
Cell Path Reconstruction Using 3D

Digital Inpainting

by

Anthony Schmieder

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Anthony Schmieder 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Digital inpainting is the reconstruction of a missing or damaged region in a digital

image. Intensity values in the missing region are approximated using information near the

boundary of the region. Some applications include repair of chipped paintings, repair of

rips in paper photographs, and removal of unwanted objects from photographs. In this

thesis, we review 2D digital inpainting techniques, examine the application of 3D digital

inpainting to cell path reconstruction, and propose a new inpainting technique inspired by

the cell path reconstruction problem.

Cell path reconstruction is the estimation of the shape and position of living cells in

videos recorded using fluorescence microscopy. This procedure is necessary because in a

particular phase of the life cycle of some cells, fluorescent light passes through the cells with

an undetectable change in wavelength and they vanish from the frame. This leads to mis-

leading results when, for example, the number of cells in a particular frame is counted. We

transform the position/shape estimation problem into a 3D shape reconstruction problem

by stacking the frames of the video to form a 3D volume. In this volume, cell paths form

tubes with missing segments where cells have vanished. We apply elastica inpainting to

the 3D tube reconstruction problem and introduce a new 3D inpainting model to overcome

difficulties with a direct generalization to 3D of 2D elastica.

iii

Acknowledgements

We gratefully acknowledge the Natural Sciences and Engineering Research Council of

Canada and the Ontario Ministry of Training, Colleges, and Universities for their financial

support of this work.

iv

Dedication

Dedicated to Charlotte Jean Schmieder.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Mathematical Background 4

2.1 Definitions . 4

2.2 Solution Techniques . 7

2.2.1 Calculus of Variations . 7

2.2.2 Solution of the Euler-Lagrange Equation 8

2.2.3 Gradient Flow Methods . 9

2.2.4 The Euler-Lagrange Equation as a Gradient Flow 11

2.2.5 Direct Minimization of the Energy Functional 13

2.2.6 Dynamic Programming . 14

2.3 Selection Criteria for a Cell Path Inpainting Technique 16

vi

3 2D Inpainting Models 19

3.1 Geometric Methods . 19

3.1.1 Edge Transport Model . 19

3.1.2 Total Variation . 21

3.1.3 Curvature Driven Diffusion . 25

3.1.4 Elastica . 26

3.2 Inpainting by Texture Synthesis . 41

3.3 Exemplar and Patch Techniques . 42

4 Geometric Models for 3D Inpainting 47

4.1 3D Total Variation . 50

4.2 3D Elastica Using Mean Curvature . 51

4.2.1 Results . 51

4.2.2 Solution by Numerical Optimization 53

4.3 3D Elastica Using Gaussian Curvature . 55

4.3.1 Instability in the Numerical Schemes 57

4.4 3D Elastica Using Mean and Gaussian Curvature 57

4.4.1 Solution by Numerical Optimization 58

4.4.2 Manipulations of the Euler-Lagrange Equation 58

4.4.3 Numerical Solution of the Manipulated PDE 65

4.4.4 Numerical Results . 72

5 Conclusions and Future Work 77

References 78

vii

List of Tables

2.1 w×h dimensions for black bar test cases 17

3.1 Parameters for Matlab optimization of 2D elastica 37

3.2 Optimization time comparison for 2D elastica on w×h = 10×12 black bar 38

3.3 Optimization time comparison for 2D elastica on w×h = 10×30 black bar 38

4.1 Parameters for Matlab optimization of 3D elastica 53

4.2 Optimization time comparison for 3D elastica on r×h = 5.5 × 10 cylinder

in a 19× 19× 14 domain . 53

4.3 Parameters for Matlab optimization of 3D mean/Gaussian elastica 59

4.4 Optimization time comparison for 3D mean/Gaussian elastica on r×h =

5.5× 10 cylinder . 59

4.5 gmres parameters . 71

4.6 Parameters for 3D mean/Gauss elastica fixed point method 72

4.7 Values of C1 in 0, 20, . . . , 500 for which the scheme is unstable 73

viii

List of Figures

1.1 Fading . 2

1.2 Cell path form tubes in stacked images . 2

2.1 An inpainting problem and two reasonable solutions 5

2.2 Illustration of the inpainting problem . 6

2.3 Level lines and gradient vectors . 6

2.4 Two sets of compatible T-junction pairs 15

2.5 Masnou’s dynamic programming result (taken from [32]) 15

2.6 The black bar test case . 17

2.7 Black bar images used in this thesis . 17

2.8 Additional test cases . 18

3.1 Results for edge advection inpainting . 20

3.2 Level lines connect to nearby level lines . 21

3.3 TV inpainting on a constant image with a hole 23

3.4 Results for TV inpainting on the black bar test cases 23

3.5 Results for TV inpainting on other test cases 24

3.6 Reconstruction options for TV inpainting 24

ix

3.7 Curvature penalization in CDD . 25

3.8 Results for elastica inpainting (a = 0.5, b = 20, λ = 100) on the black bar

test cases . 28

3.9 Results for elastica inpainting on other test cases 28

3.10 Jλ and u at different iterations of elastica inpainting 30

3.11 Computing Jλ for elastica on the black bar. Dotted lines denote κ = 0 . . . 31

3.12 Illustration of broken bar local minimum in Jλ 31

3.13 Oscillations in Jλ . 32

3.14 Comparison of minmod and minmodσ for f(x) = x and g(x) = 0.5 35

3.15 Stencils of |∇u21|, |∇u12|, |∇u32|, and |∇u23| 37

3.16 Elastica by optimization: results on w × h = 10× 12 black bar 39

3.17 Elastica by optimization: results on w × h = 10× 30 black bar 40

3.18 An exemplar method . 42

3.19 Results from Criminis et al.’s method (taken from [20]) 43

3.20 Illustration of Cao et al.’s method (taken from [14]) 45

4.1 3D test cases . 48

4.2 3D test cases after setting values in D to 0.5 49

4.3 0.99 level surfaces for 3D TV inpainting on the cylinder test case 51

4.4 Mean and Gaussian curvature on surfaces 52

4.5 3D Elastica by optimization: results on r × h = 5.5× 10 cylinder 54

4.6 3D mean/Gauss Elastica optimization: results on r × h = 5.5× 10 cylinder 60

4.7 0.99 level surface for elastica models on 3D test cases 74

4.7 0.99 level surface for elastica models on 3D test cases 75

4.7 0.99 level surface for elastica models on 3D test cases 76

x

Chapter 1

Introduction

Fluorescence microscopy is a tool for magnification and imaging. A specimen is said to

fluoresce if it absorbs and radiates fluorescent light almost immediately. The radiated light

typically has a longer wavelength than the absorbed light. If a specimen is irradiated with

fluorescent light of a known wavelength and a fluorescent light camera is filtered to only

detect that wavelength, the specimen will be visible in the captured image. Fluorescence

microscopy is useful in the study of living cells because fluorescent light is not toxic to

the cells. Unfortunately, in a particular phase of the life cycle of some cells, fluorescent

light passes through them with a change in wavelength that is too small to detect; they no

longer fluoresce. This phenomenon is known as fading [43] and is illustrated in Figure 1.1.

Fading causes cells to disappear temporarily in videos of fluorescence microscopy ex-

periments. This leads to confusing results if the purpose of an experiment is, for example,

to count the number of cells in each frame of the video. It is therefore desirable to estimate

the shape and position of cells in frames where they have vanished. We approach this

problem by transforming it to an image reconstruction problem in 3D.

First, a 3D volume is formed by stacking the frames of the video. The path of the cell

forms a tube in this volume as illustrated in Figure 1.2. In this 3D image, fading will appear

as a break in the tube where the cell has vanished. The problem is now to reconstruct

missing data in a digital image of a 3D tube. A technique called digital inpainting has been

1

(a) Fluorescent
nucleus

(b) Faded nucleus

Figure 1.1: Fading

Figure 1.2: Cell path form tubes in stacked images

applied in 2D image processing to estimate missing regions in images [38]. We generalize a

2D inpainting method to 3D and use it to reconstruct broken cell paths in the 3D volume.

This idea is closely related to the arteriosclerosis quantification measure of Dong et

al. [21]. In their work, the volume of plaque in a blood vessel is measured by computing

the interior volume of an affected region of the vessel then removing that region and

recovering an estimate using 3D inpainting. The volume of the estimate is computed

and the difference in volumes is used to estimate the volume of the plaque. However,

their method only considers the reconstruction of surfaces in 3D. A method for cell path

inpainting should also reconstruct the interior of cells.

In this thesis, we first define the terms and notation that we use to discuss digital

inpainting models. We then explain the necessary mathematical background including

numerical methods for solving the inpainting models and the criteria and test cases we

2

use to select a 2D method for generalization to 3D. Next, we evaluate methods for 2D

digital inpainting and select elastica inpainting for cell path reconstruct. We consider the

numerical solution of the 2D elastica model in detail. Finally, we discuss the generalization

to 3D of the 2D elastica model and its application to cell path reconstruction. We find

that a direct generalization to 3D of the existing 2D elastica model yields unsatisfactory

results, so we propose a new 3D inpainting technique inspired by cell path reconstruction.

3

Chapter 2

Mathematical Background

In this section, we first present the notation and mathematical tools that we use to phrase

and solve inpainting problems. We then explain the criteria that we use to select a 2D

inapinting technique for cell path reconstruction in 3D.

2.1 Definitions

An image is a map u : Ω → [0, 1] where the image domain Ω ⊂ R2 is assumed to be

rectangular. All images are assumed to be grayscale with intensity values in [0, 1]: 0=black,

1=white. When a method uses derivatives of u, we assume that u is sufficiently smooth.

For image inpainting, an inpaint domain D ⊂ Ω and an initial image u0 are given.

The boundary of D is defined as closureD\ interiorD and is denoted ∂D. u0 is assumed

to be unknown on D. The problem is to find an image u such that u≈u0 on Ω\D and u

on D is constructed to look reasonable to a human observer. The definition of reasonable

depends on the problem and there are typically multiple reasonable solutions. Figure 2.1

illustrates two reasonable solutions for the same inpainting problem. Inpainting methods

are distinguished by which reasonable solution they select for a particular problem. For

3D cell path inpainting, we require a method that recovers smooth tubes of near-constant

radius across large inpaint domains.

4

D D

(a) Problem

D

(b) Solution 1 (c) Solution 2

Figure 2.1: An inpainting problem and two reasonable solutions

In our discussion, we use the concepts of level lines, T-junctions, the gradient vector,

and the unit normal vector. A level line is a line in an image along which the image

intensity is constant. A T-junction is a point where a level line intersects ∂D. Level lines

and T-junctions are illustrated in Figure 2.2. The gradient ∇u of an image u = u(x1, x2)

is

∇u =

[
∂u

∂x1

,
∂u

∂x2

]>
.

Figure 2.3 shows a 2D image u and the graph of u depicted as a 3D surface. The locations

of some level lines are shown as curves in the u = 0 plane of the 3D plot. The arrows in the

same illustration are ∇u evaluated at different points in the image domain Ω. Note that

|∇u| is large at points where the surface u has steep incline and small where it has shallow

incline. The gradient at any point in the image is normal to the level line passing through

that point [26, p. 291], so the unit normal vector for a level line may be computed as

~n =
∇u
|∇u|

.

Our notation and definitions follow those of Aubert and Kornprobst [2].

5

D

T-junctions

Level lines

(a) An inpainting problem

D

Recovered

level lines

(b) A reasonable solution

Figure 2.2: Illustration of the inpainting problem

(a) An image u

0

10

20

30

0

10

20

30
0

0.2

0.4

0.6

0.8

1

x
1

x
2

u
(x

1
,x

2
)

(b) Some level lines and gradient vectors
for u

Figure 2.3: Level lines and gradient vectors

6

2.2 Solution Techniques

The 2D geometric inpainting models considered in this work are formulated as the mini-

mization:

argmin
u

J(u) (2.1)

where

J(u) =

∫
Ω

f(x, u, ux, uy, uxx, uxy, uyy)dxdy.

Depending on the model, the functional J may be non-linear and non-convex. This gives

rise to difficult minimization problems. In this section, we present several techniques that

have been applied to these problems.

2.2.1 Calculus of Variations

A useful tool for solving minimization models in numerical image processing is the calculus

of variations. We give a brief explanation of how the subject relates to the geometric

models described in Section 3.1.

The calculus of variations was developed to analyze minimization problems of the form

argmin
u

∫ x2

x1

f(x, u(x), u′(x))dx (2.2)

subject to u(x1) = u1 and u(x2) = u2 where f and u are twice differentiable. It can be

shown [46] that any u that minimizes (2.2) and satisfies the given conditions is also a

solution to the partial differential equation

∂f

∂u
− d

dx

(
∂f

∂u′

)
= 0. (2.3)

Equation (2.3) is known as the Euler-Lagrange equation. This result may be generalized

to functions u with multidimensional domains and functions f of higher order derivatives

of u [46]. For example, for a given domain Ω ⊂ R2, a function u : Ω → R, and the

7

minimization problem

argmin
u

∫
Ω

f(x, y, ux, uy, uxx, uxy, uyy)dxdy (2.4)

where u is given on ∂Ω, a minimizer u of (2.4) must satisfy

∂f

∂u
− ∂

∂x

(
∂f

∂ux

)
− ∂

∂y

(
∂f

∂uy

)
+

∂2

∂x2

(
∂f

∂uxx

)
+

∂2

∂x∂y

(
∂f

∂uxy

)
+
∂2

∂y2

(
∂f

∂uyy

)
= 0. (2.5)

When Equation (2.4) is compared to the total variation and elastica inpainting models

given in Equations 3.4 and 3.10, the utility of the calculus of variations in numerical image

processing becomes apparent. To solve minimizations over a 3D image domain as in the

models of Chapter 4, we use the following formula for the Euler-Lagrange equation:

∂f

∂u
− ∂

∂x

(
∂f

∂ux

)
− ∂

∂y

(
∂f

∂uy

)
− ∂

∂z

(
∂f

∂uz

)
+

∂2

∂x2

(
∂f

∂uxx

)
+

∂2

∂y2

(
∂f

∂uyy

)
+

∂2

∂z2

(
∂f

∂uzz

)
+

∂2

∂x∂y

(
∂f

∂uxy

)
+

∂2

∂x∂z

(
∂f

∂uxz

)
+

∂2

∂y∂z

(
∂f

∂uyz

)
= 0.

