restricted by

Tr(g0)−1h(n) = 0, Dih(n)ij = 0. (2.21)

Solving (2.18) for n = 2 and n = 4 cases, the g(k) for k < n and the h(n) are expressed in
terms of g(0),

g(2)ij =
1

n− 2

(
Rij −

1

2(n− 1)
Rg(0)ij

)
,

g(4)ij =
1

n− 4

(
1

4(n− 2)
DkD

kRij −
1

8(n− 1)
DiDjR−

1

8(n− 1)(n− 2)
DkD

kRg(0)ij

− 1

2(n− 2)
RklRikjl +

n− 4

2(d− 2)2
R k
i Rkj +

1

(n− 1)(n− 2)2
RRij

+
1

4(d− 2)2
RklRklg(0)ij −

3n

16(n− 1)2(n− 2)2
R2g(0)ij

)
(2.22)

and these obviously become singular for n = 2 and n = 4. Thus, we instead obtain the
trace and divergence of g(n) from (2.19) and (2.20), and then g(n) takes the form

∇ig(n)ij = ∇iA(n)ij, n = 2, 4 (2.23)

where

A(2)ij = g(0)ijTrg(2),

A(4)ij = −1

8

(
Tr g2

(2) − (Tr g(2))
2

)
g(0)ij +

1

2
g k

(2)j g(2)kj −
1

4
g(2)ijTr g(2) (2.24)

Integrating (2.23), it involves an integration constant tij, which is not determined by the
Einstein equations, and as gij and Aij are symmetric, tij also becomes a symmetric tensor.
For n = 2, the integration of (2.23) yields

g(2)ij =
1

2
(Rg(0)ij + tij) (2.25)

where the tij satisfy
Ditij = 0, Tr t = −R, (2.26)
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and for n = 4, the integration of (2.23) has the solution

g(4)ij =
1

8
g(0)ij

(
(Trg(2))

2 − Trg2
(2)

)
+

1

2
g k

(2)i g(2)kj −
1

4
g(2)ijTrg(2) + tij (2.27)

where the tij satisfy

Ditij = 0, Tr t = −1

4

(
Tr(g(2))

2 − Trg2
(2)

)
. (2.28)

For odd n, the g(d)ij is only restricted by

Dig(d)ij = 0, Trg(d) = 0, (2.29)

and so becomes
g(d)ij = tij. (2.30)

In summary, in the AdSn+1 spacetime we can take the metric, which is well-defined
near the boundary, in the form of (2.16) with (2.17), where the h(d) only appears for even
n. Then we find the relations between the coefficients g(0), g(k), h(n) and g(n) by solving the
Einstein equations order by order in ρ. The g(k) for k < n and h(n) are explicitly expressed
in terms of g(0) from (2.18), and those coefficients are determined if g(0) is provided from
the boundary conditions of the spacetime. On the other hand, the g(n) should be obtained
by integrating (2.23), which is derived from (2.19) and (2.20), and so are accompanied with
the integration constant, which is the undetermined symmetric tensor tij.

In the holographic renormalization procedure, which will be discussed in Chapter 5, the
divergences of the action are shown as functions of g(0), and so the counter terms, which
remove the divergence of the action, are automatically generated as a function of g(0). The
h(n) for even n is connected to the conformal anomaly, and the g(n)ij and tij are related to
the expectation value of the boundary stress energy tensor by

〈Tij(x)〉s =
2√
g(0)(x)

δSren

δgij(0)(x)
=

nln−1

16πGN

g(n)ij +Xij[g(k)]

where Sren is the renormalized bulk action and Xij[g(k)] is a function of g(k) for k < n.

Considering the possibility of applying this process to the Minkowski spacetime, it is
known that the relations of the coefficients of the metric are given in the form of differential
equation (not by the algebraic relations, which works for the AdS case), and moreover the
Einstein equations require some restrictions on g(0) [81]. Thus it is hard to expect to obtain
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the general set (i.e {g(0), g(2), · · · , g(n)}) of metric solutions near the conformal boundary
with this method. In the holographic renormalization picture, this fact makes it difficult
to generate the universal set of the local counterterms and explains the reason that the
general algorithm to generate the counterterms is barely known for Minkowski spacetime.
Nevertheless, there was a remarkable try to generate local counterterms, in which the
counterterms do not take an explicit form, but are provided as solutions derived by the
given differential equation in [63, 64, 75]. This method is investigated in detail in Chapter
6.

2.4 Discussion

Some essential points are found in order to establish the gravity/gauge duality theory on
investigating the structure of the AdS/CFT correspondence. One is that the symmetries
of spacetime are equivalent to the symmetries of gauge theory. The other is that the space-
time has a well-defined boundary, which does not include any singularity at the infinity and
becomes a suitable place for the dual gauge fields to reside. In this section, we understood
what properties of the AdS spacetime make it suitable under these conditions by investi-
gating the isometry group of the spacetime and its conformal structure. Related to these
points, we also found some distinctions between the AdS spacetime and the Minkowski
spacetime by comparison. In addition, based on [33, 81], we showed a general derivation
of the metric solution near the boundary in the AdSn+1 spacetime by solving the Einstein
equations, which is convenient for the process of holographic renormalization.

In section 2.1, general properties gleaned from general relativity theory are illustrated
for the AdS spacetime. The important note is that the AdSn+1 spacetime is the max-
imally symmetric spacetime having the maximal number of independent Killing vectors
(n + 1)(n + 2)/2. This symmetry of the spacetime is represented by the isometry group
SO(2, n), which is (n+2) Lorentz group and is identical with the group structure of confor-
mal field theory. On the other hand, the Minkowski spacetime Mn+1 is also a maximally
symmetric spacetime possessing (n + 1)(n + 2)/2 independent Killing vectors. However
the isometry group of the Minkowski spacetime is the Poincarè group, which has the
Lorentz symmetry SO(1, n) plus the translation symmetry. Note that the symmetries of
asymptotically Minkowski spacetime are different from those of Minkowski spacetime. In
asymptotically Minkowski space-time, as null infinity is approached, the group of asymp-
totic symmetries is known as the BMS group; approaching spatial infinity, the group of
asymptotic symmetries is known as the SPI group [88]. It is not yet known what connec-
tion the SO(2, n) group has with the Poincarè group (or BMS or SPI group), making it
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difficult to build a (asymptotically) Minkowski/CFT correspondence.

In section 2.2, the conformal structure of AdS spacetime was studied and compared with
Minkowski spacetime. As shown in Fig.2.1, the AdS spacetime has a uniquely determined
conformal boundary at spacelike infinity, but as the timelike direction is not associated
with compactification, its conformal boundary at θ = π

2
is stretched out. This conformal

feature gives an opportunity to establish AdS/CFT correspondence on AdS spacetime.

The conformal diagram for the (asymptotically) Minkowski spacetime has a spacelike
infinity and null infinities denoted as the point and the lines respectively at the boundaries
as shown in Fig.2.2. This indicates that if the boundary of spacetime, where dual gauge
fields will be placed, is chosen to be the conformal boundary, it is not uniquely determined,
but could either be null infinity or spacelike infinity. From the holographic duality perspec-
tive, it is difficult to consider null infinity as a place where the dual gauge fields reside, but
there have been several attempts for this case [32, 82] (for asymptotically flat spacetime see
[1, 2, 4, 30, 69, 70]). Conversely the spacelike infinity is represented as one point, and so
it is hard to expect a smooth limit of physical fields to that point. These properties of the
conformal structure make it hard to formulate the duality theory of the (asymptotically)
Minkowski spacetime. However it is known that it is not necessary for the spacetime of
the dual gauge fields to be the conformal boundary, and so as an alternative for an asymp-
totically flat spacetime, one considers the asymptotic boundary to be an n-dimensional
hyperboloid H, which agrees with the boundary conditions [6, 8, 63, 64, 67, 75].

In section 2.3, we demonstrated how to derive the general solution of the metric near the
conformal boundary of the AdSn+1 spacetime, which plays an important role in building
counterterms, by following [81]: set up the general form of the metric induced at infinity
and plug the metric into the Einstein equations. The coefficients in the metric are given
by algebraic relations, and this property enables one to automatically construct coun-
terterms in the holographic renormalization process. On the other hand, when applying
this method to Minkowski spacetime, the relations amongst coefficients in the metric take
the form of differential equations, and the Einstein equations require more restrictions on
those coefficients. Thus this algorithm does not produce big benefits for Minkowski space-
time in the holographic renormalization process. Distinct from this method, a remarkable
way to generate counterterms was suggested by Mann and Marolf for the asymptotically
Minkowski spacetime. This method is studied in chapter 5, where we set up the asymp-
totically flat metric for cylindrical coordinates in (n + 3) dimensional spacetime and test
the new counterterm method, where the counterterms are produced by solving a given
differential equation called the Mann-Marolf relation.

The Lifshitz spacetime, which will be introduced in Chapter 6 and 7, has recently drawn
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a lot of attention in terms of strongly correlated systems via the holographic correspondence
formulation. Lifshitz spacetime is basically constructed by breaking Lorentz symmetry
but conserving scaling symmetry, and so it becomes anisotropic and non-relativistic. Thus
Lifshitz spacetime is invariant under spatial and temporal translations, spatial rotation,
and P and T symmetry, which is a fewer number of symmetries than AdS or Minkowski
spacetime [56]. This property suggests Lifshitz spacetime is dual to a Lifshitz-like field
theory in condensed matter physics. In term of the properties of the Lifshitz spacetime,
it is known that this spacetime yields nonzero components of the Riemann tensor, which
diverge as r → 0 if z 6= 1, in a parallel-propagated orthonormal frame, and possesses a
naked singularity, which is a null curvature singularity [27, 45, 52]. More properties of
these spacetimes are been being studied.
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Chapter 3

Quantum Phase Transition and
Statistical RG

In quantum critical phenomena associated with continuous (or second order) phase tran-
sitions, it is experimentally observed that different microscopic systems are characterized
by the same set of critical exponents, which determine the vanishing characteristic energy
scale and the diverging correlation length scale at the quantum critical point g = gc. This
is known as universality (or universal class), and later it is understood in the sense that
when different microscopic systems described by many parameters approach the critical
point, the scale-dependent parameters (or properties) of the system become much less im-
portant, and a few scale-independent parameters (or properties) survive. Thus systems
sharing the same (critical) parameter at the critical point are classified in the same univer-
sal class. In this chapter, we first study the quantum phase transition [80] in section 3.1,
and understand the renormalization method in the statistical context [58, 68] in section
3.2 and 3.3.

3.1 Basic Concepts of Quantum Phase Transition

As mentioned in the introduction, the Wilsonian RG was developed for explaining unusual
physical phenomena called quantum critical phenomena. Here we understand physical
properties revealed in the quantum critical point at zero temperature and in the vicinity of
it at finite temperature. In the first subsection, we classify phase transitions and then focus
on the second order phase transitions. In the following subsection, the nonzero temperature
phase transition is discussed.

18



3.1.1 Quantum Phase Transition

The thermodynamic state of a macroscopic system in thermal equilibrium is calculated
from the relevant thermodynamic potential Ω by using the partition function Z

Z = e−Ω/T (3.1)

where T is temperature. In the thermodynamic limit where the number of particles and
the volume go to infinity while their ratio remains constant, the (generalized) free energy
f = Ω/V approaches a constant independent of V . Considering a system characterized by
a set of coupling constant g1, · · · , gk, the partition function in the thermodynamic limit
takes the form

Z(g1, · · · , gK) = e−V f(g1,··· ,gk)/T . (3.2)

As the information of the system in the thermodynamic limit is derived from the free
energy above, we can discern some distinct physical properties by analyzing a function of
the free energy with respect to the coupling constants.

For this purpose, let us consider the free energy f(g1, · · · , gk) in the k-dimensional
coupling space. In general, the free energy is almost analytic everywhere, but in the ther-
modynamic limit, f(g1, · · · , gk) shows nonanalyticity at points, lines, or other manifolds
whose dimension is smaller than k. This nonanalyticity becomes the phase boundaries
separating different phases of system, and the region where f(g1, · · · , gk) is analytic in
coupling space defines the phase. Different types of nonanalyticity classify different types
of phase transition, and it is largely distinguished by the discontinuous (or first order) phase
transition and the continuous (or second order) phase transition. The former is character-
ized by f(g1, · · · , gk) being continuous but at least one of its derivatives with respect to gi,
∂f/∂gi, is discontinuous at the phase boundary. The latter is confined to cases for which
the f(g1, · · · , gk) and all its partial derivatives ∂f/∂gi, i = 1, · · · , k are continuous, but it
exhibits a discontinuity in the second derivative of the free energy at the phase bound-
ary. In the discontinuous transition, a system is characterized by thermodynamic variables
such as the chemical potential or pressures. However in the continuous phase transition,
its properties can usually be characterized by an order parameter, which in general is a
quantity that becomes zero (i.e. complete disorder) in one phase and non-zero in the other,
and so measures the degree of order in a system by varying from zero to the saturation
value. Here we focus on the second order phase transition, especially the quantum critical
region.

The quantum phase transitions belonging to the second order phase transition are
accompanied by a quantum critical point leading to a nonanalyticity at the dimensionless
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coupling constant g = gc, and mostly happen when ∆, which is the characteristic energy
scale of the lowest excitation above the ground state, vanishes as g approaches gc at zero
temperature. That is at the critical point the degrees of freedom of the system are coupled
to each other and act like a single entity. In most cases ∆ can be written roughly as

∆ ∼ J |g − gc|zν (3.3)

where J is the energy scale of a characteristic microscopic coupling, and zν is a critical
exponent. In general the quantum critical states are characterized by critical exponents
that characterize power law behaviour of various quantities. Besides ν, there is α (for
specific heat), β (for order parameter), γ (for susceptibility), δ (for critical isotherm)
and η (for correlation function); these six exponents are not independent of each other
but are related by scaling and sometimes by hyperscaling, and so two of them become
independent. An important note is that even though two systems may have different
microscopic details they are characterized by the same set of exponents. This peculiar
property of the exponents is said to be universal, and the same set of exponents are
classified to the same universality class. It is known that all materials can be sorted into
universality classes having the same critical exponents.

As having the vanishing characteristic energy scale at g = gc, the same kind of singular
property of the continuous phase transition appears as a divergence of characteristic length
scale ξ, which indicates the typical length scale of the regions where the degrees of freedom
are strongly coupled, and the diverging characteristic length scale obeys

ξ−1 ∼ Λ|g − gc|ν (3.4)

where ν is a critical exponent and Λ is a momentum cutoff or an inverse length scale
of order the inverse lattice spacing. Comparing the rates of the vanishing characteristic
energy scale (3.3) and the diverging characteristic length scale (3.4), we see that

∆ ∼ ξ−z (3.5)

where z is a dynamical critical exponent, and so the characteristic energy vanishes the
inverse of the correlation length with power of z.

Besides static phenomena, one interesting feature is shown in dynamic phenomena in
the vicinity of a critical point. This is known as critical slowing down, and it is observed
that when one approaches the critical point, temporal correlations of the order parameter
decay slower and slower. Defining the correlation time τc to be the typical decay time of a
temporal order-parameter fluctuation, τc diverges as

τc = ξz (3.6)
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where z is also the dynamical critical exponent.

Now let us consider the free energy f in the vicinity of the critical point. Considering
a magnet with free energy f(t, h), where t is called reduced temperature and is defined as
t = (T − Tc)/Tc and h is the magnetic field, we can expect the f(t, h) to be decomposed
into a singular part and a regular part

f(t, h) = fsng(t, h) + freg(t, h) (3.7)

where the fsng(t, h) becomes dominant in the vicinity of the quantum critical point. As
physical properties should be unchanged under rescaling through the renormalization group
procedure (which will be discussed in section 3.2), in a continuous phase transition the
singular part fsng(t, h) of the free energy should be homogenous as

fsig(t, h) = b−Dfsig(bytt, byhh) (3.8)

where yt and yh are expressions standing for relevant critical exponents. However, since
time scales as (length)z in (3.6), at zero temperature the singular part of the free energy
should be modified as

fsng(g, h) = b−(D+z)fsng(bygg, byhh). (3.9)

Thus in a quantum critical system, the time in some sense acts as an extra dimension z by
increasing the effective dimensionality of the system from D which is a spatial dimension
of the system to D + z in the vicinity of a quantum critical point, and so the system is
described by having different scalings of time and space in the continuous phase transition.
At finite temperature, the singular part of the free energy (3.9) is generalized to

fsng(g, h, T ) = b−(D+z)fsng(bygg, byhh, bzT ). (3.10)

Note that the quantum phase transition is a continuous phase transition. It happens
only at zero temperature and exhibits its diverging and vanishing properties for ∆ and
ξ respectively, which refer to singularities of the ground state of the system. Since there
is no thermal fluctuation at zero temperature, the quantum phase transition is driven
by quantum fluctuations, and it occurs by controlling order parameters such as pressure,
magnetic field, or chemical doping.

3.1.2 Finite Temperature Transition and Crossovers

Strictly speaking, the quantum phase transition occurs only at g = gc and absolute zero
temperature T = 0. However it has been found that the quantum critical point can fan
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(a) quantum critical point exists at g = gc
and zero. temperature

(b) second order phase transition occurs
along the solid line at T > 0 and termi-
nates at quantum critical point g = gc
and zero temperature.

Figure 3.1: Two Possible Phase Diagrams

out to a wide quantum critical region over a broad range of values of |g − gc| at nonzero
temperature T > 0. Thus in describing the second phase transition, two possible phase
diagrams [80] can be considered as shown in Fig.3.1. For the first, the quantum phase
transition happens only at zero temperature; it does not have any phase transition (i.e.
the free energy is analytic) at any T > 0 as shown in Fig 3.1 (a). For the second, the
free energy is not analytic along the solid line terminating at the quantum critical point
at g = gc and T = 0 as shown in Fig.3.1 (b), and so the solid line becomes a locus of
second-order phase transitions at finite temperature. The shaded region indicates that
the theory of phase transitions in classical system driven by thermal fluctuation can be
applied. Based on the case of Fig.3.1 (b), we investigate dominant effects for each states
of the phase diagrams in the vicinity of a quantum critical point at nonzero temperature
regime.

So far the energy scale ∆, which characterizes the ground state of a system, is used
for our discussions, and now due to non-zero temperature, a second energy scale kBT
is included in our consideration. To characterize the dynamics at T > 0 we define the
thermal equilibration time τeq, which is characteristic time taken for achieving local thermal
equilibrium after a weak external perturbation. We also roughly divide the phase diagram
into three regions as shown in Fig.3.2, which separates the quantum critical region from
the others.

In region I in Fig.3.2, it is found that the equilibration time τeq scale has a large value
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Figure 3.2: Separation of phase diagram into three regimes. The dashed line are smooth
crossovers at T .

and so the dynamics of a (quantum) system is classically dealt with. Specifically, the
solid line of second-order phase transitions in Fig.3.1 (b) lies in this region, and the region
above the phase transition line describes the disordered phase in which the thermodynamic
average of the order parameter is zero but fluctuations are non-zero as the order is short
range. In the region below the phase transition line, the ordered (i.e. long range order)
state is placed, where correlation function decays to a constant at large distance.

In the regions II and III in Fig.3.2, the equilibration time τeq scale is short, and so there is
a competition between quantum fluctuations with energy scale ∆ and thermal fluctuations
with energy scale kBT . In the region II, thermal excitation of quantum critical ground
state is dominant by ∆ < kBT , and in the region III, quantum fluctuation is controlling
a system by ∆ > kBT . The dashed line between I and II, and II and III are smooth
crossovers at T ∼ |g − gc|zν .

The detailed phase diagrams are depicted in Fig.3.3, where the left is for a system
having no long range order at finite temperature, but the right is for a system for exhibiting
long-range order at finite temperature, and which is referred from [58].
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(a) phase diagram with no long-range or-
der at T 6= 0

(b) phase diagram having long-range order at T 6= 0

Figure 3.3: Two Possible Phase Diagrams

3.2 The Basic Idea of the RG Transformation

The statistical renormalization process consists of two steps

1. Mode Elimination (Decimation)

2. Rescaling

The first step is basically to reduce the information to the level just necessary for describing
the system, and this idea is performed by a coarse-graining operation. The operation
proceeds by integrating over momenta in the shell Λ ≤ k ≤ Λ0, where Λ0 is UV cutoff.
Or in lattice theory, it is performed by blocking lattices (there are various ways to form
block variables) and by averaging over the block variables, and this process is repeatedly
carried out to a new lattice until the same process or the same blocking is not applicable.
As this process is carried out based on the scale invariance of a system in a certain range,
a final lattice has the similar properties with the original lattice. The second step applies
to the physical quantities such as length of a lattice, wave vectors, or fields (e.g. in a form
of Λ = Λ0/b, where b is the step size of renormalization group transformation) to restore
the same form before the mode elimination. The combined process is illustrated in Fig.3.4,
which is referred from [58].

The effect of conducting two steps should be explained by the modification of the
coupling constant g in a way that the initial couplings g = (g1, g2, g3, · · · ) with the initial
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Figure 3.4: Pictorial Representation of RG Transformation

action S[Φ, g] replaced by the modified couplings g′ = (g′1, g
′
2, g
′
3, · · · ) with the modified

action S ′[Φ′, g′]. Then this combined procedure makes a map between the initial set of
coupling and the final set of couplings such as

g′ = R(b; g) (3.11)

where g′ and g are sets of coupling constants, and the function R(b; g) transforms g to
g′ and is called renormalization group (RG) transformation, where b is the step size of
RG transformation. The form of R(b; g) takes a complicated nonlinear function of the
coupling constant, and also depends on a scaling factor b. The set of R(b; g) becomes
a semigroup, which possesses the same composition law as a group, but the inverse of
each transformation is not required; this group is labeled by a continuous parameter b.
That is, two successive transformation with scale factor b and b′ is equivalent to a single
transformation with the scale factor b′′ = b′b. Assuming that

g′ = R(b; g), g′′ = R(b′; g′), (3.12)

the composition law allows

g′′ = R(b′;R(b; g)) = R(b′b; g) = R(b′′; g), (3.13)

and then for given initial coupling g(0) = g, the complete RG procedure yields a chain of
renormalized couplings g(n)

g(n) = R(b; g(n−1)) = R(bn; g). (3.14)
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(a) perfectly ordered (ξ =∞) (b) completely disordered (ξ = 0) (c) correlated in a finite region

Figure 3.5: pictorial representation of correlation length

Iterating the RG transformation R(b; g) on the (possibly infinite) set of couplings g =
(g1, g2, g3, · · · ), at a special point g∗ = (g∗1, g

∗
2, g
∗
3, · · · ), it reaches a fixed point of the RG

satisfying
g∗ = R(b; g∗) (3.15)

and these points are called RG fixed points.

Now let us consider what happens to correlation length at fixed points. The correlation
length is defined by regions where spins on lattices are strongly correlated, and so largely
three states are possible: perfectly ordered, completely disordered, and correlated finite
region as shown in Fig.3.5, which is referred from [68]. By the RG procedure, the correlation
length is rescaled by

ξ(g′) =
ξ(g)

b
(3.16)

with arbitrary b > 1, and at any fixed point g = g′ = g∗ it yields

ξ(g∗) =
ξ(g∗)

b
. (3.17)

As b is finite and positive, the above relation is satisfied with either ξ =∞ or ξ = 0. That
is, at any RG fixed points a correlation length becomes infinity (strongly coupled) as shown
in Fig.3.5 (a) or vanishes (completely decoupled) as shown in Fig.3.5 (b). For the infinite
correlation length the fixed points are considered as critical points with continuous phase
transitions and are called critical fixed points, and for the zero correlation length the fixed
points are called trivial fixed points. In general, the RG transformation has more than two
fixed points or even a continuum of fixed points forming a certain manifold in coupling
space.
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3.3 General Properties of RG Flow

As we are interested in fixed points, let us consider an infinitesimal variation near the fixed
point g∗ such as

δg′ ≡ g′ − g∗ = R(b; g)−R(b; g∗), (3.18)

for linear order in δg we can express it in the linearized differential form

δg′i =
∂Ri(b; g)

∂gj

∣∣∣∣
g∗
δgj = Rij(b; g

∗)δgj (3.19)

which is called the linearized RG flow in the vicinity of the RG fixed point g∗, and where
R(b; g∗) is a matrix in coupling space and takes a different form for each fixed points.
Local behaviour of the RG flow in the vicinity of a fixed point can be roughly predicted or
classified by determining the eigenvalues of the matrix R(b; g). In general we do not have
any constraints on the R(b; g) to be diagonalized, so we consider the matrix R(b; g) with
left and right eigenvectors. For our purpose let us take only the left eigenvectors vTα and
the corresponding eigenvalues λα(b). By definition we obtain

vTαR(b; g∗) = vTαλα(b), (3.20)

and by projecting the coupling constant δg onto the left eigenvector vTα of the matrix
R(b; g∗) we take

uα = vTα δg =
∑
i

vα,iδgi (3.21)

where uα are special linear combination of the coupling constants and called scaling vari-
ables, and under the RG transformation, we have

u′α = uTαδg
′ = vTαR(b; g∗)δg = λα(b)vTα δg = λα(b)uα. (3.22)

As mentioned the RG transformation R(b; g) holds semigroup properties and so two RG
transformations yield

R(b′;R(b; g)) = R(b′b; g) = R(bb′; g) = R(b;R(b′; g)). (3.23)

This implies that the transformation matrices associated with the linearized RG flow near
a given fixed point satisfy

R(b; g∗)R(b′; g∗) = R(bb′; g∗) = R(b′; g∗)R(b; g∗). (3.24)

27



Since the matrices R(b; g∗) and R(b′; g∗), which have different values b commute in (3.24),
the eigenvectors vTα are independent of b and then (3.24) is expressed in terms of eigenvalues

λα(b)λα(b′) = λα(bb′). (3.25)

This has the solution as follows
λα(b) = byα (3.26)

where the exponent yα is independent of b and is called the renormalization group eigen-
values associated with the scaling variables uα. Then (3.22) can be rewritten as

u′α = byαuα (3.27)

or be expressed in the differential form as

duα
dl

= yαuα. (3.28)

where u∗α = 0 from uα =
∑

i vα,i(gi − g∗i ). As we started by obtaining the linearized RG
flow (3.19) in the vicinity of the fixed point, the subsequent results (3.27) or (3.28) are
taken into account for the linear level, and so they give the linear level predictions about
growing or decaying properties of the scaling variables of uα. Then the local behaviours of
uα in the vicinity of a fixed point g∗ can be classified into three cases due to a sign of the
yα as follows

• yα > 0 : scaling variables uα are called relevant
the small initial deviation of uα from the fixed point grows exponentially upon iter-
ating the RG so that the RG flow is repelled from the fixed point

• yα < 0 : scaling variables uα are called irrelevant
the small initial deviation of uα from the fixed point decays upon iterating the RG

• yα = 0 : scaling variables uα are called marginal
the RG flow in coupling space can approach (marginally irrelevant) a fixed point or
flow away (marginally relevant) from a fixed point; the local behaviour of the RG
flow is determined by considering higher orders in the coupling constants
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Chapter 4

Review of Holographic
Renormalization

In this chapter, we seek a comprehensive understanding by reviewing holographic renor-
malization for the AdS spacetime constructed in [81]. From a holographic perspective, we
might expect that the two-point correlation function at the boundary of the spacetime can
be written as

〈O(x)O(0)〉 = − δ2Son-shell

δΦ(0)(x)δΦ(0)(0)

∣∣∣∣
Φ(0)=0

, (4.1)

but this yields infinite answers due to the diverging on-shell action as r goes to infinity.
Thus the purpose of holographic renormalization is to formulate well-defined holographic
correlation functions. Inspired by field theoretical renormalization, holographic renormal-
ization follows the procedure:

1. To compute the most general asymptotic solutions

2. To regulate the divergence by restricting the radial coordinate to have a finite range

3. To add suitable covariant counterterms

4. To get renormalized on-shell action

Here we investigate each steps and briefly demonstrate the results for the one point func-
tion.
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General Asymptotic Solutions

As discussed in chapter 2, the general form of the asymptotic solution for AdS spacetime,
which is expanded near conformal boundary, becomes

ds2 = Gµνdx
µdxν =

dρ2

4ρ2
+

1

ρ
gij(x, ρ)dxidxj,

g(x, ρ) = g(0) + · · ·+ ρd/2g(d) + h(d)ρ
d/2 log ρ+ · · · (4.2)

where l2 = 1 is taken. For matter fields in the bulk of spacetime, the equation of motions
takes the second order differential equation, and two independent solutions associated with
ρm and ρm+n are yielded in asymptotic region. Then the general form of the bulk fields
can be written as

F(x, ρ) = ρm
(
f(0)(x) + f(2)(x)ρ+ · · ·+ ρn(f(2n)(x) + log ρf̃(2n)(x)) + . . .

)
(4.3)

where n and 2m are non-negative integers. With this ansatz, solving the equation of mo-
tions iterately for a small value of ρ (i.e. the boundary is at ρ = 0), f(2k)(x), where k < n,

and f̃(2n)(x) are uniquely determined by f(0)(x). While f(2n)(x) is not determined by the
near-boundary analysis, but is given by the Dirichlet boundary condition. Later, f(0)(x) is

interpreted as the source for field theory, and f̃(2n) is related to conformal anomalies [81].

Regularization

Here we compute the on-shell action with these asymptotic solutions. We first set up
the boundary of the spacetime in a range ρ ≥ ε, where ε is very small, and compute the
boundary term at ρ = ε. Then as ε → 0, a finite number of diverging terms are isolated,
and the on-shell action takes the form

Sreg[f(0); ε] =

∫
ρ=ε

d4x
√
g(0)

[
ε−νa(0) + ε−(ν+1) a(2) + . . .− log ε a(2ν) +O(ε0)

]
(4.4)

where ν is a positive number and only depends on the scale dimension of the dual operator,
and a(2k) becomes a function of f(0).
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Constructing Counterterms

To remove the divergence in the on-shell action, the counterterm can be constructed as

Sct[F(x, ε); ε] = −divergent terms of Sreg[f(0); ε] (4.5)

where f(0) is reexpressed by F(x, ε), which is evaluated at the regulated surface ρ = ε, via
f(0) = f(0)(F(x, ε); ε) in (4.3). That is, the coefficients a(2k) are inverted to a(2k)(f(0)(x)) =
a(2k)(F(x, ε), ε).

Renormalized On-Shell Action

By adding the counterterms, the subtraction action is defined as

Ssub[F(x, ε); ε] = Sreg[f(0); ε] + Sct[F(x, ε); ε], (4.6)

and by taking the limit ε→ 0, the renormalized action is obtained

Sren[f(0)] = lim
ε→0

Ssub[F ; ε]. (4.7)

From this renormalization process, the one point function of the operator OF is defined by
the renormalized action

〈OF 〉s =
1
√
g0

δSren

δf(0)

= lim
ε→0

(
1

εd/2−m
1
√
γ

δSsub

δF(x, ε)

)
(4.8)

where the second term indicates that its calculation is performed by using the subtraction
action and is taken to the limit of ε→ 0.

One Point functions

Supposing the gravitational action S[Φ, Aµ, Gµν , . . .], the one point function is defined by
using the renormalized action Sren, and each of them are expressed as

Φ→ 〈O(x)〉s =
1

√
g(0)(x)

δSren

δΦ(0)(x)
∼ φ(2∆−d)(x), (4.9)

Aµ → 〈Ji(x)〉s =
1

√
g(0)(x)

δSren

δAi(0)(x)
∼ Ai(x), (4.10)

Gµν → 〈Tij(x)〉s =
2

√
g(0)(x)

δSren

δgij(0)(x)
∼ g(d)ij(x) (4.11)
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where O is the operator of the field theory, Ji is the boundary symmetry current which
couples to the bulk gauge field Aµ, and Tij is the boundary stress energy tensor that couples
to the boundary metric g(0)ij. Here φ,Ami, and g(d)ij are the asymptotic solutions of Φ, Aµ,
and Gµ calculated at the boundary of the spacetime, and are dual to 〈O(x)〉s, 〈Ji(x)〉s, and
〈Tij(x)〉s in field theory respectively.
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Chapter 5

Holographic Renormalization in
Asymptotically Flat Spacetime

5.1 Introduction

As mentioned in the introduction, the holographic correspondence (gauge/gravity corre-
spondence) can be interpreted as a UV/IR connection, which means that a UV divergence
of the correlation function in field theory corresponds to an IR divergence of the gravi-
tational action at the boundary of the spacetime. In field theory, the way to remove the
divergence is known as the renormalization method, which is studied in detail in appendix
B. On the other hand, in gravity theory, for asymptotically AdS spacetimes an algorithm
to generate counterterms removing the divergence of the action had been found [11, 61, 36],
but for asymptotically Minkowski spacetimes a unique way to construct the counterterms
was not known. The reason can be found in different asymptotic behaviours of those
spacetimes. As seen in previous chapters, for the AdS spacetime the general asymptotic
solutions, expanded near the conformal boundary, are obtained by solving the decomposed
Einstein equations at the boundary of a spacetime (in chapter 2), and the counterterms
are automatically formulated from these asymptotic solutions (in chapter 4). However,
this method, i.e. boundary analysis of spacetime, is of little benefit to asymptotically
Minkowski spacetimes, because their asymptotic solutions are not fixed by the Einstein
equations. This makes it difficult to construct counterterms, as discussed in chapter 2.
Instead, it seems to be more relevant for asymptotically Minkowski spacetimes to obtain
the counterterms by solving the differential equations for each boundary condition.

Furthermore, in the process of the holographic renormalization, it is expected that the
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holographic correlation function is obtained from the gravitational action, and so build-
ing counterterms becomes a crucial factor[81]. The importance of the counterterm is also
revealed in gravity theory by involving conserved charges of a spacetime. From the bound-
ary stress tensor formula, which will be discussed below, the counterterms participate
in yielding conserved quantities associated with the boundary action, which includes a
Gibbons-Hawking term. This chapter is concerned with both of these rationales for coun-
terterms, but since the dual field theory of the Minkowski spacetime has not been found
yet, we focus on checking our counterterm solution associated with the conserved quanti-
ties. That is, we obtain the counterterm solution for the given differential equations, which
is the procedure expected to be the basis for yielding well-defined correlation functions in
the future, and continue to check if our counterterm solution yields well-defined conserved
quantities via the boundary stress tensor.

