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Abstract 

Healthcare facilities, including hospitals, are among the most challenging assets to maintain and 

modernize. An accurate performance assessment is essential for the appropriate prioritization of the 

subsystems that are competing for limited capital-renewal funds. Traditionally, physical condition has 

been the primary indicator of performance; however, other criteria have recently been added: level of 

service, sustainability, and risk, all of which are crucial for hospital buildings. This research 

introduces a practical and efficient framework for capital renewal for hospital facilities. The 

framework incorporates five unique aspects: (1) a two-dimensional hierarchy that accounts for the 

interrelationships between the hospital systems and the hospital spaces; (2) a multi-criteria 

performance assessment process that combines physical condition, level of service, sustainability, and 

risk of failure; (3) a visual all-on-site inspection  application on hand-held tablet; (4) a mechanism for 

efficient prioritization of capital renewal tasks; and (5) optimization process for near-optimum 

allocation of capital-renewal of the limited capital renewal budget. The framework assesses hospital 

subsystems, incorporating consideration of the service quality within the indoor spaces and their 

impact on related subsystems. For renewal purposes, an appropriate subsystem priority index is then 

computed accordingly, taking into account the multi-criteria performance of the subsystems.  

 
Surveys of hospital maintenance experts have been used both for the collection of data for the 

development of the framework and for its validation. A prototype of the framework has been 

implemented in a user-friendly application whose performance was tested through two hospital case 

studies, the first of which was also employed for testing the prioritization and optimization functions 

of the framework. The results of six case study scenarios, with varying budget constraints and 

objective functions demonstrated the practicality and capability of the framework with respect to 
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maximizing the performance of the facility relative to any desirable performance criteria. The 

proposed framework re-engineers the traditional process of facility performance assessment and also 

significantly enhances the capital renewal process by speeding the assessment process and efficiently 

allocating the renewal budget to maximize the return on the investment. This framework can be easily 

adapted to other types of building facilities and other infrastructure assets, thus contributing to 

sustaining the economy and the welfare of residents.  
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Chapter 1 

Introduction 

1.1 Background   

Civil infrastructure assets (roads, bridges, schools, hospitals, and water/sewer networks) are the 

foundation of a country’s economic growth and the consequent prosperity of its citizens. However, a 

large percentage of North American and global civil infrastructure, assets are deficient because of 

deterioration due to age and harsh environmental conditions and because of insufficient capacity 

(Vanier and Rahman 2004a). In the United States (US), the backlog in projected infrastructure 

increased from US$1.6 trillion in 2005 to US$3.6 trillion in 2013 (American Society of Civil 

Engineers (ASCE) 2013) (Table  1.1).  

 

Table  1.1: ASCE report cards for the US infrastructure (2005, 2009, and 2013) 

 

Infrastructure Category 

Report Card for 

America’s Infrastructure 

2005 

Report Card for 

America’s Infrastructure 

2009 

Report Card for 

 America’s Infrastructure 

  2013  

Aviation D+ D D 

Bridges C C C+ 

Dams D D D 
Drinking Water D- D- D 
Energy D D+ D+ 
Hazardous Waste D D D 
Navigable Waterways D- D- D- 
Public Parks & Recreation C- C- C- 
Rail C- C- C+ 
Roads D D- D 

Schools D D D 
Security I Not included Not included 
Solid Waste C+ C+ B+ 
Transit D+ D D 
Wastewater D- D- D 

Levees Not included D- D- 

America’s Infrastructure G.P.A D D D+ 

ESTIMATED 5-YEAR 
REQUIRED INVESTMENT  

$ 1.6 Trillion $ 2.2 Trillion $3.6 Trillion 

A= Exceptional; B= Good; C= Mediocre; D= Poor; F= Failing; I=Incomplete 
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In Canada as well, it is estimated that 79 % of the infrastructure was already beyond its anticipated 

service life (Canadian Society of Civil Engineers (CSCE) 2003); as of 2006, Canada’s infrastructure 

deficit was about CAN$125 billion (Mirza 2006). Statistics also indicate that non-residential 

buildings represent the largest infrastructure sector in both Canada and the US, as shown in Figure  1.1 

(Statistics Canada 1995; US Census Bureau 1999; Elhakeem 2005). This sector is consequently 

expected to show the largest shortfall with respect to expenditures for rehabilitation and repair 

(Elhakeem 2005). 

 

 

 

  

 

 
 

 

Figure  1.1: Average yearly expenditures by type of infrastructure 

 

The majority of non-residential buildings are educational buildings and healthcare facilities: the latter 

are the focus of this study. This category includes a wide range of structures, from simple clinics to 

large complex hospitals. The US healthcare industry is a $2.8 trillion industry, accounting for about 

17 % of the entire US gross domestic product (GDP) (Frampton et al.  2003). Moreover, to 

accommodate the increasing demand created by a growing population, it was estimated in 2004 that 

$300 billion would need to be spent on US hospital construction between 2005 and 2020 (Ulrich and 

Quan 2004). 



 

 3 

Hospital buildings represent an essential component of healthcare systems and play a vital role in 

patient care (Sherif 1999). Dynamic, complex, and costly to both operate and maintain, hospitals 

generally provide two broad services: diagnosis and treatment, both of which require specialized 

laboratories, imaging devices, emergency rooms, and operating theatres. Hospitals also house support 

services, such as food and housekeeping (James and Noakes 1994; Sherif 1999), and include a 

number of highly complicated interdependent systems, such as mechanical, electrical, and 

communication systems, all of which must provide uninterrupted 24-hour service (Monti and Nuti 

1996; Shohet et al. 2003). Because they consume large amounts of energy and water, and produce a 

sizeable quantity of unrecyclable waste, these facilities also have a significant impact on the 

surrounding environment.  All of these considerations are magnified by the size of the healthcare 

sector, which in Canada is very large, including a total of 766 hospitals, distributed as shown in 

Figure  1.2. 

 

 

 

 

 

 

 

 

Figure  1.2: Distribution of hospitals in Canada (Guide to Canadian Healthcare Facilities 2007) 

Number of Hospitals 
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1.2 Challenges of Hospital Asset Management 

Many organizations typically manage their infrastructure assets using two complementary functions: 

maintenance/repair activities that sustain day-to-day operation and capital renewal programs for 

renewing or replacing existing assets in order to keep the inventory healthy and to add to or extend 

the functionality or location of services. While both functions are challenging, facility renewal 

involves a wider tactical and strategic scope and is thus more complex. In general, however, poor 

management of hospital assets affects the quality of healthcare services in a number of ways. For 

example, hospital-acquired infections are one of the leading causes of death in the US, killing more 

people than AIDS, cancer, or automobile accidents (Institute of Medicine 2001). Poorly maintained 

hospitals can therefore be dangerous for patients, visitors, and medical staff. In general, the 

performance of the subsystems and the quality of the indoor environment are critical for hospital 

users. For example, improperly maintained heating, ventilation, and air conditioning (HVAC) systems 

can be a source of contamination (Frank 1995). Improper lighting has also been correlated with 

patient depression and with medication errors. Excessive noise upsets patients, causing increased 

stress and lack of sleep (Pommer and Horman 2008). An important goal of a healthcare facility 

manager should therefore be to eliminate any deficiencies in hospital operation because of the effects 

of poor maintenance with respect to fatalities and substantial economic loss (Frank 1995). 

 

Effective asset management is thus essential for the provision of efficient healthcare service (Shohet 

et al. 2002; Shohet et al. 2003). In recent years, at the research and commercial levels, a variety of 

systems have been developed as a means of supporting either the maintenance or renewal of assets. 

With respect to maintenance, surveys of existing computerized maintenance management systems 

(CMMSs) have shown them to be mature and useful for managing work orders, trouble calls, and 
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preventive maintenance schedules; however, this important information is seldom utilized as support 

for asset renewal decisions (Vanier 2000). On the asset renewal front, on the other hand, numerous 

systems have been created as a means of supporting decisions related to inspection, asset 

prioritization, and fund allocation. Surveys of municipal asset management systems (Halfawy et al. 

2005) have revealed that, despite their powerful capabilities that include databases, computer-aided 

design (CAD), and geographical information systems (GIS), they generally lack integration with 

CMMS systems, defined performance metrics, and optimization features. The benefits provided by 

existing systems are often offset by the numerous technical challenges related to performance 

evaluation, the optimization of renewal decisions, and the execution of capital renewal programs. In 

addition, capital renewal budgets are becoming increasingly restricted at the same time that regulatory 

demands for infrastructure sustainability are entailing difficult requirements related to waste 

reduction, the utilization of natural resources, and improvements in the socio-economic return on 

infrastructure spending. These challenges have contributed to diminished service satisfaction, a high 

risk of failure, and a large backlog in renewal spending.  

 

1.3 Research Motivation 

This research was motivated by a desire to address the specific challenges related to asset 

management for hospital buildings. The specific research motivations are as follows: 

1.3.1 Complexity of hospital buildings 

Due to the specialized services they provide, asset management for hospitals is more challenging than 

for other types of buildings. Elhakeem (2005) estimated that a school has about 170 subsystems to be 

inspected, rated, evaluated, and renewed. This number is to be similar or greater for hospitals due to 
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additional specialized systems such as medical gas systems, operating rooms, and nurse-call systems. 

The efficient management of hospital buildings requires detailed performance analysis of all of these 

systems and subsystems.  

1.3.2 Need for practical performance indicators 

Capital renewal decisions have traditionally been based on a cost-benefit analysis, in which physical 

condition is considered to be a primary indicator of benefit. Other views have recently been 

examined, including multiple-criteria performance analysis (Shohet 2006; Shohet and Lavy 2004); 

level of service (LOS) attained from the perspective of multiple stakeholders (Nasser 2007); 

risk/reliability analysis for the reduction or elimination of the consequences of failure (Christodoulou 

et al. 2009; Moubray 1997); and social, economic, and environmental sustainability (Lützkendorf and 

Lorenz 2005). These approaches vary with respect to level of detail, time and cost of the analysis, and 

suitability for specific assets or asset subsystems. Because complex assets such as healthcare facilities 

involve hundreds of civil, architectural, electrical, and mechanical subsystems, a hybrid approach that 

incorporates multiple techniques is necessary.  

 

From another perspective, the existing research on healthcare performance indicators has been 

focused primarily on the prioritization of maintenance activities based on operational factors: the age 

of the building, the number of beds, patient throughput, energy efficiency, fire safety, comfort, and 

spatial efficiency (Al-Zubaidi 1997; Shohet and Lavy 2004). In more recent research on healthcare 

facility renewal (Lavy and Shohet 2007; Shohet 2006), the increased performance required by users 

and owners mandated the additional consideration of strategic factors that impact renewal decisions. 

The lessons learned from hospital case studies (Al-Zubaidi 1997; Hosling and Jarvis 2003) have also 

provided the basis for a discussion of the need to consider other factors in facility renewal, including 
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market, demographic, technical, financial, legal, and organizational constraints. Moreover, because 

medical facilities cannot be interrupted abruptly and, when renewed, must be restored to a functional 

condition as quickly as possible (Al-Zubaidi 1997), two other requirements are mandatory: using a 

risk-based approach for critical components that have zero tolerance (Cristodoulou et al. 2009) and 

maintaining facility operation as a constraint during the execution of renewal plans. This discussion 

has identified a need for the clear definition of key indicators related to four categories of 

performance, as they apply to various healthcare components: condition indicators, LOS indicators, 

sustainability indicators, and risk indicators. 

1.3.3 Need for efficient prioritization and fund-allocation decisions 

Capital renewal funds are normally allocated to asset subsystems based on priorities that are 

established in two ways: either substantially based on experience or calculated based on the 

performance evaluation. The process basically involves the allocation of funds based on a single 

ranking of the subsystems, which is relatively unstructured process. As an example, to allocate 

hospital renewal funds, the Ministry of Health and Long Term Care (MHLTC) uses a simple 

allocation model that is a direct percentage of the hospital’s operating funds in past years (MHLTC 

2008). This simple model does not include consideration of important performance indicators such as 

the stakeholders’ satisfaction with hospital services, the availability of newer technology to improve 

services, patient demographics at the specific hospital location, energy-saving and environmental 

issues, and the business value retained and passed on to subsequent generations. Guidance is also not 

given to individual hospitals with respect to key performance indicators that support internal 

decisions about when and how to renew which subsystems in order to avoid the risk of critical 

equipment failure and to increase the level of service satisfaction for all stakeholders, including 

patients and staff.  
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Because of the inefficiency of the allocation of funds based on heuristic ranking, substantial benefits 

can be derived from prioritization based on performance assessment. The deployment of a 

performance-based prioritization framework for hospital capital renewal, however, is a complex task, 

particularly when hundreds of subsystems are involved. 

1.4 Research Objectives and Scope 

The overall goal of this research is to develop a practical and comprehensive framework to support 

and enhance efficient performance assessment and optimum fund allocation for healthcare facilities. 

The detailed objectives are as follows: 

 Develop a hospital building hierarchy that integrates physical systems/subsystems and 

functional zones/spaces; as a more representative indicator of the assessment needs of 

hospitals; 

 Identify and use essential key performance indicators (KPIs) for quantifying the physical 

condition, LOS, sustainability, and risk of failure for all systems and subsystems;  

 Develop a mechanism for assessing the indoor environment quality (IEQ) within functional 

spaces (in terms of water, air, lighting, and noise), and quantify the corresponding impact of 

the IEQ on the LOS and renewal priority for affected systems; 

 Develop a method of priority analysis that computes performance indices at all levels of the 

hospital hierarchy, and combine it with a visual system on a handheld device that enables 

faster, less expensive, and less subjective hospital inspection; 

 Develop an optimization framework that integrates deterioration prediction, renewal options 

and costs, and life cycle cost analysis to support capital renewal planning; and 
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 Verify the developed framework through surveys of expert professionals, and demonstrate its 

usefulness through case studies.  

 
The research presented in this thesis supports decisions related to the prioritization of hospital 

systems and subsystems for renewal purposes in order to maximize the return on capital renewal 

funds. The direct outcome of the research is a generic performance assessment framework with a 

computerized prototype that is appropriate for healthcare facilities in general and hospitals in 

particular, which can be adapted to any other building type. The framework will greatly contribute to 

enhanced healthcare management and ultimately to the cost-effective sustainability of infrastructure 

services.   

1.5 Research Methodology 

To achieve the above objectives, the approach followed in this research consisted of the following 

steps, as shown in Figure  1.3: 

1. Conduct an extensive literature review of asset management systems and performance 

assessment, including techniques, software, and models. 

2. Develop a practical hierarchy that integrates the functional zones/spaces and the 

systems/subsystems in a hospital building.  

3. Identify KPIs that best describe the performance of each subsystem in a hospital building.  

4. Develop IEQ factors: air quality, water quality, lighting intensity, and noise. 

5. Develop a visual inspection tool based on the use of a handheld device that will make the 

field inspection process faster, easier, and less expensive.  
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6. Develop a survey questionnaire in order to identify the relative importance of the functional 

zones, spaces, systems and subsystems; the KPIs for each subsystem; and the IEQ factors. 

7.  Store all inspection data directly to a spreadsheet. 

8. Conduct a field study in order to determine an appropriate real-life case. 

9. Validate and test the results of the developed assessment and prioritization framework. 

10. With the use of a genetic algorithm technique, develop a capital renewal optimization model 

that incorporates the performance and prioritization framework, a deterioration model, a 

renewal option, and a life cycle cost analysis. 

11. Validate and test the developed capital renewal optimization model. 

 

1.6 Thesis Organization 

The thesis is organized as follows: 

Chapter 1: This chapter introduces North American infrastructure (Canada and the US), the 

challenges  associated with asset management, the research motivation, the research objectives and 

scope, and the research methodology . 

Chapter 2: This chapter provides a review of the existing research related to the management of civil 

infrastructure assets in  general and of healthcare facilities in particular. It also includes an analysis of 

the available performance  indicators for hospital buildings, the functions of asset management, and 

the current practices for prioritizing  maintenance activities and allocating limited capital renewal 

funds.  
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Chapter 3: This chapter discusses the developed performance assessment framework, together with 

its components for  prioritizing subsystems for renewal plans, and explains the calculation of 1) the 

overall subsystem indicator (OSI); 2) the overall subsystem  deficiency (OSD); 3) the overall 

subsystem priority index (OSPI); and 4) the overall building performance index   (OBPI).  

Chapter 4: This chapter introduces the developed questionnaire survey parts, the case studies that 

have been conducted, and the data analysis for the collected data.   

Chapter 5: This chapter introduces the performance assessment for two case studies using the 

developed framework. The maintenance practice, visual inspection results, prioritization results, and 

overall building performance calculations for each case study are also introduced.  

 Chapter 6: This chapter discusses the capital-renewal optimization model that integrates the 

performance assessment, deterioration model, renewal and improvement model, and fund allocation 

optimization. Testing and validation of the developed model and the additional fund allocation 

experiments are also introduced.  

Chapter 7: This chapter introduces the summary and conclusions, research contributions, and the 

future research 
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Figure  1.3: Research methodology 
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Chapter 2 

Literature Review 

2.1 Introduction 

This chapter provides a literature review of the existing research related to the management of civil 

infrastructure assets in general and of healthcare facilities in particular. It also includes an analysis of 

the available performance indicators for hospital buildings, the functions of asset management, and 

the current practice for prioritizing maintenance activities and allocating limited capital renewal 

funds.     

2.2 Civil Infrastructure Assets  

As shown in Figure  2.1, civil infrastructure assets consist of constructed physical facilities: buildings, 

transportation systems, energy production and distribution systems, recreation facilities, water and 

waste water systems, airports, and communication networks. Total infrastructure assets in the US are 

valued at US$30 trillion and in Canada are worth US$5 trillion (Vanier 2001). These important assets 

touch almost all aspects of life and form the foundation of modern society as well as that of national 

and local economies worldwide (Karlaftis and Peeta 2009). Well-maintained infrastructure assets can 

therefore substantially increase a country’s competitiveness in a global economy. 

 

Despite their importance, as a result of population growth, limited funding, severe climate conditions, 

poor quality control, poor materials, and inadequate inspection and maintenance, civil infrastructure 

assets are deteriorating faster than they are being renewed (Vanier 2001). All of these factors 

accelerate the deterioration of infrastructure assets and correspondingly increase the probability of 

their failure if adequate maintenance and/or renewal works are not carried out during their life cycles. 
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Figure  2.1: Civil infrastructure assets (based on Hudson et al. 1997) 

 

 

Inadequate maintenance can result in unplanned asset failure (Moore and Starr 2006), which occurs 

when a component can no longer be relied upon to fulfill its principal functions (Ayininuola and 

Olalusi 2004). Such failures can have consequences that include not only deaths and injuries but also 

economic losses. Infrastructure assets must therefore be continually well maintained in order to 

ensure their effective performance. To support difficult decisions related to asset maintenance and 

renewal, extensive research in the domain of asset management has been conducted over the past few 

decades, as discussed in the following section.  

2.3 Asset Management 

To sustain the serviceability and safety of large networks of assets, a variety of  asset management 

tools have been introduced over the past two decades to help asset managers determine the most cost-

effective means and timing for the repair or replacement of their existing building stock (Elhakeem 

and Hegazy 2010). As shown in Figure  2.2, in general, the owners of large buildings have two 

functions for the care of their asset inventory: preventive/reactive maintenance; and capital asset 

renewal. While maintenance functions support day-to-day operations, capital asset renewal, which is 
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the focus of this research, involves the upgrading or complete replacement of the asset or some of its 

components.  

 

 

 

 

 

 

 

 

Figure  2.2: Asset management dimensions (Elhakeem and Hegazy 2010) 

 

 
As summarized in Table  2.1, early definitions of asset management published in the literature were 

focused on its function as a structured decision support process and were not sufficiently 

comprehensive.   

 
In more recent research, Brown and Humphrey (2005) provided a more generic and accurate 

definition of asset management, describing it as a balance of performance, cost, and risk: “Asset 

management is the art of balancing performance, cost and risk. Achieving this balance requires 

support from three pillars of competence: management, engineering and information.” Alegre et al. 

(2006) later incorporated this definition into the general concept of sustainable asset management, 

which takes into consideration the various levels of decision making, as shown in Figure  2.3. Such a 

comprehensive view that links all concepts is important in the design of asset management systems 

for specific types of assets. 

Asset Management 

Maintenance and Repair  

(Support for Operation) 

Capital Asset Renewal 

Reactive Maintenance 

(Urgent Maintenance) 

Preventive Maintenance 
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Table  2.1: Definitions of Asset Management 

 

Definition References 

“A business process and decision-support framework that: (1) covers the 

extended service life of an asset; (2) draws from engineering as well as 

economics; and (3) considers a diverse range of assets.” 

(Vanier and Rahman 2004b) 

“Asset Management is a systematic approach of maintaining, upgrading, 

and operating physical assets cost effectively. It combines engineering 

principles with sound business practices and economic theory, and it 

provides tools to facilitate a more organized, logical approach to decision-

making. Thus, asset management provides a framework for handling both 

short- and long-range planning.” 

The Federal Highway 

Administration (FHWA, 1999) 

“Asset Management is a comprehensive business strategy employing 

people, information and technology to effectively and efficiently allocate 

available funds amongst valued and competing asset needs.” 

The Transportation 

Association of Canada (TAC, 

1999) 

“Asset Management is a methodology to efficiently and equitably allocate 

resources amongst valid and competing goals and objectives 

The American Public Works 

Association (APWA, 1998) 

“[Asset Management is a] systematic process of maintaining, upgrading 

and operating assets, combining engineering principles with sound 

business practice and economic rationale, and providing tools to facilitate 

a more organized and flexible approach to making the decisions necessary 

to achieve the public’s expectations.”  

Organization of Economic 

Cooperation and Development 

(OECD), 2000 

 

 

 

 

 

 

 

 

 

 

Figure  2.3: Sustainable asset management (Alegre 2006) 
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2.4 Asset Management Functions 

Based on most recent definitions of asset management, typical asset management functions for capital 

renewal purposes can be grouped into five main categories, as shown in Figure  2.4 (Abdel-Monem 

and Ali 2010) and explained below. 