(2.6)

2.2.2 Solution of the Euler-Lagrange Equation

In numerical image processing, two techniques are commonly used to solve the Euler-

Lagrange equation: artificial time marching and fixed point iteration [16]. For example,

consider the total variation (TV) minimization problem:

argmin
u

∫
Ω

|∇u|dxdy +
λ

2

∫
Ω\D

(u0 − u)2dxdy (2.7)

where λ is a constant. This model is discussed in Section 3.1.2, but here we only consider

the minimization. Using the formula given in Equation (2.5), the Euler-Lagrange equation

8

for (2.7) is:

−∇ · ∇u
|∇u|

+ λΩ\D · (u− u0) = 0 (2.8)

where

λΩ\D(x) =

λ, if x ∈ Ω\D

0, otherwise
.

This expression is equivalent to the gradient of (2.7). Therefore, the minimization may be

solved using a steepest descent method by introducing the artificial time variable t. This

gives
∂u

∂t
= ∇ · ∇u

|∇u|
+ λΩ\D · (u0 − u) (2.9)

When this equation is solved using an explicit numerical scheme, the time step corresponds

to the step length in the gradient descent [16]. When faster convergence is required, a fixed

point iteration may be used to solve (2.8). A sparse linear system is obtained by lagging

the nonlinear term in the diffusion coefficient [16]:

−∇ · ∇u
n+1

|∇un|
+ λΩ\D · (un+1 − u0) = 0. (2.10)

An initial guess is chosen for u0 and the linear system is solved repeatedly until convergence.

These techniques work well for the total variation model, but for higher-order nonlinear

models such as elastica, the time step in artificial time marching must be impractically

small and it is difficult to construct a stable fixed point method. We consider these issues

in detail in Section 3.1.4.

2.2.3 Gradient Flow Methods

Gradient flow methods [23] provide fast, unconditionally stable techniques for solving gra-

dient systems.

9

Definition 1. A gradient system is an initial value system of the form∂u
∂t

= −∇f(u)

u(0) = u0
(2.11)

for f : Rd → R satisfying 
f(u) ≥ 0 ∀u ∈ Rd

f(u)→∞ as |u| → ∞

〈H(f)(u)u, u〉 ≥ λ ∀u ∈ Rd

where λ ∈ R, H(f) is the Hessian matrix of f , and 〈·, ·〉 is the inner product.

Eyre [23] solves such a system by splitting f into

f(u) = fc(u)− fe(u) (2.12)

where fc and fe are strictly convex for all u. Then the gradient system becomes

∂u

∂t
= −∇fc︸ ︷︷ ︸

steepest
descent

+∇fe︸ ︷︷ ︸
hill

climbing

.

It is solved semi-implicitly using the numerical scheme:

un+1 = un + ∆t
(
∇fe(un)−∇fc(un+1)

)
where ∆t is the time step. Eyre [23] demonstrates the unconditional gradient stability

of this scheme (i.e. f(un+1)≤f(un)). Unconditional stability is desirable for high-order

inpainting methods, but the models discussed in this thesis are not immediately in the

form of Equation (2.11). Furthermore, although the decomposition in Equation (2.12)

is guaranteed to exist, it can be difficult to compute [50, 23]. In the next section, we

justify the application of gradient flow splitting methods to digital inpainting models by

10

demonstrating that the Euler-Lagrange equation is the gradient of the energy functional

in the associated minimization problem.

2.2.4 The Euler-Lagrange Equation as a Gradient Flow

Consider again the minimization from Section 2.2.1:

argmin
u

J(u) (2.13)

where

J(u) =

∫ x2

x1

f(x, u, u′)dx

subject to u(x1) = u1 and u(x2) = u2. We derive the Euler-Lagrange equation for this

minimization following [46]. We then consider the definition of the gradient to demonstrate

that the Euler-Lagrange equation is the gradient for the functional J . Finally, we obtain

a gradient flow by applying artificial time marching to the Euler-Lagrange equation.

To derive the Euler-Lagrange equation, we assume the existence of a twice differentiable

function that satisfies the minimization in Equation (2.13). We then derive a differential

equation that must be satisfied by such a function. Suppose u = u(x) is a minimizer for

Equation (2.13) and consider a perturbation of u(x):

U(x) = u(x) + εη(x)

where η(x) is continuous and differentiable, η(x1) = η(x2) = 0, and ε ∈ R. Then the

integral

I(ε) =

∫ x2

x1

f(x, U(x), U ′(x))dx

has a minimum at ε = 0, so I ′(0) = 0. By differentiating I with respect to ε and integrating

by parts [46, p. 22], we obtain

I ′(0) =

∫ x2

x1

(
∂f

∂u
− d

dx

(
∂f

∂u′

))
ηdx = 0. (2.14)

11

Since this equality holds for arbitrary η, the fundamental lemma of the calculus of varia-

tions [46] implies that
∂f

∂u
− d

dx

(
∂f

∂u′

)
= 0.

This expression is the Euler-Lagrange equation. To demonstrate that it is the gradient of

J , we consider the definition of the gradient.

The gradient of a functional J at the point u is the unique vector ∇J(u) such that

DJ(u)[η] = 〈∇J(u), η〉 (2.15)

for all vectors η where DJ(u)[η] is the directional derivative of J in the direction of η at

the point u and 〈v, w〉 =
∫
vwdx is the inner product [26]. The integral I ′(0) computed in

Equation (2.14) is also the directional derivative of J . By comparing that result with the

definition of the gradient in Equation (2.15), we see that the Euler-Lagrange equation is

the gradient for J :

DJ(u)[η] =
d

dε
J(u+ εη)

∣∣∣∣
ε=0

=

∫ x2

x1

(
∂f

∂u
− d

dx

(
∂f

∂u′

))
ηdx

=

〈
∂f

∂u
− d

dx

(
∂f

∂u′

)
, η

〉
.

So the minimization in Equation (2.13) may be written as a gradient flow by applying

artificial time marching to the Euler-Lagrange equation:

∂u

∂t
= −∇fJ(u).

We write ∇f to distinguish the gradient of the functional J from the gradient ∇u of the

function u.

Taylor and Cahn [44] apply this approach to the Cahn-Hilliard equation. Bertozzi

et al. [7, 6] apply the Cahn-Hilliard equation to inpainting of binary images and provide

a detailed analysis of the stability of the numerical scheme and its performance as an

12

inpainting method. Schönlieb and Bertozzi [42] use gradient flow methods to derive new

higher-order inpainting models. Finally, Brito-Loeza and Chen [10] apply the gradient flow

idea to the elastica inpainting model. They propose several splittings of the Euler-Lagrange

equation and fast numerical techniques for solving them. We apply their USTM2 technique

to solve the mean/Gaussian 3D inpainting model in Section 4.4.

2.2.5 Direct Minimization of the Energy Functional

The numerical results reported later in this thesis demonstrate that the Euler-Lagrange

PDE can be difficult to solve numerically. Therefore, we also consider the direct application

of numerical optimization techniques to Equation (2.1). Given an objective function J :

Rn → R and a set of constraint functions ci : Rn → R; i ∈ E ∪I where E and I are disjoint

finite sets of indices, the constrained optimization problem can be written as

argmin
u∈Rn

J(u) subject to

ci(u) = 0, i ∈ E

ci(u) ≥ 0, i ∈ I.
(2.16)

The function ci; i ∈ E are called the equality constraints and the functions ci; i ∈ I are

called the inequality constraints. A point u ∈ Rn is called feasible if all constraints ci in

Equation (2.16) are satisfied. A point u∗ is called a local solution of Equation (2.16) if u∗

is feasible and there is a neighbourhood N of u∗ such that J(u∗) ≤ J(u) for all feasible

u ∈ N [37]. The numerical optimization techniques considered in this thesis search for a

local solution to Equation (2.16) by iteratively improving an initial guess for u until a local

solution is reached.

There are two classes of numerical optimization techniques: line search methods and

trust region methods [37]. Given a current iterate uk at iteration k, a line search method

selects a feasible descent direction pk ∈ Rn and a step length αk ∈ R to approximately

minimize J along the direction pk:

αk = argmin
α∈R

J(uk + αpk).

13

Then u is updated as

uk+1 = uk + αkpk.

If the minimization problem is unconstrained, then a trust region method may be

applied. A trust region method also solves a minimization subproblem at each iteration, but

its search is not restricted to a line. At iteration k, it constructs a quadratic approximation

mk of the objective J such that mk(p)≈J(uk + p). The approximation is assumed to be

accurate within some radius ∆k of the current iterate uk and the subproblem is solved

inside that radius. Then the step pk is computed by solving

pk = argmin
p∈Rn

mk(p) subject to ‖p‖ ≤ ∆k.

Numerical optimization techniques differ in their implementations of the details of the

line search and trust region approaches. The choice of a step vector pk for line search

methods and the approximation mk for trust region techniques are two examples. Special-

ized techniques exist for different classes of objective and constraint functions. We apply

numerical optimization to the 2D and 3D elastica inpainting models. These problems are

nonlinear, large, and sparse. For such problems, suitable techniques include the log-barrier

interior point method [11, 12, 45], sequential quadratic programming [24, 27, 39], and

reflective trust region [13, 9]. We experiment with each of these methods.

2.2.6 Dynamic Programming

Masnou [32, 33] solves the elastica inpainting model by detecting T-junctions on the

boundary of the inpaint domain and using a dynamic programming approach to match

T-junctions that are compatible for reconnection. A pair of T-junctions is compatible if

both T-junctions are at the same level (i.e. same colour) and they may be reconnected

without intersecting any line connecting two other T-junctions. See Figure 2.4 for an

illustration of two sets of compatible T-junction pairs. The optimal set of compatible T-

junctions minimizes elastica energy along reconnected level lines. This set is found using

14

D

(a)

D

(b)

Figure 2.4: Two sets of compatible T-junction pairs

Figure 2.5: Masnou’s dynamic programming result (taken from [32])

a dynamic programming approach. Finally, level lines are reconnected by propagating

T-junctions through the inpaint domain along elastica-minimizing curves.

Convergence issues are avoided and execution time of the algorithm depends only on

the size and shape of the inpaint domain and the number of T-junctions. Since compatible

T-junctions are chosen directly, the method can restore level lines across large inpaint

domains. Masnou reports impressive results on such cases. For example, see Figure 2.5

taken directly from [32]. The black region in the left-hand image represents the inpaint

domain.

Despite this result, it is difficult to accurately detect level lines and their orientation at

the inpaint domain boundary when the image is corrupted by noise. In 3D, the problem

becomes detection and matching of level surfaces at the boundary of D. Due to the

complexity of algorithmically matching level surfaces, we do not consider the dynamic

programming approach in this work.

15

2.3 Selection Criteria for a Cell Path Inpainting Tech-

nique

Before generalizing a 2D inpainting technique to 3D we must first select a suitable 2D

technique. We identify two properties that a 2D inpainting method must satisfy to be a

suitable candidate for application to cell path reconstruction in 3D:

1. The method must reconnect level lines across a large inpaint domain

2. The method must recover level lines that bend smoothly around corners.

Property 1 is necessary because cells can vanish for many frames. For example, the cells

depicted in Figure 1.1 are only about twenty pixels in diameter, but vanish for over thirty

frames. Property 2 is necessary to ensure natural shape and movement in the reconstructed

videos.

To compare inpainting methods, we apply them to two sets of test images. We use

the black bar test, illustrated in Figure 2.6, to evaluate the tendency of an inpainting

method to reconnect level lines across large inpaint domains. The width of the bar is w

and the height of the gap is h. The black bar cases used in our experiments are shown in

Figure 2.7 and the w×h dimensions are listed in Table 2.1. We also apply the tests shown

in Figure 2.8 to evaluate the tendency of a method to recover smooth curves around corners

and to evaluate how a method performs in two cases where a suitable solution is unclear

(the images with a gray background). In the test images, the inpaint domains are filled

with random intensity values. With these ideas in mind, we are now ready to introduce

the inpainting techniques.

16

h

w

D

Figure 2.6: The black bar test case

Figure 2.7: Black bar images used in this thesis

w:h ratio w × h w × h
4:1 40× 10 10× 2
3:1 30× 10 10× 3
2:1 20× 10 10× 5

1.5:1 15× 10 10× 7
1:1 10× 10 10× 10

1:1.5 7× 10 10× 15
1:2 5× 10 10× 20
1:3 3× 10 10× 30
1:4 2× 10 10× 40

Table 2.1: w×h dimensions for black bar test cases

17

Figure 2.8: Additional test cases

18

Chapter 3

2D Inpainting Models

We examine three categories of 2D inpainting techniques: geometric, texture synthesis, and

exemplar-based. Our 3D technique is geometric, so we examine 2D geometric methods in

detail.