Mann and Marolf [63] suggested an algebraic equation in the components of K̂ab such
as

Rab = K̂abK̂ − K̂ c
a K̂cb (5.1)

where Rab is the Ricci tensor of hab induced on ∂M, where hab is the induced metric
defined at the boundary of the spacetime, and K̂ is the trace of K̂ab contracted with hab.
The motivation behind Eq. (5.1) comes from the Gauss-Codazzi relation

Rabcd = RRef
abcd +KacKbd −KadKbc (5.2)

where Rabcd and RRef
abcd are respectively the Riemann tensor on ∂M and on the bulk space-

time M. For an asymptotically flat spacetime RRef
abcd obviously vanishes. Replacing Kab

with a tensor K̂ab and contracting (5.2) with hcd yields (5.1). The counterterm K̂ab is
inserted into the action

S =
1

16πG

∫
M

√
−gR− 1

8πG

∫
∂M

√
−hK +

1

8πG

∫
∂M

√
−hK̂ (5.3)

where the first two terms are the Einstein-Hilbert and the Gibbons-Hawking terms re-
spectively. It has been proven [63] that this counter term renders the action finite on
asymptotically flat spacetimes and is stationary under metric variations for two standard
asymptotic hypersurfaces, respectively referred to as “cylindrical” and “hyperbolic” bound-
ary spacetimes (∂M, h).

The boundary stress tensor is defined as the functional derivative of the on-shell action
with respect to hab, which takes the form

T πab =
2√
−h

δS

δhab
=

1

8πG

(
πab − π̂ab

)
(5.4)
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where hab is the induced metric on the asymptotic boundary, πab = Kab − Khab is the
conjugate momentum of the gravitational field, and π̂ab is an analogous contribution from
the counterterm K̂. Then the conserved charge associated with the Killing vector ξa via
(5.4) in cylindrical coordinates is

Q[ξ] =

∮
Cr

dn+1x
√
γCru

a
CrT

π
abξ

a (5.5)

in (n+3) dimensions, where γ is the trace of the induced metric on the r = const. boundary
at t = const., and Cr is a Cauchy surface within a constant r hypersurface Hr such that
C = limr→∞Cr is a Cauchy surface in the cylindrical boundary H, and ua is a timelike
unit vector normal to C in Hr.

In practice, however, the variation of the action has additional terms as a consequence
of the definition (5.1); these are represented by ∆ab and must be added to eq. (5.4).
Despite this, we shall demonstrate that the quantities ∆ab do not modify either conserved
quantities as given by (5.5) or the conservation of the boundary stress-energy for cylindrical
boundary conditions. Investigation of the connection between the boundary stress energy
in (5.4) with the counter term definition (5.1) indicated that the extra term ∆ab vanishes
for higher than 4-dimensional spacetime and makes no contribution to the conserved charge
for 4-dimensional spacetime [64]. These computations were carried out using hyperboloid
coordinates for the boundary of the asymptotically flat spacetime, compatible with previous
studies [13, 12, 6]. Specifically the conserved charges were shown to agree [64] with those
defined by Ashtekar and Hansen [6].

Our concrete objective in this chapter is to investigate the boundary stress tensor (5.4)
associated with the Mann-Marolf counterterm for cylindrical boundary conditions. As the
structure of the boundary and the falloff rates of the metric components differ from those in
the hyperbolic case, our aim is to understand the role played by ∆ab in the context of defin-
ing a boundary stress-energy and conserved charges. As many spacetimes are commonly
described in coordinates that asymptote to cylindrical ones, using the cylindrical boundary
condition thus has great practical advantages for computation. By contrast, hyperboloid
coordinates are rather impractical insofar as they require a non-trivial transformation of
the coordinates of most asymptotically flat metrics.

With the same purpose, Astefanesei, Mann, and Stelea made some preliminary investi-
gations using cylindrical coordinates, but considered only leading order fall-off conditions
on components of the metric [9]. This is not sufficient for understanding the role played
by ∆ab in the asymptotically flat boundary counterterm approach using (5.1).

We begin with defining an (n+ 3)-dimensional asymptotically flat and static spacetime
in cylindrical coordinates, whose metric functions fall off at least as fast as r−(n+2). We then

35



compute ∆ab as a power series in 1/r up to the relevant fall off levels that could potentially
affect the conserved charges. We find that i) to leading order, ∆ab is manifestly zero for
arbitrary dimensions, ii) the first sub-leading order of ∆ab for n = 1 is zero, iii) ∆ab does not
vanish for n > 1, but iv) its non-vanishing does not affect conserved quantities. In addition,
we find that for n ≥ 2 manifestly DaTab = 0, but for n = 1 satisfying DaTab = 0 requires
a condition between higher-order coefficients in the metric. Finally, we show explicitly
how the conserved quantity formula (5.5) associated with the counterterm (5.1) works in
(n+ 3)-dimensional static spacetime.

This chapter proceeds as follows. In section 5.2, we review a variation of the action and
the boundary stress tensor demonstrated already in [63, 64], and introduce our definition of
asymptotic flatness in the cylindrical coordinates. In section 5.3, we obtain the solution for
MM-counterterm by solving decomposed Einstein equations, and then in section 5.4, with
the counterterm solution we find ∆ab and investigate how the non-zero value of ∆ab modifies
the conserved quantity formula (5.5). Also in section 5.5 we check the conservation of the
boundary stress tensor T ab in a sense that DaT ab = 0. In section 5.6, we provide explicit
examples of how to compute conserved charges in (n+ 3)-dimensional static spacetime. In
section 5.7, we discuss the results.

5.2 Preliminaries

5.2.1 A Variation of the action and the Boundary Stress Tensor

In this section, we start with the action (5.3). We compute the variation of the action with
respect to hab and find the form of the boundary stress tensor.

Taking a variation of the action with respect to the metric and eliminating the equation
of the motion, we get

δS =
1

16πG

∫
∂M

√
−h
[(
πab + habK̂ − 2K̂ab

)
δhab + 2habδK̂ab

]
(5.6)

where πab = Kab−Khab, π̂ab = K̂ab− K̂hab. To express δK̂ab in terms of δhab, we take the
derivation of (5.1) with respect to hab

δRcd = δK̂abL
ab

cd +

(
K̂cdK̂mn − K̂cmK̂nd

)
δhmn (5.7)

where L ab
cd implies

L ab
cd = habK̂cd + δac δ

b
dK̂ − δac K̂b

d − δbcK̂a
d . (5.8)
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Using the identity
(L−1) mn

ab (L) cd
mn = δcaδ

d
b , (5.9)

(5.7) is changed to

δK̂ab = (L−1) cd
ab

[
δRcd +

(
K̂cdK̂

kl − K̂k
c K̂

l
d

)
δhkl

]
, (5.10)

and then (5.6) is rearranged to

δS =
1

16πG

∫
∂M

√
−h
[(
πab − π̂ab − K̂ab + 2L̃cd

(
K̂cdK̂

ab − K̂a
c K̂

b
d

))
δhab + 2L̃abδRab

]
(5.11)

where π̂ab = K̂ab − habK̂, and L̃ab indicates

L ab
cd = habK̂cd + δac δ

b
dK̂ − δac K̂b

d − δbcK̂a
d , (5.12)

L̃ab = hcd(L−1) ab
cd . (5.13)

Using the fact that

δRab = −1

2
hklDaDbδhkl −

1

2
hklDkDlδhab + hklDkD(aδhb)l (5.14)

and doing integration by parts, (5.11) becomes

δS =
1

16πG

∫
∂M

√
−h
[
πab − π̂ab − K̂ab + 2L̃cd

(
K̂cdK̂

ab − K̂a
c K̂

b
d

)
−D2L̃ab − habDkDlL̃kl +Dk

(
DaL̃kb +DbL̃ka

)]
δhab. (5.15)

where Da is a covariant derivative compatible with hab defined on an n + 2 dimensional
hypersurface. If we define ∆ab as

∆ab = K̂ab−2L̃cd
(
K̂cdK̂

ab−K̂a
c K̂

b
d

)
+D2L̃ab+habDkDlL̃kl−Dk

(
DaL̃kb+DbL̃ka

)
, (5.16)

(5.15) is written as

δS =
1

16πG

∫
∂M

√
−h
(
πab − π̂ab −∆ab

)
δhab (5.17)
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and this form of the variation of the action yields the boundary stress tensor, which is
defined as the functional derivative of the on-shell action with respect to hab, associated
with MM-counterterm

Tab :=
2√
−h

δS

δhab
=

1

8πG

(
πab − π̂ab −∆ab

)
(5.18)

where only T πab, which indicates the first two terms in the right side, is expected to yield
conserved charges. The explicit form of ∆ab will be obtained in section 5.4.

5.2.2 Asymptotic Flatness

Adopting an approach to defining asymptotic flatness similar to that in hyperbolic coordi-
nates [13] [12], we define a spacetime (M, g) in cylindrical coordinates and confine ourselves
to this spacetime throughout this chapter. Assuming that a static spacetime (M, g) is ra-
dially smooth of order m at spatial infinity in (n + 3) dimensions, the components of the
metric take the asymptotic form

gµν = ηµν +
m∑
k=1

l
(k)
µν (ηA/r)

rn+k−1
+ f (m+1)

µν (r, ηA) (5.19)

where n ≥ 1, r is a radial coordinate, and ηA are angular coordinates associated with the
metric µ

(0)
AB on the unit sphere Sn+1, and l

(k)
µν is C∞ in ηA/r and f (k) = O(1/rm). Defining

functions wa(ηA) at t = const. such that

xa

r
= wa(ηA), dxa = wadr + rwa,Adη

A, (5.20)

(5.19) transforms into

ηµνdx
µdxν = −dt2 + dr2 + r2µ

(0)
ABdη

AdηB,

γ̃(k) = −l(k)
tt , α̃(k) = l

(k)
ab w

awb, J
(k)
A = l

(k)
ab w

awb,A, µ
(k)
AB = l

(k)
ab w

a
,Aw

b
,B (5.21)

in turn yielding the explicit form

ds2 = −
(

1 +
m∑
k=1

γ̃(k)(ηA)

rn+k−1
+O

(
1

rm+1

))
dt2 +

(
1 +

m∑
k=1

α̃(k)(ηA)

rn+k−1
+O

(
1

rm+1

))
dr2

+ 2

( m∑
k=1

J
(k)
A (ηA)

rn+k−1
+O

(
1

rm+1

))
rdrdηA + r2

(
µ

(0)
AB +

m∑
k=1

µ
(k)
AB(ηA)

rn+k−1
+O

(
1

rm+1

))
dηAdηB

(5.22)
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where γ̃(k), α̃(k) are smooth functions, and J
(k)
A are smooth vector fields, and µ

(1)
AB, µ

(2)
AB are

smooth tensor fields on Sn+1. The symbols O(r−(m+1)) refer to terms that fall-off at least
as fast as r−(m+1) as one approaches spacelike infinity, i.e., r → +∞ with fixed η. Without
loss of generality, we find it convenient to substitute(

1 +
m∑
k=1

α̃(k)

rn+k−1

)
=

(
1 +

m∑
k=1

α(k)

rn+k−1

)2

+O
(

1

rm+1

)
(5.23)

in (5.22), and likewise for the gtt-component ( γ̃ changes to γ ). In order to simplify the

metric, we first try to remove J
(1)
A in (5.22) by using a coordinate transformation

ηA = η̄A +
1

rn
G(1)A(η̄B), r = r̄, t = t,

dηA = dη̄A +
1

rn
G

(1)A
,B dη̄B − n

rn+1
G(1)Adr. (5.24)

Applying (5.24) into (5.22), the leading term of the grA-component is eliminated by choos-
ing

J
(1)
A = nG(1)Bµ

(0)
AB, (5.25)

and this allows us to set J
(1)
A = 0 in (5.22). Subsequently we get rid of α(2) via the additional

coordinate transformation :

r = r̄ +
1

r̄n
F (2)(ηA),

dr = dr̄ − n 1

r̄n+1
F (2)dr̄ +

1

r̄n
F

(2)
,B dη

B. (5.26)

Plugging these into (5.22), the 1/r̄n+1-term in dr̄2 can be set to zero via

α(2) = nF (2) (5.27)

where the leading term in rdrdηA is not affected. Generalizing these coordinate transfor-
mations to include higher orders of 1/r yields

ηA = η̄A +
1

r̄n+k−1
G(k)A, r = r̄ +

1

r̄n+k−1
F (k+1) (5.28)

where these transformations are sequentially applied to the above to the metric. We can
then show that

J
(1)
A = J

(2)
A = · · · = J

(m)
A = 0,

α(2) = α(3) = · · · = α(m) = 0. (5.29)
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We finally obtain the simplified form of the metric

ds2 =

(
1 +

α

rn

)2

dr2 −
(

1 +
γ(1)

rn
+
γ(2)

rn+1
+O

(
1

rn+2

))2

dt2

+ r2

(
µ

(0)
AB +

1

rn
µ

(1)
AB +

1

rn+1
µ

(2)
AB +O

(
1

rn+2

))
dηAdηB,

which we rewrite as

ds2 =N2dr2 + habdx
adxb

=

(
1 +

α

rn

)2

dr2 +

(
h

(0)
ab +

1

rn
h

(1)
ab +

1

rn+1
h

(2)
ab + · · ·

)
dxadxb (5.30)

where xa = (t, ηA) are coordinates on the (n + 2)-dimensional hypersurface compatible
with the metric hab, whose expansion is

habdx
adxb =−

(
1 +

γ(1)

rn
+
γ(2)

rn+1
+O

(
1

rn+2

))2

dt2

+ r2

(
µ

(0)
AB +

1

rn
µ

(1)
AB +

1

rn+1
µ

(2)
AB +O

(
1

rn+2

))
dηAdηB (5.31)

where a = t, A.

The boundary spacetime (∂M, h) is actually a one-parameter family (MΩ, gΩ) where
MΩ ⊂M andMΩ converges toM with increasing Ω. The boundary of a region (MΩ, gΩ)
for a certain value of Ω is described by (∂MΩ, hΩ). As Ω is varied, we get a family
of boundaries that provide a specific way of ‘cutting-off’ the space-time M, with the
asymptotic boundary obtained as Ω → ∞. In this chapter, our interest is in the class
“cylindrical cut-offs”, for which

Ωcyl = r +O(r0). (5.32)

Note that the metric (5.30) takes the same form as the metric in hyperbolic coordinates
[64] except that hab is further decomposed into a tt-component and angular components.
Naively one might expect that our result is easily derived from the hyperbolic case in ref.
[64] where Ω is taken to be

Ωhyp = ρ+O(ρ0). (5.33)

and the coordinate ρ is defined by ρ2 = r2− t2. However this is not true since in hyperbolic
coordinates the boundary metric (parametrized by a surface ρ=constant) is manifestly
covariant under a variation, whereas in cylindrical coordinates the boundary metric defined
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at r =constant does not change fully covariantly. In particular, the tt-component and
angular components in the induced metric hab have expansions in different orders of r.
For example, taking a variation with respect to each surface parameter, i.e. ρ or r, in
hyperbolic coordinates

∂

∂ρ

(
ρh

(0)
ab

)
= h

(0)
ab , (5.34)

whereas in cylindrical coordinates

∂

∂r

(
rh

(0)
ab

)
= h

(0)
ab + 2r2µ

(0)
ab . (5.35)

In (5.35) only the angular components transform covariantly in the (n+1) dimensional sub-
space, whereas in (5.34), all components transform covariantly. This distinction introduces
new features and subtleties in cylindrical coordinate that are rather more complicated than
the hyperbolic case.

5.3 The MM-Counterterm Solution

Here we find the MM-counterterm solution K̂ab in (5.1) by solving the decomposed Einstein
equations.

5.3.1 Solving Decomposed Einstein Equations

We start by setting up the spacelike normal vector nα on a cylindrical hypersurface
r =constant, where asymptotically r → ∞, and calculate its extrinsic curvature Kab.
At the boundary the decomposed Einstein equations are

⊥ (Rab) = Rab +Daab − aaab −£nKab −KKab + 2Kc
aKcb, (5.36)

⊥ (Racn
c) = DbKab −DaK = −Dbπab, (5.37)

Rabn
anb = −£nK −KabKab + (Dbab − abab), (5.38)

where ab and Kab are defined by

ab = na∇an
b, Kab = ∇anb − naab, (5.39)

and the last equation can be rewritten as

R−K2 +KabKab = 0. (5.40)
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For asymptotically flat spacetimes, the left-hand sides of (5.36) − (5.38) become zero as
r → ∞. Equation (5.36) yields Rab. The remaining equations yield constraint conditions
between the coefficients in the metric, e.g. α, γ(1) or γ(2). We solve the decomposed
Einstein equation in powers of 1/r, i.e. Rab = R(0)

ab + 1
rn
R(1)
ab + 1

rn+1R(2)
ab + · · · , where for

n = 1 the sub-sub-leading term must be separately dealt with from the n ≥ 2 cases. This
is because when n = 1 the product of two sub-leading terms has the same order as the
sub-sub-leading term (both of order of 1/r2), whereas for n ≥ 2 this product is of order of
1/r2n and falls off faster than the sub-sub-leading term (of order 1/rn+1) and so does not
contribute at that order.

The n ≥ 2 Case

In the asymptotically flat spacetime, which is described by the metric (5.30), the extrinsic
curvature is

Kab = rµ
(0)
ab +

1

rn−1

(
µ

(1)
ab −αµ

(0)
ab −

n

2r2
h

(1)
ab

)
+

1

rn

(
µ

(2)
ab −

(n+ 1)

2r2
h

(2)
ab

)
+O

(
1

rn+3

)
, (5.41)

and taking the trace of it yields

K =
(n+ 1)

r
− 1

rn+1

(
α(n+ 1) +

n

2
h(1)

)
− 1

rn+2

(n+ 1)

2
h(2) +O

(
1

rn+3

)
(5.42)

where K = Kabh
ab and h(m) = h

(m)
ab h

(0)ab for m = 1, 2. The acceleration becomes

aa =

(
0,− 1

rn
Daα

)
. (5.43)

The first decomposed Einstein equation (5.36) is

0 = R(0)
ab − nµ

(0)
ab +

1

rn

[
R(1)
ab −

(
nµ

(1)
ab − nαµ

(0)
ab −

n

2
h(1)µ

(0)
ab +DaDbα

)]
+

1

rn+1

[
R(2)
ab −

(
nµ

(2)
ab −

(n+ 1)

2
h(2)µ

(0)
ab +

(n+ 1)

2r2
h

(2)
ab

)]
+O

(
1

rn+3

)
, (5.44)

the second one (5.37) takes the form

0 =
1

rn+1

[
Daγ

(1) + nDaα−
n

2

(
Dbh

(1)
ab −Dah

(1)

)]
+

1

rn+2

[
Daγ

(2) − (n+ 1)

2

(
Dbh

(2)
ab −Dah

(2)

)]
+O

(
1

rn+3

)
, (5.45)
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and the last (5.38) gives

0 = R(0) − n(n+ 1)

r2
+

1

rn

[
R(1) −

(
− 2n(n+ 1)

r2
α− n(n+ 1)

r2
h(1) +

2n

r2
µ(1)

)]
+

1

rn+1

[
R(2) −

(
(2n+ 1)

r2
µ(2) − (n+ 1)2

r2
h(2)

)]
+O

(
1

rn+3

)
. (5.46)

Note that the asymptotic expansion of R(m)
ab is defined as

R(m)
ab =

1

2

(
DcDah

(m)
cb +DcDbh

(m)
ac −DcDch

(m)
ab −DaDbh

(m)

)
(5.47)

where m = 1, 2, and R(m) is the trace of (5.47)

R(m) = h(0)abR(m)
ab . (5.48)

As the solutions to the decomposed Einstein equations have to be consistent with each
other, we first compare the R’s, one from contracting Rab in (5.44) with h(0)ab and the
other from (5.46). We get

R(1) = 2D2α =
2n

r2
µ(1) − 2n(n+ 1)

r2
α− n(n+ 1)

r2
h(1), (5.49)

R(2) =
n

2r2
h(2) =

n

(n+ 2)r2
µ(2) = − 2

r2
γ(2). (5.50)

Now, taking the covariant derivative Da of (5.45) yields an expression for the Ricci scalar
via (5.47) − (5.48); this Ricci scalar agrees with (5.49) − (5.50) provided

D2γ(1) = 0, (5.51)

D2γ(2) = −(n+ 1)

r2
γ(2), D2µ(2) = −(n+ 1)

r2
µ(2), D2h(2) = −(n+ 1)

r2
h(2). (5.52)

The n = 1 Case

As mentioned, the n = 1 case needs to be separately dealt with from the case with general
n, because the sub-sub-leading order is expressed not only by the sub-sub-leading order
quantities, but also by a combination of the sub-leading order values.
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Setting n = 1 in the metric (5.30), the extrinsic curvature at the boundary of the
spacetime is

Kab = rµ
(0)
ab +

(
µ

(1)
ab −αµ

(0)
ab −

1

2r2
h

(1)
ab

)
+

1

r

(
µ

(2)
ab −αµ

(1)
ab +

α

2r2
h

(1)
ab −

1

r2
h

(2)
ab

)
+O

(
1

r2

)
, (5.53)

and its trace is

K =
2

r
− 1

r2

(
2α +

1

2
h(1)

)
+

1

r3

(
− h(2) +

α

2
h(1) +

1

2
h

(1)
ab h

(1)ab

)
+O

(
1

r4

)
. (5.54)

The acceleration aa becomes

aa =

(
0,−1

r
Daα +

1

r2
αDaα

)
. (5.55)

Solving the decomposed Einstein equations as the previous section, (5.36) yields

0 =R(0)
ab − µ

(0)
ab +

1

r

[
R(1)
ab −

(
µ

(1)
ab − αµ

(0)
ab −

1

2
h(1)µ

(0)
ab +DaDbα

)]
+

1

r2

[
R(2)
ab −

(
µ

(2)
ab +

1

r2
h

(2)
ab − h

(2)µ
(0)
ab − αµ

(1)
ab −

α

r2
h

(1)
ab + αh(1)µ

(0)
ab

− 1

2
h(1)µ

(1)
ab +

1

4r2
h(1)h

(1)
ab +

1

2
h

(1)
cd h

(1)cdµ
(0)
ab −

1

2r2
h(1)e

a h
(1)
eb − αDaDbα

− 1

2
(Dah

(1)
bd +Dbh

(1)
ad −Ddh

(1)
ab )Ddα

)]
+O

(
1

r3

)
, (5.56)

(5.37) takes the form

0 =
1

r2

[
Daγ

(1) +Daα−
1

2

(
Dbh

(1)
ab −Dah

(1)

)]
+

1

r3

[(
Daγ

(2) +
α

2
(Dbh

(1)
ab −Dah

(1))

+
1

2
h(1)c

a Dcα−
1

2
h(1)Daα− αDaγ

(1) − 2γ(1)Daγ
(1) − 3

4
h(1)cdDah

(1)
cd +

1

2
h(1)
eaDbh

(1)be

+
1

2
h(1)bcDch

(1)
ab −

1

4
h(1)
eaD

eh(1)

)
−
(
Dbh

(2)
ab −Dah

(2)

)]
+O

(
1

r4

)
, (5.57)

and (5.38) is

0 =R(0) − 2

r2
+

1

r

[
R(1) − 1

r2

(
− 4α− 2h(1) + 2µ(1)

)]
+

1

r2

[
R(2) − 1

r2

(
3µ(2) − 4h(2) − 3αµ(1) + 4αh(1) + 2α2 − 1

2
h(1)µ(1)

+
1

4
(h(1))2 +

7

4
h

(1)
ab h

(1)ab − r2µ
(1)
ab h

(1)ab + r2h(1)abDaDbα

)]
+O

(
1

r4

)
. (5.58)
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For the sub-leading order, we have the same consistency conditions (5.49) and (5.51) with
n = 1 from (5.56) − (5.58); specifically (5.49) is

R(2) = 2D2α = − 4

r2
α− 4

r2
γ(1), (5.59)

and from this, we can infer that

DaDbα = −αµ(0)
ab − γ

(1)µ
(0)
ab (5.60)

which is useful later in calculating ∆ab. In addition, we have

µ
(1)
ab = −2αµ

(0)
ab , Daγ

(1) = 0, (5.61)

by disposing of the supertranslation which requires the magnetic part of the four dimen-
sional Weyl tensor to be zero

kab = h
(1)
ab + 2αr2µ

(0)
ab − 2γ(1)u(0)

a u
(0)
b , (5.62)

tab = ε cd
a Dckbd = 0. (5.63)

Applying (5.49) and (5.61) to the sub-sub-leading order of (5.56) − (5.58), we obtain

− 1

r2
µ(2) − 6

r2
γ(2) +

2

r2
α2 +

8

r2
αγ(1) +

2

r2
(γ(1))2 = 0, (5.64)

− 1

r2
µ(2) − 8

r2
γ(2) +

6

r2
αγ(1) +

2

r2
(γ(1))2 −D2γ(2) + 2DaαD

aα = 0, (5.65)

D2γ(2) +
2

r2
γ(2) +

2

r2
αγ(1) +

2

r2
α2 − 2DaαD

aα = 0. (5.66)

5.3.2 Solving the MM-relation

For convenience, redefining K̂ab in terms of Q̂ab

K̂ab = rQ̂ab = rQ̂
(0)
ab +

1

rn−1
Q̂

(1)
ab +

1

rn
Q̂

(2)
ab + · · · , (5.67)

the relation (5.1) is rewritten as

r2(Q̂abQ̂− hcdQ̂acQ̂bc) = Rab. (5.68)
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and this is expanded as

R(0)
ab = nµ

(0)
ab , (5.69)

R(1)
ab = r2Q̂(1)µ

(0)
ab + (n− 1)Q̂

(1)
ab − 2u(0)

a u
(0)cQ̂

(1)
cb − µ

(1)µ
(0)
ab + µ

(1)
ab , (5.70)

(n ≥ 2), R(2)
ab = r2Q̂(2)µ

(0)
ab + (n− 1)Q̂

(2)
ab − 2u(0)

a u
(0)cQ̂

(2)
cb − µ

(2)µ
(0)
ab + µ

(2)
ab , (5.71)

(n = 1), R(2)
ab = r2Q̂(2)µ

(0)
ab − µ

(2)µ
(0)
ab + µ

(2)
ab − 2u(0)

a u
(0)cQ̂

(2)
bc +

r2

4
R(1)R(1)

ab

+
r2

4
R(1)µ

(1)
ab −

1

4
µ(1)R(1)

ab −
r2

2
R(1)
cd h

(1)cdµ
(0)
ab −

r2

4
R(1)c

a R
(1)
cb

+
1

4
R(1)
ae µ

(1)e
b +

1

4
µ(1)e

a R
(1)
eb −

1

4
µ(1)µ

(1)
ab +

1

2
µ

(1)
cd µ

(1)cdµ
(0)
ab −

1

4
µ(1)c

a µ
(1)
cb (5.72)

where the sub-sub-leading order is separately treated as noted above, and Q̂(i) is the trace
of Q̂

(i)
ab .

The n ≥ 2 Case

In order to solve the MM-relation, we need to solve (5.69) − (5.71) for Q̂ab. For n ≥ 2,
Q̂ab is uniquely determined as follows

Q̂
(0)
ab = µ

(0)
ab , (5.73)

Q̂
(1)
ab =

1

(n− 1)

[
R(1)
ab −

r2

2n
R(1)µ

(0)
ab −

r2

n(n+ 1)
R(1)
cd u

(0)cu(0)dµ
(0)
ab

+
2

(n+ 1)
u(0)
a u(0)cR(1)

cb +
1

2
µ(1)µ

(0)
ab − µ

(1)
ab

]
, (5.74)

Q̂
(2)
ab =

1

(n− 1)

[
R(2)
ab −

r2

2n
R(2)µ

(0)
ab −

r2

n(n+ 1)
R(2)
cd u

(0)cu(0)dµ
(0)
ab

+
2

(n+ 1)
u(0)
a u(0)cR(2)

cb +
1

2
µ(2)µ

(0)
ab − µ

(2)
ab

]
(5.75)

where ua is the timelike normal vector and µab is the pull-back metric of µAB for A,B =
θ1, ..., θn+1 on (n+ 1)-dimensional spacelike hypersurface, and Q̂

(m)
ab , R(m)

ab , u
(m)
a or µ

(m)
ab for

m = 0, 1, and 2 are lowered and raised by h
(0)
ab . As R(1)

ab is constructed in terms of the

pull-back metric components µ
(0)
ab and µ

(1)
ab , the first sub-leading order Q̂

(1)
ab has just angular

components, since α is independent of time, t. Since R(2)
ab has tt and angular components,
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Q̂
(2)
ab also is expressed by tt and angular components. Plugging (5.44) and (5.45) into (5.74)

and (5.75), we finally obtain

Q̂
(0)
ab =µ

(0)
ab , (5.76)

Q̂
(1)
ab =

1

(n− 1)

[
(n− 1)µ

(1)
ab + αµ

(0)
ab + γ(1)µ

(0)
ab +DaDbα

]
, (5.77)

Q̂
(2)
ab =

1

(n− 1)

[
(n− 1)

2r2
h

(2)
ab +

(n+ 2)

n
γ(2)µ

(0)
ab + nµ

(2)
ab

]
. (5.78)

The n = 1 Case

As seen in (5.70) and (5.72), when n = 1, Q̂ab does not show up in the MM-relation and
so is not directly obtainable. However we can still derive the trace, Q̂(i), which is

Q̂(1) =
1

2
R(1) +

1

2r2
µ(1), (5.79)

Q̂(2) =
1

2
R(2) +

1

2
R(2)
cd u

(0)cu(0)d +
1

2r2
µ(2) − r2

8
(R(1))2 +

1

2
R(1)
cd h

(1)cd

+
r2

8
R(1)cdR(1)

cd −
1

r2
µ(1)cdR(1)

cd +
1

8r2
(µ(1))2 − 3

8r2
µ

(1)
cd µ

(1)cd, (5.80)

where Q̂(i) = Q̂
(i)
abh

(0)ab for i = 1, 2, and the contracted with the timelike normal vectors,

Q̂
(i)
abu

(0)au(0)b, which is

Q̂
(1)
tt = 0, (5.81)

Q̂
(2)
tt =

1

2
R(2)
tt = − 1

r2
γ(2) +

2

r2
αγ(1). (5.82)

From these values, we can determine Q̂
(i)
ab up to certain ambiguities, and the forms of Q̂

(1)
ab

can be inferred as follows

Q̂
(1)
ab =β1R(1)

ab + r2β2R(1)µ
(0)
ab + λ1 µ

(1)
ab + λ2 µ

(1)µ
(0)
ab , (5.83)

where β1, β2, λ1 and λ2 are constants that arise from the ambiguities. They are not fixed
from (5.79) and (5.81), but are restricted to obey β1 +2β2 = 1

2
, and λ1 +2λ2 = 1

2
. Applying
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(5.60) and (5.61) into (5.83), we have

Q̂
(1)
ab = β1(−αµ(0)

ab − γ
(1)µ

(0)
ab +DaDbα) + 2β2(−2α− 2γ(1))µ

(0)
ab − 2αλ1µ

(0)
ab − 4αλ2µ

(0)
ab ,

= β1(−2α− 2γ(1))µ
(0)
ab + 2β2(−2α− 2γ(1))µ

(0)
ab − 2α(λ1 + 2λ2)µ

(0)
ab ,

= (β1 + 2β2)(−2α− 2γ(1))µ
(0)
ab − 2α(λ1 + 2λ2)µ

(0)
ab ,

= −2αµ
(0)
ab − γ

(1)µ
(0)
ab . (5.84)

As shown the above, regardless of the ambiguities we obtain a unique expression for Q̂
(1)
ab .

Arbitrarily fixing the values β1 = 1
2
, β2 = 0, λ1 = 1

2
and λ2 = 0, we can equivalently

express (5.84) as

Q̂
(1)
ab =

1

2
µ

(1)
ab +DaDbα. (5.85)

For the sub-sub-leading term, we guess a general form of Q̂
(2)
ab from (5.80) and (5.82)

Q̂
(2)
ab =κ1R(2)

ab + r2κ2R(2)µ
(0)
ab + κ3R(2)

cd u
(0)cu(0)du(0)

a u
(0)
b + r2κ4R(2)

cd u
(0)cu(0)dµ

(0)
ab

+ χ1 µ
(2)
ab + χ2 µ

(0)µ
(0)
ab −

r2

8
R(1)R(1)

ab +
r2

8
R(1)
ac R

(1)c
b −

1

2
R(1)
ac µ

(1)c
b

+
1

8
µ(1)µ

(1)
ab −

3

8
µ(1)
ac µ

(1)c
b . (5.86)

where κi for i = 1, .., 4 and χj for j = 1, 2 are additional ambiguities, related by the
equations

κ1 + 2κ2 =
1

2
, −κ3 + 2κ4 =

1

2
, κ1 + κ3 =

1

2
, χ1 + 2χ2 =

1

2
. (5.87)

As we have seen, ambiguities in the multiplication of the first order terms are nullified due
to (5.60) and (5.61). Expanding (5.86) we obtain

Q̂
(2)
ab = λ3µ

(2)
ab + λ4µ

(2)µ
(0)
ab −

3

2
γ(2)µ

(0)
ab −

1

r2
γ(2)u(0)

a u
(0)
b −

5

2
α2µ

(0)
ab +

2

r2
αγ(1)u(0)

a u
(0)
b (5.88)

where we have redefined λ3 = 2κ1 + χ1 and λ4 = χ2 − κ1. The ambiguities λ3 and λ4 will
be fixed at the end of the calculation of [∆ab](2) so that [∆ab](2) does not contribute to the

conserved quantities; it turns out λ3 = −1
2

and λ4 = 1
2
. Our solution for Q̂

(2)
ab then becomes

Q̂
(2)
ab = −1

2
µ

(2)
ab +

1

2
µ(2)µ

(0)
ab −

3

2
γ(2)µ(0)ab− 1

r2
γ(2)u(0)

a u
(0)
b −

5

2
α2µ

(0)
ab +

2

r2
αγ(1)u(0)au(0)b. (5.89)
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5.4 Explicit Form of ∆ab

With the definition of asymptotic flatness in (5.30), we investigate ∆ab by finding its
definite form with the solution of the MM-counterterm. Note that ∆ab is a remnant term,
obtained from subtracting π̂ab from the variation of the MM-counterterm in the action, and
so is totally expressed by the MM-counterterm solution K̂ab and its covariant derivatives.
Consequently, we shall see that ∆ab does not vanish entirely. We next consider the role
that the non-vanishing ∆ab plays with respect to conserved quantities.

