
Space Efficient Data Structures in
the Word-RAM and Bitprobe Models

by

Patrick Kevin Nicholson

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Patrick Kevin Nicholson 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis studies data structures in the word-RAM and bitprobe models, with an emphasis
on space efficiency. In the word-RAM model of computation the space cost of a data structure
is measured in terms of the number of w-bit words stored in memory, and the cost of answering
a query is measured in terms of the number of read, write, and arithmetic operations that must
be performed. In the bitprobe model, like the word-RAM model, the space cost is measured in
terms of the number of bits stored in memory, but the query cost is measured solely in terms of
the number of bit accesses, or probes, that are performed.

First, we examine the problem of succinctly representing a partially ordered set, or poset, in
the word-RAM model with word size Θ(lgn) bits. A succinct representation of a combinatorial
object is one that occupies space matching the information theoretic lower bound to within lower
order terms. We show how to represent a poset on n vertices using a data structure that occupies
n2/4 + o(n2) bits, and can answer precedence (i.e., less-than) queries in constant time. Since
the transitive closure of a directed acyclic graph is a poset, this implies that we can support
reachability queries on an arbitrary directed graph in the same space bound. As far as we are
aware, this is the first representation of an arbitrary directed graph that supports reachability
queries in constant time, and stores less than

(n
2
)

bits. We also consider several additional query
operations.

Second, we examine the problem of supporting range queries on strings of n characters (or,
equivalently, arrays of n elements) in the word-RAM model with word size Θ(lgn) bits. We
focus on the specific problem of answering range majority queries: i.e., given a range, report
the character that is the majority among those in the range, if one exists. We show that these
queries can be supported in constant time using a linear space (in words) data structure. We
generalize this result in several directions, considering various frequency thresholds, geometric
variants of the problem, and dynamism. These results are in stark contrast to recent work on the
similar range mode problem, in which the query operation asks for the mode (i.e., most frequent)
character in a given range. The current best data structures for the range mode problem take
Õ(
√
n) time per query for linear space data structures.

Third, we examine the deterministic membership (or dictionary) problem in the bitprobe
model. This problem asks us to store a set of n elements drawn from a universe [1, u] such that
membership queries can be always answered in t bit probes. We present several new fully explicit
results for this problem, in particular for the case when n = 2, answering an open problem posed
by Radhakrishnan, Shah, and Shannigrahi [ESA 2010]. We also present a general strategy for
the membership problem that can be used to solve many related fundamental problems, such as
rank, counting, and emptiness queries.

Finally, we conclude with a list of open problems and avenues for future work.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor Ian Munro for his guidance and
support. It has been an honour to work with and learn from him during my graduate studies.
He has provided me with an excellent working environment, and as a result I have enjoyed my
time at Waterloo immensely.

My thesis examination committee (Timothy Chan, Joseph Cheriyan, Danny Krizanc and Alex
López-Ortiz) provided helpful feedback on the initial draft of my thesis, and for that I thank them.
I would also like to give a big thank you to our department’s administrative coordinator, Wendy
Rush, for all the help she has provided me during my graduate studies; especially when I was in
the process of submitting my thesis.

Early on during my graduate studies, Meng He taught me a great deal about succinct data
structures, and got me interested in many problems in this area, so I would like to thank him
for doing that. Later on, during the final year of my studies, I had the good fortune to work
with Venkatesh Raman and Moshe Lewenstein, who were both visiting Waterloo on sabbatical. I
learned a lot from our collaboration during this time, and was exposed to many interesting topics
that I greatly enjoyed researching.

I would also like to thank my other coauthors (not mentioned above): Diego Arroyuelo,
Francisco Claude, Reza Dorrigiv, Stephane Durocher, Amr Elmasry, Bob Fraser, Travis Gagie,
Srinivasa Rao, Alejandro Salinger, Diego Seco, Matthew Skala, and Norbert Zeh. I would like to
give extra thanks to my office mates: Francisco Claude, Bob Fraser, Shahin Kamali, Alejandro
Salinger, Diego Seco, Konstantinos Tsakalidis, and Gelin Zhou. A big thank you also goes to my
family and friends who supported me during my graduate studies. Last, but certainly not least,
I would like to thank my fiancée Niina for all the support she has provided me during my time
in Waterloo, which was absolutely essential during my time here.

iv

Table of Contents

List of Figures viii

1 Introduction 1

1.1 Motivation . 1

1.2 Models of Computation . 2

1.3 Succinct Data Structures . 4

1.4 Outline of Thesis and Summary of Contributions 5

1.5 Preliminaries . 7

1.5.1 Fundamental Operations on Strings and Entropy 7

1.5.2 Prefix-Free Codes . 10

1.5.3 Bit Strings . 10

1.5.4 Strings with Larger Alphabets . 12

1.5.5 Other Combinatorial Objects . 14

1.5.6 A Brief Note About Randomization . 14

2 Succinct Posets 16

2.1 Introduction . 16

2.2 Definitions . 17

2.3 Previous work . 19

2.4 Our Contributions . 23

2.5 The Data Structure . 27

v

2.5.1 Flattening a Poset . 27

2.5.2 Compressing Flat Posets . 32

2.6 Extension to Transitive Reductions and Transitive Relations 38

2.7 Issues Relating to Construction . 40

2.8 Additional Operations . 43

2.8.1 Another Representation That Yields More Operations 44

2.8.2 Meet, Join, and Boolean Matrix Multiplication 48

2.9 Simultaneous Representation . 50

2.10 Summary and Concluding Remarks . 51

3 Range Majority Queries 52

3.1 Introduction . 52

3.2 Previous Work . 53

3.3 Our Contributions . 59

3.4 Subsequent (and Concurrent) Work . 60

3.5 Static Range Majority Data Structure . 63

3.5.1 Quadruple Decomposition . 64

3.5.2 Candidates . 65

3.5.3 Data Structures for Counting . 65

3.6 Generalization to Static Range α-Majority Queries 67

3.6.1 Handling Large Alphabets . 67

3.7 Parameterized Query and Trade-offs . 68

3.8 Applications to Static Geometric Problems . 73

3.8.1 Static Range Majority for Coloured Points in One Dimension 73

3.8.2 Static Range Majority in Higher Dimensions 74

3.9 Approach for the Dynamic Geometric Problem . 75

3.9.1 Lower Bound . 76

3.9.2 Assumptions about Colours . 77

vi

3.9.3 Dynamic Tree Structure . 77

3.9.4 Supporting Queries . 78

3.9.5 Supporting Updates . 82

3.9.6 Speedup for Integer Coordinates . 84

3.9.7 Dynamic String . 87

3.9.8 Higher Dimensions . 88

3.10 Summary and Concluding Remarks . 88

4 Explicit Bitprobe Data Structures 90

4.1 Introduction . 90

4.2 Previous Results . 93

4.2.1 Deterministic Schemes for Membership . 93

4.2.2 Rank, Range Counting, and Emptiness . 99

4.3 Our Contributions . 100

4.3.1 Membership . 100

4.3.2 Rank, Range Counting, and Emptiness . 101

4.4 Membership Queries . 101

4.4.1 Fully Explicit Adaptive Schemes for Two Elements 101

4.4.2 Limitations of the Blocking Scheme Approach for n ≥ 3 107

4.4.3 Fully Explicit Adaptive Schemes for n ≥ 3 111

4.5 Rank Queries . 117

4.6 Range Counting and Emptiness Queries . 119

4.7 Summary and Concluding Remarks . 121

5 Conclusions and Open Problems 122

5.1 Succinct Posets . 122

5.2 Range Majority Queries . 123

5.3 Explicit Bitprobe Data Structures . 124

References 126

vii

List of Figures

2.1 Various diagrams of the same poset. 18

2.2 An antichain decomposition of our example poset. 29

2.3 Illustration of the key lemma for compressing the poset. 33

2.4 A graph of the function F (ε0) = 1.42ε0 + 0.42ε0 ln(1/ε0) + 1. 40

2.5 The reinterpretation of EdgeArray`. 44

3.1 Blocks, quadruples, and query ranges. 64

4.1 Decision trees for adaptive and non-adaptive schemes. 91

4.2 Dividing the bits into blocks. 102

4.3 The various cases for our (2, u, 7u2/5, 3)-scheme.) 103

4.4 Various types of (j, k)-decompositions. 113

viii

Chapter 1

Introduction

1.1 Motivation

In many settings, modern software must deal with high volumes of data in an efficient manner.
For example, when a user types a query into an Internet search engine, the software running on
the server is able to quickly find web pages that are relevant to the query, and return them to
the user. The software must search through many terabytes of data in order to accomplish this
goal. How does the software organize the data in order to do this efficiently? The answer is by
using efficient data structures.

This thesis examines several abstract data structure problems, with an emphasis on space
efficiency. That is, we wish to design data structures that occupy as little, or close to as little,
memory as possible. We also want to support query operations on the data as efficiently as
possible. Ideally, we would like the query operations to take some fixed amount of time, regardless
of the size of the data set.

Before giving a high level description of the contributions of this thesis, we require some
definitions. In particular, we need to define the notion of computation (Section 1.2), and also
discuss issues of what it means for a data structure to be “space efficient” (Section 1.3). We
then return in Section 1.4 to the question of what this thesis is about, before diving into the
preliminary results that we use throughout the thesis in Section 1.5.

1

1.2 Models of Computation

Since the architectures of modern computing devices change over time, it behooves researchers
to allow some of the hardware specific details of a computer to be abstracted, so that the core
data structure problem to be addressed can be attacked more readily. As such, there are sev-
eral theoretical models of how a computer operates, each with its own interesting properties and
drawbacks. We provide a non-exhaustive list briefly summarizing some existing models of com-
putation. We do this in order to give a flavour for the various models, and to also make the point
that the ones studied in this thesis are not the only that exist. For each model, we include a
reference—for the interested reader who wants more details—to the paper or book that we used
as the basis for the summary.

• Comparison Model [106]: In the comparison model, a data structure query can be rep-
resented as a rooted tree. The tree need not be binary (e.g., we might have three-way
comparisons), but we assume it is to simplify our definition. The root node stores the bi-
nary comparison that is made first, given the query element, and the right and left children
represent how the query proceeds, given that the comparison returns true or false, respec-
tively. The query algorithm eventually ends up in a leaf of the tree, where the answer to
the query is stored. The cost of the query is equal to the number of comparisons required
to reach the leaf node.

• Pointer Machine Model [147, 16]: In a pointer machine1, a data structure is represented
as a directed graph with fixed out-degree. The interpretation of the structure of the graph
is dependent on the underlying problem we are trying to model. For example, the nodes of
the graph may represent the data elements or records that we wish to store and query. A
query specifies a set of input nodes in the graph, and asks us to return a set of output nodes:
i.e., the correct answer to the query. This is done by traversing the edges (or pointers) of the
graph, and the time complexity of the query can be measured by counting the number of
pointers that were traversed. Similarly, we can measure the space cost of the data structure
by counting the number of nodes in the graph.

1We note that the second reference [16] recommends the use of the terminology pointer algorithm instead of
pointer machine to avoid confusion. However, pointer machine appears to be the standard terminology at this
point in time.

2

• Word-RAM Model [88]: One of the main drawbacks of pointer machine is that it does not
capture the notion of random access memory (RAM) that is supported in modern computer
hardware. In the word-RAM model with word size w, we assume that our computer can
perform a set of unit cost operations on w-bit numbers, and that our memory consists of
an infinite number of cells numbered with indices {1, 2, . . . }. The content of each cell is
an integer in the range {0, . . . , 2w − 1}, called a word. For two words x1 and x2, we can
compute x1 ⊕ x2 mod 2w, where ⊕ can be any one of the following operations: addition
(+), subtraction (−), multiplication (×), integer division (/), bit-wise Boolean arithmetic,
and left and right bit-wise shifting. The time complexity of a data structure query counts
the number of these operations used, plus the number of read and write operations to
memory. The space complexity is the maximum index of a word that is read or written
during any query to the data structure. There are many variants of the word-RAM model
that consider restricted operations sets: e.g., they do not permit unit cost multiplication
or integer division [88]. However, we note that the operations we permit are somewhat
standard in the literature, and also realistic in the sense that they are supported efficiently
on most modern computing architectures.

• Cell-Probe Model [159]: The cell-probe model is more general than the word-RAM model,
and is usually used in the context of proving data structure lower bounds. It considers
memory to be an infinite number of w-bit cells, and is only concerned with counting the
number of cells of the data structure that need to be read (probed), or modified, in order to
answer a query. The amount of intermediate computation allowed by the query in order to
determine where the next probe should occur is unbounded in the cell-probe model. This
means that a lower bound proved in the cell-probe model holds in the word-RAM model,
regardless of the operations permitted!

• Bitprobe Model [110, 30]: The bitprobe model is a special case of the cell probe model
that occurs when the cell size, w = 1; i.e., the cells contain a single bit. Interestingly, it
is older than the cell-probe model, and was formalized by Minski and Papert in their 1969
book “Perceptrons” [110]. A perceptron is a model of a computer that answers decision
problems based on whether the weighted sum of the truth values of a set of predicates
exceeds a given threshold. Since perceptrons were originally examined in a slightly different
context than we consider here, the bitprobe model we refer to—which is equivalent to the
cell probe model with one bit cells—is formally defined by Buhrman et al. [30]. The concern

3

in this model is studying the trade-off between the number of bits that must be read from
the data structure in order to answer a query, and the overall number of bits occupied by
the data structure.

1.3 Succinct Data Structures

Since the word-RAM and cell-probe models deal with individual bits of information, a natural
question that arises is, “How many bits are required to store a data structure representing an
arbitrary combinatorial object of type X, such that we can answer queries of type Y about X
efficiently?” As a starting point, it is instructive to first ask the easier question, “How many bits
are required to store an arbitrary combinatorial object of type X, and be able to distinguish it
from other objects of that type?” If we can answer this question, then it provides a lower bound
on the space that any data structure representing X must occupy.

Information Theory Lower Bound: Consider the case where X is an arbitrary rooted
binary tree with n internal nodes, each of which have both left and right children. If we use
N denote the number of distinct trees of this type, it is known that lgN = lg

((2n
n

)
/(n+ 1)

)
≈

lg(4n/(n3/2√π)) = 2n − o(n): N is the n-th Catalan number.2 Therefore, we need 2n − o(n)
bits just to uniquely identify the tree we wish to store. This is known as the information theory
lower bound, and it holds regardless of what operations we support. Note that this is significantly
fewer bits than explicitly storing a pointer for the left and right children of each node. Such a
pointer-based representation would require Θ(n lgn) bits.

An area of research that has been active since the late eighties is that of succinct data struc-
tures [98]. A succinct data structure is a data structure that represents a combinatorial object
using space matching the information theory lower bound, to within lower order terms, while also
supporting efficient query operations. Returning to the example, there are existing succinct data
structures for binary trees that occupy 2n + o(n) bits of space, and support a wide variety of
efficient navigation operations [54]. We note that although the area of succinct data structures
started with Jacobson [98], many of the ideas used in the area are much older. In fact, supporting
efficient query operations is the only major difference between the area of succinct data structures
and “the oldest mathematical subject” [160], combinatorial enumeration.

2Throughout this thesis we use lgN to denote log2 N unless otherwise specified.

4

Perhaps the first use of the word “succinct” in the context of space efficient data structures
was by Turán in his 1984 paper “On the succinct representations of graphs” [152], which showed
how to represent unlabelled planar graphs on n vertices using 12n bits. By our definition of
succinctness above, this is not truly a succinct data structure, as the space it occupies is greater
than the information theory lower bound by a constant factor [76], rather than just a lower
order term. Furthermore, the only operations considered by Turán were encode and decode: the
first converts a standard adjacency list representation of a planar graph into the succinct data
structure, and the second converts the succinct data structure back into the standard adjacency
lists representation. We use the terminology succinct representation to describe a succinct data
structure that supports only the operations encode and decode, both in polynomial time.

Succinct data structures and representations of many types of combinatorial objects have
been studied. We return in Section 1.5 to survey the area and previous results.

1.4 Outline of Thesis and Summary of Contributions

We are now ready to outline the main results of this thesis. The common theme is the design of
space efficient data structures that provide constant time query operations. That is, operations
in which the time complexity remains fixed regardless of the size of the input data. We examine
three data structure problems, that all involve notions of succinctness in some way, though the
techniques used vary widely between the chapters. In light of this, we will defer detailed technical
discussion of related work and techniques to each of the individual chapters. However, many
preliminary data structures and concepts are used throughout the thesis, and we define these in
the next section.

In Chapter 2 we design a succinct data structure for representing a partially ordered set, or
poset. Posets are fundamental combinatorial objects that appear in many different contexts in
computer science. Unlike previous work [87, 144, 71, 85, 139, 55], we consider the problem of
representing and performing query operations on arbitrary posets. The main query operation that
we support, given two elements, is to report whether one precedes the other. This is equivalent
to succinctly representing the transitive closure graph of the poset, and the same method can
also be used to succinctly represent the transitive reduction graph. For an n element poset,
the data structure occupies n2/4 + o(n2) bits, in the worst case, and can support precedence
queries (i.e., less than queries) in O(1) time, in the word-RAM model with word size w = Θ(lgn)

5

bits. Contrast this with the trivial data structure for representing an arbitrary (not necessarily
transitive) directed acyclic graph, which is computed by topologically sorting the vertices and
storing an upper triangular bit matrix to represent the edges: this uses n2/2 + Θ(n lgn) bits.
Thus, our data structure occupies roughly half as many bits for the case of a poset: i.e., when
the directed acyclic graph is a transitive closure or reduction. To compress the poset, we describe
an interesting compression technique that borrows ideas from the area of extremal graph theory,
and also makes use of ideas from the area of succinct data structures. We further consider issues
of how to construct the data structure. Finally, we consider several additional query operations
and show that they can be supported in constant time, or give evidence suggesting why they are
difficult to support efficiently.

In Chapter 3 we focus on supporting range queries on strings (or, equivalently, arrays), the
various types of which have received a great deal of attention in the last few years [18, 23, 108,
63, 130, 89, 131, 28, 68, 27, 62, 101]. In particular, we design data structures for the range
majority problem. The majority of a string of length n is the character that appears more than
n/2 times, if such a character exists. Given a string A of length n, the range majority problem is
to preprocess the string, such that later, given a query range [i, j] where 1 ≤ i ≤ j ≤ n, we can
efficiently return the majority of the substring A[i, j] (if it exists).3 The idea to study this problem
came up because the closely related range mode problem [130, 131, 81] appears to be difficult:
i.e., compute the mode—the character that appears at least as often as any other character—of
an arbitrary range in a string. In fact, for linear space data structures, it is not known how to
achieve O(n1/2−ε) time queries, for any constant ε > 0. In contrast, we describe a linear space
data structure in the word-RAM model with word size Θ(lgn) bits, that answers range majority
queries in constant time. The main technique is a surprisingly simple tree decomposition, in
conjunction with standard ideas from the area of succinct data structures. We further generalize
this problem by defining range α-majority queries, in which we wish to return all the characters
in the substring A[i, j] with frequency greater than α(j − i+ 1). We show that range α-majority
queries can be answered in O(1/α) time using O(n(lg(1/α) + 1)) words of space, for any fixed
α ∈ (0, 1). Other trade-offs, compression, and dynamism are also discussed.

In Chapter 4 we consider the membership problem in the bitprobe model. Previous work by
Buhrman, Miltersen, Radhakrishnan and Venkatesh [30] studied the membership problem in the
bitprobe model, presenting both randomized and deterministic schemes for storing a bit vector

3We formally define the notation just used in Section 1.5.

6

of length u containing n one bits, such that membership queries can be answered in t bit probes.
They showed a separation between the power of adaptive probes—where the query algorithm can
decide where to probe next based on the bits read during prior probes—and non-adaptive probes.
We focus on deterministic adaptive schemes that, unlike many previous non-explicit results4, are
fully explicit: i.e., the data structure can be efficiently constructed and the query algorithm can
compute which bits to probe in time polynomial in lg u. Focusing on the case when n = 2,
we describe the first non-trivial fully explicit schemes that use t ≥ 3 adaptive probes. These
answer a problem of Radhakrishnan, Shah, and Shannigrahi [134], who asked for a fully explicit
scheme matching the O(u2/5) space bound of their non-explicit scheme for three adaptive probes,
and even improve upon their non-explicit scheme when t > 3. We also describe a recursive
scheme for n ≥ 3 that not only improves upon previous fully explicit schemes for a wide range
of input parameters, but can be used to solve a number of related problems that generalize set
membership, such as the rank, range counting and emptiness problems.

Finally, in Chapter 5 we conclude by presenting a list of open problems and avenues for future
related research.

1.5 Preliminaries

In this section we state some preliminary lemmas that we will use throughout the remainder of
this thesis.

1.5.1 Fundamental Operations on Strings and Entropy

We now define some operations on strings that are used throughout the thesis:

Fundamental Operations on Strings: Given a string S of length U , we use the notation
S[i] to denote the i-th character in the string, and S[i1, i2] to denote the substring of S beginning
at position i1, and ending at position i2, inclusively, where 1 ≤ i1 ≤ i2 ≤ U . We use the set
cardinality notation |S| to refer to the length of S; i.e., |S| = U . The characters of S are said
to be drawn from an alphabet Σ = {1, . . . , σ} = [1, σ]. That is, each character S[i] ∈ [1, σ] for all
1 ≤ i ≤ U . We define the following fundamental operations:

4We give formal definitions of all the emphasized terms in Chapter 4.

7

• access(S, i): Return the character S[i], for any i ∈ [1, U].

• rankj(S, i): Return the number of occurrences of the character j in the substring S[1, i],
for any i ∈ [1, U] and j ∈ [1, σ].

• selectj(S, i): Return the position of the i-th occurrence of character j in the string S, for
any i ∈ [1, rankj(S, U)] and j ∈ [1, σ].

These operations are fundamental in many succinct data structures, and as such are widely used
in this thesis. For example, consider the string S = ABCABABCACBC. Based on the previous
definitions, access(S, 7) = B, rankA(S, 6) = 3, and selectC(S, 3) = 10.

Another concept that is important when discussing space efficiency is that of the entropy of
a string.

Zeroth Order Entropy: The zeroth order entropy of a string S, denoted H0(S), is a mea-
sure of the compressibility of a string. Assume the characters that comprise S come from the
alphabet Σ = [1, σ], and are drawn according to some fixed probability distribution. Let pi be
the probability of drawing character i according to this distribution, for each i ∈ Σ. The zeroth
order entropy of S is defined as follows (interpreting lg 0 = 0):

H0(S) =
σ∑
i=1

pi lg(1/pi) . (1.5.1)

If all the characters in the string S are known, and the total length is U , we define the
zeroth order empirical entropy of the string based on the empirical probability distribution of its
characters; i.e., the distribution we get by computing the relative frequencies of the characters
({pi = ranki(S, U)/U}). As an example, consider the string

S = AABAAAAAAAACAAADAAAAAAAEAAAFAAAAAAAGAAHA .

Since the size of the alphabet, σ = 8, we might expect to spend three bits per character to
write down S, if we did not know any additional information about the empirical probability
distribution with which each of its characters occur. However, knowing only these empirical
probabilities, the zeroth order empirical entropy provides a lower bound on how well S can be
compressed. In particular it indicates that we need at least

8

33
40 lg

(40
33

)
+ 7

(1
40 lg(40)

)
≈ 1.1604 bits per character on average.

For bit strings, the following bound can be used to relate zeroth order empirical entropy to
binomial coefficients:

Lemma 1.5.1 (Theorem 9.2,[113]). Let S be a bit string of length U containing N one bits.
Then,

2UH0(S)

U + 1 ≤
(
U

N

)
≤ 2UH0(S) (1.5.2)

Finally, though we do not use it in any technical way, we also define higher order entropy, as
we do mention it:

k-th Order Entropy: The idea of zeroth order entropy can be naturally generalized to higher
order entropy, where the probability of drawing a certain character is not independent, but rather
depends on the previous k characters that were drawn. This concept is especially useful in the
empirical setting, where the string is fixed, and the conditional probabilities can be estimated, as
in the zeroth order case, by examining the string.

Let S be a string of length U , drawn from an alphabet Σ = [1, σ]. Given a string S′ ∈ Σk,
where Σk denotes the set of all strings of length k drawn from the alphabet Σ, we use the notation
NextChar(S,S′) denote the concatenation of the single characters following the occurrences
of S′ in S. For example, if S = ABABBAABA and S′ = AB, then NextChar(S,S′) = ABA.
The k-th order empirical entropy of S is defined as follows:

Hk(S) = 1
U

∑
S′∈Σk

|NextChar(S,S′)|H0(NextChar(S,S′)) . (1.5.3)

Based on the above definitions, it should be clear that Hk(S) ≤ H0(S) for any k ≥ 1. If
each character in the string S is drawn from a fixed probability distribution where each draw is
independent, then the zeroth order empirical entropy is a lower bound for compression. However,
for certain kinds of real-world data, such as English text, compressors that achieve close to k-th
order empirical entropy bounds perform far better than ones that achieve close to the zeroth
order, due to the fact that many real-world texts are highly repetitive. For more information on
this phenomena, see the experimental study of Ferragina et al. [59].

9

1.5.2 Prefix-Free Codes

When we say code we are referring to a bit string that is used to represent a character drawn
from some non-binary alphabet. A set of codes is prefix-free if no code in the set is a prefix of
any other. For example, the set of codes {0, 10, 110} is prefix-free, but the set {0, 00} is not. This
prompts the following definitions; note that we use the operator X ·Y to denote the concatenation
of X and Y .

Lemma 1.5.2 (Huffman Code [96] (see also Section 1.2. of [65])). Let S be a string of length
U , with characters drawn from the alphabet Σ = [1, σ]. There is a prefix-free encoding of each
character HUFF(i), for i ∈ Σ with the property that the string HUFF(S) = HUFF(S[1]) ·HUFF(S[2]) ·
. . . · HUFF(S[U]) occupies no more than U(H0(S) + 1) bits.

Lemma 1.5.3 (Elias γ-Code [51]). Let S be a string of length U , with characters drawn from
the alphabet Σ = [1, σ]. Further suppose that the characters are sorted in non-decreasing order of
frequency, i.e., character i appears at least as frequently in S as i + 1, and that, for simplicity,
σ is a power of two. There is a prefix-free encoding of each character γ(i), for i ∈ Σ, with the
following properties:

1. the string γ(S) = γ(S[1]) · γ(S[2]) · · · · · γ(S[U]), occupies O(U(H0(S) + 1)) bits of space;

2. the length of the codes for characters [2i, 2i+1 − 1] is Θ(i+ 1) bits, for 0 ≤ i ≤ lg σ − 1.

1.5.3 Bit Strings

The fundamental operations on strings are heavily studied in the context of succinct data struc-
tures, as many combinatorial objects can be decomposed and represented by sets of strings.
Consider a bit string S of U bits. Jacobson [98] showed that rank and select can be supported
on S in O(lgU) bit accesses, by representing S using a data structure that occupies U + o(U)
bits. Later, Clark and Munro [36] showed that, on a word-RAM with word size Θ(lgU) bits,
these operations can be supported in O(1) time, while still using U + o(U) bits. One natural
question that arises is whether it is possible to use less space if the bit string is sparse; e.g., if
H0(S) is much less than 1. Brodnik and Munro [29], Pagh [126], and Pǎtraşcu [128] showed that

10

it is possible to represent a bit string S of length U containing N one bits using space

lg
(
U

N

)
+ o

(
lg
(
U

N

))
≤ UH0(S) + o(UH0(S)) bits, (1.5.4)

while supporting access in O(1) time on a word-RAM with word size Θ(lgU) bits. Note that
the right hand side of Equation 1.5.4 follows from Lemma 1.5.1. These results improved the
space bound of a well-known technique by Fredman, Komlós and Szemerédi [64], now frequently
referred to as FKS-hashing, that occupies O(N lgU) bits of space and provides O(1) time access

on a word-RAM with word size Θ(lgU) bits.

Access and Membership: At this point we make explicit the connection between supporting
the access operation on a bit string, and the static membership or dictionary problem. In the
static membership problem, we are given a set E of n elements drawn from a universe [1, u],
and asked to support queries of the form “Is x ∈ E?” for any x ∈ [1, u]. Given such a set, the
characteristic bit string S representing E is a bit string of length u, such that S[i] = 1 iff i ∈ E .
Clearly, supporting access on this string is equivalent to solving the static membership problem.

Parameterized Rank and Select: Several papers have examined the difficulty of supporting
rank and select [136, 78, 128, 83], in addition to access, while still achieving a space bound
parameterized in terms of the number of 1 bits. We make use of the following result, noting that
the lower order term in the space bound is not the strongest result of this type (c.f., [128]), but
it is simple and sufficient for our needs:

Lemma 1.5.4 (Fully Indexable Dictionary [136]). Let S be a string of U bits, containing N
one bits. In the word-RAM model with word size Θ(lgU) bits, there is a data structure, called a
fully indexable dictionary, of size lg

(U
N

)
+O((U lg lgU)/ lgU) ≤ UH0(S) +O((U lg lgU)/U) bits

that supports the operations access(S, i), rankj(S, i), and selectj(S, i) in O(1) time, where
j ∈ [0, 1] and i ∈ [1, U]. The data structure can be constructed in O(U) time5.

Since the leading term in the space bound of the previous lemma is somewhat awkward—
either as a binomial coefficient or in terms of entropy—we can rewrite it in the following way,
derived using Stirling’s approximation:

5 The construction time is not explicitly stated by Raman, Raman, and Rao, but each of the (constant number
of) indices that comprise this data structure can be constructed in O(U) time, so the observation follows.

11

Lemma 1.5.5 (Section 4.6.4 of [90]). lg
(U
N

)
≤ N lg(eU/N) +O(1) for integers U ≥ N ≥ 1.

We note that if the full power of a fully indexable dictionary is not required, we can settle for
a reduced operation set in exchange for a smaller lower-order space term (see [136]):

Lemma 1.5.6 (Indexable Dictionary [136]). Let S be a string of U bits, containing N one bits.
In the word-RAM model with word size Θ(lgU) bits, there is a data structure, called an indexable
dictionary, of size lg

(U
N

)
+ o(N) + O(lg lg u) bits that supports the operations access(S, i) and

select1(S, i) in O(1) time. The query rank1(S, i) can be performed in O(1) time for indices
storing one bits, i.e., only for the case when access(S, i) = 1.

Finally, we note that several authors have examined the problem of determining how much
redundancy is necessary to support these operations (see [69, 77, 80], and references therein).
More recently, for constant time rank and select, the representation of Pătraşcu [128] has been
shown to be optimal, to within the constant in the lower order term, by Pătraşcu and Viola [132].

1.5.4 Strings with Larger Alphabets

For strings with larger alphabet sizes, we make use of the following data structure, called a wavelet
tree:

Lemma 1.5.7 (Wavelet Tree [82, 121]). Let S be a string of U characters drawn from the
alphabet Σ = [1, σ]. In the word-RAM model with word size Θ(lgU) bits, there is a data struc-
ture of size U(H0(S) + 2)(1 + o(1)) + O(σ lgU) bits that supports the operations access(S, i),
rankj(S, i), and selectj(S, i) in O(lg σ) time, where j ∈ [1, σ] and i ∈ [1, U]. The data structure
can be constructed in time O(U lg σ) time.

The idea behind the wavelet tree is to encode the bits of the characters in S in a different
manner than explicitly storing them as a string. The tree is structured as follows. Every node in
the tree has two children, referred to the left and right children. Each node represents a subrange
of the alphabet, R = [i, j] ⊆ [1, σ], where 1 ≤ i ≤ j ≤ σ. The root node represents the entire
range of the alphabet. The left and right children of a node represent disjoint ranges R` and Rr
such that R` ∪Rr = R. The leaves of the tree represent a range consisting of a single character.

12

If the characters in S are represented in the usual way, i.e., by using lg σ bits, then the tree will
have height lg σ + 16.

The root node stores a bit string B, where B[i] represents the character S[i], and is a 1
if S[i] ∈ Rr and a 0 otherwise. The left and right children store bit strings representing the
subsequence of S with characters in their respective ranges. If each of these bit strings are stored
in a data structure supporting rankj and selectj on the bit string (see the previous section) for
j ∈ [0, 1], then it is not difficult to support rankj and selectj on S in O(lg σ) time, for j ∈ [1, σ].
Note that these bit strings need not be explicitly in each node, but rather we can store the strings
in each level of the tree as one concatenated string. By carefully traversing the path from the
root node to a given internal node, v, at level `, we can compute the offset of v’s bit string within
the concatenated string for level `. This circumvents any issues of having to worry about the
lower order space terms that the data structures for the bit strings occupy, as the strings become
shorter, deeper in the tree.

One final detail is that it is possible to represent the characters in S using any set of prefix-
free codes [121]. Doing this can cause the tree to take on some of the properties of the encoding.
For example, as we have described it, the wavelet tree occupies U lg σ(1 + o(1)) bits. However,
in Lemma 1.5.7 the space bound is stated as U(H0(S) + 2)(1 + o(1)) + O(σ lgU) bits. There
are many ways to achieve this compression. One way is to represent the characters using a set
of Huffman codes (Lemma 1.5.2), rather than the usual (lg σ)-bit encoding [121]. Note that we
require O(σ lgU) extra bits to store the decoded character in each leaf of the wavelet tree. We
mention this method of applying prefix-free codes to boost the compression of the wavelet tree
as we use it later.

There are several results that improve the time required by the wavelet tree for these opera-
tions. Golynski, Munro, and Rao [79] showed the following.

Lemma 1.5.8 ([79]). Let S be a string of U characters drawn from the alphabet Σ = [1, σ]. In
the word-RAM model with word size Θ(lgU) bits,

1. there is a data structure of size UH0(S)+O(U) bits that supports the operations rankj(S, i),
and selectj(S, i) in O(lg lg σ) time, where j ∈ [1, σ] and i ∈ [1, U]; and,

6We follow the convention that a single node has height 1.

13

2. there is a data structure of size U lg σ(1+o(1)) bits that supports the operations access(S, i)
and rankj(S, i) in O(lg lg σ) time, and selectj(S, i) in O(1) time, where j ∈ [1, σ] and
i ∈ [1, U].

Ferragina et al. [60] showed how to support all three operations in the same space as the
wavelet tree, but in time O(1 + lg σ/ lg lgU) by increasing the branching factor of the original
wavelet tree. Other work has also examined decreasing the space further by using higher order
compression, as well as trade-offs between the schemes of Golynski et al. and Ferragina et al. [140,
12, 15]. Finally, Belazzougui and Navarro discuss lower bounds for performing rank queries on
strings with larger alphabets [15].

We also make use of the following lemma, that provides optimal storage of, and access to,
strings that have characters drawn from alphabets with non-power-of-two sizes.7

Lemma 1.5.9 (From [46]). Consider a string S of U characters from an alphabet Σ = [1, σ]. In
the word-RAM model, with word size Θ(logU) bits, we can represent S using dU lg σe bits, and
support access in O(1) time.

1.5.5 Other Combinatorial Objects

We give a brief list of other combinatorial objects that have been made succinct. These objects
include planar graphs [98, 10], trees (labelled, unlabelled, cardinal, ordinal, etc.) [98, 118, 54,
93], arbitrary directed and undirected graphs [56, 54], permutations and functions [117], partial
orders [55] (see also Chapter 2), binary relations [13], succinct text indexes [90], and indexes for
the information retrieval [37]. Several papers, following the work of Turán [152], have presented
succinct representations of various combinatorial objects, such as general undirected graphs [120,
35].

1.5.6 A Brief Note About Randomization

Finally, in a few places, we briefly mention randomized algorithms. A Las Vegas randomized
algorithm is one where the answer produced is guaranteed to be correct, but the running time
may depend on random choices. A Monte Carlo randomized algorithm is one where the running

7The optimality follows from a recent result of Viola [153].

14

time does not depend on random choices, but the answer may be incorrect or the algorithm may
fail with some probability.

15

Chapter 2

Succinct Posets

2.1 Introduction

Partially ordered sets, or posets, are useful for modelling relationships between objects, and appear
in many different areas, such as natural language processing, machine learning, and database
systems (see, for instance, [138, p.4]). As problem instances in these areas are ever-increasing
in size, developing more space efficient data structures for representing posets is becoming an
increasingly important problem.

By a constructive enumeration argument, Kleitman and Rothschild [105] showed that the
number of size n posets is 2n2/4+O(n). Thus, the information theory lower bound indicates that
representing an arbitrary poset requires lg(2n2/4+O(n)) = n2/4+O(n) bits.1 This naturally raises
the question of how a poset can be represented using only n2/4+o(n2) bits, and support efficient
query operations.

It is well-known that, since a poset is a special kind of directed acyclic graph, we can represent
it using an upper triangular bit matrix. The bit matrix approach occupies n2/2 + o(n2) bits of
space, and can support precedence (i.e., less than) queries in constant time: only a single bit
must be examined. However, the leading coefficient is twice the information theory lower bound
for representing a poset, so it raises the question of whether it is possible to do better.

1In this chapter we use lg x to denote dlog2 xe: all logs hide the ceiling operator.

16

The purpose of this chapter is to close this gap by describing a succinct data structure for
representing arbitrary posets. We note that a preliminary version of the content of this chapter
appeared in the 20th Annual European Symposium on Algorithms (ESA 2012) as the paper
“Succinct Posets” [116], and was joint work with J. Ian Munro.

We give a detailed description of our results in Section 2.4, but first provide some definitions
in Section 2.2 and then highlight some of the previous work related to this problem in Section 2.3.