3.1 Geometric Methods

In geometric inpainting methods, an image is modelled using ideas from differential ge-

ometry. The inpaint domain D is then recovered by optimizing an energy functional that

maps the image to a real number. Different image models and different energy functionals

produce different inpainting solutions.

3.1.1 Edge Transport Model

Bertalmio, Sapiro, Caselles, and Ballester popularized digital inpainting with the presenta-

tion of their paper, “Image Inpainting,” at SIGGRAPH in 2000 [4]. They use an intuitive

notion of how an artist would repair a damaged painting to construct a partial differential

19

Figure 3.1: Results for edge advection inpainting

equation (PDE) model for inpainting digital images. Their idea is that when an artist re-

pairs a damaged painting, he extends edges into the damaged region on the same trajectory

at which they reach the boundary of the region.

To model this idea, Bertalmio et al. first note that since a sharp edge in an image u

corresponds approximately to a region with rapidly changing gradient, the edges in u may

be located using the Laplacian ∆u. The Laplacian will be large on edges of u and small

on flat or slowly varying regions of u. Next, they use the advection equation to transport

those edges into D parallel to the level lines intersecting ∂D. The 2D advection equation,

∂u

∂t
+ ~f · ∇u = 0,

transports the values of u in the direction of the vector field ~f . To transport edges in

images, Bertalmio et al. replace u by ∆u. Since gradient vectors are normal to level lines

in u, a π/2 radian rotation of a vector at a particular point in ∇u yields a vector parallel

to the level line passing through the same point. The field of all such vectors is denoted

∇⊥u. This gives the edge transport model:∂u
∂t

= ∇⊥u · ∇∆u on D

u = u0 on Ω\D.
(3.1)

This model can be extended and unified with models of fluid dynamics [3].

20

D

Figure 3.2: Level lines connect to nearby level lines

The edge transport concept is intuitively pleasing, but Figure 3.1 reveals two difficulties

with the approach: the model does not match corresponding level lines across D and, since

edges are transported in straight lines, the model cannot recover smooth curves. The

first difficulty, illustrated in the offset black bar case, is especially troublesome for cell

path inpainting. In a 3D model for cell path inpainting, this behaviour would appear as

unnatural shape changes and discontinuous movement of cells. In the next section we

examine the total variation inpainting model of Chan and Shen [18]. The total variation

model solves the problem of matching corresponding level lines across the inpaint domain,

but is also unable to recover smooth curves.

3.1.2 Total Variation

The total variation of an image u defined on domain Ω is

TV (u) =

∫
Ω

|∇u|dxdy. (3.2)

Since it is zero on flat regions and nonzero on nonflat regions, TV can be thought of as a

measure of the roughness of u. This idea is applied by Rudin et al. [40] to repair images

corrupted by noise. Marquina and Osher [31] extend this idea to simultaneously denoise

and deblur an image. Chan and Shen [18] use TV to perform noise removal and inpainting.

To reconnect level lines across D, Chan and Shen use the idea that a level line entering

21

D at a particular point on ∂D should connect to a nearby point on ∂D at the same level.

One implementation of this idea is to reconstruct D using level lines of minimum arc length.

This is achieved by choosing values in D that minimize∫ 1

0

(∫
u=r

ds

)
dr

where to integrate over u = r means to integrate over level lines in the image of intensity

r. This integral is difficult to approximate numerically, but the integral over level lines

can be transformed to an integral over the area Ω using the coarea formula (see [25] and

Theorem 2.5.4 in [2]): ∫ 1

0

(∫
u=r

ds

)
dr =

∫
Ω

|∇u|dxdy (3.3)

Equation (3.3) reveals that reconstructing D using curves of minimum arc length is equiv-

alent to minimizing TV (u) on D. Adding a fitting constraint to denoise u on Ω\D gives

the TV inpainting model:

argmin
u

∫
Ω

|∇u|dxdy +
λ

2

∫
Ω\D

(u0 − u)2dxdy (3.4)

where λ is a constant that allows the user to adjust the amount of smoothing and the level

of detail that will remain outside the inpaint domain after smoothing. Note that the TV

term is the norm of the gradient ∇u, so minimizing TV across D reconstructs u using a

region of zero gradient when possible. This is illustrated in Figure 3.3 where TV is used to

inpaint a hole in a constant image. In the input, shown in Figure 3.3(a), |∇u| is non-zero

only at ∂D, but in the solution, shown in Figure 3.3(b), |∇u| is zero on all of Ω.

The results when TV is applied to our set of test cases, shown in Figures 3.4 and 3.5,

illustrate that TV inpainting successfully connects corresponding level lines across D. How-

ever, these images also illustrate two drawbacks of reconstructing level lines using curves of

minimum arc length. First, in an image, curves of minimum arc length are straight lines,

so the model can never recover smooth curves.

Second, the TV model does not recover curves across large inpaint domains. This can

22

D

(a) An inpainting problem (b) The zero-gradient solu-
tion

Figure 3.3: TV inpainting on a constant image with a hole

Figure 3.4: Results for TV inpainting on the black bar test cases

be understood by considering the black bar test case shown in Figure 3.6. TV (u) is zero

in the constant regions and non-zero along the perimeter of the black bar. If the bar is

connected, there will be 2h of perimeter in the inpaint domain. If the bar is disconnected,

there will be 2w of perimeter. Since TV is only non-zero on the boundary of the bar, the

model minimizes this perimeter. Therefore, TV inpainting will connect the bar exactly

when h < w. Gaps in cell paths may be large, so such a limitation is undesirable for a 3D

cell path inpainting method. Chan and Shen [15] handle this problem by diffusing level

lines having large curvature to extend them into the inpaint domain. This idea is discussed

next.

23

Figure 3.5: Results for TV inpainting on other test cases

h

w

(a) Connected: 2h
of perimeter in
D

h

w

(b) Disconnected:
2w of perime-
ter in D

Figure 3.6: Reconstruction options for TV inpainting

24

Large curvature

(a) Large cur-
vature at
corners

(b) Zero curva-
ture

Figure 3.7: Curvature penalization in CDD

3.1.3 Curvature Driven Diffusion

In the Curvature Driven Diffusion (CDD) model, Chan and Shen [15] extend the TV model

so that level lines having large curvature are penalized in the minimization. The intent is

that this will force the model to prefer a closed bar with level lines of zero curvature over

a broken bar with large curvature at the corners even when h > w (see Figure 3.7). The

curvature of a level line in u may be computed as

κ = ∇ · ~n = ∇ ·
(
∇u
|∇u|

)
. (3.5)

Chan and Shen begin by computing the steepest descent solution of the Euler-Lagrange

equation of Equation (3.4) as described in Section 2.2.2:

∂u

∂t
= ∇ · ∇u

|∇u|
+ (u0 − u)λΩ\D (3.6)

where

λΩ\D(x) =

λ, if x ∈ Ω\D

0, otherwise
. (3.7)

Next, they note that the first term on the right hand side of Equation (3.6) is the nonlinear

25

diffusion equation with diffusion coefficient 1/|∇u|. Therefore, to solve the TV inpainting

model is to find a stationary solution of a diffusion equation where diffusion is diminished

by a large gradient. This means that edges with a large gradient are retained by the TV

model.

To penalize curvature, Chan and Shen modify the Euler-Lagrange equation by replacing

the diffusion coefficient by |κ|p/|∇u| when it is computed inside the inpaint domain:

∂u

∂t
= ∇ ·

(
G(~x, |κ|)
|∇u|

∇u
)

+ (u0 − u)λΩ\D (3.8)

where

G(~x, s) =

1, ~x ∈ Ω\D

sp, ~x ∈ D,

p is chosen to be 1 or 2 depending on the problem, and λΩ\D is defined as in Equation (3.7).

The diffusion coefficient |κ|p/|∇u| causes the model to diffuse aggressively in regions where

level lines have large curvature while retaining sharp edges in regions where level lines have

small curvature.

Chan and Shen’s model performs well when reconstructing straight lines. In one difficult

back bar test case, the model reconnects the bar when h = 2w. However, they note that due

to its preference for straight lines, CDD has difficulty recovering smooth curves. Since the

tubes formed by cell paths are not straight, CDD is inappropriate for cell path inpainting.

Another model, known for its ability to recover smooth curves, is elastica inpainting. We

discuss it next.

3.1.4 Elastica

The elastica model can reconstruct smooth curves of nonzero curvature across wide gaps

and connect corresponding level lines. It is based on the idea of modelling each level line as

a thin, flexible rod and connecting corresponding level lines in such a way that the bending

energy of the rod is minimized. The bending energy prefers smooth curves and strongly

26

penalizes sharp corners. The bending energy for a curve C is defined as∫
C

a+ bκ2ds (3.9)

where a and b are constants and κ is curvature. The a term is minimized by a curve of

minimum arc length: with the assignments a = 1 and b = 0, bending energy is reduced

to arc length. The b term penalizes curves with high curvature. When the end points are

fixed such that the curve cannot be a straight line, the b terms is minimized by smoothing

out sharp corners. The bending energy over all level lines in an image is∫ 1

0

(∫
u=r

a+ bκ2ds

)
dr

where to integrate over u = r means to integrate over all level lines in u that have intensity

r. As for TV, the coarea formula [2, 25] may be applied to this expression to transform it

into an integral over the image domain Ω:∫
Ω

(a+ bκ2)|∇u|dxdy

where κ(u) = ∇ · ∇u|∇u| is the curvature of the level line in u passing through a particular

point in Ω. Finally, by adding the fitting constraint for noise removal outside the inpaint

domain, we obtain the elastica model:

Jλ(u) =

∫
Ω

(a+ bκ2)|∇u|dxdy +
λ

2

∫
Ω\D

(u0 − u)2dxdy (3.10)

where a, b, and λ are constants and λ adjusts the amount of smoothing as in (3.4). The

inpainting problem is then solved by the minimization

argmin
u

Jλ(u).

The results in Figures 3.8 and 3.9 demonstrate that the elastica model satisfies the prop-

27

Figure 3.8: Results for elastica inpainting (a = 0.5, b = 20, λ = 100) on the black bar test
cases

Figure 3.9: Results for elastica inpainting on other test cases

erties given in Section 2.3: it recovers smooth curves and reconnects objects across wide

gaps. This suggests that elastica is a promising candidate for 3D cell path reconstruction;

we explore this idea in Chapter 4.

The model presented in Equation (3.10) is discussed in detail by Chan, Kang, and

Shen [17]. They give a probabilistic motivation for the model and examine other choices

for the exponent in the curvature term. Masnou [32] uses a similar model, but does not

include the fitting constraint, so his model does not perform denoising. Also, instead of

working with the Euler-Lagrange equation, Masnou uses a dynamic programming approach

to solve the model (Section 2.2.6). Esedoglu and Shen [22] combine the elastica model with

the Mumford-Shah model [36] and form the Mumford-Shah-Euler model. It is high order

28

and difficult to solve, so they approximate it before solving numerically.

Since we apply elastica inpainting to cell path reconstruction in 3D, we consider in

detail the numerical solution on the 2D model.

Numerical Solution of the Euler-Lagrange Equation

In Figure 3.10, we illustrate the challenging nature of the elastica minimization problem.

We present the solution u and a plot of Jλ captured after 600 iterations and after 20,000

iterations of of the fixed point USTM2 scheme of Brito-Loeza and Chen [10]. The input

is the black bar test case with w × h = 10 × 30 and initial data as shown in Figure 2.7.

The parameters for the elastica model are (a, b, λ) = (0.5, 20, 100) and the stabilization

parameter for the numerical scheme is C1 = 100 [10]. Notice the rapid decrease in Jλ

over the first 600 iterations as the method progresses quickly toward a disconnected bar.

After this, from 600 to 20,000 iterations, Jλ decreases gradually over many iterations as

the black bar is slowly recovered. This suggests that the norm of the functional gradient

|∇fJλ| is large between the initial value u0 and the disconnected bar, but small between

the disconnected and connected bars.

This is understood by considering the computation of Jλ on the black bar test cases

illustrated in Figure 3.11. In these two images, despite the difference in the height of the

gap,
∫

Ω
bκ2|∇u|dxdy is identical. On constant regions, |∇u| = 0, so the only contributions

to
∫

Ω
bκ2|∇u| come from the level lines in u. Moreover, straight lines have zero curvature,

so κ 6= 0 only on curved level lines. Such curved lines are drawn as solid in Figure 3.11.

Since the two figures contain the same curved level lines,
∫

Ω
bκ2|∇u| is the same in both.

Since the a term restricts arc length, this further suggests that for a 6= 0 we should find a

local minimum at the disconnected bar. We verify this numerically by using a disconnected

bar as u0. The result after 10,000 iterations of elastica with the same parameters as above

is shown in Figure 3.12.

A further complication is that as the bar is recovered we observe severe oscillations in

Jλ. This is illustrated in Figure 3.13 where Jλ is plotted over different sequences of 5000

iterations each. We observe in Figures 3.13(b) and 3.13(c) that the general downward

29

0 100 200 300 400 500 600
10

2

10
3

10
4

10
5

Iteration

J
λ

(a) Jλ up to iteration 600 (b) u at iteration 600

0 0.5 1 1.5 2

x 10
4

10
1

10
2

10
3

10
4

10
5

Iteration

J
λ

(c) Jλ up to iteration 20,000 (d) u at iteration 20,000

Figure 3.10: Jλ and u at different iterations of elastica inpainting

trend in Jλ is dominated by oscillations as the scheme recovers the connected bar. This

makes automatic termination difficult and suggests that the numerical scheme is choosing

inefficient step directions in the space of u vectors. We can eliminate the oscillations in Jλ

by using a numerical optimization technique that guarantees monotonic decrease of Jλ [37].

