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Abstract 

Field emission cathodes have proven themselves to be excellent candidates for some 

special medical X-ray applications. Spindt cathode and CNT (carbon nanotube) based field 

emission cathode have been widely studied for many years. Spindt cathode has the near perfect 

structure, but the material property limits its applications. On the other hand, low density 

vertically aligned CNT array has been proved the best candidate of field emission material. 

Several attempts have been made to combine the advantages of the Spindt cathode and CNT 

array, but some most important advantages of Spindt cathode have not been successfully 

utilized in CNT emitter design, for example: ballast resistor, self-aligned fabrication process, 

sub-micron scale gate electrode, and low control voltage. 

In this thesis, the design, fabrication and test of CNT based field emission cathode with 

a novel ballast resistor and coaxial cylinder shape gate electrode is reported. A connection pad 

has been reported for the first time. This structure makes the ballast resistor can be utilized in a 

CNT field emitter array. Therefore, the uniformity and stability of field emission current is 

improved significantly. In addition, the stabilized emission current heated up the sample to a 

high temperature and changes the emission from field emission to Schottky emission regime. 

This is the first report of the self-heating Schottky emission from a CNT emitter array. Coaxial 

cylinder shape gate electrode is another important improvement in the CNT emitter design. 

The gate electrode adopts the self-alignment property of the Spindt cathode, and adjusted to fit 

the structure and synthesis process of CNT array. This new design and fabrication process has 

all the advantages of both the Spindt cathode and CNT emitter. 

In addition to the field emission cathode design, a novel PMMA (poly methyl 

methacrylate) based FEM (field emission microscope) is designed to evaluate the emission 
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uniformity and capture high resolution images of the distribution of field emitted electrons. 

Compare to the conventional phosphor screen based FEM, the PMMA based FEM has a much 

higher resolution and sensitivity. Images of this new FEM have a resolution of as high as 0.34 

nm and clearly show the boundary of crystal facets.  



v  

 

Acknowledgements 

First I would like to express my appreciation to my supervisor Dr. John Yeow for 

providing me with this exciting and innovative topic. I would most like to thank Dr. Yeow for 

giving me the opportunity to join his group and enter the world of nanotechnology. 

I am thankful to Dr. David Jaffray in Department of Radiation Physics in Princess 

Margaret Cancer Centre for his unfailing support for my research and experiment. 

My gratitude is extended to the members of my PhD Advisory Committee, Professor 

Eihab Abdel-Rahman and Professor Alex Wong in Department of Systems Design 

Engineering,  Professor Dayan Ban and Professor Karim Karim in Department of Electrical 

and Computer Engineering for their generous support and invaluable suggestions. I am 

honored to have Professor Alireza Nojeh in Electrical and Computer Engineering at The 

University of British Columbia as the external examiner. 

I am indebted to Ms. Vicky Lawrence for her assistance in the past years. 

I am especially thankful to Dr. Yanhui Bai, Dr. Sangtak Park and Dr. So-Ra Chung for 

their help throughout my PhD study. 

 



vi  

 

Dedication 

This work is dedicated to my parents, my loving wife and our amazing kids. 



vii  

 

Table of Contents 

 
Author’s Declaration ................................................................................................................................. ii 

Abstract..................................................................................................................................................... iii 

Acknowledgements ................................................................................................................................... v 

Dedication ................................................................................................................................................. vi 

Table of Contents .................................................................................................................................... vii 

List of Figures ............................................................................................................................................ x 

List of Tables ........................................................................................................................................... xii 

List of Abbreviations .............................................................................................................................. xiii 

Chapter 1 Introduction ............................................................................................................................... 1 

1.1 Motivation ....................................................................................................................................... 1 

1.2 Thesis Organization ......................................................................................................................... 2 

Chapter 2 Background ............................................................................................................................... 4 

2.1 Brief History of X-ray Tube ............................................................................................................ 4 

2.2 Medical Applications of X-ray ........................................................................................................ 6 

2.2.1 Computer Tomography ............................................................................................................. 6 

2.2.2 Electronic Brachytherapy ......................................................................................................... 9 

2.2.3 Other Applications of X-ray Irradiation ................................................................................. 10 

2.3 Electron Emission from Solids ...................................................................................................... 11 

2.3.1 Thermionic Emission .............................................................................................................. 12 

2.3.2 Schottky Emission .................................................................................................................. 14 

2.3.3 Field Emission ........................................................................................................................ 15 

2.4 Electron Emission Theory ............................................................................................................. 18 

2.4.1 Fermi-Dirac Statistics ............................................................................................................. 18 

2.4.2 Energy Barrier ........................................................................................................................ 19 

2.4.3 Murphy-Good Theory ............................................................................................................. 20 

2.4.4 Fowler-Nordheim Theory ....................................................................................................... 22 

2.5 Chapter Summary .......................................................................................................................... 23 

Chapter 3 Design of Field Emission Cathode.......................................................................................... 25 

3.1 Field Emission Material ................................................................................................................. 25 

3.2 Structure of Field Emission Cathode ............................................................................................. 26 



viii  

 

3.2.1 Thin Film Field Emitter .......................................................................................................... 27 

3.2.2 Gated Field Emission Array ................................................................................................... 37 

3.3 CNT Emitter with Coaxial Cylinder Gate ..................................................................................... 39 

3.4 Ballast Resistor for CNT Field Emitter ......................................................................................... 42 

3.5 Chapter Summary .......................................................................................................................... 47 

Chapter 4 Numerical Simulation of Field Emission Cathode.................................................................. 48 

4.1 Introduction ................................................................................................................................... 48 

4.2 Field Emission non-Uniformity of an Emitter Array .................................................................... 49 

4.3 Effect of a Ballast Resistor ............................................................................................................ 52 

4.3.1 Ballast Resistor for Single CNT ............................................................................................. 52 

4.3.2 Ballast Resistor in an Emission Array .................................................................................... 57 

4.3.3 Ballast Resistor in a Cylinder Gated Emitter .......................................................................... 59 

4.4 Resistance and Dimension of Ballast Resistor .............................................................................. 61 

4.5 Efficiency of Coaxial Cylinder Gate ............................................................................................. 62 

4.6 Chapter Summary .......................................................................................................................... 64 

Chapter 5 Fabrication Process of Field Emission Cathode...................................................................... 66 

5.1 Introduction ................................................................................................................................... 66 

5.2 Fabrication Process of the Components ........................................................................................ 66 

5.2.1 Carbon Nanotube Synthesis .................................................................................................... 66 

5.2.2 Fabrication Process of Ballast Resistor .................................................................................. 70 

5.2.3 Fabrication process of Cylinder Gate ..................................................................................... 71 

5.3 Non-gated Field Emitter ................................................................................................................ 75 

5.4 Cylinder Gated Field Emitter ........................................................................................................ 75 

5.5 Chapter Summary .......................................................................................................................... 80 

Chapter 6 Electron Emission Properties of CNT Emitters ...................................................................... 81 

6.1 Field Emission from Ballasted CNT Array ................................................................................... 81 

6.2 Self Heating Schottky Emission from CNT Array ........................................................................ 85 

6.3 Field Emission from Gated Ballasted CNT Array ......................................................................... 92 

6.4 Chapter Summary .......................................................................................................................... 96 

Chapter 7 PMMA based Field Emission Microscope ............................................................................. 97 

7.1 Introduction ................................................................................................................................... 97 

7.2 Field Emission Microscope Setup ................................................................................................. 98 

7.3 Field Emission Microscope Images ............................................................................................. 100 

7.4 Discussion .................................................................................................................................... 106 



ix  

 

7.5 Chapter Summary ........................................................................................................................ 107 

Chapter 8 Field Emission based X-ray Tube ......................................................................................... 109 

8.1 Review of Conventional X-ray Source ........................................................................................ 109 

8.2 Field Emission X-ray Tube Structure .......................................................................................... 110 

8.2.1 Diode X-ray Source .............................................................................................................. 110 

8.2.2 Triode X-ray Source Array ................................................................................................... 114 

8.3 Flat Panel X-ray Tube.................................................................................................................. 116 

8.4 Chapter Summary ........................................................................................................................ 118 

Chapter 9 Contribution and Future Works ............................................................................................ 119 

9.1 Contributions ............................................................................................................................... 119 

9.2 Future Works ............................................................................................................................... 121 

9.3 Conclusion ................................................................................................................................... 122 

References ............................................................................................................................................. 123 

 



x  

 

List of Figures 

Figure 2-1: X-ray image " Hand mit Ringen (Hand with Rings)” ............................................................. 4 

Figure 2-2: Structure of the X-ray tube ..................................................................................................... 5 

Figure 2-3: X-ray tube cathode .................................................................................................................. 6 

Figure 2-4: Diagram of Multi-slice CT scanner and electron beam tomography ...................................... 7 

Figure 2-5: A miniature X-ray tube for electronic brachytherapy system ............................................... 10 

Figure 2-6: Schematic diagram of thermionic emission,  Schottky emission and field emission ........... 12 

Figure 2-7: Diagram and SEM image of Spindt cathode. ....................................................................... 17 

Figure 3-1: CNT thin film emitter composed of CNTs dispersed in conductive binder matrix .............. 28 

Figure 3-2: Visible light emitted during field emission ........................................................................... 29 

Figure 3-3: SEM images of graphene thin film deposited on silicon wafer by spray ............................. 30 

Figure 3-4: SEM image of a high density vertically aligned multi-wall CNT array ............................... 31 

Figure 3-5: Field emission property of high density vertically aligned CNT array ................................. 32 

Figure 3-6: Optical image of an aluminum plate used as an anode of a field emission experiment ....... 33 

Figure 3-7: SEM images of high density vartically aligned CNT array after field emission .................. 34 

Figure 3-8: SEM images of low density vertically aligned CNT and ZnO thin film .............................. 36 

Figure 3-9: SEM image of a typical structure of a Spindt emitter ........................................................... 38 

Figure 3-10: Diagrams of CNT emitter with cylinder shape coaxial gate electrode ............................... 40 

Figure 3-11: Structure of ballast resistor ................................................................................................. 43 

Figure 3-12: Diagram of vertically aligned CNT with connection pad. .................................................. 45 

Figure 3-13: Diagram of CNT emitter array as X-ray tube cathode ........................................................ 46 

Figure 4-1: Diagram of simulation models .............................................................................................. 49 

Figure 4-2: Simulation result of electric field strength distribution ........................................................ 52 

Figure 4-3: Simulation result of emission current versus field enhancement factor ............................... 54 

Figure 4-4: Simulation result of the effect of the ballast resistor ............................................................ 55 

Figure 4-5: Simulation model of a ballasted CNT in an emitter array .................................................... 57 

Figure 4-6: Diagram of CNT emitter with ballast resistor and cylinder shape gate electrode. ............... 59 

Figure 4-7: 3D simulation model of ballast resistor. ............................................................................... 61 

Figure 4-8: 2D axial symmetry simulation of gate transmission efficiency. ........................................... 63 

Figure 5-1: Multiple short carbon cone and short CNT grown on connection pads ................................ 68 

Figure 5-2: Diagram of catalyst dot deposition process .......................................................................... 69 

Figure 5-3: Step-by-step fabrication process of non-gated CNT emitter array ....................................... 73 

file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231772
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231773
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231774
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231775
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231776
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231777
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231778
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231779
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231780
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231781
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231782
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231783
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231784
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231785
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231786
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231787
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231788
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231789
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231790
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231791
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231792
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231793
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231794
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231795
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231796
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231797
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231798
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231799
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231800
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231801
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231802


xi  

 

Figure 5-4: SEM images of free standing vertically aligned CNT grown on connection pad ................. 74 

Figure 5-5: Step-by-step fabrication process of coaxial cylinder shape gate electrode ........................... 76 

Figure 5-6: SEM images of the fabrication process of the gated emitter ................................................ 77 

Figure 5-7: SEM images and optical image of top view of gated CNT emitters..................................... 78 

Figure 5-8: SEM images show defects of CNTs and gate electrodes ...................................................... 79 

Figure 6-1: Current versus voltage curve and F-N plot of a sample as fabricated. ................................. 82 

Figure 6-2: Current versus time curve shows long term current stability of a CNT emitter. .................. 82 

Figure 6-3: Current versus voltage curve and F-N plot of a CNT sample ............................................... 83 

Figure 6-4: Emission current versus voltage curves have a good repeatability ....................................... 84 

Figure 6-5: Emission current after the sample is heated up ..................................................................... 86 

Figure 6-6: Emission current increase to 1.8mA under a constant voltage in 30 minutes ...................... 87 

Figure 6-7: Current versus voltage of a hot sample ................................................................................. 88 

Figure 6-8: Optical image of the sample before and after emission test ................................................. 89 

Figure 6-9: SEM images of CNT emitters after a high current Schottky emission ................................. 91 

Figure 6-10: Emission current versus gate voltage, and F-N plot of the average current. ...................... 93 

Figure 6-11: Emission current per CNT versus effective emitter-gate voltage ....................................... 94 

Figure 6-12: Current versus time long term stability ............................................................................... 95 

Figure 7-1: Diagram of FEM experimental setup .................................................................................... 99 

Figure 7-2: Current versus voltage curve and F-N plot of the FEM experimant ................................... 100 

Figure 7-3: Optical image of the PMMA film before development ...................................................... 101 

Figure 7-4: PMMA film after first development step ............................................................................ 102 

Figure 7-5: Qualitatively identify electron dose of defect ..................................................................... 104 

Figure 8-1: Diagram of diode structure X-ray source ........................................................................... 111 

Figure 8-2: Radiation dose of a diode X-ray tube experiment. ............................................................. 112 

Figure 8-3: X-ray image and optical image of a 144 pin QFP IC ......................................................... 113 

Figure 8-4: Radiation dose of two stability tests. .................................................................................. 113 

Figure 8-5: Diagram of triode X-ray tube.............................................................................................. 115 

Figure 8-6: Diagram of an addressable multi-pixel X-ray source ......................................................... 116 

Figure 8-7: Diagram of transmission and reflection target X-ray source .............................................. 117 

file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231803
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231804
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231805
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231806
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231807
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231808
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231809
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231810
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231811
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231812
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231813
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231814
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231815
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231816
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231817
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231818
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231819
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231820
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231821
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231822
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231823
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231824
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231825
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231826
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231827
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231828
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231829
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231830
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20Final%204-19.docx%23_Toc354231831


xii  

 

List of Tables 

Table 4-1: Normalized field strength and emission current of CNT with different height, diameter, and 

location .................................................................................................................................. 51 

Table 5-1: Comparison of silicon dioxide deposition methods ............................................................... 72 

file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20all%20ref%20LR.docx%23_Toc353048790
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20all%20ref%20LR.docx%23_Toc353048790
file:///C:/Documents%20and%20Settings/Fred/My%20Documents/Google%20Drive/DropBox/Dropbox/Thesis%20Draft/Thesis%20all%20ref%20LR.docx%23_Toc353048791


xiii  

 

List of Abbreviations 

CNT carbon nanotube 

CT X-ray computer tomography 

CVD chemical vapor deposition 

DC direct current 

FEM field emission microscope 

F-N equation Fowler–Nordheim equation 

IC integrated circuit 

IPA Isopropyl alcohol 

MIBK Methyl isobutyl ketone 

MOSFET metal–oxide–semiconductor field-effect transistor 

MWCNT multi wall carbon nanotube 

NDT non-destructive testing 

NEA negative electron affinity 

PECVD plasma enhanced chemical vapor deposition 

PMMA poly methyl methacrylate 

PTFE polytetrafluoroethylene 

QFP quad flat package 

SWCNT single wall carbon nanotube 

ZnO zinc oxide 



1 

Chapter 1 

Introduction 

1.1 Motivation 

The motivation behind the work in this dissertation is to develop a carbon nanotube 

(CNT) based field emission cathode for X-ray source that can be integrated into either a 

stationary computer tomography (CT) scanner system for medical diagnosis or an electronic 

brachytherapy system for cancer treatment. 

The ultimate purpose of this project is to develop some novel X-ray sources that 

cannot be achieved with current widely used thermionic emission cathodes. The thermionic 

cathodes used in current X-ray tubes are made of conventional machining technology. This 

fabrication method limits the size of thermionic cathode. In addition, the thermionic emission 

limits the switching speed of the cathodes. To overcome these limitations, new electron 

emission cathodes are desired. Field emission cathodes have been successfully demonstrated, 

but are still far from commercialization. Stability, uniformity, brightness, and lifetime of field 

emission cathodes need significant improvement.  

Early studies of other research groups demonstrate that Spindt cathode and CNT thin 

film emitters are the most successful field emission cathodes by far. We found both Spindt 

cathode and CNT emitters have their own advantages and disadvantages. To achieve a high 

performance field emission cathode, a new field emission cathode is designed to combine the 

advantages of both Spindt cathode and CNT emitters and avoid their disadvantages. The 

emission cathodes are made in micro-fabrication facilities. Similar to Spindt cathodes, the 

fabrication processes of the cathode are self-assembly.  
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1.2 Thesis Organization 

This section provides a brief outline of the material covered in this thesis.  

In Chapter 1 the motivation behind the work done for this project is discussed. 

Chapter 2 presents the brief history and some major medical applications of X-ray. 

The fundamentals of electron emission and theory of field emission are also described. 

Chapter 3 describes the materials and structures of previous achieved field emission 

cathodes. Field emission property of nano-materials used in our early studies is compared. 

By reviewing the results of our early studies, a carbon nanotube (CNT) based field emission 

cathode structure is developed. A novel ballast resistor layer and a cylinder shape coaxial 

gate electrode are used in the emission cathode for the first time.  

Chapter 4 presents numerical simulation results of the field emission cathodes. 

Effects of ballast resistor, dimension of ballast resistor, and efficiency of coaxial gate 

electrode are calculated. 

Chapter 5 presents the fabrication process of the device. The fabrication process is 

divided into three parts, namely: ballast resistor, CNT, and cylinder shape coaxial gate 

electrode. 

Chapter 6 presents the emission property of the non-gated and gated CNT emitters. 

During an experiment of the non-gated CNT emitter, self-heating Schottky emission is 

observed and reported for the first time. 

In Chapter 7, a PMMA (poly methyl methacrylate) based field emission microscope 

(FEM) is described. The structure is designed to evaluate the emission uniformity of field 

emission array. Resolution of this FEM is 0.3 nm. The FEM has the capability of capture 

details of the crystal structure of the emission site. Boundary of crystal facet is clearly shown 

for the first time. 
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In Chapter 8, diode and triode structured field emission X-ray tube is described. 

Experimental result and X-ray images from a diode X-ray tube are given. In addition, the thin 

film based field emission cathode is transparent to X-ray beam. Therefore, a reflection target 

X-ray tube is feasible. 

Chapter 9 presents the contribution and future works of this research. 
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Chapter 2 

Background 

2.1 Brief History of X-ray Tube 

X-ray was first discovered in 1895 by German physicist Wilhelm Röntgen, when he 

was working with a cathode ray tube [1]. Figure 2-1 shows the first X-ray picture of the 

human body ever taken [2]. This cathode ray tube is a discharge tube called Crookes tubes 

invented by British physicist William Crookes [3]. Crookes tubes require a small amount of 

air in them to function (7×10⁻⁴ - 4×10⁻⁵ Torr). Crookes tubes generate electrons needed to 

create X-ray by ionization of residual air in the tube, instead of a cathode. Crookes tubes are 

unreliable and temperamental. Both the energy and the quantity of X-rays produced depend 

 

Figure 2-1: X-ray image " Hand mit Ringen (Hand with 

Rings)”, taken by Wilhelm Röntgen in 1895 [3] 
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on the pressure of residual gas in the tube. Over time, the gas is absorbed by the walls of the 

tube, and the pressure in the tube is reduced. This pressure reduction reduces the amount of 

cathode rays produced and causes the voltage across the tube to increase. Soon the pressure 

got so low the tube stops working entirely. These first generation cold cathode X-ray tubes 

are used until the 1920s.  