5.4.1 Calculation of L̃(0)ab

L cd
ab is defined in (5.8) and is a shorthand expression for convenience to deal with terms

constituted of K̂ab’s. Our interest is to get L̃ab which is defined in (5.13). First we expand
L cd
mn and (L−1) mn

ab in powers of r

L cd
mn = L(0) cd

mn +
1

rn
L(1) cd

mn +
1

rn+1
L(2) cd

mn + · · · , (5.90)

(L−1)
mn

ab = (L−1)(0) mn

ab +
1

rn
(L−1)(1) mn

ab +
1

rn+1
(L−1)(2) mn

ab + · · · . (5.91)

Plugging them into the identity relation (5.9), the relation is satisfied if

(L−1)
(0) kl

ij L(0) mn

kl = δmi δ
n
j (5.92)

and

(L−1)
(1) pq

ij =− (L−1)
(0) kl

ij L(1) mn

kl (L−1)
(0) pq

mn , (5.93)

(n ≥ 2), (L−1)
(2) pq

ij =− (L−1)
(0) kl

ij L(2) mn

kl (L−1)
(0) pq

mn , (5.94)

(n = 1), (L−1)
(2) pq

ij =− (L−1)
(0) kl

ij L(2) mn

kl (L−1)
(0) pq

mn − (L−1)
(1) kl

ij L(1) mn

kl (L−1)
(0) pq

mn ,

(5.95)

where L(i) mn

kl can be directly read from (5.8)

L(0) kl

ij = rh(0)klµ
(0)
ij +

(n+ 1)

r
δki δ

l
j −

2

r
δk(iµ

(0)l
j) , (5.96)

L(1) kl

ij = r

(
h(0)klQ̂

(1)
ij + Q̂(1)δki δ

l
j − 2δk(iQ̂

(1)l
j) − h

(1)klµ
(0)
ij

)
+

1

r

(
2δk(iµ

(1)l
j) − µ

(1)δki δ
l
j

)
, (5.97)
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and for n ≥ 2

L(2) kl

ij = r

(
h(0)klQ̂

(2)
ij + Q̂(2)δki δ

l
j − 2δk(iQ̂

(2)l
j) − h

(2)klµ
(0)
ij

)
+

1

r

(
2δk(iµ

(2)l
j) − µ

(2)δki δ
l
j

)
,

(5.98)

and for n = 1

L(2) kl

ij = r

(
h(0)klQ̂

(2)
ij + Q̂(2)δki δ

l
j − 2δk(iQ̂

(2)l
j) − h

(2)klµ
(0)
ij − h(1)klQ̂

(1)
ij + 2δk(iQ̂

(1)
j)mh

(1)ml

− Q̂(1)
ab h

(1)abδki δ
l
j + h(1)kmh(1)l

mµ
(0)
ij

)
+

1

r

(
2δk(iµ

(2)l
j) − µ

(2)δki δ
l
j + µ(1)abµ

(1)
ab δ

k
i δ

l
j

− 2δk(iµ
(1)
j)mµ

(1)ml

)
. (5.99)

When n = 1 the sub-sub-leading order term is separately considered from that of general n,
because the combination of the sub-leading order terms contributes to the sub-sub-leading
order. From the definition (5.13), L̃ab expands as

L̃ab =

(
h(0)mn − 1

rn
h(1)mn − 1

rn+1
h(2)mn + · · ·

)
×
(

(L−1)(0) ab

mn +
1

rn
(L−1)(1) ab

mn +
1

rn+1
(L−1)(2) ab

mn + · · ·
)

= L̃(0)ab +
1

rn
L̃(1)ab +

1

rn+1
L̃(2)ab + · · · , (5.100)

where each order becomes

L̃(0)ab = h(0)mn(L−1)(0) ab
mn , (5.101)

L̃(1)ab = h(0)mn(L−1)(1) ab
mn − h(1)mn(L−1)(0) ab

mn , (5.102)

(n ≥ 2), L̃(2)ab = h(0)mn(L−1)(2) ab
mn − h(2)mn(L−1)(0) ab

mn , (5.103)

(n = 1), L̃(2)ab = h(0)mn(L−1)(2) ab
mn − h(2)mn(L−1)(0) ab

mn

− h(1)mn(L−1)(1) ab
mn + h(1)mlh

(1)n
l (L−1)(0) ab

mn . (5.104)

50



The n ≥ 2 Case

The inverse of (L)(0) cd

mn is

(L−1)
(0) ab
ij =

r

(n+ 1)

(
δai δ

b
j −

r2

2n
µ

(0)
ij h

(0)ab +
1

n
δai µ

(0)b
j +

1

n
δbiµ

(0)a
j

+
1

n(n− 1)
µ

(0)b
i µ

(0)a
j +

1

n(n− 1)
µ

(0)a
i µ

(0)b
j −

1

n(n− 1)
µ

(0)
ij µ

(0)ab

)
, (5.105)

and contracting (L)(0) cd

mn with h(0)ij, we simply get

(L−1)(0)ab = L̃(0)ab =
r

n(n+ 1)

(
(n− 1)

2
h(0)ab +

1

r2
µ(0)ab

)
. (5.106)

Once (L−1)
(0) ab
ij is calculated, we can subsequently obtain (L−1)

(1) pq
ij and (L−1)

(2) pq
ij from

the relation (5.93) − (5.94). Contracting them with h(0)ij and plugging into (5.102) −
(5.103), we have

L̃(1)ab =
r

n(n− 1)

(
r2Q̂(1)ab − r2

2
Q̂(1)h(0)ab − 2nr2

(n+ 1)2
Q̂(1)u(0)au(0)b +

1

2
µ(1)h(0)ab

+
2n

(n+ 1)2
µ(1)u(0)au(0)b − (n− 1)2

2(n+ 1)
h(1)ab − 2n

(n+ 1)r2
µ(1)ab

)
, (5.107)

and

L̃(2)ab =
r

n(n− 1)

(
r2Q̂(2)ab − r2

2
Q̂(2)h(0)ab − 2nr2

(n+ 1)2
Q̂(2)u(0)au(0)b − r2

(n+ 1)
Q̂(2)tth(0)ab

+
2r2

n(n+ 1)2
Q̂(2)ttu(0)au(0)b − (2n2 + n+ 1)r2

n(n+ 1)2
u(0)aQ̂

(2)b
t −

(2n2 + n+ 1)r2

n(n+ 1)2
Q̂

(2)a
t u(0)b

+
1

2
µ(2)h(0)ab +

2n

(n+ 1)2
µ(2)u(0)au(0)b − (n− 1)2

2(n+ 1)
h(2)ab − 2n

(n+ 1)r2
µ(2)ab

)
.

(5.108)
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As a result, we find

L̃(0)ab =
r

n(n+ 1)

[
(n+ 1)

2r2
µ(0)ab − (n− 1)

2
u(0)au(0)b

]
, (5.109)

L̃(1)ab =
r

n(n− 1)

[
r2

(n− 1)
DaDbα−(n− 1)

2r2
µ(1)ab +

(n2 + 1)

2(n− 1)r2
αµ(0)ab

+
(n2 + 1)

2(n− 1)r2
γ(1)µ(0)ab +

n

4r2
µ(1)µ

(0)
ab −

(n− 1)2

2(n+ 1)
αu(0)au(0)b

+
(n− 1)2

2(n+ 1)
γ(1)u(0)au(0)b − n(n− 1)2

4(n+ 1)2
µ(1)u(0)au(0)b

]
, (5.110)

L̃(2)ab =
r

n(n− 1)

[
(2n2 − 5n+ 3)

2(n+ 1)
γ(2)u(0)au(0)b−(n3 − 4n2 − 5n− 4)

2n(n− 1)(n+ 1)r2
γ(2)µ(0)ab

− n(n− 3)

2(n− 1)r2
µ(2)ab

]
. (5.111)

The n = 1 Case

In 4-dimensional spacetime, the identity relation (5.92) with L(0) kl

ij in (5.96) gives

(L−1)(0)ab = L̃(0)ab =
1

2r
µ(0)ab, (5.112)

and from this, we can find

(L−1)
(0)ab
ij =

r

2

(
δai δ

b
j +

r2

2
µ

(0)
ij u

(0)au(0)b

)
. (5.113)
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Then, L̃(i)ab for i = 1, 2 are expanded as

L̃(1)ab =(L−1)(1)ab − h(1)mn(L−1)(0)ab
mn

=
r

2

(
r2Q̂(1)ab − Q̂(1)µ(0)ab +

1

2r2
µ(1)µ(0)ab − 1

r2
µ(1)ab

)
, (5.114)

L̃(2)ab =(L−1)(2)ab − h(1)mn(L−1)(1)ab
mn − h(2)mn(L−1)(0)ab

mn + h(1)mlh
(1)n
l (L−1)(0)ab

mn

=− r

4

(
2Q̂(2)µ(0)ab + r2Q̂

(2)
tt h

(0)ab − 2r2Q̂(2)ab + 2r2u(0)aQ̂
(2)b
t −

1

r2
µ(2)µ(0)ab

+
2

r2
µ(2)ab − 2Q̂(1)

mnµ
(1)mnh(0)ab − 2r4(Q̂(1))2h(0)ab + r4Q̂(1)mnQ̂(1)

mnh
(0)ab

+ 2Q̂(1)µ(1)µ(0)ab + 3r4Q̂(1)Q̂(1)ab − 3Q̂(1)µ(1)ab − 2r4Q̂(1)acQ̂(1)b
c + 6Q̂(1)a

c µ(1)bc

− 2r2µ(1)Q̂(1)ab − 3r4

2
(Q̂(1))2u(0)au(0)b − r2Q̂(1)µ(1)u(0)au(0)b +

2

r2
µ(1)µ(1)ab

− 1

2
(µ(1))2h(0)ab + µ(1)mnµ(1)

mnh
(0)ab − 4

r2
µ(1)acµ(1)b

c

)
, (5.115)

and finally it becomes

L̃(0)ab =
1

2r
µ(0)ab, L̃(1)ab =

1

r
αµ(0)ab +

1

2r
γ(1)µ(0)ab, (5.116)

L̃(2)ab = − 1

4r
µ(2)ab +

1

2r
γ(2)µ(0)ab − r

4
γ(2)u(0)au(0)b +

13

4r
α2µ(0)ab

+
5

2r
αγ(1)µ(0)ab +

1

2r
(γ(1))2µ(0)ab +

r

2
αγ(1)u(0)au(0)b. (5.117)

5.4.2 Calculation of ∆ab

Recalling from (5.16) the form of ∆ab is

∆ab = K̂ab − 2L̃cd
(
K̂cdK̂

ab − K̂a
c K̂

b
d

)
+D2L̃ab + habDkDlL̃kl −Dk

(
DaL̃kb +DbL̃ka

)
,

and we expand ∆ab in powers of 1/r

∆ab = [∆ab](0) +
1

rn
[∆ab](1) +

1

rn+1
[∆ab](2) + · · · . (5.118)
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In order to calculate ∆ab, we need to expand the covariant derivative as

DaL̃kl =D(0)
a L̃(0)kl +

1

rn

(
D(0)
a L̃(1)kl +D(1)

a L̃(0)kl

)
+

1

rn+1

(
D(0)
a L̃(2)kl +D(2)

a L̃(0)kl

)
+

1

r2n
D(1)
a L̃(1)kl +O

(
1

rn+2

)
(5.119)

where D
(0)
a is a covariant derivative compatible with h

(0)
ab , and D

(0)
a and D

(i)
a for i = 1, 2 are

denoted as

D(0)
a L̃(i)kl = ∂L̃(i)kl + Γ(0)k

amL̃
(i)ml + Γ(0)l

amL̃
(i)mk (5.120)

D(i)
a L̃

(0)kl = Γ(i)k
amL̃

(0)ml + Γ(i)l
amL̃

(0)mk (5.121)

D(1)
a L̃(1)kl = Γ(1)k

amL̃
(1)ml + Γ(1)l

amL̃
(1)mk. (5.122)

In the above the connection is

Γ
(i)a
bc =

1

2
h(0)ae

(
Dbh

(i)
ce +Dch

(i)
be −Deh

(i)
bc

)
(5.123)

where D
(0)
a is simply denoted as Da. To simplify the terms having covariant derivatives in

∆ab, we use the commutation relation in appendix D.

The n ≥ 2 Case

Then we obtain the following values for each part of ∆ab (5.16). The sub-leading orders
become[

K̂ab − 2L̃cd(K̂cdK̂
ab − K̂a

c K̂
b
d)

](1)

=

r

n(n− 1)

[
n(n+ 1)

(n− 1)r4
αµ(0)ab +

n(n+ 1)

(n− 1)r4
γ(1)µ(0)ab +

n

2r4
µ(1)µ(0)ab +

(n+ 1)

(n− 1)
DaDbα

]
,

(5.124)[
D2L̃ab + habDkDlL̃kl −Dk(DaL̃kb +DbL̃ka)

](1)

=

r

n(n− 1)

[
− n(n+ 1)

(n− 1)r4
αµ(0)ab − n(n+ 1)

(n− 1)r4
γ(1)µ(0)ab − n

2r4
µ(1)µ(0)ab − (n+ 1)

(n− 1)
DaDbα

+DaDbγ(1) +
n2

(n+ 1)2
D2µ(1)u(0)au(0)b +

2n

(n+ 1)
D2αu(0)au(0)b

]
. (5.125)
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The sub-sub leading orders yield[
K̂ab − 2L̃cd(K̂cdK̂

ab − K̂a
c K̂

b
d)

](2)

=

r

n(n− 1)

[
− (n− 1)

2r2
h(2)ab +

(n2 + 1)

(n− 1)
µ(2)ab +

2(n3 + n2 + 3n+ 1)

n(n− 1)(n+ 1)r4
γ(2)µ(0)ab

]
, (5.126)[

D2L̃ab + habDkDlL̃kl −Dk(DaL̃kb +DbL̃ka)
](2)

=

r

n(n− 1)

[
(n− 1)

2r2
h(2)ab − (2n2 + n+ 1)

(n− 1)r4
µ(2)ab − (3r2 + 7n+ 4)

n(n− 1)r4
γ(2)µ(0)ab

+
(n3 − 2n2 − n− 2)

n(n− 1)(n+ 1)
DaDbγ(2)

]
. (5.127)

As a result, we find the leading order and the sub-leading orders to be

[∆ab](0) =0, (5.128)

[∆ab](1) =
r

n(n− 1)

[
DaDbγ(1) +

n2

(n+ 1)2
D2µ(1)u(0)au(0)b +

2n

(n+ 1)
D2αu(0)au(0)b

]
.

(5.129)

Indeed, that [∆ab](1) is non-zero is quite obvious, because from (5.16) the indices of the

first three terms in ∆ab contain only angular components (note K̂
(1)
ab = rQ̂

(1)
ab ), whereas

the last four terms (beginning with L̃
(1)
ab in (5.16) ) have both angular components and

tt-components. The angular parts all cancel out except for DaDbγ(1), but tt-component
terms remain.

At sub-sub-leading order we obtain

[∆ab](2) =
r

n(n− 1)2

[
(n3 − 2n2 − n− 2)

n(n+ 1)
DaDbγ(2) − (n3 + 8n2 + 5n+ 2)

n(n+ 1)r4
γ(2)µ(0)ab

− n(n+ 1)

r4
µ(2)ab

]
. (5.130)

In contrast to the sub-leading case, in the sub-sub-leading term both K̂
(2)
ab (= rQ̂

(2)
ab , given

in (5.78)) and L̃
(2)
ab (given in (5.111)) carry both tt and angular components. Here we

see similarities with the hyperbolic case [64], for which K̂
(2)
ab = ρh

(2)
ab and h(2) = 0 were

respectably obtained from the MM-relation and the decomposed Einstein equations. These
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require R(2) = 0, and yield [∆ab](2) = 0. For the cylindrical case we are considering, we

find that the terms associated with h
(2)
ab in K̂

(2)
ab and in L̃

(2)
ab cancel out in [∆ab](2), as shown

in appendix E. However, unlike the hyperbolic case, in the cylindrical case, h(2) breaks up
into µ(2) and γ(2) (explicitly h(2) = µ(2) + 2γ(2)); consequently the decomposed Einstein

equations imply R(2) is non-vanishing and contributes to K̂
(2)
ab . Indeed from eq. (5.50) we

see that R(2) can be expressed in terms of any one of h(2), µ(2), or γ(2); we have expressed
the result in terms of γ(2) in (5.78). The quantity γ(2) does not vanish, but remains in
(5.130).

The n = 1 Case

We also obtain each part of ∆ab (5.16), where for the sub-leading order it becomes[
K̂ab − 2L̃cd(K̂cdK̂

ab − K̂a
c K̂

b
d)

](1)

= 2r

(
1

r4
αµ(0)ab +

1

r4
γ(1)µ(0)ab +DaDbα

)
, (5.131)[

D2L̃ab + habDkDlL̃kl −Dk(DaL̃kb +DbL̃ka)
](1)

=

3r

2

(
− 1

r4
αµ(0)ab − 1

r4
γ(1)µ(0)ab −DaDbα

)
, (5.132)

and for the sub-sub-leading order it is[
K̂ab − 2L̃cd(K̂cdK̂

ab − K̂a
c K̂

b
d)

](2)

=
1

r

(
γ(2)u(0)au(0)a − 2αγ(1)u(0)au(0)b − 3

r4
µ(2)ab

+
1

r4
µ(2)µ(0)ab +

1

2r4
γ(2)µ(0)ab − 1

r4
αγ(1)µ(0)ab

)
, (5.133)[

D2L̃ab + habDkDlL̃kl −Dk(DaL̃kb +DbL̃ka)
](2)

=
1

r

(
− γ(2)u(0)au(0)a + 2αγ(1)u(0)au(0)b

+
1

r4
µ(2)ab − 1

2r4
µ(2)µ(0)ab − 1

r4
γ(2)µ(0)ab +

2

r4
αγ(1)µ(0)ab +

1

2r4
α2µ(0)ab +

1

2r4
(γ(1))2µ(0)ab

− r2

4
DaDbµ(2) − r2

2
DaDbγ(2) +

1

4
D2µ(2)µ(0)ab +

3

4
D2γ(2)µ(0)ab − 4r2DaαDbα− 5r2αDaDbα

− 3r2γ(1)DaDbα− 1

2
DeαDeαµ

(0)ab +
11

4
D2α2µ(0)ab +

13

4
D2(αγ(1))µ(0)ab

− 3r2

2
D2α2u(0)au(0)b − 5r2

4
γ(1)D2αu(0)au(0)b

)
. (5.134)
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Up to sub-leading order we find

[∆ab](0) = 0, and [∆ab](1) = 0, (5.135)

where we have used DaDbα = −αµ(0)
ab − γ(1)µ

(0)
ab , which can be inferred from D2α =

− 2
r2α− 2

r2γ
(1). The sub-sub-leading term is

[∆ab](2) = − 2

r3
µ(2)ab − 2

r3
γ(2)µ(0)ab − 4

r3
α2µ(0)ab − 6

r3
αγ(1)µ(0)ab − 4

r3
(γ(1))2µ(0)ab

+
9

2r
DeαDeαµ

(0)ab + rDaDbγ(2) − 5rDaαDbα− 3r

2
D2α2u(0)au(0)a − 5r

4
D2(αγ(1))u(0)au(0)b.

(5.136)

These results for n = 1 are commensurate with the hyperbolic case [64], which has mani-
festly vanishing [∆ab](0) and [∆ab](1), but non-vanishing [∆ab](2).

That we find ∆ab non-vanishing implies that the boundary stress tensor in cylindrical
coordinates generally takes the form Tab in (5.18) and not T πab in (5.4).

5.4.3 Conserved Quantities and ∆ab

Since the boundary stress tensor is described not by T πab but by Tab (due ∆ab 6= 0), we now
consider how ∆ab is related to conserved quantities as given in equation (5.5). Plugging
Tab = T πab −∆ab into (5.5), we see that ∆ab will contribute to conserved quantities via

Q∆[ξ] = − 1

8πG

∮
dn+1x

√
γua∆abξ

b. (5.137)

For n ≥ 2 we find that Q∆[ξ] = 0. The sub-leading term contributes

[Q∆](1) = − 1

8πG

∮
dn+1x

√
γu(0)a[∆ab]

(1)ξ(0)b,

=
r

8πG

1

(n− 1)(n+ 1)

∮
dn+1x

√
γ

(
n

(n+ 1)
D2µ(1) + 2D2α

)
,

= 0, (5.138)

where u(0)a = −δat and ξ(0)t = 1 has been used, and the total derivative on the closed
surface becomes zero. The sub-sub-leading order also makes no contribution, since from
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(5.130) we see that [∆ab]
(2) contracted with the timelike normal vector u(0)a vanishes, and

so [Q∆](2) obviously becomes zero.

For n = 1 [∆ab](1) = 0 and so only the sub-sub-leading term could possibly contribute.
Carrying out similar manipulations to the previous case, we get

[Q∆](2) = − 1

8πG

∮
d2x
√
γu(0)a[∆ab]

(2)ξ(0)b,

= − 1

8πG

∮
d2x
√
γ

(
3r

2
D2α2 +

5r

4
D2(αγ(1))

)
,

= 0, (5.139)

where u(0)a = −δat and ξ(0)t = 1 has been used, and the total derivative on the closed
surface becomes zero at the end. Indeed, this result is expected, because we required that
Q̂

(2)
ab not contribute to conserved charges.

Hence Q∆ = 0 even though ∆ab 6= 0. As a result the conserved quantity formula is of
the form (5.5) and is given only in terms of T πab.

5.5 Divergence of the Boundary Stress Tensor, DaTab

In [63], it was argued that the full boundary stress tensor is conserved in that DaTab = 0.
We reconsider this relation in view of the fact that ∆ab 6= 0.

Recall that the full boundary stress tensor, Tab, is

Tab = T πab −
1

8πG
∆ab. (5.140)

Expanding its divergence in a power series yields

DaTab =[DaTab](0) +
1

rn
[DaTab](1) +

1

rn+1
[DaTab](2) + · · ·

=

(
[DaT πab](0) − 1

8πG
[Da∆ab]

(0)

)
+

1

rn

(
[DaT πab](1) − 1

8πG
[Da∆ab]

(1)

)
+

1

rn+1

(
[DaT πab](2) − 1

8πG
[Da∆ab]

(2)

)
+ · · · (5.141)

where Da is the covariant derivative associated with hab.
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For n ≥ 2, we have

T πab =− r

8πG

[
1

rn

(
n

2r2
h

(1)
ab +

1

r2
γ(1)h

(0)
ab +

n

(n− 1)
α(1)µ

(0)
ab +

1

(n− 1)
γ(1)µ

(0)
ab +

1

(n− 1)
DaDbα

)
+

1

rn+1

(
n(n+ 1)

2(n− 1)r2
h

(2)
ab +

(n+ 1)(n+ 2)

n(n− 1)
γ(2)µ

(0)
ab −

(n+ 1)

(n− 1)r2
γ(2)u(0)

a u
(0)
b

)
+ · · ·

]
,

(5.142)

and plugging this and (5.128) − (5.130) into (5.141), we get

DaTab =
1

rn

(
1

8πG

1

(n− 1)r
Dbγ

(1) − 1

8πG

1

(n− 1)r
Dbγ

(1)

)
+

1

rn+1

(
0− 0

)
+ · · · ,

= 0. (5.143)

where Da is associated with h
(0)
ab . This verifies that the full boundary stress tensor, Tab, is

conserved.

For n = 1, we take

T πab =− r

8πG

[
1

r

(
− 2

r2
γ(1)u(0)

a u
(0)
b

)
+

1

r2

(
1

2
µ

(2)
ab +

3

2
γ(2)µ

(0)
ab −

23

2
α2µ

(0)
ab

− 5αγ(1)µ
(0)
ab − (γ(1))2µ

(0)
ab −

1

2r2
µ(2)u(0)au(0)b +

3

r2
γ(2)u(0)au(0)b

+
4

r2
αγ(1)u(0)au(0)b +

15

r2
α2u(0)au(0)b +

4

r2
(γ(1))2u(0)au(0)b

)
+ · · ·

]
. (5.144)

and substituting this with (5.136) into (5.141), it yields

DaTab =
1

r

(
0− 0

)
+

1

r2

[
1

8πG

(
− 22

r
αDbα−

3

2r
γ(1)Dbα

)
− 1

8πG

(
3

r
Dbγ

(2) − 14

r
αDbα−

20

r
γ(1)Dbα

)]
+ · · · ,

=
1

8πG

1

r2

(
− 3

r
Dbγ

(2) − 8

r
αDbα +

37

2r
γ(1)Dbα

)
(5.145)

where the second sub-leading order does not vanish. To be conserved, we require

Db

(
3γ(2) + 4α2 − 37

2
αγ(1)

)
= 0 (5.146)

and this relation can be satisfied by applying (5.64) − (5.66).
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5.6 (n + 3)-dimensional Static Spacetime

In this section, we apply the boundary stress tensor method to (n+ 3)-dimensional static
spacetime. We show that ∆ab makes no contribution with respect to the conserved quan-
tities and obtain the conserved charges by using (5.5).

We examine the boundary stress tensor method associated with the MM-counterterm in
(n+ 3)-dimensional static spacetime. In this spacetime, we check that ∆ab = 0, and prove
that the boundary stress tensor yields conserved charges agreed with the usual definition
[5] [71].

From the Schwarzschild-Tangherlini solution (also in [71]), the metric is

ds2 = −
(

1− µ

rn

)
dt2 +

(
1− µ

rn

)−1

dr2 + r2dΩ2
n+1, (5.147)

where µ is related to the mass M

M =
(n+ 1)An+1

16πG
µ, An+1 =

2π(n+2)/2

Γ((n+ 2)/2)
, (5.148)

and comparing (5.147) with our metric (5.30), they are related by

γ(1) = −1

2
µ, α =

1

2
µ, γ(2) = 0, µ

(1)
AB = µ

(2)
AB = 0. (5.149)

Substituting these values to the results (5.129) − (5.130) for n > 1 and (5.136) for n = 1, it
is straightforwardly proved that [∆ab](i) = 0 for i = 1, 2 for a general n. Since ∆ab vanishes
for n > 1, the boundary stress tensor becomes

Tab = − 1

8πG

1

rn−1

(
n

2r2
h

(1)
ab +

1

r2
γ(1)h

(0)
ab +

n

(n− 1)
αµ

(0)
ab +

1

(n− 1)
γ(1)µ

(0)
ab +

1

(n− 1)
DaDbα

)
,

(5.150)

and the conserved charge is directly obtained

Q[ξt] =
1

8πG

∫
dn+1x

√
γ(0)u(0)tT

(1)
tt ξ

(0)t,

=
1

8πG
rn+1An+1(−1)

(
− (n+ 1)

2rn+1
µ

)
,

=
(n+ 1)

(n+ 2)
M. (5.151)
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For n = 1 the boundary stress tensor has the form

Tab = − 1

8πG

(
1

2r2
h

(1)
ab −

1

2
µ

(1)
ab

)
, (5.152)

and the conserved charge is

Q[ξt] =
1

8πG

∫ 2π

0

dϕ

∫ π

0

dθ r2 sin θ(−1)

(
− 1

r2
µ

)
= M, (5.153)

which corresponds to [71].

5.7 Summary and Discussion

In this chapter, the MM-counterterm was studied in asymptotically flat static spacetime,
and for the boundary condition the cylindrical coordinate has been chosen. We began with
defining the most general form of the asymptotically static metric in (n + 3) dimensions,
and then solved the decomposed Einstein equations and the MM-relation at the asymptotic
boundary of the spacetime. We found the MM-counterterm solution K̂ab to be uniquely
determined for n ≥ 2, but had ambiguities for n = 1.

For n = 1, at sub-leading order these ambiguities can be nullified by choosing µ
(1)
ab =

−2αµ
(0)
ab and DaDbα = −αµ(0)

ab − γ(1)µ
(0)
ab . The quantity ∆ab consequently vanishes. At

sub-sub-leading order we found that while these ambiguities in K̂ab cannot ensure that the
resultant contribution to ∆ab vanishes, as displayed in (5.135) − (5.136), they can be chosen
to ensure that ∆ab does not contribute to the conserved charge. These results are similar
to those obtained for the hyperbolic case [64], which has manifestly vanishing [∆ab](0) and
[∆ab](1), but non-vanishing [∆ab](2). The stress-energy tensor is conserved provided (5.146)
holds, which can be obtained by applying (5.64) − (5.66).

For n ≥ 2 we find at both sub-leading and sub-sub-leading orders that K̂ab is deter-
mined. The quantity ∆ab turns out to be non-zero, as shown in (5.128) − (5.130). This
result indicates that the boundary stress tensor should be Tab in (5.18) not T πab in (5.4).
However we find that ∆ab does not contribute to the conserved charge (see (5.138,5.139));
only T πab produces conserved charges and so the form of the conserved quantity formula
(5.5) is still valid. We also investigated the divergence of the boundary stress tensor, and
found that DaTab = 0.

We applied the boundary stress tensor method with the solution of the MM-counterterm
to the specific case, which is a static black hole in (n + 3)-dimensional static spacetime,
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and found that ∆ab manifestly is zero. We also obtained the conserved charge from the
boundary stress tensor. This agrees with the ADM mass, demonstrating that the boundary
stress tensor with MM-counterterm is also applicable using cylindrical boundary conditions.

As mentioned in Section 5.2.2, the asymptotic behaviours of the hyperbolic boundary
case and cylindrical boundary case are distinguished. In the hyperbolic case, all com-
ponents of the induced metric hab can be expanded to the same order in r, and so are
covariant under the variation. However in the cylindrical case the induced metric hab is
again decomposed into tt- and angular components; these components have expansions to
different orders in r. They do not covariantly transform, thereby not permitting infer-
ence of results from the hyperbolic case to the cylindrical case. Furthermore, these two
boundary conditions yield different solutions from the decomposed Einstein equations. In
the hyperbolic case, the sub-sub-leading order of the Ricci tensor and the trace of the
sub-sub-leading order of hab become zero, so they in turn affect the sub-sub-leading order
of K̂ab and subsequently imply that the sub-sub-leading order of ∆ab is zero. By contrast,
in the cylindrical case the sub-sub-leading order of the Ricci tensor and the trace of the
sub-sub-leading order of hab are not zero; they partly contribute to the sub-sub-leading or-
der of ∆ab, rendering it nonzero. Despite these differing properties between two boundary
conditions, we found that the MM-counterterm is still valid yielding different descriptions
of the boundary stress tensor in more than 4 dimensions for the respective cases.

These results for the MM-counterterm applied to asymptotically flat spacetimes are an
optimistic sign for holographic renormalization, and we anticipate that the MM-counterterm
is a good candidate to be employed, if one finds a holographic correspondence for the
Minkowski spacetime in the future.
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Chapter 6

Deformations of Lifshitz Holography

6.1 Introduction

In this chapter, we deal with the Lifshitz spacetime/quantum critical theory correspon-
dence, which is one of applications of gravity/condensed matter theory correspondences.
The quantum criticality was found by investigating phase transitions of modern materials
several decades ago. It was observed that a precarious point exists between two stable
phases of matter such as superconductors and ferroelectrics (or ferromagnets) in circum-
stances in which the temperature of a system has been driven to absolute zero and some
external parameter such as pressure or a magnetic field is applied. Since the critical fluc-
tuations are quantum mechanical in nature, this point is called the quantum critical point
and exhibits universally distinct characteristics upon fanning out to finite temperatures.
Over this region, which shares the same properties with the critical point, the quantum
phase transition emerges, and its properties are intensively discussed in chapter 3.

In quantum critical theory, time scales differently from space

t→ λzt, ~x→ λ~x (6.1)

where z is the dynamical critical exponent; z = 1 corresponds to conformal invariance,
whereas z 6= 1 implies an anisotropic scaling invariance. Its geometrical dual description
is conjectured to be

ds2 = l2
(
− dt2

r2z
+
dr2

r2
+
dx2 + dy2

r2

)
(6.2)

which is called Lifshitz spacetime and obviously satisfies

t→ λzt, r → λr, ~x→ λ~x. (6.3)
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When z = 1, the metric (6.2) is that of (asymptotic) AdS spacetime, and (6.1) recovers
the conformal symmetry of the CFT. When z 6= 1, (6.1) restores the scaling symmetry
of quantum critical theories. Thus, in Lifshitz spacetime/Quantum Critical Theory (Lif-
shitz/QCT), the anisotropic scaling symmetry, when z 6= 1, is same for both gravity and
field theory, and it becomes the foundation for gravity/gauge correspondence.

In gravity theory, non-trivial spacetimes that asymptote to the anisotropic metric (6.2)
can be generated by having an anisotropic energy-momentum tensor with a contribution
of matter fields such as a massive vector field. An alternate approach also can be made
by including higher curvature terms into the Einstein action [34]; by appropriately tuning
the different gravitational constants, metrics asymptotic to (6.2) can be obtained. In this
chapter, we follow the first approach, investigating the Einstein action coupled to a massive
vector field in (n+ 1) dimensions.

In Lifshitz field theory, an interesting feature associated with renormalization group
flow is shown as follows. When z = 2, the action of the Lifshitz field is

SLif =
1

2

∫
dτd2x

(
(∂τφ)2 − κ(∇2φ)2

)
(6.4)

which has an anisotropic scaling invariance. This action describes strongly correlated elec-
tron systems and its fixed points of the system seem to flow to a non-Abelian gauge theory
by perturbing the action with a term −(∇φ)2. Applying this feature to the holographic du-
ality picture, holographic renormalization flow is expected, for example, from a UV-Lifshitz
fixed point to an AdS fixed point under the relevant perturbation, and its existence is nu-
merically found in [56], where a Proca field is added and its essential physics for z = 2 in
(3+1) dimensions is that of a marginally relevant operator in the quantum critical theory,
which induces a flow from the z = 2 theory to a relativistic z = 1 infrared fixed point.

In this chapter, we consider (n + 1)-dimensional Lifshitz spacetime and ((n− 1) + 1)-
dimensional Quantum Critical Theory(QCT), and study their holographic duality. While
QCT is well described in a 2 + 1 dimensional context, more general theories of physics in-
cluding the standard model and gravity are implemented in a higher-dimensional context.
The success of the AdS/CFT correspondence therefore provides motivation to understand
the extent to which the broader notions of Lifshitz/QCT duality are applicable in higher
dimensions, and what different behaviour emerges. Motivated by these interests, we espe-
cially focus on the marginally relevant operators in the QCT extended to higher dimensions,
with the goal of understanding their behaviour from the perspective of holographic duality.

As previous work in this subject has concentrated on the (2+1)-dimensional case [25],
we generalize the idea to (n + 1) dimensions with the same purposes; one of them is to
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show an implication of renormalization group flow from Lifshitz spacetime in the Ultraviolet
(UV) regime to AdS spacetime in the Infrared (IR) regime in any dimensionality at zero
temperature, which is found in [18],[56]. The other purpose is to form a description of
physical quantities near the critical point at finite temperature. To do so, we first consider
that the Lifshitz spacetime is in the UV regime and the AdS spacetime is in the IR regime.
At the boundary of the spacetime i.e. r → 0, we obtain the asymptotic solutions of Lifshitz
spacetime and expand the solutions to sub-leading orders by introducing a momentum
scaling Λ. Here in order to yield non-trivial solutions at sub-leading order, the equations
of motion restrict us to have z = n − 1. Due to Λ ∼ 0, the Lifshitz spacetime is slightly
deformed by it, and from the perspective of the holographic correspondence, the deformed
solutions of the spacetime correspond to the marginally relevant operators of the field
theory. By constructing proper counterterms with these asymptotic solutions, we obtain
the well-defined action, and derive the free energy density and energy density. We also find
the expanded black hole solutions at near horizon r = r+ to configure finite temperature
theory. Then we fix the undetermined parameters in the both metrics by using numerical
integration, and based on these values of the metrics investigate the behaviour of physical
quantities such as the free energy density F and the energy density E . Thus we observe
what properties are shown from those quantities depending on Λz/T .

