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Abstract

Sea-ice ecosystem modelling is a novel field of research. In this thesis, the main or-
ganism studied is sea-ice algae. A basic introduction to algae and its importance in the
aquatic food web is given first. An introduction to modeling and its purposes is pre-
sented, and this is followed by a brief description of ice algae models in practice with
some physical conditions which influence ecosystem modelling. In the following Chapter,
a simple mathematical model to represent the algae population is derived, and analyzed
using pseudo spectral numerical methods implemented with MATLAB. The behaviour of
the algae population and the boundary layers are discussed by examining the numerical
results. Perturbation and asymptotic analysis is used for further analysis of the system
using Maple. In the following Chapter a Nutrient Phytoplankton Zooplankton Detritus (or
NPZD) model, which is a commonly used type of model in marine ecosystem modelling, is
developed based on the framework of Soetaert and Herman. The model is examined under
five different experimental setups (herein we mean numerical experiments) and the results
are discussed. The NPZD model implemented is compared with a well-studied model in
the literature. Our model can be considered somewhat simpler than other models in the
literature (though it still has a much larger parameter space than the idealized model
discussed in the previous Chapter). Finally we discuss future directions for research.
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Chapter 1

Introduction

It is a surprising fact to know that algae produce more than 70% of the world’s oxygen [9]
and they are able to remove vast amounts of carbon dioxide from the atmosphere. Even
though the prokaryotic organisms (i.e. organisms, which have no cell nucleus) have been
classified as an algae in the past, now they are considered as a bacteria and only the
eukaryotic organisms (i.e. organisms, which have a cell nucleus)are considered as true algae.
According to the modern definitions true algae are Eukaryotes and they have chloroplasts,
which capture light energy to carry out the photosynthesis process [7].

Algae are a huge community of organisms with forms that are unicellular (i.e. that
consist of only one cell) and forms that are multicellular (i.e. that consists of multiple
cells) [7]. The Euglenophyta or euglenoids (most of which occur in fresh water), the
Chrysophyta or the golden-brown algae (occur in both marine and fresh waters, although
most species are marine), are unicellular [5]. Chlorophyta (green algae), most of which live
in fresh water, although some others are marine. Most green algae are microscopic, but a
few species, such as those in the group Cladophora, are multicellular and macroscopic [5].
Some species of green algae include the unicellular Chlamydomonas and Chlorella [5]. The
Rhodophyta or red algae are mostly marine algae which are most diverse. The Xanthophyta
or yellow-green algae mainly take place in fresh water and unicellular [1]. The Paeophyta
or brown algae almost all occur in oceanic environment. These are especially abundant in
cool water. Algae of this class are macroscopic in size, and include the giant kelps (a kind
of large algae) that can consistently reach tens of meters length [5].
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Figure 1.1: Phaeophyta or Brown Algae grow up to 60 meters length. This is multicellular
and vegetative (separate from a plant and give rise to a new plant) [1] [4]

Figure 1.2: Rhodophyta or red algae is unicellular and consist of 4000 species with red,
purple, black in colors [1] [2]

Algae are more like plants than animals in the sense that they are able to carry out
photosynthesis. However, they gain energy from both photosynthesis and the absorbtion
of dissolved organic compounds. Various types of algae play significant roles in various
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ecosystems. Algae supply food and energy for other aquatic organisms. However, un-
usual higher levels of algal growth can create obstacles for other lifeforms in the aquatic
environment. Moreover, for human use and enjoyment of the aquatic environment, algae
can reduce the beauty, clarity and the taste of water. Extremely high levels of algae can
prevent sunlight from reaching aquatic plants and will hence limit the growth of plants, or
even cause their death. As more algae grow within the lakes, they need to be decomposed
by bacteria, which in turn consume dissolved oxygen content in the water. The condi-
tion of complete depletion of oxygen is known as anoxia which kills fish and other aquatic
creatures. [19].Overhead levels of algae can increase the pH level of water bodies. Photo-
synthesis will naturally increase the level of pH as a by-product and pH levels are decreased
after sunset since the process of photosynthesis ceases. However, extreme fluctuations in
pH levels will create stress in a sensitive aquatic environment. High concentrations of algae
in drinking water intakes react with chlorine that is used to purify water and can generate
cancer causing particles [19]. It is thus very important to understand the population dy-
namics of algae, both to improve our understanding of the natural world and to realize a
proper management strategy that will maintain healthy and natural levels of algae within
the aquatic environment.

Obviously algae live and spread in water, but some times they can exist on, and within,
ice. The types of algae that can be found in sea ice are commonly known as ice algae.
Freezing sea water is different than freezing pure water which gives a firm block of ice. This
is because the freezing temperature depends on the salinity of water, and when the salt
water concentration is 3.3% the freezing point of arctic sea water reported as −1.9◦C [12].
When the temperature reaches the freezing point, sea water begins forming an ice block,
with many little channels filled with salt water. Those channels are referred to as brine
channels, or brines. Surprisingly, many different types of organisms live in this environment.
Ice algae are a class of algae, which have adapted to live in brines. This environment is
highly dynamic, often influenced by the weather above the ice, especially when compared
to the comparatively stable environment in the underlying sea water.

There are three main factors affecting the growth of ice algae. Temperature, light
availability and salinity. The availability of light is the primary influence, with the growth
of algae experiencing a proportional increase with the increase in light availability. However
above a certain light intensity, algae experience a decline in the growth rate with further
increase in light intensity. Somewhat paradoxically, in the Arctic there have been positive
and negative correlations reported between algae growth and light availability [15]. In
winter almost no light is available and the temperature falls to near −35◦C at the upper
surface of sea ice and around −2◦C in the sea water at the bottom of the sea ice [12].
In summer there is continuous light and the ice temperature is near 0◦C. Light intensity
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at the upper surface of sea ice is higher than the bottom surface of sea ice. Accordingly,
the structure of brines gets affected and the algae production varies. When temperature
decreases, some brine channels freeze, and in those that remain open so that the salinity
of the brine increases. As an example, in winter a temperature of −10◦C makes salinity
in a typical brine channel, rise to 143 PSU (Practical Salinity Units) , estimated as four to
five times lager than the salinity of normal sea ice [28]. When the temperature increases in
summer, ice melts and the abundant fresh water reduces the salinity in the brine channels.
Also increasing temperature make the spatial extent of the brine channels larger (i.e. they
grow wider), thereby letting more light in to it. According to an experimental study
related to the Arctic sea ice algae, the growth of ice algae happened at temperatures less
than −5.5◦Cand a corresponding salinity of 95 PSU [28]. At lower temperatures (−7.5◦C)
and higher salinities (150 PSU) [28] there was no increase in algae, however remaining cells
survived.

There was a shocking discovery of massive blooms of algae under the sea ice of the
Arctic Ocean in early 2012 by a group of U.S. scientists [29]. Earlier no one believed
that a living organism can survive underneath an ice layer which extends to hundreds of
kilometers squared in area with insufficient sunlight. Research findings states that algae
biomass below the ice surface is four times greater than in open water and it spreads for
> 100 km [29] inward from the ice edge, though normally blooms are found along the
edge of the ice. This massive growth is hypothesized to be an effect of recent climate
change [3]. It has made the ice layer thinner and this allows more light transmission. The
authors found the greatest biomass (> 1000 mg cm−3) [29] near the ice water interface
and research findings reveal that even though the light under sea ice is much lesser it was
sufficient to grow algae under ice twice as fast as in open water [29].

There are many difficulties in carrying out ice algae research in the field, since the sea
ice environment is not accessible and even dangerous. Nevertheless, since ice algae are
the primary source of food for krill (as well as other marine creatures), and krill provide
the main source of food for a diversity of animals at higher trophic levels ice algae is
fundamental for the study of Arctic ecosystems. Recently the sea ice loss due to global
climate change has become a serious challenge for this flourishing environment. Global
warming could decrease, or perhaps eliminate, the space available for the ice algae to grow.
This in turn could affect the food cycle of the majority of marine creatures in the Arctic
environment.
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Figure 1.3: ICESCAPE(Impacts of Climate on Eco Systems and Chemistry of the Arctic
Pacific Environment) research scientists experimenting in Arctic sea ice. Climate changes
has made the ice layer thinner and melt ponds can be seen which allows more light for the
algae to grow underneath ice. [3]

Figure 1.4: Satellite picture of the lake Atitlan. A huge algal bloom which transformed to
toxic algae in year 2009 [10]

5



1.1 What is a model and its purpose

In the natural environment there are many interconnected systems and processes. In order
to understand the behaviour of these systems and processes we can use mathematics as a
language. The process of forming a system of mathematical equations to illustrate a real
life phenomenon using mathematical concepts is known as mathematical modelling [6].
Mathematical models have been used by scientists, research analysts, engineers in order to
study the interactions of the system components and predict their behaviour.

A model is a simple way of representing a complex situation. It does not need to consider
each and every component involved. Depending on the problem that needs to be solved
only the important characteristics are discussed. Most real life problems can be simplified
using mathematical modelling as a way to filter out irrelevant information. While the
resulting model often cannot be solved exactly, it should at least be "as simple as possible".
Many ecological problems cannot be solved without mathematical modelling [20], since
the natural world is interconnected and it is impractical to measure all the individual
relationships.

1.1.1 Influence of physical conditions on ecosystem models

As mentioned earlier ice algae play an imperative role in the ecosystem. In order to
model ice algae it is vital to have awareness of how they will be affected by the changes
of the physical environment, and the factors which control algae production. Ice algae
production depends on several resources: irradiance which decreases with depth into the
ice, nutrients which increase when closer to the ice-water interface, and variations in ice
temperature. The natural variability of these quantities is difficult to measure in ice [16]. To
develop improved models of algae production it is vital to know how altering environmental
conditions effects sea ice, though this is in itself a highly active research topic and will not
be pursued in detail in this thesis, though we discuss some literature below.

Lavoie [13] in his paper studies the controlling factors of the growth of the ice which in
turn controls the ice algae population. His one dimensional thermodynamic sea ice model,
which involves one layer of snow and two layers of ice, explores the significance of the
limiting factors on the growth of the ice algae mainly light, nutrients and ice growth rate.
It is still uncertain what regulates the oscillation of ice algae populations. According to the
studies in [13] ice algal blooms grows exponentially and persist on a constant level, then
decline with time. Snow cover, the thickness of ice and self-shading of ice algae all exert
some control on the amount of light available near the ice water edge [22]. The model of
Pogson [22] provides a lesser light absorption than observations since it only considers the
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light from directly above, but the ice base gets light from other directions as well. In order
to model light precisely it is necessary to parameterise the thickness of the snow cover since
it influences the accumulation of ice algae [22]. According to Lavoie [13] the minimum level
of light required for the growth of ice algae is 0.4 µ Einst m−2 s−1, though it is likely there
is some uncertainty in this value.

