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ABSTRACT

This thesis deals with the question of what resources are necessary and sufficient for quan-
tum computational speedup. In particular, we study what resources are required to promote
fault tolerant stabilizer computation to universal quantum computation. In this context
we discover a remarkable connection between the possibility of quantum computational
speedup and negativity in the discrete Wigner function, which is a particular distinguished
quasi-probability representation for quantum theory. This connection allows us to establish
a number of important results related to magic state computation, an important model for
fault tolerant quantum computation using stabilizer operations supplemented by the ability
to prepare noisy non-stabilizer ancilla states. In particular, we resolve in the negative the
open problem of whether every non-stabilizer resource suffices to promote computation
with stabilizer operations to universal quantum computation.

Moreover, by casting magic state computation as resource theory we are able to quantify
how useful ancilla resource states are for quantum computation, which allows us to give
bounds on the required resources. In this context we discover that the sum of the negative
entries of the discrete Wigner representation of a state is a measure of its usefulness for
quantum computation. This gives a precise, quantitative meaning to the negativity of a
quasi-probability representation, thereby resolving the 8o year debate as to whether this
quantity is a meaningful indicator of quantum behaviour.

We believe that the techniques we develop here will be widely applicable in quantum
theory, particularly in the context of resource theories.
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Has a bit the quantum nature?

This is the most serious question of all.
If you say yes or no,

You lose your own quantum nature.

— Qumon, zen poet.
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INTRODUCTION

While it is widely believed that quantum computers can solve certain problems with ex-
ponentially fewer resources than their classical counterparts, the scope of the physical re-
sources of the underlying quantum systems that enable universal quantum computation
is not well understood. For example, for the standard circuit model of quantum compu-
tation, Vidal has shown that high-entanglement is necessary for an exponential speed-up
[75]; however, it is also known that access to high-entanglement is not sufficient [26]. More-
over, in alternative models of quantum computation such as DQCz1 [48], algorithms that
may be performed on highly-mixed input states appear to be more powerful than classical
computation even though there appears to be a negligible amount of entanglement in the
underlying quantum system [15]. This suggests that large amounts of entanglement, purity
or even coherence may not be necessary resources for quantum-computational speed-up.
One of the central open problems of quantum information is to understand which sets
of quantum resources are jointly necessary and sufficient to enable an exponential speed-
up over classical computation. Any solution to this important problem may point to more
practical experimental means of achieving the benefits of quantum computation.

The question of whether a restricted subset of quantum theory is still sufficient for a
given task is meaningful when there is a specific context that divides the full set of possible
quantum operations into two classes: the restricted subset of operations that are accessible
or easy to implement and the remainder that are not. In such a context it is then natural to
consider the difficult operations as resources and ask how much, if any, of these resources
are required. For example, a common paradigm in quantum communication is that of two or
more spatially separated parties for which local quantum operations and classical commu-
nication define a restricted set of operations that are accessible or “free resources”, whereas
joint quantum operations are not free; in this context entanglement is the natural resource
for quantum communication. Astonishingly, there is not yet a corresponding resource theory
for the task of quantum computation.

The major obstacle to physical realizations of quantum computation is that real world
devices suffer noise when they execute quantum algorithms. Fault tolerant quantum com-
putation offers a partial resolution to this problem by allowing the effective error rates on
logically encoded computations to be reduced below the error rate of the physical (unen-
coded) computation. These schemes work by encoding a large block of physical qudits into
a single logical qudit that is robust against isolated errors on the physical qudits. However, it
is possible for logical operations to spread errors between the physical qudits with the con-



sequence that the quantum computer will be overwhelmed by errors. Logical unitary gates
that do not spread errors within a code block are called transversal; these play a critical
role in fault-tolerant quantum computation. Recent theoretical work has shown that a set of
quantum gates which is both universal and transversal does not exist[17, 80, 13]. Thus any
scheme for fault tolerant quantum computation using transversal gates divides the quan-
tum operations into two classes: those with a fault-tolerant implementation — these are the
“free resources” — and the remainder — these are not free but are required to achieve uni-
versality. For a fixed fault tolerant scheme the critical question is: what are necessary and
sufficient physical resources to promote fault-tolerant computation to universal quantum
computation?

The known fault tolerant schemes with the best performance are built around the well-
known stabilizer formalism [29], in which a distinguished set of preparations, measure-
ments, and unitary transformations (the “stabilizer operations”) have a fault tolerant imple-
mentation. Stabilizer operations also arise naturally in some physical systems with topologi-
cal order[47, 23]. As described above, the transversal set of stabilizer operations do not give a
universal gate set and must be supplemented with some additional (non-stabilizer) resource.
A celebrated scheme for overcoming this limitation is the magic state model of quantum
computation devised by Bravyi and Kitaev [6] where the additional resource is a set of
ancilla systems prepared in a some (generally noisy) non-stabilizer quantum state. Hence
in this important paradigm the question of which physical resources are required for uni-
versal fault-tolerant quantum computation reduces to the following: which non-stabilizer
states are necessary and sufficient to promote stabilizer computation to universal quantum
computation?

In this thesis we identify a non-trivial closed, convex subset of the space of quantum states
which is incapable of producing universal fault-tolerant quantum computation. In particu-
lar, this convex subset strictly contains the convex hull of stabilizer states, and thereby
proves that there exists a class of bound magic states, i.e. states that can not be prepared
from convex combinations of stabilizer states and yet are not useful for quantum compu-
tation. Thus the proof of the existence of bound magic states resolves in the negative the
open problem raised by Bravyi and Kitaev [6] of whether all non-stabilizer states promote
stabilizer computation to universal quantum computation. Furthermore, we will see that
there is an efficient simulation algorithm for the subset of quantum theory that consists of
operations from the stabilizer formalism acting on inputs from the non-universal region,
which includes mixed states both inside and outside the convex hull of stabilizer states.
This simulation scheme is an extension of the Gottesman-Knill theorem [26, 1] to a broader
class of input states and should be of independent interest.

The results we have just described deal with the binary question of whether a given non-
stabilizer state is at all useful for quantum computation. We further extend this to quantify
the degree to which a given resource state is useful for promoting stabilizer computation
to universal quantum computation. In magic state computation the required non-stabilizer
unitary gates are implemented by using stabilizer operations to consume non-stabilizer
resource states; this is closely analogous to how entangled states can be consumed using
local operations to implement non-local operations. In order to avoid introducing errors



into the computation the non-stabilizer resource states that are consumed must be very
pure. However, the only pure states with fault tolerant preperation are stabilizer states;
the available resource states will generally be highly mixed. For this reason a critical step in
magic state computation is the distillation of a large number of noisy resource states pres into
a small number of very pure non-stabilizer states otarget that will be consumed to implement
non-stabilizer gates. In this context the natural measure of how useful a resource state pres
is for quantum computation is the number of copies required to produce the target state
Otarget- 10 quantify how useful a state is for quantum computation the question we must
address is: assuming it is possible to use stabilizer operations to distill a target state otarget
from a resource state pros, how efficiently can it be done? That is, how many copies of pres
are required to produce m copies of Ctarget?

Finding distillation protocols to minimize the amount of resources required is an ex-
tremely important problem. Currently stabilizer codes provide the best hope for practical
quantum computation, but the physical resource requirement for known distillation proto-
cols is enormous. For example, reference [22] analyzes the requirements for using Shor’s
algorithm to factor a 2000 bit number using physical qubits with realistic error rates’. A
surface code construction is used to achieve fault tolerance, from which it is found that
roughly a billion physical qubits are required. About 94% of these physical qubits are used
in the distillation of the ancilla states required to perform the non-stabilizer gates. More
efficient distillation protocols are critical for the realization of quantum computation, and
there has been a recent flurry of effort on this front eg. [16, 7, 22, 45, 54, 11]. Unfortunately,
although these innovations offer improvement over the original magic state distillation pro-
tocols, the physical requirements remain extravagant. Moreover, it is unclear whether these
protocols are near optimal or if dramatic improvements might still be made. The current
work addresses this problem by developing a coherent theory for the treatment of resources
for stabilizer computation.

The key insight is the identification of magic® as a resource that can not be created by
stabilizer operations. This is analogous to the role of entanglement as a resource that can
not be created by local operations. We discover two quantitative measures of the magic of a
quantum state. These measures are magic monotones, functions mapping quantum states to
real numbers that are non-increasing under stabilizer operations, ie. M (A (p)) < M (p) if
A is a stabilizer operation. As an important application these measures allow us to upper
bound the efficiency of magic state distillation. For example, suppose the target state is five
times as magical as the resource state according to some measure, then we can immediately
infer that at least five resource states will be required for each copy of the target state. More
broadly, these measures provide an important tool for development of improved magic state
distillation protocols and the study of stabilizer computation.

The theoretical method used to prove many of these results is to construct a classical
hidden variable model for the subtheory of quantum theory that consists of the stabilizer
formalism and then determine the scope of additional quantum resources that are also de-

Physical qubit error rate 0.1%, ancilla preparation error rate 0.5% , 10ons for measurement

2 This somewhat whimsical name stems from two sources. First, the use of the magic moniker in the original
Bravyi and Kitaev paper to describe states that are, apparently magically, both distillable and useful for state
injection. Second, the long held desire of the present author to refer to himself as a mathemagician.



scribed by this model. In fact, this local hidden variable model is given by the non-negative
elements of a distinguished quasi-probability representation. A quasi-probability represen-
tation is a way of representing quantum theory as a classical probabilistic theory where the
quasi-probability distributions are allowed to take on negative values; such a representation
thus affords a classical model for the elements of quantum theory with positive represen-
tation. Perhaps unsurprisingly, it has been shown that the full quantum theory can not
be represented with positive elements in any such representation[18, 19, 20, 65]. However,
one might expect that a subtheory of quantum theory that is inadequate for quantum com-
putational speed-up might be represented non-negatively, i.e. as a true classical theory, in
some natural choice of quasi-probability representation. For the context described above,
we seek a quasi-probability representation reflecting our natural operational restriction: we
require that stabilizer states and projective measurements onto stabilizer states have non-
negative representation and that unitary stabilizer operations (i.e., Clifford transformations)
correspond to stochastic processes. Conveniently, for quantum systems with odd Hilbert
space dimension such a representation is already known to exist: this is the discrete Wigner
function first defined by Wooters[79] and connected to the stabilizer formalism by Gross
[34, 35]. In such a representation it is natural to examine whether the resources required for
quantum speed-up correspond to those that are represented with negative probabilities.

The results covered by this thesis may now be stated more carefully:

Classically efficient simulation of positive Wigner functions: The set of fault tolerant
quantum logic gates in the stabilizer formalism are known as the Clifford gates. The first
contribution is an explicit simulation protocol for quantum circuits composed of Clifford
gates acting on input states with positive discrete Wigner representation. We also allow arbi-
trary product measurements with positive discrete Wigner representation. This simulation
is efficient (linear) in the number of input registers to the quantum circuit. This simulation
scheme is an extension of the celebrated Gottesman-Knill theorem.

Negativity is necessary for magic state distillation: This simulation protocol implies
that states outside the stabilizer formalism with positive discrete Wigner function (bound
magic states) are not useful for magic state distillation. We give a direct proof of this fact
exploiting only the observation that negative discrete Wigner representation can not be
created by stabilizer operations. This proof has a more general range of applicability than
the efficient simulation scheme and also makes clear the conceptual importance of negative
quasi-probability as a resource for stabilizer computation.

Geometry of positive Wigner functions: The set of quantum states with positive discrete
Wigner function strictly contains the set of (convex combinations of) stabilizer states. To
prove this fact we fully describe the geometry of the region of quantum state space with
positive discrete Wigner representation. Concretely, the facets of the classical probability
simplex defining the discrete Wigner function are also facets of the polytope with the (pure)
stabilizer states as its vertices. Since there are many more facets of the stabilizer polytope
than of the simplex this suffices to establish the existence of non-stabilizer states with posi-
tive representation.

The Relative Entropy of Magic: The relative entropy distance between two states is
S(pllc) = Tr(plogp) — Tr(plogo). We use this to define the relative entropy of magic



rp () = mingegrapen,) S (0llo), the minimum relative entropy distance between the re-
source state and any (convex combination of) stabilizer states. Roughly speaking, this is a
measure of how distinguishable p is from any (convex combination of) stabilizer states.
We establish that the relative entropy of magic is a magic monotone. This monotone
is most interesting in the asymptotic regime, where it's asymptotic variant is 1y, (o) =
limy, e TAq (0°") /1. Using generic resource theory results[40] we show that if it is possible,
using stabilizer operations, to reversibly interconvert between magic states p and ¢ with
vanishingly small error in the asymptotic limit then the rate at which this can be done is
given by 1% (o) /1% (7).

Mana: The preceding results dealing with the discrete Wigner function are purely binary:
if an ancilla preparation is positively represented then it can not promote stabilizer computa-
tion to universal computation, but if it is even very slightly negatively represented then none
of the preceding work applies. It is natural to wonder whether the amount of negativity is
meaningful measure of how useful a state is for promoting stabilizer operations to full quan-
tum power. We show that this is indeed the case by proving that the sum of the negative en-
tries of the Wigner representation of a state p is a magic monotone, the sum negativity sn (p).
We will find it is actually more convenient to work with the mana .# (p) = log (2sn (p) +1)
because this measure is additive in the sense that .# (p ® o) = .# (p) + .# (0). As a par-
ticular application we find explicit bounds on the efficiency of magic state distillation: to
distill m copies of a target state o from n copies of a resource state p at least n > nggg
copies are required on average.

The first three results first appeared in [71], a collaboration with Christopher Ferrie, David
Gross and Joseph Emerson. The final two results will appear in [72], a collaboration with
Ali Hamed, Daniel Gottesman and Joseph Emerson.

It is important to bear in mind that the results based on the discrete Wigner function only
apply to systems of qudits with odd Hilbert space dimension as the discrete Wigner func-
tion is only defined for such systems. It remains to be established whether this distinction
between odd and even Hilbert space dimension is merely mathematical frippery (as in the
case of error correction, which requires a similar distinction between bits and dits) or if it
reveals something deep about the quantum formalism.

Conceptually, the main contributions of this thesis are:

1. Casting quantum computation as a resource theory, allowing precise, quantitative
statements to be made about how useful any particular quantum resource is for com-
putational speedup and,

2. Showing that the negativity of the discrete Wigner function has a well defined, con-
crete meaning as a measure of how useful a quantum state is for promoting stabilizer
computation to universal quantum computation.

It is natural to expect that these insights can be applied to the study of quantum phenomena
beyond computation (eg. to the study of quantum communication). One of the main goals
of this thesis is to give a comprehensive explanation of the intuition and reasoning that
lead to the results in order to clarify how they might be exported to the broader study of
quantum theory.



BACKGROUND

There are three main topics we must introduce to explain the contents of this thesis: the
stabilizer formalism, quasi-probability representations of quantum theory and the discrete
Wigner function. Our aim is here both to introduce the mathematical formalism of each of
these tools and explain their conceptual significance. In particular we aim to make it clear
how all of these are related to quantum computation and to each other. As such the presen-
tation we give of these topics is not canonical. The stabilizer formalism is usually introduced
in the context of fault tolerant quantum computation, quasi-probability representations are
usually introduced in the context of quantum foundations and discrete Wigner functions
are usually introduced by analogy to the famous infinite dimensional counterpart. Our per-
spective does not align with any of these, so even experts in these subjects may find some
new insights in this chapter.

One of the main goals of this thesis is to give future workers a solid grounding for extend-
ing the results contained herein. A consequence is that we go into considerably more detail
than the minimum required to articulate the results. Indeed, this is the main contribution
of the thesis beyond what is already contained in the associated papers[y1, 73, 72].

A number of the more advanced topics in the background chapters, particularly relating
to the stabilizer formalism, make use of the representation theory of finite groups. Hopefully
the conceptual points are still clear to readers who are not familiar with the mathematics.
In any case this material is not required to understand the remainder of the thesis so the
reader who is intimidated by the mathematics is free to skip it.

2.1 THE STABILIZER FORMALISM

Known schemes for fault tolerant quantum computation allow for only a limited set of
operations to be implemented directly on the encoded quantum information. For most
known fault tolerance schemes this restricted set is the stabilizer operations consisting of
preparation and measurement in the computational basis and a restricted set of unitary
operations. We will now review the important parts of its structure for systems of power
of prime dimension. For an overview of the stabilizer formalism in the context of fault
tolerance see [26, 30]. For an overview of the phase space techniques for the stabilizer
formalism see [34, 36].



2.1.1 The Basics

We begin by defining the generalized Pauli operators for prime dimension and we will
build up the formalism from these. We will denote Hilbert space of dimension d by H,; and
the standard (computational) basis by {[j) };_y_4_;- Let p be a prime number and define the
boost and shift operators X, Z € L (H,):

Xlj) = lj+1 mod p)
2711

zl) = o), w=exp(%).

From these we can define the Heisenberg-Weyl (generalized Pauli) operators in prime di-
mension:

A C p=2

T(
wa*lulazzal X2 p ?é 2

a1,a2) = (2.1.1)

where a1,a, € Zp, Z,, are the integers modulo p and 27! = pTH mod p.* For a system
with composite Hilbert space H,, ® Hp, ® --- ® Hp, the Heisenberg-Weyl operators are
the tensor product of the subsystem Heisenberg-Weyl operators:

Tiaya2)@(b1,12)-@(01,00) = T(ar,a2) © T(y,b0) = @ T(0y,00)-

The vector (ai,a2) @ (by,b2)--- & (v1,v2) = (ay,a2,b1,bz,...,01,02) is an element of
(Zps X Zps) X (Zpy X Zypg) -+ X (Zpy X Zpy).

On H,; the Clifford operators, C;, are the set of unitary operators that, up to phases, map
Heisenberg-Weyl operators to Heisenberg-Weyl operators under conjugation:

UcCy < Yudp,u': UT,U" = exp (i¢) T,y

These operators form a group, which in the context of quantum information is known as
the Clifford group.
The pure stabilizer states for dimension 4 are defined as

(S} = {U\oxoyu* Ue cd},

and we take the full set of stabilizer states to be the convex hull of this set:
STAB (H,) = {0’ € L(Hq4): 0 =)_ piS; for some probability distribution pz} .
i

The pure stabilizer measurements are the projective valued measurements composed of
projectors onto stabilizer states. The full set of stabilizer measurements are convex combi-
nations of the pure stabilizer measurements.

Finally, we define the stabilizer subtheory of quantum theory to be the collection of all
stabilizer operations.

