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Abstract

The main focus of this research is to use graph-theoretic formulations to develop an au-
tomated algorithm for the generation of sensitivity equations. The idea is to combine the
benefits of direct differentiation with that of graph-theoretic formulation. The primary deliv-
erable of this work is the developed software module which can derive the system equations
and the sensitivity equations directly from the linear graph of the system.

Sensitivity analysis refers to the study of changes in system behaviour brought about by
the changes in model parameters. Due to the rapid increase in the sizes and complexities of
the models being analyzed, it is important to extend the capabilities of the current tools of
sensitivity analysis, and an automated, efficient, and accurate method for the generation of
sensitivity equations is highly desirable.

In this work, a graph-theoretic algorithm is developed to generate the sensitivity equa-
tions. In the current implementation, the proposed algorithm uses direct differentiation
to generate sensitivity equations at the component level and graph-theoretic methods to
assemble the equation fragments to form the sensitivity equations.

This way certain amount of control can be established over the size and complexity of
the generated sensitivity equations. The implementation of the algorithm is based on a com-
mercial software package MapleSim[Multibody] and can generate governing and sensitivity
equations for multibody models created in MapleSim.

In this thesis, the algorithm is tested on various mechanical, hydraulic, electro-chemical,
multibody, and multi-domain systems. The generated sensitivity information are used to
perform design optimization and parametric importance studies. The sensitivity results are
validated using finite difference formulations.

The results demonstrate that graph-theoretic sensitivity analysis is an automated, ac-
curate, algorithmic method of generation for sensitivity equations, which enables the user
to have some control over the form and complexity of the generated equations. The results
show that the graph-theoretic method is more efficient than the finite difference approach.
It is also demonstrated that the efficiency of the generated equations are at par or better
than the equation obtained by direct differentiation. The developed software module can
be used to generate sensitivity equations for multibody systems which can subsequently
be used for design optimization, parameter identification, model simplification, and other
related applications.
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Chapter 1

Introduction

Sensitivity analysis refers to the study of changes in system behaviour brought in by the

changes in entities inherent to the system. Mathematically, it becomes a problem of finding

the derivative of a function with respect to the system parameters. To illustrate the impor-

tance of sensitivity analysis, it is worthwhile to look into the range of engineering applications

that use sensitivity analysis.

Design and optimization of physical systems: From the simple mechanism that closes

the door to the complex spacecraft that sends man to the moon, proper design makes the

difference between a complete failure and “a giant leap for mankind”. Detailed system

analysis and design computations are expensive in terms of human time and resources, but

without these steps, for most practical systems of the modern age, it is not possible to meet

the ever increasing demands of performance, economic and safety requirements. For these

reasons, optimization processes are almost always required for most design tasks. Efficient

optimization routines require gradient information, which are essentially sensitivity data.

Model simplification: Model simplification is an attempt to capture the important system

behaviours by using a bare minimum of model entities and ignoring the rest of the features.

It is important for analysis, control design and simulation of complex large scale systems.

Essentially the model simplification problem can be described as the problem of finding

out which feature is important for the intended purpose. Sensitivity analysis provides a

systematic way to evaluate the effect of each entity on the desired behaviour.

Robust design: To achieve robust design for dynamic systems, one has to minimize the

deviation of the system from its intended behaviour due to changes in the varying parameters.

The problem essentially becomes a minimization problem where gradient information or

sensitivity data greatly improves efficiency and accuracy.
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Parameter identification: Parameter identification finds the parameters for a given sys-

tem model to make it match a measured behaviour as closely as possible. Mathematically

it is a problem of minimization of the difference between the model prediction and the mea-

sured data. Sensitivity data enables the implementation of efficient techniques to deal with

this problem.

Process sensitivity: Efficient management of any process requires knowledge of the key

issues that affect the output of the process. For processes where a mathematical model is

available, sensitivity studies can provide invaluable insight about the critical parameters and

optimization strategies.

Optimal control: Sensitivity analysis is also used while designing optimal controls for

dynamic systems, to identify control parameters and to study the behaviour or the system

with changes in control parameters.

In light of the above discussion, it is quite clear how important it is to have an efficient

and accurate algorithm for sensitivity analysis. Unfortunately, for practical systems, the

sensitivity study is a very complicated problem. To explain the challenges of sensitivity

analysis, at this point it is necessary to discuss the process of sensitivity analysis of dynamic

systems in a more mathematical form.

1.1 Background

Theoretical background relevant for the current research is presented in this section. To

cover all the relevant aspects, this section is divided into three unique parts. In the first

part, the graph-theoretic method of system modelling is presented. Next, different types of

governing equations that are routinely encountered, are discussed. In the third and final

subsection, the topic of sensitivity analysis of dynamic systems is reviewed.

1.1.1 Graph-theoretic modelling of dynamic systems

Graph-theoretic modelling method is known for its unified approach toward system mod-

elling. It’s a unique way of modelling systems that uses directed linear graphs to represent

system topologies and constitutive equations to capture the individual characteristics of the

system components.

To describe the process of graph-theoretic modelling of a system, an example of a simple

resistive circuit is shown in figure 1.1. The system shown in figure 1.1 contains linear resistors
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and a time varying voltage source. These components are represented by the edges of the

corresponding linear graph shown in the same figure. The nodes of the graph represent

junction points for the electrical circuit. The arrows in this linear graph are used to designate

a reference direction for measurement.

E(t)

R1

R2

R3
R5

R4

E(t)

R1

R2

R3
R4

R5

a
b

d

a b

cd
c

Figure 1.1: Resistive circuit and the corresponding linear graph

Every single edge of a linear graph is associated with a pair of complementary sets of

measurements. These are known as the through variables (τ) and across variables (α).

Through variables are quantities which are measured by instruments placed in series with

the physical component represented by the edge, and across variables are quantities which

are measured by instruments placed in parallel to the physical components associated with

the edge. Different physical domains involve different through and across variables. For an

electrical system, the appropriate through and across variables are the currents and voltage

drops, respectively.

To explain the process by which the topology of the system is captured by the linear

graph, a few key terms need to be defined. Assuming a linear graph G with e number of

edges and n number of nodes, the following terms are defined.

A circuit is a sub-graph of G where every pair of nodes has exactly two distinct paths

between them. There can be many circuits in a single linear graph.

A tree of a linear graph G is defined as a connected sub-graph of G that contains all

the nodes of G and has only one unique path between any two nodes. Edges of the tree

are known as branches. A tree in G has exactly w = n− 1 branches.

A cotree is the part of the graph G which remains after removing the tree. All the

edges of a cotree are known as chords. In G there are u = e− n+ 1 chords in the cotree.
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A cutset of a linear graph G is a subset of edges that, when removed, divides G into

two parts. Also, no subset of this cutset can do the same.

A fundamental cutset (f-cutset) is a cutset that has one branch from the linear

graph G and a unique set of chords from G. There are w f-cutsets in G. Similarly,

a fundamental circuit is a circuit with a single chord and a unique set of branches. There

are u f-circuits in G.

From the linear graph of the system it is possible to derive three distinct types of equa-

tions. The first type of equation is known as the cutset equations. These equations captures

the relationships between individual through variables. Unique fundamental cutset equations

can be generated from these equations by selecting different tree branches.

For the system shown in figure 1.1, the edges corresponding to the resistors R1, R2, and

R5 are chosen as the tree and are shown in bold lines. These edges are used to derive the

fundamental cutset equations. The resulting equations are expressed in matrix form as 1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣
1 1 −1

−1 −1 0

−1 0 0

 { iR1 iR2 iR5 iR4 iR3 iE

}T
= 0 (1.1)

The second type of equations are called the circuit equations. These capture the relation-

ships between the individual across variables. Unique sets of fundamental circuit equations

can be generated from these equations for different choices of branches.

The fundamental circuit equations for the tree selection shown in figure 1.1 are 1 −1 −1 1 0 0

1 −1 0 0 1 0

−1 0 0 0 0 1

{ vR1 vR2 vR5 vR4 vR3 vE

}T
= 0 (1.2)

The third type of equations are used to capture the physical characteristics of the com-

ponents that are represented by the edges. These are known as the terminal or constitutive

equations. The equations are associated with each of the edges of the graph and describe

the relationships between the through and across quantities. For the system shown in figure

1.1 there are six terminal equations as shown in equation (1.3).

vR1 = R1iR1 vR2 = R2iR2 vR3 = R3iR3

vR4 = R4iR4 vR5 = R5iR5 vE = E(t)
(1.3)
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The twelve scalar equations (1.2), (1.1), and (1.3) can be solved to obtain the six across

quantities and six through quantities of the system. As such, these equations can be con-

sidered as the equations governing the response of the system shown in figure 1.1 generated

from the corresponding linear graph.

It is also possible to reduce the number of governing equations using the graph-theoretic

method, employing what is known as the branch-chord formulation. Using equation (1.2)

and equation (1.1), it is possible to eliminate the branch through quantities and chord across

quantities from the governing equations. The final equations obtained hereby are always

expressed in terms of the cotree through variables and the tree across variables. This reduces

the number of governing equations dramatically. For example, if branch-chord formulation is

used for the system shown in figure 1.1, the governing equations will be generated in terms of

three through variables from the chords and three across variables from the branches, which

would bring down the total number of unknowns from twelve to six.

Depending on the nature of the component and the configuration of the system, it can

also be possible to make a judicial choice of the tree to achieve further reduction in the

number of equations.

Graph-theoretic modelling method offers flexibility in the process of equation generation.

It allows users to generate symbolic governing equations using different coordinate systems

and with varying levels of complexities while avoiding uncontrolled increase in the size of the

symbolic expressions. Further details about graph-theoretic modelling methods is presented

in the next chapter along with a brief description of available literature and research results

on the subject.

1.1.2 Governing equations of multibody systems

The process of analytical sensitivity analysis starts at the set governing equations of the

model. Depending on the nature of the system being investigated, the structure of the

governing equations can be different and different approaches must be taken for subsequent

analysis.

Kinematic systems

These systems are governed by algebraic equations and as a result are considerably easier to

solve. They are often useful during inverse dynamic analysis and motion analysis for complex

mechanisms. As an example we can consider the case of a driven slider-crank mechanism.
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Figure 1.2 shows a kinematically driven slider-crank mechanism where the motion of the

crank is specified as a function of time.

1

 

Offset = d

Crank being driven

q1
X

Y

Figure 1.2: Kinematically driven slider-crank mechanism

The scope of kinematic analysis is to determine the position and orientation of each of the

parts of the mechanism as a function of time. There are three rigid bodies in this mechanism,

which are connected to each other through various joints as shown in figure 1.3 .

y1x1
q1

L
en

gt
h:

 2
L

1 x2 y2

q2

x3,y3

q3

Joint 1

Joint 2

Joint 3

Joint 4

Slider offset distance: d

Length: 2L
1

X

Y

Inertial frame of reference

Figure 1.3: Selection of absolute coordinates

If we choose to use absolute coordinates for this system, we obtain the vector of general-

ized coordinates that describes the position and orientation of the system as

q =[x1, y1, θ1, x2, y2, θ2, x3, y3, θ3]
T (1.4)

The joints in the system impose conditions on these generalized coordinates. These con-

ditions give rise to algebraic constraint equations. Depending on the source of the constraint

equations, they are called either kinematic constraints, which arise due to physical restric-

tions imposed by the joints, or driving constraints, which arise due to enforced motion on

the system. For the slider-crank mechanism shown in figure 1.2 and figure 1.3, the driving

constraint is simply the temporal variation of the angle of the crank.

ΦDriven (q, t) = [θ1 − g0(t)] = 0 (1.5)
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The kinematic constraint equations for this system can be derived by considering the

physical restrictions the joints enforce on the system.

ΦKinematic =



x1 − L1 cos θ1

y1 − L1 sin θ1

x1 − x2 + L1 cos θ1 + L2 sin θ2

y1 − y2 + L1 sin θ1 − L2 cos θ2

x2 − x3 + L2 sin θ2

y2 − y3 − L2 cos θ2

y3 − δ
θ3


= 0 (1.6)

Together these constraints form a set of algebraic equations that governs the system

behavior. It can be represented by the constraint vector Φ.

Φ (q, t) =

[
ΦKinematic (q, t)

ΦDriven (q, t)

]
= 0 (1.7)

To evaluate the velocity and acceleration of the system, the relevant equations are ob-

tained by differentiating equation (1.7) with respect to time as shown in equation (1.8).

Φqq̇ = −Φt = ν

Φqq̈ = −(Φqq̇)qq̇− 2Φq tq̇−Φt t = γ
(1.8)

In equation (1.8) the subscripts refer to differentiation operation. Φq is the Jacobian

matrix of the constraint vector with respect to the generalized coordinates, also ν and γ are

used to denote the right hand sides of the velocity and acceleration equations respectively.

By solving equations (1.7) and (1.8) the complete kinematic analysis of the system can be

performed.

Dynamic Systems

For a system with n generalized co-ordinates and m kinematic constraints, the degrees of

freedom (DOF) can be calculated by DOF = n−m. In this scenario, if the external forces

acting on the system are provided along with sufficient number of proper initial conditions,

we can perform a dynamic analysis to determine the response of the system.

To perform a dynamic analysis, the equations of motion of the constrained systems of
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rigid bodies must be derived and solved. Depending on the method of formulation, the

governing equations can take the shape of a set of ordinary differential equations (ODEs) or

differential algebraic equations (DAEs).

Example of a dynamic problem (as a set of DAEs)

A freely suspended double pendulum can be considered as an example of a dynamic analysis.

The system can be modelled using either absolute coordinates or joint coordinates q = {α, β},
as shown in figure 1.4.

x1 y1

x2 y2

q1

q2

a

b

 

Mass: m1 

Length: 2L1 

 
Mass: m2 

Length: 2L2 

2
m g

1
m g

X

Y Inertial frame of 

reference

Figure 1.4: Double pendulum with absolute and joint coordinates

If absolute coordinates are chosen for the formulation, the system is described by six

generalized coordinates. Since there are two revolute joints in the system, four kinematic

constraints are obtained and from that we can calculate the degrees of freedom for this

system as DOF = 6− 4 = 2.

Compatibility of the dimensions of the matrices is an important cross check for the

formulation process. For this system we expect the mass matrix and the Jacobian to be

6× 6 and 4× 6, respectively. The constraint vector can be expressed as shown in equation

(1.9).

Φ =


x1 − L1 sin θ1

y1 + L1 cos θ1

x1 − x2 + L1 sin θ1 + L2 sin θ2

y1 − y2 − L1 cos θ1 − L2 cos θ2

 = 0 (1.9)
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The dynamic equations can be generated using Lagrange multipliers. A general form as

shown in equation (1.10).

Mq̈ + ΦT
q λ =QA

Φ = 0
(1.10)

M: represents the mass matrix of the system

q: The vector of generalized coordinates, [x1, y1, θ1, x2, y2, θ2]
T

QA: is the vector of generalized forces

λ: is the vector of Lagrange multipliers that enforces the constraints.

The equation below illustrates the governing dynamic equations for the double pendulum

shown in figure 1.4 using absolute coordinate formulation.

m2 0 0 0 0 0

0 m2 0 0 0 0

0 0 m1 0 0 0

0 0 0 m1 0 0

0 0 0 0 J2 0

0 0 0 0 0 J1





ẍ2

ÿ2

ẍ1

ÿ1

θ̈2

θ̈1


+ ΦT

q


λ1

λ2

λ3

λ4

 =



0

−m2g

0

−m1g

0

0


(1.11)

In equation (1.11), Ji = miLi
2/3 and the associated Jacobian matrix is given by

Φq =


0 0 1 0 0 −L1 cos θ1

0 0 0 1 0 −L1 sin θ1

1 0 −1 0 −L2 cos θ2 −L1 cos θ1

0 1 0 −1 −L2 sin θ2 −L1 sin θ1

 (1.12)

Example of a dynamic problem (as a set of ODEs)

If joint coordinates are chosen for the derivation of equations, the governing equations take

the form of a set of ODEs. In this system it is possible to model the double pendulum in

terms of the two angles α and β. This results in two coupled differential equations as shown

in (1.13). [
M11 M12

M21 M22

]{
α̈

β̈

}
= [Q]2×1 (1.13)
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where

M11 =
4

3
m1L1

2 +
4

3
m2L2

2 + 4m2L1L2 cos β + 4m2L1
2

M12 = M21 =
2

3
m2L2 (2L2 + 3L1 cos β)

M22 =
4

3
m2L2

2

(1.14)

And

Q =



−m2gL2 cosα sin β −m2gL2 sinα cos β

+4m2L1L2θ̇1θ̇2 sin β + 2m2L1L2β̇
2 sin β

−m1g L1 sinα− 2m2g L1 sinα


−m2L2

(
g cosα sin β + g sinα cos β + 2L1(α̇)2 sin β

)

 (1.15)

It can be clearly seen that .these equations contain various model parameters. For this

system of double pendulum, the model parameters are the masses of the links m1 and m2,

the lengths L1 and L2 and the acceleration due to gravity g. It is clear that the response of

the system is dependent on the values of these parameters. This is precisely where sensitivity

analysis comes into the picture. Using sensitivity analysis it is possible to understand the

causal connection between the perturbation of the model parameter values and the response

of the system.

1.1.3 Sensitivity analysis of dynamic systems

For multibody lumped parameter systems, the most general form of the governing equation

is a set of DAEs as shown in equation (1.10). To perform sensitivity analysis on a system, a

measure for the relevant performance or an objective function must be defined. For multi-

body systems governed by equation (1.10), a general objective function can be formulated

as shown in equation (1.16).

Ψ = G ((q, q̇)|t=T ,p, T ) +

∫ T

t0

F (q, q̇, λ,p, t) dt (1.16)

In the above equation, G and F represent arbitrary functions with sufficient smooth-

ness, p represents the set of parameters, and q, q̇ and λ are the generalized displacements,

velocities and the Lagrange multipliers, respectively. The degree of smoothness required is

dependent on the type of analysis being carried out. For first order sensitivity analysis the

functions G and F are required to be C1 continuous.

The term G is a function of the final time T , the model parameters p and the values of q
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and q̇ evaluated at t = T . The term F is an objective function in an integrated form where

the integration is performed over a time span with the final time T = T (p) being a function

of the model parameters.

The sensitivity of the objective function Ψ can be obtained by differentiating the expres-

sion with respect to p. Using the chain rule of differentiation on equation (1.16) we obtain

an expression for the sensitivity S. For convenient illustration, we use subscripts to denote

partial differentiation operation.

fb =
∂f

∂b
(1.17)

Ψp = Gp +GTTp +Gq

(
qp|t=T + ( q̇|t=T )Tp

)
+Gq̇

(
q̇p|t=T + ( q̈|t=T )Tp

)
+

T∫
t0

(Fqqp + Fq̇q̇p + Fλλp + Fp) dt+ (F |t=T )Tp (1.18)

Thus, to evaluate Ψp, one needs to evaluate Tp,qp, q̇p and λp, i.e., the derivatives of

T,q, q̇ and λ with respect to the parameters, respectively.

There are different numerical, analytical and hybrid methods that can evaluate these

derivatives. The divided difference method, automatic differentiation techniques, direct dif-

ferentiation and adjoint variable method have been used by many researchers to perform

sensitivity analysis. Each of these methods has its own sets of advantages and disadvan-

tages. For proper application of sensitivity analysis, it is necessary to address the issues

encountered by these methods to improve their suitability in different engineering applica-

tions. In the subsequent chapters, details of some of the existing methods are discussed with

examples and simulation results from kinematic and dynamic problems.

1.2 Challenges and motivation

Many researchers who work in this area often face questions from individuals, not acquainted

with the challenges of sensitivity analysis, regarding the justification of research efforts to-

wards better methods of sensitivity analysis, which after all is just a process that evaluates

derivatives of certain quantities. To address this query, it is important to emphasize the

ever-increasing complexity of the situation. With the rapid increase in the size and com-
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plexity of models being analyzed, the process of providing efficient and accurate sensitivity

information suitable for diverse engineering applications is never “just” a differentiation. To

illustrate further on the topic, it is necessary to compare the advantages and disadvantages

of the various methods currently in use for sensitivity analysis.

The finite difference method is notorious for its numerical instability and susceptibility to

parameter perturbation. Also, for a system that is described by n differential equations, m

algebraic constraints and has p parameters, the finite difference method requires the solution

of 3 × p(n + m) equations. Because of these issues, the finite difference method is not an

option for efficient and accurate sensitivity analysis.

In direct differentiation, the number of equations to be solved is (p + 1)(n + m). Al-

though, it is far better than finite difference formulation in terms of numerical stability and

accuracy, the conventional direct differentiation based formulation becomes intractable for

systems with a large number of parameters, especially if the size of the system is also large.

Special direct differentiation techniques like the Recursive Formulation claim to be better in

performance, but recursive formulations are most effective for systems with long chain-like

structures and under normal circumstances don’t offer sizable advantages.

The total number of equations solved in the adjoint variable method is (n+m+ p). But

the very nature of the adjoint variable method requires the storage of every bit of informa-

tion of the forward dynamic problem to evaluate the sensitivity information. This makes

it susceptible to memory and interpolation problems. The implementation of the adjoint

variable method is complicated, and requires different formulations for different problem

structures. For large systems with nonlinear constitutive equations, the adjoint system of

equation becomes complicated to solve and as a result, the adjoint variable method becomes

inefficient.

In light of the above discussion, it is clear that none of the methods, currently being

used to perform sensitivity analysis for various applications, can deliver the performance

that is expected. In this thesis an attempt is made to fill this void by combining direct

differentiation with graph-theoretic modelling methods. It is expected to result in a method

that would have the simplicity, stability and accuracy of direct differentiation method and

clarity, flexibility and efficiency of the graph-theoretic approach.

Further details of the methods used for sensitivity analysis along with a review of available

literature and research results are presented in the next chapter.
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1.3 Applications

As explained in a previous section, sensitivity analysis is routinely used in many engineering

applications. Generally, the entire process can be divided into three main stages. The first

stage is the generation of the underlying model of the system. Better and efficient models

lead to more efficient post-processing. For multibody systems, commercial softwares like

MapleSim are available, that uses graph-theoretic formulations for efficient generation of

simplified governing equations.

The second stage is where the sensitivity analysis is formulated and the equations gov-

erning the individual sensitivities are generated. In practical applications, this stage is often

intertwined with the third stage where the equations are numerically solved to produce the

desired results.

The proposed method of graph-theoretic sensitivity analysis is an attempt to extend the

use of graph-theoretic formulation from the first stage to the second stage of this procedure.

The expectation is to achieve the capability of controlling the size and the structure of the

symbolic expressions of the sensitivity equations using graph-theoretic processing.

The proposed method is implemented using Maple and MapleSim. Although this method

can be used for multi-domain systems, the current implementation in MapleSim is restricted

to multibody systems only. This is because in MapleSim, only the multibody portion is de-

rived using the graph-theoretic approach. At its present form, the MapleSim implementation

allows an user to model a multibody system using MapleSim’s component library and then

use the attached worksheet to generate the desired sensitivity equations. The worksheet also

offers flexibility in terms of selection of different modelling features, which results in greater

control over the structure and size of the resulting set of sensitivity equations.

1.4 Thesis organization

This section contains a brief description of the contents of this thesis. In Chapter 2, descrip-

tions of available papers and research results are presented. The first half of Chapter 2 is

focused on graph-theoretic modelling methods and contains an overview of the process of

equation generation for three-dimensional multibody systems. The second half contains in-

formation about sensitivity analysis. Different methods of sensitivity analysis are presented

along with descriptions of the associated advantages and disadvantages.

In chapter 3, a graph-theoretic approach is proposed for the sensitivity analysis of scalar
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systems. This chapter starts with a theoretical background on the subject and a discussion

about the derivation of sensitivity equations using direct differentiation. Then the graph-

theoretic method is used to generate the same equations to demonstrate the validity of the

process. The new approach is first explained in theory and then in practice,using examples

of a Ni-MH battery and a hydrodynamic torque converter model. The chapter also contains

some examples about possible applications of sensitivity analysis.

In chapter 4, graph-theoretic sensitivity analysis is applied to three-dimensional multi-

body systems. Using an example problem, the generation of sensitivity equations is explained

and demonstrated.

In chapter 5, the the graph-theoretic sensitivity analysis algorithm is applied to a few

multibody systems to demonstrate the applicability of this method and to evaluate its per-

formance for comparison. Also, to showcase its applicability toward multi-domain systems,

an example of an electric motor driven multibody mechanism is also included in this chapter.

A summary of research contributions and a list of resulting publications are provided

in chapter 6. It also contains recommendations for future work on the subject of efficient

sensitivity analysis in general and graph-theoretic sensitivity analysis in particular.
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Chapter 2

Literature review

This chapter presents available literature and existing research results, that are relevant to

the current topic. The first part of this chapter is used to cover graph-theoretic modelling

methods and the second part is used to discuss sensitivity analysis. In each section, different

formulations are discussed along with their applicability and disadvantages.

2.1 Graph-theoretic modelling

Graph theory was first used to study interconnections between entities by the famous Swiss

mathematician Leonhard Euler [1] in the year 1736. Over the centuries, it was developed by

various mathematicians as a tool to study system topologies.

In the twentieth century however, engineers recognized its potential as a powerful tool

for system modelling. Koenig et al. [2] , Trent [3], Seshu and Reed [4] and many others

have extended graph theory to model physical systems by combining linear graphs with

the set of constitutive equations representing the physical behaviour of system components.

This particular method of system modelling or “Graph-theoretic Modelling” is known for

its unified approach toward modelling multi-domain systems. In light of the definitions

presented in the previous chapter, this section presents an overview of the mathematics

behind graph-theoretic modelling and a brief discussion of the available literature on the

subject.

As a compact mathematical representation of the connectivity of the linear graph rep-

resenting a system, an incidence matrix I can be constructed from the graph itself. Each

of the columns in this matrix corresponds to a particular edge of the graph, and the rows
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correspond to the nodes.The matrix is generated column by column, by putting +1 at the

node at which the edge originates, −1 at the node at which the edge ends, and 0 at the

nodes not connected by the edge.

The reduced incidence matrix A can be derived from the incidence matrix I by deleting

the row corresponding to the node which is selected as a datum. The rows of this matrix A

are linearly independent, which is essential for the formulation.

Performing Gauss-Jordan elimination on the reduced incidence matrix the fundamental

cutset matrix Af is obtained which has the following form.

Af = [[1][Au]] (2.1)

The first sub-matrix of Af is a w × w identity matrix. The sub-matrix Au is a w × u
matrix also known as the chord transformation matrix.

The generation of the topological equations are governed by the vertex and circuit pos-

tulates as presented below.

Vertex postulate: The sum of through variables at any node of a linear graph must equal

zero when due account is taken of the orientation of edges incident upon that node, McPhee

[5], Savage [6].

This postulate summarizes the balance of the through variables at every node of the

complete graph G. The f-cutset equations can be obtained by considering the balance of the

through variables in the sub-graphs of G, left out by the fundamental cutsets. Mathemati-

cally the fundamental cutset equations can be expressed as

Afτ = 0 (2.2)

where Af is the fundamental cutset matrix and τ is the vector of through variables of the

graph, arranged in the proper order.

Circuit postulate: The sum of across variables around any circuit of a graph must equal

zero when due account is taken of the direction of edges in the circuit, McPhee [5], Savage

[6].

By applying this postulate to the fundamental circuits it is possible to obtain u inde-

pendent equations, which are known as the f-circuit equations. Mathematically, they can be

expressed as

Bfα = 0 (2.3)
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In equation (2.3), α is the column vector of across variables of the graph arranged in proper

order. The matrix Bf is known as the fundamental circuit matrix and it has a structure as

shown in equation.

Bf = [[Bw][1]] (2.4)

The second sub-matrix of the fundamental cuset matrix Bf is a u × u identity matrix.

The first sub-matrix Bw is a u × w matrix known as the branch transformation matrix. It

can be evaluated using the relationship shown in equation (2.5).

Bw = −Au
T (2.5)

By combining the constitutive equations with the topological equations shown in equation

(2.3) and (2.2) a complete set of governing equations can be generated.

The nature of the constitutive equations and the specific process of equation generation

depend on the nature of the system. For hydraulic and electrical systems the state variables

are scalar in nature and as a result the through and across variables also become scalars

which considerably simplifies the process of equation generation. For this reason, sensitivity

analysis of scalar systems are presented in a separate chapter of this thesis.

For three-dimensional multibody systems, the process of graph-theoretic modelling is

a little more involved. For these systems, not only the through and across variables be-

come vectors, also it becomes necessary to include two distinct domains, i.e., rotational and

translational, in the modelling process. It is therefore worthwhile to present an outline of

graph-theoretic formulation of multibody systems.

2.1.1 Graph-theoretic modelling of multibody systems

McPhee [7] has provided a fairly comprehensive summary of efforts from various researchers

on multi-body systems modelling using graph-theoretic methods. Multi-body systems can

be modelled using various coordinate schemes. Absolute coordinates are one of the simplest

of choices. However, the capabilities and the efficiency of the graph-theoretic method are

not demonstrated by the absolute coordinate formulation.

The real benefits of GTM become apparent when other coordinates are used. For example

in a joint coordinate formulation, it is very important to keep track of the topology of the

system. This is exactly where graph-theoretic models provide very convenient descriptions.

Since absolute coordinate formulations are often inefficient because of the large number
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of equations they generate, graph-theoretic methods are in fact very important tools for

modelling large systems.

One of the first applications of linear graphs to multi-body systems was done by Sheth

and Uicker [8]. They derived supplementary loop closure equations for a multi-body system

consisting of closed kinematic loops from a linear graph where the nodes represented the

links and the edges represented the joints. As an extension, Wittenburg [9] used linear

graphs to represent systems of rigid bodies with both closed and open kinematic loops.

His representation generalized the edges to include springs, dampers and other complex

connections with six degrees of freedom. In his approach graph theory was used to generate

the kinematic loop closure equations. Hwang and Haug [10] have implemented a recursive

linear-order formulation based on linear graph representation of systems of rigid bodies. Lai

et al. [11] has used “extended graphs”, where nodes were used to represent reference frames.

This particular representation is very similar to that used in the current work.

All of these efforts mentioned so far are examples of ad hoc applications of graph theory to

dynamic systems modelling. One of the first applications of formal graph-theoretic methods

to multi-body dynamics was done by Andrews and Kesavan [12] in their “Vector Network

Graphs”.

In the current work, to model multi-body systems linear graphs are used, where the

nodes represent body-fixed reference frames. The edges represent all the physical entities of

the system (e.g., masses, forces, joints etc). This is entirely based on the work presented by

McPhee [5].

The general motion of any rigid body can be represented by the combination of purely

translational and purely rotational motions. When rigid bodies are connected through joints

to form a multi-body system, the translational and rotational motions of one constitut-

ing body get intertwined with the translational and rotational motions of the other bod-

ies. Therefore to represent the motion of a multi-body system properly, it is necessary to

consider two sets of through and across variables associated with the edges of the graph

representing the system. For instance, an edge which represents the centre of mass of

a rigid body would have both torque and force as its through variables and both trans-

lational displacement/velocity/acceleration and rotational orientation/velocity/acceleration

as its across variables. Consequently two sets of cutset and circuit equations are generated

from the linear graph, i.e., one each for the translational and the rotational aspect of the

motion. Since the through and across variables for a graph representing a multi-body system

are represented by vectors, these cutset and circuit equations appear as vector equations.
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The terminal equations for multi-body systems capture the physical characteristics of

the component in question. Since there are two sets of through and across variables, every

component is associated with two terminal equations. As an example, for an ideal revolute

joint the equations are

r̄ = 0 and T̄ .û = 0 (2.6)

In the above equations r̄ and T̄ are the translational across quantity and the rotational

through quantity associated with the edge representing the joint respectively and û is the

unit vector along the revolute axis. More general discussions about terminal equations are

presented by Li and Andrews [13] and Andrews et al. [14]. Using two sets of cutset, circuit

and terminal equations it is possible to solve for the quantities describing the motion of

the system. However, if a branch-chord formulation is used, then all secondary variables

(i.e., through variables from the tree and across variables from the cotree) can be eliminated

from the system equations. The resulting equations are expressed in terms of the across

variables associated with the branches, and through variables associated with the chords.

Collectively these quantities are known as the primary variables. Thus by using a branch-

chord formulation, a decrease in the number of equations is possible.

The following steps are performed to generate the governing equations for a multibody

system.

• Projection of cutset equations on the motion space

• Projection of circuit equations on the reaction space

• Elimination of secondary variables ( in the specified order )

1. Rigid arm forces

2. Cotree translational across variables

3. Cotree rotational across variables

• Assembly of motion equations

One great advantage of graph-theoretic formulation is that it offers the flexibility to select

the set of generalized coordinates that best describe the system. By selecting different trees

for the translational and rotational aspect of the motion, it is possible to ensure generation

of governing equations in term of any reasonable set of generalized coordinates.
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This method can be used to generate an optimized set of governing equations if the

branches for the T-tree and the R-tree are selected in a manner such that the set of primary

variables of the model has minimum number of unknown quantities. McPhee [5] and Leger

[15] has presented a smart scheme for tree selection that ensures optimized coordinate for-

mulation. Throughout this work, translational trees (T-trees) and rotational trees (R-trees)

from a single graph are used, in order to generate the governing equations in terms of the

generalized coordinates.

An example of a simple pendulum is provided here to illustrate the procedure of the

generation of governing equations for multibody systems.

q

mg

î

ĵ

k̂

2L

h

r
m

F

Figure 2.1: A simple pendulum and the corresponding linear graph

Figure 2.1 shows a simple pendulum of length 2L hinged about a point. It also shows

the corresponding linear graph of the system. The nodes of the graph represents body fixed

frames of references. For example, the node at the centre of the rod represents a frame of

reference fixed to the rod at its centre of mass.

On the other hand, the edges of the linear graph represent sets of related measurements.

The relationships between these measurements determine the distinct physical components

the edges correspond to. The figures shows the labels of these edges in accordance with their

functional identities. The edge h is the revolute joint, r is the rigid arm vector attached to

the rod, m represents the mass and rotational inertia of the body and the edge F represents

the force of gravity acting on the pendulum.

With these four edges, the first step is to identify the through and across variables. Since

all of these edges have both translational and rotational significance, they are associated

with through and across variables from both translational and rotational domains.
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Translational through variables: F̄m, F̄ r, F̄h, F̄F

Rotational through variables: T̄m, T̄ r, T̄h, T̄F

Translational across variables: r̄m, r̄ r, r̄h, r̄F

Rotational across variables: φ̄m, φ̄ r, φ̄h, φ̄F

Step 1: Selection of a tree

The edges h, r for the T-tree and the edges r, m for the R-tree are chosen as tree, ensuring

the generation of equations in terms of the coordinate q = {θ}.

Step 2: Projection of cutset equations onto the motion space

From figure 2.1 it can be seen that the motion space of the revolute joint is the direction

given by the unit vector k̂ and the reaction space is given by the unit vectors î and ĵ. Since

the cutset equations from the T-tree are in terms of quantities which are always orthogonal

to the direction vector , the projected cutset equations from the T-tree reduce to zero. From

the R-tree however, a single projected cutset equation is obtained.

(
T̄m − T̄ h = 0

)
. k̂ (2.7)

Step 3: Projection of circuit equations onto the reaction space does not yield any

equations, as expected for the 1-DOF system modelled by a single independent coordinate.

