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Abstract

Catalytic combustion is an efficient method to reduce pollutant emissions produced by a

variety of fuels. In this thesis, the use of iron pentacarbonyl (Fe(CO)5) as a catalyst precursor

in the combustion of natural gas is experimentally studied. The counter-flow diffusion

flame burner is employed as the experimental apparatus. The products of combustion

are analyzed by using a Gas Chromatograph (GC) to quantitate the effects of adding the

catalyst.

The experimental setup is such that a mixture of methane (CH4) and nitrogen (N2) is

fed from the bottom burner while a mixture of oxygen (O2) and air is supplied from the top

burner. The combustion of natural gas without catalyst is first characterized. The oxidizer

and fuel flow parameters are set up so that a stable, flat blue flame is formed close to the

centre plane between the two burners upon ignition. The experimental results agree with

the literature data and the numerical predictions from CHEMKIN software.

To investigate and evaluate the performance of iron-containing catalysts on emission

reduction, a small amount of separated nitrogen flow is used to carry iron pentacarbonyl

into the flame through the central port of the fuel-side burner. Catalytic combustion

produces an orange flame. Compared with the non-catalytic combustion data, it is found

that carbon monoxide (CO) and soot precursor acetylene (C2H2) are reduced by 80% to

95% when 7453ppm iron pentacarbonyl is added.
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Chapter 1

Introduction

Natural gas is one of the major fuels in the world’s energy market. In Canada, it is the

second most used energy resource in industrial and residential application. Data published

by National Energy Board (NEB) [5,6] about the Canadian energy production from different

sources from 2002 to 2011 (shown as Fig 1.1) indicates that the energy generated from

natural gas varied from 33.92% to 39.55% of the total compared to petroleum’s 35.92%

to 44.16%. In addition, the NEB report [12] predicts natural gas to be one of the fastest

growing energy source until 2035, with an annual growth rate of 1.9%. This reveals that

natural gas will play an integral role in future energy supply.

Compared with the other major energy resources, such as petroleum and coal, natural

gas has lots of advantages that make it increasingly popular in the energy market.

• Natural gas is much cheaper than other fuels, such as crude oil. From 2000 to 2013, the

price ratio of crude oil to natural gas based on the equivalent energy generation varied

from 1.1 to 5. This is calculated according to the price data from NEB reports [12,13].

Therefore, the use of natural gas as an alternative fuel in the transport engines and

the other devices is more economic.

• Natural gas has an abundant domestic production. The data from NEB [14] indicates

that natural gas production was and will be always bigger than its demand in Canada

from 2011 to 2035, and the difference between production and demand changes from

131 million-m3/day to 102.3 million-m3/day, correspondingly. Although the difference

will slightly decrease, its production is always enough for daily demand.
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Figure 1.1: Energy production from different energy sources in Canada.(Data sources are
from NEB [5,6])

• Natural gas is one of the safest fuels used in various applications. Compared to

petroleum products, such as gasoline and diesel, the ignition of natural gas not only

requires a higher temperature but also need its concentration to be within a certain

range (from 5% to 15%) [1, 15]. In addition, natural gas is lighter than air, so that it

can be easily dispersed to the surroundings. This avoids potential fire or explosion in

case of a fuel leak. Consequently, natural gas is safer than petroleum for delivery and

storage.

• Natural gas produces less pollutant emissions. Studies on natural gas combustion

in engines indicate the major emissions can be highly reduced by 40 ∼ 87% for

hydrocarbons (HC) and 80% for both carbon monoxide(CO) and nitrogen oxides

(NOx), compared with gasoline and diesel [1, 3, 15,16]. Fig 1.2 shows the emissions

produced by the three major fuels: natural gas, coal and gasoline. Compared with the

two latter fuels (coal and oil), natural gas combustion produces much lower NOx, CO,

carbon dioxide(CO2) emissions, and almost zero sulfur dioxide (SO2) and particulate

matter (PM).

2



(a) (b)

Figure 1.2: Comparison of the major emissions produced by natural gas, coal and petroleum.
a) CO2 levels. b) Other pollutant emissions. (Data sources are from Energy Information
Administration [7])

1.1 Research Motivation

Although natural gas has numerous benefits, its combustion still produces a significant

amount of pollutant emissions, as shown in the Fig.1.2. Since the environmental standards

and regulations are becoming more and more strict, future reduction of these emissions is

critical for the natural gas fired power plants to achieve their environmental and economic

goals.

Among different clean-burning technologies, the concept of catalytic combustion has

been established as an efficient method for reducing CO and particulate matter (especially

soot), through increasing the combustion efficiency and introducing the oxidation pathways

on the catalytic surface [10, 17]. Normally, the catalysts used for emissions reduction

in combustion are based on noble metals (such as platinum and palladium) and metal

oxides (such as single and mixed metal oxides). Although noble metal based catalysts are

better catalytic agents for complete combustion, they are toxic, easily vaporized, expensive

and also limited in source. Metal-oxides based compounds are thereby developed as the

alternative catalysts. However, they usually have lower activity and/or strong sintering

tendency that renders them less useful for the high temperature application [18].

Compared to other catalysts, iron-oxide based catalysts are considered as a promising

candidate for the intermediate and high temperature application. This is because they are

much cheaper than noble metals and have a higher sintering temperature than the other

metal oxides [19,20]. Furthermore, the chemical solution iron pentacarbonyl (Fe(CO)5) can

3



be treated as the precursor of the iron-oxide based catalysts, and it is expected to be applied

for controlling the pollutant emissions generated from natural gas combustion. However,

research on the performance of the iron-oxide based catalysts for reducing the pollutant

emissions is not available in the literature, especially in the case of using Fe(CO)5 as the

catalyst additive. Therefore, the experimental studies on natural gas combustion with

Fe(CO)5 addition are important for developing and optimizing the novel clean combustion

technologies based on iron-containing catalysts.

Due to its non-premixed, one dimensional and easy controlled, the counter-flow diffusion

flame, which is one basic technology to investigate the fundamentals and kinetic mechanism

of combustion [21], is chosen to study the emission control by iron-based catalysts. However,

for such an open experimental system, how to diminish the experimental uncertainties

and obtain an accurate measurement of gas profiles generated from the diffusion flame is

critical for conducting further combustion studies. In addition, as the numerical simulation

can not only save experimental cost but also guide the potential combustion studies and

application, the use of an appropriate numerical model is always favored for the combustion

study. Among different numerical softwares such as COMSOL and CFD, CHEMKIN is

a good tool which can simulate the chemical reaction in a counter-flow flame and predict

its gas structure. In order to make sure the simulated results give a correct conclusion,

the modeling results need to be validated by experimental data to confirm its correctness.

Therefore, comparison of the results obtained from experiments and modeling are necessary

for developing and improving the numerical model.

1.2 Research Objective

In this thesis, the goals of the experimental measurements on catalytic and non-catalytic

combustion are to characterize the emission profiles of a natural gas combustion generated

in a counter-flow flame apparatus and to investigate the effects of iron-based catalysts. The

specific objectives of this study are:

• To build up the counter-flow flame apparatus as well as finalize its gas diagnostics

system;

• To establish the experimental database of the non-catalytic combustion of natural

gas and compare with the CHEMKIN simulated data;

4



• To investigate and evaluate the performance of iron pentacarbonyl on the reduction

of the pollutant emissions (especially CO and soot precursor C2H2) from the natural

gas combustion.
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Chapter 2

Literature Review

Natural gas is a gaseous mixture composed of different hydrocarbons and some other gas

compounds. The primary composition of natural gas is methane(CH4) whose content can

be more than 90%, and there are also several different alkanes such as ethane, propane

and very few amounts of other components including nitrogen and carbon dioxide [15,22].

Table 2.1 gives the typical composition of natural gas.

Table 2.1: Composition of natural gas (Based on literature data [1–4])

Components Examples Content

Methane CH4 90% ∼ 95%

Ethane C2H4 0∼5%

Propane C3H8 0∼1%

Other Hydrocarbons C4H10, C5H12 and C6+ 0∼1%

Carbon Dioxide CO2 0∼1%

Nitrogen N2 0∼5%

Others O2, CO, etc. 0∼0.2%

As the major composition of natural gas is methane which has a higher H/C ratio,

its combustion products are less CO2 and more water compared with other fossil fuels.

Consequently, natural gas is much more friendly to the environment. Instead of the

conventional fossil fuels, it is widely used in various areas, especially in industry and

transportation.
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2.1 Emissions Characteristics of Natural Gas Com-

bustion

The combustion of natural gas (especially methane) can be described as the overall reaction

2.1, where the reaction temperature can reach above 1600 ◦C. The final products from

the combustion are expected to be only CO2 and water, however, it still produces some

pollutant emissions such as NOx, soot and CO, due to the complicated operation conditions

in different applications.

CH4 + 2O2 → CO2 +H2O,H298 = −802.7kJ/mol (2.1)

To efficiently use natural gas, a great number of studies have been conducted in the past

to understand the characteristics of natural gas combustion. These studies were not only

experimentally conducted in various systems such as engines and bench-size burners but

also numerically simulated by the specific modeling softwares such as CHEMKIN. According

to these studies, the emission profiles of natural gas combustion are well known.

Studies [3,23,24] on internal combustion (IC) engines (including spark ignition (CI) and

compressed ignition (CI) engines) indicated that natural gas produced several pollutant

emissions such as NOx, CO and PM, which have much lower levels compared with those

generated from petroleum. As the fuel injection time varied, the concentrations of the

major emissions from the combustion of natural gas in the direct-injection engines can reach

100 to 500 ppm for HC, 0.1% for CO and 100 to 600ppm for NOx [25]. These emissions

can also be affected by the engine operation conditions, which made NOx can be above

1000ppm when a CI engine worked at the high-load condition [26].

Research on natural gas combustion was also conducted in the bench-size systems

to study the generated species. Puri et al. [27] compared the chemical structure of a

methane/air counter-flow diffusion flame measured from the experiments with the numerical

simulation. The profiles of CH4, oxygen(O2) and nitrogen(N2), CO, CO2, acetylene(C2H2),

ethylene(C2H4) and ethane(C2H6) were measured by a gas chromatograph (GC) via a quartz

microprobe. The experimental measurements matched with the numerical simulation well.

Moreover, Khanna et al. [28] experimentally investigated the CO and NOx emissions from a

methane/air premixed flame using a porous medium burner. The results indicated that the

methane combustion in the porous burner were very low with the values of approximately

31ppm for NOx, 26ppm for nitric oxide (NO) and 125ppm for CO under all the experimental

7



conditions. The study also found that NO increased as the flame speed increased but

the total emissions of NOx (NO and nitrogen dioxide (NO2)) were kept constant if the

equivalence ratio was fixed. In addition, CO emission was kept constant first and then

would be increased when the flame speed was increased to a certain level.

2.1.1 NOx Formation

NOx Formation Mechanism

NOx is a major source contributed to the formation of smog, acid rain and tropospheric

ozone. It is one of the major pollutant emissions produced from the combustion process,

mainly coming from three mechanisms: thermal NOx, prompt NOx and fuel NOx [29, 30].

• The first source is the thermal NOx generated from the oxidation of atmospheric

nitrogen, which was first suggested by Zeldovich and then extended by Hanson and

Salimian. The thermal NOx mechanism can be described as the following reactions:

O2 ↔ 2O (2.2)

N2 +O ↔ NO +N (2.3)

N +O2 ↔ NO +O (2.4)

N +OH ↔ NO +H (2.5)

Based on these reactions, it is found that the formation of the thermal NOx depends

on the O2 dissociation, which needs a high temperature. Therefore, the formation

rate of NOx is highly affected by the reaction temperature, the concentrations of

N2 and O2, and their residence time under the reaction temperature. Moreover, the

concentration of hydroxyl radical (OH) is another key factor that affects the NOx

formation, shown as the reaction 2.5.

• The second source is the prompt NOx coming from the reactions of N2 with the

hydrocarbon radicals including C and CH. Under a fuel rich condition, these reactions

usually occur at the earliest stage of the combustion with a low temperature and a

short residence time. N2 will react with the radicals to form some intermediate species

such as hydrogen cyanide (HCN), shown as the reaction 2.6. Then these species are

oxidized to NO2. Compared with the thermal NOx, the prompt NOx is negligible as

8



the concentrations of the hydrocarbon radicals are usually very low.

CH +N2 ↔ HCN +N (2.6)

• The third source is the fuel NOx which is attributed to the oxidation of the fuels

containing the organically bound nitrogen. Usually, the nitrogen bonds in the fuels,

such as coal and oil, are easily broken to release free radicals which will then react

with oxidizers to form NOx. The fuel NOx mechanism contribute to 50% to 70% of

the total NOx emissions in the combustion of coal and oil [31], however, it is not a

big problem for natural gas due to its low nitrogen content.

NOx Emission in Natural Gas Combustion

Hahn and Wendt [32] studied the flame structure of methane diffusion flame in a counter-

flow burner by both experiments and numerical simulation. The kinetic mechanism of

NOx formation was validated by comparing the experimental measurements with the

modeling results. Moreover, the profiles of other components such as CO and CO2 were

also investigated. The results has shown that the opposed diffusion flame was a good tool

to conduct the fundamental studies of fuel combustion.

Blevins and Gore [33] used GRI-Mech 2.11 chemical mechanism to simulate a methane/air

counter-flow flame with a low strain rate. In the chemical model, methane partially mixed

with air were directed from one side, and the pure air was injected from another side. In

this study, the combustion products including CO, CO2 and hydrogen(H2) were predicted

to study the flame structure. The modeling results investigated the profiles of NO and

some radicals such as CHi in the flame with different fuel-side equivalence ratio, where it

has demonstrated the importance of CHi and the equivalence ratio for NO destruction and

formation.

The experimental and numerical studies on the soot and NO formation in a CH4/O2

enriched counter-flow diffusion flame was conducted by Fridman et al. [34]. The profiles

of C2H2, C2H4 and C2H6 were measured in the experiments, in order to develop and

validate the GRI-Mech 2.1 numerical model for predicting the soot formation. The NO

formation was then numerically investigated by studying its distribution in the diffusion

flame, which revealed the importance of thermal and prompt mechanisms on NO production

and destruction. The authors also investigated the changes of NO and soot profiles affected

by the varied oxygen content and strain rate.
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Dupont and Williams [35] investigated the NOx formation mechanism in the rich

methane/air double flames. Comparison of the experimental measurements of NO profile in

the co-flow flame with the modeling results revealed the importance of prompt mechanism

for NO formation. A counter-flow flame model was also used in this study and revealed

that the high equivalence ratio and high strain rate were preferred for controlling NO

emission. However, the emissions of CO, unburnt hydrocarbons and soot were increased

simultaneously.

2.1.2 Particulate Matter Formation

PM, one of the most important pollutants generated from the combustion process, is the

collection of small solid particles or liquid droplets with different diameters (usually in

micrometer). Typically, PM contains smoke, dust, ash and soot, which had bad effects not

only for the environment by reducing the visibility and forming acid rain but also for human

health by decreasing the lung function and increasing the respiratory symptoms [36]. As

one of the major PM sources, soot has already been paid more attentions in the combustion

research.

