
Design and Analysis of Cryptographic
Pseudorandom Number/Sequence

Generators with Applications in RFID

by

Kalikinkar Mandal

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2013

c©Kalikinkar Mandal 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

This thesis is concerned with the design and analysis of strong de Bruijn sequences

and span n sequences, and nonlinear feedback shift register (NLFSR) based pseu-

dorandom number generators for radio frequency identification (RFID) tags. We

study the generation of span n sequences using structured searching in which an

NLFSR with a class of feedback functions is employed to find span n sequences.

Some properties of the recurrence relation for the structured search are discovered.

We use five classes of functions in this structured search, and present the number

of span n sequences for 6 ≤ n ≤ 20. The linear span of a new span n sequence lies

between near-optimal and optimal. According to our empirical studies, a span n

sequence can be found in the structured search with a better probability of success.

Newly found span n sequences can be used in the composited construction and in

designing lightweight pseudorandom number generators.

We first refine the composited construction based on a span n sequence for

generating long de Bruijn sequences. A de Bruijn sequence produced by the com-

posited construction is referred to as a composited de Bruijn sequence. The linear

complexity of a composited de Bruijn sequence is determined. We analyze the

feedback function of the composited construction from an approximation point of

view for producing strong de Bruijn sequences. The cycle structure of an approx-

imated feedback function and the linear complexity of a sequence produced by

an approximated feedback function are determined. A few examples of strong de

Bruijn sequences with the implementation issues of the feedback functions of an

(n+ 16)-stage NLFSR are presented.

We propose a new lightweight pseudorandom number generator family, named

Warbler family based on NLFSRs for smart devices. Warbler family is comprised

of a combination of modified de Bruijn blocks (CMDB) and a nonlinear feedback

Welch-Gong (WG) generator. We derive the randomness properties such as period

and linear complexity of an output sequence produced by the Warbler family. Two

instances, Warbler-I and Warbler-II, of the Warbler family are proposed for passive

RFID tags. The CMDBs of both Warbler-I and Warbler-II contain span n sequences

that are produced by the structured search. We analyze the security properties of

v

Warbler-I and Warbler-II by considering the statistical tests and several cryptan-

alytic attacks. Hardware implementations of both instances in VHDL show that

Warbler-I and Warbler-II require 46 slices and 58 slices, respectively. Warbler-I can

be used to generate 16-bit random numbers in the tag identification protocol of the

EPC Class 1 Generation 2 standard, and Warbler-II can be employed as a random

number generator in the tag identification as well as an authentication protocol for

RFID systems.

vi

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervi-

sor, Prof. Guang Gong, for accepting and supporting me as a Ph.D. student and

allowing to work in the field of my research interests. Prof. Gong’s invaluable

supervision, guidance, constructive criticism, and encouragement have been crucial

in helping me to develop as a researcher. Her counsel and expertise in the field

resolved many difficulties that I encountered during my doctoral studies. I thank

Prof. Gong for her advice and valued suggestions to all aspects of my research and

beyond research.

I sincerely thank, Prof. Radha Poovendran at the University of Washington,

Seattle, for serving as my external examiner and providing me many valuable sug-

gestions and comments. I am deeply grateful to my thesis committee, Prof. Mark

Aagaard, Prof. Anwar Hasan, and Prof. David Jao at the University of Waterloo,

for giving me insightful comments and suggestions, and helping me to improve my

thesis. It is a privilege to obtain such a great committee.

I am obliged to Dr. Xinxin Fan for his assistance from the first day at the

University of Waterloo, his friendship, being a co-author, exchanging valuable ideas

and giving me many helpful suggestions. I am thankful to my former colleagues

Dr. Honggang Hu, Dr. Zhijun Li, Dr. Anuchart Tassanaviboon, Dr. Qi Chai

for their support, friendship and sharing valued ideas. I am also thankful to my

colleagues and friends Fei Huo, Bo Zhu, Yang Yang, Teng Wu, Shasha Zhu, Khizer

Kaleem, Roy Feng, Yin Tan, Yao Chen, Gangqiang Yang, and Nusha Zidaric, for

their support, their friendship, and having fun with them during my PhD studies. I

would like to thank all the members of the Communication Security Lab (ComSec)

at the University of Waterloo for making and maintaining a wonderful research

environment. I would like to thank all my friends at the University of Waterloo

and Beacon Tower-702 for their cooperation and help, and having fun with them,

and I would like to single out Arindam, Harshwardhan, Pradeep, Rudra, Manu,

and Saurabh.

I thank my M. Tech. friends, Pulak, Sanjay, Swarup, Sandeep, Mrinmoy, Nargis,

Aritra, Subhabrata, Somindu, Santanu, and Chiranjit for their supportive, lovable,

vii

humorous, and entertaining friendship, and keeping in touch.

Last but not least, I would like to thank my parents, my brothers Uday and

Ashok, and my family for their endless love, support and sacrifices. I am indebted

to my parents and my brother Uday for their encouragements and sacrifices. I

dedicate this thesis to my parents. I would also like to thank my beloved Arpita

Sinha for her endless love and support. I thank my lovable grandmothers for their

unconditional love.

Thank you very much to all of you!

viii

Dedication

To my parents

ix

Table of Contents

List of Tables xviii

List of Figures xix

1 Introduction 1

1.1 Pseudorandom Sequence Generators 1

1.2 Cryptographic Pseudorandom Sequences and Their Applications . . 2

1.3 Motivation and This Thesis . 4

1.4 Radio Frequency Identification Systems 5

1.5 Overview and Main Contributions 8

2 Literature Review 13

2.1 Existing de Bruijn Sequence Generation Methods 13

2.1.1 D-homomorphism Based de Bruijn Sequence Construction . 14

2.1.2 Cycle Joining Algorithms for de Bruijn Sequences 15

2.1.3 Algorithmic Approach for the de Bruijn Sequence Generation 16

2.1.4 Linear Span Based de Bruijn Sequence Construction 17

2.2 Span n Sequence Generation by the Exhaustive Search Method . . 17

2.2.1 Exhaustive Search for Small Span n Sequences 18

2.2.2 Span n Sequence Generation Using Quadratic Feedback Func-

tion . 18

2.2.3 Span n Sequence Generation Using Cubic and Quartic Feed-

back Functions . 18

xi

2.2.4 General Studies on Span n Sequences 19

2.3 RNG for the EPC C1 Gen2 Standard 20

2.3.1 TRNG Based RNG Proposals 20

2.3.2 Pseudorandom Number Generator Proposals 21

2.4 Summary of Chapter 2 . 21

3 Preliminaries 23

3.1 Finite Fields . 23

3.2 Feedback Shift Register Sequences 24

3.2.1 Basic Definitions and Properties of NLFSRs 24

3.2.2 Golomb’s Randomness Postulates 26

3.2.3 Relationship Between de Bruijn Sequences and Span n Se-

quences . 27

3.2.4 Unsolved Problems on Synthesis of NLFSRs 29

3.2.5 D-homomorphisms and Compositions of NLFSRs 29

3.3 Boolean Functions . 32

3.3.1 Nonlinearity of Boolean Functions and Vector Boolean Func-

tions . 32

3.3.2 Resiliency and Propagation of Boolean Functions 34

3.3.3 Algebraic Immunity of Boolean Functions 34

3.4 Some Permutations and Functions over F2t 35

3.4.1 The Welch-Gong (WG) Transformation 35

3.4.2 Three-Term Function . 36

3.4.3 Monomial Function with Kasami Exponent 36

3.4.4 MCM Polynomial . 36

3.5 Summary of Chapter 3 . 37

4 Span n Sequence Generation by the Structured Search 39

4.1 Related Work and Motivation . 40

4.2 Theoretical Results on Span n Sequences 41

4.2.1 Description of a Span n Sequence Generation Procedure . . 41

4.2.2 Approximate Number of Functions in the Search Space . . . 45

xii

4.3 Span n Sequence Generation Using WG transformations 48

4.3.1 WG Span n Sequences . 48

4.3.2 The Success Probability Comparison 50

4.3.3 The Search Complexity Reduction for WG Span n Sequences 51

4.4 Span n Sequence Generation by 3-term, 5-term, and Monomial Func-

tions and MCM Functions . 53

4.4.1 3-term and 5-term Span n Sequences 53

4.4.2 Monomial and MCM Functions Span n Sequences 53

4.5 Linear Span Analysis of New Span n Sequences 55

4.6 Summary of Chapter 4 . 57

5 Strong de Bruijn Sequences with Large Periods by the Composited

Construction 61

5.1 Feedback Functions of Composited de Bruijn Sequences 62

5.1.1 The k-th Order Composition of a Boolean Function 63

5.1.2 Repeated Compositions of a Product Term 64

5.1.3 The Composited Construction of a de Bruijn Sequence . . . 65

5.1.4 Algebraic Form of In16 . 66

5.2 Linear Complexity of Composited de Bruijn Sequences 67

5.2.1 A Closer Look at the Composited Construction 67

5.2.2 Linear Complexity of a Composited de Bruijn Sequence . . . 68

5.3 Cryptanalysis of a Composited NLFSR for a de Bruijn Sequence . . 70

5.3.1 Hamming Weights of the Product-Of-Sum Terms 70

5.3.2 Cycle Structure of an Approximated Recurrence Relation . . 73

5.4 Designing Parameters for Cryptographic de Bruijn Sequences . . . 75

5.4.1 Tradeoff Between n and k 75

5.4.2 Examples of de Bruijn Sequences with Large Periods 76

5.5 Implementation of Function In16 . 77

5.5.1 Optimizing the Number of Additions for In16 78

5.5.2 Total Number of Multiplications and Time Complexity for

Computing Ink . 79

5.6 Summary of Chapter 5 . 80

xiii

6 Warbler Family: A Lightweight PRNG Family for Smart Devices 81

6.1 Description of the Warbler PRNG Family 81

6.1.1 Randomness Properties of the CMDB of Warbler Family . . 82

6.1.2 Description of the Nonlinear Feedback WG Generator 86

6.2 Design Rationale . 88

6.3 Key Initialization Phase of Warbler 89

6.4 Optimal Security Conditions for the Warbler Family 90

6.5 Summary of Chapter 6 . 91

7 Warbler-I: A Lightweight PRNG for the EPC C1 Gen2 RFID Tags 93

7.1 Motivation and Related Work . 94

7.1.1 Che et al.’s PRNG . 94

7.1.2 Melia-Segui et al.’s PRNG 94

7.1.3 Peris-Lopez et al.’s PRNG 95

7.2 Description of Warbler-I . 95

7.2.1 WG-5 Transformation . 96

7.2.2 Building Block I: An Alternative to TRNG 97

7.2.3 Building Block II: Pseudorandom Number Generator 98

7.2.4 System Initialization of Warbler-I 99

7.3 Security Analysis of Warbler-I . 100

7.3.1 Randomness Analysis of the PRNG 100

7.3.2 Cryptanalysis of Warbler-I 103

7.4 Hardware Implementation of Warbler-I 106

7.5 Applications in RFID Systems . 107

7.6 Summary of Chapter 7 . 108

8 Warbler-II: A Lightweight PRNG for RFID Tags 109

8.1 Description of Warbler-II . 110

8.1.1 Mathematical Functions of Warbler-II 110

8.1.2 Description of the CMDB of Warbler-II 111

8.1.3 Description of the NFWGG of Warbler-II 113

8.1.4 Key Initialization Phase of Warbler-II 114

xiv

8.2 Security Analysis of Warbler-II . 115

8.2.1 Cryptographic Statistical Tests 115

8.2.2 Cryptanalysis of Warbler-II 118

8.3 Hardware Implementation and Comparisons 124

8.4 Application to the RFID Tags and Protocols 124

8.5 Comparisons with Other PRNGs 125

8.5.1 Comparison with Warbler-I 125

8.5.2 Comparisons with a Composited De Bruijn Sequence and

WG-5 Stream Cipher . 126

8.6 Summary of Chapter 8 . 127

9 Conclusions and Future Research 129

9.1 Conclusions . 129

9.2 Future Research . 132

APPENDIX 135

A Span n Sequences and Linear Complexity Bounds 135

A.1 Example of Span n Sequences . 135

A.2 Linear Complexity of New Span n Sequences 139

Bibliography 141

xv

List of Tables

4.1 Span n sequences generated using WG5 for n = 7 45

4.2 Tap position distribution for an LFSR of length ≤ 20 47

4.3 Number of WG span n sequences 49

4.4 The success probability comparison for WG span n sequences . . . 51

4.5 Number of three-term span n sequences 54

4.6 Number of five-term span n sequences 55

4.7 The success probability comparison for 3-term, 5-term and monomial

functions span n sequences . 56

4.8 Number of span n sequences generated by monomial functions . . . 57

4.9 Number of MCM span n sequences 58

5.1 Notations used in Chapter 5 . 62

5.2 The k-th order composition of xi w.r.t ψ 64

5.3 Product-of-sum terms in In16 of the recurrence relation (5.3) 67

5.4 De Bruijn sequences with periods ≥ 235 77

5.5 Optimization rules for addition . 78

5.6 Product terms of the recurrence relation (5.6) 79

6.1 Parameters description of the Warbler family 88

7.1 Parameters and statistical properties of two primitive NLFSRs . . . 98

7.2 Cryptographic properties of WG-5 transformations used in Warbler-I 98

7.3 Successful fulfillment of the requirements of the EPC C1 Gen2 standard102

(a) The first requirement . 102

xvii

(b) The third requirement . 102

7.4 NIST test suite results of our proposal 103

7.5 A comparison with other PRNGs 107

8.1 Cryptographic properties of WG-5 transformations used in Warbler-II 111

8.2 Parameters and statistical properties of three primitive NLFSRs . . 112

8.3 Successful fulfillment of the requirements of the EPC C1 Gen2 standard117

(a) The first requirement . 117

(b) The third requirement . 117

8.4 NIST test suite results of Warbler-II 118

8.5 The processing and pre-processing attack complexities 121

8.6 A comparison with other PRNGs 124

A.1 WG span n sequences generated using rec. rel. (4.1) 136

A.2 WG span n sequences generated using rec. rel. (4.1) 136

A.3 WG span n sequences for t = 7 . 137

A.4 5-term span n sequences for t = 7 137

A.5 3-term span n sequences for t = 7 137

A.6 Span n sequences generated by monomial functions for t = 9 138

A.7 MCM span n sequences for k = 3 and t = 7 138

A.8 The bounds of the linear span of WG span n sequences 139

A.9 The bounds of the linear span of five-term span n sequences 139

A.10 The bounds of the linear span of three-term span n sequences . . . 140

A.11 The bounds of the linear span of span n sequences produced by

monomial functions with Kasami exponents 140

A.12 The upper and lower bounds of the linear span of MCM span n

sequences . 140

xviii

List of Figures

1.1 An RFID system . 6

1.2 The EPC C1 Gen2 tag identification protocol 7

4.1 Span n sequence generation by the structured search 42

4.2 Distribution for the number of span n sequences 50

6.1 A general architecture of the Warbler family 82

7.1 A diagram of Warbler-I for EPC C1 Gen2 tags 96

8.1 A block diagram of Warbler-II . 110

8.2 Warbler-II after adding the control circuit 123

xix

Chapter 1

Introduction

Randomness plays an essential role in cryptography. A good random number or

sequence generator is a crucial component used in designing a secure system. Secu-

rity of cryptographic algorithms and protocols extensively relies on random numbers

and keys. Random number generators can be classified into two categories, namely

true random number generators and pseudorandom number generators. The role

of a pseudorandom sequence or number generator becomes crucial in a practical

scenario when a true random bit generator cannot produce enough truly random

bits or a true random bit generator cannot be employed to produce random bits.

Pseudorandom sequence/number generators are broadly used in stream ciphers,

generating random numbers, cryptographic protocols, digital signature generation

algorithms, RFID systems, and sensor networks. This chapter provides an intro-

duction to cryptographic pseudorandom sequences, and the motivation and outline

of this thesis.

1.1 Pseudorandom Sequence Generators

A pseudorandom sequence generator (PRSG) is a deterministic algorithm, which

takes a small length truly random sequence, called the seed, as input, and generates

an output sequence of any desired length. The output sequence is called a pseu-

dorandom sequence, which is random-looking to an outside observer, and will be

1

indistinguishable from a truly random sequence. Obviously, the output sequence

length is much greater than the input sequence length. In other words, a PRSG

is used to expand a truly random seed to a long length pseudorandom sequence,

which should have the following statistical properties: long period, balance, equal

distribution of runs, uniform tuple distribution, ideal 2-level autocorrelation, low

crosscorrelation, and high linear span [19,43,45,102].

Numerous algorithms and techniques can be found in the literature for gener-

ating pseudorandom sequences including feedback shift registers (FSR), feedback

with carry shift registers, linear congruential generators, lagged fibonacci genera-

tors, many designs based on block ciphers and hash functions. The feedback shift

register has a rich theory, and that can be classified into two categories, namely

linear feedback shift registers (LFSRs) and nonlinear feedback shift registers (NLF-

SRs) [43]. Feedback shift register sequences such as de Bruijn sequences and span

n sequences have good randomness properties, and FSRs have an efficient imple-

mentation in hardware [43]. The designs of the eSTREAM profile 2 finalists Grain

and Trivium are based on feedback shift registers [30]. Several architectures of

FSR-based PRNGs and stream ciphers can be found in [19]. A wide range of ap-

plications of FSRs can be found in cryptography, spread spectrum communication,

test vector generation in hardware design, etc. [43, 45].

1.2 Cryptographic Pseudorandom Sequences and

Their Applications

In cryptography, strong pseudorandom sequences are significant for providing se-

curity in various applications. A PRSG is called a cryptographically secure PRSG

if no polynomial-time algorithm with the first l bits of a sequence as input can

predict the (l+ 1)-th bit of the sequence with probability significantly greater than
1
2

[87]. Known cryptographically secure PRNGs are Shamir’s generators and Blum-

Blum-Shub generators [87]. For an FSR-generated sequence, the value of l should

be approximately equal to the period of the sequence. A cryptographically secure

sequence should have an indistinguishability property, an unpredictability prop-

2

erty, and good statistical properties such as long period, high linear span, balance,

equal distribution of runs, uniform tuple distribution, ideal 2-level autocorrelation,

and low crosscorrelation. Moreover, the pseudorandom sequence generator will be

resistant to the cryptanalytic attacks. Many cryptographic statistical tests have

been proposed to measure the randomness in a pseudorandom sequence, for exam-

ple the NIST statistical test suite [103]. In practice, the randomness in a sequence

is measured by applying the statistical tests to an arbitrary but small segment of

an output sequence. Due to computational limitations, it is not possible to take

the entire sequence as input to the statistical testing algorithms. A cryptographic

sequence should pass all the statistical tests. A cryptographic pseudorandom se-

quence generator needs to be characterized by the statistical properties of its output

sequences, and by its attack resistance properties.

It is desirable that the period or the lower bound of period of a pseudorandom

sequence be known for cryptographic applications. For instance, in a stream cipher,

the length of a sequence needs to be the same as the length of a message, and the

sequence will never be repeated. Furthermore, the linear span or linear complexity

of a sequence must be high, so that an adversary is not able to generate the entire

sequence from a partially known segment by the Berlekamp-Massey algorithm [79].

For a cryptographic pseudorandom sequence, the period and linear span or com-

plexity of a sequence must be large because the linear complexity is the measure of

unpredictability of a sequence.

There are several applications of (pseudo)random sequences and numbers in

both symmetric-key and public-key cryptography. In any cryptosystem, the keys

of an encryption and decryption scheme are chosen in a random fashion from a

keyspace; pseudorandom sequences can be used for those purposes. For example,

prime numbers and the private key in an RSA cryptosystem can be chosen using

a PRNG. A stream cipher uses a pseudorandom sequence generator for generating

keystreams to encrypt and decrypt messages. A variety of applications of NLFSR-

based PRNGs can be found in resource constrained-environments such as RFID tags

and sensor networks. Note that most of the authentication protocols use nonce as a

challenge and the security of the protocol depends on nonces. In those application

3

scenarios, the pseudorandom sequences could be a better choice to use as nonces.

Last but not least, a segment of a pseudorandom sequence can be used as a random

number in a digital signature generation algorithm to protect the private key.

1.3 Motivation and This Thesis

A pseudorandom sequence generator constructed by feedback shift registers can

be observed as a system of multivariate algebraic equations. Over the past few

decades, a number of cryptanalytic attacks on FSR-based PRNGs/PRSGs have

been developed, for instance algebraic attacks, correlation attacks, cube attacks,

time-memory-data (TMD) tradeoff attacks, and discrete fourier transformation

(DFT) attacks [6,20,21,24,46,84,100,105]. These attacks are very powerful against

LFSR-based PRNGs or stream ciphers. However, it is believed that an NLFSR-

based PRNG or stream cipher can resist the existing attacks due to the hardness of

solving a system of multivariate nonlinear equations over the binary field. Replac-

ing the LFSR building blocks by well-chosen NLFSRs in the existing architectures

of PRSGs, such as filtering generator and combinatorial generator, either the afore-

mentioned attacks can be prevented or the attacks’ complexities are increased so

that launching the attacks become infeasible. Feedback shift registers can also be

implemented efficiently in hardware. Motivated by the attack-resistance properties

and efficient hardware implementations of NLFSR-based PRSGs/PRNGs, we study

nonlinear feedback shift registers, and NLFSR-based pseudorandom sequence and

number generators in this thesis.

This thesis concentrates on the generation of de Bruijn sequences and span n

sequences using NLFSRs due to their good randomness properties. A binary de

Bruijn sequence generated by an NLFSR has period 2n in which all binary n-tuples

occur exactly once, and linear complexity at least 2n−1 +n [14]. On the other hand,

a binary span n sequence or modified de Bruijn sequence generated by an NLFSR

has period 2n − 1 where every nonzero n-tuple occurs exactly once in a period. A

span n sequence may also have high linear complexity. An NLFSR that generates

a de Bruijn sequence or a span n sequence needs to be used as a building block in

4

designing a PRNG or a stream cipher, because the randomness properties of output

sequences can be promised for a suitable design. Unfortunately, there is no known

general construction of an NLFSR that can generate a span n sequence.

In Chapter 4, we use the structured search methods employing a class of nonlin-

ear feedback functions to study the generation of span n sequences using NLFSRs.

Chapter 5 refines and examines the composited construction and its sequence prop-

erties for producing long and strong de Bruijn sequences. Chapter 6 presents War-

bler family, a new pseudorandom number generator family based on NLFSRs with

desirable randomness properties for smart devices such as radio frequency identifi-

cation tags. Using the span n sequences newly found by the structured search, we

design two instances, Warbler-I and Warbler-II, of the Warbler family in Chapters 7

and 8, respectively, for radio frequency identification systems.

1.4 Radio Frequency Identification Systems

Radio Frequency Identification (RFID) is a promising technology for automatic

identification of remote objects. A typical RFID system consists of three main

components, namely a reader, tags, and a backend database. A general overview of

an RFID system is provided in Figure 1.1.

• Readers: A reader is a transceiver, which queries to the tags through radio-

waves. Readers are as powerful as computers, and have enough capabilities

to perform cryptographic operations. A reader is connected to a backend

database by a secure wired/wireless channel.

• Tags or transponders: A tag is composed of a tiny integrated circuit for

storing and processing identification information, and a radio antenna for

wireless data transmission. There are three basic types of RFID tags, and

the computation capability of a tag depends on the type of tag.

– Active tags: An active tag contains internal batteries so that it can ini-

tialize communications with the reader and perform heavy computations.

5

– Semi-passive tags: Semi-passive tags use batteries only to power up their

circuit and harvest power from the reader for communication.

– Passive tags: A passive tag does not contain any battery, it solely ob-

tains power from the reader for both computation and communication.

Passive tags usually have constrained capabilities in every aspect of com-

putation, communication, and storage, due to the extremely low produc-

tion cost. The reading range of a passive tag is up to several meters.

• Backend database: A backend database is connected to a reader, and it effi-

ciently stores information about all the tags in the system, for example IDs,

secrecy keys of tags. The connection between the backend server and the

reader can be a wired or wireless connection.

Backend database

Reader

Tag population
connected

Figure 1.1: An RFID system

The EPC C1 Gen2 Tag Identification Protocol

The EPCglobal Class 1 Generation 2 (EPC C1 Gen2 in brief) standard has been

approved as an ISO 18000-6C standard in 2006 [29]. Figure 1.2 shows an overview

6

of the tag identification protocol. In the EPC C1 Gen2 tag identification protocol,

two main operations, namely inventory and access, are performed for managing the

tag population. In the inventory operation (Steps 1-4 in Figure 1.2), after receiv-

ing a request from the reader, a tag generates a 16-bit random number, denoted

by RN16, and temporarily stores the number in a slot counter. When the slot

counter is zero, the tag backscatters RN16 to the reader. Thereafter, the reader

copies RN16 to an acknowledgement packet to be sent to the tag. When the tag

receives the acknowledgement packet, it first compares the random number in the

acknowledgement packet with RN16. If these two numbers are the same, then the

tag backscatters the acknowledgement packet.

Reader Tag

Request/Query

RN16

ACK[RN16]

PC, EPC, CRC-16

Req_RN[RN16]

RN16’

Command[RN16’’]

⁞
Command[RN16’]

Req_RN[RN16’]

RN16’’

1

3

2

4

5

6

7

8

9

10

Figure 1.2: The EPC C1 Gen2 tag identification protocol

In the access operation (Steps 5-7 in Figure 1.2), after receiving a request,

denoted by ReqRN , from the reader, the tag compares the random number in the

request ReqRN with the stored RN16. If two random numbers match, the tag

generates another random number RN16′, which is called handle and backscatters

it to the reader. The reader then issues the commands such as Read, Write, and

BlockWrite. Steps 8-10 in Figure 1.2 demonstrate a further access operation. Note

that for each access operation the tag generates a new random number.

7

1.5 Overview and Main Contributions

We provide an overview and the main contributions of this thesis. The thesis is

divided into three parts. The first part includes Chapters 1,2 and 3 that provide an

introduction, a literature survey on the de Bruijn and span n sequences and ran-

dom number generators, and preliminaries to pseudorandom sequence and number

generators. The second part includes Chapters 4 and 5 that concentrate on the

generation of strong span n sequences and de Bruijn sequences, and the third part

contains Chapters 6, 7 and 8 that present the application of span n sequences in

designing lightweight pseudorandom number generators for the RFID tags.

• Chapter 1 starts by providing an introduction to cryptographic pseudoran-

dom sequence and number generators. This thesis concentrates on nonlinear

feedback shift register based pseudorandom sequence and number generators.

We give a brief overview of radio frequency identification systems. We also

provide the motivation and an outline of this thesis in this chapter.

• Chapter 2 presents a survey on the existing techniques for generating de

Bruijn sequences and span n sequences. The random number generator pro-

posals for the EPC C1 Gen2 RFID tags are presented as well.

• Chapter 3 describes and defines the mathematical concepts related to finite

fields, sequences and Boolean functions, which are fundamental mathematical

concepts behind designing and analyzing a pseudorandom sequence genera-

tor. We present the basic concepts related to feedback shift registers and

their sequence properties such as period, linear complexity. We recall the

cryptographic properties such as nonlinearity, algebraic immunity of Boolean

functions, which are also important in designing secure pseudorandom se-

quence/number generators.

• Chapter 4 focuses on the generation of span n sequences using nonlinear

feedback shift registers. The span n sequences are generated by the structured

search where in a nonlinear recurrence relation is composed of a permutation

and a trace function over a finite field, a decimation number and a t-tap

8

position when 5 ≤ t < n. We use several classes of feedback functions such as

WG transformations, 5-term functions, 3-term functions, monomial functions

with a Kasami exponent, and MCM functions in the structured search. We

present the number of span n sequences produced by the aforementioned

functions in an NLFSR for 6 ≤ n ≤ 20. We study the linear complexity

of new span n sequences, and our analysis shows that the linear complexity

of a span n sequence lies between (2n − 2 − 3n) (near-optimal) and optimal

(2n − 2). Moreover, we summarize the upper and lower bounds of span n

sequences for each class of feedback functions. Our empirical comparison

shows that a span n sequence with optimal or near-optimal linear complexity

can be found by the structured search with a better probability of success

than that of a random span n sequence generation method.

• Chapter 5 investigates how to generate a strong de Bruijn sequence from

a span n sequence by the composited construction. We first refine the com-

posited construction by Lempel and Mykkeltveit et al. for generating long

de Bruijn sequences by nonlinear feedback shift registers. In the compos-

ited construction, an (n + k)-stage NLFSR is constructed from an n-stage

NLFSR by repeatedly applying the composition operation. A de Bruijn se-

quence produced by the composited construction is called a composited de

Bruijn sequence. The linear complexity of a composited de Bruijn sequence is

determined. We perform a cryptanalysis of the composited construction for

generating strong de Bruijn sequences. In the analysis, we first consider an ap-

proximation of the feedback function of an (n+ k)-stage composited NLFSR.

Then, we determine the cycle structure of an approximated feedback function

and the linear complexity of a sequence produced by an approximated feed-

back function. Our analysis shows that a de Bruijn sequence produced by the

composited construction can be strong if the span n sequence produced by

the n-stage NLFSR is strong. We present a few instances of cryptographically

strong de Bruijn sequences with periods in the range of 235 and 240, whose

feedback functions are known. Finally, we consider the implementation issues

of a feedback function of an (n+ 16)-stage NLFSR.

9

• Chapter 6 proposes Warbler family – a new lightweight pseudorandom num-

ber generator family with desirable randomness properties. Warbler family

is composed of two building blocks, namely a combination of modified de

Bruijn blocks and a nonlinear feedback WG generator. The combination of

modified de Bruijn blocks is built by a number of primitive NLFSRs, and

the nonlinear feedback WG generator is composed of an NLFSR and a WG

transformation module over a finite field. We derive the randomness proper-

ties of sequences generated by the combination of modified de Bruijn blocks,

followed by a description of the initialization and running phases of the War-

bler family. Randomness properties such as period and linear complexity of

output sequences produced by the Warbler family are inherited from the com-

bination of modified de Bruijn blocks. Some parameter selection criteria for

the Warbler family are proposed. Two instances of the Warbler family are

presented in the next two chapters for RFID tags.

• Chapter 7 presents a new instance, Warbler-I, of the Warbler family for

the EPC C1 Gen2 RFID tags. Warbler-I is a nonlinear feedback shift regis-

ter based pseudorandom number generator, and can generate 16-bit random

numbers for the tag identification protocol of the EPC C1 Gen2 standard.

Warbler-I, uses WG-5 transformations, is composed of two building blocks.

The first one contains two primitive NLFSRs of lengths 17 and 18, and the

second building block contains an NLFSR of length 6 over F25 . We conduct

a security analysis of Warbler-I in two steps. First, we perform the crypto-

graphic statistical tests proposed by the EPC C1 Gen2 standard and the NIST

standard. Then, we perform a cryptanalysis against Warbler-I by considering

algebraic attacks, cube attacks, time-memory-data tradeoff attacks in great

detail. Furthermore, a hardware implementation on a Xilinx Spartan-3 FPGA

device shows that the new PRNG can be implemented using 46 slices.

• Chapter 8 proposes another instance, Warbler-II, of the Warbler family, which

is designed to offer a better security level. We give a detailed mathematical

description of the design of Warbler-II, which also uses WG-5 transformations

10

in both building blocks. The combination of modified de Bruijn blocks of

Warbler-II contains three primitive NLFSRs of lengths 19, 21 and 22. The se-

curity analysis of Warbler-II is conducted in a similar way to that of Warbler-I,

which is twofold. In the first step, we performed the statistical tests proposed

by the EPC C1 Gen2 standard and the NIST standard. In the second step, we

investigate the attack resistance properties of Warbler-II by considering alge-

braic attacks, cube attacks, time-memory-data tradeoff attacks, Mihaljević et

al.’s attacks, and weak internal state and fault injection attacks. A hardware

implementation in VHDL for the low-cost Spartan-3 XC3S50 FPGA device

shows that Warbler-II can be implemented using about 58 slices. Warbler-II

can be used as a random number generator in the EPC C1 Gen2 standard

tag identification protocol and RFID authentication protocols.

• Chapter 9 summarizes the key contributions of this thesis, and presents

future research directions related to the research.

11

Chapter 2

Literature Review

This chapter presents the existing methods for the generation of span n sequences

and de Bruijn sequences, and the random number generators for the EPC C1 Gen2

passive RFID tags. A one-to-one correspondence exists between a de Bruijn se-

quence and a span n sequence or modified de Bruijn sequence: A span n sequence

can be obtained from a de Bruijn sequence by removing one zero from the run of

zeros of length n, and likewise, a de Bruijn sequence can be obtained from a span

n sequence by adding one zero to the run of zeros of length n − 1. We refer the

reader to Chapter 3 for the explanation of the technical terms used in this chapter.

2.1 Existing de Bruijn Sequence Generation Meth-

ods

Construction of a de Bruijn sequence is a mathematical problem and it is widely

investigated in the literature. Several authors studied the problem from graph

theoretic, algorithmic, and feedback shift register points of view. The FSR-based

de Bruijn sequence generation technique is the simplest one among them from an

implementation point of view. Plenty of publications in the literature have been

discussed various techniques about producing de Bruijn sequences, e.g., [2, 15, 17,

32–39, 53, 59, 67, 81, 83, 91, 92, 107, 111]. There are two main challenges for the

13

production of de Bruijn sequences: One challenge is to produce plenty of de Bruijn

sequences of the same period using different recurrence relations, another one aims

to produce long de Bruijn sequences that can have many practical applications in

cryptography to design stream ciphers and PRSGs. Most of the existing techniques

are concerned about the production of different de Bruijn sequences of the same

period, and that are not efficient for generating long period de Bruijn sequences

[2, 15, 32, 36, 53, 59, 111]. A few recent publications consider the production of long

period de Bruijn sequences using NLFSRs by the exhaustive search [27, 99]. The

problem of generating a de Bruijn sequence efficiently for large values of n still

needs to be investigated for the practical applications of de Bruijn sequences. In

this thesis, we concentrate on the generation of long de Bruijn sequences.

2.1.1 D-homomorphism Based de Bruijn Sequence Con-

struction

In 1970, Lempel [67] introduced the idea of D-morphic image and preimages of a

binary sequence. As an application of D-morphic preimages, Lempel presented a

construction of producing a de Bruijn sequence of period 2n+1 from a de Bruijn

sequence of period 2n by first computing D-morphic preimages of the de Bruijn

sequence of period 2n and then concatenating two preimages at a conjugate pair.

The conception of the composition of two feedback functions f and g was sug-

gested by Green and Dimond [50] in 1970 and independently by Mykkeltveit in

1976 [90]. Later on, in 1979, Mykkeltveit et al. [92] studied the cycle structures

of f composed with g and g composed with f , and presented the construction of

Lempel [67] in the form of a composited recurrence relation of a de Bruijn sequence.

Annexstein [2] proposed a recursive algorithm based on the above ideas of Lem-

pel for generating a long de Bruijn sequence. In the algorithm, a long de Bruijn

sequence is obtained by repeatedly computing preimages of (lower order) de Bruijn

sequences and concatenating at the conjugate pair. This algorithm is not efficient

for producing a long de Bruijn sequence of period 2n, say n = 40. Chang et al. [17]

proposed another algorithm based on Lempel’s D-homomorphism for producing a

14

long de Bruijn sequence from a short de Bruijn sequence.

Games [39] proposed a generalized construction of de Bruijn sequences in which

a de Bruijn sequence of period 2n+1 is constructed from two different de Bruijn

sequences of period 2n. In the construction, two D-morphic preimages p0 and p1 of

a de Bruijn sequence r of period 2n and D-morphic preimages q0 and q1 of another

de Bruijn sequence s of period 2n are obtained. Then a de Bruijn sequence of

period 2n+1 is constructed from either p0 and q1 or p1 and q0 by concatenating

preimages p0 and q1 or p1 and q0 at a conjugate pair. This can be regarded as

Lempel’s idea of concatenating at the conjugate pair. Games also introduced the

notion of reverse-complementary de Bruijn sequences, and a reverse-complementary

de Bruijn sequence can be constructed using r and s where s is a reverse de Bruijn

sequence of de Bruijn sequence r with the images of D-morphic preimages of s and

r are the same.

Mandal and Gong [71] recently analyzed the composited de Bruijn sequences

produced by the composited construction by exploiting the higher order D-morphic

preimages of binary sequences. Moreover, a new iterative technique with its parallel

extension for evaluating the feedback function of the composited construction is

proposed. The D-morphic analysis and the efficient iterative technique are not

included in this thesis.

2.1.2 Cycle Joining Algorithms for de Bruijn Sequences

Jansen et al. [59] presented an algorithm based on the principle of joining cycles for

generating de Bruijn sequences using feedback shift registers. The feedback function

g = (f + q) of a de Bruijn sequence is composed of two function modules, one is

a feedback function f , and another function q is constructed using the feedback

function f . They showed that O(2
2n

log(2n)) de Bruijn sequences of period 2n can be

produced by considering the feedback functions for all irreducible polynomials in

a feedback shift register. The storage requirement for the implementation of the

cycle joining method is 3n bits, and 4n shifts are required to generate one bit of a

de Bruijn sequence.