1 For qubits an alternative definition where T(uls‘ll)al =Y = —1ZX is often used. From the perspective of the present

work this definition is confusing bordering on wrong, as explained in detail below.
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2.1.2  Phase Space Techniques

The Clifford group on a Hilbert space of dimension p" has a close relationship with the
group of symplectic matrices of size 2n over the finite field Z,. This connection is the
source of much of the interesting structure of the stabilizer subtheory, including the fact
that it can be efficiently classically simulated. Understanding this connection is critical for
much of the content to follow. Here we restrict ourselves to odd p because the treatment is
slightly simpler and this is the case that we are primarily interested in for this thesis. The
qubit case is nearly identical except that some equations must carry a physically irrelevant
global phase.

For the Clifford group C, on a Hilbert space with prime dimension p the basic object of
study is the phase space,

Vi=2Z,x2,

which should be thought of as a finite size analogue of the usual R x R phase space of
classical mechanics. We imbue this set with a symplectic inner product:

() @)=6 () 6)

where —1is p—1 mod p. The connection with the Heisenberg-Weyl operators on H, comes
from their commutation relations?:

TaTy = w'“Y) T, T,

A 2 x 2 matrix F with entries from Z,, is symplectic if

£T 0 -1 P 0 -1 ,
1 0 1 0
ie. if it preserves the symplectic inner product. Notice that the mapping

Ta — Tpa

defines an automorphism of the Heisenberg-Weyl operators since the commutation rela-
tions are preserved. In fact, it is always possible to find a unitary operator Ur on H, such
that,3

UrT, U} = T,

This is a unitary representation of the group of all 2 x 2 symplectic matrices with entries in
Z,,Sp (2,p). Obviously these symplectic unitary operators are in Cp. It is also clear that the
Heisenberg-Weyl operators are also in C,. What is not so obvious is that this is the whole
story: up to a phase every operator U € C, can be written as:

U = UrT,,

Actually, the fact that this has such a nice form is because of the clever choice of phases in definition (2.1.1). The
connection would still be there with any other choice of phases, but it would not be so clearly manifest.
for p = 2 this is only true up to phase, see below.



where F € Sp (2,p), a € Zy X Z,.

For power of prime dimension p”" the story turns out to be much the same. Notice how-
ever that we have some freedom for how we define the symplectic group. We could choose
either,

V = (Z,x2,)" or

V = len X ]Fpn ,
where [Fj» is the finite field with p" elements. There is a bijection between these objects
considered as sets. Our definition of the Heisenberg-Weyl operators for power of prime
dimension meshes most easily with the first choice, but in fact we could have just as well
indexed the operators with the elements of V. However, the ‘natural’ symplectic groups are
not the same. We can work with either,

Sp(2n,p) = {2n x 2n symplectic matrices with entries in Z,} or

Sp(2,p") = {2 x 2 symplectic matrices with entries in IF, } .

01’1 _]In

]In On

Where a 2n x 21 matrix F is symplectic if FT (0” _H”) = (
I[n On

> . It turns out that,

Sp(2,p") <Sp(2n,p).

In fact Sp (21, p) is exponentially larger. Again, for every element F € Sp (21, p) there is a
unitary operator Ur such that UrT, U}_ﬁ = Tra. Moreover, it is again true that every Clifford
operator in Cp» may be written as,

U = UrT,,

where F € Sp (2n,p), a € Zyn X Zpn.
It is an interesting fact that there is a whole hierarchy of symplectic groups,

Sp(2,p") <Sp (4/10”*1) <. <$8p(2(n—1),p*) <Sp(2n,p).

Each of these admits a faithful representation on H,» and preserve much of the interesting
structure of the full Clifford group. In particular, the group of operators {UrT,} is a uni-
tary 2-design for F taken from any of these groups. This may have useful applications for
quantum process tomography using randomized benchmarking[51, 49].

For our purposes the major significance of these phase space techniques is that every
Clifford operation admits a description that is linear in n. This is at the heart of simulation
results about the Clifford group.

For further reading, particularly on different choices of symplectic group for power of
prime, see section IV of [36].

2.1.3 Magic State Distillation

It is possible to implement stabilizer operations fault tolerantly, but these operations are not
sufficient for universal quantum computation. To promote stabilizer computation to univer-
sal quantum computation some additional resource is required. One possible form for this



resource is a pure non-stabilizer state |¢). Using only stabilizer operations this resource state
can be consumed in order to implement some non-Clifford gate Uy and using this tech-
nique it can be shown that the stabilizer operations supplemented with the ability to prepare
an arbitrary non-stabilizer pure state |i) are universal for quantum computation[11]. How-
ever, since our motivating scenario is one in which only stabilizer operations have a fault
tolerant implementation we generally expect that any physically accessible non-stabilizer
state preparation procedure will be highly noisy.

In this context there are two critical questions that must be answered: which non-stabilizer
resource states can be used to promote stabilizer computation to universal quantum com-
putation and how can this be done? The first of these questions is one of the main subjects
of this thesis. The second question finds a particularly elegant solution in the form of magic
state distillation [6] (see also [2, 11] for the extension from qubits to qudits).

Magic state distillation protocols aim to consume a large number of copies of a noisy
non-stabilizer qudit input state p;, to produce a single non-stabilizer qudit output state ooyt
with higher fidelity to some non-stabilizer pure state. This output state is then consumed
to implement some non-Clifford unitary gate. These protocols typically have the following
structure:

e Prepare a number of copies of the input state p;>".
e Perform some Clifford gate on p{".

* Make a computational basis measurement on the last n — 1 registers and post select
on the outcome.

When these protocols succeed the first register will be the output state ooy¢. Typically these
protocols work iteratively, repeatedly consuming p;>" until n copies of 0,y have been pro-
duced and then using Uﬁ?ﬁ,l as the input to the protocol to produce ooy with even higher
fidelity to the target pure state. This is repeated until a sufficiently high fidelity is reached,
ultimately producing a single high fidelity output state oy x by consuming n* resource
states pin, where k is the number of iterations.

In this thesis we are interested in a broader set of distillation protocols than what is
encompassed above. We study the conversion of input states p>" to output states 0’y using
arbitrary stabilizer operations combined in any fashion. Moreover, we are interested in the
conversion between arbitrary non-stabilizer states. In this context it is natural to define a
magic state to be any non-stabilizer state in the same way that an entangled state is any

non-separable state.
Definition 1. A state is magic if it is not a stabilizer state.
The most general kind of stabilizer operation possible is of the following type:

Definition 2. A stabilizer protocol is any map from S(H ) to S(Hzm) composed from the
following operations:

1. Clifford unitaries, p — UpU*

2. Composition with stabilizer states, p — p ® S where S is a stabilizer state
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3. Post selected computational basis measurement on the final qudit,
o — (L& [i)il) p (1@ |i)il) /Tr (o @ li)i])
with probability Tr (oI ® |i)(i|)
4. Partial trace of the final qudit, p — Tr, (p)
and classical randomness.

These operations may take place in any order and the (n + 1)th operation may depend
on the outcomes of any measurements in the first n operations in any fashion.

The goal of magic state distillation is to consume resource magic states pres to produce
some (very nearly) pure state |()({|target- We will say a state is magic state distillable if it
is possible to convert any number of copies of it to at least one copy of any non-stabilizer
pure state in the asymptotic limit, ie.

Definition 3. A state p € Hy, d = p* is magic state distillable if there is some family of
stabilizer protocols A, (p®") = 7, and some pure non-stabilizer state |)(yp| such that &,
becomes arbitrarily close to |i)(| in the 1-norm, i.e., limy, e || — [P){]||1 — O.

We will often use the terms “magic state distillable” and simply “distillable” interchange-
ably. One of the main results of this thesis is the demonstration that not all magic states are
distillable.

2.1.4 Why the Heisenberg-Weyl operators?

One important reason for studying the stabilizer formalism is its importance for fault tol-
erant quantum computation. However, the formalism has a remarkable amount of depth
that is quite surprising if we adopt this perspective. For instance, we know that the stabi-
lizer formalism supplemented with any non-stabilizer pure state is universal for quantum
computation[11] and that the stabilizer formalism supplemented with any (mixed) non-
stabilizer state suffices to demonstrate quantum contextuality[43]. It seems strange that
there should be any connection at all between error correcting codes with high threshold
and the “maximal classical subtheory” afforded by these observations. This leads us to look
for some alternative motivation for the stabilizer subtheory. In effect, this amounts to find-
ing some deeper motivation for the Heisenberg-Weyl operators. Such a motivation does
exist and in fact predates quantum computation entirely.

We begin by recalling some facts about quantum mechanics on the real line R. In this
case we may begin with position § and momentum p operators satisfying the canonical
commutation relations,

[p,4] = ih.
It is easy to see that this expression has no finite dimensional analogue (just take the trace of
both sides). However, we can equivalently study the group obtained by exponentiating the

11



Lie algebra defined by the commutation relation. This is the Heisenberg group H; (R) C
GL(R),

1 a ¢
H; (R) = 01 bl,abceR
0 01

At this juncture we are thinking of both this group and its associated lie algebra as ab-
stract entities; to recover the familiar quantum formalism we must move to some concrete
representation of the Heisenberg group. The familiar way to do this is via:

(exp (1pa) ¥) (x) = ¢ (x+a)
(exp (1b) ) (x) = ™y (x),

where ¥ € L? (R)*. One might expect that there would be many physically inequivalent
unitary representations of Hs (IR), in which case the usual (Schrodinger) picture of quantum
theory would be only part of the whole story. This is not the case: the usual representation
is essentially unique, which is the primary content of the Stone-von Neumann theorem.
Instead of dealing with positions on IR we could study positions on a finite (toroidal)> set
of positions indexed by Z,, for p a prime. Although the canonical commutation relations do
not have an analogue in this scenario we can easily think of one for the Heisenberg group:

c
, X,2,0 €2y

(R

z
1
This can be interpreted as the group of position and momentum translations in a finite
phase space Z, x Z,. It is important to be clear that at this point the finite Heisenberg
group (also called extra special groups[78]) has been defined by fiat; our strategy of simply

replacing R by Z,, carries an undisguisable arbitrariness. Happily, we can offer some post-
hoc justification in the form of the discrete Stone-von Neumann theorem (see eg. [34, 78]):

Theorem 4. The unitarily inequivalent irreducible representations of Hy (Z,,) are:

1. p? irreducible representations of dimension 1. These are the representations of the abelian group
obtained by modding out the center of the group (Hy (Z,) /Z (H1 (Zp)) ~ Z, X Z,).

4 It might help intuition for how to pass from infinite dimension to finite dimension to point out that Hy» ~

12(23) by [¢) < ¥ (9) = (al¢)-
5 This is just a fancy way of saying that counting ‘loops back around’, eg. (p —1) +3 =2 mod p.

12



2. p — 1 irreducible representations of dimension p. The k = 1...p — 1 representations for the
generators of the group may be given as:

1 1
ublfo 1 ofl] = x
0 01
1 00
u(k) 01 1 = 7
0 01
1 01
ud 1o 1 = "I,
0

That is, this group affords only 1 and p dimensional irreducible representations and the
distinction between the unitarily inequivalent p dimensional representations is not physi-
cally meaningful, since it amounts only to a reordering of the computational basis and a
change in the physically irrelevant global phase.

If we now allow ourselves n systems with p possible positions each the appropriate
Heisenberg group is:

1 T ¢
H, (Z,) = 0 I, z|, xz€2),ccz,
0O o

and again it is true that the Heisenberg-Weyl operators of dimension p" form (with phases)
an irreducible representation of the group and that this representation is essentially unique.
We have been led to the Heisenberg-Weyl operators in prime dimension by looking for an
analogue of the canonical infinite dimensional position and momentum operators. We can
now understand the stabilizer subtheory as a natural quantization of a finite size classical
phase space. From this perspective the close connection between stabilizers and quantum
phenomena (such as computational speedup) seems very natural. This also makes the rela-
tionship between the formalism of linear optics and the stabilizer formalism manifest.

2.1.5 What's up with qubits?

It is very common in the study of finite fields IFy» ~ ZJ to find that p = 2 is an exceptional
case®. In the context of the stabilizer formalism this fact manifests itself by the fact that
qubits require a slightly different treatment than qupits where p # 2. An enormous amount
of confusion has arisen from this point, including the totally inappropriate name “Clifford

6 As the only even prime, two is the oddest prime of all.
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group” for C;. Here we try to resolve some of this confusion by giving a clear articulation
of the difference between p =2 and p # 2.

If p is an odd prime then the Heisenberg group Hs (Z,) has exponent p[78], meaning
that for all g € H3 (Z,) it holds that g¥ = I, where I is the identity element of the group.
This is reflected by the fact that every generalized Heisenberg-Weyl operator acting on H,,
satisfies T(Zl,az) = (w*Tl”l“ZZ”lX”Z)p = IL. For p = 2 this is not true: (XZ)* = —1I, i.e., the
Heisenberg-Weyl operator has order 4 instead of order 2. In fact, this is as it should be. For
p = 2 the Heisenberg group is isomorphic to the dihedral group of order 8, H3 (Z,) ~ Ds,
and this group has two elements of order 4. Although it may seem strange that p = 2 is
an exceptional case in this sense there is no problem, either conceptual or mathematical, with our
definition of the Heisenberg-Weyl operators for qubits. The operators are elements of a faithful
irreducible representation of the Heisenberg group.

Nevertheless, it is very common to see an alternative definition used for qubits where
Tas‘ll;ﬂ = 1ZX7. The root of the confusion is due to the fact that the Heisenberg-Weyl opera-
tors have (at least) two distinct roles:

1. The qubit Heisenberg-Weyl operators defined by equation (2.1.1) are (elements of) the
2 dimensional irreducible representation of H3 (Z;) given by the representation of the
group generators,

11 0 1
u 010 = XZ( )
10
0 01
1 00 1 0
u 011 = =< )
0 -1
0 01
1 01
u 010 = —I.
01

As we have seen this is the view that is most appropriate for the study of the stabilizer
formalism.

2. The qubit (Pauli) operators X,Z and Y = 1XZ are a representation of the Clifford
algebra of R® (the quaternions). This is equivalent to their role as a representation of
generators of rotation in R,

For a physicist already familiar with the Pauli matrices in their second role it is very easy
to go astray. This is particularly true since (1XZ)* = 1, i.e., imposing the extra factor  has
the effect of forcing the operators to have exponent p = 2 in accordance with our wrong

7 In fact, the earliest publications on the stabilizer formalism actually used the definition Y = XZ we use here, eg.
[28]. The convention Y = 1XZ was only introduced later, apparently an error induced by buggy error correction
of the earlier work.
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intuition that this should hold for p = 2 as well as p # 2! Moreover, since the matrices differ
only by phases that are physically irrelevant in quantum mechanics the representations of
the two things are virtually identical even though the abstract objects and their conceptual
bases are totally different. This confusion is almost certainly the reason that C,» was named
the Clifford group.

The distinction for the full Clifford group is somewhat less benign. Recall that we de-
fined the Clifford group to be the unitary operators that map Heisenberg-Weyl operators to
Heisenberg-Weyl operators up to a phase. For odd prime dimension we can say something
more precise. We define W, to be the cannonical p" dimensional representation of the fi-

nite Heisenberg group (see Theorem 4 for the prime case), i.e., Wy is the Heisenberg-Weyl
operators supplemented with the complex phases w = 627”1,

Wp = (X@I® - L I®X®---L..., I0l®- - X,
ZRI®---0LI®Z®---®L...,I’I®---®Z,
wl).

For odd prime p we can give a sharper definition of the Clifford group®:
Cp = {U e U (p")| UT,U" € Wy VT, € Wy}, p odd.
That is, the complex phases are just the roots of unity w required for W, to be a group.

This is not the case for qubits. Consider the phase gate P = (1 0

€ Cp, then:
0 1

PXPt = 17X,

but X,Z and —1I are all real matrices so 1XZ can not possibly belong to W, = (X, Z, —1).
The phase gate takes W, to itself only up to a factor of 1. In fact, this is generic for any gate
in Cpn: if we define Wan = {1,1} x W then

Cor = {U € U(2") | UT,U" € W VT, € Wan}.

Actually, it’s quite common (possibly ubiquitous) in the quantum information literature to
see the Pauli group to be defined as the set Wan equipped with matrix multiplication (eg.
[27, 29, 56]). W,, for instance, has 16 elements and is thus not isomorphic to the (2 dimen-
sional irrep of the) Heisenberg group, W, # W, ~ H; (Z,) (nor is W, a representation
of the Clifford algebra of R® so this group is neither of the roles of the Pauli operators
described above).

The symplectic structure

I've separated out the discussion of the symplectic structure for qubits vs qudits because
I'm signficantly less confident about how it works; the following should be taken with a
grain of salt.

8 The equivalence with our earlier definition is implicit in the proof of theorem 3 of [34].
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For every U € Cp» there is some symplectic matrix F € Sp (2n, p) such that:
UT,U" = e T, Vo € Z,yn,

where the phase ¢y (v) is a function of v and the particular function might depend on U.
Thus, up to the phases, a Clifford operator is specified by a symplectic matrix F. Moreover,
for every F € Sp (2n,p) there is an element of the Clifford group Ur € Sp (2n,p) such
that[34],

UFTZ,U}_: = ¢!Pur (”)Tpv Vo € Zyn.

The Heisenberg-Weyl operators are obviously in Cp». From the Heisenberg-Weyl com-
mutation relations we have that T, TUT;r = w!2T,. Thus for any operator Ur € Cpn all
operators UrT,, T, € W, implement the same symplectic transformation on W,», differ-
ing only in the phase they assign the operators. Notice also that any operator of the form
UrT,e' will obviously have the same action as UrT, on Wy:. In fact, these cover all the
possibilities:

The Clifford group modulo the Heisenberg Weyl group is isomorphic to the symplectic
group, i.e., (Cpn/Wyn) /U (1) ~ Sp (2n, p) .2 This holds for any prime p.

The distinction between the p = 2 and p # 2 case come from the way in which the matrix
multiplication in C,» reflects group multiplication in Sp (21, p). For any F, G € Sp (2n, p) we
take the corresponding Ur, Vi € (Cpn / an)

UpVeT, ViUl = 6@ UpTe, Upt

814)111: (Gv) eZ(PUG (’0) TFGZJ!

and for Urg € (Cpn /an)
WrcTo Wi = e Tye,,

so we conclude that, for some phase ¢:
WFG = UFVGEMP.

That is, the group multiplication of Sp (21, p) is reproduced by matrix multiplication of the
operators {Ur} up to a phase. The discussion of this paragraph may be summarized as:

The operators C,n /Y, are a projective representation of Sp (21, p). This holds for any
prime p.