Soot Formation Mechanism

Soot is actually the tiny carbon particles generated by the incomplete combustion of

hydrocarbon fuels. Usually, the formation of soot from the combustion process has four

steps including the formation of soot precursors, particle inception, particle growth and

particle oxidation [8, 37, 38].

• First of all, the hydrocarbon fuels are broken to form C2H2 during the pyrolysis process,

especially under a fuel rich condition. C2H2 then reacts with the hydrocarbon radicals

such as vinyl radical (C2H3) to grow into the small aromatic ring such as benzene

and phenyl radical (C6H5) via several different routes at different temperatures. The

dominant pathway, adding C2H2 to the vinylacetylene radical (C4H3) radical, usually

occurs at a high temperature and is the preferred route in a premixed flame. In

a diffusion flame, two other pathways under a low temperature occur to form the

aromatic ring, where the alternate route A and B are to add C2H2 to 1,3 butadienyl

radical (C4H3) and vinylacetylene (C4H4) respectively. Moreover, there is one more

route, regarded as the alternate route C, to form the small aromatic ring (C6H5)
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via the rapid pyrolysis of allene and methyl acetylene. After the small aromatic

ring is formed, it finally grows into the larger aromatic ring (polycyclic aromatics

hydrocarbons (PAHs)) via C2H2 addition and H2 abstraction. All of these soot

formation routes are shown in Fig 2.1.

• Once the PAH is formed, the primary soot particles with the diameters of less than

1.5 nm can be formed by coagulating these lager aromatic rings. This process actually

is to transform the molecular gas species to the three dimensional solid particles.

• The primary soot particles will then continue growing to the larger aggregates by the

surface growth reaction and coagulation. The surface growth can increase the soot

amount but keeps the soot particles with a constant number, and the coagulation

keeps the soot amount constant but reduces the amount of the soot particles via the

particle collision and coalescence.

• Finally, the oxidizers mainly including O2 and OH radicals will then oxidize the soot

particles to determine the final soot emission generated in the combustion process.

Soot Precursors

Based on the soot formation mechanism, the soot precursors are found including benzene

and PAH, among which C2H2 is considered as an important one [8,37,38]. Fig 2.1 has shown

the importance of C2H2 for the soot growth as it participates in almost the whole process of

soot formation, where C2H2 is generated first and then reacts with other hydrocarbons to

form the soot particles. Therefore, the studies on the C2H2 concentration in the combustion

process is critical for investigating the final soot production.

Soot Emission in Natural Gas Combustion

Senkan and Castaldi [39] compared the PAH formation in the premixed methane flame

with those in two other flames fuelled with ethane and propane. Hydrocarbons including

C2H2, C3 species and PAH were experimentally measured by a gas analyzer GC-MS from a

porous bronze burner. The results indicated that methane flame had the higher benzene

and PAH production than ethane flame, but their levels were lower than those generated

from propane flame. Moreover, C2H2 and soot produced from the methane flame were found

less than those from the other two flames. These findings indicated that the hydrocarbons
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Figure 2.1: Schematic of the general soot formation mechanism [8].
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with odd number of carbon atoms were significant for the PAH formation in a premixed

methane flame.

A chemical modeling of an opposed diffusion flame fuelled with methane was studied by

Marinov et al. [39]. The detailed chemical reaction pathways of different soot precursors,

especially PAH and aromatics, were well understood and found consistent in this study.

The predictions of PAHs, aromatics and other large compounds by modeling agreed with

the experimental results, however, the prediction of four ring PAHs did not match the

measurements well.

Smyth et al. [40] used a co-flow burner to experimentally study the soot formation

in a methane/air diffusion flame. The measured peaks of the intermediate hydrocarbons

including C2H2 and C6H6 were found consistent with the positions of the earliest soot

particles. This finding indicated these components were the important precursors for the

soot formation. Moreover, the study also measured the profiles of CO, CO2 and other

C2 species in order to investigate the chemical reactions in this diffusion flame. The

investigation suggested that the chemical growth process was critical for the formation of

soot and its precursors.

2.1.3 CO Formation

CO Formation Mechanism

CO is another major pollutant emission produced from the combustion, as it is highly toxic

that it can harmfully affect the human’s respiratory system. Compared with NOx and soot,

the mechanism of CO is much easier that it is actually the product from the incomplete

combustion of hydrocarbon fuels [29]. In the hydrocarbon flame, the hydrocarbon fuels

will be oxidized to form CO first, and then it is further oxidized to CO2. This process

can be described as the following reactions (Reaction 2.7 and 2.8). However, in a fuel rich

condition, the oxidizer is not enough to oxidize all the CO to CO2 that it will form a certain

amount of CO as one of the final products.

CmHn +O2 ↔ mCO + n
2
H2O (2.7)

CO + 1
2
O2 ↔ CO2 (2.8)

13



CO Emission in Natural Gas Combustion

A fuel ultra-lean methane/air premixed flame was studied in an homogenous combustion

reactor by Wang et al. [41]. The combustion reaction process was studied by measuring

the concentrations of the major gas components like CO and CO2 by using both GC and

Fourier transform infrared spectroscopy (FTIR). The measurements indicated that CO2

was mainly oxidized from CO at the high temperature, and a small amount of CO2 can also

be directly produced from methane oxidization at the low temperature simultaneously. A

enhancement for the methane combustion was also found by increasing the gas contact area

through adding a monolith to the reactor. Based on the experimental results, the study

developed a simplified methane combustion mechanism as well.

Kolzov et al. [42] simulated the characteristics of CO in a lean methane/air premixed

flame by using the GRI-Mech 3.0 chemical mechanism. The modeling results indicated

that more CO was produced as the mixture was leaner only when the flow residence time

is shorter than 13 ms, otherwise the CO tendency was totally opposite. The authors

also studied the effects of temperature on CO emission by adding two different kinds of

boundary conditions to the bulk combustion chamber. The results demonstrated that the

low temperature can increase CO production due to the incomplete combustion of methane.

2.2 Pollutant Reduction Technologies

As the major pollutants generated from the combustion process are harmful for both the

environment and human health, numerous technologies for pollutant control have been

studied and developed in the past years.

2.2.1 NOx Control Technologies

The methods for reducing NOx actually can be divided into two types, which are identified

as the pollution prevention and the add-on technologies [30, 43]. The add-on controls

are to reduce or change the NOx back to nitrogen by adding some agents. The major

applications contain selective catalytic reduction (SCR), selective non-catalytic reduction

(SNCR) and the oxidant injection. The pollution prevention technologies, which typically

include catalytic combustion, water injection and flue gas recirculation (FGR), are to change

the combustion process to inhibit the formation of NOx.
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Add-on Technologies

SCR is a kind of technology to pass the boiler flue gas through a catalyst bed, where the

reaction of NOx and the injected ammonia (NH3) is promoted by the catalyst to generate

nitrogen and water. Ammonia is the key reductant that can react with NOx at the dominate

routes shown as the reactions 2.9 and 2.10 [44]. Catalyst is another key agent which usually

consists of a carrier and an active component. The common material used as carrier is the

ceramic ones (especially titanium oxide). For the active component, the precious metals such

as platinum (Pt) and palladium (Pd) can be used when the temperature varied from 170 to

300 ◦C. Moreover, the base metals like vanadium (V) and tungsten (W) are used when it

was from 260 to 430 ◦C and Zetolites can stand a higher temperature range from 450 to 600
◦C [30]. The catalysts are mainly manufactured as a honeycomb form, where an extruded

carrier is homogeneously merged with or surfacely coated with the active components, or a

plate form, where the active components are coated on the support materials. SCR has

already been widely used in the power plants [45,46] and engines [47, 48].

4NO + 4NH3 +O2 → 4N2 + 6H2O (2.9)

2NO2 + 4NH3 +O2 → 3N2 + 6H2O (2.10)

Similar to SCR, there is another technology using ammonia or urea (H2NCONH2) to

reduce NOx with the absence of catalyst, called SNCR. Instead of ammonia, urea is the

common reducing agent in SNCR which will release ammonia in the first step (shown as

the reaction 2.11) and then reacts with NOx. Since there is no catalyst, SNCR needs a

higher operation temperature to promote the reactions. However, if the temperature is too

high (above 1050 ◦C), ammonia can be oxidized to NO (shown as the reaction 2.12) so

that it decreases the efficiency of NOx reduction. Consequently, there is an appropriate

temperature range from 850 to 1050 ◦C to achieve the maximum NOx reduction [30, 49, 50].

SNCR is widely used in the power plant [51] and diesel engine [52]. In the meanwhile,

some other studies [53, 54] also investigated the combination of SNCR and SCR in order to

obtain the ultra-low NOx emission.

H2NCONH2 → NH3 +HNCO (2.11)

4NH3 + 5O2 → 4NO + 6H2O (2.12)

The oxidation of NOx is another method for NOx removal [30,55]. One kind of technology
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using this method is to inject the oxidants, such as ozone or hydrogen peroxide (H2O2), into

the exhaust gas, where NOx can be oxidized to N2O5 and then absorbed by water. A typical

reaction mechanism for this technology is shown as the following reactions (2.13 ∼ 2.15).

Another technology based on this method is to use the non-thermal plasma to produce

some active radicals which can oxidize NOx to N2O5. These NOx oxidation technologies

have already been widely used in the industrial boiler [56] and the internal engine [57,58]

with the NOx removal efficiency of approximately 95%.

NO +O3 → NO2 +O2 (2.13)

NO2 +O3 → N2O5 +O2 (2.14)

N2O5 +H2O → HNO3 (2.15)

Pollution Prevention Technologies

Most of the pollution prevention technologies are essentially based on reducing the reaction

peak temperature to control the NOx emission. Water or steam injection is such a method

used in the power plant and engines that it can lower the flame temperature by forming a

heat sink after introducing water or steam to the combustion chamber. Moreover, NOx

is also reduced by the increase of the reducing agents via the dissociation of steam into

hydrogen and oxygen [59–61]. Reduced air preheat is another application of controlling

NOx emissions by reducing the peak temperature. Usually, air will be preheated by the flue

gases in order to reduce the heat loss and save energy. However, preheated air will absorb

less heat in the combustion process and increase the peak temperature, so that it leads to

the NOx formation [62,63]. Therefore, this method is a good way to inhibit the formation

of NOx.

Over-fire air and fuel reburning are two similar technologies used for control NOx. In

the over-fire air technology, there will be a primary flame zone which is under the fuel rich

condition and then a second zone downstream where an additional air is injected into the

unburnt fuel. The reaction temperature is always kept low at both of the two combustion

zones due to the off-stoichiometric combustion, so that it inhibits the NOx formation [64,65].

Similarly, an additional fuel will be added into the second zone (reburning zone) to reduce

the NOx which is formed in the primary zone back to the molecular nitrogen. The produced

gas species will then go into the burnout zone and be completely oxidized by an additional

air. This technology is known as fuel reburning, where the temperature in the reburning and

burnout zone is low [66,67]. Furthermore, another technology, named flue gas recirculation,
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is to reduce NOx emission by recirculating the flue gas into the combustion air in order to

lower its temperature and decrease its oxygen concentration [68]. Based on the over-fire

air or fuel reburning technologies, the low NOx burner was developed to achieve a low

NOx emission level of 90∼140ppm. In addition, an ultra low NOx burner combining the

applications of flue gas recirculation with the staged air or fuel technology can reduce the

NOx emission to 10∼15ppm [69].

Catalytic Combustion Technology

Catalytic combustion is a kind of flame-less reaction that it can oxidize fuel completely under

a low temperature and thus produces less thermal NOx [43]. Different with SCR, catalytic

combustion prevents the formation of NOx by lowering the activation energy to reduce the

reaction peak temperature (shown in Fig.2.2) but not by reverting NOx back to nitrogen.

With the presence of catalyst (usually the noble metal or their metal oxides), the reaction

temperature can be reduced below 1400 ◦C or even lower, so that it can significantly inhibit

the formation of NOx in the combustion process [70,71]. The ability of catalytic combustion

achieving an ultra-low NOx emission has already been studied in different equipments. A

study conducted in a gas turbine engine by Enga and Thompson [72] indicated that a metal

supported Pt catalyst can reduce the emission of NOx as low as 0.44 ppm, which was much

lower than the emission level of 58 ppm from a conventional engine without the catalytic

system. Vatcha [73] also tested the NOx emission was below 1 ppm from Pd-based catalytic

combustion in the gas turbine, which was one to two magnitude less than that from the

conventional thermal combustion.

Gastec and Vaillant [74] developed both the completely and partially catalytic natural

gas burners with the honeycomb catalysts. The experimental results revealed that NOx

were 5ppm and 0 ppm in the partially and completely catalytic boilers, respectively. A

study on the Cu-based catalyst for the methane combustion in a fluidized bed reactor was

conducted by Iamarino et al. [75]. No NOx, CO and particulates were detected in the

exhaust gas, as methane was completely combusted at the temperature below than 700◦C.

Another experimental study on the fluidized bed reactor also investigated the effect of

Pd-based catalyst on emission reduction of natural gas combustion [76]. Different from

other supported catalysts, the Pd-based catalyst introduced into the combustion reactor was

a powder. The experimental results from the study found that methane can be completely

combusted at the temperature of 500◦C to produce 0∼1 ppm NOx and CO.
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Figure 2.2: Comparison of the temperature profiles between the catalytic combustion and
the conventional combustion [9].

2.2.2 PM Control Technologies

To reduce the emission of PM (mainly soot), catalytic combustion is one efficient technology

to oxidize the fuels or particulates to CO2 and water with the presence of catalyst, reducing

10%∼40% PM and 70%∼90% HC. Particulate filter (PF) is another major technology used

in different systems (especially in diesel engines) to collect and remove the particulates

from the exhaust gas, with the reduction efficiency of both PM and toxic HC greater than

90%. [77–79].

Catalytic Combustion for Particulate Reduction

Catalysts, mainly noble or base metals like Pt and metal oxides like Fe2O3, are usually

coated on the support materials such as a metallic or ceramic honeycomb structure. Studies

on the catalytic combustion found that catalysts can change the reaction routes of the

hydrocarbon fuels to inhibit and reduce the formation of soot particles [10,80,81]. With

the presence of catalysts, methane can be absorbed onto their surface and then oxidized to

CO2 directly. Shown as Fig.2.3, this surface reaction can reduce the generation of some

intermediate gaseous hydrocarbon species (which may lead to soot formation) in the regular

reaction pathways . Studies also found that catalysts can also oxidize the particulates to
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CO2 and water at a low temperature, via the gas-solid catalyzed hydrocarbons oxidation

and sometimes the solid-solid catalyzed graphitic carbon combustion [82–84]. The catalytic

combustion of graphitic carbon is favoured for the catalysts with the low melting point,

such as V2O5 and CuO. In addition, the activities of catalysts for the particulate oxidation

depended on their surface area and also the metal-oxygen bond strength (for metal oxide

catalysts).

Figure 2.3: The proposed reaction pathway for Methane oxidation on catalyst surface. (a)
absorbed; (g) gas phase [10].

In diesel engines, catalysts can also reduce the particulates by some other ways besides

oxidizing the particulates and hydrocarbons directly, when they are used as the regeneration

catalysts to remove soot particles from the diesel particulate filters [77, 78]. On one

hand, soot can be combusted by the generated heat from catalytic oxidation of unburnt

hydrocarbons and CO existed in the exhaust gas. On the other hand, the regeneration of

the filters is to use the catalysts oxidizing some NO in the exhaust gas to NO2, which then

burns the soot particles at a lower temperature than oxygen.

