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Abstract

Authorization deals with the specification and management of accesses principals have to re-
sources. In the design of an authorization system, sometimes we just implement the access-
enforcement without having a precise semantics for it. In this dissertation we show that, there
exists a precise semantics that improves the efficiency of access-enforcement over the access-
enforcement without precise semantics. We present an algorithm to produce an Access Control
List (ACL), in a particular authorization system for version control syatems called gitolite,
and we compare the implementation of our algorithm against the implementation that is already
being used.

As another design problem, we consider least-restrictive enforcement of the Chinese Wall
security policy. We show that there exists a least-restrictive enforcement of the Chinese Wall
Security Policy. Our approach to proving the thesis is by construction; we present an enforcement
that is least-restrictive. We also prove that such an enforcement mechanism cannot be subject-
independent.

We also propose a methodology that tests the implementation of an authorization system to
check whether it has properties of interest. The properties may be considered to be held in the
design of an authorization system, but they are not held in the implementation. We show that
there exist authorization systems that do not have the properties of interest.
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Chapter 1

Introduction

This dissertation addresses three important problems in authorization systems. The first two
problems are in the context of design. The challenge in design is proposing a precise seman-
tics for the designed system or modifying the system based on the proposed semantics. In this
dissertation, we undertake the challenge of designing a version control system and proposing
its precise semantics using term rewriting rules. In the second problem in design, we give a
least-restrictive enforcement of the Chinese Wall security policy. The third problem we address
is in the context of testing an implementation of an authorization system. Authorization systems
that allow authorizing a principal indirectly are interesting and thus considered. We need to test
such systems to ensure that they posses the properties of interest. In section 1.1 we consider
authorization systems as an important aspect of security. In section 1.2 we talk about life cycle
of an authorization system. In Sections 1.3 through 1.5 we give a brief description of problems
we consider in this dissertation.

1.1 Access Control

Access control is one of the most important aspects of the security of a system. With it, one is
able to regulate who may perform certain actions such as read or write on resources. Anderson in
[1] characterizes Access Control as “. . . the traditional center of gravity of computer security. It
is where security engineering meets computer science. Its function is to control which principals
(persons, processes, machines, . . .) have access to which resources in the system, which files
they can read, which programs they can execute, how they share data with other principals, and
so on.” Access control deals with the specification and management of accesses principals have
to resources. It is an important aspect of security.

Authorization systems can be complex; this is the underlying technical challenge in our work.
The complexity arises from a feature that realistic authorization systems have: it is possible to not
only directly authorize a principal to a resource, but also to do so indirectly. Examples of indirect
ways are delegation, groups and roles. The reason such indirect ways are allowed is to balance
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the scalability needs of enterprise authorization systems, and security. Enterprise authorization
systems must typically support large numbers of principals (e.g., users) and resources (e.g., files
and documents). Providing indirect authorizations eases administrative burden. Granting a right
to a group, for example, is less burdensome than granting it to each member of the group.

1.2 Life cycle for an authorization system

To have an authorization system for a specific application, There are several challenges in the
procedure of design:

1. Identify needs and requirements: Before designing an authorization system, we have to
have a good understanding of what we need. For example, for designing an access control
model that is used for an enterprise, we should provide a set of entities and the structure
needed to express the access restriction for all resources [2].

2. Design: After knowing about needs and requirements, we design the required authorization
scheme with a precise semantics to generate an Access Control List (ACL). Sometimes in
this step, you compare your design with previous designs and estimate the improvements.
In all pieces of work we do in this dissertation we compare our new designs with their
previous designs.

3. Verification: When we design an authorization system, the output is what we specify but it
does not necessarily match the need. Like software development we use formal verification
in authorization systems to check the differences between what we want and what we get.

4. Testing: This step ascertains whether the implementation of the authorization system has
the desired security and availability properties. Considering only the verification step is not
enough because the implementation may not necessarily satisfy your verified authorization
system features.

In this dissertation we focus on steps 2 and 4. We give a brief justification why we choose
these two steps. We argue that in step 2, we can identify needs. In step 4, we can use many
techniques that have been proposed in step 3. Also testing is more considerable in practice than
verification, because in testing we consider a real system rather than a model.

1.3 Version Control System Design

We present gitolite [3, 4], a new authorization scheme for version control systems. Autho-
rization deals with the specification and management of the rights users have to resources. It is
an important aspect of the security of a system. A version control system is used when resources
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(e.g., software programs) are in flux, and the history of changes need versioning. Typically, a
version control system needs to allow multiple users to access, modify and update the resources.

gitolite has been implemented for the Git VCS [5] and is sufficiently general to be appli-
cable to other version control systems such as SVN [6]. Our particular focus in this dissertation is
our design of controlled delegation that is part of the scheme. Traditional authorization schemes
for version control systems have a single administrator for an instance of a version control sys-
tem that specifies authorization rules for accessors. Our scheme is more flexible and scalable as
it has a finer-grained delegation model.

In the context of designing an authorization scheme for version control systems, we have set
a broader goal for ourselves: to design a scheme that simultaneously addresses expressive power,
usability and correctness. In this context, our intent is only for our scheme to be applicable to
version control systems; it is not designed to be as expressive as more general schemes from the
research literature. A natural question then is whether schemes that have been proposed previ-
ously, such as those for Discretionary Access Control (DAC) [7], Role-Based Access Control
(RBAC) [8, 9] and Trust Management [10, 11], are expressive enough to subsume our scheme.
Our observation is that other schemes do not capture gitolite in a manner that is useful for
real-world deployments. This should not be surprising: it has been observed before that even
from a more rigorous standpoint, given two authorization schemes, neither may be as expressive
as the other [12]. Furthermore, the application-domain has a significant influence on the design
of an authorization scheme and its expressive power. Therefore, it is likely that schemes from
different application-domains are incomparable with one another.

1.4 Chinese Wall Security Policy

Conflict of interest is related to flow of information: if two pieces of information are to be
confidential from one another, then a subject should not have access to both.

The importance of conflict of interest has been recognized in the past in various settings:
legal, financial and governmental [13], and technical [14]. In particular, in recent research, its
importance has been recognized in cloud-computing environments [15, 16]. Conflict of interest
has been addressed in past research in information security. The work of Brewer and Nash [17]
articulates a conflict of interest policy, and proposes its enforcement with what it calls Chinese
Walls. To our knowledge, it is the first piece of work on conflict of interest in information
security research. Their work is generally recognized as important to the foundations of computer
security, and is cited widely in the research literature [18].

We revisit conflict of interest from the standpoint of enforcement [19]. Work subsequent to
that of Brewer and Nash (see, for example, [20, 21, 22]) has pointed out that the Brewer-Nash
approach to enforcement can be highly restrictive. What this means is that the approach can
unnecessarily preclude a system from reaching authorization states that do not violate conflict
of interest. Such work then proposes new approaches to enforcement that are seemingly less
restrictive.
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We make several observations about past approaches to enforcement [19]. For example, the
Brewer-Nash approach is more restrictive than previously thought, and subsequent approaches
are also restrictive in that they preclude states that do not violate conflict of interest. We consider
enforcement of conflict of interest with what we call least-restrictive enforcement. By least-
restrictive, we mean that every state that does not violate conflict of interest is reachable. We
devise an approach, and show that it is least-restrictive. Of course, there are trade-offs in achiev-
ing this least-restriction. To precisely identify what the trade-offs are, we articulate several axes
of goodness for an approach to enforcement, and analyze our approach and those from prior
work along these axes. Examples of the axes we consider are time-efficiency, space-efficiency
and whether the actions of a subject can impact the prospective actions of another subject.

1.5 Property Testing

Authorization deals with the specification and management of accesses principals have to re-
sources. It is an important aspect of security. We address the problem of testing implementations
of authorization systems for security properties that are of interest [23].

Given an implementation of an authorization system that supports indirect authorizations,
one may want to test it. The objective is to ascertain whether the implementation has certain
security and availability properties of interest. For example, in an authorization system that
supports the notion of groups, we may want to ask, “if Alice is a member of the group G at the
time G is authorized to read file f , then she should be authorized to read file f . Furthermore,
this authorization should hold henceforth, so long as both the direct authorizations hold.” The
two direct authorizations, in the preceding example, refer to Alice’s membership in G, and G’s
authorization to f .

Prior foundational work suggests that verifying that an authorization system has such a prop-
erty may be intractable or even undecidable [24, 25, 26]. This is the case even if we want to
carry out such verification “on paper,” i.e., considering only the design of the system, and not
any implementation. Notwithstanding this foundational issue, the problem we address, that of
testing an implementation for properties, is clearly an important one. If an implementation does
not have a property we seek, we either need to redesign it, or address some implementation bug
that causes it to not have the property.

1.5.1 Thesis Statements

Our thesis statements are as follow:

• In the design of an authorization system, there exists a precise semantics that improves the
efficiency of access-enforcement over the access-enforcement without precise semantics.
Our approach to proving the thesis is by construction; we present an algorithm to produce
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an Access Control List (ACL), in a particular authorization system for version control
syatems called gitolite, and we compare the implementation of our algorithm against
the implementation that is already being used.

• There exists a least-restrictive enforcement of the Chinese Wall Security Policy. Our ap-
proach to proving the thesis is by construction; we present an enforcement that is least-
restrictive. We also prove that such an enforcement mechanism cannot be subject-independent.

• There exists a methodology that tests the implementation of an authorization system to
check whether it has properties of interest. The properties may be considered to be held
in the design of an authorization system, but they are not held in the implementation. Our
approach to proving the thesis is by construction; we present a methodology to check
whether an implementation of an authorization system has properties of interest and show
that there exist authorization systems that do not have the properties of interest.
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Chapter 2

The Design and Semantics of an
Authorization Scheme for Version Control
Systems

2.1 Introduction

Authorization deals with the specification and management of the rights users have to resources.
It is an important aspect of the security of a system. A version control system is used when
resources (e.g., software programs) are in flux, and the history of changes need versioning. Typ-
ically, a version control system needs to allow multiple users to access, modify and update the
resources.

gitolite has been implemented for the Git version control system [5] and is sufficiently
general to be applicable to other version control systems such as SVN [6]. Our particular focus
in this dissertation is our design of controlled delegation that is part of the scheme. Traditional
authorization schemes for version control systems have a single administrator for an instance of
a version control system that specifies authorization rules for accessors. Our scheme is more
flexible and scalable as it has a finer-grained delegation model.

2.1.1 Version Control Systems

A version control system provides the ability to version resources such as data files. (We use the
phrase “a version control system” to mean “an instance of a version control system.”) Consid-
erable functionality is associated with modern version control systems; some examples are dis-
tributed development, non-linear development and the maintenance of history (versions) [5, 6].
A version control system comprises objects such as repositories and branches that help realize
such functionality. An authorization scheme for a version control system specifies how these
objects are protected, while respecting the semantics of the relationships between the objects.
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Version Control System ::= {Repo}
Repo ::= Branch {Branch}
Branch ::= {Folder} {File} {Tag}
Folder ::= {Folder} {File}

Figure 2.1: A version control system in BNF. The notation ::= stands for “comprises,” and {·}
means 0 or more occurrences.

In Figure 2.1, we show the components of a version control system from the standpoint of
authorization in Backus-Naur Form (BNF) [27], and give an example below. A version control
system is a collection of repositories. A repository can be seen as a collection of data for a
single project. A repository comprises branches. A branch is a thread of work on the data in a
repository. A repository has at least one branch – its main branch. After a user edits some of the
data in a branch, she may merge her changes with another branch.

A branch comprises folders, files and tags. Files contain data, and folders contain files and
other folders; they are similar to folders and files in conventional file systems. A tag represents a
“commit point” in a branch. Thus, a branch can be seen as comprising tags. From the standpoint
of our authorization scheme, there is a function from the set of branches to the set of repositories,
the set of tags to the set of branches, and the set of files and folders to the set of branches.

2.2 Authentication and Access Enforcement

Before we discuss the gitolite authorization scheme, we describe authentication and access
enforcement with gitolite. The gitolite approach is quite general; however, there are
some implementation aspects that are specific to Git. Our main point with this section is to
discuss how we have been able to realize gitolite as middleware, and largely agnostic to
changes to Git. gitolite works with version 1.6.2 and later versions of Git “out of the box.”

Figure 2.2: Access enforcement to version control system objects using the gitolite refer-
ence monitor.
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In Figure 2.2, we show the relevant entities and the process. Git relies on SSH for access
by a client, and authentication. As we show in the figure, four entities are relevant in the con-
text of authentication and access enforcement. One is the version control system client, that
issues access requests to objects maintained by the version control system server. The commu-
nication is mediated by the SSH server, and access requests are mediated by the gitolite
Reference Monitor. A version control system client communicates a command that is intended
for gitolite and Git, that is opaque to the SSH server. The SSH server authenticates the client
based on its public key (pubKey in Figure 2.2). The SSH server is configured to map the client’s
pubKey to its gitolite username. (Every Git client has to have a username to be authorized
by gitolite– see Section 2.3.)

A command from a version control system client comprises two components: the name of
a repository (repoName), and what we call a version control system object (vcsObject). The
vcsObject is opaque to the SSH server and the gitolite Reference Monitor, and must be
“unwrapped” by the version control system server. From the standpoint of access enforcement,
the vcsObject contains a branchName, the data within the branchName to that the access request
pertains, and the manner in that the client wishes to access the data.

The modes of access are classified into two: read and write. There is only one kind of read
access; there are several kinds of write access. As Figure 2.2 indicates, access enforcement is
split into two stages based on whether the request pertains to a read or write access. We label
these (1) and (2) in the figure.

Any write right to a branch of a repository implies read access to the repository. Conse-
quently, in stage (1) of access enforcement, the gitolite Reference Monitor first checks
whether userName is authorized to read some branch of repoName. If the check succeeds, the
access check labelled (1) passes. As we explicate in Section 2.3.3, a client needs to have read
access to only any branch in the repository to have read access to the entire repository. Conse-
quently, there is no need for the gitolite reference monitor to access any part of vcsObject
to make an access decision related to read.

The access check labelled (2) is triggered by the version control system server, if necessary.
It is not necessary if the client wishes read access only. The manner in that this is implemented
in gitolite is by what is called a “hook” in Git. A hook allows one to associate a call-back
function with Git. In our case, the hook is used for access enforcement. The version control
system server is able to interpret the contents of vcsObject. It invokes the call-back function
within gitolite with the name of the branch (branchName) and the particular write operation
(writeOp) to that the request pertains. The gitolite reference monitor consults its policy and
issues a binary decision on the access request.

2.3 Authorization Scheme

Our authorization scheme is discretionary [7]. We discuss in Section 2.3.2 how users specify
rules. These rules are compiled into an ACL that is used for access enforcement; we discuss this
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in Section 2.3.3. An ACL, in our context, is a set of triples, each of the form 〈User, Resource,
Right〉. It indicates that User possesses the Right to the Resource.

The authorization rules include administrative actions such as delegations. We begin, in the
following section, with a discussion of our classification of users into four user-classes, three of
that comprise users that are allowed to specify authorization rules that pertain to administration.

2.3.1 Classes of Users

Traditional version control systems have only two classes of users: an administrator, and an
accessor. An administrator configures authorization rules, and an accessor is allowed access
based on those rules. In gitolite, we have four classes of users, as we show in Figure 2.3.
These classes and their relationships are fixed. Consequently, the depth of delegation is at most
four. This design choice of a fixed delegation depth is similar to some schemes from prior work
such as ARBAC97 [28] that has a delegation depth of two, and dissimilar to schemes such as
RT [11] that allows delegation of arbitrary depth.

As we express in the figure, our four classes of users are: VCS Admin, Repo Admin, Repo
Owner and Accessor. A solid arrow represents “may delegate to.” We point out that the transitive
closure of that relation is appropriate in our context. For example, we indicate in Figure 2.3 that
a VCS Admin may delegate to a Repo Admin. However, he may delegate also to Repo Owner
and Accessor.

VCS Admin

Repo. Admin

Repo. Owner

Accessor

Figure 2.3: We have four classes of users. The transitive closure of the arrows represents “may
delegate to.”

We give a broad characterization of each user-class here, and make it more precise in the
following sections. A VCS Admin administers an entire installation of a version control system.
In a typical enterprise, we anticipate that this is a classical systems administrator. We anticipate
that a VCS Admin is not involved in projects that are represented by repositories.

A Repo Admin administers a set of repositories. The set typically represents a large project
within that may exist smaller projects. The term “within” has no meaning in the context of
repositories in a version control system such as Git; there is no such thing as a “sub-repository.”
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Consequently, each smaller project is associated with a repository, but the authorization scheme
must somehow capture the intuition that a set of repositories are administered together. This is
why we have designed our scheme to have the notion of a Repo Admin.

A Repo Owner administers a repository. In gitolite, we have the notion of the creator
of a repository as well. We assume in this dissertation that the Repo Owner is the creator of the
repository. A Repo Admin determines who may create (and hence, own) repositories, and delim-
its the identities of those repositories. Only one user may be the Repo Owner of a repository. An
Accessor accesses version control system objects such as repositories and branches.

A typical chronological flow of actions is as follows. A version control system is installed
by the VCS Admin. Initially, and over time the VCS Admin adds users that may access parts of
the version control system. The VCS Admin also broadly divides the version control system into
sets of repositories for administration by Repo Admins. These repositories may not exist yet;
the specification is done using regular expressions. A Repo Admin is involved in projects in an
intimate way. He designates Repo Owners for sub-projects that have some limited discretion
in handing out access rights to other users. We discuss more concrete uses of gitolite in
Section 2.5.

2.3.2 Administrative and Authorization Specifications

In this section, we discuss the specifications that a user in each class that we present in the
previous section may make. The gitolite user-classes are organized in a hierarchy (see
Figure 2.3). Anything a user at a particular class can do may also be done by a user at a higher
class for that instance of the hierarchy. That is, a user at a higher class of the hierarchy may
delegate some power directly to a user at a class lower than the one immediately below his.

We call each specification of authorization for an entire version control system a configura-
tion, and an element of a configuration a rule. For example, the VCS Admin may designate Alice
to be a valid user. He does so using a rule in the configuration for that version control system.

VCS Admin The following are rules that only a VCS Admin may specify.

• The set of valid usernames for the version control system. This set is the domain to that
the SSH Server maps public keys at the time of access (see Section 2.2).

• A set of mnemonics. Examples of such mnemonics are READERS and WRITERS. The
intent is for these to be used by a Repo Owner to specify who may read and write objects.
A mnemonic may be seen as a group or role. However, there are some differences between
what we call a mnemonic, and groups and roles. Indeed, gitolite has a separate notion
of a group that may be specified in place of a user in an ACL entry.

• Who may act as a Repo Admin. The VCS Admin is able to delimit the set of repositories
over that a Repo Admin has purview. He does this by specifying regular expressions for
the names of the repositories. (Repositories within a version control system are identified
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uniquely by name.) More than one Repo Admin may be associated with a set of reposito-
ries. This may happen, for example, if two regular expressions match the same string. The
VCS Admin assigns a strict order to a Repo Admin’s authorization rules.

From the standpoint of authorization, we need certain conditions to hold with regards to
delegations and definitions that the VCS Admin has made. We capture these in the effective
rights that users have, that we discuss in Section 2.3.3.

Repo Admin The following are rules that only a Repo Admin or VCS Admin may specify.

• Associate a right with a mnemonic. For example, a Repo Admin may associate the right
“read” with the mnemonic READERS, and “read” and “write” with WRITERS.

• Who may act as a Repo Owner, and of that repositories a user may be the Repo Owner.
A Repo Admin may also delimit a Repo Owner’s ability to give out rights. One manner
in that he does this is by designating a repository to be “private.” We discuss this below.
Another manner is that he can deny a particular user some rights, that a Repo Owner cannot
override.

Repo Owner The following are rules and actions that only a Repo Owner or Repo Admin of a
repository, or the VCS Admin may specify and perform.

• Create a repository. A repository may be created only if one with the same (fully-resolved)
name does not exist, and a corresponding Repo Admin has authorized it.

• Assign users to mnemonics. As we mention above in our discussions on Repo Admins,
we constrain a Repo Owner in that he is unable to directly assign rights to users. All he is
allowed to do is assign a user to a mnemonic, via that the user may acquire rights. This is
a design choice that balances flexibility (expressive power) and security.

2.3.3 Compilation

As we mention in Section 2.3.2, in gitolite, rules are specified in a configuration. There
is one configuration per version control system; the configuration is split across one or more
files. The VCS Admin has a particular configuration file in that he specifies his rules, such as
the legitimate usernames and the definitions of mnemonics. Similarly, each Repo Admin has his
own configuration file.
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EXAMPLE 1 Let us say that Alice is a VCS Admin and she defines in the repository gitolite-
admin:

@1 = p.* q.*
repo gitolite-admin

RW+ = Alice
RW = Bob Mike
RW+ NAME/ = Alice
RW+ NAME/conf/fragments/1 = Mike
RW+ NAME/conf/fragments/1 = Bob

and she knows the following users’ public keys and mnemonics:

• Carl, Bill, Ann and Ted as users,

• READERS, WRITERS, CREATOR as mnemonics.

In a configuration file we use “@” to indicate groups of regular expressions (resources) or
users. In this example we have “@1” that is a group of regular expressions “p.*” and “q.*”.
In the repository gitolite-admin, we have Alice as VCS Admin in line 3. Line 3 says that Alice
has rewind (RW+) access to gitolite-admin. Bob and Mike as Repo Admins have write (RW)
access to gitolite-admin. In line 5 through 7 Alice is making an order over Repo Admins. Using
the above syntax Mike has the priority over Bob on all regular expressions in group “@1”. It
means that if Mike denies a user to write to any regular expressions (resources) in “@1”, the
user will not have access, even if Bob has given him access.

We have the following configuration file as a Repo Admin’s (Bob’s) configuration file:

@students = Carl Bill
repo p.*

C = @students
- = Ted
RW+ = CREATOR
RW = WRITERS
R = READERS

In Bob’s configuration file we have the group “@students” of users. He gives create (C)
permission over regular expression “p.*” to the members of the group “@students”. Also he
denies Ted to have write (RW) access to “p.*”. He assigns some permissions to mnemonics as
well.
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Now Carl creates the repository “p1” and becomes the Repo Owner:

$ git clone git@server:p1

Carl sets the following permissions:

$ ssh git@server setperms p1 < myperms
New perms are:
READERS Ann
WRITERS Ted

The question here is who has access to repository “p1” ans which kinds of access it has. We
try to answer this question with proposing our semantics.