Figure 1.5: Ice algae can be found in the skeletal layer which represent in dark gray [13]

Nitrogen, phosphate and silicon are the main nutrients for the growth of the ice algae
[13] but only the silicate concentration is referred to as the limiting nutrient [22] . Figure
(1.5) is a rough diagram which shows different layers of the ice base. The ice base consist
of thin layers of ice which form the "skeletal layer" or SKL and 95% algae can be find
there [13]. The main source of nutrient supply is considered to be the mixed layer [13] [22]
and the amount of nutrient fluxes depends on the molecular sub layer thickness which
is found adjacent to the bottom of the ice layer. Even though there are other sources of
nutrients like brine drainage [13] they are not included in most of the models [13] [22]. Even
though it is hard to quantity the amount of nutrients in SKL the value can be predicted
from the changes in biomass [13]. However, it is difficult to make accurate measurements of
photosynthetic properties over small scale spatial variability. 2D fluorescence imaging is a
useful tool in detecting algal biomass over mm-scale variability [16] and this paper discusses
the effectiveness of this method on an algae bloom during its initiation in Greenland fast
ice. The algae that live closer to ice can access more light but a lesser amount of nutrients.
When algal production increases the uptake of nutrients from the SKL increases [13].
Moreover, the supply of nutrients to the SKL also depends on the growth rate of ice.
When ice starts to melt (often labelled as "negative growth" of ice) the resulting fresh
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water lessens the amount of nutrients found near the ice base [13]. Increased ice growth
(positive growth of ice) develops nutrient fluxes [13].

Most of the ice algae are found at the bottom 2− 4 cm [13] [22] [16]. Most of the algae
models emphasize basal algae but algae can be found in the ice interior as well [13] [16].
Beyond a certain ice growth rate, algae which are stuck within ice move upward as ice
grows [13] [22]. When ice starts to melt algae detach and sink. According to Lavoie [13]
the critical ice growth rate for this to occur is between 1.7 cm and 2.9 cm per day and for
the negative growth rate it is 1.5 cm per day. In Pogson’s multilayer thermodynamic algae
model, a coordinate transformation system is used to model this advection part, which in
turn allows algae to live and move in between layers, something that was not considered
in Lavoie’s model.

Depending on the temperature and salinity of sea ice the structure of brine channels
varies [22] and the width of the brine channels increases with temperature [16]. With
the conditions < 50 psu salinity and > −2◦C temperature, width of the brine channels
increases from nearly 0.3 − 0.4 mm and 4 − 7 mm [16]. Brine channels provide paths
for material, such as nutrients, to travel between ice and sea [22]. Almost all salts and
nutrients are melted in brine channels [22] and nitrate and inorganic carbon concentrations
in the brine are 3−4 times higher than in the sea water at the interface of sea and ice [16].
As ice begins to melt in spring, the melt water is flushed out, along with the algae trapped
within brine channels [13] [22]. This causes algal bloom decline and therefore it is essential
to model brine dynamics for accurate results [22]. The thickness of the snow cover is also
a controlling factor for bloom decline since snow cover has an impact on ice melt [22]. A
heavier snow cover produces more fresh water and causes more flushing and melt lenses
and hence leads to bloom decline. On the other hand, thin snow cover make the sinking of
algae quicker. In Pogson’s thermodynamic model there was a disparity between modelled
and observed speed of the bloom decline. This was explained by hypothesizing that melt
water lenses formed under ice and limited the nutrient exchange at the sea-ice interface.
Thus the observed algae decline is faster than the modelled result since the modeling of
melt water lenses was not included in the model. Ice algae itself also produces heat, as a
result of energy gained during the photosynthesis and this process again results in algae
loss.

The above discussion clearly shows, that ice algae can be strongly impacted by chang-
ing physical conditions. Slight changes to the heat and/or nutrient content can lead to
significant changes in the quantity of biomass.
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1.1.2 Ice Algae models in practice

The controls of the sea-ice ecosystem are still poorly understood [26]. Since the role of ice
algae in the ecosystem is fundamental, forming the bottom of the ecological pyramid, it
is necessary to understand and clarify the behaviour of ice algae in order to understand
the sea-ice ecosystem. Ice algae models offer better tools to understand the processes that
affect ice algae population and controls on this population. In comparison to plankton
models, there are very few sea ice algae models that can be discovered when reviewing the
literature.

Arrigo (1993) published his ice algae model considering the growth of ice algae as a
function of light, temperature, nutrients and salinity. He developed a 2D numerical ecosys-
tem model which studies the primary production in the Antarctic sea ice zone [30]. Arrigo
focused on three layers in his sea ice model namely congelation ice which is impermeable
except for the system of brine channels, the skeletal layer (SKL) and the platelet ice layer
with consolidated crystals. The model simulates the physical properties such as growth of
congelation ice and the temporal growth dynamics by solving suitable heat balance equa-
tions [30]. Arrigo defines the congelation ice growth rate by considering heat flux from the
sea and heat produced by the algae itself. The growth rate of the platelet layer was initially
specified as a parameter in the model since it is difficult to define mathematically. Salin-
ity is defined as the balance between the brine trapped within the ice and brine drained
through the channels in the ice. The transport of nutrients in the SKL is calculated by the
volume of brine flux and the nutrient transport in the platelet layer, both defined using a
bulk material transport coefficient [30]. Brine salinity and volume is also computed. The
biological properties calculated here are microalgal growth, microalgal respiration, grazing
and excretion of algae [30]. The model results verified the fact that the spring bloom is
nutrient limited within congelation ice at the beginning, while the bloom is light limited in
the bottom platelet layer during the whole process. Arrigo’s simulation dramatically de-
scribes the physical dynamics of ice growth, structure of ice layers and biological dynamics
within ice. More than ten years later Lavioe developed an improved model.

Lavoie (2005) studied a spring algal bloom and his 1D thermodynamic sea ice model
consists of one snow layer and two ice layers. This is a simplified version of Arrigo’s ice
algae model but can be used to study a broader class of limiting factors which control ice
algal biomass. This does not include the thickness of the snow since there is a disparity
between the measured snow fall and the development of snow carton, may be as a result
of wind action [13]. He assumes that silicon is a more important nutrient for ice algal
growth and considers its effect in the model. He approximates the light limiting factor
using a hyperbolic tangent function and fixes the intensity to 0.4 µ Einst m−2s−1 [13] as
the benchmark intensity for ice algal growth. The ice algae are confined to the bottom 2 cm
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of the ice layer and ice algal growth is studied as a function of light, nutrients and growth
rate of ice. This study explores the factors of algae bloom decline in the Canadian Arctic
Archipelago with different limitation terms of algal growth and different loss terms [13].
Ice algae detached from ice due to higher rate of ice melting at the bottom ice layer and
a melt water lens developed below ice, which limits nutrient supply for the algae. This
emphasize the idea that shielding of the ice controls the length of the bloom. Another main
focus of this paper is probing the importance of the thickness of the molecular sub layer
which limits the supply of nutrients. The model considers more physical processes which
effect the model such as heat generated from ice algae itself, effects of varying thickness
of the molecular sub layer in limiting nutrients to the SKL, heat and also the amount of
algae which is released from the ice and sinks.

Nishi and Tabeta (2006) formed a coupled sea ice ecosystem model and used it to
study the role of algae at lake Saroma, Japan. The previous models discussed above do
not consider organic carbon emission by ice algae (with possible implications for climate
change) [32]. The physical sub model in the ocean model calculates the total heat flux from
the surface of water as well as from the atmosphere [32] and the ice model calculates the
total heat generated within ice. The biological sub model focuses on biological properties
such as photosynthesis, nutrient transport, grazing, excretion, and remineralization [32].
The main idea of this study is to understand the impact of atmospheric heat on the emission
of organic carbon from sea ice [32]. The results show that an increase of release of organic
carbon depends on the increasing atmospheric temperature and basal ice melting.

Tedesco (2010) introduces a Biologically Active Layer in his study which combines
marine ecosystem biology to marine ecosystem physics with a two snow layer-one ice layer-
two intermediate layer thermodynamic model [23]. As in the models discussed above, the
study of Tedesco does not restrict algae to the bottom 2 cm but considers the fact that ice
algae population shows high variability from the beginning of the ice season to the time at
which the sea ice starts to melt, and hence is not a layer of constant thickness [23]. The
physical model considers two ice layers , one biologically active and one biologically inactive.
Past studies have showed that brine volume higher than 5% (permeability threshold value)
allows brine channels to be interconnected [23] which in turn facilitates algae accumulation.
This ice layer is defined as biologically active. It is assumed that brine volume less than the
permeability threshold does not allow algae to grow, and this layer is known as biologically
inactive. Both the biologically active and inactive layers have a time varying thickness
[23]. The physical model calculates the physical properties of the entire ice layer and the
biological model computes the physical properties of biological active layer. The concept
of biologically active layer is a useful tool which describes spatial and temporal variability
of algal biomass [23].
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The study of Pogson (2011) is an improved version of the ice algae model of Lavoie
(2005). It couples an ice algae nutrient model with a 1D multilayer thermodynamic sea
ice model with a focus on the ability of algae to be transported within ice layers [22].
According to Pogson when algae accumulate they divide themselves into layers rather
than sticking into one layer. This leads to self-shading and reduction in biomass. This
study considers different limiting factors of ice algae such as light, self-shading and snow
cover [22]. Pogson’s thermodynamic model consist of two components namely a snow and
an ice component. Changes of snow-ice thickness, temperature, radiation are calculated
as functions of depth. The algae thermodynamic component, which calculates energy
absorbed by algae for photosynthesis and energy released as heat, is also computed. The
ice algae nutrient model calculates the nutrient concentration in each of the ice layers, as
well as nutrient uptake, nutrient and light limiting factors [22]. Pogson’s study includes
a coordinate transformation which represents the ice algae and nutrient transformation
through the ice layers. This model define a critical value for the ice growth rate which allows
algae to move up when ice growth rate is lager than the critical value [22]. The controlling
factors of the ice algal bloom decline considered in this model are snow cover, ice melt rate
and heat flux from sea [22]. The results suggest that ice algae are intensely dependent on
the changing ocean conditions such as heat flux, ice melt. Pogson emphasizes the fact that
discrepancies of model results and field data were due to selecting constant values for the
photosynthetic parameters which change in reality [22]. As a further improvement Pogson
suggests to model ice algae in the interior of ice with a more realistic approach.
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Chapter 2

Simple models for the algae population

2.1 Explanation of basic models

In the Introduction a variety of rather complicated models of ice algae were discussed.
While these have the utility of modelling process that occur in nature, they are generally
too complicated for mathematical analysis. In this chapter we adopt a naive mathematical
approach based on population dynamics to model ice algae models. The study of population
dynamics has a very long history [18]. Mathematical models play an important role in
analyzing the changes of population, understanding the range of possible behaviour and
for making predictions. The simplest models involve only rate of change of the total
population with time and simple growth and death terms. If P (t) is the population at
time t the rate of change of population is given by

dP

dt
= Birth+Death

dP

dt
= αP − βP

P (t) = P (0) exp((α− β)t) (2.1)

where α and β are positive constants. Here if α > β population grows exponentially and if
α < β it gradually decreases, and in the long run vanishes. The logistic growth model, as
well as other more complicated models, can be used to limit possible unbounded growth.
We will consider models that assume growth is exponential or logistic. These models do
not pay any attention to the spatial distribution, or spatial spread of the species. After
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analysing the simplest models we will then move onto models of the change of popula-
tion that vary in space as a reaction diffusion process, in agreement with most current
mathematical models [18].