 

 

 

 

 
 

Figure  2.4: Main asset management functions for capital renewal 
 

1. Performance Assessment: This function is the process of inspecting assets and assessing their 

condition indices, the extent of various defects, and their performance according to any 

desired performance criteria, such as sustainability, level of service (LOS), risk, green 

building standards, reliability, capacity, and future demand. 

2. Deterioration Modeling: This function entails predicting the performance of the asset in 

subsequent years and developing a graph that shows the deterioration of the asset over time. 

Simple models assume linear deterioration with age. More detailed Markov chain models use 

condition data to estimate future deterioration. 

3. Renewal Type Selection: This function involves choosing the appropriate renewal policy 

among the optional available methods of renewal (e.g., minor, medium, major or full 
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replacement). Each type includes estimates of the cost as a percentage of the asset 

replacement cost and the resultant improvement in performance. 

4. Life Cycle Cost Analysis (LCCA): This study of the cost of the asset throughout its life cycle 

helps managers arrive at decisions that are best for both the short term and the long term and 

that can extend the lifespan of the asset. 

5. Prioritization and Fund Allocation: This function ranks the assets according to performance 

priorities and distributes funds among these assets. Prioritization is based on a technique that 

ranks assets according to their performance index/condition/importance in order to facilitate 

decisions related to renewal type and fund allocation, whereas fund allocation is the 

allocation of available funds to assets based on decisions about the type and year of the 

renewal. A simple approach is to allocate funds according to the asset priority ranking; a 

better approach is to use an optimization technique designed to suggest the best decisions 

based on a framework that links decisions about renewal types and renewal timing to costs, 

performance, deterioration, and constraints. Optimization tools can help managers arrive at 

optimal decisions that maximize performance with minimal cost. 

 
The next sections include details about asset management tools; background about the specific 

challenges associated with healthcare facilities, which are the focus of this research; and information 

about each type of asset management function.  

2.5 Asset Management Tools 

To support capital renewal decisions, existing asset management tools focus either on a specific type 

of asset (e.g., buildings) or on a specific type of component (e.g., only roofs). The engineered 
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management systems (EMSs) implemented by the US Army Corps of Engineers, for example, handle 

individual asset types, e.g., PAVER (Shahin 1992), ROOFER (Bailey et al. 1989), BUILDER 

(Uzarski 2002, 2007), and VFA (2013). Other general-purpose systems, e.g., ReCAPP (PPTI 2006) 

and TOBUS (Brandt and Rasmussen 2002), are also available commercially. For hospital buildings, 

systems such as VFA.facilities (VFA 2013) and Archibus (FCI 2013) were also developed as 

specialized asset management systems. Such systems provide assistance for decisions related to 

inspection, asset prioritization, and fund allocation.  

 

Despite their benefits, existing systems also entail a number of challenges with respect to 

performance evaluation and the prioritization of assets for renewal purposes (Halfawy et al. 2005). 

One of the primary problems with existing systems is the significant time and cost of the manual and 

subjective process required for the inspection, which necessitates work both on-site and in the office. 

Even when they incorporate the use of handheld devices, existing systems allow only text-data entry 

during inspection without location-based visual reference to problem areas. The other main drawback 

of existing systems is their reliance on the physical condition or another simple criterion alone as a 

means of prioritizing assets for capital renewal. In the hospital domain, for example, the Canadian 

Ministry of Health and Long-Term Care (MHLTC) uses a simple renewal-fund-allocation model that 

is a direct percentage of the hospital’s operating funds in previous years (MHLTC 2008). This simple 

model fails to take into consideration important performance indicators such as the quality of hospital 

services, the availability of newer technology to improve services, patient demographics at the 

specific hospital location, energy-savings, environmental issues, and the business value retained and 

passed on to subsequent generations. Typically, little guidance is given to individual hospitals with 

respect to key performance indicators (KPIs) that support internal decisions about when and how to 
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renew which components in order to avoid the risk of critical equipment failure and to increase the 

LOS satisfaction for all stakeholders, including patients and staff.  

2.6 Healthcare Facilities 

Healthcare facilities are among the most important civil infrastructure assets and include a wide range 

of types, from medical clinics to large and complex hospitals, as shown in Figure  2.5. These facilities 

are also considered among the most complex to manage, operate, and maintain (Lavy and Shohet 

2009) but are also expected to provide efficient and effective service at all times. 

 

In the United States (US), healthcare is a $2.8 trillion (17 % of the GDP) industry (Frampton et al.  

2003), involving over 120,000 buildings. Due to the complexity of the electro-mechanical systems, 

the sophistication of the equipment (Shohet 2003a), and the significant differences among the 

functional areas within the buildings, all of which must be managed within a limited maintenance 

budget, management of the maintenance of hospital buildings is an enormous challenge. 

 

 

 

 

 

 

 

 

Figure  2.5: Types of healthcare facilities 
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2.7 Asset Management for Hospital Buildings 

As highlighted in Figure  2.4, sustaining the safety and operability of a hospital building requires an 

asset renewal program that involves numerous functions: the accurate inspection and performance 

assessment of all subsystems; the prediction of future deterioration in the condition of these 

subsystems along a planning horizon (e.g., five years); the identification of renewal types and 

estimation of their costs and benefits in terms of condition improvement for each subsystem; and life 

cycle cost analysis in order to determine, given budgetary and other constraints, which subsystem 

must be renewed, which renewal types are the optimal choice, and when it would be best to renew 

these subsystems. The limited research related to healthcare facilities with respect to the five 

functions is discussed in the following sections. 

2.8 Performance Assessment  

The goal of performance assessment is to measure not only the physical condition but, more 

generally, the performance of each subsystem in a hospital building with respect to a variety of 

performance criteria. Extensive research has been carried out in a number of diverse directions that 

have been pursued mostly in isolation: the identification of the KPIs that should be used in multi-

criteria evaluations, methods of physical condition evaluation, LOS evaluation, risk and reliability 

assessment, and sustainability assessment. Representative studies are discussed in the following 

subsections.  

2.8.1 Identification of key performance indicators  

KPIs are a set of metrics for  measuring the performance of assets against organizational objectives. 

These indicators help  decision makers measure and identify gaps between current and desired 

performance and also provide an indication of progress with respect to closing such gaps. KPIs are 
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therefore  crucial for enabling decision makers to improve their management of assets because 

carefully  selected KPIs identify precisely where action should be taken in order to  improve 

performance. 

 

Based on the literature, many KPIs have been developed for hospital buildings: for example, in 

Greece at the Regional Healthcare Authority Level, Berler et al. (2005) identified 58 KPIs. These 

indicators were categorized according to four perspectives, as shown in Table  2.2, and were focused 

on the business environment of the hospital, without consideration of hospital renewals.  

 

Table  2.2: Key performance indicators in a regional healthcare setting (Berler et al. 2005) 

 

Perspective 
No. of 

indicators 
 Performance Indicators List 

Financial 14 

Treatment cost, medical cost, drugs cost, laboratory, radiology, medical 
materials consumption, surgical procedure, department operational costs, 

vaccination, medical examination, return of capital employed, net cash flow, 

income per employee, payroll 

Customer (Patient) 12 

Mortality rate, morbidity rate, number of medical staff, number of beds, 
accessibility of patients to the medical units, time on waiting list, 

appointments per day, equity of delivered care, number of readmissions per 

patient, mean length of stay, patient satisfaction rate, number of cases with 

an electronic health record (EHR) 

Processes 20 

Length of stay, patient admission rate per medical unit, % of bed coverage, 
vaccination rate, tests performed per patient, number of inpatients, number 

of outpatients, number of drug prescriptions, number of laboratory tests, 

number of surgery procedures, number of radiology tests, number of visits 

in outpatient clinics, number of visits in primary care, number of dental care 

processes, number of emergency cases processed, number of unprocessed 

order entries, number of preventive care visits, number of home care 

monitored patients, number of inpatients from the outpatient clinic, number 

of medical procedures per day 

Learning and 

Growth 
12 

Growth in usage of medical devices, training rate of healthcare 
professionals, employee satisfaction rate, number of doctors per bed, 

number of nurses per bed, ratio of existing healthcare professionals to 

expected job positions, personnel productivity rate, number of medical 

interventions per doctor, number of patients with re-examinations, 

admissions per case type, dismissals per case type 

Total 58  
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Shohet (2003a, 2003b) also developed KPIs for hospital buildings based on the statistical and 

quantitative analyses of 17 hospital buildings. His key indicator was the building performance 

indicator (BPI), which expresses the physical-functional condition of the building and is then used as 

part of a mathematical expression for calculating a maintenance efficiency indicator (MEI).  Shohet 

(2003a, 2003b) considered ten building systems, as shown in Table  2.3, each having a relative weight 

(Wn) whose derivation is based on the relative life cycle cost of the system. 

 

Table  2.3: Main building systems 
 

Serial No. System 

1 Structure 

2 Exterior Envelope 

3 Interior Finishing 
4 Electrical 

5 Water and Waste Water 

6 Heat, Ventilation, and Air Conditioning (HVAC) 

7 Fire Protection 
8 Elevators 

9 Communications 

10 Medical Gases 

 

The performance (Pn) of each building system (n) is then evaluated according to three criteria: actual 

physical performance, frequency of failures in the system, and actual preventive maintenance carried 

out on the systems, as follows:  

Pn (Score Performance) = Cn * Wc + Fn * Wf + PMn * Wpm 

where   (Cn): actual condition 

(Fn): failures affecting the service provided by the system 

(PMn): actual preventive maintenance for the system 
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Wc: weight of the component condition of system n 

Wf: weight of failures in system n 

Wpm: weight of preventive maintenance for system n 

The BPI is calculated as 





10

1

  

n

nn WPBPI

 

A sample of the BPI results for 17 hospitals is shown in Table  2.4. Based on this study, it was found 

that the level of occupancy and age of the building are two significant factors that influence building 

performance and that must be included in deciding the budget for renewal operations. Another 

important constraint is that a minimum BPI for a hospital building and its systems is 70.   

 

Table  2.4: Building performance indicator - field survey of 17 hospital buildings (Shohet 2003a) 
 

 

 
While this study was very useful for analyzing the physical functional condition of hospital buildings, 

it fails to reflect building performance in terms of LOS, the reliability of the systems, and the 

sustainability of the building. Additional KPIs are therefore needed as a means of reflecting these 

aspectselements.  
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2.8.2 Physical condition evaluation 

The goal of the condition assessment process is the evaluation of the current physical condition of a 

building’s subsystems and services by an expert assessor. The results of the condition assessment are 

needed for a number of asset management functions, such as deterioration modeling or the selection 

of repair type, and ultimately for the development of appropriate renewal policies.   

 
Field inspection and data gathering are methods required for collecting the data necessary for an 

assessment of the condition of an asset: type, intensity, and extent of distresses. The inspection should 

be consistent, accurate, and as objective as possible; many techniques can be employed that rely on a 

variety of methods, including visual inspection, photographic and optical methods, non-destructive 

evaluation methods, and smart sensors (Hudson et al. 1997). Of these methods, visual inspection can 

be considered the most suitable approach for the majority of building components (Elhakeem and 

Hegazy 2010). 

 
A visual assessment of physical condition can be conducted using one of two methods:  

1. The distress survey method is the more accurate approach and is also reproducible (Uzarski 

2002). It is based on categorization according to a number of generic distress types that relate 

to building components (e.g., broken, leaking, disfunctional) and is usually employed for 

identifying the reason for the failure.  

2. Direct condition rating is a less accurate but faster method of performing a condition survey. 

Each component is inspected visually and evaluated against a set of criteria (Uzarski 2002), 

as good, fair, poor, or critical. This method is more practical if the purpose of the assessment 
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is related to decisions about renewal; it was therefore chosen for this research as a means of 

evaluating the physical condition of a building’s subsystems. 

 
Sample condition rating scales used for rating the condition of a subsystem are shown in Table  2.5. 

The visual condition rating scale for building subsystems ranges from 0 to 100, where 0 represents a 

critical condition, and 100 represents a new condition.  

 
Table  2.5: Condition rating scales and linguistic representations 

 

Asset 

type 

Condition 

scale 
Linguistic representation Reference 

Buildings 0-100 

(0-20)=No deterioration; (20-40)=Slight 
deterioration; (40-60)=Moderate deterioration; (60-

80)=Severe deterioration; and (80-100)=Critical 

deterioration 

Elhakeem and Hegazy 
(2005a) 

Buildings 0-100 
(0-10)=Failed; (10-25)=V. Poor; (25-40)=Poor; 

(40-55)=Fair; (55-70)=Good; (70-85)=V. Good; 

and (85-100)=Excellent 

Uzarski and Burley 

(1997) 

Buildings 1-6 
1=Excellent; 2=Good; 3=Fair; 4=Poor; 5=Bad; and 

6=V. Bad 
Straub (2009) 

 

2.8.3 Level-of-service evaluation  

Inadequate and/or poor infrastructure levels of service (LOS) ultimately reduce the user’s satisfaction 

and the community’s quality of life and compromise the health and safety of its citizens (Sharma et 

al. 2008). The LOS is an index that indicates the quality, quantity, capacity, and reliability of the 

service provided by the asset and helps in decision making related to the development, operation, 

maintenance, rehabilitation, planning, and renewal of municipal infrastructure assets (Infrastructure 

Canada 2002). The LOS is commonly used in the assessment of transportation (Sharma et al. 2008) 

and buildings (Arkin and Paciuk 1997). For example, Sharma et al. (2008) proposed asset levels of 

service (ALOS) for a road in an urban municipality as a means of combining LOS indices for vehicle 
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users, bicyclists, and pedestrians. The methodology for the determination of the ALOS is shown in 

Figure  2.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2.6: Methodology for the determination of the ALOS (Sharma et al. 2008) 
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The primary challenge in evaluating the ALOS for any asset is the interdependence of its various 

users and their differing needs. Existing mathematical ALOS quantification models are therefore 

combined with techniques such as the analytical hierarchy process (AHP) in order to quantify the 

ALOS. The AHP method breaks down complex problems into specific components, arranges these 

components into a hierarchy, and assigns numerical values based on subjective judgments of the 

relative importance of each variable. The cumulative priorities of each variable are then calculated 

(Saaty 2004). This method has been widely used as a means of quantifying intangible factors (Saaty 

2008; Sharma et al. 2008). Details of the AHP can be found in the literature (Saaty 2004, 2008). 

 
The research presented in this thesis has led to the development of an indicator that measures the LOS 

for hospital users (medical staff, maintenance staff, patients, and visitors). The subsystems and 

services whose evaluation is necessary for a determination of the LOS were identified through 

surveys and/or an interview with the specialist at the hospital under study.  

 

2.8.4 Risk and reliability assessment 

A risk assessment must be in place in every hospital and should be high priority for all healthcare 

facilities (O’Donovan 1997). A risk assessment integrates reliability with safety and environmental 

issues and can therefore be used as a decision tool for renewal planning in order to minimize the 

probability and consequences of system failure with respect to safety as well as economic and 

environment factors (Khan and Haddara 2003).  

 
In general, risk assessment can be either quantitative or qualitative. The result of a quantitative risk 

assessment is a number, such as cost impact ($) per unit of time, and this number could be used as a 

means of prioritizing a series of items that have been risk assessed. Quantitative risk assessment also 
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requires a great deal of data both for the assessment of probabilities and the assessment of 

consequences. The results are often shown in the form of a simple risk matrix, in which one axis 

represents probability and the other represents consequences. A qualitative risk value is a relative 

number that has little meaning outside the framework of the matrix (Khan and Haddara 2003). 

 

Khan and Haddara (2003) proposed a risk-based maintenance (RBM) framework (Figure  2.7) for 

reducing the overall risk of failure of the operating facilities. The framework is comprised of three 

main modules: a risk estimation module, a risk evaluation module, and a maintenance planning 

module. Details of the three modules are provided in their report. 

 

 

 

 

 

 

 

 

 

 

Figure  2.7: Architecture of a risk-based maintenance methodology (Khan and Haddara 2003) 
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The evaluation of the consequences of the failure of critical systems, such as HVAC, medical gases, 

fire protection, or electrical systems, may lead to both casualties and financial losses (Shohet and 

Lavy 2004). A performance indicator for risk is therefore needed in order to help management make 

optimal cost-effective decisions concerning investments in capital renewal. For the research presented 

in this thesis, the data required for calculating this indicator were collected from the maintenance 

department at each hospital under study. 

 

2.8.5 Sustainability assessment 

A sustainability assessment is based on six main categories: sustainability of the site, water 

efficiency, energy and atmosphere, materials and resources, indoor environmental quality (IEQ), and 

innovation and design (Green Building and LEED Core Concepts Guide 2009). Lützkendorf and 

Lorenz (2005) introduced nine requirements for sustainable buildings, as shown in Table  2.6. 

 

Table  2.6: Sustainable building requirements 

 

Aspects Requirements 

Economic, environmental, 

and social 

Minimization of life cycle costs, reduction of land use, reduction 

of raw materials, avoidance/reduction of hazardous substances, 

reduction of CO2 emissions and other pollutants, reduction of 

impact on the environment, protection of health and comfort of 

building occupants/users as well as of neighbours, preservation 

of building’s cultural value. 

 

Users’ and occupants’ needs 

 

 

Maximization of the building’s serviceability and functionality 

 

 

Wilson et al. (1998); Heerwagen 2000; Yates (2001); and Lützkendorf and Bachofner (2002) also 

pointed out that sustainable buildings are more cost-efficient, effective, profitable, and marketable. 
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Kumar and Fisk (2002) and Heerwagen (2002) identified strong correlations between sustainable 

design features (e.g., natural lighting, thermal comfort, air quality, worker-controlled temperature and 

ventilation) and reduced symptoms of illness, decreased absenteeism, and significantly increased 

measured workforce productivity. In addition to maintaining a healthy environment for the occupants, 

a hospital building should be one of the most sustainable buildings because of its high consumption of 

energy and water, and because of the large amounts of waste it produces. 

 

Existing KPIs for hospital buildings generally focus on the physical condition of the building, 

targeting only business and operational issues, with all of these indicators being used for prioritizing 

renewal activities rather than for optimization. Additional performance indicators are therefore 

needed (Shohet 2003a) if decision makers in healthcare facilities are to be able to assess and improve 

the performance of their facilities when they make renewal decisions. Such KPIs can also be used for 

setting optimum fund allocations for renewal policies, which was one of the goals of this research. 

The next sections describe other considerations that should be included in an effective decision 

support system for hospitals. 

 

2.9 Deterioration Modeling 

Due to factors such as wear and tear, severe environmental conditions, user misuse or abuse, and 

deferred maintenance decisions, the deterioration of a building begins the moment it is constructed 

(Douglas 1996). The deterioration patterns of building components are not identical: some deteriorate 

linearly and others non-linearly (Shohet et al. 2002; Shohet and Paciuk 2004). As shown in Figure 

 2.8, deterioration patterns for a building component are categorized as one of two main types: 

deterministic or stochastic. These models are essential for predicting the future condition of 



 

 32 

building components (Madanat 1993; Madanat et al. 1997; Morcous et al. 2002a; Elhakeem and 

Hegazy 2005b), and the reliability of such models depends largely on the quantity and quality of the 

historical condition data available.  

 

 

 

 

 

 

 

 

Figure  2.8: Deterioration models 
 

2.9.1 Deterministic models 

Deterministic models are based on the assumptions that building components deteriorate at a 

deterministic rate, i.e., that no probabilities are involved and that the output of such models is a set of 

deterministic values that are dependent on a mathematical or statistical formula that expresses the 

relationships between the variables. This type of model includes a variety of methods, such as 

straight-line extrapolation, and regression models (Elhakeem 2005; Morcous 2002a, 2002b). Each 

method is explained briefly below. 

Straight-line extrapolation: As shown in Figure  2.9, this method requires only two known 

conditions in the history of the asset, for example, the initial condition of the asset and any condition 

Deterioration Models 

Stochastic Deterministic 

 Markov  Straight-Line Extrapolation 

 Regression 
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measurement carried out after construction. The model can be established by linking these two points 

so that the condition at any time in the future can be extrapolated. This method is thus a simple means 

of predicting the future condition of building components, and because of this simplicity, it was used 

in this research. 

 

 

 

 

   

 

 

Figure  2.9: Straight-line extrapolation  

 

Regression: This method is more accurate than the simple straight-line extrapolation. A regression 

model is used as a means of establishing an empirical relationship between two or more variables: 

one dependent and one or more independent (Elbehairy 2007).  Each variable is described in terms of 

its mean and variance (Shahin 1994). Several forms of regression models, both linear and non-linear, 

have been presented in the literature. 
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2.9.2 Stochastic Model 

A stochastic model expresses the deterioration of building components in terms of the likelihood that 

the component will be in a given condition, thus accounting for uncertainties such as those related to 

the impact of environmental factors. The application of such models is now being increasingly used 

in engineering and other science fields (Elbehairy 2007). The technique most commonly used for 

predicting infrastructure asset deterioration is the Markov chain model (Flintsch and Chen 2004; 

Elhakeem and Hegazy 2005b):  

 

[FPt]1xn = [IP0]1xn . [TPM]
t 

nxn
 

 

where [FPt]1xn is the future-state vector of an asset after any time interval t; [IP0]1xn is the initial 

probability vector; and [TPM]
t 

nxn is a transition probability matrix, where n is the number of possible 

condition states. 

 

The Markov model predicts the deterioration of a component by defining discrete condition states and 

accumulating the probability of a transition from one condition state to another over multiple discrete 

time intervals (Lounis et al. 1998; Elhakeem and Hegazy 2005b). This model requires historical data 

(Elhakeem and Hegazy 2005b) and is used by many state-of-the-art infrastructure management 

systems, such as Pontis, BRIDGIT, and MicroPAVER, because of its ability to predict the 

performance of infrastructure facilities. It is also widely used for determining the optimal 

maintenance and renewal decision policy in situations that involve uncertainties (Farran and Zayed 

2009). 
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2.10 Renewal Type Selection 

The selection of renewal type refers to the determination of suitable renewal options along with an 

estimate of the impact on the condition. The cost of a renewal generally depends on the type of 

renewal and is usually assigned as a fixed percentage of the replacement cost of the component (Seo, 

1994). For example, light, medium, and extensive types of renewal for bridge decks were estimated 

by Seo (1994) to cost 28.5 %, 65 %, and 100 % of the replacement cost, respectively. The effect of 

each type of renewal on the condition of the components can be represented as shown in Figure  2.10, 

and the deterioration behaviour of the component after the renewal is very important. Researchers 

commonly assume that the deterioration trend after the renewal is parallel to the deterioration trend 

prior to the renewal, as shown in Figure  2.11 (Seo 1994; Hegazy et al. 2004; Langevine et al. 2005; 

Elhakkem 2005). 

