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Abstract 

Generally urban drainage systems are built to protect urban property and control runoff. 

Moreover, these systems collect the runoff for storage purposes to serve society through 

sufficient water supply to meet the needs of demand, irrigation, and drainage. Urban 

environments are exposed to risks of extreme hydrological events. Therefore, urban water 

systems and their management are critical. Precipitation data are crucial, but may be prone to 

errors due to the lack of information e.g., short length of records. In this thesis, a Monte Carlo 

simulation and regional frequency analysis based on L-moments approach were utilized during 

the research in order to estimate the uncertainty in the Intensity Duration Frequency (IDF) curves 

by using historical precipitation data from Environment Canada (EC) weather stations and 

simulating a new series of data through a weather generator (WG) model. The simulations were 

then disaggregated from daily into hourly data for extraction of the annual maximum 

precipitation for different durations in hours (1, 2, 6, 10, 12, and 24). Regional frequency 

analysis was used to form the sites into groups based on homogeneity test results, and the 

quantile values were computed for various sites and durations with the return periods (T) in years 

(2, 10, 20, and 100). As a result, the regional frequency analysis was used to estimate the 

regional quantile values based on L-moment approach. Moreover, the box and whisker plots 

were utilized to display the results. When the return periods and durations increased, the 

uncertainty slightly increased. The historical IDF curves of London site falls within the regional 

simulated IDF curves. Furthermore, 1000 runs have been generated by using the weather 

generator. 
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Chapter 1: Introduction 

1.1 Background 

Urban environments are exposed to the risk of extreme hydrological events. Therefore, 

urban water systems (including culverts, storm water ponds, creeks, drainage systems, and storm 

sewer systems) along with infrastructure design and management are critical to lessen the risk of 

flooding. Intensity-Duration-Frequency (IDF) curves can be obtained based on historical data 

and are usually employed to evaluate the extreme values of precipitation in urban drainage 

systems. For instance, IDF curve estimates are crucial in urban drainage systems so as to have a 

consistent estimation of extreme precipitation to design the conveying and detention 

infrastructures. Therefore, IDF curves can be defined as mathematical tools that express the 

relation between intensity, duration, and return period of precipitation. Three stages used to 

obtain the IDF curves are extraction of annual maximum precipitation, fitting distribution in each 

maximum time series, and estimation of IDF curve parameters. One challenge in determining 

extreme precipitation events is the issue of uncertainty. Sources of uncertainty include 

inadequate data records as well as parameter and model uncertainty (Elsebaie, 2011; Xu et al., 

2010; Sharif & Burn, 2007). Hailegeorgis and Burn (2009) identify several additional potential 

sources of uncertainty, which are detailed in Chapter 2. This thesis will undertake simulations 

and statistical analysis to quantify the uncertainty in IDF curve estimates.  
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A source of uncertainty could be the IDF characteristic of data length. This could affect the 

uncertainty on the IDF curve which could lead to greater risk and require decisions in order to 

find the proper design and cost of hydraulic structures. This emerging uncertainty is due to lack 

of precipitation data, and is a major concern with water resources management. Thus, in this 

thesis, regional frequency analysis approach has been used to coordinate data series. 

Homogenous regions have been identified from several sites to generate regional frequency 

curve.  

There are different methods used to quantify the uncertainty in IDF curves, such as Monte 

Carlo Simulation (MCS), Kernel estimators, Bayesian estimations, and Fuzzy Alpha Cut Logic. 

In this research, MCS - a common stochastic model - was used to estimate the uncertainty in IDF 

curves. MCS is involved in two processes: defining an input domain and generating random 

inputs from a probability distribution over the domain.  

In water resources management and planning, assessment of uncertainty in IDF curves must 

be considered in terms of economics and the environment. Essentially, urban water systems 

protect urban property by controlling the runoff. However, if IDF curves were inaccurately 

estimated and the urban water system was designed improperly, the urban area would be at high 

potential risk of flooding (Figures 1-1, 1-2).  
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Figure  1-1 Flood in the canal of King Abdullah Road, Jeddah, Saudi Arabia, November 2009. 
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Figure  1-2 Flood in Makkah road, Jeddah, Saudi Arabia, November 2009. 

1.2 Objectives of the thesis 

The thesis, which is motivated by observed and modeled storm design, quantifies the 

uncertainty of precipitation events. Therefore, the main goals are to quantify the uncertainty in 

IDF curves using Monte Carlo simulation method, and increase the understanding and 

knowledge of precipitation events in spite of uncertainties. 

1.3 Organization of the thesis 

The remainder of the thesis is organized as follows. Chapter 2 provides a literature review of 
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material relevant to the subject, and includes four sections. Chapter 3 presents an overview of the 

methodology used during this research. Chapter 4 discusses background information about the 

case study application, the Upper Thames River in London Ontario, along with the results and 

discussion. Finally, Chapter 5 concludes this project and suggests future work.  
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Chapter 2: Literature Review 

2.1 Introduction 

The scope of this chapter focuses on how researchers have identified, estimated, and 

assessed uncertainty on any aspect of hydrology using Intensity Duration Frequency (IDF) 

curves. Furthermore, the literature review will focus on the following topics: regional frequency 

analysis, uncertainty analysis method, and IDF curves.   

Related research about uncertainty in IDF curves depends upon stochastic analysis and 

numerical simulation from observed data. Similarly, changes in climate and environment can 

also contain uncertainty. Overall, it is clear that uncertainty assessments aid researchers in the 

field of water resources management and hydraulic structures to design proper urban systems by 

relying on statistics and engineering concepts that prevent and control floods and reduce the loss 

of life, property, and surface pollution. Therefore, the estimation of uncertainties depends upon 

the sources that cause them, and is based on stochastic simulations and comparisons between the 

parameters of simulated samples (distribution probabilities parameters).   

2.2 Regional frequency analysis 

Frequency analysis is defined as the estimation of how likely it is that an event will occur. 

Regional frequency analysis estimates the frequency distribution of observed data for each site 

using collected data from several sites (Hosking & Wallis, 1993). The principles of regional 

frequency analysis apply whenever there are multiple samples of similar data. Therefore, the aim 

of frequency analysis is to obtain the valuable estimation of the quantile values for a return 

period. In hydrology, regional frequency analysis has been established over the last decades. The 
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index-flood is an early example (Dalrymple, 1960). National organizations like the U.S. Water 

Resources Council (1976) through Bulletin 17 recommended several methods for general use by 

hydrologists such as fitting a log Pearson type III distribution to annual maximum stream 

discharge at a single site. Regional frequency analysis depends on the index storm approach, 

which is widely used in precipitation events quantile estimation (Hosking & Wallis, 1997). 

However, additional information from sites through the region is applied at site assessments to 

obtain estimations for sites without observations. Hosking and Wallis (1997) indicated that each 

step for regional frequency analysis depends on the previous steps. In total, there are four main 

steps in regional frequency analysis: screening the data, homogeneous regions identification, 

deciding upon frequency distribution, and estimation of frequency distribution. Regional 

frequency analysis of precipitation events requires the availability of precipitation data at sites of 

interest. Martins and Stedinger (2002), Lin and Chen (2006), and Burn (2003) have demonstrated 

the importance of using regional frequency analysis for extreme hydrological events.  

L-moment approach can be used under regional frequency analysis. For example, the L-

moment describes the shape and location of data series in the distribution, and briefly outlines 

the statistics of probability distributions and data samples (Hosking & Wallis, 1997). For data 

samples, Greenwood et al. (1979) have stated that probability-weighted moments are precursors 

or leaders of the L-moments. Therefore, the sample probability weighted moments are computed 

from data values X1, X2, ... Xn, arranged in increasing order, as given in the following equation: 

    
  ∑   

 
                                                     Eq (2.1) 

    
  ∑

(   )(   )  (   )

(   )(   ) (   )
  

 
                           Eq (2.2) 
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where b0 and br are unbiased estimators of the probability weighted moment.  