Particulate Filters

High efficiency filters (wall flow filters), usually based on a porous wall, honeycomb structure

with blocked end at each alternate channel, are the most common type that can trap the

particulates when the exhaust gas pass through the alternate channels [77,78,85,86]. These

filters can be made of different ceramic materials, such as cordierite, aluminium titanate and

silicon carbide, which have the high strength and thermal durability. Since the soot particles

are continuously deposited on the porous walls of the filter channels, it will cause a pressure
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drop over a certain time to affect the performance of the filters. As a result, the accumulated

particulates need to be removed from the filters, which is known as regeneration.

The regeneration of particulate filters can be accomplished by burning or oxidizing

the soot particles via several different methods: 1) the soot particles can be burnt off

at a low temperature with the help of coated surface oxides and metal catalysts on the

filter substrate, known as passive regeneration; 2) the particulates can also be burnt off at

an increased temperature by means of introducing an oxidation catalyst or a temporary

change to the engine operation such as fuel injection and an external heating, namely

active regeneration; 3) a small amount of fuel-borne catalysts including iron and platinum

containing compounds can be added into fuel prior to combustions. The catalysts will

be well mixed with soot particles and lead to the ignition of the particulates at a low

temperature. During this process, the catalysts remain left on the filter as ash and need to

be removed in the regular filter maintenance.

Flow through filters (partial filters) are another type using metal wire mesh structures or

metal foil substrates with porous metal fleece layers to remove the soot particulates, when

the exhaust gas flows through the filters. The retained particulates then can be burnt off

or oxidized with the assistance of coated catalyst or upstream oxidation catalyst. Usually,

the flow through filters does not need a cleaning procedure as the inorganic ash generated

from the catalyst can pass through the filters without deposit. The particulate reduction

can reach 30% to 60% by these partial filters.

2.2.3 CO Control Technologies

Carbon monoxide can be reduced by some clean combustion technologies or by thermal

combustion. Since CO is a major product generated from the incomplete combustion of

hydrocarbon fuels, it can be reduced by avoiding the fuel rich flame or using a clean fuel,

such as biodiesel which usually contains oxygen component [87]. Besides these technologies,

catalytic combustion is another efficient method to help reduce CO emission.

Usually, catalysts can reduce the CO emission not only by lowering the reaction activation

energy to promote the complete oxidization of hydrocarbon fuels or CO at a low temperature,

but also by absorbing hydrocarbon or CO species to introduce the new reaction pathways

of forming carbon dioxide and water [17,88,89]. An example of the catalytic combustion of

CO on Pt particles is shown as the following reactions 2.16 and 2.17 [90]. It was found the

Pt catalyst can be reacted with oxygen first to form a layer of platinum oxide (PtO2) on

20



its surface, which can then oxidize the later absorbed CO species to generate CO2. After

these reactions, Pt can be oxidized back to the gaseous and then solid PtO2 again. In the

meanwhile, it was found that the activation energy for these reactions were lower than the

conventional CO oxidation. Catalysts have already been used to reduce CO emission in

different areas, such as boiler [74], fluidized bed reactor [76] and IC engines [72]

PtO2(s) + 2CO ↔ Pt(g) + 2CO2 (2.16)

Pt(g) +O2 ↔ PtO2(g)→ PtO2(s) (2.17)

2.3 Catalytic Combustion of Natural Gas

Catalytic combustion can be used to simultaneously reduce the major pollutant emissions,

such as NOx, soot and CO, generated from the combustion process by lowering the reaction

temperature and changing the reaction pathway [10, 17, 76]. Various catalysts, mainly

including noble metals and metal oxides, have already been investigated and used for the

combustion of natural gas [18]. The noble metal based catalysts were thoroughly explored

for natural gas combustion, as they were found having the highest potential for reducing

the pollutant emissions. Since noble metals are easily vaporized, toxic, scarce and also

expensive, alternative catalysts are necessary to be developed. It is found that metal

oxides can catalyze the natural gas combustion to reduce the generated pollutant emissions,

although their catalytic activities are lower and their light-off temperatures are higher.

Numerical metal-oxide based catalysts, such as single metal-oxides and doped metal-oxides,

have already been investigated and used for natural gas combustion. However, most of

these catalysts (no matter noble metals or metal oxides) are not suitable to be employed in

the high temperature combustion, in respect that they will become vaporized or sintered to

lose their activities under the high temperature. Thanks to their high thermal stability and

low cost, iron oxides (mainly Fe2O3) are paid certain attentions to their potentials as the

medium and high temperature catalysts [19, 20,91], although studies on combustion added

with iron-oxides based compounds (especially iron pentacarbonyl) are inadequate.
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2.3.1 Catalysts for Natural Gas Combustion

Noble Metal Catalysts for Natural Gas Combustion

Noble metals are the most popular materials as catalysts for combustion, due to their high

activities and great resistance to sulfur poisoning. This kind of catalyst used for natural

gas combustion includes Pd, Pt, gold (Au) and rhodium (Rh) and so on [18].

Pd based catalysts are considered as the most active materials for the complete combus-

tion of methane. Most of studies [92–94] found the activities of the Pd based catalysts were

structure sensitive, meaning that the turnover frequency (TOF) is generally increased as the

Pd particle size increases. TOF, defined as the number of molecular product per catalytic

site in a unit time, is used for describing the activity of catalyst. However, the activities of

the Pd catalysts were also determined by the chemical composition of the species on their

surface and some other factors. The Mars and van Krevelen (MvK) mechanism can explain

the catalytic combustion process of methane over the Pd catalysts [95–97]. The palladium

oxide (PdO) layer formed on the metallic Pd surface is identified as the active part for

oxidizing methane. After the reaction with methane, Pd will be re-oxidized by oxygen to

form PdO for maintaining the activities of the catalysts. The studies also found that both

the concentration and position of the PdO on the partially oxidized catalyst determined

the oxidation rate of methane.

Although Pd based catalysts are more attractive under most conditions for the catalytic

combustion of natural gas, Pt based catalysts have been found more active in some certain

conditions, such as with the addition of hydrogen sulphide and presence in the multi-metallic

catalysts [98,99]. Similarly, the Pt based catalysts are generally thought to be structure

sensitive. Meanwhile, the kinetic and other studies also indicated the importance of the

surface PtO2 for the catalytic oxidation process [90,92]. Furthermore, some studies [100–102]

found that Pt-Pd bi-metallic catalysts were superior for the oxidation of methane than the

individual Pt or Pd based catalysts, in respect that they were more active, durable and

more stable during the reaction process.

Some other catalysts based on the noble metals including Rh and Au are also used

for the methane combustion. Studies on the Au based catalysts [103–105] indicated that

the increase of the oxidized Au can enhance the methane oxidation rate. The methane

oxidation activity was also affected by the Au particle size, illustrating that smaller Au

particles were preferred for reducing the reaction activation energy. In addition, Rh based

catalysts were investigated to promote the oxidation of methane by researchers, who found
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that their activities were sometimes higher than Pt based catalysts [98]. A study [106]

also suggested that the catalytic activity can be improved due to the higher dispersion

of Rhd+ specie, when using a Rh/ZrO2 catalyst for the methane oxidation. Besides these

studies, Au and Rh were mixed with Pd or Pt used as the multi-metallic catalysts. The

investigations demonstrated that these catalysts can get an enhanced catalytic activity

sometimes for the complete oxidation of methane [107–109].

Metal Oxide Catalysts for Natural Gas Combustion

The metal oxides are receiving more and more attention due to their lower price. The metal-

oxides based catalysts mainly contain single metal-oxides, doped metal-oxides, perovskites

and other mixed metal-oxides.

Various oxides of the base metals, such as copper (Cu), manganese (Mn) and cobalt

(Co), were used as catalysts for the methane combustion. CuO based catalysts have already

been studied to show that isolated Cu species presented on the support surface were more

active than the CuO particles for a total oxidation of methane. Moreover, high Cu loading

and high temperature were also found to have an unfavourable effect on the activities of the

CuO based catalysts [110,111]. MnOx based catalysts with and without support were also

investigated to evaluate their performance in catalytic methane combustion. The study

indicated that unsupported MnOx can promote the complete combustion of both methane

and CO, however, zirconia (ZrO2) supported and silica-alumina (SiO2-Al2O3) supported

MnOx have the superior activities for oxidizing CO and methane respectively [112]. Similar

study [113] on Co based catalysts pointed out that the zirconia supported Co catalyst had

the highest activity for the methane combustion compared with bulk Co3O4 and other

supported (aluminium oxide (Al2O3) and titanium oxide (TiO2)) catalysts. The activities

of catalysts were also found significantly affected by the surface Co3O4 but not the bulk

species. Major metal oxides supported on LaAlO3 used for the methane combustion were

compared and showed that the order of their catalytic activities (from highest to lowest)

was Co3O4, CuO, NiO, Fe2O3, Mn2O3 and Cr2O3 [114].

Perovskite oxides, with a general structure presented as ABO3, have been widely

investigated recently as the alternative catalysts for methane combustion. This is because

they have better thermal stability compared with noble metals and also good activities

at the evaluated temperature [115]. In the perovskite oxides, usually A is a rare earth

metal and B is a transition metal like Mn and Co, which can be partially replaced by

other A’ and B’ cations described as a formula of AxA’1−xByB’1−y. The number of A and
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B cations entering into the structure as well as their partial-substitution determine the

properties of the perovskite catalysts, and thereby affect the catalytic activities profoundly.

Using perovskite oxides, the oxidation of methane is either dominated by the weakly

bonded-oxygen adsorbed on the surface of catalysts at the low temperature, or affected

by the lattice oxygen of the catalysts at the high temperature when the surface oxygen

is desorbed [116, 117]. However, the low surface area and the strong sintering tendency

of perovskite oxides are the major issues reducing their catalytic activities. Thus, these

disadvantages lead to the use of various supports, such as alumina and magnesia based

metals, to enhance their performance [118,119].

Doped metal oxides (which have the higher activities than perovskite oxides) and

hexaaluminates (which have superior thermal properties) are two other major catalysts

based on the mixed metal-oxides. Studies [120, 121] found that the crystal defects of

metal-oxides catalysts can be increased when they were doped by transition metals. This

enhanced the mobility of the lattice oxygen and thereby lead to an increase of its reactivity.

However, the catalytic activity was not linearly increased with the content of doped metals

based on a study on the Mn-doped zirconia catalyst, which showed there were the best

values of both the Mn/Zr ratio and the calcination temperature to get the maximum

activity [122]. Hexaaluminates, usually described as AAl12O19, have attracted attention due

to their potentials of being high temperature catalysts [123,124]. Similar to perovskite, A

site is usually filled with the earth metal cations, while A and Al sites can also be partially

substituted by other metal cations. Studies [125–127] have shown that partially substituted

hexaaluminates can enhance their activities and simultaneously maintained their high

thermal stabilities, whereas their low surface areas induced a lower activity compared with

other mixed metal-oxides.

2.3.2 Iron Based Compounds for Natural Gas Combustion

Iron-oxide Based Catalyst Review

Compared with other catalysts, studies on iron-oxide catalysts are limited but have shown

their potentials for the medium and high temperature application, in respect that they have

a high sintering temperature. In addition, although the catalytic activity of Fe2O3 is lower

than other oxides like CuO and Mn2O3, iron-oxide based catalysts have been found that

they can catalyze the complete oxidation of methane, when the iron content which linearly

determined the methane oxidation rate was above a certain level [10, 128, 129]. Similar
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to other metal based catalyst, iron oxide particles will catalyze the oxidation of methane

via the surface reactions with the absorbed hydrocarbon species. Iron oxides can oxidize

the gas species first and then be converted back to their initial states via the re-oxidation

by oxygen. These conclusions indicated the importance of surface area for the catalytic

activities of iron oxides [19,82,130]. The calcination temperature has been proved having

a critical effect on the catalytic properties of unsupported Fe2O3. The high calcination

temperature can give a higher stability to these oxides, but reduced their catalytic activities

due to the lower surface area. It was also noticed that it can increase the catalytic surface

area and inhibit the total oxidation of methane when adding sulphates into the iron-oxide

catalysts [131].

A study [132] on the catalytic activities of iron-oxide catalysts showed both the un-

supported and supported iron oxides were able to catalyze the oxidation of CO, among

which Fe2O3 supported on Al2O3 had the best performance compared to the others. In the

meanwhile, FeSbO4 and FePO4 were observed having a better activity for propene(C3H6)

oxidation. The Fe2O3 nano-particles with the size of 3 nm were found that their higher

surface area made them a higher activity for oxidizing methane and CO, compared to the

Fe2O3 micro-particles with the sizes of 300 nm and 5 µm. Furthermore, it was also found

that CO can be removed by iron oxides through either the catalytic oxidation or the direct

oxidation (when oxygen was absence) [20,133].

Iron Pentacarbonyl for Combustion

Iron Pentacarbonyl (Fe(CO)5) has been extensively investigated in the past years, due

to its much more efficient performance on reducing the flame burning velocity than the

other flame inhibitors such as halon 1301 (CF3Br) [134–136]. In these previous studies, the

performance of Fe(CO)5 on flame inhibition affected by the inhibitor mole fraction and

flame structure have already been well understood. In most conditions, Fe(CO)5 can reduce

the flame velocity, however, some differences were found in a methane counter-flow diffusion

flame [137]. The experimental measurements indicated that there was no obvious flame

inhibition when the flame was located in the fuel side. Furthermore, it was found that the

oxidizer-side flame was even promoted if the inhibitor was directed from the fuel stream.

In addition, although the inhibition mechanism of Fe(CO)5 are still not very clear, some

critical iron oxides generated during the combustion process were found by the previous

studies. Rumminger et al. [138] extended the flame inhibition mechanism of Fe(CO)5, which

included the catalytic H atoms removal cycle based on the work of Jensen and Jones [139].
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In this mechanism, Fe(CO)5 was decomposed to Fe and CO, but it would break the Fe-CO

bounds orderly to produce Fe(CO)4, Fe(CO)3,Fe(CO)2 and Fe(CO) first. Then the iron

atoms can be formed to various iron-containing compounds, such as FeO, FeO2, FeOH,

Fe(OH)2 and Fe(O)OH. This mechanism was numerically simulated in both a premixed and

a counter-flow diffusion flame fuelled with methane, oxygen and nitrogen. The simulated

results were validated by the experimental results. The authors [140] also numerically

studied the methane/air counter-flow flame with Fe(CO)5 addition, where the simulation

revealed that same iron-containing species appeared in the diffusion flame, no matter

Fe(CO)5 was added into the flame from the fuel or air side. However, the distributions

of FeO2, FeOH and Fe(OH)2 were different under these two different inhibitor injection

conditions.