Step 4: Elimination of secondary variables

Substituting terminal equations into equation (2.7)(
−I cm ¨̄φm −

(
r̄r × F̄r

)
= 0
)
. k̂ (2.8)

For the rigid arm force

F̄r = F̄m + F̄F = − m̈̄r m −mg ĵ (2.9)

For the cotree across variable

¨̄rm = −¨̄r r − ¨̄rh = − ¨̄φm × r̄ r +
(∣∣∣ ˙̄φm

∣∣∣)2r̄ r (2.10)

Definition of r̄r and ˙̄φm

r̄ r = − (L sin θ) î+ (L cos θ) ĵ , ˙̄φm = θ̇ k̂ (2.11)
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Step 5 : Assembly of governing equations

By substituting equations (2.9),(2.10), and (2.11) into equation (2.8) the following dif-

ferential equation in terms of θ is obtained.

(
Icm +mL2

)
θ̈ = −mgL sin θ (2.12)

A similar process of equation generation is used throughout the course of this research.

2.1.2 Applications of graph-theoretic modelling

Graph-theoretic modelling methods have been used extensively in many diverse applications.

Because of its generalized approach, graph-theoretic modelling methods can be readily ex-

tended from modelling complex mechanisms to multi-domain systems where different forms

of energy interact with each other.

Schmitke et al. [16] have used graph-theoretical methods to create efficient models to

study vehicle dynamics. Similar efforts have been used to model tire soil interactions.

Sass et al. [17] has provided a comparative study of different methods of modelling

electro-mechanical multi-body systems. Scherrer and McPhee [18] have presented a unified

method for modelling electro-mechanical systems with multi-body mechanical systems and

analog electrical components. An extension of this paper was presented by McPhee et al. [19]

to include flexible multi-body systems and the concept of assembly of subsystems. Linear

graph models have also been used to model electro-chemical reactions and to simulate the

operation of Ni-MH batteries, Dao and McPhee [20]. The main issue behind these multi-

domain models is to model transducer components that have terminal equations in both

domains. Moving plate capacitors, moving coil inductors and electrical prime movers are all

examples of such components.

Using similar principles, graph-theoretic methods have also been used to model hydro-

dynamic machines. Banerjee and McPhee [21] have presented a graph-theoretic model of an

automotive torque converter.

2.1.3 Software Implementation

The automated generation of symbolic governing equations is a desirable feature for efficient

sensitivity analysis of dynamic systems. During the design phase of development, system

models undergo numerous alterations. An automated generation of governing equations can
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greatly improve the effectiveness of this process. In this section, brief overviews of some of

the existing software packages that are used for modelling multibody and/or multi-domain

systems will be presented.

Maple: Maple is a general-purpose computer algebra system developed and marketed by

Waterloo Maple Inc. It incorporates a dynamically typed programming language which

resembles Pascal. There are provisions of interfacing with C, Fortran, Java and Matlab.

The heart of Maple is a kernel written in C, which provides the Maple language. Most

mathematical functionalities are provided by libraries. The user interface is written in Java.

The main aspect of Maple is the ability to manipulate symbolic equations and expressions.

It contains a very large library of symbolic operations. Simplification and modification of

symbolic expression are routinely done by Maple.

Apart from the symbolic capabilities, Maple can also be used for numerical simulations.

Advanced numerical routines allow users to solve complicated large systems of ODEs and

DAEs using a variety of different algorithms.

Because of its excellent symbolic and numeric capabilities, Maple can be used to simulate

multibody systems effectively. Mathematically it becomes the process of solving a set of

ODEs or DAEs depending on the nature of the system. Also it provides the platform for

other modelling softwares.

DynaFlexPro: DynaFlexPro was developed by McPhee and Schmitke at the University of

Waterloo, Canada. It is capable of generating symbolic governing equations for multi-domain

engineering systems.

Their formulation is based on linear graph theory and the principle of orthogonality [22].

The input to the program is a topological description of the system using predefined blocks.

DynaFlexPro is implemented using Maple. It extensively uses Maple’s symbolic processing

libraries to generate and simplify symbolic equations. It can also be used to generate very ef-

ficient simulation codes for different languages. The “CodeGeneration” package can produce

optimized simulation codes for Maple, C, Matlab and Fortran.

MapleSim: MapleSim is a multi-domain modelling and simulation tool developed by Maple-

soft Inc. It is capable of simulating electrical, electronic, mechanical, hydraulic and magnetic

systems. The input to the software is the description of the system using the components

from a central library that can be drag-dropped on to a worksheet.

MapleSim is built on Maple, which enables it to perform very effective symbolic simplifica-

tions of the generated equations. Also, using Maple’s DAE and ODE solvers, it can simulate
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and present the output of the models in an interactive three-dimensional environment. It

can also perform post-processing on the generated data using predefined templates.

The multibody package of MapleSim is based on the DynaFlexPro engine and uses a linear

graph based formulation. Other components (e.g. electrical, magnetic, thermal, hydraulic

etc) are based on Modelica codes.

Apart from the built-in library of standard components, MapleSim allows users to create

custom components for user specific implementation. These custom components are based

on the Maple language and can be readily included in models created using MapleSim’s

standard components. It is also possible to create custom components based on Modelica

codes.

The proposed method of sensitivity analysis is implemented using MapleSim. Since

Maplesim uses graph-theoretic method to model multibody systems only, the implementation

is specifically applicable for multibody systems. However, theoretically it can be applied to

any multi-domain system represented by a linear graph.

2.2 Sensitivity analysis of dynamic systems

Sensitivity analysis can be classified into two basic categories. Based on the domain in which

their results stay valid, sensitivity analysis can be described as either a global or a local study.

The term “global sensitivity analysis” was introduced by noted econometrician Edward

Leamer [23]. In a successful global sensitivity analysis, the conclusions remain valid for the

entire range of values of the parameters [24]. Mathematically, global sensitivity analysis can

be performed by variance based methods like high dimensional model representation [25] or

sampling based methods like the elementary effect method and Monte Carlo filtering.

However, for practical multibody systems, these methods can be extremely inefficient.

Due to the requirement of large number of simulations, sampling and statistical sensitivity

analysis is often not suitable and much better performance can be obtained by employing

what is known as local sensitivity analysis.

On the other hand, local sensitivity analysis gives results that are valid only in the

neighborhood of the point at which they are evaluated. Since multibody systems are non-

linear in nature, local sensitivity information are generally not valid for the entire range of

possible parameter values. As a result, conclusions based on local sensitivity analysis need

a specification of operating point to become meaningful.

Direct differentiation, the adjoint variable method, automatic differentiation and other
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analytical formulations can be used to evaluate local sensitivity information. The fact that

these methods yield locally valid information makes these approaches suitable for optimiza-

tion algorithms and have been used in a wide range of engineering applications.

Haug and Serban [26] have stated

Dynamic design sensitivity analysis of multi-body systems represents the link

between optimization tools and simulation tools.

2.2.1 Finite difference formulation

One of the easiest methods of local sensitivity analysis for multibody systems is to use a

finite difference scheme to evaluate the gradient information of the objective function with

respect to the parameters. This method is probably the simplest to implement and can

easily be extended to evaluate derivatives of higher orders. This method can be explained

by a simple Taylor series expansion.

For a system governed by a differential equation f(q, q̇, b, t) = 0 with state variable q and

model parameter b, a perturbation in the value of the parameter also affects the variation

of q with time. Since q is a function of both b and t, its perturbed value can be written as

q(b+ δb, t). Using Taylor expansion it can be written

q (b+ δb, t) = q (b, t) +
∂q

∂ b
× δbs (2.13)

Rearranging terms
∂ q

∂ b
=
q (b+ δb, t)− q (b, t)

δb
(2.14)

This demonstrates the use of forward difference scheme to determine the first order

sensitivity of the state variable q with respect to the model parameter b. Other difference

schemes can also be used for this purpose. Also similar approaches can be applied to evaluate

higher order sensitivities.

However it is often not worthwhile for practical implementation because of its depen-

dence on the perturbation size. Furthermore, researchers [27, 28, 29] have shown that extra

computational cost is necessary to determine optimal perturbations for the parameters for

different scenarios.
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2.2.2 Direct differentiation

The objective of local sensitivity analysis for a multibody system is to evaluate the derivative

of the state variables representing the system. For models where symbolic equations are

available, this can be accomplished by a method known as the direct differentiation.

To perform sensitivity analysis on these models, one approach is to find a stepping stone

between the system equations governing the state variables and the sensitivity equations

governing the sensitivities of the state variables. The simplest method to derive the set of

sensitivity equations is to use the method of direct differentiation [26, 30, 31] and differentiate

the governing equations symbolically.

In direct differentiation, a set of auxiliary equations known as the sensitivity equations

are generated from the original system equations by differentiating them with respect to

the model parameters. By solving these sensitivity equations, the corresponding sensitivity

information is obtained as functions of time. To illustrate this method, we consider a system

governed by a set of nonlinear equations as shown in equation (2.15), where q is a vector of

state variables, p is the vector of model parameters and f is a vector of sufficiently smooth

functions (C1 continuous for 1st order sensitivity analysis).

f (q,p, t) = 0 (2.15)

We also introduce a set of objective functions as given in equation (2.16).

g (q,p, t) = 0 (2.16)

In equations (2.15) and (2.16), the number of state variables and the number of model

parameters are n1 and n2 respectively i.e., q ∈ Rn1 and p ∈ Rn2 . The vectors f and g have

n1 and k functions respectively, f : Rn2+n1 → Rn1 and g : Rn2+n1 → Rk.

The objective of sensitivity analysis is the evaluation of the derivative of g with respect

to the model parameters p. Using matrix notations, the expression for this derivative is

shown in equation (2.17).

S =
dg

dp
= gqqp + gp (2.17)

The terms gq and gp in equation (2.17) can be derived from the structure of the vector

g. However, the n1 × n2 matrix qp is unknown and can only be evaluated from the original

model. To calculate the matrix qp we differentiate equation (2.15) with respect to the model
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parameter vector p and obtain the expression shown in equation (2.18).

fqqp + fp = 0 (2.18)

Equation (2.18) is matrix of n1×n2 equations that can be solved to evaluate the n1×n2

elements of the matrix qp. The matrix qp can then be substituted in equation (2.17) to

evaluate the required sensitivity information.

Direct differentiation is portable, easy to implement, stable, and produces results that

are numerically exact. This method has been used to perform sensitivity analysis for sys-

tems governed by kinematic equations [32], ordinary differential equations [6, 33, 34] and

also differential-algebraic equations [35]. Serban and Freeman [35] have performed simulta-

neous sensitivity analysis with respect to multiple parameters. It is widely used to perform

parameter identification [33] and design optimization [36].

The drawback of direct differentiation is also apparent from the presented example. To

evaluate a sensitivity matrix S of k×n2 elements, direct differentiation requires the solution

of n1 × n2 equations, (2.18). Usually, for practical scenarios, the number k is much smaller

than n1 or n2. This means, using direct differentiation method, one needs to solve a much

larger set of equations to get a smaller set of required information.

The size and the complexity of equation (2.18) depends on the nature of the governing

equation f , the size of the vector of state variables q and the number of model parameters

p. For large systems, especially while dealing with a large number of parameters, this makes

direct differentiation unsuitable for implementation. To address this issue, an alternate

method using adjoint variables was developed.

2.2.3 Adjoint variable method

The process of finding the gradient of a function involving the state variables of a system with

respect to a system parameter can be described as the process of optimizing an objective

function, where the quantities are constrained by the set of governing system equations.

Lagrange’s method of optimization can be used to convert the constrained optimization

problem into an unconstrained optimization problem using a set of adjoint variables. This

is known as the adjoint variable method.

Mathematically, the adjoint variable method can be demonstrated by considering the

system governed by equation (2.15). To evaluate the sensitivity of the objective function

vector given in equation (2.17), the first step in the adjoint variable method is to introduce
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the adjoint variables by multiplying equation (2.18) with the transpose of a n1× k matrix λ

.

λTfqqp + λTfp = 0 (2.19)

The adjoint equations are formed as shown in equation (2.20). The terms fq and gq are

derived from the vectors f and g using symbolic differentiation.

λTfq = gq (2.20)

By multiplying equation (2.20) with qp we obtain

λTfq qp = g q qp (2.21)

Combining equations (2.21) and (2.19) we obtain

gq qp = −λTfp (2.22)

The required sensitivity matrix can be then written as

S =
dg

dp
= −λTfp + gp (2.23)

With the values of λ evaluated by solving equation (2.20), the sensitivity information S

can be easily evaluated by substitution.

Using adjoint variable method, the k × n2 elements of S are evaluated through a set of

n1 × k adjoint variables. The number of adjoint variables required is independent of the

number of model parameters. This makes this approach suitable for scenarios where a large

number of model parameters are under study.

Physically, the adjoint variable method uses the Lagrange multipliers as a stepping stone

to avoid the problems of direct differentiation. The adjoint variables force the governing

equations to hold. Thus the goal switches from finding the derivatives of the governing

equations to finding the adjoint variables which would make the system satisfy the governing

equations.

The implementation of adjoint variable method is more complicated than that of direct

differentiation. In case of dynamic systems, i.e., systems that are governed by ODEs or

DAEs the generated adjoint systems become sets of ODEs and DAEs themselves.
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Often, for practical applications, the objective functions are defined in an integrated

form. For dynamic systems, this leads to a situation where the adjoint system becomes a

terminal value problem, instead of an initial value problem.

Theoretically, this can be solved by simulating the governing equations in the forward

time direction and using the simulation data to solve the adjoint system in the backward

direction. This poses a challenge for the practical implementation of this method.

Efficient numerical integrators use adaptive step size selection method. If adaptive step

size solvers are used, the time points where the actual quadrature is evaluated, never match

up for the forward and backward simulations. To address this problem, interpolation poly-

nomials associated with every time point of the forward problem need to be stored along

with the response of the system.

From this discussion, the drawbacks of the adjoint variable method can be summarized.

Its complex implementation and requirement of data storage makes it unsuitable for large

systems, and for longer simulations. Also, for complicated objective functions, the adjoint

variable method generates more complicated equations that need to be solved.

The adjoint variable method has been extensively used for optimal control and optimal

design by Haug [37] and Bestle et al. [28, 38]. For control applications, the model size is

usually small, which makes adjoint variable method appropriate for these applications.

Sandu et al. [39], Hindmarsh et al. [40, 41] and Petzold et al. [42, 43, 44] have worked

extensively on this subject and have developed numerical packages to perform sensitivity

analysis using the adjoint variable method on systems governed by different types of DAEs

and ODEs.

Ding et al. [45] have extended this method to perform second-order sensitivity studies

on DAEs. Serban [46] has presented a parallel computational model based on the adjoint

variable method.

2.2.4 Recursive formulation

Recursive formulations were originally used to generate efficient sets of governing equations

for multibody systems [10]. To avoid the complicated and resource-hungry implementation

of the adjoint variable method, Anderson and other researchers [29, 47, 48, 49, 50] have

extended the formulation to generate sensitivity equations using recursive methods.

However, the implementation of the recursive approach is very complicated and shows

its benefits mainly for systems with open kinematic chains. It is also suggested that there
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is a critical number of bodies that must be present in a serial chain to make the recursive

algorithm effective. For most multibody systems, especially those encountered in mechanisms

and vehicular systems, this critical number is higher than the maximum number of bodies

connected in series.

2.2.5 Automatic differentiation

To simulate models of physical systems, numerical methods are often used to calculate the

values of the state variables that describe the configuration of the system as functions of

time. For most practical systems, the numerical methods involve some sort of an integrator

to solve the different types of differential equations encountered in the models.

Automatic differentiation is a numerical tool which, when applied to any numerical

method, can calculate the derivatives of the output of the numerical method with respect to

any relevant quantity.

It is based on the fact that any numerical process, however complicated, can be broken

down into smaller elemental operations. Therefore, using the chain rule of differentiation

and a table of standard differentiation results, it is possible to construct the derivative of

the original numerical process.

In case of sensitivity analysis, when automatic differentiation is applied to the integrator

that simulates the system, it calculates the values of the state variables and their derivatives

at different points of time. This method of differentiation is completely different from the

finite difference approach where the entire numerical process is performed repeatedly with

perturbed values of the parameters.

Over the years, many numerical integration schemes have been developed to simulate

systems governed by kinematic, differential [51] and differential-algebraic equations [52, 53].

Automatic differentiation has been successfully used to produce the state variables and their

derivatives [27, 54, 55, 56, 57].

To compare automatic differentiation with other methods of sensitivity analysis, one

obvious choice is to compare the number of equations that are processed in the course of

the evaluation of sensitivity information. However, that is not possible due to the inherent

characteristics of automatic differentiation. It is to be noted that in automatic differentiation,

the starting point is the governing set of system equations, and the process of the evaluation

of the derivatives is a purely numerical one.

Essentially, automatic differentiation is an augmentation of the numerical simulation
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routine that generates the sensitivity information. Therefore it does not benefit from the

advantages of the symbolic approach toward sensitivity analysis and cannot formally be

classified as a symbolic method.

2.2.6 Bond-graph based sensitivity analysis

Bond graphs represent an unified approach toward modelling multi-domain physical sys-

tems. Since the bond graph method is capable of generating the governing equations in an

automated fashion, sensitivity analysis based on a bond-graph formulation has received con-

siderable attention. Cabanellas et al. [58] have formulated sensitivity analysis for bond graph

models using the concept of Pseudo-bond graphs. Gawthrop [59] has developed the “Sen-

sitivity Bond Graph” to perform sensitivity analysis. Ronco and Gawthrop [60] and Perry

et al. [61] have used similar methods to perform parameter estimation, optimization and

uncertainty analysis for multi-domain mechatronic systems. Unfortunately, the bond graph

method is not very effective when it comes to three-dimensional multi-body systems [17]. Its

application to sensitivity analysis of multibody systems is limited due to the complexities

involved.

2.2.7 Sensitivity analysis based on graph theory

Savage [6] has presented a method to automatically generate sensitivity models of first and

higher orders from a linear graph representing the system. Carr and Savage [34] have ex-

tended this method to include cases of nonlinear constitutive equations. These methods were

restricted to steady-state problems and scalars were used to represent the variables.

From the discussion of the existing literature it is clear that as the size of the system increases,

the established methods start to become more and more inefficient. The finite difference

method becomes unstable for different perturbation sizes, direct differentiation becomes

computationally expensive for large number of parameters, the adjoint variable method

becomes inefficient for large systems, and automatic differentiation misses out on the benefits

of symbolic simplification procedures. Furthermore, most of these methods require system-

specific considerations.

In the subsequent chapters, a graph-theoretic approach for the generation of sensitiv-

ity equations will be presented which is expected to offer flexibility in terms of equation

generation and control over the structure and size of the resulting equations.
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Chapter 3

Graph-theoretic sensitivity analysis of

scalar systems

3.1 Introduction

In scalar systems the through and across variables are represented by scalar quantities. In this

chapter graph-theoretic sensitivity analysis will be applied to these systems to demonstrate

the applicability of the proposed algorithm for these systems and to illustrate the practical

applications of effective sensitivity analysis.

The theoretical background of graph-theoretic sensitivity analysis will be presented using

a spring-mass-damper system as an example. In light of this discussion a couple of example

problems will be presented. First, a graph-theoretic model of a hydrodynamic torque con-

verter will be chosen where sensitivity analysis will be used to perform design optimization.

Next, graph-theoretic sensitivity analysis will be applied to a Nickel-Metal Hydride (NiMH)

battery model to perform parametric importance analysis. A brief overview of the software

implementation for the example problems will also be presented in this chapter.

3.2 Formulation of the graph-theoretic framework

The key benefits of direct differentiation for the sensitivity analysis of dynamic systems are:

• Conceptual simplicity

• Direct evaluation of required quantities and numerical stability

• Numerically exact results and easy adaptability to different problem structures
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But at the same time, direct differentiation generates a large number of equations and

becomes intractable for large systems and especially for a large number of parameters. To

overcome this problem a graph-theoretic approach is proposed hereby to combine the ben-

efits of graph-theoretic modelling methods and the simplicity of direct differentiation. By

combining the symbolic methodology of linear graph with direct differentiation based sen-

sitivity analysis, the proposed algorithm will be shown to achieve computational efficiency

while not sacrificing the benefits of a direct method. The goal is to achieve the following:

• Automatic generation of sensitivity equations

• Computational efficiency through branch-chord formulation

• Symbolic representation

• Integration with modelling software for the ease of the user

Linear graph 

representation of 

the system

Graph theoretic 

modelling software

Governing equations

(Set of ODEs/DAEs)

Symbolic 

differentiation
Sensitivity equations

Figure 3.1: Generation of sensitivity
equations using existing methods

Linear graph 

representation of 

the system

Proposed 

algorithm

Governing equations and 

the sensitivity equations

Figure 3.2: Generation of sensitivity
equations by the proposed method

The existing method for sensitivity analysis is essentially a serial process, where the

algorithm for the generation of sensitivity equations is applied to the completely formed

governing equations.

Because of the fact that the system equations are assembled before sensitivity equations

are generated, this process does not leave much room for improvements. On the other hand,

the proposed algorithm generates the sensitivity equations simultaneously with the system

equations by approaching the sensitivity problem from a much lower level.

Figure 3.2 shows the schematics of the proposed method. It is expected that this approach

would lead to simpler and controllable sensitivity equations, which is very important for

efficient computation.

To explain the process of generating the sensitivity equations from a linear graph, one

needs to understand the basic steps that generate the system equations in the first place.
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Detailed description of this process is presented in chapter 2. In this section, the same

process will be used to illustrate the generation of sensitivity equations.

k

mc
F

Figure 3.3: A spring-mass-damper system

c2

m1

F4

k3

Figure 3.4: Linear graph G1 for the system

Figure 3.3 shows a simple one-dimensional spring-mass-damper system. Using the for-

mulation presented in chapter 2, the governing equation for this system can be generated

from the linear graph G1 that captures the topology of this system, as shown in figure 3.4.

The linear graph for any dynamic system generates three distinct types of equations.

• F-Cutset equations

• F-Circuit equations

• Terminal equations

Although generally these equations are simplified by substitution and other methods to

generate a more compact form of system equations, it is mathematically justified to use

these equations together and treat them as the mathematical model of the system.

To obtain the sensitivity equations using graph-theoretical modelling, the method pro-

poses to formulate a second graph G2 which will yield the sensitivity equations. To determine

the structure of G2 one needs to generate the sensitivity equations using direct differentiation

and then formulate the graph G2 so that the equations can be generated from it. At this

point the structure of G2 is unknown and the following discussion will be used to bridge the

gap between the unknown structure of a linear graph and the known set of equations that

it is expected to generate.

F-Cutset equations

The F-Cutset Equations are linear relationships involving the through variables associated

with the edges of the graph. The general form of the f-cutset equation is

Afτ = 0 (3.1)
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The matrix Af is the fundamental cutset matrix which is a constant, and τ is the vector

of through variables. When equation (3.1) is differentiated with respect to a single scalar

parameter b, the following equation is obtained.

Af
∂ τ

∂ b
= Af τ b = 0 (3.2)

It is to be noted that equation (3.2) uses the same Af matrix as equation (3.1). This

means that the sensitivities of the through variables are through variables themselves and

the structure of G2 should be such that its f-cutset matrix would be identical to that of the

graph G1.

F-Circuit equations

Like the f-cutset equations, the f-circuit equations are linear relationships involving the across

variables associated with the edges of the graph.

Bfα = 0 (3.3)

By direct differentiation, the relationship between the sensitivities of the across variables are

determined to be given by the following equation.

Bf
∂α

∂ b
= Bf αb= 0 (3.4)

Once again it can be seen that the sensitivities of the across variables are across variables

themselves. Also, it is apparent that equation (3.4) requires the graph G2 to have the same

f-circuit matrix as the graph G1.

The terminal equations

The terminal equations are connections between the through and across variables, usually

associated with the same edge. For the sensitivity graph G2 the terminal equations would

be the relationship between τ b and αb. These relationships can obtained by differentiating

the terminal equations of the graph G1.

From the above discussion, it is clear that the graph G2 should have the same topology

as the graph G1, with the same number of nodes and edges. However the through and across

variables associated with the edges of graph G2 will obviously be different from that in G1
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with respect to the chosen model parameter. In fact they will be the corresponding sensi-

tivities. Also the terminal equations of G2 will be the derivatives of the terminal equations

of G1. Figure 3.5 below shows the sensitivity linear graph G2 for the spring mass damper

system shown in figure 3.3. In the graph shown in figure 3.5 the through and across variables

b

k
τ

b

c
τ

b

F
τ

b

k
α

b

c
α

b

F
α

b

m
τ

b

m
α

k

Figure 3.5: Sensitivity graph (G2) for the spring-mass-damper system

associated with the edges are denoted by τ and α. The subscripts refer to the parameter

with respect to which sensitivity analysis is being carried out, and the superscripts refer to

the components with which the variables are associated .

The sensitivity equations can be generated from G2 following the same procedure used

to generate the system equations from G1. Also, all the usual techniques of branch-chord

formulation can be applied during the equation generation. The following paragraphs will

further illustrate this process by using the current example.

mẍ+ c ẋ+ k (x− l0) = F (t) (3.5)

Equation (3.5) is the governing equation of motion for the system represented by the

graph G1. In this equation, m is the mass of the block, c is the damping coefficient, k is the

spring constant, and F (t) is the applied force on the block. This equation can be generated

from G1 using graph-theoretic methods and the following terminal equations.

τ m = −mα̈m τ F = F (t) τ c = −c α̇ c τ k = −k
(
α k − l0

)
(3.6)

The corresponding sensitivity terminal equations can be obtained by differentiating equa-

tion (3.6) with respect to the desired model parameter. For this example a general parameter

b is chosen and the following sensitivity terminal equations are derived.
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τ mb = −∂m
∂b
α̈m −mα̈m

b τ Fb = ∂
∂b
F (t)

τ cb = −∂c
∂b
α̇ c − cα̇ c

b τ kb = −∂k
∂b

(
α k − l0

)
− k

(
α k
b − ∂l0

∂b

) (3.7)

For the specific case when b = k, the sensitivity terminal equations take the form shown in

equation (3.8).

τ mk = −mα̈m
k τ mk = 0

τ ck = −c α̇ c
k τ kk = −

(
α k − l0

)
− kα k

k

(3.8)

To generate the sensitivity equations using the same branch-chord formulation demon-

strated in chapter 2, the same edge m is chosen as the tree for the graph G2. This results

in the following f-cutset and f-circuit equations, which are derived assuming a general model

parameter b.

[
1 1 1 1

]


τ mb

τ kb

τ cb

τ Fb

= 0 and

 −1 1 0 0

−1 0 1 0

−1 0 0 1




αm
b

α k
b

α c
b

αF
b

= 0 (3.9)

To derive the final set of equations, we assume that the parameter in question is the spring

constant k. By combining equations (3.9) and (3.8) and using the substitutions b = k,

αm = x, and αm
k = x k the sensitivity equation for this system is generated.

τ mk +τ kk+τ ck+τ Fk = 0

→ −mα̈mk −c α̇ck−
(
αk−l0

)
−kαkk= 0

→ −mα̈mk −c α̇mk − (αm−l0)−kαmk = 0

→ mẍk + c ẋk + kxk= (l0 − x)

(3.10)

The validity of this equation can be easily verified by differentiating equation (3.5) with

respect to the model parameter k, which yields identical results.

The example shown here demonstrates the applicability of graph-theoretic sensitivity

analysis on scalar systems. The important point to note is that the algorithm follows the exact

same path as that of generating the system equations and thus can be readily implemented

using modelling software that uses graph-theoretic modelling techniques.

It is to be noted that although the sensitivity equations were derived from the second

graph G2, it is not independent of the system graph G1. This is clearly evident from the

constitutive equations of the graph G2 as shown in equation (3.7), where the through and

37



across variables of the graph G1 appears along with the through and across variables of the

graph G2.

In effect, the system response can be considered as the factor that drives the sensitivity

equations. For the example of first order sensitivity analysis of the presented spring-mass-

damper mechanism, this dependence is clearly illustrated by the final form of the sensitivity

equation. As shown in (3.10), the position x, an across variable from the system graph,

appears in the right hand side and act as what can be described as a sensitivity driver.

In the subsequent sections in this chapter, the graph-theoretic sensitivity analysis will be

applied to different scalar systems to demonstrate its application and suitability. First, an

automotive hydrodynamic torque converter model will be considered. Graph-theoretic sen-

sitivity analysis will be applied to the model to perform design optimization and parametric

importance analysis. Next, an electro-chemical model of a Ni-MH battery will be consid-

ered to demonstrate the application of sensitivity analysis for the identification of important

parameters.
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3.3 Example of a hydro-mechanical system:

An automotive torque converter

From the assistive devices that help medical professionals move patients with disabilities,

to the actuators that control the flying surfaces of a modern day jet, there are countless

instances of hydro-mechanical systems encountered in the modern world. However differ-

ent their respective applications can be, the common theme in these systems is the fact that

they convert energy back and forth between the mechanical and the hydraulic domains. Effi-

cient, accurate and effective modelling and analysis of hydro-mechanical systems is therefore

essential for the design, development and manufacturing of many practical devices.

In this example, an automotive hydro-mechanical torque converter is chosen and the

linear graph approach is used to model the system and perform sensitivity analysis.

A torque converter is an essential component for an automobile with automatic trans-

mission. Its function is to transmit torque from the engine to the drive shaft while allowing

discrepancies between the angular velocities on each side. For this aspect, it serves the func-

tion of a mechanical friction clutch. In addition to this, a torque converter makes it possible

to achieve torque multiplication that results in better acceleration and it also provides some

degree of vibration isolation between the engine and the transmission.

Figure 3.6: Location of a torque converter in
a transmission system

Figure 3.7: Schematic diagram of a
hydro-mechanical torque converter

The hydro-mechanical torque converter is the most common design used for this purpose.

It has three main components, known as the pump, the turbine, and the stator. The pump

and the turbines have vanes built onto them, that can channel the flow of hydraulic fluid
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in the radial direction. The stator is a circular array of blades that deflect the flow of fluid

from the turbine and align them with the vanes of the pump. The pump section is rigidly

connected to the engine flywheel and the turbine section is connected to the drive shaft

leading to the transmission gearbox. The stator is connected to the automobile chassis using

a special revolute joint that allows motion in one direction only.

3.3.1 Graph-theoretic modelling of a torque converter

To model a torque converter, the first step is to understand its function and structure. A

torque converter works between the engine and the rest of the transmission system. Figure

3.6 shows the location of a torque converter in an automotive transmission system.

The operation of a torque converter can be described as that of a hydraulic pump driving

a hydraulic turbine. The torque from the engine drives the pump which imparts energy to

the hydraulic fluid in the system; the hydraulic fluid flows through the vaned construction

of the turbine and makes it rotate thereby transmitting the torque coming from the engine

toward the rest of the transmission system. From the standpoint of energy transmission, the

pump converts mechanical energy into hydraulic energy and the turbine converts it back to

the mechanical domain. A linear graph can be used to represent the flow of power across

different domains of the system and account for the storage and losses incurred in the process.

The ratio of the angular speeds of the turbine ωt, and the pump ωp is known as the speed

ratio. It is denoted as ωr as shown in equation (3.11).

ωr = (ωt/ωp) (3.11)

Depending on the value of ωr, a torque converter can act in two different modes of

operation. When ωr is less than unity, that is when the angular velocity of the pump is

greater than that of the turbine, the pump drives the system and torque is transmitted from

the pump to the turbine. This is known as the forward flow mode. This mode of operation

corresponds to the acceleration of the vehicle.

On the other hand, when ωr is greater than unity, the turbine drives the system and

torque is transmitted from the transmission to the engine. This is known as the backward or

reverse flow mode. This corresponds to engine braking or coasting operation of the vehicle.

Figure 3.7 shows the schematic diagram of a typical torque converter. The mechanical

components and the path followed by the hydraulic fluid during the forward flow mode are

shown in the diagram.
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Conventional modelling methods require manual derivation of equations [62], which can

be tedious and prone to errors. By employing linear graph theory to model the behaviour

of the torque converter, it is possible to generate the governing equations in an automated

fashion [63]. The linear graph-theoretic approach makes it possible to encapsulate the model

as a subsystem, making it easier to reuse it for different modelling assignments [64].

Also, from the standpoint of system analysis, a linear graph model of a torque converter

enables one to perform graph-theoretic sensitivity analysis of the torque converter.

Basic Physics

To model a dynamic system using linear graph theory, one must capture the underlying

physics of the system into a set of constitutive equations. For that purpose, it is necessary

to identify the through and across variables of the system.

In a torque converter, energy is transmitted through both mechanical and hydraulic

domains. As a result, through and across variables from both domains are expected to

appear in the governing equations. The through and across variables associated with the

two domains are given in table 3.1.

Table 3.1: Through and across variables for the model

Through Variable Across Variable

Mechanical Domain Torque (τ) Angular velocity (ω)
Hydraulic Domain Flow rate (Q) Pressure drop (p)

A torque converter can be considered as an assembly of three impellers that are basically

circular arrangements of vanes. It is to be noted that although the physical dimensions and

properties of these impellers are different from each other, the underlying dynamics are the

same.

In this section, the equations governing the state variables of a subsystem, which com-

prises one of these impellers, are derived. Once the equations are derived, they can be used

to formulate the linear graph that would represent the impeller subsystem. The full model

of the torque converter can then be formulated by combining three such subsystems using

the method outlined by Schmitke and McPhee [64]. At this point, it is important to outline

the assumptions made during the course of the derivation.

• The curved profile of the actual impeller is flattened in places to come up with a

simplified impeller profile as outlined in figure 3.8.
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• The cross-sectional net torus flow area is assumed to be constant along the radial line.

This implies spatially constant magnitude of the radial flow velocity.

• The three-dimensional flow is approximated by the flow along a median streamline.

• The vanes have negligible thicknesses.

• Thermal effects are neglected.

Figure 3.8: Simplified impeller profile

Assuming the impeller is completely submerged in fluid, a cylindrical control volume can

be used to derive the dynamic equations of the system. The control volume is shown in

figure 3.8 as the shaded volume.

Due to angular symmetry of the impeller, the governing equations can be generated by

considering the flow path between two consecutive vanes. Figure 3.9 shows an example of

such a section. The radial and tangential unit vectors, îr and îϕ are shown at the centre,

along with the mechanical through and across variables of the system, i.e., ω and τ . The

inner and outer radii of the impeller are R1 and R2.

The flow is approximated by the flow along the median streamline CD as shown in figure

3.8. The flow path is characterized by the flow area A and the curvature of the vane. The

curvature is given by the quantity α, which represents the angle between the radial line and

the tangent to the curve CD at any radial location, α = α (r).

Physically, the dynamics of the motion of the impeller can be described as follows:

Applied external torque τ forces the impeller to rotate with angular velocity ω. This

forces the hydraulic fluid radially outward and starts a volumetric flow rate Q. The flow of

the hydraulic fluid gets deflected by the vanes and as a result a pressure difference is created
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between the point C and D given by (pC − pD). In return the hydraulic fluid produces a

reactive torque on the impeller.
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Figure 3.9: Flow path over the impeller

The net torque acting on the control volume is given by equation (3.12).

