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Abstract

The thesis studies the martingale properties, probabilistic methods and effi-

cient unbiased Monte Carlo simulation methods for various time-homogeneous

diffusion models commonly used in mathematical finance. Some of the pop-

ular stochastic volatility models such as the Heston model, the Hull-White

model and the 3/2 model are special cases. The thesis consists of the

following three parts:

Part I of the thesis studies martingale properties of stock prices in

stochastic volatility models driven by time-homogeneous diffusions. We

find necessary and sufficient conditions for the martingale properties. The

conditions are based on the local integrability of certain deterministic test

functions.

Part II of the thesis studies probabilistic methods for determining the

Laplace transform of the first hitting time of an integral functional of a

time-homogeneous diffusion, and pricing an arithmetic Asian option when

the stock price is modeled by a time-homogeneous diffusion. We also con-

sider the pricing of discrete variance swaps and discrete gamma swaps in

stochastic volatility models based on time-homogeneous diffusions.

Part III of the thesis studies the unbiased Monte Carlo simulation of

option prices when the characteristic function of the stock price is known

but its density function is unknown or complicated.
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Chapter 1

Outline of the Thesis

The following is the outline of the thesis with descriptions of each individ-

ual chapter.

Part I: Martingale properties in time-homogeneous diffusion

models

Chapter 2: Martingale properties in correlated stochastic volatil-

ity models

This chapter generalizes the results in Mijatović and Urusov (2012c) to

the arbitrary correlation case and proposes easy-to-check necessary and

sufficient conditions for the martingale properties of stock prices in corre-

lated stochastic volatility models, where the stochastic variance is modeled

by a time-homogeneous diffusion. Our contribution to this literature is

first to unify and generalize the results on convergence or divergence of

integral functionals of time-homogeneous diffusions, and also to provide

unified new proofs to the main results in Mijatović and Urusov (2012c)

without the use of the concept separating times introduced by Cherny and

Urusov (2004). Results in this chapter are applied to verifying martingale

properties in four popular correlated stochastic volatility models, are con-

sistent with and complement the literature.
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Part II: Probabilistic pricing methods

Chapter 3: First hitting times of integrated time-homogeneous

diffusions

This chapter studies properties of the first hitting time of the integral

functional of a time-homogeneous diffusion to a fixed level. We provide a

unified probabilistic approach with an alternative proof to the main results

in Metzler (2013). The links between the first hitting times and integral

functionals of diffusions are established, and the relevant literature is con-

nected. In the last part of the chapter, we show the link between the pricing

of an arithmetic Asian option and the first hitting time of the integral func-

tional of a time-homogeneous diffusion, and we give an analytical formula

for the price of an arithmetic Asian option in the Black-Scholes setting. We

also provide financial motivations behind the study of this first hitting time.

Chapter 4: Prices and asymptotics of some discrete volatility

derivatives

This chapter is based on the publication Bernard and Cui (2013) forth-

coming in the Applied Mathematical Finance. It presents explicit expres-

sions for fair strikes of discretely sampled and continuously sampled vari-

ance swaps in the Heston, the Hull-White, the Schöbel-Zhu, and the mixed

exponential jump diffusion models. They are consistent with the literature,

more explicit (as there are no sums involved in the discrete fair strikes),

and easier to use. Asymptotic expansions are new and consistent with

theoretical results in the recent literature. In the Heston model, we also

derive a new closed-form formula for a special type of discrete gamma swap,

and obtain the asymptotics of its fair strike with respect to key parameters.

Part III: Efficient unbiased Monte Carlo simulation methods

and applications

2



Chapter 5: Nearly exact option price simulation using character-

istic functions

This chapter is based on the publication Bernard, Cui and McLeish

(2012) in the International Journal of Theoretical and Applied Finance.

We propose a new approach to perform a nearly unbiased simulation us-

ing inversion of the characteristic function. As an application, we are able

to give unbiased estimates of the prices of forward starting options in the

Heston model and of continuously monitored Parisian options in the Black-

Scholes framework. This method of simulation can be applied to a problem

for which the characteristic function is known but the corresponding prob-

ability density function is complicated.

The contribution here is that we can unbiasedly simulate directly from

the characteristic function of (for example) the log stock price. In contin-

uous time models used in finance, it is usually the case that the character-

istic function of the log stock price is given. Examples are affine processes

(Duffie, Pan and Singleton (2000)), and time-changed Lévy process (Carr

et al (2003), Carr and Wu (2004)). Applications of the results can be in

the simulation of exotic option prices when the stock prices are modeled

as time-changed Lévy processes.

3



Part I

Martingale properties in

time-homogeneous diffusion

models

4



Chapter 2

Martingale properties in

correlated stochastic volatility

models

5



2.1 Introduction

There are several recent papers proposing sufficient conditions (Lions and

Musiela (2007)) or necessary and sufficient conditions (Blei and Engel-

bert (2009), Mijatović and Urusov (2012c), Mijatović, Novak and Urusov

(2012)) to verify when the stochastic exponential of a continuous local

martingale is a true martingale or a uniformly integrable martingale. A

relevant application in finance is to check if the discounted stock price is a

true martingale in a general time-homogeneous stochastic volatility model

with arbitrary correlation.

This problem has been extensively studied and dates back from Gir-

sanov (1960), who posed the problem of deciding whether a stochastic expo-

nential is a true martingale or not. Gikhman and Skorohod (1972), Liptser

and Shiryaev (1972), Novikov (1972) and Kazamaki (1977) provided suf-

ficient conditions for the martingale property of a stochastic exponential.

Novikov’s criterion is easy to apply in practical situations, but for concrete

models in mathematical finance it may not always be verified. In the setting

of Brownian motions, refer to Kramkov and Shiryaev (1998), Cherny and

Shiryaev (2001) and Ruf (2013b) for improvements of criteria of Novikov

(1972) and Kazamaki (1977). For affine processes, similar questions have

been considered in Kallsen and Shiryaev (2002), Kallsen and Muhle-Karbe

(2010), and Mayerhofer, Muhle-Karbe, and Smirnov (2011). In Kotani

(2006) and Hulley and Platen (2011), they obtain necessary and sufficient

conditions for a one-dimensional regular strong Markov continuous local

martingale to be a true martingale. In the strand of stochastic exponen-

tials based on time-homogeneous diffusions, Engelbert and Schmidt (1984)

provided analytic conditions for the martingale property, and Stummer

(1993) provided further analytic conditions when the diffusion coefficient

is the identity. In the context of stochastic volatility models, Sin (1998),

Andersen and Piterbarg (2007), and Lions and Musiela (2007) provided

easily verifiable conditions. Blanchet and Ruf (2012) describe a method

to decide on the martingale property of a non-negative local martingale

based on weak convergence considerations. A recent paper by Karatzas

6



and Ruf (2013) provides the precise relationship between explosions of one-

dimensional stochastic differential equations and the martingale properties

of related stochastic exponentials. For an overview of stochastic exponen-

tials and related problem of martingale properties, refer to Rheinländer

(2010) and the references therein.

This chapter makes two contributions to the current literature. First,

we provide a complete classification of the convergence or divergence prop-

erties of integral functionals of time-homogeneous diffusions based on the

local integrability of certain deterministic test functions. Theorem 2.3.1

unifies and generalizes the work of Salminen and Yor (2006) and Khosh-

nevisan, Salminen, and Yor (2006) under weaker assumptions. Second,

we extend some results in Mijatović and Urusov (2012b, 2012c) from the

case ρ = 1 to the case of arbitrary correlation (see Proposition 2.4.1 and

Proposition 2.4.2). In our proofs, we do not make use of the concept of

separating times introduced by Cherny and Urusov (2004).

In this chapter, the new results, which contribute to the current lit-

erature, are as follows: Corollary 2.2.1, Proposition 2.2.3, Lemma 2.2.4,

Proposition 2.2.4, Proposition 2.2.5, Lemma 2.3.1, Lemma 2.3.2, The-

orem 2.3.1, Corollary 2.3.1, Theorem 2.3.2, Corollary 2.3.2, Proposition

2.4.1, Proposition 2.4.2, Proposition 2.4.3, Proposition 2.4.4, Proposition

2.4.5, Proposition 2.5.1, Proposition 2.5.2, Proposition 2.5.3, Lemma 2.5.1,

Proposition 2.5.4, Proposition 2.5.5, Proposition 2.5.6 Proposition 2.5.7,

Proposition 2.5.8, Proposition 2.5.9, Proposition 2.5.10, Proposition 2.5.11,

Proposition 2.5.12, and Theorem 2.6.1.

The chapter is organized as follows. Section 2.2 presents some techni-

cal tools from Ruf (2013b) using our notation. Section 2.3 presents the

main result of the chapter, which is a complete classification of the conver-

gence or divergence properties of integral functionals of time-homogeneous

diffusions. Section 2.4 shows the application of our main result to general-

izing some results in Mijatović and Urusov (2012b, 2012c) to the arbitrary

correlation case with new proofs. Section 2.5 studies in detail the mar-

tingale properties in four popular stochastic volatility models. Section 2.6

7



illustrates some key results from stochastic time-change. Section 2.7 pro-

vides an alternative proof to the Engelbert-Schmidt type zero-one law for

a time-homogeneous diffusion. Section 2.8 recalls the statement and proof

of a result from Karatzas and Shreve (1991). Section 2.9 concludes the

chapter.

2.2 Necessary and sufficient conditions for

the martingale property

2.2.1 Probabilistic setup

Denote the state space of the variance process Y = (Yt)t∈[0,∞) as J =

(�, r),−∞ � � < r � ∞, and set J̄ = [�, r]. Assume that Y satisfies the

following SDE

dYt = μ(Yt)dt+ σ(Yt)dWt, Y0 = x0, (2.1)

where μ, σ : J → R are Borel functions, x0 ∈ R, and assume that μ, σ

satisfy the Engelbert-Schmidt conditions

∀x ∈ J, σ(x) �= 0, and
1

σ2(·) ,
μ(·)
σ2(·) ∈ L1

loc(J). (2.2)

L1
loc(J) denotes the class of locally integrable functions, i.e. the functions

J → R that are integrable on compact subsets of J .

Now we rephrase Definition 5.1, p329, Karatzas and Shreve (1991) (ac-

commodating the possibility of exploding solutions) using our notation.

Definition 2.2.1. A weak solution up to an explosion time of equation

(2.1) is a triple (Y,W ), (Ω,G, Q), {Gt} where

(i) (Ω,G, Q) is a probability space, and {Gt} is a filtration of sub-σ-fields

of G satisfying the usual conditions;

(ii) Y = {Yt,Gt; 0 � t < ∞} is a continuous, adapted, R ∪ {±∞}-

8



valued process with |Y0| < ∞ a.s., and {Wt,Gt; 0 � t < ∞} is a standard

one-dimensional Brownian motion;

(iii) with ζn = inf{t ∈ [0,∞) : |Yt| � n}, we have

Q

(∫ t∧ζn

0

(|μ(Ys)|+ σ2(Ys))ds < ∞
)

= 1; ∀0 � t < ∞ (2.3)

and

(iv)

Q

(
Yt∧ζn = Y0 +

∫ t

0

μ(Ys)1s�ζnds+

∫ t

0

σ(Ys)1s�ζndWs; ∀0 � t < ∞
)

= 1

(2.4)

valid for every n � 1.

We refer to ζ = lim
n→∞

ζn as the explosion time for Y .

The Engelbert-Schmidt condition (2.2) guarantees that the SDE (2.1)

has a unique in law weak solution as described in Definition 2.2.1 that

possibly exits its state space J (see Theorem 5.15, p341, Karatzas and

Shreve (1991)). From Definition 2.2.1, it is equivalent to say that there

exists a triple (Y,W ), (Ω,G, P ),Gt such that Y solves the SDE

dYt = μ(Yt)1t<ζndt+ σ(Yt)1t<ζndWt, Y0 = x0, (2.5)

for all ζn defined in Definition 2.2.1.

We can similarly define a weak solution for one stochastic differential

equation with arbitrary state space (l, r). Denote the possible exit time1

of Y from its state space by ζ (as in Definition 2.2.1), i.e. ζ = inf{u >

0, Yu �∈ J}, P -a.s., which means that on {ζ = ∞} the trajectories of Y do

not exit J , and on {ζ < ∞}, lim
t→ζ

Yt = r or lim
t→ζ

Yt = �, P -a.s. Y is defined

such that it stays at its exit point, which means that � and r are absorbing

boundaries. The following terminology will be used: “Y may exit the state

1Refer to Karatzas and Ruf (2013) for a detailed study of the distribution of this
exit time in a one-dimensional time-homogeneous diffusion setting.
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space J at r” means P (ζ < ∞, lim
t→ζ

Yt = r) > 0.

Then we may enlarge the space and filtration to introduce a Brown-

ian motion W (2) independent of W . Let Z = (Zt)t∈[0,∞) denote the (dis-

counted) stock price, and define

Zt = exp

{
ρ

∫ t∧ζ

0

b(Yu)dWu +
√

1− ρ2
∫ t∧ζ

0

b(Yu)dW
(2)
u − 1

2

∫ t∧ζ

0

b2(Yu)du

}
, t ∈ [0,∞),

(2.6)

where b : J → R is a Borel function, and the constant correlation satisfies

−1 � ρ � 1. Denote W (1) = ρW +
√
1− ρ2W (2), we have

Zt = exp

{∫ t∧ζ

0

b(Yu)dW
(1)
u − 1

2

∫ t∧ζ

0

b2(Yu)du

}
, t ∈ [0,∞), (2.7)

and it is easy to verify that Z and Y satisfy the following system of SDEs

dZt = Ztb(Yt)dW
(1)
t , Z0 = 1,

dYt = μ(Yt)dt+ σ(Yt)dWt, Y0 = x0, (2.8)

Now we define the space accommodating all four processes (Y, Z,W,W (1)).

Let Ω1 := C((0,∞), J̄) be the space of continuous functions ω1 :

(0,∞) → J̄ that start inside J and can exit, i.e. there exists ζ(ω1) ∈ (0,∞]

such that ω1(t) ∈ J for t < ζ(ω1) and in the case ζ(ω1) < ∞ we have ei-

ther ω1(t) = r for t � ζ(ω1) (hence also lim
t→ζ(ω1)

ω1(t) = r) or ω1(t) = � for

t � ζ(ω) (hence also lim
t→ζ(ω1)

ω1(t) = �).

Let Ω2 := C((0,∞), [0,∞]) be the space of continuous functions ω2 :

(0,∞) → [0,∞] with ω2(0) = 1 that satisfy ω2(t) = ω2(t∧T0(ω2)∧T∞(ω2))

for all t � 0, where T0(ω2) and T∞(ω2) denote the first hitting times of 0

and ∞ by ω2.

Let Ω3 = C([0,∞), (−∞,∞)) be the space of continuous functions

ω3 : [0,∞) → (−∞,∞) with ω3(0) = 0.

Let Ω4 = C([0,∞), (−∞,∞)) be the space of continuous functions

10



ω4 : [0,∞) → (−∞,∞) with ω4(0) = 0.

Define the canonical process

(Yt(ω1), Zt(ω2),Wt(ω3),W
(1)
t (ω4)) := (ω1(t), ω2(t), ω3(t), ω4(t))

for all t � 0, and let Ft denote the usual right continuous filtration gener-

ated by the canonical process. The σ-field is F =
∨

t∈[0,∞)Ft. Note that

T0 and T∞ are stopping times adapted to F and either or both can take

the value ∞. Also ω2 is continuous on [0, T∞(ω2)).

From now on, processes are defined in this filtered space (Ω,F , (Ft)t∈[0,∞)).

Let P be the probability measure induced by the canonical process on the

space (Ω,F).

Define the Borel set B(R) as the smallest σ-algebra that contains the

open intervals of R. In what follows, λ(.) denotes the Lebesgue measure

on B(R). In the following, assume that2 λ(x ∈ (�, r) : b2(x) > 0) > 0, and

assume the following local integrability condition

∀x ∈ J, σ(x) �= 0, and
b2(·)
σ2(·) ∈ L1

loc(J). (2.9)

Remark 2.2.1. In the literature (e.g. Andersen and Piterbarg (2007)),

there is a more general class of stochastic volatility models where the (dis-

counted) stock price has non-linear diffusion coefficients in Z. For example,

a general model is as follows

dZt = Zα
t b(Yt)1t∈[0,ζ)dW

(1)
t , Z0 = 1,

dYt = μ(Yt)1t∈[0,ζ)dt + σ(Yt)1t∈[0,ζ)dWt, Y0 = x0,

whereW
(1)
t andWt are standard Ft-Brownian motions, with E[dW

(1)
t dWt] =

ρdt. ρ is the constant correlation coefficient and −1 � ρ � 1. Here

1 � α � 2. The difficulty of dealing with this model lies mainly in obtain-

ing an explicit representation of Z in terms of functionals of only Y . Thus

2Note that this is in the same condition as in Mijatović and Urusov (2012b, 2012c),
and Cherny and Urusov (2006).
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in this chapter we only focus on model in (2.8).

Lemma 2.2.1. (Mijatović and Urusov (2012c))

If the condition (2.9) holds, then∫ t

0

b2(Yu)du < ∞ P-a.s. on {t < ζ} , t ∈ [0,∞)

Proof. For the proof, refer to p5 of Mijatović and Urusov (2012c). �

Fix an arbitrary constant c ∈ J and introduce the scale function s(.) of

the SDE (2.1) under P

s(x) :=

∫ x

c

exp

{
−
∫ y

c

2μ

σ2
(u)du

}
dy, x ∈ J̄ . (2.10)

Recall the following result from Cherny and Urusov (2006) using our

notation.

Lemma 2.2.2. (Lemma 5.7, p149 of Cherny and Urusov (2006))

Assume the conditions (2.2), (2.9) hold for the SDE (2.1), and s(�) =

−∞, s(r) = ∞. Then
∫∞
0

b2(Yu)du = ∞, P -a.s.

Proof. For the proof, refer to Lemma 5.7, p149 of Cherny and Urusov

(2006). �

2.2.2 Properties of non-negative continuous local mar-

tingales

We now recall some results from Ruf (2013b) concerning non-negative

continuous local martingales, and we apply them in the setting of time-

homogeneous diffusions as in (2.7). Ruf (2013b) does not specify the form of

the continuous local martingale Lt, and in our setting Lt =
∫ t∧ζ
0

b(Yu)dW
(1)
u .

Thus we modify his proofs where appropriate. To cast the setting of Ruf

12



(2013b) into the current notation, the process in (2.7) under P can be

rewritten as Zt = E(Lt) = exp (Lt − 〈L〉t/2) where Lt =
∫ t∧ζ
0

b(Yu)dW
(1)
u is

a continuous local martingale under P .

Lemma 2.2.3. (Lemma 1, Ruf (2013b), case of time-homogeneous diffu-

sions)

Assume the conditions (2.2) and (2.9) for the SDE (2.1). Under P ,

consider a continuous local martingale Lt =
∫ t∧ζ
0

b(Yu)dW
(1)
u , and its quadratic

variation is 〈L〉t =
∫ t∧ζ
0

b2(Yu)du. For a predictable positive stopping time

τ > 0, define Zt = E(Lt), t ∈ [0, τ). Then the random variable Zτ := lim
t↑τ

Zt

exists, is non-negative and satisfies{∫ τ∧ζ

0

b2(Yu)du < ∞
}

= {Zτ > 0} , P -a.s.

Proof. Consider a sequence of stopping times τn → τ such that Zτn is

a martingale. Then by the submartingale convergence theorem (Theorem

1.3.15, p17, Karatzas and Shreve (1991)), Zτn = exp(Lτn − 1
2
〈L〉τn) con-

verges almost surely to a non-negative random variable Zτ = exp(Lτ −
1
2
〈L〉τ ).
On the set {〈L〉τ < ∞}, since

ln(Zτ ) = Lτ − 1

2
〈L〉τ = 〈L〉τ

(
Lτ

〈L〉τ − 1

2

)
,

it follows from the Dambis-Dubins-Schwartz theorem (Ch.V, Theorem 1.6,

Revuz and Yor (1999)), Lt

〈L〉t =
B〈L〉t
〈L〉t , t ∈ [0, τ ] for some Brownian motion

B on an extended probability space and it is therefore finite, P -a.s.

On the set {〈L〉τ = ∞}, since

ln(Zτn) = Lτn − 1

2
〈L〉τn = 〈L〉τn

(
Lτn

〈L〉τn
− 1

2

)
,

it follows again from the Dambis-Dubins-Schwartz theorem, Lτn

〈L〉τn =
B′

〈L〉τn
〈L〉τn ,

for some Brownian motionB′ on an extended probability space, and
B′

〈L〉τn
〈L〉τn →

13



0, P -a.s. as n → ∞ from the law of iterated logarithm (Theorem 2.9.23,

p112, Karatzas and Shreve (1991)). Then ln(Zτn) = 〈L〉τn
(

Lτn

〈L〉τn − 1
2

)
→

−∞, P -a.s. as n → ∞, so that Zτ = 0, P -a.s.

Therefore Zτ = 0, P -a.s. on the set {〈L〉τ = ∞}, and Zτ > 0, P -a.s.

on the set {〈L〉τ < ∞}. This completes the proof.

As an application of Lemma 2.2.3, we have the following result.

Corollary 2.2.1. Assume3 conditions (2.2) and (2.9) for the SDE (2.1).

Under P , with the process Z defined in (2.7), for t ∈ [0,∞)

{Zt = 0} =

{
ζ � t < ∞,

∫ ζ

0

b2(Yu)du = ∞
}
, P -a.s.

Proof. From Lemma 2.2.3,

{Zt = 0} =

{∫ t∧ζ

0

b2(Yu)du = ∞
}
, P -a.s.

From Lemma 2.2.1,
∫ t

0
b2(Yu)du < ∞ P -a.s. on the set {t < ζ, t ∈ [0,∞)}.

Therefore

{Zt = 0} =

{
ζ � t < ∞,

∫ ζ

0

b2(Yu)du = ∞
}
, P -a.s.

This completes the proof.

Note that similar results as Lemma 2.2.3 and Corollary 2.2.1 also hold

under P̃ with a suitable stochastic exponential E(.).

Definition 2.2.2. We say that a stopping time τ is bounded, if there exists

some 0 � t0 < ∞, such that τ � t0.

Proposition 2.2.1. (Theorem 2, Ruf (2013b), case of time-homogeneous

diffusions4)

3This is stated after equation (7) on p4, Mijatović and Urusov (2012c), and after
equation (2.4) on p228, Mijatović and Urusov (2012b). Here we provide a proof.

4Ruf (2013b)’s result applies to continuous non-negative local martingales, and thus
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On the space (Ω,F , (F)t∈[0,∞)), with the process Z defined in (2.7),

assume the conditions (2.2) and (2.9). Then we have

(1) There exists a unique probability measure P̃ on the same space

such that, for any bounded stopping time ν and for all non-negative Fν-

measurable random variables S

EP̃

[
1

Zν
S1∞>Zν>0

]
= EP [S1Zν>0] , (2.11)

where we define 1
Zν
1∞>Zν>0 = 0 on {Zν = 0} from the usual convention.

(2) Under P , for t ∈ [0, T0), define Lt :=
∫ t∧ζ
0

b(Yu)dW
(1)
u , and it is

a continuous P -local martingale. Then under P̃ , for t ∈ [0, T∞), we have

that L̃∗
t := Lt − 〈L〉t =

∫ t∧ζ
0

b(Yu)dW
(1)
u − ∫ t∧ζ

0
b2(Yu)du is a continuous

P̃ -local martingale. Here T0 and T∞ are defined in Section 2.2.1 as the

first hitting times to 0 and ∞ by Z.

(3) Under P̃ , for t ∈ [0, T∞)

1/Zt = E(−L̃∗
t ) = exp

{
−
∫ t∧ζ

0

b(Yu)dW
(1)
u +

1

2

∫ t∧ζ

0

b2(Yu)du

}
.

Proof. For statement (1), for details of the proof, refer to the proofs

of Theorem 2 in Ruf (2013b), and Theorem 2.1 in Carr, Fisher and Ruf

(2013).

For statement (2), we need to show that L̃∗
t =

∫ t∧ζ
0

b(Yu)dW
(1)
u −∫ t∧ζ

0
b2(Yu)du is a P̃ -local-martingale on [0, T∞). Denote Rn as the first

hitting time of Z to the level n, and set τn = Rn ∧ n for all n ∈ N.

Let Un denote the first hitting time of 1
n
by Z. This is done by show-

ing that, with τn ∧ Un the first passage time to either n or 1
n
, L̃∗

t∧τn∧Un
=∫ t∧ζ∧τn∧Un

0
b(Yu)dW

(1)
u − ∫ t∧ζ∧τn∧Un

0
b2(Yu)du is a P̃ -local martingale. This

follows from P̃ ( lim
n→∞

τn ∧ Un = T∞) = 1, the Girsanov theorem (Ch.VIII,

Theorem 1.4 in Revuz and Yor (1999)) and the equivalence of P and P̃ on

to our setting of stochastic volatility models based on diffusions. For non-negative local
martingales, there is a more general result in Theorem 2.1, p6 of Carr, Fisher and Ruf
(2013).
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Fτn∧Un .

For statement (3), under P̃ , for t < T∞

1

Zt

= exp

{
−
∫ t∧ζ

0

b(Yu)dW
(1)
u +

1

2

∫ t∧ζ

0

b2(Yu)du

}
= exp

{
−
∫ t∧ζ

0

b(Yu)dW
(1)
u +

∫ t∧ζ

0

b2(Yu)du− 1

2

∫ t∧ζ

0

b2(Yu)du

}
= E(−L̃∗

t ).

This completes the proof.

Proposition 2.2.2. (Corollary 2, Ruf (2013b), case of time-homogeneous

diffusions)

Assume conditions (2.2) and (2.9), for T ∈ [0,∞), Zt is a P -martingale

for t ∈ [0, T ], i.e. EP [ZT ] = 1, if and only if P̃
(

1
ZT

> 0
)
= 1.

Proof. Denote Rn as the first hitting time of Z to the level n. Define

τn = Rn ∧ n for all n ∈ N. Since P̃ is absolutely continuous with respect

to P on Fτn, we have τn ↑ T∞ both P -a.s. and P̃ -a.s., as n → ∞. For

T ∈ [0,∞), substitute ν = T ∧ τn (note that ν < T∞ both P -a.s. and P̃ -

a.s.) and S = ZT∧τn � 0 for n ∈ N into the equation (2.11) of Proposition

2.2.1

EP̃

[
1

ZT∧τn
ZT∧τn1∞>ZT∧τn>0

]
= EP

[
ZT∧τn1ZT∧τn>0

]
.

Equivalently

P̃

(
1

ZT∧τn
> 0

)
= EP [ZT∧τn1ZT∧τn>0]. (2.12)

Since τn is non-negative and non-decreasing, by the monotone convergence
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theorem taking limits on both sides of (2.12) as n → ∞

P̃

(
1

ZT∧T∞
> 0

)
= EP [ZT∧T∞1ZT∧T∞>0]

= EP [ZT1ZT>0] , since P (T∞ = ∞) = 1,

= EP [ZT ], since EP [ZT1ZT=0] = 0.

Note that ∞ is an absorbing boundary for Z, then ZT∧T∞ = ZT both

P -a.s. and P̃ -a.s. for T ∈ [0,∞). Therefore EP [ZT ] = 1 if and only if

P̃
(

1
ZT

> 0
)
= 1. This completes the proof.

Now we seek to determine the SDE satisfied by Y under P̃ .

Proposition 2.2.3. Assume the conditions (2.2) and (2.9) for the SDE

(2.1). Under P̃ , for −1 � ρ � 1, the diffusion Y satisfies the following

SDE up to ζ

dYt = (μ(Yt) + ρb(Yt)σ(Yt))1t∈[0,ζ)dt+ σ(Yt)1t∈[0,ζ)dW̃t, Y0 = x0.

(2.13)

Proof. Consider the system of SDEs in (2.8), from the Cholesky decom-

position, dW
(1)
t = ρdWt +

√
1− ρ2dW

(2)
t , where W and W (2) are standard

independent Brownian motions under P .

Define for t ∈ [0,∞)

W̃t :=

⎧⎨⎩Wt − ρ
∫ t
0
b(Yu)du, if t < ζ,

Wζ − ρ
∫ ζ
0
b(Yu)du+ β̃t−ζ , if t � ζ,

(2.14)

where β̃ is a standard P̃ -Brownian motion independent of W with β̃0 = 0.

Define ξn = ζ ∧ τn, and consider the process W̃ up to ξn. Since Fξn ⊂
Fτn , it follows from Proposition 2.2.1 that P̃ restricted to Fξn is absolutely

continuous with respect to P restricted to Fξn for n ∈ N. Then from the
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Girsanov Theorem (Ch.VIII, Theorem 1.12, p331 of Revuz and Yor (1999))

Wt − 〈Wt,

∫ t

0

b(Yu)dW
(1)
u 〉

= Wt − 〈Wt, ρ

∫ t

0

b(Yu)dWu〉 − 〈Wt,
√

1− ρ2
∫ t

0

b(Yu)dW
(2)
u 〉

= Wt − ρ

∫ t

0

b(Yu)du.

:= W̃t

is a P̃ -Brownian motion for t ∈ [0, ξn) and n ∈ N.

We first prove a lemma concerning the relative magnitude of ζ and T∞.

Lemma 2.2.4. Assume the conditions (2.2) and (2.9) for the SDE (2.1),

then we have ζ � T0 ∧ T∞, P -a.s. and P̃ -a.s.

Proof. We aim to prove the following four statements:

(i) P (ζ � T∞) = 1,

(ii) P̃ (ζ � T∞) = 1,

(iii) P (ζ � T0) = 1,

and (iv) P̃ (ζ � T0) = 1.

Since P (T∞ = ∞) = 1, statement (i) follows trivially.

For statement (ii), under P̃ , clearly P̃ (ζ � T∞, T∞ = ∞) = 1 follows.

On the set {T∞ < ∞}, we want to apply Lemma 2.2.1, the proof of which

is on p5 of Mijatović and Urusov (2012c). Note that their proof requires

that Y is continuous on the stochastic interval [0, ζ) (which is satisfied in

our setting), and also needs 〈Y, Y 〉t =
∫ t

0
σ2(Yu)du to hold. Note that the

change of measure from P to P̃ does not modify the quadratic variation

of Y , and thus 〈Y, Y 〉t =
∫ t
0
σ2(Yu)du holds both P -a.s. and P̃ -a.s. Given

that the condition (2.9) is satisfied, Lemma 2.2.1 also works for P̃ . Then

P̃

(∫ T∞∧ζ

0

b2(Yu)du < ∞, T∞ < ζ

)
= P̃ (T∞ < ζ).
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Note that by definition P̃ (ZT∞ = ∞) = 1, then

P̃ (T∞ < ζ) = P̃

(∫ T∞∧ζ

0

b2(Yu)du < ∞, T∞ < ζ

)
= P̃

(∫ T∞

0

b2(Yu)du < ∞, T∞ < ζ, ZT∞ = ∞
)

= P̃ (〈L〉T∞ < ∞, T∞ < ζ, ln(ZT∞) = ∞)

= P̃

(
〈L〉T∞ < ∞, T∞ < ζ, ln(ZT∞) = 〈L〉T∞

(
LT∞

〈L〉T∞
− 1

2

)
= ∞

)
= P̃

(
〈L〉T∞ < ∞, T∞ < ζ, ln(ZT∞) = 〈L〉T∞

(
B〈L〉T∞
〈L〉T∞

− 1

2

)
= ∞

)
= 0,

and here the second last equality is due to the Dambis-Dubins-Schwartz

theorem (Ch.V, Theorem 1.6, Revuz and Yor (1999)) for some Brownian

motionB on an extended probability space. The last equality holds because
B〈L〉T∞
〈L〉T∞ is finite P̃ -a.s. on the set {〈L〉T∞ < ∞}.

For statement (iii), clearly P (ζ � T0, T0 = ∞) = 1 holds. On the

set {T0 < ∞}, note that by definition we have {Zt = 0} = {T0 � t < ∞}
under P . From Corollary 2.2.1, under P , we have

{T0 � t < ∞} = {Zt = 0} =

{
ζ � t < ∞,

∫ ζ

0

b2(Yu) = ∞
}

⊂ {ζ � t < ∞} ,

then clearly P (ζ � T0) = 1.

For statement (iv), since P̃ (T0 = ∞) = 1 holds as a consequence of the

proof of Proposition 2.2.1, the result follows. This completes the proof of

the lemma.

From monotone convergence, P̃ ( lim
n→∞

τn = T∞) = 1 and P̃ ( lim
n→∞

ξn =

ζ ∧ T∞) = 1 hold. From Lemma 2.2.4, P̃ (ζ � T∞) = 1, thus P̃ ( lim
n→∞

ξn =

ζ) = 1. Recall that W̃t is a standard P̃ -Brownian motion for t ∈ [0, ξn).

Taking limits as n → ∞, then W̃t is a standard P̃ -Brownian motion for

t ∈ [0, ζ). From the construction in (2.14), it follows that W̃t is a standard
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P̃ -Brownian motion for t ∈ [0,∞).

Thus Y is governed by the following SDE under P̃ for t ∈ [0, ζ)

dYt = μ(Yt)dt+ σ(Yt)
(
dW̃t + ρb(Yt)dt

)
= (μ(Yt) + ρb(Yt)σ(Yt))dt+ σ(Yt)dW̃t, Y0 = x0. (2.15)

This completes the proof.

In order to verify EP [ZT ] = 1, the equivalent condition in Proposition

2.2.2 can be transformed into a condition related to integral functionals of

Y under P̃ as shown in the following proposition.

Proposition 2.2.4. Assume5 conditions (2.2) and (2.9), for T ∈ [0,∞),

Zt is a P -martingale for t ∈ [0, T ], i.e. EP [ZT ] = 1, if and only if

P̃
(∫ T∧ζ

0
b2(Yu)du < ∞

)
= 1.

Proof. Define τn = Rn ∧n for all n ∈ N similarly as before. The left hand

side of (2.12) can be rewritten as

P̃

(
1

ZT∧τn
> 0

)
= P̃

(
1

ZT∧τn
= E(−L̃∗

T∧τn) > 0

)
= P̃
(
〈−L̃∗〉T∧τn < ∞

)
= P̃

(∫ T∧ζ∧τn

0

b2(Yu)du < ∞
)
, (2.16)

and the first equality is because of P̃ (T ∧ τn < T∞) = 1 for n ∈ N,

and Proposition 2.2.1(3). The second equality is because of Lemma 2.2.3

applied to the stochastic exponential E(−L̃∗
T∧τn). Since τn is non-negative

and non-decreasing, by the monotone convergence theorem taking limits

5A similar result also appears in Theorem 1, p6 of Ruf (2013a).
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on both sides of (2.16) as n → ∞

P̃

(
1

ZT∧T∞
> 0

)
= P̃

(∫ T∧ζ∧T∞

0

b2(Yu)du < ∞
)

= P̃

(∫ T∧ζ

0

b2(Yu)du < ∞
)
, (2.17)

and the last equality is because P̃ (ζ � T∞) = 1 from Lemma 2.2.4. From

(2.17) combined with Proposition 2.2.2, and note that ZT∧T∞ = ZT , P̃ -a.s.,

then for T ∈ [0,∞)

EP [ZT ] = P̃

(
1

ZT
> 0

)
= P̃

(∫ T∧ζ

0

b2(Yu)du < ∞
)
. (2.18)

This completes the proof.

The following is the necessary and sufficient condition for the uniform

integrable martingale.

Proposition 2.2.5. Assume conditions (2.2) and (2.9). Then Z is a uni-

formly integrable P -martingale on [0,∞], i.e. EP [Z∞] = 1, if and only

if

P̃

(∫ ζ

0

b2(Yu)du < ∞
)

= 1.

Proof. Recall from Proposition 2.2.4

EP [ZT ] = P̃

(∫ T∧ζ

0

b2(Yu)du < ∞
)
, for T ∈ [0,∞). (2.19)

Similar as the proof of Lemma 2.2.3, consider a sequence of stopping times

ξn → ∞, n ∈ N, such that Zξn is a martingale. Then by the submartingale

convergence theorem (Theorem 1.3.15, p17, Karatzas and Shreve (1991)),

Z∞ := lim
n→∞

Zξn exists and is a non-negative continuous local martingale,

and thus a supermartingale due to Fatou’s lemma. Then the left hand side

of (2.19) has a well-defined limit EP [Z∞] as T → ∞. Since
∫ T∧ζ
0

b2(Yu)du <

∞ is non-negative and non-decreasing, from the monotone convergence

theorem, we have that the right hand side of (2.19) also has a well-defined
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limit P̃
(∫ ζ

0
b2(Yu)du < ∞

)
as T → ∞. From the above analysis, as T →

∞ on both sides of (2.19)

EP [Z∞] = P̃

(∫ ζ

0

b2(Yu)du < ∞
)
. (2.20)

Thus EP [Z∞] = 1 if and only if P̃
(∫ ζ

0
b2(Yu)du < ∞

)
= 1. This completes

the proof.

2.3 Classification of convergence properties

of integral functionals of time-homogeneous

diffusions

The Engelbert-Schmidt zero-one law was initially proved in the Brownian

motion case (see Engelbert and Schmidt (1981) or Proposition 3.6.27, p216

of Karatzas and Shreve (1991)). Engelbert and Tittel (2002) obtain a gen-

eralized Engelbert-Schmidt type zero-one law for the integral functional∫ t
0
f(Xs)ds, where f is a non-negative Borel function and X is a strong

Markov continuous local martingale. In an expository paper, Mijatović and

Urusov (2012a) consider the case of a one-dimensional time-homogeneous

diffusion and their Theorem 2.11 gives the corresponding zero-one law re-

sults. They provide two proofs that circumvent the use of Jeulin’s lemma.

The first proof is based on William’s theorem (Ch.VII, Corollary 4.6, p317,

Revuz and Yor (1999)). The second proof is based on the first Ray-Knight

theorem (Ch.XI, Theorem 2.2, p455, Revuz and Yor (1999)).

Recall the scale function s(.) defined in (2.10), and introduce the fol-

lowing test functions for x ∈ J̄ , with a constant c ∈ J .

v(x) ≡
∫ x

c

(s(x)− s(y))
2

s′(y)σ2(y)
dy,

vb(x) ≡
∫ x

c

(s(x)− s(y))
2b2(y)

s′(y)σ2(y)
dy. (2.21)
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Note that if s(∞) = ∞, then v(∞) = ∞ and vb(∞) = ∞ by the definition

in (2.21). Define s̃(.), ṽ(.) and ṽb(.) similarly based on the SDE (2.13)

under P̃ .

We have the following Engelbert-Schmidt type zero-one law for the SDE

(2.1) under P , which is precisely the Theorem 2.11 of Mijatović and Urusov

(2012a) with f(.) = b2(.) using our notation.

Proposition 2.3.1. (Engelbert-Schmidt type zero-one law for a time-homogeneous

diffusion, Theorem 2.11 of Mijatović and Urusov (2012a))

Assume that the function f = b2 : J → [0,∞] satisfies b2/σ2 ∈ L1
loc(J),

and let s(r) < ∞.

(i)If vb(r) < ∞, then
∫ ζ

0
b2(Yu)du < ∞, P -a.s. on

{
lim
t→ζ

Yt = r

}
.

(ii)If vb(r) = ∞, then
∫ ζ

0
b2(Yu)du = ∞, P -a.s. on

{
lim
t→ζ

Yt = r

}
.

The analogous results on the set {lim
t→ζ

Yt = l} can be similarly stated.

Clearly the above proposition has a counterpart for the SDE (2.13)

under P̃ .

Proposition 2.3.2. Assume that the function f = b2 : J → [0,∞] satisfies

b2/σ2 ∈ L1
loc(J), and let s̃(r) < ∞.

(i)If ṽb(r) < ∞, then
∫ ζ

0
b2(Yu)du < ∞, P̃ -a.s. on

{
lim
t→ζ

Yt = r

}
.

(ii)If ṽb(�) < ∞, then
∫ ζ
0
b2(Yu)du = ∞, P̃ -a.s. on

{
lim
t→ζ

Yt = r

}
.

Analogous results on the set {lim
t→ζ

Yt = l} can be similarly stated.

The following result is Proposition 5.5.22 on p345 of Karatzas and

Shreve (1991) using our notation. It classifies possible exit behaviors of

the process Y at the boundaries of its state space J under P .

Proposition 2.3.3. (Proposition 5.5.22, Karatzas and Shreve (1991))

Assume the conditions (2.2) and (2.9), let Y be a weak solution of (2.1)

in J under P , with nonrandom initial condition Y0 = x0 ∈ J . Distinguish

four cases:

23



(a) If s(�) = −∞ and s(r) = ∞, then P (ζ = ∞) = P ( sup
0�t<∞

Yt = r) =

P ( inf
0�t<∞

Yt = �) = 1.

(b) If s(�) > −∞ and s(r) = ∞, then P (lim
t→ζ

Yt = �) = P ( sup
0�t<ζ

Yt <

r) = 1.

(c) If s(�) = −∞ and s(r) < ∞, then P (lim
t→ζ

Yt = r) = P ( inf
0�t<ζ

Yt >

l) = 1.

(d) If s(�) > −∞ and s(r) < ∞, then P (lim
t→ζ

Yt = �) = 1 − P (lim
t→ζ

Yt =

r) = s(r)−s(x0)
s(r)−s(�)

. Note that 0 < s(r)−s(x0)
s(r)−s(�)

< 1.

Analogous results also hold for the SDE (2.13) under P̃ .

Remark 2.3.1. In the conditions (b), (c) and (d) above, we make no claim

concerning the finiteness of ζ. See Remark 5.5.23 on p345 of Karatzas and

Shreve (1991). Note that conditions (b) and (c) are consequences of the

expression in condition (d) by letting either s(r) = ∞ or s(�) = −∞.

Similar to the statements in Proposition 2.3.3, for the study of the con-

vergence or divergence properties of integral functionals of time-homogeneous

diffusions, we distinguish the following four exhaustive and disjoint cases

under P :

Case (1): s(�) = −∞, s(r) = ∞.

Case (2): s(�) = −∞, s(r) < ∞.

Case (3): s(�) > −∞, s(r) = ∞.

Case (4): s(�) > −∞, s(r) < ∞.

Further divide each case above into the following subcases based on the

finiteness of vb(r) and vb(�) as defined in (2.21):

Case (2) (i): s(�) = −∞, s(r) < ∞, vb(r) = ∞.

Case (2) (ii): s(�) = −∞, s(r) < ∞, vb(r) < ∞.

Case (3) (i): s(�) > −∞, s(r) = ∞, vb(�) = ∞.

Case (3) (ii): s(�) > −∞, s(r) = ∞, vb(�) < ∞.

Case (4) (i): s(�) > −∞, s(r) < ∞, vb(r) = ∞, vb(�) = ∞.
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Case (4) (ii): s(�) > −∞, s(r) < ∞, vb(r) < ∞, vb(�) = ∞.

Case (4) (iii): s(�) > −∞, s(r) < ∞, vb(r) = ∞, vb(�) < ∞.

Case (4) (iv): s(�) > −∞, s(r) < ∞, vb(r) < ∞, vb(�) < ∞.

Remark 2.3.2. Define ϕt :=
∫ t

0
b2(Yu)du, for t ∈ [0, ζ ]. Recall that b2(.)

is a non-negative Borel function, thus ϕt is a non-decreasing function for

t ∈ [0, ζ ]. ϕt is in the form of a time integral, and it is clear that it is

continuous for t ∈ [0, ζ), and is left continuous at t = ζ.

We now apply the Engelbert-Schmidt type zero-one law under P as in

Proposition 2.3.1 to determine whether P (ϕζ < ∞) = 1 or P (ϕζ = ∞) = 1

in each of the cases above. We first prove two lemmas.

Lemma 2.3.1. Assume the conditions (2.2) and (2.9), then “vb(�) = ∞
and vb(r) = ∞” are necessary and sufficient for P (ϕζ = ∞) = 1.

Proof. For the sufficiency, divide into the following four distinct cases:

Case (1): s(�) = −∞, s(r) = ∞. From Proposition 2.3.3 (d), P (ζ =

∞) = 1. This combined with Lemma 2.2.1 implies P (ϕζ = ∞) = 1.

Case (2): s(�) = −∞, s(r) < ∞. From Proposition 2.3.3 (c), P (lim
t→ζ

Yt =

r) = 1. If vb(r) = ∞, then from Proposition 2.3.1 and Proposition 2.3.3,

P (ϕζ = ∞) = P (ϕζ = ∞, lim
t→ζ

Yt = r) = P (lim
t→ζ

Yt = r) = 1.

Case (3): s(�) > −∞, s(r) = ∞. The proof is similar to Case (2) above

by switching the roles of � and r, and applying Proposition 2.3.3 (b) and

Proposition 2.3.1.

Case (4): s(�) > −∞, s(r) < ∞. From Proposition 2.3.3 (d), 0 < p =

P (lim
t→ζ

Yt = r) < 1. Since vb(r) = ∞ and vb(�) = ∞, from Proposition 2.3.1

for both cases of r and �, P (ϕζ = ∞) = P (ϕζ = ∞, lim
t→ζ

Yt = r) + P (ϕζ =

∞, lim
t→ζ

Yt = �) = P (lim
t→ζ

Yt = r) + P (lim
t→ζ

Yt = �) = 1.

For the necessity, we only need to prove the contrapositive statement:

“If at least one of vb(�) or vb(r) is finite, then P (ϕζ = ∞) < 1.”Without loss

of generality, assume that vb(�) < ∞, because the case of vb(r) < ∞ can

be similarly proved. From Proposition 2.3.1, P (ϕζ = ∞, lim
t→ζ

Yt = �) = 0.
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Then P (ϕζ = ∞) = P (ϕζ = ∞, lim
t→ζ

Yt = �) + P (ϕζ = ∞, lim
t→ζ

Yt = r) =

P (ϕζ = ∞, lim
t→ζ

Yt = r) � P (lim
t→ζ

Yt = r). Divide into two cases:

Case (i): s(�) > −∞, s(r) = ∞. From Proposition 2.3.3 (b), P (lim
t→ζ

Yt =

r) = 0.

Case (ii): s(�) > −∞, s(r) < ∞. From Proposition 2.3.3 (d), 0 < p =

P (lim
t→ζ

Yt = r) < 1.

In both cases P (lim
t→ζ

Yt = r) < 1, thus P (ϕζ = ∞) < 1, and the necessity

follows. This completes the proof.

Lemma 2.3.2. Assume the conditions (2.2) and (2.9), and s(�) > −∞,

s(r) < ∞, then “vb(�) < ∞ and vb(r) < ∞” are necessary and sufficient

for P (ϕζ < ∞) = 1.

Proof. With s(�) > −∞ and s(r) < ∞, denote p = P (lim
t→ζ

Yt = r) =

1 − P (lim
t→ζ

Yt = �). From Proposition 2.3.3 (d), we have that 0 < p < 1.

For the sufficiency, assume that vb(�) < ∞ and vb(r) < ∞ hold, we aim to

prove that P (ϕζ < ∞) = 1.