Based on the mechanism established by Rummingers, Wlokas et al. [141] developed the

mechanism on the formation of Fe2O3 from Fe(CO)5. The new mechanism was validated

by comparing the modeling with experimental results measured by the laser-induced

fluorescence (LIF). The experimental measurements demonstrated the generation of Fe2O3

and other iron-containing products in the H2/O2 low pressure flame. In addition, Kim et

al. [142] conducted experiments in the isooctane diffusion flames to study the soot reduction

by Fe(CO)5. The experimental measurements indicated that the soot can be increased

in the early stage of the combustion due to the presence of the atomic iron, whereas the

overall soot emission can be reduced by two-thirds later via the catalytic oxidation by the

formed iron oxides (such as Fe2O3). The study also introduced that the soot oxidation was

dominated by different iron-containing species, which were Fe2O3 at the low temperature,

FeO and Fe3O4 at the intermediate temperature from 1000 to 1200K, Fe(OH)2 and FeO at

the high temperature above 1800K.

From these previous studies, it can conclude that iron pentacarbonyl has the potential

of creating iron oxides which are considered as the iron-based catalysts, although its kinetic

mechanism in the combustion process is still unclear. These iron-based catalysts are able to

promote the combustion of natural gas and reduce the production of emissions. However,

iron pentacarbonyl is usually used as the flame inhibitor, that investigations on emission

control are not available. Therefore, the related research of iron pentacarbonyl on emission

control is significant for developing the novel catalytic combustion technology.
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Chapter 3

Experimental Apparatus and

Diagnostics Methodology

In this chapter, the details of the experimental system and the analytical methodologies

used for studying the catalytic combustion of natural gas are introduced. The experimental

system is composed of a counter-flow diffusion flame burner, a gas and fuel supply system,

a catalyst supply system, a gas sampling system and an online analyzer, shown as Fig 3.1.

In this experimental system, a stable laminar natural gas flame is generated between the

two burners, where fuel and oxidizer streams are directed from bottom and top burners

respectively. The catalyst precursor Fe(CO)5 is added into the flame by the carrier gas

(N2) through the central port of the bottom burner. A microprobe driven by two vacuum

pumps is used for collecting and delivering the gas sample into the gas analyzer in order to

conduct the online measurements. The profiles of generated gas species are analyzed by a

GC, where the inorganic components mainly including CO, O2 and N2 are detected by a

thermal conductivity detector (TCD) and the organic components such as CH4, C2H2 and

other C2 species are measured by a flame ionization detector (FID).

27



Figure 3.1: Schematic of the experimental system.
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3.1 Counter-flow Diffusion Flame Burner

The counter-flow diffusion flame burner is the main body of the experimental system, which

consists of two opposed burners1 containing the enclosed porous sintered bronze matrix.

The porous matrix of the burner is divided into the inner and outer coaxial cylinders with

the diameters of 60.4 mm and 73.4 mm, respectively [143]. The fuel and oxidizer are directed

from the inner annulus to form the flat flame, and the inert gas such as nitrogen can be

directed from the outer annulus to form a shroud minimizing the external disturbance to

the flame. For the burner used as the fuel-side port, there is a customized central port with

the outer diameter of 1/8 inch, through which the catalyst can be injected into the flat

natural gas flame.

To get a stable flame, the two burners are separated and supported by a burner mounting

system, containing an self-designed aluminum burner holder2 and a stainless steel optical

table3. To connect the bottom burner with the gas supply tubings, a 200 mm by 200 mm

hole is removed from the centre of the optical table. In the meanwhile, four adjustable

aluminum columns are designed and assembled to the optical table to maintain the table at

a horizontal level. The burner holder is composed of two 12.7 mm thick aluminum pate and

three columns, among which the two plates are used for maintaining the burners and the

three columns are used for separating the burners at a distance of approximately 20 mm.

The two counter-flow flame burner is first assembled to the burner holder and then

placed on the optical table, as shown in the Fig 3.2. Using this counter-flow flame burner,

the fuel is injected from the bottom burner and the oxidizer is simultaneously injected from

the top burner. These two streams will meet with each other near the centre of the burners

and then form a stable flat flame where the equivalence ratio of fuel and oxidizer is equal

to 1.

1McKenna Flat Flame Burner (Holthuis & Associates, USA)
2Manufactured by Engineering Machine Shop, University of Waterloo
3M-TD-23, Optical Breadboard, 600 × 900 × 28 mm (Newport corporation, USA)
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Figure 3.2: Schematic of the counter-flow diffusion flame burner.

3.2 Gas and Fuel Supply system

In this study, methane4 is used as the fuel which is mixed with nitrogen5 before being

directed to the bottom burner, and oxygen6 mixed with air7 is used as the oxidizer directed

to the top burner. The flow rate of these gases are controlled by the mass flow controllers

(MFCs)8, whose accuracies are 1% of the reading. Between the bottom burner and the

nitrogen mass flow controller, there is a stainless steel bubbler filled with liquid iron

pentacarbonyl that supplies the catalyst to the counter-flow diffusion flame.

3.2.1 Supply of Fuel and Oxidizer

For studying the generated gas profiles of natural gas combustion, a stable laminar flame

should be formed near the centre of the burners where the equivalence ratio is 1. This

requires that the flow rate of the fuel and oxidizer streams should be set and controlled at

the appropriate values. To select these flow rates, several criteria should be followed [38].

499.97% Pure, Compressed Methane (Praxair Inc.)
599.998% Pure, Compressed Nitrogen (Praxair Inc.)
699.993% Pure, Compressed Oxygen (Praxair Inc.)
7Zero Extra Dry, Compressed Air (Praxair Inc.)
81179A Mass-Flor, Analog, Elastomer-sealed Mass Flow Controller (MKS Instruments Inc., USA)
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• The momentums of the fuel and oxidizer streams should be equal to create a stagnation

plane at the intersection

• The flow rate ratio of nitrogen to oxygen should be equal to 3.77 for studying the

flame under a real air condition

• The flame should not be very hot to prevent damaging the sampling probe

• The flame should be soot-light to prevent blocking the sampling probe

• The Reynold’s number of the fuel and oxidizer streams should be lower than 2300 to

form a laminar flame

Based on these criteria, the flow rates of methane, nitrogen, oxygen and air are calculated,

as shown in the Table 3.1.

Table 3.1: Fuel and oxidizer flow conditions in the experiments

Components
Fuel Side Oxidizer Side

CH4 N2 O2 Air

Flow rate (L/min) 1.395 13 3.448 10.242

Mole fraction 0.097 0.903 0.409 0.591

Velocity (cm/s) 8.37 7.96

Reynold’s number 360 342

The corresponding Reynold’s numbers of the fuel and oxidizer streams are approximately

360 and 342, based on the Equation 3.1. This indicates the fuel and oxidizer streams are

laminar flow as their Reynold’s numbers are smaller than 2300. In addition, the strain

rate, which is defined as the normal gradient of the normal component of the flow velocity,

describes the inverse of the characteristic flow time in the counter-flow configuration [144].

For the strain rate at the stagnation plane near to the fuel side, it has a value of approximately
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17 s−1 in this laminar flame, based on the calculation by the Equation 3.2 .

Re =
ρDu

µ
=

4ρ

µπD

∑
Vi (3.1)

Where, Vi is the flow rate of methane, nitrogen, oxygen or air (m3/s);

ρ is the density of fuel or oxidizer stream (kg/m3);

D is the diameter of fuel or oxidizer burner (m);

µ is the viscosity of fuel or oxidizer stream (kg/(m·s));
Note: In this flame, the fuel stream is the mixture of methane and nitrogen,

and the oxidizer stream is the mixture of oxygen and air.

a = 2
|Vfuel|
L

(1 +
|Vox|
√
ρox

|Vfuel|
√
ρfuel

) (3.2)

Where, a is the stain rate on the fuel side (s−1)

L is the distance between the two burner ports (cm)

|Vfuel| is the absolute value of the fuel stream velocity at the fuel boundary (cm/s)

|Vox| is the absolute value of the oxidizer stream velocity at the oxidizer boundary (cm/s)

|ρfuel| is the density of the fuel stream (g/cm3)

|ρox| is the density of the oxidizer stream (g/cm3)

3.2.2 Supply of Catalyst

Fig 3.3 shows the structure of stainless steel bubbler which is designed to supply iron

pentacarbonyl for the catalytic combustion study. The bubbler has one inlet and one outlet

which are both 1/8 inch stainless steel tubings. The inlet tubing is inserted into liquid iron

pentacarbonyl through the top cap, and the outlet tubing is installed on the top side of the

bubbler which is connected with the bottom burner. In the inlet and outlet of the bubbler,

two valves9 are installed for keeping the bubbler close when iron pentacarbonyl is stored

in it before and after the experiments. Before using the bubbler, leak detection must be

conducted in order to avoid the potential gas leak during the experimental process. The

step is to inject some gas and close both the inlet and outlet valves first, and then monitor

the inside pressure of the bubbler by a pressure gauge to check if there is any gas leak.

9SS-41GS2, Stainless Steel 1-Piece 40 Series Ball Valve, 1/8 inch Fitting (Swagelok Company, USA)
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Figure 3.3: Schematic of the bubbler for supplying catalyst

For keeping iron pentacarbonyl stable, the bubbler is placed into the ice-water bath to

maintain its temperature at zero centigrade during the experiments. A two-stage bypass

system, consisting of two rotameters with two additional valves10, are installed for the

bubbler to control the flow rate of carrier gas, which is finally directed into the bubbler to

evaporate and carry the catalyst into the laminar flame through the central port of the

bottom burner. The first flow meter11 which has a bigger flow range is used for separating

and controlling the primary bypass from the nitrogen flow, and the second flow meter12

is installed to further split the bypass nitrogen flow to determine the amount of carrier

gas injected into the bubbler. Since the mole fraction of iron pentacarbonyl in the bubbler

outlet is fixed once temperature of bubbler is kept constant, the catalyst concentration in

the total carrier gas flow can be adjusted to any values from zero to its maximum ( same

with the concentration value at the bubbler outlet). In the meanwhile, the total bypass

flow (N2) rate is kept constant, which is critical for investigating the effects of catalyst

concentration on pollutant reduction.

10SS-SS2 Stainless Steel Low-Flow Metering Valve, 1/8 inch Fitting (Swagelok Company, USA)
11RK-03217-12, 150 mm Aluminum/Glass Correlated Flow Meter (Cole Parmer, Canada)
12RK-03217-00, 150 mm Aluminum/Glass Correlated Flow Meter (Cole Parmer, Canada)
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3.3 Gas Sampling System

3.3.1 Setup of Gas Sampling System

To get an accurate online measurement, a suitable gas sampling system should be used to

collect and deliver the gas sample into the analyzers continuously from the counter-flow

diffusion flame. A gas sampling line composed of a microprobe, two vacuum pumps, a

positioning system and a filter is designed and built up for withdrawing the gas sample of

natural gas combustion.

To reduce the errors of the experimental results, several factors should be considered

when designing and choosing the components of the gas sampling line. First of all, quenching

the continuous chemical reactions inside the microprobe and the gas line is necessary for an

accurate measurement. Some previous studies on the gas sampling technologies indicated

a low pressure at the entrance of the sampling probe can effectively quench the chemical

reactions [58, 145, 146]. In addition, another previous study [147] indicated that it was

essential to quench the continuous reaction by a rapid pressure drop combined with the

destruction of the chemical radicals but not by only temperature drop in the gas sampling

line. In the meanwhile, the counter-flow diffusion burner is an open system that it works at

atmospheric pressure. These reasons determine a high vacuum inside the gas sampling line

should be generated by the vacuum pump. Moreover, some tests show that the pressure

behind the microprobe is not low enough when only one vacuum pump is added after the

gas analyzer. For getting enough high vacuum, two vacuum pumps13 are placed before

and after the GC to suck and deliver the sample into the gas analyzer. The maximum

vacuum generated by vacuum pump no.1 and no.2 are 25” Hg and 25.5” Hg, respectively.

To protect the GC and pumps from being damaged by the particles inside the gas sample,

an online filter14 is installed between the microprobe and the gas analyzer to remove the

fine particles bigger than 15 µm.

Second, minimizing the disturbance in the flame caused by the intrusive probe is one

of the important factors that need to be considered. A previous study on the microprobe

size [38,148] suggested that the ideal inside diameter of the microprobe was 0.18 to 0.22

mm, as a higher ID would not quench the reaction effectively and a smaller ID would not

get enough gas sample through the probe tip for the gas measurements. For these reasons,

13DOA-V722-AA, Oilless Diaphram Vacuum Pump (Gast Manufacturing Inc., USA)
14SS-4TF-15, Stainless Steel Tee-Type Particulate Filter (Swagelok Company, USA)
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a silica microprobe15 with the dimension of 0.2 mm in ID, 0.34 mm in OD and 6 cm in

length is used in this study, which is quite cheap and easily-replaceable. Compared with

the flame reaction zone, this microprobe is small enough that it will not cause the visible

disturbance to the flow field between the burners.

Third, avoiding the adsorption or absorption of the hydrophilic gas species (such as

NOx) by the condensed water inside the gas sampling line is critical for measuring their real

concentrations produced from combustion. In addition, the condensed water will also affect

the accuracies of the experimental measurements by increasing the measured concentrations

of the hydrophobic gas species (such as nitrogen). For these reasons, it is necessary for

avoiding water condensation by using a heated gas line, which adds several heating tapes16

outside of the stainless steel tubing. The temperature of the tubing is maintained at a

temperature of approximately 120 ◦C by two J type thermocouples and two temperature

controllers17.

Finally, collecting the gas sample from the different positions between the two burners

is also necessary for getting the natural gas flame structure. A positioning system mainly

containing a vertical translation stage18 and a linear translation stage19 is designed and as-

sembled with some self-designed mounting components20. The microprobe is first connected

with a 1/4 inch stainless steel tubing via a reducing union21 combined with a adapter22,

and then the 1/4 inch tubing is mounted by the positioning system, shown as Fig. 3.4.

Using this positioning system, the microprobe can be inserted into the different positions

between the burners by adjusting the vertical translation stage vertically and the linear

translation stage horizontally.

15160-2205-10, Deactivated Fused Silica Tubing (Agilent Technologies, USA)
16Duo-Tape, Heavy Insulated Heating Tape, High Watt Density (HTS/Amptek Company, USA)
17CNi3233, i-Series 1/32 DIN Temperature, Process and Strain PID Controller with Two Relay Outputs

(Omega Engineering, Inc., USA)
18124702: Manual Lab Jack Stage, Vertical Travel 60mm, 20 kg Load Capacity (Produstrial, LLC, USA)
19124686: Manual stage, Dovetail Guide Type, with Travel of 125 mm, Lapped Ball Screw, 20 kg Load

Capacity (Produstrial, LLC, USA)
20Manufactured by Engineering Machine Shop, University of Waterloo
21H-EZRU41C, Stainless Steel, External/Internal Reducing Union with 0.25 mm Bore, for 1/4 inch to

1/16 inch OD Tubing (VICI Valco Instuments Co. Inc., USA)
22H-FS1.4-5, 1/16 inch Polyimide, Fused Silica Adapter for Tubing between 0.30 and 0.40 mm OD (VICI

Valco Instuments Co. Inc., USA)
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Figure 3.4: Schematic of the positioning system

3.3.2 Gas Sampling Procedure

In the natural gas combustion experiments, the procedure for collecting the gas sample

from the flame is described as follows. To avoid the effect of the potential gas leak in

the gas sampling line on the gas measurements, gas leak test should be conducted before

doing experiments. A plug is inserted into the sample probe side first and then the two

inline valves installed before the vacuum pumps are closed once a low pressure (25”Hg)

is generated by the vacuum pumps. The pressure is monitored by the pressure gauges to

detect the potential gas leak in the gas sampling line.