Yang and Dai [111] proposed a construction of an m-ary de Bruijn sequence

15

based on joining the cycles using modification sets of a feedback function f . In the

construction, a nonlinear feedback function F of a de Bruijn sequence is constructed

from the feedback function f using the modification sets of f . This method is not

efficient for large values of n, since the method requires the cycles decomposition

of f to construct the function F , and for a large n, it is very hard to obtain the

cycle decomposition of f . Moreover, the feedback function would contain many

product terms for joining of the cycles. The aim of the authors is to construct a

number of feedback functions that can generate de Bruijn sequences. They showed

that at least 2(m
n

n
−mn) feedback functions that generate de Bruijn sequences can be

constructed by choosing f = x0.

Hauge and Helleseth [53] proposed a technique based on an irreducible polyno-

mial and its adjacency graph to generate de Bruijn sequences. In this technique,

a de Bruijn sequence is obtained as maximum spanning trees from the adjacency

graph of a feedback function corresponding to an irreducible polynomial. The lower

bound for the number of de Bruijn sequences is determined in terms of the cyclo-

tomic numbers.

2.1.3 Algorithmic Approach for the de Bruijn Sequence

Generation

Fredricksen and Kessler [37] developed a technique based on lexicographic com-

positions for constructing de Bruijn sequences. In [38], Fredricksen and Maiorana

presented an algorithm for generating necklaces of length n in k colors, and a k-ary

de Bruijn sequence of period kn is produced by juxtaposing in order the periodic

reductions of the necklaces.

Fredricksen [35] proposed an algorithm for generating nonlinear de Bruijn se-

quences, and the algorithm requires 3n units of storage and outputs one bit in

around n units of time. Fredricksen also showed that a new de Bruijn sequence

can be obtained from a de Bruijn sequence by the method of cross-joining. More-

over, Fredricksen demonstrated that a set of new 22n−5 de Bruijn sequences can

be obtained from a de Bruijn sequence by the cross-joining pairs. The storage re-

16

quirement for the implementation of the cross-join method is about 6n units. A

detailed summary of many other de Bruijn sequence generation techniques can be

found in [36].

Etzion and Lempel [32] presented a construction of de Bruijn sequences, where

the linear complexity of a de Bruijn sequence can attain the lower bound (2n−1 +n)

for all n ≥ 3.

A nonsingular feedback shift register f(x0, x1, ..., xn−1) = x0+g(x1, ..., xn−1) can

be used to generate de Bruijn sequences. Fredricksen [36] first characterized the

feedback functions of de Bruijn sequences by the Hamming weight of function g.

In [81], Mayhew presented the distribution of the feedback functions of de Bruijn

sequences for the odd weights of g for 4 ≤ n ≤ 6 and n = 7 (partial results).

2.1.4 Linear Span Based de Bruijn Sequence Construction

Chan et al. [14] first proved the linear complexity of a de Bruijn sequence of period

2n lies in the range of (2n−1 + n) and (2n − 1). Etzion and Lempel [32] showed a

construction of de Bruijn sequences that can attain the minimal linear complexity

value (2n−1+n). Games [39] presented a special construction of a de Bruijn sequence

of period 2n+1 with maximum linear complexity 2n+1−1 from a de Bruijn sequence

of period 2n with maximum linear complexity. A summary on the linear complexity

of de Bruijn sequences can be found in [31].

2.2 Span n Sequence Generation by the Exhaus-

tive Search Method

We provide a review on the existing techniques for the generation of span n se-

quences using nonlinear feedback shift registers. Golomb [44] introduced the term

span n sequence for a sequence of period 2n − 1 in which every nonzero binary

n-tuple occurs exactly once in a period. A span n sequence is also known as a

modified de Bruijn sequence. Mayhew and Golomb first studied the characteristic

of span n sequences produced by NLFSRs and their feedback functions [80,82].

17

2.2.1 Exhaustive Search for Small Span n Sequences

Mayhew and Golomb [80] presented the upper and lower bounds on the linear span

of a span n sequence, and showed the (LFSR) characteristic polynomial of a span n

sequence is a product of irreducible polynomials of degree between 1 and n. They

categorized the number of span n sequences for different values of the linear span

for 4 ≤ n ≤ 6, where the span n sequences are found by computer simulations.

The experimental result shows that the linear span of a span n sequence generated

by an NLFSR lies in the range of 3n and 2n − 2. In [82], they characterized the

nonlinear feedback functions, and presented the recurrence relation for a reverse

span n sequence when the recurrence relation of the span n sequence is known.

Mayhew and Golomb also classified the number of span n sequences according to

the number of monomials in a feedback function for the same values of n.

2.2.2 Span n Sequence Generation Using Quadratic Feed-

back Function

Chan et al. [16] considered the quadratic feedback functions to generate span n

sequences. The quadratic functions are of two types: 1) a function in 4-variable

has only three terms, two linear terms and one term of degree 2, 2) a function

in 2-variable has only two terms, one linear term and one quadratic term. They

reported the number of span n sequences for 4 ≤ n ≤ 7.

Dubrova [27] presented a few span n sequences of period 2n − 1, for 4 ≤ n ≤
24. All span n sequences are generated by nonlinear feedback functions with few

linear terms and one or two quadratic terms. Note that all the techniques use

an exhaustive search to verify whether the feedback function generates a span n

sequence.

2.2.3 Span n Sequence Generation Using Cubic and Quar-

tic Feedback Functions

Gammel et al. [41] proposed stream cipher Achterban:128/80 based on nonlinear

feedback shift registers where each NLFSR generates a span n sequence. They

18

presented thirteen NLFSRs for span n sequences of periods in the range of 221 − 1

and 233− 1, and the feedback functions for the NLFSRs contain only few monomi-

als. Another two variants of Achterban contains eight and ten NLFSRs that also

generate span n sequences of periods in the range of (221− 1) and (232− 1) [40,42].

Some recent studies on the generation of span n sequences can be found in

[27, 99]. Rachwalik et al. presented seven span n sequences of periods (225 − 1)

and (227 − 1) in [99]. The feedback functions of the NLFSRs contains few terms,

and that are of degree three and four. These NLFSRs were found by an exhaustive

search using an FPGA implementation.

2.2.4 General Studies on Span n Sequences

The period of a sequence produced by an NLFSR trace generator is investigated

by Ng in [95] where a nonlinear feedback function of the NLFSR trace generator

is the sum of a linear term and a trace function in (n− 1) variables with different

decimations. The NLFSR trace generator can generate a span n sequence for a

proper combination of a decimation number and a basis of the finite field where

the trace function is defined. The number of span n sequences produced by the

NLFSR trace generator is reported for n = 7, 8, 9 and 10 in [95].

Gong [48] studied the randomness properties of span n sequences where a span

n sequence is viewed as an output of a filtering generator composed of an LFSR

and a filtering function. It is well-know that m-sequences are a class of span n

sequences generated by LFSRs. A de Bruijn sequence can also be constructed from

an m-sequence using their one-to-one correspondence. When a de Bruijn sequence

is constructed from an m-sequence, the linear complexity of the de Bruijn sequence

is at least (2n−1 + n) [14]. An attacker can remove one zero from the run of zeros

of length n of the de Bruijn sequence, then it again becomes an m-sequence with

linear complexity n. The linear complexity of the sequences fluctuates drastically.

Gong suggested to study the randomness properties of span n sequences instead of

de Bruijn sequences for cryptographic applications.

19

2.3 RNG for the EPC C1 Gen2 Standard

Over the last few years, a number of random number generators have been proposed

for the EPC C1 Gen2 passive RFID tags [4,18,57,64,85,97,109]. A random number

generator (RNG) is the only component in an RFID tag for providing security func-

tionalities. Random number generators can be classified into two categories, namely

true random number generators (TRNGs) and pseudorandom number generators

(PRNGs). True random number generators are implemented by relying on a physi-

cal process/phenomenon, and some instances of TRNG can be found in [4,57,109].

Pseudorandom number generators, on the other hand, are designed using complex

nonlinear mathematical relations [64,97]. Other than these two types of proposals,

another type of proposal can be found in the literature, and that is composed of a

true random number generator and a pseudorandom number generator [18,85].

2.3.1 TRNG Based RNG Proposals

Che et al. [18] designed a PRNG based on a combination of an oscillator-based

TRNG and a linear feedback shift register with 16 stages. Randomness in a 16-bit

number is introduced by adding one true random bit to each bit of the 16-bit random

number. In 16 clock cycles, a 16-bit random number is generated by the PRNG.

Due to the linear structure, Che et al.’s scheme has been attacked by Melia-Segui

et al. in [85] with high success probability.

Melia-Segui et al. [85] proposed a PRNG based on multiple primitive polyno-

mials in an LFSR in order to avoid the linear structure. The PRNG module is

comprised of an LFSR of 16 stages with eight primitive polynomials and a TRNG

where a primitive polynomial is chosen according the TRNG in a clock cycle. A

hardware implementation of the PRNG requires 761 gate equivalents (GE) where

the cost of the TRNG is not included, and a 16-bit random number is produced

within 16 clock cycles. Melia-Segui et al. [86] recently proposed J3Gen, which con-

tains four PRNGs based on the same design principle. The lengths of the internal

states of four LFSRs in the PRNGs are 16, 24, 32, 64, and each LFSR contains

either 8, 16 or 32 primitive polynomials.

20

2.3.2 Pseudorandom Number Generator Proposals

Peris-Lopez et al. [97] proposed a PRNG named LAMED for RFID tags, which can

provide 32-bit random numbers as well as 16-bit random numbers. The internal

state of LAMED is of 64 bits, and the operations involved to update the internal

states are bitwise XOR operations, modular algebra, and bit rotations. A compact

hardware implementation of LAMED requires 1, 585 GE and LAMED can produce

random numbers each 1.8 ms.

Mart́ın et al. [78] proposed two pseudorandom number generators, named AKARI-

1/2 based on T -function, introduced by Klimov and Shamir in [64]. The internal

state of AKARI-1/2 is of m bits, m = 2i, 3 ≤ i ≤ 9 and the operations used

to update the internal state are modular addition, multiplication, shift operation,

bitwise AND and OR. For AKARI-1 and AKARI-2, an m/2-bit random number is

obtained by taking lower-half from the m-bit internal state after applying 64-round

and 50-round of a state update schedule, respectively. They presented the hardware

implementation of both AKARI-1/2 in [78].

2.4 Summary of Chapter 2

In this chapter, we reviewed the existing methods for generating de Bruijn sequences

and span n sequences. Current method for verifying the span n property of a binary

sequence of period (2n−1) is the exhaustive search method whose time complexity is

exponential in n. Most proposed techniques for generating de Bruijn sequences are

not efficient for a large value of n. The pseudorandom number generator proposals

for the EPC Class 1 Gen2 RFID tags are presented.

21

Chapter 3

Preliminaries

In this chapter, we recall the mathematical concepts related to finite fields, se-

quences, and Boolean functions that we use to design and describe pseudorandom

sequence and number generators. The theory of finite fields and feedback shift

registers presented here can be found in [43,45,68].

3.1 Finite Fields

We denote by F2 = {0, 1} the Galois field with two elements. Let F2t (t ≥ 2) be

an extension field or a finite finite with 2t elements, which is defined by a defining

element α where α is a root of an irreducible polynomial.

A polynomial f(x) of degree t over F2 is called a primitive polynomial if f(x)|(x2t−1+
1) but f(x) - (xr +1) when r < 2t−1, and the order of f(x) is 2t−1. For a positive

t, the number of primitive polynomials of degree t is equal to φ(2t−1)
t

, where φ(·) is

Euler’s phi function. We always define the finite field F2t by a primitive polynomial

over F2. It is well-known that F2t is isomorphic with Ft2 = {(x0, x1, · · · , xt−1) :

xi ∈ F2}, a vector space with 2t elements over F2.

Definition 1 Let α be a defining element of F2t, which is a root of an irreducible

polynomial p(x), i.e., p(α) = 0, where p(x) is irreducible of degree t over F2. Then,

the polynomial basis of F2t is given by α = {1, α, α2, ..., αt−1}.

23

According to the polynomial basis α, the field F2t is represented by

F2t = {c0 + c1α + · · ·+ ct−1α
t−1 : ci ∈ F2}.

In this thesis, we always take α to be a root of a primitive polynomial p(x) over

F2, and the polynomial basis α is used to represent the elements of F2t .

Definition 2 The cyclotomic coset of s modulo (2t−1) is defined as Cs = {s, 2s, ..., 2j−1s}
where j is the smallest number such that s ≡ 2js mod 2t− 1. The smallest element

in Cs is called the coset leader of Cs.

We define a set Dt that contains the coset leaders as

Dt = {d : gcd(d, 2t − 1) = 1, d is a coset leader}

where gcd(a, b) is the greatest common divisor of a and b. Then the size of Dt,

denoted by |Dt|, is equal to = φ(2t−1)
t

.

Definition 3 The trace function Tr : F2t → F2 is defined by

Tr(x) = x+ x2 + x2
2

+ · · ·+ x2
t−1

, x ∈ F2t .

3.2 Feedback Shift Register Sequences

This section presents the fundamental concepts related to feedback shift register

sequences.

3.2.1 Basic Definitions and Properties of NLFSRs

A binary sequence {ai}i≥0 can be generated by an n-stage feedback shift register

whose recurrence relation is defined as [43]

an+k = f(ak, ak+1, · · · , an+k−1), ai ∈ F2, k ≥ 0 (3.1)

24

where (a0, a1, · · · , an−1) is called an initial state and Sk = (ak, ak+1, · · · , an+k−1) is

called the k-th state of the shift register. An n-stage feedback shift register is also

called a feedback shift register of length n. The sequence {ai}i≥0 is called a linear

feedback shift register (LFSR) sequence if the function f is linear and is of the form

f(x0, x1, · · ·, xn−1) = c+ c0x0 + c1x1 + · · ·+ cn−1xn−1, c, ci ∈ F2.

Otherwise, it is called a nonlinear feedback shift register (NLFSR) sequence.

Definition 4 The sequence {a0, a1, · · · , aT−1, · · · } is called periodic with period T

if ai = ai+T , i ≥ 0.

For generating a periodic sequence, a feedback function must have the form

given in the following theorem.

Theorem 3.2.1 [43] Let a = {ai} be a binary sequence generated by the recurrence

relation an+i = f(ai, ai+1, · · · , ai+n−1). Then the sequence a is periodic if and only

if f is written as

f(ai, ai+1, · · ·, ai+n−1) = ai + g1(ai+1, · · · , ai+n−1) (3.2)

where g1 is a Boolean function in (n− 1) variables.

A recurrence relation of the above form is called a nonsingular recurrence rela-

tion. Denoting the left shift operator by L. For a periodic sequence a = {ai}i≥0 with

period T , the k-th shift of sequence a is defined as Lk(a) = {ak, ak+1, ..., aT−1, a0, ...,

ak−1} and the sequence Lk(a) is called the k-th shifted sequence of a.

Definition 5 A binary sequence with period 2n − 1 generated by an n-stage linear

feedback shift register is called an m-sequence.

Assume that α is a primitive element of F2n , then an m-sequence {ai} of period

(2n − 1) can be written as ai = Tr(αi), i = 0, 1, ..., 2n − 2.

Let a = {ai} and b = {bi} be two periodic binary sequences with period T1

and T2, respectively. Then the crosscorrelation between a and b over F2 is defined

25

as [45]

Ca,b(τ) =
T∑
i=0

(−1)ai+τ+bi , τ = 0, 1, ...,

where T is the least common multiple of T1 and T2. If b = a, then Ca,a(τ) is called

autocorrelation of a [45].

Definition 6 The linear span or linear complexity of a sequence is the length of

the shortest LFSR that generates the entire sequence.

Linear complexity is an important property of a sequence and that measures

the unpredictability of a sequence. For a sequence to be useful in cryptographic

applications, the sequence must have a large linear complexity. Note that an m-

sequence has good randomness properties: period (2n − 1), balance, ideal run dis-

tribution, k-tuple distribution and ideal 2-level autocorrelation. But, it has the

least linear complexity n, i.e., if only any 2n consecutive bits are known from

the entire sequence, then it is possible to determine the characteristic polynomial

uniquely by the Berlekamp-Massey algorithm [79], thereby the entire sequence can

be reconstructed. On the other hand, a random sequence has linear complexity

approximately half the length of the sequence [102].

3.2.2 Golomb’s Randomness Postulates

For a periodic binary sequence {ai} with period T , the randomness of the binary

sequence can be measured by the following properties [43,45]:

1. In a period, the difference between the number of zeros and the number of

ones is almost equal, i.e., |
∑T−1

i=0 (−1)ai | ≤ 1.

2. In a period, half the runs have length 1, one fourth have length 2, 1
2k

runs

have length k, and so on.

3. The autocorrelation of the sequence is two valued and defined by

C(λ) =

{
N if λ ≡ 0 mod T

K if λ 6≡ 0 mod T

26

for odd T , K = −1 and even T , K = 0.

These three properties are known as Golomb’s randomness postulates.

3.2.3 Relationship Between de Bruijn Sequences and Span

n Sequences

Definition 7 A binary sequence of period 2n is called a de Bruijn sequence if all

binary n-tuples occur exactly once in a period.

Example 1 For n = 4, the feedback function f(x0, x1, x2, x3) = 1+x0+x1+x1x2+

x1x3 + x1x2x3 in recurrence relation 3.1 generates the following de Bruijn sequence

of period 24 = 16. The de Bruijn sequence is {1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0}.

Definition 8 A binary sequence of period 2n − 1 is called a span n sequence or

modified de Bruijn sequence if every nonzero n-tuple occurs exactly once in a period.

Example 2 For n = 4, the feedback function f(x0, x1, x2, x3) = x0 +x2 +x3 +x2x3

in recurrence relation 3.1 generates a span n sequence of period (24− 1) = 15. The

span n sequence is {1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0}.

Definition 9 A feedback function of an n-stage FSR that generates a span n se-

quence of period 2n − 1 is called a primitive feedback function.

Definition 10 A nonlinear feedback function of an n-stage NLFSR that generates

a span n sequence of period 2n − 1 is called a primitive feedback function, and the

NLFSR is called a primitive NLFSR.

We remember that the “span n” property and “linear span” property are two

different properties of a sequence. The span n property of a sequence is referred to

as when all nonzero n-tuples occur exactly once in a period of the sequence, and

the linear span or linear complexity of a sequence is the measure of unpredictability.

A one-to-one correspondence between a de Bruijn sequence and a span n se-

quence is provided in the following theorem.

27

Proposition 3.2.2 [43] Let f be a feedback function in n variables that generates

a span n sequence, then the function h = f +
n−1∏
i=1

(xi + 1) generates a de Bruijn

sequence.

An m-sequence generated by an LFSR is a span n sequence, but a span n se-

quence generated by an NLFSR is not an m-sequence. It has been conjectured that

only m-sequences have 2-level autocorrelation [44]. The truth of the conjecture

signifies that a span n sequence generated by an NLFSR cannot have 2-level auto-

correlation. Nonlinearly generated de Bruijn and span n sequences have excellent

randomness properties. A binary span n sequence generated by an NLFSR has the

randomness properties: long period 2n − 1, balance, and n-tuple distribution. A

span n sequence may also have high linear span [44,80].

Definition 11 The minimal polynomial of a sequence a is defined by the charac-

teristic polynomial of the LFSR of shortest length that can generate the sequence,

and the degree of the minimal polynomial determines the linear complexity of the

sequence a.

Property 1 The linear span of a de Bruijn sequence, denoted as LSdb, is bounded

by [14]

2n−1 + n ≤ LSdb ≤ 2n − 1. (3.3)

On the other hand, the linear span of a span n sequence, denoted as LSs, is bounded

by [80]

2n < LSs ≤ 2n − 2. (3.4)

From this property, we say that a span n sequence has the optimal or near-

optimal linear span if its linear span is equal to 2n− 2 or close to 2n− 2. Similarly,

we call a de Bruijn sequence has the optimal or near-optimal linear span if its linear

span is equal to 2n − 1 or close to 2n − 1.

Definition 12 Two sequences are called shift distinct of each other if one sequence

can not be obtained from the shifted version of another.

28

For an LFSR sequence produced by a feedback function f(x0, x1, ..., xn−1) =∑n−1
i=0 cixi, the periodicity of the sequence can be determined by calculating the

period of the polynomial p(x) = c0 + c1x + · · · + cn−1x
n−1 + xn over the field

F2. When the feedback function f is nonlinear, determining the periodicity of a

sequence produced by f is an unsolved problem.

3.2.4 Unsolved Problems on Synthesis of NLFSRs

Due to the existence of polynomial time algorithms, determining the period of a

univariate polynomial is possible in polynomial time. As a result, the period of an

LFSR sequence can be determined certainly. For a nonlinear feedback function,

there is no polynomial time algorithm for checking the primitivity of a nonlinear

feedback function. The exhaustive search is the only method for checking the

primitivity of an NLFSR, and its time complexity is exponential in the length of

the NLFSR. Therefore, determining the period of an NLFSR sequence is infeasible

for a long length of the NLFSR in real time. Most of the known results on the

synthesis of NLFSRs are collected in Golomb’s book [43]. Following problems are

still open since last five decades for a nonlinear feedback function in the theory of

NLFSRs.

1. There is no known general construction of an NLFSR that can generate a

span n sequence or a de Bruijn sequence.

2. For a given positive integer P , no construction of a feedback function that

can generate sequences with periods bounded below by P is known.

3. There is no algorithm other than the exhaustive search for checking the prim-

itivity of a nonlinear feedback function of an NLFSR.

3.2.5 D-homomorphisms and Compositions of NLFSRs

This section presents the notion of D-homomorphism of binary sequences and the

composition of feedback functions of NLFSRs, which will be used in Chapter 5.

29

The D-morphisms of Binary Sequences

In 1970, the idea of the D-homomorphism (D-morphism in brief) and its inverse of a

binary sequence was first introduced by Lempel in [67]. As an application, Lempel

showed that the preimages of a de Bruijn sequence of period 2n can be used to

construct another de Bruijn sequence of period 2n+1. Let a = (a0, a1, a2, ..., aN−1)

be a binary sequence of length N(≥ 1). The first order D-morphic image of a is

defined as [67]

D(a) = (a0 + a1, a1 + a2, a2 + a3, ..., aN−2 + aN−1).

The D-morphic preimages of a binary sequence a are given by [67]

z = (zi) = (0, a0, a0 + a1, a0 + a1 + a2, ...,
N−1∑
i=0

ai) and z̄ = (z̄i), z̄i = zi + 1.

Cycle Decomposition of NLFSRs

A nonsingular recurrence relation with an initial state generates a sequence of

states and ends with the initial state. The sequence of states is called a cycle

[43]. A nonsingular feedback shift register with a feedback function f partitions

the space of 2n binary n-tuples into a finite number of cycles, which is known as

the cycle decomposition or cycle structure of f , and we denote by Ω(f) the cycle

decomposition of f [43]. Each cycle in Ω(f) is nothing but a periodic sequence.

The nonsingular recurrence relation generates the same cycle for any n-tuple of the

cycle, and it generates a different cycle when an n-tuple initial state is not in that

cycle. For the details of the cycle decomposition, see [43]. For an arbitrary feedback

function, the method other than the exhaustive search of determining the number

of cycles produced by the feedback function is unknown in general.

In particular, the cycle decomposition of a feedback function that generates

a span n sequence contains only two sequences, namely a span n sequence and

the zero sequence. Similarly, the cycle decomposition of a feedback function that

generates a de Bruijn sequence contains only one sequence, the de Bruijn sequence.

30

Composition of Recurrence Relations

Let g(x0, x1, ..., xn−1, xn) = x0+G(x1, x2, ..., xn−1)+xn = 0 and f(x0, x1, ..., xm−1, xm) =

x0 + F (x1, x2, ..., xm−1) + xm = 0 be two recurrence relations of n and m stages,

respectively that generate periodic sequences, where G and F are Boolean func-

tions in (n − 1) and (m − 1) variables, respectively. Then, a composite recurrence

relation, denoted as g ◦ f , is defined by [92]

g ◦ f = g(f(x0, ..., xm), f(x1, ..., xm+1), ..., f(xn, ..., xm+n−1)) = 0,

which is a recurrence relation of (n+m) stages. The operation “◦” is regarded as

the composition operation of recurrence relations. Note that g ◦ f and f ◦ g are not

the same in general for nonlinear feedback functions. For any feedback function

f , the cycle decomposition of g is a subset of the cycle decomposition of g ◦ f .

For more detailed treatments on the cycle decomposition of a composite recurrence

relation, see [92].

In 1979, Mykkeltveit et al. [92] presented the construction of Lempel [67] for

producing a de Bruijn sequence of period 2n+1 from a de Bruijn sequence of period

2n in terms of the composition of recurrence relation.

Lemma 3.2.3 [92] Let p be a characteristic polynomial, and q(x0, ..., xn) = x0 +

xn + w(x1, ..., xn−1) where w is a Boolean function in (n − 1) variables and let

a ∈ Ω(q) and x ∈ Ω(q ◦ p). If the minimal polynomial of a is coprime with p, then

x = b + c where b’s minimal polynomial is the same as the minimal polynomial of

a and c’s minimal polynomial is p.

Theorem 3.2.4 [92] Let g = x0 + xn + f(x1, ..., xn−1), which generates a de

Bruijn sequence with period 2n and let ψ(x0, x1) = x0 + x1. Then both h1 = g ◦ψ+∏
i∈Zno

xi
∏
i∈Zne

(xi+1) and h2 = g◦ψ+
∏
i∈Zno

(xi+1)
∏
i∈Zne

xi generate de Bruijn sequences

with period 2n+1.

We denote by ei = (1, 1, 0, 1, 0, ..., 1, 0) ∈ F2i and êi = (0, 1, 0, 1, 0, ..., 1, 0) ∈ F2i

the conjugate pair for an i-stage NLFSR.

31

3.3 Boolean Functions

In this section, we define some definitions which are used to characterize a Boolean

function in cryptography. The concepts related to Boolean functions presented here

can be found in [23].

3.3.1 Nonlinearity of Boolean Functions and Vector Boolean

Functions

Let f(x0, ..., xn−1) be a Boolean function in n variables. A Boolean function f is

called balanced if the truth table of f contains equal number of 0’s and 1’s.

Definition 13 The algebraic normal form of a Boolean function f in n variables

is defined as

f(x0, x1, ..., xn−1) = a0 +
n−1∑
i=0

aixi +
∑

0≤i<j≤n−1

ai,jxixj + · · ·+ ai1,i2,...,in−1xi1xi2 ...xin−1

where a0, a1, ..., ai1,i2,...,in−1 ∈ F2 are called coefficients. The algebraic degree of

the Boolean function is defined as the number of variables in the highest nonzero

coefficient. A Boolean function of the form f(x0, x1, ..., xn−1) = a +
∑n−1

i=0 aixi is

called an affine or linear function.

Definition 14 The support of a Boolean function f , denoted as Supp(f), is de-

fined as the set of all inputs for which f(x) = 1, x ∈ F2n.

Definition 15 The Hamming weight of a Boolean function f , denoted as H(f), is

defined as the number of ones in the truth table of the function f . In other words,

the Hamming weight of f is the cardinality of Supp(f).

The Hadamard (or Walsh or Fourier) transform of f is defined by

f̂(w) =
∑
x∈Fn2

(−1)f(x)+w·x =
∑
x∈F2n

(−1)f(x)+Tr(wx)

32

where w = (w0, ..., wn−1) ∈ Fn2 and w · x =
∑n−1

i=0 wixi, the inner product of w and

x.

The distance between two binary vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1),

denoted by d(a,b), is defined as the number of disagreements of terms of a and b,

i.e.,

d(a,b) = |{i : ai 6= bi, 1 ≤ i < n }| or equivalently

d(a,b) = H(a + b)

where H(x) is the Hamming weight of x.

The nonlinearity of f , denoted as Nf , is defined by the minimum distance

between f and all affine functions. In other words,

Nf = min
w∈Fn2 ,c∈F2

d(f,w · x + c)

or equivalently

Nf = 2n−1 − 1

2
f̂max

where

f̂max = max
w∈Fn2

|f̂(w)|.

The nonlinearity of a Boolean function is an important cryptographic property and

it should be high enough to prevent having a linear approximation of the Boolean

function.

We say that F is an (n,m)-vectorial Boolean function or simply an (n,m)-

function if it is a function mapping from Fn2 to Fm2 . An (n,m)-function F can be

written as [13]

F (x0, · · · , xn−1) = (f0(x0, ..., xn−1), ..., fm−1(x0, ..., xn−1))

where fi’s are Boolean functions in n variables and known as component functions.

The nonlinearity of F , denoted as NF , is defined by [13]

NF = min
b∈F2m

Nb·F

33

where b · F is the inner product. Or equivalently,

NF = 2n−1 − 1

2
F̂max

where

F̂max = max
w∈Fn2 ,b∈Fm2

|b̂ · F (w)|.

Let F be an (n,m)-vectorial boolean function. For any a (6= 0) ∈ Fn2 ,b ∈ Fm2 ,

we call that F is differentially k-uniform [13] if the following equation has at most

k solutions in Fn2
F (x) + F (x + a) = b.

3.3.2 Resiliency and Propagation of Boolean Functions

Let f be a Boolean function in n variables. The additive autocorrelation of f is

defined as [45]

Af (a) =
∑
x∈F2n

(−1)f(x)+f(x+a), a ∈ F2n .

We say that f has k-order propagation if Af (a) = 0 for 1 ≤ H(a) ≤ k. A Boolean

function f is said to be k-order correlation immune if f̂(λ) = 0 for 1 ≤ H(λ) ≤ k

[105]. A balanced k-th correlation immune Boolean function is called k-resilient

Boolean function.

3.3.3 Algebraic Immunity of Boolean Functions

Let Bn be the set consisting of all Boolean functions in n variables. The algebraic

immunity of f , denoted by AI(f), is defined as

AI(f) = min
g∈Bm
{deg(g) | f · g = 0 or (f + 1) · g = 0}

where deg(g) is the algebraic degree of g and f · g is the product of two Boolean

functions f and g. For a Boolean function f in n variables, the maximum value of

the algebraic immunity is equal to dn
2
e [21].

34

3.4 Some Permutations and Functions over F2t

In this section, we review the definitions of WG transformations, five-term func-

tions, three-term functions, monomial functions with Kasami exponents, and MCM

functions over finite fields.

3.4.1 The Welch-Gong (WG) Transformation

Let t 6≡ 0 mod 3 and k be a positive integer such that 3k ≡ 1 mod t. We define the

function h : F2t → F2t as h(x) = x + xq1 + xq2 + xq3 + xq4 where qi’s are given by

q1 = 2k + 1, q2 = 22k + 2k + 1, q3 = 22k−2k + 1, q4 = 22k + 2k−1. Then, the function

from F2t to F2t defined by

WGP(x) = h(x+ 1) + 1

is called the WG permutation and h(x) is called the five-term permutation. We

define functions from F2t to F2 as

WG(x) = f(x) =Tr(WGP(x)) =
∑
i∈I

Tr(xi), x ∈ F2t

g(x) =Tr(h(x)), x ∈ F2t

where I = I1 ∪ I2 ∪ I3 ∪ I4, I1 = {2 k−1
2 + 2 + i : 0 ≤ i ≤ 2

k−1
2 − 2}, I2 =

{2 k+1
2 + 1 + 2(i + 2

k−1
2 (2j+1 − 1) + 2j − 1) : 0 ≤ j ≤ k−7

2
, 1 ≤ i ≤ 2j}, I3 =

{2 k+1
2 + 1 + 2(i+ 2

k−1
2 (2

k−3
2 − 1) + 2

k−5
2 − 1) : 1 ≤ i ≤ 2

k−5
2 } and I4 = {2 k+1

2 + 1 +

2(i+2
k−1
2 (2

k−1
2 −1)+2

k−3
2 −1) : 2 ≤ i ≤ 2

k−3
2 } when m mod 3 = 1, and I = I5∪ I6,

I5 = {22k−1+2k−1+2+j : 0 ≤ j ≤ 2k−1−3} and I6 = {22k+2·j+1 : 1 ≤ j ≤ 2k−1−1}
when m mod 3 = 2 [76]. Then f(x) is known as the WG transformation and g(x)

is the five-term (or 5-term) function [25, 47]. The WG transformation has good

cryptographic properties such as high algebraic degree, nonlinearity, linear span,

and at least 1-order resiliency. We widely use the Welch-Gong transformations in

this thesis in designing pseudorandom sequence and number generators.

35

3.4.2 Three-Term Function

Let t = 2k+1 and t ≥ 5. We denote the permutation by h(x) over the field F2t and

given by h(x) = x+ x2
k+1 + x2

k−1, which is known as three-term permutation [45].

Then the three-term (or 3-term) function from F2t to F2 is defined by

f(x) = Tr(h(x)), x ∈ F2t .

3.4.3 Monomial Function with Kasami Exponent

Let t be an odd positive integer. The Welch-Kasami exponent is defined as d =

22k − 2k + 1, where gcd(k, t) = 1. Then the function

h(x) = xd, x ∈ F2t

is a monomial permutation over F2t [25]. A monomial function with Kasami expo-

nent, from F2t to F2, is defined by

f(x) = Tr(h(x)), x ∈ F2t .

3.4.4 MCM Polynomial

Let m > 5 be an odd integer and k < m be odd with gcd(k,m) = 1. Then the

MCM polynomial, from F2m to F2m , is defined as [45]

fk(x) =
k−1∑
i=0

x(2
k+1)2i−2k

which is a permutation over F2m (Cohen and Matthews 1994). For a particular k,

Tr(fk(x
d)) is a class of functions mapping from F2m to F2 for different values of d

and different bases of the finite field F2m .

36

3.5 Summary of Chapter 3

This chapter presented some concepts related to finite fields, sequences, and compo-

sitions of feedback functions which will be used in the later chapters. We reviewed

some mathematical functions over finite fields that we use as feedback functions in

nonlinear feedback shift registers.

37

Chapter 4

Span n Sequence Generation by

the Structured Search

A binary span n sequence generated by an n-stage NLFSR is a sequence with

randomness properties: period 2n − 1, balance, and ideal n-tuple distribution. A

span n sequence may have a high linear span thereto. A span n sequence can

be converted to a de Bruijn sequence using their one-to-one correspondence, and

vice-versa. From a standpoint of linear complexity, a span n sequence with linear

complexity L (� 2n−1) can be converted to a de Bruijn sequence with linear com-

plexity varies between (2n−1 + n) and (2n − 1) by adding one zero to the run of

zeros of length n − 1. Likewise, one can remove any zero from the run of zeros of

length n from the de Bruijn sequence, then the sequence becomes the original span

n sequence with linear complexity L. For an m-sequence, the lower bound of the

linear complexity drops drastically from the linear complexity at least (2n−1 +n) to

L = n. This suggests to study the linear complexity of a span n sequence instead

of the linear complexity of a de Bruijn sequence for cryptographic applications.

This chapter studies the problem of generating span n sequences using nonlinear

feedback shift registers. We present the theoretical results on span n sequences in

Section 4.2 and computational results on finding the number of span n sequences in

Sections 4.3 - 4.4. The nonlinear recurrence relation for an NLFSR is composed of

three parameters, namely a decimation number, a primitive polynomial and a t-tap

39

position. Finding span n sequences using this recurrence relation is called a struc-

tured search. In the theoretical results, we show that a feedback shift register (FSR)

generates a maximum number of span n sequences when about half the length of

the FSR tap positions participate in the feedback function. We also determine an

approximate number of feedback functions used in the structured search. In the

computational results, we use Welch-Gong (WG) transformations, three-term func-

tions, five-term functions, monomial functions with Kasami exponent, and MCM

functions in an NLFSR, and present the number of span n sequences produced by

the structured search using the aforementioned functions for 6 ≤ n ≤ 20. The

success probability of obtaining a span n sequence in the structured search is em-

pirically compared with the success probability of obtaining a span n sequence in a

random generation method. In Section 4.5, we analyze the linear span or complex-

ity for each class of span n sequences, and the analysis shows the linear complexity

of a span n sequence lies in the range of (2n − 2− 3n) (near-optimal) and (2n − 2)

(optimal). Partial contents of this chapter can be found in [69].

4.1 Related Work and Motivation

Most of the research efforts devoted on the study of span n sequences have been

concerned about the number of span n sequences and the characteristics of non-

linear feedback functions [44,80,83] including the number of terms in the feedback

functions [82,83] and the weight of truth tables of the feedback functions [81,83]. A

survey on the generation of span n sequences can be found in Chapter 2. Note that

all the methods use an exhaustive search for verifying the primitivity of a feedback

function or whether the feedback function generates a span n sequence.

For n ≥ 8, it is difficult to employ all feedback functions in n variables in an

NLFSR, and produce all span n sequences due to the huge number of functions.

Our goal is to use a class of feedback functions with t (< n) variables in an n-stage

NLFSR and produce a number of span n sequences, where the class of feedback

function is composed of a permutation polynomial and a trace function, and a dec-

imation number. Finding span n sequences in this technique is called a structured

40

search, since all the feedback functions of the NLFSR have a special representation.