Basically, L-moments are linear combinations of probability-weighted moments, and their 

probability weighted moments are defined by Greenwood et al. (1979) to be the quantities:  

        { 
 [ ( )] [   ( )] }                    Eq (2.3) 

            { [ ( )]
 }                                Eq (2.4) 

where  ,  , and   are the non-negative integers. The conventional moment of order   is 

represented by       . The probability-weighted moments are difficult to explicate directly as the 

probability scale and shape. The first L-moment describes the mean of data sample and the 

second L-moment describes the dispersion of the data values (Hosking & Wallis, 1997). The 

regional frequency analysis based on the L-moment approach has been found practical for 

confirming both differences and similarities (Eslamian & Feizi, 2006). Therefore, the goal is to 

demonstrate the results by identifying the goodness of fit measures and estimating the 

distribution’s parameters (Hosking & Wallis, 1991). This approach is usually applied when 

determining the parameters and suitable distribution. Eslamian and Feizi (2006) have applied 

regional frequency analysis based on L-moment approach on Iranian rainfall data. Their results 

found that the homogeneity and similarity tests are reliable for overcoming problems caused by 

short length data. In addition, the L-moment has been widely used in most recent studies, 

especially studies of hydrological events. For instance, Dodangeh et al. (2011) used L-moments 

analysis of dust frequencies in Iran, and concluded that the distributions with the best fit to the 

data grouped sites are generalized normal, generalized Pareto, and Pearson type III. The L-

moment method was used in another study by Markus et al. (2007) which concluded that the 
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average design precipitation for 12 stations located in Illinois is larger than TP-40 results (TP-40 

is a technical paper completed by US Weather Bureau). The researchers used the L-moment 

method for evaluating storm design and comparing the output with other sources.  

Finally, the L-moment is an approach used in regional frequency analysis that describes 

the statistical properties for any data series. This analysis aids in determining the quantiles 

values; moreover, these values can be used to estimate the probability of the storm events. The 

results of this review indicate that many researchers are dependent on this approach, which 

suggest its potential effectiveness in estimating uncertainty in further studies. The L-moment 

approach is also useful in designing projects related to water resources management.  

2.2.1 Data screening 

Data screening is defined as the process of inspecting data for errors and correcting 

them prior to data analysis. The screening may involve checking raw data, 

identifying outliers, and dealing with missing data. Data screening is clearly a significant aspect 

of the regional frequency analysis process; thus, gross errors and inconsistencies need to be 

removed before applying the data analysis. Overall, data screening is divided into two main 

sources of error which are derived from measurement errors and errors in the data collected 

under climate conditions.  

The circumstances of data collection may be affected over time. For example, a station’s 

device may change location. A study by Wallis et al. (1990) compiled a set of daily precipitation 

records supplied by National Climate Data Centre (NCDC) for 1009 sites located in the United 

States. Although precipitation daily data were collected from original sources and underwent 

http://www.businessdictionary.com/definition/process.html
http://www.businessdictionary.com/definition/data.html
http://www.businessdictionary.com/definition/error.html
http://www.businessdictionary.com/definition/prior.html
http://www.businessdictionary.com/definition/data-analysis.html
http://www.businessdictionary.com/definition/screening.html
http://www.businessdictionary.com/definition/outlier.html
http://www.businessdictionary.com/definition/dealer.html
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validity preprocessing for incorporation of historical data, at least 38 percent of the sites had 

gross errors such as daily precipitation less than zero.  

There are at least three useful methods of checking data in regional frequency analysis. First, 

according to Wallis et al. (1990), checking individual data values can potentially disclose gross 

errors. Second, separately checking the site’s data can differentiate isolated values and iterated 

values that may arise from errors in the recording data (Hosking & Wallis, 1997). Third, 

comparing the L-moment ratios of samples for different sites can decide whether sites are 

discordant or not. 

Finally, data screening is an essential process for regional frequency analysis. This process 

identifies and corrects the gross errors in the data. In addition, the L-moments ratios have been 

found useful for the screening of the data for sites by using a discordancy measure.  

2.2.2 Homogenous group delineation 

The aim of homogeneous group delineation is to form homogenous groups of sites in order 

to measure the homogenous values. This process is usually difficult and requires subjective 

judgment. Hosking and Wallis (1997) identified a method for homogeneous regions delineations 

called grouping methods. Grouping methods, which have been proposed by several authors for 

forming a group of similar sites, include geographical convenience, subjective and objective 

partitioning, and cluster analysis. Pooled frequency analysis of precipitation uses local 

observations at gauged sites for quantile estimation. The delineation of homogenous areas is an 

essential task of regional frequency analysis, as proper delineation is crucial in the reliable 

estimation of quantile (Castellarin et al, 2008). The sites must be designated to homogeneous 
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regions in order to process the regional frequency analysis. Clearly, approximate homogeneity is 

desired when ensuring that regional frequency analysis is more constant than at-site analysis 

(Hosking & Wallis 1997; Lin & Chen 2003). Thus, when many sites are included in regional 

frequency analysis, identification of homogeneous regions is often a difficult stage which 

requires a certain amount of judgment by individual researchers (Lin & Chen, 2006). In the 

identification of homogeneous groups, similar sites correspond to the region.  

This section will summarize the most common approaches that are employed in 

homogenous group delineation. One common procedure in hydrology for delineation of similar 

sites in a region is region of influence (ROI) approach (Burn, 1990). This method is used for the 

target site of interest based on the pooling group. Therefore, this approach has an advantage of 

decreasing the heterogeneity in the choosing of similar sites. The group homogeneity and its 

target size dominate the effective identification of the pooling group (Burn et al., 2000). In the 

region of influence approach, the homogeneity similarity group is determined based on the 

climate or meteorological information corresponding to the observation stations; therefore, a 

weighted and scaled Euclidian distance metric in P-dimensional space measures the similarity 

among sites and is defined by sets of catchments’ characteristics e.g., flow, precipitation, and 

length (Burn et al., 2000). The dissimilarity between other sites will be determined using the 

following equation:  

     √∑   (
  
   

 
 

  
)
 

 
                                                            Eq (2.5) 

Where  



 

12 

 

     is the distance metric between site   and site  ,   is the weight applied to attribute   

reflecting the importance of the attribute with respect to the others,   
  and   

 
 are the values of 

the
      attribute for sites   and   respectively, and    is the sample standard deviation of the 

    attribute and P-dimensional space. Cluster analysis, which is a standard approach of 

statistical multivariate analysis to divide the data into groups, has been successfully used for 

forming the region for regional frequency analysis. De Coursey (1973) used the cluster analysis 

approach to form the streamflow characteristics sites due to their similar flood response. For the 

purpose of regional frequency analysis, Burn (1989) used cluster analysis to divide the flood data 

to regions. The formation of data series depends on statistical properties or geographical 

convenience. The artificial neural networks are currently used to deal with a large amount of data 

series; therefore, different kinds of artificial neural networks are categorized by their network 

structure (Lin & Chen, 2006). Lin and Chen (2006) have applied the artificial neural networks’ 

self-organization map to identify the homogenous group for regional frequency analysis.  

 In summary, homogenous group delineation (e.g., ROI, cluster analysis, and artificial 

neural networks) has been widely used in the peer-reviewed literature to analyze hydrological 

events. 

2.2.3 Homogeneity tests 

The homogeneity examination is a frequently used test for regional frequency analysis and is 

a significant component of numerous regional flood frequency analysis methods (Fill & 

Stedinger, 1995). Hosking and Wallis (1997) indicated sampling from the four parameter Kappa 

distribution and the three heterogeneity measures were used to examine the variability of three 
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different L-statistics: H1 for coefficient of L-variation (L-CV), H2 for the combination of L-CV 

and L-skewness (L-SK), and H3 for the combination of L-skewness and L-kurtosis (L-CK). In 

the observed data and simulated regions, the H1 values were more powerful than the other 

heterogeneity measures of H2 and H3 statistics (Hosking & Wallis, 1997). In the following 

formula proposed by Hosking and Wallis (1997), heterogeneity measures (H) statistics are 

computed as:  

   
          

   
                                                                          Eq (2.6) 

where    and     are the means and standard deviations of the simulated values of dispersions 

(  ) while      is the regional dispersion calculated from the regional observations. Hosking and 

Wallis (1997) suggested that a region can be regarded as “acceptably homogeneous” if H < 1, 

“possibly heterogeneous” if 1 ≤ H < 2, and “definitely heterogeneous” if H ≥ 2. These Hosking 

and Wallis measure tests (Viglione et al., 2007) are an accurate examination of homogenous-

pooled delineation when the L-SK is low. Viglione et al. (2007) completed a comparison in 

regional frequency analysis by using three different tests. One test was based on the L-moment 

approach, which is more powerful when samples are positively or negatively skewed. Based on 

these findings, Viglione et al. (2007) advised a straightforward methodology to lead the 

homogeneity test choice in order to be useful for various possible cases. The researchers counsel 

the kappa distribution parameters to make the group of flood sequences and prevent any problem 

of excessive obligation to a specific three parameters distribution (Hosking & Wallis, 1997). All 

studies mentioned in this review chose the Hosking and Wallis homogeneity test because of its 

accurate values and dependability. In addition, by using the equations that are expressed above, it 
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is possible to delineate the homogeneous level into groups or regions. In summary, this process 

(homogeneity test) is one of the regional frequency analysis processes proposed by Hosking and 

Wallis (1997).  