After the leak testing, methane is injected from the bottom burner and lighted by the

ignitor first. Air, oxygen and nitrogen are injected orderly, and then a stable laminar flame

is observed. When studying the gas profiles of the catalytic combustion, the catalyst should

be added into the flame by the separated nitrogen. To add the catalyst smoothly, the

flow rate of bypass flow (separated nitrogen) should be adjusted to the designed value by

opening the bubbler valves slowly. The microprobe which is driven by the two vacuum

pumps is then injected into the different positions between the two burners to collect the

gas sample. Then the gas sample is injected into the GC when the purge time is around

5∼6 minutes. When measuring gas profile in vertical direction, the tip of microprobe is

placed approximately 1 mm behind the central vertical axis of the burners with various

heights, in order to collect the gas sample from the central part of the burners.

To optimize the experimental method, two different gas sampling methods are tested

and compared for injecting the gas sample into the GC analyzer during the experiments.

One way is to inject the gas sample directly into the GC at a specific low pressure of
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approximately 25” Hg (method 1), and another is to inject the gas sample when the pressure

inside the gas sampling valves (GSVs) raises to atmospheric pressure (method 2) after

closing the inline valves. The pressure value is monitored by two pressure gauges, which

are installed just before and after the gas sampling valves.

After getting enough data in one position, the microprobe is adjusted to a new location

for collecting gas sample, by means of rotating the vertical translation stage (moving

vertically) or the linear stage (moving horizontally). Once the full gas profiles of the counter-

flow flame are measured, the experiments are finished. The inlet and outlet valves of the

bubblers should be closed first to avoid excess catalyst overflowing into the surroundings

without burning. Then methane, oxygen, nitrogen and air should be stopped orderly to

extinguish the flame.

3.4 Diagnotics Methodolgy

3.4.1 Gas Chromatograph

Gas chromatography is a common technology used in laboratory for analyzing the com-

position of a mixture sample, which is gas or liquid that can be evaporated to gaseous

components [149]. The partitioning difference of different components between the flow

mobile phase and stationary phase under certain conditions makes them separated, and

then specific detector can identify each component and its amount in the mixture. GC is

the instrument using this technology to separate and analyze the mixture sample, which is

usually composed of a carrier gas (flowing mobile phase), a column (stationary phase), an

oven, a detector and a sample injector.

Shown as Fig.3.5, an Agilent GC6890, which includes two detectors (TCD and FID), two

columns, two injectors and two GSVs, is used for analyzing the gas compounds produced

from natural gas combustion in this study.

Carrier Gas

Carrier gas is the mobile phase of the GC, which can be helium, nitrogen and hydrogen

[149, 150]. The type of carrier gas usually depends on the type of detectors installed on

GC and analyzed components in the gas sample. The purity of the carrier gas should be

high enough as it may affect the sensitivity and accuracy of the measurements. Moreover,
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Figure 3.5: Schematic of the Agilent GC 6890. a) The configuration on GC top; b) The
configuration inside GC oven.

the moisture and particles contained in the carrier gas can damage GC. For these reasons,

helium23 with a high purity of 99.999% is selected as the carrier gas. The flow rates of

helium used as makeup gas or carrier gas are described in the following parts.

Detectors

Thermal Conductivity Detector (TCD) is a kind of detector to identify the compounds by

comparing the thermal conductivity of the carrier gas with those of the sample components

[149,151]. A filament in the detector is electrically heated and maintained at a constant

temperature, which is higher than the detector temperature, by supplying a certain power.

The power difference used for avoiding the filament temperature changes are detected and

recorded when the gas sample passes over the filament. TCD is a good detector to analyze

the inorganic components in the gas sample. In this study, it is used for analyzing N2, O2

and CO in the gas sample.

Flame Ionization Detector (FID) is another common detector to analyze the compounds

by measuring the current produced from the sample addition [149, 151]. A hydrogen-air

flame is generated inside the detector first to create some ions, which are attracted by a

polarized collector. When the compounds in the sample are burnt by this flame, a current

will be generated and detected due to the increase of the collected ions from the sample

23HE 5.0 UH-T, Helium (Praxair Inc.)
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burning. FID can be used for analyzing the organic components. In this study, it is used to

analyze the hydrocarbons, especially CH4, C2H2, C2H4 and C2H6.

Injector and Gas Sampling Valve

Two different types of injectors containing electronic pneumatic control (EPC) are installed

for the two detectors. The injector for TCD includes a purged packed inlet while the one

for FID contains a split/splitless inlet which has four different working models (split, pulsed

split, splitless and pulsed splitless) [152]. In this GC, the purged packed inlet is installed

with a packed column24, and the split/splitless inlet is installed with a capillary column25.

Both of the injectors can be used for measuring the sample from low to high concentration.

However, the sample has to be injected into the columns by a syringe when using these two

injectors.

Since the online measurements of gas species produced from the counter-flow flame require

a continuous procedure, it means that the sample injection by a syringe is inappropriate for

this application. Moreover, its injected volume of the sample is difficult to be kept constant

every time, resulting the repeatability and accuracy of the measurements are not good

enough. For these reasons, two GSVs26 with two sample loops are installed on the top of

GC for the two injectors. The sample loops have the constant volumes that they can make

sure the volume of the injected sample constant at each time. The volume of the loop27

installed for TCD is 1 ml to make sure the sample is enough for the packed column, and it

is a 0.25 ml loop28 for FID in respect that the column installed is a capillary one.

The GSV can be used under several different models for different applications. In this

study, it is used for loading and injecting the sample into GC columns, shown as Fig.3.6.

In the beginning, the GSV will be set at the ”load” position shown as Fig.3.6a, where the

gas sample will be delivered into the sample loop continuously by the vacuum pump first.

When the time is enough for filling the loop with the gas sample, the GSV will be switched

manually to the ”injection” position shown as Fig.3.6b, where the carrier gas will pass

through the loop and carry the gas sample into the column for the future analysis. Once

24G3591-80017, Mole-sieve 5A column, 1/8 inch × 6 feet (Agilent Technologies, USA)
25113-3133, Carbon-Plot column, 30 m × 0.32 mm × 3.00µm (Agilent Technologies, USA)
26H-2C6UWT, 6 port, 2 positions, Manual Valve for 1/16 inch tubing (VICI Valco Instruments Co. Inc.,

USA)
27PS-SL1KCUW, 1ml Sample Loop, 1/16 inch ends with nuts & ferrules(VICI Valco Instruments Co.

Inc., USA)
28PS-SL250KCUW, 0.25ml Sample Loop, 1/16 inch ends with nuts & ferrules(VICI Valco Instruments

Co. Inc., USA)
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all the sample inside loop is injected into the column, GSV should be switched back to the

”load” position to collect the sample for the next analysis. The load and injection time of

the GSVs used for TCD and FID are shown in the Table 3.2 and 3.3

(a) (b)

Figure 3.6: Schematic of the gas sampling valve (GSV) for sample injection. a) ”Load”
position of GSV; b) ”Injection” position of GSV [11].

.

3.4.2 GC Methodology

Different parts of GC work under different conditions when analyzing the gas sample.

The collection of these operation parameters, such as the oven temperature and the flow

rate, is called the GC method [11, 149]. To detect the expected components in the gas

sample, well separation of the components in the column is required to make sure that

only one component is analyzed by the detector at a certain period. As a result, the oven

temperature program as well as the flow rate of the carrier gas are the most important

factors for separating the different components. Moreover, the sensitivity of detector is

affected by the flow rate of makeup gas which is also a key parameter. Usually, high

sensitivity is expected as it can give a good gas signal. The method used in this study for

analyzing CO, O2 and N2 with TCD is shown as Table 3.2.

To analyze the hydrocarbons such as CH4, C2H2, C2H4 and C2H6 by FID, the method

used in the experiments is shown as Table 3.3. The split/splitless injector is used under

the split model to make sure that the sample injected into the capillary column is not

overloaded. Moreover, the flow rate of hydrogen, air and makeup gas (helium) should be

set at the appropriate range, in order to make the hydrogen-air flame stable. Tests on the
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Table 3.2: Analytic method of TCD used in experiments

Oven temperature program
125◦C, hold 3 minutes

20◦C/min heated to 250◦C, hold 3 minutes

Purged packed Inlet Temperature: 250◦C

Mole-sieve 5A packed column

Column Constant flow model

Carrier gas (Heilum) flow: 25 ml/min

Temperature: 300◦C

Detector Reference gas (Heilum) flow: 45 ml/min

Makeup gas (Heilum) flow: 2 ml/min

Load time: 5 minutes

Gas sampling valve Injection time: 2 minutes

Injected sample volume: 1 ml

stability of hydrogen-air flame indicate that the flame will be blown out frequently if the

total flow rate of makeup gas and carrier gas is too high. The results show that the best

flow rate fraction of different gas flows is around 0.75:1:10 (makeup gas plus carrier gas :

hydrogen : air).

Once the gas sample is injected into the column, the sample compounds are separated

and then detected by the detectors orderly. The qualitative and quantitative analysis

for sample mixture can be conducted based on the chromatogram gotten from the GC

measurements. Fig.3.7 shows the examples of chromatograms gotten from the measurements

by TCD and FID. The peak presented on the chromatogram indicates one component of the

sample mixture, and its value shown in x-axis is called retention time. Once the conditions

used in the GC method is finalized and kept constant, the retention time for a certain

component will also be fixed to help identify the composition of the sample mixture. This

is known as qualitative analysis. In this study, the peak order gotten in the experiments by

TCD is O2, N2, CH4 and CO, and meanwhile, it is CH4, C2H2, C2H4 and C2H6 for FID

measurement.

GC can also be used to quantitatively analyze the sample components. In the chro-
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Table 3.3: Analytic method of FID used in experiments

Oven temperature program
125◦C, hold 3 minutes

20◦C/min heated to 250◦C, hold 3 minutes

Temperature: 250◦C

Split/splitless Inlet Split model, Split ratio 27.3:1

Split flow: 109 ml/min

Carbon-Plot capillary column

Column Constant flow model

Carrier gas (Heilum) flow: 4 ml/min

Temperature: 300◦C

Detector H2 flow: 40 ml/min, Air flow: 400ml/min

Makeup gas (Heilum) : 26 ml/min

Load time: 5 minutes

Gas Sampling Valve Injection time: 2 minutes

Injected sample volume: 0.25 ml

matogram, the area between the peak and baseline is proportional to the amount of the

component contained in the injected analyte. Therefore, the concentration of one component

in the sample can be calculated once the area values of the same component with known

amount is provided as the reference. Based on the work principle of GC, it indicates that

a constant volume of sample injected into the column is critical in order to measure the

accurate concentrations of the sample mixture.
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(a)

(b)

Figure 3.7: Schematic of the chromatograms for different components obtained from
experimental measurements. a) Chromatogram of the inorganic components measured by
TCD; b) Chromatogram of the organic components measured by FID.
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GC Calibration

To analyze the gas sample, the reference chromatogram obtained from the known mixture

is essential to determine the retention time and peak area of the wanted components. The

process to confirm the GC method and get the reference data is called GC calibration. In

this study, two calibration gas mixtures gotten from Praxair Inc. are used for calibrating

the GC. One mixture contains 4.05% H2, 9.85% N2, 0.1026% NO, 0.407% CH4, 5.07% CO

and 0.1006% N2O in helium (balance gas), and the other one contains 0.5% C2H2, 0.499%

C2H4 and 0.5% C2H6 in helium (balance gas). Moreover, GC is also calibrated by the

surrounding air to get the reference data for oxygen and nitrogen.

The gas mixture is withdrawn and delivered to GC via the experimental system directly,

where the aforementioned sampling procedure and GC methods are used in the calibration

process. Since two different gas sampling methods are used in the experiments, the GC

calibration process is operated under two different pressures to obtain the related reference

data.
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Chapter 4

Results and Discussion

In this chapter, the gas profiles obtained from the non-catalytic natural gas combustion

using two different sampling methods are compared with a previous study. The results from

the measurements are also compared with the CHEMKIN modeling, in order to validate

the numerical model and provide the experimental data for the further improvement of the

kinetic mechanism.

Iron pentacarbonyl, the catalyst precursor, is added into the counter-flow diffusion

flame through the central port of the fuel-side burner. Its effects on pollutant reduction

are studied by measuring the generated gas species and comparing them to the initial

non-catalytic experimental results. In addition, the concentrations of the injected iron

pentacarbonyl are also varied to better understand the effects on pollution control.
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4.1 Experimental Studies on the Characteristics of

Non-catalytic Natural Gas Combustion

The experimental conditions for studying the characteristics of natural gas in a counter-flow

diffusion flame is described in Table 3.1. A blue laminar flame is located at the height of

approximately 9 mm above the fuel-side burner, shown in Fig.4.1a. The profiles of the gas

species, including CH4, O2, N2, CO and C2 species, are shown in Fig.4.2∼4.6. These results

are measured by two gas sampling methods which are operated at the low pressure of 25”Hg

(Method 1) and atmospheric pressure (Method 2), respectively. In these figures, the x-axis

shows the height of the sampling point above the surface of the bottom burner (fuel-side

burner) which is defined as the zero point, and the y-axis indicates the concentration of the

gas species (in this thesis, gas concentration is expressed using mole fraction).

(a) (b)

Figure 4.1: Schematic of the laminar flames in experiments. a) Natural gas combustion
without Fe(CO)5 addition; b) Natural gas combustion with Fe(CO)5 addition .
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Figure 4.2: Gas profiles of CH4, O2 and N2 from the non-catalytic natural gas combustion
measured by experiments and predicted by the numerical simulation. Note: zero point of
the height is the location of the bottom burner surface

Figure 4.3: CO profile of the non-catalytic natural gas combustion measured by experiments
and predicted by the numerical simulation. Note: zero point of the height is the location of
the bottom burner surface
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Figure 4.4: C2H2 profile of the non-catalytic natural gas combustion measured by exper-
iments and predicted by the numerical simulation. Note: zero point of the height is the
location of the bottom burner surface

Figure 4.5: C2H4 profile of the non-catalytic natural gas combustion measured by exper-
iments and predicted by the numerical simulation. Note: zero point of the height is the
location of the bottom burner surface
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Figure 4.6: C2H6 profile of the non-catalytic natural gas combustion measured by exper-
iments and predicted by the numerical simulation. Note: zero point of the height is the
location of bottom burner surface

4.1.1 Comparison of the Experimental Results with a Previous

Study

The experimental results measured from the counter-flow flame are compared with a previous

study conducted by W.A. Hahn and J.O.L. Wendt [32]. The gas profiles of CH4, O2 and

CO match well in these two experimental studies, which indicates that the measurements of

the generated gas species by this experimental system have a high reliability for presenting

the structure of the natural gas fuelled laminar flame.