Another aim of the structure search is to obtain long span n sequences that can be

used to design lightweight PRNGs and stream ciphers. For a feedback function of

an NLFSR, the primitivity of the feedback function is verified by the exhaustive

search method. In the structured search, we prefer to use small values of t for an

efficient implementation of an NLFSR.

4.2 Theoretical Results on Span n Sequences

This section presents some theoretical results on the structured search for producing

span n sequences. We first describe the recurrence relation of nonlinear feedback

shift registers whose feedback functions are composed of a permutation and a trace

function over a finite field. In an n-stage NLFSR, the feedback function is a Boolean

function in t variables where 5 < t ≤ n − 1. All the feedback functions in t vari-

ables are balanced as a function composed by a permutation and trace function is

balanced and have even Hamming weight 2t−1. Thus, the new span n sequences

generated by a class of feedback functions belong to the weight class 2n−2. Then,

we calculate the approximate number of feedback functions used in the structured

search.

4.2.1 Description of a Span n Sequence Generation Proce-

dure

Let a = {ai} be a binary sequence generated by an n-stage nonlinear recurrence

relation, which is defined as

an+k = ak ⊕ fd(xk) = ak ⊕ Tr(P (xdk)), xk = (ar1+k, ar2+k, . . . , art+k) ∈ F2t ,

d ∈ D∗t , 0 < t < n, k ≥ 0 (4.1)

where (r1, r2, ..., rt) with 0 < r1 < r2 < . . . < rt ≤ n− 1 is called a t-tap position of

the NLFSR, fd(x) = Tr(P (xd)), P (x) is a nonlinear permutation over F2t , and ⊕ is

41

the addition over F2. The recurrence relation is depicted in Figure 4.1. For a proper

selection of a t-tap position and a feedback function fd(x), the binary sequence a

can be a span n sequence. We note that for any choice of a t-tap position and

a feedback function fd(x), the binary sequence may not be a span n sequence.

The reason for choosing t ≤ (n − 1) is to employ a small number of internal state

variables in the feedback functions for an efficient implementation of an NLFSR as

well as the production of more feedback functions.

...

...

Tr (P(x))

a1 an-1 a0

Figure 4.1: Span n sequence generation by the structured search

Let b = {bi} be a binary sequence generated by the following recurrence relation

bn+k = 1⊕ bk ⊕ fd(xk) = 1⊕ bk ⊕ Tr(P (xdk)), xk = (br1+k, . . . , brt+k) ∈ F2t ,

d ∈ D∗t , k ≥ 0. (4.2)

Similarly, for a proper selection of a t-tap position and a feedback function fd(x),

the complementary binary sequence b̄ of b can be a span n sequence, but the

sequence b is not a span n sequence since it contains the all-zero state.

If the number of terms in the algebraic normal form representation of the func-

tion fd is even, then the recurrence relation (4.1) cannot generate a span n sequence

for any choice of a t-tap position, since for the all-one state the recurrence relation

generates the all-one sequence. When the number of terms in fd is even, the re-

currence relation (4.2) cannot generate a span n sequence, as the complement of

sequence {bi} will contain the all-zero tuple.

42

Proposition 4.2.1 If Tr(P (xd)) = 0 for x = (1, 1, ..., 1) ∈ F2t, then recurrence

relations (4.1) and (4.2) cannot generate span n sequences.

Varying three parameters, namely the primitive polynomial p(x), the decima-

tion number d, and the t-tap position (r1, r2, ..., rt) in recurrence relations (4.1)

and (4.2), a number of new span n sequences can be produced and that number

mainly depends on the length n of the NLFSR and the number t of inputs to the

function fd. We call this searching technique a structured search, where an NLFSR

has a compact representation in terms of feedback functions and tap positions.

Note that we may not always obtain a span n sequence for a fixed value of t and

for any length n of the NLFSR. A special case of recurrence relation (4.1) with the

trace function in (n− 1) variables as the feedback function is defined in [95].

A periodic reverse binary sequence is defined as follows [81, 82]: For a binary

sequence {a0, a1, ..., a2n−2} with period 2n − 1, the reverse sequence of the binary

sequence is defined by {a2n−2, a2n−3, ..., a1, a0}. A reverse sequence of a span n

sequence is also a span n sequence, which is not shift equivalent to the original one

and the reverse span n sequence can be generated by the same function but with a

different t-tap position.

Proposition 4.2.2 [81] Let g(x0, x1, . . . , xn−1) = x0 ⊕ f(x1, . . . , xn−1) generates

a span n sequence with period 2n − 1. Then the function h(x0, xn−1, . . . , x1) =

x0 ⊕ f(xn−1, . . . , x1) generates a reverse span n sequence.

Our span n sequences generated by recurrence relations (4.1) and (4.2) with a

permutation are uniquely determined by the following three parameters:

1. the decimation number d,

2. the primitive polynomial p(x), and

3. the t-tap position (r1, r2, ..., rt).

Similarly, the reverse span n sequence of a span n sequence with parameters d, p(x),

and (r1, r2, ..., rt) is represented by the same decimation number d and the same

primitive polynomial p(x), but with a different t-tap position (n−r1, n−r2, ..., n−rt).

43

For a fixed function fd(x), a span n sequence generated by fd(x) is different if the

t-tap position is different.

Using Proposition 3.2.2 and recurrence relations (4.1) and (4.2), we form the

following recurrence relations that can generate de Bruijn sequences.

si+n = s0 ⊕ Tr(P (xdi))⊕
n−1∏
i=1

(si ⊕ 1), xi = (sr1+i, sr2+i, ..., srt+i), d ∈ D (4.3)

zi+n = 1⊕ z0 ⊕ Tr(P (ydi))⊕
n−1∏
i=1

zi, yi = (zr1+i, zr2+i, ..., zrt+i), d ∈ D (4.4)

We note that sequence {si} is a de Bruijn sequence when recurrence relation (4.1)

generates a span n sequence and the complementary sequence of {zi} is a de

Bruijn sequence when recurrence relation (4.2) generates a complementary span

n sequence.

Example 3 The following example describes our span n sequence generation pro-

cedure for t = 5 when the permutation P is the WG permutation. The WG

transformation over F25 is given by

f(x) = Tr(x+ (x+ 1)5 + (x+ 1)13 + (x+ 1)19 + (x+ 1)21), x ∈ F25

= Tr(x19), after simplification.

For t = 5, the set of coset leaders for which fd(x) is nonlinear is given by D∗t =

{1, 3, 7, 11, 15}. The d-th decimation of f(x) is given by

fd(x) = f(xd) = Tr(xd
′
), d′ = (19 · d) mod 2t − 1, d ∈ D∗t .

The n-stage nonlinear recurrence relation with a t-tap position is given by

an+k = ak ⊕ fd(xk), xk = (ar1+k, . . . , ar5+k) ∈ F25 , k ≥ 0.

For n = 7, the span n sequences produced by recurrence relations (4.1) and (4.2)

are presented in Table 4.1.

44

Table 4.1: Span n sequences generated using WG5 for n = 7

By recurrence relation (4.1)
Decimation Polynomial t-tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)
1 1 1 1 0 1 1 2 3 4 5
1 1 1 0 1 1 1 3 4 5 6
7 1 0 0 1 0 1 2 3 4 6
7 1 0 1 0 0 1 2 4 5 6
7 1 0 1 1 1 2 3 4 5 6
11 1 0 0 1 0 1 2 4 5 6
11 1 1 1 1 0 1 2 4 5 6
11 1 1 1 0 1 1 2 4 5 6
15 1 1 1 1 0 1 2 4 5 6

By recurrence relation (4.2)
Decimation Polynomial t-tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)
1 1 1 1 1 0 1 2 3 4 5
1 1 1 1 0 1 1 3 4 5 6
1 1 0 1 0 0 1 3 4 5 6
7 1 0 1 1 1 1 2 3 4 5
7 1 0 1 0 0 1 2 3 4 5
7 1 1 0 1 1 1 2 3 5 6
15 1 1 1 1 0 1 2 3 4 5

4.2.2 Approximate Number of Functions in the Search

Space

Note that three parameters, namely a decimation number d, a primitive polynomial

p(x), and a t-tap position determine a nonlinear recurrence relation or a feedback

function that may generate a span n sequence. In other words, each feedback

function can be considered as a candidate span n sequence. For a fixed value of n

and t, we form a search space by including all possible combinations of these three

parameters. In order to find span n sequences, an exhaustive search is performed

over this search space. We now determine the size of the search space or the number

of candidate span n sequences in terms of n and t in the following proposition.

Proposition 4.2.3 For any n > t ≥ 6, the number of feedback functions in the

search space of recurrence relations (4.1) and (4.2) is given by C =
(
φ(2t−1)

t

)2 (
n−1
t

)
.

45

Proof As in the recurrence relations the first position is fixed for the sequence

to be periodic and any t tap positions is chosen from n − 1 positions (n ≥ 6) to

form a t-tap position, the number of distinct t-tap positions is given by T =
(
n−1
t

)
.

Again, the total number of nonlinear feedback functions is given by np · |D∗t |, where

np = φ(2t−1)
t

is the number of t degree primitive polynomials over F2 and |D∗t | is

the number of decimation numbers for which the feedback function is nonlinear.

Hence, for fixed n and t, the number of feedback functions in the search space is

C = np · |D∗t | · T =

(
φ(2t − 1)

t

)2(
n− 1

t

)
for |D∗t | =

φ(2t − 1)

t
.

2

Proposition 4.2.4 A feedback shift register defined by recurrence relations (4.1)

and (4.2) produces the maximum number of span n sequences when about half the

length of the shift register tap positions participate in the feedback functions.

Proof Without loss of generality, we assume that the number of terms in a feedback

function is even in order to produce a span n sequence. In the FSR, for different

t-tap positions, the feedback functions are different. Thus, for a particular value of

n and t and for a feedback function in t variables, the number of different feedback

functions in n variables is equal to Nn,t =
(
n−1
t

)
and Nn,t is maximum when t =

⌈
n
2

⌉
(For linear feedback functions, t is always odd and t ≈

⌈
n
2

⌉
). If the feedback

functions in n variables that generate span n sequences are uniformly distributed

over the set of all Boolean functions, then the FSR generates the maximum number

of span n sequences when t ≈
⌈
n
2

⌉
. Hence, the assertion is established. 2

We note that an LFSR also produces the maximum number of span n sequences

when t ≈
⌈
n
2

⌉
(see Table 4.2). This property is also satisfied by the nonlin-

early generated span n sequences using recurrence relations (4.1) and (4.2) (see

Tables 4.3, 4.5, 4.6 and 4.8).

We now estimate the number of feedback functions in the search space for finding

the maximum number of span n sequences. Assume that we use NLFSRs defined

by recurrence relations (4.1) and (4.2) for t =
⌈
n
2

⌉
. Let N denote the number

46

Table 4.2: Tap position distribution for an LFSR of length ≤ 20
of taps 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 2 2 4 – 2 2 2 – – – 6 – 6 2 – 2
4 4 4 10 12 16 20 44 18 66 42 82 52 152 72 158 100
6 – – 4 4 28 28 80 86 236 226 470 368 1050 718 1774 1104
8 – – – – 2 10 50 36 264 338 720 812 2674 2296 6696 4522
10 – – – – – – – 4 60 140 450 648 2696 2910 10238 8436
12 – – – – – – – – 4 12 66 156 1006 1470 6766 7000
14 – – – – – – – – – – 6 12 122 284 1772 2460
16 – – – – – – – – – – – – – 24 190 354
18 – – – – – – – – – – – – – – – 22

of span n sequences (including reverse span n sequences) obtained by recurrence

relations (4.1) and (4.2). Then we have the following theorem.

Theorem 4.2.5 An approximate number of candidate span n sequences or feed-

back functions in recurrence relations (4.1) and (4.2) is given by C0, where C0 ≈(
φ(2d

n
2 e−1)
dn2 e

)2

· 2n−1√
π·n−1

2

and C0 ≈ 22n−1−2
3n
2 +1

√
π·(dn

2
e)5/2 , if 2t−1 is a Mersenne prime, and the

success probability of obtaining such a span n sequence is given by N
C0

.

Proof We recall that an approximated number of functions in the search space is

approximately

C =

(
φ(2t − 1)

t

)2(
n− 1

t

)
, for |D∗t | =

φ(2t − 1)

t
.

Putting t =
⌈
n
2

⌉
in the above formula, then we get

C0 =

(
φ(2d

n
2 e − 1)⌈
n
2

⌉)2

·
(
n− 1⌈

n
2

⌉)

=

(
φ(2d

n
2 e − 1)⌈
n
2

⌉)2

·
(

n− 1⌊
n−1
2

⌋
+ 1

)
, for positive n

=

(
φ(2d

n
2 e − 1)⌈
n
2

⌉)2

·
(n−

⌊
n−1
2

⌋
− 1) ·

(n−1
bn−1

2 c
)

(
⌊
n−1
2

⌋
+ 1)

.

47

By Stirling’s formula (
m⌊
m
2

⌋) ∼ 2m√
πm/2

,

the above equation can be written as

C0 ∼

(
φ(2d

n
2 e − 1)⌈
n
2

⌉)2

·
⌊
n−1
2

⌋
· 2n−1

(
⌊
n−1
2

⌋
+ 1) ·

√
π · n−1

2

∼

(
φ(2d

n
2 e − 1)⌈
n
2

⌉)2

· 2n−1√
π · n−1

2

.

≈ 22n−1 − 2
3n
2
+1

√
π · (dn

2
e)5/2

, if 2t − 1 is a Mersenne prime.

Thus the success probability of obtaining a span n sequence is equal to N
C0
. Hence,

the result is proved. 2

Note that recurrence relations (4.1) and (4.2) use only a class of Boolean func-

tions in n variables where the total number of Boolean functions in n variables is

22n−1
.

4.3 Span n Sequence Generation Using WG trans-

formations

In this section, we report the number of new span n sequences generated using

WG transformations, and show an empirical comparison of the success probability

of obtaining a span n sequence using WG transformations and a random span n

sequence generation method. We also present a heuristic method for searching long

WG span n sequences.

4.3.1 WG Span n Sequences

WG span n sequences are obtained by putting the WG permutation in recurrence

relations (4.1) and (4.2) for different t and n. The span n sequences are generated

48

by computer simulations. We use the WG transformations over the field F2t for t =

5, 7, 8, 10, and 11 (see, Section 3.4.1). We denote by WG-t the WG transformations

over the field F2t . Table 4.3 presents the number of new span n sequences produced

by recurrence relations (4.1) and (4.2), respectively for 6 ≤ n ≤ 20 (new reverse

span n sequences are not taken into account). However, this method can be applied

to generate long span n sequences. In Table 4.3, “×” represents the recurrence

relations are not defined for such values of n and t and ∼ represents those cases

the number of span n sequences is not yet determined. We present some instances

of new span n sequences in Appendix A.

Table 4.3: Number of WG span n sequences
By recurrence relation (4.1)

n
t WG-t 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 WG-5 0 9 7 14 8 11 17 11 13 10 3 7 7 0 1
7 WG-7 × × 3 25 42 63 108 138 138 125 126 111 83 86 63
8 WG-8 × × × 3 9 18 34 76 96 104 106 108 110 90 79
10 WG-10 × × × × × 5 40 107 246 373 627 819 999 ∼ ∼
11 WG-11 × × × × × × 31 204 574 1313 2539 4079 ∼ ∼ ∼

Total 0 9 10 42 59 97 230 536 1067 1925 3401 5124 – – –

By recurrence relation (4.2)
n

t WG-t 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 WG-5 1 7 7 10 16 18 10 8 4 10 2 1 3 1 0
7 WG-7 × × 4 25 47 59 121 122 137 125 123 98 74 84 54
8 WG-8 × × × 1 6 35 33 75 73 91 123 115 106 99 77
10 WG-10 × × × × × 4 47 118 270 401 680 863 ∼ ∼ ∼
11 WG-11 × × × × × × 33 186 576 1350 2522 4010 ∼ ∼ ∼

Total 1 7 11 36 69 116 244 509 1060 1977 3450 5087 – – –

A graphical representation of the number of new span n sequences for different

WG-t is provided in Figure 4.2. According to the figure for different t, the number

of span n sequences increases as n increases and it reaches the maximum for some

value of n, and thereafter the number of span n sequences decreases as n increases.

At a quick glance, we can observe that the number of span n sequences is maximal

when n close to 2t, which follows from the fact that the size of the search space is

a multiple of a binomial coefficient (see Proposition 4.2.4). This fact reveals that

49

there exists a tradeoff between n and t for obtaining the maximum number of span

n sequences.

6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

n

Th
e

nu
m

be
r o

f s
pa

n
n

se
qu

en
ce

s

WG5
WG7
WG8

Figure 4.2: Distribution for the number of span n sequences

Remark 4.3.1 We observe that there exist many span n sequences whose t-tap

positions and the bases of the finite fields are the same but their decimation numbers

are different.

4.3.2 The Success Probability Comparison

Usually, in a random generation method, a span n sequence can be produced by

choosing a nonlinear feedback function in n variables randomly and verifying the

primitivity of the feedback function. The success probability of obtaining a ran-

domly generated span n sequence is 1
2n−3 [83]. We compared the success probabil-

ity of obtaining a span n sequence (including reverse sequences) in our approach

with a random span n sequence generation method for t = 5, 7, 8 (for t ≈
⌈
n
2

⌉
),

10 and 11 (for 13 ≤ n ≤ 17) and the comparison shows that in our approach one

can produce a span n sequence with a better success probability than that of a

50

random span n sequence generation method. A comparison of success probability

for t = 5, 7, and 8 is provided in Table 4.4.

Table 4.4: The success probability comparison for WG span n sequences
n = 2t Our approach Randomly chosen

WG5 10 1
26.56

1
27

WG7 14 1
29.98

1
211

WG8 16 1
211.81

1
213

4.3.3 The Search Complexity Reduction for WG Span n

Sequences

It is worth noticing that the number of feedback functions in the search space

increases exponentially as t increases. For large t, it will be hard to find span n

sequences by considering all functions in the search space. Thus, for large n and

t, a search in the search space can be performed for finding span n sequence by

restricting the search over a particular type of decimation numbers and over the

selections of t-tap positions. Below we list a type of decimation numbers and t-tap

positions observed for WG span n sequences. In some cases, we may not find any

span n sequence. However, according to our observations based on the above idea,

it is possible to obtain many span n sequences.

Observations on Decimation Numbers

We have performed a search on the following type of decimation numbers for dif-

ferent n

Ddec = {d : d ∈ D∗t and d = 2i − 1, i = 1, 2, . . . , t− 1}

for t = 7, 8, and 10 and the result shows that there exist many span n sequences

whose decimation numbers in the recurrence relation (4.1) and (4.2) are of the above

type. For this type of decimation numbers, an approximate number of feedback

51

functions in the search space is given by

Cdec =
φ(2t − 1)

t
(t− 1)

(
n− 1

t

)
≈ φ(2t − 1)

(
n− 1

t

)
.

Obviously, the reduced complexity Cdec is less than the original complexity C.

Observations on t-tap Positions

Likewise, a search in the search space can be performed according to some pattern

of t-tap positions for finding long period span n sequences. Assume that it is

possible to fix, say, k tap positions (1 ≤ k ≤ t). Then, the total number of fixed

tap positions in the recurrence relations is (k+1) and we only need to choose (t−k)

positions out of (n − 1 − k) positions. So, for k fixed choices of tap positions, the

search complexity is

Ctap =

(
φ(2t − 1)

t

)2(
n− 1− k
t− k

)
.

Based on our observations on the t-tap positions for t = 7, 8, and 10, the follow-

ing types of t-tap positions are effective when the slope of the curves in Figure 4.2

increases gradually. For example, when t = 7, n = 11, 12, 13 and 14 and t = 8, n =

13, 14, 15, 16, 17 and 18, the t-tap positions are given by: {1, 2, 3, 4, · · ·}, {1, 2, 3, · · ·, n−
1}, {1, 2, · · ·, n−2, n−1}, {1, · · ·, n−3, n−2, n−1}, where the numbers in the tap

positions represent fixed positions in the t-tap positions (i.e., k = 4 fixed positions)

and “. . .” represents a combination of (n − k − 1) tap positions. We performed

a search according to the first pattern of t-tap position, the following span n se-

quences generated by two WG transformations have been found for t = 13 and

n = 24.

Decimation Polynomial t-tap position
d (c0, c1, c2, ..., c11, c12) (r1, r2, ..., r12, r13)

1207 (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0) (1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 22)
55 (1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0) (1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 15, 17)

52

4.4 Span n Sequence Generation by 3-term, 5-

term, and Monomial Functions and MCM

Functions

This section reports the number of span n sequences produced using three-term

functions, five-term functions, monomial functions with Kasami exponents and

MCM functions.

4.4.1 3-term and 5-term Span n Sequences

Considering three-term permutation and five-term permutation in recurrence rela-

tions (4.1) and (4.2), a number of span n sequences can be obtained by the struc-

tured search. Tables 4.5 - 4.6 present the number of span n sequences obtained

using the recurrence relations (4.1) and (4.2) for three-term functions, five-term

functions. When t = 5, three-term functions and five-term functions degenerate to

the same functions. Furthermore, we compare the success probability of obtaining

a span n sequences using 3-term and 5-term functions in Table 4.7 for t = 5, 7, 8, 9.

Table 4.7 illustrates that a span n sequence can be produced using one of 3-term,

5-term and monomial functions with Kasami exponent with a better success prob-

ability.

4.4.2 Monomial and MCM Functions Span n Sequences

We take the monomial permutation and the MCM polynomials fk(x) (defined in

Section 3.4.4) in recurrence relations (4.1) and (4.2), and produce span n sequences.

We call the span n sequences produced using MCM functions MCM span n se-

quences. The MCM polynomials for different values of k over the fields F2t , t = 7, 9

and 11 are considered. Tables 4.8 and 4.9 present the number of span n sequences

produced using monomial functions with Kasami exponents and MCM functions,

respectively for 8 ≤ n ≤ 20. Some examples of span n sequences produced by mono-

mial functions and MCM span n sequences are provided in Tables A.6 and A.7,

53

Table 4.5: Number of three-term span n sequences
By recurrence relation (4.1)

n
t T3-t 6 7 8 9 10 11 12 13 14 15 16 17

5 T3-5∗ 1 3 9 8 9 8 4 3 5 2 3 1
7 T3-7 × × 6 25 51 89 103 150 131 128 127 123
9 T3-7 × × × × 8 52 104 223 391 549 710 770
11 T3-11 × × × × × × 35 190 624 1323 2580 4056

Total – 1 3 15 33 68 149 246 566 1151 2002 3420 4950

By recurrence relation (4.2)
n

t T3-t 6 7 8 9 10 11 12 13 14 15 16 17

5 T3-5∗ 1 2 2 5 10 5 6 5 3 1 3 5
7 T3-7 × × 4 24 44 84 98 122 133 146 128 111
9 T3-7 × × × × 12 47 109 237 361 553 694 823
11 T3-11 × × × × × × 34 186 578 1416 2554 4007

Total – 1 3 6 29 66 136 247 550 1075 2116 3379 4946

respectively. In tables, × denotes that the recurrence relation is not defined the

parameters t and n and ∼ denotes that the cases are incomplete due to a huge

number of functions in the search space. When t = 5, the WG transformations

and monomial functions with Kasami exponent degenerate to the same functions.

Table 4.7 contains an empirical success probability comparison between a span n

sequence generation using monomial functions and a random span n sequence gen-

eration method. Our empirical comparisons also show that the success probability

of obtaining a span n sequence by the structured search using MCM functions

is greater than that of a random span n sequence generation method. We don’t

provide the success probability values due to the large number of cases.

Remark 4.4.1 For 3-term, 5-term and MCM functions, the complexity of the

search space is the same as the complexity of the search space for WG transforma-

tions for t =
⌈
n
2

⌉
. For monomial functions with Kasami exponent, the complexity

of the search space can be obtained in the similar manner.

54

Table 4.6: Number of five-term span n sequences
By recurrence relation (4.1)

n
t FT-t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 FT-5∗ 1 3 9 8 9 8 4 4 5 2 3 1 0 1
7 FT-7 × × 5 22 44 66 118 131 115 135 124 118 99 90
8 FT-8 × × × 1 9 18 37 56 88 101 104 86 92 90
10 FT-10 × × × × × 9 37 116 246 411 621 797 943 ∼
11 FT-11 × × × × × × 25 171 590 1443 2618 4194 ∼ ∼

Total 1 3 14 31 62 101 221 478 1044 2092 3470 5196 – –

By recurrence relation (4.2)
n

t FT-t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 FT-5∗ 1 2 2 5 10 5 6 5 3 1 3 5 0 1
7 FT-7 × × 8 19 43 74 108 138 138 127 117 102 84 91
8 FT-8 × × × 0 6 22 38 54 66 116 89 106 83 93
10 FT-10 × × × × × 7 47 119 223 443 627 861 ∼ ∼
11 FT-11 × × × × × × 20 172 609 1397 2558 4062 ∼ ∼

Total 1 2 10 24 59 108 219 488 1039 2084 3394 5136 – –

4.5 Linear Span Analysis of New Span n Sequences

In this section, we study the linear span of new span n sequences generated using

WG transformations, five-term functions, three-term functions, monomial func-

tions with Kasami exponent, and MCM functions. We note that all the nonlinear

feedback functions have a trace representation. The linear span of a sequence is

an important randomness property, which is considered as an upper bound on se-

quence unpredictability because, using only twice-linear span consecutive bits, one

can certainly predict the remaining bits of the sequence by the Berlekamp-Massey

algorithm [5, 79]. Sequences with optimal linear complexity are of practical inter-

ests in cryptography, since an attacker requires the whole sequence to decrypt the

message in a stream cipher. There is no theoretical result on the linear span of

span n sequences generated by a nonlinear feedback shift register. Other than the

Berlekamp-Massey algorithm, the linear complexity of a span n sequence can be

determined by computing the spectral sequence of a span n sequence. What we

know about the linear complexity of span n/de Bruijn sequences is the bounds

55

Table 4.7: The success probability comparison for 3-term, 5-term and monomial
functions span n sequences

3-term Span n sequences
n ≈ 2t Our approach Randomly chosen

TT5 10 1
26.89

1
27

TT7 14 1
210.04

1
211

TT9 17 1
213.04

1
214

5-term Span n sequences
n = 2t Our approach Randomly chosen

FT5 10 1
26.89

1
27

FT7 14 1
210.10

1
211

FT8 16 1
212.02

1
213

Monomial functions with Kasami exponent Span n sequences
n ≈ 2t Our approach Randomly chosen

MF5 10 1
26.88

1
27

MF7 14 1
210.29

1
211

MF9 17 1
212.96

1
214

presented in Property 1 in Chapter 3.

We compute the linear span of new span n sequences by the Berlekamp-Massey

algorithm and our computational results show that the linear spans attained by new

sequences are the optimal (2n− 2), the near-optimal (2n− 2− 3n) and between the

near-optimal and optimal. Table A.8 presents a summary of the linear spans of WG

span n sequences generated by the recurrence relations (4.1) and (4.2). Moreover,

Tables A.9, A.10, A.11, and A.12 exhibit a summary of the linear spans of the

span n sequences generated by five-term functions, three-term functions, monomial

functions with Kasami exponent, and MCM functions, respectively for different

values of t. Our computational results also show that most of new sequences obtain

the optimal linear span (2n − 2), only very few span n sequences obtain the linear

span (2n−2−3n) and in some cases all the linear spans are greater than (2n−2−3n).

We summarize the above discussions in the following two properties.

Property 2 For all newly found span n sequences (including reverse span n se-

56

Table 4.8: Number of span n sequences generated by monomial functions
By recurrence relation (4.1)

n
t MF-t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 MF-5 0 9 7 14 8 11 17 11 13 10 3 7 7 0
7 MF-7 × × 6 17 41 76 79 118 108 99 125 78 88 72
9 MF-9 × × × × 10 43 120 258 410 519 662 788 ∼ ∼
11 MF-11 × × × × × × 26 188 604 1423 2491 4056 ∼ ∼

Total – 0 9 13 31 59 130 242 575 1135 2051 3281 4929 – –

By recurrence relation (4.2)
n

t MF-t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 MF-5 1 7 7 10 16 18 10 8 4 10 2 1 3 1
7 MF-7 × × 4 25 45 60 98 117 114 104 116 96 86 77
9 MF-9 × × × × 6 37 131 239 367 558 740 860 ∼ ∼
11 MF-11 × × × × × × 32 184 596 1403 2547 4074 ∼ ∼

Total – 1 7 11 35 67 115 271 548 1081 2075 3405 5031 – –

quences), 7 ≤ n ≤ 20 and n is a prime number, the linear span or linear complexity

of the WG, 5-term, 3-term, monomial functions with Kasami exponent, MCM span

n sequences takes the following three values {2n − 2− 2n, 2n − 2− n, 2n − 2}.

Property 3 For 7 ≤ n ≤ 20 and all the other cases, except for those in Property

2, the linear span, denoted as LS, is bounded by

2n − 2− 3n ≤ LS ≤ 2n − 2

for all WG, 5-term, 3-term, monomial function, and MCM span n sequences when

n is a composite number and their respective reverse span n sequences for any n.

4.6 Summary of Chapter 4

This chapter presented the theoretical results on span n sequences and computa-

tional results about the number of span n sequences. In the theoretical results, we

described the nonlinear recurrence relations used in the structured search where

57

Table 4.9: Number of MCM span n sequences
By recurrence relation (4.1)

n
t k 8 9 10 11 12 13 14 15 16 17 18 19 20
7 3 3 26 53 86 113 141 147 142 126 121 110 77 57

5 5 22 44 72 112 124 128 148 112 122 92 80 52
9 5 × × 13 47 106 247 418 553 674 799 846 ∼ ∼

7 × × 9 32 118 238 383 577 632 779 ∼ ∼ ∼
11 3 × × × × 23 196 614 1392 2595 4200 ∼ ∼ ∼

5 × × × × 39 188 610 1384 2560 3981 ∼ ∼ ∼
7 × × × × 30 187 565 1374 2587 4106 ∼ ∼ ∼
9 × × × × 48 196 615 1380 2606 4093 ∼ ∼ ∼

By recurrence relation (4.2)
n

t k 8 9 10 11 12 13 14 15 16 17 18 19 20
7 3 5 23 51 84 106 125 115 136 122 103 107 81 59

5 6 25 44 80 113 151 141 132 141 112 111 87 59
9 5 × × 9 59 131 250 372 577 679 854 830 ∼ ∼

7 × × 11 45 139 245 425 543 714 786 809 ∼ ∼
11 3 × × × × 35 174 615 1368 2493 4204 ∼ ∼ ∼

5 × × × × 26 179 559 1357 2596 3989 ∼ ∼ ∼
7 × × × × 22 172 585 1376 2551 4046 ∼ ∼ ∼
9 × × × × 24 192 566 1359 2520 4212 ∼ ∼ ∼

a feedback function of an NLFSR is composed of a decimation number, a primi-

tive polynomial and a t-tap position. We then showed that the structured search

produces the maximum number of span n sequences when half the length of FSR

tap positions participate in the feedback function, and estimated the approximate

number of feedback functions involved in the structured search for the above pa-

rameters.

In the computational results, we reported the number of span n sequences pro-

duced by the structured search using WG transformations, three-term functions,

five-term functions, monomial functions with Kasami exponent, and MCM func-

tions as nonlinear feedback functions. We calculated the probability of success for

58

obtaining a span n sequences for each case. Our empirical comparison shows that

the success probability of obtaining a span n sequence in the structured search is

greater than that of a random span n sequence generation method when n close

to 2t. An analysis on the linear span of new span n sequences produced by the

aforementioned functions is conducted, and a summary of the bounds of the linear

span for different values of t is presented. The linear span of a new span n sequence

lies between the near-optimal and optimal. We observed that the majority of span

n sequences have an optimal linear span. Our computational results show that the

structure search can be used to find span n sequences with a moderate n.

Another aspect of studying the structured search is to find a general construc-

tion of a nonlinear feedback function that can generate a span n sequence. Unfor-

tunately, we could not establish any such general construction of a span n sequence.

The new span n sequences or span n sequences produced by the structured search

can be used as building blocks in designing lightweight PRNGs and stream ciphers

for securing communication systems.

59

Chapter 5

Strong de Bruijn Sequences with

Large Periods by the Composited

Construction

The concept of the composition of two feedback functions f and g, defined in Sec-

tion 3.2.5, was suggested by Green and Dimond [50] in 1970 and independently by

Mykkeltveit in 1976 [90]. In 1970, Lempel [67] introduced the idea of D-morphic

image and preimages of a binary sequence, and presented a construction of produc-

ing de Bruijn sequences using D-morphic preimages. Later on, in 1979, Mykkeltveit

et al. [92] widely studied the cycle structures of f composed with g and g composed

with f , and presented the construction of Lempel in the form of a composited

feedback function.

This chapter investigates how to generate a strong de Bruijn sequence from a

span n sequence through the composition method by Lempel [67] and Mykkeltveit et

al. [92] where the span n sequence has an optimal or near-optimal linear complexity.

In Section 5.1, we refine the composited construction in which a feedback function

of a long de Bruijn sequence is constructed from a feedback function of a span n

sequence. Section 5.2 determines the linear complexity of a composited de Bruijn

sequence, and Section 5.3 conducts an analysis of a composited nonlinear recurrence

relation from a cryptographic point of view. In the analysis, we investigate an

61

approximation of the feedback function by setting some product terms as constant

functions. We also determine the cycle structure of an approximated feedback

function and the linear complexity of a sequence generated by an approximated

feedback function. The analysis shows that a de Bruijn sequence generated by the

composited construction is strong if the starting span n sequence is strong. In

Section 5.4, we derive an algebraic representation of an (n+ 16)-stage NLFSR, and

present a few instances of cryptographically strong de Bruijn sequences with periods

in the range of 235 and 240. We use the span n sequences with optimal or near-

optimal linear complexity discovered in Chapter 4 in the composited construction.

We discuss the implementation issues of a composited NLFSR for a de Bruijn

sequence in Section 5.5. Finally, we summarize this chapter in Section 5.6. Partial

contents of the chapter have been published in [70] and some results can be found

in [71].

Table 5.1: Notations used in Chapter 5
Zn
o : Set of odd integers between 1 and n

Zn
e : Set of even integers between 1 and n

Supp(f): The support of Boolean function f
H(f): The Hamming weight of the Boolean function f
ψ(x0, x1) = x0 + x1: A Boolean function to be used for composition
ψk: The k-th order composition of ψ
Ω(g): Cycle decomposition of feedback function g

5.1 Feedback Functions of Composited de Bruijn

Sequences

In [92], Mykkeltveit et al. mentioned the idea of constructing a long stage NLFSR

from a short stage NLFSR by repeatedly applying Theorem 3.2.4 when g is a linear

function in two variables that generates a de Bruijn sequence. In this section, we

first refine Mykkeltveit et al.’s idea so that we can generate long de Bruijn sequences,

and then show an analytic formulation of a recursive feedback function of an (n+k)-

62

stage NLFSR, which is constructed from a feedback function of an n-stage NLFSR

by repeatedly applying Theorem 3.2.4 and the composition operation.

5.1.1 The k-th Order Composition of a Boolean Function

Let g(x0, x1, ..., xn) = x0 + xn +G(x1, x2, ..., xn−1) be a Boolean function in (n+ 1)

variables, where G is a Boolean function in (n− 1) variables, and g(x0, ..., xn) = 0

is a nonsingular recurrence relation of n stages. The first order composition of g

and ψ, denoted as g ◦ ψ, is given by [92]

g(y0, ..., yn) ◦ ψ(x0, x1) = g(x0 + x1, x1 + x2, ..., xn + xn+1)

= x0 + x1 + xn+1 + xn +G(x1 + x2, ..., xn−1 + xn).

Similarly, the k-th order composition of g with respect to ψ is defined by

g ◦ ψk =
(
g ◦ ψk−1

)
◦ ψ, k ≥ 2

where g ◦ ψk−1 is (k − 1)-th order composition of g with respect to ψ.

Proposition 5.1.1 For a positive integer k, the number of distinct variables in

xi ◦ ψk is equal to 2l where l is the Hamming weight of k.

We can simply expand xi ◦ψk by first computing the power set of {k1, k2, ..., kl}
with the empty is set to zero, and then summing up all the elements of each set

and adding i to each sum, where k =
∑l

j=1 kj, kj = 2q for some q. For an efficient

evaluation of (g ◦ψk), the value of k must be chosen such that the Hamming weight

of k is low.

Example 4 The k-th order composition (1 ≤ k ≤ 16) of f = xi with respect to ψ

is given in Table 5.2.