In 1913, an American physicist William David Coolidge made a major contribution 

to X-ray machines [4]. He invented a hot cathode tube. Electrons are produced from a 

tungsten filament heated by an electric current. Coolidge tube consists of a tungsten filament 

 

Figure 2-2: Structure of the X-ray tube invented by Coolidge (upper) 

[5] and a modern medical X-ray tube (lower) [6] 
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cathode and a metal anode. It has been the most widely used x-ray source till today. Figure 2-

2 shows the structure of an early Coolidge X-ray tube [5] and a modern X-ray tube [6]. Many 

new features have been employed in X–ray tubes and improve the performance of modern X-

ray tubes significantly. However, the cathode has no big change in the past one hundred 

years. Figure 2-3 shows the structures of an early Coolidge cathode [4] and a modern X-ray 

tube cathode [6].  

2.2 Medical Applications of X-ray 

2.2.1 Computer Tomography 

X-ray computed tomography (CT) is an important application of X-ray in both 

medical diagnose and industrial non-destructive testing (NDT). In a medical CT scanner, an 

X-ray tube, a power supply, and an X-ray detector array are mounted on a supporting gantry 

and rotated around a patient to collect radiation images from different directions [7]. In a 

typical industrial CT scanner, X-ray components are fixed, but the object makes a full 360˚ 

rotation during a scan. The collected X-ray image set is converted to 3D images by a 

reconstruction algorithm [8].  

 

Figure 2-3: Early Coolidge tube cathode (left) [4] and modern X-

ray tube cathode (right) [6] 
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After the first commercially viable CT scanner is announced in 1972, the progress of 

CT scanner is rapid. The fourth generation CT scanner appears in 1978, just six years after 

the first CT scanner [9]. In a current fourth generation CT scanner, several thousand of X-ray 

detectors are statically mounted all around the gantry to avoid of ring artifact. And the 

mechanical motion is the rotation of the x-ray source around a fixed detector array. A fourth 

generation multi-slice CT has a resolution as high as 0.2 mm and the slice acquisition time of 

320 ms can be achieved. However, it is still not fast enough for a cardiac scanning. Electron 

 

 

Figure 2-4: Diagram of Multi-slice CT scanner [9] and 

electron beam tomography 
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beam tomography is the fastest scanning technology, which can achieve an acquisition time 

of 50 ms. Figure 2-4 shows diagrams of a multi-slice CT scanner and an electron beam 

tomography. However, the posterior left ventricular wall moved at a maximum velocity of 

52.5 mm/sec, necessitating a scan time of 19.1 ms or less to avoid artifact [10]. Therefore, a 

technology with a faster scanning speed is still desired. For a conventional CT scanner, to 

achieve such a high scanning speed, the gantry speed of 5 rotations per second will generate 

a centrifugal force as high as 75G, which is not feasible. The maximum achievable rotation 

speed is 3 rotations per second. Throughout all the CT scanning technologies, the maximum 

of two X-ray sources have been achieved [11]. When compared to the several thousand X-

ray detectors, the solo-source or dual-sources becomes the bottleneck of CT scanners. Multi-

pixel X-ray source is a potential technology to solve this problem.  

Besides the mechanical challenge, power density of the X-ray sources is another 

obstacle. For a body CT, approximately 250 mAs (i.e., tube current in milliamps times scan 

time in seconds) per slice are required [12]. For a 20ms scanning time (no motion artifact 

cardiac scan), the required tube current is 12.5 Amps. A typical target voltage of a CT 

scanner is 80kV to 140kV. The corresponding target power is over 1 megawatt. Therefore, it 

is extremely difficult to avoid the target being melted. 

In addition to the challenges of the mechanical strength and power density, the high 

speed mechanical rotation leads to high power consumption, high cost, complex structure, 

and high maintenance cost. Therefore, a multi-source stationary CT scanner is a solution to 

overcome these problems. 

With the development of the reconstruction algorithm, full circle rotation is not 

necessary to reconstruct 3D images. In an electron beam tomography, a 210˚ sweep is 
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sufficient [13]. In a digital tomosynthesis, the tube rotates 40˚ and 2 or 3 exposures are made 

every 1˚ [14]. These reconstruction algorithms make a multiple X-ray source based 3D image 

X-ray system feasible.  

2.2.2 Electronic Brachytherapy 

Brachytherapy, also known as internal radiotherapy, is a form of radiotherapy where a 

radiation source is placed inside or next to the area requiring treatment. A key feature of 

brachytherapy is that the irradiation only affects a localized area around the radiation sources. 

Exposure to radiation of healthy tissues further away from the sources is therefore reduced 

[15]. In addition, if the patient moves or if there is any movement of the tumor within the 

body during treatment, the radiation sources retain their correct position in relation to the 

tumor. These characteristics of brachytherapy provide advantages over external beam 

radiotherapy, i.e., the tumor can be treated with very high doses of localized radiation, whilst 

reducing the probability of unnecessary damage to surrounding healthy tissues. 

Electronic brachytherapy is a type of radiotherapy that uses a miniaturized high dose 

rate X-ray source to apply radiation to the cancerous site. It combines the benefits of external 

beam radiation therapy and traditional brachytherapy to successfully treat breast, skin and 

gynecological cancer.  Patients who undergo this unique treatment can achieve effective 

results without the dangerous side effects and lengthy downtimes often associated with 

treating these conditions. Electronic brachytherapy system enables clinicians to administer 

high-dose-rate brachytherapy for skin lesions without the use of a radioactive isotope or a 

megavoltage linear accelerator. It can be performed at locations without requiring a heavily 

shielded room, due to minimal shielding required at these low energies with a faster dose 

fall-off.  As the therapists can remain at the patient side during treatment, visual monitoring 
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of applicator set-up, procedure and patient during the treatment is possible and increases 

patient comfort and cooperation and improves targeting of the tumor. Due to the low kilo-

voltage energy level, near ocular treatments are possible with thin tungsten eye-shields. On 

and off switch and quick stop capability of the controller provide increased procedural safety. 

Figure 2-5 shows a miniature X-ray tube for electronic brachytherapy system. Due to its 

miniature size, the design of the X-ray tube has many limitations, for example, the lifetime of 

the X-ray tube is just 150 minutes [16]. In briefly, lifetime and preference of the tiny X-ray 

tube still needs some improvements. 

2.2.3 Other Applications of X-ray Irradiation 

Radiation sterilization refers to a process that using radiation such as electron beam, 

X-ray, gamma ray or subatomic particle to kill all forms of microbial life present on a 

surface, contained in a fluid, in medication or in a compound. Food irradiation is used in 

many countries to control foodborne pathogens, reduce microbial load and insect infestation, 

and extend the durable life of perishable produce [17]. Radiation is also a useful process in 

medicine production and medical device sterilization [18]. Sterilization through irradiation is 

considered a clean and efficient process. Irradiation with X-ray or gamma ray does not make 

 

Figure 2-5: Miniature X-ray tube for electronic 

brachytherapy system [16] 
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materials radioactive. Furthermore, irradiation of blood is used in many countries to 

eliminate the risk of fatal graft-versus-host disease [19]. 

Nowadays, irradiations are done with radioactive isotopes, which require heavy lead 

shielding and have the risk of radiation leakage. Some facilities use high energy X-ray beam 

to irradiate large packages and pallet loads of medical devices, or other products. X-ray 

sterilization is an electricity based process, and do not require any radioactive materials. 

When the radiation source is turned off, there is no radiation generated. Therefore, the X-ray 

devices do not require any shielding during storage or transport. Conventional X-ray tubes 

are point sources, which are not designed for continuously irradiating a large area or volume. 

A flat panel X-ray source has many advantages over a point source in X-ray irradiation 

applications [20, 21]. First, the X-ray beam is more uniform in the irradiated area. Second, 

the X-ray target has a much lower power density; therefore, the lifetime of the target is 

significantly increased. Third, a uniform radiation beam can decrease the target-object 

distance and makes the facility small and increase the power efficiency. 

2.3 Electron Emission from Solids 

Electron sources are one of the most important components in many devices, which 

include electron microscopes, microwave amplifiers, displays, cathode ray tubes and X-ray 

sources. The most widely employed electron source is still the thermionic cathode. A general 

theoretical description of electron emission was provided by Murphy and Good [22] and later 

verified experimentally by Christov and Vodenicharov [23] for a wide range of surface 

electric fields and temperatures. The Murphy-Good theory provides a complex integral 

expression for the electron emission current density that can only be evaluated numerically. 

As a consequence, the much simpler Fowler–Nordheim [24] and Richardson–Dushman [25] 
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analytical equations are widely used, respectively, for field emission and thermionic 

emission. 

2.3.1 Thermionic Emission 

In a solid, electrons tend to fill the lowest energy states. At a temperature of 0 K, 

every low-energy states is occupied, right up to the Fermi level, but no states are filled at 

energies greater than the Fermi level. At the material-vacuum interface, an image force 

potential prevents the electrons leave the surface and escape into vacuum. Figure 2-6A shows 

a diagram of the energy distribution of electrons in an electron emission material at a 
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temperature of 0 K. When the solid is heated up, kinetic energy of the electrons increases. 

Electrons, with kinetic energy higher than the potential barrier, can overcome the image force 

and exit the solid surface without being pulled back in. This phenomenon was first observed 

by Thomas Edison in 1883 and is known as the Edison effect. The concept of thermionic 

emission is diagrammatically shown in Figure 2-6B. At the temperature of operation, an 

electron cloud is formed surrounding the material. The cloud of emitted electrons can form a 

space charge region, which is treated as a continuum of charge distributed over a region of 

space rather than distinct point charges. The resulting cloud is negatively charged, and can be 

attracted to any nearby positively charged object, thus producing an electrical current which 

passes through the vacuum. Such a cloud acts to repel low-energy electrons, which return to 

the cathode. This limiting mechanism is aptly referred to as the space-charge-limited 

operation. In a vacuum electron device, a positive voltage applied to an anode electrode to 

attract electrons from the cloud. The higher the voltage, the more electrons flow to the anode 

until all the emitted electrons are attracted to the anode. At this point, the electron flow is 

known as the saturation current. The thermionic emission can be quantifying described by the 

Richardson-Dushman equation [25]                                       , 

                            
  
 

 

             (2.1) 

and Langmuir-Child law [26, 27]                                        , 

                                 
   

 
 

  
           (2.2) 

where J is current density, A is a constant of the material and its surface finish, T is the 

temperature of the solid,    is the work function of the material,    is Boltzmen’s constant, 

    is the anode voltage, and d is the distance between the anode and the cathode. The 
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Richardson-Dushman equation describes the quantity of electrons that can be emitted from 

the cathode, and the Langmuir-Child equation describes the quantity of electrons that can 

pass through the vacuum is limited by the mutual repulsion [28]. 

2.3.2 Schottky Emission 

At a certain temperature, the saturation voltage is a voltage applied to the anode to 

attract all the emitted electrons from the thermionic emission cathode to the anode. When the 

applied voltage keeps increasing after reaching the saturation voltage, the emission current 

keeps increase. This is due to the potential barrier is decreased by the applied electric field. 

This phenomenon is known as Schottky effect. Potential energy diagram for Schottky 

emission is shown in Figure 2-6C. The current density of Schottky emission is a function of 

electric field, emitter temperature, and work function. The Schottky emission can be 

quantifying described by the Richardson-Dushman equation corrected for Schottky effect 

[29] 

                      (   )
  
(  

    

   
)
                 (2.3) 

                    √
   

(    )
                   (2.4) 

where     is the Richardson constant,    is the Boltzmann constant, T is the emitter 

temperature,    is the work function of the emitter material, F is the electric field strength at 

the tip, and     is the permittivity constant.                 represents the lowering of the 

barrier height brought by the applied field. The current density is strongly dependent on both 

the tip temperature and the electric field strength at the surface.  

The Schottky emission is further divided into thermal assisted field emission [30] and 

field enhanced thermionic emission [31] depends on the difference of the operating electric 
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field and temperature. Schottky emission cathodes have many advantages over thermionic 

emission cathodes, For example, small effective source radius, high brightness, long lifetime, 

and narrow electron energy distribution. Thus Schottky emission cathodes are the most 

advanced electron source commercially available. They are widely used as point sources in 

electron devices such as scanning electron microscope, transmission electron microscope, 

and electron-beam lithography. 

2.3.3 Field Emission 

Field electron emission is a pure quantum mechanical effect. The phenomenon of 

electrons emitter from platinum in an intense electric field was discovered by R.W. Wood in 

1897 [32]. This phenomenon occurs when the electric field strength is at the scale of 10⁹ 

V/m. In order to produce such high electric fields, the emitter is usually formed into a tiny 

tip, which has apex radius range from several nanometers to sub-micrometer. The electric 

field concentrates at the emitter tip and narrows the potential barrier at the metal-vacuum 

interface to several nanometers. Therefore, the free electrons in the metal have a significant 

probability of tunneling from the solid into the vacuum. Potential energy diagram for field 

emission is shown in Figure 2-6D. 

2.3.3.1 Needle Tip Emitter 

In the early years, the metallic needle tips are fabricated by fusing or chemical 

etching a thin filament. The radius of the apex is at micrometer scale. Field emission 

microscope (FEM) studies show that only metal with a high melting point, like tungsten and 

molybdenum, can show stable images. Since the work functions of tungsten and 

molybdenum are around 4.5 eV, which is much higher than that of some electropositive 

materials, like sodium (2.36 eV) and thorium (3.4 eV), studies of coating a thin film of metal 
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with low work function to tungsten tips started form the very early investigations [33]. In 

1937, Muller described that a monatomic layer of thorium coated on a tungsten point cathode 

can decrease the work function of the cathode to 2.7 eV. He also studied the poisoning of the 

thorium layer by oxygen and the removal of the thorium layer by ion bombardment and high 

temperature [34]. In 1940, R. Haefer quantitatively studied the emitter’s shape and emitting 

area and obtained stationary extremely high current densities of 10⁶ A/cm², far in excess of 

those possible with thermal electron emission [33]. In the same year, Fleming and Henderson 

described the measurement of the cooling effect on a cathode caused by the escape of field 

and thermionic currents [35]. In 1950s, W. P. Dyke and his group not only achieved a current 

density of 10⁷ - 10⁸ A/cm², but also demonstrated a more than 12,000 hr stable operation of 

field emission cathode in continuous mode with a current density close to the maximum 

achievable values of ~10⁷ A/cm² in a vacuum of 10⁻¹² Torr [36-40]. In these studies, a 

maximum of continuous 7.5 mA or pulsed 45mA current were drawn from single cold 

tungsten needle. In 1960s, M.I. Elinson and co-workers found that the maximum current 

densities depend on emitter geometry and by increasing the tip cone angle the current density 

could be increased without damage the emitter tip [33]. However, when the etched needles 

were used as cathodes in miniaturized devices, they have many limitations. The biggest 

problems are the limited lifetime due to the sputtering damage, and the necessity of using 

high voltage and maintaining an ultra-high vacuum. The technical difficulties encountered in 

using etched needles makes the studies stalled.  

2.3.3.2 Thin Film Emitter Array 

In 1968, C.A. Spindt demonstrated a succeeded in fabricating a gated thin film field 

emitter array [41, 42]. The emitter array, now known as the Spindt cathode, consists of 
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molybdenum cones, a silicon dioxide insulation layer, and a molybdenum gate electrode. 

Figure 2-7 shows a diagram and a SEM image of the Spindt cathode [43]. This multilayer 

structure is fabricated on a silicon substrate by thin film vacuum deposition techniques. The 

fabrication process allows the cathode to be fabricated in arrays of up to thousands emitters. 

A current density of 10A/cm² was achieved [43]. And they also demonstrated a 2mA total 

emission current from a 100 cones array in an area of 0.0625mm² for over 7,000 hours [43]. 

The Spindt cathodes have many inherent advantages in stability. First, the operating 

gate voltage is range from 100V to 300V, which is much lower than that of needle tip 

emitters (1,000V to 30,000V) [41]. By shrinking the device dimension, the gate voltage can 

be reduced to a few tens of volts [44]. Second, the excessive noise of the cathode can be 

reduced by increasing the number of the emitters in an array. Third, the emission efficiency 

(anode current/cathode current) is higher than 99%, makes the total cathode current and joule 

heat much lower than that of other emitters. Fourth, the emitters are fabricated with thin film 

processes in high vacuum environment, which assure less release gas from substrates. Fifth, 

the diameter of the emitters are few micrometers and hundreds of emitters can be combined 

 

Figure 2-7 : Diagram and SEM image of Spindt cathode [43]. 
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to form a single emission pixel, so even some emitters are failure, the pixel still works 

properly. 

The biggest problem of the metal emitters is if it is operated at a system pressure 

greater than 10⁻⁹ Torr, the emission is unstable and the lifetime of the emitter is just a few 

seconds [45].  

2.4 Electron Emission Theory 

2.4.1 Fermi-Dirac Statistics 

In statistical mechanics, Fermi-Dirac statistics is used to describe the energies of 

particles that obey the Pauli Exclusion Principle. Fermi-Dirac statistics applies to systems 

comprising many identical particles, which is called fermions. In these systems, mutual 

interaction between the particles is assumed to be negligible. Therefore, the many-particle 

systems can be described in terms of single-particle energy states. In a metal emitter, free 

electrons are fermions that obey Fermi-Dirac statistics. Electron emission current from a 

metal emitter increases with the temperature of the metal and the applied electric field. The 

emission process has been thoroughly studied on the basis of the Fermi-Dirac distribution for 

a free electron gas and the classical image force barrier. For a system of identical fermions, 

Fermi-Dirac distribution gives the average number   ̅ of fermions in a single-particle state i  , 

                  ̅  
 

 (    )      
                                                           (2.5) 

where    ̅ is the average number of fermions in state i,     is the energy of the state i, µ is the 

chemical potential,     is Boltzmann’s constant, and T is temperature [46]. When a state has 

energy    equals chemical potential   , the state have 50% chance of being occupied by an 

electron, and the energy of this state is Fermi level. At the temperature of      , Fermi 
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energy of a metal equals to the Fermi level, and all the electrons are stacked neatly below the 

Fermi level. To remove an electron from a metal to a point immediately outside the metal 

surface, the minimum necessary energy equals to the difference between the Fermi level and 

the energy level of vacuum (absolute energy reference zero). This energy difference is known 

as work function. Work function is a characteristic property for any solid phase of a 

substance. In solid-state physics, the free electron model is a combination of the classical 

Drude model and quantum mechanical Fermi-Dirac statistics. It is also known as Drude-

Sommerfeld model. It predicts, in three dimensions, the density of state of a fermions gas is 

proportional to the square root of the kinetic energy of the particles. This model is successful 

in explaining experimental phenomena of thermionic electron emission and field electron 

emission from bulk metals. 

2.4.2 Energy Barrier 

 At the metal-vacuum interface, an energy barrier exists. To calculate the electrostatic 

force on an electron in the neighborhood of the metal, we assume the metal-vacuum interface 

is a mirror and the electron is attracted by its electric image. From the Coulomb’s law, the 

image force    between an electron and its image is                                            , 

                           ( )  
  

(  ) 
           (2.6) 

 where e is electron charge, x is the distance from the electron to the metal-vacuum interface. 