Another homogeneity test is the bootstrap Anderson-Darling (AD) test, which does not 

assume the distribution. Instead, the AD test generalizes the classical Anderson-Darling 

goodness of fit test by evaluating the hypothesis that independent samples pertain to the same 

population without determining their distribution function (Scholz & Stephens, 1987; D'Agostino 

& Stephens, 1986).  

 After the homogeneity tests, the quantile estimation will be determined. The steps of the 

quantile estimates are part of L-moment processes. The probability distribution parameters for 

each homogenous site were computed and determined by L-moments as defined by Hosking and 

Wallis (1997). The following equation (Eq 2.7) is the inverse function that can be expressed in 

dimensionless form.  

  
 ( )      ( )                                                                                                Eq (2.7) 

where the   
 ( ) is quantile function for station i,    is the mean of station and  ( ) is the 

regional growth curve. The quantile estimates for annual precipitation were computed by 

multiplying the regional growth curve by the at-site value of annual precipitation (Hosking & 

Wallis, 1997).  

2.3 Uncertainty assessment methods 

Uncertainty occurs in any environmental phenomena because of the behaviour of humans 

and nature, such as climate change or global warming (Guo, 1995). Because of these reasons, 
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there are uncertainties in hydrologic climatic data. In the following reviews, the uncertainty 

assessment will be indicated. Uncertainty is associated with data components, noise in the 

incomplete data, and random sampling errors. In addition, problems with models can be 

considered a source of uncertainty, such as an error in a model’s structure (Moss & Schneider, 

2000). Due to human behaviour, uncertainty can occur because of future consumption patterns 

such as water consumption (Moss & Schneider, 2000). A study by Xu et al. (2010) classified the 

uncertainty into data uncertainty and model uncertainty. Based on these classifications, the 

sources of uncertainties could be established through modeling extreme hydrologic events, as 

shown in Figure 2-1 (Xu et al., 2010). Furthermore, it was concluded that uncertainty is high in 

extreme rainfall/runoff quantile estimation (Xu et al., 2010). Uncertainty assessment methods are 

many, and are primarily based on the condition of data. For example, estimating uncertainties in 

water resources can be assessed using various methods such as Monte Carlo Simulation 

experiment, Fuzzy-Logic approaches, and Bayesian model averaging. 

 

Figure  2-1 Classification of uncertainty sources in modeling extreme hydrological events (Xu et al., 2010) 
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Based on several assumptions in estimating uncertainty in precipitation (e.g., variance in 

measurement period between weather stations), two approaches are fundamentally applied for 

uncertainty assessment: Bayesian statistics approach and Kernel density estimation (Soliman, 

2011). The first method is used to determine a distribution from the past observed data, as 

developed by Tebaldi et al. (2005). It contains a Bayesian implementation and reliability 

ensemble averaging approach extension (Giorgi & Mearns, 2003). The second method is used to 

estimate and quantify the uncertainties in results, and is defined as a non-parametric way to 

estimate the probability density function of the random variable (Soliman, 2011). This method is 

widely used as an acceptable and flexible alternative to parametric methods in the hydrology 

field (Sharma et al., 1997).  There are several methods for estimating the uncertainty. Each 

method has a different approach towards stochastic simulations.  

2.3.1 Monte Carlo simulation method (MCS) 

Monte Carlo simulation method is defined as a stochastic method that repeats a sample of 

random variables from specific probability distribution in order to measure the reaction of the 

stochastic system (Hailegeorgis & Burn, 2009). Prudehomme et al. (2003) have relied on this 

methodology in order to quantify the uncertainty of climate change on flood regime in UK small 

catchments areas.  

The appropriate probability must be determined for each uncertain input of the model. 

Therefore, the probability choice has a direct impact on the computed results. Monte Carlo 

simulation contains several steps: 1) drawing the random sample for each random variable from 

its statistical distribution; 2) evaluating the model; 3) counting the results; 4) analyzing the 
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results using statistics, histogram, and confidence intervals; and 5) transmitting the input 

parameters to the model predictions. 

Monte Carlo simulation has been shown to be the most effective method of studying 

uncertainty in parameters of depth, duration and return period (Melching et al., 1990), because 

the simulations allow for the generating of many samples. The study by Harlin et al. (1992) is in 

agreement with the study of Melching et al. (1990) in that this simulation is effective for 

uncertainty assessment. In another uncertainty assessment study completed by Guo and Ying 

(1997), Monte Carlo simulation (1000 runs simulation) was used and applied to estimate 

uncertainty in IDF parameters in two case studies located in China. Similarly, the authors 

concluded that uncertainties in model parameters and runoff are huge when the runoff coefficient 

of the basin is small. Monte Carlo method was also used by Drees and Kaufmann (1998) in order 

to estimate the optimum fractions of data to assess the Hill estimator for extreme value index. As 

shown in Figure 2.1, the uncertainties have been classified depending on their sources in 

hydrological modeling (Xu et al., 2010).  

2.3.2 Fuzzy set theory 

A fuzzy class is identified by the membership function that is associated with a real number 

in the interval between 0 and 1 (Zadeh, 1965). The membership function includes the whole 

fuzziness for a specific fuzzy class, and is described as the fuzzy operation quintessence (Zadeh, 

1965; Ross, 2004; Vucetic and Simonovic, 2011). The fuzzy set theory has been developed to 

capture a judgmental belief, as the uncertainty is usually caused by lack of information (Vucetic 

and Simonovic, 2011). An object within the fuzzy set is marked in the interval between 0 and 1. 
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The fuzzy class measures the degree that an event occurs; therefore, the fuzzy set shows whether 

the event has occurred or not (Vucetic and Simonovic, 2011). In general, applying the fuzzy 

theory could successfully quantify the uncertainty and represent the sources of the uncertainty 

(Vucetic and Simonovic, 2011).  

Vucetic and Simonovic (2011) have quantified the uncertainty faced by water resources 

management decision makers by using fuzzy theory and probabilistic approach. Notably, water 

resources decision makers are exposed to several sources of uncertainty that might compromise 

the ability to make effective decisions. The authors’ goal was to illustrate how information 

provided to water resources decision makers can be improved by using the tools that incorporate 

uncertainty. As a result, the study concluded that fuzzy theory and probabilistic approach could 

accurately quantify the uncertainty.  

 Shrestha and Simonovic (2009) have used the fuzzy set theory as a methodology to 

represent individual sources of uncertainty in the stage and discharge measurements and their 

aggregation into the combined uncertainty. As a result of their study, the authors concluded that 

fuzzy set theory provides a proper methodology for uncertainty analysis.  

In conclusion, these two studies have shown that the fuzzy set theory can be used 

effectively for uncertainty quantification. Specifically, the fuzzy set theory can be used for water 

resources management decision making as well as for determining the sources of uncertainty.  
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2.4 Intensity duration frequency (IDF) curves  

2.4.1 IDF estimation methods for single site, pooled data 

IDF curves are used in combination with runoff estimation formulas such, as the rational 

method, in order to predict the peak runoff flow from exact point of basin. These are also used in 

certain aspects of hydraulic structures design such as size of pipes and culvert (Dupont & Allen, 

2000). Further research has used the IDF curves for different areas (Ilona & Frances, 2002).  