Such a scheme should have desirable convergence properties and might terminate in fewer

iterations. We examine this idea next.

30

D

(a)

D

(b)

Figure 3.11: Computing Jλ for elastica on the black bar. Dotted lines denote κ = 0

(a) u0 (b) Final result

Figure 3.12: Illustration of broken bar local minimum in Jλ

31

1.5 1.6 1.7 1.8 1.9 2

x 10
4

51.2

51.25

51.3

51.35

51.4

51.45

51.5

51.55

51.6

51.65

Iteration

J
λ

(a) Iterations 15,000–20,000

5 5.1 5.2 5.3 5.4 5.5

x 10
4

50.875

50.88

50.885

50.89

50.895

50.9

50.905

50.91

50.915

Iteration

J
λ

(b) Iterations 50,000–55,000

1 1.01 1.02 1.03 1.04 1.05

x 10
5

50.71

50.715

50.72

50.725

50.73

50.735

Iteration

J
λ

(c) Iterations 100,000–105,000

2 2.01 2.02 2.03 2.04 2.05

x 10
5

50.645

50.65

50.655

50.66

50.665

50.67

Iteration

J
λ

(d) Iterations 200,000–205,000

5 5.01 5.02 5.03 5.04 5.05

x 10
5

50.652

50.653

50.654

50.655

50.656

50.657

50.658

50.659

Iteration

J
λ

(e) Iterations 500,000–505,000

9.95 9.96 9.97 9.98 9.99 10

x 10
5

50.647

50.648

50.649

50.65

50.651

50.652

50.653

50.654

Iteration

J
λ

(f) Iterations 995,000–1,000,000

Figure 3.13: Oscillations in Jλ

32

Solution by Numerical Optimization

In at attempt to obtain faster convergence toward the desired solution, we consider the

application of numerical optimization techniques to the elastica minimization. We use

the elastica energy functional Jλ from Equation (3.10) directly as the optimization objec-

tive. We use the implementations from the optimization toolbox in Matlab R2012a for

64-bit Linux and consider only techniques for which the Matlab implementation is suit-

able for sparse nonlinear problems. The three techniques that we consider are: log-barrier

interior point (LBIP), sequential quadratic programming (SQP), and reflective trust re-

gion (RTR) [34, 35].

Configuration of the Matlab Optimization Routines

We impose the box constraint 0 ≤ u ≤ 1 on Ω for each of the three optimization techniques.

The Matlab implementation of each of the techniques optionally uses the gradient and

LBIP and RTR optionally use the Hessian of the discretized objective Jλ. If they are not

supplied, then Matlab approximates them using finite differences [34]. We consider an

example to demonstrate calculation of the gradient of a discrete objective.

Taking a = 1, b = 0, λ = 0 reduces the elastica functional to TV:

Jλ(u) =

∫
Ω

|∇u|dxdy.

Using centered finite differences on a uniform grid with distance ∆x between grid points

and letting subscripts denote grid coordinates so that uij ≈ u(i∆x, j∆x) [1], we obtain the

discretization

Jλ(u) ≈
∑
i,j

|∇uij|ε

=
∑
i,j

√(
u(i+1)j − u(i−1)j

2∆x

)2

+

(
ui(j+1) − ui(j−1)

2∆x

)2

+ ε (3.11)

33

where ε is introduced to preserve the differentiability of Jλ at u = 0 [10]. Then the gradient

of the discretized objective is computed by taking a partial derivative with respect to each

element uij. For example, consider the grid illustrated in Figure 3.15. To compute ∂Jλ
∂u22

, we

must consider any terms from the summation (3.11) that depend on u22. Namely |∇u21|ε,
|∇u12|ε, |∇u32|ε, and |∇u23|ε. Therefore,

∂Jλ
∂u22

=
∂|∇u21|ε
∂u22

+
∂|∇u12|ε
∂u22

+
∂|∇u32|ε
∂u22

+
∂|∇u23|ε
∂u22

=
u22 − u20

4∆x2|∇u21|ε
+

u22 − u02

4∆x2|∇u12|ε
+

u22 − u42

4∆x2|∇u32|ε
+

u22 − u24

4∆x2|∇u23|ε
.

For nonzero b, the gradient is difficult to compute by hand. Instead, we use the sym function

in the Matlab symbolic toolbox to construct a grid of symbolic variables to represent the

grid points of u. We compute the discretized objective over that grid then compute the

gradient using the jacobian function. The gradient is then evaluated by substituting the

symbolic variables for concrete values of a particular u. We export the gradient as C code

and compile it using the Matlab compiler tool mex. We configure the optimization schemes

to approximate the Hessian matrix using BFGS for LBIP and finite differences for RTR.

Additionally, to use a nonzero b, we must discretize the second-order curvature operator

κ. We explore two options. First, to ensure a small stencil, we expand the curvature using

the divergence form and apply a midpoint discretization [40, 18, 17, 10]:

κ(u) = ∇ · ∇u
|∇u|

=
∂

∂x

(
ux
|∇u|

)
+

∂

∂y

(
uy
|∇u|

)
.

Applying the midpoint discretization gives

κ(uij) ≈
1

∆x2

(
u(i+1)j − uij
|∇u(i+1/2)j|ε

)
− 1

∆x2

(
uij − u(i−1)j

|∇u(i−1/2)j|ε

)
+

1

∆x2

(
ui(j+1) − uij
|∇ui(j+1/2)|ε

)
− 1

∆x2

(
uij − ui(j−1)

|∇ui(j−1/2)|ε

)

34

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f

g

Minmod(f,g)

(a) minmod

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f

g
Minmod

σ

(f,g)

(b) minmodσ, σ = 10−1

Figure 3.14: Comparison of minmod and minmodσ for f(x) = x and g(x) = 0.5

with the norm of a gradient at a midpoint being computed as

|∇u(i+1/2)j|ε =

√(
u(i+1)j − uij

∆x

)2

+ µ

(
u(i+1)(j+1) − u(i+1)(j−1)

2∆x
,
ui(j+1) − ui(j−1)

2∆x

)2

+ ε

where µ is the minmod:

µ(x, y) = minmod(x, y) =

sgn(x) min(|x|, |y|), if xy > 0

0, otherwise.

We compute a differentiable approximation minmodσ of minmod using the following dif-

ferentiable approximations:

|x|σ =
√
x2 + σ2

sgnσ(x) =
x

|x|σ

minσ(x, y) =
1

2
(x+ y − |x− y|σ) .

The functions minmod and minmodσ are compared in Figure 3.14.

35

A second option to compute a discrete approximation of κ is to fully expand the diver-

gence form and approximate the derivatives using finite differences:

κ(u) =
∂

∂x

(
ux
|∇u|

)
+

∂

∂y

(
uy
|∇u|

)
=
uxxu

2
y − 2uxuyuxy + uyyu

2
x

|∇u|3
.

In our numerical experiments, we find that the optimization methods are sensitive to

the discretization of κ and the choice of ε. We choose these parameters based on speed of

convergence and suitability of the solution for cell path inpainting. If these criteria conflict,

we give priority to the suitability of the solution.

We experimentally select stopping tolerances for the numerical schemes by starting

with large values and gradually lowering them until the method converges to the desired

solution. The parameters for the optimization routines and the elastica model are reported

in Table 3.1.

Finally, we alter the default configuration of the LBIP scheme [35]. By default, at each

iteration LBIP attempts to compute a direct solution of the KKT equations [37, p. 321].

This method depends on the Hessan and requires it to be positive-definite near the current

iterate. Alternatively, LBIP can use a trust region conjugate gradient method [37, p. 101].

For the elastica minimization problem, we find that LBIP converges to a desirable result

only when we select conjugate gradient method. The non-convexity and non-linearity of the

elastica minimization might lead to inaccuracy of the Hessian approximation and difficulty

in the direct KKT solution scheme. We therefore configure Matlab to use the conjugate

gradient scheme using ’SubproblemAlgorithm’=’cg’ in the fmincon options.

Numerical Results

We tested the numerical optimization techniques on the w×h = 10×12 and w×h = 10×30

black bar cases with initial guess 0.5 on D. The black bar is recovered for both cases by

all optimization techniques. The plots of Jλ in Figure 3.16 demonstrate the efficiency of

the step directions chosen by the numerical optimization schemes.

36

43210

0
1
2
3
4

Stencil point

Figure 3.15: Stencils of |∇u21|, |∇u12|, |∇u32|, and |∇u23|

LBIP SQP RTR
a 0.5 0.5 0.5
b 20 20 20
∆x 1/13 1/13 1/13
ε 10−2 10−1 10−2

σ 10−2 10−2 10−2

curvature minmod fully expanded minmod
tolx 10−4 10−3 10−3

tolfun 10−5 10−2 10−5

tolcon 10−2 10−2 10−2

maxiter ∞ ∞ ∞
maxfunevals ∞ ∞ ∞
hessian BFGS n/a fin-diff-grads

Table 3.1: Parameters for Matlab optimization of 2D elastica

37

LBIP SQP RTR
CPU Time (minutes) 4.6 2.9 0.4
Iterations 2834 313 52
Jλ evaluations 4860 3385 53

Table 3.2: Optimization time comparison for 2D elastica on w×h = 10×12 black bar

LBIP SQP RTR FP
CPU Time (minutes) 62.0 761.2 15.2 8.1
Iterations 7367 1028 174 17447
Jλ evaluations 12314 14610 175 n/a

Table 3.3: Optimization time comparison for 2D elastica on w×h = 10×30 black bar

Execution times, iteration counts for the optimization scheme, and number of evalua-

tions of the objective Jλ are reported in Tables 3.2 and 3.3. Table 3.3 includes the results

using the gradient flow fixed point method (FP) for elastica [10]. Due to the convergence

issues outlined above, convergence of the fixed point method is detected by visual inspec-

tion of u. We perform the experiments on a 3 GHz Intel Xeon X5472 with 16 GB of RAM

and compute execution time using the Matlab cputime function.

The numerical optimizations routines in Matlab require fewer iterations than the fixed

point scheme, but take more time per iteration. However, the CPU execution time of

reflective trust region and the fixed point scheme differ only by a factor of two. The

additional benefits of monotonically decreasing Jλ and accurate convergence detection are

attractive incentives to prefer reflective trust region over the fixed point scheme.

The results in this section demonstrate that elastica inpainting methods can reconstruct

smooth curves across large inpaint domains. This suggests that they should be effective for

the cell path reconstruction problem and explore this idea in Chapter 4. We now conclude

this chapter with a brief consideration of non-geometric classes of 2D inpainting techniques.

38

(a) u for LBIP

0 500 1000 1500 2000
0

2000

4000

6000

8000

10000

12000

Iteration

J
λ

(b) Jλ for LBIP

0 200 400 600 800 1000
10

−4

10
−3

10
−2

10
−1

10
0

Iteration

S
te

p
 l
e
n
g
th

(c) Step lengths for LBIP

(d) u for SQP

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Iteration

J
λ

(e) Jλ for SQP

0 50 100 150 200 250
10

−3

10
−2

10
−1

10
0

Iteration

S
te

p
 l
e
n
g
th

(f) Step lengths for SQP

(g) u for RTR

0 5 10 15 20 25 30 35 40
0

2000

4000

6000

8000

10000

12000

Iteration

J
λ

(h) Jλ for RTR

0 5 10 15 20 25 30 35 40
10

−2

10
−1

10
0

10
1

Iteration

S
te

p
 l
e
n
g
th

(i) Step lengths for RTR

Figure 3.16: Elastica by optimization: results on w × h = 10× 12 black bar

39

(a) u for
LBIP

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Iteration

J
λ

(b) Jλ for LBIP

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−4

10
−3

10
−2

10
−1

10
0

Iteration

S
te

p
 l
e
n
g
th

(c) Step lengths for LBIP

(d) u for
SQP

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

9
x 10

6

Iteration

J
λ

(e) Jλ for SQP

0 200 400 600 800 1000 1200
10

−3

10
−2

10
−1

10
0

Iteration

S
te

p
 l
e
n
g
th

(f) Step lengths for SQP

(g) u for
RTR

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Iteration

J
λ

(h) Jλ for RTR

0 50 100 150 200
10

−3

10
−2

10
−1

10
0

10
1

Iteration

S
te

p
 l
e
n
g
th

(i) Step lengths for RTR

Figure 3.17: Elastica by optimization: results on w × h = 10× 30 black bar

40

3.2 Inpainting by Texture Synthesis

Any geometric model—including elastica—that is based on the idea of continuing level

lines through D can only preserve geometry and cannot recover texture. The family of

texture synthesis techniques has been developed to solve the problem of texture recovery.

Igehy and Pereira [30] recover a missing region in an image by filling it with a synthesized

texture that matches the texture in the region surrounding the missing region. They

modify the pyramid-based texture synthesis method of Heeger and Bergen [29] by adding

a “composition step” that smoothly blends the synthesized texture with the existing image.