63

Table 5.2: The k-th order composition of xi w.r.t ψ

k f ◦ ψk k f ◦ ψk
1 xi + xi+1 9 xi + xi+1 + xi+8 + xi+9

2 xi + xi+2 10 xi + xi+2 + xi+8 + xi+10

3 xi + xi+1 + xi+2 + xi+3 11 xi + xi+1 + xi+2 + xi+3 + xi+8 + xi+9 + xi+10 + xi+11

4 xi + xi+4 12 xi + xi+4 + xi+8 + xi+12

5 xi + xi+1 + xi+4 + xi+5 13 xi + xi+1 + xi+4 + xi+5 + xi+8 + xi+9 + xi+12 + xi+13

6 xi + xi+2 + xi+4 + xi+6 14 xi + xi+2 + xi+4 + xi+6 + xi+8 + xi+10 + xi+12 + xi+14

7
∑7

l=0 xi+l 15
∑15

l=0 xi+l
8 xi + xi+8 16 xi + xi+16

5.1.2 Repeated Compositions of a Product Term

Let Xp
0 be a product term in p variables which is given by

Xp
0 =

∏
i∈Zpo

xi
∏
i∈Zpe

(xi + 1).

The first order composition of Xp
0 with respect to ψ, denoted as Xp

1 , is given by

Xp
1 =

∏
i∈Zpo

(xi + xi+1)
∏
i∈Zpe

(xi + xi+1 + 1)

which is a product-of-sum term or composed term in (p + 1) variables. Similarly,

the k-th order composition of Xp
0 with respect to ψ, denoted by Xp

k , is defined as

Xp
k = (Xp

k−1) ◦ ψ, k ≥ 2

which is a product-of-sum term in (p + k) variables. Note that the composition

operation with respect to ψ increases the number of variables in Xp
0 by one when it

repeats once, but the composition operation does not increase the algebraic degree

of Xp
0 .

We denote by Jn−1 =
n−1∏
i=1

(xi + 1). In a similar manner, the k-th order compo-

64

sition of Jn−1 with respect to ψ, denoted as Jn−1k , is defined by Jn−1k =
(
Jn−1k−1

)
◦ψ,

where Jn−1k−1 is the (k − 1)-th order composition of Jn−1.

Let us now define a Boolean function Ink in (n+ k − 1) variables as

Ink (x1, x2, ..., xn+k−1) = Jn−1k +Xn
k−1 +Xn+1

k−2 + · · ·+Xn+k−2
1 +Xn+k−1

0

which is a sum of (k + 1) product-of-sum terms and the algebraic degree of Ink is

maximum and equals (n+ k − 1). Function Ink can also be written in terms of the

composition operation as follows

Ink+1 = Ink ◦ ψ +Xn+k
0 , for k ≥ 0 and n ≥ 2,

where In0 = Jn−1.

5.1.3 The Composited Construction of a de Bruijn Sequence

We now present the construction of an (n + k)-stage NLFSR that is constructed

from an n-stage NLFSR.

Proposition 5.1.2 Let g(x0, x1, ..., xn) = xn+x0+G(x1, x2, ..., xn−1), which gener-

ates a span n sequence of period (2n− 1), where G is a Boolean function in (n− 1)

variables. Then, for any integer k ≥ 1, Rn
k(x0, x1, ..., xn+k) = (xn + x0) ◦ ψk +

G(x1, x2, ..., xn−1) ◦ψk + Ink (x1, ..., xn+k−1) generates a de Bruijn sequence of period

2n+k.

Proof The feedback function (g + Jn−1) = 0 generates a de Bruijn sequence of

period 2n. By applying Theorem 3.2.4 to the feedback function (g+ Jn−1) k times,

the feedback function becomes

Rn
k(x0, x1, ..., xn+k) = (xn + x0) ◦ ψk +G(x1, x2, ..., xn−1) ◦ ψk+

Ink (x1, ..., xn+k−1), k ≥ 0 (5.1)

= (xn + x0) ◦ ψk +G(x1 ◦ ψk, ..., xn−1 ◦ ψk)+
Ink (x1, x2, ..., xn+k−1). (5.2)

65

The function Rn
k = 0 is a feedback function in (n+ k) variables of an NLFSR, and

generates a de Bruijn sequence with period 2n+k. 2

Definition 16 A de Bruijn sequence of period 2n+k produced by recurrence rela-

tion (5.1) is referred to as a composited de Bruijn sequence.

Definition 17 The recurrence relation (5.1) is called a composited recurrence re-

lation, and the NLFSR for recurrence relation (5.1) is referred to as a composited

NLFSR.

One can construct the feedback function Rn
k+1 from Rn

k in the following recursive

manner

Rn
k+1 = Rn

k ◦ ψ +Xn+k
0 or Rn

k+1 = g ◦ ψk+1 + Ink+1, k ≥ 0

where Rn
0 = (g + Jn−1).

Remark 5.1.3 For k = 1, Proposition 5.1.2 is the same as Theorem 3.2.4 which

is also found by Lempel in [67]. For k = 1 and g is a primitive polynomial,

Proposition 5.1.2 is similar to Theorem 2 in [92].

Remark 5.1.4 According to Theorem 3.2.4, the product termXp
0 in the recurrence

relation (5.1) can be replaced by the product term
∏

i∈Zpo (xi + 1)
∏

i∈Zpe xi.

5.1.4 Algebraic Form of In16

We now present an algebraic form of In16 for a recurrence relation of (n+16) stages,

and the algebraic form is derived by putting k = 16 in the recurrence relation (5.1).

Then, the nonlinear recurrence relation of (n+ 16) stages is given by

Rn
16(x0, ..., xn+16) = xn+16 + xn + x0 + x16 +G(x1 + x17, ..., xn−1 + xn+15)

+ Jn−116 +Xn
15 + · · ·+Xn+14

1 +Xn+15
0 = 0 (5.3)

where Jn−116 =
∏n−1

i=1 (xi +xi+16 + 1) and X i
j = T io,j ·T ie,j, n ≤ i ≤ n+ 15, 15 ≥ j ≥ 0,

T io,j and T ie,j are given in Table 5.3. In the product-of-sum terms, the subscripts

o and e represent the odd indices product terms and even indices product terms,

66

respectively. Each product-of-sum term X i
j, n ≤ i ≤ n + 15, 15 ≥ j ≥ 0, is a

function of (n+ 15) variables. The expansion of (xi ◦ψk) can be found in Table 5.2

for 1 ≤ k ≤ 16.

Table 5.3: Product-of-sum terms in In16 of the recurrence relation (5.3)
T no,15 =

∏
i∈Zno

(∑15
l=0 xi+l

)
T n+1
o,14 =

∏
i∈Zn+1

o

(∑7
l=0 xi+2l

)
T n+2
o,13 =

∏
i∈Zn+2

o
(xi + xi+1 +

∑3
l=1(xi+2l + xi+2l+1)) T n+3

o,12 =
∏

i∈Zn+3
o

(
∑3

l=0 xi+4l)

T n+4
o,11 =

∏
i∈Zn+4

o
(
∑4

l=0 xi+l +
∑11

l=8 xi+l) T n+5
o,10 =

∏
i∈Zn+5

o
(xi + xi+2 + xi+8 + xi+10)

T n+6
o,9 =

∏
i∈Zn+6

o
(xi + xi+1 + xi+8 + xi+9) T n+7

o,8 =
∏

i∈Zn+7
o

(xi + xi+8)

T n+8
o,7 =

∏
i∈Zn+8

o
(
∑7

l=0 xi+l) T n+9
o,6 =

∏
i∈Zn+9

o
(
∑3

l=0 xi+2l)

T n+10
o,5 =

∏
i∈Zn+10

o
(xi + xi+1 + xi+4 + xi+5) T n+11

o,4 =
∏

i∈Zn+11
o

(xi + xi+4)

T n+12
o,3 =

∏
i∈Zn+12

o
(
∑3

l=0 xi+l) T n+13
o,2 =

∏
i∈Zn+13

o
(xi + xi+2)

T n+14
o,1 =

∏
i∈Zn+14

o
(xi + xi+1) T n+15

o,0 =
∏

i∈Zn+16
o

xi
T ne,15 =

∏
i∈Zne

(
∑15

l=0 xi+l + 1) T n+1
e,14 =

∏
i∈Zn+1

e
(
∑7

l=0 xi+2l + 1)

T n+2
e,13 =

∏
i∈Zn+2

e
(xi + xi+1 +

∑3
l=1(xi+2l + xi+2l+1) + 1) T n+3

e,12 =
∏

i∈Zn+3
e

(
∑3

l=0 xi+4l + 1)

T n+4
e,11 =

∏
i∈Zn+4

e
(
∑4

l=0 xi+l +
∑11

l=8 xi+l + 1) T n+5
e,10 =

∏
i∈Zn+5

e
(xi + xi+2 + xi+8 + xi+10 + 1)

T n+6
e,9 =

∏
i∈Zn+6

e
(xi + xi+1 + xi+8 + xi+9 + 1) T n+7

e,8 =
∏

i∈Zn+7
e

(xi + xi+8 + 1)

T n+8
e,7 =

∏
i∈Zn+8

e
(
∑7

l=0 xi+l + 1) T n+9
e,6 =

∏
i∈Zn+9

e
(
∑3

l=0 xi+2l + 1)

T n+10
e,5 =

∏
i∈Zn+10

e
(xi + xi+1 + xi+4 + xi+5 + 1) T n+11

e,4 =
∏

i∈Zn+11
e

(xi + xi+4 + 1)

T n+12
e,3 =

∏
i∈Zn+12

e
(
∑3

l=0 xi+l + 1) T n+13
e,2 =

∏
i∈Zn+13

e
(xi + xi+2 + 1)

T n+14
e,1 =

∏
i∈Zn+14

e
(xi + xi+1 + 1) T n+15

e,0 =
∏

i∈Zn+16
e

(xi + 1)

5.2 Linear Complexity of Composited de Bruijn

Sequences

This section determines the linear complexity of a composited de Bruijn sequence

produced by a composited nonlinear recurrence relation in which the linear com-

plexity of the starting span n sequence is known. In this chapter, we use the de

Bruijn sequence of order n and the de Bruijn sequence of period 2n interchangeably.

5.2.1 A Closer Look at the Composited Construction

Let s be a de Bruijn sequence of order (n + 1) produced by the recurrence rela-

tion (5.1) when k = 1. The composited construction of a de Bruijn sequence of

order (n + k) or the recurrence relation (5.1) can be interpreted as follows. Let

67

a = {ai}i≥0 be a de Bruijn sequence of order n that is generated by h = g + Jn−1.

Then the D-morphic preimages of a are z and z̄, given in Section 3.2.5. Accord-

ing to the recurrence relation (5.1) for k = 1, the sequence s can be written as

s = z‖Et(z̄), where z = z′‖e, z̄ = z′′‖ê, 0 ≤ t ≤ 2n − 1, E is the left shift operator,

and ‖ denotes the concatenation operation [14].

We denote by si = zi‖Eti(z̄i) the de Bruijn sequence of order (n + i) for 0 ≤
ti ≤ 2n+i−1 − 1 and s0 = a. A de Bruijn sequence of order (n + k) is constructed

recursively by calculating preimages as follows:

s1 = z1‖Et1(z̄1) for 0 ≤ t1 ≤ 2n − 1

s2 = z2‖Et2(z̄2) for 0 ≤ t2 ≤ 2n+1 − 1

...
...

sk = zk‖Etk(z̄k) for 0 ≤ tk ≤ 2n+k−1 − 1

where zi and z̄i are D-morphic preimages of the de Bruijn sequence si−1. This is

an equivalence between the recurrence relation (5.1) and the construction of a de

Bruijn sequence of order (n + k) from a de Bruijn sequence of order n when the

concatenation is performed at the conjugate pair ei = (1, 1, 0, 1, 0, ..., 1, 0) ∈ F2i

and êi = (0, 1, 0, 1, 0, ..., 1, 0) ∈ F2i , n ≤ i ≤ n+ k − 1.

5.2.2 Linear Complexity of a Composited de Bruijn Se-

quence

We now determine the linear complexity of a de Bruijn sequence produced by

recurrence relation (5.1) in terms of the linear complexity of the starting span n

sequence generated by g. We use the notations of Section 5.2.1 in the following

theorem.

Theorem 5.2.1 Let the linear complexity of a span n sequence generated by g be

optimal, i.e, 2n−2. Then the linear complexity of a de Bruijn sequence sk of period

2n+k generated by recurrence relation (5.1), denoted as LC(sk), is bounded below

by (2n+k − 2−
∑k

i=1 2mi) where 2mi | ti but 2mi+1 - ti, 1 ≤ i ≤ k.

68

Proof For k = 1, the de Bruijn sequence s1 can be written as s1 = z1‖Et1(z̄1) for 0 ≤
t1 ≤ 2n − 1, where z1 = z′1‖e, z̄1 = z′′1‖ê. By Theorem 11 of [14],

LC(s1) ≥ 2n + 2n − 2− 2m1 = 2n+1 − 2− 2m1

where 2m1 | t1 but 2m1+1 - t1 as LC(s0) is greater than or equal to the linear

complexity of the starting span n sequence generated by g. As de Bruijn sequence

s2 is constructed from s1 in the same way, applying the same argument, the linear

complexity of sequence s2 is

LC(s2) ≥ 2n+1 + 2n+1 − 2− 2m1 − 2m2 = 2n+2 − 2− 2m1 − 2m2

where 2m2 | t2 but 2m2+1 - t2. In general, for k ≥ 1, the linear complexity bound of

sk is

LC(sk) ≥ 2n+k − 2−
k∑
i=1

2mi

where 2mi | ti but 2mi+1 - ti, 1 ≤ i ≤ k. 2

Since the exact linear complexity of a composited de Bruijn sequence depends

on the values of mi’s, we computed the linear complexity of many composited de

Bruijn sequences when the starting span n sequences generated by g have optimal

or near-optimal linear complexity for (n + k) = 11, 12, ..., and 20 and for different

values of k and n. Our experimental result shows that the linear complexities of

composited de Bruijn sequences are optimal or close to optimal, both of which are

much greater than the lower bound (2n+k−1 + n+ k).

Remark 5.2.2 In Theorem 5.2.1, the inequality is due to no knowing the exact

linear complexity of the de Bruijn sequence obtained from the span n sequence.

Remark 5.2.3 If L (≥ 2n−1 + 2) is the linear complexity of a span n sequence

generated by g, then the linear complexity of sk satisfies LC(sk) ≥ L+2n(2k−1)−∑k
i=1 2mi .

69

5.3 Cryptanalysis of a Composited NLFSR for a

de Bruijn Sequence

Since the function Ink contains (k+1) product-of-sum terms whose algebraic degrees

are high and the Hamming weights of these product-of-sum terms are low, as a

result, the function Ink can be approximated by a linear function or a constant

function with high probability. In this section, we first investigate the success

probability of approximating the function Ink by the zero function. We then study

the cycle decomposition of an approximated recurrence relation after a successful

approximation of the feedback function.

5.3.1 Hamming Weights of the Product-Of-Sum Terms

Before calculating the success probability of approximating the function Ink by the

zero function, we need to derive the Hamming weight of a product-of-sum term,

since Ink is a sum of (k + 1) product-of-sum terms.

Proposition 5.3.1 For an integer r ≥ 1, the Hamming weight of Xp
r is equal to

2r.

Proof For any product term Xp
0 , the r-order composition is of the form

Xp
r =

∏
i∈Zpo

Ui ·
∏
i∈Zpe

Vi

where Ui is a sum of 2c variables and Vi is a sum of 2c variables and constant 1, c

is the Hamming weight of r. For simplicity, we assume that r = 2l, l ≥ 0. To find

the Hamming weight of Xp
r , there are two cases arise.

Case I: When 1 ≤ p ≤ r + 1

If r = 2l, then Ui and Vj can be written as Ui = xi + xi+r, i ∈ Zp
o , Vj = (xj +

xj+r + 1), j ∈ Zp
e , respectively. Xp

r = 1 if and only if Ui = 1 and Vj = 1 for all

70

i ∈ Zp
o and j ∈ Zp

e . This implies

x1 = 1 + x1+r = 1 + x1+2r = · · · = 1 + xl1 = 0/1

x2 = x2+r = x2+2r = · · · = xl2 = 0/1

...
...

xp = 1 + xp+r = 1 + xp+2r = · · · = 1 + xln = 0/1, if p is odd

xp = xp+r = xp+2r = · · · = xlp = 0/1, if p is even

where li ≤ p + r, i = 1, 2, ..., p. Note that Xp
r is a function in (p + r) variables.

For an (p + r)-tuple with Xp
r = 1, the values at 2p positions are determined by

the values at p positions, which follows from the above set of equations and the

remaining (p+r−2p) positions can take any binary values. Hence, the total number

of (p+ r)-tuples for which Xp
r = 1 is given by 2p · 2r−p = 2r.

Case II: When p ≥ r + 1

Similarly, Xp
r = 1 if and only if Ui = 1 and Vj = 1 for all i ∈ Zp

o and j ∈ Zp
e . This

implies

x1 = 1 + x1+r = 1 + x1+2r = · · · = 1 + xl1 = 0/1

x2 = x2+r = x2+2r = · · · = xl2 = 0/1

...
...

xr−1 = 1 + x2r−1 = · · · = 1 + xlr−1 = 0/1

xr = x2r = · · · = xlr = 0/1

where li ≤ (p + r), i = 1, 2, ..., r. According to the above system of equations, the

binary values at (p+r) positions are determined by the binary values at r positions

and these r positions can take any values. Hence, the total number of (p+r)-tuples

for which Xp
r = 1 is given by 2r.

Considering Ui = 1 and Vj = 1 for all i ∈ Zp
o and j ∈ Zp

e as a system of linear

equations with p equations and (p + r) unknown variables over F2, it follows that

71

the Hamming weight of Xp
r is equal to the number of solutions of the system of

linear equations, which is equal to 2p+r−r = 2r for any positive integer r. 2

Proposition 5.3.2 For any integer r ≥ 1, the Hamming weight of Jn−1r is equal

to 2r.

Proof The proof is similar to the proof of Proposition 5.3.1. 2

Proposition 5.3.3 For any integer k ≥ 1 and n ≥ 2, the Hamming weight of

function Ink is equal to 2k+1. One can approximate function Ink by the zero function

with probability (1− 1
2n−1 − 1

2n+k−1).

Proof By Proposition 5.3.1, the Hamming weight of Xn+k−1−j
j , i.e, H(Xn+k−1−j

j) is

equal to 2j, for 0 ≤ j ≤ k−1. Note thatXn+k−1−j
j = 1 is a system of linear equations

with (n+k−1−j) equations and (n+k−1) unknown variables and Supp(Xn+k−1−j
j)

contains the set of all solutions. It is not hard to show that the support of Xn+k−1−i
i

and Xn+k−1−j
j are disjoint for 0 ≤ i 6= j ≤ n− 1. Again, (∪k−2j=0Supp(X

n+k−1−j
j)) ⊂

Supp(Jn−1k), and Supp(Xn+k−1
k−1) and Supp(Jn−1k) are disjoint. Then the cardinality

of the support of Ink is equal to (2k+2k−1−
∑k−2

j=0 2j) = (2k+2k−1−2k−1+1) = 2k+1.

Hence, the Hamming weight of Ink is 2k + 1.

Since the Hamming weight of Ink is 2k + 1, the number of inputs for which Ink
takes the value zero is equal to (2n+k−1 − 2k − 1). Hence, one can approximate the

function Ink by the zero function with probability (1− 1
2n−1 − 1

2n+k−1). 2

Proposition 5.3.4 For any n, k ≥ 1, the nonlinearity of function Ink is equal to

NInk
= H(Ink) = 2k + 1 for n > 3.

Proof It is well-known that the nonlinearity of a Boolean function can be obtained

by calculating the minimum distance between the function and all affine functions

[23]. In Proposition 5.3.3, we calculated the cardinality of Supp(Ink), which is

equal to (2k + 1). The minimum distance between Ink and all affine functions is

achieved only for the zero function, and that is equal to (2k + 1). For all other

nonzero functions, the least distance between Ink and an affine function can be

(2n+k−2− (2k + 1)). For n > 3, (2n+k−2− (2k + 1)) > (2k + 1). Therefore, for n > 3,

the nonlinearity of Ink equals the Hamming weight of Ink . 2

72

For a small value of k, the function Ink can be approximated by the zero function

or a linear function due to its low nonlinearity.

5.3.2 Cycle Structure of an Approximated Recurrence Re-

lation

By Propositions 5.3.3 and 5.3.4, the function Ink can be approximated by the zero

function with probability about (1 − 1
2n−1). As a consequence, Eq. (5.1) can be

approximated as follows

Rn
k,a(x0, x1, ..., xn+k) = ((xn + x0) +G(x1, x2, ..., xn−1)) ◦ ψk (5.4)

= g(x0, x2, ..., xn−1) ◦ ψk.

The recurrence relation Rn
k,a = 0 is called an approximated recurrence relation.

In the following proposition, we provide the cycle structure of an approximated

recurrence relation.

Lemma 5.3.5 For an integer k ≥ 1, Ω(Rn
k,a) = Ω(g) ⊕ Ω(ψk), i.e., any sequence

x ∈ Ω(Rn
k,a) can be written as x = b + c, where b’s minimal polynomial is the

same as the minimal polynomial of a span n sequence that is generated by g and

c’s minimal polynomial is (1 + x)k and ⊕ denotes the direct sum operation.

Proof Let s be a span n sequence generated by g and let h(x) the minimal poly-

nomial of s. Then, h(x) = h1(x) · h2(x) · · ·hr(x), where hi’s are distinct irreducible

polynomials of degree less than or equal to n and the value of r depends on the

sequence s, see [45, 48, 82]. If hi(x) = (1 + x) for some i, then the sequence s

is not a span n sequence. On the other hand, the minimal polynomial of ψk is

(1 + x)k. Again, the minimal polynomial of a sequence generated by ψk is a factor

of (1 + x)k. As h(x) does not contain the factor (1 + x), the minimal polynomial

of s and the minimal polynomial of ψk are relatively prime with each other. Then,

by Lemma 3.2.3, any sequence x ∈ Ω(Rn
k,a) can be represented by x = b+ c where

b ∈ Ω(g) and c ∈ Ω(ψk). Hence, the cycle decomposition of Rn
k,a is a direct sum of

Ω(g) and Ω(ψk), i.e., Ω(Rn
k,a) = Ω(g)⊕ Ω(ψk). 2

73

Proposition 5.3.6 The cycle decomposition of Rn
k,a, i.e., Ω(Rn

k,a) contains 2 ·
(Γ2(k) + 1) cycles with (Γ2(k) + 1) cycles of period at least (2n− 1) and (Γ2(k) + 1)

cycles of period at most 2dlog2 ke, where Γ2(k) is the number of all coset leaders

modulo (2k − 1).

Proof For any positive integer k ≥ 1, the cycle decomposition of ψk is the cy-

cle decomposition of polynomial (1 + x)k, which contains sequences with period

2dlog2 ie, 1 ≤ i ≤ k, and the number of cycles is given by (Γ2(k) + 1) including the

zero cycle (see [43], Th. 3.4, page-42). Again, the cycle decomposition of g contains

only two cycles, one is a cycle of length 2n − 1 and the other one is the zero cycle

of length one. Therefore, by Lemma 5.3.5, Ω(Rn
k,a) contains 2 · (Γ2(k) + 1) cycles

where (Γ2(k) + 1) cycles are of length at least 2n − 1 and (Γ2(k) + 1) cycles are of

length at most 2dlog2 ke. 2

Remark 5.3.7 If the function Rn
k is approximated by the function (Rn

k,a + Jn−1k)

with high probability, then the number of cycles in Ω(Rn
k,a+Jn−1k) equals (Γ2(k)+1),

and the period of a sequence in Ω(Rn
k,a + Jn−1k) is bounded below by 2n.

Proposition 5.3.8 Let Ω(Rn
k,a) be the cycle decomposition of Rn

k,a. For any se-

quence x ∈ Ω(Rn
k,a) with period at least 2n−1, the linear complexity of x is bounded

below by the linear complexity of the sequence generated by g.

Proof We already showed in Lemma 5.3.5 that any sequence x ∈ Ω(Rn
k,a) can be

written as x = b + c where b ∈ Ω(g), c ∈ Ω(ψk), and the minimal polynomial of b

is coprime with the minimal polynomial of c. Since the minimal polynomial of b is

coprime with the minimal polynomial of c, the linear complexity of x is equal to

the sum of the linear complexities of b and c. Therefore, the linear complexity of

x is greater or equal to the linear complexity of sequence b generated by g. Hence,

the assertion is established. 2

Remark 5.3.9 Using recurrence relation (5.1) with G as a linear function, one

can generate a de Bruijn sequence with period 2n+k and linear complexity at least

(2n+k−1 +n+k+ 1) for an arbitrary positive integer k. Nevertheless, this de Bruijn

74

sequence is not suitable for using it as a building block in designing a cryptographic

primitives such as PRSGs or stream ciphers, because in the entire sequence most

of the bits are linearly related to the internal state bits and only at H(Ink) positions

the bits are nonlinearly related to the internal state bits due to the nonlinear term

Ink , which is vulnerable against a cryptanalytic attack. For a more detailed analysis

on both linearly and nonlinearly composed de Bruijn sequences, we refer the reader

to [71]. On the other hand, if the function g is nonlinear, then the bits of the de

Bruijn sequence will be nonlinearly related to the internal state bits of the NLFSR,

thereby a cryptanalytic attack would be more complex.

Propositions 5.3.3, 5.3.6, and 5.3.8 suggest that in order to generate a strong

de Bruijn sequence by the composited construction, the starting span n sequence

generated by g should have good randomness properties, particularly, long period

and an optimal or near-optimal linear complexity. If an attacker is successful in

approximating the feedback function Rn
k by the feedback function (g ◦ψk), then the

security of the sequence generated by Rn
k depends on the security of the sequence

generated by g. If the de Bruijn sequences are used as building blocks in PRNGs

and stream ciphers, an attack would not have direct access to a de Bruijn sequence.

5.4 Designing Parameters for Cryptographic de

Bruijn Sequences

This section presents a few examples of strong de Bruijn sequences with period

2n+k that are generated by an (n + k)-stage NLFSR for 19 ≤ n ≤ 24 and k = 16.

In order to generate de Bruijn sequences with period 240, we choose n = 24 and

k = 16.

5.4.1 Tradeoff Between n and k

We observe that the parameter n is the measure of unpredictability of a sequence

and the parameter k is the measure of efficiency for computing the feedback func-

tion. In the composited construction, one can construct an (n+k)-stage recurrence

75

relation by choosing a small value of n and a large value of k, since for a small value

of n it is easy to find a span n sequence and the success probability of approximat-

ing the feedback function is low (see Proposition 5.3.3). However, for such a choice

of the parameters, the recurrence relation contains many product-of-sum terms, as

a result, the function Ink may not be calculated efficiently. Thus, for generating a

strong de Bruijn sequence of period 2n+k efficiently, one needs to choose the param-

eters in such a way that the nonlinearly generated span n sequence is large enough

and the number of product-of-sum terms in Ink is as small as possible.

5.4.2 Examples of de Bruijn Sequences with Large Periods

Let {xj}j≥0 be a binary span n sequence generated by an n-stage recurrence relation,

defined in Section 4.2.1 of Chapter 4, for a suitable choice of a decimation number

d, a primitive polynomial p(x), and a t-tap position

xn = x0 + fd(xr1 , xr2 , ..., xrt) (5.5)

where (r1, r2, ..., rt) with 0 < r1 < r2 < · · · < rt < n is called a t-tap position and fd

is a WG transformation. Here a decimation number is a coset leader that is coprime

with 2t−1. Then the recurrence relation (5.3) with G as a WG transformation can

be written as

Rn
16 = xn+16 + xn + x0 + x16 + fd(xr1 + xr1+16, ..., xrt + xrt+16) + Jn−116

+Xn
15 +Xn+1

14 + · · ·+Xn+14
1 +Xn+15 = 0 (5.6)

where Jn−116 =
∏n−1

i=1 (xi + xi+16) and Xp
k = T po,k · T

p
e,k, n ≤ p ≤ n + 15, 1 ≤ k ≤ 15,

T po,k and T pe,k are given in Table 5.3. The recurrence relation (5.6) can generate

a de Bruijn sequence for a suitable choice of a decimation number d, a primitive

polynomial p(x), and a t-tap position. Following the representation of span n

sequences in Chapter 4, our de Bruijn sequences are uniquely represented by the

following four parameters:

1. the decimation number d,

76

2. the primitive polynomial p(x),

3. the t-tap position (r1, r2, ..., rt), and

4. Ink .

Table 5.4 presents a few examples of cryptographically strong de Bruijn se-

quences with periods in the range of 235 and 240. In Table 5.4, the computations

for the linear complexity of the 24-stage span n sequence has not finished yet.

However, currently the lower bound of the linear complexity is at least 222. For

more instances of span n sequences with an optimal or near-optimal linear span,

see Chapter 4 and Appendix A.

Table 5.4: De Bruijn sequences with periods ≥ 235

WG over F2t Decimation Basis Polynomial t-tap positions span n Linear Span, Ik, Period
t d (c0, c1, ..., ct−1) (r1, r2, ..., rt) n span n k 2n+k

13 1207 (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0) (1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 22) 24 −− 16 240

13 55 (1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0) (1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 15, 17) 24 −− 16 240

8 53 (1, 1, 1, 0, 0, 1, 1, 1) (1, 2, 5, 6, 8, 11, 12, 15) 21 221 − 5 16 237

8 29 (1, 1, 1, 0, 0, 0, 0, 1) (1, 2, 6, 8, 9, 15, 16, 19) 21 221 − 26 16 237

8 31 (1, 1, 1, 0, 0, 0, 0, 1) (1, 2, 10, 12, 13, 16, 18, 19) 20 220 − 6 16 236

8 1 (1, 1, 0, 0, 0, 1, 1, 0) (1, 3, 4, 5, 8, 11, 12, 15) 19 219 − 2 16 235

7 5 (1, 0, 0, 1, 1, 1, 0) (1, 2, 6, 8, 10, 12, 16) 20 220 − 7 16 236

7 19 (1, 0, 1, 0, 0, 1, 1) (1, 2, 3, 5, 6, 10, 18) 19 219 − 2 16 235

5 1 (1, 1, 1, 0, 1) (5, 10, 12, 18, 19) 20 220 − 2 16 236

Remark 5.4.1 Any feedback function g that generates a span n sequence can be

used in recurrence relation (5.3) for producing a long de Bruijn sequence. To the

best of our knowledge, Table 5.4 contains a set of (longest) de Bruijn sequences

whose algebraic representations of the recurrence relations are known. We use the

structured search for producing span n sequences to be used in the composited

construction as we have seen in Chapter 4 that the structured search can produce

span n sequences with optimal linear complexity in a systematic manner.

5.5 Implementation of Function In16

We note that Ink is the most complicated module in the feedback function Rn
k = 0.

Moreover, the function g ◦ ψk can be chosen efficiently. For a fixed value of n

77

and k, Ink is fixed, but the function g is different for different span n sequences.

This section provides some techniques for optimizing the number additions in the

product-of-sum terms in Ink for k = 16, and give an estimation for the number of

multiplications and the time required for computing the function Ink in terms of n

and k.

5.5.1 Optimizing the Number of Additions for In16

For k = 16, Ink in recurrence relation (5.6) contains 17 product-of-sum terms. For

example, for n = 24 and k = 16, one needs 2116 addition operations for computing

all product terms in Ink . In Table 5.3, we can observe that many partial-sum

terms appear in different product terms. By reusing the result of a previously

computed sum term, we can optimize the number of additions. For k = 16, three

optimization rules are described in Table 5.5. According to the above three rules

Table 5.5: Optimization rules for addition
Optimization Rule I (OR-I)

Y 1
1,i = xi + xi+1 Y 2

1,i = xi+2 + xi+3 Y 1
3,i = xi+8 + xi+9 Y 2

3,i = xi+10 + xi+11

Y 1
2,i = xi+4 + xi+5 Y 2

2,i = xi+6 + xi+7 Y 1
4,i = xi+12 + xi+13 Y 2

4,i = xi+14 + xi+15

Y1,i = Y 1
1,i + Y 2

1,i Y2,i = Y 1
2,i + Y 2

2,i Y0,2,i = xi + xi+2 Y4,6,i = xi+4 + xi+6

Y3,i = Y 1
3,i + Y 2

3,i Y4,i = Y 1
4,i + Y 2

4,i Y8,10,i = xi+8 + xi+10 Y12,14,i = xi+12 + xi+14

Q0,i = xi Q4,i = xi + xi+4 Q3,i = Y1,i Q7,i = Q3,i + Y2,i
Q8,i = xi + xi+8 Q12,i = Q4,i + xi+8 + xi+12 Q11,i = Q3,i + Y3,i Q15,i = Q7,i + Y3,i + Y4,i
Q2,i = Y0,2,i Q6,i = Q2,i + Y4,6,i Q1,i = Y 1

1,i Q5,i = Q1,i + Y 1
2,i

Q10,i = Q2,i + Y8,10,i Q14,i = Q6,i + Y8,10,i + Y12,14,i Q9,i = Q1,i + Y 1
3,i Q13,i = Q5,i + Y 1

3,i + Y 1
4,i

Optimization Rule II (OR-II)
Y 1
1,i = xi + xi+1 Y 2

1,i = xi+2 + xi+3 Y1,i = Y 1
1,i + Y 2

1,i Y2,i = Y 1
2,i + Y 2

2,i

Y 1
2,i = xi+4 + xi+5 Y 2

2,i = xi+6 + xi+7 Yi = Y1,i + Y2,i Y0,2,i = xi + xi+2

Y4,6,i = xi+4 + xi+6 Y8,10,i = xi+8 + xi+10

W0,i = xi W1,i = Y 1
1,i W4,i = xi + xi+4 W5,i = Y 1

1,i + Y 1
2,i

W2,i = Y0,2,i W3,i = Y1,i W6,i = Y0,2,i + Y4,6,i W7,i = Y1,i + Y2,i
W8,i = xi + xi+8 W9,i = Y 1

1,i + xi+8 + xi+9 W10,i = Y0,2,i + Y8,10,i
Optimization Rule III (OR-III)

Y1,i = xi + xi+1 Y2,i = xi+2 + xi+3 Z0,1 = xi Z1,i = Y1,i
Z2,i = xi + xi+2 Z3,i = Y1,i + Y2,i Z4,i = xi + xi+4

given in Table 5.5, the product terms in Table 5.3 can be written as that are given

in Table 5.6. Applying the rules given in Tables 5.5, the total number of additions

78

Table 5.6: Product terms of the recurrence relation (5.6)
T no,15 =

∏
i∈Zno

Q15,i T n+1
o,14 =

∏
i∈Zn+1

o
Q14,i

T n+2
o,13 =

∏
i∈Zn+2

o
Q13,i T n+3

o,12 =
∏

i∈Zn+3
o

Q12,i

T n+4
o,11 =

∏
i∈Zn+4

o
Q11,i T n+5

o,10 =
∏

i∈Zn+5
o

Q10,i

T n+6
o,9 =

∏
i∈Zn+5

o
Q9,i ·W9,n+6 T n+7

o,8 =
∏

i∈Zn+5
o

Q11,i

∏n+7
i=n+6,oddW8,i

T n+8
o,7 =

∏
i∈Zn+5

o
Q7,i ·

∏n+8
i=n+6,oddW7,i T n+9

o,6 =
∏

i∈Zn+5
o

Q6,i ·
∏n+9

i=n+6,oddW6,i

T n+10
o,5 =

∏
i∈Zn+5

o
Q5,i ·

∏n+10
i=n+6,oddW5,i T n+11

o,4 =
∏

i∈Zn+5
o

Q4,i ·
∏n+11

i=n+6,oddW4,i

T n+12
o,3 =

∏
i∈Zn+5

o
Q3,i ·

∏n+11
i=n+6,oddW3,i · Z3,n+12 T n+13

o,2 =
∏

i∈Zn+5
o

Q2,i ·
∏n+11

i=n+6,oddW2,i ·
∏n+13

i=n+12,odd Z2,i

T n+14
o,1 =

∏
i∈Zn+5

o
Q1,i ·

∏n+11
i=n+6,oddW1,i ·

∏n+13
i=n+12,odd Z1,i · (xn+14 + xn+15) T n+15

o,0 =
∏

i∈Zn+16
o

xi

T ne,15 =
∏

i∈Zne
(Q15,i + 1) T n+1

e,14 =
∏

i∈Zn+1
e

(Q14,i + 1)

T n+2
e,13 =

∏
i∈Zn+2

e
(Q13,i + 1) T n+3

e,12 =
∏

i∈Zn+3
e

(Q12,i + 1)

T n+4
e,11 =

∏
i∈Zn+4

e
(Q11,i + 1) T n+5

e,10 =
∏

i∈Zn+5
e

(Q10,i + 1)

T n+6
e,9 =

∏
i∈Zn+5

e
(Q9,i + 1) · (W9,n+6 + 1) T n+7

e,8 =
∏

i∈Zn+5
e

(Q11,i + 1)
∏n+7

i=n+6,even(W8,i + 1)

T n+8
e,7 =

∏
i∈Zn+5

e
(Q7,i + 1) ·

∏n+8
i=n+6,even(W7,i + 1) T n+9

e,6 =
∏

i∈Zn+5
e

(Q6,i + 1) ·
∏n+9

i=n+6,even(W6,i + 1)

T n+10
e,5 =

∏
i∈Zn+5

e
(Q5,i + 1) ·

∏n+10
i=n+6,even(W5,i + 1) T n+11

e,4 =
∏

i∈Zn+5
e

(Q4,i + 1) ·
∏n+11

i=n+6,even(W4,i + 1)

T n+12
e,3 =

∏
i∈Zn+5

e
(Q3,i + 1) ·

∏n+11
i=n+6,even(W3,i + 1) · (Z3,n+12 + 1) T n+13

e,2 =
∏

i∈Zn+5
e

(Q2,i + 1) ·
∏n+11

i=n+6,odd(W2,i + 1) ·
∏n+13

i=n+12,even(Z2,i + 1)

T n+14
e,1 =

∏
i∈Zn+5

e
(Q1,i + 1) ·

∏n+11
i=n+6,even(W1,i + 1) ·

∏n+13
i=n+12,even(Z1,i + 1) · (xn+14 + xn+15 + 1) T n+15

e,0 =
∏

i∈Zn+16
e

(xi + 1)

required for computing In16 is given by (n− 1 + 32 · dn+5
2
e+ 32 · bn+5

2
c+ 3 · 18 + 3 ·

19 + 2 · 5 + 2 · 6 + 3 + 16) = (32 · (n+ 5) + n+ 151), since the numbers of additions

required for OR-I, OR-II and OR-III in Table 5.5 are 32, 18 and 5, respectively.