IDF curves are the relationship between the return periods, depth, and duration; these curves 

are also generated in order to determine the extreme characters of precipitation in urban drainage 

and hydrology. In urban water system design, IDF curves are particularly pertinent in 

considering the estimations of IDF curves to design conveying and detention infrastructure in an 

ideal path. If the estimations of these extremes are computed incorrectly, the results may indicate 

an unacceptable risk of flooding and property loss. Their estimations must be determined 

carefully, because any failure in computation and design will have costly consequences for water 

resources engineers. There are two current approaches which model extreme precipitation: 

annual maximum series (AMS) and Bayesian estimation for IDF (Coles, 2001). The AMS could 

be modeled by using probability distributions such as Gumbel distribution and generalized 

Pareto distribution (Katz et al., 2002).  

Bayesian and classical IDF curves are similar methods of computing the IDF values, and the 

classical estimation estimates the parameter distribution is commonly used. The following are 

classical estimation methods for IDF curves: method of L-moments, method of maximum 

likelihood, and method of probability weighted moments (Hurad et al., 2010). The maximum 
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likelihood method has been most efficient for long return periods and moderate sample sizes 

(Madsen et al., 1997). Hurad et al. (2010) concluded the Bayesian estimations for IDF curves are 

much better than classical estimations, and suggested using the Bayesian analysis rather than 

using the classical method to incorporate parameter uncertainty in computing the IDF curves and 

estimating the return periods.   

Al-Dokhayel’s (1986) study used two continuous probability distributions to estimate the 

rainfall depth frequency relationships with various return periods for Qassim region, Saudi 

Arabia, the distributions are the extreme value type I distribution (Gumbel max distribution, 

which is commonly used in hydrology fields), and Log Pearson distribution Type III (LPT). In 

addition, remote sensing and satellite data are new technologies for determining and developing 

the IDF curves (Elsebaie, 2011). A study conducted by Awadallah et al. (2011) developed the 

IDF curves for short length data by using regional analysis, and presented a methodology used to 

overcome the lack of precipitation data by joining the ground data with TRMM satellite and 

developing the ratios between 24 hours precipitation depth and short duration depths. Similarly, 

Alhassoun (2011) developed the empirical formula which helps estimate the rainfall intensity for 

a region, and concluded that there were no differences in rainfall analysis results between 

Gumbel max and LPT methods. These reviews indicate the significant role of IDF curves in 

hydraulic structures design.  

Developing the IDF curves requires reliable precipitation intensity that is necessary for 

accurate hydrological analyses (Elsebaie, 2011). Elsebaie (2011) utilized two methods to 

estimate the rainfall intensity and develop the IDF curves. As a result, the Gumbel max and LPT 
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distributions results are close. It is clear that these techniques indicate agreement in the results of 

recent research. Furthermore, these results agree with Bayesian estimation for IDF curves by 

using prior distribution. Below is the most common empirical formula for determining the 

intensity (I): 

   
 

(   ) 
                                                                                                    Eq (2.8) 

Where I is intensity of the precipitation (mm/hr), a, b, d and e are parameters. 

Return period can be estimated based on the probability density function with quantiles. In 

the mathematical approach, Coles et al. (2003) suggest that return period could be computed by 

using the Markov Chain Monte-Carlo sampling (MCMC). The return period is calculated by the 

two following sets: drawing the set of GEV parameters   from posterior distribution parameters 

by Monte Carlo sampling  (   ), and computing      from the equation below for each  

         Where x is a sample value and the  (   )is the inverse of the probability function.  

   
 

(   (   ))
                                                                                     Eq (2.9) 

This formula determines the return period (T). Hurad et al. (2010) estimated the return period 

and concluded that the return period estimations are very sensitive to assumptions about the 

event because the return period is used to compute the probability of event occurrence (e.g., 

storm).   

To conclude, the IDF curves are determined by using the inverse probability distribution 

function. Quantile values can be obtained by the inverse probability distribution function; these 

indicate the return level that is expected to exceed every time interval and return period. In 
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addition, the IDF curves can be determined and constructed by using several distributions such 

as Gumbel max value distribution.          

2.5 Conclusions 

 This chapter has reviewed research relevant to the subject of quantifying an approach of 

uncertainty estimates on the IDF curves. Several relevant aspects have been presented in this 

chapter, including regional frequency analysis process, uncertainty assessments, and IDF 

estimations. Furthermore, the reviews have estimated the uncertainty by using different models 

that consider the impact of climate change. Overall, these reviews have found uncertainty 

estimates on IDF curves to be most beneficial. Studies have indicated that regional frequency 

analysis based on the L-moment algorithms is a powerful method helpful for short data records. 

In addition, the identification of a homogenous group is an extremely valuable process that 

facilitates the forming of data records. After reviewing the literature on quantifying an approach 

of uncertainty estimates on the IDF curves, this research will quantify the uncertainty in IDF 

curves by using the approaches mentioned in the literature to solely focus on the precipitation 

without including the impact of climate change. 
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Chapter 3: Methodology  

3.1 Introduction 

  The goal of the thesis is to estimate the uncertainties in Intensity Duration Frequency 

(IDF) curves. Sources of uncertainties may be associated with data errors e.g. short records of 

data. This chapter will explain the methodologies used throughout this project, including weather 

generator (WG), disaggregation approach model, extraction of annual maximum precipitation, 

and regional frequency analysis. The uncertainty development includes the following steps: 

1.  Set up the input data - historical data are assembled from climate stations, including data 

for different climate variables.  

2. Run the WG model to produce new sequences of precipitation data. 

3. Run the disaggregation model to obtain the hourly series. 

4.  Extract the annual maximum precipitation. Annual maximum precipitation is extracted 

for each station and each year for the duration of 1 hour, 2, 6, 12, and 24 hours.  

5. Estimate the extreme precipitation quantiles. The quantile values are computed by using 

regional frequency analysis based on L-moment algorithms. 

a. Homogeneity test 

b. Fitting the data into a probability distribution 

c. Estimating the quantile values 
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Each step depends on the previous step, and needs to be repeated several times to estimate the 

uncertainty. Development and estimation of uncertainties will be further elaborated on within 

this chapter.  

WG has been developed to generate simulated precipitation data; this includes 

meteorological data that are used as input in the model. The disaggregation model is a statistical 

approach that classifies the data into different parts or forms. Therefore, WG results are used as 

input through the disaggregation model to provide the simulated hourly data based on hourly 

historical data. Finally, to generate the IDF values, three models common in statistical field have 

been used: weather generator model, disaggregation model, and Hosking &Wallis model.   

3.2 Weather generator model 

In hydrology and water resources management, the weather generator model has an 

important task. Weather generator (WG) is defined as a stochastic model that produces a 

simulated series of unlimited length of data, usually by inputting observed weather data to 

produce the simulated weather data. Improved K-nearest neighbor (KNN) weather generator 

model is used as a tool in this research (Sharif & Burn, 2007). In addition, the input data to the 

model is the daily observed precipitation, and the output from the model is the simulated daily 

precipitation. The model generates a realistic output series, and KNN allows reshuffling of the 

input data series (Sharif & Burn, 2007). The aim of using WG in this research is to obtain the 

output sequences and use them in the disaggregation model.  
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3.3 Creating simulated hourly precipitation using disaggregation model 

The disaggregation model is a deterministic model that extracts a component of data series 

into a number of parts e.g., this model is disaggregating the daily simulated data into hourly 

simulated data. In this thesis, WG is used to create climate values on daily series; therefore, the 

disaggregation model’s mechanism has been developed to produce a time series of hourly 

precipitation data. This model is completed based on the fragments method (Svanidze, 1977; 

Sharif et al., 2007). The fragments represent the daily precipitation fraction, which occurs hourly. 

The following equation expresses the fragments for each day based on measured data:  

    
  

∑   
 
   

                                                                                   Eq (3.1) 

Where    represents the fragments computed per hour i; hi is the chosen historical hourly data, 

and n represents the number of hours per day (24 hours). Then, the fragments are multiplied with 

the daily data from weather generator to create hourly data:  

                                                                                            Eq (3.2) 

Where d is daily precipitation in (mm), and     is the new hourly simulated precipitation 

(mm). Results have been compared in an attempt to verify that the model is working correctly, 

and avoid any error in output. This approach (using disaggregation model) employs locally 

observed data by using the non-parametric method to avoid the chance of errors, which might 

occur from parametric methods because of theoretical distribution fits and parameter estimations 

e.g. short length of data series and errors in reading of data series.  