The method is effective when the same texture surrounds all of D, but produces undesirable

results when D covers visibly distinct textures. Also, the texture synthesis method uses a

stochastic texture model that is incapable of recovering textures with regular patterns. A

final difficulty with this method is that it only recovers texture and is unable to recover

geometry inside the inpaint domain.

Bertalmio et al. [5] propose a method that recovers geometry and texture. They decom-

pose the image u into its geometric, or structural, component v and its texture component

w such that u = v+w. The v component is a cartoon-like approximation of u that contains

smooth regions separated by sharp edges and is inpainted using Bertalmio et al.’s edge ad-

vection method (Section 3.1.1). The w component is reconstructed using an exemplar

method (Section 3.3). The inpainted results of v and w are added to give the recovered

solution. This method recovers both geometry and texture, but can produce artifacts in

the result when the texture recovered for w does not correctly align with the structure

recovered for v. The authors also report that the texture recovery step can produce incor-

rect textures when w contains textures at different scales. They propose a decomposition

into multiple texture images, one for each scale. Another approach to recover texture is

to fill the inpaint domain using segments copied from outside the inpaint domain. These

segments could be taken from Ω\D or from a library of different images. This is the idea

behind exemplar and patch techniques.

41

D

copy

(a) Step 1: copy a patch

D

(b) Step 2: update D

Figure 3.18: An exemplar method

3.3 Exemplar and Patch Techniques

Geometric methods excel at recovering geometry, but they are local. The PDE is solved

over D using only information at the boundary of D, while information on the rest of Ω

is ignored. Bertalmio et al.’s texture inpainting method recovers texture globally, but the

geometric portion of the image is still reconstructed using local information. Exemplar

and patch methods address this concern. They fill the inpaint domain by copying patches

from u or from a library of images into the inpaint domain D. The underlying assumption

is that patches taken from realistic images already have a natural texture and structure

so, if they are fitted together in a realistic way, the result will look natural [20].

In Criminis et al.’s exemplar method [20], information is propagated into D by selecting

a patch from Ω\D that is similar to a region near D. Similarity is measured by a sum of

squared differences (SSD). Information from near the patch is then copied into the inpaint

domain and the inpaint domain is updated to exclude the copied region (see Figure 3.18).

This procedure is repeated until the inpaint domain has been filled. The method produces

striking results, such as those shown in Figure 3.19, and can inpaint multiple textures and

recover realistic geometry in many cases. The results, however, are dependent on the order

in which patches are propagated.

Cao et al. [14] attempt to overcome this problem by selecting patches that closely

42

(a) Original image (b) Ipainting result

(c) Original image (d) Ipainting result

(e) Original image (f) Ipainting result

Figure 3.19: Results from Criminis et al.’s method (taken from [20])

43

match a geometric sketch of the inpaint domain D. The sketch is a piecewise constant

approximation of u. They compute the sketch by first extracting the meaningful level lines

of u on Ω\D. Meaningful level lines are “level lines having a contrast that is very unlikely

to be encountered in a white noise image” [14, p. 5]. They approximately correspond

to edges, but exclude spurious edges introduced by noise and textures. Next the sketch

is inpainted using a method similar to the dynamic programming approach of Masnou

(Section 2.2.6). Level lines intersecting the boundary ∂D are heuristically matched to

nearby level lines such that no level lines may intersect. These lines are reconnected using

a curve model that is chosen to suit the problem. Cao et al. experiment with straight lines

and Euler spirals. To complete the sketch, the regions defined by the meaningful level lines

are filled with the average intensity value over that region in the original image. Finally,

the sketch of D is used to guide an exemplar based-method. This process is depicted in

Figure 3.20.

Cao et al.’s [14] method is similar to Crimini et al.’s [20], but when comparing can-

didate patches to a region at the boundary of the inpaint domain, the SSD is computed

over the sketch of D as well as the region outside of D. This method produces excellent

results on challenging inpainting problems in real photographs. It considers geometry as

well as global image data when reconstructing D, but does not suffer from the problem

of misalignment of texture and structure components seen in Bertalmio et al.’s texture

inpainting method (Section 3.2). However, since the image is reconstructed using small

patches, these matches may be copied in a configuration that minimizes SSD but looks

unrealistic (imagine a human face reconstructed with eyes, nose and mouth positioned

incorrectly).

Hays and Efros [28] guarantee a realistic result inside the inpaint domain by replacing

all of D by a single patch copied from another image. Patches are selected from a database

of over 2.3 million unique images. They select an initial list of candidate images using a

database query that matches on a small set of semantic descriptors. From that candidate

set, they select the image that is most similar to u (by SSD) in an 80-pixel band around

D. Values for D are then copied from the chosen candidate image. This method has the

desirable property of guaranteeing a natural result inside D as long as the image library

44

(a) Original image (b) Meaningful level lines

(c) Cartoon approximation (d) Test case

(e) Inpainting result

Figure 3.20: Illustration of Cao et al.’s method (taken from [14])

45

contains natural images. There is no guarantee, however, that the recovered D will be

consistent with Ω\D. The method also requires a large and diverse image library. The

library used to generate the results report in the paper consumes 396 GB of disk space. A

final difficulty with this method is that to use it one must first acquire 2.3 million images.

46

Chapter 4

Geometric Models for 3D Inpainting

The TV, CDD, and elastica models discussed in Section 3.1 are formulated generally enough

to allow direct application of the model to a 3D domain. This fact is mentioned in some

inpainting papers, but it appears that no numerical results have been reported. Clarenz

et al. [19] use inpainting models to recover damaged surfaces in R3, but the model applies

only to smooth surfaces and cannot be applied to arbitrary volumes. We consider the

direct application of the geometric models of Section 3.1 to 3D inpainting in a volume and

illustrate properties of these models using the test cases depicted in Figure 4.1. In the

original volumes, objects have intensity value 1 and empty space has intensity value 0. For

viewing in 3D, we present the 0.99 level surfaces in all cases. Figure 4.2 shows the 3D cases

after values in the inpaint domain have been replaced by the initial value 0.5. In all cases,

D consists of the pixels that are a distance of at least four pixels from any side of the image

volume. The cylinder and tube test cases are most relevant to cell path inpainting. The

cylinder is an idealized cell path inpainting problem where the cell is perfectly circular and

does not move over time. The tube simulates a moving cell.

47

(a) Cylinder (b) Box (c) Tube

(d) Corner sphere (e) Corner cube (f) Quarter sphere

(g) Hourglass (h) Concave sheet (i) Concentric cylinders

Figure 4.1: 3D test cases

48

(a) Cylinder (b) Box (c) Tube

(d) Corner sphere (e) Corner cube (f) Quarter sphere

(g) Hourglass (h) Concave sheet (i) Concentric cylinders

Figure 4.2: 3D test cases after setting values in D to 0.5

49

4.1 3D Total Variation

To apply TV inpainting in 3D, a third dimension is added to the domains Ω and D and

to the corresponding integrals in Equation (3.4):

argmin
u

∫
Ω

|∇u|dxdydz +
λ

2

∫
Ω\D

(u0 − u)2dxdydz. (4.1)

TV is zero on constant regions and non-zero on surfaces that form boundaries between

constant regions, so the TV model will choose the solution of minimum surface area. This

is similar to the 2D case where TV favours the solution of minimum perimeter. For the

cylinder test case, the model will either leave the cylinder broken or reconnect it across D.

If the cylinder is broken, then the total surface area inside D is that of the two disks that

intersect ∂D: 2πr2 for a cylinder of radius r. If the surface is reconnected, then the total

surface area inside D is the minimal surface of revolution that joins the two disks. It can

be shown that the surface area is minimized by reconnecting the cylinder across D when

h/r < 1.325 . . . (4.2)

where h is the height of the gap. Otherwise, the surface area of the two disks on ∂D is

minimal and the cylinder will be left broken [49]. This is illustrated in Figure 4.3 where

3D TV inpainting is applied to cylinders with various gap height to radius ratios.

This inability to recover shapes across large gaps in D makes TV inpainting ill-suited for

cell path reconstruction. Due to its ability to recover shapes across large inpaint domains

and its strong preference for smooth curves, the elastica inpainting model seems better

suited to the problem of cell path inpainting. We examine it next.

50

(a) h/r = 0.5 (b) h/r = 0.75 (c) h/r = 1

Figure 4.3: 0.99 level surfaces for 3D TV inpainting on the cylinder test case

4.2 3D Elastica Using Mean Curvature

Directly generalizing the elastica model from Equation (3.10) gives

Jλ(u) =

∫
Ω

(a+ bκ2)|∇u|dxdydz +
λ

2

∫
Ω\D

(u0 − u)2dxdydz. (4.3)

In the 2D models from Section 3.1.4, curvature κ is typically computed using the divergence

form κ = ∇· ∇u|∇u| . For a 2D image, this expression gives the curvature of the level line passing

through a point. For a 3D volume, it gives the mean curvature of the level surface passing

through a point. Applying this model to the cylinder reconstruction problem improves

on the TV results—the model is able to reconstruct the object across wide gaps—but the

shape of the reconstruction is not as desired. The 0.99 level surfaces for the cylinder and

tube test cases are shown in Figures 4.7(a) and 4.7(g) on page 74.

4.2.1 Results

The result for the cylinder case is understood by considering the definition of the mean

curvature κ. Consider a point p on the interior of a smooth surface. The intersection of the

surface and a plane containing the unit vector normal to the surface at p forms a curve in

R3. Taking the maximum and minimum curvatures of this curve at p over all such planes

gives κ1 and κ2: the principle curvatures [26, 47]. Then mean curvature is defined as the

51

(a) κm ≈ 0, κg < 0 (b) κm > 0, κg = 0 (c) κm > 0, κg > 0

Figure 4.4: Mean and Gaussian curvature on surfaces

average of the principle curvatures:

κm =
1

2
(κ1 + κ2) . (4.4)

In the shapes in Figure 4.4, at points on the surfaces where grid lines intersect, the grid

lines correspond to the lines of principle curvature. Consider computing mean curvature at

one of these points of intersection in Figure 4.4(a). We have κ1 > 0 corresponding to the

horizontal grid lines, κ2 < 0 corresponding to the vertical grid lines and κm = (κ1 +κ2)/2 ≈
0. For the cylinder in Figure 4.4(b), we have κ1 > 0 corresponding to the horizontal

grid lines, κ2 = 0 corresponding to the vertical grid lines, and κm = (κ1 + κ2)/2 > 0.

Therefore, a model that minimizes squared mean curvature over the surface cannot recover

a cylinder. As a result, although it reconnects the broken cylinder over a large D, the

elastica model using mean curvature is not suitable for cell path inpainting. However,

there is another definition of surface curvature better suited to this purpose. We apply

the Gaussian curvature to cell path inpainting after considering the solution of 3D mean

curvature elastica using numerical optimization.

52

LBIP SQP RTR
a 0.5 0.5 0.5
b 20 20 20
∆x 1/16 1/16 1/16
ε 10−2 10−1 10−2

σ 10−2 10−2 10−2

curvature minmod fully expanded minmod
tolx 10−4 10−3 10−3

tolfun 10−6 10−2 10−5

tolcon 10−2 10−2 10−2

maxiter ∞ ∞ ∞
maxfunevals ∞ ∞ ∞
hessian BFGS n/a fin-diff-grads

Table 4.1: Parameters for Matlab optimization of 3D elastica

LBIP SQP RTR
CPU Time (minutes) 188.2 35791.2 2387.1
Iterations 6574 1954 271
Jλ evaluations 10460 33109 272

Table 4.2: Optimization time comparison for 3D elastica on r×h = 5.5× 10 cylinder in a
19× 19× 14 domain

4.2.2 Solution by Numerical Optimization

We now demonstrate that the numerical optimization techniques applied to 2D elastica in

Section 3.1.4 are also effective for 3D elastica. We use similar parameters for the elastica

model and optimization routines. They are listed in Table 4.1 where boldface values

are different from those used in the 2D elastica optimization. Execution times are given

in Table 4.2 and numerical results are shown in Figure 4.5. Notice how the non-zero

assignment to the surface area parameter a = 0.5 pulls the surface inward more severely

than a = 0 as used in Figure 4.7.

53

(a) u for LBIP

0 1000 2000 3000 4000 5000 6000 7000
1

2

3

4

5

6

7

8

9

10
x 10

7

Iteration

J
λ

(b) Jλ for LBIP

0 1000 2000 3000 4000 5000 6000 7000
10

−4

10
−3

10
−2

10
−1

10
0

Iteration

S
te

p
 l
e
n
g
th

(c) Step lengths for LBIP

(d) u for SQP

0 500 1000 1500 2000
0.5

1

1.5

2
x 10

7

Iteration

J
λ

(e) Jλ for SQP

0 500 1000 1500 2000
10

−3

10
−2

10
−1

10
0

10
1

Iteration

S
te

p
 l
e
n
g
th

(f) Step lengths for SQP

(g) u for RTR

0 50 100 150 200 250 300
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

7

Iteration

J
λ

(h) Jλ for RTR

0 50 100 150 200 250 300
10

−3

10
−2

10
−1

10
0

10
1

Iteration

S
te

p
 l
e
n
g
th

(i) Step lengths for RTR

Figure 4.5: 3D Elastica by optimization: results on r × h = 5.5× 10 cylinder

54

4.3 3D Elastica Using Gaussian Curvature

We consider the Gaussian curvature of a surface to develop a new inpainting model based

on elastica. Gaussian curvature is defined as the product of the principle curvatures:

κg = κ1κ2. (4.5)

Since we have κ2 = 0 for a point on the surface of the cylinder in Figure 4.4(b), we also

have κg = 0 for any such point. For the surface in Figure 4.4(a), we have κ1 > 0, κ2 < 0,

and κg < 0. For the surface in Figure 4.4(c), we have κ1 > 0, κ2 > 0, and κg > 0. This

suggests that we may recover cylinders using a model that minimizes squared Gaussian

curvature over the recovered surface [26].