 

 

 

 

 

 

 
 

 

Figure  2.10: Effect of the renewal type on component performance 
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Figure  2.11: After-renewal deterioration 

 

As mentioned, a hospital building contains a variety of systems within its main functional zones, and 

each system includes diverse subsystems that differ with respect to their significance and criticality. 

Each of these subsystems has a different rate and pattern of deterioration over time, and each requires 

specific renewal interventions for its performance to be improved, emergency renewal work to be 

reduced or eliminated, and risks and costs to be decreased. Renewal planning therefore requires 

knowledge of the physical condition of the building subsystems, the importance of each subsystem, 

and possible renewal options, all of which are useful for building managers when they are estimating 

and allocating renewal budgets. 

 

2.11 Life Cycle Cost Analysis 

Life-cycle cost analysis (LCCA) is a decision-making approach that is used as a means of evaluating 

the total cost accrued over the entire life of an infrastructure facility from its construction to its 

replacement or final demolition (Morcous and Lounis 2005). It incorporates initial and discounted 

future costs over the life cycle of the alternative investments and is employed as a method of 

identifying the best value or the lowest cost over time (Haas et al. 2003, 2004). LCCA has always 
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been an important tool for supporting decisions with respect to the determination of the most cost-

effective decisions for assets such as roads, utilities, or buildings or for selecting the most effective 

renewal treatment. 

 
An extension of earlier work related to educational buildings, the research presented in this thesis 

integrates renewal decisions for healthcare facilities, taking into consideration the important KPIs 

(physical condition, level of service, risk, and sustainability) for setting a renewal plan.    

 

2.12 Prioritization and Fund Allocation 

One of the primary challenges facing asset managers is the process of allocating available funds in 

order to maintain asset conditions within satisfactory levels or to maximize the benefits of 

expenditures (Al-Battaineh et al. 2005). In an ideal situation of unlimited funds, all renewals needed 

for all components can be addressed (Hudson et al. 1997). However, in most public infrastructure 

organizations, renewal funds are limited so that the prioritization of building subsystems for renewal 

purposes becomes crucial, and decisions regarding the subsystems to be renewed, the appropriate 

renewal strategies, and the timing of the renewal must be decided realistically and efficiently.  

 

In general, subsystem prioritization refers to a sequential order of the subsystems based on their 

importance in order to allocate the available funds to cover maintenance costs for these subsystems. 

This process is complex, particularly when hundreds of subsystems are involved. The demand for 

research into maintenance prioritization methods is therefore increasing because today’s maintenance 

budgets do not meet maintenance requirements (Shen 1997).  
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The process of subsystem prioritization can be accomplished using a variety of methods, ranging 

from simple subjective ranking to more accurate optimization, in which all possible combinations of 

“which, what, and when” are evaluated with respect to an objective function (Hudson et al. 1997; 

Elhakeem 2005). Samples of current practices used by a variety of organizations for setting 

maintenance prioritization are shown in Table  2.7.   

 

Table  2.7: Current practices for setting maintenance prioritization 

 

Type of Building Description of Priority Criteria Reference 

Hospitals Physical Condition, Performance, and Preventive Maintenance  (Shohet 2003a &b) 
 Hong Kong Hospital Authority 

The principles of priority criteria applied are 1-Health and safety; 2-Risk to 

patients; 3-Statutory requirements; 4-Risk to clinical services; 5-
Environmental issues; 6-Urgent repair; 7-Preventive maintenance; 8-
Routine maintenance; 9-Major maintenance; 10-Capital renewal; 11-
Barrier free access; and 12-Appearance. 

 
(Chan 2003) 

 Ministry of Health and Long-Term Care – CANADA 
The grant must first be used for critical or highest priority projects. These 
projects include those required to address 1-Requirements under the 
Occupational Health and Safety Act; 2-Requirements under the Ontario 

Building Code and Ontario Fire Code; 3-Other facility-related legislative 
requirements; or 4-Potential interruptions in the operation of a facility.  
After completing the highest-priority projects, the HIRF grant can be used 
for projects of a lesser priority, such as projects that 1-Are intended to 
improve the efficiency of building systems (i.e., energy efficiency); 2-Are 
deemed necessary to reduce or minimize the downtime of building systems 
resulting from predictable building deterioration; and 3-Address 
accessibility issues (e.g., installing ramps to provide access for people with 

disabilities, renovating washrooms to provide barrier-free access, etc.).  

(MHLTC 2008) 

Schools   
Department of Education and Science in the UK. 
1-Work needed immediately or in the near future to meet legislative 
requirements and to ensure the health and safety of building occupants and 
users; work required to prevent the imminent closure of accommodation or 
serious dislocation of activities. 
2- Work necessary within one year to prevent serious deterioration of the 

fabric or services, such as those which are likely to lead to higher future 
costs of repair or renewal. 
3- Work as above which many be deferred beyond one year; work 
desirable to maintain the environmental quality of buildings and grounds, 
such as internal decorations, fencing, etc.  

(Shen 1997). 
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Table  2.7 (count.) 
Universities Universities in Taiwan 

1- Use necessity; 2- Maintenance urgency; 3-Impact on individuals; 4-

Impact on the public; 5-Current age relative to age/design limit; 6-Exterior 
condition; 7-Deterioration of components; 8-Functional impairment of 
main structure; 9-Functional impairment of walls and finish; 10-Functional 
impairment of electrical, air conditioning, communication, and 
monitoring/control; 11-Functional impairment of plumbing, sanitation 
facilities, and fire protection; 12-Value improvement rate; 13-Maintenance 
management efficiency; 14-Use efficiency 

(Chang et al. 2008) 

Housing Hong Kong Housing Department 
Condition, Appraisal, Repair, and Evaluation (CARE) programme is as 

follows: 1- Work necessary to maintain the safety or persons; 2- Work 
necessary to keep property habitable, e.g., by reasons of hygiene, security, 
electrical, and water supply; 3- Work necessary to keep buildings 
operational; and 4- Work necessary for the appearance of the property and 
the provision or upkeep of non-essential services or facilities. 

(Shen 1997) 

Buildings Building Maintenance Managers in Country Authorities -  
Technical factors, political factors, financial factors, social factors, 
economic factors, and legal factors 

(Spedding et al. 1995) 

 

When the process of allocating funds for the purpose of maintaining building subsystems is based on 

setting priorities for these subsystems, it does not generally lead to the optimal allocation of available 

funds so that the different types of renewals for each subsystem are taken into account. For the 

achievement of such an optimal allocation of the available funds among the subsystems that need to 

be renewed, a maintenance optimization concept produces effective results. Such a concept represents 

an attempt to balance the maintenance requirements (legislative, economic, technical, etc.) and the 

resources used to carry out the maintenance program (people, spare parts, consumables, equipment, 

facilities, etc.). The use of a maintenance optimization process also has the goal of selecting the 

appropriate maintenance technique for each subsystem within the building’s systems and identifying 

the maintenance technique that meets regulatory requirements and maintenance targets with respect to 

safety, equipment reliability, system availability, and costs. Effectively implemented maintenance 

optimization improves system availability, reduces overall maintenance costs, increases equipment 

reliability, and enhances system safety. 
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The majority of the models reported in the literature that are developed for optimum fund allocations 

are based on the total LCC (Hegahzy et al. 2004; Elhakeem 2005) because the primary advantage of 

the LCC is the fact that decisions take into consideration the benefit gained along the whole planning 

horizon when the LCC is minimized. These models also use optimization tools such as genetic 

algorithms (GAs), which have been applied successfully in order to optimize complex combinatorial 

problems in a number of areas in civil engineering and construction, as shown in Table  2.8 (Flintsch 

and Chen 2004).   

 
Table  2.8: Summary of soft computing applications in infrastructure management  (Flintsch and 

Chen 2004)  
 

Soft 
Computing 
Technique 

Asset 
performance 

Needs 
analysis 

Tradeoffs 
analysis 
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Artificial 
Neural 

Networks 
11 8 1 2 1 1 

Pant et al. (1993), Kaseko and Ritchie (1993), Hajek and Hurdal 

(1993), Fwa and Chan (1993), Eldin and Senouci (1995), 

Flintsch et al. (1996), Razaqpur et al. (1996), Cattan and 

Mohammadi (1997), Huang and Moore (1997),  Alsugair and 

Al-Qudrah (1998), La Torre et al. (1998), Owusu-Ababia (1998), 

Shekharan (1998), Wang et al. (1998), Van der Gryp et al. 

(1998), Martinelli and Shoukry (2000), Lou et al. (2001), Farias 

et al. (2003), Felker et al. (2003), Fontul et al. (2003), Lee and 

Lee (2004), Lin et al. (2003), Sadek et al. (2003), Yang et al. 

(2003) 

Fuzzy Logic 
Systems 

7 1 1 1 1 2 

Elton and Juang (1988), Zhang et al. (1993), Grivas and Shen 

(1995), Prechaverakul and Hadipriono (1995), Shoukry et al. 

(1997), Wang and Liu (1997), Fwa and Shanmugam (1998), 

Cheng et al. (1999), Saitoh and Fukuda (2000), Bandara and 

Gunaratne (2001) 

Genetic 
Algorithms 

 2   1 6 

Fwa et al. (1996), Liu et al. (1997), Pilson et al. (1999), 

Shekharan (2000), Miyamoto et al. (2000), Chan et al. (2001), 

Hedfi and Stephanos (2001), Ferreira et al. (2002) 

Other Hybrid 
Systems 

6 1  2   

Ritchie et al. (1991), Chou et al. (1995), Taha and Hanna (1995), 

Martinelli et al. (1995), Abdelrahim and George (2000), Chiang 

et al. (2000), Chae and Abraham (2001), Liang et al. (2001), 

Flintsch (2002) 

Total 24 12 2 5 3 9 

 

Numbers represent scholars who used the specific technique 
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The use of a GA technique thus has the potential to provide effective asset management optimization 

and was used in this research as a means of determining the most cost-effective decision. 

 

2.13 Conclusions 

This chapter has provided a review of the general condition of civil infrastructure assets in the US and 

Canada, the main functions of asset management, healthcare facilities and their importance, previous 

research with respect to KPIs for healthcare buildings, and the capabilities of available decision 

support tools. 

 

The literature shows that the KPIs available for healthcare facilities focus only on business and the 

physical condition of the asset and not on other indicators such as LOS, sustainability, and risk. The 

majority of the available decision support systems also concentrate primarily on supporting day-to-

day management activities, and only an extremely small number offer limited support for long-term 

renewal planning. As well, many fundamental asset management functions, such as performance 

modeling and renewal prioritization, are not supported by the majority of these systems. 

 

The main difficulties associated with the prioritization of the renewal of building capital are the large 

number of components, the large number of renewal alternatives for each system in each year on the 

planning horizon, and budget limitations. The literature reports the use and testing of artificial 

intelligent (AI) techniques for the prioritization of renewals to bridges, buildings, and water pipelines. 

These techniques have also been used for the determination of the optimum fund allocation for the 

capital renewal of healthcare assets. 
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Chapter 3 

Performance Assessment and Prioritization Framework 

3.1 Introduction 

This chapter presents a hybrid performance assessment and prioritization framework that incorporates 

three main functions for appropriately prioritizing the subsystems in a hospital building with respect 

to renewal actions: a two-dimensional hospital hierarchy, four key performance indicators (KPIs), and 

a visual inspection application. The formulations for determining the overall priority index for each 

subsystem based on these main functions are also introduced, along with details of the proposed 

framework and the formulations for identifying the overall subsystem importance (OSI), the overall 

subsystem deficiency (OSD), the overall subsystem priority index (OSPI), and the overall building 

performance index (OBPI). 

 

3.2 Hospital Systems and Functional Zones 

From a maintenance perspective, Shohet (2003a) divided a hospital into ten systems: structure; 

interior finishing; exterior envelope; fire protection; water and waste water; elevators; electrical 

systems; communications; heat, ventilation, and air conditioning (HVAC); and medical gases. From 

an architectural perspective, however, a hospital building can be divided into three functional zones, 

as suggested by James and Noakes (1994): clinical, nursing, and support. Each functional zone 

includes a group of spaces that share similar functional characteristics, as shown in Figure  3.1. 
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Figure  3.1: Main functional zones in a hospital building (based on James and Noakes 1994) 

 

 

Because of the importance of spaces in buildings, recent research (Eweda et al. 2010) has presented a 

condition assessment model that considers space as the principle element to be evaluated.  Their 

model therefore evaluates all of the systems within each space and then accumulates the information 

for all of the physical systems of the building. However, indiscriminately assessing all of the spaces 

in a complex building is both costly and time consuming. As well, consideration of condition as the 

only performance indicator is inappropriate for hospital buildings, in which enormous challenges are 

associated with the complexity of the electro-mechanical equipment (Shohet 2003a) and the 

significant differences among the functional spaces within the buildings.  

 
A need thus exists for a faster inspection mechanism and a structured performance assessment 

approach that integrates physical condition with other important KPIs such as the level of service 

(LOS) observed at various spaces, sustainability considerations, and the risk of service failure. As 
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reported in the literature, a number of researchers have examined some of these aspects individually: 

multiple-criteria performance analysis (Shohet 2006; Shohet and Lavy 2004); LOS attained from the 

perspective of multiple stakeholders (Nasser 2007); risk/reliability analysis (Christodoulou et al. 

2009; Moubray 1997); social, economic, and environmental sustainability (Lützkendorf and Lorenz 

2005); and the indoor environment quality (IEQ) of the building space (Eweda et al. 2010). The 

hybrid performance assessment framework discussed in this chapter was developed as a means of 

addressing the complexity of healthcare facilities. The framework incorporates multiple KPIs 

(condition, LOS, sustainability, and risk); assesses the impact of IEQ on the LOS provided by the 

systems; and appropriately prioritizes the systems for renewal action.  

 

 
To better prioritize capital renewal work, building systems are assigned different levels of importance 

within each zone. For example, an interruption in the electricity in an operating room (within the 

clinical area) is more critical than lack of water because of the more serious consequences. Since 

chemicals and alternative products can be used to clean patients and equipment, the water supply is 

not considered as vital as the power supply, which is essential for maintaining the operation of 

ventilators and other equipment (Arboleda et al. 2007). Consideration of the nature of hospital 

buildings is therefore important in the design of an effective assessment framework so that capital 

renewal plans can be determined in a manner that minimizes risk and also improves the overall 

functionality of the hospital at minimal cost. 

3.3 Development of the Framework 

The developed framework for performance assessment, prioritization, and capital renewal 

optimization has been designed to incorporate five main functions, as shown in Figure  3.2 (Ali and 
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Hegazy 2013b): a two-dimensional hierarchy of hospital systems/spaces, multi-criteria performance 

assessment, visual all-on-site inspection, a prioritization mechanism, and capital renewal 

optimization. The first four elements relate to performance assessment and to the generation of an 

appropriately prioritized list of subsystems for capital renewal purposes. These functions have been 

designed based on input from hospital maintenance professionals obtained through a survey, as 

discussed in subsequent sections. A key consideration included in the design of the proposed 

framework is the necessity to account for the distinctive aspects related specifically to hospitals, 

including the diverse zones/spaces and their varying relative importance, specialized hospital 

equipment, and the varying types of assessment that provide reliable performance evaluation. The 

details of the first four framework functions are discussed in the following subsections, and the 

optimization function is explained in Chapter 6. 

 

3.3.1 Two-dimensional hierarchy of systems and spaces 

Hospital buildings normally encompass a number of interrelated physical systems, diverse functional 

spaces (e.g., operating rooms, patient wards, labs), and special systems (e.g., medical gas systems, 

nurse call systems) that represent important interdependent entities. For example, the quality of the 

physical systems has a significant effect on the quality of the indoor environment (e.g., temperature, 

lighting, and sound) inside the functional spaces (Eweda et al. 2010), which, in turn, directly impacts 

both patients and staff. Sustaining the operability of and a beneficial work environment in hospitals 

therefore requires the appropriate performance assessment of hospital systems and space so that 

capital renewal actions can be effectively prioritized. 

To facilitate the accurate, speedy, and structured performance assessment of hospitals, the developed 

methodology defines a detailed hospital hierarchy and introduces three unique features that are 
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critical for hospitals, as shown in step 1 in Figure  3.2: (i) identification of two hospital hierarchies, 

one for systems and subsystems, and the other for important zones/spaces; (ii) a special focus on key 

hospital equipment; and (iii) particular attention to hospital subsystems that provide shared services to 

multiple zones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.2 Main functions of the proposed framework for performance assessment, 

prioritization, and capital renewal optimization 
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The basic hierarchy of hospital systems and subsystems adheres to the UNIFORMAT II classification 

(UNIFORMAT II, 2005), as shown in the top part of Figure  3.3. In addition to the four main physical 

systems (civil, architectural, electrical and communications, and mechanical), a fifth “equipment” 

category (system) has been added. This category relates to specialized (costly) hospital equipment 

that has been separated from regular mechanical systems because of the importance of keeping these 

items effectively renewed: MRI machines, CT scanners, and kitchen and laundry equipment. 

Standardized subsystems in the hierarchy facilitate data integration among the functions (e.g., 

preventive maintenance, capital renewal, materials/equipment management). 

 
Because of the diversity of space functions in hospitals, a separate hierarchy for hospital spaces has 

been defined in the new methodology, with three main functional zones, as shown in the lower 

section of Figure  3.3. Each zone includes a group of spaces that share similar functional 

characteristics, as follows:  

 Clinical zone comprising operating rooms, the intensive care unit (ICU), etc.  

 Nursing zone comprised of inpatient rooms, nursing stations, etc. 

 Support zone comprising computer room, electrical room, boilers, chillers, etc.  

 

Defining these zones and their relative importance is a unique advantage of the developed system that 

will lead to better prioritization of assets for renewal. For example, if the clinical zone is assumed to 

be the most important, then the priority for renewing identical subsystems (or components) must be 

higher for those in the clinical zone. Similarly, building subsystems that provide shared services to all 

zones in the hospital, as shown in bold in Figure  3.3, should be assigned higher importance so that 

they are given higher priority for renewal than subsystems that are localized within a single zone.  
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Figure  3.3 Main systems and functional zones 
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Using space assessment to determine LOS for some subsystems 

* Bold items = Shared subsystems that are located in the support zone (below) but that serve all zones 

 Lighting intensity 

 Air quality & Temp. 

 Noise level 

 Water quality 

Clinical Nursing Support 
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3.3.2 Multi-criteria performance assessment 

The combination of the system/subsystem hierarchy and the zone/space hierarchy enables a 

comprehensive assessment of hospitals. In the developed framework, the system/subsystem hierarchy 

provides a performance assessment of building subsystems based on four KPIs: condition, LOS, 

sustainability, and risk. However, for some of the subsystems that affect the quality of spaces 

(HVAC, water distribution, electrical distribution, etc.), evaluating the LOS is not simple. For these 

subsystems, the space hierarchy makes it possible to determine a proper LOS value based on an 

assessment of the spaces in terms of four quality-related KPIs (lighting intensity, air quality and 

temperature, noise level, and water quality). For example, several spaces showing inadequate water 

quality/quantity implies a low LOS for the water supply system, as highlighted at the bottom right-

hand corner of Figure  3.3.  

 

For the assessment of hospital subsystems, the four KPIs (condition, LOS, sustainability, and risk) 

vary with respect to both the complexity of the assessment they provide and their applicability to 

various subsystems, as shown in Figure  3.4, Generally, however, condition assessment is the easiest 

to perform and can be applied to all subsystems. Sustainability and LOS indicators, on the other hand, 

are more difficult to determine and apply to a small group of subsystems. Risk of failure is hardest to 

assess but applies only to major equipment and subsystems within the hospital. As shown in Figure 

 3.4, the initial expectation was therefore that risk of failure analysis would apply to only about 5 % of 

hospital subsystems, those involving major electrical and mechanical systems. Figure  3.4 also shows 

that the condition indicator for all subsystems is assessed visually using a direct rating approach 

(good, fair, poor, or critical), which provides a sufficient level of detail for renewal purposes 

(Uzariski 2002). The LOS indicator, on the other hand, assesses the quality of service offered to 
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stakeholders, irrespective of physical condition. For example, old equipment that scores high based 

on the condition KPI may score poorly with respect to LOS due to its old technology and its inability 

to meet the demands of the current workload. As mentioned, for some specific subsystems (HVAC, 

water distribution, and electrical distribution), the LOS assessment is determined after the quality of 

the indoor environment in various spaces has been assessed. Sustainability also applies to a small 

subset of the hospital subsystems and is based on a direct rating process. Risk, the last type of 

indicator, applies to key subsystems whose failure affects health, safety, or the environment. In the 

absence of historical data related to failure rates and consequences, a direct rating approach was used 

in this research. 

 

 

 

 

 

 

 

 

 

 

Figure  3.4 Applicability and weights for the various KPIs 

Example: KPIs applicable to “water system” and their weights 

  

   

 

Description:   

Physical deterioration level of 

the subsystem 

Applies to:   

All subsystems 

Assessment method:   

Visual inspection with 

direct rating of condition 

(Good, Fair, Poor, or 

Critical) 

  

 

Description:   

How well the component 

serves various users 

Applies to:   

Roofs, all Architectural, all 

Electrical &Communication, 

and all Mechanical. 

Assessment method:   

HVAC, Water Distribution, 

& Electrical Distribution are 

assessed based on the quality 

of service within the spaces 

(1 to 5). All other subsystems 
use direct rating. 

  

 

Description:   

Effect on the environment, 

energy saving, waste, etc. 

Applies to:   

Only windows, façade, ceilings, 

water/sewage pipelines & 
fixtures. 

Assessment method:   

Direct rating. 

  

 

Description:   

How much risk is associated 

with the asset in case of its 

failure. 
Applies to:   

Only roofs, stairs, all 

Architectural, all Electrical & 

Communication, and all 

Mechanical. 