To compute the hourly value of each day, the disaggregation model was used to determine 

the hourly information for each day of precipitation and to enable the extraction of the annual 
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maximum values for different durations in hours. Therefore, the scheme of disaggregation model 

works by extracting precipitation events from hourly-observed data. A precipitation event is 

defined as a non-zero precipitation period. Once the precipitation events are extracted, they are 

disaggregated by K-NN approach. The model works by comparing a number of days to the 

current day of precipitation event; hence, the best match is estimated by the following formula 

(Mansour & Burn, 2010):  

   √(   (     ) )  (   (     )
 
)                                     Eq (3.3) 

where    is the new daily precipitation from WG,    is the historical daily precipitation,       

and    are events that are computed from WG outputs and historical data respectively. The 

weights (w1, w2) values are used to decide which historical hourly ratio is the best for the data 

series. The hourly value set within the moving window of days could be chosen for same events 

(w2) or the total daily precipitation (w1). The value (Zi) found in the window that is chosen to be 

the daily ratio of historical hourly values is used to transfer the WG output daily data into hourly 

values. However, the hourly ratio values found within the chosen day are then applied to the 

daily value to create a probable hourly data for the given daily data. This program is sent daily 

data including known hourly values, and the results have been compared to verify the model is 

working properly (for further details see Sharif and Burn, 2007; Solaiman, 2011). 

3.4 Determining the annual maximum precipitation 

Annual maximum precipitation means a maximum event that has occurred annually for 

various durations of the event e.g. 1 hour, 2, 6, 12, 24 hours. After running weather generator and 
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disaggregation model, the next step is determining annual maximum precipitation for hourly 

durations of 1, 2, 6, 12, and 24 for the purpose of estimating the quantile values. The mechanism 

of this calculation occurs over every single hour through the entire series of data to determine the 

maximum precipitation for one hour duration and every two hours to determine the maximum 

precipitation for two hours duration, and continues in this way for every six hours, 12 hours, and 

24 hours. These steps should be completed for all stations, as annual maximum results are very 

important for regional frequency analysis process.  

3.5 Estimating the extreme precipitation quantile values 

3.5.1 Quantile estimation for single site 

A quantile describes location of values in a probability distribution. Pearson type III 

distribution is used to estimate quantile values for historical single site data (London site), 

because the single site data are in range skewness coefficient between -9 and 9, and this 

distribution is widely recommended in water resources fields. In the following formula, the 

Probability Density Function (PDF) of the Pearson type III distribution (P3) is:  

 ( )  
   

 ( )
[ (   )]      (   )                                                              Eq (3.6) 

Where m and     are parameters and (y) is a random variable. There is no explicit formula for 

the inverse of Pearson type III distribution; therefore, many researchers have developed 

approximate formula inverse of Pearson type III distribution formula (Vogel & McMartin, 1991). 

Chowdhury and Stedinger (1991) have compared five approximations to frequency factor (Ki). 

The authors found the inverse of standardize Pearson type III distribution random variables 

where:  
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                                                                                               Eq (3.7) 

Where μ is the mean and σ is the standard deviation as cited in Vogel & McMartin (1991). The 

inverse of Pearson type III distribution contains four parameters and the inverse of standard 

normal distribution function, where Ki is the frequency factor as expressed in the following 

formula: 
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  }                                          Eq (3.8) 

Where 
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      )                                                                                            Eq (3.9) 

             (     )                                                                         Eq (3.10) 

             (        )              Eq (3.11) 
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                             Eq (3.12) 

   (  ) is a standard normal distribution function inverse, pi is the selected probability level, 

and A, B, C, D are the parameters. These formulas have been applied for historical single site in 

order to estimate the IDF values (Mi).    

3.5.2 Homogeneity tests 

Sites are located within 50 km of each other, and are sorted based on the distance between 

sites in kilometers. The homogeneity test is used based on the L-moments approach. The 

homogeneity is used to estimate the H values, the whole sites are involved in the homogeneity 

measures for different durations, and the homogeneity test is applied to historical data in order to 
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decide the group number of sites. By choosing the number of group sites, the regional quantile 

value is easily estimated. 

The homogeneity test is a step of regional frequency analysis used to determine the number 

of pooled sites. To apply the regional frequency analysis and quantify the uncertainty in IDF 

curves, the data sites are sorted in ascending order from central site based on the distance 

between sites in km. Next, the homogeneity test is applied. Due to sensitivity in this process, 

sites are sorted into groups starting with 2, 3, 4, up until 9 sites for all durations in hours. As a 

result, homogenous values are found.  

To review what presented in chapter 2, the homogeneity measure is then expressed as:  

  
    

  
             Eq (3.4) 

According to Hosking and Wallis (1993), a region can be declared homogeneous if H < 1, 

possibly homogeneous if 1< H < 2, and definitively heterogeneous if H   2.  

In conclusion, the purpose of using the homogeneity evaluation is to identify the 

homogeneous group for different duration in hours for regional quantile estimates. Furthermore, 

this approach is used to group the observed data into regional sites in which each group has a 

different duration of precipitation. 

3.5.3 Estimating the regional quantile values 

The regional quantile values are estimated by using the regional L-moment algorithm 

(Hosking & Wallis, 1997) tools. The regional L-moment algorithm aims to fit data from sites 

into homogenous regions with a single frequency distribution. This process is a significant step 

of the project. Hosking and Wallis (1997) tools take data sites through certain processes starting 
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with calculating the data screening (as explained in chapter 2) until the quantile values are 

estimated for different probability distributions. The probability distribution chosen for the 

quantile estimates is Pearson type III distribution. Then, these values are multiplied by the mean 

of the singular site. The process of estimating the regional quantile is part of the regional 

frequency analysis (see chapter 2). The key of the process is Z
dist

 values; these are used as a 

threshold to determine the goodness-of-fit measure.   

Z
dist

 values are defined as the goodness-of-fit measure; its goal is to check whether a 

distribution fits the data acceptably or not. Goodness-of-fit measure is evaluated by means of 

Monte Carlo simulation experiments, and the data are simulated from homogenous regions with 

one of four three-parameter frequency distributions.  

If a region is acceptably homogenous, Z
dist

 values must be calculated for all candidate 

frequency distributions (generalized logistic, generalized extreme value, lognormal, Pearson 

Type III, and generalized Pareto). The growth curves are the relation between cumulative 

probability and the value of sample. The growth curves must also be computed for accepted 

distributions. If the growth curve is equal, any distributions are adequate. If the growth curve is 

not equal, the data might contain problems such as scarcity of data, which means that two models 

would display differences which are statistically insignificant but operationally important 

(Hosking & Wallis, 1997). If the region is not acceptably homogenous, a single distribution will 

not give a valid fit to data site. In this case, the Kappa and Wakeby distributions are used 

(Hosking & Wallis, 1997). 

Finally, the regional quantile values are computed based on the L-moments algorithms that 
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require homogeneity measures, identification of homogenous groups, and frequency distribution 

choice. These are then applied to regional data site. The homogeneity tests and identification of 

homogenous groups help to determine the goodness-of-fit measure of the frequency 

distributions; however, they could also be used as key factors in the process of quantile 

estimation.   

3.6 Estimation of uncertainty 

As mentioned in chapter 1, uncertainty estimations are used to quantify the uncertainty in 

precipitation data series can be uncertain. Because urban water systems are exposed to risks of 

flood hazards and data may lack sufficient climate information, uncertainty estimations are 

crucial. Thus, statistical approaches are used to estimate uncertainty in data; moreover, the 

uncertainty estimation methods are premised on a stochastic simulation. For example, in 

Bayesian inference analysis, the uncertainty is computed based on Bayesian estimates of IDF 

curves. Monte Carlo simulation is another method that is utilized in the WG model, because it 

has the capability to consider the correlated data input uncertainties such as depth and duration. 

Repeated resampling of data series by using Monte Carlo simulation is identifying the variability 

in the data. 

3.6.1 Monte Carlo simulation 

Monte Carlo simulation is a stochastic simulation that repeats random variables from 

specific distribution, and it can be intensively computed for specific complex cases. The WG 

model basically uses the Monte Carlo simulation to produce the simulated precipitation series. 