For odd primes p # 2 we can say more. For any U € Cp» there is some symplectic matrix
F € Sp (2n, p) such that
UT,U" = e Tp, VT, € Wy,

9 The U (1) is just the freedom UrT, — UpT,e's.
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where the phase etu(®) = {au®) for some ay € Z3 x Z3[34]- The distinction is that we now

have an explicit description for the function ¢y (v). What’s more, since T, T, T} = w{*?) this
means that any Clifford operator may be written as:

Ur, = UrT,.

Thus for any F € Sp (21, p) there is a unique operator Ur € Cpr /W, such that UpT, U} =
Try YTy € Wyn. Since now there are no mystery phases to muck things up this establishes:

For odd prime p the operators Cy: /W, are a linear representation of Sp (21, p).

For p = 2 we know already that the situation must be different. For odd primes it holds
that for any U € C, with action UT, Ut = e?Ty, it is possible to find T, € W, such that
Ur = llT;r has the action UrT, LI;_E = Try; it is possible to kill the phase by the action of a

Heisenberg-Weyl operator. Again consider the phase gate P = (l 0

) € Cy. The action of
0 1

this gate on the X = T(g 1) operator is:
PT(OJ)P.*- = _ZT(l,l)l

Taking P = PT, we see that

PTgy Pt = (~1) D). (—zT(m)) .

The point is that the complex phase persists for any choice of a so the argument that was
used in for p # 2 can’t possibly apply here. Unfortunately, I don’t have a clean statement
of what the situation actually is. Using that C, is generated by H and P one can check
by brute force computation that |C,| = 192 so that |C,/W,| = 192/16 = 2-|Sp (2,2)|.
Thus even modding out the “extra” phases +: there are still too many elements for the
quotient to even be isomorphic to the symplectic group, much less a faithful representation.
Determining exactly how to describe the Cifford group for p = 2 would be a major step
towards generalizing the discrete Wigner function to work for qubits. One hint might come
from the pure mathematics literature on the automorphism groups of the extra special
groups.

2.1.6  Disambiguation of Heisenberg and Clifford Groups

One of the very confusing aspects of these mathematics is that there exist in the literature
several different objects called the Heisenberg-Weyl operators and several different objects
called the Clifford group. These include:

A. The Heisenberg-Weyl operators that we use. These are irreducible representations of
the finite Heisenberg groups H, (Z,). From these we get our definition of the Clifford
group as the unitaries that map Heisenberg operators to Heisenberg operators up to
a phase. This is what is normally meant by Clifford group in quantum information.
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B. Let V = ZJ x Zj be a vector space with symplectic inner product (-, -) . Sometimes
the Heisenberg group is defined as the set V x Z, equipped with the group product
(v,a) (u,b) = (v+wu,a+b+2"1(v,u)). This agrees with our definition except when
p = 2, because 2! is not defined in Z,. Consequently our definition of the Heisenberg-
Weyl operators and the Clifford group will agree for p # 2. This is the definition used
by David Gross in his discrete Wigner function paper.[34]

c. For Hilbert space H,; define the X and Z Heisenberg-Weyl operators to be:
X|j) = |j+1 modd)

zl) = ew (7)1

and take the Heisenberg group to be the group generated by X and Z. The Heisenberg-
Weyl operators are the elements of the group. This agrees with our definition in prime
dimension, but is otherwise not the same. The Clifford group is then defined to be
the unitaries that map these Heisenberg-Weyl operators to themselves up to a phase.
Again, this definition agrees with ours in prime Hilbert space dimension but not
otherwise. These are the definitions used by the SIC-POVM crowd, eg.[3].

D. A group related to Clifford algebras. This is what is meant by the Clifford group
outside of quantum information.

2.2 HIDDEN VARIABLE THEORIES AND QUASI-PROBABILITY REPRESENTATION
2.2.1 A Word on Classical Probabilistic Theories

A great deal of the content of this thesis deals with the question of what can be inferred
from the failure of quantum theory to behave as a classical probabilistic theory. As such, the
first step in the exposition must be to make precise what we mean by a classical probabilistic
theory.

We consider such a theory to have two main components: descriptions of our system
given by probability distributions over some sample space and descriptions of our measure-
ment apparati given by probability distributions of measurement outcomes such that the
true definite state of the system is known.

The basic building block of the theory is a sample space A composed of the possible
beliefs we might hold about the system. For example, in classical stochastic mechanics A
is phase space (~~ (]RZ)XH for n particles) or for n flips of a coin we might take A =
{heads, tails}™" or we might take

A = {mass of the coin, the details of how it was flipped,

the rate of expansion of the universe, etc.}

Once we have fixed the things we are describing our description of the state of the system
is given by some probability distribution over the variables in A, ie.

system description <> p (A). (2.2.1)
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We emphasize that the system is described by the distribution p (-) and not the value of
the distribution at A. Since it is always clear from context whether we are referring to a
distribution or the value of a distribution at a point we will allow ourselves this abuse of
notation in order to emphasize the role of the space A.

The description of measurement is slightly more complicated so we will build it up some-
what carefully to make it obvious. If we have access to a measurement of the form

1 if the definite state is A
M A= 7

0 otherwise (/_\)
then the probability of getting outcome 1 is given by:
P (outcome of My =1) =1-p(A)+0-p(A).

In general we must consider less well behaved measurements. Suppose that our apparatus
M7 is imperfect so that it will only click with some probability (q (1/A)) even when the
true state is A, ie.

p (outcome of Mnolsy = 1|true state is A) =q(1]A),
and that it will sometimes click even when the true state is A # A, ie.

P <outcome of MrIOISy = 1|true state is /\) =q(1]A).
If our description of the system is given by p (1) then,

p (outcome of Mnolsy 1) = ZP (outcome of MKOiSy = 1|true state )L) - P (true state A)
= Z p(A)q(1]A).

More generally we may wish to consider continuous sample spaces (eg. the phase space of
classical mechanics) in which case we just replace the sum by an integral,

p (outcome of MnOlSy / p(A)g(1|A)d

The final, obvious, generalization we must consider is to allow measurements to have
more than two outcomes. In this case our description of a measurement apparatus M is
simply the probability distribution of outcomes k such that the true state is A, ie.

measurement description > gar (k|A) . (2.2.2)

Again, the measurement description is given by the distribution and not by the value of the
distribution at k, A, despite our abuse of notation.
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The last (implicit) ingredient of the probabilistic classical theory is the use of the law of
total probability to assign probabilities to measurement outcomes.™

law of total probability <+ Pr (k) = / p(A) g (k|A)dA. (2.2.3)
A

At this point we have given a sufficient description of the operational use of probabil-
ity theory to explain the technical results contained within this thesis. However, there are
a great deal of extremely important questions that we have swept under the rug. For ex-
ample: what sort of objects can comprise A? What do the probability assignments mean?
Why are we using probabilities at all? A careful treatment of these points is far beyond the
scope of this thesis, but the reader is strongly urged not to dismiss them. The failure to
understand the role of probability theory in physical reasoning may well be the most com-
mon source of errors in modern science. The clearest exposition of the role of probabilistic
reasoning in science that I am aware of is ET Jaynes” excellent book Probability Theory: The
Logic of Science[44]."* The recommendation of this book is almost certainly the most valuable
contribution of this thesis.

A Digression of the Mind Projection Fallacy

It is important to be aware of the distinction between our description of a system and the
definite reality of that system. In the context of probability theory there is an increasing
awareness that probability distributions constitute a description of our state of knowledge
and not of any definite, intrinsic feature of reality. This often misleadingly called a “subjec-
tive” description, which implies a certain degree of arbitrariness in probability assignments.
Although it is true that probability assignments can differ between different rational agents
there is in fact essentially no freedom in how any agent manipulates his probability assign-
ments. To understand this consider the following situation:

1. Some physical principal tells us A == B, both Alice and Bob are aware of this
physical principal.

2. Alice does an experiment in which she finds B.

3. Bob does what he believes is the same experiment and finds not B (B).

At this point Alice and Bob hold different beliefs about A. Alice remains agnostic but Bob is
certain that A is false. The point is that neither of them exercised any subjective judgment in
deciding what they believed about A, their conclusions were totally determined by the laws

Notice that at some point we have assumed that all of the relevant measures are absolutely continuous with
respect to some privileged measure dA. It is interesting to ask if anything could be gained by dropping this
assumption. As far as I know the only 'no go’ type theorem that shows any awareness of this possibility is [20]).
Those who have not given it much thought often dismiss the question of interpretation of probability as a matter
of personal preference and the proponents of each school of thought as religious fanatics. If interpretation of
probability is to be thought of as a religious affiliation then I suppose I am a adherent of Jayneism.
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of Aristotelian logic; their differing beliefs are because they are reasoning from different
premises.™ This is exactly the same “subjectivity” as the “subjectivity” in probability theory.

The practical importance of understanding that probability assignments correspond to
the beliefs of some particular agent is that this dictates how we incorporate physical rea-
soning into probability assighments. For example, consider the following game played by
Alice and Bob:

1. Two coins are prepared by the same coin manufacturing apparatus, which is described
by the parameters A.

2. One coin is given to Alice and the other coin is given to Bob. They both independently
choose how they will flip the coin. A coin may be flipped in two distinct ways. Flip
style F; corresponds to tossing a coin into the air with a flick of the thumb in the most
common way a coin is tossed (eg. the way a coin is tossed to determine who goes first
in a sporting event). Flip style F, corresponds to setting the coin on its edge on a table
and spinning it like a top.

3. Alice must guess whether Bob got the same coin flip result as she did.

If we are promised that Alice and Bob are a large distance from each other when the coins
are flipped we might expect the physical principal of local causality to take the following
form for Alice’s probability assignment:

P4 (Op| A, Fa, F3,04) = P3¢ (Og| A, Fp), (2.2.4)

where O4, Op € {H, T} denote Alice and Bob’s flip outcome and F4, Fp € {F;, F>} denote
their coin flipping choices. The interpretation of this first guess assignment is that Bob’s
coin flip outcome can’t possibly depend on how Alice flipped her coin or what outcome she
found. The problem is that we have justified the assumption of physical independence but
equation 2.2.4 actually assumes logical independence. Generally, when Alice flips the coin
she will learn something about the relationship between the way the coin was produced A,
the way the coin is flipped F and the outcome O. For instance, suppose Alice flips the coin
by spinning it (F4 = F,) and gets a head, as a result she changes her beliefs about the flip
outcome O:

P4 (O = H| A, F,, new information) > P4 (O = H| A, F). (2.2.5)

We now see that the correct way for Alice to make her probability assignment is:
P4 (Og| A, Fa, Fp,0,4) = P,lfcahty (OB| A, Fg,{Fa = Fg, A}).

Where the notation {F4 = Fp, A} is meant to suggest that the dependence on F4 and A is
only due to Alice’s changed beliefs (equation 2.2.5). Thus the role of local causality in this

A professor giving a lecture during an air raid continued her derivation even as the building shook until at last
she was stopped by a colleague who, fearful the building would collapse, said, “You must stop. Our premises
can not support your derivation!”

This joke is not my own creation, but I don’t know the original source for proper attribution.
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example is not to eliminate dependence on spatially separated events but rather to restrict
the form that dependence®3.

The similarity of the above example to Bell-type non-locality arguments is not accidental.
The point that we are trying to drive home is that to draw conclusions about how “quan-
tum” behavior differs from “classical” behavior we must be hyper aware of the physical
assumptions motivating our mathematical assumptions and that to understand the rela-
tionship between the two requires a careful consideration of the distinction between logical
reasoning and physical ontology. We should emphasize that this is not to be taken as a re-
pudiation, or even a criticism, of Bell-type results. These results give very interesting insight
into the physical world and have interesting applications (eg. quantum cryptography). We
are merely urging due diligence in their interpretation.

Actually, it is possible to formulate a Bell-type argument entirely without the explicit use
of probability theory[33]. In this case the assumption of local causality is imposed directly
on the sample space A. In order to do this we must understand the relationship between the
set of admissible logical propositions A and the space of definite, ontological features of the
physical world. It is very common in the quantum foundations literature to see A referred
to as the ontic space, i.e., to make the assumption that there is an exact correspondence
between admissible logical propositions about a system and the ontology of the system.
This is orders of magnitude less dangerous than identifying probability distributions as
ontological features, but it is still important to recognize that an assumption has been made.

2.2.2  Quasi-Probability Representations for Quantum Theory

Suppose that there were a deeper hidden variable theory underlying quantum theory. In
this case it must be possible to recover the usual quantum formalism from the deeper theory,

hidden variable theory quantum theory, by:

system description <+ probability distributions quantum states
POVMs

law of total probability <> Born rule.

oL

measurement description <+ conditional probability distributions

Generally, the hidden variable theory could depend on physical considerations not available
to quantum theory. For example, the hidden variable system description might depend on
gravitational effects, some particular details of the preparation procedure or what you had
for breakfast on the day of any experiment you perform. Moreover, it is possible quantum
theory might not correspond exactly to the post-quantum theory in any parameter regime
but instead only be recovered as some kind of “classical” limit, in the same way that non-
relativistic mechanics is recovered as the approximation v/c — 0.

Actually, there is another more subtle way that locality is coming into play. When Alice makes her own coin
flip she assumes that her outcome is logically independent of what Bob is doing, i.e., P4 (O4| A, F4,Fp,0p) =
P4 (04l A, Fy). This assumption is critical for her to make inferences about the behavior of Bob’s coin based on
her own outcome.
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An extraordinarily naive possible form for a hidden variable theory is to assume that all
of the relevant information is already included in the quantum description, ie.

probability distributions <> quantum states
conditional probability distributions <> POVMs
law of total probability <« Born rule.

Models of this kind are nearly non-contextual, in that they don’t have any explicit depen-
dence on anything outside of the quantum formalism. However, we are still implicitly al-
lowing some super-quantum dependence in the form of our measurement mapping. We
have not yet disallowed the possibility that the conditional distribution corresponding to a
POVM element depends on the entire POVM, ie.

Ec e {EF™ =gy yon (KIA).

Since the predictions of quantum theory (via Pr (k) = Tr(pEy)) don’t depend on what
POVM M the element Ej belongs to any mapping from POVMs to conditional probability
distributions that does have such a dependence must be making implicit use of some non-
quantum context. If we disavow models of this type then we are left with:

probability distributions <+ quantum states
conditional probability distributions <> POVM elements
law of total probability <+ Born rule. (2.2.6)

Hidden variable theories of this type are non-contextual in the sense of Spekkens[66]. In
fact, no Spekkens non-contextual hidden variable theory can reproduce quantum theory.
Roughly speaking, the reason for this is that the convexity of quantum theory forces the
bijections of (2.2.6) to be linear mappings and it can be shown that any such mapping
will assign negative values to some of the “probability” distributions corresponding to the
quantum states or measurements[8, 20, 18]. Since (2.2.6) specifies an exact mapping between
quantum theory and the 'negative’ probability model the latter gives a representation for
quantum theory. Representations of this type are quasi-probability representations and (2.2.6)
can be taken to be the defining properties of such representations.

To see how this works we will follow [66] and begin by considering a quantum state of the
form p = }; pj|;)(i;|. Suppose each state is represented in the Spekkens non-contextual
model as [;) (| < My, (A)**. This state can be prepared by sampling the integer j from
the distribution p; and preparing the state |¢;)(1;|, which in the Spekkens non-contextual
model corresponds to preparing the distribution p .| with probability p;. That is, in the
Spekkens non-contextual model we must have:

p =2 il = 1o (A) = Lo Pty (A)- (2.2.7)
j p

14 The argument A is included to emphasize the space the measure is over. The formula should be read as a
mapping between quantum states and distributions, not as a mapping between quantum states and values of
the distribution at a point.
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By identical reasoning we can also infer that for a positive operator E it holds:

E=) piE = Ce (V) =L pilr (M) (2.2.8)
j j

where (g (A) = qm (j|A) <> Ej is written in this form to emphasize both the dependence
on A and the independence from the associated POVM. Equation (2.2.7) means that the
mapping from quantum states p to the value of the measure y, (1) at any A is a convex
linear function from the space of density matrices to IR. Similarly, the mapping from positive
operators to the value of (¢ (A) at any A (equation (2.2.8)) is a convex linear function on the
space of positive operators less than I. A convex linear function f : L (1) — R on a convex
subset of L (#) that includes a basis for L () can be uniquely extended to a linear function
on this space (with the requirement that f(0) = 0). Since we are now dealing with linear
functionals on a Hilbert space we may invoke the Riesz representation theorem to find:

po(A) =Tr(oF (A)) and ¢ (A) = Tr (oG (A)) (2.2.9)

where F (1), G (A) are Hermitian matrices associated to each point A € A.
We can now define quasi-probability representations for quantum theory. We first give
an informal definition to communicate the idea clearly:

Definition 5. (Informal) Let H be a Hilbert space. Let A be a sample space and let
{F (M)}, en and {G (A) }, <5 be spanning sets for H. A quasi-probability representation is a
pair of mappings T, S where T maps quantum states to measures over A via:

T:p — ppby
#o(A) = Tr(pF(A))

and S maps POVMs to conditional probability distributions via:

S: M={E} — {qm(k|-)} by
gum (k|A) = Tr(pG (M),

such that the Born rule is reproduced by the law of total probability:

Pr (outcome k| p, M) = Tr (pEy) — / gt (KIA) pp (M) dA.
A

See Figure 2.3.1 on page 28 for a concrete example.

The main takeway is that if we want a Spekkens’ non-contextual representation (equa-
tion (2.2.6)) then the representation is specified by the pair of frames {F (A)},{G (A)}, an
approach suggested in [8, 20, 18]. The point being that physical or operational significance
of the representation is given by the requirement of Spekkens’ non-contextuality while its
mathematical manifestation is captured by equation (2.2.9).

It is possible to show that the dual of any frame of positive operators can not also be a
frame of positive operators, which implies that every quasi-probability representation must
admit negativity on at least some measurements or states.

We conclude with a formal and very general definition of quasi-probability representa-
tions following [20].
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Definition 6. Let S (#) be the quantum states on Hilbert space H and & (#) be the set
of positive operators bounded above by I. Let A be a set and X a c-algebra over A, so
(A, L) is a measurable space. Let Sz (A, X) be the bounded, signed measures on (A, %) and
let £* (A, %) be the bounded measurable functions. A quasi-probability representation for
quantum theory is a pair of maps T : S (H) — Si (A, X) and S : € (H) — Ex (A, Z) such
that

T:p — ppby
o (A) = Tr(pF(A)),
where {F (A)} is a frame (spanning set) for L (#) and

S:E — C¢Cgby
Ce(V) = Tr(pG(A)),
where {G (1)} is a frame (spanning set) for L () such that:

Tr (0E) = /A & (A)dpip (A).