Assessment method:   

Direct rating of probability of 

occurrence, consequences, and 

redundancy level. 

% % % % % 
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For each hospital subsystem, therefore, the first step in the assessment process is to define the 

applicable KPIs that best measure the performance of that subsystem and their weights, obtained from 

the results of a survey, as discussed in Chapter 4. For example, foundations are assessed based on 

condition only, whereas water systems must be assessed in terms of condition (35%), LOS (%35), 

sustainability (20%), and risk (10%), as shown in Figure  3.4. This process thus focuses the 

assessment effort and saves the time and cost of producing indiscriminate assessments that are based 

on all KPIs. 

 

3.3.3 Visual all-on-site inspection 

Visual inspection has been considered the most appropriate method for assessing the condition of 

buildings. Traditional paper-based visual inspection is usually slow, costly, and subjective and 

requires well-trained assessors. Hegazy et al. (2008) developed a visual inspection application that 

can be used on an ultra-mobile computer system to make the assessment process cheap, effortless, 

and non-subjective. Building upon this initial effort, the system developed in the research for this 

thesis was adapted the application specifically for hospital assessment. Significant effort has been 

applied to the development and expansion of the capability of the application in order to incorporate 

the developed two-dimensional hierarchy (i.e., physical systems and the spaces) for hospitals, the four 

KPIs, and the four IEQ factors, to enhance the comprehensiveness and accuracy of the assessment.  

 

The first step in the design process was to save the hospital building hierarchy into a database with a 

predefined list of 180 systems (e.g., civil) and subsystems (e.g., foundations), as shown in Figure  3.5.  

To facilitate the inspection process, each subsystem in the building hierarchy is allocated a fixed set 

of four instances (good, fair, poor, and critical). These terms are clearly defined in the application, 
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with several photographs included for each  category as a means of reducing inspection subjectivity. 

The interactive inspection application for hospitals can be used on handheld tablets, as shown in 

Figure  3.6. The application has been designed so that all inspection work, for either subsystem 

assessment or space assessment, is conducted completely on-site, without the need for additional 

work at the inspector’s office.  

 

Once the assessor selects a subsystem for inspection (e.g., windows, as shown in Figure  3.6), a simple 

data entry form appears, which allows access to the four instances (good, fair, poor, critical) for that 

subsystem. The related background floor plan also retrieves and shows the locations of the instances. 

When one of the condition instances is selected (Critical instance in the sample shown in Figure  3.6 ), 

the user is prompted to view the inspection data associated with that instance for that subsystem, as 

shown in Table  3.1. 

 

 

 

 

 

 

 
Figure  3.5 Portion of the standardized building hierarchy and inspection data structure 

(Heghazy et al. 2008) 

 

 

Each has four Standard 
Instances: 

 

Total of 180 
standard items  

Inspection data for each instance: 
- Location(s) 
- Size 
- Pictures 

- Notes 
- Replacement Urgency 
- Effect on Safety/Health 

- Effect on Hospital Operation 

Good: 

Fair: 

Poor: 

Critical: 
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Figure  3.6: Visual inspection system for handheld tablets 

 

Table  3.1: Sample inspection data for an instance (Critical) of a subsystem (Windows) 

 

Data Description 

Location(s): User selects the cells on the floor plan, which are colour coded to indicate condition. 

Size: Relative sizes (%) of the four condition instances (Good, Fair, Poor, and Critical). 

Pictures: Pictures taken are coded automatically and saved in the inspection database. 

Notes: Additional text comments. 

Replacement Urgency: Options: Replace Immediately, Replace in 1 year, Replace in 2 years, Not Urgent. 

Effect on Safety/Health: Options: Very High, High, Medium, Low, and Very Low. 

Effect on Operation: Options: Very High, High, Medium, Low, and Very Low. 
 

Based on the data “Size” listed in Table  3.1, the overall Condition Index (CI) for each subsystem is 

calculated as follows: 

Effect on operation 

Repair Urgency: 

Effect on H&S: 

Replace in 2yrs 

Average 

Average 

Form for visual inspection of windows  2 marked locations of critical windows 

Form for inspection of a space 
Database of sample pictures of components in different conditions 
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Where CSi is the scale value of each subsystem (good = 100, fair = 75, poor = 50, and critical = 25), 

and Sizei is the relative size (percentage or number of items) of each condition subsystem as entered 

by the user during inspection. The structure of the inspection data for any building therefore includes 

a fixed set of records associated with the total number of instances that can be inspected. This 

standardization facilitates the automation and comparison of the hospital’s data. It should be noted 

that the user does not enter all of the data for all instances in a building. The system’s default settings 

are that all subsystems are assigned a value of 100% for their “Good” instances. As subsystems 

deteriorate, the inspectors can then add information to the “Poor” or “Critical” instances only. The CI 

for the subsystem is then automatically calculated accordingly based on the percentage of the scale 

value of each subsystem and the size of each condition subsystem, as shown in Figure  3.7.  

 

 

 

 

 

 

 

 

Figure  3.7: Physical condition: Condition Index 

Foundation (CI) = (100x100 + 0x75 +0x50 + 0x25) / (100+0+0+0) = 100                    (Equation 3.1) 
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The second step and a key productivity feature is that the inspection application includes the hospital 

hierarchy and all of the 2D floor plans of the hospital (with all spaces predefined). The inspector is 

then able to use a stylus pen to mark the location of problem areas directly on the drawings. For 

example, Figure  3.6 shows the location of critical windows marked on the first-floor plan,  in the 

section covering parts of the north and south sides of the building. This feature provides a visual 

location reference for the inspection data. As further assistance in the assessment of the condition of 

the subsystem, the application allows the inspector to take photos using the built-in digital camera, to 

annotate the photos with handwritten notes, and to compare the photo taken with the visual guide 

photos, as shown in Figure  3.6. The photos are automatically associated with the subsystem under 

inspection and are stored appropriately. The inspection application also offers the capability of 

selecting any space on a 2D floor plan and assessing the quality of its indoor factors (lighting, air, 

noise, and water) on a scale from 1 (low) to 5 (high), as shown in the inspection form at the bottom 

right-hand corner of Figure  3.6. The LOS score for the affected hospital subsystems is then 

automatically calculated based on the percentage of spaces that have indoor quality issues, as shown 

in Figure  3.8. In addition, during the inspection of any space, IEQ deficiency within each space (i.e., 

local defects) can be identified and documented, as shown in Figure  3.8, with the accumulation of the 

defects reflecting the overall deficiency in the related subsystem: 

)/().(100
11





n

i

n

i

iii RIRIIEQncyIEQdeficie      ( 3.2) 

 

Where IEQ deficiency is the local deficiency, IEQi is the IEQ assessment score for the indoor 

environment quality factor, and RIi is the relative importance of the IEQ factor. An illustrative sample 

is shown in Figure  3.8.  
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Figure  3.8: Sample assessment of indoor environment quality and level of service 

 

In summary, the developed visual inspection system incorporates the following features:  

 The use of a two-dimensional hospital hierarchy best service the hospital environment 

 The user-friendly interface provides the ability to mark the location of the subsystem under 

assessment directly on 2D digital floor plans using four-colour coding to represent Good, 

Fair, Poor, or Critical items. 

 The system is easy to install and use on any handheld tablet, which expedites the inspection. 

 Photographs of the assessed subsystem can be saved directly in a location-based database. 

 A built-in pictorial database of components in different conditions provides visual guidance 

during inspection, which reduces subjectivity. 

 The visual guide offers the user the opportunity to visually compare the pictures provided 

with the  real condition of the subsystem under assessment, thus enabling a quick, simple, and   

accurate  assessment. 

ICU (Local Deficiency) = [100 – (100x21+100x29+100x21+80x29) / (21+29+21+29)] = 5.8      (Equation 3.2) 
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Based on expert input and the physical condition assessment of the hospital building systems, the 

overall subsystem importance (OSI), the overall subsystem deficiency (OSD) (i.e. Performance), the 

overall subsystem priority index (OSPI), and the overall building performance index (OBPI) can be 

identified. The formulations for determining these indices are discussed in the next section. 

 

3.4 Calculation of Performance Indices  

3.4.1 Overall subsystem importance  

The OSI level reflects the importance of each system according to its location in the hospital building. 

The determination of the OSI is the first essential step in the calculation of the overall priority index 

for each subsystem (OSPI). The overall importance of each subsystem (OSI) is calculated from the 

multiplication of the relative importance of the subsystem, the relative importance of the system to 

which this subsystem belongs, and the relative importance of its zone, as shown in the lower left-hand 

portion of Figure  3.9. When a subsystem is in a more important zone or system, its OSI is therefore 

higher, and the (OSPI) becomes correspondingly higher, indicating greater eligibility for renewal. For 

example, the water treatment (shared subsystem) in the support zone has a higher OSI than the walls 

(non-shared subsystem) in the nursing zone; therefore, shared subsystems are assigned 25 % more 

importance than non-shared subsystems because they provide services for all of the zones and spaces 

in the building.  

 

3.4.2 Overall subsystem deficiency  

The OSD is the second essential component in the calculation of the priority index for each 

subsystem (OSPI), and it represents the weighted sum of the deficiencies for all applicable KPIs 
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associated with the subsystem. Calculating the OSD requires special care in order to avoid 

misrepresentation. Once the subsystem has been assessed in the field and the scores for its condition, 

LOS, sustainability (all from 0 to 100) have been determined, the subsystem’s OSD value is then 

established as the weighted sum of these scores, as shown in the lower right-hand portion of Figure 

 3.9. An examination of the equations in Figure  3.9, however, reveals the careful use of the score 

values. For example, for the first three indicators (condition, LOS, and sustainability), the value used 

in the equation is (100- condition index score) based on consideration of a linear relationship between 

these KPIs. Thus, when the subsystem’s condition score, for example, is high, using (100- condition 

index score) in the equation results in a small OSD value, and accordingly, a low OSPI for the 

renewal of this subsystem. Risk, however, is dealt with in a different manner. To facilitate risk 

calculations, the value of the risk associated with the subsystem is determined based on its probability 

of failure (assumed to be 100- condition index score) multiplied by the consequence score (High = 

100, Medium = 70, and Low = 40) and then by an adjustment value (Partial = 50 %; Full = 10 %; and 

Double = 2 %) that represents the existing redundancy level of the subsystem. This formulation 

means that the impact of the condition, consequence, and redundancy have an appropriate effect on 

the OSPI calculation. A OSPI of zero for a subsystem indicates that its performance is high: the 

subsystem has a low renewal priority. On the other hand, when a subsystem has a high deficiency 

value that renders the overall condition of the subsystem less than the minimum acceptable condition 

level, then that subsystem will be eligible for renewal work.  
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Figure  3.9: Calculation of the priority index for a subsystem  

 

3.4.3 Overall subsystem priority index  

To demonstrate the developed prioritization analysis, a hypothetical example involving six different 

subsystems (electrical distribution, water pipelines, boiler, and three roof sections) was considered. 

The priority analysis calculation is shown in Figure  3.10, with each of the analyzed subsystems in a 

separate row. Of these subsystems, the boiler is considered to be a shared subsystem; i.e., it is part of 

the support zone but serves all zones, as highlighted in Figure  3.3. The three roof sections also relate 

to three hospital zones: clinical, nursing, and support. These six subsystems have been selected 

For each Subsystem: 

Priority Index (OSPI) = (OSI) x (OSD) 

Overall Subsystem 
Importance (OSI) 

Overall Subsystem 
Deficiency (OSD) 

RIZ RIS RIU X 

X 

= 

Zone System Subsystem 

Weight x (100 –CI Score)  

Condition LOS Sustainability Risk + 

Weight x (100 –CI Score)  

Weight x (100 –CI Score)  

Weight x Risk Score = Weight x [(100-CI Score) x  

Consequence Value x Redundancy Adj. /100] 

(0 - 100)  

(0 – 10,000)  

(0 - 100)  

= 

RI = Relative Importance (0-100) 
CI = condition index 

/10,000 

= 

+ + 

X 
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because they provide a demonstration of a scenario that includes a variety of competing subsystems 

from different zones and systems and that also involves both shared and non-shared subsystems, 

subsystems that have an impact on the indoor quality of spaces, and subsystems that are sensitive to 

the risk of failure.  

 

 

 

 

 

 
 

 

 

 

 

 

Figure  3.10: Subsystem priority index calculations  

 

The left-hand side of the figure shows the hierarchy of the subsystems, systems, and zones, with their 

relative importance (RI) factors that have been determined based on the survey tables (zone and 

system RIs from Table  4.3; and subsystem RIs from Table  4.6, Table  4.7, Table  4.8, and Table  4.9). 

Overall subsystem priority index (OSPI) = (OSI) x (OSD) 

Hierarchy with relative importance 

factors (Expert input) 

Figure 3.9 

Weights (Converted to numbers) 

Scores: From inspection & calculation below 

 

Figure 3.9 

100 - ∑ (RI * Quality) / ∑ RI 

Shared subsystem 
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Column G shows the OSI calculated for each subsystem, following the formulation shown in Figure 

 3.9. The middle section of Figure  3.10 also shows the assessment scores for the KPIs related to each 

subsystem (based on the inspection). The KPI weights are obtained from Table  4.6, Table  4.7, Table 

 4.8, Table  4.9, and Table  4.10. All of the scores for the condition and sustainability KPIs are 

determined based on the inspector’s direct rating. The LOS and risk scores, however, require detailed 

calculations. As an example, the circled 28.92 (100-71.08) score for the LOS for the water pipelines 

is calculated based on the assessment of the spaces, as shown at the bottom of Figure  3.10, and the 

circled 0.6 score for the risk assessment for the boiler is established as shown in the bottom right-

hand corner of Figure  3.10. Based on all of these scores and following the calculation scheme 

illustrated in Figure  3.9, the overall priority index (OSPI) for each of the six subsystems is calculated 

and indicated in the last column of Figure  3.10, where the scores are sorted in descending order: the 

top subsystem (electrical distribution) listed is the one most eligible for renewal action.  

 

An examination of the OSPI values listed in Figure  3.10 reveals that the proposed prioritization 

framework demonstrates logical computation and the ability to differentiate among competing assets. 

The following observations can be made with respect to Figure  3.10 and the overall framework: 

 Of all the subsystems, the three windows subsystems (rows 7, 8, and 9) exhibit the worst 

deficiency (OSD = 30, column P in the Figure  3.10 spreadsheet). However, their smaller OSI scores 

put them at the bottom of the list, with the windows of the support zone (row 7) having a higher rating 

than the other two (rows 8 and 9). 

 The boiler (row 6) is a shared subsystem, and as such, its RI is raised by 25 %. Although the 

OSI value is very high and the condition deficiency is identical to those of the other subsystems, its 

very low risk deficiency places it in third priority.  
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 Within the support zone, subsystems no. 1 (row 4) and 2 (row 5) both have the same OSI (48, 

column G) as well as equal condition and risk scores. However, since subsystem 1 has a higher LOS 

deficiency score, it is assigned a higher priority than subsystem No. 2.  

 

The final results produced by the developed approach provide a reasonably wide range of OSPI 

values (column Q), which is beneficial because the assignment of the same priority level to too many 

subsystems can create a problem when fund allocation decisions are being made. 

3.4.4 Overall building performance index  

The OBPI reflects the overall performance of the entire hospital building. The OBPI is calculated by 

aggregating the subsystem performance values (e.g., Figure  3.11) to the upper levels (system, zone, 

and building levels), following equations 3.3 to 3.6, as schematically shown in Figure  3.11. With the 

performance values of any subsystemi being (Subsys.i = 100 – OSDi), then, the performance score at 

the system level becomes (Sys.i, Equation 3.4) is the weighted summation of the subsystems’ 

performance scores, weighted by the relative importance (RIi) of the involved subsystems. 

Afterwards, the performance scores at the zone level (Zonei) and the building level (OBPI) are 

similarly calculated. The detailed equations are as follows: 

Performance at the subsystem level: 

ii OSDSubsys 100.      ( 3.3) 

 

Performance at the system level: 
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Performance at the zone level: 
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Performance at the building level: 
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Figure  3.11: Calculation of the OBPI  

 

Figure  3.12 shows the overall building performance index (OBPI) for the case study 1 (hospital 1), 

that is discussed later in chapter 5, where the performance at all the hospital hierarchy levels were 

calculated using the equations 3.3, 3.4, 3.5, and 3.6. 
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Subsys.1 = 100 – (OSD) 
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Figure  3.12: Example of performance indices at hospital hierarchy’s levels 

 

Zone/System Performance Zone/System Performance Zone/System Performance

Clinical 90 Nursing 86 Support 92

Civil 100 Civil 100 Civil 100

Architectural 91 Architectural 91 Architectural 95

Electrical & Comunications 80 Electrical & Comunications 80 Electrical & Comunications 84

Mechanical 88 Mechanical 84 Mechanical 86

Equipment 100 Equipment N/A Equipment 100

90Overall Building Performance Index (OBPI)

Support  

Clinical  

Nursing  Equation 3.3 Equation 3.4 Equation 3.5 Equation 3.6 
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3.5 Conclusions 

This chapter has introduced the first four functions of the proposed framework for performance 

assessment, prioritization, and capital renewal optimization; a two-dimensional hierarchy of hospital 

systems/spaces, a multi-criteria performance assessment process, a visual all-on-site inspection 

process, and a prioritization mechanism. All of these functions are used in order to identify the overall 

subsystem importance (OSI) and the overall subsystem deficiency (OSD), based on which the overall 

priority index (OSPI) can be determined for each subsystem in order to provide assistance with the 

setting of renewal plans. The overall building performance index (OBPI) calculation was also 

introduced. The fifth function of the proposed framework, capital renewal optimization, is discussed 

in Chapter 6. 

 

The next chapter explains the data collection methodology that was followed for collecting the 

required data from the four hospitals surveyed and provides an analysis of these data, which were 

used for the validation of the prioritization portion of the developed framework. 
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Chapter 4 

Data Collection and Framework Development 

4.1 Introduction 

This chapter introduces the methodology used for the collection of data from four hospitals, which 

formed the basis for the development and validation of the proposed framework. The survey 

questionnaire and an analysis of the data collected are then presented, along with comments about the 

proposed framework. 

4.2 Data Collection Survey 

For the drafting of an integrated assessment methodology for hospital buildings, significant effort was 

directed at soliciting feedback from the maintenance professionals (not the patients and the medical 

staff) about its practicality and also to obtain case study data to be used for the development and 

validation of the system. To acquire this expert input, a survey questionnaire was developed, and a 

user-friendly Excel spreadsheet was chosen as a means of facilitating interactive interview sessions. 

Because hospital maintenance professionals are often too busy to complete lengthy paper-based 

surveys, the questionnaire was carefully designed to reduce data entry time, to maintain the interest of 

the interviewees, and to obtain the most complete and accurate data possible. Spreadsheet functions 

and macros were used in the survey spreadsheets so that the interviewee could easily select a variety 

of options from dropdown menus and thus quickly complete the survey. Before the hospital 

professionals were approached, a draft survey was first tested for comprehensibility and then 

iteratively modified, as shown in steps 1 to 3 of Figure  4.1. The Delphi approach ( Hallowell and 

Gambatese 2010) was selected for the research methodology because it provides a method of 
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acquiring accurate data based on the systematic, interactive, and iterative collection of expert opinions 

during interview sessions. 

 

 

 

 

 

Figure  4.1: Steps of the data collection  

 

The survey questionnaire is divided into two parts. Part 1, as shown in Figure  4.2, includes two 

sections related to general information about the hospital, and seven questions that define the criteria 

to use in the assessment of relative importance factors, hospitals: KPIs at different levels, etc. Part II 

of the survey is focused on the collection of data related to the existing maintenance history, 

maintenance policy, and available decision support tools (Ali and Hegazy 2013a). Both parts are 

discussed in the following subsections. 

 

 

 

 

 

 

Figure  4.2: Part I of the questionnaire survey 

 
Step 5:        

Data Analysis 

 Overall subsystem 

priority index (OSPI) 

 
Step1: 

Questionnaire 
Design 

 Electronic survey 

 Excel sheet 

 Step4:                

Expert interviews 

 Delphi techniques 

 Step 2:           

Questionnaire 

Pre-Test 

 To evaluate the 

quality and clarity 

of the questions. 

 To estimate the 

length of the 

survey. 

 Step 3: 

Questionnaire 

Adjustment 

 Feedback comments  
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4.2.1 Part I of the survey: 

Figure  4.3 shows a screenshot of the spreadsheet that was used in order to obtain general information 

about the hospital: name, location, opening year, age, total covered area, number of beds, level of 

occupancy, total annual budget, and annual building maintenance budget. The information shown in 

Figure  4.3 relates to the first hospital case study, as discussed later.  

 

 

 

 

 

 

 

 

Figure  4.3: General information about the hospital 
 

After the general hospital information is entered, the survey presents seven questions, each on a 

separate spreadsheet. Figure  4.4 shows the “Q1 spreadsheet” that asks about the relative importance 

(RI) of each functional zone within the hospital building. In this section, the experts can choose the 

appropriate choice from the dropdown menu. The (RI) values for each zone are then used as a means 

of calculating the overall subsystem importance (OSI) value, as discussed earlier and illustrated in 

Figure  3.9. 

(Number of beds/Total area covered) * 1000 
Seven questions, each on a separate sheet 
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As indicated in Figure  4.4, for this hospital, the experts defined the clinical zone as equally important 

as the nursing zone but as less important than the support zone. The nursing zone is also considered to 

be less important than the support zone. Once these relative choices are entered, the relative 

importance value (i.e., weight) is automatically calculated using the Analysis Hierarchy Process 

(AHP) formulated in a background spreadsheet, as shown in Figure  4.5.  

 

 

 

 

 

 

 

Figure  4.4: Relative importance of each functional zone 
 

 

 

 

 

 

 

Figure  4.5: AHP spreadsheet for identifying the relative importance of zones 

Weights automatically calculated and verified by interviewees Programmed options to speed data entry 

Pair-wise comparison matrix 
(Entered by experts in Figure 4.4) 

 

Calculated using the AHP process 
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Figure  4.6 shows the “Q2 spreadsheet” that solicits the expert’s opinion with respect to the relative 

importance (RI) of the main systems within each functional zone, using a scale from 0 (N/A) to 100 

(very important). It is interesting to note that no major equipment is located in the nursing zone, for 

which experts assign an RI of zero. As well, because the support zone includes costly equipment, 

architectural systems are given a low weight, but the same is not true for the clinical zone. 