From Proposition 2.3.1, P (ϕζ < ∞, lim
t→ζ

Yt = r) = P (lim
t→ζ

Yt = r) and

P (ϕζ < ∞, lim
t→ζ

Yt = �) = P (lim
t→ζ

Yt = �). Then

P (ϕζ < ∞) = P (ϕζ < ∞, lim
t→ζ

Yt = r) + P (ϕζ < ∞, lim
t→ζ

Yt = �)

= P (lim
t→ζ

Yt = r) + P (lim
t→ζ

Yt = �) = 1.

For the necessity, we only need to prove the contrapositive argument: “If at

least one of vb(�) and vb(r) is infinite, then P (ϕζ < ∞) < 1.”Without loss

of generality, assume that vb(�) = ∞, because the case of vb(r) = ∞ can

be similarly proved. From Proposition 2.3.1, P (ϕζ < ∞, lim
t→ζ

Yt = �) = 0,
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and

P (ϕζ < ∞) = P (ϕζ < ∞, lim
t→ζ

Yt = r) + P (ϕζ < ∞, lim
t→ζ

Yt = �)

= P (ϕζ < ∞, lim
t→ζ

Yt = r)

� P (lim
t→ζ

Yt = r) < 1.

Thus the necessity follows. This completes the proof.

We now give a detailed study of the function ϕt, t ∈ [0, ζ ] under P using

the Engelbert-Schmidt type zero-one law.

Theorem 2.3.1. Assume the conditions (2.2) and (2.9). Then we have

the following properties6 for the function ϕt, t ∈ [0, ζ ] under P .

(i) ϕt < ∞ P -a.s. on {0 � t < ζ}.
(ii) P (ϕζ < ∞) = 1 if and only if at least one of the following conditions

is satisfied:

(a) vb(r) < ∞ and s(�) = −∞,

(b) vb(�) < ∞ and s(r) = ∞,

(c) vb(r) < ∞ and vb(�) < ∞.

(iii) P (ϕζ = ∞) = 1 if and only if vb(r) = ∞ and vb(�) = ∞.

Remark 2.3.3. We summarize the results of Theorem 2.3.1 in Table 2.1.

Proof. Statement (i) follows from Lemma 2.2.1.

For statement (ii), the detailed proof for each of the case in the table

is as follows:

Case (1): from Lemma 2.2.2, P (ϕζ = ∞) = 1.

Case (2): from Proposition 2.3.3, P (lim
t→ζ

Yt = r) = 1. For the two

6In Khoshnevisan, Salminen, and Yor (2006), they obtained deterministic criteria
for the convergence or divergence of perpetual integral functionals of time-homogeneous
diffusions. They also consider weak solutions to the SDE similar to (2.1). However, in
Theorem 2, p110 of Khoshnevisan, Salminen, and Yor (2006), they assume the twice
differentiability of the function g(.) defined in their paper, while our assumptions here
concern the local integrability of certain deterministic functions and are weaker.
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Case s(�) s(r) vb(�) vb(r) Conclusion
(1) −∞ ∞ ∞ ∞ P (ϕζ < ∞) = 0, Z∞ = 0, P-a.s.

(2)(i) −∞ < ∞ ∞ ∞ P (ϕζ < ∞) = 0, Z∞ = 0, P-a.s.
(2)(ii) −∞ < ∞ ∞ < ∞ P (ϕζ < ∞) = 1, Z∞ > 0, P-a.s.
(3)(i) > −∞ ∞ ∞ ∞ P (ϕζ < ∞) = 0, Z∞ = 0, P-a.s.
(3)(ii) > −∞ ∞ < ∞ ∞ P (ϕζ < ∞) = 1, Z∞ > 0, P-a.s.
(4)(i) > −∞ < ∞ ∞ ∞ P (ϕζ < ∞) = 0, Z∞ = 0, P-a.s.
(4)(ii) > −∞ < ∞ ∞ < ∞ 0 < P (ϕζ < ∞) < 1, 0 < P (Z∞ = 0) < 1
(4)(iii) > −∞ < ∞ < ∞ ∞ 0 < P (ϕζ < ∞) < 1, 0 < P (Z∞ = 0) < 1
(4)(iv) > −∞ < ∞ < ∞ < ∞ P (ϕζ < ∞) = 1, Z∞ > 0, P-a.s.

Table 2.1: Classification table for the positivity of the stock price

subcases, from Proposition 2.3.1, Case (2) (i) is necessary and sufficient for

P (ϕζ = ∞) = 1, and Case (2) (ii) is necessary and sufficient for P (ϕζ <

∞) = 1.

Case (3): from Proposition 2.3.3, P (lim
t→ζ

Yt = �) = 1. For the two

subcases, from Proposition 2.3.1, Case (3) (i) is necessary and sufficient for

P (ϕζ = ∞) = 1, and Case (3) (ii) is necessary and sufficient for P (ϕζ <

∞) = 1.

Case (4): from Proposition 2.3.3, 1 > p = P (lim
t→ζ

Yt = r) = 1 −
P (lim

t→ζ
Yt = �) > 0. For individual subcases:

Case (4) (i) is necessary and sufficient for P (ϕζ = ∞) = 1 from Lemma

2.3.1.

Case (4) (ii): from Proposition 2.3.1, vb(�) = ∞ implies that P (ϕζ <

∞, lim
t→ζ

Yt = �) = 0. Then P (ϕζ < ∞) = P (ϕζ < ∞, lim
t→ζ

Yt = r) + P (ϕζ <

∞, lim
t→ζ

Yt = �) = P (ϕζ < ∞, lim
t→ζ

Yt = r) � P (lim
t→ζ

Yt = r) < 1.

Case (4) (iii): the proof is similar to the proof of Case (4) (ii) by

switching the roles of � and r.

Case (4) (iv) is necessary and sufficient for P (ϕζ < ∞) = 1 from Lemma

2.3.2.

The classification above is exhaustive, and Table 2.1 follows. The
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“conclusion” column in Table 2.1 is based on the classification of whether

P (ϕζ < ∞) = 1 or P (ϕζ = ∞) = 1 combined with Lemma 2.2.3.

Statement (iii) follows from Lemma 2.3.1. This completes the proof.

We have the following corollary of Theorem 2.3.1 under P̃

Corollary 2.3.1. Assume the conditions (2.2) and (2.9), then

(i) ϕt < ∞ P̃ -a.s. on {0 � t < ζ}.
(ii) P̃ (ϕζ < ∞) = 1 if and only if at least one of the following conditions

is satisfied:

(a) ṽb(r) < ∞ and s̃(�) = −∞,

(b) ṽb(�) < ∞ and s̃(r) = ∞,

(c) ṽb(r) < ∞ and ṽb(�) < ∞.

(iii) P̃ (ϕζ = ∞) = 1 if and only if ṽb(r) = ∞ and ṽb(�) = ∞.

Remark 2.3.4. We summarize the results of Corollary 2.3.1 in Table 2.2.

Case s̃(�) s̃(r) ṽb(�) ṽb(r) Conclusion U.I. Mart.

(1) −∞ ∞ ∞ ∞ P̃ (ϕζ < ∞) = 0, EP [Z∞] < 1 No

(2)(i) −∞ < ∞ ∞ ∞ P̃ (ϕζ < ∞) = 0, EP [Z∞] < 1 No

(2)(ii) −∞ < ∞ ∞ < ∞ P̃ (ϕζ < ∞) = 1, EP [Z∞] = 1 Yes

(3)(i) > −∞ ∞ ∞ ∞ P̃ (ϕζ < ∞) = 0, EP [Z∞] < 1 No

(3)(ii) > −∞ ∞ < ∞ ∞ P̃ (ϕζ < ∞) = 1, EP [Z∞] = 1 Yes

(4)(i) > −∞ < ∞ ∞ ∞ P̃ (ϕζ < ∞) = 0, EP [Z∞] < 1 No

(4)(ii) > −∞ < ∞ ∞ < ∞ 0 < P̃ (ϕζ < ∞) < 1, EP [Z∞] < 1 No

(4)(iii) > −∞ < ∞ < ∞ ∞ 0 < P̃ (ϕζ < ∞) < 1, EP [Z∞] < 1 No

(4)(iv) > −∞ < ∞ < ∞ < ∞ P̃ (ϕζ < ∞) = 1, EP [Z∞] = 1 Yes

Table 2.2: Classification table for the uniformly integrable martingale
(U.I.Mart.)

Proof. The proof is similar to that of Theorem 2.3.1, and is thus omitted.

We can construct Table 2.2. The “conclusion” column in Table 2.2 is based

on the classification of whether P̃ (ϕζ < ∞) = 1 or P̃ (ϕζ = ∞) = 1
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combined with Proposition 2.2.5. The “U.I.Mart.” column in Table 2.2 is

based on the classifications in the “conclusion” column in Table 2.2. This

completes the proof.

The following result provides necessary and sufficient conditions for

P (ϕζ∧T < ∞) = 1, for T ∈ [0,∞).

Theorem 2.3.2. Assume the conditions (2.2) and (2.9), then for all T ∈
[0,∞), P (ϕζ∧T < ∞) = P (

∫ ζ∧T
0

b2(Yu)du < ∞) = 1 if and only if at least

one of the following conditions is satisfied:

(a) v(�) = v(r) = ∞,

(b) vb(r) < ∞ and v(�) = ∞,

(c) vb(�) < ∞ and v(r) = ∞,

(d) vb(r) < ∞ and vb(�) < ∞.

Proof. First of all, from Feller’s test of explosions, v(�) < ∞ if and

only if P (ζ < ∞, lim
t→ζ

Yt = l) > 0. Similarly v(r) < ∞ if and only if

P (ζ < ∞, lim
t→ζ

Yt = r) > 0.

On the set {ζ = ∞}, from Lemma 2.2.1,
∫ ζ∧T
0

b2(Yu)du < ∞ P -a.s.

Then P (
∫ ζ∧T
0

b2(Yu)du < ∞, ζ = ∞) = P (ζ = ∞). We have the following

decomposition

P

(∫ ζ∧T

0

b2(Yu)du < ∞
)

= P

(∫ ζ∧T

0

b2(Yu)du < ∞, ζ = ∞
)
+ P

(∫ ζ∧T

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = l

)
+ P

(∫ ζ∧T

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = r

)
= P (ζ = ∞) + P

(∫ ζ∧T

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = l

)
+ P

(∫ ζ∧T

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = r

)
. (2.22)

For the sufficiency, assuming that at least one of (a), (b), (c) and (d)
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holds, we aim to prove ϕζ∧T < ∞ P -a.s.

Condition (a): from Feller’s test of explosions, the condition (a) is

equivalent to P (ζ = ∞) = 1. Then from the decomposition (2.22),

P
(∫ ζ∧T

0
b2(Yu)du < ∞

)
= P (ζ = ∞) = 1.

Condition (b): v(�) = ∞ is equivalent to P (ζ < ∞, lim
t→ζ

Yt = l) =

0. Then P

(∫ ζ∧T
0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = l

)
= 0, and from the

decomposition (2.22)

P

(∫ ζ∧T

0

b2(Yu)du < ∞
)

= P (ζ = ∞) + P

(∫ ζ∧T

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = r

)
� P (ζ = ∞) + P

(∫ ζ

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = r

)
.

If vb(r) < ∞, then from Proposition 2.3.1, P

(∫ ζ

0
b2(Yu)du < ∞, ζ < ∞, lim

t→ζ
Yt = r

)
=

P (ζ < ∞, lim
t→ζ

Yt = r). Then from the decomposition (2.22)

P

(∫ ζ∧T

0

b2(Yu)du < ∞
)

� P (ζ = ∞) + P (ζ < ∞, lim
t→ζ

Yt = r)

= 1− P (ζ < ∞, lim
t→ζ

Yt = �) = 1,

and thus P (
∫ ζ∧T
0

b2(Yu)du < ∞) = 1.

Condition (c): the proof is similar to the proof of condition (b) by

switching the roles of � and r.

Condition (d): if vb(r) < ∞ and vb(�) < ∞, then from Proposition

2.3.1, P

(∫ ζ
0
b2(Yu)du < ∞, ζ < ∞, lim

t→ζ
Yt = l

)
= P (ζ < ∞, lim

t→ζ
Yt = �),

and P

(∫ ζ
0
b2(Yu)du < ∞, ζ < ∞, lim

t→ζ
Yt = r

)
= P (ζ < ∞, lim

t→ζ
Yt = r).
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Then the decomposition (2.22) becomes

P

(∫ ζ∧T

0

b2(Yu)du < ∞
)

= P (ζ = ∞) + P

(∫ ζ∧T

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = l

)
+ P

(∫ ζ∧T

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = r

)
= P (ζ = ∞) + P (ζ < ∞, lim

t→ζ
Yt = �) + P (ζ < ∞, lim

t→ζ
Yt = r)

= 1.

This completes the proof of the sufficiency part.

For the necessity part, it is equivalent to proving its contra-positive

statement: “If none of the conditions (a), (b), (c) or (d) holds, then there

exits T ∗ ∈ [0,∞), such that P (ϕζ∧T ∗ < ∞) < 1”.

We now seek to find the complement set to the conditions (a)-(d). The

complement set of (a) is:

Case (1): v(�) < ∞, v(r) = ∞.

Case (2): v(�) = ∞, v(r) < ∞.

Case (3): v(�) < ∞, v(r) < ∞.

Further complement the above cases with the remaining conditions (b),

(c), and (d), and we have the following subcases comprising the whole

complement set:

Case (1)(i): v(�) < ∞, v(r) = ∞, vb(�) = ∞, vb(r) < ∞.

Case (1)(ii): v(�) < ∞, v(r) = ∞, vb(�) = ∞, vb(r) = ∞.

Case (2)(i): v(�) = ∞, v(r) < ∞, vb(�) = ∞, vb(r) < ∞.

Case (2)(ii): v(�) = ∞, v(r) < ∞, vb(�) = ∞, vb(r) = ∞.

Case (3)(i): v(�) < ∞, v(r) < ∞, vb(�) = ∞, vb(r) = ∞.

Case (3)(ii): v(�) < ∞, v(r) < ∞, vb(�) = ∞, vb(r) < ∞.

Case (3)(iii): v(�) < ∞, v(r) < ∞, vb(�) < ∞, vb(r) = ∞.
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Note that in all the above seven subcases, P (ζ < ∞) > 0, and it means

that there exists a sufficiently large T ∗ ∈ [0,∞), such that P (ζ � T ∗) > 0.

Now we analyze each of the above subcases in detail.

Both Case (1)(i) and Case (1)(ii) share the conditions“v(�) < ∞, v(r) =

∞, vb(�) = ∞”. If v(r) = ∞, then P (ζ < ∞, lim
t→ζ

Yt = r) = 0. Then

P

(∫ ζ∧T ∗

0
b2(Yu)du < ∞, ζ < ∞, lim

t→ζ
Yt = r

)
= 0.

From the decomposition (2.22) substituting T = T ∗

P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞
)

= P (ζ = ∞) + P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = l

)
+ P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = r

)
= P (ζ = ∞) + P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = l

)
. (2.23)

Now we analyze the second term in (2.23)

P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = l

)
= P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, ζ � T ∗ < ∞, lim
t→ζ

Yt = l

)
+ P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, T ∗ < ζ < ∞, lim
t→ζ

Yt = l

)
= P

(∫ ζ

0

b2(Yu)du < ∞, ζ � T ∗ < ∞, lim
t→ζ

Yt = l

)
+ P

(∫ T ∗

0

b2(Yu)du < ∞, T ∗ < ζ < ∞, lim
t→ζ

Yt = l

)
. (2.24)

If vb(�) = ∞, then from Proposition 2.3.1, P

(∫ ζ
0
b2(Yu)du < ∞, lim

t→ζ
Yt = l

)
=

0. Then P

(∫ ζ
0
b2(Yu)du < ∞, ζ � T ∗ < ∞, lim

t→ζ
Yt = l

)
= 0. Use this
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equality in (2.24)

P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = l

)
= P

(∫ T ∗

0

b2(Yu)du < ∞, T ∗ < ζ < ∞, lim
t→ζ

Yt = l

)
.

Then

P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞
)

= P (ζ = ∞) + P

(∫ T ∗

0

b2(Yu)du < ∞, T ∗ < ζ < ∞, lim
t→ζ

Yt = l

)
� P (ζ = ∞) + P (T ∗ < ζ < ∞)

= 1− P (ζ � T ∗)

< 1.

The proof of Case (2) is similar to Case (1) by switching the roles of �

and r, and is thus omitted.

Consider Case (3), and recall that P (ζ < ∞) > 0, which means that

there exists a sufficiently large T ∗
1 ∈ [0,∞), such that P (ζ � T ∗

1 ) > 0.

All the subcases in Case (3) share the conditions “v(�) < ∞, v(r) < ∞”.

From Feller’s test of explosions, they are equivalent respectively to P (ζ <

∞, lim
t→ζ

Yt = �) > 0 and P (ζ < ∞, lim
t→ζ

Yt = r) > 0. These two conditions

mean that there exist two sufficiently large T ∗
2 ∈ [0,∞) and T ∗

3 ∈ [0,∞)

such that P (ζ � T ∗
2 , lim

t→ζ
Yt = �) > 0 and P (ζ � T ∗

3 , lim
t→ζ

Yt = r) > 0 under

P . Choose T ∗ = max (T ∗
1 , T

∗
2 , T

∗
3 ) ∈ [0,∞). With this newly constructed

T ∗, we aim to show that P
(∫ ζ∧T ∗

0
b2(Yu)du < ∞

)
< 1.

Both Case (3)(i) and Case (3)(ii) share the condition vb(�) = ∞. If

vb(�) = ∞, then from Proposition 2.3.1, P

(∫ ζ
0
b2(Yu)du < ∞, lim

t→ζ
Yt = l

)
=

0. Then P

(∫ ζ
0
b2(Yu)du < ∞, ζ � T ∗ < ∞, lim

t→ζ
Yt = l

)
= 0.

On the set {T ∗ < ζ < ∞}, from Lemma 2.2.1, P
(∫ ζ∧T ∗

0
b2(Yu)du < ∞

)
=
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1. Then

P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, T ∗ < ζ < ∞, lim
t→ζ

Yt = l

)
= P (T ∗ < ζ < ∞, lim

t→ζ
Yt = l),

and similarly

P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, T ∗ < ζ < ∞, lim
t→ζ

Yt = r

)
= P (T ∗ < ζ < ∞, lim

t→ζ
Yt = r).

Recall the decomposition (2.22) substituting T = T ∗

P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞
)

= P (ζ = ∞) + P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = l

)
+ P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, ζ < ∞, lim
t→ζ

Yt = r

)
= P (ζ = ∞) + P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, ζ � T ∗ < ∞, lim
t→ζ

Yt = l

)
+ P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, T ∗ < ζ < ∞, lim
t→ζ

Yt = l

)
+ P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, ζ � T ∗ < ∞, lim
t→ζ

Yt = r

)
+ P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞, T ∗ < ζ < ∞, lim
t→ζ

Yt = r

)
= P (ζ = ∞) + P

(∫ ζ

0

b2(Yu)du < ∞, ζ � T ∗ < ∞, lim
t→ζ

Yt = l

)
+ P (T ∗ < ζ < ∞, lim

t→ζ
Yt = �) + P

(∫ ζ

0

b2(Yu)du < ∞, ζ � T ∗ < ∞, lim
t→ζ

Yt = r

)
+ P (T ∗ < ζ < ∞, lim

t→ζ
Yt = r)

= P (ζ = ∞) + P (T ∗ < ζ < ∞) + P

(∫ ζ

0

b2(Yu)du < ∞, ζ � T ∗ < ∞, lim
t→ζ

Yt = r

)
.

(2.25)
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Consider the two subcases separately:

Case (3)(i): with vb(r) = ∞, from Proposition 2.3.1,

P

(∫ ζ
0
b2(Yu)du < ∞, lim

t→ζ
Yt = r

)
= 0, so

P

(∫ ζ

0

b2(Yu)du < ∞, ζ � T ∗ < ∞, lim
t→ζ

Yt = r

)
= 0.

Then use this equality in (2.25)

P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞
)

= P (ζ = ∞) + P (T ∗ < ζ < ∞)

+ P

(∫ ζ

0

b2(Yu)du < ∞, ζ � T ∗ < ∞, lim
t→ζ

Yt = r

)
= P (ζ = ∞) + P (T ∗ < ζ < ∞)

= 1− P (ζ � T ∗)

< 1.

And the last strict inequality holds because T ∗ � T ∗
1 P -a.s., and P (ζ �

T ∗) � P (ζ � T ∗
1 ) > 0.

Case (3)(ii): With vb(r) < ∞, from Proposition 2.3.1

P

(∫ ζ

0

b2(Yu)du < ∞, ζ � T ∗ < ∞, lim
t→ζ

Yt = r

)
= P (ζ � T ∗ < ∞, lim

t→ζ
Yt = r).
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Use this equality in (2.25)

P

(∫ ζ∧T ∗

0

b2(Yu)du < ∞
)

= P (ζ = ∞) + P (T ∗ < ζ < ∞)

+ P

(∫ ζ

0

b2(Yu)du < ∞, ζ � T ∗ < ∞, lim
t→ζ

Yt = r

)
= P (ζ = ∞) + P (T ∗ < ζ < ∞) + P (ζ � T ∗ < ∞, lim

t→ζ
Yt = r)

= 1− P (ζ � T ∗, lim
t→ζ

Yt = �)

< 1.

And the last strict inequality holds because T ∗ � T ∗
2 , P -a.s., and P (ζ �

T ∗, lim
t→ζ

Yt = �) � P (ζ � T ∗
2 , lim

t→ζ
Yt = �) > 0.

The remaining Case (3)(iii) can be proved similarly as Case (3)(ii) by

switching the roles of � and r. Also note that T ∗ � T ∗
3 , P -a.s., and P (ζ �

T ∗, lim
t→ζ

Yt = r) � P (ζ � T ∗
3 , lim

t→ζ
Yt = r) > 0. This completes the proof of

the necessity part.

Similarly there is a corollary to Theorem 2.3.2 under P̃ . Its proof is

similar to that of Theorem 2.3.2 and is thus omitted.

Corollary 2.3.2. Assume the conditions (2.2) and (2.9), then for all T ∈
[0,∞), P̃ (ϕζ∧T < ∞) = P̃

(∫ ζ∧T
0

b2(Yu)du < ∞
)
= 1 if and only if at least

one of the following conditions is satisfied:

(a) ṽ(�) = ṽ(r) = ∞,

(b) ṽb(r) < ∞ and ṽ(�) = ∞,

(c) ṽb(�) < ∞ and ṽ(r) = ∞,

(d) ṽb(r) < ∞ and ṽb(�) < ∞.
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2.4 Generalization of some results in Mija-

tović and Urusov

In this section, we generalize the main results in Mijatović and Urusov

(2012b, 2012c) and provide new unified proofs without the concepts of

“separating times”. Note that Mijatović and Urusov (2012b, 2012c) work

in the ρ = 1 case, and we generalize it to the arbitrary correlation case.

Consider the stochastic exponential Z defined in (2.7). The following

proposition provides the necessary and sufficient condition for ZT to be a P -

martingale for all T ∈ [0,∞), when −1 � ρ � 1. Note that Theorem 2.1 in

Mijatović and Urusov (2012c) is a special case of the following proposition

when ρ = 1.

Proposition 2.4.1. Assume the conditions (2.2) and (2.9), then for all

T ∈ [0,∞), EP [ZT ] = 1 if and only if at least one of the conditions (1)-(4)

below is satisfied:

(1) ṽ(�) = ṽ(r) = ∞,

(2) ṽb(r) < ∞ and ṽ(�) = ∞,

(3) ṽb(�) < ∞ and ṽ(r) = ∞,

(4) ṽb(r) < ∞ and ṽb(�) < ∞.

Proof. From Proposition 2.2.4, for all T ∈ [0,∞), EP [ZT ] = 1 if and only

if P̃ (
∫ ζ∧T
0

b2(Yu)du < ∞) = 1. Then the statement follows from Corollary

2.3.2. This completes the proof.

We have the following necessary and sufficient condition for Z to be

a uniformly integrable P -martingale on [0,∞], when −1 � ρ � 1. Note

that Theorem 2.3 of Mijatović and Urusov (2012c) is a special case of the

following proposition when ρ = 1.

Proposition 2.4.2. Assume the conditions (2.2) and (2.9), then EP [Z∞] =

1 if and only if at least one of the conditions (A′)− (D′) below is satisfied:

(A′) b = 0 a.e. on J with respect to the Lebesgue measure,

(B′) ṽb(r) < ∞ and s̃(�) = −∞,
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(C ′) ṽb(�) < ∞ and s̃(r) = ∞,

(D′) ṽb(r) < ∞ and ṽb(�) < ∞.

Proof. Condition (A′) is a trivial case and it is easy to verify. From

Corollary 2.3.1 and the classification in Table 2.2, EP [Z∞] = 1 if and only

if at least one of the conditions (B′), (C ′) or (D′) holds. This completes

the proof.

Remark 2.4.1. Financial bubbles have recently attracted some attention in

the literature, see Cox and Hobson (2005), Ekström and Tysk (2007), He-

ston, Lowenstein and Willard (2007), Jarrow, Protter and Shimbo (2007),

Madan and Yor (2006), and Pal and Protter (2010). For a survey on the

mathematical theory behind the financial bubbles, refer to Protter (2012).

Under the risk-neutral measure P , let the (discounted) stock price be mod-

eled as a non-negative local martingale Z. Using the notation in Protter

(2012), assume a complete financial market, let (St)t∈[0,T ∗], T
∗ ∈ [0,∞]

be the underlying risky stock price with life up to a stopping time τ . Let

Δ ∈ Fτ be the time τ terminal payoff or liquidation value of the stock.

Assume that Δ � 0, and Zτ = Δ1τ�T ∗. Assume that the stock pays no

dividends and the risk-free spot interest rate is equal to 0. The fundamental

value of the stock is defined as Z∗
t = EP [Δ1τ�T ∗ | Ft] for t ∈ [0, T ∗] Then

the financial bubble β is defined as

βt := Zt − Z∗
t , 0 � t � T ∗

Intuitively the bubble is equal to the difference between the current mar-

ket stock price and the fundamental price(conditional expected value of the

stock’s cash flows under the risk-neutral measure P ).

Clearly we see that for Z being a non-negative local martingale(thus a

non-negative supermartingale), the bubble βt � 0, 0 � t � T ∗ always holds.

Also we call that a bubble “bursts” if βu = 0 for some time 0 � u � T ∗.

Since Z is a supermartingale, if βu = 0, then βt = 0 for 0 � u � t � T ∗.

Intuitively this means that if a bubble bursts, it can never start again.

For detailed classification of bubbles based on whether Z is a uniformly
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integrable martingale, a martingale or a strict local martingale, refer to

Jarrow, Protter and Shimbo (2007).

Here we generalize some results in Mijatović and Urusov (2012b) to the

arbitrary correlation case and provide new proofs without the concept of

separating times. Precisely, Theorem 2.1 of Mijatović and Urusov (2012b)

is a special case of the following proposition when ρ = 1.

Proposition 2.4.3. Assume the conditions (2.2) and (2.9), then for all

T ∈ [0,∞), ZT > 0 P -a.s. if and only if at least one of the conditions7

(1)-(4) below is satisfied:

(1) v(�) = v(r) = ∞,

(2) vb(r) < ∞ and v(�) = ∞,

(3) vb(�) < ∞ and v(r) = ∞,

(4) vb(r) < ∞ and vb(�) < ∞.

Proof. From Lemma 2.2.3, for all T ∈ [0,∞), ZT > 0, P -a.s. if and only

if P
(∫ ζ∧T

0
b2(Yu)du < ∞

)
= 1. Then the statement follows from Theorem

2.3.2. This completes the proof.

Note that Theorem 2.3 of Mijatović and Urusov (2012b) is a special

case of the following proposition when ρ = 1.

Proposition 2.4.4. Let the functions μ, σ and b satisfy conditions (2.1),

(2.3) and (2.5) 8 in Mijatović and Urusov (2012b), and let Y be a (possibly

explosive) solution of the SDE (2.1) under P , with Z defined in (2.7), Then

Z∞ > 0, P -a.s. if and only if at least one of the conditions (I)-(IV) below

is satisfied:

(I) b = 0 a.e. on J with respect to the Lebesgue measure,

(II) vb(r) < ∞ and s(�) = −∞,

7Note that conditions (1)-(4) in Proposition 2.4.3 do not depend on the correlation
ρ, which means that the positivity of the (discounted) stock price does not depend on
the correlation. Similar remarks hold for Proposition 2.4.4 and Proposition 2.4.5.

8These conditions are the same as the conditions (2.2) and (2.9) in this chapter.
Similar remark holds for Proposition 2.4.5.
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(III) vb(�) < ∞ and s(r) = ∞,

(IV) vb(r) < ∞ and vb(�) < ∞.

Proof. Condition (I) is a trivial case and it is easy to verify. From Lemma

2.2.3, Z∞ > 0, P -a.s. if and only if P
(∫ ζ

0
b2(Ys)ds < ∞

)
= 1. Then the

proof follows from Theorem 2.3.1 and the classification in Table 2.1. This

completes the proof.

Note that Theorem 2.5 of Mijatović and Urusov (2012b) is a special

case of the following proposition when ρ = 1.

Proposition 2.4.5. Let the functions μ, σ and b satisfy conditions (2.1),

(2.3) and (2.5) of Mijatović and Urusov (2012b), and let Y be a (possibly

explosive) solution of the SDE (2.1) under P , with Z defined in (2.7).

Then Z∞ = 0, P -a.s. if and only if both conditions (i) and (ii) below are

satisfied:

(i) b is not identically zero with respect to the Lebesgue measure,

(ii) vb(�) = vb(r) = ∞.

Proof. Condition (i) is a trivial case and it is easy to verify. From Lemma

2.2.3, Z∞ = 0, P -a.s. if and only if P
(∫ ζ

0
b2(Yu)du = ∞

)
= P (ϕζ = ∞) =

1. From Theorem 2.3.1 (iii), this is equivalent to checking the condition

(ii) here. This completes the proof.

2.5 Examples of correlated stochastic volatil-

ity models

In this section, we apply the results in Section 2.4 to the study of martingale

properties of (discounted) stock prices in four popular correlated stochastic

volatility models: the Heston, the 3/2, the Schöbel-Zhu and the Hull-White

models. We consider the arbitrary correlation case in the following. All

our results are consistent with the literature. Throughout this section, we

work in the filtered space (Ω,F , (Ft)t∈[0,∞), P ) as constructed in Section

2.2.
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2.5.1 Heston stochastic volatility model

Under P , the (correlated) Heston stochastic volatility model has the fol-

lowing diffusive dynamics

dSt = St

√
Yt1t∈[0,ζ)dW

(1)
t , S0 = 1.

dYt = κ(θ − Yt)1t∈[0,ζ)dt+ ξ
√
Yt1t∈[0,ζ)dWt, Y0 = x0, (2.26)

with EP [dW
(1)
t dWt] = ρdt, −1 � ρ � 1, κ > 0, θ > 0, σ > 0. The

natural state space for Y is J = (�, r) = (0,∞). ζ is the possible exit

time of the process Y from its state space J . The model in (2.26) belongs

to the general stochastic volatility model considered in (2.8) with μ(x) =

κ(θ − x), σ(x) = ξ
√
x, and b(x) =

√
x. Clearly σ(x) = ξ

√
x �= 0, x ∈ J ,

1
σ2(x)

= 1
ξ2x

∈ L1
loc(J),

μ(x)
σ2(x)

= κ(θ−x)
ξ2x

∈ L1
loc(J), and

b2(x)
σ2(x)

= 1
ξ2

∈ L1
loc(J) are

satisfied. This implies that the conditions (2.2) and (2.9) are satisfied.

Remark 2.5.1. In the literature, the Heston model is often equipped with

a reflecting boundary at 0. The model we consider here for convenience

assumes an absorbing boundary at 0, which is less common.

From Proposition 2.2.3, under P̃ , the diffusion Y satisfies the following

SDE

dYt = κ̃(θ̃ − Yt)1t∈[0,ζ)dt+ ξ
√
Yt1t∈[0,ζ)dW̃t, Y0 = x0,

where κ̃ = κ− ρξ and θ̃ = κθ
κ−ρξ

.

For a constant c ∈ J , the scale functions of the SDE (2.1) and SDE

(2.13) are respectively

s(x) = e
2κc
ξ2 c

2κθ
ξ2

∫ x

c

y
− 2κθ

ξ2 e
− 2κy

ξ2 dy = C1

∫ x

c

y−αe−βydy,

s̃(x) = e
2κ̃c
ξ2 c

2κ̃˜θ
ξ2

∫ x

c

y
− 2κ̃˜θ

ξ2 e
− 2κ̃y

ξ2 dy = C2

∫ x

c

y−αe−γydy, (2.27)

with α = 2κθ
ξ2
, β = 2κ

ξ2
> 0, γ = 2κ

ξ2
− 2ρ

ξ
, and the constant terms are

C1 = e
2κc
ξ2 c

2κθ
ξ2 > 0 and C2 = e

2κc
ξ2

− 2ρc
ξ c

2κθ
ξ2 > 0. Under P̃ , we have the
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following test function for x ∈ J̄

ṽ(x) =
2

ξ2

∫ x

c

∫ x

y
z−αe−γzdz

y1−αe−γy
dy, (2.28)

and

ṽb(x) =
2

ξ2

∫ x

c

∫ x

y
z−αe−γzdz

y−αe−γy
dy. (2.29)

Proposition 2.5.1. For9 the Heston model in (2.26), the underlying (dis-

counted) stock price (St)0�t�T , T ∈ [0,∞) is a true P -martingale.

Proof. We aim at checking the conditions of Proposition 2.4.1.

Case (1): α > 1. From the property of the gamma function

s̃(∞)

⎧⎨⎩< ∞, if γ � 0,

= ∞, if γ < 0.

We now aim to check the finiteness of ṽ(r). We divide the discussion

into three cases.

(i) When α > 1 and γ < 0, s̃(∞) = ∞, then ṽ(∞) = ∞ and ṽb(∞) =

∞.

(ii) When α > 1 and γ = 0, then

ṽ(∞) =
2

ξ2

∫ ∞

c

yα−1

(∫ ∞

y

z−αdz

)
dy.

=
2

ξ2

∫ ∞

c

yα−1 (−y1−α)

1− α
dy

= ∞,

9Proposition 2.5.1 is a special case of Proposition 2.5, p34 of Andersen and Piterbarg
(2007), also see Remark 4.2, p2052 of Del Baño Rollin et al. (2010).
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and

ṽb(∞) =
2

ξ2

∫ ∞

c

yα
(∫ ∞

y

z−αdz

)
dy.

=
2

ξ2

∫ ∞

c

yα
(−y1−α)

1− α
dy

= ∞,

(iii) When α > 1 and γ > 0, then lim
y→∞

y−αe−γy = 0. From L’Hôpital’s

rule

lim
y→∞

∫∞
y

z−αe−γzdz

y−αe−γy
= lim

y→∞
−y−αe−γy

(−γy−α − αy−α−1)e−γy

= lim
y→∞

1

γ + α/y

=
1

γ
> 0.

Thus as y → ∞ ∫ ∞

y

z−αe−γzdz ∼ 1

γ
y−αe−γy, (2.30)

and there exists M > c > 0, such that for y > M ,
∫∞
y

z−αe−γzdz >
1
2γ
y−αe−γy. Substitute this into equation (2.28)

ṽ(∞) =
2

ξ2

∫ ∞

c

yα−1eγy
(∫ ∞

y

z−αe−γzdz

)
dy

� 2

ξ2

∫ ∞

M

yα−1eγy
(∫ ∞

y

z−αe−γzdz

)
dy

>
2

ξ2

∫ ∞

M

yα−1eγy
1

2γ
y−αe−γydy

=
1

γξ2

∫ ∞

M

y−1dy

= ∞,
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and similarly substitute
∫∞
y

z−αe−γzdz > 1
2γ
y−αe−γy into (2.29), then

ṽb(∞) =
2

ξ2

∫ ∞

c

yαeγy
(∫ ∞

y

z−αe−γzdz

)
dy

� 2

ξ2

∫ ∞

M

yαeγy
(∫ ∞

y

z−αe−γzdz

)
dy

>
2

ξ2

∫ ∞

M

yαeγy
1

2γ
y−αe−γydy

=
1

γξ2

∫ ∞

M

dy

= ∞.

To summarize, when α > 1, ṽ(r) = ∞ and ṽb(r) = ∞ always hold for

γ ∈ R.

Case (2): α � 1. Similarly divide into two cases based on γ:

(i) If γ � 0, then e−γy � 1 and

s̃(∞) = C2

∫ ∞

c

y−αe−γydy

� C2

∫ ∞

c

y−αdy

= ∞, (2.31)

and consequently ṽ(∞) = ∞ and ṽb(∞) = ∞.

(ii) If γ > 0, note that lim
y→∞

y−αe−γy = 0 still holds, then we can apply

the L’Hôpital’s rule similar as Case (1) (iii), and we can conclude that

ṽ(r) = ∞ and ṽb(r) = ∞ always hold.

To summarize, in Case (2), ṽ(r) = ∞ and ṽb(r) = ∞ always hold for

γ ∈ R.

To check similar conditions for �, recall

s̃(0) = C2

∫ 0

c

y−αe−γydy = −C2

∫ c

0

y−αe−γydy.
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From the properties of the gamma function

s̃(0)

⎧⎨⎩> −∞, if α < 1,

= −∞, if α � 1.

Case (1): if α � 1 holds, then s̃(0) = −∞, and ṽ(0) = ∞, ṽb(0) = ∞
hold.

Case (2): if α < 1, lim
y→0

y1−αe−γy = 0 holds, then from the L’Hôpital’s

rule

lim
y→0

∫ y
0
z−αe−γzdz

y1−αe−γy
= lim

y→0

y−αe−γy

(1− α)y−αe−γy + y1−α(−γ)e−γy

= lim
y→0

1

1− α− γy

=
1

1− α

> 0. (2.32)

As y → 0 ∫ y

0

z−αe−γzdz ∼ 1

1− α
y1−αe−γy. (2.33)

Thus there exists 0 < ε < c, such that for 0 < y < ε,
∫ y

0
z−αe−γzdz <

2
(1−α)

y1−αe−γy. Substitute this into equation (2.28), then

ṽ(0) =
2

ξ2

∫ c

0

yα−1eγy
(∫ y

0

z−αe−γzdz

)
dy

=
2

ξ2

∫ ε

0

yα−1eγy
(∫ y

0

z−αe−γzdz

)
dy +

2

ξ2

∫ c

ε

yα−1eγy
(∫ y

0

z−αe−γzdz

)
dy

<
2

ξ2

∫ ε

0

yα−1eγy
(

2

(1− α)
y1−αe−γy

)
dy +

2

ξ2

∫ c

ε

yα−1eγy
(∫ y

0

z−αe−γzdz

)
dy

=
4ε

(1− α)ξ2
+

2

ξ2

∫ c

ε

yα−1eγy
(∫ y

0

z−αe−γzdz

)
dy

< ∞. (2.34)
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Similarly substitute
∫ y
0
z−αe−γzdz < 2

(1−α)
y1−αe−γy into (2.29), then

ṽb(0) =
2

ξ2

∫ c

0

yαeγy
(∫ y

0

z−αe−γzdz

)
dy

=
2

ξ2

∫ ε

0

yαeγy
(∫ y

0

z−αe−γzdz

)
dy +

2

ξ2

∫ c

ε

yαeγy
(∫ y

0

z−αe−γzdz

)
dy

<
2

ξ2

∫ ε

0

yαeγy
(

2

(1− α)
y1−αe−γy

)
dy +

2

ξ2

∫ c

ε

yαeγy
(∫ y

0

z−αe−γzdz

)
dy

=
2ε2

(1− α)ξ2
+

2

ξ2

∫ c

ε

yα−1eγy
(∫ y

0

z−αe−γzdz

)
dy

< ∞. (2.35)

We summarize the above results in Table 2.3, and from Proposition

2.4.1, (St)0�t�T , T ∈ [0,∞) is a true martingale. This completes the proof.

Case ṽ(�) ṽ(r) ṽb(�) ṽb(r)
α � 1 ∞ ∞ ∞ ∞
α < 1 < ∞ ∞ < ∞ ∞

Table 2.3: Classification table for the Heston model

Proposition 2.5.2. For the Heston model in (2.26), the underlying (dis-

counted) stock price (St)0�t�∞ is a uniformly integrable P -martingale if

and only if 2κθ < ξ2 and κ � ρξ10.

Proof. From the proof in Proposition 2.5.1, we have the following classi-

fication:

If α � 1, then

s̃(∞)

⎧⎨⎩= ∞, if γ � 0,

< ∞, if γ > 0.

10Note that κ � ρξ implies that ρ > 0.
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If α > 1, then

s̃(∞)

⎧⎨⎩= ∞, if γ < 0,

< ∞, if γ � 0.

We also have

s̃(0)

⎧⎨⎩> −∞, if α < 1,

= −∞, if α � 1.

This, combined with the classification in Table 2.3, gives us the classi-

fication in Table 2.4. From Table 2.4 and Proposition 2.4.2, we have that

(St)0�t�∞ is a uniformly integrable P -martingale if and only if α < 1 and

γ � 0, which is equivalent to 2κθ < ξ2 and κ � ρξ. This completes the

proof.

Case s̃(�) s̃(r) ṽ(�) ṽ(r) ṽb(�) ṽb(r)
α > 1, γ < 0 −∞ ∞ ∞ ∞ ∞ ∞
α > 1, γ = 0 −∞ < ∞ ∞ ∞ ∞ ∞
α > 1, γ > 0 −∞ < ∞ ∞ ∞ ∞ ∞
α = 1, γ < 0 −∞ ∞ ∞ ∞ ∞ ∞
α = 1, γ = 0 −∞ ∞ ∞ ∞ ∞ ∞
α = 1, γ > 0 −∞ < ∞ ∞ ∞ ∞ ∞
α < 1, γ < 0 > −∞ ∞ < ∞ ∞ < ∞ ∞
α < 1, γ = 0 > −∞ ∞ < ∞ ∞ < ∞ ∞
α < 1, γ > 0 > −∞ < ∞ < ∞ ∞ < ∞ ∞

Table 2.4: Second classification table for the Heston model

Under P , we have the following result on the positivity of the (dis-

counted) stock price in the Heston model.

Proposition 2.5.3. For the Heston model in (2.26), we have:

(1) P (ST > 0) = 1 for all T ∈ [0,∞),

(2) P (S∞ > 0) < 1.
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Proof. Similar to the proofs of Proposition 2.5.1 and Proposition 2.5.2

with γ replaced by β and C2 by C1, we have the classification in Table 2.5.

Based on Table 2.5, from Proposition 2.4.3 and Proposition 2.4.4, we have

the desired results. This completes the proof.

Case s(�) s(r) v(�) v(r) vb(�) vb(r)
α > 1 −∞ < ∞ ∞ ∞ ∞ ∞
α = 1 −∞ < ∞ ∞ ∞ ∞ ∞
α < 1 > −∞ < ∞ < ∞ ∞ < ∞ ∞

Table 2.5: Third classification table for the Heston model

2.5.2 3/2 stochastic volatility model

Under P , the (correlated) 3/2 stochastic volatility model has the following

diffusive dynamics

dSt = St

√
Yt1t∈[0,ζ)dW

(1)
t , S0 = 1,

dYt = (ωYt − θY 2
t )1t∈[0,ζ)dt+ ξY

3/2
t 1t∈[0,ζ)dWt, Y0 = x0. (2.36)

where EP [dW
(1)
t dWt] = ρdt, −1 � ρ � 1, ω > 0, ξ > 0, θ ∈ R.

The natural state space is given by J = (�, r) = (0,∞). ζ is the

possible exit time of the process Y from its state space J . The model in

(2.36) belongs to the general stochastic volatility model considered in (2.8)

with μ(x) = ωx − θx2, σ(x) = ξx3/2, and b(x) =
√
x. Clearly σ(x) =

ξx3/2 �= 0, x ∈ J , 1
σ2(x)

= 1
ξ2x3 ∈ L1

loc(J),
μ(x)
σ2(x)

= ω−θx
ξ2x2 ∈ L1

loc(J), and
b2(x)
σ2(x)

= 1
ξ2x2 ∈ L1

loc(J) are satisfied. This implies that the conditions (2.2)

and (2.9) are satisfied.

From Proposition 2.2.3, under P̃ , the diffusion Y satisfies the following

SDE

dYt = (ωYt − θ̃Y 2
t )1t∈[0,ζ)dt+ ξY

3
2
t 1t∈[0,ζ)dW̃t, Y0 = x0,

where θ̃ = θ − ρξ.
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For a constant c ∈ J , the scale functions of the SDE (2.1) and SDE

(2.13) are respectively

s(x) =
b

ca

∫ x

c

ya exp

(
d

y

)
dy,

s̃(x) =
b

cã

∫ x

c

yã exp

(
d

y

)
dy, x ∈ J̄ , (2.37)

where a = 2θ
ξ2
, b = exp

(
− 2ω

cξ2

)
, d = 2ω

ξ2
and ã = a − 2ρ

ξ
. Since the only

difference between s(.) and s̃(.) is in the parameters a and ã, the analysis

under P̃ is similar to the analysis under P , except with a change of the

parameter from a to ã. Thus we only focus on the study under P . We

have the following test functions

v(x) =
2

ξ2

∫ x

c

1

ya+3 exp
(

d
y

) (∫ x

y

za exp

(
d

z

)
dz

)
dy,

vb(x) =
2

ξ2

∫ x

c

1

ya+2 exp
(

d
y

) (∫ x

y

za exp

(
d

z

)
dz

)
dy.

Then

v(∞) =
2

ξ2

∫ ∞

c

1

ya+3 exp
(

d
y

) (∫ ∞

y

za exp

(
d

z

)
dz

)
dy, (2.38)

and

vb(∞) =
2

ξ2

∫ ∞

c

1

ya+2 exp
(

d
y

) (∫ ∞

y

za exp

(
d

z

)
dz

)
dy. (2.39)

Lemma 2.5.1. With ω > 0, we have

a < −1 ⇐⇒ v(r) < ∞,

ã < −1 ⇐⇒ ṽ(r) < ∞.

∀a ∈ R, vb(r) = ∞, ∀ã ∈ R, ṽb(r) = ∞.
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∀a ∈ R, v(�) = ∞, ∀ã ∈ R, ṽ(�) = ∞.

∀a ∈ R, vb(�) = ∞, ∀ã ∈ R, ṽb(�) = ∞.

Proof. We aim to check the conditions in Proposition 2.4.1. For the right

boundary r, divide into two cases:

(i) When a < −1, lim
y→∞

ya+1 exp
(

d
y

)
= 0. From L’Hôpital’s rule

lim
y→∞

∫∞
y

za exp
(
d
z

)
dz

ya+1 exp
(

d
y

) = lim
y→∞

−ya exp
(

d
y

)
((a + 1)ya − ya−1d) exp

(
d
y

)
= lim

y→∞
1

y−1d− (a + 1)

= − 1

a + 1
.