In section 6.2, the action, equations of motion, and basic setup are introduced, along
with an ansatz for which all constants are fine-tuned and normalized for both Lifshitz and
AdS spacetime. In section 6.3, asymptotic solutions consistent with marginally relevant
operators are derived by bringing in a dynamically generated momentum scale Λ (assumed
very small), which deforms Lifshitz spacetime in the high energy regime. In section 6.4, we
carry out holographic renormalization by building relevant counterterms. In section 6.5,
we match our asymptotic near-Lifshitz solutions with the results of numerical integration
of the expanded black hole solutions, and then in section 6.6 compute physical quantities
such as the free energy density F , and the energy density E for n = 3, 4, 5, 6, 7, and 8. In
section 6.7, we summarize and include a discussion of results.

6.2 Einstein Gravity with a Massive Vector fields

The action for gravity in (n + 1)-dimensional spacetime coupled to a massive vector field
is described by

S =

∫
dn+1x

√
−g
(

1

2κn+1
2
[R + 2Λ̃]− 1

gv2

[
1

4
H2 +

γ

2
B2

])
(6.5)
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where κn+1 =
√

8πGn+1 in which Gn+1 is the (n + 1) dimensional gravitational constant,
and H = dB and gv is the (n + 1) dimensional coupling constant of the vector field. The
equations of motion are

1

κn+1
2

(
Rµν −

1

2
gµνR− Λ̃gµν

)
=

1

gv2

(
HµρH

ρ
ν −

1

4
gµνH

2

)
+

γ

gv2

(
BµBν −

1

2
gµνB

2

)
, (6.6)

and
∇µH

µν − γBν = 0 (6.7)

where γ is the squared mass of the vector field. For the action to yield solutions asymptotic
to those having the scaling symmetry (6.3), we require the spacetime metric

ds2 = l2
(
− dt2

r2z
+
dr2

r2
+
dx2 + dy2 + · · ·

r2

)
(6.8)

to be a solution to the field equations, where z is arbitrary. Note that in these coordinates
r → 0 corresponds to the boundary of the spacetime.

The vector potential yielding a stress-energy supporting this metric is given by

B =
gvl

κn+1

q

rz
dt. (6.9)

These ansatz and boundary conditions fine-tune the cosmological constant to be

Λ̃ =
(z − 1)2 + n(z − 2) + n2

2l2
, (6.10)

and the squared mass and the charge of the vector field to be

γ =
(n− 1)z

l2
, q2 =

z − 1

z
. (6.11)

Regardless of the dimensionality of the spacetime, setting z = 1 in (6.8) yields AdSn+1

solution

ds2
AdS = a l2

(
− dt2

r2
+
dr2

r2
+
dx2 + dy2 + · · ·

r2

)
(6.12)

where the vector potential vanishes. As the cosmological constant has been already fixed
due to the Lifshitz boundary condition we introduce a scaling constant, a, into the AdS
metric and adjust its value to be

a =
n(n− 1)

(z − 1)2 + n(z − 2) + n2
. (6.13)
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Once we fix the cosmological constant (6.10) with space dimension n and dynamical critical
exponent z, then those values determine the scaling constant for the AdS spacetime metric.

In order to describe the renormalization group flow which involves breaking the anisotropy
of the spacetime by running from the UV Lifshitz to the IR AdS, we employ the ansatz

ds2 = l2
(
− f(r)dt2 +

dr2

r2
+ p(r)(dx2 + dy2 + · · · )

)
, (6.14)

B =
gvl

κn+1

h(r)dt (6.15)

so for the Lifshitz spacetime

Lifshitz : f =
1

r2z
p =

1

r2
, h =

√
z − 1√
z

1

rz
, (6.16)

whereas for the AdSn+1 spacetime

AdS : f = p =
n

(3n− 4)
r−2
√

3n−4
n , h = 0. (6.17)

With (6.14) and (6.15), the equations of motion yield three independent non-linear ODEs
for {f(r), p(r), h(r)}

2χ+
z(4n− 6)h(r)2

f(r)
− rf ′(r)

f(r)
+
r2f ′(r)2

2f(r)2
− (3n− 5)r2f ′(r)p′(r)

2f(r)p(r)

−(n− 2)2r2p′(r)2

2p(r)2
− r2f ′′(r)

f(r)
= 0,

−2zh(r)2

f(r)
− rp′(r)

p(r)
+
r2f ′(r)p′(r)

2f(r)p(r)
+
r2p′(r)2

2p(r)2
− r2p′′(r)

p(r)
= 0,

χ+
(n− 1)zh(r)2

f(r)
− r2h′(r)2

f(r)
− (n− 1)r2f ′(r)p′(r)

2f(r)p(r)
− (n− 2)(n− 1)r2p′(r)2

4p(r)2
= 0, (6.18)

where χ = (n− 1)2 + (n− 2)z + z2. We shall rewrite the equations of the motion with the
new variables

p(r) = e
∫ r q(s)

s
ds, f(r) = e

∫ r m(s)
s
ds, h(r) = k(r)

√
f(r). (6.19)

These variables have the added benefit of turning the second order differential equations
into first order and postponing the determination of rescaling ambiguities on f , p, and h.
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For further simplification, we introduce a new variable

x(r) =

(
4χ+ 4(n− 1)zk(r)2 − 2(n− 1)m(r)q(r)− (n− 2)(n− 1)q(r)2

) 1
2

. (6.20)

Putting (6.19) and (6.20) into (6.18) gives

rx′(r) = −2(n− 1)zk(r)− (n− 1)

2
q(r)x(r),

rq′(r) =
χ

(n− 1)
− zk(r)2 − n

4
q(r)2 − 1

4(n− 1)
x(r)2,

rk′(r) = − χ

(n− 1)

k(r)

q(r)
− zk(r)3

q(r)
+

(n− 2)

4
k(r)q(r)− x(r)

2
+

1

4(n− 1)

k(r)x(r)2

q(r)
. (6.21)

So far we have worked with a general value of z in (n+1) dimensions. We are interested in
studying the effects of marginal operators, which have scaling dimension z+n−1 in Lifshitz
spacetime, because of the different scaling of the time coordinate. While it has been shown
that the linearized equation of motion for the scalar part of constant perturbations in a
Lifshitz background in (3+1) dimensions [79] (and the gravitational field has solutions that
are marginal for general z), the vector field only admits a single degenerate solution at the
special value of z = 2, where the vector operator also becomes marginal. Applying this
analysis to (n+1) dimensions [18], the condition for having a single degenerate solution for
the vector field becomes z = n− 1, and this condition also is required from the equations
of motion to ensure non-trivial sub-leading orders of the asymptotic solutions. Henceforth
we deal with the case satisfying z = n− 1.

Then, in terms of the new variables k(r), q(r), and x(r), Lifshitz spacetime is described
by

Lifshitz : q = −2 x = 2
√
z − 1

√
z, k =

√
z − 1√
z

, (6.22)

whereas for AdS spacetime

AdS : q = −2

√
3n− 4

n
, x = 0, k = 0. (6.23)

6.3 Asymptotic Behaviour

We consider the spacetime slightly thermally heated and so slightly deformed from the
pure Lifshitz case, restricting our considerations to z = n − 1. Under these assumptions,
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the general asymptotic solutions near the boundary i.e. r → 0 become

k(r) =

√
z − 1√
z

×
(

1 +
1

(z − 1)2 log(rΛ)
+

(z − 1)(−3z + 2(z − 1)3λ) + 2(1− 3z) log(− log(rΛ))

2z(z − 1)4 log2(rΛ)
+ · · ·

)
+ (rΛ)2z log2(rΛ)

(
β

(
1 +

2(3z − 1) log(− log(rΛ))

z(z − 1)2 log(rΛ)
+ · · ·

)
+ α

(
1

log(rΛ)
+

(2z2 − 4z + 1)− 2(z − 1)4(2z − 1)λ+ 2(6z2 − 5z + 1) log(− log(rΛ))

2z(z − 1)2(2z − 1) log( rΛ)
+ · · ·

))
,

(6.24)

q(r) = −2

(
1− 1

(z − 1) log(rΛ)
− z + 2(z − 1)4λ− 2(3z − 1) log(− log(rΛ))

2z(z − 1)3 log2(rΛ)
+ · · ·

)
− 2
√
z − 1

√
z

2z − 1
(rΛ)2z

× log2(rΛ)

(
β

(
1 +
−z(4z2 − 7z + 2) + 2(2z − 1)(3z − 1) log(− log(rΛ))

z(z − 1)2(2z − 1) log(rΛ)
+ · · ·

)
+ α

(
1

log(rΛ)
− (2z2 − 4z + 1) + 2(z − 1)4λ− 2(3z − 1) log(− log(rΛ))

2z(z − 1)2 log2(rΛ)
+ · · ·

))
,

(6.25)

x(r) = 2
√
z − 1

√
z

(
1 +

z

(z − 1)2 log(rΛ)
+

(z − 1)4λ+ (1− 3z) log(− log(rΛ))

(z − 1)4 log2(rΛ)
+ · · ·

)
− 2z2

2z − 1
(rΛ)2z

× log2(rΛ)

(
β

(
1 +
−z(4z2 − 5z + 1) + 2(6z2 − 5z + 1) log(− log(rΛ))

z(z − 1)2(2z − 1) log(rΛ)
+ · · ·

)
+ α

(
1

log(rΛ)
− (2z − 1)2 + 2(z − 1)4λ− 2(3z − 1) log(− log(rΛ))

2z(z − 1)2 log2(rΛ)
+ · · ·

))
, (6.26)

where Λ is a momentum scale, which generates a marginally relevant modes, and Λz be-
comes an energy scale. As Λ → 0, the solution recovers the pure Lifshitz spacetime. The
parameters α and β describe other modes of the solution, and λ is nothing but a ‘gauge
choice’ [25]. In other words λ is related to defining the scale Λ, and the solution {k, q, x}
transforms as

F (Λr;α, β;λ) = F (eλ
′/zΛr; e−2λ′(α− λ′β), e−2λ′β;λ+ λ′) (6.27)
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where F stands for the k, q and x functions. This is easily verified by noting that the
solutions k, q and x with λ = 0 can be obtained by setting λ′ = −λ, and replacing Λr,
α, and β with e−λ/zΛr, e2λ(α + λβ), and e2λβ respectively, and then re-expanding the
solutions under the assumption | log(Λr)| � |λ|. Here we fix this ambiguity by setting
λ = 0.

Since the Lifshitz spacetime lies in the high energy regime, we expand the solutions by
introducing an arbitrary scale µ so that we can control the energy scale, and write

log(rΛ) = log(rµ)− log
µ

Λ
. (6.28)

In the high energy regime where µ� Λ, we can have an approximation such as∣∣∣∣ 1

log µ
Λ

∣∣∣∣, ∣∣∣∣ log(rµ)

log µ
Λ

∣∣∣∣ 6 1. (6.29)

Upon expansion, equations (6.24) ∼ (6.26) become

k(r) =

√
z − 1√
z

×
(

1 +
1

(z − 1)2 log( µ
Λ

)
−

3z(z − 1) + 2z(z − 1)2 log(rµ) + 2(3z − 1) log(− log( µ
Λ

))

2z(z − 1)4 log2( µ
Λ

)
+ · · ·

)
,

(6.30)

q(r) = −2

(
1− 1

(z − 1) log( µ
Λ

)
+
−z + 2z(z − 1)2 log(rµ) + 2(3z − 1) log(− log( µ

Λ
))

2z(z − 1)3 log2( µ
Λ

)
+ · · ·

)
,

(6.31)

x(r) = 2
√
z − 1

√
z

(
1 +

z

(z − 1)2 log( µ
Λ

)
−
z(z − 1)2 log(rµ) + (3z − 1)log(− log( µ

Λ
))

(z − 1)4 log2( µ
Λ

)
+ · · ·

)
.

(6.32)

Using these solutions for k(r), q(r) and x(r), we employ the change of variables (6.19) and

70



(6.20) in reverse to obtain the original form of the solutions

f(ρ) =
F 2

0

(rΛ)2z(− log(rΛ))
2z
z−1

(
1− (7z − 4) + 2(3z − 1) log(− log(rΛ))

(z − 1)3 log(rΛ)

− (23z4 − 142z3 + 152z2 − 57z + 6)

4z(z − 1)6 log2(rΛ)

+
(3z − 1)2(5z − 2) log(− log(rΛ)) + (3z − 1)3 log2(− log(rΛ))

z(z − 1)6 log2(rΛ)
+ · · ·

)
(6.33)

p(ρ) =
P 2

0 (− log(rΛ))
2
z−1

(rΛ)2

(
1 +

(5z − 2) + 2(3z − 1) log(− log(rΛ))

z(z − 1)3 log(rΛ)

+
(31z4 − 64z3 + 106z2 − 69z + 14)

4z2(z − 1)6 log2(rΛ)

+
(3z3 + 26z2 − 21z + 4) log(− log(rΛ)) + (3z − 1)2(z − 3) log2(− log(rΛ))

z2(z − 1)6 log2(rΛ)
+ · · ·

)
(6.34)

where F0 and P0 are constants. These expressions (6.33)-(6.34) also should be computed
in the high energy regime by applying (6.29)

f(ρ) =
1

r2z

(
1 +

7z − 4 + 2z(z − 1)2 log(rµ) + 2(3z − 1) log(log( µ
Λ

))

(z − 1)3 log( µ
Λ

)
+ · · ·

)
, (6.35)

p(ρ) =
1

r2

(
1−

5z − 2 + 2z(z − 1)2 log(rµ) + 2(3z − 1) log(log( µ
Λ

))

z(z − 1)3 log( µ
Λ

)
+ · · ·

)
(6.36)

upon rescaling the t and x coordinates to

t→
(

Λ log
1
z−1 (

µ

Λ
)

)z
1

F0

t, x→ Λ

logz−1( µ
Λ

)

1

P0

x. (6.37)

6.4 Holographic Renormalization

In this section we derive physical quantities such as free energy density or energy density at
an asymptotic boundary of the deformed Lifshitz spacetime. We begin with the definition
of the free energy density

F = −T logZ = TSε(g∗) (6.38)
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where Sε and g∗ are respectively the Euclidean action and the metric, and Z is the partition
function. Upon carrying out a variation of the on-shell action, boundary terms arise, and
to cancel these out a Gibbons-Hawking boundary term is added into the action. After
Euclideanization, the action and the metric can be explicitly written as

Sε =

∫
dn+1x

√
g

(
1

2κn+1
2
[R + 2Λ̃]− 1

g2
v

[
1

4
H2 +

γ

2
B2]

)
+

1

κn+1
2

∫
dnx
√
γK, (6.39)

dsε
2 = l2

(
f(r)dτ 2 +

dr2

r2
+ p(r)(dx2 + dy2 + · · · )

)
, (6.40)

where ε indicates the Euclidean version of the quantities.

Calculating the free energy density (the free energy per unit (n−1)-dimensional spatial
volume), the Einstein-Hilbert action and Gibbons-Hawking term yield

FEH = − ln−1

2κn+1
2

lim
r→0

r
√
f(r)p′(r)p(r)

n−3
2 , (6.41)

FGH =
1

κn+1
2

lim
r→0

√
γK =

ln−1

κn+1
2

lim
r→0

r

(√
f(r)p(r)

n−1
2

)′
(6.42)

where γab is the induced metric on the boundary and Kµν is the extrinsic curvature defined
as Kµν = ∇µnν in which nν is the normal vector on the boundary surface. The free
energy is F =

∫
dn−1xF . However for the marginally relevant modes both (6.41) and

(6.42) are divergent as the boundary (r → 0) is approached. We incorporate boundary
counterterms [79, 10, 65, 78] into the action as a remedy for this problem. We construct
these counterterms as a power series in B2 = BµBµ [25], so as to satisfy covariance at the
boundary, obtaining

FC.T. =
1

2lκn+1
2

lim
r→0

√
γ

2∑
j=0

Cj

(
− κn+1

2

g2
v

B2 − (z − 1)

z

)j
(6.43)

=
ln−1

2κn+1
2

lim
r→0

√
f(r)p(r)

n−1
2

2∑
j=0

Cj

(
k(r)2 − (z − 1)

z

)j
(6.44)

where we have used (B2 − (z − 1)/z) instead of B2, since these must vanish for the pure
Lifshitz case. The coefficients Cj are not constants but rather a series of logarithmic
functions, with at least three needed to eliminate divergences.
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The final expression for the free energy density is

F = FEH + FGH + FC.T.

=
ln−1

2κn+1
2

lim
r→0

√
f(r)p(r)

n−1
2

(
(n− 2)rp′(r)

p(r)
+
rf ′(r)

f(r)
+

2∑
j=0

Cj

(
k(r)2 − (z − 1)

z

)j)
.

(6.45)

To obtain the energy density, we use the definition of the boundary stress tensor to the
case in which additional non-vanishing boundary fields are present [50]. From the variation
of the action, we obtain

δS =

√
γ

2
τabδγab + J aδBa. (6.46)

where τab is the boundary stress tensor. However we are here dealing not with scalar
matter fields but with massive vector fields, and so the usual charge defined by

Q = −
∫
dn−2x

√
σξakbτ

ab (6.47)

where
√
σ =

√
γxx · · · γzz is the spatial volume element, ξa is a boundary Killing fields,

and kb is the unit normal vector to the boundary Cauchy surface, is not conserved. The
boundary stress tensor τab must therefore be redefined so as to fix the matter fields in the
boundary. Employing the vielbein frame defined by

γab = ηâb̂e
â
ae
b̂
b, η = diag(±1, 1, 1, · · · ) (6.48)

where
et̂ = et̂adx

a =
√
fdτ, ex̂i =

√
p dxi. (6.49)

We find that the variation of the free energy density retains its original form, but that τab

is replaced with T ab, where
δS =

√
γT aâδeâa + J âδBâ, (6.50)

with

T ab = T aâebâ, T ab = τab +
1
√
γ
J (aBb). (6.51)

The energy density is then given by

E =
√
γτ tt + J tBt (6.52)
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and the pressure is
P = −√γτxx. (6.53)

Computing the distinct components of E , we find

τab =
2
√
γ

δS

δγab
=

1

κn+1
2
(Kγab −Kab) +

1

2lκn+1
2

2∑
j=0

Cj

(
γab
(
− κn+1

2

g2
v

B2 − (z − 1)

z

)j
+

2jκn+1
2

g2
v

BaBb

(
− κn+1

2

g2
v

B2 − (z − 1)

z

)j−1)
, (6.54)

and

J t̂ =
√
f(r)

δS

δBt

,

=
ln−2

gvκn+1

lim
r→0

√
f(r)p(r)

n−1
2

(
r(k(r)

√
f(r))′√

f(r)
+ k(r)

2∑
j=0

jCj

(
k(r)2 − (z − 1)

z

)j−1)
,

=
ln−2

gvκn+1

lim
r→0

√
f(r)p(r)

n−1
2

(
− 1

2
x(r) + k(r)

2∑
j=0

jCj

(
k(r)2 − (z − 1)

z

)j−1)
, (6.55)

and other component of J a become zero. Putting these together into (6.52) yields

E =
ln−1

2κn+1
2

lim
r→0

√
f(r)p(r)

n−1
2

(
(n− 1)rp′(r)

p(r)
− x(r)k(r) +

2∑
j=0

Cj

(
k(r)2 − (z − 1)

z

)j)
(6.56)

and
P = −F . (6.57)

To obtain a well-defined action principle, physical quantities of F (6.45), E (6.55), and J t̂

(6.56) should be finite with the asymptotic solutions (6.24)-(6.26), and the counterterms

74



to render them finite are found to be

C0 =2(2z − 1)− 2z2

(2z − 1)(z − 1)3 log2(rΛ)
+

(4z4 + 2z3 − 3z2 − 2z + 1)

(z − 1)5(2z − 1)2 log3(rΛ)

+
4z(3z − 1) log(− log(rΛ))

(z − 1)5(2z − 1) log3(rΛ)
+ · · · , (6.58)

C1 =z +
2z3

(2z − 1)(z − 1)2 log(rΛ)

− z(14z3 − z2 − 10z + 3) + 4z2(2z − 1)(3z − 1) log(− log(rΛ))

2(2z − 1)2(z − 1)4 log2(rΛ)

− 1

log3(rΛ)

(
z2(34z4 − 54z3 + 72z2 − 46z + 9) + 8a(2z − 1)2(z − 1)5

2z(2z − 1)2(z − 1)6

− (6z4 + 25z3 − 45z2 + 21z − 3) log(− log(rΛ))

(2z − 1)2(z − 1)6
− 2z(3z − 1)2 log2(− log(rΛ))

(z − 1)6(2z − 1)

)
+ · · · ,

(6.59)

C2 =
z2(1− 3z)

4(2z − 1)(z − 1)
+

z2(15z2 − 14z + 3)

4(2z − 1)2(z − 1)3 log(rΛ)
+

a

log2(rΛ)

− z(3z − 1)2(5z − 3) log(− log(rΛ))

4(2z − 1)2(z − 1)5 log2(rΛ)
(6.60)

where the first two are infinite series in 1/ log(rΛ) that include powers of log(− log(rΛ))
such that the order of the log(− log(rΛ)) terms do not exceed the order of the 1/ log(rΛ)
terms. It is sufficient for C2 to retain terms up to second order in 1/ log(rΛ). Note that
there exists an ambiguity a in these expressions. This ambiguity does not affect numerical
evaluation of the free energy density and the energy density that we shall later compute,
though it does affect J t̂, reflecting the reaction of the system to changes in the boundary
Proca field. Our counterterm construction (6.58) – (6.60) is minimal; additional terms
such as C3(B2 − (z − 1)/z)3 or C4(B2 − (z − 1)/z)4 would also yield solutions.

Applying (6.58)-(6.60) into (6.45), (6.55) and (6.56), the physical quantities become

F =
ln−1

κn+1
2

√
z√

z − 1(2z − 1)

(
zα− (2z3 − 2z2 − 2z + 1)

(2z − 1)(z − 1)4
β

)
, (6.61)

E = − ln−1

κn+1
2

√
z√

z − 1(2z − 1)

(
zα +

(2z3 − 4z2 + 4z − 1)

(2z − 1)(z − 1)4
β

)
, (6.62)

J t̂ =
1

gv

ln−2

κn+1

(
z(20z5 + 18z4 − 22z3 − 23z2 + 24z − 5)

2(z − 1)4(2z − 1)3
+

4(z − 1)a

z

)
β. (6.63)
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Since the pure Lifshitz solution does not depend on α and β, we expect in this case that

F = E = J t̂ = 0 (6.64)

regardless of the dimension of spacetime.

6.5 Finite Temperature

In this section, we consider the finite temperature theory by obtaining the expanded black
hole solution near horizon. Our goal is to describe the renormalization group (RG) flow of
the marginally relevant modes, and to predict behaviour of physical quantities such as the
free energy density F and the energy density E near critical regimes in order to provide a
way of understanding the quantum phase transition from one phase to the critical point via
the holographic dictionary. For these purposes, we find that the RG flow is ensured in the
zero temperature limit Λz/T →∞ with Λ ∼ 0 fixed, as found in [56]. We also investigate
the behaviours of F/Ts and E/Ts as functions of log(Λz/T ) at high temperature regime
Λz/T → 0.

6.5.1 Expansion and Physical quantities near horizon

We assume a black hole solution which is defined by f(r+) = 0 in the metric form of (6.14).
With an ansatz for the expanded form of the black hole solution, which are constructed
in a way that regularity requires gtt to have a double zero at the horizon and gxx remains
nonzero, the equations of the motion (6.18) yield

f(r) = f0

((
1− r

r+

)2

+

(
1− r

r+

)3

+
(−6z2 + 14z + 7)z + 8(3z − 2)h2

0

12z

(
1− r

r+

)4

+ · · ·
)
,

(6.65)

p(r) = p0

(
1 +

(3z − 1)z − 4h2
0

2z

(
1− r

r+

)2

+
(3z − 1)z − 4h2

0

2z

(
1− r

r+

)3

+ · · ·
)
, (6.66)

h(r) =
√
f0

(
h0

(
1− r

r+

)2

+ h0

(
1− r

r+

)3

+ h0

(
z(−9z2 + 10z + 20) + 8h2

0(3z − 1)

24z

)(
1− r

r+

)4

+ · · ·
)

(6.67)
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where the constants f0 and p0 are associated with scaling ambiguities of the coordinates
{t, x, y, · · · }, which function as the clock and rulers of the system. Upon fixing these, the
only variable left in the metric is h0. Different values of h0 correspond to different black
holes and so we have a 1-parameter family of black hole solutions.

With (6.65)-(6.67), thermodynamic quantities can be calculated near the horizon of
the black hole. The temperature T is a quantity coming from demanding regularity of the
spacetime at the horizon, which is satisfied by identifying the imaginary time coordinate
τ with the spherical coordinate φ such as φ = βτ with ρ2 = α(r − r+)2. That is, the
Euclideanized metric components (τ, r) correspond to (ρ, φ) components of the spherical
coordinate

f(r)dτ 2 +
dr2

r2
∼ dρ2 + ρ2dφ2, (6.68)

and substituting τ with φ and r with ρ, it yields that α = 1
r+

and β = r+

√
1
2
d2f
dr2 where

T = β
2π

. The entropy density, s, obtained from the definition of the entropy, S = A
4Gn+1

.
Then we find

T =
r+

2π

√
1

2

d2f(r)

dr2

∣∣∣∣
r=r+

, (6.69)

s = 2π
ln−1

κn+1
2
p(r+)

n−1
2 , (6.70)

where S =
∫
s dn−1x.

The horizon flux, Φ, of the massive vector field is

Φ =

∮ √
h ~H · d ~A =

∮
φ dn−1x (6.71)

where

φ =
ln−2gvr+

κn+1

(
p(r)

n−1
2√

f(r)

dh(r)

dr

)∣∣∣∣
r=r+

(6.72)

is the horizon flux density. Using (6.65)-(6.67) we obtain

T =

√
f0

2π
, s = 2πp

n−1
2

0

ln−1

κn+1
2
, φ = 2h0p

n−1
2

0

(
ln−2gv
κn+1

)
. (6.73)

for the temperature, entropy density, and horizon flux density, and as shown above, those
are determined by parameters (f0, p0, and h0) of the metric.
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6.5.2 Integrated First law of thermodynamics

Before embarking on our numerical calculations, in this section we obtain relationships
between the free energy density and the energy density derived in section 6.4 via the
thermodynamic variables s and T .

First, by using the asymptotic solutions (6.24) – (6.26) we construct an r-independent
RG-invariant quantity

K̄ = −1

2

√
f(r)p(r)

n−1
2

(
− q(r) +m(r) + k(r)x(r)

)
,

= −
√
f(r)p(r)

n−1
2

4(n− 1)q(r)

(
4χ+ 4(n− 1)zk(r)2 − n(n− 1)q(r)2 − x(r)2 + 2(n− 1)q(r)k(r)x(r)

)
,

(6.74)

where plugging (6.30)-(6.32) into the above gives

K̄ =
2
√
z√

z − 1(1− 2z)

(
zα− (z2 − 3z + 1)

(1− 2z)(z − 1)2
β

)
. (6.75)

Near the horizon, this RG-invariant quantity is calculated by using (6.65)-(6.67) and ex-
pressed in terms of T and s by applying (6.73), which is

K̄ =
√
f0p

n−1
2

0 = Ts
κn+1

2

ln−1
. (6.76)

Next, from the free energy density (6.45) and the energy density (6.56) we obtain the
following relation

1

2

√
f(r)p(r)

n−1
2

(
(n− 1)rp′(r)

p(r)
− x(r)k(r) +

2∑
j=0

Cj

(
k(r)2 − (z − 1)

z

)j)

=
1

2

√
f(r)p(r)

n−1
2

(
(n− 2)rp′(r)

p(r)
+
rf ′(r)

f(r)
+

2∑
j=0

Cj

(
k(r)2 − (z − 1)

z

)j)
+ K̄, (6.77)

which is more simply expressed as

E = F +
ln−1

κn+1
2
K̄. (6.78)

This relation is easily checked using (6.61), (6.62) and (6.76).
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Finally, combining (6.76) with (6.78) gives

F = E − Ts. (6.79)

which is the integrated form of the first law for these black holes. We will use this to check
the accuracy of our numerical results in section 6.6.

Considering the limit Λ = 0, since anisotropic scale invariance still holds, from the
Ward identity we expect that the pressure is equal to the energy [86]. From (6.57), we
have

F0 = −E0 (Λ = 0), (6.80)

and in conjunction with (6.79), we obtain an analytic prediction for when the marginally
relevant modes are not excited

F0 = −E0 = −1

2
Ts0 (Λ = 0), (6.81)

which will be used for a consistency check on our numerical results in section 6.6. Note
that the relation F = −E also holds for Λ ∼ 0 case when β = 0, as is easily seen from
equations (6.61) and (6.62).

6.6 Exploring Near the Quantum Critical Point

6.6.1 Integrating towards the Lifshitz Boundary

To investigate Lifshitz spacetime in the UV-region, T � Λz, we re-expand the asymptotic
solutions into the high energy regime by using (6.29), and set the arbitrary scale µ ∼ r−1

+ ,
thereby making the spacetime near-Lifshitz. This spacetime approaches an asymptotically
pure-Lifshitz having the black hole by supplying heat at much greater temperatures or
higher energy scales.

In this section, we numerically connect the expanded near-horizon black hole solution
with the near-Lifshitz asymptotic solution. By matching two solutions, we determine values
of log(Λr+) for given h0, and then use these values to fix values of f0 and p0. With these
values fixed we compute the free energy density F and energy density E versus log(r/r+)
varying the value of h0. By collecting these data, we plot the free energy density and
energy density as functions of log(Λz/T ) and find their fitting functions, which gives the
sub-leading dependence of the free energy and energy density as a function of log(Λz/T )
for Λ 6= 0. We also discuss how renormalization group flow is described in our context.
In our numerical work, we use r/r+ as our radial variable, and unitless quantities such as
F/Ts, E/Ts, and Λz/T are considered.
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Matching Λ

For extracting Λ, we start with the asymptotic solutions k(r), q(r), and x(r) in (6.30)-
(6.32), which are expanded ones to high energy regime by introducing the arbitrary scale
µ� Λ eventually setting µ→ r−1

+ . In the asymptotic solutions, we have only the variable
log(Λr+) to be fixed. While near the horizon, the expanded black hole solutions (6.65)–
(6.67) are changed to functions of k(r), q(r), and x(r) by (6.19) and (6.20), and in this
process f0 and p0 drop out and h0 only remains. Now, given values of h0, we numerically
integrate the near horizon solution toward the boundary satisfying the equations of motion
(6.21), and match the numerical solutions with the asymptotic expectation by adjusting
the value of log(Λr+) in the middle region. In our numerical work, the integration starts
at log(r/r+) ∼ −0.015 and ends at log(r/r+) ∼ −104. Our numerical results for the k
function are shown in Figure 6.1, where the red dashed line is a fit for the asymptotic
expectation, the blue solid line corresponds to the numerical results, and the dots signify
the values used for finding the matching condition. We note that the agreement between
our numerical results and the asymptotic expectations is very strong.

The important outcome of this procedure is that a maximum value of h0 is obtained. In
other words, if we keep increasing the value of h0 then beyond a certain point we are not able
to find a matching condition connecting our numerical result to the asymptotic expectation.
Physically this means that at a large value of flux, the metric functions grow exponentially
as the boundary is approached, so they do not ever reach the boundary. This means that
under the condition of large flux and high temperature Λz/T → 0, the spacetime having
the black hole (6.65)–(6.67) is no longer deformed, but rather is asymptotic to pure Lifshitz
spacetime. We also find that the maximum values of h0 linearly increased according to
the critical exponent, z (or the spatial dimension) of the spacetime, n. We present this
behaviour in Figure B.1, and explicitly denote the maximum values of h0 in Table 6.1.

On the other hand, a minimum value of the flux also exists and its value becomes
zero at the horizon. In this case, the massive vector field disappears and the spacetime is
described by an asymptotically AdS black hole.

Examining the situation for h0 between 0 and hmin is non-trivial. However for a very
small amount of flux, we expect that the renormalization group flow is recovered in the
zero temperature limit Λz/T →∞, which is found in [56]. That is, this result implies that
tuning the horizon flux via h0 interpolates between the zero temperature RG flow [56] and
asymptotic Lifshitz black holes [79, 86, 14, 62, 29, 15].
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Figure 6.1: Extracting log(Λr+)
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Figure 6.2: hmax versus z

hmax
z = 2 0.9713
z = 3 1.6343
z = 4 2.2822
z = 5 2.9255
z = 6 3.5668
z = 7 4.2070
z = 8 4.8465
z = 9 5.4856
z = 10 6.1244
z = 11 6.7629
z = 12 7.4012
z = 13 8.0394

...
...

Table 6.1: maximum value of h0
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Matching f0, and p0

Since, given h0, log(Λr+) is fixed, f0 and p0 arising in (6.65) – (6.67) can be determined
by repeating the previous process with the functions of f , p, and h. Here we start with
(6.35)–(6.36), where we can neglect the α and β involved in the exponent terms because
these contribute much less than the logarithmic terms as the boundary is approached
(technically these unknowns are hard to fix). Applying the same numerical technique, we
start to integrate the near horizon solution towards the boundary governed by the equation
of motion (6.18). Over a finite range, provided values of h0 and log(Λr+), the numerical
solutions and asymptotic expectations (6.35)–(6.36) are matched by finding values of f0r+

2z

and p0r+
2. Our numerical calculations are carried out over a range of 4 to 9 dimensional

spacetime. The results are shown in Figures 6.3 and 6.4 where the red dashed line is a
plot of the asymptotic expectation and the blue solid line is the numerical result.

Using the fixed constants Λ, f0, and p0 we can find matching values for temperature
(in unitless) via

log

(
Λz

T

)
= z log(Λr+) + log(2π)− 1

2
log(f0r

2z
+ ). (6.82)

We also compute the entropy density, derived in (6.73) and determined by f0r
2z
+ and p0r

2
+,

and plot s/T as a function of log(Λz/T ) in Figure E.1.