Furthermore, the simulation values can be used to estimate the uncertainty in IDF curves. 
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Because the WG approach does not require an assumption for a probability distribution, Monte 

Carlo random variables will be used to resample data. Uncertainty will be represented in the 

graphical plots, which is called “Box and Whisker plots”. The Box and Whisker plots are 

compatible with the results of the thesis (WG outputs) to display the uncertainty on IDF curves 

clearly. Box and Whisker plots contain five components: median, maximum value, minimum 

value, upper quartile and lower quartile. Furthermore, this plot is defined as a series of large 

amounts of data in order to clearly identify percentiles of data series. The difference between 75 

percent quartile and 25 percent quartile is a measure of the uncertainty, which is called 

Interquartile Range. In conclusion, the uncertainty estimation methods are stochastic, and can be 

displayed graphically.  
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Chapter 4: Case Study Application, Results, and Findings 

4.1 Case Study Application  

Upper Thames River (UTR) in London Ontario is the proposed study area for the project. 

UTR has experienced severe flooding and drought over the past decade according to data 

collected from climate stations and used as input to the WG model. 

According to Prodanovic and Simonovic (2006), the area of the basin is 5,825 km
2
, and its 

length is 273 km. This basin is frequently developed, and is facing pressure from population. The 

watershed of the UTR consists of two main tributaries of the river: north and south. The north 

branch flows south of Mitchell, St. Mary’s to London. The south branch flows through 

Woodstock to east London. The watershed receives approximately 1,000 mm annual 

precipitation; however, 60 percent of this is lost by hydrologic abstract such as evaporation and 

evapotranspiration. Furthermore, UTR has documented historical flooding events over the past 

300 years. Each year the occurrence of flooding depends on the weather conditions; for example, 

flooding was significant and destroyed property in summer 2008. For this study, the climate 

gauges surrounding the case study location indicate the climate data measurements. 

4.2 Data description 

The surrounding stations are located within 50 km from London, and include London, 

Dorchester, Ilderton, St. Thomas, Embro, Foldens, Woodstock, Stratford, and Exeter. These 

stations were chosen because they are exposed to the same weather conditions as the London 

site, and are similarly affected (Figure 4-1). Table 4-1 presents the nine sites organized from 
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nearest to farthest distance from the London site. Figure 4-1 indicates the site locations on a map. 

The nine sites are located within or close to the UTR basin area and were chosen to apply the 

regional frequency analysis to estimate the uncertainty.  

 

Figure  4-1 Location of case study area. Six stations are located inside border of the basin map (London, 

Dorchester, Foldens, Woodstock, Stratford and Embro), and three sites are located outside watershed (St. Thomas, 

Ilderton and Exeter) (adopted from Sharif & Burn, 2007). 
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Table  4-1 Stations organized by geographical distance from London 

Station 
Geographical distance  

from London, ON (km) 

London 0 

Dorchester 11 

Ilderton 24 

St. Thomas 30 

Embro 31 

Foldens 32 

Woodstock 34 

Stratford 40 

Exeter 46 

 

The data were chosen based on several factors, including geographical location (longitude 

and latitude), distance between stations, and climate data. Although Environment Canada (EC) 

has many stations, only nine stations were used. The period of historical daily data are between 

1964 and 2005 and the hourly precipitation data is between 1965 and 2003. However, five 

stations (Dorchester, Ilderton, Foldens, Exeter and Embro) have hourly precipitation data 

between 1985 and 2003; the other stations (London, St. Thomas, Woodstock, and Stratford) have 

data between 1965 and 2000. In addition, certain stations (Dorchester, Ilderton, Foldens, Exeter, 

and Embro) are missing IDF data; thus, the missing data are computed based on the hourly 

precipitation. While other stations (London, St. Thomas, Woodstock, and Stratford) have IDF 

information, these four stations have various ranges of data periods. Specifically, London station 

has IDF data between 1943 and 2003, St. Thomas station has data between 1926 and 2003, 
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Woodstock station had data between 1962 and 2003, and Stratford station has data between 1966 

and 2003 (Table 4-2). Considering single site quantile values estimates (see Chapter 3), and 

based on the hourly precipitation data, IDF values are calculated for these missing stations by 

computing the annual maximum precipitation for each duration, because the IDF values are 

dependent on annual maximum precipitation.  

Table  4-2 Stations used through WG 

 IDF data Daily precipitation Hourly precipitation 

Station From To From To From To 

London 1943 2003 1964 2005 1965 2000 

Dorchester - - 1964 2005 1985 2003 

Ilderton - - 1964 2005 1985 2003 

St. Thomas 1926 2003 1964 2005 1965 2000 

Embro - - 1964 2005 1985 2003 

Foldens - - 1964 2005 1985 2003 

Woodstock 1962 2003 1964 2005 1965 2005 

Stratford 1966 2003 1964 2005 1965 2000 

Exeter - - 1964 2005 1985 2003 

 

In addition, the data consists of seven variables which are logged by climate gauges. 

Variables are maximum temperature, minimum temperature, precipitation, humidity, wind 

direction, velocity, and radiation. Precipitation is only used for uncertainty estimations. Table 4-3 

provides the mean annual precipitation in (mm) for nine stations. The location of each site might 

affect the reading of the climate data; for example, the highest mean annual precipitation is 

Stratford, and the lowest value is Woodstock. 5 of 9 sites (Dorchester, Ilderton, Embro, Foldens, 
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and Exeter) have the same number of observations, because they are computed based on the 

hourly precipitation data for the same time period. On the other hand, the other sites (London, St. 

Thomas, Woodstock, and Stratford) are different (Table 4-4), because climate stations have 

already measured these sites. 

Table  4-3 Data for project with mean annual precipitation for each site (Burn & Sharif, 2006) 

 

 

 

 

 

 

 

 

 

 

A number of observations are used in the L-moments algorithm to determine the 

homogenous group. The homogeneity test is required for regionalizing the stations into a group. 

Each group contains a number of sites, which are estimated based on the homogeneity test 

results. Because the number of observations and group sites might be associated with 

uncertainty, regionalization has been utilized. As a result, the regionalization has been 

determined for durations of 1 hour, 2, 6, 12, and 24 hours. Table 4-5 provides the homogeneity 

test results for different duration in hours. 5 of 9 sites were grouped together for 1 and 2 hour 

precipitation events, 4 of 9 sites were grouped together for 6 hour precipitation events, and all 9 

Stations Mean annual precipitation (mm) 

London 980 

Dorchester 1034 

Ilderton 1008 

St. Thomas 985 

Embro 984 

Foldens 945 

Woodstock 941 

Stratford 1056 

Exeter 1008 
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sites were grouped together for 12 and 24 hour precipitation events. These site numbers are used 

to estimate the regional quantile values. 

Table  4-4 Number of observations for each site 

Site Number of observations of precipitation  

London 27 

Dorchester 19 

Ilderton 19 

St. Thomas 74 

Embro 19 

Foldens 19 

Woodstock 16 

Stratford 35 

Exeter 19 

Table  4-5 Site numbers for different time durations obtained based on the homogeneity test 

 

Duration (hours) Number of sites Sites names 

1 5 
London, Dorchester, Ilderton, St. Thomas and 

Embro 
2 5 

6 4 London, Dorchester, Ilderton, St. Thomas 

12 9 
London, Dorchester, Ilderton, St. Thomas, Embro, 

Foldens, Woodstock, Stratford and Exeter 
24 9 

 

To conclude, although the data of UTR includes nine sites, five sites IDF data are missing 

due to unavailable data records. Calculating the annual maximum precipitation for each duration 
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period solves the missing data. These data are used through the entire thesis. To complete this 

information, data from remaining sites were estimated to analyze the IDF values and create their 

plots. Data records have been regionalized for different durations in order to use regional 

frequency analysis tools to estimate the regional quantile values. As a result, the homogeneity 

test has been used to form sites that each measure different durations of precipitation events. 
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4.3 Plotting Data 

The quantile estimates were transferred into precipitation depth by multiplying the depth by 

the mean of the single site (London, ON see section 4.1). Afterwards, the results were 

statistically analyzed to obtain the basic statistics of mean, median, standard deviation, etc. for all 

the runs in respect to the combination of duration and return period. The results were further 

represented in Box and Whisker plots to illustrate the uncertainty more clearly. Moreover, a 

comparison was carried out between the analyzed historical data for a single site and the regional 

simulated data works with the IDF curves. In the main body of this thesis, only certain results 

will be highlighted (see Tables 4-6 and 4-7). 