Based on Fig.4.3∼4.6, the results demonstrate the peaks of CO, C2H2, C2H4 and C2H6

are located 0∼0.5 mm below the position of the blue flat flame, and their concentrations

drop very quickly in the flame zone. Less formation of these species implies a more complete

combustion of natural gas in the flame zone. As the height increases from the bottom burner

(fuel side) to the region close to the flame, the chemical reactions among light hydrocarbons

become more intense as the temperature increases. Therefore, the concentrations of CO

and C2 species increase subsequently. Once the height increases to the flame location where

the equivalence ratio is close to 1, the fuel reacts with the oxidizer completely to generate

carbon dioxide and water, resulting in a sharp decrease of all other gas species.
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4.1.2 Comparison of the Experimental Results from Different

Sampling Methods

To establish an appropriate experimental method which can be used for obtaining accurate

measurements from the counter-flow flame, the experimental results obtained by two

different sampling methods are compared to evaluate their reliability and practicability

under different flame conditions (such as different temperature). The experimental results

shown in the above figures demonstrate that the gas profiles measured by method 1 and

2 agree well with each other. The slight peak differences of CO, C2H2, C2H4 and C2H6

measured by the two methods can be ignored, as these small differences may be caused by

the experimental operation. The consistent measurements suggest that both of the two

sampling methods can be chosen for collecting and measuring the gas species produced

from this counter-flow diffusion flame.

Furthermore, the error bars of the measurements by method 1 are bigger than those by

method 2, especially at positions close to the flame zone. This indicates the accuracy and

repeatability of the measurements by method 1 are slightly lower than method 2. Based on

the comparison of the peak areas of the same gas species in the chromatograms measured

by the two methods, it can be observed that the peak area measured by method 1 is much

smaller due to the dilution of the injected gas sample. As a result, the small area fluctuation

can induce a bigger concentration difference for the measurements obtained in method

1. In addition, it is harder to identify the peak area difference if two gas samples have

very close concentrations when using method 1, due to the smaller measured peaks. For

these reasons, method 2 which injects the gas sample into GC at atmospheric pressure is

preferred. The measurements are better especially when the gas concentration is low or

when the concentration difference is too small in two different sampling positions.

However, method 2 is much slower than method 1, since in method 2 that it takes

several minutes for the pressure to revert from vacuum to atmospheric pressure. When the

sample is taken from locations near the flame zone, the pressure recovery time becomes

long enough that the sampling probe sometimes gets distorted by the high temperature.

The distortion of the microprobe not only induces measurement errors but also shortens

the lifespan of the microprobe. In addition, there will be lots of iron particles produced

when Fe(CO)5 is added into the flame (will be shown in the later discussion), so that the

microprobe quickly becomes clogged. In comparison, method 1 is much faster, so that it

can not only save time and experimental cost but also get the acceptable results. Therefore,

method 1 is preferred when gas samples are taken from the high temperature reaction zone
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or the flame with catalyst addition.

4.1.3 Comparison of the Experimental Results with the Numer-

ical Simulation

As a numerical simulation can be used for predicting the gas emission levels produced

by fuel combustion, it can save experimental cost and also conduct further combustion

investigation. However, the numerical model usually need to be validated by experimental

data to confirm its correctness or to do necessary improvements, so that the simulated

results can give correct conclusions. For this reason, the experimental data is compared to

the numerical results obtained by CHEMKIN, which was done by Qi [153]. The numerical

simulation uses the GRI-3.0 methane combustion mechanism, which includes 53 species and

325 reactions. Based on the comparisons in Fig.4.3∼4.6, the modeling results are found to

match with the experimental measurements, especially for the profiles of CH4, O2 and N2.

This reveals that the numerical model can be used for predicting the flame structure of

natural gas combustion in the counter-flow diffusion burner.

In addition, the measured gas peaks of CO and C2 species are slightly higher than the

predictions. The discrepancy between the experiments and modeling may be caused by

the simplification of the 2D flow structure in the numerical model and the inaccuracies

of the experimental measurements. In the numerical simulation, the software CHEMKIN

can only set up the configuration of the counter-flow flame (such as the distance of the

burners, the initial flow rate, the temperature and pressure of the fuel and oxidizer streams)

in a simplified manner. However, the real conditions (such as flame disturbance caused

by surrounding air flow) in the combustion process are much more complicated than the

modeling assumption, resulting in differences between the experiments and modeling. In

the experiments, some errors can be caused by the equipment and experimental operation

to make the measured gas concentration different from the simulation. Moreover, the

discrepancy may also be attributed to the limitation of the chemical mechanism, which

needs to be further improved.
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4.2 Experimental Studies on the Characteristics of

Catalytic Natural Gas Combustion

To evaluate the performance of iron-containing catalysts, iron pentacarbonyl (Fe(CO)5)

is vaporized by the carrier gas first and then injected into the counter-flow flame via the

central port of the bottom burner. When Fe(CO)5 was added, a stable orange flame was

observed (shown as Fig.4.1b) and the colour intensity increased as the concentration of

Fe(CO)5 increased. In addition, some orange particles were observed at the outside of both

the microprobe and the top burner after the catalytic flame was burnt for a while.

The experimental conditions, such as the carrier gas flow rate and Fe(CO)5 concentration,

in the catalytic combustion are shown in Table 4.1. In this study, the concentration of

Fe(CO)5 is varied while the carrier gas (N2) flow rate is kept constant. The total flow rates

of fuel and oxidizer are kept at the same values with the initial non-catalytic experiments

(shown as the Table 3.1). In addition, the initial experimental results for the non-catalytic

natural gas combustion, regarded as the reference, are measured by method 2 (operated at

atmospheric pressure) in this section.

Table 4.1: Experimental conditions in the catalytic combustion

Catalytic combustion 1 2 3 4 5 6

Concentration of Fe(CO)5

in the carrier gas (ppm) 3354 4472 4845 5466 7453 10390

Note: ppm here signifies mole fraction · 106

Flow Rate of carrier gas - N2 (ml/min) 15

4.2.1 Effects of the Iron-based Catalyst on Pollution Reduction

Effects of the Carrier Gas on the Characteristics of Natural Gas Combustion

In order to add Fe(CO)5 into the flame, a small amount of N2 is used as the carrier gas and

directed into the flame through the central port of the bottom burner. This is different

from the initial experiments, where no gas is injected from the central tube. Thus, this

difference may lead to some changes to the flame structure. To understand and eliminate
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the potential changes on the flame structure caused by the central flow, the gas species

are measured when there is a central N2 stream injected into the flame (without adding

any Fe(CO)5). The flow rate of the central N2 is 15 ml/min. The experimental results are

demonstrated in Fig.4.7∼Fig.4.11.

The results imply that the central N2 stream has no obvious influence on the flame

structure, in respect that the flow rate of this central stream is small enough compared

with the total flow rate of the N2 and CH4 mixture. However, when the flow rate of the

central N2 is increased above 50 ml/min, the flat flame becomes unstable and can even be

blown out by the strong central flow. Consequently, these comparisons indicate that any

change of the gas profile in the catalytic combustion can be considered to be as the results

of adding Fe(CO)5 into the flame, when the central N2 is controlled at the flow rate of 15

ml/min.

Figure 4.7: Comparison of CH4, O2 and N2 profiles between the experiments with and
without the central N2 injection. Note: The blank points are the results with the central
N2 injection, while the solid points are the initial data obtained by method 2 without the
central N2 injection
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Figure 4.8: Comparison of CO profile between the experiments with and without the
central N2 injection. Note: The blank points are the results with the central N2 injection,
while the solid points are the initial data obtained by method 2 without the central N2

injection

Figure 4.9: Comparison of C2H2 profile between the experiments with and without the
central N2 injection. Note: The blank points are the results with the central N2 injection,
while the solid points are the initial data obtained by method 2 without the central N2

injection
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Figure 4.10: Comparison of C2H4 profile between the experiments with and without the
central N2 injection. Note: The blank points are the results with the central N2 injection,
while the solid points are the initial data obtained by method 2 without the central N2

injection

Figure 4.11: Comparison of C2H6 profile between the experiments with and without the
central N2 injection. Note: The blank points are the results with the central N2 injection,
while the solid points are the initial data obtained by method 2 without the central N2

injection
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Comparison of the Emissions from the Catalytic and Non-catalytic Combustion

The flame structure of the natural gas combustion after adding Fe(CO)5 is shown in

Fig.4.12∼Fig.4.17. These gas profiles are measured in the vertical direction between the

two burners when the concentration of Fe(CO)5 in the carrier gas is around 7453 ppm .

The experimental parameters are shown as the ”catalytic combustion 5” in Table 4.1.

Fig.4.14 to Fig.4.17 indicate that emission of CO and C2 species can be significantly

reduced by Fe(CO)5 compared with the initial data. The reduction of CO, C2H2, C2H4 and

C2H6 can reach 80% to 95%. Moreover, the peak values of these gas species are presented

2∼2.5 mm lower than their initial positions without adding Fe(CO)5. This is attributed to

the catalytic combustion of methane by the formed iron oxides. After Fe(CO)5 is injected

from the fuel side burner, various iron oxides (especially Fe2O3) can be created. Previous

studies [138,141] have already shown the formation mechanism of iron oxides. Evidence for

this is the presence of orange particles, which are believed to be iron oxides, at the outside of

the microprobe during the experimental process. These iron oxides are the major catalysts

promoting the complete combustion of methane via surface reactions, which reduce the

production of CO and C2 species. In addition, oxygen and the resulting iron oxides increase

as the height increases, and this causes methane to be completely oxidized to CO2 and

water at a lower position compared to the initial experiments. From the methane profile

shown in Fig.4.13, it can be found that methane is completely consumed at the height of

approximately 8 mm. This is around 1 mm lower than its corresponding position in the

initial experiments. Therefore, the concentrations of the major emissions are reduced and

meanwhile their peaks move closer to the fuel-side burner, as a result of the addition of

Fe(CO)5 into the flame.

Compared with the initial gas profiles shown in Fig.4.13, it illustrates that more O2 is

present below the flame while less is found at the oxidizer side in the catalytic combustion,

corresponding to an inverse change of the N2 profile (shown in Fig.4.12). The increase of

oxygen in the fuel side is probably induced by the increasely complete combustion at lower

heights, so that more oxygen is saved below the flame. Moreover, as iron atoms can be

formed again after iron oxides catalyze the oxidation of methane, some of them may pass

through the flame zone and react with the oxygen to induce its concentration reduction in

the oxidizer side. During the experimental process, some orange iron particles are found

outside of the oxidizer-side top burner, supporting this hypothesis.
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Figure 4.12: N2 profile measured from the catalytic and non-catalytic combustion. Note:
The blank points are the results with Fe(CO)5 addition, while the solid points are the initial
data gotten by method 2 without Fe(CO)5 addition

Figure 4.13: Comparison of CH4 and O2 profiles measured from the catalytic and non-
catalytic combustion. Note: The blank points are the results with Fe(CO)5 addition, while
the solid points are the initial data gotten by method 2 without Fe(CO)5 addition
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Figure 4.14: CO profiles measured from the catalytic and non-catalytic combustion. Note:
The blank points are the results with Fe(CO)5 addition, while the solid points are the initial
data gotten by method 2 without Fe(CO)5 addition

Figure 4.15: C2H2 profile measured from the catalytic and non-catalytic combustion. Note:
The blank points are the results with Fe(CO)5 addition, while the solid points are the initial
data gotten by method 2 without Fe(CO)5 addition
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Figure 4.16: C2H4 profile measured from the catalytic and non-catalytic combustion. Note:
The blank points are the results with Fe(CO)5 addition, while the solid points are the initial
data gotten by method 2 without Fe(CO)5 addition

Figure 4.17: C2H6 profile measured from the catalytic and non-catalytic combustion. Note:
The blank points are the results with Fe(CO)5 addition, while the solid points are the initial
data gotten by method 2 without Fe(CO)5 addition
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Emissions in the Horizontal Direction

Since Fe(CO)5 is added into the flame through the burner central tube, it is partially mixed

with the fuel-side stream at the low position above the bottom burner surface. It is hence

interesting to get the gas profiles in the horizontal direction to review the dispersion of

Fe(CO)5 in the counter-flow flame. Fig.4.18∼Fig.4.21 are the curves showing the gas profiles

of the major emissions in the horizontal direction measured from the catalytic (catalytic

combustion 4) and non-catalytic combustion. The gas sample is collected at the height of

approximately 8 mm, where the concentrations of emissions in non-catalytic combustion

are maximum. In these figures, the x-axis indicates the distance between the microprobe

tip and the burner central vertical axis (defined as the zero point), and the y-axis shows

the concentration of the generated emissions.

Figure 4.18: CO emission in the horizontal direction measured from the catalytic and
non-catalytic combustion. Note: The blank points with dashed line are the data from
the catalytic combustion, while the solid points are the initial data from the non-catalytic
combustion. (zero point in x-axis is the location of the central vertical axis)
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Figure 4.19: C2H2 emission in the horizontal direction measured from the catalytic and
non-catalytic combustion. Note: The blank points with dashed line are the data from
the catalytic combustion, while the solid points are the initial data from the non-catalytic
combustion. (zero point in x-axis is the location of the central vertical axis)

Figure 4.20: C2H4 emission in the horizontal direction measured from the catalytic and
non-catalytic combustion. Note: The blank points with dashed line are the data from
the catalytic combustion, while the solid points are the initial data from the non-catalytic
combustion. (zero point in x-axis is the location of the central vertical axis)
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Figure 4.21: C2H6 emission in the horizontal direction measured from the catalytic and
non-catalytic combustion. Note: The blank points with dashed line are the data from
the catalytic combustion, while the solid points are the initial data from the non-catalytic
combustion. (zero point in x-axis is the location of the central vertical axis)

Overall, the emissions of CO and C2 species are significantly reduced by the iron-

containing catalysts in the horizontal direction, by comparing their concentration curves

obtained from the catalytic combustion with those of the non-catalytic combustion. The

reason for this reduction is mainly attributed to the radial dispersion of the catalysts.

Furthermore, based on the gas profiles of the catalytic combustion, these emissions are

found to be increasing as the sampling points move far away from the central line. The

tendency to increase is not very strong close to the central area. These changes indicate

that the concentration of iron-containing catalysts is slightly diminishing as it spreads from

the central part to the surrounding area radially. All of these findings are significant for

evaluating the effectiveness and feasibility of this catalyst injection method in the industrial

applications, as the conclusions in this study reveal that the chemical additive (Fe(CO)5)

injected into fuel-side stream through the central port can be well transported to the whole

flow field when it reaches the height close to the flame.
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4.2.2 Effects of the Catalyst Concentration on Pollution Reduc-

tion

More experiments were conducted in the thesis to investigate the relationship between the

emission reduction and the dosage of the injected Fe(CO)5. Six different concentrations of

Fe(CO)5 were injected into the flame. The experimental conditions are described in Table

4.1. During the experiments, the intensity of the orange flame was weaken as less Fe(CO)5

was added. In addition, when compared to the initial flame, its location was found around

1 mm lower in ”catalytic combustion 5 and 6”. However, this location shift decreased as

the catalyst concentration decreased. When the concentration of Fe(CO)5 in the carrier

gas was 3354 ppm, there was no measurable change in both the location and colour of the

flame compared with the non-catalytic flame.

For the gas emissions, the measured concentrations of CO and C2 species are shown in

Fig.4.22 ∼ Fig.4.25. In these figures, the x-axis shows the concentration of Fe(CO)5, and

the y-axis shows the concentration of emissions generated from the catalytic combustion.