The main change in the definition is that instead of mapping POVMs to conditional
probability distributions we map POVM elements to measurable functions. Although this
notion is easier to formalize it is less easily digested.

Aside on the size of the sample space

From the perspective of studying classical subtheories of quantum theory we would like
the positively represented subtheory of a quasi-probability representation to be as large
as possible. Notice that since d? real numbers are required to specify a Hermitian operator
H € L (H,) the minimum number of elements of yy required to reproduce quantum theory
is d2. Thus we must have d> < |A|. States are assigned to quasi-probability distributions over
A via
Ho (A) =Tt (pF (1))

where F (A) is a Hermitian operator. A state p has positive representation if 1, (1) > 0 VA €
A. Thus each additional element of A corresponds to an additional half-space constraint that
p must satisfy to be in the positively represented subtheory. Ergo for any quasi-probability
representation with |A| > d? there is another quasi-probability representation with |A| = d?
such that any state that is positive with respect to the first representation is also positive
with respect to the second representation, but not vice versa. Nevertheless it may sometimes
be desirable to study representations with |A| > d?, for example if we are interested in
A = G for some group with |G| > d2.

2.2.3  Quasi-Probability Representations for Subtheories of Quantum Theory

Negative quasi-probability has a long history as a largely nonsensical indicator of quan-
tum behavior. The most notable examples come from quantum optics where the Wigner

25



function[77] and the Q and P functions [52] play prominent roles. The typical approach
is to declare negative probabilities in some particular quasi-probability representation to
be an indicator of quantum behaviour. Such approaches suffer in significance due to the
problem of non-uniqueness of the choice of representation. While a quantum state may cor-
respond to a negative-valued quasi-probability function in one choice of quasi-probability
representation, in another choice that same state can be positive, and hence a valid classical
probability density. The negativity of the representation of a state or measurement in any
particular choice of quasi-probability distribution is essentially meaningless. Nevertheless,
it is possible to give meaning to negative quasi-probability by considering the representa-
tion of subtheories of quantum theory, rather than just individual states and measurements.
We define a subtheory of quantum theory as a collection of states and measurements:

Som = {{pi} {M;}}.

For example, we might consider the subtheory of all stabilizer projectors and measurements
or the subtheory of all separable states and measurements. We are primarily interested
in studying subtheories that are distinguished by some natural physical or operational
restriction, such as fault tolerance or space-like separation in the examples just given. The
idea is that if we can find a classical hidden variable theory that reproduces Squm then we
expect that it is not possible to build devices that outperform classical systems using only
elements from Sqm. For instance, if Som admits a classical hidden variable explanation then
we would guess it is not possible to use elements from Sqy to execute Shor’s algorithm or
win a non-local game. We have just seen that it is possible to find a non-contextual hidden
variable theory for Squm if and only if there is some quasi-probability representation such
that the elements of Sqy all have positive representation. Thus,

If a subtheory Sqm of quantum theory admits a quasi-probability representation where all elements
of Som are positively represented then Squ should offer no super-classical advantage.

Suppose that the subtheory Sgm does admit some quasi-probability representation
(#o (-),qm (k|-)) such that all elements of Som have non-negative representation. We can
use this to define S/QI/[ ={{p: pp(A) >0VA},{M: qum (k|A) > 0Vk,A}}, the subtheory
of all states and measurements that are positively represented for this special choice of
quasi-probability representation. Notice that Sqm C S/QI/[ and this inclusion may be strict.
That is, the “classical” subtheory of quantum theory accounted for by the non-contextual hid-
den variable model afforded by the quasi-probability representation may include elements
outside the scope of the original subtheory of interest. This is exactly how bound magic
states arise, and it’s an intriguing open problem to determine if bound entangled states can
be understood in exactly the same fashion.

With the preceding discussion in hand we are now able to give a cogent interpretation
of negative quasi-probability. The states and measurements with negative representation
are precisely those that can not be accounted for by the non-contextual hidden variable
model that explains the subtheory S/QK/[ We expect that there is some negatively represented
state p such that by supplementing S/Q;/[ with p we will be able to exhibit a performance
improvement over what is possible classically. Moreover, it is very natural to guess that the
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degree of negativity in the representation of the extra resource p should act as a measure of
how useful it is for this purpose. That is,

We expect that the negativity in a quasi-probability representation of a state p (or measurement M)
serves as a measure of the degree to which the non-contextual hidden variable theory associated to
that quasi-probability representation fails to account for the quantum behavior possible when the
subtheory is supplemented with p (or measurement M).

The major contribution of this thesis is to transform the qualitative observations of this
section into precise statements in the context of the stabilizer subtheory of quantum theory.

Why non-contextuality?

We have just argued that a positive quasi-probability representation for a subtheory of
quantum theory is interesting precisely because it corresponds to a non-contextual hidden
variable explanation for this subtheory. Of course, it is not obvious why we should restrict
ourselves to non-contextual hidden variable models. One possible answer is that a contextual
hidden variable theory might hide some super-classical advantage in the extra context. For
example, it might be possible to find a subtheory Sqm containing the elements of quantum
theory required to violate a Bell-type inequality that admits a hidden variable explanation
by making use of some non-local context; in this case the existence of a hidden variable
model does not capture the relevant notion of classicality. Similarly, we might be able to ex-
plain a subtheory that is universal for quantum computation with a hidden variable model
where the hidden variables include a classical computer with a size that grows exponen-
tially with the number qudits of the subtheory. Insisting on non-contextuality amounts to
a rather draconian way of eliminating this sort of possibility. Generally we expect that the
existence of a non-contextual hidden variable theory for Squm implies that Squ is not useful
for super-classical tasks, but that the converse need not hold. A subtheory of quantum the-
ory is defined to be (Spekkens’) contextual if it does not admit a (Spekkens’) non-contextual
hidden variable explanation.

Qualitatively, (Spekkens’) contextuality is a necessary but not sufficient condition for a subtheory of
quantum theory to be useful for super-classical tasks.
Equivalently, a quasi-probability representation where all elements of a subtheory of quantum
theory are positively represented is a sufficient but not necessary condition for that subtheory to be
useless for super-classical tasks.

One final example will help make this point clear. To study quantum communication in
the same way we study quantum computation in this thesis we would like to find a hidden
variable theory for the states and measurements corresponding to the restriction to LOCC:

5?515[ = {separable states, separable measurements} .

However, a single qubit suffices to demonstrate contextuality in Spekkens sense. Thus there
is no possible non-contextual hidden variable explanation for Sze&. However, in this case we
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(a) Wigner representation of the (b) Wigner representation of state
qutrit |1) state. This is a stabilizer % (—10) +2|1) — |2)). This state
state. has negative representation.

Figure 2.3.1: Wigner Representation of Quantum States. The value of the Wigner function for qutrit
state p at a point u € Z3 x Z3 is given by W, (1) = 1Tr (0Ax).

see no reason to refuse to admit a local context. For instance, suppose we had a hidden
variable theory explanation for a single qubit owned by Alice:

Sample space Ay
probability distributions 4 (A4) — Alice’s quantum states p,, ,

conditional probability distributions {g4 (k|A4)} — Alice’s POVMs {EIE‘“)}

law of total probability <+ Born rule.

and something analogous for a single qubit owned by Bob. In this case one reasonable
hidden variable model for the joint Alice, Bob system might be constrained to look like'>:

AAB = AA X AB
pa(Aa) @vp (AB) = Puy @ Pyg
{qa (KIAQ)} © {mp (K|Ag)} — {E,(ﬂ/*)}@{E,ET”B)}.

A model of this kind is powerful enough to explain Saef,[ but not powerful enough to explain
the 2-qubit Alice-Bob system. Even though any such model must be contextual we feel com-
fortable saying that anything within the purview of the model is not useful for promoting
SsQef,[ to something useful for quantum communication tasks.

2.3 THE DISCRETE WIGNER REPRESENTATION

As the attentive reader has likely inferred by now:

* We wish to study the stabilizer formalism and,

15 Or it might look nothing like this. Contemplation of 2.2.1 shows we have made some probably unnecessarily
strong restrictions.
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Figure 2.3.2: Wigner Representation of Quantum Measurement. Pictured is Wigner Representa-
tion of qutrit Stabilizer PVM {| —1)(—1|, |0)(0|, |1)(1]}. The Wigner representation of
POVM elements {E;} give a weighted partitioning of the discrete phase space. The
Wigner representation of POVM elements is Wg, (u) = Tr (EfA,). If all POVM ele-
ments are positively represented we interpret Wg, (#) = Pr (outcome k| true state u).
In the case of projective measurement the outcome is determined by u. For example,
Pr (outcome —1| true state (0,—1)) = 1.

* We are going to use quasi-probability representation to do it.

We want a quasi-probability representation where the stabilizer formalism is positively rep-
resented. For odd dimensional quantum systems such a representation already exists: this
is the discrete Wigner function. This is an analogue of the usual infinite dimensional Wigner
function[77]. The main contribution of this thesis is to use this tool to formalize the intu-
itions of the previous section and establish a precise connection between quantum compu-
tational speedup and negativity of the discrete Wigner function representation.

The discrete Wigner function we use was first written down by Wooters[79] but was
brought to maturity when Gross[34, 35] discovered its close relation to the stabilizer formal-
ism 20 years later.

2.3.1 Definition and Properties

The discrete Wigner representation of a state p € L(#,») is a quasi-probability distribution
over (Z, x Zp)n, which can be thought of as p" by p" grid (see Figure 2.3.1 on page 28).
The mapping assigning quantum states p to Wigner functions {W, (u)} is given by

1
Wp(u) = WTI(AMP)’

where {A,} are the phase space point operators. These are defined in terms of the Heisenberg-
Weyl operators as,

1
o
These operators are Hermitian so the discrete Wigner representation is real-valued. There
are (p”)2 such operators for p"-dimensional Hilbert space, corresponding to the (p”)2 points
of discrete phase space.

A quantum measurement with POVM {E; } is represented by assigning conditional quasi-
probability functions over the phase space to each measurement outcome,

Ao Y T., Au=T,AcT}.
u

WEk (u) = TI‘(AuEk).

29



In the case where Wg (u) > 0 Vu, this can be interpreted classically as the proba-
bility of getting outcome k given that the system is actually at point u, Wg (u) =
Pr(outcome k|location u). If both W, (#) and W, (u) are positive then the law of total prob-
ability gives the probability of getting outcome k from a measurement of state p,

Z W, (1) WE, (u

In fact, this holds even when W, (u) or WE, (u) take on negative values.

We say a state p has positive representation if W,(u) > 0 Yu € Z/} x Z]; and negative
representation otherwise. We will say a measurement with POVM M = {E;} has positive
representation if Wg, (u) > 0 Vu € Z';, X Z’;, VEr € M and negative representation other-
wise.

The connection between the stabilizer formalism and the discrete Wigner function comes
from the following set of properties[34]:

1. (Discrete Hudson'’s theorem) if |S) is a stabilizer state then Tr(A,|S)(S|) > 0 Vu, and
the stabilizer states are the only pure states satisfying this property. That is, a pure
state has positive representation if and only if it is a stabilizer state.

2. A Clifford operator Ur,,, F € Sp(2n,p),a € Z}; x Z!; has the action Up,aAuU;E/a =
AFry1 4. This means that

Wup,apu;,ﬂ(v) = Wp(F_l (v—a))

so that Clifford transformations act as symplectic permutations of the underlying
phase space.

3. The phase space point operators in dimension p" are tensor products of n copies of
the p dimension phase space point operators. That is, the sample space for the joint
system ABis Aagp = Ap X Ap.

4. The phase space point operators are orthogonal, Tr (A, Ay) = ddy. As a consequence,
p=Y,W,(u)A, forany p € L (Hy).

A great deal of additional information about the discrete Wigner function is available in
[34], but we will not need any of it. The Wigner representation of a number of quantum
operations is summarized in Table 2.3.1 on page 31.

Aside on Liiders” Rule

Since so much of the usual quantum formalism is accounted for in a natural way in the
Wigner representation it is perhaps surprising that the projection postulate is not. To see
the problem consider the qutrit (d = 3) projective valued measure (PVM):

M = {|0)0, [1)(1] + [2)(2[} -

It is easy to see that this measurement has positive discrete Wigner representation since the
PVM elements are positive combinations of stabilizer projectors. However, if we perform
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Vanilla Quantum Formalism ‘

Discrete Wigner Function

Hermitian Operators

Quasi-Probability Distribution

o€ L(Hy) W, (1) = 1Tr (pA,)
POVM Elements Conditional Quasi-Probability Distribution
Ex € {Ex}y WE, (1) = Tr (ExAu)

Inner Product

Tr (oo) p,0 € L(Hy)

Law of Total Probability
Y Wy (1) We (1)

Tensor Product
pR0€eL(HA®HE)

Tensor Product

Partial Trace Marginalization
Trp (0), p € L (HA @ #P) Wry (o) (#4) = Ly W (4, )
Matrix Multiplication Moyal Product

po p,0 € L(Ha) Woo (1) = 2, (0 W, (u+0) Wy (1 + w) e o]

Table 2.3.1: Wigner representation of some quantum operations, see [34, 25] for anything that doesn’t
look trivial.

the measurement on the stabilizer state |¢) = |0) + |1) + |2) and get the second outcome
Luders’ rule implies:

[P0 o (1AL 122D [)(w] (111 + [2)(2])
= (DA +[2)2] + [1)2] + [2)(1]

and this state has negative discrete Wigner representation. As far as I know this is the only
quantum rule involving elements with positive Wigner representation that does not have a
clear “hidden variable” explanation in discrete phase space.

Notice that this is not a problem for stabilizer PVMs.

2.3.2  The discrete Wigner function and the usual Wigner function

There are essentially two ways to think about the discrete Wigner function:
1. As the finite dimensional analogue of the usual Wigner function.

2. As the particular quasi-probability representation that is useful for studying the stabi-
lizer formalism.

In this thesis we take the second view, but essentially all the previous work on the subject
[79, 34, 35, 25] took the former view and the candidate discrete Wigner functions they con-
structed were designed to behave as much like the infinite dimensional Wigner function as
possible. This close analogy affords us a sort of rosetta stone for translating between odd
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Finite Odd Prime Dimension Infinite Dimension

Hilbert Space Hilbert Space
L2 <:z;;) L2 (R")
Discrete Phase Space Phase Space
Zy X Z,, R" x R"
Finite Heisenberg Group Heisenberg Group
H, (Zy) Hy, (R)
Stabilizer States Gaussian States
(qly) o< exp (12F (769) +xq) (qly) o< exp (12F (769) +xq)
where x,g € Zg and 0 a where x,g € R" and 6 a
symmetric matrix with entries in Z, symmetric matrix with entries in R
Clifford Unitaries Quadratic Hamilitonian Evolution
permutation of phase space permutation of phase space
Discrete Wigner Function Wigner Function
W, (q,p) =F (%Tr (T(*gmp» where W, (q,p) =F (Tr (wgﬂp» where
T(¢,;) are Heisenberg-Weyl operators w(e,y) are Weyl operators[21]
and F is the discrete Fourier transform and F is the (usual) Fourier transform

Table 2.3.2: Correspondence between stabilizer operations in finite odd dimension and linear optics
in infinite dimension, see [34] for anything that doesn’t look trivial.

power of prime dimensional Hilbert space and infinite dimensional Hilbert space, summa-
rized in Table 2.3.2 on page 32. Actually, the analogy works equally well for translating
between arbitrary odd dimensional Hilbert space and infinite dimensional Hilbert space,
but this adds a good deal of mathematical complication without bringing any additional
conceptual clarity so as usual we will neglect it.

In this thesis we describe a finite dimension simulation protocol for stabilizer operations
supplemented by states with positive discrete Wigner representation (from [71]). Using the
analogy described in this section this simulation protocol has already been extended to a
simulation protocol for linear optics supplemented by states with positive (usual) Wigner
function[73, 53].
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2.3.3  What's up with Qubits?

The major drawback of the discrete Wigner function we use here is that it is not defined for
qubits. This oddity is inherited from the strange behaviour of the stabilizer formalism for
qubits, which is in turn a consequence of the fact that Zj behaves differently than Zj, p # 2.
More concretely, for any H,, p # 2 we can identify an operator Ag € L (H,), Ao # I that
is invariant under the symplectic component of the Clifford group, ie.

UFA()U; = Ao VUr € Cpn/an,

where W,» denotes the group of Heisenberg-Weyl operators supplemented by the phases
wll. The problem is that for H, there is no operator with this property.

This may give the impression that the reason the Wigner function does not exist for qubits
is a minor mathematical bug to be expunged with a little bit of additional cleverness. This
view is particularly tempting in light of the fact that for David Gross the issue was that his
abstract definition of the Heisenberg group does not extend to p = 2[37], a problem we have
already shown how to resolve. It may yet turn out to be true that there is a simple mathemat-
ical resolution, but the problem is more subtle than it first appears. Using 3 or more qubits
it is possible to violate a contextuality inequality using only stabilizer operations[33]. Thus
there can be no non-contextual hidden variable model for the qubit stabilizer formalism. As
we explained at length in Section 2.2 this means that any quasi-probability representation
for Hon, n > 3 will assign negative probability to at least some of the stabilizer states or
measurements. However, as we saw, the physical significance of the necessity of negative
quasi-probability representation for a subtheory is merely that any hidden variable theory
explaining that subtheory must be contextual. This leaves open the possibility that there ex-
ists a perfectly acceptable contextual classical hidden variable model for the qubit stabilizer
formalism. This would allow the results of this thesis to be extended to the qubit case.

33



Part1

POSITIVE WIGNER FUNCTIONS AND STABILIZER
COMPUTATION

This part of the thesis covers the results of [71]. The first result characterizes the
geometry of the region of quantum states with positive Wigner representation.
This establishes the existence of a large class of mixed magic (non-stabilizer)
states with positive Wigner representation. The next result is an efficient classical
simulation protocol for quantum circuits using only stabilizer operations and
states with positive Wigner representation. This establishes that there are mixed
magic states that are useless for promoting stabilizer computation to universal
quantum computation. This part of the thesis ends with a direct proof of the
fact that states with positive Wigner representation can not be distilled to pure
magic states using stabilizer operations, thus establishing the existence of bound
magic states.