Energy Density, and Free Energy Density

Now we move to the free energy density (6.45) and energy density (6.56). Putting the
numerical results of k, q, and x functions into (6.45) by using (6.19) and (6.20), and
applying the counterterm (6.58) – (6.60), the free energy density and the energy density
are respectively depicted in Figures 6.5 and 6.6. We find that the free energy density
and the energy density have a flat region over some finite range of log(r/r+), yielding a
stable constant value for these quantities. In these figures we also illustrate oscillating
and divergent behaviours as the boundary is approached. Recall that initially the physical
quantities having marginally relevant modes diverge at the boundary, necessitating the
addition of counterterms to render them finite. The counterterms should be expanded
in an infinite series in log(Λr). However in practice the counterterms (6.58) – (6.60) are
truncated at a finite order, while our numerical results include higher orders than ones
we considered in the analytic calculation. This limitation is responsible for the unstable
behavior near the boundary that appears in Figure 6.5 and 6.6. In other words, the terms
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Figure 6.3: Extracting f0 and p0 for z = 2, 3, and 4
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Figure 6.4: Extracting f0 and p0 for z = 5, 6, and 7
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in the parenthesis in (6.45) and (6.56) no longer exhibit smooth behavior as the boundary
is approached but slowly start to oscillate due to the (imperfect) matching between the
numerical results and the truncated counterterm power series. These oscillations increase
as r decreases, and furthermore are amplified by the factor of

√
fpz/2, which is rapidly

growing when r → 0. Note that the figures 3 and 4 depict fr2z/f0r
2z
+ and pr2/p0r

2
+ and

are monotonically decreasing and increasing respectively at small r, whereas the functions
f and p rapidly grow in that region.

As the spacetime dimension increases we find that the flat region gets narrower and
the divergence behaviour starts more quickly from the horizon. The main reason for this
is due to the

√
fpz/2 factor commonly appearing in the free energy density (6.45) and the

energy density (6.56); both
√
f and pz/2 vary as 1/rz (as shown in (6.36)) as the boundary

r → 0 is approached, whereas the quantities in the parentheses of (6.45) and (6.56) contain
no divergent terms.

6.6.2 Behaviours of F and E near Quantum Critical Regimes

In this section, we plot data of the free energy density per Ts (F/Ts) and the energy
density per Ts (E/Ts), which are collected for various values h0 in previous sections, as
functions of log(Λz/T ). Figure 6.7 and 6.8 present our results for the quantities F/Ts,
E/Ts, and F/E . We also include the fitting function depicted as a solid line. As expected
from analytic considerations for the leading order terms of F/Ts and E/Ts for Λ = 0,
which is (6.81), we recover from our numerical results the same value for the leading order
terms. In addition, the sub-leading contribution depending on log(Λz/T ) due to marginally
relevant modes with fixed Λ ∼ 0 are numerically found in Figure 6.7 and 6.8. For each z,
the fitting functions of F/Ts, E/Ts, and F/E are presented in Table 6.2.

In addition, the marginally relevant mode should be consistent with the first law of
black hole thermodynamics, which is −F/Ts + E/Ts− 1 = 0. We plot this in Figure 6.9
as a check on the accuracy on our numerical results. We find that our numerical errors are
found between the order of 10−3 and 10−4.
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(a) When z = 2 and h0 = 0.97102, corresponding to log(Λ2/T ) ∼ −5270, the left is the numerical
result of free energy density F over Ts and the right is the numerical result of energy density E over
Ts, as a function of log(r/r+). The quantity is well defined in the intermediate region. Red dashed
line is reading-off the constant value of F/Ts in the intermediate regime.
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(b) When z = 3 and h0 = 1.63422, corresponding to log(Λ2/T ) ∼ −8000, the left is the numerical
result of free energy density F over Ts and the right is the numerical result of energy density E over
Ts, as a function of log(r/r+). The quantity is well defined in the intermediate region. Red dashed
line is reading-off the constant value of F/Ts in the intermediate regime.
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(c) When z = 4 and h0 = 2.28212, corresponding to log(Λ2/T ) ∼ −7000, the left is the numerical
result of free energy density F over Ts and the right is the numerical result of energy density E over
Ts, as a function of log(r/r+). The quantity is well defined in the intermediate region. Red dashed
line is reading-off the constant value of F/Ts in the intermediate regime.

Figure 6.5: F/Ts and E/Ts versus log( r
r+

) for z = 2, 3, and 4
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(b) When z = 6 and h0 = 3.56670, corresponding to log(Λ2/T ) ∼ −8700, the left is the numerical
result of free energy density F over Ts and the right is the numerical result of energy density E over
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line is reading-off the constant value of F/Ts in the intermediate regime.
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(c) When z = 7 and h0 = 4.20694, corresponding to log(Λ2/T ) ∼ −14000, the left is the numerical
result of free energy density F over Ts and the right is the numerical result of energy density E over
Ts, as a function of log(r/r+). The quantity is well defined in the intermediate region. Red dashed
line is reading-off the constant value of F/Ts in the intermediate regime.

Figure 6.6: F/Ts and E/Ts versus log( r
r+

) for z = 5, 6, and 7
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(a) For z = 2. Dots are numerical results running h0 from 0.9713 to 0.9707, which corresponds to
log(Λ2/T ) from about −30000 to −2700. Solid line is the fitting function in table 1.
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(b) For z = 3. Dots are numerical results running h0 from 1.6343 to 1.6337, which corresponds to
log(Λ3/T ) from about −15500 to −2000. Solid line is the fitting function in table 1.
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(c) For z = 4. Dots are numerical results running h0 from 2.2822 to 2.2816, which corresponds to
log(Λ4/T ) from about −13000 to −1900. Solid line is the fitting function in table 1.

Figure 6.7: Plots of F/Ts,E/Ts, and F/E versus log(Λz/T ) for z = 2, 3, and 4.
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(a) For z = 5. Dots are numerical results running h0 from 2.9255 to 2.9249, which corresponds to
log(Λ5/T ) from about −14000 to −2000. Solid line is the fitting function in table 6.2.
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(b) For z = 6. Dots are numerical results running h0 from 3.5668 to 3.5662, which corresponds to
log(Λ6/T ) from about −21000 to −2200. Solid line is the fitting function in table 6.2.
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(c) For z = 7. Dots are numerical results running h0 from 4.2070 to 4.2064, which corresponds to
log(Λ7/T ) from about −30000 to −2200. Solid line is the fitting function in table 6.2.

Figure 6.8: Plots of F/Ts, E/Ts, and F/E versus log(Λz/T ) for z = 5, 6, and 7.
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(c) Plots of −F/Ts + E/Ts − 1 for z = 4 and
h0 from 2.2822 to 2.2816.
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(e) Plots of −F/Ts + E/Ts − 1 for z = 6 and
h0 from 3.5668 to 3.5662.
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Figure 6.9: Plots of errors from −F/Ts+ E/Ts− 1
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free energy density over
Ts ( F

Ts
=)

energy density over Ts
( E
Ts

=)

free energy density
over energy density
(FE =)

z = 2 −1
2
− 1

log Λ2/T
+ · · · 1

2
− 1

log Λ2/T
+ · · · −1− 4

log Λ2/T
+ · · ·

z = 3 −1
2
− 0.76

log Λ3/T
+ · · · 1

2
− 0.76

log Λ3/T
+ · · · −1− 3

log Λ3/T
+ · · ·

z = 4 −1
2
− 0.67

log Λ4/T
+ · · · 1

2
− 0.67

log Λ4/T
+ · · · −1− 2.7

log Λ4/T
+ · · ·

z = 5 −1
2
− 0.63

log Λ5/T
+ · · · 1

2
− 0.63

log Λ5/T
+ · · · −1− 2.50

log Λ5/T
+ · · ·

z = 6 −1
2
− 0.60

log Λ6/T
+ · · · 1

2
− 0.60

log Λ6/T
+ · · · −1− 2.40

log Λ6/T
+ · · ·

z = 7 −1
2
− 0.58

log Λ7/T
+ · · · 1

2
− 0.58

log Λ7/T
+ · · · −1− 2.33

log Λ7/T
+ · · ·

... ...
...

...

Table 6.2: fitting functions for F
Ts

, E
Ts

, and F
E

6.7 Summary and Discussion

We investigated the Lifshitz/quantum critical theory correspondence. In gravity theory,
we obtained the asymptotic solutions, which are expanded to sub-leading orders where
the equations of motion restrict the value of z to be z = n − 1 so as to have non-trivial
solutions of the marginally relevant mode, and found the expanded black hole solutions,
which are characterized by the horizon flux (or h0), at near horizon. From the perspective
of the holographic correspondence, the asymptotic gravitational solutions correspond to the
marginally relevant operators of the field theory residing on the boundary of the spacetime,
and the quantum critical property at finite temperature is described. In this configuration,
one of our aims was to describe the renormalization group flow of the marginally relevant
operators between UV-Lifshtiz and IR-AdS at zero temperature limit Λz/T →∞ based on
the studies [56],[18]. The other aim was to investigate the thermodynamic behaviours of
physical quantities depending on Λz/T at finite temperatures in terms of the dimensionality
of the spacetime

With these purposes, we derived the equations of motion for Einstein gravity and
obtained asymptotic solutions in terms of functions k, q, and x and also in functions of
f , p, and h (used separately for later numerical work). Then we derived the free energy
density F and the energy density E , and performed the holographic renormalization with
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the gravitational action at the asymptotic boundary of the spacetime, where the relevant
counterterms are constructed to prevent the divergent terms. Moving to the horizon, we
obtained near-horizon expansions of (planar) black hole solutions, and calculated physical
variables such as the entropy density s, the temperature T , and horizon flux φ defined
at the horizon r = r+, which are expressed by the metric parameters f0, p0,and Λ for
given h0. Before carrying out the numerical work, we proved that our analytical results are
consistent with the integrated first law of thermodynamics, and also made the prediction
that F0/Ts = −E0/Ts = 1/2 at Λ = 0, which means the marginally relevant modes are
turned off. Then we numerically computed the free energy density F/Ts, and the energy
density E/Ts in spacetime dimensions 4 to 9 for given h0, which are chosen near below
values from the maximum of h0, and then plotted their data as functions of log(Λz/T ) for
each dimension.

Our results indicate that the basic physics of Lifshitz/QCT duality [25] is valid in higher
dimensions. Regardless of dimensionality, with a small value of h0, renormalization group
flow under the marginally relevant operators for UV-Lifshitz to IR-AdS can be obtained
in the zero temperature limit Λz/T → ∞, commensurate with the 4-dimensional case
[18, 56]. Namely, in the zero temperature limit Λz/T → ∞, which implies the zero limit
of h0, the AdS spacetime emerges, and so it implies that the renormalization group flow
is recovered by controlling h0 to be very small. In high temperature regime Λz/T → 0, we
calculated the free energy density over Ts and the energy density over Ts for given various
h0, and plotted data as functions of log(Λz/T ). As analytically expected, the leading-order
values of F/Ts and E/Ts for Λ = 0 are numerically recovered as shown in table 6.2.
Moreover, the sub-leading dependence of these quantities are found in terms of log(Λz/T ),
with fixed Λ ∼ 0. This illustrates how physical quantities such as F/Ts and E/Ts change
as functions of log(Λz/T ) upon approaching the critical point from a given phase. We
consequently found that higher dimensional Lifshitz black holes can hold more horizon
flux of the massive vector field, since the maximum value of h0 increased with increasing
n. The sub-leading values generated by the marginally relevant modes on the F/Ts and
E/Ts have a weaker dependence on temperature T as dimensionality increases, as shown
in table 6.2.
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Chapter 7

Deformation of Lifshitz Holography
with Gauss-Bonnet term

7.1 Introduction

Continuing from Chapter 6 [25],[75], we investigate deformations of Lifshitz holography
with a Gauss-Bonnet term in (n + 1) dimensions. Gauss-Bonnet gravity generalizes Ein-
stein gravity to include quadratic curvature terms. The equations of motion consist of the
Einstein equations modified by additional quadratic curvature terms ( with coupling con-
stant α) in such a way that the higher derivative terms cancel out. Unfortunately, as the
additional terms in the equations of motion identically vanish in four dimensional space-
time, effects from such terms manifest only in 5 dimensions or more. There are various
motivations for considering such higher dimensional gravitational theories.

First, in gravity theory, considering higher curvature terms expands the array of black
hole solutions of Einstein gravity to Gauss-Bonnet-Einstein black hole solutions. Exam-
ples include the Boulware-Deser solution for spherically symmetric spacetime [17],[89] and
the Gauss-Bonnet black hole solution in AdS spacetime [22],[26],[28],[72], and the proper-
ties of these black hole solutions have been studied [54],[87]. In supersting/M-theory the
Gauss-Bonnet term naturally arises in the effective low energy limit and leads to ghost-free
nontrivial gravitational self interactions [91]. Also in cosmology, it provides one approach
to understand the current acceleration of the universe in the context of the dark energy
problem [59],[73]. In brane-world scenarios it yields additional interesting features [24],[31].
From the holographic correspondence point of view, involving condensed matter systems,
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one expects that the higher curvature correction will induce interesting new effects [41],[57]
or provide a better explanation for physical phenomena shown in abnormal materials.

The main purpose of this chapter is to find what role the Gauss-Bonnet coupling plays
in deformed Gauss-Bonnet-Lifshitz (GB-Lifshitz) holography. In 5 dimensions this is the
simplest extension that can yield interesting effects in a four-dimensional theory; we shall
here examine any dimensionality. To do so, we assume GB-Lifshitz spacetime in the
ultraviolet (UV) energy regime and Gauss-Bonnet-AdS (GB-AdS) spacetime in the infrared
(IR) energy regime, and consider the special condition z = (n−1)−2(n−2)α̃, where z is the
dynamic critical exponent and α̃ is the rescaled Gauss-Bonnet coupling constant (defined
below). This condition allows the massive vector field to describe the marginally relevant
operator, when the operator is expanded to sub-leading orders. To generate the sub-leading
orders of the gravitational solutions at the boundary, we introduce a momentum scale Λ,
which is very small (Λ ∼ 0) and expand the solutions as a power series in this quantity.
Then these sub-leading terms slightly deform the GB-Lifshitz spacetime, which lies in high
energy scale Λz/T → 0, at the asymptotic region. We also consider the finite temperature
theory by finding (planar) black hole solutions, which are expanded near the horizon. From
the duality perspective, this configuration leads us to expect that the gravitational solution
at the boundary of the deformed spacetime gives information about how marginally relevant
operators behave near critical points at finite temperature in quantum critical theory. Thus
we observe the behaviours of the physical quantities such as the free energy density or the
energy density, which show the properties of the marginally relevant operators, according
to different values of α̃. While at zero temperature limit Λz/T → ∞ at fixed Λ ∼ 0, the
GB-AdS spacetime can appear and then it might be possible to find the renormalization
group flow between the deformed GB-Lifshitz and GB-AdS spacetime for future such as
[18],[56].

In section 7.2, the Gauss-Bonnet-Einstein action with negative cosmological constant
coupled to a massive vector field is introduced, and its equations of motion are derived.
In section 7.3, we consider asymptotically Lifshitz spacetime in the high energy regime,
slightly deformed by a small value Λ, and calculate its asymptotic solutions. In section 7.4,
with these asymptotic solutions we perform holographic renormalization by constructing
the relevant counterterms so as to achieve a well-defined action principle. By doing so, we
obtain a well-defined free energy density F and energy density E . Moving near the black
hole horizon, in section 7.5, we derive the expanded black hole solutions in this region,
and obtain the thermodynamic variables defined at the horizon. Also we check that our
analytic calculations agree with the integrated form of the first thermodynamic law. In
section 7.6, we carry out numerical work with the asymptotic solutions and the expanded
black hole solutions. Choosing various values of α̃ = 1

4
, 1

10
, 0,− 1

20
,− 1

2(n−2)
,− 3

10
, we then fix
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the undetermined parameters (Λ, f0, and p0) appearing in the metric for given α̃ and h0,
which are variables characterizing black hole solutions, using numerical integration. Based
on these fixed values, we explore the physical quantities, and finally plot the free energy
density and the energy density depending log(Λz/T ) and find their fitting functions. From
this data, we analyze the physical behaviour of the free energy density and the energy
density according to α̃ (or z) in section 7.7.

7.2 Higher curvature gravity with a massive vector

field

We start with (n+ 1) dimensional gravitational action modified by higher curvature terms
and coupled to a massive vector field

S =

∫
dn+1x

√
−g
(

1

2κ2
n+1

[R + 2Λ̃ + αLGB]− 1

gv2

[
1

4
H2 +

γ

2
B2

])
(7.1)

where κn+1 =
√

8πGn+1, Λ̃ is cosmological constant, α is the Gauss-Bonnet coupling
constant and LGB = R2− 4RµνR

µν +RµναβR
µναβ. H = dB, and gv and γ are the coupling

constant and the squared mass of the vector field respectively. This action yields equations
of motion for the gravitational field

Gµν + αLµν − Λ̃gµν = κ2
n+1Tµν (7.2)

where

Gµν = Rµν −
1

2
gµνR, (7.3)

Lµν = 2

(
RRµν − 2RµαR

α
ν − 2RαβRµανβ +R αβγ

µ Rναβγ

)
− 1

2
gµνLGB, (7.4)

Tµν =
1

gv2

(
HµρH

ρ
ν −

1

4
gµνH

2

)
+

γ

gv2

(
BµBν −

1

2
gµνB

2

)
, (7.5)

and for the massive vector field

∇µH
µν − γBν = 0. (7.6)

At the asymptotic region (i.e. r → 0), for z 6= 1 we require the equations of motion to
admit the metric

ds2 = l2
(
− dt2

r2z
+
dr2

r2
+
dx2 + dy2 + · · ·

r2

)
(7.7)
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which is supported by the vector potential described by

B =
gvl

κn+1

q

rz
dt. (7.8)

These ansatz and boundary conditions fine-tune the cosmological constant to be

Λ̃ =
χ1

2l2
− α̃χ2

l2
(7.9)

where we replaced the coupling constant of the Gauss-Bonnet α with α̃, which is

α̃ =
α(n− 2)(n− 3)

l2
, (7.10)

and the squared mass and the squared charge to be

γ =
(n− 1)z

l2
, q2 =

z − 1

z
(1− 2α̃) (7.11)

where the χ1 and χ2 are defined by

χ1 = z2 + (n− 2)z + (n− 1)2, χ2 = z2 + (n− 2)z +
(n− 1)(n− 2)

2
. (7.12)

For given (n, z, α) we require that AdSn+1 spacetime is also a solution to the equations
with cosmological constant (7.9). In this case the metric is

ds2
AdS = a l2

(
− dt2

r2
+
dr2

r2
+
dx2 + dy2 + · · ·

r2

)
(7.13)

where the a is the scaling constant defined by

a =
n(n− 1) +

√
n(n− 1)(1− 2α̃)(n(n− 1)− 4χ2α̃)

2(χ1 − 2χ2α̃)
(7.14)

appears because the cosmological constant (7.9) has been already fixed due to the Lifshitz
boundary condition.

In order to configure the spacetime to induce renormalization flow from UV Lifshitz
spacetime to IR AdS spacetime at finite temperature (thereby recovering isotropic scaling
symmetry at low energy), we employ the ansatz

ds2 = l2
(
− f(r)dt2 +

dr2

r2
+ p(r)(dx2 + dy2 + · · · )

)
, (7.15)

B =
gvl

κn+1

h(r)dt, (7.16)
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and these yield the solution for the Lifshitz spacetime

Lifshitz : f =
1

r2z
, p =

1

r2
, h =

√
(z − 1)(1− 2α̃)√

z

1

rz
(7.17)

and for AdSn+1 spacetime

AdS : f = p = ar−2/
√
a, h = 0. (7.18)

Plugging the ansatz (7.15) and (7.16) into (7.2) and (7.6) yields

− 2zh(r)2

f(r)
− rp′(r)

p(r)
+
r2f ′(r)p′(r)

2f(r)p(r)
+
r2p′(r)2

2p(r)2
− r2p′′(r)

p(r)
+
α̃

2

(
r3p′(r)3

p(r)
− r4f ′(r)p′(r)3

2f(r)p(r)3

− r4p′(r)4

2p(r)4
+
r4p′(r)2p′′(r)

p(r)3

)
= 0, (7.19)

2χ1 +
2(2n− 3)zh(r)2

f(r)
− rf ′(r)

f(r)
+
r2f ′(r)2

2f(r)2
− (3n− 5)r2f ′(r)p′(r)

2f(r)p(r)
− (n− 2)2r2p′(r)2

2p(r)2

− r2f ′′(r)

f(r)
+ α̃

(
− 4χ2 +

3r3f ′(r)p′(r)2

2f(r)p(r)2
− r4f ′(r)2p′(r)2

4f(r)2p(r)2
− r3p′(r)3

p(r)3
+

3(n− 3)r4f ′(r)p′(r)3

4f(r)p(r)3

+
(n2 − 7n+ 16)r4p′(r)4

8p(r)4
+
r4p′(r)2f ′′(r)

2f(r)p(r)2
+
r4f ′(r)p′(r)p′′(r)

f(r)p(r)2
− r4p′(r)2p′′(r)

p(r)3

)
= 0,

(7.20)

χ1 +
(n− 1)zh(r)2

f(r)
− r2h′(r)2

f(r)
− (n− 1)r2f ′(r)p′(r)

2f(r)p(r)
− (n− 1)(n− 2)r2p′(r)2

4p(r)2

+ α̃

(
− 2χ2 +

(n− 1)r4f ′(r)p′(r)3

4f(r)p(r)3
+

(n− 1)(n− 4)r4p′(r)4

16p(r)4

)
= 0. (7.21)

For simplification we change variables via

p(r) = e
∫ r q(s)

s
ds, f(r) = e

∫ r m(s)
s
ds, h(r) = k(r)

√
f(r) (7.22)

where m(r) is defined by using a new variable

y(r) =

(
4χ1 + 4(n− 1)zk(r)2 − 2(n− 1)m(r)q(r)− (n− 1)(n− 2)q(r)2

+ α̃(−8χ2 + (n− 1)m(r)q(r)3 +
1

4
(n− 1)(n− 4)q(r)4)

)1/2

, (7.23)
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upon which (7.19)-(7.21) are rewritten as

ry′(r) = −2(n− 1)zk(r)− (n− 1)

2
q(r)y(r), (7.24)

rq′(r) =
χ1

(n− 1)
− zk(r)2 − n

4
q(r)2 − y(r)2

4(n− 1)
+

α̃

(2− α̃q(r)2)

×
(
− 4χ2

(n− 1)
+
χ1q(r)

2

(n− 1)
− zk(r)2q(r)2 − n

8
q(r)4 − q(r)2y(r)2

4(n− 1)

)
, (7.25)

rk′(r) = −y(r)

2
+

k(r)y(r)2

4(n− 1)q(r)
− zk(r)3

q(r)
+

(n− 2)

4
k(r)q(r)− χ1k(r)

(n− 1)q(r)
+

α̃

(2− α̃q(r)2)

×
(

4χ2k(r)

(n− 1)q(r)
− χ1k(r)q(r)

(n− 1)
− zk(r)3q(r) +

nk(r)q(r)3

8
+
k(r)q(r)y(r)2

4(n− 1)

)
. (7.26)

In terms of the new variables k(r), q(r), and y(r), the Lifshitz spacetime is described by

Lifshitz : q = −2, y = 2
√
z
√

(z − 1)(1− 2α̃), k =

√
(z − 1)(1− 2α̃)√

z
, (7.27)

whereas for GB-AdS spacetime,

GB-AdS : q = − 2√
a
, y = 0, k = 0. (7.28)

7.3 Asymptotic behaviour

Here we expand the asymptotic solutions (7.27) to sub-leading orders, which are generated
by a momentum scale Λ ∼ 0, so that the Lifshitz spacetime becomes slightly deformed.
Here the non-trivial solution for the sub-leading orders, which become marginally relevant
modes for the massive vector field, are only allowed under the condition

z = (n− 1)− 2(n− 2)α̃. (7.29)

by equations of motion (7.24)-(7.26). Henceforth we deal with the case satisfying the above
condition. Then the sub-leading orders admit the following form of the (Lifshitz spacetime)
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solution

k(r) =

√
(z − 1)(1− 2α̃)√

z

[
1 +

z + (2z2 − 5z − 1)α̃− 2(z + 1)(z − 2)α̃2

(z − 1)2(z + (2− 4z)α̃) log(rΛ)

+
1

2(z − 1)4(z + (2− 4z)α̃)2 log2(rΛ)

(
(z − 1)

(
− 3z2 − 4z2(z − 7)α̃ + (10z3 − 65z2

− 20z + 3)α̃2 − 2(z + 1)(z2 − 26z + 1)α̃3 − 4(z + 1)2(z + 2)α̃4

)
+

2

(z + (2− 4z)α̃)

(
z2(1− 3z)− 2z(4z3 − 25z2 + 13z − 2)α̃− (4z5 − 87z4 + 315z3

− 189z2 + 41z − 4)α̃2 + · · ·
)

log(− log(rΛ))

)
+ · · ·

]
+ (rΛ)2z+m1 log2−m2(rΛ)

[
ξ

(
1 +

log(− log(rΛ))

(z − 1)2(z − (z + 1)α̃)(z − (2− 4z)α̃)3 log(rΛ)

×
(

2z3(3z − 1) + 2z2(2z3 − 51z2 + 33z − 6)α̃ + · · ·
)

+ · · ·
)

+ ζ

(
1

log(rΛ)
+ · · ·

)]
,

(7.30)

q(r) = −2

[
1− z − (3z + 1)α̃ + 2(z + 1)α̃2

(z − 1)(z + (2− 4z)α̃) log(rΛ)
− 1

(z − 1)3(z + (2− 4z)α̃)2 log2(rΛ)

×
(

1

2(z + 2α̃)

(
z3 − 2z2(z2 + 2z + 2)α̃ + z(8z3 + 13z2 + 14z + 5)α̃2 − 2(5z4 + 15z3

+ 12z2 + 7z + 1)α̃3 + 4(z + 1)(z3 + 6z2 + 2z + 1)α̃4

)
+

1

(z + (2− 4z)α̃)

×
(
− z2(3z − 1)− 2z(z3 − 21z2 + 12z − 2)α̃ + · · ·

)
log(− log(rΛ))

)
+ · · ·

]
− 2

√
z − 1

√
z

(2z − 1)
√

1− 2α̃
(rΛ)2z+m1 log2−m2(rΛ)

×
[
ξ

(
1 +

1

(z − 1)2(2z − 1)(z + (2− 4z)α̃) log(rΛ)

(
−1

(2z − 1)

(
z(4z2 − 7z + 2)

+ (10z3 − 21z2 + 11z − 4)α̃− 2(z + 1)α̃2

)
+ · · ·

)
+ · · ·

)
+ ζ

(
1

log(rΛ)
+ · · ·

)]
,

(7.31)
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y(r) = 2
√
z
√

(z − 1)(1− 2α̃)

[
1 +

z2 − z(z + 3)α̃ + 2(z + 1)α̃2

(z − 1)2(z + (2− 4z)α̃) log(rΛ)

+
log(− log(rΛ))

(z − 1)4(z + (2− 4z)α̃)3 log2(rΛ)

(
z3(1− 3z)− 2z2(z3 − 18z2 + 8z − 1)α̃

+ z(7z4 − 123z3 + 21z2 + 8z − 1)α̃2 + · · ·
)

+ · · ·
]

− 2z(z − 2α̃)

(2z − 1)(1− 2α̃)
(rΛ)2z+m1 log2−m2(rΛ)

[
ξ

(
1 +

1

(z − 1)2(z + (2− 4z)α̃) log(rΛ)

×
(
−z(4z − 1)(z − 1) + (14z2 − 7z + 5)(z − 1)α̃− 2(2z + 1)(z + 1)(z − 1)α̃2

(2z − 1)

+
(2z3(3z − 1) + 2z2(2z3 − 51z2 + 33z − 6)α̃) log(− log(rΛ))

(z − (z + 1)α̃)(z + (z − 4z)α̃)2

)
+ · · ·

)
+ ζ

(
1

log(rΛ)
+ · · ·

)]
. (7.32)

where m1 and m2 become respectively

m1(z, α̃) =
2(z − 1)α̃

1− 2α̃
, m2(z, α̃) = −2α̃(z − (z + 1)α̃)

z + (2− 4z)α̃
. (7.33)

Here 2z +m1 is equivalent to z + n− 1 by using (7.29). Note that the denominator of m2

must not be zero so as to ensure that the logarithmic term log2−m2 remains finite; recall
that we want slightly perturbed metric from the origin. Since (7.33) becomes singular
when α̃ = z

2(−1+2z)
, where α̃ decreases with increasing z, approaching 1

4
as z → ∞, we

require α̃ ≤ 1
4
, where the equality is removed when z = ∞. This ensures m2 is finite for

any z ≥ 2. In Fig.7.1, we depict m2 versus z by varying α̃; we find that the value of m2

does not exceed −5
4

for |α̃| < 1 and any positive z.

In (7.30)-(7.32), a momentum scale Λ is taken to be very small compared to the energy
scale, where the Lifshitz spacetime lies. Thus Λ slightly deforms the Lifshitz spacetime
and by doing so generates the marginally relevant mode; the pure Lifshitz spacetime solu-
tions (7.27) are recovered when Λ → 0. Futhermore we see from (7.30)-(7.32) that these
solutions contain different modes due to the arbitrary parameters ξ and ζ. This introduces
an ambiguity related to defining the scale of Λ since the solution is invariant under the
transformation

F (Λr; ζ, ξ;λ) = F (eλ
′/zΛr; e−2λ′(ζ − λ′ξ), e−2λ′ξ;λ+ λ′) (7.34)
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where F stands for k, q, and y functions. We fix λ = 0 in (7.30)-(7.32) as in previous work
where α̃ = 0 [25] and [75].

By substituting (7.30)-(7.32) into the relation (7.22) and (7.23), the original functions
f and p are obtained as

f

l2
= F 2

0

log
−2

m2
m1

z
(rΛ)

(rΛ)2z

[
1− 1

(z − 1)3(z + (2− 4z)α̃)3 log(rΛ)

(
z3(7z − 4) + 2z2(4z3 − 49z2

+ 37z − 7)α̃− z(64z4 − 487z3 + 406z2 − 111z + 8)α̃2 + · · ·+
(

2z3(3z − 1) + 4z2(z3

− 21z2 + 12z − 2)α̃ + · · ·
)

log(− log(rΛ))

)
+ · · ·

]
, (7.35)

p

l2
= P 2

0

log
2
m2
m1 (rΛ)

(rΛ)2

[
1 +

1

(z − 1)3(z + (2− 4z)α̃)3 log(rΛ)

(
z2(5z − 2) + 2z(3z3 − 38z2

+ 24z − 4)α̃− (38z4 − 377z3 + 280z2 − 69z + 8)α̃2 + · · ·+
(

2z2(3z − 1) + 4z(z3 − 21z2

+ 12z − 2)α̃− (22z4 − 398z3 + 274z2 − 66z + 8)α̃2 + · · ·
)

log(− log(rΛ))

)
+ · · ·

]
(7.36)

where F0 and P0 are integration constants. As we are assuming the Lifshitz spacetime in
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(b) α̃ ∈ {1/7, 1/6, 1/5, 1/4}

Figure 7.1: m2 versus z for increasing values of α̃ from bottom to top.
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high energy regime, we introduce an arbitrary scale µ

log(rΛ) = log(rµ)− log
µ

Λ
, (7.37)

and expand the asymptotic solutions into UV regions where µ� Λ∣∣∣∣ 1

log µ
Λ

∣∣∣∣, ∣∣∣∣ log(rµ)

log µ
Λ

∣∣∣∣� 1, (7.38)

and then (7.35) and (7.36) become

f =
1

r2z

[
1 +

1

(z − 1)3(z − (2− 4z)α̃)3 log( µ
Λ

)

(
z3

(
7z − 4 + 2z(z − 1)2 log(rµ)

+ 2(3z − 1) log(log(
µ

Λ
))

)
+ 2z2

(
4z3 − 49z2 + 37z − 7− (11z − 3)z(z − 1)2 log(rµ)

+ 2(z3 − 21z2 + 12z − z) log(log(
µ

Λ
))

)
α̃ + · · ·

)
+ · · ·

]
, (7.39)

p =
1

r2

[
1− (1− 2α̃)

(z − 1)3(z − (2− 4z)α̃)3 log( µ
Λ

)

(
z2

(
5z − 2 + 2z(z − 1)2 log(rµ)

+ 2(3z − 1) log(log(
µ

Λ
))

)
+ 2z

(
3z3 − 33z2 + 22z − 4− 3z(z − 1)2(3z − 1) log(rµ)

+ 2(z3 − 18z2 + 11z − 2) log(log(
µ

Λ
))

)
α̃ + · · ·

)
+ · · ·

]
(7.40)

where t and x coordinates are rescaled by

t→
(

Λ log
m2
m1

(
µ

Λ

))z
1

F0

t, x→ Λ

log
m2
m1 ( µ

Λ
)

1

P0

x. (7.41)

7.4 Holographic Renormalization

As we are considering the spacetime at finite temperature, the action is related to the free
energy by the definition

F = −T logZ = TSε(g∗) (7.42)

where Sε and g∗ indicate the Euclidean action and metric respectively. At the asymptotic
boundary near r → 0, the action includes the boundary term to yield the bulk equations
of motions such as

Sε = Sbulk,ε + Sboundary,ε (7.43)

103



where each term is written as

Sbulk,ε =

∫
dn+1x

√
g

(
1

2κ2
n+1

[R + 2Λ̃ + αLGB]− 1

gv2

[
1

4
H2 +

γ

2
B2

])
,

Sboundary =
1

κ2
n+1

∫
Σ

dnx
√
γ

(
K + 2α(J − 2ĜabKab)

)
(7.44)

and where Ĝab is the n-dimensional Einstein tensor on Σ corresponding to γab and J =
Jabγ

ab in which

Jab =
1

3
(2KKacK

c
b +KcdK

cdKab − 2KacK
cdKdb −K2Kab). (7.45)

Defining F =
∫
dn−1x F , the free energy density F , which is the free energy density per

unit (n− 1)-dimensional spatial volume, is

Fbulk = − ln−1

2κ2
n+1

lim
r→0

r
√
f(r)p′(r)p(r)

n−3
2

(
1− α(n− 2)r2

l2
p′(r)

p(r)

(
(n− 3)

2

p′(r)

p(r)
+
f ′(r)

f(r)

))
,

Fboundary =
ln−1

κ2
n+1

lim
r→0

(
r

(√
f(r)p(r)

n−1
2

)′
− α(n− 1)(n− 2)r3

6l2
p′(r)2

f(r)p(r)

(
3
√
f(r)p(r)

n−3
2

)′)
.