The remainder of this section presents the simplest models for the algae population
in sea ice. The models increase in complexity with each subsection. When possible, the
model equations are solved or analyzed by using basic techniques and their weaknesses
are discussed. The next section discusses the background of the numerical methods used
to obtain numerical solution. Particular attention is paid to Strang splitting methods for
reaction diffusion models. Accordingly, both Runge Kutta methods for the reaction terms,
and Chebyshev methods for the diffusion terms are discussed. Once the numerical methods
tone used are established, the numerical results are discussed. Next, a perturbation analysis
is provided for the steady state, demonstrating the existence of an internal boundary layer.
Finally, a sensitivity analysis to the model parameters is provided. The primary purpose
of the Chapter is to provide a conceptual model of ice algae population dynamics that is
much simpler than the field scale models discussed in the previous chapter.

2.1.1 Model with exponential growth

The simplest model for the population growth only depends on birth and death terms,
which are proportional to population P(t). In general

dP

dt
= αP − βP, (2.2)

Where

P (t) is the total population

α(t) is the birth rate, α(t) > 0

β(t) is the death rate, β(t) > 0

As a special case where α and β are constants,

P (t) = P (0)e(α−β)t. (2.3)

According to the former result if α < β, the population decays exponentially with time.
On the other hand if α > β the population grows exponentially. This is not realistic since
unbounded growth is predicted. This model thus needs a modification appropriate for
longer time predictions.
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2.1.2 Model with logistic growth

As remarked in last section, an exponential model gives unbounded population growth in
longer time which is unrealistic. In this kind of a situation the logistic growth in population
is more suitable, and is in fact the simplest possible model giving a bounded population
for all times.

The logistic model takes the form,

dP

dt
= αP (1− P

P0

)− βP. (2.4)

When there is no death term (β = 0), the logistic model commonly found in textbooks [18]
is recovered

dP

dt
= αP (1− P

P0

). (2.5)

where P0 > 0 is the carrying capacity of the environment

Here the carrying capacity is determined by existing resources in the environment. This
model has two steady states at P = 0 and P = P0, and a simple linear analysis shows
that these steady states are unstable and stable steady states, respectively. In terms of
the ecosystem, this is to be expected since near the P = 0 equilibrium a small, positive
population is unaffected by the carrying capacity and hence grows. Similarly near P = P0

the carrying capacity dominates the linear growth rate.

The model can be solved by the following sequence of steps,

dP

dt
= α

P

P0

(P0 − P )

dP

P (P0 − P )
=

α

P0

dt

P

P0 − P
= C exp (αt). (2.6)

where C is a constant.
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At t = 0, P (0) = ε gives

P (t) =
P0ε exp (αt)

P0 + ε (exp (αt)− 1)
. (2.7)

The exact solution confirms the conclusion regarding the two steady states reached
above. Here P (t) determines a bounded population for all time.

When the death term is there (β 6= 0) the model equation can be reduced to an identical
mathematical form as follows.

dP

dt
= αP (1− P

P0

)− βP

dP

dt
= (α− β)P − αP

2

P0

dP

dt
= α̃P (1− P

P̃0

), (2.8)

where

α̃ = α− β

P̃0 = P0
α− β
α

. (2.9)

This is in the same form as above when β = 0. For α̃ > 0, P = 0 is a unstable
equilibrium point and P = P̃0 is a stable equilibrium point. For α̃ < 0, P → 0+ from
above. Therefore this model fails to predict a positive equilibrium when α̃ < 0. In the
physical environment the sign of α̃ will vary in space. This type of description is discussed
in the following subsection.

2.1.3 Model with growth and death rate as a function of depth

The model discussed in the previous subsection fails to predict a positive equilibrium in
certain portions of parameter space. In a field situation, whether this is actually the
case will depend on a complex interplay between factors that facilitate algae growth (the
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availability of sunlight, reasonable temperatures, etc.) and those that lead to ice algae
death (excessive cold, lack of sunlight). This observation motivates studying a model with
α̃ as a function of depth (z) of the sea ice layer. Before discussing the model, we outline
the assumptions made in deriving the model. Assume z = 0 is at the top of the upper
surface of the ice and z increases downward. At the upper surface there is more light and
generally a lower temperature compared to the bottom surface. Therefore algae grow faster
as well as die off faster. This implies α is large but β > α. At the bottom surface there
is less light, but the temperature is warmer compared to to the upper surface, due to the
proximity to liquid water. This implies α is small, however β can be expected to be even
smaller. We thus assume β decays faster than α with depth. Let’s assume

α(z) =
α0

z

β(z) =
β0
z2
. (2.10)

Here α0, β0 > 0. According to the chosen α and β,

α̃(z) =
α0

z
− β0
z2
, (2.11)

and

P̃0 = P0
α− β
α

P̃0 = P0(
α0

z
− β0

z2

α0

z

)

P̃0 = P0(1−
β0
α0z

). (2.12)

Consider α̃ = 0. Then,

α0

z
− β0
z2

= 0

z =
β0
α0

(2.13)
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When this is the case the equation (2.12) becomes,

P̃0(z =
β0
α0

) = 0. (2.14)

This verifies the natural behavior of the population when β dominates α, P = 0 at
z = β0

α0
. On the other hand as z → 0 from above the equation (2.11) becomes,

α̃(z) = O(
1

z2
) < 0. (2.15)

This shows that model is singular near z = 0. To obtain a model that remains regular
near z = 0 we need to define α and β in a different way. Let’s move on to a model assuming
that α and β decay by a fixed percent at regular intervals of depth z. Therefore α and β
can be defined as an exponential decay.

α = α0 exp(
−z
Lα

)

β = β0 exp(
−z
Lβ

). (2.16)

Relevant to the above,

At z = 0, α = α0 and β = β0.

To set α̃ < 0 at z = 0, need β0 > α0.

To ensure that β falls faster than α, we need to set Lβ < Lα.
According to the chosen α and β as in (2.16),

α̃ = α0 exp(
−z
Lα

)− β0 exp(
−z
Lβ

). (2.17)

When α̃ = 0 there is no population growth and if we label the depth where this occurs
as z∗, we find
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α0 exp(
−z∗
Lα

) = β0 exp(
−z∗
Lβ

)

z∗ = (
LβLα
Lα − Lβ

) ln(
β0
α0

) > 0. (2.18)

For z > z∗ > 0 and α̃ > 0 the system tends to the equilibrium.

P̃0 = P0
α− β
α

P̃0 =
α0 exp(−z

Lα
)− β0 exp(−z

Lβ
)

α0 exp(−z
Lα

)
P0

P̃0 = (1− β0
α0

exp(−z(
1

Lβ
− 1

Lα
)))P0. (2.19)

Here 1
Lβ
− 1

Lα
> 0 and as z →∞ , P̃0 → P0.

Moreover
dP̃0

dz
> 0

and so the equilibrium population increases with depth, for z > z∗. Let’s consider P̃0 at
z∗.

P̃0(z∗) = (1− β0
α0

exp(ln(
β0
α0

)))P0

P̃0(z∗) = (1− 1)P0 = 0. (2.20)

This confirms that when α − β = 0 the equilibrium population goes to zero. Figure
(2.1) displays α̃ and how the population P varies with the depth z.

The above results demonstrate that the model remains regular at the top of the ice layer
and it predicts a zero population for 0 ≤ z ≤ z∗, the region where α − β < 0. For z > z∗

the population will grow with increasing equilibrium population. Thus to summarize, the
logistic growth model with spatially variable growth rate and death rate is more consistent
with the natural environment. However, this model does not consider the physical spatial
spread of the population. Therefore the model should be augmented. It should be noted
that in the above there is no mechanism by which organisms change their depth (z) and
thus z dependence is parametric only and a local stability analysis is thus valid.
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Figure 2.1: The difference of growth rate and death rate (top) and changes in population
with the depth (bottom)

2.1.4 Model with diffusion

The minimal rational model of ice algae population will include both the spatially de-
pendent birth and death parameters associated with a spatially varying distribution of
light, temperature and nutrients, and the natural spreading of the population in space. In
agreement with the mathematical literature, [18]., this model consists of a logistic model
to describe the population dynamics and a diffusion term to describe the spatial spread of
population,

∂P

∂t
= κ

∂2P

∂z2
+ (α− β)P − αP 2

P0

, t > 0, x ∈ (0, L)

P (z = 0, t) = Pz(z = L, t) = 0

P (z, t = 0) = f(z, t) (2.21)

Since it is very cold on the surface, boundary condition on the surface of ice is P = 0
and no flux of population at z = L.

Here κ denotes the diffusion coefficient, which in a fluid environment can be thought
of as being set by the fluid turbulence.
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α = α0 exp(
−z
Lα

)

β = β0 exp(
−z
Lβ

) (2.22)

Here α and β are defined as exponentially decaying functions based on the assumption
that α and β decreasing by a fixed percent at regular intervals of depth z. Equation (2.21)
is impossible to solve analytically. It is thus appropriate to solve it numerically. The
details of the numerical methods are discussed in the following subsection. One of the
things numerical models will be able to tell us is whether the naive stability analysis based
on the reactive equilibrium carries over to the case with diffusion.