For n = 24, the number of additions after applying the above three rules is equal

to 1103.

5.5.2 Total Number of Multiplications and Time Complex-

ity for Computing Ink

The maximum number of multiplications required for computing Ink is given by∑n+k−1
i=n−1 (i− 1) = (n(k + 1) + (k−1)(k−2)

2
− 3) as one requires (i− 1) multiplications

to compute a product of i numbers. In the following proposition, we estimate the

time required for computing the function Ink .

Proposition 5.5.1 The time required for computing the function Ink is approxi-

mately given by d((k + 1) log2 n+ k(k−1)
2n

log2 e)e if k << n.

Proof To compute a product-of-sum term Xp
k , n ≤ p ≤ n+ k − 1, one requires at

most dlog2 pe-time. Since the function Ink contains (k + 1) product terms, the time

complexity for computing Ink is given by

79

n+k−1∑
p=n−1

dlog2 pe ≈ dlog2(n
k+1(1− 1

n
)
k−1∏
i=1

(1 +
i

n
))e

≈ d((k + 1) log2 n+
k(k − 1)

2n
log2 e)e if k << n.

2

5.6 Summary of Chapter 5

In this chapter, we first refined the composited construction for producing a long

period de Bruijn sequence from a short period span n sequence through the com-

position operation. We then determined the linear complexity of a composited de

Bruijn sequence and performed an analysis of the feedback function of a compos-

ited de Bruijn sequence from the cryptographic point of view. In our analysis, we

studied an approximation of the feedback functions, the cycle structure of an ap-

proximated feedback function, and determined the linear complexity of a sequence

generated by an approximated feedback function. In addition, we presented a com-

pact algebraic representation of an (n + 16)-stage NLFSR, and a few instances of

composited de Bruijn sequences with periods in the range of 235 and 240 together

with the discussions of their implementation issues. A long period de Bruijn se-

quence produced by the composited construction can be used as a building block to

design secure lightweight cryptographic primitives such as pseudorandom sequence

generators and stream ciphers with desired randomness properties.

80

Chapter 6

Warbler Family: A Lightweight

PRNG Family for Smart Devices

In this chapter, we present Warbler family – a new pseudorandom number generator

family based on nonlinear feedback shift registers with desired randomness proper-

ties. In Section 6.1, we provide a detailed architectural description of the Warbler

family, which is composed of two building blocks, namely a combination of modi-

fied de Bruijn blocks, and a nonlinear feedback WG generator. Then, we derive the

randomness properties of sequences produced by the combination of modified de

Bruijn blocks in Section 6.1.1, and give a general description of the initilization and

running phases in Section 6.3. Randomness properties of output sequences of the

Warbler family are inherited from the combination of modified de Bruijn blocks. In

Section 6.4, some criteria for the selection of parameters of the Warbler family are

proposed to offer a maximum level of security. Finally, we conclude this chapter in

Section 6.5. The contents of the chapter can be found in [75].

6.1 Description of the Warbler PRNG Family

This section describes the general architecture of the Warbler PRNG family. Warbler

is composed of a combination of modified de Bruijn blocks (CMDB) and a nonlinear

feedback Welch-Gong (WG) generator (NFWGG) where the CMDB can be regarded

81

as a combinatorial generator which consists of a number of primitive nonlinear

feedback shift registers. On the other hand, the nonlinear feedback WG generator

can be regarded as an NLFSR over an extension field and which is similar to the key

initialization phase of the WG cipher family [94]. Randomness properties of output

sequences are inherited from the CMDB. The CMDB is protected by two different

filtering functions. We now explain the design of Warbler whose CMDB contains

m primitive NLFSRs of different lengths, and nonlinear feedback WG generator is

defined over F2n . A block diagram of the Warbler family is provided in Figure 6.1.

. . . f

γ

NLFSR-l

NLFSR-l1

NLFSR-l2

NLFSR-lm-1

NLFSR-lm

Combination of Modified
 de Bruijn Blocks (CMDB)

Nonlinear Feedback WG Generator
 (NFWGG)

n-bit

1-bit

WG

n-bit

1-bit

Buffer

Figure 6.1: A general architecture of the Warbler family

6.1.1 Randomness Properties of the CMDB of Warbler Fam-

ily

The combination of modified de Bruijn blocks of Warbler family is constituted by

m distinct primitive NLFSRs whose recurrence relations are defined as (3.2). Let

l1, l2, ..., lm be the lengths of the primitive NLFSRs where li’s are pairwise coprime

82

with each other. We denote by NLFSR-li the NLFSR of length li with feedback

function fi, which generates a span n sequence of period 2li − 1 that is denoted by

ai = {ai,j}j≥0. We choose the NLFSRs in such a way that the linear complexities

of the span n sequences are optimal or near-optimal. Let f be a Boolean function

in m variables. Using sequences ai’s and function f , we generate a new binary

sequence s = {sj} as

sj = f(a1,j, a2,j, ..., am,j), j ≥ 0. (6.1)

We note that the sequence s can be regarded as an output sequence of a combina-

torial generator with NLFSRs. The randomness properties of sequence s depend on

Boolean function f and primitive NLFSRs. We now present the period and linear

complexity of the binary sequence s below.

Proposition 6.1.1 Let l1, l2, ..., lm be the lengths of the NLFSRs which are coprime

with each other, then the period of the output sequence s is given by
m∏
i=1

(2li − 1).

The lengths of the NLFSRs are chosen to be co-prime with each other for achiev-

ing the maximum period of the sequence s. Assume that the algebraic degree of

f in Eq. (6.1) is k and the indices {ii, i2, ..., ik} appear in the leading monomial of

f . For the maximum linear span or complexity of sequence s, we make an arrange-

ment of k NLFSRs in descending order as li1 > li2 > · · · > lik . Then we have the

following proposition for the linear complexity.

Proposition 6.1.2 Let each NLFSR produces a span n sequence with optimal lin-

ear span (2li − 2), then the maximum linear complexity of sequence s is bounded

below by approximately
k∏
j=1

(2lij − 2) ≈ 2
∑k
j=1 lij for the above arrangement of the

NLFSRs. The exact linear complexity of sequence s is equal to f(2l1−2, · · · , 2lm−2).

For the NLFSR case, the proofs of the period and linear complexity can be done

in the same way as proved for the LFSR case in [62]. For details, we refer the reader

to [62].

83

Proposition 6.1.3 Let l1, l2, ..., lm be the lengths of the NLFSRs which are co-

prime with each other, then the number of occurrence of an m-tuple (x1, x2, ..., xm)

produced by m NLFSRs is equal to 1
2m

∏m
j=1(2

lj − 1 + (−1)xj+1), xj ∈ F2.

Proof We prove the result by the mathematical induction on m. Let m = 2. Let

a = {a0, a1, ..., aM−1} and b = {b0, b1, ..., bN−1} be two binary span n sequences of

period M = (2l1 − 1) and N = (2l2 − 1), respectively with gcd(M,N) = 1. We can

write these two sequences in the interleave form as
(a0, b0) (a1, b1) ... (aN−1, bN−1)

(aN , b0) (aN+1, b1) ... (a2N−1, bN−1)

(a2N , b0) (a2N+1, b1) ... (a3N−1, bN−1)

...

(a(M−1)N,b0) (a(M−1)N+1, b1) ... (aMN−1, bN−1)

 .

Denote δ = (M−1)(N−1)
22

. Then the number of (x, y), denoted as #(x, y), is given by

#(x, y) =


δ if x = 0, y = 0

δ + 2(M − 1) if x = 0, y = 1

δ + 2(N − 1) if x = 1, y = 0

δ + 2(M +N − 2) + 4 if x = 1, y = 1.

Therefore, the result is true for m = 2. We now show that the result is also true

for m = 3. Let c = {c0, c1, ..., cP−1} be another binary span n sequence with period

P = 2l3 − 1 which is co-prime to both M and N . We define a new sequence

AjN+i = (ajN+i, bi), 0 ≤ i ≤ N − 1, 0 ≤ j ≤M − 1 with period MN . In the similar

fashion we can write the sequences AjN+i and ci in the interleave form as
(A0, c0) (A1, c1) ... (AP−1, cP−1)

(AP , c0) (AP+1, c1) ... (A2P−1, cP−1)

(A2P , c0) (A2P+1, c1) ... (A3P−1, cP−1)

...

(A(MN−1)P , c0) (A(MN−1)P+1, c1) ... (AMNP−1, cP−1)

 .

84

From the interleave structure, the number of binary 3-tuple (x, y, z), denoted by

#(x, y, z), is calculated as

#(x, y, z) =
(M + (−1)x+1)(N + (−1)y+1)(P + (−1)z+1)

23

=
(2l1 − 1 + (−1)x+1)(2l2 − 1 + (−1)y+1)(2l3 − 1 + (−1)z+1)

23
.

We assume that the result is true for m = t. Assume that {Wi} is a t-tuple sequence

of period R =
∏t

i=1(2
li−1) and each t-tuple (x1, x2, ..., xt) occurs

∏t
i=1(2

li−1+(−1)xi+1)

2t

times. Let q = {qi} be a span n sequence of period Y = (2lt+1 − 1). We now form

a new sequence Si = (WjY+i, qi), 0 ≤ i ≤ Y − 1, 0 ≤ j ≤ R − 1 with period Y R,

and the sequence can also be written in the form of an interleave structure as the

above. The number of binary (t+1)-tuple (x1, x2, ..., xt, xt+1) is
∏t
i=1(2

li−1+(−1)xi+1)

2t
·

(2lt+1−1+(−1)xt+1+1)
2

as the sequence q contains (2lt+1−1+(−1)y+1)
2

y’s, y = 0, 1. Hence,

the result is true for m = (t + 1). Thus, any m span n sequences of periods

2li − 1 , 1 ≤ i ≤ m, where each li’s are co-prime to each other can be written in

the form of the interleave structure and the number of occurrence of an m-tuple

x = (x1, x2, ..., xm) is given by 1
2m

∏m
j=1(2

lj − 1 + (−1)xj+1). 2

When the number of occurrences of eachm-tuple is known, the imbalanced range

of an output sequence can be calculated from the truth table of the function f . The

imbalance range also depends on the arrangement of the NLFSRs. For sequence s,

the imbalance range needs to be minimized by keeping the linear complexity high.

The randomness properties of the output sequence s are summarized as follows:

1. The period P =
m∏
i=i

(2li − 1)

2. The linear complexity at least
k∏
j=1

(2lij − 2)

3. The imbalance range

∣∣∣∣∣∣ 1

2m

 ∑
x:f(x)=1

m∏
j=1

(2lj − 1 + (−1)xj+1)−
∑

x:f(x)=0

m∏
j=1

(2lj − 1 + (−1)xj+1)

∣∣∣∣∣∣.

85

We now produce a sequence t= {tk} over F2n from sequence s as

tk = (snk, snk+1, ..., snk+n−1) ∈ F2n , k ≥ 0

where n 6≡ 0 mod 3 since a WG transformation is defined over F2n when n 6≡ 0 mod

3.

Proposition 6.1.4 The period of sequence t over F2n is equal to Pt,

Pt =


n · P

gcd(n, P)
if n - P

P

n
if n | P

where P =
∏m

i=i(2
li−1). For the maximum period of sequence t, gcd(n, 2li−1) = 1

for all i, 1 ≤ i ≤ m.

Since the characteristics of F2 and F2n are the same, the linear complexity of

sequence t is bounded below by the linear complexity of sequence s [63]. We use

the sequence t in the nonlinear feedback WG generator for providing nonlinearity,

and to bound the period and linear complexity of the output sequence.

Remark 6.1.5 Span n sequences with optimal or near-optimal linear complexity

for the CMDB can be found by the structured search.

6.1.2 Description of the Nonlinear Feedback WG Genera-

tor

The nonlinear feedback WG generator of Warbler has two components, namely a

nonlinear recurrence relation and a WG transformation module. The nonlinear

recurrence relation is composed of a primitive polynomial, the feedback sequence t,

and one bit feedback from the WG module, and that is used to update the internal

state of the nonlinear feedback WG generator. Note that the WG transformation

module contains two WG transformations where one WG transformation is used

in the nonlinear recurrence relation and another one is used to filter the output

86

sequence. Let p(x) = c0 + c1x+ . . .+ cr−1x
l−1 + xl be a primitive polynomial over

F2n . Let z = {zi} be a sequence generated by an l-stage NLFSR whose nonlinear

recurrence relation is defined as

zl+i = c0zi + c1zi+1 + · · ·+ cl−1zl+i−1 + ti + wi, i ≥ 0 (6.2)

where wi = (0, 0, · · · , 0, g(zl−1+i)) and g is a WG transformation. The output

sequence o = {oi} of Warbler is obtained as

oi = WG(zl+i−1), i ≥ 0 (6.3)

whereWG(·) is a WG transformation defined in Section 3.4.1. The reason for choos-

ing WG transformations is that a WG transformation has excellent cryptographic

properties such as high algebraic degree, high nonlinearity, 2-level autocorrelation

and high linear span.

In Eq. (6.3), it can be noticed that each output bit oi is related to (n · m)

independent variables of the CMDB, since the function f is a function in m variables

and the sequence t is constructed by taking n bits from each NLFSR. This can also

be regarded as the CMDB is protected by a Boolean function with (n ·m) variables.

Property 4 The period of the output sequence o is a multiple of the period of

sequence t.

The proof of the above property follows from Theorem 3 of [58]. Moreover, the

linear span of the output sequence is greater than or equal to the linear span of

the sequence produced by the CMDB since the output sequence o can be written

in terms of the sequences s and z.

We obtain u-bit random numbers from the binary sequence o by taking disjoint

u-bit segments. Symbolically, u-bit random numbers {Rk}k≥0 are generated from

the output sequence o = {oi} as

Rk = (ouk, ouk+1, ..., ouk+u−1), k ≥ 0.

87

We denote by Warbler(L,m, n, l) an instance of the Warbler family, which con-

tains m primitive NLFSRs in the CMDB and the NLWGG is defined over F2n ,

and the total length of the internal state of the CMDB is L and the length of the

internal state of the NLWGG is (n · l). We present two lightweight instances, War-

bler(35, 2, 5, 6) and Warbler(62, 3, 5, 6), of the Warbler family in Chapters 7 and 8,

respectively. The parameters of the Warbler family are summarized in Table 6.1.

Table 6.1: Parameters description of the Warbler family
Description Parameters
Number of NLFSRs in the CMDB m
Length of NLFSR-li li
Feedback function of NLFSR-li fi
Combining function in the CMDB f
Finite field F2n n
Length of the NLFSR in the NFWGG l
Primitive polynomial in the NFWGG p(x)
Feedback function in the NFWGG g(x)
Filtering function WG(x)

6.2 Design Rationale

Warbler family is a lightweight PRNG family based on nonlinear feedback shift

registers, and is designed for smart devices such as RFID tags. The objective of

designing Warbler family is to design an NLFSR-based PRNG with guaranteed

randomness properties such as period and linear complexity. The strength of our

design is based on the difficulty of solving a large system of nonlinear multivariate

equations over the binary field, since an NLFSR-based PRNG can be reduced to

a system of nonlinear equations. The main reasons of employing NLFSRs in the

design are to thwart known cryptanalytic attacks such as algebraic attacks, cube

attacks, distinguishing attacks and discrete fourier transform (DFT) attacks against

stream ciphers, and make compatible to resource-constrained environments with

restriction on the speed, gate-count and power consumption. Another reason for

88

employing multiple NLFSRs in the CMDB is to generate shift distinct sequences,

using one NLFSR it is impossible to generate shift distinct sequences for different

initial states. Some applications, for instance the EPC C1 Gen2 standard, demand

the output sequences to be shift distinct. Since the nonlinear feedback functions

are used to update the internal states, the complexity of the algebraic attack would

be high, and the attack may not be better than the exhaustive search. In our

design, it is hard to determine the exact period and linear complexity of an output

sequence and that depend on the initial state of the PRNG. As a result, the powerful

DFT attack can be resisted. Since the CMDB determines randomness properties

of output sequences, the CMDB is protected by two functions f(x) and WG(x).

Moreover, the output sequence filtered by the WG transformation WG(x) is related

to the internal state of the NFWGG. Consequently, the divide-and-conquer attack

cannot be mounted easily. The reason for selecting the nonlinear feedback WG

generator is that a WG transformation has excellent cryptographic properties such

as high algebraic degree, nonlinearity, linear span and WG transformations can be

used for both feedback and filtering purposes.

6.3 Key Initialization Phase of Warbler

We note that the total number of bits in Warbler is (
∑m

i=1 li + l · n). Based on the

lengths of the key and the initial vector (IV), we divide the whole internal state

bits (
∑m

i=1 li + l · n) into two parts. The key can be uploaded at the predefined

positions and the IV at the remaining positions. The internal state of Warbler in

the initialization phase is updated as follows.

a1,l1+i = a1,i + f1(a1,1+i, a1,2+i, ..., a1,l1+i−1) + oi, i ≥ 0,

a2,l2+i = a2,i + f2(a2,1+i, a2,2+i, ..., a2,l2+i−1) + oi, i ≥ 0,

...
...

am,lm+i = am,i + fm(am,1+i, am,2+i, ..., am,lm+i−1) + oi, i ≥ 0,

si+n−1 = f(a1,i, a2,i, ..., am,i), sj = 0, 0 ≤ j ≤ n− 2, i ≥ 0,

89

ti = (si, ..., si+n−1) ∈ F2n , i ≥ 0,

zl+i = c0zi + c1z1+i + · · ·+ cl−1zl+i−1 + ti + wi, i ≥ 0,

o1+i = WG(zl+i−1), o0 = 0, i ≥ 0.

Let ` = max{l1, l2, ..., lm, l} be the maximum value among the lengths of the NLF-

SRs. We must apply the above initialization process for 2` rounds. The purpose

of the key initialization phase is to make a complex algebraic relation among the

key and IV bits. After ` rounds, all the key bits and IV bits would be in each

NLFSR as the output bit oi is fed in each NLFSR and the sequence t is added

to the NFWGG. We remember that the construction of sequence t in the running

phase and the initialization phase is different.

6.4 Optimal Security Conditions for the Warbler

Family

This section provides a list of criteria for choosing the parameters for an Warbler in-

stance in order to offer a maximum level of security. In [77], Mandal et al. proposed

a set of criteria for choosing the optimal parameters for a WG transformation in

the WG cipher family. As Warbler contains the NFWGG, the criteria for choosing

the parameters of an Warbler PRNG is a combination of the criteria for choosing

parameters of the NLFSRs in the modified de Bruijn block and the criteria for

optimal parameters of WG transformations. The parameters for an Warbler PRNG

are chosen as follows.

1. The lengths of the primitive NLFSRs in the CMDB should be as large as

possible, and the number of NLFSRs in the CMDB should be as small as

possible.

2. The linear span or linear complexity of a span n sequence generated by

NLFSR-li should be optimal (2li−2) or near-optimal (2li−2−k), k << 2li−1.

3. The combining function f in Eq. (6.1) should have large algebraic degree,

90

correlation immunity, algebraic immunity, nonlinearity, and balance prop-

erty. The algebraic degree and balance property of f determine the linear

complexity and imbalanced range of the output sequence s. Moreover, the

high algebraic immunity and nonlinearity ensure the high linear complexity

of the sequence. In other words, it prevents from approximating the output

sequence to a low linear complexity as well as a low period sequence. Fur-

thermore, the function must be chosen carefully so that the period and linear

complexity of sequences produced by the CMDB cannot be reduced by setting

an initial state to some special initial states, for example weak initial states.

4. The WG transformation used for the feedback purpose should have maxi-

mum algebraic degree as it would help to prevent algebraic attacks and cube

attacks.

5. The WG transformation used for the filtering purpose must have the maxi-

mum algebraic degree and maximum algebraic immunity.

6. The WG transformation used for the filtering purpose should have nonlinear-

ity as large as possible.

7. The WG transformation used for filtering should have low k-normal value as

for large values k the internal state will have large bias. This condition is for

resisting Mihaljević et al.’s attack.

Three criteria (4)− (6) for the WG transformations are presented in [77].

6.5 Summary of Chapter 6

This chapter presented a family of pseudorandom number generators, named War-

bler family for smart devices. Warbler family is a purely nonlinear feedback shift

register based PRNG family with desirable randomness properties. Randomness

properties of the output sequence of the Warbler family are derived. Parameter

selection criteria for the Warbler family are proposed for offering a maximum level

of security against known attacks. Two lightweight instances, Warbler(35, 2, 5, 6)

91

and Warbler(62, 3, 5, 6), of Warbler family are presented in Chapters 7 and 8, re-

spectively. It is worth to mention that the Warbler family is a general family, which

can be applied to the case that requires higher security level by choosing suitable

parameters.

92

Chapter 7

Warbler-I: A Lightweight PRNG

for the EPC C1 Gen2 RFID Tags

This chapter presents an instance, Warbler(35, 2, 5, 6), of the Warbler family, named

Warbler-I based on nonlinear feedback shift registers for low-cost EPCglobal Class-1

Generation-2 (EPC C1 Gen2 in short) RFID tags. The EPC C1 Gen2 standard

uses a couple of 16-bit random numbers in the tag identification protocol for iden-

tifying tags [29]. In Section 7.1, we review the previous proposals for the PRNG in

compliance to the EPC C1 Gen2 RFID tags . Then, we describe the details of the

design of Warbler-I in Section 7.2. In Section 7.3.1, the security properties of the

proposed PRNG are analyzed in great detail by employing cryptographic statistical

tests specified by the EPC C1 Gen2 standard as well as the NIST test suite. Vari-

ous cryptanalysis techniques have been applied to demonstrate the attack resistant

properties of the proposed PRNG in Section 7.3.2. Furthermore, a hardware im-

plementation on a Xilinx Spartan-3 FPGA device shows that the new PRNG can

be implemented using 46 slices. The details of the hardware implementation can

be found in [72]. Section 7.6 summarizes the contribution of this chapter. The

research results of this chapter have been published in [72–74]. In [72,74], Warbler-I

is known by the name Warbler.

93

7.1 Motivation and Related Work

For most RFID applications, the security and privacy are important and even cru-

cial requirements [60]. Since most protocols for securing RFID systems proposed

so far are based on the usage of an on-board true random and/or pseudorandom

number generator (TRNG/PRNG), a number of solutions have been proposed in

the literature for implementing TRNGs/PRNGs on RFID tags [4,18,57,85,97]. All

of the proposals for TRNGs are based on analog circuits that sample a random

physical phenomenon like thermal noise. To the best of our knowledge, only three

PRNGs have been proposed for the EPC C1 Gen2 passive tags [18, 85, 97], among

which two proposals use TRNGs as a component and the security properties of

those two PRNGs rely on the security of TRNGs. The motivation for designing

Warbler-I is to reduce the high power consumption and area, and to increase the

throughput of the PRNG. The basic idea of our design is to replace the TRNG

in [18,85] by a lightweight pseudorandom sequence generator with good statistical

properties.

7.1.1 Che et al.’s PRNG

Che et al. [18] designed a PRNG based on a combination of an oscillator-based

TRNG and a linear feedback shift register (LFSR) with 16 stages. In their design,

the TRNG is implemented using an analog circuit and exploits thermal noise of the

circuit. To introduce randomness, one truly random bit from the TRNG is XORed

with each bit of a 16-bit sequence generated from the LFSR. In 16 clock cycles, a

16-bit random number is generated by the PRNG. Due to the linear structure, Che

et al.’s scheme has been attacked by Melia-Segui et al. in [85] with a high success

probability (n+1)
8n

, where n is the length of the LFSR.

7.1.2 Melia-Segui et al.’s PRNG

To avoid such an attack on Che et al.’s PRNG, Melia-Segui et al. [85] proposed a

similar design by employing multiple primitive polynomials instead of one in the

94

LFSR. The design consists of a true random source, a module with eight primitive

polynomials, and a decoding circuit taking inputs from the true random source,

where the decoding circuit is designed in such a way that the same primitive poly-

nomial is not chosen consecutively. At each clock cycle, one primitive polynomial

is chosen according to the decoding logic and true random bits for producing a

pseudorandom bit. Thus, the PRNG produces a 16-bit random number in 16 clock

cycles, and the security of the PRNG relies on the TRNG. Recently, Melia-Segui et

al. [86] proposed J3Gen which contains four instances of PRNG for different lengths

of the LFSR with different numbers of primitive polynomials. The design principle

of J3Gen is also based on an LFSR with multiple primitive polynomials and a true

random source. The security properties of all PRNGs are analyzed by performing

the statistical tests proposed by the EPC C1 Gen2 standard.

7.1.3 Peris-Lopez et al.’s PRNG

In [97], Peris-Lopez et al. proposed a PRNG named LAMED for RFID tags, which

is in compliance with the EPC C1 Gen2 standard and can provide 32-bit as well

as 16-bit random numbers. The basic operations for updating the internal state of

LAMED consist of bitwise XOR operations, modular algebra, and bit rotations. The

internal state of the LAMED is of 64-bit, including a 32-bit key and a 32-bit initial

vector. The key length can be further increased by replacing the IV bits with the

key bits. Note that LAMED always outputs a 32-bit random number and a 16-bit

random number is obtained by dividing 32-bit number into two equal halves and

XORing them together.

7.2 Description of Warbler-I

Warbler-I is an NLFSR-based PRNG, which is composed of two main building

blocks. The first one consists of two NLFSRs of length 17 and 18 over F2, each

one generating a span n sequence or modified de Bruijn sequence with optimal

linear complexity, whereas the second one includes a NLFSR over F25 and each

NLFSR uses one or two WG transformations. In our design, the binary sequence

95

generated by the first building block is converted to a sequence over F25 and this

sequence is used in the recurrence relation in the second building block. The final

output sequence is filtered by the WG transformation and n-bit random numbers

are generated by taking disjoint n-bit sequences from the final output sequence. A

high-level architecture of the proposed PRNG is illustrated in Figure 7.1.

1

5

PRS

NLFSR6

 Building Block I,
 CMDB

 Building Block II,
 NFWGG

WG5

 WG5
5

NLFSR18
. . .

b0 b17

a0 a5

WG5

NLFSR17
. . .

c0 c16

1

5

NLFSR6

WG5

WG5
5

NLFSR18
. . .

b0 b17

a0 a5

WG5

NLFSR17
. . .

c0 c16

(a) Running Phase (b) Key Initialization Phase

 WG5 WG5

γ γ

1 1

 Buffer Buffer

Figure 7.1: A diagram of Warbler-I for EPC C1 Gen2 tags

7.2.1 WG-5 Transformation

Finite field F25 = GF (25) is defined by a primitive element α such that p(α) = 0

where p(x) = 1 + x + x3 + x4 + x5 is a primitive polynomial over F2. The trace

function, from F25 → F2, is given by Tr(x) = x+ x2 + x2
2

+ x2
3

+ x2
4
. For m = 5,

the WG permutation is

WGP5(x) = x+ (x+ 1)5 + (x+ 1)13 + (x+ 1)19 + (x+ 1)21, x ∈ F25 ,

and the WG transformation over F25 , denoted by WG-5, is given by

WG(x) = f(x) = Tr(WGP5(x)) = Tr(x19), x ∈ F25 .

96

7.2.2 Building Block I: An Alternative to TRNG

The first building block contains two NLFSRs whose lengths are chosen to be

co-prime in order to achieve the maximum period. The reason that two shorter

NLFSRs are used instead of a long one is due to the impossibility of generating shift

distinct sequences from a long NLFSR for different initial states. In other words,

by XORing the output sequences from two NLFSRs we can obtain shift distinct

sequences for different initial states. In our design, the WG transformation WG-5

over F25 is used as a nonlinear feedback function to generate span n sequences. We

use the nonlinear recurrence relation for the structured search defined in Chapter 4

to generate span n sequences. Let b = {bi} be a binary sequence generated by an

n-stage NLFSR which is defined as

bn+k = bk ⊕ f(xd), x = (br1+k, br2+k, . . . , br5+k) ∈ F25 , bi ∈ F2 (7.1)

for all k ≥ 0, and 0 < r1 < r2 < . . . < r5 < n are tap positions of the NLFSR,

where ⊕ denotes addition over F2. Using the parameters in Table 7.1 and recurrence

relation (7.1), we can generate two span n sequences b = {bi}i≥0 and c = {ci}i≥0
with NLFSR18 and NLFSR17, respectively. These two span n sequences are obtained

by the structured search in Chapter 4. The output sequence of the first building

block is denoted by s = {si | si = bi ⊕ ci, i ≥ 0}, which is almost balanced and has

the following statistical properties:

a) The period is (218 − 1)(217 − 1) ≈ 235;

b) The imbalance range is 4; and

c) The linear span is (217 − 2 + 218 − 2) ≈ 218.585.

For different initial states of the NLFSRs, the number of shift distinct sequences

(s) is (218 − 1)(217 − 1)− 2.

We now generate a new sequence t= {tk}k≥0 over F25 from s as follows

tk = (s5k, s5k+1, s5k+2, s5k+3, s5k+4) ∈ F25 ,∀k ≥ 0.

97

Table 7.1: Parameters and statistical properties of two primitive NLFSRs
NLFSR Length Decimation Primitive polynomial Tap positions Period Linear

n d p(x) to generate F25 (r1, r2, r3, r4, r5) Span
NLFSR18 (b) 18 3 1 + x+ x3 + x4 + x5 4, 7, 8, 10, 15 218 − 1 218 − 2
NLFSR17 (c) 17 3 1 + x+ x3 + x4 + x5 4, 7, 8, 9, 12 217 − 1 217 − 2

Table 7.2: Cryptographic properties of WG-5 transformations used in Warbler-I
f(x), p(x) to define F25 Cryptographic Properties
f(x), 1 + x+ x3 + x4 + x5 deg(f) = 3, AI(f) = 3, NLf = 12
f(x3), 1 + x+ x3 + x4 + x5 deg(f(x3)) = 3, AI(f(x3)) = 3, Nf(x3) = 12

The period of the sequence t equals 237.32. Note that the sequence t is a shift

distinct sequence for different initial states of the NLFSRs and the linear complexity

of sequence t is bounded below by 218.58 [63]. The sequence t is used in the second

building block for introducing nonlinearity in the recurrence relation in each 5 clock

cycles (see Section 7.4 for details). This building block is used as an alternative to

the TRNG in [18,85].

7.2.3 Building Block II: Pseudorandom Number Generator

The second building block consists of an NLFSR and two WG transformation mod-

ules given by f(x) and f(x3), respectively. Letting the length of NLFSR6 be l = 6

and the primitive polynomial be g(x) = x6 + x + γ, where γ = α15 ∈ F25 , the

recurrence relation is defined as

ak+6 = γak + ak+1 + wk + tk, ai ∈ F25 , wk = (0, 0, 0, 0, f(ak+5)), k ≥ 0, (7.2)

where wk is the nonlinear feedback with the least signification bit generated by

WG transformation f(x) and t = {tk}k≥0 is the sequence over F25 that is defined

in the previous subsection. While the WG transformation f(x) is only used as a

nonlinear feedback function in NLFSR6, the WG transformation f(x3) is employed

as a nonlinear feedback for NLFSR18 and NLFSR17 as well as to filter the output

98

sequences. The cryptographic properties of the WG transformations f(x) and f(x3)

are provided in Table 7.2. In the above recurrence relation (7.2), the nonlinearity

is introduced by tk and wk and those feedback will affect other bit positions after

multiplying by γ. Note that the period of the sequence a = {ak}k≥0 is a multiple of

the period of t. Moreover, the final output sequence o = {ok} of the second building

block is defined by ok = f(a35+k), for k ≥ 0, where f is the WG transformation. The

period of o is a multiple of 237.32 and the linear complexity of o is lower bounded

by the linear complexity of t. The 16-bit random numbers {RNk}k≥0 are obtained

using sequence {ok} as follows

RNk = (o16k, o16k+1, · · · , o16k+15), k ≥ 0.

7.2.4 System Initialization of Warbler-I

The proposed PRNG has an internal state of 65 bits, including a 45-bit secret

seed as well as a 20-bit initial vector (IV). While the secret seed and the IV are

preloaded into RFID tags at the very beginning, the 20-bit IV is also updated at

the end of each protocol session. Before generating random numbers, a 36 rounds

of initialization phase is applied to mix the key and IV properly. In our design,

the secret seed and IV are preloaded as follows: the first consecutive 12, 11 and 22

positions of NLFSR18, NLFSR17 and NLFSR6 are respectively reserved for key bits,

whereas the remaining positions in each NLFSR are for the IV. The initialization

process is illustrated in Figure 7.1 (b). During the initialization phase the internal

states of the three NLFSRs are updated as follows:

bk+18 = bk ⊕ f(x3)⊕ ok, x = (bk+4, bk+7, bk+8, bk+10, bk+15), k ≥ 0, o0 = 0,

ck+17 = ck ⊕ f(y3)⊕ ok, y = (ck+4, ck+7, ck+8, ck+9, ck+12), k ≥ 0, o0 = 0,

sk+4 = bk ⊕ ck, k ≥ 0, sj = 0, j = 0, 1, 2, 3,

tk = (sk, sk+1, sk+2, sk+3, sk+4), k ≥ 0,

ak+6 = γak + ak+1 + wk + tk, wk = (0, 0, 0, 0, f(ak+5)), k ≥ 0,

ok+1 = f(a35+k), k ≥ 0

99

where bk+18, ck+17 and ak+6 are the updated values of NLFSR18, NLFSR17 and

NLFSR6, respectively, and wk is generated by the WG transformation f(x). Se-

quence {sk} is the XOR of two output bits from NLFSR18 and NLFSR17 and five

consecutive sk’s are collected to form a 5-bit vector tk. The output ok of NLFSR6

is used as a nonlinear feedback to affect the internal states of both NLFSR18 and

NLFSR17.

Remark 7.2.1 The 20-bit IV can be generated from the initial SRAM state of

tags when tags are powered up (see [57]). The entropy of IV can also be increased

by employing the von Neumann technique, which can be efficiently implemented in

hardware [109]. However, the implementation of these components needs additional

hardware support.

7.3 Security Analysis of Warbler-I

The security analysis of the proposed PRNG is conducted in two steps. In the first

step, we performed all cryptographic statistical tests that are specified in the EPC

C1 Gen2 standard [29] and the NIST standard [103] on several sets of pseudoran-

dom sequences generated by the proposed PRNG with different initial states. In

the second step, we investigate the attack resistant properties of the new PRNG

by launching the algebraic attacks, cube attacks, and time-memory-data tradeoff

attacks.

7.3.1 Randomness Analysis of the PRNG

According to the EPC C1 Gen2 standard, a true random or pseudorandom number

generator must satisfy the following three statistical properties:

– Probability of a single sequence: The probability that any 16-bit random

sequence (RN16) drawn from the PRNG has value j, shall be bounded by
0.8
216

< Pr(RN16 = j) < 1.25
216

, for any j.

100

– Probability of simultaneously identical sequences: For a tag popula-

tion up to 10, 000, the probability that any of two or more tags simultaneously

generate the same sequence of bits shall be less than 0.1%, regardless of when

the tags are energized.

– Probability of predicting a sequence: A sequence drawn from the PRNG

10ms after the end of transmission shall not be predictable with a probability

grater than 0.025% if the outcomes of prior draws from the PRNG, performed

under identical conditions, are known.