The image force potential is                                                           , 

                          ( )      ( )    
  

  
 .       (2.7) 

 When an electric field F is applied, the external applied potential is                         , 

                          ( )      .         (2.8) 
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 The assumed potential energy of the electrons near the metal-vacuum interface is    , 

                          ( )   
  

  
           (2.9) 

where   ( ) is the effective electron potential energy. Term  –
  

  
 is the contribution from the 

image force, and       is the contribution from the externally applied field   . The effective 

electron potential energy inside the metal is a constant. In the region near     , it is 

assumed that the potential energy  ( ) is regular and connects smoothly. The maximum 

value of the potential energy is  – (   )    [22]. 

2.4.3 Murphy-Good Theory 

For high temperature and low field strength, electrons have energy higher than the 

image force barrier predominates and the emission current variation is determined by the 

temperature dependence of the distribution function. This process is known as thermionic 

emission. For high field strength and low temperature, electrons have energy below or close 

to Fermi level predominates and the emission current variation is determined by the field 

dependence of the barrier shape. This process is called field emission. The transition region 

among thermionic emission and field emission is called thermo-field emission or Schottky 

emission [47]. The thermal-field emission is further divided into field enhanced thermionic 

emission [31] and thermal assisted field emission [30]. The thermal-field emission current 

densities can be several orders of magnitude higher than that of thermionic emission, field 

emission and their simple sum [48].Thermionic emission and field emission can be described 

by Richardson equation and Fowler-Nordheim equation separately. Some attempts have been 

made to study the transition region [49-51]. A comprehensive study of the entire emission 

phenomenon is preformed from a unified point of view [22]. From the free electron model, 
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we can get the number of electrons per unit time per unit area having energy within a small 

range incident on the barrier. Then, a function of the probability of the electrons that can 

escape through the barrier is derived. Next, two integrations are applied on the escape 

probability function to obtain the total energy distribution and emission current density. The 

emission current density is a function of temperature, field, and work function in the form of 

a definite integral [52]                                                                 , 

                                    ∫  (   ) (      )  
 

   
   (2.10) 

where e is electron charge,      is the effective constant potential for the electron inside the 

emitter,   (   ) is the probability of the electrons with energy W  to penetrate the barrier, 

  (      ) is number of electrons having energy between   and       interval, per 

unit time incident on unit area of the barrier surface from within the metal,    is the energy 

of an incident electron on the potential barrier,     is the work function,   is the applied 

external electric field and   is the temperature. The equation 2.10, also known as Murphy-

Good theory [22], can be used to calculate the emission current density of electron emitter 

have temperature range from 300 K to 5000 K, electric field range from 10⁷ V/m to 10¹⁰ 

V/m, and work function range from 2.6 eV to 6 eV. Murphy-Good theory has been 

experimentally verified for a wide range of surface electric fields and temperature [23]. 

Murphy-Good theory provides a complex integral expression that can only be evaluated 

numerically. Therefore, Richardson’s law, Schottky equation, and Fowler-Nordheim 

equation are used for thermionic emission, thermal-field emission, and field emission 

respectively [24, 47].  
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2.4.4 Fowler-Nordheim Theory 

Fowler-Nordheim theory is developed for calculate field emission from bulk solid 

materials [24], but they are used for other materials as a rough approximation as well. The 

theory is based on some assumptions: i) the calculation is preformed for temperature of 0K; 

ii) the emission surface is planar, therefore, only one-dimensional problem is considered; iii) 

the potential barrier outside the emitter is a simplified potential model, and the external field 

do not affect the electron states inside the emitter material [33]. Fowler-Nordheim equation 

has a similar definite integral form of Murphy-Good equation without a temperature factor. 

For the simplified potential barrier   ( )   
  

  
    , the transparency of the barrier 

can be calculated using the semi-classical method of Wentzel-Karmers-Brillouin (WKB) 

approximation, which is a method for finding approximate solutions to linear partial 

differential equations with spatially varying coefficients, and given by                           , 

                           (   )     [ 
  (  )
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 ( )          (2.11) 

where  ( ) is the Nordheim function [33]. Calculation result of the simplified potential 

barrier is much lower than the current density of experimental results. However, if a more 

realistic barrier model is used, the function is known to be mathematically impossible to 

solve. 

The Fowler-Nordheim equation is based on an assumption of planar surface. 

However, to achieve a high electric field with a reasonable potential, the emitter is usually 

formed into a tip with a nanometer scale apex radius, which is close to or less than the barrier 

width. In this case, the assumptions of a one-dimensional barrier and field uniformity over 

the emission site are no longer justified. Therefore, it is necessary to solve the three-



23 

dimensional Schrodinger equation using an asymmetric potential barrier. Due to the 

complexity of the calculation, only rough calculations have been made. The Fowler-

Nordheim equation is simplified as                                                      , 

                                  
   (  )

 

 
    (         

    

  
)    (2.12) 

where     is emission current density,    is field enhancement factor,    is applied electric 

field strength, and    is the emitter work function. Even though the Fowler-Nordheim theory 

has some inaccuracy, the simplified Fowler-Nordheim equation is the only simple method to 

calculate the emission current density. 

In Fowler-Nordheim plot, another form of Fowler-Nordheim theory, the quantity 

  (
 

  
) is plotted against    . As predicted by the Fowler-Nordheim equation, this plot 

should be an exact straight line. Slope (m) of the Fowler-Nordheim plot would be    

                . Therefore, the field enhancement factor β can be calculated as long as 

work function   is known [53, 54]. Furthermore, the measured intercept (b) of the Fowler-

Nordheim plot is       (               ) , where    is the effective emission area 

[54]. Even though there are many inaccuracies, Fowler-Nordheim plot is still the most used 

method to evaluate electron emission properties of nano-scale field emitters. 

2.5 Chapter Summary 

 In this chapter, the history of X-ray tube and some applications of X-ray are briefly 

introduced. Electron sources are one of the most important components of the electron 

devices. Thermionic emitter is the most widely used electron source. However, Schottky 

emitters and field emitters are used in specific applications. Due to the limitation of the 

thermionic emission cathode, some applications are not feasible by far. To develop some new 
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X-ray devices, a novel electron source is desired. Electron sources can be divided into three 

categories: thermionic emitter, Schottky emitter, and field emitters. The differences between 

these emissions are described. In addition, electron emission theory is also presented. 
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Chapter 3 

Design of Field Emission Cathode 

3.1 Field Emission Material 

In the early years, field emission cathodes are always made of metal. Due to the high 

current density, the emission sites are heated up to a very high temperature by Joule heating 

and Nottingham effect if the average energy of emitted electrons is higher than the Fermi 

energy of the cathode material [48, 55]. Furthermore, field emission microscope studies show 

that only metals with high melting point, like tungsten and molybdenum, can show stable 

images [33]. As a result, tungsten and molybdenum are the most common materials for field 

emitters. Since the work functions of tungsten and molybdenum are around 4.5 eV [56, 57], 

which is much higher than that of some electropositive materials, like sodium (2.36 eV) and 

thorium (3.4 eV), studies of coating a thin film of metal with low work function to tungsten 

tips started form the very early investigations. It is demonstrated that a monatomic layer of 

thorium coated on a tungsten point cathode can decrease the work function of the cathode to 

2.7 eV [34]. However, residue oxygen can lead to the thorium coating layer poison and ion 

bombardment and high temperature can remove the coating layer as well. As a result, the 

metal field emitters, no matter coated or not, require an ultrahigh vacuum to work stability, 

otherwise their lifetime is just few seconds [45]. 

In addition to the high melting point metals, some semiconductor materials, such as 

silicon, germanium, silicon carbide, zinc sulfide, and zinc oxide, are used to form field 

emitters as well [58]. Furthermore, diamond, a metastable allotrope of carbon, is also used as 

a coating material to form negative electron affinity (NEA) field emitter [59]. Theoretically, 
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these materials have some nature advantages, but outstanding performance from these 

materials have not been experimentally achieved by far [33]. 

Carbon is an alternative material for field emitters [60]. Carbon based emitters have 

strong carbon-carbon covalent bond. This bond makes the emitter has a high electric and 

thermal conductivity. Furthermore, the C-C band makes surface diffusion of carbon material 

lower than that of metals; as a result, the apex shape of the carbon emitters is more stable 

than that of metals. It was reported, for a single needle tip carbon fiber emitter, the lifetime is 

2,400 hours at an emission current of 10 µA in a vacuum of 10⁷-10⁸ Torr [45, 60], which is 

five orders higher than the required pressure (10⁻¹² Torr) of a tungsten emitter. Field emission 

microscope study shows some individual image spots are stable for hundreds of hours under 

constant voltage, some others may flicker or vanish [61]. After the first synthesis of fullerene 

[62], some other allotrope of carbon, such as carbon nanotube (CNT) [63, 64], carbon 

nanocone [65], carbon nanoform [66] and graphene [67] have been discovered and 

synthesized. CNT has a nanometer scale diameter, high respect ratio, high thermal and 

electrical conductivity, high chemical stability, and high melting point [68]. Furthermore, 

many different synthesis methods have been thoroughly studied to fabricate different kinds of 

CNTs with well controlled parameters [69, 70]. Therefore, CNT is one of the best candidates 

of field emission material. 

3.2 Structure of Field Emission Cathode 

To achieve a high electric field with a reasonable voltage, a nanometer scale sharp tip 

is commonly used to form a field emitter. In the early years, emitters are made of thin metal 

rods. The tip is formed by fusing or chemical etching and the radius of the apex is at micron 

meter scale. Field emitter can provide a current density as high as 10⁷-10⁸ A/cm² [36, 37], but 
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the tiny emission apex area limits its total emission current. As a result, emitter arrays or flat 

panel field emitter are desired to provide a high total emission current. Making a field emitter 

array with conventional technology is not achievable; therefore, micro/nano fabrication 

process and nanotechnology are employed to develop field emission arrays with nano-meter 

scale emitter tips. 

3.2.1 Thin Film Field Emitter 

With the development of nanotechnology, many nano scale materials are available in 

different forms, for example: nanowire, nanotube, nanofiber, and nanoparticle. Field 

emission properties of nano materials are widely studied [71-76]. Among these nano 

materials, diamond-like-carbon, graphene film, and carbon nanotube thin film based field 

emission cathode achieve a certain success. There are two major methods to fabricate a nano-

material based thin film emitters, i.e.: i) coat or deposit a synthesized nano-material layer on 

a substrate, for example, spin coat, dip coat, screen print and electrophoresis [77-79]; and ii) 

direct grow or synthesis such materials on a substrate, for example, chemical vapor 

deposition (CVD), and plasma enhanced chemical vapor deposition (PECVD) [80, 81].  

3.2.1.1 Deposited nano-Structure Film Field Emitter 

We started our CNT emitter study with the first method. CNT powder is dispersed in 

acetone by ultrasound, and then spin coated on a substrate [77]. CNT thin films made with 

this method have a good uniformity, but the adhesive of the CNT to the substrate is poor. As 

a result, CNTs can easily be peeled off from the substrate and lead to the emitter failure. To 

improve the adhesion, conductive adhesive is mixed with the CNT mixture and deposited 

onto the substrate to form a composite film [82]. Furthermore, some mechanical [83], optical 

[84], or electro chemistry methods [85] are utilized to active hinder emitters. The CNT thin 
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film field emitter is used in our first X-ray tube prototype. Figure 3-1 shows a SEM image of 

our CNT thin film emitter. Emission current of 40 uA is achieved and 10 mRad/hour 

radiation is detected by a dose rate meter. The problem of this emitter is the emission current 

degrades very fast and the lifetime of the emitter is just several minutes. During the 

experiment, green glows are captured by a video camera. Visible light emitted from CNT 

during field emission may lead by a high temperature [86] or micro-arc discharges [79]. 

 

 

Figure 3-1: CNT thin film emitter composed of CNTs 

dispersed in conductive binder matrix. The surface of the 

sample is not flat and the CNT density is not controllable. 
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Figure 3-2: Snapshots of a video clip shows visible light emitted during field 

emission. Time and position of the light spots are shown in the image. The 

visible light emitting may caused by high temperature or micro-arc discharge. 
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Our video clip recorded 15 glows in 23 seconds. Each glow lasts about 0.2 second and 

positions of each glow are different. Therefore, we believe, these glows are corresponding to 

CNTs which are dominating the emission and destroyed by over-current. Images captured 

from the video clip are shown in Figure 3-2. 

In addition to the CNT emitters, we tested graphene thin film as well. Figure 3-3 

shows two SEM images of a graphene thin film. Unlike needle tip shape emitter site, the 

emission site of graphene emitters is their single atom thick edge. The graphene film is 

deposited by spray. Like the spin coated CNT film, graphene films do not provide good 

results in field emission experiments. 

CNT field emission cathode based on the abovementioned deposition technology is 

already available in the market [87] and some devices based on the deposition technology 

have been demonstrated [88, 89]. But the current density of these products is still quite low 

[79]. Furthermore, from the experimental results described above, we believe this cathode 

has some disadvantages that cannot be overcome: i) the height and density of the activated 

 

Figure 3-3: SEM images of graphene thin film deposited on silicon wafer by spray 
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CNT cannot be controlled; ii) ballast resistor is not utilizable in this structure; iii) the emitter 

does not have an integrated gate, thus the control voltage is high; iv) distance between 

emission sites is random; and v) the distance from CNT tips to a mesh gate is random, 

therefore the emission uniformity is poor. These disadvantages cause this cathode requires an 

over one thousand volt gate voltage to work, and emission current uniformity over a large 

area is not achievable. 

3.2.1.2 Direct Grown Nanotube/Nanowire Field Emitter Array 

The other fabrication method of field emitter is directly grown or synthesis nano 

structures on a substrate. The common fabrication process is CVD or PECVD. Either random 

or vertically aligned CNTs can be grown [90]. The random CNT film has a similar shape and 

similar field emission properties to the deposited CNT film discussed above. Both 

 

Figure 3-4: SEM image of a high density vertically aligned multi-wall 

CNT array. The height and tip diameter is not uniform. 
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Figure 3-5: Field emission property of high density vertically aligned CNT 

array grown on silicon wafer. Current versus voltage (upper), Fowler-

Nordheim plot (inset), and current versus time curve (lower). 
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single-wall CNT and multi-wall CNT are available in high density form. However, low 

density CNT, also known as free standing CNT, is only available for multi-wall CNT [91]. 

Figure 3-4 shows SEM images of high density vertically aligned CNT arrays used in our 

early experiments. The sample is tested with a diode configuration, in a vacuum chamber 

with a pressure of 1×10⁻⁷ Torr. The cathode-anode gap is about 150 micrometer. The area of 

the CNT array is 0.785 cm². Figure 3-5 shows an emission current versus anode voltage 

curve, Fowler-Nordheim plot and a long term current versus time curve. Form the Fowler-

Nordheim plot, the field enhancement factor β is 7000 and effective emission area is 

1.65×10⁻⁹ m². Due to the complex geometry of the surface of CNT thin film, the field 

enhancement factor has a big difference with the CNT aspect ratio, which is used to 

approximate the field enhancement factor in single CNT cases. To calculate the accurate field 

enhancement factor of such a complex surface, more theoretical studies are needed. After a 

long term stability experiment, damages of the sample are visible to naked eye. An optical 

 

Figure 3-6: Optical image of an aluminum plate used as an 

anode of a field emission experiment. Black spots appear 

on the anode after a field emission experiment. 

 

3.6 anode after FE 
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Figure 3-7: SEM images of high density vartically aligned CNT array 

after field emission experiments. The sample has some defects after the 

experiments (upper). The defects are visible on bear eyes. There are two 

kinds of defects: CNT peel off from the substate (lower left) and CNT 

clustered (lower right) 
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image of an anode after a field emission experiment is shown in Figure 3-6. The black spots 

on the anode are traces of entire CNTs or segments of CNTs peeled off from the cathode. 

The diameter of the largest spot is about 0.7 mm. SEM images of the sample after the 

experiments are shown in Figure 3-7. The images indicate there are two kinds of damage in 

the CNT emitter array, i) CNTs are clustered, and ii) CNTs are pulled out from the substrate 

or removed from the array. These defects indicate the high density CNT array has three 

major disadvantages, namely i) adhesive of CNT to the substrate is poor, ii) the emission 

uniformity is poor and just a very small amount CNTs are involved in the emission, and iii) 

interactions between neighbor CNTs are not negligible and may lead to the emission current 

degradation. To make a field emitter have a high current and long lifetime, these three 

problems need to be overcome. 

Some other emitters are also tested. Figure 3-8A and 3-8C shows SEM images of low 

density CNT array and high density ZnO nanowires. After a field emission experiment of a 

low density CNT array, only a few CNTs left. Figure 3-8B shows CNTs are removed from 

the substrate and the bases of the CNTs are remained. This result proofs that the vertically 

aligned CNTs has a poor adhesion to the substrate [79]. On the other hand, FEM image 

shows a high density ZnO nanowire emitter, which has an area over 100 mm², has just 

thirteen emission sites activated. This result proofs that the emission uniformity of a high 

density nano-structure array is poor. In additional to these two problems, the thin film 

emitters have another disadvantage. To achieve a high switching speed, a gate electrode 

needs to be placed between the cathode and the anode. Since the top surface of the emitter 

film is not flat, the gap between the emitter tips to the gate cannot be very small, normally 

over 100 micrometers, as a result the operate voltage is over several thousand volts. 
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Figure 3-8: SEM images of low density vertically aligned CNT before 

field emission (upper left). After field emission (upper right) the CNTs are 

removed from the substrate and only catalyst dots are left. SEM images of 

ZnO thin film field emitter (lower). 
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Moreover, the emitter-gate gap is not well controlled. As a result, the emission uniformity 

over the entire emission area in a triode emitter is even worth than the thin film emitter with a 

diode configuration. 

3.2.2 Gated Field Emission Array 

Fast response time is the biggest advantage of field emission cathode over thermionic 

emission cathode. In some applications, such as field emission display, X-ray beam array, 

and microwave amplifier, a triode structure is needed to achieve a high switching speed and 

an addressable emitter array. High emission current, high uniformity and low control voltage 

are desired as well. Array of field emitter with individual gate structure possesses all the 

desired properties for these applications.  

3.2.2.1 Spindt Cathode 

Spindt cathode was first designed in 1968 [41] and successfully commercialized after 

a ballast resistor layer was employed in 1990 [92]. Each Spindt cathode contains thousands 

of micrometer scale emitters. Each emitter consists of a hole gate electrode, a cone shape 

metal emitter, and a ballast resistor. Figure 3-9 shows the structure of a Spindt emitter from 

ref [93]. Due to its ingenious structure, Spindt cathode has some inherent advantages. First, 

the gap between emitter tip and gate electrode is smaller than one micron, the control voltage 

is between 100 V to 300 V, much lower than that of metal needle tip emitters [41]. Second, 

the transmission efficiency (anode current/cathode current) is higher than 99% [94], makes 

the total cathode current and Joule heating much lower than that of other emitter. Third, the 

emitters are fabricated with thin film processes in high vacuum environment, which assure 

less release gas from substrates. Fourth, the deposition process of the cone shape emitter is 

self-aligned, thus no nano-lithography is necessary. Fifth, the ballast resistor not only 
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increases the emission uniformity, and stability, but also makes the device fail-safe [95]. 

These advantages lead to Spindt emitter shows good performance since it was first designed. 