2.2 Description of Numerical Methods

This section discusses the background necessary to obtain the numerical solution of reaction
diffusion equations. It is well known [17] that diffusion problems require implicit methods
to maintain a reasonable time step (unless the diffusivity is very small in which case an
explicit scheme may be possible). However, the logistic growth term in (2.21) is nonlinear
and as such is more conveniently treated by an explicit scheme. The reconciliation between
these two methods is referred to as the Strang splitting method.

2.2.1 Strang splitting method

This method splits the governing equation into several parts which are solved independently
on the time intervals [tn, tn+1]. Time splitting methods, or fractional step methods, create
splitting errors in each time step. Even with exact integration of each subpart the final
result will be only first order accurate. This has been improved to second order accuracy
with Strang splitting method [17].

Conceptually, splitting can be thought of as solving the ordinary differential equation
for the reaction,

dP

dt
= (α− β)P − αP 2

P0

. (2.23)

and the partial differential equation for the diffusion

∂P

∂t
= κ

∂2P

∂z2
. (2.24)
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The idea of the Strang splitting method is to solve the first part (2.23) for a half time
step, then the result obtained is use to solve the second part (2.24) over a full time step
and this result is used to solve the first part (2.23) again for another half a time step.

There are many methods to numerically solve an ordinary differential equation in prac-
tice. Euler’s method is the simplest numerical algorithm, but it is generally not recom-
mended in practical situations [14]. Note however, that Euler’s method is really important
since most of other advanced numerical methods are derived using the same idea as Euler’s
method (i.e. Taylor series). There are multi step methods as well as multistage methods
in practice to solve an ODE [17]. Multi step methods use values of solutions calculated at
previous time levels (P n, P n−1, P n−2 etc.) to approximate P n+1. This can give high order
of accuracy when using polynomial interpolation with high order polynomials [27]. In order
to obtain high order of accuracy with one step methods like Runge-Kutta it is essential to
use a multi stage method [17]. Multi stage methods calculate several in between values of
the solution in each time step. Below is the derivation of second order two stage Runge
Kutta method as an extension of Euler’s method.

2.2.2 Runge-Kutta method

In general assume

dP

dt
= f(t, P (t)). (2.25)

Then use the Euler’s method to approximate the value P (tn + 0.5∆t) which is for a
half of a time step.

P ∗ = P n + 0.5∆tf(t, P n). (2.26)

For the next step use this result to approximate P (tn+ ∆t) which is for a full time step
as follows.

P n+1 = P n + ∆tf(P n + 0.5∆tf(t, P n)). (2.27)

This is second order accurate (and is sometimes referred to as the midpoint rule). (Refer
chapter 6 of Finite Difference Methods for Differential Equations [17] for further details).
The fourth-order Runge-Kutta method is an extension of the idea presented above, and
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advances the solution through four sub-steps and combines these evaluations to achieve
fourth order accuracy at each time step [14].

In general, in order to solve the equation (2.23)

dP

dt
= (α− β)P − αP 2

P0

= f(t, P (t)), (2.28)

fourth-order Runge-Kutta method requires us to calculate,

K1 = ∆tf(tn, P n)

K2 = ∆tf(tn +
∆t

2
, P n +

K1

2
)

K3 = ∆tf(tn +
∆t

2
, P n +

K2

2
)

K4 = ∆tf(tn + ∆t, P n +K3)

P n+1 = P n +
K1

6
+
K2

3
+
K3

3
+
K4

6
+O(∆t5), (2.29)

where ∆t is the step size and the superscript n denotes the number of iteration.

2.2.3 Numerical solutions of the diffusion equation and stability
analysis

Various numerical schemes are discussed in standard books like [17], [31] to find numerical
solutions of the diffusion equation (2.24). Below provides a overview of numerical solutions
to diffusion equation using the finite difference method. Use centered difference in space
and a forward difference in time to discretize the diffusion equation (2.24) as follows,

P n+1
j − P n

j

∆t
=

1

∆x2
(P n

j+1 − 2P n
j + P n

j−1)

P n+1
j = P n

j +
∆t

∆x2
(P n

j+1 − 2P n
j + P n

j−1). (2.30)

This is an explicit scheme since the values calculated at previous time levels are used
to calculate P n+1. Von Neumann analysis can be used to analyze the stability since (2.24)
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is a constant coefficient linear PDE [17]. The Von Neumann analysis [17] (chapter 12) for
(2.30) gives the requirement for stability as,

∆t

∆x2
≤ 1

2
. (2.31)

The above equation (2.31) displays the stability condition for the equation(2.24) using
an explicit scheme. This forces the time step to be too small for practical use (though
in one dimension this could be done since the memory requirements are small), in order
to have a stable solution. Therefore this is not an efficient method to solve the diffusion
equation. Other well known [17] methods are the implicit, or backward Euler method, or
the Crank Nicholson method. These are first and second order method, respectively. Both
methods are unconditionally stable, or in other words stable for any choice of ∆t and ∆x.
This can be proved using Von Neumann analysis. Further details can be found in [17]
(chapter 12).

2.2.4 Chebyshev method for spatial discretization

The results of the Runge-Kutta scheme presented above can be used to step the reaction
part of the governing equation forward, while an implicit scheme can be used to advance
the partial differential equation (2.24) forward in time. However, the spatial derivatives
must be discretized as well. While finite difference schemes are commonly discussed in
textbooks [17], it is possible to derive methods whose order of accuracy increases with the
number of grid points. These are known as Chebyshev pseudo spectral methods and an
outline of their use is presented below. For details see chapter 6 of the textbook "Spectral
Methods in Matlab" [27].

To approximate the derivative of a function with spectral accuracy on a periodic do-
main, trigonometric polynomials on uniform grids are used [27] (chapter 1). For non
periodic problems algebraic polynomials on unevenly spaced grid are necessary [27] (chap-
ter 1). The Chebyshev method is a spectral collocation method which interpolates given
data on a set of grid points with a polynomial, finds the derivative of the interpolating
polynomial, and finally evaluates the derivative at the grid points. The set of Chebyshev
points is given by [27]

xj = cos(jπ/N) , j = 0, 1, ...., N, (2.32)
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while the Chebyshev differentiation matrix is defined as,

(DN)ij =
ci
cj

(−1)i+j

xi − xj
, i 6= j, i, j = 0, ....., N, (2.33)

where
ci =

{
2, i = 0 or N
1, otherwise

for the off diagonal elements and

(DN)ii = −
N∑

j=0,j 6=i

(DN)ij, (2.34)

for the diagonal elements.

2.2.5 Numerical solutions of the PDE

To obtain a numerical approximation for the PDE we used the backward difference formula
at time tn+1 for the time derivative and the Chebyshev spectral method for the spatial
derivative. In MATLAB, the function cheb [27](page 54) is used to obtain the Chebyshev
grid and the differentiation matrix.

∂P

∂t
= κ

∂2P

∂z2
.

P n+1 − P n

∆t
= κD2P n+1

(I − κD2∆t)P n+1 = P n. (2.35)

Here D denotes the Chebyshev differentiation matrix and I denotes the identity matrix.
The second derivative is calculated by squaring the differentiation matrix D. As the next
step we need to impose the boundary conditions. According to Trefethen [27] chapter 13,
to enforce the Dirichlet boundary conditions remove the last row and last column. On
the other hand since we have a Neumann boundary condition at the right end point use
the differentiation matrix to replace the first row. This means (n− 1) rows of the matrix
(I − κD2∆t) of the system of equations will calculated from D2 and one row from D.

Equation (2.35) can be solved implicitly for P n+1 and this can be again used to solve
the ODE (2.23) for a half of a time step.
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2.2.6 Numerical solutions of the Reaction Diffusion Equation

The complete algorithm for the numerical solutions of the reaction diffusion equation is
thus given by the following series of steps. From equation (2.29)

K1 = 0.5∆tf(tn, P n)

K2 = 0.5∆tf(tn +
∆t

4
, P n +

K1

2
)

K3 = 0.5∆tf(tn +
∆t

4
, P n +

K2

2
)

K4 = 0.5∆tf(tn +
∆t

2
, P n +K3)

P n+1
∗ = P n +

K1

6
+
K2

3
+
K3

3
+
K4

6
+O((

∆t

2
)5). (2.36)

From equation (2.35)

(I − κD2∆t)P n+1
∗∗ = P n+1

∗ . (2.37)

Again using the equation (2.29)

K
′

1 = 0.5∆tf(tn, P n+1
∗∗ )

K
′

2 = 0.5∆tf(tn +
∆t

4
, P n+1
∗∗ +

K
′
1

2
)

K
′

3 = 0.5∆tf(tn +
∆t

4
, P n+1
∗∗ +

K
′
2

2
)

K
′

4 = 0.5∆tf(tn +
∆t

2
, P n+1
∗∗ +K

′

3)

P n+1 = P n+1
∗∗ +

K
′
1

6
+
K
′
2

3
+
K
′
3

3
+
K
′
4

6
+O((

∆t

2
)5). (2.38)

After a finite number of iterations P n+1 is the numerical solution of the reaction diffusion
equation (2.21) obtained from the above described numerical methods.
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Figure 2.2: Absolute stability regions for explicit Runge Kutta schemes of orders 1 to 4 [31]

As we discussed above an appropriate time step is crucial for a numerical method to
be stable. Numerical solutions to the equation (2.23) with a appropriate value of ∆t are
called absolutely stable if |P n| ≤ |P 0| for all n [31].

Figure (2.2) displays the absolute stability regions for the explicit Range Kutta scheme.
For the each case of order 1 to 4 of explicit Range Kutta Scheme the absolute stability
region indicated within the curve [31]. Refer chapter 2 of [31] for a more detailed discussion.

The above described numerical methods have been coded up, and the resulting numer-
ical solutions have been analyzed using MATLAB. The following Section,(2.3), discusses
these results.

2.3 Numerical Results

The content here describes the numerical solutions for the equation (2.21) discussed above.
The equation is solved using fourth order explicit Range Kutta scheme for the reaction,
implicit time stepping for the diffusion, with Strang splitting, as described in section (2.2).
The numerical solution we get for the population P (z, t) is graphed in several ways to
analyze the reaction diffusion model.
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Figure 2.3: (a) Population (P) dynamics as the depth (z) varies using reaction diffusion
model. Here α = exp

(
− z

10

)
, β = 1.5 exp

(
− z

5

)
. Population is zero when α − β < 0 and

the population (red) increases and reaches the reactive equilibrium (blue) when α−β > 0.
The initial condition consists of a small random perturbation of the zero equilibrium.