2.2 Definitions

A poset P , is a reflexive, antisymmetric, transitive binary relation � on a set S of n vertices2,
denoted P = (S,�). Let s1 and s2 be two vertices in S. For convenience we write s1 ≺ s2

if s1 � s2 and s1 6= s2. If s1 ≺ s2, we say s1 precedes s2. We refer to queries of the form,
“Does s1 precede s2?” as precedence queries. If neither s1 � s2 or s2 � s1 hold, then s1 and
s2 are incomparable, and we denote this as s1 ‖ s2. The set of predecessors of vertex s1 is the
set of vertices {s2 : s2 ≺ s1}. Similarly, the set of successors of vertex s1 is the set of vertices
{s2 : s1 ≺ s2}.

Each poset P = (S,�) is uniquely described by a directed acyclic graph, or DAG, Gc =
(S,Ec), where Ec = {(s1, s2) : s1 ≺ s2} is the set of edges. The DAG Gc is the transitive
closure graph of P . Note that a precedence query for vertices s1 and s2 is equivalent to the
query, “Is the edge (s1, s2) in Ec?” Alternatively, let Gr = (S,Er) be the DAG such that
Er = {(s1, s2) : s1 ≺ s2, @s3∈S , s1 ≺ s3 ≺ s2}, i.e., the minimal set of edges that imply all the
edges in Ec by transitivity. The DAG Gr also uniquely describes P , and is called the transitive
reduction graph of P .

Posets are often illustrated using a Hasse diagram, which displays all the edges in the transitive
reduction, and indicates the direction of an edge (s1, s2) by drawing vertex s1 above s2. In fact,
we use the terminology above and below to refer to edges in the Hasse diagram, or transitive
reduction; for example if s1 is above s2, then (s2, s1) ∈ Er. We refer to vertices that have no
outward edges in the transitive reduction as sinks, and vertices that have no inward edges in
the transitive reduction as sources. See Figure 2.1 for an example. Since all these concepts

2All posets we discuss are finite.

17

s1

s2 s3

s4 s5 s6

s7

s1

s2 s3

s4 s5 s6

s7

s1

s2 s3

s4 s5 s6

s7

Figure 2.1: A Hasse diagram of a poset (left), the transitive reduction (centre), and the transitive closure (right).
Vertices s1 and s2 are sources, and vertices s6 and s7 are sinks. In all our diagrams, paths from sinks to sources
go upward.

are equivalent, we may freely move between them when discussing a poset, depending on which
representation is the most convenient.

A chain of a poset, P = (S,�), is a totally ordered subset C = {c1, ..., ck} ⊆ S; i.e., ci ≺ cj iff
i < j, for 1 ≤ i < j ≤ k. An antichain is a subset A = {a1, ..., ak} ⊆ S, such that each ai ‖ aj , for
i 6= j. The height of a poset is the number of vertices in its maximum chain3, and the width of a
poset is the number of vertices in its maximum antichain. The following theorem is fundamental
in partial order theory, and relates the size of minimal decompositions of chains and antichains
to the width and height of the partial order:

Theorem 2.2.1 (Dilworth’s Theorem and its dual [150]). If P = (S,�) is a poset of width
d, then there is a decomposition of S into vertex disjoint sets C1 ∪ ... ∪ Cd = S, where Ci is a
chain. Dually, if h is the height of P , then there is a decomposition of S into vertex disjoint sets
A1 ∪ ... ∪Ad = S, where Ai is an antichain.

Given a poset P = (S,�), a linear extension L = (S,�1) of P is a total ordering of S, i.e., a
chain defined on the vertices in S with respect to the relation �1, such that if si ≺ sj for some
i, j ∈ [1, n], then si ≺1 sj . However, note that the converse is not necessarily true: we cannot
determine whether si ≺ sj just based on the fact that si ≺1 sj . Let L? = {L1 = (S,�1), ...,Lk =
(S,�k)} denote a set of linear extensions of a poset P = (S,�). L? is said to be a realizer of P ,
if, for all si, sj ∈ S, si ≺ sj implies si ≺k′ sj for all 1 ≤ k′ ≤ k, and si ≺k′ sj for all 1 ≤ k′ ≤ k

implies si ≺ sj . The order dimension of a poset P is the cardinality of the smallest realizer for P .
3We note that the height is often defined as the number of vertices in its maximum chain minus one, but we

find our definition slightly more convenient for our purposes in this chapter.

18

Based on the previous definitions, consider any chain C = {s1, ..., sk} of P . In the transitive
closure, each edge (si, sj) is present, where 1 ≤ i < j ≤ k. Similarly, in the transitive reduction,
no edge (si, sj) is present, unless j = i + 1 for each 1 ≤ i < k; many theorems about posets use
the fact that no forbidden polygon exists in the transitive reduction, consisting of directed edges
(si, si+1), ..., (sj−1, sj), (si, sj).4 For example, Kleitman and Rothschild [104] use this property to
count the number of distinct posets on n vertices.

Given a poset P = (S,�), and two vertices s1, s2 ∈ S, the join of s1 and s2 is the set of all
vertices s3 ∈ S such that s1 � s3, s2 � s3, and there exists no s4 ∈ S such that s1 � s4 ≺ s3 and
s2 � s4 ≺ s3. For example, the join of s2 and s3 in Figure 2.1 is {s5, s6}, and the join of s3 and
s4 is {s7}. The meet is defined symmetrically, as the set of all vertices s3 ∈ S such that s3 � s1,
s3 � s2, and there exists no s4 ∈ S such that s3 � s4 ≺ s1 and s3 � s4 ≺ s2. The join can be
thought of as a generalization of the lowest common ancestor of two nodes, s1 and s2, in a rooted
tree [18]: i.e., the deepest node whose induced subtree contains both s1 and s2. Note that if the
meet and join are unique for all pairs of vertices, then the poset is a lattice.

For a graph G = (V,E), we use E(H) to denote the set of edges {(s1, s2) : (s1, s2) ∈ E, s1 ∈
H, s2 ∈ H}, where H ⊆ V . Similarly, we use G(H) to denote the subgraph of G induced by H,
i.e., the subgraph with vertex set H and edge set E(H). If (s1, s2) ∈ E, or (s2, s1) ∈ E, we say
that s2 is a neighbour of s1 in G. We divide the neighbours of s1 into two classes: in-neighbours
and out-neighbours. The in-neighbours of s1 are the set of vertices {s2 : (s2, s1) ∈ E}, and the
out-neighbours of s1 are the set of vertices {s2 : (s1, s2) ∈ E}. Thus, in the graph Gc, the
in-neighbours of s1 are the predecessors of s1, and the out-neighbours of s1 are the successors
of s1.

Finally, we use Kq,q to refer to a balanced biclique with parts of size q, i.e., an undirected
graph G = (V1 ∪ V2, E) where |V1| = |V2| = q, and E = {(v1, v2) : v1 ∈ V1, v2 ∈ V2}.

2.3 Previous work

One way of storing a poset is by representing either its transitive closure graph, or transitive
reduction graph, using an adjacency matrix. If we topologically order the vertices of this graph,
then we can use an upper triangular matrix to represent the edges, since the graph is a DAG.

4Note that a forbidden polygon is different from a directed cycle: a forbidden polygon is acyclic.

19

Such a matrix occupies
(n

2
)

bits, and can, in a single bit probe, be used to report whether an edge
exists in the graph between two vertices. Thus, this simple approach achieves a space bound that
is roughly two times the information theory lower bound.

Since a poset is a special case of a DAG, the succinct graph representation of Farzan and
Munro [56] can be used to represent posets. Given a poset with n vertices and m relations (i.e.,
edges in the transitive closure graph), this representation occupies

lg
((n

2
)

m

)
(1 + o(1)) bits, (2.3.1)

provided m is either o(nε), or ω(n2−ε) for any constant ε > 0. In the alternative case, when m

does not satisfy these bounds, they gave a representation that occupies

(1 + ε) lg
((n

2
)

m

)
bits, for any constant ε > 0. (2.3.2)

We note that both of these representations support precedence queries in constant time, as well as
listing all predecessors (resp. successors) of a vertex in the transitive closure in constant time per
vertex reported. One might ask, “What is the value of m for a typical poset?” As it turns out, for a
poset selected uniformly at random from the set of all possible posets, we have m = n2/8+Θ(n7/8)
with high probability [105]. Thus, applying Equation 1.5.1 and Lemma 1.5.1, we get that the
space (ignoring lower order terms) is 0.8113

(n
2
)
≈ 0.4053n2 bits, with high probability. Thus, this

representation is smaller than the plain adjacency matrix, especially when m is small, but still
fails to match the information theory lower bound in general.

A very different representation, called the ChainMerge structure, was proposed by Daskalakis
et al. [41], and occupies Θ(dn) words of space, where d is the width of the poset. The data
structure essentially stores a minimum cardinality chain decomposition of the poset, and for each
pair of chains, structural information on how the vertices relate to one another. The ChainMerge
structure, like the other representations mentioned so far, supports precedence queries in constant
time.

Recently, Farzan and Fischer [55] presented a data structure that represents a poset using
2dn(1 + o(1)) + (1 + ε)n lgn bits, where d is the width of the poset, and ε > 0 is an arbitrary
positive constant. This data structure supports precedence queries in constant time, and many

20

other operations in time proportional to the width of the poset. These operations are best
expressed in terms of the transitive closure and reduction graphs, and include:

1. reporting all kout predecessors (resp. successors) of a vertex in O(d+ kout) time;

2. reporting all vertices above (resp. below) an arbitrary vertex in O(d2) time;

3. reporting an arbitrary neighbour of a vertex in the transitive reduction in O(d) time;

4. reporting whether an edge exists between two vertices in the transitive reduction in O(d)
time;

5. reporting all kout vertices that, for two vertices s1 and s2, are preceded by s1 and precede
s2 in O(d+ kout) time;

6. reporting the set of vertices in the join (resp. meet) of a set of kin vertices in O(d2 + kin)
time;

7. and, reporting an arbitrary vertex in the join (resp. meet) of a set of kin vertices in
O(dmin{kin, d}) time.

The basic idea of their data structure is to encode the ChainMerge structure of Daskalakis
et al. [41] using bit strings, and to answer queries by using rank and select queries on these bit
strings. We note that since both structures rely on finding a minimum chain decomposition, they
require O(d2n lg(n/d)) construction time [41].

Since the data structure of Farzan and Fischer [55] is adaptive on width, it is appropriate for
posets where the width is small relative to n. However, if we select a poset of n vertices uniformly
at random from the set of all possible n vertex posets, then it will have width n/2+o(n) with high
probability [105, 146]. Thus, this representation will occupy n2 +o(n2) bits, which is roughly four
times the information theory lower bound. Furthermore, the time to construct the data structure
of Farzan and Fischer is O(n3). We note that this can be improved to Õ(n5/2) [57] since finding a
minimum chain decomposition can be done by solving the max-flow problem on an unit capacity
bipartite network [58].5 Finally, with the exception of constant time precedence queries, all other
operations described above take Θ(n) time for such a poset.

5We use the Õ(x) or soft-Oh notation to hide factors polylogarithmic in x.

21

Other Related Work

For subclasses of posets, space efficient representations have been developed, though they are
not succinct. These subclasses include: lattices [86, 143, 144], distributive lattices [87], Hasse
diagrams representable by certain subclasses of planar DAGs [71] and forests [73]. There has been
work on finding space efficient encodings of posets based on the size of their order dimension, or
related measures of dimension that generalize order dimension, including: boolean dimension [72,
70, 71], encoding dimension [85], string dimension [74], and rectangle dimension [112]. However,
it is well-known that it is an NP-complete problem to determine whether the order dimension of a
poset is 3 or larger [158]6, and similar NP-completeness proofs exist for several of these alternative
proposed measures of dimension [139]. As far as we are aware, boolean dimension [71] is the only
alternative proposal that is known to be computable in polynomial time, and for arbitrary posets
does not yield a succinct representation. Even approximating the order dimension of a partial
order to within a factor of O(n0.5−ε) for any constant ε > 0 is NP-hard [94], though we are not
aware of such hardness of approximation results for these similar measures.

There is also work on representing arbitrary binary relations in a compact form [13, 11]. Since
a poset is a special case of a binary relation, i.e., a transitive one, these representations can be
used to represent a poset. However, for an arbitrary poset, these representations overshoot the
information theory lower bound for posets by a lgn factor, and do not support constant time
precedence queries.

For an arbitrary DAG, the reachability relation between vertices is a poset: i.e., given two
vertices, s1 and s2, the relation of whether there a directed path from s1 to s2 in the DAG.
Clearly, if we can answer precedence queries in an arbitrary poset, then we can answer reachability
queries in an arbitrary DAG. We note that there is a great deal of work in the area of developing
reachability (and distance) oracles for specific classes of directed graphs, such as planar directed
graphs [148]. There is also work on distance oracles for undirected graphs, in both the approximate
case, such as the seminal work of Thorup and Zwick [149] (see also the hundreds of papers by
which it is referenced), and in the exact case [61]. However, none of the previous work has
considered how to achieve succinct space for arbitrary directed graphs. For example, Thorup and
Zwick [149, Proposition 5.2] mention that Ω(n2) bits are required for reachability in a directed
graph, but do not consider constant factors. This lower bound was later parameterized in terms

6A typical poset on n vertices has order dimension about n/4 [150, p.181].

22

of m, the number of edges in the directed graph, to Ω(nm1/2) bits by Cohen et al. [38], but
again, no discussion of the constant is presented. There are numerous papers from the database
community about answering reachability queries in directed graphs, starting with the paper of
Agrawal, Borgida, and Jagadish [1]. Many different techniques have been proposed, such as
tree cover, path-tree cover, 2-hop and 3-hop indexing (see Jin et al. [100] for a brief survey).
These techniques are aimed at directed graphs where m = o(n2), and do not provide a succinct
representation in the case of arbitrary directed graphs.

Finally we note that other than precedence queries, representations of posets have been ex-
plored that support efficient counting of linear extensions, and generation of a random linear
extension [43]. There is also work on developing labelling schemes for graphs, so that reachability
and adjacency can be tested efficiently by comparing graph labels [142].

2.4 Our Contributions

Our results hold in the word-RAM model of computation with word size Θ(lgn) bits. Our main
result is summarized in the following theorem:

Theorem 2.4.1. Let P = (S,�) be a poset, where |S| = n. There is a succinct data structure
for representing P that occupies n2/4+O(n2 lg lgn/ lgn) bits, and can support precedence queries
in constant time: i.e., given vertices s1, s2 ∈ S, report whether s1 � s2.

Note that, unlike—for instance—the structure of a labelled tree, the structure of a poset
requires far more bits to represent than a labelling of its vertices. Thus, in order to refer to the
vertices in the poset, we assume each vertex has a label; i.e, an integer associated with it, drawn
from the range [1, n]. We further note that we are also free to relabel the vertices, as an entire set
of labels will require only Θ(n lgn) bits. Consequently, we will always refers to vertices by their
labels, so often when we refer to “vertex s1”, it means “the vertex in S with label s1”, depending
on context.

Theorem 2.4.1 implies that we can, in constant time, answer queries of the form, “Is the edge
(s1, s2) in the transitive closure graph of P?” In fact, we can also apply the same representation
to support, in constant time, queries of the form, “Is the edge (s1, s2) in the transitive reduction
graph of P?” However, at present it seems as though we can only support efficient queries in

23

one or the other, not both simultaneously using succinct space. For this reason we focus on the
closure, since it is more interesting, but state the following theorem:

Theorem 2.4.2. Let Gr = (S,Er) be the transitive reduction graph of a poset, where |S| = n.
There is a succinct data structure for representing Gr that occupies n2/4+O(n2 lg lgn/ lgn) bits,
and, given vertices s1, s2 ∈ S, can report whether (s1, s2) ∈ Er in constant time.

We also show that both of these data structures can be constructed efficiently. We have the
following result:

Theorem 2.4.3. Given the transitive closure (resp. reduction) graph of a poset P , the data
structure of Theorem 2.4.1 (resp. Theorem 2.4.2) can be constructed for P in time O(n2+ε), for
any constant ε ∈ (0, 1.42]. Note that the smaller the constant ε is chosen to be, the larger the
constant factor in the lower order space term—O(n2 lg lgn/ lgn)—becomes.

Reachability in Directed Graphs: Theorem 2.4.1 implies that there is a data structure that
occupies n2/4 + o(n2) bits, and can support reachability queries in a DAG, in constant time.
As far as we are aware, this is the first reachability oracle for arbitrary DAGs that uses strictly
less space than an upper triangular matrix, and supports reachability queries in constant time.
We can even strengthen this observation by noting that for an arbitrary directed graph G, the
condensation of G—the graph that results by contracting each strongly connected component
into a single vertex [39, Section 22.5]—is a DAG. Given vertices s1 and s2, if s1 and s2 are in
the same strongly connected component, then s2 is reachable from s1. Otherwise, we can apply
Theorem 2.4.1 to the condensation of G. Thus, we get the following corollary:

Corollary 2.4.1. Let G be a directed graph with n vertices and Φ strongly connected components.
There is a data structure that occupies Φ2/4 +O(Φ2 lg lg Φ/ lg Φ) +O(n lg Φ) bits and, given two
vertices of G, s1 and s2, can report whether s2 is reachable from s1 in constant time.

Note that even in the worst case when Φ = n, the space bound of the previous corollary is roughly
a quarter of the space required to represent an arbitrary directed graph. Switching back to the
terminology of order theory, the previous corollary generalizes Theorem 2.4.1 to the larger class
of binary relations known as quasi-orders: i.e., binary relations that are reflexive and transitive,
but not necessarily antisymmetric. In fact, reflexivity does not restrict the binary relation very
much, so we can further generalize Theorem 2.4.1 to arbitrary transitive binary relations.

24

Theorem 2.4.4. Let T = (S,�) be a transitive binary relation � on a set of vertices S,
where |S| = n. There is a succinct data structure for representing T that occupies n2/4 +
O(n2 lg lgn/ lgn) bits, and can support precedence queries in constant time: i.e., given two ver-
tices s1, s2 ∈ S, report whether s1 � s2.

Additional operations: We also ask the question of what additional operations can be sup-
ported by our representation. We show that with a few minor changes, the data structure can
support efficient listing of both the predecessors and successors of an arbitrary vertex. We note
that these changes reveal a trade-off in the leading term of the space bound, but also make the
lower order term slightly worse. In particular, we have the following:

Theorem 2.4.5. Let P = (S,�) be a poset on n vertices and m relations. Using a data structure
of size min{n2/4, lg

((n2)
m

)
} + O(n2/

√
lgn) bits, we can: answer precedence queries in constant

time; list the predecessors of an arbitrary vertex in constant time per vertex reported; and, list
the successors of an arbitrary vertex in constant time per vertex reported.

Overview of the data structure and techniques used: The main idea behind our succinct
data structure is an algorithm for compressing a poset so that it occupies space matching the
information theory lower bound, to within lower order terms. The difficulty is ensuring that we are
able to query the compressed structure efficiently. Our first attempt at designing a compression
algorithm was essentially a reverse engineered version of an enumeration proof by Kleitman and
Rothschild [104]. However, though the algorithm achieved the desired space bound, there was
no obvious way to answer queries on the compressed data due to one crucial compression step7.
Though there are several other enumeration proofs (cf., [105, 26]), they appeal to a similar
strategy, making them difficult to use as the basis for a data structure. This led us to develop
an alternate compression algorithm, that borrows techniques from extremal graph theory. In
particular, we make use of algorithmic approaches to solving the Zarankiewicz Problem. This
problem asks, “What is the minimum number of edges a bipartite graph must have before it is

7Further explanation: In their enumeration argument (see Lemma 3) they count the set Bn+1, which contains
partial orders that have a source vertex s1 that is below every vertex in some set Q, of size

√
n, where Q has

the property that at least n/2 vertices are below some vertex in Q. This provides an efficient way to encode the
relations with s1, as any vertex below a vertex in Q cannot be above s1, as it would form a forbidden polygon; in
this case a triangle. Thus, we only need to store the set Q, as well as a bit for each vertex not covered by a vertex
in Q, of which there are at most n/2−

√
n. However, creating a data structure using this property seems difficult,

as the data is implicit in terms of the neighbours of Q, which are not explicitly stored.

25

guaranteed to contain a balanced biclique Kq,q as a subgraph?” There is a well-known result by
Kövári, Sós, and Turán [107] that gives a bound for any q, but does not provide much intuition
on how to find such a biclique. We make use of a recent result by Mubayi and Turán [114] that
allows us to find such bicliques efficiently.

It would seem conceptually simpler to present our compression algorithm as having two steps.
In the first step, we preprocess the poset, removing edges in its transitive closure graph, to create
a new poset where the height is not too large. We refer to what remains as a flat poset. We then
make use of the fact that, in a flat poset, either balanced biclique subgraphs of the transitive
closure graph—containing Ω(lgn/ lg lgn) vertices—must exist, or the poset is relatively sparsely
connected. In the former case, the connectivity between these balanced biclique subgraphs and
the remaining vertices is shown to be space efficient to encode using the fact that all edges implied
by transitivity are in the transitive closure graph. Once we encode the edges, we can remove the
vertices in the biclique from the poset and apply the same idea recursively. In the latter case, we
can directly apply techniques from the area of succinct data structures to compress the poset.

After discussing the data structure and how it is used, we return to the question of how
efficiently it can be constructed. One issue is that Mubayi and Turán’s analysis of the running
time for their algorithm only examines the time taken to compute a single biclique. Since our
construction algorithm computes many bicliques, we describe a simple way of efficiently com-
puting a set of vertex disjoint bicliques using Mubayi and Turán’s algorithm. We note that this
idea is not entirely original, as batch computation of bicliques that cover the edges of a graph,
called clique stripping, has been studied previously by Feder and Motwani [57]. Clique stripping
finds applications in speeding up existing algorithms on graphs by transforming the input into an
equivalent graph that has fewer edges. Mubayi and Turán appear to have overlooked this related
work, and we note that Feder and Motwani’s algorithm can be used to find balanced bicliques,
though they do not discuss this feature. The main difference between our construction algorithm
and the clique stripping algorithm is that our biclique covering is vertex disjoint rather than edge
disjoint.

Remark 2.4.1. For the particular application of compressing directed graphs that represent social
networks, experimental results have found that heuristic approaches for compression based on
finding large bicliques work quite well in practice [95]. Though our result is not aimed at a
specific application, we find it interesting that our similar approach to directed graph compression
can be shown to be both efficient to compute, and optimal for arbitrary directed graphs.

26

Road Map: In the next section, we describe our succinct data structure for representing the
transitive closure graph of a poset (Theorem 2.4.1). Then in Section 2.6 we prove Theorems 2.4.2
and 2.4.4. In Section 2.7 we examine how to construct the data structure of Theorem 2.4.1, and
prove Theorem 2.4.3. In Section 2.8 we briefly discuss additional operations. In particular, we
show how to efficiently support the listing the predecessors and successors of an arbitrary vertex,
and also show that any data structure representing a poset of n vertices that supports meet
and join queries efficiently must have construction time equal to the cost of performing boolean
matrix multiplication on two arbitrary n× n matrices. In Section 2.9 we return to the question
of representing both the transitive reduction and closure simultaneously, and show how, like an
adjacency matrix, we can use Lemma 1.5.9 to reduce the cost of a simultaneous representation.

2.5 The Data Structure

In this section we describe a succinct data structure for representing posets.

2.5.1 Flattening a Poset

Let γ ≥ 1 be a parameter, to be fixed later; the reader would not be misled by thinking that
we will eventually set γ = lgn. We call a poset γ-flat if it has height no greater than γ. In this
section, we describe a preprocessing algorithm for posets, transforming a poset into a γ-flat poset,
without losing any information about its original structure. After describing this preprocessing
algorithm, we develop a compression algorithm for flat posets. Using the preprocessing algorithm
together with the compression algorithm, and an additional index, yields a succinct data structure
for posets.

Height-Based Antichain Decomposition

Let P = (S,�) be an arbitrary poset with transitive closure graph Gc = (S,Ec). We define the
height of a vertex s1 ∈ S to be the cardinality of the maximum length chain that has s1 as the
maximum vertex; i.e., no vertex is above s1 in the chain. Thus, all sources are of height 1. Let
h(P) denote the height of P ; we use h for brevity when no confusion is possible. We use Ai to
denote the set of all the vertices of height i, 1 ≤ i ≤ h, and A to denote the set {A1, ..., Ah}.

27

Each set Ai is an antichain, since if s1 ≺ s2 then s2 has height strictly greater than s1. An
equivalent recursive definition is that A1 is the set of sources of P , and Ai is the set of sources of
the poset P \ ∪i−1

j=1Aj , for 1 < i ≤ h(P); i.e., we recursively remove the sources of P to form the
next antichain.

Remark 2.5.1. There are many ways that a poset can be decomposed into antichains. We choose
the height-based method described above mainly because it is the simplest method of which we are
aware. We also note that, though the above method returns a decomposition into a minimum
number of antichains by Theorem 2.2.1, the lengths of these antichains are rather arbitrary. For
the purposes of our data structure, we wish to have antichains that are also large relative to n.
Instead of trying to come up with a method of decomposing antichains to maximize antichain
length, we instead merge consecutive antichains together, changing the structure of the poset, so
that we end up with a poset that has long antichains.

As a next step, we compute a linear extension L of the poset P in the following way, using
A. The linear extension L is such that all vertices in Ai are ordered before those in Ai+1 for
all 1 ≤ i < h, and the vertices within the same antichain Ai are ordered arbitrarily within L.
We write S(i) to denote the vertex ordered i-th in L. Similarly, given any subset S′ ⊆ S, we
use the notation S′(x) to denote the vertex ordered8 x-th among the vertices in the subset S′,
according to the linear extension L, where 1 ≤ x ≤ |S′|. Thus, for some fixed subset S′, we can
imagine a bit string B of length n, where bit i is a 1 if S(i) ∈ S′, and 0 otherwise. Then based
on the previous definitions, we have S′(i) = S(select1(B, i)). We illustrate these concepts in
Figure 2.2. Later, this particular linear extension will be used extensively, when we output the
structure of the poset as a bit string.

Merging Antichains

We now describe a preprocessing algorithm to transform an arbitrary poset P into a γ-flat poset
P̃ . We assume P is not γ-flat, otherwise we are done. Given two consecutive antichains Ai and
Ai+1, we define a merge step to be the operation of replacing Ai and Ai+1 by a new antichain
A′i = Ai ∪ Ai+1, and outputting and removing all the edges between vertices in Ai and Ai+1 in
the transitive closure of P , i.e., Ec(Ai ∪ Ai+1). We say that Ai+1 is the upper antichain, Ai is

8We are specifically using the term “ordered” to avoid overloading the term “rank”.

28

S′
A1 = {s1, s2}
A2 = {s3, s4}
A3 = {s5, s6}
A4 = {s7}

L = {s2, s1, s3, s4, s6, s5, s7}

S′(1) = s2
S′(2) = s1
S′(3) = s3
S′(4) = s6

s1

s2 s3

s4 s5 s6

s7

Figure 2.2: The antichain decomposition of the poset from Figure 2.1. The set S′ is the set of vertices surrounded
by the dotted line. Note that L is only one of many possible linear extensions.

the lower antichain, and refer to the new antichain A′i as the merged antichain. Each antichain
Aj where j > i+ 1 becomes antichain A′j−1 in the residual decomposition, after the merge step.

To represent the edges that were removed, let S be a bit string, storing
(n

2
)

bits, one for
each possible edge in the transitive closure graph of P . Thus S can be thought of as an upper
triangular adjacency matrix (of bits). Each time an edge (S(x), S(y)) is removed during a merge
step, we record a bit in S representing the pair (x, y) in S. Obviously, we do not wish to store
S in its raw form, as it would occupy

(n
2
)

bits, so we soon discuss how to represent S so that it
occupies subquadratic space.

Algorithm Flatten(A, i): where i is the index of an antichain in A.
if i ≥ |A| then

Exit
end if
if |Ai|+ |Ai+1| ≤ 2n/γ then

Perform a merge step on Ai and Ai+1
else
i← i+ 1

end if
Flatten(A, i)

The Flatten Algorithm

There are many possible ways that we could apply merge steps to the poset in order to make it
γ-flat. The simple method we choose is presented in algorithm Flatten. Let Ã be the residual

29

antichain decomposition that remains after executing Flatten(A, 1), and P̃ be the resulting
poset. The number of antichains in Ã is at most γ, and therefore the resulting poset P̃ is γ-flat.
We make the following further observation:

Lemma 2.5.1. Flatten(A, |A|) removes O(n2/γ) edges from Gc.

Proof. Consider the decomposition A, where h = |A|. Let n1, ..., nh denote the number of vertices
in A1, ..., Ah, and nk0,k1 to denote

∑k1
i=k0

ni. We use induction to prove the inequality:

k1−1∑
i=k0

 i∑
j=k0

nj

ni+1

 ≤ nk0,k1 (nk0,k1 − 1)
2 , (2.5.1)

where 1 ≤ k0 < k1 ≤ h. Note that this summation describes the maximum number of edges
that are deleted between pairs of vertices in a residual antichain after the Flatten algorithm
terminates. The induction is over the parameter k1, fixing k0 = 1, since the value of k0 is
irrelevant. The base case, k1 = 2 holds since (n1 + n2)(n1 + n2 − 1)/2 ≥ n1n2 for all integers
n1, n2 ≥ 1. Assume the inequality holds for all k ∈ [2, k1 − 1]. We have:

k1−1∑
i=1

 i∑
j=1

nj

ni+1

 =
k1−2∑
i=1

 i∑
j=1

nj

ni+1

+

k1−1∑
j=1

nj

nk1 (2.5.2)

≤ n1,k1−1

(
n1,k1−1 − 1

2 + nk1

)
(by the inductive step) (2.5.3)

= (n1,k1 − nk1)
(
n1,k1 − 1 + nk1

2

)
(2.5.4)

= n1,k1

(
n1,k1 − 1

2

)
+ n1,k1nk1

2 − nk1n1,k1

2 − nk1(nk1 − 1)
2 (2.5.5)

≤ n1,k1

(
n1,k1 − 1

2

)
. (2.5.6)

For each of the at most γ antichains in Ã, there are two cases. Either the antichain was not
created as the result of merge steps, or the antichain has size at most 2n/γ, and is the result of
some sequence of merge steps. Thus, the previous inequality implies that Flatten removes no
more than O(n2

k0,k1
) edges for such an antichain, where nk0,k1 = O(n/γ). Therefore, the total

number of edges removed during the merging steps is O((n/γ)2γ) = O(n2/γ).

30

Next, we show how to answer precedence queries on vertices that end up in the same antichain
in the residual decomposition:

Lemma 2.5.2. Let S-Acc(U,N) denote the space cost of storing a bit string of length U bits,
containing N ones, such that the operation access can be performed in constant time, and
T-Acc(U,N) denote its construction time. For any γ ≥ lgn, there is a data structure of size
S-Acc(

(n
2
)
, n2/γ) + Θ(n lgn) bits that, given vertices s1 and s2, can determine in constant time

whether s1 precedes s2, if both s1 and s2 belong to the same antichain in the residual antichain
decomposition Ã, created by executing Flatten(P, |A|). The data structure can be constructed
in O(T-Acc(

(n
2
)
, n2/γ) + n2) time, given access to an adjacency matrix representation of Gc, in

addition to an array storing the linear extension L, and the number of vertices in each antichain
in A.

Proof. Recall that each merge step writes the removed edges to the bit string S. By Lemma 2.5.1,
at most O(n2/γ) edges are deleted by the Flatten algorithm. Thus, at most O(n2/γ) ones
appear in S, which has length

(n
2
)
. We also store an array of size Θ(n lgn) bits that, given the

label of a vertex s1, returns x and i such that S(x) = s1, and s1 ∈ Ai.

Suppose we are given two vertices s1 and s2 that we wish to determine the relationship
between. We use the array to find x, y, i, and j such that S(x) = s1, S(y) = s2, s1 ∈ Ai and
s2 ∈ Aj . If i 6= j, then we return “DIFFERENT ANTICHAINS”, which means that our data
structure cannot provide the answer. Without loss of generality, assume x < y; if x = y, then
return s1 = s2. We examine the bit corresponding to the pair (x, y) in S, and return s1 ≺ s2 if
it is a 1 and s1 ‖ s2 otherwise.

In terms of construction time, the edges written to S can be determined in O(n2/γ) time by
carefully scanning through the array storing L.

Remark 2.5.2. If we choose γ ≥ lgn, and use Lemma 1.5.4 to represent bit strings, then the
data structure of the previous lemma occupies O(n2 lg lgn/ lgn) bits, by Lemma 1.5.5, and can
be constructed in O(n2) time. We note that other representations of bit strings can be used to
achieve an asymptotically smaller space bound when γ = ω(lgn) (see Section 1.5.3). However,
as we shall see later, this data structure is not the bottleneck that causes the lower order term of
Theorem 2.4.1 to be of order O(n2 lg lgn/ lgn).

31

2.5.2 Compressing Flat Posets

In this section we describe a compression algorithm for flat posets that, in the worst case, matches
the information theory lower bound to within lower order terms. We begin by stating the following
lemma, which is an algorithmic solution to the Zarankiewicz problem:

Lemma 2.5.3 (Mubayi and Turán [114]). There is a constant ςmin such that, given a graph
G = (V,E) with |V | ≥ ςmin vertices and 8|V |3/2 ≤ |E| ≤ |V |2/2 edges, we can find a balanced
biclique Kq,q, where q = Θ(lg |V |/ lg(|V |2/|E|)), in time Θ(|E|).

For our purposes in this section, Lemma 2.5.3 will suffice, but we will examine the problem of
computing such bicliques in more detail in Section 2.7.

Let P̃ be a lgn-flat poset, Gc = (S,Ec) be its transitive closure, and Ã = {A1, ..., Ah} be
its height-based antichain decomposition (discussed in the last section), which contains h ≤ lgn
antichains. We now prove our key lemma, which is crucial for the compression algorithm.

Lemma 2.5.4 (Key Lemma). Consider the subgraph GΥ = Gc(Ai ∪ Ai+1) for some 1 ≤ i < h,
and ignore the edge directions so that GΥ is undirected. Suppose GΥ contains a balanced biclique
subgraph with vertex set χ, and |χ| = τ ; i.e., G(χ) is a Kτ/2,τ/2. Then there are at most 2τ/2+1−1
ways that the vertices in χ can have edges to a vertex in S \ (Ai ∪Ai+1).

Proof. Each vertex v ∈ S \ (Ai ∪Ai+1) is in Aj , where either j > i+ 1 or j < i. Without loss of
generality, consider the case where j > i+ 1. If any vertex v0 ∈ χ ∩ Ai+1 has an edge to v, then
all vertices in χ ∩ Ai have an edge to v; see Figure 2.3 for an illustration. Thus, the vertices in
χ ∩ Ai+1 can have edges to v in 2τ/2 − 1 ways, or the vertices in χ ∩ Ai can have edges to v in
2τ/2 − 1 ways, or the vertices in χ can have no edges to v. In total, there are 2τ/2+1 − 1 ways
edges can go to v from vertices in χ.

In more explicit terms, consider a biclique in the lowest two antichains χ ⊂ Gc(A1∪A2) where
τ = |χ|, and any vertex v ∈ S \ (A1 ∪ A2). Let x0 x1 . . . xτ/2 be a bit string, where bit x0 is a
control bit that indicates whether there is any edge from vertices in χ∩A2 to v in Ec. If x0 = 1,
then xi indicates whether (χ(i+ τ/2), v) ∈ Ec, for 1 ≤ i ≤ τ/2; we need not consider vertices in
χ ∩ A1, since they all have edges to v. Otherwise, xi indicates whether (χ(i), v) ∈ Ec. Thus, by
checking 2 bits, we can determine whether an edge between χ(i) and v exists, for any 1 ≤ i ≤ τ .

32

Algorithm Compress-Flat(P̂ , n̂, Â, ĥ): where P̂ = (Ŝ,�) is a lgn-flat poset of n̂ ≤ n vertices,
and Â = {Â1, ..., Âĥ} is a decomposition of the vertices in P̂ into ĥ antichains.

1: if ĥ = 1 then
2: EXIT
3: else if |Â1 ∪ Â2| ≥ ςmin and |Ec(Â1 ∪ Â2)| ≥ (n̂/ lg n̂)2 then
4: Apply Lemma 2.5.3 to the subgraph Gc(Â1 ∪ Â2). This computes a balanced biclique with

vertex set χ ⊂ Â1 ∪ Â2 such that Ω(lg n̂/ lg lg n̂) = τ = |χ| ≤ Θ(lg n̂).
5: Let H ← Ŝ \ χ. Output an array EdgeArray, where EdgeArray[k] ∈ [0, 2τ/2+1 − 1] and

indicates how H(k) relates to χ (see Lemma 2.5.4 and discussion in subsequent paragraph).
6: Let Â1 ← Â1 \ χ, and Â2 ← Â2 \ χ.
7: Compress-Flat(P̂ \ χ, n̂− τ, Â, ĥ)
8: else
9: Perform a merge step on Â1 and Â2

10: Set ĥ← ĥ− 1
11: Compress-Flat(P̂ , n̂, Â, ĥ)
12: end if

Ai+1

Ai

Aj Ai+1

Ai

Aj

v0

v

v

v0

Figure 2.3: Illustration of Lemma 2.5.4. Left: the case where j > i + 1. If there is an edge (v0, v) ∈ Ec, then all
the dark gray edges must exist. Right: the case where j < i. If there is an edge (v, v0) ∈ Ec, then all the dark gray
edges must exist.