τ = Jmω̇ + Jf ω̇ + ψQ+ ρ S Q̇ (3.12)

where

αe: Vane angle at point D

αbacke : Angle of the vane leading to point C

ωback: Assuming a rotating vaned structure from which fluid enters the impeller at point

C, the angular velocity of that preceding structure is denoted as ωback.

Jf : Polar moment of inertia of the fluid mass, Jf =
∫∫∫
∀total

ρ r2d∀

S: Vane profile parameter, S =
∫
r tanα dl
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and

ψ = ρ

(
ωR2

2 +R2
Q

A
tanαe − ωbackR2

1 −R1
Q

A
tanαbacke

)
(3.13)

The pressure difference between the points C and D is given by equation (3.14)

(pC − pD) = −ψ ω +
ρLf

A
Q̇+ ρ S ω̇ +

Pshock
Q

+
Pflow
Q

(3.14)

where

Lf : Vane profile constant Lf =
∫

Streamline

sec2α dl

Pshock: Rate of shock losses (vide equation (B.28))

Pflow: Rate of flow losses (vide equation (B.26))

In equation (3.12), the through variable of the mechanical domain is expressed as a

function of the through variable of the hydraulic domain and the across variable of the

mechanical domain. Similarly in equation (3.14) the across variable of the hydraulic domain

is expressed as a function of the through variable of the hydraulic domain and across variable

of the mechanical domain.

These two equations form a set of constitutive equations that can be worked into a

graph-theoretic framework, which would allow the impeller to be modelled as a standalone

subsystem. By proper assembly of similar subsystems, a model of a torque converter can be

constructed.

Graph-theoretic framework

To construct a graph-theoretic model of the impeller, it is necessary to identify the natures

of the components of the model.

Since the system has two physical domains associated with it, the corresponding linear

graph model must have two non-connected sub-graphs. By considering equation (3.12), the

following components for the mechanical domain of the model can be clearly identified.

Inertia elements: The terms −Jm ω̇ and −Jf ω̇ are from the inertia effects of the im-

peller and the fluid contained therein. These are the inertia elements.

Transducer elements: The terms −ψQ and ρSQ̇ refer to transducer elements that

connect through variables in mechanical domain (τ) to the through variables in the

hydraulic domain (Q). As such there are two transducer elements in this domain.
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For the hydraulic domain, the following components are identified from equation (3.14).

Inertia elements: The term ρLf

A
Q̇ corresponds to a fluid inertia element.

Loss elements 1: The terms Pshock
Q

and
Pflow
Q

correspond to pressure loss elements.

Transducer elements: The terms −ψ ω and ρ S ω̇ are the transducer elements that

connects the across variable of the hydraulic domain (p) to the across variable of the

mechanical domain (ω).

From equations (3.12) and (3.14) it is also clear that, for the mechanical domain, all the

elements share the same across variable, i.e., the angular velocity ω and for the hydraulic

domain all the elements share the same through variable, i.e., the volumetric flow rate Q.

From this information, a linear graph representation for the impeller system can be

constructed. Figures 3.10a and 3.10b show the linear graph for the hydro-mechanical impeller

system.
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Figure 3.10: Linear graph model for the hydro-mechanical impeller

In the mechanical domain graph, node g is the ground node, i.e, the inertial reference

frame. Node a represents the reference frame fixed to the center of the impeller. The edges

correspond to the various components of the mechanical domain:

Edge 3: This edge corresponds to a transducer element. The constitutive equation for

this edge is τ3 = −ψQ1.
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Edge 4: This edge corresponds to the second transducer element. The constitutive

equation for this edge is τ4 = ρSQ̇2.

Edges 5, 7: Inertia elements, τ5 = −Jm ω̇5 and τ7 = −Jf ω̇7.

Edge 6: This edge corresponds to the revolute joint between the ground and the im-

peller. For ideal joints the constitutive equation is τ6 = 0.

Edge 8: This edge refers to the external applied torque on the impeller. The constitutive

equation is τ8 = τ(t).

In the hydraulic domain graph, the nodes represent points in the fluid along the flow

path, where pressure measurements are obtained. For this graph the following edges can be

defined:

Edges 1, 2: These edges correspond to the transducer elements. The constitutive equa-

tions for these edges are p1 = −ψ ω3 and p2 = ρ S ω̇4.

Edges 9, 10: These edges are associated with the loss elements. The constitutive equa-

tions are p9 = Pshock/Q9 and p10 = Pflow/Q10

Edge 11: This edge corresponds to the fluid inertia element. The pressure difference

is created by the inertia forces acting on the accelerating fluid mass. The equation is

p11 = ρLf

A
Q̇11.

The complete representation of the hydro-mechanical impeller is illustrated in figure 3.10.

It captures the relevant dynamic effects and represents the topology of the system. Using the

presented impeller subsystem to model the pump, the turbine, and the stator and assembling

them in the proper order, a complete model of a torque converter is obtained.

Figure 3.11 shows the linear graphs of the torque-converter for both mechanical and

hydraulic domains. The sections of the graph that represent the three components of the

torque converter are marked in the figure. They share identical topologies but have different

constitutive equations, which reflects the differences in their physical properties.

In a torque converter, external torques are applied to the pump and the turbine. Edges

8 and 19 are included to account for τpump(t) and τturbine(t). The pump and the turbine are

connected to the mounting through revolute joints. Edges 6 and 16 represent these revolute

joints. In this example, ideal revolute joints were used for modelling and analysis.
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Edge 28 represents the one-way revolute joint used to connect the stator to the casing.

The corresponding constitutive equations are

ω28 =

{
0 τ28 > 0

ωs (t) τ28 < 0
and τ28 =

{
τs (t) τ28 > 0

0 τ28 < 0
(3.15)

The presence of ideal multi-domain transducers are clearly illustrated in the linear graph

shown in figure 3.11.
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Figure 3.11: Linear graph model for the torque converter

Edges 1 and 3 constitute one such transducer. The terminal equations for these edges

can be written in a compact matrix form.[
τ3

ω3

]
=

[
ψ p 0

0 − 1
ψ p

][
Q1

p1

]
(3.16)

It is clearly evident that for edges 1 and 3, the quantity τ3ω3 is equal in magnitude with

the quantity Q1p1. As a result, the net power loss between these edges remains zero, as

expected in case of an ideal transducer.

In this example, the letters p, t, and s are used as subscripts to refer to the pump, the

turbine, and the stator. For example, the symbol ψ p refers to the modulated transducer

coefficient ψ p derived specifically for the pump element.
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For operation under forward flow mode, the component that leads up to the pump is the

stator. Hence the expression for ψ p is derived from equation (B.22) by replacing R2 by Rp,

R1 by Rs, ω by ω5, ωback by ω27, αe by αp and αbacke by αs. Similar substitutions are used to

derive ψ t and ψ s.

ψ p = ρ

[
R2
pω5 +Rp

Q1

A
tanαp −R2

sω27 −Rs
Q1

A
tanαs

]
(3.17)

ψ t = ρ

[
R2
tω16 +Rt

Q12

A
tanαt −R2

pω5 −Rp
Q12

A
tanαp

]
(3.18)

ψ s = ρ

[
R2
sω27 +Rs

Q23

A
tanαs −R2

tω16 −Rt
Q23

A
tanαt

]
(3.19)

where αp, αt, and αs are the vane angles at the exit end of the pump, the turbine, and the

stator, respectively. The exit end is defined with respect to the positive flow rate Q.

The other type of transducer used in this model is the ones shown between edges 2 and

4, 13 and 15, and 24 and 26. In these transducers, the through variable of the mechanical

domain τ is expressed as a function of the derivative of the through variable of the hydraulic

domain Q̇ and the across variable of the hydraulic domain is expressed as a function of the

derivative of the across variable of the mechanical domain ω̇.

The compact matrix notation of the constitutive equations for edges 2 and 4 are given

below to illustrate this form. [
τ4

ω̇4

]
=

[
ρSp 0

0 1
ρSp

][
Q̇2

p2

]
(3.20)

Once the graph-theoretic model is fully described in terms of its topology (figure 3.11)

and the terminal equations, the graph-theoretic method [63] and principle of orthogonality

[22] are used to derive the system equations for the torque converter.

Backward flow mode

The derivation shown so far assumes that the flow rate Q is positive, i.e., the pump is driving

the turbine. The terms entry and exit vane angles are defined with respect to this positive

direction of flow.

The schematic diagram shown in figure 3.12 describes the relevant entry angles βp,t,s

and exit angles αp,t,s. When the flow direction is reversed, the torque converter operates in

backward flow mode. Physically this mode corresponds to the operation of engine braking
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in a vehicle. During this mode, the turbine drives the pump and as a result, the entry and

exit angles change places between themselves. The equations describing the dynamics of the

torque converter must be changed accordingly.

For example, the modulated transducer coefficients ψ p,t,s become different for backward

flow mode. During this mode, instead of the stator, the turbine is the component that leads

up to the pump. Also the radii of the inlet and outlet surfaces get changed.

Pump Turbine

Stator

Negative

Flow rate Q

Positive 

Flow rate Q

ap

bp

bt

at

as
bs

Figure 3.12: Schematic diagram of the vane angles

The modified expression for ψ p is given in equation (3.21).

ψ p = ρ

[
R2
pω16 +Rp

Q1

A
tan βt −R2

sω5 −Rs
Q1

A
tan βp

]
(3.21)

Modified expressions for ψ t, ψ s, Pshock, and Pflow can also be derived using similar

substitutions.

Derivation of system equations

To derive the system equations a branch-chord formulation [5] is used. Since there are two

graphs for this system, two separate trees are selected for equation generation.

Domain Branches (Edge No) Chords (Edge No)

Mechanical
5 , 16, 27 3, 4, 6 - 8, 14, 15, 17 -

19, 25, 26, 28, 29
Hydraulic 1, 2, 9 - 13, 20 - 24, 30, 31 32

Table 3.2: Selection scheme for the branch-chord formulation

From the linear graph shown in figure 3.11 and the tree selection scheme shown in ta-

ble 3.2, the cutset and circuit equations of both mechanical and hydraulic domain of the
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torque converter system are obtained. Using the branch and chord transformation equations

the system equations are expressed in terms of branch across variables and chord through

variables only. For the particular choice of branch selection as illustrated in table 3.2, the

equations are generated in terms of the three angular velocities ω5, ω16, ω27 , three torques

τ6,τ17, τ28, and the flow rate Q32. The symbols representing these quantities are changed

according to the chart shown in table 3.3.

Variable name Changed symbol

ω5 ωp(t)
ω16 ωt(t)
ω27 ωs(t)
τ6 τp(t)
τ17 τt(t)
τ28 τs(t)
Q32 Q(t)

Table 3.3: State variables for the torque converter model

Mechanical cutset equations

τ3 + τ4 + τ5 + τ6 + τ7 + τ8 = 0

τ14 + τ15 + τ16 + τ17 + τ18 + τ19 = 0

τ25 + τ26 + τ27 + τ28 + τ29 = 0

(3.22)

Mechanical circuit equations

ω3 = ω4 = ω5 = ω6 = ω7 = ω8

ω14 = ω15 = ω16 = ω17 = ω18 = ω19

ω25 = ω26 = ω27 = ω28 = ω29

(3.23)

Hydraulic cutset equations

Q32 = Q[1,2,9,10,11,12,13,20,21,22,23,24,30,31] (3.24)

Hydraulic circuit equations ∑
pi = 0

i = 1, 2, 9, 10, 11, 12, 13, 20, 21, 22, 23, 24, 30, 31, 32
(3.25)
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The torque converter system is fully determined by the set of equations formed by com-

bining equations (3.22) to (3.25) and the constitutive equations described in the previous

section. However, to generate equations in terms of a smaller set of state variables, branch

and chord transformation equations are used.

The generated system equations are expressed in matrix format in equation 3.26.

Mq̇ + Gq + ξ − ς = 0

τs =

{
τs τs > 0

0 τs < 0
and ωs =

{
0 τs > 0

ωs τs < 0

(3.26)

where the state vector q and the mass matrix M is given by

q =
{
ωp ωt ωs Q

}T
(3.27)

M =


Jp 0 0 ρSp

0 Jt 0 ρSt

0 0 Js ρSs

ρSp ρSt ρSs
ρ
A

(Lfp + Lft + Lfs )

 (3.28)

where Lfp,t,s are the equivalent fluid lengths evaluated using equation (B.32) and Jp,t,s are

the sum of Jm and Jf for the pump, the turbine and the stator respectively.

The matrix G is an antisymmetric coupling matrix. It is expressed in terms of the

modulated transducer coefficients as illustrated in equation (3.29). The expressions for ψ p,t,s

are different for forward and backward flow simulations.

G =


0 0 0 ψ p

0 0 0 ψ t

0 0 0 ψ s

−ψ p −ψ t −ψ s 0

 (3.29)

The vector ξ accounts for the losses in the system.

ξ =
[

0 0 0 PL

]T
(3.30)

where PL is the sum of pressure losses due to fluid friction and shock effects encountered
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around the flow path of the fluid. The expressions for P i
shock and P i

flow are derived using the

equations (B.28) and (B.26).

PL =
1

Q

[ ∑
i=p,t,s

(
P i
shock + P i

flow

)]
(3.31)

The external force vector ς is given by

ς =
[
τp τt τs 0

]T
(3.32)

System response

To characterize and quantify the response of the torque converter, the following quantities

are defined.

Speed ratio is the ratio of the turbine and pump speeds as shown in equation (3.11).

Efficiency is the fraction of the input power that is available as output power.

η =
|τtωt|
|τpωp|

(3.33)

Torque ratio is the ratio of turbine torque and pump torque.

Tr =
τt
τp

(3.34)

Capacity factor is the ability of the torque converter to absorb and transmit torque. For

successful operation, a torque converter must be matched with a transmission system with

comparable range of capacity factor [65].

Kp =
ωp√
τp

(3.35)

Equation (3.26) is a set of first-order differential equations. To ensure proper results,

proper initial conditions of the state variables must be specified which can represent the

initial configuration of the system. For this example, the system is initialized with the

turbine and stator at rest and the pump rotating with non-zero angular speed. The initial

values of the state variables are given in table 3.4. Numerical values for the model parameters

of equation (3.26) are obtained from existing literature [66], [67].
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A complete list of parameters are given in table A.1.

States Initial Values Unit

Q(0) 0.13 m3/s
ωs(0) 0 rad/s
ωp(0) 280 rad/s
ωt(0) 0 rad/s

Table 3.4: Initial conditions used for simulation and analysis

The pump torque τp and the turbine torque τt are taken as inputs. The pump torque is

increased gradually, where the turbine torque is kept constant. Figure 3.13 below shows the

variation of τp and τt with time.
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Figure 3.13: τp and τt as functions of time

Using the inputs shown in figure 3.13, the equations shown in (3.26) are solved numerically

using the dsolve[numeric] routine from Maple. Fehlberg fourth-fifth order Runge-Kutta

formulation was used to solve the set of DAEs. The maximum function evaluation was set

at maxfun = 100000 with default error tolerance at ε = 1× 10−6.

Figure 3.14 shows the variation of the pump speed ωp and turbine speed ωt as the speed

ratio increases during the simulation. To obtain this plot, the simulation was allowed to run

until the speed ratio reached ωr = 0.8. The difference between the pump speed and the

turbine speed is also plotted on the same axes.
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The figure shows that the pump speed increases from the initial 280 rad/s. Also it shows

that as the pump speed increases, the turbine speeds up from its initial stationary state and

eventually the system reaches the coupling point when the stator starts to rotate. These

are expected behaviour of a torque converter in forward acceleration mode. As evident

from figure 3.14, the increasing pump torque forces the pump to speed up, which forces the

turbine to speed up due to the fluid coupling action. As the turbine speeds up, the speed

ratio increases from an initial zero value. The variation of speed ratio with time is illustrated

in figure 3.15.
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Figure 3.14: Variation of ω p and ω t with ω r
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Figure 3.15: Variation of speed ratio

Due to the presence of losses, the fluid coupling cannot force ωt to match up with ωp

completely. As a result, the difference between ωp and ωt reaches a minimum around the

coupling point, which is defined as the point in time when the stator starts to rotate. If

the simulation is continued past the coupling point, the individual magnitudes of ωp and ωt

increase while the difference between them settles. As a result of this, the speed ratio of

a torque converter approaches unity asymptotically. This is evident from figure 3.15 where

the curve becomes increasingly flatter as time progresses.

Usually the speed ratio is used to get a qualitative description of the difference between

the angular speed of the turbine and that of the pump. However, this notion can be mis-

leading at times. The plot of the differences between the pump speed and the turbine speed

shows some interesting features. From figure 3.14, it can be clearly noticed that before the

coupling point, the difference between the turbine and pump speed decreases steadily. At

this stage, increasing speed ratio is associated with the phenomenon of the turbine catching

54



up with the pump. However, after the coupling point is reached, the difference between the

pump speed and the turbine speed starts to increase. Contrary to the observed trend in

the pre-coupling stage, a higher speed ratio at this stage actually represents the two speeds

moving away from each other.

The increase in the difference between the pump speed and the turbine speed in the

post-coupling phase can be explained by considering the dynamics of the system. Before

the coupling point, the difference between the turbine speed and pump speed decrease due

to fluid coupling. At this point the only components storing energy are the pump, the

turbine and the hydraulic fluid. However after the coupling point is reached, the stator

starts to rotate and stores some energy due to its angular motion. As the stator speeds up,

more energy is channeled into the stator as its kinetic energy. This increases the difference

between the pump speed and turbine speed.

With this observation, it is possible to justify the choice of a termination criterion for the

simulation. Because of the presence of the hydraulic and mechanical losses, it is inefficient

to operate the torque converter in the coupling mode past the coupling point.
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Figure 3.16: τp and τt as functions of time

This is why a lock-up clutch is often used to clamp the pump and the turbine together

and eliminate the hydraulic coupling action and the associated losses. To perform the locking

operation, it is desirable that the turbine speed and the pump speed are as close to each

other as possible. Since the difference between these speeds increase in the post-coupling
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stage, it is therefore logical to activate the lock-up clutch right after the coupling occurs. For

this study the simulations were terminated when the stator speed reached ω s = 20 rad/s.

The efficiency of the process is an important issue for the design and operation of a

torque converter. Figure 3.16b shows the variation of efficiency during the simulation. The

plot shows that the efficiency increases from zero in the beginning to a maximum value

around half way through the simulation, but right before the coupling point, it decreases a

little. Right after the coupling point, the efficiency settles to a stable value. Since the speed

ratio curve also becomes flat in this region, the efficiency versus speed ratio plot becomes

somewhat linear, as shown in the plot in figure 3.16a.

Figure 3.17 shows the input and the output powers of the system. These quantities are

obtained by multiplying the torque and the angular speed of the pump and the turbine

respectively.
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Figure 3.17: Input and output power
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Figure 3.18: Shock and friction losses

The difference between the two curves, i.e., the difference between the input and output

power, can be accounted for by adding the rate of change of energy stored in the torque

converter elements and the losses incurred during the process.

Figure 3.18 shows the power lost due to shear stresses in the boundary layer (friction

losses) and non-ideal flow conditions at the interfaces between the components (shock losses).

The total power lost during the process is also plotted on the same axes. The plot identifies

the shock losses as the predominant form of power loss for the system. Also, the plot clearly

shows that the total lost power hits a minimum at around t = 3 seconds. As a result, the

difference between the input power and the output power goes through a minimum at around
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the same point. Also, the efficiency stays high around this point, as shown in figure 3.16b,

due to relatively low value for lost power.

By comparing figure 3.18 and figure 3.17, it can be explained why the efficiency decreases

after going through a maximum. It is because, at that stage the losses increase, making the

difference between the input and output power more pronounced.

Right before the coupling point and thereafter, the losses become more or less constant,

as shown in figure 3.18. This makes the input and output power curves almost parallel to

each other, vide figure 3.17. This results in a somewhat slow increase in the efficiency of the

torque converter at this stage.

The simulation results convincingly establish the validity of the model of the torque

converter. Since the topology of the model is captured by a linear graph, it is now possible

to perform a graph-theoretic sensitivity analysis with this model. In the subsequent sections,

the linear graph for this model will be used to generate the sensitivity equations of the system.

3.3.2 Graph-theoretic sensitivity analysis

As discussed in section 3.2, the linear graph model of the torque converter allows the ap-

plication of graph-theoretic sensitivity analysis on the system. This section illustrates the

application of graph-theoretic sensitivity analysis on the torque converter system. The re-

lationship between the sensitivities of the through and across variables are derived using

graph-theoretic modelling techniques [5, 63]. By assembling these equations, the sensitivity

equations for the torque converter system are generated from the linear graph of the system

shown in figure 3.11. The computer implementation of the process is also briefly described.

Sensitivity linear graph

A second graph G2 is required to extract the sensitivity equations for the torque converter

model. As explained in section 3.2, the second graph G2 needs to be isomorphic with the

linear graph shown in figure 3.11. The structure of the graph shown in figure 3.11 can be used

to generate the sensitivity equations, since it not only captures the relationships between

the individual through and across variables of the system, but also the relationships between

their sensitivities.

At this point, proper symbols must be declared to represent the through and across

variables of the sensitivity graph G2. For the graph G2, the mechanical domain variables are

τ i b and ω i b, while the hydraulic domain variables are Q i b and p i b.
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The subscripts of each of these variables have two parts. The first numerical part des-

ignates the identity of the associated edge. The second symbolic part represents the model

parameter under study. The variables of graph G2 can be derived from the variables of graph

G1 by differentiating them with respect to a scalar model parameter b.

τ i b =
d

db
τ i (3.36)

Using these variables, the sensitivity cutset and circuit equations can be easily derived

from the sensitivity linear graph G2 as illustrated below.

Cutset, circuit and terminal equations for the sensitivity system

Sensitivity circuit equations (Hydraulic Domain):

∑
p i b = 0

i = 1, 2, 9, 10, 11, 12, 13, 20, 21, 22, 23, 24, 30, 31, 32
(3.37)

Sensitivity circuit equations (Mechanical Domain):

ω 3 b = ω 4 b = ω 5 b = ω 6 b = ω 7 b = ω 8 b

ω 14 b = ω 15 b = ω 16 b = ω 17 b = ω 18 b = ω 19 b

ω 25 b = ω 26 b = ω 27 b = ω 28 b = ω 29 b

(3.38)

Sensitivity cutset equations (Mechanical Domain):

τ 3 b + τ 4 b + τ 5 b + τ 6 b + τ 7 b + τ 8 b = 0

τ 14 b + τ 15 b + τ 16 b + τ 17 b + τ 18 b + τ 19 b = 0

τ 25 b + τ 26 b + τ 27 b + τ 28 b + τ 29 b = 0

(3.39)

Sensitivity cutset equations (Hydraulic Domain):

Q 32 b = Q [1, 2, 9, 10, 11, 12, 13, 20, 21, 22, 23, 24, 30, 31] b (3.40)

The sensitivity terminal equations can be obtained by differentiating the system terminal

equations. For the portion of G2 that is isomorphic to the graphs shown in figure 3.10, the
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terminal equations are presented below. The two domains are considered separately and the

sensitivity terminal equations are generated accordingly.

The terminal equations for the edge 28 are considered separately because of its unique

nature. Since this edge represents the one way revolute joint the sensitivity terminal equation

must be declared as a piecewise function which switches from one equation to the other

depending on the torque on that edge or τ 28. The following equations can be derived from

equation (3.15).

ω 28 b =

{
0 τ 28 > 0

ω s b (t) τ 28 < 0
and τ 28 b =

{
τ s b (t) τ 28 > 0

0 τ 28 < 0
(3.41)

The following equations are used as the sensitivity terminal equations pertaining to the

mechanical domain edges.

τ 3 b = − d

db
(ψ) Q 1 − ψQ 1 b

τ 4 b =
dρ

db
SQ̇ 2 + ρ

dS

db
Q̇ 2 + ρSQ̇ 2 b

τ 5 b = − d

db
(Jm ) ω̇ 5 − Jm ω̇ 5 b

τ 7 b = − d

db
(Jf ) ω̇ 7 − Jf ω̇ 7 b

τ 6 b = 0

τ 8 b =
d

db
τ(t)

(3.42)

The following equations are used as the sensitivity terminal equations pertaining to the

hydraulic domain edges.

p 1 b = − d

db
(ψ) ω 3 − ψ ω 3 b

p 2 b =
d

db
(ρ S) ω̇ 4 + ρ S ω̇ 4 b

p 9 b =
d
db

(Pshock)Q 9 − PshockQ 9 b

(Q 9)
2

p 10 b =
d
db

(Pflow)Q 10 − PflowQ 10 b

(Q 10)
2

p 11 b =
d

db

(
ρLf

A

)
Q̇ 11 +

ρLf

A
Q̇ 11 b

(3.43)
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In the equations shown in (3.43), Pshock and Pflow refer to the expressions for the power

lost due to shock and flow effects as illustrated in equations (B.28) and (B.26), respectively.

The terminal equations for the edges that correspond to the turbine and the stator can be

similarly derived. For those equations, the structure of the terminal equations must remain

the same but the coefficients like ψ, Lf etc. must be chosen properly.

Generation of the sensitivity equation

To generate the sensitivity equations the first step is to consider the linear graphs G1,

as shown in figure 3.11, and its identical twin G2. Using a graph-theoretic formulation,

both system and the corresponding sensitivity equations can be generated from these two

graphs. For the purpose of convenience of the reader, the primary variable names are changed

according to the table shown below.

Variable name Changed symbol

ω 5 b ω p b(t)
ω 16 b ω t b(t)
ω 27 b ω s b(t)
τ 6 b τ p b(t)
τ 17 b τ t b(t)
τ 28 b τ s b(t)
Q 32 b Q b(t)

Table 3.5: Sensitivity state variables for the torque converter model

Equation (3.44) shows the relationship between the changed variable names. Along

with the convention shown in table 3.3, these variables are used to represent the sensitivity

equations.

ω p ρ =
d

dρ
(ω p) (3.44)

The governing equations for this model can be expressed as a set of ordinary differential

equations. Although the structure of the governing equation is already illustrated in equation

(3.26), it is worthwhile to express it in a slightly different form to highlight the connection

between the structure of the system equations and the sensitivity equations. The governing

equation can be modified to the basic form of a set of ODEs which can be written in a matrix

form as shown below.

M q̇ = F (3.45)
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where the mass matrix M is given by equation (3.28), and the vector of generalized coor-

dinates q is given by the equation (3.27). The vector F combines the applied torques on

the system and the dynamic torques that are generated by the fluid coupling effect. From

equation (3.26) the vector F can be constructed as shown below.

F = ς −Gq− ξ (3.46)

To demonstrate the process, the complete set of sensitivity equations are presented here

by choosing the density of the hydraulic fluid ρ as the model parameter. The combined set

of sensitivity and governing equations can be written in a matrix form as shown below.


(

M 4×4
b +

n∑
k=1

∂Mi j

∂ qk
q k b

)
M 4×4

M 4×4 0 4×4


︸ ︷︷ ︸

Γ

ϑ̇︷ ︸︸ ︷{
q̇ 4×1

q̇ 4×1
b

}
=

{
Fb + Fq q b

F

}
︸ ︷︷ ︸

Ω

8×1

(3.47)

where qk is the k th element of the vector q, M i j is a particular element of the mass matrix

M, and q k b is the sensitivity of the k th element of the vector q. The modified vector of

state variables is given by ϑ as shown below.

ϑ =
{
ωp ωt ωs Q ω p ρ ω t ρ ω s ρ Q ρ

}T

(3.48)

The combined mass matrix is given by Γ. The symbols J p,t,s, S p,t,s, and Lf are defined in

equations (3.26) through (3.32).

Γ =



0 0 0 Sp Jp 0 0 ρSp

0 0 0 St 0 Jt 0 ρSt

0 0 0 Ss 0 0 Js ρSs

Sp St Ss
Lf

A
ρSp ρSt ρSs

ρLf

A

Jp 0 0 ρSp 0 0 0 0

0 Jt 0 ρSt 0 0 0 0

0 0 Js ρSs 0 0 0 0

ρSp ρSt ρSs
ρLf

A
0 0 0 0


(3.49)

The combined force vector Ω is defined in equation (3.50).
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Ω =



−Qσ1 − ρ σ1Q ρ − ρQξ 1 + τ p ρ

−Qσ2 − ρ σ2Q ρ − ρQξ 2 + τ t ρ

−Qσ3 − ρ σ3Q ρ − ρQξ 3 + τ s ρ

ζ0 + ρ ζ1 + Q
A
ζ2 + ρQ ρ

A
ζ2 + ρQ

A
ζ3 − d

dρ
(PL(t))

−ρQσ1 + τp

−ρQσ2 + τt

−ρQσ3 + τs

ρ ζ0 + ρQ
A
ζ2 − PL (t)



(3.50)

where

σ1 =

(
ωpRp

2 +
Q

A
Rp tanαp − ωsRs

2 − Q

A
Rs tanαs

)
σ2 =

(
ωtRt

2 +
Q

A
Rt tanαt − ωpRp

2 − Q

A
Rp tanαp

)
σ3 =

(
ωsRs

2 +
Q

A
Rs tanαt − ωtRt

2 − Q

A
Rt tanαt

)
ξ 1 = Rp

2ω p ρ −Rs
2ω s ρ +

Q ρ

A
Rp tanαp −

Q ρ

A
Rs tanαs (3.51)

ξ 2 = Rt
2ω t ρ −Rp

2ω p ρ +
Q ρ

A
Rt tanαt −

Q ρ

A
Rp tanαp

ξ 3 = Rs
2ω s ρ −Rt

2ω t ρ +
Q ρ

A
Rs tanαs −

Q ρ

A
Rt tanαt

ζ 0 =
(
ωp

2Rp
2 + ωt

2Rt
2 + ωs

2Rs
2 − ωp ωtRp

2 − ωp ωsRs
2 − ωs ωtRt

2
)

(3.52)

ζ 1 =


2Rp

2 ωp ω p ρ + 2Rt
2 ωt ω t ρ + 2Rs

2 ωs ω s ρ

−Rp
2 ωt ω p ρ −Rp

2 ωp ω t ρ −Rs
2 ωs ω p ρ

−Rs
2 ωp ω s ρ −Rt

2 ωt ω s ρ −Rt
2 ωs ω t ρ

 (3.53)

ζ 2 =

(
(Rp tanαp −Rs tanαs)ωp + (Rt tanαt −Rp tanαp)ωt

+ (Rs tanαs −Rt tanαt)ωs

)

ζ 3 =

(
(Rp tanαp −Rs tanαs)ω p ρ + (Rt tanαt −Rp tanαp)ω t ρ

+ (Rs tanαs −Rt tanαt)ω s ρ

) (3.54)
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By solving this combined system of equations numerically, the state variables and the cor-

responding sensitivities can be evaluated as a function of time. The time varying sensitivity

information obtained hereby can be used in many engineering applications. In a subsequent

section some of the practical applications of sensitivity analysis will be presented.

3.3.3 Computer implementation

The model of the torque converter and the subsequent graph-theoretic sensitivity analysis

thereof was implemented in Maple 15. Additionally, the graph-theoretic model of the hydro-

dynamic impeller was implemented in MapleSim and was used to assemble an acausal model

of a torque converter. In this section, brief overview of these software implementations will

be presented to outline the general methodology.

Maple implementation

Apart from the symbolic capabilities, as mentioned in chapter 2, Maple can also be used for

numerical simulations. Advanced numerical routines allow users to solve complicated large

systems of ODEs and DAEs using a variety of different algorithms. Because of its excellent

symbolic and numeric capabilities, Maple can be used to simulate multibody systems effec-

tively. Mathematically it becomes the process of solving a set of ODEs or DAEs depending

on the nature of the system. For the implementation of the graph-theoretic model and the

subsequent sensitivity analysis, Maple 15 was used for its excellent symbolic capabilities and

its ability to solve ODEs involving piecewise functions effectively.

As a first step for graph-theoretic sensitivity analysis, the topology of the torque converter

system, i.e., the linear graph shown in figure 3.11 is coded into Maple in terms of the

incidence matrices for the two domains. Lists of through and across variables are also

provided as inputs to the program. Using linear algebra, the fundamental cutset matrices

and the fundamental circuit matrices are generated from the incidence matrices, which are

then utilized to construct the cutset and circuit equations for both system and sensitivity

equations pertain to the two domains present in the system.

The system terminal equations are provided to the program in the form of a list. The

sensitivity terminal equations are then generated from the system terminal equations using

symbolic differentiation. Using symbolic manipulation, these terminal equations and the

generated cutset and circuit equations are combined to form the system and the sensitivity

equations in a single unified process.
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After the generation of the equations, the built in numeric ODE solvers are used to

evaluate the state variables and the corresponding sensitivities as functions of time which

are then used for different applications.

MapleSim implementation

MapleSim is a multi-domain modelling and simulation tool developed by Maplesoft Inc. It

is capable of simulating electrical, electronic, mechanical, hydraulic and magnetic systems.

The input to the software is the description of the system using the components from a

central library that can be drag-dropped on to a worksheet. MapleSim is built on the

Maple software, which enables it to perform very effective symbolic simplifications of the

generated equations. By using dsolve[numeric], the built-in ODE/DAE solver routine in

Maple, MapleSim can simulate and present the output of the models in an interactive three-

dimensional environment. It can also perform post-processing of the generated data using

predefined templates.

Figure 3.19: MapleSim model of a rotodynamic impeller

The multibody package of MapleSim uses a linear graph based formulation. Other compo-

nents (e.g., electrical, magnetic, thermal, hydraulic etc.) are based on ModelicaTM codes.

Apart from the built-in library of standard components, MapleSim allows users to create

custom components for user specific implementation. These custom components are based

on the Maple language and can be readily included in models created using MapleSim’s

standard components.

MapleSim was chosen for the implementation of the torque converter model due to its

ability to accept user defined modules. The key point for the implementation of a physics
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based model of a torque converter is the fact that all three components of the torque con-

verter, i.e., the pump, the turbine, and the stator, are essentially the same mechanical

component. Regardless of their appearances and functions, all of these components act as

transducers between hydraulic and mechanical domains and either produce a torque when a

flow is established with a pressure difference across their vanes or drive a flow rate against a

pressure gradient when there is a torque applied to them. These components are known as

rotodynamic impellers, which can be modelled easily in MapleSim.

The schematic model in figure 3.19 shows the implementation of one such impeller model

in MapleSim. The component at the centre named “rotodynamicImpeller1” is an user defined

module which holds the governing equations for the impeller. These equations are derived

from the partial linear graph shown in figure 3.10. The components to the right of this

module belong to the mechanical domain. In this example, a torque driver is used to deliver

a ramp torque as an input to the system. On the other side, the components to the left

of the diagram belong to the hydraulic domain. In this example, there is a single pressure

driver which sets up a pressure gradient against which the impeller is forced to work.

Mathematically speaking, the only differences between the elements of a torque converter

is the values of their physical parameters. Thus by changing the model parameter values and

repeating the same model of a rotodynamic impeller, it is possible to construct a complete

torque converter model in MapleSim.

Figure 3.20: Model of a one way revolute flange

Another important component of a torque converter is the one-way joint that allows the

stator to rotate in one direction only. This serves a very important function for the torque

converter and it must be modelled properly for accurate simulation. In this example, the

one way clutch was implemented using built-in components from MapleSim.