Figure (2.3) illustrates how the population P (z, t) changes with time and approaches
the equilibrium related to the chosen α, β and a constant diffusion coefficient (κ = 1×10−3).
The bottom right panel of the figure (2.3) shows the population distribution when it has
essentially reached a steady state. According to the chosen α and β the population is zero
within the range of α̃ = α− β < 0 and when α̃ = α− β > 0 the population grow towards
the equilibrium, but diffusion modifies the steady state value from that predicted by the
ODE theory.
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Population increase initially then become constant.

Lets consider the growth of population near the bottom layer of ice. Figure (2.4)
shows the population distribution at a fixed depth (z = 15). Initially population grow and
eventually becomes constant with time.

Figure (2.5) illustrates the effect of change in the strength of diffusion, or in other
words changing κ. For small values of the diffusion coefficient a stable non-zero solution
is established and this solution matches the prediction of the governing ODE for a pure
reaction system (κ = 0). In contrast, for larger diffusion coefficient, the solution deviates
from the reactive equilibrium. Essentially, it is smoother and controlled to a greater degree
by the boundary conditions. According to figure (2.5), for very large values of diffusion
coefficient κ, the population will tend towards P = 0 and become absorbed (basically due
to the Dirichlet condition at the surface), hence P = 0 is a stable steady state in the high
diffusion limit.

There is another significant insight that we gain from the figure (2.5) for smaller values
of κ. This shows that there is a region near z∗ and near the right boundary where the
solution changes rapidly. These are called boundary layers [24]. There are two boundary
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. Population deviates from the equilibrium for large diffusion

coefficients and reach the equilibrium for smaller diffusion coefficients.

layers that need to be analyzed, one near z∗ and one near the right boundary where
∂P
∂z

= 0. The thickness of each boundary layer region depends on the diffusion coefficient
and numerical methods can be used to get an idea of how this region of boundary layers
behaves as κ changes. The following methodology is used to measure the thickness of the
boundary layer regions in which the diffusive region is different from the ODE steady state.

In this case the differences between the value of population and purely reactive equilib-
rium was calculated and graphed as the first step. Figure (2.6) shows there are two peaks;
at the right boundary and at the point where corner of the equilibrium placed as a result
of the boundary layers. In order to measure the thickness of the boundary layers it is easy
to get the half width of the peaks.
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Figure 2.6: Difference of population and the equilibrium for different values of diffusion
coefficients. The two peaks at the right boundary and at z∗ are the results of boundary
layers at the two points.

The difference of population and equilibrium was scaled by the maximum value of the
difference for ease of the calculations. The intermediate peak was considered first which
relates to the internal boundary layer at the corner. Related values of depth were calculated
where the scaled difference is one (at the peak) and at the place where the scaled difference
is equal to 0.5. The half width is calculated by the difference of values of depth obtained
above. Note that the half width is always positive so the absolute value of the difference
was taken.

Since

Lc ∼ κp

Lb ∼ κq

(2.39)

where Lc and Lb are the width of the peaks at the corner and the boundary respectively.
Therefore the half width of the peak can be determined as a function of κ. Once the
half width is calculated the logarithm value of half width graphed with logarithm value
of κ. According to the equation (2.39), the slope of the graph should give the value of
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power p. If the computation is carried out for long times, the predicted value is essentially
time dependent and provides an estimate for how boundary layer thickness scales with
diffusivity.
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Figure 2.7: Log of half widths of the boundary layer at the corner of the equilibrium, for
different values of Kappa. The linear data fit of the form p1x + p2 is with the coefficients
p1 = 3.2611, p2 = −1.0213, norm of residuals (r) = 0.092545

Figure (2.7) displays a best linear fit where the slope of curve should give the value of
the power of κ at the corner. The slope of the linear fit is 3.2611.

The region near the right boundary can also be analyzed in the same way in order to
get an estimate for the width of the boundary layer. The difference of population and
equilibrium was scaled by the value at bottom boundary. Half width for the boundary
layer at the right end is calculated using the same method as above. Base on the equation
(2.39), the slope of the graph should give the value of power q.
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Figure 2.8: Log values of half widths of the boundary layer at the right boundary, for
different values of Kappa. The gradient of this graph gives the value of the power q. The
linear data fit of the form p1x+ p2 is with the coefficients p1 = 1.905, p2 = −1.7361, norm
of the residual is (r) = 0.065714

According to the figure (2.8) the power of κ near the right boundary is 1.905. The
boundary layers are analyzed in more detail using Pertubation theory in the next section
(2.4).

2.4 Perturbation Theory and Asymptotic Analysis

While we have solved the reaction diffusion model numerically, it can also be understood
using perturbation theory. This is accomplished in this subsection using modified, simpler
problems. Perturbation theory includes various techniques of finding an approximate solu-
tion to a problem which is impossible to solve analytically. These develop a series expansion
in terms of a small parameter and the first few terms of the series give an approximation
to the solution.

As a first step the Reaction Diffusion model (2.21) can be solved by regular perturbation
theory. The idea here is to start with the full form of the equation and expand it in terms
of the small parameter κ = ε.
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We then look for a solution as a Taylor series in ε.

P (ε) = P (0) + P (1)ε+O(ε2). (2.40)

O(1) problem :

∂P (0)

∂t
= (α− β)P 0 − α

P0

(P (0))2, (2.41)

with the initial condition and boundary conditions,

P (0)(z = 0) = 0

P (0)
z (z = L) = 0

P (0)(t = 0) = f(z). (2.42)

The leading order solution is,

P (0) =
P̃0f(z) exp(α̃t)

P̃0 + f(z)(exp(α̃t)− 1)
, (2.43)

where α̃ = α− β and P̃0 = P0
α−β
α

.

The leading order solution obviously satisfies the initial condition and Dirichlet bound-
ary condition at z = 0 according to the choice of α and β. But P (0)

z (L) 6= 0, hence it does
not satisfy the Neumann boundary condition at the right end. Also, the solution does not
have a derivative at z∗ so cannot satisfy the steady state PDE. Zero Neumann boundary
conditions specify that either the population is isolated (with no incoming or outgoing flow
of organisms) or else the population stays in a dynamic balance with the inflow or out-
flow of individuals at the boundaries [31]. Thus it can be expected a boundary layer will
exist at the right boundary and a second boundary layer will exist at the corner (z = z∗)
where the change of stability occurs. This implies that the solution obtained from regular
perturbation theory is only an outer solution and an inner solution must be found.

In order to make the algebra as simple as possible we modify the original problem to
look at each type of boundary layer on its own. In particular we will find it easier to work
with a situation where the boundary layer occurs at z = 0.

ε
d2P

dz2
− (P − (1− z)) = 0, (2.44)
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where

P (1) = 0 and Pz(0) = 0. (2.45)

The model equation presented above captures what happens near the bottom of the
ice where a Neumann boundary condition is imposed, but α > β so we get a non-trivial
equilibrium. The equation is constructed so that it has an exact solution and satisfies the
boundary condition. The solution reads as,

P (z) =
e
z√
ε e
− 1√

ε
√
ε

e
1√
ε + e

− 1√
ε

− e
−z√
ε e

1√
ε
√
ε

e
1√
ε + e

− 1√
ε

− z + 1. (2.46)

Maple can be used to analyze the exact solution for the boundary layer near z = 0.
Below is the illustration of the result of the model equation (2.44) with the boundary
conditions (2.45).

Figure 2.9: Exact solution to the model DE (2.46) that captures behavior near the bottom
of the ice with Neumann boundary condition. Horizontal axis has the values of depth and
vertical axis represent the values of population.
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Figure (2.9) shows the behaviour of the exact solution (2.46) for two different ε along
with the outer solution 1− z. The rate of change of population starts from zero at the left
endpoint. The solution, however, rapidly tends to the outer solution 1 − z. In order to
look at the boundary layer thickness we subtract the outer solution from the exact solution
(2.46). Then the inner solution reads

Pin(z) =
e
z√
ε e
− 1√

ε
√
ε

e
1√
ε + e

− 1√
ε

− e
−z√
ε e

1√
ε
√
ε

e
1√
ε + e

− 1√
ε

. (2.47)

The inner solution can be scaled so that its maximum is one, and this scaled solution
reads

Pin_scaled(z) =

∣∣∣e−1+z
ε − e−

(−1+z)
ε

∣∣∣ e 1√
ε

−1 + e
2√
ε

, (2.48)

and can be expanded in a series about z = 0, since the boundary layer is presumably thin.

Figure 2.10: Left side graph represent the inner boundary layer solution (2.47) near z =
0 for three different ε’s. Right side graph represents the scaled boundary layer to its
maximum (2.48).
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The linear approximation for the scaled inner solution is as follows.

Pin_scaled(z) = 1− e
2√
ε + 1

√
ε(−1 + e

2√
ε )
z +O(z2). (2.49)

Below figure (2.11) shows how the leading polynomial of the equation (2.49), approxi-
mates the scaled inner solution.

Figure 2.11: The leading order of the linear approximation to the scaled boundary layer
solution (green) with the scaled inner solution (red) near z = 0

According to the graph (2.11), it is appropriate to define the boundary layer thickness
where 99% of the boundary values included. Therefore solving the linear part of the
approximation with the 99% value,

1− e
2√
ε + 1

√
ε(−1 + e

2√
ε )
zboundary =

99

100
. (2.50)

We get the boundary layer solution as,
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zboundary =
1

100

√
ε(−1 + e

2√
ε )

e
2√
ε + 1

. (2.51)

As mentioned above there is another boundary layer near the z∗ where α − β = 0.
There is a switch in stability from the equilibrium P = 0 to the non trivial equilibrium at
this point. The following simplified model equation captures the behaviour near z∗.