From the first Spindt cathode, a 2 mA total emission current was obtained from a 100 emitter 

array in an area of 0.0625 mm² for over 7,000 hours [43]. It was also indicated that emission 

sites are just one or a few atoms located on the tip of the emitters. Some records of Spindt 

cathodes are: largest current from single cone 850 μA [96]; 6 mA from 12 tips [97]; smallest-

dimension of tip-to-gate 80 nm; tip density of 10⁹ cm⁻²; and lowest gate voltage of 10 V [44]. 

A prototype of Spindt cathode based medical X-ray source characteristics is consistent with 

the requirements for human breast imaging [98]. However, the Spindt cathode is still 

imperfect in the following two aspects, (i) it needs an ultra-high vacuum to work stably; (ii) 

the fabrication process is not compatible to the new one dimensional nano structures like 

nanowires and nanoubes. In briefly, Spindt cathode has an excellent structure, but their 

material and related fabrication processes need some adjustments to compatible with current 

1D nano structures, what can work in medium level vacuum. 

 

Figure 3-9: SEM image of a typical structure of a Spindt emitter [93] 
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3.2.2.2 Gated CNT Field Emission Array 

Some attempts have been made to combine the advantages of the Spindt emitter’s 

structure and CNT’s material properties [99-104]. In these designs, the original metal cone 

shape emitters are replaced by CNT emitters. However, the crystal structure and synthesis 

process of CNT and metal cone have some essentially differences, thus the emitter 

fabrication process must be changed. There are two methods to fabricate these devices, 

namely, grown CNTs in gate hole cavities or place round hole shape gate electrode around 

CNTs. Although these structures have some improvement in the emission performance, their 

long term stability and lifetime study are still insufficient. Moreover, there are few obvious 

shortages of such structures and fabrication processes. First, the cone shape metal emitter has 

the best thermal and mechanical stability, but the CNT have a weak adhesive to the substrate, 

thus CNT may be over heated or pulled out from the site. Second, the original Spindt process 

are self-aligned, so the emitter apexes are aligned to the center of the gate holes, but the CNT 

grown process cannot guarantee the position of CNT apexes are centered to the holes. Third, 

the uniformity of CNT height is much lower than that of the metal cones. Fourth, the ballast 

resistor layer is easy to fabricate in Spindt emitters to improve the stability and uniformity, 

but it has not been utilized in the CNT based emitters. In conclusion, these hybrid emitters 

combine the advantages of Spindt cathode and CNT emitters, but their structure and 

fabrication process needs some significant improvements. 

3.3 CNT Emitter with Coaxial Cylinder Gate 

The Spindt cathode has a near perfect structure and CNT is the best material of field 

emitter. The design of our field emission cathode tries to combine the advantages of the 

structure of Spindt cathode and the material properties of CNT. Figure 3-10A, 3-10B, and 3-



40 

10C show diagrams of the Spindt emitter and gated CNT emitters. In these former 

approaches, the gate electrodes, similar to the structure of Spindt cathodes, consists of a flat 

metal thin film with holes. Emitters, either an individual CNT or a CNT cluster, are grown in 

cavities underneath the holes. Ideally, the emitter tips are desired to locate at the center of the 

gate holes and have the same height to the top surface of the gate electrodes. The deposition 

process of Spindt emitter is self-aligned, so the metal cone is centered to the gate hole and 

 

Figure 3-10: Diagrams of Spinde emitter (upper left), gated single CNT 

emitter (upper middle), gated CNT cluster (upper right) and new design of 

CNT emitter with cylinder shape coaxial gate electrode (lower) 
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has a good uniformity. However, the fabrication process and structure of the metal cone 

emitter in Spindt cathode and CNT are essentially different. Vertically aligned CNT array 

can be grown by PECVD [105, 106]. In a well controlled PECVD process, the CNTs are not 

perfectly straight and the CNT heights follow Gaussian distribution with standard deviations 

of 6.3% [107]. As a result, if the CNT emitters are grown after the gate hole is formed, the 

CNT tips may be misaligned to the gate hole center. Thus, the fabrication process of a 

conventional Spindt cathode is not suitable for a CNT based emission cathode.  

To take advantages of the structure of the individual gate electrode, a novel gate 

structure of CNT emitter array and corresponding fabrication process of CNT emission 

cathode need to be developed. The new achievement must be self-aligned, self-centered, and 

highly uniform. The CNT and the top surface of the gate electrode have the same height, and 

the CNT tips are located at the center of the gate hole. Figure 3-10D shows a diagram of a 

new designed CNT emitter with a coaxial cylinder shape gate. Considering the essential 

difference of the synthesis of CNT and metal cone, if the CNT is deposited after the gate 

cavity and gate hole is fabricated, the alignment of the emitter tip to the gate center is not 

achievable. Therefore, we designed a fabrication process in an opposite order of the Spindt 

cathode; namely, the gate electrode is deposited on the cathode with a uniform gap to the 

emitters. As a result, the CNT emitter and the gate electrode are self-centered. After the gate 

is deposited, a polish process is utilized to remove the cap on the CNT tip and expose the 

emitter. This process can cut the CNT and gate electrode to the same height. Therefore, the 

emitter tip and the top surface of the gate electrode are self-aligned.  
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3.4 Ballast Resistor for CNT Field Emitter 

In a Spindt cathode, the shape and size of the gate holes relies on photolithography, 

and the shape of the metal cone emitters relies on the size and shape of the holes. Therefore, 

the shape of the metal cone emitter and size of the gate holes are not perfectly uniform. If an 

emitter tip is a little bit sharper than other emitters, or a gate hole is slightly smaller than 

other holes, this emitter has an optimized geometry, and the necessary electrical field to turn-

on this emitter is much lower than that of other emitters. As a result, in a Spindt cathode with 

thousands emitters, a small amount of optimized emitters is active at a low voltage and 

contribute most of the emission current. Field emission current is exponential to the field 

strength, therefore, an increase of the voltage cannot active more emitters, and instead, it will 

attract more current from the optimized emitters. With the increase of the emission current, 

micro-arc occurs and the emitter tip is destroyed [94]. To overcome the emitter degradation 

caused by the non-uniformity, a current limiter in serial with individual emitter is utilized 

[92]. Even through MOSFET has been used as a current limiter [108], ballast resistor 

underlayer is the simplest and most effective current limit structure. When ballast resistors 

are in serial with the emitters, voltage drop on the resistors are proportional to the emission 

currents from corresponding emitters. The high current on preferred emitters lead to a high 

voltage drop on the resistor, thus both the electrical field strength at the emitter apex and the 

emission current is reduced; meanwhile, the other emitters have a higher electric field 

strength and will contribute more emission current. With a proper resistance, this negative 

feedback process can effectively reduce the emission current of the preferred emitters to a 

value close to the average level; as a result, the uniformity of the overall emitter array is 

increased remarkably. In the event of an arc, energy stored in the base-gate capacitor is 

released to the gate and causes it to melt and splatter, thereby destroying the emitter site or 



43 

even the cathode. A ballast resistor provides a voltage drop in proportion to the emitted 

current thereby suppresses current runaway and limits damage. In briefly, ballast resistor of 

Spindt cathode has several benefits [109]. First, it protects the cathode from catastrophic arc 

damage by limiting the current. Second, it homogenizes the emission across the cathode. 

Finally, it improves the robustness of the cathode, so it can be turned on without bake-out 

after exposure to air.  

The ballast resistor has two geometries: (i) vertical resistor [92]; and (ii) lateral 

resistor [110]. Figure 3-11 shows the geometry of these structures. A vertical resistor consists 

of a resistive polysilicon layer which is sandwiched between a connection pad and a cathode 

electrode. The resistance can be approximated by R=ρ*L/A, where ρ is the resistivity of the 

material, L is the thickness of the polysilicon layer, and A is the area of the connection pad. 

On the other hand, a lateral resistor consists of a resistive polysilicon layer, which is 

sandwiched between a connection pad and an insulation layer. The cathode electrode is 

placed beside the connection pad, either in or above the polysilicon layer. The current path is 

lateral from the connection pad to a cathode electrode. In a lateral resistor, the geometry 

 

Figure 3-11: Structure of ballast resistor with vertical current path (left) 

and lateral current path (right). 
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complexity of the effective area of the polysilicon layer makes calculation and control of the 

resistance difficult. Furthermore, the structure and fabrication process of the vertical resistor 

is simpler than that of the lateral resistor. Therefore, we adopt the vertical resistor in our CNT 

emitter design. 

In a vertically aligned CNT array, the stand deviation in heights and tip diameters of 

individual tubes could be approximate 6.3% and 4.1% [107, 111], which is worse than that of 

a Spindt cathode. In a CNT emission cathode, the CNT is heated up by Joule heating and the 

tip is cooled down by Nottingham effect [112]. Temperatures and tensile stresses have been 

measured [86, 113] and calculated [114, 115], and the structural damage and failure during 

field emission of individual CNT emitters is also observed [116-119]. When the temperature 

of a CNT is over 1500 K lights are emitted from emission tips and are visible to bear eyes 

[86]. Field emission current is an increasing function of temperature [120]. This positive 

feedback is observed at a temperature above 750 K and the tip temperature can achieve 2000 

K [86]. Study shows the apex temperature increase with the emission current and the Fermi 

level decrease from 0 to -1.4 eV while emission current increase from 0 to 100 nA. Although, 

in a field emission device, the reasons of emitter failure are complex, it is supported by the 

experiments and calculations listed above, that, to an individual CNT, the high temperature 

caused by Joule heating is a main reason of the emitter degrading and failure. The maximum 

current can be carried by an individual CNT is about 20 μA per tube (SWCNT) [121] and 12 

μA per shell (MWCNT) [122]. On the other hand, experimental results show, in field 

emission, MWCNTs can be shortened [119], or their outer layer can split off [116, 119] at 

the emission current about 10 μA. This current is close to the maximum current carrying 

capacity of a single shell of a multi-wall CNT. Since the emission sites are just one or few 
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atoms located at the apex of the outermost layer, we can assume that the 12 μA saturation 

current of single shell is the upper limitation of emission current of a CNT without destroys 

it. In additional to the emitter tip destroy, substrate melting is another problem. In our early 

experiment (Figure 3-7 and 3-8), CNTs pulled out from the substrate is observed, which is 

caused by both the weak adhesive between CNT and the substrate, and the Joule heating melt 

the surrounding area of the CNT base. To avoid an emitter destroy by over current, the 

suggested safe operating current of individual CNT is 1 μA [119]. Therefore, we adopt a 

ballast resistor as a current limiter to improve the performance of a CNT emitter array and set 

1 μA per emitter as the maximum current value in our design. 

One significant difference between the geometry of an emitter in a conventional 

Spindt cathode and a CNT emitter is the contact area to the underlying layer. In a Spindt 

emitter, the diameter of the base of the cone is in the scale of sub-micrometer; thus the ballast 

resistor is easy to realize. However, the connection area of a vertically aligned CNT is in the 

 

Figure 3-12: Diagram of metal cone in Spindt emitter, 

vertically aligned CNT grown on resistance layer, and 

vertically aligned CNT with connection pad. 



46 

order of several tens nanometer and is not controllable [91]. Furthermore, a cone shaped 

emitter has better mechanical and thermal stability than a narrow cylinder emitter [123] 

because of larger thermal conductive path. In the case of CNT emitters, the contact point of 

CNT and substrate can be melted, thus leading to emitter failure [115]. To overcome these 

problems of CNT emitters, a chrome connection pad is employed. Figure 3-12 shows the 

structures of a Spindt emitter, a CNT emitter and a CNT emitter with a connection pad. The 

connection pad has four significant advantages: i) it provides a homogeneous resistance by 

using a uniform connection area; ii) the metal connection pad has higher thermal 

conductivity than the polysilicon resistive layer; thus heat can be removed from the contact 

area faster and emitter failure caused by substrate melting can be avoided; iii) the chrome pad 

works as buffer layer to avoid the diffusion of CNT catalyst dots into the resistor layer, 

thereby it avoids a decrease in resistivity and non-uniform catalyst size; and iv) chrome can 

increase the adhesion of CNT to the underlying layer. This connection pad structure is also 

 

Figure 3-13: Diagram of CNT emitter array with individual ballast resistor 

for cathode in diode configuration (left), and CNT emitter with ballast 

resistor and coaxial cylinder shape gate electrode for cathode in triode 

configration (right). 
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suitable for gated CNT emitters. Figure 3-13 shows diagrams of A) CNT emitter array with 

ballast resistors for cathode in diode configuration; and B) CNT emitter array with ballast 

resistor and coaxial cylinder gate electrode for cathode in triode configuration. 

3.5 Chapter Summary 

In this chapter, the material of field emitter and structures of field emission cathode 

are described. Amount the well studied emitter materials and cathode structures, low density 

vertically aligned CNT array is the best candidate for diode field emission devices, and CNT 

emitter array with individual gate is the best structure for triode devices. Comparing the 

difference of the structure and synthesis method between Spindt cathode and CNT array, we 

design a new coaxial cylinder shape gate electrode for CNT emitter. The fabrication process 

of the gate electrode is self-centered and self-aligned. Therefore, this design can combine the 

advantages of the Spindt cathode structure and CNT material. To further improve the 

performance of the emitters, a new ballast resistor structure is utilized in both diode emitters 

and gated triode emitters. 
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Chapter 4 

Numerical Simulation of Field Emission Cathode 

4.1 Introduction 

Low density vertically aligned CNT array is one of the best candidate for field 

emission cathode. So far PECVD is the only method to produce free standing CNTs [69, 91, 

107]. Free standing CNTs are all multi-wall CNTs and have a bamboo structure with a 

catalyst dot at the tip. The height of these PECVD grown CNTs and their tip diameters 

follow Gaussian distribution [107]. The stand deviation in heights and tip diameters of 

individual tubes could be approximate 6.3% and 4.1% [111]. Due to the extreme sensitivity 

of the Fowler-Nordheim tunneling process to small variation of geometries and physics 

parameters of emitter tips, active emission site density may be two orders less than the 

emitter density of the array [124]. Although CNT emitters have been simulated in 2D for 

many times, 3D simulations are still rare. Furthermore, 3D simulation result shows some 

effects have been grossly underestimated. For example, 2D simulation results show when an 

inter-tube distance over twice the CNT height, the screen effect are negligible [125], but in 

3D simulation, the result is five times the CNT height [126]. 

In this chapter, we use 3D models to evaluate the effects of the parameters of a low 

density vertically aligned CNT array and a CNT emitter with a coaxial cylinder gate. 

Optimized values of the critical parameters are calculated, such as: CNT inter-tube gap, 

thickness of insulation layer, and resistance of the ballast resistor. Even through Fowler-

Nordheim theory and classic electromagnetism have some inaccuracy in calculating the 

nanometer scale objects, they are still the most widely accepted simulation methods [33].  
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4.2 Field Emission non-Uniformity of an Emitter Array 

To calculate the effects of the electric field shielding between CNT emitters, the 

electrical field strength of individual CNT was simulated by a 3D finite element method. 

CNTs are simulated using a cylinder with a hemispherical cap in a diode configuration. 

Figure 4-1A shows a cross section of the simulation model, and Figure 4-1B shows a 

simulation model of a 3x3 emitter array. A value of height H = 5µm and radius r =50 nm are 

set as reference sizes. Vertically aligned CNTs with uniform height H and radius r are placed 

on a flat substrate. To balance the effect of the screening and emitter density [125], 

Anode Electrode

Cathode Electrode

G

H

2H

CNT

r

A B

C D E
 

Figure 4-1: Diagram of simulation models: A. cross section of the 

simulation model; B. simulation model of CNT emitter in the center of 

emitter array; C. CNT on an edge of an emitter array; D. CNT at a corner 

of an emitter array; and E. single CNT not in an array. 
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the inter-tube distance of the array is 10 µm, which is equal to twice the CNT height. In a 

plasma-enhanced chemical vapor deposition (PECVD) grown CNT array, the standard 

deviation in height and diameter of individual tubes could be approximate to be 6.3% and 

4.1% [111]. We set the electric field strength of the center CNT tip as the reference value, 

when all the CNTs have the height and diameter equal to H = 5 µm and r = 50 nm. Then, we 

keep the height and diameters of the surrounding CNTs unchanged, and just change the 

height and diameter of the center CNT. The local electric field strength at the center CNT tip 

with different height and diameter is calculated. The relationship between emission current 

density and local field strength can be described by a simplified Fowler-Nordheim (F-N) 

equation 

                                
     

 

 
    (         

    

  
)    (4.1) 

where     is the local field strength at the CNT tip. Strength of the far-field     equals to the 

anode potential U divided by anode-cathode gap G, and the field enhancement factor β can 

be obtained by divide the local field    by far-field   . Emission current from the CNT can 

be calculated by I=JA, where A is the area of emission site, can be approximated by r², where 

r is the radius of the emitter tip apex [127]. Table 4-1 shows the normalized field strength 

and emission current of CNTs with different heights, diameters, and locations (row No. 3 is 

used as reference value). When the center CNT is 6% higher and 4% thinner than the 

reference size, the local field strength at the tip is 7% higher than the reference value. When 

the center CNT is 6% lower and 4% thicker than the reference size, the local field strength at 

the tip is 8% lower than the reference value. As a result, the non-uniformity of the CNT 

geometry can lead to a 15% variation of the local electrical field strength. The field 

enhancement factor of an emitter is equal to the local field strength divided by far-field 
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strength, which is equal to the applied voltage divided by anode-cathode gap. Thus, a 15% 

change in field strength reflects the field enhancement factor has a 15% variation. Due to the 

extremely sensitivity of the emission current density to the local field strength, the 15% 

variation of the field strength can lead to a 41% emission current variation (current difference 

between row No.5 and row No.1 in Table 4-1). In addition of the effects of the variation of 

the height and diameter, the effect of the location of a CNT is also simulated. We use four 

different models to simulate i) a CNT at a cornet of an array (Figure 4-1B), ii) a CNT on an 

edge of an array (Figure 4-1C), iii) a CNT at the center of an array (Figure 4-1D), and iv) a 

single CNT (Figure 4-1E). When using the field strength and emission current of a centered 

CNT as a reference value (row No. 3), and consider the variation of the CNT height and 

diameter, the emission current of a thick and short CNT at the center of an array is 64% 

lower than a high and thin CNT at a corner. These results indicate that the geometry and 

Table 4-1: normalized field strength and emission current of 

CNT with different height, diameter, and location 

CNT Location No. Height Diameter Local Field Emission Current 

Center of Array 

1 94% 104% 92% 78% 

2 106% 104% 101% 114% 

3 100% 100% 100% 100% 

4 94% 96% 97% 83% 

5 106% 96% 107% 119% 

Edge of Array 

6 94% 104% 94% 84% 

7 100% 100% 100% 101% 

8 104% 96% 110% 135% 

Corner of Array 

9 94% 104% 95% 86% 

10 100% 100% 104% 117% 

11 104% 96% 112% 142% 

Single CNT 12 100% 100% 109% 141% 
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location of a CNT affect its emission current significantly. The non-uniformity of a CNT 

array leads to a poor emission current uniformity. 