 

 

 

 

 

 

 

 

 

Figure  4.6: Relative importance of each system within each functional zone 

 

Figure  4.7 shows the “Q3 spreadsheet” for soliciting experts’ opinions about the minimum acceptable 

condition for each system within each functional zone. The minimum acceptable condition is used for 

determining whether the subsystem is eligible for renewal work based on a comparison of the 

calculated performance of the related subsystem against this condition. For example, if the overall 

performance of any subsystem with respect to civil work is 60, and the minimum acceptable 

Programmed options (Expert input) to identify RIs of main systems 
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condition is 70, as shown in Figure  4.7, (i.e., 60 < 70) then the performance of this subsystem is less 

than the minimum acceptable condition, and it therefore becomes eligible for renewal.  

 

 

 

 

 

 

 

 

 

Figure  4.7: Minimum acceptable condition for each system 

 

Figure  4.8 shows the “Q4 spreadsheet” that indicates the importance of each subsystem relative to its 

parent system. For example, based on the experts’ input, roofs have greater importance than 

foundations in the civil subsystems. The RI of each subsystem is used for identifying the overall 

subsystem importance (OSI), as discussed in Chapter 3. Figure  4.8 also shows the renewal options 

and their percentage of the replacement cost. 

 

 

 Condition 60 < 70 (i.e., eligible for renewal) 
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Figure  4.8: Relative importance of each subsystem in its main system and associated renewal 

options 

 

Figure  4.9 shows the “Q5 spreadsheet,” which identifies the applicability of the four KPIs to each 

subsystem. Based on the interviewees’ selection of the descriptive level of importance, the weights of 

the KPIs are automatically calculated as shown in the figure. For example, the performance of the 

foundation subsystem is assessed based on condition  only, while the performance of windows is 

assessed with respect to all four KPIs, with equal weight for each: condition, LOS, sustainability, and 

risk. This process of defining the applicability of the four KPIs to the various subsystems makes the 

performance assessment process more structured and also automates the computation of the overall 

performance level based on the field assessment data. 

 
 

 

 

Subsystem importance Renewal options 
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Figure  4.9: Applicability of the four KPIs to each subsystem 

 

Figure  4.10 shows the “Q6 spreadsheet,” which identifies the relative importance of each of the 

 indoor environment quality (IEQ) factors that apply to the spaces in the hospital. The  importance is 

defined on a scale from 0 (low importance) to 10 (high importance), and  the relative importance is 

calculated accordingly, as shown in the right-hand column of Figure  4.10. Assessing the IEQ 

 parameters for each space helps provide an evaluation of the LOS within each space and therefore of 

the  subsystems that provide related services (air, water, light, and noise). For example, poor air 

 quality in some spaces indicates a deficiency in the LOS of the HVAC system as a whole. 

 

 

 

 

 

 

Figure  4.10: Relative importance of the IEQ factors 

(0 – 10) 

Four KPIs 



 

 74 

Figure  4.11 shows the “Q7 spreadsheet,” which identifies subsystems that are sensitive to the risk of 

failure. It also defines the possibility of a subsystem’s failure, the consequences of that failure, and 

the redundancy level for subsystems that involve risk. The level of redundancy is generally an 

indicator of a reduction in the overall risk, as discussed in Section  3.4.2. For example, the high-

voltage switchgear subsystem has a double redundancy level, which means that two standby 

alternatives are available: standby generators and an additional source from the general grid. On the 

other hand, the nurse call system has no backup alternative.   

 

 

 

 

 

 

 

 

Figure  4.11: Probability of failure, consequences, and level of redundancy for risky subsystems  
 

4.2.2 Part II of the survey: capital renewal practices 

Part 2 of the survey questionnaire gathers data about the annual budget for regular maintenance and 

capital renewal work, the amount of backlog related to renewal work, the software used for 

supporting regular maintenance activities, inspection tools, the mechanism for allocating funds among 

Probability of failure, associated consequences, and level of redundancy for risky subsystems only. 
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the hospital components, the decisions that are most challenging for hospital maintenance, 

subsystems that entail the greatest risk, subsystems that are the most costly to maintain, and the cost 

of the renewal options for each subsystem, as shown in Table  4.1. 

 

Table  4.1: Part II of the survey questionnaire  

 

Questions related to your Capital Renewal Practice 

1 How much is the yearly budget for regular maintenance? 

2 How much is the yearly budget for capital renewal work?   

3 Are you experiencing a backlog in renewal work?    Rough %______ Please 

explain:_______________ 

4 What software do you use to support regular maintenance activities? 

     CMMS system      ________________    Spreadsheet     Other: _________ (Please specify.) 

5 Do you use software to organize emergency work orders? ________________ (Please specify.) 

Comment on the efficiency and benefits associated with the software: 
_______________________________ 

6 Do you use software to help with frequent visual inspection?  Internal spreadsheet      or   
Commercial __        

Comment on its efficiency and the benefits derived:___________________________________. 

Does it allow visual assessment? Yes     No   Does it take photos? Yes     No __    Other 

features:_____ 

7 What software do you use to allocate rehabilitation /renewal money to building components? 
(Please specify.)____________________ 

8 How do you prioritize the allocation of spending among various components (e.g., roofs vs. 
HVAC)? (Please specify.) __________                                                                                                                     

9 What is the most challenging decision?     Regular maintenance Responding to emergency 
calls          Inspection        Allocating renewal funds           Other _____________ Please 

explain: _______________ 

10 Which building components are most risky? ________________________ (Please specify.) 
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Table  4.1 (count.) 

11 Do you have a list of emergency work orders for the last two years?  Yes      No     Can we 
access them?   Yes       No ___     

12 Are there government guidelines for renewal spending? _______________ (Please Specify). 

13 Do you have your list of components and last inspection data, age, etc.? Yes        No    Can we 

access?  Yes          No ___    

14 Which items are the most costly to maintain? _______________________________________. 

15 Which items deteriorate most quickly? _________________________________________. 

16 In the table below, please identify the components that can be renewed by in-house maintenance 

staff, and the components that can be renewed only through contracts (outsourcing)? 

17 In general, renewal work is performed approximately _____% in house + _____% through 
outsourcing. 

18 What is the organizational chart for the  maintenance/asset management department at the 
hospital? 

19 Do you set targets for distributing your renewal funding? 

Civil:   %; Architectural:   %; Electrical & Communications:   %; Mechanical:    %; Equipment:    

% 

20 What are the typical renewal options available for each building component? 

21 Do you store the above data electronically?  Yes No Can we access?  Yes No 
____      

22 Do you have historical renewal contract?  Yes No Can we access?  Yes No 

____    

 

4.2.3 Case studies 

Both parts of the survey questionnaire were used for the collection of real-life data from four general 

hospitals: two in Libya and two in Canada (the author could get access to). Table  4.2 shows general 

information about the hospitals, which have different sizes, levels of occupancy, and locations.  The 

first two hospitals have high occupancy levels (i.e., more than 10 beds/1000 m2),   while the last two 

have standard occupancy levels, as defined by Shohet (2003a). 
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In this study, data were collected through interviews with personnel from all four hospitals, but only 

the information about the first two was used for the field testing of the proposed framework.  

 

Table  4.2: General information about the hospitals surveyed 

 

General Information Hospital 1 Hospital 2 Hospital 3 Hospital 4 

Age (years) 38 93 61 60 

Total covered area (m2) 20,000 18,173 47,254 80,000 

Number of beds 540 700 325 165 

Level of occupancy /1000 m2 27 (High) 38.52 (High) 6.88 (Standard) 2.05 (Standard) 

Total annual budget (Canadian $) 26,307,692 23,076,923 70,000,000 255,000 

Annual renewal budget (Canadian $) 5,261,538 461,538 10,000,000 152,000 

Country Libya Libya Canada Canada 

Use in this research 
 Data collection 
 Visual inspection 

 Data collection 
 Visual inspection 

 Data collection  Data collection 

 

 

For all of the hospital case studies, three consecutive interview sessions were conducted; for part I of 

the survey, the interviews were with maintenance and construction professionals (e.g., Civil, 

Architectural, Mechanical, Electrical, and Communication). The first interview involved a meeting 

with two to four hospital professionals (maintenance and construction) in order to determine the 

relative importance of the hospital zones, the spaces included within each zone and their relative 

importance, IEQ factors, and the building systems and subsystems.  

 

The second interview focused on determining the set of KPIs that apply to each subsystem, and the 

third interview was directed at collecting information about the annual budget for regular 

maintenance, the capital renewal process followed at the hospital, and the software typically used for 

maintenance activities and inspection assessment.  

 
For Part II of the survey, all of the data were collected during one interview session with the 

maintenance experts. Based on both the Part I and Part II sessions, a variety of charts and tables were 
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created and then used for the development and validation of the proposed framework. An analysis of 

the data collected is provided in the next subsection. 

 

4.3 Data Analysis 

This subsection introduces the analysis of the data collected from the interviews with maintenance 

experts at the hospitals surveyed, as represented by step 5 in Figure  4.1. To facilitate the comparison 

and analysis of the data, the information was summarized in tables and figures.     

 

Table  4.3 shows the relative importance of the functional zones and related subsystems for all of the 

hospitals. All of the experts in all of the hospitals ranked the support zone (which includes all of the 

shared subsystems) as the zone with the highest importance (60 %), whereas the clinical zone and the 

nursing zone were graded at 20 % each.  In terms of the systems, the electrical and communication, 

mechanical, and equipment systems were allocated the highest relative importance, followed by the 

architectural systems which vary greatly in their importance from one zone to another. Civil systems 

were assigned the lowest weights. 

 

Table  4.3: Relative importance of zones and related systems 
 

System 
Hospital 1 Hospital 2 Hospital 3 Hospital 4 

Clinical 
(20%) 

Nursing 
(20%) 

Support 
(60%) 

Clinical 
(20%) 

Nursing 
(20%) 

Support 
(60%) 

Clinical 
(20%) 

Nursing 
(20%) 

Support 
(60%) 

Clinical 
(20%) 

Nursing 
(20%) 

Support 
(60%) 

Civil 25 25 25 25 25 25 25 25 25 70 70 70 

Architectural 90 90 40 90 90 40 90 70 40 70 70 70 

Electrical & 
Communications 

100 100 80 100 100 80 100 100 80 100 100 100 

Mechanical 100 100 80 100 100 80 100 100 80 100 100 100 

Equipment 100 N/A 80 100 0 90 100 N/A 90 100 N/A 100 
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Table  4.4 shows the relative importance of the spaces within the hospital using a scale from 0 (not 

important) to 10 (very important). Spaces in the clinical and nursing zones are generally assigned a 

high importance level, while spaces in the support zone area designated as having less importance, 

with the exception of the computer, electrical, mechanical, sterilization rooms and the renal. This 

discrepancy indicates that the level of service in these spaces should be high. 

 

Table  4.4: Relative importance of functional spaces 

 

Space Zone 
Hospital 1 Hospital 2 Hospital 3 Hospital 4 

RI* RI RI RI 

Operating Room Clinical 10 10 10 Not obtained 

Preparation Room Clinical 9 9 9 Not obtained 

X-Ray Room Clinical 8 8 8 Not obtained 

Assessment Room Clinical 7 7 7 Not obtained 

Patient Room Nursing 8 8 8 Not obtained 

Observation Room Nursing 6 6 6 Not obtained 

Nurse Station Nursing 4 4 4 Not obtained 

Computer Server Support 9 9 9 Not obtained 

Electrical Room Support 9 9 9 Not obtained 

Mechanical Room Support 9 9 9 Not obtained 

Sterilization Room Support 9 9 9 Not obtained 

Renal Support 9 9 9 Not obtained 

Change Room Support 4 2 4 Not obtained 

Mosque/Chapel Support 2 2 2 Not obtained 

Common Area Support 6 2 6 Not obtained 

Corridor Support 2 2 2 Not obtained 

Dictating Room Support 2 2 2 Not obtained 

Housekeeping Support 4 2 4 Not obtained 

Janitor Closet/Locker Support 2 2 2 Not obtained 

Bathroom Support 6 2 6 Not obtained 

Office Support 6 2 6 Not obtained 

Soiled Utility Support 6 2 6 Not obtained 

Staircase Support 7 2 7 Not obtained 

Storage Support 7 2 7 Not obtained 

Waiting Room Support 4 2 4 Not obtained 

Lounge Support 2 2 2 Not obtained 

Autopsy Room Support 4 7 4 Not obtained 

Cart/Can Washing Support 7 7 7 Not obtained 

Clean Linen Support 5 3 5 Not obtained 
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Table  4.4 (count.) 

Communication Station Support 5 1 5 Not obtained 

Conference Room Support 4 1 4 Not obtained 

Cooler/Freezer Support 5 9 5 Not obtained 

Lab Support 8 8 8 Not obtained 

Library Support 3 1 3 Not obtained 

Lobby Support 4 4 4 Not obtained 

Maintenance Support 7 7 7 Not obtained 

Kitchen Support 8 8 8 Not obtained 

Library Support 3 1 3 Not obtained 

Cafeteria/Retail Store Support 2 2 2 Not obtained 

Receiving Support 7 7 7 Not obtained 

Waste Room Support 7 1 7 Not obtained 

*RI=Relative importance 

 

Table  4.5 shows the minimum acceptable condition for each system within each functional zone of 

each hospital. Civil and architectural systems generally have a greater margin of deterioration than the 

other three systems whereas the electrical, mechanical, and equipment systems have zero tolerance, 

especially in the clinical and nursing zones, an indication that these systems must operate without 

interruption (i.e., any failure may cost lives). 

 

Table  4.5: Minimum acceptable condition for each system 
 

System 
Hospital 1 Hospital 2 Hospital 3 Hospital 4 

Clinical 
(20%) 

Nursing 
(20%) 

Support 
(60%) 

Clinical 
(20%) 

Nursing 
(20%) 

Support 
(60%) 

Clinical 
(20%) 

Nursing 
(20%) 

Support 
(60%) 

Clinical 
(20%) 

Nursing 
(20%) 

Support 
(60%) 

Civil 70 70 70 70 70 70 70 70 70 60 60 70 

Architectural 90 70 50 90 90 70 90 70 50 70 70 70 

Electrical & 
Communications 

100 100 90 100 100 90 100 100 90 100 100 100 

Mechanical 100 100 90 100 100 90 100 100 90 100 100 100 

Equipment 100 N/A 90 100 N/A 90 100 N/A 90 100 N/A 100 

 

The relative importance of each subsystem and the associated KPIs for all hospitals are shown in 

Table  4.6 to Table  4.11. Table  4.6 shows the relative importance of each civil subsystem with respect 
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to the civil system, along with the applicable KPIs. In general, all of the maintenance experts at all of 

the hospitals ranked the electrical, HVAC, medical gases, and fire protection subsystems as very 

important subsystems, and their KPIs (e.g., condition, LOS, and risk) were also evaluated as being 

very important. All experts considered the condition KPI to be the most important KPI for civil 

subsystems and the sustainability KPI to be the least important. Of the civil subsystems, the roofs and 

the stairs were considered to be the subsystems involving the greatest risk.  

Table  4.6: Relative importance and KPIs related to civil subsystems 

 

 

 

 

 
 
*V = Very Important; H = Highly Important; M = Moderately Important; and O = Of Minor Importance 

 
 

Table  4.7 shows the relative importance and KPIs related to architectural subsystems. From the table, 

it can be seen that the windows and ceilings subsystems are the only ones that need to be assessed in 

terms of the four KPIs. In hospital 1, the façade subsystem has the least relative importance because 

the external façade of this hospital is made of marble, which mean that the experts at this hospital do 

not encounter maintenance problems with respect to this subsystem. 

 

All of the experts at all four hospitals consider the floors subsystem to be very important and to be 

associated with a high risk level, as shown in Table  4.7. Interestingly, the relative importance of the 

parking and paved walkways is considered to be high at all hospitals because some experts consider 

* 
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these two subsystems to entail high risk for hospital users, and the user might sue in case of an 

accident. Other experts consider these subsystems to have a significant impact on the level of service. 

Table  4.7: Relative importance and KPIs related to architectural subsystems 

 

 

 

 

 

 

 

 
*V = Very Important; H = Highly Important; M = Moderately Important; and O = Of Minor Importance 

** Shared subsystems have a Relative Importance (RI) = 1.25 of the above values. 

 

 

The gardens were assigned the lowest level of importance for all of the hospitals surveyed, but the 

exterior lighting subsystem is given a high relative importance because it makes the surrounding area 

very bright at night and consequently improves the performance of the closed-circuit television 

(CCTV) subsystem.  

 
Table  4.8 shows the relative importance and the KPIs related to electrical and communication 

 subsystems. As indicated in the table, all of the experts at the four hospitals consider all electrical 

subsystems to be among the most important subsystems, and believe that their performance should be 

 assessed in terms of three KPIs (condition, LOS, and risk) with equal levels of importance.   

 

* 

** 
** 

** 
** 
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The experts at hospital 1 give the CCTV subsystem a high grade because they believe in the 

importance of this subsystem for indicating the arrival of maintenance engineers  to perform renewal 

work on the medical gas valve; it previously failed and led to two deaths. 

   
Maintenance experts in hospital 3 consider the master clock subsystem to be very important because 

 it allows medical staff in the operating rooms, for example, to monitor the elapsed duration of 

 anesthesia. Intercoms are not used in the first two hospitals.  

 

Table  4.8: Relative importance and KPIs related to electrical and communications subsystems 

 

 

 

 

 

 
 

 
*V = Very Important; H = Highly Important; M = Moderately Important; and O = Of Minor Importance 

** Shared subsystems have a Relative Importance (RI) = 1.25 of the values above. 

 

 

Table  4.9 shows the relative importance and the KPIs associated with the mechanical subsystems. As 

shown in the table, the experts in all four hospitals consider the water treatment plant to have a high 

level of importance because this subsystem provides purified water for the boilers, chillers, and 

medical devices, as well as for the hospital users. A sewage pump station is not used in either hospital 

2 or hospital 3. 

* ** 
** 
** 
** 
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Hospital 2 uses split air-conditioning units for providing cooled air. The advantages of these separated 

units are minimal operation and maintenance costs, along with localized consequences of failure. This 

hospital also has only fire extinguisher cylinders not a complete fire system.  

 
All of the experts at all four hospitals consider the elevators to be an important subsystem that 

provides a high level of service, and they thus rated the LOS KPI as very important. The medical 

gases subsystems were also universally included in the most important subsystems, with their 

performance to be assessed in terms of three KPIs (condition, LOS, and risk), all of which were 

assigned a very high importance level. 

Experts in the hospital 1 gave the boiler low importance because the hot weather in Libya makes the 

need to the hot water can be postponed during the repair or renewal works. 

Table  4.9: Relative importance and KPIs related to mechanical subsystems 

   

 

 

 
 
 

 

 

 

 
 
*V = Very Important; H = Highly Important; M = Moderately Important; and O = Of Minor Importance 

** Shared subsystems has their Relative Importance (RI) =1.25 of the values above. 

* ** 

** 

** 
** 
** 
** 

** 

** 
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Table  4.10 shows the relative importance and related KPIs for equipment subsystems. As shown in 

the table, an MRI machine is not available in the first two hospitals, but it has been assigned a high 

relative importance by the experts at the last two hospitals. Its performance should be assessed in 

terms of condition, LOS, and risk. The relative importance of the CT scanner and X-ray equipment is 

considered high for all four hospitals.  

 

Hospitals 3 and 4 do not have their own laundry services; all of this work is conducted outside the 

hospital in order to minimize the hospital’s operational and maintenance costs. 

Table  4.10: Relative importance and KPIs related to equipment 

 
 

 

 

 

 

 
*V = Very Important; H = Highly Important; M = Moderately Important; and O = Of Minor Importance 

 

 

One of the unexpected findings of the survey is shown in Figure  4.12, which shows that the 

interviewees reported that an assessment of risk is needed for 91 % of the hospital subsystems, as 

opposed to the initial expected result of 5 %.  

 

 

 

* 
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Figure  4.12: Percentage of subsystems for which each KPI applies 
 

All of the maintenance experts ranked the electrical, HVAC, medical gases, and fire protection 

subsystems as high-risk subsystems because the malfunction of these subsystems has greater negative 

consequences than that of the architectural subsystems, as shown in Table  4.11. For example, the 

damage caused by the failure of the high-voltage switchgear will be more severe than that resulting 

from the failure of a door or window. The redundancy level (backup subsystems) for such subsystems 

is therefore double in order to minimize the risk of failure. 
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Table  4.11: Risk consequences associated with various subsystems 

 

Subsystem 

Hospital 1 Hospital 2 Hospital 3 Hospital 4 
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Civil             

Foundations N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Columns N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Beams N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Roofs L H N/A L H N/A L H N/A L H N/A 

Stairs N/A N/A N/A L H N/A L H N/A L H N/A 

Architectural             

Windows L L N/A L L N/A L L N/A L M N/A 

Doors L L N/A L L N/A L L N/A L M N/A 
Walls L L N/A L L N/A L L N/A L M N/A 

Façade L L N/A L L N/A L L N/A L M N/A 
Partitions L L N/A L L N/A L L N/A L M N/A 

Floors L L N/A L L N/A L L N/A L M N/A 

Ceilings L L N/A L L N/A L L N/A L M N/A 

Signage N/A N/A N/A L L N/A L L N/A L L N/A 

Parking L L N/A L L N/A L L N/A L H N/A 

Paved Walkways L L N/A L L N/A L L N/A L H N/A 

Gardens N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Exterior lighting L M Partial L M Partial L M Partial L H Partial 

Electrical & Comm.             