(7.46)

Considering the boundary of the spacetime near r → 0, these quantities are divergent
upon insertion of (7.39) - (7.40), and so counterterms are required to render them finite.
These counterterms also should be constructed so as to preserve the covariance of the
action at the boundary and to yield a well-defined variational principle. To meet the
first condition, one convenient option would be to employ B2 = BµBµ and to consider its
combination, which could be any form if cancelling divergences were the only criterion. We
take the counterterms in the combination of C0 +C1B

2 +C2B
4 + · · · and then replace B2

with −κ2
n+1

g2
v
B2 − (z−1)(1−2α̃)

z
, because the counterterm should vanish for the pure Lifshitz

spacetime.

The counterterms are precisely expressed by

Fc.t =
ln−1

2κ2
n+1

lim
r→0

√
f(r)p(r)

n−1
2

( 2∑
j=0

Cj

(
−
κ2
n+1

g2
v

B2 − (z − 1)(1− 2α̃)

z

)j)

=
ln−1

2κ2
n+1

lim
r→0

√
f(r)p(r)

n−1
2

( 2∑
j=0

Cj

(
k(r)2 − (z − 1)(1− 2α̃)

z

)j)
(7.47)
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where Cj are not constants but rather series in 1/ log(rΛ), which expand similarly to (7.30)
- (7.32). Thus the free energy density is finally written as

F =Fbulk + Fboundary + Fc.t

=
ln−1

2κ2
n+1

lim
r→0

√
f(r)p(r)

n−1
2

(
(n− 2)rp′(r)

p(r)
+
rf ′(r)

f(r)
+ α̃

(
− r3

2

f ′(r)

f(r)

p′(r)2

p(r)2
− (n− 4)

6

r3p′(r)3

p(r)3

)
+

2∑
j=0

Cj

(
k(r)2 − (z − 1)(1− 2α̃)

z

)j)
. (7.48)

The counterterms are also compatible with the well-defined variational principle of
the on-shell action, and this process defines the boundary stress tensor, which yields the
conserved quantities. Here we obtain some physical quantities such as energy density E ,
pressure P , and flow J i by finding the boundary stress tensor. To do this we start with
the variation of the action known as

δF =

√
γ

2
τabδγab + J aδBa (7.49)

where τab contributes to yield conserved quantities via

Q = −
∫
dn−1x

√
σξakbτ

ab (7.50)

where
√
σ =

√
σx1x1 · · ·σxn−1xn−1 is the spatial volume element, ξa are boundary Killing

fields, and ka is the unit vector normal to the boundary surface. In the presence of the non-
scalar fields, the boundary stress tensor τab should be modified to include the contribution
of the massive vector fields, and to do so, we employ the vielbein frame at the boundary
of the metric

γab = ηâb̂e
â
ae
b̂
b, η = diag(±1, 1, 1, · · · ) (7.51)

where
et̂ = et̂adx

a =
√
fdτ, ex̂i =

√
p dxi. (7.52)

Then (7.49) is rewritten with the new boundary stress tensor T ab

δF =
√
γ T aâδeâa + J âδBâ (7.53)

where

T ab = T aâe
bâ, T ab = τab +

1
√
γ
J (aBb). (7.54)
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The energy density is expressed as

E =
√
σkaξbT

ab =
√
γτ tt + J tBt (7.55)

and the pressure is given by
P = −√γτxx. (7.56)

From the variation of the action (7.43)-(7.45) with respect to the γab, we obtain for τab the
expression

τab =
2
√
γ

δF
δγab

=
1

κ2
n+1

[
(Kγab −Kab) + 2α(Jγab − 3Jab − 2P̂ acdbKcd)

+
1

2l

2∑
j=0

Cj

(
γab
(
−
κ2
n+1

gv2
B2 − (z − 1)(1− 2α̃)

z

)j
+

2jκn+1
2

gv2
BaBb

(
−
κ2
n+1

gv2
B2 − (z − 1)(1− 2α̃)

z

)j−1)]
(7.57)

where
P̂abcd = R̂abcd + 2R̂b[cgd]a − 2R̂a[cgd]b + R̂ga[cgd]b, (7.58)

in which the R̂’s are various contractions of Riemann tensors defined on the n-dimensional
hypersurface associated with γab. From the variation of the action with respect to the
vector field strength Bt, J t̂ we obtain

J t̂ =
√
f(r)

δS

δBt

,

=
ln−2

gvκn+1

lim
r→0

√
f(r)p(r)

n−1
2

(
r(k(r)

√
f(r))′√

f(r)
+ k(r)

2∑
j=0

jCj

(
k(r)2 − (z − 1)(1− 2α̃)

z

)j−1)

=
ln−2

gvκn+1

lim
r→0

√
f(r)p(r)

n−1
2

(
− 1

2
y(r) + k(r)

2∑
j=0

jCj

(
k(r)2 − (z − 1)(1− 2α̃)

z

)j−1)
(7.59)

where other components of J â vanish. Then the energy density becomes

E =
ln−1

2κ2
n+1

lim
r→0

√
f(r)p(r)

n−1
2

[
(n− 1)

rp′(r)

p(r)
− k(r)y(r) + α̃

(
− (n− 1)

6

r3p′(r)3

p(r)3

)
+

2∑
j=0

Cj

(
k(r)2 − (z − 1)(1− 2α̃)

z

)j]
, (7.60)

106



and the pressure takes the same form of the free energy density with inverse sign

P = −F . (7.61)

To ensure a finite value of the action and a well-defined variational principle δS = 0,
we expect our counterterms (7.47) to render the free energy density (7.48), the flow (7.59),
and the energy density (7.60) finite when r → 0. Expanding these functions with the
asymptotic solution (7.30)-(7.32), they take the form

F ∼ 1

rz+n−1

(
F1[

1

log(rΛ)
]+ · · · (rΛ)z+n−1 log2−m2(rΛ)

(
F2[

1

log(rΛ)
]+ · · ·

))
+counterterms

(7.62)
where F stands for F , E , and J t̂, and F1 and F2 indicate the parts involving series of
log(rΛ) in the expression of F , E , and J t̂. As shown in (7.62), divergences occur as r → 0.
The divergences due to 1

rz+n−1 are eliminated by the two coefficients C0 and C1, expanded
as a series in 1/ log(rΛ). To prevent the divergences due to log2−m2(rΛ), another coefficient
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C2 of the counterterm is required. Then C0, C1, and C2 become

C0 =− 2(−3 + 6z + (6− 14z)α̃ + 4(−2 + 3z)α̃2)

−3 + 6α̃

+
2(z − 2α̃)(1 + 2(−2 + z)α̃)(−z + (1 + z)α̃)3

(z − 1)3(2z − 1)(z + (2− 4z)α̃)2 log2(rΛ)

+
(z − (1 + z)α̃)2

3(2z − 1)2(z − 1)5(z + (2− 4z)α̃3) log3(rΛ)

(
3z(1− 2z − 3z2 + 2z3 + 4z4)

+ (−3− 21z + 109z2 + 33z3 − 146z4 − 48z5 + 16z6)α̃ + · · ·
)

+ · · · , (7.63)

C1 =z − 2z(z − 2α̃)(z − (1 + z)α̃)2

(z − 1)2(2z − 1)(2α̃− 1)(z + (2− 4z)α̃) log(rΛ)

− z(−z + (1 + z)α̃)

2(2z − 1)2(z − 1)4(2α̃− 1)(z + (2− 4z)α̃)2 log2(rΛ)

(
z(3− 10z − z2 + 14z3)

+ (−3− 9z + 113z2 − 103z3 − 70z4 + 24z5)α̃ + · · ·
)

+ · · · , (7.64)

C2 =
z2(1− 3z + 4zα̃)

4(z − 1)(2z − 1)(2α̃− 1)2
+

z2

4(2z − 1)2(z − 1)3(2α̃− 1)2(z + (2− 4z)α̃) log(rΛ)

×
(
z(3− 14z + 15z2) + (−3 + 3z + 65z2 − 119z3 + 30z4)α̃ + · · ·

)
+

∆

log2(rΛ)

+
z2 log(− log(rΛ))

4(1− 2z)2(−1 + z)5(1− 2α̃2(−z + (1 + z)α̃)(−z + (−2 + 4z)α̃)3 log2(rΛ)

×
(

(1− 3z)2z3(−3 + 5z) + z2(−9 + 110z − 532z2 + 1154z3 − 955z4 + 120z5)α̃ + · · ·
)
.

(7.65)

where C0 and C1 keep expanding in an infinite series in 1/ log(rΛ) as the asymptotic solu-
tions expand. However C2 just consists of a finite number of terms, because the log2−m2(rΛ)
quantity in (7.62) is divided by 1/ logi(rΛ) (where i = 1, 2, · · · ) from F2 and so when i
becomes 2−m2 divergences due to log2−m2(rΛ) vanish. These solutions, however, have an
ambiguity ∆ as shown in (7.65). It turns out that ∆ does not affect numerical work for
the free energy density and the energy density, as we shall show in the next section.
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Inserting the solution (7.63)-(7.65) into (7.48), (7.59), and (7.60), we find

F =
ln−1

κ2
n+1

√
z√

(z − 1)(1− 2α̃)

(
(z − (z + 1)α̃)ζ +

X

(2z − 1)(z − 1)2(z − (−2 + 4z)α̃)3
ξ

)
,

(7.66)

E =− ln−1

κ2
n+1

(z − 2α̃)√
(z − 1)z(2z − 1)(1− 2α̃)3/2

×
(

(z − (z + 1)α̃)ζ − Y

(2z − 1)(z − 1)2(z − (−2 + 4z)α̃)3
ξ

)
, (7.67)

J t̂ =
1

gv

ln−2

κn+1

1

(1− 2z)2(1− 2α̃)2

(
− (z − 1)(z − 2α̃)α̃ ζ +

4(z − 1)(1− 2α)3∆

z
ξ

+
Z

2(z − 1)4(1− 2z)(z − (1 + z)α̃)(z − (−2 + 4z)α̃)3
ξ

)
, (7.68)

where X, Y , and Z are functions of z and α̃, and are displayed in (F.1). This result implies
for the pure Lifshitz spacetime to be

F = E = J t̂ = 0, (7.69)

since ζ = ξ = 0 for the pure Lifshitz solution.

7.5 Finite Temperature

We have so far worked near boundary of the spacetime. We now move to the near-horizon
region of a black hole. In this section, we first obtain (planar) black hole solutions expanded
near the horizon, and find some thermodynamic quantities such as temperature T , entropy
density s, horizon flux density of the massive vector field φ at near horizon r = r+. Then
we prove the integrated first law by constructing an RG-invariant quantity K̄, and find the
relation F0 = −η(n, α̃)E0 from the integrated law of thermodynamics and the trace Ward
identity.

7.5.1 Expansion and Physical quantities near the horizon

Let us consider a black hole solution defined by f(r+) = 0, and expand the solution near
horizon r = r+. The expansions in powers of (1− r

r+
) are determined by equation of motion

109



(7.19)-(7.21). We find

f(r) = f0

((
1− r

r+

)2

+

(
1− r

r+

)3

+
1

12(1− 2α̃)2(z − 2α̃)2

×
(
z(8h2

0(−2 + 3z) + z(7 + 14z − 6z2)) + 2(32h0
4 + 16h0

2(1 + z − 6z2)

+ z(−18− 30z − 35z2 + 29z3))α̃ + · · ·
)(

1− r

r+

)4

+ · · ·
)
, (7.70)

p(r) = p0

(
1

+
(4h0

2 + z − 3z2 − (16h0
2 + z − 11z2)α̃ + 2(−1 + 8h0

2 + z − 8z2)α̃2 + 8z2α̃3)

2(z − 2α̃)(−1 + 2α̃)

(
1− r

r+

)2

+
(4h0

2 + z − 3z2 − (16h0
2 + z − 11z2)α̃ + 2(−1 + 8h0

2 + z − 8z2)α̃2 + 8z2α̃3)

2(z − 2α̃)(−1 + 2α̃)

(
1− r

r+

)3

+ · · ·
)
, (7.71)

h(r) =
√
f0h0

((
1− r

r+

)2

+

(
1− r

r+

)3

+
1

24(1− 2α̃)2(z − 2α̃)2(
z(z(20 + 10z − 9z2) + 8h0

2(−1 + 3z)) + 4(8h0
4 − 4h0

2(−1 + 2z + 9z2)

+ z(−21− 27z − 5z2 + 14z3))α̃ + · · ·
)(

1− r

r+

)4

+ · · ·
)

(7.72)

where f0 and p0 are constants, which are not determined by equations of motion, and
control the scaling of the metric by redefining the coordinates so that dt′2 = f 2

0dt
2 and

dx′2i = p2
0dx

2
i . In the next section, we tune f0 and p0 with log(Λ

µ
) shown in (7.39) and (7.40)

at the energy scale µ = 1
r+

by matching near horizon solutions (numerically integrated

towards asymptotics) and the asymptotic solutions. If f0 and p0 are fixed by doing so, the
expanded black hole solutions (7.70)-(7.72) are characterized by two parameters h0 and α̃.
Namely, (7.70)-(7.72) describe a two-parameter family {h0, α̃} of black hole solutions.

Thermodynamic properties of (7.70)-(7.72) are found by calculating temperature T
and entropy density s near horizon. The temperature is determined by demanding the
periodicity of the imaginary time coordinate τ so that spacetime becomes regular at r = r+,
and the entropy is defined by S = A

4Gn+1
which is proportional to the area of the black
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hole. Using our metric (7.15), the T and s can be written as

T =
r+

2π

√
1

2

d2f(r)

dr2

∣∣∣∣
r=r+

, (7.73)

s = 2π
ln−1

κ2
n+1

p(r+)
n−1

2 (7.74)

where S =
∫
s dn−1x. We also can calculate the horizon flux Φ of the massive vector field

defined by

Φ =

∮
√
γ ~H · d ~A =

∮
φ dn−1x (7.75)

where

φ =
ln−2gvr+

κn+1

(
p(r)

n−1
2√

f(r)

dh(r)

dr

)∣∣∣∣
r=r+

(7.76)

is the horizon flux density. Plugging near horizon solutions (7.70)-(7.71) into (7.59)–(7.73),
each quantity becomes

T =

√
f0

2π
, s = 2πp

n−1
2

0

ln−1

κ2
n+1

, φ = 2h0p
n−1

2
0

ln−2gv
κn+1

. (7.77)

7.5.2 Integrated First Law of Thermodynamics

So far we obtained the asymptotic solutions (7.30)-(7.32), and calculated the free energy
density (7.48) and the energy density (7.60). Then we derived the near horizon solutions
(7.70)-(7.71), and computed thermodynamic quantities such as temperature T and the
entropy density s near horizon in (7.77). Now we check the consistency of our calculations
by proving the integrated first law of thermodynamics.

To connect the physical variables of the asymptotic region and near horizon region, we
construct an RG-invariant quantity K̄ to be a constant at both regions. First, by using the
asymptotic solution, we combine the functions q, k, y and m in an invariant combination.
Then K̄ takes the form

K̄ =

√
f(r)p(r)

n−1
2

2

[
q(r)−m(r)− k(r)y(r)− α̃

(
1

2
q(r)3 − 1

2
m(r)q(r)2

)]
(7.78)

=

√
f(r)p(r)

n−1
2

4q(r)

[
1

(n− 1)
y(r)2 + nq(r)2 − 4zk(r)2 − 2k(r)q(x)y(x)− 4χ1

(n− 1)

+ α̃

(
− n

4
q(r)4 +

8χ2

(n− 1)

)]
(7.79)
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which produces with (7.30)-(7.32)

K̄ =
2(z − (1 + z)α̃)

√
z − 1

√
z(1− 2z)(1− 2α̃)

3
2

(
(z − (1 + z)α̃)ζ − ξ

(1− 2z)(z − 1)2(z + (2− 4z)α̃)3

×
(
− z3(1− 3z + z2) + z2(−6 + 28z − 48z2 + 21z3 − 4z4)α̃ + z(−12 + 95z − 287z2

+ 424z3 − 262z4 + 72z5)α̃2 + (−8 + 116z − 514z2 + 1193z3 − 1630z4 + 1125z5

− 322z6)α̃3 + (28− 231z + 685z2 − 1283z3 + 1887z4 − 1558z5 + 472z6)α̃4 − 2(7− 27z

− 62z2 + 246z3 − 47z4 − 231z5 + 90z6)α̃5 + 4(1 + z)2(2− 17z + 41z2 − 32z3 + 4z4)α̃6

))
.

(7.80)

Employing the expression for the free energy density (7.48) and the energy density(7.60),
we obtain the algebraic relation

1

2

√
f(r)p(r)

n−1
2

[
(n− 1)rp′(r)

p(r)
− k(r)y(r) + α̃

(
− (n− 1)

6

r3p′(r)3

p(r)3

)
+

2∑
j=0

Cj

(
k(r)2 − (z − 1)(1− 2α̃)

z

)j]
=

1

2

√
f(r)p(r)

n−1
2

[
(n− 2)rp′(r)

p(r)
+
rf ′(r)

f(r)
+ α̃

(
− r3

2

f ′(r)

f(r)

p′(r)2

p(r)2
− (n− 4)

6

rp′(r)3

p(r)3

)
+

2∑
j=0

Cj

(
k(r)2 − (z − 1)(1− 2α̃)

z

)j]
+ K̄ (7.81)

or simply

E = F +
ln−1

κ2
n+1

K̄. (7.82)

Next, let us calculate K̄ with (7.70)-(7.71) at r = r+. This yields for K̄

K̄ =
√
f0P

n−1
2

0 = Ts
κ2
n+1

ln−1
(7.83)

and by plugging the above into (7.82), we find

F = E − Ts (7.84)
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which is the integrated form of the first law of thermodynamics. We have therefore proved
that our analytic calculation agrees with the first law of thermodynamics. We shall make
use of (7.84) for checking our numerical calculations, which are performed with the aim of
observing the behaviour of the marginally relevant modes where Λ ∼ 0, in section 6.

For Λ = 0, in [75] it was expected regardless of dimensionality that

F0 = −E0 = −1

2
Ts0 (7.85)

which is derived by using F0 = −E0 from the trace Ward identity in [86], and (7.61). This
fact was also proved by the numerical calculation in [75]. More generally, using (7.61) we
expect P0 = z

n−1
E0 implying

F0 = − z

n− 1
E0 (7.86)

in any dimensionality. In the Gauss-Bonnet case we are considering, z = n− 1− 2(n− 2)α̃
leads us to expect

F0 = −η(n, α̃)E0 where η(n, α̃) = 1− 2(n− 2)

(n− 1)
α̃, (7.87)

and

F0

Ts
= − n− 1− 2α̃(n− 2)

2(n− 1)− 2α̃(n− 2)
,

E0

Ts
=

n− 1

2(n− 1)− 2α̃(n− 2)
. (7.88)

In the next section we shall numerically compute η(n, α̃) function for n = 4, 5, . . . , 9 for all
values of α̃ we consider. We will see that our results are consistent with eqs. (7.87) and
(7.88) in all dimensions.

7.6 Exploring Near the Quantum Critical Point

In holographic duality picture at zero temperature, we can imagine that the matter fields
residing on the boundary of the spacetime become those of the conformal field theory,
which is dual to the AdS spacetime in IR regimes, or the Lifshitz-like field theory (or
quantum critical theory), which is dual to the Lifshitz spacetime in UV regimes. Our
interests are to consider this configuration at finite temperature in the presence of the
massive vector field and the Gauss-Bonnet terms in the gravity action, and to investigate
the thermodynamic behaviour of the deformed GB-Lifshitz spacetime with a black hole,
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which from the duality perspective corresponds to the marginally relevant operators near
the quantum critical point. To generate the marginally relevant modes, the momentum
scale Λ is introduced into the asymptotic Lifshitz metric, and it is assumed that Λ ∼ 0,
which is much smaller than the background temperature T (Λz � T ). Hence it slightly
deforms the Lifshitz spacetime, recovering the pure Lifshitz spacetime for Λ = 0.

In this section, our aims are to show the implications of the Gauss-Bonnet terms for
holographic renormalization flow and to observe the behaviour of physical quantities such
as the free energy density F/Ts and the energy density E/Ts as functions of log(Λz/T ).

To do these, we first fix the undetermined parameters Λ, f0, and p0 (in the numerical
calculation we consider the quantities Λr+, f

f0

rz

rz+
, and p

p0

r2

r2
+

). This is performed by nu-

merically integrating the near horizon solution towards the boundary and reading off the
matching values of Λ, f0, and p0. Based on these values the thermodynamic functions F
and E are numerically integrated from near horizon to the boundary, and their numerical
values are found for each h0 in section 7.6.1. In section 7.6.2 we plot the data for F and E
in a function of log(Λz

T
), and find the numerical data corresponding to η(n, α̃) in (7.87).

7.6.1 Integrating towards the Lifshitz Boundary

As mentioned in section 5.1, we have scaling ambiguities in the metric due to the undeter-
mined constants f0 and p0. We here find values of Λ for each h0 by matching the numerical
integration of near horizon solutions with the asymptotic solutions at the middle regions,
and tune f0 and p0 with the matching value of Λ for the same h0 by using the same method.
For the numerical calculation, we set up the arbitrary scale µ = r−1

+ and use dimensionless
quantities: r/r+, Λr+, F/Ts, E/Ts and Λz/T .

Before performing the numerical work, we need to find the range of α̃ and to decide
the specific values of α̃, as (7.70)-(7.72) describe two-parameter family {h0, α̃} of black
hole solutions, where the values of h0 are variously taken for each α̃ and will be discussed
further in the following subsection.

Analyzing the asymptotic solutions (7.30)-(7.32) in section 2, recall that m2 yields the
restriction α̃ ≤ 1

4
, where equality is attained when z = ∞. We expect that |α̃| < 1 since

the Gauss-Bonnet term associated with the coupling constant α̃ via (7.10) is considered as
a small correction to Einstein gravity. Then the range of α̃ becomes

− 1 < α̃ ≤ 1

4
, (7.89)
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and this corresponds to the range

n

2
≤ z < 3n− 5 (7.90)

upon using z = n − 1 − 2(n − 2)α̃ from (7.29). To observe the α̃-dependence for a broad
range of values, we sparsely choose the values of α̃, which are the two positive values 1

4
, 1

10
,

and three negative values − 1
20

(bigger than − 1
2(n−2)

), − 1
2(n−2)

, − 3
10

(smaller than − 1
2(n−2)

),

and we also consider α̃ = 0 [75] for comparison. Table 7.1 lists the cases that we consider.

z

α̃ = 1
4

α̃ = 1
10

α̃ = 0 α̃ = − 1
20

α̃ = − 1
2(n−2) α̃ = − 3

10

n = 4 2 2.6 3 3.2 4 4.2

n = 5 2.5 3.4 4 4.3 5 5.8

n = 6 3 4.2 5 5.4 6 7.4

n = 7 3.5 5 6 6.5 7 9

n = 8 4 5.8 7 7.6 8 10.6

n = 9 4.5 6.6 8 8.7 9 12.2

Table 7.1: values of z according to n and α̃

Matching Λ

In the asymptotic solutions (7.30)-(7.32), Λ is the only unfixed quantity. To fix Λ, we
expand these solutions into the high energy regimes by introducing the arbitrary scale µ
and using the condition (7.38), which assumed that µ � Λ. Then we set µ = r+, which
means that our asymptotic solutions are described at the energy scale r+, and fit the
asymptotic solutions towards the horizon.

Near the horizon the expanded black hole solutions (7.70)-(7.72) should be changed to
in functions of k, q, and y by using the relations (7.38) so as to avoid the scale ambiguities
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of f0 and p0 for now. Then we numerically integrate the solutions towards the boundary
by obeying the equations of the motion (7.24)-(7.26).

At the middle region, we match the fitting of the asymptotic solutions with the numer-
ical integration for given h0 by controlling the value of log Λr+ as shown in Fig.7.2, which
displays the function k for n = 4 and for each value of α̃ in Table7.1. The red dashed line
is the fitted asymptotic solution, that is the one including log Λr+, and the blue solid line
is the result of numerical integration of the horizon solution. In our numerical work, the
integration is performed from log(r/r+) ∼ −0.15 to log(r/r+) ∼ −104.

Note that in Fig.7.2, the graph (f) shows the different behaviour from (a)-(e) by having
a positive slope, which means that the k function decreases as the boundary is approached.
This positive-slope pattern is observed only for the k function in the range α̃ < −1/(2(n−
2)), which is equivalent to z > n; for α̃ ≥ −1/(2(n−2)) or z ≤ n, the slope of k is negative,
meaning it increases as the boundary is approached. The signs of the slopes of q and y
versus log(r/r+) are negative for all values of α̃. Note that k is defined via h = k

√
f from

(7.22), where f is the −gtt-component of the metric and h is the vector field potential.
Hence k only has information about the charge of the vector field and the Gauss-Bonnet
coupling constant α̃. Fig.7.2-(f) illustrates that when z > n the weight for the charge of
the vector field and α̃ near the horizon become larger than at the boundary.

This process is performed by varying h0. Beyond the maximum value of log Λr+, the
numerical integration of the near horizon solution exponentially grows as the boundary is
approached, and so does not match the asymptotic solution. This means that if the horizon
flux φ in (7.77) is too large, which corresponds to high temperature, the deformation of the
spacetime is not allowed any more and becomes the asymptotically pure Gauss-Bonnet-
Lifshitz spacetime (having a black hole). Hence there exists a maximum value of h0.

The maximum values of h0 are recorded in Table 7.2, and show linearly increasing
dependence on the dimensionality of spacetime for the same α̃. For decreasing α̃ the slope
gets larger as shown in Fig.7.3, where dots are the numerical data of the maximum value
of h0 and the data obtained with the same value of α̃ are connected with the line. For
n = 4, the dependence of α̃ (or z) on the maximum values of h0 are also found in Fig.7.4,
where the dots the maximum values of h0, and the lines are the fitting functions obtained
from the data. These are not linear; rather hmax ∼ −0.633878 + 0.553198z + 0.0680033z2

for Fig.7.4(a) and hmax ∼ 1.63775 − 3.84487α̃ + 1.08805α̃2 for Fig.7.4(b). These results
indicate that h0 obviously depends on α̃.

A minimum value of the flux also exists; its value becomes zero at the horizon. In this
case, the influence of the massive vector field vanishes, and so the spacetime is described
completely by an asymptotically Gauss-Bonnet AdS black hole.
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Figure 7.2: Extracting log(Λr+)
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Very small values of h0 correspond to the zero temperature limit Λz/T → ∞; in this
limit the AdS spacetime emerges in the IR regime. Hence for fixed Λ ∼ 0, the slightly
deformed UV Lifshitz spacetime and IR AdS spacetime with Gauss-Bonnet corrections
emerge instead. Thus we might expect holographic renormalization group flow at zero
temperature similar to the α̃ = 0 case [56], [18] . The presence and nature of the renor-
malization flow interpolating both spacetimes for α̃ 6= 0 has not yet been studied yet; it
remains for future work.
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hmax

α̃ = 1
4

α̃ = 1
10

α̃ = 0 α̃ = − 1
20

α̃ = − 1
2(n−2) α̃ = − 3

10

n = 4 0.7512 1.2616 1.6343 1.8298 2.6687 2.8917

n = 5 1.0416 1.7528 2.2822 2.5622 3.2519 4.0981

n = 6 1.3288 2.2394 2.9255 3.2900 3.8614 5.3005

n = 7 1.6147 2.7239 3.5668 4.0158 4.4818 6.5012

n = 8 1.8998 3.2073 4.2070 4.7406 5.1079 7.7011

n = 9 2.1844 3.6900 4.8465 5.4647 5.7372 8.9004

n = 10 2.4688 4.1723 5.4856 6.1884 6.3686 10.0992

n = 11 2.7530 4.6543 6.1244 6.9118 7.0013 11.2977

n = 12 3.0371 5.1361 6.7629 7.6346 7.6349 12.4958

Table 7.2: the maximum values of h0 for each values of n and α̃
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Figure 7.4: dependence of z or α̃ on hmax when n = 4.

Matching f0 and p0

We have other variables left to be determined, which are f0 and p0 in (7.70)-(7.72). Since
Λ is fixed, we tune f0 and p0 based on the value of Λ for each set {h0, α̃} by using the same
method applied for Λ.

We bring the asymptotic solutions (7.39)-(7.40) expanded in the high energy regime in
terms of µ, where µ = r−1

+ , and fit the solutions with the determined value of Λ (given
{h0, α̃}) to the horizon. Near the horizon, we numerically integrate the equations of
motion (7.19)-(7.21) towards the boundary using (7.70)-(7.72) as initial conditions. At
the middle region, we adjust f0r

2z
+ or p0r

2
+ and read off the values for which both solu-

tions agree. This process for f and p functions is depicted in Figures 7.5 and 7.6 for
α̃ = 1/4, 1/10, 0,−1/20,−1/4,−3/10 in n = 4. The red dashed line is the fit of the bound-
ary solution and the blue solid line is the numerical result of the near horizon solution. For
n = 5, 6, 7, 8, 9 higher-dimensional cases we find similar patterns for the same values of α̃.

Since we have now fixed Λ, f0, and p0, the thermodynamic quantities calculated in
(7.77) can be determined. The temperature is given by

log

(
Λz

T

)
= z log(Λr+) + log(2π)− 1

2
log(f0r

2z
+ ) (7.91)

which is computed from the known values of Λ and f0. In next sections, we collect all data
on the free energy density F/Ts and the energy density E/Ts for given {h0, α̃}, where
the specific value of h0 corresponds to each set of values {Λ, f0, p0}, and fit their results
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Figure 7.5: Extracting f0 and p0 for positive and zero α̃ in n = 4

121



-20 -15 -10 -5 0

0.0224

0.0225

0.0226

0.0227

0.0228

0.0229

0.0230

0.0231

log
r

r+

f

f0

r2 z

r+

2 z

-20 -15 -10 -5 0

0.564

0.565

0.566

0.567

0.568

log
r

r+

p

p0

r2

r+

2

(a) For α̃ = −1/20 (z = 3.2) and h0 = 1.82980, which corresponds to log(Λr+) = −3422, the red
dashed line is matched to the blue solid line at f0r

2z
+ = 43.53 (left) and p0r

2
+ = 1.7727 (right)

-20 -15 -10 -5 0
0.0153

0.0154

0.0155

0.0156

0.0157

log
r

r+

f

f0

r2 z

r+

2 z

-20 -15 -10 -5 0
0.623

0.624

0.625

0.626

log
r

r+

p

p0

r2

r+

2

(b) For α̃ = −1/4 (z = 4) and h0 = 2.66868, which corresponds to log(Λr+) = −4137.2, the red dashed
line is matched to the blue solid line at f0r

2z
+ = 63.88 (left) and p0r

2
+ = 1.6042 (right)

-20 -15 -10 -5 0
0.0137

0.0138

0.0139

0.0140

0.0141

0.0142

0.0143

0.0144

log
r

r+

f

f0

r2 z

r+

2 z

-20 -15 -10 -5 0

0.636

0.637

0.638

0.639

0.640

0.641

0.642

log
r

r+

p

p0

r2

r+

2
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Figure 7.6: Extracting f0 and p0 for negative α̃ in n = 4

122



to a function of log Λz/T . We consider the dimensionless quantities F/Ts and E/Ts. For
the entropy density s from (7.77), we consider the dimensionless quantity s/T (n−1)/z as a
function of log(Λ/T ), plotted in Fig.F.1.

Free Energy Density and Energy Density

The dimensionless quantities F/Ts and E/Ts, respectively the free energy density (7.48)
and the energy density (7.60), are numerically integrated from the horizon towards the
boundary for given {h0, α̃}. The results are depicted in Figures 7.7 and 7.8, where the
blue line is the numerical result and the red dashed line is read off from the stable value
in the flat region. As shown in Figures 7.7 and 7.8, F/Ts and E/Ts yield constant values
over some finite range of log(r/r+), but oscillate infinitely upon approaching the boundary.
The reason for these diverging and oscillating behaviours can be found in the holographic
renormalization process in section 3. Recall that the free energy density and the energy
density diverge as r → 0, and so the counterterms (7.63)-(7.65) were constructed to render
them finite. As mentioned, C0 and C1 expand to infinite series in log(Λr+); however only
terms up to 1/ log4(Λr) (15 terms for each of C0 and C1) are computed due to limitations
of the analytic calculation. This finite number of terms is employed in the numerical cal-
culation of F/Ts and E/Ts. On the other hand, the numerical work includes higher orders
(i.e. higher than 1/ log4 Λr), and so the diverging properties are not totally eliminated by
our analytic solutions using counterterms.

In Figures 7.8 (b) and (c), which corresponds to cases of z = 4 and z = 4.2 respectively,
unstable behaviours are observed near the horizon. To see the whole pattern the scales are
zoomed out in Figure 7.9. This pattern of having a sharp peak near the horizon commonly
appears for the range z & n for any n and h0. This unstable behaviour of F/Ts and
E/Ts for z & n can be understood via the same rationale for the different pattern of the
k-function for z > n. That is, as z gets bigger and approaches z ∼ n due to the decreasing
value of α̃, the effect of both the charge of the vector field and α̃ gets bigger near the
horizon than at the boundary, causing unstable behaviour in both F/Ts and E/Ts.

7.6.2 Behaviours of E and F near Quantum Critical Regimes

Collecting data for each of the values of {h0, α̃}, we plot F/Ts and E/Ts as functions of
log Λz/T and find their fitting functions. These results are displayed in Figures 7.11 and
7.12, for which n = 4; the dots are the numerical results and the solid line is the fitting
function found. The fitting functions for each n are recorded in Tables 7.3, F.1, F.2, F.3,
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(c) For α̃ = 0 (z=3) and h0 = 1.63430, which corresponds to log(Λr+) = 5167.9. Blue line is the numerical
results of the free energy density over Ts (left) and the energy density over Ts (right), and red dashed
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Figure 7.7: F/Ts and E/Ts versus log( r
r+

) for positive and zero α̃ in n = 4
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Figure 7.8: F/Ts and E/Ts versus log( r
r+

) for negative α̃ in n = 4
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Figure 7.9: F/Ts and E/Ts versus log( r
r+

) for negative α̃ in n = 4

F.4, and F.5. We subsequently check that our numerical results for F/Ts and E/Ts with
the marginally relevant modes agree with the integrated first law of thermodynamics in
(7.84) with an error of less than 10−4 as shown in Fig. 7.13.

It is straightforward to show using the data in the rightmost columns of tables 7.3,
F.1, F.2, F.3, F.4, and F.5, that the values of F0/E0 = −η(n, α̃) are consistent with the
expression (7.87). We illustrate the n = 4 case in Fig. 7.10, where the red dots are the
numerical data and the solid line is the expression for η(4, α̃) given in eq. (7.87). We
recover the values of F0/Ts and E0/Ts in (7.88) in the absence of the marginally relevant
mode (Λ = 0) at finite temperature.