4.3 Effect of a Ballast Resistor 

4.3.1 Ballast Resistor for Single CNT 

By employing a ballast resistor, the applied voltage is divided by the ballast resistor 

and transimpedance. The relationship between emission current I and applied voltage U can 

be approximated by a modified F-N equation. Figure 4-2 shows the electric field strength 

along the CNT axis is concentrated at the CNT tip. The far field (electric field strength over 

10 times the emitter height from the cathode) is homogeneous and has a value that is close to 

the anode potential U divided by the anode-cathode gap G. From this simulation result, we 

choose 10 times the emitter height as a threshold to calculate the local field strength.  As a 

 

Figure 4-2: Simulation result of electric field strength distribution along 

the axis of individual CNT emitter. Electric field strength over 10 times 

the emitter height from the cathode is homogeneous. 
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result, two equations are used to approximate the relationship between the emission current I 

and resistance R for different cathode-anode gap                                                  , 
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where r is emitter radius, β is field enhancement factor, R is the resistance of the ballast 

resistor, G is anode-cathode gap, and H is the height of the emitter. The equation (4.2) and 

(4.3) are used for the situation that the cathode-anode gap smaller and bigger than 10 times 

the emitter height respectively. Under a given condition, namely, fixed anode potential and 

anode-cathode distance, by solving equation (4.2) or equation (4.3), the relationship between 

resistance, field enhancement factor, and emission current from an individual CNT can be 

found. When cathode-anode gap is smaller than ten times the CNT height, the solution curves 

of the equation 4.2 are shown in Figure 4-3. Equations of the trend lines of the curve of 0 

MΩ, 50 MΩ and 100 MΩ are also shown in the figures as well. An emitter with no ballast 

resistor and subjected to a field enhancement factor (100%) that induces 4 µA current is 

chosen as a reference. In Figure 4-3A the curve of emitter without resistor shows that the 

emission current changes from less than 2 μA to about 8 μA when the field enhancement 

factor increases from 80% to 120% of the reference. By connecting a 100 MΩ resistor in 

serial, the current changes from 1.03 μA to 2.57 μA. In its trend line equation, the quadratic 

term coefficient is negative, thus the increasing of emission current with the increasing of the 

field enhancement factor is slower than the ones with smaller value of resistors. In addition, 

Figure 4-3B shows the effect of the resistor in a large variation range of field enhancement 

factor. In particularly, the field enhancement factor of an emitter is affected by many 
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Figure 4-3: Simulation result of emission current versus field 

enhancement factor shows the effect of the ballast resistor on an 

individual CNT emitter. With a resistance between 50 MΩ and 100 

MΩ, a ballast resistor can effectively limit the emission current of 

the optimized emitters 
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uncertainties, not only the geometry and location, but also many other factors such as 

residual gas and contamination. In these cases, one or few emitters in the array dominate the 

emission property, and a few atoms at the apex dominate the emitter. A big variation of field 

enhancement factor occurs and a discharge or micro-arc may destroy the device. Figure 4-3 

shows without a resistor, by increasing the field enhancement factor to 130%, an emission 

current over 10 μA may occur, which is close to the maximum emission current of single 

CNT. But by import a resistor of 100 MΩ, the emitter can withstand an increase of over 

300%. Thus, the resistors are function as fail-safe protectors. 

In some applications, for example flat panel X-ray source, a high anode voltage is 

required, therefore the cathode-anode gap is at least several millimeters (over one thousand 

times the CNT height). In this case, equation (4.3) is used to evaluate the effect of the ballast 

resistor. Figure 4-4 shows the calculation result of equation (4.3). The field enhancement 

 

Figure 4-4: Simulation result of the effect of the ballast resistor in 

applications with a high cathode-anode gap 
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factor of an emitter without a ballast resistor which emits 1 µA current is set as a reference. 

Inset of Figure 4-4 shows, with a variation of ± 20% of field enhancement factor, the 

emission current has a change of 1003% (from 0.26µA to 2.61 µA). However when a 50 MΩ 

resistor is applied, the change of emission current is 476% (from 0.21 µA to 1 µA). As a 

result, the ballast resistor effectively reduces the emission current variation (from 1003% to 

476%) caused by the emitter geometrical non-uniformity and increases the emission 

uniformity. Besides the geometrical non-uniformity, other factors may also affect the 

emission current. For example, gas molecules adsorbed on the emitter surface can change the 

local work function and lead to a significant emission current change. Furthermore, a positive 

ion bombardment during a field emission can make the surface rough or shorten the CNT, 

which lead to an emission current change as well. All this factors lead to a change of the field 

enhancement factor. An extreme condition with a 200% change of field enhancement factor 

is calculated, and the result is shown in Figure 4-4. The slope of the curves decreases with 

the increase of the resistance. As a result, the ballast resistor significantly reduced emission 

current non-uniformity. For example, without a ballast resistor, when the field enhancement 

factor increases by 80%, the emission current increases from 1 µA to 15.8 µA and the emitter 

will be destroyed. When a ballast resistor is employed, the emission current of an emitter, 

whose field enhancement factor is equal to the reference value, decreases from 1 µA (without 

resistor) to 0.01 µA (with a 50 MΩ resistor). However, the current changes only 3.02 µA 

(from 0.01 µA to 3.03 µA), when the field enhancement factor changes 200%. This result 

indicates the expense of a better uniformity is the decrease of total emission current. Higher 

resistance provides better emission uniformity but leads to lower total emission current and 

higher energy consumption. The optimization of the resistance is a trade-off between 
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performance (emission current) and stability (emission uniformity). We choose the resistance 

between 50 MΩ to 100 MΩ as an optimized value. 

4.3.2 Ballast Resistor in an Emission Array 

In addition to the above simulation of single CNT emitter, the effect of the resistor in 

an array is also simulated. To simplify the calculation, a 2D model is used. In our diode X-

ray tube design, the cathode-target gap is 7mm and the voltage is up to 40 kV. The emitter is 

5 um in height and 100 nm in diameter. Since the emitter height is smaller than 1/1000 of the 

cathode-target gap, a simulation with the actual cathode-target gap dimension is very 

difficult. Thus we set the cathode-anode gap to 100 um and the anode potential to 600 V to 

 

Figure 4-5: Simulation model of a ballasted CNT in an emitter array 

(upper), simulation results (lower) show potential difference between the 

connection pad and surrounding area changes the electric field strength at 

the emitter tip significantly.  
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simplify the simulation model. The far field of the model is 6×10⁴ V/cm, which is almost the 

same with that of our experimental setup (40 kV/7 mm=5.71×10⁴ V/cm). As the far field 

strength remains unchanged, this simplification will not affect the local field at CNT tips. 

Figure 4-5A shows the dimension of the simulation model. We can assume the CNT tip 

potential equals to the voltage drop on the resistor considering the resistance of the CNT 

(several kilo-ohms) is much smaller than that of the resistor. The equi-potential lines of a 

single CNT emitter are shown in Figure 4-5B. Figure 4-5B also shows the electric field 

strength distribution around the CNT emitter is significantly affected by the potential 

difference between the CNT emitter and the substrate. We already know that an increase in 

emitted current from the CNT will increase the voltage drop on the resistor (equals to the 

resistance times the emission current). However, the increase in the CNT tip potential will 

cause the decrease in the field strength around CNT tip. For example, when the CNT tip 

potential equals 0V, 2V, 4V, 6V, and 10V, the field strengths at the CNT tip is 5.23×10⁷ 

V/cm, 5.01×10⁷ V/cm, 4.79×10⁷ V/cm, 4.56×10⁷ V/cm, and 4.12×10⁷ V/cm respectively. So, 

when the CNT tip potential increases from 0 V to 2 V (0.33% of 600 V anode potential), the 

field strength decreases over 4.2% (from 5.23×10⁷ V/cm to 5.01 ×10⁷ V/cm). From the above 

equation (4.3), this 4.2% field strength decrease can lead to an over 15% emission current 

decrease due to the extreme sensitivity of the emission current to the field strength. In brief, a 

25 nA increase in current brings on a 2 V potential change at the emitter tip, which leads to a 

4.2% field strength change and eventually 15% emission current decrease. Consequently, the 

increase in emission current gets a negative feedback in the system thus produces a relatively 

stable emission current. In conclusion, the ballast resistor improves the stability and 

uniformity of emission current. 
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4.3.3 Ballast Resistor in a Cylinder Gated Emitter 

The structure of a gated CNT emitter array is different from the emitter described 

above. The resistor layer is covered by an insulator layer, thus it do not affect the electrical 

field distribution. The emitter is simulated with a 2D axial symmetry model. The model 

diagram is shown in Figure 4-6 A and 4-6B. In this model, the CNT tip and gate electrode is 

200 nm higher than the cathode surface. The CNT tip and gate electrode has the same height. 
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Figure 4-6: 3D diagram (upper left) and cross section (upper right) of the 

simulation model of individual CNT emitter with ballast resistor and 

coaxial cylinder shape gate electrode. Simulation result (lower) shows the 

emission current is limited by the voltage drop on the ballast resistor.  
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The gap between the side wall of CNT emitter and the gate is 175 nm. By applying a 50 V 

and 100 V voltages on the gate and anode respectively, the field strength at the emitter tip is 

1.71×10⁹ V/m. The electric field strength at the side wall is 9.71×10⁸ V/m, just 57% of the 

field strength at the emitter apex. Therefore, the emission current from the CNT apex is 

dominating and the emission current from the side wall is negligible.  

The effect of the ballast resistor is calculated by changing voltage drop on the ballast 

resistor. The field strength and emission current is then calculated with equation 4.1. An 

emission current versus voltage drop curve is shown in Figure 4-6C. As described above, the 

optimized resistance of the ballast resistor is 50 MΩ to 100 MΩ. We use a 100 MΩ resistor 

here for the calculation. When the emission current is 100 nA, the potential between the gate 

and CNT is 40V, and the corresponding field strength is 1.37×10⁹ V/m. The current 

decreases to 39 nA, and causes the voltage drop on the resistor decreased. Then the emission 

current increases to 52 nA, and finally stabilized at about 50 nA. When the voltage of the 

emitter tip increases to 43 V, the emission current is decreased to 1% of the emission current 

of a CNT emitter without a ballast resistor. If the resistance is 100 MΩ, the corresponding 

emission current is 430 nA. This negative feedback feature can stabilize the emission current, 

and “shut down” the emitter when the current is higher than a safety level. The resistor is 

connected to the bottom of the emitter directly, thus, the delay of the wire is navigable. This 

direct connection gives the ballast resistor a very fast response. Therefore, the emitter has a 

fail-safe feature.  

Due to the Fowler-Nordheim equation underestimates the emission current; the above 

simulation result can only qualitatively describe the field emission properties and the effects 

of the ballast resistors. The theoretical simulation results need to be experimentally proved. 
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4.4 Resistance and Dimension of Ballast Resistor 

The resistance of the ballast resistor can be simply estimated by Pouillet’s Law 

    
 

     
 , where R is the electrical resistance of a uniform specimen of the material, ρ is 

the electrical resistivity of the resistance material, l is the thickness of the material,     is the 

radius of the connection pad of the ballast resistor. The optimized resistance of the ballast 

resistor is between 50 MΩ and 100 MΩ. If the silicon resistance layer has a thickness of 500 

nm, and the radius of the metal connection pad is 1µm, the resistance calculated by Pouillet’s 

law is 101 MΩ. Due the tiny size of the connection pad, the resistance cannot be measured by 

a simple way. To get an accurate value, the resistance is simulated by a 2D axial symmetry 

model. Figure 4-7 shows the simulation model. The bottom electrode is ground, the top 

connection pad is set as a floating potential with a total current of 1 µA. The simulated result 

shows that the voltage of the connection pad is 67 V, when the emission current is 1µA. The 

 

Figure 4-7: 3D simulation model of ballast resistor.  
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average electric field strength over the resistance layer is 1.34×10⁸ V/m. Breakdown field of 

silicon is 3×10⁷ V/m. When the electric field strength inside the resistance layer achieves the 

breakdown value, the quantity of electron-hole pair increases and, in an extreme condition, 

impact ionization or avalanche breakdown occurs. This increase of charge carrier leads to the 

decrease of both the resistance and the voltage drop on the resistor. As a result, the resistor 

layer is not functional at this field strength. The electric field equals to the resistivity times 

the current density (E= ρJ). By increasing the diameter and thickness of the resistor, the 

current density inside the resistor is lowered. Simulation results indicates, for a ballast 

resistor with a thickness of 2.5 µm silicon resistance layer, and 1.8 µm radius, the resistance 

is 63 MΩ. At an emission current of 1 µA per CNT, the voltage drop is 63 V, thus, the 

electric field strength is 2.5×10⁷ V/m, which is lower than the breakdown filed of silicon. 

These parameters make the ballast resistor can withstand an emission current of 1 µA, the 

suggested maximum current of individual CNT [119]. 

4.5 Efficiency of Coaxial Cylinder Gate 

A cylinder gated CNT emitter consists of a vertically aligned CNT inner conductor as 

the emitter, a conformal insulator layer coated on the CNT; and a cylinder shape gate 

electrode which is coaxial to the CNT emitter. The emitter and the gate are well integrated on 

the substrate as a cathode component, and an anode electrode with a several kilo-volts high 

voltage is placed several millimeters apart from the cathode. The CNT emitter, coaxial gate 

and high voltage anode forms a triode X-ray tube. Compare to previous designs [99, 100, 

102, 128], this structure has two significant advantages. First, the CNT emitter is firmly fixed 

in the cylinder shape insulation layer and gate electrode, therefore, the emitter pull out caused 

by substrate melting is avoided. Second, the coaxial structure is axial symmetric, thus, the 
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Figure 4-8: 2D axial symmetry of electric field strength at the emitter apex 

and the transmission efficiency of a CNT emitter with a coaxial cylinder 

shape gate electrode (upper). When the CNT is higher than the gate (lower 

left), the field strength is low; when the CNT is higher than the gate (lower 

right), the transmission efficiency is low. 
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emitter and the gate electrode are self-centered and self-aligned. Emission current 

transmission efficiency is an important property of triode field emitters [129, 130]. To 

calculate the transmission efficiency, a 2D axial symmetry model is used. In the simulation 

model, the radius of the CNT is 25nm; the top for gate and the tip of emitter are at the same 

height. The emitter-gate gap is 175nm; gate thickness is 200nm; the gate voltage is 50V; and 

the anode voltage is 100 V. The local field enhancement is basically focused on the top of 

CNT tip and the field strength is 1.71×10⁹ V/m. Figure 4-8A shows the electric field 

distribution and electron trajectories of the coaxial gate based triode emitter. Simulation 

results show that when the emitter height is lowered for 25 nm, the field strength of the 

emitter apex increases 1%, but more electrons are collected by the gate electrode. On the 

other hand, when the emitter is 25 nm higher than the top surface of the gate electrode, less 

electrons are attracted by the gate, but the field strength of the emitter apex decreases 2%. 

Figure 4-8B and 4-8C shows that a emitter tip higher than the gate have a high efficiency, but 

a low emission current; in contrast, a emitter tip lower than the gate have a high emission 

current but a low efficiency. In conclusion, to get the best performance and a simple 

fabrication process, the emitter tip and the gate electrode should have the same height. In 

Spindt cathode and emitter structures analogous to this coaxial gated emitters, less than 1% 

emitted electrons are collected by the get electrode [131, 132]. Therefore, the transmission 

efficiency is over 99%, much higher than that of a gated thin film emitter (80%) [133]. 

4.6 Chapter Summary 

Height and tip diameter of vertically aligned CNT array grown by PECVD follows 

Gaussian distribution. This geometry non-uniformity leads to a significant non-uniformity of 

electric field strength and emission current. Some optimized CNTs dominate the total 
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emission current of an emitter array. A ballast resistor in serial with a CNT emitter works as 

a current limiter, and has the capability to prevent the emitter from over current. The effect of 

the ballast resistor is simulated and theoretically proof that it has the capability of improving 

the emission uniformity. As a result, the stability of the emitter array is also improved. In 

addition, the effect of the ballast resistor in an emitter with a coaxial gate electrode, the 

geometry of the resistivity layer, and transmission efficiency of coaxial cylinder gate are also 

calculated.  
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Chapter 5 

Fabrication Process of Field Emission Cathode 

5.1 Introduction 

The goal of this project is to fabricate field emission cathodes for some special X-ray 

applications. Electronic brachytherapy requires tiny X-ray tubes [134], radiation sterilization 

needs a flat panel X-ray source [20], and stationary computer tomography desires a high 

speed pulse X-ray beam array [135, 136]. Diode structure works well for tiny X-ray tube and 

flat panel X-ray source, but triode structure is required for pulse X-ray beam array. 

A field emission cathode for diode X-ray sources is an array of ballasted emitter. 

Each ballasted emitter consists of a CNT field emitter and a ballast resistor. On the other 

hand, triode X-ray source cathode is an array of gated ballasted emitter, which consists of a 

CNT emitter, a ballast resistor, and a coaxial cylinder gate electrode. In this chapter, the 

fabrication processes of these components, namely, CNT emitter, ballast resistor, and 

cylinder gate, are described. Due to the limitation of the fabrication facility we can access, 

the fabrication has not achieved the desired best results. The optimized fabrication process is 

introduced at the end of this chapter for future works. 

5.2 Fabrication Process of the Components  

5.2.1 Carbon Nanotube Synthesis 

Carbon nanotube has remarkable high electrical conductivity, high melting point, low 

surface diffusion, and high mechanical strength. Carbon based field emitter can work stably 

in a vacuum with a pressure of 1×10⁷ Torr [45, 60]. Therefore, carbon nanotube is one of the 

best candidates of field emission material. High density vertically aligned CNT array can be 

synthesized by CVD [137], water-assisted chemical vapor deposition [138], thermal chemical 
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vapor deposition [139], and PECVD [107]. In high density CNT arrays, vertical alignment of 

CNTs relies on a crowding effect and maximizes van der Waal’s interactions between the 

side wall of neighboring CNTs [140, 141]. When the CNT bundle diameter decrease to 

micrometer scale, the crowding effect is not sufficient to keep the CNTs well aligned [68]. In 

a low density CNT array, CNTs are far apart from neighbors and considered as free standing 

CNTs. In a free standing CNT array, due to the lack of supporting, CNTs tend to bending 

during the growth process. Therefore, some external forces are needed to grow free standing 

CNTs. Since CNTs are all electrically conductive, a growing CNT under an electric field 

have a tendency to align with the electric field. Electric fields can orient CNTs owing to their 

large and highly anisotropic polarizability [142]. In the literature, dc-PECVD is the only 

method to grow free standing CNTs [91]. Due to the low working temperature, CNTs grown 

by PECVD are all multi-wall CNTs. Even though, theoretically, free standing single wall 

CNT has much lower turn-on voltage and much better performance than multi wall CNTs, 

low density single wall or double wall CNT array has not been reported. By far, low density 

vertically aligned multi wall CNT array is the only choice for our device. 

 The results of CNT synthesis process can be affected by many factors, such as the 

catalyst materials, the thickness and size of the catalyst dots, the deposition temperature, the 

plasma expose time, the applied bias voltage, and the gas-flow ratio. The synthesis process 

has two steps, i.e. i) prepare the substrate by deposit patterned catalyst dots, and ii) grow 

CNT on the catalyst dots by PECVD. We outsource the CNT growth to NanoLab Inc. 

(Waltham, Massachusetts, USA). Therefore we can focus on the catalyst deposition. In our 

device design, inter-tube distance is an important factor and the CNT must grow on the 

connection pad of ballast resistors, so the location of CNTs on the substrate surface is 
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critical. Because the CNTs grow only from the catalyst dots, the sites of catalyst dots 

determine spatial location of CNTs. Therefore, preparation of catalytic dots is very important 

on synthesizing low density vertically aligned CNT arrays. The process of preparing catalyst 

dots for growing CNTs is a standard lift-off procedure. The size of the catalyst dots is less 

than one micro-meter; therefore, conventional photo-lithography is not suitable. First, a layer 

of electron-beam resist is spun on the substrate. Second, the resist is patterned by electron-

beam lithography to form a catalyst dots array. Third, a layer of nickel is deposited on the 

patterned e-beam resist. Finally, the resist is removed and leave the catalyst dots on the 

substrate.  