ε
d2P

dz2
− (P − z H(z)) = 0, (2.52)

where

P (−1) = 0 and P (1) = 1. (2.53)

Unlike my full Reaction Diffusion system this has an exact solution as a function of ε
and this solution reads

P ∗(z) =
1

2

(
e
z√
ε
√
εe

1√
ε

e
1√
ε + e

−1√
ε

− e
−z√
ε
√
εe
−1√
ε

e
1√
ε + e

−1√
ε

−H(z)(−2z + e
z√
ε
√
ε− e

−z√
ε
√
ε)

)
. (2.54)

As earlier, we subtract the outer solution zH(z) from the exact solution (2.54). Then
the inner solution reads,

P ∗in(z) = −1

2

(√
εe

1√
ε (−e

z+1√
ε + e

− z+1√
ε +H(z)e

z+1√
ε +H(z)e

z−1√
ε −H(z)e

− z−1√
ε −H(z)e

− z+1√
ε )

e
2√
ε + 1

)
.(2.55)

As previously done, the inner solution was scaled so that its maximum is one, and this
yields

P ∗scaled(z) = −e
1√
ε (−e

z+1√
ε + e

− z+1√
ε +H(z)e

z+1√
ε +H(z)e

z−1√
ε −H(z)e

− z−1√
ε −H(z)e

− z+1√
ε )

e
2√
ε − 1

.(2.56)
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Figure 2.12: Left side graph represent the boundary layer near z = z∗ (2.55)for three
different ε’s. Right side graph represents the scaled boundary layer to its maximum (2.56).

It is important to notice that the inner solution at z∗ has two parts, one for z < 0
and the other one for z > 0. According to the right side graph of figure (2.12) the inner
solution is symmetric about z = 0, with a cusp at z = 0. Therefore the solution cannot be
expanded as a series about z = 0. However, since we only care about the thickness of the
boundary layer, we can select a ’one sided solution’, and expand it to as a series, and only
apply this series for the portion of the solution in which the series is valid. We choose the
solution for z < 0, since this makes Heaviside function to zero, and hence simplifies the
expression,

P ∗scaled one sided(z) =
e

1√
ε (e
− z+1√

ε − e
z+1√
ε )

1− e
2√
ε

. (2.57)

Figure (2.13) shows the one sided solution with the scaled inner solution for ε = 1
100

.
The linear approximation to the one sided scaled inner solution is,

P ∗scaled one sided(z) = 1 +
e

2√
ε + 1

√
ε(−1 + e

2√
ε )
z +O(z2). (2.58)
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Figure 2.13: The boundary layer ’one sided’ solution for z < 0 (blue) and scaled boundary
layer solution (red) with ε = 1

100

Then proceed with the same calculation as for the previous boundary layer.

1 +
e

2√
ε + 1

√
ε(−1 + e

2√
ε )
z =

99

100
. (2.59)

Then we get the boundary layer thickness at z∗ as,

z∗boundary = − 1

100

√
ε
e

2√
ε − 1

(1 + e
2√
ε )
. (2.60)
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Figure 2.14: Boundary layer thickness at z = 0 (red) and (-)boundary layer thickness at
z = z∗ (blue)

Figure (2.14) shows that in fact the thickness of the boundary layer is the same to first
order, and scales roughly like the square root of the diffusivity. Estimating the scaling for
the diffusivity allows us to qualitatively understand the essential features of the numerical
solution.

In summary the above work allows us to reproduce the essential features of the preced-
ing numerical simulations in augmented systems that have exact solutions which may be
analyzed after the fact. Future work should aim to reconcile the reduced systems with the
original system, perhaps with a detailed matched asymptotic analysis.
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Chapter 3

A simple ecosystem model

3.1 What is an NPZD model

There are many difficulties in representing the complex biology of the marine ecosystem
in terms of tractable mathematics. We follow the basic modelling approach of tracking
"energy" as it moves between abstract modules of the model which correspond to different
biological entities (e.g. zooplankton, phytoplankton, nutrients, etc.). Aside from the prac-
tical issues of data acquisition from observations and/or experiments, the primary issue
is in deciding the number of modules that should be contained in the model [20]. Often
this depends on the purpose of the experiment or fieldwork, though in the present case we
are looking to explore theoretically more complex models than those of the previous chap-
ter. Our model is based on four important components namely Nutrient, Phytoplankton,
Zooplankton and Detritus (NPZD).

NPZD is a commonly used type of an ecosystem model [20]. The main idea of this
chapter is to investigate the interactions of these variables based on the study of Soetaert
and Herman [20]. The simulation carried out in Soetaert and Herman’s study is written
using R ,and in this chapter we develop the model in Matlab, supplementing it with a diffu-
sion component similarly to [11]. We subsequently perform several numerical experiments
to address the effect of varying model parameters that represent a variety of physical and
biological processes (turbulence level, water turbidity, efficiency of predation, etc.).
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3.2 A description of our model

There are many physical and biological conditions which effect the behaviour of any one
member of an ecosystem. The implemented NPZD model considers four categories of
variables in the somewhat abstract classes Nutrient, Phytoplankton, Zooplankton and
Detritus. According to Soetaert [20] nitrate and ammonium are taken as the nutrient
sources to the model and plants in the lake ecosystem as phytoplankton. Animals who graze
upon phytoplankton are referred to as zooplankton. Detritus includes waste of zooplankton
and phytoplankton by death or faeces. The model consists of 4 state variables that are
connected with 7 flow rates.

The model thus solves four differential equations for the state variables. Spatial ef-
fects are included through a diffusion term which can be thought of as a very primitive
parametrization of fluid turbulence. The diffusion terms are implemented using an implicit
backward time stepping scheme on a Chebyshev grid in depth. The numerical method used
here is the same method that is discussed in chapter 2.

The results are subsequently expressed graphically using MATLAB. We next discuss
the basic formulation of the model, or in other words the flow chart, the conceptual model
and its mathematical formulation. This is followed by a discussion of the design of the
numerical experiments and a discussion of the individual experiments themselves.

3.2.1 Flow chart

This is the starting point of population modeling [20]. First we need to define the problem
by identifying the main modules (state variables) represented by boxes, along with the
flows which connect the variables, and describe the conversion of "energy" between them.
Flows are represented by arrows connecting boxes. Figure (3.1) shows the flow chart of
the model.
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Figure 3.1: Flow chart for the Nutrients (N), Phytoplankton (P), Zooplankton (Z) and
Detritus model.α and β are positive constants and I is the predation function.

f1 = Nutrient uptake
f2 = Zooplankton grazing
f3 = Growth
f4 = Nutrient excreation
f5 = Death
f6 = Nutrient uptake
f7 = Phytoplankton loss (sinking)
f8 = Detritus remineralisation
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3.2.2 Conceptual model

The second step is the construction of a conceptual model which simplifies the system by
using the flow chart, for each flow. This defines the time derivative of state variables, or
in other words the rate of change of variables as a summation of sources and sinks. Arrow
heads are drawn from the sinks and toward the sources. Below is the conceptual model for
the NPZD model.

The differential equations for the changes of N,P,Z and D are given by,

dN

dt
= - Nutrient uptake + Detritus remineralisation + Nutrient excreation

dP

dt
= Nutrient uptake - Phytoplankton loss (sinking) - Zooplankton grazing

dZ

dt
= Growth - Death

dD

dt
= - Remineralisation + Zooplankton faecal + Zooplankton death + Phytoplankton loss

(3.1)

Here time is measured in days and concentrations of N, P, Z, and D are measured in
mmolNm−3. All the parameters used are positive constants.

3.2.3 Mathematical formulation

In this step all the flows of the conceptual model are written as mathematical equations.

dN

dt
= − N

KN +N
µ exp(

−x
optLen

)P + kD + (1− α− β)IZ

dP

dt
=

N

KN +N
µ exp(

−x
optLen

)P −m1P − IZ

dZ

dt
= αIZ −m2Z

dD

dt
= −kD + βIZ +m2Z +m1P

I =
P

Kp + P
Imax. (3.2)
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Below is a brief description of the terms in the equation(3.2).

According to Soetaert and Herman [20] when modelling the interaction between two
modules, the key step is to identify the module which carries out the work and controls
the maximal strength of the interaction [20]. So the maximum interaction is written as

max_ Interaction ∝ Worker
max_ Interaction = max_Rate×Worker. (3.3)

Since max_ Interaction has to be bounded this should include a rate limiting term.
The rate limiting term is a term influenced by either limited sources or inhibitors [20]. So
the the interaction can be written as

max_ Interaction = max_Rate×Worker× Rate_ Limitation× Rate_ Inhibition
. (3.4)

When it comes to Nutrient uptake, equation (3.4) becomes,

Nutrient Uptake = max_Rate× P × Rate_ Limitation× Rate_ Inhibition. (3.5)

since phytoplankton is the component which carries out the work. Here the rate limiting
term should be a function of Nutrient [20].

Nutrient uptake is modelled by using a Michaelis - Menton function [20] N
KN+N

as the
rate limiting term. KN is known as the half saturation constant [20]. The inhibition term is
written as an exponential term using the optical length for decay of phytoplankton growth
with depth. The growth rate decreases exponentially with depth due to light limitation.

Phytoplankton feed zooplankton and the model uses a predation function P
kp+P

Imax to
represent the grazing, which is again a Michaelis - Menton function. A fraction α < 1
of the grazing of zooplankton is used for the growth of zooplankton and another fraction
β < 1 is converted to detritus module as zooplankton feces. In this model zooplankton
can graze only upon phytoplankton, whereas in reality they can graze upon detritus as
well [25]. The production of zooplankton, zooplankton faeces and zooplankton excretion
is modelled as a function of grazing.
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Zooplankton_ Growth = growthRate×Grazing. (3.6)

Faeces = faecesFraction×Grazing. (3.7)

Zooplankton_ Excretion = excretionRate×Grazing. (3.8)

Detritus accumulates due to the death of phytoplankton and zooplankton, as well as
the production of fecal pellets by the zooplankton. For spatial models detritus is assumed
to diffuse like the other three categories, but to also sink with a constant settling velocity,
ws [11].

The death of zooplankton and phytoplankton are represented as,

Zooplankton_ Death = deathRate× Zooplankton, (3.9)

and

Phytoplankton_ Death = lossRate× Phytoplankton, (3.10)

respectively.

Finally, detritus undergoes a process known as remineralization which converts detritus
to nutrients that can be reutilized by the phytoplankton,

Remineralization = remineralizationRate×Detritus. (3.11)

3.2.4 Consistency check

After the mathematical form, and interpretation of the individual flow terms are under-
stood, the next step is to assess the consistency of the units. As an example consider the
nutrient uptake. As described above

Nutrient Uptake = max_Rate
N

KN +N
µ exp(

−x
optLen

)P, (3.12)
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here time is denoted per day and phytoplankton concentration is in mmolNm−3. So
the equation (3.12) becomes

mmolNm−3d−1 = d−1
[

mmolNm−3

mmolNm−3 +mmolNm−3

]
, (3.13)

and is consistent in terms of units. The rate of change of total mass should be equal
to zero since there are no external sources and sinks [20], and this provides a second
consistency check. The total rate of change of mass can be expressed as follows,

d(Total_ mass)
dt

=
dN

dt
+

dP

dt
+

dZ

dt
+

dD

dt
= 0, (3.14)

and this confirms that the model is consistent for this particular component. The consis-
tency of the other components can be confirmed in a similar manner.