We also observed how F/Ts and E/Ts behave with the marginally relevant modes
according to different values of n and α̃ when Λz/T → 0. When Λ 6= 0 the marginally
relevant modes (generated by small values of Λ) contribute at sub-leading order to F/Ts
and E/Ts as functions of log Λz/T , where Λz/T → 0. From Figures 7.11, 7.12 and Tables
7.3, F.1, F.2, F.3, F.4, and F.5, we see that for the same dimension n, as z increases (or
α̃ decreases), this sub-leading contribution decreases. Furthermore, for the same value of
α̃, as z increases (or n increases), this sub-leading contribution also decreases. That is,
when z increases due to either decreasing α̃ or increasing n by z = n− 1− 2(n− 2)α̃, this
sub-leading contribution decreases.
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Figure 7.10: For n = 4, red dots are the numerical data and blue solid line is the fitting of
the η function

7.7 Summary and Discussion

Our main purpose has been to understand how the Gauss-Bonnet coupling constant α̃,
defined in (7.10), plays a role in the deformation of Lifshitz holography in (n+1) dimensions.

(n = 4) F
Ts

E
Ts

F
E

α̃ = 1/4 or z = 2 −0.40− 1.21
log Λz/T

+· · · 0.60− 1.21
log Λz/T

+ · · · −0.67− 3.37
log Λz/T

+· · ·

α̃ = 1/10 or z = 2.6 −0.46− 0.83
log Λz/T

+· · · 0.54− 0.83
log Λz/T

+ · · · −0.87− 2.89
log Λz/T

+· · ·

α̃ = 0 or z = 3 −0.50− 0.76
log Λz/T

+· · · 0.50− 0.76
log Λz/T

+ · · · −1.0− 3.00
log Λz/T

+ · · ·

α̃ = −1/20 or z = 3.2 −0.52− 0.73
log Λz/T

+· · · 0.48− 0.74
log Λz/T

+ · · · −1.1− 3.13
log Λz/T

+ · · ·

α̃ = −1/4 or z = 4 −0.57− 0.69
log Λz/T

+· · · 0.43− 0.69
log Λz/T

+ · · · −1.3− 3.76
log Λz/T

+ · · ·

α̃ = −3/10 or z = 4.2 −0.58− 0.69
log Λz/T

+· · · 0.42− 0.69
log Λz/T

+ · · · −1.4− 3.95
log Λz/T

+ · · ·
... ...

...
...

Table 7.3: fitting functions for F
Ts

, E
Ts

, and F
E
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4 (or z = 2). Dots are numerical results running h0 from 0.75120 to 0.75038, which corresponds to

log Λz/T from −47748.5 to −3945.48. Solid line is the fitting function denoted in Table 7.3.
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10 (or z = 2.6). Dots are numerical results running h0 from 1.26160 to 1.26078, which corresponds

to log Λz/T from −22390.6 to −1960.29. Solid line is the fitting function denoted in Table 7.3.
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(c) For α = 0 (or z = 3). Dots are numerical results running h0 from 1.63430 to 1.63348, which corresponds to
log Λz/T from −15503.7 to −15522.51. Solid line is the fitting function denoted in Table 7.3.

Figure 7.11: Plots of F/Ts , E/Ts and F/E versus log(Λz/T ) for positive and zero α̃ in
n = 4
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(b) For α̃ = − 1
4 (or z = 4). Dots are numerical results running h0 from 2.66870 to 2.66788, which corresponds

to log Λz/T from −24978.2 to −1147.85. Solid line is the fitting function denoted in Table 7.3.
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(c) For α̃ = − 3
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Figure 7.12: Plots of F/Ts , E/Ts and F/E versus log(Λz/T ) for negative α̃ in n = 4.
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Figure 7.13: Plots of errors from −F/Ts+ E/Ts− 1
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First recall where α̃ makes a contribution. In the Lifshitz spacetime without the Gauss-
Bonnet term (α̃ = 0), the anisotropy of the spacetime is governed by the massive vector
field. This vector field allows a marginal mode only at z = (n− 1) [75]. When the Gauss-
Bonnet term is included in the Lifshitz gravity action, the marginal mode is now restricted
by z = n− 1− 2(n− 2)α̃. In other words z is determined not only by the massive vector
field but also by the value of α̃. Considering the marginal mode in the pure Lifshitz case
(i.e.Λ = 0) for the metric (7.15), α̃ contributes to the function f = 1

r2z in the metric via
z and also modifies the charge of the massive vector field by q2 = z−1

z
(1 − 2α̃). However,

in the deformed Lifshitz spacetime (i.e. considering marginally relevant modes generated
by Λ ∼ 0), α̃ modifies both f and p in the metric with Λ and involves the massive vector
field, as shown in (7.30)-(7.32) or (7.35)-(7.36).

We found the asymptotic solutions in (7.30)-(7.32), and obtained the free energy density
in (7.48) and the energy density in (7.60) by holographic renormalization. We next derived
the near-horizon expansion of the black hole solution in (7.70)-(7.72), characterized by two
parameters h0 and α̃, and calculated thermodynamic quantities such as temperature T
and entropy density s in (7.77). As our metric solutions contain undetermined parameters
Λ in the asymptotic solution and f0 and p0 in the near horizon solution, we numerically
integrate the horizon solution towards the boundary and match it with the asymptotic
solution plotted towards the horizon by controlling Λ, f0, and p0 for given {h0, α̃}. After
fixing those parameters, we numerically explored physical quantities such as the free energy
density and the energy density.

Numerically we found that there exists a maximum value of h0, which corresponds to
high temperature Λz/T → 0. The smaller the value of α̃ (or larger z) , the larger the
maximum value of h0. This explicitly demonstrates that α̃ modifies h0 or the horizon flux
of the vector field via h0. The dependence of the maximum value of h0 both on α̃ and
n is shown in Fig.(7.3), and for n = 4 the maximum value of h0 according to z or α are
depicted in Figures (7.4) (a) and (b) respectively.

Smaller values of h0 correspond to decreased temperature. For a very small value of h0,
the zero temperature limit Λz/T → ∞ is approached. Due to fixed Λ ∼ 0, our spacetime
can be configured as a slightly deformed Lifshitz spacetime in the UV regime and as an
AdS spacetime in the IR regime. Hence we expect holographic renormalization group
flow at zero temperature from UV Gauss-Bonnet-Lifshitz to IR Gauss-Bonnet-AdS. Such
renormalization flow was discovered in the AdS case [18], [56], but when α̃ 6= 0 the situation
remains unknown, and an interesting problem for further research.

To investigate the behaviour of physical quantities with the metric solution of the
deformed Lifshitz spaetime at high energy scale, which is expected to give information
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about the marginally relevant operators near the critical regime at finite temperature
via holographic duality, we confined ourselves to values of h0 that are a little less than
its maximum value (which corresponds to the high temperature regime Λz/T → 0), and
obtained the numerical results as shown in Table 7.4. For α̃ ≥ 0, the value of z becomes less
than n−1 – this case appears to have stable properties as no unstable behaviour is observed
for the k-function and the fitting for F/Ts and E/Ts. However for 0 > α̃ > − 1

2(n−2)
, the

value of z is in the range n − 1 < z < n, and instability is expected due to the free
energy density being larger than the energy density. Even worse properties emerge for
− 1

2(n−2)
. α̃, where F/Ts and E/Ts both have an oscillatory sharp peak near the horizon

and the free energy density is bigger than the energy density. Here “∼” indicates near the
value of − 1

2(n−2)
± ε or n± ε, where ε is small.

When Λ = 0, we analytically predicted the 0th order expressions for the free energy
density and the energy density from the integrated first law of thermodynamics and the
trace Ward identity. Our numerical results are consistent with these expressions, indicating
that the trace Ward identity is valid in the GB case (at least for z = n− 1− 2(n− 2)α̃).

Finally we found the sub-leading behaviour of F/Ts and E/Ts as a function of log Λz/T ,
which is expected to be the contribution from the marginally relevant mode at finite tem-
perature. As the value of z gets bigger due to either decreasing α̃ or increasing n, the
factor associated with the sub-leading order (i.e. the magnitude of coefficient of log Λz/T )
becomes smaller as shown in Tables 7.3, F.1, F.2,F.3, F.4, F.5.
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α̃ ≥ 0 0 > α̃ > − 1
2(n−2)

− 1
2(n−2)

. α̃

value of z z ≤ n− 1 n− 1 < z < n n . z

k function

Increases as the
boundary is ap-
proached, as
shown in Fig.7.2-
(a),(b),(c)

Increases as the
boundary is ap-
proached, as shown
in Fig.7.2-(d),(e)

Decreases as the
boundary is ap-
proached, as shown
in Fig.7.2-(f)

F/Ts and E/Ts
depending on
log(r/r+)

No unstable be-
haviour seen near
the horizon in
Fig.7.7-(a),(b),(c)

No unstable be-
haviour seen near
the horizon in
Fig.7.8-(a)

Large oscillating
peak; unstable
behaviour observed
near the hori-
zon as shown in
Fig.7.8-(b),(c), and
Fig.7.9

Comparing
magnitude of
|F0/Ts| and
|E0/Ts|

∣∣F0

Ts

∣∣ ≤
∣∣ E0
Ts

∣∣ as
shown in Table
7.3,F.1,F.2,F.3,F.4
F.5

∣∣F0

Ts

∣∣ >
∣∣ E0
Ts

∣∣ as
shown in Table
7.3,F.1,F.2,F.3,F.4
F.5

∣∣F0

Ts

∣∣ >
∣∣ E0
Ts

∣∣ as
shown in Table
7.3,F.1,F.2,F.3,F.4,
F.5

Table 7.4: These results are obtained at high temperature (i.e. h0 is near maximum or
Λz/T → 0).
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Chapter 8

Conclusion

This thesis is an effort to obtain a comprehensive understanding of the holographic cor-
respondence, and to demonstrate its applications to new regimes of the AdS/CFT corre-
spondence.

To achieve the former purpose, we found three important factors to establish the holo-
graphic correspondence from the original conjecture of the AdS/CFT correspondence [60]
and subsequent primary studies [85, 90], which are summarized as follows. The first is that
having the same isometry group for gravity theory and field theory is a crucial condition to
accomplish duality. The second is that gauge/gravity correspondence can be interpreted
as a UV/IR connection. The third is that the gravitational partition function is equiva-
lent to the generating functional of field theory, which provides more a precise picture of
holographic correspondence and gives a way for direct applications. Chapters 2,3, and 4
are devoted to this purpose to understand the above factors in detail.

For the latter purpose, regarding holographic renormalization, the Mann-Marolf (MM)
counterterm method for the asymptotically Minkowski spacetime is studied in chapter 5,
and as applications for the holographic correspondence, the Lifshitz spacetime/quantum
critical theory correspondence is investigated in chapter 6, and 7.

The properties of AdSn+1 spacetime in chapter 2 can be summarized as follows. The
symmetry of the spacetime is represented by the isometry group SO(2, n), which is the same
as that of conformal field theory. The AdS spacetime has a uniquely determined conformal
boundary at spacelike infinity, and by applying the boundary analysis, the general solution
of the metric near the conformal boundary of the spacetime can be generated. From this
solution, the divergent terms in the action are easily isolated, and so it automatically
constructs the counterterm and leads the holographic renormalization as shown in chapter
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4. We also pointed out the importance of the well-defined asymptotic boundary, which is a
place in which matter fields from the conformal theory reside, and where the gravitational
information is transferred to matter fields.

In chapter 3, we studied the quantum phase transition involving quantum criticality
and renormalization group flow associated with this scale invariant property of a lattice
system to accommodate the profound understanding for chapter 6 and 7.

As an application of the holographic renormalization, the Minkowski spacetime is inten-
sively studied. Different from the AdS spacetime, the conformal boundary of the Minkowski
spacetime can be either null infinity or spacelike infinity. Both have difficulties to be con-
sidered as a place where field theory resides, as discussed in chapter 2. If one disposes the
conformal boundaries, various asymptotic boundaries can be considered. The standard
boundaries that we usually use are hyperbolic coordinates, which is ρ = constant, and
cylindrical coordinates, which is r = constant where r2 = ρ2 − t2. As different boundary
conditions show different asymptotic behaviours at the boundary of a spacetime, it seems
hard to expect to build a universal set of local counterterms satisfying all different bound-
ary conditions, but it looks more optimal to have the counterterm as solutions derived
from a given differential equation or an algebraic equation for each boundary condition.
The MM-counterterm method validates this perspective in the sense that the solutions of
the MM-counterterm are derived from the given algebraic equation, which is called the
MM-relation, and yields local counterterms for each boundary conditions. It is verified
that the MM-counterterms yield conserved quantities, which agree with the well-defined
ones, for the hyperbolic coordinates [64] and also for the cylindrical coordinates in (n+ 3)
dimensions in chapter 5 [75].

In the results, it is noted that the the 4 dimensional case is dealt with separately from
the other higher dimensions as it has ambiguities in the counterterm solutions, which are
not shown in other dimensions. For the sub-leading order, the ambiguity is removed by
the condition of fixing the supertranslation symmetry, but for the sub-sub-leading order,
the ambiguities can be fixed in a way not to disturb conserved charges. Also the form of
the boundary stress tensor is the same as the hyperbolic boundary case in 4 dimensions,
but has additional terms in higher than 4 dimensions. We find that these additional terms
are impotent and do not contribute to conserved charges.

In this study, the cylindrical coordinates provide great benefits by giving direct appli-
cations for many gravitational systems, since that is the most popular coordinate. How-
ever, despite this benefit, the difficulty of the cylindrical coordinate associated with the
MM-counterterm method arises in its calculation, which is more complicated than the hy-
perbolic case due to different asymptotic behaviours. That is, hyperbolic coordinates are
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manifestly covariant under variation of the metric with respect to a normal coordinate to a
boundary surface, but the cylindrical coordinate is not. More improvement regarding the
MM-counterterm in the cylindrical coordinate can be made by investigating it in stationary
coordinates, which are applicable to rotating gravitational systems.

From the perspective of the holographic correspondence, a holographic dual field theory
for the Minkowski case has not been found yet, but a conformal field theory can be a
candidate if a connection between the isometry groups of the Minkowski spacetime and
conformal field theory is found. Also if a field theory dual is found, it is expected that the
MM-counterterm will be employed to construct the holographic renormalization.

New regimes for the holographic correspondence were applied to the Lifshitz space-
time/quantum critical theory in condensed matter physics in chapters 6 and 7. The Lif-
shitz/qct correspondence is based on the same anisotropic symmetry of gravity and gauge
theory. On the gravity side, the anisotropic spacetime is generated by adding massive vec-
tor fields into the gravity action or is adjusted by adding higher curvature terms such as the
Gauss-Bonnet term, which work in a way to cooperate with the massive vector fields. The
properties of the Lifshitz spacetime have been recently studied and were found to possess
a naked singularity [27, 52]. On this topic, more research needs to be done. On the field
theory side, the anisotropic scaling occurs due to the property of critical slowing down,
which is that the temporal correlation function of the order parameter decays slower and
slower in the vicinity of a quantum critical point. Above this, unusual phenomena had been
discovered near the quantum critical point, but a theory explaining the phenomena has
not been found. Some properties of quantum criticality associated with the second order
phase transition are studied in chapter 3. Inspired by the AdS/CFT correspondence, it
is expected that the holographic correspondence provides a new framework to understand
quantum critical phenomena.

In the study of the deformation of the Lifshitz spacetime (chapter 6 and 7), we con-
sidered the Lifshitz spacetime in the UV regime and the AdS spacetime in the IR regime
in (n + 1) dimensions. At the asymptotic boundary i.e. r → 0, the solution of the pure
Lifshitz spacetime is expanded to the sub-leading orders, which are generated by Λ ∼ 0,
and so the Lifshitz spacetime is slightly deformed at the asymptotic region. Here the non-
trivial sub-leading orders, which are the marginally relevant modes for the massive vector
field, of the asymptotic solution are only allowed for z = (n − 1) − 2(n − 2)α̃, where z is
the dynamical critical exponent. Also we find the expanded black hole solution, which is
characterized by the Gauss-Bonnet coupling constant α̃ and the horizon flux of the massive
vector field, near the horizon r = r+. By numerical integration of the expanded black hole
solution toward the asymptotic region, we match both solutions at the middle regions, and
based on these values evaluate physical quantities such as the free energy density over Ts
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Figure 8.1: holographic phase transition

(temperature times entropy density) and the energy density over Ts.

The main results are as follows. We found the contributions of the marginally relevant
operators by observing the physical quantities depending on temperature according to n
and α̃, which show a weaker dependence on temperature as z increases or α̃ decreases.
Moreover, we found the linear function η(α̃) ∼ 1.00− 2n−2

n−1
α̃, which relates F0 = −η(α̃)E0

when the marginally relevant operators are turned off. The numerical data calculated for
η(α̃) function were computed to two decimal places. When α̃ < 0, the free energy density
over Ts becomes bigger than the energy density over Ts, so it is expected that the system
becomes unstable and this instability gets worse when α̃ < − 1

2(n−2)
.

From the perspective of the holographic correspondence, at the high temperature limit
(i.e. Λz/T → 0) of the gravity theory with fixed Λ ∼ 0, this configuration describes
the strongly coupled physics approaching the quantum critical phase at finite temperature
from the critical point due to marginally relevant operators. While at the zero temperature
limit (i.e. Λz/T → ∞) of the gravity theory with fixed Λ ∼ 0, this configuration yields
the renormalization group flow from the Lifshitz-like field theory to the conformal field
theory. Then compared to the quantum phase diagram, which is studied in chapter 3, we
might draw the (hypothetic) holographic phase diagram as shown in 8.1, where only two
fixed points (the trivial fixed point is for AdS and the critical fixed point is for Lifshitz
spacetime) exist, two phases are drawn and the one on the right is not defined in this
configuration.

As examples for other applications of the holographic correspondence, the study of
heavy ion physics (e.g. strongly coupled quark-gluon plasma) has been successful [38, 43,
53]. Condensed matter theory has also been actively studied. Especially, as most metallic
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systems are strongly coupled and can be engineered in laboratories, it has benefits to
have the possibility of direct experimental tests. There are some applicable candidates
to be studied with respect to this subject such as the dual description of the Hall effect
[39, 74] or Nernst effect. Recently, the most studied subject is high-temperature (high-
Tc) superconductors [47, 49, 51], which were experimentally discovered in many materials,
but unlike conventional superconductors, a high-Tc superconductor cannot be explained
by BCS theory. In the context of the holographic correspondence, the key problem for
resolving this mechanism is to build a proper gravitational model.
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Appendix A

Useful Coordinates of AdS Spacetime

The AdSn+1 spacetime can be represented as the hyperboloid

− U2 − V 2 +X2
1 + · · ·+X3

n = −l2 (A.1)

where l is the radius of curvature. This can be embedded in flat spacetime with

ds2 = −dU2 − dV 2 + dX2
1 + · · ·+ dX2

n (A.2)

which has two-timelike directions and n-spacelike directions. This spacetime has closed
timelike curves (CTC) as shown in Fig.A.1. However if one does not identify the time-
like direction with the circle S1 we can obtain the universal covering spacetime of AdS
spacetime.

There are several known coordinates of AdSn+1 spacetime for convenience of use and
these coordinates are obtained by proper coordinate transformation from (A.2). Here we
demonstrate four cases, where three of them will be used in chapter 5, as follows.

A.1 Global Coordinates

If we parameterize the hyperboloid in (A.2) in the following way:

U = l cosh r sin t, V = l cosh r cos t, X1 = l sinh r cos θ1, X2 = l sinh r sin θ1 cos θ2, · · · ,

Xn−1 = l sinh r cos θn−1

n−2∏
i=1

sin θi, Xn = l sinh r
n∏
i=1

sin θi (A.3)
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Figure A.1: Closed Timelike Curves

where t, θ, φ are periodic and have ranges of −π ≤ t ≤ π, 0 ≤ θn ≤ π, 0 ≤ θi ≤ 2π where
i = 1, · · · , n− 1, and r ≥ 0, the static form of the metric is obtained

ds2 = l2
(
− cosh2 rdt2 + dr2 + sinh2 r dΩ2

n−1

)
. (A.4)

At t = const. and r = R, this spacetime with the radius R has the surface area 2πn/2

Γ(n
2

)
sinh2R,

and proper time dτ = dt coshR elapses much faster at large distance.

Now let us redefine the parameter r in (A.4) with θ by

tan

(
θ

2
+
π

4

)
= er (A.5)

where θ is defined in a range of 0 ≤ θ < π
2

and this reparameterization brings the infinity
of r to be the finite value. One finds the metric of

ds2 =
l2

cos2 θ

(
− dt2 + dθ2 + sin2 θdΩ2

n−1

)
, (A.6)

which becomes singular at θ = π
2
, and so the spacetime does not expand at and beyond

these points. Thus these points are defined as the boundary of AdS and yield the conformal
structure, which will be discussed in the next subsection. This coordinate also shows that
the AdS covers the region 0 ≤ θ < π

2
of Einstein static universe, which are illustrated in

Fig.A.2a where the Einstein static universe is depicted by a cylinder and the AdS takes
half of the cylinder.
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(a) Global Coordinate (b) Diamond Shape

Figure A.2: Diagrams

A.2 Diamond Patch of AdS Spacetime

Let us redefine the parameters in (A.2) by

U = l cos
t′

l
, V = l sin

t′

l
, (A.7)

X1 = l cos
t′

l
sinhχ cos θ1, X2 = l cos

t′

l
sinhχ sin θ1 cos θ2, · · · ,

Xn−1 = l cos
t′

l
sinhχ cos θn−1

n−2∏
i=1

sin θi, Xn = l cos
t′

l
sinhχ

n∏
i=1

sin θi

and it yields

ds2 = −dt′2 + l2 sin2 t
′

l

(
dχ2 + sinh2 χ dΩ2

n−1

)
. (A.8)

This coordinate system covers only part of the AdS spacetime, which is the diamond shape
region in Fig.A.2b and has apparent singularities at t′ = 0 and π. This metric becomes
identical with k = −1 Robertson-Walker spacetime which is

ds2 = −dt2 +R2(t)

(
1

1 + r2
dr2 + r2dΩ2

n−1

)
(A.9)

by using r = sinhχ.
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A.3 Static Coordinates

If we introduce a coordinate transformation following

U = (l2 + r2)1/2 cos
t

l
, V = (l2 + r2)1/2 sin

t

l
, (A.10)

X1 = r cos θ1, X2 = r cos θ2, · · · , Xn−1 = r cos θn−1

n−2∏
i=1

sin θi, Xn = r

n∏
i=1

sin θi,

we obtain the familiar form of the metric

ds2 = −
(

1 +
r2

l2

)
dt2 +

(
1 +

r2

l2

)−1

dr2 + r2dΩ2
n−1. (A.11)

A.4 Poincarè Coordinates

Another interesting coordinate transformation is

Xn − U =
l

x0

, Xn + U = l

(
x0 +

1

x0

(
η2 −

n−1∑
i=1

x2
i

))
, V =

l

x0

η,

Xi =
l

x0

xi, where i = 1, . . . , n− 1 (A.12)

where η, x, and y only take real values and z ≥ 0, and then one finds

ds2 =
l2

x2
0

(
−dt2 +

n∑
i=0

dx2
i

)
. (A.13)

This coordinate only cover half of the AdS spacetime and the other half will be covered by
expanding it to z ≤ 0.
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Appendix B

Field Theoretical Renormalization

This appendix deals with the renormalization process so as to have a more profound un-
derstanding of holographic renormalization, (the subject of chapter 4) and to naturally
develop the arguments of the renormalization group, which plays an important role in the
context of the holographic correspondence associated with condensed matter physics. Here
we demonstrate the regularization procedure and calculate the leading order of self-energy
in φ4 theory by using dimensional regularization, and then discuss about the concepts of
renormalization and renormalizability. We also derive the renormalization equation under
the minimal subtraction scheme and apply this to obtain the running coupling constant
for the one-loop case for φ4 theory. Finally, we discuss properties of the renormalization
group.

B.1 Regularization Method: Dimensional Regulariza-

tion

As introduced in chapter 1, perturbation theory is accompanied with loop contributions,
which are divergent in the integration of correlation function. The process of rendering a
divergent integral to be calculable is called regularization, and the most common regular-
izations are

• Cutoff Regularization or Pauli-Villars Regularization

• Dimensional Regularization.
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The cutoff regularization is quite a traditional method: the main idea is to bring a cut
off momentum Λ instead of sending k → ∞ in the integration of the propagator, but the
problem is that the cut off momentum dependence usually causes unphysical features such
as violating a symmetry of the theory. While in Pauli-Villars (PV) heavy-mass particles
are introduced with that have the opposite statistics to the physical particles, so that the
loops from these heavy particles come in with a minus sign. The infinite-mass limit is
taken at the end.

Dimensional regularization might be the most convenient and practical method. It
basically takes the dimension of the spacetime to be D, which is regarded as a continuous
variable, and integrates products of Green’s functions that are Euclideanized. Then in the
resultant calculation, the divergence always shows up a form of the pole of the gamma
function, and the divergent part and the finite part are separated.

Here we calculate the amputated one-loop correction or the self-energy for the leading
order of the φ4 theory by using dimensional regularization method:

−iΣ1(p) :

�

=− iλ

2

∫
d4k

(2π)4

1

k2 −m2 + iε

=− iλ

2

∫
d4kE
(2π)4

−i
k2
E +m2 + iε

. (B.1)

where Wick rotation is used in the second line:

t = −iτ,
k0 = ik0

E

⇒ d4k = i d4kE, k2 = −k2
E. (B.2)

If the dimension of the spacetime is changed to D, the integral variables turn to

d4k

(2π)4
→ µ4−D dDk

(2π)D
, (B.3)

and then the self-energy is written as

− iΣ1(p) ≡ −iλ
2

∫
d4kE
(2π)4

−i
k2
E +m2 + iε

→ −iλ
2
µ4−D

∫
dDkE
(2π)D

1

k2
E +m2

. (B.4)

Applying the following identity
1

A
=

∫ ∞
0

ds e−As, (B.5)
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it yields

−iΣ1(p) = −iλ
2
µ4−D

∫
dDkE
(2π)D

∫ ∞
0

ds e−(k2
E+m2)s = −iλ

2
µ4−D

∫ ∞
0

ds e−m
2s

∫
dDkE
(2π)D

e−k
2
Es

(B.6)

= −iλ
2
µ4−D

∫ ∞
0

ds e−m
2s 1

(2π)D

(π
s

)D
2

= −iλ
2
µ4−D 1

(4π)
D
2

∫ ∞
0

ds s−
D
2 e−m

2s

(B.7)

= −iλ
2
µ4−D (m2)

D
2
−1

(4π)
D
2

Γ(1−D/2) (B.8)

where the Gaussian integral and the definition of Gamma function are used∫
dDx e−Ax

2

=
( π
A

)D
2
, Γ(z) =

∫ ∞
0

tz−1e−tdt. (B.9)

If D = 4, (B.8) is divergent as Γ(−1) =∞. To separate the pole giving the infinity of the
Gamma function, we use

Γ(n+ 1) = nΓ(n) = n!, (B.10)

and define ε = 4−D, then the Gamma function in (B.8) is manipulated

Γ(1−D/2) = Γ(−1 + ε/2) =
1

−1 + ε
2

Γ(ε/2) =
1

−1 + ε
2

1

( ε
2
)
Γ(1 + ε/2)

= −2

ε
− 1 + γ +O(ε) (B.11)

where γ = 0.57721 · · · and is called Euler-Mascheroni constant. From dimensional analysis
(in units of mass) we find

dDx(∂φ)2 → −D + 2 + 2[φ] = 0 ⇒ [φ] =
D − 2

2
,

dDxλ φ4 → −D + [λ] + 4
D − 2

2
= 0 ⇒ [λ] = 4−D, (B.12)

so when D = 4 the coupling constant is dimensionless, but when D 6= 4 it has dimen-
sionality mass4−D. However, as the coupling constant λ in (B.4) is combined with the
factor µ, which does not exist in the original Lagrangian but was newly introduced by the
dimensional regularization process in (B.3), it becomes dimensionless again. Expanding µ
in terms of small ε yields

λ = λµ4−D = λe(4−D) lnµ = λ(1 + ε lnµ+ · · · ). (B.13)
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With (B.11) and (B.13) the leading-order of the self-energy (B.8) is expanded as

−iΣ1(p) = −iλ
2

(m2)
D
2
−1

(4π)
D
2

(
−2

ε
− 1 + γ + · · ·

)
(1 + ε lnµ+ · · · )

= iλ
(m2)

D
2
−1

(4π)
D
2

1

ε
+ iλ

(m2)
D
2
−1

(4π)
D
2

(lnµ+ · · · )

= iλ
(m2)

D
2
−1

(4π)
D
2

1

ε
+ finite (B.14)

where the finite part depends on µ. Restoring the original dimensionality by substituting
D = 4, we obtain

− iΣ1(p) = iλ
m2

(4π)2

1

ε
+ finite ≡ −iΣ1,inf − iΣ1,fin (B.15)

where as ε → 0, the first term diverges, and so the infinity part and the finite part are
separated from the Σ1(p). Considering higher orders, we can write

Σ ≡ Σinf + Σfin. (B.16)

B.2 Renormalization

By the regularization, the infinite part of a divergent integral becomes isolated, and so
the next step is to find a way to deal with it. This infinity can be absorbed into pa-
rameter redefinitions (i.e. m → mR ) or be removed by adding counterterms 1/2Σinfφ

2

to the Lagrangian. This process of eliminating the divergences is called renormalization.
Alternatively, we can define the renormalization as a procedure of working with measured
quantities instead of bare quantities.

Let us start with the original (or bare) Lagrangian

L =
1

2
(∂φ)2 − 1

2
m2φ2 − g

4!
φ4 (B.17)

and redefine the parameters as follows

φR = Z
− 1

2
φ φ, (B.18)

m2
R = m2 + δm2, (B.19)

gR = Z−1
g Z2

φg (B.20)
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where Zφ is called the field-strength renormalization factor, φ, m2, and g are bare quantities
containing the infinity, and φR, m2

R, and gR are the renormalized quantities. In order to
cancel the infinity of the bare quantities, the counterterms are added

L = LR + LC.T (B.21)

where

LR =
1

2
(∂φR)2 − 1

2
m2
Rφ

2
R −

gR
4!
φ4
R (B.22)

LC.T =
1

2
(Zφ − 1)(∂φR)2 − 1

2

[
(Zφ − 1)m2

R − δm2Zφ

]
φ2
R −

1

4!
gR(Zg − 1)φ4

R

=
1

2
δz(∂φR)2 − 1

2
δmφ

2
R −

1

4!
δλφ

4
R (B.23)

where

δz = Zφ − 1, δm = (Zφ − 1)m2
R − δm2Zφ, δλ = gR(Zg − 1). (B.24)

In fact, we need to impose the renormalization conditions on (B.24) to fix the renormalized
parameters with the observed ones as follows

� =
i

p2 −m2
+ (terms regular at p2 = m2) (B.25)

� = −iλ at s = 4m2, t = u = 0 (B.26)

where s = (p1 + p2)2, t = (p1 − p3)2, and u = (p1 − p4)2 are Mandelstam variables.

This renormalization procedure can also be interpreted from an alternative point of
view. From the beginning, we can start with the renormalized Lagrangian (B.22) and
consider it as a tree-level Lagrangian and then do perturbation on gR, which induces
divergent diagrams. This divergence is resolved by adding the counterterms, and so the
divergence at 1-loop order will be removed by the first order of the counterterm L(1)

C.T

L = LR + L(1)
C.T (B.27)

and one on the 2-loop order will also canceled by adding L(2)
C.T

L = LR + L(1)
C.T + L(2)

C.T . (B.28)
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Then, as a result the full Lagrangian is obtained

L = LR + L(1)
C.T + L(2)

C.T + · · ·
= LR + LC.T (B.29)

where note that if all orders of the L(i)
C.T have the same structure as the LR; for example if

the L(i)
C.T has the form given in (B.22):

L(i)
C.T =

1

2
δZ

(i)
φ (∂φR)2 − 1

2
δm2(i)φ2

R −
1

4!
δg(i)φ4

R, (B.30)

and these counterterms are enough to get rid of the divergence in the above (B.27)− (B.29),
then it is said that the theory is renormalizable. However, if different forms of the coun-
terterms from the LR are need to deter the infinity then the theory is non-renormalizable.

Then let us calculate the renormalized two-point correlation function,

G2(p) =
1

p2 −m2 − Σ(p) + iε
.

As the physical mass is defined by the pole of the propagator, [G2(p)]−1 = 0 at p2 = m2
phy

and yields
m2
phy −m2 − Σ(m2

phy,m
2) = 0 ⇒ m2

phy = m2 + δm2 (B.31)

where δm2 = Σ(m2
phy,m

2). If expanding Σ(p) near at a, which is substituted by mphy, it
is calculated

Σ(p) = Σ(p2,m2)
∣∣∣
p2=a

+ (p2 − a)Σ′(p2,m2)
∣∣∣
p2=a

+ Σ̃(p) + · · ·

= Σ(m2
phy,m

2) + (p2 −m2
phy) Σ′(m2

phy,m
2) + Σ̃(p) + · · ·

= δm2 + (p2 −m2
phy) Σ′(m2

phy,m
2) + Σ̃(p) + · · · (B.32)

where Σ̃(p) indicates the higher orders of the series. Plugging (B.32) to (B.2), the two-point
correlation function has the form

G2(p) =
i

p2 −m2
phy − (p2 −m2

phy) Σ′(m2
phy)− Σ̃(p) + iε

=
i

(p2 −m2
phy)(1− Σ′)− Σ̃(p) + iε

' 1

(1− Σ′)

i

p2 −m2
phy − Σ̃(p) + iε

' iZφ

p2 −m2
phy − Σ̃(p) + iε

(B.33)
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where Zφ = 1
1−Σ′

. Upon redefining the field φR = Z
− 1

2
φ φ, the renormalized two-point

correlation function is obtained

G2(x, y) = 〈Ω|T{φ(x)φ(y)}|Ω〉 = Zφ〈Ω|T{φR(x)φR(y)}|Ω〉 . (B.34)

This result also can be generalized to n-point Green’s functions (or n-point correlation
function)

GN(x1, · · · , xN ;m, g) = Z
N
2
φ GNR(x1, · · · , xN ;mR, gR) (B.35)

where the GNR is finite. In terms of the amputated Green functions, it yields

Gamp
N (p1, · · · , pN ;m, g) =

1

G2(p1)
· · · 1

G2(pN)
GN(p1, · · · , pN)

=
1

ZN
φ

Z
N
2
φ G

amp
N (p1, · · · , pN)

= Z
−N

2
φ Gamp

NR (p1, · · · , pN : mR, gR) (B.36)

where Gamp
NR is a quantity appearing in scattering matrix.