In this section, we discuss how the configurations are compiled into an ACL. Compilation,
therefore, translates a configuration into a list of effective rights that each user has to resources,
encoded as an ACL. Compilation takes as input a specification of the authorization scheme as
we discuss in the previous two sections, and outputs an ACL, that comprises 〈User, Resource,
Right〉 triples. The reason for this intermediate step of compilation, rather than directly checking
a request against the configuration rules is efficiency at the time of access enforcement.

gitolite uses Git to administer Git. That is, the configuration files are maintained as part
of the Git repository that is the version control system instance. As we mention in Section 2.3.2,
an aspect of gitolite is the prioritization of Repo Admins and rules within a Repo Admin’s
specification. Our prioritization is implemented by sequencing the configuration files in a par-
ticular order during compilation. This is simple, but effective in achieving what we need, that
is imposing a strict priority on Repo Admins and rules respectively. All a VCS Admin does, for
instance, is specify in what order the gitolite compiler should process the configuration files,
and this expresses his prioritization, as we see in Example 1.

For User to have Right over Resource, the following two conditions are necessary.

1. The User must be valid, as specified by VCS Admin, and,

2. The user must either (a) directly be assigned Right (by Repo Admin), or, (b) there must
exist a valid mnemonic (as specified by the VCS Admin) to that User is assigned (by the
Repo Owner), and that mnemonic must have in its effective set of rights, Right.

Consequently, the first set of processes that the compiler runs comprises assembling the fol-
lowing from the configuration rules.

3. The set of valid users.
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4. The set of valid mnemonics.

5. The set of authorizations of rights directly assigned to users, and the corresponding priority.

6. The set of authorizations of rights assigned to mnemonics and the corresponding priority.

7. The set of user to mnemonic assignments per resource.

The pieces of information (3)–(7) are read by the compiler directly from the configuration
rules. The compiler must then process the above information and make inferences regarding the
effective rights per user to resources. This comprises the following steps.

8. Infer the rights a user may have to resources via mnemonics. This involves putting the
information from Steps (6) and (7) together. The compiler also records the priority with
that each such assignment is associated.

9. For each right to that a user is authorized, either directly or indirectly via a mnemonic,
infer other rights. We discuss below how this inference is done. An example of such an
inference is that any (positive) right to a resource implies read access to the repository that
corresponds to the resource.

10. Decide whether the user indeed has a right to a resource by considering the highest priority
rule that grants him the right. If there is a “deny” counterpart of this right in a rule of higher
priority, then the user does not have the right.

After Steps (8)–(10) are completed, the compiler is able to output ACL entries of the form
〈Resource, Right, User〉 for each Right and Resource to that the User is authorized. The final
ACL comprises only those positive rights that a user possesses. Consequently, checking whether
a user has a right or not against the ACL is efficient.

In Step (9), we refer to inferring that a user has a right to a resource if he has another right to
a resource. Following is our specification.

a. If a user has any positive right to a resource, then he has read access to the repository
associated with that resource.

b. Every right other than read is of type write. If a user has any right of type write to a
resource, then he has write access to that resource.

The reason that underlies the above inferences regarding rights is that it does not make sense
to possess a right and not another in the specific cases that we address with the inferences. For
example, it does not make sense for a user to have any right of type write to a resource unless
he is able to read that resource. Also, in practice, there is no need for the read access to be at a
finer granularity than to an entire repository.
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2.4 Semantics

In this section we consider the semantics of gitolitemore precisely. In the following example
we consider one of the issues we captured in gitolite [3, 4] that motivates us to specify a
precise semantics for /gol.

EXAMPLE 2 deny permission does not affect create permission but affects write permission

Assume that a Repo Owner creates a repository but he cannot update the repository, because
of a deny permission from a Repo Admin. It is reasonable that a create permission cannot
be independent from a write permission, because when the user is the owner of a repository
and he has created it, so he should be able to modify it. We have this observation in gitolite-
admin configuration file as well. When a user creates a repository, we give the creator rewind
permission. So implicitly create permission results in write permission. If we assume the
statement create→ write, which is reasonable, we easily conclude:

(create→ write)↔ (¬write→ ¬create)

When a deny permission affects write permission, reasonably it should affect create per-
mission, but it does not.

We use term rewriting rules in a Term Rewriting System (TRS) [29] to produce the ACL. We
consider only those environments in that variables are mapped meaningfully to concrete values
that are meaningful.

Definition 1 (A Semantics for an Authorization System) A semantics provides a ‘yes’ or ‘no’
answer to the question, “Does user, u, have permission, p, over the resource r?”

Definition 2 (The ACL) An ACL is a set of triples 〈u, r, p〉, such that for any resource (regular
expression) ρ, there exists at most one ACL entry for user u, 〈u, r, p〉 such that ρ ⊆ r. Also for
any pair of 〈u, p〉 there exists at most one resource r and for any pair of 〈u, r〉 there exists at
most one permission p.

We consider a regular expression as a set of strings. So by ρ ⊆ r, we mean that ρ as a set of
strings is a subset of r as a set of strings.

Definition 3 (Semantics of an ACL) Given 〈u, r, p〉, user, u, has permission, p, over the re-
source r if and only if 〈u, r, p〉 matches an entry in ACL.
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2.4.1 A Term Rewriting System (TRS) representing gitolite

A Term Rewriting System (TRS) is a pair (Σ, R) of an alphabet or signature Σ and a set of rewrite
rules R. The alphabet Σ in gitolite consists of:

• Ap: The power set of permissions.

• Ar: The set of all resources. A resource is a 3-tuple 〈r, b, t〉, where:

– r is a name of a repository that can be a regular expression.

– b is a name of a branch that can be a refex, where a refex is a regular expression but
a refex is prefix-matched or an empty set.

– t is a name of a tag that can be a refex or an empty set.

• Au: The set of all users defined by VCS Admin.

• Am: The set of all mnemonics defined by VCS Admin.

Definition 4 K = Am ∪ Au denotes the set of all entries that can delegate authority to a
mnemonic or a user.

We define two different kinds of rules in gitolite:

Definition 5 (Delegation Rules (DR)) A delegation rule is a definition of a user or a mnemonic
∈ K over a specified repository ∈ Ar, where the definition belongs to the relation DR: K×Ar ∪
{ε} → K × Ar × Ap ∪ {ε}. When we use ε we mean that we are not specifying any kind of
resources or permissions.

Definition 6 (Name Rewrite Rules (NRR)) A name rewrite rule is a definition of a group of
users ⊆ Au or a group of repositories ⊆ Ar, where the definition belongs to the relation NRR:
Au → Au or Ar → Ar.

There is no need of closed set of rewrite rules to define the TRS (For example in [29] rules
are defined based on the certificates in a string rewriting system). As we will see we can define
related ruleset based on different configuration files in different levels of delegation.
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2.4.2 Producing the ACL using rewrite rules

In this section, we use rewrite rules to produce the ACL.

A rewrite ruleset R representing configuration files in Example 1 is:

1. From VCS Admin’s configuration file we have:

1. Alice 7→ Bob p.*
2. Alice 7→ Bob q.*

that means that Alice as the VCS Admin is delegating the administration of repositories p.*
and q.* to Bob. We do not consider permissions in this case, because we assume that Bob
has full permissions to the repositories of that he is administrator.

2. In Repo Admin’s configuration file, Bob as a Repo Admin is assigning permissions to users
and mnemonics:
1. Bob p.* 7→ Carl p.* C,
2. Bob p.* 7→ Bill p.* C,
3. Bob p.* 7→ Ted p.* -,
4. Bob p.* 7→ CREATOR p.* RW+,
5. Bob p.* 7→ WRITERS p.* RW,
6. Bob p.* 7→ READERS p.* R.

3. In Repo Owner’s myperms file, the owner is assigning each user to a mnemonic and she is
the creator of the repository. So we have:

1. CREATOR p1 7→ Carl p1,
2. READERS p1 7→ Ann p1,
3. WRITERS p1 7→ Ted p1.

Now using rewrite rules, we produce all rules having Alice as VCS Admin in the left side. As
an example, by concatenating rewrite rules 1.1, 2.4 and 3.1, we can produce: Alice 7→ Carl p1 RW+

After checking all possible concatenations of rules and producing new rules, we have the
following in that Alice is in the left side:

1.Alice 7→ Bob p.*
2.Alice 7→ Carl p.* C
3.Alice 7→ Bill p.* C
4.Alice 7→ Ted p1 -
5.Alice 7→ Carl p1 RW+
6.Alice 7→ Ann p1 R
7.Alice 7→ Ted p1 RW
8.Alice 7→ Bob q.*

17



Definition 7 Authorized Rule

A rule that:

• has VCS Admin in the left side,

• does not have mnemonics in right side,

• does not have any kinds of groups (Using NRRs we can rewrite groups of repositories and
users).

We show an authorized rule as

r: VCS Admin 7→ user ∈ Au resource ∈ Ar permission ∈ Ap.

Remark.

From [3] we have: “when using deny rules, the order of your rules starts to matter, where
earlier it did not. If you’re just starting to add a deny rule to an existing ruleset, it’s a good idea
to review the entire ruleset once, to make sure you’re doing it right.”

It means that order of rules (configuration file lines) is not important when we do not have
deny rules. But in general case we keep the order of lines in configuration files to be sure that in
case of deny rules we have an ordered list.

2.4.3 Authorization Priority Factor (APF)

What should we do when we have two rules from two different authorized rules contradict?
When does this happen?

It happens when we have a contradiction between two rules that are issued by two different
Repo Admins. By contradiction we mean that one rule gives a user a write access but the other
one forbids the user from writing. It cannot happen for two different Repo Owner, because the
intersection of the repositories that they own is empty set. We have a priority function over Repo
Admins in gitolite.

Definition 8 (Authorization Priority Factor (APF)) The function APF (r) is the strict priority
that the authorized rule r has. When r is not an authorized rule, APF (r) = 0. An authorized
rule r, that is produced from other rules, has APF (r) = APF (r′), where r′ is the rule deducted
from gitolite-admin configuration file and is first rule in the chain of rules that produce rule r.

Sometimes rules contradict and because of that we define some criteria to solve the contra-
diction s. So we should recognize contradictions and solve them before producing the ACL.
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2.4.4 TRS Algorithm

Two regular expressions can be different from one another, and have a non-empty intersec-
tion. We assume that ACL entries are being produced one by one from the produced autho-
rized rules from the TRS presenting gitolite based on the APF. Whenever an ACL entry
is being produced, we check whether there is a contradiction or not. The time complexity is
1 + 2 + 3 + ...+ n = O(n2) where n is the number of the ACL entries. Because in gitolite
we are processing configuration files based on APF, the newer entry should not contradict with
previous ones. If it does, we change rules to get new rules (and sometimes previous rules) that
do not contradict with previous rules and finally produce the ACL entry. But the main problem is
how can we check and solve the contradictions. We check the contradiction between two rules,
such that one of them has been considered before and the other one is ready to be considered and
be inserted to the ruleset. From definition 7, we know that an authorized rule is:

r: VCS Admin 7→ ur ∈ Au regr ∈ Ar pr ∈ Ap.

To make it easier to work with, we consider the right side of an authorized rule as a three
tuple authorized rule and we do not mention the VCS Admin name in left side.

Definition 9 (ACL that corresponds to gitolite rulesets) We say “A” corresponds to the
gitolite ruleset R if and only if:

1. “A” is an ACL,

2. For any regular expression ρ, such that there is no regular expression ρ′ ⊂ ρ, for each〈
u, regj, pj

〉
in ACL such that ρ ⊆ regj , there exist entries 〈u, regi, pi〉 in R such that

ρ ⊆ regi and pj = ∪pi.

3.
⋃

R regi =
⋃

ACL regj

Lemma 1 The ACL that corresponds to a gitolite ruleset R is unique.

PROOF.

Assume by way of contradiction that we have at least two different access control lists,ACL1

and ACL2 correspond to the gitolite ruleset R. There exists at least one entry in ACL1,
〈u, reg1, p1〉, that is not in ACL2. From Definition 9, there should be an entry 〈u, reg2, p2〉 in
ACL2 such that reg1 ∩ reg2 6= ∅. There can be two cases:

1. reg1 = reg2, but p1 6= p2. From Definition 9, if we consider ACL1 we conclude that
p1 = ∪pi, where for all ρ, such that there is no ρ′ ⊂ ρ, ρ ⊆ reg1, there exist entries of the
form 〈u, regi, pi〉 such that ρ ⊆ regi. But because reg1 = reg2 then we have same rules
from R where p2 = ∪pi, then p1 = p2.
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2. reg1 6= reg2. Without loss of generality assume that reg1\reg2 6= ∅ and ρ ⊆ reg1\reg2.
Let say that ρ ⊆ reg3 in ACL2 and the related entry is 〈u, reg3, p3〉. From Definition 9
we have p1 = p3. Now choose ρ′ in Definition 9 from reg1 ∩ reg2, again we conclude that
p1 = p2. So p2 = p3, but it contradicts, because from Definition 2 we know that for a pair
of a user and a permission we cannot have more than one regular expression (resource).

�

Definition 10 (Confluent Term Rewriting System) We have →∗ as a reflexive transitive clo-
sure of relation→ [30]. Now consider the rule s →∗ d. We say that s is confluent if and only
if with any terms t1 and t2 such that s →∗ t1 and s →∗ t2 imply t1 →∗ d and t2 →∗ d. A term
rewriting system is confluent if and only if every term in the system is confluent.

Corollary 1 Using Lemma 1, our term rewriting system is confluent.

In our TRS algorithm we need to recognize contradictions may happen between two rules ri
and rj inR. We propose the following algorithm as one part of TRS algorithm to do that. Assume
thatR = {r1, ..., rk} is a ruleset that is the list of authorized rules and is sorted in increasing order
based on APF . Another assumption we make is that R only includes the authorized rules for
a specific user u. The intuition behind this assumption is from the cause of a contradiction.
Contradiction never happens when we have two authorized rules with two different users. One
user assumption is not making the problem easier to solve.

The following algorithm is used to solve the contradiction between two rules ri and rj in the
ruleset R.

MATCHING-FUNCTION(R, ri, rj)
if {−} ⊆ pri then

prk+1
= (pri ∪ prj)\{W}

else
prk+1

= (pri ∪ prj)
rk+1 =

〈
uri , regri ∩ regrj , prk+1

〉
regri = regri\regrj and regrj = regrj\regri
return R = R ∪ {rk+1}

Where {−} is the deny permission and {W} is the write permission.
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Lemma 2 MATCHING-FUNCTION is sound and complete.

PROOF.

In MATCHING-FUNCTION we should have no contradiction between output rules. It means we
should have three rules in the output with mutually exclusive resources. Because deny permission
makes some constraints on other permissions, so there are two different cases. Function ensures
that the rule with intersection of regri and regrj as its resource, does not have write permission,
when ri that has higher priority has deny permission. After that function makes a union of
permissions of input rules for new rule. The function is complete because it has a case analysis
over permissions and resources.

�

Now we propose an algorithm for keeping track of all permissions in the ruleset R. In
PERMISSIONS-SET, for each subset of power set of permissions we define a new rule that has all
the resources with the chosen permission and remove rules with the chosen permission from the
ruleset. The intuition behind this algorithm is bounding the number of rules in the ruleset R to
the number of permissions we have in R. With this bound we guarantee that with a bounded
number of permissions, Our TRS algorithm works in polynomial.

PERMISSIONS-SET(R)
foreach p ∈ Ap do

regp = ∅
foreach ri ∈ R do

if pri = p then
regp = regp ∪ regri
R = R\ri

if regp 6= ∅ then
R = R ∪ {rP =

(
u, regp, p

)
}

Now we propose the algorithm CONTRADICTION-SOLUTION-GITOLITE that uses MATCHING-FUNCTION

and PERMISSIONS-SET to solve all contradictions in the ruleset R.

CONTRADICTION-SOLUTION-GITOLITE(R)
S = {r1};
for j = 2 to k do

S = S ∪ rj;
for i = 1 to |S| do

MATCHING-FUNCTION(S, ri, rj);
PERMISSIONS-SET(S);

return R = S

In this algorithm we return the ruleset R that does not have any resources overlap (contradic-
tion). It also has other specifications that ACL entries should have.
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Proposition 1 CONTRADICTION-SOLUTION-GITOLITE is sound.

PROOF.

To show that CONTRADICTION-SOLUTION-GITOLITE is sound, we need to show that the output of
CONTRADICTION-SOLUTION-GITOLITE(R) is an ACL and because the ACL is unique from Lemma
1, the output is the ACL corresponding to gitolite rulesets R. We show by induction on
number of rules in R that S as the output of PERMISSIONS-SET(S) in line 6 of CONTRADICTION-
SOLUTION-GITOLITE is the ACL for R = {r1, ..., rj}. The base case is trivial, because we have only
one rule, we have the ACL with one entry. Now assume that S is the ACL for R = {r1, ..., rk′},
we show that S in next iteration of the for loop is the ACL for R = {r1, ..., rk′+1}. In k′ + 1st
iteration MATCHING-FUNCTION(S, ri, rk′+1) guarantees that resource of rk′+1 has no intersection
with previous resources in S. Meanwhile MATCHING-FUNCTION(S, ri, rk′+1) does not remove any
resource from S and new rule rk′+1, so union of resources in updated S will be union of resources
in S and rk′+1. Also PERMISSIONS-SET(S) guarantees that for a pair of 〈u, p〉, we have only one
rule in the ACL.

�

Proposition 2 CONTRADICTION-SOLUTION-GITOLITE is complete.

PROOF.

PERMISSIONS-SET is complete, because we assume that Ap and R are two finite sets then
PERMISSIONS-SET terminates for the input set R. In line 3 of CONTRADICTION-SOLUTION-GITOLITE

we add a rule from R to the set S. For loop in lines 2-6 terminates, because MATCHING-FUNCTION

and PERMISSIONS-SET are complete functions, and consequently CONTRADICTION-SOLUTION-GITOLITE

is complete.

�

CONTRADICTION-SOLUTION-GITOLITE Computational Complexity

In the worst case, we have a ruleset that has mutually non-empty intersection resources and
none of them has same permission. This case is the worst case because when we call MATCHING-
FUNCTION, the number of rules in R in the output of the MATCHING-FUNCTION is added by one.

• Lines 4-5: Each time that we want to check a new rule with existing rules, the number of
rules doubles up. In lines 4-5 in CONTRADICTION-SOLUTION-GITOLITE, the algorithm is replac-
ing the set S by a new one with size at most 2 · |S| − 1. Assume each time the algorithm
wants to check the intersection between two regular expressions (repositories), it is doing
that in time I . Consequently the running time is (2 · |S| − 1) · I .
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• Line 6: In line 6 we have the subroutine PERMISSIONS-SET that is unifying all rules which
have same permission in Ap. So the running time of the subroutine PERMISSIONS-SET is
(2 · |S| − 1) · |Ap|.

• Line 2-6: We have a for loop over all elements in R. When j = 2, then |S| = 2 and the
running time is (2 ·2−1) · I+(2 ·2−1) · |Ap|. Then in lth iteration of for loop the running
time is roughly 2 · 2l · I + 2 · 2l · |Ap|

In the algorithm CONTRADICTION-SOLUTION-GITOLITE any of the following cases can happen:

• |Ap| > 2k: Then the total running time is: Σj=k
j=22j · I + 2j · |Ap| = (2k+1− 1) · I + (2k+1−

1) · |Ap| ' 2k+1 · (I + |Ap|) .

• |Ap| ≤ 2k: Assume that 2m < |Ap| ≤ 2m+1, then the total running time is: Σj=m
j=2 2j · I +

2j · |Ap|+ (|Ap| · I + |Ap|2) · (k −m) ' 2m+1 · (I + |Ap|) + (|Ap| · I + |Ap|2) · (k −m).
It happens because when the number of the rules in S is not less then |Ap|, the algorithm
does not double up the number of rules anymore.

Now to capture both above mentioned cases we define the following slope function: r(n) = n
when n > 0 and r(n) = 0 when n < 0. We can assign m = blog |Ap|c. Also by min(., .)
we mean the minimum number between two inputs of the function. Consequently the time
complexity of CONTRADICTION-SOLUTION-GITOLITE is:

T (k, |Ap|, I) = O(2min(k,blog |Ap|c)+1 · (I + |Ap|) + (|Ap| · I + |Ap|2) · r(k − blog |Ap|c))

Proposition 3 Generating the ACL that corresponds to gitolite ruleset is in EXPTIME OC ,OI ,
where OC is an oracle that decides whether one regular expression is a subset of another and OI

is an oracle that decides whether two given regular expressions have non-empty intersection.

PROOF. The reason we assume two oracles OC and OI is that in [31] it has been shown that
deciding that one regular expression is a subset of another and deciding whether two given regular
expressions have non-empty intersection are EXPTIME-complete. The algorithm CONTRADICTION-
SOLUTION(R) produces an ACL in exponential time in the size of input in the worst case. From
Lemma 1 the produced ACL is the corresponding ACL to the ruleset R.

�

The ACL generation problem is the problem of generating the ACL that corresponds to a
given gitolite ruleset. In other words, it computes the (one-to-one) function g: R −→ A,
where R is the set of all gitolite rulesets and A is the set of all ACLs. We now consider a
decision problem that is a lower-bound in computational complexity to g.
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Definition 11 CORR-ACL = {〈R, n, p〉 : R is a gitolite ruleset, and n, p ∈ Z+, such that there
exists an ACL that corresponds to R that has fewer than n entries each of whose permission sets
is of size p}.

Proposition 4 If g can be computed in polynomial-time, then CORR-ACL can be decided in polynomial-
time.

PROOF.

Given 〈R, n, p〉, we invoke the algorithm that computes g with input R. The output A must
be polynomial in R. We now count the number of entries in A that have permission sets of size
p and check that it is at most n. �

Proposition 4 establishes that the computational complexity of deciding CORR-ACL is a lower-
bound for the computational complexity of computing g.

Proposition 5 CORR-ACL ∈ EXPTIME.

PROOF.

The algorithm CONTRADICTION-SOLUTION(R) produces an ACL in exponential time in the size
of input in the worst case. Also we have a cook reduction from CORR-ACL to the generating the
ACL problem. The cook reduction is: When we can generate the ACL, we can extract the size
of the ACL and then solve CORR-ACL.

�

Proposition 6 CORR-ACL ∈ NP-hard.

PROOF.

To prove the proposition, we Karp-reduce the following version of VERTEX-COVER to CORR-ACL.

VERTEX-COVER = {〈G, k〉 : G is an undirected graph and k ∈ Z+, such that k ≥ 2 and G has
a vertex cover of size k}. Our restriction that k ≥ 2 does not affect computational complexity;
i.e., VERTEX-COVER ∈ NP-complete.