As y → ∞ ∫ ∞

y

za exp

(
d

z

)
dz ∼ − 1

a + 1
ya+1 exp

(
d

y

)
. (2.40)

Note that − 1
a+1

> 0. Since
∫∞
y

za exp
(
d
z

)
dz is decreasing in y, there exists

M > c > 0, such that for y > M∫ ∞

y

za exp

(
d

z

)
dz <

−2

a+ 1
ya+1 exp

(
d

y

)
. (2.41)

Substitute (2.41) into (2.38)

v(∞) =
2

ξ2

∫ ∞

c

1

ya+3 exp
(

d
y

) (∫ ∞

y

za exp

(
d

z

)
dz

)
dy

=
2

ξ2

∫ M

c

1

ya+3 exp
(

d
y

) (∫ ∞

y

za exp

(
d

z

)
dz

)
dy

+
2

ξ2

∫ ∞

M

1

ya+3 exp
(

d
y

) (∫ ∞

y

za exp

(
d

z

)
dz

)
dy
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<
2

ξ2

∫ M

c

1

ya+3 exp
(

d
y

) (∫ ∞

y

za exp

(
d

z

)
dz

)
dy

+
2

ξ2

∫ ∞

M

1

ya+3 exp
(

d
y

) −2

a+ 1
ya+1 exp

(
d

y

)
dy

=
2

ξ2

∫ M

c

1

ya+3 exp
(

d
y

) (∫ ∞

y

za exp

(
d

z

)
dz

)
dy +

−4

(a+ 1)ξ2

∫ ∞

M

1

y2
dy

=
2

ξ2

∫ M

c

1

ya+3 exp
(

d
y

) ∫ ∞

y

za exp

(
d

z

)
dzdy +

−4

(a + 1)ξ2M

< ∞.

From (2.40), there exists M ′ > c > 0, such that for y > M ′

∫ ∞

y

za exp

(
d

z

)
dz >

−1

2(a+ 1)
ya+1 exp

(
d

y

)
. (2.42)

Similarly substitute (2.42) into (2.39)

vb(∞) =
2

ξ2

∫ ∞

c

1

ya+2 exp
(

d
y

) (∫ ∞

y

za exp

(
d

z

)
dz

)
dy

� 2

ξ2

∫ ∞

M ′

1

ya+2 exp
(

d
y

) (∫ ∞

y

za exp

(
d

z

)
dz

)
dy

>
2

ξ2

∫ ∞

M ′

1

ya+2 exp
(

d
y

) ( −1

2(a+ 1)
ya+1 exp

(
d

y

))
dy

=
−1

ξ2(a + 1)

∫ ∞

M ′

1

y
dy

= ∞.

(ii) When a � −1, since d > 0, we have that exp
(

d
y

)
� 1, for y > c > 0.

Then

s(∞) =
b

ca

∫ ∞

c

ya exp

(
d

y

)
dy � b

ca

∫ ∞

c

yady = ∞.
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Thus v(∞) = ∞ and vb(∞) = ∞ in this case. To summarize, v(r) < ∞ if

and only if a < −1, and vb(r) = ∞ for a ∈ R.

For the left endpoint �

v(0) =
2

ξ2

∫ 0

c

1

ya+3 exp
(

d
y

) (∫ 0

y

za exp

(
d

z

)
dz

)
dy

=
2

ξ2

∫ c

0

1

ya+3 exp
(

d
y

) (∫ y

0

za exp

(
d

z

)
dz

)
dy, (2.43)

and

vb(0) =
2

ξ2

∫ c

0

1

ya+2 exp
(

d
y

) (∫ y

0

za exp

(
d

z

)
dz

)
dy. (2.44)

For 0 � z � y, we have e
d
z � e

d
y , and plug this inequality into (2.43)

v(0) =
2

ξ2

∫ c

0

1

ya+3 exp
(

d
y

) (∫ y

0

za exp

(
d

z

)
dz

)
dy

� 2

ξ2

∫ c

0

1

ya+3 exp
(

d
y

) (∫ y

0

zadz

)
exp

(
d

y

)
dy

=
2

(a+ 1)ξ2

∫ c

0

1

y2
dy

= ∞.

Similarly plug this inequality into (2.44)

vb(0) =
2

ξ2

∫ c

0

1

ya+2 exp
(

d
y

) (∫ y

0

za exp

(
d

z

)
dz

)
dy

� 2

ξ2

∫ c

0

1

ya+2 exp
(

d
y

) (∫ y

0

zadz

)
exp

(
d

y

)
dy

=
2

(a+ 1)ξ2

∫ c

0

1

y
dy = ∞.
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To summarize, v(�) = ∞ and vb(�) = ∞ for a ∈ R. From (2.37), the above

proofs also work for the case of ṽ by substituting a for ã. The results in

Lemma 2.5.1 can be summarized in Table 2.6. This completes the proof.

�

Case ṽ(�) ṽ(r) ṽb(�) ṽb(r)
ã < −1 ∞ < ∞ ∞ ∞
ã � −1 ∞ ∞ ∞ ∞

Table 2.6: Classification table for the 3/2 model

Proposition 2.5.4. For11 the 3/2 model in (2.36), the underlying (dis-

counted) stock price (St)0�t�T , T ∈ [0,∞) is a true P -martingale if and

only if ξ2 − 2ρξ + 2θ � 0.

Proof. From Lemma 2.5.1 and Table 2.6, combined with Proposition

2.4.1, we have that (St)0�t�T , T ∈ [0,∞) is a true P -martingale if and only

if ã � −1, which is equivalent to ξ2−2ρξ+2θ � 0 after some simplifications.

This completes the proof.

Proposition 2.5.5. For the 3/2 model in (2.36), the underlying (dis-

counted) stock price (St)0�t�∞ is not a uniformly integrable P -martingale.

Proof. From Table 2.6, for all ã ∈ R, ṽb(�) = ∞ and ṽb(�) = ∞ hold. From

Proposition 2.4.2, (St)0�t�∞ is not a uniformly integrable P -martingale.

This completes the proof.

Under P , we have the following result on the positivity of the (dis-

counted) stock price in the 3/2 model.

Proposition 2.5.6. For the 3/2 model in (2.36), we have:

(1) P (ST > 0) = 1 for all T ∈ [0,∞) if and only if ξ2 + 2θ � 0,

(2) P (S∞ > 0) < 1.

11Theorem 3, p110 of Carr and Sun (2007) proves sufficiency. See also Lewis (2000)
and Drimus (2012).
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Proof. Similar to the proofs of Proposition 2.5.4 and Proposition 2.5.5

with ã replaced by a, we have the classification in Table 2.7. Based on

Table 2.7, from Proposition 2.4.3 and Proposition 2.4.4, we have the desired

results. Note that a � −1 is equivalent to ξ2+2θ � 0. This completes the

proof.

Case v(�) v(r) vb(�) vb(r)
a < −1 ∞ < ∞ ∞ ∞
a � −1 ∞ ∞ ∞ ∞

Table 2.7: Second classification table for the 3/2 model

2.5.3 Schöbel-Zhu stochastic volatility model

Under P , the correlated Schöbel-Zhu stochastic volatility model12 (see

Schöbel and Zhu (1999)) can be described by the following diffusive dy-

namics

dSt = StYt1t∈[0,ζ)dW
(1)
t , S0 = 1,

dYt = −κ(Yt − θ)1t∈[0,ζ)dt+ γ1t∈[0,ζ)dW
(2)
t , Y0 = x0. (2.45)

where E[dW
(1)
t dW

(2)
t ] = ρdt, −1 � ρ � 1, κ > 0, θ > 0, γ > 0. The process

Y is an Ornstein-Uhlenbeck process, and this implies that its natural state

space is J = (�, r) = (−∞,∞). ζ is the possible exit time of the process Y

from its state space J . The model (2.45) belongs to the general stochastic

volatility model considered in (2.8) with μ(x) = κ(θ − x), σ(x) = γ, and

b(x) = x. Clearly σ(x) = γ �= 0, x ∈ J , then 1
σ(x)2

= 1
γ2 ∈ L1

loc(J),
μ(x)
σ(x)2

= κ(θ−x)
γ2 ∈ L1

loc(J), and b2(x)
σ2(x)

= x2

γ2 ∈ L1
loc(J) are satisfied. This

implies that the conditions (2.2) and (2.9) are satisfied.

12It is the correlated version of the Stein-Stein (1991) model. In Rheinländer (2005),
the minimal entropy martingale measure is studied in detail for this model, and its
Proposition 3.1 gives a necessary and sufficient condition such that the associated
stochastic exponential is a true martingale. Here we provide deterministic criteria.
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From Proposition 2.2.3, under P̃ , the diffusion Y satisfies the following

SDE

dYt = (κθ − (κ− ργ)Yt)1t∈[0,ζ)dt + γ1t∈[0,ζ)dW̃t, Y0 = x0.

For a positive constant c ∈ J , denote α = κ − ργ, and compute the

scale functions respectively of the SDE (2.1) and SDE (2.13)

s(x) =

∫ x

c

e
κ(y−θ)2−κ(c−θ)2

γ2 dy = C1

∫ x

c

e
κ(y−θ)2

γ2 dy,

s̃(x) =

∫ x

c

e
αy2−2κθy+2κθc−αc2

γ2 dy =

⎧⎨⎩C2

∫ x

c
e

α(y−κθ
α )2

γ2 dy, if α �= 0,

C3

(
e
− 2κθc

γ2 − e
− 2κθ

γ2
x
)
, if α = 0,

with constants C1 = e−κ(c−θ)2/γ2
> 0, C2 = e(−κ2θ2/α+2κθc−αc2)/γ2

> 0 for

α �= 0, and the constant C3 = e2κθc/γ
2 γ2

2κθ
> 0 for α = 0. Since κ > 0 by

assumption, e
κ(y−θ)2

γ2 � 1 for any y ∈ [c, x], with c ∈ J, x ∈ J̄ , then we have

that s(r) = s(∞) = ∞ always holds, and consequently v(r) = v(∞) = ∞.

Proposition 2.5.7. For the Schöbel-Zhu model in (2.45), the underlying

(discounted) stock price (St)0�t�T , T ∈ [0,∞) is a true P -martingale.

Proof. We aim to check the conditions in Proposition 2.4.1. For the case

of the right endpoint r, depending on the sign of α = κ− ργ, we have the

following classification

s̃(∞)

⎧⎨⎩< ∞, if α � 0,

= ∞, if α > 0.

Divide into three cases:

(i) When α > 0, s̃(∞) = ∞, then ṽ(∞) = ∞ and ṽb(∞) = ∞.
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(ii) When α = 0

ṽ(x) =
1

κθ

∫ x

c

(
1− e

− 2κθ
γ2

(x−y)
)
dy

=
1

κθ

(
x+

γ2

2κθ
e

2κθ
γ2

(c−x) − c− γ2

2κθ

)
.

Then ṽ(∞) = ∞. Similarly we can compute

ṽb(x) =
1

κθ

∫ x

c

y2
(
1− e

− 2κθ
γ2

(x−y)
)
dy

=
1

3κθ
x3 − e

− 2κθ
γ2

x
∫ x

c

y2e
2κθ
γ2

y
dy − c3

3κθ
.

Since
∫ x

c
y2e

2κθ
γ2

y
dy �

∫ x
c
x2e

2κθ
γ2

y
dy, then

ṽb(x) �
1

3κθ
x3 − e

− 2κθ
γ2

x
∫ x

c

x2e
2κθ
γ2

y
dy − c3

3κθ

=
1

3κθ
x3 − γ2

2κθ
x2(1− e

2κθ
γ2

(c−x)
)− c3

3κθ
. (2.46)

Then ṽb(∞) = ∞ can be verified, because the right hand side of (2.46)

tends to ∞ as x → ∞.

(iii) When α < 0, the test function is

ṽ(x) =
2

γ2

∫ x

c

∫ x

y
α
γ2

(
z − κθ

α

)2
dz

e
α
γ2

(y−κθ
α
)2

dy =
2

γ2

∫ x

c

e
− α

γ2
(y−κθ

α
)2

(∫ x

y

α

γ2

(
z − κθ

α

)2

dz

)
dy.

Then

ṽ(∞) =
2

γ2

∫ ∞

c

e
− α

γ2
(y−κθ

α
)2

(∫ ∞

y

α

γ2

(
z − κθ

α

)2

dz

)
dy. (2.47)

Since α < 0 is assumed here, then lim
y→∞

y−1e
α
γ2

(y−κθ
α
)2
= 0, and we can
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apply L’Hôpital’s rule

lim
y→∞

∫∞
y

α
γ2

(
z − κθ

α

)2
dz

y−1e
α
γ2

(y−κθ
α
)2

= lim
y→∞

− α
γ2

(
y − κθ

α

)2
e

α
γ2

(y−κθ
α
)2
(− 1

y2
+ 2α

γ2 (1− κθ
αy
))

= lim
y→∞

1
1
y2

− 2α
γ2 (1− κθ

αy
)

=
−γ2

2α
> 0.

So as y → ∞ ∫ ∞

y

α

γ2

(
z − κθ

α

)2

dz ∼ −γ2

2α
y−1e

α
γ2

(y−κθ
α
)2
.

Thus there exists M > c > 0, such that for y > M∫ ∞

y

α

γ2

(
z − κθ

α

)2

dz >
−γ2

4α
y−1e

α
γ2

(y−κθ
α
)2
. (2.48)

Substitute (2.48) into (2.47)

ṽ(∞) =
2

γ2

∫ ∞

c

e
− α

γ2
(y−κθ

α
)2

(∫ ∞

y

α

γ2

(
z − κθ

α

)2

dz

)
dy

� 2

γ2

∫ ∞

M

e
− α

γ2
(y−κθ

α
)2

(∫ ∞

y

α

γ2

(
z − κθ

α

)2

dz

)
dy

>
2

γ2

∫ ∞

M

e
− α

γ2
(y−κθ

α
)2
(−γ2

4α
y−1e

α
γ2

(y−κθ
α
)2
)
dy

=
−1

2α

∫ ∞

M

y−1dy

= ∞.

Thus ṽ(∞) = ∞ in this case.
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Similarly we can compute

ṽb(∞) =
2

γ2

∫ ∞

c

y2e
− α

γ2
(y−κθ

α
)2

(∫ ∞

y

α

γ2

(
z − κθ

α

)2

dz

)
dy. (2.49)

With the same M as above, substitute (2.48) into (2.49)

ṽb(∞) =
2

γ2

∫ ∞

c

y2e
− α

γ2
(y−κθ

α
)2

(∫ ∞

y

α

γ2

(
z − κθ

α

)2

dz

)
dy

� 2

γ2

∫ ∞

M

y2e
− α

γ2
(y−κθ

α
)2

(∫ ∞

y

α

γ2

(
z − κθ

α

)2

dz

)
dy

>
2

γ2

∫ ∞

c

y2e
− α

γ2
(y−κθ

α
)2
(−γ2

4α
y−1e

α
γ2

(y−κθ
α
)2
)
dy

=
−1

2α

∫ ∞

M

ydy

= ∞.

Thus ṽb(∞) = ∞ in this case.

Now we consider the case of the left endpoint �. From the definition of

s̃(.), we have that s̃(0) > −∞ for α ∈ R.

Similar as above, we divide into the following two cases:

(i) When α = 0

ṽ(0) =
1

κθ

(
γ2

2κθ
e

2κθ
γ2

(c) − c− γ2

2κθ

)
< ∞.

(ii) When α �= 0

ṽ(0) =
2

γ2

∫ c

0

e
− α

γ2
(y−κθ

α
)2

(∫ y

0

α

γ2

(
z − κθ

α

)2

dz

)
dy. (2.50)
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Since lim
y→0

ye
α
γ2

(y−κθ
α
)2
= 0, we can apply L’Hôpital’s rule

lim
y→0

∫ y
0

α
γ2

(
z − κθ

α

)2
dz

ye
α
γ2

(y−κθ
α
)2

= lim
y→0

α
γ2

(
y − κθ

α

)2
e

α
γ2

(y−κθ
α
)2
(1 + 2α

γ2 y(y − κθ
α
))

= lim
y→0

1

1 + 2α
γ2 y(y − κθ

α
))

= 1.

So as y → 0 ∫ y

0

α

γ2

(
z − κθ

α

)2

dz ∼ ye
α
γ2

(y−κθ
α
)2
.

Thus there exists 0 < ε < c, such that for 0 � y < ε∫ y

0

α

γ2

(
z − κθ

α

)2

dz < 2ye
α
γ2

(y−κθ
α
)2
. (2.51)

Substitute (2.51) into (2.50)

ṽ(0) =
2

γ2

∫ c

0

e
− α

γ2
(y−κθ

α
)2

(∫ y

0

α

γ2

(
z − κθ

α

)2

dz

)
dy

=
2

γ2

∫ ε

0

e
− α

γ2
(y−κθ

α
)2

(∫ y

0

α

γ2

(
z − κθ

α

)2

dz

)
dy

+
2

γ2

∫ c

ε

e
− α

γ2
(y−κθ

α
)2

(∫ y

0

α

γ2

(
z − κθ

α

)2

dz

)
dy

<
2

γ2

∫ ε

0

e
− α

γ2
(y−κθ

α
)2
(
2ye

α
γ2

(y−κθ
α
)2
)
dy

+
2

γ2

∫ c

ε

e
− α

γ2
(y−κθ

α
)2

(∫ y

0

α

γ2

(
z − κθ

α

)2

dz

)
dy
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=
2

γ2

∫ ε

0

2ydy +
2

γ2

∫ c

ε

e
− α

γ2
(y−κθ

α
)2

(∫ y

0

α

γ2

(
z − κθ

α

)2

dz

)
dy

=
2ε2

γ2
+

2

γ2

∫ c

ε

e
− α

γ2
(y−κθ

α
)2

(∫ y

0

α

γ2

(
z − κθ

α

)2

dz

)
dy

< ∞. (2.52)

To summarize, ṽ(�) < ∞ for α ∈ R.

Similarly, when α = 0

ṽb(0) =

∫ c

0

y2e
2κθ
γ2

y
dy − c3

3κθ
< ∞.

When α �= 0

ṽb(0) =
2

γ2

∫ c

0

y2e
− α

γ2
(y−κθ

α
)2

(∫ y

0

α

γ2

(
z − κθ

α

)2

dz

)
dy. (2.53)

Substitute (2.51) into (2.53), and use the same ε as above. For 0 � y < ε

ṽb(0) =
2

γ2

∫ c

0

y2e
− α

γ2
(y−κθ

α
)2

(∫ y

0

α

γ2

(
z − κθ

α

)2

dz

)
dy

=
2

γ2

∫ ε

0

y2e
− α

γ2
(y−κθ

α
)2

(∫ y

0

α

γ2

(
z − κθ

α

)2

dz

)
dy

+
2

γ2

∫ c

ε

y2e
− α

γ2
(y−κθ

α
)2

(∫ y

0

α

γ2

(
z − κθ

α

)2

dz

)
dy

<
2

γ2

∫ ε

0

y2e
− α

γ2
(y−κθ

α
)2
(
2ye

α
γ2

(y−κθ
α
)2
)
dy

+
2

γ2

∫ c

ε

y2e
− α

γ2
(y−κθ

α
)2

(∫ y

0

α

γ2

(
z − κθ

α

)2

dz

)
dy

61



=
2

γ2

∫ ε

0

2y3dy +
2

γ2

∫ c

ε

y2e
− α

γ2
(y−κθ

α
)2

(∫ y

0

α

γ2

(
z − κθ

α

)2

dz

)
dy

=
ε4

γ2
+

2

γ2

∫ c

ε

y2e
− α

γ2
(y−κθ

α
)2

(∫ y

0

α

γ2

(
z − κθ

α

)2

dz

)
dy

< ∞. (2.54)

To summarize, ṽb(�) < ∞, for α ∈ R.

Above all, we can summarize the results in Table 2.8. From Proposition

2.4.1 (3), for T ∈ [0,∞), (St)0�t�T is a true P -martingale. This completes

the proof.

Case ṽ(�) ṽ(r) ṽb(�) ṽb(r)
α ∈ R < ∞ ∞ < ∞ ∞

Table 2.8: Classification table for the Schöbel-Zhu model

Proposition 2.5.8. For the Schöbel-Zhu model in (2.45), the underlying

(discounted) stock price (St)0�t�∞ is a uniformly integrable P -martingale

if and only if κ > ργ.

Proof. From the proof in Proposition 2.5.7, we have the following classi-

fication:

s̃(∞)

⎧⎨⎩< ∞, if α � 0,

= ∞, if α > 0,

and

s̃(0) > −∞, for α ∈ R.

This, combined with the classification in Table 2.8, gives us the classi-

fication in Table 2.9. From Table 2.9 and Proposition 2.4.2, we have that

(St)0�t�∞ is a uniformly integrable P -martingale if and only if α > 0, or

equivalently κ > ργ. This completes the proof.
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Case s̃(�) s̃(r) ṽ(�) ṽ(r) ṽb(�) ṽb(r)
α � 0 > −∞ < ∞ < ∞ ∞ < ∞ ∞
α > 0 > −∞ ∞ < ∞ ∞ < ∞ ∞

Table 2.9: Second classification table for the Schöbel-Zhu model

Under P , we have the following result on the positivity of the (dis-

counted) stock price in the Schöbel-Zhu model.

Proposition 2.5.9. For the Schöbel-Zhu model in (2.45), we have:

(1) P (ST > 0) = 1 for all T ∈ [0,∞),

(2) P (S∞ > 0) = 1.

Proof. Similar to the proofs of Proposition 2.5.7 and Proposition 2.5.8

with α replaced by κ > 0, we have the classification given in Table 2.10.

From Table 2.10 and Proposition 2.4.3 and Proposition 2.4.4, we have the

desired results. This completes the proof.

Case s(�) s(r) v(�) v(r) vb(�) vb(r)
α > 0 > −∞ ∞ < ∞ ∞ < ∞ ∞

Table 2.10: Third classification table for the Schöbel-Zhu model

2.5.4 Hull-White stochastic volatility model

Under P , the correlated Hull-White stochastic volatility model (see Hull

and White (1987)) can be described by the following diffusive dynamics

dSt = St

√
Yt1t∈[0,ζ)dW

(1)
t , S0 = 1,

dYt = μYt1t∈[0,ζ)dt+ σYt1t∈[0,ζ)dW
(2)
t , Y0 = x0, (2.55)

where E[dW
(1)
t dW

(2)
t ] = ρdt, −1 � ρ � 1, μ > 0, and σ > 0. The process Y

is a geometric Brownian motion process, and this implies that its natural

state space is J = (�, r) = (0,∞). ζ is the possible exit time of the
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process Y from its state space J . The model (2.55) belongs to the general

stochastic volatility model considered in (2.8) with μ(x) = μx, σ(x) = σx,

and b(x) =
√
x. Clearly σ(x) = σx �= 0, x ∈ J , 1

σ(x)2
= 1

σ2x2 ∈ L1
loc(J),

μ(x)
σ(x)2

= μ
σ2x

∈ L1
loc(J), and

b2(x)
σ2(x)

= 1
σ2x

∈ L1
loc(J) are satisfied. This implies

that the conditions (2.2) and (2.9) are satisfied.

From Proposition 2.2.3, under P̃ , the diffusion Y satisfies the following

SDE

dYt = (μYt + ρσY
3
2
t )1t∈[0,ζ)dt+ σYt1t∈[0,ζ)dW̃t, Y0 = x0, (2.56)

Denote α = 4μ
σ2 −1 and γ = 2ρ

σ
. For a constant c ∈ J , compute the scale

functions of the SDE (2.13)

s̃(x) =

∫ x

c

e−
∫ y
c

2μu+ρσu3/2

σ2u2
dudy

= C1

∫ x

c

y−
2μ

σ2 e−
2ρ
σ

√
ydy,

= C1

∫ x

c

y−
α+1
2 e−γ

√
ydy, x ∈ J̄ , (2.57)

where C1 = c
2μ

σ2 e
2ρ
σ

√
c is a positive constant.

From the definition in (2.21) and the scale function in (2.57)

ṽ(x) =

∫ x

c

2(s̃(x)− s̃(y))

s̃′(y)σ̃2(y)
dy

=
2

σ2

∫ x

c

∫ x

y
z−

2μ

σ2 e−
2ρ
σ

√
zdz

y2−
2μ

σ2 e−
2ρ
σ

√
y

dy

=
2

σ2

∫ x

c

y
α−3
2 eγ

√
y

(∫ x

y

z−
α+1
2 e−γ

√
zdz

)
dy, (2.58)

and

ṽb(x) =
2

σ2

∫ x

c

y
α−1
2 eγ

√
y

(∫ x

y

z−
α+1
2 e−γ

√
zdz

)
dy. (2.59)
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Proposition 2.5.10. For13 the Hull-White model in (2.55), the underlying

(discounted) stock price (St)0�t�T , T ∈ [0,∞) is a true P -martingale if and

only if ρ � 0.

Proof. We distinguish three situations:

(I) μ > 1
2
σ2. Apply a change of variable z =

√
y. Then y = z2,

dy = 2zdz, and

s̃(x) = 2C1

∫ √
x

√
c

z1−
4μ

σ2 e−
2ρ
σ
zdz

= 2C1

∫ √
x

√
c

z−αe−γzdz, x ∈ J̄ . (2.60)

Note that the function in (2.60) is similar to the scale function in (2.27),

except that there is a
√
x in place of x. From (2.60)

s̃(∞) = 2C1

∫ ∞

√
c

z−αe−γzdz.

From the property of the gamma function

s̃(∞)

⎧⎨⎩< ∞, if γ � 0,

= ∞, if γ < 0.

Divide into three cases based on γ:

(i) When γ < 0, s̃(∞) = ∞, then ṽ(∞) = ∞ and ṽb(∞) = ∞.

(ii) When γ = 0

ṽ(∞) =
2

σ2

∫ ∞

c

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

=
2

σ2

∫ ∞

c

y
α−3
2

(∫ ∞

y

z−
α+1
2 dz

)
dy

13Proposition 2.5.10 is equivalent to Theorem 1 of Jourdain (2004), and a special case
of Proposition 2.5., p34 of Andersen and Piterbarg (2007).
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=
4

σ2(α− 1)

∫ ∞

c

y−1dy

= ∞,

and

ṽb(∞) =
2

σ2

∫ ∞

c

y
α−1
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

=
2

σ2

∫ ∞

c

y
α−1
2

(∫ ∞

y

z−
α+1
2 dz

)
dy

=

∫ ∞

c

4

σ2(α− 1)
dy

= ∞.

(iii) When γ > 0, from (2.58)

ṽ(∞) =
2

σ2

∫ ∞

c

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy, (2.61)

and

ṽb(∞) =
2

σ2

∫ ∞

c

y
α−1
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy. (2.62)

Since α > 1, then lim
y→∞

y−
α
2 e−γ

√
y = 0, and from L’Hôpital’s rule

lim
y→∞

∫∞
y

z−
α+1
2 e−γ

√
zdz

y−
α
2 e−γ

√
y

= lim
y→∞

1
α
2
y−1/2 + γ

2

=
2

γ
> 0.

As y → ∞ ∫ ∞

y

z−
α+1
2 e−γ

√
zdz ∼ 2

γ
y−

α
2 e−γ

√
y. (2.63)
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From (2.63), there exists 0 < M < ∞, such that for y > M∫ ∞

y

z−
α+1
2 e−γ

√
zdz <

4

γ
y−

α
2 e−γ

√
y. (2.64)

Substitute (2.64) into (2.61)

ṽ(∞) =
2

σ2

∫ ∞

c

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

=
2

σ2

∫ M

c

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

+
2

σ2

∫ ∞

M

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

<
2

σ2

∫ M

c

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

+
2

σ2

∫ ∞

M

y
α−3
2 eγ

√
y

(
4

γ
y−

α
2 e−γ

√
y

)
dy

=
2

σ2

∫ M

c

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

+
16√
Mγσ2

< ∞.

Then ṽ(∞) < ∞, for γ > 0.

From (2.63), there exists 0 < c < M ′ < ∞, such that for y > M ′

∫ ∞

y

z−
α+1
2 e−γ

√
zdz >

1

γ
y−

α
2 e−γ

√
y. (2.65)

Substitute (2.65) into (2.62)

ṽ(∞) =
2

σ2

∫ ∞

c

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

� 2

σ2

∫ ∞

M ′
y

α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy
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>
2

σ2

∫ ∞

M ′
y

α−3
2 eγ

√
y

(
1

γ
y−

α
2 e−γ

√
y

)
dy

=
2

γσ2

∫ ∞

M ′
y−1dy

= ∞.

Then ṽb(∞) = ∞, for γ > 0.

We now look at the case of the left boundary �. From (2.60)

s̃(0) = −2C1

∫ √
c

0

z−αe−γzdz.

When γ > 0, since α > 1, from the property of the gamma function, we

have s̃(0) = −∞. When γ � 0, then e−γz � 1, and

s̃(0) = −2C1

∫ √
c

0

z−αe−γzdz � −2C1

∫ √
c

0

z−αdz = −∞.

To summarize, s̃(0) = −∞ for γ ∈ R. Then ṽ(0) = ∞ and ṽb(0) = ∞
hold.

Above all, when α > 1, we have the following Table 2.11. The results

in Table 2.11, combined with Proposition 2.4.1, imply that, for α > 1,

(St)0�t�T , T ∈ [0,∞) is a true P -martingale if and only if ṽ(r) = ∞. This

is equivalent to γ � 0, and further equivalent to ρ � 0 from the definition

of γ. This completes the proof of situation (I).

Case ṽ(�) ṽ(r) ṽb(�) ṽb(r)
γ � 0 ∞ ∞ ∞ ∞
γ > 0 ∞ < ∞ ∞ ∞

Table 2.11: Classification table for the Hull-White model when 2μ/σ2 > 1

(II) μ = 1
2
σ2. We consider the case when α = 1. Then

s̃(∞) = 2C1

∫ ∞

√
c

z−1e−γzdz,
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Divide into two cases based on the value of γ. If γ � 0, then e−γz � 1, and

s̃(∞) � 2C1

∫ ∞

√
c

z−1dz = ∞.

Then in this case, ṽ(r) = ∞ and ṽb(r) = ∞.

If γ > 0, from properties of the gamma function, s̃(∞) < ∞. To

summarize, when α = 1

s̃(∞)

⎧⎨⎩= ∞, if γ � 0,

< ∞, if γ > 0.

Similarly for the case of the left boundary �. If γ > 0, from the properties

of the gamma function, s̃(0) = −∞. If γ � 0, then e−γz � 1, and

s̃(0) � −2C1

∫ √
c

0

z−1dz = −∞.

To summarize, when α = 1, we have s̃(�) = −∞, then ṽ(�) = ∞ and

ṽb(�) = ∞.

Consider the case when α = 1 and γ > 0, from the above result, there is

s̃(∞) < ∞, and we aim to study the properties of ṽ(∞) and ṽb(∞). From

the definition in (2.58)

ṽ(∞) =
2

σ2

∫ ∞

c

y−1eγ
√
y

(∫ ∞

y

z−1e−γ
√
zdz

)
dy. (2.66)

Since γ > 0, then lim
y→∞

y−
1
2 e−γ

√
y = 0, and from L’Hôpital’s rule

lim
y→∞

∫∞
y

z−1e−γ
√
zdz

y−
1
2 e−γ

√
y

= lim
y→∞

1
1
2
y−1/2 + γ

2

=
2

γ
> 0.

As y → ∞ ∫ ∞

y

z−1e−γ
√
zdz ∼ 2

γ
y−

1
2 e−γ

√
y. (2.67)
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Then there exists M < ∞, such that for y > M∫ ∞

y

z−1e−γ
√
zdz <

4

γ
y−

1
2 e−γ

√
y. (2.68)

Substitute (2.68) into (2.66)

ṽ(∞) =
2

σ2

∫ ∞

c

y−1eγ
√
y

(∫ ∞

y

z−1e−γ
√
zdz

)
dy

=
2

σ2

∫ M

c

y−1eγ
√
y

(∫ ∞

y

z−1e−γ
√
zdz

)
dy

+
2

σ2

∫ ∞

M

y−1eγ
√
y

(∫ ∞

y

z−1e−γ
√
zdz

)
dy

<
2

σ2

∫ M

c

y−1eγ
√
y

(∫ ∞

y

z−1e−γ
√
zdz

)
dy

+
2

σ2

∫ ∞

M

y−1eγ
√
y

(
4

γ
y−

1
2 e−γ

√
y

)
dy

=
2

σ2

∫ M

c

y−1eγ
√
y

(∫ ∞

y

z−1e−γ
√
zdz

)
dy

+
8

γσ2

∫ ∞

M

y−
3
2dy

< ∞.

From the definition in (2.58)

ṽb(∞) =
2

σ2

∫ ∞

c

eγ
√
y

(∫ ∞

y

z−1e−γ
√
zdz

)
dy, (2.69)

From (2.67), there exits M ′ > c > 0, such that for y > M ′

∫ ∞

y

z−1e−γ
√
zdz >

1

γ
y−

1
2 e−γ

√
y. (2.70)
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Substitute (2.70) into (2.69)

ṽb(∞) =
2

σ2

∫ ∞

c

eγ
√
y

(∫ ∞

y

z−1e−γ
√
zdz

)
dy

� 2

σ2

∫ ∞

M ′
eγ

√
y

(∫ ∞

y

z−1e−γ
√
zdz

)
dy

>
2

σ2

∫ ∞

M ′
eγ

√
y

(
1

γ
y−

1
2 e−γ

√
y

)
dy

=
2

σ2

∫ ∞

M ′
y−

1
2dy

= ∞.

When α = 1, the results are summarized in Table 2.12.

Case ṽ(�) ṽ(r) ṽb(�) ṽb(r)
γ � 0 ∞ ∞ ∞ ∞
γ > 0 ∞ < ∞ ∞ ∞

Table 2.12: Classification table for the Hull-White model when 2μ/σ2 = 1

The results in Table 2.12, combined with Proposition 2.4.1, imply that,

for α = 1, (St)0�t�T , T ∈ [0,∞) is a true P -martingale if and only if

ṽ(r) = ∞. This is equivalent to γ � 0, and further equivalent to ρ � 0

from the definition of γ. This completes the proof of situation (II).

(III) μ < 1
2
σ2. We consider the case when α < 1. Since −α+1

2
> −1,

then from the property of the gamma function

s̃(0) = −C1

∫ c

0

y−
α+1
2 e−γ

√
ydy > −∞.

From (2.60), we have s̃(∞) = 2C1

∫∞√
c
z−αe−γzdz, and divide into three

cases. If γ > 0, then from the property of gamma function, s̃(∞) < ∞.

If γ � 0, then e−γz � 1, and s̃(∞) � 2C1

∫∞√
c
z−αdz = ∞. To summarize,
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when α < 1

s̃(∞)

⎧⎨⎩= ∞, if γ � 0,

< ∞, if γ > 0.

We first look at ṽ(0) and ṽb(0). From the definition in (2.58)

ṽ(0) =
2

σ2

∫ c

0

y
α−3
2 eγ

√
y

(∫ y

0

z−
α+1
2 e−γ

√
zdz

)
dy, (2.71)

and

ṽb(0) =
2

σ2

∫ c

0

y
α−1
2 eγ

√
y

(∫ y

0

z−
α+1
2 e−γ

√
zdz

)
dy. (2.72)

Divide into two cases based on γ. When γ � 0, e−γ
√
z � 1, then

ṽ(0) =
2

σ2

∫ c

0

y
α−3
2 eγ

√
y

(∫ y

0

z−
α+1
2 e−γ

√
zdz

)
dy

� 2

σ2

∫ c

0

y
α−3
2 eγ

√
y

(∫ y

0

z−
α+1
2 dz

)
dy

=
2

σ2

∫ c

0

y
α−3
2 eγ

√
y

(
2

1− α
y

1−α
2

)
dy

=
4

σ2(1− α)

∫ c

0

y−1eγ
√
ydy.

Apply a change of variable z =
√
y, then

ṽ(0) � 4

σ2(1− α)

∫ c

0

y−1eγ
√
ydy

=
8

σ2(1− α)

∫ √
c

0

z−1eγzdz

= ∞.

The last equality is from the property of the gamma function. Then ṽ(0) =

∞ holds when γ � 0.
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Since γ � 0 is assumed, then e−γ
√
z � e−γ

√
y for 0 � z � y, and

ṽb(0) =
2

σ2

∫ c

0

y
α−1
2 eγ

√
y

(∫ y

0

z−
α+1
2 e−γ

√
zdz

)
dy

� 2

σ2

∫ c

0

y
α−1
2 eγ

√
y

(∫ y

0

z−
α+1
2 e−γ

√
ydz

)
dy

=
2

σ2

∫ c

0

y
α−1
2

(
2

1− α
y

1−α
2

)
dy

=
4c

σ2(1− α)

< ∞.

Then ṽb(0) < ∞ holds when γ � 0.

When γ > 0, e−γ
√
z > e−γ

√
y for 0 � z � y, then

ṽ(0) =
2

σ2

∫ c

0

y
α−3
2 eγ

√
y

(∫ y

0

z−
α+1
2 e−γ

√
zdz

)
dy

>
2

σ2

∫ c

0

y
α−3
2 eγ

√
y

(∫ y

0

z−
α+1
2 e−γ

√
ydz

)
dy

=
2

σ2

∫ c

0

y
α−3
2

(
2

1− α
y

1−α
2

)
dy

=
4

σ2(1− α)

∫ c

0

y−1dy

= ∞.

Then ṽ(0) = ∞ holds when γ > 0.

When γ > 0, e−γ
√
z < 1 for 0 � z � y, then

ṽb(0) =
2

σ2

∫ c

0

y
α−1
2 eγ

√
y

(∫ y

0

z−
α+1
2 e−γ

√
zdz

)
dy

<
2

σ2

∫ c

0

y
α−1
2 eγ

√
y

(∫ y

0

z−
α+1
2 dz

)
dy
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=
2

σ2

∫ c

0

y
α−1
2 eγ

√
y

(
2

1− α
y

1−α
2

)
dy

=
4

σ2(1− α)

∫ c

0

eγ
√
ydy

< ∞.

Then ṽb(0) < ∞ holds when γ > 0.

To summarize, we have that ṽ(0) = ∞ and ṽb(0) < ∞ hold when α < 1.

Consider the case when α < 1 and γ > 0. From the definition in (2.58)

ṽ(∞) =
2

σ2

∫ ∞

c

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy, (2.73)

and

ṽb(∞) =
2

σ2

∫ ∞

c

y
α−1
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy. (2.74)

Since γ > 0 is assumed, then lim
y→∞

y−
α
2 e−γ

√
y = 0, and we can apply

L’Hôpital’s rule

lim
y→∞

∫∞
y

z−
α+1
2 e−γ

√
zdz

y−
α
2 e−γ

√
y

= lim
y→∞

1
α
2
y−

1
2 + γ

2

=
2

γ
> 0.

As y → ∞ ∫ ∞

y

z−
α+1
2 e−γ

√
zdz ∼ 2

γ
y−

α
2 e−γ

√
y. (2.75)

From (2.75), there exists M > 0, such that for y > M∫ ∞

y

z−
α+1
2 e−γ

√
zdz <

4

γ
y−

α
2 e−γ

√
y. (2.76)
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Substitute (2.76) into (2.73)

ṽ(∞) =
2

σ2

∫ ∞

c

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

=
2

σ2

∫ M

c

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

+
2

σ2

∫ ∞

M

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

<
2

σ2

∫ M

c

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

+
2

σ2

∫ ∞

M

y
α−3
2 eγ

√
y

(
4

γ
y−

α
2 e−γ

√
y

)
dy

=
2

σ2

∫ M

c

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

+
8

γσ2

∫ ∞

M

y−
3
2dy

=
2

σ2

∫ M

c

y
α−3
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

+
16√
Mγσ2

< ∞.

Then ṽ(∞) < ∞, for α < 1 and γ > 0.

From (2.75), there exists M ′ > c > 0, such that for y > M ′

∫ ∞

y

z−
α+1
2 e−γ

√
zdz >

1

γ
y−

α
2 e−γ

√
y. (2.77)

Substitute (2.77) into (2.74)

ṽb(∞) =
2

σ2

∫ ∞

c

y
α−1
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy
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� 2

σ2

∫ ∞

M ′
y

α−1
2 eγ

√
y

(∫ ∞

y

z−
α+1
2 e−γ

√
zdz

)
dy

>
2

σ2

∫ ∞

M ′
y

α−1
2 eγ

√
y

(
1

γ
y−

α
2 e−γ

√
y

)
dy

=
2

γσ2

∫ ∞

M ′
y−

1
2dy

= ∞.

Then ṽb(∞) = ∞, for α < 1 and γ > 0.

When α < 1, the results are summarized in Table 2.13.

Case ṽ(�) ṽ(r) ṽb(�) ṽb(r)
γ � 0 ∞ ∞ < ∞ ∞
γ > 0 ∞ < ∞ < ∞ ∞

Table 2.13: Classification table for the Hull-White model when 2μ/σ2 < 1

The results in Table 2.13, combined with Proposition 2.4.1, imply that,

for α < 1, (St)0�t�T , T ∈ [0,∞) is a true P -martingale if and only if

ṽ(r) = ∞. This is equivalent to γ � 0, and further equivalent to ρ � 0

from the definition of γ. This completes the proof of situation (III).

Proposition 2.5.11. For the Hull-White model in (2.55), the underlying

(discounted) stock price (St)0�t�∞ is a uniformly integrable P -martingale

if and only if μ < 1
2
σ2 and ρ � 0.

Proof. From the proof in Proposition 2.5.10, we divide into the following

three cases:

(I) μ > 1
2
σ2. Then we have the following classification:

s̃(∞)

⎧⎨⎩< ∞, if γ � 0,

= ∞, if γ < 0,
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and

s̃(0) = −∞, for γ ∈ R.

This, combined with the classification in Table 2.11, gives us the clas-

sification in Table 2.14. From Table 2.14 and Proposition 2.4.2, we have

that when μ > 1
2
σ2, (St)0�t�∞ is not a uniformly integrable P -martingale.

Case s̃(�) s̃(r) ṽ(�) ṽ(r) ṽb(�) ṽb(r)
γ > 0 −∞ < ∞ ∞ < ∞ ∞ ∞
γ = 0 −∞ < ∞ ∞ ∞ ∞ ∞
γ < 0 −∞ ∞ ∞ ∞ ∞ ∞

Table 2.14: Second classification table: Hull-White model when 2μ/σ2 > 1

(II) μ = 1
2
σ2. Then we have the following classification:

s̃(∞)

⎧⎨⎩< ∞, if γ > 0,

= ∞, if γ � 0,

and

s̃(0) = −∞, for γ ∈ R.

This, combined with the classification in Table 2.12, gives us the clas-

sification in Table 2.15. From Table 2.15 and Proposition 2.4.2, we have

that when μ = 1
2
σ2, (St)0�t�∞ is not a uniformly integrable P -martingale.

Case s̃(�) s̃(r) ṽ(�) ṽ(r) ṽb(�) ṽb(r)
γ > 0 −∞ < ∞ ∞ < ∞ ∞ ∞
γ = 0 −∞ ∞ ∞ ∞ ∞ ∞
γ < 0 −∞ ∞ ∞ ∞ ∞ ∞

Table 2.15: Second classification table: Hull-White model when 2μ/σ2 = 1
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(III) μ < 1
2
σ2. Then we have the following classification:

s̃(∞)

⎧⎨⎩< ∞, if γ > 0,

= ∞, if γ � 0,

and

s̃(0) > −∞, for γ ∈ R.

This, combined with the classification in Table 2.13, gives us the clas-

sification in Table 2.16. From Table 2.16 and Proposition 2.4.2, we have

that when μ < 1
2
σ2, (St)0�t�∞ is a uniformly integrable P -martingale if

and only if γ � 0, or equivalently ρ � 0. This completes the proof.

Case s̃(�) s̃(r) ṽ(�) ṽ(r) ṽb(�) ṽb(r)
γ > 0 > −∞ < ∞ ∞ < ∞ < ∞ ∞
γ = 0 > −∞ ∞ ∞ ∞ < ∞ ∞
γ < 0 > −∞ ∞ ∞ ∞ < ∞ ∞

Table 2.16: Second classification table: Hull-White model when 2μ/σ2 < 1

Under P , we have the following result on the positivity of the (dis-

counted) stock price in the Hull-White model.

Proposition 2.5.12. For the Hull-White model in (2.55), we have:

(1) P (ST > 0) = 1 for all T ∈ [0,∞),

(2) P (S∞ > 0) = 1 if and only if 2μ
σ2 < 1.

Proof. Similar to the proofs of Proposition 2.5.10 and Proposition 2.5.11

with γ = 0, we have the classification in Table 2.17. From Table 2.17 and

Proposition 2.4.3 and Proposition 2.4.4, we have the desired results. This

completes the proof.
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Case s(�) s(r) v(�) v(r) vb(�) vb(r)
2μ/σ2 > 1 −∞ < ∞ ∞ ∞ ∞ ∞
2μ/σ2 = 1 −∞ ∞ ∞ ∞ ∞ ∞
2μ/σ2 < 1 > −∞ ∞ ∞ ∞ < ∞ ∞

Table 2.17: Third classification table for the Hull-White model

2.6 Stochastic time-change transformation

From Proposition 2.2.4 and Proposition 2.2.5, to determine whether a

stochastic exponential is a true P -martingale on [0, T ] (or a uniformly inte-

grable P -martingale on [0,∞]) or not, the goal is to find deterministic nec-

essary and sufficient conditions for P̃ (ϕζ∧T < ∞) = 1 (or P̃ (ϕζ < ∞) = 1)

to hold. To find criteria for the convergence or divergence of these integral

functionals of diffusions, we introduce the stochastic time-change approach

in this section. As an application, we provide an alternative simple proof

to the Engelbert-Schmidt type zero-one law with slightly stronger assump-

tions.

In and only in this section, we make a stronger assumption and assume

that λ(x ∈ (�, r) : b2(x) = 0) = 0, which means that the function b(.) is

positive.

Theorem 2.6.1. Assume that the conditions (2.2) (2.9) are satisfied, and

λ(x ∈ (�, r) : b2(x) = 0) = 0.

(i) Under14 (Ω,F , (Ft)t∈[0,∞), P ), define

Tt :=

⎧⎨⎩inf{u � 0 : ϕu∧ζ > t}, on {0 � t < ϕζ} ,
∞, on {ϕζ � t < ∞} .

(2.78)

Define a new filtration Gt = FTt , t ∈ [0,∞), and a new process Xt :=

YTt, on {0 � t < ϕζ}. Then Xt is Gt-adapted and we have the stochastic

14The statements (i) and (ii) in Theorem 2.6.1 are consequences of well-known results
on stochastic time-change, see section III 21, p277 of Rogers and Williams (1994), p1248
of Cissé, Patie and Tanré (2012). For completeness, we provide a proof here.
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representation

Yt = X∫ t
0 b2(Ys)ds

= Xϕt , P -a.s. on {0 � t < ζ} , (2.79)

and the process X is a time-homogeneous diffusion, which solves the fol-

lowing SDE under P

dXt =
μ(Xt)

b2(Xt)
1t∈[0,ϕζ)dt+

σ(Xt)

b(Xt)
1t∈[0,ϕζ)dBt, X0 = x0, (2.80)

where Bt is the Gt-adapted Dambis-Dubins-Schwartz Brownian motion un-

der P defined in the proof. Similar results hold under P̃ .