To grow a single isolated CNT from a single catalyst dot, the size of the dot is 

critical. Before CNT is grown, the substrate is heated up to about 1000 K [107, 143, 144]. 

The catalyst dots coalesce to form catalyst droplets, one CNT per droplet [143]. If the 

 

Figure 5-1: Multiple short carbon cone and short CNT 

grown on connection pads. This result indicate the catalyst 

nucleation process is critical  
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diameter of the catalyst dots is bigger than 350 nm [143] or 300 nm [107], multiple catalyst 

droplets are formed; thus multiple CNTs are grown from one catalyst dot. In these articles, 

they use a several nanometer buffer layer between the catalyst dots and the substrate, and 

their catalyst layer is range from 7 nm to 15 nm. In our fabrication process, when we make 

catalyst dots with 200 nm diameter and 35 nm thickness, multiple carbon nanocones are 

formed on single site (shown in Figure 5-1). This result lead to two conflicting conclusions: 

short cone is caused by insufficient catalyst, but multiple growths mean too much catalyst on 

one site. By changing the size of the catalyst dots, we figure out that the nucleation process is 

also critical to produce single CNT on a catalyst dots. However, some details of this process 

are still not clear. Finally, we find that the catalyst size of 100 nm diameter and 75 nm 

thickness is a working parameter. In a standard lift-off process, thickness of the resist is at 

least three times thicker than the deposited layer. The thickness of the catalyst layer is 

c
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Figure 5-2: Diagram of catalyst dot deposition process. The 

high aspect ratio of the e-beam resist affects the uniformity 

of the catalyst dots. 
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75 nm, thus, the e-beam resist layer is 225 nm. Since the diameter of the catalyst dots is 100 

nm, the aspect ratio of the pattern is 2.25. Figure 5-2 shows a cross section diagram of the 

catalyst dot pattern. During the deposition of the catalyst, the metal is deposited not only on 

the bottom of the pattern well, but also on the side wall of the well. Therefore, the opening of 

the well shrinks and affects the accuracy and uniformity of the catalyst dot size. An emission 

array consists of several thousand emitters, the size of the catalyst dots is critical to the CNT 

height and diameter. To get a high uniformity of the emission current and emitter dimension, 

a highly uniform catalyst dots array is necessary. To improve the uniformity of the catalyst 

dot size, more study on the nucleation process is necessary. 

5.2.2 Fabrication Process of Ballast Resistor 

As described in Chapter 3, we adopt a vertical resistor structure and employ a 

connection pad structure to form the ballast resistor. The fabrication process is 

straightforward. First, a thin film of metal is deposited on a non-conductive substrate to form 

a bottom electrode. Second, a layer of poly-silicon is deposited on the electrode layer. Third, 

a connection pad array is deposited and patterned on the resistive layer. After making the 

ballast resistor, a CNT catalyst dot array need to be deposited on top of the connection pads. 

Due to the thickness of connection pad is close to thickness of the e-beam resist, the 

connection pad can affect the uniformity of the catalyst dot size. 

The following description discusses the process of deposition and patterning of the 

connection pad and CNT catalyst dots. There are two methods to fabricate this structure: (i) 

deposit connection pad by lift-off and then deposit catalyst dots by lift-off; and (ii) deposit a 

connection layer without patterning, deposit catalyst dots by lift-off, then pattern the 

connection pad by wet etching. The problem of the first method is that, after lifting off the 
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connection pads, the surface of the sample is no longer flat, and the thickness of the e-beam 

resist on the connection pad is not uniform. This phenomenon is similar to the existence of 

edge-dead at wafers edge during the photoresist spin-coating. This thickness non-uniformity 

of the e-beam resist can affect the size of the catalyst dots. Due to the critical nature of the 

CNT catalyst size, this process may lead to a poor uniformity of CNTs. On the other hand, if 

the connection layer is deposited without patterning, the e-beam resist layer is perfectly flat, 

and the catalyst dots can achieve their best uniformity. After the catalyst dots are lifted-off, a 

layer of e-beam resist on the connection layer is patterned. Next, the wafer is immersed in a 

chrome etchant and the connection pad is obtained. The problem of this process is that the 

undercut of wet etching makes the pattern dimensions poorly defined. Furthermore, the edge 

is not as smooth as that of a lift-off process. As a result, the size uniformity of the connection 

pad is not as good as the former process. When comparing these two processes, the second 

one has better CNT uniformity. Thus we adopt the second process for the fabrication. 

5.2.3 Fabrication process of Cylinder Gate 

The cylinder gate is fabricated on top of the ballasted low density vertically aligned 

CNT array. First, a thin layer of insulator is deposited on the substrate. To get a uniform 

emitter-gate gap, a conformal layer is desired. Simulation result in section 4.3.3 shows that 

the field strength at the side wall of the emitter is very high; therefore a high dielectric 

strength of the insulator layer is desired. Several deposition processes can be used to deposit 

dielectric thin film, however, the quality of the deposited film and working conditions are 

different. Table 5-1 lists some dielectric thin film deposition methods. Among these methods 

PECVD and sputtering deposited SiO₂ and atomic layer deposition (ALD) deposited Al₂O₃ 
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on CNT have been demonstrated and give good results [145, 146]. ALD is a self-limiting, 

sequential surface chemistry that deposits conformal thin-films of materials onto substrates. 

ALD deposited film thickness depends only on the number of reaction cycles, which makes 

the thickness control accurate and simple, furthermore, the film is defect free [147]. 

Therefore, ALD film has the best quality of the insulator layer. However, the slowness is the 

major limitation of the ALD. On the other hand, PECVD has high deposition rate and the 

deposition on the CNT side wall is uniform. Since ALD facility is not accessible for our 

fabrication, we use PECVD to deposit the insulator layer. Next, a layer of metal is deposited 

as the gate electrode by electron-beam evaporator. Since the insulator layer has a uniform 

thickness, the emitter tips are located at the center of the cylinder shape gate. The fabrication 

process is self-centered. 

After the gate electrode is deposited, a supporting layer is deposited, and the sample 

is polished. In this step, caps on CNT emitters are removed and the CNT apexes are exposed. 

Then, the insulator layer between the emitter tip and the gate electrode is removed by dry 

etch or wet etch. The polishing process makes the top surface of the sample flat, therefore, 

Table 5-1: Comparison of silicon dioxide deposition methods 

Deposition 

 method 

Temperature 

 (°C) 
Composition 

Step  

coverage 

Dielectric 

 constant 

PECVD 200 SiO₁.₉(H) non‐conformal 4.9 

ALD 200‐300 SiO₂ conformal N/A 

CVD 

SiH₄+O₂ 
450 SiO₂ (H) non‐conformal 4.3 

CVD from 

TEOS 
700 SiO₂ conformal 4.0 

Sputtering 
Low 

Temperature 
SiO₂ conformal 3.9 

e‐Beam 

Evaporation 

Low 

Temperature 
SiO₂ non‐conformal 5 
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Figure 5-3: Step-by-step fabrication process of non-gated CNT emitter 

array. 1. 200nm chrome, 500nm poly-silicon, 20nm chrome are deposited 

on the substrate; 2. e-beam resist is coated and patterned on the substrate; 

3. CNT catalyst layer is deposited on the resist; 4. e-beam resist is 

removed to form catalyst dots; 5. top metal  layer is etched to form 

connection pad; 6. CNT is grown from the catalyst dots by PECVD. 
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Figure 5-4: SEM images of free standing vertically aligned CNT grown on 

connection pad. In an emitter array, the height of the CNTs is not uniform. 

Furthermore, the CNT tips have all kinds of shape. 
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the CNT tip and the gate electrode has the same height. As a result, the emitter tips and the 

gate electrodes are self-aligned. 

5.3 Non-gated Field Emitter 

Tiny X-ray tube for electronic brachytherapy and flat panel X-ray source for radiation 

sterilization do not need a gate electrode to switch the X-ray beam. A simplified CNT emitter 

array with ballast resistors and a diode configuration is sufficient for these applications. Each 

emitter consists of a ballast resistor and a vertically aligned CNT. The fabrication process has 

been described above. Since the emitter do not need to be addressable, the substrate is used 

as the cathode electrode and the bottom electrode layer do not need to be patterned. The main 

propose of the bottom electrode is to work as a buffer layer to avoid the doping materials in 

the substrate diffuse into the resistor layer and lead to a resistance decrease. Figure 5-3 shows 

the step by step fabrication process of these field emission cathodes. Figure 5-4 show some 

SEM images of the emitter. In the CNT array, some defects can be seen and the shape and 

height of the CNT tips are vary. Even ballast resistor has the capability of overcome the 

emitter tip non-uniformity; a better uniformity is still desired. More studies on the CNT 

synthesis process are needed. In this fabrication process, electron beam lithography is 

employed to pattern the CNT catalyst dots. Due to the high cost, electron beam lithography is 

not suitable for mass produce. Nano-imprint is an alternative to the electron beam 

lithography to reduce the cost. Another concern of this fabrication process is making several 

thousand CNTs uniform is still a challenge. 

5.4 Cylinder Gated Field Emitter 

Field emission cathode array for addressable multiple beam X-ray source needs a set 

of row electrodes and column electrodes. The cylinder gate is fabricated on the 
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Figure 5-5: Step-by-step fabrication process of coaxial cylinder shape gate 

electrode on ballasted CNT arrays: 1. PECVD grown CNT; 2. deposit a 

conformal insulator layer; 3. deposit a layer of metal as gate electrode; 4. 

deposit a layer of supporting material; 5. expose the CNT tip by polish; and 6. 

remove insulator between CNT and the gate by dry etch 
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Figure 5-6: SEM images of the fabrication process of the gated emitter. CNT coated with 

insulator layer and metal electrode (upper); deposit supporting layer (middle); and CNT 

emitter with coaxial cylinder shape gate electrode (lower). 
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abovementioned CNT field emitter array. However, the substrate need to be insulated or 

insulator coated silicon wafer. The PECVD growth process requires a conductive substrate to 

avoid micro-arc destroy the sample. So the bottom electrodes need to be patterned after 

CNTs are grown. Figure 5-5 shows a diagram of step by step fabrication process of the 

cylinder gate. First, a conformal layer of insulator is deposited on the CNT emitter array by 

ADL, PECVD, or sputtering. Then, a thin metal film is coated on the insulator to form the 

cylinder shape gate. Next, a supporting layer is deposited on the gate electrode. The next 

 

Figure 5-7: SEM images and optical image (lower right) of top view of 

gated CNT emitters. Some defects can be seen in these images. 
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steps are polish and etch the sample to expose the emitter tip and the gate electrode. SEM 

images of these steps are shown in Figure 5-6. Figure 5-7 shows top view of SEM and optical 

images of the emitters. In these top view images, the gate electrodes are not prefect cycle. 

We believe this is caused by the defects of the CNTs. Figure 5-8 shows some defects of the 

CNTs and coated CNTs. Some connection pads has multiple CNTs. Making a defect free 

CNT array which consists several thousand CNTs is not feasible with an entry level 

 

Figure 5-8: SEM images show defects of CNTs and gate electrodes. Multiple 

CNTs are grown on individual connection pad lead to defects of gate electrodes.  
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prototype fabrication facilities. We hope a high-end fabrication facilities may help us to make 

defect free CNT arrays. 

5.5 Chapter Summary 

In this chapter, the fabrication process of both non-gated emitter and gated emitter are 

discussed in detail. The non-gated CNT emitter consists of a ballast resistor array and a 

vertically aligned CNT array grown on top of the ballast resistors. The gated emitters consist 

of the non-gated CNT emitter and a cylinder shape gate electrode. The fabrication process of 

the gate electrode is self-aligned and self-centered. The fabrication process is 

straightforward, but the uniformity of CNTs needs some improvements.  
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Chapter 6 

Electron Emission Properties of CNT Emitters  

6.1 Field Emission from Ballasted CNT Array 

Non-gated CNT array emitter can be used in tiny X-ray tube or flat-panel X-ray 

source with diode structure. The samples are tested with a simple diode configuration. The 

CNT sample is connected to the ground as a cathode. A silicon wafer is connected to a power 

supply to work as an anode. A 50 µm Polytetrafluoroethylene (PTFE) film is sandwiched 

between the cathode and anode. The emitter array has 2,121 CNTs in a 0.2 mm² octagon 

area. The CNTs are 10 µm apart and about 5 µm in height. The gap between CNT tip and the 

anode is about 45 µm. The sample is tested in a vacuum chamber with base pressure lower 

than 5×10⁻⁸ Torr. 

Initially, current versus voltage characteristic of the as fabricated sample is tested. 

The I/V curve and F-N plot is shown in Figure 6-1. The F-N plot consists of two segments, 

i.e. high voltage segment (i) and low voltage segment (ii). The slope and intercept of the 

segments are S(i)=-3×10⁷, I(i)=-49, S(ii) =-4×10⁶, I(ii)=-53. From the Fowler-Nordheim 

theory, we get the field enhancement factor of β(i)= 2319, β(ii)= 17,398, and the effective 

emission area is A(i)=2.93 nm² A(ii)= 0.00096 nm². These tiny emission areas and low 

emission currents indicate the emission current corresponding to the segment (ii) is from 

single or a few emitters. With the voltage increase, more emitters are active and contribute to 

the total emission current. 

The sample is then annealed for 100 hours at anode voltage 400 V. The current has a 

significant decrease in the first 9 hours and becomes stable in the rest 90 hours. The emission 

current is at sub-nano-amps scale. Then a 500 V annealing process is run for 30 hours and the 
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emission current range from 5 µA to 8 µA. Figure 6-2 shows the long term current stability 

curve. The current verses voltage characteristic before and after the 500 V annealing process 

are measured and shown in Figure 6-3. F-N plot and corresponding slope and intercept are 

shown in the inset of Figure 6-3. Before the annealing, the field enhancement factor β = 869, 

and the effective emission area A = 3.4 µm². After the annealing, the field enhancement 

 

Figure 6-2: Current versus time curve shows long term current stability of a CNT emitter. 
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Figure 6-1: Current versus voltage curve and F-N plot of a sample as fabricated. 
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factor β = 1160, and the effective emission area A = 0.26 µm². Even though the Fowler-

Nordheim theory is not accurate enough to quantitatively calculate the emission area, it is 

still can be used to qualitatively analyses the emitter performance. In the first several hours of 

the 400 V 100 hours annealing process, gas molecules absorbed on the emitter is removed. 

Thus, the emitter surface are cleaned and smoothed.  

After the emitter is annealed, the emission current decreases significantly. The 

effective emission area decreases from several square micrometers to less than one square 

micrometer. The average emission current is 37 nA per CNT. Suppose the ballast resistor is 

60 MΩ, voltage drop on the ballast resistor is 2.2 V, less than 0.3% of the anode voltage (700 

V). Therefore, the effect of the ballast resistor at this current level is negligible. During the 

30 hours 500 V annealing process, the emission current of 700 V decrease from 77 uA to 37 

uA. This decrease indicates some of the emission sites are degraded and effective emission 

area decreased or the surface cleaning process decreases the field enhancement factor. 

 

Figure 6-3:Current versus voltage curve and F-N plot of a CNT sample 

before and after a annealing process. 

 



84 

 

By increase the anode voltage to 850 V, the maximum emission current increase to 

over 750 µA.  Figure 6-4 shows the emission current has a good repeatability. Inset of Figure 

6-4 shows the F-N plot of average current has two segments. The high voltage segment has a 

higher field enhancement factor and a smaller emission area than the low voltage segment. 

The junction of these two segments at 550 V and the corresponding current is 48 µA. Even 

though the F-N pot bending may caused by many factors, we believe this bending and the 

slope decreasing is related to the existing of the ballast resistor [148]. For the high voltage 

segment, filed enhancement factor is β=695, and effective emission area is A= 83 µm². 

Average emission area is 0.04 µm²/CNT. Average emission current is 0.32 µA/CNT at 850 

V. Given a ballast resistance of 60 MΩ, the voltage drop on the ballast resistor is 19 V. Refer 

to our early simulation result, we believe voltage drop is high enough to limit the emission 

current and avoid of the emitter over current. 

 

Figure 6-4: Emission current versus voltage curves have a good 

repeatability. F-N plot has two segments, which indicated the effect of the 

ballast resistor. 
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In briefly, the above experiments indicate the ballasted CNT emitter array can 

provide an overall emission current over 750 µA with a good repeatability and stability. The 

current density of the sample is 300 mA/cm². 

6.2 Self Heating Schottky Emission from CNT Array 

Schottky emission has largely replaced earlier electron source technologies and 

become predominant in today’s focused electron beam equipment. When compared with cold 

field emission, Schottky emission is more stable, has lower noise and is easier to operate as 

its vacuum requirement is less stringent (10⁻⁹Torr). When compared with thermionic 

emission, Schottky emission has up to 100 times smaller source size, up to 10 times more 

brightness and longer lifetime. Conventional Schottky emitters consist of a needle shape 

emitter mounted on a filament. An extra current is needed to heat the emitter to a temperature 

of 1800 K. Although robust metal based Schottky emitter is widely used and field emission 

from carbon nanotube (CNT) is widely studied, studies of CNT based Schottky emitter are 

still rare. 

During a study of CNT field emission failure, a temperature of 2,000 K is measured 

using an energy spectroscopy at an emission current of 1 uA [86]. Even though CNT can 

work stably in this working condition, the emission current cannot exceed 10 uA [116]. To 

get a high emission current, an emitter array is desired. Due to the non-uniformity of 

vertically aligned CNT arrays [69, 91, 107], emission currents are dominated by a small 

amount of emitters [124, 149, 150].  When the emitter array works in a high current regime, 

the optimized CNTs are burned and lead to the degradation of the emitter array. As a result, a 

high emission current density and high temperature of a CNT array is not achievable. Ballast 

resistor can improve the emission uniformity by limit the emission current of the optimized 
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emitters. As a result, a uniform emission current from an emitter array can be achieved. This 

high emission current can lead to a high temperature and change the emission property. 

The experimental setup is the same as the above mentioned diode structure field 

emission experiment. A picoammeter is used to measure the emission current. A DC voltage 

is applied in either a scanning mode (stepped voltage) or a constant mode. In the scanning 

mode, the voltage (range from 400 V to 800 V) increases by a specific value every 5s and the 

current of each voltage is measured to obtain a current versus voltage curve. On the other 

hand, the constant mode is used for both heating purposes and characterizing the emission 

stability. The experiments are preformed after a 60 hr initial annealing process at 400 V to 

remove the residue gas molecules from the emitter surface. 

The first observation of the effect of the temperature is that the emission current 

decrease follows a temperature decrease. First, a constant 800 V voltage is applied for 800 s 

 

Figure 6-5: Emission current after the sample is heated up is higher than 

the current when the sample is cooled down. Inset shows the current-

voltage curve between 600 to 700V of each round. In the F-N plot, the 

bend of the curves show the effect of the ballast resistor layer. 
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to heat up the sample. Then, a scanning voltage of 400 V to 800 V is subsequently applied 

for five rounds. When the sample is allowed to cool down to room temperature, scanning 

voltages of 400 V to 800 V are reapplied for five rounds. The I/V and F-N plots of the 

average emission current are shown in Figure 6-5. Inset of Figure 6-5 shows the I/V curve of 

each round of the experiment. Since 400 V to 800 V scanning voltage generates lower heat 

than that of an 800 V constant voltage, the temperature of the sample decreases during the 

scanning voltage. As a result, the emission current of the hot sample decreases from round to 

round. The emission current of the round 4 and round 5 of the hot sample is the same as the 

current of cold sample indicate higher current of the first two round of hot sample is caused 

by a higher temperature.  