We implemented our PRNG in software for checking whether the proposed

PRNG meets the above three criteria. To verify the first criterion, we generated 18

different test sequences for different initial states of the NLFSRs and calculated the

probability of occurrence of 16-bit numbers. Our experimental results show that

the probability of any 16-bit number j, i.e., Pr(RN16 = j) lies between 0.9409
216

and
1.0693
216

, which are better bounds than those obtained in [85]. The upper and lower

bounds of probability values for different tests are given in Table 7.3a. With respect

to the second criterion, our PRNG can generate up to 245−1 shift distinct sequences

for different keys to each tag, since the sequence t generated in Section 7.2.2 is shift

distinct. Thus the probability that any two tags will generate the same sequence

with period at least 237.32 is ≈ 2−45 that is much less than 0.1%. For the third

criterion, given a 16-bit random number, an attacker can recover the internal state

of NLFSR6 with probability 2−24 after getting 80 bits of the sequence s. To obtain

the next 16-bit random number from the given one, the adversary needs to know

the next consecutive 80 bits of the sequence s and the internal state of NLFSR6.

The 80 bits can be obtained either by guessing or obtaining about 218.58

5
= 216.26

consecutive random numbers. Due to the high linear span of the sequence s, it is

impossible to generate the next consecutive 80 bits from previous known 80 bits

in practice. Furthermore, it is also difficult for an adversary to intercept 216.28

consecutive random numbers in one protocol session because the communication

session in RFID systems is usually quite short and the IV is different. Moreover,

the secret seed can also be updated for different sessions. Hence, the attacker can

101

guess the next 16-bit random number with the better probability 2−16, which is

much less than 0.025% as specified in the EPC C1 Gen2 standard.

To measure the linear dependency between an n-bit output and the previous

n-bit output, we performed a serial correlation test [65] on the sequences generated

by the PRNG. We generated 18 distinct sequences for different initial values of the

NLFSRs, each one is of size 226 bytes and calculated the serial correlation coefficient

for 1-bit, 1-byte and 2-byte lag. Our experimental results demonstrate that the

serial correlation coefficients are close to zero, which indicates the good randomness

of the generated sequences. The serial correlation coefficients for different sequences

are given in Table 7.3b.

Table 7.3: Successful fulfillment of the requirements of the EPC C1 Gen2 standard
(a) The first requirement

Sequences Upper Lower
S1 1.0471 0.9497
S2 1.0476 0.9530
S3 1.0444 0.9555
S4 1.0693 0.9517
S5 1.0468 0.9537
S6 1.0440 0.9545
S7 1.0457 0.9550
S8 1.0454 0.9560
S9 1.0533 0.9550
S10 1.0483 0.9544
S11 1.0541 0.9532
S12 1.0456 0.9514
S13 1.0487 0.9493
S14 1.0494 0.9523
S15 1.0506 0.9550
S16 1.0302 0.9850
S17 1.0499 0.9505
S18 1.0533 0.9409

(b) The third requirement

Sequences 1-bit 1-byte 2-byte
S1′ 0.000098 -0.000080 -0.000061
S2′ -0.000012 0.0000025 -0.000055
S3′ 0.000094 -0.000064 -0.000006
S4′ -0.000075 0.000106 -0.000046
S5′ 0.000057 0.000041 -0.000041
S6′ -0.000012 0.000012 0.000078
S7′ -0.000063 -0.000028 0.000080
S8′ 0.000025 0.000085 0.000032
S9′ -0.000002 -0.000005 -0.000042
S10′ 0.000082 -0.000023 0.000023
S11′ 0.000045 -0.000033 0.000046
S12′ 0.000030 0.000026 0.0000012
S13′ -0.000006 0.000101 0.000071
S14′ -0.000053 -0.000047 0.000036
S15′ -0.000075 -0.000091 -0.000086
S16′ 0.000015 0.000004 -0.000106
S17′ -0.000091 0.000025 -0.000067
S18′ 0.000012 -0.000028 -0.000043

Different from the statistical tests in the EPC C1 Gen2 standard, the NIST test

suite contains 15 demanding statistical tests for characterizing the randomness of

a binary sequence. According to the NIST specification [103], a PRNG passes the

102

test suite successfully if it passes all the tests simultaneously with a proportion of

96%. In our experiment, 10 test sequence (TS) sets are generated, each of which

has 100 different sequences with different initial values and each sequence has a

length of 225. We computed the proportion values for each TS set and listed the

test results2 for 5 TS sets in Table 7.4. It is not difficult to find out that each TS

set can pass the NIST test suite successfully.

Table 7.4: NIST test suite results of our proposal
Tests TS1 TS2 TS3 TS4 TS5

proportion proportion proportion proportion proportion
Frequency 0.97 1.00 0.99 0.98 1.00
Block-frequency 0.99 1.00 0.98 0.99 1.00
Cumulative-sum 0.97, 1.00 1.00, 1.00 0.97, 0.97 0.99, 0.99 0.99, 1.00
Runs 1.00 0.98 1.00 0.99 1.00
Longest-run 0.98 1.00 0.98 0.99 0.98
Rank 0.99 1.00 0.99 1.00 0.99
DFT 1.00 1.00 0.98 1.00 0.99
Overlapping-templates 0.96 0.97 0.97 0.97 0.99
Universal-stat. 0.99 0.98 1.00 1.00 0.99
Approx. entropy 0.99 1.00 0.98 0.97 0.99
Serial 0.99, 0.98 0.98, 0.98 1.00, 1.00 1.00, 1.00 0.99, 1.00
Linear-complexity 0.99 0.99 0.98 0.99 0.99
Random-excursions 0.97, 0.9 0.98, 1.00 0.98, 1.00 1.00, 0.99 0.99, 0.97

0.97, 0.97 0.98, 0.97 1.00, 0.99 1.00, 0.98 0.98, 0.97
0.98, 1.00 0.97, 0.97 1.00, 0.99 0.98, 0.97 0.99, 1.00
0.97, 0.96 0.98, 0.97 0.98, 0.97 0.99, 0.98 1.00, 0.99

Random-excur-variant 0.98, 0.98, 0.98 1.00, 1.00, 1.00 1.00, 1.00, 1.00 0.99, 0.98, 0.99 0.98, 0.97, 0.99
0.98, 0.98, 0.98 1.00, 0.97, 1.00 1.00, 1.00, 0.99 1.00, 1.00, 1.00 1.00, 1.00, 0.99
1.00, 1.00, 0.99 1.00, 0.98, 0.98 1.00, 1.00, 1.00 1.00, 1.00, 1.00 0.99, 1.00, 0.99
1.00, 1.00, 1.00 0.98, 0.98, 0.98 1.00, 1.00, 1.00 0.99, 1.00, 0.99 0.99, 0.99, 1.00
0.98, 0.98, 0.98 0.98, 0.96, 0.96 1.00, 1.00, 1.00 0.97, 0.98, 1.00 1.00, 0.98, 1.00
1.00, 1.00, 1.00 0.98, 0.98, 0.98 1.00, 0.99, 0.99 0.97, 0.96, 0.96 1.00, 0.99, 0.98

7.3.2 Cryptanalysis of Warbler-I

In this subsection, the attack resistant properties of the PRNG are investigated

by considering the algebraic attacks, cube attacks, and time-memory-data tradeoff

attacks in detail. Since our PRNG uses nonlinear feedback shift registers over

2 Non-overlapping template matching test results are not given in Table 7.4 because of 148
entries. However, the proposed PRNG has passed the test successfully.

103

different fields, we also explain below why the correlation attacks [84], Discrete

Fourier Transformation (DFT) attacks [46], and differential attacks [110] are not

applicable.

Algebraic Attack

Algebraic attack [20] is a powerful attack against stream ciphers. In our PRNG de-

sign, nonlinear feedback functions are used to update the internal states of different

NLFSRs and the output bits are filtered by the WG transformation. Noting that

the length of the internal state of the PRNG is 65-bit and the length of the secret

key is 45-bit, one can reduce the PRNG to a system of linear equations with about

245 unknown variables, which can be solved by approximately 7
64
· (245)log2 7 opera-

tions. As a result, the algebraic attack is not better than the exhaustive search in

this case.

Cube Attack

Cube attack [24] is a generic key-recovery attack that can be applied to any cryp-

tosystem, provided that the attacker can obtain a bit of information that can be

represented by a low-degree decomposition multivariate polynomial in Algebraic

Normal Form of the secret and public variables of the target cryptosystem. Ac-

cording to the cube attack, our PRNG can be regarded as a system of multivariate

polynomials p(k1, ..., k45, v1, v2..., v20) with public IV variables v1, v2, ..., v20 and se-

cret key variables k1, k2, . . . , k45. The polynomial

p(k1, ..., k45, v1, v2..., v20) = tI · pS(I) + q(k1, ..., k45, v1, v2..., v20)

is called a master polynomial, where tI = vi1vi2 · · · vik is a monomial with {i1, i2, ..., ik}
⊆ {1, 2, ..., 20} and pS(I) is called a superpoly of tI in p. The term tI is called a

maxterm if deg(pS(I)) = 1. We implemented the cube attack against our PRNG

in CUDA and exploited the power of a GPU (i.e, a Tesla C2070 from NVIDIA) for

accelerating the computation significantly. We took the first output bit after the

36-round initialization phase in order to find the maxterms in the master polyno-

104

mial and performed an exhaustive search over all possible cube dimensions ranging

from 1 to 20. Our experiment was run for around 46 days on Tesla C2070 to ex-

haust all cube dimensions, but we did not find any linear and quadratic superpoly

equations for different cube dimensions.

Time-Memory-Data Tradeoff Attack

Time-memory-data tradeoff attack is a generic cryptanalytic attack which can be

applied to any cipher. In a stream cipher, the complexity of a time-memory-data

tradeoff attack depends on the length of the internal state, which is given by O(2
n
2),

where n is the length of the internal state [6]. We note that a stream cipher with

low sampling resistance is vulnerable to a more flexible time-memory-data tradeoff

attack. In our PRNG, the WG transformation is the filtering function as well as

the internal state update function and the number of terms in the algebraic normal

form representation of the WG transformation is 15, among which only two terms

are linear and the remaining terms are either quadratic or cubic. Only by fixing

four input variables in the WG transformation, one can obtain a linear function in

one variable. Thus, the sampling resistance of the proposed PRNG is high. Since

the length of the internal state is 65-bit in our PRNG, the expected complexity of

the time-memory- data tradeoffs attack is O(2l), where l = 32.5.

Other Attacks

In the fast correlation attacks [84], the internal state of an LFSR based stream

cipher can be recovered by first determining a system of linear equations according

to a statistical model and then solving the system of linear equations. In our PRNG,

the internal state is updated in a nonlinear way. Thus it is hard for an attacker to

decide such a system of (non-)linear equations according to some statistical models.

For an LFSR based stream cipher, the DFT attacks [46] can be applied when

the exact linear complexity of the output sequence and enough consecutive output

bits are known. In our PRNG, the exact linear complexity of the output sequence

is not known and hard to determine. Therefore, the DFT attacks cannot be applied

105

to our PRNG. Moreover, in the EPC C1 Gen2 standard protocol, it is hard for an

attacker to obtain enough consecutive bits.

A chosen IV attack on the original version of WG cipher was presented in

[110], where one can distinguish several bits of the output sequence by building

a distinguisher based on differential cryptanalysis. In our PRNG, two nolinear

terms wk and tk (i.e., an output from the WG transformation and a 5-bit tuple

generated by the first building block) are added to the recurrence relation. Thus

the differentials after 36 rounds of the initialization phase will contain most internal

state bits. As a result, it would be hard for an attacker to distinguish output bits

generated by the proposed PRNG.

7.4 Hardware Implementation of Warbler-I

To demonstrate the hardware complexity of the proposed lightweight PRNG, the

PRNG module is implemented in VHDL for the low-cost Spartan-3 XC3S50 (Pack-

age PQ208 with speed grade -5) FPGA device from Xilinx, and our results are

compared with other reported lightweight PRNG implementations. The hardware

implementation shows that the proposed PRNG core totally occupies 46 slices (12

and 34 slices for building blocks I and II, respectively) on the target FPGA device

and achieves a throughout of 45 Mbps. For the details of the implementation, we

refer the reader to [72].

Table 7.5 presents a comparison with other PRNGs in terms of the hardware

implementation and achieved randomness properties. One can notice that our

PRNG has a lower hardware complexity than that in [97]. When compared to the

PRNG proposed in [85], our design costs a similar number of logic gates with the

usage of two NLFSRs replacing the TRNG in [85]. However, if we only compare

the hardware implementation cost for the pseudorandom number generator module

(i.e., the building block II in our design) in both proposals, our design only needs

a half number of logic gates as that in [85]. Although the hardware complexity of

our PRNG is slightly larger than that of SPONGENT-80, our design can provide

desirable randomness properties such as period and linear complexity that cannot

106

be guaranteed by SPONGENT-80. For AKARI-1/2, the implementation cost of an

instance depends on the length of the output random number, and in Table 7.5,

we present the hardware implementation cost for the instances that generate 16-bit

random numbers.

Table 7.5: A comparison with other PRNGs
Functions Size of the Area Device Randomness Properties

internal state Period LS
Warbler-I 65 46 Slices/760 GE (est.) XC3S50-PQ208 ≥ 237.32 ≥ 218.58

LAMED [97] 64 1585 GE (est.) – – –
Melia-Segui et al. [85] 16 761 GE (est.) – – –
SPONGENT-80 [7] 88 738 GE 0.13 µm CMOS – –
AKARI-1 A/B [78] 64 1018 (GE)/922 (GE) 90 nm CMOS – –

AKARI-2 A/B/C [78] 128 1861/1650/1620 (GE) 90 nm CMOS – –

7.5 Applications in RFID Systems

We have designed Warbler-I for the low-cost EPC C1 Gen2 passive RFID tags.

Warbler-I can be used to generate 16-bit random numbers in the tag identification

protocol. Warbler-I passed all the statistical tests specified the EPC C1 Gen2 stan-

dard as well as the NIST standard. Our PRNG is also resistant to the cryptanalytic

attacks against stream ciphers.

In terms of the time delay for generating the first 16-bit pseudorandom number,

our design totally requires 134 clock cycles, including 18 clock cycles for loading key

and IV, 36 clock cycles for the initialization, and 80 clock cycles for generating the

first 16-bit random number. After that, each 16-bit random number can be obtained

every 80 clock cycles. Assuming that the EPC tags run at the clock frequency of

100 KHz and two 16-bit random numbers are needed for the tag identification

protocol according to the EPC C1 Gen2 standard, one can identify about 510 tags

in one second by using the proposed lightweight PRNG. Warbler-I perfectly meets

the requirements on the gate-count/area and the security of the EPC C1 Gen2

standard.

Remark 7.5.1 In the proposed PRNG, we can update the 45-bit key at the end

107

of each session by generating 45 extra bits in 225 clock cycles and these 45 bits will

be loaded at proper aforementioned key positions. This key updating procedure

can be used to provide better security. In this way it is possible to generate at least

216.26 × 220 consecutive random numbers for one key and for different IVs.

7.6 Summary of Chapter 7

In this chapter, we proposed a lightweight pseudorandom number generator, War-

bler-I, which is in compliance to the EPC Class-1 Generation-2 standard and has

guaranteed randomness properties such as period and linear span. Considering the

high power-consumption, large area and low throughput of TRNGs, we replace the

TRNG used in previous works by a PRNG with good statistical properties. In

our design, the pseudorandom sequence is generated using a nonlinear feedback

shift register. Moreover, the statistical tests specified by the EPC C1 Gen2 and the

NIST standards, algebraic attacks, cube attacks and time-memory-data tradeoff at-

tacks are employed to characterize the security properties of the proposed PRNG.

A comparison with the sponge-based PRNGs is also conducted. In addition, an

FPGA implementation shows that the proposed PRNG can be implemented using

46 slices (approximately 760 GE) and can generate a 16-bit random number every

80 clock cycles after an initialization process of 36 clock cycles.

108

Chapter 8

Warbler-II: A Lightweight PRNG

for RFID Tags

In this chapter, we present another instance, Warbler(62, 3, 5, 6), of the Warbler fam-

ily, named Warbler-II, which contains three primitive NLFSRs in the combination of

modified de Bruijn blocks, and one NLFSR over F25 of length 6 in the NFWGG. The

goal of designing Warbler-II is to offer a better security level compare to Warbler-I.

In Section 8.1, we describe the mathematical details and the details of the running

and initialization phases of Warbler-II. Randomness properties of output sequences

produced by Warbler-II are derived. We present a security analysis of Warbler-II in

great detail, which is twofold. First, we perform the cryptographic statistical tests

recommended by the EPC C1 Gen2 standard and NIST in Section 8.2.1. Then,

in Section 8.2.2, we apply several cryptanalytic attacks such as algebraic attacks,

cube attacks, time-memory-data tradeoff attacks and Mihaljević et al.’s attacks

against Warbler-II. In addition, an implementation of Warbler-II in VHDL for the

low-cost Spartan-3 XC3S50 FPGA device shows that the PRNG requires about 58

slices. Finally, we conclude this chapter in Section 8.6. The research results in this

chapter can be found in [75].

109

8.1 Description of Warbler-II

This section presents the design details of Warbler-II. The CMDB of Warbler-II

contains three NLFSRs, and the construction of Warbler-II is also based on the

WG transformations over F25 . The length of the internal state of the PRNG is 92

bits including 60-bit for the secret key and 32-bit for the initial vector. Our second

PRNG is dedicated to the passive RFID tags. An overview of the architecture of

Warbler-II is provided in Figure 8.1.

1

5

PRS

NLFSR6

WG5

 WG5
5

NLFSR21
. . .

λ0 λ20

z0 z5

WG5

NLFSR19
. . .

μ0 μ18

(a) Running Phase

 WG5

γ

1

WG5

NLFSR22
. . .

ζ0 ζ21

1

1

1

5

NLFSR6

WG5

 WG5
5

NLFSR21
. . .

λ0 λ20

z0 z5

WG5

NLFSR19
. . .

μ0 μ18

(b) Initialization Phase

 WG5

γ

1

WG5

NLFSR22
. . .

ζ0 ζ21

1

1

f f

Figure 8.1: A block diagram of Warbler-II

8.1.1 Mathematical Functions of Warbler-II

In this section, we give the mathematical functions to be used in Warbler-II. We

use a primitive polynomial A(x) over F2 to define finite field F25 , and the WG

transformation is defined over F25 . In our design, the WG transformations with

decimations d = 3, 7 and 11 over F25 are used as nonlinear feedback functions to

generate span n sequences, and the WG transformation with decimation d = 3

is used as a filtering function. For the definition of the WG transformation over

110

F25 , we refer the reader to Section 7.2.1. Table 8.1 summarizes the cryptographic

properties of all the WG transformations over F25 that are used in the PRNG.

Table 8.1: Cryptographic properties of WG-5 transformations used in Warbler-II
WG(x), A(x) to define F25 Cryptographic Properties
WG(x3), 1 + x+ x3 + x4 + x5 deg(WG) = 3, AI(WG) = 3, NWG = 12
WG(x11), 1 + x+ x3 + x4 + x5 deg(WG) = 4, AI(WG) = 3, NWG = 10
WG(x11), 1 + x3 + x5 deg(WG) = 4, AI(WG) = 3, NWG = 10
WG(x11), 1 + x+ x2 + x4 + x5 deg(WG) = 4, AI(WG) = 3, NWG = 10
WG(x7), 1 + x2 + x3 + x4 + x5 deg(WG) = 2, AI(WG) = 2, NWG = 12

Let {bi} be a binary sequence generated by an n-stage NLFSR whose nonlinear

recurrence relation is defined, in Chapter 4, as

bn+k = bk ⊕WG(xd), x = (br1+k, br2+k, . . . , br5+k) ∈ F25 (8.1)

for all k ≥ 0, and 0 < r1 < r2 < . . . < r5 < n are tap positions of the NLFSR,

where ⊕ denotes addition over F2. Again, let {ei} be a binary sequence generated

by an n-stage NLFSR whose nonlinear recurrence relation is defined as

en+k = 1⊕ ek ⊕WG(xd), x = (er1+k, er2+k, . . . , er5+k) ∈ F25 (8.2)

ci = ei ⊕ 1.

where WG(x) is the WG transformation over F25 . Sequences {bi} and {ci} can be

span n sequences for proper selections of parameters. Span n sequences generated

by recurrence relations (8.1) and (8.2) are represented by three parameters, namely

decimation number d, primitive polynomial A(x), and tap position (r1, r2, ..., r5).

We use these two types of recurrence relations in the combination of modified de

Bruijn blocks to generate span n sequences.

8.1.2 Description of the CMDB of Warbler-II

The combination of modified de Bruijn blocks is composed of three NLFSRs, namely

NLFSR22, NLFSR21, and NLFSR19 of lengths 22, 21 and 19, respectively are chosen

111

to be co-prime with each other to achieve the maximum period. We use the nonlin-

ear recurrence relation (8.1) for NLFSR22, and nonlinear recurrence relation (8.2)

for NLFSR21 and NLFSR19 for generating three span n sequences. Using nonlinear

recurrence relations (8.1) and (8.2) and the parameters in Table 8.2, we can gen-

erate three span n sequences with optimal linear span. We denote by ζ = {ζi},
λ = {λi} and µ = {µi} the internal states of NLFSR22, NLFSR21, and NLFSR19,

respectively.

Table 8.2: Parameters and statistical properties of three primitive NLFSRs
NLFSRs Length Decimation Primitive polynomials Tap Positions Period Linear

n d A(x) to generate F25 (r1, r2, r3, r4, r5) Span
NLFSR22 (ζ = {ζi}) 22 11 1 + x3 + x5 (3, 4, 8, 12, 20) 222 − 1 222 − 2
NLFSR21 (λ = {λi}) 21 11 1 + x+ x2 + x4 + x5 (4, 10, 12, 15, 20) 221 − 1 221 − 2
NLFSR19 (µ = {µi}) 19 7 1 + x2 + x3 + x4 + x5 (3, 6, 14, 16, 18) 219 − 1 219 − 2

We now combine the outputs of three NLFSRs by a 3-variable Boolean function

to produce a new output sequence. The combining Boolean function is given by

f(x0, x1, x2) = x0x1 + x1x2 + x0x2 + x0 + x1.

The function f is balanced, having maximum nonlinearity 2, and algebraic immu-

nity 2. The reason for choosing a quadratic function is to increase the linear span

of an output sequence produced by the combination of modified de Bruijn blocks.

The output sequence s = {si} is defined by

si = f(ζi, λi ⊕ 1, µi ⊕ 1)

where {λi⊕ 1}i≥0 and {µi⊕ 1}i≥0 are span n sequences according to recurrence re-

lation (8.2), and {ζi}i≥0 is a span n sequence generated by recurrence relation (8.1).

The statistical properties of sequence s are:

1. The period (222 − 1)(221 − 1)(219 − 1) ≈ 262

2. The linear span or complexity 243.39

3. The imbalance range 244.32.

112

Note that for an all-zero initial state of the NLFSRs, the output sequence s is

a nonzero sequence. The output sequence can be a zero sequence when the initial

state of NLFSR22 is all-zero and the initial states of NLFSR21 and NLFSR19 are

all-one. The probability of occurring such a situation is 1
262

. We have chosen the

combining function f with three quadratic terms for keeping the period and linear

span of sequence s approximately at least 240 when one of three NLFSRs produces

an all-zero or all-one sequence.

We now generate a new sequence t = {ti} as follows

ti = (s5i, s5i+1, s5i+2, s5i+3, s5i+4) ∈ F25 ,∀i ≥ 0.

According to the design, the shift distinct sequence t is added into the nonlinear

recurrence relation of the nonlinear feedback WG generator. Note that the period

of sequence t is equal to approximately 264.32, which follows from Proposition 6.1.4.

8.1.3 Description of the NFWGG of Warbler-II

The mathematical functions used in the recurrence relation in the nonlinear feed-

back WG generator are the same as the mathematical functions used in the nonlin-

ear feedback WG generator of Warbler-I with one exception. Here we use the WG

transformation WG(x11) instead of WG(x) as nonlinear feedback for introducing

more nonlinearity in the internal state. The 6-stage NLFSR over F25 , denoted by

NLFSR6, is defined as

ak+6 = γak + ak+1 + wk + tk, ai ∈ F25 , wk = (0, 0, 0, 0,WG(a11k+5)), k ≥ 0, (8.3)

where g(x) = x6 + x + γ with γ = α15 ∈ F25 is a primitive polynomial over

F25 , wk is the nonlinear feedback with the least signification bit generated by WG

transformation WG(x11) and t = {tk}k≥0 is a sequence over F25 that is produced

in the CMDB. We choose the decimation d = 11 in WG(x11) because the func-

tion WG(x11) has the maximum algebraic degree 4 and that will rapidly increase

the algebraic degree of the key bits and IV bits in the internal state. While the

113

WG transformation WG(x11) is used as a nonlinear feedback function in NLFSR6,

the WG transformation WG(x3) is employed to filter the output sequences. The

cryptographic properties of WG(x3) can be found in Table 8.1. In recurrence re-

lation (8.3), the nonlinearity is introduced by tk and wk, and the feedback wk will

affect other components and bit positions after multiplying by γ. Note that the

period of the sequence a = {ak}k≥0 is a multiple of the period of t. Moreover, the

final output sequence o = {ok} of the NFWGG is defined by ok = WG(a35+k) for

k ≥ 0. The period of o is a multiple of 264.32 and the linear complexity of o is lower

bounded by the linear complexity of t [63].

We obtain n-bit random numbers by taking disjoint n-bit segments from the

output sequence. In particular, the 16-bit random numbers are obtained from the

output sequence o as follows

RNi = (o16i, o16i+1, ..., o16i+15), i ≥ 0.

8.1.4 Key Initialization Phase of Warbler-II

Our PRNG has an internal state of 92 bits, uses a 60-bit secret key (seed) as well

as a 32-bit initial vector (IV). While the secret seed and the IV are preloaded into

RFID tags at the very beginning, but the 32-bit IV can also be updated at the

end of each protocol session. Before generating random numbers, we must execute

the generator for 44 rounds to mix the key and IV properly. In our design, the

secret seed and IV are preloaded as follows: the first consecutive 14, 13, 13 and 20

positions of NLFSR22, NLFSR21, NLFSR19 and NLFSR6 are respectively reserved

for key bits, whereas the remaining positions in each NLFSR are reserved for the IV.

The initialization process is illustrated in Figure 8.1 (b). During the initialization

phase the internal states of three NLFSRs are updated as follows:

ζk+22 = ζk ⊕WG(x11)⊕ ok, x = (ζk+3, ζk+4, ζk+8, ζk+12, ζk+20),

λk+21 = 1⊕ λk ⊕WG(y11)⊕ ok, y = (λk+4, λk+10, λk+12, λk+15, λk+20),

µk+19 = 1⊕ µk ⊕WG(z7)⊕ ok, z = (µk+3, µk+6, µk+14, µk+16, µk+18),

114

sk+4 = f(ζi, λi ⊕ 1, µi ⊕ 1),

= ζi(λi ⊕ 1)⊕ (λi ⊕ 1)(µi ⊕ 1)⊕ (µi ⊕ 1)ζi ⊕ ζi ⊕ λi ⊕ 1, sj = 0, 0 ≤ j ≤ 3,

tk = (sk, sk+1, sk+2, sk+3, sk+4), k ≥ 0,

ak+6 = γak + ak+1 + wk + tk, wk = (0, 0, 0, 0,WG(a11k+5)), k ≥ 0,

ok+1 = WG(a35+k), k ≥ 0, o0 = 0

where ζk+22, λk+21, µk+19 and ak+6 are the updated values of NLFSR22, NLFSR21,

NLFSR19 and NLFSR6 respectively, and wk is generated by the WG transformation

WG(x11). Sequence {sk} is the output of f which takes three bits from NLFSR22,

NLFSR21 and NLFSR19 as input and five consecutive sk’s are collected to form a

5-bit vector tk. The output ok of NLFSR6 is used as a nonlinear feedback to affect

the internal states of NLFSR22, NLFSR21 and NLFSR19.

8.2 Security Analysis of Warbler-II

This section conducts a detailed security analysis of Warbler-II. Our analysis is

twofold. We start our analysis by performing the statistical tests proposed by the

EPC C1 Gen2 standard and the NIST standard. Then, in the second step, we

conduct a detailed cryptanalysis on the proposed PRNG by considering algebraic

attacks, cube attacks, time-memory-data tradeoff attacks, Mihaljević et al.’s at-

tacks, and weak internal state and fault injection attacks.

8.2.1 Cryptographic Statistical Tests

In this section, we present the results obtained by performing the statistical tests

recommended by the EPC C1 Gen2 standard and the NIST standard.

EPC C1 Gen2 Statistical Test Results

The EPC C1 Gen2 standard specified three statistical properties that a PRNG

must satisfy in to order to be used in that standard. Three statistical properties

are provided in Section 7.3.1. We implemented Warbler-II in software for checking

115

whether Warbler-II PRNG meets three EPC standard’s criteria as well as NIST’s

randomness test criteria. To verify the first criterion, we generated 18 different test

sequences for different keys and initial vectors of the NLFSRs and the lengths of test

sequences lie in the range of 226 to 229. We calculated the probability of occurrence

of 16-bit numbers. Our experimental results show that the probability of any 16-bit

number j, i.e., Pr(RN16 = j) lies between 0.8769
216

and 1.0981
216

. The upper and lower

bounds of probability values for different tests are given in Table 8.3a. With respect

to the second criterion, our PRNG can generate up to 262−1 shift distinct sequences

for different keys to each tag, since the sequence t generated in Section 8.1.2 is shift

distinct. Thus the probability that any two tags will generate the same sequence

with period at least 264.32 is ≈ 2−62 that is much less than 0.1%. For the third

criterion, given a 16-bit random number, an attacker can recover the internal state

of NLFSR6 with probability 2−24 after getting 80 bits of the sequence s. To obtain

the next 16-bit random number from the given one, the adversary needs to know

the next consecutive 80 bits of the sequence s and the internal state of NLFSR6.

The 80 bits can be obtained either by guessing or obtaining about 243.39

5
= 241.07

consecutive random numbers. Due to the high linear span of the sequence s, it is

impossible to generate the next consecutive 80 bits from previous known 80 bits

in practice. Furthermore, it is also difficult for an adversary to intercept 241.07

consecutive random numbers in one protocol sessions because the communication

session in RFID systems is usually quite short and the IV is different. Moreover,

the secret seed can also be updated for different sessions. Hence, the attacker can

guess the next 16-bit random number with the better probability 2−16, which is

much less than 0.025% as specified in the EPC C1 Gen2 standard.

To measure the linear dependency between an n-bit output and the previous

n-bit output, we performed a serial correlation test [65] on the sequences generated

by the PRNG. We generated 18 distinct sequences for different initial values of

the NLFSRs, each one is of size either 225 or 226 bytes and calculated the serial

correlation coefficient for 1-bit, 1-byte and 2-byte lag. Our experimental results

demonstrate that the serial correlation coefficients are close to zero, which indicates

the good randomness of the generated sequences. The serial correlation coefficients

116

for different sequences are given in Table 8.3b.

Table 8.3: Successful fulfillment of the requirements of the EPC C1 Gen2 standard
(a) The first requirement

Sequences Upper Lower
S1 1.0637 0.9399
S2 1.0666 0.9289
S3 1.0664 0.9282
S4 1.0637 0.9333
S5 1.0598 0.9396
S6 1.0644 0.9404
S7 1.0693 0.9387
S8 1.0673 0.9335
S9 1.0981 0.9033
S10 1.0971 0.9130
S11 1.0855 0.8769
S12 1.0693 0.9372
S13 1.0467 0.9555
S14 1.0472 0.9547
S15 1.0502 0.9563
S16 1.0442 0.9537
S17 1.0442 0.9478
S18 1.0455 0.9547

(b) The third requirement

Sequences 1-bit 1-byte 2-byte
S1′ -0.000187 -0.000109 -0.000109
S2′ -0.000095 -0.000166 -0.000095
S3′ -0.000233 -0.000144 -0.000001
S4′ -0.000188 -0.000188 -0.000188
S5′ -0.000017 -0.000061 -0.000012
S6′ -0.000115 0.000025 0.000013
S7′ 0.000209 -0.000178 -0.000219
S8′ 0.000127 0.000097 0.000046
S9′ 0.000040 0.000052 0.000244
S10′ 0.000021 -0.000038 0.000074
S11′ -0.000006 0.000162 0.000010
S12′ 0.000183 -0.000155 -0.000122
S13′ -0.000198 0.000019 -0.000057
S14′ -0.000097 -0.000074 -0.000262
S15′ 0.000226 -0.000000 -0.000255
S16′ 0.000069 0.000035 0.000125
S17′ -0.000203 -0.000203 -0.000203
S18′ -0.000085 0.000039 0.000094

NIST Statistical Test Results

Different from the statistical tests in the EPC C1 Gen2 standard, the NIST test

suite contains 15 demanding statistical tests for characterizing the randomness of

a binary sequence. According to the NIST specification [103], a PRNG passes the

test suite successfully if it passes all the tests simultaneously with a proportion of

96%. In our experiment, 10 test sequence (TS) sets are generated, each of which

has 100 different sequences with different seeds and each sequence has a length of

225. We computed the proportion values for each TS set and listed the test results1

1Non-overlapping template matching test results are not given in Table 8.4 because of 148
entries. However, Warbler-II has passed the test successfully.

117

for 5 TS sets in Table 8.4. It is not difficult to find out that each TS set can pass

the NIST test suite successfully.

Table 8.4: NIST test suite results of Warbler-II
Tests TS1 TS2 TS3 TS4 TS5

proportion proportion proportion proportion proportion
Frequency 1.00 0.99 0.99 1.00 0.97
Block-frequency 1.00 0.99 0.97 1.00 0.99
Cumulative-sum 1.00, 1.00 1.00, 0.99 0.98, 0.99 1.00, 0.99 0.98, 0.97
Runs 0.99 1.00 1.00 1.00 1.00
Longest-run 0.99 0.99 0.98 0.98 1.00
Rank 0.99 0.99 1.00 0.96 1.00
DFT 0.98 0.98 1.00 0.99 0.99
Overlapping-templates 0.99 0.97 0.96 0.98 0.96
Universal-stat. 0.99 0.98 0.99 1.00 1.00
Approx. entropy 1.00 1.00 0.98 1.00 1.00
Serial 0.99, 0.99 0.99, 1.00 0.98, 0.98 0.99, 1.00 0.99, 0.99
Linear-complexity 0.97 1.00 0.99 1.00 1.00
Random-excursions 0.98, 0.99 1.00, 0.99 1.00, 0.99 0.99, 0.99 0.99, 0.99

0.99, 1.00 0.96, 0.99 0.99, 0.99 0.98, 1.00 0.99, 0.99
0.99, 1.00 1.00, 1.00 0.99, 1.00 0.99, 0.99 1.00, 1.00
0.99, 1.00 0.99, 0.99 1.00, 1.00 0.99, 0.98 1.00, 0.92

Random-excur-variant 1.00, 1.00, 1.00 1.00, 1.00, 1.00 0.99, 0.99, 0.99 0.99, 1.00, 1.00 0.98, 0.98, 0.98
1.00, 1.00, 1.00 1.00, 1.00, 1.00 0.99, 0.99, 1.00 1.00, 1.00, 1.00 0.97, 0.97, 0.98
1.00, 0.99, 0.98 1.00, 1.00, 0.99 1.00, 1.00, 1.00 1.00, 0.99, 0.99 0.99, 1.00, 1.00
1.00, 0.99, 1.00 1.00, 1.00, 1.00 0.99, 0.99, 0.99 0.97, 0.98, 0.99 0.99, 1.00, 0.99
1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00
1.00, 1.00, 1.00 0.97, 0.99, 0.98 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

8.2.2 Cryptanalysis of Warbler-II

In this section, we perform a detailed cryptanalysis against Warbler-II PRNG by

considering algebraic attacks, cube attacks, time-memory-data-tradeoff attacks, the

attacks proposed by Mihaljević et al. and weak internal states and fault injection

attacks. We also argue that some attacks such as correlation attacks and distin-

guishing attacks cannot be applied to our PRNG.

Resistance against Algebraic Attacks

Warbler family was designed to resist algebraic attacks [20]. In our PRNG design,

nonlinear feedback functions are used to update the internal states of different

118

NLFSRs, and the output bits are filtered by the WG transformation. For an Warbler

instance, the total length of the internal state is L = (
∑m

i=1 li + l · n) where K-bit

is reserved for the key and (L−K)-bit is for the initial vector. We remember that

Warbler family fully exploits NLFSRs in the design. According to the algebraic

attack technique, an Warbler instance can be reduced to a system of linear equations

with 2K unknowns while it is assumed that the initial vector is known, and the

system of linear equations can be solved by approximately 7
64
· (2K)log2 7 operations.

In particular, the total length of the internal state of Warbler-II PRNG is 92-bit and

the length of the secret key is 60-bit, one can reduce the PRNG to a system of linear

equations with about 260 unknown variables, which can be solved by approximately
7
64
· (260)log2 7 operations. We have chosen the feedback functions of the maximum

algebraic degree for NLFSR22, NLFSR21 and NLFSR6. As a result, the algebraic

degree of the system will grow rapidly during the initialization phase as well as the

running phase. Thus, the algebraic attack is not better than the exhaustive search

in this case.