Let G = 〈V,E〉 with V = {v1, . . . , vn}. Corresponding to each edge, 〈vi, vj〉 ∈ E, we
associate a resource regi,j . We specify that the regi,j’s are distinct from one another.

With each vertex vi, we associate a permission pi ∈ P . We then specify the gitolite
ruleset R as follows. For each vertex vi ∈ V , let {ei,1, . . . , ei,l} be the set of edges each of that is
not incident on vi. We specify that R contains entries of the form

〈
u,
{
regi,1, . . . , regi,l

}
, {pi}

〉
.

We specify n =
(|V |

k

)
and p = k. We now assert that 〈G, k〉 ∈ VERTEX-COVER if and only if

〈R, n, p〉 ∈ CORR-ACL.
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For the “only if” direction, assume that 〈G, k〉 ∈ VERTEX-COVER. This means that there exists
a set of k ≥ 2 vertices that covers all the edges in G. Let {v1, . . . , vk} be such a set. For each
vi, let regi =

{
regi,1, . . . , regi,l

}
that is the set of resources that corresponds to the entry for vi

in R. We first observe that reg1 ∩ . . . ∩ regk = ∅. The reason is that v1, . . . , vk cover all edges,
and each regi corresponds to the edges not covered by vi. reg1 ∩ . . . ∩ regk identifies the set of
edges not covered by v1, . . . , vk together, that is empty.

The set of permissions in the ACL A that would correspond to the resource-set reg1 ∩ . . . ∩
regk is {p1, . . . , pk}. As the resource-set is empty, we know that such an entry is not in A.
Therefore, the number of entries in A with a k-sized set of permissions has to be fewer than
n =

(|V |
k

)
.

For the “if” direction, consider the case that 〈G, k〉 6∈ VERTEX-COVER. Then, given any k-
sized subset of V , at least one edge is not covered by it. Let {v1, . . . , vk} ⊂ V . Then, for the
corresponding resource-sets in R, reg1 ∩ . . . ∩ regk 6= ∅, and the ACL A has to contain an entry
〈{reg1 ∩ . . . ∩ regk} , {p1, . . . , pk}〉. And we would have exactly n =

(|V |
k

)
such entries in A

whose permission-sets are of size p = k. Thus, 〈R, n, p〉 6∈ CORR-ACL. �

Parameterized Computational Complexity

We commence this section by some examples.

EXAMPLE 3 Assume that we have Ap = {{read}, {read, write}}. As you can see in this case
we never have more than two choices for permission of rules.

EXAMPLE 4 Now assume that we have:

• Ap = {{}, {read, write}, {write}},

• r1 = (Alice, reg1, {{read}}) and r2 = (Alice, reg2, {{write}}) where two regular ex-
pressions reg1 and reg2 has intersection reg12.

• Due to having the worst case situation, we assume that all regular expressions of new
rules have intersections with all regular expressions and previous intersections of regular
expressions. For example r3 = (Alice, reg3, {read}) has resource reg3 that has intersec-
tions with reg1, reg2 and reg12.

Now whatever you want to add to the list of authorized rules, you will add at most half of
the number of existing processed rules. It is easy to show that the time complexity of proposed
solution of contradiction algorithm is quadratic in the number of authorized rules.

From the above examples we have a clue such that making |Ap| bounded by a constant num-
ber will effect the computational complexity of the problem. Now we define the following lan-
guage.
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Definition 12 Let CORR-ACLp = {〈R, n〉 : R is a gitolite ruleset, n ∈ Z+, ∃ ACL of n rules
that corresponds R with bounded |Ap|}.

Proposition 7 CORR-ACLp ∈ POC ,OI , where OC is an oracle that decides whether one regular
expression is a subset of another and OI is an oracle that decides whether two given regular
expressions have non-empty intersection.

PROOF.

From CONTRADICTION-SOLUTION-GITOLITE Computational Complexity we have:

T (k, |Ap|, I) = O(2min(k,blog |Ap|c)+1 · (I + |Ap|) + (|Ap| · I + |Ap|2) · r(k − blog |Ap|c))

By having the two oracles OI and OC we assume that I is a constant number:

T (k, |Ap|) = O(2min(k,blog |Ap|c)+1 · |Ap|+ |Ap|2 · r(k − blog |Ap|c))

As we said before there are two cases for |Ap| comparing to k.

• |Ap| > 2k : T (k, |Ap|) = O(2k+1 · |Ap|) = O(|Ap|2)

• |Ap| ≤ 2k : T (k, |Ap|) = O(2blog |Ap|c+1 · |Ap|+ |Ap|2 · r(k − blog |Ap|c)) = O(k · |Ap|2)

So the running time of the algorithm with two assumptions: 1) |Ap| bounded by a constant
number and 2) having two oracles OC and OI , is the following:

T (k) = O(k · |Ap|2)

Using PERMISSIONS-SET, we guarantee that size of the ruleset R in gitolite never exceeds
|Ap|. It implies that the time complexity of proposed solution of contradiction algorithm is
quadratic in the number of authorized rules in R.

�

TRS Algorithm

An ACL has an important role in access control. In previous sections we give an algorithm
to compute an ACL from a configuration file “c” that is presenting a gitolite system of
authorization. We need an enforcement algorithm that has an ACL and a request as its input and
the response that allows the user (issuer) of the request to access the resource that he asked or
disallows him as its output. The whole scheme has two algorithms as we see in 2.4.

Now we present TRS algorithm and prove its soundness and completeness. To prove that
the TRS algorithm is sound and complete we show that in each step of computing the ACL, we
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are using some mappings that result in a sound and complete algorithm. After that based on
definition of soundness and completeness we show that the enforcement algorithm is sound and
complete.

ResponseEnforcement Algo.Request

The ACL

TRS Algo.

c

Figure 2.4: The Scheme

TRS algorithm is a function

We divide the whole TRS algorithm into three consecutive steps of mappings:

TRSalgorithm(c) = m3 ◦m2 ◦m1(c)

As we see in Figure 2.4 we assume that the input of the TRS algorithm is a gitolite
configuration file and the output is the ACL. The three mappings are as follow:

1. m1(.): A configuration file→ Sorted list of rules: In first mapping we syntactically trans-
late a configuration file to a sorted list of rules. By sorted list we mean that the order of
inserting the rules to the list matters and we do not change it. We categorize all lines in a
configuration file into three different groups:

• A repo line in that we mention a name of a repository in the configuration file. We do
not have an independent rule related to this kind of lines in configuration file, but it
has an important role in specifying the resources of the following rules that are being
extracted from the following lines in the configuration file. Actually it determines
that the resource a user will have access or will not have access. More precisely we
can say whenever a line has the word “repo”, it is going to determine the resource of
upcoming rules in the list of rules till getting next repo line in the configuration file.

• A definition line in that we define a group of resources or a group of users. The
translation of these kinds of lines are Name Rewrite Rules (NRR). More precisely
we say whenever a line has the sign “@”, it is translated as a NRR.
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• A delegation line in that a user, a mnemonic or a group of users are being assigned
to a resource and a permission. The translation of these kinds of lines is Delegation
Rules (DR). More precisely we say whenever a line has the sign “=”, it is translated
as a DR.

2. m2(.): Sorted list of rules→ Sorted list of authorized rules (ruleset): Using this mapping
we want to produce a sorted list of authorized rules in that we do not have any groups, so
we do not have any NRR. The purpose of having authorized rules in this step is having
rules that are certified by checking the issuers. We mean that firstly we do not consider
groups and we want to have a list of rules for users. Secondly we do not consider the rules
that are not authorized by VCS Admin implicitly or explicitly. We have the two following
steps:

• We replace all groups in DR rules using NRR rules by individual users. In many cases
we should replace a DR rule by many, because reasonably the number of members in
a group is more than one. To have the new list we remove NRR rules as well, because
we do not need them anymore.

• In this step we replace each rule in the list by its related authorized rule. By related
authorized rule we mean the authorized rule such that the last rule in it, is the assumed
rule. At the end of this step we have a sorted list of authorized rules.

3. m3(.): Sorted list of authorized rules → The ACL: In this part we apply CONTRADICTION-
SOLUTION-GITOLITE to the sorted list of authorized rules (ruleset). As we know that CONTRADICTION-
SOLUTION-GITOLITE is sound and complete, and there is no indeterminism in the algorithm,
we conclude that we can consider m3 as a mapping.

We showed that the TRS algorithm can be presented as a three level mappings composition.

Theorem 5 The TRS algorithm computes the function f(.) : C → A, where C is the domain of
all gitolite configuration files and A is the domain of ACL based on the definition 2.

PROOF.

Assume by way of contradiction that f(.) is not a function. So for a configuration file in
different time we should have different ACL. The important factor of the TRS algorithm is being
time invariant. We do not have any kind of randomness in the three steps of constructing the TRS
algorithm. Because in each step we have just a mapping from a sorted input to a sorted output,
there is no choice in doing the mappings. So we conclude that it contradicts and we cannot have
two different outputs for same input.

�
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Enforcement algorithm is sound and complete

In this section we show that the enforcement algorithm is sound and complete. As we see in 2.4
inputs of enforcement algorithm are a request and an ACL.

Definition 13 (A request) A request is a three tuple vector of a name of a user, a name of an
existing resource and a permission.

Now we define completeness as it follows:

Definition 14 (Completeness) An enforcement algorithm is complete when it terminates and
outputs either true or false for a given input.

Theorem 6 The enforcement algorithm is complete.

PROOF.

There are only two different cases in the enforcement algorithm:

• Whenever the request matches no or more than one entry in the ACL, the enforcement
algorithm outputs false.

• When the request matches one entry the output is true.

So we can easily conclude that the algorithm is complete.

�

Definition 15 (Soundness) What we mean by soundness is that a request matches at most one
ACL entry.

Theorem 7 The enforcement algorithm is sound.

PROOF.

There is at most one entry in the ACL that potentially matches the request. Assume by way
of contradiction that there are two entry in the ACL that have the user and the resource same
as the request. So there should be two authorized rules in the procedure of the producing the
ACL with non-empty intersection of their resources.But it contradicts, because we assume that
the ACL entries are CONTRADICTION-SOLUTION-GITOLITE outputs where they do not have resources
with non-empty intersection. �
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2.5 Experience from Deployments

In this section we test the performance of the proposed algorithm, TRS, in real world. We name
the implementation of our algorithm an gitoliteACL , because the result of our algorithm is an
ACL. Also we compare gitoliteACL against the release version 2.0 of gitolite [3] that is
already being used. Henceforce, we call this release as gitolite .

2.5.1 Experimental Setup

We perform our experimental evaluation on a machine that has the following setup: Intel(R)
Pentium(R) 4 CPU 3.00GHz with 3GB RAM, Ubuntu Linux 12.04 with kernel version 3.2.0-49.
Both gitoliteACL and gitolite use the PERL programming language for its implementation.

All our experiments use standard read and write access requests. We only report the results
of write access requests. This is because denying accesses to a user in gitolite strictly apply to
write permissions. To minimize the impact of network latency, we ensure that the access requests
originate from the same server hosting the git server. Thus, measuring the time an access request
takes does not include the time to transfer the data. Instead, we only account for the time taken to
perform the access check. That is, the time it takes for gitoliteACL and gitolite to decide whether
to grant or deny an access request. This is typically followed by transferring the appropriate
data, that we do not include in the measured time. This focuses our measurement only on the
access check. However, this makes individual access requests take a negligible amount of time to
complete. In order to collect meaningful results, we measure the time it takes to complete 1000
of the same access request. We execute each experiment fifteen times, and average the measured
time to produce the average access latency.

2.5.2 Impact of number of users with access request

The first experiment evaluates the impact on latency of an access request to a resource (a single
repository) when increasing the number of users permitted access to the resource. Figure 2.5
shows a graph with the average latency of access request for gitoliteACL and gitolite. We vary the
number of users permitted access to the resource (a single repository) from 0 to 295. Notice that
for 0 users, an access check to a resource is simply denied. The results indicate that the average
access latency for gitoliteACL is less than that of gitolite. The primary reason for the lower
access latency for gitoliteACL is that gitoliteACL generates an ACL that only constitutes entries
that allow access to the resource. gitolite on the other hand, must construct this information
per access request. Furthermore, the latency for gitoliteACL does not change significantly as we
increase the number of users allowed access to the resource. The reason is that, searching in
gitoliteACL to check whether the query matches an entry or not can be done using binary search.
Binary search is logarithmic in the number of ACL entries. Because we are considering only 300
users in this graph, the latency for gitoliteACL looks constant as we increase the number of users
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allowed access to the resource. Also because we have checked the access for the first user in the
list of users, the latency even looks more unchanged.
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Figure 2.5: Access times when increasing the number of users accessing allowed access to the
resource.

2.5.3 Impact of deny rules with increasing resources

The second experiment investigates the impact of increasing the number of deny rules for some
randomly chosen users while increasing the number of resources. We experiment with three
configurations of 0, 5 and 10 users denied access to the resources. For gitolite, we notice that the
average access latency does not increase across the three configurations. The reason is that in
gitoliteno matter how many deny rules we have, we check if the query matches any of rules in the
configuration file. The average access latency does not increase in gitoliteACL as well. That is
because after producing the ACL, the only complexity we undertake is searching for a matched
entry and it is not related to a deny or allow permission.
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Figure 2.6: Access times when varying the number of resources while denying a certain number
of users access to the every resource. 5 gitolite means that there are 5 users that are denied access
to every resource.

2.6 Conclusion

We have proposed a semantics for an authorization system that is used for a version control sys-
tem. Another important challenge we have solved is producing an Access Control List (ACL)
based on the proposed authorization system. In access control enforcement we need to have an
ACL based on the authorization system to respond the query. To produce the ACL we need to
have a well defined semantics for the system to result in an ACL. We have proposed an algo-
rithm to produce the ACL and showed complexity result for that. Also we have shown that it
is sound and complete. We have shown in real world experiment the proposed algorithm works
properly. We have discussed that our algorithm is considerably faster than already being used
implementation of gitolite in many situations.
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Chapter 3

Least-Restrictive Enforcement of the
Chinese Wall Security Policy

3.1 Introduction

The Chinese Wall security policy relates to conflict of interest a subject may have over two pieces
of information. The policy states that information from two objects that are to be confidential
from one another should not flow to a subject. Conflict of interest is recognized as important in
several settings – legal, financial and governmental [13], and technical, including in the emergent
area of cloud-computing [14, 15, 16].

We address an issue at the foundations of the policy — its enforcement [19]. We begin
with some discussions on the policy itself. To our knowledge, the policy was first articulated in
information security research by Brewer and Nash [17]. Their work is cited extensively in the
research literature [18], and included in popular books on information security [1, 32, 33].

In articulating the Chinese Wall security policy, Brewer-Nash adopt an abstraction for the
authorization state of systems in which the policy is relevant. We show an example in Figure 3.1.
A system comprises objects and subjects; the former is a passive container of information, and
the latter actively accesses objects. There are only two kinds of access, read and write. When a
subject reads an object, information flows from the object to the subject. When a subject writes
an object, information flows from the subject to the object. Apart from such direct flows of
information, there can be indirect flows of information. In Figure 3.1 for example, the subject s2
read object o6, and later wrote o4; therefore, information has flowed from o6 to o4.

Each object belongs to a Company Dataset, and Company Datasets are grouped into Conflict
of Interest classes. An object that contains confidential information is called an unsanitized
object. If two unsanitized objects belong to different Company Datasets within the same Conflict
of Interest class, then, for the Chinese Wall security policy to be maintained, information from
both those objects should not flow to a subject. An exception is a distinguished Conflict of
Interest class for what are called sanitized objects. Such objects do not contain confidential
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Figure 3.1: An authorization state with two subjects and six objects. As the legend expresses,
boxes with sharp corners are Conflict of Interest classes and boxes with rounded edges are Com-
pany Datasets. An arrow indicates read or write at a particular time. The Conflict of Interest
class to the far right, and the Company Dataset within it contain sanitized objects only.

information at the start, and therefore data that is initially contained in them is allowed to flow
freely.

In Figure 3.1 for example, there are three Conflict of Interest classes, one of which is for
sanitized objects. Objects o3 and o4 belong to the same Company Dataset within a Conflict of
Interest class, and are therefore not in conflict. The objects o2 and o3 that belong to different
Company Datasets that are in different Conflict of Interest classes are also not in conflict. The
objects o3 and o5 that belong to different Company Datasets within the same Conflict of Interest
class are in conflict and therefore we need to guard against data flow from those two objects that
may be in violation of the policy.

Apart from articulating the policy, Brewer-Nash propose an enforcement mechanism for it.
Their enforcement mechanism comprises two rules, the simple security rule and the ∗-rule [17].
A rule is a precondition on the authorization state of the system that must be satisfied before
access is granted to a subject.

The simple security rule is: “Access is only granted if the object requested (a) is in the same
Company Dataset as an object already accessed by that subject, or, (b) belongs to an entirely
different Conflict of Interest Class.” “Access” means read or write. The ∗-rule is: “Write access
is only permitted if (a) access is permitted by the simple security rule, and, (b) no object can be
read which is in a different Company Dataset to the one for which write access is requested and
contains unsanitized information.”

In Figure 3.1, for example, if the subject s1 attempts to read o1, it is disallowed by the simple
security rule as o1 belongs to the same Conflict of Interest class as another object, o2, that it has
already read. If it attempts to read o2 or o3 again, it is allowed to do so by the simple security
rule. The subject s1 is disallowed from writing any object by the ∗-rule because it is allowed to
read both o2 and o3, which are in different Company Datasets.

We point out, however, that if s1 is allowed to write to o2 or o3, no violation of the policy
results. This is an example of the restrictiveness of the Brewer-Nash enforcement mechanism.
While the enforcement mechanism (simple-security and ∗-rules) is sufficient to preclude conflict
of interest, it is not necessary.
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We point out also that in Figure 3.1, at time 2, the ∗-rule of Brewer-Nash disallows s2 from
writing to o4. No flow of information to a subject from objects that are in conflict results from
such an action by s2. However, at time 7, such a write results in information flow from o5 to
o4, which are in conflict. It is unclear whether Brewer-Nash intend for this to be a violation of
the policy. We address it as well, as some subsequent work appears to adopt this as a policy
violation. (We call it an “object violation” of the policy, as opposed to a “subject violation” —
see Definition 17 in Section 3.2.2.)

Work subsequent to Brewer-Nash has pointed out that their enforcement mechanism can be
highly restrictive. Specifically, Kessler [20] and Sandhu [21, 22] establish the following two
properties:

P1: A subject that has read objects from two or more Company Datasets cannot write to any
object.

P2: A subject that has read objects from exactly one Company Dataset can write to that Dataset
only.

Our work We address the following questions that, to our knowledge, have not been addressed
previously. Can we articulate a notion of least-restrictive enforcement for the Chinese Wall
security policy? If so, does there exist an enforcement mechanism that is least-restrictive? What
are the trade-offs it incurs?

We answer the above questions by first proposing a notion of least-restrictive enforcement:
under such enforcement, an authorization state is reachable if and only if it does not violate
the policy. We then propose an enforcement mechanism and show that it is least-restrictive.
We identify that the trade-off we incur regards the independence of the actions of a subject
from another. That is, the read or write actions of a subject can constrain prospective read or
write actions of another subject. We then show that this trade-off in inherent to least-restrictive
enforcement — any enforcement mechanism that is least-restrictive must incur this trade-off.

Separately, we show that the Brewer-Nash enforcement mechanism is even more restrictive
than previous work establishes. We establish two new results. (1) The second sub-rule of the ∗-
rule implies the simple security rule (the first sub-rule of the ∗-rule). (2) If a subject is authorized
to write to an unsanitized object, then all unsanitized objects must belong to the same Conflict of
Interest class.

Our work not only provides a least-restrictive enforcement mechanism of the Chinese Wall
security policy that incurs only the trade-off it must, but also sheds new light on Brewer-Nash,
which is generally considered to be important work in information security.

In the next section, we discuss a graph-based formalism to represent the authorization state
and express the Chinese Wall security policy precisely.
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3.2 A Formalism and the Chinese Wall Security Policy

We seek to carefully distinguish policy from enforcement mechanism. In this section, we articu-
late the policy precisely. As the Chinese Wall security policy pertains to accesses subjects have
made to objects, we adopt a graph-based formalism for what we call authorization states that
capture such accesses.

We first describe our graph-based formalism in Section 3.2.1. Then, in Section 3.2.2 we
express the Chinese Wall security policy, and in Section 3.2.3, we discuss ways in which an
authorization state can change. (Henceforth, we sometimes simply say “state” for “authorization
state,” and “policy” for “Chinese Wall security policy.”)

3.2.1 Authorization State

An authorization state is a tuple 〈D, δ, C,G〉, where G = 〈V, exists, E〉 is a graph, and:

• D is a finite set of company datasets
{
D[s], D1, . . . , Dk

}
. The Dataset D[s] is the one

reserved for sanitized objects. All other Datasets contain unsanitized objects.

• V = S ∪O is the set of vertices which represent the subjects and objects. We assume that
S ∩O = ∅, and:

– S = {s1, s2, . . .} is a countably infinite set of subjects. These are all the subjects that
can possibly exist.
We use the term “subject,” rather than “user” or “principal” intentionally. Sandhu [21,
22] points out some confusion in Brewer-Nash on this issue. We adopt the mindset
from his work. A subject may be created and destroyed, and is an agent of a user; for
example, an operating system process.

– O = {o1, o2, . . .} is a countably infinite set of objects. These are all the objects that
can possibly exist.

• The function exists: V −→ {0, 1} associates each vertex with a bit that indicates whether
it exists. We assume that in any given state, only finitely many subjects and objects exist.

One may wonder why we model subjects and objects in this manner, and not simply have
only those subjects and objects that exist as vertices in an authorization state. The reason
is that, as we discuss in Section 3.2.3, subjects and objects that exist can be destroyed later.
Even after a subject or object is destroyed, it can be part of an information flow that leads
to a violation of the Chinese Wall security policy (see the discussion after Definition 17 in
Section 3.2.2). Consequently, we keep track of all subjects and objects that can possibly
exist, and annotate the ones that exist using the exists function.

• The function δ: O −→ D maps an object to a Company Dataset.
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Figure 3.2: Changes to the authorization state starting at the state in Figure 3.1. We show only
the Conflict of Interest class that contains o1 and o2. In the state to the far left, the subject s3 is
created. In the next state, s3 reads o2. In the next state, o2 is destroyed. In the final state to the
far right, s3 writes to o1 causing an object-violation. All these states are reachable from the state
in Figure 3.1.