In a following experiment, a constant 800 V voltage is applied for 30 min. Figure 6-6 

shows the current versus time curve of this experiment. The emission current is increased 

from 560 uA to 640 uA at 507 s. After 1,250 s, the emission current starts to increase and 

finally reaches 1.87 mA at 1,800 s. The test is stopped at this point to avoid a micro-arc 

 

Figure 6-6: Emission current increase to 1.8mA under a 

constant voltage in 30 minutes 
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discharge caused by the thermal runaway. In this experiment, the emission current has no big 

change in the first 1,250s, but then increases from 800 µA to 1,870 µA in 600 seconds.  

After the 30 min 800 V constant voltage experiment, a 400 V to 800 V scanning 

voltage is applied. The emission current achieves 1.6 mA, and decrease from round to round. 

This indicates the emitter array can withstand the current of 0.9 uA/ CNT during the Schottky 

emission. The average current versus voltage is shown in Figure 6-7A. Inset (i) and (ii) of 

 

Figure 6-7: Current versus voltage of a hot sample. Current-voltage curve 

between 400V to 800V (upper); insert (i)  Schottky plot of high field 

region; (ii) space-charge limit current plot of high field region; and F-N 

plot (lower) 
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Figure 6-7A show the high field regions of Schottky plot and space-charge limited current 

plot respectively. These two plots are close to a straight line indicate the emission in the high 

field regain are Schottky emission. The F-N plot of average current is shown in Figure 6-7B. 

The F-N plot consists of three segments. The low voltage (segment i) has the steepest slope. 

At a higher voltage and current (segment ii), the slope of the curve is decreased as the 

emission current is limited by the ballast resistor [148]. With an increase in voltage and 

 

 

Figure 6-8: Optical image of the sample before and after emission test; A) 

before emission test, the sample has a even dark brown color and the bright 

spots are the resistor pad, the diameter of the pad is 2µm in diameter and 

has 10 µm gap; B-F) emission area changes to yellow in most areas and 

some of the areas are in very dark color show the FE sites which have a 

higher emission current. 
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current (segment iii), the slope of F-N curve becomes steeper than that of segment ii and has 

a good agreement with the study of high temperature single CNT emitter [86]. This indicates 

the emission is in Schottky emission regime.  

The temperature of the emitter can be calculated by solving Richardson equation 

                                   

   √        

          (6.1) 

where J is current density, A is a constant equals to 1.2×10⁶, T is temperature,    is work 

function, F is electrical field, ε₀ is the electric constant, and     is the Boltzmann constant. In 

our experiment, the cathode-anode gap is 50 µm, voltage is 800 V and the current is 1.87 

mA. The area of the sample is 0.2 mm², therefore, the current density is about 900 mA/cm². 

Since the CNT gap is about twice the CNT height, screening effect of the CNT array is 

negligible. We use the aspect ratio of the CNT as the field enhancement factor. From the 

SEM images, the diameter of CNT tips is about 25 nm to 30 nm and the height is about 5 

µm. Thus, the field enhancement factor is between 150 and 200, we get the temperature is 

between 1690 K and 1840 K. This result has a good agreement with a measurement of the 

temperature of a single CNT emitter with an emission current of 1 µA [86].  

Optical images of the sample before and after the experiments are shown in Figure 6-

8. The color change of the sample shows a trace of high temperature. We believe the color 

change is related to the temperature change, and the uniformity of the color reflects the 

uniformity of the emission current. The color change occurs across most of the sample area 

indicates that most of the CNTs are involved in the emission. Area with a dark brown color 

(Figure 6-8C) indicates dominant emitters that contribute more current than other areas. 

Areas with gray color (Figure 6-8B, 6-8D, and 6-8E) indicate lower emission current than the 
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other areas. From the optical image shown in Figure 6-8F, we estimate that about 90% area 

of the sample changes to yellow, thus, 90% of the CNTs contribute to the emission. When 

compared to a non-ballasted CNT array that has just 10% of CNT involved in emission 

[124], the ballast resistor of our emitter cathode can effectively improve the emission 

uniformity, and thereby leads to a much higher total emission current. Figure 6-9 shows some 

SEM images of the sample after a high current Schottky emission. CNTs are shortened 

(Figure 6-9A to 6-9C), removed (Figure 6-9D) and splitted (Figure 6-9F). In Figure 6-9D and 

6-9E, the substrate is damaged. We believe the CNT split and substrate damage is caused by 

electric micro-arc or ion bombardment. Since most of the emitter damages are CNT 

 

Figure 6-9: SEM images of CNT emitters after a high current Schottky emission. 

CNTs are shortened and splitted. Substrate is also destroyed by micro-arc. 
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shorten, and the emitters are not removed from the bottom, we believe the substrate melting 

of the emitter is avoided. Average emission current is 0.9 µA/CNT, which is higher than the 

average emission current of an emitter array have been reported in the literature. Although 

the CNT samples still can provide an emission current about 1.6mA after the Schottky 

emission experiment, some CNT emitters are destroyed. Therefore, lifetime of the CNT 

emitter in the Schottky emission regime is at minute scale. We believe better vacuum may 

solve this problem, but more studies of improving the emitter lifetime are needed. 

6.3 Field Emission from Gated Ballasted CNT Array 

Gated field emission cathode has many applications, for example, field emission 

display, travel wave tube, and addressable X-ray beam array for stationary CT scanner. These 

devices equip an addressable gated emission cathode array or a single gated emission 

cathode. A triode structure is adopted. The device consists of a grounded cathode, an anode 

connected to a high voltage, and a gate electrode. Compare to the mesh gate of thin film 

emitters, which has a gate-emitter gap of 100 µm and gate voltage over one thousand volts, 

the cylinder shape gate has a sub-micron gate-emitter gap, therefore, the gate voltage is lower 

than 100 volts. It has been reported that with a gate-emitter gap of 80 nm, the gate voltage is 

just 10 V [44]. This voltage is compatible to CMOS circuit; therefore, the control circuit of 

the device can be simplified and minimized significantly. 

The sample is tested in a vacuum chamber with a base pressure of 3×10⁻⁸ Torr. A 6 

µm thick silver foil anode is mounted few millimeters apart from the sample and a 1000 V 

voltage is applied. A sweep voltage is applied on the gate electrode to generate an emission 

current. The CNT emitter is grounded through a picoammeter to measure the emission 

current. The current versus gate voltage curve is shown in Figure 6-10. In the first round, the 
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emission current achieves 521 uA at 40 V. In the following rounds, the emission currents, 

range from 540 uA to 570 uA at 40 V, are higher than that of the first round. We believe this 

current increase is caused by the annealing process during the first round and the removal of 

the residual gas molecular from the emitters. In the following rounds, the emission current 

has a good repeatability indicates the emitter array has a good stability under this working 

condition. The Fowler−Nordheim plot of the average emission current is shown in the inset 

of Figure 6-10. 

Due to the existence of the ballast resistor, the emission current lead to a voltage 

increase at the emitter tip. As a result, the effective voltage between the emitter tip and the 

gate electrode decreases. From the fabrication parameter, the resistance of the ballast resistor 

under each CNT emitter is about 50 MΩ. The emitter array has 2,121 emitters and the total 

emission current is about 550 uA. The average current is 0.26 uA/CNT. The voltage drop on 

 

Figure 6-10: Emission current versus gate voltage. Insert shows the F-N plot 

of the average current. 
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the ballast resistor is about 13 V. Thus, the effective voltage, the voltage between the emitter 

tip and the gate electrode, equals gate voltage subtract the voltage drop on the ballast resistor. 

The emission current versus the effective voltage curve and the corresponding F-N plot are 

shown in Figure 6-11. F-N plot of high voltage segment is shown in the inset of Figure 6-11. 

The slope and intercept of the trend line of the F-N curve (red dash line in inset of Figure 6-

11) is 5×10⁷ and -51.84. From the F-N theory, the field enhancement factor β of individual 

CNT is 1392 and the average effective emission area of individual CNT is 0.47 nm². 

Therefore, the radius of the emitter apex is 0.7 nm. The field enhancement factor of the entire 

CNT array emitter is β = 696. This value has a good agreement with the non-gated CNT 

emitter array. Therefore, we believe the CNT emitters have the same field emission 

properties in a diode configuration or in a triode configuration. Figure 6-12 shows a current 

versus time curve of a long term stability experiment. The sample has not been annealed 

 

 

Figure 6-11: Emission current per CNT versus effective emitter-gate voltage 
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before the experiment. Inset of Figure 6-12 shows the emission current during the first two 

hours. In the first ten minutes, the emission current has a slight increase. After ten minutes, 

the current decreases from 66 µA to 52 µA and becomes stable after 10 hours. The 

fluctuation of the emission current between 30 hours to 50 hours is 3.2% (range from 51.7 

µA to 53.4 µA).  In previous achievements, CNT emitters show 5% emission current 

fluctuation under constant voltage mode [151], or 13% voltage increase under constant 

current mode [152]. When compared to these results, our CNT emitter has a lower 

fluctuation and better long term stability. 

In our fabrication process, the emitter-gate gap is determined by the thickness of the 

silicon dioxide insulator layer. The insulator layer is deposited by PECVD. In a certain 

working condition, the thickness of the silicon dioxide layer is proportional to the deposition 

time. With a slow deposition rate and an over ten minute deposition time, the insulator layer 

has a good quality and the thickness can be controlled at nano-meter scale. From Figure 5-

6F, we can see the diameter of the cylinder shape gate is about 800 nm, and the emitter-gate 

 

Figure 6-12: Current versus time long term stability. 
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gap ranges from 200 nm to 300 nm. This emitter-gate gap is much smaller than that of the 

gated CNT film emitter and the Spindt cathode. As a result, the control voltage of our emitter 

is much lower than that of other gated CNT field emitters. 

6.4 Chapter Summary 

In this chapter, field emission of gated and non-gated CNT emitter array has been 

described. Field emission current density and stability is measured. The emission current 

about 600 µA is obtained from both the gated emission cathode and non-gated emission 

cathode. Even though the desired emission current (1 µA/CNT) is not achieved, the results of 

our samples (0.3 µA/CNT) are much higher than other CNT emitter arrays. When the 

emission current is higher than a threshold value, Joule heating generated on the CNT 

increases the emitter temperature and changes the emission into Schottky emission regime. 

The emission current achieves 0.9 µA/CNT. All the above experiment results approves the 

ballast resistor can improve the emission current uniformity and stability significantly. The 

cylinder shape gate electrode shows good performance as well. 
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Chapter 7  

PMMA based Field Emission Microscope 

7.1 Introduction 

To study the distribution of the emitted electrons and the emission uniformity, Field 

emission microscopy (FEM) is adopted. We studied the structures of conventional FEMs and 

found it is not suitable for field emission arrays. Therefore, we designed a new FEM to 

investigate the field emission property of field emission arrays.  

FEM has been used to investigate molecular surface structures and their electronic 

properties on the basis of the difference in work function of the various crystal facets on the 

surface [153]. Theoretical and experimental studies show FEM can achieve a resolution as 

high as 0.3 nm approximately, and has the capability of showing images of individual atoms 

at the cathode tip [154-156]. A conventional FEM consists of a conducting fluorescent screen 

anode and a cathode with a sharp tip. Although a conventional FEMs’ cathode-anode gap of 

5 cm to 8 cm leads to a spatial magnification about 10⁵ to 10⁶, the conventional FEM suffers 

from two shortcomings. Firstly, fine structure is not visible on a fluorescent screen, because 

of the lack of homogeneity of the screen [157], which inhibits the observation of small 

differences in light intensity. Secondly, the fluorescent screen has low phosphor efficiency 

and low sensitivity to low energy electron beams, because a large fraction of the beam energy 

is lost outside the phosphor [109]. 

In contrast to a fluorescent screen, Poly (methyl methacrylate) (PMMA) is highly 

sensitive to electron beams and is widely used as an electron beam resist in electron beam 

lithography. Because the effect of electron beam to PMMA is accumulated over time, we 

used electron beam dose (Charge/Area) to describe the effect of an electron beam to a 
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PMMA film. A PMMA film has two interesting properties. Firstly, a PMMA thin film acts as 

a positive resist when exposed to a low electron beam dose (5-20 µC/cm² for 1 KeV beam) 

[158], but acts as a negative resist when it is exposed to a high dose (2000 µC/cm² for 1 KeV 

beam) [158, 159]. Thus, it is possible to record the spatial distribution of an electron beam as 

well as distinguish a wide range of dose intensity. Secondly, the PMMA film is more 

sensitive to low energy electron beams than to high-energy beams, because the electron 

energy deposition in PMMA is more efficient at low electron beam acceleration voltages 

[160]. In other words, by decreasing the cathode-anode voltage of the FEM, the amount of 

electrons required to record the field emission patterns on the PMMA film is decreased. 

In most cases, field emitters used in conventional FEM has just one emission site. In 

an emission array, electron beams electron beams are dispersed. The high magnification 

makes the electron beams overlapped. As a result, FEM images from individual emission site 

cannot be distinguished. By using the new image recording material, the cathode-anode gap 

can be decreased to tens micro meter scales, the corresponding anode voltage and 

magnification are decreased. This low voltage FEM image shows many details of the 

electron beams that have not been reported before. 

7.2 Field Emission Microscope Setup 

The experimental setup adopts a simple diode configuration shown in Figure 7-1A. 

An 80 nm thick PMMA thin film is spin-coated onto a silicon substrate as the anode. A 

vertically aligned ZnO nanowire thin film grown on ITO coated glass substrate is used as the 

cathode. A 50µm thick PTFE spacer is sandwiched between the cathode and the anode. 

When compared to conventional FEMs, the cathode-anode gap of the experimental setup is 

reduced to 50µm to decrease the cathode-anode voltage and avoid the overlap of patterns of 
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adjacent emission sites. The sample is placed in a vacuum chamber with a pressure of 5×10⁻⁸ 

Torr. A picoammeter is used to monitor the emission current. Figure 7-1B shows a SEM 

image of the ZnO thin film cathode. First, the current versus voltage property of the sample is 

measured (Figure 7-2). F-N plot of the sample is shown in inset of Figure 7-2. From the F-N 

theory, the field enhancement factor is β=2320. Then a constant voltage is applied on the 

anode for several hours to collect the FEM images. 

 

Figure 7-1: Diagram of FEM experimental setup (upper) and SEM 

image of tested ZnO thin film cathode (lower) 
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After exposure to field emission electron beams, the PMMA has three possible states: 

(i) unexposed original PMMA; (ii) PMMA that is exposed to low electron dose (positive 

resist); and (iii) PMMA that is exposed to high electron dose (negative resist). The 

development of PMMA involves two steps. The first step is to develop PMMA in a PMMA 

developer (3:1 IPA: MIBK) for 60 seconds, rinse in IPA for 30 second and then blow dry. 

This step removes the PMMA, which is exposed to low electron dose. The second step is 

immersing the developed PMMA in acetone to remove the unexposed PMMA while leaving 

the high dose exposed PMMA intact. 

7.3 Field Emission Microscope Images 

The exposed PMMA film is observed under an optical microscope before the exposed 

PMMA film is developed to remove the positive resist. Two defect sites on the PMMA film 

are clearly visible in Figure 7-3A. The defects have a one-to-one correspondence to emission 

sites on the thin film emitter [161]. These defects indicate that the emission current is 

 

Figure 7-2: Current versus voltage curve and F-N plot of the FEM experiment 
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Figure 7-3: Optical image of the PMMA film before development. Two 

defect sites (i) and (ii) (upper left); expanded view of defect site (i) 

(upper right); expended view of defect site (ii) (lower left) and (i)’s 

(lower right) center rings showing some dark spots 
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Figure 7-4: PMMA film after first development step. Large circular rings 

appear on each defect site, the diameters are about 391 µm and 272 µm (upper 

left); expanded view of site (ii) (upper right); expanded view of center ring of 

site (i) (lower), where images of six “petal” shape geometry appear; insert 

shows the width of the lines is between 0.34 µm and 0.69 µm. 

 



103 

contributed by two main emission sites. Figure 7-3B is a zoomed up view of defect site (i), 

which has two concentric rings: an inner ring about 39 µm in diameter, and an outer ring 

about 262 µm. Figure 7-3C is an expanded view of defect site (ii), which has two separate 

rings: one larger ring with three faint dark spots, and the other smaller ring. Figure 7-3D, a 

farther expanded view of the defect site (i), shows four dark spots. These dark spots are 

similar to the cloverleaf patterns that emerge in conventional field emission microscopy 

studies [162].  

Figure 7-4 shows images of the PMMA film after the first development step that 

eliminates the positive resist. A large circular ring is observed around each defect site that 

was not as clearly observable before the development. The diameter of the defect sites (i) and 

(ii) are 391 µm and 272 µm respectively. The fact, that the radius of the circular defect sites 

is several times bigger than the 50 µm cathode-anode gap, indicates that the electron beam is 

widely emanative. A ring pattern with a diameter of ~260 µm is visible on the defect site (i). 

Similar ring patterns have been observed in carbon nanotube field emission [163-165]. In 

addition, Figure 7-4C clearly shows the outlines of six “petal” shape facets. The ZnO 

nanowire has a wurtzite structure, therefore we believe the six “petals” correspond to the six 

crystal facets below the top facet of the ZnO. Smaller “lobes” of the facets next to the main 

“petals” are also visible in Figure 7-4C. Inset of Figure 7-4C shows the width of the “petal” 

boundary is about 0.34-0.69 µm. These images of the crystal facets of ZnO emitter indicate 

that electrons are emitted not only from the center or top crystal facet of the emission site, but 

also the crystal facets neighboring to the center facet, and the emitted electron density at the 

boundary of the facets are significantly different from the center of the facets. The field 

emission pattern reflects the change of work function or electrical field strength of the 
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emission site, therefore, either or both of them have a remarkable change at facet boundaries.  

The electron beam exposed and developed PMMA film is then immersed in acetone 

to remove the unexposed PMMA. Insert of Figure 7-5B shows a contrast enhanced image of 

the defect (i), in which only the center ring of the defects and part of the “petal” boundary are 

 

Figure 7-5: Qualitatively identify electron dose of defect (i). Dose test result of 

electron beam lithography facility (upper); and distinguish the dose of the 

defect (i) (lower); inset shows an image with enhanced contrast of the defect (i) 

after immersed in acetone, only center ring and part of the “petal” boundary are 

remained 
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remained. This indicates that only the PMMA at the center ring and the “petal” boundary are 

transformed into a negative resist. The other areas are not exposed to enough electron doses 

to perform this transformation. The “petal” boundaries are intermittent and not clear after 

immersion in acetone denoting the electron dose of the boundaries is higher than that of the 

center of the “petals” but lower than the center ring of the defect site. The dose at the center 

ring of the defect and the “petal” boundary is at least several tens of times higher than that of 

the other areas. 

To qualitatively demonstrate the relationship between the exposure dose and optical 

images on PMMA film, a dose test is preformed in an electron beam lithography facility. A 

serial of patterns with an increasing dose is written on a PMMA film. Figure 7-5A shows the 

result of the dose test. The top row shows the PMMA film before the development stages, 

and the bottom row after. Before development, low dose patterns are not visible. With the 

increase of the dose, the patterns become more and more clear. After development, the low 

dose patterns emerge; medium dose patterns become clearer than before, and the boundary of 

high-dose patterns becomes blurred. Figure 7-5B shows the defect site (i), after removing 

low-dose exposed PMMA, consist of five concentric circular dose ranges. The dose of each 

ring correspond to the dose range 1 to 5 marked in the Figure 7-5A. The outermost ring 

receives the lowest dose (range 1) and the center ring receives the highest dose (range 5). 