Three plots have been generated for all results: Intensity-Duration, Depth-Duration, and 

Depth-Frequency. An example for each plot-type is given in the following sub-sections. 

Moreover, the results of regional frequency analysis based on L-moments approach are 

represented in Figures 4-2 to 4-14. These figures indicate the observed single site (London) and 

the box plots of simulated regional data. The London site and regional sites (grouped sites) are 

determined by using inverse of Pearson type III distribution. 

4.3.1 Intensity-Duration plot 

 Figures 4-2 to 4-5 illustrate the relationship between duration of storm and intensity, and 

they are converted to depth duration relation. Each figure represents a different return period in 

years, and indicates a curve for an observed single site as well as a box plot for regional 

simulated values. The box plot consists of five components: first quartile (25 percent), median 

(50 percent), third quartile (75 percent), minimum value, and maximum value. Because of the 
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relation between the observed single site IDF curves and regional simulated IDF curve, the 

single site IDF curves fall within the range of the regional simulated IDF curves. The error bars 

in each plot represent the range of the data, which are between maximum and minimum values. 

Furthermore, there are two error bars in each plot. The first error bar is called upper bound and 

the second is called lower bound. To calculate these bounds, the upper bound is the difference 

between third quartile (75%) and maximum value of the data. Similarly, the lower bound is the 

difference between first quartile (25%) and minimum value of data range. As a result, the single 

site curves and regional sites all fall within the same range of data series as shown in all figures 

in each section. 

Intensity is a measure of a storm event over time, and can be obtained by dividing the storm 

depths by durations. Therefore, the highest intensity for each return period is one hour duration, 

and the smallest intensity for each return period is 24 hours duration. As mentioned in chapter 3, 

the difference between upper quartile and the lower quartile is called interquartile range; 

moreover, this range can be used for uncertainty measure. Each figure displays a different 

uncertainty value for each return periods and durations. In all figures the uncertainty decreases 

with increases in the duration of storm. Furthermore, each IDF curve has different uncertainty 

values for each return period. 
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Figure  4-2 IDFs comparison of simulated, historical data for London for return period two years. The box plots are 

lower quartile (25th percentile), median (50th percentile), and upper quartile (75th percentile). 

  

Figure  4-3 IDFs comparison of simulated, historical data for London for return period 10 years. The box plots are 

lower quartile (25th percentile), median (50th percentile), and upper quartile (75th percentile). 
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Figure  4-4 IDFs comparison of simulated, historical data for London for return period 20 years. The box plots are 

lower quartile (25th percentile), median (50th percentile), and upper quartile (75th percentile). 

  

Figure  4-5 IDFs comparison of simulated, historical data for London for return period 100 years. The box plots are 

lower quartile (25th percentile), median (50th percentile), upper quartile (75th percentile). 
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4.3.2 Depth-Duration plot 

Figures 4-6 to 4-9 indicate relationships between duration of the storm, depth, and 

frequency called Depth Duration Frequency (DDF) curves. Each figure represents a different 

return period in years and indicates two curves: the first curve is historical single site data and 

second curve is regional simulated data. The components of box plots are described in section 

4.3.1.  

 The comparison between the DDF curves for both observed single site (London) and the 

regional simulated data indicates that historical single site DDF curves fall within the regional 

simulated DDF curve, because both curves are having same range of the data. For example, in 

Figure 4-6 the data points of six hours are in the range of simulated DDF curves, because the 

DDF curves have been regionalized for DDF analysis. Each figure has a different uncertainty 

value for each return period. In all figures the uncertainty increases with increases in the duration 

of storm. The smallest uncertainty in all diagrams is one hour duration, and the highest is 24 

hours duration. Furthermore, each DDF curve has different uncertainty values for each return 

period.  
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Figure  4-6 DDFs comparison of simulated, historical data for London for return period two years. The box plots 

are lower quartile (25th percentile), median (50th percentile), and upper quartile (75th percentile). 

  

Figure  4-7 DDFs comparison of simulated, historical data for London for return period 10 years. The box plots are 

lower quartile (25th percentile), median (50th percentile), and upper quartile (75th percentile). 
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Figure  4-8 DDFs comparison of simulated, historical data for London for return period 20 years. The box plots are 

lower quartile (25th percentile), median (50th percentile), and upper quartile (75th percentile). 

  

Figure  4-9 DDFs comparison of simulated, historical data for London for return period 100 years. The box plots 

are lower quartile (25th percentile), median (50th percentile), and upper quartile (75th percentile). 

0

20

40

60

80

100

120

1 hr 2 hrs 6 hrs 12 hrs 24 hrs

D
ep

th
 (

m
m

) 

Duration 

Return Period (20 Years) 

50% 75% DDF curve for London site

0

20

40

60

80

100

120

140

160

1 hr 2 hrs 6 hrs 12 hrs 24 hrs

D
ep

th
 (

m
m

) 

Duration 

Return Period (100 Years) 

50% 75% DDF curve for London site



 

47 

 

4.3.3 Depth-Frequency plot 

Finally, the diagrams in Figures 4-11 to 4-14 illustrate the depth (in millimeters) versus 

different return periods (in years) for durations of 1, 2, 6, 12, and 24 hours. Analyzed historical 

single site data falls within the simulated results. However, single historical DDF data obtained 

for each single site are within the range of DDF data simulated results. Some plots are not 100 

percent within range of the simulated DDF, because the historical DDF curves are estimated at-

site (Figure 4-13); in addition, the simulated DDF curves have been regionalized for DDF 

analysis. Each figure illustrates a different uncertainty value for different durations. In all figures 

the uncertainty increases with increases in the return period, the reason why could be the short 

record or number of stations.   

  

Figure  4-10 DDFs comparison of simulated, historical data for London site for one hour duration. The box plots 

are lower quartile (25th percentile), median (50th percentile), and upper quartile (75th percentile). 
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Figure  4-11 DDFs comparison of simulated, historical data for London site for two hours duration. The box plots 

are lower quartile (25th percentile), median (50th percentile), and upper quartile (75th percentile). 

  

Figure  4-12 DDFs comparison of simulated, historical data for London site for six hours duration. The box plots 

are lower quartile (25th percentile), median (50th percentile), and upper quartile (75th percentile). 
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Figure  4-13 DDFs comparison of simulated, historical data for London site for tewelve hours duration. The box 

plots are lower quartile (25th percentile), median (50th percentile), and upper quartile (75th percentile). 

  

Figure  4-14 DDFs comparison of simulated, historical data for London site for tewenty four hours duration. The 

box plots are lower quartile (25th percentile), median (50th percentile), and upper quartile (75th percentile). 
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4.3.4 Depth-Duration results 

Table 4-6 presents the analysis for all 1000 simulated runs with respect to different depths 

and durations for each return period. The examined estimates are precipitation depth measured in 

(mm). 

4.3.5 Depth-Frequency results 

Table 4-7 presents the analysis for all 1000 simulated runs with respect to different return 

periods and durations. The examined estimates are precipitation depths measured in (mm). 
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4.4 Findings and estimation of the uncertainty summary 

The following points outline the main findings after examining the results: 

1. From the obtained plots, it is very clear that as the return period and duration increases, 

the uncertainty, which is the difference between third and first quartile, increases in the 

plots of depth-duration and depth-frequency. On the other hand, the uncertainty decreases 

when the return period increases in plots of intensity- frequency.  

2. The obtained results suggest that as precipitation duration increases, uncertainty slightly 

increases (Tables 4-6 and 4-7). 

3. The data obtained from the historical single site (London) IDF curves falls within the 

range of most of the simulated data, thereby ensuring confidence in correctness.  

4. As mentioned in the previous section, the difference between median and upper quartile 

defines the uncertainty. Thus, the highest uncertainty was found in both intensity rate 

with duration and depth with duration. 