Figure 3.20 shows the subsystem that functions as a one-way clutch. The input rotating

flange, which is connected to that of the stator, is connected to the ground through a

friction clutch. The input signal, which carries the transmitted torque information, controls

the activation of the clutch. When sufficiently high clutch constants are used, this assembly
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ensures that the stator rotates freely in one direction and locks up when pushed in the other

direction.

Figure 3.21 shows the model of the torque converter implemented in MapleSim. Since it

is an acausal model, it contains connections in both hydraulic and mechanical domains. The

different components, i.e., the pump, the turbine, and the stator are shown as blocks. They

differ in the values of their physical parameters but the underlying model is the same for all

three of them. These rotating components are connected to the ground using revolute joints

and in case of the stator element, through a one way clutch as illustrated in the figure.

The hydraulic losses are included as flow-dependent pressure drivers inserted in the hy-

draulic connections which form a closed loop to represent the path taken by the hydraulic

fluid. Since the losses are also dependent on the angular velocity of the rotating elements,

this information are fed into the relevant blocks using signal connections.

Both the pump and the turbine are connected to torque drivers. For the pump element,

the torque driver is programmed to deliver a ramp torque to simulate torque supply from

the engine, whereas for the turbine, the torque driver is programmed to deliver a constant

negative torque to simulate a constant resistive load.

Both of these implementations are used to simulate and analyze the behaviour of a

torque converter. The Maple 15 implementation in particular is used to gather sensitivity

information and perform design optimization. In the next section, one such example will be

presented to showcase the application of sensitivity analysis.

3.3.4 Importance analysis and design optimization

The model parameters, i.e., the dimensions and the geometric properties of the components

and the physical and hydrodynamic properties of the hydraulic fluid, play a major role in

determining the dynamics of a torque converter. In many cases, it is important to understand

which of these parameters have more influence on the dynamics than others.

Importance analysis

When it is necessary to determine which of the parameters are most important for the model,

using sensitivity analysis it is possible to develop a relative order of importance among the

parameters. To perform importance analysis on a system, a suitable criterion must be

specified to provide a basis for the comparison. The results of importance studies are very

much dependent on the chosen criteria or what are known as the objective functions. A
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general objective function can be expressed in terms of the set of model parameters p and

the state variables q and can be written in the general form:

λ =

T2∫
T1

f (q,p, t) dt (3.55)

By differentiating equation (3.55) with respect to a single model parameter b, the follow-

ing expression is obtained.

λb =
∂λ

∂ b
= f (p, T2)

∂T2
∂b
− f (p, T1)

∂T1
∂b

+

T2∫
T1

(
∂f

∂b
+
∂f

∂q
qb

)
dt (3.56)

In the above equation, λb is the sensitivity of the objective function with respect to an

arbitrary model parameter b. It is also known as the absolute sensitivity of the objective

function f with respect to the parameter. The quantity qb is the sensitivity of the state

variables with respect to the parameter.

The first two terms of equation (3.56) are required only if the limits of integration are

dependent on the parameter in question. Since for most of the time, the limits are inde-

pendent of the model parameters, these terms don’t figure in the expressions. However, for

certain situations these assumptions might not be practical and due consideration must be

given to these terms to ensure accurate computation of the sensitivity information.

The first term inside the integral sign of equation (3.56) can be evaluated symbolically

from the structure of the function f . However, the second term requires sensitivity informa-

tion that can be obtained by solving the sensitivity equations presented in previous sections.

Depending on the effect that a particular parameter has on the objective function, the

value of the absolute sensitivity would be different. This piece of information can be used to

arrange the parameters in their order of importance based on the values of the corresponding

sensitivity evaluations.

For this study, the total loss of energy is chosen as the objective function for the im-

portance analysis. The energy lost during the process can be written in terms of the input

torque τp, the angular velocity ωp, and the efficiency of the torque converter η as

Eloss =

T lockup∫
0

Power (t) dt =

T lockup∫
0

(τp (t)ωp (t) (1− η (t))) dt (3.57)
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The upper limit of the integration T lockup is the time when the lock-up clutch joins the

two sides of the torque converter into a single piece and eliminates the dynamic effects of

the torque converter. Using (3.56) one can obtain the expression of the sensitivity of the

quantity with respect to an arbitrary model parameter as

Elossb =
∂E loss

∂b
= Power(T lockup)×

∂ T lockup
∂b

+

T lockup∫
0

(
∂ τp
∂ b

ωp (1− η) + τp
∂ ωp
∂b

(1− η)− τp ωp
∂ η

∂ b

)
dt

(3.58)

The first term of equation (3.58) is particularly troublesome due to the fact that, although

the time of lock-up T lockup is dependent on the model parameters, it is not easily expressed as

an explicit function of any of them. It is dependent on the action of the lock-up clutch which

activates when a particular angular speed is achieved. Thus, T lockup can only be determined

from the numerical simulations. Consequently, the only way to calculate the sensitivity of

T lockup is to approximate the derivative with a finite difference approach and simulate the

model repeatedly with perturbed values of the parameters, something that may undermine

the benefits of the direct differentiation approach.

However, numerical experiments and comparison has shown that the magnitude of this

term is small compared to that of the second term and can be safely ignored for the purpose

of analysis. Results confirming this statement are presented in a subsequent section.

Normalized sensitivity score

The absolute sensitivity of the objective function with respect to an arbitrary model param-

eter is a measure of the change in the objective function for a unit change in the parameter

value, assuming a first order approximation. However this piece of information, in this form,

is not very suitable to determine which parameter has more effect on the objective function.

Since different parameters have different units, the significance of the perturbation of one

unit is completely different for two separate parameters. To overcome this problem we nor-

malize the absolute sensitivity by multiplying it with the nominal value of the parameter

and dividing it by the nominal value of the objective function. This gives us what is known

as the relative sensitivity of the objective function and is defined as [68]

µ =
∂Eloss
∂ b

∣∣∣∣ b∗

Eloss (b∗)

∣∣∣∣ (3.59)
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In equation (3.59) the symbol b∗ denotes the nominal value of the parameter. The quantity

thus obtained is dimensionless and suitable for the purpose of comparison.

At this point, it is worthwhile to explain that the relative sensitivity defined in equation

(3.59), represents the fractional increase in the objective function for a fractional increase

in the model parameter. More explanation on this definition is provided in Appendix B.5.

Results

The sensitivity of the objective function as outlined in (3.58) poses a question of whether

or not the derivative of the lock-up time with respect to the model parameter is significant

compared to the other terms in the expression. In a mathematical form it translates to the

question of whether or not

χ =

T lockup∫
0

(
∂τp
∂b

ωp (1− η) + τp
∂ωp
∂b

(1− η)− τp ωp
∂η

∂b

)
dt (3.60)

is a good approximation for the sensitivity of the objective function Elossb term, as shown in

equation (3.58).

One possible way to resolve this issue is to compare the values obtained for equation 3.60

and the evaluation of the quantity Elossb using a finite difference formulation, which would

require simulation of the system with appropriate perturbed values for the parameters.

To determine the correct perturbation factor for this system, a convergence test can be

performed where a parameter is perturbed by a series of small factors δ and the resulting

perturbed values i.e., b̃ = b∗ × (1± δ) are used to simulate the system and calculate the

sensitivity of the objective function using a central difference formulation.

The results are expected to converge for an appropriate value of δ. Furthermore, if χ is

a good approximation of the quantity, it is expected that the finite difference results would

agree with the results obtained by direct differentiation.

These differences between the results from the direct differentiation application and that

from finite difference formulation are also dependent on the values of the parameters. To

study the effect of parameter values on the convergence of the finite difference formulation,

comparisons between the direct differentiation and finite difference are made for different

values of the model parameters. For an acceptable scenario, it is expected that the error

bound, or the difference between the finite difference result and direct differentiation result,

for the entire range of values of the model parameters, should be reasonable.
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Figure 3.22 shows the result of one such study. The perturbation factor was varied from

10−2 to 10−8 and sensitivities were calculated using central difference formulation. The plot

shows that the solution converges for perturbation factors between 10−3 and 10−6. Also,

it is to be noted that the convergence occurs close to the value calculated using direct

differentiation, which is indicative of the accuracy of the approximation.

10-7 10-5 10-3

-2x107

-2x107

 S
en

si
ti

vi
ty

 R
es

u
lt

s

Perturbation factor

 Direct differentiation results
 Finite difference results

Sensitivity of the Lost Power w.r.t. Rp (J/m)

Figure 3.22: Convergence study to
determine optimal perturbation factor
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Figure 3.23: Error in approximation for
different values of parameters

Figure 3.23 shows the error of approximation for different values of model parameter.

In this plot, the percent error of approximation is plotted along the vertical axis and the

normalized range of the parameter values are plotted on the horizontal axis. This way the

horizontal axis represents the factor, which the nominal value of a particular parameter is

multiplied with, to arrive at the new value of the parameter. The plot shows the trend for

four different parameters. It can be clearly seen that the approximation error remains within

reasonable levels for the chosen range of values of the model parameters.

From this discussion, it is quite clear that for the relevant ranges of parameter values, the

quantity χ is indeed a good approximation of the sensitivity of the objective function Elossb .

Therefore, one can safely neglect the leading term of equation (3.58), and use equation (3.60)

to evaluate the sensitivity of the objective function, with respect to any arbitrary parameter,

at least for the simulation considered.

Using equations (3.60) and (3.59) the normalized importance scores are generated for all

the relevant model parameters. Figure 3.24 shows the list of model parameters in decreasing

order of importance. It is to be noted that although the plot shows both positive and negative
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values, only the absolute values of the normalized sensitivity scores are used while arranging

the parameters in this order.
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Figure 3.24: Ordered importance scores for the model parameters

Figure 3.24 clearly identifies the radii of the pump, stator and turbine, the density of

the hydraulic fluid, and the stator exit angle to be the most important parameters of the

model from the standpoint of the chosen objective function, i.e., total energy loss during the

process.

Absolute Normalized
Parameters Sensitivity Sensitivity score

Rp −1.99× 10 7 -4.11
Rs 1.85× 10 7 2.91
αs 1.47× 10 4 1.71
ρ −3.62× 10 2 -0.55
A −3.03× 10 7 -0.55
Rt −3.63× 10 6 -0.44
αt −3.25× 10 3 -0.34
It 9.11× 10 4 0.05
Ip 8.68× 10 4 0.01
αp −1.08× 10 3 0

Table 3.6: Importance scores for the torque converter parameters

From this list, it can be inferred that for a design optimization problem, these parameters

should be given priority, because they would have the greatest influence on the objective

function. A complete list of the numerical values for the absolute and normalized importance

scores for the model parameters is provided in table 3.6.
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At this point, it should be clarified that, while the magnitudes of the sensitivity informa-

tion tell us the amount of influence a particular parameter has on the objective function, its

sign tells us the direction in which this influence acts. This piece of information is critical for

design optimization problems, where the direction of steepest descent is required to arrive

at the optimal point. Also it needs to be stated that this result reflects the behaviour of the

system in a strictly local sense and is therefore restricted to be valid for small perturbations

only.
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Figure 3.25: Accuracy of the sensitivity information

To validate the sensitivity information, obtained using the analysis shown above, and to

illustrate the effect of the perturbation size on the accuracy of computation, the amount of

lost energy for a perturbed system can be compared with that predicted by an approximation,

based on first order sensitivity analysis of the original system. The approximation can be

written as shown in equation (3.61),where ∗Eloss is the predicted loss of energy for the

perturbed system, Eloss and Elossb correspond to the original system and δb denotes the

perturbation of the parameter.

∗Eloss = Eloss + Elossbδb (3.61)

The difference between the quantities ∗Eloss and the actual loss calculated by simulating

the perturbed system can be used to assess the accuracy of the sensitivity analysis for

different values of perturbation sizes.

Figure 3.25 shows the difference between the predicted and actual energy losses for dif-

ferent perturbation sizes of the model parameter Rp or the pump radius. In the figure, the

percentage perturbation of the value of the pump radius is plotted on the horizontal axis
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using a log scale. The percentage difference between the values of lost energy, calculated

using equation (3.61) for the original system and equation (3.57) for the perturbed system,

are plotted on the vertical axis. The plot clearly shows the dependence of the accuracy

of sensitivity analysis on the perturbation sizes and it validates the sensitivity results for

reasonably small perturbation sizes.

Design Optimization

Using the sensitivity information, a design optimization problem can be set up to tune the

model parameters of the torque converter for a better design. To improve the design of the

torque converter, the main criterion is to minimize the energy loss during the operation.

Mathematically it can be achieved by minimizing the cost function shown below.

λ 1 =
1

τp (0)ωp (0)

 T lockup∫
0

τp (t)ωp (t) (1− η (t)) dt

 (3.62)

However, it is also a general observation that when efficiency is increased, the torque

capacity of a torque converter usually goes down. As a result, a more efficient torque

converter often becomes severely restricted in terms of usability. A cost function can be

considered to include the effect of capacity factor as shown below.

λ 2 =

(√
τp (0)

ωp (0)

) Tlockup∫
0

Kc (t) dt (3.63)

In this scenario, the use of a single criterion cost function is highly inadvisable since it can

result in a practically useless configuration. Thus a proper optimization philosophy should

focus on decreasing the area under the power lost curve and increasing the area under the

torque capacity curve, at the same time. In other words, the cost function should combine

the effects of both equations (3.62) and (3.63). In this example a single objective function

is constructed by a linear combination of the two cost functions mentioned before.

minimize λ = a 1 λ 1 − a2 λ 2 (3.64)

In equation (3.64), λ1 and λ2 represent the two separate criteria that are being combined

into a single objective function. The constants a1 and a2 are the weight coefficients that
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determine the relative weight or importance given to the individual criterion. It is to be

noted that the outcome of the optimization is expected to be strongly dependent on the

values of these weights.

∂λ

∂b
≈ a1
Tp (0)ωp (0)

T lockup∫
0

Γ dt− a2Kc (0)

T lockup∫
0

∂Kc

∂ b
dt

Γ =

(
∂ τp
∂b

ωp (1− η) + τp
∂ ωp
∂b

(1− η)− τp ωp
∂ η

∂b

) (3.65)

By using direct differentiation and assuming minimal dependence of the term T lockup

on the model parameters, the expression for the sensitivity of the objective function can

be obtained as shown in equation (3.65). This expression is to be used to determine the

gradient of the objective function during the optimization iterations.

In this example, only the parameters with greater importance are considered for opti-

mization and the others are assumed to be constants. From the results of importance analysis

presented earlier, four parameters are chosen for this purpose and a constraint declaration

is constructed as shown below. It is to be noted, that the ranges specified here was taken

from device specification sheets and do not correspond to a particular design optimization

problem.

0.114 m ≤ Rp ≤ 0.13 m 0.08 m ≤ Rs ≤ 0.09 m

0.065 m ≤ Rt ≤ 0.15 m 830Kg/m3 ≤ ρ ≤ 880Kg/m3
(3.66)

For successful optimization, apart from making the iterations follow the constraints im-

posed on the values of the model parameters, it is also required to decide on the relative

weights or importances to be given to the individual objective functions λ1 and λ2. In other

words, before the optimization can be carried out, one must choose appropriate values for

the constants a1 and a2.

The expressions shown in (3.62) and (3.63) are evaluated at the extreme values of the

parameters (equation (3.66)) to obtain the ranges of variation of λ1 and λ2. The quantities

a1 and a2 are subsequently calculated to scale these ranges to be equal to each other. To

ensure proper scaling, a1 and a2 are also constrained to satisfy the relationship a1 + a2 = 1,

which leads to the following values that are used for this analysis.

a 1 = 0.47 and a 2 = 0.53 (3.67)
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Assuming that the lock-up mechanism is activated when stator speed reaches 20 rad/s, the

optimization was carried out for this system, using gradient-based steepest decent method to

adjust the parameters. The parameter values were restricted to be inside a particular range,

shown in equation (3.66). Equation (3.64) was used to calculate the value of the objective

function and equation (3.65) is used to calculate the gradient of the cost function. For this

optimization problem, the simulation is continued past the coupling point until the stator

speed reached ωs = 20 rad/s. Equation (3.68) shows the optimal parameter values which

results in Eloss = 391.3 kJ.[
Rt = 0.065 m Rp = 0.12 m Rs = 0.08 m ρ = 830 Kg/m3

]
(3.68)

At this point, it is worthwhile to take note of the initial values of the parameters of the

system before the optimization was performed and the corresponding amount of Eloss.[
Rt = 0.068 m Rp = 0.115 m Rs = 0.088 m ρ = 840 Kg/m3

]
: Eloss = 557.8 kJ (3.69)
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Figure 3.26: Variation of λ with Rp and Rt

The process of optimization can be partially visualized by plotting the variation of the

objective function λ for various values of the model parameters. A surface plot that shows

the values of the objective function for different values of Rp and Rt is shown in figure 3.26.
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Figure 3.26 shows the trend in the optimization process. Due to the dependence of the

objective function on the other model parameters, the optimal point shown in the figure

above does not coincide with the optimal point illustrated by equation (3.68). However the

direction of change for the model parameters are clearly evident in the plot.
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Figure 3.27: Efficiency vs. speed ratio for
the torque converter
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Figure 3.28: Speed ratio vs. time for the
torque converter

The effects of the optimized model parameters are clearly evident in the behaviour of the

system.
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Figure 3.29: Angular speed of the components for the optimized system

Figure 3.27 plots the efficiency of the system as a function of the speed ratio for the

optimized and the original system. It shows a clear increase in the efficiency of operation
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right before the coupling point, an area where the efficiency usually drops down. Also the

efficiency at the coupling point is found be improved.

Apart from the improvement in the efficiency of the operation, the optimized values of

model parameters also increase the speed ratio at which the lock up clutch is activated, vide

figure 3.28.

Figure 3.29 shows a plot of the angular speeds of the rotating parts of the optimized

system against time. The difference between the two speeds is also plotted on the same

axes. It clearly demonstrates that in the optimized system, the slip speed at the point of

coupling is around 125 rad/s, which is lower than that shown in figure 3.14. This directly

results in an improved life for the lock-up clutch.

To illustrate the modality by which the optimized parameters minimize loss of energy,

it is important to study different types of losses and the effect of the optimization on them.

Shock losses and friction losses are the two types of losses included in this model. Shock

losses are due to non-ideal flow velocity conditions inside the torque converter and the friction

losses are due to fluid friction and pressure drag effects.
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Figure 3.30: Friction loss vs. time
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Figure 3.31: Shock loss vs. time

Figure 3.30 shows the variation of the friction losses with time for the optimized and

original system. The plots once again identify the friction losses as the less dominant of loss

terms and indicates that in the optimal system, the friction loss is actually a little higher

than that in the original system.

On the other hand, figure 3.31 plots the shock loss terms. In this figure, the variation

of the shock losses for the optimized and the original systems are plotted on the vertical
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axis and time in seconds is plotted on the horizontal axis. These plots clearly identify the

shock losses as the dominant form of losses and also indicate that the shock loss term in the

optimized system is lower than that in the original system.

The combined effect of the improved efficiency and decreased friction and shock loss terms

can be clearly seen in figure 3.32. In this figure the lost power is plotted on the vertical axis

and time is plotted on the horizontal axis. The plot clearly shows that in the optimized

system, the power loss is lower than that in case of the original system, and the system

reaches the lock-up state in a slightly less amount of time.

From these plots it can be stated that compared to the original system, the optimized

system shows a lower shock loss term but a higher friction loss term. However, due to the

fact that the shock losses are the predominant loss term and in the optimized system the

shock losses are less than that in the original system, the total power loss in the optimized

system is considerably lower than that in the original system, as demonstrated by figure

3.32.
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Figure 3.32: Total power loss vs. time for
the torque converter
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Figure 3.33: Trapped power vs. time for the
torque converter

To explain why the optimized system has lower shock loss term, one needs to consider

the angular velocity of the pump and the turbine, as shown in figure 3.29. The plot clearly

demonstrates that, in the optimized system, the final angular velocity of the pump and

the turbine, right before the activation of the lock-up clutch, is lower than that in case

of the original system. Since the shock losses are dependent on the angular speeds of the

components of the torque converter, lower values of ωp and ωt result in lower shock losses

for the system.
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The optimized system requires less time to reach the locked up state, which results in

higher volumetric flow rate of the hydraulic fluid. Since the friction losses are dependent on

the flow rate of the fluid, a higher flow rate results in higher friction losses.

Apart from the losses due to fluid friction and shock effects, a small portion of input power

is left trapped inside the torque converter as the power associated with the whirling hydraulic

fluid and later with the rotating stator. Figure 3.33 shows the variation of the trapped power

with time. It also demonstrates that the optimized system lowers the amount of trapped

power, which results in an overall increase in the available power from the torque converter.

Effect on the capacity factor

As mentioned in a previous section, the variation of the capacity factor of the torque converter

limits its usability in many situations. It is therefore worthwhile to investigate the behavior

of the capacity factor for the optimized system. Figure 3.34 shows the variation of the

capacity factor, for both original and the optimized system. It clearly shows that the range

of variations of the capacity factor for the original and the optimized torque converter are

comparable to each other, although it is a little tighter for the optimized system.
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Figure 3.34: Capacity factor for the original and the optimized system

In the context of the above mentioned discussion, the merit of including the capacity

factor into the objective function can be demonstrated by solving the optimization system

with a different set of weights. To determine the optimal point, when the sole objective is to

reduce the loss of energy, the optimization problem is solved using a1 = 1 and a2 = 0. This
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results in the following values of the model parameters as the optimal set.[
Rt = 0.088 m Rp = 0.13 m Rs = 0.08 m ρ = 880 Kg/m3

]
(3.70)

When the values shown in equation (3.70) are used for the simulation of the torque

converter, the total energy loss is determined to be lower than that found in the previous

case. The quantity E loss is determined to be

E loss = 259.6 kJ (3.71)

The simulation results of the torque converter using the values shown in equation (3.70)

are shown in the figures below. The first plot, figure 3.35, reveals that the slip speed at the

point of coupling is around 70 rad/s which is even lower than that shown in figure 3.29.
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Figure 3.35: ωp, ωt, and slip speed (using
values shown in (3.70))
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Figure 3.36: Power loss vs. time (using
values shown in (3.70))

Figure 3.36 compares the lost power of the system that uses parameter values from

equation (3.70) with the lost power of the system that uses parameter values from equation

(3.68). It clearly shows that when the minimization of lost energy criterion is used as the sole

objective function, the evaluated optimal point results in considerable reduction in E loss.

Although all these results suggest that the parameter values presented in (3.70) results in

a system which performs better than the optimal system presented in the previous sections,

it is important to consider the usability of the system before accepting it as a superior design.

To determine the usability of the torque converter, one can consider the capacity factor
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which is a rough estimate of the amount of power that can be transmitted through the

device. Figure 3.37 shows the variation of the capacity factor for the original system, i.e.,

system that uses parameters listed in table A.1, the optimized system that uses parameter

values shown in (3.68), and also the system that uses parameter values shown in equation

(3.70).

Figure 3.37 clearly demonstrates that the system which minimizes the lost power also has

the minimum range of variation for the capacity factor. In other words, although the system

defined by (3.70) manages to minimize the amount of power that is lost in the process, it is

practically useless due to the limited range of its capacity factor.
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Figure 3.37: Capacity factor vs. speed ratio

From these results it can be inferred that, if the objective function is solely focused on

minimization of power losses, it becomes equivalent to the scenario where the optimization

routine modifies a torque converter for a truck and makes it more efficient by reducing it to

a torque converter suitable for a car. Thus, to ensure that the approach toward optimization

is practical and due consideration is given to avoid the factors that limit the usability of

results, the only way is to include the capacity factor into the optimization procedure as

shown in equation (3.64).

The capacity factor can be included in the optimization process by considering a non-zero

value for the constant a2. The relative value of a2 with respect to a1 determines the priority

given to the capacity factor criterion. In the following section, the effect of varying priorities

to these competing criteria will be illustrated.
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Competing criteria

The competitive nature of the two components of the cost function λ1 and λ2 can be visual-

ized by plotting the values of the two quantities for different values of model parameters on

X and Y axes. Since the design philosophy is to reduce the lost power and counteract the

associated decrease in the range of capacity factor, it is necessary to plot λ1 on the X axis

and inverse of λ2 on the Y axis. λ1 and λ2 are defined by (3.62) and (3.63), respectively.

3.5 4.0 4.5 5.0
0.12

0.13

0.14

0.15

0.16

0.065

0.071

0.077

0.083

0.089
0.095
0.101

0.
10

7
0.
11

3
0.
11

9
0.
12

5

 Turbine Radii (m)

In
ve

rs
e 

o
f 

th
e 

ca
p

ac
it

y 
fa

ct
o
r 

cr
it

er
io

n

Lost power criterion

Original value

Figure 3.38: Competing criteria for different values of Rt

Figure 3.38 shows the plot of λ1 on the X axis and 1/λ2 on the Y axis for different values

of Rt. The original value of the model parameter, as shown in table A.1, is also denoted in

the figure. It graphically demonstrates the trade off situation that is present in this system.

If more priority is assigned to the lost power minimization criterion, then the operating point

moves to the left on this plot which in turn results in higher value on the Y axis and an

increasingly useless system. On the other hand, if one is particularly keen on maximizing

λ2, then the optimal point moves towards the right of the curve and results in a higher value

for λ1 which results in a system which wastes more energy.

Equation (3.70) refers to the solution where the sole purpose was to minimize λ1. The

resulting optimal value was determined to be Rt = 0.088m, which is located towards the

left edge of the curve. On the other hand, when equal priorities are assigned to λ1 and λ2,

the resulting optimal value is determined to be Rt = 0.065m which is located to the right

of the curve.

This analysis can be done for all the other parameters. Figure 3.39 shows the plots with

respect to the fluid density ρ. It clearly shows that when all the priorities are assigned to
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minimize λ1, the operating point shifts towards the left and settles at ρ = 880Kg/m3 as

shown in equation (3.70). However when the capacity factor criterion is included in the

optimization process the optimal point moves to the right and settles at ρ = 830Kg/m3 as

shown in equation (3.68). Similar observations can be made for the parameters Rp and Rs

as demonstrated in figure 3.40 and 3.41, respectively.
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Figure 3.39: Two competing criteria for
different values of ρ
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Figure 3.40: Two competing criteria for
different values of Rp
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Figure 3.41: Two competing criteria for
different values of Rs
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Figure 3.42: Competing criteria for different
values of model parameters

The magnitudes of the effects of the perturbation of parameter values on the two com-

peting criteria are different for the four parameters. This can be visualized by comparing the

individual Pareto fronts for the four parameters on a single plot as shown in figure 3.42. The
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slope of the individual curves denote the sensitivity of the particular criterion with respect

to the individual model parameters.

Also, it is worth mentioning that the four curves shown in figure 3.42 pass through a

single point which represents the original operating point of the system.

Effect of the pump exit angle

The exit vane angle of the pump is one of the important design parameters of a torque

converter. In preliminary studies, it was considered as one of the design variables. However,

the results showed that the objective function is related to the pump exit angle in a linear

fashion. During the optimization iterations, the parameter settled to the value used by the

original system, which was the lower limit of acceptable values.

3.3.5 Section summary

A graph-theoretic model of an automotive torque converter was presented in this section.

The graph-theoretic framework was developed by looking at the physical construction of a

torque converter and identifying different components that store, dissipate, transmit, and

transform energy in and between hydraulic and mechanical domains. Using the graph-

theoretic model sensitivity equations were generated using the proposed algorithm. The

resulting sensitivity information was used to perform parametric importance analysis and

solve a design optimization problem.
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3.4 Electro-chemical system: Ni-MH battery

Because of its widespread use in electric and hybrid electric vehicles, nickel metal hydride (Ni-

MH) battery performance is very important for automotive researchers and manufacturers.

The performance of a battery can be described as a direct consequence of various chemical

and thermodynamic phenomena taking place inside the container. The current methods of

modelling this behaviour can be classified into two broad categories.

The first category, also known as the circuit-based approach, tries to model the behaviour

of the battery as an electric circuit, [69], [70], and [71], which results in a conceptually simple

model. In this approach, the characteristics of a particular battery is captured by using

empirical relationships in the form of look-up tables and the charge discharge behaviour

is simulated using simple circuit analysis. However, the actual physical parameters stay

hidden and there is no explicit relationship between the model parameters and the battery

parameters. As a result, this approach offers little help when it comes to the design and

optimization of battery systems. On the other hand, the second approach, or the chemistry

based approach, models the actual chemical reactions and other electrochemical and/or

thermodynamic processes inside the battery, vide [72], [20], and [73]. This method allows

access to physical model parameters of the battery and is suitable for design optimization

and other analytical applications.

Both of these approaches can be implemented using linear graph-theory. The circuit

based approach can be modelled using the same method used to model electrical systems

with modulated non-linear components. The chemistry-based approach requires modelling

the sequence of chemical reactions taking place inside the battery. In this section, the graph-

theoretic framework formulated by Dao et al. [20] is used to present an overview of graph-

theoretic sensitivity analysis of a Ni-MH battery along with the results of the subsequent

parametric importance analysis performed to identify key model parameters. An overview

of this section is provided below.

At first a brief description of the graph-theoretic model is presented to outline the frame-

work of the modelling approach. Using similar formulations presented in section 3.3, the

process of the generating the sensitivity equations from the linear graph will be touched

upon next. The general structure of the system and the sensitivity equations will also be

presented. Finally, the application of sensitivity analysis will be showcased using the example

of parametric importance analysis applied to the model of the NiMH battery.
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3.4.1 Graph-theoretic framework

To capture the electro-chemical phenomenon inside the battery, one needs to start from the

basic chemical reactions taking place at the individual electrodes. The following chemical

equations represent the main reaction activities that happen inside a NiMH battery.

Main reaction on positive electrode:

NiOOH +H2O + e−
discharge
⇀↽

charge
Ni(OH)2 +OH− (3.72)

Side reaction on positive electrode:

2OH− → 1

2
O2 +H2O + 2e− (3.73)

Main reaction on negative electrode:

MH +OH−
discharge
⇀↽

charge
M +H2O + e− (3.74)

Side reaction on negative electrode:

1

2
O2 +H2O + 2e− → 2OH− (3.75)

For each of these reactions, there are two important quantities that define the genera-

tion of the electromotive force. The first quantity is known as the open circuit potential

difference and is given by the Nernst equation. The general structure of the Nernst equa-

tion is shown in equation (3.76). The quantity φ denotes the thermodynamically predicted

potential difference of the Redox reaction.

φ (t) = U + (T (t)− Tref )
∂U

∂T
− RT (t)

νF
ln

(∏
k

ck (t)

)
(3.76)

In equation (3.76), U is the open circuit potential at standard conditions, T (t) is the tem-

perature of the cell, Tref is the reference temperature, ∂U
∂T

is the reversible heat constant for

the reaction, R is the gas constant, F is the Faraday constant, ν is the number of electrons

per ion, and ck(t) is the concentration of the reactant.

At this point, it is to be noted that the concentration ck(t) of the reactants can be related

to the charges qk carried by them using Faraday’s law. The charge can then be related to
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the current density jk(t) using an appropriate constant ς.

ck =
qk
ν F

=
ς

ν F

∫
jk(t) dt (3.77)

The second important quantity is known as the overpotential. The electrochemical term

overpotential refers to the potential difference between the thermodynamically predicted

potential and actual observed potential of a reaction. This quantity is related to the current

density of the cell by the Butler-Volmer equation. The general structure of the equation for

the kth reaction is shown below.

jk (t) = 2i0,k (t) sinh

(
F

RT (t)
αk ηk (t)

)
(3.78)

In equation (3.78), ηk is the overpotential for the kth reaction, αk is a dimensionless

constant called the “charge transfer coefficient”, and i0,k is the exchange current density

for the reaction. By nature, the exchange current density is similar to the rate constant

used in chemical kinetics and it can be related to the ambient temperature and reactant

concentration using the following equation.

i0,k = i0,k, ref f (ck (t)) e

[
Ea,k
R

(
1

T (t)
− 1

Tref

)]
(3.79)

where Ea,k is the activation energy, f(ck(t)) is a function of the reactant concentrations, and

i 0,k, ref is the reference exchange current density at standard temperature and concentrations.

By looking at the equations governing the open circuit potential, it is possible to work

backwards and construct a linear graph based representation of the system, where the in-

dividual edges correspond to these equations and can be physically analogous to standard

electrical components.

For example, in equation (3.76), the potential difference is calculated by multiplying

a constant with the time integral of the current density. This is exactly how a capacitor

functions and hence equation (3.76) can be represented by an edge which corresponds to a

modulated capacitor. Similarly in equation (3.78), it is observed that the across variable

η(t) can be expressed as an inverse hyperbolic function of the jk(t).

ηk (t) =
RT (t)

Fαk
sinh−1

(
jk

2 i0,k

)
(3.80)
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Equation (3.80) can be identified as the typical behaviour shown by a very nonlinear

resistor and thus this equation can be represented by an edge corresponding to a modulated

resistive element, whose terminal equation can be readily derived from (3.78).

The modality of the connection of these components are also apparent from the physical

phenomena happening inside the cell. By definition, the observed open circuit potential

of a reaction is defined as the combined potential difference of the thermodynamic open

circuit potential and the overpotential. Since these two phenomena can be represented by

a capacitor and a resistor in an analogous electrical circuit, these two components must be

placed in series to obtain proper configuration.

The main reactions at the cathode and anode, i.e., equations (3.72) and (3.74), and the

reaction denoted in equation (3.73) can be accurately represented as an analogous electrical

circuit consisting of modulated capacitors and nonlinear resistors.

For the reduction of oxygen reaction shown in equation (3.75), a limiting current equation

can be used for the rate of the reaction. For the electrical analogy, this corresponds to a

modulated current source, where the terminal equation takes the form as shown below.

j (t) = −pO2 (t)

pO2,ref

(i0,ref) e

[
EaR−1

(
(T (t))−1−(Tref)

−1
)]

(3.81)

The presented approach is based on the work done by Dao and McPhee [20]. According to

their research, all the electro-chemical reactions inside a NiMH battery cell can be represented

using the analogous electrical circuit represented by a linear graph, where the terminal

equations are based on the equations illustrated above.
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Figure 3.44: Corresponding linear graph

Since the topology of the system are be captured by the structure of the linear graph, the
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graph-theoretic method offers a more efficient way to model the behaviour of the battery.

Furthermore, the use of the branch-chord formulation can further simplify the expressions

for both governing and sensitivity equations.

Figure 3.43 shows the equivalent electrical circuit that represents the electrochemical

reactions in a NiMH battery. For this example, the thermal aspect of the model will be

ignored and the analysis will be done assuming isothermal conditions. Dao and McPhee

have modelled the thermodynamic aspect of the Ni-MH battery using a linear graph, further

details of the modelling method can be found in the original paper [20].

For this example, it is assumed that the battery is being driven by a constant current

source and the internal resistance is negligible. This is reflected in the equivalent electrical

circuit and the corresponding linear graph.

3.4.2 Generation of sensitivity equations

Using the formulation presented in 3.2, the sensitivity equations of the system can be gener-

ated from the linear graph shown in figure 3.44. For this analysis the edges marked C1, C2,

R1, R2, R3, and C3 are selected as branches and the rest are classified as chords.

The across variables for the graph are the voltage differences across the components and

the corresponding sensitivities. On the other hand, the through variables for the graph are

the currents flowing through the various components. For an arbitrary model parameter b,

the sensitivity variables are shown in equation (3.82).