33

Furthermore, since there are no edges between pairs of vertices v ∈ Aj and v0 ∈ χ ∩ Aj , for
j ∈ [1, 2], the same encoding can be used for vertices in A1 ∪ A2 \ χ. If v ∈ A2 \ χ, then we set
x0 to 0, indicating that any edges to v come from vertices in χ ∩ A1. Otherwise, we set x0 to 1,
indicating that any edge must go from v to vertices in χ∩A2, and no vertex in χ∩A1. Note that,
we must first know whether v is in antichain A1 or not to properly interpret the bits x0 . . . xτ/2.

Lemma 2.5.5. Consider the undirected graph formed by the vertices and edges in GΥ = Gc(A1∪
A2). If |Ec(A1 ∪ A2)| > n2/ lgς n for any constant ς > 0, then the undirected graph GΥ contains
a Kτ/2,τ/2 as a subgraph, where Ω(lgn/ lg lgn) = τ ≤ Θ(lgn).

Proof. In order to have n2/ lgς n edges, for any constant ς > 0, GΥ must contain at least
Θ(n/ lgς/2 n) vertices. In this extreme case, τ = Θ(lg(n/ lgς/2 n)) = Θ(lgn), for sufficiently
large n, by Lemma 2.5.3. In the other extreme case, there are Θ(n) vertices in A1 ∪A2, and thus
τ = Ω(lgn/ lg lgς(n)) = Ω(lgn/ lg lgn), by Lemma 2.5.3.

Consider the algorithm Compress-Flat. The main idea is to apply Lemma 2.5.5 to the
bottom two consecutive antichains the antichain decomposition, if they have many edges—defined
on line 3—between them in the transitive closure graph. If they have few edges between them,
then we apply a merge step. The algorithm terminates when only one antichain remains. We refer
to the case on lines 4-7 as the dense case, and the case on lines 9-11 as the sparse case. We now
prove that the size of the output of Compress-Flat matches the information theory lower bound
to within lower order terms. Note that Compress-Flat, as described, is not truly a compression
algorithm, as an additional index—that we describe later—will be needed to interpret the output.

Lemma 2.5.6. Let S-Acc(U,N) denote the space cost of storing a bit string of length U bits,
containing N ones, such that the operation access can be performed in constant time. The output
of Compress-Flat(P̃ , n, Ã, h) is no more than n2/4 + O(n2 lg lgn/ lgn) + S-Acc(

(n
2
)
, n2/ lgn)

bits.

Proof. In the base case (line 2), the lemma trivially holds since nothing is output. Next we show
that the total output from all the sparse cases does not exceed S-Acc(

(n
2
)
, n2/ lgn) bits. Recall

that a merge step records a bit in the string S corresponding to each edge that was removed.
Since there can be at most lgn merge steps— P̃ has height at most lgn—and each merge step

34

removes at most n2/ lg2 n edges, at most n2/ lgn bits are written to the bit string S.9 Thus, we
spend S-Acc(

(n
2
)
, n2/ lgn) bits to store the output from the sparse cases.

We now prove the lemma by strong induction for the dense cases. Let S(n) denote the number
of bits output by Compress-Flat(P̃ , n, Ã, h) in the dense cases. We can assume S(n0) ≤
n2

0/4 + ς0(n2
0 lg lgn0)/ lgn0 for all 3 ≤ n0 < n, where ς0 > 0 is a sufficiently large constant.10

All additional self-delimiting information—for example, storing the length of the strings output
on lines 5-8— occupies no more than ς1 lgn bits for some constant ς1 > 0. Finally, recall that
ς2 lgn/ lg lgn ≤ τ ≤ ς3 lgn for some constants ς2, ς3 > 0, by Lemma 2.5.5. We have:

S(n) = lg(2τ/2+1) (n− τ) + ς1 lgn+ S(n− τ)

<

(
τ

2 + 1
)

(n− τ) + ς1 lgn+
(1

4 + ς0 lg lgn
lg(n− τ)

)(
n2 − 2nτ + τ2

)
<

n2

4 + ς0n
2 lg lgn

lg(n− τ) − (ς5 − ς4)n (ς5 < 2ς0ς2, ς4 > 1).

Note that through our choice of ς0 and ς4, we can ensure that ς5 − ς4 is a positive constant. This
rightmost term can absorb the discrepancy between the lg(n− τ) term in the denominator, and
the desired lgn term. Thus, the induction holds.

Remark 2.5.3. The previous lemma contains the bottleneck that causes the lower order term
of Theorem 2.4.1 to be O(n2 lg lgn/ lgn) bits. For example, if it were possible to find balanced
biclique subgraphs containing ω(lgn) vertices in graphs with n vertices and o(n2/ lg2 n) edges,
then it would be possible to improve the lower order term to o(n2 lg lgn/ lgn). However, since we
want to make the bicliques as large as possible without causing the representation of the sparse
cases, or the index of Lemma 2.5.2, to exceed O(n2 lg lgn/ lgn) bits, we choose γ = lgn and set
ς = 2 in Lemma 2.5.5.

Next, we show how to support precedence queries on a lgn-flat poset, using the output of the
Compress-Flat algorithm. If vertex s1 is removed in the dense case, we say s1 is associated
with the output on lines 6-9.

9We note that we can use the same bit string to record these edges as the one used in the index of Lemma 2.5.2
10Note that the 3 comes from the fact that lg lg 2 = 0.

35

Lemma 2.5.7. Let S-Rank(U,N) and S-Acc(U,N) denote the space cost of storing a bit string of
length U bits, containing N ones, such that the operations rank1 and access can be performed in
constant time, respectively. Let P̃ be a lgn-flat poset on n vertices, with antichain decomposition
Ã = {A1, ..., Ah}. There is a data structure of size n2/4+O(n2 lg lgn/ lgn)+S-Acc(

(n
2
)
, n2/ lgn)+

S-Rank(k, k) bits, where k = O(n2 lg lgn/ lgn), that, given vertices s1 and s2, can report whether
s1 precedes s2 in constant time.

Algorithm Precedence-Query(s1, s2): Reports the relation between the vertices s1 and s2.

1: Determine i, j, x and y, such that Ai, Aj ∈ Ã, s1 ∈ Ai, s2 ∈ Aj , S(x) = s1, and S(y) = s2.
{We assume without loss of generality that i ≤ j.}

2: if i = j then
3: Report s1 ⊀ s2
4: else if the bit corresponding to pair (x, y) in S is a 1 then
5: Report s1 ≺ s2
6: else if Record[s2].id = Record[s1].id then
7: if Record[s1].id 6=∞ and Record[s2].top 6= Record[s1].top then
8: Report s1 ≺ s2
9: else

10: Report s1 ‖ s2
11: end if
12: else if Record[s2].id < Record[s1].id then
13: Let ` = Record[s2].id.
14: if Record[s2].top = 1 then
15: Locate EdgeArray using Record[s2].pnt.
16: Report the relation by checking EdgeArray[Map`(x)] (see discussion below Lemma 2.5.4)
17: else
18: Report s1 ‖ s2
19: end if
20: else if Record[s1].id < Record[s2].id then
21: Let ` = Record[s1].id.
22: Locate EdgeArray using Record[s1].pnt.
23: Report the relation by checking EdgeArray[Map`(y)] (see discussion below Lemma 2.5.4).
24: end if

Proof. We augment the output of Compress-Flat with additional data structures in order to
answer queries efficiently. We denote the first set of vertices removed in a dense case as χ1, the

36

second set as χ2, and so on. Let χκ denote the last set of vertices removed in a dense case. We
next prove that κ = O(n lg lgn/ lgn). Consider the following recurrence:

S(n) =


0 if n < ςmin, where ςmin is the constant from Lemma 2.5.5,

S
(
n− ς6 lgn

lg lgn

)
+ 1 for some constant ς6 > 0, otherwise.

The maximum value of κ is S(n), provided we select ς6 to be the constant factor hidden by
the big-Omega term from Lemma 2.5.5. We note that, following the analysis of Mubayi and
Turán [114, Thm. 1], ςmin is fixed such that each biclique removed has at least 2 vertices (i.e., at
least a single edge is returned). Thus, S(

√
n) <

√
n. Furthermore, since

S(n) < (n−
√
n) lg lg (

√
n)

ς6 lg (
√
n) + S(

√
n) < 2n lg lgn

ς6 lgn +
√
n, (2.5.7)

we get κ = O(n lg lgn/ lgn).

Let S` = S/(∪`i=1χi), for 1 ≤ ` ≤ κ. We define Map`(x) = |{s : s ∈ S`, s = S(y), y ≤ x}|, i.e.,
the number of vertices in S` that are ordered at most x-th in S according to the linear extension
L. We next discuss how to compute Map`(x) it in constant time, for any 1 ≤ ` ≤ κ and 1 ≤ x ≤ n,
using a data structure of size S-Rank(k, k) bits, where k = O(n2 lg lgn/ lgn). Define MapString`
to be a bit string, where MapString`[x] = 1 iff S(x) ∈ S`, for x ∈ [1, n]. Overall, these data
structures occupy the claimed space bound since κ = O(n lg lgn/ lgn), and each bit string has
length at most n. To compute Map`(x) we return rank1(MapString`, x).

Consider a vertex s1 removed during the dense case as part of the biclique χk. We store an
array of records of size Θ(n lgn) bits, denoted Record, where:

1. Record[s1].id is the value k such that s1 ∈ χk, or ∞ if s1 was never removed;

2. Record[s1].size is the number of vertices in χk;

3. Record[s1].pos is the value x such that χk(x) = s1;

4. Record[s1].top is a bit indicating whether s1 was in Â2, when χk was removed (we do not
need to explicitly store this, as we can infer it by comparing the fields size and pos);

37

5. Record[s1].pnt is a pointer to data associated with s1: EdgeArray;

6. Record[s1].dt indicates the number of vertices in Â1 immediately after χk was removed.

As in Lemma 2.5.2, we store an Θ(n lgn) bit array that, in constant time, can return the order
of an arbitrary vertex s in the linear extension L, as well as the index of the antichain that contains
s in Ã. Thus, for vertices s1 and s2 we can return i, j, x and y such that Ai, Aj ∈ Ã, s1 ∈ Ai,
s2 ∈ Aj , S(x) = s1, and S(y) = s2. The overall claimed space bound holds by Lemma 2.5.6.
We present the algorithm Precedence-Query that shows how to use these indices to answer
a query to the data structure. The algorithm has several cases, but each case can clearly be
computed in O(1) time. Note that we may be required to determine whether the vertex s1 was
in Â1 when a biclique χ` was removed in order to interpret the bits stored in EdgeArray. This
can be done by comparing Map`(x) to Record[s2].dt.

We now prove our main theorem:

Proof of Theorem 2.4.1. The theorem follows by combining Lemmas 2.5.2 (with γ set to lgn)
and 2.5.7, and by using the data structure of Lemma 1.5.4 to represent the bit strings. Thus,
S-Acc(

(n
2
)
, n2/γ) = O(n2 lg lgn/ lgn), and S-Rank(k, k) = O(n2 lg lgn/ lgn), since the value k =

O(n2 lg lgn/ lgn). This yields an overall space bound of n2/4 + O(n2 lg lgn/ lgn). Given two
vertices s1 and s2, we check the index of Lemma 2.5.2 to determine if both s1 and s2 were
put in the same residual antichain by the Flatten algorithm. If they were, then the index of
Lemma 2.5.2 is capable of answering whether s1 ≺ s2. If not, we defer the question to the index
of Lemma 2.5.7.

2.6 Extension to Transitive Reductions and Transitive Relations

The proof of Theorem 2.4.2 is very similar to that of Theorem 2.4.1, with a few minor differences.
In this section we describe those differences in detail. First, we observe that there is a simpler
way of reducing the height of the transitive reduction, compared to Lemma 2.5.2.

Lemma 2.6.1. Let Gr = (S,Er) be the transitive reduction graph of a poset P = (S,�). For a
given vertex s1 ∈ S, let Γ(s1) denote the set of neighbours of s1 in Gr. The height of the poset,
h, is no more than 2n/(mins1∈S |Γ(s1)|).

38

Proof. Let C denote a maximum length chain of vertices in S. Consider each vertex s1 ∈ (S \ C).
It cannot be the case that there are edges (s1, s2) and (s1, s3) in Er, where s2, s3 ∈ C, since
that would mean there is a forbidden polygon in Er. By the same argument, there cannot be
edges (s2, s1) and (s3, s1) in Er. Thus, each vertex s1 ∈ (S \ C) can have edges to at most 2
vertices in C; at most one above and at most one below. C can therefore have no more than
2n/(mins1∈S |Γ(s1)|) vertices.

The previous lemma can be used as a flattening algorithm for the transitive reduction graph.
We recursively remove all vertices that have less than n/(2 lgn) neighbours in the transitive
reduction graph, and record the neighbours using a bit string, compressed by the data structure
of Lemma 1.5.4. As a result, the remaining poset has height at most lgn. Let S′ denote the
set of removed vertices, and suppose we are given two vertices s1, s2 ∈ S, and asked to report
their relation. If s1 or s2 are in S′, then we can do this in constant time, using an index of size
S-Acc(

(n
2
)
, O(|S′|n/ lgn)) + Θ(n lgn) bits. Since S′ ≤ n, this index can be used as a replacement

for Lemma 2.5.2. The remaining ingredient is to swap Lemma 2.5.4 with the following similar
lemma:

Lemma 2.6.2 (Key Lemma for Transitive Reduction Graphs). Consider the subgraph GΥ =
Gr(Ai ∪ Aj) for some 1 ≤ i < j ≤ h, and ignore the edge directions so that GΥ is undirected.
Suppose GΥ contains a balanced biclique subgraph with vertex set χ, and |χ| = τ : i.e., G(χ) is a
Kτ/2,τ/2. Then there are at most 2τ/2+1 − 1 ways that the vertices in χ can have edges to each
vertex in S \ (Ai ∪Ai+1).

Proof. Each vertex v ∈ S \ (Ai ∪ Ai+1) is in Aj , where, either j > i + 1 or j < i. Without loss
of generality, consider the case where j > i+ 1. If any vertex u ∈ χ ∩ Ai has an edge to v, then
none of the vertices in χ ∩Ai+1 have an edge to v; otherwise there is a forbidden polygon in the
transitive reduction graph. Thus, the vertices in χ ∩ Ai+1 can have edges to v in 2τ/2 − 1 ways,
or the vertices in χ ∩ Ai can have edges to v in 2τ/2 − 1 ways, or the vertices in χ can have no
edges to v. In total, there are 2τ/2+1 − 1 ways to have edges between v to χ.

Thus, Lemma 2.5.7 holds for testing whether a relation is in the transitive reduction, and this
completes the proof of Theorem 2.4.2. Next, we prove Theorem 2.4.4:

39

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 0.2 0.4 0.6 0.8 1

Figure 2.4: A graph of the function F (ε0) = 1.42ε0 +0.42ε0 ln(1/ε0)+1. When ε0 = 1 the exponent is 2.42, whereas
when ε0 = 1/5 (the value selected by Mubayi and Turán [114]) the exponent is less than 1.419.

Proof of Theorem 2.4.4. Given a transitive binary relation, T = (S,�), we store a bit string SR,
where SR[i] = 1 iff S(i) � S(i). Thus, by using n bits, we can report whether s1 � s1 in constant
time, for any s1 ∈ S. We define a quasiorder P = (S,�′), where s1 �′ s2 if s1 � s2, for all distinct
vertices s1, s2 ∈ S. We represent the quasiorder P using Corollary 2.4.1. Given s1, s2 ∈ S, if
s1 = s2, and S(i) = s1, then we query SR and report “s1 � s2” iff SR[i] = 1, otherwise, we query
the representation of P to determine whether s1 precedes s2.

2.7 Issues Relating to Construction

The algorithm Compress-Flat takes Õ(n3) time to execute. This follows from the fact that each
biclique takes time Θ(|E|) = Θ(n2) to find by Lemma 2.5.3, and the total number of bicliques
removed during the construction of the data structure is O(n lg lgn/ lgn) by Inequality 2.5.7. The
time to construct the additional indices required by Theorem 2.4.1, described in Lemmas 2.5.7
and 2.5.2, are O(n2), and are therefore dominated by the cost of executing Compress-Flat.

In this section, we examine the bottleneck of constructing our data structure, Lemma 2.5.3,
more carefully. After working through the algorithm, we improve the running time to O(n2+ε) for
any constant ε ∈ (0, 1.42]. Note that this running time assumes we are given the transitive closure
graph of P as input. We begin with a more specific restatement of Lemma 2.5.3 (Theorem 2 of
Mubayi and Turán [114]):

Lemma 2.7.1. Let q = bln(n/2)/ ln(2en2/m)c, r = bqn2/mc, and q′ = bε0qc for some con-
stant ε0 ∈ (0, 1]. Let G = (V,E) be a graph where |V | = n ≥ ςmin for some sufficiently large
constant ςmin, and |E| = m, where 8n3/2 ≤ m ≤ n2/2. If we are given a list of the r ver-

40

tices of highest degree in G, we can find a Kq′,q′ in G in time Õ(n(1+ε0(1+(1
ln(4e))(1+ln(1

ε0
))))) =

O(n1.42ε0+0.42ε0 ln(1/ε0)+1).

Proof. Given the r vertices of highest degree, the above algorithm Find-Bipartite(G, r, q′) can
be implemented to run in time O(

(r
q′
)
nq′) [114, p.175]11. Following exactly the same analysis of

Mubayi and Turán [114, p.176] (using ε0 instead of 1/5), we get:

(
r

q′

)
≤
(1
ε0

)ε0q

eε0q

(
n2

m

)ε0q

=
(1
ε0

)ε0q

(eqe
q ln
(
n2
m

)
)ε0 (2.7.1)

We examine the previous equation in parts. Since m < n2/2, it is implied that:

eq ≤ n1/ ln 4e. (2.7.2)

This in turn implies

(1
ε0

)ε0q

= e
ε0q ln

(
1
ε0

)
= (eq)

ε0 ln
(

1
ε0

)
≤
(
n

1
ln(4e)

)ε0 ln
(

1
ε0

)
. (2.7.3)

Thus, we get (
r

q′

)
nq′ ≤ n

(1+ε0(1+
(

1
ln(4e)

)
(1+ln

(
1
ε0

)
)))
q′, (2.7.4)

since q < ln(n)/ ln
(
n2

m

)
.

Algorithm Find-Bipartite(G, r1, q1): where graph G = (V,E) satisfies |E| ≥ 8|V |3/2.
1: V1 ← the r1 vertices of highest degree in G
2: for all subsets χ1 ⊆ V1 with |χ1| = q1 do
3: χ2 ←

⋂
{Γ(v) \ V1 : v ∈ χ1}

4: if |χ2| ≥ q1 then
5: χ2 ← an arbitrary q1 vertex subset of χ2.
6: Return χ1 ∪ χ2
7: end if
8: end for
11Note that we have copied the algorithm Find-Bipartite for completeness: we have not modified it in any way

(other than notation) from the original source [114, p.175].

41

We include a graph of the function in the exponent from the previous lemma in Figure 2.4.
Using the previous lemma, we prove the following.

Lemma 2.7.2. Let G = (V,E) be a graph, with |V | = n and |E| = m. Let H ⊆ V be a set of
vertices such that |E(H)| ≥ (n/ lgn)2. A set, K = {χ1, ..., χκ}, can be computed, such that each
χi is a set of vertices that form a balanced biclique subgraph of H, and each pair in the set K is
vertex disjoint. Let n0 = n, ni = |V (G \

⋃κ
j=1 χj)|, m0 = m, and mi = |E(G \

⋃κ
j=1 χj)|. K also

satisfies the following additional properties:

1. Either |E(H \
⋃κ
j=1 χj)| < (nκ/ lgnκ)2 or |V (H \

⋃κ
j=1 χj)| < ςmin, where ςmin is the constant

from Lemma 2.7.1: i.e., the number of edges in the subgraph H after removing all the
balanced bicliques in K is less than (nκ/ lgnκ)2, or the number of vertices in H is reduced
to a constant.

2. ς2 lgni−1/ lg lgni−1 ≤ |χi| ≤ ς3 lgni−1, where ς2 and ς3 are constants, and 1 ≤ i ≤ κ:
i.e., the bicliques have size roughly the logarithmic in the number of vertices remaining the
graph G.

Overall, the time required to compute K is O(n2+ε), where ε > 0 is a constant, but affects ς2 and
ς3. That is, the smaller we choose ε to be, the smaller the constants ς2 and ς3 become.

Proof. The idea for the proof of this lemma follows came from the following comment by Mubayi
and Turán [114, p.177]: “... apart from finding the r largest degree vertices in [the start of the
Find-Bipartite algorithm], the running time is actually sublinear in [the number of edges in
G].” Thus, finding subsequent bicliques efficiently is as simple as keeping track of the largest
degree vertices in G.

We represent G using adjacency lists for each vertex, and represent the adjacency lists using
balanced binary search trees. We also store a heap that contains all vertices in H, sorted in
descending order of degree.

Let i = 1. We extract r = bqn2
i−1/mc vertices from the heap; i.e., the r vertices of highest de-

gree in H. We then execute Find-Bipartite(H, r, q′), where q = bln(ni−1/2)/ ln(2en2
i−1/mi−1)c

and q′ = bε0qc, for
ε0 < 4e2+W−1[−ε ln(4e)/(4e2)], (2.7.5)

42

where W−1 is the function defining the lower branch of the Lambert W-function. This ensures ε >
ε0[1 + (1/ ln[4e])(1 + ln[1/ε0])]. Recall that Find-Bipartite(H, r, q′) finds a biclique subgraph of
H. Let χi denote the vertex set of this subgraph. We have ς2 lgni−1/ lg lgni−1 ≤ |χi| ≤ ς3 lgni−1

by Lemma 2.5.5; since the constant is affected by ε0, the size of the auxiliary data structures will
be proportional to 1/ε0 by Inequality 2.5.7. For each v ∈ χi, we update the adjacency lists of all
vertices adjacent to v, and also update their keys in the heap to reflect the removal of v. Next,
we increment i, then we repeat the whole process on the subset of vertices H \

⋃i−1
j=1 χi to get the

next χi. We stop once |E(H \
⋃i
j=1 χi)| < (ni/ lgni)2 or |H| ≤ ςmin where ςmin is the constant

from Lemma 2.7.1.

The preprocessing time to construct the adjacency lists, compute the degree of all vertices,
and store them in a heap is O(n2 lgn), since there are at most

(n
2
)

edges in H. By Lemma 2.7.1,
executing Find-Bipartite(H, r, q′) requires time o(n1+ε). Updating the heap and structure of
the adjacency lists for H after each biclique is removed requires O(n lg2 n) time, since each biclique
contains O(lgn) vertices that potentially have edges to O(n) vertices. In order to terminate, κ
can be no larger than O(n lg lgn/ lgn), since V (H) ≤ n and by the recurrence in Inequality 2.5.7.
Therefore, the running time is O(n2+ε); all polylogarithmic factors are absorbed by the ε.

We now prove Theorem 2.4.3:

Proof of Theorem 2.4.3. Computing the antichain decomposition of P is equivalent to topologi-
cally sorting the transitive closure graph of P , which takes O(n2) time. Furthermore, the index
of Lemma 2.5.2 can be constructed in O(n2) time, provided we use the bit string representation
of Lemma 1.5.4. We now consider the execution of Compress-Flat. The sparse cases require
time O(n2) overall since they examine each of the O(n2) possible edges in constant time per edge.
We apply Lemma 2.7 during the dense cases, with parameter equal to some constant ε′ < ε, so
that the running time is O(n2+ε′). Since there are at most lgn merge steps, this means we must
apply Lemma 2.7 at most lgn times, and therefore the total running time of Compress-Flat is
O(n2+ε′ lgn) = O(n2+ε).

2.8 Additional Operations

Until now, we have only considered the operation of answering precedence queries on two vertices
in the poset. In this section we consider some additional operations.

43

|Sj |

|χj |/2 + 1

Control Bits

EdgeMatrixZero` EdgeMatrixOne`

ControlBitArray`
0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 00 1 1 1 1

0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 00 1 1 1 1

Figure 2.5: We can reinterpret EdgeArray` as a bit string and two matrices EdgeMatrixZero` and EdgeMatrixOne`.

2.8.1 Another Representation That Yields More Operations

Let us turn our attention to the array EdgeArray`, output during the dense case to represent the
edges between biclique χ` and the rest of the vertices in the poset, for a fixed ` ∈ [1, κ]. Recall the
discussion following Lemma 2.5.4. We can think of EdgeArray` as having two sections. As before,
let S` = S \ ∪`i=1χi. The first section is a bit string of |S`| control bits, each corresponding to an
vertex in s1 ∈ S`, indicating whether an vertex in the top part of χ` has an edge to (or possibly
from) s1. The second section can be interpreted as a |χ`|/2× |S`| bit matrix, EdgeMatrix`, that,
together with the control bits, indicate which edges are present between the vertices in χ` and
those in S`.

We modify how these two sections are stored. First, we store the control bits in a separate
bit string ControlArray`, where ControlArray`[x] is the control bit indicating how χ` has edges
to the vertex S`(x). Second, we divide EdgeMatrix` into two bit matrices EdgeMatrixZero`
and EdgeMatrixOne`. EdgeMatrixZero` is a |χ`|/2 × rank0(ControlArray`, |S`|) matrix, con-
sisting of those columns in EdgeArray` whose control bit was a zero. The bits in column i of
EdgeMatrixZero` correspond to the bits in column select0(ControlArray`, i) of EdgeMatrix`.

44

EdgeMatrixOne` is the analogous array constructed for the columns with control bits set to one.
See Figure 2.5 for an illustration, and compare this to the description of the wavelet tree following
Lemma 1.5.7.

We now state a lemma, that rewords of a result of Farzan and Munro [56, 54]:

Lemma 2.8.1 (Restatement of Theorem 5.8 [54]). A U1 ×U2 bit matrix containing N ones can
be represented by a data structure that occupies lg

(U1U2
N

)
+O(U1U2/

√
lgU) bits of space, such that

access can be computed for any entry in constant time, and select1 can be supported on any
row or column in constant time.

We represent each of the matrices EdgeMatrixZero` and EdgeMatrixOne` using Lemma 2.8.1,
and each ControlArray` using Lemma 1.5.4, for 1 ≤ ` ≤ κ. Let m be the number of edges in
the transitive closure graph of P , and m` be the number of 1 bits in EdgeMatrix`. Note that∑κ
`=1 |n`||χ`|/2 ≤ n2/4 by Lemma 2.5.7, and

∑κ
`=1m` ≤ m, so the space for the matrices is:

min
{
n2/4,

κ∑
`=1

lg
(
|n`||χ`|/2

m`

)}
+O

(
κ∑
`=1

n|χ`|√
lgn

)
≤ min

{
n2/4, lg

((n
2
)

m

)}
+O(n2/

√
lgn).

(2.8.1)

The space for the control bit arrays is at most O(n2 lg lgn/ lgn) by Inequality 2.5.7. Combin-
ing this with Lemma 2.5.7, the overall space bound becomes min{n2/4, lg

((n2)
m

)
}+ O(n2/

√
lgn).

Next, we show how to use this new representation to list the predecessors and successors of an
arbitrary vertex, proving Theorem 2.4.5:

Proof of Theorem 2.4.5. We store the data structure of Theorem 2.4.1, modified as per the dis-
cussed above. Recall that there are two parts to the data structure of Theorem 2.4.1: a “sparse”
adjacency matrix S which stores the edges removed during merge steps, and a collection of con-
trol bit arrays and matrices (discussed above). We store two copies of the adjacency matrix S,
represented using the data structure of Lemma 1.5.4. One is in row-major order, and the other is
in column-major order. This allows us to support all three desired operations in constant time,
on those edges output during the sparse cases. Alternatively, we could store one copy of the
adjacency matrix, represented using Lemma 2.8.1; asymptotically it will make no difference as
these adjacency matrices do not dominate the space cost. We now discuss how to support the
three types of operations on edges removed during dense cases:

45

Precedence Queries: Recall the discussion following Lemma 2.5.4, that stated precedence
queries on edges output during a dense case check at most two bits in EdgeArray`, for some
` ∈ [1, κ]. One was a control bit, and the other was a bit in what we now call EdgeMatrix`. The
control bit for EdgeArray`[x] is now stored in ControlArray`[x], and the other bits are accessible
in column rank0(ControlArray`, x) of EdgeMatrixZero`, if access(ControlArray`, x) = 0, or
column rank1(ControlArray`, x) of EdgeMatrixOne`, otherwise.

Predecessor Queries: First we define the query Map−1
` (y) which returns the value x such that

Map`(x) = y. This query can be implemented by computing select1(MapString`, y). This can
be done in constant time, since each MapString` is represented using the index of Lemma 1.5.4.

For each vertex in s1 ∈ S we store a data structure that indicates, for each biclique removed
in the dense case, χ1, ..., χκ, whether χ` contained a vertex that precedes s1. This data structure
is stored as a bit string PredStrs1 , where PredStrs1 [i] = 1 iff χ` contains a vertex that precedes
s1. We store PredStrs1 using the data structure of Lemma 1.5.4, so that we can support select

queries in constant time on PredStrs1 . We also store, for each biclique χ`, the list of vertices
in χ` sorted in order according to L. These data structures occupy at most O(κn + n lgn) =
O(n2 lg lgn/ lgn) bits by Inequality 2.5.7 and Lemma 1.5.4.

Let S(x) = s1. We perform select queries on PredStrs1 , to find a biclique χ` that contains
vertices that precede s1. There are two cases:

1. Type-I Predecessors: If ` = Record[s1].id and Record[s1].top = 1, then we report all the
vertices in the lower part of χ`; vertices χ`(1), ..., χ`(|χ`|/2). We also need to report any
vertices that precede s1 and were in the bottom antichain when χ` was removed. Note that
the control bits for vertices that precedes s1 in this case are all 1, and form a prefix of
ControlArray`. Thus, we perform select1 queries on row

Record[s1].pos− Record[s1].size/2 (2.8.2)

of EdgeMatrixOne`. Suppose a 1 appears in column y. If y ≥ select0(ControlArray`, 1),
then we are done, as we have exhausted the prefix of the control bits representing vertices in
the bottom antichain. Note that select0(ControlArray`, 1) = Record[s1].dt. Otherwise,
we report the vertex S(Map−1

` (y)), as it precedes s1. Overall, this takes O(1) time per vertex
reported.

46

2. Type-II Predecessors: If s1 6∈ χ`, we examine ControlArray`[Map`(x)]. There are two
subcases:

(a) If ControlArray`[Map`(x)] = 1, then all vertices in the bottom part of χ` precede s1,
and we report them in O(1) time per vertex. We also perform select1 queries on
column rank1(ControlArray`, Map`(x)) of EdgeMatrixOne` to determine the vertices
in the top part of χ` that precede s1.

(b) If ControlArray[Map`(x)] = 0, then none of the vertices in the top part of χ` pre-
cede s1, and we perform select1 queries on column rank0(ControlArray`, Map`(x))
of EdgeMatrixZero` to determine the vertices in the bottom part of χ` that precede s1.

Since each rank query in ControlArray takes constant time, and each select query on
columns of the matrices takes constant time, the time to list a single predecessor is constant.

Successor Queries: Similar to the predecessor query, for each vertex in s1 ∈ S, we store a
data structure that indicates, for each biclique removed in the dense case χ1, . . . , χκ, whether χ`
contained a vertex that succeeds s1. This data structure is represented as a bit string SuccStrs1 ,
where SuccStrs1 [i] = 1 iff χ` contains a vertex that succeeds s1. We store SuccStrs1 using
the data structure of Lemma 1.5.4, so that we can support select queries in constant time on
SuccStrs1 . This occupies at most O(n2 lg lgn/ lgn) bits by Inequality 2.5.7 and Lemma 1.5.4.

First we find all of the bicliques that contain successors of s1 in the following way.

1. Type-I Successors: Let S(x) = s1. We identify all the bicliques that contain successors
of s1 by performing select1 queries on SuccStrs1 . Once a biclique χ` is identified with
this property, we perform select1 queries on column Map`(x) of EdgeMatrixOne`. Note
that Map`(x) = rank1(ControlArray`, Map`(x)), since s1 must be in A1 in order to have
successors in χ`. If a 1 appears in row y, then we report χ`(y + |χ`|/2); since we store the
vertices of χ` explicitly, this takes O(1) time. Thus, we can report all type-I successors of
s1 in O(1) time per vertex reported.

2. Type-II Successors: We examine the biclique χ` which contains s1, if one exists. There are
two cases:

47

(a) If s1 is in the bottom part of χ`, then we report all the vertices in the top part of χ`. We
scan through row Record[s1].pos in EdgeMatrixZero`, using select1 queries identify
columns in which a 1 occurs. Suppose a 1 occurs in column y. We report the vertex
S(Map−1

` (y)). We also report vertices corresponding to columns in EdgeMatrixOne`
that are successors of s1: i.e., all columns of EdgeMatrixOne` except for the first

rank1(ControlArray`, select0(ControlArray`, 1)), (2.8.3)

as these columns to not contain any successors.

(b) If s1 is in the top part of χ`, then we use select queries on row Record[s1].pos −
Record[s1].size/2 of EdgeMatrixOne` to report the vertices that are successors of s1.
As before, note that we skip the first

rank1(ControlArray`, select0(ControlArray`, 1)) (2.8.4)

columns of EdgeMatrixOne`, as these correspond to predecessors rather than succes-
sors. None of the vertices corresponding to columns in EdgeMatrixZero` are successors
of s1.

Since each vertex reported corresponds to a constant number of rank and select queries,
each vertex can be reported in constant time.

2.8.2 Meet, Join, and Boolean Matrix Multiplication

In this section we discuss the meet and join operations, and show that any data structure that
supports meet and join operations on a poset can be used to solve boolean matrix multiplication.
We note that the theorem presented in this section was already proved implicitly by Bender et
al. [18], who consider a problem equivalent to that of computing the join of all pairs of vertices
in a poset. Nonetheless, we state the theorem in the context of data structures for representing
posets, and present a slightly different proof.

Definition 2.8.1. Given a poset P = (S,�), and two vertices s1, s2 ∈ S, an existential join
query reports true if there exists a vertex s3 ∈ S such that s1 � s3 and s2 � s3, and false

48

otherwise. The existential meet query is defined symmetrically; i.e., replace all � with � in the
previous sentence.

For our purposes, we focus only on join queries, since meet is symmetric. Any data structure
for representing posets, D, that supports join queries can trivially support existential join queries.
We give a reduction from boolean matrix multiplication on n × n matrices to the problem of
constructing D, and answering a series of n2 existential join queries. This shows that either the
construction time for the data structure D is as large as boolean matrix multiplication, or the
time to execute an existential join query is quite expensive.

At the time of writing, the best bound for n× n boolean matrix multiplication is Θ(M(n)) =
Θ(n2.3727) [157]. We have shown that our data structure can be constructed in asymptotically
less time than this. This implies that the time cost for an existential join query is Ω(M(n)/n2) =
Ω(n0.3727), unless our meet/join algorithm improves upon the best known algorithm for boolean
matrix multiplication.

Theorem 2.8.1. Let A and B be n × n boolean matrices, and NA and NB be the number of
1 entries in matrices A and B, respectively. We can compute C, the boolean matrix product of
A and B, in time O(n2) + η(3n,NA + NB) + n2∆, where η(n,m) denotes the cost to construct
a data structure on a poset P containing n vertices, and m relations, and ∆ denotes the time
requires to perform an existential join query on P .

Proof. We begin by defining a poset P = (S,�) as follows. P is a height 2 poset that has 2n
source vertices, partitioned into two sets XA ∪XB, and n sink vertices, denoted Y.

Each row, i in A, represents a vertex xi ∈ XA, and each column j in B represents a vertex
xj ∈ XB. The vertices in Y are denoted y1, ..., yn. If Ai,k = 1 then xi is below yk, otherwise it is
not. Similarly, if Bk,j = 1, then xj is below yk, otherwise it is not. This completes the description
of P . We note that we can construct both an adjacency matrix and adjacency list representation
of P in O(n2) time, given A and B as input. Suppose we construct D, to represent P , and
then execute the following series of n2 existential join queries. The solutions to the queries are
recorded in matrix C, and Ci,j = 1 if the existential join query for vertices xi and xj returns
true, and Ci,j = 0 otherwise. It is clear that C = AB, since Ci,j = 0 unless there exists some k
such that Ai,k = Bk,j = 1.

49

2.9 Simultaneous Representation

Given two vertices s1 and s2 in S, we define an extended precedence query to be the question, “Is
s1 ≺ s2, and if so, is the relation in the transitive reduction of P?” As discussed in Section 2.4,
we do not have a method for representing a poset using n2/4 + o(n2) bits that supports constant
time extended precedence queries.

However, we observe that a single adjacency matrix of ternary digits, or trits can be used to
support such queries. Each of the

(n
2
)

possible relations (edges) in the poset are recorded as follows:
a 0 indicates the edge is not present in either the closure or reduction, a 1 indicates the edge is
present in the reduction, and a 2 indicates the edge is present only in the closure. By representing
the adjacency matrix of trits using Lemma 1.5.9, the space cost is d

(n
2
)

log2 3e + O(n lgn) ≈
0.7925n2 +O(n lgn) bits.