Based on these curves, the emission of CO and C2 species are lowered as more Fe(CO)5 is

added into the counter-flow flame. This is reasonable as the catalytic oxidation of methane

is enhanced due to the generation of more iron oxides. When iron oxides are produced, it

is believed that these oxides can absorb methane to their surface and catalyze them via

the surface chemical reactions. After that, these iron oxides can be reduced to the iron

particles, which will absorb oxygen to form the oxides again. This catalytic cycle will repeat

during the combustion process. Therefore, more emissions can be generally reduced as

more Fe(CO)5 is injected into the methane flame.
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Figure 4.22: CO emission measured from the catalytic combustion of natural gas with
different concentrations of Fe(CO)5. Note: the concentration of Fe(CO)5 here is its mole
fraction in the carrier gas

Figure 4.23: C2H2 emission measured from the catalytic combustion of natural gas with
different concentrations of Fe(CO)5. Note: the concentration of Fe(CO)5 here is its mole
fraction in the carrier gas
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Figure 4.24: C2H4 emission measured from the catalytic combustion of natural gas with
different concentrations of Fe(CO)5. Note: the concentration of Fe(CO)5 here is its mole
fraction in the carrier gas

Figure 4.25: C2H6 emission measured from the catalytic combustion of natural gas with
different concentrations of Fe(CO)5. Note: the concentration of Fe(CO)5 here is its mole
fraction in the carrier gas
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However, the reduction efficiency of these emissions is lower before the concentration

of Fe(CO)5 in the carrier gas reaches a certain level or when its concentration is too high.

When the concentration of Fe(CO)5 is too low, the generated iron oxides are not enough

to form an efficient catalytic cycle for the complete oxidation of methane species. As a

result, the emissions generated from methane combustion is unaffected. This may explain

why the major emissions have a slow decline at the beginning of these curves. In addition,

when the additive concentration is too high, the iron-containing particles are too much to

saturate the catalytic cycle, and thereby it diminishes the emission reduction efficiency.

This inhibition of the catalytic efficiency at high concentration of Fe(CO)5 has already

been investigated [138,140]. Based on these analyses, it is suggested that the concentration

of Fe(CO)5 should be around 6000ppm in order to get the best performance for emission

control, when the catalyst is injected through the central port of the bottom burner.

4.3 Analysis of the Uncertainty in the Experimental

Studies

Errors exist in the experimental results of the gas species measured from natural gas

combustion. These errors may be caused by not only the system uncertainties but also the

experimental operations.

One major source of the uncertainties in the experimental results is caused by the

system errors of the equipment used in the study, such as GC and mass flow controllers

(MFCs). The errors caused by the GC analysis are considered to be smaller than 4%, based

on the results obtained from the GC calibration process. For the flow rates, which are

controlled by the MFCs (for fuel and oxidizers) and the rotameters (for carrier gas flow ),

the uncertainties are 1% of the experimental readings and 2% of the full scales respectively,

known as the system errors of these flow meters.

Another source of the system errors come from the uncertainties of gas sampling

technology and inaccuracies of the experimental setup. Although the rapid pressure drop

inside the microprobe is thought to be a good method for the accurate measurements,

it would still cause certain errors in the measured data. These errors can be induced

by either the disturbance to the flame when inserting the microprobe or the potential

continuous chemical reactions inside the sampling line. In addition, the two burners are

ideally separated at a distance of 20 mm, whereas the actual value is smaller than the
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design due to the manufacture tolerance.

In addition, the fluctuation caused by the microprobe configuration can introduce some

uncertainties to the measurements. On one hand, the vertical position of the microprobe is

determined by using a vernier caliper with a high accuracy of 0.01mm to measure the height

difference between the sampling point and bottom burner surface. The height of the bottom

burner surface is confirmed by adjusting the microprobe so that it makes contact with the

burner surface closely. However, errors can be introduced here, as it is quite difficult to

make a perfect contact by manual adjustment. On the other hand, the microprobe distorts

when it is close to the high temperature flame zone. This is because the material of the

probe is silica, which cannot withstand the peak temperature caused by the flat flame for a

long time. As a result, the gas sample may be extracted from other positions, which are

different from the measured height.

Finally, the counter-flow diffusion burner is an open experimental system which is

completely exposed to the surrounding environment. Since this experimental system is a

very sensitive one, the surrounding air flux caused by the operator or other factors could

lead to some disturbance to the flat flame. The disturbance may induce some changes to

the flame structure and even blow out the flame if the surrounding air flow is too strong.

Hence, the uncertain environmental factors are potential risks for obtaining inaccurate

experimental measurements.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

The characteristics of a natural gas fired counter-flow flame catalyzed by iron pentacarbonyl

are experimentally studied via an online GC. The initial pictures of the gas emissions from

the non-catalytic natural gas combustion are established by the experimental measurements.

Furthermore, the performance of iron pentacarbonyl on emission reduction is investigated

and evaluated in detail.

The experimental system, which is composed of a counter-flow diffusion flame burner and

an online GC, is built up and improved for the fundamental combustion studies. The major

gas species generated in the non-catalytic combustion including methane (CH4), oxygen

(O2), nitrogen (N2), carbon monoxide (CO), acetylene (C2H2), ethylene (C2H4) and ethane

(C2H6) are collected and measured by two different gas sampling methods. The experimental

results are compared to a previous study, which indicates that the experimental system

has a high reliability for measuring the gas species produced by the natural gas fuelled

diffusion flame. In addition, the experimental results are also used to validate the numerical

simulation by comparing them with the CHEMKIN modeling. The consistency between

the results in the comparison implies that the numerical model can be used to predict the

gas products by the combustion of natural gas, although the measured concentrations of

CO and C2 species are slightly higher.

The experimental results obtained by the two different sampling methods are compared

as well. The analysis indicates that method 2 (operated at atmospheric pressure) is preferred

for collecting the gas sample from the counter-flow flame, as it has better repeatability and
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stability. However, method 1 (operated under a higher vacuum) is much faster and more

economical. Therefore, it is more suitable to collect the sample from the high-temperature

zone or the heavy-particle flame.

In the second part of this experimental study, the effects of iron-containing catalysts on

pollution reduction are investigated in order to develop the catalytic combustion technology

for natural gas. Different amounts of iron pentacarbonyl carried by the nitrogen bypass-flow

are directed into the flame through the central port of the bottom burner. The full gas

profiles of the major emissions are measured when the concentration of iron pentacarbonyl

in the carrier gas is 7453 ppm. Compared to the initial non-catalytic combustion data, the

emissions of CO and light C2 hydrocarbons can be reduced by 80%∼95%. Moreover, their

peaks are observed to shift to positions closer to the fuel port. These findings are attributed

to the catalytic oxidation of methane by the catalysts formed from the decomposition of

iron pentacarbonyl.

Bigger pictures on the performance of iron-based catalysts are drawn by investigating

the gas profiles in the horizontal direction. Compared with the baselines of the gas species

generated from the non-catalytic combustion, the lower concentration curves illustrate

that the catalysts can be radially transported to the edge of the flow field at a height

close to flame. Furthermore, the effects of the iron pentacarbonyl concentration on the

catalytic efficiency are also demonstrated by drawing the emission curves of CO and C2

species. Overall, the emission reduction is enhanced when more iron pentacarbonyl is added

into the flame, due to the increase of the formed iron-based catalysts. However, when

the concentration of iron pentacarbonyl is too low or too high, its efficiency on emission

reduction is diminished. The decline is probably caused by the lack of effective catalytic

cycle at the low catalyst concentration and the saturation of the catalytic cycle at the high

catalyst concentration.

5.2 Recommendations

To further understand the essence of the catalytic natural gas combustion with iron

pentacarbonyl addition, some recommendations are proposed for the future experimental

research.

• One major pollutant NOx cannot be detected by GC, although its signal can be

found in the GC calibration process. NOx (mainly NO and NO2) is highly sensitive
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to water, pressure and temperature, which may induce the loss of NOx during the

sampling process. As a result, it fails to inject NOx into the GC for the sample

analysis. Moreover, the GC equipment does not have enough sensitivity to detect

NOx signal, especially when the NOx content is very low in the gas sample. The

calibration results show that the column installed in this GC cannot well separate

the peak of NO from the methane signal. As a solution, different types of equipment,

such as FTIR and dedicated NOx analyzer, are suggested to be used for analyzing

NOx in the future experiments.

• In this study, the temperature profile of the counter-flow flame is not obtained.

Temperature is an important factor for the fundamental combustion studies, as it may

explain the reasons of some experimental findings or suggest the potential experimental

tendency. Usually, temperature can be obtained by the intrusive (thermocouples) or

non-intrusive (laser detection) technologies. A suitable thermocouple is proposed to

get the temperature profile in future studies, although temperature detection limit

and uncertainty in the measurements are big challenges in its application.

• More detailed experiments are necessary to study the iron-containing species and

other chemical components, such as the intermediate species and carbon dioxide. Due

to the absence of experimental data for these critical components, the results in this

thesis are hence limited in explaining the details of the catalytic mechanism with iron

pentacarbonyl addition. Therefore, the measurements on the formation process of

these components are important, as they can not only help understand the reaction

pathways but also help improve the numerical model used for predicting the flame

structure.

• More studies under different experimental conditions are critical for further un-

derstanding the catalytic technology based on iron-containing catalysts. For iron

pentacarbonyl, its effects on pollutant reduction, affected by different catalyst concen-

trations and the partial-mixing injection method, have been investigated. However,

the characteristics of the diffusion flame with catalyst addition can also be affected

by other factors, such as different strain rates, different fuel/oxidizer ratios and other

catalyst injection methods. These factors may give some surprising findings which

can help to better understand the performance of iron-based additives for pollution

control. Consequently, it is interesting and important to collect more results under

different experimental conditions.
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• Further improvement and optimization of the experimental apparatus are necessary

to obtain data with higher accuracy. Uncertainties in the experimental results are

not expected as they can lead to the erroneous conclusions and thus influence the

proper application of the iron-based additives. Using the equipment with a higher

accuracy or improving the experimental setup are ways to obtain better experimental

measurements. For this system, replacing the rotameters with mass flow meters

(MFCs), adding shields to the outside of the burners and using digital pressure gauges

are possible improvements for reducing experimental errors.

71



References

[1] R. A. B. Semin, “A technical review of compressed natural gas as an alternative

fuel for internal combustion engines,” Am. J. Engg. & Applied Sci, vol. 1, no. 4, pp.

302–311, 2008.

[2] J. Huang and R. Crookes, “Assessment of simulated biogas as a fuel for the spark

ignition engine,” Fuel, vol. 77, no. 15, pp. 1793–1801, 1998.

[3] R. Thring, “Alternative fuels for spark ignition engines,” Southwest Research Institute,

Tech. Rep., 1983.

[4] A. M. Namasivayam, “Combustion, performance and emissions characteristics of

compression-ignition engines fuelled by sustainable fuels,” Ph.D. dissertation, Queen

Mary, University of London, 2011.

[5] “Canadian energy overview 2006-energy market assessment,” National Energy Board,

Canada, Tech. Rep., May 2007.

[6] “Canadian energy overview 2011-energy briefing note,” National Energy Board,

Canada, Tech. Rep., July 2011.

[7] “Natural gas 1998: Issues and trends,” Energy Information Administration, USA,

Tech. Rep., April 1999.

[8] I. Glassman and R. Yetter, Combustion. Academic press, 2008.

[9] P. Thevenin, “Catalytic combustion of methane,” Ph.D. dissertation, KTH, 2002.

[10] J. H. Lee and D. L. Trimm, “Catalytic combustion of methane,” Fuel Processing

Technology, vol. 42, no. 2, pp. 339–359, 1995.

72



[11] Agilent 6890 Series Gas Chromatograph Operation Manual Volume 1. General Infor-

mation, Agilent Technologies, Inc.

[12] “Energy futures backgrounder: Addendum to canadas energy future: Energy supply

and demand projections to 2035,” National Energy Board, Canada, Tech. Rep., June

2012.

[13] “Summer energy outlook 2013,” National Energy Board, Canada, Tech. Rep., 2013.

[14] “Canadas energy future: Energy supply and demand projections to 2035 - energy

market assessment,” National Energy Board, Canada, Tech. Rep., November 2011.

[15] B. M. Shasby, “Alternative fuels: Incompletely addressing the problems of the

automobile,” Ph.D. dissertation, Virginia Polytechnic Institute and State University,

2004.

[16] G. Munde Gopal and S. Dalu Rajendra, “Compressed natural gas as an alternative

fuel for spark ignition engine: A review,” International Journal of Engineering and

Innovative Technology, vol. 2, no. 6, 2012.

[17] I. Langmuir, “The mechanism of the catalytic action of platinum in the reactions

2CO+ O2= 2CO2 and 2H2+ O2= 2H2O,” Transactions of the Faraday Society, vol. 17,

pp. 621–654, 1922.

[18] T. Choudhary, S. Banerjee, and V. Choudhary, “Catalysts for combustion of methane

and lower alkanes,” Applied Catalysis A: General, vol. 234, no. 1, pp. 1–23, 2002.

[19] A. Barbosa, J. Herguido, and J. Santamaria, “Methane combustion over unsupported

iron oxide catalysts,” Catalysis today, vol. 64, no. 1, pp. 43–50, 2001.

[20] S. Kwon, M. Fan, T. Wheelock, and B. Saha, “Nano-and micro-iron oxide catalysts

for controlling the emission of carbon monoxide and methane,” Separation and

Purification Technology, vol. 58, no. 1, pp. 40–48, 2007.

[21] H. Tsuji, “Counterflow diffusion flames,” Progress in energy and combustion science,

vol. 8, no. 2, pp. 93–119, 1982.

[22] NaturalGas.org. (2013, Jun.) Background. [Online]. Available: http://www.

naturalgas.org/overview/background.asp

73

http://www.naturalgas.org/overview/background.asp
http://www.naturalgas.org/overview/background.asp


[23] K. Bhandari, A. Bansal, A. Shukla, and M. Khare, “Performance and emissions of

natural gas fueled internal combustion engine: A review,” Journal of scientific &

industrial research, vol. 64, no. 5, pp. 333–338, 2005.

[24] H. M. Cho and B.-Q. He, “Spark ignition natural gas enginesa review,” Energy

Conversion and Management, vol. 48, no. 2, pp. 608–618, 2007.

[25] K. Zeng, Z. Huang, B. Liu, L. Liu, D. Jiang, Y. Ren, and J. Wang, “Combustion

characteristics of a direct-injection natural gas engine under various fuel injection

timings,” Applied thermal engineering, vol. 26, no. 8, pp. 806–813, 2006.

[26] L. Shenghua, Z. Longbao, W. Ziyan, and R. Jiang, “Combustion characteristics of

compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine,”

Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile

Engineering, vol. 217, no. 9, pp. 833–838, 2003.

[27] I. Puri, K. Seshadri, M. Smooke, and D. Keyes, “A comparison between numerical

calculations and experimental measurements of the structure of a counterflow methane-

air diffusion flame,” Combustion science and technology, vol. 56, no. 1-3, pp. 1–22,

1987.

[28] V. Khanna, R. Goel, and J. Ellzey, “Measurements of emissions and radiation for

methane combustion within a porous medium burner,” Combustion science and

technology, vol. 99, no. 1-3, pp. 133–142, 1994.