We balance the penalization of surface area and Gaussian curvature of the surface by

setting κ = κg in the 3D elastica inpainting model. Although theoretically appealing, this

model presents practical difficulties. The PDE given by the Euler-Lagrange equation is

fourth-order, non-linear, and difficult to solve numerically:

0 = −∇ ·

V1

V2

V3

 (4.6)

55

where

V1 = (a+ bκ2
g)

ux
|∇u|

− 2b∇ (κg|∇u|) ·


∂κg
∂uxx

1
2

∂κg
∂uxy

1
2

∂κg
∂uxz



V2 = (a+ bκ2
g)

uy
|∇u|

− 2b∇ (κg|∇u|) ·


1
2

∂κg
∂uxy
∂κg
∂uyy

1
2

∂κg
∂uyz


V3 = (a+ bκ2

g)
uz
|∇u|

− 2b∇ (κg|∇u|) ·


1
2

∂κg
∂uxz

1
2

∂κg
∂uyz
∂κg
∂uzz

 .

We compute Gaussian curvature in 3D using the formula [48]:

κg =
t1t2 − t23

t24
(4.7)

where

t1 = uz (uxxuz − 2uxuxz) + u2
xuzz

t2 = uz (uyyuz − 2uyuyz) + u2
yuzz

t3 = uz (−uxuyz + uxyuz − uxzuy) + uxuyuzz

t4 = uz
(
u2
x + u2

y + u2
z

)
.

We attempt to solve this PDE using artificial time marching and the forward Euler

method (Section 2.2), but the time step is too restricted for the scheme to be of any

practical use. Applying the semi-implicit splitting of Brito-Loeza and Chen [10] produces

an unstable numerical scheme.

56

4.3.1 Instability in the Numerical Schemes

To understand the instability, we consider the elastica term in the energy functional (4.3).

By the coarea formula [2, 25], this integral is equivalent to the area integral over level

surfaces in the volume:∫
Ω

(
a+ bκ2

g

)
|∇u|dxdydz =

∫ 1

0

∫
u=r

a+ bκ2
g dAdr.

Since a and b are constant and κg = κ1κ2, this integral is minimized when either of κ1 or κ2

is zero. If, for example, κ1 = 0 then |κ2| may be arbitrarily large. We therefore introduce

an additional regularization term to ensure that both |κ1| and |κ2| are bounded.

To avoid computing the principle curvatures directly, we reintroduce the minimization

of squared mean curvature: ∫ 1

0

∫
u=r

a+ bκ2
m + cκ2

g dAdr.

We expand curvatures in terms of the principle curvatures and complete the square to

verify that both principle curvatures are minimized:

a+ b

(
κ1 + κ2

2

)2

+ c (κ1κ2)2 = c

(
κ1κ2 +

b

4c

)2

− b2

16c
+ a+

b

4
κ2

1 +
b

4
κ2

2.

4.4 3D Elastica Using Mean and Gaussian Curvature

We find that reintroducing mean curvature to the Gaussian curvature elastica model yields

a numerically solvable minimization. Therefore, we propose the mean/Gaussian elastica

energy functional:

Jλ(u) =

∫
Ω

(a+ bκ2
m + cκ2

g)|∇u|dxdydz +
λ

2

∫
Ω\D

(u0 − u)2dxdydz (4.8)

57

where the desired solution is

argmin
u

Jλ(u). (4.9)

Since this model is the main result of this work, we cover in detail the numerical scheme

that we use to solve it.

4.4.1 Solution by Numerical Optimization

The effectiveness of the numerical optimization techniques for mean curvature elastica

leads us to apply the same methods to mean/Gaussian elastica. We use the parameters

given in Table 4.3 where boldface values differ from those used for 3D mean curvature

elastica. Unfortunately, the optimization techniques terminate after few iterations without

any visible change in u. In all cases, the scheme terminates because the relative change in

all elements of u is less than tolx.

The results in Table 4.4 and Figure 4.6 demonstrate that the optimization techniques

as we have applied them are not effective for solving the mean/Gaussian elastica model in

3D. These results might be improved by using an analytically computed Hessian matrix for

the interior point and reflective trust region methods, but manually computing the Hessian

of the mean/Gaussian elastica minimization manually is complicated and error-prone. We

attempt to compute the Hessian using the symbolic approach that we use for the gradient,

but the program exhausts our computer’s memory. This leads us once again to the fixed

point splitting method.

4.4.2 Manipulations of the Euler-Lagrange Equation

We apply the calculus of variations to the minimization (4.9) and solve the Euler-Lagrange

equation directly by applying the fixed point method proposed by Brito-Loeza and Chen [10]

for 2D elastica inpainting. Their stability result, quoted in Theorem 1, is based on the

gradient flow splitting methods introduced in Section 2.2.3 and 2.2.4:

58

LBIP SQP RTR
a 0.5 0.5 0.5
b 10 10 10
c 125 125 125
∆x 1/16 1/16 1/16
ε 10−2 10−1 10−2

σ 10−2 10−2 10−2

curvature minmod fully expanded minmod
tolx 10−14 10−14 10−12

tolfun 10−6 10−2 10−5

tolcon 10−2 10−2 10−2

maxiter ∞ ∞ ∞
maxfunevals ∞ ∞ ∞
hessian BFGS n/a fin-diff-grads

Table 4.3: Parameters for Matlab optimization of 3D mean/Gaussian elastica

LBIP SQP RTR
CPU Time (minutes) 0.3 130.0 232.3
Iterations 3 5 25
Jλ evaluations 55 64 26

Table 4.4: Optimization time comparison for 3D mean/Gaussian elastica on r×h = 5.5×10
cylinder

59

(a) u for LBIP

1 1.5 2 2.5 3 3.5 4
1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15
x 10

10

Iteration

J
λ

(b) Jλ for LBIP

2.5 3 3.5 4

10
−0.4

10
−0.3

10
−0.2

Iteration

S
te

p
 l
e
n
g
th

(c) Step lengths for LBIP

(d) u for SQP

1 2 3 4 5 6 7
1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14
x 10

10

Iteration

J
λ

(e) Jλ for SQP

2 3 4 5 6 7
10

−2

10
−1

10
0

10
1

Iteration

S
te

p
 l
e
n
g
th

(f) Step lengths for SQP

(g) u for RTR

0 5 10 15 20 25 30
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14
x 10

10

Iteration

J
λ

(h) Jλ for RTR

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

10
5

Iteration

S
te

p
 l
e
n
g
th

(i) Step lengths for RTR

Figure 4.6: 3D mean/Gauss Elastica optimization: results on r × h = 5.5× 10 cylinder

60

Theorem 1. Suppose ∂u
∂t

= −∇fJ(u)

u(0) = u0

is a gradient system by Definition 1 where J(u) =
∫

Ω
f(u)d~x is an energy functional defined

over functions u : Ω→ R and J may be split such that

J = J11 − JA12 − JB12 − J2

JA12 =

∫
Ω

g1(u)g2(u)d~x

with J11, J12, JB12, and J2 being strictly convex. Then, for any u0 and sufficiently large

C1 > 0 as defined below, the numerical scheme

un+1 − un

∆t
= −∇fJ11(un+1)

+ g2(un)∇f
(∫

Ω

g1(un)d~x

)
+ g1(un+1)∇f

(∫
Ω

g2(un+1)d~x

)
+∇fJB12(uk)−∇fJ2(un+1) (4.10)

is gradient stable for all positive ∆t.

Since for digital inpainting we are only concerned with the final result and not with

maintaining accuracy over time, we may construct a fixed point method to find the steady

state solution of Equation 4.10 as follows:

un+1 − un

∆t
= 0 = −∇fJ. (4.11)

Brito-Loeza and Chen [10] conjecture that this scheme inherits unconditional stability from

Theorem 1, but note that they have not yet found a proof of this claim.

We now split Equation 4.8 according to Theorem 1. We split Jλ so that Jλ = J1 + J2:

J1 =

∫
Ω

(a+ bκ2
m + cκ2

g)|∇u|dxdydz

61

and

J2 =
λ

2

∫
Ω\D

(u0 − u)2dxdydz.

Since the function f(x) = x2 is convex and the integral preserves convexity, J2 is convex [8].

Next, we split J1 into J11 and J12 so that J1 = J11 − J12:

J11 = (a+ C1)

∫
Ω

|∇u|dxdydz

and

J12 =

∫
Ω

(
−bκ2

m − cκ2
g

)
|∇u|dxdydz + C1

∫
Ω

|∇u|dxdydz

where C1 is a constant parameter. J11 is convex since

J11(αu+ βv) = (a+ C1)

∫
Ω

|∇ (αu+ βv)|dxdydz

≤ (a+ C1)

∫
Ω

α|∇u|+ β|∇v|dxdydz

= α(a+ C1)

∫
Ω

|∇u|dxdydz + β(a+ C1)

∫
Ω

|∇v|dxdydz

= αJ11(u) + βJ11(v)

where α + β = 1 and α, β ≥ 0 [8]. J12 is convex provided the parameter C1 is chosen

sufficiently large. Finally, we split J12 so that J12 = JA12 + JB12 with JA12 =
∫

Ω
g1g2dxdydz:

g1 = −bκ2
m − cκ2

g

g2 = |∇u|

JB12 = C1

∫
Ω

|∇u|dxdydz.

62

Computing the gradient of each term gives:

∇fJ11 = −(a+ C1)∇ · ∇u
|∇u|

∇fJA12 = g1∇f
(∫

Ω

g2dxdydz

)
+ g2∇f

(∫
Ω

g1dxdydz

)
g1∇f

(∫
Ω

g2dxdydz

)
= ∇ ·

[(
(bκ2

m + cκ2
g)
∇u
|∇u|

)]

g2∇f
(∫

Ω

g1dxdydz

)
= ∇ ·

V1(u)

V2(u)

V3(u)


∇fJB12 = −C1∇ ·

∇u
|∇u|

∇fJ2 = −(u0 − u)λΩ\D

where, as before,

λΩ\D(x) =

λ, if x ∈ Ω\D

0, otherwise
,

the V terms are defined as

V1(u) =
2b

|∇u|3
∇ (κm|∇u|) ·

−u
2
y − u2

z

uxuy

uxuz

− 2b∇ (κg|∇u|) ·


∂κg
∂uxx

1
2

∂κg
∂uxy

1
2

∂κg
∂uxz



V2(u) =
2b

|∇u|3
∇ (κm|∇u|) ·

 uxuy

−u2
x − u2

z

uyuz

− 2b∇ (κg|∇u|) ·


1
2

∂κg
∂uxy
∂κg
∂uyy

1
2

∂κg
∂uyz


V3(u) =

2b

|∇u|3
∇ (κm|∇u|) ·

 uxuz

uyuz

−u2
x − u2

y

− 2b∇ (κg|∇u|) ·


1
2

∂κg
∂uxz

1
2

∂κg
∂uyz
∂κg
∂uzz

 ,

63

and the derivatives of κg with respect to the partial derivatives of u are:

∂κg

∂uxx
=
uyyu

2
z − 2uzuyuyz + u2

yuzz

|∇u|4
∂κg

∂uyy
=
uxxu

2
z − 2uzuxuxz + u2

xuzz
|∇u|4

∂κg

∂uzz
=
uxxu

2
y + u2

xuyy − 2uxyuxuy

|∇u|4
∂κg

∂uxy
=

2uzuxuyz − 2uxyu
2
z + 2uzuxzuy − 2uxuyuzz
|∇u|4

∂κg

∂uxz
=
−2uzuxuyy + 2uxuyuyz + 2uxyuzuy − 2uxzu

2
y

|∇u|4
∂κg

∂uyz
=
−2uxxuzuy + 2uxuxzuy − 2u2

xuyz + 2uzuxuxy
|∇u|4

.

(4.12)

The calculations of g1∇f
∫

Ω
g2 and g2∇f

∫
Ω
g1 follow the proof of Theorem 5.1 in [17].

By substituting these equations into Equation (4.11), but not yet discretizing in space

or time, we obtain the PDE that we solve numerically:

0 = (a+ C1)∇ · ∇u
|∇u|

+∇ ·

((bκ2
m + cκ2

g)
∇u
|∇u|

)
+

V1(u)

V2(u)

V3(u)




− C1∇ ·
∇u
|∇u|

+ (u0 − u)λΩ\D. (4.13)

subject to the boundary condition

u = u0 on ∂Ω

64

4.4.3 Numerical Solution of the Manipulated PDE

To solve the model, we discretize Equation (4.13) according to Theorem 1 and linearize

the left-hand side to apply a fixed point iteration. We assume that u is discritized on a

uniform grid with spacing ∆x and let subscripts of u denote spatial grid coordinates. We

use Dx to represent a finite difference discretiztion of a partial derivative with respect to x.

Since the PDE is fourth-order, we use midpoint finite differences to ensure a small stencil.