Resistance against Cube Attacks

Cube attack [24] is a generic key-recovery attack that can be applied to any cryp-

tosystem, provided that the attacker can obtain a bit of information that can be

represented by a low-degree decomposition multivariate polynomial in Algebraic

Normal Form of the secret and public variables of the target cryptosystem. Ac-

cording to the cube attack, our PRNG can be regarded as a system of multivariate

polynomials p(k1, ..., k60, v1, v2..., v32) with public IV variables v1, v2, ..., v32 and se-

cret key variables k1, k2, . . . , k60. The polynomial

p(k1, ..., k60, v1, v2..., v32) = tI · pS(I) + q(k1, ..., k60, v1, v2..., v32)

is called a master polynomial, where tI = vi1vi2 · · · vik is a monomial with {i1, i2, ..., ik}
⊆ {1, 2, ..., 32} and pS(I) is called a superpoly of tI in p. The term tI is called a

maxterm if deg(pS(I)) = 1. We implemented the cube attack against Warbler-II in

CUDA and exploited the power of a GPU (i.e, a Tesla C2070 from NVIDIA) for

119

accelerating the computation significantly. We took the first output bit after the

44-round initialization phase in order to find the maxterms in the master polyno-

mial and performed an exhaustive search over all possible cube dimensions ranging

from 1 to 32. Our PRNG was run on the GPU for around 85 days to exhaust all

initial vectors, but we did not find any linear and quadratic superpoly equations

for different cube dimensions.

Resistance against Time-Memory-Data Tradeoff Attacks

Time-memory-data tradeoff attack is a generic cryptanalytic attack which can be

applied to any cipher. In a stream cipher, the complexity of a time-memory-data

tradeoff attack depends solely on the length of the internal state, which is given by

O(2
n
2), where n is the length of the internal state [6]. In particular, the complexity

of the time-memory-data tradeoff attack against Warbler family is lower bounded

by O(2
L
2) where L is the total length of the internal state of Warbler. We note

that a stream cipher with low sampling resistance is vulnerable to a more flexible

time-memory-data tradeoff attack. In our PRNG, the WG transformation WG(x3)

is the filtering function and the number of terms in the algebraic normal form

representation of WG(x3) is 15, among which only two terms are linear and the

remaining terms are either quadratic or cubic. Only by fixing four input variables

in the WG transformation, one can obtain a linear function in one variable. Thus,

the sampling resistance of the proposed PRNG is high. Since the length of the

internal state is 92-bit in Warbler-II, the expected complexity of the time-memory-

data tradeoffs attack is bounded below by 246.

Resistance against Mihaljević et al.’s Attacks

Recently Mihaljević et al. [89] proposed an attack on Grain v1 to recovered an

internal state by exploiting the normality of the filtering function used in the stream

cipher. As the architecture of our PRNG is similar to Grain v1, it seems natural

that the attack can be applied to our PRNG. The key idea of the attack is to

determine the bias of the internal state using the normality of the filtering function

and then apply the strategy of the generic time-memory-data tradeoff attack. For

120

details of the attack, we refer the reader to [89]. Note that the WG transformation

WG(x3) has the lowest normality which is equal to 1, whereas the filtering function

of stream cipher Grain v1 has normality 2. In the attack, we assume that the

attacker can collect a set of D sequences and the length of each sequence is S and

the attacker is observed the pattern of occurring the 16-bit random number zero.

In this sample, the expected number of random number zero is 2log2D+log2S−16 as

the length of each random number is equal to 16. We also assume that the attacker

does not know any internal state bits of the PRNG. But, in Grain v1, the attacker

can recover 18 internal state bits of the NLFSR using some bits of the LFSR and

NLFSR states. However, such a trick cannot be applied to Warbler-II. Then, the

following is the complexity of the attack for recovering an internal state of the

PRNG.

Table 8.5: The processing and pre-processing attack complexities

Required samples Time complexity Pre-processing time and
of processing space complexities

D = 237, S = 243 24×16 = 264 2L−(4×16) = 228, 2L−(5×16) = 212

D = 239, S = 241 24×16 = 264 2L−(4×16) = 228, 2L−(5×16) = 212

D = 246, S = 235 24×16 = 264 2L−(4×16) = 228, 2L−(5×16) = 212

In the above table, we can observe that the time complexity of the processing

phase is much greater than the time complexity at the pre-precessing phase, and

an attacker requires a huge amount of sample to launch the attack. For lightweight

applications, it is impossible to collect that amount of data. Thus, the attack

cannot be a practical attack on our PRNG.

Weak Internal States and Fault Injection

In Warbler-II, the CMDB contains three NLFSRs namely NLFSR22, NLFSR21 and

NLFSR19 of lengths 22, 21, and 19, respectively. For the initial state all-zero 0 =

(0, 0, ..., 0), NLFSR22 generates the zero sequence, and for initial state all-one 1 =

(1, 1, ..., 1), NLFSR21 and NLFSR19 generate the all-one sequence. For any other

initial states, the output sequence from the CMDB is a nonzero sequence. We call

121

initial states 0 and 1 weak initial states of respective NLFSRs, which are vulnerable

only for the running phase of the PRNG, not for the initialization phase. For the

combining function f(x0, x1, x2) = x0x1 +x1x2 +x0x2 +x0 +x1, the sequence s is a

zero sequence for the following initial states of NLFSRs: a) when the initial state of

NLFSR22 is 0 and initial states of NLFSR21 and NLFSR19 are 1; b) when the initial

state of NLFSR22 is 0 and the initial state of NLFSR21 is 1. The scenario (a) can

occur with probability 2−62 and the scenario (b) can occur with probability 2−43.

Note that the period and linear complexity of the output sequence can be reduced

by setting the initial states of the NLFSRs to weak internal states. However, the

above scenarios can be detected and avoided by adding an OR gate to NLFSR22

and two NAND gates to NLFSR21 and NLFSR19 and then adding the final outputs

of OR and NAND gates to the finite state machine (FSM). An overview of the

PRNG after adding OR and NANG gates is provided in Figure 8.2. Based on the

outputs of OR and NAND gates, the FSM preforms an action such as update the

seed or apply the initialization round again. In other words, when any of NLFSRs

in the CMDB contains a weak initial state after the initialization phase, the seed of

the PRNG is updated, followed by the initialization round or only the initialization

phase is applied again. On the other hand, an attacker might inject faults to the

internal states of three NLFSRs and set the initial states to the weak initial states.

In the best case, injecting faults to produce the sequence s to be a zero sequence,

an attacker needs to have a complete knowledge of internal states of NLFSR22 and

NLFSR21. If the attacker is successful in setting the internal states to weak internal

states, according to the above strategy, the seed of the PRNG will be updated and

the initilization round will be applied. Hence, the fault injection can be prevented.

Other Cryptanalytic Attacks

In the fast correlation attacks [84], the internal state of an LFSR based stream

cipher can be recovered by first determining a system of linear equations according

to a statistical model and then solving the system of linear equations. In Warbler-II,

the internal state is updated in a nonlinear way. Thus it is hard for an attacker to

122

1

5

PRS

NLFSR6

WG5

 WG5
5

NLFSR21
. . .

λ0 λ20

z0 z5

WG5

NLFSR19
. . .

μ0 μ18

 WG5

γ

1

WG5

NLFSR22
. . .

ζ0 ζ21

1

1

f

OR

NAND

NAND

FSM

Figure 8.2: Warbler-II after adding the control circuit

decide such a system of (non-)linear equations according to some statistical models.

For an LFSR-based stream cipher, the DFT attacks [46] can be applied when the

exact linear complexity of the output sequence and enough consecutive output bits

are known. In Warbler-II, the exact linear complexity of the output sequence is not

known. Moreover, the period of a sequence is dependent on the initial state of the

PRNG. Therefore, the DFT attacks cannot be applied to our PRNG. Furthermore,

for lightweight applications such as the EPC C1 Gen2 standard protocol, it is hard

for an attacker to obtain enough consecutive bits.

A chosen IV attack on the original version of WG cipher was presented in [110],

where one can distinguish several bits of the output sequence by building a distin-

guisher based on differential cryptanalysis. In our PRNG, two nonlinear terms, tk,

wk (i.e., an output from the WG transformation as well as a 5-bit tuple generated

by the first building block) are added to the recurrence relation. Furthermore, the

WG permutation is not added in the recurrence relation, only wk is added. Thus

the differentials after 44 rounds of the initialization phase will contain most internal

state bits. As a result, it would be hard for an attacker to distinguish output bits

generated by the Warbler-II PRNG.

123

8.3 Hardware Implementation and Comparisons

Warbler-II is implemented in VHDL for the low-cost Spartan-3 XC3S50 (Package

PQ208 with speed grade -5) FPGA device from Xilinx for measuring the hardware

complexity. The hardware implementation shows that the PRNG core totally occu-

pies about 58 slices (19 and 39 slices for the CMDB and the NFWGG, respectively)

on the target FPGA device and achieves a throughout of 45 Mbps. For the details

of the hardware implementation, we refer the reader to [75].

Table 8.6 presents a comparison with other PRNGs in terms of hardware imple-

mentation and achieved randomness properties. We notice that Warbler-II requires

12 more slices, compared to the PRNG Warbler-I, but Warbler-II provides a better

security level. If we compare the hardware implementation cost for Warbler-II with

Grain-128 and Trivium, our design needs 10 and 17 more slices, respectively [9].

Randomness properties period and linear complexity of Warbler-II are bounded

below by 264.32 and 243.39, respectively, but the period and linear complexity of

keystreams of Trivium are not guaranteed. Warbler-II can easily be converted to a

sponge-based PRNG architecture like U-QUARK architecture [3]. However, it is

hard to promise the randomness properties of output sequences produced by the

sponge-based structure.

Table 8.6: A comparison with other PRNGs
Functions Size of the internal state Area Device Randomness Properties

µm Period LS
Warbler-II 92 58 Slices XC3S50-PQ208 ≥ 264.32 ≥ 243.39

Warbler-I [72] 65 46 Slices/760 GE (est.) XC3S50-PQ208 ≥ 237.32 ≥ 218.58

LAMED [97] 64 1585 GE (est.) – – –
Melia-Segui et al. [85] 16 761 GE (est.) – – –

Grain-128 [9] 256 48 Slices Virtex-II ≥ 2128 –
Trivium [9] 288 41 Slices Virtex-II – –

U-QUARK [3] 136 1379 GE 0.18 µm CMOS – –
KECCAK [61] 128 1300 GE 0.13 µm CMOS – –

PHOTON-80/20/16 [52] 100 865 GE 0.18 µm CMOS – –
SPONGENT-80 [7] 88 738 GE 0.13 µm CMOS – –

8.4 Application to the RFID Tags and Protocols

Warbler-II is designed for the resource-constrained environments such as RFID tags.

Warbler-II can be used to generate random numbers in the automatic identification

124

protocols and authentication protocols, for example the Flyweight RFID protocol

[10]. Several lightweight authentication protocols for RFID systems can be found

in [112]. The authentication process requires 3 to 5 random numbers, and the

security of the protocol depends on the on-chip random number generator. Since

an output sequence produced by Warbler-II has good randomness properties such

as period at least 264.32 and linear complexity at least 243.39, Warbler-II can be used

as a keystream generator in a stream cipher for lightweight applications.

When Warbler-II is used in the automatic tag identification protocol of the EPC

C1 Gen2 standard, Warbler-II totally requires 146 clock cycles, including 22 clock

cycles for loading the key and IV into the registers, 44 clock cycles for the initial-

ization phase, and 80 clock cycles for generating the first 16-bit random number.

After that, each 16-bit random number can be obtained in every 80 clock cycles.

Assuming that the EPC tags run at the clock frequency of 100 KHz and two 16-bit

random numbers are needed for the tag identification protocol according to the

EPC C1 Gen2 standard, one can identify about 443 tags in one second by using

the proposed lightweight PRNG.

8.5 Comparisons with Other PRNGs

In this section, we provide a comparison between Warbler-II and Warbler-I, a com-

posited de Bruijn sequence and the WG-5 stream cipher.

8.5.1 Comparison with Warbler-I

The main aim of designing Warbler-II is to offer a better security level, compared

to Warbler-I. Designs of both Warbler-I and Warbler-II are similar. The CMDB

of Warbler-II contains three primitive NLFSRs of lengths 19, 21 and 22, and the

CMDB of Warbler-I contains two primitive NLFSRs of lengths 17 and 18, but the

nonlinear feedback WG generators over F25 for both cases are the same except for

the feedback function. In the NFWGG of Warbler-I, WG(x) is used as a feedback

function, whereas in the NFWGG of Warbler-II, WG(x11) is used as a feedback

function. Warbler-II produces output sequences with period at least 264.32 and

125

linear complexity at least 243.39, whereas Warbler-I produces output sequences with

period at least 237.32 and linear complexity at least 218.58. The attack resistant

properties of Warbler-II are much better than the attack resistant properties of

Warbler-I. The hardware implementation of Warbler-I requires 46 slices, but the

hardware implementation of Warbler-II requires 12 more slices. We restrict the

application of Warbler-I to the EPC C1 Gen2 RFID tags, but Warbler-II can be

used in the EPC C1 Gen2 tags as well as RFID applications where more security

level is required.

8.5.2 Comparisons with a Composited De Bruijn Sequence

and WG-5 Stream Cipher

If we compare Warbler-II with a composited de Bruijn sequence of period 292, then

the composited de Bruijn sequence can generate all 92-tuples exactly once in a

period, but Warbler-II cannot generate all 92-tuples exactly once. Warbler-II gener-

ates different sequences with period a multiple of 264.32 for different initial states,

but the composited de Bruijn sequence is of period 292 for all initial states. We

note that the composited de Bruijn sequence is generated by an NLFSR with di-

rect feedback. On the other hand, the period of an output sequence produced by

Warbler-II is controlled by the CMDB that is composed of three primitive NLFSRs.

The feedback function of a composited de Bruijn sequence would contain a number

of product-of-sum terms, as a result, the generation of the composited de Bruijn

sequence would be cost effective compared to Warbler-II.

WG-5 stream cipher [1] is a filtering generator based on an LFSR over F25 and

a WG-5 transformation. The internal state of the WG-5 stream cipher is updated

using a linear function that generates an m-sequence, and the output sequence is

obtained by filtering the m-sequence through the nonlinear WG-5 transformation.

Contrariwise, the internal states of Warbler-II are updated using nonlinear functions

and the output sequence is produced by filtering the sequence of the NFWGG

through the WG-5 transformation. For the WG-5 cipher, the m-sequence guarantees

the period of an output sequence, but for Warbler-II, the primitive NLFSRs of the

126

CMDB promise the lower bound of the period of an output sequence. Due to the

nonlinear internal state update, Warbler-II has better attack resistance properties

compared to the WG-5 stream cipher.

8.6 Summary of Chapter 8

This chapter presented Warbler-II, a new lightweight pseudorandom number genera-

tor based on nonlinear feedback shift registers with desirable randomness properties.

We provided a detailed mathematical description of Warbler-II including its mode

of operations. We performed a security analysis of Warbler-II in two steps. First,

we performed the statistical tests on the sequences generated by the PRNG speci-

fied by the EPC C1 Gen2 standard and the NIST standard. Our PRNG passed all

the statistical tests. We then characterized our PRNG by applying algebraic at-

tacks, cube attacks, time-memory-data tradeoff attacks, Mihaljević et al.’s attacks

and weak initial states and fault injection attacks. A hardware implementation of

Warbler-II in VHDL for the low-cost Spartan-3 XC3S50 FPGA device shows that

Warbler-II can be implemented using about 58 slices. Warbler-II can be employed

as a random number generator in the automatic tag identification protocol as well

as the authentication protocols for RFID systems.

127

Chapter 9

Conclusions and Future Research

In this chapter, we summarize the research contributions of this thesis, and present

the future research directions related to the subjects therein. The main contribu-

tions of each chapter are presented.

9.1 Conclusions

In this thesis, we concentrated on the design and analysis of cryptographically

strong pseudorandom sequence and number generators. Specifically, we focused on

the generation of de Bruijn sequences and span n sequences, which have good ran-

domness properties such as maximum period, balance, and high linear complexity,

and which are suitable for cryptographic applications. We fully exploited nonlinear

feedback shift registers for generating de Bruijn sequences and span n sequences,

and for designing random number generators.

We first studied the generation span n sequences using nonlinear feedback shift

registers whose feedback functions are composed of a permutation and a trace func-

tion over a finite field, a decimation number, and a t-tap position. Considering these

parameters, a class of feedback functions in an NLFSR is formed and a number of

span n sequences are produced. The span n sequence generation by this technique

is called the structured search. In the structured search, we used WG transforma-

tions, three-term functions, five-term functions, monomial functions with Kasami

129

exponent, and MCM functions as nonlinear feedback functions, and presented the

number of span n sequences produced by each class of functions for 6 ≤ n ≤ 20. We

study the linear span or complexity of new span n sequences. The linear complexity

of a span n sequence lies in the range of (2n − 2 − 3n) and (2n − 2). The success

probability of obtaining a span n sequence in the structured search is empirically

compared with the success probability of obtaining a span n sequence in a random

generation method. The comparison showed that one can obtain a span n sequence

with optimal or near-optimal linear complexity in the structured search with a bet-

ter success probability. New span n sequences or span n sequences generated by

the structured search can be used to design lightweight pseudorandom number gen-

erators and stream ciphers. Moreover, they can be used in the composition method

to generate long de Bruijn sequences.

We first refined the composition method so that we could generate long de Bruijn

sequences, and then determined the linear complexity of a composited de Bruijn

sequence. We conducted an analysis of a composited nonlinear feedback function

that generates a de Bruijn sequence. In the analysis, we studied an approxima-

tion of the feedback function by setting some product terms as constant functions.

The cycle structure of an approximated feedback function and the linear complex-

ity of a sequence generated by an approximated feedback function are determined.

Our analysis also indicated that a composited de Bruijn sequence can be crypto-

graphically strong if the starting span n sequence is of long period and optimal

linear complexity. Moreover, we presented a few example of de Bruijn sequences

of periods in the range of 235 and 240 with their algebraic forms. Furthermore, the

implementation issues of a feedback function of a composited NLFSR are taken

into consideration.

We proposed a new pseudorandom number generator family, named Warbler

family for resource-constrained smart devices such as RFID tags. Warbler family is a

purely NLFSR-based PRNG family with desirable randomness properties. Warbler

family is composed of two building blocks, namely a combination of modified de

Bruijn blocks (CMDB) and a nonlinear feedback WG generator (NFWGG). The

combination of modified de Bruijn blocks consists of a number of primitive NLFSRs.

130

The nonlinear feedback WG generator contains an NLFSR over an extension field

and two WG transformation modules used for the feedback as well as filtering

purpose. Randomness properties of an output sequence produced by the Warbler

family are derived, followed by a description of the initilization and running phases

of Warbler family. Some parameter selection criteria for an instance of the Warbler

family are proposed to offer the best security level against known attacks.

We presented an instance, Warbler-I, of the Warbler family for the EPC Class-1

Generation-2 passive RFID tags. Considering the high power-consumption, large

area and low throughput of TRNGs, we replace the TRNG used in previous works

by a PRNG with good statistical properties. Warbler-I can generate sequences

with good randomness properties such as period at least 237.32 and linear span

at least 218.58. In our design, the pseudorandom sequences are generated using

nonlinear feedback shift registers. The statistical tests specified by the EPC C1

Gen2 and NIST standards, algebraic attacks, cube attacks and time-memory-data

tradeoff attacks are employed to characterize the security properties of the proposed

PRNG. A comparison with the sponge-based PRNGs is also conducted. In addition,

an FPGA implementation shows that Warbler-I can be implemented using 46 slices

and can generate a 16-bit random number every 80 clock cycles after an initialization

process of 36 clock cycles. Warbler-I perfectly satisfies the requirements of the EPC

C1 Gen2 standard and hence a suitable candidate for the EPC C1 Gen2 standard.

We proposed another instance, Warbler-II, of the Warbler family, which is de-

signed for providing a better security level compared to Warbler-I. We described

Warbler-II with its mathematical functions in detail. The CMDB of Warbler-II

contains three primitive NLFSRs. The period and linear complexity of an output

sequence produced by Warbler-II are at least 264.32 and 243.38, respectively. We per-

formed a detailed security analysis of Warbler-II in two steps. First, we performed

the statistical tests on the sequences generated by Warbler-II specified by the EPC

C1 Gen2 standard and the NIST standard. Our PRNG passed all the statisti-

cal tests. Then, we characterized Warbler-II by applying algebraic attacks, cube

attacks, time-memory-data tradeoff attacks, Mihaljević et al.’s attacks, and weak

initial states and fault injection attacks. A hardware implementation of Warbler-II

131

in VHDL for the low-cost Spartan-3 XC3S50 FPGA device shows that Warbler-II

can be implemented using about 58 slices. Warbler-II can be used as a random

number generator in the automatic tag identification and authentication protocols

for RFID systems.

9.2 Future Research

Nonlinear feedback shift registers are of great importance, especially in resource-

constrained environments such as RFID tags and sensor networks due to their effi-

cient hardware implementation. Well-designed NLFSR-based cryptographic primi-

tives such as stream ciphers and PRNGs can provide good randomness in communi-

cation systems and would be resistant to the known cryptanalytic attacks because

of the hardness of solving a system of nonlinear equations over the binary field.

Only limited results exist in the theory of nonlinear feedback shift registers. In

this section, we provide the reader with an overview of various interesting research

directions where the future research can be conducted.

On Generation of Span n Sequences

A primitive NLFSR or an NLFSR that generates a span n sequence is an important

component in a keystream generator, since it ensures the periodicity of a keystream.

Span n sequences are also fundamental building blocks of a keystream generator

like a combinatorial generator. In Chapter 4 we dealt with the generation of good

span n sequences using NLFSRs. The current technique of checking the primitivity

of a nonlinear feedback function is the exhaustive search algorithm whose time

complexity is exponential in n. For a large value of n, it is impossible to verify

the primitivity of a nonlinear feedback function in real time. A sub-exponential

or polynomial time algorithm for testing the primitivity of some special nonlinear

feedback function needs to be developed in order to design NLFSR-based stream

ciphers and PRNGs with high level security and guaranteed randomness properties.

For a fixed n and t of the recurrence relations, the numbers of span n sequences

for different permutations are bounded by certain numbers, and the upper and

132

lower bounds mainly depend on n and t. The problem of determining the upper

and lower bounds of the number of span n sequences for a fixed n and t is interesting

from a theoretical point of view. It seems to be a difficult problem when there is no

polynomial algorithm for testing the primitivity of a nonlinear feedback function.

We have observed that, in the structured search, many span n sequences have

the same t-tap position, primitive polynomial and the same linear complexity, but

their decimation numbers are different. The problem of determining the relation

between the decimation numbers of those span n sequences is significant. If such a

relation is established, then from one span n sequence, many other span n sequences

of the same length can be produced.

On the Composited Construction and de Bruijn Sequences

The efficient construction of long de Bruijn sequences is a challenging problem.

For cryptographic applications, a de Bruijn sequence must be strong (long period

and high linear complexity) and should have an efficient implementation. The

composited construction based on a span n sequence is the only known construction

in the literature for generating long de Bruijn sequences. The feedback function

of a composited de Bruijn sequence contains a number of product-of-sum terms

for which the evaluation of the feedback function becomes cost effective. If an

efficient hardware implementation of composited feedback functions is found, then

they can be used in RFID tags for generating random numbers with desirable

randomness properties. Therefore, an efficient hardware implementation of the

product-of-sum terms is crucial for the use of composited de Bruijn sequences in

resource-constrained environments.

Games’s generalized construction where a de Bruijn sequence is constructed

from two different de Bruijn sequences can be written as the composited construc-

tion. As a future research, Games’s generalized construction can be investigated

from the composited construction point of view.

133

On Warbler-I and Warbler-II PRNGs

Warbler-I and Warbler-II are two hardware-based pseudorandom number generators

designed for RFID tags. In Warbler-II, when any of the internal states of three

NLFSRs in the CMDB is at a weak internal state, we either apply an initialization

round or update the seed, followed by an initialization round, and this is controlled

by the finite state machine. The side channel attack is a cryptanalytic attack which

exploits information from the physical implementation of a primitive. Our PRNGs

can be analyzed from the side channel attack point of view to examine its attack

resistance property.

Since Warbler-I and Warbler-II are based on WG-5 transformations, Warbler-I

and Warbler-II require five clock cycles to output one bit. To optimize the number

of clock cycles required for outputting one bit, a Galois configuration of the NLFSRs

in the CMDB can be found as a future work. As a result, Warbler-I and Warbler-II

can produce one bit in one clock cycle.

134

Appendix A

Span n Sequences and Linear

Complexity Bounds

A.1 Example of Span n Sequences

In this section, we present some examples of span n sequences produced by re-

currence relation (4.1) defined in Chapter 4 using WG transformations, 5-term

functions, 3-term functions, monomial functions with Kasami exponent, and MCM

functions. We represented the span n sequences by three parameters, namely dec-

imation number d, primitive polynomial p(x) over F2 and a t-tap position. Ta-

bles A.1 and A.2 contain all span n sequences produced by WG transformations

over F25 for different lengths of NLFSRs. Table A.3 contains span n sequences pro-

duced by WG transformations over F27 , where span n sequences for different lengths

of the NLFSRs are provided. Tables A.4 - A.7 present some instances of span n se-

quences produced by 5-term functions, 3-term functions, monomial functions with

Kasami exponents, and MCM functions, respectively.

135

Table A.1: WG span n sequences gener-
ated using rec. rel. (4.1)

n Decimation Polynomial Tap position
d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

8 1 1 0 1 0 0 1 2 4 5 7
1 1 1 1 1 0 1 3 4 5 6
1 1 1 1 1 0 2 4 5 6 7
3 1 1 0 1 1 1 2 3 5 6
7 1 0 1 1 1 1 2 3 5 7
7 1 0 1 0 0 2 3 4 6 7
15 1 1 1 1 0 2 3 4 6 7

9 1 1 1 1 0 1 1 2 5 6 8
1 1 1 1 0 1 1 3 6 7 8
1 1 1 1 1 0 2 3 5 7 8
1 1 1 1 0 1 4 5 6 7 8
3 1 1 0 1 1 1 2 4 5 6
3 1 0 1 0 0 1 2 4 5 8
3 1 0 1 0 0 2 4 6 7 8
7 1 0 1 0 0 1 2 3 4 6
11 1 1 1 0 1 1 4 6 7 8
11 1 1 1 1 0 2 4 5 6 7
11 1 1 1 1 0 2 4 5 6 8
11 1 1 1 0 1 2 4 6 7 8
15 1 1 1 1 0 1 2 3 4 6
15 1 1 1 0 1 1 2 5 7 8

10 1 1 1 0 1 1 1 2 4 5 8
1 1 1 1 0 1 1 3 4 6 7
1 1 1 1 0 1 1 3 4 6 9
3 1 1 0 1 1 1 2 3 4 8
7 1 0 0 1 0 1 2 4 7 8
11 1 0 1 1 1 1 2 3 4 5
11 1 0 0 1 0 1 2 3 7 8
11 1 1 1 1 0 1 4 5 8 9

11 1 1 1 1 0 1 1 2 7 8 10
1 1 1 1 1 0 3 4 5 8 10
1 1 1 1 0 1 6 7 8 9 10
7 1 0 1 1 1 1 2 3 6 7
7 1 0 0 1 0 1 3 7 8 10
7 1 0 1 1 1 2 3 4 7 10
7 1 1 0 1 1 2 3 7 9 10
7 1 0 0 1 0 2 4 5 6 10
7 1 1 0 1 1 3 4 5 8 9
11 1 1 1 1 0 1 2 4 5 8
11 1 1 1 0 1 1 3 4 6 10

12 1 1 1 1 1 0 2 3 4 5 6
1 1 0 1 0 0 2 3 4 5 8
1 1 1 1 0 1 2 3 5 7 9
1 1 0 1 0 0 2 3 6 9 10
1 1 1 1 0 1 4 6 9 10 11
3 1 1 0 1 1 1 2 3 4 5
3 1 1 0 1 1 2 5 7 8 10
3 1 0 1 0 0 4 5 6 9 11
7 1 0 1 0 0 1 2 4 7 8
7 1 1 0 1 1 1 2 5 6 8
11 1 0 0 1 0 1 3 4 6 10
11 1 1 1 0 1 1 3 4 9 11
11 1 1 1 1 0 1 4 5 8 9
11 1 1 1 0 1 2 3 6 7 10
11 1 1 1 1 0 3 5 7 8 9
11 1 1 1 1 0 4 6 7 9 10
15 1 1 1 1 0 1 2 4 7 8

Table A.2: WG span n sequences gener-
ated using rec. rel. (4.1)

n Decimation Polynomial Tap position
d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

13 1 1 0 1 0 0 1 3 4 5 9
1 1 0 1 0 0 5 8 9 11 12
3 1 1 0 1 1 5 6 10 11 12
7 1 0 1 0 0 1 2 3 6 8
7 1 1 0 1 1 3 5 7 10 12
7 1 1 0 1 1 6 7 9 10 12
11 1 0 0 1 0 1 2 3 5 10
11 1 1 1 0 1 1 2 5 10 12
11 1 1 1 0 1 1 5 6 10 12
11 1 1 1 0 1 4 5 7 8 9
15 1 1 1 1 0 1 2 3 6 8

14 1 1 0 1 0 0 1 3 5 7 9
1 1 1 1 1 0 2 6 8 9 13
1 1 1 1 0 1 3 4 6 8 10
1 1 1 1 0 1 3 5 8 10 13
3 1 1 0 1 1 1 8 10 11 13
7 1 0 0 1 0 1 2 6 9 12
7 1 0 0 1 0 1 3 10 12 13
7 1 0 0 1 0 1 6 9 12 13
7 1 0 1 0 0 3 5 7 8 9
11 1 1 1 1 0 1 2 4 11 12
11 1 1 1 1 0 1 2 9 10 11
15 1 1 1 0 1 3 5 6 8 13
15 1 1 1 1 0 3 5 7 8 9

15 1 1 1 1 0 1 4 5 12 13 14
3 1 0 1 0 0 2 6 8 9 10
3 1 0 1 0 0 4 5 6 7 14
7 1 0 1 1 1 2 5 7 10 13
7 1 0 1 1 1 2 5 8 11 14
7 1 0 0 1 0 3 4 5 7 12
11 1 0 0 1 0 2 3 6 7 13
11 1 1 1 0 1 2 4 9 11 13
11 1 0 1 1 1 2 9 10 11 12
15 1 1 1 0 1 1 2 3 5 6

16 1 1 1 0 1 1 1 10 11 12 14
1 1 1 1 0 1 1 10 11 12 14
15 1 1 1 0 1 3 6 9 12 14

17 3 1 0 1 0 0 1 6 7 8 9
3 1 1 0 1 1 4 7 8 9 12
7 1 0 1 0 0 1 3 12 13 14
7 1 1 0 1 1 1 4 10 11 13
7 1 0 0 1 0 1 5 11 12 13
11 1 1 1 0 1 1 3 6 12 13
15 1 1 1 1 0 1 3 12 13 14

18 1 1 1 1 0 1 1 2 12 13 14
3 1 1 0 1 1 4 7 8 10 15
3 1 1 0 1 1 5 10 11 14 17
7 1 0 0 1 0 1 2 5 7 11
7 1 1 0 1 1 5 7 8 11 17
11 1 0 0 1 0 1 8 9 11 15
15 1 1 1 0 1 2 9 12 15 17

20 1 1 1 1 0 1 5 10 12 18 19

136

Table A.3: WG span n sequences for t = 7
Length Decimation Polynomial t-tap position
n d (c0, c1, ..., c5, c6) (r1, r2, ..., r6, r7)
8 5 (1, 1, 0, 0, 0, 0, 0) (1, 2, 3, 4, 5, 6, 7)
9 1 (1, 0, 1, 1, 1, 1, 1) (1, 2, 3, 4, 5, 6, 7)
10 27 (1, 1, 1, 1, 0, 1, 1) (1, 2, 3, 4, 5, 6, 7)
11 1 (1, 1, 1, 1, 0, 1, 1) (1, 2, 3, 5, 8, 9, 10)
12 1 (1, 0, 1, 1, 1, 0, 0) (1, 2, 4, 5, 8, 10, 11)
13 9 (1, 1, 0, 0, 1, 0, 1) (1, 2, 3, 4, 5, 6, 8)
14 43 (1, 1, 1, 0, 1, 1, 1) (1, 2, 3, 4, 5, 6, 7)
15 31 (1, 1, 0, 0, 0, 0, 0) (1, 2, 3, 4, 7, 12, 14)
16 27 (1, 1, 1, 1, 0, 1, 1) (1, 2, 3, 5, 6, 8, 14)
17 1 (1, 0, 1, 1, 1, 0, 0) (1, 2, 3, 4, 7, 9, 13)
18 1 (1, 0, 1, 1, 1, 0, 0) (1, 2, 3, 4, 6, 9, 16)
19 3 (1, 1, 1, 1, 1, 1, 0) (1, 2, 3, 5, 7, 15, 17)
20 31 (1, 1, 1, 1, 1, 1, 0) (1, 2, 3, 7, 8, 12, 15)

Table A.4: 5-term span n sequences for t = 7
Length Decimation, Primitive polynomial m-tap positions
n d (c0, c1, ..., c6) (r0, r1, ..., r6)
8 13 (1, 1, 0, 0, 0, 0, 0) (1, 2, 3, 4, 5, 6, 7)
9 5 (1, 1, 0, 0, 0, 0, 0) (1, 2, 3, 4, 5, 6, 7)
10 43 (1, 1, 0, 0, 1, 0, 1) (1, 2, 3, 4, 5, 6, 7)
11 7 (1, 1, 1, 0, 0, 1, 0) (1, 2, 3, 4, 5, 6, 8)
12 9 (1, 0, 1, 0, 1, 0, 1) (1, 2, 3, 4, 5, 6, 7)
13 47 (1, 1, 1, 0, 0, 1, 0) (1, 2, 3, 4, 5, 6, 10)
14 63 (1, 0, 0, 0, 1, 1, 1) (1, 2, 3, 4, 5, 7, 9)
15 63 (1, 0, 1, 1, 1, 0, 0) (1, 2, 3, 4, 5, 9, 13)
16 47 (1, 1, 0, 0, 1, 0, 1) (1, 2, 3, 4, 5, 6, 7)
17 31 (1, 1, 1, 1, 0, 0, 0) (1, 2, 3, 4, 9, 14, 16)
18 5 (1, 0, 0, 1, 1, 1, 0) (1, 2, 3, 4, 5, 11, 17)
19 5 (1, 0, 1, 1, 1, 0, 0) (1, 2, 3, 6, 7, 10, 18)

Table A.5: 3-term span n sequences for t = 7
Length Decimation, Primitive polynomial m-tap positions
n d (c0, c1, ..., c6) (r0, r1, ..., r6)
8 31 (1, 1, 0, 1, 0, 1, 0) (1, 2, 3, 4, 5, 6, 7)
9 21 (1, 0, 0, 1, 0, 0, 0) (1, 2, 3, 4, 5, 6, 7)
10 55 (1, 0, 0, 1, 1, 1, 0) (1, 2, 3, 4, 5, 6, 7)
11 13 (1, 1, 1, 1, 1, 1, 0) (1, 2, 3, 4, 5, 6, 7)
12 11 (1, 0, 0, 0, 0, 0, 1) (1, 2, 3, 4, 5, 7, 11)
13 31 (1, 1, 1, 1, 1, 1, 0) (1, 2, 3, 4, 5, 6, 9)
14 55 (1, 0, 1, 1, 1, 1, 1) (1, 2, 3, 4, 5, 6, 12)
15 43 (1, 0, 1, 0, 0, 1, 1) (1, 2, 3, 4, 5, 6, 14)
16 3 (1, 0, 0, 0, 1, 0, 0) (1, 2, 3, 4, 5, 12, 15)
17 63 (1, 1, 1, 1, 0, 0, 0) (1, 2, 3, 4, 10, 12, 14)

137

Table A.6: Span n sequences generated by monomial functions for t = 9
Length Decimation, Primitive polynomial m-tap positions
n d (c0, c1, ..., c6, c7, c8) (r0, r1, ..., r6, r7, r8)
10 29 (1, 0, 0, 1, 1, 1, 0, 1, 1) (1, 2, 3, 4, 5, 6, 7, 8, 9)
11 125 (1, 0, 1, 1, 0, 1, 1, 0, 1) (1, 2, 3, 4, 5, 6, 7, 8, 9)
12 85 (1, 1, 1, 1, 1, 1, 1, 0, 1) (1, 2, 3, 4, 5, 6, 7, 8, 10)
13 45 (1, 1, 0, 1, 1, 0, 0, 0, 0) (1, 2, 3, 4, 5, 6, 7, 8, 9)
14 59 (1, 1, 0, 0, 1, 1, 0, 0, 0) (1, 2, 3, 4, 5, 6, 7, 8, 9)
15 27 (1, 0, 0, 0, 1, 1, 0, 0, 1) (1, 2, 3, 4, 5, 6, 7, 8, 12)
16 5 (1, 1, 0, 1, 1, 1, 0, 0, 1) (1, 2, 3, 4, 5, 6, 7, 8, 9)

Table A.7: MCM span n sequences for k = 3 and t = 7
Length Decimation, Primitive polynomial m-tap positions
n d (c0, c1, ..., c6) (r0, r1, ..., r6)
8 19 (1, 1, 0, 0, 0, 0, 0) (1, 2, 3, 4, 5, 6, 7)
9 1 (1, 1, 1, 1, 0, 0, 0) (1, 2, 3, 4, 5, 6, 7)
10 21 (1, 0, 1, 1, 1, 1, 1) (1, 2, 3, 4, 5, 7, 8)
11 5 (1, 1, 1, 1, 0, 1, 1) (1, 2, 3, 4, 5, 6, 8)
12 55 (1, 0, 0, 0, 1, 1, 1) (1, 2, 3, 4, 5, 6, 9)
13 19 (1, 0, 0, 0, 0, 0, 1) (1, 2, 3, 4, 5, 7, 10)
14 9 (1, 0, 1, 1, 1, 0, 0) (1, 2, 3, 4, 7, 10, 12)
15 23 (1, 1, 0, 0, 0, 0, 0) (1, 2, 3, 4, 5, 7, 12)
16 23 (1, 0, 1, 0, 1, 0, 1) (1, 2, 3, 4, 6, 7, 9)
17 13 (1, 0, 0, 0, 0, 0, 1) (1, 2, 3, 4, 7, 15, 16)
18 3 (1, 1, 1, 0, 0, 1, 0) (1, 2, 3, 4, 7, 12, 14)
19 27 (1, 0, 1, 1, 1, 1, 1) (7, 9, 14, 15, 16, 17, 18)

138

A.2 Linear Complexity of New Span n Sequences

This section presents the upper and lower bounds of the linear complexity of

new span n sequences generated using WG transformations, three-term, five-term,

monomial functions with Kasami exponent, and MCM functions, for different val-

ues of n and t. Tables A.8 - A.12 exhibit the upper and lower bounds of the

linear complexity of span n sequences produced by WG transformations, five-term,

three-term, monomial functions with Kasami exponents, and MCM functions, re-

spectively. We observe that the linear complexity of a span n sequence produced

by the structured search lies between (2n − 2 − 3n) (near-optimal) and (2n − 2)

(optimal).