[29] R. C. Flagan and J. H. Seinfeld, Fundamentals of air pollution engineering. Courier

Dover Publications, 2012.

[30] K. B. Schnelle and C. A. Brown, Air pollution control technology handbook. CRC

PressI Llc, 2002.

[31] D. Pershing and J. Wendt, “Relative contributions of volatile nitrogen and char

nitrogen to NOx emissions from pulverized coal flames,” Industrial & Engineering

Chemistry Process Design and Development, vol. 18, no. 1, pp. 60–67, 1979.

[32] W. Hahn and J. Wendt, “NOx formation in flat, laminar, opposed jet methane diffusion

flames,” in Symposium (International) on Combustion, vol. 18, no. 1. Elsevier, 1981,

pp. 121–131.

74



[33] L. G. Blevins and J. P. Gore, “Computed structure of low strain rate partially

premixed CH4/air counterflow flames: implications for no formation,” Combustion

and flame, vol. 116, no. 4, pp. 546–566, 1999.

[34] A. Beltrame, P. Porshnev, W. Merchan-Merchan, A. Saveliev, A. Fridman, L. Kennedy,

O. Petrova, S. Zhdanok, F. Amouri, and O. Charon, “Soot and NO formation in

methane–oxygen enriched diffusion flames,” Combustion and flame, vol. 124, no. 1,

pp. 295–310, 2001.

[35] V. Dupont and A. Williams, “NOx mechanisms in rich methane-air flames,” Combus-

tion and flame, vol. 114, no. 1, pp. 103–118, 1998.

[36] Particulate matter-health. [Online]. Available: http://www.epa.gov/pm/health.html

[37] L. Rubino, “The effect of oxygenated additives on soot precursor formation.” Master’s

thesis, University of Toronto, 2001.

[38] S. M. Sarathy, “Using an opposed flow diffusion flame to study the oxidation of C4

fatty acid methyl esters,” Master’s thesis, University of Toronto, 2006.

[39] N. Marinov, W. Pitz, C. Westbrook, A. Lutz, A. Vincitore, and S. Senkan, “Chemi-

cal kinetic modeling of a methane opposed-flow diffusion flame and comparison to

experiments,” in Symposium (International) on Combustion, vol. 27, no. 1. Elsevier,

1998, pp. 605–613.

[40] K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, and R. J. Santoro, “Soot

inception in a methane/air diffusion flame as characterized by detailed species profiles,”

Combustion and Flame, vol. 62, no. 2, pp. 157–181, 1985.

[41] Y. Wang, Y. Liu, Q. Cao, C. Wang, and D. Che, “Homogeneous combustion of

fuel ultra-lean methane–air mixtures: Experimental study and simplified reaction

mechanism,” Energy & Fuels, vol. 25, no. 8, pp. 3437–3445, 2011.

[42] V. Kozlov, A. Lebedev, A. Sekundov, and K. Y. Yakubovskii, “Emission of carbon

oxides during the combustion of lean methane-air premixed mixtures,” Russian

Journal of Physical Chemistry B, vol. 4, no. 4, pp. 602–612, 2010.

[43] Y. Fahmy, P. Fornasiero, S. Zinoviev, and S. Miertus, “Air pollution control technolo-

gies compendium,” United Nations Industrial Development Organization, 2007.

75

http://www.epa.gov/pm/health.html


[44] “Control of nitrogen oxide emissions: Selective catalytic reduction (SCR),” U.S.

Department of Energy and Southwest Company Services, Inc., Tech. Rep., July 1997.

[45] F. Luck and J. Roiron, “Selective catalytic reduction of NOx emitted by nitric acid

plants,” Catalysis Today, vol. 4, no. 2, pp. 205–218, 1989.

[46] Z. Zong-rang, “Design optimization of SCR system for coal-fired boilers [j],” Electric

Power, vol. 11, p. 016, 2005.

[47] M. Koebel, M. Elsener, and T. Marti, “NOx-reduction in diesel exhaust gas with urea

and selective catalytic reduction,” Combustion science and technology, vol. 121, no.

1-6, pp. 85–102, 1996.

[48] J. D. Peter-Hoblyn, E. N. Balles, T. J. Tarabulski, J. E. Hofmann, and J. M. Valentine,

“Urea pyrolysis chamber and process for reducing lean-burn engine NOx emissions by

selective catalytic reduction,” Mar. 20 2001, US Patent 6,203,770.

[49] E. Marty and G. H. Martin, “Session 13 waste treatments: Selective non-catalytic

reduction of nitrogen oxides.”

[50] S. Mahmoudi, J. Baeyens, and J. P. Seville, “NOx formation and selective non-

catalytic reduction (SNCR) in a fluidized bed combustor of biomass,” Biomass and

bioenergy, vol. 34, no. 9, pp. 1393–1409, 2010.

[51] M. Jødal, T. L. Lauridsen, and K. Dam-Johansen, “NOx removal on a coal-fired

utility boiler by selective non-catalytic reduction,” Environmental progress, vol. 11,

no. 4, pp. 296–301, 1992.

[52] C. Nam and B. Gibbs, “Selective non-catalytic reduction of NOx under diesel engine

conditions,” Proceedings of the Combustion Institute, vol. 28, no. 1, pp. 1203–1209,

2000.

[53] P. W. Groff and B. K. Gullett, “Industrial boiler retrofit for NOx control: combined

selective noncatalytic reduction and selective catalytic reduction,” Environmental

progress, vol. 16, no. 2, pp. 116–120, 1997.

[54] B. K. Gullett, P. W. Groff, M. L. Lin, and J. M. Chen, “NOx removal with combined

selective catalytic reduction and selective noncatalytic reduction: pilot-scale test

results,” Air & waste, vol. 44, no. 10, pp. 1188–1194, 1994.

76



[55] Y. S. Mok and H.-J. Lee, “Removal of sulfur dioxide and nitrogen oxides by using

ozone injection and absorption–reduction technique,” Fuel Processing Technology,

vol. 87, no. 7, pp. 591–597, 2006.

[56] K. Urashima, J.-S. Chang, J.-Y. Park, D.-C. Lee, A. Chakrabarti, and T. Ito,

“Reduction of nOx from natural gas combustion flue gases by corona discharge radical

injection techniques [thermal power plant emissions control],” Industry Applications,

IEEE Transactions on, vol. 34, no. 5, pp. 934–939, 1998.

[57] M. Okubo, N. Arita, T. Kuroki, K. Yoshida, and T. Yamamoto, “Total diesel emission

control technology using ozone injection and plasma desorption,” Plasma Chemistry

and Plasma Processing, vol. 28, no. 2, pp. 173–187, 2008.

[58] M. Schoenung and R. K. Hanson, “CO and temperature measurements in a flat flame

by laser absorption spectroscopy and probe techniques,” Combustion Science and

Technology, vol. 24, no. 5-6, pp. 227–237, 1980.

[59] M. M. Schorr and J. Chalfin, “Gas turbine NOx emissions approaching zero–is it

worth the price?” General Electric Power Systems, Schenectady, New York, pp. 1–6,

1999.

[60] C. E. Maslak, “Water and steam injection in cogeneration system,” May 29 1990, US

Patent 4,928,478.

[61] C. Wilkes and B. W. Gerhold, “NOx reduction in a combined gas-steam power plant,”

Feb. 2 1982, US Patent 4,313,300.

[62] Y. Suzukawa, S. Sugiyama, Y. Hino, M. Ishioka, and I. Mori, “Heat transfer improve-

ment and NOx reduction by highly preheated air combustion,” Energy Conversion

and Management, vol. 38, no. 10, pp. 1061–1071, 1997.

[63] A. K. Gupta, “Thermal characteristics of gaseous fuel flames using high temperature

air,” Transactions-American Society of Mechanical Engineers Journal of Engineering

for Gas Turbines and Power, vol. 126, no. 1, pp. 9–19, 2004.

[64] J. L. Marion, “Advanced overfire air system for NOx control,” Mar. 23 1993, US

Patent 5,195,450.

77



[65] R. E. Donais, T. D. Hellewell, P. D. Kuczma, and J. S. Simon, “Control of staged

combustion, low NOx firing systems with single or multiple levels of overfire air,”

May 6 1997, US Patent 5,626,085.

[66] L. Smoot, S. Hill, and H. Xu, “NOx control through reburning1,” Progress in energy

and combustion science, vol. 24, no. 5, pp. 385–408, 1998.

[67] P. Maly, V. Zamansky, L. Ho, and R. Payne, “Alternative fuel reburning,” Fuel,

vol. 78, no. 3, pp. 327–334, 1999.

[68] M. Lapuerta, J. Hernandez, and F. Gimenez, “Evaluation of exhaust gas recirculation

as a technique for reducing diesel engine NOx emissions,” Proceedings of the Institution

of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 214, no. 1,

pp. 85–93, 2000.

[69] S. J. Bortz, D. E. Shore, N. Garrad, J. Pirkey, and Facchiano, “Ultra-low NOx rapid

mix burner demonstration at con edisons 59th street station,” Aug. 25 - 29 1997,

present at EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium.

[70] J. Saint-Just and J. der Kinderen, “Catalytic combustion: from reaction mechanism

to commercial applications,” Catalysis today, vol. 29, no. 1, pp. 387–395, 1996.

[71] R. Burch et al., “Low NOx options in catalytic combustion and emission control,”

Pure and applied chemistry, vol. 68, no. 2, pp. 377–386, 1996.

[72] B. Enga and D. Thompson, “Catalytic combustion applied to gas turbine technology,”

Platinum Metals Review, vol. 23, no. 4, pp. 134–141, 1979.

[73] S. R. Vatcha, “Low-emission gas turbines using catalytic combustion,” Energy con-

version and management, vol. 38, no. 10, pp. 1327–1334, 1997.

[74] S. R. Vaillant and A. S. Gastec, “Catalytic combustion in a domestic natural gas

burner,” Catalysis today, vol. 47, no. 1, pp. 415–420, 1999.

[75] M. Iamarino, R. Chirone, L. Lisi, R. Pirone, P. Salatino, and G. Russo, “Cu/γ-Al2O3

catalyst for the combustion of methane in a fluidized bed reactor,” Catalysis today,

vol. 75, no. 1, pp. 317–324, 2002.

[76] M. Foka, J. Chaouki, C. Guy, and D. Klvana, “Natural gas combustion in a catalytic

turbulent fluidized bed,” Chemical engineering science, vol. 49, no. 24, pp. 4269–4276,

1994.

78



[77] “Emission control technologies for diesel-power vehicles,” Manufacturers of Emission

Controls Association, 2007.

[78] J. Neeft, M. Makkee, and J. A. Moulijn, “Diesel particulate emission control,” Fuel

processing technology, vol. 47, no. 1, pp. 1–69, 1996.

[79] O. Deutschmann and A. G. Konstandopoulos, “Catalytic technology for soot and

gaseous pollution control,” Handbook of Combustion, 2010.

[80] S. Deshmukh and D. Vlachos, “A reduced mechanism for methane and one-step

rate expressions for fuel-lean catalytic combustion of small alkanes on noble metals,”

Combustion and Flame, vol. 149, no. 4, pp. 366–383, 2007.

[81] A. Mhadeshwar and D. Vlachos, “A catalytic reaction mechanism for methane partial

oxidation at short contact times, reforming, and combustion, and for oxygenate de-

composition and oxidation on platinum,” Industrial & engineering chemistry research,

vol. 46, no. 16, pp. 5310–5324, 2007.

[82] G. Neri, L. Bonaccorsi, A. Donato, C. Milone, M. G. Musolino, and A. M. Visco,

“Catalytic combustion of diesel soot over metal oxide catalysts,” Applied Catalysis B:

Environmental, vol. 11, no. 2, pp. 217–231, 1997.
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CH4 total oxidation over manganese oxide supported on ZrO2, TiO2, TiO2-Al2O3

and SiO2-Al2O3 catalysts,” New Journal of Chemistry, vol. 23, no. 12, pp. 1197–1202,

1999.

[113] T.-c. Xiao, S.-f. Ji, H.-t. Wang, K. S. Coleman, and M. L. Green, “Methane combustion

over supported cobalt catalysts,” Journal of Molecular Catalysis A: Chemical, vol.

175, no. 1, pp. 111–123, 2001.

[114] J. McCarty, Y.-F. Chang, V. Wong, and E. Johansson, “Kinetics of high temperature

methane combustion by metal oxide catalysts,” Preprints-American Chemical Society.

Division of Petroleum Chemistry, vol. 42, no. 1, pp. 158–162, 1997.

[115] P. Ciambelli, S. Cimino, L. Lisi, M. Faticanti, G. Minelli, I. Pettiti, and P. Porta, “La,

Ca and Fe oxide perovskites: preparation, characterization and catalytic properties

for methane combustion,” Applied Catalysis B: Environmental, vol. 33, no. 3, pp.

193–203, 2001.

[116] H. Arai, T. Yamada, K. Eguchi, and T. Seiyama, “Catalytic combustion of methane

over various perovskite-type oxides,” Applied catalysis, vol. 26, pp. 265–276, 1986.

[117] L. Marchetti and L. Forni, “Catalytic combustion of methane over perovskites,”

Applied Catalysis B: Environmental, vol. 15, no. 3, pp. 179–187, 1998.

[118] B. de Collongue, E. Garbowski, and M. Primet, “Catalytic combustion of methane

over bulk and supported LaCrO3 perovskites,” Journal of the Chemical Society,

Faraday Transactions, vol. 87, no. 15, pp. 2493–2499, 1991.

[119] S. Cimino, L. Lisi, R. Pirone, G. Russo, and M. Turco, “Methane combustion on

perovskites-based structured catalysts,” Catalysis today, vol. 59, no. 1, pp. 19–31,

2000.

82



[120] J. Chen, W. Shi, and J. Li, “Catalytic combustion of methane over cerium-doped

cobalt chromite catalysts,” Catalysis Today, vol. 175, no. 1, pp. 216–222, 2011.

[121] W. Tang, Z. Hu, M. Wang, G. D. Stucky, H. Metiu, and E. W. McFarland, “Methane

complete and partial oxidation catalyzed by Pt-doped CeO2,” Journal of Catalysis,

vol. 273, no. 2, pp. 125–137, 2010.

[122] V. R. Choudhary, B. S. Uphade, and S. G. Pataskar, “Low temperature complete

combustion of dilute methane over Mn-doped ZrO2 catalysts: factors influencing the

reactivity of lattice oxygen and methane combustion activity of the catalyst,” Applied

Catalysis A: General, vol. 227, no. 1, pp. 29–41, 2002.

[123] P. Artizzu-Duart, J. Millet, N. Guilhaume, E. Garbowski, and M. Primet, “Catalytic

combustion of methane on substituted barium hexaaluminates,” Catalysis Today,

vol. 59, no. 1, pp. 163–177, 2000.

[124] M. Machida, K. Eguchi, and H. Arai, “Catalytic properties of BaMAl11O19−α(M= Cr,

Mn, Fe, Co, and Ni) for high-temperature catalytic combustion,” Journal of catalysis,

vol. 120, no. 2, pp. 377–386, 1989.

[125] P. Artizzu, N. Guilhaume, E. Garbowski, Y. Brullé, and M. Primet, “Catalytic
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