α sensitivity
branches =

[
vC1
b vC2

b vC3
b vR2

b vR3
b

]T
α sensitivity
chords =

[
vR1
b v4b vcellb

]T
τ sensitivitybranches =

[
iC1
b iC2

b iC3
b iR2

b iR3
b

]T
τ sensitivitychords =

[
iR1
b i4b icellb

]T
(3.82)

The concentration of various chemical species play a pivotal role in the behaviour of a

electro-chemical reaction. Thus the terminal equations for the edges are often expressed in

terms of these concentrations or the charges held by different ions. Since the rate of change

of charge is a through variable, the charges held by the components can also be treated as

through variables, as they frequently appear in terminal equations.

Using the formulation presented in 3.2, the sensitivity cutset and circuit equations can be
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generated from the linear graph shown in figure 3.44, which can then be used to generate the

sensitivity branch and chord transformation equations that are required for the subsequent

generation and simplification of the sensitivity equations. Equation (3.83) shows the chord

transformation equations for the current though variables.

iC1
b

iC2
b

iC3
b

iR2
b

iR3
b


= −


−1 0 0

1 0 −1

0 1 1

1 0 −1

0 1 1



iR1
b

i 4b

i cellb

 (3.83)

Chord transformation equations are also required for the charge through variables. These

equations are structurally similar to the equations shown above and can be derived from the

same fundamental cutset matrix. However, for these equations the initial charges on the

components must be considered to obtain a proper description of the topology.

q C1
b − q

C1
b (0)

q C2
b − q

C2
b (0)

q C3
b − q

C3
b (0)

qR2
b − q

R2
b (0)

qR3
b − q

R3
b (0)


= −


−1 0 0

1 0 −1

0 1 1

1 0 −1

0 1 1




qR1
b − q

R1
b (0)

q 4
b − q 4

b (0)

q cellb − q cellb (0)

 (3.84)

The relationships between the across variables are defined by the branch transformation

equations. For this system the branch transformation equations for the sensitivity across

variables are shown below. vR1
b

v 4
b

v cellb

 =

 1 −1 0 −1 0

0 0 −1 0 −1

0 1 −1 1 −1

 {υ}
υ =

[
v C1
b v C2

b v C3
b vR2

b vR3
b

]T (3.85)

The sensitivity terminal equations for the NiMH battery systems can be obtained by

symbolically differentiating the terminal equations of the original system. To explain the

relationships between the terminal equations and model parameters and to describe the
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generation of the sensitivity terminal equations, at this point it is necessary to provide a

brief description of the terminal equations used by Dao and McPhee.

As described in section 3.4.1, the basic terminal equations are expressed in terms of the

concentrations of the chemical species and the current densities in the cell. These quantities

are related to the physical properties of the cell and thus a connection can be established be-

tween the model parameters, the state variables that are easily measurable, and the terminal

equations.

For instance, in equation (3.76), the concentration of the reactants can be expressed as

a function of the charges carried by the species using model parameters which are directly

related to the physical properties of the NiMH cell. For the chemical reaction shown in

equation (3.72) that is represented by the edges C1 and R1, the quantity cH+ can be expressed

as a function of the model parameters and the charge carried by the component C1 as shown

below.

cH+ (t) =
ρNiOH2

F Apos LNiOH2

qC1 (t) (3.86)

In equation (3.86), ρNiOH2 is the density of the active material, Apos is the actual area

of the positive electrode, and LNiOH2 is the loading of the nickel active material. These

quantities are assumed to be constants for the simulations presented in this section.

Since the linear graph relates the charges carried by the various components, this type

of equation bridges the gap between the topological equations and the governing equations

of the chemical reactions.

Current densities can be expressed in terms of the actual current through the components.

For the resistor R2, the relationship is shown below

j2 (t) =
1

Apos apos lpos
iR2 (t) (3.87)

The pressure of the generated oxygen can also be related to the quantities qC2 and q4 as

shown below.

pO2 (t) =
RT

FVgas

(
qC2 (t) + q4 (t)

)
(3.88)

In the above equations, Vgas is the volume of the entrapped gas inside the cell and apos is

the specific area of the positive electrode which is a measure of the porosity of the electrode.

When multiplied with the thickness of the electrode lpos and the electrode area, the total

reacting area is obtained for the calculation.

Using these expressions, the basic governing equations shown in (3.76) - (3.81) are trans-
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formed into the terminal equations for the various edges of the linear graph. These equations

are expressed in terms of the physical properties of the battery (the model parameters) and

can be used to derive the sensitivity terminal equations.

For example, the terminal equation for the component C2 can be expressed as

v C2 (t) = U2 + (T − Tref)
dU2

dT
+
RT ln

√√√√√RT
(
q C2 (t) + q 4 (t)

)
FVgas
ce2

2F
(3.89)

By differentiating equation (3.89) with respect to any arbitrary model parameter one can

obtain the relationship between the sensitivities of v C2 (t), q C2 , and q 4.

d

dVgas
v C2 (t) =

Vgas

((
q
C2
Vgas

(t)+q 4
Vgas

(t)
)
RT

FVgas
− RT (qC2 (t)+q 4(t))

FVgas2

)
4 (q C2 (t) + q 4 (t))

(3.90)

Equation (3.90) shows the sensitivity terminal equation for the edge C2 with respect to

the model parameter Vgas. The following notations are used to attain a compact form for

the equation.

q C2
Vgas

=
d

dVgas
q C2 and q 4

Vgas =
d

dVgas
q 4 (3.91)

Using the sensitivity cutset, circuit, and terminal equations the complete set of sensitivity

equations for the NiMH battery can be derived using methods illustrated in section 3.2. As

expected from the theory of graph-theoretic modelling, the equations are generated in terms

of the across variables of the branches and the through variables of the chords. For the

present selection of branches, the governing and sensitivity equations are formed in terms of

the following state variables and the corresponding sensitivities.

q =
{
i 4, iR1 , i cell, q 4, qR1 , q cell

}
q b =

{
i 4b , i

R1
b , i cellb , q 4

b , q
R1
b , q cellb

} (3.92)

The use of branch-chord formulation significantly reduces the number of equations to

be solved. The graph-theoretic method generates 4 nonlinear algebraic equations and 6

equations that connect the electrical charges to the current variables.

Since the quantities i cell and i cellb are known functions of time, this leaves a set of

differential-algebraic equations with four algebraic constraint equations and four simple dif-
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ferential equations which can be readily transformed into a set of ODEs using substitution.

This combined set of governing and sensitivity equations can be solved numerically to de-

termine the sensitivities of all the state variables.

3.4.3 Numerical simulation and system response

To obtain the response of the system and the sensitivities of the state variables, the set of

governing equations and sensitivity equations are generated and solved numerically using the

dsolve[numeric] routine built into Maple. Employing the DAE extension of the Rosenbrock

algorithm, the integration was carried out with relative and absolute error tolerances set to

1× 10−6 and 1× 10−7 respectively.

The thermal aspect of the cell behaviour and the internal resistance of the battery are

neglected and a constant value of i cell is assumed for the simulation. The values of the

model parameters used are listed in Tables A.6 and A.7. The results shown in this section

are obtained by performing sensitivity analysis with respect to the loading of nickel active

material LNiOH2 .

Table 3.7: Specified initial conditions for the NiMH battery

Variable Expression or value

q C1 F Apos
ρNiOH2

cH (0)

q C3 F Aneg LMH

ρMH
cMH (0)

q 4 FVgas
RT

pO2 (0)

cH(0) cH,max × 10−2

cMH(0) (1− 10−2)× cMH,max

qR1 0
q C2 0
qR2 0
qR3 0
q cell 0
pO2(0) 1× 10−6

To ensure proper simulations, the initial conditions for the system were evaluated to be

consistent with the governing equations of the system. Since the state variables of the models
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are not directly related to physically measurable quantities, their initial values are calculated

using the initial values of the physical quantities they are related to.

For example, the quantity q C1 is related to the concentration of the NiOH2 in the

electrode through the following equation, using which the value of q C1 (0) can be evaluated

from a specified initial value for the quantity cH (t).

q C1 (t) =
F Apos LNiOH2

ρNiOH2

cH (t) (3.93)

The other state variables are calculated using the constraint equations to ensure that all

the initial conditions are consistent. Table 3.7 shows the list of specified initial conditions

used for the simulation.

The initial values for the sensitivities of the state variables are calculated from these

specified initial conditions. For example, for the quantity q C1 the initial value of the corre-

sponding sensitivity variable q C1
LNiOH2

can be determined by differentiating the expression

shown in equation 3.93 with respect to the model parameter LNiOH2 .

q C1
LNiOH2

(0) =
F Apos
ρNiOH2

cH (0) (3.94)

Similar equations can be used to determine the initial values of q C3 , q 4, and their sen-

sitivities from the initial values of cMH , the concentration of metal hydride and pO2 , the

pressure of oxygen inside the cell.
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Figure 3.45: iR1 vs. time
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Figure 3.46: v cell vs. time

The integration of the set of equations result in the time histories of the state variables
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shown in equation 3.92 and their sensitivities. These plots can provide physical insight into

the electro chemical activities inside the cell. For example, the quantity iR1 is related to the

rate of the main reaction happening at the positive electrode. The plot shown in figure 3.45

shows the variation of iR1(t) with time, which clearly shows the gradual increase of the rate

of reaction at the positive electrode until the current matches that of i cell.

The other relevant variables can be evaluated by using the branch transformation equa-

tions and the terminal equations. For example, the quantity v cell can be expressed as

v cell = −vR3 + vC2 − vC3 + vR2 (3.95)

which can be used with the terminal equations to evaluate v cell. The plot shown in figure

3.46 shows the variation of v cell with time for different constant values of i cell.

The sensitivity of v cell can also be calculated from the branch transformation equations.

For this example the following expression can be obtained for the sensitivity of cell voltage

with respect to the model parameter.

v cellLNiOH2
= −vR3

LNiOH2
+ vC2

LNiOH2
− vC3

LNiOH2
+ vR2

LNiOH2
(3.96)

To compare the solutions, the same reactions of the NiMH battery are modelled using

lumped parameter equations as illustrated by Banerjee et al [74]. The governing equations

presented in this paper are a set of differential algebraic equations that captures the same

chemical reactions modelled by the linear graph presented in this chapter.
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Figure 3.48 shows the variation of v cellLNiOH2
obtained using direct differentiation onto the
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equations presented in the paper [74]. It also demonstrates the congruity of the solution

with that obtained using the graph-theoretic method being presented in this chapter.

The variation of the quantity v cellLNiOH2
depends on the discharge current of the system.

Figure 3.47 shows the variation of the sensitivity of v cell with respect to the model parameter

LNiOH2 for different values of i cell.

The benefit of using a graph-theoretic formulation is also reflected in the reduced amount

of time that is required to integrate the resulting equations. To compare the complexity of

the generated equations, the integration time is measured for the simulation of the graph-

theoretic sensitivity formulation for the NiMH battery.
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Figure 3.49: Comparison of integration time for two algorithms

It is then compared to the simulation time of sensitivity analysis of the model presented

by Banerjee et al. using direct differentiation. Initial conditions are properly chosen to

ensure that the two approaches simulate the same system undergoing the same physical

process. The figure above shows the differences in the integration times while using the two

competing methods for different values of i cell. It clearly identifies the superior efficiency of

the graph-theoretic method for sensitivity analysis.

Figure 3.49 clearly shows that the integration time decreases as the value of i cell increases.

This can be readily explained by the fact that when higher currents are used for the discharge,

the reactions generally speed up resulting in a shorter discharge time, which in turn results

in a decreased integration time.

Table 3.8 lists the integration times for the two methods along with their differences.

The graph theoretic method shows clear improvement in the integration time for all values
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of discharge current. This indicates a more efficient set of governing equations. It is also

observed that the relative decrease in the integration time increases with the value of icell.

Table 3.8: Integration times for the two competing methods

Discharge Direct Graph-theoretic %
Current Differentiation Method Reduction

2 A 7.736 s 6.770 s 12.5
4 A 2.595 s 2.122 s 18.2
6 A 0.986 s 0.733 s 25.6
8 A 0.789 s 0.328 s 58.4

3.4.4 Application: parametric importance analysis

To showcase the application of sensitivity information for the NiMH battery, in this section

a parametric importance analysis will be presented to identify key model parameters.

Importance analysis is used to identify the parameters which have the greatest effect on

a chosen performance measure. The results are dependent on the choice of the objective

function and are often valid specifically for the context of the study. In this example, the

efficiency of the battery is considered as the performance measure. Mathematically it can

be defined as the ratio of the energy available during discharge and the energy spent while

charging it. For constant charging and discharging currents, the equation reduces to the

form illustrated in equation (3.97).

f
(
v cell, b, t

)
=
i cell ,discharge × discharge

∫
v cell (b, t) dt

i cell ,charge × charge

∫
v cell (b, t) dt

(3.97)

To evaluate the effect of the perturbation of individual model parameters on this function,

the sensitivity of the quantity f
(
v cell, b, t

)
needs to be determined. To do that, equation

(3.97) is differentiated with respect to an arbitrary model parameter b to obtain the expres-

sion for the sensitivity of the performance measure.

fb =

(
Edischarge
b × Echarge

)
−
(
Edischarge × Echarge

b

)
(Echarge)2

Eb =

(
i cell ×

∫
d

db

(
v cell

)
dt

)
(3.98)

Equation (3.98) demonstrates the dependence of the sensitivity of the objective function

on the sensitivity of the state variable v cell. Various methods can be used to evaluate the
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state variables and their sensitivities. For this study, equations generated using the proposed

graph-theoretic formulation were used to generate the sensitivity information.

Normalized importance score

The sensitivity of the objective function given in equation (3.98) can be used to determine

which model parameter has greater influence on the efficiency of the battery. This procedure

is known as importance analysis. While equation (3.98) yields the absolute sensitivity of

the objective function, to compare the influence of different parameters on the objective

function, a normalized sensitivity scale must be defined as shown in equation (3.99).

µ =
∂f

∂b
×
∣∣∣∣ b∗

f (b∗)

∣∣∣∣ (3.99)

In the above equation b ∗ and f(b ∗) are the nominal values of the parameter and the

objective function respectively, and (∂ f/∂b) is the absolute sensitivity.

This normalization brings all the parameters to a common ground for comparison. A

greater absolute value of the relative sensitivity indicates higher influence of the parameter

on the efficiency, i.e., a more important parameter (Smith et al. [68]). In reality the change in

the objective function f due to a parameter perturbation can be both negative and positive.

However, to determine the most important parameter, the absolute values of the relative

sensitivity scores would be presented in this study.

The choice of the model parameters for importance analysis depends on the intended

application. For quality control studies, since it is not possible to enforce quality control on

every parameter, it is not worthwhile to study the entire list. On the other hand, model

reduction and parameter estimation would require extensive importance analysis of all the

model parameters.

In the presented system, the material densities can be considered as constants. How-

ever the loading of the active material at the electrodes denoted by LMH and LNiOH2 are

parameters which are affected by many factors. For this reason it is worthwhile to study

sensitivities with respect to these parameters. Apart from these parameters, the thermal

properties and the parameters related to the structure of the battery are expected to be

critical for the performance.

To demonstrate the process, five parameters are chosen for the importance analysis.

p =
{
ce, LMH , LNi(OH)2

, Rint, Vgas
}T

(3.100)
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Assuming a constant current of i cell = 0.5Amp for both charging and discharging pro-

cesses, an importance analysis was performed with respect to the parameters listed in (3.100).

By substituting the solution obtained by solving the sensitivity equations into the expression

for sensitivity of the efficiency, i.e., equation (3.98), the absolute sensitivities of the efficiency

of the battery with respect to its parameters are obtained.

Using this procedure, considering one parameter at a time, the relative importance scores

are calculated for all the selected parameters listed in (3.100). To compare the importance

of these parameters, the absolute sensitivity values are subsequently converted into relative

sensitivity scores using equation (3.99). Figure 3.50 shows the order of importance for each

of the five parameters.
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model parameters at different i cell

These results identify the loading of the nickel active electrode material to be the most

important parameter in the context of the efficiency of the system. In comparison, the other

parameters were found to have minimal effect on the performance of the battery. However it

is to be noted that, the importance order obtained by this analysis is specific for the current

operating condition. To determine the effect of different charging / discharging currents on

the order of importance, importance analysis is performed using different values for i cell.

Figure 3.51 shows the variation of relative sensitivity scores of model parameters.

The figure demonstrates that the loading of nickel hydroxide has the highest influence on

the efficiency of the battery for all currents. It also shows that, as the current through the
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cell is increased, the influences of the model parameters on the efficiency decrease at first

and then start to increase. This is observed for all the parameters under study. However, the

relative importance order of the model parameters is shown to remain constant for different

cell currents.

The fact that the loading of nickel active material has the highest influence on the effi-

ciency of the system is also observable indirectly through the general behaviour of the cell.

The parameter LNiOH2 refers to the surface density of an active electrode material. Its effect

on the efficiency of the battery is the main reason behind the gradual degradation of the

state of health of Ni-MH batteries.

It is a well known fact that although the cell reactions are reversible in theory, in practise

the amount of available active material inside the cell gradually decreases, due to the forma-

tion of small amounts of non-reactive byproducts. This directly alters the efficiency of the

battery in a negative fashion and reduces the amount of energy available from it. Though

it has not been a part of this presentation it is worthwhile to mention that the formation

of non-reactive by-products also increases the internal resistance, which further reduces the

amount of available energy and eventually makes it unusable.

3.4.5 Example summary

In an attempt to illustrate the application of graph-theoretic sensitivity analysis to an electro-

chemical system, a graph-theoretic model of nickel metal hydride battery [20] is analyzed in

this section.

The used model is based on the actual electro-chemical process and it captures the

charging discharging characteristics of a typical Ni-MH battery along with the effects of

side reactions taking place at the electrodes. The chemistry-based approach ensures a direct

correlation between the model parameters and the actual physical parameters of the battery.

The graph-theoretic model enabled the application of graph-theoretic sensitivity analysis.

A brief outline of the modelling approach is illustrated in the context of the supporting

graph-theoretic framework. In light of this discussion, the process of the application of graph-

theoretic sensitivity analysis of the Ni-MH battery is explained. Next, simulation results for

the system behaviour and the sensitivity information are presented. Finally a parametric

importance analysis is performed to identify key model parameters and to showcase the

application of sensitivity information.

The software Maple is used in this study, for the simulations and analysis. The cutset,
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circuit and terminal equations of the sensitivity domain are derived using symbolic operations

in Maple. The final assembly of sensitivity equations are also carried out using Maple’s

symbolic engine. The generated sensitivity model is completely analytical and permits the

study of physical battery parameters. The simulation is done by numerically integrating the

governing set of DAEs.

The loading of the nickel active material is found to be the most important parameter

as far as the efficiency of the battery is concerned. The gas volume of the cell is found to

be the least influential parameter for the cell efficiency. This section demonstrates that the

proposed method of graph-theoretic sensitivity analysis is equally applicable for complicated

electro-chemical systems and can be used to generate efficient sets of sensitivity equations.

3.5 Chapter summary

The application of graph-theoretic sensitivity analysis to scalar systems was presented in

this chapter. A brief discussion was included to provide a theoretical background about the

subject. The formulation was presented using an example of a simple spring mass damper

system.

A hydrodynamic torque converter model was used to demonstrate the application of the

algorithm. A graph-theoretic model of the torque converter was developed and subsequently,

graph-theoretic sensitivity analysis was used on the model to identify important model pa-

rameters. A design optimization problem was also presented to showcase the application of

sensitivity analysis. The graph-theoretic model of the torque converter was presented at the

7th Vienna International Conference on Mathematical Modelling in 2012 and has since been

accepted for publication in the MathMOD proceedings at the International Federation of

Automatic Control’s online server [21].

The sensitivity analysis of the torque converter and the results of the design optimization

process was presented at SAE World Congress 2012 and has been published in the SAE

International Journal of Passenger Cars [75].

As a second example, the algorithm was applied to an electro-chemical model of a NiMH

battery. An existing graph-theoretic model was used to generate the sensitivity equations

and the resulting sensitivity information was used to identify critical model parameters

important for the performance of the battery. The results of the importance analysis were

presented at the SAE World Congress 2011 [74].
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Chapter 4

Graph-theoretic sensitivity analysis of

multibody systems

4.1 Introduction

This chapter will present the derivation and application of graph-theoretic sensitivity anal-

ysis on three-dimensional multibody systems. The implementation of the proposed graph-

theoretic sensitivity analysis algorithm for three-dimensional multibody systems poses some

unique challenges. This chapter will begin with a brief overview of these salient aspects.

Using the theoretical background, graph-theoretic sensitivity analysis for multibody sys-

tems will be formulated and presented. A simple pendulum model will be used to describe

the formulation procedure and the subsequent results of sensitivity analysis. The flexibility

of the proposed algorithm will also be demonstrated using the same model.

4.2 Theory

Compared to systems that involve electrical and hydraulic domains, multi-body systems are

unique in quite a few aspects. For this reason, algorithms used for modelling and subsequent

analyses must be properly adapted to obtain correct and efficient results. In this section,

the theoretical derivation of the graph-theoretic sensitivity analysis for three-dimensional

multibody systems will be presented. To illustrate the process of graph-theoretic sensitivity

analysis, it is worthwhile to look at the key differences between multibody systems and

systems involving other domains that makes the process unique.
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4.2.1 Salient features of multibody systems

The main differences in the modelling and analyses methods used for multibody systems

originate from the following factors.

Translational and rotational domain: As discussed in section 2.1.1, a proper de-

scription of multibody systems require the consideration of both translational and rota-

tional domains. Since both translational and rotational motion variables are required to

describe the motion of a rigid body, both domains must be included to derive the cor-

responding sensitivities. For this reason, during the software implementation of graph-

theoretic sensitivity analysis of multibody systems, separate variables are required to

include sensitivity variables from both domains.

Through and across variables: As mentioned in the Chapter 2, the through and

across variables used to describe multibody systems are vectors. Hence, the correspond-

ing sensitivities are also represented by vector quantities. Also, the cutset and circuit

equations for both translational and rotational domains take the form of vector equa-

tions. This requires the use of different data structures and certain types of projection

methods for proper derivation of system and sensitivity equations.

Rotational circuit equations: For multibody systems, the direction cosine matrices

that define the three-dimensional orientation of the constitutive rigid bodies and joints are

the rotational across variables. The rotational circuit equations capture the relationships

between these variables and take the general form as shown below.

R 1R 2 · · ·Rn = U3×3 (4.1)

where U is the identity matrix, which is the product of all the rotation matrices around

a closed kinematic loop.

Similarly, the relationship between the sensitivities of the rotational across variables

are captured by a set of equations that will be referred to as the sensitivity circuit

equations. These equations can be derived from the rotational circuit equations by direct

differentiation. However, since the rotational circuit equations are expressed as products

of rotation matrices, the chain rule of differentiation must be used to obtain the proper

expression for the corresponding sensitivity equations. This step is specific for multibody

systems. To illustrate the process, a sensitivity circuit equation is generated from the
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circuit equation (4.1), by differentiating the expression of equation (4.1) with respect to

an arbitrary model parameter b as shown in the equation below.

∂R 1

∂b
R 2....Rn + R 1

∂R 2

∂b
....Rn + ....+ R 1R 2....

∂Rn

∂b
= 03×3 (4.2)

The derivation of sensitivity equations for multibody systems requires the evaluation of

the derivatives of rotation matrices. At this point, it is important to illustrate the physical

implications of this process.

4.2.2 Derivatives of rotation matrices

Rotation matrices represent the three-dimensional orientation of a rigid body. For analyses

of multibody dynamics, the rotation matrices are often written in terms of the time varying

Euler angles, which are state variables. To illustrate the basic structure of a rotation matrix,

the following example is considered. The matrix R corresponds to a uniaxial rotation of an

angle α (t, b) about the X axis.

R =

 1 0 0

0 cos (α (t, b)) sin (α (t, b))

0 −sin (α (t, b)) cos (α (t, b))

 (4.3)

The general structure of a rotation matrix does not depend on model parameters explic-

itly. However, it can be clearly seen that the rotation matrices are implicitly dependent on

the model parameters through the state variables. When a rotation matrix is differentiated,

the derivative does not retain the properties of a rotation matrix, such as the property of

orthogonality which requires the following relationship to be true.

RRT = RTR = U3×3 (4.4)

It can be easily verified that the derivative of the matrix R does not satisfy the relationship

shown in equation (4.4). However, it can be shown that the matrix R b, i.e., the derivative

of the rotation matrix R, can be expressed as the product of a skew symmetric matrix S

and the rotation matrix R itself:
dR

db
= Rb = SR (4.5)

This property is useful in deriving the sensitivity circuit equations for a system. The
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proof of this property is provided in Appendix B.2. For the matrix shown in equation (4.3),

the matrix S can be evaluated as

S = RbR
T =

 0 0 0

0 0 d
db
α (t, b)

0 − d
db
α (t, b) 0

 (4.6)

From equation (4.6) some physical insights can be obtained about the nature of the

matrix S. It can be seen that physically, the matrix represents the sensitivity of the three-

dimensional orientation of the body with respect to the model parameter in a skew symmetric

form. In other words, the matrix S holds the changes in orientation of a rigid body about

the three axes for an infinitesimal perturbation in the value of the parameter. Since R from

equation (4.3) represents an uniaxial rotation, the corresponding S matrix holds uniaxial

components only. However, for a general rotation matrix, the S matrix will contain the

sensitivity terms about all axes. This is illustrated in the example given below.

Equation (4.7) shows a general time-varying rotation matrix written in terms of the three

Euler angles ζ − η − ξ denoting a Euler intrinsic (body-fixed) rotation scheme X - Y - Z .

R =

 c ξ c η c ξ s η s ζ + s ξ c ζ − c ξ s η c ζ + s ξ s ζ

− s ξ c η − s ξ s η s ζ + c ξ c ζ s ξ s η c ζ + c ξ s ζ

s η − c η s ζ c η c ζ


c ≡ cos and s ≡ sin

(4.7)

The corresponding S matrix is shown in equation (4.8) .

S =

 0 −ψ3 ψ2

ψ3 0 −ψ1

−ψ2 ψ1 0


ψ1 = −

(
∂η

∂b

)
sin ξ −

(
∂ζ

∂b

)
cos η cos ξ

ψ2 = −
(
∂η

∂b

)
cos ξ +

(
∂ζ

∂b

)
cos η sin ξ

ψ3 = −
(
∂ζ

∂b

)
sin η −

(
∂ξ

∂b

)
(4.8)

The three elements ψ1, ψ2 and ψ3 represent the infinitesimal changes in the orientation
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about the three axes for a differential change in the parameter b. They are dependant on

not only the state variables ζ, η and ξ but also on the corresponding sensitivities ζb, ηb and

ξb.

The concept of rotations about three orthogonal axes raises the question about the nature

of the elements of the matrix S. From the looks of it, it appears that these rotations ψ1, ψ2

and ψ3 are acting like vectors. However, it is a well known fact that three-dimensional

rotations are not vector quantities at all. To resolve this apparent contradiction, one must

consider the fact that these elements refer to infinitesimal rotations only. Since the order

of rotation does not matter for infinitesimal rotations, they can be treated as vector-like

quantities.

4.2.3 Derivation of sensitivity equations

As discussed in the previous chapter, to derive the sensitivity equations from the linear graph

of the system, three kinds of equations must be generated. In this section, the derivation of

the sensitivity equations for a three-dimensional multibody system will be illustrated using

the example of a simple one-body pendulum with a revolute joint. Figure 4.1 shows the linear

graph of the system shown in figure 2.1. The labels identify the nature of the components

and the identifiers used to denote their association with the through and across variables of

the system.

î

ĵ

k̂

2L
h

r
m
F

o a

c

y
x

Ground 

Frame

Figure 4.1: Linear Graph of a simple pendulum

During the course of this derivation, variables will be assumed to be three-dimensional

in nature and consequently, they will be represented by vectors or matrices. Using the

formulation presented in section 2.1.1 both the governing and the sensitivity equations will

be generated from the linear graph. The following variables are used to denote the system:
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Translational through variables : F̄ h, F̄ r, F̄ m, F̄ F

Rotational through variables : T̄ m, T̄ r, T̄ h, T̄ F

Translational across variables : r̄m, r̄ r, r̄ h, r̄ F

Rotational across variables : Rm,R r,Rh,RF

Apart from the position-level variables, the time derivatives or the velocity and acceler-

ation level variables are also used as across variables.

Velocity level translational across variable: v̄m, v̄ r, v̄ h, v̄ F

Velocity level rotational across variables: ω̄m, ω̄ r, ω̄ h, ω̄ F

Acceleration level translational across variables: ām, ā r, āh, āF

Acceleration level rotational across variables: ᾱm, ᾱ r, ᾱ h, ᾱF

The subscript b refers to a scalar parameter with respect to which the sensitivity analysis

is being carried out. For analyses with respect to more than one parameters, similar variables

must be considered for each and every parameter under study.

To generate the sensitivity equations, the sensitivities of the aforementioned variables

are also required. They key point here is the fact that the sensitivity of a through variable

is a through variable itself and a similar statement can be made about the sensitivity of

an across variable. The sensitivity equations are the governing equations that dictate the

behaviours of these variables. As such, for the purpose of the generation of sensitivity

equations, the sensitivities of the through and across variables will be referred to as the

sensitivity through variables and sensitivity across variables respectively. For this system,

the following sensitivity variables are defined.

Translational sensitivity through variables : F̄ h
b , F̄

r
b , F̄

m
b , F̄

F
b

Rotational sensitivity through variables : T̄ m
b , T̄

r
b , T̄

h
b , T̄

F
b

Translational sensitivity across variables : r̄mb , r̄
r
b , r̄

h
b , r̄

F
b

Velocity level variables: v̄mb , v̄
r
b , v̄

h
b , v̄

F
b

Acceleration level variables : āmb , ā
r
b, ā

h
b , ā

F
b

Rotational sensitivity across variables : Rm
b ,R

r
b,R

h
b ,R

F
b

Velocity level variables: ω̄m
b , ω̄

r
b , ω̄

h
b , ω̄

F
b

Acceleration level variables : ᾱm
b , ᾱ

r
b , ᾱ

h
b , ᾱ

F
b
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At this point, it is worthwhile to note that while the position-level variables for the rotational

domain are tensors or matrices, the velocity and acceleration-level variables are in fact vectors

and should be treated accordingly.

Topological equations

For three-dimensional multibody systems, apart from the usual cutset and circuit equa-

tions, separate sets of equations are generated to describe the relationships between the sensi-

tivity through variables or the sensitivity across variables. For the purpose of the generation

of topological equations for both the original and the sensitivity variables, it is necessary to

consider a separate graph for the sensitivity variable, one which is topologically identical to

the original graph. Formulation methods like the selection of a tree is also necessary for the

sensitivity variables. However, it is possible to select different trees for the system and the

sensitivity graphs. For this example, the revolute joint h and the rigid arm r are chosen as

the tree branches for both graphs and the following equations are generated. This particular

choice of branches results in equations in terms of the joint angle θ h and the corresponding

sensitivity θ hb .

Translational cutset equations

Cutset equations are generated from the system graph and they contains the relationships

between the through variables. For this system the translational cutset equations and the

corresponding sensitivity cutset equations are shown in equations (4.9) and (4.10), respec-

tively. [
F̄ h + F̄ m + F̄ F

F̄ r − F̄ m − F̄ F

]
= 0 (4.9)

[
F̄ h
b + F̄ m

b + F̄ F
b

F̄ r
b − F̄ m

b − F̄ F
b

]
= 0 (4.10)

Equations (4.9) and (4.10) can also be written as a set of translational chord transforma-

tion equations. These equations express the translational through variables of the branches

in terms of the translational through variables of the chords. The combined set of general

and sensitivity chord transformation equations are given in equation (4.11).
F̄ h

F̄ h
b

F̄ r

F̄ r
b

 =


−F̄ m − F̄ F

−F̄ m
b − F̄ F

b

F̄ m + F̄ F

F̄ m
b + F̄ F

b

 (4.11)
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Rotational cutset equations

For the rotational domain, the cutset equations are[
T̄ h + T̄ m + T̄ F

T̄ r − T̄ m − T̄ F

]
= 0 (4.12)

In physical terms, these equations denote the balance of torques acting through different

components of the system. The corresponding sensitivity equations or the rotational sensi-

tivity cutset equations can be generated from the sensitivity graph as well and are given in

equation (4.13). [
T̄ h
b + T̄ m

b + T̄ F
b

T̄ r
b − T̄ m

b − T̄ F
b

]
= 0 (4.13)

These equations can also be written as chord transformation equations. The main purpose

of the chord transformation equations is to replace the branch through variables using the

chord through variables.

For this system, the set of rotational chord transformation equations for the system graph

and the sensitivity graph are given in equation (4.14).
T̄ h

T̄ h
b

T̄ r

T̄ r
b

 =


−T̄ m − T̄ F

−T̄ m
b − T̄ F

b

T̄ m + T̄ F

T̄ m
b + T̄ F

b

 (4.14)

Translational circuit equations

For this system, the translational circuit equations and the translational sensitivity circuit

equations can be directly evaluated from their respective graphs and are given in equations

(4.15) and (4.16), respectively. The translational circuit equations correspond to the topo-

logical loop equations present in the system.[
−r̄ h + r̄ r + r̄m

−r̄ h + r̄ r + r̄ F

]
= 0 (4.15)

[
−r̄ hb + r̄ rb + r̄mb

−r̄ hb + r̄ rb + r̄ Fb

]
= 0 (4.16)

By rearranging the circuit equations, it is possible to write a set of branch transformation
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equations that can be used to replace the chord across variables with the branch across

variables. These equations are essential for the branch-chord formulation. For this system,

the combined set of branch transformation equations obtained from the system and the

sensitivity graphs are given in equation (4.17).
r̄m

r̄ F

r̄mb

r̄ Fb

 =


r̄ h − r̄ r

r̄ h − r̄ r

r̄ hb − r̄ rb
r̄ hb − r̄ rb

 (4.17)

The translational branch transformation equations can also be written in terms of the

velocities or even accelerations of the system. These equations are obtained by differentiating

equation (4.17) with respect to time. These equations are sometimes required to simplify

generated equations. 
v̄m

v̄ F

v̄mb

v̄ Fb

 =


v̄ h − v̄ r

v̄ h − v̄ r

v̄ hb − v̄ rb
v̄ hb − v̄ rb

 (4.18)

Rotational circuit equations

As mentioned before, the rotational circuit equations are written in terms of the rotational

across variables, which are in fact matrices. To capture the relationships between these

rotational across variables, it is necessary to define the rotation matrix R and establish the

direction of the transformation it represents.

i

j
u

i

R

Figure 4.2: Rotation matrix from frame i to frame j

Figure 4.2 shows the schematic representation of two distinct frames of reference i and

j, where R is the transformation matrix from frame i to frame j.
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A vector in frame i can be represented in frame j using the following relationship.