However, the dose of the second outer ring (range 3) is higher than the next inner ring (range 

2). We believe this is caused by the distortion of mapping the 3D structure into flat image.  

Further investigation is still needed to address it. 

In the FEM image, the center area of the defects (i) has much higher electron does 

than the other defect areas; therefore, we used this size to calculate the magnification. The 
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diameter of the center ring of defect (i) is 38.84 µm and the effective emission site radius is 

60 nm. Thus, the magnification of the center area of the FEM image is about 323.  

In our experiments, the emission current is controlled at a very low level (below 1 

nA), which can effectively avoid heating of the emission tip and decrease the density of 

emission sites. On the other hand, a low magnification can reduce the size of the images. As 

a result of the low emission site density and small image size, the overlap of the image is 

effectively avoided. Among our experiments, center ring over lapping is observed at an 

emission current close to one mA and the outer ring over lapping at a µA scale. 

7.4 Discussion 

In conventional FEM, the magnification (normally 10⁵ to 10⁶) is estimated by the 

ratio of tip-screen distance (5cm to 8cm) to tip apex radius (several tens nanometer) and is 

not affected by the applied anode-cathode voltage. In our experimental setup the cathode-

anode gap is just 50 µm, thus the magnification at the center area is between several 

hundreds to few thousands. However, the image is a 2D mapping of a 3D structure and the 

distance from the emitter tip to the image center is much smaller than to the image edge, thus 

the magnification is not uniform. It is lower at the image center but higher at the image edge. 

A reconstruction algorithm is needed to calculate a local magnification relative to the center 

magnification and reconstruct the 3D geometry of the emission tip. On the other hand, in 

Figure 7-4C the width of the lines at the ‘petal’ boundary is 0.34 µm to 0.69 µm. Based on 

the estimated magnification, the actual size of the facet boundary is at sub-nanometer scale, 

close to the highest theoretical resolution (0.3 nm) of FEM [156]. 
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The clear boundary of the “petal” indicates that most of the electrons have a certain 

emission angle to the facet, instead of in a random direction. In addition, there is a significant 

change at the boundary of the crystal facets of either work function or electric field strength. 

Since the emitters in the cathode film have a similar height and dimension, a slight 

difference during the sample assembling may lead the emergence of ‘hot’ emitters that are 

specific for each test. As a result the images of the emission site are different, even with the 

same sample. Although the same image cannot be repeated, the significant characteristics 

remain the same. For example, the center ring appears in every test and the sizes are all very 

close to 40 µm; the outer ring with a diameter about 260 µm appears in almost all tests; and 

the most important thing is the fine lines in the surrounding area of the center ring appears in 

different tests. This characteristic proves our FEM have the capability of capture the details 

of field emitter tip geometry. However, the capability of pick out the specific emitter in 

different tests is still desired for further studies. 

7.5 Chapter Summary 

A PMMA thin film based FEM has been successfully used to study a ZnO nanowire 

thin film field emitter. The images of the PMMA film have a high resolution. Details of the 

centre structure and the clear “petal” shape boundaries of crystal facets, reported in this 

chapter, have not been shown previously. The two-step electron beam resist developing 

process makes it possible to distinguish the electron beam dose qualitatively. In future 

studies, a PMMA dose index will be necessary to quantify the electron beam dose to the 

exposure rate for consistency, and a method of locating the emission sites on the thin film 

emitter corresponding to the defect sites will be an asset to characterize the field emission 

property of thin film emitters. Compare to the conventional FEM, our setup lacks the 
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capability of capturing time evolution images. However, it has the strength of recording fine 

details of the emission images, which is not achievable to the conventional FEM. Thus our 

FEM is a complementary to conventional FEMs. 
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Chapter 8  

Field Emission based X-ray Tube  

8.1 Review of Conventional X-ray Source 

A conventional X- ray tube comprises a metal filament or a film cathode that emits 

electrons when heated to over 1700 K and a metal target (anode) that emits X-ray when 

bombarded by accelerated electrons which emitted from the cathode. The drawbacks of the 

thermal cathodes are their slow response time, high energy consumption, high operating 

temperature and essentially all current commercial X-ray tubes are single-pixel devices 

where X-rays are emitted from single focal spots on the anodes. The conventional X-ray 

cathode, either thermionic cathode or Schottky cathode, works at the high temperature over 

1700 K, which is generated by a filament. The filament needs a certain time to heating up 

and cooling down. As a result, in a conventional X-ray tube, the beam is controlled by turn 

on and off the high voltage. This design increases the complexity of the control circuit and 

lead to a slow response time. Furthermore, due to the thermal radiation, even a thermionic 

emission array is made, the pitch between emitters cannot be very small. In contrast, field 

emission cathode has a high response time. It can works at terahertz scale without an extra 

beam shutter and the pitch of field emitter can be as small as several tens micrometer [129]. 

The conventional X-ray cathode is made with conventional machining technology. The 

height of the filament is several millimeters. On the other hand, field emission cathode is 

made with modern micro-fabrication technology. The thickness of the emitter is just several 

microns. As a result, the field emission cathode is a solid-state device and has a much better 

mechanical strength and vibration resist. The high temperature during the emission leads to 

an evaporation of the filament. As a result, the emission cathode will exhaust after several 
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thousand hours of operation. On the other hand, field emission cathode works at a low 

temperature, the cathode material is not consumed. Therefore, the field emission cathode has 

a longer lifetime than that of other electron emission cathodes.  

In conclusion, when compared with conventional X-ray sauces, field emission X-ray 

has many advantages: 1) a longer lifetime; 2) working at room temperature avoid of thermal 

radiation; 3) fast response time; 4) smaller focal spot size; 5) smaller size, higher mechanical 

strength and vibration resist. Furthermore, field emission cathode makes flat panel X-ray, 

tiny X-ray tube, 2D X-ray array and stationary computed tomography feasible. 

8.2 Field Emission X-ray Tube Structure 

A typical X-ray tube may have a diode structure or a triode structure. Most of the 

conventional X-ray tubes used diode configuration, but in some applications, for example 

stationary computed tomography, a fast switch is desired. Therefore, a gate electrode is 

placed close to the cathode to control the electron beam. The gap between the cathode and 

the gate is range from sub micrometer to hundred micrometers, the corresponding control 

voltage range from several tens volts to over one thousand volts [44, 136]. It is obviously that 

the smaller the cathode-gate gap, the lower control voltage and the simpler the control circuit. 

Since the conventional X-ray tubes works well in many field, the design of the field emission 

based X-ray tubes are aimed to some special applications that are not suitable for the thermal 

cathode X-ray sources, such as tiny X-ray tube, flat panel X-ray source, addressable X-ray 

beam array, etc. 

8.2.1 Diode X-ray Source 

In the applications that a fast switching time is not necessary, for example electronic 

brachytherapy and radiation sterilization, a diode X-ray tube works well. Due to the high 



111 

aspect ratio, CNT cathodes can emit electrons without applying extra energies. Figure 8-1 

shows diagram of a tiny X-ray tube and a flat panel X-ray source. Due to the limitation of 

CNT synthesis devices, a large area CNT cathode has not been fabricated. Small area CNT 

array cathodes have been tested in a prototype of diode X-ray tube. The base pressure of the 

vacuum chamber is 5×10⁻⁸Torr.  The target, a 6 μm thick silver foil, is placed about 7 mm 

from the cathode. A constant high voltage is applied on the target, and the cathode is 

A

B

 

Figure 8-1: Diagram of diode structure X-ray source; tiny 

X-ray tube (upper) and flat panel X-ray source (lower). 
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grounded. By mounting a radiation dose rate meter outside the X-ray window, the maximum 

achievable radiation dose rate is measured. Figure 8-2 shows radiation dose curve of the 

following experiments. First, A 17.5 kV constant voltage is applied, and an average 20 μA 

emission current is obtained. The corresponding radiation dose is between 13 to 17 mR/hr. 

Due to the target outgassing, when a high voltage is applied, the pressure in the vacuum 

chamber increases to about 8×10⁻⁸ Torr. The vacuum pressure decreases back to 5×10⁻⁸  

Torr in one hour. Target voltage of 20 kV, 22.5 kV, 25 kV, and 27.5 kV voltages are 

subsequently applied. The corresponding currents and doses are 25 μA/ 50-55 mR/hr; 35 μA/ 

120-130 mR/hr; 50 μA/ 160-170 mR/hr; and 65 μA/ 180-185 mR/hr respectively. In the 22.5 

kV, 25 kV, and 27.5 kV experiments, the vacuum pressure increases over a threshold 

pressure and triggers vacuum protection to cut-off the high voltage. In this process, the 

electron beam heats up the anode and releases gas molecules adsorbed on the anode. With the 

removal of the adsorbed gas molecules, the X-ray tube power increases and achieves 1.8 W. 

At 30 kV, the current is about 90 μA and the tube power is 2.7 W. At this power, outgassing 

 

Figure 8-2: Radiation dose of a diode X-ray tube experiment. 
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Figure 8-4: Radiation dose of two stability tests.  

 

 

 

 

Figure 8-3: X-ray image (left) and optical image (right) of a 

144 pin QFP IC 
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rate from the anode is too high to be pumped down, so we stopped the experiment at this 

point. No visible damage to the sample is observed when it is inspected under an optical 

microscope.  

A sample is then tested to take some X-ray pictures. To increase the X-ray beam 

energy, the target/cathode gap is increased to 9 mm, about 2 mm larger than that of the above 

experiments; as a result, the operating voltage of this experiment is higher than that of the 

above experiments. Target voltages of 35 kV and 40 kV are applied, and the current and the 

power of the tube are about 15 μA/0.525 W, and 20 μA/ 0.8W respectively. X-ray images are 

taken by a Kodak PPL high speed X-ray film. Figure 8-3 shows an X-ray image of an 

integrated circuit in a 144 pin Quad Flat Package. The X-ray image is taken at 40 kV for 45 

minutes. In this experiment, the electron beam is not focused, and pinhole tests show the spot 

size is about 2 mm in diameter. Even though the electron beam is not focused, bonding wire 

of the integrated circuit is still visible in the image. Figure 8-4 shows dose readings of two 

stability tests taken at 35 kV and 40 kV. In the 35 kV experiment, the dose reading has no 

noticeable degradation in 3.5 hours. However, at 40 kV, the dose reading starts to diverge 

range from 2 mR/hr to 10 mR/hr and the average dose decreases from 8 mR/hr to 5 mR/hr. 

After the sample has been tested for over twenty hours in total, no visible damage to the 

sample is observed when it is inspected under an optical microscope. 

8.2.2 Triode X-ray Source Array 

A triode X-ray tube consists of a cathode, a gate, and a target (anode). The cathode is 

grounded and the target connects to a high voltage range from several kilo-volts to sever 

hundred kilo-volts. A control voltage is applied on the gate electrode. Figure 8-5 shows a 

diagram of a triode X-ray source. Gate transmission efficiency is defined as the anode current 
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over the emitter current, and describes the percentage of emitted electrons that can reach the 

anode. High gate transmission rate is one of the biggest advantages of the Spindt cathode. It 

has been proved that the gate transmission efficiency of Spindt cathode can be 99%. Our 

emitter has the similar structure to Spindt cathodes. Therefore, the gate transmission 

efficiency of our design should be in the same order of Spindt cathodes. To achieve a 

scanning X-ray beam, an addressable cathode array is desired. The cathode array consists of 

a set of bottom column electrodes, a set of top row electrodes, and emitter arrays in between. 

When a column signal activates a single conductive strip within the grid, while a row signal 

activates a conductive strip within the emitter base electrode, at the intersection of an 

 

Figure 8-5: Diagram of triode X-ray tube 
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activated column and an activated row, a gate-to-emitter voltage differential is sufficient to 

induce field emission, while other emitters are not emitting. Figure 8-6 represents the 

contemporary architecture. Each row-column intersection is corresponding to a single pixel 

of the X-ray beam array. 

8.3 Flat Panel X-ray Tube 

In a conventional CT scanner, besides the mechanical challenge, power density of the 

X-ray sources is another obstacle. For a body CT, approximately 250 mAs (i.e., tube current 

in milliamps times scan time in seconds) per slice are required. For a 20ms scanning time (no 

motion artifact cardiac scan), the required tube current is 12.5 Amps. A common target 

voltage of a CT scanner is 80 kV to 140 kV. The corresponding target power is over 1 

 

Figure 8-6: Diagram of an addressable multi-pixel X-ray source for 

applications such as stationary CT scanner. 
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Megawatts, which requires an extremely high cooling capacity to avoid of target melting 

[166]. One solution to increase the target power density is a reflection target, which is based 

on the cathode component has a low X-ray absorption. Figure 8-7 shows the diagram of a 

transmission target X-ray tube and a reflection target X-ray tube. The cathode array is 

fabricated on a silicon wafer with a thickness of 280 µm. The upper structures are made of 

aluminum, silicon, silicon dioxide, and carbon. The thicknesses of the layers range from 200 

nm to 500 nm. The total thickness of the structures is about 2 µm. Due to the low atomic 

number of the materials used for this fabrication; the X-ray absorption of the cathode is 

pretty low. As a result, the cathode can be considered transparent to X-ray. Therefore a novel 

structure of the reflection target is feasible. The biggest advantage of the reflection target is 

that a cooling component can be mounted on the backside of the target thus increase the 

power density of the target significantly. On the other hand, a transmission target based 

X-ray Target

2D Cathode Array

X-ray Window

Vacuum Chamber and X-ray shielding

X-ray Target

2D Cathode Array

X-ray Window

Vacuum Chamber and X-ray shielding

Cooling Component

Field Emission cathode

 

Figure 8-7: Diagram of transmission target flat panel X-ray source (upper) 

and reflection target X-ray source (lower). 
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micro-focus X-ray tube has a small focal spot-object distance; therefore, the magnification of 

the X-ray image is high. Figure 8-8 shows an X-ray image and optical image of an X-ray 

cathode array. Thin film metal electrodes, CNT emitters, and ballast resistor connection pad 

is not distinguishable in the X-ray image. This result indicates that the field emission 

structures on the substrate are transparent to X-ray beam, thus the reflection target X-ray tube 

is feasible. 

8.4 Chapter Summary 

Ballasted CNT array based diode X-ray tube has been successfully demonstrated. 

Triode X-ray tube based on ballasted and gated cathode is still under construction. Reflection 

target, which have a capability of working under a high power density is proved feasible. 
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Chapter 9 

Contribution and Future Works 

9.1 Contributions 

This work is motivated by the improving preferences of conventional X-ray tubes 

when they are used in some specific applications, for example, improve the scanning speed 

of computer tomography, the simplify the structure of tiny X-ray tube for electronic 

brachytherapy, and improve the uniformity and power density of flat panel X-ray source. In 

the past works, field emission preferences of Spindt cathode and CNT film field emitter have 

been demonstrated. The Spindt cathode has a near prefect gated emitter structure, and the 

carbon based field emitter has the capability of working in a high vacuum. In this work, we 

combine the advantages of the structure of Spindt cathode and the material property of CNT. 

The contribution of this work can be summarized as follow: 

 Design and fabricate a connection pad for the ballast resistor in CNT array for the 

first time. Since the structure and fabrication process of metal cone in Spindt cathode 

and CNT are essentially different, a component that can provide a uniform size and 

compatible to the fabrication process of CNT is necessary. Optimization parameter of 

the connection pad is calculated by numerical simulation. 

 Design and fabricate the ballast resistor array under layer in a low density vertically 

aligned CNT array for the first time. The ballast resistor works as a current limiter on 

individual CNT emitters to avoid of emitter melting and micro discharge caused by 

over current. The ballast resistor can improve the emission current uniformity and 

increases the lifetime of the emitter array. 
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 Design and demonstrate a ballasted CNT array based diode X-ray tube. The structure 

of the diode X-ray tube is simpler than the conventional X-ray tubes, and has a 

lifetime longer than the commercialized tiny X-ray tubes used in electronic 

brachytherapy. This simple structure is suitable for un-focused applications. But by 

applying a focusing electrode, a micro-focus X-ray tube is also feasible. 

 Design and fabricate a cylinder shape coaxial gate electrode for CNT emitters. The 

fabrication process of the gate electrode is straight-forward. The emitter is self-

centered to the cylinder gate and the apex of the CNT is self-aligned to the top surface 

of the gate electrode. Simulation results show this structure has the best transmission 

efficiency. 

 Hundred nanometer scale emitter-tip gap is achieved with a simple fabrication 

process. When compared to the Spindt cathode fabrication process, this structure is 

much simpler and the quality of the device is guaranteed by the conformal deposition 

process. 

 PMMA based field emission microscopy is designed and demonstrated for the first 

time. Resolution of this microscopy is 0.3 nm, much higher than a conventional FEM. 

Details of emission site can be captured. This design can also be used to evaluate the 

emission uniformity and distribution of emitter electrons from a field emitter array. 

 Design and demonstrate the feasibility of reflection target for a flat panel X-ray 

source. This design has a much higher capacity of power density than a transmission 

target X–ray tube. Thin film field emission cathode is transparent to X-ray beam, 

therefore, the X-ray beam intensity is not reduced when passing through the cathode. 
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9.2 Future Works 

The feasibility of making tiny X-ray tube and addressable X-ray array has been 

proven. But there are still a lot of works to do before it can be commercialized. 

 Optimize fabrication process 

Electron-beam lithography can achieve a resolution of few nanometers. However, the 

process is slow and expensive. To reduce the cost and increase the productivity, nano-

imprint is a good alternative of e-beam lithography. Due to a limitation of access 

fabrication devices, our previous fabrication uses electron beam evaporator to deposit 

the thin films. This method is slow and limits the maximum thickness. With the 

extension of the fabrication facility, some new devices are now available. With the 

access of the new devices, the pervious fabrication process needs some adjustment to 

achieve a higher productivity and high uniformity. Uniformity of CNT catalyst dot 

size is critical. Nucleation process of the catalyst dots needs some further studies to 

improve the CNT uniformity. 

 Fabricate field emission cathode array 

To make an addressable X-ray beam array, bottom electrode and top electrode need to 

be patterned. Photolithography is the simplest process to pattern the electrodes, but it 

makes the surface of the sample non-flat. If the electrode is patterned before the CNT 

growth, the non-flatten affects the CNT uniformity. If the electrode is patterned after 

the CNT growth, the CNTs may be damaged by spin-coating the photo-resist. Laser 

cutter is a good choice to pattern the electrodes. Some experiments are needed to 

figure out the best process to pattern the electrodes while do not affect the CNT 

uniformity. 

 Fabricate and test reflection target 
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Combination of reflection target and transparent cathode has been proved the best 

structure of flat panel X-ray source and X-ray beam array. By attaching a cooling 

component on the backside of the target, the power density of the X-ray tube can be 

increased significantly. Furthermore, the target can withstand high power density 

makes the X-ray tube have the capability of reduce it focal spot size and increase the 

image resolution.  

9.3 Conclusion 

In this dissertation, a CNT based field emission cathode is described. The goal of this 

work is to develop a field emission based electron source for some specific X-ray 

applications. Several progresses have been made to improve the performance of field 

emission cathode. However, there are still a lot of works to do. We believe, with the 

developing of the supporting technologies and the deep study of this device, some novel X-

ray sources can be developed in the near future. 
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