High Voltage Switchgear L H Double L H Double L H Double L H Double 
Electrical Transformers L H N/A L H N/A L H N/A L H Double 

Standby Generator L H Partial L H Double L H Double L H Double 

Uninterrupted Power Supply L H Double L H Double L H Double L H Double 

Low Voltage Switchgear  L H Partial L H Partial L H Partial L H Partial 

Electrical Distribution L H Partial L H Partial L H Partial L H Partial 

Nurse Call System L L N/A L M N/A L H N/A L H N/A 

Intercom System N/A N/A N/A N/A N/A N/A L L N/A L L N/A 

Telephone System L H Partial L H Partial L H Partial L H Partial 

Paging System N/A N/A N/A N/A N/A N/A L L N/A L L N/A 

Closed-Circuit TV L L N/A N/A N/A N/A L L N/A L L N/A 

Master Clock L H Partial N/A N/A N/A L H Partial L L N/A 

Mechanical             
Water             

Water Treatment L H N/A L H N/A L M Double L M N/A 
Booster Plant L H N/A L H N/A  N/A N/A L M Partial 

Pipelines L H Partial L H Partial L H N/A L H N/A 

Fixtures L H Partial L H Partial L H Partial L H Partial 

 Sewage             

Sewage Pump Station L H N/A N/A N/A N/A N/A N/A N/A L H N/A 

Pipelines L H N/A L H N/A L H N/A L H N/A 

Fixtures L H N/A L H N/A L H N/A L H Partial 

HVAC             

Chiller Unit(s) L H Partial N/A N/A N/A L H Double L H Partial 

Boiler Unit(s) L H Partial N/A N/A N/A L H Double L H Partial 
Coolant Towers L H Partial N/A N/A N/A L H Double L H N/A 

Air-Handling Unit L H Partial N/A N/A N/A L M Partial L M Partial 
Ducts/Diffusers L H N/A N/A N/A N/A L L N/A L L N/A 

Fire protection             

Pump (s) L H Partial N/A N/A N/A L H Partial L H Partial 

Pipes& Valves L H Partial N/A N/A N/A L H Partial L H Partial 

Fire Detection L H Partial N/A N/A N/A L H Partial L H N/A 

Elevators             

Power Cables L H N/A L H N/A L H N/A L H Full 

Mechanical Room L L N/A L L N/A L L N/A L H N/A 

Medical gases             

Source Equipment L H Partial L H Partial L H Partial L H Partial 
Pipelines L H Partial L H Partial L H Full L H Partial 

Valves L H N/A L H N/A L H N/A L H N/A 
Compressor L H Full L H Full L H Partial L H Full 
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Table  4.11 (coun.) 

*High = 100; Medium = 70; Low = 40   
Note: Redundancy adjustment: Partial = 50 %; Full = 10 %; Double = 2 % 
 
 
 
 
Table  4.12 shows the relative importance of the IEQ factors for each hospital. Air quality and water 

quality factors are more important than lighting intensity and noise level because they have a more 

direct impact on the health of hospital users. 

 
Table  4.12: Relative importance of IEQ factors 

 

Indoor Environmental Quality (IEQ) 

Factors 
Hospital 1 Hospital 2 Hospital 3 Hospital 4 

Air quality & temperature 29 26 29 29 

Water quality 29 29 29 29 

Lighting intensity 21 23 21 21 

Noise level 21 22 21 21 

Total 100 100 100 100 

 

4.4 Conclusions 

This chapter has introduced the survey questionnaire that was used for gathering the data necessary 

for the development and validation of the proposed framework. The parts of the questionnaire were 

discussed separately, and the rationale behind each question was explained. Part I of the survey 

identified the relative importance of the main functional zones and spaces, systems, and subsystems, 

Subsystem 

Hospital 1 Hospital 2 Hospital 3 Hospital 4 
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Equipment             
MRI N/A N/A N/A N/A N/A N/A L L Full L L Full 

CT scanner L L Full N/A N/A N/A L L Full L L Full 
X-ray L L Full N/A N/A N/A L L Full L L Full 

Kitchen L L Partial L L Partial L L Partial L L Partial 

Laundry L L Partial L L Partial N/A N/A N/A N/A N/A N/A 
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along with the applicable KPIs that best measure the performance of each subsystem and the relative 

importance of each KPI. Part II was also used to gather data from the maintenance departments with 

respect to the capital renewal practices applicable at the case study hospitals.  

 
The data collected from the four general hospitals in the two countries were summarized in the form 

of tables and figures, and then analyzed. Based on the data analysis, some of the general findings are 

as follows: (1) the support zone is the most important zone (60 %), followed by the clinical and 

nursing zones (20 % each); (2) the subsystems that entail the greatest risk are the electrical, HVAC, 

medical gases, and fire subsystems; (3) the percentages of subsystems that should be evaluated in 

terms of the condition, LOS, sustainability, and risk are 100 %, 92 %, 17 %, and 91 %, respectively, 

and the relative importance levels of the quality of the indoor air, water, light, and noise are 29 %, 29 

%, 21 %, and 21 %, respectively. 
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Chapter 5 

Performance Assessment Case Studies 

5.1 Introduction 

This chapter provides details of the results of the performance assessment fieldwork carried out using 

the proposed framework for two of the hospital case studies: hospital 1 and hospital 2. The findings 

proved an effective mechanism for refining the proposed framework and validating its applicability 

for a healthcare environment. 

 

5.2 Case Study 1 (Hospital 1) 

This 38-year-old hospital is one of the largest in northeastern Libya. It was built in 1973 and then 

renewed in 2007. The hospital has a six-story main building, with a basement (mainly support 

services), ground floor (the remainder of the support spaces as well as clinical spaces), and four other 

floors (primarily nursing and support space), as detailed in Table  5.1. The hospital also includes other 

separate but linked facilities that house the boilers, chillers, water tank, coolant tower, parking, and 

gardens, as shown in Figure  5.1. The total area covered is 20,000 m
2 
divided among the six floors, as 

indicated in Table  5.1. The hospital has 540 beds and serves a population of more than two million. In 

general, the occupancy level of this hospital is 27 beds/1000 m
2
, which is high, according to Shohet 

(2003b).  
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Figure  5.1: General layout of the hospital 
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Table  5.1:  Floor areas, with number and type of spaces  

 

Floor 
Area 

(m2) 
No. of Spaces 

Clinical Nursing Support 

m
2
 % m

2
 % m

2
 % 

Basement 5,194 138 388 7.5 __ __ 4806 92.5 

Ground 5,712 304 1382 24.2 90 1.6 4240 74.2 

First 2,275 146 __ 0.0 1024 45.0 1251 55.0 

Second 2,269 146 __ 0.0 1024 45.0 1245 55.0 

Third 2,275 146 __ 0.0 1024 45.0 1251 55.0 

Fourth 2,275 146 __ 0.0 1024 45.0 1251 55.0 

Total 20,000 1,026 1770 9 4186 12 14044 07 

 

5.2.1 Maintenance practice 

The total annual budget of this hospital is reported as $26,307,692  (Canadian dollars) including the 

annual maintenance budget, which is   $5,261,538 (Canadian dollars) (i.e., 20 %), as shown in Table 

 4.2.   The hospital has a small maintenance department that is staffed by experts in a variety of fields 

(civil, mechanical, and electrical), that relies on limited resources, and that lacks both a computerized 

maintenance management system (CMMS) for maintenance purposes and software that can be used 

to prioritize subsystems for renewal plans. They also do not have a visual inspection application for 

assessing the physical condition of each subsystem. The maintenance engineers therefore experience 

significant difficulty obtaining the maximum benefit for the renewal funds available. 

 
As shown in Table  5.2, in this hospital, all of the maintenance work for the civil and equipment 

systems is conducted by external contractors, 70 % of the maintenance work for the electrical and 

mechanical systems is performed by hospital maintenance staff, and 60 % of the maintenance work 
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for the architectural systems is executed by external contractors. Overall, approximately 70 % of the 

renewal work is covered by the maintenance staff (in-house) and 30 % by contractors (outsourced).  

 

Table  5.2: In-house versus outsourced component maintenance 

 

System In-house (70 %) Outsourced (30 %) 

Civil  -------- 100 %  All 

Architectural 40 % Carpentry, painting 60 % Windows, plastering, brickwork 

Electrical & 

Communications 
70 % 

External and internal 

lighting, low-voltage 

electrical work, switches 

30 % 
Transformers, exterior lighting, 

high-voltage switchgear 

Mechanical 70 % 

Chillers, boilers, water 

treatment, pump 

installation, HVAC 

30 % 
Elevators, repair of water 

pumps 

Equipment  --------- 100 % CT scanner and X-ray 

 

The maintenance department distributes renewal funding among the hospital systems approximately 

as follows: Civil, 5 %; Architectural, 10 %; Electrical and Communications, 30 %; Mechanical, 35 %; 

and Equipment, 20 %. 

 
Based on the experience of the maintenance engineers at this hospital, the subsystems that entail the 

greatest risk are the medical gases and electrical systems, and the boilers and the generators are the 

most costly items to maintain due to the level of difficulty involved in their upkeep. The highest rate 

of deterioration is exhibited by the boilers and the chillers. Due to the hot Libyan environment and the 

consequent importance of cooling, the chillers have been assigned a higher priority than the boilers.  

5.2.2 Visual inspection results 

With the cooperation of two of the maintenance  engineers, the developed visual inspection 

application was used for assessing both the physical condition of the subsystems and the indoor 
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environment factors within the spaces. The overall assessment process for the all of the subsystems 

and spaces in the hospital building took about four hours, a shorter time than expected due to two 

factors: the benefit of  the experience of the maintenance engineers, which enabled attention to be 

directed at less than adequate systems/subsystems, and the efficiency of the developed visual 

inspection application, which makes the assessment process both fast and productive. 

 

The physical condition assessment process employed a four-level scale (good, fair, poor, and critical), 

with poor indicating a score of 25, and good denoting a score of 100). The data collected were stored 

directly into an Excel spreadsheet, as shown in Figure  5.2. For example, the physical condition of the 

foundations in all functional zones is indicated as good (100 %), while the physical condition of 80 % 

of the doors is shown as good and of 20 % is fair; the overall assessment is thus 95 %, or good. 

 

 

 

 

 

 

 

Figure  5.2: Portion of the physical condition results 

 

The indoor environment quality (IEQ) assessment process was carried out only for the spaces that 

have problems. For example, 66 of the 146 spaces in the third floor of the hospital have a deficiency 

Assessment Scale:  

G (good), F (fair), P (poor), or C (critical) Foundations are all in good condition 

Doors: 80 % in good condition and 20 % in fair condition 

Calculated condition index (CI) 
by using equation (3.1) 
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in the water system, parts of the assessment results for those spaces are shown in Figure  5.3, 5.4, and 

5.5; the water quality is indicated (in yellow) as not good due to the corroded pipelines in this floor, 

and only 26 spaces in this floor (third floor) have air problems, as shown in Figure  5.3 and Figure  5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

*RI = Relative importance  

 

Figure  5.3: Portion of the IEQ factor results 
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Figure  5.4: Water and air deficiencies for the third floor 

 

 

 

 

 

 

 

 

 

Figure  5.5: Locations of the spaces affected (water quality) in the third floor 

 

During the visual inspection of the hospital building subsystems, observations were recorded about 

the current condition of the subsystems, as shown in Table  5.3.  

Lighting (%) Air Quality (%) Noise (%) Water (%)

Basement 0 0 0 0

Gorund 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 6 0 40

4 0 0 0 0

Overall deficiency 0 1 0 7

Floor

IEQ Deficiencies

Water deficiency for the 3rd floor Air deficiency for the 3rd floor 

Water deficiency for the whole hospital Air deficiency for the whole hospital 

Total number of spaces is 146  

Spaces affected are 66 
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Table  5.3: Visual inspection observations 

 

Subsystem Assessment/Observations Photos 

WATER TREATMENT PLANT Hospital has two water treatment plants. 

One does not work and the other produces 

half of its productivity (i.e., does not cover 

the hospital demand). Both need renewal. 

Water treatment plant lacks purification 

filter and does not have a conductivity 

meter after the membrane. 

There is a lack of basic operational 

materials such as cotton filters.  

HVAC (Chillers & AHU) Central air conditioning system contains 

four chillers, three of which are operating; 

the other needs maintenance. 
Air handling units (AHU): design error for 

the air intake vents, located on the  ground 

level, led to the withdrawal the  dust and 

dirt inside the unit, and thus speeded up the 

clogging of the  filters. 

Mechanical room does not have a working 

extractor to pull out stale air and draw in 

fresh air.  

HVAC (Boilers) One of the two boilers is not working and 

needs renewal. 

Chemical substances that are used to 

prolong the life of boilers and protect them 

from damage are lacking. 
There is a need for backup water pumps to 

supply the boilers with water. 

There is a need for backup fuel pumps to 

supply the boilers with fuel. 
 

SEWAGE PUMP STATION This station needs renewal. 

 

 

MEDICAL GASES An oxygen plant is needed in order to 

provide the hospital with the quantity of 

oxygen required in an emergency situation. 

A device for measuring the degree of 

purity of the medical oxygen is needed. 

Spare parts are lacking. 

Additional oxygen tank of 10,000 liter 

capacity has been installed to cover 

hospital demand during emergency 
situations. 
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Subsystem Assessment/Observations Photos 

WINDOWS Due to the heavy weight of the window 

glass, some windows have failed. 

 

HIGH-VOLTAGE 

SWITCHGEAR 

Existing transformers are insufficient to 

cover the full loads of the hospital: these 

transformers cannot run all HVAC 

equipment at the same time. 

The main switchboard needs to redistribute 

the loads. 

A voltage regulator should be installed to 

protect the medical devices in case of 

voltage fluctuations. 
For the most important departments, the 

uninterrupted power supply units should be 

replaced with new ones. 

 

ELECTRICAL 

DISTRIBUTION SYSTEM 

The electrical distribution wires are 

incapable of carrying the hospital loads 

due to their poor design; therefore, all 

wires need to be replaced with ones that 

have a larger cross-section. The low-

voltage switchgear board should also be 

replaced with a new one. 

 

ELEVATORS Two of the five elevators do not work and 

need renewal work. 

 

 

Table 5.3 (cont.) 
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Subsystem Assessment/Observations Photos 

WATER PIPLINE SYSTEM The main water pipeline is unable to cover 

the hospital's water needs. 

The lack of water purity has led to 

repeated breakdowns in the water 

treatment plant, which thus disrupts 

medical devices. 

The water pipeline network is corroded, 

which led to  repeated diversions and a 

second pipeline explosion, resulting in 

 damage to the hospital's  medical devices. 

 

 
 

Details of the visual inspection of the hospital subsystems are as follows:  

Water treatment plant: This unit is among the most important systems in the hospital building. For 

water to become fit for the desired end use, it is purified in the plant purifies through the removal of 

contaminants such as suspended solids, bacteria, viruses, and fungi, along with minerals such as iron, 

manganese, and sulphur. The existing water treatment plant includes two plants with a total 

production of 16,000 L/hr. One of these plants is not working and needs renewal, and the other 

produces only 7,000 L/hr (i.e., half of its productivity), a quantity that does not cover hospital 

demand. This shortfall in production is due mainly to the shortage of the productivity of the plants; 

shortage of  chemicals, membranes, and spares. Both plants need renewal work because they have a 

profound effect on the boilers and the chillers, the functioning of which is dependent on purified 

water. Figure  5.6 shows some of the observations related to the water treatment plant. One of the 

most important factors is that the quality of the surrounding environment and utilities, for example, 

the quality of the water in the main city or area pipelines, has a significant impact on the age and life-

cycle costs of the water treatment plant. An additional consideration is that the relative importance of 

Table 5.3(cont.) 

http://en.wikipedia.org/wiki/Suspended_solids
http://en.wikipedia.org/wiki/Bacteria
http://en.wikipedia.org/wiki/Virus
http://en.wikipedia.org/wiki/Fungi
http://en.wikipedia.org/wiki/Mineral
http://en.wikipedia.org/wiki/Iron
http://en.wikipedia.org/wiki/Manganese
http://en.wikipedia.org/wiki/Sulphur
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this unit is high because it serves all hospital systems, devices, and end users. Any failure affects the 

functionality of other systems, such as boilers, chillers, and medical devices. 

 

 

 

 

 
Figure  5.6: Low-capacity water treatment plant 

 

 

HVAC: The central air conditioning system contains four chillers, three of which are operating; the 

other needs maintenance. Figure  5.7 reveals the poor design of the air handling units, in which the air 

intake vents are located at ground level, which could lead to the intake of dust and dirt inside the unit 

and thus speed up the clogging of the filters. This unit therefore needs to be relocated so that such 

design problems are resolved.  

 

 

 

 

 

Figure  5.7: Problems in air handling units (AHU) 
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Boilers are also among the important subsystems of the HVAC system because they provide the 

hospital with hot water. The hospital has two boilers: one needs replacement, and the other cannot 

supply the hospital demand, as shown in Figure  5.8. In addition, an insufficient number of water 

pumps provide the boilers with water and need renewal. The pipelines of the coolant tower are also 

corroded and should be renewed, as shown in Figure  5.8.  

 

 

 

 

 

 

 

 

Figure  5.8: Problems identified in the boilers, chillers, and coolant towers 

 

Sewage pump station: The existing sewage pump station does not work properly and needs to be 

renewed, and a new sewage treatment plant is also required. 

 

Medical gases: the medical gases system, generally, is essential for supplying the gases, such as 

oxygen, nitrogen, and medical air, through the pipes to various parts of the hospital, and this makes 

all its subsystems are very important. The main subsystems of the medical gases system are the 

pipelines, valves, compressors, and the source equipment, and this system is usually well monitored 

This chiller does not work (1 of 4) 

This boiler does not work (1 of 2) 

Coolant tower pipe leakage 

Coolant tower pipe leakage 

This chiller does not work (1 of 4) 

This boiler does not work (1 of 2) 
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by a variety of computerized alarm systems so that the required precautions and measures can be 

implemented in order to avoid any consequences of the failure of any of the subsystems. For example, 

the blockage of a small valve due to impure oxygen led to two deaths. A resulting observation is thus 

that the hospital needs an oxygen plant to provide the hospital with the required quantity of pure 

oxygen so that such consequences can be prevented. As a temporary solution, a 10,000 liter oxygen 

tank has been provided to cover the hospital demand. Figure  5.9 shows photographs of the oxygen 

plant and the failed valve. 

 

 

 

 

 

 

 

 

 
Figure  5.9: Problems with the medical gases system  

 

Doors and windows: About 20 % of the hospital doors need lock and frame repairs, as shown in 

Figure  5.10. On the other hand, all of window frames need replacement due to the heavy weight of 

the glass panes.  

Failed valve that led to two deaths No purification 

system (old type) 
Six oxygen cylinders only 

Additional oxygen 

tank (10,000 liters) 

40 oxygen cylinders 

Additional oxygen 

tank (10,000 liters) 
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Figure  5.10: Problems with doors and windows 

 

High-voltage switchgear: The high-voltage switchgear is also among the most important systems 

because it provides power to all of the hospital systems. The high-voltage switchgear is usually 

connected from two different general electrical grid sources in order to guarantee a continuous power 

supply. The switchgear is also used for the control, protection, and isolation of the electrical 

equipment. The general condition of the high-voltage switchgear has deteriorated, and it needs to be 

renewed. In addition, the two existing standby generators are old and are incapable of supplying the 

loads required by the hospital subsystems, for example, the HVAC boilers and chillers, as shown in 

Figure  5.11. 

 
Due to the poor ventilation of the room that houses the switchboard, the temperature rises inside the 

room and causes the switchboard to fail.  The automatic main switch also fails to operate properly 

when power from the main network is restored.   

 

 

 

 

 

Figure  5.11: Problems with the high-voltage switchgear subsystems 
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Low-voltage switchgear (electrical distribution): The electrical distribution wires are incapable of 

carrying the hospital loads due to their poor design; therefore, all of the wires need to be replaced 

with ones that have a larger cross-section. The low-voltage switchgear boards need to be replaced 

with new ones, as shown in Figure  5.12. 

 

 

 

 

 

Figure  5.12: Problems with the low-voltage switchgear (electrical distribution) 

 

Elevators: Elevators represent an important subsystem that provides transportation for food, patients, 

visitors, and medical staff to the hospital floors.  The hospital has five elevators, two of which are not 

working and need to be renewed, as shown in Figure  5.13. 

 

 

 

 

 

Figure  5.13: Elevator problems (2 of 5 not working) 
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distribution 
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Water pipeline systems: The main water pipeline is insufficient to provide the water supply required 

by the hospital. The lack of water purity has led to repeated breakdowns in the water treatment plant, 

with consequent disruptions to medical devices. The water pipeline network is also corroded, which 

has led to repeated diversions and pipeline explosions, events that sometimes damage medical 

devices. In some unoccupied levels of the building, such as levels 3 and 4, the pipelines are corroded 

and need to be replaced because these pipes have been left filled with water for long periods without 

use, as shown in Figure  5.14.  

  

 

 

 
Figure  5.14: Poor water quality due to corroded pipelines 

 

Pump house: The pumps in this house are among the most important subsystems because they draw 

water from the main pipeline and boost it to the storage tanks in order to cover the hospital demand 

and to compensate for any low flow from the main network. To provide a safe working environment 

for the maintenance staff, some general renewal work is needed for the pump house: internal lighting, 

electrical cables, and electrical boards. Figure  5.15 shows some of the subsystems that should be 

renewed. 

 

 

 

Corroded pipelines 

Poor water quality  Poor water quality  
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Figure  5.15: Problems with the pump house 

 

 

Fire alarm system: The fire alarm is in good condition. 

 

 

 

 

Figure  5.16: Fire alarm system 

 

Parking and walkway pavement: The parking lot and paved walkways are in good condition and 

provide a high level of service. 