(ii) Define ζX := inf {u > 0 : Xu �∈ J}, then ζX = ϕζ =
∫ ζ
0
b2(Ys)ds,

P -a.s., and we can rewrite the SDE (2.80) under P as

dXt =
μ(Xt)

b2(Xt)
1t∈[0,ζX)dt+

σ(Xt)

b(Xt)
1t∈[0,ζX)dBt, X0 = x0. (2.81)

Similar results hold under P̃ .

(iii) The event

{
lim sup

t→ζ
Yt = r

}
is identical to

{
lim sup
t→ζX

Xt = r

}
. Sim-

ilarly for the case of the left boundary �, the case of lim inf, lim and also

the case under P̃ .

Proof. Since λ(x ∈ (�, r) : b2(x) = 0) = 0, ϕs is an increasing function

on [0, ζ ]. From Problem 3.4.5 (ii)15, p174 of Karatzas and Shreve (1991),

ϕTt∧ζ = t ∧ ϕζ , P -a.s. for 0 � t < ∞. On {0 � t < ϕζ}, take u = ζ , then

ϕζ∧ζ = ϕζ > t holds P -a.s. according to the assumption. Then Tt � ζ ,

P -a.s. because of the definition (2.78), Tt := inf{u � 0 : ϕu∧ζ > t}. Thus

ϕTt = t, P -a.s. on {0 � t < ϕζ}.
Choose t = ϕs on {0 � s < ζ}, then 0 � t < ϕζ, P -a.s.. After substi-

tuting this t into the definition of the process X, we have Xϕs = Xt :=

YTt = YTϕs
= Ys, P -a.s.. For the last equality, recall the definition and

Tϕs = inf{u � 0 : ϕu∧ζ > ϕs} = inf{u � 0 : u ∧ ζ > s} = s, P -a.s., on

15See Section 2.8 for the statement and proof of this Problem 3.4.5.
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{0 � s < ζ}. Then we have proved the representation Ys = Xϕs, P -a.s. on

{0 � s < ζ}, and the next goal is to determine the coefficients of the SDE

satisfied by X under P .

For X satisfying the relation (2.79), we aim to show that X satisfies

the following SDE under P

dXt =
μ(Xt)

b2(Xt)
1t∈[0,ϕζ)dt +

σ(Xt)

b(Xt)
1t∈[0,ϕζ)dBt, X0 = Y0 = x0. (2.82)

where B is the Dambis-Dubins-Schwartz Brownian motion adapted to Gt

constructed as follows:

Note that Mt∧ζ =
∫ t∧ζ
0

b(Yu)dWu, t ∈ [0,∞) is a continuous local mar-

tingale with quadratic variation ϕt∧ζ =
∫ t∧ζ
0

b2(Yu)du, t ∈ [0,∞). Then

lim
t→∞

ϕt∧ζ = ϕζ, P -a.s. due to the left continuity of ϕs at s = ζ (see Remark

2.3.2).

From the Dambis-Dubins-Schwartz theorem (Ch.V, Theorem 1.6 and

Theorem 1.7 of Revuz and Yor (1999)), there exists an enlargement (Ω,Gt)

of (Ω,Gt) and a standard Brownian motion β on Ω independent of M with

β0 = 0, such that the process

Bt :=

⎧⎨⎩
∫ Tt

0
b(Yu)dWu, on {t < ϕζ} ,∫ ζ

0
b(Yu)dWu + β̃t−ϕζ

, on {t � ϕζ} .
(2.83)

is a standard linear Brownian motion. Our construction of Tt, t ∈ [0,∞)

agrees with that in Problem 3.4.5, p174 of Karatzas and Shreve (1991).

From Problem 3.4.5 (ii) and the construction (2.83), Bϕs = Ms, P -a.s. on

{0 � s < ζ}, and on {s = ζ}, Bϕζ
:=
∫ ζ
0
b(Yu)dWu =: Mζ , P -a.s.. Thus

Bϕt = Mt, P -a.s. on {0 � t � ζ}.
For the convenience of exposition, denote μ1(.) = μ(.)/b2(.), and σ1(.) =
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σ(.)/b(.). Integrate the SDE in (2.1) under P from 0 to t ∧ ζ

Yt∧ζ − Y0 =

∫ t∧ζ

0

μ(Yu)du+

∫ t∧ζ

0

σ(Yu)dWu

=

∫ t∧ζ

0

μ1(Yu)b
2(Yu)du+

∫ t∧ζ

0

σ1(Yu)b(Yu)dWu. (2.84)

Apply the change of variables formula similar to Problem 3.4.5 (vi)16,

p174 of Karatzas and Shreve (1991), and note the relation (2.79)∫ t∧ζ

0

μ1(Yu)b
2(Yu)du =

∫ t∧ζ

0

μ1(Xϕu)dϕu =

∫ ϕt∧ζ

0

μ1(Xu)du, (2.85)

and similarly∫ t∧ζ

0

σ1(Yu)b(Yu)dWu =

∫ t∧ζ

0

σ1(Xϕu)dBϕu =

∫ ϕt∧ζ

0

σ1(Xu)dBu, (2.86)

where the first equality in (2.86) is due to the relationship Bϕu = Mu =∫ u
0
b(Vs)dWs, P -a.s., on {0 � u � t ∧ ζ}, which we have established above.

Also notice the representation Yt∧ζ = Xϕt∧ζ
, P -a.s., and Y0 = X0, then

Xϕt∧ζ
−X0 =

∫ ϕt∧ζ

0

μ1(Xu)du+

∫ ϕt∧ζ

0

σ1(Xu)dBu. (2.87)

Then on {0 � s � ϕt∧ζ}

Xs −X0 =

∫ s

0

μ1(Xu)du+

∫ s

0

σ1(Xu)dBu. (2.88)

Note that for 0 � t < ∞, we have s ∈ [0, ϕζ], P -a.s. From (2.88), and

recall the definition of μ1(.) and σ1(.), we have the following SDE for X

under P :

dXs =
μ(Xs)

m2(Xs)
1s∈[0,ϕζ)ds+

σ(Xs)

m(Xs)
1s∈[0,ϕζ)dBs, X0 = Y0 = x0.

16See Section 2.8 in Chapter 2 for the statement and the proof.
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This completes the proof of statement (i).

Statement (ii) is a direct consequence of the stochastic representation

Yt∧ζ = Xϕt∧ζ
, P -a.s. in statement (i), because ϕt is an increasing function

in t.

For statement (iii), denote f(t) = Yt on {0 � t < ζ} and g(t) = Xt

on
{
0 � t < ζX

}
. From statement (i), g(ϕt) = Xϕt = Yt = f(t), P -a.s.

on {0 � t < ζ}. They are two real-valued functions linked by an increas-

ing and continuous function ϕt. From statement (ii), ϕζ = ζX, P -a.s.

This means that lim sup
t→ζ

Yt = lim sup
t→ζ

f(t) = lim sup
t→ζ

g(ϕt) = lim sup
t→ζX

g(t) =

lim sup
t→ζX

Xt, P -a.s., and the equivalence of the two events holds. Similarly

for the cases of lim inf, lim and the case of P̃ . This completes the proof. �

Remark 2.6.1. The SDE of Y and the SDE of X have the same scale

functions under P , because (μ(.)/b2(.))/(σ2(.)/b2(.)) = μ(.)/σ2(.). For the

SDE (2.81) of the process X, we can check that 1
(σ(.)/b(.))2

= b2(.)
σ2(.)

and
μ(.)/b2(.)
(σ(.)/b(.))2

= μ(.)
σ2(.)

. Thus the Engelbert-Schmidt condition (2.2) is satisfied,

and the SDE (2.81) under P also has a unique in law weak solution in

the sense of Definition 2.2.1 that possibly exits its state space(see Theorem

5.5.15, p341 of Karatzas and Shreve (1991)).

Denote ζl (resp. ζr) as the possible exit time of the diffusion Y

through the boundary l (resp. r). Correspondingly, denote ζXl (resp. ζXr )

as the possible exit time of the diffusionX through the boundary l (resp. r).

Define ζ = min(ζl, ζr), ζX = min(ζXl , ζXr ), and similarly for the pro-

cesses Y and X. From Theorem 2.6.1 (ii)

ζXl =

∫ ζl

0

b2(Ys)ds, ζXr =

∫ ζr

0

b2(Ys)ds, ζX =

∫ ζ

0

b2(Ys)ds, P -a.s.

ζXl =

∫ ζl

0

b2(Ys)ds, ζXr =

∫ ζr

0

b2(Ys)ds, ζX =

∫ ζ

0

b2(Ys)ds, P̃ -a.s.

(2.89)

Denote the scale function of the SDE (2.1) under P and the SDE (2.81)
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under P as s(.) defined in (2.10) , because they share the same scale func-

tion. Similarly can define s̃(.).

With a constant c ∈ J , for x ∈ J̄ , introduce the following test func-

tions17 respectively

v(x) ≡
∫ x

c

(s(x)− s(y))
2

s′(y)σ2(y)
dy, vX(x) ≡

∫ x

c

(s(x)− s(y))
2b2(y)

s′(y)σ2(y)
dy.

ṽ(x) ≡
∫ x

c

(s̃(x)− s̃(y))
2

s̃′(y)σ2(y)
dy, vX(x) ≡

∫ x

c

(s̃(x)− s̃(y))
2b2(y)

s̃′(y)σ2(y)
dy.

(2.90)

2.7 Alternative proof of the Engelbert-Schmidt

type zero-one law

We complement the study of the Engelbert-Schmidt type zero-one law in

Mijatović and Urusov (2012a) with a third new proof that circumvents

theoretical tools such as the William’s theorem (Ch.VII, Corollary 4.6,

p317, Revuz and Yor (1999)), and the first Ray-Knight theorem (Ch.XI,

Theorem 2.2, p455, Revuz and Yor (1999)). Our proof mainly relies on

the stochastic time-change and the Feller’s test of explosions for a one-

dimensional time-homogeneous diffusion.

From Feller’s test of explosions, we have the following results.

The process Y under P (resp. P̃ ) may exit its state space J at the

boundary point r, i.e. P (ζ < ∞, lim
t→ζ

Yt = r) > 0 (resp. P̃ (ζ < ∞, lim
t→ζ

Yt =

r) > 0), if and only if

v(r) < ∞ (resp. ṽ(r) < ∞) (2.91)

The processX under P (resp. P̃ ) may exit its state space J at the boundary

point r, i.e. P (ζX < ∞, lim
t→ζX

Xt = r) > 0 (resp. P̃ (ζX < ∞, lim
t→ζX

Xt =

17Note that vX(x) and ṽX(x) are exactly the same as vb(x) and ṽb(x) defined in (2.21).
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r) > 0), if and only if18

vX(r) < ∞ (resp. vX(r) < ∞). (2.92)

Similarly for the case of the endpoint �.

For the ease of later discussions, we define the five possible events for

the exit behaviors of Y at the boundaries of its state space J under P̃

A =

{
ζ = ∞, lim sup

t→∞
Yt = r, lim inf

t→∞
Yt = l

}
,

Br =
{
ζ = ∞, lim

t→∞
Yt = r

}
, Cr =

{
ζ < ∞, lim

t→ζ
Yt = r

}
,

Bl =
{
ζ = ∞, lim

t→∞
Yt = l

}
, Cl =

{
ζ < ∞, lim

t→ζ
Yt = l

}
.

Similarly for X under P̃

AX =

{
ζX = ∞, lim sup

t→∞
Xt = r, lim inf

t→∞
Xt = l

}
,

BX
r =

{
ζX = ∞, lim

t→∞
Xt = r

}
, CX

r =

{
ζX < ∞, lim

t→ζX
Xt = r

}
,

BX
l =

{
ζX = ∞, lim

t→∞
Xt = l

}
, CX

l =

{
ζX < ∞, lim

t→ζX
Xt = l

}
. (2.93)

We first recall some results from Mijatović and Urusov (2012a) using our

notation.

Proposition 2.7.1. (Proposition 2.3, 2.4 and 2.5 on p4 of Mijatović and

Urusov (2012a) )

(1) Either P (AX) = 1 or P (BX
r ∪ CX

r ∪ BX
l ∪ CX

l ) = 1.

(2) (i) P (BX
r ∪ CX

r ) = 0 holds if and only if s(r) = ∞.

18In Mijatović and Urusov (2012c), with the same condition (2.92), they define the
endpoint r to be good. Here we provide the probabilistic meaning: an endpoint is
good if X may exit at it with positive probability. The bad endpoint can be similarly
interpreted.
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(ii) P (BX
l ∪ CX

l ) = 0 holds if and only if s(�) = −∞.

(3) Assume that s(r) < ∞. Then either P (BX
r ) > 0, P (CX

r ) = 0 or

P (BX
r ) = 0, P (CX

r ) > 0. Similarly for the case of �.

Proof. For the proof, refer to Mijatović and Urusov (2012a).

We have the following Engelbert-Schmidt type zero-one law for Y under

P̃ .

Proposition 2.7.2. Assume that the function f : J → [0,∞] satisfies

f/σ2 ∈ L1
loc(J), and λ(x ∈ (�, r) : f(x) = 0) = 0. Let s̃(r) < ∞.

(i)If (s̃(r)−s̃)f
s̃′σ2 ∈ L1

loc(r−), then
∫ ζ

0
f(Yu)du < ∞, P̃ -a.s. on

{
lim
t→ζ

Yt = r

}
.

(ii)If (s̃(r)−s̃)f
s̃′σ2 �∈ L1

loc(r−), then
∫ ζ

0
f(Yu)du = ∞, P̃ -a.s. on

{
lim
t→ζ

Yt = r

}
.

The analogous results on the set

{
lim
t→ζ

Yt = l

}
can be similarly stated.

Proof. To be consistent with our notation, define b(y) =
√
f(y), since

f(.) � 0. Denote G = {lim
t→ζ

Ỹt = r}, and from Theorem 2.6.1 (iii)

G = {lim
t→ζ

Yt = r} = { lim
t→ζX

Xt = r} = BX
r ∪ CX

r .

The result is trivial in the case P̃ (G) = 0, so we assume P̃ (G) > 0. Since

the events BX
r , CX

r are disjoint

P̃ (G) = P̃ (BX
r ) + P̃ (CX

r ). (2.94)

From Proposition 2.7.1, s̃(r) < ∞ implies that either P̃ (BX
r ) > 0, P̃ (CX

r ) =

0 or P̃ (BX
r ) = 0, P̃ (CX

r ) > 0 holds.

For statement (i), (s̃(r)−s̃)f
s̃′σ2 ∈ L1

loc(r−), combined with s̃(r) < ∞, im-

plies vX(r) < ∞. From equation (2.92), this is equivalent to P̃ (ζX <

∞, lim
t→ζX

Xt = r) > 0, and from (2.93), it means P̃ (CX
r ) > 0. Thus
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P̃ (BX
r ) = 0, P̃ (CX

r ) > 0 holds. This together with (2.94) implies

P̃ (G) = P̃ (CX
r ) = P̃ (ζX < ∞, lim

t→ζ
Yt = r)

= P̃

(∫ ζ

0

b2(Yu)du < ∞, lim
t→ζ

Yt = r

)
= P̃

(∫ ζ

0

f(Yu)du < ∞, lim
t→ζ

Yt = r

)
,

where the third equality follows from Theorem 2.6.1 (ii).

For statement (ii), (s̃(r)−s̃)f
s̃′σ2 �∈ L1

loc(r−), combined with s̃(r) < ∞, im-

plies ṽX(r) = ∞. From equation (2.92), this is equivalent to P̃ (ζX <

∞, lim
t→ζX

Xt = r) = 0, and from (2.93), it means P̃ (CX
r ) = 0. Thus

P̃ (BX
r ) > 0, P̃ (CX

r ) = 0 holds. By a similar argument to that above

P̃ (G) = P̃ (BX
r ) = P̃ (ζX = ∞, lim

t→ζ
Yt = r)

= P̃

(∫ ζ

0

b2(Yu)du = ∞, lim
t→ζ

Yt = r

)
= P̃

(∫ ζ

0

f(Yu)du = ∞, lim
t→ζ

Yt = r

)
.

The analogous results on the set {lim
t→ζ

Yt = l} can be similarly proved by

switching the roles of r and � in the above. This completes the proof. �

Clearly Proposition 2.7.2 has a corollary for the process Y under P ,

which is almost the same as the Theorem 2.12 of Mijatović and Urusov

(2012a), but with a stronger assumption that f(.) is positive. The proof is

almost identical to that of Proposition 2.7.2 and is thus omitted.

Corollary 2.7.1. (Engelbert-Schmidt type zero-one law for time-homogeneous

diffusions, Theorem 2.12 of Mijatović and Urusov (2012a) with stronger

assumption)

Assume that the function f : J → [0,∞] satisfies f/σ2 ∈ L1
loc(J), and

λ(x ∈ (�, r) : f(x) = 0) = 0. Let s(r) < ∞.
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(i)If (s(r)−s)f
s′σ2 ∈ L1

loc(r−), then
∫ ζ

0
f(Yu)du < ∞, P -a.s. on

{
lim
t→ζ

Yt = r

}
.

(ii)If (s(r)−s)f
s′σ2 �∈ L1

loc(r−), then
∫ ζ

0
f(Yu)du = ∞, P -a.s. on

{
lim
t→ζ

Yt = r

}
.

The analogous results on the set {lim
t→ζ

Yt = l} can be similarly stated.

2.8 A useful result from Karatzas and Shreve

(1991)

Here we quote the statement and proof of Problem 3.4.5, on p174 of

Karatzas and Shreve (1991), because it is useful in the proofs of Theo-

rem 2.6.1 and also Theorem 3.2.1 in Chapter 3.

Proposition 2.8.1. (Problem 3.4.5, p174 of Karatzas and Shreve (1991))

Let A = {A(t); 0 � t < ∞} be a continuous and nondecreasing func-

tion with A(0) = 0, S := A(∞) � ∞, and define for 0 � s < ∞:

T (s) =

⎧⎨⎩inf {t � 0;A(t) > s} , 0 � s < S,

∞, s � S.

The function T = {T (s); 0 � s < ∞} has the following properties:

(i) T is nondecreasing and right-continuous on [0, S), with values in

[0,∞). If A(t) < S; ∀t � 0, then lim
s↑S

T (s) = ∞.

(ii) A(T (s)) = s ∧ S; 0 � s < ∞.

(iii) T (A(t)) = sup {τ � t : A(τ) = A(t)}; 0 � t < ∞.

(iv) Suppose ϕ : [0,∞) → R is continuous and has the property

A(t1) = A(t) for some 0 � t1 < t ⇒ ϕ(t1) = ϕ(t).

Then ϕ(T (s)) is continuous for 0 � s < S, and

ϕ(T (A(t))) = ϕ(t); 0 � t < ∞. (2.95)

(v) For 0 � t, s < ∞; s < A(t) ⇐⇒ T (s) < t and T (s) � t ⇒ s � A(t).

88



(vi) If G is a bounded, measurable, real-valued function defined on

[a, b] ⊂ [0,∞), then

∫ b

a

G(t)dA(t) =

∫ A(b)

A(a)

G(T (s))ds. (2.96)

Proof. (i) The19 nondecreasing character of T is obvious. Thus, for the

right-continuity, we only need to show that lim
θ↓s

T (θ) � T (s), for 0 � s < S.

Set t = T (s). The definition of T (s) implies that for each ε > 0, we have

A(t + ε) > s, and for s < θ < A(t + ε), we have T (θ) � t + ε. Therefore,

lim
θ↓s

T (θ) � t.

(ii) The identity is trivial for s � S; if s < S, set t = T (s) and choose

ε > 0. We have A(t+ ε) > s, and letting ε ↓ 0, we see from the continuity

of A that A(T (s)) � s. If t = T (s) = 0, we are done. If t > 0, then for

0 < ε < t, the definition of T (s) implies A(t − ε) � s. Letting ε ↓ 0, we

obtain A(T (s)) � s.

(iii) This follows immediately from the definition of T (.).

(iv) Since, by (i), T is right-continuous, so is ϕ(T (.)). To show the left-

continuity, take any s ∈ [0, S), and any increasing sequence, {sn}, such that

sn → s. Since T is nondecreasing, {T (sn)} is a nondecreasing sequence of

real numbers bounded from above by T (s). Therefore lim
n→∞

T (sn) exists.

Now we claim that ϕ( lim
n→∞

T (sn)) = ϕ(T (s)). To see this, note that, by con-

tinuity of A and (ii), we have A( lim
n→∞

T (sn)) = lim
n→∞

A(T (sn)) = lim
n→∞

sn = s.

This, together with the property (iii), proves our claim. Finally, by the

continuity of ϕ, it follows that lim
n→∞

ϕ(T (sn)) = ϕ( lim
n→∞

T (sn)) = ϕ(T (s)).

Hence, ϕ(T (.)) is continuous. Finally, to prove statement (iv), note that,

by (ii), we have A(T (A(t))) = A(t) ∧ S = A(t). Now (iv) follows from the

property (iii) of ϕ.

(v) This is a direct consequence of the definition of T , and the continuity

19Here we state the proof provided on p231 of Karatzas and Shreve (1991), and add
details where necessary.
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of A.

(vi) For a � t1 < t2 � b, let G(t) = 1[t1,t2)(t). According to statement

(v), t1 � T (s) < t2 if and only if A(t1) � s < A(t2), so∫ b

a

G(t)dA(t) = A(t2)− A(t1) =

∫ A(b)

A(a)

G(T (s))ds. (2.97)

The linearity of the integral and the monotone convergence theorem imply

that the collection of sets C ∈ B([a, b]) for which∫ b

a

1C(t)dA(t) =

∫ A(b)

A(a)

1C(T (s))ds (2.98)

forms a Dynkin system. Since it contains all intervals of the form [t1, t2) ⊂
[a, b], and these are closed under finite intersection and generate B([a, b]),
from the Dynkin System Thoerem (Theorem 2.1.3, p49 of Karatzas and

Shreve (1991)), we have (2.98) for every C ∈ B([a, b]). The proof of (vi)

follows. This completes the proof.

2.9 Conclusion of Chapter 2

This chapter provides a unification of results on the convergence or di-

vergence properties of integral functionals of time-homogeneous diffusions.

We also generalize some results of Mijatović and Urusov (2012b, 2012c)

from the ρ = 1 case to the case of arbitrary correlation, and provide new

unified proofs without using the concept of separating times.
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Part II

Probabilistic pricing methods
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Chapter 3

First hitting times of

integrated time-homogeneous

diffusions
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3.1 Introduction and financial motivations

The time integrals of stochastic processes are of interest in both applied

probability and mathematical finance. The integrated geometric Brownian

motion is a key component in the payoff of the arithmetic Asian option

in mathematical finance, and it has been extensively studied by many au-

thors, such as Dufresne (2001) and Yor (1992) (2001). The integrated

geometric Brownian motion is also an important component in the equity

linked insurance products. Recently, there is some interest in the study

of the first hitting time of the integral of a stochastic process to a fixed

level. In Metzler (2013), for the case of the integrated geometric Brownian

motion, he provides a closed-form formula for the Laplace transform of the

first hitting time.

In April 2007, Société Générale Corporate and Investment Banking (SG

CIB) started to sell a new type of option that allows buyers to specify the

level of volatility used to price the instrument, which is named the “timer

option”. Consider the underlying asset S, with strikeK and denote by � the

“variance budget” that is chosen by the investor. Denote τ as the random

maturity time of the option, which is defined as the first hitting time of the

realized variance to the variance budget �: τ = inf
{
u > 0 :

∫ u

0
Vsds = �

}
.

The payoff of a timer call option is max(Sτ −K, 0) at time τ .

The financial meaning of the first hitting time considered in this chap-

ter actually corresponds to the “random maturity time” of the “timer op-

tion”. Bernard and Cui (2011) propose an efficient Monte Carlo method for

pricing the “timer option”. In Saunders (2009), Li and Mercurio (2013a)

(2013b), they propose asymptotic expansion methods to price the timer

option in a general stochastic volatility model similar to (3.1). For further

literature on the “timer option”, please refer to Cui (2010), Li (2013) or the

Ph.D. thesis of Li (2010) and the references therein.

In this chapter we give a detailed study of the first hitting time of an

integral functional of a time-homogeneous diffusion to a fixed level. Fur-

thermore, we construct a link between this first hitting time and the time

integral of another time-homogeneous diffusion. Some new probabilistic
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results related to this hitting time are obtained.

As a first application, we extend the work of Metzler (2013) from the

geometric Brownian motion to the setting of time-homogeneous diffusions.

We also show a novel method to price the arithmetic Asian option under

a time-homogeneous diffusion model and provide an explicit triple integral

formula for the price in the Black-Scholes setting.

In this chapter, the new results, which contribute to the current litera-

ture, are as follows: Theorem 3.2.1, Lemma 3.3.1, Proposition 3.3.1, Propo-

sition 3.3.2, Proposition 3.3.3, Proposition 3.3.4, Lemma 3.4.1, Proposition

3.4.1, Proposition 3.4.2, Proposition 3.4.3, and Proposition 3.5.1.

The chapter is organized as follows. Section 3.2 presents the main

results of the chapter, which is the joint distributions of the first hitting

time and place of an integral functional of a time-homogeneous diffusion to

a fixed level. Section 3.3 studies the Laplace transform of the first hitting

time of an integral functional of the geometric Brownian motion. Section

3.4 studies the first hitting time of an integral functional of three other time-

homogeneous diffusions that are commonly used in mathematical finance.

Section 3.5 studies the pricing of arithmetic Asian options when the stock

prices are modeled as time-homogeneous diffusions. Section 3.6 concludes

the chapter.

3.2 Main result

In this section, we give the probabilistic setup and state the main results.

3.2.1 Theoretical joint distribution of (τ, Vτ)

Given a complete filtered probability space (Ω,F ,Ft, P ) with state space

J = (�, r),−∞ � l < r � ∞, and assume that the J-valued diffusion

V = (Vt)t∈[0,∞) satisfies the SDE

dVt = μ(Vt) dt + σ(Vt) dWt, V0 = v0 ∈ J. (3.1)
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where W is a Ft-Brownian motion and μ, σ : J → R are Borel functions

satisfying the Engelbert-Schmidt conditions

∀x ∈ J, σ(x) �= 0, and
1

σ2(·) ,
μ(·)
σ2(·) ∈ L1

loc(J). (3.2)

L1
loc(J) denotes the class of locally integrable functions, i.e. the functions

J → R that are integrable on compact subsets of J . This condition (3.2)

guarantees that the SDE (3.1) has a unique in law weak solution that

possibly exits its state space J (see Theorem 5.5.15, p341, Karatzas and

Shreve (1991)).

In what follows, λ denotes the Lebesgue measure on B(R). Let m be

a Borel function such that λ(x ∈ (l, r) : m2(x) = 0) = 0, and assume the

following local integrability conditions

∀x ∈ J, σ(x) �= 0, and
m2(·)
σ2(·) ∈ L1

loc(J). (3.3)

Denote the possible exit time of V from its state space by ζ , i.e. ζ =

inf{u > 0, Vu �∈ J}, P -a.s., which means that P -a.s. on {ζ = ∞} the

trajectories of V do not exit J , and P -a.s. on {ζ < ∞}, lim
t→ζ

Vt = r or

lim
t→ζ

Vt = l. V is defined such that it stays at its exit point, which means

that � and r are absorbing boundaries. The following terminology is used:

“V may exit the state space J at r”means P (ζ < ∞, lim
t→ζ

Vt = r) > 0.

The following is about stochastic time-change.

Theorem 3.2.1. Assume the conditions (3.2), (3.3), and λ(x ∈ (l, r) :

m2(x) = 0) = 0.
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(i) Define1

τ(t) := τt :=

⎧⎨⎩inf{u � 0 : ϕu∧ζ > t}, on {0 � t < ϕζ} ,
∞, on {ϕζ � t < ∞} .

(3.4)

Define a new filtration Gt = Fτt , t ∈ [0,∞), and a new Gt-adapted process

Xt := Vτt, on {0 � t < ϕζ}. Then we have the stochastic representation

Vt = X∫ t
0
m2(Vs)ds

= Xϕt , P − a.s., on {0 � t < ζ} . (3.5)

and the process X is a time-homogeneous diffusion, which solves the fol-

lowing SDE under P

dXt =
μ(Xt)

m2(Xt)
1t∈[0,ϕζ)dt+

σ(Xt)

m(Xt)
1t∈[0,ϕζ)dBt, X0 = v0. (3.6)

where Bt is the Gt-adapted Dambis-Dubins-Schwartz Brownian motion de-

fined in the proof.

(ii) Define ζX := inf {u > 0 : Xu �∈ J}, then ζX = ϕζ =
∫ ζ

0
m2(Vs)ds,

P -a.s., and we can rewrite the SDE (3.6) as

dXt =
μ(Xt)

m2(Xt)
1t∈[0,ζX)dt+

σ(Xt)

m(Xt)
1t∈[0,ζX)dBt, X0 = v0. (3.7)

(iii) Define the first hitting time of the integrated diffusion process to a

fixed level a ∈ [0,∞) as τ(a) It is well-defined, and on {0 � a < ϕζ}, we
have

(τ(a), Vτ(a)) =
(∫ a

0
1

m2(Xs)
ds,Xa

)
, P -a.s.

Proof. Similar as Remark 2.3.2, since λ(x ∈ (�, r) : m2(x) = 0) = 0, ϕs is

an increasing and continuous function on [0, ζ ]. From Problem 3.4.5 (ii),

p174 of Karatzas and Shreve (1991), ϕτt∧ζ = t ∧ ϕζ , P -a.s. for 0 � t < ∞.

On {0 � t < ϕζ}, when u = ζ , ϕζ∧ζ = ϕζ > t holds P -a.s. according to

1This theorem is almost identical to Theorem 2.6.1 except part (iii), and the different
assumption λ(x ∈ (l, r) : m2(x) = 0) = 0. For the consistency of the development of
this chapter, we repeat the statement and the proof.
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the assumption. Then τt � ζ , P -a.s. due to the definition in (3.4). Thus

ϕτt = t, P -a.s. on {0 � t < ϕζ}.
On {0 � s < ζ}, choose t = ϕs, then 0 � t < ϕζ , P -a.s. Substituting

this t into the definition of the process X, Xϕs = Xt := Vτt = Vτϕs
= Vs,

P -a.s. For the last equality, note that τϕs = inf{u � 0 : ϕu∧ζ > ϕs} =

inf{u � 0 : u ∧ ζ > s} = s, P -a.s., on {0 � s < ζ}. Then we have proved

the representation Vs = Xϕs, on {0 � s < ζ}.
For X satisfying the relation (3.5), we aim to show that X satisfies

the SDE (3.6), where B is the Dambis-Dubins-Schwartz Brownian motion

adapted to Gt constructed as follows:

Note that Mt∧ζ =
∫ t∧ζ
0

m(Vu)dWu, t ∈ [0,∞) is a continuous local mar-

tingale, with quadratic variation ϕt∧ζ =
∫ t∧ζ
0

m2(Vu)du, t ∈ [0,∞). Then

limt→∞ ϕt∧ζ = ϕζ , P -a.s. due to the left continuity of ϕs at s = ζ . From

the Dambis-Dubins-Schwartz theorem (Ch.V, Theorem 1.6 and Theorem

1.7 of Revuz and Yor (1999)), there exists an enlargement (Ω̄, Ḡt, P̄ ) of

(Ω,Gt, P ) and a standard Brownian motion β̄ on Ω̄ independent of M with

β̄0 = 0, such that the process

Bt :=

⎧⎨⎩
∫ τt
0
m(Vu)dWu, on {t < ϕζ} ,∫ ζ

0
m(Vu)dWu + β̃t−ϕζ

, on {t � ϕζ} .
(3.8)

is a standard linear Gt-Brownian motion. Our construction of τt, t ∈ [0,∞)

agrees with that in Problem 3.4.52, p174 of Karatzas and Shreve (1991).

From Problem 3.4.5 (ii) and the construction (3.8), Bϕs = Ms, P -a.s. on

{0 � s < ζ}. On {s = ζ}, Bϕζ
:=
∫ ζ
0
m(Vu)dWu + β̃0 =

∫ ζ
0
m(Vu)dWu =:

Mζ , P -a.s. Thus Bϕt = Mt, P -a.s. on {0 � t � ζ}.
For the convenience of exposition, denote μ1(.) = μ(.)/m2(.), and

2See Section 2.8 in Chapter 2 for the statement and proof of this result.
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σ1(.) = σ(.)/m(.). Integrate the SDE in (3.1) from 0 to t ∧ ζ

Vt∧ζ − V0 =

∫ t∧ζ

0

μ(Vu)du+

∫ t∧ζ

0

σ(Vu)dWu

=

∫ t∧ζ

0

μ1(Vu)m
2(Vu)du+

∫ t∧ζ

0

σ1(Vu)m(Vu)dWu. (3.9)

Apply the change of variables formula similar to Problem 3.4.5 (vi)3,

p174 of Karatzas and Shreve (1991), and note the relation (3.5)∫ t∧ζ

0

μ1(Vu)m
2(Vu)du =

∫ t∧ζ

0

μ1(Xϕu)dϕu =

∫ ϕt∧ζ

0

μ1(Xu)du, (3.10)

and similarly∫ t∧ζ

0

σ1(Vu)m(Vu)dWu =

∫ t∧ζ

0

σ1(Xϕu)dBϕu =

∫ ϕt∧ζ

0

σ1(Xu)dBu (3.11)

where the first equality in (3.11) is due to the relationship Bϕu = Mu =∫ u
0
m(Vs)dWs, P -a.s. on {0 � u � t ∧ ζ}, which we have established above.

Also notice the representation Vt∧ζ = Xϕt∧ζ
, P -a.s. and V0 = X0, then

Xϕt∧ζ
−X0 =

∫ ϕt∧ζ

0

μ1(Xu)du+

∫ ϕt∧ζ

0

σ1(Xu)dBu (3.12)

Then on {0 � sϕt∧ζ}

Xs −X0 =

∫ s

0

μ1(Xu)du+

∫ s

0

σ1(Xu)dBu. (3.13)

Note that for 0 � t < ∞, we have s ∈ [0, ϕζ], P -a.s. From (3.13), and

recall the definition of μ1(.) and σ1(.), we have the following SDE for X:

dXs =
μ(Xs)

m2(Xs)
1s∈[0,ϕζ)ds+

σ(Xs)

m(Xs)
1s∈[0,ϕζ)dBs, X0 = V0 = v0.

This completes the proof of statement (i).

3See Section 2.8 in Chapter 2 for the statement and the proof.
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Statement (ii) is a direct consequence of the stochastic representation

Vt∧ζ = Xϕt∧ζ
, P -a.s. in statement (i), because ϕt is an increasing function

with respect to t.

For statement (iii), from Problem 3.4.5 (ii)4, p174 of Karatzas and

Shreve (1991), with similar reasoning as before, ϕτ(a) = a, P -a.s. on

{0 � a < ϕζ}. From the result in statement (i), Vs = Xϕs, P -a.s. on

{0 � s � ζ}. On {0 � a < ϕζ}, τ(a) � ζ , P -a.s. Substitute s = τ(a), then

Vτ(a) = Xϕ(τ(a)) = Xa, P -a.s. on {0 � a < ϕζ}.
By definition, on {0 � a < ϕζ}

τ(a) =

∫ τ(a)

0

du =

∫ τ(a)

0

1

m2(Vu)
dϕu

=

∫ a

0

1

m2(Vτ(s))
dϕτ(s)

=

∫ a

0

1

m2(Xs)
ds, P -a.s. (3.14)

Here we apply the change of variables formula in the above Stietljes integral

similar to equation (5.5.24), p333 of Karatzas and Shreve (1991), see also

Proposition 2.8.1 (vi). The last equality in (3.14) holds because Vτ(s) = Xs,

P -a.s. on {0 � s � a < ϕζ} as proved above, and also because ϕτ(s) = s,

P -a.s. on {0 � s � a < ϕζ}. This completes the proof.

The SDE (3.1) includes the Heston and the Hull-White stochastic volatil-

ity models as special cases. From Theorem 3.2.1, consider the case m(x) =√
x, the joint distribution of (τ, Vτ) is calculated in the Heston model in

Proposition 3.4.1 and in the Hull-White model in Proposition 3.3.1.

4See Section 2.8 in Chapter 2 for the statement and the proof.
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3.3 Hitting times of integrated GBM

3.3.1 Joint distribution of the hitting time and place

Under P , the GBM model is governed by the SDE: dVt = μVtdt + σVtdWt,

V0 = v0 > 0, so that α(s) = μs and β(s) = σs. We also have that

m(s) =
√
s. Before applying the main result Theorem 3.2.1, we have to

check the two conditions (3.2) and (3.3). The natural state space for the

GBM is J = (0,∞), and the above conditions can be verified: 1/σ2(x) =

1/(σ2x2) ∈ L1
loc(J), μ(x)/σ

2(x) = μ/(σ2x) ∈ L1
loc(J), and m2(x)/σ2(x) =

1/(σ2x) ∈ L1
loc(J). Denote ζ as the possible exit time of the process V

from its natural state space J , and define ϕt =
∫ t
0
Vsds, t ∈ [0, ζ ].

We first prove a lemma.

Lemma 3.3.1. Assume the conditions (3.2), (3.3) and μ � 1
2
σ2, then

P (ϕζ = ∞) = 1.

Proof. From the definition in (2.21), for the GBM process and a constant

c ∈ J

vb(x) =
2

σ2

∫ x

c

y2μ/σ
2−1

(∫ x

y

z−2μ/σ2

dz

)
dy.

Divide into two cases below

vb(x) =

⎧⎪⎨⎪⎩
2
σ2

∫ x
c
ln
(

x
y

)
dy, if 2μ

σ2 = 1,

2
σ2−2μ

∫ x
c

((
x
y

)1− 2μ

σ2 − 1

)
dy, if 2μ

σ2 > 1.

Further simplify the above expression

vb(x) =

⎧⎨⎩
2
σ2 (x− c lnx+ c ln c− c), if 2μ

σ2 = 1,

σ2

μ(σ2−2μ)

(
(1− 2μ

σ2 )x− c
2μ

σ2 x1− 2μ

σ2 + cq
)
dy, if 2μ

σ2 > 1.

Then both vb(∞) = ∞ and vb(0) = ∞ hold in the above two cases. From

Lemma 2.3.1, in Chapter 2 of this thesis, P (ϕζ = ∞) = 1. This completes
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the proof.

Proposition 3.3.1. Assuming μ � 1
2
σ2, for 0 � a < ∞, we have (τ(a), Vτ(a)) =(

4
σ2

∫ a

0
1
X2

s
ds, σ

2

4
Xa

)
, P -a.s., where Xt is governed by the SDE

dXt =

(
2μ

σ2
− 1

2

)
1

Xt
dt+ dBt, X0 =

2

σ

√
v0, (3.15)

where B is a standard Gt-Brownian motion. Here Xt is a standard Bessel

process (without drift) with index ν = 2μ
σ2 − 1 � 0.

Proof. Since μ � 1
2
σ2, from Lemma 3.3.1, P (ϕζ = ∞) = 1. Then for

0 � t < ∞, from Theorem 3.2.1, Vt = Y∫ t
0 Vsds

, P -a.s., Y0 = v0, where Y is

governed by the following SDE

dYt =
μYt

Yt
dt+

σYt√
Yt

dBt,

= μdt+ σ
√

YtdBt, Y0 = v0.

We recognize Y as the squared Bessel process BESQδ with δ = 4μ
σ2 . From

well-known properties of the trajectories of the squared Bessel processes(see

Ch.X.I., Revuz and Yor (1999)), since v0 > 0 and δ = 4μ
σ2 � 2, the left

boundary � = 0 is unattainable. Denote a new process Xt =
2
σ

√
Yt, and

apply Itō’s lemma5, then Vt =
σ2

4
X∫ t

0 Vsds
, P -a.s., with X0 =

2
σ

√
v0, and the

SDE of X is

dXt =

(
2μ

σ2
− 1

2

)
1

Xt

1t∈[0,ζX)dt+ 1t∈[0,ζX)dBt, X0 =
2

σ

√
v0.

X is therefore a standard Bessel process without drift. The index of the

Bessel process is ν = δ
2
− 1 = 2μ

σ2 − 1. The joint representation follows from

Theorem 3.2.1 (iii). Note that ζX := inf {u > 0 : Xu �∈ J} is the possible

exit time of the process X from the state space J . From Theorem 3.2.1

(ii) combined with Lemma 3.3.1, ζX = ϕζ = ∞, P -a.s. Thus we obtain

5Note that for δ < 2, the squared Bessel process reaches 0, and the conditions needed
to apply Itō’s lemma are not satisfied; See p456 and p451 of Revuz and Yor (1999). Thus
in the sequel we restrict our attention to the case when δ � 2.
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the SDE as given in (3.15). This completes the proof. �

Note that Proposition 3.3.1 represents the first hitting time of an inte-

grated geometric Brownian motion to a fixed level as an integral functional

of the reciprocal of a standard squared Bessel process, i.e. 4
σ2

∫ a
0

1
X2

s
ds.

With the assumption μ � 1
2
σ2, the Bessel process X can not attain the left

boundary � = 0.

3.3.2 The Laplace transform of hitting time

The main result of Metzler (2013) is stated as follows using our notation.

The contribution here is to use the Proposition 3.3.1 to give an alterna-

tive probabilistic proof to his main result. The original proof of Theorem

1 in Metzler (2013) requires reducing the form of an ordinary differential

equation to some ODE of special functions that we know, but the proof

presented here is more straightforward. Because our proof is based on

Proposition 3.3.1, we have to make a stronger assumption (i.e. μ � 1
2
σ2)

compared to the statement and and proof of Theorem 1in Metzler (2013).

This is because Bessel processes of non-negative indexes behave very dif-

ferently from Bessel processes with negative indexes (refer to Section 3

of Metzler (2013) for a detailed discussion). The following proposition is

Theorem 1, Metzler (2013) with a stronger assumption.

Proposition 3.3.2. Assume μ � 1
2
σ2, for 0 � a < ∞, α � 0, the Laplace

transform

u(a, v0, α, σ, μ) = E[e−ατ(a)]

is given by

u(a, v0, α, σ, μ) = (2v0/aσ
2)γ

Γ(γ + 2μ/σ2)

Γ(2γ + 2μ/σ2)
M(γ, 2γ + 2μ/σ2;−2v0/aσ

2),

(3.16)

where Γ(x) is the gamma function, and M(a, b; x) is the confluent hyperge-
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ometric function(or Kummer function)6 and γ = γ(α) = −ν
2
+ 1

2

√
ν2 + 8α

σ2

is the larger root of

ξ2 + νξ − 2α/σ2 = 0, ξ ∈ R, (3.17)

with ν = 2μ
σ2 − 1 � 0.

Proof. Since μ � 1
2
σ2, from Lemma 3.3.1, P (ϕζ = ∞) = 1. From

Proposition 3.3.1, E[e−ατ(a)] = E[e
− 4α

σ2

∫ a
0

1

X2
s
ds
], for 0 � a < ∞.

Consider a standard Bessel process Xt with index ν � 0 and X0 = x0 >

0, from7 formula (4.1.20.3) on p386 of Borodin and Salminen (2002):

E[e
− g2

2

∫ a
0

1

X2
s
ds
] =

(
2a

x2
0

)(ν+1)/2 Γ(1 + ν
2
+ 1

2

√
ν2 + g2)

Γ(1 +
√

ν2 + g2)
e−x2

0/4aM− ν
2
− 1

2
,

√
ν2+g2

2

(
x2
0

2a

)
,

(3.18)

where Mκ,μ(z) = e−z/2zμ+1/2M(μ−κ+ 1
2
, 1+2μ; z) denotes the Whittaker

function. We make the following substitutions: replace g2

2
by 4α

σ2 ,
x2
0

2a
by

2v0
aσ2 and the larger root8 of (3.17) by γ = γ(α). Then

E[e
− 4α

σ2

∫ a
0

1

X2
s
ds
] =

(
aσ2

2v0

)(ν+1)/2 Γ(1 + ν
2
+ 1

2

√
ν2 + 8α

σ2 )

Γ(1 +
√
ν2 + 8α

σ2 )
e−x2

0/4aM− ν
2
− 1

2
, 1
2

√
ν2+ 8α

σ2

(
2v0
aσ2

)
,

or, since ν+1
2

= μ
σ2

E[e
− 4α

σ2

∫ a
0

1

X2
s
ds
] =

(
aσ2

2v0

)μ/σ2

Γ
(
γ + 2 μ

σ2

)
Γ(2γ + 2 μ

σ2 )
exp
(
− v0
aσ2

)
M− ν

2
− 1

2
,γ+ ν

2

(
2v0
aσ2

)
.

(3.19)

We now use the relationships between the Whittaker function Mκ,μ(z)

and the Kummer function M(a, b, z) (see formula (13.1.327) on p505 of

6By definition Γ(x) :=
∫∞
0

ux−1e−udu, x > 0, and M(a, b;x) := 1 +∑∞
k=1

a(a+1)...(a+k−1)xk

b(b+1)...(b+k−1)k! .
7We make the following substitutions using our notation: R

(n)
s becomes Xs, γ be-

comes g, t becomes a, and x becomes x0.
8Namely, the larger root is − ν

2 + 1
2

√
ν2 + 8α

σ2 = − ν
2 + 1

2

√
ν2 + g2.
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Abramowitz and Stegun (1967)):

Mκ,μ(z) = e
z
2 zμ+

1
2M

(
1

2
+ μ+ κ, 1 + 2μ;−z

)
, since M(a, b; z) = ezM(b − a, b;−z).

Then

M− ν
2
− 1

2
,γ+ ν

2
(
2v0
aσ2

) = exp(
v0
aσ2

)

(
2v0
aσ2

)γ+ ν+1
2

M

(
γ, 1 + 2γ + ν,− 2v0

aσ2

)
= exp(

v0
aσ2

)

(
2v0
aσ2

)γ+ μ

σ2

M

(
γ, 2γ +

2μ

σ2
,− 2v0

aσ2

)
, since

ν + 1

2
=

μ

σ2
.

(3.20)

From (3.19), (3.20) and Proposition 3.3.1

E[e−ατ(a)] = E[e
− 4α

σ2

∫ a
0

1

X2
s
ds
] =

(
2v0
aσ2

)γ Γ(γ + 2 μ
σ2 )

Γ(2γ + 2 μ
σ2 )

M

(
γ, 2γ +

2μ

σ2
;−2V0

aσ2

)
.

(3.21)

This expression (3.21) agrees with equation (3.16). This completes the

proof.

Although our proof requires a stronger assumption, the idea of the proof

can be extended to other time-homogeneous diffusion processes. In the next

section, we shall illustrate its application in obtaining the density function

of the first hitting time of an integrated geometric Brownian motion.