We can apply the same trick to the index of Lemma 2.5.2, as well as the sequences output dur-
ing the execution of the Compress-Flat, in order to achieve the same savings for Theorem 2.4.1.
Consider the following replacement for Lemma 2.5.4:

Lemma 2.9.1. Consider a balanced biclique with vertex set χ, from the subgraph Gc(Ai ∪Ai+1)
(ignoring edge directions so that the graph is undirected) where 1 ≤ i < h. Let χi = Ai ∩ χ,
χi+1 = Ai+1 ∩ χ, and let S′ = S \ (Ai ∪ Ai+1). We can answer extended precedence queries
between S′ and the vertices in χ using d|S′|(log2 3|χ|/2)e+ |S′| bits.

Proof. Consider, without loss of generality, a vertex v ∈ Aj where j > i + 1. There are two
cases. If any vertex v0 ∈ χi+1 exists such that v0 ≺ v then all vertices in χi have edges in the
transitive closure (and not the transitive reduction) to v. For each edge to v from the vertices
in χi+1, the edge can either not exist, be in the transitive reduction and the closure, or just the
closure. Thus, we can describe the edges to v from the vertices in χ using a string of trits of
length |χ|/2. If no vertex v0 ∈ χi+1 exists such that v0 ≺ v, then we apply the same encoding
scheme described in the previous case, except that it is stored with respect to the vertices in χi.
To distinguish between cases requires one extra bit. We store the concatenated string of |χ|/2
trits for all vertices in S′ using Lemma 1.5.9, and also separately maintain a sequence of S′ bits
to indicate which case we are in for each block of trits.

Plugging the above lemma into the framework for Theorem 2.4.1, we get the following:

50

Theorem 2.9.1. There is a data structure that can represent a poset P = (S,�) using:

(log2 3)n2/4 +O(n2 lg lgn/ lgn) ≈ 0.39624n2 +O(n2 lg lgn/ lgn) bits,

and support extended precedence queries on P in constant time.

2.10 Summary and Concluding Remarks

We have presented the first succinct data structure for arbitrary posets. For a poset of n vertices,
our data structure occupies n2/4 + o(n2) bits and supports precedence queries in constant time.
This is equivalent to supporting constant time queries of the form, “Is the edge (s1, s2) in the
transitive closure graph of P?” With minor modifications, we have shown that the data structure
can also be used to answer queries of the form, “Is the edge (s1, s2) in the transitive reduction
graph of P?”, using the same amount of space.

Currently the best algorithm for computing the transitive closure of a partial order matches
that of boolean matrix multiplication for two n × n matrices. We have shown that, given the
transitive closure as input, our data structure can be constructed in asymptotically less time
than this. Thus, the bottleneck for constructing our data structure (like most data structures for
representing posets) is the computation of the transitive closure.

We have considered several additional operations, such as predecessor and successor queries, as
well as meet and join queries. We have shown that our representation can be used to efficiently
support the listing of predecessors and successors of an arbitrary vertex in constant time per
vertex reported, and discussed why supporting meet and join queries efficiently appears to be
difficult.

Finally, we have discussed extended precedence queries, which allow us to determine whether
a relation (or edge) is present and whether it is in the transitive reduction or closure of P . Our
data structure for supporting these kinds of queries is not succinct, but still occupies less space
than the standard upper triangular bit matrix.

51

Chapter 3

Range Majority Queries

3.1 Introduction

The majority of a string A[1, n] is the character, if any, that occurs more than n/2 times in
A. The majority problem is to determine whether a given string has a majority, and if so, to
report that character. This problem is fundamental to data analysis and has been well studied.
Linear time deterministic and randomized algorithms for this problem, such as the Boyer-Moore
voting algorithm or the Misra-Gries algorithm [24, 111], have been known since the late 1970s,
and are sometimes included in the curricula of introductory courses on algorithms. Interestingly,
the Misra-Gries algorithm, which cites and generalizes the result of Boyer and Moore [24], was
published almost a decade earlier [24, Section 5.8].

In this chapter, we consider a natural data structure counterpart to this problem. We are
interested in designing a data structure that represents a string A of length n to answer range
majority queries: given a query range R = [a, b] where 1 ≤ a ≤ b ≤ n, return the majority of the
substring A[a, b] if it exists. Here we define the majority of a substring A[a, b] as the character
whose frequency in A[a, b], i.e., the number of occurrences of the character in A[a, b], is more than
half of the size of the range [a, b].

We further generalize this problem by defining the α-majorities of a substring A[a, b] to be
the characters whose frequencies are more than α(b − a + 1), i.e., α times the size of the range
[a, b], for 0 < α < 1. Thus an α-majority query on string A[1, n] can be defined as: given a query
range [a, b] where 1 ≤ a ≤ b ≤ n, return all the α-majorities of the substring A[a, b].

52

3.2 Previous Work

A Comment Regarding Chronology: This chapter is based on results that appear in the
papers “Range Majority in Constant Time and Linear Space” [48, 49] (joint work with Stephane
Durocher, Meng He, J. Ian Munro, and Matthew Skala), “Finding Frequent Elements in Com-
pressed 2D Arrays and Strings” [66] (joint work with Travis Gagie, Meng He, and J. Ian Munro),
and “Dynamic Range Majority Data Structures” [52] (joint work with Amr Elmasry, Meng He,
and J. Ian Munro). Several relevant papers have been published both concurrently and subse-
quently to these papers. Thus, we have divided the related work into previous work (this section)
and subsequent and concurrent work (Section 3.4), which follows the section describing the results
discussed in this chapter (Section 3.3).

Computing the Mode, Majority, and Plurality of a String: The mode of a multiset M of
n items can be found in O(n lgn) time by sorting M and counting the frequency of each character.
Note that, unlike the range queries we focus on in this chapter, these sorting based results find
the mode of the entire string, and they do it one time. The decision problem of determining
whether the frequency m of the mode exceeds one reduces to the element uniqueness problem,
resulting in a lower bound of Ω(n lgn) time in the algebraic decision tree model [17] (a model
that generalizes the comparison model). Better bounds have been obtained by parameterizing in
terms of m: Munro and Spira [119] and Dobkin and Munro [45] described an O(n lg(n/m)) time
algorithm and corresponding lower bound of Ω(n lg(n/m)) time.

The Boyer-Moore algorithm can be thought of a streaming algorithm; i.e., an algorithm that
performs some computation using a limited number of passes through the data, and limited extra
memory. In this case, the algorithm uses two passes and constant extra words of memory. The
first pass of the Boyer-Moore algorithm is used to determine a single element that is a candidate
for being the majority. The second pass through the string is used to verify that the candidate is
actually a majority, by explicitly counting its occurrences. Generalizing this, Misra and Gries [111]
gave an O(n(1 + lg(1/α))) time algorithm for computing an α-majority for α ∈ (0, 1]. The
Misra and Gries algorithm has been rediscovered several times since 1982, notably by Demaine,
López-Ortiz, and Munro [44], and also Karp, Shenker, and Papadimitriou [102]. The problem of
computing α-majorities has also recently been studied in the approximate setting, using the term
heavy hitters instead of α-majorities [40].

53

The plurality of a multiset M is a unique mode of M. That is, every multiset has a mode, but
it might not have a plurality. The mode algorithms mentioned above can verify the uniqueness
of the mode without any asymptotic increase in time. Numerous results have established bounds
on the number of comparisons required for computing a majority, α-majority, mode, or plurality
(e.g., [2, 4, 45, 119]).

Source Problem Space (words) Query Time
[130] mode O(n2/ lgn) O(1)
[131] mode O(n2 lg lgn/ lg2 n) O(1)
[108] mode O(n2−2ε) O(nε lgn)
[130] mode O(n2−2ε) O(nε)
[50] mode O(n) O(

√
n)

[50] mode O(n) O(|b− a+ 1|)
[50] mode O(n) O(σ)
[50] mode O(n) O(m)
[23] c-approx. mode‡ O(n/(c− 1)) O(log logc n)
[81] c-approx. mode† O(n/(c− 1)) O(lg(1/(c− 1)))
[81] mode s Ω(lgn/ lg(sw/n))

Table 3.1: Word-RAM upper bounds and cell-probe lower bounds for the static range mode problem on a query
range R = [a, b]. The size of the alphabet of A is denoted by σ, and m denotes the frequency of the mode of A. For
the entry with the †, 1 < c ≤ 2, whereas for the entry with the ‡, 1 < c. Note that ε ∈ (0, 1/2].

Range Mode and Frequency Queries: A range mode query for range [a, b] returns a char-
acter in A[a, b] that occurs at least as frequently as any other character. Krizanc et al. [108]
described data structures that provide constant time range mode queries using O(n2 lg lgn/ lgn)
space, and O(nε lgn) time queries using O(n2−2ε) space, for any fixed ε ∈ (0, 1/2]. They also
describe data structures to answer these kinds of queries on trees rather than strings (or arrays).
Petersen and Grabowski [131] improved the first bound to constant time and O(n2 lg lgn/ lg2 n)
space. Petersen [130] and Durocher and Morrison [50] improved the second bound to O(nε) time
and O(n2−2ε) space, for any fixed ε ∈ (0, 1/2]. Durocher and Morrison [50] described four O(n)
space data structures that return the mode of a query range [a, b] in O(

√
n), O(σ), O(m), and

O(|b−a+1|) time, respectively, where σ denotes the number of distinct characters, and m denotes
the frequency of the mode of A. Greve et al. [81] proved a lower bound of Ω(lgn/ lg(sw/n)) query
time for any range mode query data structure that uses s memory cells of w bits. The opinion of
Greve et al. [81] is that the true lower bound is larger than the bound they proved, and they note

54

that improving the bound would require radically new techniques for proving cell-probe lower
bounds. Research has also focused on the c-approximate range mode problem [23, 81]: given a
range [a, b], return an element that occurs at least 1/c-times as often as the mode in A[a, b]. See
Table 3.1.

A k-frequency query for range [a, b] determines whether any character in A[a, b] occurs with
frequency exactly k. Greve et al. [81] also studied this problem, and noted that when k is fixed
a straightforward linear space data structure exists for determining whether any character has
frequency at least k in constant time. Determining whether any character has frequency exactly
k requires a different approach. For any fixed k > 1, they described how to support range k-
frequency queries in O(lgn/ lg lgn) time. When k is given at query time, Greve et al. showed a
lower bound of Ω(lgn/ lg lgn) time applies to either query: exactly k or at least k.

Static α-majority: The best previous result applicable to the range α-majority problem is that
of Karpinski and Nekrich [103, Theorem 2]. They studied the problem in a geometric setting, in
which points on the real line are assigned colours, and the goal is to find τ -dominating colours:
that is, given a range R, return all the colours that are assigned to at least a τ fraction of the
points in R. If we treat each character in a string A[1, n] as a coloured point in a bounded
universe [1, n], their data structure can be used to represent A in O(n/α) space to support range
α-majority queries in O((lg lgn)2/α) time. See Table 3.2 for a summary. Note that if the number
of colours is a fixed constant, then it is possible to answer queries using O(lg lgn) time, by storing
a static y-fast trie for each colour [156], and performing range counting queries for each colour.
Thus, we assume the number of colours is ω(1).

A trivial method, that is much simpler than any of approaches discussed so far is that of
random sampling. To answer a range α-majority query, we could sample ` characters in the
specified range, and use the samples to guess at the answer. This Monte Carlo based approach
yields the following lemma:

Lemma 3.2.1. Suppose ` characters are sampled from R = [a, b], independently and uniformly
at random, and let M be the multiset of sampled characters. For a given character j, let |Mj |
denote the frequency of j in M. The probability that there exists a character j such that j is an

55

Source Exact Input Space (words) Query
[103] Yes real O(n/α) O(lgn lg lgn/α)
[103] Yes real O(n lg lgn/α) O(lgn/α)
[103] Yes integer O(n/α) O(lg lgn lg lg u/α)
[103] Yes string O(n/α) O((lg lgn)2/α)
[103] Yes d-dim O((n lgd−1 n)/α) O(lgd n/α)
Random sampling No string O(n) O(lg lg σ/α)

Table 3.2: Word-RAM results for the static range α-majority problem. For the “input” column: String refers to
an string A of characters (or colours) of length n. The characters in A can be considered to be ordered by their
indices in A. Integer refers to points on a line with word-sized integer coordinates, i.e., integers in the range [1, u],
where u < 2w. Real refers to points on the real line where the only assumption is that we can compare two points in
constant time to determine their order, and that each point occupies only a constant number of words (O(w) bits).
d-dim refers to points in d ≥ 2 dimensions (d is a constant) whose coordinates are comparable in constant time.

α-majority for R and |Mj | ≤ (α`)/10 is no more than

1
α

exp

−α`
(

9
10

)2

2

 . (3.2.1)

Proof. There are no more than 1/α characters that are α-majorities for R. Then for a fixed
character j′ that is an α-majority, the probability that we sample j′ less than (α`)/10 times is

exp

−α`
(

9
10

)2

2

 (3.2.2)

by Chernoff bounds [113, Theorem 4.5 (2)]. Since there are at most 1/α such α-majorities, we
can apply the union bound [113, Lemma 1.2] to complete the lemma.

Using the previous lemma, it is trivial to prove the following theorem:

Theorem 3.2.1. Let A be a string of length n. Assume that a character can be sampled—
independently and uniformly at random— from an arbitrary range R = [a, b] in A in O(1) time.
There is a data structure that occupies Θ(n lgn) bits that, given an arbitrary range R and α ∈
(0, 1), can return a set L of characters in O(lg lg σ/α) time with the following properties:

1. for all j ∈ L, j is an α-majority in R, and,

56

2. the probability that there is a character j0 6∈ L that is an α-majority for R is 1/(αΘ(lgn)).

Proof. In addition to the string A, we store a copy of the data structure of Lemma 1.5.8, which can
support rankj(A, i) queries in O(lg lg σ) time. Given a query range R, we sample ` = lg lg σ/α
characters from R, in O(1) time per sample. Using an auxiliary array of size σ lgn bits, we
can count the number of occurrences of each character that was sampled, and determine a set
of candidates that contains all characters that were sampled at least lg lg σ/10 times. For each
candidate character j we perform rank queries to determine its actual number of occurrences in
R. If j appears more than |R|α time, we report it.

Thus, it is trivial to improve upon previous deterministic results if we allow some probability
of failing to return all the α-majorities. As we will see, it is possible to achieve the same query
time as Theorem 3.2.1 (and even improve upon it), without the need for a Monte Carlo query
algorithm.

Dynamic α-majority: In the dynamic case, consider the problem of storing a set of coloured
points on a line, subject to insertions and deletions. It turns out that handling updates efficiently
comes at the cost of increasing the query time to ω(1). Husfeldt and Rauhe [97, Proposition
11] proved a lower bound of Ω(lgn/ lg lgn) query time for any dynamic range α-majority data
structure that has O(polylog(n)) update time, when 1/α = O(1); we give details in Section 3.9.1.
If the number of colours is a fixed constant, and the points have integer coordinates, then it is
trivial achieve Θ(lgn/ lg lgn) query and amortized update time—which is optimal for constant
α—by using existing dynamic one-dimensional range counting data structures [7].

For a summary of upper bounds, see Table 3.3. Karpinski and Nekrich [103] considered a
dynamic version of the range α-majority problem, again using the terminology τ -dominating
colours. As in the static case, they make use of a tree based decomposition of the point set.
Lai et al. [109] also studied the problem, but in the approximate setting. That is, their query
returns all the α-majorities, but may also return false positive (α(1−ε))-majorities, for some fixed
ε ∈ (0, 1). They presented two data structures based on sketching techniques [40] that require
1/α = O(1). In the case when the total number of colours assigned to the points is such that
lg σ = Θ(lgn), their data structures are outperformed by Karpinski and Nekrich’s data structure,
which returns the exact solution.

57

Source Exact Input Space (words) Query Insert Delete
[103] Yes real O

(
n
α

)
O
(

lg2 n
α

)
O
(

lg2 n
α

)
O
(

lg2 n
α

)
*

[103] Yes real O
(
n lgn
α

)
O
(

lgn
α

)
O
(

lgn
α

)
∗ O

(
lgn
α

)
*

[103] Yes d-dim O
(
n lgd−1 n

α

)
O
(

lgd+1 n
α

)
O
(

lgd+1 n
α

)
O
(

lgd+1 n
α

)
∗

[109]† No real O (nh) O (h lgn) O (h lgn) O (h lgn)
[109]† No real O (n) O

(
h lgn+ h2) O

(
h lgn+ h2) O

(
h lgn+ h2)

[97]‡ — — — Ω
(

lgn
lg((ti+td)w lgn)

)
ti td

Table 3.3: Word-RAM results for the dynamic α-majority problem. The column “Exact” indicates whether the
query is guaranteed to yield the correct result, or whether there is a probability of receiving either an incomplete
list of α-majorities, or a list containing false positives. For the entries marked with “*” the running times are
amortized. For the entries marked with †, the value h = O((lg σ/ε) lg(lg σ/(αδ))) depends on the threshold α, the
approximation factor ε, the total number of colours σ, and the probability of failure δ. For sources marked with a
‡, the bound follows assuming 1/α = O(1).

Other Range Queries on Strings (and Arrays) For a comprehensive treatment of range
array queries see the recent survey by Skala [141]; we mention only a few key results here.

The range median and more general k-selection problems have been studied heavily in recent
years, in both the static and dynamic setting [23, 108, 89, 130, 131, 68, 75, 28, 27, 101, 91, 33].
Given an array A, the k-selection problem asks us to return the k-th smallest character stored
in an arbitrary range of the string; median is the special case where k is half the length of
the range. Matching upper and lower bounds for linear space static data structures have been
found [101, 33]. For exact static range medians in constant time, there have been several iterations
of near-quadratic space data structures [108, 130, 131]. We note that Gagie et al. [68] point out
that the static problem can be solved trivially using a wavelet tree (Lemma 1.5.7) in O(lg σ) time,
where σ is the number of distinct characters in the input string n. We mention k-selection since,
as we will see later, it can be used to find α-majorities. Note that a special case of this problem
in which k = 1—also called the range minimum problem—has been studied extensively [47].

More broadly related are the problems of orthogonal range counting and orthogonal range
reporting, in which we wish to count the number of (resp. report the) points stored in an arbitrary
orthogonal rectangle on an n×n grid [34, 22]. There are other data structure problems that deal
with coloured points. In coloured range reporting problems [84], we are interested in reporting the
set of distinct colours assigned to the points contained in an axis-aligned rectangle. Similarly, in
the coloured range counting problem we are interested in returning the number of such distinct
colours. Gupta et al. [84], Bozanis et al. [25], and, more recently, Gagie et al. [68] and Gagie and

58

Kärkkäinen [67] studied these problems and presented several interesting results.

Finally, a problem that is related—but structurally distinct from the range majority problem—
is the problem the α-significant presence colour problem [42]. That is, preprocess a set of points
on a line, such that, given a query range R, we can efficiently return all of the colours c, such
that c appears at least αtc times in Q, where tc is the total number points assigned colour c in
the entire data set. The colours returned for a query range are called α-significant colours.

3.3 Our Contributions

The results in this chapter hold under the word-RAM model, with word size w = Θ(lgn) bits.
We give a brief outline of each section:

In Section 3.5 we present a data structure for answering range majority queries in the static
case. It occupies O(n lgn) bits, i.e., a linear number of words, and answers range majority queries
in constant time. The data structure is conceptually simple and based on the idea that, for query
ranges above a certain size threshold, only a small set of candidate characters need be considered
in order to determine the majority. In order to verify the frequency of these characters efficiently,
we present a novel decomposition technique that uses wavelet trees (see Lemma 1.5.7).

In Section 3.6 we generalize our data structure to answer range α-majority queries in the
static case, for any fixed α ∈ (0, 1]. Note that although α is fixed at construction time, it is not
necessarily a constant. For example, setting α = 1/ lgn is permitted. Our structure occupies
O(n lgn(lg(1/α) + 1)) bits and answers range α-majority queries in O(1/α) time. In order to
generalize our data structure when 1/α is large, i.e., when 1/α = ω(1), we make use of batched
queries over wavelet trees. In light of the lower bounds for range mode and k-frequency, it is
interesting that a linear space data structure can answer range α-majority queries in constant
time for fixed constant values of α.

In Section 3.7 we discuss the parameterized problem in the static case, where we are asked
to find the β-majorities where β ∈ (α, 1] is specified at query time. We show that a minor
modification to our α-majority data structure can return the β-majorities for any β ∈ (α, 1] in time
O(1/β). We also discuss further trade-offs for the range α-majority problem, and refine our space
analysis to consider the zeroth order entropy of the string A. We present two data structures: one
that can answer β-majority queries in O(1/β) time, that occupies O(n(min{lg(1/α),H0(A)} +

59

1) lgn) bits of space, and another that answers α-majority queries in O(lg lg σ/α) time, and
occupies O(n(H0(A) + 1)) bits of space.

In Section 3.8 we discuss the applications of our data structure for range α-majority queries
to the coloured range searching problems for static d-dimensional point sets, defined by Karpinski
and Nekrich [103], and present improved data structures for these problems. In particular, for
any d ≥ 2, we present data structures that can answer range α-majority queries on a set of n
points in d-dimensions. The data structures occupy O(n lgd−1 n) words of space, and take time
O(lgd n/α) time to report the α-majority colours in an orthogonal query range.

Finally, in Section 3.9 we examine the dynamic geometric problem, where we wish to store a
set of coloured points on a line, answer range α-majority queries on the points (treating colours
as characters), and also support insertions and deletions. We present a linear space—O(n lgn)
bit— data structure that supports range α-majority queries in O(lgn/α) time, and insertions
and deletions in O(lgn/α) amortized time. When the coordinates of points are integers drawn
from a bounded universe [1, u], we improve the query time to O(lgn/(α lg lgn)), which is optimal
(i.e., asymptotically matches a known cell-probe lower bound) for constant values of α and data
structures with polylogarithmic update. We extend this result to d-dimensions, for d ≥ 2, using
range trees as in the static case, yielding an O(n lgd−1 n) word data structure that can answer
queries in O(lgd+1 n/α) time, and perform updates in O(lgd n/α) amortized time. This improves
the update time of the previous solution [103], as well as the space bound (by a factor of α).

3.4 Subsequent (and Concurrent) Work

Independently of the results presented in this chapter, Wei and Yi [154] studied the approximate
version of the α-majority problem, and showed that if false positives are allowed, α-majority
queries can be answered in O(lgn + 1/α) time on a set of coloured points on a line. Their
approach is also based on a tree decomposition, where the nodes of a tree store sketching data
structures [40], similar to the approach of Lai et al. [109]. In the dynamic case, the cost of updates
is O(µ lgn lg(1/ε)) amortized time, where µ is the cost of updating the sketch stored in a tree node.
We note that this result was obtained independently of ours, and that both our techniques and
the main technique they develop, called exponential decomposability, are similar. By combining
Theorem 4 of their paper with standard range counting data structures, it is not difficult to
get a dynamic data structure that occupies linear space, answers queries in O(lgn/α) time, and

60

supports updates in O((lgn lg(1/α))/α) amortized time for the non-approximate version of the
problem that we study. We achieve a slightly better update time, and also improve the query
time for the case when the point’s coordinates are integers. On the other hand, their structure is
part of a more general framework that supports other kinds of aggregate queries.

See Tables 3.4 and 3.5 for a summary of the most recent results for the exact versions of the
range α-majority problem.

Source Input Space (w-bit words) Query
Thm. 3.6.1 string O(n(lg(1/α) + 1)) O(1/α)
Thm. 3.7.1 string O(n(min{H0(A), lg(1/α)}+ 1)) O(1/β)
Thm. 3.7.2 string O((n(H0(A) + 1) + σ lgn)/w) O((lg lg σ)/α)
[14] string O(n) O(1/α)
[14] string O(n lg lg σ) O(1/β)
[14] string O(n) O((1/β) lg lg(1/β))
[14] string (n(H0(A) + 1)(1 + o(1)))/w O((1/β) lg lg σ)
Thm. 3.8.2 d-dim points O(n lgd−1 n) O(lgd n/α)
[122] 2-dim grid O(n) O(lg3 n/α)
[122] 2-dim grid O(n lgn) O(lg2 n/α)
[122] 2-dim grid O(n lgn) O(lg2 n/β)
[155] 2-dim points O(n lgε n lg(1/α)) O(lgn/α)

Table 3.4: Up to date Word-RAM results for the static α-majority problem. β denotes a parameter specified at
query time, rather than α which is fixed at construction time. We use ε to denote an arbitrarily small constant larger
than 0. “2-dim grid” refers to points on an n × n integer grid, whereas “2-dim points” refers to two dimensional
points, but does not assume the points have integer coordinates.

Navarro and Russo [123] (Nekrich was later added to the journal version [122]), studied the
problem of answering range queries on n× n grids; i.e., two dimensional point sets. They reduce
the problem of answering α-majority queries to that of range selection queries: selecting the i-th
smallest character (or colour) in the range, for i ∈ {1, ασ, 2ασ, ..., σ} will yield all α-majorities.
Thus, if a range selection query takes T-Sel time, then they can return the α-majorities in time
O(T-Sel/α).

For both the static and dynamic one-dimensional case of the range α-majority problem this
strategy is inferior to our approach. In the static case this approach yields a α-majority query
time of O((1/α)(lgn/ lg lgn)) [28], and in the dynamic case this yields an α-majority query time
of O((1/α)(lgn/ lg lgn)2) [91, 92], and an O((lgn/ lg lgn)2) amortized update time. However, for
the two dimensional static case, their approach yields several trade-offs. They get a linear space

61

Source Input Space (words) Query Insert Delete
Thm. 3.9.1 points O (n) O

(
lgn
α

)
O
(

lgn
α

)
∗ O

(
lgn
α

)
∗

Thm. 3.9.2 integer O (n) O
(

lgn
(α lg lgn)

)
O
(

lgn
α

)
∗ O

(
lgn
α

)
∗

Thm. 3.9.3 string O (n) O
(

lgn
(α lg lgn)

)
O
(

lgn
α

)
∗ O

(
lgn
α

)
∗

Thm. 3.9.4 d-dim points O
(
n lgd−1 n

)
O
(

lgd+1 n
α

)
O
(

lgd n
α

)
∗ O

(
lgd n
α

)
∗

[122] 2-dim grid O(n lgn) O
(

lgd+1 n
β lg lgn

)
O
(

lgd+1 n
lg lgn

)
O
(

lgd+1 n
lg lgn

)
[53] d-dim points O

(
n lgd−1 n

)
O
(

lgd n
α

)
O
(

lgd n
α

)
∗ O

(
lgd n
α

)
∗

Table 3.5: Up to date Word-RAM results for the dynamic α-majority problem. For the entries marked with “*”
the running times are amortized. β denotes a parameter specified at query time, rather than α which is fixed at
construction time.

(in words) data structure that takes O(lg3 n/α) time to query, or an O(n lgn) word data structure
that takes O(lg2 n/α) time to query (and thus, asymptotically matches our result). They also
get a slight improvement by describing an O(n lgn) word data structure that takes O(lg2 n/β)
time to query, where the data structure has the additional feature that it is parameterized. In
the two dimensional dynamic case, their data structure occupies asymptotically the same space
bound as ours, but has a slightly better query time (which is also parameterized), and slightly
worse update time (though the update operations are deamortized).

For two-dimensional range α-majority queries, Wilkinson [155] showed how to use approximate
range counting in order to improve the query time for α-majority queries on 2-dimensional point
sets by a (lgn)-factor, and also improved the space bound by a (lgε n)-factor, for any ε > 0.
Elmasry et al. [53] showed that the same technique could be applied to the dynamic case, yielding
a (lgn)-factor improvement in query time over the result we present here. We also mention that
the related problem of supporting range α-majority queries over a two-dimensional array has been
considered by Gagie et al. [66].

A very recent paper of Belazzougui, Gagie, and Navarro [14] shows how to improve the space
bound for non-constant α-majority queries to linear, regardless of α. Furthermore, they give
additional improvements for the parameterized case, subsuming all the results we present in this
chapter.

Other related subsequent work: For the range mode problem, Chan et al. [31] gave a linear
space data structure that can answer range mode queries in O(

√
n/ lgn) time. As before, define

62

M(n) to be the time required to compute the boolean matrix product of two n×n matrices. Chan
et al. showed that any data structure that can solve n arbitrary range mode queries on a string of
size n can be used to compute the boolean matrix product of two

√
n×
√
n matrices. This shows

that any range mode data structure must take O(M(
√
n)) = O(

√
n

2.3727) = O(n1.1864) time [157]
to construct, or that arbitrary queries must take time Ω(M(

√
n)/n) = Ω(n0.1864), unless the data

structure simultaneously yields an improved algorithm for boolean matrix multiplication.

Finally, Chan et al. [32] introduced and studied the related problem of α-minority queries:
an α-minority of a query range is any character that appears less than an α fraction of the
number of characters in the range. They also give an alternative data structure for computing
β-majorities in the parameterized case. We note that Belazzougui, Gagie, and Navarro [14] also
present improved data structures for the α-minority problem.

3.5 Static Range Majority Data Structure

In this section we describe a static linear space data structure that supports range majority
queries in constant time. To provide some intuition, suppose we partition the input string A[1, n]
into four contiguous equally-sized blocks. If we are given a query range that contains one of these
four blocks, then it is clear that a majority for this query must have frequency strictly greater
than n/8 in A. Thus, at most seven characters need be considered when computing the majority
for queries that entirely contain one of these four fixed blocks.

Of course, not all queries contain one of these four blocks. Therefore, we decompose the
string into multiple levels in order to support arbitrary queries (Sections 3.5.1 and 3.5.2). Using
this decomposition in conjunction with succinct data structures [98], we design a linear space
data structure that answers range majority queries in constant time (Section 3.5.3). The data
structure works by counting the frequency of a constant number of candidate characters in order
to determine the majority for a given query.

From this point on we make the assumption that the characters stored in the input string A

are drawn from the alphabet [1, σ], where σ ≤ n is the number of distinct characters in A. If this
is not the case, then we can apply the well known technique of reduction to rank space [34, 5] as
a preprocessing step, and store an auxiliary array of size σ to invert a character in [1, σ] to its
original value. This preprocessing step takes O(n lg σ) time using a balanced binary search tree.

63

[1..16]

T (3)

Quadruples Q1

Q2

Q3

Q4Q4

R1 R2

for T (3)

Figure 3.1: An example where n = 16. Blocks in T (3) have size 2, and each of the 4 quadruples contain 4 blocks.
Query ranges R1 and R2 are associated with quadruples Q1 and Q3 respectively.

3.5.1 Quadruple Decomposition

The first stage of our decomposition is to construct a notional complete binary tree T over the
range [1, n], in which each node represents a subrange of [1, n]. Let the root of T represent the
entire range [1, n]. For a node corresponding to range [a, b], its left child represents the left half
of its range, i.e., the range [a, b(a + b)/2c], and its right child represents the right half, i.e., the
range [b(a+ b)/2c+ 1, b]. For simplicity, we can assume that n is a power of 2, since, if it is not,
we can pad the string with extra characters until it is. This padding will at most double the size
of n. Each leaf of the tree represents a range of size 1, which corresponds to a single character of
the string A. We refer to ranges represented by the nodes of T as blocks. Note that the tree T
is for illustrative purposes only, so we need not store it explicitly.

The tree T has lgn + 1 levels, which are numbered 0 through lgn from top to bottom. For
each level `, T partitions A into 2` blocks of size n/2`. Let T (`) denote the set of blocks at level
` in T .

The second stage of our decomposition consists of arranging adjacent blocks within each level
T (`), 2 ≤ ` ≤ lgn, into groups. Each group consists of four blocks and is called a quadruple.
Formally, we define a quadruple Qq to be a range [a, b] at level ` ≥ 2 of size 4n/2`, where
a = 2(q − 1)n/2` + 1 and b = 2(q − 1)n/2` + 4n/2`, for 1 ≤ q ≤ 2`−1 − 1. In other words,
each quadruple at level ` contains exactly four consecutive blocks, and its starting position is
separated from the starting position of the previous quadruple by two blocks. To handle border
cases, we also define an extra quadruple Q2`−1 which contains both the first two and last two
blocks in T (`). Thus, at level ` there are 2`−1 quadruples, and each block in T (`) is contained in
two quadruples. These definitions are summarized in Figure 3.1.

64

3.5.2 Candidates

Based on the decomposition from the previous section, we observe the following:

Observation 3.5.1. For every query range R there exists a unique level ` such that:

1. R contains at least one and at most two consecutive blocks in T (`); and,

2. if R contains two blocks, then the nodes representing these blocks are not siblings in the
tree T .

Let Q be a quadruple consisting of four consecutive blocks, B1 through B4 from T (`), where
` is the level referred to in the previous observation. We associate R with Q if R contains B2

or B3; for convenience we also say that R is associated with level `. Note that R may contain
both B2 and B3; see R1 in Figure 3.1. We proved the following lemma in the discussion at the
beginning of Section 3.5:

Lemma 3.5.1. There exists a set L of at most 7 characters such that, for any query range R
associated with quadruple Q, the majority for R is in L.

For a quadruple Q, we define the set of candidates for Q to be the characters in L. Next, we
describe how the sets of candidates can be computed efficiently.

Lemma 3.5.2. The sets of candidates for all the quadruples can be identified in O(n lgn) time.

Proof. Recall that the characters in A are drawn from the alphabet {1, . . . , σ}, where σ ≤ n. We
can count the frequencies of all the characters in quadruple Q in O(|Q|) time, in a single pass over
the characters in Q, using an auxiliary array of size σ. When the count of a character exceeds
|Q|/8, we add it to the set of candidates for Q. This implies that the sets of candidates for all
the quadruples in all of the lgn+ 1 levels of T can be found in O(n lgn) time.

3.5.3 Data Structures for Counting

We now describe the data structures stored for each level ` of the tree T , for 2 ≤ ` ≤ lgn. Given a
quadruple Qq in level `, for 1 ≤ q ≤ 2`−1 we store the set of (at most seven) candidates for Qq in a

65

list Lq. Let Υq be a string of length |Qq|, where the i-th character in Υq is f iff the i-th character
in Qq is Lq[f] for some f ∈ [1, 7], and a unique character—we use 0 to denote this character in
our discussion later—otherwise. Let Υ be the concatenation of the strings Υ1 through Υ2`−1 . We
use a wavelet tree [82] to represent Υ, which has alphabet size σΥ = maxq∈[1,2`−1] |Lq| + 1 ≤ 8.
This representation uses n lg σΥ(1 + o(1)) bits to provide constant time support for the operation
rankf (Υ, i), which returns the number of occurrences of the character f in Υ[1, i].

Theorem 3.5.1. Given a string A[1, n], there exists an O(n lgn) bit data structure that supports
range majority queries on A in O(1) time, and can be constructed in O(n lgn) time.

Proof. Given a query range R = [a, b], we first find the level ` and the index q of the quadruple
Qq with which R is associated. This can be reduced to finding the length of the longest common
prefix of the (lgn)-bit binary representations of a and b, which can be done in constant time in the
following way. Let z = MSB(n/(b−a+1)), where MSB(x) returns the position of the most significant
bit of x. If (a − 1)2z mod n = 0, or (b − 1)2z mod n = 0, or d(a − 1)2z/ne 6= b(b − 1)2z/nc,
then ` = z; otherwise, ` = z + 1. Let q′ = b(a− 1)2`−1/nc. The quadruple Qq associated with R
is either q = q′/2 or q = (q′ − 1)/2 depending on whether the size of the blocks at level ` divide
into the starting position a− 1. Note that we interpret Q0 to mean Q2`−1 . Since we can support
the MSB operation in O(1) time using a precomputed table of size o(n) bits [115], we can compute
both ` and q in O(1) time.

Next, we show how to answer queries associated with a quadruple at level `, for 2 ≤ ` ≤ lgn;
the case in which 0 ≤ ` ≤ 1 can be handled similarly. The representation of quadruple Qq in Υ
begins at s = 4(q − 1)n/2` + 1. We normalize the values a and b to the starting position s, so
let t = 2(q − 1)n/2` + 1. For each f in [1, |Lq|], we count the frequency of Lq[f] in [a, b] using
rankf (Υ, s+b− t)−rankf (Υ, s+a−1− t), or, equivalently, rankf (Υ, t+b)−rankf (Υ, t+a−1).
We then report Lq[f] if it is a majority. Since Υ has a constant sized alphabet, this process takes
O(1) time.

In addition to the input string, we store the lists Lq for each of the O(n) quadruples, and each
list requires O(lg σ) = O(lgn) bits. For each of the lgn + 1 levels in T we store a wavelet tree
on an alphabet of size σΥ ≤ 8, requiring O(n lgn) bits. To answer queries in constant time, we
require o(n) bits of additional space for a lookup table to determine ` and q. Thus, the additional
space requirements beyond the input string are O(n lgn) bits. In terms of construction time,
we can build the lists of candidates in O(n lgn) time by Lemma 3.5.2, and the wavelet trees

66

require O(n) time to construct per level (by Lemma 1.5.7). Thus, the overall construction time
is O(n lgn).

Remark 3.5.1. In most cases, the upper bound on the number of candidates stored for each
quadruple is significantly greater than the number of candidates actually stored by the data struc-
ture. Therefore, we expect that the constant factor in the O(n) space term is not very large in
practice.