3.3 Results of the model

3.3.1 Design of the experiments

The numerical experiments carried out are summarized in Table 3.1.

Label Process Studied Parameter varied Parameter values
A Strength of Diffusion κ 0.0005, 0.001, 0.01
B Effect of zooplankton growth rate α 0.3, 0.7, 0.9
C Effect of zooplankton feces rate β 0.1, 0.3, 0.9
D Effect of settling velocity w_s 0, 0.1, 0.2
E Decay of phytoplankton growth due to light optLen 3,5,7

Table 3.1: Numerical experiments

Even for relatively simple models like the NPZD model, it is not easy to understand the
entire parameter range since varying all the parameters would produce an unmanageable
amount of data. Instead, it is more useful to study the effect of changes in important
parameters with respect to a control case. All the experiments stated above are simulated
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using the numerical method we discussed in chapter 2. 200 grid points has been used with
a time step of 0.05. By varying the number of grid points (a maximum of 1000 points was
used for one simulation, but others were more typically tried with between 100 and 400
grid points) we believe that this is a sufficient number of grid points to resolve the relevant
dynamics. The Neumann boundary condition is enforced at the surface for N, P, Z and
D. For the bottom, a Dirichlet boundary condition is enforced for N, P, Z and a Robin
boundary condition is enforced on detritus. The latter allows for settling of detritus out
of the water column. Initial conditions for N, P, Z, D are generated randomly using the
randn MATLAB function. The experiments thus demonstrate the evolution of the system
towards an equilibrium, though it should be noted it is the dynamics, as opposed to the
final state, of the system that is more interesting in our case.

The parameter values used for the control case are summarized in Table 3.2.

Parameter varied Parameter values
κ 0.001
α 0.7
β 0.3
w_s 0.1
optLen 5

Table 3.2: Values of parameters for the control case

All other parameter values which remained constant throughout the experiments are
summarized in Table 3.3.

Parameter Parameter values and units
µ 2 day−1

KN 1 mmol Nm−3

Kp 0.7 mmol Nm−3

m1 0.1 day−1

m2 0.1 day−1

k 0.05 day−1

Imax 1.5 day−1

Table 3.3: Values of other constant parameters used in the model

For the various models several standard plot types are used to illustrate the results.
LIne plots at a fixed time demonstrate the features of the populations at a fixed moment in
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time. While other measures (local averages for example) could be used, we found the single
time plots useful in demonstrating how the various components of the NPZD model vary
in size, and the space scales on which the plankton populations, in particular, vary. Space
time plots allow the reader to contrast the evolution of all four variables with both depth
(increasing to the right) and time (increasing upward). Downward propagating waves are
thus shown as streaks with a positive slope, while upward propagating waves are indicated
by streaks with a negative slope.

3.3.2 Experiment A

This introduces the basic model behaviour for the control case as well as how the changes in
diffusivity effect the various fields, especially the nutrient concentration. Here the growth
rate (α) is greater than faeces fraction (β). Figure (3.2) depicts the results of the control
model with given parameter values.

According to the figure (3.2), the amount of nutrient gradually increases with the
depth and has a maximum at a depth of 14 m, then decreases gradually. Phytoplankton
has regions of large and small population up to 15 m and has zero population underneath.
Zooplankton also has oscillations in population but the amplitudes of individual fluctua-
tions is less than that of phytoplankton. Detritus has a maximum of 1.8 near the depth of
8 m.
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Figure 3.2: Solutions for the NPZD model (control case) at t = 400 days. Here α =
0.7, β = 0.3, κ = 10−3, optLen = 5

Figure (3.3) shows the nutrient concentration for different diffusion coefficients after
400 days. It clearly shows that increasing the diffusivity leads to a smoother nutrient
concentration. It is also clear that there is a range of diffusivities for which qualitative
features, like the fluctuations visible in the red and green curves appear.

Concentration of nutrient, phytoplankton, zooplankton and detritus after 400 days is
represented in figure (3.4) for three different diffusivity values, κ. For all κ, phytoplankton
and zooplankton concentration become zero below a depth of 15 m. This fact can be
understood as follows. Production of phytoplankton is low near the bottom due to the
absence of light which makes photosynthesis impossible. This in turn reduces the amount
of zooplankton because of the lack of food. This also reduces the level of detritus as well,
and according to the equation (3.2) detritus remineralizes to nutrient at a rate of k. On
the other hand since the settling velocity for detritus is 10 cm per day, after 400 days a
fecal pellet has traveled 40 m down. This can be another reason for why the concentration
of detritus is nearly zero at and below 20 m. Note that diffusion is not strong enough to
overcome the sinking.
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Figure 3.3: Nutrient concentration for different diffusion coefficients. α = 0.7, β =
0.3, optLen = 5, settling velocity = 0.1m s−1
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Figure 3.4: Solution for the NPZD model at t = 400 days for different values of κ. w_ s
denotes the settling velocity. κ = 10−3 represent the control case.

Figure(3.5) shows how the concentrations of N,P,Z and D for the control case, change
with time and space while the figure (3.6) shows the concentrations for κ = 5× 10−4 .
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Figure 3.5: Space-time graph for the NPZD model (control case). (a) Nutrient (b)
Phytoplankton (c) Zooplankton (d) Detritus at t = 400 days. α = 0.7, β = 0.3, κ =
10−3, optLen = 5, settling velocity = 0.1 m s−1

The space-time plots in Figure (3.5) illustrate the qualitatively different behaviour of
the four fields. The Nutrient, panel (a), is typically low in the near surface region, but
increases to a peak value at depths between 8 and 14 meters. Before the high values are
reached, streaks are visible. These represent travelling waves. They are more clearly visible
in panels (b) and (c) which show the phytoplankton and zooplankton populations. It can
be seen that there are periods of travelling waves (the streaks are not horizontal) and
regions in which the population fluctuates in time only (the streaks are horizontal). From
panel (d) it is clear that the detritus is maximal near the surface, though this is largely
an artifact of the initialization. As the population evolves (the above discussed streaks
in panels b and c) fluctuations in population are reflected in similar streaks in detritus
concentration. For long times, detritus decays with depth, decaying to very low values
below a depth of 14 meters or so (for the reasons discussed above).

These results can be compared and contrasted with a lower diffusivity case shown in
Figure (3.6). A quick comparison suggests that many of the features remain quantitatively
similar. However the fluctuations in plankton populations (panels b and c) are now more
complex with some travelling waves for early times, followed by a complex pattern of spatio-
temporal fluctuations after t = 300. Decreased diffusion increases the gaps in between
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the streaks and this is more visible in plankton populations. This means that temporal
fluctuations measured during this period would have a longer period.

Figure 3.6: 2D graph for the NPZD model. (a) Nutrient (b) Phytoplankton (c) Zoo-
plankton (d) Detritus at t = 400 days. α = 0.7, β = 0.3, κ = 5 × 10−4, optLen =
5, settling velocity = 0.1 m s−1

3.3.3 Experiment B

This experiment studies the behaviour of the model for different values of zooplankton
growth rates. Figure (3.7) shows the behavior of N, P, Z and D with the change of
zooplankton growth rate (α) where α = 0.7 is the control case, after 400 days. The
zooplankton growth rate is less (greater) than the control case on the left (right). It can be
seen that when the growth rate is low, the rate of change of phytoplankton, zooplankton and
detritus remain approximately zero above a depth of 10 m. In contrast, when zooplankton
growth rate is higher than the control case (α = 0.9) the graph shows small fluctuations
in concentrations of phytoplankton, zooplankton and detritus near the surface as well as
rapid change in between the depth of 5 m to 15 m.
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Figure 3.7: Solution for the NPZD model at t = 400 days for different values of α. w_ s
denotes the settling velocity. α = 0.7 represent the control case.

According to the equation (3.2), for smaller α, the rate of change of zooplankton con-
centration becomes smaller. This leads directly to an increase in the concentration of
phytoplankton and reduces the detritus concentration, compared to the control case. In
contrast, for lager α, zooplankton concentration increases and phytoplankton concentration
decreases compared to the control case. Though, note that the fluctuations in phytoplank-
ton population also increase.

Compared to the figure (3.5) for the control case, the figure (3.8) shows there are
larger fluctuations in plankton concentration in between 5 m to 10 m after 200 days. For
α = 0.9 the concentration of nutrient and detritus (panels a and d) is more similar to the
control case during all 400 days. This emphasizes the fact that even though zooplankton
concentration is higher for α = 0.9, detritus is affected much, and indeed detritus may be
mostly increased by phytoplankton loss (death and sinking).
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Figure 3.8: 2D graph for the NPZD model. (a) Nutrient (b) Phytoplankton (c) Zoo-
plankton (d) Detritus at t = 400 days. α = 0.9, β = 0.3, κ = 10−3, optLen =
5, settling velocity = 0.1 m s−1

3.3.4 Experiment C

This experiment was carried out to study the behaviour of model for different values of
zooplankton faeces production rate. This ultimately varies the nutrient excretion rate.
Figure(3.9) shows the behaviour of N, P, Z and D with the change of zooplankton faeces
rate (β) and β = 0.3 is the control case. For smaller values of zooplankton faeces rate
(β = 0.1) there is a quick increase of zooplankton concentration in between 5m - 10 m and
at the same depth there is a quick drop of nutrient concentration.

According to the figure (3.9) for β = 0.1, zooplankton increment can happen due to
increased phytoplankton grazing because of the the increased amount of nutrients uptake,
since higher excretion. The drop of nutrient concentration can be explained by the factor of
lesser demineralization due to lack of detritus. Again there is a quick drop of nutrients for
larger values of zooplankton faeces rate (β = 0.9) and sudden peak of detritus in between 5
m −10 m. Compared to the control case, the concentration of detritus is high and the rate
of change of nutrient is low. This is clear since larger β increases the amount of detritus
and reduce nutrient excretion.
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Figure 3.9: Solution for the NPZD model at t = 400 days for different values of β. w_ s
denotes the settling velocity. β = 0.3 represent the control case.

Figure (3.10) clearly shows the increased number of travelling waves in the plankton
population (panels b and c) for β = 0.1. The amount of detritus is low near the surface
compared to the control case. There is a reduction in nutrient in between the depth of 8
m −14 m during the period from 200− 300 days. This is most likely due to the decreased
remineralization.