3.3.3 Probability density of the hitting time of an

integrated geometric Brownian motion

Here we shall derive some further results on the first hitting time of an

integrated geometric Brownian motion to a fixed level.

Proposition 3.3.3. Assume μ � 1
2
σ2, for 0 � a < ∞, the probability

density function of the first hitting time τ(a) defined in equation (3.4) for
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an integrated geometric Brownian motion is

P (τ(a) ∈ dy) = 2

(
aσ2

2v0

)μ/σ2

exp

(
−ν2σ2

8
y − v0

aσ2

)
mσ2y/2(

ν + 1

2
,
v0
aσ2

)dy,

where the special function my(μ, z) is defined on p645 of Borodin and Salmi-

nen (2002):

my(μ, z)

=
8z3/2Γ(μ+ 3

2
)eπ

2/4y

π
√
2πy

∫ ∞

0

e−z×ch(2u)−u2/yM

(
−μ,

3

2
, 2z × sh2(u)

)
sh(2u) sin

(
πu

y

)
du.

for z > 0. Here ch(.) is the hyperbolic cosine function, and sh(.) is the

hyperbolic sine function9.

Proof. Since μ � 1
2
σ2, from Lemma 3.3.1, P (ϕζ = ∞) = 1. For 0 �

a < ∞, from Proposition 3.3.1, (τ(a), Vτ(a)) =
(

4
σ2

∫ a
0

1
X2

s
ds, σ

2

4
Xa

)
, P -a.s.

Here X follows the SDE (3.15), and is a standard Bessel process(without

drift) with index ν = 2μ
σ2 −1 � 0. Combine this with the formula (4.1.20.4)

on p386 of Borodin and Salminen (2002), then

P (τ(a) ∈ dy)

= P (
4

σ2

∫ a

0

1

X2
s

ds ∈ dy) =
2(2a)

ν+1
2

xν+1
0

exp

{
−ν2

2
y
σ2

4
− x2

0

4a

}
mσ2y/2

(
ν + 1

2
,
x2
0

4a

)
dy

= 2

(
aσ2

2v0

)(ν+1)/2

exp

{
−ν2σ2

8
y − v0

aσ2

}
mσ2y/2

(
ν + 1

2
,
v0
aσ2

)
dy, (3.22)

since x2
0 =

4
σ2 v0. This completes the proof.

The following result gives the joint probability density of (τ(a), Vτ(a))

explicitly.

Proposition 3.3.4. Assume μ � 1
2
σ2, for 0 � a < ∞, the joint probability

9By definition, sh(x) := ex−e−x

2 , and ch(x) := ex+e−x

2 .
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density of (τ(a), Vτ(a)) is

P
(
τ(a) ∈ dy, Vτ(a) ∈ dz

)
=

zν+1

2avν0
exp

{
−v20 + z2

2a
− ν2σ2

8y

}
iσ2y/8

(v0z
a

)
dydz,

for z � 0, y � 0, where the special function iy(z) is given on p644 of

Borodin and Salminen (2002):

iy(z)

=
zeπ

2/4y

π
√
πy

∫ ∞

0

e−z×ch(u)−u2/4ysh(u) sin(πu/2y)du, for y > 0, z > 0.

(3.23)

Here ch(.) is the hyperbolic cosine function, and sh(.) is the hyperbolic sine

function.

Proof. Since μ � 1
2
σ2, from Lemma 3.3.1, P (ϕζ = ∞) = 1. For 0 �

a < ∞, from Proposition 3.3.1, (τ(a), Vτ(a)) =
(

4
σ2

∫ a
0

1
X2

s
ds, σ

2

4
Xa

)
, P -a.s.

Here X follows the SDE (3.15), and is a standard Bessel process(without

drift) with index ν = 2μ
σ2 −1 � 0. Combine this with the formula (4.1.20.8)

on p386 of Borodin and Salminen (2002), then

P
(
τ(a) ∈ dy, Vτ(a) ∈ dz

)
= P

(
4

σ2

∫ a

0

1

X2
s

ds ∈ dy,Xa ∈ dz

)
=

zν+1

2avν0
exp

{
−v20 + z2

2a
− ν2σ2

8y

}
iσ2y/8

(v0z
a

)
dydz.

Here we replace y by σ2y/4, and replace t by a in the original formula

(4.1.20.8). This completes the proof.

3.4 Hitting times of integrated diffusions

The representation of τ(a) as an integral functional of a time-homogeneous

diffusion allows us to draw on existing results in the literature. Albanese

and Lawi (2005) provide a classification scheme for integral functionals
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of diffusion processes, whose Laplace transforms or transition probabil-

ity densities can be evaluated as integrals of hypergeometric functions

against the spectral measures of certain operators. Recall E[e−ατa ] =

E
[
e
−α

∫ a
0

1
m2(Xs)

ds
]
, thus in order to compute the Laplace transform of the

first hitting time, we only need to compute the corresponding Laplace

transform of the integral functional of X, which is the key subject stud-

ied in Albanese and Lawi (2005). Hurd and Kuznetsov (2008) also provide

closed-form formulae for the Laplace transforms of certain time integrals of

stochastic processes, which, when combined with the results in this chap-

ter, will lead to new formulae for the Laplace transforms of the hitting

times. In the following, we show the applications of Theorem 3.2.1 to the

first hitting times of integral functionals of time-homogeneous diffusions by

linking the study to relevant literature.

3.4.1 CIR process

Under P , the CIR process is governed by the SDE: dVt = κ(θ − Vt)dt +

σv

√
Vt dWt, V0 = v0, so that α(s) = κ(θ − s) and β(s) = σv

√
s, and we

choose m(s) =
√
s. Before applying Theorem 3.2.1, we have to check the

conditions (3.2) and (3.3). We assume the Feller condition 2κθ > σ2, then

the natural state space is J = (0,∞). The above conditions can be verified:

1/σ2(x) = 1/(σ2
vx) ∈ L1

loc(J) and μ(x)/σ2(x) = κθ/(σ2
vx

2) − κ/(σ2
vx) ∈

L1
loc(J). Denote ζ as the possible exit time of V from its state space J and

define ϕt =
∫ t

0
Vsds, t ∈ [0, ζ ].

We first prove a lemma.

Lemma 3.4.1. Assume the conditions (3.2), (3.3) and the Feller condition

2κθ > σ2
v , then P (ϕζ = ∞) = 1.

Proof. Since 2κθ > σ2
v , define α = 2κθ

σ2
v
, then α > 1. From the proof

of Proposition 2.5.1 in Chapter 2 of the thesis, s(�) = s(0) = −∞, then

vb(�) = ∞ holds.

For the right endpoint r, define β = 2κ
σ2
v
> 0, and from the definition in
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(2.21)

vb(x) =
2

σ2
v

∫ x

c

yαeγy
(∫ x

y

z−αe−βzdz

)
dy.

Then

vb(∞) =
2

σ2
v

∫ ∞

c

yαeβy
(∫ ∞

y

z−αe−βzdz

)
dy. (3.24)

Since α > 1, then lim
y→∞

y−αe−βy = 0. Similar as the derivation below

equation (2.28) in the proof of Proposition 2.5.1 in Chapter 2 of the thesis,

from L’Hôpital’s rule, as y → ∞∫ ∞

y

z−αe−βzdz ∼ 1

β
y−αe−βy.

Thus there existsM > c > 0, such that for y > M , we have
∫∞
y

z−αe−βzdz >
1
2β
y−αe−βy. Substituting this into equation (3.24)

vb(∞) =
2

σ2
v

∫ ∞

c

yαeβy
(∫ ∞

y

z−αe−βzdz

)
dy

� 2

σ2
v

∫ ∞

M

yαeβy
(∫ ∞

y

z−αe−βzdz

)
dy

>
2

σ2
v

∫ ∞

M

yαeβy
1

2β
y−αe−βydy

= ∞,

then we have vb(∞) = ∞.

To summarize, with α = 2κθ
σ2
v
> 1, we have both vb(�) = ∞ and vb(r) =

∞. From Lemma 2.3.1, in Chapter 2 of this thesis, P (ϕζ = ∞) = 1. This

completes the proof.

Proposition 3.4.1. Joint Representation of (τ, Vτ ) for the CIR

Process

Assume the Feller condition 2κθ > σ2
v . For 0 � a < ∞, define τ(a) as
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in equation (3.4). Then (τ(a), Vτ(a)) =
(∫ a

0
1

σvXs
ds, σvXa

)
, P -a.s., where

Xt is governed by the SDE

dXt =

(
κθ

σ2
vXt

− κ

σv

)
dt+ dBt, X0 =

v0
σv

, (3.25)

where Bt is a standard Gt-Brownian motion. Here Xt is a standard Bessel

process with drift μ = −κ/σv, and index ν = κθ/σ2
v − 1/2 > 0.

Proof. Since 2κθ > σ2
v , from Lemma 3.4.1, P (ϕζ = ∞) = 1. For

0 � t < ∞, from Theorem 3.2.1, we have the stochastic representation

Vt = Y∫ t
0 Vsds

, P -a.s., Y0 = v0, where Y is governed by the following SDE

dYt =
κ(θ − Yt)

Yt

dt+
σv

√
Yt√
Yt

dBt =

(
κθ

Yt

− κ

)
dt+ σvdBt.

Recognize Y as a squared Bessel process with drift. Since 2κθ > σ2
v is

assumed, the index of Y is δ = 2κθ/σ2
v + 1 > 2, thus the left boundary 0

can not be attained (see Ch.X.I., Revuz and Yor (1999)). Denote a new

process Xt = Yt/σv with X0 = v0/σv. From Itō’s lemma, the SDE of X is

dXt =

(
κθ

σ2
vXt

− κ

σv

)
1t∈[0,ζX)dt+ 1t∈[0,ζX)dBt, X0 =

v0
σv

. (3.26)

The joint representation follows from Theorem 3.2.1 (iii). From Theorem

3.2.1 (ii) combined with Lemma 3.4.1, ζX = ϕζ = ∞, P -a.s. Then the

above SDE (3.26) agrees with the SDE (3.25). This completes the proof.

Remark 3.4.1. From Proposition 3.4.1, for 0 � a < ∞

P (τ(a) ∈ dx) = P

(∫ a

0

1

σvXt

dt ∈ dx

)
,

and

P (Vτ(a) ∈ dx) = P (σvXa ∈ dx),
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where Xt is a standard Bessel process with drift μ = −κ/σv < 0, and

index ν = κθ/σ2
v − 1/2 > 0. Then we can obtain the density function

for Vτ(a), 0 � a < ∞, by referring to the spectral representation of the

transition density of a Bessel process with constant drift (Proposition 1,

p329 of Linetsky (2004)).

3.4.2 GARCH diffusion process

The GARCH diffusion is the continuous time limit of the discrete GARCH

process, and it has been popular in the option pricing literature, see Duan

(1995) and Lewis (2000). Here we use the GARCH diffusion to model

the foreign exchange rate between the foreign currency and the domestic

currency, and under P it has the following SDE

dVt = k(θ − Vt)dt+ εVtdWt, V0 = v0.

Then 1/V denotes the exchange rate between the domestic currency and

the foreign currency. Suppose the cost is denominated in the foreign cur-

rency, then
∫ t
0

1
Vs
ds represents the accumulated cost denominated in the for-

eign currency. Consider the following option which is exercised at the time

when this accumulated cost reaches a fixed level. In the following, we study

the Laplace transform of this first hitting time. Before applying Theorem

3.2.1, we have to check the conditions (3.2) and (3.3). With κ, θ, ε > 0,

from Feller’s test of explosions, the natural state space is J = (0,∞), and

it is easy to verify the above conditions: 1/σ2(x) = 1/(ε2x2) ∈ L1
loc(J) and

μ(x)/σ2(x) = κθ/(ε2x2)− κ/(ε2x) ∈ L1
loc(J). Denote ζ as the possible exit

time of V from its state space and define ϕt =
∫ t

0
1
Vs
ds, t ∈ [0, ζ ].

Proposition 3.4.2. For 0 � a < ∞, define τ(a) as in equation (3.4).

Then for λ � 0

u(λ) = E[e−λτ(a)] =
Γ(γ − α)

Γ(γ)

(
2

ε2y1

)α

M

(
α, γ;− 2

ε2y1

)
, (3.27)
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where M(.) is the confluent hypergeometric function, and

α = −
(
1

2
+

k

ε2

)
+

√(
1

2
+

k

ε2

)2

+
2λ

ε2
,

γ = 1 + 2

√(
1

2
+

k

ε2

)2

+
2λ

ε2
,

y1 =
v0(e

kθa − 1)

kθ
. (3.28)

Proof. Here α(s) = k(θ − s), β(s) = εs. For 0 � a < ϕζ, from Theorem

3.2.1, (τ(a), Vτ(a)) = (
∫ a

0
Xsds,Xa) P -a.s., where X is governed by the

following SDE

dXt = kXt(θ −Xt)1t∈[0,ϕζ)dt+ εX
3
2
t 1t∈[0,ϕζ)dBt, X0 = v0. (3.29)

Recognize (3.29) as the SDE of the 3/2 stochastic volatility process. For

k > 0, k > − ξ2

2
always holds. Then the 3/2 stochastic volatility process

does not explode at infinity, because it can be written as the reciprocal of

a CIR process (see equation (67), p108 of Carr and Sun (2007)).

For 0 � a < ∞, the Laplace transform of τ(a) follows from the Laplace

transform of
∫ a

0
Xsds as provided10 in Theorem 3, p110 of Carr and Sun

(2007):

u(λ) = E[e−λτ(a)] = E[e−λ
∫ a
0
Xsds] =

Γ(γ − α)

Γ(γ)

(
2

ε2y1

)α

M

(
α, γ;− 2

ε2y1

)
.

where α, γ and y1 are given in (3.28). This completes the proof.

Remark 3.4.2. Note that in Proposition 3.4.2, the result in (3.27) holds

also for λ = 0 as long as the parameters of the model do not satisfy ρ = 1 or
1
2
+ k

ε2
= 1

2ε
. This is based on analytical continuation, and for its proof, refer

to Lemma 4.1.2. on p72 of Gao (2012). Similarly, the result in Proposition

3.4.3 also holds when λ = 0.

10More specifically, we substitute u = 0, λ = −s in Theorem 3, p110 of Carr and Sun
(2007).
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3.4.3 Mean reverting geometric Brownian motion

Suppose that we want to model the electricity cost and choose the following

mean reverting geometric Brownian motion model with SDE under P as

dVt = kVt(θ − Vt)dt+ εVtdWt, V0 = v0.

Then Vt represents the electricity cost, and
∫ t
0
Vsds represents the accumu-

lated electricity cost. It is natural to define a digital option that pays off

$1 whenever the accumulated electricity cost reaches a certain fixed level.

Thus it is important to study the first hitting time of
∫ t
0
Vsds to a fixed level,

and the next result studies its Laplace transform. Before applying Theorem

3.2.1, we have to check the conditions (3.2) and (3.3). With k, θ, ε > 0,

from Feller’s test of explosions, the natural state space is J = (0,∞).

The above conditions can be verified: 1/σ2(x) = 1/(ε2x2) ∈ L1
loc(J) and

μ(x)/σ2(x) = kθ/(ε2x2)− k/(ε2x) ∈ L1
loc(J). Denote ζ as the possible exit

time of V from its state space and define ϕt =
∫ t

0
Vsds, t ∈ [0, ζ ].

Proposition 3.4.3. Assume 2kθ > ε2, and for 0 � a < ∞, define τ(a) as

in equation (3.4). Then for λ � 0

u(λ) = E[e−λτ(a)] =
Γ(γ2 − α2)

Γ(γ2)

(
2

ε2y2

)α2

M

(
α2, γ2;− 2

ε2y2

)
,

where M(.) is the confluent hypergeometric function, and

α2 =

(
1

2
− kθ

ε2

)
+

√(
1

2
− kθ

ε2

)2

+
2λ

ε2
,

γ2 = 1 + 2

√(
1

2
− kθ

ε2

)2

+
2λ

ε2
,

y2 =
eka − 1

v0k
. (3.30)

Proof. Here α(s) = ks(θ − s), β(s) = εs. For 0 � a < ϕζ , from Theorem

3.2.1(iii), (τ(a), Vτ(a)) = (
∫ a
0

1
Xs

ds,Xa), P -a.s., where X is governed by the
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following SDE

dXt = k(θ −Xt)1t∈[0,ϕζ)dt+ ε
√

Xt1t∈[0,ϕζ)dBt, X0 = v0. (3.31)

Recognize X in (3.31) as the CIR process. Since 2kθ > ε2 is assumed,

the process X is positive P -a.s. Also note that Yt = 1/Xt follows the 3/2

stochastic process dYt = k2Yt(θ2−Yt)1t∈[0,ϕζ)dt+ε2Y
3/2
t 1t∈[0,ϕζ)dWt, Y0 =

1/v0, with new parameters k2 = kθ − ε2 , θ2 = k/(kθ − ε2) and ε2 = −ε.

Thus the Laplace transform follows from Theorem 3, p110 of Carr and Sun

(2007):

u(λ) = E[e−λτ(a)] = E[e−λ
∫ a
0
Ysds] =

Γ(γ2 − α2)

Γ(γ2)

(
2

ε2y2

)α2

M

(
α2, γ2;− 2

ε2y2

)
,

where α2, γ2 and y2 are given in (3.30). This completes the proof.

3.5 Applications to the pricing of arithmetic

Asian options

Arithmetic Asian options were introduced in Boyle and Emanuel (1980),

and since then have constituted an important family of derivative contracts.

In the Black-Scholes framework, the pricing of the arithmetic Asian option

is closely linked to the integral of a geometric Brownian motion. The main

theoretical difficulty is that this integral is not log normally distributed. In

a pioneering work, Yor (1992) expresses the arithmetic Asian option price

as a triple integral (equation (6.e), p528, Yor (1992)), and the method is

based on the Hartman-Watson theory in Yor (1980).

The contribution of this section is to establish the link between the

pricing of arithmetic Asian options and the first hitting times of integral

functionals of diffusions. This provides new insights in the pricing of arith-

metic Asian options in the time-homogeneous diffusion setting. In partic-

ular, in the Black-Scholes setting, we are able to derive a double integral

formula for the price of the arithmetic Asian option.
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Given a complete filtered probability space (Ω,F ,Ft) with the risk-

neutral measure Q. The stock price dynamic is

dSt = rStdt+ σStdWt, S0 = s0, (3.32)

then we have the following representation of the stock price

ST = S0 exp

{(
r − 1

2
σ2

)
T + σWT

}
. (3.33)

The natural state space for S is J = (�, r) = (0,∞). Assume r � 1
2
σ2, and

from Feller’s test of explosions, St, t � 0 never exits at the left boundary �

in finite time. If r = 1
2
σ2, then St, t � 0 never exits at the right boundary

in finite time. If r > 1
2
σ2, then there is a positive probability that St, t � 0

may exit through the right boundary in finite time. Denote ζ as the possible

exit time of the process S from its state space J . Define ϕt =
∫ t

0
Sudu, t ∈

[0, ζ ].

Since we assume r � 1
2
σ2, from Lemma 3.3.1, Q(ϕζ = ∞) = 1. In

the following, we consider the pricing of the arithmetic Asian option for

T ∈ [0,∞) (similar to equation (6.e), p528, Yor (1992)).

Proposition 3.5.1. In the geometric Brownian motion model in (3.32),

assume r � 1
2
σ2. For T ∈ [0,∞), the price of the arithmetic Asian option

can be represented as

C0 = e−rTEQ

[(
1

T

∫ T

0

Stdt−K

)+
]
=

∫ ∞

0

∫ T

0

g(x, y)f(x, y)dxdy,

(3.34)

where g(x, y) = y e−rx−e−rT

rT
, and

f(x, y) =
yν+1

2KTSν
0

exp

{
−S2

0 + y2

2KT
− ν2σ2

8x

}
iσ2x/8

(
S0y

KT

)
dxdy,

for x, y � 0, where ν = 2r
σ2 −1 � 0, and the special function iy(z) is defined

in (3.23).
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Proof. For T ∈ [0,∞), the payoff of an arithmetic Asian option at the ma-

turity T is
(

1
T

∫ T
0
Stdt−K

)+
. From the risk-neutral valuation principle,

its price can be expressed as

C0 = e−rTEQ

[(
1

T

∫ T

0

Stdt−K

)+
]

= e−rTEQ

[(
1

T

∫ T

0

Stdt−K

)
1{ 1

T

∫ T
0

Stdt�K}
]

= e−rTEQ

[(
1

T

∫ T

0

Stdt−K

)
1{∫ T

0 Stdt�KT}
]

(3.35)

Note that Q(ϕζ = ∞) = 1, and define the following first hitting time

similar as (3.4) under Q

τ = inf

{
u � 0 :

∫ u

0

Stdt > KT

}
.

Here τ is the first hitting time of the integrated stock price process to a

fixed level a = KT ∈ [0,∞). Observe the equivalence between the two

events under Q{∫ t

0

Stdt � KT

}
⇐⇒ {τ � t}, for t ∈ [0,∞)

Rewrite equation (3.35) as

C0 = e−rTEQ

[(
1

T

∫ T

0

Stdt−K

)
1{∫ T

0 Stdt�KT}
]

= e−rTEQ

[(
1

T

∫ T

0

Stdt−K

)
1{τ�T}

]
= e−rTEQ

[(
1

T

(
KT +

∫ T

τ

Stdt

)
−K

)
1{τ�T}

]
= e−rTEQ

[(
1

T

∫ T

τ

Stdt

)
1{τ�T}

]
.
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By the law of iterated expectation, conditioning on (τ, Sτ)

C0 = e−rTEQ

[
EQ

[(
1

T

∫ T

τ

Stdt

)
1{τ�T} | (τ, Sτ )

]]
= e−rTEQ

[
EQ

[(
1

T

∫ T

τ

Stdt

)
| (τ, Sτ )

]
1{τ�T}

]
= EQ

[
Sτ

e−rτ − e−rT

rT
1{τ�T}

]
. (3.36)

Denote g(x, y) = y e−rx−e−rT

rT
, then g(τ, Sτ) = Sτ

e−rτ−e−rT

rT
. Denote the joint

density of (τ, Sτ) as f(x, y) = Q(τ ∈ dx, Sτ ∈ dy), then the equation (3.36)

can be rewritten as

C0 = EQ

[
Sτ

e−rτ − e−rT

rT
1{τ�T}

]
=

∫ ∞

0

∫ ∞

0

g(x, y)f(x, y)1{x�T}dxdy

=

∫ ∞

0

∫ T

0

g(x, y)f(x, y)dxdy. (3.37)

Equation (3.37) is the analytical formula for the price of the arithmetic

Asian option written as a double integral.

The next task is to determine the joint density function of (τ, Sτ ). This

is already given in Proposition 3.23 as

f(x, y) = P (τ ∈ dx, Sτ ∈ dy)

=
yν+1

2KTSν
0

exp

{
−S2

0 + y2

2KT
− ν2σ2

8x

}
iσ2x/8

(
S0y

KT

)
dxdy, (3.38)

where iy(z) is defined in (3.23). Combining equation (3.37) and equation

(3.38), we obtain the analytical formula for the arithmetic Asian option in

the Black-Scholes model as given in (3.34). This completes the proof. �
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3.6 Conclusion of Chapter 3

This chapter studies properties of the first hitting time of an integral func-

tional of a time-homogeneous diffusion to a fixed level. We provide a unified

approach to compute the Laplace transform of this first hitting time. As an

application, we provide an alternative proof to the main result in Metzler

(2013) with a slightly stronger assumption. The links between the first

hitting times and integral functionals of time-homogeneous diffusions are

established, and is connected to relevant literature. We also show the link

between the pricing of an arithmetic Asian option and this first hitting

time. We derive an analytical formula for the price in the Black-Scholes

model by linking it to the study of some functional of a standard Bessel

process with no drift. Financial motivations behind the study of this hit-

ting time are also discussed, with the newly introduced “timer option” as

an example.
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Chapter 4

Prices and asymptotics of

some discrete volatility

derivatives
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This chapter is mainly based on the publication Bernard and Cui (2013)

forthcoming in the Applied Mathematical Finance. Sections 4.8 and 4.9 are

not part of the paper of Bernard and Cui (2013).

In this chapter, we study the fair strike of a discrete variance swap for a

general time-homogeneous stochastic volatility model. In the special cases

of Heston, Hull-White and Schöbel-Zhu stochastic volatility models we give

simple explicit expressions (improving Broadie and Jain (2008a) in the case

of the Heston model). We give conditions on parameters under which the

fair strike of a discrete variance swap is higher or lower than that of the

continuous variance swap. The interest rate and the correlation between

the underlying price and its volatility are key elements in this analysis.

We derive asymptotics for the discrete variance swaps and compare our

results with those of Broadie and Jain (2008a), Jarrow et al. (2013) and

Keller-Ressel and Griessler (2012).

4.1 Introduction

A variance swap is a derivative contract that pays at a fixed maturity T the

difference between a given level (fixed leg) and a realized level of variance

over the swap’s life (floating leg). Nowadays, variance swaps on stock in-

dices are broadly used and highly liquid. Less standardized variance swaps

could be linked to other types of underlying assets such as currencies or

commodities. They can be useful to hedging volatility risk exposure or

to taking positions on future realized volatility. For example, Carr and

Lee (2007) price options on realized variance and realized volatility by

using variance swaps as pricing and hedging instruments. See Carr and

Lee (2009) for a history of volatility derivatives. As noted by Jarrow et al.

(2013), most academic studies1 focus on continuously sampled variance and

volatility swaps. However existing volatility derivatives tend to be based

on the realized variance computed from the discretely sampled log stock

1See, for example, Howison, Rafailidis and Rasmussen (2004), Benth, Groth and
Kufakunesu (2007) and Broadie and Jain (2008b).
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price (see Windcliff, Forsyth and Vetzal (2006)), and continuously sam-

pled derivatives prices may only be used as approximations. As pointed

out in Sepp (2012), some care is needed to replace the discrete realized

variance by the continuous quadratic variation. By standard probabil-

ity arguments, the discretely sampled realized variance converges to the

quadratic variation of the log stock process in probability. However, this

does not guarantee that it converges in expectation. Jarrow et al. (2013)

provide sufficient conditions such that the convergence in expectation hap-

pens when the stock is modeled by a general semi-martingale, and concrete

examples where this convergence fails.

In this chapter, we study discretely sampled variance swaps in a general

time-homogeneous model for stochastic volatility. For discretely sampled

variance swaps, it is difficult to use the elegant and model-free approach

of Dupire (1993) and Neuberger (1994), who independently proved that

the fair strike for a continuously sampled variance swap on any underlying

price process with continuous path is simply two units of the forward price

of the log contract. Building on these results, Carr and Madan (1998) pub-

lished an explicit expression to obtain this forward price from option prices

(by synthesizing a forward contract with vanilla options). The Dupire-

Neuberger theory was recently extended by Carr, Lee and Wu (2011) to

the case when the underlying stock price is driven by a time-changed Lévy

process (thus allowing jumps in the path of the underlying stock price).

In this chapter, we adopt a parametric approach that allows us to derive

explicit closed-form expressions and asymptotic behaviors with respect to

key parameters such as the maturity of the contract, the risk-free rate, the

sampling frequency, the volatility of the variance process (vol of vol), or the

correlation between the underlying stock and its volatility. This is in line

with the work of Broadie and Jain (2008a) in which the Heston model and

the Merton jump diffusion model are considered. See also Itkin and Carr

(2010), who study discretely sampled variance swaps in the 3/2 stochastic

volatility model.

The main contributions of this chapter are as follows. We give an ex-
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pression of the fair strike of the discretely sampled variance swap and derive

its sensitivity to interest rates in a general time-homogeneous stochastic

volatility model. In the case of the (correlated) Heston (1993) model, and

the (correlated) Hull-White (1987) model, we obtain simple explicit closed-

form formulas for the respective fair strikes of continuously and discretely

sampled variance swaps. In the Heston model, our formula simplifies the

results of Broadie and Jain (2008a) and is easy to analyze. Consequently,

we are able to give asymptotic behaviors with respect to key parameters

of the model and to the sampling frequency. In particular, we provide

explicit conditions under which the discretely sampled variance swap is

less valuable than the continuously sampled variance swap although the

contrary is commonly observed in the literature (see Bühler (2006) for ex-

ample). Thus the “convex-order conjecture” formulated by Keller-Ressel

and Griessler (2012) may not hold for stochastic volatility models with

correlation. We discuss practical implications and illustrate the risk to

underestimate or overestimate prices of discretely sampled variance swaps

when using a model for the corresponding continuously sampled ones with

numerical examples. Based on the explicit closed-form formula for the dis-

crete variance swap in the Heston model, utilizing symmetry properties of

the Heston model under the change of numeraire, we manage to obtain

closed-form formula for the fair strike of a special type of gamma swap in

the Heston model. In Broadie and Jain (2008a), they study the fair strike

of the discrete variance swap under the Merton’s jump diffusion model, and

in this chapter we provide an explicit formula for the fair strike of a dis-

crete variance swap under the newly introduced Mixed Exponential Jump

Diffusion (MEJD) model in Cai and Kou (2011). Since the mixed expo-

nential distribution is dense with respect to the class of all distributions in

the sense of weak convergence (see Botta and Harris (1986)), the MEJD

can be used to approximate Merton’s jump diffusion model, or essentially

any jump diffusion model.

In this chapter, the new results, which contribute to the current litera-

ture, are as follows: Proposition 4.2.1, Proposition 4.2.2, Proposition 4.3.1,

Proposition 4.3.2, Proposition 4.4.1, Proposition 4.5.1, Proposition 4.6.1,
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Proposition 4.6.2, Proposition 4.6.3, Proposition 4.6.4, Proposition 4.6.5,

Proposition 4.6.6, Proposition 4.6.7, Proposition 4.6.8, Proposition 4.8.2,

Proposition 4.8.3, Proposition 4.8.4, Proposition 4.8.5, and Proposition

4.9.1.

The chapter is organized as follows. Section 4.2 deals with the general

time-homogeneous stochastic volatility model. Sections 4.3, 4.4 and 4.5

provide formulas for the fair strike of a discrete variance swap in the Hes-

ton, Hull-White and Schöbel-Zhu models. Section 4.6 contains asymptotic

expansion formulas for the Heston, Hull-White and Schöbel-Zhu models,

and discusses a counter-example to the “convex-order conjecture”. A nu-

merical analysis is given in Section 4.7. Section 4.8 discusses the pricing of

a special type of discrete gamma swaps in the Heston model. Section 4.9

discusses the pricing of discrete variance swaps in the mixed exponential

jump diffusion (MEJD) model. Sections 4.10, 4.11, 4.12, 4.13 and 4.14 give

the proofs to the main results. Section 4.15 concludes the chapter.

4.2 Pricing of variance swaps in a time-homogeneous

stochastic volatility model

In this section, we consider the problem of pricing a discrete variance swap

under the following general time-homogeneous stochastic volatility model

(M), where the stock price and its volatility can possibly be correlated.

We assume a constant risk-free rate r � 0, and that under a risk-neutral

probability measure Q

(M)

{
dSt

St
= rdt+m(Vt)dW

(1)
t

dVt = μ(Vt)dt+ σ(Vt)dW
(2)
t

(4.1)

where E[dW
(1)
t dW

(2)
t ] = ρdt, withW (1),W (2) standard correlated Brownian

motions. The state space of the stochastic process2 V is J = (l, r) =

2When m(x) =
√
x, V means the variance process and l � 0. When m(x) = x, V

means the volatility process, and there is no restriction on l.
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(0,∞) if V is the variance process (m(x) =
√
x). If m(x) = x and V

is the volatility process, we may use J = (l, r) = (−∞,∞). Assume

that μ, σ : J → R are Borel functions satisfying the following Engelbert-

Schmidt conditions, ∀x ∈ J, σ(x) �= 0, 1
σ2(x)

, μ(x)
σ2(x)

, m2(x)
σ2(x)

∈ L1
loc(J). Here

L1
loc(J) denotes the class of locally integrable functions, i.e. the functions

J → R that are integrable on compact subsets of J . Under the above

conditions, the SDE (4.1) for V has a unique in law weak solution that

possibly exits its state space J (see Theorem 5.5.15, p341, Karatzas and

Shreve (1991)). Assume that m(x)
σ(x)

is differentiable at all x ∈ J .

In particular, this general model includes the Heston, the Hull-White,

the Schöbel-Zhu, the 3/2 and the Stein-Stein models as special cases. In

what follows, we study discretely and continuously sampled variance swaps

with maturity T . In a variance swap, one counterparty agrees to pay at a

fixed maturity T a notional amount times the difference between a fixed

level and a realized level of variance over the swap’s life. If it is continuously

sampled, the realized variance corresponds to the quadratic variation of the

underlying log price. When it is discretely sampled, it is the sum of the

squared increments of the log price. Define their respective fair strikes as

follows.

Definition 4.2.1. The fair strike of the discrete variance swap associated

with the partition 0 = t0 < t1 < ... < tn = T of the time interval [0, T ] is

defined as

KM
d (n) :=

1

T

n−1∑
i=0

E

[(
ln

Sti+1

Sti

)2
]
, (4.2)

where the underlying stock price S follows the time-homogeneous stochastic

volatility model (4.1) and where the exponent M refers to the model (M).

Definition 4.2.2. The fair strike of the continuous variance swap is de-

fined as

KM
c :=

1

T
E

[∫ T

0

m2(Vs)ds

]
, (4.3)
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where S follows the time-homogeneous stochastic volatility model (4.1).

In popular stochastic volatility models, m(v) =
√
v, so that KM

c =
1
T
E
[∫ T

0
Vsds
]
. The derivation of the fair strike of a discrete variance swap

in the time-homogeneous stochastic volatility model (4.1) is based on the

following proposition.

Proposition 4.2.1. Under the dynamics (4.1) for the stochastic volatility

model (M), define

f(v) =

∫ v

0

m(z)

σ(z)
dz and h(v) = μ(v)f ′(v) +

1

2
σ2(v)f ′′(v).

For all t � s � t +Δ and t � u � t+Δ, assume that3

E [|h(Vs)h(Vu)|] < ∞, E
[∣∣h(Vs)m

2(Vu)
∣∣] < ∞,

E
[∣∣(f(Vt+Δ)− f(Vt))(2ρh(Vs) +m2(Vs))

∣∣] < ∞. (4.4)

Define for t � s � t +Δ, t � u � t+Δ,

m1(s) := E [m2(Vs)], m2(s, u) := E [m2(Vs)m
2(Vu)],

m3(s, u) := E [h(Vs)h(Vu)], m4(s, u) := E [h(Vs)m
2(Vu)],

m5(t, s) := E [(f(Vt+Δ)− f(Vt))(2ρh(Vs) +m2(Vs))] .

Then, we have

E

[(
ln

St+Δ

St

)2
]
= r2Δ2 + (1− ρ2 − rΔ)

∫ t+Δ

t

m1(s)ds− ρ

∫ t+Δ

t

m5(t, s)ds

+
1

4

∫ t+Δ

t

∫ t+Δ

t

m2(s, u)dsdu+ ρ2E
[
(f(Vt+Δ)− f(Vt))

2]
+ ρ2

∫ t+Δ

t

∫ t+Δ

t

m3(s, u)dsdu+ ρ

∫ t+Δ

t

∫ t+Δ

t

m4(s, u)dsdu. (4.5)

Proof. See Section 4.10. �
3These conditions ensure that we can apply Fubini’s theorem to exchange the order

of integration. They are easily verified in specific examples.
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Proposition 4.2.1 gives the key equation in the analysis of discrete vari-

ance swaps. Observe that the final expression (4.5) only depends on co-

variances of functionals of Vt. Thus we can derive closed-form formulas

for the fair strike of discrete variance swaps in those stochastic volatility

models in which the terms mi from Proposition 4.2.1 can be computed in

closed-form. In the rest of the chapter, we provide three examples to apply

this formula.

From now on, for simplicity, we consider the equi-distant sampling

scheme in (4.2). Under this scheme, ti = iT/n and Δ = ti+1 − ti = T/n,

for i = 0, 1, ..., n− 1.

Remark 4.2.1. From (4.5) it is clear that the fair strike of a discrete

variance swap only depends on the risk-free rate r up to the second order,

as there is no higher order terms of r. Interestingly, the second order

coefficient of this expansion is model-independent whereas the first order

coefficient is directly related to the strike of the corresponding continuously-

sampled variance swap. Assume a constant sampling period T
n
, the fair

strike of the discrete variance swap can be expressed as

KM
d (n) = bM(n)− T

n
KM

c r +
T

n
r2, (4.6)

where bM(n) does not depend on r. Its sensitivity4 to the risk-free rate r is

equal to

dKM
d (n)

dr
=

T

n
(2r −KM

c ), (4.7)

so that the minimum of KM
d as a function of r is attained when the risk-free

rate takes the value r∗ given by

r∗ =
KM

c

2
.

4The impact of stochastic interest rates on variance swaps is studied by Hörfelt and
Torné (2010). Long-dated variance swaps will usually be sensitive to the interest rate
volatility.
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The next proposition deals with the special case when the risk-free rate

r and the correlation coefficient ρ are both equal to 0.
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Proposition 4.2.2. (Fair strike when r = 0% and ρ = 0)

In the special case when the constant risk-free rate is 0, and the under-

lying stock price is not correlated to its volatility, we observe that

KM
d (n) � KM

c .

Proof. Using Proposition 4.2.1 when r = 0% and ρ = 0, we obtain

E

[(
ln

St+Δ

St

)2
]
=

1

4
E

[(∫ t+Δ

t

m2(Vs)ds

)2
]
+

∫ t+Δ

t

E
[
m2(Vs)

]
ds.

We then add up the expectations of the squares of the log increments (as

in (4.2)) and find that the fair strike of the discrete variance swap is always

larger than the fair strike of the continuous variance swap given in (4.3).

�
Proposition 4.2.2 has already appeared in the literature in specific mod-

els. See for example Corollary 6.2 of Carr, Lee and Wu (2011), where this

result is proved in the more general setting of time-changed Lévy processes

with independent time changes. However, we will see in the remainder

of this chapter that Proposition 4.2.2 may not hold under more general

assumptions, namely when the dynamic of the stock price is correlated to

the one of the volatility.

4.3 Fair strike of the discrete variance swap

in the Heston model

Assume that we work under the Heston stochastic volatility model with

the following dynamics

(H)

{
dSt

St
= rdt+

√
VtdW

(1)
t ,

dVt = κ(θ − Vt)dt+ γ
√
VtdW

(2)
t ,

(4.8)
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where E
[
dW

(1)
t dW

(2)
t

]
= ρdt. It is a special case of the general model

(4.1), where we choose

m(x) =
√
x, μ(x) = κ(θ − x), σ(x) = γ

√
x. (4.9)

Use (4.48) in Lemma 4.10.1 in Section 4.10 with f(v) = v
γ
and h(v) =

κ
γ
(θ − v), the stock price is

St = S0e
rt− 1

2
ξt+(Vt−V0−κθt+κξt)

ρ
γ
+
√

1−ρ2
∫ t
0

√
VsdW

(3)
s (4.10)

where ξt =
∫ t

0
Vsds and W

(3)
t is such that dW

(1)
t = ρdW

(2)
t +

√
1− ρ2dW

(3)
t .

Using Proposition 4.2.1 for the time-homogeneous stochastic volatility

model, we then derive a closed-form expression for the fair strike of a

discrete variance swap and compare it with the fair strike of a continuous

variance swap.

Proposition 4.3.1. (Fair Strikes in the Heston Model)

In the Heston stochastic volatility model (4.8), the fair strike (4.2) of

the discrete variance swap is

KH
d (n) =

1

8nκ3T

{
n
(
γ2 (θ − 2V0) + 2κ (V0 − θ)2

) (
e−2κT − 1

) 1− e
κT
n

1 + e
κT
n

+2κT
(
κ2T (θ − 2r)2 + nθ

(
4κ2 − 4ρκγ + γ2

))
+4 (V0 − θ)

(
n
(
2κ2 + γ2 − 2ρκγ

)
+ κ2T (θ − 2r)

) (
1− e−κT

)
−2n2θγ (γ − 4ρκ)

(
1− e−

κT
n

)
+ 4 (V0 − θ) κTγ (γ − 2ρκ)

1− e−κT

1− e
κT
n

}
,(4.11)

The fair strike of the continuous variance swap is

KH
c =

1

T
E

[∫ T

0

Vsds

]
= θ + (1− e−κT )

V0 − θ

κT
. (4.12)

Proof. See Section 4.11 for the proof of (4.11). The formula (4.12) for the

fair strike of a continuous variance swap is already well-known and can be

found for example in Broadie and Jain (2008a), formula (4.3), p772. �
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Proposition 4.3.1 provides an explicit formula for the fair strike of a

discrete variance swap as a function of model parameters. This formula

simplifies the expressions obtained by Broadie and Jain (2008a) in equa-

tions (A-29) and (A-30), p793, where several sums from 0 to n are involved

and can actually be computed explicitly as shown by the expression (4.11)

above. We verified that our formula agrees with numerical examples pre-

sented in Table 5 (column ‘SV’) on p782 of Broadie and Jain (2008a).5

Contrary to what is stated in the introduction of the paper by Zhu

and Lian (2011), the techniques of Broadie and Jain (2008a) can easily be

extended to other types of payoffs. The following proposition gives explicit

expressions for the volatility derivative considered by Zhu and Lian (2011).

Proposition 4.3.2. For the following set of dates ti =
iT
n
with i = 0, 1, ..., n,

denote Δ = T/n, and assume α = 2κθ/γ2 − 1 � 0, and γ2T < 1. Then

the fair price of a discrete variance swap with payoff 1
T

n−1∑
i=0

(
Sti+1−Sti

Sti

)2
is

equal to

Kzl
d (n) =

1

T

n−1∑
i=0

E

[(
Sti+1

− Sti

Sti

)2
]
=

1

T

(
a0 +

n−1∑
i=1

ai

)
+

n− 2nerΔ

T
,

where we define ai = E

[(
Sti+1

Sti

)2]
, for i = 0, 1, ..., n − 1. Then for i =

0, 1, ..., n− 1, we have

ai =
e2rΔ

S2
0

M(2,Δ)e
q(2)V0

(
η(ti)e

−κti

η(ti)−q(2)
−1

)(
η(ti)

η(ti)− q(2)

)α+1

,

where

M(u, t) = E[euXt ] = Su
0 e

κθ
γ2

(
(κ−γρu−d(u))t−2 ln

(
1−g(u)e−d(u)t

1−g(u)

))
e
V0

κ−γρu−d(u)

γ2
1−e−d(u)t

1−g(u)e−d(u)t ,

5The formula has been implemented in Matlab and is available online at
http://www.runmycode.org/CompanionSite/Site135 as well as the other formulas
and asymptotic expansions, which appear in this chapter.
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with the following auxiliary functions

d(u) =
√

(κ− γρu)2 + γ2(u− u2), g(u) =
κ− γρu− d(u)

κ− γρu+ d(u)
,

q(u) =
κ− γρu− d(u)

γ2

1− e−d(u)Δ

1− g(u)e−d(u)Δ
, η(u) =

2κ

γ2

(
1− e−κu

)−1
.

Proof. See Section 4.12. �

Remark 4.3.1. The formula in the above Proposition 4.3.2 is consistent

with the one obtained in equation (2.34) by Zhu and Lian (2011). In par-

ticular, we are able to reproduce all numerical results but one presented

in Table 3.1, p246 of Zhu and Lian (2011) using their set of parameters:

κ = 11.35, θ = 0.022, γ = 0.618, ρ = −0.64, V0 = 0.04, r = 0.1, T = 1

and S0 = 1 (all numbers match except the case when n = 4 we get 263.2

instead of 267.6).

Proposition 4.3.2 gives a formula for pricing the variance swap with

payoff 1
T

n−1∑
i=0

(
Sti+1−Sti

Sti

)2
, but it is straightforward to extend its proof to the

following payoff 1
T

n−1∑
i=0

(
Sti+1−Sti

Sti

)k
, with an arbitrary integer power k.

4.4 Fair strike of the discrete variance swap

in the Hull-White model

The correlated Hull-White stochastic volatility model is as follows

(HW )

{
dSt

St
= rdt+

√
VtdW

(1)
t ,

dVt = μVtdt+ σVtdW
(2)
t ,

(4.13)

where E[dW
(1)
t dW

(2)
t ] = ρdt. Referring to equation (4.1), we have m(x) =√

x, μ(x) = μx, σ(x) = σx, so it is straightforward to determine f(v) =
2
σ

√
v, h(v) =

(
μ
σ
− σ

4

)√
v, and apply (4.48) in Lemma 4.10.1 in the Section
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4.10 to obtain

ST = S0 exp

{
rT − 1

2

∫ T

0

Vtdt+
2ρ

σ
(
√

VT −
√

V0)

−ρ
(μ
σ
− σ

4

) ∫ T

0

√
Vtdt+

√
1− ρ2

∫ T

0

√
VtdW

(3)
t

}
.

Proposition 4.4.1. (Fair Strikes in the Hull-White Model)

In the Hull-White stochastic volatility model (4.13), the fair strike (4.2)

of the discrete variance swap is

KHW
d (n) =

r2T

n
+

(
1− rT

n

)
KHW

c −
V 2
0

(
e(2μ+σ2)T − 1

)(
e

μT
n − 1

)
2Tμ(μ+ σ2)

(
e
(2μ+σ2)T

n − 1

)

+
V 2
0

(
e(2μ+σ2)T − 1

)
2T (2μ+ σ2)(μ+ σ2)

+
8ρ
(
e

3(4μ+σ2)T
8 − 1

)
V0

3/2σ(e
μT
n − 1)

μT (4μ+ 3 σ2)
(
e

3(4μ+σ2)T
8n − 1

)
−

64ρ
(
e

3(4μ+σ2)T
8 − 1

)
V0

3/2σ

3T (4μ+ σ2) (4μ+ 3 σ2)
. (4.14)

The fair strike of the continuous variance swap is

KHW
c =

1

T
E

[∫ T

0

Vsds

]
=

V0

Tμ
(eμT − 1). (4.15)

Proof. The proof can be found in Section 4.13. �
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4.5 Fair strike of the discrete variance swap

in the Schöbel-Zhu model

The correlated Schöbel-Zhu stochastic volatility model (see Schöbel and

Zhu (1999)) can be described by the following dynamics6

(SZ)

{
dSt

St
= rdt+ VtdW

(1)
t ,

dVt = κ(θ − Vt)dt+ γdW
(2)
t ,

(4.16)

where E[dW
(1)
t dW

(2)
t ] = ρdt. Referring to equation (4.1), we have m(x) =

x, μ(x) = −κ(x − θ), σ(x) = γ, so it is straightforward to apply (4.48) in

Lemma 4.10.1 given in Section 4.10 with f(v) = v2

2γ
and h(v) = κθ

γ
v− κ

γ
v2+ γ

2

to obtain

ST = S0 exp

{
(r − γρ

2
)T − κθρ

γ

∫ T

0

Vtdt−
(
1

2
− ρκ

γ

)∫ T

0

V 2
t dt

+
ρ

2γ
(V 2

T − V 2
0 ) +

√
1− ρ2

∫ T

0

VtdW
(3)
t

}
.