 

 

 

 

Figure  5.17: Parking and paved walkways 
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5.2.3 Prioritization results 

As indicated in Figure  5.18, based on the survey data and the visual inspection of the hospital 

subsystems and spaces, the overall subsystem importance (OSI), overall subsystem deficiency (OSD), 

and overall subsystem priority index (OSPI) were calculated, using the formulations discussed in 

section  3.4. A portion of the OSI calculation for each subsystem (row) is shown in Figure  5.18a, 

which is the product of the multiplication of the relative importance (RI) values for the subsystem, 

system, and zone. The calculation of the OSD and the OSPI are also shown in Figure  5.18b, where 

column I represents the visual inspection value of the condition index score obtained during the actual 

site visit to the hospital. Based on this value, the KPI deficiencies associated with each subsystem are 

calculated as shown in columns K, M, O, and Q: (100     condition index score). The LOS deficiency 

indicated in column M is then modified according to the IEQ value obtained from the space 

inspection, and the risk deficiency value in column Q is also adjusted based on the level of 

redundancy determined during the inspection. The OSD is then calculated accordingly as the 

weighted sum of the KPI scores. Based on a comparison of the OSD values in column R with the 

minimum acceptable condition denoted in column S, a subsystem is designated eligible for renewal if 

the (100     OSD) value is less than the minimum acceptable condition shown in column T. The end 

result is the prioritization of all the subsystems based on the OSPI values calculated, as shown in 

column U. For example, water treatment has the highest OSPI (3,850, column U) because it has the 

highest OSD (64, column R) and OSI (60, column H) values. On the other hand, in spite of a low OSI 

value of only 36, boilers are ranked third in priority (close to the top) due to their high deficiency 

level (44).  
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Figure  5.18: Calculation of subsystem importance (OSI) and priority index (OSPI) 
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After the full priority list for capital renewal was generated, it was discussed with the maintenance 

staff at the hospital. The prioritized list of subsystems produced by the developed framework was 

compared with the list available at the maintenance department, which was part of their 2012 report 

prepared prior to the site visit; the results are shown in Table  5.4. In general, all of the subsystems 

that appear in the hospital’s report also appear among the top 20  subsystems selected by the proposed 

framework . Although the prioritization produced by the framework is numerical and the hospital’s 

report list is not, the two lists are a very close match. 

 

Table  5.4: Comparison of the prioritization results produced by the framework and the 

maintenance department report 
 

Prioritization results 

Developed framework OSPI Maintenance department report 

Water Treatment - Support 3,850 Water Treatment 

Chiller Unit(s) - Support 1,964 
Chillers, Boilers, and Air Handling Units 
(AHU) 

Boiler Unit(s) - Support 1,567 Sewage Pump Station 

Coolant Towers - Support 1,550 *Medical Gases 

Sewage Pump Station (s) - Support 1,500 Doors and windows 

Electrical Transformers - Support 1,500 Electrical Transformers 

Air Handling Unit - Support 1,293 Electrical Distribution 

Sewage Pipelines - Support 1,200 Elevators 

Water Pipelines - Nursing 1,038  

Un-interrupted Power Supply - Support 1,010 ---- 

Electrical Distribution - Support 1,000 ---- 

Low Voltage Switch Gear(s) - Support 1,000 ---- 

Telephone System - Support 1,000 ---- 

Closed-Circuit Television (CCTV) - Support 800 ---- 

Sewage Fixtures - Support 720 ---- 

(*) This subsystem has been renewed after two deaths in July 2012. 
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5.2.4 Overall building performance 

As a continuation of the assessment calculations, the overall building performance index (OBPI) for 

this hospital was calculated based on the formulations presented in subsection  3.4.4 and was 

determined to be 90 %. Figure  5.19 shows a summary of the assessment results at the hospital level. 

The overall performance of the clinical, nursing, and support zones is 90 %, 86 %, and 92 %, 

respectively, which indicates good performance (i.e., greater than 70 %) (Shohet 2003a&b). The 

lowest performance is associated with the electrical, communication, and mechanical systems, whose 

levels vary from 80 % to 88 %, which are below 90 %. These deficiency values reflect the condition 

of important subsystems such as water treatment, chillers, boilers, the sewage pump station, electrical 

distribution, and transformers, all of which need renewal action in order to improve the overall 

building performance. 

 

 

 

 

 
Figure  5.19: Overall building performance showing zones and systems 

 
It should be noted that because the proposed framework includes predesigned spreadsheets for all 

calculations, the visual assessment visit required only four hours, and the associated results were then 

produced instantaneously.  The hospital professionals very much appreciated this feature of the new 

system and consider it to be a major benefit. 

Zone/System Performance Zone/System Performance Zone/System Performance

Clinical 90 Nursing 86 Support 92

Civil 100 Civil 100 Civil 100

Architectural 91 Architectural 91 Architectural 95

Electrical & Comunications 80 Electrical & Comunications 80 Electrical & Comunications 84

Mechanical 88 Mechanical 84 Mechanical 86

Equipment 100 Equipment N/A Equipment 100

90Overall Building Performance Index (OBPI)
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5.3 Case Study 2 (Hospital 2) 

This 93-year-old hospital is one of the oldest in northeastern Libya. Built in 1918, it includes 30 

separate buildings (Figure  5.20), with a total area of 18,548 m
2
 (Table  5.5). A total of 700 beds serve 

a population of more than two million. The general level of occupancy for this hospital is 38.52 

beds/1000 m
2
, which is high according to Shohet (2003b).   

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

Figure  5.20: General layout of the hospital buildings 
 

 

Heart clinic building 
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Table  5.5: Floor areas of the main buildings   

 

One of the 30 hospital buildings is the heart clinic building, listed as building no. 23 in Table  5.5. 

This building was selected as a case study for the application of the developed framework. The 

building has two stories with a total of 981 m
2
. The ground floor includes mainly support space (66 

%), such as offices, storage, and baths, with 29 % taken up by clinical space, such as the intensive 

care unit and observation rooms. The first floor is comprised of support space (63 %), such as offices 

and baths, as well as nursing space and patient rooms (33 %), as shown in Table  5.6. 

 

Table  5.6: Total floor areas and number of spaces in the heart clinic building 
 

Floor 
Area 

(m2) 
No. of Spaces 

Clinical Nursing Support 

m
2
 % m

2
 % m

2
 % 

Ground 494 20 145 29 23 5 326 66 

First 487 22 20 4 162 33 305 63 

Total 981 42 165 17 185 19 631 64 

 

No Building Floors Area (m2) No Building Floors 
Area 
(m2) 

1 Administration Two 1,141.5 16 Nurses’ Rooms Two 393.75 
2 Oncology Department One 342.18 17 Dermatology Two 899.25 
3 Outpatient Clinics One 687.08 18 Internal Medicine Dept. Two 359 
4 Library & Blood Bank Two 524.21 19 Medical Staff Rooms Four 458.66 
5 Imaging & CT Scanner One 479 20 Storage One 951.63 
6 Internal Medicine Dept. One 201.06 21 Neurology One 795.64 
7 Reception One 144.13 22 Gynecology Two 1,956.25 
8 Maternity Three 940 23 Heart Clinic Two 981 
9 Maternity One 661 24 Morgue One 40 

10 Reception One 291 25 Maintenance Department One 744.75 
11 Maternity Two 877 26 Hematology Two 268.7 
12 Laundry One 691 27 Tissues Two 394.88 
13 Laboratory One 478.8 28 Generators One 35 
14 Central Laboratory Two 879 29 Storage One 511 
15 Kitchen One 548.5 30 Isolation Section Two 873.24 

 Total  18,548 
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5.3.1 Maintenance practice 

The annual budget is reported as $23,076,923, which includes an annual maintenance budget of 

$461,538 (i.e., 2 %), as shown in Table  4.2. The hospital has a small maintenance department staffed 

by preventive and reactive experts in a number of fields. This department employs no computerized 

maintenance management systems (CMMS) nor does it have any software that can be used to 

prioritize subsystems for renewal plans. They employ paper forms and a digital camera for assessing 

the physical condition of each hospital subsystem. The department is dealing with a 60 % backlog in 

renewal work because of a limited budget and restrictive payment and contracting methods.  

With respect to renewal work, approximately 40 % is usually performed by the maintenance staff (in-

house) and 60 % by contractors (outsourced); the details are shown in Table  5.7. The department 

distributes renewal funding among the relevant systems approximately as follows: Civil, 5 %; 

Architectural, 25 %; Electrical and Communications, 30 %; Mechanical, 20 %; and Equipment, 20 %. 

 

Table  5.7: In-house versus outsourced component maintenance 

 

System 
In-house Outsourced 

% Work % Work 

Civil 0 Nothing 100 All 

Architectural 20 Carpentry, painting 80 Windows, plastering, brickwork 

Electrical & Communications 40 

External and internal 

lighting, low-voltage 

electrical works, switches 

60 
Transformers, External lighting 

poles, high voltage switch gear 

Mechanical 80 

Pumps, air conditioning, 

 water fixtures, sewerage 

 fixtures, etc.  

20 
Elevators, repair of  water pumps, 

medical  gases  

Equipment 0 Nothing 100 CT scanner and X-ray 

 

Based on the experience of the maintenance engineers at this hospital, the building subsystems 

associated with the greatest risk are the electrical works. The generators, elevators, and medical gases 
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are the most costly items to maintain due to the difficulty involved in their upkeep. The highest rates 

of deterioration are exhibited by the lighting, electrical distribution fixtures, and water fixtures. 

5.3.2 Visual inspection results 

Three consecutive interview sessions were conducted with two of the maintenance professionals at 

the hospital. The developed visual inspection application was then used during a visual inspection that 

was carried out with the help of one of the maintenance engineers in order to assess the physical 

condition of the subsystems and the indoor environment quality factors within the spaces. The 

assessment results with respect to the physical condition of the building subsystems are shown in 

Figure  5.21, and the indoor environment factors are indicated in Figure  5.22.   

 

 

 

 

 

 

 

 

Figure  5.21: Visual inspection results: condition of the subsystems 

 

 

All foundations are in good condition 

All windows and doors are in poor condition All windows and doors are in fair condition 

Calculated condition index (CI) using equation (3.1) 



 

 115 

 

 

 

 

 

 

*RI = Relative importance 

Figure  5.22: Visual inspection results: indoor environment factors 
 

During the visual inspection of the subsystems, observations were recorded about the current 

condition of the subsystems, as shown in Table  5.8. 

 

Table  5.8: Visual inspection observations 

 

Subsystem Assessment/Observations Photos 

MEDICAL GASES This system is very old and contains no 
device for measuring the degree of 

purity of the medical oxygen. 

Spare parts are lacking. 

An oxygen plant is needed in order to 
produce the amount of oxygen required 

at the hospital. 

 

SEWAGE All sewage pipelines and fixtures need to 
be renewed. 

 

 

Water deficiency in each space Overall LOS within the space Deficiency of the LOS 

within the space 

* 
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Table  5.8 (cont.) 

WATER  All water pipelines and fixtures need to 

be renewed. 

 

 

FAÇADE  Due to the humidity, the façade needs 
renewal work. The humidity has 

penetrated to the internal faces of the 

walls. 
 

 

 

 
 

 

HVAC Split units are used for providing rooms 

with cooled air and heating. 

 

DOORS All doors and frames need replacement. 

 

ROOFS Due to the humidity, some roof areas 

need minor renewal. 
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Table  5.8 (cont.) 

WINDOWS The window frames are made of wood, 

have deteriorated, and need to be 

renewed. 

 

FLOORS The floor tiles have deteriorated, and the 

whole floor needs to be renewed. 
 

 

 
 

 

  
 

ELEVATORS All of the elevators are working. 

 

 
 

 

 
 

 

  

 

5.3.3 Prioritization results 

Based on the survey data and the visual inspection of the hospital subsystems and spaces , the OSI, 

OSD, and OSPI were calculated as shown in Figure  5.23, using the formulations discussed in section 

  3.4. A portion  of the OSI calculation for each subsystem (row) is shown in Figure  5.23a, which is the 

product of the  multiplication of the RI values for the subsystem, system, and zone. The  calculations of 

the OSD and the OSPI are also shown in Figure  5.23b, in which column I  represents the visual 

inspection value of the condition index score obtained during the actual  site visit.   
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Figure  5.23: Calculation of the OSI and OSPI 

Subsystem importance Subsystem priority 

Subsystems 

KPI deficiencies 

Visual 
inspection 

data 

OSI x OSD = OSPI 

a) Calculation of the OSI  

b) Calculation of the OSD and OSPI  
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Based on this value, the KPI deficiencies associated with each  subsystem are calculated as  indicated 

in columns  , M, O, and Q: (100     condition index score). The LOS  deficiency specified  in column 

M is then modified based on the IEQ value obtained from the space  inspection, and the  risk 

deficiency value in column Q is also adjusted according to the level of  redundancy determined  during 

the inspection. The OSD is  calculated then accordingly as the weighted sum of the KPI  scores. Based 

on the comparison of the OSD values in column R with  the minimum acceptable  condition in column 

S, a subsystem is designated eligible for renewal if the   (100     OSD) value is  less than the minimum 

acceptable condition, as shown in column S. All of the subsystems are  prioritized according to the 

calculated OSPI values, as indicated in  column U. For example, the  medical gases source equipment 

has the highest OSPI (2,500,  column U) because it has the highest  product resulting from the 

multiplication of the OSD (42, column  R) by the OSI (60, column H).  On the other hand, although it 

has a high OSI  of 60, the medical gases compressor is ranked fifth in  priority due to the low 

deficiency level of this subsystem (35).  

 

5.3.4 Overall building performance 

As shown in Figure  5.24, the OBPI of this hospital building is very low (52 %), with  performance 

levels in the clinical, nursing, and support zones of 46 %, 61 %, and 50 %, respectively. Overall, the 

performance levels of the architectural, electrical and communication, and mechanical systems are the 

same as those of the clinical and nursing zones. The specific performance values for the architectural, 

electrical and communication, mechanical systems in all zones vary from 38 to 79, which are 

generally low and have a significant effect on the performance level of the building as a whole. 

Therefore, major renewal work for important subsystems such as medical gases, doors, windows, 
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floors, water pipelines, and sewage pipelines and fixtures is needed in order to improve the  overall 

performance of the building.   

 

 

 

 
 

Figure  5.24: Overall building performance, showing zones and systems 

 

5.4 Conclusions 

This chapter has presented the results of two real-life case studies conducted with the goal of 

validating the assessment and prioritization framework. Both case studies involved the 

implementation of the developed visual inspection application for assessing the physical condition of 

the subsystems and spaces.  In the first case study, the overall performance of hospital 1 is 90 %, and 

the subsystems designated for renewal include water treatment, chillers, boilers, the sewage pump 

station, electrical distribution, and transformers. A high degree of correlation is evident between the 

prioritization list produced by the framework and the list prepared by the hospita1maintenance 

department. In the second hospital case study, the overall performance is defined as very low (52 %) 

due to the poor performance of its architectural, electrical, communication, and mechanical systems, 

as evidenced by the major rehabilitation required in important subsystems such as medical gases, 

doors, windows, floors, water pipelines, and sewage pipelines and fixtures. These two case studies 

demonstrate the functionality of the proposed framework and highlight the reduced effort required to 

produce the results, benefits that were greatly appreciated by the hospital maintenance experts. 

Zone/System Performance Zone/System Performance Zone/System Performance

Clinical 46 Nursing 61 Support 50

Civil 100 Civil 100 Civil 100

Architectural 61 Architectural 61 Architectural 79

Electrical & Comunications 75 Electrical & Comunications 75 Electrical & Comunications 75

Mechanical 38 Mechanical 38 Mechanical 46

Equipment 0 Equipment N/A Equipment 0

52Overall Building Performance Index (OBPI)
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Chapter 6 

Capital-Renewal Optimization 

6.1 Introduction 

This chapter  introduces the capital-renewal optimization model, which integrates deterioration 

modeling, consideration of the type of renewal, performance improvement models,  and life cycle cost 

analysis (LCCA). Using two different objective functions, the model was applied for the hospital 1 

case study. The fund allocation results are presented and explained, along with the details of the 

model and the flexible options for its application.  

6.2 Capital-Renewal Optimization Model 

The model developed for optimizing capital-renewal fund allocation is a comprehensive LCCA 

model that integrates the performance assessment model presented in previous chapters with other 

important functions, as shown in Figure  6.1. All of these functions have been implemented within an 

integrated spreadsheet model that incorporates all of the equations related to the individual functions; 

in addition to macro programs developed using the Excel Visual Basic for Applications programming 

language for the application of the optimization process. Each subsystem is represented as a separate 

row in the spreadsheet model, and data are recorded in the columns. The model illustrated in Figure 

 6.1 has been formulated to include a five-year planning horizon for the capital renewal plan. The two 

main output components to be determined by the model are an index that designates one of the five 

renewal years, as indicated in column X for each subsystem, and an index for one of four renewal 

types, to be listed in column Y for each subsystem. For each subsystem, these two decisions together 

represent when and how each subsystem will be renewed within the planning years. The description 
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of the various functions and their implementation in the spreadsheet model are discussed in the 

following subsections.  

 

 

 

 

 

 

 

 

 

 

 

Figure  6.1: Capital-renewal optimization model, with main asset management functions 

 

6.2.1 Performance assessment  

The performance assessment function relates to the multiple-criteria deficiency calculation discussed 

in Chapter 5. The calculations for determining the condition, LOS, sustainability, and risk 

deficiencies are shown in columns H, J, L, and N of Figure  6.2, respectively, and in Table  6.1. These 

four performance criteria for each subsystem are combined as a measure of the overall subsystem 

deficiency (OSD), indicated in column O.
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Figure  6.2: Main features of the capital-renewal optimization model  

Objective function 1: 
Minimum average 

priority 

Objective function 2: 
Maximum number of 

KPIs 

Subsystems, its 
life, and its age 

now 

Calculated based 

on RS Means 

KPIs  (OSPI) 

Priority now 

Deterioration 
and 

improvement 

Operational 
costs 

Variables Annual renewal costs Renewal 

costs 

Total life cycle cost (LCCA) 

(OSD)  

Budget constraint 
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Table  6.1: Details of the spreadsheet model  

Column Description Note 

A Serial number of the subsystem  

B Subsystem name  

C Life of the subsystem in years  

D Current age of the subsystem in years 
5 years since the last overall renewal of 

the hospital (2007) 

E 
Replacement cost of the subsystem in 

Canadian dollars 
Calculated based on the RS Means costs 

F 
Overall subsystem importance (OSI) as a 

percentage 

Calculated based on subsection 3.4.1 and 

Figures 3.9 and Figure  6.1 

G, I, K, & M Relative importance of the applicable KPIs Expert input - Figure  6.1 

H, J, L, & N The deficiencies according to the KPIs applied Field inspection 

O The overall subsystem deficiency (OSD) 
Calculated based on subsection 3.4.2 and 

Figures 3.9 and Figure  6.1 

Q 
The overall subsystem priority index (OSPI) 

based on current value 

Calculated based on subsection 3.4.3 and 

Figure 3.9 

R, S, T, U, &V The annual priority for five-year plan Calculated based on equation (6.2) 

W The operational cost of the subsystem  
Assumed to be 2 % of the replacement 

cost of the subsystem 

X Renewal year (variable from 1 to 5) To be identified by the optimization (GA) 

Y Renewal type (Variable from 1 to 4) To be identified by the optimization (GA) 

Z  Renewal cost in Canadian dollars 
Percentage of the replacement cost that is 

dependent on the renewal type selected 

AA, AB, AC, AD, 

& AE 
The annual costs of each subsystem Calculated based on subsection 6.2.4 

 

The overall subsystem priority index (OSPI) is then calculated, as shown in column Q. It should be 

noted that a subsystem with an OSPI value of zero indicates that its performance level is high: the 
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subsystem has a low renewal priority. On the other hand, a subsystem that has a high OSPI value will 

also have a high priority for  renewal.  For example, water treatment has the highest priority because it 

has the highest OSPI value (3850), as shown in column Q of Figure  6.2. On the other hand, the boiler 

has a lower priority because its OSPI is only 1567. Based on the OSPI values, the future performance 

of the subsystem can be predicted using a deterioration model and the renewal decision, as explained 

in the following subsection.  

6.2.2 Deterioration modeling  

Prediction of the future performance of a subsystem is an important component of LCCA over a five-

year planning period. A deterioration model has therefore been used as a means of estimating the 

future decline in the performance of a subsystem (i.e., the increase in the OSPI value) over time. As 

shown in Figure  6.2, in the developed model, a linear deterioration model has been applied to all 

subsystems because of its simplicity and because of the absence of historical data related to hospital 

components.  In the model, the OSPI deteriorates each year by a rate equal to (1/expected life).  

 
The OSPI in each year is therefore calculated using Equation 6.1, based on the linear deterioration 

behaviour and also on the consideration of any renewal strategy to be applied for any year, as follows: 

  

OSPIi = OSPIi-1 + Scale x (1/ expected life of subsystem) – RIi                                        ( 6.1) 

where  OSPIi = Overall subsystem priority index for the current year  

OSPIi-1 = Overall subsystem priority index for the previous year  

Scale = Maximum possible deterioration = 3850  

RIi = Improvement due to the renewal decision for that year 
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As an example, Figure  6.3 shows the method for calculating the annual priority index for water 

treatment (first subsystem listed in Figure  6.2) using equation (6.1), as follows: 

 

Priority index for water treatment in year 1 (i = 1): 

OSPI now = 3850 (column Q) 

OSPI 1 = 3850 + 3850 (1/15) – 2310 (improvement due to renewal type 2 in year 1, discussed later) 

OSPI 1 = 1,797 (as shown in Figure  6.3) 

Priority index for water treatment in year 2 (i = 2): 

OSPI 2 = 1,797 + 3850 (1/15) – 0 (i.e., no renewal in this year) = 2,053 (as shown in Figure  6.3) 

 

 

 

 

 

 

 

 

 

Figure  6.3: Calculation of the annual priority (water treatment) 

 

Years 

1 2 3 4 5 

Deterioration rate = OSPI/ life of the subsystem = (3850 / 15 = 256.7) 

OSPInow = 3850 

Now 

(improvement due to renewal type 2 in year 1) 

2567 

2823 

OSPI 

1797 

2310 

2053 
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These calculations are repeated for years 3, 4, and 5. The results are shown in Figure  6.2, and the 

impact of a variety of renewal decisions is represented schematically in Figure  6.4. 