PREVIOUS WORK

The Gottesman-Knill theorem[27, 1] provides an efficient classical simulation protocol for
circuits of Clifford unitaries acting on stabilizer states. This result deals with pure qubit
stabilizer state inputs and simulates the evolution of the full quantum state. The simula-
tion scheme given in this thesis deals with odd dimensional systems, makes no distinction
between mixed state and pure state input, and allows the simulation of a large class of
non-stabilizer states. However, the present scheme only simulates the distribution of mea-
surement outcomes rather than the evolution of the full quantum state.

A number of papers have addressed the question of which ancilla states enable universal
quantum computation for the magic state model in qubit systems [12, 10, 9, 60, 61, 62, 55, 69].
The most directly comparable result is the demonstration by Campbell and Browne [12] that
for any magic state distillation protocol consuming a fixed number n of resource states p
there exists a p outside the convex hull of stabilizer states that maps to a convex combination
of stabilizers. As n grows these states are known to exist only within some arbitrarily small
distance € of the convex hull of stabilizer states. By contrast, the present result implies the
existence of states a fixed distance from the hull which are not distillable by any protocol.

The results of this part of the thesis are complementary to previous work connecting neg-
ativity in discrete Wigner function type representations to quantum computational speedup
[14, 24, 69]. In particular, van Dam and Howard [68] have used techniques of this type to
derive a bound on the amount of depolarizing noise a state can withstand before entering
the stabilizer polytope. Their work deals only with prime dimensional systems, and in this
case it turns out that the noise threshold they derive is the same as the amount of noise re-
quired for their “maximally robust” state to enter the region of states with positive discrete
Wigner representation.
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THE GEOMETRY OF STATES WITH POSITIVE WIGNER
REPRESENTATION

Since the only pure states with positive discrete Wigner representation are stabilizer states
it is natural to wonder if every positively represented state is a mixture of stabilizer states.
Remarkably this is false: there are a large class of states with positive Wigner representation
that can not be written as a convex combination of stabilizer states. To establish this we
will clarify the geometry of the region of state space which has positive representation and
show that it strictly contains the set of mixtures of stabilizer states.

The set of convex combinations of stabilizer states is a convex polytope with the stabilizer
states as vertices. Any polytope can be defined either in terms of its vertices or as a list of
half space inequalities called facets. Intuitively, these correspond to the faces of 3 dimen-
sional polyhedrons. We show that in power of prime dimension each of the d* phase space
point operators define a facet of the stabilizer polytope. These are only a proper subset of
the faces of the stabilizer polytope, implying the existence of states with positive represen-
tation which are not convex combinations of stabilizer states. See Figure 3.0.3 for a cartoon
capturing the intuition for this result.

The stabilizer polytope may be thought of as a bounded convex polytope living in R?1,
the space of d dimensional mixed quantum states. A minimal half space description for a
polytope in RP is a finite set of bounding equalities called facets {F;, f;} with F; € RP and
fieR. X e RP is in the polytope if and only if X - F; < f; Vi. In the usual quantum state
space the vectors X of interest are density matrices, the inner product is the trace inner
product and facets may be defined as {Ai, a;} where A; are Hermitian matrices and

p € polytope <= Tr(pA;) < a; Vi.

Our objective is to show that {—A,, 0} are facets of the polytope defined by stabilizer state
vertices.

It is possible to explicitly compute a facet description for a polytope given the vertex
description, but the complexity of this computation scales polynomially in the number of
vertices. Since the number of stabilizer states grows super-exponentially with the number
of qudits [34] the conversion is generally impractical. The analytic proof given here circum-
vents this issue. We also remark that the work of Cormick et al [14] implies that the phase
space point operators considered here are facets for the case of prime dimension.

Theorem 7. The d? phase space point operators {A,} with the inequalities Tr(pA,) > 0 define
facets of the stabilizer polytope.
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guantum states
bound magic states
stabilizer states

Figure 3.0.3: A cartoon of the intersection of the discrete Wigner probability simplex (the triangular
region) with the quantum state space (the circle). The simplex intersects the boundary
at stabilizer states (bold dots). The region of convex combinations of stabilizer states
is strictly contained within the set of quantum states that also lie inside the simplex.
The quantum states outside the simplex are the bound states. Finally, the quantum
states with negative discrete Wigner representation are those lying outside the positive
discrete Wigner simplex. We show that the half space inequalities defining the facets
of the discrete Wigner simplex also define the facets of the stabilizer polytope; a fact
reflected in this cartoon.

Proof. To establish that a halfspace inequality for a polytope in RP is a facet there are two
requirements: every vertex must satisfy the inequality and there must be a set of vertices
saturating the inequality which span a space of dimension D [81].

The requirement that all vertices satisfy the half space inequality is Tr(A,S) > 0 for every
stabilizer state S, and this the discrete Hudson’s theorem.

We consider the stabilizer polytope as an object in R?”~! and look for a set of d? — 1
linearly independent vertices which satisfy Tr(A,S) = 0. Since we are restricting to power
of prime dimension we may choose a complete set of mutually unbiased bases of d(d + 1)
states from the full set of stabilizer states. Suppose more than d + 1 states V; from this set
satisfy Tr(V;A,) > 0. Then a counting arguments shows that there must be two distinct
states Vp, V1 belonging to an orthonormal basis which satisfy this criterion. But then

1

Tr(VoVh) = yi Y Tr(VoA,)Tr(ViAy)

> %Tr(VoAu)Tr(VlAu) 20,

which contradicts the orthonormality. Thus at least d(d + 1) — (d + 1) states in the mutu-
ally unbiased bases satisfy Tr(A,V;) = 0. These are the required a set of d*> — 1 linearly
independent vertices. O

The phase space point operators considered here give only a proper subset of the defin-
ing halfspace inequalities for the stabilizer polytope. This means that there are states that
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may not be written as a convex combination of stabilizer states which nevertheless satisfy
Tr(Aup) > 0 for all phase space point operators. That is, there are positive states which are
not in the convex hull of stabilizer states. An explicit example of such a state for the qutrit
is given in [34]. These regions can be visualized by taking two and three dimensional slices
of the qutrit state space. Such slices are depicted in Figures 3.0.4 and 3.0.5.
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Figure 3.0.4: Orthogonal 3-dimensional slices of qutrit state space. Above each slice is the five values
of the Wigner function which are fixed at a value of 1/9 (left) and 1/6 (right). Three
of the remaining four values are allowed to vary and carve out regions depicted in the
graphs. The final value is fixed by Tr (p) = 1. Note that the slice on the right does not
cut through the stabilizer polytope but does contain a region of bound states. See also
Figure 3.0.5 for 2-dimensional slice of the figure on the left.
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Figure 3.0.5: Orthogonal 2-dimensional slice of qutrit state space. On the left are the six values of
the Wigner function which are fixed at a value of 1/9. Two of the remaining three
are allowed to vary with the third fixed by Tr (p) = 1. The maximally mixed state is
the point (X,Y) = (1,1)/9. The various regions carved out by varying these values
are shown on the right. Note the similarity to the caricature in 3.0.3, remarkable since
this cartoon was merely the intersection of the simplest simplex (a triangle) with the
simplest continuous state space (a circle).
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EFFICIENT CLASSICAL SIMULATION USING POSITIVE DISCRETE
WIGNER FUNCTION

We now establish that any quantum computation consisting of stabilizer operations acting
on product input states with positive representation can not produce an exponential compu-
tational speed-up. This is accomplished by giving an explicit efficient classical simulation
protocol for such circuits. Like the Gottesman-Knill protocol this scheme allows for the
simulation of pure state stabilizer inputs to circuits composed of Clifford transformations
and stabilizer measurements. However, our simulation scheme extends the Gottesman-Knill
result in several ways. First, it applies to systems of qudits rather than qubits. Second, it ap-
plies to mixed state inputs. Thirdly, and most remarkably, it applies to some non-stabilizer
resources - namely those with positive discrete Wigner representation.

Any particular run of a quantum algorithm on n registers will produce a string k of n
measurement outcomes. These outcomes occur at random and we assign the random vari-
able Kquant to be the algorithm output. The algorithm can then be considered as a way of
sampling outcomes according to the distribution Pr (Kquant = k). To simulate a quantum
algorithm it suffices to give a simulating algorithm which samples from the distribution
Pr (Kquant = k), which is what we do here. Notice that this form of simulation does not al-
low us to actually infer the distribution of outcomes, but it does suffice for many important
tasks (for example, estimating the expected outcome).

The type of algorithms we treat here take the following form (see Figure 4.0.6 for an
example):
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Figure 4.0.6: Example of a stabilizer circuit: p; have positive representation, C; are Clifford gates
and M; have positive representation. The choice of gate C3 can be conditioned on the
outcome of measurement Ms.
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Algorithm 4.1 Family of Simulable Quantum Algorithms
Algorithms in this class sample strings of measurement outcomes k according to the distri-
bution Pr (Kquant = k) determined by the Born rule.

1. Prepare an initial n qudit input state oy ® - - - ® p, € p € L(Hpn) where py, ..., p, have
positive discrete Wigner representation.

2. Until all registers have been measured:

a) Apply a Clifford unitary gate Ur, labeled by the symplectic transformation F &
Sp(2n,p).

b) Measure the final qudit register using a measurement with positive discrete
Wigner representation. Record the outcome k; of measurement the jth register.
Further steps in the computation may be conditioned on the outcome of this
measurement.

Notice that there is no loss of generality in considering only symplectic Clifford transfor-
mations as the Heisenberg-Weyl component can be rolled into the measurement.

The essential idea for the simulation is to take seriously the hidden variable model the
restrictions allow us. In the discrete Wigner picture the system begins at point u# in the
discrete phase space, which is unknown but definite and fixed. The effect of UF is to move
the system from the point u to the point Fu, and measurement amounts to checking some
region of the phase space to see if it contains the system. Since the vector # and matrix F
are size 2n with entries from Z; it is computationally efficient to classically store and up-
date the system’s location. Of course, a (positively represented) quantum state corresponds
to a probability density over the space so we must treat this a little more carefully. The
simulation protocol is:
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Algorithm 4.2 Classical Simulation Algorithm
Algorithms in this class sample strings of measurement outcomes k according to the distri-
bution Pr (Kgass = k)

1. Sample u € F%¥ according to the distribution Wy g..gp () =
W, (u1) Wy, (u2) ... Wp, ().

2. Repeat until all registers have been measured:

a) If the unitary Ur is applied then update u — Fu.

b) If the measurement M with corresponding POVM {E;} is made on the last regis-
ter of the quantum circuit then report outcome k with probability WE, (u,,) where
uy, is the ontic position of the last qudit system, defined by u = uy Quy - - - D uyy,. If
the quantum algorithm conditions further steps on the outcome of measurement
on this register then condition further steps of the simulation on measurement
outcome k.

Our claim is that the classical algorithm in Algorithm Class 4.2 efficiently simulates the
corresponding quantum algorithm in Algorithm Class 4.1. More precisely,

Theorem 8. An n qudit quantum algorithm belonging to Algorithm Class 4.1 is simulable by the
corresponding 2n dit classical algorithm in Algorithm Class 4.2 in the sense that the distribution of
outcomes k is the same for both algorithms, Pr (K ,ss = k) = Pr (qumt = k).

Proof. The input to the classical circuit is a 2n dit string and the transformations are all
matrices of size 2n with entries in Z; so the 2n dit portion of the claim is obvious.

To show that this protocol genuinely simulates the circuit it suffices to show any string
of measurement outcomes k = (kiky...k,) occurs with the same probability for both the
original circuit and the simulation. Lets first consider probability distribution Pr (k,) of the
outcomes of the first measurement. In the quantum circuit the preparation p; ® - - - ® p;, is
passed to the (possibly identity) gate Ur and measurement M, with corresponding POVM
{Ek,} is applied to the nth register. The probability of getting outcome k, is then:

Prquant(kn) = Tr(UFPl X ® PnultH K- IR Ekn)

= Zz WUFP]®"'®[3”U; (U)WI[@"'@]I@Ekn ('U)
veZy"

= ) Woeeop (F'0)Wis.sisk, (0). (4.0.1)

2n
vEZ]

Where we have recast the inner product into the discrete Wigner form for convenience of
comparison. We must now establish that the classical circuit has the same distribution.
Classically, if the system is initially at point v on the discrete phase space then probability
of getting outcome k; from the simulation circuit is given by:
Preass (kn|v sampled initially) = Prass(kn|Fo final location)

= Wig..o10E, (Fo).
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Which just says that the system is moved from point v to point Fv and the probability of
outcome k, is the probability we see the system when we look at the region of phase space
measured by Ey,, which is Wg, (Fv) by definition. The total probability of outcome k;, is
then:

Projass(kn) = Z Prass (k|v sampled init.)Pr (v sampled initially)
veZﬁ”
= E WEk1®"‘®Ek,,(‘Fv)wpl®'“®,0n(v)
veZy
= Y Wi o ok, (0)Wos.ap(F o). (4.0.2)
vEZfi”

Comparing Algorithm Class (4.0.1), the distribution of measurement outcomes on the last
register for the quantum circuit, and Algorithm Class (4.0.2), the simulated distribution of
measurement outcomes on the last register, we see they are the same.

If the quantum algorithm is independent of the measurement outcomes then simply ap-
plying the above argument to each register would suffice to complete the proof. However,
in general adaptive schemes are possible, such as the algorithm illustrated in Figure 4.0.6
on page 41 where the final gate applied depends on the outcome of the measurement on
the third qudit. Using the assumption that the registers are measured from last to first we
can factor the distribution of outcome strings as

Pr (k) = Pr (kilka .. .kn) Pr (kalks .. .Kn) ... P (kn_1[kn) Pr (k) -

Since the simulation conditions on measurement outcome in exactly the same way as the
original quantum algorithm a simple inductive argument shows that the distribution of
outcomes must be the same for the quantum algorithm and its classical simulator. O

Corollary 9. Quantum algorithms belonging to Algorithm Class 4.1 offer no super linear advantage
over classical computation.

Proof. We have seen that if it is computationally efficient (linear in the number of qudits)
to sample from the classical distributions corresponding to the input state and the mea-
surements then such quantum circuits are efficiently simulable. Since we have assumed
separability of the input and measurements and the discrete Wigner function factors this
efficient sampling is guaranteed. O

A couple of remarks are in order. We have restricted ourselves to separable inputs and
measurements, but this is not strictly necessary for efficient simulation. Any positively rep-
resented preparation or measurement can be accommodated provided it is possible to clas-
sically efficiently sample from the corresponding distribution. Since it is exponentially diffi-
cult to even write down general quantum states this is a rather strong restriction.

Finally, we note that in some situations it may be natural to increase the size of the input
register conditional on measurement outcomes. This can be accounted for in the simulation
protocol above by simply increasing the size of the phase space accordingly and sampling
from the new additional positive Wigner functions.
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BOUND MAGIC STATES

A corollary of the simulation result just given is that states with positive Wigner repre-
sentation are not distillable by any stabilizer protocol within the broad class encompassed
in algorithm 4.1. Since there are mixed magic states with positive Wigner representation
this implies the existence of bound magic states. However, the simulation aspect of this
argument actually obfuscates the conceptual role of negativity of the Wigner function as
a resource for magic state computation. This chapter gives a direct proof of this fact that

clarifies things considerably.
First, recall that the most general way to map magic states to each other via stabilizer

operations is:

Definition. A stabilizer protocol is any map from p € S(H) to ¢ € S(Hyn) composed
from the following operations:

1. Clifford unitaries, p — UpU*
2. Composition with stabilizer states, p — p ® S where S is a stabilizer state

3. Post selected computational basis measurement on the final qudit,
p— (I |i)i])p (T |i)i]) /Tr (pI @ |i)(i]) with probability Tr (oI & |i)(i|)

4. Partial trace of the final qudit, p — Tr, (p)
and classical randomness.

To show that states with positive Wigner functions are not distillable we can just show
that none of the above operations can create negative Wigner representation, that is:

Theorem 10. States with positive Wigner representation are not distillable.

Proof. The only pure states with positive representation are stabilizer states so it suffices to
show that if A is an arbitrary stabilizer protocol and p is a state with postive Wigner repre-
sentation then A (p) also has positive Wigner representation. We establish this by showing
that each step of any stabilizer protocol preserves positivity. Suppose p € L (H,») has posi-
tive Wigner representation, then:

1. UpU" has positive Wigner representation for any Clifford operator U. This follows
since U acts as a permutation of the discrete phase space.
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2. p ® S has positive Wigner representation for any stabilizer state S. This follows since
Woes (u,v) = W, (u) Ws (v) and S has positive Wigner representation by discrete
Hudson’s theorem.

3. (I |i)i])p (I |i)i]) /Tr (pI @ |i)(i|) has positive Wigner representation. First, notice
that Tr (oIl ® |i){i|) > 0 so we can just consider (I ® |i)(i|) p (I ® |i){i|). For any com-
putational basis state |i) € H, it holds that |i)(i| = ¥, cx A4 Where ¢, is either 0 or 1.
Armed with this fact:

P"WagliviDeaslii) (#:0) = Tr (A ® Ay (T [i)i]) p (T [i)i]))
(i| Au i) Tr (Ao ® [i)ilp)
= (| Auli) ) cwTr (Ay @ Awp)

> 0

where the last line follows since (i| A, i) > 0, ¢ > 0 and Tr (A, ® Awp) «
W, (v, w) > 0.

4. Try (0) has positive Wigner representation. This follows since Wr, () (#) =
Yo W, (u,0).

Thus any stabilizer protocol preserves positive Wigner representation.
O

The significance of this proof is that it gives a very strong indicator of how we can move
beyond the binary question of whether a magic state is at all useful for quantum computa-
tion to quantifying how useful a state is.

1 In the case Tr (pI @ |i){i|) = 0 the measurement outcome i could not have occured.

45



Part II

QUANTIFYING MAGIC

This part of the thesis covers the results of [72]. The major practical obstacle
to a physical implementation of magic state computation is not the inability to
produce distillable states but rather the enormous number of resource states re-
quired. To do magic state distillation efficiently we must determine how to best
use stabilizer operations to transform the resource magic states we are able to
produce into the target magic states that will be consumed to implement non-
Clifford gates. The transformation of resource states using a restricted set of
operations is the province of resource theories[40]. In this part of the thesis we
develop the resource theory of magic: a resource theory for quantum computa-
tion using stabilizer operations supplemented with magic states.



To develop a resource theory for magic state computation we will divide the set of quan-
tum states into those that can be prepared using the stabilizer formalism, the stabilizer states,
and those that can not, the magic states. This is analogous to the division that is imposed
in the resource theory of quantum communication between the states that can be prepared
using local operations and classical communication, the separable states, and those that can
not, the entangled states. The question we wish to answer is how to best use stabilizer oper-
ations to transform resource magic states pres into the target magic states Ctarget required for
the implementation of non-stabilizer gates. This is best considered as two distinct problems:

1. Is it possible to produce even a single copy of target from any number of copies of
Pres?

2. Assuming distillation is possible, how efficiently can it be done? That is, how many
copies of pres are required to produce m copies Ctarget?