Proposition 4.5.1. (Fair Strikes in the Schöbel-Zhu Model)

In the Schöbel-Zhu stochastic volatility model (4.16), the fair strike (4.2)

of the discrete variance swap is computed from (4.5) but does not have a

simple expression.7 The fair strike of the continuous variance swap is

KSZ
c =

γ2

2κ
+ θ2 +

(
(V0 − θ)2

2κT
− γ2

4κ2T

)
(1− e−2κT ) +

2θ(V0 − θ)

κT
(1− e−κT ).

(4.17)

Proof. The proof can be found in Section 4.14. �

Remark 4.5.1. In the literature, there is an alternative method to derive

6We shall note that here m(Vt) = Vt (where m(·) is defined in (4.1)) instead of√
Vt, thus the process Vt models the volatility and not the variance. In particular in

the Schöbel-Zhu model, the variance process Yt = V 2
t follows dYt = (γ2 + 2κθ

√
Yt −

2κYt)dt+ 2γ
√
YtdW

(2)
t .

7See Proposition 4.6.7 for an explicit expansion.
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the fair strikes of discrete variance swaps. Hong (2004) first proposed to

use the forward characteristic functions of the log stock returns to calculate

the fair strikes. This method applies to all stock price models where we

have a closed-form forward characteristic function for the log stock price.

The method can be applied to affine processes (e.g. Heston, Hull-White

models). Note that the Schöbel-Zhu model can be transformed to an affine

model by rewriting the model in terms of the variance process Yt = V 2
t , and

treat (St, Yt,
√
Yt) as state variables. Along this strand of literature, Itkin

and Carr (2010) considered using it to price discrete variance swaps under

time-changed Lévy processes. Crosby and Davis (2012) consider the pricing

of generalized discrete variance swaps under time-changed Lévy processes.

4.6 Asymptotics

In the time-homogeneous stochastic volatility model, this section presents

asymptotics for the fair strikes of discrete variance swaps in the Heston, the

Hull-White and the Schöbel-Zhu models based on the explicit expressions

derived in the previous sections 4.3, 4.4 and 4.5.

The expansions as functions of the number of sampling periods n are

given in Propositions 4.6.1, 4.6.4 and 4.6.7 (respectively for the Heston,

Hull-White and Schöbel-Zhu models). In the Heston model, our results

are consistent with Proposition 4.2 of Broadie and Jain (2008a), in which

it is proved that KH
d (n) = KH

c + O ( 1
n

)
. The expansion below is more

precise in that at least the first leading term in the expansion is given ex-

plicitly. See also Theorem 3.8 of Jarrow et al. (2013) in a more general

context. In particular, Jarrow et al. (2013) give a sufficient condition for

the convergence of the fair strike of a discrete variance swap to that of a

continuously monitored variance swap. In our setting, which is in the ab-

sence of jumps, their sufficient condition reduces to E[
∫ T

0
m4(Vs)ds] < ∞.

This latter condition is obviously satisfied in the three examples considered

in this chapter (the Heston, the Hull-White and the Schöbel-Zhu models).

Expansions as a function of the maturity T (for small maturities) are
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also given in order to complement results of Keller-Ressel and Muhle-Karbe

(2012) (see for example Corollary 2.7 which gives qualitative properties of

the discretization gap8 as the maturity T → 0).

4.6.1 Heston Model

We first expand the fair strike of the discrete variance swap with respect

to the number of sampling periods n.

Proposition 4.6.1. (Expansion of the fair strike KH
d (n) w.r.t. n)

In the Heston model, the expansion of the fair strike of a discrete vari-

ance swap, KH
d (n), is given by

KH
d (n) = KH

c +
aH1
n

+O
(

1

n2

)
, (4.18)

where

aH1 = r2T−rTKH
c +

(
γ(θ − V0)

2κ
(1− e−κT )− θγT

2

)
ρ+

(
θ2

4
+

θγ2

8κ

)
T+c1,

with

cH1 =
[γ2θ − 2κ(V0 − θ)2]

(
e−2Tκ − 1

)
+ 2(V0 − θ)(e−Tκ − 1)

[
γ2(e−Tκ − 1)− 4κθ

]
16κ2

.

Proof. This proposition is a straightforward expansion from (4.11) in

Proposition 4.3.1. �
We know that KH

d (n) = bH(n) + T
n
r(r − KH

c ) from (4.6) in Remark

4.2.1. It is thus clear that aH1 contains all the terms in the risk-free rate r

and thus that all the higher terms in the expansion (4.18) with respect to

n are independent of the risk-free rate.

Remark 4.6.1. The first term in the expansion (4.18), aH1 , is a linear

function of ρ. Observe that the coefficient in front of ρ, γ(θ−V0)
2κ

(1−e−κT )−
8See Definition 2.6 on p112 of Keller-Ressel and Muhle-Karbe (2012).
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θγT
2

is negative,9 so that aH1 is always a decreasing function of ρ. We have

that

aH1 � 0 ⇐⇒ ρ � ρH0

where ρH0 =
r2T−rTKH

c +

(
θ2

4
+ θγ2

8κ

)
T+cH1

−
(

γ(θ−V0)
2κ

(1−e−κT )− θγT
2

) .

Proposition 4.6.2. (Expansion of the fair strike for small maturity)

In the Heston model, KH
d (n) can be expanded when T → 0 as

KH
d (n) = V0 + bH1 T + bH2 T

2 +O (T 3
)

(4.19)

where

bH1 =
κ(θ − V0)

2
+

1

4n

(
(V0 − 2r)2 − 2ρV0γ

)
bH2 =

κ2(V0 − θ)

6
+

(V0 − θ)κ(γρ+ 2r − V0) +
γ2V0

2

4n
+

γρκ(V0 + θ)− γ2V0

2

12n2
.

Note also that KH
c = V0 +

κ
2
(θ − V0)T + κ

6
2 (V0 − θ) T 2 +O (T 3) and thus

KH
d (n)−KH

c =
1

4n

(
(V0 − 2r)2 − 2ρV0γ

)
T +O(T 2).

Proof. This proposition is a straightforward expansion from (4.11) in

Proposition 4.3.1. �
Proposition 4.6.2 is consistent with Corollary 2.7 [b] on p113 of Keller-

Ressel and Muhle-Karbe (2012), where it is clear that the limit of Kd(n)−
Kc is 0 when T → 0.

Notice that in the case ρ � 0, in the Heston model, KH
d (n) is non-

negative and decreasing in n as the maturity T goes to 0. However, this

property cannot be generalized to all correlation levels as it depends on the

sign of (V0 − 2r)2 − 2γV0ρ.

Proposition 4.6.3. (Expression of the fair strike w.r.t. γ)

9This can be easily seen from the fact that for all x > 0, (θ − V0)(1 − e−x) − θx �
θ(1 − e−x − x) < 0, and note that here x = κT > 0.
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In the Heston model, KH
d (n) is a quadratic function of γ:

KH
d (n) =

1

8nκ3T

(
hH
0 + hH

1 γ + hH
2 γ

2
)
, (4.20)

where

hH
0 = 2nκ (V0 − θ)2

(
e−2 κT − 1

) 1− e
κ T
n

1 + e
κT
n

+ 2 κT
(
κ2T (θ − 2 r)2 + 4 κ2nθ

)
+ 4 (V0 − θ)

(
2 κ2n+ κ2T (θ − 2 r)

) (
1− e−κ T

)
,

hH
1 = 8ρκ

(
nθ(n− ne−

κT
n − κT )− (V0 − θ)

(
n
(
1− e−κT

)
+ κT

1− e−κ T

1− e
κ T
n

))
,

hH
2 = n (θ − 2 V0)

(
e−2 κT − 1

) 1− e
κ T
n

1 + e
κT
n

− 2n2θ
(
1− e−

κ T
n

)
+ 4 (V0 − θ)

(
n− ne−κ T + κT

1− e−κ T

1− e
κ T
n

)
+ 2 κTnθ.

Proposition 4.6.3 shows that the discrete fair strike in the Heston model

is a quadratic function of the volatility of variance γ. From Figure 4.6, we

observe that the discrete fair strikes evolve in a parabolic shape as γ varies.

4.6.2 Hull-White Model

Proposition 4.6.4. (Expansion of KHW
d (n) w.r.t. n)

In the Hull-White model, the expansion of the fair strike of the discrete

variance swap, KHW
d (n), is given by

KHW
d (n) = KHW

c +
aHW
1

n
+

aHW
2

n2
+

aHW
3

n3
+O
(

1

n4

)
(4.21)
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where

aHW
1 = r2T − rTKHW

c +
V 2
0

4

e(2μ+σ2)T − 1

2μ+ σ2
− 4ρσV

3
2
0

3

e
3
8
(4μ+σ2)T − 1

4μ+ σ2
,

aHW
2 = −V 2

0 σ
2T

24

e(2μ+σ2)T − 1

2μ+ σ2
− ρV

3
2
0 σT (4μ− 3σ2)

36

e
3
8
(4μ+σ2)T − 1

4μ+ σ2
,

aHW
3 = −μT 2V 2

0 (μ+ σ2)

48

e(2μ+σ2)T − 1

2μ+ σ2
+

μT 2ρσV
3
2
0 (4μ+ 3σ2)

72

e
3
8
(4μ+σ2)T − 1

4μ+ σ2
.

Proof. This proposition is a straightforward expansion from (4.14) in

Proposition 4.4.1. �
Observe that KHW

d (n) = bHW (n) − KHW
c T
n

r + T
n
r2 where bHW (n) =

KHW
d (r = 0) > KHW

c is independent of r.

If we neglect higher order terms in the expansion (4.21), we observe that

the position of the fair strike of the discrete variance swap with respect to

the fair strike of the continuous variance swap is driven by the sign of aHW
1

and we have the following observation.

Remark 4.6.2. The first term in the expansion (4.21), aHW
1 , is a linear

function of ρ.

aHW
1 � 0 ⇐⇒ ρ � ρHW

0

where ρHW
0 =

3(4μ+σ2)

(
r2T−rTKHW

c +
V 2
0
4

e(2μ+σ2)T −1
2μ+σ2

)

4σV
3
2

0 (e
3
8 (4μ+σ2)T−1)

> 0.

ρHW
0 can take values strictly larger than 1 as it appears clearly in the

right panel of Figure 4.4. In this latter case, the fair strike of the discrete

variance swap is larger than the fair strike of the continuous variance swap

for all levels of correlation and for sufficiently high values of n. The mini-

mum value of KHW
d (n) as a function of r is obtained when r = r∗ = KHW

c

2
.

After replacing r by r∗ in the expression of ρHW
0 , ρHW

0 can easily be shown

to be positive10.

10It reduces to studying the sign of e(2μ+σ2)T−1
(2μ+σ2)T − (eμT −1)2

μ2T 2 . It is an increasing function

of σ, so it is larger than e2μT −1
2μT − (eμT−1)2

μ2T 2 , which is always positive because its minimum
is 0 obtained when μT = 0.
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Proposition 4.6.5. (Expansion of KHW
d (n) for small maturity)

In the Hull-White model, KHW
d (n) can be expanded when T → 0 as

KHW
d (n) = V0 + bHW

1 T + bHW
2 T 2 +O (T 3

)
, (4.22)

where

bHW
1 =

V0 μ

2
+

1

4n

(
(V0 − 2r)2 − 2ρV0

3/2σ
)
,

bHW
2 =

V0μ
2

6
+

V0

4n

(
σ2V0

2
− 3ρ V0

1/2σ(σ2 + 4μ)

8
+ μ(V0 − 2r)

)

+
V0

3/2σ
(
ρ(3σ2 − 4μ)− 4σ

√
V0

)
96n2

.

Note also that KHW
c = V0 +

V0μ
2
T + V0μ2

6
T 2 +O (T 3) , and thus

KHW
d (n)−KHW

c =
1

4n

(
(V0 − 2r)2 − 2ρV0

3/2σ
)
T +O(T 2).

Proof. This proposition is a straightforward expansion from (4.14) in

Proposition 4.4.1. �
Note that the expansion for small maturities in the Hull White model

is similar to the one in the Heston model given in Proposition 4.6.2.

Proposition 4.6.6. (Expansion of KHW
d (n) w.r.t. σ)

In the Hull-White model, the fair strike of a discrete variance swap,

KHW
d (n), verifies

KHW
d (n) = hHW

0 + hHW
1 σ +O(σ2), (4.23)

where

hHW
0 =

r2T

n
+

(
1− rT

n

)
V0

eTμ − 1

Tμ
− V0

2

2

e2Tμ − 1

e2
Tμ
n − 1

e
Tμ
n − 1

Tμ2
+

V0
2
(
e2Tμ − 1

)
4Tμ2

,

hHW
1 = 2ρ

e3/2 Tμ − 1

e3/2
Tμ
n − 1

V0
3/2 e

Tμ
n − 1

Tμ2
− 4ρ

(
e3/2Tμ − 1

)
V0

3/2

3Tμ2
.
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The expansion of the fair strike in the Hull-White model with respect

to the volatility of volatility is very different from the one in the Heston

model as it is not a quadratic function of σ, and it also involves higher

order terms of σ.

4.6.3 Schöbel-Zhu Model

We first expand the fair strike of the discrete variance swap with respect

to the number of sampling periods n. The following result is similar to

Proposition 4.6.1 and 4.6.4. In particular we find that the first term in the

expansion is also linear in ρ and has a similar behaviour as in the Heston

and Hull-White model.

Proposition 4.6.7. (Expansion of KSZ
d (n) w.r.t. n)

In the Schöbel-Zhu model, the expansion of the fair strike of the discrete

variance swap, KSZ
d (n), is given by

KSZ
d (n) = KSZ

c +
aSZ1
n

+O
(

1

n2

)
, (4.24)

where

aSZ1 = r2T − rTKSZ
c + d1 − d2

γ

2κ
ρ, (4.25)

with

d1 :=
TV0

4

4
− E(T +D)

16κ2
+

(
3V0

2γ2

4
+

E

32κ
+

κV0
3(θ − V0)

2

)
D2

+

(
2θ κ2V0

3

3
− V0

4κ2

6
− E

48
− V0

2θ2κ2

2
− γ2κV0θ +

3V0
2κ γ2

4
− γ4

4

)
D3

+

(
E

8κ
+ 3γ2(θ − V0)θ +

3V0
2γ2

2
+ V0κ(θ − V0)

(
2θ2 − θV0 + V 2

0

)) κ2D4

8
,
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and

d2 = T
(
γ2 + 2 κ θ2

)
+
(
2κ(θ2 − V 2

0 ) + γ2
)
D+

κ

2

(
γ2 − 2 κ (θ − V0)

2)D2,

where

E := 4 V0
4κ2 − 4 θ4κ2 − 3 γ4 − 12 γ2θ2κ, D :=

e−κ T − 1

κ
.

Proof. This proposition is a straightforward expansion from the formula of

KSZ
d (n) in Proposition 4.5.1. Note that although the formula of KSZ

d (n)

does not have a simple form, its asymptotic expansion can be easily com-

puted with Maple for instance. �

Remark 4.6.3. Similarly as in the Heston and the Hull-White models, the

first term in the expansion (4.24), aSZ1 , is a linear function of ρ, but the

sign of its slope is not clear in general.
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Proposition 4.6.8. (Expansion of the fair strike for small maturity)

In the Schöbel-Zhu model, KSZ
d (n) can be expanded when T → 0 as

KSZ
d (n) = V 2

0 + bSZ1 T +O(T 2) (4.26)

where

bSZ1 = κV0(θ − V0) +
γ2

2
+

1

n

(
r2 − rV 2

0 +
V 2
0 (V

2
0 − 4ργ)

4

)
.

Note also that KSZ
c = V0

2 +
(
V0κ(θ − V0) +

γ2

2

)
T +O (T 2) and thus,

KSZ
d (n)−KSZ

c =
1

4n

(
(V 2

0 − 2r)2 − 4ρV 2
0 γ
)
T +O(T 2).

Proof. This proposition is a straightforward expansion from the formula of

KSZ
d (n) in Proposition 4.5.1. �
Note that the form of the expansion is similar for the three models

under study (compare Propositions 4.6.2, 4.6.5 and 4.6.8). We find that

the difference between the discrete and the continuous strikes has a first

term involving the product of 2ρ by a function of the initial variance value

and the volatility of the variance process, and respectively γ in the Heston,

σ in the Hull-White and 2γ in the Schöbel-Zhu model. See for example

footnote 6 where the dynamics of the variance is derived in the Schöbel-Zhu

model.

4.6.4 Discussion on the convex-order conjecture

As motivated in Keller-Ressel and Griessler (2012), it is of interest to study

the systematic bias for fixed n and T when using the quadratic variation

to approximate the realized variance. Bühler (2006) and Keller-Ressel and

Muhle-Karbe (2012) show numerical evidence of this bias (see also Sec-

tion 4.7 for further evidence in the Heston and the Hull-White models).

Keller-Ressel and Griessler (2012) propose the following “convex-order
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conjecture”:

E[f(RV (X,P))] � E[f([X,X ]T )]

where f is convex, P refers to the partition of [0, T ] in n + 1 division

points and X = log(ST/S0). RV (X,P) is the discrete realized variance

(
∑n

i=1(log(Sti/Sti−1
))2) and [X,X ]T is the continuous quadratic variation

(
∫ T
0
m2(Vs)ds in our setting).

When f(x) = x/T and the correlation can be positive, the conjecture is

violated, see for example Figure 4.1 to 4.4 where KM
d (n) can be below KM

c .

When ρ = 0, the process has conditionally independent increments and sat-

isfies other assumptions in Keller-Ressel and Griessler (2012). Proposition

4.2.2 ensures that KM
d (n) � KM

c , which is consistent with their results.

4.7 Numerics

This section illustrates with numerical examples in the Heston, the Hull-

White and the Schöbel-Zhu models.

4.7.1 Heston and Hull-White models

Given parameters for the Heston model, we then choose the parameters

in the Hull-White model so that the continuous strikes match. Precisely,

we obtain μ by solving numerically KH
c = KHW

c , and find σ such that the

variances of VT in the respective Heston and the Hull-White models match.

From (4.54) and (4.55), the variance for VT for the Heston model is given

by

V arH(VT ) =
γ2

2κ
(θ + 2e−κT (V0 − θ) + e−2κT (θ − 2V0)).

The variance for VT for the Hull-White model can be computed using (4.62)

V arHW (VT ) = V 2
0 e

2μT (eσ
2T − 1).
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The parameters for the Heston model are taken from reasonable param-

eter sets in the literature. Precisely the first set of parameters is similar to

the one used by Broadie and Jain (2008a). The second set corresponds to

Table 2 in Broadie and Kaya (2006). The values for the parameters of the

Hull-White model are obtained consistently using the procedure described

above11.

(matched)
Heston Hull-White

T r V0 ρ γ θ κ μ σ
Set 1 1 3.19% 0.010201 -0.7 0.31 0.019 6.21 1.003 0.42
Set 2 5 5% 0.09 -0.3 1 0.09 2 2.9× 10−9 0.52

Table 4.1: Parameter sets

Figure 4.1 displays cases when the fair strike of the discrete variance

swap KM
d (n) may be smaller than the fair strike of the continuous variance

swap KM
c . The first graph obtained in the Heston model (the model M is

denoted by the exponent H for Heston) shows that KH
d is first higher than

KH
c , crosses this level and stays below KH

c until it converges to the value

KH
c as n → ∞. It means that options on discrete realized variance may be

overvalued when the continuous quadratic variation is used to approximate

the discrete realized variance. Note that this unusual pattern happens when

ρ = 0.7, which may happen for example in foreign exchange markets.

11For the two sets of parameters above, we compute the critical interest rate r∗ as
defined in Remark 4.2.1. Set 1: r∗ = 0.88%; Set 2: r∗ = 0.605%, and we can see that
the interest rates are both larger than r∗.

143



0 5 10 15 20 25 30 35

0.0176

0.0178

0.018

0.0182

0.0184

0.0186

0.0188

Discretization step n

K
dH

Heston Model (T=1)

 

 
K

c
H

ρ = − 0.7
ρ = 0
ρ = 0.7

0 5 10 15 20 25 30 35

0.0176

0.0178

0.018

0.0182

0.0184

0.0186

Discretization step n
K

dH
W

Hull−White Model (T=1)

 

 
K

c
HW

ρ = − 0.7
ρ = 0
ρ = 0.7

0 5 10 15
0.0121

0.0121

0.0122

0.0123

0.0123

0.0124

Discretization step n

K
dH

Heston Model (T=1/12)

 

 
K

c
H

ρ = − 0.7
ρ = 0
ρ = 0.7

0 5 10 15
0.0121

0.0121

0.0122

0.0123

0.0123

Discretization step n

K
dH

W

Hull−White Model (T=1/12)

 

 
K

c
HW

ρ = − 0.7
ρ = 0
ρ = 0.7

Figure 4.1: Sensitivity to the number of sampling periods n and to ρ

Parameters correspond to Set 1 in Table 4.1 except for ρ that can take three possible
values ρ = −0.7, ρ = 0 or ρ = 0.7 and for T that is equal to T = 1 for the two upper
graphs and T = 1/12 for the two lower graphs. When T = 1/12, the parameters for
the Hull-White model are adjusted according to the procedure described in Section
4.7.1. In the case when T = 1/12, one has μ = 4.03 and σ = 1.78.
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Figure 4.2 highlights another type of convergence showing the complex-

ity of the behaviour of the fair strike of the discrete variance swap with

respect to that of the continuous variance swap.
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Figure 4.2: Sensitivity to the number of sampling periods n and to γ

Parameters are set to unusual values to show that any types of behaviors can be
expected. ρ = 0.6, r = 3.19%, θ = 0.019, κ = .1, V0 = 0.8 and γ takes three possible
values: 0.5, 1.5 and 2.

Figure 4.3 displays on the same graphs the discrete fair strike Kd(n)

and the first two terms of the expansion formula KH
c +

aH1
n

for the Heston

model and KHW
c +

aHW
1

n
for the Hull-White model (see Propositions 4.6.1

and 4.6.4 for the exact expressions of aH1 and aHW
1 ). It shows that the first

term of this expansion is already highly informative as it clearly appears

to fit very well for small values of n in both models.
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Figure 4.3: Asymptotic expansion KM
c + a/n with respect to the number

of sampling periods n and to ρ

Parameters correspond to Set 2 in Table 4.1 except for ρ that can take three possible
values ρ = −0.3, ρ = 0 or ρ = 0.3. The upper graphs correspond to large number
of discretization steps whereas lower graphs have relatively small values of n.

Figure 4.4 further illustrates that the discrete fair strike (for a daily

monitoring) can be lower than the continuous fair strike as KM
d −KM

c may

be negative for high values of the correlation coefficient both in the Heston

and the Hull-White models. In Remark 4.6.1 and 4.6.2, it is noted that

the first term in the asymptotic expansion with respect to n is linear in ρ.
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From Figure 4.3 it is clear that the first term has an important explanatory

power. This justifies the linear behavior observed in Figure 4.4 of the

difference between discrete and continuous fair strikes with respect to ρ.

Computations of ρH0 and ρHW
0 for each of the risk-free rate levels r = 0%,

r = 3.2% and r = 6% confirm that it is always positive when r = 0%

(which is consistent with Proposition 4.2.2) and that it can be higher than

1, which ensures that for n sufficiently high, the discrete fair strike is always

higher than the continuous fair strike.
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Figure 4.4: Asymptotic expansion with respect to the correlation coefficient
ρ and the risk-free rate r

Parameters correspond to Set 1 in Table 4.1 except for r that can take three possible
values r = 0%, r = 3.2% or r = 6%. Here n = 250, which corresponds to a daily
monitoring as T = 1.

Figure 4.5 shows that as the time to maturity T goes to 0, the discrete

fair strike is converging to the continuous fair strike at approximately a

quadratic rate. This is consistent with Proposition 4.6.2 and Proposition

4.6.5.
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Figure 4.5: Discrete and continuous fair strikes with respect to the maturity
T and to V0

Parameters correspond to Set 2 in Table 4.1 except for T and V0. Also we choose
a monthly monitoring to compute the discrete fair strike. When θ = V0, K

H
c is

independent of the maturity T .

Figure 4.6 shows that the discrepancy between the discrete fair strike

and the continuous fair strike is exacerbated by the volatility of the un-

derlying variance process. We observe that the gap between the discrete

fair strike and the continuous fair strike, with respect to γ, is wider in the

Heston model than in the Hull-White model. This illustrates, from a nu-

merical viewpoint, that the discrete fair strike in the Heston model is more

sensitive to the volatility of variance parameter than that of the Hull-White

model. In particular, the continuous fair strike KH
c is independent of γ.

For each γ we compute the corresponding σ for the Hull-White model such

that the variances match as described in Section 4.7.1. We then observe

similar patterns in the Heston and the Hull-White models. From the left

panel of Figure 4.6, we can see that the shape of the discrete fair strike

in the Heston model with respect to γ evolves similar to a parabola, and

this is consistent with Proposition 4.6.3. From the right panel of Figure

4.6, we can see that the discrete fair strike in the Hull-White model does
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not exhibit a parabolic shape with respect to γ, and this is explained by

Proposition 4.6.6, which states that it is a higher order polynomial of σ.
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Figure 4.6: Discrete and continuous fair strikes with respect to the param-
eter γ and to V0

Parameters correspond to Set 2 in Table 4.1 except for γ and V0 that are indicated
on the graphs. A monthly monitoring is used to compute the discrete fair strike.
The continuous fair strike KH

c is independent of γ, so that it is easy to identify the
different curves on the graph.

4.7.2 Schöbel-Zhu model

For the Schöbel-Zhu model, we reproduce a similar numerical analysis and

take parameters consistent with the Heston model. Note that the V process

in the Schöbel-Zhu model corresponds to the volatility process instead of

the variance process12. Then we choose θ =
√
0.019 and V0 =

√
0.010201.

Other parameters are taken from set 1 of Table 4.1.

Both the left and right panels of Figure 4.7 show thatKSZ
d can be below

KSZ
c until it converges to the value KSZ

c as n → ∞. This unusual pattern

12The notation Vt in the Schöbel-Zhu model corresponds to the square root of what
is denoted by Vt in the Heston model.
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happens when the correlation is positive similarly in the Heston and the

Hull-White models.
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Figure 4.7: Sensitivity to the number of sampling periods n and to ρ

Parameters are similar to Set 1 in Table 4.1 for the Heston model except for ρ that
can take three possible values ρ = −0.7, ρ = 0 or ρ = 0.7 and for T that is equal
to T = 1 for the left panel and T = 1/12 for the right panel. Precisely, we use the
following parameters for the Schöbel-Zhu model. κ = 6.21, θ =

√
0.019, γ = 0.31,

r = 0.0319, V0 =
√
0.010201.

Figure 4.8 illustrates that the discrete fair strike (for a daily monitoring)

can be lower than the continuous fair strike as KSZ
d −KSZ

c may be negative

for high values of the correlation coefficient. From Figure 4.8 it is clear that

the first term also has an important explanatory power. This justifies the

linear behavior observed in Figure 4.8 of the difference between discrete and

continuous fair strikes with respect to ρ. Computations of ρSZ0 (defined as

the zero of aSZ1 computed in Proposition 4.6.7) for each of the risk-free rate

levels r = 0%, r = 3.2% and r = 6% confirm that it is always positive

when r = 0% (which is consistent with Proposition 4.2.2).
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Figure 4.8: Asymptotic expansion with respect to the correlation coefficient
ρ and the risk-free rate r.

Parameters are similar to Set 1 in Table 4.1 for the Heston model except for r that
can take three possible values r = 0%, r = 3.2% or r = 6%. Precisely, we use the
following parameters for the Schöbel-Zhu model: κ = 6.21, θ =

√
0.019, γ = 0.31,

ρ = −0.7, T = 1, V0 =
√
0.010201. Here n = 250, which corresponds to a daily

monitoring as T = 1.

4.8 Fair strike of the special discrete gamma

swap in the Heston model

In this section we give a closed-form formula for the fair strike of a special

discrete gamma swap in the Heston model.

Let 0 = t0 < t1 < ... < tn = T be a partition of the time interval [0, T ]

into n equal segments: ti = iT/n, for i = 0, 1, ..., n. The discrete gamma

swap pays at a fixed maturity T the difference between a given level (fixed

leg) and a weighted realized level of variance over the swap’s life (floating

leg). From Lee (2010), the floating leg of a standard discrete gamma swap
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(without dividend) is

Notional × 1

T
×

n−1∑
i=0

Sti+1

S0

(
ln

Sti+1

Sti

)2

. (4.27)

For the ease of exposition, we consider a special discrete gamma swap

(without dividend), and its floating leg is

Notional × 1

T
×

n−1∑
i=0

Sti+1

S0erti+1

(
ln

Sti+1

Sti

)2

. (4.28)

Note that the difference of the contract described by (4.28) and the one

described by (4.27) is that there is an additional term erti+1 in the de-

nominator of each of the weighting terms in (4.28). This additional term

will be canceled out later in the derivation and makes the derivation eas-

ier by utilizing some symmetry properties of the stock price in the Heston

model under the change of numeraire. For the standard gamma swap pay-

off (4.27), we can still obtain a closed-form formula for the fair strike by

similar derivations as in Section 4.11. Since the purpose here is to illus-

trate the applications of the symmetry ideas in reducing the problem of

calculating the fair strike of a discrete special discounted gamma swap to

the problem of calculating the fair strike of a discrete variance swap, in the

following we shall stick to the payoff in equation (4.28).

Rewrite (4.28) as Notional × Vg(0, n, T ), where we define

Vg(0, n, T ) =
1

T

n−1∑
i=0

Sti+1

S0erti+1

(
ln

Sti+1

Sti

)2

.

Then the fair strike of this special discrete gamma swap is ΓH
d = EQ[Vg(0, n, T )].

We now illustrate the relationship of the fair strike of this special discrete

gamma swap with that of a discrete variance swap. Under the risk-neutral

measure Q, in the Heston model, from Proposition 2.5.1 in Chapter 2, the

underlying (discounted) stock price (e−rtSt)t∈[0,T ], T ∈ [0,∞) is a true mar-

tingale. Define the numeraire measure QS as dQS

dQ
|Ft=

St

S0ert
, t > 0. To the
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best of our knowledge, the following proposition first appeared in Theorem

1, p5 of Del Baño Rollin (2008), and also see Proposition 2.2 and equation

(8) on p2042 in Del Baño Rollin et al. (2010). We state the results using

our notation, and for completeness, we provide a proof.

Proposition 4.8.1. (Theorem 1, Del Baño Rollin (2008))

Under Q, assume that the stock price follows the Heston model with

the SDE (4.8), and denote St ∼ Hes(κ, θ, γ, ρ, r). Also assume κ > ργ13.

Under the numeraire measure QS, define S
′
t = 1/St. Then S

′
t ∼ Hes(κ −

ργ, κθ
κ−ργ

, γ,−ρ,−r). This means that under QS, S
′
t follows the Heston

model dynamic, but with different parameters.

Proof. By the Girsanov theorem, under the numeraire measure QS

W̃
(1)
t = W

(1)
t − 〈W (1)

t ,

∫ t

0

√
VudW

(1)
u 〉 = W

(1)
t −

∫ t

0

√
Vudu.

and

W̃
(2)
t = W

(2)
t − 〈W (2)

t ,

∫ t

0

√
VudW

(1)
u 〉

= W
(2)
t − 〈W (2)

t , ρ

∫ t

0

√
VudW

(2)
u 〉 −

√
1− ρ2〈W (2)

t , ρ

∫ t

0

√
VudW

(3)
u 〉

= W
(2)
t − ρ

∫ t

0

√
Vudu,

where W̃
(1)
t and W̃

(2)
t are standard Brownian motions under QS. Then

dSt = rStdt+
√
VtStdW

(1)
t

= rStdt+
√
VtSt(dW̃

(1)
t +

√
Vtdt)

= (r + Vt)Stdt+
√

VtStdW̃
(1)
t , (4.29)

13We assume this for the ease of exposition. This condition is termed good correlation
regime on p12 of Jacquier and Martini (2011). This is not an overly restrictive assump-
tion given that in the equity stock market, the correlation between the stock price and
the volatility is usually negative due to the leverage effect.
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and

dVt = κ(θ − Vt)dt+ γ
√
Vt(dW̃

(2)
t + ρ

√
Vtdt)

= (κ− ργ)

(
κθ

κ− ργ
− Vt

)
dt + γ

√
VtdW̃

(2)
t . (4.30)

Observe that under QS , the dynamics of Vt in equation (4.30) still

follows a CIR process, but with different parameters. If the original CIR

process is denoted by CIR(κ, θ, γ), then the new CIR process is CIR(κ−
ργ, κθ

κ−ργ
, γ). Denote S

′
t = 1/St as the reciprocal process of the stock price

under QS and apply Itō’s lemma

d

(
1

St

)
= − 1

S2
t

dSt +
1

S3
t

(dSt)
2

= − 1

S2
t

(
(r + Vt)Stdt+

√
VtStdW̃

(1)
t

)
+

1

S3
t

VtS
2
t dt

=
1

St

(
(−r)dt−

√
VtdW̃

(1)
t

)
. (4.31)

Notice that the two Brownian motions W̃
(1)
t and W̃

(2)
t still have correlation

ρ, thus −W̃
(1)
t and W̃

(2)
t shall have correlation −ρ. Substitute 1/St in (4.31)

by S
′
t, denote r

′
= −r and ρ

′
= −ρ, κ

′
= κ− ργ, and θ

′
= κθ

κ−ργ
. Then

dS
′
t = S

′
t

(
r
′
dt+

√
Vtd(−W̃

(1)
t )
)
,

dVt = κ
′
(
θ
′ − Vt

)
dt+ γ

√
VtdW̃

(2)
t , (4.32)

where E[d(−W̃
(1)
t ), dW̃

(2)
t ] = ρ

′
dt. Comparing the SDE (4.32) with the

SDE (4.8), we can see that they have exactly the same form except with

different parameters. This completes the proof. �
As a first application, we can compute the value of a continuous entropy

contract in the Heston model.
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Proposition 4.8.2. In the Heston model, assume κ > ργ. The price of a

continuous entropy contract is

EQ[ST lnST ] =
S0e

rT
(
κθT + (1− e−(κ−ργ)T )(V0 − κθ

κ−ργ
)
)

2(κ− ργ)
.

Proof. Apply the change of numeraire, we have

EQ[ST lnST ] = EQS

[
S0e

rT

ST

ST lnST

]
= S0e

rTEQS [lnST ]

= −S0e
rTEQS [lnS ′

T ]

=
S0e

rT

2
EQS

[∫ T

0

V ′
sds

]
=

S0e
rT

2
TKH

c

(
κ− ργ,

κθ

κ− ργ
,−r,−ρ

)

=
S0e

rT
(
κθT + (1− e−(κ−ργ)T )(V0 − κθ

κ−ργ
)
)

2(κ− ργ)
.

In the above, S ′
T denotes the reciprocal of the stock price under the nu-

meraire measure QS, and from Proposition 4.8.1, it follows the Heston

model with a different set of parameters. This completes the proof.

In the second application, we give a closed-form formula for the fair

strike of the special discrete gamma swap defined in (4.28) in the Heston

model.
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Proposition 4.8.3. In the Heston model, assume κ > ργ. The fair strike

of the special discrete gamma swap is

ΓH
d (κ, θ, r, ρ, n) = EQ[Vg(0, n, T )]

=
1

8n(κ− ργ)3T

{
n

(
γ2

(
κθ

κ− ργ
− 2V0

)
+ 2(κ− ργ)

(
V0 − κθ

κ− ργ

)2
)

× (e−2(κ−ργ)T − 1
) 1− e

(κ−ργ)T
n

1 + e
(κ−ργ)T

n

+2(κ− ργ)T

(
(κ− ργ)2T

(
κθ

κ− ργ
+ 2r

)2

+ n
κθ

κ− ργ

(
4(κ− ργ)2 + 4ρ(κ− ργ)γ + γ2

))

+4

(
V0 − κθ

κ− ργ

)(
n
(
2(κ− ργ)2 + γ2 + 2ρ(κ− ργ)γ

)
+ (κ− ργ)2T

(
κθ

κ− ργ
+ 2r

))
× (1− e−(κ−ργ)T

)
−2n2 κθ

κ− ργ
γ (γ + 4ρ(κ− ργ))

(
1− e−

(κ−ργ)T
n

)
+4

(
V0 − κθ

κ− ργ

)
(κ− ργ)Tγ (γ + 2ρ(κ− ργ))

1− e−(κ−ργ)T

1− e
(κ−ργ)T

n

}
. (4.33)

The fair strike of the continuous special gamma swap is

ΓH
c (κ, θ, ρ) =

κθT + V0 − κθ
κ−ργ

(κ− ργ)T
+ 1− e−(κ−ργ)T . (4.34)

Proof. From Proposition 4.8.1

ΓH
d = EQ[Vg(0, n, T )] =

1

T

n−1∑
i=0

EQ

[
Sti+1

S0erti+1

(
ln

Sti+1

Sti

)2
]

=
1

T

n−1∑
i=0

EQS

[
S0e

rti+1

Sti+1

Sti+1

S0erti+1

(
ln

Sti+1

Sti

)2
]

=
1

T

n−1∑
i=0

EQS

[(
ln

Sti+1

Sti

)2
]
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=
1

T

n−1∑
i=0

EQS

⎡⎣(ln S
′
ti+1

S
′
ti

)2
⎤⎦ .

Thus the fair strike of a special discrete gamma swap in the Heston model

is equal to the fair strike of another discrete variance swap associated to

the stock S
′
, which follows the Heston dynamics with different parameters.

Denote its fair strike as KH
d (κ, θ, r, ρ, n). Similarly denote the fair strike of

the gamma swap as ΓH
d (κ, θ, r, ρ, n). Then

ΓH
d (κ, θ, r, ρ, n) = KH

d

(
κ− ργ,

κθ

κ− ργ
,−r,−ρ, n

)
. (4.35)

Thus the closed-form formula (4.33) of the special discrete gamma swap

is a consequence of the explicit closed-form formula for KH
d in Proposition

4.3.1. Similarly from (4.35), as n → ∞

ΓH
c (κ, θ, ρ) = lim

n→∞
ΓH
d (κ, θ, r, ρ, n)

= lim
n→∞

KH
d

(
κ− ργ,

κθ

κ− ργ
,−r,−ρ, n

)
= KH

c

(
κ− ργ,

κθ

κ− ργ
,−r,−ρ

)
=

κθT + V0 − κθ
κ−ργ

(κ− ργ)T
+ 1− e−(κ−ργ)T .

This completes the proof. �

Remark 4.8.1. When r = 0%, the payoff of the special gamma swap agrees

with the payoff of a standard gamma swap. In this case, the continuous

strike of the standard gamma swap is still given by (4.34) since it does not

depend on r. Zheng and Kwok (2013) give a closed-form explicit formula

for the fair strike of the continuous standard gamma swap in their equation

(3.5) in the stochastic volatility with simultaneous jumps (SVSJ) model.

Take JS = 0, JV = 0, r = 0, λ = 0 and replace ε with our parameter γ, it

can be verified that their formula (3.5) agrees with our formula (4.34) here.
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When r = 0%, our formula (4.33) is more explicit than their formula (3.1)

for the discrete fair strike of a standard gamma swap. Zheng and Kwok

(2013) use the forward characteristic function and obtain their formula

by solving a system of Ricatti ODEs. Our approach here explore the nice

symmetry property of the Heston model and the derivation is simpler.

Remark 4.8.2. In the above calculation, we see that the term erti+1 is

canceled out, and it is possible to directly link the fair strike of this special

discrete gamma swap to the fair strike of a discrete variance swap. More

generally, in a model where the reciprocal of the stock price 1/S under

the numeraire measure QS has the same dynamics as the stock price S

under the original risk-neutral measure Q except with some differences in

the parameters, we shall have similar relationship between the fair strike of

a special discrete gamma swap and that of a discrete variance swap.

4.8.1 Asymptotics of special discrete gamma swaps

in the Heston model

We work in the Heston stochastic volatility model. First expand the fair

strike of the special discrete gamma swap with respect to the number of

sampling periods n.

Proposition 4.8.4. (Expansion of the fair strike of the special discrete

gamma swap w.r.t. n)

Assume κ > ργ, the asymptotic behavior of the fair strike of a special

discrete gamma swap in the Heston model is

ΓH
d (n) = ΓH

c +
a1
n

+O
(

1

n2

)
, (4.36)
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where

a1 = r2T + rTΓH
c −
(
γ( κθ

κ−ργ
− V0)

2(κ− ργ)
(1− e−(κ−ργ)T )− κθγT

2(κ− ργ)

)
ρ

+

(
κ2θ2

4(κ− ργ)2
+

κθγ2

8(κ− ργ)2

)
T + c1, (4.37)

with

c1 =
1

16(κ− ργ)2

([
γ2 κθ

κ− ργ
− 2(κ− ργ)

(
V0 − κθ

κ− ργ

)2
] (

e−2T (κ−ργ) − 1
)

+2

(
V0 − κθ

κ− ργ

)
(e−T (κ−ργ) − 1)

[
γ2(e−T (κ−ργ) − 1)− 4κθ

])
.

Proof. This proposition is a straightforward expansion from (4.33) in

Proposition 4.8.3. This completes the proof. �

Remark 4.8.3. The first term in the expansion (4.36), a1, is a linear func-

tion of ρ. Observe that the coefficient in front of ρ, −
(

γ( κθ
κ−ργ

−V0)

2(κ−ργ)
(1− e−(κ−ργ)T )− κθγT

2(κ−ργ)

)
is positive14, so that a1 is always an increasing function of ρ. Then

a1 � 0 ⇐⇒ ρ � ρ0,

where

ρ0 =
r2T + rTΓH

c +
(

κ2θ2

4(κ−ργ)2
+ κθγ2

8(κ−ργ)2

)
T + c1

−
(

γ( κθ
κ−ργ

−V0)

2(κ−ργ)
(1− e−(κ−ργ)T )− κθγT

2(κ−ργ)

) .

Proposition 4.8.5. (Expansion of the fair strike for small maturity)

In the Heston model, an expansion of ΓH
d (n) when T → 0 is calculated

14This can be easily seen from the fact that for all x > 0, ( κθ
κ−ργ − V0)(1 − e−x) −

κθ
κ−ργx � κθ

κ−ργ (1 − e−x − x) < 0, and note that here x = (κ− ργ)T > 0.
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as

ΓH
d (n) = V0 + b1T + b2T

2 +O (T 3
)
, (4.38)

where

b1 =
(κθ − V0(κ− ργ))

2
+

1

4n

(
(V0 + 2r)2 + 2γV0ρ

)
,

b2 =
(κ− ργ)2(V0 − κθ

κ−ργ
)

6
+

(V0 − κθ
κ−ργ

)(κ− ργ)(−γρ− 2r − V0) +
γ2V0

2

4n

+
−γρ(κ− ργ)(V0 +

κθ
κ−ργ

)− γ2V0

2

12n2
.

Note that

ΓH
c = V0+

κ− ργ

2

(
κθ

κ− ργ
− V0

)
T+

κ− ργ

6

2
(
V0 − κθ

κ− ργ

)
T 2+O (T 3

)
,

then

ΓH
d (n)− ΓH

c =
1

4n

(
(V0 + 2r)2 + 2γV0ρ

)
T +O(T 2).

Proof. This proposition is a straightforward expansion from (4.33) in

Proposition 4.8.3. This completes the proof. �

4.9 Discrete variance swap in the mixed ex-

ponential jump diffusion model

Broadie and Kaya (2006) give a closed-form formula of the fair strike of the

discrete variance swap in the Merton’s jump diffusion model. The mixed

exponential distribution is dense with respect to the class of all distribu-

tions in the sense of weak convergence (see Botta and Harris (1986)). Cai

and Kou (2011) propose a new class of jump diffusions named“mixed expo-

nential jump diffusions”(MEJD). In particular, the MEJD can be used to

approximate Merton’s jump diffusion. For the literature on fitting mixed

exponential distributions to a given distribution, refer to the papers of
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Botta and Harris (1986) and Dufresne (2007). The MEJD model can also

be used to approximate Lévy processes and for its applications in option

pricing, please refer to Crosby, Le Saux and Mijatović (2010), and Pistorius

and Stolte (2012), and the references therein.

The underlying stock price in the MEJD model is given as follows

dSt

St−
= rdt+ σdWt + d

Nt∑
i=1

(Vi − 1),

where Vi is the jump size, St− is the stock price immediately before the

jump time at t. The return process Xt = ln(St/S0) follows the MEJD

process. Nt, t � 0 is a Poisson process with rate λ counting the num-

ber of jumps up to time t. Wt, t � 0 is a standard Brownian motion,

and Yi = ln(Vi), i = 1, 2, ... is a sequence of independent and identically

distributed mixed exponential random variables with probability density

function given as below

fY (x) = pu

m∑
i=1

piηie
−ηix1x�0 + qd

n∑
j=1

qjθje
θjx1x<0, (4.39)

with

pu � 0, qd = 1− pu � 0,

pi ∈ (−∞,∞), i = 1, ..., m;

m∑
i=1

pi = 1,

qj ∈ (−∞,∞), j = 1, ..., n;
n∑

j=1

qj = 1,

ηi > 1, i = 1, ..., m, θj > 0, j = 1, ..., n.

In addition, the parameters pi and qj need to satisfy some conditions to

guarantee that fY (x) is always non-negative and is a true probability den-

sity function. From p5 of Cai and Kou (2011), a simple sufficient condition

is
k∑

i=1

piηi � 0, for all k = 1, ..., m, and
l∑

j=1

qjθj � 0, for all l = 1, ..., n. For
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alternative conditions, see Bartholomew (1969).

Under the risk-neutral measure Q, the MEJD process is

Xt = μt+ σWt +
Nt∑
i=1

Yi, X0 = 0,

where μ = r − σ2

2
− λξ and

ξ = E[eY1 ]− 1 = pu

m∑
i=1

piηi
ηi − 1

+ qd

n∑
j=1

qjθj
θj + 1

− 1.

Similarly, the moment generating function of Xt is

E[exXt ] = eG(x)t, t � 0, x ∈ (−θ1, η1), (4.40)

where

G(x) =
σ2

2
x2 + μx+ λ

(
pu

m∑
i=1

piηi
ηi − x

+ qd

n∑
j=1

qjθj
θj + x

− 1

)
. (4.41)

Note that (−θ1, η1) contains a neighborhood of 0, and all moments of Xt ex-

ist. Thus we can calculate the moments of the process Xt by differentiating

the above moment generating function given in (4.40).

Now we derive the explicit formula for the fair strike of the discrete

variance swap in the MEJD model.