{u j} = R i→j {u i} (4.19)

The rotational circuit equations for the pendulum are derived using the convention de-

scribed in equation (4.19). The linear graph shown in figure 4.1 shows the presence of two

kinematic loops. Hence, a total of two rotational circuit equations are obtained for the

system, as shown in equation (4.20).(
Rh
)T

R r Rm = U3×3(
Rh
)T

R r RF = U3×3
(4.20)

As mentioned in the preceding section, since the rotation matrices deal with finite ro-

tations, the order of multiplication of these matrices are important. Also, to obtain the

correct equations for the rotational sensitivity across variables, one must use the chain rule

of differentiation. By differentiating equation (4.20) with respect to the model parameter b,

the rotational sensitivity circuit equations are obtained, as shown in equation (4.21).(
Rh

b

)T
R r Rm +

(
Rh
)T

R r
b Rm +

(
Rh
)T

R r Rm
b = 0(

Rh
b

)T
R r RF +

(
Rh
)T

R r
b RF +

(
Rh
)T

R r RF
b = 0

(4.21)

For the branch chord formulation, it is required to express the chord across variables,

i.e., Rm,RF ,Rm
b and Rm

b , in terms of the branch across variables, i.e., Rh,R r and their

sensitivities. From the system graph or equation (4.20), the first two branch transformation

equations can be obtained as

Rm = (R r)TRh

RF = (R r)TRh
(4.22)

From equation (4.21), one can derive the expressions for the rotational sensitivity branch

transformation equations, i.e., the equations that express Rm
b and Rm

b in terms of the rota-

tional branch across variables:

Rm
b = −(R r)TRh

((
Rh

b

)T
R rRm +

(
Rh
)T

R r
bR

m
)

RF
b = −(R r)TRh

((
Rh

b

)T
R rRF +

(
Rh
)T

R r
bR

F
) (4.23)

Using properties of the rotation matrix, equation (4.23) can be simplified considerably.
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The reduced equation is illustrated in equation (4.24). The formal proof of the simplification

is given in Appendix B.3.

Rm
b = (R r

b)
TRh + (R r)TRh

b

RF
b = (R r

b)
TRh + (R r)TRh

b

(4.24)

Rotational circuit equations can also be written using the velocity and acceleration level

variables. The key difference is the fact that the velocity and acceleration level rotational

across variables are vectors and the corresponding equations are much simpler in form.

For this system, the velocity level branch transformation equations are given in equation

(4.25). Along with their translational counterparts, these equations are also used to simplify

generated equations. 
ω̄m

ω̄ F

ω̄m
b

ω̄ F
b

 =


ω̄ h − ω̄ r

ω̄ h − ω̄ r

ω̄ h
b − ω̄ r

b

ω̄ h
b − ω̄ r

b

 (4.25)

Terminal Equations

Terminal equations capture the nature of the component that is represented by a par-

ticular edge of a linear graph. For the generation of sensitivity equations, proper terminal

equations must be specified for the edges from the system graph and the sensitivity graph

simultaneously.

For the system graph, the terminal equations are specified to capture the physical nature

of the components represented by the edges. On the other hand, the terminal equations for

the sensitivity graph edges are derived by symbolically differentiating the terminal equations

of the corresponding edges of the system graph. The terminal equations used for this system

are explained below.

The rigid body element

For the edge denoted by m in figure 4.1, representing the rigid body, the terminal equa-

tions must be specified for both translational and rotational domains. For the translational

domain, the quantity r̄m is declared as a symbolic variable and the quantity F̄ m is specified

as a function of the translational across variable as illustrated in equation (4.26).

r̄m =


x r

m (t)

y r
m (t)

z r
m (t)

 F̄ m = −m d2

dt2
(r̄m) (4.26)
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The corresponding sensitivity equations are given in equation (4.27). These equations are

obtained by symbolically differentiating the equations shown in equation (4.26) with respect

to the model parameter b. The quantity r̄mb is a symbolic variable which is obtained by

differentiating the vector r̄m with respect to the model parameter b.

r̄mb =


x r

m
b (t)

y r
m
b (t)

z r
m
b (t)

 F̄ m
b = −m d2

dt2
(r̄mb )−

(
∂m

∂b

)
d2

dt2
(r̄m) (4.27)

In equations (4.26) and (4.27) the subscripts to the right represent differentiation with

respect to the symbols appearing as the subscript. The subscripts on the left represent the

three components of the vector. Also, it is assumed that the vectors are expressed in the

ground frame. The same convention is followed for all the subsequent equations illustrated

in this chapter.

For the rotational domain the quantities that need to be defined are the rotation matrix

Rm , the torque T̄ m and their sensitivities, i.e., Rm
b and T̄ m

b respectively. For this example

the Rm matrix is defined in terms of three Euler angles ζ − η − ξ assuming an intrinsic

rotation scheme X - Y - Z. For this particular choice Euler angles, the expression for Rm is

given by (4.7).

The dynamic torque T̄ m, acting on a rigid body undergoing a general three-dimensional

rotational motion, can be expressed in terms of the moment of inertia dyadic J , the time

derivative of the angular velocity vector ˙̄ω
m

, and the translational through and across vari-

ables r̄ r and F̄ r, associated with the rigid arm elements connected to the rigid body. Equa-

tion (4.28) shows the general expression for the torque vector, where the symbols r̃ r and ω̃m

refer to the skew symmetric forms of the vectors r̄ r and ω̄m respectively.

T̄ m = −J ˙̄ω
m − r̃ rF̄ r − ω̃m J ω̄m (4.28)

Since the motion of the pendulum is restricted to a single plane, the gyroscopic term can

be safely neglected. When expressed in the frame fixed to the centre of mass of the rigid

body, equation (4.28) can be rewritten in terms of the centroidal moment of inertia matrix

J and the other vectors. Equation (4.29) shows the expression of vector T̄ m.

T̄ m = −J ˙̄ω
m − r̄ r × F̄ r (4.29)
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The centroidal moment of inertia matrix J can be written in terms of the mass of the

rigid body M , the length L, and the diameter of cross-section D, as shown in equation (4.30).

J =


ML 2

12
0 0

0 MD2

4
0

0 0 ML 2

12

 (4.30)

The sensitivity terminal equation can be obtained through direct differentiation of the

specified terminal equation. The quantity T̄ m
b is given by the following expression.

T̄ m
b = − d

db
(J) ˙̄ω

m − J ˙̄ω
m
b − r̄ rb × F̄ r − r̄ r × F̄ r

b (4.31)

In equation (4.31), the term ω̄ b denotes the sensitivity of the term ω̄ with respect to

model parameter b and the terms r̄ r, F̄ r and their sensitivities r̄ rb and F̄ r
b are defined as the

terminal equations for the edge representing the rigid arm element of the system as described

in the next section.

The sensitivity terminal equation for the rotational domain also includes the definition

of the term Rm
b . This expression is obtained by differentiating equation (4.7) with respect

to model parameter b.

Rm
b =

 Ψ1 Ψ2 Ψ3

Ψ4 Ψ5 Ψ6

η b c η η b s η s ζ − ζ b c η c ζ −η b s η c ζ − ζ b c η s ζ


c ≡ cos and s ≡ sin

(4.32)

where
Ψ1 = −η b s ξ c η − η b s η c ξ

Ψ2 = −ξ b s ξ s η s ζ + η b c ξ c η s ζ + ζ b c ξ s η c ζ + ξ b c ξ c ζ − ζ b s ξ s ζ

Ψ3 = ξ b s ξ s η c ζ − η b c ξ c η c ζ + ζ b c ξ s η s ζ + ξ b c ξ s ζ + ζ b s ξ c ζ

Ψ4 = −ξ b c ξ c η + η b s η s ξ

Ψ5 = −ξ b c ξ s η s ζ − η b s ξ c η s ζ − ζ b s ξ s η c ζ − ξ b s ξ c ζ − ζ b c ξ s ζ

Ψ6 = ξ b c ξ s η c ζ + η b s ξ c η c ζ − ζ b s ξ s η s ζ − ξ b s ξ s ζ + ζ b c ξ c ζ

(4.33)

The matrix Rm
b can not be considered as a rotation matrix by itself, since it is not an

orthogonal matrix and its determinant is not equal to unity. However, it is required to
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construct the sensitivity terminal equations and sensitivity circuit equations for the system.

At this point, it is worthwhile to point out that although the expressions of these terminal

equations are somewhat complicated, their forms are independent of the topology of the

system. Thus, it is possible to hard code these equations into a software implementation

where the case-specific equations can be generated on the fly during the simulation. At that

point, the problem reduces to evaluating symbolic differentiation of some simple expressions.

The rigid arm element

The rigid arm element, i.e., the edge denoted with r, represents the geometric transfor-

mation from the frame fixed to the centre of mass of the body m to the frame fixed to the

point on the body where the revolute joint is attached. As explained previously, the terminal

equations for the rigid arm element must be specified for both rotational and translational

domains. On top of this, for the generation of sensitivity equations, it is also required to

specify the sensitivity terminal equations for these domains. For the translational domain,

the terminal equations for the system equations can be declared as illustrated below.

For the edge representing the rigid arm element, the translational through variable F̄ r

and the corresponding sensitivity through variable F̄ r
b are defined as symbolic variables which

are vectors.

F̄ r =


xF

r (t)

yF
r (t)

zF
r (t)

 and F̄ r
b =


xF

r
b (t)

yF
r
b (t)

zF
r
b (t)

 (4.34)

The simplest way to specify the rigid arm translational across variable r̄ r is to define the

displacement vector in the frame fixed to the centre of mass of the body it is fixed with.

r̄ 0 = {r̄ r}c.o.m =
{

0 L/2 0
}T

(4.35)

To specify the constitutive equations, the body fixed vector r̄ 0 is expressed in the ground

frame using a rotational transformation matrix Rm. The matrix Rm corresponds to a

rotational transformation from the frame fixed to the centre of mass of the rigid body to the

ground frame and is shown in equation (4.7).

The resulting quantity r̄ r becomes a time varying vector and contains the Euler angles

and their time derivatives to include the effects of the rotations undergone by the body.

r̄ r = Rm r̄ 0

˙̄r
r

= v̄ r = ω̄m × r̄ r and ¨̄r
r

= ā r = ˙̄ω
m × r̄ r − (|ω̄m|)2r̄ r

(4.36)
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The corresponding sensitivity terminal equations are

r̄ rb = Rm d

db
(r̄ 0) + Rm

b r̄ 0

˙̄r
r
b = ω̄m

b × r̄ r + ω̄m × r̄ rb
¨̄r
r
b = ˙̄ω

m
b × r̄ r +˙̄ω

m × r̄ rb − 2 (ω̄m · ω̄m
b ) r̄ r − (|ω̄m|)2r̄ rb

(4.37)

For the rotational domain, the terminal equation for the matrix R r captures the relative

orientation of the frame of reference fixed to the hinge point and the frame of reference fixed

to the centre of mass of the pendulum. For this system these frames are assumed to be

aligned with each other, which makes the quantity R r a constant identity matrix and the

corresponding sensitivity R r
b a zero matrix.

The revolute joint

The edge marked with h represents the revolute joint in this system. This joint allows

rotational motion about the Z axis and the system and sensitivity terminal equations are

defined to capture this functionality.

Translational system terminal equations

r̄ h =


0

0

0

 and F̄ h =


xF

h

yF
h

zF
h

 (4.38)

Translational sensitivity terminal equations

r̄ hb =


0

0

0

 and F̄ h
b =


xF

h
b

yF
h
b

zF
h
b

 (4.39)

Rotational system terminal equations

Rh =

 cosα sinα 0

− sinα cosα 0

0 0 1

 and τ̄ h =


x τ

h

y τ
h

0

 (4.40)

It is also possible to express the angular velocity of the component in terms of the position

level variable. For the revolute joint, the angular velocity variable is denoted as ω̄ h and can
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be expressed in terms of Rh and α as shown in equation (4.41).

ω̄h =
{

0 0 α̇ (t)
}T

(4.41)

Rotational sensitivity terminal equations

Rh
b =

 −α b sα α b cα 0

−α b cα −α b sα 0

0 0 0

 and τ̄ hb =


x τ

h
b

y τ
h
b

0

 (4.42)

The external force element

The edge marked with F represents the body force acting on the pendulum due to its

mass. In terms of linear graph theory, this is known as a through driver. The terminal

equations for this edge shown in equations (4.43) and (4.44).

For the translational domain

F̄ F =


0

−mg
0

 and F̄ F
b =


0

− d
db

(mg)

0

 (4.43)

For the rotational domain

τ F = {0}3×3 and τ Fb = {0}3×3 (4.44)

It is very important to make sure that the vector quantities are expressed in the same

frame of reference before any of the algebraic operations are carried out. For the vectors

specified in specific frames, proper frame transformation must be ensured before they can

be used in any of the other terminal equations specified.

Generation of system and sensitivity equations

To demonstrate the process of generation of the governing equations for the system and the

sensitivity equation, we reiterate the choice of the tree branches as mentioned before. For

this system we choose the edges corresponding to the revolute joint and the rigid arm as the

tree branches as illustrated in figure 4.3 using solid lines. The edges corresponding to the

rigid body m and body force F are classified as the cotree chords. Also the length of the
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pendulum L is chosen as the model parameter with respect to which the sensitivity analysis

is being carried out.

As presented in chapter 2, the next step is the projection of cutset equations and the

sensitivity cutset equations of all the rigid bodies, passive joints and through drivers on to

their respective motion spaces. This ensures the elimination of the reaction forces and their

sensitivities that correspond to the passive kinematic constraints included in the tree. Since

this system involves both rotational and translational domains, cutset equations from both

domains must be projected onto their respective motion spaces.

r

m

F

h

î

ĵ

k̂

Figure 4.3: Tree selection for joint coordinate formulation

At this point, the concept of projection for the sensitivity equations must be clarified.

Normally, the projection process involves the evaluation of the dot product of two vectors.

However, for the sensitivity equations, this process must be modified to capture the chain

rule of differentiation.

For a general system, the motion spaces of the joints can be implicit functions of the

model parameters. In these cases, the form shown in equation (4.45) must be followed for

accurate derivation of sensitivity equations. It is to be noted that in equation (4.45), all the

quantities on the right hand side are vectors and care must be taken to express them in a

common frame before the dot products are evaluated.[
Projected

equation

]
=

[
Sensitivity

cutset equations

]
·

[
Motion

space

]
+

[
Cutset

equations

]
·

[
Sensitivity of

motion space

]
(4.45)

For the translational domain the cutset equations of the only eligible component for the

first step, i.e., the revolute joint are shown in equation (4.46).

F̄ h + F̄ m + F̄ F = 0

F̄ h
L + F̄ m

L + F̄ F
L = 0

(4.46)
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However, the translational motion space is null because the revolute joint does not allow

movement in any direction. For this reason, none of these equations get projected and appear

in the system and/or sensitivity equations.

For the rotational domain, the system and sensitivity cutset equations can be projected

onto the motion space which is the axis of rotation of the revolute joint. For this system the

motion space is the k̂ axis as shown in figure 4.3.

Since the motion space for this particular joint is a constant, the second part of equation

(4.45) can be neglected and the projected equations can be evaluated as shown in equation

(4.47). (
T̄ h + T̄ m + T̄ F

)
. k̂ = 0(

T̄ h
L + T̄ m

L + T̄ F
L

)
. k̂ = 0

(4.47)

Equation (4.47) shows the projected cutset equations. Substituting the terminal equa-

tions the following equations are obtained.(
−J ˙̄ωm − r̄ r × F̄ r

)
. k̂ = 0(

−JL ˙̄ωm − J ˙̄ωm
L − r̄ rL × F̄ r − r̄ r × F̄ r

L

)
. k̂ = 0

(4.48)

In equation 4.48 the term JL represents the derivative of the inertia matrix with respect

to the model parameter L and can be derived from equation 4.30.

JL =


mL
6

0 0

0 0 0

0 0 mL
6

 (4.49)

The next step is the elimination of secondary variables. As explained in chapter 2,

it is done in a specific order. First the rigid arm forces are eliminated by substituting the

translational branch transformation equations (4.11) into equation (4.48). After substitution

the equations are formed in terms of the tree across variables, cotree through variables, and

the cotree across variables. [
−J ˙̄ωm − r̄ r ×

(
F̄ m + F̄ F

)]
. k̂ = 0[

−JL ˙̄ωm − J ˙̄ωm
L − r̄ rL ×

(
F̄ m + F̄ F

)
− r̄ r ×

(
F̄ m
L + F̄ F

L

)]
. k̂ = 0

(4.50)

The next step is to replace the cotree translational across variables. First the terminal

equations are substituted in (4.50) and then (4.17) is used to replace the translational across
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variables from the chords with the translational across variables of the branches. Equation

(4.51) shows the first equation after the substitution.

(
−J ˙̄ωm − r̄ r ×

(
−m

(
¨̄r h − ¨̄r r

)
+ F̄ F

))
· k̂ = 0 (4.51)

Since, r̄ h = 0, this equation can be simplified further as illustrated below.(
−J ˙̄ωm − r̄ r ×

(
m
(

˙̄ωm × r̄ r − (|ω̄m|)2r̄ r
)

+ F̄ F
))
· k̂ = 0

⇒
(
−J ˙̄ωm −m (r̄ r × ˙̄ωm × r̄ r)− r̄ r × F̄ F

)
· k̂ = 0

⇒
(
−J ˙̄ωm −m (Rm r̄ 0 × ˙̄ωm ×Rm r̄ 0)−Rm r̄ 0 × F̄ F

)
· k̂ = 0

(4.52)

At this stage, the only undesired component in this equation is the cotree rotational

across variables Rm and ω̄m. They can be replaced by the rotational across variables of the

branches using equation (4.22) and the terminal equations. By substituting the equations

into equation (4.52) the following equation is obtained.

(
−J ˙̄ω h −m

(
Rh r̄ 0 × ˙̄ω h ×Rh r̄ 0

)
−Rh r̄ 0 × F̄ F

)
· k̂ = 0 (4.53)

Equation (4.53) can be simplified by using the expression for r̄ 0 = {0, L/2, 0}T and the

expression for Rh from equation (4.40), which gives rise to the following equation.

Rh r̄ 0 =

 cosα sinα 0

− sinα cosα 0

0 0 1


 0

L/2

0

 =
1

2

 L sinα

L cosα

0

 (4.54)

Also using equation (4.30) and (4.41) the following equation can be derived.

J ˙̄ω h =
1

12


0

0

mL 2α̈

 (4.55)

Substituting equations (4.54) and (4.55) into (4.53), a much simpler form is obtained.− 1

12

 0

0

mL 2α̈ (t)

− 1

4

 0

0

mL2α̈ (t)

−Rh r̄ 0 × F̄ F

 · k̂ = 0 (4.56)
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After the projection onto the k̂ axis, equation (4.56) transforms into the regular expression

for the governing equation of a simple pendulum.

mL 2

3
α̈ +

mgL

2
sinα = 0 (4.57)

Due to the added sensitivity terms, the derivation of the sensitivity equation is a little

more involved than the example shown so far. However, it can be generated using the same

structured algorithm. The process is illustrated by the example below.

After substituting the terminal equations into the second equation from (4.50) the fol-

lowing equation is obtained.

[
−JL ˙̄ωm − J ˙̄ωm

L +m (r̄ rL × ¨̄rm)− r̄ rL × F̄ F +m (r̄ r × ¨̄rmL )
]
· k̂ = 0 (4.58)

By using translational branch transformation equations (4.17) the translational chord

across variables are replaced by translational branch across variables. In other words, r̄m is

replaced by r̄ h and r̄ r. Using terminal equations for the newly formed variables, equation

(4.58) can be modified to the equation shown below.

[
−JL ˙̄ωm − J ˙̄ωm

L −m (r̄ rL × ¨̄r r)− r̄ rL × F̄ F −m (r̄ r × ¨̄r rL)
]
· k̂ = 0 (4.59)

Using equations (4.36) and (4.37), the terms ¨̄r r and ¨̄r rL can be replaced by rotational

across variables from the chords. Rotational branch transformation equations (4.22) and

(4.25) can then be used to replace the chord across variables with the branch across variables

or the primary variables. Using this technique on equation (4.59) the following equation is

obtained.

[
σ̄0 −m (σ̄1 × σ̄2)− σ̄4 ×

(
˙̄ω h × σ̄1

)
− σ̄4 × σ̄3 − σ̄1 × F̄ F

]
· k̂ = 0 (4.60)

where
σ̄0 = −JL ˙̄ω h − J ˙̄ω h

L σ̄1 =
(
Rh(r̄ 0)L + Rh

Lr̄ 0
)

σ̄2 = ˙̄ω h ×Rh r̄ 0

σ̄3 = ˙̄ω h
L ×Rh r̄ 0 σ̄4 = mRh r̄ 0

(4.61)

At this point, the equations are expressed in terms of the primary variables only and

thus can be considered as complete. To obtain the usual form of the sensitivity equation,

the terminal equations must be substituted into equation (4.61) and the resulting equation

122



must be projected onto the k̂ axis as shown in the equation. The following expressions show

the evaluation of the various terms of the equation (4.61).

σ̄0 = −1

6
JL

 0

0

α̈

− J

 0

0

α̈L

 =
1

12

 0

0

−2mLα̈−mL2α̈L

 (4.62)

σ̄1 =
(
Rh(r̄ 0)L + Rh

Lr̄ 0
)

=
1

2

 sinα + LαL cosα

cosα− LαL sinα

0

 (4.63)

σ̄2 = ˙̄ω h ×Rh r̄ 0 =
1

2

 −L α̈ cosα

L α̈ sinα

0

 (4.64)

σ̄3 = ˙̄ω h
L ×Rh r̄ 0 =

1

2

 −L α̈L cosα

L α̈L sinα

0

 (4.65)

σ̄4 = mRh r̄ 0 =
1

2

 mL sinα

mL cosα

0

 (4.66)

By substituting equations (4.62) - (4.66) into equation (4.61) a much simpler form is

obtained which can then be projected on to the k̂ axis for the final equation.mL
12

 0

0

Λ

−
 0

0
mL(2α̈+Lα̈L)

4

−
 0

0
mg(sα+αLL cα)

2


 · k̂ = 0

Λ = −2α̈− Lα̈L

(4.67)

After projecting this equation the final form of the sensitivity equation is obtained as

shown in equation (4.68). It can be clearly demonstrated that the same equation can be

obtained by differentiating equation (4.57) manually.

2mL

3
α̈ +

mL2

3
α̈L +

mg

2
sinα +

mgL

2
αL cosα = 0 (4.68)
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4.2.4 Effect of branch selection

As discussed in the preceding sections, the size, structure, and complexity of the generated

equations depend on the selection of the branches for the branch-chord formulation. The

proposed algorithm for the generation of sensitivity equations allows the user to select dif-

ferent trees for the governing and sensitivity equations. This offers superior control over the

structure of the final set of equations, as explained here.

a or b 

xy

q

Figure 4.4: Absolute and joint coordinate system for a pendulum

To demonstrate the effect of branch selection on the generated sensitivity equations, the

example of the simple pendulum is considered as shown in figure 4.4.

r2

m5

F6

h1

p4

a

b

c

g

r3

Figure 4.5: Tree 1

r2

m5

F6

h1

p4

a

b

c

g

r3

Figure 4.6: Tree 2

The pendulum shown in the figure 4.4 can be modelled in terms of the joint angle α, or

in terms of the absolute coordinates x, y, and θ which are associated with the frame at the

centroid of the pendulum. These separate equations can be generated by selecting different

trees for the graph-theoretic formulation for the system. To demonstrate the process, the

pendulum is represented using a linear graph as shown in the figures 4.5 and 4.6.
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The relevant across variables are assigned in such a way so that if the revolute joint is

selected in the tree, the equations are generated in terms of the quantity α, vide figure 4.4,

and if the planar joint is selected as a branch, the equations are generated in terms of the

quantities x, y, and θ, vide figure 4.4.

If the branch selection scheme shown in figure 4.5 is used to generate both system and

sensitivity equations for the simple pendulum, the equations will be generated in terms of the

angle α and the sensitivity of the same αL. The derivation of these equations is presented

in detail previously. Equation (4.69) presents these equations in a matrix form. mL2

3
0

2mL
3

mL2

3


 α̈

α̈L

 =

 −mgL
2

sinα

−mg
2

sinα− mgL
2
αL cosα

 (4.69)

If the branch selection scheme shown in figure 4.6 is selected for both system and sensi-

tivity equations, the final set of equations are formed in terms of x, y, θ, xL, yL, θL.

However, if the scheme shown in figure 4.6 is used for the system equations and the

scheme shown in figure 4.5 is used for the sensitivity equations, the resulting set of equations

are formed in terms of x, y, θ, and the rotational across variable of the revolute joint edge

in the sensitivity graph, βL. The formed equations are shown in equation (4.70):
m 0 0 0

0 m 0 0

0 0 mL2

12
0

0 0 5mL
12

mL2

3




ẍ

ÿ

θ̈

β̈L

+ ΦT
q

 xF
h

yF
h

 =


0

−mg

0

mL2βLθ̇
2

4

 and Φ = 0 (4.70)

where xF
h and yF

h are the joint reaction forces in the global X and Y directions, and the

matrix ΦT
q is the transpose of the Jacobian matrix.

Φ =

[
x− L sin θ

2

y + L cos θ
2

]
= 0 Φq =

 −1 0 L cos θ
2

cos θ−LβL sin θ
2

0 −1 L sin θ
2

sin θ+LβL cos θ
2

 (4.71)

Equation (4.70) is unique in the sense that it is a collection of equations which uses

absolute coordinates for the governing equations, but joint coordinates for the sensitivity

equations; generated using an automated and structured algorithm.
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The solution of β and α are identical to each other as they represent the same physical

angle. Consequently, the solution of αL and βL are also identical. To demonstrate that

the equations (4.70) and (4.69) solve for the same sensitivity and yield same results, the

equations are solved by using the following values for the model parameters.

m = 1 g = 9.8 L = 1 (4.72)

Also the following initial conditions are used to ensure that the equations solve for the

same physical systems with identical initial configurations.[
α (0) = 30◦ α̇ (0) = 0

αL (0) = 0 α̇L (0) = 0

]
and

[
θ (0) = 30◦ θ̇ (0) = 0

βL (0) = 0 β̇L (0) = 0

]
(4.73)

At this point, it is important to take note of the fact that the equations presented in

(4.70) is a set of DAEs and to ensure successful simulation, consistent initial conditions must

be specified for all the state variables.

Since equation (4.70) consists of two algebraic constraint equations and has four state

variables, only two of the state variables can be specified arbitrarily. For this simulation,

initial conditions are specified for θ , βL and their derivatives to ensure that the initial

configuration matches the one used by the other simulation.
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Figure 4.7: Solutions of α and θ
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Figure 4.8: Solutions of αL and βL

Figure 4.7 demonstrates complete congruity between the quantities α and θ, confirming

the statement that the two simulations represent the same physical system and its configu-
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ration. Figure 4.8 shows that the solution of βL matches that of αL and the two quantities

are physically identical. This validates the ability of the proposed algorithm to generate sen-

sitivity equations in terms of sensitivity quantities other than the sensitivities of the state

variables of the governing equations.

This is an unique and very helpful feature of the proposed algorithm. In many practical

cases, the most efficient models do not necessarily consist of the state variables of which

sensitivity information is required.

Under those circumstances, the proposed algorithm can be used to generate a set of sen-

sitivity equations that are dependent only on the required sensitivity quantities by selecting

the corresponding edges as the branches of the sensitivity tree. This avoids the simulation of

equations consisting of unnecessary sensitivity variables and makes the process more efficient.

At this point, it is necessary to mention that if the trees selected for the sensitivity and

the system equations are different, the resulting equations are generated in terms of different

sets of through and across variables. The relationships between the primary variables of the

sensitivity tree and the primary variables of the system tree can be determined by using the

chord and branch transformation equations.

For the example shown above, the primary variable for the sensitivity equation just

happens to be equal to one of the primary variables used in the system equation. For a more

general system, it is not reasonable to expect such equality among the two sets of variables.

For those systems the generated branch and chord transformations must be used to bridge

the gap between the two sets of variables.

4.3 Chapter Summary

The process of automated generation of sensitivity equations for multibody systems from

its linear graph is demonstrated in this chapter. A brief theoretical description is used to

demonstrate the salient aspects of graph-theoretic representation and subsequent analysis of

multibody systems. In light of this description, an algorithm for graph-theoretic sensitivity

analysis is formulated for multibody systems. An effort is made to interpret the physical

implications of the derivative of rotation matrices which are used frequently to represent the

three-dimensional orientation of rigid bodies.

Using a simple pendulum as an example, the process of generation of governing equa-

tions and sensitivity equations are demonstrated using full three-dimensional formalism.

The flexibility of the proposed algorithm is also presented using the same example. In the
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next chapter, these theoretical formulations will be implemented as a part of MapleSim, a

commercial software for multibody and multi-domain modelling.

The two-dimensional version of the proposed algorithm, i.e., the application of graph-

theoretic sensitivity analysis to planar mechanisms has been presented at the Multibody

Dynamics Conference 2011 at the Universit Catholiqu de Louvain [76].

The three-dimensional formulation of the proposed graph-theoretic sensitivity analysis

algorithm has been submitted to the ASME Journal of Computational and Nonlinear Dy-

namics and is currently undergoing the review process.
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Chapter 5

Implementation and Results

Automated graph-theoretic sensitivity analysis for three-dimensional multibody systems has

been implemented through a modelling and simulation software package called MapleSim .

In this chapter, details of the implementation will be presented along with the results of the

application of the algorithm to three dynamic systems and one kinematic system.

The first section will present the software platform MapleSim, in which the algorithm has

been implemented. In light of this discussion, the structural details of the implementation

will be illustrated. Next, the user interface for the application of the algorithm will be

explained to outline the software platform of the implementation.

The application of the algorithm will be presented in the subsequent sections. First, a

simple sliding pendulum mechanism will be presented to illustrate the intermediate steps

of equation generation. Next, a three-dimensional pendulum model will be considered to

illustrate validity of the three-dimensional formulation of the proposed algorithm. A motor

driven slider crank mechanism will also be analyzed to demonstrate the applicability of

the algorithm to multi-domain systems. Finally a double-wishbone suspension system will

be considered to illustrate the applicability of the algorithm for complicated multibody

automotive systems.

5.1 Computer Implementation

MapleSim is a multi-domain modelling and simulation tool from MapleSoft Inc. To illustrate

the software implementation of the proposed algorithm, it is necessary to provide a brief

description of the structure and the function of the relevant modules used by MapleSim .
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5.1.1 Structure and function of MapleSim

MapleSim offers the capability of simulating dynamic systems consisting of mechanical, elec-

trical, hydraulic, thermal, and magnetic sub-systems in an integrated modelling environment.

However, the underlying engines that generate the governing equations are different for the

different domains. Figure 5.1 an extremely simplified structure of the software.

MapleSim 
User Interface

Maple Worksheet 
Environment

Model 
Constructor

Graph-theoretic modelling engine
Module: MapleSim[Multibody]

Modelica engine
For : Electrical, Hydraulic, 

Magnetic, and Thermal systems

Figure 5.1: Modules of MapleSim

The user interface of MapleSim offers a collection of drag and drop components from dif-

ferent domains, with which a model can be constructed by simply arranging and connecting

them in proper order. The interface also interacts with the Maple worksheet environment,

which can be used for downstream processing and numerical simulation. Figure 5.2 shows

an example of an acausal model constructed in MapleSim .

Figure 5.2: A typical model created in MapleSim

Once the model is defined, MapleSim calls the internal modules to generate the governing

equations, which are then solved numerically for the generation of simulation results and
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visualization data. However, the modules used to generate governing equations are different

for different domains. For multibody systems, the MapleSim[Multibody] module uses a

graph-theoretic formulation; for all the other domains, Modelica-based formulations are used.

A model constructor routine is used to combine the output of all the modules to generate

the final set of governing equations.

To generate the governing equations for the multibody components, MapleSim uses a

module called MapleSim[Multibody] that employs a graph-theoretic formulation as pre-

sented in chapter 2. It uses a number of sub-modules to process a graph-theoretic description

of a multibody system and generate the governing equations. To explain how the implemen-

tation is done, it is important to illustrate the function of this module. Figure 5.3 below

shows a schematic diagram of the function of MapleSim[Multibody] and its sub-modules.

Formulation 
modules

MapleSim 
[Multibody]

Component 
description files

· Terminal equations for 
translational domain

· Terminal equations for  
rotational domain 

· System topology
· List of system components          
· Associated parameter values

Model 
description file

MapleSim 
Interface

Governing 
equations

Figure 5.3: Structure and function of MapleSim[Multibody]

The module MapleSim[Multibody] uses many sub-modules that hold the definitions

of the functions that are used to generate the governing equations using a graph-theoretic

formulation. Apart from these “Formulation Modules”, it also uses a list of “Component

description files”. These individual component description files hold the terminal equations

for individual multibody components.

These files declare the relevant domains of the system and list the terminal equations

for all through and across variables associated with those domains present in the system.

For example, the terminal equation for the multibody component “Force Driver” contains

131



information for the mechanical translational domain only, and the only specified quantity is

the through variable for which the terminal equation must be specified. A portion of the

actual description of this component is given below for reference.

…. 

rSData[DOM_MT][1] := 

"r",  Var("r",1), 

"v",   Var("v",1), 

"vdot",  Var("vdot",1), 

"F",   Func("mForce","Term_F",  

[Par("Force"), ("ForceFrame"), GblEdge(DOM_MT,1)]), 

"XSpace",  [[0, ["Tail", [<1,0,0>, <0,1,0>, <0,0,1>]]]], 

..... 

 

 Figure 5.4: Sample from the component description file

The through and across variables for every domain have their own internal designation.

For the translational domain, designated by DOM_MT,the symbols r, v, and vdot are used

to refer to the position, velocity, and acceleration level across variables and the symbol F is

used to refer to the through variable. Similarly, the symbols Rp, w, and wdot are used for

across variables and the symbol T is used for through variables for the rotational domain

designated by DOM_MR. The definitions of these quantities are specified in the component

description files, which are different for different components.

.... 

rMData["A0"] := "SubIdent", "mRigidBodyFrame",  

                 "Description", "A0",  

                 "TreeEdges", [0, [DOM_MT, 1], [DOM_MR, 2]],  

                 "NodeMap", [[DOM_MT, "Ground", "A0"], 

                                                     [DOM_MR, "Ground", "Ground", "A0"]],  

                 "Params", [ "TranConsts" = <0,Ay,Az>,  

                            "RotConsts" = [[1,0,0],[0,1,0],[0,0,1]],  

            "RotAxes" = [], "RotReactVars" = [],  

            "TranReactVars" = []]: 

..... 

Figure 5.5: Sample from the model description file

When a model is created that includes multibody subsystems, the interface of MapleSim

creates what is known as a model description file. A single entry of the model description file
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of a slider-crank mechanism is shown in figure 5.5. It corresponds to the edge that represents

a rigid body frame.

The code shown above refers to a rigid body frame. Since a rigid body frame is necessarily

a multibody component, the model specification file contains specifications relevant for both

translational and rotational domains. The topology specification is done for both DOM_MT and

DOM_MR as evident from the NodeMap specification. All the relevant parameter specifications

are provided under the category of Params. Also, the information about whether or not a

particular edge is placed in the tree is embedded into the model description file through the

category TreeEdges.

For a complete model, the model description file contains a list of such entries for each

component present in the model, which combine to form a text-based description of the sys-

tem; the list of components used and the topology of the system described, i.e., information

about the connectivity of these components. The file also holds the values of associated

parameters and the structure of the user-selected tree.

When MapleSim[Multibody] is pressed into action, it loads up the formulation mod-

ules and the component description files. After reading these modules, it opens the model

description file and creates the graph-theoretic model of the given system. The functions

declared in the formulation module are then used to generate the governing equations.