• The function C : D ×D −→ {0, 1} identifies Conflict of Interest. That is, C(Di, Dj) = 1
if and only if Di 6= Dj , Di 6= D[s], Dj 6= D[s] and Di and Dj are in conflict (i.e., in the
same Conflict of Interest class).

It may seem that we could simply partition D into Conflict of Interest classes instead of
specifying the function C. We choose this approach to address Lin’s generalization [34] to
the Brewer-Nash characterization of Conflict of Interest classes. Lin’s work points out that
the Brewer-Nash characterization requires the Conflict of Interest relation to be transitive,
when in practice, it does not have to be. In our case, the relation {〈Di, Dj〉 : C(Di, Dj) =
1} is irreflexive, symmetric and not necessarily transitive.

• E ⊆ V × V × Z+ is the set of edges, where Z+ is the set of positive integers. Each
〈v1, v2, t〉 ∈ E represents an access that occurred at time t. If v1 ∈ S, then v2 ∈ O, and the
access was a write. If v1 ∈ O, then v2 ∈ S, and the access was a read.

We can represent the system in Figure 3.1 using our formalism. In the graph, we would have
|D| = 5, and C(Di, Dj) would correspond to the Conflict of Interest classes shown in the figure.
For example, C(δ(o1), δ(o2)) = 1, but C(δ(o3), δ(o4)) = 0. The vertices for which exists = 1
are those shown in the figure, and the only edges that exist are those between vertices that exist.

3.2.2 The Chinese Wall Security Policy

In this section, we first introduce the notion of an information flow in a state, which is a kind of
path in the graph. We then characterize the Chinese Wall security policy.

Definition 16 (Information Flow) In an authorization state (a graph) G, an information flow
from vertex v1 to vn, denoted v1  vn, is a path with edges 〈v1, v2, t1,2〉, 〈v2, v3, t2,3〉, . . .,
〈vn−1, vn, tn−1,n〉 such that t1,2 ≤ t2,3 ≤ . . . ≤ tn−1,n.

For example, in the state that corresponds to Figure 3.1, o6 → s2 → o4 is an information
flow. Subjects and objects alternate in a path that is an information flow; i.e., information can

37



t

Read or write
at time t

Company
Dataset

Conflict of
Interest Class

o2o1 o3 o4 o5

s2s1

o6

(Sanitized)
1

245
6

37

Figure 3.3: A subject-violation example. The policy is not satisfied for subjects in this state.

flow between two objects only via a subject, and information can flow between two subjects only
via an object.

Brewer and Nash [17] express the Chinese Wall security policy as, “[Subjects] are only al-
lowed access to information that is not held to conflict with any other information that they
already possess.” We express this in our graph-based formalism as follows. As we discuss in
Section 3.1, we capture also the policy for flows between objects.

Definition 17 (Chinese Wall Security Policy) The Chinese Wall security policy is said to be
satisfied for subjects in a state if there exists no pair of information flows, o1  s and o2  s
such that s ∈ S, o1, o2 ∈ O, and, C(δ(o1), δ(o2)) = 1. The policy is said to be satisfied for
objects if there exists no pair of information flows, o1  o (or o1 = o) and o2  o (or o2 = o)
such that o, o1, o2 ∈ O, and, C(δ(o1), δ(o2)) = 1.

If the policy is not satisfied for subjects in a state, then we say that there is a subject-violation
of the policy in the state. As an example in Figure 3.3 the policy is not satisfied, because s1 has
read access to both objects o1 and o3 which are in conflict.

If the policy is not satisfied for objects, then we say that there is an object-violation of the
policy. As an example, the policy is not satisfied in the authorization state that corresponds to
Figure 3.4, because there is an information flow from o5 to o3 which are in conflict.

The Chinese Wall security policy is satisfied for both subjects and objects in the state that
corresponds to Figure 3.1. However, if s2 writes to o4 at time 7, we have an object-violation
from the flow o5  o4. If s1 reads o1, there is a subject-violation from the flows o1  s1 and
o2  s1.

We point out that for our definitions above, a violation can be caused by a flow in which
there is a subject or object that has been destroyed. This is reasonable: even if an object is
destroyed, for example, if a subject has previously read that object, we need to consider that flow
of information in any future determination of a violation of the policy.

We point out also that subject- and object-violations are mutually exclusive in that one is
neither a necessary nor a sufficient condition for the other to exist. However, if an object-violation
exists, then there exists a read action by one of a particular set of subjects that causes a subject-
violation. Similarly, if a subject-violation exists, then there exists a write action by one of a
particular set of subjects that causes an object-violation.
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Figure 3.4: An object-violation example. The policy is not satisfied for objects in this state.

3.2.3 Changes to the Authorization State

Of course, the Chinese Wall policy is interesting only if we consider changes to the authorization
state as actions are performed. The only part of the state that can change is the graph, G. Within
G, the only possible changes are to exists, and the set of edges E. The former happens when a
subject or object is created or destroyed, and the latter when a subject reads or writes an object.
Edges can only be added, and never removed, because an edge represents a read or write action,
which cannot be revoked once it is performed.

Brewer-Nash explicitly consider only the actions read and write, and not the creation and
destruction of subjects and objects. However, their rules for creation and destruction are straight-
forward to intuit (see Section 3.5). Also, some of the work subsequent to theirs such as that of
Sandhu [21, 22] considers creation and destruction of subjects and objects explicitly.

In each of the following, we denote as G the current state, and as Gnew the state that results
from the change.

• A subject or object may be created. If α ∈ S ∪ O is the subject/object that is created,
exists(α) = 0 in G (α does not already exist in G). The only difference between G and
Gnew is that in the latter, exists(α) = 1.

In the context of enforcement in the next section, we make the additional assumption that
once a subject or object is destroyed, it cannot be recreated. We defer a discussion on this
to the next section.

• A subject or object may be destroyed. If α ∈ S ∪ O is destroyed, exists(α) = 1 in G, and
exists(α) = 0 in Gnew. That is the only difference between G and Gnew.

• A subject may read or write an object. Suppose s ∈ S is a subject that reads or writes
o ∈ O. Then, in G, exists(s) = exists(o) = 1; that is, both s and o exist in G. The only
difference between G and Gnew is that an edge that corresponds to the action additionally
exists in Gnew, with a timestamp that corresponds to the time the action occurs.

We assume that time is discretized, and only one action occurs at a time. The latter as-
sumption is needed for clarity of exposition only. We can allow multiple actions at the
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same time without affecting any of our contributions. Our use of “≤” in relating the time-
stamps t1,2, t2,3, . . . , tn−1,n in Definition 16 accounts for this. If only one action is allowed
to happen at a time, then we can change that to “<.”

Definition 18 (Reachable State) Given two states σ1 and σn, we say that σn is reachable from
σ1 if and only if either σ1 = σn, or there exists a state σn−1 that is reachable from σ1 and σn
results from a state-change to σn−1.

In Figure 3.2, we show examples of reachable states starting at the state in Figure 3.1. One
may ask why we have chosen state-changes at the above granularity. Why not allow, for example,
multiple subjects to be created in a single state-change? The granularity is important for reads
and writes only. That is, from the standpoint of enforcing the Chinese Wall security policy, a
read and a write must each constitute a state-change, and is atomic. The reason, as we discuss
in the next section, is that we may need to prevent a particular read or write from happening to
ensure that the policy is met in all reachable states.

We point out that the simple security and ∗-rules of Brewer-Nash are articulated with exactly
such a granularity of state-changes in mind for reads and writes. As for the other state-changes
(creation and destruction of subjects and objects), the granularity is unimportant. That is, we can
allow multiple subjects and objects to be created and destroyed simultaneously without affecting
any of our contributions. The reason is that those state-changes by themselves cannot cause the
satisfaction of the policy to be affected.

3.3 Enforcement

We now consider enforcement of the Chinese Wall security policy. Enforcement is the process
by which we allow or disallow a prospective change to the authorization state. An enforcement
mechanism specifies, given a particular state, which changes are allowed. We define it more
precisely below.

In the context of the Chinese Wall security policy, an attempt to create or destroy a subject or
object always succeeds, so long as the subject/object being created has not been created before,
and the subject/object being destroyed exists. The reason, as we discuss in the previous section,
is that those state-changes do not affect satisfaction of the policy. Any conditions on such actions
is beyond the scope of the policy. Of course, an enforcement mechanism may want to keep track
of which subjects/objects exist. The main focus of an enforcement mechanism is whether an
attempt by a subject that exists to read or write an object that exists is allowed.

Definition 19 (Enforcement mechanism) An enforcement mechanism is an algorithm that ei-
ther allows or denies a request for a state-change (creation, destruction, read and write). Some
persistent data that we call enforcement state may be consulted and updated by the algorithm.
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We have kept the above definition somewhat informal. We could, instead, have defined an
enforcement mechanism by characterizing it as a particular kind of automaton, as is done in
some prior work on access enforcement (see, for example, [35, 36]). We have adopted the above
definition for clarity of exposition but without compromising rigor or correctness.

Enforcement state The enforcement state “shadows” a corresponding authorization state. In-
deed, an enforcement state could be exactly the corresponding authorization state. However, that
would not correspond to an efficient enforcement mechanism. The reason is that we would then
be maintaining data even for subjects and objects that do not exist — that size can be unbounded
in the number of subjects and objects that exist.

It is reasonable that the size of the enforcement state is a non-constant (e.g., linear) function
of the number of subjects and objects that exist because in any realistic system, some data is
associated with something that exists to indicate that it exists.

An example A simple example of an enforcement mechanism is one that maintains, as the
enforcement state, a set of subjects and objects that exist, allows the creation of any subject or
object that does not already exist, allows any subject that exists to write any object that exists,
and disallows all reads. When a subject or object is created, it is added to the set that is the
enforcement state, and when a subject or object is destroyed, it is removed from the set.

Such an enforcement mechanism is time and space efficient — the enforcement state is linear
in the number of subjects and objects that exist, and the algorithms are each at worst linear-time
in the number of subjects and objects that exist. It also ensures that the Chinese Wall security
policy is always met. However, it is highly restrictive as a consequence of disallowing any
attempt to read. Large numbers of states that do not violate the Chinese Wall security policy are
precluded from being reached.

Least-restrictive enforcement This leads us to our notion of a least-restrictive enforcement
mechanism, and axes for trade-offs other than restrictiveness. We define the former in this sec-
tion, and discuss the latter in the next section. Before we define what it means for an enforcement
mechanism to be least-restrictive, we define the notion of an empty authorization state.

Definition 20 (Empty Authorization State) An empty authorization state is a graph as char-
acterized in Section 3.2.1 in which for all v ∈ V , exists(v) = 0 and E = ∅.

An empty state can be seen as characterizing a system at the start. No subjects or objects have
been created yet, and nothing has been accessed. We discuss why we need it after our following
definition on least restrictive enforcement.

Definition 21 (Least-restrictive) Let σ0 be the empty state. Let σ0 → σ1 → . . . → σn be a
sequence of states such that σi+1 is reachable from σi via a state-change. Let σn be such that
the Chinese Wall security policy is satisfied in it. An enforcement mechanism is said to be least-
restrictive if it allows enforcement state related to σn to be reached from σ0 via some sequence
of state-changes.
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The above definition of a least-restrictive enforcement mechanism captures our intent that
every state that does not violate the policy should be reachable from σ0 in enforcement. The rea-
son we insist that the start state of any sequence we consider is the empty state σ0 is because we
want the particular enforcement mechanism under consideration to be used from the start of the
system. An enforcement mechanism maintains an enforcement state as we specify in Definition
19. We expect that the enforcement state that corresponds to σ0 for any enforcement mechanism
is empty. If we allow a sequence of state-changes to begin at some arbitrary authorization state,
we would have to allow a particular enforcement mechanism to initialize its enforcement state to
be consistent with that start state. We simply require the start state to be σ0 instead.

In the above definition, it may seem interesting that we do not require the intermediate states
σ1, . . . , σn−1 to also satisfy the policy. The reason is captured by the following lemma.

Lemma 3 Let σ0 → σ1 → . . .→ σn be a sequence of authorization states each reachable from
the previous by a state-change, where σ0 is the empty state. Let σk for k ∈ [0, n] violate the
Chinese Wall security policy. Then, each of the states σk+1, . . . , σn violates the policy as well.

PROOF. Let some state σi where i ∈ [k + 1, n], not violate the policy when some prior state σk
does. We use induction on i − k. For the base case, i = k + 1. We do a case-analysis on the
state-change σk → σk+1 and produce a contradiction for each case in a straightforward manner.
If the state-change is the creation of a subject or object, then this cannot affect the violation of
the policy that exists in σk. We observe similarly that the destruction of a subject or object, or a
read or write action by a subject on an object do not affect the policy violation that exists in σk.

We adopt the induction assumption that for i = k + m − 1, where m ≥ 1, all the states
σk, . . . , σi violate conflict of interest. For the step, we adopt i = k + m, and perform a case-
analysis similar to that for the base case above for the state-change σi−1 → σi and produce a
contradiction. �

As a consequence of the above lemma, in Definition 21, given that σn satisfies the Chinese
Wall security policy, we know that each of the prior states σ0, σ1, . . . , σn−1 satisfies it as well.
Furthermore, we are able to assert the following lemma that states that if a state σ satisfies the
policy, then an enforcement mechanism that is least-restrictive allows every possible sequence
of states that reaches σ from the empty state. (We recognize that we could have simply defined
“least-restrictive” to be this. However, we argue that ours is a better enforcement mechanism —
adopt the notion that appears weaker as the definition, and then assert this stronger result as a
lemma.)

Lemma 4 Let A be a least-restrictive enforcement mechanism for the Chinese Wall security
policy. Let the policy be satisfied in the state σn and let Ψ = σ0 → . . . → σn, where σ0 is the
empty state, be some sequence of states via which σn is reached. Then, A allows the sequence Ψ
to occur.
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Figure 3.5: Our enforcement algorithm for the state-changes from Figure 3.2. We denote δ(o1) =
δ1 and δ(o2) = δ2. The enforcement state that corresponds to each subject and object is shown
in “{ }.” The figure to the far left indicates that no information from any Company Dataset other
than the one to which each belongs has flowed into o1 and o2. As s3 is created in that state, the
set that corresponds to it is empty. The write by s3 in the final state is denied because the “if”
condition in WRITE evaluates to true.

PROOF. From Lemma 3 we know that the policy is satisfied for any σk in Ψ. Therefore, σk is
reachable under A. Induction on k completes the proof. �

3.3.1 Axes for Trade-offs

While the main focus of this dissertation is least-restrictive enforcement, we recognize that an
enforcement mechanism that is least-restrictive should not be unduly poor in other properties of
interest such as time- and space-efficiency. Indeed, in Section 3.4.2, we ask along what axis we
(need to) trade-off to achieve least-restriction.

Example For example, it is possible to conceive an enforcement mechanism that is least-
restrictive that maintains as its enforcement state the authorization state (the graph). The en-
forcement mechanism would work as follows. If there is an attempt by a subject to read or write,
we simply simulate that action by changing the graph as though the attempt is allowed — that
is, we add the corresponding edge to the graph. We then run a graph-search algorithm similar
to Floyd-Warshall’s [37, 38] to determine whether the policy is violated in the new graph. Such
an algorithm would correctly tell us whether the policy is violated or not because information
flow demonstrates optimal substructure similar to shortest-paths in graphs — a sub-path of an
information flow is an information flow.

If we discover that the policy is violated in the new graph, we disallow the request and retain
the current authorization state as our enforcement state. If it is not, we allow it and adopt the
new state as the enforcement state. It is possible to show that this enforcement mechanism is
indeed least-restrictive. However, as we discuss in the previous section, it is inefficient from the
standpoint of space and time. The space is unbounded in the number of subjects and objects that
exist. And this in turn causes an algorithm such as Floyd-Warshall’s [37, 38] to be inefficient, as
it is polynomial-time in the input graph.

43



The axes we consider

• Soundness – we want an enforcement mechanism to be sound — an attempt to read or
write is denied if it would cause a violation of the policy. This captures the basic security
property that we need to maintain.

• Time- and Space-efficiency – we would want an enforcement mechanism to be time- and
space-efficient. By “space,” we mean what we call enforcement state, and any other auxil-
iary space used by an algorithm in the enforcement mechanism.

• Least-restriction – we would want an enforcement mechanism to be least-restrictive in the
authorization states it allows to be reached.

• Independence of subjects – an issue with which prior work [20] deals is whether the
prospective actions of a subject can be constrained by the actions of other subjects. This
can be deemed undesirable. We make this notion of independence of subjects more precise
in the following definition so we can articulate Theorem 10 in Section 3.4.3. That theorem
asserts that it is impossible to achieve least-restriction without trading-off independence of
subjects.

Definition 22 (Independence of subjects) Let σ0 be the empty state andA be an enforce-
ment mechanism. Starting at σ0, suppose Ψa = 〈ψ1, ψ2, . . . , ψn〉 is a sequence of state-
changes that is allowed by A, but the state-change ψn+1 that is the read or write by a
subject s on some object is not allowed by A immediately after Ψa. Let Ψb be a subse-
quence of Ψa that we get by removing one or more read and write actions of a subject
s′ 6= s such that A allows ψn+1 immediately after Ψb. Then we say that under A, the
actions of a subject are not independent of the actions of other subjects. If no such pair
〈Ψa,Ψb〉 exists, then we say that under A, the actions of a subject are independent.

We point out that our above definition has similarities to non-interference [39, 40].

• Access to sanitized objects – given that the intent of sanitized objects is to contain public
information, it is desirable that subjects are able to read such objects freely so long as there
has been no flow of information into a sanitized object from an unsanitized object.

• Transitivity of the conflict of interest relation – as Lin [34] points out, the conflict of interest
relation is not necessarily transitive, and therefore an enforcement mechanism should not
assume that it is. As an example in Figure 3.6 o5 is in conflict with o2 and o4. But o2 and
o4 are not in same conflict of interest class.
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Figure 3.6: An example of non-transitive conflict of interest relation

3.4 Our Approach

In this section, we present our enforcement mechanism and show that it is least-restrictive. We
discuss also how well it does along the other axes for trade-offs that we discuss in the previous
section.

Enforcement state The enforcement state in our approach, V , is a set of sets. We maintain
a set for every subject and object that exists; that is, has been created and not destroyed. Let
∆v ∈ V be associated with v ∈ S ∪O where exists(v) = 1. Then ∆v ⊆ D, where D is the set of
Company Datasets (see Section 3.2.1). V is initialized to ∅.

Algorithm Our enforcement algorithm is conceptually simple. When information flows from
v1 to v2 via a read or write, labeling enforcement propagates some “control data” as well —
the set of Company Datasets with which v1 is associated. We present the algorithm as a set of
sub-routines, each corresponding to the kind of state-change that is attempted.

CREATE (v)

if ∃∆v ∈ V then Error;
if v ∈ O then ∆v ← {δ(v)} else ∆v ← ∅;
V ← V ∪∆v;

DESTROY (v)

V ← V −∆v;

READ (s, o)

if ∃di, dj with {di, dj} ⊆ ∆s ∪∆o and C(di, dj) = 1 then deny;
else ∆s ← ∆s ∪∆o; allow;
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WRITE (s, o)

if ∃di, dj with {di, dj} ⊆ ∆s ∪∆o and C(di, dj) = 1 then deny;
else ∆o ← ∆s ∪∆o; allow;

When a subject or object v is created, CREATE initializes a set ∆v and adds it to the enforce-
ment state, V . ∆v is set to ∅ if v is a subject, and the Company Dataset to which v belongs if v is
an object. When a subject or object is destroyed, DESTROY removes the set that corresponds to it
from the enforcement state, V .

When a subject s attempts to read or write an object o, it may be denied by the corresponding
“if” condition, which examines ∆s∪∆o for the existence of company datasets that are in conflict.
If a read by s of o succeeds, then ∆s is updated, and if a write succeeds, then ∆o is updated.

The “if” condition in READ above is needed only if we wish to prevent subject-violations. The
“if” condition in WRITE is needed only if we wish to prevent object-violations. If, for example,
we seek to prevent subject-violations only and not object-violations, then we can remove the “if”
condition in WRITE (thereby allowing all write requests), and only update ∆o as specified under
“else” in WRITE.

The conceptual simplicity of our approach ensures its efficiency, and belies its power. In
the next sections, we discuss how our approach performs along each axis from Section 3.3.1.
In particular, in Section 3.4.2 we show that it is least-restrictive, and in Section 3.4.3 we show
that any enforcement mechanism that is least-restrictive must incur the same trade-off that our
enforcement mechanism does. In Section 3.4.4, we address the question as to whether ours is
the only possible enforcement mechanism to enforcing the Chinese Wall security policy that is
least-restrictive.

3.4.1 Soundness

The soundness of our enforcement mechanism is based on the following lemma regarding the set
∆v that corresponds to a vertex v in the enforcement state V in our enforcement mechanism.

Lemma 5 Let σ0 → σ1 → . . .→ σn be an authorization state-change sequence that is allowed
by our enforcement mechanism. Let v1  v2 be an information flow in σn where v1 ∈ O and
exists(v2) = 1. Then, in the enforcement state, V , that corresponds to σn, (1) ∃∆v2 ∈ V , and, (2)
δ(v1) ∈ ∆v2 .

PROOF. For (1), we observe that ∆v2 is created and added to V in CREATE, and is removed in
DESTROY only. Therefore, given that v2 is created, but not destroyed in the sequence σ0 → . . .→
σn, we know (1) is true. For (2), we use induction on n.

For the base cases with n = 0 and n = 1, the assertion is trivially true as there is no
information flow in either σ0 or σ1 — there are no vertices in σ0, and at most one vertex in σ1.
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For the step, we assume that the assertion is true for all n between 0 and k. We consider the case
that n = k + 1, and perform a case-analysis on the state-change σk → σk+1.

If the state-change is a creation or destruction of a subject or object, no new information flows
are added to σk, and we rely directly on the induction assumption for the proof. Consider the
case that the state-change is a read by subject s on object o. Then, the only new information flows
that are added are into s. We observe also that the only component of the enforcement state that
changes in READ is ∆s. Consider an information flow v  s, for some v ∈ O, in σn+1 that does
not exist in σn. As the only new edge in E is from o to s, there must have existed an information
flow v  o in σn. By the induction assumption, in the enforcement state that corresponds to σn,
δ(v) ∈ ∆o. The component ∆o does not change between σn and σn+1, and in READ, we perform
∆s ← ∆s ∪ ∆o, and therefore δ(v) ∈ ∆s in the enforcement state that corresponds to σn+1, as
desired.