5. Previous studies have estimated the uncertainty of the impact of climate change on 

extreme precipitation. However, this thesis used the Monte Carlo simulation on 

precipitation data without considering the climate change models. The contribution of 

this project is to quantify the uncertainty in IDF curves (depth, duration, and frequency). 
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Table  4-6 Uncertainty analysis for different return periods (All numbers are in mm) 

Return Period (2 Years) Return Period (10 Years) 

Duration 1 hr 2 hrs 6 hrs 12 hrs 24 hrs Duration 1 hr 2 hrs 6 hrs 12 hrs 24 hrs 

Mean 22.84 28.98 37.96 43.15 49.76 Mean 38.27 50.87 61.8 71.11 81.06 

SD 1.72 2.03 2.45 2.54 2.87 SD 3.49 3.99 5.07 4.8 5.03 

Median 22.79 28.82 37.77 43.07 49.78 Median 38 50.71 61.6 71.13 81.12 

Q1 21.67 27.61 36.23 41.49 47.84 Q1 36.19 48.2 58.42 67.73 77.67 

Q3 23.88 30.35 39.55 44.66 51.65 Q3 40.27 53.47 65.25 74.39 84.39 

Minimum 18.26 23.2 31.18 21.81 31.69 Minimum 29.95 40.67 48.2 36.77 50.86 

Maximum 29.83 38.15 48.17 52.95 58.7 Maximum 50.69 65.63 81.62 90.16 97.2 

IQR 2.2 2.74 3.33 3.17 3.81 IQR 4.08 5.27 6.83 6.65 6.72 

Return Period (20 Years) Return Period (100 Years) 

Duration 1 hr 2 hrs 6 hrs 12 hrs 24 hrs Duration 1 hr 2 hrs 6 hrs 12 hrs 24 hrs 

Mean 43.88 59.6 70.85 82.58 93.47 Mean 55.49 79.23 90.68 109.12 121.54 

SD 3.5 4.87 6.23 5.8 5.95 SD 5.15 7.43 9.48 8.98 8.48 

Median 43.67 59.46 70.76 82.61 93.59 Median 55.34 79.11 91.16 109.31 121.65 

Q1 41.29 56.4 66.7 78.39 89.49 Q1 52.02 74.02 84.42 102.71 115.96 

Q3 46.23 62.56 75.29 86.66 97.54 Q3 58.85 83.81 97.63 114.96 127.09 

Minimum 34.28 46.96 54.18 41.39 58.09 Minimum 39.13 57.81 60.37 49.24 90.91 

Maximum 57.61 76.08 91.26 104.85 112.57 Maximum 74.52 100.49 115.25 137.88 146.99 

IQR 4.95 6.15 8.58 8.27 8.05 IQR 6.83 9.79 13.21 12.25 11.13 
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Table  4-7 Uncertainty analysis for different durations in hours and return periods in years. All numbers are in mm. 

1 hr 2 hrs 

Return 

Period 

2 

Years 

10 

Years 

20 

Years 

100 

Years 

2 

Years 

10 

Years 

20 

Years 

100 

Years 

Mean 22.84 38.35 43.88 55.49 28.98 50.87 59.60 79.23 

SD 1.72 3.04 3.50 5.15 2.03 3.99 4.87 7.42 

Median 22.79 38.03 43.67 55.34 28.82 50.71 59.46 79.11 

Q1 21.68 36.20 41.28 52.02 27.61 48.21 56.41 74.03 

Q3 23.88 40.27 46.22 58.84 30.35 53.48 62.56 83.81 

Minimum 18.26 29.95 34.27 39.13 23.20 40.67 46.96 57.81 

Maximum 29.83 50.69 57.91 74.52 38.15 65.63 76.08 100.49 

IQR 2.19 4.08 4.95 6.83 2.74 5.27 6.15 9.78 

6 hrs 12 hrs 

Return 

Period 

2 

Years 

10 

Years 

20 

Years 

100 

Years 

2 

Years 

10 

Years 

20 

Years 

100 

Years 

Mean 37.96 61.80 70.86 90.70 43.15 71.11 82.58 109.12 

SD 2.45 5.07 6.23 9.47 2.54 4.80 5.80 8.97 

Median 37.77 61.61 70.76 91.19 43.07 71.13 82.60 109.31 

Q1 36.22 58.41 66.73 84.43 41.49 67.73 78.39 102.71 

Q3 39.56 65.25 75.29 97.64 44.66 74.39 86.66 114.96 

Minimum 31.18 48.20 54.18 60.37 21.81 36.77 41.39 49.24 

Maximum 48.17 81.62 91.26 115.25 52.95 90.16 104.85 137.88 

IQR 3.34 6.84 8.56 13.21 3.17 6.65 8.27 12.25 

24 hrs  

    Return 

Period 

2 

Years 

10 

Years 

20 

Years 

100 

Years 

    Mean 49.76 81.06 93.47 121.54 

SD 2.87 5.03 5.95 8.48 

Median 49.78 81.12 93.59 121.65 

Q1 47.84 77.67 89.49 115.96 

Q3 51.65 84.39 97.54 127.09 

Minimum 31.69 50.86 58.09 90.91 

Maximum 58.70 97.20 112.57 146.99 

IQR 3.81 6.72 8.05 11.13 
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Chapter 5: Conclusions and Future Work 

5.1 Conclusion 

The precipitation records are very important, and they are essential for hydrologic and 

hydraulic analyses. In this thesis, a process has been used for quantifying uncertainty in IDF 

curves. The process includes: 1) generating precipitation values with a weather generator model; 

2) disaggregating daily data to hourly data; and 3) estimating at-site and pooled extreme 

precipitation values. The procedure is applicable for both historical data and simulated data. 

Because the both sites IDF curves fall within same range, the obtained results are reliable and 

can be helpful for the decision-making process in the design and management of urban water 

systems e.g., drainage and protection system. Finally, the use of the box plot to illustrate the 

uncertainty is a simple yet effective approach to identify findings and draw conclusions of 

different scenarios. The weather generator and Monte Carlo simulations were applied to quantify 

the uncertainty in IDF curves. Regional frequency analysis process found that Pearson type III 

distribution (P3) was the most accepted for regional sites. Furthermore, P3 was accepted for all 

durations (1 hour, 2, 6, 12, and 24 hours) and for all site numbers. Following the steps of 

regional frequency analysis helps to quantify the uncertainty in IDF curves. In addition, the 

uncertainty estimation was applied to regional simulated sites, which resulted from WG model. 

The results indicated that the uncertainty slightly increases along with increases in duration 

and return period, and vice versa in the intensity rate with duration for each return period. 

Increasing the number of simulations and homogenous-pooled sites could quantify the 
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uncertainty level. In addition, the results show a relationship among single site IDF curves and 

regional simulated sites. 

Currently, the city of London utilizes the IDF curves as standard for design of urban water 

system and management. Therefore, the IDF curves can be used for designing and management. 

This would be extremely beneficial because IDF curves identify probability of storm events. This 

study assessed and compared the current IDF curves with regional IDF curves, quantified 

understanding of the uncertainty in IDF curves (depth, duration and return period) and found the 

following results: 1) the uncertainty increased when the durations and return period increased; 

and 2) dissimilarly, the uncertainty decreased when the durations and return periods increased. 

1000 simulations were generated, and the Pearson type III distribution was accepted for most of 

these simulations. If Pearson type III distribution did not fit, Wakeby distribution was accepted 

as the alternative.  Therefore, the findings of this project will help to develop urban water 

systems by updating or expanding current systems, for example by changing the size of pipes 

according to the collected data.   

5.2 Future work recommendations  

It is recommended that future work focus on programming software that aggregates the 

different steps into one repository with a single interface. Ideally, the steps should be repeated 

more than thousands of times and with a larger pool of historical observations in order to 

estimate the uncertainty in IDF curves. Most research publications have aimed to provide a 

model that could help determine the impact of climate change on precipitation. For example, 

Solaiman (2011) found that uncertainty would rise under global warming. The uncertainty 
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estimation approach introduced in this thesis does not consider uncertainties that arise from using 

different approaches and parameters such as Monte Carlo simulations (WG) and regional 

frequency analysis based on L-moment approach. Therefore, future research could involve the 

uncertainty investigation in the quantification of the uncertainty estimation approach. 
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