We solve the PDE semi-implicitly using a fixed point iteration and let superscripts of u

denote the iteration step. To obtain a fixed point method, we lag 1/|∇u| in the g1∇f
∫

Ω
g2

term on the left-hand side to obtain constant coefficients for un+1 at iteration n:

−∇ ·
((
a+ C1 + bκ2

m(un) + cκ2
g(un)

) ∇un+1

|∇un|

)
+ un+1λΩ\D = r(un) (4.14)

where

r(un) = ∇ ·

V1(un)

V2(un)

V3(un)

− C1∇ ·
∇un

|∇un|
+ u0λΩ\D.

Left-Hand Side

To simplify notation for the left-hand side of Equation (4.14), we define

mn
ijk =

a+ C1 + bκ2
m(unijk) + cκ2

g(unijk)

∆x2|∇unijk|
.

The discretizations for curvatures and |∇u| are defined below. Now, by expanding the

gradient operator in Equation (4.14), we obtain:

−∇ ·

a+ C1 + bκ2
m(un) + cκ2

g(un)

∆x|∇un|

u
n+1
(i+1/2)jk − u

n+1
(i−1/2)jk

un+1
i(j+1/2)k − u

n+1
i(j−1/2)k

un+1
ij(k+1/2) − u

n+1
ij(k−1/2)


+ un+1

ijk λΩ\D.

65

Expanding the divergence operator gives:

mn
(i+1/2)jk

(
un+1

(i+1)jk − u
n+1
ijk

)
−mn

(i−1/2)jk

(
un+1
ijk − u

n+1
(i−1)jk

)
+mn

i(j+1/2)k

(
un+1
i(j+1)k − u

n+1
ijk

)
−mn

i(j−1/2)k

(
un+1
ijk − u

n+1
i(j−1)k

)
+mn

ij(k+1/2)

(
un+1
ij(k+1) − u

n+1
ijk

)
−mn

ij(k−1/2)

(
un+1
ijk − u

n+1
ij(k−1)

)
+ un+1

ijk λΩ\D.

Then, by rearranging, we identify the coefficients of the grid points of un+1:

mn
(i+1/2)jku

n+1
(i+1)jk +mn

i(j+1/2)ku
n+1
i(j+1)k +mn

ij(k+1/2)u
n+1
ij(k+1)

+mn
(i−1/2)jku

n+1
(i−1)jk +mn

i(j−1/2)ku
n+1
i(j−1)k +mn

ij(k−1/2)u
n+1
ij(k−1)

−
(
mn

(i+1/2)jk +mn
i(j+1/2)k +mn

ij(k+1/2)

+ mn
(i−1/2)jk +mn

i(j−1/2)k +mn
ij(k−1/2) − λΩ\D

)
un+1
ijk

To complete the discretization of the left-hand side, we must evaluate the m coefficients

at grid midpoints. The m coefficients depend on mean curvature, Gaussian curvature, and

first partial derivatives of u (in |∇u|). These are discretized below.

Right-Hand Side

We now consider the spatial discretization of r(un) in the right-hand side of Equation (4.14).

First, for the C1∇·
∇nijk
|∇unijk|

term, we note that this is the divergence form of mean curvature

and that its discretization is discussed below. Spatially discretizing the divergence operator

on the V term gives

1

∆x

V1(un(i+1/2)jk)− V1(un(i−1/2)jk)

V2(uni(j+1/2)k)− V2(uni(j−1/2)k)

V3(unij(k+1/2))− V3(unij(k−1/2))

 .

66

Discretizing the V terms at midpoints is similar for all dimensions, so we only include

details for V1(un(i+1/2)jk):

V1(un(i+1/2)jk) =

2b

|∇un(i+1/2)jk|3
∇
(
κm(un(i+1/2)jk)|∇un(i+1/2)jk|

)
·

−(Dyu
n
(i+1/2)jk)

2 − (Dzu
n
(i+1/2)jk)

2

(Dxu
n
(i+1/2)jk)(Dyu

n
(i+1/2)jk)

(Dxu
n
(i+1/2)jk)(Dzu

n
(i+1/2+jk)



− 2b∇
(
κg(un(i+1/2)jk)|∇un(i+1/2)jk|

)
·


∂κg
∂uxx

1
2

∂κg
∂uxy

1
2

∂κg
∂uxz


n

(i+1/2)jk

.

Expanding gradients gives:

V1(un(i+1/2)jk) =

2b

|∇un(i+1/2)jk|3


Dx

(
κm(un(i+1/2)jk)|∇un(i+1/2)jk|

)
Dy

(
κm(un(i+1/2)jk)|∇un(i+1/2)jk|

)
Dz

(
κm(un(i+1/2)jk)|∇un(i+1/2)jk|

)
 ·
−(Dyu

n
(i+1/2)jk)

2 − (Dzu
n
(i+1/2)jk)

2

(Dxu
n
(i+1/2)jk)(Dyu

n
(i+1/2)jk)

(Dxu
n
(i+1/2)jk)(Dzu

n
(i+1/2+jk)



− 2b


Dx

(
κg(un(i+1/2)jk)|∇un(i+1/2)jk|

)
Dy

(
κg(un(i+1/2)jk)|∇un(i+1/2)jk|

)
Dz

(
κg(un(i+1/2)jk)|∇un(i+1/2)jk|

)
 ·


∂κg
∂uxx

1
2

∂κg
∂uxy

1
2

∂κg
∂uxz


n

(i+1/2)jk

.

The midpoint discretizations for curvatures and partial derivatives of κg with respect to

partial derivatives of u are defined below.

67

Curvatures

We use the divergence form of mean curvature discretized as:

∇ · ∇uijk
|∇uijk|

=
u(i+1)jk − uijk
∇u(i+1/2)jk

−
uijk − u(i−1)jk

∇u(i−1/2)jk

+
ui(j+1)k − uijk
∇ui(j+1/2)k

−
uijk − ui(j−1)k

∇ui(j−1/2)k

+
uij(k+1) − uijk
∇uij(k+1/2)

−
uijk − uij(k−1)

∇uij(k−1/2)

.

The formula for Gaussian curvature is given in Equation (4.7). It depends only on

partial derivatives of uijk; these are explained below.

To compute curvatures at grid midpoints, we compute the minmod of the curvatures

at the two nearest grid points:

minmod(x, y) =

sgn(x) min(|x|, |y|) if xy > 0

0 otherwise
.

For example,

κm(u(i+1/2)jk) = minmod(κm(u(i+1)jk), κm(uijk)).

Partial Derivatives of Gaussian Curvature

The derivatives of Gaussian curvature, defined in Equations (4.12), depend only on first

and second partial derivatives of uijk. We discuss these next.

68

Partial Derivatives of u

We compute first partial derivatives using centered differences and minmod:

Dxuijk =
1

2∆x

(
u(i+1)jk − u(i−1)jk

)
Dxu(i+1/2)jk =

1

∆x

(
u(i+1)jk − uijk

)
Dxui(j+1/2)k = minmod(Dxui(j+1)k, Dxuijk).

We compute second partials at grid points using a standard three point stencil when both

derivatives are taken along the same dimension and a four-point stencil for cross derivatives:

Dxxuijk =
1

∆x2

(
u(i+1)jk − 2uijk + u(i−1)jk

)
Dxyuijk =

1

∆x2

(
u(i+1)(j+1)k − u(i−1)(j+1)k − u(i+1)(j−1)k + u(i−1)(j−1)k

)
.

Finally, to compute second derivatives and cross derivatives at midpoints, we use minmod:

Dxxu(i+1/2)jk = minmod(Dxxu(i+1)jk, Dxxuijk)

Dxxui(j+1/2)k = minmod(Dxxui(j+1)k, Dxxuijk)

Dxyu(i+1/2)jk = minmod(Dxyu(i+1)jk, Dxyuijk)

Dxyuij(k+1/2) = minmod(Dxyuij(k+1), Dxyuijk).

Zeros in the Denominator

When |∇u| appears in a denominator, it is computed as

|∇u| ≈
√
u2
x + u2

y + u2
z + ε

69

for a small constant ε. This prevents division by zero in constant regions of the volume.

Similarly, we compute Gaussian curvature as

κg ≈
t1t2 − t23
t24 +
√
ε
.

Solving the Linear System

Combining the discretizations calculated above, we obtain the equation:

mn
(i+1/2)jku

n+1
(i+1)jk +mn

i(j+1/2)ku
n+1
i(j+1)k +mn

ij(k+1/2)u
n+1
ij(k+1)

+mn
(i−1/2)jku

n+1
(i−1)jk +mn

i(j−1/2)ku
n+1
i(j−1)k +mn

ij(k−1/2)u
n+1
ij(k−1)

−
(
mn

(i+1/2)jk +mn
i(j+1/2)k +mn

ij(k+1/2)

+ mn
(i−1/2)jk +mn

i(j−1/2)k +mn
ij(k−1/2) − λΩ\D

)
un+1
ijk = r(unijk).

(4.15)

We enforce the Dirichlet boundary condition by replacing Equation (4.15) with

un+1
ijk = unijk (4.16)

for all i, j, k on the boundary of un. The discretized coefficients and right-hand side have

a 5× 5× 5 stencil, so the boundary of un is two pixels thick on all sides. For an image un

of width N , height M , and depth P , taking i = 1, . . . , N , j = 1, . . . ,M , and k = 1, . . . , P

gives a sparse system of NMP linear equations:

A(un)~u n+1 = ~r(un).

For ~u n+1 and ~r(un), we construct 1D vectors in column, row, page order using the

70

Parameter Value
Inner iterations after which gmres restarts 30
Stopping tolerance 10−6

Maximum total gmres iterations 500
M1 preconditioner Lower part of ILU(0) of A(un)
M2 preconditioner Upper part of ILU(0) of A(un)

Table 4.5: gmres parameters

element index in Matlab (e.g. u(:)). This gives vectors of elements arranged as:

~u n+1 =



un+1
1,1,1

un+1
1,2,1
...

un+1
2,1,1

un+1
2,2,1
...

un+1
1,1,2

un+1
1,2,2
...



.

The second-order implicitly solved derivative operator on the left-hand side has a seven

point 3 × 3 × 3 stencil, so the NMP × NMP coefficient matrix A(un) has up to seven

non-zero elements in each row. These correspond to the coefficients of elements of un+1 in

the left-hand side of Equations (4.15) and (4.16).

To initialize the fixed point iteration, we set

u0
ijk = 0.5 for (i, j, k) in D.

We solve the linear system using the preconditioned generalized minimum residual method [41]

(gmres in Matlab). The parameters we use for gmres are given in Table 4.5. The param-

eters for the fixed point iteration and mean/Gaussian model are given in Table 4.6.

71

Parameter Value
∆x 1
ε 10−8

λ 100
C1 350

Table 4.6: Parameters for 3D mean/Gauss elastica fixed point method

4.4.4 Numerical Results

Figures 4.7(a), 4.7(b), and 4.7(c) compare results for the mean and mean/Gaussian curva-

ture models on the cylinder test case. Notice that the model recovers a cylindrical shape

as desired when the Gaussian curvature term is used. Figures 4.7(d), 4.7(e), and 4.7(f)

give the results of applying the mean and mean/Gaussian curvature models to the box

test case. Both models recover a shape that curves inward, but the shape recovered by the

mean/Gaussian model does so more gradually than that recovered by the mean curvature

model. It is difficult to see in the figure, but taking a slice of the volume at z ≈ 12.5

reveals that the middle of the recovered object has a circular shape. This could be a

result of the mean curvature term as Gaussian curvature is zero on the entire surface of

the box. However, this result is desirable for cell path inpainting, since the model should

prefer cylindrical shapes. Finally, the tube case in Figures 4.7(g), 4.7(h), and 4.7(i) shows

a promising result: the mean/Gaussian curvature model reconnects the tube over a large

gap when the mean curvature model does not. This suggests that the mean/Gaussian

curvature models has a stronger tolerance to wide gaps and to shapes that do not line up

across D. Again, this is highly desirable for cell path inpainting. Figures 4.7(j), 4.7(k), and

4.7(l) show the results for the concentric cylinders case. Neither model recovers the desired

output for this case. When the mean and Gaussian curvature terms are weighted equally,

the outer cylinder is recovered. When either term is weighted more heavily, the first inner

cylinder is recovered. This looks like a disconnected cylinder in the figures because the

first inner cylinder has value 0.5 and we show the 0.99 level surface. The hourglass shape

in Figures 4.7(s) and 4.7(t) illustrate the preference of both models for a convex shape:

the hourglass shape bulges out near its middle in both cases. In the remaining results, the

72

Test case a b c C1

Cylinder 0 20 0 C1 < 100
Tube 0 20 0 C1 < 100
Hourglass 0 20 0 C1 < 100
Cylinder 0 10 10 C1 < 60
Tube 0 10 10 C1 < 60
Hourglass 0 10 10 C1 < 60
Cylinder 0 20 125 C1 < 180, C1 = 240, C1 = 280, C1 = 400
Tube 0 20 125 C1 < 240, C1 = 340
Hourglass 0 20 125 C1 < 260, 280 < C1 < 340, C1 = 360, 420 < C1 < 480

Table 4.7: Values of C1 in 0, 20, . . . , 500 for which the scheme is unstable

mean and mean/Gaussian curvature models recover similar shapes.

These results are promising, but, when using the Gauss curvature term, it can be

difficult to find values of the C1 parameter for which the numerical scheme is stable. This

is illustrated in Table 4.7 where C1 is varied for fixed a, b, c, u0 and we report values of C1

for which the scheme is unstable. For (a, b, c) = (0, 20, 0) and (a, b, c) = (0, 10, 10), the

scheme behaves as predicted by Theorem 1: it is stable for sufficiently large values of C1.