Now consider the case that the state-change σn → σn+1 is a write by s to o. Then, the only
new information flows that are added are into o. We observe also that the only component of the
enforcement state that changes in WRITE is ∆o. Consider an information flow v  o, for some
v ∈ O, in σn+1 that does not exist in σn. As the only new edge in E is from s to o, there must
have existed an information flow v  s in σn. By the induction assumption, in the enforcement
state that corresponds to σn, δ(v) ∈ ∆s. The component ∆s does not change between σn and
σn+1, and in WRITE, we perform ∆o ← ∆s ∪ ∆o, and therefore δ(v) ∈ ∆o in the enforcement
state that corresponds to σn+1, as desired.

�

Theorem 8 (Soundness) Let σ0 → σ1 → . . . → σn be an authorization state-change sequence
that is allowed by our enforcement mechanism such that σn satisfies the Chinese Wall security
policy. Let σn → σn+1 be a state-change such that the policy is violated in σn+1. Then our
enforcement mechanism disallows the sequence σ0 → σ1 → . . .→ σn → σn+1.

PROOF.

We have only two cases. (1) one of the state-changes σi → σi+1 for i ∈ [0, n−1] is disallowed
by our enforcement mechanism. In this case, we are done as the sequence is disallowed by our
enforcement mechanism. (2) all of the state-changes σi → σi+1 for i ∈ [0, n − 1] are allowed
by our enforcement mechanism. In this case, we need to show that σn → σn+1 is disallowed by
our enforcement mechanism. If the policy is subject-violated in σn+1 but not σn, we know that
the state-change σn → σn+1 is a read by some subject s on some object o, and all causes for the
policy being subject-violated in σn+1 are pairs of paths that terminate at s.

If the policy is object-violated in σn+1 but not σn, we know that the state-change σn → σn+1

is a write by some subject s on some object o, and all causes for the policy being object-violated
in σn+1 is a path that terminate at o.
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• Subject-violation: Assume, for the purpose of contradiction, that our enforcement mech-
anism allows the state-change, and in σn+1 we have the two information flows o1  s
and o2  s with C(δ (o1) , δ (o2)) = 1. As our enforcement mechanism allows the state-
change, we know that the “if” condition in READ evaluates to false.

We claim that there are only two possibilities in the enforcement state that corresponds to
σn. Either (a) {δ(o1), δ(o2)} ⊆ ∆o. Or, (b) one of δ(o1) or δ(o2) is in ∆s, and the other
is in ∆o. If we are able to prove this claim, then we have the desired contradiction, as the
“if” condition in READ would evaluate to true when s attempts to read o.

To prove the claim, we first observe that we have only one of the following two possibili-
ties. Either one of the information flows o1  s or o2  s is in σn, or neither is. We point
out that both information flows cannot be in σn as then σn contains a subject-violation,
which contradicts our assumption. In the former case, assume without loss of generality
that o1  s is in σn. Then, by Lemma 5, δ(o1) ∈ ∆s in the enforcement state that corre-
sponds to σn. The only edge added to E between σn and σn+1 is from o to s. As we have
a new path o2  s in σn+1, we must have o2  o or o2 = o in σn. By Lemma 5 (for the
case that o2  o) and how CREATE works for objects (for the case that o2 = o), δ(o2) ∈ ∆o

in the enforcement state that corresponds to σn. This corresponds to Case (b) above.

In the latter case that neither o1  s and o2  s is in σn, both paths are created newly in
σn+1 by the addition of the edge from o to s in E. Therefore, in σn, o1  o and o2  o,
and by Lemma 5, in the enforcement state that corresponds to σn, {δ(o1), δ(o2)} ⊆ ∆o.
This is Case (a) above.

• Object-violation: Assume, for the purpose of contradiction, that our enforcement mech-
anism allows the state-change, and in σn+1 we have the two information flows o1  o
(or o1 = o) and o2  o (or o2 = o) with C(δ (o1) , δ (o2)) = 1. As our enforcement
mechanism allows the state-change, we know that the “if” condition in WRITE evaluates to
false.

We claim that there are only two possibilities in the enforcement state that corresponds to
σn. Either (a) {δ(o1), δ(o2)} ⊆ ∆s. Or, (b) one of δ(o1) or δ(o2) is in ∆s, and the other
is in ∆o. If we are able to prove this claim, then we have the desired contradiction, as the
“if” condition in WRITE would evaluate to true when s attempts to write o.

To prove the claim, we first observe that we have only one of the following two possibili-
ties. Either one of the information flows o1  o (or o1 = o) or o2  o (or o2 = o) is in σn,
or neither is. We point out that both information flows cannot be in σn as then σn contains
an object-violation, which contradicts our assumption. In the former case, assume without
loss of generality that o1  o is in σn. Then, by Lemma 5, δ(o1) ∈ ∆o in the enforcement
state that corresponds to σn. The only edge added to E between σn and σn+1 is from s to
o. As we have a new path o2  o in σn+1, we must have o2  s in σn. By Lemma 5,
δ(o2) ∈ ∆s in the enforcement state that corresponds to σn. This corresponds to Case (b)
above.

In the latter case that neither o1  o and o2  o is in σn, both paths are created newly in
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σn+1 by the addition of the edge from s to o in E. Therefore, in σn, o1  s and o2  s,
and by Lemma 5, in the enforcement state that corresponds to σn, {δ(o1), δ(o2)} ⊆ ∆s.
This is Case (a) above.

�

3.4.2 Least-Restriction

In this section, we show that our enforcement mechanism is least-restrictive.

Lemma 6 Let σ0 → σ1 → . . . → σn be a sequence of authorization states that is allowed by
our enforcement mechanism. In the enforcement state that corresponds to σn, suppose di ∈ ∆v

for v ∈ V . Then, either v ∈ O and di = δ(v), or there exists some o ∈ O with δ(o) = di and an
information flow o v in σn.

PROOF. We use induction on n ≥ 1. For the base case, n = 1, we know that the state-change
σ0 → σ1 is the creation of a subject or object. If a subject s is created, then the enforcement state
V = {∆s} where ∆s = ∅, and the assertion is trivially true. If an object o is created, then there
is only one entry di ∈ ∆o where di = δ(o), and the assertion is true. For the step, we make the
induction assumption that the assertion is true for all sequences with n ≤ k. For the case that
n = k + 1, we do a case-analysis on the kind of state-change σk → σk+1. We adopt the notation
Vj for the enforcement state that corresponds to the state σj .

If the state-change is the creation of a subject, then di ∈ ∆v in Vk+1 implies di ∈ ∆v in Vk,
and we rely directly on the induction assumption for the proof. If it is the creation of an object
o, then only δ(o) ∈ ∆o is a new entry in any ∆v between Vk and Vk+1. In this case, with the
induction assumption, we have the proof. If it is a read by subject s on object o, only ∆s changes
between Vk and Vk+1. For all others, the induction assumption provides the proof. Let di be
a new entry in ∆s. Then, we know that di ∈ ∆o in Vk. By the induction assumption, either
di = δ(o), or there is information flow o′  o in σk where δ(o′) = di. The addition of the edge
from o to s into E results in information flows o s and o′  s, and hence the proof.

If it is a write by subject s on object o, only ∆o changes between Vk and Vk+1. For all others,
the induction assumption provides the proof. Let di be a new entry in ∆o. Then, we know that
di ∈ ∆s in Vk. By the induction assumption there is information flow o′  s in σk where
δ(o′) = di. The addition of the edge from s to o into E results in information flows s  o and
o′  o, and hence the proof.

�

Lemma 7 Let σ0 → σ1 → . . . → σn be a sequence of authorization states that is allowed by
our enforcement mechanism. Let σn → σn+1 be a state-change that is denied by our enforcement
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mechanism. If the state-change from σn to σn+1 is a read, then allowing σn+1 results in a subject-
violation of the Chinese Wall security policy. If the state-change from σn to σn+1 is a write, then
allowing σn+1 results in an object-violation of the Chinese Wall security policy.

PROOF.

By Theorem 8, we know that σn does not violate the policy.

• Subject-violation: Let the state-change σn → σn+1 be an attempt by a subject s to read
an object o for which the “if” condition in READ evaluates to true. Let di, dj be a pair that
causes the “if” condition to evaluate to true. One of the following two cases is true for the
enforcement state that corresponds to σn. (1) di ∈ ∆s and dj ∈ ∆o, or, (2) {di, dj} ⊆ ∆o.
We point out that the case {di, dj} ⊆ ∆s in the enforcement state that corresponds to σn
cannot happen. The reason is that if that is the case, then there exist information flows
o1  s and o2  s in σn with δ(o1) = di and δ(o2) = dj . This is a subject-violation of
the policy, and by Theorem 8, this cannot happen.

If case (1) is true, then by Lemma 6, there exists o1 ∈ O such that di = δ(o1) and the
information flow o1  s exists in σn. Also, there exists o2 such that dj = δ(o2) and either
o2 = o or there exists information flow o2  o in σn. The addition of the edge from o to s
would result in information flows o1  s and o2  s, which results in a subject-violation.

In case (2), we know from Lemma 6 that there exist o1, o2 ∈ O such that there exist
information flows o1  o and o2  o in σn, or one of o1, o2 is the same as o. Thus, the
addition of the edge from o to s to E results in information flows o1  s and o2  s
which results in a subject-violation.

• Object-violation: Let the state-change σn → σn+1 be an attempt by a subject s to write an
object o for which the “if” condition in WRITE evaluates to true. Let di, dj be a pair that
causes the “if” condition to evaluate to true. One of the following two cases is true for the
enforcement state that corresponds to σn. (1) di ∈ ∆s and dj ∈ ∆o, or, (2) {di, dj} ⊆ ∆s.
We point out that the case {di, dj} ⊆ ∆o in the enforcement state that corresponds to σn
cannot happen. The reason is that if that is the case, then there exist information flows
o1  o (or o1 = o) and o2  o (or o2 = o) in σn with δ(o1) = di and δ(o2) = dj . This is
an object-violation of the policy, and by Theorem 8, this cannot happen.

If case (1) is true, then by Lemma 6, there exists o1 ∈ O such that di = δ(o1) and the
information flow o1  s exists in σn. Also, there exists o2 such that dj = δ(o2) and either
o2 = o or there exists information flow o2  o in σn. The addition of the edge from s to o
would result in information flows o1  o and o2  o, which results in an object-violation.

In case (2), we know from Lemma 6 that there exist o1, o2 ∈ O such that there exist
information flows o1  s and o2  s in σn. Thus, the addition of the edge from s to o to
E results in information flows o1  o and o2  o which results in an object-violation.

�
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Theorem 9 (Least-restriction) A sequence of authorization states σ0 → σ1 → . . . → σn is
allowed by our enforcement mechanism if and only if σn does not violate conflict of interest.

PROOF. The “only if” part is exactly Theorem 8. The “if” part is exactly Lemma 7. �

3.4.3 Other Axes

In the previous sections, we show that our enforcement mechanism is sound and least-restrictive.
In this section, we discuss how our enforcement mechanism does along the other axes from
Section 3.3.1.

Time-efficiency Our enforcement mechanism is constant in the number of objects and subjects
that exist. It is polynomial (at worst quadratic) in the number of company datasets, which we can
think of as constant in the number of subjects and objects that exist.

Space-efficiency The size of the enforcement state is O(|Vexists| × |D|), where Vexists is the
set of subjects and objects that exist, and D is the set of company datasets. If we assume that
the number of company datasets is constant, then the space we need is linear in the number of
subjects and objects that exist.

Independence of subjects In our enforcement mechanism, the actions of a subject can constrain
the actions of another subject. This can be seen as a limitation of our enforcement mechanism.
However, as we express in Theorem 10 below, this is unavoidable for any enforcement mecha-
nism that is least-restrictive. It may be possible to characterize the “degree” of independence of
subjects; this is beyond the scope of our work.

Theorem 10 Let A be an enforcement mechanism. If A is least-restrictive, then subjects are
not independent. That is, the actions of a subject can constrain the prospective actions of other
subjects.

PROOF. To establish the theorem, we provide a counterexample to the opposite assertion. In
the context of Definition 22 from Section 3.3.1, the sequence Ψa is the creation of subjects s1, s2
and objects o1, o2, o3 with C(o1, o2) = 1 and C(o1, o3) = C(o2, o3) = 0. This is followed by a
read of o1 by s1, write of o3 by s1 and read of o2 by s2. We point out that the authorization state
that results (starting at σ0) does not violate conflict of interest, and therefore is reachable under
A. As Ψb, we pick the subsequence of Ψa without any of the read and write actions of s1. The
subsequent action we want to execute is a read of o3 by s2. A does not allow this action after Ψa

as it causes a conflict of interest violation: o1  s2 and o2  s2. But it allows this action after
Ψb, as the resulting state does not violate conflict of interest. �
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Access to sanitized objects Our enforcement mechanism places no restrictions on access to
sanitized objects so long as those objects are not used as conduits to a policy violation.

Transitivity of the conflict of interest relation The conflict of interest relation does not have
to be transitive in our enforcement mechanism.

3.4.4 Uniqueness of Our Enforcement Mechanisms

One may ask whether ours is the only possible enforcement mechanism that is least-restrictive.
While we are unable to prove such a strong result, we assert in the following theorem that any
enforcement mechanism that is least-restrictive must deny some attempt by a subject to read an
object to prevent subject-violations, and some attempt by a subject to write an object to prevent
object-violations. This validates our design choice of mediating read attempts to prevent subject-
violations, and mediating write attempts to prevent object-violations.

Theorem 11 Let A be an enforcement mechanism for the Chinese Wall security policy that is
least-restrictive. Then A must deny some attempt by a subject to read an object to prevent
subject-violations, and must deny some attempt by a subject to write to an object to prevent
object-violations.

PROOF.

• Subject-violations: Assume otherwise, for the purpose of contradiction. That is, A does
not deny any attempt to read. Let σ0 → . . . → σn be a sequence of states each reachable
from the previous by a state-change such that we have a subject-violation in σn, but not
in any of the prior states. We make two observations: (1) in σn, all information flows
because of which the policy is violated are into a particular subject s, and, (2) the state-
change σn−1 → σn must be a read by s that causes there to exist information flows of the
form o1  s, o2  s, . . . , om  s such that m ≥ 2 and C(δ(oi), δ(oj)) = 1 for all
i, j ∈ [1,m], i 6= j. To prevent such a sequence of states from occurring without denying
any read in the sequence, either (a) the creation of a subject or object, or, (b) the write by a
subject s′ on an object o′ must be denied. Let the state-change σk−1 → σk be such a state-
change that is denied. Then, by (2) above, k < n, because the state-change σn−1 → σn is a
read. Therefore, by (1) above, the sequence σ0 → . . .→ σk contains only those states that
do not contain a subject-violation. As that sequence is precluded byA, this contradicts the
assumption that A is least-restrictive.

• Object-violations: Assume otherwise, for the purpose of contradiction. That is, A does
not deny any attempt to write. Let σ0 → . . . → σn be a sequence of states each reachable
from the previous by a state-change such that we have an object-violation in σn, but not
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in any of the prior states. We make two observations: (1) in σn, all information flows
because of which the policy is violated are into a particular object o, and, (2) the state-
change σn−1 → σn must be a write to o that causes there to exist information flows of
the form o1  o, o2  o, . . . , om  o such that m ≥ 2 and C(δ(oi), δ(oj)) = 1 for all
i, j ∈ [1,m], i 6= j. To prevent such a sequence of states from occurring without denying
any write in the sequence, either (a) the creation of a subject or object, or, (b) the read by a
subject s′ on an object o′ must be denied. Let the state-change σk−1 → σk be such a state-
change that is denied. Then, by (2) above, k < n, because the state-change σn−1 → σn is a
write. Therefore, by (1) above, the sequence σ0 → . . .→ σk contains only those states that
do not contain an object-violation. As that sequence is precluded byA, this contradicts the
assumption that A is least-restrictive.

�

3.5 The Brewer-Nash Approach

In this section, we present new results on the Brewer-Nash enforcement mechanism. We identify
the enforcement state that their approach needs to maintain, and express the simple security and
∗-rules, and the corresponding rules for read and write as algorithms.

Enforcement state We can directly infer the enforcement state that needs to be maintained from
the simple-security and ∗-rules. To assess whether the simple-security rule is met when a subject
s requests access to an object o, we need to know whether an object from δ(o) has already been
accessed, and whether given any o′ ∈ O already accessed by s, C(δ(o′), δ(o)) = 0. In addition,
for the ∗-rule, we need to know whether the Company Dataset for any object that can be read by
s is different from δ(o).

Consequently, these rules can be applied if we maintain: (a) for each subject that exists, the
set of Company Datasets of objects it has already accessed (read or written), and, (b) the set of
objects that exist. (For (a), we can alternately maintain the set of Company Datasets from which
no object has been accessed by each subject.)

As for our enforcement mechanism, we represent the enforcement state as V , which com-
prises sets ∆s ⊆ D of Company Datasets, where the subscript s is the subject with whom ∆s is
associated.

Algorithm We now present the algorithm for the Brewer-Nash enforcement mechanism as
sub-routines for read and write attempts, READ-BN and WRITE-BN, respectively. We omit the
ones for creation and destruction — those involve straightforward updates to the enforcement
state, similar to our enforcement mechanism. We present the simple-security and ∗-rules as sub-
routines invoked by READ-BN and WRITE-BN. (We number the lines of SIMPLE-SECURITY and ∗
below as we need to refer to them in our proofs in the next section.)
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SIMPLE-SECURITY(s, o)

if δ(o) ∈ ∆s then return true;
else if ∃o′ with δ(o′) ∈ ∆s and C(δ(o), δ(o′)) = 1 then return false;
else return true;

∗(s, o)
if SIMPLE-SECURITY(s, o) = false then return false;
else if ∃o′ with SIMPLE-SECURITY(s, o′) = true, δ(o) 6= δ(o′), and δ(o′) 6= D[s] then return
false;
else return true;

READ-BN(s, o)

if exists(o) and SIMPLE-SECURITY(s, o) then
∆s ← ∆s ∪ {δ(o)}; allow;

else deny;

WRITE-BN(s, o)

if exists(o) and ∗(s, o) then
∆s ← ∆s ∪ {δ(o)}; allow;

else deny;

Evaluation The Brewer-Nash enforcement mechanism is sound — if a request is allowed, we
are guaranteed that the policy is not violated in the subsequent state.

The enforcement mechanism is not least-restrictive. For example, as we mention in Section
3.1, the authorization state that corresponds to Figure 3.1 is not reachable under Brewer-Nash
even though it does not violate the Chinese Wall security policy. At time 2, the subject s2 would
have been denied the ability to write to o4 having the permission of reading o2. ∗-rule prevents
s2, because when s2 wants to write to o4, he has the ability of reading o2 that is in a different
conflict of interest class from o4.

Although the original exposition of Brewer-Nash [17] assumes that the conflict of interest
relation is transitive, there is nothing in their enforcement mechanism that requires this, as is
demonstrated above by our exposition.

Under Brewer-Nash, subjects are independent; that is, the actions of a subject do not con-
strain the prospective actions of another subject. (By Theorem 10 in Section 3.4.3, this is an-
other way to intuit that Brewer-Nash is not least-restrictive.) It is space-efficient — we maintain
only O (|Sexists| · |D|+ |Oexists|) amount of space, where Sexists and Oexists are the sets of subjects
and objects that exists(S) = 1, and exists(O) = 1 respectively. It is less time-efficient than our
enforcement mechanism, but still polynomial-time in the number of objects that exist. The algo-
rithm SIMPLE-SECURITY, and therefore READ-BN, runs in timeO(|Oexists| · |D|), and ∗, and therefore
WRITE-BN, runs in time O(|Oexists|2 · |D|).
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3.5.1 New Properties

In this section, we present new properties of the Brewer-Nash enforcement mechanism. Theo-
rem 12 expresses that the enforcement mechanism is even more restrictive than previous work
suggests [20, 21, 22]. Theorem 13 expresses that the ∗-rule is overstated.

Theorem 12 Suppose there exists a subject s and an unsanitized object o such that s is allowed
to write to o under Brewer-Nash. Then, there is exactly one Conflict of Interest class to which all
unsanitized objects belong.

PROOF. We can restate the theorem as the following: suppose there exists s ∈ S and o1 ∈ O
such that WRITE-BN(s, o1) = allow. Then for any o2 ∈ O with exists(o2) = 1, δ(o2) 6= D[s] and
δ(o2) 6= δ(o1), we have C(δ(o1), δ(o2)) = 1.

Suppose, as in the premise, WRITE-BN(s, o1) = allow. This means that ∗(s, o1) = true.
Therefore, ∗(s, o1) returns in Line 3 of that routine. Now consider any other o2 ∈ O with
exists(o2) = 1, δ(o2) 6= δ(o1) and δ(o2) 6= D[s]. We need to show that C(δ(o2), δ(o1)) = 1.

Suppose, for the purpose of contradiction, that C(δ(o2), δ(o1)) = 0. We have two cases: (a)
READ-BN(s, o2) returns allow, or, (b) READ-BN(s, o2) returns disallow. In case (a), we have the
following contradiction. We know that ∗(s, o1) = true, yet, the condition in Line 2 of ∗(s, o1)
evaluates to true for o′ = o2. The reason is that SIMPLE-SECURITY(s, o2) has to return true for
READ-BN(s, o2) to be allow.

In case (b), we know that SIMPLE-SECURITY(s, o2) = false. Therefore, there is some o3 that
serves as the o′ in Line 2 of
SIMPLE-SECURITY(s, o2). We now consider the following sub-cases. (i) o3 = o1. This results
in a contradiction because by Line 2 of SIMPLE-SECURITY(s, o2), C(δ(o3), δ(o2)) = 1, but we
have assumed that C(δ(o1), δ(o2)) = 0. (ii) o3 6= o1, but δ(o3) = δ(o1). This results in the
same contradiction as (i). And finally, (iii) o3 6= o1 and δ(o3) 6= δ(o1). Now, because o3
serves as the o′ in Line 2 of SIMPLE-SECURITY(s, o2), we know that δ(o3) ∈ ∆s. This means that
READ-BN(s, o3) = allow. Now consider an invocation of ∗(s, o1). The “if” condition in Line 2
evaluates to true for o′ = o3, and the invocation returns false. But this contradicts the assumption
that WRITE-BN(s, o1) returns allow. �

Before we present the next theorem, we restate the ∗-rule. “Write access is only permitted
if (a) access is permitted by the simple security rule, and, (b) no object can be read which is
in a different Company Dataset to the one for which write access is requested and contains
unsanitized information.”