The known protocols are able to distill some, but not all, resource magic states pres to target
states useful for quantum computation. Until very recently it wasn’t even known whether
some distillation protocol could be found to take any magic state to a nearly pure magic
state. As we have seen in the previous part of the thesis the answer to this question (at least
in odd dimensions) is no: there is a large class of bound magic states that are not distillable
to pure magic states using any protocol. There has also been some intriguing work on this
problem in the qubit case [12, 64, 63]. The second question is the primary focus of this part
of the thesis. The key insight is the introduction of a quantitative measure of how magic a
quantum state is, which in particular allows us to upper bound the distillation efficiency.
Roughly speaking, suppose the target state is five times as magical as the resource state
according to some measure, then we can immediately infer that at least five resource states
will be required for each copy of the target state.”

To quantify the amount of magic resource in a quantum state we introduce the notion
of a magic monotone. This is any function mapping quantum states to real numbers that is
non-increasing under stabilizer operations. This is just the common sense requirement that
the amount of non-stabilizer resource available can not be increased using only stabilizer
operations. Magic monotones are valid measures of the magic of a quantum state in exactly
the same way entanglement monotones are valid measures of the entanglement of a quan-
tum state. The main contribution of this part of the thesis is the introduction and study of
two magic monotones: the relative entropy of magic and the mana.

The requirement that a magic monotone be non-increasing under stabilizer operations
can be formalized as:

Definition 11. Let M; : S (H;) — R be a mapping from the space of density operators
on Hy = C% to the real numbers. Define M (p) = M, (p) Vo € S (H,) so that M (-) is
defined for all finite dimensional Hilbert spaces. If, on average, M (A (p)) < M (p) for any
stabilizer protocol A then we say M (-) is a magic monotone.

Since magic monotones need not be additive and are only non-increasing on average this is not literally true, but
the intuition is sound.
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There are two important points to notice here. The first is that we require operations to
be magic non-increasing only on average; if A (p) = o; with probability p; then we only
require M (p) > Y., piM (0;). In particular this means that post selected measurement
can increase magic in the sense that we allow M ((I® [i)(i|) p (I® |i)(i]) /Tr (oI ® |i)(i|)) >
M (p) as long as measurement outcome i is obtained with sufficiently small probability.
This allows us to analyze non-deterministic protocols. The second point is that we do not
require convexity, i.e. it can happen that M (po+ (1 —p)o) > pM(p) + (1 —p) M (o).
Although convexity is a desirable feature it is possible to have interesting monotones that
are not convex (for example, the logarithmic entanglement negativity[59]).

Notice also that because Clifford gates and composition with stabilizer states are re-
versible within the stabilizer formalism (by the inverse gate and the partial trace respec-
tively) any monotone must actually be invariant under these operations, as opposed to
merely non-increasing.

With the formal definition in hand we can now understand how magic monotones allow
us to put bounds on the efficiency of magic state distillation. Suppose we wish to distill m
copies of o from n copies of p. If M (-) is a magic monotone then for any stabilizer protocol
A such that A (0®") = ¢;”™ with probability p; we will have M (0®") > Y. p;M (). In
particular this means that n must be large enough so that M (p®") > p,M (o) where p, is
the probability that the protocol produces .
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THE RELATIVE ENTROPY OF MAGIC

Generic resource theories can, and usually do, admit more than one valid choice of mono-
tone. Requiring a function to be non-increasing under stabilizer operations is the minimal
imposition for it to be a sensible measure of magic. However, there is no guarantee that all
monotones will be equally interesting or useful. This leads us to wonder if some further
natural conditions could be imposed to eliminate some of these measures and pick out
especially interesting monotones. Resource theories are concerned with the problem of us-
ing restricted operations to convert between different types of resource states, for example
distilling pure magic states from mixed ones or changing one type of pure magic state to
another type of pure magic state. Most often this conversion is studied in the asymptotic
regime (eg. [31, 40, 41, 39, 32]) where an infinite number of resource states are assumed to
be available to conversion protocols and the task is to determine the rate at which one type
of resource can be converted into another. In this regime it turns out that for many resource
theories the monotone zoo can be cut down in a rather spectacular fashion: there is a mono-
tone that uniquely specifies the rate at which the asymptotic interconversion of resource
states can take place. Because of the importance of asymptotic interconversion of resource
states this measure is often called the unique measure of the resource[40]. For magic the-
ory this vaunted measure is the regularized relative entropy of magic; the purpose of this
chapter is to introduce this quantity and explain in what sense it is unique.

The relative entropy distance between quantum states is S (p|lo) = Tr(plogp) —
Tr (plog o). This is a measure of how distinguishable p is from ¢. Qualitatively, we might
expect that a measure of how distinguishable p is from all stabilizer states to be a good
measure of magic, which inspires the definition:

Definition 12. Let p € S (H,), then the relative entropy of magic is ry (p) =
min,estap(z,) S (0110)-
The intuition that this should be a magic measure is immediately validated:

Theorem 13. The relative entropy of magic is a magic monotone.

Proof. This is essentially a consequence of the nice properties of the relative entropy and
holds for the same reasons that the relative entropy is a monotone for other resources
theories. See Section 6.5 for details. O

The main importance of the relative entropy of magic is in the asymptotic regime
where a slightly modified definition is required. We will find that the relative entropy of
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magic is subadditive in the sense rq (0®") < nraq (p). This is because in general there
can be some entangled stabilizer state oc4p € S (Hs® Hy) such that S(p®p|loag) <
ming, o, cstaB(#,) S (0 ® plloa ® o). In particular this means that the amount of magic
added by producing a single copy of p depends on how many copies of p we already have
access to. In the asymptotic limit an appropriate measure should give the amount of magic
in p when an infinite number of copies of p are available. This prompts us to introduce the
asymptotic variant of the relative entropy measure:

Definition 14. Let p € S (H,), then the regularized relative entropy of magic is r%, (0) =
limy—seo 2104 (0°7).

We do not have an analytic expression for the relative entropy of magic and thus we do
not have an analytic expression for the asymptotic version. Moreover, because of the infinite
limit in the definition we do not even know how to numerically approximate r% (o) in
general. This is the same as the situation in entanglement theory where it remains a famous
open problem to find a “single letter” expression for the regularized relative entropy of
entanglement. Nevertheless, the (regularized) relative entropy of magic is useful for the
holistic study of magic theory. For instance, we will use it as a tool to show that a non-
zero amount of pure magic states are always required to produce mixed magic states via
stabilizer protocols, even when the mixed state is a bound magic state.

6.1 RELATIVE ENTROPY OF MAGIC

One of the major difficulties with the study of resource monotones is that the actual com-
putation of the value of the monotone for a particular state is often an intractable problem.
Although we do not know a simple analytic expression for the relative entropy of magic
it can be computed numerically. For systems with low Hilbert space dimension this is rea-
sonably straightforward. The relative entropy is a convex function and we want to perform
minimization over the convex set of stabilizer states. This means that a simple numerical
gradient search will succeed in finding mingegrap(#,) S (0[/0). Each qudit stabilizer state can
be written as a convex combination of the N pure qudit stabilizer states. A simple strategy
for finding the relative entropy of magic is to do a numerical search over the N — 1 values
that define the probability distribution over the stabilizer states. Unfortunately, for a system
of n qudits the number of pure stabilizer states is[34]

n

N=a"T[(d+1),

i=1

and this grows too quickly for a numerical search to be viable in general. For example,
the original H-type magic state distillation protocol[6] consumes 15 resource states Pinput
to produce an output magic state oouput With higher purity. In principle we can bound the
quantity of the resource required via

I m (Pfﬁ;iJ > pry (Poutput) ’
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where p is the success probability of the protocol, but this would require a numerical op-
timization over more than 2!3¢ parameters using the approach just outlined, which is not
viable.

For arbitrary resource states it is not clear how to avoid the numerical optimization. How-
ever, the states typically used in magic state distillation protocols have a great deal of addi-
tional structure that can be exploited. In particular, many protocols have a “twirling” step
where a random Clifford unitary is applied to the resource state to ensure it has the form,

I

pe = (1<) [MYM]| + e

If the twirling map is 7 : Presource —> Yi PiliPresource U;r for some subset {U; }of the Clifford
operators then,

min S<(1—e)|M>(M\+€g||0> > min S<T ((1—6)\M><M!+eg> HT(O’))

ceSTAB ceSTAB

= mins ((1- ) [MYM| + e3lpIM)M] + (1= p) 3 )

= 5 (- e MM+ e lpr Ml + (1= pr) 3 ).

where pr is the largest value such that pr|M)(M|+ (1—pr) ] is a stabilizer state. This
means that the relative entropy of magic can be computed exactly for states of this form by
finding pr. Unfortunately the twirling is only applied to individual qudits so this does not
by itself resolve the numerical problems. Nevertheless, it is possible to give naive bounds
according the following observation:

rm (Poutput) < rm <Pf§1;ut)
< nry (Pinput)

where we have used the obvious fact that the relative entropy of magic is subadditive.

This bound might not seem naive at all. One might suspect that the relative entropy of
magic is genuinely additive so r (pg;ut) < nr (Pinput) - This seems like a very desirable
feature for a monotone to have: n copies of a resource state should contain 7 times as much
resource as a single copy. The relative entropy of magic does not have this feature, it can be
the case that rys (0%?) < 2r (p). To establish this we consider the qutrit Strange state [S)(S|
defined as the pure qutrit state invariant under the symplectic component of the Clifford
group (see Section 7.4). Twirling by the symplectic subgroup Sp (2,3)* of the Clifford group

has the effect 1

I
; Sp (2,3)]

UppUf = (1 - ) [S)(S] + €
so we can use our twirling argument to find rp (|S)(S|) exactly. A numerical search over
the two qutrit stabilizer states turns up a state ¢ € STAB (Ho) such that S (|S)(S|¥?||0) <

2rp (IS)S))-
1 this is the Clifford group modulo the Heisenberg-Weyl (Pauli) group.
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The relative entropy of entanglement is also subadditive. However, there is a very impor-
tant difference between the entanglement and magic measures: for pure states the relative
entropy of entanglement is an additive measure. This fact is at the heart of the importance
of the relative entropy distance for the theory of entanglement. As we have just seen this is
not true for the relative entropy of magic.

6.2 THE (REGULARIZED) RELATIVE ENTROPY OF MAGIC IS FAITHFUL

The relative entropy S (p|/c) is 0 if and only if p = 0. It is easy to see that this implies
that ryq (o) is faithful in the sense that ryq (p) > 0 if and only if p is magic. Since r( (-)
is a magic monotone, if it is possible to create a magic state o from a pure resource state
|¢)(¢| using a stabilizer protocol it must be the case that ry (|)(¢|) > rpq (o). Together
these facts imply that to create any magic state by consuming pure magic states a non-zero
number of pure magic state states are required. However, we have already established that
there are bound magic states that can not be distilled to pure magic states. This means that
the amount of magic that can be distilled from a resource state is not equal to the amount
of magic required to create it; this is the analogue in the present case of the famous result
in entanglement theory that the entanglement of creation is not equal to the entanglement
of distillation.

Because the relative entropy of magic is subadditive it could be that r%, (o) =
limy e 2t (0°") = 0 for some magic state p; it is not automatic that the regularized
relative entropy of magic is faithful. For example, in the resource theory of asymmetry[31]
the regularized relative entropy measure is 0 for all states. Happily, for magic theory the
relative entropy is well behaved in the asymptotic regime:

Lemma 15. The regularized relative entropy of magic is faithful in the sense that 1%, (o) = 0 if and
only if p is a stabilizer state.

Proof. The proof of this fact is a straightforward application of a theorem of Piani[58] show-
ing that the regularized relative entropy measure is faithful for all resource theories where
the set of restricted operations includes tomographically complete measurements and the
partial trace. The idea is to define a variant of the relative entropy distance that quanti-
fies the distinguishability of states using only stabilizer measurements. This quantity lower
bounds the usual relative entropy of magic so by showing that its regularization is faithful
we get the claimed result. See Subsection 6.5 for details. O

We will need this result for the proof of corollary 17 showing that the regularized relative
entropy gives the optimal rate of asymptotic interconversion. It also represents a strength-
ening of our earlier claim that a non-zero amount of pure state magic is required to create
any magic state. For finite size protocols this followed from the faithfulness of the relative
entropy of magic, as just explained. The faithfulness of the regularized relative entropy im-
plies that the creation of magic states by an asymptotic stabilizer protocol requires resource
magic states to be consumed at a non-zero rate. The analogous problem in entanglement
theory was the main motivation for proving that the regularized relative entropy of entan-
glement is faithful[58][5].
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63 UNIQUENESS OF THE REGULARIZED RELATIVE ENTROPY

We shall give an additional requirement for a magic monotone to be a magic measure that
is well motivated in the scenario of asymptotic state conversion. To understand this it is
simplest to first consider the case of finite state interconversion. Suppose there is some sta-
bilizer protocol A that maps n copies of resource state p to m copies of a target magic state
0. Then it must be the case that M (p®") > M (¢®™) for any magic monotone M (-). If
there is also some other stabilizer protocol that maps ¢ to p then it must be the case that
M (p®") = M (¢®™), which conceptually just means that if p®” and ¢®" are equivalent re-
sources then they have the same magic according to any magic measure. It is rarely possible
to exactly interconvert between resource states with only a finite number of copies available.
The condition that picks out the regularized relative entropy of magic as the unique measure
of magic is, roughly speaking, the requirement that asymptotically reversibly interconvert-
ible states have the same resource value.

Typically if we try to convert p®" into m copies of ¢, the stabilizer protocol (A, : Hu —
H ) we use will depend on the number of input states n. When converting p to ¢ it is thus
necessary to consider a family of stabilizer protocols A, taking p“" as input and producing
m(n) approximate copies of o with an error || A, (0®") — c®"(")||; = e,. In the case that
the approximation becomes arbitrarily good in the asymptotic limit (ie. lim;, . €, — 0) we

say p is asymptotically convertible to o at a rate R (p — o) = lim, e mgl”). The additional

condition we impose is that if p®" is asymptotically convertible to " (") then,

lim 1 [/\/l (") — M ((7@’”(”))} > 0. (6.3.1)

n—oo 11

That is, if asymptotic conversion is possible then on average we must put in at least as much
magic as we get out, up to some o(n) discrepancy.

If it is possible to interconvert between ¢ and p at rates R (¢ — p) = R(p — o) ! then
we say the two resources are asymptotically reversibly interconvertible. Any magic monotone
satisfying this additional condition gives the rate of asymptotic interconversion according
to the following theorem:

Theorem 16. Let M (-) be a magic monotone satisfying the condition given by (6.3.1) and define
its asymptotic variant M (p) = lim,_,co M (p®") /0. Then if it is possible to asymptotically
reversibly interconvert between magic states p and o and M (p) is non-zero then the rate of
conversion is given by R (p — o) = M= (p) / M* (0).

Proof. This is a special case of broader theorem that says this result holds in any resource
theory. The result was first proved in [41]. That paper dealt primarily with entanglement and
missed the requirement that the regularization of the monotone needs to be non-zero. This
was pointed out in [31], and the theorem we state here is essentially the application of their
Theorem 4 to magic theory. The only subtlety is that instead of condition (6.3.1) they require
the monotone to be asymptotically continuous, which means lim, e || Ay (07) — @™y —
0 implies
M (A (o)) = M (07

lim — 0.
n—00 1+n
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The first step of their proof is to show that this cryptic condition implies (6.3.1) so we start
with the weaker, interpretable requirement directly. O

Corollary 17. The regularized relative entropy of magic is a unique measure of magic in the sense
that if it is possible to asymptotically reversibly interconvert between magic states p and o the rate
at which this can be done is R (o — o) =% () /5% (p) -

Proof. In [67] it is shown that the relative entropy distance to any convex set of quantum
states is asymptotically continuous. Since asymptotic continuity implies (6.3.1) and the sta-
bilizer states are a convex set the relative entropy of magic is a magic monotone satisfying
condition (6.3.1). Moreover, we showed in Theorem 15 that the regularized relative entropy
is non-zero for all magic states. O

Notice that the relative entropy is only one example of a monotone satisfying the con-
ditions of Theorem 16. There could be other monotones for which this result holds. In
fact it is conceivable that this result holds for every magic monotone. Really what is
meant by the use of the word "unique’ here is that the conversion rate predicted by
the measure is unique. This implies that for any magic monotone with this property if
it is possible to asymptotically interconvert between p and ¢ it must be the case that
M= (p) = G (p) — M= (0) = C1%,(0) 50 15, (0) /15, (p) = M™(0) /M™ (p).
Ie. the regularization of such magic measures can differ only up to a multiplicative factor
that can vary between sets of quantum states where asymptotic interconversion is possible.

If we have a resource measure M (-) that is additive then it will be equal to its own reg-
ularization, M (-) = M® (-). If this measure also satisfies 6.3.1 then it will tell us how to
compute the asymptotic interconversion rate whenever asymptotic inversion is possible. In
the particular case that we have a resource theory where asymptotic interconversion is pos-
sible between any two resource states then it is easy to see that up to a constant factor there
really is a single unique measure of magic. Much of the work on resource theories has been
either specifically focused on or inspired by the theory of bipartite entanglement. In the case
of bipartite pure entangled states there is an additive resource measure which satisfies our
condition, namely the entanglement entropy[4]. Moreover, every bipartite pure entangled
state is asymptotically interconvertible using LOCC. Thus the entanglement entropy is the
genuinely unique measure of pure state bipartite entanglement. One of the special features
of the relative entropy of entanglement is that it reduces to the entanglement entropy on
pure states. It is this feature which is ultimately responsible for the privileged status of the
relative entropy of entanglement. In the case of magic theory the relative entropy of magic
does not reduce to an additive measure on pure states so there is no apparent reason to prefer
the relative entropy of magic over any other monotone satisfying the conditions of Theorem 16. This
stands in contrast to the claim that the relative entropy distance to the set of free states is
the unique measure of the resource (eg. [40]).