 

 

 

 

 

 

 

 

 

 

Figure  6.4: Performance under different renewal decisions 
 

6.2.3 Renewal type and condition improvement model 

The developed model includes four renewal options for each subsystem. They vary from minor 

renewal (type 1) to full replacement (type 4), as shown in Figure  6.5. The cost of each renewal type as 

a percentage of the full replacement cost is shown in Figure  6.5 (user input) along with the expected 

improvement in performance provided by each renewal type with respect to priority and also to the 

KPIs. For example, renewal type 1 costs 30 % of the total subsystem replacement cost, as shown in 

column E of Figure  6.2, and it improves the OSPI of the renewed subsystem by 770 points (30 % of 

OSPI 

Years 2 Years 

OSPI 

No renewal 

Years 

OSPI 

1 

OSPI 

Years 4 

OSPI 

Years 5 
Years 3 
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the maximum scale of 3850). To differentiate among the different types of renewal options, the value 

of their impact on the overall performance (Column Y Figure  6.5) varies considerably. To reflect the 

improvement in the specific KPIs that apply to each subsystem, a few simple rules have been 

assumed, as shown in columns AA, AB, AC, and AD of Figure  6.5. For example, it is assumed that 

renewal type 1 leads to improvement in the condition and also partially in the amount of associated 

risk. Therefore, renewal type 4 (i.e., full replacement) will improve all four types of KPIs as well as 

the performance of the subsystem: the more expensive the renewal type applied or selected, the 

greater the benefit and increased performance level obtained. 

 

 

 

 

 

 

Figure  6.5: Renewal   types, their cost percentages, and the improvement provided 
 

Similarly, other renewal types are assumed to affect different KPIs, with full replacement improving 

all KPIs together. These rules can be changed by the user and can be beneficial for the later 

optimization of the level of fund allocation for creating improvements with respect to specific KPIs. 

6.2.4 Life cycle cost calculation 

The developed model has the capacity to calculate the life cycle cost for each subsystem over a five-

year plan, including consideration of both the operational and the renewal costs associated with each 
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renewal year as well as the type of renewal decision, as indicated in columns X and Y of Figure  6.2.  

The corresponding annual costs are shown in columns AA, AB, AC, AD, and AE for each respective 

year of the five-year plan. The evaluated cost portion of Figure  6.2 is shown in Figure  6.6. The annual 

renewal costs are calculated as follows: 

 

(Total cost) = (Renewal cost + Operational cost)    ( 6.2) 

 

As an example, Figure  6.6 shows the annual costs for the water treatment subsystem for five years, 

given a decision of a year 1 renewal year and a type 2 renewal type for this subsystem. The renewal 

cost is 55 % of the replacement cost (Figure  6.5), and the operational cost is also adjusted as follows: 

 

 The operational cost now (base year) is equal to 2 % of the replacement cost (base value).  

 The operational cost in yeari can be increased from the base value if the performance in year i 

is less than that during the base year. In this case, operational cost = (OSPI i / OSPI now) x 

(base value). The operational costs thus increase as the subsystem deteriorates.  

 
For example, the total costs for water treatment (first subsystem) in year 1 are calculated as follows: 

 Renewal cost = 0.55 x $1,470,000 = $808,500 (renewal type 2) 

Operational cost = base value only because OSPI1 (1,797) is less than OSPInow (3850) = 2 % of 

$1,470,000 = $29,400 

Total cost in year 1 = $808,500 + $29,400 = $837,900 
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As well, since all subsequent years will have an OSPI less than the base (3850), the total costs for 

water treatment in year 2: the operational costs remain as the base value of $29,000, as shown in 

Figure  6.6. 

 

 

 

 

 

 

 

 

Figure  6.6: Annual renewal and operational costs 

 

Based on the renewal decision and the cost calculations for all of the subsystems, the annual costs are 

summed, and the present value of the allocated fund for each year is calculated using an interest rate 

(ir) of 4 %, as follows:  

Allocated fund i = 
)1/(

1

irCost
N

subsystem

ni

n




    6.3 

 
where i is the year number, n is the subsystem number, and ir is the applicable interest rate per year 

(user input). 

i 

 

 

 Renewal type 2 is 55% 
(Figure 6.5) of the 
replacement cost  

Calculated based on the 
costs from RS Means 

(2008) 

(Total cost)1 = 808,500 + 29,400  
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These calculations are shown at the top of Figure  6.6, along with the budget for capital renewal for 

each year. 

6.2.5 Fund-allocation optimization 

To optimize the renewal decisions (renewal year and renewal type) for each subsystem, with 

consideration of the budget constraints, the developed model uses a genetic algorithm (GA) 

technique, which has a capability to handle large scale problems, to assess different combinations of 

decisions until a near-optimum solution is obtained. For testing and validation, the developed model 

was applied to the 44 top-priority subsystems identified in the hospital 1 case study. To arrive at the 

best decision, a number of experiments were conducted using two different objective functions: 

 

 Objective function 1: Minimize the average priority index (OSPI) for all of the subsystems 

(i.e., maximize the overall performance of all of the related subsystems). 

 Objective function 2: Maximize the number of subsystems that exhibit improvement in a 

single condition KPI or in all of them. 

 

The first objective function “Objective function 1”, as shown in Figure  6.7 is to minimize the  average 

priority for all subsystem s has been defined as follows:  

 

Minimum average priority =   
n m

mnOSP
1 1

m ./I  

Where,  

OSPI = overall subsystem priority index 

m = number of subsystems, and n = number of years 
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Figure  6.7: Objective functions and annual fund allocation 

 

Maximum number of improved  PIs “Objective function 2” is the sum of the improved  PIs,  as 

shown in the Figure  6.7. After the optimization is run for a number of iterations, a near- optimum 

solution is determined.   

6.3 Testing and Validation 

For testing and validation purposes, the developed capital-renewal optimization model was applied 

for the evaluation of the 44 top-priority subsystems of case study 1 (hospital 1). To optimize 

decisions, a number of experiments were conducted using two alternative objective functions: 

minimizing the average priority index of all subsystems, and maximizing the sum of the improved 

KPIs in all subsystems, as shown in Table  6.2. In all experiments, for the renewal of these 

subsystems, an annual renewal budget limit of $5 million was used, which corresponds to the 

hospital’s actual budget limit, as shown in Table  4.2. It should be noted that all monetary amounts 

mentioned in this chapter represent Canadian dollars.  

Objective function 2: Maximum 
number of improved KPIs 

Objective function 1: Minimum 
average priority index 

Annual allocated funds versus the available 

budget (in million Canadian dollars)  
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Table  6.2: Six scenarios for testing and validation (30 min runtime optimization) 

 

Scenario 1 *2 3 4 5 6 

G
iv

en
 Objective function 

(1) Minimum renewal 

priority 

(2) Maximum KPI 

improvement 

Available budget $4.00  $5.00  $ 6.00  $ 4.00  $ 5.00  $ 6.00  

R
es

u
lt

s 

Average priority  (smaller is preferable): 630.62 588.27 476.60 795.42 606.97 599.72 

Condition KPI (larger is 

preferable) 
38 41 43 33 40 41 

LOS KPI (larger is preferable) 17 20 23 27 28 33 

Sustainability KPI (larger is 

preferable) 
2 1 3 19 17 23 

Risk KPI (larger is preferable) 22 26 28 29 33 37 

Number of improved KPIs (larger is 

preferable): 
79.00 87.50 97.00 108.00 117.5 133.50 

Annual total allocated  money       

Year 1 $4.00 $4.91 $5.95 $3.99 $5.00 $5.99 

Year 2 $3.96 $4.95 $5.99 $3.93 $4.98 $5.97 

Year 3 $3.92 $4.98 $5.95 $3.93 $4.99 $5.99 

Year 4 $3.93 $4.97 $5.83 $3.99 $4.96 $5.98 

Year 5 $3.82 $4.46 $4.37 $3.99 $4.97 $5.87 

Total life cycle cost (TLCC) $19.63 $24.27 $28.09 $19.83 $24.89 $29.80 

Number of subsystems renewed (larger 

is preferable) 
38 41 43 38 40 39 

Number of subsystems not renewed 6 3 1 6 4 5 

Year 1 8 5 11 5 6 7 

Year 2 16 24 20 6 14 13 

Year 3 10 8 7 10 10 9 

Year 4 3 3 3 8 5 6 

Year 5 1 3 2 9 5 4 

Renewal types   
      

Type 1 10 11 10 5 9 7 

Type 2 22 24 20 4 6 3 

Type 3  8 9 10 7 9 9 

Type 4 2 1 3 20 18 25 

Note: (*) Base scenario; $  = Canadian dollars in millions; values are for 44 subsystems; interest rate (ir) = 4 % 
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As listed in Table  6.2, six scenarios with different budget levels and objective functions were 

implemented using the model developed. The results of these experiments showed that the model 

performed consistently. The base scenario is scenario 2, in which objective function 1 (minimum 

average priority index) was used with a $5 million budget. To implement the GA optimization, a 

commercial GA tool called Evolver, which functions as an add-on to Excel, has been utilized because 

of its ease-of use and known flexibility. Figure  6.8 illustrates the application of Evolver to the 

spreadsheet model for the scenario 2 experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.8: Main features of Evolver 
 

Objective function 1: 

Minimizing average priority 
Runtime: 30 minutes 

Variables 

 (Renewal year and 
renewal type) 

Budget constraint 
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Partial results of running this scenario are shown in Figure  6.2: the first two subsystems (water 

treatment and the chillers), which have been assigned a high priority, were selected for renewal in the 

first year with a renewal type of 2. The minimum average priority index obtained from the 

optimization is 588.27, the circled item at the top left of the spreadsheet.   

 

The six scenarios listed in Table  6.2 provide a comparison of the results of the two objective 

functions for  annual renewal budgets of $4 million, $5 million, and $6 million, respectively. The 

runtime of the  optimization process, for all scenarios, was only 30 minutes. In general, the 

optimization results for all scenarios are consistent and logical. For example, increasing the budget 

level from $4 million to $6 million resulted in both improved average priority values and an increased 

number of improved KPIs. In fact, for all scenarios, increasing the budget resulted in improvement 

with respect to a greater number of KPIs (condition, LOS, sustainability, risk). It should also be noted 

that a significant number of the subsystems have been assigned for renewal in the first three years, as 

shown in Figure  6.9 and Figure  6.10. In terms of renewal type, increasing the budget limit from $4 

million to $6 million caused the model to assign type 4 more frequently as the renewal type (full 

replacement), as shown at the bottom of Table  6.2.  
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Figure  6.9: Objective function 1: numbers of renewed subsystems 
 

 

 

 

 

 

 

 

 

 

Figure  6.10: Objective function 2: numbers of renewed subsystems 

Subsystems 

Objective function 1: minimum average priority 

Large numbers of subsystems 

have been assigned for renewal 

in the first three years. 

Budget year =  

Subsystems Large numbers of subsystems 

have been assigned for renewal 

in the first three years 

Objective function 2: maximum number of KPIs improved 

 

Budget year =  
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With respect to processing time, the Evolver software was used for the scenario 2 experiment, with a 

variety of processing times. The results are reported in Table  6.3. 

 

Table  6.3: GA processing time for the scenario 2 experiment 

 

Scenario 2 (Table 6.2) 4 min 15 min 30 min 2 h 

Average priority  (smaller is preferable) 648.42 549.15 522.16 518.87 

Number of improved KPIs (larger is preferable) 94.5 92 89.5 88 

 

As shown, the outcome of the optimization improves significantly with longer processing times, up to 

about 30 minutes, after which the improvement is negligible. The processing time was therefore fixed 

at 30 minutes for all experiments. 

 

As shown in Table  6.2, for scenario 2, the optimum decision was to fund the majority of subsystems 

with renewal type 1 (for 11 subsystems) and renewal type 2 (for 24 subsystems) (i.e., least expensive) 

being the option most often selected. These results represent a good allocation of funds under a strict 

budget.  

 

6.4 Additional fund allocation experiments 

The flexibility of the developed model was demonstrated through its use in two additional modes for 

allocating the subsystem renewal budget: simple ranking and partial optimization. 
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Figure  6.11: Additional experimental options for fund allocation 

  

 

Simple ranking (option 1): In this option, for each subsystem, the user can manually select the 

renewal year and renewal type, in columns X and Y, with first consideration being given to the top-

priority subsystems. The annual renewal costs are automatically calculated accordingly, as shown in 

Figure  6.12. The two cases illustrated in Figure  6.12 reveal the inefficiency of manual attempts, 

which cannot provide optimized decisions. The results produced for the base scenario listed in Table 

 6.2 is far superior to those shown in Figure  6.12. 
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Figure  6.12: Fund allocation using a simple ranking (low and high spending)  

 

Partial optimization (option 2): This option is a hybrid of simple ranking and optimization and can 

be useful for excluding some subsystems previously identified by the decision makers. The remaining 

Low spending on each subsystem Inferior performance compared to scenario 2 Fewer KPIs than in scenario 2 

a) Low spending on each subsystem 

High spending on each subsystem Inferior performance compared to scenario 2 Fewer KPIs than scenario 2 

b) High spending on each subsystem 
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budget is therefore left to be allocated based on the optimization process for the rest of the 

subsystems. For example, because of its importance, full replacement in the first year ($1,470,000) 

had been predetermined for the first high-priority subsystem. The remainder of the subsystems were 

thus left to compete for the remaining budget ($3,530,000). The results produced by this hybrid 

process are shown in Figure  6.13.  

 

 

 

 

 

 

 

 

Figure  6.13: Partial optimization option 
 

6.5 Conclusions 

This chapter has introduced the main features of the developed capital-renewal optimization model: 

performance assessment, deterioration, renewal types and performance improvement, LCCA, and 

optimization for fund allocation. To validate the usefulness and practicality of the model, it was 

applied for case study 1 (hospital 1). The results have been presented for six different scenarios with 

varying annual budgets. A processing time of 30 minutes was determined to be reasonable. The 

The first subsystem is selected (i.e., out of the fund 

allocation competition) for full replacement in year 1.  

The budget remaining after the deduction 

of the renewal costs for the first 

subsystem 
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model defines an appropriate year for renewal, identifies renewal types that minimize the average 

priority index for the whole network of subsystems, and maximizes the number of KPIs improved. 

The results produced by the model are far superior to those obtained with simple ranking approaches. 

The model can also operate either in full optimization mode or as a hybrid of manual and 

optimization modes.  
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Chapter 7 

Conclusions and Future Research 

7.1 Summary and Conclusions 

Healthcare facilities are among the most challenging assets to maintain and modernize. Because  many 

healthcare facilities are aging and involve  specialized equipment and functional spaces, 

 management’s decisions of prioritizing capital renewals have become an enormous challenge, 

 particularly under limited  budgets. Such decisions require accurate performance assessment of all  the 

 facility subsystems, in addition to a structured approach to prioritize the competing subsystems  and 

optimize fund allocation.   

 

The literature shows that condition KPI has been used as the primary indicator of  facility 

 performance, overlooking other important criteria that have recently come into use,  including: level of 

 service (LOS), sustainability, and risk of failure. Most of the available decision  support systems  for 

facility management also deal with day-to-day maintenance activities, and only  a small number  offer 

limited support for renewal planning. As well, many fundamental  asset  management functions, such 

as performance assessment modeling and renewal  prioritization,  are not supported by the majority of 

these systems.  

 

This research has therefore introduced a practical and comprehensive framework that renders  the 

 capital renewal process more structured, less time-consuming, and more appropriate for  the 

 specialized needs of healthcare facilities, particularly hospitals. The developed framework  integrates 

five main functions: (1) a  two-dimensional hierarchy of hospital systems and spaces; (2)  a multi-

criteria performance  assessment process; (3) a visual all-on-site inspection process; (4) a  prioritization 
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mechanism;  and (5) a capital-renewal optimization process. The first four functions of  the proposed 

 framework identify the overall subsystem importance (OSI), the overall subsystem  deficiency   (OSD), 

the overall priority index (OSPI), and the overall facility (building) performance  index   (OBPI).   

 
A two-part questionnaire survey was used in order to gather the data necessary for the  development 

 and validation of the proposed framework. Part I obtained the relative  importance of the main 

 functional zones and spaces, systems, and subsystems, along with the  applicable KPIs that best 

 measure the performance of each subsystem and the relative  importance of each KPI. The survey  was 

completed by experts at four general hospitals in  both Canada and Libya. Based on the data  collected, 

some of the general findings are as follows: (1)  the support zone is the most important  zone (60 %), 

followed by the clinical and nursing zones   (20 % each); (2) the subsystems that entail  the greatest risk 

are the electrical, HVAC, medical  gases, and fire subsystems; (3) the percentages of  subsystems that 

should be evaluated in terms  of the condition, LOS, sustainability, and risk are 100   %, 92 %, 17 %, 

and 91 %, respectively;  and (4) the relative importance levels of the quality of  indoor spaces with 

respect to air, water,  light, and noise are 29 %, 29 %, 21 %, and 21 %,  respectively. Part II of the 

survey was then  employed for the gathering of data from the  maintenance departments with respect to 

the  capital renewal practices in effect at the case study  hospitals.  

 
To validate the performance assessment and prioritization functions of the developed  framework, a 

 field assessment was conducted at two case study hospitals. First, the visual inspection  application 

 was configured for assessment of the subsystems and  spaces in the case study hospitals. Based on  the 

field assessment, the overall performance of hospital 1 was found to be  good (90 %) and the 

 subsystems designated for renewal included water treatment, chillers,  boilers, the sewage pump 

 station, electrical distribution, and transformers. A high degree of  correlation was found between  the 
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prioritization list produced by the framework and the list  prepared by the hospita1 maintenance 

 department. For the second hospital, the overall  performance was found to be very low (52 %) due  to 

the poor performance of its architectural,  electrical, communication, and mechanical systems, as 

 evidenced by the major rehabilitation  required in important subsystems such as medical gases,  doors, 

windows, floors, water  pipelines, sewage pipelines, and fixtures. These two case studies  demonstrated 

the functionality  of the proposed framework, highlighted the reduced effort required  to produce the 

results, and  underlined the benefits provided, which were very much appreciated by  the hospital 

 maintenance experts.  

 
The proposed multi-criteria facility assessment mechanism and prioritization function were  then  used 

in order to develop a capital-renewal optimization model that integrates  deterioration  modeling, 

renewal types, performance improvement models, and life cycle cost  analysis   (LCCA). The results of 

the application of the model for the first case study (hospital 1)  were  analyzed with respect to six 

scenarios that involved differing budget constraints and  objective  functions. The renewal timing and 

renewal types selected by the framework for all of  the  subsystems improved the overall performance 

of the facility with respect to any desirable  KPIs.  The model can operate in either full optimization 

mode or as a hybrid of manual  and  optimization modes. The extensive experimentation demonstrated 

that the model  produces  results that are far superior to those obtained by simple ranking approaches.  

Overall, this  framework re-engineers the traditional processes of performance assessment for  the 

building  infrastructure and greatly improves the decision-making process for capital renewal.   

7.2 Research Contributions 

Based on the development during the course of the research, the contributions of this work  include  the 

following:   
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 Better understanding of the interactions among building systems and spaces: This 

 research  introduced a two-dimensional hierarchy that integrates the physical systems and  the 

various  zones/spaces within a hospital building, along with indoor quality factors  associated 

with  the spaces.  All of these elements have been linked through the LOS key  performance 

 indicator, which enhances the comprehensiveness and accuracy of the  performance 

 assessment process.  

 Improved understanding of performance assessment processes: A spreadsheet-based 

 questionnaire survey has been design as a user-friendly approach to data collection from 

 hospitals experts related to the challenges they face in performance assessment and their 

 opinion about the important parameters that are useful in designing the proposed  framework. 

The questionnaire  design reduced data entry time, maintained the interest of  the  interviewees, 

and obtained most complete and accurate data. Spreadsheet  functions and  macros were used 

in the survey spreadsheets so that the interviewee could  easily select a  variety of options from 

dropdown menus and thus quickly complete the  survey.   

 Restructuring of the inspection and performance assessment process: The research 

 resulted  in the improvement and restructuring of the current inspection and performance 

 assessment  process for healthcare facilities in general and for hospital buildings in  particular. 

The  performance assessment process was made more comprehensive and  practical through 

the  use of four key performance indicators to cover four dimensions:  condition, LOS, 

 sustainability, and risk. The research also led to the development of an all- on-site visual 

 inspection application for portable devices that enables the entire inspection  process for  both 

the subsystems and spaces to be completed on-site. The application has a  visual  guidance 



 

 146 

system that decreases the subjectivity involved in condition assessment and  allows  the user to 

digitally mark the location of critical items directly on floor plans.  

 Practical prioritization and optimization functions for capital renewal: The new 

 framework  has two functions: one for prioritizing subsystems according to their overall 

 priority index  and a second for optimizing fund allocation. The latter is based on the 

 formulation of the  overall subsystem priority index (OSPI), which incorporates the current 

 physical condition of the subsystem and the  KPIs that best describe its performance. The  fund 

allocation optimization also proved to be flexible and provides much better results  than 

traditional simple ranking approaches.   

 Expandable prototype: The research included the development of a flexible  computerized 

 prototype of the proposed framework that can be adapted for other building  assets, such as 

schools,  hotels, offices, and commercial buildings. This feature significantly  multiplies the 

value of the  research because these assets represent a large portion of the civil  infrastructure.  

 

7.3 Future research 

Several potential improvements can be incorporated into the framework developed for this  thesis,  and 

a number of additional related areas of research can also be explored:  

 Expand the KPIs to include additional detail. For example, the LOS for a space could  include 

 features such as the size of the space, furniture layout, etc. Similarly, the  sustainability and 

 risk KPIs could be expanded to include numerous sub-items.  

Collect historical data related to renewal contracts in order to identify optional  renewal 

 strategies, costs, and potential for performance improvement.  
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 Thoroughly examine the difference between the deterioration rate in the condition KPI of a 

 subsystem versus other  KPIs: LOS, sustainability, and risk.  

 Develop enhanced performance deterioration models for the different subsystems.   

 Expand the visual guidance database to include additional images of a variety of  subsystems.  

 Incorporate a comprehensive reporting system.  

 Integrate the organization’s bank and project delivery mechanism so that the  subsystem’s 

 performance can be updated based on renewal contracts that have been  executed.  

 Expand the LCCA to include more than five years.  

 Incorporate practical reporting features for tracking the history of subsystem performance.   

 Improve the optimization to address larger-scale problems using techniques other than  GAs.  
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Appendix A 

Case study 1 (Hospital 1): Prioritized subsystems using the developed framework 
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Appendix B 

Case study 2 (Hospital 2): Prioritized subsystems using the developed framework 

 

 

 

 
 

 

 

 