Proposition 4.9.1. Consider equi-distant sampling and denote Δ = ti+1−
ti = T/N , for i = 0, 1, ..., N − 1. The fair strike of the discrete variance

swap in the MEJD model is

Kd =
1

T

N−1∑
i=0

E
[(
ln(Sti+1

/Sti)
)2]

=

(
σ2 + λ

(
2pu

m∑
i=1

pi
η2i

+ 2qd

n∑
j=1

qj
θ2j

))
+

T

N

(
μ+ λ

(
pu

m∑
i=1

pi
ηi

− qd

n∑
j=1

qj
θj

))2

.
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The fair strike of the continuous variance swap is

Kc = σ2 + λ

(
2pu

m∑
i=1

pi
η2i

+ 2qd

n∑
j=1

qj
θ2j

)
. (4.42)

Proof. First calculate

(
ln(Sti+1

/Sti)
)2

=

⎛⎝μΔ+ σ(Wti+Δ −Wti) +

Nti+1∑
j=Nti

Yj

⎞⎠2

=

⎛⎝μΔ+ σ
√
ΔZi+1 +

Nti+1∑
j=Nti

Yj

⎞⎠2

= μ2Δ2 + σ2ΔZ2
i+1 + 2μσΔ

3
2Zi+1 +

⎛⎝Nti+1∑
j=Nti

Yj

⎞⎠2

+ 2μΔ

Nti+1∑
j=Nti

Yj + 2σ
√
ΔZi+1

Nti+1∑
j=Nti

Yj, (4.43)

where Zi+1 are independent and identically distributed standard Normal

random variables with mean 0 and variance 1, for i = 0, 1, ..., N − 1. Here

Nti is the number of jumps in the stock price during [0, ti], i = 0, 1, ..., N−1.

Taking expectations on both sides of (4.43)

E
[(
ln(Sti+1

/Sti)
)2]

= μ2Δ2 + σ2Δ+ E

⎡⎣⎛⎝Nti+1∑
j=Nti

Yj

⎞⎠2⎤⎦+ 2μΔE

⎡⎣Nti+1∑
j=1

Yj

⎤⎦

= μ2Δ2 + σ2Δ+ E

⎡⎣⎛⎝Nti+1∑
j=1

Yj

⎞⎠2⎤⎦− E

⎡⎣⎛⎝ Nti∑
j=1

Yj

⎞⎠2⎤⎦ (4.44)

− 2E

⎡⎣Nti∑
j=1

Yj

⎤⎦⎛⎝E
⎡⎣Nti+1∑

j=1

Yj

⎤⎦− E

⎡⎣Nti∑
j=1

Yj

⎤⎦⎞⎠+ 2μΔ

⎛⎝E
⎡⎣Nti+1∑

j=1

Yj

⎤⎦− E

⎡⎣Nti∑
j=1

Yj

⎤⎦⎞⎠ .
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From (4.40) and (4.41)

E

⎡⎣exNti∑
j=1

Yj

⎤⎦ = exp

{
λti

(
pu

m∑
i=1

piηi
ηi − x

+ qd

n∑
j=1

qjθj
θj + x

− 1

)}
. (4.45)

Then by differentiating the above moment generating function (4.45) and

substituting x = 0

E

⎡⎣Nti∑
j=1

Yj

⎤⎦ = λti

(
pu

m∑
i=1

pi
ηi

− qd

n∑
j=1

qj
θj

)
, (4.46)

and

E

⎡⎣⎛⎝ Nti∑
j=1

Yj

⎞⎠2⎤⎦ = λ2t2i

(
pu

m∑
i=1

pi
ηi

− qd

n∑
j=1

qj
θj

)2

+ λti

(
2pu

m∑
i=1

pi
η2i

+ 2qd

n∑
j=1

qj
θ2j

)
.

(4.47)

Substitute (4.46) and (4.47) by their corresponding expressions into (4.44)

E
[(
ln(Sti+1

/Sti)
)2]

= μ2Δ2 + σ2Δ+ E

⎡⎣⎛⎝Nti+1∑
j=1

Yj

⎞⎠2⎤⎦− E

⎡⎣⎛⎝ Nti∑
j=1

Yj

⎞⎠2⎤⎦
− 2E

⎡⎣Nti∑
j=1

Yj

⎤⎦⎛⎝E
⎡⎣Nti+1∑

j=1

Yj

⎤⎦− E

⎡⎣Nti∑
j=1

Yj

⎤⎦⎞⎠+ 2μΔ

⎛⎝E
⎡⎣Nti+1∑

j=1

Yj

⎤⎦− E

⎡⎣Nti∑
j=1

Yj

⎤⎦⎞⎠
= μ2Δ2 + σ2Δ+ λ2(t2i+1 − t2i )

(
pu

m∑
i=1

pi
ηi

− qd

n∑
j=1

qj
θj

)2

+ λΔ

(
2pu

m∑
i=1

pi
η2i

+ 2qd

n∑
j=1

qj
θ2j

)
+ 2μλΔ2

(
pu

m∑
i=1

pi
ηi

− qd

n∑
j=1

qj
θj

)

− 2λ2Δti

(
pu

m∑
i=1

pi
ηi

− qd

n∑
j=1

qj
θj

)2

.
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By summing the individual terms up

Kd =
1

T

N−1∑
i=0

E
[(
ln(Sti+1

/Sti)
)2]

=

(
σ2 + λ

(
2pu

m∑
i=1

pi
η2i

+ 2qd

n∑
j=1

qj
θ2j

))

+
T

N

(
μ+ λ

(
pu

m∑
i=1

pi
ηi

− qd

n∑
j=1

qj
θj

))2

.

Letting N → ∞, the fair strike of the continuous variance swap is

Kc = σ2 + λ

(
2pu

m∑
i=1

pi
η2i

+ 2qd

n∑
j=1

qj
θ2j

)
,

and the convergence of Kd to Kc is of the order O( 1
N
). This completes the

proof. �

4.10 Proof of Proposition 4.2.1

Using Itō’s lemma and Cholesky decomposition, (4.1) becomes

d (ln (St)) =

(
r − 1

2
m2(Vt)

)
dt+ ρm(Vt)dW

(2)
t +

√
1− ρ2m(Vt)dW

(3)
t ,

dVt = μ(Vt)dt+ σ(Vt)dW
(2)
t ,

where W
(2)
t and W

(3)
t are two standard independent Brownian motions.

Proposition 4.2.1 is then a direct application of the following lemma

(see Lemma 3.1 of Bernard and Cui (2011) for its proof).
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Lemma 4.10.1. Under the model given in (4.1), we have

ST = S0 exp

{
rT − 1

2

∫ T

0

m2(Vt)dt+ ρ(f(VT )− f(V0))

−ρ

∫ T

0

h(Vt)dt+
√
1− ρ2

∫ T

0

m(Vt)dW
(3)
t

}
, (4.48)

where f(v) =
∫ v
0

m(z)
σ(z)

dz and h(v) = μ(v)f ′(v) + 1
2
σ2(v)f ′′(v).

Now from equation (4.48) in Lemma 4.10.1, we compute the following

key elements in the fair strike of the discrete variance swap. Assume that

the time interval is [t, t +Δ], then

ln

(
St+Δ

St

)
= rΔ− 1

2

∫ t+Δ

t

m2(Vs)ds+ ρ

(
f(Vt+Δ)− f(Vt)−

∫ t+Δ

t

h(Vs)ds

)
+
√

1− ρ2
∫ t+Δ

t

m(Vs)dW
(3)
s .

Then we can compute

E

[(
ln

St+Δ

St

)2
]
= r2Δ2 +

1

4
E

[(∫ t+Δ

t

m2(Vs)ds

)2
]
− rΔE

[∫ t+Δ

t

m2(Vs)ds

]
+ E
[
A2
]

+ E

[(
2rΔ−

∫ t+Δ

t

m2(Vs)ds

)
A

]
+ (1− ρ2)E

[∫ t+Δ

t

m2(Vs)ds

]
,

(4.49)

where A = ρ
(
f(Vt+Δ)− f(Vt)−

∫ t+Δ

t
h(Vs)ds

)
, and

A2 = ρ2

(
(f(Vt+Δ)− f(Vt))

2 +

(∫ t+Δ

t

h(Vs)ds

)2

− 2(f(Vt+Δ)− f(Vt))

∫ t+Δ

t

h(Vs)ds

)
.
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Using the above expressions for A and A2 in (4.49), we obtain

E

[(
ln

St+Δ

St

)2
]

= r2Δ2 +
1

4
E

[(∫ t+Δ

t

m2(Vs)ds

)2
]
+ (1− ρ2 − rΔ)E

[∫ t+Δ

t

m2(Vs)ds

]

+ ρ2E[((f(Vt+Δ)− f(Vt))
2] + ρ2E

[(∫ t+Δ

t

h(Vs)ds

)2
]
+ 2rρΔE[(f(Vt+Δ)− f(Vt))]

− E

[
(f(Vt+Δ)− f(Vt))

∫ t+Δ

t

(2ρ2h(Vs) + ρm2(Vs))ds

]
− 2rρΔE

[∫ t+Δ

t

h(Vs)ds

]
+ ρE

[(∫ t+Δ

t

h(Vs)ds

)(∫ t+Δ

t

m2(Vs)ds

)]
. (4.50)

By Itō’s lemma, f defined in Lemma 4.10.1 verifies df(Vt) = h(Vt)dt +

m(Vt)dW
(2)
t . Integrating the above SDE from t to t+Δ, we have

f(Vt+Δ)− f(Vt) =

∫ t+Δ

t

h(Vs)ds+

∫ t+Δ

t

m(Vs)dW
(2)
s ,

E [f(Vt+Δ)− f(Vt)]− E

[∫ t+Δ

t

h(Vs)ds

]
= E

[∫ t+Δ

t

m(Vs)dW
(2)
s

]
= 0.

(4.51)

Rearrange (4.50) and use (4.51) to simplify the terms, and we obtain

E

[(
ln

St+Δ

St

)2
]
= r2Δ2−rΔE

[∫ t+Δ

t

m2(Vs)ds

]
+
1

4
E

[(∫ t+Δ

t

m2(Vs)ds

)2
]

+ (1− ρ2)E

[∫ t+Δ

t

m2(Vs)ds

]
+ ρ2E

[
(f(Vt+Δ)− f(Vt))

2]
+ ρ2E

[(∫ t+Δ

t

h(Vs)ds

)2
]
+ ρE

[∫ t+Δ

t

h(Vs)ds

∫ t+Δ

t

m2(Vs)ds

]
− ρE

[
(f(Vt+Δ)− f(Vt))

∫ t+Δ

t

(2ρh(Vs) +m2(Vs))ds

]
. (4.52)

Now we apply Fubini’s theorem and partial integration to further simplify
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(4.52). Note that m2(Vs) � 0, Q-a.s., then by Fubini’s theorem for non-

negative measurable functions, E
[∫ t+Δ

t
m2(Vs)ds

]
=
∫ t+Δ

t
E [m2(Vs)] ds.

Similarly we have E

[(∫ t+Δ

t
m2(Vs)ds

)2]
=
∫ t+Δ

t

∫ t+Δ

t
E [m2(Vs)m

2(Vu)] dsdu

for any t � s � t+Δ and any t � u � t+Δ,

If E [| h(Vs)h(Vu) |] < ∞ for any t � s � t+Δ and any t � u � t+Δ,

then we have E

[(∫ t+Δ

t
h(Vs)ds

)2]
=
∫ t+Δ

t

∫ t+Δ

t
E [h(Vs)h(Vu)] dsdu.

If E [| h(Vs)m
2(Vu) |] < ∞ for any t � s � t+Δ and any t � u � t+Δ,

then we have

E

[∫ t+Δ

t

h(Vs)ds

∫ t+Δ

t

m2(Vs)ds

]
=

∫ t+Δ

t

∫ t+Δ

t

E
[
h(Vs)m

2(Vu)
]
dsdu.

If E [| (f(Vt+Δ)− f(Vt))(2ρh(Vs) +m2(Vs)) |] < ∞ for all t � s � t+Δ,

then we have

E

[
(f(Vt+Δ)− f(Vt))

∫ t+Δ

t

(2ρh(Vs) +m2(Vs))ds

]
=

∫ t+Δ

t

E
[
(f(Vt+Δ)− f(Vt))(2ρh(Vs) +m2(Vs))

]
ds.

Thus we finally have proved (4.5) from Proposition 4.2.1. This com-

pletes the proof. �

4.11 Proof of Proposition 4.3.1

Proof. We apply Proposition 4.2.1 to the Heston stochastic volatility
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model. We first compute f(x) = x
γ
and h(x) = κθ−κx

γ
, then we have

KH
d =

1

T

n−1∑
i=0

E

[(
ln

Sti+1

Sti

)2
]

=
1

T

(
a2T 2

n
+ b2

n−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

E[VsVu]dsdu+

(
2abT

n
+ 1− ρ2

)∫ T

0

E[Vs]ds

+
ρ2

γ2

n−1∑
i=0

E[(Vti+1
− Vti)

2] +
2ρaT

nγ
(E[VT ]− E[V0])

+
2ρb

γ

n−1∑
i=0

(∫ ti+1

ti

E
[
Vti+1

Vs

]
ds−

∫ ti+1

ti

E [VtiVs] ds

))
. (4.53)

Furthermore, for all t � 0

E[Vt] = θ + e−κt(V0 − θ), (4.54)

and for all 0 < s � t

E[VtVs] = θ2 + e−κt(V0 − θ)

(
θ +

γ2

κ

)
+ e−κsθ(V0 − θ)

+ e−κ(t+s)

(
(θ − V0)

2 +
γ2

2κ
(θ − 2V0)

)
+

γ2

2κ
θe−κ(t−s). (4.55)

In particular, this formula holds for t = s and gives E[V 2
t ]. These formulas

already appear in Broadie and Jain (2008a) (formula (A-15)). To compute

KH
d , (4.54) and (4.55) are the only expressions needed, and they should

then be integrated and summed.

We have computed all terms in (4.53) with the help of Maple and also

have simplified the final expression given by Maple. It turns out that in the

case of the Heston model, all terms can be computed explicitly and the final

simplified expression for (4.53) does not require any sums or integrals. We

finally obtain an explicit formula for KH
d as a function of the parameters

of the model. This completes the proof. �
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4.12 Proof of Proposition 4.3.2

Proof. Denote the log stock price without drift as Xt = lnSt − rt, and

X0 = x0. Denote V0 = v0, Δ = T/n. We have that E

[(
Sti+1−Sti

Sti

)2]
=

E

[(
Sti+1

Sti

)2]
+ 1− 2erΔ. Thus the goal is to calculate the second moment

E

[(
Sti+1

Sti

)2]
, and note that it is closely linked to the moment generating

function of the log stock price X. Recall the following formulation of the

moment generating functionM(u, t) = E[euXt ] from Albrecher et al. (2007)

M(u, t) = Su
0 exp

{
κθ

γ2

(
(κ− γρu− d(u))t− 2 ln

(
1− g(u)e−d(u)t

1− g(u)

))}
× exp

{
V0

κ− γρu− d(u)

γ2

1− e−d(u)t

1− g(u)e−d(u)t

}
, (4.56)

where the auxiliary functions are given by

d(u) =
√

(κ− γρu)2 + γ2(u− u2), g(u) =
κ− γρu− d(u)

κ− γρu+ d(u)
.

We first separate out the case of i = 0 and i = 1, ..., n − 1. For the first

case, we have

E

[(
St1

S0

)2
]
=

1

S2
0

E
[
e2 lnSt1

]
=

e2rt1

S2
0

M(2, t1) =
e2rΔ

S2
0

M(2,Δ). (4.57)

For the second case, with i = 1, 2, ..., n− 1, we have

E

[(
Sti+1

Sti

)2
]
= E

[
e
2 ln

(
Sti+1
Sti

)]
= e2rΔE

[
E
[
e2(Xti+1−Xti) | Fti

]]
= exp

{
2rΔ+

κθ

γ2

(
(κ− 2γρ− d(2))Δ− 2 ln

1− g(2)e−d(2)Δ

1− g(2)

)}
× E

[
exp

{
Vti

κ− 2γρ− d(2)

γ2

1− e−d(2)Δ

1− g(2)e−d(2)Δ

}]
. (4.58)
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We first define α = 2κθ/γ2 − 1 � 0, and η(t) = 2κ
γ2 (1 − e−κt)−1. Then

from Theorem 3.115 in Hurd and Kuznetsov (2008), we have

E[euVT ] =

(
η(T )

η(T )− u

)α+1

eV0
η(T )u
η(T )−u

e−κT

. (4.59)

Combine equations (4.58) and (4.59), for i = 1, ..., n−1, we finally have

E

[(
Sti+1

Sti

)2
]
= e

2rΔ+ κθ
γ2

(
(κ−2γρ−d(2))Δ−2 ln 1−g(2)e−d(2)Δ

1−g(2)

)
e
V0

η(ti)q(2)

η(ti)−q(2)
e−κti

(
η(ti)

η(ti)− q(2)

)α+1

,

(4.60)

where q(u) = κ−γρu−d(u)
γ2

1−e−d(u)Δ

1−g(u)e−d(u)Δ . Using the definition of M(u, t), we

can factor out M(2,Δ) from (4.60) and finally we have

E

[(
Sti+1

Sti

)2
]
=

e2rΔ

S2
0

M(2,Δ)e
q(2)V0

(
η(ti)e

−κti

η(ti)−q(2)
−1

)(
η(ti)

η(ti)− q(2)

)α+1

.

(4.61)

When i = 0, we have ti = 0 and since ηu → ∞ as u → 0, we use

L’Hôpital’s rule

ηt0
ηt0 − q(2)

= lim
u→0

ηu
ηu − q(2)

= lim
u→0

η′u
η′u

= 1.

Thus a0 is a special case of the formula in (4.61) when i = 0. From Theorem

3.1 in Hurd and Kuznetsov (2008), equation (4.56) and consequently the

above (4.58), (4.59) are well-defined if u < η(T )16. Note that the formula

(4.61) involves the u = 2 case. A sufficient condition for u = 2 < η(T ) to

hold is γ2T < 1 (since 2 < η(T ) is equivalent to 1− κ
γ2 < e−κT ).

Then the final formula for the discrete fair strike follows by summing

the above terms ai, i = 0, 1, ..., n− 1. This completes the proof. �
15Note that in terms of our notation, the parameters in Hurd and Kuznetsov (2008)

and our parameters have the correspondence a = κθ, b = κ, c = γ.
16Note that η(t) is a decreasing function in t, thus u < η(T ) is sufficient for u < η(ti)

for all i = 0, 1, ..., n.
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4.13 Proof of Proposition 4.4.1

Proof. For the Hull-White model, from Proposition 4.2.1, we first compute

f(x) = 2
σ

√
x and h(x) =

(
μ
σ
− σ

4

)√
x, then we have

E

[(
ln

Sti+1

Sti

)2
]
= (1− ρ2 − rT

n
)

∫ (i+1)T
n

iT
n

E [Vs] ds+ r2
T 2

n2

− 2ρ

σ

∫ (i+1)T
n

iT
n

E

[(√
V (i+1)T

n

−
√
V iT

n

)
Vs

]
ds+ 2ρ2q2

∫ (i+1)T
n

iT
n

∫ u

iT
n

E
[√

Vs

√
Vu

]
dsdu

+
4ρ2

σ2
E

[(√
V (i+1)T

n

−
√

V iT
n

)2
]
− 4ρ2q

σ

∫ (i+1)T
n

iT
n

E

[(√
V (i+1)T

n

−
√
V iT

n

)√
Vs

]
ds

+
1

2

∫ (i+1)T
n

iT
n

∫ u

iT
n

E [VsVu] dsdu+ ρq

∫ (i+1)T
n

iT
n

∫ u

iT
n

E
[√

VsVu

]
dsdu

+ ρq

∫ (i+1)T
n

iT
n

∫ (i+1)T
n

u

E
[√

VsVu

]
dsdu,

with q = μ
σ
− σ

4
.

We now compute the following covariance terms that are useful in the

simplification of the fair strike KHW
d (n). In the Hull-White model, the

stochastic variance process Vt follows a geometric Brownian motion. Thus

we have Vt = V0 exp
((

μ− σ2

2

)
t + σW

(2)
t

)
. Note that

E [V a
s ] = V a

0 e
aμse

a2−a
2

σ2s,

which will be useful below for a = 1/2, a = 1 and a = 2.

E [Vs] = V0e
μs, E

[√
Vs

]
=
√

V0e
μ
2
s− 1

8
σ2s =

√
V0e

σ
2
qs, E

[
V 2
s

]
= V 2

0 e
2μs+σ2s.

The fair strike for the continuous variance swap is straightforward and
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is equal to E
[∫ T

0
Vsds
]
= V0

μ
(eμT − 1). Similarly

E

[∫ T

0

√
Vsds

]
=

∫ T

0

√
V0e

σ
2
qsds =

√
V0

2

σq

(
e

σqT
2 − 1

)
,

and for s < u, we have the following results

E [VsVu] = V 2
0 exp

(
μ(u+ s) + σ2s

)
,

E
[√

Vs

√
Vu

]
= V0 exp

(
μ

2
(u+ s)− σ2

8
(u− s)

)
,

E
[√

Vs Vu

]
= V

3
2
0 exp

(
μ
(s
2
+ u
)
+

3σ2

8
s

)
,

E
[
Vs

√
Vu

]
= V

3
2
0 exp

(
μ
(
s +

u

2

)
− σ2

8
u+

σ2

2
s

)
. (4.62)

After some tedious calculations with the help of Maple, we can obtain an

explicit formula as the one appearing in Proposition 4.4.1. This completes

the proof. �

4.14 Proof of Proposition 4.5.1

Proof. For the Schöbel-Zhu model, from the key equation in Proposition

4.2.1, we have

E

[(
ln

St+Δ

St

)2
]

= r2Δ2 + (1− ρ2 − rΔ)

∫ t+Δ

t

m1(s)ds− ρ

∫ t+Δ

t

m5(t, s)ds

+
1

4

∫ t+Δ

t

∫ t+Δ

t

m2(s, u)dsdu+
ρ2

4γ2
E
[(
V 2
t+Δ − V 2

t

)2]
(4.63)

+ρ2
∫ t+Δ

t

∫ t+Δ

t

m3(s, u)dsdu+ ρ

∫ t+Δ

t

∫ t+Δ

t

m4(s, u)dsdu,
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where

m1(s) := E
[
m2(Vs)

]
= E
[
V 2
s

]
, t � s � t +Δ,

m2(s, u) := E
[
m2(Vs)m

2(Vu)
]
= E
[
V 2
s V

2
u

]
, t � s � t+Δ, t � u � t+Δ,

m3(s, u) := E [h(Vs)h(Vu)] , t � s � t +Δ, t � u � t +Δ, (4.64)

m4(s, u) := E
[
h(Vs)m

2(Vu)
]
, t � s � t+Δ, t � u � t+Δ,

m5(t, s) := E
[
(f(Vt+Δ)− f(Vt))(2ρh(Vs) +m2(Vs))

]
, t � s � t+Δ,

and E
[(
V 2
t+Δ − V 2

t

)2]
= E

[
V 4
t+Δ

]
+ E [V 4

t ] − 2E
[
V 2
t+ΔV

2
t

]
. We compute

the following two terms in (4.63) by expanding the products out. For s � u

m3(s, u) =E

[(
κθ

γ
Vs − κ

γ
V 2
s +

γ

2

)(
κθ

γ
Vu − κ

γ
V 2
u +

γ

2

)]
=E

[
κ2θ2

γ2
VsVu − κ2θ

γ2
(VsV

2
u + V 2

s Vu) +
κθ

2
(Vs + Vu)

−κ

2
(V 2

s + V 2
u ) +

κ2

γ2
V 2
s V

2
u +

γ2

4

]
,

and for t � s � t+Δ

m5(t, s) =
1

2γ
E

[
(V 2

t+Δ − V 2
t )

(
2ρ

(
κθ

γ
Vs − κ

γ
V 2
s +

γ

2

)
+ V 2

s

)]
=E

[
ρκθ

γ2
(V 2

t+ΔVs − V 2
t Vs) +

γ − 2ρκ

2γ2
(V 2

t+ΔV
2
s − V 2

t V
2
s )

+
ρ

2
(V 2

t+Δ − V 2
t )
]
.

It is clear from the above expressions of mi for i = 1, 2, ..., 5 that they

are all functions of E[Vs], E[V
2
s ], E[V

4
s ], E[VsVu], E[V

2
s Vu], E[VsV

2
u ] and

E[V 2
s V

2
u ]. We now compute these seven expressions.

Lemma 4.14.1. For the Ornstein-Uhlenbeck process V , introduce the aux-

iliary deterministic functions es := (V0 − θ)e−κs + θ, and v(s) := γ2

2κ
(1 −
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e−2κs), then

E [Vs] = es, (4.65)

E
[
V 2
s

]
= e2s + v(s), (4.66)

E
[
V 3
s

]
= e3s + 3esv(s), (4.67)

E
[
V 4
s

]
= e4s + 6e2sv(s) + 3v2(s). (4.68)

For t � s � u � t +Δ

E [VsVu] = e−κ(u−s)E
[
V 2
s

]
+ θ(1− e−κ(u−s))E [Vs] ,

E
[
V 2
s V

2
u

]
= e−2κ(u−s)E

[
V 4
s

]
+ 2θe−κ(u−s)(1− e−κ(u−s))E

[
V 3
s

]
+

(
θ2(1− e−κ(u−s))2 +

γ2

2κ
(1− e−2κ(u−s))

)
E
[
V 2
s

]
. (4.69)

For t � s � u � t +Δ

E
[
VsV

2
u

]
= e−2κ(u−s)E

[
V 3
s

]
+ 2θe−κ(u−s)(1− e−κ(u−s))E

[
V 2
s

]
+

(
θ2(1− e−κ(u−s))2 +

γ2

2κ
(1− e−2κ(u−s))

)
E [Vs] . (4.70)

For t � s � u � t+Δ

E
[
V 2
s Vu

]
= e−κ(u−s)E

[
V 3
s

]
+ θ(1− e−κ(u−s))E

[
V 2
s

]
. (4.71)

Proof. The stochastic variance process Vs follows

dVs = −κ(Vs − θ)ds+ γdW (2)
s .

On p120 of Jeanblanc, Yor and Chesney (2009), one finds that the exact

solution of the above SDE is

Vs = (V0 − θ)e−κs + θ + γ

∫ s

0

e−κ(s−t)dW
(2)
t .
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We can compute

es := E [Vs] = (V0 − θ)e−κs + θ, (4.72)

v(s) := V ar [Vs] =
γ2

2κ
(1− e−2κs), (4.73)

and the higher moments can also be computed

E
[
V 2
s

]
= e2s + v(s). (4.74)

E
[
V 3
s

]
= e3s + 3esv(s). (4.75)

E
[
V 4
s

]
= e4s + 6e2sv(s) + 3v2(s). (4.76)

For s � u, E [Vu | Vs] = E
[
(Vs − θ)e−κ(u−s) + θ

]
, and

E [VsVu] = E [VsE [Vu | Vs]]

= E
[
Vs((Vs − θ)e−κ(u−s) + θ)

]
= e−κ(u−s)E

[
V 2
s

]
+ θ(1− e−κ(u−s))E [Vs] .

Now we can compute the continuous fair strike as

Kc =
1

T
E

[∫ T

0

V 2
s ds

]
=

1

T

∫ T

0

[
((V0 − θ)e−κs + θ)2 +

γ2

2κ
(1− e−2κs)

]
ds

=

(
(V0 − θ)2 − γ2

2κ

)
1− e−2κT

2κT
+ 2θ(V0 − θ)

1− e−κT

κT
+ θ2 +

γ2

2κ
.

For s � u

E
[
V 2
s V

2
u

]
= E
[
V 2
s E
[
V 2
u | Vs

]]
= E

[
V 2
s

(
((Vs − θ)e−κ(u−s) + θ)2 +

γ2

2κ
(1− e−2κ(u−s))

)]
= e−2κ(u−s)E

[
V 4
s

]
+ 2θe−κ(u−s)(1− e−κ(u−s))E

[
V 3
s

]
+

(
θ2(1− e−κ(u−s))2 +

γ2

2κ
(1− e−2κ(u−s))

)
E
[
V 2
s

]
,
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E
[
VsV

2
u

]
= E
[
VsE
[
V 2
u | Vs

]]
= E

[
Vs((Vs − θ)e−κ(u−s) + θ)2 +

γ2

2κ
(1− e−2κ(u−s))

]
= e−2κ(u−s)E

[
V 3
s

]
+ 2θe−κ(u−s)(1− e−κ(u−s))E

[
V 2
s

]
+

(
θ2(1− e−κ(u−s))2 +

γ2

2κ
(1− e−2κ(u−s))

)
E [Vs] ,

E
[
V 2
s Vu

]
= E
[
V 2
s E [Vu | Vs]

]
= E
[
V 2
s ((Vs − θ)e−κ(u−s) + θ)

]
= e−κ(u−s)E

[
V 3
s

]
+ θ(1− e−κ(u−s))E

[
V 2
s

]
.

In the above expressions, the moments E [Vs], E [V 2
s ], E [V 3

s ] and E [V 4
s ]

are already calculated in (4.72), (4.74), (4.75), and (4.76). Then we can

substitute the corresponding inputs into equation (4.63), sum up the terms,

and obtain KSZ
d (n). This completes the proof. �

4.15 Conclusion of Chapter 4

This chapter provides explicit expressions of the fair strike of discretely

sampled variance swaps in the Heston, the Hull-White, and the Schöbel-

Zhu models. For the Heston model, the explicit closed-form formulae sim-

plifies the expression obtained by Broadie and Jain (2008a) in equations

(A-29) and (A-30) on p793, where several sums from 0 to n are involved.

Our formulae are more explicit (as there is no sums involved in the discrete

fair strikes), and easier to use. The explicit closed-form formulae for the

Hull-White model and the Schöbel-Zhu model are new. Asymptotics of

the fair strikes with respect to key parameters such as n → ∞, T → 0,

κ → ∞, γ → 0 are new and consistent with theoretical results obtained in

Keller-Ressel and Muhle-Karbe (2012).
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Part III

Nearly unbiased Monte Carlo

simulation
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Chapter 5

Nearly exact option price

simulation using characteristic

functions
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5.1 Introduction

This chapter is based on the publication Bernard, Cui and McLeish (2012)

in the International Journal of Theoretical and Applied Finance. In this

chapter, we propose a new and nearly unbiased Fourier inversion technique

using Monte Carlo simulations. Our approach allows us to simulate directly

from the characteristic function without any discretization or biased ap-

proximation. We then show that it can be useful to solve multidimensional

complex problems in finance and illustrate the study with the pricing of

some exotic options and with the simulation of first passage times.

It is well-known that Monte Carlo simulations can outperform numer-

ical integration techniques when the problem involves high dimensions.

However, the exact number of dimensions at which Monte Carlo techniques

start to outperform deterministic methods (Fourier expansion methods) is

generally unknown and depends on the problem at hand1.

One application of our approach is to allow us to simulate from the

characteristic function directly. Existing methods involve a discretization

and/or a truncation and therefore a bias. Standard inversion techniques

usually require the discretization of an integral (Abate and Whitt (1995),

Weeks (1966)). Some simulation techniques have made use of the sad-

dlepoint approximation (Carr and Madan (2009), Lewis (2000), McLeish

(2013)) but they are biased estimates because of truncation. Our Monte

Carlo approach is unbiased when the support of the distribution is finite

and is nearly unbiased otherwise. It can be applied to problems involving

the inverse of a characteristic function in which the characteristic func-

tion can be efficiently evaluated. In many financial market models, the

characteristic function of the log stock price is known, for example in

affine stochastic volatility models (Duffie, Pan and Singleton (2000)), with

time-changed Lévy processes (Carr and Wu (2004)), or in affine stochastic

volatility combined with affine stochastic interest rate models (van Haas-

trecht and Pelsser (2011a, 2011b)). We will illustrate our technique with

1For example, Genz and Malik (1980) show that 8 dimensions is the turning point
after which the deterministic Genz-Malik rules are beaten by the Monte Carlo method.
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the pricing of standard call options and forward-starting options in the

Heston stochastic volatility model.

Another application of our method is to simulate first passage times

directly without simulating the trajectories of the underlying processes.

This is especially useful when the characteristic function of the first pas-

sage time has a simple expression but its probability density function is

complicated. For example, the characteristic function of the first hitting

time of an Ornstein-Uhlenbeck process to a given level is known (Alili,

Patie and Pedersen (2005)). Similarly the characteristic function of the

“Parisian time”2 has a simple closed-form expression in the Black-Scholes

framework. We are then able to get an unbiased simulation of this first

passage time and also give the price of a Parisian option. Similar as bar-

rier option prices (Broadie, Glasserman and Kou (1997)), Parisian option

prices obtained by Monte Carlo simulations are very sensitive to the dis-

cretization step used in the simulations of the trajectories of the underlying

(Bernard and Boyle (2011)). In this chapter we illustrate our study with

the pricing of continuously monitored Parisian options. We also show that

it can easily be extended to Parisian options with multiple levels, which

requires multidimensional integrations and can be handled through Monte

Carlo simulations easily. These multi-level Parisian options have recently

appeared in CEO compensation packages.

In the option pricing literature, especially for multi-dimensional option

pricing problems, several authors have proposed the use of (deterministic)

Fourier approaches, see Dempster and Hong (2000), Fang and Oosterlee

(2008), Jackson, Jaimungal and Surkov (2008), Leentvaar and Oosterlee

(2008), and Ruijter and Oosterlee (2012). The above papers all use effi-

cient numerical techniques (by deterministic Fourier expansion methods) to

find option prices. Alternatively, simulation is a general approach often re-

quiring less programming efforts than deterministic numerical techniques.

However, numerical methods, carefully adapted to the problem at hand, are

usually faster than simulation when we want to estimate a single quantity.

2The Parisian time is the first time that the underlying process spends more than a
given amount of time above (resp. below) a given barrier.
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For example, in Table 6.1 of Ruijter and Oosterlee (2012), the convergence

of the numerical scheme is reached in milliseconds. The simulation method

can not achieve similar speed due to the additional noise in the random

numbers. However, the information obtained through numerical methods

is often one-dimensional (e.g. option prices or Greeks), whereas the simu-

lation allows the estimation of a number of parameters with a single run,

including error estimates. Thus it is hard to make a “direct comparison”

between numerical methods and simulation methods. They both have their

pros and cons.

Our inversion technique relies on the Fourier inversion formula used in

Fang and Oosterlee (2008). However unlike that paper, we do not truncate

the Fourier series at an arbitrary fixed number of terms but add an unbiased

estimator of the truncation error and are thus able to obtain an unbiased

estimate of the inverse of the characteristic function using a very small

number of terms of the Fourier series.

In this chapter, the new result, which contributes to the current litera-

ture, is as follows: Theorem 5.3.1. It presents a novel randomization idea

applied to the unbiased estimation of the density function, and is later ap-

plied to the construction of unbiased importance sampling weights in our

importance sampling Monte Carlo algorithm for estimating option prices.

The chapter is organized as follows. In Section 5.2, we first describe

two financial problems that require the inversion of characteristic functions

and involve more than one-dimensional integration. The first problem is

the pricing of forward-starting options in the Heston model. The second

problem is the pricing of Parisian-type options in the Black-Scholes set-

ting (standard Parisian options and multi-level Parisian options). We first

show how the no-arbitrage pricing of a series of multi-level Parisian op-

tions can be reduced to a problem with similar complexity to a standard

Parisian option. In this case it can still be argued that deterministic meth-

ods (Fourier expansion methods) are more appropriate in that they would

give a faster answer (although slightly biased). These multi-level Parisian

options are indeed of practical importance as they appear in the design of
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recent executive stock options (see Bernard and Boyle (2011) and Bernard

and Le Courtois (2012)). The pricing and risk management of executive

stock options are different from the no-arbitrage pricing of traded options.

Next, we present the Fourier inversion technique by Monte Carlo in Section

5.3. In Section 5.4, we illustrate this approach by solving the two original

problems presented in Section 5.2. Section 5.5 concludes the chapter.

5.2 Option pricing

The purpose of this chapter is to propose a nearly unbiased inversion of

characteristic functions by Monte Carlo simulations. This section presents

two pricing problems for which it is difficult to obtain unbiased estimates.

First we look at pricing in the Heston stochastic volatility model. We

start by a standard call option and then price a forward-starting option

which is a mildly path-dependent option that depends on two dates. We

then solve the problem of pricing continuously monitored Parisian options

in the Black-Scholes setting. Standard Parisian options and multi-level

Parisian options are considered. These two applications are here for the

purpose of illustration. Our technique can be applied to problems involving

the inversion of a characteristic function that can be easily evaluated and

when the corresponding cumulative distribution function is unknown or

difficult to invert.

5.2.1 Option pricing in the Heston stochastic volatil-

ity model

In the Heston model, the dynamics of the stock price St and its variance

Vt can be written under a risk neutral probability as follows

dSt = rStdt+
√

VtSt(ρdW1(t) +
√
1− ρ2dW2(t)),

dVt = κ(θ − Vt)dt+ σ
√

VtdW1(t), (5.1)
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where V0 > 0, κ > 0, θ > 0, σ > 0, where W1 and W2 are indepen-

dent Brownian motion processes, and −1 � ρ � 1 is the correlation be-

tween the Brownian motion processes driving the stock price process and

its stochastic variance process. In this model, the process Vt is a Feller or

Cox-Ingersoll-Ross process (Cox, Ingersoll and Ross (1985)).

Forward-starting options

A forward-starting option is the advance purchase of a put or a call option

with a strike price that will be determined at a later date. A forward start-

ing option becomes active at a specified date in the future. Its premium is

paid in advance. The time to expiration and the factor K in the strike are

established at the time the forward-starting option is purchased. Typically

a forward-starting call option written on an underlying S has a terminal

payoff (ST2 −KST1)
+, where 0 < T1 < T2 and where the contract is issued

at time 0.

Relevant characteristic function

The stochastic differential system (5.1) can be integrated in the following

form

ST = S0e
(r− ρκθ

σ )T+ ρ
σ
(VT−V0)+( ρκ

σ
− 1

2)
∫ T
0 Vtdt+

√∫ T
0 Vtdt

√
1−ρ2Z , (5.2)

where Z ∼ N(0, 1) is independent of (VT ,
∫ T

0
Vsds). This formula can be

found in Broadie and Kaya (2006) or in Lemma 2.1 of Bernard and Cui

(2011).

Given the expression (5.2), ST has a lognormal distribution conditional

on (VT ,
∫ T
0
Vsds). Therefore it is of particular interest to simulate jointly

the spot variance VT at time T and the accumulated variance
∫ T
0
Vsds over

the period [0, T ] to simulate the underlying stock prices and get option

prices.

The marginal distribution of VT is well-known (see Glasserman ((2004),
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Section 3.4.1)). Broadie and Kaya (2006) provide an expression for the

conditional characteristic function of
∫ T

0
Vsds given the values V0 and VT .

φ(u) =E

[
exp

(
iu

∫ T

0

Vsds

) ∣∣∣∣ V0, VT

]

=
D(u)e−

1
2
(D(u)−κ)T (1− e−κT )

κ(1− e−D(u)T )
.

Iν

(√
V0VT

4D(u)e−
1
2D(u)T

σ2(1−e−D(u)T )

)
Iν

(√
V0VT

4κe−
1
2κT

σ2(1−e−κT )

)
. exp

(
V0 + VT

σ2

[
κ(1 + e−κT )

1− e−κT
− D(u)(1 + e−D(u)T )

1− e−D(u)T

])
, (5.3)

where D(u) =
√
κ2 − 2σ2iu, and ν = 2κθ/σ2−1, and Iν(x) is the modified

Bessel function of the first kind with degrees of freedom ν.

Notice that the characteristic function (5.3) contains the complex loga-

rithm problem because of the presence of D(u). In particular one observes

a complex-valued modified Bessel function. If we restrict the logarithm to

its principal branch, as it is done in most software packages, the charac-

teristic function can become discontinuous and results in inaccurate option

prices. This issue is rigorously analyzed in Lord and Kahl (2010). They

propose the following formulation for the characteristic function. Define

z(u) =
D(u)e−

1
2
D(u)T

1− e−D(u)T
,

and

f(u) =
D(u)

1− e−D(u)T
.

Then to avoid the complex logarithm problem, from Lemma 4.2 and The-

orem 4.3 in Lord and Kahl (2010), the characteristic function should be

evaluated as

φ(u)× exp(ν ln(z(u)))

z(u)ν
, (5.4)

where φ(u) is given in (5.3) and evaluated using the principal branch for
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the modified Bessel function. The term ln(z(u)) is evaluated based on the

expression ln(z(u)) = −1
2
D(u)T + ln(f(u)), with ln(f(u)) restricted to its

principal branch. The denominator of (5.4) is evaluated using the principal

branch of the complex power function.

5.2.2 First two moments of
∫ T
0 Vsds|V0, VT

For the first two moments of the aggregate volatility process, we cite the

following result from Tse and Wan (2013) (with appropriate modifications

to our notation).

Lemma 5.2.1. (Proposition 3.1, Tse and Wan (2013))

Let δ = 4κθ/σ2, ν = σ/2 − 1, C1 = coth(κT/2), C2 = csch2(κT/2),

Cz = 2κ(σ2sinh(κT/2))−1 and z = Cz

√
V0VT . The mean and the variance

of Ic =
∫ T
0
Vsds|V0, VT are

k′(0) = E[Ic] = E[X1] + E[X2] + E[η]E[Z]

k′′(0) = V ar[Ic] = σ2
X1

+ σ2
X2

+ E[η]σ2
Z + (E[η2]− E[η]2)E[Z2],

where

E[X1] = (V0 + VT )(C1/κ− TC2/2),

σ2
X1

= (V0 + VT )(σ
2C1/κ

3 + σ2TC2/(2κ
2)− σ2T 2C1C2/(2κ)),

E[X2] = δσ2(−2 + κTC1)/(4κ
2),

σ2
X2

= δσ4(−8 + 2κTC1 + κ2T 2C2)/(8κ
4),

E[Z] = 4E[X2]/δ,

σ2
Z = 4σ2

X2
/δ,

E[η] = zIν+1(z)/(2Iν(z)),

E[η2] = z2Iν+2(z)/(4Iν(z)) + E[η].
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Pricing options by inversion and conditioning

To obtain an unbiased estimator of the price of a standard call option,

we simulate from the couple (VT ,
∫ T
0
Vsds) using the formulation of the

characteristic function in (5.4) and the method presented in Section 5.3.

Moreover using the expression (5.2), conditional on (VT ,
∫ T
0
Vsds), the stock

price ST is lognormal and therefore the Black-Scholes option price can be

used (see Theorem 2.1 in Bernard and Cui (2011)). This is an important

step in reducing the variance of the estimate. The price of a standard call

option with maturity T can be expressed as

E
[
CBS

(
Ŝ0, K, r, σ̂, T

)]
,

where CBS is the Black-Scholes formula with initial underlying price

Ŝ0 :=Ŝ0

(
VT ,

∫ T

0

Vsds

)
=S0 exp

(
rT − ρκθT

σ
+

ρ

σ
(VT − V0) +

(
ρκ

σ
− ρ2

2

)∫ T

0

Vtdt

)
,

and volatility level σ̂ := σ̂(
∫ T
0
Vsds/T ) =

√
(1− ρ2)

∫ T
0
Vtdt/T .

Our method provides an alternative to that presented in Fang and Oost-

erlee (2008), who simply truncate the Fourier series with sufficiently many

terms that a high degree of precision is possible. However the advantages

of obtaining an unbiased Monte Carlo simulation are not evident, unless we

have a high dimensional problem. It is well-known that the complexity of

Monte Carlo techniques, unlike other numerical methods, does not increase

with the number of dimensions. For example, an integral over the inverse of

the characteristic function, essentially a two-dimensional problem, would

theoretically require an infinite number of characteristic functions inver-

sions.

Consider now for example pricing a forward-starting option. The idea is

to simulate (VT1 ,
∫ T1

0
Vsds) and then simulate (VT2 ,

∫ T2

T1
Vsds) conditional on

the first simulation. It obviously involves a two-dimensional integral. More
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generally, this technique can be extended to more than two dimensions and

an iterative unbiased simulation of (ST1, ST2 , ..., STn) is possible. Such ap-

proach allows to price path-dependent derivatives in the Heston stochastic

volatility model, such as discrete Asian options, discrete Lookback options,

discrete barrier or Parisian options.

Moreover the inversion proposed in this chapter (Section 5.3) requires

only a very limited number of terms in the Fourier series (as small as 3 to

10 terms) instead of comparatively larger terms (16 terms) to get a precise

unbiased estimate by the Fourier-cosine series of Fang and Oosterlee (2008).

5.2.3 Parisian options

We now develop a second example where the technique proposed in this

chapter is very powerful. It consists of the pricing of Parisian type options

and more generally of the unbiased simulation of first passage times for

which the characteristic functions are known. A Parisian option is simi-

lar to a barrier option but the activation (resp. deactivation) condition is

more complex. The underlying process needs not only to reach some given

threshold but to stay beyond it for some period of time. As explained by

Labart and Lelong (2009), “[a]s for standard barrier options, using simula-

tions leads to a biased problem, due to the choice of the discretization time

step in the Monte Carlo algorithm”. Using our approach we can obtain

unbiased estimates of Parisian option prices without discretizing the entire

path of the underlying process.

The simulation technique presented in this chapter requires an explicit

expression of the characteristic function of the random variable to be sim-

ulated. Here we are interested in Parisian times which are defined be-

low. There are very few models for which their characteristic functions

have been derived. In this chapter we choose to work in the Black-Scholes

model where expressions for the characteristic functions of Parisian times

are available. These characteristic functions are also obtained by Dassios

and Wu (2011) when the underlying is a standard compound Poisson pro-

cess with negative jumps, which is not a very good model for stock prices.
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Albrecher et al. (2012) provide a procedure for pricing Parisian options un-

der a jump diffusion model with two sided jumps but they do not provide

the characteristic function of the Parisian time directly.

Financial market

To evaluate this option, we assume a Black-Scholes financial market, thus

a complete, frictionless, arbitrage-free financial market. Let Q denote the

(unique) risk-neutral measure. The underlying stock price S is modeled by

the following diffusion:

dSt

St
= (r − q)dt+ σdZQ

t , (5.5)

where ZQ is a Q-Brownian motion, r is the constant continuously com-

pounded risk-free rate, q the continuous dividend rate and σ the volatility.

The solution of (5.5) is St = xeσ(mt+ZQ
t ) where m = 1

σ

(
r − q − σ2

2

)
and

x = S0. Denote by Q̄ the probability measure defined on FT by the Radon-

Nikodym density :

dQ̄

dQ

∣∣∣∣
FT

= exp

(
−mZQ̄

T +
m2T

2

)
,

then ZQ̄
t = ZQ

t +mt is a Q̄-Brownian motion (using Girsanov’s theorem).

Under Q̄, St is of the following form and has no drift

St = xeσZ
Q̄
t . (5.6)

Up and in Parisian option

To specify a Parisian option, we introduce some additional variables. Let

T be the maturity of the option and K its strike price. Let L > S0 be

the barrier level and D the sojourn time. The option is activated if the

underlying spends more than a time interval D (continuously) above the

barrier, L before the maturity T . Since this is an up option, we monitor the
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time spent above the barrier. To formulate this, we consider the functional

gLt (S) which is the last time before t the process S reaches the barrier L:

gLt (S) = sup {s � t | Ss = L} ,

where we use the usual convention that sup {∅} = 0. Note that gLt (S) is

not a stopping time. We denote by τ , the Parisian time: that is the first

time the price remains longer than D units of time above the barrier L

τ = inf{t > 0 | (t− gLt (S))1St�L � D}.