5.1.2 Implementation of the proposed sensitivity algorithm

The main goal of the implementation is to obtain the sensitivity equations as the output

of the module MapleSim[Multibody]. The plan here is to allocate different domains that

correspond to individual model parameters, so that the equations produced from those do-

mains become the sensitivity equations with respect to the associated parameters. Since the

existing software structure retains the provision of declaring distinct constitutive equations

for different domains, it is possible to include the sensitivity terminal equations as constitu-

tive equations specific to the newly added sensitivity domains. The entire flow of operation

is described below.

When a model is created, an user needs to specify a list of parameters with respect to

which sensitivity analysis is to be carried out. Depending on this list, separate domains

are declared to account for the sensitivity equations for a particular parameter. Since every

multibody system needs two domains to be properly specified, for n parameters, a total of

2n sensitivity domains need to be declared.
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For each of these newly-defined domains, the terminal equations must be specified to

enable the generation of sensitivity equations. These sensitivity equations can be generated

on the fly using the formulations presented in chapter 4. The component description files

must be modified to include the definitions of these additional sensitivity terminal equations

and that can be achieved using the Maple programming language.

The model description file must also be modified to supply the relevant information to

the MapleSim[Multibody] package regarding the newly defined domains. This depends on

the actual parameters supplied and is done automatically on a case by case basis.

Once, the relevant files are properly modified, the core files of MapleSim[Multibody]

must be replaced by the modified versions of the sub-modules and component description

files. This can be easily done by redirecting the initialization files to the directory containing

the modified files.

This step creates a case-specific environment. At this point, all the regular functions of

MapleSim[Multibody] remain available to the user and can be used to generate equations

from the modified model description file. However, since all the sensitivity domains are parts

of the model description, the generated equations include not only the governing equations,

but also the sensitivity equations with respect to all the model parameters specified by the

user.

User interface

Since the implementation requires a somewhat complicated sequence of codes, it is beneficial

to design a simplified user interface to carry out these steps in the proper order. To retain the

functionality of MapleSim’s design environment, it is also desirable to maintain the constant

connection with MapleSim’s graphical user interface.

MapleSim has the capability of linking its model to a Maple worksheet where further

analyses can be carried out. In case of multibody models, the attached worksheet can be

used to access the model description file. This capability makes it possible to create a

worksheet template, which can be used for the purpose of sensitivity analysis. To illustrate

the present user interface for the graph-theoretic sensitivity analysis of multibody systems,

it is worthwhile to present the work flow for the current form of the worksheet template:

1. The first step is to create and validate a model for the required system in MapleSim.

2. Once the model is completed, the attachment of the worksheet template can be used

to access the model description file.
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3. Next, a parameter detection routine automatically determines the model parameters

present in the model and asks the user to select a list of parameters for subsequent

analysis.

4. Depending on the user selected model parameters, the worksheet automatically mod-

ifies the model description file, the formulation module files, and the component de-

scription files.

5. After the modification, the files are incorporated into MapleSim[Multibody], which

makes it capable of generating sensitivity equations.

6. Finally, the sensitivity equations are generated using the functions from the modified

MapleSim[Multibody] module. These equations can then be simulated using Maple’s

built-in numerical engine.

7. The original version of MapleSim[Multibody] can be reinstated by simply closing the

worksheet.

Using the modified version of MapleSim[Multibody], a number of systems were analyzed

to test the effectiveness and efficiency of the proposed algorithm. In the following sections,

four examples will be presented to showcase the application of the proposed graph-theoretic

algorithm for sensitivity analysis.

5.2 Example problems

The example problems are selected to showcase the validity, accuracy and efficiency of the

proposed algorithm. For all the examples presented in this section, the system equations

are first generated using the unmodified version of MapleSim[Multibody] to explore their

behaviour under various initial conditions. This step also enables us to derive the governing

equations for the system which are required for validation purposes.

The current version of commercially available MapleSim[Multibody] does not include the

necessary modules to generate the governing equations for systems with electrical compo-

nents. However, for the analysis of the driven slider-crank mechanism, a deprecated versions

of component description files are used for the electrical components.

After the models are created in MapleSim, symbolic sensitivity equations are generated

for the system using both direct differentiation and the proposed graph-theoretic algorithm,
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which allows the comparison of their performances and helps in the evaluation of the pro-

posed algorithm. The sensitivity information evaluated hereby is also verified using a finite

difference formulation on the governing equations.

5.2.1 A sliding pendulum mechanism

For the first example, a sliding pendulum mechanism is chosen for analysis. Figure 5.6 shows

the configuration of the system.
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Figure 5.6: Sliding pendulum
mechanism
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Figure 5.7: System linear
graph

It constitutes two rigid bodies of masses m1 and m2, which are connected by a revolute

joint. The revolute joint includes a torsional damper with damping coefficient ξ. The

parameters L and r are the length and radius of circular cross-section of the pendulum. The

sliding block is allowed to move along a prismatic joint and is connected to a linear spring of

spring constant k and undeformed length s0. The acceleration due to gravity g acts in the

downward direction.

The linear graph of the system is shown in figure 5.7. By choosing the edges j1, h2, r3

and r4 as the tree branches, the governing equations for the system are generated in terms

of the primary variables s(t) and θ(t), which represent the displacement along the prismatic

joint and the rotation of the pendulum, respectively:(
m 2r

2

4
+
m 2L

2

3

)
θ̈ +

m 2L cos θ

2
s̈+

m 2gL

2
sin θ + ξθ̇ = 0

m2L cos θ

2
θ̈ + (m1 +m2) s̈−

m2L sin θ

2
θ̇ 2 + k (s− s0) = 0

(5.1)
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The MapleSim implementation of the graph-theoretic algorithm is used to generate the

sensitivity equations for this system. To explain the process in MapleSim, a step by step

description of the process will now be presented.

To perform sensitivity analysis with respect to the model parameter L, new domains are

introduced to account for the sensitivity equations. Since both rotational and translational

domains are present in the system, the additional domains are named as DOM_MR_SEN_L and

DOM_MT_SEN_L,to include sensitivity information from both domains.

The component description files for all the elements of the graph, i.e., the revolute joint,

the rigid arm element, the rigid body, and the prismatic joint, are automatically modified

to include the terminal equations for the additional domains, as described in section 5.1.2.

As mentioned in chapter 4, the first step is the generation of cutset equations for all

the rigid bodies and the passive joints selected in the tree and their projection on to the

respective motion spaces.

In MapleSim, this is done in a two stage process. First, the branch-transformation

equations for the edge in question is generated and projected on to the motion spaces.

Second the terminal equations of the through variable of the edge in question is projected

on to the motion space as well. These equation fragments are then combined to create the

dynamic equations. In this system, the sensitivity equations are generated from the cutset

equations associated with edge j1 for the domains DOM_MT_SEN_L and DOM_MT and the edge

h2 for the domains DOM_MR_SEN_L and DOM_MR.

For the edge j1, the right hand side of the branch-transformation equation corresponding

to the DOM_MT domain is given by

−F̄ m5 − F̄ m6 (5.2)

Similarly, for the domain DOM_MT_SEN_L the following expression is obtained

−F̄ m5
L − F̄ m6

L (5.3)

In equations (5.2) and (5.3), the superscripts denote the edges that the quantities are

associated with and the subscripts refer to the parameter L with respect to which the sensi-

tivity analysis is being carried out. The sensitivity domains are designed and implemented

to hold the derivatives of the equations from the mechanical domains. Thus equation (5.3)

can be easily verified to be the derivative of equation (5.2) with respect to L.

These vector expressions can be expanded using the terminal equations specified for

the relevant components for the domains DOM_MT_SEN_L and DOM_MT. However, care must be
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taken to ensure that before any arithmetic procedure is carried out, the vectors are expressed

in a common node (frame) of the linear graph. For this example, the vector equations are

expanded and expressed in the node inertial G as given below.

From the domain DOM_MT the expression 5.2 expands to
m1 s̈+

(
s̈+ L cos θ

2
θ̈ − L sin θ

2
θ̇2
)
m2

m1 g +m2 g +
(
L sin θ

2
θ̈ + L cos θ

2
θ̇2
)
m2

0

 (5.4)

From the domain DOM_MT_SEN_L the expression 5.3 transforms into
m1 s̈L +m2

(
s̈L + L cos θ

2
θ̈L + Υ1

)
m2

(
L sin θ
2

θ̈L + Υ2

)
0

 (5.5)

Υ1 =

(
cos θ

2
− L sin θ

2
θL

)
θ̈ −

(
L sin θ θ̇

)
θ̇L −

(
sin θ

2
+
Lcos θ

2
θL

)
θ̇2 (5.6)

Υ2 =

(
sin θ

2
+
L cos θ

2
θL

)
θ̈ +

(
L cos θ θ̇

)
θ̇L +

(
cos θ

2
− L sin θ

2
θL

)
θ̇2 (5.7)

These equations are associated with the edge j1, which represents the prismatic joint

with its axis of translation oriented along the ground node x-axis. The associated motion

space for this component is given by the vector expressed in node G as shown below.

Motion-Spaceprismatic joint =
{

1 0 0
}T

(5.8)

For the generation of system equations, the usual procedure is to evaluate the dot product

of the cutset equation and the space unit vector. However, to generate the sensitivity equa-

tions, the procedure needs to capture the chain rule of differentiation and must be properly

modified as shown below.

[
Projected

expression

]
=


Expression

from

DOM MT SEN L

 ·


Motion

space

vector

+


Expression

from

DOM MT

 ·


Sensitivity

of motion

space vector

 (5.9)
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The motion space vector is normally a function of the state variables and are implicitly

dependent on the model parameters. For this reason, the derivatives of the space vector are

important for the sensitivity equations. For this particular example however, the motion

space is a constant vector and its sensitivity is a zero vector. Thus for this mechanism only,

the second part of equation (5.9) can be safely ignored and the resulting projected expression

can be formed by extracting the x component of the cutset equation from DOM_MT_SEN_L.

The next step in this derivation is the term which contains the dynamics of the edge

for which the cutset equation is obtained. This term is obtained by the terminal equation

corresponding to the edge in question. Since the objective is to construct the projected cutset

equation, only the terminal equation for the through variable is required at this stage. For the

edge j1 two such terminal equations can be extracted, one each for the domains DOM_MTand

DOM_MT_SEN_L. For the domain DOM_MT_SEN_L the following expression is obtained

F̄ j1
L =

{
−k sL (t) yF

j1
L (t) zF

j1
L (t)

}T

(5.10)

The expression obtained from the domain DOM_MT is shown in equation (5.11). As it can

be clearly seen, equation (5.10) can be derived by differentiating equation (5.11) with respect

to the model parameter L.

F̄ j1 =
{
−k (s (t)− s0) yF

j1 (t) zF
j1 (t)

}T

(5.11)

To derive the complete projected cutset equation in the domain DOM_MT_SEN_L, one must

project equation (5.10) onto the motion space unit vector shown in equation (5.8). To do

that, one must also use the modified projection equation illustrated in (5.9). Since equation

(5.8) is a constant unit vector aligned with the inertial x axis, the result of the projection can

be easily determined by extracting the x component of the right hand side of the equation

(5.10). (
F j1
L

)
projected on to the motion space

= −k sL (t) (5.12)

By combining the projected branch transformation and equation (5.12), the first sensi-

tivity equation is obtained.

m1 s̈L +m2

(
s̈L +

L cos θ

2
θ̈L + Υ1

)
+ ksL = 0 (5.13)

where Υ1 is given by equation (5.6).
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Similarly, from the edge h2, cutset equations can be generated for the domains DOM_MR

and DOM_MR_SEN_L. The corresponding motion space is described by the vector given below.

Motion-Space revolute joint =
{

0 0 1
}T

(5.14)

Using the same method described above, the second sensitivity equation can be generated

from the cutset equations for the edge h2. Resolving every vector in the node G, the following

equation is obtained.(
m2 cos θ

2
− m2 L sin θ θL

2

)
s̈+

m2 L cos θ

2
s̈L +

(
m2 r

2

4
+
m2 L

2

3

)
θ̈L + Υ3 = 0 (5.15)

where

Υ3 =
2m2 L

3
θ̈ +

m2 g

2
sin θ +

m2 g L

2
cos θ θL + ξ θ̇L (5.16)

Since the revolute joint includes a rotational damper, it is important to include the

terminal equation for the domain DOM_MR_SEN_L in the projected equation. As a result the

expression for the damping torque appears in equation (5.15).

Since this is a simple system, the validity of the generated sensitivity equations can

be verified by inspection, which reveals that equations (5.13) and (5.15) are indeed the

derivatives of the governing equations described in equation (5.1).

The sensitivity equations can also be verified by simulation. Table A.3 lists the values

of the model parameters used for the simulation. The sensitivity of the state variables, i.e.,

s(t) and θ(t) in this problem, can be evaluated by simulating equations (5.13), (5.15) and

(5.1). The sensitivity results can then be verified using the finite difference method. The

system was simulated numerically using “Runge-Kutta-Fehlberg method” in Maple, using

the following initial conditions for the states.

s (0) = 0.5 ṡ (0) = 0 θ (0) = 0 θ̇ (0) = 0

sL (0) = 0 ṡL (0) = 0 θL (0) = 0 θ̇L (0) = 0
(5.17)

The figures 5.8 and 5.9 clearly identify the response of the system and validate the

solution of the generated sensitivity equation. Figure 5.8 shows that the values of s(t) and

θ(t) settles after initial oscillations, with s(t) settling to the value of s0. This behaviour is

expected because, in the sliding pendulum system, both of the principal modes of oscillations

are damped and the system is destined to damp out any initial disturbances.
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The behaviour of sL(t) can also be explained by considering the structure of the system.

By considering the configuration of the system, it can be clearly seen that for different values

of the parameter L, the resulting output of s(t) always approach the same datum level s0

asymptotically. As a result the sensitivity of s(t) with respect to the parameter L also

oscillates and then settles to zero.
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Figure 5.8: Simulation results
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Figure 5.9: Sensitivity sL vs time

This example of the sliding pendulum illustrates the validity of the implemented algo-

rithm for multibody mechanisms. However, due to the simplistic nature of this system, it

is worthwhile to consider other examples, where the algorithm can be tested without the

simplifying circumstances. For example, the motion spaces for this system were found to be

constant vectors. It needs to be verified if the algorithm works equally well with mechanisms

where motion spaces are functions of time. Also, different tree selection schemes need to be

considered in order to validate the algorithm for systems governed by differential algebraic

equations (DAEs).

In the subsequent examples, these issues will be addressed using different mechanisms.

First a three-dimensional pendulum will be presented to validate the generated equations

for a system where the motion spaces are not constant vectors.

5.2.2 A three-dimensional pendulum

The three-dimensional pendulum is a rigid cylindrical mass, which is attached to a fixed

point in space through a spherical joint at some distance away from its centre of mass. Due

to the complete lack of rotational constraints from the joint, a three-dimensional pendulum
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can exhibit very complicated motions and can take up any angular orientation in space.

From the standpoint of graph-theoretic system modelling, if the spherical joint is selected as

the branch, the governing equations are generated in terms of the three Euler angles. For

this example, a body fixed Euler 1-2-3 rotation scheme is used which results in governing

equations in terms of the three sequential (1-2-3) angles ζ, η and ξ.

z

x

y

z

x

L

180-h

Figure 5.10: Three-dimensional pendulum

For this example, the implemented algorithm is used to study the effect of the length of

the pendulum on its motion, in other words, to evaluate the sensitivities of ζ, η and ξ with

respect to the length of the pendulum L.

Due to the complicated nature of the governing equations, it is not possible to present

them in symbolic form in this report. However, the response of the system can be easily

obtained by numerically simulating the system using the dsolve[numeric] routine from

Maple. For this example, the simulation results are validated using the simulation tool

MapleSim . The resulting sensitivity information are subsequently validated using a finite

difference formulation.

The unique aspect of the spherical joint is the fact that because of the assumed Euler

angles, the joint can be considered as the combination of three revolute joints connected in

series, with their axes aligned to the body-fixed x, y, and z axis. As such the motion spaces

for the subsequent joints become functions of the rotation of the previous joints.
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For this example, if the spherical joint is selected in the tree, the resulting cutset equation

must be projected on to the three motion spaces of the joint. The first motion space is the

constant vector along the inertial x axis. This motion space corresponds to the joint that is

connected to the ground and allows rotation about the x axis only.

However, due to rotation about this axis, the orientations of the subsequent joints are

rotated and their motion spaces become functions of the state vector. For example, the

second motion space for the spherical joint is defined as

Motion Space 2 =
{

0 cos ζ sin ζ
}T

(5.18)

This implies that during the process of projecting the cutset vector from the sensitivity

domains, the second part of equation (5.9) can no longer be ignored and the derivative of the

motion space must be evaluated to complete the process. For this particular motion space

shown in equation (5.18), the derivative is evaluated as

Derivative of Motion Space2 =
{

0 −ζL sin ζ ζL cos ζ
}T

(5.19)

The final motion space for the spherical joint is given by the third axis which has already

undergone some changes in its orientation due to rotations about the first two axes. The

motion space vector and the corresponding derivative is given below.

(Motion Space3) =
{

sin η − cos η sin ζ cos η cos ζ
}T

d

dL
(Motion Space 3) =


(cos η) ηL

(sin η sin ζ) ηL − (cos η cos ζ) ζL

− (sin η cos ζ) ηL − (cos η sin ζ) ζL


(5.20)

The sensitivity equations for the three-dimensional pendulum were derived using the

MapleSim implementation of the algorithm. Since it is not possible to present the complete

set of sensitivity equations, the simulation results are used to verify its accuracy.

The Runge-Kutta-Fehlberg method was used to numerically integrate the sensitivity

equations along with the system equations. The values chosen for absolute and relative

errors were 10−4 and 10−5 respectively. The initial conditions for the state variables were

chosen to simulate a typical precessional motion of a three-dimensional pendulum. Table 5.1

lists the numerical values used as the initial conditions for the system equations.
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For the sensitivity equations, all the initial conditions are taken to be zero. The decision

to choose this particular initial condition can be justified by considering the nature of the

variables of sensitivity equations. The model parameter values are listed in Appendix A.5.

Table 5.1: Initial conditions for the three-dimensional pendulum

Variable Name Initial Value Unit

ζ(0) 0.5 rad
η(0) 0 rad
ξ(0) 0 rad

ζ̇(0) 0.3 rad/s
η̇(0) 0 rad/s

ξ̇(0) 0.1 rad/s

In this problem, all the state variables, i.e., ζ, η, and ξ can be specified independently.

Since during the initialization, these state variables are not dependent on the model param-

eter L, it can be stated that the sensitivities of these quantities with respect to the model

parameter L is indeed zero at the initial point. Similar logic would also be applicable for all

models with independent state variables.
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Figure 5.11: Variation of ζ
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Figure 5.12: Trajectory of pendulum tip

Figures 5.11 and 5.12 show the variation of the angle ζ and the projected trajectory of

the tip of the pendulum on the X - Z plane. The complex motion of the pendulum is clearly

evident from these plots.
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Since this is a highly non-linear system, it is difficult to generalize the nature of the

behaviour of the state variables. The variations of the sensitivity quantities, i.e., ζL, ηL, and

ξL are found to be highly dependent on the initial conditions and the model parameters. As

a result, it is very difficult to gather physical insight from the system response.

In general, small changes in the model parameter L are found to result in completely

different system responses, which are reflected in the increasing amplitude of the oscillations

of sensitivity quantities. These quantities are obtained by numerically simulating the set of

sensitivity equations generated by the implemented sensitivity algorithm.
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Figure 5.13: Variation of ζL
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Figure 5.14: Variation of ξL

The evaluated sensitivity information is compared with those obtained using a finite dif-

ference formulation. The comparison between the finite difference method and the numerical

solution of sensitivity equations are presented in figures 5.13 and 5.14. It clearly validates

the numerical solution and the structure of the generated sensitivity equations.

So far, the presented examples involved systems modelled using sets of ordinary differ-

ential equations. To test the implemented algorithm for a broader class of problems, it

is important to consider mechanisms governed by sets of differential-algebraic equations or

DAEs.

5.2.3 A DC motor-driven slider-crank mechanism

In this section, an electrically driven slider-crank mechanism will be analyzed to evaluate the

performance of the implemented algorithm. Figure 5.15 presents the system schematically.
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The presented planar slider-crank mechanism is driven by an electric motor. This system

is specifically chosen to showcase the capability of the implemented algorithm toward multi-

domain systems and to test the algorithm’s ability to process different tree selection schemes.

This system has an electrical side where a capacitor, resister and an inductor is used along

with a voltage source to drive an electro-mechanical transducer. This provides a torque

to the mechanical side, where a crank and a connecting rod moves a sliding mass along a

prismatic joint with viscous damping coefficient ξ.
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Figure 5.15: Basic schematic of the driven slider-crank mechanism

The unique component of this model is the DC motor that drives the system. It transfers

energy back and forth between electrical and mechanical domains. In practical terms, this

is an example of an electro-mechanical transducer that produces a torque on the mechanical

side and an opposing potential difference on the electrical side. The magnitude of the torque

is proportional to the current flowing through the electrical side and the magnitude of the

potential difference produced is proportional to the angular velocity of the mechanical side.

The constants of proportionality are known as transducer coefficients. For this model the

symbols Kv and Kt are used as the transducer coefficients.

In the current system, L1 and L2 are the lengths of the crank and the connecting rod

respectively, m1, m2, and m3 are the masses of the three components, L is the inductance,

R is the resistance, C is the capacitance, and E(t) is the voltage signal used to drive the

electrical circuit. The numerical values used for the simulation and the subsequent analysis

of this system are listed in the table A.2.

The MapleSim implementation of the proposed algorithm is used to generate the sensi-

tivity equations with respect to the model parameter L2. A linear graph is used to represent

the topology of the system in both mechanical and electrical domains.
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Figure 5.16 below illustrates the graph-theoretic representation of the system.
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Figure 5.16: Linear graph representation of the system

In figure 5.16, the mechanical and electrical domains are shown separately. The connec-

tion between the two domains is achieved by the transducer element denoted by edges e2 and

e3. In the mechanical domain, the edges h1, h10, and h13 represent revolute joints, r 8,9,11,12

are rigid arm elements, m 15,16,17 are rigid bodies, and p14 is a prismatic joint. On the other

hand, in the electrical domain, E7 is a voltage source, R4 is a resistor, C6 is the capacitor,

and I5 is the inductor.

The choice of tree branches determines the quantities with respect to which the equations

are generated. For this model, the following edges are selected as the tree branches.

For the mechanical translational domain: Edges h1, r 8,9, h10, r 11,12, and h 13

For the mechanical rotational domain: Edges h1, r 8,9, p14, r 11,12, and h 13

For the electrical domain: Edges E7, I5, and R4

This ensures the generation of equations in terms of the angles α(t), β(t), the motor

current iM(t), and their sensitivities αL2(t), βL2(t), and iML2(t). Since the degrees of freedom

in the mechanical part is one, this particular choice of tree branches leads to the generation

of one kinematic constraint equation, which results in one kinematic sensitivity equation.

The modified MapleSim[MultiBody] package is used to generate the sensitivity equations

for this model. It results in a total of six differential equations (three system equations and

three sensitivity equations) and two kinematic constraint equations.
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The kinematic equations are presented below.[
L1 sinα− L2 cos β

L1 αL2 cosα− cos β + L2 βL2 sin β

]
= 0 (5.21)

From equation (5.21) it can be shown that the second equation is indeed the derivative

of the first equation with respect to the model parameter L, which confirms the accuracy of

the implemented algorithm.

To test it even further, at this point the model is analyzed again after replacing the edge

h10 with the edge p14 in the mechanical translational tree. This way the equations are gener-

ated in terms of the angles α(t), β(t), the motor current iM(t), the slider displacement s(t),

and their sensitivities. When this choice of tree is used, the modified MapleSim[Multibody]

routine generates the following set of constraint equations.


−L2 cos (α + β) + s cosα− L1

L2 sin (α + β)− s sinα

− cos (α + β) + L2 (αL2 + βL2) sin (α + β) + sL2 cosα− sαL2 sinα

sin (α + β) + L2 (αL2 + βL2) cos (α + β)− sL2 sinα− sαL2 cosα

 = 0 (5.22)

Once again, the generated equations shown in (5.22) can be easily verified to be correct,

as the sensitivity constraint equations are found to be the derivatives of the system con-

straint equations. This further confirms the validity of the graph-theoretic implementation

of sensitivity analysis.

A forward dynamic analysis is carried out using the sets of equations generated by the

two distinct tree selection schemes to evaluate the variation of the sensitivities of the state

variables with respect to the model parameter L2. This requires the declaration of initial

conditions for the system and demands some explanation.

In a system governed by DAEs, the initial values of the state variables can’t be specified

arbitrarily. For consistent initialization, the initial values must satisfy the position and

velocity level constraint equations. To evaluate these initial conditions for this system, the

initial value of the angle α(t) and its derivative is assumed to be specified.

α(0) =
Pi

3
rad α̇(0) = 0 rad/s (5.23)

Since the value of α is arbitrarily specified at the initial point, it also follows that the
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initial value of the sensitivity of α is in fact zero, i.e., αL2 = 0 and α̇L2 = 0 . The initial

values for the rest of the state variables must be evaluated by solving the position and

velocity constraint equations.

Given the value of α and αL2 , depending on the choice of the tree branches, equations

(5.21) or (5.22) can be used to solve for either β and βL2 or β, s and their sensitivities.

For example, plugging equation (5.23) into equation (5.21) leads to the calculation of the

following quantities.

β(0) = 1.27 rad and βL2(0) = 0.201 rad/m (5.24)

It is interesting to note that in this example, all the sensitivity quantities are not equal

to zero to start with. As evident from equation (5.24), the initial value of β is dependent on

the model parameters. This in turn implies that the initial value for the sensitivity of β is

non-zero, as demonstrated in the solution above. Also, the driving voltage E(t) is specified

as given below (5.25).

E (t) =


0 t ≤ 2

10t− 20 2 < t < 4

20 4 ≤ t

Volts (5.25)

To properly initialize the values for the motor current iM(t), its sensitivity iML−2(t),

and their derivatives, it is necessary to recognize that since the highest order of derivative

of the quantity iM(t) is one, the only required quantity for the integration is the value of

iM(t) and iML2(t) at the initial point. The values of iM(0) and iML2(0) can be evaluated

by solving the electrical circuit at t = 0 where the initial value of α̇ (0) = 0 must be used

as the coupling term. The following values are obtained by solving the electrical circuit at

t = 0.
iM(0) = 0A

iML2(0) = 0A/m
(5.26)

The combined set of system and sensitivity equations obtained by both trees are inte-

grated in Maple using built-in dsolve[numric] routine. The DAE extension of the “Runge-

Kutta-Fehlberg” algorithm was used for the forward dynamic simulation.

Figure 5.17 demonstrates the coupling of electrical domain to the mechanical domain in

the system. The rippling effect in the electrical circuit as shown in figure 5.19 is clearly

evident in the plot of the crank angle α. The plot shown in 5.18 shows the effect of damping
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in the system, which prevents it from unbounded growth.
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Figure 5.17: Variation of α
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Figure 5.18: Variation of α̇ and β̇
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Figure 5.19: Variation of motor current

Apart from the system variables, the simulation also evaluates the sensitivities of the

state vector. The implemented algorithm can be validated by comparing the solutions of

αL2 and βL2 obtained by solving two distinct sets of equations, obtained by different choices

of branches. Also the overall accuracy of the numerical solution can be checked by comparing

them with the results obtained using finite difference approach.

The plots shown in figures 5.20 and 5.21 illustrate the comparison between the solution

of αL2 and βL2 obtained by integration different sets of equations. They clearly validate the
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implemented algorithm as the numerical results are found to be identical to each other.
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Figure 5.20: Comparison of αL2
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Figure 5.21: Comparison of βL2

The overall accuracy of the simulation can be validated by using a finite difference ap-

proach. The figures 5.22 and 5.23 plot the difference between the solution obtained using

a finite difference approach and the solution obtained by solving these generated equations.

They are found to be far less than the selected tolerances and thus confirms the validity of

the sensitivity results.
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Figure 5.22: Validation of αL2
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Figure 5.23: Validation of βL2

In this example, a multi-domain multibody system was used to generate the sensitivity

equations using the implemented graph-theoretic sensitivity analysis algorithm. The imple-

mentation was demonstrated to be correct for the system and was found to be capable of

accepting different choices of tree branches.
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5.2.4 A double-wishbone suspension system

As a final example, the model of a double-wishbone suspension system will be considered to

demonstrate the capability of the implemented algorithm for a multi-loop kinematic analysis.

Figure 5.24 shows the schematic diagram of a typical double wishbone suspension system.
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Figure 5.24: Double wishbone suspension system

The double-wishbone suspension system is defined in terms of the hard point locations.

A complete list of the hard points are provided in Appendix A.4. In the figure above, M is

the steering rack, which, for the purpose of the present analysis, will be assumed to be fixed,

link IJ is the tie rod, links ABC and DEF are the upper and lower control arms, and the

component CFIH is the hub. The mechanism allows the wheel to move up and down but

also forces the wheel to change its orientation while doing so.

The intention here is to study the changes in the orientation of the wheel, which is

expressed in terms of the toe, caster and camber angles, and to apply the implemented

graph-theoretic sensitivity analysis algorithm to generate the sensitivity equations for the

system, so that it can be used to determine the effects of the hard point locations on these

quantities. At this point a graph-theoretic description of the mechanism is called for.
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A traditional graph-theoretic model of the complete suspension system is too complicated

to be included in this thesis. For that reason a schematic graph is shown in the figure below.
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Figure 5.25: Schematic of the graph-theoretic model of the suspension system

For this example, the motion driver will be used to introduce a vertical sinusoidal dis-

placement to the hub. Using the implemented algorithm, both governing and sensitivity

equations will be generated for the system and by solving them, the sensitivities of the cam-

ber angle will be determined. The results will be validated by a finite difference formulation.

At this point a mathematical definition of the camber angle is called for.

The camber angle of the wheel,which is the rotation of the wheel about the longitudinal

Z axis, can be calculated from the coordinates of the hard points G and H. The following

equation is used to calculate the camber angle.

λ camber = tan−1
(
−H

y −G y

H x −Gx

)
(5.27)

where the location of point H and G are functions of time and the set of model parameters

p, and are given by their x, y, and z components.

H (t,p) =
[
H x H y H z

]T
G (t,p) =

[
Gx G y G z

]T (5.28)

To evaluate the sensitivity of the camber angle, one must differentiate equation (5.27)

using chain rule of differentiation.
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Equation (5.29) illustrates the expression for the sensitivity of the camber angle with

respect to a scalar model parameter b ∈ p.

d

db
(λ camber) = −

H y
b−G

y
b

H x−G x −
(H y−G y)(H x

b −G
x
b )

(H x−G x)2

1 + (H y−G y)2

(H x−G x)2

(5.29)

where the subscripts refer to the parameter with respect to which the differentiation is carried

out. Equation (5.30) defines the various terms used in equation (5.29).

H i
b =

d

db
H i and G i

b =
d

db
G i

∣∣∣∣
i=x, y, and z

(5.30)

The suspension system has only one degree of freedom and due to the application of

the motion driver, the system of equations takes the form of a set of nonlinear algebraic

equations. By solving these equations at every time step, the state variables of the model can

be evaluated, which can be used to determine the required camber angle and its sensitivity.
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Figure 5.26: Toe angle vs. hub height
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Figure 5.27: Camber angle vs. hub height

This system is modelled using nine coordinates. It includes two coordinates for the univer-

sal joint, two joint coordinates for the two control arms, and three translational coordinates

for the hub and two extra coordinates to describe the location of the base of the motion

actuator. The location of the point J , i.e., the inner connection point of the tie rod is se-

lected as the model parameter for the sensitivity study. The application of the implemented

graph-theoretic algorithm generates a set of equations in terms of the nine coordinates and

their sensitivities.
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To simulate the system, a sinusoidal motion of amplitude of 100 mm is applied to the

point H; the steering input to the system is kept constant at zero. Figures 5.27 and 5.26

show the behaviour of the system.
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Figure 5.28: Camber sensitivity vs. hub
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Figure 5.29: Validation of Camber
sensitivity

The resulting sensitivity of the camber angle is plotted with the wheel height in figure

5.28. The plot shows that when the hub height is above 360 mm, the camber sensitivity is

positive, i.e., any positive change in the y intercept of the point J is expected to result in

an increase in camber angle, whereas when the hub height is less than 360 mm the opposite

trend is observed. These results are validated using a finite difference formulation with a

forward difference scheme, as shown in figure 5.29.

5.3 Comparison of performance

To evaluate the performance of graph-theoretic sensitivity analyses, it is necessary to develop

a meaningful comparison scheme for the evaluation. For the purpose of clarity, it is also

necessary to explain the alternate methods with which the comparisons are to be made.

Figure 5.30 shows a schematic representation of the various methods that can be used to

obtain sensitivity information from a physical system. The central finite difference formu-

lation is conceptually one of the simplest method for evaluation of sensitivity information.

However, it involves the solution of the governing equations at three different points in

the parameter space for every time step. The second route is the generation of sensitivity
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equations using direct differentiation of the governing symbolic equations. The generated

equations are then solved along with the governing equations. The third route involves the

generation of sensitivity equations and the governing equations directly from the linear graph

and the subsequent numerical simulation of the same. For all of these methods, the Maple

routine dsolve[numeric] is used for the numerical integration.
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Figure 5.30: Different methods of sensitivity analysis

To compare two sets of equations for better performance, one obvious choice is the time

required to integrate them through a certain range. Maple does offer a command to measure

the CPU time of a process. In this study it has not been considered as a reliable criterion for

the comparison since its calculation in Maple is dependent on the internal data types used,

which can be different for different integration methods.

As an alternative, the total number of numerical operations required by the set of equa-

tions are chosen as the basis of comparison. To describe the evaluation process, some elab-

orations are required on the relevant commands from Maple.

5.3.1 Commands for code optimization and computational cost

A list of equations can be optimized by using the command ‘dsolve/numeric/optimize’

available in Maple. This command recognizes repeating groups in a list of equations and

assigns them to variables, which are then reused throughout the list of equations for a faster

simulation. This also enables us to bring different sets of equations into a common platform
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for comparison. The total number of operations required to solve a set of equations can

be evaluated by the codegen[cost] command. The example given below will illustrate the

application of these commands.  a+ b+ c

3a+ 4 sin (b+ c)

(3b+ 3c) tan (a)

 = 0 (5.31)

The codegen[cost]command calculates the computation cost for these equations as

Cost = 5 additions + 5 multiplications + 2 functions (5.32)

When ‘dsolve/numeric/optimize’ is used on equation (5.31), it readily recognizes that

the term b+c is repeated in the set of equations and forms an intermediate variable t1 = b+c.

Finally the following set of optimized equations are obtained.

a+ b+ c = 0

t1 = b+ c

3a+ 4 sin (t1) = 0

3 tan (a) t1 = 0

(5.33)

The cost of the optimized set of equations can be readily verified to be less than that in

equation (5.32) by the cost command.

Cost = 4 additions + assignments + 4 multiplications + 2 functions (5.34)

5.3.2 Results of performance evaluation

Using the commands described above, the implemented graph-theoretic sensitivity analysis

algorithm is tested against the alternate methods for the example problems presented in

Section 5.2. For every model, the governing equations are optimized and their costs are

calculated. Since the finite difference approach requires the solution of governing equations,

this cost information is multiplied by three to arrive at its computational cost.