Theorem 13 If a subject s and object o satisfy subrule (b) of the ∗-rule of Brewer-Nash, then
they satisfy subrule (a) (the simple-security rule).
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PROOF.

We can restate the theorem as follows: let s ∈ S and o ∈ O. Assume that @o′ such that
READ-BN(s, o′) = allow, δ(o) 6= δ(o′) and δ(o′) 6= D[s]. Then, SIMPLE-SECURITY(s, o) = true.

Given our assumption, we know that for all o′ 6= o, at least one of the following is true. (a)
READ-BN(s, o′) = deny, (b) δ(o′) = δ(o), or, (c) δ(o′) = D[s]. For the purpose of contradiction,
assume that SIMPLE-SECURITY(s, o) = false. This means that the “if” condition in Line 2 of
SIMPLE-SECURITY(s, o) evaluates to true. That is, there exists some o′′ that serves as the o′ in Line
2. Specifically, δ(o′′) ∈ ∆s.

Such an o′′ cannot serve as o′ in (c) above, as then, C(δ(o′′), δ(o)) = 0. Suppose it serves as
the o′ in (b) above. Then,
SIMPLE-SECURITY(s, o) = true from Line 1; a contradiction. Finally, suppose o′′ serves as the o′

in (a) above. But, in the last sentence of the previous paragraph, we asserted that δ(o′′) ∈ ∆s.
Therefore, READ-BN(s, o′′) = allow, a contradiction. �

3.5.2 Bishop’s Rendition [32]

Bishop [32] reproduces the work of Brewer and Nash in his popular book on computer security.
However, perhaps for brevity of exposition, he treats sanitized objects differently. In Bishop’s
rendition, D, the set of Company Datasets does not contain the special Dataset D[s] for sanitized
objects, but only a Dataset for each company, D1, . . . , Dk. Every object also has what one can
think of as a one-bit labelling function, l: O −→ {u, u}, which indicates whether it is unsanitized
or sanitized. The simple security rule is amended to the following.

SIMPLE-SECURITY-BISHOP(s, o)

if l(o) = u then return true;
else return SIMPLE-SECURITY(s, o);

This somewhat subtle difference in expressing the simple-security rule has fairly significant
consequences. A system that adopts
SIMPLE-SECURITY-BISHOP instead of SIMPLE-SECURITY does not behave as it would under the Brewer-
Nash rules. Specifically, Theorem 13 is no longer necessarily true.

We can show this with a counterexample. Suppose we have a subject s and two objects o1
and o2. The objects belong to different Company Datasets, D1 and D2, respectively. The two
Company Datasets are in conflict; i.e., C(D1, D2) = 1. The object o1 is sanitized, and o2 is
unsanitized. The subject s has read the object o1 at time t.

We observe that SIMPLE-SECURITY-BISHOP(s, o2) is false. The reason is that the “if” condition
in Line 2 of SIMPLE-SECURITY, which is invoked by SIMPLE-SECURITY-BISHOP, is met for o′ = o1,
and therefore it returns false in Line 2. However, subrule (b) of the ∗-rule is trivially true.
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Consequently, satisfaction of subrule (b) of the ∗-rule does not imply satisfaction of subrule (a)
in Bishop’s rendition, which is what Theorem 13 asserts about Brewer-Nash.

This suggests something good about Bishop’s enforcement mechanism when compared to
the Brewer-Nash enforcement mechanism: the ∗-rule is not overstated. However, a closer ex-
amination of our counterexample shows a somewhat peculiar behaviour by the system. Suppose
s has not yet read o1. Then, s is allowed to read o2. And, s may later read o1 as well, be-
cause l(o1) = u and therefore SIMPLE-SECURITY-BISHOP is always true for it. In other words, the
order in which s reads sanitized and unsanitized objects matters. This is not the case with the
Brewer-Nash enforcement mechanism.

3.6 Related Work

There is a large body of work that pertains to the Chinese Wall security policy [18]. Our work
pertains to enforcement of the policy. As such, it is most closely related to the original work of
Brewer and Nash [17], and the subsequent work of Lin [34], Kessler [20] and Sandhu [21, 22].
We discuss those pieces of work first, and then sample other work. We have discussed the work
of Brewer and Nash [17] extensively in this dissertation, and therefore do not discuss it any
further.

The work of Lin [34] points out that Brewer-Nash assumes that the conflict of interest relation
is transitive, but it does not have to be. We have adopted his generalization in this work.

The work of Kessler [20] makes observations about how restrictive the Brewer-Nash enforce-
ment mechanism can be (see Section 3.1). That work then proposes an alternate enforcement
mechanism that is purportedly less restrictive. It does not consider the notion of least-restrictive
enforcement.

Furthermore, Kessler [20] precludes two subjects from being able to write to the same object.
Specifically, once a subject writes to an object, no other subject can write to the same object. We
point out that two subjects could read and write a single object only, and thereby not violate the
Chinese Wall security policy.

This is an aspect with which Kessler’s approach cannot be said to be less restrictive than
Brewer-Nash. That is, there exist authorization states that satisfy the Chinese Wall security policy
that are unreachable under Kessler’s approach that are reachable under Brewer-Nash. And, there
exist other authorization states that satisfy the policy that are unreachable under Brewer-Nash
that are reachable under Kessler’s approach.

Sandhu’s work [21, 22] also observes that the Brewer-Nash enforcement mechanism is re-
strictive (see Section 3.1). It also points out some confusion in the work of Brewer and Nash [17]
regarding subjects, as opposed to users and principals. We have incorporated Sandhu’s mindset
in our work. Sandhu’s work [21, 22] also refutes an assertion of Brewer and Nash [17] that the
Chinese Wall security policy cannot be encoded in a lattice. That work proposes a construction,
which we can perceive as an enforcement mechanism for the policy.
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In Sandhu’s enforcement mechanism, every object and subject is associated with a label from
a lattice. The enforcement mechanism then simply uses the “no read up” and “no write down”
rules that is customary for lattice-based access control systems. In Sandhu’s enforcement mech-
anism, subjects are independent, and this immediately tells us that the enforcement mechanism
is not least-restrictive (see Theorem 10 in Section 3.4.3). Furthermore, as a subject is bound to a
label in the lattice, if an object belongs to only one Company Dataset (as is the case in the orig-
inal specification of Brewer and Nash [17]), a subject that can read objects from two Company
Datasets cannot write to any object. The reason is that such a subject must be at least one level
above all objects in the lattice, and by the “no write down” rule, it cannot write any object. (We
discuss below, however, that Sandhu’s work [21, 22] proposes the generalization that an object
can be labelled with multiple Company Datasets from different Conflict of Interest classes.) We
point out also that Sandhu’s enforcement mechanism requires the Conflict of Interest relation to
be transitive.

We now sample other work on the Chinese Wall security policy with which our work is not
related closely. Our intent is to give a somewhat broad overview of the kinds of work related to
the Chinese Wall security policy that exists.

There has been work on realizing the Chinese Wall security policy in specific contexts. Re-
cent work [15, 16] proposes the application of the policy to cloud computing environments. Tsai
et al. [15] propose to use the Chinese Wall security policy to resist particular kinds of attacks in
the context of cloud-computing, such as what they call an inter-Virtual Machine (VM) attack.
They give an algorithm based on graph-coloring to assign VMs that do not belong to the same
Conflict of Interest class to the same physical machine, and then use the Brewer-Nash enforce-
ment mechanism to prevent such attacks. Wu et al. [16] propose to use the Brewer-Nash enforce-
ment mechanism as an Infrastructure-as-a-Service (IaaS) in cloud-computing environments, and
provide an implementation. Similar earlier work on applying the Chinese Wall security policy
to specific contexts are those of Loscocco and Smalley [41], Jajodia et al. [42], and Edjlali et
al. [43].

Other work, such as that of Atluri et al. [14] and Sobel and Alves-Foss [44] generalizes
the Brewer-Nash policy. The work of Sandhu [21, 22] also proposes the generalization that
objects be allowed to be associated with multiple Company Datasets from different Conflict of
Interest classes. Such generalizations are certainly interesting, but are beyond the scope of this
work. We consider only the original setup of Brewer and Nash [17], and leave dealing with such
generalizations for future work.

Finally, there is work that attempts to reconcile or model the simple-security and ∗-rules of
Brewer-Nash within it. An example of such work is that of Fong [45]. Such work is relevant
to enforcement. However, it does not consider the issues our work addresses — that of least-
restrictive enforcement of the policy.
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3.7 Conclusion

We have addressed enforcement of the Chinese Wall security policy. Specifically, we have pro-
posed a notion of least-restrictive enforcement of the policy, devised an enforcement mechanism
and shown that it is least-restrictive. Our enforcement mechanism is simple, sound and efficient.
Our enforcement mechanism mediates read attempts only to prevent subject-violations, and write
attempts only to prevent object-violations.

We have precisely identified the trade-off our enforcement mechanism incurs in achieving
least-restriction. The actions of a subject may constraint the prospective actions of other subjects,
a property that we call (lack of) independence of subjects. We have established the somewhat
strong result that any enforcement mechanism to enforcing the Chinese Wall security policy that
is least-restrictive must incur this trade-off.

We have then established two new results for the Brewer-Nash enforcement mechanism to
enforcement [17]. We have shown that it is more restrictive than previous work points out. We
have shown that if a subject is allowed to write to an object, then all objects must belong to the
same Conflict of Interest class. We have shown also that the so-called ∗-rule that is part of the
Brewer-Nash enforcement mechanism to enforcement is overstated in that one of its sub-rules
implies the other. We have also investigated the rendition of the Brewer-Nash enforcement mech-
anism in Bishop’s work [32], and shown that it is not equivalent to the Brewer-Nash enforcement
mechanism.

In summary, our work establishes new results, and thereby sheds new light on what is gener-
ally considered to be important work in information security.

In our discussion on related work, we observe that subsequent enforcement mechanisms of
Kessler [20] and Sandhu [21, 22] are also restrictive in their own ways, and not least-restrictive.

We see applications of our enforcement mechanism as the most promising future work.
Specifically, we seek to investigate the problems in cloud-computing that prior work such as
those of Tsai et al. [15] and Wu et al. [16] have proposed, and ask whether the least-restriction
that our enforcement mechanism provides is useful and meaningful in those contexts.

Another direction of future work is to investigate extensions that have been proposed to the
policy in work such as those of Atluri et al. [14] and ask how we can extend our enforcement
mechanism to deal with such extensions. We seek also to rigorously establish that other enforce-
ment mechanisms such as those of Kessler [20] and Sandhu [21, 22] are indeed incomparable to
the Brewer-Nash enforcement mechanism from the standpoint of reachable authorization states.
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Chapter 4

Property-Testing Real-World
Authorization Systems

4.1 Introduction

Authorization deals with the specification and management of accesses principals have to re-
sources. It is an important aspect of security. We address the problem of testing implementations
of authorization systems for properties that are of interest.

Authorization systems can be complex; this is the underlying technical challenge in our work.
The complexity arises from a feature that realistic authorization systems have: it is possible to
not only directly authorize a principal to a resource, but also to do so indirectly. For example, a
principal may acquire some rights via membership in groups or roles. Similarly, if the principal
is authorized to execute a program, in the context of that program she may have some additional
rights.

The reason such indirect ways are allowed is to balance the scalability needs of enterprise
authorization systems, and security. Enterprise authorization systems must typically support
large numbers of principals (e.g., users) and resources (e.g., files and documents). Providing
indirect authorizations eases administrative burden. Granting a right to a group, for example, is
less burdensome than granting it to each member of the group.

Given an implementation of an authorization system, one may want to test it. The objective
is to ascertain whether the implementation has certain security and availability properties of
interest. For example, in an authorization system that supports the notion of groups, we may
want to ask, “if Alice is a member of the group G at the time G is authorized to read file f , she
should be authorized to read file f at that time.” The two direct authorizations in the example
refer to Alice’s membership in G, and G’s authorization to f . (This is a special case of what we
call the forward availability property — see Section 4.4.1).

Prior foundational work suggests that the problem of verifying that an authorization system
has such a property may be intractable or even undecidable [24, 25, 26]. This is the case even
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if we want to carry out such verification “on paper,” i.e., considering only the design of the
system, and not any implementation. Clearly, such limits on the tractability of verification apply
to testing as well. Nonetheless, we argue that the problem we address is an important one. If an
implementation does not have a property we seek, we either need to redesign it, or address some
implementation bug that causes it to not have the property.

Furthermore, in testing, it is customary to make the small-scopes assumption [46], with which
we bound the scope of the system that is tested. The manner in which we apply the small-
scopes assumption is to limit the system under test to contain only a few entities (e.g., principals,
resources, and groups). The mindset behind the small-scopes assumption is that a system has a
property we seek if and only if it has the property under the small-scopes assumption.

We argue that customary software testing is not geared to the kinds of properties we address
in this work, that are specialized to authorization systems. This is not surprising — a similar
observation has been made in other contexts in security, for example, testing for bugs in crypto-
graphic implementations [47].

However, we do borrow ideas from software testing, for example, the small-scopes assump-
tion which we discuss above. Similarly, the use of model-checking for software testing [48]
and the use of traces to verify models “on paper” [49, 50] have been explored in recent work.
Our work also has similarities to penetration testing in the context of security, in particular, the
flaw-hypothesis methodology [51]. We discuss these in Section 4.5 on related work.

Derive

Traces
Finitize

Generate Trace
Instances and Test

Hypothesize

Property

Figure 4.1: The four stages in our testing methodology.

Our work We first propose and adopt a 4-stage process for property-testing an implementation
of an authorization system [23]. We show the stages in Figure 4.1.

1. In the first stage, we articulate properties of interest. A property typically balances gener-
ality and specificity. The specificity comes from the authorization features that the system
under test supports. For example, one of the systems to which we have applied our method-
ology, the I System (see Section 4.4), does not have notions of executable programs or
scripts via which a principal acquires rights. Consequently, some of the properties we
articulate for the D System (see Section 4.3.1) are not meaningful for the I System.

Particularly from a research-standpoint, properties that we anticipate are relevant not only
to the two systems we discuss in this work, but to large classes of authorization systems.

Another issue regards the syntax in which we express properties. We have adopted existen-
tial second-order temporal logic∗[52] in this work. The reason is that it gives us an elegant

∗We recognize that “temporal” is redundant once we specify “existential second-order.” We include that term to
emphasize that some of the properties we consider have temporal aspects.
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syntax and an associated precise semantics that is sufficient for us to succinctly express the
properties we consider. It is conceivable that a different syntax is more natural to express
other properties.

2. A property is a declarative specification. A system under test can be more naturally seen
as a procedural entity. To test for a property, therefore, we introduce the notion of a trace.
A trace is a sequence of authorization states and the state-change from one to the next.

We relate properties to traces: we identify traces that should exist, or should not exist in
the system for a property to hold. That is, we establish assertions of the form, “property p
holds if and only if no trace of type t is generated by the system.”

3. We make finitizing (i.e., small-scopes) assumptions that are realistic. That is, we assume
that certain parameters are bounded by constants. This assumption is crucial to the prac-
ticality of our approach. In Theorem 14, we establish that verifying a property under the
kind of finitizing and other assumptions about predicates and their arity that we make, is
in PSPACE.

This implies that we can employ an approach similar to model-checking [53, 54]. We point
out that for a particular property, the problem is not necessarily PSPACE-complete. For
example, the verification problem for all the three properties we consider for theD System
are in co-NP. PSPACE is an upper-bound only.

4. Based on the finitization, we identify instances of traces for which we need to check in the
system under test. We then exercise an implementation and check whether the instances of
traces are generated, or not generated by the implementation. We use a model-checker as
the trace-instance-generator (see Section 4.2.2).

We have designed a testing system based on the four stages above, and built portions of it.
We discuss it in Section 4.2.2. We have used it to apply the above methodology to two real-world
systems. One, which we call the D System, comprises components of the authorization system
built into a commercial database system. The other comprises portions of the authorization
system that underlies a commercial system for controlled file sharing that we call the I System.
We have been in communication with the vendors of both systems, and both have requested us
to use pseudonyms for their systems.

In the D System, we have discovered flaws in the authorization system related to procedures
that aggregate SQL statements, and make calls to other procedures. To our knowledge, these
have not been presented before in the literature. We have discussed our findings with the vendor,
and discuss their response in Section 4.3.5.

The kinds of issues we identify are very different from well-known SQL injection and buffer
overflow vulnerabilities that have plagued database systems [55, 56]. We discuss the properties
and our findings in Section 4.3.4.

For the I System, we have verified that it has several properties. The vendor has confirmed
that the establishment of these properties is indeed of interest to them, and consistent with their
intended design. The kinds of properties we discuss for the systems are qualitatively different.
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Operator Read as Explanation
X Next (X p) means that formula p will hold in the next state.
F Eventually (F p) means that formula p will eventually hold in the

future.

Table 4.1: Temporal operators that we use.

We choose to present these properties in this dissertation to demonstrate that a good range of
properties of interest can be tested for.

4.2 More Details on the Testing Methodology

In this section, we discuss our methodology in more detail, and also discuss the testing system
we have put together based on it. The first stage in our methodology is to articulate properties.
Our choice of syntax is existential second-order temporal logic [52].

Authorization system To articulate properties of interest, we first need an abstraction for an
authorization system. We discuss the basic elements of such an abstraction here. Particular
systems may extend these, as we need in theD System (Section 4.3). As is customary in temporal
logic, the system progresses in what are called time steps. A system is as follows.

• Time progresses only as a consequence of actions.

• In a time step, exactly one action occurs.

• There are two possible actions:

– “x is directly authorized to y” and,

– “x is directly unauthorized from y”.

• With each action, we associate a predicate. We call such predicates action-predicates. We
have the following two kinds of action-predicates that correspond to the above two kinds
of actions, respectively.

– Authorization action: dAuth(x, y)

– Unauthorization action: dUnauth(x, y)

The argument x is the entity being authorized or unauthorized, and y is the entity to which
it is authorized or from which it is unauthorized. A direct authorization of x to y may be,
for example, a group x being authorized to a file y, or a principal x being added to the
group y.
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It may seem surprising that we consider only an authorization action, and do not qualify
it as, for example, an authorization to read or write. For the properties we consider, it
turns out that this suffices. As we mention earlier, we can extend our basic abstraction if
necessary.

• An action predicate is true in a particular time step if the particular action is effected in that
time step. Consequently, we adopt the following rule with regards to the above predicates.
We use “→” for implication and “¬” for negation.

dAuth(x, y)←→ ¬dUnauth(x, y)

• In addition to action predicates, we have the following non-action predicate: auth(x, y),
which indicates that x is authorized to y.

Semantics We endow a semantics to auth, dAuth and dUnauth by specifying a model [52]. We
omit the details here and use a somewhat informal notation. To indicate that an authorization
of x to y is part of the authorization state, we simply write auth(x, y); we write ¬auth(x, y) to
indicate that it is not. Whether x and y are abstract arguments or concrete values is clear from
context (e.g. x is a group of users and y is a file). A state-change is associated with a predicate
dAuth or dUnauth that becomes true as a consequence of the action. To denote a state-change on
x to y, we simply write dAuth(x, y) or dUnauth(x, y) respectively.

Authorization state An authorization state is a family of sets, one for each predicate p. The
set that corresponds to a particular predicate p contains those tuples 〈x1, . . . , xk〉 for which
p(x1, . . . , xk) is true, where we assume that p’s arity is k. For example, in an authorization
system that has the auth, dAuth and dUnauth predicates only, a state is a collection of auth(x, y),
dAuth(x, y) and dUnauth(x, y) that are true.

Properties and Traces A property is a formula that is specified in existential second-order
temporal logic using the predicates we mention above. The temporal operators we use for the
properties we consider in this work are shown in Table 4.1. A property is typically an implication
of the form “F1 → F2,” where F1, F2 are formulas, and F2 is typically an assertion regarding the
auth predicate. We defer a discussion on specific properties to Sections 4.3 and 4.4 in which we
discuss our two applications.

As we discuss in Section 4.1, we need traces as procedural specifications that relate declar-
ative properties to the system under test. A trace is a three tuple: a start authorization state, a
sequence of state changes, and a final authorization state. A trace may be parameterized. For
example, we may use a parameter for a user or group that is authorized to a resource in the spec-
ification of a trace. In our third stage, we concretize traces to what we call instances of traces.
In theory, a parameter could take on one of infinitely many values, and therefore there may be
an infinite number of trace instances that we may associate with a trace. We finitize the trace
instances that we need to consider by making assumptions about the real system.
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Figure 4.2: Our testing system. The “interactor,” “trace-instance-validator,” and “trace-instance-
checker” are automata (programs or humans). In our current implementation, the interactor and
the trace-instance-validator are human-driven. We discuss the components in Section 4.2.2.

4.2.1 Relationship to Model-Checking

We can perceive testing as a verification problem. The question then is whether we can place an
upper-bound on the computational complexity of the problem. We point out that for the logic
we adopt, verification of a property is undecidable in general. However, under assumptions that
we argue are realistic for the kind of testing we do, this is not the case, as the following theorem
asserts.

Theorem 14 Let an authorization system and a property of interest be expressed using at most
p predicates, each of at most constant arity, a. Also let n be the number of entities (user, groups,
resources, etc.) that can exist in an authorization system. Then, whether the system has the
property is decidable in PSPACE.

All the assumptions in the statement of the above theorem can be thought of as finitizing
assumptions. The proof of the theorem relies on the observation that to maintain the truth value
of each predicate for each tuple of entities, we need O(na) bits, because each predicate has
arity at most a†. Therefore, each authorization state can be encoded with O(pna) bits, which is
polynomial in the size of the input, given the assumption that a is a constant.

The above theorem tells us that we can reduce our testing problem under the assumptions
stated in the theorem to model-checking [53]. Indeed, our testing methodology can be seen as
model-checking under those assumptions. We point out that we use a model-checker as part of
our process, but in a somewhat non-standard way, as a trace-generator. We discuss this in the
next section on our testing system.

†We use O(·) as is customary in computing: f(x) = O(g(x)) means that g(x) is an asymptotic upper-bound for
f(x) [57].
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4.2.2 A Testing System

We have designed a testing system based on the methodology we discuss in Section 4.1 and
above. We show it in Figure 4.2 and discuss it in this section. Our implementation of it is not
complete; however, we have implemented it sufficiently for us to carry out the applications we
discuss in the next two sections.

As the figure indicates, a human user specifies the authorization system and a start-state for
it. She specifies also the property of interest. The property of interest is specified as a set of
traces that are sufficient and necessary for the property to hold. We derive these for particular
properties for our applications in Sections 4.3 and 4.4. We use a model-checker, specifically
NuSMV [58], as a generator of trace-instances. The input to NuSMV is a model (a “program,”
in NuSMV parlance), which encodes the authorization system and a start-state for it. The finiti-
zation assumptions are built into the model we input to NuSMV.