3.6 Generalization to Static Range α-Majority Queries

In this section we generalize the data structure from Theorem 3.5.1 to report α-majorities, for
some fixed α ∈ (0, 1], supplied at construction time. Using the same arguments presented in the
beginning of Section 3.5, it is clear that if a character is an α-majority for any query associated
with quadruple Q, then the character must appear more than α|Q|/4 times in Q. This implies
that the set of candidate α-majorities has size less than 4/α.

3.6.1 Handling Large Alphabets

If the number of candidates, |C| = 4/α, is non-constant, then we require the following lemma
about executing batched rank queries on a wavelet tree.

Lemma 3.6.1. A string S[1, n] over an alphabet [1, σΥ], where σΥ ≤ n, can be represented using
a wavelet tree such that given an index i, the results of rankf (S, i) for all f ∈ [1, σΥ] can be
computed in O(σΥ) time.

Proof. If we use the wavelet tree in the standard way to perform rankf (S, i) for a particular
character, f , the algorithm consists of two steps. First, in the bit vector representing the leaf, v,
corresponding to f (and one other character), we locate the bit that corresponds to S[i]. This
step is done by performing constant-time rank queries on bit vectors, representing internal nodes
of the wavelet tree, on the path from the root to the leaf v. The second step is to perform a
rank query in constant time on the bit vector representing v, to compute the number of 1s up
to and including the bit corresponding to S[i]. By performing batch processing of the queries
rankf (S, i) for f in 1, 2, . . . , σΥ, as there are σΥ−1 nodes in a wavelet tree, the first step for all f

67

requires O(σΥ) constant-time rank queries on bit vectors stored in internal nodes. Therefore, with
careful tuning, we can perform the first step of all the rankf (S, i) queries in O(σΥ) time. The
second step requires a constant time rank query for each leaf, so it uses O(σΥ) time in total.

With the above observation we present the following theorem:

Theorem 3.6.1. Given a string A[1, n] and any fixed α ∈ (0, 1], there is a data structure that
occupies O(n lgn(lg(1/α) + 1)) bits, supports range α-majority queries on A in O(1/α) time, and
can be constructed in O(n lgn(lg(1/α) + 1)) time.

Proof. From Theorem 3.5.1 and Lemma 3.6.1 the query time follows, so we focus on analyzing
the space. We observe that if α < 1/4, then we need not keep data structures at level lgn in
T , since every distinct character contained in a query range, R, associated with this level is a
(1/4− ε)-majority for R, for 0 < ε < 1/4. Instead, we perform a linear scan of the query range
in O(1/α) time, returning all the distinct characters. This can be done by using the auxiliary
array, which has size σ.

Continuing this argument, we observe that we only require the list Lq, that stores candidates
for quadruple q, if q represents a range of size larger than O(1/α). Since there are O(nα)
quadruples larger than O(1/α), the lists require O(nα(1/α lgn)) = O(n lgn) bits in total. The
overall space required for the wavelet tree data structures is O(n lg(1/α + 1) lgn) bits, and this
term dominates the overall space requirements.

We can construct the sets of candidates for all quadruples of size larger than O(1/α) in
O(n lgn) time using the same technique described in Lemma 3.5.2. To construct the wavelet
trees requires O(n(lg(1/α) + 1)) time per level (by Lemma 1.5.7), for an overall time bound of
O(n lgn(lg(1/α)+1)). Thus, the construction time is dominated by the wavelet tree construction,
and requires O(n lgn(lg(1/α) + 1)) time overall.

3.7 Parameterized Query and Trade-offs

In this section, we describe some minor changes to the data structure of Theorem 3.6.1 that allow
us to answer β-majority queries for any β ∈ [α, 1], where β is specified at query time (recall that
α is fixed at construction time). This data structure occupies O(n(min{lg(1/α),H0(A)}+ 1) lgn)

68

bits of space, and can support β-majority queries in time O(1/β). Recall that H0(A) is the
zeroth-order empirical entropy of the string A, and so H0(A) ≤ lg σ. Thus, we not only generalize
the query operation, but also further refine the space analysis.

We begin with a lemma that describes how to compress a string, and support access operations.
We do not attempt to optimize constant factors here, as the space occupied by the data structures
that apply this lemma are not succinct (this lemma is not the space bottleneck):

Lemma 3.7.1. Let S be a string of U characters, drawn from the alphabet Σ = [0, σ], where
σ ≤ U . There is a data structure for representing S that occupies O(U(H0(S) + 1) + σ lg σ) bits
of space, and supports the operation access(S, i) for any 1 ≤ i ≤ U in O(1) time.

Proof. This lemma can be proved using any encoding scheme that asymptotically achieves zeroth
order entropy compression (Huffman codes, Elias γ-codes, etc.), and has the property that all
code lengths are no longer than Θ(lgU) bits. Without loss of generality, we use Elias γ-codes to
achieve the bound. We compute γ(S) and store it in a bit string. We also store a bit string B of
length |γ(S)|, which marks the start of each encoded character with a 1. Storing B in a the data
structure of Lemma 1.5.6 allows us to access the Elias γ-code of any element in S using a O(1)
time via a single select operation, and increases the overall space by no more than a constant
factor.

We also store a lookup table as a bit string B′ in the following way: B′[i] = 1 iff i is a valid
code used in the representation of S. Since Elias γ-codes have length O(lg σ) by Lemma 1.5.3
(item 2), the length of B′ is polynomial in σ. We also store a table, storing the decoded characters
in S, sorted in the order of the ranks in B′ of the Elias gamma codes for the characters. Thus,
by storing B′ in the data structure of Lemma 1.5.6, and applying Lemma 1.5.5, these extra data
structures occupy O(σ lg σ) bits. Given a character’s γ-code, i, we compute rank1(B′, i). We
then index into the table at this rank to return decoded character. Thus, we can decode any
γ-code in constant time.

In the data structure of Theorem 3.6.1, the candidate lists for each quadruple are unsorted.
We add the constraint that these lists be sorted in descending order of frequency within the
quadruple (breaking ties arbitrarily). The observation is that, since β ≥ α, all β-majorities for
the given quadruple will be a prefix of the candidate list: in particular, the first d4/βe characters

69

in the list. This alone will not be enough to speed up the process of verifying which candidates
are β-majorities. For that we need the following lemma:

Lemma 3.7.2. Let S be a string of U characters, drawn from the alphabet Σ = [0, σ], where,
ignoring the special character 0, character i is the i-th most frequent character in S, and σ ≤ U .
There is a skewed wavelet tree T representing the string S, that has the following properties:

1. The leaf representing character i has depth Θ(lg(i+ 2)) in T (the root has depth 1).

2. For 1 ≤ σ′ ≤ σ, the leaves representing 1, . . . , σ′ can be traversed in O(σ′) time.

3. The wavelet tree T occupies O(U(H0(S) + 1)(1 + o(1)) + σ lgU) bits.

Proof. An example of a wavelet tree T with these properties is one where the implicit sequence
of bits along the path to the leaf representing character i is the Elias γ-code for i+ 1. All three
properties of the wavelet tree follow from Lemma 1.5.3.

We now prove the main theorem of this section:

Theorem 3.7.1. Let A be a string of length n drawn from the characters Σ = [1, σ], where σ ≤ U
and α ∈ (0, 1] be some fixed parameter. There is a data structure that occupies

O(nmin({lg(1/α),H0(A)}+ 1) lgn) (3.7.1)

bits, that, given a range A[a, b] and a fraction β ∈ [α, 1], can return the β-majorities of the
substring A[a, b] in O(1/β) time.

Proof. We represent the string using the access scheme of Lemma 3.7.1. Thus, we can support
access in O(1) time on a compressed version of A. Next we consider the data structure of
Theorem 3.6.1 and make some changes to speed it up.

Recall that we store the concatenation of the strings represented by the quadruples at level `, in
ascending order of quadruple starting position, as a string Υ`, for 0 ≤ ` ≤ lg(1/α). Furthermore,
recall that |Υ`| = O(n). Using the wavelet tree from Lemma 3.7.2 to represent these strings
will allow us to count the frequency of candidate characters in time O(1/β). However, we do
not have concatenated strings for quadruples of size smaller than 1/α, and thus can only return

70

β-majorities for these smaller quadruples in time O(1/α) via a linear-time scan of the relevant
quadruple. We now explain how to construct Υ`′ , for levels `′, where lg(1/α) < `′ ≤ lgn, in order
to verify the frequency of candidates in these smaller blocks in O(1/β) time.

Imagine that we had constructed lg(1/α) copies of the data structure we have described thus
far, for values of α′ drawn from the set {1/2, 1/4, . . . , α}. Let Dα′ denote the data structure
constructed for parameter α′. Let α′′ be the smallest value such that Dα′′ stores candidate lists
at level `′. The string we store in our data structure to represent level `′ matches that of Dα′′ ,
and we also store the candidate lists from Dα′′ for quadruples at `′.

Space for candidate lists: By our previous lemmas, the space occupied by the candidate lists
in the upper levels of the tree (above level lg(1/α)) is at most O(n lgn) bits. We show that the
space bound for the remaining candidate lists (i.e., the additional ones described in the previous
paragraph) is O(n(lg(1/α) + 1)(min{H0(A), lg(1/α)} + 1) bits. Since these remaining candidate
lists are in the bottom O(lg(1/α) + 1) levels of the tree, it suffices to bound the space for a single
level as O(n(min{H0(A), lg(1/α)}+ 1)) bits.

This bound can be achieved by combining the two following methods, and using the one that
occupies less space. The first method is to store the candidate lists in compressed form, using the
Elias γ-codes for A: the same ones stored for the access scheme of Lemma 3.7.1. To store all the
lists at level `′ cannot take more than O(n(H0(A)+1)) bits, since each candidate appears at least
once in its respective quadruple, and exactly once in the candidate list. The second method is to
store the index of the first occurrence of the candidate within its respective quadruple (i.e., the
offset from the start of the quadruple). This method requires no more than n(lg(1/α) + 1) bits
to store level `′, since each quadruple has size at most 1/α in `′. Thus, we achieve the claimed
bound of O(n(min{H0(A), lg(1/α)} + 1)). In either case, we can convert a rank in a candidate
list into the candidate character in O(1) time.

Space for wavelet trees: We now argue that representing the strings, for all levels, using
Lemma 3.7.2 requires no more than O(n(min{lg(1/α),H0(A)}+ 1) lgn) bits.

Consider the string Υ which corresponds to some quadruple, and therefore some substring
A[a, b]. Thus, there is a many-to-one mapping from A[a, b] → Υ, which replaces the characters
in A[a, b] with either their ranks by frequency, or by the special character 0. Applying such a

71

many-to-one mapping from a string’s alphabet to a smaller alphabet cannot increase its zeroth
order empirical entropy, so H0(Υ) ≤ H0(A′).

Moreover, since each string Υ` is the concatenation of strings represented by quadruples, and
each character in A appears in exactly two quadruples, it is clear that H0(Υ`) ≤ H0(A) for 1 ≤ ` ≤
lgn. The final observation is that H0(Υ`) ≤ O(lg(1/α)), since the alphabet size is at most O(1/α).
Since there are O(lgn) strings, the space bound for these strings is O(n(min{log(1/α),H0(A)}+
1) logn) bits overall.

Verifying the candidates for a quadruple at level ` involves traversing the first O(1/β) leaves
of the skewed wavelet tree representing Υ`, which takes O(1/β) time by Lemma 3.7.2. At each
leaf, which represents a candidate, at most two O(1) time rank queries on the bit string stored
in the leaf can be used to determine the frequency of the candidate in a range, in O(1/β) time
overall.

Remark 3.7.1. As discussed earlier, the recent paper of Belazzougui et al. [14] presents several
new trade-offs that improve Theorem 3.7.1 in terms of both time and space.

We also have the following trade-off, which results in a more space efficient data structure, but
increases the query time by a factor of lg lgn. The following structure also has the disadvantage
that it does not allow parameterized queries:

Theorem 3.7.2. Let A be a string of length n, drawn from the set of characters Σ = [1, σ], where
σ ≤ Uand α ∈ (0, 1] be some fixed parameter. There is a data structure that occupies

O(n(H0(A) + 1)) +O(σ lgn) (3.7.2)

bits, that, given a range [a, b], the α-majorities of the substring A[a, b] can be returned in time
O((lg lg σ)/α).

Proof. We represent the string A in the data structure of Lemma 1.5.8, which occupies nH0(A) +
o(n) bits of space, and can support rank queries in time O(lg lg σ) time. We also store the string
A using the access scheme of Lemma 3.7.1. Finally, we store the candidate lists for each quadruple
representing more than 1/α characters, compressed using their codes in A, and the access scheme
of Lemma 3.7.1. Overall, these candidate lists occupy at most O(n(H0(A) + 1)) bits. Given a

72

range [a, b], we perform two rank queries per candidate to count the occurrences of the at most
O(1/α) candidates in the list associated with [a, b]. This takes O((lg lg σ)/α) time.

Remark 3.7.2. Belazzougui et al. [14] improve the space bound of Theorem 3.7.2 by using recent
results [15] on representing strings in order to support support access and rank efficiently. They
also show how to parameterize the query time.

3.8 Applications to Static Geometric Problems

In this section we describe some consequences of Theorem 3.6.1 to the geometric versions of
the range α-majority problem described by Karpinski and Nekrich [103]. These problems have
applications to database problems, in which we would like to identify attributes that are frequently
associated with points in a query range [103]. In the next subsections we describe these geometric
problems, which deal with coloured points instead of characters in a string.

3.8.1 Static Range Majority for Coloured Points in One Dimension

We are given a set, P, of points in one dimension, where each point p ∈ P is assigned a colour
c from a set, Σ, of colours. Let Colour(p) = c denote the colour of p. We are also given a
fixed parameter α ∈ (0, 1], which defines the threshold for determining whether a colour is to be
considered frequent. Let P(R) be the set {p | p ∈ R, p ∈ P}, and P(R, c) be the set {p | p ∈
P(R), Colour(p) = c}. Our goal is to design a data structure that, given query range R, can
return the set of colours Σ such that for each colour c ∈ Σ, the size of the set |P(R, c)| > α|P(R)|.
To be consistent with our original formulation of the problem, we refer to a colour c ∈ Σ as an
α-majority for R, and the query R as an α-majority query, though they are also referred to as
α-dominating colours [103].

To solve this problem, we apply the reduction to rank space technique [34, 5] to the coordinates
of the points, and store a string representing the left-to-right sequence of colours in the data
structure from Theorem 3.6.1. We store the original coordinates of the points in any linear space
data structure that supports predecessor queries. Given a range query on the line, we can use
the predecessor search data structure to remap the query to a range query on the string. Thus,
we can support range α-majority queries on the line using the data structures from the previous
section. We present the following theorem:

73

Theorem 3.8.1. Given a set P of n points in one dimension and a fixed α ∈ (0, 1], there
is an O(n(lg(1/α) + 1)) word data structure that supports range α-majority queries on P in
O(pred(P) + 1/α) time, where pred(P) is the time required to do a one-dimensional predecessor
search on the coordinates of the points in P (within the allotted space bound).

Remark 3.8.1. The previous theorem implies that if we only assume the coordinates of the points
can be compared in constant time, then we can answer range α-majority queries in O(lgn+ 1/α)
time by storing the coordinates of the points in a balanced binary search tree. If the points have
integer coordinates, drawn from a bounded universe [1, u], then we can store their coordinates in
an exponential search tree [8] and answer range α-majority queries in O(

√
lgn/ lg lgn + 1/α)

time and occupies linear space. Alternatively, we can store their coordinates in a y-fast trie [156],
which yields a query time of O(lg lg u+ 1/α), and also occupies linear space.

3.8.2 Static Range Majority in Higher Dimensions

In the same manner as Karpinski and Nekrich [103], we can extend Theorem 3.8.1 to higher
dimensions using the well-known range tree technique of Bentley [19]. The main problem with
moving to higher dimensions is that we cannot use the wavelet tree to verify the frequency of
candidates when the number of dimensions, d ≥ 2. However, we can use the small list of candi-
dates generated by the data structure in conjunction with any d-dimensional range counting data
structure, such as that of Chazelle [34]. In particular, we store a counting structure that stores
all the points (regardless of colour), and one that stores the points of each colour individually. By
removing the wavelet trees from the data structure of Theorem 3.6.1, we remove the (lg(1/α)+1)
term from the space bound. Thus, this stripped down one-dimensional data structure uses O(n)
words of space, and can return, for any range α-majority queryR on A, a list of O(1/α) characters
that contains all the α-majorities for R in O(1/α) time.

Theorem 3.8.2. Given a set P of n points in d-dimensions, for any constant d ≥ 2, and a fixed
α ∈ (0, 1], there is an O(n lgd−1 n) word data structure that supports range α-majority queries on
P in O((lgd n)/α) time.

Proof. Using range trees, we can convert any d-dimensional range α-majority query into Θ(lgn)
(d− 1)-dimensional range α-majority queries and d-dimensional range counting queries. In par-
ticular, let Tcount(n, d) denote the cost of a d-dimensional range counting query on a static set of

74

n points, and Tmaj(n, d) denote the cost of a d-dimensional range α-majority on a static set of n
points. Thus, we have:

Tmaj(n, 1) = O(1/α) +O(lgn) (3.8.1)

Tmaj(n, d) = Θ(lgn)Tmaj(n, d− 1) + Θ((lgn)/α)Tcount(n, d), (3.8.2)

since we can extract and verify the frequency of the O((lgn)/α) candidates from the O(lgn) nodes
representing the range spanned by the d-th coordinate of the query range. Since d-dimensional
static orthogonal range counting can be done in O(lgd−1 n) time [34] for d ≥ 2, we have:

Tmaj(n, d) = O((lgd n)/α). (3.8.3)

The space occupied by the two-dimensional data structure will be O(n lgn) words, since each
point will be duplicated in Θ(lgn) one-dimensional range majority data structures. This space
cost dominates that of the linear space two-dimensional counting data structures, and increases
by a (lgn)-factor with each additional dimension.

Remark 3.8.2. As in the one-dimensional case, we can exploit word-level parallelism to improve
the time complexity of queries in the case where the points in P have integer coordinates. Using
the data structure of JaJa et al. [99], the query time for the two dimensional data structure can be
improved to O((lg2 n)/(α lg lgn)). As we commented in the “Subsequent Work” section, the two
dimensional result has been improved by Wilkinson [155], who used approximate range counting
data structures to avoid having to perform an expensive exact range counting query for each
candidate α-majority. Navarro, Nekrich, and Russo [122] match the result of Theorem 3.8.2,
achieving the same query time and space bounds (to within constant factors), but additionally
have a parameterized query.

3.9 Approach for the Dynamic Geometric Problem

In this section we devise an approach for the dynamic geometric problem. As before, we are given
a set, P, of n points, where each point p ∈ P is assigned a colour c from a set, Σ, of colours. We
denote the colour of p as Colour(p) = c. We are also given a fixed parameter α ∈ (0, 1), that

75

defines the threshold for determining whether a colour is to be considered frequent. Our goal is
to design a dynamic range α-majority data structure that can perform the following operations
in addition to the α-majority query:

• Insert(p, c): Insert a point p with colour c into P.

• Delete(p): Remove the point p from P.

3.9.1 Lower Bound

As discussed in the previous work section, there is a cell-probe lower bound for the dynamic range
α-majority problem, based on a reduction to a special case of a dynamic partial sums problem.
The partial sum problem for threshold functions [97] is as follows: maintain n bits x1, ..., xn subject
to updates and threshold queries. An update consists of flipping the bit at a specified index. The
answer to query threshold(i) is “yes” if and only if

∑i
j=1 xj ≥ f(i), where f(i) is an integer

function such that f(i) ∈ {0, ..., di/2e}. Husfeldt and Rauhe [97] proved a lower bound on the
query time tq for a data structure that can answer threshold queries with update time tu.

Any data structure for dynamic α-majority can be used to solve the partial sum problem
for threshold functions. In particular, we can treat the problem as involving n points with
integer coordinates 1, ..., n, with each point having one of two colours. A flip operation can be
implemented as a deletion followed by an insertion. Thus, we can state their lower bound in
terms of our problem, denoting the cell size of our machine as w:

Lemma 3.9.1 (Follows from [97], Prop. 4). Let tu and tq denote the update and query times,
respectively, for any dynamic α-majority data structure. Then,

tq = Ω
(lg(min{αn, (1− α)n})

lg(tuw lg(min{αn, (1− α)n}))

)
.

This bound implies that, for constant values of α and word size Θ(lgn) bits, O(lgn/ lg lgn)
query time for integer point sets is optimal for any data structure with polylogarithmic update
time.

76

3.9.2 Assumptions about Colours

In the following sections, we assume that we can compare “colours” in constant time. In order to
support a dynamic set of colours, we employ the techniques described by Gupta et al. [84]. These
techniques allow us to maintain a mapping from the set of colours to integers in the range [1, 2n],
where n is the number of points currently in our data structure. This mapping allows us to use
a colour as an array index, which speeds up certain parts of our query and update algorithms.

For the dynamic problems discussed, the mapping is maintained using a method similar to
global rebuilding to ensure that the integer identifiers of the colours do not grow too large [84,
Section 2.3]. When a coloured point is inserted, we first determine whether we have already
assigned an integer to that colour. By storing the set of known colours in a balanced binary
search tree, this can be checked in O(lg |Σ|) time, where |Σ| is the number of distinct colours
currently assigned to points in our data structure. Since |Σ| ≤ n, this cost will be negligible
compared to the update time of our data structure. Therefore, from this point on, we assume
that we are dealing with integers in the range [1, 2n] when we discuss colours.

3.9.3 Dynamic Tree Structure

In one-dimension we can interchange the notion of points and x-coordinates in P, since they
are equivalent. Depending on the context we may use either term. Our basic data structure
is a modified weight balanced B-tree [9]. We prove several interesting combinatorial properties
of α-majorities in order to provide more efficient support for queries compared to previous data
structures.

We begin by defining a weight-balanced B-tree:

Definition 3.9.1 (Arge and Vitter [9]). T is a weight-balanced B-tree with branching parameter
f and leaf parameter g, where f > 4 and g > 0 are integers, if the following holds:

1. All leaves of T are on the same level and have weight between g and 2g − 1; in the context
of our problem, they store between g and 2g − 1 points.

2. An internal node of height h (leaves have height 0) has weight less than 2fhg.

3. Except for the root, an internal node of height h has weight larger than (1/2)fhg.

77

4. The root has more than one child.

Let T be a weight-balanced B-tree with branching parameter f = 8 and leaf parameter g = 1
such that each leaf represents an x-coordinate in P. From left to right the leaves are sorted in
ascending order of the x-coordinate that they represent. Let T (v) be the subtree rooted at node
v. Each internal node v in the tree represents a range R(v) = [xmin, xmax], where xmin is the
x-coordinate represented by the leftmost leaf in T (v), and xmax is the x-coordinate represented
by the rightmost leaf in T (v). If a node is h levels above the leaf level, we say that this node is of
height h. By Properties 2 and 3 of weight-balanced B-trees, the range represented by an internal
node of height h (with the exception of the root) contains more than 8h/2 points and less than
2(8h) points, and the degree of each internal node is between 2 and 32 [9, Lem. 3.4].

3.9.4 Supporting Queries

Given a query R′ = [x′a, x′b], we perform a top-down traversal on T to map R′ to the range
R = [xa, xb], where xa and xb are the points in P with x-coordinates that are the successor
and the predecessor of x′a and x′b, respectively. We call the query range R general if R is not
represented by a single node of T . We first define the notion of representing a general query
range1 by a set of nodes:

Definition 3.9.2. Given a general query range R = [xa, xb], R induces a set, I, of nodes in the
tree T , satisfying the following two conditions.

1. The range represented by the parent of each node in I is not entirely contained in R.

2. For all p ∈ P(R), there is exactly one node v ∈ I with p ∈ R(v).

We say that I is the set of nodes in the tree T representing R.

For each node v ∈ T , we keep a list, L(v), of k candidate colours, i.e., the k most frequent
colours in the range R(v) represented by v, breaking ties arbitrarily. Later, we will fix a value
for k. Let L? = ∪v∈IL(v), i.e., the union of all the candidate lists among the nodes representing
the query range R. For each colour c ∈ Σ, we keep a separate range counting data structure, Fc,

1In alternate terminology, we are defining the canonical nodes that span the query range

78

containing all points p ∈ P with colour c, and also a range counting data structure, F , containing
all of the points in P. Let µ be the total number of points in the range [xa, xb], which can be
determined by querying F . For each c ∈ L?, we query Fc with the range [xa, xb] letting occ be
the result. If occ > αµ, then we report that c is an α-majority.

It is clear that I contains at most Θ(lgn) nodes [9, Corollary 5]. Furthermore, if a colour
c is an α-majority for R, then it must be an α-majority for at least one of the ranges in I

[103, Observation 1]. If we set k = d1/αe and store d1/αe colours in each internal node as
candidate colours, then, by the procedure just described, we will perform a range counting query
on Θ((lgn)/α) colours. If we use balanced search trees for our range counting data structures,
then this takes Θ((lg2 n)/α) time overall. However, in the sequel we show how to improve this
query time by exploiting the fact that the nodes in I that are closer to the root of T contain
more points in the ranges that they represent.

We shall prove useful properties of a general query rangeR and the set, I, of nodes representing
it in Lemmas 3.9.2, 3.9.3, 3.9.4, and 3.9.5. In these lemmas, µ denotes the number of points in R,
and i1, i2, ... denote the distinct values of the heights of the nodes in I, where i1 > i2 > ... ≥ 0.
We first give an upper bound on the number of points contained in the ranges represented by the
nodes of I of a given height:

Lemma 3.9.2. The total number of points in the ranges represented by all the nodes in I of
height ij is less than µ(min{1, 31(81−j)}).

Proof. Since R is general and contains at least one node of height i1, µ is greater than the
minimum number of points that can be contained in a node of height i1, which is 8i1/2. The
nodes of I whose height is ij , j 6= 1, are siblings and must have at least one sibling that is not
in I. The number of points contained in the interval represented by this sibling is greater than
8ij/2. Therefore, the number, µj , of points in the ranges represented by the nodes of I of height
ij is less than 2(8ij+1)− 8ij/2 = (31/2)(8ij). Thus, µj/µ < 31(8ij−i1) < 31(81−j).

We next use the above lemma to bound the number of points whose colours are not among
the candidate colours stored in the corresponding nodes in I.

Lemma 3.9.3. Suppose we are given a node v ∈ I of height ij and a colour c. Let n(c)
v denote

the number of points with colour c in R(v), the range covered by v, if c is not among the first

79

kj = dk/2j−1e most frequent candidate colours in the candidacy list of v, and n(c)
v = 0 otherwise.

Then
∑
v∈I n

(c)
v < 5.59µ/(k + 1).

Proof. If c is not among the first kj candidate colours stored in v, then the number of points with
colour c in R(v) is at most 1/(kj + 1) times the number of points in R(v). Thus,

∑
v∈I

n(c)
v <

2∑
j=1

µ

kj + 1 +
∑
j≥3

(
31(81−j)

)
µ

kj + 1

<
µ

k + 1

(
1 + 2 + 31

(
22

82 + 23

83 + · · ·
))

<
5.59µ
k + 1

We next consider the nodes in I that are closer to the leaf level. Let It denote the nodes in
I that are at one of the top t = d(lg(1/α)/3 + 2.05e—not necessarily consecutive—levels of the
nodes in I. We prove the following property:

Lemma 3.9.4. The number of points contained in the ranges represented by the nodes in I \ It
is less than αµ/2.

Proof. By Lemma 3.9.2, the number of points contained in the ranges represented by the nodes
in I \ It is less than:

31µ
∑
j≥t+1

81−j < 31µ
(1

8t + 1
8t+1 + · · ·

)

< 31µ
(8

7

(1
8t
))

Since t ≥ lg(1/α)/3 + 2.05, the above value is less than αµ/2.

With the above lemmas, we can choose an appropriate value for k, guaranteeing the following
property, that is critical to achieve improved query time:

80

Lemma 3.9.5. When k = d11.18/αe − 1, any α-majority colour, c, of the query range R is
among the union of the first dk/2j−1e candidates stored in each node of height ij representing a
range in It.

Proof. The total number of points with colour c in the ranges represented by the nodes in I \ It
is less than αµ/2 by Lemma 3.9.4. By Lemma 3.9.3 and our choice for the value of k, less than
αµ/2 points in the ranges represented by the nodes in It for which c is not a candidate can have
colour c.

For each node v ∈ T , we keep a semi-ordered list of the k candidate colours in the range R(v)
represented by v. The order on the colours for any candidacy list is maintained such that the
most frequent dk/2j−1e colours come first, for all j = 2, 3, . . . , arbitrarily ordered within their
positions. Note that such a semi-ordering can be obtained in O(k) time by repeated median
queries. That is, by using a linear time median finding algorithm [21], we can partition the list
so that the first half of the list contains the k/2 most frequent colours, and then recurse on the
first half of the list until the list has 1 element. In total, this takes O(k+k/2 +k/4 + · · ·) = O(k)
time.

By setting k = d11.18/αe− 1, Lemma 3.9.5 implies that the colours that we have checked are
the only possible α-majority colours for the query. Furthermore, Lemma 3.9.4 implies that we
need only check the nodes on the top O(lg(1/α)) levels in I. Let It denote the set of nodes in
these levels. We present the following lemma:

Lemma 3.9.6. There is a data structure that occupies O(n) words, and can be used to answer a
range α-majority query in O((lgn)/α) time.

Proof. To support α-majority queries, we only consider the nontrivial case in which the query
range R is general. By Lemma 3.9.5, the α-majorities can be found by examining the first
dk/2j−1e candidate colours stored in each node representing a range in It. Thus, there are at
most O(d1/αe+d1/(2α)e+d1/(4α)e+ · · ·+d1/(2t−1α)e) = O(1/α) relevant colours to check. Let
Lt denote the set of these colours. For each c ∈ Lt we query our range counting data structures
Fc and F in Θ(lgn) time to determine whether c is an α-majority. Thus, the overall query time
is O((lgn)/α).

There are Θ(n) nodes in the weight-balanced B-tree. Therefore, one would expect the space
to be Θ(n/α) words, since each node stores Θ(1/α) colours. We use the same pruning technique

81

as in the static case, on the lower levels of the tree in order to reduce the space to O(n) words
overall. If a node v covers less than 1/α points, then we need not store L(v), since every colour
in T (v) is an α-majority for R(v). Instead, during a query, we can traverse the leaves of T (v)
in order to determine the unique colours. To make this efficient, we store an array D consisting
of 2n counters, each with Θ(lgn) bits, to count the frequencies of the colours in R(v). As
mentioned in Section 3.3, we can map a colour to an index of the array D, which allows us to
increment a frequency counter in O(1) time. Thus, we can extract the unique colours in R(v)
in O(|T (v)|) = O(1/α) time. The number of tree nodes whose subtrees have at least 1/α leaves
is O(nα). Thus, we store O(k) = O(1/α) words in O(nα) nodes, and the total space used by
our weight balanced B-tree T is O(n) words. The only other data structures we make use of are
the array D and the range counting data structures F and Fc for each c ∈ Σ, and together these
occupy O(n) words.

3.9.5 Supporting Updates

We next establish how much time is required to maintain the list L(v) in node v under insertions
and deletions. We begin by observing that it is not possible to lazily maintain the list of the top
k = d11.18/αe − 1 most frequent colours in each range: many of these colours could have low
frequencies, and the list L(v) would have to be rebuilt after very few insertions or deletions. To
circumvent this problem, we relax our requirements on what is stored in L(v), only guaranteeing
that all of the β-majorities of the range R(v) must be present in L(v), where β = d11.18/αe−1.
With this alteration, we can still make use of the lemmas from the previous section, since they
depend only on the fact that there are no colours c 6∈ L(v) with frequency greater than β|T (v)|.
The issue now is how to maintain the β-majorities of R(v) during insertions and deletions of
colours.

Karpinski and Nekrich noted that if we store the (β/2)-majorities for each node v in T , then
it is only after |T (v)|β/2 deletions that we must rebuild L(v) [103]. For the case of insertions and
deletions, their data structure performs a range counting query at each node v along the path
from the root of T to the leaf representing the inserted or deleted colour c. This counting query
is used to determine if the colour c should be added to, or removed from, the list L(v).

In contrast, our strategy is to be lazy during insertions and deletions, waiting as long as
possible before recomputing L(v), and to avoid performing range counting queries for each node

82

in the update path. Note that, with each colour stored in the list L(v) we store a counter that
will keep track of the frequency of the colour in R(v).

Lemma 3.9.7. Suppose the list L(v) for node v contains the d2/βe most frequent colours in the
range R(v), breaking ties arbitrarily. Let ` be the number of points contained in R(v). Only after
dβ`/2e insertions or deletions into T (v) can a colour c 6∈ L(v) possibly become a β-majority for
the range spanned by node v.

Proof. Since we initially store the k most frequently appearing colours in the range R(v) in L(v),
any colour not in L(v) can appear at most `/(k + 1) times. Thus, β`/2 updates are required
before a colour c 6∈ L(v) can become a β-majority for the range spanned by node v.

By Lemma 3.9.7, our lazy updating scheme only requires each list L(v) to have size O(1/α).
This leads to the following theorem:

Theorem 3.9.1. Given a set P of n points in one dimension and a fixed α ∈ (0, 1), there is an
O(n) space data structure that supports range α-majority queries on P in O((lgn)/α) time, and
insertions and deletions in O((lgn)/α) amortized time.

Proof. The query time follows from Lemma 3.9.6. In order to get the desired space, we combine
Lemmas 3.9.6 and 3.9.7, implying that each list L(v) contains O(1/α) colours. This allows us to
use the same pruning technique described in Lemma 3.9.6 in order to reduce the space to O(n).

When an update occurs, we follow the path from the root of T to the updated node v0.
Suppose, without loss of generality, that the update is an insertion of a point of colour c. For
each vertex v on the path, if v contains a list L(v), we check whether c is in L(v). If it is, then
we increment the count of colour c. This takes O(1/α) time. We also increment a counter stored
in node v that keeps track of the number of updates into T (v) that have occurred since L(v) was
rebuilt. Thus, modifying the lists and counters along the path requires O((lgn)/α) time in the
worst case.

Next, we examine the costs of maintaining the lists L(v). The list L(v) can be rebuilt in
O(|T (v)|) time, using the array D. Note that D can be maintained under updates using the same
scheme described in Section 3.3. First, we use D to compute the frequency of all the colours in
R(v) in Θ(|T (v)|) time. Let k be the value from Lemma 3.9.7. Since there are at most O(|T (v)|)
colours, we can use a linear time selection algorithm to find the k-th most frequent colour inD, and

83

then find the top k most frequent colours via a linear scan in O(|T (v)|) time. We can then enforce
the necessary semi-ordering on this list in O(k) = O(1/α) time, as described in Section 3.9.4.
Thus, each leaf in T (v) pays O(1) cost every Θ(|T (v)|α) insertions, or O(1/α) amortized cost
per insertion. Since each update may cause O(lgn) lists to be rebuilt, this increases the cost to
O((lgn)/α) amortized time per update.

We use standard local rebuilding techniques to keep the tree T balanced, rebuilding the lists in
nodes that are merged or split during an update. Since a node v will only be merged or split after
O(|T (v)|) updates by the properties of weight-balanced B-trees, these local rebuilding operations
require O((lgn)/α) amortized time. Finally, we can update Fc and F during an insertion or
deletion of a point of colour c in O(lgn) time. Thus, updates require O((lgn)/α) amortized time
overall, and are dominated by the costs of maintaining the lists L(v) in each node v.

3.9.6 Speedup for Integer Coordinates

In this section, we describe how to improve the query time of the data structure from Theo-
rem 3.9.1 from O((lgn)/α) to O(lgn/(α lg lgn)), for the case in which the x-coordinates of the
points in P are integers drawn from the universe [1, u], where 1 ≤ n ≤ u ≤ 2w.

We make use of the following lemma, discussed as a final remark in a paper of Andersson et
al. [7]:

Lemma 3.9.8 (Augmented Fusion Tree [7]). In the word-RAM model with word size Θ(lgn+lg u)
bits, a set E of n elements from a bounded universe [1, u] can be stored in a data structure of size
O(n) words, such that, given a range R = [xa, xb], the number of elements contained in E ∩ R
can be reported in O(lgn/ lg lgn) time. Inserting or deleting an element into E is supported in
O(lgn/ lg lgn) amortized time.

In order to achieve O(lgn/(α lg lgn)) query time, we implement all the range counting data
structures as the augmented fusion tree from Lemma 3.9.8. That is, the data structures F , and
Fc for each c ∈ C. Immediately, we get that we can perform a query in O(lgn/(α lg lgn) + lgn)
time: O(lgn/(α lg lgn)) time for the range counting queries, and O(lgn) time to find the nodes
in It. We now discuss how to remove the additive O(lgn) term, which involves modifying our
weight-balanced B-tree to support dynamic lowest common ancestor queries. Recall the lowest
common ancestor of two nodes, v1 and v2, in a rooted tree is the deepest node whose induced

84

subtree contains both v1 and v2. To identify the top O(lg(1/α) + 1) levels of I, we use the
following lemma:

Lemma 3.9.9. The weight-balanced B-tree T can be augmented in order to support lowest com-
mon ancestor queries in O(

√
lgn) time without changing the O((lgn)/α) amortized time required

for updates.