These formal definitions are illustrated in Figure 5.1. We show two pos-

sible trajectories of the underlying S. To activate the option, the process

(St)t∈[0,T ] starting at S0 = 100 has to stay continuously more than 9 months

above the level L = 180 in the next three years. In case the Parisian con-

dition is satisfied, gLτ is the last time the underlying hits the barrier level

L before τ . Note that the dotted trajectory in Figure 5.1 would have acti-

vated a standard up and in barrier option with level L but the path does

not stay above L long enough to activate the Parisian option.

Mathematical properties

The derivation of the price of a Parisian option requires a few mathematical

properties that were originally given by Chesney, Jeanblanc and Yor (1997).

Given the expression (5.6) for St under Q̄, the barrier level for the Brownian

motion ZQ̄ is given by

� =
ln (L/S0)

σ
. (5.7)

We now recall properties of τ and ZQ̄
τ under Q̄. First τ is a stopping time

and τ and ZQ̄
τ are independent. The distribution of Zτ under Q̄ is given

by

Q̄
(
ZQ̄

τ ∈ dy
)
=

(
y − �

D

)
exp

(
−(y − �)2

2D

)
1y>�dy. (5.8)
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Figure 5.1: Illustration of the Parisian condition

Two possible trajectories of the underlying S. The barrier level L = 180. We show
the first time the Parisian condition is met: it is indicated by τ .
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The standardized density f(x) = xe−x2/2, for x > 0 has moment generat-

ing function E(epX) = 1 + p
√
2πe

p2

2 Φ(p) where Φ is the standard cumu-

lative normal distribution function. Therefore ZQ̄
τ has the distribution of

�+
√
DX , then ZQ̄

τ has characteristic function

E
[
eiwZQ̄

τ

]
=

(
L

S0

) iw
σ

Ψ(i
√
Dw), (5.9)

where Ψ(z) := 1 + z
√
2πe

z2

2 Φ(z).

The characteristic function of τ is given by Labart and Lelong (2009)

using the original expression for the Laplace transform of Chesney et al.

(1997). Let θ denote
√−2iu. Labart and Lelong (2009) prove3 that the

3Furthermore, in the Appendix of their chapter, after Lemma B.2 Labart and Lelong
(2009) prove that the density of τ exists, is C∞, that all derivatives (k � 0) of the density

f verify f (k)(t) → 0 when t goes to +∞ and that E
[
eiuτ
]
= O

(
e−|
|

√
|u|
)
(see Lemma
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characteristic function of the up Parisian time is given by

E
[
eiuτ
]
=

⎧⎪⎪⎨⎪⎪⎩
e−�θ

Ψ(θ
√
D)

=
(S0

L )
θ
σ

Ψ(θ
√
D)

if S0 � L

M(u, σ, θ, S0, L) otherwise,

(5.10)

whereM(u, σ, θ, S0, L) = eiuD
(
1− 2Φ

(
�√
D

))
+

eθ�Φ
(
θ
√
D+ �√

D

)
+e−θ�Φ

(
−θ

√
D+ �√

D

)
Ψ(θ

√
D)

and where � is itself a function of S0 and L: � = ln(L/S0)
σ

. The expressions

in (5.10) for the characteristic function factor naturally into several com-

ponents. For example
(S0

L )
θ
σ

Ψ(θ
√
D)

=
(
S0

L

) θ
σ × 1

Ψ(θ
√
D)

is the product of the

characteristic function of two independent random variables, one the first

passage time from S0 to L and the second the Parisian time beginning at

the barrier L. Similarly M(u, σ, θ, S0, L) applies when we begin above the

barrier S0 > L (so � < 0) and consists of the characteristic function of the

constant D times 1 − 2Φ
(

�√
D

)
, the probability that the process remains

above the level L for the first D units of time, plus

eθ�Φ
(
θ
√
D + �√

D

)
+ e−θ�Φ

(
−θ

√
D + �√

D

)
2Φ
(

�√
D

) , (5.11)

(which is the conditional characteristic function of the Parisian time given

that the first passage to the barrier occurs in the first D units of time),

multiplied by the probability of that case, 2Φ
(

�√
D

)
again multiplied by

the characteristic function 1
Ψ(θ

√
D)

of the Parisian time beginning at the

barrier L. This decomposition will be of value in the simulations below.

Up and in call option formula

The price of an up and in call option can be expressed as follows

Cu
i = e−rTEQ

[
(ST −K)+ 1τ<T

]
. (5.12)

B.2).
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Proposition 5.2.1. The price of an up and in Parisian call can be calcu-

lated as EQ̄ [h(τ, Zτ )] where

h(τ, Zτ ) = e
−
(
r+m2

2

)
T
(
x̃Φ
(
d̃1

)
− K̃Φ

(
d̃2

))
1τ<T , (5.13)

where x̃ = xe(σ+m)Zτ+
(σ+m)2

2
(T−τ) and K̃ = KemZτ+

m2

2
(T−τ) and where d̃1 =

ln(x̃/K̃)+σ2(T−τ)
2

σ
√
T−τ

and d̃2 = d̃1 − σ
√
T − τ .

Proof. Using earlier notation, the expression (5.12) becomes

Cu
i = e−rTEQ

[(
xeσ(mT+ZQ

T ) −K
)+

1τ<T

]
.

We can rewrite it under Q̄:

Cu
i = e−rT e−

m2T
2 EQ̄

[
emZQ̄

T

(
xeσZ

Q̄
T −K

)+
1τ<T

]
,

then

Cu
i = e

−
(
r+m2

2

)
T
EQ̄

[(
xe(σ+m)ZQ̄

T −KemZQ̄
T

)+
1τ<T

]
.

Finally note that ZQ̄
τ is independent of τ and ZQ̄

T = ZQ̄
τ + (ZQ̄

T − ZQ̄
τ ) is

the sum of two independent increments. Denote x̃ = xe(σ+m)Zτ+
(σ+m)2

2
(T−τ)

and K̃ = KemZτ+
m2

2
(T−τ) then

EQ̄

[(
xe(σ+m)ZQ̄

T −KemZQ̄
T

)+
|τ, Zτ

]
= x̃Φ

(
d̃1

)
− K̃Φ

(
d̃2

)
,

where d̃1 =
ln(x̃/K̃)+σ2(T−τ)

2

σ
√
T−τ

and d̃2 = d̃1 − σ
√
T − τ . (5.13) follows. �

Simulation procedure

The price of a Parisian option is given by EQ̄[h(Zτ , τ)1τ<T ], an expecta-

tion under Q̄ (expression (5.13) of Proposition 5.2.1). It uses two random

variables, the Parisian time τ and the value Zτ of the Brownian motion at

that time. To determine the price of a Parisian option, we simulate val-
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ues of τ . For each value of τ, (Zτ − �)2 is exponential with parameter 2D

where � = ln(L/S0)
σ

. Note that this simulation procedure does not require

the discretization of the trajectories of the underlying stock price and gives

an estimate of the Parisian time directly. The specific algorithm will be

given in Section 5.4.2.

5.2.4 Multi-level Parisian in executive stock options

As mentioned earlier, Monte Carlo techniques are more useful for multi-

dimensional problems. The problems presented so far involve one or two

dimensions. However Parisian options can be useful in arbitrarily high

dimensional problems. We give an illustration of “multi-levels Parisian

options” and their potential use in executive compensation.

Description

In their chapter, Bernard and Boyle (2011) describe the compensation

package awarded to Merrill Lynch’s CEO, Mr John A. Thain in late 2007.

The details of the compensation package can be found in Section 5 of

Bernard and Boyle (2011) or originally in a Form 8K filed with the SEC,

dated November 16, 2007 (available in the Edgar4 database). This pack-

age consists of several tranches of “Parisian-style” options. We describe

a generic package made of three tranches to illustrate how the inversion

technique described in this chapter is well-suited to this problem. Assume

that it has a maturity of T years and that the initial stock price is S0. The

details of the tranches are as follows. Assume L3 > L2 > L1 > S0 = K.

• Tranche One: A payoff (ST −K)+ is paid at time T if and only if the

stock price stays above the first barrier level L1 for a period of time

D before T . Tranche One is a standard Parisian option.

• Tranche Two: A payoff (ST −K)+ is paid at time T only if Tranche

One is granted before T and in addition if and only if the stock price

4http://www.sec.gov/edgar.shtml
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stays above the second barrier L2 > L1 for a period of time D after

Tranche One is granted and before T .

• Tranche Three: A payoff (ST −K)+ is paid at time T only if Tranche

Two is granted and in addition if and only if the stock price stays

above the third barrier L3 > L2 for a period of time D after Tranche

Two is granted and before T .

The price of the second (resp. third) tranche are definitely lower than

standard up-and-in Parisian options because there is an additional condi-

tion that needs to be satisfied in order to activate the option, that is that

Tranche One (resp. Tranche Two) needs first to be activated. Define τ1 by

τ1 = inf{t > 0 | (t− gL1
t (S))1St�L1 � D},

and τi for i = 2 and i = 3 as follows

τi = inf{t � τi−1 +D | (t− gLi
t (S))1St�Li

� D}.

τi needs to be higher than τi−1 +D, in other words, gLi
t (S) > τi−1, which

guarantees that the Tranche i only starts after Tranche i− 1 is activated.

The price of the Tranche i is obtained as

E[e−rT (ST −K)+1τi�T ].

Note that when the sojourn time D is equal to zero, Parisian options are

standard barrier options. For barrier options, there is no difference between

the sequential exercise described above and granting three independent

barrier options. Indeed to satisfy the second condition, the underlying

needs to go up to level L2 and thus first pass through the level L1 < L2.

The price of the sequential standard barrier contract is thus equal to the

sum of the three barrier options prices. In general D > 0 and the pricing of

Tranche Three is a real challenge because it seems to involve four random

variables ST , τ1, τ2 and τ3. We now show that the no-arbitrage pricing

per se of these Tranches is still a one-dimensional problem. However the
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risk management of these tranches for the company and the valuation by

“certainty-equivalent” by the CEO are both multidimensional problems as

shown below.

Pricing of multi-level Parisian options

It is not possible to develop a closed-form expression for the characteristic

function of the multilevel Parisian option and we are only able to ob-

tain conditional characteristic functions. We deal with only continuously-

monitored Parisian options, and in practice Parisian options are usually

monitored discretely. A Monte Carlo approach is natural and performs

well as it will appear later. More generally the firm may be interested in

the distribution of costs to a firm where several such options are offered.

This will be a function of (τ1, Sτ1 , τ2, Sτ2, τ3, Sτ3).
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Figure 5.2: Two-level Parisian times

Two-level Parisian times are illustrated in Figure 5.2 with levels L1 = 11

and L2 = 12 and D = 0.5. Note that the second arrow illustrating the
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second tranche must begin to the right of τ1, the first parisian time. The

process renews at the point (τ1, Sτ1) in that the future of the process after

time τ1 depends only on this point. This implies that the dotted arrow,

representing τ2 − τ1, is independent of τ1 and is another Parisian time.

However its distribution depends on Sτ1 and more precisely on the ratio

between Sτ1 and L2 as illustrated hereafter.

Define ci(u) = E[eiu(τi−τi−1)|τi−1, Sτi−1
]. Then c1(u) =

(
S0
L1

)√−2iu
σ

Ψ(
√−2iuD)

, and

ci(u) = E[eiu(τi−τi−1)1Sτi−1<Li
|τi−1, Sτi−1

] + E[eiu(τi−τi−1)1Sτi−1�Li
|τi−1, Sτi−1

]

= E[eiu(τi−τi−1)|τi−1, Sτi−1
]1Sτi−1<Li

+ E[eiu(τi−τi−1)|τi−1, Sτi−1
]1Sτi−1�Li

=

(
Sτi−1

Li

)√−2iu
σ

Ψ(
√−2iuD)

1Sτi−1<Li
+M(u, σ, θ, Sτi−1

, Li)1Sτi−1�Li
,

where M(·) appears in (5.10).

The precise simulation algorithm for multi-level Parisian options is

given in Section 5.4.2.

Related multidimensional problems

There are many related problems to the issuance of these CEO compensa-

tion that are complex multidimensional problems. First, not all CEOs use

the no-arbitrage price to evaluate their compensation package, and some

use indifference pricing. Second, the risk management issues for the com-

pany which is granting these three tranches to a CEO are more complex

than the above pricing.

A company that offers the above package to its CEO might be interested

in the distribution of the aggregate payments X

X := (ST −K)+1τ1�T + (ST −K)+1τ2�T + (ST −K)+1τ3�T , (5.14)

in order to compute EP (f(X)) where f is a function (possibly non-linear)

and where the expectation is taken under the real probability measure P .
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The three cash-flows of the above sum are dependent and X is a function of

(ST , τ1, τ2, τ3). It is straightforward to sequentially simulate the four vari-

ables that we are interested in. We start by simulating τ1, Sτ1 , then τ2, Sτ2

given τ1, Sτ1 , finally τ3, Sτ3 given τ2, Sτ2 and finally ST given Sτ3 . We can

then estimate any quantity involving the joint distribution of (ST , τ1, τ2, τ3).

This would not be straightforward with deterministic inversion techniques.

This is explained for instance in Bernard and Le Courtois (2012): CEOs

usually evaluate compensation packages by indifference pricing, finding the

amount C which makes them indifferent between receiving the cash amount

C and receiving the compensation package. Note that the use of power util-

ity functions is standard for the valuation of executive stock options (see

Chance (2009), and Hall and Murphy (2000)). Assume for instance that an

executive portfolio contains an initial amount of cash C, n units of stocks

S, and m multi-level Parisian packages consisting of three tranches as de-

scribed above yielding the payoff X at time T given by (5.14). The final

expected utility of this manager is given by EP

(
U
(
CerT + nST +mX

))
,

where EP is the expectation in the physical world, r is the risk-free rate

and U is the CEO’s utility function. The value of the compensation pack-

age X is the amount of cash V that should be granted to an executive in

order to achieve the same level of expected utility. Therefore, V (C, n,m, γ)

(denoted hereafter by V ) is the solution of the following equation:

EP

[
U
(
CerT + nST +mX

)]
= EP

[
U
(
(C + V )erT + nST

)]
. (5.15)

The determination of the value V of the compensation package is usually

done via Monte Carlo techniques. Since X depends jointly on τ1, τ2, τ3

and ST , it is clearly a high dimensional problem.

Both the risk management of the cash-flow X in (5.14) and the equation

(5.15) are computed under the real probability measure P . Under the real

measure P , the underlying stock follows dSt/St = (μ − q)dt + σdZP
t , and

by the Girsanov theorem, we have the following result

dQ̄

dP

∣∣∣∣
FT

= exp

(
−mPZ

Q̄
T +

m2
PT

2

)
,
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where mP =
μ−q−σ2

2

σ
, and where ZQ̄

t = ZP
t +mP t. Then,

EP [f(τ1, τ2, τ3, ST )] = EQ̄

[
exp

(
mPZ

Q̄
T − m2

PT

2

)
f(τ1, τ2, τ3, ST )

]
= e−

m2
P T

2 EQ̄

[(
ST

x

)mP
σ

f(τ1, τ2, τ3, ST )

]
.

Therefore all simulations will be done under Q̄.

Parisian options as performance based stock options have not only ap-

peared in actual CEO performance packages (as the one granted to the

Merrill Lynch CEO in 2007) but have also been proved to have superior

properties to the standard CEO compensation packages (Bernard and Le

Courtois (2012)). After the scandals of big banks’ compensation before

their bankruptcy, there is a real need to rethink the design of executive

compensation to encourage managers to take the right decisions. It seems

that path-dependent packages may be useful in this area. A multi-level

Parisian options is only one example.

5.3 Simulation using the characteristic func-

tion

Here5 we provide the main ideas of our simulation method. Assume that

we only have information about the characteristic function of the random

variable Y , but not its density function fY (.). Clearly acceptance-rejection

method does not work because we can not bound fY (.) without knowing

any information about it, and naturally we are led to using importance

sampling methods. The advantage of the importance sampling method

is that we can simulate from a reference density (usually a simple one,

such as the Uniform distribution we choose later), and then attach weights

to the simulated values. The weights are constructed from the Radon-

5This paragraph is not in the publication Bernard, Cui and McLeish (2012). It is
included here to better reflect the goal of our method.
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Nikodym derivatives, and the numerator of it contains the fY (.), which we

do not know. To bypass this difficulty, we use the “randomized importance

sampling” (RIS), which requires us to unbiasedly estimate the importance

weights. There is a classical Fourier series expansion of the probability

density function(see Proposition 5.3.1), and our aim is to introduce a novel

randomization to unbiasedly estimate fY (.) using random but finite terms

of the series. Then we can unbiasedly estimate expectations of functionals

of Y .

5.3.1 Distributions with bounded support

Proposition 5.3.1. Suppose Y is a continuous random variable on the

interval (−π, π), with the probability density function fY (y) and the char-

acteristic function

φY (u) = φ1(u) + iφ2(u).

Then the Fourier expansion of the probability density function of Y is given

by

fY (y) =
1

2π
+

1

π

∞∑
n=1

[φ1(n) cos(ny) + φ2(n) sin(ny)] (5.16)

=
1

2π
+

1

π
Re

( ∞∑
n=1

φY (n)e
−iny

)
,

where y ∈ [−π, π].

The proof of Proposition 5.3.1 is standard. See for example formula (4)

on p283 of Madan and Seneta (1990) with a = 0 and u = 1. Pointwise

convergence of the Fourier series is a subject of considerable research but

for simplicity let us assume that fY ∈ L2 so that convergence holds at least

in L2 (in fact, the Fourier series converge a.e.6). We will assume throughout

sufficient smoothness (e.g. piecewise continuous) of the probability density

function so that the Fourier series is absolutely convergent,
∑ |φY (n)| < ∞.

6This is the Carleson Theorem, see Carleson (1966).
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Then the limit is continuous and coincides with fY (y) almost everywhere

(see Rudin (1966), Section 9.4). So in this chapter we will not need to

distinguish notationally between the probability density function fY (y) and

the limit of its Fourier series. Absolute convergence of the Fourier series

holds under very weak conditions, for example if fY is a function of bounded

variation and satisfies a Hölder condition

|fY (x)− fY (y)| � C |x− y|α for some α > 0.

Our objective is not a precise value of f(x) but an unbiased estimator of

it and the following is the main result.

Theorem 5.3.1. Suppose Y is a bounded random variable a � Y � b with

piecewise continuous probability density function fY (y). Let the character-

istic function of Y be

φY (u) = E[eiuY ] = φ1(u) + iφ2(u)

= eiθ(u) |φY (u)| , for a suitable real function θ(u),

and assume that k =
∞∑

n=n0

|φY (un)| < ∞ where un = 2πn
b−a

and n0 ∈ N
∗

(positive integer). Suppose M is a random variable such that

P (M = un) =
1

k
|φY (un)| for n � n0 and n ∈ N

∗. (5.17)

Then

f̃Y (y;M) =
1

b− a
+

2

b− a
Re

(
n0−1∑
n=1

φY (un) e
−iuny

)
+

2k

b− a
cos(My − θ(M))

=
1

b− a
+

2

b− a

n0−1∑
n=1

[φ1(un) cos(uny) + φ2(un) sin(uny)]

+
2k

b− a
cos(θ(M)−My) (5.18)

is an unbiased estimator of fY (y) at continuity points y of fY (y) with stan-

dard error less than 2k
b−a

.
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Proof. Define X = cY − d where c = 2π
b−a

, d = a+b
b−a

π. Then −π � X � π,

φX(u) = e−iudφY (cu) and φY (cu) = eiθ(cu) |φY (cu)| .

f(x) =
1

2π
+

1

π

∞∑
n=1

[φ1(n) cos(nx) + φ2(n) sin(nx)]

=
1

2π
+

1

π
Re

( ∞∑
n=1

φX(n)e
−inx

)
.

Therefore since fY (y) = cfX(cy − d)

fY (y) =
c

2π
+

c

π
Re

( ∞∑
n=1

φX(n)e
−in(cy−d)

)

=
c

2π
+

c

π
Re

( ∞∑
n=1

e−indφY (cn)e
−in(cy−d)

)

=
c

2π
+

c

π
Re

(
n0−1∑
n=1

φY (cn)e
−incy

)
+

ck

π
Re

( ∞∑
n=n0

e−incyeiθ(cn)
|φY (cn)|

k

)

=
c

2π
+

c

π
Re

(
n0−1∑
n=1

φY (cn)e
−incy

)
+

ck

π
E[Re

(
ei(θ(M)−My)

)
]

=
c

2π
+

c

π
Re

(
n0−1∑
n=1

φY (cn)e
−incy

)
+

ck

π
E[cos(θ(M)−My)]

=
1

b− a
+

2

b− a
Re

(
n0−1∑
n=1

φY (
2πn

b− a
)e−in 2πy

b−a

)
+

2k

b− a
E[cos(θ(M)−My)]

=
1

b− a
+

2

b− a

n0−1∑
n=1

[φ1(un) cos(uny) + φ2(un) sin(uny)] +
2k

b− a
E[cos(θ(M)−My)].
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V ar(f̃Y (y;M)) =
4k2

(b− a)2
V ar(cos(θ(M)−My)

=
c2k2

π2
V ar[Re

(
ei(θ(M)−My)

)
]

� c2k2

π2
E[Re

(
ei(2θ(M)−2My)

)
]

� c2k2

π2
Re

( ∞∑
n=n0

e−2incye2iθ(cn)
|φY (cn)|

k

)

� c2k

π2
Re

( ∞∑
n=n0

|φY (un)|
)

� 4k2

(b− a)2
.

This completes the proof. �

Remark 5.3.1. Using cos(θ(M)−My) = cos(θ(M)) cos(My)+sin(θ(M)) sin(My),

we have Re
(
eiθ(M)e−iMy

)
= Re

(
e−iMy φY (M)

|φY (M)|

)
. In the special case when

the distribution is symmetric about 0, so that the characteristic function is

real, θ(M) = 0 if φY (M) > 0 and otherwise θ(M) = −π. In this case

cos (My − θ(M)) = cos(My)sgn(φY (M))

and Re
(
φY (un) e

−iuny
)
= φY (un) cos (uny) .

The above expansion in Theorem 5.3.1 does not work very well for

Parisian options because the characteristic function 1
Ψ(

√−2iu)
of the Parisian

times starting at the barrier is not absolutely convergent. An alternative

expansion that works better for Parisian options is the Fourier-cosine ex-

pansion of the density. This (see Fang and Oosterlee (2008)) alternative

expression for a density on the interval [a, b] is:

f(x) � 1

b− a
+

2

b− a
Re

∞∑
n=1

φ(un)e
−iuna cos(un(x− a)) where un =

πn

b− a
.

(5.19)

Although this is not exact, the Fourier-cosine expansion is close to the

true value of the density when the quantity h = π
b−a

is small. We choose

in this case to unbiasedly estimate the sum of this infinite series using a

finite sum. In particular for an integer-valued random variable M such
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that P (M � n) = Qn, (5.19) can be unbiasedly estimated using

f̂(x) � 1

b− a
+

2

b− a
Re

M∑
n=1

φ(un)

Qn

e−iuna cos(un(x− a)). (5.20)

Recall that our objective is not a precise value of f(x) but an unbiased

estimator of the importance sampling weight w̆, the integerized value of
f(x)
ζ(x)

. In general we need Qn to decrease quite slowly to zero so that

the variance of f̂(x) is finite. For simplicity, in our Parisian option ex-

ample we choose a finite minimum and maximum value for the random

variable M , nmin � M � nmax and then, for U generated from the

Uniform
[

1√
nmax

, 1√
nmin

]
, set M =

⌊
1
U2

⌋
. This seems to result in reason-

able convergence with nmin = 5, 000 and nmax = 20, 000.

5.3.2 Randomized importance sampling

Suppose we sample independent values Xi from a probability density func-

tion ζ(x) such that ζ(x) > 0 whenever fY (x) > 0. An importance sampling

estimator of the expected value of a function h(Y ) or
∫
h(x)fY (x)dx is given

by
1

n

n∑
i=1

h(Xi)wi, where wi =
fY (Xi)

ζ(Xi)
. (5.21)

We do not affect the unbiasedness of this estimator if we replace wi by an

unbiased estimator ŵi of wi such that E[ŵi|Xi] = wi and then estimate

the integral using 1
n

∑n
i=1 h(Xi)ŵi. We can easily produce such an unbi-

ased estimator of wi by replacing fY (Xi) in the numerator of (5.21) by

f̃Y (Xi;Mi) as defined in Theorem 5.3.1, where Mi is sampled from the dis-

tribution (5.17). Attached to the observation Xi is a weight ŵi =
f̃Y (Xi;Mi)

ζ(Xi)
.

There is often additional advantage to “integerizing” the weights or replac-

ing them by random integers, in part because those observations that end

up with weight 0 need not be retained. In fact this is essentially the func-

tion of acceptance-rejection: converting importance sampling weights to

binary weights and then discarding those which end up with weight 0. To
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integerize the weights, replace ŵi by

w̆i = w̆(X) = �ŵi�+ Bern(ŵi − �ŵi�), (5.22)

where Bern(ŵi − �ŵi�) represents a Bernoulli random variable B with

P (B = 1) = ŵi − �ŵi� = 1− P (B = 0).

We often replace weights ŵi by their self-normalized analogue, ŵi/
∑

j ŵj

because then scale factors can be ignored, and of course we can do the same

with w̆i. The resulting estimators, though no longer strictly unbiased, are

very nearly so, for large sample sizes, and they are still consistent as the

number of simulations approaches infinity.

What should we use as a candidate distribution ζ(x)? If X is a random

variable on a bounded interval (a, b), the simplest choice is the uniform

distribution on this interval ζ(x) = 1
b−a

, a < x < b, so that the weights are

proportional to the estimated density:

ŵi ∝ f̃Y (Xi;Mi).

Suppose, for an arbitrary function h, we wish to generate an integral or

conditional expected value7 E[h(Y )|α < Y < β] over some interval [α, β] ⊂
[a, b]. Choose n0 ∈ N

∗. Since this random variable is on [α, β], a natural

candidate of reference random variable is the uniform random variable.

Using a uniform [α, β] distribution, ζ(x) = 1
β−α

, the acceptance-rejection

algorithm is given as follows:

1. Generate Xi ∼ Uniform[α, β].

2. Generate Mi from the distribution (5.17). With un = 2πn
b−a

for n � n0.

define, for a suitable constant of proportionality

ŵi ∝ 1+2

n0−1∑
n=1

[φ1(un) cos(unXi) + φ2(un) sin(unXi)]+2k cos(MiXi−θ(Mi)).

7Such conditional expectations can be very useful in risk management, e.g. in as-
sessing capital requirements.
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3. Define w̆i = w̆(Xi) = �ŵi�+Bern(ŵi − �ŵi�).

4. Estimate E[h(Y )|α < Y < β] using∑
i w̆ih(Xi)∑

i w̆i
.

5.3.3 Boundary effects

Recall that the Fourier series expansion of a continuous function on [a, b]

results in a continuous function, periodic with period b − a and fails to

converge to the function at the boundary if f(a) �= f(b). To facilitate trun-

cation, we hope that the probability density function is almost completely

supported by a finite interval [a, b] with f(a) � f(b) � 0. If an interval

[a, b] is chosen which is too small, it may fail to contain the bulk of the mass

and introduce edge effects. Choice of a too large interval [a, b] will result

in spurious values with both positive and negative weights, adding consid-

erable noise to the simulation. The pricing of forward-starting options as

well as the simulation of the Parisian time both require the simulation from

a density with infinite support. It may be therefore important to control

for boundary effects as we discuss below.

How do we reduce the effect of an arbitrary truncation of the

density?

For a simple example consider the standard normal characteristic func-

tion φY (t) = e−t2/2 and suppose we truncate the distribution at [a, b]. The

expansion (5.16) becomes

fY (y) ∝ 1 + 2

∞∑
n=1

e−u2
n/2 cos(uny) with un =

2πn

b− a
, n = 1, 2, ...

These values are plotted below for various choices of a and b in Figure 5.3.

When a = −b, we get a reasonable representation of the truncated density

function but when we choose an asymmetric interval such as [−2, 6] (see
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Panel A in Figure 5.3) one which contains almost 98% of the mass of the

distribution, the edge effects are apparent, and indeed near 6 the Fourier

approximation to the density increases again. This problem vanishes in

Panel B of Figure 5.3 if we choose the interval [−4, 4], one which contains

a mass much closer to 1 and in this case fY (b) = fY (−a).
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Panel A Panel B

Figure 5.3: Panel A represents the inverse of the standard normal charac-
teristic function on the interval [−2, 6], Panel B represents the inverse of
the standard normal characteristic function on the interval [−4, 4].

A common approach to reducing boundary effects in time series analy-

sis is to taper the signal (see Brillinger (1975)) or to artificially introduce

a convolution f ∗ g and while this usually improves the mean squared esti-

mates, it also introduces bias, something that is undesirable when a large

but unknown number of simulations is contemplated. We can deal with

this problem by taking some care in the selection of the interval [a, b], and

sometimes transforming the distribution to one with a smaller interval of

support. An automated choice of interval [a, b] based on the estimated

distribution can be used, but special care is needed for heavy-tailed distri-

butions. This issue is further discussed in the next section.
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We use this technique to invert the conditional characteristic function

of
∫ T
0
Vsds in the pricing of forward-starting options and it works well. The

case of the Parisian option is more difficult because the moments of τ are

infinite.

5.4 Application to option pricing

5.4.1 Pricing in the Heston model

This section presents numerical results obtained by applying the inversion

method presented in the previous section. We first price standard call

options in the Heston model since there exists a very accurate technique

to price them that we could use for the sake of comparison. We then

present prices for forward-starting options (that are mildly path-dependent

derivatives).

Standard call options pricing

In Tables 5.1, 5.2 and 5.3, we give the results of M = 20, 000 simulations

of option prices for some given sets of parameters and for a range of values

of the volatility parameter σ. We then compare the prices obtained by our

inversion method with benchmark prices: the “FO price” is computed by

the Cosine-Fourier expansion of Fang and Oosterlee (2008) and the “BK

price” refers to prices computed by Broadie and Kaya (2006). We also

report the CPU time in minutes. Here Table 5.1 and 5.2 are based on

parameters in Broadie and Kaya (2006). Table 5.3 is based on parameters

of Table 4 and 5 of Fang and Oosterlee (2008).

For option pricing in the Heston model, when the Feller condition is

not satisfied, the evaluation of the relevant characteristic function usually

takes substantial CPU time. This is observed in Table 7.1 of Ruijter and

Oosterlee (2012), where it can be seen that when the Feller condition is not

satisfied, the convergence of the numerical scheme is significantly slower. In

the numerical test cases, we check whether the Feller condition is satisfied
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MC inversion CPU time
σ (std. dev.) (minutes) FO Price BK Price

100% 35.03 (0.032) 1.684 34.9998 34.9998
42.43% 35.79 (0.040) 1.646 35.7675 NA
30% 35.89 (0.045) 1.626 35.8667 NA

21.21% 35.85 (0.046) 1.637 35.9164 NA

Table 5.1: Prices for a standard call option in the Heston model when
the parameters are set as follows: κ = 2, V0 = 0.09, θ = 0.09, r = 0.05,
ρ = −0.3, T = 5. Our inversion technique by Monte Carlo is implemented
with 20,000 simulations.

MC inversion CPU time
σ (std. dev.) (minutes) FO Price BK Price

61% 6.82 (0.02) 1.6976 6.8047 6.8061
34.35% 6.91 (0.02) 1.6281 6.9211 NA
17.17% 6.97 (0.03) 1.6341 6.9480 NA

Table 5.2: Prices for a standard call option in the Heston model when κ =
6.21, V0 = 0.010201, θ = 0.019, r = 0.0319, ρ = −0.7, T = 1. Our inversion
technique by Monte Carlo is implemented with 20,000 simulations.

for each set of parameter values. For example, in Table 5.1 here, the first

set of parameters, when σ = 1, we have 2κθ/σ2 − 1 = −0.64 < 0 and the

Feller condition is not satisfied, and it can be seen from the table that the

corresponding CPU time is higher than that of the other cases (but not

significantly higher).

MC inversion CPU time
T (std. dev.) (minutes) FO Price
1 5.784 (0.013) 1.698 5.7852
10 22.336 (0.038) 1.694 22.3189

Table 5.3: Prices for a standard call option in the Heston model when
κ = 1.5768, V0 = 0.0175, θ = 0.0398, r = 0, ρ = −0.5711 and σ = 0.5751.
Our inversion technique by Monte Carlo is implemented with 20,000 sim-
ulations.
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Our method is faster than the Broadie and Kaya (2006) method, which

is well-known to be computationally intensive and slow. However, it is

much slower than the COS method presented by Fang and Oosterlee (2008).

Their method converges with considerable accuracy in a few milliseconds

but is based on deterministic numerical techniques (Fourier expansion meth-

ods). Numerical techniques normally require more programming and the

information obtained is one-dimensional whereas a simulation allows the

estimation of a number of parameters with a single run, including error es-

timates. For the pricing of Heston call options, Fang and Oosterlee (2008)’s

approach is certainly superior. This example is to illustrate our inversion

technique. The Monte Carlo method cannot be expected to be as computa-

tionally efficient as a deterministic approach for a one-dimensional problem.

The next section on Parisian options shows that our inversion technique

can handle multidimensional problems.

Forward-starting options

For forward-starting option, we take the following table from Table 3 on

p245 of Kruse and Nogel (2005). We compare our result using the unbiased

simulation with their closed-form formulae by running 1, 000 simulations.

They use 170 terms of the series to approximate the Bessel function (see

their equation (67)). The pricing results are given in Table 5.4.

K MC inversion Kruse-Nogel Crude MC CPU time
(std.dev.) price (std.dev.) (minutes)

.5 50.51 (0.417) 50.21 50.25 (0.07) 0.88739
.75 27.81 (0.35) 26.95 26.98 (0.06) 0.88427
1 9.25 (0.195) 9.01 9.00 (0.06) 0.87933

1.25 1.10 (0.048) 1.01 1.03 (0.03) 0.87985

Table 5.4: Pricing of a forward-starting call option in the Heston stochastic
volatility model. Parameters are set to S0 = 100, κ = 4, V0 = 0.09,
θ = 0.06, r = 0, ρ = −0.9, T1 = 1, T2 = 2. The strike K is given in the
first column.

When the interest rates are also stochastic, van Haastrecht and Pelsser

210



(2011a) and Ahlip and Rutkowski (2009) both propose expressions for the

price of forward starting options. It is straightforward to apply our inver-

sion technique to this more complicated model because they provide the

expression for the characteristic function to invert.

5.4.2 Parisian options in the Black-Scholes model

One-level Parisian options

The algorithm, one-level Parisian option, assuming S0 �= L Since

the distribution of the first passage time to a barrier for geometric Brownian

motion is simple, we can conduct our simulation conditional on the event

that the first passage time is less than T. We repeat the following for each

batch of n simulations:

1. There are two cases depending on the sign of � where � is given by

(5.7).

(a) Case � > 0, so S0 < L. Randomly generate a Binomial variable

ns with parameters (n, 1 − p) where p = 2Φ( �√
T
) − 1 is the

probability that the first passage time (FPT ) is greater than

T . Then ns is the number of occasions when FPT < T . Repeat

ns times:

i. generate a random variable τ uniformly distributed on the

interval [D, T ].

ii. Evaluate an approximately unbiased estimator f̂0(τ |FPT <

T ) of the conditional density f0(τ |FPT < T ) at the gen-

erated values of τ where f0 denotes the probability density

function of the Parisian times. This is done by using (5.20)

to invert the characteristic function

e−θ�Φ
(
θ
√
T − �√

T

)
+ eθ�Φ

(
−θ

√
T − �√

T

)
2Φ(− �√

T
)Ψ(

√
Dθ)
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of the conditional Parisian time given that the first passage

time is less than T.

iii. Assign weight ŵ = (T − D)f̂0(τ |FPT < T ) to the ob-

served value of τ. This is the likelihood ratio of the Parisian

time probability density f̂0(τ |FPT < T ) divided by the

Uniform[D, T ] importance pdf.

iv. For the remaining n− ns values of τ, since the first passage

time is greater than T, so is the Parisian time τ. In these

cases, since they will not appear in the pricing of the option,

we can assign an arbitrary large value of τ, for example

τ = 10, 000 and corresponding weight w = 1.

(b) If � < 0, so S0 > L, then we start above the barrier and either

stay above, or strike the barrier within D units of time. The

probability of staying above the barrier for D units of time is

p = 2Φ( |�|√
D
)− 1.

i. Generate ns, a binomial random variable with parameters

(n, 1−p). This is the number of times the first passage time

is less than D.

ii. Repeat ns times. Generate τ exactly as in part (a) but

conditional on the first passage time being less than D, i.e.

with characteristic function (5.11)

iii. Assign weight ŵ = (T−D)f̂0(τ |FPT < D) to the generated

value of τ. Again this is the ratio of the estimated Parisian

time pdf divided by the Uniform pdf.

iv. If the first passage time is greater than D, then τ = D so

the remaining n−ns observations are assigned values τ = D

and weights w = 1.

2. Divide all weights by n. For arbitrary integrable function g supported

on [0, T ], E(g(τ)) can now be unbiasedly estimated by
∑

i wig(τi).

3. Generate the stock price Sτ at those Parisian times which are less

than or equal to T.
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(a) In case 1(a) the probability density function of Y = σ−1 ln(Sτ/L)

under the risk neutral measure is given by( y
D

)
exp

(
− y2

2D

)
fo y > 0, (5.23)

which implies that Sτ can be generated as Leσ
√

−2D ln(U), where

U is a U [0, 1] random variable.

(b) Exactly the same method generates Sτ in case 1(b) when the

first passage time FPT < D. However, in case 1(b) when

FPT > D, τ = D and we need to generate Sτ conditional on

the path Su � L for all 0 < u < D. If fD(x) denotes the uncon-

ditional probability density function of SD, then the probability

density function of SD, conditional on staying above the bar-

rier, is proportional to its unconditional density multiplied by a

factor, i.e.

fD(x)

(
1−
(
L

x

)λ
)
, x > L, where λ = 2

ln(S0/L)

σ2D
, (5.24)

(see e.g. McLeish (2005), p238). It is easy to generate from such

a distribution using acceptance-rejection.

4. Generate ST as ST = Sτe
σ
√
T−τW for W a standard normal random

variable independent of τ.

5. Estimate the Monte Carlo option price of the Parisian up and in

option with

e
−
(
r+m2

2

)
T

n∑
i=1

w

[(
ST

S0

)m/σ

(ST −K)+ 1τ<T

]
.

Numerical results

We use as a benchmark the table in Bernard and Boyle (2011), denoted

by “BB price” in Table 5.5 below.
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Table 5.5: Prices of continuous Parisian options
Prices of up and in continuous Parisian call options Cu

i for different input parameters.

The barrier L is either 120 or 180 and the volatility σ = .15, .30, .45. Other parameters

are set as follows. The initial value of the underlying is S0 = 100, the maturity is T = 3,

the constant risk-free rate is r = 4%, the continuously compounded dividend yield is

equal to q = 0.4%, the sojourn time is D = 1/12 and the strike price is set to K = 100.

100,000 simulations are used in the inversion by Monte Carlo.

σ =15% σ=30% σ=45%
L=120 BB price 14.02 24.10 33.37

MC inversion 14.00 (0.03) 24.17 (0.04) 33.31 (0.07)
L=180 BB price 2.132 16.07 28.78

MC inversion 2.11 (0.02) 16.12 (0.04) 28.86 (0.06)

Multi-level Parisian options

We implement the inversion technique presented in this chapter in an iter-

ative way. We first simulate τ1, Sτ1 , we then simulate τ2, Sτ2 conditional on

these observations and then τ3, Sτ3 to finally obtain the price of the third

tranche.

We provide values of all three tranches with the following constant

barrier levels L1, L2 and L3

Li = K (1 + ρ)1+i , K = S0, i = 1, 2, 3.

Algorithm

We implement the inversion technique presented in this chapter in an

iterative way. We are interested in pricing the three tranches of this three-

level Parisian option, i.e. finding,

E

[(
ST

S0

)m/σ

(ST −K)+ 1τi<T

]
, i = 1, 2, 3 where m =

1

σ

(
r − q − σ2

2

)
.

The algorithm proceeds as follows.

214



1. Using the same method as for the one-level Parisian option, simulate

τ1, Sτ1 using L1 = 112 and T = 3, recording the weight w1 attached

to this simulation. If τ1 > T − D, then the payoff corresponding to

i = 2 and 3 will be 0 and the simulation is stopped.

2. If τ1 � T − D, conditional on τ1, Sτ1, we simulate τ2, Sτ2 , w2 for the

second tranche. This is done by repeating the one-level steps with

S0 replaced by Sτ1 , L by L2 = 125.4, and T by T − τ1. The time at

which the second tranche is activated is the sum of these two Parisian

times, τ1 + τ2. If τ1 + τ2 > T , then the payoff from tranche 2 will be

0 and the simulation is stopped.

3. If τ1+ τ2 � T −D, then we repeat this process, simulating τ3, Sτ3 , w3

replacing the initial values or input by Sτ2 , L by L3 = 140.5, T by

T − τ1 − τ2. The time the third tranche is activated is τ1 + τ2 + τ3.

If τ1 + τ2 + τ3 > T , then the payoff will be 0 and the simulation is

stopped. Otherwise, simulate the value of ST exactly as was done for

the one-level Parisian option.

The weight attached to a particular branch of the process Sτ1 , Sτ2 , Sτ3, ST

is the product w1w2w3 of the weights associated with each level, w1, w2, w3.

Consequently to obtain of the price of the third tranche, for example, we

evaluate

e
−
(
r+m2

2

)
T

n∑
i=1

w1w2w3

[(
ST

S0

)m/σ

(ST −K)+ 1τ3<T

]
.

There are many opportunities for variance reduction. For example, the

expected value of

[(
ST

S0

)m/σ

(ST −K)+ 1τ3<T

]
conditional on the process

up to time τ3 can be expressed using the Black-Scholes formula. We can

also replace ns by its expected value. A control variate involving the first

passage time, since it is correlated with the Parisian time, can be used.

Since we are more concerned with feasibility than with efficiency, the only

concession we make to computational efficiency is to conduct the above

simulation sequentially in batches, e.g. n1 simulations of τ1, Sτ1 , and for
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each of these values, n2 simulations of τ2, Sτ2 and finally n3 simulations of

the values (τ3, Sτ3,ST ). Note that the majority of these n1n2n3 paths may

be discarded since many τi will be greater than T .

Numerical results

We use the following parameters: K = S0 = 100, r = 4%, δ = 0.4%,

ρ = 12%, T = 3 years, and the minimum time D the underlying has

to spend above the level Li is equal to 3 months: D = 3/12. We use

constant barriers Li = K (1 + ρ)1+i , with ρ = 0.12, i = 1, 2, 3. Then

L1 = 112, L2 = 125.4 and L3 = 140.5. n = 200 batches were conducted

of n1n2n3 = 80 × 200 × 200 paths. Table 5.6 gives prices for each tranche

for different levels of volatility. Since the goal of this chapter is to present

unbiased Monte Carlo simulation, we cannot make use of the proposed

control variate by Bernard and Boyle (2011) because it is based on an

approximation of the price of discrete barrier options and therefore may

introduce some bias. Moreover we are simulating the price of“continuously”

monitored Parisian options.

Parisian Stock Price
σ L1=112 L2=125.4 L3=140.5

15% 14.65 (0.13) 11.53 (0.07) 7.35 (0.05)
30% 24.06 (0.28) 22.07 (0.17) 19.31 (0.15)
45% 32.60 (0.50) 31.25 (0.29) 28.85 (0.28)

Table 5.6: Parisian price with respect to L and to σ estimated by Monte
Carlo, and obtained using the inversion technique

5.5 Conclusion of Chapter 5

This chapter presents a novel unbiased inversion of the characteristic func-

tion by Monte Carlo simulations. We illustrate the study with the pricing

of some standard derivatives, a call option and a forward-starting option in

the Heston model as well as Parisian options in the Black-Scholes setting
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when they are continuously monitored. It can be applied to problems for

which the characteristic functions are easily evaluated but the correspond-

ing probability density functions are complicated.
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Part IV

Conclusion of the Thesis
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This thesis is about martingale properties, probabilistic pricing methods

and efficient unbiased Monte Carlo simulation techniques for option pric-

ing problems in stochastic volatility models based on time-homogeneous

diffusions. Here are some future research directions corresponding to each

chapter of the thesis.

Continuing from Part I Chapter 2, we plan to study deterministic cri-

teria for the martingale properties of time-changed Lévy processes with

leverage. This is a general class of models that incorporate many of the

popular models in finance. A possible goal is to utilize these deterministic

criteria to classify the different notions of arbitrage and to classify different

types of stock bubbles in the financial market.

Continuing from Part II Chapter 3, we plan to utilize the first hitting

time of an integral functional of a time-homogeneous diffusion and study

the pricing of European call and put options written on the discrete real-

ized variance or the continuous quadratic variation. We will also explore

theoretical properties of the integrated time-homogeneous diffusions and

apply them to drawdowns and drawups, maximal inequalities and optimal

stopping problems for diffusions. These properties have important impli-

cations in risk management, in American option pricing, and optimal stock

selling strategies.

Continuing from Part II Chapter 4, we plan to derive general asymp-

totic relations for the fair strike of a discrete variance swap, and utilize it

to analyze the convergence behavior of the discrete fair strike to the con-

tinuous fair strike. We shall also extend our method to derive closed-form

formulas and asymptotics of discrete moments swaps, or other exotic dis-

crete volatility derivatives.

Continuing from Part III Chapter 5, we plan to develop and facilitate

the adoption of a broader class of models, which are amenable to efficient
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unbiased Monte Carlo simulation and imputation, for modeling continuous

time phenomena in actuarial science and finance. We shall also look at how

to debiase an asymptotically unbiased Monte Carlo estimator using simi-

lar randomization techniques in McLeish (2011) as applied in Chapter 5.

Applications include unbiased simulation of option prices under stochastic

volatility models based on time-homogeneous diffusions, and also designing

unbiased Multi-level Monte Carlo methods and extending the work of Giles

(2008).
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Hörfelt, P., and O. Torné (2010): “The value of a variance swap - a

question of interest,”Risk, June, 82–85.

Howison, S., A. Rafailidis, and H. Rasmussen (2004): “On the pric-

ing and hedging of volatility derivatives,”Applied Mathematical Finance,

11(4), 317–346.

Hull, J., and A. White (1987): “The Pricing of Options on Assets with

Stochastic Volatilities,” Journal of Finance, 42(2), 281–300.

Hulley, H., and E. Platen (2011): “A visual criterion for identifying
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