We then ask NuSMV to generate trace-instances for that model (“simulate,” in NuSMV par-
lance). We do this in what NuSMV calls “interactive mode.” The interactive mode guarantees
that every possible trace-instance is generated. As its name suggests, its intent is for a human
user to interact with NuSMV as the trace-instances are generated. This part is realized in what
we call the Interactor in Figure 4.2.

One may wonder why we do not provide the property of interest also as input to NuSMV. The
reason is that we want to exercise every trace-instance that pertains to the property against the
system under test. NuSMV can only tell us whether the (abstract) model we provide it satisfies
the property.

Each trace-instance generated by NuSMV is then validated against the traces that correspond
to the property by the Trace-instance-validator in Figure 4.2. That is, we check whether a par-
ticular trace-instance that NuSMV generates is indeed an instance of a trace that pertains to the
property. We then check whether each validated trace-instance is generated by the system under
test. This is done by the Trace-instance-checker.

We have not yet fully automated the entire process in Figure 4.2. In particular, interaction
with NuSMV and the validation done by the trace-instance-validator are performed by humans.
We recognize that without fully automating the entire process, our testing system cannot scale.
However, even with the current level of automation, we have been able to apply our system
meaningfully (Sections 4.3 and 4.4).

The Trace-instance-checker exercises a trace on the system under test in one of two ways. For
the D System, we can exercise a trace either programmatically, via an Application Programmer
Interface (API), or by simulating the keystrokes and mouse-clicks of a human user. For the
I System, the only interface we have been provided is the latter. To simulate a human user, we
use the Robot class in Java.
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4.3 Application 1: the D System

In this section, we discuss our application of our testing methodology to the system that we
call the D System. The D System comprises components of the authorization system contained
within a commercial database system. The components of the authorization system with which
we deal are discretionary permissions to database tables, and permissions to procedures.

The Structured Query Language (SQL) is a command-line syntax for querying and manipu-
lating relational database tables. An example of a SQL command is “select * from book table
where price > 100.” This is the equivalent of exercising a read permission on particular entries
in the table called book table.

A procedure may be used to aggregate multiple SQL statements. For example, a user Alice
may create a procedure that takes as argument a new entry for a table, first checks some condition
on existing entries in the table, and inserts the new entry only if the condition is met. A procedure
may also invoke other procedures. In these aspects, procedures are like executable programs.

Authorization Every table is associated with an owner. Customarily, the owner is the user that
creates the table. The owner may then, at her discretion, grant permissions over the table to other
users. In Figure 4.3, for example, a user Alice grants Bob the right to insert entries into the table
t that she owns.

Similarly, every procedure is associated with a definer, who is its creating user. That user may
then give other users the permission to execute that procedure. In Figure 4.3, for example, Bob
grants Carl the right to execute Bob’s procedure def, and Carl grants Dan the right to execute
Carl’s procedure inv.

A procedure may be annotated to run with invoker’s rights or definer’s rights. As one may
expect, when a procedure is invoked, an invoker’s rights procedure runs with the privileges of
the invoker of the procedure, and a definer’s rights procedure runs with the privileges of the
definer. For example, in Figure 4.3, Bob’s procedure def is specified to be definer’s rights. (It is
annotated as neither definer’s nor invoker’s rights; the former is the default.) So, if Carl were to
invoke Bob.def, the “insert into alice.t. . . ” statement within it should run with the
privileges of Bob.

The D authorization system We refer to the subsystem within the database system that com-
prises discretionary permissions to tables, and permissions to procedures as the D System. In
particular, we focus on the co-existence of the two. We focus on nested procedures — pro-
cedures that invoke other procedures, that ultimately issue a SQL statement. Figure 4.3 is an
example — inv invokes def, which in turn issues a SQL statement.

Specifically, we constrain the D System as follows. We have m procedures p1, . . . , pm. Each
pi is owned by a user ui where ui 6= uj for any i 6= j. For i > 1, the procedure pi invokes the
procedure pi−1 only. Only one table exists in the D System, which we denote as p0. We consider
only one kind of privilege to the table p0 in the D System, the privilege to insert into it. The
procedure p1 attempts to exercise the insert privilege to p0. The table p0 is owned by a user u0.
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Alice: grant insert on table t to Bob

Bob: procedure def(x), definer’s rights
insert x into Alice’s table t

grant execute on procedure def to Carl

Carl: procedure inv(x), invoker’s rights
invoke Bob’s procedure def(x)

grant execute on procedure inv to Dan

Dan: invoke Carl’s procedure inv(23)

Figure 4.3: An example with four users in the D System, Alice, Bob, Carl and Dan. Alice owns
the table t, and grants insert privilege over it to Bob. Bob defines the procedure def to be
definer’s rights and grants Carl execute privilege to it. The procedure def inserts a row into
Alice’s table. Carl creates an invoker’s rights procedure inv and grants Dan execute privilege
to it. The procedure inv invokes Bob’s procedure def. Finally, Dan attempts to execute Carl’s
procedure inv.

We also have a user um+1 that owns no procedure. The properties we care about address whether
the user um+1 can exercise the insert privilege over the table p0 via the procedures pm, . . . , p1.

An example of the D System is the system shown in Figure 4.3. In the figure, u0 is Alice, u1
is Bob, u2 is Carl and u3 is Dan. The table t is p0, the procedure def is p1, and inv is p2. We
seek to know whether Dan can exercise the insert privilege over the table Alice.t by executing
Carl.inv.

The D System in our syntax We adopt the predicates auth, dAuth and dUnauth as we discuss
in Section 4.2. Each is 2-ary. We discuss their semantics in the D System below.

We adopt a predicate def(p) to indicate whether a procedure p is definer’s rights. We adopt
also a function eff(p) that outputs the effective user of p and is defined inductively using the def
predicate as follows:

def(pi)→ eff(pi) = ui for all i
¬def(pi)→ eff(pi) = eff(pi+1) for all i < m

¬def(pm)→ eff(pm) = um+1

Unix Our above rules for defining the eff function in theD System come from Unix systems. We
observe the similarity between executing procedures in the D System, and executing programs
in Unix systems.

In Unix systems, a program typically runs with invoker’s rights. However, it is possible to
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use the setuid bit [59] to cause a program to run with definer’s rights. Given this similarity and
the somewhat long history of the setuid bit, we adopt the way Unix systems handle indirect
authorization via running programs as correct.

Our definition of the eff function above captures the manner in which Unix systems define
what they call the effective user in a program that is running. If a program does not have the
setuid bit set, then the effective user is the invoker; otherwise, it is the definer. (Of course, we
do not consider programs that change the effective user within themselves, as those scenarios are
not pertinent to the D System.)

Semantics of auth and dAuth The predicate dAuth(x, y) has to do with whether x is directly
authorized to y. In the D System, dAuth(x, y) becomes true if we issue the SQL command to
(directly) authorize x to y. For example, in Figure 4.3, after Alice issues the grant command, for
u1 = Bob and p0 the table, dAuth(u1, p0) is true. In the start-state, ¬dAuth(x, y) for all x, y.

As we mention above, our properties of interest deal with whether um+1 can acquire the
privilege to p0 via his authorization to pm. Consequently, the semantics of auth(ui, pj) is whether
ui has access to pj via his right to execute pi−1, in the case that i > 1. Of course, if j ≥ i, then
¬auth(ui, pj) in all states. If i = 1, then auth(u1, p0) = dAuth(u1, p0).

In the testing system that we discuss in Section 4.2.2 and show in Figure 4.2, these semantics
translate to the following for the trace-instance-checker. The truth-value of dAuth(x, y) and
dUnauth(x, y) is assumed based on the commands we issue. We ascertain the truth value of
auth(ui, pj) in a state by checking whether ui is able to successfully execute pj via pi−1.

4.3.1 Properties of interest

We now articulate the three properties we consider for the D System. We call them necessity,
security and temporal consistency.

Necessity With the necessity property, we intuitively seek to answer the following question: is
there a situation that a user is required to have more privileges than should be necessary to gain
access? If yes, then we say that the system does not possess the necessity property; otherwise we
say it does. The opposite of necessity is redundancy — that the system requires more privileges
than should be necessary.

What we mean by “more” privileges in this context comes from the scenario that corresponds
to the D System in Unix, as we discuss in the previous paragraph.

Definition 23 (Necessity) The D System has the Necessity property if and only if the following
is true for all ui, pj , 0 ≤ j < i in all states of the system.

(dAuth(ui, pi−1) ∧i−1k=j+1 dAuth(eff(pk), pk−1))→ auth(ui, pj)
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To explain the above property, it may be easier to consider its contrapositive. What it says is
if ui is not authorized to pj , then ui is not directly authorized to pi−1, or for some k, the effective
user of pk is not authorized to pk−1. As we mention above, this comes directly from the notion
of effective user in the context of Unix programs. For ui to be authorized to pj via the “chain”
of programs pi−1, . . . , pj+1, the effective user for each of those programs must be authorized to
the program at the next level. We recall from the previous section that the only thing pk does is
attempt to exercise the privilege over pk−1.

Security The security property asks whether there is a situation in which a user is able to gain
access with too few privileges.

Definition 24 (Security) The D System has the security property if and only if the following is
true for all ui, pj , 0 ≤ j < i in all states of the system.

auth(ui, pj)→ (dAuth(ui, pi−1) ∧i−1k=j+1 dAuth(eff(pk), pk−1))

The security property can be seen as the complement of the necessity property. It states that
if ui is authorized to pj , then ui must be authorized to pi−1, and for every pk, the effective user
for pk must be authorized to pk−1.

Temporal Consistency Temporal consistency captures the following intuition. Suppose, at a
given time, a certain set of privileges is necessary and sufficient to gain some access. Then, at
any time in future, that set should be exactly the set of privileges needed to gain the same access.
We expect the D System to have temporal consistency — the set of privileges to gain access
should not change over time.

Definition 25 (Temporal Consistency) The D System has the temporal consistency property if
and only if the following is true for all ui, pj, pl, 0 ≤ j < l < i in all states of the system.

(auth(ui, pj) ∧ dAuth(eff(pl), pl))→ X(dUnauth(eff(pl), pl)→ X(dAuth(eff(pl), pl)→ auth(ui, pj)))

4.3.2 Traces

We now discuss the traces that are necessary and sufficient to verify the properties from the
previous section. As we mention in Section 4.1, properties are declarative assertions and it is not
possible to show that a system has or does not have a property directly. To relate properties and
systems, we introduce the notion of a trace. A trace is an imperative (or procedural) specification
of states that an authorization system can reach or cannot reach.

Definition 26 (Trace) A trace is a tuple 〈sinit, t, sfin〉, where sinit is an initial authorization
state, t is a sequence of state-changes, and sfin is a final authorization state.
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As notation, we write “auth(a, b) in the state s” to indicate an authorization, and “¬auth(a, b)
in . . . ” to indicate a lack of authorization. For the state-changes, we know that each causes a
dAuth or dUnauth to become true. Therefore, we represent a sequence of state changes with
those predicates. For example, the sequence dAuth(a, b), dUnauth(b, c) indicates that a is first
authorized to b, and then, b is unauthorized from c.

To express traces of interest to us, we make the following syntactic assumptions about any
trace. These assumptions pertain to dAuth and dUnauth. As we mention in Section 4.2, those
predicates have to do with whether we issue commands for authorization or unauthorization.
Therefore, it is easy to ensure that these assumptions are indeed true — we do not cause the
actions that correspond to dAuth and dUnauth to occur in violation of these assumptions.

One of our assumptions is that we cannot have two instances of dAuth(a, b) in a sequence
of state-changes unless there is a dUnauth(a, b) somewhere between them. Similarly, we can-
not have two instances of dUnauth(a, b) unless we have a dAuth(a, b) between them. Another
assumption is that an instance dUnauth(a, b) cannot occur in a sequence when the number of
dAuth(a, b) and dUnauth(a, b) that occur before is even.

Definition 27 (Redundancy trace) A trace in the D System is redundant if and only if the en-
tries sinit, t and sfin are as follows.

• In the initial state sinit, for every x, y, ¬auth(x, y) and dUnauth(x, y).

• Let t = 〈t1, . . . , tn〉 for n ≥ 1 and i, j ≥ 0:

– dUnauth(eff(pk), pk−1)→ F(dAuth(eff(pk), pk−1)) for 0 ≤ j < k < i ≤ n in t, and,

– dUnauth(ui, pi−1)→ F(dAuth(ui, pi−1)) in t.

• In the final state sfin, ¬auth(ui, pj).

The initial state, sinit has no authorizations. For the trace t between sinit and the final state
sfin above, the first condition states that the effective user of pk is eventually authorized directly
to pk−1. The second condition states that ui is eventually authorized directly to pi−1. The point
behind these conditions are clarified in the next section, in which we relate traces to properties.

Definition 28 (Insecure trace) A trace in the D System is insecure if and only if The entries
sinit, t and sfin are as follows.

• In the initial state sinit, for every x, y, ¬auth(x, y) and dUnauth(x, y).

• Let t = 〈t1, . . . , tn−1, tn〉 and t′ = 〈t1, . . . , tn−1〉 for n ≥ 1 and i, j ≥ 0:

– dUnauth(eff(pk), pk−1)→ F(dAuth(eff(pk), pk−1)) for 0 ≤ j < k < i ≤ n in t′.

– dUnauth(ui, pi−1)→ F(dAuth(ui, pi−1)) in t′.
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– Either tn = dUnauth(eff(pk′), pk′−1) for some k′, 0 ≤ j < k′ < i, or tn =
dUnauth(ui, pj).

• In the final state sfin, auth(ui, pi).

Definition 29 (Temporally inconsistent trace) A trace in the D System is temporally inconsis-
tent if and only if the entries sinit, t and sfin are as follows.

• In the initial state sinit, for every x, y, ¬auth(x, y) and dUnauth(x, y).

• Let t = 〈t1, . . . , tn−2, tn−1, tn〉 and t′ = 〈t1, . . . , tn−2〉 for n ≥ 1 and i, j ≥ 0:

– dUnauth(eff(pk), pk−1)→ F(dauth(eff(pk), pk−1)) for 0 ≤ j < k < i ≤ n in t′.

– dUnauth(ui, pi−1)→ F(dauth(ui, pi−1)) in t′.

– tn−1 = dUnauth(actv(pl), pl−1) for some l, 0 ≤ j < l < i.

– tn = dAuth(actv(pl), pl−1) for the same l as the previous state change.

• In the final state sfin, ¬auth(ui, pj).

4.3.3 Relating Properties and Traces

We now relate the properties from Section 4.3.1 with the traces from the previous section in
Theorems 15–17.

Theorem 15 (Necessity) The D System has the necessity property if and only if it produces no
redundancy trace.

PROOF.

Only if: By contradiction. Assume that the system has the necessity property, but produces
a redundancy trace 〈sinit, t, sfin〉. Then we know that, in the final state sfin, ¬auth(ui, pj) from
Definition 27. We immediately have a contradiction because we assume that the system has the
necessity property, and therefore, the formula from Definition 23 should be true in all states, but
it is false in the state sfin.

If: Assume that the system does not have the necessity property. This means that there exists a
state in which the formula from Definition 23 is not true. The only way for it to be not true is with
¬auth(ui, pj) and (dAuth(ui, pi−1)∧i−1k=j+1 dAuth(eff(pk), pk−1) true. So, the system can produce
the following redundancy trace: starting from sinit, in which there are no authorizations, we start
performing state changes of the form 0 ≤ j < k < i, dAuth(eff(pk), pk−1) and dAuth(ui, pi−1)
for a specific i and j. Then we enter the state in which all the predicates related to the exercised
state changes are true. From the state in our initial assumption, we know that there exists such a
state in the system. So we have a state in which auth(ui, pj) is not true. The produced trace is a
redundancy trace. �
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Theorem 16 (Security) The D System has the security property if and only if it produces no
insecure trace.

PROOF.

Only if: By contradiction. Assume that the system has the security property, but produces an
unsecure trace 〈sinit, t, sfin〉. Then we know that, in the final state sfin, auth(ui, pj) is true from
Definition 28. We immediately have a contradiction because we assume that the system has the
security property, and therefore, the formula from Definition 24 should be true in all states, but
it is false in the state sfin.

If: Assume that the system does not have security property. It means that there exists a
state in which the formula from Definition 24 is not true. The only way for it to be not true is
when the left side formula auth(ui, pj) is true and right side subformula (dAuth(ui, pi−1)∧i−1k=j+1

dAuth(eff(pk), pk−1) is false. So the system can produce the following insecure trace: starting
from sinit, in which there are no authorizations, we start performing state changes of the form 0 ≤
j < k < i, dAuth(eff(pk), pk−1) and dAuth(ui, pi−1) for a specific i and j. Then we do dUnauth
(ui, pi−1) as a state change to reach a state where auth(ui, pj) is true and (dAuth(ui, pi−1)∧i−1k=j+1

dAuth(eff(pk), pk−1) is false. �

Theorem 17 (Temporal consistency) The D System has the temporal consistency property if
and only if it produces no temporally inconsistent trace.

PROOF.

Only if: By contradiction. Assume that the system has the temporal consistency property,
but produces a temporally inconsistent trace 〈sinit, t, sfin〉. Then we know that, in the final state
sfin, ¬auth(ui, pj) from Definition 29. We immediately have a contradiction.

If: Assume that the system is not temporally consistent. It means that there exists a state
in which the formula from Definition 25 is not true. The only way for it to be false is when
(auth(ui, pj) ∧ dAuth(eff(pl), pl)), in the next state dUnauth(eff(pl), pl) and in the following
next state ¬auth(ui, pj) ∧ dAuth(eff(pl), pl) are true. So there is a trace that can be produced by
the system as follows: from the empty state we do state changes to enter the state in which we
have auth(ui, pj) ∧ dAuth(eff(pl), pl). To enter such a state we do the direct authorizations that
the necessity property proposes. If the system does not have the necessity property we do more
state changes to give the objects inside the sequence of access of user ui to procedure pj to grant
access of pj to ui indirectly via other procedures inside the sequence. Then we do a sequence
of state changes dUnauth(uk, pl), and dAuth(uk, pl). In the following state sfin, auth(ui, pj) is
false. The produced trace is a temporally inconsistent trace. �

73



4.3.4 Results for the D system

We have used our testing-system with different values for m (number of procedures and corre-
sponding users) to exercise the D System with the traces we discuss in the previous section to
determine whether it has the necessity, security and temporal consistency properties. We have
discovered that theD System does not have the necessity, security or temporal consistency prop-
erties. To our knowledge, these flaws in the D System have not been presented before in the
literature.

The lack of the necessity property means that some extra privileges than what we would
consider meaningful are needed before a user has access. The lack of the security property
means that with only seemingly insufficient privileges, a user is able to gain access. And the lack
of temporal consistency means that the set of privileges that is needed changes over time.

We now present the results for the smallest m for which the D System displays these prob-
lems. This was for m = 3. That is, we have five users, u0, . . . , u4. We have a table p0, and three
procedures p1, . . . , p3. The user ui owns the procedure/table pi.

Correctness is specified in our necessity, security and temporal consistency properties in
Section 4.3.1. We have verified that our Linux system has all of these properties. In the Linux
system p0 is a data file that the user u4 attempts to write to, by invoking the program p3. The
program p3, in turn, attempts to execute the program p2 and so on.

We explain one of the cases in detail, and present all the results in Table 4.2. We summarize
our findings after our discussions of the case that we present in detail.

Consider that case that def(p1),¬def(p2),¬def(p3). That is, the case that p1 is definer’s
rights, and p2 and p3 are invoker’s rights. Correct authorizations are shown in the following
table.

Correct
p0 p1 p2 p3

u0 0 0 0 0
u1 1 0 0 0
u2 0 0 0 0
u3 0 0 0 0
u4 0 1 1 1

The above table expresses the authorizations for the necessity and security properties to hold.
What we require for this case is that u4 is authorized to p1, p2 and p3, and u1 is authorized to p0.
To intuit why this makes sense, consider the following.

The procedure p3 requires u4 to have execute privilege over it. As it is invoker’s rights,
when p3 invokes p2 within it, the effective user is u4. The procedure p2 is also invoker’s rights.
Therefore, the effective user is still u4, and u4 needs have the execute privilege to p1. Finally,
p1 is definer’s rights. Therefore, the effective user is its definer, u1, who needs to have the insert
privilege to p0.
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The D System’s table differs from the above. At the time that the procedures are defined, the
following is the table for the D System. We associate it with the subscript 1 to indicate that this
is at the time that the procedures are defined.

D1

p0 p1 p2 p3
u0 0 0 0 0
u1 1 0 0 0
u2 0 1 0 0
u3 0 0 1 0
u4 0 0 0 1

The above table demonstrates that for this case, the D System does not satisfy the security or
necessity properties. For the security property to be satisfied, we require a 1 to appear in the same
cells as the Correct table above. The fact that u4 is not required to have the execute privilege over
p2 is an example of something that causes the security property to be violated.

For the necessity property to be satisfied, we require no 1’s to appear where there is a 0 in the
corresponding cell in the Correct table. The fact that u3 is required to have execute privilege to
p2 is an example of something that causes the necessity property to be violated.

Once the procedures have been defined, it turns out that u4 is authorized to p0 (via p3, . . . , p1)
even if some rights are revoked, as indicated by the following table. This demonstrates its lack
of the security property as we have only three 1’s, as opposed to four in the Correct table above.
We associate this table with the subscript 2 to indicate that this is some time-period after the
procedures are defined.

D2

p0 p1 p2 p3
u0 0 0 0 0
u1 1 0 0 0
u2 0 0 0 0
u3 0 0 1 0
u4 0 0 0 1

4.3.5 Summary of results

Table 4.2 demonstrates that co-existence of procedure authorizations and discretionary autho-
rizations to tables are flawed in the D System. In only one case does D1 (the D System at the
time of defining the procedures) match the Correct table — this is when all three of p1, p2 and p3
are definer’s rights. However, even for this case, we have a temporal consistency problem, as we
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def(p1),¬def(p2),¬def(p3) def(p1),¬def(p2), def(p3)
Correct D1 D2 Correct D1 D2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0
0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
def(p1), def(p2),¬def(p3) def(p1), def(p2), def(p3)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
¬def(p1),¬def(p2), def(p3) ¬def(p1),¬def(p2),¬def(p3)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1
¬def(p1), def(p2),¬def(p3) ¬def(p1), def(p2), def(p3)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

Table 4.2: Our complete results for our tests for the D System with m = 3. For each case
(e.g., def(p1), def(p2),¬def(p3)), we have five rows that correspond to the rights of the users
u0, . . . , u4, respectively. We have four columns, that correspond to the table p0, and procedures
p1, . . . , p3. A “1” indicates that that user needs to have the privilege to that procedure/table so the
necessity and security properties are satisfied. D1 corresponds to the system immediately after
we create all the procedures, and D2 corresponds to the system at a later time, after we perform
some actions on it.
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are able to revoke u2’s authorization to execute p1 once the procedures have been defined, and
still, u4 is able to exercise the insert privilege over the table p0 via the procedure p3.