Next, the governing equations are symbolically differentiated to arrive at the set of sen-

sitivity equations using direct differentiation. The combined set of governing and sensitivity

equations are then optimized and the computation cost is evaluated.
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Finally the MapleSim implementation of the graph-theoretic algorithm is used to generate

the set of equations which contains both governing and sensitivity equations. The cost of

the optimized version of this set is also recorded.

The three-dimensional pendulum model

For the three-dimensional pendulum model, the spherical joint is chosen to be the branch

resulting in three governing equations and three corresponding sensitivity equations. Sensi-

tivity analysis is carried out with respect to the model parameter L and the computational

costs of the competing approaches are summarized in Table 5.2.

Table 5.2: Comparison of computation cost: Parameters {L}

Functions ′′+′′ ′′×′′

Finite difference : 36 111 237
Direct differentiation : 18 130 270

Graph-theoretic method : 18 126 274

Since the size of the combined set of governing and sensitivity equations depends on

the number of parameters being studied, the same procedure is repeated for an increasing

number of parameters. The results are presented in Tables 5.3 and 5.4.

Table 5.3: Comparison of computation cost: Parameters {L,m}

Functions ′′+′′ ′′×′′

Finite difference : 60 185 395
Direct differentiation : 24 245 482

Graph-theoretic method : 24 250 478

Table 5.4: Comparison of computation cost: Parameters {L,m, r}

Functions ′′+′′ ′′×′′

Finite difference : 84 259 553
Direct differentiation : 30 332 628

Graph-theoretic method : 30 351 670

The numbers shown above clearly demonstrate that the computational cost associated

with the finite difference method is higher than that for either direct differentiation or the
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proposed algorithm. For more than one parameters, this computational cost is found to

escalate even further.

The direct differentiation approach and the proposed graph-theoretic approach are found

to be more or less comparable in terms of the computational cost and this trend is maintained

for different numbers of parameters. This behaviour is expected since the basic structure

and complexity of the equations produced by the two methods are very similar to each other

and in many cases they are identical. For this reason, equations produced in this fashion by

these two methods can be considered equally efficient.

The driven slider-crank model

Similar analyses are carried out for the electrically driven slider-crank model. First the

branches are chosen in such a way, so that the resulting equations are formed in terms of

the state variables q = {α, β, αL2 , βL2}. The table below shows the computational costs

associated with the model.

Table 5.5: Comparison of computation cost: q = {α, β, αL2 , βL2}

Functions ′′+′′ ′′×′′

Finite difference : 27 90 201
Direct differentiation : 14 66 121

Graph-theoretic method : 14 64 113

The same comparison is conducted with a different choice of branches to ensure generation

of equations in terms of the joint coordinates and its sensitivities.

Table 5.6: Comparison of computation cost: q = {α, β, s, αL2 , βL2 , sL2}

Functions ′′+′′ ′′×′′

Finite difference : 33 66 123
Direct differentiation : 18 55 81

Graph-theoretic method : 18 55 86

Once again the counts of mathematical operations, summarized by tables 5.5 and 5.6,

identify the finite difference method to be the most computationally expensive approach.

They also demonstrate that direct differentiation and the proposed graph-theoretic algorithm

are quite similar in performance.
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Simple pendulum: Different trees for system and sensitivity equations

To illustrate the effect of branch selection on the performance of the generated equations,

the example shown in section 4.2.4 is considered. For this model, the governing equations are

generated by selecting the planar joint into the tree. This results in a set of state variables

q = x, y, θ and reaction forces F =
[
xF

h
yF

h
]

governed by three differential and two

algebraic equations.

Sensitivity equations for this model are derived in two separate ways. First, direct differ-

entiation is used to generate the sensitivity equations, which results in a final set of equations

in terms of ten unknown quantities.

Next the graph-theoretic method is applied to the model where the planar joint is selected

as a branch for the system equations and the revolute joint is selected as a branch for the

sensitivity equations. This results in a final set of equations in terms of a total of six unknown

quantities. The generated equations are presented in equations (4.69) and (4.70). Table 5.7

summarizes the computational cost of the equations produced by these two methods.

Table 5.7: Comparison of computational cost: Effect of branch selection

Functions ′′+′′ ′′×′′

Finite difference: 15 21 39
Direct differentiation: 8 20 21

Graph-theoretic method: 7 13 16

Due to the small scale of the model, the effects on the computational costs are not

dramatic; however the structure of equation (4.70) and the numbers from table 5.7 show the

benefit of the proposed graph-theoretic algorithm for sensitivity analysis. In this case, the

graph-theoretic algorithm generates the governing and sensitivity equations in terms of a

smaller number of unknown quantities and subsequently, the corresponding computational

cost is found to be lower than that of the equations produced by direct differentiation.

The presented analysis reveals that the graph-theoretic method is an automated, accu-

rate, flexible, and algorithmic approach for the derivation of sensitivity equations. At the

most basic form, the graph-theoretic method forms equations which have the same com-

plexity as the ones derived by direct differentiation. However, the graph-theoretic approach

enables the users to select separate tree structures for the sensitivity equations. This re-

sults in generation of simpler sensitivity equations which are more efficient and are generally

difficult to derive otherwise.
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5.4 Summary

The software implementation of the proposed graph-theoretic sensitivity analysis is presented

in this chapter. A brief overview of the implementation process is provided to explain the

basic approach toward software deployment and the resulting user interface.

A number of examples are also presented to showcase the application of the software

implementation. A sliding pendulum mechanism is considered to explain the intermediate

steps of equation generation used by the algorithm. Next a dynamic simulation of a three-

dimensional pendulum is presented to demonstrate key issues involving motion spaces of

joints. A driven slider-crank mechanism is presented to illustrate the applicability of the

algorithm for multi-domain systems. And finally, a double-wishbone suspension system is

analyzed to showcase a multibody kinematic simulation.

These examples demonstrate that the current implementation of the proposed graph-

theoretic sensitivity analysis algorithm is capable of generating sensitivity equation accu-

rately and automatically. They also show that the algorithm is capable of processing dif-

ferent types of mechanisms and is effective for both dynamic and kinematic simulation of

multibody, multi-domain systems.
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Chapter 6

Conclusions and future work

In this research, an algorithm that can generate the sensitivity equations from the graph-

theoretic description of a system was developed. The algorithm has been shown to be

applicable for various types of dynamic systems (hydraulic, electro-chemical, mechanical etc.)

and even multi-domain systems. The algorithm follows the typical step by step procedure of

a graph-theoretic approach toward modelling and has been successfully implemented using

a commercially available modelling and simulation tool called MapleSim. The resulting

software module is capable of performing sensitivity analysis for multibody systems created

in MapleSim.

The proposed method combines the simplicity of direct differentiation with the flexibility

of graph-theoretic formulation. It allows users to select separate tree structures for the

governing and the sensitivity equations. This results in greater control over the size and

complexity of the resulting equations. The actual differentiation operation is performed at

the component level to avoid differentiation of complex expressions.

The presented method has been demonstrated to be automated, flexible, accurate, and

numerically stable. The efficiency of the approach has been determined to be more than that

of the finite difference approach. In comparison with the direct differentiation approach, the

efficiencies of the equations produced by the proposed method were found to be similar.

For systems where separate trees were selected for the sensitivity equations, the proposed

method was demonstrated to be capable of generating more efficient sets of equations than

the ones produced by symbolic differentiation operations.

The significant contributions of this work are summarized in section 6.1; recommenda-

tions for future directions on this topic are provided in section 6.2.
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6.1 Contributions

The contributions for this research have been divided into four categories as illustrated below.

Graph-theoretic sensitivity analysis of multibody systems

Starting from the work done by Savage and Carr [6, 34] the graph-theoretic approach to-

ward sensitivity analysis was extended to be applied to multibody systems. The salient

aspects of multibody systems require special considerations and some modifications to the

general methodology. The resulting algorithm for graph-theoretic sensitivity analysis has

the following benefits:

Algorithmic: The proposed method uses the same step by step procedures followed by

the graph-theoretic methods of system modelling. As such, it is suitable for an automated

implementation. This opens the possibility of the integration of the proposed algorithm

with MapleSim, which uses graph-theoretic formulations to model multibody systems.

Automated: The MapleSim implementation of the proposed method can generate the

symbolic governing equations and the sensitivity equations automatically from the linear

graph representing the system. Minimal user intervention is required for the entire pro-

cess. Especially using the software interface of MapleSim, the sensitivity equations can

be generated by simply executing a specially designed Maple worksheet.

Versatile: Although the current software implementation of the algorithm is restricted

to multibody systems only, the proposed algorithm can be easily applied to any dynamic

system that can be modelled using a linear graph. This has been adequately demonstrated

by the example problems presented in this thesis.

Flexible: The graph-theoretic approach allows the user to select a tree for the sensitiv-

ity equations, which enables the user to control the size and complexity of the resulting

equations. As demonstrated by the examples, it is possible to generate sensitivity equa-

tions in terms of a different set of unknowns than those used in the governing equations,

something that is very difficult to achieve using direct differentiation.

Efficient: The efficiency of the graph-theoretic approach has been demonstrated to be

more than that of the numerical approach using finite difference schemes. In compari-

son to the direct differentiation approach, the method gives similar results in terms of
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efficiencies. However, it is to be noted that while direct differentiation is limited to the

pre-formed structures of the governing equations, the proposed algorithm can be used to

produce more efficient sensitivity equations by careful choice of the tree.

Graph-theoretic modelling of a hydrodynamic torque converter

To test the applicability of the proposed method to multi-domain systems, a graph-theoretic

model was developed for a hydrodynamic torque converter. The graph-theoretic framework

was developed for a rotodynamic impeller, and the complete model of a torque converter was

constructed by assembling these sub-systems. The resulting acausal model was implemented

using MapleSim. The model includes the dynamic effects of the mechanical impellers and

the hydraulic losses in the transmission fluid.

The implemented model can be easily included into existing models of automotive trans-

mission systems, which can result in a very high fidelity model, one that allows access to the

internal assemblies of the subsystems and the physical parameters thereof.

The graph-theoretic approach used to model the torque converter can be readily extended

to model other hydro-dynamic machines. The technique of assembling sub-systems can be

used to model multi-stage torque converters as well as other hydraulic devices. Similar

formulations can be used to develop acausal models of axial and radial flow devices.

Software Implementation

The software implementation of the proposed algorithm was an important part of this re-

search. The objective was to make the application of this method easy and user friendly.

It also means that the method can be used by users who are not directly connected to the

development efforts.

The modelling and simulation tool MapleSim was used to implement the proposed al-

gorithm. It was selected because it uses graph-theoretic formulation to create governing

equations for multibody systems. At present, this implementation is restricted to multibody

systems only. However, by using deprecated versions of source codes, it was demonstrated

that the MapleSim implementation can be readily extended to include multi-domain systems

as well.

The current implementation allows the user to create a model using MapleSim’s user

interface and attach it with a specially designed Maple worksheet, where the newly added

functionalities can be used to generate sensitivity equations.
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Graph-theoretic sensitivity analysis of electro-chemical systems

Graph-theoretic sensitivity analysis was performed on a NiMH battery model to identify

important model parameters. The sensitivity equations produced by the graph-theoretic

method was determined to be more efficient than those produced by the conventional meth-

ods like direct differentiation.

6.2 Future Directions

As a result of the research work that has been presented in this thesis, the following topics

are identified as possible directions for future research efforts. It is to be noted that the

presented research directions and issues mentioned in this section do not necessarily relate

to the topic of sensitivity analysis.

Efficiency of the proposed algorithm

As mentioned in chapter 5, the efficiency of the generated set of equations was found to be

more or less comparable to the efficiency of the equations generated using direct differen-

tiation. To explain this lack of dramatic improvement of performance, the following issues

must be discussed.

Projection onto the ground node: Currently the software implementation is hard-

coded to resolve all vector quantities on to the ground frame. This approach is often not

a very efficient method for equation generation and can result in repeated multiplications

with very complicated expressions in form of composite rotation matrices. In future, the

algorithm must be modified so that it can perform efficient projection of vector variables.

CPU time comparison: In this work, the CPU time was not considered as a measure

of performance due to some problems regarding the implementation in Maple. It can be

worthwhile to compute the actual time of integration by exporting the symbolic equations

to a separate software platform that can yield reliable numbers for the time consumption.

Code optimization: To some extent the use of code optimization could be responsible

for the observed performance trends. Since the code optimization routine modifies the

form of the set of equations, it is possible that some structural information is lost in the

process, which might have caused the performances of the two methods seem similar to

one another.
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Application to very large scale systems

The application of the proposed algorithm in its current form of implementation is not

expected to be efficient for very large scale systems due to the hard-coded tendency to revert

to the ground frame all the time. Once this issue is fixed, the algorithm can be tested on

large system to test its applicability and efficiency.

Application to flexible multibody systems

One very logical extension of the current implementation is the inclusion of flexible multibody

systems, which will enable users to analyze a wide variety of practical multibody systems.

Inclusion of multi-domain systems in the software environment

As demonstrated by the multi-domain models that were custom made for this thesis, the

graph-theoretic algorithm is equally applicable to all dynamic systems. Currently the soft-

ware implementation is restricted specifically to multibody systems since the parent software

MapleSim uses Modellica codes for other domains. It might be useful to extend the capability

of the graph-theoretic engine in MapleSim to include some components from the electrical

and hydraulic domains.

Graph-theoretic modelling of hydraulic machines

By extending the methods used to model the hydrodynamic torque converter, it is possible

to create high-fidelity graph-theoretic model of other hydraulic machines. In particular, the

lumped parameter approach toward modelling fluid flow over curved vanes can readily be

used to model hydraulic turbines, which can then be integrated with existing models of the

electrical generators to assemble very high-fidelity physics-based acausal models of power

generation systems.

Using experimental data to compliment the theoretical models, it is also possible to model

axial flow devices like hydraulic propellers and Kaplan turbines with various configurations.

The use of graph-theoretic approach can greatly improve the fidelity of the models that

include these systems.
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Graph-theoretic modelling and analyses of distributed systems

It might also be interesting to extend the current techniques of graph-theoretic modelling and

sensitivity analysis to include systems that involve compressible flow such as wind turbines

and centrifugal pumps.

6.3 Permissions and List of Publications

A summary of the published sections of this thesis is presented in this section.

Parametric importance analysis: The parametric importance analysis on NiMH bat-

tery was presented at the SAE World Congress 2011 [74].

Multibody sensitivity analysis: The application of graph-theoretic algorithm for sen-

sitivity analysis on two-dimensional multibody systems was presented at Multibody Dy-

namics 2011 [76].

Torque converter modelling: The graph-theoretic model of the torque converter was

presented at the MathMOD conference 2012 [21].

Design optimization: The results of design optimization on the torque converter model

using sensitivity information were presented at the SAE World Congress 2012 [77].

6.4 Final thoughts

Sensitivity analysis for multibody systems is an involved, highly specialized, and fascinating

area of research. Due to the ever increasing complexity of the systems being processed, the

proverbial “bar” is always set at a higher level. In this research, an attempt has been made

to automate the generation of sensitivity equations and to gain some control over the size

of the resulting equations. However, from the discussion presented in section 6.2, it is quite

clear that automated and efficient graph-theoretic sensitivity analysis remains an open topic

of research.

It seems unlikely that just by improving one particular stage of the process, it would

be possible to reach the required level of efficiency and accuracy from sensitivity analysis.

The prudent approach appears to be to improve the overall efficiency by coming up with

better methods for modelling, formulation, and numerical processing in a combined and

well-coordinated fashion.
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Appendix A

A.1 Torque Converter Parameters

Name Description Value Unit

A Flow area 0.01 m2

αp Vane blade exit angle in the pump 0 Deg
αt Vane blade exit angle in the turbine -58 Deg
αs Vane blade exit angle in the stator 65 Deg
βp Vane blade entry angle in the pump -16 Deg
βt Vane blade entry angle in the turbine 48 Deg
βs Vane blade entry angle in the stator -30 Deg

Cflow Friction loss factor 0.2 N/A
Cshock Shock loss factor 1 N/A
Jp Inertia of pump element 0.106 Kg ·m2

Jt Inertia of turbine element 0.289 Kg ·m2

Js Inertia of stator element 0.05 Kg ·m2

Lfp + Lft + Lfs Total length of fluid inertia 0.28 m
Rp Radius of pump element 0.115 m
Rt Radius of turbine element 0.068 m
Rs Radius of stator element 0.088 m
ρ Density of the hydraulic fluid 840 Kg/m3

Sp Design constant for pump 0.0003 m2

St Design constant for turbine 0.001 m2

Ss Design constant for stator 0.001 m2

Table A.1: Torque converter parameters
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A.2 Model parameters for the slider crank mechanism

Table A.2: Model parameters for the slider crank mechanism

Variable Description Value Unit

Kv Transducer coefficient 0.07
Kt Transducer coefficient 0.07
L Motor coil inductance 0.35 mH
L1 Length of crank 0.5 m
L2 Length of connecting rod 1.5 m
m1 Mass of crank 0.3 Kg
m2 Mass of connecting rod 0.6 Kg
m3 Mass of sliding block 0.5 Kg
R Motor coil resistance 0.85 Ω
r1 Cross-section radius of crank 0.03 m
r2 Cross-section radius of connecting rod 0.03 m
ξ Damping coefficient 1.2 N − s/m

A.3 Model parameters for the sliding pendulum

Table A.3: Sliding pendulum parameters

Parameter Description Value Unit

g Acceleration due to gravity 9.81 m/s2

k Spring constant 50.00 N/m
L Length of the pendulum 1.00 m
m1 Mass of the slider block 1.00 Kg
m2 Mass of the pendulum 5.00 Kg
r Radius of cross-section of the pendulum 0.03 m
s0 Unstretched length of the slider block 0.50 m
ξ Rotational damping coefficient 10.00 N −m− s/rad
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A.4 Hard point locations for the double-wishbone sus-

pension system

Table A.4: Nominal locations of the hard points in the suspension system

Hard point X Y Z
(mm) (mm) (mm)

A 360.0 479.4 -86.2
B 360.0 500.9 52.1
C 540.7 498.0 -18.3
D 352.0 265.4 -77.8
E 352.0 230.8 119.2
F 615.5 229.0 17.3
G 579.0 359.5 -0.1
H 635.0 360.0 0.0
I 579.0 359.5 149.9
J 297.5 368.1 40.0
K 543.5 250.0 14.6
L 340.5 632.0 -37.5
M 0.0 368.1 40.0

A.5 Parameters for the 3-dimensional pendulum

Table A.5: Model parameters for the pendulum

Parameter Description Value Unit

G Acceleration due to gravity 9.81 m/s2

m Mass of the pendulum 2 Kg
L Length of the pendulum 1 m
r Radius of circular cross-section of the pendulum 0.03 m
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A.6 NiMH Battery Parameters

Table A.6: Model parameters for the NiMH battery

Description Symbols Value Unit

Density of nickel active material ρNi(OH)2
3.4 g/cm3

Density of metal hydride ρMH 7.49 (g/cm3)

Internal resistance R int 5.0× 10−3 Ω

Heat capacity of the cell c p 30 J/gK

Conductivity of cell container k 2.0× 10−3 W/K cm

Loading of nickel active material LNi(OH)2
6.8× 10−2 g/cm2

Loading of metal hydride LMH 1.13× 10−1 g/cm2

Mass of cell m cell 67 g

Thickness of the container wall e 0.1 cm

Gas volume inside the cell V gas 1.0× 10−1 cm3

Specific electrode area of cathode a pos 4.00× 10 3 cm2/cm3

Specific electrode area of anode aneg 3.00× 10 3 cm2/cm3

Surface area of cathode A pos 3.25× 10 2 cm2

Surface area of anode Aneg 3.60× 10 2 cm2

Thickness of positive electrode l pos 3.3× 10−2 cm

Thickness of negative electrode lneg 2.8× 10−2 cm

Concentration of KOH electrolyte c e 7.00× 10−3 mol/cm3

Reference electrolyte concentra-
tion

c e,ref 1.00× 10−3 mol/cm3

Reversible heat

∂U1/∂T −1.35× 10−3 V/K
∂U2/∂T −1.68× 10−3 V/K
∂U3/∂T −1.55× 10−3 V/K
∂U4/∂T −1.68× 10−3 V/K
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Table A.7: Model parameters for the NiMH battery - Continued

Description Symbols Value Unit

Maximum concentration of nickel
hydroxide in nickel active mate-
rial

cH+,max 3.70× 10−2 mol/cm3

Maximum concentration of hy-
drogen in metal hydride material

cMH,max 1.00× 10−1 mol/cm3

Reference concentration of nickel
hydroxide in active material

cH+,ref 0.50× cH+,max

Reference concentration of hydro-
gen in metal hydride material

cMH,ref 0.50× cMH,max

Open-circuit voltages

U 1,c, U 1,d 0.527, 0.458 V
U 2 0.4011 V
U 3 −0.8279 V
U 4 0.4011 V

Exchange current densities at ref-
erence reactant concentrations

i 0,1,ref 1× 10−4 Amp/cm2

i 0,2,ref 2× 10−11 Amp/cm2

i 0,3,ref 1× 10−4 Amp/cm2

i 0,4,ref 1× 10−4 Amp/cm2
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Appendix B

B.1 Matrix differentiation

Statement: If a matrix Xm×n is differentiated with respect to a scalar b, then the result is

a matrix Xb, whose elements are obtained by differentiating the elements of matrix X with

respect to b.

Reason: Matrices offer a convenient method of writing equations in a compact form. Nat-

urally, matrix calculus is defined in way so that it continues to serve the purpose of being a

compact form for large systems of equations. To illustrate the validity of the aforementioned

statement and the merit of defining matrix differentiation in that fashion, one can consider

the example of a matrix equation expressed as

Xm×n An×1 = 0 (B.1)

The individual equations represented by this matrix notation are given below.(∑
j=1..n

Xi,jAj = 0

)
i=1..m

(B.2)

By differentiating the equations given by (B.2) with respect to the scalar b, the following

equations are obtained. (∑
j=1..n

∂Xi,j

∂b
Aj +

∑
j=1..n

Xi,j
∂Aj

∂b
= 0

)
i=1..m

(B.3)

This expression can be written in a compact matrix form by properly defining the process
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of differentiation of a matrix. The most obvious and convenient way is to write this equation

as shown in equation (B.4).

XbA + XAb = 0 (B.4)

The above equation uses a matrix Xb as the derivative of X.

d

db
(X) = Xb (B.5)

Thus the correct way of defining the derivative of a matrix with respect to a scalar is to

differentiate every element of the matrix with respect to the scalar. Q.E.D

B.2 Differentiating a rotation matrix

Statement: If a rotation matrix R is differentiated with respect to a scalar b, the 5result

Rb can be expressed as the product of a skew symmetric matrix and the rotation matrix R

itself. In other words
d

db
(R) = Rb = SR

ST = −S
(B.6)

Reason: To prove this statement, one can consider a time varying vector r which is obtained

by multiplying a rotation matrix R with a constant vector r0.

r(t, b) = R (t, b) {r0} (B.7)

If vector r is differentiated with respect to a scalar quantity b, the derivative will be a

vector that will mathematically represent the change in the position of the tip of the vector

r. By symbolic differentiation, the expression of that vector can be obtained as

d

db
r(t, b) = rb =

d

db
R (t, b) {r0} =

dR

db
RT r = Sr

S =
dR

db
RT

(B.8)

Since the effect of R is to rotate the vector r0, any change in the value of b results

in a change in the orientation of the vector. The change vector rb, is therefore always

perpendicular to the original vector r. From equation (B.8) it can be clearly seen that the

vector rb is obtained by multiplying a matrix S with the vector r. From this, it is possible

183



to infer that the matrix S is indeed a skew symmetric matrix, because its the only type of

matrix that when multiplied with a vector, results in a vector perpendicular to the original

vector. Q.E.D

B.3 Rotational branch transformations

Statement

The rotational sensitivity branch transformation equations can be simplified considerably

using the properties of the rotation matrices and its sensitivities. As an example the following

equations can be proved for the simple pendulum illustrated in figure 4.1.

Given,

Rm
b = −(R r)TRh

[(
Rh

b

)T
R rRm +

(
Rh
)T

R r
bR

m
]

(B.9)

It can be proved that

Rm
b = (R r

b)
TRh + (R r)TRh

b (B.10)

Proof

The rotational circuit equation for the system states

(
Rh
)T

R r Rm = U3×3 =⇒ Rh = R rRm (B.11)

Also, according to the discussion in appendix B.2, the following equations can be defined,

where Sh and S r are skew symmetric matrices.

Rh
b = ShR

h and R r
b = S rR

r (B.12)

By substituting equation (B.12) into equation (B.9) the following equation is obtained.

Rm
b =

(
−(R r)TRh

(
S 1R

h
)T

R rRm − (R r)TRh
(
Rh
)T

S 2R
rRm

)
=
(

(R r)T
(
S 1R

h
)

+ (R r)T (S 2)
TRh

) (B.13)

By rearranging the matrices and using equation (B.12) the following equation is obtain

184



which proves the proposition.

Rm
b = (R r)TRh

b + (S 2R
r)TRh = (R r)TRh

b + (R r
b)
TRh (B.14)

As an added check to this result, it should be noted that this expression can also be

obtained by differentiating (4.22) with respect to the model parameter b.

B.4 Derivation of the constitutive equations for the

rotodynamic impeller

A simplified impeller profile is shown in figure B.1. The flow path of the hydraulic fluid

over the impeller profile is shown in figure B.2. The control volume (C.V) is the cylindrical

annular area shown in figure B.1.

Figure B.1: Simplified impeller profile
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The median line

ˆ
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dr
dl

t
w R2R1

Figure B.2: Flow path over the impeller

The objective of this derivation is to establish the mathematical connection between the

the net torque acting on the C.V τ , the angular velocity of the impeller ω, the flow rate

of the fluid Q, and the pressure difference between the points C and D. The derivation

presented here is based on the work done by Hrovat and Tobler [62].
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The net torque acting on the C.V is given by the moment of momentum equation.

Net

Torque
=


Flow rate of

angular momentum

through control surface

+


Time rate of change of

angular momentum

in the control volume

 (B.15)

For this system and the particular choice of the control volume, the moment of momentum

equation can be written as

τ − Jmω̇ =

∫∫
CS

(
r̄ × V̄

)
ρ
(
V̄ · dĀ

)
+
∂

∂t

∫∫∫
CV

ρ
(
r̄ × V̄

)
d∀ (B.16)

Jm Polar moment of inertia of the impeller

CV The annular cylindrical shaped control volume shown in figure 3.8

CS The corresponding control surface

ρ Density of the hydraulic fluid

V̄ Absolute velocity of a fluid particle

A Flow area (assumed to be constant along the flow path)

d∀ Differential volume. d∀ = Adl

The volumetric flow rate Q can be expressed in terms of the flow velocity as

Q =

∫∫
CS

V dA (B.17)

The flow velocity of a fluid particle measured with respect to the impeller at a radial location

at r with thickness dr is denoted as V ∗. In terms of the unit vectors, the expression for V ∗

can be written as

V̄ ∗ =
Q

A
îr +

(
Q

A
tanα

)
îϕ (B.18)

The absolute velocity of a fluid particle can be written as

V̄ = ω̄ × r̄ + V̄ ∗ =
Q

A
îr +

(
rω +

Q

A
tanα

)
îϕ (B.19)
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Equation (B.19) is substituted into equation (B.16) and the two integrals in the right

hand side are considered separately.

For the surface integral∫∫
CS

(
r × Ṽ

)
ρ
(
Ṽ · dA

)
=

∫∫
outlet surface

ρ
(
r × Ṽ

)Q
A
dA−

∫∫
inlet surface

ρ
(
r × Ṽ

)Q
A
dA

= ρQ

(
ωR2

2 +R2
Q

A
tanαe − ωbackR2

1 −R1
Q

A
tanαbacke

)
îz

= ψQ îz

(B.20)

For the volume integral

∂

∂t

∫∫∫
CV

ρ
(
r × Ṽ

)
d∀

=
∂

∂t

∫∫∫
CV

ρ

(
rîr ×

[
Q

A
îr +

(
rω +

Q

A
tanα

)
îϕ

])
d∀

=

∂ω
∂t

∫∫∫
CV

r2ρd∀+ ρ
∂

∂t

∫
Streamline

r (tanα)
Q

A
Adl

 îz
=
(
Jf ω̇ + ρQ̇S

)
îz

(B.21)

In the above equations, an intermediate variable ψ is introduced:

ψ = ρ

(
ωR2

2 +R2
Q

A
tanαe − ωbackR2

1 −R1
Q

A
tanαbacke

)
(B.22)

The descriptions of the symbols used in equations (B.20) and (B.21) are given below.

αe: Vane angle at point D

αbacke : Angle of the vane leading to point C

ωback: Angular velocity of vanes (not the impeller) before point C

Jf : Polar moment of inertia of the fluid mass, Jf =
∫∫∫
∀total

ρ r2d∀
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S: Vane profile parameter, S =
∫
r tanα dl

Equations (B.20) and (B.21) are combined together and are substituted into equation

(B.16), to obtain the following equation.

τ = Jmω̇ + Jf ω̇ + ψQ+ ρ S Q̇ (B.23)

This way the mechanical through variable τ is expressed as a function of the mechanical

across variable ω̇ and the hydraulic through variables Q and Q̇.

To derive the second constitutive equation, the power balance equation is applied to the

system.

Input

Power
=

[
Power

stored

]
+


Rate of work

done against

pressure gradient

+


Lost power

due to friction

and shock effect

 (B.24)

Using loss terms described by Hrovat [62] the power balance equation for this system is

formulated.

τ̄ · ω̄ = Ė + (pD − pC)Q+

Lost Power︷ ︸︸ ︷
Pshock + Pflow (B.25)

The loss term Pflow refers to the power lost due to shear stresses in the boundary layer

and possible pressure drags. It is modelled using a semi-empirical equation described by

Hrovat [62] and Lucas [78].

Pflow =
1

2
ρCflow |Q|

(∣∣ζ̄∣∣)2 (B.26)

The constant Cflow is a dimensionless and experimentally determined quantity. The

expression for ζ̄ is obtained by substituting the exit vane angle αe in equation (B.18).

∣∣ζ̄∣∣ =
Q

A
sec (αe) (B.27)

The loss term Pshock refers to the power lost due to non-ideal flow conditions at the

interface leading to the inlet of the impeller. It is modelled using empirical equations [62].

Pshock =
1

2
ρCshock |Q| (Vshock)2 (B.28)
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The shock velocity Vshock is the difference between the tangential component of the ab-

solute velocity of the fluid particles at the junction of the vane and the part leading up to it

at point C. In terms of βe (the vane angle at the point C) and αbacke (the vane angle leading

to point C), the shock velocity is given as

Vshock = R1 (ωback − ω) +
Q

A

(
tanαbacke − tan βe

)
(B.29)

The quantity Ė represents the rate of change of energy of the mechanical components

and the hydraulic fluid in the system. The system’s mechanical energy can be written in

terms of the angular velocity of the impeller and the absolute velocity of the fluid particles

as shown in equation (B.30).

E =
1

2
Jm ω

2 +
ρ

2

∫∫∫
∀total

(∣∣V̄ ∣∣)2d∀ (B.30)

Using equation (B.19) the following expression is obtained.

E =
1

2
Jm ω

2 +
ρ

2

∫∫∫
∀total

(
ω2 r2 +

Q2

A2
sec2α + 2

Q

A
ω r tanα

)
d∀

=
1

2
Jm ω

2 +
1

2
Jf ω

2 +
ρQ2

2A
Lf + ρQωS

(B.31)

where Lf is a vane profile constant given by

Lf =

∫
Streamline

sec2α dl (B.32)

Differentiating equation (B.31) with respect to time and substituting the results in equa-

tion (B.25) the second constitutive equation of the system is obtained.

(pC − pD) = −ψ ω +
ρLf

A
Q̇+ ρ S ω̇ +

Pshock
Q

+
Pflow
Q

(B.33)

Thus, the hydraulic across variable of the system, i.e., the pressure difference between

the points C and D, is expressed as a function of the mechanical across variables ω, ω̇, the

hydraulic through variable Q̇, and the model parameters.
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B.5 Normalized relative sensitivity

In any physical model, the set of model parameters contains values with different units.

As a result, the mathematical concept of a unit change in the value of the parameter has

different physical interpretations for different parameters. To ensure a proper level ground

for comparison, Smith et al. [68] has used what is known as the relative sensitivity score.

In their approach, the absolute sensitivity information is converted to a relative sensitivity

measure using the expression shown in equation (B.34).

µ1 =
∂ψ

∂ b

b∗

ψ (b∗)
(B.34)

In equation (B.34), µ1 is the normalized sensitivity score, ψ is the objective function, b∗ is

the nominal value of the model parameter, and ψ(b∗) is the value of the objective function

at the nominal value of the model parameter.

µ2 =
∂ψ

∂ b

∣∣∣∣ b∗

ψ (b∗)

∣∣∣∣ (B.35)

However, in this thesis the expression is modified slightly and an absolute value operator

is used to calculate the relative sensitivity score as shown in equation (B.35). In this section,

a brief justification of this choice of expression will be presented.

To illustrate the physical interpretations of the terms involved in equations (B.34) and

(B.35), we consider the curves shown in figure B.3. In this figure, different values of the

objective function and model parameters are shown at points A to H.

For each of these points, terms shown in equations (B.34) and (B.35) can be readily

identified. The quantity b∗ is the X-coordinate, ψ(b∗) is the Y-coordinate, and ∂ψ
∂ b

is the

gradient of the tangent line.

The relative sensitivity is a measure of the fractional change in the objective function

for a fractional change in the model parameter. If the expression shown in (B.34) is used,

then the notion of “change” becomes a function of the sign of the model parameters and the

objective functions, which makes the physical interpretation of the quantity µ1 dependent

on the quadrant in which the operating point is located.

In the first quadrant, where both X and Y values are positive, µ1 indicates a fractional

increase in the objective function for a fractional increase in the model parameter. But in

the second quadrant where only the parameter value is negative, µ1 represents the fractional
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increase in the objective function for a fractional decrease in the model parameter, something

completely different from the earlier interpretation.

Objective 

function

Parameter 

value

A
B

C

D

E F
G

H

Figure B.3: Different values of objective function and model parameters

The stipulation presented above can be readily verified by looking at points C, A, and

B. At point C, µ1 is positive, which is completely in congruence with our expectations.

At point A, the value of µ1 is negative, which makes sense only if we consider the altered

interpretation presented in the previous paragraph. A similar situation is observed at point

B (µ1 > 0), which can be explained by the same interpretation as in case of point A. This

dependence on the location of the operating point makes the equation (B.34) a particularly

unsuitable method for an importance analysis.

In comparison, the quantity µ2 always denotes the fractional increase in the objective

function for an fractional increase in the model parameter. This can be shown at points C,

A, F, and H where µ2 is positive and also at points B, D, E, and G where µ2 is negative.

In other words, the use of the absolute value sign makes the physical interpretation of µ2

independent of the location of the operating point, which is a very desirable feature while

comparing the effects of different model parameters. For this reason, the expression shown

in equation (B.35) is used throughout the course of this research.
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