Figure (3.11) clearly shows the zooplankon loss near the surface comparing to the
control case and increased traveling wave activity in between 8m−12 m for both plankton
types. Detritus is gained between 6 and 12 m , and is a direct result of more zooplankton
death. There is a higher nutrient gain for β = 0.9 compared to the control case expressing
the fact of higher remineralization.
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Figure 3.10: 2D graph for the NPZD model. (a) Nutrient (b) Phytoplankton (c) Zoo-
plankton (d) Detritus at t = 400 days. α = 0.7, β = 0.1, κ = 10−3, optLen =
5, settling velocity = 0.1 m s−1

Figure 3.11: 2D graph for the NPZD model. (a) Nutrient (b) Phytoplankton (c) Zoo-
plankton (d) Detritus at t = 400 days. α = 0.7, β = 0.9, κ = 10−3, optLen =
5, settling velocity = 0.1 m s−1 57



3.3.5 Experiment D

This experiment studies the fact of how the change of settling velocity changes the be-
haviour of the model. Settling velocity denotes the sinking velocity of detritus. For w_
s= 0, phytoplankton, zooplankton and detritus concentration become zero near the depth
of 14 m according to the figure (3.12). Since there is no sinking of detritus in this case,
detritus concentration drops faster than the control case with depth (there is nothing to
either produce or transport detritus at depth). When w_ s= 0.2 m s −1, which means the
settling velocity for detritus is 20 cm per day (or after 400 days detritus can travel 80 m
down) a rather unexpected result can be observed. Here the settling velocity of detritus is
sufficient so that remineralization can take place at depth and hence there is a consistent
downward flux of detritus from the top ten meters of the water column to the bottom ten
meters of the water column so the detritus is not near to zero here at 20m.
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Figure 3.12: Solution for the NPZD model at t = 400 days for different values of w_ s,
denotes the settling velocity. w_ s= 0.1 represent the control case.

Figure (3.13) shows a higher accumulation of detritus near the surface to a depth of
10 m since the detritus sinking velocity is zero. There is high nutrient concentration in
between the depth of 10 m −20 m according to the figure (3.13). This is due to the lesser
amount of nutrient uptake since there is a lack of phytoplankton and this in turn causes a
reduction in the zooplankton concentration.
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Figure 3.13: 2D graph for the NPZD model. (a) Nutrient (b) Phytoplankton (c) Zoo-
plankton (d) Detritus at t = 400 days. α = 0.7, β = 0.3, κ = 10−3, optLen =
5, settling velocity = 0 m s−1

Figure (3.13) shows a large amount of detritus from the surface to the depth of 10 m
and no streaks with time compared to the control case figure (3.5). Plankton and detritus
concentrations are both zero beneath a depth of 13 m during all 400 days.

3.3.6 Experiment E

This experiment is carried out to study the effect of optical length for decay of phytoplank-
ton growth due to light limitation. According to the figure (3.15) when optLen is lower
than the control case, the rate of change of nutrient is increased. This can be verified from
the equation (3.2). The amount of detritus near the surface is high when optLen = 3.
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Figure 3.14: 2D graph for the NPZD model. (a) Nutrient (b) Phytoplankton (c) Zoo-
plankton (d) Detritus at t = 400 days. α = 0.7, β = 0.3, κ = 10−3, optLen =
5, settling velocity = 0.2 m s−1
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Figure 3.15: Solution for the NPZD model at t = 400 days for different values of optLen,
denotes the optical length. optLen = 5 represent the control case.
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Figure 3.16: 2D graph for the NPZD model. (a) Nutrient (b) Phytoplankton (c) Zoo-
plankton (d) Detritus at t = 400 days. α = 0.7, β = 0.3, κ = 10−3, optLen =
3, settling velocity = 0.1 m s−1

Figure (3.17) shows that for higher values of optLen, higher nutrient concentration can
be obtained closer to the bottom. Moreover, the dynamics of the plankton populations
shifts to deeper water. This experiment thus highlights the important role of water clarity,
for example turbid waters would be expected to have NPZD dynamics that are much more
strongly trapped near the surface.
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Figure 3.17: 2D graph for the NPZD model. (a) Nutrient (b) Phytoplankton (c) Zoo-
plankton (d) Detritus at t = 400 days. α = 0.7, β = 0.3, κ = 10−3, optLen =
7, settling velocity = 0.1 m s−1

3.4 Summary and Discussion

This chapter introduced a fairly simple NPZD model and conducted a variety of experi-
ments to explore the model’s parameter space. The intention of this section is to compare
our model with a well known model from the literature, and to learn the basics of a well-
studied type of model. Ice thus does not appear in this chapter.

In their paper, [11], Newberger and co-authors compare the behaviour of three types
of ecosystem model: 1) NPZ (dissolved inorganic nitrogen, phytoplankton and zooplank-
ton), 2) NPZD (dissolved inorganic nitrogen, phytoplankton, zooplankton and detritus),
3) NNPZD (Nitrate, Ammonium, phytoplankton, zooplankton and detritus) [11]. Apart
from the terms discussed in the previous chapter, their model includes self shading by
phytoplankton (higher populations block light from reaching populations below), and ver-
tical and horizontal diffusion that may differ in magnitude. The model was also coupled
to a simplistic ocean model [11] to study advection. The authors expended considerable
effort in a search for periodic solutions. Given the very large number of parameters, the

62



authors expended a great deal of effort studying the behaviour their model under different
physical and biological circumstances. The authors also studied the effect of light varia-
tion with depth, calculating the equilibrium points of the model and their stability for all
three ecosystem model types. Newton’s method was used in order to find the equilibrium
solutions of the model.

Further Newberger et al coupled their model with a mixed layer model in order to in-
clude and describe many of the complex characteristics which were included in the Prince-
ton Ocean Model (POM) by Spitz [11]. Newberger’s coupled model is simple but includes
a “standard" value for advection, a lesser value for horizontal diffusion and components
varying with depth (concentrations) [11], in order to compare with previous results. The
model parameters are chosen according to the oceanographic ecosystem [11] where their
study is carried out, though the inherent uncertainty in the model parameters is not really
characterized. The results of their models demonstrate the fact that both advection and
horizontal diffusion are very important fact to figure out the plankton concentration [11].
The authors emphasize the fact that in order to get better results from ecosystem mod-
eling, the correct form of zooplankton equation and suitable values for the parameters
are essential. Their conclusion was that the mixed layer model with horizontal advection
and sinking of both phytoplankton and detritus is a reasonable method for 2D ecosystem
modeling.

The modelling carried out in this chapter, on the other hand, began with a modelling
framework that builds a network which guarantees consistency. Once the model was shown
to be mathematically valid, its behaviour was examined in five experiments that explore the
parameter space. Even though there are millions of different experiments to do we chose
this particular class of experiments, since we felt these vary the most crucial parameters
independently (e.g the diffusion coefficient, growth rate, death rate, settling velocity and
optical length). It was useful to understand the effect of parameter values towards the final
result, though the details of the evolution were also shown to change (this was accomplished
using space-time plots). Unlike [11] we did not focus on equilibrium solutions, choosing
instead to evolve a random initial condition. This evolution was shown to be complex
with both downward, and interestingly occasionally upward, propagating travelling waves
in the plankton populations. While we did not couple our model with an ocean model
(apart from the very simple diffusion parametrization of turbulence), the model is quite
portable and could be couple to a simple ocean model in future work.
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Chapter 4

Conclusion and Future Directions

In the previous chapters, we have shown both the complexity of the marine food web,
and how mathematical modelling can be used to understand the dynamical behaviour
of this ecosystem. While traditional modelling generally considers the open ocean, we
have discussed simple models of ice algae. These organisms are differentiated from other
planktonic organisms, by the fact that they live in a hostile and inaccessible environment.
What is more this environment is rapidly changing under climate change. The physical
conditions such as temperature, salinity, snow cover thickness, and light availability, all
play a role in ecosystem models for ice algae. Due to the difficulty of formulating models
of these processes, the literature on sea-ice ecosystem modelling is not older than three
decades. The information and knowledge gathered is thus still quite limited.

This thesis has considered three main themes: 1) it reviewed the past sea-ice ecosystem
studies, 2) it implemented simple ice-algae models, 3) it considered more complex plankton
models of reaction diffusion type. The approach was somewhat different from the complex
2D model of Arrigo [30], which included three layers, ice growth rate, brine volume and
salinity, grazing and excretion of algae, transport of nutrients in the SKL, and was thus
more complex, and with many more parameters, than the models studied in this thesis. Our
study considered a far simpler model, with a logistic growth term, which was subsequently
improved with growth and death rates as exponentially decay functions with depth. In
order to include the spatial spread of population, a diffusion term was introduced to the
model. Then the reaction diffusion model equation was solved numerically using Strang
splitting and Runge-Kutta methods for time discretization and the Chebyshev Pseudo
Spectral method for spatial discretization. Even such a simple model was shown to exhibit
two boundary layers. We developed a methodology to analyze and calculate the boundary
layer thickness numerically as κ varies. From the results the scaling between the boundary
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layer thickness and the diffusivity, κ, was calculated for the two boundary layers. Analogous
problems were solved using asymptotic analysis for better understanding. While these
results were interesting, they were likely an oversimplification of the ice algae ecosystem. To
link the study with the plankton modelling literature, an NPZD model based on the study
of Soetaert and Herman [20] was developed and discussed in detail. The model considered
plankton growth and death, detritus remineralization, diffusive spreading of the various
populations, as well as sinking of detritus. The model was examined using five different
experiments, using the same numerical methods discussed above. These experiments tested
the major types of variations in the model (such as water clarity, level of turbulence and
so on). Taken together they suggest that certain aspects of the model are generic (such as
propagating waves in the plankton populations) and others would be quite dependent on
parameters that would need to be fitted from field measurements. Particularly interesting
is the incidence of up propagating waves in the plankton population and it is these that
form the key novelty of our simulations.

There are few other things to execute in oder to improve this model as a future study.
The simple algae model currently includes growth and death rate as a function of only
depth, but these could be implemented as functions of depth, temperature and salinity.
More importantly, and following [11], the model could be coupled to a hydrodynamic model
for various situations (for example tides or eddies). In the longer term, a more complete
ice algae model should be developed, using the NPZD model as a template. In particular,
it is very important to include a term which represents the flushing out of ice algae in brine
channels that form during sea ice warming. Such a model could prove a useful component
of future studies of climate change impacts on arctic ocean ecosystems.
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