In one other case, specifically ¬def(p1), def(p2), def(p3), D1 does not have a security prob-
lem. However, it has a necessity problem: the user u1 is redundantly required to have the insert
privilege to p0. In this case as well, we have a temporal consistency problem. Furthermore,
D2 in this case has a security issue — two of the privileges can be revoked after defining the
procedures, and u4 still has access.

Vendor’s response We have communicated our findings to the vendor of the D System, and
helped them reproduce these issues. Their response is the following. They acknowledge all three
of the security, redundancy and temporal-inconsistency issues. For the first two issues (security
and redundancy), they clarified to us that these exist by design.

That is, the default privilege mode when one invokes a procedure p2 from within a procedure
p1 is for p2 to run with definer’s rights, immaterial of whether p1 is defined to run with invoker’s or
definer’s rights. They have a different (and somewhat less natural) syntax by which a programmer
can cause p2 to run with invoker’s rights instead. To us, this default choice suggests poor design;
however, that is a subjective assessment on our part.

As for temporal-inconsistency, the vendor has acknowledged that this is a bug in their imple-
mentation. They are working on what they call a critical patch, and requested that we not publish
this dissertation till their customers have had a chance to apply that patch. They like to give their
customers up to 1 year to apply the patch. Instead, we offered to use a pseudonym to refer to
their system and abstract some syntactic details so we could go ahead and publish now, but still
be sensitive to any security implications to their customers. They tell us that we will be credited
when their patch is released.

4.4 Application 2: the I System

Our other application has been to a commercial file-sharing system that we call the I System.
The properties that we discuss for the I System are somewhat different than for the D System.
The reason is that the I System’s features that we seek to exercise are different from those of the
D System. For example, the I System does not have the equivalent of procedures.

The I System In the I System, a resource is a file. Authorization is discretionary — there is
the notion of users, who own files. The owner of a file may grant access to the resource to other
users. Such users must first be designated as what are called contacts of the owner. A user may
create groups and add contacts to groups.

There is only one kind of access, which is called sharing. A user may authorize either a
contact or a group access to a particular file he owns. The software provides two interfaces to a
user for authorization management.
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If an owner authorizes a user u to a group or file x and the interface says that that is successful,
then we assume that u is authorized to x. For indirect authorizations, we can check whether a
user in question indeed has an access, or does not have access with a file-access test outside of
the I system.

We are able to model the I System in our syntax using only the 2-ary predicates auth, dAuth
and dUnauth. There is only one kind of authorization in the I System, which is to share a file.

4.4.1 Properties of interest

We defined six properties for the I System: necessity, security, forward availability, backward
availability, forward safety and backward safety. We define these below. The first two, necessity
and security, are somewhat simpler versions compared to those for the D System.

Definition 30 (Necessity) I System has the necessity property if and only if the following is true
for all a, b in all states of the system.

dAuth(a, b) −→ auth(a, b)

The property defined in Definition 30 expresses that if a is directly authorized to b, then it is
authorized to b.

Definition 31 (Security) I System has the security property if and only if the following is true
for all a, b in all states of the system.

(dUnauth(a, b) ∧ ¬(∃l ≥ 1 , x1, . . . , xl. dAuth(a, x1)

∧ dAuth(x1, x2) ∧ . . . dAuth(xl, b))) −→ ¬auth(a, b)

The property defined in Definition 31 expresses that if a is directly unauthorized from b, and
there is no “chain” of direct authorizations from a to b, then a is not authorized to b.

With the following forward-availability property, we seek to capture what is customarily
seen as a natural semantics for authorization via groups and roles. When a has access to b, and
in future b has access to c, then a has access to c.

Definition 32 (Forward Availability) I System is forward available if and only if, for all a, b, c.

(auth(a, b) ∧ ¬auth(b, c))→ X(auth(b, c)→ auth(a, c))

An intuition behind forward availability above is provided by the example of a user u being
authorized to a resource r via membership in a group g. We require that u must be a member of
g before g is authorized to r for u to be authorized to r. With backward availability, we change
the order of the two direct authorizations from that example. That is, for u to be authorized to r,
we require that g be authorized to r before u is authorized to g.
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Definition 33 (Backward Availability) I System has the backward availability property if and
only if the following is true for all a, b, c.

(auth(b, c) ∧ ¬auth(a, b))→ X(auth(a, b)→ auth(a, c))

A system may have one or both of the forward and backward availability properties, or nei-
ther. In our example from above of u being authorized to f via g, a system has both properties
when the ordering of the two direct authorizations does not matter. This is the case, for example,
for groups in Unix systems. In other systems such as secure multicast [60], forward availability
is desirable, but not backward availability.

The above availability properties are two example properties where we want authorization
to hold. With forward and backward safety, we have two example properties where we want
authorization to not hold.

With forward safety below we express that unless a is already authorized to c, authorizing b
to c after a is authorized to b does not grant a authorization to c. From the standpoint of intuitive
appeal, we see forward safety as the natural counterpart of forward availability. That is, simply
because b is now authorized to c should not give a authorization to c via b. To us, this captures
the notion of the “leakage” of a privilege that was originally proposed by Harrison et al. [25].

Definition 34 (Forward Safety) I System has the forward safety property if and only if the fol-
lowing is true for all a, b, c.

(auth(a, b) ∧ ¬auth(b, c) ∧ ¬auth(a, c))→ X(auth(b, c)→ ¬auth(a, c))

The following backward-safety property is the safety counterpart of backward availability.
The difference from forward safety is the temporal ordering of the authorizations of a to b, and b
to c.

Definition 35 (Backward Safety) I System has the backward safety property if and only if the
following is true for all a, b, c.

(auth(b, c) ∧ ¬auth(a, b) ∧ ¬auth(a, c))→ X(auth(a, b)→ ¬auth(a, c))

Relationship between properties A natural question that arises is whether one of the recent
four properties is related to another even before we consider them in the context of a given
authorization system. And indeed, we have the following relationships between availability and
safety that we fully expect. In the following, a “non-empty system” means a system in which we
can create some entity that can take the place of a, b and c in Definitions 32–35.

Theorem 18 If a non-empty system is forward available, then it is not forward safe. If a non-
empty system is backward available, then it is not backward safe.
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It is easy to prove the above theorem. To show the first assertion, for example, we pick
an a, b, c and a state such that in that state the left-hand side of the formula in Definition 32
is true and the formula is satisfied. This choice now serves as a counterexample to Definition
34. The contrapositives of the two assertions in the theorem may also be of interest. That is,
a forward (backward) safe system is not forward (backward) available. We point out also that
these assertions are not “if and only if” – a system may be neither forward (backward) available
nor forward (backward) safe.

4.4.2 Traces

We now define traces that correspond to properties in the previous section. Recall the definition
for a trace from Section 4.3.2.

Definition 36 (Redundancy trace) A trace in the I System is redundant if and only if the entries
sinit, t and sfin are as follows.

• In the initial state sinit, for every x, y, ¬auth(x, y) and dUnauth(x, y).

• Let t = 〈t1, . . . , tn〉 for n ≥ 1:

– dAuth(a, b)→ F(dunauth(a, b))

– tn = dAuth(a, b).

• In the final state sfin, ¬auth(a, b).

Definition 37 (Insecure trace) A trace in I System is insecure if and only if the entries sinit, t
and sfin are as follows.

• In the initial state sinit, for every x, y, ¬auth(x, y) and dUnauth(x, y).

• Let t = 〈t1, . . . , tn〉 for n ≥ 1:

– Pick a set {x1, . . . , xk} for some k > 1.

– dUnauth(xi, xi+1)→ F(dauth(xi, xi+1)) for 1 ≤ i < k in t

– tn = dUnauth(xj, xj+1) for a j, 1 ≤ j < k.

• In the final state sfin, auth(x1, xk).

We use the forward availability property from definition 32 for the following definition of a
forward available trace. We denote that except necessity and security properties, other properties
only concern the non action predicate. To check these properties using traces we need to assume
that the system has necessity property. fortunately I System has the necessity property.
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Definition 38 (Forward available trace) A trace in I System is forward available if and only if
the entries sinit, t and sfin are as follows.

• In the initial state sinit, auth(a, b), dAuth(a, b) and for every x, y except a, b , ¬auth(x, y)
and dUnauth(x, y).

• Let t = 〈t1, . . . , tn〉 for n ≥ 1:

– dUnauth(a, b)→ F(dAuth(a, b)) in t.

– dAuth(a, c)→ F(dUnauth(a, c)) in t.

– tn = dAuth(b, c).

• In the final state sfin, auth(a, c).

We define the following three kinds of traces similarly, relying on the corresponding proper-
ties from Section 4.4.1.

Definition 39 (Backward available trace) A trace in I System is backward available if and
only if the entries sinit, t and sfin are as follows.

• In the initial state sinit, auth(b, c), dAuth(b, c) and for every x, y except b, c , ¬auth(x, y)
and dUnauth(x, y).

• Let t = 〈t1, . . . , tn〉 for n ≥ 1:

– dUnauth(b, c)→ F(dAuth(b, c)) in t.

– dAuth(a, c)→ F(dUnauth(a, c)) in t.

– tn = dAuth(a, b).

• In the final state sfin, auth(a, c).

Definition 40 (Forward safe trace) A forward safe trace is the same as a forward available
trace (see Definition 38), with the only exception that in the final state sfin, ¬auth(a, c) is true.

Definition 41 (Backward safe trace) A backward safe trace is the same as a backward avail-
able trace (see Definition 39), with the only exception that in the final state sfin, ¬auth(a, c) is
true.
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4.4.3 Relating Properties and Traces

We now relate properties and traces via Theorems 21–24.

Theorem 19 (Necessity) The I System has the necessity property if and only if it produces no
redundancy trace.

PROOF. Only if: By contradiction. Assume that the system has the necessity property,
but produces a redundancy trace 〈sinit, t, sfin〉. Then we know that, in the final state sfin,
¬auth(a, b), from Definition 36. We immediately have a contradiction because we assume that
the system has the necessity property, and therefore, the formula from Definition 30 should be
true in all states. But the formula is false in the state sfin.

If: Assume that the system does not have necessity property. It means that there exists a state
in which the formula from Definition 30 is not true. The only way for it to be not true is with
dAuth(a, b) and ¬auth(a, b). Now we show that the system can enter such a state starting doing
state changes from an empty state. In empty state s0 we have all ¬auth(x, y) and dUnauth(x, y)
for all objects x and y. So we do a state change dAuth(a, b) and enter the state s1. So the system
produces the following trace: T = {s0, 〈dAuth(a, b)〉 , s1}, which is a redundancy trace. �

Theorem 20 (Security) The I System has the security property if and only if it produces no
insecure trace.

PROOF. Only if: By contradiction. Assume that the system has the security property, but
produces an unsecure trace 〈sinit, t, sfin〉. Then we know that, in the final state sfin, auth(x1, xk),
from Definition 37. We immediately have a contradiction because we assume that the system has
the security property, and therefore, the formula from Definition 31 should be true in all states.
But the formula is false in the state sfin.

If: Assume that the system does not have security property. It means that there exists a
state in which the formula from Definition 31 is not true. The only way for it to be not true
is with ∧k−1i=1 dAuth(xi, xi+1) and auth(x1, xk). Now we show that the system can enter such
a state starting doing state changes from an empty state. We do a sequence of state changes
ti = dAuth(xi, x − i+ 1) for 1 ≤ i < k and enter the state sk. So the system produces the
following trace: T = {s0, 〈t1, . . . , tk−1〉 , sk}, which is an unsecure trace. �

Theorem 21 (Forward availability) The I System has the forward availability property if and
only if it produces no forward safe trace.

PROOF. Only if: By contradiction. Assume that the system has the forward availability
property, but produces a forward safe trace 〈sinit, t, sfin〉. Then we know that, in the final state
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sfin, ¬auth(a, c), auth(b, c) and auth(a, b) from Definition 40. We immediately have a contra-
diction because we assume that the system has the forward availability property, and therefore,
the formula from Definition 32 should be true in all states. But the formula is false in the state
sfin.

If: Assume that the system is not forward available. It means that there exists a state in which
the formula from Definition 32 is not true. The only way for it to be not true is when in the next
state we have ¬auth(a, c), auth(b, c) and in the current state we have (auth(a, b) ∧ ¬auth(b, c)).
So there are two consecutive states s1 and s2 with the following properties. In s1 we have only
auth(a, b) (and its related direct authorization predicate) true and in s2, auth(b, c) ∧ ¬auth(a, c)
is true. So the system produces the following trace: T = {s1, 〈dAuth(b, c)〉 , s2}, which is a
forward safe trace. �

Theorem 22 (Backward availability) The I System has the backward availability property if
and only if it produces no backward safe trace.

PROOF. Only if: By contradiction. Assume that the system has the backward availability
property, but produces a backward safe trace 〈sinit, t, sfin〉. Then we know that, in the final
state sfin, ¬auth(a, c), auth(b, c) and auth(a, b) from Definition 41. We immediately have a
contradiction because we assume that the system has the backward availability property, and
therefore, the formula from Definition 33 should be true in all states. But the formula is false in
the state sfin.

If: Assume that the system is not backward available. It means that there exists a state in
which the formula from Definition 33 is not true. The only way for it to be not true is when
in the next state we have ¬auth(a, c), auth(a, b) and in the current state we have (auth(b, c) ∧
¬auth(a, b)). So there are two consecutive states s1 and s2 with the following properties. In s1
we have only auth(b, c) (and its related direct authorization predicate) true and in s2, auth(a, b)∧
¬auth(a, c) is true. So the system produces the following trace: T = {s1, 〈dAuth(a, b)〉 , s2},
which is a backward safe trace. �

Theorem 23 (Forward safety) The I System has the forward safety property if and only if it
produces no forward available trace.

PROOF. Only if: By contradiction. Assume that the system has the forward safety property,
but produces a forward available trace 〈sinit, t, sfin〉. Then we know that, in the final state sfin,
auth(a, c), auth(b, c) and auth(a, b) from Definition 38. We immediately have a contradiction
because we assume that the system has the forward safety property, and therefore, the formula
from Definition 34 should be true in all states. But the formula is false in the state sfin.

If: Assume that the system is not forward safe. It means that there exists a state in which the
formula from Definition 34 is not true. The only way for it to be not true is when in the next
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state we have auth(a, c), auth(b, c) and in the current state we have (auth(a, b) ∧ ¬auth(b, c)).
So there are two consecutive states s1 and s2 with the following properties. In s1 we have only
auth(a, b) (and its related direct authorization predicate) true and in s2, auth(b, c) ∧ auth(a, c)
is true. So the system produces the following trace: T = {s1, 〈dAuth(b, c)〉 , s2}, which is a
forward available trace. �

Theorem 24 (Backward safety) The I System has the backward safety property if and only if
it produces no backward available trace.

PROOF. Only if: By contradiction. Assume that the system has the backward safety property,
but produces a backward available trace 〈sinit, t, sfin〉. Then we know that, in the final state sfin,
auth(a, c), auth(b, c) and auth(a, b) from Definition 39. We immediately have a contradiction
because we assume that the system has the backward safety property, and therefore, the formula
from Definition 35 should be true in all states. But the formula is false in the state sfin.

If: Assume that the system is not backward safe. It means that there exists a state in which
the formula from Definition 35 is not true. The only way for it to be not true is when in the next
state we have auth(a, c), auth(a, b) and in the current state we have (auth(b, c) ∧ ¬auth(a, b)).
So there are two consecutive states s1 and s2 with the following properties. In s1 we have only
auth(b, c) (and its related direct authorization predicate) true and in s2, auth(a, b) ∧ auth(a, c)
is true. So the system produces the following trace: T = {s1, 〈dAuth(a, b)〉 , s2}, which is a
backward available trace. �

4.4.4 Results for the I System

We established the following results for the I System using our testing methodology and system.
The I System satisfies the necessity, security, and forward and backward availability properties.
It does not possess the forward and backward safety properties.

Vendor’s response The vendor of the I System has confirmed that our results are consistent
with their intended design.

4.5 Related Work

We are aware of only three uses of state-space exploration in the context of access control. In
safety and security analysis [24, 25, 26], one provides as input a start-state and a specification
of how states can change. One then asks whether a state with certain properties is reachable, or
whether all reachable states have a certain property. In more recent work [61], state-space explo-
ration has been used to verify that the design of particular authorization schemes is sound. What
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this means is that a particular syntax is specified for the specification of authorization schemes.
A new authorization scheme may be specified with the syntax, but the question remains as to
whether any scheme that is syntactically valid is also semantically valid. State-space exploration
may be used for this purpose. The third use is in information flow, for example, the work of
D’Souza et al. [62]. Our work is different from such existing work related to state-space explo-
ration in access control. Our goal is to determine whether an implemented access control system
has properties that were determined to be desirable in its design. In other words, does the “real
world” access control system have a property of interest?

There is also a large amount of research in checking for vulnerabilities in software. A com-
prehensive discussion is well beyond this dissertation. However, there is relatively little work for
real-world access control systems that targets concrete implementations. The work of Bauer et
al. [63] is relevant in this context. That work proposes a framework to apply misconfiguration-
prediction to access control policies. They predict misconfiguration might happen in the system,
based on the visible accesses in the system so far. Our work is on property-testing an implemen-
tation of an authorization system rather than the detection of misconfigurations in policies.

Our work borrows ideas from software testing, in particular the small-scopes hypothesis [46].
It also has similarities to recent work that proposes the use of model-checking for software testing
[48]. However, such work focuses on aspects such as white-box testing of software (i.e., with
access to the source-code) and achieving coverage. Our focus is in testing for properties related
to authorization, which to our knowledge, conventional software testing does not cover.

There has also been recent work in the use of traces to verify access control models that
are specified in UML [49, 50]. However, such work does not consider testing actual systems,
and considers only “on paper” verification. Furthermore, the models tested do not consider
administrative changes, which, for example, the I System that is one of our application contexts
incorporates.

Finally, our work also has similarities to flaw-hypothesis or penetration testing [51]. A major
difference, however, is that we hypothesize somewhat sophisticated properties that are specific
to authorization systems.

4.6 Conclusion

We have addressed the problem of testing an implementation of an authorization system for
properties of interest. We have proposed a 4-stage approach: articulation of properties, construc-
tion of traces, finitization and a model-checking based approach to testing a system. We have
considered several properties in the context of two commercial systems: the D System and the
I System. We have discovered flaws in the D System related to the co-existence of authoriza-
tions to procedures and discretionary rights to tables that, to our knowledge, have not appeared
before in the literature.

There is considerable scope for future work. One avenue is the articulation of a larger set
of properties of interest, and abstracting those properties into a “meta-property.” This would be
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similar to the notion of a query in prior work [24]. Completing the implementation of our testing
system is also interesting future work.
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Chapter 5

Conclusion

We have addressed three important problems in access control systems design and analysis.

Version Control System Design We have presented aspects of the design and semantics of
gitolite, an authorization scheme for Version Control Systems. We have used term rewriting
rules to present the semantics of gitolite. Also we have presented the algorithm which
provides access enforcement relied on Access Control Lists (ACLs). The proposed algorithm is
sound and complete and we have shown that in real world experiment it is faster than previous
enforcement of gitolite in many situations.

Chinese Wall Security Policy We have addressed enforcement of the Chinese Wall security pol-
icy. Specifically, we have proposed a notion of least-restrictive enforcement of the policy, devised
an enforcement mechanism and shown that it is least-restrictive. Our enforcement mechanism is
simple, sound and efficient. Our enforcement mechanism mediates read attempts only to prevent
subject-violations, and write attempts only to prevent object-violations.

We have precisely identified the trade-off our enforcement mechanism incurs in achieving
least-restriction. The actions of a subject may constraint the prospective actions of other subjects,
a property that we call (lack of) independence of subjects. We have established the somewhat
strong result that any enforcement mechanism to enforcing the Chinese Wall security policy that
is least-restrictive must incur this trade-off.

We have then established two new results for the Brewer-Nash enforcement mechanism to
enforcement [17]. We have shown that it is more restrictive than previous work points out. We
have shown that if a subject is allowed to write to an object, then all objects must belong to the
same Conflict of Interest class. We have shown also that the so-called ∗-rule that is part of the
Brewer-Nash enforcement mechanism to enforcement is overstated in that one of its sub-rules
implies the other. We have also investigated the rendition of the Brewer-Nash enforcement mech-
anism in Bishop’s work [32], and shown that it is not equivalent to the Brewer-Nash enforcement
mechanism.
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In summary, our work establishes new results, and thereby sheds new light on what is gener-
ally considered to be important work in information security.

In our discussion on related work, we observe that subsequent enforcement mechanisms of
Kessler [20] and Sandhu [21, 22] are also restrictive in their own ways, and not least-restrictive.

We see applications of our enforcement mechanism as the most promising future work.
Specifically, we seek to investigate the problems in cloud-computing that prior work such as
those of Tsai et al. [15] and Wu et al. [16] have proposed, and ask whether the least-restriction
that our enforcement mechanism provides is useful and meaningful in those contexts.

Another direction of future work is to investigate extensions that have been proposed to the
policy in work such as those of Atluri et al. [14] and ask how we can extend our enforcement
mechanism to deal with such extensions. We seek also to rigorously establish that other enforce-
ment mechanisms such as those of Kessler [20] and Sandhu [21, 22] are indeed incomparable to
the Brewer-Nash enforcement mechanism from the standpoint of reachable authorization states.

Property Testing We have addressed the problem of testing an implementation of an autho-
rization system for properties of interest. We have proposed a 4-stage approach: articulation
of properties, construction of traces, finitization and a model-checking based approach to test-
ing a system. We have considered several properties in the context of two commercial systems:
the D System and the I System. We have discovered flaws in the D System related to the co-
existence of authorizations to procedures and discretionary rights to tables that, to our knowledge,
have not appeared before in the literature.

There is considerable scope for future work. One avenue is the articulation of a larger set
of properties of interest, and abstracting those properties into a “meta-property.” This would be
similar to the notion of a query in prior work [24]. Completing the implementation of our testing
system is also interesting future work.
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