Proof. Let the first ancestor of a node v0 be the parent of v0, and the `-th ancestor of v0 be the
parent of the (` − 1)-th ancestor of v0 for ` > 1. In order to support lowest common ancestor
queries between two nodes za and zb, denoted LCA(za, zb), we add three pointers to each node
v0 ∈ T : pointers to the leaves representing both the minimum and maximum x-coordinates in
T (v0), and a pointer to the `-th ancestor of v0; we will fix the value of ` later. We can search for
the LCA(za, zb) by setting v = za and following the pointer to the `-th ancestor of v, denoted v′.
By checking the maximum x-coordinate to see if R(v′) contains zb, we can determine whether v′ is
an ancestor of LCA(za, zb) or a descendant of LCA(za, zb) in constant time. If v′ is a descendant
of LCA(za, zb), then we set v to v′ and v′ to the `-th ancestor of v′. If v′ is an ancestor of
LCA(za, zb), then we backtrack and walk up the path from v to v′ until we find LCA(za, zb).
Overall, it takes O(h0/` + `) time to find node z = LCA(za, zb), if z is at height h0 in T . By
setting ` = O(

√
lgn) we get O(

√
lgn) time. Furthermore, the pointers we added to T can be

updated in O(lgn) amortized time during an insertion or deletion. Whenever we merge or split a
node v0, we have O(|T (v0)|) time to fix all of the pointers into v0, by properties of weight-balanced
B-trees. The pointers out of v0 can be fixed in O(lgn) worst case time.

Although Lemma 3.9.9 is weaker than other results (cf. [151]), it is simple and sufficient for
our needs. We next present the following theorem:

Theorem 3.9.2. Given a set P of n points in one dimension with integer coordinates and a fixed
α ∈ (0, 1), there is an O(n) space data structure that supports range α-majority queries on P in
O(lgn/(α lg lgn)) time, and both insertions and deletions into P in O((lgn)/α) amortized time.

Proof. Suppose we are given a query range [xa, xb]. Applying Lemma 3.9.9 to the weight-balanced
B-tree T , we claim that we can identify the top ` levels of I– that are not necessarily from
consecutive levels in T – using O(`) least common ancestor operations. To show this, we describe
a recursive procedure Findtop(za, zb, `) for identifying the top ` levels of I. We assume that

85

we have acquired pointers to za and zb, the leaves of T that represent the x-coordinates of the
successor of xa and predecessor of xb, respectively. To do this, we add a pointer from each leaf in
the augmented fusion tree F to its corresponding leaf in T . Given a query, we initially perform
a successor query for xa and predecessor query for xb in F , and follow these extra pointers to
za and zb, respectively. We assume that za 6= zb, otherwise the query is trivially answered by
reporting the colour stored in za.

Let z = LCA(za, zb), and child(z, i) denote the i-th child of z. Let zl and zr denote the
leftmost and rightmost leaves in T (z). In constant time we can determine children child(z, j) and
child(z, k) of z which are on the path to za and zb, respectively. Note that k−j > 0, otherwise z is
not the LCA(za, zb). We say we are in the good case when za = zl, zb = zr, and/or k−j > 1. When
we are in the good case, either child(z, j), child(z, k), and/or child(z, j+1), ..., child(z, k−1)
are in the top level of I, and we set `′ = `− 1. Otherwise, if k − j = 1 and za 6= zl and zb 6= zr,
then we are in the bad case. In the bad case we have not found the top level of I, and we set
`′ = `. In both cases (good or bad), let zb′ be the leaf in child(z, k) representing the minimum
x-coordinate in T (child(z, k)), and za′ be the leaf in child(z, j) representing the maximum x-
coordinate in T (child(z, j)). We recurse if `′ > 0, calling Findtop(za, za′ , `′) if za 6= za′ and
Findtop(zb′ , zb, `′) if zb 6= zb′ .

We observe that the procedure Findtop(za, zb, `) uses O(`) least common ancestor queries.
This is because if a call to Findtop is in the bad case, then the subsequent recursive call(s)
will be in the good case by choice of za′ and zb′ , and only the initial call to Findtop can make
two recursive calls. Using Findtop, we can identify the top O(lg 1

α) levels of I in O(
√

lgn lg 1
α)

time, replacing the O(lgn) additive term. This factor is strictly asymptotically less than the time
required to perform the range-counting queries, which is O(lgn/(α lg lgn)).

By Lemma 3.9.9, the we can support the lowest common ancestor operation without increasing
the update time of T as stated in Theorem 3.9.1. The extra pointers we added from the leaves of
F to the leaves of T can also be updated without affecting the bound from Theorem 3.9.1, since
during any insertion/deletion of a point p, the two leaves corresponding to p in both F and T
must be located. Therefore, the total update time follows from Theorem 3.9.1.

86

3.9.7 Dynamic String

In this section we extend our results to dynamic strings. In the dynamic string problem, we wish
to support the following operations on a string A of length n, where each A[i] stores a character
drawn from the alphabet Σ = [1, σ], for 1 ≤ i ≤ n:

• Insert(i, c): Insert the character c between the characters A[i−1] and A[i]. This shifts the
characters in positions i to n to positions i+ 1 to n+ 1, respectively.

• Delete(i): Delete the character A[i]. This shifts the character in positions i + 1 to n to
positions i to n− 1, respectively.

• Modify(i, c): Set the character A[i] to c.

• Query(a, b): Let |A[a, b]|c denote the number of occurrences of character c in the range
A[a, b]. Report the set of characters Σ? such that for each c ∈ Σ?, |A[a, b]|c > α|j − i+ 1|.
As before, we refer to a character c ∈ Σ? as an α-majority in the range A[a, b], and the
query as a range α-majority query.

We now prove the following theorem:

Theorem 3.9.3. Given a string A[1, n] and a fixed α ∈ (0, 1), there is an O(n) word data
structure that supports range α-majority queries on A in O((lgn)/(α lg lgn)) time, Insert in
O((lgn)/α) amortized time, Delete in O((lgn)/α) amortized time, and Modify in O((lgn)/α)
amortized time.

Proof. We maintain our data structure T from Theorem 3.9.2, using standard techniques to
augment the tree slightly, so that instead of maintaining integer coordinates we maintain the
relative ordering of the characters in the string A. We also replace our range counting data
structures with the recent data structure of Navarro and Nekrich [124], which allows for efficent
range counting of characters via rank queries in O(lgn/ lg lgn) time. Their dynamic string data
structure also supports updates in o(lgn) time, yielding the theorem.

87

3.9.8 Higher Dimensions

In this section we generalize our dynamic results to higher dimensions:

Theorem 3.9.4. Given a set P of n points in d-dimensions, for any constant d ≥ 2, and a fixed
α ∈ (0, 1], there is an O(n lgd−1 n) word data structure that supports range α-majority queries on
P in O((lgd+1 n)/α) time, and insertions and deletions in O((lgd n)/α) amortized time.

Proof. We use the dynamic counting data structure of Chazelle [34], which occupies O(n lgd−2 n)
space and supports counting queries in O(lgd n) time, as well as insertions and deletions. Com-
bining this data structure with Theorem 3.9.1 we apply the range tree technique of Bentley [19]
as in the static case, and analyze the costs of the two dimensional structure. In two dimensions
we spend O((lg3 n)/α) time to answer a query, and our data structure occupies O(n lgn) words,
since each point is duplicated in O(lgn) one dimensional range majority structures. Update time
is O((lg2 n)/α), since we must update each of the O(lgn) range majority structures in O((lgn)/α)
time per structure. This dominates the cost of updating the counting structures by a factor of
1/α. Each additional dimension beyond the second adds a (lgn)-factor to the space, query, and
update cost.

3.10 Summary and Concluding Remarks

We have presented an O(n lgn) bit data structure that answers range majority queries in constant
time, and an O(n lgn(lg(1/α) + 1)) bit data structure that answers range α-majority queries in
O(1/α) time, for any fixed α ∈ (0, 1]. This result is interesting in light of the nearly logarithmic
cell-probe lower bounds of Greve et al. for the closely related problems of range mode and range
k-frequency [81].

Our data structure is based on an interesting tree decomposition method used to preprocess a
string such that each query is associated with a short list of candidate α-majorities. Then, using
techniques from the area of succinct data structures, each character in this short list is efficiently
checked in order to determine whether it is an α-majority for the given query. We have also
described a parameterized version of the query, where at query time the user specifies a β ∈ [α, 1]
along with an arbitrary range, and asks for the β-majorities in that range to be reported. We
have shown that this query is solvable in O(1/β) time, using no more space than the original

88

α-majority structure. Furthermore, we showed how to reduce the space of these data structures
using standard compression techniques. We also discussed a more space efficient variant of the
data structure that uses O((lg lgn)/α) time to report the α-majorities in a given range. We have
given applications of our data structure to the higher dimensional geometric problems described
by Karpinski and Nekrich [103], improving the space bounds for these. Finally, we have discussed
dynamic versions of the problem for both the case of coloured points on a line and strings. We
have given data structures in both cases that have optimal query time, as well as generalized our
structures to the case of points in higher dimensions.

89

Chapter 4

Explicit Bitprobe Data Structures

4.1 Introduction

In this chapter we examine the static membership problem in the bitprobe model (see Section 1.2).
According to Buhrman et al. [30], it is natural to study the problem of membership in the bitprobe
model, since to answer a query we need only one bit, indicating yes or no, rather than O(lg u).
By the same argument, there are other problems besides membership that are natural to study
in the bitprobe model. Consider the following problems, that, like membership, ask us to store a
subset E of n elements from an integer universe [1, u]:

1. Range Emptiness Problem: return whether [x1, x2] ∩ E = ∅ for 1 ≤ x1 ≤ x2 ≤ u.

2. Rank Problem: return the cardinality of [1, x] ∩ E for any x ∈ [1, u].

3. Range Counting Problem: return the cardinality of [x1, x2] ∩ E for 1 ≤ x1 ≤ x2 ≤ u.

As with membership, the number of bits required to encode an answer to these types of
queries does not depend on u. For emptiness—a generalization of membership—we require only
one bit, whereas for rank and counting we require no more than dlg(n+ 1)e bits. In fact, for rank
and counting, it might be natural to ask how much space a data structure that answers queries
using O(lg(k + 1) + 1) bit probes must occupy, where k is the value of the answer. Though we
mainly focus on the membership problem, it happens that many of the techniques we develop for

90

Probe f1(q)

Probe f2(q) Probe f2(q)

f1(q) = 1f1(q) = 0

Probe f3(q) Probe f3(q) Probe f3(q) Probe f3(q)

f2(q) = 0 f2(q) = 0f2(q) = 1 f2(q) = 1

Probe f1(q)

Probe f2(q) Probe f2(q)

f1(q) = 1f1(q) = 0

Probe f3(q) Probe f4(q) Probe f5(q) Probe f6(q)

f2(q) = 0 f2(q) = 0f2(q) = 1 f2(q) = 1

Probe f1(q)

Probe f2(q)

Probe f3(q)

Probe f1(q)

Probe f2(q)

Probe f3(q) Probe f4(q) Probe f5(q) Probe f6(q)

f1(q) = 0 f1(q) = 1f1(q) = 0 f1(q) = 1
f2(q) = 1 f2(q) = 0 f2(q) = 1f2(q) = 0

Figure 4.1: We use fi(q) to denote some function of the query element q. Top panel: an example of a decision tree
associated with a non-adaptive scheme (left); we can interpret it as being a path (right) as the same locations are
examined regardless of the intermediate bits probed. Bottom panel: an example of a decision tree associated with
an adaptive scheme (left). The final probe uses the bits returned by the first two probes to determine which function
to use; we can think of decision tree as a path, until the last probe, where a four-way branch takes place (right).

membership are rather generic, and can be modified to develop efficient bitprobe data structures
for the additional listed problems. We note that, as in the other chapters, the results appearing in
this chapter appear in a (currently unpublished) paper “Explicit Data Structures in the Bitprobe
Model”, which is joint work with Moshe Lewenstein, J. Ian Munro, and Venkatesh Raman.

Following the convention of previous work [30, 133, 134] we use the notation (n, u, s, t)-scheme
to refer to a data structure that uses s bits of memory to store any n element subset E of a universe
of size u, such that queries can be always be answered using at most t probes. For example, a
bit string together with direct access is a (n, u, u, 1)-scheme for the membership problem. There
are several ways of categorizing a (n, u, s, t)-scheme, which we now define:

• Deterministic or randomized:

In a deterministic scheme the answer provided by the query algorithm must always be
correct, and neither the storage scheme nor the query algorithm has access to random
bits. In a randomized scheme the query algorithm may use random bits to decide which
locations to probe in the data structure, and is also permitted to answer incorrectly with
some failure probability, denoted ε. However, in a randomized scheme the storage scheme
(i.e., the method to compute the data structure) must be deterministic. Given that the

91

number of probes to be made is bounded, randomized schemes are Monte Carlo rather than
Las Vegas. We focus only on deterministic schemes, but note that randomized schemes for
membership have been studied [125].

• Non-adaptive or adaptive:

In non-adaptive schemes the locations of the data structure to be probed are fixed based
only on the query. In contrast, in adaptive schemes the location of only the first probe is
fixed based on the query, whereas the locations of subsequent probes can also depend upon
the bits returned by prior probes. Thus, we can think of an adaptive scheme as a binary
decision tree of depth t, where the root represents the first bit read, and the left/right
children represent the location of which bit to read next, depending on whether the root
represents a zero/one, respectively. Note that to be adaptive, the scheme need only have
two nodes at the same level in the tree where the locations probed differ. See Figure 4.1
for an example.

Unlike previous work, we further refine the distinction between different adaptive schemes.
Let us define a ρ-adaptive scheme as one where only the bottom ρ levels in the tree probe
different locations. Thus, in terms of the decision tree in Figure 4.1 (bottom panel), only
the lowest level in the tree contains nodes where the locations probed differ, so the scheme
is 1-adaptive.

Remark 4.1.1. In response to the above definition a natural question might be, “If a scheme
makes ρ adaptive probes, must they be the final ρ probes? Why not have a scheme perform
some adaptive probes before some later non-adaptive probes?” Such a scheme would be
perfectly valid, though we suspect that deferring adaptivity to the final ρ probes does not limit
it in any way, as the query algorithm would have access to additional bits of information.

From the above discussion we note that any non-adaptive scheme can simulate a ρ-adaptive
t-probe scheme, at the cost of doing exponentially more probes (i.e., 2t − 2t−ρ−1 in total):
simply probe each unique locations specified in the decision tree and examine the bits to
determine the path that would have been followed by the adaptive scheme.

• Non-explicit or explicit: A non-explicit scheme can be thought of as an existential proof.
It shows that there is a storage scheme that achieves the desired space bounds, such that
membership queries can be answered in the desired number of probes, but does not provide

92

intuition as to how to construct it efficiently, or how the query algorithm would compute
which bits to probe. On the other hand, explicit schemes are divided into two categories:

1. Explicit storage scheme: an explicit storage scheme is one that, given E , can compute
the data structure of s bits in time polynomial in s.

2. Explicit query scheme: an explicit query scheme is one where the locations of the bit
probes to be performed by the query algorithm are computable in time polynomial in
t and lg u, for any query element q ∈ [1, u].

We use the terminology fully explicit scheme to describe a scheme that is both an explicit
storage scheme and an explicit query scheme.

We present several new data structures for the bitprobe model that are deterministic, adaptive,
and fully explicit. In particular, we are interested in the case where the number of probes, t,
is small and does not depend on the size of the universe, u. We discuss our results in detail in
Section 4.3, but first review the previous work in this area, and introduce some definitions.

4.2 Previous Results

We begin with the problem of membership and discuss deterministic upper and lower bounds. We
then discuss the well-studied special case where n = 2. After that we discuss some properties of
the previous results, and introduce some new terminology. Finally, we discuss previous results for
rank, range counting and emptiness queries in the bitprobe models. Note that in the remainder
of this chapter, we ignore floor and ceiling operators, except in cases where asymptotic behaviour
is affected.1

4.2.1 Deterministic Schemes for Membership

When discussing previous work, we adopt the notation of Radhakrishnan, Shah, and Shanni-
grahi [134] and use sN (n, u, t) to denote the minimum space s such that there exists a determin-
istic non-adaptive (n, u, s, t)-scheme. We use sA(n, u, t) analogously for adaptive schemes.

1Note also that in this chapter there is no implicit ceiling operator on lg x.

93

The first effort to address the worst-case behaviour of the membership problem in the bitprobe
model was that of Buhrman et al. [30]. They showed that(

u

n

)
≤ max

i≤nt

(
2sA(n, u, t)

i

)
. (4.2.1)

As pointed out by Alon and Feige [3] this bound can be written as:

sA(n, u, t) = Ω(tn1−1/tu1/t), (4.2.2)

when n ≤ u1−ε, for a constant ε > 0. The bound is proved via an information theoretic argument.
Note that this bound implies that the trivial (n, u, u, 1)-scheme is optimal to within constant
factors, when n ≤ u1−ε, for some constant ε > 0. It also implies (Corollary 1.1 in [30]) that
FKS-hashing makes an optimal number of probes (to within a constant factor) for schemes that
use Θ(n lg u) bits of space, when n ≤ u1−ε, for some constant ε > 0. For the case when n = Θ(u),
which is not covered by the lower bound of Inequality 4.2.1, Viola [153] has shown that, for all
sufficiently large u divisible by 3, sA(u/3, u, t) ≥ lg

(u
u/3
)
+u/2O(t)−lg u. Pagh [127] asymptotically

improved upon the number of probes required by FKS-hashing by describing a scheme that uses
Θ(lg(u/n) + 1) probes.

When both t and n are very small relative to u, the primary concern is with the exponent
of u. In particular, the goal is to make the exponent as close to the Equation 4.2.2 lower bound
of 1/t as possible, even though—as we shall see—it is not possible even when n = 2. For upper
bounds, Buhrman et al. showed

sN (n, u, t) = O(ntu4/(t+1)) for odd t, and (4.2.3)

sA(n, u, t) = O(nt′u1/t′), (4.2.4)

where t′ = t−Θ(lgn+ lg lg u) and t′ > 0.2 The first bound (Equation 4.2.3) is non-explicit and
relies on the existence of a special kind of expander graph, whereas the second is fully explicit
and generalizes FKS-hashing. The first bound shows that non-adaptivity is not too restrictive,
since the exponent in the space bound for the non-adaptive scheme is only about four times
larger than that of the lower bound in Equation 4.2.2. Compare this with our earlier discussion

2Our quoted bound matches the one stated in the proof of Theorem 7 (part 2), rather than the bound stated
in the theorem itself.

94

Type Bound Constraints Reference
Lower Bound

(u
n

)
≤ maxi≤nt

(2sA(n,u,t)
i

)
[30]

Lower Bound sA(n, u, t) = Ω(tn1−1/tu1/t) n ≤ u1−ε for ε > 0 [30, 3]
Lower Bound sA(u/3, u, t) ≥ lg

(u
u/3
)

+ u/2O(t) − lg u u divisible by 3 [153]
Lower Bound sN (n, u, 3) = Ω(n1/2u1/2/ lg1/2 u) Valid when n > 16 lg u [3]
Upper Bound† sA(n, u,Θ(lg u)) ≤ lg

(u
n

)
+ o(lg

(u
n

)
) [29, 126, 128]

Upper Bound† sA(n, u,Θ(lg(u/n)) ≤ Θ(lg
(u
n

)
) [127]

Upper Bound† sA(n, u, t) = O(nt′u1/t′) t′ = t−Θ(lgn+ lg lg u) and [30]
t > Θ(lgn+ lg lg u)

Upper Bound† sA(n, u, t) = O
(
tnu1/(t−n+1)

)
t > n ≥ 2 [134]

Upper Bound sA(n, u, t) = O
(
ntu1/(t−(n−1)(t−1)21−t)

)
t > n ≥ 2 [134]

Upper Bound sN (n, u, t) = O(ntu4/(t+1)) t is odd [30]
Upper Bound† sA(n, u, dlg lgne+ 2) = o(u) n = O(u1/ lg lg u) [133]
Upper Bound† sA(n, u, dlg(n+ 1)e+ 1) ≤ (n+ dlg(n+ 1)e)

√
u [133]

Upper Bound sA(n, u, 2) = O((un lg(lg(u)/n))/ lg u) n < lg u [3]
Upper Bound sA(n, u, 3) = O(n1/3u2/3) [3]
Upper Bound sN (n, u, 4) = O(n1/3u2/3) [3]
Upper Bound† sN (n, u,Θ(

√
n lgn)) = O(

√
un lgn) [137]

Table 4.1: Summary of results for deterministic membership schemes in the bitprobe model. A dagger (†) in the
“Type” column indicates that the scheme is fully explicit.

of simulating an adaptive scheme using a non-adaptive scheme that proved non-adaptivity was
no more than exponentially worse. The exponent in the second bound (Equation 4.2.4) matches
that of Equation 4.2.2, after subtracting Θ(lgn+lg lg u) probes. Note that the lg lg u term comes
from reading prime numbers stored by the data structure.

Radhakrishnan, Raman, and Rao [133] focused on explicit deterministic constructions for
small numbers of probes, describing a fully explicit scheme that, for n = O(u1/ lg lg u), shows
sA(n, u, dlg lgne + 2) = o(u). They also gave the following fully explicit bound: sA(n, u, dlg(n +
1)e + 1) ≤ (n + dlg(n + 1)e)

√
u. The idea is to divide the universe into buckets of size

√
u, and

assign dlg(n + 1)e + 1 bits to each bucket, indicating the rank of the largest element stored in
the bucket. Rao [137] described several non-adaptive schemes. His main non-adaptive result is a
fully explicit scheme showing that: sN (n, u,Θ(

√
n lgn)) = O(

√
un lgn).

Later, Alon and Feige [3] improved the first result of Radhakrishnan, Raman, and Rao,
for the case when n < lg u, by providing an explicit storage scheme showing sA(n, u, 2) =
O((un lg(lg(u)/n))/ lg u). The storage scheme makes use of an explicit construction of regular bi-

95

partite graphs of high girth, combined with an application of Hall’s Theorem. They also describe
non-explicit schemes showing that sA(n, u, 3) = O(n1/3u2/3), and sN (n, u, 4) = O(n1/3u2/3),
based on similar graph and hypergraph theoretic techniques. They note that if the number of
probes is increased to a larger constant, these non-explicit schemes can be converted into explicit
storage schemes. Finally, they showed that if n > 16 lg u, sN (n, u, 3) = Ω(n1/2u1/2/ lg1/2 u). This
lower bound is proved using techniques from extremal hypergraph theory.3

Radhakrishnan, Shah, and Shannigrahi [134] presented two results. The first is a fully explicit
scheme that, for t > n ≥ 2, shows

sA(n, u, t) = O
(
tnu1/(t−n+1)

)
. (4.2.5)

The second result is a non-explicit scheme that, for t > n ≥ 2, shows

sA(n, u, t) = O
(
ntu1/(t−(n−1)(t−1)21−t)

)
. (4.2.6)

Equation 4.2.5 is proved using a recursive unary encoding scheme, whereas Equation 4.2.6 is
proved by a probabilistic argument. The probabilistic argument essentially sends all the elements
in E into one table from a set of 2t−1 possible tables. Each table has its own hash function, which
is assumed to assign elements to table entries uniformly at random. The argument shows that
false positives can be avoided by deleting at most half the elements from the universe. Thus, by
remapping to a universe of size 2u, we can store a universe of size u using this scheme. Note that
although both Equations 4.2.5 and 4.2.6 approach the optimal space bound exponent for fixed
n and sufficiently large t, the second bound is significantly stronger when n is close to t. Thus,
there is a significant gap between existing explicit and non-explicit schemes. For the non-explicit
scheme of Equation 4.2.6, we note that the first t − 1 probes are non-adaptive: the scheme is
1-adaptive. This is in contrast to the explicit scheme of Equation 4.2.5 that is (t− 1)-adaptive.

We return later in this section to introduce some terminology related to these schemes, but
first discuss a special case of the membership problem.

3See also a survey by Blue [20] of the techniques used by Alon and Feige for non-adaptive upper and lower
bounds.

96

Scheme Lower Bound Upper Bound Constraints Reference
sA(2, u, 1) Ω(u) O(u)† [30]
sA(2, u, 2) Ω(u4/7) O(u2/3)† Ω(u2/3) lower bound for a restricted class [134, 133]
sA(2, u, 3) Ω(u1/3) O(u2/5) [30, 134]
sN (2, u, 2) Ω(u) O(u)† [30]
sN (2, u, 3) Ω(

√
u) O(

√
u)† [30, 134]

sA(2, u, t) Ω(u1/t) O(t2u1/(t−1))† [134]
sA(2, u, t) Ω(u1/t) O

(
tu1/(t−(t−1)21−t)

)
[134]

Table 4.2: Summary of results for deterministic membership schemes in the bitprobe model, for the special case
when n = 2. A dagger (†) indicates that the scheme is fully explicit.

The case when n = 2:

If n = 1 then the scheme we discussed earlier can achieve the bound sA(1, u, t) ≤ tu1/t, which
matches the exponent-of-u in the lower bound of Equation 4.2.2. The idea is to store t charac-
teristic bit vectors; one for each 1/t-th fraction of the bits of the sole element to be stored.

The first non-trivial special case of the membership problem that has been studied heavily,
though is still not very well understood, is when t = 2. Equation 4.2.2 implies sA(2, u, 1) = Ω(u),
which raises the question of how the bound behaves for other values of t. We summarize the
results for this special case in Table 4.2.

Buhrman et al. [30] showed that for non-adaptive schemes, adding a second probe does not
improve the space bound over one probe, i.e., sN (2, u, 2) = Ω(u). However, if adaptivity is
permitted, then it is possible to get a o(u) space bound. This shows a strict separation between the
power of adaptive and non-adaptive probes. However, rather surprisingly, even the 2-probe case
is still not completely settled! For upper bounds, Radhakrishnan, Raman, and Rao [133] showed
that sA(2, u, 2) = O(u2/3) via a subtle fully explicit scheme. They also proved a matching lower
bound for a restricted class of schemes, but could not show it in general. Later, Radhakrishnan,
Shah, and Shannigrahi [134] showed that sA(2, u, 2) = Ω(u4/7) by modelling the problem as a
graph, and making a forbidden subgraph argument. Interestingly, this is the only lower bound
for adaptive schemes that beats the bound of Equation 4.2.2 when n� u. They also conjectured
that the true lower bound asymptotically matches the O(u2/3) upper bound.

For t = 3, the complexity of non-adaptive schemes is settled asymptotically [30, 134]: it is
known that sN (2, u, 3) = Θ(

√
u). However, for adaptive schemes there are no lower bounds other

97

than that of Equation 4.2.2. Plugging n = 2 and t = 3 into Equation 4.2.6 implies there is a non-
explicit scheme with sA(2, u, 3) = O(u2/5), whereas the fully explicit scheme of Equation 4.2.5
only yields the bound sA(2, u, 3) = O(u1/2). For general values of t ≥ 3 in the n = 2 case, the
scheme of Equation 4.2.6 yields the following bound:

sA(2, u, t) = O
(
tu1/(t−(t−1)21−t)

)
. (4.2.7)

Radhakrishnan, Shah, and Shannigrahi [134] pointed out that by using limited independence
their scheme can be turned into explicit storage scheme. However, they left finding a fully explicit
scheme that matches their non-explicit bound in this case as an open problem.

Blocking Schemes

We observe that the functions used to determine the locations to probe on the first t− 1 probes
for the non-explicit scheme of Equation 4.2.6 have a particular format. In particular, if the space
bound of the non-explicit scheme is Θ(uc) for some constant c > 0—let us treat t as a constant
to simplify the discussion—then the scheme divides the bits of the query element q into blocks
B1(q), ..., Bt(q), where the first t−1 blocks consist of cdlg ue bits, and the t-th block is potentially
smaller. We refer to such a scheme that divides the bits of the query element into blocks, such
that the location of probe i, 1 ≤ i ≤ t − 1 is specified by (the number represented by) Bi(q),
as blocking. Note that this definition makes no claims about the function used to determine the
final probe. Thus, in the terminology of this section, the non-explicit scheme of Equation 4.2.6
is blocking, whereas the explicit scheme of Equation 4.2.5 is not.

Explicit Schemes and Cramér’s Conjecture

There are two separate issues that must be addressed in order to make an the non-explicit scheme
of Radhakrishnan, Shah, and Shannigrahi (Equation 4.2.6) explicit. The first is that the analysis
makes use of a non-trivial re-mapping phase, where as many as half the elements in the universe
are deleted because they have certain bad properties. Thus, implementing the scheme seems to
force the query algorithm to do significant preprocessing—i.e., polynomial in s work—in order to
determine where in the data structure to probe when presented with a query element.

98

The second (and perhaps more important) issue is that the location of the t-th probe is
assumed to be computed using a set of independent hashing functions. Since the query algorithm
only knows n, u, and t a priori, this raises the question of how such a set of hash functions can be
computed. For example, if the hash functions use prime numbers of size Θ(p) then these primes
must be acquired by the query algorithm. This can either be done by computing them using a
pre-defined deterministic strategy that matches the one used by the data structure, or by reading
them in Θ(lg p) bit probes from the data structure. Indeed, the FKS-based scheme of Buhrman et
al. does the latter, which accounts for the lg lg u term in the exponent in their space bound. If we
choose the former strategy, we make the observation that computing a prime number of size Θ(p)
is a well studied problem, and currently all deterministic methods that take O(polylog(p)) time
for this problem rely on Cramér’s Conjecture [145] (or similar conjectures). Informally, Cramér’s
Conjecture states that the difference between consecutive primes is polylogarithmic in the size
of the primes. Without assuming any such conjecture the best time bound for deterministic
algorithms is Õ(p0.525) [145]. Thus, unless we assume Cramér’s conjecture, we cannot make use
of arbitrary prime numbers of size Θ(uε), for some constant ε > 0, in an explicit scheme.

4.2.2 Rank, Range Counting, and Emptiness

Unlike the membership problem, there appear to be no previous upper bounds for the static
rank, counting, and emptiness problems specifically designed for the bitprobe model. This is in
contrast to the dynamic versions of these problems, where techniques mentioned above can be
used [129, 135]. However, in the static case, there are well-known word-RAM solutions that can
solve all three problems simultaneously (by reducing them to rank queries). Note that a trivial
solution based on balanced search trees occupies Θ(n lg u) bits, and uses Θ(lgn lg u) bit probes
to answer a query. To improve the number of bit probes to Θ(lg u), the fully indexable dictionary
of Lemma 1.5.4 can be used, which occupies lg

(u
n

)
+ O(u lg lg u/ lg u) bits of space.4 For the

range emptiness problem, Alstrup, Brodal, and Rauhe [6] describe a data structure that answers
queries in Θ(lg u) bit probes, and occupies O(n lg u) bits.

For a survey of other data structures in the bitprobe model see the recent survey by Nicholson,
Raman, and Rao [125].

4As noted in Section 1.5.3, the O((u lg lg u)/ lg u) term can be improved to O(u/polylog(u)) [128], and other
trade-offs are available [83].

99

4.3 Our Contributions

4.3.1 Membership

In Section 4.4, we present new explicit deterministic schemes for membership in the bitprobe
model. We have two main results, one for the special case when n = 2, and one for the more
general case for n ≥ 3.

Result for n = 2:

We answer the open problem of Radhakrishnan, Shah, and Shannigrahi [134] and provide a fully
explicit scheme demonstrating sA(2, u, 3) = O(u2/5). Furthermore, we generalize this scheme to
t ≥ 3 probes, yielding the following fully explicit bound:

sA(2, u, t) ≤ (2t − 1)u1/(t−22−t). (4.3.1)

For t > 3, and 2t = o(uε) for any constant ε > 0, the exponent of u in this bound is smaller
than that of Equation 4.2.7. Thus, we not only make the scheme fully explicit, but show how to
improve the best previous exponent for the case of n = 2. We note that the non-explicit scheme
in Equation 4.2.7 uses adaptivity on only the final probe, whereas our scheme uses adaptivity on
every probe, with the exception of the first. We believe this added adaptivity is the reason we
are able to sidestep the issues discussed in Section 4.2.1. We provide a commentary on what we
believe are the limitations of our approach, and why it appears difficult to generalize this method
to larger values of n in Section 4.4.2.

Result for n ≥ 3:

We describe a fully explicit adaptive scheme for n ≥ 3, and 2t = o(uε) for any constant ε > 0,
that significantly improves upon the bounds of Equation 4.2.5, and also works for a wider range
of values for t. In particular, for n ≥ 3 and t ≥ 2blg(n)c+ 1 we get the following bound:

sA(n, u, t) ≤ (2t − 1)u1/(t−min{2blgnc,n−3/2}). (4.3.2)

100

It is important to note that the exponent in Inequality 4.3.2 is not only significantly better than
that of Equation 4.2.5, but is also applicable in the range t ∈ [2blg(n)c + 1, n]; both the fully
explicit and non-explicit scheme of Radhakrishnan et al. [134] require t > n. We also note that this
scheme improves the exponent of the FKS-based scheme of Buhrman et al. [30] (Equation 4.2.4)
by removing the dependence on lg lg u from the exponent of u.

4.3.2 Rank, Range Counting, and Emptiness

In Section 4.5, we modify the fully explicit membership data structure of Inequality 4.3.2 to solve
the rank problem, achieving the following bound, for t ≥ dlg(n+ 1)e+ 2blg(n− 2)c+ 2:

sA(n, u, t) ≤ (2t − 1)dlg(n+ 1)eu1/(t−dlg(n+1)e−2blg(n−2)c−1). (4.3.3)

As far as we are aware this is the first non-trivial bit probe scheme for the rank problem. Since
two rank queries can be used to solve range counting and emptiness queries, in Section 4.6 we
observe that the same space bound applies to those problem, though with double the number of
probes. Finally, we observe some trade-offs for the range emptiness problem, and show that even
a constant number of probes suffice to reduce the quadratic (in u) space required by a one probe
scheme to linear. In Section 4.7 we conclude with a brief summary and a few remarks.

4.4 Membership Queries

4.4.1 Fully Explicit Adaptive Schemes for Two Elements

In this section we prove Inequality 4.3.1. We begin by explaining a special case of the equation
in detail.

Theorem 4.4.1. There is an explicit adaptive (2, u, 7u2/5, 3)-scheme for the membership problem.
The scheme is 2-adaptive, and blocking.

Proof. We define a subblock to be dlg ue/5 consecutive bits. A block is two consecutive subblocks.
Let z ∈ [0, u − 1] be an integer5, and zi be the i-th bit in the binary representation of z, for

5For notational convenience, we remap the universe [1, u] to [0, u− 1] in the following proofs.

101

0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 0 0 0 0 1

B1,1 B1,2 B2,1 B2,2 B3

x

y

` = 2
g = 1

Figure 4.2: Given integers x = 341, and y = 321, and a universe [0, 1023], we divide the bits of x and y into blocks.

1 ≤ i ≤ dlg ue, where z1 is the most significant bit. We divide the binary representation of
z into blocks, B1(z), ..., B3(z), where Bj(z) are bits z(j−1)χ+1, z(j−1)χ+2, ..., zmin(jχ,dlg ue), where
1 ≤ j ≤ t and χ = 2dlg ue/5. The block B3(z) is special in that it is not a complete block: i.e.,
it will only consist of one subblock, rather than two. Finally, we use Bj,k(z) to denote the k-th
subblock of the j-th block of z, for 1 ≤ k ≤ 2. An illustration of these definitions can be found in
Figure 4.2. Note that in the following description when we refer to a particular block or subblock,
we are referring to the binary number represented by the bits contained in the block, following
the convention that the leftmost bit is the most significant bit.

Our scheme stores 7 tables. Each table is denoted TS , where S is a bit string in {ε, 0, 1, 00, 01,
10, 11}, and ε represents the empty string. Each table occupies u2/5 bits. Thus, the total space
is 7u2/5.

We begin by describing the algorithm for searching the data structure. Let q be the element
we are searching for:

1. We probe table Tε at location B1(q), and are given bit r1.

2. We probe table Tr1 at location B2(q), and are given bit r2.

3. We read the bit r3 by probing table Tr1r2 at location:

(
(B1,r2+1(q) +B2,r1+1(q)) mod u1/5

)
u1/5 +B3(q). (4.4.1)

4. If r3 = 1 then we return YES, otherwise we return NO.

Next we describe how to construct the data structure, i.e., set the bits. Consider the two
elements x, y ∈ [0, u− 1] that we wish to store, and assume without loss of generality that x < y.

102

u
1
5

Tε

T0

T1

0 0
1

1
0

1

0
1
0
0
0
0
0

0
0
0
0

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

1

1
1
1
1
1
1
1
1
1
1
1
1
1

Tε

T0

T1

1

0
1
0
0
0
0
0

0

Tε

T0

1

0
0
0

1

0
0
0

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0

0
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1 1

1
1

0
0
0
0

0
0
0
0

0
1
0
0

0

` = 1, g = 1 ` = 1, g = 2 ` = 2, g = 1 ` = 2, g = 2

T1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Tε

1
0

0
0

0

0
0
0
0
0 0

0
0

0
0
0
0

0
0
0
0

0
0
0
0

0

T1

0
1
0
0
0
0
0
1
0
1
0
0
0
1
0
0

0
0
0

0
0
0

x

y

x

y

x

x

y

y
u

2
5

0

T0

Figure 4.3: Four cases illustrating how to set the bits in tables Tε, T0, and T1. In this example the universe is the
range [0, 1023].

Let ` be the smallest integer such that B`(x) differs from B`(y), and g be the smallest integer
such that B`,g(x) differs from B`,g(y). See Figure 4.2 for an example. Let g′ = g− 1: it is one bit
representing in which subblock x and y differ. We next argue that we can assume ` < 3, since a
trivial assignment exists in the alternate case.