6.4 DISCUSSION

The privileged status of the relative entropy of magic comes from its role in the asymptotic
regime. Since the assumption of infinite state preparations is unreasonable for an actual
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physical system one might expect that the measure would be of limited practical value.
This suspicion is lent additional weight by the fact that, like the relative entropy distance in
other resource theories, actually computing r (p) appears to be intractably difficult. The
regularized relative entropy distance is essentially useless for analyzing the performance of
particular distillation protocols. Nevertheless, the monotone is a useful tool for the holistic
study of the resource theory of magic. This is the role of the regularized relative entropy
distance in the theory of entanglement, where it is a well studied object. We had a taste of
this already in our demonstration that the amount of pure state magic required to create a
magic state does not equal the amount of pure state magic that can be distilled from that
state. It is an exciting direction for future work to see what other insights can be gleaned
from the relative entropy of magic and its asymptotic variant.

It is also important to understand exactly what corollary 17 says. The statement is that if
asymptotic interconversion is possible then the rate is given by 1%, (o) /1%, (¢). This if clause
is a deceptively strong requirement: it is not guaranteed that asymptotic interconversion
will always be possible, or even that it will ever be possible. In particular, every currently
known magic state distillation protocol has rate 0 and it is an important open problem to
determine if a positive rate distillation protocol exists.

6.5 PROOFS

This section presents the details of the proofs that were omitted from the main text of the
chapter in order to improve readability.
We begin by showing that the relative entropy is a valid measure of magic.

Relative entropy of magic is a monotone

Theorem. The relative entropy of magic is a magic monotone.
Proof. We need to verify that this function is non-increasing under stabilizer operations.

1. Invariance under Clifford unitaries. For any unitary, S (UpU"|UcU") = S (p||o). If U
is a Clifford and ¢ is a stabilizer state then UcU" will also be a stabilizer state, ergo
ryv (UpU') = ming S (UpU'||0) = ming S (UpU' |UcUT) = min, S (p]|o) = ¢ (p)-

2. Non-increasing on average under stabilizer measurement. We consider computational
basis measurement on the final qudit. Let {V;} = {I ® |i)(i|} be the measurement
POVM and label outcome probabilities p; = Tr (Vip), q; = Tr (Vi) as well as post-
measurement states p; = VipV;r and 0; = Vian. In reference [70] it is shown that

Pi i
iS < ) < S o).
;P pini (ollo)

Since 0;/q; is a stabilizer state whenever ¢ is a stabilizer state this implies measure-
ment does not increase the relative entropy of magic on average.
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3. Invariance under composition with stabilizer states. S (p ® Aljc® A) = S (p||o) for
any quantum state A, from which it follows ry (0 ® A) < rp (p). Equality follows
because (4) the relative entropy of magic is non-increasing under the partial trace, ie.

rr () Sty (p® A).

4. Non-increasing under partial trace. From the strong subadditivity property of the von
Neumann Entropy[s50] we have S (Trp (p) || Trp (¢)) < S(p||o) from which the result
follows immediately.

O

We now turn to the asymptotic variant of the relative entropy of magic, 1% (0) =
limy, 0 g (0°") /1. We show that this quantity is non-zero if and only if p is a magic
state. We will need this result for the proof of Theorem 16.

Regularized relative entropy of magic is faithful.

Theorem. The regularized relative entropy of magic is faithful in the sense that v, (p) = 0 if and
only if p may be written as a convex combination of stabilizer states.

Proof. We recover this result as a special case of the main theorem of reference [58]. This
paper introduces a variant of the relative entropy measure that quantifies the distinguisha-
bility of a quantum state from the set of free states using a restricted set of measurements.
Let {M;} be a measurement POVM and define the map,

M(p) =} pi (p) li)il, pi(p) = Tr (oMi),

where {|i)} is any orthonormal set and M is a map associated to measurement {M,;}.
Letting IM be the set of restricted measurements we can define,

MS (pl|e) = max S (M (p) [ M (@)

The significance of this quantity is from theorem 1 of [58]:

Theorem. Consider a restricted set of operations inducing a resource theory. Let IM be the restricted
set of measurements (here the stabilizer measurements) and P the set of free states (here the stabilizer
states). If the set of free states is closed under restricted measurement and the partial trace then it
holds that the regularization of the relative entropy distance to the set of free states ry (p) satisfies

rp (p) = minMS (p|o).
ceP

The stabilizer formalism satisfy the conditions of the theorem. Moreover, since the
stabilizer measurements contain an informationally complete measurement it holds that
MS (p[|c) > 0 whenever p is a magic state. This implies r%, (o) > 0 whenever p is a magic
state. 1 (p) = 0 for all stabilizer states p is clear, so the claimed result follows.

O
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NEGATIVITY OF THE WIGNER FUNCTION AS A COMPUTABLE
MEASURE OF MAGIC

The results of the previous chapter deal primarily with reversible conversion of magic states
in the limit where infinite copies are available, but for magic state distillation we are inter-
ested in the one way distillation of resources magic states to pure target magic states in the
regime where only a finite number of resource states are available. Because of this there is no
reason to prefer the (regularized) relative entropy of magic over any other monotone. Nev-
ertheless, the relative entropy, like any monotone, gives non-trivial bounds on distillation
efficiency. There is a more fundamental problem: it is generally computationally intractable
to compute the relative entropy and we have no idea how to compute the regularized rel-
ative entropy. In particular this means we are unable to find explicit upper bounds for the
efficiency of distillation. In this chapter we resolve this issue by introducing a computable
measure of magic.

7.1 SUM NEGATIVITY AND MANA

The work in the previous chapter establishing the existence of bound magic states provides
a starting place in the search for a computable monotone. The fundamental tool in that
construction is the discrete Wigner function. There it was found that a necessary condition
for a magic state to be distillable is that it have negative Wigner representation. However,
that work is purely binary in the sense that it does not distinguish degrees of negative
representation. It is natural to suspect that a state that is “nearly” positively represented
is less magic than a state with a large amount of negativity in its representation. Here we

Figure 7.1.1: The Wigner representations of two qutrit states, |S) = % (|1) —12)) (left) and |N) =
ﬁ (—10) +2|1) —|2)) (right). |S) has sum negativity ‘—%

CR 1 1| _ 1

and the |IN) has sum nega-
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formalize this intuition by showing that the absolute value of the sum of the negative entries
of the discrete Wigner representation of a quantum state is a magic monotone.

Definition 18. The sum negativity of a state p is the sum of the negative elements of the
Wigner function, sn (0) = Yy, (u)<0 W, ()| = 3 (X, [W, ()] — 1).

The right hand side of this expression follows because the normalization of quantum
states (Tro = 1) implies }_, W, (u) = 1. The advantage of writing the expression in this
form is that ||p|lw = ¥, |W, ()] is a multiplicative norm and is thus very nice to work with.
By this we mean that the composition law is given as:

le@clw = Y [Wosr (u,0)]

= LW, () We (o))

(Eml) (). 711

u v

Since the sum negativity is a linear function of this quantity we can establish that the
former is a magic monotone by showing this for the latter:

Theorem 19. The sum negativity is a magic monotone.

Proof. 1t suffices to show Y, |W, ()| is a magic monotone by verifying the required prop-
erties. The main components are the use of p = ), W,(u) A, and the composition identity
(7.1.1), which is the main motivation for working with this quantity rather than with the
sum negativity directly. See subsection 7.7.1 for details. O

The sum negativity is an intuitively appealing way of using the Wigner function to define
a magic monotone, but it has some irritating features. The worst of these is the composition
law,

M) =< [(2sn(p)+1)" —1],

N =

sn (p

which has the troubling feature that a linear increase in the number of resource states
implies an exponential increase the amount of resource according to the measure. Happily
there is a simple resolution to this problem suggested by the composition law (7.1.1), we
define a new monotone by a particular function of the sum negativity:

Definition 20. The mana of a quantum state p is .Z (p) = log (¥, |W, (n)|) =
log (2sn(p) +1).

Theorem 21. The mana is a magic monotone.

Proof. Most of the monotone requirements follow because log is a monotonic function, but
there is a small subtlety here. Consider a stabilizer protocol that sends p — ¢; with probabil-
ity p; (eg. post selected computational basis measurement), then we require log (||o|lw) >
Y_; pilog (||oi||w). This need not be true for arbitrary monotonic functions of ||p||w but it is
easy to see that it follows from the concavity of log and ||p||w > ¥; pilloil|w- O
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From equation (7.1.1) this monotone is additive in the sense,
M(p@0) =M (p)+ A (0).

Beyond its intuitive appeal, additivity is a nice feature for a monotone to have because it
makes the associated bound on distillation efficiency take an especially nice form. How
many copies n of a resource magic state p are required to distill m copies of a magic state ¢?
Suppose we have a stabilizer protocol A (p*") — 0; with probability p;, then the monotone
condition combined with additivity shows:

Y pid (01) < nt (p).

Taking 0p = 0 and pg = p, the above discussion lets us see:

Theorem 22. Suppose A is a stabilizer protocol that consumes resource states p to produce m copies

of target state o, succeeding probabilistically. Any such protocol requires at least E [n] > nggg

copies of p on average.

Proof. Suppose A (p®¥) = ¢®™ with probability p. The fact that the mana is an additive
magic monotone implies:

ko )
kot (p) > pmtl (0) = Ezmt///(a)

Letting | be the number of times we must run the protocol to get a success we have n = kI
and,

from which it follows that E [n] = % > m/;l/gg % O

We can only bound the average number of copies required because the monotone is only
non-increasing on average under stabilizer operations.

Most currently known magic state distillation protocols are built around "primitive” distil-
lation protocols that consume k input states to produce a single output: Aprimitive (p?k) —
p1. If p1 is not adequately pure then the protocol Apimitive is repeated k times to produce
p?k and this is consumed by the primitive protocol to produce an output state with higher
purity, Aprimitive (pi@k> — p2. The primitive distillation protocol is concatenated in this fash-
ion until a final output with the required purity is reached. The bound we have derived
here can be applied to the analysis of either the primitive protocol or the effective protocol
that maps p?k’ — p;, where [ is the number of concatenations of the primitive protocol.

Indeed, this bound covers a broader set of protocols than it might first appear. One might
have expected to do better by “recycling” the output states of the failed protocols. For
instance, if

7

A (p®k> @™  with probability p
T with probability 1 — p
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then one expects to reduce the overhead of the total number of copies p required by in-
troducing a second stabilizer protocol to be invoked whenever the first protocol produces
T

£ (T ® p®k,> = ¢®" with probability 4.

However, by just combining the two steps we have a new protocol A <p®(k+k,)> = gom

succeding with probability 7 = p + (1 — p) g and our theorem applies.

Computing the mana of a quantum state is straight forward: we find the Wigner function
by taking the trace of p with the d*> phase space point operators and compute log (||| w)-
This means that the mana provides a simple way to numerically upper bound the efficiency
of distillation protocols, fulfilling the major promise of this chapter.

7.2 UNIQUENESS OF SUM NEGATIVITY

Quantifying the magic of a state by the negativity in its Wigner representation is an intu-
itively appealing idea, but it is not clear that the sum of the negative elements is the best way
to do this. For example, we might have instead looked at the maximally negative element
of the Wigner function, maxneg (p) = — min, W, (u). It is not immediately obvious that the
sum negativity is a better way to quantify the magic of a quantum state than the maximal
negativity just defined. It turns out that the maximal negativity is not a magic monotone
so it is inappropriate a measure of usefulness for stabilizer computation. In fact, we will
now show that any magic monotone that is determined solely by the values of the negative
entries of the Wigner function (and in particular not by the positions in phase space of the
negative entries) can be written as a function of only the sum negativity.

The reason that the maximally negative entry is not a magic monotone is that it is not in-
variant under composition with stabilizer states. Suppose we have some resource state p and
we compose it with the maximally mixed state on a qudit I;/d, then maxneg (p ® I;/d) =
— miny, W, (1) - Wy/4(v) = —min, o W, (u) - dl—Z = maxneg (p) /d? so this function can de-
crease under composition with stabilizer states and thus can increase under partial trace: it
is a poor measure of the amount of resource in p. The requirement that magic monotones
must be invariant under composition with arbitrary stabilizer states is an extremely strong
one; it forms the backbone of our proof of the uniqueness of the sum negativity.

Theorem 23. Assume M (p) is a function on quantum states that satisfies the following conditions:
1. M (p) is a magic monotone, 2. M (p) is determined only by the negative values of the Wigner
function and 3. M (p) is invariant under arbitrary permutations of discrete phase space (that is,
even under permutations that do not correspond to quantum transformations). Then M (p) may be
written as a function of only sn (p).

Proof. Consider two quantum states p and p’ that have Wigner representations with different
negative entries but sn (p) = sn(p’). The idea is to construct stabilizer ancilla states A and
A" such that p® A and p’ ® A’ have the same negative Wigner function entries. In this
case conditions 2 and 3 imply M (p® A) = M (p’ ® A’) and since magic monotones are
invariant under composition with stabilizer states this means M (p) = M (¢’), i.e., M (p)
is entirely determined by the sum negativity. For details see 7.7.2. O
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For our proof of Theorem 23 to succeed it is critical that the value of the monotone does
not depend on the locations of the negative entries. All magic monotones must be invariant
under Clifford unitaries, M (UpU") = M (p) VU € Cpn, and these operations correspond
to permutations of the phase space. Thus the monotone condition already implies invari-
ance under a subset of possible permutations (namely those that preserve the symplectic
inner product). However, we require invariance under arbitrary permutations and there is
no compelling reason to expect magic monotones to have this feature in general. It is not
clear whether this additional assumption was really necessary; it was introduced because
actually working with only the symplectic transformations is extremely challenging. It re-
mains an interesting open problem to either prove uniqueness without this assumption or
give a counterexample in the form of a magic monotone that is determined by the nega-
tive entries of the Wigner representation and does depend on their position. Even if such
a monotone is found Theorem 23 is useful because it at least shows that sum negativity
is the unique “simple” monotone, in the sense that its value does not depend on the de-
tailed symplectic structure of phase space. Simplicity of computation is one of our primary
motivations for the study of Wigner function monotones so this is a significant advantage.

In Chapter 6 we showed that (the regularization of) any monotone satisfying a certain nat-
ural asymptotic condition uniquely specifies the rate at which asymptotic interconversion
of resource states is possible. Since the mana is additive it is clearly equal to its own reg-
ularization. Thus if it satisfied the condition given by (6.3.1) we would be able to compute
the conversion rates explicitly. Typically it is usually a stronger property that is demanded:
asymptotic continuity of the monotone. In 7.7.3 we show that the mana is not asymptoti-
cally continuous. However, our counter example leaves open the possibility that the weaker
condition actually required by the theorem holds. It would be very exciting to either prove
or disprove this.

7.3 NUMERICAL ANALYSIS OF MAGIC STATE DISTILLATION PROTOCOLS

To illustrate the use of mana in the evaluation of magic state distillation protocols we have
computed the input and output mana of single steps of several (qudit) magic distillation
protocols from the literature over a large parameter range. Figures 7.3.1 and 7.3.2 present
qutrit codes from [2] and [11] respectively. Figure 7.3.3 presents a ququint (d = 5) code
from [11]. Notice that none of the protocols come close to meeting the mana bound, which
is illustrated as a red line in all three figures.

7.4 THE QUTRIT CASE

To build some intuition we compute the qutrit states with maximal sum negativity. Since,

sn(p) = — ), Tr(pAs)
wTr(pA,)<0

= —Tr (p Z Au> ,
wTr(pAy,)<0
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Figure 7.3.1: Efficiency of the [5,1,3] qutrit code of [2]. We generate 50000 inputs of the form
pin = (1 —p1—p2) |[Hi)(H+| + p1|H-)}H-| + p2|H;)(H;|, where this is the form pj,
takes after the twirling step of the protocol. The mana of the 5 input states is com-
puted and plotted against the effective mana output following one round of the pro-
tocol, E [# (pout)] = Pr (protocol succeeds) - 4 (pout) . We used p; €r [0,0.4] and
p2 €r [0,0.3] and the twirling basis states are the eigenstates of the qutrit Hadamard
operator[2], with eigenvalues {1, —1,1}..

it is easy to see that the states with maximal sum negativity must be eigenstates of operators
Y uecs Ay where S is some subset of the discrete phase space. An exhaustive search over such
subsets reveals two classes of maximally sum negative states.

1. The Strange states with 1 negative Wigner function entry equal to —1/3. There are
(?) = 9 such states, eg.

S =5

-1

2. The Norrell states with 2 negative Wigner function entries equal to —1/6. There are
(2) = 36 such states, eg.

IN) =~ 21

The maximum value is sn (|S)S|) = sn(|IN)(IN|) = —1/3. An example of both types of
states are plotted in Figure 7.1.1 on page 57.

Geometrically each Strange state lies outside a single face of the Wigner simplex and
each Norrell state lies outside the intersection of two faces, analogous to the qubit T-type
(outside a face) and H-type (outside an edge) states. This intuition is further strengthened
since the Norrell states are also the generalized H-type states of [42] and [2].

Note that the states with maximal resource value do not need to agree between mono-
tones. In particular,

v (1S)S])

o (NN

62



0.6 /
S

VA

Figure 7.3.2: Efficiency of the [8,1,3] qutrit code of [11].We generate 50000 inputs of the form
Pin = (1 —p1— pz) |M0><M0| + p1|M1><M1| + p2|M2><M2|, where this is the form Oin
takes after the twirling step of the protocol. The mana of the 8 input states is com-
puted and plotted against the effective mana output following one round of the pro-
tocol, E [# (pout)] = Pr (protocol succeeds) - 4 (pout) . We used p1 €r [0,0.3], p2 €r

[0,0.3] and the twirling basis states are |[My) = % (e%"i |0) + ed 1) + |2>) , M) =

16 74 8 ri 10 4 14 .
22 (e¥7j0) +edmi 1) +12)), (M) = T (97 j0) +e ¥ 1) + [2)).

Of course this still leaves open the possibility that r%, (|S)(S|) = 1% (|IN)(IN]).

7.5 HOW WELL MOTIVATED IS THE MANA?

Our main motivation for studying the mana is that it can be computed explicitly to give
concrete bounds on the rate at which magic states can be converted. However, one might
suspect that this bound, although non-trivial, is rather arbitrary. For example, it is not clear a
priori if the bound given by Theorem 22 can ever be saturated, or under what circumstances
this might occur. The mana arose very naturally from the discrete Wigner function, but it
is not immediately clear that the discrete Wigner representation is an appropriate tool for
the study of magic theory. In fact, a number of recent results show that the use of discrete
Wigner representation is extremely well motivated in this context.