Additionally, C1 seems less sensitive to u0 in these cases. For (a, b, c) = (0, 20, 125), C1

is sensitive to u0. Furthermore, the numerical scheme is slow to converge. The results in

Figure 4.7 require approximately 10,000 fixed point iterations.

73

(a) Mean curvature (a=0, b=20,
c=0)

(b) Mean/Gaussian curvature
(a=0, b=10, c=10)

(c) Mean/Gaussian curvature
(a=0, b=10, c=125)

(d) Mean curvature (a=0, b=20,
c=0)

(e) Mean/Gaussian curvature
(a=0, b=c=10)

(f) Mean/Gaussian curvature
(a=0, b=10, c=125)

(g) Mean curvature (a=0, b=20,
c=0)

(h) Mean/Gaussian curvature
(a=0, b=c=10)

(i) Mean/Gaussian curvature
(a=0, b=10, c=125)

Figure 4.7: 0.99 level surface for elastica models on 3D test cases

74

(j) Mean curvature (a=0, b=20,
c=0)

(k) Mean/Gaussian curvature
(a=0, b=c=10)

(l) Mean/Gaussian curvature
(a=0, b=10, c=125)

(m) Mean curvature (a=0,
b=20, c=0)

(n) Mean/Gaussian curva-
ture (a=0, b=c=10)

(o) Mean curvature (a=0,
b=20, c=0)

(p) Mean/Gaussian curva-
ture (a=0, b=c=10)

(q) Mean curvature (a=0,
b=20, c=0)

(r) Mean/Gaussian curva-
ture (a=0, b=c=10)

Figure 4.7: 0.99 level surface for elastica models on 3D test cases

75

(s) Mean curvature (a=0, b=20,
c=0)

(t) Mean/Gaussian curvature
(a=0, b=10, c=124)

(u) Mean curvature (a=0.01,
b=1, c=0)

(v) Mean/Gaussian cur-
vature (a=0.01, b=1,
c=12)

Figure 4.7: 0.99 level surface for elastica models on 3D test cases

76

Chapter 5

Conclusions and Future Work

2D inpainting methods are well-studied and many have been thoroughly treated analyt-

ically. 3D inpainting methods are less well-studied, but have useful applications such as

the cell path inpainting problem described in this thesis. A 3D inpainting model based on

Gaussian curvature is theoretically appealing and the results presented in this thesis show

great promise for cell path reconstruction using the mean/Gaussian elastica model. How-

ever, the model is difficult to solve numerically. In our experiments, direct minimization

of the mean/Gaussian elastica energy functional is unsuccessful and a fixed-point method

for solving the Euler-Lagrange equation is slow to evolve. Numerical methods for solving

the mean/Gaussian curvature model present a promising avenue for future research.

77

References

[1] Uri M. Ascher. Numerical methods for evolutionary differential equations, volume 5.

SIAM, 2008.

[2] Gilles Aubert and Pierre Kornprobst. Mathematical Problems in Image Processing:

Partial Differential Equations and the Calculus of Variations. Springer, 2006.

[3] M. Bertalmio, A.L. Bertozzi, and G. Sapiro. Navier-stokes, fluid dynamics, and image

and video inpainting. In Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, volume 1, pages 355–362, 2001.

[4] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester. Im-

age inpainting. In Proceedings of the 27th annual conference on Computer graphics

and interactive techniques, SIGGRAPH ’00, pages 417–424. ACM P./Addison-Wesley

Publishing Co., 2000.

[5] Marcelo Bertalmio, Luminita Vese, Guillermo Sapiro, and Stanley Osher. Simultane-

ous structure and texture image inpainting. IEEE Transactions on Image Processing,

12:882–889, 2003.

[6] A. Bertozzi, Selim Esedoḡlu, and A. Gillette. Analysis of a two-scale cahn-hilliard

model for binary image inpainting. Multiscale Modeling and Simulation, 6:913–936,

2007.

[7] A.L. Bertozzi, S. Esedoḡlu, and A. Gillette. Inpainting of binary images using the

cahn-hilliard equation. Transactions on Image Processing, 16:285–291, 2007.

78

[8] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university

press, 2004.

[9] Mary Ann Branch, Thomas F Coleman, and Yuying Li. A subspace, interior, and

conjugate gradient method for large-scale bound-constrained minimization problems.

SIAM Journal on Scientific Computing, 21:1–23, 1999.

[10] Carlos Brito-Loeza and Ke Chen. Fast numerical algorithms for Euler’s elastica in-

painting model. International Journal of Modern Math, 5:157–182, 2010.

[11] Richard H Byrd, Jean Charles Gilbert, and Jorge Nocedal. A trust region method

based on interior point techniques for nonlinear programming. Mathematical Program-

ming, 89:149–185, 2000.

[12] Richard H Byrd, Mary E Hribar, and Jorge Nocedal. An interior point algorithm for

large-scale nonlinear programming. SIAM Journal on Optimization, 9:877–900, 1999.

[13] Richard H Byrd, Robert B Schnabel, and Gerald A Shultz. Approximate solution of

the trust region problem by minimization over two-dimensional subspaces. Mathemat-

ical programming, 40:247–263, 1988.

[14] Frédéric Cao, Yann Gousseau, Simon Masnou, and Patrick Pérez. Geometri-

cally guided exemplar-based inpainting. Submitted. Available at http://hal.

archives-ouvertes.fr/hal-00380394/ Retrieved Sept. 25, 2012, 2009.

[15] Jianhong Chan, Tony F.; Shen. Nontexture inpainting by curvature-driven diffusions.

Journal of Visual Communication and Image Representation, 12:436–449, 2001.

[16] T. Chan, S. Esedoglu, F. Park, and A. Yip. Total variation image restoration:

Overview and recent developments. In Nikos Paragios, Yunmei Chen, and Olivier

Faugeras, editors, Handbook of Mathematical Models in Computer Vision, pages 17–

31. Springer, 2006.

[17] Tony F. Chan, Sung Ha Kang, and Jianhong Shen. Euler’s elastica and curvature

based inpaintings. SIAM Journal on Applied Mathematics, 63:564–592, 2002.

79

http://hal.archives-ouvertes.fr/hal-00380394/
http://hal.archives-ouvertes.fr/hal-00380394/

[18] Tony F. Chan and Jianhong Shen. Mathematical models for local nontexture inpaint-

ings. SIAM Journal on Applied Mathematics, 62:1019–1043, 2002.

[19] U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf, and R. Rusu. A finite element method

for surface restoration with smooth boundary conditions. Computer Aided Geometric

Design, 21:427–445, 2004.

[20] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama. Region filling and object

removal by exemplar-based image inpainting. IEEE Transactions on Image Processing,

13:1200–1212, 2004.

[21] Bin Dong, Aichi Chien, Zuowei Shen, and Stanley Osher. A new multiscale repre-

sentation for shapes and its application to blood vessel recovery. SIAM Journal on

Scientific Computing, 32:1724–1739, 2010.

[22] Selim Esedoglu and Jianhong Shen. Digital inpainting based on the mumford-shah-

euler image model. European Journal on Applied Mathematics, 13:353–370, 2002.

[23] D.J. Eyre. An unconditionally stable one-step scheme for gradient systems. Unpub-

lished, 1997. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.

313. Retrieved Jan. 20, 2013.

[24] Philip E Gill, Walter Murray, Michael A Saunders, and Margaret H Wright. Pro-

cedures for optimization problems with a mixture of bounds and general linear con-

straints. ACM Transactions on Mathematical Software (TOMS), 10:282–298, 1984.

[25] Enrico Giusti. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser,

1984.

[26] Alfred Gray. Modern differential geometry of curves and surfaces with Mathematica.

CRC P., 1998.

[27] ShihPing Han. A globally convergent method for nonlinear programming. Journal of

optimization theory and applications, 22:297–309, 1977.

80

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.313
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.313

[28] James Hays and Alexei A. Efros. Scene completion using millions of photographs.

ACM Transactions on Graphics, 26, 2007.

[29] David J. Heeger and James R. Bergen. Pyramid-based texture analysis/synthesis.

In Proceedings of the 22nd annual conference on Computer graphics and interactive

techniques, SIGGRAPH ’95, pages 229–238, 1995.

[30] Horman Igehy and Lucas Pereira. Image replacement through texture synthesis. In

Proceedings of the International Conference on Image Processing, volume 3, pages

186–189, 1997.

[31] Antonio Marquina and Stanley Osher. Explicit algorithms for a new time dependent

model based on level set motion for nonlinear deblurring and noise removal. SIAM

Journal on Scientific Computing, 22:387–405, 2000.

[32] Simon Masnou. Disocclusion: a variational approach using level lines. IEEE Trans-

actions on Image Processing, 11:68–76, 2002.

[33] Simon Masnou and Jean-Michel Morel. Level lines based disocclusion. In Proceedings

of the 1998 International Conference on Image Processing, volume 3, pages 259–263,

oct 1998.

[34] Mathworks. Matlab optimization toolbox: Choosing a solver. http://www.

mathworks.com/help/optim/ug/choosing-a-solver.html. Retrieved April 15,

2013.

[35] Mathworks. Matlab optimization toolbox: Constrained nonlinear op-

timization algorithms. http://www.mathworks.com/help/optim/ug/

constrained-nonlinear-optimization-algorithms.html. Retrieved April

15, 2013.

[36] David Mumford and Jayant Shah. Optimal approximations by piecewise smooth

functions and associated variational problems. Communications on Pure and Applied

Mathematics, 42:577–685, 1989.

81

http://www.mathworks.com/help/optim/ug/choosing-a-solver.html
http://www.mathworks.com/help/optim/ug/choosing-a-solver.html
http://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
http://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html

[37] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2 edition,

2006.

[38] Ivars Peterson. Filling in blanks: Automating the restoration of a picture’s missing

pieces. ScienceNews, 161:299–300, 2011.

[39] Michael JD Powell. A fast algorithm for nonlinearly constrained optimization calcu-

lations. In Numerical analysis, pages 144–157. Springer, 1978.

[40] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based

noise removal algorithms. Physica D: Nonlinear phenomena, 60:259–268, 1992.

[41] Youcef Saad and Martin H. Schultz. Gmres: A generalized minimal residual algorithm

for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical

computing, 7:856–869, 1986.

[42] C. Schönlieb and A. Bertozzi. Unconditionally stable schemes for higher order in-

painting. Communications in Mathematical Sciences, 9(2):413–457, 2011.

[43] Kenneth R. Spring and Michael W. Davidson. Nikon MicroscopyU: Introduction to

fluorescence microscopy. http://www.microscopyu.com/articles/fluorescence/

fluorescenceintro.html. Retrieved Jan 19, 2013.

[44] Jean E. Taylor and John W. Cahn. Linking anisotropic sharp and diffuse surface

motion laws via gradient flows. Journal of Statistical Physics, 77:183–197, 1994.

[45] Richard A Waltz, José Luis Morales, Jorge Nocedal, and Dominique Orban. An

interior algorithm for nonlinear optimization that combines line search and trust region

steps. Mathematical Programming, 107:391–408, 2006.

[46] Robert Weinstock. Calculus of Variations With Applications to Physics and Engi-

neering. Dover, 1974.

[47] Eric W. Weisstein. Curvature. From MathWorld–A Wolfram Web Resource. http:

//mathworld.wolfram.com/Curvature.html, 2013. Retrieved Jan. 20, 2013.

82

http://www.microscopyu.com/articles/fluorescence/fluorescenceintro.html
http://www.microscopyu.com/articles/fluorescence/fluorescenceintro.html
http://mathworld.wolfram.com/Curvature.html
http://mathworld.wolfram.com/Curvature.html

[48] Eric W. Weisstein. Gaussian curvature. From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/GaussianCurvature.html, 2013. Retrieved Jan.

20, 2013.

[49] Eric W. Weisstein. Minimal surface of revolution. From MathWorld–A Wolfram

Web Resource. http://mathworld.wolfram.com/MinimalSurfaceofRevolution.

html, 2013. Retrieved Jan. 20, 2013.

[50] Alan L. Yuille, Anand Rangarajan, and A. L. Yuille. The concave-convex procedure

(CCCP). Advances in Neural Information Processing Systems, 2:1033–1040, 2002.

83

http://mathworld.wolfram.com/GaussianCurvature.html
http://mathworld.wolfram.com/MinimalSurfaceofRevolution.html
http://mathworld.wolfram.com/MinimalSurfaceofRevolution.html

	List of Tables
	List of Figures
	Introduction
	Mathematical Background
	Definitions
	Solution Techniques
	Calculus of Variations
	Solution of the Euler-Lagrange Equation
	Gradient Flow Methods
	The Euler-Lagrange Equation as a Gradient Flow
	Direct Minimization of the Energy Functional
	Dynamic Programming

	Selection Criteria for a Cell Path Inpainting Technique

	2D Inpainting Models
	Geometric Methods
	Edge Transport Model
	Total Variation
	Curvature Driven Diffusion
	Elastica

	Inpainting by Texture Synthesis
	Exemplar and Patch Techniques

	Geometric Models for 3D Inpainting
	3D Total Variation
	3D Elastica Using Mean Curvature
	Results
	Solution by Numerical Optimization

	3D Elastica Using Gaussian Curvature
	Instability in the Numerical Schemes

	3D Elastica Using Mean and Gaussian Curvature
	Solution by Numerical Optimization
	Manipulations of the Euler-Lagrange Equation
	Numerical Solution of the Manipulated PDE
	Numerical Results

	Conclusions and Future Work
	References