If ` = 3 or x = y, then we are free to store x and y in any of the 7 tables {TS}, where |S| = 2.
Without loss of generality, assume we choose T11. Thus, we assign the characteristic bit vector of
B1(x) to table Tε, and the characteristic bit vector of B2(x) to table T1. In the final table, T11,
we store (at most) two ones in the locations that can be computed by plugging in x and y into
Equation 4.4.1. All other entries are set to zero. It is not difficult to see that the search for q will
function correctly for this assignment, because of the fact that x and y are identical in all blocks
except possibly B3.

If ` = 1, then let Sx = 0g′, and Sy = 1g′. Otherwise, if ` = 2, then let Sx = g′0, and Sy = g′1.
Our aim is to store x in TSx and y in TSy , and ensure that the search algorithm always returns
the correct result. We use the notation Sz,β to denote the β-bit prefix of Sz. For example, if
Sz = 01, then Sz,0 = ε, Sz,1 = 0, Sz,2 = 01.

We now describe the assignment of bits to the tables:

1. For the value β ∈ [0, 1], where β 6= ` − 1, we describe how to set the values in TSz,β , for

103

z ∈ {x, y}. Let v be the (β + 1)-th bit of Sz. If v is a 0, then we set the bit in location
Bβ+1(z) to 0, and all other bits to 1 in TSz,β . Otherwise, if v is 1, then we set the bit in
location Bβ+1(z) to 1, and all other bits to 0.

2. Next, we explain how to set the bits in T̂ = TSx,`−1 = TSy,`−1 . We store a 0 in location B`(x),
and a 1 in location B`(y) in T̂ . All locations γx 6= B`(x), such that bγx/u(1−g′)/5c ≡ B`,g(x)
mod u1/5 are assigned a 1. All locations γy 6= B`(y), such that bγy/u(1−g′)/5c ≡ B`,g(y)
mod u1/5 are assigned a 0. After setting the tables in the way described above, we perform
a search for x and y using the search algorithm, and set the two bits corresponding to x and
y to 1 in tables TSx and TSy , respectively. Finally, all table locations that remain unspecified
are set to 0. We give an example of how to set tables Tε, T0, and T1 in each of the four
cases in Figure 4.3.

All that remains is to prove that the search algorithm will always return the correct result,
provided we set the bits as described above. In the first case, if the query element q is equal to
either x or y, then we will return YES, which is correct. In the second case, suppose q 6= x and
q 6= y, and Sq is the sequence of first 2 bits returned by the search algorithm for q. If Sq 6= Sx
and Sq 6= Sy, then we will return NO—since all tables are zeroed out except those containing x
and y—which is correct. Otherwise, suppose Sq = Sz where z ∈ {x, y}; note that we can assume
Sx 6= Sy by the assumption that ` < 3. If q differs from z in block B3, then the search algorithm
will return NO, which is correct. Thus, we can assume q differs from z somewhere other than
block B3. Consider the table TSq,β = TSz,β , where β ∈ [0, 1] and β 6= `− 1, and let v denote the
value of the (β+1)-th bit in Sq. Since the table TSz,β contains only one location that stores bit v,
we can infer that q and z can differ only in block `. However, B`,g(q) 6= B`,g(z), according to the
way we set the bits in table T̂ , since q 6= z. Based on the discussion above, we have that either:

1. B1,r2+1(q) 6= B1,r2+1(z) and B2,r1+1(q) = B2,r1+1(z); or

2. B1,r2+1(q) = B1,r2+1(z) and B2,r1+1(q) 6= B2,r1+1(z).

This implies the following:

(
(B1,r2+1(q) +B2,r1+1(q)) mod u1/5

)
6=
(
(B1,r2+1(z) +B2,r1+1(z)) mod u1/5

)
, (4.4.2)

104

and we will return the correct answer of NO. This completes the proof of correctness.

Now we give the generalization without as much intuition:

Theorem 4.4.2. For t ≥ 3, there is a fully explicit adaptive (2, u, (2t − 1)u1/(t−22−t), t)-scheme
for the membership problem. The scheme is (t− 1)-adaptive, and blocking.

Proof. We define a subblock to be (dlg ue/(t2t−2−1)) consecutive bits. A block is 2t−2 consecutive
subblocks. Let z ∈ [0, u− 1] be an integer, and zi be the i-th bit in the binary representation of
z, for 1 ≤ i ≤ dlg ue, where z1 is the most significant bit. We divide the binary representation
of z into blocks, B1(z), ..., Bt(z), where Bj(z) are bits z(j−1)χ+1, z(j−1)χ+2, ..., zmin(jχ,dlg ue), where
1 ≤ j ≤ t and χ = ((2t−2)dlg ue)/(t2t−2−1). The block Bt(z) is special in that it is not a complete
block: i.e., it will only consist of 2t−2 − 1 consecutive subblocks, rather than 2t−2. Finally, we
use Bj,k(z) to denote the k-th subblock of the j-th block of z, for 1 ≤ k ≤ 2t−2. Note that in
the following description when we refer to a particular block or subblock, we are referring to the
binary number represented by the bits contained in the block, following the convention that the
leftmost bit is the most significant bit.

Our scheme stores 2t − 1 tables. Each table is denoted TS , where S is a binary string of
length between 0 (an empty string), and t − 1 bits. Each table TS , where |S| ≤ t will store
u(2t−2)/(t2t−2−1) bits. The sum of the sizes of these tables is no more than the space bound
claimed in the statement of the theorem.

We begin by describing the algorithm for searching the data structure:

1. Let q be the query element, S be an empty binary string, and i = 1.

2. We probe table TS at location Bi(q), and are given bit ri. We append ri to S (i.e., add ri

to the end of S) and increment i. If i ≤ t− 1, then we repeat this step.

3. At this point S consists of t − 1 bits. Let S[j] be the binary number that results from
deleting the j-th digit (counting left to right) from S. We read the bit rt by probing table
TS at location:t−1∑

j=1
Bj,S[j]+1(q)

 mod u1/(t2t−2−1)

u(2t−2−1)/(t2t−2−1) +Bt(q). (4.4.3)

105

4. If rt = 1 then we return YES, otherwise we return NO.

Next we describe how to construct the data structure, i.e., set the bits. Consider the two
elements x, y ∈ [0, u− 1] that we wish to store, and assume without loss of generality that x < y.
Let ` be the smallest integer such that B`(x) differs from B`(y), and g be the smallest integer
such that B`,g(x) differs from B`,g(y). We next argue that we can assume ` < t, since a trivial
assignment exists in the alternate case.

If ` = t or x = y, then we are free to store x and y in any of the 2t−1 tables {TS}, where
|S| = t − 1. Without loss of generality, assume we choose TS′ , where S ′ is t − 1 ones. Thus, we
assign the characteristic bit vector of B1(x) to table Tε, B2(x) to table T1, B3(x) to table T11, and
so on. In the final table, TS′ , we store (at most) two ones in the locations that can be computed
by plugging in x and y into Equation 4.4.3. All other entries are set to zero. It is not difficult to
see that the search algorithm will function correctly for this assignment, because of the fact that
x and y are the identical in all blocks except possibly Bt.

Let g1, ..., gt−2 be the digits of the binary representation of g−1, Sx = g1, g2, ..., g`−1, 0, g`, ...,
gt−2, and Sy = g1, g2, ..., g`−1, 1, g`, ..., gt−2. We use the notation Sz,β to denote the β-bit prefix
of Sz. For each β ∈ [0, t − 2], where β 6= ` − 1, we describe how to set the values in TSz,β , for
z ∈ {x, y}. Let v be the (β + 1)-th bit of Sz. If v is a 0, then we set the bit in location Bβ+1(z)
to 0, and all other bits to 1 in TSz,β . Otherwise, if v is 1, then we set the bit in location Bβ+1(z)
to 1, and all other bits to 0. We now explain how to set the bits in T̂ = TSx,`−1 = TSy,`−1 . We
store a 0 in location B`(x), and a 1 in location B`(y) in T̂ . All locations γx 6= B`(x), such that
bγx/u(2t−2−1−g)/(t2t−2−1)c ≡ B`,g(x) mod u1/(t2t−2−1) are assigned a 1. All locations γy 6= B`(y),
such that bγy/u(2t−2−1−g)/(t2t−2−1)c ≡ B`,g(y) mod u1/(t2t−2−1) are assigned a 0. After setting
the tables in the way described above, we perform a search for x and y using the search algorithm,
and set the two bits corresponding to x and y to 1 in tables TSx and TSy , respectively. Finally,
all table locations that remain unspecified are set to 0.

All that remains is to prove that the search algorithm will always return the correct result,
provided we set the bits as described above. In the first case, if the query element q is equal to
either x or y, then we will return YES, which is correct. In the second case, suppose q 6= x and
q 6= y, and Sq is the sequence of first t− 1 bits returned by the search algorithm for q. If Sq 6= Sx
and Sq 6= Sy, then we will return NO—since all tables are zeroed out except those containing x
and y—which is correct. Otherwise, suppose Sq = Sz where z ∈ {x, y}; note that we can assume

106

Sx 6= Sy by the assumption that ` < t. If q differs from z in block Bt, then the search algorithm
will return NO, which is correct. Thus, we can assume q differs from z somewhere other than
block Bt. Consider any table TSq,β = TSz,β , where β ∈ [0, t − 2] and β 6= ` − 1, and let v denote
the value of the β-th bit in Sq. Since the table contains only one location that stores v, we can
infer that q and z can differ only in block `. However, B`,g(q) 6= B`,g(z), according to the way we
set the bits in table T̂ , since q 6= z. Thus, the following equation holds:t−1∑

j=1
Bj,Sq [j]+1(q)

 6≡
t−1∑
j=1

Bj,Sz [j]+1(z)

 mod u1/(t2t−2−1), (4.4.4)

and we will return the correct answer of NO. This completes the proof of correctness.

4.4.2 Limitations of the Blocking Scheme Approach for n ≥ 3

In this section we discuss ρ-adaptive schemes for ρ < t− 1, and, based on this discussion, explain
why the techniques of the Theorem 4.4.2 appear to be limited to the case of n = 2.

We begin by noting that, based on our earlier discussion, there is a fully explicit (2, u, 7u2/5, 4)-
scheme that is blocking and 1-adaptive; we simulate the 2-adaptive scheme of Theorem 4.4.1 with
3 non-adaptive probes, followed by a single adaptive probe. This raises the question of whether
there is a trade-off between adaptivity and space for fully explicit schemes.

In an attempt to answer this question, we describe a t-probe blocking scheme that is (t− 2)-
adaptive, but requires more space than the t-probe (t − 1)-adaptive blocking scheme of Theo-
rem 4.4.2. We note that a special case of the following theorem is the first fully explicit 2-adaptive
(2, u,Θ(u1/3), 4)-scheme: the previous explicit 4-probe schemes that achieve Θ(u1/3) space is 3-
adaptive [134].

Theorem 4.4.3. For any t ≥ 4, there is a

(2, u, (2t − 2)u2t−3/((t−1/2)2t−3−1), t)-scheme

that is (t− 2)-adaptive, and blocking.

Proof. The idea is similar to the proof of Theorem 4.4.2, with some minor changes; to help with
understanding we have included a running commentary on the values of various parameters for the

107

case when t = 4. A microblock is (lg u)1/((t−1/2)2t−3−1) consecutive bits, whereas a miniblock
is (lg u)2t−4/((t− 1/2)2t−3− 1) consecutive bits. Thus, for the case of t = 4 a microblock has the
same size as a miniblock: lg u/6 bits. A block is 2t−3 consecutive microblocks, or, equivalently,
2 consecutive miniblocks. In the case when t = 4, a block is the size of either two miniblocks or
two microblocks. We use the same notation as in Theorem 4.4.2, except Bj,k(z) is used to denote
the k-th microblock of the j-th block of z, and B̂j,k(z) is used to denote the k-th miniblock of the
j-th block of z; for the t = 4 case this notational change makes no difference. Since the scheme
is non-adaptive on the first two probes, we use Tε1 to denote the first table probed and Tε2 to
denote the second table probed.

We now describe the algorithm for searching the data structure:

1. Let q be the query element. Probe tables Tε1 and Tε2 at locations B1(q) and B2(q) to get
bits r1 and r2, respectively.

2. Let S = r1r2, and i = 3.

3. We probe table TS at location Bi(q), and are given bit ri. We append ri to S (i.e., add ri

to the end of S) and increment i. If i ≤ t− 1, then we repeat this step.

4. At this point S consists of t − 1 bits. Let S[j] be the binary number that results from
deleting the 1-st and j-th digit (counting left to right) from S. We read the bit rt by
probing table TS at location: (

B̂1,r1(q)
)
u(2t−4)/((t−1/2)2t−3−1)+t−1∑

j=2
Bj,S[j]+1(q)

 mod u1/((t−1/2)2t−3−1)

u(2t−4−1)/((t−1/2)2t−3−1) +Bt(q).
(4.4.5)

For the case when t = 4 this simplifies to:

(B1,r1(q))u1/6 +
(
B2,r3(q) +B3,r2 mod u1/6

)
. (4.4.6)

5. If rt = 1 then we return YES, otherwise we return NO.

To give some intuition, the bits returned during the first t − 1 probes can be thought of as
a code, where the first bit will specify whether x differs from y in miniblock B̂1,1 or B̂1,2. If the

108

elements do not differ in these blocks, then we assign the bit arbitrarily. The remaining t − 2
bits specify the first microblock where x differs from y in blocks B2, ..., Bt−1, using the same
interpretation as Theorem 4.4.2. Again, as in Theorem 4.4.2, if the elements do not differ in
these blocks we are free to assign the bits arbitrarily. Thus, if x differs from y in B̂1,1, we set the
bits in locations B1(x) and B1(y) in Tε1 to 0, and all other bits to 1. Otherwise, if x differs from
y in B̂1,2 we set the bits in locations B1(x) and B1(y) in Tε1 to 1, and all other bits to 0.

Let ` be the smallest integer such that B`(x) differs from B`(y), for ` ∈ [2, t − 1], and g be
the smallest integer such that the microblock B`,g(x) differs from B`,g(y) for g ∈ [0, 2t−3]. We
encode ` and g into the remaining t− 2 bits that specify the table where x and y are stored, and
set the bits in the tables Tε2 and TS , where |S| ≤ t − 2, using exactly the same strategy as in
Theorem 4.4.2, with respect to the remaining t−2 bits. Note that since we have t−2 bits, we can
specify 2t−2 values, and this explains our microblock size. Finally, we use the search algorithm
described above to set the bits in the final tables TSx and TSy . Any unspecified table entries are
set to 0.

If B1(x) = B1(y), then the scheme is correct. The only case to analyze is when q 6∈ {x, y}, but
Sq = Sx or Sy; without loss of generality, assume Sq = Sx. In this case, it is clear that the bits of
q must differ from x in miniblock B̂1,Sq,1 or microblock B`,g(q) (both options are simultaneously
possible). The way the bits are assigned guarantees that q will not collide with x (when plugged
into Equation 4.4.5) in this case.

We make the following conjecture regarding the limitations of our general approach. Note
that the non-explicit scheme of Equation 4.2.6 achieves space Θ(u4/13) for t = 4, n = 3.

Conjecture 4.4.1. There is no fully explicit (2, u,Θ(u1/3−ε), 4)-scheme that is both 2-adaptive
and blocking for any ε > 0.

Next we consider fully explicit (3, u, s, 4)-schemes that are blocking, and have the following
property:

Split Property: Consider an arbitrary adaptive blocking scheme A for storing sets of size three
from the universe [1, u]. A has the split property if for all elements x, y ∈ [1, u] there exists an
z ∈ [1, u] such that:

109

1. B1(z) 6= B1(x) and B1(z) 6= B1(y); and

2. storing the set {x, y, z} using A causes the bit stored in location B1(x) (in the first table)
to have the same value as the bit stored in B1(y); and

3. the t-th probe (t ≥ 2), when searching for element q, probes a different final table than
when searching for q′ 6= q, if the bit stored in location B1(q) is not equal to the bit stored
in location B1(q′).

Remark 4.4.1. In our attempts to generalize our 2-element scheme, our n = 3 schemes all
had the split property, and failed to match the space bounds of the non-explicit scheme of Equa-
tion 4.2.6.

The next theorem gives some intuition as to why the fully explicit blocking techniques of
Section 4.4.1 do not extend to match the bound of Equation 4.2.6 in the case when n ≥ 3.

Theorem 4.4.4. Assuming Conjecture 4.4.1, there is no explicit (3, u,Θ(u1/3−ε), 4)-scheme that
both has the split property and is blocking, for any ε > 0.

Proof. We will show by contradiction that if such a scheme A exists, then it violates Conjec-
ture 4.4.1. The idea is to use the 3-element scheme A to store a set of size 2. Suppose we wish
to store the set {x, y}. We find an element z that exists by the split property, and store {x, y, z}
in scheme A.

We now explain the steps to modify A to get a scheme A′ that violates Conjecture 4.4.1.
We can assume, without loss of generality, that A is 3-adaptive: if A is 2 or 1-adaptive, then it
immediately violates the conjecture. Additionally, since A is blocking, and has the split property,
the table TSz is different than both TSx and TSy . The first modification is to set all the bits in
scheme A′ table TSz to 0.

Suppose the bit in location B1(x) of Tε (which is equal to the bit in location B1(y) by the
split property), is equal to r. The second modification is to delete the table T|r−1|, and set all
locations in Tε, other than B1(x) and B1(y), to store bit |r− 1|. The query algorithm for scheme
A′, given query element z′, will probe table Tε at location B1(z′), followed by location B2(z′) in
Tr. Note that, regardless of the value of r, the storage scheme is organized such that a single
table in memory exists that is to be probed non-adaptively by the query algorithm on the second
probe. All remaining probes are made exactly as in scheme A. Thus, A′ is 2-adaptive.

110

Clearly, A′ returns YES for {x, y}, and since TSz is zeroed out, a search for z will return NO.
We now consider any element z′ 6∈ {x, y}, and show that the answer must be NO. Note that if the
bit in location B1(z′) of Tε is not equal to r, then we will return NO, since Sz′ will be different
than both Sx and Sy. Thus, if z′ returns YES, it must match the bits of x or y in B1; these are
the only locations that store bit r. However, there is no difference between the search algorithm
for scheme A and scheme A′ for these elements. Thus, if A is correct, A′ will return the correct
result of NO for these elements.

Remark 4.4.2. Theorem 4.4.4 shows that, in order to match the bounds of Equation 4.2.6 using
a blocking scheme, either (a) any scheme we devise for n ≥ 3 must not have the split property,
or (b) show that Conjecture 4.4.1 is false.

4.4.3 Fully Explicit Adaptive Schemes for n ≥ 3

In this section we describe a different general scheme for the case when n ≥ 3; this bounds
achieved by this fully explicit scheme are inferior to the non-explicit scheme of Equation 4.2.6,
but the exponent-in-u is superior to previous fully explicit schemes. We begin by providing some
definitions for decomposition techniques that are used in the recursive schemes described later. We
then devise a scheme for small n that uses Theorem 4.4.2 recursively to outperform the previous
explicit scheme of Radhakrishnan, Shah, and Shannigrahi (Equation 4.2.5). Finally, using a
slightly more sophisticated decomposition technique, we develop the scheme of Inequality 4.3.2
that improves upon previous fully explicit results for the general case of n ≥ 3, for many ranges
of t.

A (j, k)-decomposition of the universe, [1, u], divides the universe into buckets of size u1−k,
and assigns j bits to each bucket. Thus, a (j, k)-decomposition occupies juk bits of space. The
heaviest bucket in a (j, k)-decomposition is the bucket which contains the most elements of the
given set, breaking ties arbitrarily.

We now discuss some special kinds of (j, k)-decompositions. A (1, k)-pivot decomposition is
a (1, k)-decomposition in which the heaviest bucket, is assigned a 1, all buckets to the left are
assigned a 0, and all buckets to the right are assigned a 1 (see Figure 4.4 (a)). A (2, k)-pivot
decomposition is a (2, k)-decomposition in which the heaviest bucket is assigned either a 10 or a
11 (the second bit is irrelevant for all of our forthcoming applications), the buckets to the left of
the heaviest bucket are assigned 00, and the buckets to the right are assigned 01 (see Figure 4.4

111

(b)). A (1, k)-balanced decomposition is a (1, k)-decomposition in which the heaviest bucket, is
assigned a 1, and all remaining buckets are assigned a 0 (see Figure 4.4 (c)).

Finally, a (2, k)-balanced decomposition is a (2, k)-decomposition in which the heaviest bucket
is assigned a 10 or 11 (again, the second bit is irrelevant). We use the following lemma:

Lemma 4.4.1. Suppose there is a set of buckets, where each bucket contains between 0 and n

elements, and the total number of elements in all the buckets is n. Suppose the heaviest bucket is
removed. It is possible to partition the remaining buckets into two groups G0 and G1, such that
there are no more than bn/2c elements in total contained in the buckets of either group.

Proof. We give a brief explanation by describing an algorithm to compute this partition. Initially,
the groups G0 and G1 are empty. Consider any bucket that has not been assigned to a group,
and call such a bucket unassigned. Clearly, any unassigned bucket contains no more than j′ =
min(n − j, j) elements, where j is the number of elements in the heaviest bucket. Suppose
we add the leftmost unassigned bucket to G0 until the total number of elements contained in
buckets in G0 is at least bn/2c − j′ + 1. Since j′ ≥ 1 in the non-trivial case, this is no more
than bn/2c. Furthermore, if we assign all remaining buckets to G1, it will contain no more than
n− j− (bn/2c− j′+ 1) elements. Regardless of whether j′ = j or j′ = n− j this value is no more
than bn/2c.

We apply Lemma 4.4.1 to our (2, k)-balanced decomposition. The buckets in groups G0 and G1

are assigned bits 00 and 01, respectively (see Figure 4.4 (d)).

Basic Scheme for n ≥ 3

We describe a recursive scheme for the case when n ≥ 3. This scheme is improved upon in the
next section, when n ≥ 6. We begin by stating a useful preliminary result of Radhakrishnan,
Raman, and Rao:

Lemma 4.4.2 (Theorem 1 from [133]). For n ≥ 2, there is a fully explicit adaptive

(n, u, 2n
√
u, dlg(n+ 1)e+ 1)-scheme

for the membership problem.

112

a

b

c

d

[1, u]

[1, u(1−k)]

0 0 0 0 0 0 1 1 1 1

1
1 1 1

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0

10 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0
0 0 0 0 1 1

X

X 1 1 1

Heaviest Bucket

Figure 4.4: Illustration of the various decomposition strategies on the universe represented by the horizontal line,
containing elements marked with red dots. For each decomposition, each of the bits are drawn below the bucket with
which it is associated. Bits labelled ‘X’ can either be set to 0 or 1. (a) is a (1, k)-pivot decomposition, (b) is a
(2, k)-pivot decomposition, (c) is a (1, k)-balanced decomposition, and (d) is a (2, k)-balanced decomposition.

We next describe a scheme that allows us to extend the result of Theorem 4.4.2 to obtain
better space bounds for the case when n ≥ 3 and the number of probes allowed is n+ 1.

Theorem 4.4.5. Suppose that for n0 ≥ 2, f > 0, and c ∈ [1/3, 1], there is a fully explicit adaptive
(n0, u, fu

c, n0 + 1)-scheme for the membership problem. Then, for any n > n0 ≥ 2, there is a
fully explicit adaptive (n, u, (f +

∑n
j=n0+1(2j + 1))uc, n+ 1)-scheme for the membership problem.

Proof. Proof by induction on n. The supposition in the statement of the theorem serves as the
base case when n = n0. For the induction hypothesis, we assume there is a (n − 1, u, (f +∑n−1
j=n0+1(2j + 1))uc, n)-scheme. We compute and store a (1, c)-balanced decomposition. The

query proceeds by probing the bucket specified by the first c-th of the bits of the query element
q. Since at least one element will be in the heaviest bucket, if the probe returns 0 it is sufficient
to defer to an (n− 1, u, (f +

∑n−1
j=n0+1(2j + 1))uc, n)-scheme, which is guaranteed to exist by the

induction hypothesis. In this case, we have reduced the number of elements by at least one, but
have not reduced the size of the universe. In the alternative case, if the probe returns 1, then
we know that at most n elements are stored in a smaller universe, of size u1−c. Thus, we can
defer this case to an (n, u1−c, 2nu(1−c)/2, n)-scheme, which exists by Lemma 4.4.2 (since n ≥ 3
and dlg(n+ 1)e+ 1 probes are sufficient for this scheme). Overall the total number of bits used

113

by the scheme is:f + 1 +
n−1∑

j=n0+1
(2j + 1)

uc + 2nu(1−c)/2 ≤

f + 1 +
n∑

j=n0+1
(2j + 1)

uc, (4.4.7)

since c ≥ 1/3.

Combining Theorems 4.4.2 and 4.4.5 we get the following corollary, setting n0 = 2 in Theo-
rem 4.4.5, and by applying the scheme of Theorem 4.4.2 with t = 3.

Corollary 4.4.1. For n ≥ 3, there is a fully explicit adaptive (n, u, (n2+2n+6)u2/5, n+1)-scheme
for the membership problem.

Next, using roughly the same decomposition technique as Theorem 4.4.5, we extend the result
to the more general case when t > n ≥ 2.

Theorem 4.4.6. Suppose for the membership problem there is a fully explicit adaptive

(n0, u, (2n0+1 − 1)uc, n0 + 1)-scheme

for some c ∈ (0, 1], and a fully explicit adaptive

(n0 − 1, u, (2t1 − 1)u1/(t1−n0+1/c−1), t1)-scheme

for n0 ≥ 3, and t1 > n0. For any n ≥ n0, t > n, there is a fully explicit adaptive

(n, u, (2t − 1)u1/(t−n+1/c−1), t)-scheme

for the membership problem.

Proof. Proof by induction, on n and t. The suppositions in the statement of the theorem serve as
our base cases when n = n0 and when t− n = 1. Thus, the induction hypothesis is that we have
both an (n−1, u, (2t−1−1)u1/(t−n+1/c−1), t−1) scheme and an (n, u, (2t−1−1)u1/(t−n+1/c−2), t−1)-
scheme. The strategy is roughly the same as in Theorem 4.4.5: we compute a (1, 1/(t−n+ 1/c−
1))-balanced decomposition. The query proceeds by probing the bucket specified by the first
(1/(t−n+ 1/c−1))-th fraction of the bits of the query element q. Since at least one element will

114

be in the heaviest bucket, if the probe returns 0 it is sufficient to defer to an (n − 1, u, (2t−1 −
1)u1/(t−n+1/c−1), t− 1)-scheme, which is guaranteed to exist by the induction hypothesis. On the
other hand, if the probe returns 1, then we know that at most n elements are stored in a universe
of size u(t−n+1/c−2)/(t−n+1/c−1). Thus we can defer to the (n, u(t−n+1/c−2)/(t−n+1/c−1), (2t−1 −
1)u1/(t−n+1/c−1), t− 1)-scheme, which is also guaranteed to exist by induction. Overall, the total
number of bits required is (2(2t−1 − 1) + 1)u1/(t−n+1/c−1) = (2t − 1)u1/(t−n+1/c−1).

We can combine Theorem 4.4.6 (with c = 2/5) with Corollary 4.4.1, and the observation that

n2 + 2n+ 6 < 2t − 1,

for n ≥ 3 and t > n. This simultaneously improves the exponent-of-u in the best previous explicit
scheme (Equation 4.2.5), and (arguably) simplifies the construction.

Corollary 4.4.2. For n ≥ 3 and t > n, there is a fully explicit adaptive (n, u, (2t −
1)u1/(t−n+3/2), t)-scheme for the membership problem.

Improved Scheme for n ≥ 3

In this section we present a better fully explicit adaptive scheme that achieves significantly better
bounds than the one from the previous section. We start by stating the bound of the trivial
folklore scheme for storing one element:

Lemma 4.4.3. There is an explicit non-adaptive (1, u, tu1/t, t)-scheme for the membership prob-
lem.

Proof. Divide the bits of the sole element, x, to be stored into blocks of size lg u/t. For each block
Bi(x), a table stores the characteristic bit string representing Bi(x). Given a query element, q,
we probe the t locations B1(q), ..., Bt(q) and return YES iff all these bits are 1.

Using Lemma 4.4.3 we prove the following:

Theorem 4.4.7. Let R(n) be the recurrence defined by R(0) = R(1) = 0 and R(n) = R(bn/2c)+
1. For n ≥ 2 and t ≥ 2R(n) + 1, there is an explicit adaptive

(n, u, (2t − 1)u1/(t−2R(n)), t)-scheme,

115

for the membership problem.

Proof. The proof is by strong induction on both t and n. In the base case we have t = 2R(n) + 1,
and we store the trivial (n, u, u, 1)-scheme. In the inductive case, we assume t > 2R(n) + 1. We
compute and store a (2, 1/(t−2R(n)))-balanced decomposition. The search algorithm proceeds as
follows: if we probe the bucket associated with the query element and read a 1 bit, we immediately
recurse to the

(n, u, (2t−1 − 1)u1/(t−2R(n)−1), t− 1)-scheme,

that is guaranteed to exist by the induction hypothesis. In this case we have reduced the size of
the universe, but not the number of elements. Otherwise, we read both bits associated with the
bucket. After reading either 00 or 01, it is sufficient to recurse to a scheme that represents a set
of bn/2c elements. Thus, in this case we have reduced the number of elements, but not the size
of the universe.

If bn/2c = 1, then we can recurse to two copies of the trivial (1, u, (t−2)u1/(t−2), t−2)-scheme
of Lemma 4.4.3. Otherwise, we assume the existence of a (n, u, (2t−2−1)u1/(t−2−2(R(n)−1)), t−2)-
scheme, and recurse to two separate copies of this scheme (one for 00 and one for 01).

We now analyze the space bound. If n ∈ {2, 3} then bn/2c = 1 and R(n) = 1. In this case,
we have stored no more than: (2 + 2t−1 − 1 + 2(t − 2))u1/(t−2) bits, which is no more than the
claimed space bound since t > 3. If n > 3 then overall space is no more than:

(2 + 2t−1 − 1 + 2(2t−2 − 1))u1/(t−2R(n)) bits, (4.4.8)

which is exactly (2t − 1)u1/(t−2R(n)) bits, completing the proof.

Since R(n) = blgnc, we get the following corollary by combining Corollary 4.4.2 and Theo-
rem 4.4.7:

Corollary 4.4.3. For n ≥ 2 and t ≥ 2blgnc+ 1, there is a fully explicit adaptive

(n, u, (2t − 1)u1/(t−min{2blgnc,n−3/2}), t)-scheme,

for the membership problem.

116

Remark 4.4.3. Note that the case where n = t = 5 is not covered by the combination of
Corollary 4.4.2 and Theorem 4.4.7, but we can achieve the bound claimed in Corollary 4.4.3
for this case rather trivially by combining a (2, 2/5)-balanced decomposition, Theorem 4.4.2, and
Lemma 4.4.2.

4.5 Rank Queries

In this section we show how to adapt our two bit recursive scheme for membership to the problem
of rank: i.e., return the cardinality of [1, x] ∩ E for any x ∈ [1, u]. We begin by stating a lemma
that describes a scheme that uses an optimal number of probes, by explicitly storing the rank of
each element in the universe.

Lemma 4.5.1. For n ≥ 1, there is a fully explicit adaptive (n, u, dlg(n+1)eu, dlg(n+1)e)-scheme
for the rank problem.

Next, we use the two bit decomposition technique to do significantly better for the one element
case.

Lemma 4.5.2. For t ≥ 1, there is a fully explicit adaptive (1, u, (2t − 1)u1/t, t)-scheme for the
rank problem.

Proof. The proof is by induction on t. In the base case, t = 1, we can solve the problem trivially
by storing a (1, 1)-pivot decomposition, and probing and returning the bit stored by the bucket
associated with the query element. (Note that the definition of a pivot decomposition explains
how the bits are set in the storage scheme.) In the inductive case, assume that we have a solution
matching the bound for t−1 probes: i.e., (1, u, (2t−3)u1/(t−1), t−1)-scheme. We store a (2, 1/t)-
pivot decomposition. The query proceeds by examining the first 1/t fraction of the bits of q, then
probing the first bit associated with the appropriate bucket. If we read a 1, we immediately defer
to the scheme guaranteed to exist by induction, reducing the universe to the size of the bucket:
u(t−1)/t. Otherwise, we probe and return the second bit.

Before proving our main theorem for the rank problem, we digress to note an important
property of the previous lemma. In particular, we are free to associate two pieces of satellite
data, e.g., values k1, k2 ∈ [0, n′], with the two possible outcomes of a query to the data structure

117

of Lemma 4.5.2. Returning this satellite data instead of the 0-1 rank value can be done by storing
an additional 2dlg(n′ + 1)e bits, and making an additional dlg(n′ + 1)e probes, provided we know
n′ in advance.

We make use of the following lemma in our general scheme for rank, when n ≥ 2:

Lemma 4.5.3. Suppose we are given a query element q, and a (2, k)-balanced decomposition D
on a universe [1, u] that contains n elements. Also suppose that D is computed using the algorithm
described in the proof of Lemma 4.4.1. There are n+ 1 possible outcomes for a rank query on q

a priori, but this is reduced to at most bn/2c+ 2 if we probe the two bits associated with q in D,
and they are 00 or 01.

Proof. Recall that, by construction, the buckets assigned 00 and 01 span contiguous subranges of
[1, u], with the exception of at most one hole (or gap), i.e., the subrange spanned by the heaviest
bucket. Without loss of generality, consider the subrange spanned by the union of buckets assigned
bits 00. Since there are at most bn/2c elements contained in the subrange, the answer to a rank
query can take on at most bn/2c+ 1 possible values. If the subrange contains the hole, then this
is increased to at most bn/2c+2; regardless of how many elements are in the heaviest bucket.

This observation is crucial for proving the following theorem:

Theorem 4.5.1. Let R(n) be the recurrence defined by R(2) = 1, R(3) = 2, and R(n) =
R(bn/2c+ 1) + 1. For n ≥ 2 and t ≥ dlg(n+ 1)e+ 2R(n), there is an explicit adaptive

(n, u, (2t − 1)dlg(n+ 1)eu1/(t−dlg(n+1)e−2R(n)+1), t)-scheme, (4.5.1)

for the rank problem.

Proof. The idea is similar to the proof of Theorem 4.4.7, with some small modifications. The
proof is by strong induction on t and n. In the base case we have t = dlg(n + 1)e + 2R(n), and
store the data structure of Lemma 4.5.1. In the inductive case, we assume t > dlg(n+1)e+2R(n),
and that we have the scheme guaranteed to exist by the induction hypothesis: a

(n, u, (2t−1 − 1)dlg(n+ 1)eu1/(t−dlg(n+1)e−2R(n)), t− 1)-scheme. (4.5.2)

118

To prove the induction hypothesis we use a data structure called a (n, u, [0, n], t)-node: the tuple
denotes the number of elements, the size of the universe, and the range from which the answer
comes, and the number of remaining probes, respectively. In the node, we store a (2, 1/(t −
dlg(n + 1)e − 2R(n) + 1))-balanced decomposition. The search algorithm proceeds in the usual
way: if we probe the bucket associated with the query element and read a 1 bit, we immediately
recurse to the scheme guaranteed to exist by the induction hypothesis. Otherwise, we read both
bits.

After reading either 00 or 01, it is sufficient to recurse to a scheme that represents a set
of bn/2c + 1 elements, each storing satellite data from the range [0, n]. This follows from
Lemma 4.5.3, since we can simulate the bn/2c + 2 possible answers to a rank query on the
subrange spanned by either 00 or 01 using bn/2c + 1 elements. If n > 2, we recurse to two
(bn/2c+ 1, u, [0, n], t− 2)-nodes. Otherwise, we need to represent a set of two elements, and we
handle this with a slight modification to our decomposition scheme: when n = 2, we represent
the heaviest bucket with a 1 bit only if it contains both elements. If the heaviest bucket does not
contain both elements, we instead decompose the universe into two contiguous ranges (that have
buckets marked with either 00 or 01), such that each range need only represent one element. At
this point we can recurse to two copies of the data structure from Lemma 4.5.2.

We now analyze the space bound by induction on n. If n = 2, then we are in the base case.
Overall, we have stored no more than:

(2 + 2t−1 − 1 + 2(2(t− 2)− 1))dlg(n+ 1)eu1/(t−dlg(n+1)e−2R(n)+1)bits,

which is less than the claimed space bound. In the inductive case, we assume we have a
(n, u, (2t−2 − 1)dlg(n + 1)eu1/(t−2dlg(n+1)e−2(R(n)−1)+1, t − 2)-scheme. This scheme is used to
represent the (bn/2c + 1, u, [0, n], t − 2)-nodes, and thus the overall space is no more than:
(2 + 2t−1 − 1 + 2(2t−2 − 1))dlg(n+ 1)eu1/(t−dlg(n+1)e−2R(n)+1) bits, completing the proof.

4.6 Range Counting and Emptiness Queries

Recall that range counting queries ask us to return the cardinality of [x1, x2] ∩ E for 1 ≤ x1 ≤
x2 ≤ u. Range emptiness queries ask whether the range [x1, x2] is empty. Range emptiness and
counting queries are clearly not much harder than rank, since we can answer them using two rank

119

queries. We formalize this in the following theorem.