It is natural to wonder if we could have started with some other notion of the discrete
Wigner function and defined a monotone from that. Recent work[43] has shown this is
not the case. Suppose we have a subtheory of quantum theory consisting of the stabilizer
measurements and some subset of the quantum states, then if there exists a non-contextual
hidden variable theory capable of reproducing the measurement statistics of this subtheory
then every state in the subtheory has positive Wigner representation. That is, the subtheory
with positive Wigner representation is the largest possible subtheory of quantum theory that
includes the stabilizer measurements and admits a non-contextual hidden variable model.
In particular this means that any other choice of discrete Wigner function would have a
positively represented region that is strictly contained within the discrete Wigner function
we use here.
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Figure 7.3.3: Efficiency of the [4,1,2] ququint code of [11].We generate 50000 inputs of the form
pin = (1—p1—p2— ps— pa) IMo) Mol + Lq pilM;)(M;], where this is the form pin
takes after the twirling step of the protocol. The mana of the 4 input states is com-
puted and plotted against the effective mana output following one round of the pro-
tocol, E [.# (pout)] = Pr (protocol succeeds) - 4 (pout) - We used p; €r [0,0.2] and the
twirling basis states are the eigenstates of the CM ququint operator defined at [11].

The subtheory of quantum theory consisting of elements with positive discrete Wigner
representation is the maximal classical subtheory in the sense of non-classicality given by
contextuality. For the purposes of magic state distillation we are more interested in the no-
tion of non-classicality given by universal quantum computation. The results of the first part
of this thesis (also [71, 53]) show that there is an intimate connection: the hidden variable
model afforded by the discrete Wigner function leads naturally to an efficient classical sim-
ulation scheme for quantum circuits with positive Wigner representation. It is not known
if access to any negatively represented state suffices to promote stabilizer computation to
universal quantum computation, but it is at least apparent that the known classical simu-
lation protocols can not be extended to deal with this case. In the context of magic state
computation it is desirable for the magic measures to give an indication of how useful a
state is for quantum computation. In this sense the fact that the mana is not faithful can be
considered a feature rather than a bug.

Although the mana is essentially the unique monotone arising from the negativity of the
Wigner function it is not the only choice of monotone that reflects the geometry of the Wigner
function. In particular, one very natural choice is the relative entropy distance to the set of
states with positive Wigner representation, ryy (0) = ming.w, u)>ovu S (0[|0). It is easy to
check that all of the results of Chapter 6 go through for this new monotone, subject to
obvious modifications in the statement of the theorems.

7.6 DISCUSSION

The major inspiration for the monotones of this chapter was earlier work showing that
states with positive Wigner representation can not be distilled by stabilizer protocols. In the
theory of entanglement it is known that states with positive partial transpose (ppt) can not
be distilled by LOCC protocols[38], and this inspired the introduction of the entanglement
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Identity State

Strange State

Norrell State

Figure 7.4.1: The plane (1 — x — y) 1 4+ x|S)(S| + y|IN)(IN|. The heat map shows the value of the mana.
The dark blue (0 mana) region is the simplex of states with positive Winger representa-
tion. The stabilizer polytope is delineated by a dashed line.

negativity \ (p), an measure of the violation of the ppt, as a measure of entanglement[74].
As with the sum negativity the major advantage of this measure is that it is computable,
allowing for explicit upper bounds on the efficiency of entanglement distillation. The en-
tanglement negativity grows exponentially in the number of resource states, prompting the
definition of an additive variant LN (p) = log (2N (p) + 1) - exactly as in the present case.
Like the mana this measure has the strange feature that is neither convex nor asymptoti-
cally continuous®. The close analogy we have uncovered suggests that it may be possible to
adapt much of the work on entanglement negativity to the magic case: this is an interesting
direction for future work.

There is at least one way in which the sum negativity is better behaved than the entan-
glement negativity. All separable states are local, but it is not known whether all entangled
states are non-local in the sense that they enable violation of a Bell type inequality. In [57]
Peres conjectured that any ppt state should admit a local hidden variable model; proving
or disproving this conjecture is one of the major outstanding problems in the study of en-
tanglement. In our case the equivalent conjecture would be that any state with positive
Wigner representation admits a non-contextual hidden variable model. This is obvious: the
Wigner itself is this non-contextual hidden variable theory! Moreover, recent work[43] has
shown that (at least for small prime dimension) magic states admit such a model only if
they have positive Wigner representation. The easy resolution of this potentially difficult
problem is a consequence of our use of the Wigner function quasi-probability technology.
The quasi-probability techniques used in this chapter have no known analogue in other

1 In fact it is now known that these two features are closely related[59].
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resource theories. Exporting this technology to the study of other resource theories, in par-
ticular entanglement theory, is a fascinating and important problem.

A closely related problem is to determine a qubit analogue for the mana. Because it is pos-
sible to violate a contextuality inequality (eg. a GHZ inequality[33]) using qubit stabilizers
there can be no qubit analogue for the discrete Wigner function (see also [76]). This is be-
cause the discrete Wigner function is a non-contextual hidden variable theory. Nevertheless,
it may be possible to find a computable monotone of a similar flavour.

7.7 PROOFS

This section presents the details of the proofs that were omitted from the main text of the
chapter in order to improve readability.

7.7.1  Wigner function 1 norm is a magic monotone.

The main ingredient in establishing both sn (p) and .# (p) as magic monotones is to show
that ||pllw = ¥, |W, ()] is a magic monotone.

Theorem. |p|lw = ¥, |W, ()| is a magic monotone.
Proof. We need to verify that this function is non-increasing under stabilizer operations:

1. Invariance under Clifford unitaries: the action of Clifford unitaries on the phase space
Wuyeut (”)’ =

of the Wigner function is a permutation, # — Fu. Thus, ||[UpU*||w = ¥,
Y [ Wp (Fu)| = L [W, ()] = [lpllw-

2. Non-increasing on average under stabilizer measurement: we consider computational
basis measurement on the final qudit. The expected value of ||g||w for the post mea-
surement state p is:

E(lplw] = Y Tr(oL®[i)il) [T |i)iloL® i)i]/Tr (pX @ |i)i]) [lw
= LI [i)ileL @ [i)il[lw,
and by writing I ® |i)(i|pI @ |i)(i| as:

L@ [i)ilel @ [i)i] = Y} W, (u,0) (i| Ao |i) - Ay @ |i)i]

= X (ZWP (u,0) (i Ay Ii>> Au®) (; (i| A yi>> Aw

u
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we find,

Ellolw]l = )

i uw

(; (i Aol >> (3 014 \z’>)'

= ZZ(Z; i| Aw i) >|<Zw (u,0) (i| Ao |>>| (. (i| Aw i) >0
< ZZZ| (i| Ay li)|  (.triangle inequality and Z% (i| Aw |i) = 1)
=) (Z(z\AvM) (W, (u,0)] (. (i] Aw i) >0

= lellw () (il Ao li) =1).

i

3. Invariance under composition with stabilizer states: let o be any state with positive
Wigner representation. Then,

le@alw = lellwlellw
= llellw

Since |lo|lw = L, |[We (u)] = £, W, (u) = 1 for positively represented states. All
stabilizer states are positively represented so they are included as a special case.

4. Non-increasing under partial trace: we consider tracing out the final qudit of the
system. If p =Y, . W, (1 ®v) Ay ® Ay then Trp (0) = 1, (L, W, (u®0)) Ay so,

ITrs (p) lw = 3|3 Wp (u,0)

lellw,

IN

by the triangle inequality.
5. Convexity: this is not strictly required, but it’s a nice feature so we note it here.
Ipo+ (1 =p)elw = LlpWe () + (1= p) We ()]
< plelw+ @ =p)lelw,
by the triangle inequality.
O

We next establish that this was essentially the only choice we could have made to (simply)
quantify the magic of a quantum state via its Wigner representation,
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7.7.2  Sum negativity is the unique phase space measure of magic.

Theorem. Assume M (p) is a function on quantum states that satisfies the following conditions:
1. M (p) is a magic monotone, 2. M (p) is determined only by the negative values of the Wigner
function and 3. M (p) is invariant under arbitrary permutations of discrete phase space (that is,
even under permutations that do not correspond to quantum transformations). Then M (p) may be
written as a function of only sn (p).

Proof. Let p have negative entries —Nj, —Np,...,—N; and p’ have negative entries
—N{,—Nj, ..., —N,i,, with

N=sn(p)=) Ni=) N/ =sn(p).
A and A’ will be ancilla states acting on m qudits, with m = max {[log, k]|, [log,k"|}; d is
the size of each qudit.

k/
A = ;(N{/N)\ixi!
k

A" =) (Ni/N)i)il.

i=1

These are valid states since the sum of the N; and N/ is the same. The Wigner function of
A consists of columns labeled by i with entries N/ /rN, with r = d"; each column contains
r such elements. It also has d” — k’ columns filled with zeros. Similarly for A’, except it has
d™ — k zero columns and the non-zero columns have r copies of N;/rN instead.

The negative Wigner function entries for the state p @ A are of the form —NiN]f /TN, for all
i and j. Each of these appears r times. The negative Wigner function entries for p’ ® A’ are
of the form —N/N;/rN, for all i and j. Again, each appears r times. These entries could be
in different locations, but since the function we are calculating does not depend on location
of negative entries, only their values, it follows that

M(p)=Mp®A)=M(p'®A") = M ().

Therefore, M (p) is a function only of sn (p). O
7.7.3  Continuity and Asymptotic Continuity

In practice a perfect conversion is generally not possible, ||A (0®™) — c®"||; > 0 for even
the best choice of stabilizer protocol A. A state 7, that is close enough to ¢®" can be used in
place of ¢®" in information theoretic tasks so a better notion of conversion would be: how
many copies of p are required to produce a state A(p®™) = 7, that is “close enough” to c®".
A natural notion of closeness is |7, — c®"||; < € for some operationally relevant €. It is con-
ceivable that there is some choice of 7, in the epsilon ball around ¢®” such that .Z (7,) <
A (0®"), in which case .# (o) would have little operational significance. Happily, it is not
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difficult to show that .# (p) is continuous with respect to the 1-norm in the sense that for a
sequence of states o, 0x € S (Ha) {llox — oxll}y = 0 = {4 (ox) — # (0x)|}, — 0 so for
a target state on fixed dimension there is some well defined sense in which closeness in the
1-norm implies that the mana of two states is close.

In the case of asymptotic conversion of states this notion needs some massaging. Formally,
let Ay : S (Hymm) — S (Han) be stabilizer protocols satisfying
lim || A, (p®m(”)> ¥ — 0

n—o0

In particular we would like to avoid a situation where lim;, o .# <An <p®m(”)>) <

A ("), which would mean that states that are nearly equivalent (in the one norm) could
have radically different mana values. One way that this requirement can be formalized is
the property of asymptotic continuity. A function is said to be asymptotically continuous if
for sequences py,, 0, on Hy, limy,_ye0 || pn — 00 || — 0 implies:

L fle) -~ f0)
n—oo 1 + log(dim H,,)

— 0.

This notion is the commonly accepted generalization of continuity to the asymptotic regime
and is of particular importance because if the mana could be shown to be asymptotically
continuous it would be the unique measure of magic in the sense of Theorem 16. Unhappily,
it is very difficult to show this. This is mostly because it is false,

Theorem. .# (o) is not asymptotically continuous.

Proof. Define ¢, = (1 —8,) c®" + 6,1, Asymptotic continuity would imply

~ _ Xn
lim 6, 0 — lim 2 (n) = A (")

n—o0 n—co n

— 0,

we will show this need not be the case. Suppose ¢ is negative on points N =
{u: W;(u) < 0}. Let 57 be the state with maximal sum negativity satisfying W, (1) < 0 <=
u € N (i.e. 77 is negative on the same points as ). Then,

Flw = 31 (1 = ) Woen () + 6pWyen ()]

= Y (1~ ) [Woon ()| + 0| Wyen ()]

u
= (1=0.) e [lw + oulln™" lw
= (1 =dn) llellw + dnllnllw-

Here we have exploited that the sign of W,=:(u) and the sign of Wy« (u) are always the
same. Subbing this in,

M (7) —// (") _ %log <(1 = %n) + 0 <W>> '

but by assumption ||77|lw > ||c||w unless ||o||w is maximal for all states that are negative on
N, so the limit need not go to 0. Thus asymptotic continuity can not hold generally. O
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This result is not actually terribly surprising. Suppose we have a preparation apparatus
that always prepares c®". Now further suppose that we rebuild our apparatus so that
with probability &, it will instead produce #%" with a far greater amount of negativity. Then
it is intuitively obvious that we should be able to extract more negativity from the new
apparatus just by sacrificing a few copies of the output state to determine whether we have
produced o or 7. Of course as n goes to infinity this will only work if 6, goes to zero slowly
enough, but this argument does clarify the physical irrelevance of asymptotic continuity.

Essentially, asymptotic continuity fails because it is possible that access to a very large
amount of resource, even with small probability, can dramatically improve our preparation
procedure. Notice that the opposite is not (obviously) true: if our machine fails with a very
small probability this does not make it useless. Indeed, if we had a promise of the form
0n = (1—206)0®" + 6n®" then we could just sacrifice some small number of registers to
check that that the output state was in fact c®".
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Part II1

CONCLUDING THOUGHTS



In this thesis we have introduced the resource theory of magic, showing how the tools of
resource theories can be applied to study the extra resources required to promote stabilizer
computation to universal quantum computation. Further, we have established negativity of
the discrete Wigner function as a resource for quantum computation in this paradigm by
showing both that negativity is necessary for quantum computational speedup and that it
gives a quantitative measure of how useful a state is for promoting stabilizer computation to
universal quantum computation. We have thus demonstrated a precise relationship between
the traditional, qualitative notion of “quantumness” given by negative quasi-probability
representation and the modern, concrete notion given by computational speedup.

We have given an explicit simulation protocol for quantum circuits using stabilizer op-
erations acting on states with positive discrete Wigner representation; this shows that for
systems of power of odd prime dimension a necessary condition for computational speedup
is negativity of the discrete Wigner representation of the inputs. This result is immediately
relevant in the context of magic state distillation, where it shows that a necessary condition
for distillability is negative discrete Wigner representation of the ancilla preparation. We
have also shown that the phase space point operators defining the discrete Wigner function
correspond to a privileged set of facets of the stabilizer polytope. Together the two results
imply the existence of non-stabilizer resources that do not promote Clifford computation to
universal quantum computation; and in particular this establishes the existence of bound
states for magic state distillation, or bound magic states.

By casting magic state computation as a resource theory we have been able to quantify
how useful a quantum state is for promoting stabilizer computation to universal quantum
computation. The key step here is the introduction of magic monotones: functions assigning
quantum states to real numbers that are non-increasing under stabilizer operations. We have
discovered two very interesting magic measures of this type.

The relative entropy of magic, and it’s asymptotic variant, are useful tools for the holistic
study of magic theory. In particular, we saw that (even asymptotically) a non-zero amount
of magic is required to create any magic state establishing, in conjunction with the existence
of bound magic states, that generally the amount of pure magic states that can be extracted
from a mixed magic state is not equal to the amount pure magic states required to create
it: the magic of creation does not equal the magic of distillation. The main motivation for
studying the relative entropy of magic was that its asymptotic regularization is in some
sense a unique measure of magic. However, as we have seen, this is not a special feature of
the relative entropy of magic but a (potentially) common feature among magic monotones.
Indeed, the relative entropy of magic has some serious drawbacks. Foremost among these
are the lack of a closed form expression and that it is subadditive, even for pure magic
states. The combination of these two irritants implies that computing the relative entropy
of magic generally requires a numerical search that is computationally infeasible.

To address this short coming we introduced the mana, a computable monotone. We have
shown this monotone has the appealing feature that it is additive, # (p® ) = # (p) +
A (o). As a consequence we may give explicit lower bounds on the number of resource
states p required to produce m copies of a resource state ¢. This is an explicit, absolute upper
bound on the efficiency of magic state distillation protocols. This monotone is in some sense
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the unique measure of magic arising from the negativity of the discrete Wigner function.
Since the discrete Wigner function itself is essentially the unique classical representation
for the stabilizer formalism[43] there is some reason to believe that the mana has some
privileged status among all possible monotones. Determining if and how this intuition can
be formalized is a very important open problem.

The resource theory of quantum (magic state) computation that we have developed here
is closely analogout to the resource theory of quantum communication, i.e., entanglement
theory. It is known that there are slightly entangled mixed states that can not be consumed
by distillation routines to produce highly entangled states[38]. The non-stabilizer but pos-
itively represented quantum states are exactly analogous to these bound entangled states.
Similarly, it is known that for pure states large amounts of entanglement are required for
quantum computational speedup[75], but for mixed states this is still an open question.
However, for negative discrete Wigner representation there is no relevant distinction be-
tween mixed states and pure states.

There are a number of directions for future work, many of which have already been dis-
cussed in the main body of the text. Other resource theories admit a wealth of monotones.
This is especially true in the theory of entanglement where a large number of entanglement
measures have been developed to solve specialized problems. One obvious direction for
future work is the creation of additional magic monotones to address particular problems
in magic resource theory. It is also important to develop the parts of the resource theory
that are not encapsulated by magic monotones. For example, analogues of entanglement
catalysis and activation are discussed in [10]. The most urgent outstanding problem of this
type is to find a criterion for determining if it is possible to (asymptotically) reversibly con-
vert between particular resource states using stabilizer operations. Concretely, it is always
possible to use LOCC to reversibly convert pure bipartite entangled states but this is not
true for tripartite entanglement; we would like to know which situation holds for magic
theory. Even a partial result of this type would be very powerful, offering deep insight into
the structure of stabilizer protocols.

Much of this work has been showing that much of the technology from other resource
theories can be imported to the resource theory of magic. It is very interesting to ask if we
can go in the other direction and export the insights of magic theory to the study of generic
resource theories and quantum theory broadly. One obvious extension of this type is to the
setting of linear optics, which is the infinite dimensional analogue of the stabilizer formal-
ism. Some progress on this front has already been made in [46]. This paper examined the
volume of the negative region of the infinite dimensional Wigner function as a measure of
non-classicality but missed the resource theoretic connection. Furthermore, the simulation
result of Chapter 4 has already been extended to the linear optical regime[73, 53].

The most interesting outstanding question raised by this work is whether the ability
to prepare any state with negative discrete Wigner representation is sufficient to promote
Clifford computation to universal quantum computation. In prime dimension the discrete
Wigner construction is the unique choice of quasi-probability representation covariant under
the action of Clifford operations [34]. On this basis we conjecture that the condition here
is sufficient. From the work of Campbell, Anwar and Browne [11] it is already known that
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access to any non-stabilizer pure state (or equivalently any negatively represented pure state)
suffices. If this conjecture is true then this implies an equivlance of two previously unrelated
concepts of non-classicality, namely, quantum computational speedup and negative quasi-
probability representation.
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