B.3 Renormalization Scheme: Minimal Subtraction

In the renormalization procedure, the bare Lagrangian parameters are separated into the
renormalized quantity and the diverging quantity, for example

m2 = m2
R − δm2

where m2
R is finite and δm2 includes infinity. In the traditional view, we set up m2

R =
m2
phy, where m2

phy is the pole of the propagator, but there is no special reason to take the
renormalized mass mR as the physical mass value. As long as mR is finite, we can obtain
a well-defined Green function and derive the unique final result unrelated to the choice
of the mR. This idea, that a renormalization quantity is arbitrary, can also be applied to
φR = Z

−1/2
φ φ and gR = Z−1

g Z2
φ g in which

φ′R = Z ′
− 1

2
φ φ =

(
Zφ
Z ′φ

)
φR , g′R =

(
Zg
Z ′g

Z ′2φ
Z2
φ

)
gR (B.37)

where the quantities in the parenthesis should be finite. There exist a lot of ways to
separate the Lagrangian or Lagrangian parameters into an infinite part and a finite part;
the different ways of doing it are provided by renormalization schemes (or renormalization
prescriptions). Note that
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1. There are many kinds of renormalization schemes.
e.g. mass-shell scheme, minimal subtraction scheme, BPHZ scheme, · · ·

2. The choice of renormalization scheme depends on the physical situation.
The most commonly used one is the minimal subtraction method under dimensional
regularization

3. Regularization and scheme are different.
e.g. the mass-shell scheme can be applied with the dimensional regularization or the
cutoff regularization

4. In some cases, a regularization automatically requires a special scheme.
e.g.

∑∞
n=1 n = ζ(−1) = − 1

12

5. A physical result is unchanged by a scheme.
e.g. as the full Lagrangian is the same, the pole of the propagator also remains the
same regardless of the renormalization mass

In the dimensional regularization, every divergence shows up as the pole of a Γ-function.
For example the one-loop calculation of φ4 theory yields

V (p2) = −1

2

1

(4π)
D
2

Γ(2−D/2)

∫ 1

0

dx
1

[m2 − x(1− x)p2]2−D/2

where the Γ-function is expanded to Γ(2−D/2) ' 2
ε

+ · · · on a small value of ε = 4−D.
The minimal subtraction scheme considers the (1/ε) pole of the Γ-function as the infinity
part and removes it by setting the Lagrangian parameters to have a form of

m2 = m2
R − δm2 = m2

R −
∞∑
r=1

br(gR)

εr
, (B.38)

g = µε
[
gR +

∞∑
r=1

ar(gR)

εr

]
, (B.39)

φ = φR

[
1 +

∞∑
r=1

cr(gR)

εr

]
(B.40)

where the coefficients ar, br, and cr are functions of only g, and completely determined by
the UV divergence of the r-loops diagrams. The quantity µ is the parameter introduced
in (B.3) and identified with the energy scale E of the renormalization group. That is,
changing the arbitrary scale µ corresponds to changing the energy; in other words, it
means changing of the renormalization scheme by redefining the renormalized part and the
infinite part.
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B.4 Renormalization Group

As stated above, there is an arbitrariness to separate the divergent part and the finite part
in the renormalization process, and this arbitrariness basically becomes the basis of the
renormalization group. The general concept of the renormalization group is to see how a
physical system (e.g. m, g, Green’s functions etc.) is changed when the scheme is changed.
Here we consider the renormalization group under the minimal subtraction scheme, in
which physical quantities depend on the renormalization scale µ.

Let us consider a bare Green function GN(pi; g,m), which is independent of µ by
construction; it then satisfies

d

dµ
GN = 0, (B.41)

whereas the renormalized Green function satisfies

GN(pi; g,m) = Z
N
2
φ GNR(pi; gR(µ),mR(µ), µ) (B.42)

yielding

0 =
d

dµ
GN =

N

2
Z

N
2
−1

φ

dZφ
dµ

GNR + Z
N
2
φ

d

dµ
GNR. (B.43)

Rearranging the above on GNR

d

dµ
GNR = −N

2

d lnZφ
dµ

GNR,(
∂

∂µ
+
dgR
dµ

∂

∂gR
+
dm2

R

dµ

∂

∂m2
R

)
GNR = −N

2

d lnZφ
dµ

GNR (B.44)

and multiplying µ, we finally obtain RG equation :[
µ
∂

∂µ
+ β

∂

∂gR
+ γmm

2
R

∂

∂m2
R

+Nγ

]
GNR = 0 (B.45)

where the coefficients are defined as

β = µ
dgR
dµ

, (B.46)

γm = µ
d lnm2

R

dµ
, (B.47)

γ =
1

2
µ
d

dµ
lnZφ. (B.48)
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To calculate these under minimal subtraction scheme, we use the fact that bare parameters
are RG invariant. The coupling constant in (B.39) expands as

g = µε
[
gR +

1

ε
a1(gR) +

1

ε2
a2(gR) + · · ·

]
(B.49)

and as g is independent on µ, we find

0 = µ
dg

dµ
= εµε

[
gR +

1

ε
a1(gR) +

1

ε2
a2(gR) + · · ·

]
+ µε

[
µ
dgR
dµ

+
1

ε
a1
′µ
dgR
dµ

+ · · ·
]
,

0 = εgR + a1(gR) +
1

ε
a2(gR) + · · ·+

[
1 +

1

ε
a1
′ +

1

ε2
a2
′ + · · ·

]
µ
dgR
dµ

. (B.50)

Then the derivative of the coupling constant with respect to µ takes the form of

µ
dgR
dµ

= −
(

1 +
1

ε
a1
′ +

1

ε2
a2
′ + · · ·

)−1(
εgR + a1(gR) +

1

ε
a2(gR) + · · ·

)
= β(gR(µ), ε) (B.51)

and this can be written as(
1 +

1

ε
a1
′ +

1

ε2
a2
′ + · · ·

)(
β0(gR) + εβ1(gR) + ε2β2(gR) + · · ·

)
= −

(
εgR + a1(gR) +

1

ε
a2(gR) + · · ·

)
. (B.52)

Expanding both sides of the equation and comparing powers of ε, each order of ε yields

βk = 0 for k ≥ 2, (B.53)

β1 = −gR, (B.54)

β0 + β1
da1

dgR
= β0 − gR

da1

dgR
= −a1, (B.55)

and when ε→ 0 the β(gR, ε) = β0(gR) + εβ1(gR) becomes β0(gR). Thus the beta function
is determined by calculating (B.55), which is solved by finding the coefficients of 1/ε from
the Feynman diagram.

For the γm and the γ in (B.47) and (B.48), the same procedure is applied.
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B.5 Physical Interpretation of RG

In context of the Renormalization Group (henceforth RG), the new parameter µ, called
the renormalization scale or sliding scale, is introduced and it is important to understand
the role of the parameter. The µ defines a characteristic momentum scale we would like
to investigate, and in the end our main objective through RG is to study the dependence
of physical quantities on the scale µ.

One notable feature of RG theory is to produce more accurate results than ones from
perturbation theory by solving the differential equations (B.46) − (B.48), which is from the
fact that physical quantities are unrelated to the renormalization scheme. For the coupling
constant in φ4 theory, while the RG equation results in

gR(µ′) =
gR(µ)

1− 3
16π2 gR(µ) ln µ′

µ

, (B.56)

the perturbation theory for small g(µ) yields

g(µ′) ' g(µ) +
3

16π2
g2(µ) ln

µ′

µ
+O

(
g3
(

ln
µ′

µ

)2
)
. (B.57)

Comparing the two results (B.56) and (B.57), the RG equation includes higher-powers of
logarithms occurring at higher-order in perturbation theory.

In general, the graph of the β-function can be sorted into four cases and for each case
the behaviour of the coupling constant depending on µ can be predicted as follows

• case (a) : on given g(µ) and µ, if µ′ → ∞ (or big enough) then g(µ′) → ∞
Thus perturbation theory breaks down and the theory itself becomes ill-defined in
that regime. This case applies to φ4 theory and to most theories except Yang-Mills
theory.

• case (b) : it describes g(µ) → ∞ as µ → ∞, but different from the case (a), g is
finite in a certain range (or finite scale). e.g. β(g) ∼ bgk where k < 1.

• case (c) : it contains a point where β(g) = 0 at g = g∗. That is, if g < g∗ it satisfies
β = µ dg

dµ
> 0, so g increases as µ increases, but if g > g∗ it satisfies β = µ dg

dµ
< 0,

so g decreases as µ increases. Thus near g ' g∗ the beta function is approximately
described by β(g) ' a(g∗ − g) where a > 0, and then the RG equation yields∫

1

β
dg =

∫
dg

a(g∗ − g)
=

∫
1

µ
dµ ⇒ g = g∗ − µ−a. (B.58)
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0

Figure B.1: beta function versus coupling constant, (a),(b),(c), and (d) are labeled from
the top graph.

Therefore when µ → ∞, the coupling constant g approaches to g∗, where the g∗ is
called “UV fixed point”.

• case (d) : as β = µ dg
dµ
< 0, g decreases as µ increases. Thus the bigger the scale

µ is, the better the perturbation becomes. Especially when µ → ∞ the g goes to
0, and so in this case g = 0 becomes “UV fixed point”. This theory is said to be
“asymptotically free” and is applied to Yang-Mills theory.

Now let us consider γ in (B.48), which is one of coefficients of the RG equation,

γ =
1

2
µ
d

dµ
lnZφ.

Making a change of the renormalization scale µ→ µ′, the relation between the renormalized
fields is

φR = Zφ
− 1

2φ → φ′R = Z ′φ
− 1

2φ =

(
Z ′φ
Zφ

)− 1
2

φR = ζ−1(µ′, µ)φR (B.59)

where ζ−1 =
Z′φ
Zφ

. Applying this relation to γ by replacing Z
1/2
φ with ζ, the coefficient γ is

rewritten as

γ(g(µ′)) = µ′
d

dµ′
ln ζ(µ′, µ). (B.60)
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Then ζ finally takes a form of

ζ(µ′, µ) = exp

[∫ µ′

µ

dµ

µ
γ(g(µ))

]
= exp

[∫ g(µ′)

g(µ)

dg
γ(g)

β(g)

]
. (B.61)

For the specific case of having the UV fixed point at g = g∗ (like case (c)), if µ′ approaches
to ∞, γ can be expanded near g∗ as

γ(g) ' γ(g∗) + γ1(g − g∗) + · · · , (B.62)

and then plugging this to (B.61), ζ is obtained.

ζ(µ′, µ) ' exp

[
γ(g∗)

∫ µ′

µ

dµ

µ
+ · · ·

]
= eγ(g∗) ln µ′

µ =

(
µ′

µ

)γ(g∗)

. (B.63)

Thus the renormalized field at the new renormalization scale µ′ becomes

φ′R '
(
µ′

µ

)−γ(g∗)

φR (B.64)

where γ(g∗) is called “anomalous dimension”.

B.6 Renormalizability

In order to check if a theory is renormalizable, it helps to classify diagrams by the appear-
ance of ultraviolet divergences. As this divergence is roughly predicted to occur when the
power of momentum in numerator is bigger than the one in the denominator, we define
the superficial degree of divergence, D, as

D ≡ power of momentum in numerator− power of momentum in denorminator (B.65)

and then can roughly expect

D > 0 : divergence ∝ ΛD (B.66)

D = 0 : divergence ∝ log Λ (B.67)

D < 0 : no divergence (B.68)
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where Λ is a momentum cutoff. Considering the N -point Green’s function in momentum
space

(2π)dδ(d)(p1 + · · ·+ pN)GN(p1, · · · , pN)

=

∫
ddx1 · · · ddxNei(p1·x1+···+pN ·xN )GN(x1, · · · , xN), (B.69)

the dimensional analysis of this in mass dimension gives

[GN(p)] + [δd(p)] = N [ddx] + [GN(x)]

⇒ [GN(p)] + (−d) = N(−d) +N

(
d− 2

2

)
⇒ [GN(p)] = −N

(
d+ 2

2

)
+ d (B.70)

⇒ [G2(p)] = −2 (B.71)

and then the mass dimension of the amputated Green function is calculated

[Gamp
N (p)] = −N [G2(p)] + [GN(p)]

= d−N
(
d− 2

2

)
. (B.72)

In view of Feynman diagram, as all external momentum and masses in the propagator
can be neglected in UV-region, the structure of the n-th order Feynman diagram is simply
described by

gn
∫
ddk1d

dk2 · · ·
1

k2
1 k

2
2 · · ·

(B.73)

and this mass dimension becomes
D + n[g]. (B.74)

Then from (B.72) and (B.74) we find that the superficial degree of divergence takes

D = d−N
(
d− 2

2

)
− n[g]. (B.75)

Thus the divergence crucially depends on whether the mass dimension of the coupling is
negative or positive. If [g] < 0 it is non-renormalizable; if [g] > 0 it is super-renormalizable;
if [g] = 0 it is renormalizable. However this analysis is quite naive, and exceptional cases
often happen. The trivial case is that a diagram with no propagator and no loops has
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D = 0, but does not diverge. Also it is possible that a diagram would include a divergent
subdiagram, which makes worse the divergence, or a symmetry such as the Ward identity
could cancel or reduce the divergence.

A more qualitative classification on renormalizability is as follows

• Super-Renormailzable Theory:

– Only a finite number of Feynman diagrams superficially diverge.

– OR, Coupling constant has positive mass dimension

– e.g. φ3 theory in 4 dimensions

• Renormalizable Theory:

– Only a finite number of amplitudes superficially diverge; however, divergences
occur at all orders in perturbation theory.

– OR, Coupling constant is dimensionless.

– e.g. φ4 theory in 4 dimensions, QED, Electro-Weak, QCD

• Non-Renormalizable Theory:

– All amplitudes are divergent at a sufficiently high order in perturbation theory.

– OR, Coupling constant has negative mass dimension.

– e.g. φ6 theory in 4 dimensions, Fermi theory of weak interaction
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Appendix C

Wilsonian RG Equation

Here we understand the renormalization group in another context in order to make a bridge
between the field theoretical renormalization group and the the statistical renormalization
group, which is discussed in chapter 3. To begin with, we suppose a theory with the initial
UV cutoff Λ0 (e.g. Planck scale, ElectroWeak scale, etc.) and consider its generating
functional to be

Z[J ] =

∫
[Dφ]eiS

Λ0 [φ]+iJφ (C.1)

where SΛ0 denotes integration for all modes below Λ0. Now let us separate the integration
section into two parts as

φH ≡ high momentum mode, p > Λ

φL ≡ low momentum mode, p < Λ (C.2)

where Λ < Λ0, and then write

φ = φH + φL, J = JH + JL, (C.3)

[Dφ] = [DφL][DφH ], (C.4)

so that (C.1) turns to

Z[J ] =

∫
[DφL]

∫
[DφH ]eiS[φL+φH ]+i(JL+JH)(φL+φH)

=

∫
[DφL]

∫
[DφH ]eiS[φL+φH ]+i(JLφL+JHφH). (C.5)
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Let us suppose that we are interested only in low energy process (p < Λ). This allows us
to set JH = 0 and to integrate it on φH

Z[J ] =

∫
[DφL]eiS

Λ
eff[φL]+iJLφL (C.6)

where

eiS
Λ
eff[φL] ≡

∫
[DφH ]eiS[φL+φH ] (C.7)

which is called “Wilsonian low-energy effective action”. The SΛ
eff[φL] can be considered

as the action of a theory with the UV cutoff Λ and would yield the same result as the
initial action SΛ0 [φ] for the low energy scale, since this takes the same form of the gener-
ating functional Z[J ] as seen in (C.1) and (C.6). Around the cutoff Λ, let us assume the
infinitesimal change from Λ to Λ− dΛ. Then the effective action would change

SΛ
eff → SΛ−dΛ

eff ≡ SΛ − dSΛ
eff (C.8)

and then the variation of S with respect to Λ would take the form

Λ
dSΛ

eff

dΛ
= F [SΛ

eff] (C.9)

where F [SΛ
eff] is provisional and should be found.

Returning to (C.1), let us separate the action into the interaction part and the free part

SΛ0 [φ] =
1

2

∫
φDΛ−1

0 φ+ SΛ0
int [φ] (C.10)

where DΛ0 is the free propagator with the UV cutoff Λ0. Dividing the propagator into two
parts

DΛ0 = DΛ +DΛ0
Λ (C.11)

where DΛ and DΛ0
Λ indicate the low energy and the high energy part of propagators re-

spectively, the generating functional (C.1) becomes

Z[J ] =

∫
[DφL][DφH ]e−

1
2
φLD

Λ−1
φL− 1

2
φHD

Λ−1
0

Λ φH−S
Λ0
int [φL+φH ]+J(φL+φH)

=

∫
[DφL]e−

1
2
φLD

Λ−1
φL−WΛ[φL,J ] (C.12)
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where

e−W
Λ[φL,J ] =

∫
[DφH ]e−

1
2
φHD

Λ−1
0

Λ φH−S
Λ0
int [φL+φH ]+J(φL+φH). (C.13)

It is noted that if φL = 0, e−W
Λ[0,J ] becomes a generating functional of a theory both

of UV cutoff Λ0 and IR cutoff Λ with the propagator DΛ0
Λ . Changing variables by using

φH = φ− φL

− 1

2
φHD

Λ−1
0

Λ φH = −1

2
φD

Λ−1
0

Λ φ− 1

2
φLD

Λ−1
0

Λ φL + φD
Λ−1

0
Λ φL, (C.14)

(C.13) yields

e−W
Λ[φL,J ] = e−

1
2
φLD

Λ−1
0

Λ φL

∫
[Dφ]e−

1
2
φD

Λ−1
0

Λ φ−SΛ
int[φ]+(J+D

Λ−1
0

Λ φL)φ. (C.15)

and redefining variables with J̃ = J +D
Λ−1

0
Λ φL, the first term out of the functional integra-

tion on the right side expands as

−1

2
φLD

Λ−1
0

Λ φL = −1

2
(J̃ − J)DΛ0

Λ (J̃ − J)

= −1

2
J̃DΛ0

Λ J̃ + JDΛ0
Λ J̃ − 1

2
JDΛ0

Λ J

= −1

2
J̃DΛ0

Λ J̃ +
1

2
JDΛ0

Λ J + JφL, (C.16)

and the first term inside of the functional integration changes to

− 1

2
φDΛ−1

0 φ = −1

2
(φ− J̃DΛ0

Λ )D
Λ−1

0
Λ (φ−DΛ0

Λ J̃) +
1

2
J̃DΛ0

Λ J̃ . (C.17)

Thus the (C.15) becomes

e−W
Λ[φL,J ] = e

1
2
JD

Λ0
Λ J+JφLe−

1
2

˜
JD

Λ0
Λ J̃e−S

Λ0
int [ δ

δJ
]e

1
2
J̃D

Λ0
Λ J̃

= e
1
2
JD

Λ0
Λ J+JφLe−S

Λ
int[φL+D

Λ0
Λ J ] (C.18)

and by replacing (C.13) with (C.18) its generating functional (C.12) takes a form of

Z[J ] =

∫
[DφL]e−

1
2
φLD

Λ−1
φL−SΛ

int[φL+D
Λ0
Λ J ]+JφL+ 1

2
JD

Λ0
Λ J . (C.19)
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Again considering the low energy scale regime, we set JH = 0; consequently J = JL
and DΛ0

Λ J = 0 are obtained. The interacting part of the action is yielded

SΛ
int[φL +DΛ0

Λ J ] = SΛ
int[φL] (C.20)

where SΛ
int[φL] becomes the interaction part of Wilsonian effective action.

To derive the RG equation, let us apply φL = 0 into

WΛ[φL, J ] =
1

2
JDΛ0

Λ J + JφL + SΛ
int[φL +DΛ0

Λ J ], (C.21)

which yields

WΛ[0, J ] =
1

2
JDΛ0

Λ J + SΛ
int[D

Λ0

Λ J ]. (C.22)

In the low energy scale, the derivation of (C.13) with respect to Λ becomes

d

dΛ
eW

Λ[0,J ] = −1

2

δ

δJ

(
d

dΛ
D

Λ−1
0

Λ

)
δ

δJ
e−W

Λ[0,J ] (C.23)

and this is expressed again in terms of SΛ
int as follows

dSΛ
int[φ]

dΛ
= −1

2

∫
d4p

(2π)4

dDΛ(p)

dΛ

[
δ2SΛ

int

δφ(p)δφ(−p)
− δSΛ

int

δφ(p)

δSΛ
int

δφ(−p)

]
(C.24)

which is called the Wilsonian exact RG equation.

Let us find a simple connection of the Wilsonian effective action with conventional QFT
quantities. Repeating (C.22), WΛ[0, J ] indicates generating functional of connected Green
functions with IR cutoff Λ, and SΛ

int[D
Λ0
Λ J ] is the Wilsonian effective action with UV cutoff

Λ. Also (C.24) can be written in a familiar form, which is compared with LSZ formula, as

δnSΛ
int[φ]

δφ(p1) · · · δφ(pn)

∣∣∣∣
φ=0

=
n∏
i=1

D
Λ−1

0
Λ (pi)︸ ︷︷ ︸

amputated

δnWΛ[J ]

δJ(p1) · · · δJ(pn)

∣∣∣∣
J=0︸ ︷︷ ︸

connected Green function

. (C.25)

Thus the Wilsonian effective action means not only the low energy effective action with UV
cutoff Λ but also the generating functional of amputated and connected Green functions
with IR cutoff Λ.
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Then it is important to understand how a theory is influenced according to the cut-
off scale Λ. Let us expand SΛ

int in terms of (infinitely many) local operators Oi such as
(∂φ)2, φ4, φ6, (∂2φ)2, and etc

SΛ
int =

∑
i

∫
d4xgiOi (C.26)

where gi are coupling constants. Among the infinitely many terms in SΛ, significant con-
tributions of operators can be obtained by counting their mass dimensions. Provided that
the mass dimension of an operator Oi is [Oi] = δi, the coupling constant has the mass
dimension [gi] = 4 − δi and can be redefined with the dimensionless coupling constant λi
as

gi = λiΛ
4−δi . (C.27)

Then the initial action (C.26) is re-written as

SΛ
int =

∑
i

λiΛ
4−δi

∫
d4xOi (C.28)

where Λ is a characteristic scale of SΛ and so λi ∼ 1 is expected. Assuming a theory in
the energy scale E, the operators Oi has the scale of Eδi , and so we can predict the effect
of the operator in the UV cutoff Λ to be

gi

∫
d4xOi ∼ λi

(
E

Λ

)δi−4

. (C.29)

If δi > 4, the operator becomes “irrelevant” in low energy regimes (for small values of E)
and this case is comparable to non-renormalizability in the ordinary RG theory. In a case
of δi = 0, it is said that the operator is “marginal” and comparable to renormalizable. If
δi < 4 the operator becomes “relevant” and corresponds to super-renormalizability. Thus
in the Wilsonian picture, the non-renormalizable terms are physically unimportant in the
low energy regime, and the non-renormalizable terms in the action S do not influence
processes at low energy scales; (super-)renormalizable terms are enough for describing the
low energy process.
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Appendix D

Useful Commutation Relation

D.1 Useful Commutation Relation

DkDl

(
DkDlα

)
=DkD

2(Dkα) = Dk[D
2, Dk]α +D2D2α

=−Dk

(
R(0)km l

mDlα

)
+D2D2α

=
n

r2
D2α +D2D2α (D.1)

D2

(
DaDbα

)
=[D2, Da]Dbα +Da[D2, Db]α +DaDb(D2α)

=−R(0)e ca
c DeD

bα−R(0)eb a
c DcDeα−Dc

(
R(0)eb a

c Deα

)
−Da

(
R(0)e cb

c Deα

)
+DaDb(D2α)

=2R(0)caebDcDe +
2n

r2
DaDbα +DaDbD2α (D.2)

DkD
a(DkDbα) =[Dk, D

a](DkDbα) +Da[D2, Db]α +DaDb(D2α)

=−R(0)e ca
c DeD

bα−R(0)ebcaDcDeα−Da

(
R(0)e ca

c Deα

)
+DaDb(D2α)

=R(0)caebDcDeα +
2n

r2
DaDbα +DaDbD2α (D.3)
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where the commutation of two covariant derivatives acting on wc and tab is

[Da, Db]wc = R(0) d
abc wd

[Da, Db]t
d
c = R(0) e

abc t
d
e +R(0) d

ab et
e
c . (D.4)
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Appendix E

Graphs of Entropy Density for
Chapter 6
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Figure E.1: Entropy density per unit temperature versus log(Λz/T )
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Appendix F

Supplements for Chapter 7

F.1 X,Y, and Z in F , E, and J t̂ in (7.66)-(7.68)

X =z3(−1 + 2z + 2z2 − 2z3) + z2(−6 + 27z − 34z2 − 14z3 + 18z4)α̃− z(12− 101z

+ 309z2 − 406z3 + 144z4 + 12z5)α̃2 + (−8 + 120z − 574z2 + 1405z3 − 1842z4

+ 1053z5 − 194z6)α̃3 + (20− 191z + 693z2 − 1595z3 + 2383z4 − 1718z5 + 408z6)α̃4

− 2(−1 + 21z − 150z2 + 262z3 + 49z4 − 295z5 + 90z6)α̃5 + 4(1 + z)2(2− 17z

+ 41z2 − 32z3 + 4z4)α̃6 (F.1)

Y =z3(−1 + 4z − 4z2 + 2z3) + z2(−6 + 31z − 70z2 + 66z3 − 30z4)α̃ + z(−12 + 95z

− 311z2 + 560z3 − 502z4 + 200z5)α̃2 + (−8 + 112z − 490z2 + 1209z3 − 1934z4

+ 1689z5 − 618z6)α̃3 + (28− 215z + 589z2 − 1155z3 + 2095z4 − 2134z5 + 792z6)α̃4

+ (−14 + 38z + 220z2 − 668z3 + 126z4 + 654z5 − 308z6)α̃5 + 4(1 + z)2(2− 17z

+ 41z2 − 32z3 + 4z4)α̃6) (F.2)
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Z =z5(−5 + 24z − 23z2 − 22z3 + 18z4 + 20z5) + z4(11 + 23z − 395z2 + 703z3 − 40z4

− 318z5 − 176z6)α̃ + z3(1− 140z + 402z2 + 2050z3 − 6461z4 + 3610z5 + 1106z6

+ 776z7)α̃2 + z2(−37 + 105z + 1198z2 − 7062z3 + 2299z4 + 25593z5 − 29948z6

+ 6308z7 − 3832z8)α̃3 + 2z(53− 351z + 1059z2 − 4788z3 + 22016z4 − 31125z5

− 13341z6 + 49514z7 − 24299z8 + 7982z9)α̃4 − 2(−16 + 328z − 2401z2 + 7052z3

− 16915z4 + 62838z5 − 119335z6 + 51832z7 + 66435z8 − 58018z9 + 18952z10)α̃5

+ 4(−28 + 218z − 1604z2 + 3369z3 − 1768z4 + 22651z5 − 76922z6 + 67311z7

+ 11872z8 − 31725z9 + 12002z10)α̃6 − 8(−7− 46z − 23z2 − 1092z3 + 8439z4

− 11616z5 − 8665z6 + 21748z7 − 2820z8 − 8226z9 + 3844z10)α̃7 + 16(1 + z)2(−2

+ 23z − 322z2 + 1396z3 − 2240z4 + 665z5 + 1724z6 − 1676z7 + 480z8)α̃8 (F.3)

F.2 Graph of Entropy Density depending on log(Λz/T )
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Figure F.1: Dimensionless entropy density per unit temperature versus log Λz/T for each
α̃ in n = 4
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F.3 Table F/Ts and E/Ts for n = 5, 6, 7, 8 and 9

(n = 5) F
Ts

E
Ts

F
E

α̃ = 1/4 or z = 2.5 −0.38− 1.29
log Λz/T

+· · · 0.62− 1.29
log Λz/T

+ · · · −0.63− 3.42
log Λz/T

+· · ·

α̃ = 1/10 or z = 3.4 −0.46− 0.75
log Λz/T

+· · · 0.54− 0.75
log Λz/T

+ · · · −0.85− 2.56
log Λz/T

+· · ·

α̃ = 0 or z = 4 −0.50− 0.67
log Λz/T

+· · · 0.50− 0.67
log Λz/T

+ · · · −1.00− 2.67
log Λz/T

+· · ·

α̃ = −1/20 or z = 4.3 −0.52− 0.65
log Λz/T

+· · · 0.48− 0.65
log Λz/T

+ · · · −1.08− 2.78
log Λz/T

+· · ·

α̃ = −1/6 or z = 5 −0.56− 0.63
log Λz/T

+· · · 0.44− 0.62
log Λz/T

+ · · · −1.25− 3.17
log Λz/T

+· · ·

α̃ = −3/10 or z = 5.8 −0.59− 0.60
log Λz/T

+· · · 0.41− 0.61
log Λz/T

+ · · · −1.45− 3.63
log Λz/T

+· · ·
... ...

...
...

Table F.1: fitting functions for F
Ts

, E
Ts

, and F
E in n = 5

171



(n = 6) F
Ts

E
Ts

F
E

α̃ = 1/4 or z = 3 −0.37− 1.43
log Λz/T

+· · · 0.62− 1.41
log Λz/T

+ · · · −0.60− 3.65
log Λz/T

+· · ·

α̃ = 1/10 or z = 4.2 −0.46− 0.71
log Λz/T

+· · · 0.54− 0.71
log Λz/T

+ · · · −0.84− 2.40
log Λz/T

+· · ·

α̃ = 0 or z = 5 −0.50− 0.63
log Λz/T

+· · · 0.50− 0.63
log Λz/T

+ · · · −1.00− 2.51
log Λz/T

+· · ·

α̃ = −1/20 or z = 5.4 −0.52− 0.60
log Λz/T

+· · · 0.48− 0.60
log Λz/T

+ · · · −1.08− 2.61
log Λz/T

+· · ·

α̃ = −1/8 or z = 6 −0.55− 0.58
log Λz/T

+· · · 0.45− 0.58
log Λz/T

+ · · · −1.20− 2.81
log Λz/T

+· · ·

α̃ = −3/10 or z = 7.4 −0.60− 0.57
log Λz/T

+· · · 0.40− 0.57
log Λz/T

+ · · · −1.48− 3.48
log Λz/T

+· · ·
... ...

...
...

Table F.2: fitting functions for F
Ts

, E
Ts

, and F
E in n = 6

(n = 7) F
Ts

E
Ts

F
E

α̃ = 1/4 or z = 3.5 −0.37− 1.58
log Λz/T

+· · · 0.63− 1.59
log Λz/T

+ · · · −0.58− 3.97
log Λz/T

+· · ·

α̃ = 1/10 or z = 5 −0.45− 0.68
log Λz/T

+· · · 0.55− 0.68
log Λz/T

+ · · · −0.83− 2.30
log Λz/T

+· · ·

α̃ = 0 or z = 6 −0.50− 0.60
log Λz/T

+· · · 0.50− 0.60
log Λz/T

+ · · · −1.00− 2.40
log Λz/T

+· · ·

α̃ = −1/20 or z = 6.5 −0.52− 0.58
log Λz/T

+· · · 0.48− 0.58
log Λz/T

+ · · · −1.08− 2.50
log Λz/T

+· · ·

α̃ = −1/10 or z = 7 −0.54− 0.56
log Λz/T

+· · · 0.46− 0.56
log Λz/T

+ · · · −1.17− 2.63
log Λz/T

+· · ·

α̃ = −3/10 or z = 9 −0.60− 0.54
log Λz/T

+· · · 0.40− 0.54
log Λz/T

+ · · · −1.5− 3.37
log Λz/T

+ · · ·
... ...

...
...

Table F.3: fitting functions for F
Ts

, E
Ts

, and F
E in n = 7

172



(n = 8) F
Ts

E
Ts

F
E

α̃ = 1/4 or z = 4 −0.36− 1.76
log Λz/T

+· · · 0.64− 1.73
log Λz/T

+ · · · −0.57− 4.32
log Λz/T

+· · ·

α̃ = 1/10 or z = 5.8 −0.45− 0.66
log Λz/T

+· · · 0.55− 0.67
log Λz/T

+ · · · −0.83− 2.23
log Λz/T

+· · ·

α̃ = 0 or z = 7 −0.50− 0.58
log Λz/T

+· · · 0.50− 0.58
log Λz/T

+ · · · −1.00− 2.33
log Λz/T

+· · ·

α̃ = −1/20 or z = 7.6 −0.52− 0.56
log Λz/T

+· · · 0.48− 0.56
log Λz/T

+ · · · −1.09− 2.45
log Λz/T

+· · ·

α̃ = −1/12 or z = 8 −0.53− 0.56
log Λz/T

+· · · 0.47− 0.55
log Λz/T

+ · · · −1.14− 2.53
log Λz/T

+· · ·

α̃ = −3/10 or z = 10.6 −0.60− 0.53
log Λz/T

+· · · 0.40− 0.53
log Λz/T

+ · · · −1.51− 3.35
log Λz/T

+· · ·
... ...

...
...

Table F.4: fitting functions for F
Ts

, E
Ts

, and F
E in n = 8

(n = 9) F
Ts

E
Ts

F
E

α̃ = 1/4 or z = 4.5 −0.36− 1.89
log Λ?/T

+· · · 0.64− 1.89
log Λz/T

+ · · · −0.56− 4.59
log Λz/T

+· · ·

α̃ = 1/10 or z = 6.6 −0.45− 0.66
log Λz/T

+· · · 0.55− 0.66
log Λz/T

+ · · · −0.83− 2.19
log Λz/T

+· · ·

α̃ = 0 or z = 8 −0.50− 0.57
log Λz/T

+· · · 0.50− 0.57
log Λz/T

+ · · · −1.0− 2.29
log Λz/T

+ · · ·

α̃ = −1/20 or z = 8.7 −0.52− 0.55
log Λz/T

+· · · 0.48− 0.55
log Λz/T

+ · · · −1.09− 2.40
log Λz/T

+· · ·

α̃ = −1/14 or z = 9 −0.53− 0.54
log Λz/T

+· · · 0.47− 0.54
log Λz/T

+ · · · −1.13− 2.46
log Λz/T

+· · ·

α̃ = −3/10 or z = 12.2 −0.60− 0.51
log Λz/T

+· · · 0.40− 0.51
log Λz/T

+ · · · −1.53− 3.28
log Λz/T

+· · ·
... ...

...
...

Table F.5: fitting functions for F
Ts

, E
Ts

, and F
E in n = 9
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