Theorem 4.6.1. Suppose there is a (n, u, s, t)-scheme for the rank problem. Then, there is a
(n, u, s, 2t)-scheme for the range counting problem.

Thus we get the following corollary:

Corollary 4.6.1. Let R(n) be the recurrence defined by R(2) = 1, and R(n) = R(bn/2c+1)+1.
For n ≥ 2 and even t ≥ 2dlg(n+ 1)e+ 4R(n), there is a fully explicit adaptive

(n, u, (2t − 1)dlg(n+ 1)eu1/(t/2−dlg(n+1)e−2R(n)+1), t)-scheme,

for the range counting problem.

For the problem of emptiness, we can explicitly record one bit representing the yes or no
answer to each of the

(u
2
)

+ u possible query ranges. It is not difficult to see, by an adversarial
argument, that this is the best possible space bound for 1 probe:

Theorem 4.6.2. There is a fully explicit (n, u,
(u

2
)
+u, 1)-scheme for the range emptiness problem.

This space bound is the best possible for 1 probe.

Proof. Suppose there is a (n, u, s, 1)-scheme for the emptiness problem that uses less than
(u

2
)

+u

bits. Thus, there are two query ranges that must read the same bit. Since it is always possible
to force the query result to be different for these ranges, we have a contradiction.

These previous theorems raise the question of what trade-offs exist for range emptiness. We
have the following result:

Theorem 4.6.3. For any constant t ≥ 1, there is a fully explicit adaptive

(n, u,Θ

lg u∑
i=0

2i(u/2i)1/t

 , 2t)-scheme

for the range emptiness problem.

Proof. We conceptually build a canonical balanced binary tree over the universe [1, u] such that
each element appears in lg(u) + 1 nodes: each node is in a different level in the tree, numbered

120

0, ..., lg(u) from the root to leaf. Each node u represents the range [x1(u), x2(u)], where x1(u)
and x2(u) are the minimum and maximum elements represented by leaves in the subtree rooted
at u. Each node stores two one-sided range emptiness structure (Lemma 4.5.2). If u is a node
representing the range [x1(u), x2(u)], then these structure can answer emptiness queries on the
ranges [x1(u), x′] and [x′, x2(u)] for x ∈ [x1(u), x2(u)]. Overall, the one-sided emptiness structures
require space:

Θ

lg u∑
i=0

2i(u/2i)1/t

 bits, (4.6.1)

where t is the number of probes made to the one-sided structures.

To answer a query we find the level ` in this binary tree that exists by Observation 3.5.1.
Each query can be decomposed into two one-sided emptiness queries to structures at this level.
Thus, we have shown that the total number of probes required to answer a query is 2t.

By plugging t = 1, 2 into the previous theorem we get:

Corollary 4.6.2. There is a fully explicit adaptive (n, u,Θ(u lg u), 2)-scheme and a fully explicit
adaptive (n, u,Θ(u), 4)-scheme for the range emptiness problem.

4.7 Summary and Concluding Remarks

We have presented several new fully explicit data structures for the membership problem in the
bitprobe model. In particular, we have presented new fully explicit schemes for the case when
n = 2 that match (or improve upon) the performance of previous non-explicit schemes. For the
case where n ≥ 3, we have described a fully explicit scheme for the membership problem that can
be used to solve the related problems of rank and range counting, initiating the study of these
problems in the bitprobe model.

121

Chapter 5

Conclusions and Open Problems

In this thesis we have examined three data structure problems, each involving some aspect of
space efficiency. In particular, we have focused on designing succinct data structures (i.e., data
structures that occupy space matching the information theory lower bounds), and also using
succinct data structures to improve the efficiency of certain query operations. We conclude with
a list of open problems from each chapter.

5.1 Succinct Posets

In Chapter 2 we presented a succinct data structure for representing arbitrary partial orders
(posets) that supports efficient query operations. The main technique we presented was the
application of a theorem from the area of extremal graph theory to compressing posets. Unlike
previous enumeration proofs (which yield succinct representations of posets), our technique has
the additional feature that queries about the structure of the poset can be answered efficiently.
Our proposal is the first to compress an arbitrary poset optimally while still supporting queries.

1. Is there a way to lower the lower order term in our representation of posets? The enumera-
tion argument of Kleitman and Rothschild [105] has a linear lower order term, whereas ours
is O(n2 lg lgn/ lgn). Is it possible to achieve succinctness by using higher order empirical
entropy compression on the adjacency matrix of a transitive closure graph? Achieving the

122

zeroth order empirical entropy does not suffice to make the representation succinct, but we
have said nothing about higher order compression.

2. The trivial adjacency bit matrix representation of a poset occupies
(n

2
)

bits, and can be used
to answer a precedence query in 1 bit probe. The succinct representation we have described
occupies n2/4 + o(n2) bits, but requires Θ(lgn) bit probes. Is there a representation that
is succinct and uses o(lgn) bit probes? Is there a trade-off between succinctness and the
number of probes required for this problem?

3. We have introduced the problem of supporting extended precedence queries, in which we
would like to determine for two vertices whether they are incomparable, have an edge
between them in the transitive reduction graph, or have an edge between them in the
transitive closure graph. Is is possible to support such queries using n2/4 + o(n2) bits?
Our best solution requires about 0.39624n2 + o(n2) bits. Is it possible to generalize this to
answer queries—on an arbitrary DAG—of the form, “Is there a shortest path of length no
more than k between vertices s1 and s2?”

4. We have discussed evidence showing that meet and join operations must be costly in our
data structure. However, we have not given any upper bounds for these queries. Is it
possible to improve upon the trivial O(n2) bound to compute the meet and join of two
vertices in our data structure? The chain based data structure of Farzan and Fischer [55]
is currently much better suited to these kinds of queries.

5.2 Range Majority Queries

In Chapter 3 we described techniques that show how succinct data structures could be used
to speed up range searching queries for certain frequency-based queries on strings (or arrays).
Though the proposed data structures were not succinct, they were more space efficient than
previous proposals. We also discussed numerous trade-offs, including compression, dynamization,
as well as geometric problems.

1. Many of the open problems for the static case have been answered in the affirmative by
Belazzougui, Gagie, and Navarro [14]. However, it is still not known whether there is a

123

linear space data structure that can answer (parameterized) β-majority queries in O(1/β)
time. There are also still issues open relating to succinctness of these data structures.

2. Is it possible to answer queries faster if we only desire an arbitrary α-majority character
instead of all of them? What about output-sensitive results?

3. In the dynamic case is it possible to improve the update time of our data structure, if we
assume the colours of the points are drawn from a bounded universe [1, σ]? It seems difficult
to increase the fan-out of our weight-balanced B-tree solution while maintaining the linear
space bound and optimal query time.

4. Recent results for approximate range counting can be used to improve both the static and
dynamic results for higher dimensional geometric versions of the α-majority query. What
is the optimal query time for two-dimensional range α-majority queries using linear space?

5.3 Explicit Bitprobe Data Structures

Finally, in Chapter 4 we designed data structures in the bitprobe model for the membership
problem, as well as other similar problems. For the problems we studied, where the number of
elements in the set and number of probes used is small, there is a distinct lack of meaningful lower
bounds. We presented several new upper bounds for these cases, though many open problems
remain.

1. Is there a fully explicit (2, u,O(u2/5), 3)-scheme for membership that is 1-adaptive? Our
explicit scheme is adaptive on the final two probes (2-adaptive), whereas the non-explicit
scheme of Radhakrishnan, Shah, and Shannigrahi [134] is 1-adaptive. Is it possible to close
this gap?

2. Is there a fully explicit scheme that matches the non-explicit membership scheme of Equa-
tion 4.2.6 for n ≥ 3? We have shown that it is unlikely to be a blocking scheme with the
split property, but perhaps another approach could work.

3. Even for the n = 2 and t = 2 case for the membership problem there is no tight lower bound.
Either improve the lower bound of Ω(u4/7) or provide a new scheme beating O(u2/3). For
larger values of t, is the scheme of Theorem 4.4.2 the best possible?

124

4. We initiated the study of the rank and range counting problems in the bitprobe model, and
there are lots of open problems. For example, for the rank problem on sets of 2 elements,
what can be said for lower and upper bounds? Is it possible to achieve o(u) bits with 2
adaptive probes?

125

References

[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of transitive relation-
ships in large data and knowledge bases. In Proc. of the ACM SIGMOD International
Conference on Management of Data, pages 253–262. ACM Press, 1989.

[2] M. Aigner. Variants of the majority problem. Discrete Applied Mathematics, 137:3–25,
2004.

[3] N. Alon and U. Feige. On the power of two, three and four probes. In Proc. of the 20th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 346–354. SIAM,
2009.

[4] L. Alonso and E. M. Reingold. Determining plurality. ACM Transactions on Algorithms,
4(3):26:1–26:19, 2008.

[5] S. Alstrup, G. S. Brodal, and T. Rauhe. New data structures for orthogonal range searching.
In Proc. of the 41st Annual Symposium on Foundations of Computer Science (FOCS), pages
198–207. IEEE, 2000.

[6] S. Alstrup, G. S. Brodal, and T. Rauhe. Optimal static range reporting in one dimension.
In Proc. of the 33rd annual ACM Symposium on Theory of Computing (STOC), pages
476–482. ACM, 2001.

[7] A. Andersson, P.B. Miltersen, and M. Thorup. Fusion trees can be implemented with AC0

instructions only. Theoretical Computer Science, 215(1-2):337–344, 1999.

[8] A. Andersson and M. Thorup. Dynamic ordered sets with exponential search trees. Journal
of the ACM, 54(3):13, 2007.

126

[9] L. Arge and J. S. Vitter. Optimal External Memory Interval Management. SIAM Journal
on Computing, 32(6):1488–1508, 2003.

[10] J. Barbay, L. Castelli Aleardi, M. He, and J. I. Munro. Succinct Representation of Labeled
Graphs. Algorithmica, 62(1-2):224–257, 2012.

[11] J. Barbay, F. Claude, and G. Navarro. Compact Binary Relation Representations with
Rich Functionality. CoRR, abs/1201.3602, 2012.

[12] J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich. Alphabet Partitioning for Compressed
Rank/Select and Applications. In Proc. of the 21st International Symposium on Algorithms
and Computation (ISAAC) (2), volume 6507 of LNCS, pages 315–326. Springer, 2010.

[13] J. Barbay, M. He, J. I. Munro, and S. S. Rao. Succinct indexes for strings, binary relations
and multilabeled trees. ACM Transactions on Algorithms (TALG), 7(4):52, 2011.

[14] D. Belazzougui, T. Gagie, and G. Navarro. Better space bounds for parameterized range
majority and minority. CoRR, abs/1210.1765, 2012.

[15] D. Belazzougui and G. Navarro. New lower and upper bounds for representing sequences.
Proc. of the 20th European Symposium on Algorithms (ESA), pages 181–192, 2012.

[16] A. M. Ben-Amram. What is a “pointer machine”? SIGACT News, 26(2):88–95, June 1995.

[17] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. of the 15th ACM
Symposium on Theory of Computing (STOC), STOC ’83, pages 80–86, New York, NY,
USA, 1983. ACM.

[18] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest
common ancestors in trees and directed acyclic graphs. Journal of Algorithms, 57(2):75–94,
2005.

[19] J.L. Bentley. Multidimensional divide-and-conquer. Communications of the ACM,
23(4):214–229, 1980.

[20] R. Blue. The Bit Probe Model for Membership Queries: Non-Adaptive Bit Queries. Master’s
thesis, University of Maryland, 2009.

127

[21] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection.
Journal of Computer and System Sciences, 7(4):448–461, 1973.

[22] P. Bose, M. He, A. Maheshwari, and P. Morin. Succinct orthogonal range search structures
on a grid with applications to text indexing. In 11th International Symposium on Algorithms
and Data Structures (WADS), volume 5664 of LNCS, pages 98–109. Springer, 2009.

[23] P. Bose, E. Kranakis, P. Morin, and Y. Tang. Approximate Range Mode and Range Median
Queries. In Proc. of the 22nd International Symposium on Theoretical Aspects of Computer
Science (STACS), volume 3404 of LNCS, pages 377–388. Springer, 2005.

[24] R. S. Boyer and J. S. Moore. MJRTY - A fast majority vote algorithm. In R. S. Boyer,
editor, Automated Reasoning: Essays in Honor of Woody Bledsoe, Automated Reasoning
Series, pages 105–117. Kluwer, Dordrecht, The Netherlands, 1991.

[25] P. Bozanis, N. Kitsios, C. Makris, and A. Tsakalidis. New upper bounds for generalized
intersection searching problems. In Proc. of the 22nd International Colloquium Automata,
Languages and Programming (ICALP), volume 944 of LNCS, pages 464–474. Springer, 1995.

[26] G. Brightwell, H. Jurgen Promel, and A. Steger. The average number of linear extensions
of a partial order. Journal of Combinatorial Theory, Series A, 73(2):193–206, 1996.

[27] G. S. Brodal, B. Gfeller, A. G. Jørgensen, and P. Sanders. Towards optimal range medians.
Theoretical Computer Science, 412(24):2588–2601, 2011.

[28] G. S. Brodal and A. Jørgensen. Data Structures for Range Median Queries. In Proc. of the
20th International Symposium on Algorithms and Computation (ISAAC), volume 5878 of
LNCS, pages 822–831. Springer, 2009.

[29] A. Brodnik and J. Munro. Membership in Constant Time and Almost-Minimum Space.
SIAM Journal on Computing, 28(5):1627–1640, 1999.

[30] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh. Are bitvectors optimal?
SIAM Journal on Computing, 31(6):1723–1744, 2002.

[31] T. M. Chan, S. Durocher, K. G. Larsen, J. Morrison, and B. T. Wilkinson. Linear-space data
structures for range mode query in arrays. In Proc. of the 29th Symposium on Theoretical
Aspects of Computer Science (STACS), volume 14, pages 290–301, 2012.

128

[32] T. M. Chan, S. Durocher, M. Skala, and B. T. Wilkinson. Linear-space data structures
for range minority query in arrays. Proc. of the 13th Scandinavian Workshop on Algorithm
Theory (SWAT), pages 295–306, 2012.

[33] T. M. Chan and B. T. Wilkinson. Adaptive and Approximate Orthogonal Range Counting.
In Proc. of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
241–251. SIAM, 2013.

[34] B. Chazelle. Functional approach to data structures and its use in multidimensional search-
ing. SIAM Journal on Computing, 17(3):427–462, 1988.

[35] Y. Choi and W. Szpankowski. Compression of Graphical Structures: Fundamental Limits,
Algorithms, and Experiments. IEEE Transactions on Information Theory, 58(2):620–638,
2012.

[36] D. R. Clark and J. I. Munro. Efficient suffix trees on secondary storage. In Proc. of the 7th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 383–391. Society
for Industrial and Applied Mathematics, 1996.

[37] F. Claude. Space Efficient Indexes for Information Retrieval. PhD thesis, University of
Waterloo, 2013.

[38] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance queries via
2-hop labels. SIAM Journal on Computing, 32(5):1338–1355, 2003.

[39] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 2nd edition, 2001.

[40] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[41] C. Daskalakis, R. M. Karp, E. Mossel, S. Riesenfeld, and E. Verbin. Sorting and Selection
in Posets. SIAM Journal on Computing, 40(3):597–622, 2011.

[42] M. de Berg and H. Haverkort. Significant-presence range queries in categorical data. In
8th International Workshop on Algorithms and Data Structures (WADS), volume 2748 of
LNCS, pages 462–473. Springer, 2003.

129

[43] K. De Loof, H. De Meyer, and B. De Baets. Exploiting the Lattice of Ideals Representation
of a Poset. Fundam. Inf., 71(2,3):309–321, February 2006.

[44] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Frequency estimation of internet packet
streams with limited space. In Proc. of the 10th Annual European Symposium on Algorithms
(ESA), volume 2461 of LNCS, pages 348–360. Springer, 2002.

[45] D. Dobkin and J. I. Munro. Determining the mode. Theoretical Computer Science,
12(3):255–263, 1980.

[46] Y. Dodis, M. Pǎtraşcu, and M. Thorup. Changing base without losing space. In Proc. of
the 42nd ACM Symposium on Theory of Computing (STOC), pages 593–602. ACM, 2010.

[47] S. Durocher. A simple linear-space data structure for constant-time range minimum query.
In Space Efficient Data Structures, Streams and Algorithms, volume 8066 of LNCS, pages
48–60. Springer, 2013.

[48] S. Durocher, M. He, J. I. Munro, P. K. Nicholson, and M. Skala. Range Majority in Con-
stant Time and Linear Space. In Proc. of the 38th International Colloquium on Automata,
Languages and Programming (ICALP), volume 6755 of LNCS, pages 244–255. Springer,
2011.

[49] S. Durocher, M. He, J. I. Munro, P. K. Nicholson, and M. Skala. Range majority in constant
time and linear space. Information and Computation, 222(0):169–179, 2013.

[50] S. Durocher and J. Morrison. Linear-space data structures for range mode query in arrays.
arXiv:1101.4068v1, 2011.

[51] P. Elias. Universal codeword sets and representations of the integers. IEEE Trans. on Inf.
Theory, 21(2):194–203, 1975.

[52] A. Elmasry, M. He, J. I. Munro, and P. K. Nicholson. Dynamic Range Majority Data
Structures. In Proc. of the 22nd International Symposium on Algorithms and Computa-
tion (ISAAC), volume 7074 of LNCS, pages 150–159. Springer Berlin / Heidelberg, 2011.
Yokohama, Japan, December 5-8, 2011.

[53] A. Elmasry, M. He, J. I. Munro, and P. K. Nicholson. Dynamic Range Majority Data
Structures. CoRR, abs/1104.5517, 2013.

130

[54] A. Farzan. Succinct representation of trees and graphs. PhD thesis, University of Waterloo,
2009.

[55] A. Farzan and J. Fischer. Compact Representation of Posets. In Proc. of the 22nd Interna-
tional Symposium on Algorithms and Computation (ISAAC), volume 7074 of LNCS, pages
302–311. Springer, 2011.

[56] A. Farzan and J. I. Munro. Succinct representations of arbitrary graphs. In Proc. of the
16th Annual European Symposium on Algorithms (ESA), LNCS, pages 393–404. Springer,
2008.

[57] T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up algorithms.
Journal of Computer and System Sciences, 51(2):261–272, 1995.

[58] S. Felsner, V. Raghavan, and J. Spinrad. Recognition algorithms for orders of small width
and graphs of small Dilworth number. Order, 20(4):351–364, 2003.

[59] P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed text indexes: From
theory to practice. Journal of Experimental Algorithmics (JEA), 13:12, 2009.

[60] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of
sequences and full-text indexes. ACM Transactions on Algorithms, 3(2), 2007.

[61] P. Ferragina, I. Nitto, and R. Venturini. Succinct Oracles for Exact Distances in Undirected
Unweighted Graphs. Technical Report TR-07-11, Università di Pisa, 2007.

[62] J. Fischer. Optimal Succinctness for Range Minimum Queries. In Proc. of the 9th Latin
American Theoretical Informatics Symposium (LATIN), volume 6034 of LNCS, pages 158–
169. Springer, 2010.

[63] J. Fischer and V. Heun. A new succinct representation of RMQ-information and improve-
ments in the enhanced suffix array. Combinatorics, Algorithms, Probabilistic and Experi-
mental Methodologies, pages 459–470, 2007.

[64] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with 0(1) worst case
access time. Journal of the ACM (JACM), 31(3):538–544, 1984.

[65] T. Gagie. New algorithms and lower bounds for sequential-access data compression. PhD
thesis, Bielefeld University, 2009.

131

[66] T. Gagie, M. He, J. I. Munro, and P. K. Nicholson. Finding Frequent Elements in Com-
pressed 2D Arrays and Strings. In 18th International Symposium on String Processing and
Information Retrieval (SPIRE), volume 7024 of LNCS, pages 295–300. Springer, 2011.

[67] T. Gagie and J. Kärkkäinen. Counting Colours in Compressed Strings. In Proc. of the 22nd
Annual Symposium on Combinatorial Pattern Matching (CPM), volume 6661 of LNCS,
pages 197–207. Springer, 2011.

[68] T. Gagie, S. Puglisi, and A. Turpin. Range quantile queries: Another virtue of wavelet
trees. In String Processing and Information Retrieval, pages 1–6. Springer, 2009.

[69] A. Gál and P. B. Miltersen. The cell probe complexity of succinct data structures. Theo-
retical computer science, 379(3):405–417, 2007.

[70] G. Gambosi, J. Nešetřil, and M. Talamo. Efficient representation of taxonomies. In TAP-
SOFT’87: Proc. of the International Joint Conference on Theory and Practice of Software
Development, volume 249 of LNCS, pages 232–240. Springer, 1987.

[71] G. Gambosi, J. Nešetřil, and M. Talamo. On locally presented posets. Theoretical computer
science, 70(2):251–260, 1990.

[72] G. Gambosi, J. Nešetřil, and M. Talamo. Posets, boolean representations and quick path
searching. In Thomas Ottmann, editor, Proc. of the 14th International Colloquium on
Automata, Languages and Programming (ICALP), volume 267 of LNCS, pages 404–424.
Springer Berlin Heidelberg, 1987.

[73] G. Gambosi, M. Protasi, and M. Talamo. An efficient implicit data structure for relation
testing and searching in partially ordered sets. BIT Numerical Mathematics, 33(1):29–45,
1993.

[74] V. K. Garg and C. Skawratananond. String realizers of posets with applications to dis-
tributed computing. In Proc. of the 20th Annual ACM symposium on Principles of Dis-
tributed Computing (PODC), pages 72–80. ACM, 2001.

[75] B. Gfeller and P. Sanders. Towards Optimal Range Medians. In Proc. of the 36th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP), volume 5555 of
LNCS, pages 475–486. Springer, 2009.

132

[76] O. Giménez and M. Noy. Asymptotic enumeration and limit laws of planar graphs. J.
Amer. Math. Soc, 22(2):309–329, 2009.

[77] A. Golynski. Optimal lower bounds for rank and select indexes. Theoretical Computer
Science, 387(3):348–359, 2007.

[78] A. Golynski, R. Grossi, A. Gupta, R. Raman, and S. S. Rao. On the size of succinct indices.
Algorithms–ESA 2007, pages 371–382, 2007.

[79] A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets: a
tool for text indexing. In Proc. of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 368–373. ACM, 2006.

[80] A. Golynski, R. Raman, and S. S. Rao. On the redundancy of succinct data structures.
Algorithm Theory–SWAT 2008, pages 148–159, 2008.

[81] M. Greve, A. G. Jørgensen, K. D. Larsen, and J. Truelsen. Cell Probe Lower Bounds
and Approximations for Range Mode. In Proc. of the 37th International Colloquium on
Automata, Languages, and Programming (ICALP), volume 6198 of LNCS, pages 605–616.
Springer, 2010.

[82] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In
Proc. of the 14th Symposium on Discrete Algorithms (SODA), pages 841–850, 2003.

[83] R. Grossi, A. Orlandi, R. Raman, and S. S. Rao. More Haste, Less Waste: Lowering
the Redundancy in Fully Indexable Dictionaries. In 26th International Symposium on
Theoretical Aspects of Computer Science (STACS), pages 517–528, 2009.

[84] P. Gupta, R. Janardan, and M. Smid. Further Results on Generalized Intersection Searching
Problems: Counting, Reporting, and Dynamization. Journal of Algorithms, 19(2):282–317,
1995.

[85] M. Habib, M. Huchard, , and L. Nourine. Embedding partially ordered sets into chain-
products. In Proc. of KRUSE’95, pages 147–161, 1995.

[86] M. Habib and L. Nourine. Bit-vector encoding for partially ordered sets. In International
Workshop on Orders, Algorithms, and Applications (ORDAL), volume 831 of LNCS, pages
1–12. Springer, 1994.

133

[87] M. Habib and L. Nourine. Tree structure for distributive lattices and its applications.
Theoretical Computer Science, 165(2):391 – 405, 1996.

[88] T. Hagerup. Sorting and searching on the word RAM. In Michel Morvan, Christoph Meinel,
and Daniel Krob, editors, Proc. of the 15th Symposium on Theoretical Aspects of Computer
Science (STACS), volume 1373 of LNCS, pages 366–398. Springer Berlin Heidelberg, 1998.

[89] S. Har-Peled and S. Muthukrishnan. Range Medians. In Proc. of the 16th European Sym-
posium on Algorithms (ESA), volume 5193 of LNCS, pages 503–514. Springer, 2008.

[90] M. He. Succinct Indexes. PhD thesis, University of Waterloo, 2007.

[91] M. He, J. I. Munro, and P. K. Nicholson. Dynamic Range Selection in Linear Space. In
22nd International Symposium on Algorithms and Computation (ISAAC), volume 7074 of
LNCS, pages 160–169. Springer, 2011.

[92] M. He, J. I. Munro, and P. K. Nicholson. Dynamic Range Selection in Linear Space. CoRR,
abs/1106.5076, 2011.

[93] M. He, J. I. Munro, and G. Zhou. A Framework for Succinct Labeled Ordinal Trees
over Large Alphabets. In Proc. of the 23rd International Symposium on Algorithms and
Computation (ISAAC), pages 537–547. Springer, 2012.

[94] R. Hegde and K. Jain. The hardness of approximating poset dimension. Electronic Notes
in Discrete Mathematics, 29:435–443, 2007.

[95] C. Hernández and G. Navarro. Compressed representation of web and social networks via
dense subgraphs. In 19th International Symposium on String Processing and Information
Retrieval (SPIRE), volume 7608 of LNCS, pages 264–276. Springer, 2012.

[96] D. A. Huffman. A method for the construction of minimum-redundancy codes. Proc. of
the IRE, 40(9):1098–1101, 1952.

[97] T. Husfeldt and T. Rauhe. New lower bound techniques for dynamic partial sums and
related problems. SIAM Journal on Computing, 32(3):736–753, 2003.

[98] G. Jacobson. Space-efficient static trees and graphs. 30th Annual IEEE Symposium on
Foundations of Computer Science, pages 549–554, 1989.

134

[99] J. JaJa, C. Mortensen, and Q. Shi. Space-Efficient and Fast Algorithms for Multidimen-
sional Dominance Reporting and Counting. In Proc. of the 16th International Symposium
on Algorithms and Computation (ISAAC), volume 3341 of LNCS, pages 1755–1756, 2005.

[100] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-HOP: a high-compression indexing scheme
for reachability query. In Proc. of the 2009 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’09, pages 813–826. ACM, 2009.

[101] A.G. Jørgensen and K.G. Larsen. Range selection and median: Tight cell probe lower
bounds and adaptive data structures. In Proc. of the 22nd ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2011.

[102] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple algorithm for finding frequent
elements in streams and bags. ACM Transactions on Database Systems, 28:51–55, 2003.

[103] M. Karpinski and Y. Nekrich. Searching for Frequent Colors in Rectangles. In Proc. of the
20th Canadian Conference on Computational Geometry (CCCG), pages 11–14, 2008.

[104] D. J. Kleitman and B. L. Rothschild. The Number of Finite Topologies. Proc. of the
American Mathematical Society, 25:276, 1970.

[105] D. J. Kleitman and B. L. Rothschild. Asymptotic enumeration of partial orders on a finite
set. Transactions of the American Mathematical Society, 205:205–220, 1975.

[106] D. E. Knuth. Sorting and Searching: The Art of Computer Programming III. Addison-
Wesley, Reading, Mass., 1973.

[107] T. Kővári, V. T. Sós, and P. Turán. On a problem of Zarankiewicz. Coll. Math, 3(1954):50–
57, 1954.

[108] D. Krizanc, P. Morin, and M. Smid. Range Mode and Range Median Queries on Lists and
Trees. Nordic Journal of Computing, 12:1–17, 2005.

[109] Y. K. Lai, C. K. Poon, and B. Shi. Approximate colored range and point enclosure queries.
Journal of Discrete Algorithms, 6(3):420–432, 2008.

[110] M. L. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry.
The MIT Press, 1969.

135

[111] J. Misra and D. Gries. Finding repeated elements. Science of Computer Programming,
2(2):143–152, 1982.

[112] N. Mittal and V. K. Garg. Rectangles are Better than Chains for Encoding Partially
Ordered Sets, 2005.

[113] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

[114] D. Mubayi and G. Turán. Finding bipartite subgraphs efficiently. Information Processing
Letters, 110(5):174–177, 2010.

[115] J. I. Munro. Tables. In Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), pages 37–42. Springer, 1996.

[116] J. I. Munro and P. K. Nicholson. Succinct Posets. In Proc. of the 20th Annual European
Symposium on Algorithms (ESA), volume 7501 of LNCS, pages 743–754. Springer, 2012.

[117] J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permutations
and functions. Theoretical Computer Science, 2012.

[118] J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing, 31(3):762–776, 2001.

[119] J. I. Munro and M. Spira. Sorting and searching in multisets. SIAM Journal on Computing,
5(1):1–8, 1976.

[120] M. Naor. Succinct representation of general unlabeled graphs. Discrete Applied Mathemat-
ics, 28(3):303–307, 1990.

[121] G. Navarro. Wavelet trees for all. In Proc. of the 23rd Annual Symposium on Combinatorial
Pattern Matching (CPM), volume 7354 of LNCS, pages 2–26. Springer, 2012.

[122] G. Navarro, Y. Nekrich, and L. M. S. Russo. Space-efficient data-analysis queries on grids.
Theoretical Computer Science, 482:60–72, 2013.

[123] G. Navarro and L. M. S. Russo. Space-Efficient Data-Analysis Queries on Grids. In Proc.
of the 22nd International Symposium on Algorithms and Computation (ISAAC), volume
7074 of LNCS, pages 323–332. Springer, 2011.

136

[124] Gonzalo Navarro and Yakov Nekrich. Optimal Dynamic Sequence Representations. In
Proc. of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), pages
865–876. SIAM, 2013.

[125] P. K. Nicholson, V. Raman, and S. S. Rao. Data Structures in the Bitprobe Model. In Space
Efficient Data Structures, Streams and Algorithms, volume 8066 of LNCS, pages 303–318.
Springer, 2013.

[126] R. Pagh. Low Redundancy in Static Dictionaries with Constant Query Time. SIAM Journal
on Computing, 31(2):353–363, 2001.

[127] R. Pagh. On the cell probe complexity of membership and perfect hashing. In Proc. of
the 33rd Annual ACM Symposium on Theory of Computing (STOC), pages 425–432. ACM,
2001.

[128] M. Pǎtraşcu. Succincter. In Proc. of the 49th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 305–313. IEEE Computer Society, 2008.

[129] M. Pǎtraşcu and C. E. Tarniţǎ. On dynamic bit-probe complexity. Theoretical Computer
Science, 380(1):127–142, 2007.

[130] H. Petersen. Improved Bounds for Range Mode and Range Median Queries. In Proc. of the
Conference on Current Trends in Theory and Practice of Computer Science, volume 4910
of LNCS, pages 418–423. Springer, 2008.

[131] H. Petersen and S. Grabowski. Range mode and range median queries in constant time and
sub-quadratic space. Information Processing Letters, 109:225–228, 2009.

[132] M. Pătraşcu and E. Viola. Cell-probe lower bounds for succinct partial sums. In Proc. of
the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SODA ’10, pages
117–122, Philadelphia, PA, USA, 2010. Society for Industrial and Applied Mathematics.

[133] J. Radhakrishnan, V. Raman, and S. S. Rao. Explicit deterministic constructions for
membership in the bitprobe model. In Proc. of the 9th Annual European Symposium on
Algorithms (ESA), volume 2161 of LNCS, pages 290–299. Springer, 2001.

137

[134] J. Radhakrishnan, S. Shah, and S. Shannigrahi. Data Structures for Storing Small Sets in
the Bitprobe Model. In European Symposium on Algorithms (ESA) (2), volume 6347 of
LNCS, pages 159–170. Springer, 2010.

[135] M. Z. Rahman. Data Structuring Problems in the Bit Probe Model. Master’s thesis,
University of Waterloo, 2007.

[136] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to
encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms, 3(4),
2007.

[137] S. S. Rao. Succinct Data Structures. PhD thesis, Institute of Mathematical Sciences, 2001.

[138] D. R. Raymond. Partial-order databases. PhD thesis, University of Waterloo, 1996.

[139] O. Raynaud and E. Thierry. The complexity of embedding orders into small products of
chains. Order, 27(3):365–381, 2010.

[140] K. Sadakane and R. Grossi. Squeezing succinct data structures into entropy bounds. In
Proc. of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1230–1239. ACM, 2006.

[141] M. Skala. Array Range Queries. In Space Efficient Data Structures, Streams and Algorithms,
volume 8066 of LNCS, pages 333–350. Springer, 2013.

[142] Maurizio T. and Paola V. Representing graphs implicitly using almost optimal space.
Discrete Applied Mathematics, 108(1âĂŞ2):193 – 210, 2001.

[143] M. Talamo and P. Vocca. Fast lattice browsing on sparse representation. In International
Workshop on Orders, Algorithms, and Applications (ORDAL), volume 831 of LNCS, pages
186–204. Springer, 1994.

[144] M. Talamo and P. Vocca. An Efficient Data Structure for Lattice Operations. SIAM Journal
on Computing, 28(5):1783–1805, 1999.

[145] T. Tao, E. Croot III, and H. Helfgott. Deterministic methods to find primes. Mathematics
of Computation, 81(278):1233–1246, 2012.

138

[146] A. R. Taraz. Phase transitions in the evolution of partially ordered sets. PhD thesis,
Humboldt-Universität zu Berlin, 1999.

[147] R. E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets.
Journal of Computer and System Sciences, 18(2):110 – 127, 1979.

[148] M. Thorup. Compact oracles for reachability and approximate distances in planar digraphs.
Journal of the ACM, 51(6):993–1024, 2004.

[149] M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24,
2005.

[150] W. T. Trotter. Combinatorics and partially ordered sets: dimension theory. Johns Hopkins
Series in the Mathematical Sciences, 1992.

[151] A. K. Tsakalidis. The nearest common ancestor in a dynamic tree. Acta Informatica,
25(1):37–54, 1988.

[152] G. Turán. On the succinct representation of graphs. Discrete Applied Mathematics,
8(3):289–294, 1984.

[153] E. Viola. Bit-probe lower bounds for succinct data structures. SIAM Journal on Computing,
41(6):1593–1604, 2012.

[154] Z. Wei and K. Yi. Beyond simple aggregates: indexing for summary queries. In Proc.
Symposium on the Principles of Database Systems (PODS), pages 117–128, 2011.

[155] B. T. Wilkinson. Adaptive range counting and other frequency-based range query problems.
Master’s thesis, University of Waterloo, 2012.

[156] D. E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n). Infor-
mation Processing Letters, 17(2):81–84, 1983.

[157] V. V. Williams. Breaking the Coppersmith-Winograd barrier. Unpublished manuscript,
2011.

[158] M. Yannakakis. The complexity of the partial order dimension problem. SIAM Journal on
Algebraic Discrete Methods, 3(3):351–358, 1982.

139

[159] A. C. C. Yao. Should Tables Be Sorted? Journal of the ACM, 28(3):615–628, July 1981.

[160] D. Zeilberger. Enumerative and algebraic combinatorics. The Princeton companion to
mathematics, Princeton University Press, USA, pages 550–561, 2008.

140

	List of Figures
	Introduction
	Motivation
	Models of Computation
	Succinct Data Structures
	Outline of Thesis and Summary of Contributions
	Preliminaries
	Fundamental Operations on Strings and Entropy
	Prefix-Free Codes
	Bit Strings
	Strings with Larger Alphabets
	Other Combinatorial Objects
	A Brief Note About Randomization

	Succinct Posets
	Introduction
	Definitions
	Previous work
	Our Contributions
	The Data Structure
	Flattening a Poset
	Compressing Flat Posets

	Extension to Transitive Reductions and Transitive Relations
	Issues Relating to Construction
	Additional Operations
	Another Representation That Yields More Operations
	Meet, Join, and Boolean Matrix Multiplication

	Simultaneous Representation
	Summary and Concluding Remarks

	Range Majority Queries
	Introduction
	Previous Work
	Our Contributions
	Subsequent (and Concurrent) Work
	Static Range Majority Data Structure
	Quadruple Decomposition
	Candidates
	Data Structures for Counting

	Generalization to Static Range alpha-Majority Queries
	Handling Large Alphabets

	Parameterized Query and Trade-offs
	Applications to Static Geometric Problems
	Static Range Majority for Coloured Points in One Dimension
	Static Range Majority in Higher Dimensions

	Approach for the Dynamic Geometric Problem
	Lower Bound
	Assumptions about Colours
	Dynamic Tree Structure
	Supporting Queries
	Supporting Updates
	Speedup for Integer Coordinates
	Dynamic String
	Higher Dimensions

	Summary and Concluding Remarks

	Explicit Bitprobe Data Structures
	Introduction
	Previous Results
	Deterministic Schemes for Membership
	Rank, Range Counting, and Emptiness

	Our Contributions
	Membership
	Rank, Range Counting, and Emptiness

	Membership Queries
	Fully Explicit Adaptive Schemes for Two Elements
	Limitations of the Blocking Scheme Approach for n ge 3
	Fully Explicit Adaptive Schemes for n ge 3

	Rank Queries
	Range Counting and Emptiness Queries
	Summary and Concluding Remarks

	Conclusions and Open Problems
	Succinct Posets
	Range Majority Queries
	Explicit Bitprobe Data Structures

	References