Table A.8: The bounds of the linear span of WG span n sequences
By recurrence relation (4.1)

Range on n t Upper bound of LS Lower bound of LS
7 ≤ n ≤ 20 5 2n − 2 2n − 2− 2n
8 ≤ n ≤ 20 7 2n − 2 2n − 2− 2n
9 ≤ n ≤ 20 8 2n − 2 2n − 2− 3n
11 ≤ n ≤ 17 10 2n − 2 2n − 2− 3n
12 ≤ n ≤ 17 11 2n − 2 2n − 2− 2n

By recurrence relation (4.2)
Range on n t Upper bound of LS Lower bound of LS
7 ≤ n ≤ 20 5 2n − 2 2n − 2− 2n
8 ≤ n ≤ 20 7 2n − 2 2n − 2− 3n
9 ≤ n ≤ 20 8 2n − 2 2n − 2− 3n
11 ≤ n ≤ 17 10 2n − 2 2n − 2− 3n
12 ≤ n ≤ 16 11 2n − 2 2n − 2− 3n

Table A.9: The bounds of the linear span of five-term span n sequences
By recurrence relation (4.1)

Range on n t Upper bound of LS Lower bound of LS
7 ≤ n ≤ 19 5 2n − 2 2n − 2− 2n
8 ≤ n ≤ 19 7 2n − 2 2n − 2− 2n
9 ≤ n ≤ 19 8 2n − 2 2n − 2− 3n
11 ≤ n ≤ 17 10 2n − 2 2n − 2− 3n
12 ≤ n ≤ 16 11 2n − 2 2n − 2− 2n

By recurrence relation (4.2)
Range on n t Upper bound of LS Lower bound of LS
7 ≤ n ≤ 20 5 2n − 2 2n − 2− 2n
8 ≤ n ≤ 20 7 2n − 2 2n − 2− 3n
9 ≤ n ≤ 20 8 2n − 2 2n − 2− 3n
11 ≤ n ≤ 17 10 2n − 2 2n − 2− 2n
12 ≤ n ≤ 16 11 2n − 2 2n − 2− 3n

139

Table A.10: The bounds of the linear span of three-term span n sequences
By recurrence relation (4.1)

Range on n t Upper bound of LS Lower bound of LS
7 ≤ n ≤ 17 5 2n − 2 2n − 2− 2n
8 ≤ n ≤ 17 7 2n − 2 2n − 2− 3n
8 ≤ n ≤ 17 9 2n − 2 2n − 2− 3n
12 ≤ n ≤ 17 11 2n − 2 2n − 2− 3n

By recurrence relation (4.2)
Range on n t Upper bound of LS Lower bound of LS
7 ≤ n ≤ 17 5 2n − 2 2n − 2− 2n
8 ≤ n ≤ 17 7 2n − 2 2n − 2− 2n
8 ≤ n ≤ 17 9 2n − 2 2n − 2− 3n
12 ≤ n ≤ 17 11 2n − 2 2n − 2− 2n

Table A.11: The bounds of the linear span of span n sequences produced by mono-
mial functions with Kasami exponents

By recurrence relation (4.1)
Range on n t Upper bound of LS Lower bound of LS
7 ≤ n ≤ 19 5 2n − 2 2n − 2− 2n
8 ≤ n ≤ 19 7 2n − 2 2n − 2− 3n
8 ≤ n ≤ 17 9 2n − 2 2n − 2− 3n
12 ≤ n ≤ 16 11 2n − 2 2n − 2− 3n

By recurrence relation (4.2)
Range on n t Upper bound of LS Lower bound of LS
7 ≤ n ≤ 19 5 2n − 2 2n − 2− 2n
8 ≤ n ≤ 19 7 2n − 2 2n − 2− 3n
8 ≤ n ≤ 17 9 2n − 2 2n − 2− 3n
12 ≤ n ≤ 16 11 2n − 2 2n − 2− 3n

Table A.12: The upper and lower bounds of the linear span of MCM span n se-
quences

By recurrence relations (4.1) and (4.2)
m k Range on n Upper bound Lower bound
7 3 8 ≤ n ≤ 19 2n − 2 2n − 2− 3n

5 8 ≤ n ≤ 19 2n − 2 2n − 2− 2n
9 5 10 ≤ n ≤ 16 2n − 2 2n − 2− 3n

7 10 ≤ n ≤ 16 2n − 2 2n − 2− 3n
11 3 12 ≤ n ≤ 16 2n − 2 2n − 2− 3n

5 12 ≤ n ≤ 16 2n − 2 2n − 2− 3n
7 12 ≤ n ≤ 16 2n − 2 2n − 2− 3n
9 12 ≤ n ≤ 16 2n − 2 2n − 2− 3n

140

Bibliography

[1] M. Aagaard, G. Gong, and R. K. Mota, “Hardware Implementation of the

WG-5 Cipher for Passive RFID Tags”, 6th IEEE International Symposium on

Hardware-Oriented Security and Trust, pp. 24 – 29, June 2013.

[2] F.S. Annexstein, “Generating de Bruijn Sequences: An Efficient Implemen-

tation”, IEEE Transactions on Computers, Vol. 46, No. 2, pp. 198 – 200,

February 1997.

[3] J. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia, “QUARK: A

Lightweight Hash”, Cryptographic Hardware and Embedded Systems - CHES

2010, LNCS, Vol. 6225, pp. 1 – 15, Springer-Verlag, 2010. http://131002.

net/quark/

[4] G.K. Balachandran, and R.E. Barnett, “A 440-nA True Random Number Gen-

erator for Passive RFID Tags”, IEEE Transactions on Circuits and Systems I:

Regular Papers, Vol. 55, No. 11, pp. 3723 – 3732, December 2008.

[5] E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, ch. 7,

1968.

[6] A. Biryukov, and A. Shamir, “Cryptanalytic Time/Memory/Data Tradeoffs

for Stream Ciphers”, Advances in Cryptology-ASIACRYPT’00, LNCS 1976,

pp. 1 – 13. Springer-Verlag, 2000.

[7] A. Bogdanov, M. Knežev́ıc, G. Leander, D. Toz, K. Varici, and I. Verbauwhede,

“SPONGENT: A Lightweight Hash Function”, Cryptographic Hardware and

141

http://131002.net/quark/
http://131002.net/quark/

Embedded Systems -CHES 2011, Vol. 6917, pp. 312 – 325, Springer-Verlag,

2011.

[8] N.G. de Bruijn, “A Combinatorial Problem”, Koninklijke Nederlandse

Akademie v. Wetenschappen, Vol. 49, pp. 758 – 764, 1946.

[9] P. Bulens, and K. Kalach, “FPGA Implementations of eSTREAM Phase-2

Focus Candidates with Hardware Profile”, State of the Art of Stream Ciphers

Workshop (SASC 2007), the ECRYPT Stream Cipher Project Report, Vol.

24, 2007.

[10] M. Burmester and J. Munilla, “Lightweight RFID Authentication with For-

ward and Backward Security”, ACM Transactions on Information and System

Security, Vol. 14, No. 1, pp. 11, 2011.

[11] C. De Canniére, and B. Preneel, “TRIVIUM – A Stream Cipher Construction

Inspired by Block Cipher Design Principles”, http://www.ecrypt.eu.org/

stream/trivium.html.

[12] C. De Canniére, and B. Preneel, “TRIVIUM Specifications”, http://www.

ecrypt.eu.org/stream/ciphers/trivium/trivium.pdf.

[13] C. Carlet, “Vectorial Boolean Functions for Cryptography”, http://www.

math.univ-paris13.fr/~carlet/chap-vectorial-fcts-corr.pdf.

[14] A.H. Chan, R.A. Games, and E.L. Key, “On the Complexities of de Bruijn

Sequences”, Journal of Combinatorial Theory, Series A, Vol. 33, No. 3, pp.

233 – 246, 1982.

[15] A.H. Chan, and R.A. Games, “On the Quadratic Spans of de Bruijn Se-

quences”, IEEE Transactions on Information Theory, Vol. 36, No. 4, pp. 822

– 829, July 1990.

[16] A.H. Chan, R.A. Games, and J.J. Rushanan, “On Quadratic m-sequences”,

IEEE International Symposium on Information Theory , pp. 364, July 1994.

142

http://www.ecrypt.eu.org/stream/trivium.html
http://www.ecrypt.eu.org/stream/trivium.html
http://www.ecrypt.eu.org/stream/ciphers/trivium/trivium.pdf
http://www.ecrypt.eu.org/stream/ciphers/trivium/trivium.pdf
http://www.math.univ-paris13.fr/~carlet/chap-vectorial-fcts-corr.pdf
http://www.math.univ-paris13.fr/~carlet/chap-vectorial-fcts-corr.pdf

[17] T. Chang, B. Park, Y. H. Kim, and I. Song, “An Efficient Implementation of

the D-Homomorphism for Generation of de Bruijn Sequences”, IEEE Trans-

actions on Information Theory, Vol. 45, No. 4, pp. 1280 – 1283, May 1999.

[18] W. Che, H. Deng, W. Tan, and J. Wang, “A Random Number Generator

for Application in RFID Tags”, Networked RFID Systems and Lightweight

Cryptography, pp. 279 – 287, Springer-Verlag, 2008.

[19] L. Chen, and G. Gong, Communication System Security, Boca Raton, Florida,

USA: Chapman & Hall/CRC, 2012.

[20] N. Courtois, “Fast Algebraic Attacks on Stream Ciphers with Linear Feed-

back”, Advances in Cryptology-CRYPTO 2003, LNCS 2729, pp. 176 – 194,

Springer-Verlag, 2003.

[21] N. Courtois, and W. Meier, “Algebraic Attacks on Stream Ciphers with Linear

Feedback”, Advances in Cryptology-EUROCRYPT 2003, LNCS 2656, pp. 644

– 644, Springer-Verlag, 2003.

[22] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Efficient Algorithms for

Solving Overdefined Systems of Multivariate Polynomial Equations”, Advances

in Cryptology-EUROCRYPT 2000, LNCS 1807, pp. 392 – 407, Springer-Verlag,

2000.

[23] T. W. Cusick and P. Stanica, Cryptographic Boolean Functions and Applica-

tions, Academic Press, 2009.

[24] I. Dinur, and A. Shamir, “Cube Attacks on Tweakable Black Box Polyno-

mials”, Advances in Cryptology-EUROCRYPT ’09, LNCS, pp. 278 – 299,

Springer-Verlag, 2009.

[25] J. Dillon and H. Dobbertin, “New Cyclic Difference sets with Springer param-

eters”, Finite Fields and Their Application, 10, pp. 342 – 389, August 1999.

[26] H. Dobbertin, “Kasami Power Functions, Permutation Polynomials and Cyclic

Difference Sets”, Proceedings of the NATO-A.S.I. Workshop Difference Sets,

143

Sequences and their Correlation Properties, Bad Windsheim, August 3 -14,

1998, Kluwer, Dordrecht, pp. 133 – 158, 1999.

[27] E. Dubrova, “A List of Maximum Period NLFSRs”, Report 2012/166, Cryp-

tology ePrint Archive, 2012. http://eprint.iacr.org/2012/166.pdf

[28] P. Ekdahl, and T. Johansson, “SNOW - A New Stream Cipher”, Proceedings

of First NESSIE Workshop, Heverlee, Belgium, 2000.

[29] EPCglobal - The EPC Radio-Frequency Identifiction Protocol Class-1

Generation-2 UHF RFID for Communication at 860-960 MHz, 2008.

[30] eSTREAM - The ECRYPT Stream Cipher Project, http://www.ecrypt.eu.

org/stream/.

[31] T. Etzion, “Linear Complexity of de Bruijn Sequences – Old and New Results”,

IEEE Transactions on Information Theory, Vol. 45, No. 2, pp. 693 – 698,

March 1999.

[32] T. Etzion and A. Lempel, “Construction of de Bruijn Sequences of Minimal

Complexity”, IEEE Transactions on Information Theory, Vol. 30, No. 5, pp.

705 – 709, September 1984.

[33] H. Fredricksen, “The Lexicographically Least de Bruijn Cycle”, Journal Com-

binatorial Theory Vol. 9, pp. 1 – 5, 1970.

[34] H. Fredricksen, “Generation of the Ford Sequence of Length 2n, n Large”,

Journal Combinatorial Theory, Series A 12, pp. 153 – 154, 1972.

[35] H. Fredricksen, “A Class of Nonlinear de Bruijn Cycles”, Journal of Combina-

torial Theory, Series A, Vol. 19, Issue 2, pp. 192 – 199, September 1975.

[36] H. Fredricksen, “A Survey of Full Length Nonlinear Shift Register Cycle Al-

gorithms”, SIAM Review, Vol. 24, No. 2, pp. 195 – 221, 1982.

[37] H. Fredricksen and I. Kessler, “Lexicographic Compositions and de Bruijn

Sequences”, Journal Combinatorial Theory, Series A 22, pp. 17 – 30, 1977.

144

http://eprint.iacr.org/2012/166.pdf
http://www.ecrypt.eu.org/stream/.
http://www.ecrypt.eu.org/stream/.

[38] H. Fredricksen and J. Maiorana, “Necklaces of Beads in k Colors and k-ary

de Bruijn Sequences”, Discrete Mathematics, Vol. 23, Issue 3, pp. 207 – 210,

1978.

[39] R. A. Games, “A Generalized Recursive Construction for de Bruijn Sequences”,

IEEE Transactions on Information Theory, Vol. 29, No. 6, pp. 843 – 850,

September 1983.

[40] B. M. Gammel, R. Göttfert, and O. Kniffler, “The Achterbahn Stream

Cipher”, 2005. http://www.ecrypt.eu.org/stream/ciphers/achterbahn/

achterbahn.pdf

[41] B. M. Gammel, R. Göttfert, and O. Kniffler, “Achterbahn-128/80”, 2006.

http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_

p2.pdf

[42] B. M. Gammel, R. Göttfert, and O. Kniffler, “An NLFSR-based Stream Ci-

pher”, Proceedings of IEEE International Symposium on Circuits and Systems

(ISCAS’2006), pp. 4 – 8, 2006.

[43] S.W. Golomb, Shift Register Sequences, Aegean Park Press, Laguna Hills, CA,

USA, 1981.

[44] S.W. Golomb, “On the Classification of Balanced Binary Sequences of Period

2n− 1”, IEEE Transformation on Information Theory, Vol. 26, No. 6, pp. 730

– 732, November 1980.

[45] S.W. Golomb, and G. Gong, Signal Design for Good Correlation: For Wireless

Communication, Cryptography, and Radar, Cambridge University Press, New

York, NY, USA, 2004.

[46] G. Gong, S. Rønjom, T. Helleseth, and H. Hu, “Fast Discrete Fourier Spectra

Attacks on Stream Ciphers”, IEEE Transactions on Information Theory, Vol

57, No. 8, pp. 5555 – 5565, August 2011.

145

http://www.ecrypt.eu.org/stream/ciphers/achterbahn/achterbahn.pdf
http://www.ecrypt.eu.org/stream/ciphers/achterbahn/achterbahn.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf

[47] G. Gong, and A. Youssef, “Cryptographic Properties of the Welch-Gong Trans-

formation Sequence Generators”, IEEE Transactions on Information Theory,

Vol. 48, No. 11, pp. 2837 – 2846, November 2002.

[48] G. Gong, “Randomness and Representation of Span n Sequences”, Proceed-

ings of the 2007 International Conference on Sequences, Subsequences, and

Consequences, SSC’07, pp. 192 – 203, Springer-Verlag, 2007.

[49] I.J. Good, “Normal Recurring Decimals”, Journal of London Math. Soc., Vol.

21 (Part 3), 1946.

[50] D. H. Green and K. R. Dimond, “Nonlinear Product-Feedback Shift Registers”,

Proceeding IEE 117, pp. 681 – 686, 1970.

[51] D. H. Green and K. R. Dimond, “Some Polynomial Compositions of Nonlinear

Feedback Shift Registers and their Sequence-Domain Consequences”, Proc.

IEE 117, pp. 1750 – 1756, 1970.

[52] J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON Family of Lightweight

Hash Functions”, Advances in Cryptology-CRYPTO’11, pp. 222 – 239,

Springer-Verlag, 2011.

[53] E. R. Hauge and T. Helleseth, “De Bruijn Sequences, Irreducible Codes and

Cyclotomy”, Discrete Mathematics, Vol. 159, Issues 1 – 3, pp. 143 – 154,

November 1996.

[54] E. R. Hauge, J. Mykkeltveit, “On the Classification of de Bruijn Sequences”,

Discrete Mathematics, Vol. 148, Issues 1 – 3, pp. 65 – 83, January 1996.

[55] M. Hell, T. Johansson, and W. Meier, “Grain: A Stream Cipher for Con-

strained Environments”, Int. J. Wire. Mob. Comput., Vol. 2, pp. 86 – 93, May

2007.

[56] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois, “Built-

In Test for Circuits with Scan Based on Reseeding of Multiple-Polynomial

146

Linear Feedback Shift Registers”, IEEE Transactions on Computers, Vol. 44,

pp. 223 – 233, February 1995.

[57] D.E. Holcomb, W.P. Burleson, and K. Fu, “Initial SRAM State as a Fingerprint

and Source of True Random Numbers for RFID Tags”, Proceedings of the

Conference on RFID Security, 2007.

[58] H. Hu and G. Gong, “Periods on Two Kinds of Nonlinear Feedback Shift

Registers with Time Varying Feedback Functions”, International Journal of

Foundations of Computer Science, Vol. 22, No. 6, pp. 1317 – 1329, September

2011.

[59] C.J.A. Jansen, W.G. Franx, and D.E. Boekee, “An Efficient Algorithm for the

Generation of de Bruijn Cycles”, IEEE Transactions on Information Theory,

Vol. 37, No. 5, pp. 1475 – 1478, September 1991.

[60] A. Juels, “RFID Security and Privacy: A Research Survey”, IEEE Journal

on Selected Areas in Communications (J-SAC), Vol. 24, No. 2, pp. 381 – 394,

February 2006.

[61] E. Kavun, and T. Yalcin, “A Lightweight Implementation of Keccak Hash

Function for Radio-Frequency Identification Applications”, In: Ors Yalcin,

S.B. (ed.) RFIDSec 2010, LNCS, Vol. 6370, pp. 258 – 269, Springer-Heidelberg,

2010.

[62] E. L. Key, “An Analysis of the Structure and Complexity of Nonlinear Binary

Sequence Generators”, IEEE Transactions on Information Theory, Vol 22, No.

6, pp. 732 – 736, November 1976.

[63] A. Klapper, “Linear Complexity of Finite Field Sequences over Differ-

ent Fields”, International Workshop on Sequence Design and Applications

(IWSDA), Fukuoka, Japan, October 2005.

[64] A. Klimov and A. Shamir, “A New Class of Invertible Mappings”, CHES 2002,

LNCS, Vol. 2523, pp. 470 – 483, Springer-Heidelberg, 2003.

147

[65] D.E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical

Algorithms, Addison-Wesley, 1969.

[66] C. Lam, M. Aagaard and G. Gong, “Hardware Implementations of Multi-

output Welch-Gong Ciphers”, Technical Report CACR, 2011, http://www.

cacr.math.uwaterloo.ca/.

[67] A. Lempel, “On a Homomorphism of the de Bruijn Graph and its Applications

to the Design of Feedback Shift Registers”, IEEE Transactions on Computers,

Vol. C-19, Issue 12, pp. 1204 – 1209, December 1970.

[68] R. Lidl, and H. Niederreiter, Finite Fields, Cambridge University Press, 1997.

[69] K. Mandal, and G. Gong, “Probabilistic Generation of Good Span n Sequences

from Nonlinear Feedback Shift Registers”, Technical Report CACR 2012-06,

University of Waterloo, 2012.

[70] K. Mandal, and G. Gong, “Cryptographically Strong de Bruijn Sequences with

Large Periods”, In: L.R. Knudsen, H. Wu (Eds.), Selected Areas in Cryptog-

raphy, SAC’12, LNCS, Vol. 7707, pp. 104 – 118, Springer, Heidelberg, 2012.

[71] K. Mandal, and G. Gong, “Cryptographic D-morphic Analysis and Fast Im-

plementations of Composited De Bruijn Sequences”, Technical Report CACR

2012-27, University of Waterloo, 2012.

[72] K. Mandal, X. Fan, and G. Gong, “Warbler: A Lightweight Pseudorandom

Number Generator for EPC C1 Gen2 RFID Tags”, Cryptology and Information

Security Series - The 2012 Workshop on RFID and IoT Security (RFIDsec’12

Asia), Vol. 8, N.W. Lo and Y. Li (Eds.), Amsterdam, Netherlands: IOS Press,

pp. 73-84, 2012.

[73] K. Mandal, X. Fan, and G. Gong, “A Lightweight Pseudorandom

Number Generator for EPC C1 Gen2 RFID Tags”, WEWoRC 2011,

http://www.uni-weimar.de/cms/fileadmin/medien/medsicherheit/

WEWoRC2011/files/conference_record3.pdf

148

http://www.cacr.math.uwaterloo.ca/
http://www.cacr.math.uwaterloo.ca/
http://www.uni-weimar.de/cms/fileadmin/medien/medsicherheit/WEWoRC2011/files/conference_record3.pdf
http://www.uni-weimar.de/cms/fileadmin/medien/medsicherheit/WEWoRC2011/files/conference_record3.pdf

[74] K. Mandal, X. Fan, and G. Gong, “Warbler: A Lightweight Pseudorandom

Number Generator for EPC C1 Gen2 Passive RFID Tags”, submitted at IJR-

FIDSC, 2013.

[75] K. Mandal, X. Fan, and G. Gong, “Warbler Family of Lightweight Pseudoran-

dom Number Generators for Smart Devices”. In submission, 2013.

[76] K. Mandal, G. Gong, X. Fan, and M. Aagaard, “Optimal Parameters for the

WG Stream Cipher Family”, Technical Report CACR 2013-15, University of

Waterloo, 2013. To appear at CCDS.

[77] K. Mandal, G. Gong, X. Fan, and M. Aagaard. “On Selection of Optimal

Parameters for the WG Stream Cipher Family”, Proceedings of 13th Canadian

Workshop on Information Theory (CWIT’13), pp. 17 – 21, June 2013.

[78] H. Martin, E. San Millan, L. Entrena, P.P. Lopez, J.C.H. Castro, “AKARI-X:

A Pseudorandom Number Generator for Secure Lightweight Systems”, 2011

IEEE 17th International On-Line Testing Symposium (IOLTS), Vol. 228, No.

233, pp. 13 – 15, July 2011.

[79] J.L. Massey, “Shift-Register Synthesis and BCH Decoding”, IEEE Transac-

tions on Information Theory, Vol. 15, No. 1, pp. 122 – 127, 1969.

[80] G.L. Mayhew, and S.W. Golomb, “Linear Spans of Modified de Bruijn Se-

quences”, IEEE Transactions on Information Theory, Vol. 36, No. 5, pp. 1166

– 1167, September 1990.

[81] G.L. Mayhew, “Weight Class Distributions of de Bruijn Sequences”, Discrete

Math., Vol. 126, pp. 425 – 429, March 1994.

[82] G.L. Mayhew, and S.W. Golomb, “Characterizations of Generators for Modi-

fied de Bruijn Sequences”, Advanced Applied Mathematics, Vol. 13, pp. 454 –

461, December 1992.

[83] G.L. Mayhew, “Clues to the Hidden Nature of de Bruijn Sequences”, Comput-

ers and Mathematics with Applications, Vol. 39, No. 11, pp. 57 – 65, 2000.

149

[84] W. Meier, and O. Staffelbach, “Fast Correlation Attacks on Certain Stream

Ciphers”, Journal of Cryptology, pp. 159 – 176, 1989.

[85] J. Melia-Segui, J. Garcia-Alfaro, and J. Herrera-Joancomarti, “Analysis and

Improvement of a Pseudorandom Number Generator for EPC Gen2 Tags”,

Proceedings of the 14th International conference on Financial Cryptography

and Data Security, FC’10, pp. 34 – 46, Springer-Verlag, 2010.

[86] J. Meliá-Segúı , J. Garcia-Alfaro, and J. Herrera-Joancomart́ı, “J3Gen: A

PRNG for Low-Cost Passive RFID”, Sensors, Vol. 13, No. 3, pp. 3816 – 3830,

2013.

[87] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied

Cryptography, CRC Press, 1997.

[88] M.J. Mihaljevic, and J.D. Gólic, “A Fast Iterative Algorithm for a Shift Regis-

ter Initial State Reconstruction Given the Noisy Output Sequence”, Advances

in Cryptology-AUSCRYPT’90, LNCS, pp. 165 – 175, Springer-Verlag, 1990.

[89] M.J. Mihaljević, S. Gangopadhyay, G. Paul, and H. Imai, “Internal State Re-

covery of Grain-v1 Employing Normality Order of the Filter Function”, IET

Information Security, Vol.6, No.2, pp. 55 – 64, June 2012.

[90] J. Mykkeltveit, “Generalization of a Theorem on Linear Recurrence to the

Nonlinear Case”, Internal Report, University of Bergen, Bergen, 1976.

[91] J. Mykkeltveit, “Generating and Counting the Double Adjacencies in a Pure

Cycling Shift Register, IEEE Trans. Electronic Computers, C-24, pp. 299 –

304, 1975.

[92] J. Mykkeltveit, M-K. Siu, and P. Tong, “On the Cycle Structure of Some

Nonlinear Shift Register Sequences”, Information and Control, pp. 202 – 215,

1979.

[93] Y. Nawaz, and G. Gong, “The WG Stream Cipher”, Workshop on Symmetric

Key Encryption, Aarhus, Denmark, May 26 - 27, 2005.

150

[94] Y. Nawaz, and G. Gong, “WG: A Family of Stream Ciphers with Designed

Randomness Properties”, Information Science, Vol. 178, No. 7, pp. 1903 –

1916, April 2008.

[95] J.L. Ng, “Binary Nonlinear Feedback Shift Register Sequence Generator using

the Trace Function”, Master’s Thesis, University of Waterloo, 2005.

[96] J.S. No, S.W. Golomb, G. Gong, H.K. Lee, and P. Gaal, “New Binary Pseudo-

random Sequences of Period 2n − 1 with Ideal Autocorrelation”, IEEE Trans-

actions on Information Theory, Vol. 44, No. 2, pp. 814 – 817, March 1998.

[97] P. Peris-Lopez, J. Hernandez-Castro, J.M. Estevez-Tapiador, and A. Rib-

agorda, “LAMED - A PRNG for EPC Class-1 Generation-2 RFID Specifi-

cation”, Computer Standards and Interfaces, pp. 88 – 97, January 2009.

[98] D.C. Ranasinghe, and P.H. Cole, “An Evaluation Framework”, Networked

RFID Systems and Lightweight Cryptography, pp. 157 – 167, Springer-Verlag,

2008.

[99] T. Rachwalik, J. Szmidt, R. Wicik, and J. Zablocki, “Generation of Nonlinear

Feedback Shift Registers with Special-Purpose Hardware”, Report 2012/314,

Cryptology ePrint Archive, 2012, http://eprint.iacr.org/.

[100] S. Rønjom, and T. Helleseth, “A New Attack on the Filter Generator, IEEE

Transactions on Information Theory, Vol. 53, No. 5, pp. 1752 – 1758, May

2007.

[101] S. Rønjom, G. Gong, and T. Helleseth, “On Attacks on Filtering Genera-

tors using Linear Subspace Structures”, Proceedings of the 2007 International

Conference on Sequences, Subsequences, and Consequences, SSC’07, pp. 204 –

217, Springer-Verlag, 2007.

[102] R.A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, 1986.

151

http://eprint.iacr.org/

[103] A. Rukhin, J. Soto, J. Nechvatal, E. Barker, S. Leigh, M. Levenson, D. Banks,

J. Dray, S. Vo, M. Smid, M. Vangel, A. Heckert, and L.E. Iii, “A Statisti-

cal Test Suite for Random and Pseudorandom Number Generators for Cryp-

tographic Applications”, 2001. http://csrc.nist.gov/groups/ST/toolkit/

rng/index.html

[104] M. O. Saarinen, “A Time-Memory Tradeoff Attack Against LILI-128, Fast

Software Encryption (FSE) 2002, LNCS 2365, pp. 231 – 236, Springer-Verlag,

2002.

[105] T. Siegenthaler, “Correlation-immunity of Nonlinear Combining Functions

for Cryptographic Applications”, IEEE Transactions on Information Theory,

Vol. 30, No. 5, pp. 776 – 780, September 1984.

[106] G.J. Simmons, Contemporary Cryptology: The Science of Information In-

tegrity, IEEE Press, 1994.

[107] M.-K. Siu and P. Tong, “Generation of Some de Bruijn Sequences”, Discrete

Mathematics, Vol. 31, Issue 1, pp. 97 – 100, 1980.

[108] D.R. Stinson, Cryptography Theory and Practice, CRC Press, 2005.

[109] V.B. Suresh, and W.P. Burleson, “Entropy Extraction in Metastability-Based

TRNG”, IEEE International Symposium on Hardware-Oriented Security and

Trust (HOST), pp. 135 – 140, June 2010.

[110] H. Wu, and B. Preneel, “Chosen IV Attack on Stream Cipher WG”, ECRYPT

Stream Cipher Project Report 2005/045, Available at http://cr.yp.to/

streamciphers/wg/045.pdf.

[111] Jun-H. Yang and Zong-D. Dai, “Construction of m-ary de Bruijn Sequences

(extended abstract)”, Advances in Cryptology – AUSCRYPT ’92, LNCS, pp.

357 – 363, Springer-Heidelberg, 1993.

[112] http://www.avoine.net/rfid/

152

http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
http://cr.yp.to/streamciphers/wg/045.pdf
http://cr.yp.to/streamciphers/wg/045.pdf
http://www.avoine.net/rfid/

	List of Tables
	List of Figures
	Introduction
	Pseudorandom Sequence Generators
	Cryptographic Pseudorandom Sequences and Their Applications
	Motivation and This Thesis
	Radio Frequency Identification Systems
	Overview and Main Contributions

	Literature Review
	Existing de Bruijn Sequence Generation Methods
	D-homomorphism Based de Bruijn Sequence Construction
	Cycle Joining Algorithms for de Bruijn Sequences
	Algorithmic Approach for the de Bruijn Sequence Generation
	Linear Span Based de Bruijn Sequence Construction

	Span n Sequence Generation by the Exhaustive Search Method
	Exhaustive Search for Small Span n Sequences
	Span n Sequence Generation Using Quadratic Feedback Function
	Span n Sequence Generation Using Cubic and Quartic Feedback Functions
	General Studies on Span n Sequences

	RNG for the EPC C1 Gen2 Standard
	TRNG Based RNG Proposals
	Pseudorandom Number Generator Proposals

	Summary of Chapter 2

	Preliminaries
	Finite Fields
	Feedback Shift Register Sequences
	Basic Definitions and Properties of NLFSRs
	Golomb's Randomness Postulates
	Relationship Between de Bruijn Sequences and Span n Sequences
	Unsolved Problems on Synthesis of NLFSRs
	D-homomorphisms and Compositions of NLFSRs

	Boolean Functions
	Nonlinearity of Boolean Functions and Vector Boolean Functions
	Resiliency and Propagation of Boolean Functions
	Algebraic Immunity of Boolean Functions

	Some Permutations and Functions over F2t
	The Welch-Gong (WG) Transformation
	Three-Term Function
	Monomial Function with Kasami Exponent
	MCM Polynomial

	Summary of Chapter 3

	Span n Sequence Generation by the Structured Search
	Related Work and Motivation
	Theoretical Results on Span n Sequences
	Description of a Span n Sequence Generation Procedure
	 Approximate Number of Functions in the Search Space

	Span n Sequence Generation Using WG transformations
	WG Span n Sequences
	The Success Probability Comparison
	The Search Complexity Reduction for WG Span n Sequences

	Span n Sequence Generation by 3-term, 5-term, and Monomial Functions and MCM Functions
	3-term and 5-term Span n Sequences
	Monomial and MCM Functions Span n Sequences

	Linear Span Analysis of New Span n Sequences
	Summary of Chapter 4

	Strong de Bruijn Sequences with Large Periods by the Composited Construction
	Feedback Functions of Composited de Bruijn Sequences
	The k-th Order Composition of a Boolean Function
	Repeated Compositions of a Product Term
	The Composited Construction of a de Bruijn Sequence
	Algebraic Form of I16n

	Linear Complexity of Composited de Bruijn Sequences
	A Closer Look at the Composited Construction
	Linear Complexity of a Composited de Bruijn Sequence

	Cryptanalysis of a Composited NLFSR for a de Bruijn Sequence
	Hamming Weights of the Product-Of-Sum Terms
	Cycle Structure of an Approximated Recurrence Relation

	Designing Parameters for Cryptographic de Bruijn Sequences
	Tradeoff Between n and k
	Examples of de Bruijn Sequences with Large Periods

	Implementation of Function I16n
	Optimizing the Number of Additions for I16n
	Total Number of Multiplications and Time Complexity for Computing Ikn

	Summary of Chapter 5

	Warbler Family: A Lightweight PRNG Family for Smart Devices
	Description of the Warbler PRNG Family
	Randomness Properties of the CMDB of Warbler Family
	Description of the Nonlinear Feedback WG Generator

	Design Rationale
	Key Initialization Phase of Warbler
	Optimal Security Conditions for the Warbler Family
	Summary of Chapter 6

	Warbler-I: A Lightweight PRNG for the EPC C1 Gen2 RFID Tags
	Motivation and Related Work
	Che et al.'s PRNG
	Melia-Segui et al.'s PRNG
	Peris-Lopez et al.'s PRNG

	Description of Warbler-I
	WG-5 Transformation
	Building Block I: An Alternative to TRNG
	Building Block II: Pseudorandom Number Generator
	System Initialization of Warbler-I

	Security Analysis of Warbler-I
	Randomness Analysis of the PRNG
	Cryptanalysis of Warbler-I

	Hardware Implementation of Warbler-I
	Applications in RFID Systems
	Summary of Chapter 7

	Warbler-II: A Lightweight PRNG for RFID Tags
	 Description of Warbler-II
	Mathematical Functions of Warbler-II
	Description of the CMDB of Warbler-II
	Description of the NFWGG of Warbler-II
	Key Initialization Phase of Warbler-II

	Security Analysis of Warbler-II
	Cryptographic Statistical Tests
	Cryptanalysis of Warbler-II

	Hardware Implementation and Comparisons
	Application to the RFID Tags and Protocols
	Comparisons with Other PRNGs
	Comparison with Warbler-I
	Comparisons with a Composited De Bruijn Sequence and WG-5 Stream Cipher

	Summary of Chapter 8

	Conclusions and Future Research
	Conclusions
	Future Research

	APPENDIX
	Span n Sequences and Linear Complexity Bounds
	Example of Span n Sequences
	Linear Complexity of New Span n Sequences

	Bibliography

